

GEMTEC Project: 100117.056

Submitted to:

Laplante Poultry Farms Limited 3105 Dunning Road Sarsfield, Ontario K0A 3E0

Hydrogeological Investigation & Terrain Analysis
Proposed Chicken Processing Facility
Part of Lot 7, Concession 4 (3043 Dunning Road)
Ottawa, Ontario

December 20, 2024

GEMTEC Project: 100117.056

GEMTEC Consulting Engineers and Scientists Limited 32 Steacie Drive Ottawa, ON, Canada K2K 2A9

December 20, 2024 File: 100117.056 - R1

Laplante Poultry Farms Limited 3105 Dunning Road Sarsfield, Ontario K0A 3E0

Attention: Robert Laplante

Re: Hydrogeological Investigation & Terrain Analysis

Proposed Chicken Processing Facility

Part of Lot 7, Concession 4 (3043 Dunning Road)

Ottawa, Ontario

Please find enclosed our hydrogeological investigation report for the above noted project, in accordance with our proposal (revision 1) dated December 19, 2023. This report was prepared by Jason KarisAllen (P.Eng.) and Sam Esenwa and reviewed by Andrius Paznekas (P.Geo).

Sam Esenwa, B.Sc., G.I.T Environmental Scientist

Jason KarisAllen, M.A.Sc., P.Eng. Water Resources Engineer

Andrius Paznekas, M.Sc., P.Geo.

Hydrogeologist

JKA/SE/AP

Enclosures

 $N: Projects \\ 100100\\ 100117.056\\ \\ 05_Technical Work\\ \\ HydroG\\ \\ HydroG\\ \\ Reporting\\ \\ 100117.056_Hydrog_Report_2024-12-20_Rev1.docx$

TABLE OF CONTENTS

1.0 II	NTRODUCTION	1
1.1 1.2	Technical Pre-consultationExisting Reports	
2.0 F	PROJECT SETTING	2
2.1	Site Geometry and Location	2
2.2	Land Use and Land Cover	3
2.3	Non-agricultural Source Material (NASM) Facility Approval Process	3
2.4	Designated Areas and Permitted Water Takings	
2.5	Topography, Drainage, and Water Features	
2.6	Regional Surficial and Bedrock Geology	
2.7 2.8	Ontario Ministry of Environment, Conservation and Parks Water Well Records Provincial Ambient Groundwater Geochemistry	
2.0	Environmental Site Assessments	
3.0 T	ERRAIN ANALYSIS	7
3.1	Soils Summary	8
	1.1 Topsoil	
	1.2 Silty Clay and Weathered Crust	
	1.4 Auger Refusal	
3.2	Hydraulic Conductivity	
	2.1 Unified Soils Classification System Estimates	
3.	2.2 Single-Well Hydraulic Testing Estimates	
3.3	Groundwater Conditions	10
4.0 H	HYDROGEOLOGICAL CONCEPTUAL MODEL	12
5.0 II	MPACT ASSESSMENT	12
5.1	Class IV Conventional Sewage Disposal System	13
5.2	Surface Water Impacts	
5.3	Groundwater Impacts	14
	3.1 Hydrogeological Sensitivity	
5.	3.2 Assessment of Hydrogeological Isolation	14
6.0	GROUNDWATER SUPPLY	17
6.1	Test and Monitoring Well Construction	17
6.2	Weather Station Data	
6.3	Water Level Monitoring	
6.4	Pumping Tests Field Procedure	19

(5.4.1	Water Level Measurements	19
(5.4.2	Flow Rate Measurements	20
(5.4.3	Groundwater Sampling	20
6.5	Tes	st Well Water Quality	21
6	3.5.1	Bacteriological Parameters	
6	5.5.2	Other Health-Related Parameters	
6	5.5.3	Operational Guideline Exceedances – Hardness	22
6	5.5.4	Aesthetic Objective Exceedances	22
	6.5.4.		
	6.5.4.	,	
	6.5.4.	.3 Colour	23
6.6	Pui	mping Test Analysis	23
6	5.6.1	Pump Test Analysis Overview	23
6	6.6.2	Transmissivity Analysis	
6.7	Lor	ng-term Well Yield	26
6.8		otechnical Considerations	
7.0	00110		0-
7.0	CONC	LUSIONS	21
7.1	Нус	drogeological Conceptual Model	27
7.2	. Wa	iter Quality	27
7.3	. Wa	ater Quantity	28
7.4	Gro	oundwater Impact Assessment	29
7.5	Re	zoning	29
7.6		rmit To Take Water	
8.0	RECO	MMENDATIONS	30
8.1	We	ell Ownership Recommendations	30
8.2	Se _l	ptic System Construction Recommendations	31
8.3	Se	ptic Ownership Recommendations	31
9.0	CI OSI	URE	30
5.0	JLOOK	O1 \	
10 0	DEEE	DENCES	22

NOTE: This document and any attachments are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this document in error, please notify the sender immediately and delete the document from your system. Any unauthorized disclosure, copying, distribution, or reliance on the contents of this document is prohibited. Thank you for your cooperation.

LIST OF TABLES

Table 2.1 – Summary of MECP Water Well Records	5
Table 3.1 – Summary of Grain Size Distribution Testing	9
Table 3.2 – Hydraulic Conductivity Estimates Derived from Soil Classifications	10
Table 3.3 - Hydraulic Conductivity Estimates Derived from Single-well Hydraulic Testing	10
Table 4.1 – Framework of Hydrogeological Conceptual Model	12
Table 5.1 – Summary of Findings Relating to Hydrogeological Isolation	15
Table 6.1 – Summary of Test and Monitoring Well Location and Construction	18
Table 6.2 – Field Equipment Overview	20
Table 6.3 – Pumping Tests Details	23
Table C.1 – MECP Online Well Database Summary (500-m Radius)	
Table I.1 – TW1 Pumping Test: Summary of Field Water Quality Measurements	
Table I.2 – Summary of Test Well Laboratory Water Quality Measurements	

LIST OF FIGURES

- Figure B.1 Key Plan
- Figure B.2 Well Records within 500 Metres of Site
- Figure B.3 Cross-section A-A' (Map)
- Figure B.4 Cross-section A-A' (Profile)
- Figure F.1 Weather Station Data from Ottawa International Airport [...]
- Figure F.2 Long-term Water Elevation at (a) TW1 and (b) Monitoring Wells
- Figure F.3 Water Elevation and Pumping Rate for Test (a) and Monitoring (b) Wells [...]

LIST OF APPENDICES

APPENDIX A Report Conditions and Limitations APPENDIX B Site Maps and Cross-section A-A' APPENDIX C Water Well Records APPENDIX D Borehole Logs and Soil Characterization APPENDIX E Single-Well Hydraulic Test Analyses APPENDIX F Weather, Water Level Monitoring, and Pumping Test Data APPENDIX G **Draft Septic Plan** APPENDIX H **Pumping Test Data Analyses** TW1 Water Quality Laboratory Results & Field Measurements APPENDIX I Geotechnical Soil Settlement Assessment APPENDIX J APPENDIX K Cover Letter to the Ministry of Environment, Conservation and Parks for the Permit to Take Water Application

1.0 INTRODUCTION

Laplante Poultry Farms Limited (LPF) retained GEMTEC Consulting Engineers and Scientists Limited (GEMTEC) to prepare a hydrogeological investigation and terrain analysis for the required Zoning By-law Amendment associated with the proposed chicken processing plant at 3043 Dunning Road, Ottawa, Ontario (the site; Figure B.1). The site is currently zoned as Agricultural Resource Area by Schedule B9 of the Official Plan of the City, with proposed re-zoning to include an Agricultural (AG) Specifical Exemption to permit an abattoir as an agricultural related use.

The proposed chicken processing plant will be constructed within the existing building footprint. Parking for the facility will be located west of the building, and private well and septic services will be approximately positioned as shown in Figure B.1. The processing plant may employ up to 35 employees within three years, and up to four showers will be available for special use. Water demand will consist of chicken processing needs and employee uses (estimated to be 3,750 litres per day assuming 125 litres/employee/day). The total water taking for the proposed facility was estimated as 98,900 litres per day, which includes a 15% buffer above the reported maximum water usage of an existing operation (without showers) owned and operated by LPF in Monkland, Ontario. The 15% buffer includes more conservatism than would be needed to account for the shower facilities. Water takings are assumed to occur over a 12-hour period, 5 days a week based on the information provided to us. Four continuously operated water storage tanks will be located within the facility with a combined storage capacity of 52,000 litres for the operational security of the plant.

It is understood that an off-site treatment lagoon will manage the non-agricultural source materials (NASM) from the chicken processing plant at an off-site receiving site and is considered outside of the scope of this investigation. Furthermore, no manure or chicken processing by-products will be stored on site. Nonetheless, a summary of the NASM facility approval process is provided for consideration in Section 2.3.

The objectives of this investigation are to:

- Review available background information to assist in characterization of subsurface conditions in the vicinity of the site and develop a hydrogeological conceptual model;
- Identify and characterize the subsurface conditions on the site as they relate to the suitability of on-site septic sewage disposal systems;
- Assess the potential for impact on the receiving aquifer(s) and any nearby surface water features from on-site septic disposal systems;
- Investigate the potential quantity and quality of groundwater available from drilled test wells on the site as an industrial supply; and
- Assess the potential for interference between on-site and off-site well users.

Following a review of available background information and analysis of the results of the field investigation, conclusions and recommendations for the proposed chicken processing plant are provided. This report is subject to the *Conditions and Limitations of This Report* provided in Appendix A, which are considered an integral part of this report.

1.1 Technical Pre-consultation

A technical pre-consultation was held between GEMTEC, LPF, and the City of Ottawa on December 14, 2023; Tessa Di Iorio and Obai Mohammed were present as technical representatives of the City. The City requested that a workplan be submitted for the proposed hydrogeological investigations and that it include an assessment of vulnerable dug or bored wells in proximity of the site. The workplan was submitted to the City on December 12, 2023, and feedback was received by email on December 19, 2023. Additional feedback was received by the City on May 9, 2024. This report was prepared with consideration of the feedback and input provided by the City during the technical pre-consultation and subsequent feedback documents and email correspondence.

1.2 Existing Reports

GEMTEC has performed a geotechnical investigation and phase one and two environmental site assessment in conjunction with the hydrogeological investigation reported on herein, the results of which have been compiled in the following reports:

- GEMTEC. (October 2, 2024a). Geotechnical Investigation, proposed chicken processing plant, 3043 Dunning Road, Sarsfield (Ottawa), Ontario [in draft, unsubmitted]. Ottawa, Ontario.
- GEMTEC. (June 20, 2024b). Phase One Environmental Site Assessment, proposed chicken processing plant, 3043 Dunning Road, Ottawa, Ontario. Ottawa, Ontario.
- GEMTEC. (September 6, 2024c). *Phase Two Environmental Site Assessment, 3043 Dunning Road, Ottawa, Ontario.* Ottawa, Ontario.

2.0 PROJECT SETTING

2.1 Site Geometry and Location

The site is in Sarsfield, Ontario, a village in the Cumberland Ward in the east portion of the City of Ottawa (City). The site is rectangular and approximately 1.66 hectares (ha) in area. It is bounded by Dunning Road at the intersection of Dunning Road with Giroux Road to the west, and to the north, east and south by agricultural properties at 3085 and 3105 Dunning Road, which are also owned by LPF.

2.2 Land Use and Land Cover

The site is situated within a larger agricultural area. The existing land use designation from the City of Ottawa is general rural area (GEMTEC, 2023 [in draft]). The City of Ottawa zoning by-law is agricultural zone (AG[537r]).

The Rideau Valley Conservation Authority (RVCA) 2020 landcover summary was reviewed within approximately 500 metres of the site. RVCA (2022) indicates that 3043 Dunning Road is one of approximately twelve settlement areas designated as pervious homesteads within 500 metres of the site. A review of satellite imagery suggests that these settlement areas consist of commercial, agricultural, and residential uses. Small areas of woodland and meadows or thickets are mapped along ditches and drains, but most of the reported land cover surrounding the site consists of crops and pastures.

2.3 Non-agricultural Source Material (NASM) Facility Approval Process

GEMTEC does not proport to be a subject matter expert on NASM facilities, but offers this summary based on information provided by LFP and their consultants (primarily Hugh Metcalfe, NASM Planner) to satisfy the requests of the City. The provided information substantiates that regulatory oversight will be in place to manage risk associated with the NASM facility and no further consideration from a hydrogeological perspective is practicable at this time.

GEMTEC understands that approval and design of a NASM facility are underway at 3105 Dunning Road adjacent to the site. NASM plans must be prepared by a certified NASM Plan developer and comply with the nutrient management regulation, the nutrient management protocol, the NASM odour guide, and the sampling and analysis protocol.

The proposed NASM facility will consist of two 123-inch diameter (circle), 40-foot deep, covered, straight-walled liquid storage tanks (total capacity of 6,933,084 gallons). The tanks will be mostly surrounded by berms to increase overland flow paths to surface water features to at least 50 metres. Approval was granted for 3105 Dunning Road by the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) to store and apply NASM from another chicken processing plant owned by LPF located in Monkland, Ontario. Approval cannot be granted for the proposed chicken processing plant at 3043 Dunning Road until it is operational in order to maintain waste management operations at the Monkland processing plant.

A NASM Plan amendment and updated Engineering Requirement Form will be submitted once the 3043 Dunning Road processing plant and the NASM facility are ready for operation. Any transfer system moving wash-water waste between the proposed plant and NASM facility will be regulated by OMAFRA (approval authority) and the Ontario Ministry of Environment, Conservation and Parks (MECP; enforcement) under Ontario Regulation 267/03 and the Nutrient Management Act, 2002 (or alternatively the Environmental Protection Act). An ECA will be required for the underground piping system between the chicken processing plant and NASM facility.

Furthermore, a professional engineer will be responsible for the design and implementation of the transfer systems.

2.4 Designated Areas and Permitted Water Takings

The site is located within the Becketts Creek catchment, within the Ottawa River East subwatershed, both of which are under the regulatory authority of the RVCA. RVCA-regulated unstable slopes are mapped along segments of the Rolland Dutrisac Drain found northeast of the site (RVCA, 2022).

The site was not located within a well head protection area, intake protection zone (MECP, 2022), or a flood-prone area (RVCA, 2022).

No significant groundwater recharge areas are mapped within 1.5 kilometres of the site (RVCA, 2022), which is corroborated by surrounding soils being generally mapped as low-permeability clays and silts (OGS, 2010).

No Areas of Natural and Scientific Interest (ANSI) were identified within one kilometre of the site (MNRF, 2012). The nearest ANSI is the Sarsfield-Bearbrook Esker approximately 1.4 kilometres southeast, which is reported to be non-sensitive but of provincial significance.

The Environmental Site Registry database (MECP, 2024) was reviewed and there are no active Permits to Take Water or Environmental Activity and Sector Registrations within 1.5 km of the proposed development, apart from the registration for the on-site pumping test performed as part of this investigation. The nearest active PTTW (Permit No. 5284-BMKL9W, issued to Lafarge Canada Incorporated) is reported approximately 1.9 kilometres southwest of the site associated with quarrying activities. This permit allows for a maximum water taking of up to 12,869,000 litres per day for dewatering, aggregate washing, and construction purposes.

2.5 Topography, Drainage, and Water Features

The topography of the site is relatively flat with less than 5 m of relief as shown in Figure B.1, Key Plan (Appendix B). Mapping indicates that there is a south-north trending channelized drainage feature along the eastern perimeter of the site (Jules Potvin Drain), and a west to east flowing surface water feature directly north of the site to which several channelized drainage features discharge. This surface water body appears to be the eastern continuation of the Rolland Dutrisac Drain on the west side of Dunning Road. Additionally, field reconnaissance indicates that there are drainage ditches located along the western, northern, and southern property boundaries.

There are no mapped wetlands at the site or within 500 m of the site. The nearest downgradient wetland within the same watershed is a non-evaluated swamp approximately 1.2 kilometres east of the site.

2.6 Regional Surficial and Bedrock Geology

The site is located within the Ottawa Valley Clay Plains physiographic region (Chapman and Putnam, 2007).

Mapped surficial geology from the Ontario Geological Survey (OGS) in the vicinity of the site consists of massive to well laminate fine-textured glaciomarine deposits consisting of silt and clay with minor sand and gravel (OGS, 2010). Available drift thickness mapping (Gao et al., 2006) indicates that overburden within 100 metres of the site ranges from approximately 12 to 18 metres.

The bedrock underlying the overburden consists of Lindsay Formation (Simcoe Group) limestone (Armstrong and Dodge, 2007). The bedrock is mapped sloping downward to the northeast (Gao et al., 2006).

Available karst mapping (Brunton and Dodge, 2008) does not indicate any areas of any inferred or potential karstic features within 500 metres of the site.

2.7 Ontario Ministry of Environment, Conservation and Parks Water Well Records

Public water well records (MECP, 2021, updated April 2023) reportedly within 500 m of the site were reviewed and their reported locations are shown on Figure B.2, Appendix B. Appendix C includes a copy of the public well records within 500 metres and the records of two wells owned by LPF. A summary of the information included in these well records is presented as Table C.1, Appendix C, and Table 2.1 summarizes select data from the reviewed water well records.

Table 2.1 – Summary of MECP Water Well Records

Well Use	Overburden Bedroo	Doduook	Well Depth (m)		
Well Use		bearock	Min.	Max.	Avg.
Domestic (only)	8	3	6.1	34.4	17.8
Livestock	0	2	16.9	22.9	19.9
TOTAL	8	5	-	-	-

The findings of the well record review were summarized as follows:

- Upon review of Well IDs 1513961 and 1528498, the wells were not believed to be located within 500 metres of the site based on the locations indicated.
- The remaining 11 wells records indicate the following uses:
 - Ten domestic wells and
 - One livestock well.
- Static water level measurements ranged from 0.3 m to 5.5 m below ground surface (mbgs), with a median value of 1.8 mbgs (n = 13).

- Bedrock depths are reported between 12.5 and 30.2 mbgs, with a median value of 21.9 mbgs (n = 5). This is generally consistent with geological mapping for the area suggesting overburden thicknesses between 12 and 18 metres.
- The local water supply aquifer consists of an interface aquifer composed of upper limestone bedrock and overlying gravel and sand overlain by a thick deposit of clay and silt.
- All wells identified within 200 metres of the site have 10+ metres of clay reported on their well record overlying the supply aquifer.
- No dug or bored wells were identified within at least 300 metres of the site through a review of the public well records or by a door-to-door survey of nearby property owners.

2.8 Provincial Ambient Groundwater Geochemistry

The Ontario Geologic Survey (OGS) began collecting and reporting ambient groundwater geochemical data across southern Ontario and has published the results of their work from 2007 to 2019 (Hamilton, S.M., 2021). Available data within one kilometres of the site were reviewed. Descriptions of the wells within this search radius are summarized below:

- Two drilled interface wells (public well records 1513950 and 1512438) within the glacial till or shallow bedrock (bedrock surface would likely be connected to the overburden interface aquifer).
 - Well depths ranging from 9.4 to 12.2 mbgs
 - Static water level ranging from 0.3 to 0.9 mbgs

Historical analyses of nutrient concentrations are available for these well locations and were reviewed as potential indicators of surface water influence to the groundwater supply aquifer. Significant uncertainty is associated with these data.

Dissolved organic carbon (DOC) was 3 mg/L in 1513950 (not measured in 1512438), which is above the threshold of 1 mg/L proposed by Chapelle (2022) warranting further investigation. DOC serves as a growth nutrient for bacteria and may also be an indicator of surface water influences in a supply aquifer (Chapelle, 2022). However, it is noted that this value is on the low end of reported values for dug or drilled well water samples in Southern Ontario (Hamilton, S.M., 2021).

Nitrite and nitrate concentrations were below detection limits. Ammonia and ammonium in 1513950 (not measured in 1512438) cumulatively were below the threshold typically expected for ammonia alone in groundwater of 0.2 mg/L (Bouwer & Crowe, 1988).

Phosphate concentrations were non-detect (<0.04 mg/L) within 1513950 and 0.14 mg/L in 1512438. Phosphate may originate from septic effluent, the application of fertilizers for agricultural purposes, livestock, or from natural biotic or abiotic sources. Phosphate is generally reported as elevated in this region relative to other regions of Southern of Ontario (Hamilton, S.M., 2021).

No fecal or total coliform were measured within 1513950 (not measured in 1512438).

2.9 Environmental Site Assessments

GEMTEC performed a Phase One Environmental Site Assessment (ESA) for the site that identified the presence of three areas of potential environmental concern associated with the presence of:

- Two aboveground storage tanks north of existing chicken barn;
- One off-site aboveground storage tank identified about 10m south of the site; and
- A transformer northwest of the building.

Accordingly, a Phase Two ESA was completed by GEMTEC to investigate the areas of potential environmental concern. Based on the results of the soil samples and groundwater samples submitted as part of this Phase Two ESA, no impacts were identified. The results of the Phase One and Phase Two ESA's are presented under separate covers, in reports titled:

- "Phase One Environmental Site Assessment, Proposed Chicken Processing Plant, 3043 Dunning Road, Ottawa, Ontario" prepared by GEMTEC and dated June 20, 2024 (GEMTEC, 2024a).
- "Phase Two Environmental Site Assessment, Proposed Chicken Processing Plant, 3043 Dunning Road, Ottawa, Ontario" prepared by GEMTEC and dated September 6, 2024 (GEMTEC, 2024b).

The environmental site assessment included the installation of two monitoring wells (i.e., BH24-03 and BH24-04), installed into the silty clay. The location of these wells is shown in Figure B.1.

3.0 TERRAIN ANALYSIS

Two pairs of clustered boreholes (BH), BH24-1S/D and BH24-2S/D were advanced on-site between January 4th and 8th, 2024, to investigate subsurface conditions. Drilling was undertaken by Limitless Drilling of Ontario using a CME 45B trailer drill rig. Each borehole pair consisted of a shallow (24-1S and 24-2S) and deeper (24-1D and 24-2D) well.

Soils were logged in both deeper holes and soil samples were returned to the GEMTEC Ottawa soils lab for characterisation. Descriptions of the subsurface materials encountered in the deeper boreholes are provided in Appendix D, along with the results of the laboratory classification testing.

Monitoring wells were installed in all four boreholes for water level monitoring and hydraulic testing. Wells were developed on January 9, 2024, by purging three times the calculated well volume or until gurgle dry. Test and monitoring well locations and elevations, as presented in Figure B.1, were surveyed by GEMTEC staff using a Trimble R10 global positioning system using NAD83 / UTM zone 18N for horizontal coordinates and CGVD28 as the vertical datum.

Monitoring wells were constructed with two-inch PVC pipe and ten-foot slotted screens at their base. The slotted screens were surrounded by filter sand, above which bentonite pellets were used to seal the filter pack back to surface. Well construction details (including monitoring wells installed as part of GEMTEC (2024b) are presented in the Borehole Logs of Appendix D.

Wells were instrumented with sensors to monitor well recovery after purging, measure static water levels, and infer vertical gradients across the monitoring network. Monitoring wells 24-1D, 24-2S, 24-2S were monitored between January 22 and 31, 2024, 24-1S was monitored between January 25 and 31 and MW3085 was monitored between January 24 and 31, 2024. Test well TW1 was monitored between January 9 and 22, 2024.

Single-well, in-situ hydraulic testing was performed within each on-site monitoring well on January 15, 2024. The hydraulic testing included short-term (up to 20 minutes long) falling and rising head tests involving the introduction or removal of a known volume (i.e., slug tests) and monitoring water level recovery. Well water level recovery data was recorded using a data logger and corroborated by manual measurements. Where short-term recovery was insufficient for meaningful analysis after approximately 20 minutes, purge and recovery data from well development was analysed to estimate hydraulic conductivity.

3.1 Soils Summary

The following subsections present an overview of the subsurface conditions encountered at BH24-1D and BH24-2D advanced by Limitless Drilling under the supervision of GEMTEC.

3.1.1 Topsoil

Topsoil with a thickness of about 100 millimetres was encountered at ground surface in both boreholes.

3.1.2 Silty Clay and Weathered Crust

Weathered crust, described as brown silty clay, was encountered below the topsoil in each borehole. The weathered crust is underlain by native deposits of grey silty clay, which extend to depths of about 12.95 to 15.39 mbgs.

Four grain size distribution tests were carried out on selected samples of the silty clay deposits. The results are provided in Appendix D and are summarized in Table 3.1.

Table 3.1 - Summary of Grain Size Distribution Testing

Borehole ID	Sample Number (SA)	Sample Depth (metres)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
24.4D	03	1.52 – 2.13	0.0	0.4	44.2	55.4
24-1D	15	10.67 - 11.28	0.0	0.8	43.4	55.8
04.00	03	2.28 - 2.89	0.0	1.0	42.5	56.5
24-2D	11	8.38 – 8.99	0.0	0.7	39.9	59.4

The water content measured in four samples of the silty clay deposits ranged from about 47 to 85%.

3.1.3 Glacial Till

Glacial till was encountered below the native silty clay layer and is described as compact to dense, grey silty sand, some gravel, with cobbles and boulders. The glacial till layer extends to depths between 15.32 to 18.19 mbgs.

3.1.4 Auger Refusal

Auger refusal on inferred bedrock, described as dark grey limestone, was encountered within both boreholes at depths of 15.32 and 17.35 mbgs.

3.2 Hydraulic Conductivity

The hydraulic conductivity of the soil layers encountered within the boreholes was estimated through the characterisation of soil compositions and by single-well, in-situ hydraulic testing performed within all on-site wells.

3.2.1 Unified Soils Classification System Estimates

Soils were classified using the Unified Soils Classification System (USCS). The 2012 Building Code Compendium (MMAH, 2022) proposes representative ranges of hydraulic conductivities for each soil classification of the USCS. The USCS classifications and associated MMAH (2022) hydraulic conductivities are presented in Table 3.2. Sample IDs follow the convention of the soil lab characterisation sheets included in Appendix D. Samples SA 15 from borehole 24-1D and SA 11 from borehole 24-2D were tested for liquid limit, which is required for USCS classification of fine soils. Hydrometer results suggest comparable soil properties within the shallow samples collected.

Table 3.2 – Hydraulic Conductivity Estimates Derived from Soil Classifications

Well ID	Sample ID	Sample Depth (m)	USCS Classification	MMAH Hydraulic Conductivity Range (m/s)
24-1D	SA 15	10.67 – 11.28	CL (Lean clay)	10 ⁻⁸ or less
24-2D	SA 11	8.38 - 8.99	CL (Lean clay)	10 ⁻⁸ or less

3.2.2 Single-Well Hydraulic Testing Estimates

The Bower and Rice (1976) and Hvorslev (1951) solutions for confined aquifers were used to analyse the single-well, hydraulic testing data within Aqtesolv (version 4.50.002). The parameters and results of these analyses are presented in Appendix E. The Hvorslev solution yielded consistently more conservative estimates, which for the purpose of the terrain analysis implies a higher estimate of hydraulic conductivity, relative to the Bower and Rice solution; therefore, only the Hvorslev-estimated hydraulic conductivities are presented and discussed herein.

Table 3.3 - Hydraulic Conductivity Estimates Derived from Single-well Hydraulic Testing

Well ID	Material Screened	Falling Head Test K (m/s)	Rising Head Test K (m/s)	Purge and Recovery Test (m/s)
24-1S	Silt and Clay	5 × 10 ⁻⁹	N/A	N/A
24-1D	Sand and Gravel (Glacial Till)	7 × 10 ⁻⁴	5 × 10 ⁻⁴	N/A
24-2S	Silt and Clay	*2 × 10 ⁻⁶	*1 × 10 ⁻⁹	2 × 10 ⁻⁸
24-2D	Sand and Gravel (Glacial Till)	4 × 10 ⁻⁵	2 × 10 ⁻⁵	N/A

Notes: *Uncertainty in estimate of hydraulic conductivity due to irregular recovery. Results for falling head test are not consistent with rising head and purge/recovery monitoring, possibly due to filter pack and/or screen effects.

N/A – No data or no analysis performed.

3.3 Groundwater Conditions

The groundwater conditions were monitored in all on-site monitoring wells (i.e., 24-1S, 24-1D, 24-2S, and 24-2D), on-site test well TW1, and MW3085 (Well ID 150621, Appendix C), an offsite

livestock water supply well located approximately 246 metres south of the site. The groundwater level in the monitoring wells were measured manually between the 15th and 31st of January 2024.

Vertical gradients between shallow and deep wells indicate downwards groundwater flow, while horizontal gradients indicate local groundwater flow towards the east-southeast, generally coinciding with local topography. Groundwater levels may be higher during wet periods of the year such as the early spring or following periods of precipitation.

Table 3.4 – Overburden Groundwater Depth and Elevation

Well ID	Date of Measurement	Groundwater Depth (mbgs¹)	Groundwater Elevation (masl¹)
TW1	25-01-2024	1.33	85.02
	15-01-2024	1.46	84.64
24-1S	25-01-2024	0.81	85.28
	31-01-2024	0.74	85.35
	15-01-2024	1.09	85.09
24-1D	25-01-2024	1.19	84.99
	31-01-2024	1.20	84.98
	15-01-2024	0.89	85.59
24-2S	25-01-2024	0.79	85.69
	31-01-2024	0.63	85.85
	15-01-2024	1.39	85.14
24-2D	25-01-2024	1.49	85.04
	31-01-2024	1.51	85.02
NAVA20052	25-01-2024	3.08	83.82
MW3085 ²	31-01-2024	3.30	83.60

Notes:

- 1. mbgs = metres below ground surface; masl = metres above mean sea level (CGVD28)
- 2. Refer to Section 6.1 and Figure B.1, Appendix B for details.

4.0 HYDROGEOLOGICAL CONCEPTUAL MODEL

A west-east hydrogeological cross-section (see Figure B.3 and B.4, Appendix B) was prepared based on information from on-site test wells, geological mapping (see Section 2.5), and public water well records (see Section 2.7). The framework for the hydrogeological conceptual model for the site is summarized in Table 4.1. Please note that the boundaries between zones indicated have been interpreted based on available information and may differ from on-site conditions.

Table 4.1 – Framework of Hydrogeological Conceptual Model

Stratigraphic Unit	Generalized Composition	Thickness (m)	Water Saturation
Overburden	TopsoilLean ClayCoarse Glacial Till	<1 >10 0.9 to 5	Dry Increasing with depth Saturated
Bedrock	 Upper Fractured Limestone Lower, Less Fractured Limestone 	Unknown	Saturated Saturated

It is our understanding that the hydrogeological cross-section is consistent with available background information and the site-specific geology from the on-site field investigation. In general, the site geology consists of thin topsoil, underlain by a thick clay layer (isolating unit), followed by coarse glacial till (water supply aquifer), underlain by limestone bedrock. The upper bedrock is expected to be highly fractured and hydraulically connected with the overlying glacial till layer, forming part of the water supply aquifer. The bedrock is mapped sloping downward to the northeast, and overburden is expected to pinch out to the south-west (upgradient) with increasing bedrock surface elevations.

5.0 IMPACT ASSESSMENT

The impact on groundwater and surface water resources from conventional on-site sewage disposal system are assessed in the following subsections. It is understood that any processing waters from the proposed poultry facility will be taken to an off-site receiver. The on-site septic system will include wastewater from employee washrooms only.

5.1 Class IV Conventional Sewage Disposal System

This section discusses the results of the terrain evaluation as they relate to the feasibility of installing Class IV sewage disposal systems on the site. It should be noted that the following information is provided for general guidance purposes only and that all septic systems installed on the site should be designed and installed by a Qualified Person (QP). In all cases, the septic system design must conform to Ontario Building Code (OBC) requirements.

A draft septic design plan was produced by Kollard Associates Engineers and was provided to GEMTEC by LPF for inclusion within this report (Appendix G). The design capacity of the system is less than 10,000 L/day and was proposed by Kollard Associates Engineers to accommodate the loading produced by 50 on-site employees over 5-day work weeks. Corroborating their design calculation is beyond the scope of this report.

The septic leaching bed is positioned to the front of the property, more than 18 metres away from the on-site water supply well. The proposed septic system is also located greater than 15 metres from any surface water features, including the municipal drain located east of the site.

The septic leaching bed design must ensure that the bottom of the absorption trenches is at least 0.9 metres above low permeability soils (such as clay), bedrock, and the seasonally high groundwater table. Based on the clays observed on-site, it is expected that the septic leaching bed will be fully raised.

5.2 Surface Water Impacts

The discussion provided herein, in relation to surface water impacts to adjacent surface water features, is concerned primarily with septic effluent discharging from on-site septic systems. Phosphorus is known to be the primary contaminant of concern for freshwater aquatic systems impacted by septic effluent.

Phosphorus attenuation in septic system leaching fields involves a combination of biotic and abiotic process including sorption/precipitation reactions, plant uptake, and mineralization/immobilization by microbes; however, the dominant attenuation mechanisms are sorption/precipitation mechanisms (Wilhelm, et al., 1996).

Although there remains some uncertainty in the scientific community regarding the mobility of phosphate in the subsurface, phosphate is known to be considerably reactive, is strongly adsorbed by most sediments, and is capable of combining with a number of metal cations (particularly iron, aluminum, manganese and calcium) to form a wide range of minerals that can be stable in low temperature aqueous environments (Parfitt et al, 1975; Rajan 1975; Isenbeck-Schröter et al., 1993; Roberston et al, 1998).

The minimum setback from surface water features is 15 metres, as per the Ontario Building Code. The travel path of treated effluent within and/or atop the clay would be greater than 200 metres

to the nearest mapped surface water feature (i.e., agricultural drain to the east). Despite the potential for the ditches along the property boundaries to intercept treated effluent and accelerate transport, the impact to surface water features is unlikely to be significant, especially considering the agricultural context of the catchment.

5.3 Groundwater Impacts

The potential impacts of the proposed septic loading to groundwater resources on and off the site was assessed in general accordance with Ministry of Environment Procedure D-5-4: Technical Guideline for Individual On-Site Sewage Systems: Water Quality Impact Risk Assessment (MECP, 1996).

Water surplus is expected to be limited due to the clay materials present, hard surface area proposed, and proposed land cover, reducing the available water surplus for dilution of septic loads. As the chicken processing plant projects employing up to 50 employees, lot size exemptions were considered inadequate to substantiate the capacity of the site to accommodate the proposed development. Thus, this section presents an assessment of hydrogeological sensitivity and a review of the interpreted isolating conditions found at the site.

5.3.1 Hydrogeological Sensitivity

The hydrogeological sensitivity of the site was evaluated. Areas of thin soil cover, fractured bedrock exposed at ground surface, and karst environments contribute to the hydrogeological sensitivity of a site. Where present, these conditions may not allow for sufficient attenuative processes for on-site septic systems resulting in negative impacts to the receiving aquifer. Areas of thin soil cover, generally taken to be less than two metres, were not encountered on-site (refer to Section 3.1), and geological mapping reflects thick deposits of low-permeability overburden. As such, the site is not considered hydrogeologically sensitive terrain.

5.3.2 Assessment of Hydrogeological Isolation

The risk of sewage effluent contamination must be assessed for the proposed development. As per Procedure D-5-4, it is required to:

- Evaluate the most probable groundwater receiver for sewage effluent; and
- Define the most probable lower hydraulic or physical boundary of the groundwater receiving the sewage effluent.

Based on the hydrogeological conceptual model and as per the isolation requirements of MECP Procedure D-5-4, the groundwater receiver for the septic effluent is the upper clay overburden. This clay overburden is interpreted as an effect isolation layer for the underlying water supply aquifer. Several lines of evidence (as indexed below for Table 5.1) were explored to substantiate the merit of aquifer isolation:

- 1. Review of geological mapping, public well records (Appendix C) and homeowner interviews;
- 2. Borehole investigation program with soil sampling to infer geological layers and thicknesses;
- 3. Soil characterisation to corroborate field-interpreted soil types and estimate hydraulic conductivity;
- 4. Single-well hydraulic testing in supply aquifer and isolating unit to estimate hydraulic conductivity;
- 5. Water level monitoring of shallow and deep wells during regular operation of the existing test well for agricultural purposes;
- 6. Review of water level responses in monitoring wells during an eighteen-hour pumping test performed within TW1; and
- 7. Review of available water quality information for potential indications of surface water influences including tannins and lignans, nitrates, nitrites, ammonia, bacteria, phosphate, and organic carbon.

The main findings of these reviews and investigations, as pertains to the evaluation of isolation, are summarized in Table 5.1, with the Index number referring to the list above.

Table 5.1 – Summary of Findings Relating to Hydrogeological Isolation

Index	Main Findings
1	 Mapped overburden thickness within 100 metres of the site ranges from approximately 12 to 18 metres.
	Mapped soil type is low-permeability offshore marine deposits.
	 Public well records within 100 metres of the site have 10+ metres of clay reported in their borehole log. Clay pinches out at greater distances but is still 5+ metres thick in records within 500 metres. All nearby wells exploit the shallow fractured bedrock and/or overlying overburden interface aquifer (sand and gravel) that is capped by clay. No homeowners interviewed reported the use of shallow dug wells, including 3016, 3094, 3128, and 3178 Dunning Road and 2570 Giroux Road.
2	 On-site conditions include a layer of clay and silt materials over a sand and gravel glacial till supply aquifer, which is underlain by limestone. Borehole 24-1D has a clay layer that is over 15 metres thick. Borehole 24-2D has a clay layer that is over 10 metres thick.
	25.5 27 25 Had a stay tayor tracks over 10 mones trilor.
3	 Four soil samples of clay were submitted for characterisation via hydrometer testing and two for soil plasticity tests. Results suggest that the isolating layer

Index	Main Findings
	is lean clay (USCS group) which has a reported hydraulic conductivity of 10^{-8} m/s or less.
4	• The analysis of the single-well hydraulic tests suggests a horizontal hydraulic conductivity for the water supply aquifer between 10 ⁻⁴ and 10 ⁻⁵ m/s, whereas the overlying clay is likely 10 ⁻⁸ m/s or less.
5	 Monitoring wells screened within the water supply aquifer respond to larger withdrawals from the on-site test well, but not to smaller daily usage. Water levels within shallow wells do not respond to regular usage from the test well over the monitoring period. Vertical hydraulic gradients over the site are slightly downward.
6	 The on-site test well (TW1) was pumped at approximately 45.6 US gpm for 18 hours to assess the water supply aquifer. Monitoring wells within the clay did not respond to pumping during the test. Monitoring wells within the glacial till aquifer responded to the test approximately 131 to 141 metres away (24-1D and 24-2D), but not so far as 246 metres (MW3085).
7	 Provincial Ambient Groundwater Geochemistry data for two nearby wells (reportedly within one kilometre) reported non-detect nitrate/nitrite and coliform bacteria, but measureable concentrations of DOC and phosphate. No conclusive water quality indicators of surface water influences were noted in the groundwater quality samples taken on site over the course of the investigation. Phosphate was non-detect (<0.5 mg/L) in water quality samples and DOC was relatively low and stable during pumping (1.3 to 1.6 mg/L).

Data from the provincial ambient groundwater geochemistry program has various sources of uncertainty; given that no compelling evidence of surface water contamination was identified during our on-site sampling program, the slightly elevated concentration of phosphate is likely associated with well installation, construction, or insufficient development before groundwater sampling was performed. Conversely, low levels of DOC were noted in both well water samples (1.3 and 1.6 mg/L) and may be indicative of ambient concentrations of the target aquifer; however, the source of the DOC in uncertain.

Downward gradients are not considered problematic for the purpose of the proposed septic design given the thickness and low permeability of the clay layer.

In short, the findings of the hydrogeological investigation support that the supply aquifer (glacial till and upper bedrock) is hydrogeologically isolated from the proposed septic system within 100 metres of the site. Thus, GEMTEC interprets that the site can accommodate the proposed septic loading in accordance with MECP Procedure D-5-4.

6.0 GROUNDWATER SUPPLY

A groundwater supply investigation was carried out in accordance with the MECP August 1996 document "Procedure D-5-5, Technical Guideline for Private Wells: Water Supply Assessment", to determine the quantity and quality of groundwater available for the industrial water supply. The results of the groundwater supply investigation are summarized in the following subsections.

6.1 Test and Monitoring Well Construction

An existing on-site test well was utilised to evaluate if the productivity of the target water supply aquifer was sufficient to sustain the proposed use. The MECP well record (Well ID 134543; Appendix C) for the well was provide to GEMTEC by LPF. The well casing has a diameter of eight inches, the well depth is approximately 18.0 metres, and the well is currently in use as an agricultural and livestock supply well. The well record indicates that the casing is more than six metres below ground surface and was sealed from surface to 6 metres below ground surface using cement grout.

The well was inspected by GEMTEC and was found to be in good condition, with soils grading away from the well head and sufficient above-ground casing to comply with Ontario Regulation 903. It was noted that above ground oil storage tanks were located within 15 metres of the well; it is recommended that these tanks be relocated to comply with the separation distances prescribed within Ontario Regulation 903 for new wells. However, it has been confirmed with the MECP that relocation of the fuel storage tanks is not mandatory for existing wells.

Four two-inch monitoring wells were constructed on site to monitor aquifer response to pumping. Two of the monitoring wells (24-1S and 24-2S) were screened across the clay unit, whereas the other two were screened within the target water supply aquifer. An existing water supply well (Well ID 150621, Appendix C) located on an adjacent property owned by LPF was monitored during the pumping test to expand the monitoring program; this well is referred to as MW3085 (Figure A.1). The location (Figure A.1) and construction details for the monitoring and tests wells are summarized in Table 6.1.

Table 6.1 – Summary of Test and Monitoring Well Location and Construction

Well ID	Longitude ¹	Latitude ¹	Ground Elevation (masl²)	Well Diameter (inch)	Well Depth (mbgs²)	Casing Length (mbgs)
TW1	471332.2	5033475.1	86.4	8	18.0	18.0
24-1S	471450.0	5033521.8	86.1	2	7.9	4.9
24-1D	471454.4	5033522.8	86.2	2	18.2	15.1
24-28	471198.1	5033421.0	86.5	2	7.9	4.9
24-2D	471201.7	5033421.0	86.5	2	15.5	12.5
MW3085	471481.5	5033279.8	86.9	8.25	16.8	7.3

Notes:

- 1. Coordinates provided in Nad83 / UTM zone 18N
- 2. mbgs = metres below ground surface; masl = metres above mean sea level (CGVD28)

6.2 Weather Station Data

Precipitation and air temperature data from the Ottawa International Airport Station located approximately 40 km east from site (Climate I.D: 6106001) were examined in conjunction with water level data over the monitoring and pumping period (Figure F.1, Appendix F). Precipitation events predominantly consisted of snowfall with a few minor rainfall events. Mean daily temperatures generally remained below freezing, with a few exceptions, presumably maintaining frozen soil conditions throughout the investigation. Rainfall was observed within the last 1.5 hours of the pumping test, as corroborated by the weather station data for January 25th and 26th, 2024 (see Figure F.1, Appendix F).

6.3 Water Level Monitoring

Water level measurements were collected from all on-site wells prior to and after the pumping test to assess water level fluctuations, water level trends, and responsiveness to precipitation. The water level monitoring data are presented in Figure F.2, Appendix F.

In addition to manual water levels (Section 3.3), continuous datalogger measurements were collected in all the wells for a nine-day period between the 22nd and 31st of January 2024. The continuous logger measurements were corrected using the first manual measurement taken within each well. Subsequent manual measurements confirmed the absence of major logger drift over the monitoring period. Water level data were corrected for atmospheric pressure using data obtained from an on-site air pressure transducer.

The general water level trends are consistent for all on-site wells, except during periods of pumping. During the monitoring period, water was periodically withdrawn from MW3085 and TW1 by LPF for agricultural and livestock purposes, with resulting maximum drawdowns of 10 and 4 m in each well, respectively. Inferred natural water level variability (unrelated to pumping) remained less than 0.3 m over the approximate three-week monitoring period.

No rapid fluctuation in groundwater levels were identified in the wells correlating with periods of precipitation (rain or snow) or possible melt events associated with temperatures above freezing (Figure F.1, Appendix F). Lack of response within the wells was attributed to on-site conditions restricting infiltration (i.e., frozen soils, low conductivity clay soils, and the presence of a snowpack). Thus, monitoring data suggests that the precipitation event that occurred towards the end of the pumping test would have had little to no impact on the results.

6.4 Pumping Tests Field Procedure

A step test was completed on the existing on-site water supply well, TW1. A licensed well technician of Aardvark Drilling Inc. (Aardvark) removed the existing pumps and installed a temporary pump for the pumping test. Aardvark completed a preliminary step test to assess the maximum well yield, which was estimated to be 172.6 litres per minute – data not presented.

An eighteen-hour constant rate pumping test was performed in TW1 on January 25th and 26th, 2024. Test well TW1 was pumped at a rate of approximately 172.6 litres per minute for eighteen hours, totaling approximately 186,400 litres. Groundwater pumping was carried out under Environmental Activity and Sector Registry (EASR) registration number R-011-1265325587 for groundwater withdraws greater than 50,000 litres per day. The pumping test design report was prepared by GEMTEC, titled "Pumping Test Design Report, Environmental Activity and Sector Registry, Proposed Chicken Processing Facility, 3043 Dunning Road, Ottawa, Ontario" dated January 19, 2024.

The pump discharge was directed to ground surface approximately fifteen metres from the test well to the ditch along the northern boundary of the property, which flowed downgradient to the northeast. Channelized flow of well discharge, low conductivity overburden, and frozen ground conditions are expected to have mitigated recharge local to the test and monitoring wells. No ponding around any of the test or monitoring wells was observed during the pumping test.

6.4.1 Water Level Measurements

During the pumping test, water level measurements were taken at regular intervals in TW1 and the monitoring wells using an electric water level tape. Electronic pressure transducers were installed in TW1 (recording at a 5-second interval) and in 24-1S, 24-2D, and MW3085 (recording at 2-minute intervals). After the pump was shut off, water level data was collected until a minimum of 95% of the drawdown in water level had recovered in the test well; 95% recovery occurred in

20 minutes in TW1. The water level measurements for the drawdown and recovery data for the pumping test are provided in Figure F.3, Appendix F.

6.4.2 Flow Rate Measurements

The wells were pumped using an electric submersible pump and portable generator supplied by Aardvark Drilling Inc. (Aardvark). The flow rate was monitored by a calibrated flow meter. Test well TW1 was pumped at a near-constant (within 5%) rate of approximately 45.6 US gallon per minute (172.6 litres per minute). Pumping rate during the test on TW1 is presented in Figure F.3, Appendix F.

6.4.3 Groundwater Sampling

Total chlorine tests were conducted in the field to ensure that chlorine levels were at non-detectable concentrations prior to bacteriological testing. The temperature, conductivity, total dissolved solids, pH, turbidity, colour, and total chlorine levels of the groundwater were measured at periodic intervals during the pumping tests and are summarized in Appendix G. The field equipment used during the pumping test was calibrated by GEMTEC and the details of the field equipment used are provided in Table 6.2.

Table 6.2 – Field Equipment Overview

Field Parameters	Manufacturer	Model No.
Total and Free Chlorine	Hach	DR 900
pH, temperature, Conductivity	Hanna	HI 98129
Turbidity	Hanna	HI 98703
Colour	Hach	DR 900

Groundwater samples for laboratory analysis were collected from TW1 after nine and eighteen hours of pumping. The groundwater samples were collected in laboratory supplied bottles and prepared/preserved in the field in accordance with the industry standard sampling, handling and preservation procedures required by the laboratory. Apart from the dissolved trace metals samples, water samples were unfiltered. The groundwater samples were submitted to Paracel Laboratories Limited in Ottawa, Ontario, for chemical, physical, and bacteriological analyses.

6.5 Test Well Water Quality

The results of the chemical, physical, and bacteriological analyses of the water samples from TW1 by Paracel Laboratories Limited and the field parameters collected by GEMTEC are summarized in Tables I.1 and I.2, Appendix I. Water samples collected at nine and eighteen hours had comparable constituent concentrations, apart from turbidity. Turbidity declined with pumping, as confirmed by field measurements and lab analyses. Preliminary water quality samples were also collected on November 13, 2023, from a pressure tank bypass located within the existing onsite barn (Laboratory Certificates of Analysis provided in Appendix I).

The following subsections discuss the results of the water quality sampling in the context of the Ontario Drinking Water Quality Standards (ODWQS; MECP, 2006 and 2008) and MECP Guideline D-5-5 (MECP, 1996).

6.5.1 Bacteriological Parameters

Total coliform, *E. coli*, fecal coliform, and heterotrophic plate count were non-detectable in both samples during the pumping test. Total and free chlorine measurements confirmed that total and free chlorine concentrations in the wells was non-detectable (<0.02 mg/L) at the time of bacteriological sampling (Tables I.1, Appendix I).

Based on the absence of ODWQS bacterial indicator species, namely total coliform, *E.coli* and fecal coliform in any of the water samples, the water in the supply wells adheres to the bacterial guidelines proposed in MECP Guideline D-5-5.

It is noted that the preliminary samples reported a total coliform count of 42 CFU/100mL; however, the samples were collected from the pressure tank bypass located within centimeters of the barn floor, which likely resulted in the elevated bacterial counts. The bacteriological results from the pumping test are considered to be representative of the groundwater supply aquifer.

6.5.2 Other Health-Related Parameters

No maximum acceptable concentration limits of the ODWQS were exceeded for the parameters measured in the water samples collected from the on-site test well. The measured parameters with ODWQS maximum allowable concentrations include fluoride, nitrate, nitrite, trace metals (mercury, antimony, arsenic, barium, boron, cadmium, chromium, lead, selenium, and uranium), and volatile organic carbons (benzene, carbon tetrachloride, chlorobenzene, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,2-dichloroethane, 1,1-dichloroethylene, ethylbenzene, methylene chloride, tetrachloroethylene, toluene, trichloroethylene, vinyl chloride, and total xylenes).

The warning level of 20 mg/L for sodium was exceeded in both samples. This threshold was established for persons on sodium restricted diets. Warning clauses should be addressed to people on sodium restricted diets and should be registered on title. In addition, it is recommended

that the local Medical Officer of Health be notified to alert persons in the area with relevant medical conditions.

6.5.3 Operational Guideline Exceedances – Hardness

The concentrations of hardness in the water samples were 345 and 340 mg/L as CaCO₃, which is higher than the operational guideline of 80 to 100 mg/L of CaCO₃ as specified in the ODWQS.

Water having a hardness level above 80 to 100 mg/L as CaCO3 is often softened for domestic use. The MECP Procedure D-5-5 document states that water having a hardness value more than 300 mg/L is considered "very hard". The MECP (2006) publication titled "Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines", states that water with hardness in excess of 500 mg/L is considered to be unacceptable for most domestic purposes. There is no upper treatable limit for hardness specified in MECP Procedure D-5-5.

The concentrations of hardness in all the test wells are below the reported threshold of 500 mg/L as CaCO3 as specified in the Technical Support Document for the ODWQS (MECP, 2006). The concentration of hardness observed in the test wells is reasonably treatable using a conventional water softener. Water supply wells within rural eastern Ontario are commonly equipped with water softeners

Water softening by conventional sodium ion exchange may introduce relatively high concentrations of sodium into the drinking water that may be of concern to persons on a sodium restricted diet. The use of potassium chloride in the water softener (which adds potassium to the water instead of sodium) could be considered as a means of keeping sodium concentrations in the water at background levels. Consideration could also be given to providing a bypass of the water softener for drinking water purposes (for example, a bypass of the softener to the coldwater kitchen tap).

6.5.4 Aesthetic Objective Exceedances

Exceedances of the ODWQS aesthetic objectives include iron, turbidity, and colour in one or both samples. These exceedances are discussed in the following subsections:

6.5.4.1 Iron

The iron concentration in samples recovered from TW1 was 0.5 mg/L, which exceeds the ODWQS aesthetic objective for iron of 0.3 mg/L. Elevated concentrations of iron may cause staining of plumbing fixtures and laundry. The measured iron concentration is well within the maximum reasonably treatable limit of 5.0 mg/L using water softeners or manganese greensand filters as stated in Table 3 of MECP Guideline D-5-5.

6.5.4.2 Turbidity

The turbidity level in the water sample collected after nine hours of pumping exceeded the ODWQS aesthetic objective of 5 NTU. This concentration had declined to 3.2 NTU by eighteen hours of pumping. A similar decline was observed in field turbidity, as collected by GEMTEC.

Turbidity levels are expected to be associated with metals and dissolved organic carbon concentrations in the well, both of which are within the maximum reasonably treatable limit proposed by MECP Guideline D-5-5. Incorporating pre-treatment to reduce turbidity levels may be appropriate for certain aquifers to improve the effectiveness of treatment via UV-disinfection for bacteria.

6.5.4.3 Colour

Apparent colour was elevated in both samples submitted for lab analyses; however, apparent colour was non-detect in field samples. It is inferred that colour reported by the lab is likely associated with the oxidization of metals within the samples during sample collection and transport and may not be reflective of the water quality at the tap. Water colour can be unappealing to a consumer and may result in discolouration of fixtures and clothing. If the colour is associated with organic constituents, then chlorine disinfection may produce undesirable disinfection by-products. The true (filtered) colour of both nine-hour and eighteen-hour samples was 2 TCU, which is below the ODWQS aesthetic objective of 5 TCU.

6.6 Pumping Test Analysis

6.6.1 Pump Test Analysis Overview

The drawdown and recovery water level data from test well TW1, along with monitoring well responses are provided in Figure F.3, Appendix F. The details of the pumping test and monitoring well data is provided in Table 6.3. All depths provided are in metres below ground surface (mbgs).

Table 6.3 – Pumping Tests Details

Parameter	Pumping Well	Monitoring Wells				
	TW1	24-1S	24-1D	24-28	24-2D	MW3085
Distance from Pumping Well (metres)	-	127	131	145	141	246
Duration (minutes)	1,080	-	-	-	-	-

Parameter	Pumping Well	Monitoring Wells				
	TW1	24-1S	24-1D	24-2S	24-2D	MW3085
Flow Rate (litres per minute)	172	-	-	-	-	-
Static Water Level (mbgs) ¹	1.33	0.81	1.19	0.79	1.49	3.08
Well Depth (mbgs)	18.0	7.93	17.98	7.93	15.54	16.76
Available Drawdown (m)	16.7	7.12	16.79	7.14	14.05	13.68
Water Level at End of Pumping (mbgs)	11.3	0.71	1.85	0.61	2.17	NA ²
Approximate Drawdown at End of Pumping (m)	10.0	-0.10	0.66	-0.18	0.68	NA ²
Drawdown Utilized (%)	59.3	0	3.9	0	4.8	02
Specific Capacity (litres per minute/m)	17.2	-	-	-	-	-

Notes:1. Static water level on January 25, 2024

The water level in the pumping well decreased approximately 9 metres within the first 20 minutes of pumping and then gradually decreased another metre over the remaining 17 hours and 40 minutes of pumping. The pumping well withdrew approximately 186,400 litres over the eighteen-hour pumping test. Following cessation of pumping, the pumping well rapidly recovered to 95% within 20 minutes. The remaining 5% is inferred to have recovered in less than 6 hours. The proposed water demand for the facility (98,900 litres per day, pumping 12 hours a day, 5 days a week) is far less than the pumping test demonstrated the well can provide, so no water quantity concerns were identified.

The monitoring wells completed in the shallow overburden (i.e., 24-1S and 24-2S) did not respond to pumping, whereas the deeper overburden/bedrock monitoring wells completed in the water supply aquifer (i.e., 24-1D and 24-2D) had an immediate response to pumping. The water level

^{2.} Water supply well in-use during pumping test, no apparent response was observed.

in the deep monitoring wells gradually decreased approximately 0.7 metres throughout the pumping test (refer to Appendix F). Following cessation of pumping, the water level in monitoring wells 24-1D and 24-2D recovered approximately 40% within two hours and 86% within fourteen hours; the remaining 14% of drawdown recovered within the following 24 hours. The remaining 10 cm (14%) is relatively small and could be accounted for through a combination of measurement error (e.g., barometric and manual measurement corrections), natural variability (observed to be approximately 10 to 20 cm over a week period), well screen effects, or other well users.

No drawdown was inferred 246 metres away from the test well at MW3085, and 0.7 metres of drawdown was observed approximately 140 metres from the test well at the monitoring well locations. Thus, a conservative estimate of drawdown 210 metres from the test well at the nearest homeowner well would be less than 25 cm, which is considered an acceptable degree of temporary interference. Nonetheless, actual drawdowns associated with the proposed revised water demand of 98,900 litres per day (pumping 12 hours a day, 5 days a week) are anticipated to be less than those produced by the pumping test (i.e., negligible drawdown at the nearest homeowner well).

6.6.2 Transmissivity Analysis

The transmissivity and storativity of the water supply aquifer were estimated from the pumping test drawdown data using Aqtesolv (version 4.50.002), a commercially available software program from HydroSOLVE Inc. An analysis of the pumping test data was carried out using the Theis (1935) method (results provided in Appendix H). The estimated aquifer transmissivity based on the pumping test results is $1 \times 10^{-4} \text{ m}^2/\text{sec}$. The derivate analysis is a diagnostic tool to aid in the interpretation of pumping test data. The early-time derivative plot has a 1:1 ratio with pumping data indicating a finite-diameter source with wellbore storage. The derivative plot flattens out later in the test and slightly increases towards the end of the test, possibly indicating the effects of a barrier, boundary, or channelized aquifer.

Analysis of the water level recovery following pumping in MW23-2D, using the Theis Recovery (1935) method, indicates an aquifer transmissivity of 4 x 10^{-4} m²/s and S/S' of 0.97. The S/S' is the storativity estimate during pumping divided by the storativity estimate of recovery, which when close to 1.0 indicates the absence of boundary effects.

Given that the aquifer thickness and extent of the sands and gravels above the limestone bedrock aquifer are expected to be variable, boundary effects may be present. The analyses of the pumping test, derivative, and monitoring well data do not indicate any significant boundary effects that would limit well yield at the rates tested.

Drawdowns in the monitoring wells completed in the water supply aquifer were small (< 0.7 metres), and analyses of distance-drawdown produced transmissivity estimates of 1 x 10^{-4} m/s. Analysis of the monitoring well data also allows for estimation of aquifer storativity,

which was estimated as 5 x 10^{-5} based on the distance-drawdown analysis. The results of the Aqtesolv analysis are provided in Appendix H.

6.7 Long-term Well Yield

The water supply aquifer screened by TW1 consists of coarse overburden soils and upper fractured bedrock, which is variable in thickness (Figure B.4). The pumping test analysis indicates that the well is capable of pumping 172.6 litres per minute over an eighteen-hour period, which resulted in a maximum water level drawdown of 10.0 metres. A log-linear extrapolation of the water level data over 20-year period contextualises that continuously pumping at 172.6 litres per minute would result in a drawdown of approximately 15 metres, assuming a continuous aquifer with no boundary effects. Given the total well depth of 18 metres and considering groundwater levels may be lower seasonally, the available drawdown would be less than 3 metres from the base of the well. This level of drawdown would not be considered acceptable (well cooling, potential impacts to neighbouring wells); however, it suggests that the well may be able to produce up to 250,000 L/day for 20 years before reaching this point.

The (revised) pumping rate proposed for the chicken processing plant operations is 98,900 L/day taken over a 12-hour period, 5 days a week. Based on the available data, we do not anticipate any compounding drawdown over time associated with this pumping regime. Although the risk to the aquifer and adjacent well users is considered low, the lateral extent of the water supply aquifer and the long-term recharge to the aquifer are poorly defined, so there remains some uncertainty with long-term sustainability. The proposed groundwater takings are greater than 50,000 litres per day and are subject to MECP regulation under a Category 3 Permit to Take Water (PTTW). To manage the uncertainty associated with the aquifer, long-term water level monitoring has been recommended as a provision of the PTTW. Should impacts arise, despite our interpretations suggesting that they will not, monitoring will ensure that impacts to the aquifer or other well users are mitigated effectively.

6.8 Geotechnical Considerations

Groundwater takings from the water supply aquifer at the rates tested in the pumping test have the potential to lower the groundwater levels within the overlying clays, resulting in soil settlement. The assessment of potential settlement was completed by GEMTEC, titled "Geotechnical Investigation, Proposed Chicken Processing Plant Pumping Well, 3043 Dunning Road, Sarsfield (Ottawa), Ontario" and dated October 2, 2024 (Appendix J).

The geotechnical investigation concluded that there are no significant impacts to existing neighbouring structures (i.e., neighbouring residential properties). The groundwater extraction may cause settlement to the existing on-site structure, which is located within 10 metres of the water supply well, although the level of ground settlement is anticipated to be minor and acceptable for structures in good condition. Monitoring was recommended therein when water

taking is active to assess the potential for long-term soil settlement, which are proposed to be included as conditions in the PTTW (refer to PTTW cover letter in Appendix K).

7.0 CONCLUSIONS

Based on the results of the hydrogeological investigation, the following conclusions and professional opinions are provided:

7.1 Hydrogeological Conceptual Model

- The site geology generally consists of a thin layer of topsoil underlain by lean clay (isolating layer) that covers the water supply aquifer, which consists of coarse glacial till and upper fractured limestone. The thickness of the clay within 100 metres of the site is inferred to be 10+ metres thick, and glacial till is anticipated to range from approximately 0.9 to 5 metres in thickness.
 - The water supply aquifer is interpreted to be hydrogeologically isolated due to the thick overlying clay deposit.
 - No shallow dug or bored well users were identified within at least 300 metres of the site (theoretical area of influence is anticipated to be less than 250 metres); domestic water supply wells consist of drilled wells completed in the coarse overburden atop the bedrock and / or bedrock water supply aquifer(s).

7.2 Water Quality

- The water quality available from TW1 is safe for consumption based on the absence of health-related or maximum acceptable concentration exceedances; however, treatment of aesthetic parameters may be advisable.
 - Bacteriological sampling completed in TW1 during the pumping test confirmed non-detectable total coliform, fecal coliform, and *E. coli*. It is noted that preliminary sampling from the pressure tank bypass reported a total coliform count of 48 CFU/100mL; however, the sampling point was located within centimeters of the floor, and the detectable total coliform was attributed to the sampling location.
 - The warning level of 20 mg/L for sodium was exceeded in both pumping test samples. This threshold was established for persons on sodium restricted diets only. Warning clauses should be addressed to people on sodium restricted diets and should be registered on title. In addition, it is recommended that the local Medical Officer of Health be notified to alert persons in the area with relevant medical conditions.
 - The concentrations of hardness in the TW1 water samples were 345 and 340 mg/L as CaCO3 (very hard), which is higher than the operational guideline of 80 to 100

- mg/L of CaCO3 as specified in the ODWQS. No maximum treatable limited in proposed in the guidance documents.
- The iron concentration in samples recovered from TW1 was 0.5 mg/L, which exceeds the ODWQS aesthetic objective for iron of 0.3 mg/L. The measured iron concentration is well within the maximum reasonably treatable limit of 5.0 mg/L using conventional water softeners or manganese greensand filters as stated in Table 3 of MECP Guideline D-5-5.
- The ODWQS aesthetic objective for turbidity (5.0 NTU) was exceeded in early-time field and lab samples during the pumping test of TW1. Following additional well development, the lab-measured and field measured turbidity decreased below the aesthetic objective.
- Apparent colour was elevated in both TW1 samples submitted for lab analyses; however, apparent colour was non-detect in field samples. It is inferred that colour reported by the lab is likely associated with the oxidization of metals within the samples during sample collection and transport and may not be reflective of the water quality at the tap. The true colour was 2 TCU, which is within the ODWQS aesthetic objective for colour.
- No significant surface water influence was noted in the water supply aquifer based on the absence of elevated surface water indicator parameters in the representative test well (non-detectable tannins and lignans, nitrate, nitrite, and phosphate, and low levels of ammonia, TKN, and DOC).

7.3 Water Quantity

- The eighteen-hour constant rate pumping test of the existing on-site test well determined that the well could supply a pumping rate of approximately 172.6 litres per minute for an eighteen-hour period. Based on information provided by LPF, the revised water demand for the proposed chicken processing facility is approximately 98,900 litres per day, over a 12-hour period (137.36 L/min), 5 days a week.
 - Storage solutions or secondary water supply wells could be considered to expand operations in the future, if required.
- Interference between neighbouring drinking water wells is expected to be minimal under the proposed usage.
 - Maximum drawdown in aquifer monitoring wells located 131 and 141 metres from the pumping well were less than 0.7 metres during the pumping test. The nearest homeowner well on Dunning Road is located a minimum of 210 metres from the pumping well, and a conservative drawdown of less than 25 cm during the pumping test was estimated. Drawdowns associated with the proposed revised water

demand of 98,900 litres per day (pumping 12 hours a day, 5 days a week) are anticipated to be less than those produced by the pumping test.

A back-up water supply well may be considered (though hit is not required to meet demand) to allow for maintenance of the existing water supply well. Where present, the new water supply well should be drilled and screened across the overburden aquifer and upper two metres of fractured bedrock to maximize well productivity. The construction of the existing water supply well is likely resulting in decreased well efficiency, as the well is not screened across the high permeability overburden aquifer, but rather hammered into the upper fractured bedrock, thereby limiting inflow to the well through the bottom aperture of the casing.

7.4 Groundwater Impact Assessment

- Overburden thicknesses are sufficient to meet the minimum overburden thickness required for on-site septic systems. Shallow groundwater depths and low-permeability soils will likely necessitate a fully-raised septic leaching bed.
- No negative impacts to the water supply aquifer (glacial till and fractured limestone) aquifer
 are anticipated from the use of the proposed on-site septic systems, based on sufficiently
 hydrogeologically isolating conditions in accordance with MECP Procedure D-5-4 isolation
 criteria.
- No negative impacts to surface water features (i.e., local drains) due to phosphorous loading from the proposed septic system are anticipated due to the separation distance between the proposed septic system and nearest watercourse.
- No negative impacts from the discharge of NASM wastewaters under normal operating conditions, which are proposed to be discharging off-site to an approved and effectively maintained receiving facility. Risks associated with these facilities will be managed by OMAFRA and the MECP and are beyond the scope of this investigation.
- Based on the results of the Phase Two ESA (GEMTEC, 2024b), no impacts were identified from existing on-site areas of potential environmental concerns (above ground fuel storage tanks and pole-mounted transformer).

7.5 Rezoning

The results of the hydrogeological investigation and terrain analysis conclude that the site can supply groundwater of sufficient quantity and quality for the proposed abattoir, which has daily water demands of approximately 98,900 litres per day. The proposed septic system is considered hydraulically isolated from the water supply aquifer and all NASM wastewaters will be discharged to an approved off-site receiving facility (once approved). For the purposes of re-zoning, GEMTEC concludes that the site meets the applicable MECP Procedure D-5-5 and D-5-4 guidelines and City of Ottawa Hydrogeological Guidelines dated March 2021.

7.6 Permit To Take Water

Groundwater takings greater than 50,000 litres per day require a Category 3 PTTW
application to the MECP. The application has a review period of 90 days. The groundwater
takings will be subject to the terms and conditions of the approved PTTW. The proposed
PTTW application and monitoring / contingency measures are provided in Appendix K.

8.0 RECOMMENDATIONS

The following provides recommendations regarding well construction specifications, water quality, and septic systems:

8.1 Well Ownership Recommendations

- It is recommended that the property owners construct, maintain, and test their drinking water well(s) in accordance with the Ministry of the Environment and Climate Change document "Water Supply Wells - Requirements and Best Management Practices, Revised April 2015".
- Any new on-site water supply well (if required) should be constructed by a licensed well technician in accordance with Ontario Regulation 903. It is recommended that a well grout inspection be performed by a QP at the time of casing installation.
- It is recommended that on-site storage of hydrocarbons be moved more than 15 metres away from new or existing groundwater supply wells.
 - It is noted that the Wells Regulation (Ontario Regulation 903), which applies to the construction of new water supply wells, stipulates that sources of contamination must be at least 15 metres from any water supply well. Because the on-site well is existing, Ontario Regulation 903 does not apply; however, the proximity of the storage remains unfavourable from an environmental perspective.
- Where a risk of vehicle collision exists, bollards or barriers should be in place to protect
 the well casing the location of proposed bollards should be presented in the site
 development plan.
- On-site snow and salt storage (if applicable) should be strategically located to maximize distance from water supply wells and watercourses.
- Unused monitoring wells should be decommissioned according to Ontario Regulation 903.
- It should be noted that this study does not address the construction of earth energy systems, which may require approval from the MECP.
- Hardness levels may exceed the ODWQS operational guideline for hardness.
 Conventional water softeners may be desired to treat minor aesthetic objective and operational guideline exceedances of the ODWS such as hardness. On heating, hard

- water tends to form scale deposits and can form excessive scum with regular soaps. Conversely, soft water may result in accelerated corrosion of water pipes.
- Water softening by conventional sodium ion exchange may introduce relatively high concentrations of sodium into the drinking water, which may be of concern to persons on a sodium restricted diet. The use of potassium chloride in the water softener (which adds potassium to the water instead of sodium) could be considered as a means of keeping sodium concentrations in the water at background levels. Consideration could also be given to providing a bypass of the water softener for drinking water purposes.

8.2 Septic System Construction Recommendations

- All septic systems shall maintain a minimum setback distance of 18 m or more from any surface water feature and be installed by a licensed septic system contractor ensuring that all applicable regulations are met and required permits are obtained.
- A site-specific investigation should be conducted for the design of the septic system.
 - Due to the presence of low-permeability soils and opportunity for a shallow water table, septic beds will likely be partially or fully raised.
- It is recommended that if property owners choose to install tertiary treatment septic systems, then it will be required to enter a maintenance agreement with authorized agents of the system manufacturer for the service life of the system.

8.3 Septic Ownership Recommendations

• It is recommended that the property owners construct, maintain, and check their on-site septic system in accordance with the Ontario Building Code.

9.0 CLOSURE

We trust this report provides sufficient information for your present purposes. If you have any questions concerning this report, please do not hesitate to contact our office.

Samuel Esenwa, B.Sc., G.I.T Environmental Scientist

Jason KarisAllen, M.A.Sc., P.Eng. Water Resources Engineer

ANDRIUS PAZNEKAS
PRACTISING MEMBER
3154
20 Dec 2024
ON TAR10

Andrius Paznekas, M.Sc., P.Geo. Hydrogeologist

JKA/SE/AP

10.0 REFERENCES

- Armstrong, D.K., & Dodge, J.E.P. (2007). *Paleozoic geology of southern Ontario*. Ontario Geological Survey, Miscellaneous Release--Data 219. Ontario, Canada.
- Bouwer, E.J., & Crowe, P.B. (1988). Biological processes in drinking water treatment. *J. Am. Water Works Assoc.*, 80(9): 82–93.
- Bouwer, H., & Rice, R.C. (1976). A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. *Water Resources Research*, vol. 12, no. 3, pp. 423-428.
- Brunton, F.R., & Dodge, J.E.P. (2008). *Karst of southern Ontario and Manitoulin Island*. Ontario Geological Survey, Groundwater Resources Study 5. ISBN 978-1-4249-8376-6 (ZIP FILE); ISBN 978-1-4249-8375-9 (DVD). Ontario, Canada.
- Chapelle, F.H. (2022). *Dissolved organic carbon in groundwater systems*. Groundwater Project, Guelph, Ontario, Canada.
- Gao, C., Shirota, J., Kelly, R.I., Brunton, F.R. & van Haaften, S. (2006). *Bedrock topography and overburden thickness mapping, southern Ontario.* Ontario Geological Survey, Miscellaneous Release—Data 207. ISBN 1-4249-2550-9. Ontario, Canada.
- GEMTEC. (October 2, 2024a). Geotechnical Investigation, proposed chicken processing plant, 3043 Dunning Road, Sarsfield (Ottawa), Ontario [in draft, unsubmitted]. Ottawa, Ontario.
- GEMTEC. (June 20, 2024b). Phase One Environmental Site Assessment, proposed chicken processing plant, 3043 Dunning Road, Ottawa, Ontario. Ottawa, Ontario.
- GEMTEC. (September 6, 2024c). Phase Two Environmental Site Assessment, 3043 Dunning Road, Ottawa, Ontario. Ottawa, Ontario.
- GEMTEC Consulting Engineers and Scientists (GEMTEC). (2023). Environmental impact statement, proposed zoning by-law amendment and site plan approval, 3043 Dunning Road, City of Ottawa, Ontario [draft report]. Ontario, Canada.
- Hamilton, S.M. (2021). Ambient groundwater geochemical and isotopic data for southern Ontario, 2007–2019; Ontario Geological Survey, Miscellaneous Release—Data 283 Revision 2. ISBN 978-1-4868-5698-5 (DVD) ISBN 978-1-4868-5699-2 (zip file). Ontario, Canada.
- Hvorslev, M.J. (1951). *Time lag and soil permeability in ground-water observations, bull. no.* 36. Waterways Exper. Sta. Corps of Engrs, U.S. Army, Vicksburg, Mississippi, pp. 1-50.
- Isenbeck-Schröter, M., Doring, U., Moller, A., Schroter, J., & Matthess, G. (1993). Experimental approach and simulation of the retention processes limiting orthophosphate transport in groundwater. *Journal of Contamination Hydrology*, 14; 2: 143-161.

- Ontario Geological Survey (OGS). (2010). Surficial geology of Southern Ontario. Ontario Geological Survey, Miscellaneous Release-Data 128-Revision 1. Ontario, Canada.
- Ontario Ministry of Environmental, Conservation and Parks (MECP). (2024). *Access Environment: Environmental site registry* [interactive digital map]. https://www.lioapplications.lrc.gov.on.ca/Access Environment/index.html?viewer=Access Environment.AE&locale=en-CA
- Ontario Ministry of Environmental, Conservation and Parks (MECP). (2022). Source Protection Information Atlas [interactive digital map]. https://www.lioapplications.lrc.gov.on.ca/Source WaterProtection/index.html?viewer=SourceWaterProtection.SWPViewer&locale=en-CA
- Ontario Ministry of Environmental, Conservation and Parks (MECP). (2008). Ontario Drinking Water Quality Standards, Safe Drinking Water Act, 2002, Ontario Regulation 169/03 as amended by Ontario Regulation 327/08. Ontario, Canada.
- Ontario Ministry of Environmental, Conservation and Parks (MECP). (2006). *Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines*. Ontario, Canada.
- Ontario Ministry of Environmental, Conservation and Parks (MECP). (1996). *Procedure D-5-5, Technical Guideline for Private Wells: Water Supply Assessment*. Ontario, Canada.
- Ontario Ministry of Environmental, Conservation and Parks (MECP). (1996). *Procedure D-5-4, Technical Guideline for Individual On-Site Sewage Systems: Water Quality Impact Risk Assessment*. Ontario, Canada.
- Ontario Ministry of Municipal Affairs and Housing (MMAH). (2022). 2012 Building Code Compendium: January 1, 2022 update (Containing O. Reg. 867/21). Ontario, Canada.
- Ontario Ministry of Natural Resources and Forestry (MNRF). (2012). *Land Information Ontario:*Areas of Natural and Scientific Interest (ANSI) [digital shapefile]. https://geohub.lio.gov.on.ca/datasets/lio:areas-of-natural-and-scientific-interest-ansi/about
- Parfitt, R.L., Atkinson, R.J., & Smart, R.S.C. (1975). The mechanism of phosphate fixation by iron oxides. *Soil Science Society American Journal*, 39:5; 837-841.
- Rajan, S.S.S. (1975). Absorption of divalent phosphate on hydrous aluminum oxide. *Nature*, 253; 5491: 434-436.
- Rideau Valley Conservation Authority (RVCA). (2022). *Rideau Valley Conservation Authority Geoportal* [interactive digital map]. https://gis.rvca.ca/html5/?viewer=rvcageoportal.
- Theis, C.V. (1935). The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Am. Geophys. Union Trans., vol. 16, pp. 519-524.
- Wilhelm, S.R., Schiff, S.L., & Robertson, W.D. (1996). Biogeochemical evolution of domestic wastewater in septic systems: Application of conceptual model in sandy aquifers. *Groundwater*, 34: 853-863.

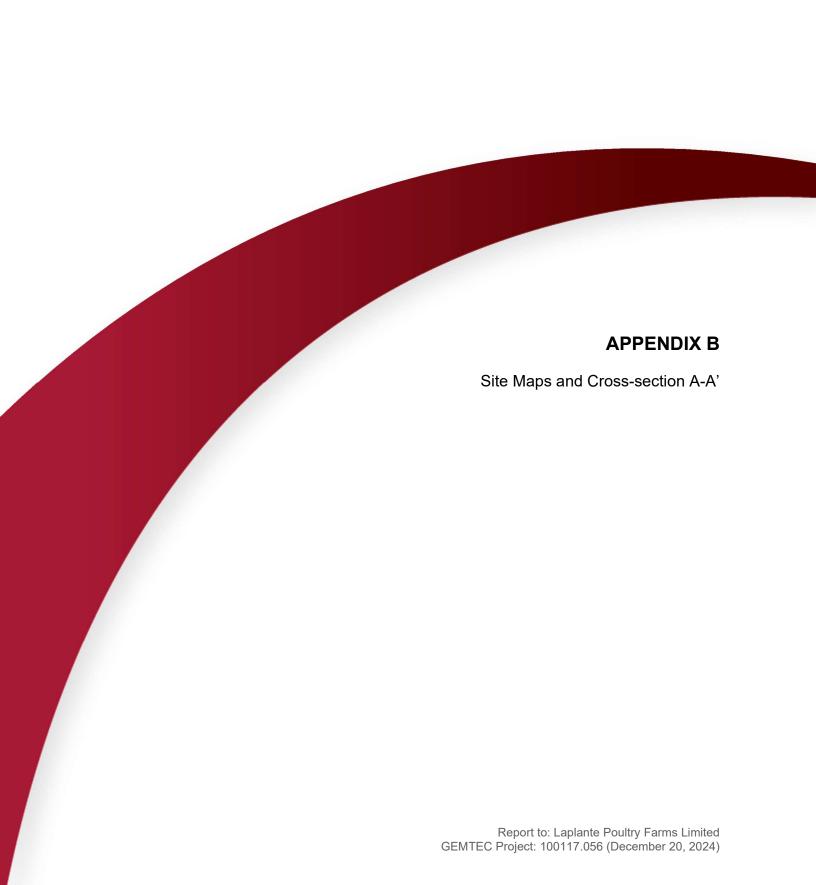
Conditions and Limitations of This Report

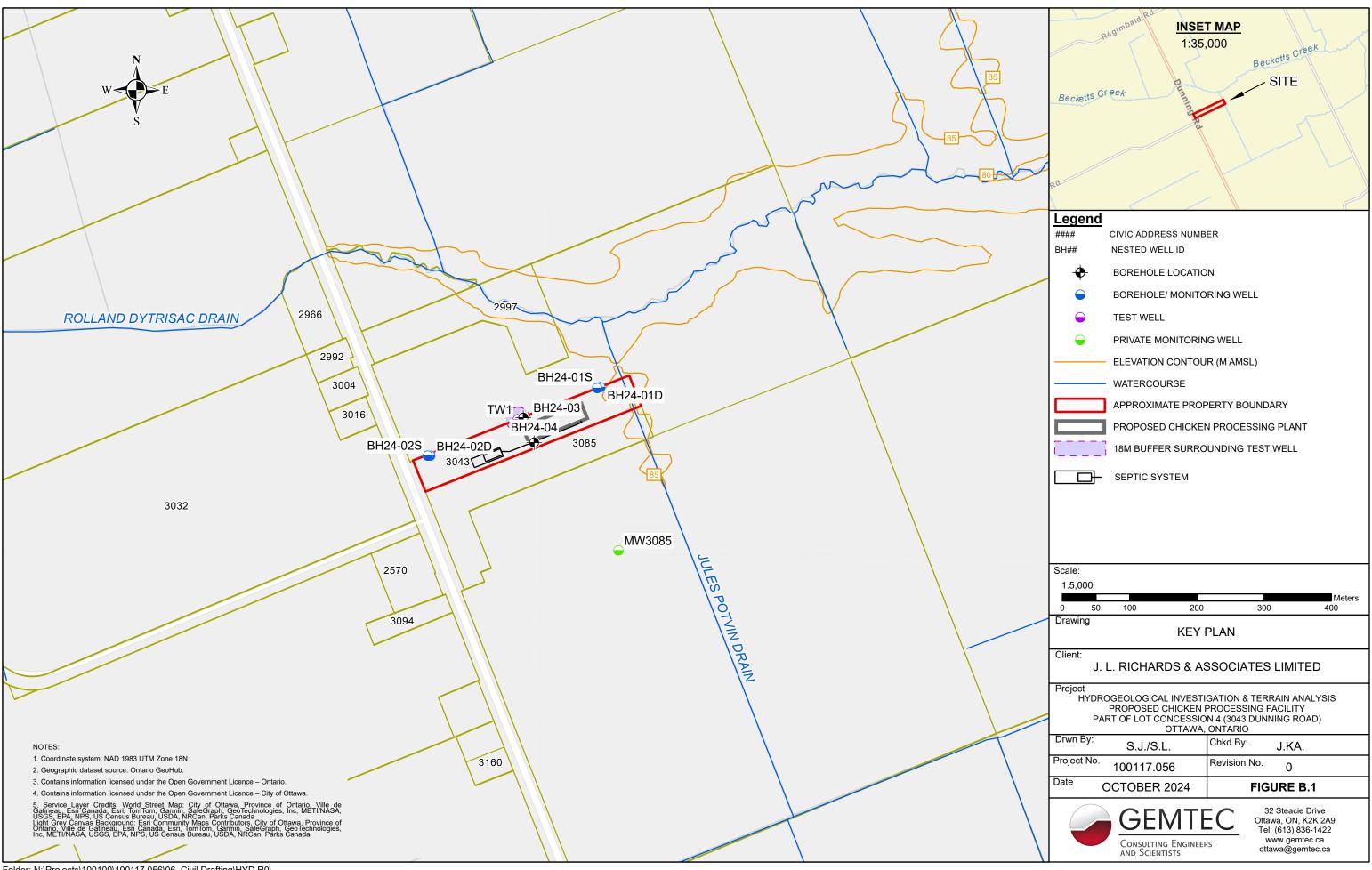
- 1. **Standard of Care:** GEMTEC has prepared this report in a manner consistent with generally accepted engineering or environmental consulting practice in the jurisdiction in which the services are provided at the time of the report. No other warranty, expressed or implied is made.
- 2. Copyright: The contents of this report are subject to copyright owned by GEMTEC, save to the extent that copyright has been legally assigned by us to another party or is used by GEMTEC under license. To the extent that GEMTEC owns the copyright in this report, it may not be copied without our prior written agreement for any purpose other than the purpose indicated in this report. The methodology (if any) contained in this report is provided to the Client in confidence and must not be disclosed or copied to third parties without the prior written agreement of GEMTEC. Disclosure of that information may constitute an actionable breach of confidence or may otherwise prejudice our commercial interests.
- 3. Complete Report: This report is of a summary nature and is not intended to stand alone without reference to the instructions given to GEMTEC by the Client, communications between GEMTEC and the Client and to any other reports prepared by GEMTEC for the Client relative to the specific site described in the report. In order to properly understand the suggestions, recommendations and opinions expressed in this report, reference must be made to the whole of the report. GEMTEC can not be responsible for use of portions of the report without reference to the entire report.
- 4. Basis of Report: This Report has been prepared for the specific site, development, design objectives and purposes that were described to GEMTEC by the Client. The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. The applicability and reliability of any of the findings, recommendations, suggestions, or opinions expressed in the document, subject to the limitations provided herein, are only valid to the extent that this report expressly addresses the proposed development, design objectives and purposes. Any change of site conditions, purpose or development plans may alter the validity of the report and GEMTEC cannot be responsible for use of this report, or portions thereof, unless GEMTEC is requested to review any changes and, if necessary, revise the report.
- 5. **Time Dependence:** If the proposed project is not undertaken by the Client within 18 months following the issuance of this report, or within the timeframe understood by GEMTEC to be contemplated by the Client, the guidance and recommendations within the report should not be considered valid unless reviewed and amended or validated by GEMTEC in writing.
- 6. **Use of This Report:** The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without GEMTEC's express written consent. If the report was prepared to be included for a specific permit application process, then upon the reasonable request of the client, GEMTEC may authorize in writing the use of this report by the regulatory agency as an Approved User for the specific and identified purpose of the applicable permit review process.
 - Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual data presented in the report, as to how subsurface conditions may affect their work, including but not limited to proposed construction techniques, schedule, safety and equipment capabilities.
- 7. **No Legal Representations:** GEMTEC makes no representations whatsoever concerning the legal significance of its findings, or as to other legal matters touched on in this report, including but not limited to, ownership of any property, or the application of any law to the facts set forth herein. With respect to regulatory compliance issues, regulatory statutes are subject to interpretation and change. Such interpretations and regulatory changes should be reviewed with legal counsel.

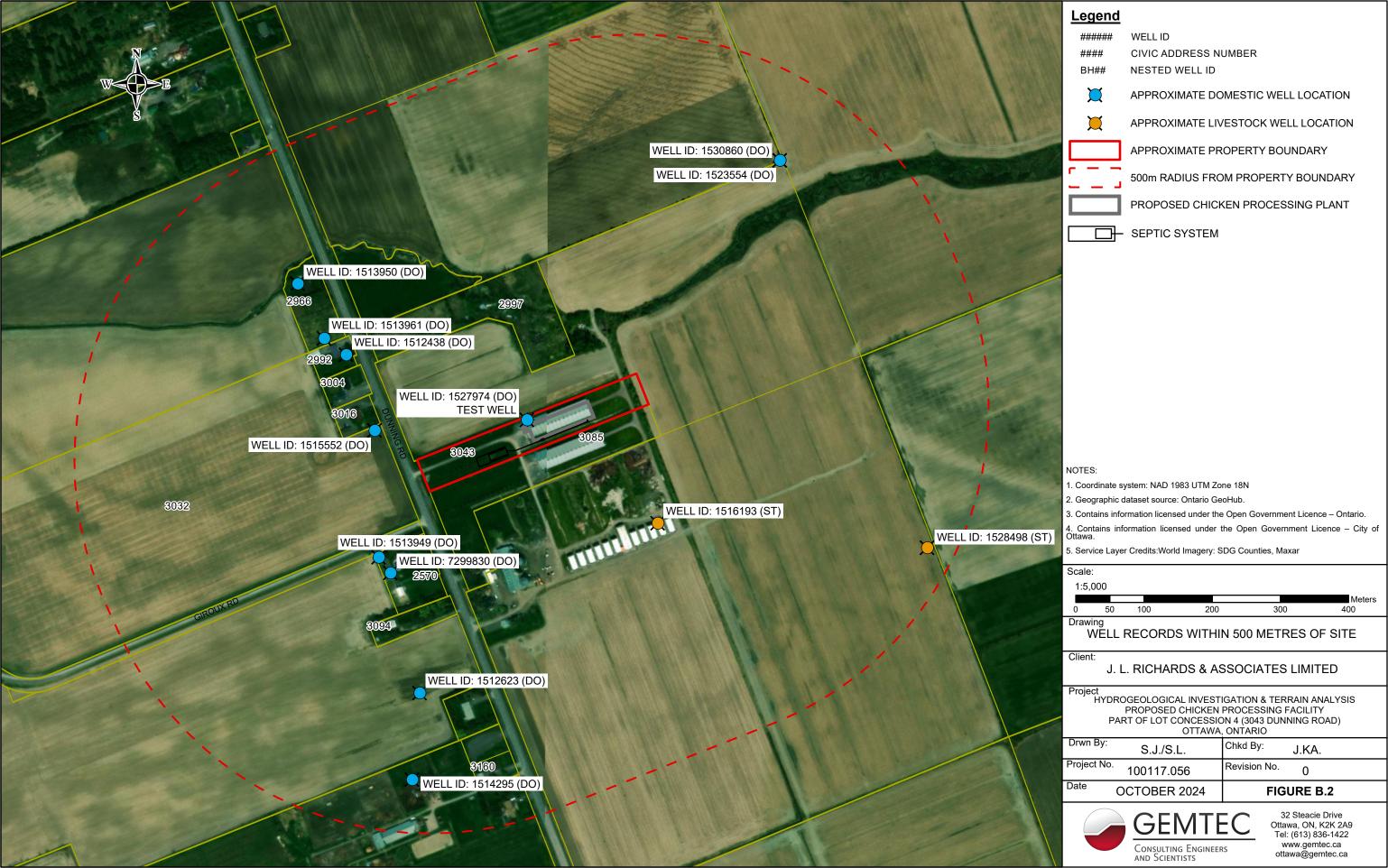
- 8. **Decrease in property value:** GEMTEC shall not be responsible for any decrease, real or perceived, of the property or site's value or failure to complete a transaction, as a consequence of the information contained in this report.
- 9. Reliance on Provided Information: The evaluation and conclusions contained in this report have been prepared on the basis of conditions in evidence at the time of site inspections and on the basis of information provided to us. We have relied in good faith upon representations. information and instructions provided by the Client and others concerning the site. Accordingly, we cannot accept responsibility for any deficiency, misstatement or inaccuracy contained in this report as a result of misstatements, omissions, misrepresentations. or fraudulent acts of the Client or other persons providing information relied on by us. We are entitled to rely on such representations, information and instructions and are not required to carry out investigations to determine the truth or accuracy of such representations, information and instructions.
- 10. Investigation Limitations: Site investigation programs are a professional estimate of the scope of investigation required to provide a general profile of subsurface conditions but even a comprehensive investigation, sampling and testing program may fail to detect all or certain subsurface conditions.

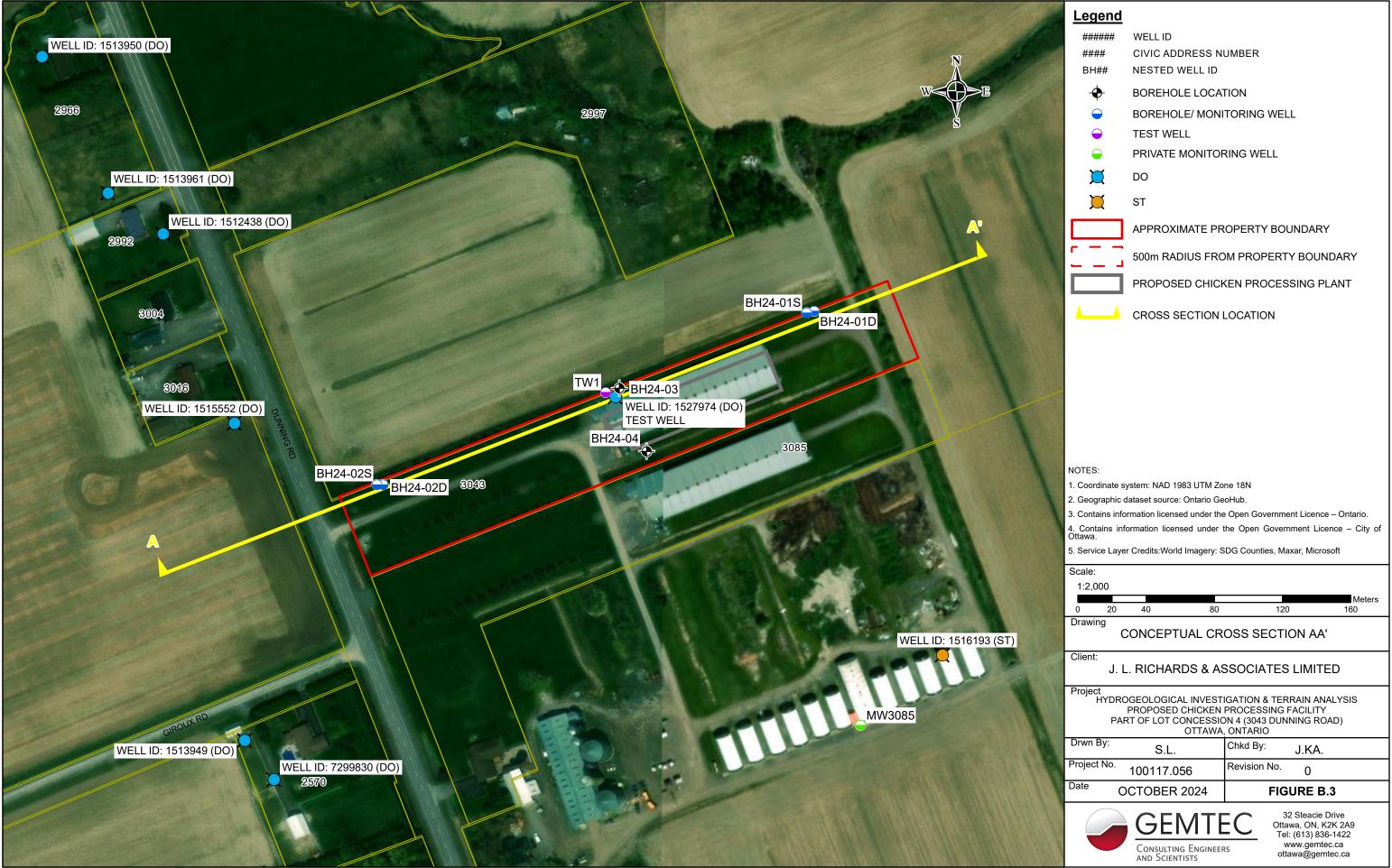
The data derived from the site investigation program and subsequent laboratory testing are interpreted by trained personnel and extrapolated across the site to form an inferred geological representation and an engineering opinion is rendered about overall subsurface conditions and their likely behaviour with regard to the proposed development. Conditions between and beyond the borehole/test hole locations may differ from those encountered at the borehole/test hole locations and the actual conditions at the site might differ from those inferred to exist, since no subsurface exploration program, no matter how comprehensive, can reveal all subsurface details and anomalies. Accordingly, GEMTEC does not warrant or guarantee the exactness of of the subsurface descriptions.

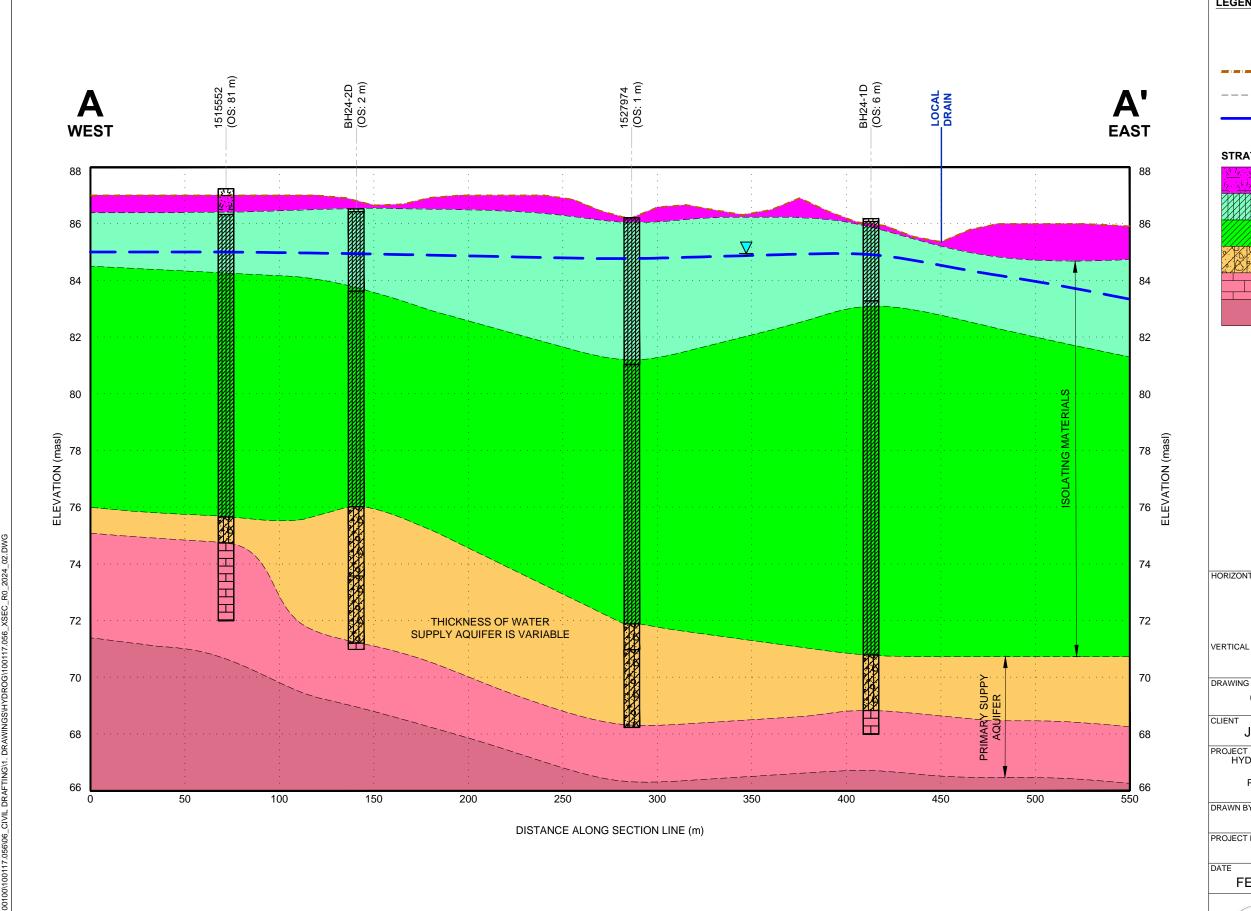
Soil and groundwater conditions shown in the factual data and described in the report are the observed conditions at the time of their determination-or measurement. Unless otherwise noted, those conditions form the basis of the recommendations in the report. Groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. The condition of the soil, rock and groundwater may be significantly altered by construction activities (traffic, excavation, groundwater level lowering, pile driving, blasting, etc.) on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying or frost. Unless otherwise indicated the soil must be protected from these changes during construction.

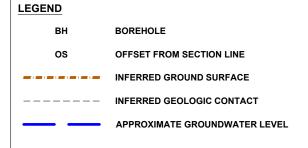

In addition, fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties. The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at the site, unless otherwise specifically stated and identified in the report. The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this project and have not been investigated or addressed.

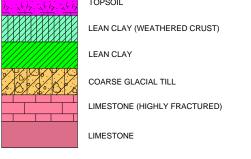

- 11. **Sample Disposal:** GEMTEC will dispose of all uncontaminated soil and/or rock samples 60 days following issue of this report or, upon written request of the Client, will store uncontaminated samples and materials at the Client's expense. In the event that actual contaminated soils, fills or groundwater are encountered or are inferred to be present, all contaminated samples shall remain the property and responsibility of the Client for proper disposal.
- 12. Follow-Up and Construction Services: All details of the design were not known at the time of submission of GEMTEC's report. GEMTEC should be retained to review the final design, project plans and documents prior to construction, to confirm that they are consistent with the intent of GEMTEC's report.


During construction, GEMTEC should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not


materially differ from those interpreted conditions considered in the preparation of GEMTEC's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in GEMTEC's report. Adequate field review, observation and testing during construction are necessary for GEMTEC to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, GEMTEC's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.


- 13. **Changed Conditions:** Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of this report that GEMTEC be notified of any changes and be provided with an opportunity to review or revise the recommendations within this report. Recognition of changed soil and rock conditions requires experience and it is recommended that GEMTEC be employed to visit the site with sufficient frequency to detect if conditions have changed significantly.
- 14. Drainage: Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage or dewatering can have serious consequences. GEMTEC takes no responsibility for the effects of drainage unless specifically involved in the detailed design and construction monitoring of the system.



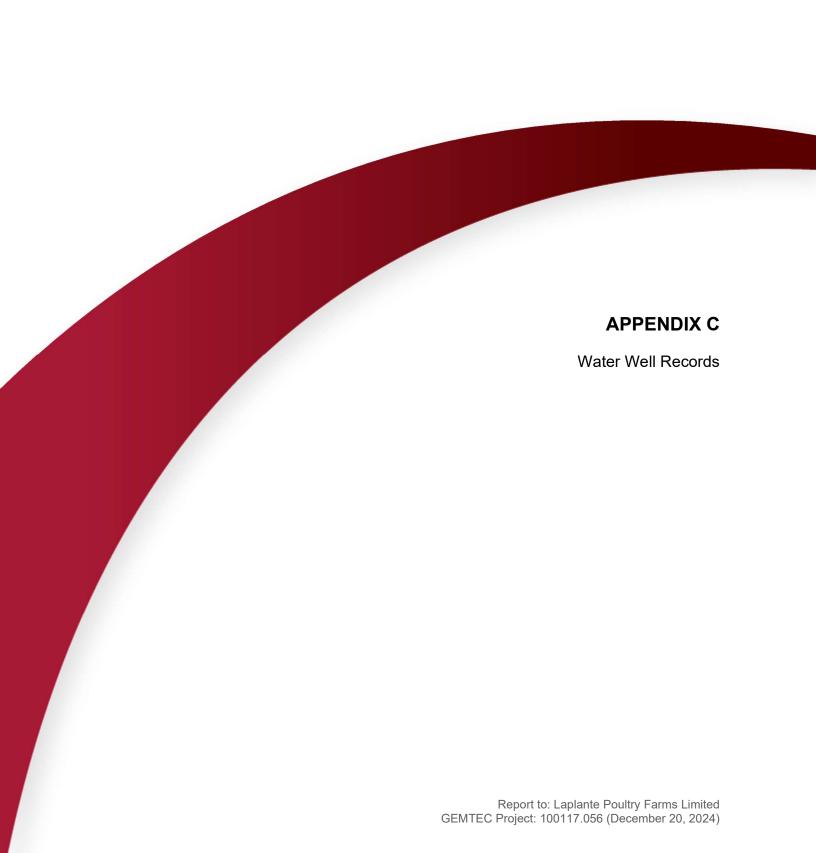


STRATIGRAPHY

HORIZONTAL SCALE 1:2000 80 120m VERTICAL SCALE

15X VERTICAL EXAGGERATION

CONCEPTUAL CROSS SECTION A - A'


J.L. RICHARDS & ASSOCIATES LIMITED

HYDROGEOLOGICAL INVESTIGATION & TERRAIN ANALYSIS PROPOSED CHICKEN PROCESSING FACILITY PART OF LOT CONCESSION 4 (3043 DUNNING ROAD)
OTTAWA, ONTARIO

DRAWN BY	CHECKED BY
S.L.	J.KA.
PROJECT NO.	REVISION NO.
100117.056	0
DATE	FIGURE NO.
FEBRUARY 2024	FIGURE B.4

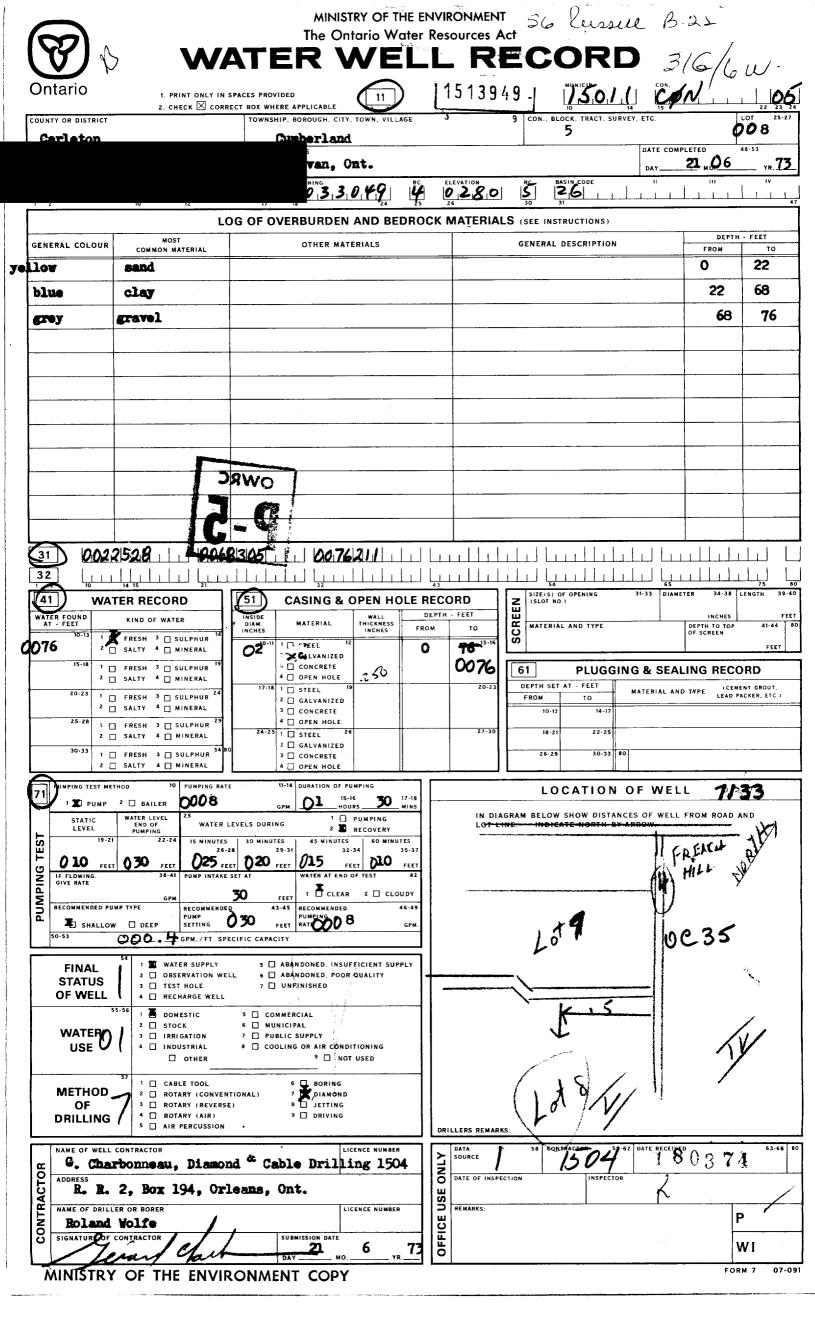
Ottawa, ON, K2K 2A9 Tel: (613) 836-1422 www.gemtec.ca ottawa@gemtec.ca

Table C.1 - MECP Online Well Database Summary (500-m Radius)

ID	Township	Completion Date (yyyy- mm-dd)	Water Use	Well Depth (m)	Bedrock Depth (m)	Minimum Casing Depth (m)	Static Water	Water Types and Bearing Zone Depths (ft)	Stratigraphic Layers (ft)
1512438	CUMBERLAND TOWNSHIP CON 05 007	9/29/1972	DO	12.2	-	12.2	0.9	FR 0040	BLUE CLAY 0038 GREY GRVL 0040
1512623	CUMBERLAND TOWNSHIP CON 05 008	10/17/1965	DO	27.7	27.1	27.4	0.9	FR 0091	BLUE CLAY 0035 GRVL MSND 0089 GREY LMSN 0091
1513949	CUMBERLAND TOWNSHIP CON 05 008	6/21/1973	DO	23.2	-	23.2	3.0	FR 0076	YLLW SAND 0022 BLUE CLAY 0068 GREY GRVL 0076
1513950	CUMBERLAND TOWNSHIP CON 05 007	6/22/1973	DO	9.4	-	9.4	0.3	FR 0031	BLUE CLAY 0025 GREY GRVL 0031
1513961	CUMBERLAND TOWNSHIP CON 05 007	11/26/1973	DO	6.1	-	6.1	0.9	FR 0020	BLUE CLAY 0018 GREY GRVL 0020
1514295	CUMBERLAND TOWNSHIP CON 05 008	9/5/1974	DO	15.5	-		1.8	FR 0036	GREY CLAY 0020 SAND GRVL 0036 GRVL 0051
1515552	CUMBERLAND TOWNSHIP CON 05 007	5/17/1974	DO	15.2	-	12.5	0.9	FR 0043	BRWN LOAM 0003 BLUE CLAY 0038 GREY HPAN SAND BLDR 0041 BRWN SNDS 0050
1516193	CUMBERLAND TOWNSHIP CON 04 008	8/25/1977	ST	22.9	20.1	20.1	2.4	FR 0066	GREY CLAY SOFT 0057 GREY GRVL SAND LOOS 0066 GREY LMSN SOFT 0075
1523554	CUMBERLAND TOWNSHIP CON 04 007	7/5/1989	DO	10.7	-	10.7	1.2	FR 0035	RED CLAY 0006 BLUE CLAY 0034 BLCK GRVL 0035
1527974	CUMBERLAND TOWNSHIP CON 04 008	5/25/1994	DO	18.0	-	18.0	3.4	FR 0059	BRWN CLAY SOFT 0017 GREY CLAY SOFT 0047 BLCK GRVL BLDR HARD 0050 BLCK GRVL PCKD 0059
1528498	CUMBERLAND TOWNSHIP CON 04 008	5/8/1995	ST	16.8	7.3	7.3	5.5	FR 0050	RED CLAY HARD 0015 GREY TILL BLDR HARD 0024 GREY LMSN HARD 0055
1530860	CUMBERLAND TOWNSHIP CON 04 007	10/12/1999	DO	34.4	30.2	30.2	5.5	FR 0105	RED CLAY SOFT 0007 GREY CLAY SOFT 0025 BLUE CLAY SOFT 0090 GREY GRVL SOFT 0099 GREY SHLE PORS 0113
7299830	CUMBERLAND TOWNSHIP CON 05 008	10/24/2017	DO	23.2	21.9	21.9	2.6	UT 0072	BRWN CLAY SILT HARD 0013 GREY CLAY SILT SOFT 0055 GREY GRVL SAND STNS 0072 GREY LMSN LYRD 0076
AC = Co IR = Irrig OT = Ot	gation MN =	Commercial Municipal Jublic		DE = Dev MO = Mo ST = Live:	nitoring		DO = Domestic MT = Monitoring TH = Test Hole	IN = g and Test Hole NU =	Industrial - Not Used

MINISTRY OF THE ENVIRONMENT The Ontario Water Resources Act

/ATER WELL RECOR


THE PROPERTY OF THE PARTY OF TH
ONTARIO

1512438 GON 2. CHECK X CORRECT BOX WHERE APPLICABLE TOWNSHIP, BOROUGH, CITY, TOWN. COUNTY OR DISTRICT 5 Cumberland *00*7 DATE COMPLETED YR. 72 Sarsfield, Ont. DAY 29 251 33360 9275 LOG OF OVERBURDEN AND BEDROCK MATERIALS (SEE INSTRUCTIONS) DEPTH - FEET GENERAL DESCRIPTION OTHER MATERIALS GENERAL COLOUR COMMON MATERIAL 0 **38** blue clay 38 40 Kroy gravel 10 14 15 21 32 43 54 54 65 75 32 51 **CASING & OPEN HOLE RECORD** WATER RECORD KIND OF WATER DEPTH TO TO! OF SCREEN 1 SALTY 4 MINERAL STEEL

GALVANIZED

CONCRETE 2040 2 0040 0 1 FRESH 3 SULPHUR
2 SALTY 4 MINERAL **PLUGGING & SEALING RECORD** 510 61 4 [] OPEN HOLE DEPTH SET AT - FEET STEEL 1 | FRESH 3 | SULPHUR FROM то 2 | GALVANIZED 2 SALTY 4 MINERAL 3 CONCRETE 4 OPEN HOLE FRESH 3 SULPHUR 1 🗆 18-21 22-25 1 🗌 STEEL SALTY 4 | MINERAL 2 GALVANIZED 30-33 80 1 [] FRESH 3 [] SULPHUR 2 🖺 SALTY 4 🗍 MINERAL 4 OPEN HOLE LOCATION OF WELL 02 15-16 00 17-18 0010 2 | BAILER WATER LEVEL END OF PUMPING IN DIAGRAM BELOW SHOW DISTANCES OF WELL FROM ROAD AND LOT LINE INDICATE NORTH BY ARROW. PUMPING RECOVERY WATER LEVELS DURING UTES 30 MINUTES 15 MINUTES 32-34 **015** FEET 010 FEET FEET () 15) * FFET 20 RECOMMENDED PUMP TYPE RECOMMENDED PUMP SETTING 020 DEEP SETTING (72) WATER SUPPLY 5 ABANDONED, INSUFFICIENT SUPPLY **FINAL** OBSERVATION WELL

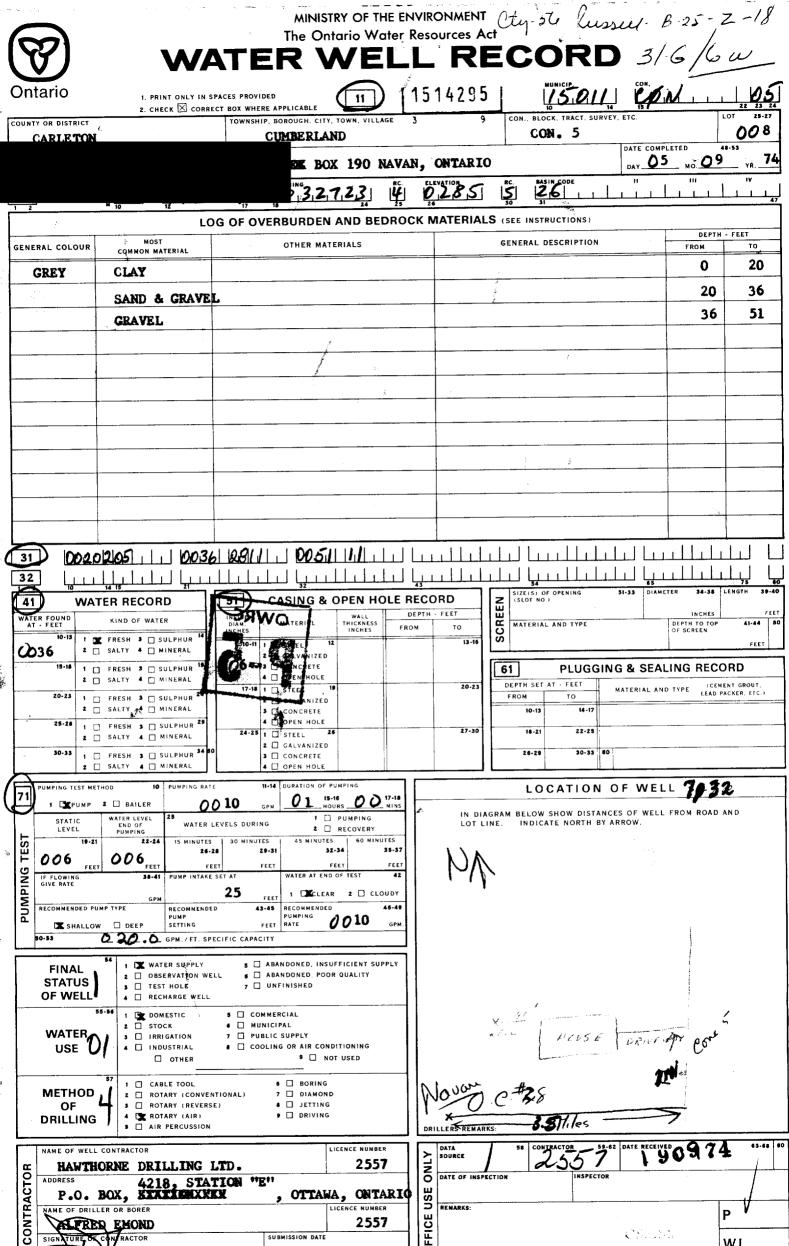
TEST HOLE 6 ABANDONED, POOR QUALITY **STATUS** 7 UNFINISHED OF WELL 4 | RECHARGE WELL DOMESTIC 5 COMMERCIAL 6 MUNICIPAL
7 PUBLIC SUPPLY WATER 3 | IRRIGATION USE O/ INDUSTRIAL 8 COOLING OR AIR CONDITIONING 9 NOT USED ☐ OTHER 6 BORING
7 DIAMOND
9 DRIVING **METHOD** ROTARY (CONVENTIONAL) ROTARY (REVERSE) DRILLING ROTARY (AIR) 5 AIR PERCUSSION DRILLERS REMARKS ONLY 1504 INSPECTOR 240473 G. Charbonneau, Diamond & Cable Drilling 055 OFFICE USE R. R. 2, Box 194, Orleans, Ont.)/_ Ρ WI FORM MANISTRY OF THE ENVIRONMENT COPY

The Ontario Water Resources Act WATER WELL RECORD

MINISTRY OF THE ENVIRONMENT

319/6W

C DN. 1513950 2. CHECK X CORRECT BOX WHERE APPLICABLE OUNTY OR DISTRICT Carleton Cumberland **22** no.06 YR.**73** Sarsfield, Ont. 33470 12751 LOG OF OVERBURDEN AND BEDROCK MATERIALS (SEE INSTRUCTIONS) DEPTH - FEET MOST COMMON MATERIAL GENERAL DESCRIPTION GENERAL COLOUR OTHER MATERIALS 0 25 clay blue gravel 25 31 Arey 1 1003/14// 1 1 1 1 1 1 1 1 1 31 32 SIZE(S) OF OPENING (SLOT NO.) 41 WATER RECORD 51/ **CASING & OPEN HOLE RECORD** SCREEN WATER FOUND AT - FEET DEPTH - FEET KIND OF WATER WALL THICKNESS INCHES MATERIAL AND TYPE FROM 751 FRESH 3 SULPHUR STEEL 2 GALVANIZED SALTY 4 MINERAL 325 250 3 CONCRETE
4 OPEN HOLE CONCRETE 1 | FRESH 3 | SULPHUR 61 **PLUGGING & SEALING RECORD** 0031 2 SALTY 4 MINERAL DEPTH SET AT - FEET (CEMENT GROUT, 1 STEEL MATERIAL AND TYPE FRESH 3 SULPHUR
SALTY 4 MINERAL 2 GALVANIZED
3 CONCRETE 1 | FRESH 3 | SULPHUR
2 | SALTY 4 | MINERAL 4 OPEN HOLE 27-30 22.25 1 STEEL 2 🗆 GALVANIZED 1 🗆 FRESH 3 [] SULPHUR 26.29 30-33 80 3 CONCRETE 2 SALTY 4 | MINERAL OPEN HOL LOCATION OF WELL 1 🕱 PUMP 2 🗌 BAILER IN DIAGRAM BELOW SHOW DISTANCES OF WELL FROM ROAD AND LOT LINE TINDICATE NORTH BY ARROW. □ PUMPING WATER LEVELS DURING RECOVERY 60 MINUTES 26-28 29-31 001# 001 11 () 1 FEET 0 61 1 CLEAR 2 CLOUDY RECOMMENDED PUMP RECOMMENDED PUMP TYPE 46-49 FEET PUMPING PUMP SETTING 25 FEET Z GPM. / FT. SPECIFIC CAPACITY SHALLOW DEEP GPM DOQ. WATER SUPPLY 5 ABANDONED, INSUFFICIENT SUPPLY **FINAL STATUS** 20 7 UNFINISHED 3 [] 4 [] TEST HOLE OF WELL RECHARGE WELL DOMESTIC STOCK 5 COMMERCIAL 6 MUNICIPAL **WATER** 3 | IRRIGATION
4 | INDUSTRIAL PUBLIC SUPPLY COOLING OR AIR CONDITIONING USE INDUSTRIAL OTHER 9 🔲 NOT USED 6 D BORING
7 DIAMOND 1. CABLE TOOL **METHOD** 3 T ROTARY (REVERSE) OF 8 🔲 JETTING 4 | ROTARY (AIR)
5 | AIR PERCUSSION 9 DRIVING DRILLING RECEIVED O NAME OF WELL CONTRACTOR ONLY 504 G. Charbonneau, Diamond & Cable Drilling 1504 DATE OF INSPECTION USE (R. R. 2, Box 194, Orleans, Ont. NAME OF DRILLER OR BORER LICENCE NUMBER REMARKS K P OFFICE Roland Wolfe SUBMISSION 73 WI 22 lead FORM 7 07-091


MINISTRY OF THE ENVIRONMENT COPY

MINISTRY OF THE ENVIRONMENT The Ontario Water Resources Act

1116	Omano Waler ke	3001 CC3 ACI	
WATER	WELL	REC	ORD

2, 4/6W

Ontario	1. PRINT ONLY IN : 2. CHECK ⊠ CORR	SPACES PROVIDED ECT BOX WHERE APPLICABLE	المراق المراق المواقع ا	3/4/0 an 1051
Carleton		township, Borough, CITY, TOWN, VILLAGE Cumberland,	3 9 CON., BLOCK, TRACT, SURVEY, ETC.	O 07
		umberland, Ont.	DATE COM	PLETED 48-53 YR. 73
	10 (2	0.3.3.3.70	ELEVATION RC. BASIN CODE II $2 \cdot 2 \cdot 1 \cdot $	1(1 1V
	r	OG OF OVERBURDEN AND BEDRO	OCK MATERIALS (SEE INSTRUCTIONS)	DEPTH - FEET
GENERAL COLOUR	MOST COMMON MATERIAL	OTHER MATERIALS	GENERAL DESCRIPTION	FROM TO 18
blue	clay coarse gravel			18 20
grey	course Braser			
		.iq		
	8/3/03/11/1/12/0124			
$ \begin{array}{c c} 32 & & \\ \hline 1/41 & & WA \end{array} $	TER RECORD	51 CASING & OPEN HOLE	RECORD Z (SLOT NO.) SIZE(S) OF OPENING 31-33 DIAM	75 80 ETER 34-38 LENGTH 39-40
WATER FOUND AT - FEET	KIND OF WATER,	INSIDE WALL DIAM MATERIAL THICKNESS	RECORD DEPTH - FEET ROM TO MATERIAL AND TYPE OF 13-16	INCHES FEET DEPTH TO TOP 41-44 80 OF SCREEN
70010°	FRESH 3 SULPHUR 14 SALTY 4 MINERAL	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	O (l/20	FEET
2	FRESH 3 SULPHUR 19 SALTY 4 MINERAL FRESH 3 SULPHUR 24	4 □ OPEN HOLE 17-18 1 □ STEEL 19	DEPTH SET AT - FEET MATERIAL AN	CENENT CROUT
2	SALTY A MINERAL FRESH 3 SULPHUR 29	2 [] GALVANIZED 3 [] CONCRETE 4 [] OPEN HOLE	FROM TO 10-12 14-17	
2 [SALTY 4 MINERAL FRESH 3 SULPHUR 34 8	24-25 1 STEEL 26 2 GALVANIZED 3 CONCRETE	27-30 18-21 22-25 26-29 30-33 80	
2 [NUMPING TEST ME	SALTY 4 MINERAL	4 OPEN HOLE	LOCATION OF WE	
171 PUMP	BAILER OOLG	GPM. HOURS MINS.	IN DIAGRAM BELOW SHOW DISTANCES OF WELL	
19-21 19-21	END OF WATER L PUMPING 22-24 15 MINUTES	EVELS DURING PUMPING RECOVERY 30 MINUTES 45 MINUTES 60 MINUTES 28 29-31 7 32-34 335-37	LOT VINE ANDIGATE NORTH BY ARROW.	A)
	T 150 FEET 10 FE	ET FEET OUT FEET OCHET	Lo16.	.0
IF FLOWING. GIVE RATE RECOMMENDED PU	GPM. IMP TYPE RECOMMENDE	30 FEET 1	. 3	A
SHALLOV	N DEEP SETTING	O FEET PUMPING ATE OF GPM.	150	1V
FINAL	1 WATER SUPPLY 2 OBSERVATION WE	5 ABANDONED, INSUFFICIENT SUPPLY	S. Ma	<u> </u>
STATUS OF WELL	3 ☐ TEST HOLE 4 ☐ RECHARGE WELL	7 UNFINISHED	The second secon	
WATER	DOMESTIC DOMESTIC TOTAL TOTAL DOMESTIC	5 ☐ COMMERCIAL 6 ☐ MUNICIPAL 7 ☐ PUBLIC SUPPLY	40 X 40	
USE ()	4 INDUSTRIAL OTHER	8 COOLING OR AIR CONDITIONING 9 NOT USED	and the state of t	
METHOD	1 CABLE TOOL 2 ROTARY (CONVEN			
OF DRILLING	3 ROTARY (REVERS) 4 ROTARY (AIR) 5 AIR PERCUSSION	E) 8 □ JETTING 9 □ DRIVING .	DRILLERS REMARKS:	
NAME OF WELL	contractor	& Cable Drilling 1504	DATA SI CONTRACTOR . 59-62 DATE RECEIV	ED 63-68 80
151	· · · · · · · · · · · · · · · · · · ·	eans, Ont. KOA 2VO	DATE OF INSPECTION	
NAME OF DRILL		LICENCE NUMBER	T REMARKS:	P R
SIGNATURE OF	CONTRACTOR	SUBMISSION DATE DAY 26 MO. 11 YR. 73	OFFICE	WI
MINISTRY	OF THE ENVIR	RONMENT COPY		FORM 7 07-091

ALFRED EMOND 2557

OTTAWA,

ONTARIO

ONLY OFFICE USE Ρ (Mar. 20) WΙ FORM 7

07-091

AME OF DRILLER OR BORER

The Ontario Water Resources Act Cty St - Russul - B 25 Z-18

WATER WELL RECORD EN	VIRONMEN	6/6-U
Ontario 1. PRINT ONLY IN SPACES PROVIDED 2. CHECK CORRECT BOX WHERE APPLICABLE 1. PRINT ONLY IN SPACES PROVIDED 1. PRINT ONLY IN SPACES PROVIDED 1. PRINT ONLY IN SPACES PROVIDED 2. CHECK CORRECT BOX WHERE APPLICABLE		2205
COUNTY OR DISTRICT ON A CARLON TOWNSHIP, BOROUGH, CITY, TOWN, VILLAGE 3 CON., BLOCK, TRACT, SURVEY, ETC.	0	LOT 25-27
RSFIELD OTTAWA,	MPLETED NO 5	48-53 YR. 74
11NG RC ELEVATION RC BASIN CODE 11 1 3 3 2 3 5 4 0 2 2 2 6 1		iv
LOG OF OVERBURDEN AND BEDROCK MATERIALS (SEE INSTRUCTIONS)		47
GENERAL COLOUR COMMON MATERIAL OTHER MATERIALS GENERAL DESCRIPTION	DEPTH FROM	- FEET
BROWN TOP SOIL	0	3
BLUE CLAY SOFT	3	38
GREY HARD GAN SAND BOULDERS	38	4/
BROWN SAND STONE HARD	4/)	50
Jan		
	-	
	-	
31 0003602 1 0038205 1 100412142813 005061B		
32 10 14 15 21 54 56 55 55 55 55 55 55 55 55 55 55 55 55	5 AMETER 34-38	75 80 LENGTH 39-40
WATER RECORD CASING & OPEN HOLE RECORD (SLOT NO.)	INCHES	FEET STATE
10-11 1 12 13-16 (7)	DEPTH TO TOP OF SCREEN	41-44 80
15-18 1 G FRESH 3 G SULPHUR 19 3 G CONCRETE 3 G CONCRETE 3 G OSEN HOLE 4 G OSEN HOLE 5 G OSEN HOLE 61 PLUGGING & SE	ALING RECO)RD
2 SALTY 4 MINERAL 4 OPEN HOLE 007/ 20-23 20-23 DEPTH SET AT - FEET MATERIAL 17-18 1 STEEL 19 20-23 DEPTH SET AT - FEET MATERIAL	AND TYPE (CEM	ENT GROUT, ACKER, ETC.)
2 SALTY 4 MINERAL 25-28 1 FRESH 3 SULPHUR 25-28 1 FRESH 3 SULPHUR 25-28 1 FRESH 3 SULPHUR 20 GALVANIZED 00 3 CONCRETE 4 POPEN HOLE	-	
2 SALTY 4 MINERAL 24-25 1 STEEL 26 27-30 18-21 22-25		
30-33		
10 PUMPING TEST METHOD 10 PUMPING RATE 11-14 DURATION OF PUMPING 10 PUMP 2 Bailer 0 25 GPM 0 15-16 107-18	LL 7/3	3
STATIC WATER LEVEL 25 1 PUMPING IN DIAGRAM BELOW SHOW DISTANCES OF WE LOT LINEINDICATE NORTH BY ARROW.	LL FROM ROAD	AND
19-21 22-24 IS MINUTES 30 MINUTES 45 MINUTES 25-28 25-	ſ	
B 003 FEET 005 FEET 005 FEET 005 FEET FEET WATER AT-END OF TEST 42	1	
FEET OF FEET FEET FEET FEET FEET FEET FE	بر د	
SHALLOW SEEP SETTING / CAPAL	S. C.	
Grandelli Sectific Caractil	3.4	
STATUS 2 OBSERVATION WELL 6 ABANDONED POOR QUALITY STATUS 3 TEST HOLE 7 UNFINISHED	Luk_	
OF WELL 4 RECHARGE WELL 55-56 DOMESTIC 5 COMMERCIAL COMMERCIAL		** ***
WATER 2 STOCK 6 MUNICIPAL TO PUBLIC SUPPLY		
USE 0 4 INDUSTRIAL 8 COOLING OR AIR CONDITIONING F 4 MILES		
METHOD CABLE TOOL 6 D BORING METHOD 2 ROTARY (CONVENTIONAL) 7 D-BIAMOND		
OF 3 - ROTARY (REVERSE) 6 - JETTING DRILLING 4 - ROTARY (AIR) 9 - DRIVING]	
5 AIR PERCUSSION DRILLERS REMARKS:		63-68 80
NAME OF WELL CONTRACTOR CAYER WELL DRILLING ISSURCE DATA SOURCE INSPECTOR	2°0874	03-08 80
	X	
CASSFIMAN ONT NAME OF DRILLER OR BORER YUN GENIFR LICENCE NUMBER W		> V
SIGNATURE OF CONTRACTOR	,	WI
Marin Carer DAY NO YR		

The Ontario Water Resources Act WATER WELL RECORD

Ontario		SPACES PROVIDED RECT BOX WHERE APPLICABLE	11	15235	54	1501		У Д ' ' '	1.2.4
COUNTY OR DISTRICT		TOWNSHIP, BOROUGH, CITY		· · · · · · · · · · · · · · · · · · ·	CON. BL	OCK, TRACT, SUR	VEY ETC		LOT 25-27
		N.					DATE COM	PLETED	44-53 YR. 85
15, 2	10 12	11NG	*c	1 1 1 1 1		ASIN CODE		<u> </u>	
1, 2		OG OF OVERBURDEN		·					4
GENERAL COLOUR	MOST COMMON MATERIAL	OTHER MAT	ERIALS		GENERAL	DESCRIPTION		DEPTH FROM	r - FEET
RED	CLAY							0	6
BLUE BLACK	GRAVEL							6	34
BLACK	GRAVEL							34	35
``		` .							ļ
							71		
31					با لىلىا	11111			
32	14 15			43	L	بلبلب	بہا لیا	بلبلب	ا پیا
41 WA	TER RECORD	INSIDE	DPEN HOLE	RECORD DEPTH - FEET	Z SLOT NO	F OPENING)	31-33 DIAME	TER 34-38	LENGTH 39-4
AT - FEET	FRESH 3 SULPHUR 14	DIAM MATERIAL INCHES		TO 13-16		AND TYPE		DEPTH TO TOP OF SCREEN	41-44
15-18 1	6 □ GAS FRESH 3 □ SULPHUR	2 GALVANIZED 3 CONCRETE 4 OPEN HOLE	1.88	0 35	61	PLUGGI	NG & SEAL	ING RECO)RD
	J SALIY 6 □ GAS 7 FRESH 3 □ SULPHUR 24	5 PLASTIC 17-18 1 5TEEL 2 GALVANIZED		20-23	DEPTH SET	11	MATERIAL AND	TYPE (CEME	ENT GROUT. ACKER. ETC)
	SALTY 6 minerals 6 mas FRESH 3 minerals	3 □ CONCRETE 4 □ OPEN HOLE 5 □ PLASTIC			10-13	14-17			
	SALTY 6 GAS FRESH 3 GSULPHUR 34	1 STEEL 26 2 GALVANIZED 3 CONCRETE		27-30	18-21	30-33 86	D		
	SALTY 6 DGAS	4 □ OPEN HOLE 5 □ PLASTIC	HBING		<u> </u>				
71 D PUMP	2 D BAILER	60 GPM	17-18 يو م			CATION			
STATIC LEVEL	PUMPING	EVELS DURING	PUMPING RECOVERY 50 MINUTES	LOT L	AGRÁM BELOW .INE INDICA	SHOW DISTANC		FROM ROAD A	,N D
ΨU	20 20		35-37	A					
IF FLOWING. GIVE RATE RECOMMENDED PU	38-41 PUMP INTAKE	SET AT WATER AT END C							
RECOMMENDED PU	PUMP	D 43-48 RECOMMENDED PUMPING	44-49	/			931	7	
SHALLOV	V D DEEP SETTING	OFFEET RATE	1.5 GPM					yı lı.	
FINAL	1 D WATER SUPPLY 2 OBSERVATION WE	S ABANDONED, INSUF	·					17	
STATUS OF WELL	3 TEST HOLE 4 RECHARGE WELL	7 UNFINISHED 9 DEWATERING						14	4
WATER	DOMESTIC	5 COMMERCIAL 6 MUNICIPAL				- 1			7
USE	3 IRRIGATION 4 INDUSTRIAL OTHER	7 PUBLIC SUPPLY COOLING OR AIR CONDI DOT						×	~ ×
METHOD	57 1 CABLE TOOL	€ ☐ BORING							3
METHOD OF CONSTRUCTI	2 ROTARY (CONVENT 3 ROTARY (REVERSE ON 4 ROTARY (AIR)							37	614
	\$ AIR PERCUSSION	☐ DIGGING	OTHER	DRILLERS REMAR					
NAME OF WELL	1	WELL LICEN	CONTRACTOR'S ICE NUMBER	DATA	54 CONT 2	351	JUL	2 1 198	9
ADDRESS PAX	0.7 CACCEIM	ON ONT KON	n my -0	O DATE OF INSP	ECTION	INSPECTOR			
PANTE STANKE	L TECHNICIAN	WELL	TECHNICIAN'S NCE NUMBER	→ REMARKS					
SGNATURE OF	TECHNICIAN/CONTRACTOR	SUBMISSION DATE	7 , 89	OFFICE					. 0 -
MINISTR	Y OF THE ENVIRO	DR1 MO	<u> </u>	<u></u>			FO	ORM NO. 0506 (<u>و کی و ی</u> 11/86) FORM !

Onta		e ronment CARLETON	SPACES PROVIDED	VAT	The C ER 1	WE	/ater Resour	RE	CO	
COUNTY	Y OR DISTRICT		TOWNSHIP BOROUGH CITY, TO	1 2	AWD	CON B	LOCK, TRACT, SURV	EX ELC		22 23 74 LOT 25-27
1 2	1	M 10 12	S A B	efiel	LEVATION LELEVATION	ntae	DAC BASIN CODE	DATE COMP	LETED 5 мо 0 5	8
•			OG OF OVERBURDEN A	ND BEDRO	CK MATERIA	LS (SEE INS	TRUCTIONS)			
GENER	RAL COLOUR	MOST COMMON MATERIAL	OTHER MATER	IALS			DESCRIPTION		DEPTH FROM	- FEET TO
B	Rey LACK LACK	Chay Chay Servel	Dould	ler		Par	oft Soft Jard Ched		0 17 47 50	17 47 50 59
				7						
31 32 41 WATER AT-	FOUND FEET 2	FRESH 3 SULPHUR 19 SALTY 6 GAS FRESH 3 SULPHUR 19 SALTY 6 GAS 19 SALTY 19 SALT			DEPTH - FEET	MATERIA MATERIA	PLUGGIN I AT - FEET 10 14-17	G & SEAL	INCHES DEPTH TO TOP OF SCREEN ING RECO	75 80 ENGTH 39-40 FEET A1-44 10 FEET RD NT GROUT CKER. ETC)
MPING TEST	PUMP STATIC LEVEL FFLOWING IVE RATE CCOMMENDED PUM SHALLOW STATIC S	WATER LEVEL END OF PUMPING 22-24 IS MINUTES FEET S8-41 PUMP INTAKE PTYPE RECOMMENDE PUMP	SET AT SEET SEET SEET AT SEED AS AS SECOMMENDED	MPING COVERY 60 MINUTES 155.37 FEET 42	IN DIA	GRAM BELOW	SHOW DISTANCE ATE NORTH BY A	S OF WELL F		··· \
N CON:	FINAL STATUS OF WELL WATER USE METHOD OF STRUCTIO	DOMESTIC DOMESTIC TRIGATION IRRIGATION TRIGATION TOTHER CABLE TOOL ROTARY (CONVENSION A PROTARY (AIR) AIR PERCUSSION	7 UNFINISHED DEWATERING 5 COMMERCIAL 6 MUNICIPAL 7 PUBLIC SUPPLY 8 COOLING OR AIR CONDITIO 9 NOT US 1 BORING TIONAL) 7 DIAMOND 1 JETTING 9 DRIVING 1 DIGGING	ALITY INING ED	CH Cold	«s	RU	•	Snect	1543
CONTRACTOR	DORESS AME OF WELL MARE OF WELL MARE OF THE OF T	-Ahrer	SUBMISSION DATE DAY 25 NO.	ECHNICIAN'S ENUMBER 2-0 ECHNICIAN'S E NUMBER 7 YR	OATE OF INSPEC	SE CONT	5 8 7 INSPECTOR	JUN FOR	M NO. 0506 (11	53.64 ao

The Ontario Water Resources Act

and the second s

Ontario CARLETON DE PRINTONIA LA PRINTONIA LA PRINTONIA LA PRINTONIA DE PRINTONIA D		TER WELI 1528498	L RECORD
	RECT BOX WHERE APPLICABLE 1 2 TOWNSHIP, BOROUGH, CITY, TOWN, VILLAGE	CON BLOCK TRACE	T SURVEY ETC LOT 25-27
PROCLATT RUCE	w Cumber	land C	my 8
	Sarst	Field on	DAY OF MO 5 YR 95
1 2 M 10 12	HING RC.	ELEVATION RC BASIN CODE	" " "
L	OG OF OVERBURDEN AND BEDRO		(S)
GENERAL COLOUR COMMON MATERIAL	OTHER MATERIALS	GENERAL DESCRIP	TION DEPTH - FEET FROM TO
Red Clay		Han	0 15
Chen Fill	boulders	fland	1 15 24
great 11 she tone		Had	24 55
	A state of the sta		
			1
31			
32	32	43	
WATER RECORD	51 CASING & OPEN HOLE R		31-33 DIAMETER 34-38 LENGTH 39-40
AT - FEET NIND OF WATER	DIAM MATERIAL THICKNESS INCHES FRO	MATERIAL AND TYPE	INCHES FEET DEPTH TO TOP 41-44 30 OF SCREEN
2 SALTY 4 MINERALS 6 GAS 15-18 1 FRESH 3 SULPHUR 19	S 1 3 CONCRETE 12 1. SS	24	FEET
Z SALTY 6 MINERALS	4 OPEN HOLE 5 OPLASTIC 17-18 OSTEEL	61 PLU	GGING & SEALING RECORD
20-23 FRESH 3 SULPHUR 4 MINERALS 5 25-28 29 29	S GALVANIZED 3 GONCRETE 4	FROM TO	MATERIAL AND TYPE LEAD PACKER, ETC.)
FRESH 3 JSULPHUR 2 SALTY 6 GAS	5 □ PLASTIC 24-25 1 □ STEEL 2 □ GALVANIZED	27-30 5 55	25 Cenut Dans
30-33 1 FRESH 3 SULPHUR 34 00 2 SALTY 6 GAS	3 CONCRETE 4 OPEN HOLE 5 PLASTIC	26-29 30-	33 80
71 PUMPING TEST METHOD 10 PUMPING RATE	11-14 DURATION OF PUMPING	/ LOCATIO	ON OF WELL
1 PUMP 2 BAILER STATIC WATER LEVEL 25	4 5 GPM 15-16 0 17-18 FUELS DUBLIS 1 GFUMPING		STANCES OF WELL FROM ROAD AND
DIP-21 PUMPING 19-21 22-24 IS MINUTES	RECOVERY	LOT LINE INDICATE NORTH	H BY ARROW.
	T 35 FEET 35 FEET	*	í l
T FEET FEET FEET FEET FEET FEET FEET FE	SET AT WATER AT END OF TEST 42		
RECOMMENDED PUMP TYPE RECOMMENDED PUMP SETTING		1	
50-53	J PEEL WILL GPM	1/	La Constill
FINAL WATER SUPPLY 2 OBSERVATION WEL	S ABANDONED, INSUFFICIENT SUPPLY L ABANDONED POOR QUALITY	7	Mile to Sansfield
OF WELL 3 TEST HOLE	7 UNFINISHED DEWATERING	Ch colonial Ad	
55-56 1 DOMESTIC	5 COMMERCIAL 6 MUNICIPAL		
WATER 3 ☐ IRRIGATION USE 4 ☐ INDUSTRIAL	7 PUBLIC SUPPLY COOLING OR AIR CONDITIONING		
OTHER	9 □ NOT USED		
METHOD OF CABLE TOOL ROTARY (CONVENT TO ROTARY (REVERSE		<i>f</i>	
CONSTRUCTION 4 ROTARY (AIR) 5 AIR PERCUSSION	9 DRIVING DIGGING DOTHER	DRILLERS REMARKS	150621
NAME OF WELL CONTRACTOR	WELL CONTRACTOR'S	DATA 58 CONTRACTOR	59-62 DATE RECEIVED 63-68 80
ADDRESS JOUR	- 2	DATE OF INSPECTION INSPEC	4. MAY 1 2 1995
NAME OF WELL THEN THE	WELL TECHNICIAN'S	W REMAPKS	
ADDRESS ADDRESS NAME OF WELL TECHNICIAN SIGNATURE OF TECHNICIAN/CONTRACTOR	LICENCE NUMBER	FFICE	
Dath Bun	DAY ON MO S YR. S	OFF	car As
MINISTRY OF THE ENVIRON	MENT COPY		FORM NO. 0506 (11/86) FORM 9

Ministry of the Environment -

The Ontario Water Resources Act WATER WELL RECORD

Print only in spaces provided. Mark correct box with a checkmark, where applicable.

1530860

Municipality	Con.	1	1	1 04
			_	

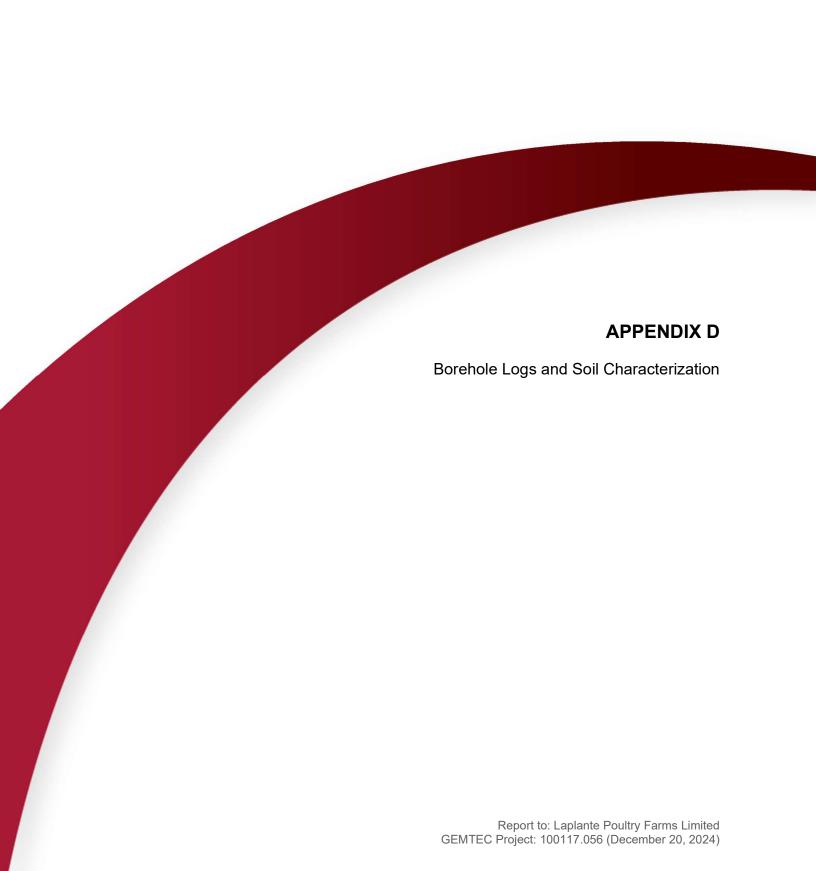
		1 2					11 15	417	22 23 24
County or District	up Poulatous	Township/Borough/City	/Town/Village		,	Con block	tract surve	y, etc. L	ot 25-27
		Address	0			0.10	Date completed	12/1	norith year
[21]		Northing	VI CU	RC Elevi	ation RC	Basin Code	ii	day f	norith year
- 2	LOG O	F OVERBURDEN AND BED		ERIALS (s	See instruction	31			47
General colour	Most common material	Other materials			General de			Dept	h - feet To
Red	Play				50	ex.		0	2
Guey	Clay				50	RF		7	25
Bleu	Clay				50	K+		25	90
Grey	Canuel.				507	//		90	99
Grey	SHALL				Porc	rus		99	//3
/					-				
		- 19.91					L*Stanussen		
						.,			<u> </u>
									
					···		<u> </u>		
31	<u> </u>					, ,	111	1 1 1	. ,
32	15 21	32			5.1				
41 WATE	R RECORD 51 Kind of water diam	CASING & OPEN HOLE Wall	RECORD Depth -	feet	Sizes of ope (Slot No.)	ening 31-3	Diameter	34-38 Leng	
at - feet	Fresh 3 Sulphur 14 inches	Material thickness inches	From	To 18-16	(Slot No.) Material and	1 type	"	Depth at top	of screen 30
15.18	Salty 6 Gas Ga	² Galvanized	0	99	Ø				feet
	Gas 17-18	5 Plastic		20-23		.UGGING 8		RECORD	
1 1 1 1	I Fresh ³ ☐ Sulphur ²⁴ I Salty ⁶ ☐ Gas	2 Galvanized 3 Coperete 4 Den hole	98	113	Depth set at - f	eet	af and type (Cer		
25-28 1 🗀	Fresh 3 Sulphur 29 4-25 24-25	5 Plastic 1 Steel 26		27-30	10-13	7	iner	7 0	ant
30-39	Fresh ³ Sulphur ³⁴ 60	2 Galvanized 3 Concrete 4 Open hole				30-33 80			•
	Salty 6 Gas	5 🗍 Plastic							
71 Pumping test me	Bailer 25 GPM	2 di di di 15 di 1		la dicaram		TION OF W			. P
	rater level of of pumping Water levels during 1 22-24 15 minutes 28-28 30 minutes 28-28	□ Pumping 2 □ Recovery 45 minutes 32:34 60 minutes 35:37	.	in diagram Indicate no T	below show dorth by arrow.	istances of	well from re	oad and Io	t line.
If flowing give rat	$2O_{\text{feet}} = 2O_{\text{feet}} = 2O_{\text{feet}}$	1201201	4	MAWI	17///-	s //	<u>O</u> ,		י ען
If flowing give rat		Water at end of test			ć	7			
Hecommended pu	<u> </u>	Recommended 46-49 pump rate		11-	`	7	Q.		
50-53	Z Deep 6	GPM	13	- 	`	7	5		
FINAL STATUS	oly 5 🗆 Abandoned, insufficient	supply 9 🗍 Unfinished	!	•	9	i K	ž		
² ☐ Observatior ³ ☐ Test hole ⁴ ☐ Recharge w	n well ⁵ ☐ Abandoned, poor quality ⁷ ☐ Abandoned (Other)	10 ☐ Replacement well				2 4) W		
WATER USE	55-56						V		
1	5	9 🔲 Not use				4			!
4 🔲 Industrial	8 Cooling & air conditionin	g					19		
METHOD OF Co	ONSTRUCTION 57 5	⁹ □ Driving					J.C		
 Rotary (con Rotary (reve Hotary (air) 	nventional) ⁶ Boring erse) ⁷ Diamond	10 Digging 11 Other				G RI	?	2007	770
Priotaly (all)	- Detailing					<u>سي</u>		2067	19
Name of Well Contract	ctor	Well Contractor's Licence No.	Data source	58	Contractor	0.6	Date receiv		63-68 80
Address	11/2 - 4	7	Date of	inspection		ector	11107	J / 1/	· ·
Name of Well Technic	tian D	Well Technician's Licence No.	Remark	is					
Signature Technicia	an/Contracto	Submission date	Source Date of Remark				C	SS.ES	0
(Cera	my	day 10/79	[2]					0506 (11/98)	Front Form 9

Ontario Measurements record	Ministry of the Environmer and Climate Change ed in: Metric ☐ Imperia		No. Tag#:	A 227515	Regulation 903	Well Re Ontario Water Resou Page	
						Casaccian	
Address of Well Locatio	n (Street Number/Name)	To	(Lumbe	lano)	Lot N/2 Lot 8	Concession 5	
County/District/Municipa	ON	Ci	ty/Town/Village	~~.	Prov	ince Postal C	GEN
UTM Coordinates Zone	Easting Northing	M M	unicipal Plan and Sublot	t Number	Othe	er I/O/I	
NAD 8 3	144118185103	3246 Sealing Recor	d (see instructions on the	back of this form)			location (Control
General Colour	Most Common Material		er Materials		al Description	Depth From	(m/ft) To
Brown	lay	_ Sil:	} ,	Mar	d	0	3.9
Creu	clay	Silt	· ·	So-	<u>7</u>	3.9	16.7
Crey	grave/	Sand	Store	pac	ked	76.7	<u> 21.7</u>
Crecy	Times fore			laye.	red	21.7	200k
	724						
Don'th Cot at Imf	Annular Space Type of Sealant U		Volume Placed	After test of well yield,	Results of Well Yi	The state of the s	covery
Depth Set at (m/ft) From To	(Material and Type		(m³/ft³)	Clear and sand fi			later Level (m/ft)
0 6	ciment gr	027	. Qm3	If pumping discontinue	d, give reason:	ic 0 50 2	3.05
	9				1	296 1	7.66
				Pump intake set at (m)	^(h) 2	296 25	1.64
		Well Us	<u> </u>	Pumping rate (Vinin) G	PM) 3	2.97 3	1.62
Method of Cor	☐ Diamond ☐ Public	☐ Commer	cial Not used	Duration of pumping	4	297 4 6	2.62
Rolary (Conventional) Rotary (Reverse)	☐ Jetting ☐ Domestic ☐ Driving ☐ Livestock	☐ Municipa ☐ Test Hole		11	nin 5	297 5	2.61
☐ Boring Mair percussion	☐ Digging ☐ Irrigation ☐ Industrial	Cooling 8	& Air Conditioning	Final water level end o	f pumping (m/ft) 1(298 10	261
Other, specify	Other, spe	cify		If flowing give rate (I/mi	n/GPM) 15	309 15 2	2,60
		Depth (<i>m/ft</i>)	Status of Well Water Supply	Recommended pump	depth (m/ft) 20	299 20 $\sqrt{2}$	2.60
Diameter (Galvanize	d, Fibreglass, Thickness Plastic. Steel) (cm/in) Fro	1	Replacement Well Test Hole	20	2!	299^{25}	2.59
15.55 S-	red o48 to	6 21.9	Recharge Well Dewatering Well	Recommended pump (I/min /)GPM)	rate 30	$\frac{299}{299}$	5°27
15,55 ODEN	21.	9 23.2	Observation and/or Monitoring Hole	Well production (Vmin)) (GPM) 40	X . ! !	157
P			Alteration (Construction)	Disinfected?		200	
			Abandoned, Insufficient Supply	Yes No	60		<u> </u>
Outoido	nstruction Record - Screen	Depth (<i>m/ft</i>)	Abandoned, Poor Water Quality	Please provide a ma	Map of Well L p below following in	structions on the back.	1 A2
	Ivanized, Steel) Slot No. Fro	1	Abandoned, other, specify				, , ,
			Other, specify		· · · · · · · · · ·		
					roux R		
Water found at Depth	Water Details Kind of Water: ☐ Fresh ☑ Onte		ole Diameter h (m/ft) Diameter			140 Jane	
22 (m/ft) □Gas	Other, specify	From	To (cm/in)		الش		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Water found at Depth (m/ft) ☐ Gas	Kind of Water: Fresh Unter	ested	6 24.4			go_M	B
Water found at Depth	Kind of Water: Fresh Unte	ested 6	23.215.55				Dumpy Ro
	Other, specifyell Contractor and Well Tech	ician Informati	ion				4
Business Name of Wel			Il Contractor's Licence No.				
IN DILLIE	$N \cup (10) \cup (1) \cup$	- O(T) B	7 7 1 7	l			

CONTRACTOR'S COPY

The Ontario Water Resources Act

WATER WELL RECORD


Sittano	and the second s	SPACES PROVIDED RECT BOX WHERE APPLICABLE	E						
COUNTY OR DISTRICT	TT-Russ	TOWNSHIP, BOROUGH		ple	2	CON. BLOCK, TRACT, SURV	EY. ETC		078
owner (SURNAME FIRST		Pald Address S	aRS	Fie	ld	ont	DAY OS		YR 95
					,				
		OG OF OVERBURD	EN AND BED	ROCK M	ATERIAL	S (SEE INSTRUCTIONS)	-	DEPTH	- FEET
GENERAL COLOUR	MOST COMMON MATERIAL	. OTHER	MATERIALS			GENERAL DESCRIPTION		FROM	то
Red	Clay					Hard		0	15
Chen	till V	boule	deRS		-	fond	3	15	24
great	11 she tare					Had	=======================================	24	55-
1		,							
									#
					-				
	man-ex-					<u> </u>			
	-								
			11						
WAT	ER RECORD	CASING	& OPEN HO	LE RECO	RD	SIZE(S) OF OPENING	DIAME	TER	LENGTH
WATER FOUND AT - FEET	KIND OF WATER	INSIDE DIAM MATERIAL INCHES	WALL THICKNESS INCHES	DEPTH -	FEET	MATERIAL AND TYPE		DEPTH TO TOP OF SCREEN	FEET
	FRESH SULPHUR MINERALS GAS	STEEL GALVANIZE	1.88	A	24	Ö			FEET
	FRESH SULPHUR MINERALS	O TOPEN HOL		0	~/	PLUGGI	NG & SEAL		ORD
	FRESH SULPHUR MINERALS	STEEL GALVANIZE	ED	24	~	FROM TO	MATERIAL AND		ACKER. ETC.)
	FRESH SULPHUR	PLASTIC		,	5 5	5 35	Cen	N B	m
	FRESH SULPHUR MINERALS	GALVANIZE CONCRETE	:						
	SALTY GAS	D PLASTIC'	OF PUMPING						
PUMPING TEST METE	BAILER PUMPING RAT	45 GPM	0	HNS .		LOCATION	100		
STATIC LEVEL	WATER LEVEL END OF WATER PUMPING	LEVELS DURING	PUMPING RECOVERY		IN DIA	GRAM BELOW SHOW DISTAN NE INDICATE NORTH BY		FROM ROAD	ND.
TEST / &	35 15 MINUTES	3 30 MINUTES 45 MIN	OTES 60 MINUT	ES		4			
	FEET PUMP INTAKE	EET FEET	FEET END OF TEST	FEET		3			
FEET FLOWING, GIVE RATE	GPM IP TYPE RECOMMENDS	FEET	LEAR CLOU	DY		3			
SHALLOW	PUMP	FEET RATE	1.5	GPM		d ,	7	-	λ
						4/W	ilet	o Sal	Psfleid
FINAL	OBSERVATION WE		INSUFFICIENT SUPP POOR QUALITY	LY DE	0 1.	rialAd			
OF WELL	☐ RECHARGE WELL	☐ DEWATERING		In	Color				
WATER	DOMESTIC STOCK IRRIGATION	☐ COMMERCIAL ☐ MUNICIPAL ☐ PUBLIC SUPPLY							*
USE	☐ INDUSTRIAL ☐ OTHER	COOLING OR AIR	CONDITIONING NOT USED			0 9			
	CABLE TOOL	□ BORI	NG						
METHOD OF	ROTARY (CONVE	SE) DETT	ING					4.5	0004
CONSTRUCTIO	ON ROTARY (AIR)	DRIV		DRIL	LERS REMARK	s	-	15	0621
NAME OF WELL	n	Care	WELL CONTRACTO	DR'S					
OL ADDRESS	1 // ()	7 814	17/4	E ONLY					
ADDRESS NAME OF WEL	H / DI/	av U	WELL TECHNICIA	N'S S					

FORM NO. 0506 (11/86) FORM 9

Ministry of the	\A/AT	The Ontario	Water Resource	RECO	
Ontario	ONLY IN SPACES PROVIDED CORRECT BOX WHERE APPLICABLE	1527974	MUNICIP. 1.5,0,1,11	CPINI I	אוי
COUNTY OR DISTRICT	TOWNSHIB GOROUGH CITY, TOWN EVILLAGE CUM DER	LAWD.	N. BLOCK, TRACT, SURVEY E	15	22 23 LOT 25
	C 1.1				8
1 2 10 12	HING RC	ELEVATION RC	BASIN CODE	DAY_25 NO 0.5	YR. 9
	LOG OF OVERBURDEN AND BEDRO	CK MATERIALS (SEE	INSTRUCTIONS		
GENERAL COLOUR COMMON MATER	AL OTHER MATERIALS	GENE	RAL DESCRIPTION	DEPTH FROM	· FEET
BROWN CLAY		,	SOFT	0	1
Drey Chay			SOFT	17	4
BLACK SERVE	d Boulder		HARD	42	5
BLACE DRAVE		P	acken	50	50
				-	
31					
WATER RECORD	51 CASING & OPEN HOLE PL		54 51 OF OPENING 31-33	65 DIAMETER 34-36 LI	1
ATER FOUND KIND OF WATER	INSIDE MATERIAL MALL DE	EPTH . FEET	f NO)	INCHES	ENGTH 3
59 FRESH 3 SULPHUI	S JOH 1 STEEL 12	10 S MATI	ERIAL AND TYPE	DEPTH TO TOP	41-44 FEE1
1 FRESH 3 SULPHUI 2 SALTY 6 GAS	CONCRETE /	0 1 101		SEALING RECO	RD
ZO-23 FRESH 3 SULPHUI Z SALTY 6 GAS	S	FROM	SET AT - FEET MATE!		NT GROUT CKER, ETC)
ZS-ZE 1 FRESH 3 SULPHUI Z SALTY 6 GAS	S 1 DSTEEL 26		2 -1	ement a	pa
30-33 FRESH 3 SULPHUI 2 SALTY 6 GAS	2	26	29 10-33 80	V	
PUMPING TEST METHOD 10 PUMP	NG RATE 11-14 DURATION OF PUMPING	L	OCATION OF	WELL	
STATIC WATER LEVEL	T GPM	IN DIAGRAM BEL	OW SHOW DISTANCES OF	WELL FROM ROAD AN	0 1
11 35	100 TES 30 MINUTES 45 MINUTES 60 MINUTES 55-37		d		Y
FEET FEET	INTAKE SET AT WATER AT END OF TEST 42		de .	500	
RECOMMENDED PUMP TYPE RECOMPUMP	MENDED 43-45 RECOMMENDED 46-49		1		
SHALLOW SETTIN	6 50 FEET RATE 20 GPM		.487		
FINAL WATER SUP			DWA		
STATUS OF WELL OF WELL OF WELL OBSERVATION OF TEST HOLE OBJERVATION OF TEST HOLE OBJERVATION OBJERVA	7 UNFINISHED				
SS-SS DOMESTIC	5 COMMERCIAL 6 MUNICIPAL		3		
USE IRRIGATION	PUBLIC SUPPLY COOLING OR AIR CONDITIONING		1 mile	To Snest	ieLL
OTHER		CH Colonial	RU	>	
OF 3 GOTARY (CO	ONVENTIONAL) 7 DIAMOND (VERSE) 4 DIETTING				
ONSTRUCTION CONTROL OF AIR PERCUS	SION D	DRILLERS REMARKS		134	543
RAYMOND (1)	WELL CONTRACTOR'S	> ISOURCE	8 5 8 7 J	UN 1 4 1994	63-68
ST-Ab R	3 - 1	O DATE OF INSPECTION	INSPECTOR	UN 17 1357	
ADDRESS ST - ALB	WELL TECHNICIAN'S	S REMARKS			

MINISTRY OF THE ENVIRONMENT COPY

FORM NO. 0506 (11/86) FORM 9

ABBREVIATIONS AND TERMINOLOGY USED ON RECORDS OF BOREHOLES AND TEST PITS

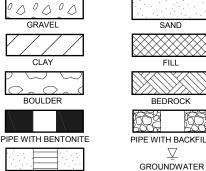
	SAMPLE TYPES
AS	Auger sample
CA	Casing sample
CS	Chunk sample
BS	Borros piston sample
GS	Grab sample
MS	Manual sample
RC	Rock core
SS	Split spoon sampler
ST	Slotted tube
ТО	Thin-walled open shelby tube
TP	Thin-walled piston shelby tube
WS	Wash sample

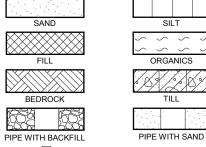
	SOIL TESTS
W	Water content
PL, w _p	Plastic limit
LL, W _L	Liquid limit
С	Consolidation (oedometer) test
D_R	Relative density
DS	Direct shear test
Gs	Specific gravity
М	Sieve analysis for particle size
МН	Combined sieve and hydrometer (H) analysis
MPC	Modified Proctor compaction test
SPC	Standard Proctor compaction test
OC	Organic content test
UC	Unconfined compression test
γ	Unit weight

PENETRATION RESISTANCE

Standard Penetration Resistance, N

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 millimetres (30 in.) required to drive a 50 mm split spoon sampler for a distance of 300 mm (12 in.). For split spoon samples where less than 300 mm of penetration was achieved, the number of blows is reported over the sampler penetration in mm.


Dynamic Penetration Resistance


The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive a 50 mm (2 in.) diameter 60° cone attached to 'A' size drill rods for a distance of 300 mm (12 in.).

WH	Sampler advanced by static weight of hammer and drill rods
WR	Sampler advanced by static weight of drill rods
PH	Sampler advanced by hydraulic pressure from drill rig
РМ	Sampler advanced by manual pressure

COHESION Compa			IVE SOIL istency
SPT N-Values	Description	Cu, kPa	Description
0-4	Very Loose	0-12	Very Soft
4-10	Loose	12-25	Soft
10-30	Compact	25-50	Firm
30-50	Dense	50-100	Stiff
>50	Very Dense	100-200	Very Stiff
		>200	Hard

LEVEL

GRAIN SIZE

0.01 0,1 1,0 10 100 1000 mm SILT CLAY SAND COBBLE BOULDER 0.08 0.4 2 5 80 200

SCREEN WITH SAND

DESCRIPTIVE TERMINOLOGY

(Based on the CANFEM 4th Edition)

() 1	0 2	0 3	5
	TRACE	SOME	ADJECTIVE	noun > 35% and main fraction
	trace clay, etc	some gravel, etc.	silty, etc.	sand and gravel, etc.

RECORD OF BOREHOLE 24-1D

CLIENT: Laplante Poultry Farms Limited

PROJECT: Hydrogeological Investigation and Terrain Analysis, Proposed Chicken Processing Plant, 3043 Dunning Road, Ottawa, Ontario

JOB#: 100117.056

LOCATION: 3043 Dunning Road - Refer to Figure 1 for location.

SHEET: 1 OF 2 DATUM: CGVD2013 BORING DATE: Jan 5 2024

METRES	ROBING METHOD		SOIL PROFILE	\ PLOT	ELEV.	BER		RECOVERY, SATA	_		NETA SISTA NAMI					m +1	WATE	AL ⊕	RE NTE	MOU	LDI %	ED	ADDITIONAL LAB. TESTING	PIEZOMETE OR STANDPIPI
Ψ	NIACE		DESCRIPTION	STRATA PLOT	DEPTH (m)	NUMBER	TYPE	RECO\ mr	BLOWS/0.3m	l		ANCE.	BLO 30			w 50 6		70 70	80	(⊢\ 90	N _L	ADD LAB.	INSTALLATIO
	-	+	Ground Surface	ω	86.19				Т —	 		= = =	::::::	:::		1::::	<u> </u>	. <u>)</u>	10		<u> </u>			
0		\dashv	Topsoil		86.19 4 86.09 0.10																H		1	
			Stiff to very stiff, brown SILTY CLAY (WEATHERED CRUST)			1	SS	350	7	•														
					1																			
		9																						
1		0mm				2	SS	558	7	•								1						Ţ
	^uger	er (21			1																			
	Power Auger	Aug																						
	ĕ	Hollow Stem Auger (210mm OD)			1	3	SS	609	7	. •					О								МН	
2		ollow			1																			
		ᅦ																						
					1	4	SS	558	2	•														
		-	Grev SILTY CLAY (undrained shear		8 <u>3.29</u> 2.90																			
3			Grey SILTY CLAY (undrained shear strength not determined)		1																			
						5	SS	609	1															
4					1												::::	1 1 1	: :					
						6	SS	609	WH															
					1					1														
5						7	SS	609	WH															Bentonite Seal
					1																			
						8	SS	609	WH															
6					1						: : :						:::::	1 1 1	: :					
					1																			
						9	SS	609	WH									1 1 1						
					1																			
7														:::					: :					
						10	SS	609	WH															
					1																			
																		111						
8						11	SS	609	WH															
					1																			
						12	SS	609	WH															
9																							-	
						13	SS	609	WH															
						L				}														
10										1													1	
\neg			SEMTEC									1				1		1			1	•	1000	GED: SE

RECORD OF BOREHOLE 24-1D

CLIENT: Laplante Poultry Farms Limited

PROJECT: Hydrogeological Investigation and Terrain Analysis, Proposed Chicken Processing Plant, 3043 Dunning Road, Ottawa, Ontario

JOB#: 100117.056

LOCATION: 3043 Dunning Road - Refer to Figure 1 for location.

SHEET: 2 OF 2 DATUM: CGVD2013 BORING DATE: Jan 5 2024

SSE	⊒ТНО	SOIL PROFILE	T	<u> </u>		SAM	IPLES →		● PE RE	NETR/ SISTA	ATION NCE (N), BLO	NS/0.3	H2 1+ m	EAR S'	IRENG AL⊕F	REMOL	JLDED	NAL TING	PIEZOME ⁻	TEF
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	RECOVERY, mm	BLOWS/0.3m			PENE NCE, B			W	,—	R CON' W		$\dashv W_L$	ADDITIONAL LAB. TESTING	OR STANDPI INSTALLAT	PE TIOI
\dashv	H		STI	(m)	<u> </u>		<u> </u>		1 ::::	0 :	20 3	30	40 	50 6	60 7	70 8	80 9	90	lacksquare		_
10	Mud Rotary HW (114mm OD)				14	SS	609	WH											-		
	Mu V (114																				
11	Í				15	SS	609	WH		: : : :							0		МН		
12					16	SS	609	WH													
																				Bentonite Seal	
					17	SS	609	WH													
12																					
13					18	SS	609	WH													
14					19	SS	609	WH													
					20	SS	609	WH													
15																					
		Loose to compact, grey SILTY SANDY GRAVEL, with cobbles and		70.80 15.39	21	SS	406	12		•										:	
		boulders (GLACIAL TILL)																			
16					00	00	250													Filter Sand Pack	
					22	SS	356	6												50mm diameter PVC screen	
									: : : : : : : : : : : : : : : : : : :												
17					23	SS	356	15		•											
-	otary m OD)	Dark Grey Limestone (Inferred Bedrock)	9. 7. 12	68.84 17.35					: : : : : : : : : : : : : : : : : : :												
	Mud Rotary Q (89mm OD)			69.21	24	RC	254														
18	<u> </u>	End of Borehole		68.21 17.98																	لت.
19																				GROUNDWA OBSERVATI	ATE
																				DATE DEPTH (m)	1
																				24/01/25 2.3 \(\bar{\sqrt{2}} \) 24/01/31 2.4 \(\bar{\sqrt{2}} \)	+
20																			L		1

RECORD OF BOREHOLE 24-1S

CLIENT: Laplante Poultry Farms Limited

PROJECT: Hydrogeological Investigation and Terrain Analysis, Proposed Chicken Processing Plant, 3043 Dunning Road, Ottawa, Ontario

JOB#: 100117.056

LOCATION: 3043 Dunning Road - Refer to Figure 1 for location.

SHEET: 1 OF 1 DATUM: CGVD2013 BORING DATE: Jan 8 2024

SALE	THOD	SOIL PROFILE	Ŀ	1		SAM	IPLES		● PE RE	NETR/ SISTA	ATION NCE (N), BLOV	NS/0.3i	H2 1+ m	IEAR S NATUR	TRENG AL ⊕ F	REMO	Cu), I OULE	kPA DED	ING ING	рп	=70ME-	TEE
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	RECOVERY, mm	BLOWS/0.3m	DY A RE	NAMI(PENE	TRATIC	DN 0.3m	W		R CON	TENT		w _L	ADDITIONAL LAB. TESTING	S	EZOME [*] OR TANDPI STALLAT	IPE
اد	BORII		STRAT	DEPTH (m)	S N	F	RECC	BLOW									30	90	W _L	PB FB	IINO	TALLA	110
0		Ground Surface		86.10								::::	::::		::::	::::	:::	: :	:::				_
		Not Logged - See BH24-1D for details																					
																						Ā	
1																							ı
2																					Bentoni	te Seal	ı
3	<u> </u>																						
	nm O[
	uger er (210r																						ı
4	Power Auger em Auger (21																						
ľ	Power Auger Hollow Stem Auger (210mm OD)																					1	
	Holk																						
5																							
6																					Filte	r Sand	
																					50mm dia	r Sand Pack ameter screen	
7																	:::	: :	:::				
8		End of Borehole		78.17 7.93														: :				Ŀ	
9																							
																					GR OB	OUNDWA	
																					DATE 24/01/25	DEPTH (m)	_
10																					24/01/31	1.6	-
10		EMTEC								::::					: : : :		1:::	: :	:::				\perp

RECORD OF BOREHOLE 24-2D

CLIENT: Laplante Poultry Farms Limited

PROJECT: Hydrogeological Investigation and Terrain Analysis, Proposed Chicken Processing Plant, 3043 Dunning Road, Ottawa, Ontario

JOB#: 100117.056

LOCATION: 3043 Dunning Road - Refer to Figure 1 for location.

1 OF 2 SHEET: DATUM: CGVD2013 BORING DATE: Jan 9 2024

METRES	P.	ŀ	SOIL PROFILE	F			SAN	IPLES		J ● RE	SISTA	NCE (N), BLC)WS/	0.3m	+ N	EAR S IATUR	AL ⊕	RE	MOL	JLD	ED	ING ING	PIEZOMETE
ETRE	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	RECOVERY, mm	BLOWS/0.3m	D Y	NAMIC	PEN	ETRATI BLOWS	ION	.		WATE	R CO	NTE V	ENT,		۱۸/	ADDITIONAL LAB. TESTING	OR STANDPIP
∑	SORIN		BESSIAI TISIN	TRAT	DEPTH (m)	NOM	}	RECC	LOW	1		20	30	40 40	11 50	W _F		70	80		90	W _L	ADI	INSTALLATI
\dashv	Ī	+	Ground Surface	σ	86.53				Н			1:::	: ::::	10		::::	<u> </u>	1:::	+		1:	: : :		
0		✝	Topsoil		86.43																1			
	i		Stiff to very stiff, brown SILTY CLAY (WEATHERED CRUST)																		1			
		E																			1			
1	\uger	er (21																			1			
	Power Auger	Aug				1	SS	558	7	•											1			
	٦	Ster																			1			₹
	:	Hollow Stem Auger (210mm OD)					00		_												1			
2						2	SS	609	7										+		1			
ľ																					1			
						3	SS	558	2	•))					1		МН	
					83.63				-														''''	
3			Grey SILTY CLAY (undrained shear strength not determined)		8 <u>3.63</u> 2.90					<u> </u>									:		1			
						4	SS	609	1												1			
										 											1			
4						5	SS	609	wн												1			
										 														
																					1			
5						6	SS	609	WH												1			Bentonite Seal
																					1			
						7	SS	600	WH															
						<i>'</i>	33	609	VVII															
6														: :					:		1			
						8	SS	609	WH															
																					1			
7										 											1			
7						9	SS	609	wн															
										1											1			
8	li	ادَ				10	ss	609	wн									:::	1		1			
	otary	HW (114mm OD)								-														
	Mud Rotary	1141								1											1:			
		Ĭ				11	SS	609	WH										c) : : :	1		МН	
9										<u> </u>											1:		1	
									,,,,,												1:			
						12	SS	609	WH												1:			
										1											E			
10				[xxxxxx							::::						::::		:		1			

RECORD OF BOREHOLE 24-2D

CLIENT: Laplante Poultry Farms Limited

PROJECT: Hydrogeological Investigation and Terrain Analysis, Proposed Chicken Processing Plant, 3043 Dunning Road, Ottawa, Ontario

JOB#: 100117.056

LOCATION: 3043 Dunning Road - Refer to Figure 1 for location.

SHEET: 2 OF 2 DATUM: CGVD2013 BORING DATE: Jan 9 2024

ן נְ	보	SOIL PROFILE	1 .	1		SAN	//PLES	_	● PE RE	NETR/ SISTA	ATION NCE (N), BLO	WS/0.3	ßm -	+ NA	TURA	AL +F	REMOL	ı), kPA JLDED	무일	
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	RECOVERY,	BLOWS/0.3m	DY	NAMIC	PENE	TRATIO	ON.			/ATEI	R CON'	TENT,		ADDITIONAL LAB. TESTING	PIEZOMETE OR STANDPIPI
٦ٍ≥	ORIN	DESCRIPTION		DEPTH (m)	MON	}	7ECO	LOWS					0.3m 40	50	W _P ⊦	7	_	30 9	⊢ W _L	ADE LAB.	INSTALLATIO
	<u> </u>		.v				-	<u>m</u>	::::	::::	20	30	1:::	: ::	60	7	::::	::::	::::	\vdash	
10					13	SS	609	WH												-	
		Loose to compact, grey SANDY SILT, with trace to some gravel (GLACIAL		76.02 10.51																	
11		TILL)			14	SS	609	4												-	Bentonite Seal
12					15	SS	450	9													
12																					
					16	SS	540														
13		Compact to dense, grey SILTY SAND, some gravel, with cobbles and boulders (GLACIAL TILL)		7 <u>3.58</u> 12.95	17	ss	440	13		•											
		,																			
14					18	SS	580	35				•									Filter Pack 50mm diameter PVC screen
15	ud Kotary (89mm OD)																				
15	Mud Kotary HQ (89mm Ol	Dark Grey Limestone (Inferred		71.21 15.32	19	RC	720														
ŀ	+	Bedrock) End of Borehole		71.21 15.32 70.99 15.54					1												
16																					
17																					
18																					
19																					
																					GROUNDWATE OBSERVATION DATE DEPTH (m)
																					24/01/25 2.5 <u>V</u> 24/01/31 2.5 <u>V</u>
20																					_
		SEMTEC INSULTING ENGINEERS D SCIENTISTS																		LOGG	ED: SE

RECORD OF BOREHOLE 24-2S

CLIENT: Laplante Poultry Farms Limited

PROJECT: Hydrogeological Investigation and Terrain Analysis, Proposed Chicken Processing Plant, 3043 Dunning Road, Ottawa, Ontario

JOB#: 100117.056

LOCATION: 3043 Dunning Road - Refer to Figure 1 for location.

SHEET: 1 OF 1 DATUM: CGVD2013 BORING DATE: Jan 8 2024

SALE	THOD	SOIL PROFILE	-	I		SAM	IPLES	_	● PEI RE	NETRA SISTA	ATION NCE (N), BLO\	WS/0.3r	HS 1+ m	IEAR S' NATUR/	TRENG AL ⊕ F	TH (Cu REMOU	ı), kPA ILDED	JAL	DIEZO	METE	ΕÞ
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	RECOVERY, mm	BLOWS/0.3m	1		PENE NCE, B			W	_P	R CON' W		$\dashv W_L$	ADDITIONAL LAB. TESTING	PIEZO (STAN INSTAL	DR IDPIPE LLATIO	'\ E Ol
	<u> </u>	Cround Surface	ST	(m) 86.48			LC.	В	1	0 2	20 3	30 4	40 !	50 6	50 7	70 8	80 9	90	<u> </u>			_
0		Ground Surface Not Logged - See BH24-2D for details		86.48																		I
																						l
																					▼ ▼	l
1																						l
																						l
																						l
2																				Bentonite Se	nal	l
																				Domestico de	74.1	l
																						l
3	<u> </u>																					l
	mm O[l
	Auger er (210																					l
4	Power Auger Hollow Stem Auger (210mm OD)																					l
	ow Ste																					ı
	亨																					ŀ
5																						E
																						ŀ
6																				Filter Sai Pa	nd	F
																				50mm diamet PVC scree	er 🗀	E
																						Ė
7																						
																						E
				78.55																		E
8		End of Borehole		78.55 7.93																		_
9																			1	GROUN OBSER	IDWATE	EF
																				DATE DE	PTH (m)	NS
																					7 <u>▼</u> 5 <u>▼</u>	
10																			1		-±	Γ

RECORD OF BOREHOLE 24-03

CLIENT: Laplante Poultry Farms Limited

PROJECT: Geotechnical Investigation, Proposed Chicken Processing Plant, 3043 Dunning Road, Sarsfield, Ontario

JOB#: 100117.056

LOCATION: See Appendix A, Figure A.1

SHEET: 1 OF 2 DATUM: CGVD28 BORING DATE: Jul 22 2024

"	С	SOIL PROFILE		1				SAIVII	PLE DATA	_				
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	RECOVERY (mm)	BLOWS/0.3m	LABORATORY ANALYSES	COMBUSTIBLE VAPOUR CONCENTRATION (ppm)	ODOUR	TPH (mg/kg)	MC I	NITORING WELL NSTALLATION AND NOTES
1 2 3	Power Auger Hollow Stem Auger (210mm OD) B	Ground Surface TOPSOIL Stiff to very stiff, grey brown SILTY CLAY (WEATHERED CRUST) Firm to stiff, grey SILTY CLAY	S J	86.28 86.23 0.05	1 2 3 4 5 5 6 6 7 7	ss	0 510 610 610	7 8 8 2 PM	SA1 SA2 SA3 SA4 SA5	N/A HEX: 60 IBL: 0 HEX: 35 IBL: 0 HEX: 5 IBL: 0 HEX: 5 IBL: 0				Bentonite seal Filter sand 50 mm diameter PVC screen
. 8					8	то	610	PM	SA8	HEX: 0 IBL: 0				

RECORD OF BOREHOLE 24-03

CLIENT: Laplante Poultry Farms Limited

PROJECT: Geotechnical Investigation, Proposed Chicken Processing Plant, 3043 Dunning Road, Sarsfield, Ontario

JOB#: 100117.056

LOCATION: See Appendix A, Figure A.1

SHEET: 2 OF 2 DATUM: CGVD28 BORING DATE: Jul 22 2024

	۵	SOIL PROFILE	_					SAMI	PLE DATA	2					
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	RECOVERY (mm)	BLOWS/0.3m	LABORATORY ANALYSES	COMBUSTIBLE VAPOUR CONCENTRATION (ppm)	ODOUR	TPH (mg/kg)	MO II	NITORING WI NSTALLATION AND NOTES	ELL N
					9	ss	610	wн	SA9	HEX: 0 IBL: 0					
10 -		Firm to stiff, grey SILTY CLAY		7 <u>6.28</u> 10.00											
11					10	ss	610	WH	SA10	HEX: 0 IBL: 0					
12	ger (210mm OD)													Auger cuttir	ngs
	Power Auger Hollow Stem Auger (210mm OD)				11	ss	610	wн	SA11	HEX: 0 IBL: 0					
13	HOI	Dense to very dense, grey GRAVEL and SAND, some silt, trace clay, with cobbles and boulders (GLACIAL TILL)		73.07 13.21	12	SS	610	44	SA12						
14					13	ss	355	82	SA13						
		End of Borehole Auger Refusal	<u> </u>	71.80 14.48											
													GROUNE DATE	DEPTH (m)	VATIONS ELEVATION
													Jul. 29/24	1.52 💆	84.76
													Aug. 01/24	1.72	84.56
	C	SEMTEC_	<u> </u>	<u> </u>									L	DGGED: CD	
	Co	INSULTING ENGINEERS D SCIENTISTS												HECKED: PS	

RECORD OF BOREHOLE 24-04

CLIENT: Laplante Poultry Farms Limited

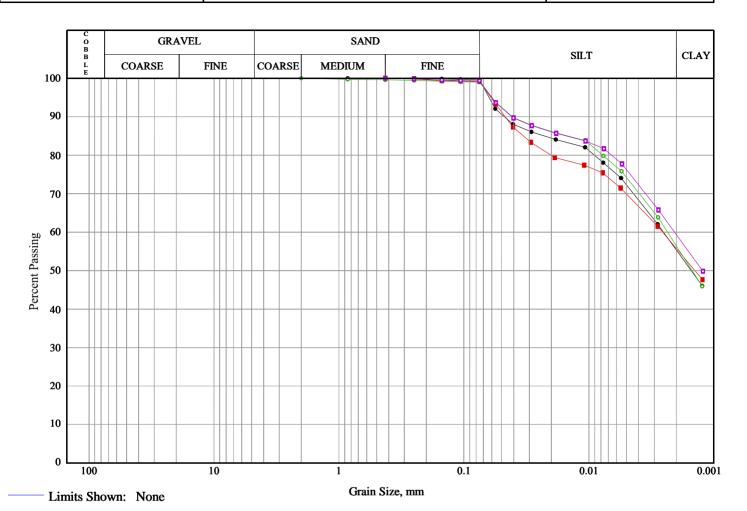
PROJECT: Geotechnical Investigation, Proposed Chicken Processing Plant, 3043 Dunning Road, Sarsfield, Ontario

JOB#: 100117.056

LOCATION: See Appendix A, Figure A.1

SHEET: 1 OF 1 DATUM: CGVD28 BORING DATE: Jul 22 2024

Count Suffice Count Suffic	METRES	BORING METHOD	SOIL PROFILE DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	RECOVERY (mm)	BLOWS/0.3m	PLE DATA LABORATORY ANALYSES	COMBUSTIBLE VAPOUR CONCENTRATION (ppm)	ODOUR	ТРН (mg/kg)	МС	ONITORING WE INSTALLATION AND NOTES	ELL I
6 SS 610 WH SA6 HEX: 15 IBL: 0 7 SS 610 WH SA7 HEX: 0 IBL: 0	0 -	ger (210mm OD)	TOPSOIL Stiff to very stiff, grey brown SILTY CLAY (WEATHERED CRUST)	3	83.22	3	SS	355 405 610	5	SA2 SA3	HEX: 30 IBL: 0 HEX: 15 IBL: 0			-	Filter sand	neter
9 SS 610 WH SA9 HEX: 0 IBL: 0 GROUNDWATER OBSERVATION	5	Power A Hollow Stem Auge				7	SS	610	wн	SA6 SA7	HEX: 0 HEX: 0 HEX: 0 HEX: 0				Auger cuttin	gs
Jul. 29/24 0.44 又 8	6		End of Borehole			9	SS	610	WH	SA9	HEX: 0 IBL: 0			DATE Jul. 29/24	DEPTH (m) 0.44	/ATIONS ELEVATION (r 85.83 86.00



Client: J. L. Richards & Associates Limited

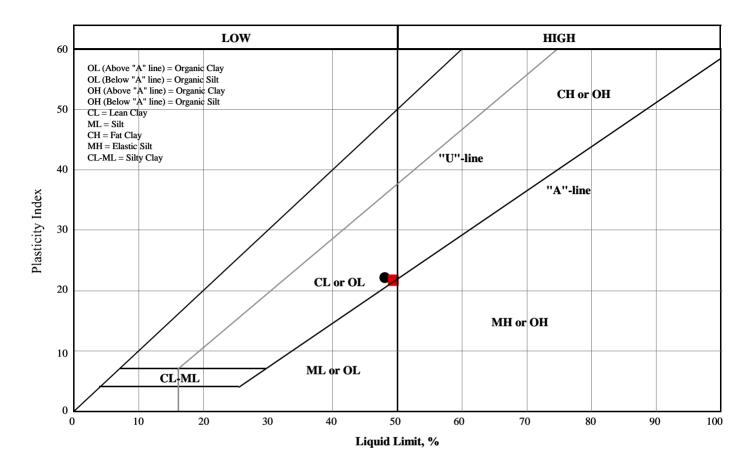
Project: 3043 Dunning Road, Zoning By-law Amendment, Propo

Project #: 100117056

Soils Grading Chart (LS-702/ ASTM D-422)

Line Symbol	Sample	Borehole/ Test Pit	Sample Number	Depth	% Cob.+ Gravel	% Sand	% Silt	% Clay
-		24-01D	SA 03	1.52-2.13	0.0	0.4	44.2	55.4
		24-01D	SA 15	10.67-11.28	0.0	0.8	43.4	55.8
		24-02D	SA 03	2.28-2.89	0.0	1.0	42.5	56.5
		24-02D	SA 11	8.38-8.99	0.0	0.7	39.9	59.4

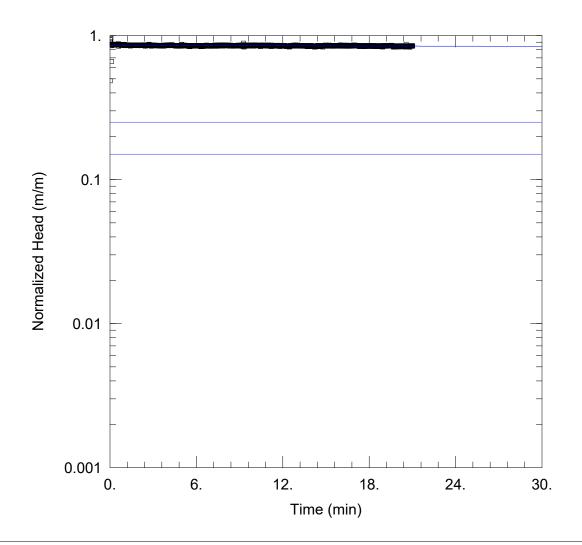
Line Symbol	CanFEM Classification	USCS Symbol	D ₁₀	D ₁₅	D ₃₀	D ₅₀	D ₆₀	D ₈₅	% 5-75μm
	Clay and silt, trace sand	-				0.00	0.00	0.02	44.2
-	Clay and silt, trace sand	CL				0.00	0.00	0.03	43.4
•	Clay and silt, trace sand	_				0.00	0.00	0.01	42.5
—	Clay and silt, trace sand	CL				0.00	0.00	0.02	39.9



Client: J. L. Richards & Associates Limited

Project: 3043 Dunning Road, Zoning By-law Amendment, Propo

Project #: 100117056


Plasticity Chart (D4318)

Symbol	Borehole /Test Pit	Sample Number	Depth	Liquid Limit	Plastic Limit	Plasticity Index	Non-Plastic	Moisture Content, %
•	24-01D	SA 15	10.67-11.28	48.1	25.9	22.1		85.23
	24-02D	SA 11	8.38-8.99	49.4	27.7	21.7		80.93

Data Set: N:\...\24-1S-FH Hv.aqt

Date: 01/31/24 Time: 09:12:49

PROJECT INFORMATION

Company: GEMTEC Client: Robert Laplante Project: 100117.056

Location: 3043 Dunning Road

Test Well: BH24-1S Test Date: Jan 15, 2024

AQUIFER DATA

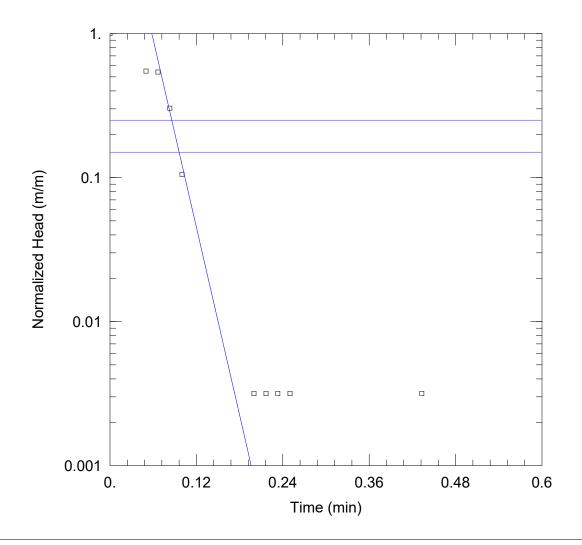
Saturated Thickness: 6.405 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (BH24-1S-FH)

Initial Displacement: 0.6 m

Total Well Penetration Depth: 6.41 m

Casing Radius: 0.0255 m


Static Water Column Height: 6.405 m

Screen Length: 3.51 m Well Radius: 0.0445 m

SOLUTION

Aquifer Model: Confined Solution Method: Hvorslev

K = 5.326E-9 m/secy0 = 0.5128 m

Data Set: N:\...\24-1D-RH_Hv.aqt

Date: 01/31/24 Time: 09:11:18

PROJECT INFORMATION

Company: GEMTEC
Client: Robert Laplante
Project: 100117.056

Location: 3043 Dunning Road

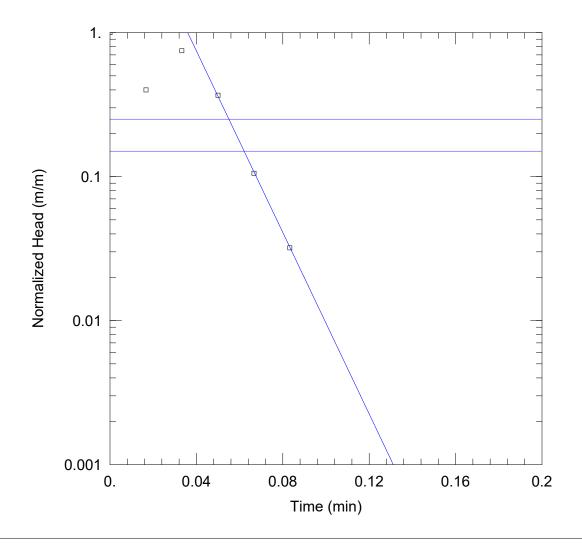
Test Well: BH24-1D Test Date: Jan 15, 2024

AQUIFER DATA

Saturated Thickness: 17.02 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (BH24-1D-H)

Initial Displacement: 0.6 m Static Water Column Height: 17.02 m


Total Well Penetration Depth: 17.02 m Screen Length: 3.71 m

Casing Radius: 0.0255 m Well Radius: 0.0445 m

SOLUTION

Aguifer Model: Confined Solution Method: Hvorslev

K = 0.0004581 m/sec y0 = 10.99 m

Data Set: N:\...\24-1D-FH Hv.aqt

Date: 01/31/24 Time: 09:09:37

PROJECT INFORMATION

Company: GEMTEC Client: Robert Laplante Project: 100117.056

Location: 3043 Dunning Road

Test Well: BH24-1D Test Date: Jan 15, 2024

AQUIFER DATA

Saturated Thickness: 17.02 m Anisotropy Ratio (Kz/Kr): 0.1

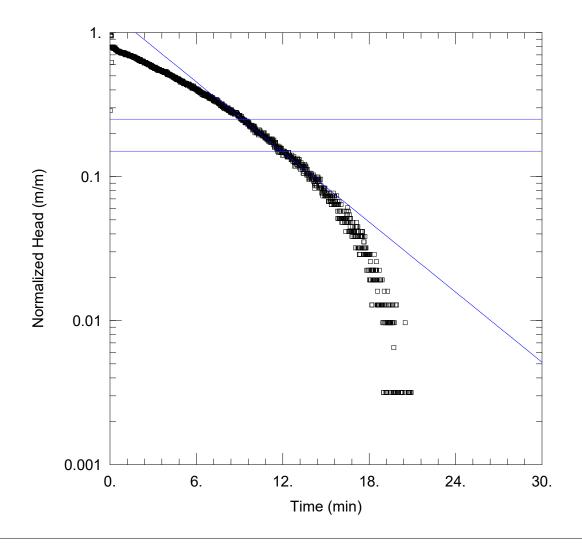
WELL DATA (BH24-1D-FH)

Initial Displacement: 0.6 m

Total Well Penetration Depth: 17.02 m

Casing Radius: 0.0255 m

Static Water Column Height: 17.02 m


Screen Length: 3.71 m Well Radius: 0.0445 m

SOLUTION

Aquifer Model: Confined

Solution Method: Hvorslev

K = 0.0006644 m/secy0 = 8.156 m

Data Set: N:\...\24-2S-FH Hv.aqt

Date: 01/31/24 Time: 09:19:29

PROJECT INFORMATION

Company: GEMTEC Client: Robert Laplante Project: 100117.056

Location: 3043 Dunning Road

Test Well: BH24-2S Test Date: Jan 15, 2024

AQUIFER DATA

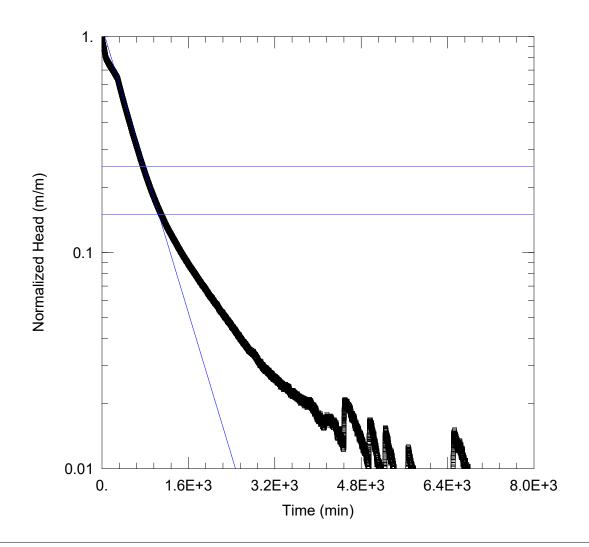
Saturated Thickness: 6.965 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (BH24-2S-FH)

Initial Displacement: 0.6 m

Total Well Penetration Depth: 6.97 m

Casing Radius: 0.0255 m


Static Water Column Height: 6.965 m

Screen Length: 3.51 m Well Radius: 0.0445 m

SOLUTION

Aquifer Model: Confined Solution Method: Hvorslev

K = 1.791E-6 m/secy0 = 0.8356 m

Data Set: N:\...\24-2S-R_Hv.aqt

Date: 02/08/24 Time: 09:40:59

PROJECT INFORMATION

Company: GEMTEC
Client: Robert Laplante
Project: 100117.056

Location: 3043 Dunning Road

Test Well: BH24-2S Test Date: Jan 9, 2024

AQUIFER DATA

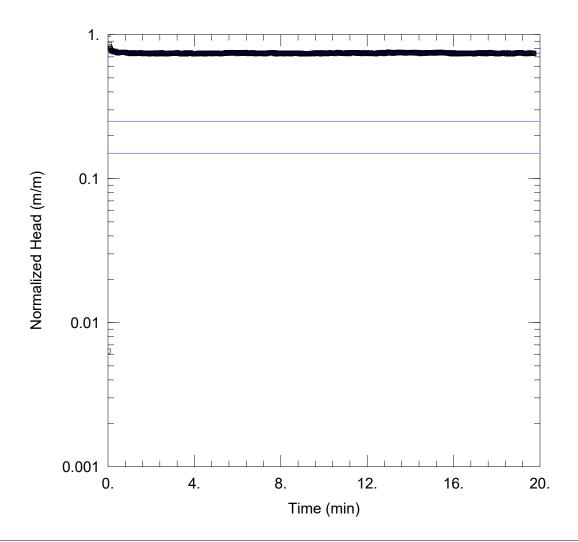
Saturated Thickness: 7.275 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (BH24-2S-R)

Initial Displacement: 5.95 m

Total Well Penetration Depth: 7.28 m

Casing Radius: 0.0255 m


Static Water Column Height: 7.275 m

Screen Length: 3.51 m Well Radius: 0.0445 m

SOLUTION

Aguifer Model: Confined Solution Method: Hvorslev

K = 1.827E-8 m/sec y0 = 6.598 m

Data Set: N:\...\24-2S-RH Hv.aqt

Date: 01/31/24 Time: 09:22:47

PROJECT INFORMATION

Company: GEMTEC Client: Robert Laplante Project: 100117.056

Location: 3043 Dunning Road

Test Well: BH24-2S Test Date: Jan 15, 2024

AQUIFER DATA

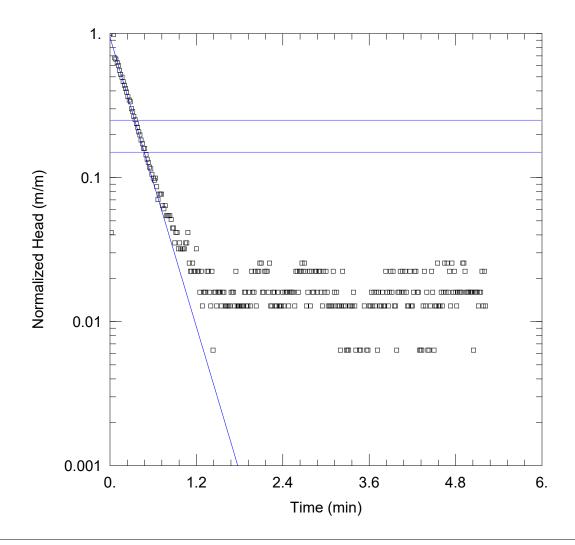
Saturated Thickness: 6.965 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (BH24-2S-RH)

Initial Displacement: 0.6 m

Total Well Penetration Depth: 6.97 m

Casing Radius: 0.0255 m


Static Water Column Height: 6.965 m

Screen Length: 3.51 m Well Radius: 0.0445 m

SOLUTION

Aquifer Model: Confined Solution Method: Hvorslev

K = 1.067E-9 m/secy0 = 0.4466 m

Data Set: N:\...\24-2D-FH_Hv.aqt

Date: 01/31/24 Time: 09:15:37

PROJECT INFORMATION

Company: GEMTEC
Client: Robert Laplante
Project: 100117.056

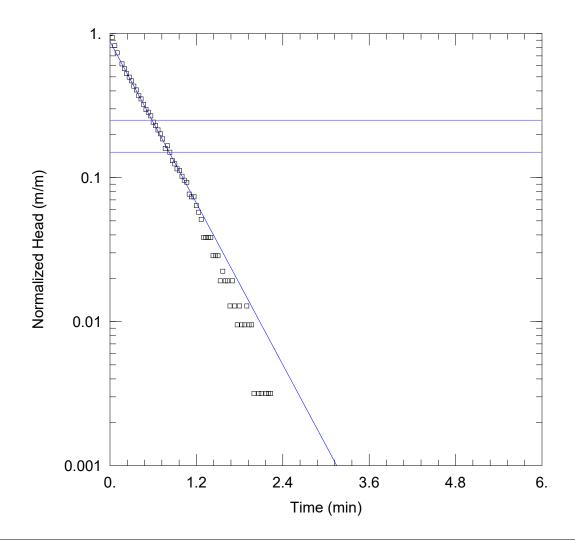
Location: 3043 Dunning Road

Test Well: BH24-2D Test Date: Jan 15, 2024

AQUIFER DATA

Saturated Thickness: 14.07 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (BH24-2D-FH)


Initial Displacement: <u>0.6</u> m Static Water Column Height: <u>14.07</u> m

Total Well Penetration Depth: 14.07 m Screen Length: 3.353 m Casing Radius: 0.0255 m Well Radius: 0.0445 m

SOLUTION

Aquifer Model: Confined Solution Method: Hvorslev

K = 3.844E-5 m/sec y0 = 0.5647 m

Data Set: N:\...\24-2D-RH_Hv.aqt

Date: 01/31/24 Time: 09:17:23

PROJECT INFORMATION

Company: GEMTEC
Client: Robert Laplante
Project: 100117.056

Location: 3043 Dunning Road

Test Well: BH24-2D Test Date: Jan 15, 2024

AQUIFER DATA

Saturated Thickness: 14.07 m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (BH24-2D-RH)

Initial Displacement: 0.6 m

Static Water Column Height: 14.07 m

Total Well Penetration Depth: 14.07 m


Screen Length: 3.353 m Well Radius: 0.0445 m

Casing Radius: 0.0255 m

SOLUTION

Aquifer Model: Confined Solution Method: Hvorslev

K = 2.146E-5 m/sec y0 = 0.5282 m

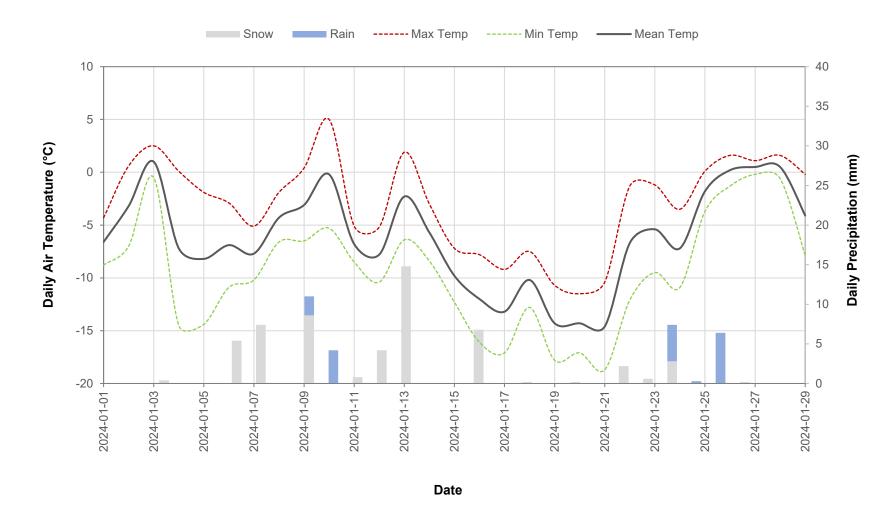
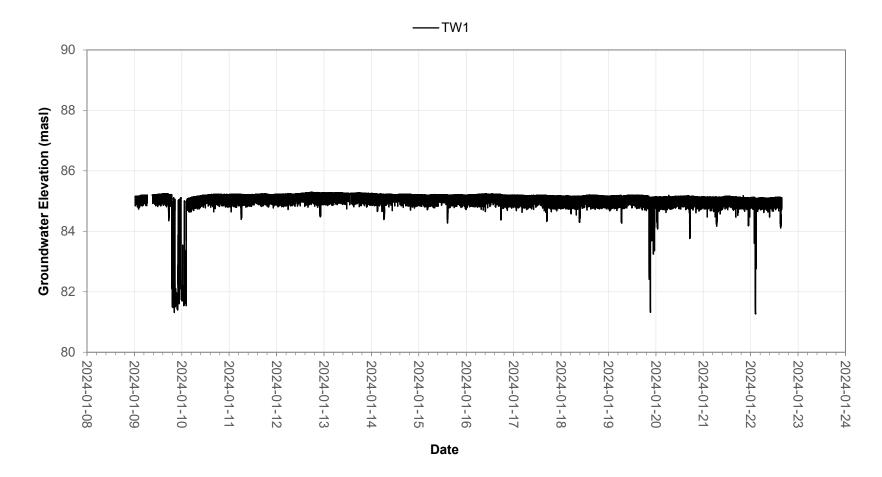



Figure F.1 – Weather Station Data from Ottawa International Airport (Temperature and Precipitation)

b)

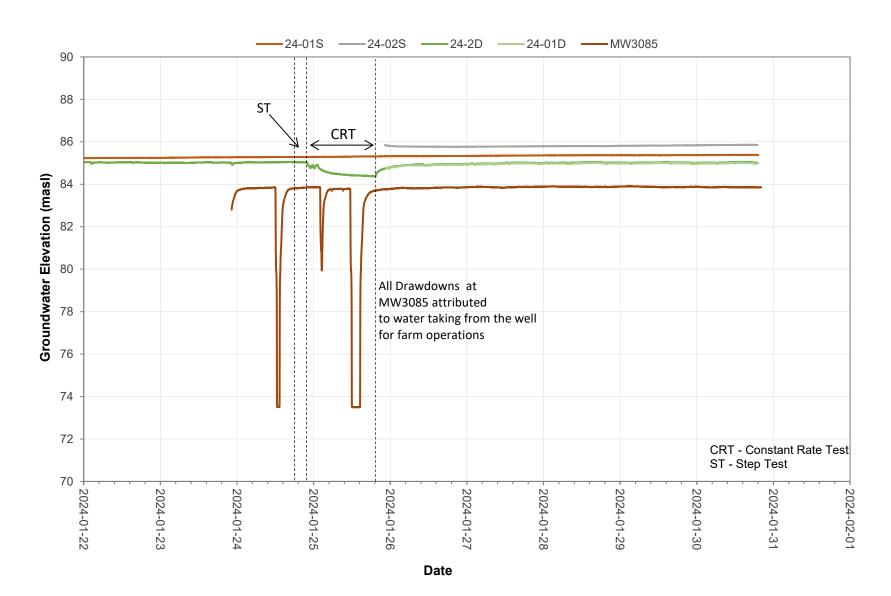
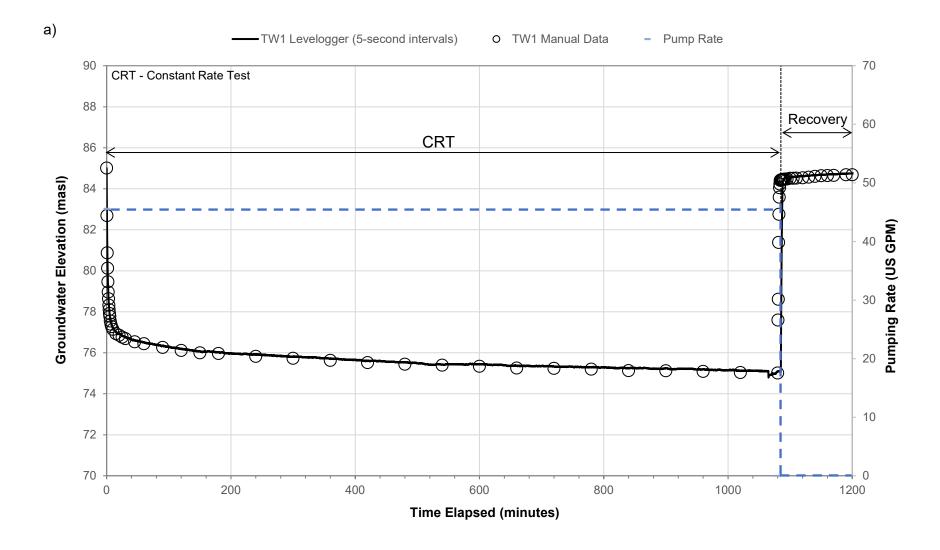



Figure F.2 – Long-term Water Elevation at (a) TW1 and (b) Monitoring Wells

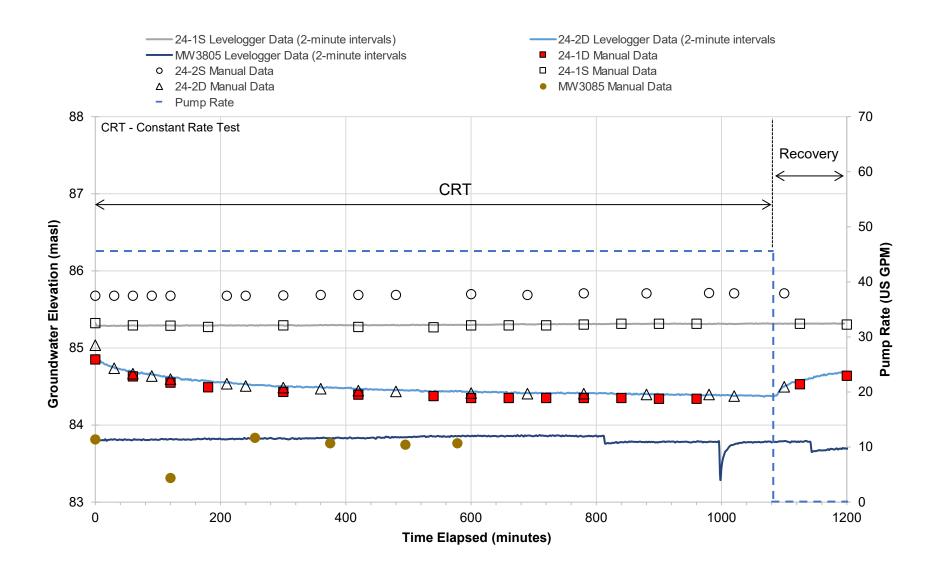
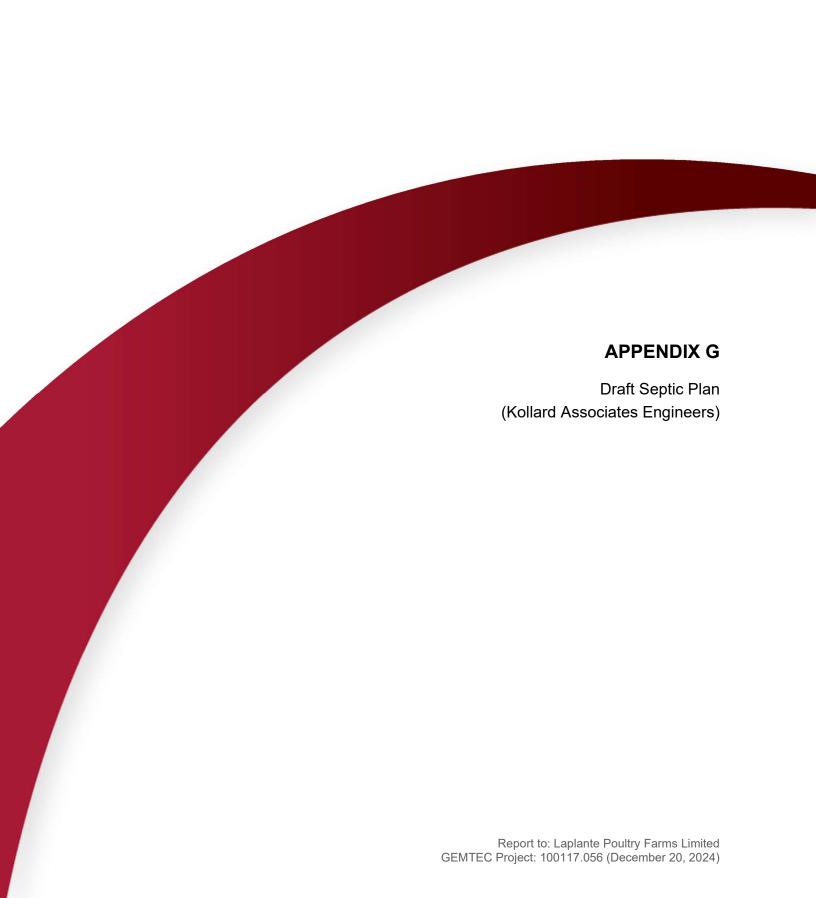
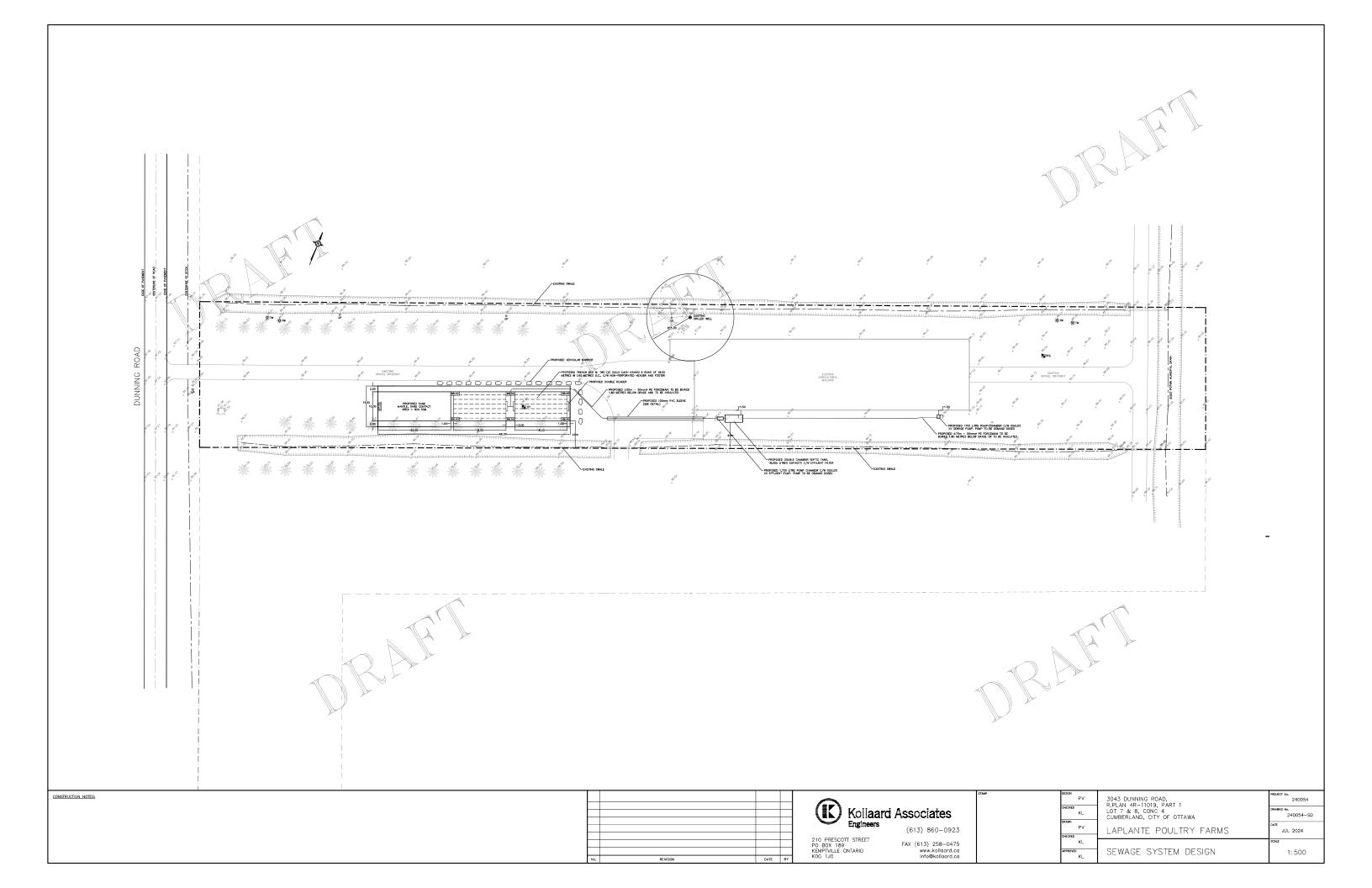




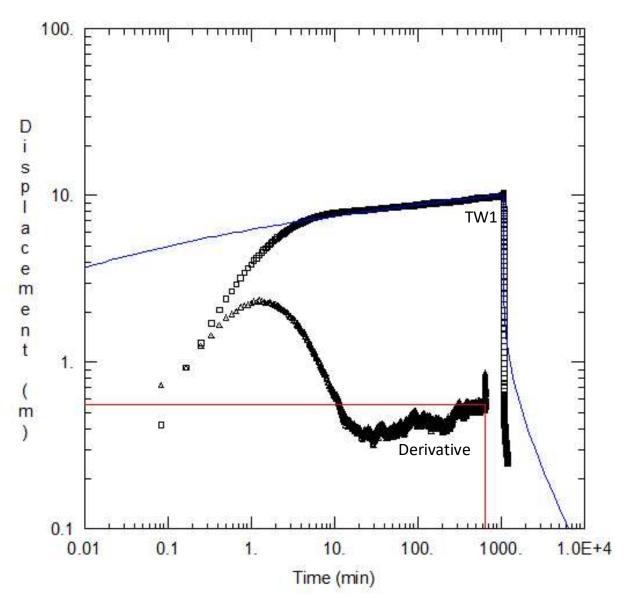
Figure F.3 – Water Elevation and Pumping Rate for Pumping (a) and Monitoring (b) Wells during Pumping Test on TW1

Report to: Laplante Poultry Farms Limited. GEMTEC Project: 100117.056 (May 2024)

Project: Hydrogeological Investigation

Project Number: 100117.056

Client: Laplante Poultry Farms Limited


Location: 3043 Dunning Road, Sarsfield, Ontario

Test Conducted by: BR/SE/AP Pumping Well: TW1 P-Test Date: Jan 25-26, 2024

Analysis Performed by: AP | Method: Theis | Discharge: Constant 172 L/min

Duration: 18 hours

TW1: Theis (Confined Aquifer)

Estimated Transmissivity: $1 \times 10^{-4} \,\text{m}^2/\text{s}$ Estimated Storage Coefficient: 2×10^{-5}

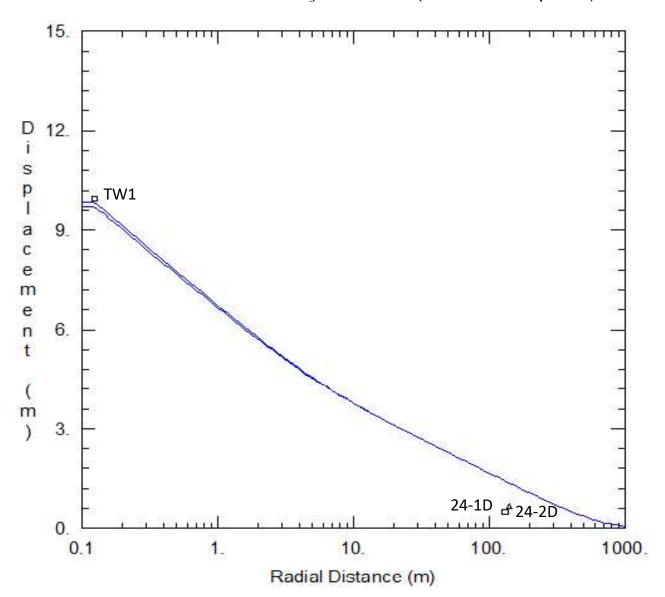
Aquifer Thickness: 3 metres

Pumping	Test	Compil	lation	Report
---------	------	--------	--------	--------

Project: Hydrogeological Investigation

Project Number: 100117.056

Client: Laplante Poultry Farms Limited


|--|

Test Conducted by: BR/SE/AP Pumping Well: TW1 P-Test Date: Jan 25-26, 2024

Analysis Performed by: AP Method: Theis Discharge: Constant 172 L/min

Duration: 18 hours

Distance Drawdown Analysis: Theis (Confined Aquifer)

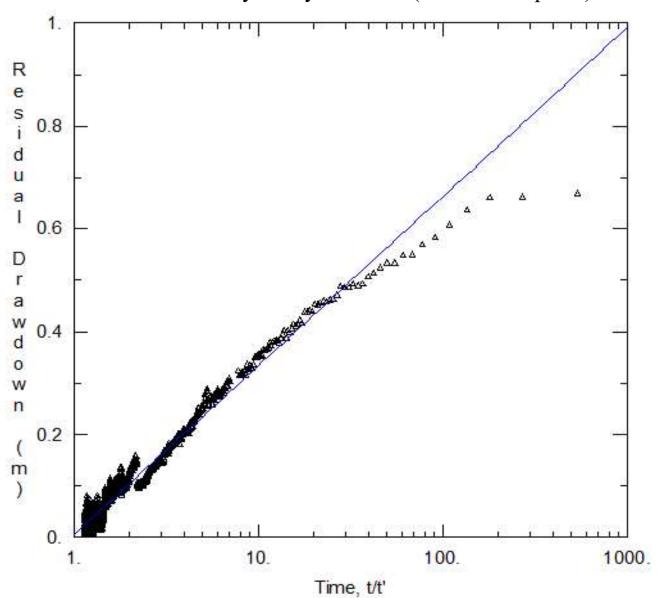
Estimated Transmissivity: 1 x 10⁻⁴ m²/s Estimated Storage Coefficient: 5 x 10⁻⁵

Aquifer Thickness: 3 metres

Project: Hydrogeological Investigation

Project Number: 100117.056

Client: Laplante Poultry Farms Limited


Location: 3043 Dunning Road, Sarsfield, Ontario

Test Conducted by: BR/SE/AP Pumping Well: TW1 P-Test Date: Jan 25-26, 2024

Analysis Performed by: AP | Method: Theis | Discharge: Constant 172 L/min

Duration: 18 hours

MW24-2D Recovery Analysis: Theis (Confined Aquifer)

Estimated Transmissivity: $4 \times 10^{-4} \, \text{m}^2/\text{s}$

S/S': 0.97

Aquifer Thickness: 3 metres

Table I.1
TW1 Pumping Test
Summary of Field Water Quality Measurements

Elapsed Time Pumping (hours)	Temperature (°C)	рН	Electrical Conductivity (µS/cm)	Total Dissolved Solids (ppm)	Turbidity (NTU)	Apparent Colour ¹ (TCU ²)	True Colour ³ (TCU)	Free Chlorine (mg/L)	Total Chlorine (mg/L)
1	9.6	7.71	721	360	29.7	-	-	-	-
2	9.3	7.61	715	358	7.4	-	-	-	-
3	9.3	7.16	760	358	2.5	-	-	-	-
4	8.8	7.55	718	370	2.0	-	-	-	-
5	9.1	7.73	712	366	2.4	-	-	-	-
6	9.0	7.50	724	357	2.3	-	-	-	-
7	9.0	7.48	717	357	2.9	-	-	-	-
8	8.9	7.49	723	358	1.5	-	-	-	-
9	9.0	7.66	717	363	3.0	<0.05	-	<0.02	<0.02
10	9.0	7.56	710	358	2.17	-	-	-	-
11	9.0	7.51	715	356	1.7	-	-	-	-
12	9.1	7.57	700	350	0.88	-	-	-	-
13	9.1	7.51	700	-	0.9	-	-	-	-
14	9.1	7.55	705	-	0.79	=	=	=	-
15	9.1	7.54	700	-	0.7	-	=.	-	-
16	-	-	-	-	-	-	-	-	-
17	9.3	7.55	695	-	0.7	-	-	-	-
18	9.0	7.51	702	-	1.29	<0.05	-	<0.02	<0.02

NOTES:

- 1. Apparent Colour = Unfiltered sample
- 2. TCU = True Colour Units
- 3. True Colour = Sample filtered using 0.45 micron filter

Report to: Laplante Poultry Farms Limited GEMTEC Project: 100117.056 (February, 2024)

Table I.2 Summary of Test Well Labratory Water Quality Measurements (1 of 2)

		TW1 9hr (filtered)		TW1 18hr	TW1 18hr	Ontario Drinking	Type of
Parameter	Units	25-Jan-24	(filtered) 25-Jan-24	26-Jan-24	(filtered) 26-Jan-24	Water Standard	Standard ⁽¹⁾
Microbiological Parameters		20 0411 24	20 0411 21	20 0411 21	20 0011 24		
E. Coli	CFU/100 mL	ND (1)	_	ND (1)	_	0	MAC
Fecal Coliforms	CFU/100 mL	ND (1)	_	ND (1)	_	0	MAC
Total Coliforms	CFU/100 mL	ND (1)	_	ND (1)	_	-	-
Heterotrophic Plate Count	CFU/mL	ND (10)	_	ND (10)	-	_	_
General Inorganics	OI O/IIIL	112 (10)		112 (10)			
Alkalinity, total	mg/L	273	_	274	_	30-500	OG
Ammonia as N	mg/L	0.32	_	0.31	_	-	-
Dissolved Organic Carbon	mg/L	1.6	_	1.3	_	5	AO
Colour	TCU	2	-	2	-	-	-
Colour, apparent	ACU	<u>73</u>	-	26	_	5	AO
Conductivity	uS/cm	768	-	774	_	-	-
Hardness	mg/L	<u>345</u>	-	340	-	80-100	OG
pH	pH Units	8.4	-	8.3	-	6.5-8.5	OG
Phenolics	mg/L	ND (0.001)	-	ND (0.001)	-	-	-
Total Dissolved Solids	mg/L	412	-	420	-	500	AO
Sulphide	mg/L	ND (0.02)	-	ND (0.02)	-	0.05	AO
Tannin & Lignin	mg/L	ND (0.1)	-	ND (0.1)	_	-	_
Total Kjeldahl Nitrogen	mg/L	0.3	-	0.3	-	-	-
Total Organic Nitrogen ⁽⁴⁾	mg/L	-0.02	_	-0.01	_	0.15	MAC
Turbidity	NTU	13.0	_	3.2	-	5	AO
Anions	NIO	10.0		5.2		3	٨٥
Chloride	mg/L	68	_	66	_	250	AO
Fluoride	mg/L	0.4	_	0.4	_	1.5	MAC
Nitrate as N	mg/L	ND (0.1)	_	ND (0.1)	_	10 ⁽²⁾	MAC
	-	` '			-		
Nitrite as N	mg/L	ND (0.05)	-	ND (0.05)	-	1.0 ⁽²⁾	MAC
Phosphate as P	mg/L	ND (0.5)	-	ND (0.5)	-	-	-
Sulphate	mg/L	45	-	46	-	500	AO
Metals		0.026	ND (0.004)	0.000	ND (0.004)	0.1	OG
Aluminum	mg/L	0.036	ND (0.001)	0.009	ND (0.001)		
Antimony	mg/L	. ,	ND (0.0005)	. ,	ND (0.0005)	0.006	MAC
Arsenic Barium	mg/L	ND (0.001) 0.186	ND (0.001) 0.197	ND (0.001) 0.198	ND (0.001) 0.197	0.025 1	MAC MAC
	mg/L		ND (0.0005)	ND (0.0005)		ı	
Beryllium Boron	mg/L	0.13	0.13	0.12	0.13	5	- MAC
Cadmium	mg/L mg/L		ND (0.0001)		ND (0.0001)	0.005	MAC
Calcium	mg/L	90.5	88.6	88.9	88.2	0.005	IVIAC
Chromium	mg/L	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	0.05	MAC
Cobalt	mg/L	, ,	ND (0.001)	,	ND (0.001)	0.03 -	IVIAC
Copper	mg/L		ND (0.0005)	0.0011	ND (0.0005)	<u>-</u> 1	AO
Iron	mg/L	0.5	0.5	0.0011 <u>0.5</u>	0.5	0.3	AO
Lead	mg/L		ND (0.0001)	0.0012	ND (0.0001)	0.01	MAC
Magnesium	mg/L	28.8	28.7	28.6	28.6	-	IVI/AU
Manganese	mg/L	0.019	0.017	0.017	0.018	0.05	AO
Molybdenum	mg/L	0.0009	0.017	0.0009	0.0011	-	-
Mercury	mg/L	ND (0.0001)		ND (0.0001)	ND (0.0001)	0.001	MAC
Nickel	mg/L	ND (0.0001)	ND (0.0001)	ND (0.0001)	ND (0.0001)	0.001	-
Potassium	mg/L	6.5	6.4	6.3	6.6	-	-
Selenium	mg/L	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	0.01	MAC
Silver	mg/L	` ,	ND (0.0001)	ND (0.0001)	ND (0.001)	-	-
Sodium	mg/L	61.1	63.8	61.1	64.6	200 (20) ⁽³⁾	AO
Strontium	mg/L	5.09	5.14	4.97	5.37	200 (20)	,.0
Thallium	mg/L	ND (0.001)	ND (0.001)	ND (0.001)	ND (0.001)	-	-
Uranium	mg/L	, ,	ND (0.001)	ND (0.001)	` ,	0.02	MAC
Vanadium	mg/L	ND (0.0001)	,	,	ND (0.0001)	-	IVIAU
Zinc	mg/L	ND (0.0003)	ND (0.0003)	0.007	0.0003)	5	AO
NOTES:	mg/L	(0.000)	(0.000)	0.007	0.000	J	7.0

NOTES:

- 1. MAC = Maximum Acceptable Concentration; OG = Operational Guideline; AO = Aesthetic Objective
- 2. The total of Nitrate and Nitrite should not exceed 10 mg/litre.
- 3. The aesthetic objective for sodium is 200 mg/litre. The local medical officer of health should be notified when the sodium concentration exceeds 20 mg/litre for persons on sodium restricted diets.
- 4. Total Organic Nitrogen = Total Kjeldahl Nitrogen N-NH₃ and should not exceed 0.15 mg/litre.
- 5. '-' signifies no value provided
- 6. 'ND' = No concentration detected above method detection limit found within brackets

Report to: Laplante Poultry Farms Limited GEMTEC Project: 100117.056 (February 2024)

Table I.2 Summary of Test Well Labratory Water Quality Measurements (2 of 2)

Parameter	TW1 9		TW1 9hr (filtered)	TW1 18hr	TW1 18hr (filtered)	Ontario Drinking Water Standard	Type of Standard ⁽¹⁾
		25-Jan-24	25-Jan-24	26-Jan-24	26-Jan-24		Otandara
Volatiles		'					
Acetone	mg/L	ND (0.0050)	-	ND (0.0050)	-	-	-
Benzene	mg/L	ND (0.0005)	-	ND (0.0005)	-	0.001	MAC
Bromodichloromethane	mg/L	ND (0.0005)	-	ND (0.0005)	-	-	-
Bromoform	mg/L	ND (0.0005)	-	ND (0.0005)	-	-	-
Bromomethane	mg/L	ND (0.0005)	-	ND (0.0005)	-	=	-
Carbon Tetrachloride	mg/L	ND (0.0002)	-	ND (0.0002)	-	0.002	MAC
Chlorobenzene	mg/L	ND (0.0005)	-	ND (0.0005)	=	0.08	MAC
Chloroethane	mg/L	ND (0.0010)	-	ND (0.0010)	-	=	-
Chloroform	mg/L	ND (0.0005)	-	ND (0.0005)	=	=	=
Dibromochloromethane	mg/L	ND (0.0005)	-	ND (0.0005)	-	=	-
Dichlorodifluoromethane	mg/L	ND (0.0010)	-	ND (0.0010)	=	=	=
lene dibromide (dibromoethane,	mg/L	ND (0.0002)	-	ND (0.0002)	-	=	-
1,2-Dichlorobenzene	mg/L	ND (0.0005)	-	ND (0.0005)	-	0.2	MAC
1,3-Dichlorobenzene	mg/L	ND (0.0005)	-	ND (0.0005)	-	-	-
1,4-Dichlorobenzene	mg/L	ND (0.0005)	-	ND (0.0005)	-	0.005	MAC
1,1-Dichloroethane	mg/L	ND (0.0005)	-	ND (0.0005)	-	-	-
1,2-Dichloroethane	mg/L	ND (0.0005)	-	ND (0.0005)	-	0.005	MAC
1,1-Dichloroethylene	mg/L	ND (0.0005)	-	ND (0.0005)	-	0.014	MAC
cis-1,2-Dichloroethylene	mg/L	ND (0.0005)	-	ND (0.0005)	-	-	-
trans-1,2-Dichloroethylene	mg/L	ND (0.0005)	-	ND (0.0005)	-	-	-
1,2-Dichloroethylene, total	mg/L	ND (0.0005)	-	ND (0.0005)	_	-	-
1,2-Dichloropropane	mg/L	ND (0.0005)	-	ND (0.0005)	-	-	-
cis-1,3-Dichloropropylene	mg/L	ND (0.0005)	-	ND (0.0005)	=	=	-
trans-1,3-Dichloropropylene	mg/L	ND (0.0005)	-	ND (0.0005)	-	-	-
1,3-Dichloropropene, total	mg/L	ND (0.0005)	-	ND (0.0005)	-	=	-
Ethylbenzene	mg/L	ND (0.0005)	-	ND (0.0005)	-	0.14	MAC
Hexane	mg/L	ND (0.0010)	-	ND (0.0010)	-	=	-
lethyl Ethyl Ketone (2-Butanone	mg/L	ND (0.0050)	-	ND (0.0050)	-	-	-
Methyl Isobutyl Ketone	mg/L	ND (0.0050)	-	ND (0.0050)	_	=	-
Methyl tert-butyl ether	mg/L	ND (0.0020)	-	ND (0.0020)	-	-	-
Methylene Chloride	mg/L	ND (0.0050)	_	ND (0.0050)	_	0.05	MAC
Styrene	mg/L	ND (0.0005)	-	ND (0.0005)	_	-	-
1,1,1,2-Tetrachloroethane	mg/L	ND (0.0005)	-	ND (0.0005)	-	-	-
1,1,2,2-Tetrachloroethane	mg/L	ND (0.0005)	-	ND (0.0005)	-	-	-
Tetrachloroethylene	mg/L	ND (0.0005)	-	ND (0.0005)	-	0.01	MAC
Toluene	mg/L	ND (0.0005)	-	ND (0.0005)	-	0.06	MAC
1,1,1-Trichloroethane	mg/L	ND (0.0005)	-	ND (0.0005)	-	-	-
1,1,2-Trichloroethane	mg/L	ND (0.0005)	-	ND (0.0005)	-	-	_
Trichloroethylene	mg/L	ND (0.0005)	-	ND (0.0005)	-	0.005	MAC
Trichlorofluoromethane	mg/L	ND (0.0003)	-	ND (0.0010)	-	-	-
Vinyl Chloride	mg/L	ND (0.0002)	-	ND (0.0010)	-	0.001	MAC
m/p-Xylene	mg/L	ND (0.0005)	-	ND (0.0005)	-	-	-
o-Xylene	mg/L	ND (0.0005)	=	ND (0.0005)	_	-	_
Xylenes, total	mg/L	ND (0.0005)	-	ND (0.0005)	-	0.09	MAC
Hydrocarbons	g/ L	(0.0000)		.12 (0.000)		-	-
F1 PHCs (C6-C10)	mg/L	ND (0.0250)	-	ND (0.0250)	-	-	-
F2 PHCs (C10-C16)	mg/L	ND (0.0230)	-	ND (0.0230)	-	-	-
F3 PHCs (C16-C34)	mg/L	ND (0.1)	-	ND (0.1)	-	-	-
F4 PHCs (C34-C50)	mg/L	ND (0.1)	-	ND (0.1)	<u>-</u> -		-
NOTES:	IIIg/L	ND (0.1)	-	ND (0.1)	-	8	-

NOTES:

- 1. MAC = Maximum Acceptable Concentration; OG = Operational Guideline; AO = Aesthetic Objective
- 2. The total of Nitrate and Nitrite should not exceed 10 mg/litre.
- 3. The aesthetic objective for sodium is 200 mg/litre. The local medical officer of health should be notified when the sodium concentration exceeds 20 mg/litre for persons on sodium restricted diets.
- 4. Total Organic Nitrogen = Total Kjeldahl Nitrogen N-NH₃ and should not exceed 0.15 mg/litre.
- 5. '-' signifies no value provided
- 6. 'ND' = No concentration detected above method detection limit found within brackets

Report to: Laplante Poultry Farms Limited GEMTEC Project: 100117.056 (February 2024)

1-800-749-1947 www.paracellabs.com

Report Date: 17-Nov-2023

Certificate of Analysis

GEMTEC Consulting Engineers and Scientists Limited

32 Steacie Drive Kanata, ON K2K 2A9

Attn: Andrius Paznekas

Client PO: Order Date: 13-Nov-2023

Project: 100117.056 Order #: 2346082

Custody: 19050

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID PW23-1 2346082-01

Approved By: Mark Froto Mark Foto, M.Sc.

Lab Supervisor

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited Order Date: 13-Nov-2023

Client PO:

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Alkalinity, total to pH 4.5	EPA 310.1 - Titration to pH 4.5	15-Nov-23	15-Nov-23
Ammonia, as N	EPA 351.2 - Auto Colour	16-Nov-23	16-Nov-23
Anions	EPA 300.1 - IC	14-Nov-23	14-Nov-23
Colour	SM2120 - Spectrophotometric	13-Nov-23	14-Nov-23
Colour, apparent	SM2120 - Spectrophotometric	13-Nov-23	14-Nov-23
Conductivity	EPA 9050A- probe @25 °C	15-Nov-23	15-Nov-23
Dissolved Organic Carbon	MOE 3247B - Combustion IR	14-Nov-23	15-Nov-23
E. coli	MOE E3407	14-Nov-23	14-Nov-23
Fecal Coliform	SM 9222D	14-Nov-23	14-Nov-23
Heterotrophic Plate Count	SM 9215C	14-Nov-23	14-Nov-23
Metals, ICP-MS	EPA 200.8 - ICP-MS	14-Nov-23	14-Nov-23
pH	EPA 150.1 - pH probe @25 °C	15-Nov-23	15-Nov-23
Phenolics	EPA 420.2 - Auto Colour, 4AAP	15-Nov-23	15-Nov-23
Hardness	Hardness as CaCO3	14-Nov-23	14-Nov-23
Sulphide	SM 4500SE - Colourimetric	16-Nov-23	16-Nov-23
Tannin/Lignin	SM 5550B - Colourimetric	14-Nov-23	14-Nov-23
Total Coliform	MOE E3407	14-Nov-23	14-Nov-23
Total Dissolved Solids	SM 2540C - gravimetric, filtration	15-Nov-23	16-Nov-23
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	15-Nov-23	15-Nov-23
Turbidity	SM 2130B - Turbidity meter	14-Nov-23	14-Nov-23

Report Date: 17-Nov-2023

Project Description: 100117.056

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Project Description: 100117.056

Report Date: 17-Nov-2023

Order Date: 13-Nov-2023

Client PO:

	Client ID:	PW23-1	-	-	-		
	Sample Date:	13-Nov-23 14:00	-	-	-	-	-
	Sample ID:	2346082-01	-	-	-		
	Matrix:	Drinking Water	-	-	-		
	MDL/Units						
Microbiological Parameters				•	•		
E. coli	1 CFU/100mL	ND	-	-	-	-	-
Total Coliforms	1 CFU/100mL	42	-	-	-	-	-
Fecal Coliforms	1 CFU/100mL	ND	-	-	-	-	-
Heterotrophic Plate Count	10 CFU/mL	10	-	-	-	-	-
General Inorganics		•					
Alkalinity, total	5 mg/L	260	-	-	-	-	-
Ammonia as N	0.01 mg/L	0.29	-	-	-	-	-
Dissolved Organic Carbon	0.5 mg/L	0.6	-	-	-	-	-
Colour, apparent	2 ACU	20	-	-	-	-	-
Colour	2 TCU	<2	-	-	-	-	-
Conductivity	5 uS/cm	700	-	-	-	-	-
Hardness	mg/L	298	-	-	-	-	-
рН	0.1 pH Units	8.3	-	-	-	-	-
Phenolics	0.001 mg/L	<0.001	-	-	-	-	-
Total Dissolved Solids	10 mg/L	352	-	-	-	-	-
Sulphide	0.02 mg/L	<0.02	-	-	-	-	-
Tannin & Lignin	0.1 mg/L	<0.1	-	-	-	-	-
Total Kjeldahl Nitrogen	0.1 mg/L	0.3	-	-	-	-	-
Turbidity	0.1 NTU	2.2	-	-	-	-	-
Anions		•					
Chloride	1 mg/L	54	-	-	-	-	-
Fluoride	0.1 mg/L	0.4	-	-	-	-	-
Nitrate as N	0.1 mg/L	<0.1	-	-	-	-	-
Nitrite as N	0.05 mg/L	<0.05	-	-	-	-	-
Sulphate	1 mg/L	43	-	-	-	-	-

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Report Date: 17-Nov-2023 Order Date: 13-Nov-2023

Client PO: Project Description: 100117.056

	Client ID:	PW23-1	-	-	-		
	Sample Date:	13-Nov-23 14:00	-	-	-	-	-
	Sample ID:		-	-	-		
	Matrix:	Drinking Water	-	-	-		
	MDL/Units						
Metals	•						•
Calcium	0.1 mg/L	73.9	-	-	-	-	-
Iron	0.1 mg/L	0.5	-	-	-	-	-
Magnesium	0.2 mg/L	27.6	-	-	-	-	-
Manganese	0.005 mg/L	0.019	•	-	-	-	-
Potassium	0.1 mg/L	7.1	-	-	-	-	-
Sodium	0.2 mg/L	62.0	-	-	-	-	-

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Order Date: 13-Nov-2023

Project Description: 100117.056

Report Date: 17-Nov-2023

Client PO:

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions								
Chloride	ND	1	mg/L					
Fluoride	ND	0.1	mg/L					
Nitrate as N	ND	0.1	mg/L					
Nitrite as N	ND	0.05	mg/L					
Sulphate	ND	1	mg/L					
General Inorganics								
Alkalinity, total	ND	5	mg/L					
Ammonia as N	ND	0.01	mg/L					
Dissolved Organic Carbon	ND	0.5	mg/L					
Colour	ND	2	TCU					
Colour, apparent	ND	2	ACU					
Conductivity	ND	5	uS/cm					
Phenolics	ND	0.001	mg/L					
Total Dissolved Solids	ND	10	mg/L					
Sulphide	ND	0.02	mg/L					
Tannin & Lignin	ND	0.1	mg/L					
Total Kjeldahl Nitrogen	ND	0.1	mg/L					
Turbidity	ND	0.1	NTU					
Metals								
Calcium	ND	0.1	mg/L					
Iron	ND	0.1	mg/L					
Magnesium	ND	0.2	mg/L					
Manganese	ND	0.005	mg/L					
Potassium	ND	0.1	mg/L					
Sodium	ND	0.2	mg/L					
Microbiological Parameters			-					
E. coli	ND	1	CFU/100mL					
Total Coliforms	ND	1	CFU/100mL					
Fecal Coliforms	ND	1	CFU/100mL					
Heterotrophic Plate Count	ND	10	CFU/mL					

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Project Description: 100117.056

Report Date: 17-Nov-2023

Order Date: 13-Nov-2023

Client PO:

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	102	1	mg/L	102			0.2	20	
Fluoride	1.71	0.1	mg/L	1.76			2.8	20	
Nitrate as N	ND	0.1	mg/L	ND			NC	20	
Nitrite as N	ND	0.05	mg/L	ND			NC	20	
Sulphate	210	1	mg/L	209			0.5	20	
General Inorganics									
Alkalinity, total	259	5	mg/L	260			0.4	14	
Ammonia as N	0.078	0.01	mg/L	0.085			8.7	17.7	
Dissolved Organic Carbon	1.5	0.5	mg/L	1.6			8.2	37	
Colour	ND	2	TCU	ND			NC	12	
Colour, apparent	20	2	ACU	20			0.0	12	
Conductivity	709	5	uS/cm	700			1.2	5	
pH	8.3	0.1	pH Units	8.3			0.0	3.3	
Total Dissolved Solids	636	10	mg/L	648			1.9	10	
Sulphide	0.34	0.02	mg/L	0.34			0.0	10	
Tannin & Lignin	0.5	0.1	mg/L	0.5			8.0	11	
Total Kjeldahl Nitrogen	0.36	0.1	mg/L	0.32			11.0	16	
Turbidity	2.1	0.1	NTU	2.2			3.3	10	
Metals									
Calcium	21.2	0.1	mg/L	21.4			0.7	20	
Iron	0.4	0.1	mg/L	0.4			0.2	20	
Magnesium	4.5	0.2	mg/L	4.4			1.0	20	
Manganese	0.019	0.005	mg/L	0.021			10.4	20	
Potassium	2.2	0.1	mg/L	1.9			13.7	20	
Sodium	265	0.6	mg/L	270			1.8	20	
Microbiological Parameters									
E. coli	ND	1	CFU/100mL	ND			NC	30	
Total Coliforms	38	1	CFU/100mL	42			10.0	30	
Fecal Coliforms	ND	1	CFU/100mL	ND			NC	30	
Heterotrophic Plate Count	10	10	CFU/mL	10			0.0	30	

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Report Date: 17-Nov-2023 Order Date: 13-Nov-2023

Project Description: 100117.056

Client PO:

Michiga Quanty Control. Opike									
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	111	1	mg/L	102	96.9	70-124			
Fluoride	2.80	0.1	mg/L	1.76	103	70-130			
Nitrate as N	0.98	0.1	mg/L	ND	97.9	77-126			
Nitrite as N	0.932	0.05	mg/L	ND	93.2	82-115			
Sulphate	220	1	mg/L	209	107	70-130			
General Inorganics									
Ammonia as N	1.10	0.01	mg/L	0.085	102	81-124			
Dissolved Organic Carbon	10.9	0.5	mg/L	0.6	103	60-133			
Phenolics	0.027	0.001	mg/L	ND	108	67-133			
Total Dissolved Solids	102	10	mg/L	ND	102	75-125			
Sulphide	0.79	0.02	mg/L	0.34	89.4	79-115			
Tannin & Lignin	1.6	0.1	mg/L	0.5	107	71-113			
Total Kjeldahl Nitrogen	1.31	0.1	mg/L	0.32	98.2	81-126			
Metals									
Calcium	29100	0.1	mg/L	21400	77.5	80-120			QM-07
Iron	2640	0.1	mg/L	389	90.0	80-120			
Magnesium	13700	0.2	mg/L	4410	92.7	80-120			
Manganese	68.1	0.005	mg/L	21.2	93.7	80-120			
Potassium	11700	0.1	mg/L	1920	97.9	80-120			
Sodium	11000	0.2	mg/L	ND	110	80-120			

Client: GEMTEC Consulting Engineers and Scientists Limited

Order #: 2346082

Certificate of Analysis

Report Date: 17-Nov-2023

Order Date: 13-Nov-2023

Client PO: Project Description: 100117.056

Qualifier Notes:

Login Qualifiers:

Container(s) - Labeled improperly/insufficient information - All sample bottles missing the sample collection time.

Applies to Samples: PW23-1

Sample Qualifiers:

QC Qualifiers:

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

vd. J8 Paracel Order Number

Chain Of Custody Ontario Drinking Water Samples

Nº 19050

lient N	lame:	Genta		Project Ref:	10	011	70	05	-6	Waterwor	rks Nam	e:					Sa	ample:	s Taker	By:		
ontact	Name:	Gentec	95	Quote #:	- 10	1000				Waterwoo	rks Num	ber:			Name: Afarnetas							
Address	\$1	11.		PO#:						Address:	Address:					Signature: Manufag			-1			
lfter H	ours Contact:			E-mail:	andrius, paznekas (a				ek-	5@ ge	Demtec.ca					Page of Turn Around Time Required:						
elepho	one:	613-295	-1425	Fax:	Public Health Unit:							□ 1 day □ 2 day □ 3 day ▼4 day										
□ O1		Under: (Indicate ONLY on 3 ON REG 319/08.7 C), Other Deg	☐ Private W	/ell		Sou	rce Ty	pe:	G = (Fround Water; S	s = Surfa	Distribution; P = Plur ace Water r Regulation - Y = Ye		No				Requ		Analyse	s	
		n submitted to MOE/MO		□ No [X N/A		9/0	S		,					orine	ij	. Coli				2 ch		
		or human consumption?: n must be completed b		es will be pro	cessed.	e: R/T/I	be: G /	le: Y / N	nple	SAMI	>LE CO	LLECTED	tainers	ned Chic	Flushe FG 243	iform/E	HPC	Lead	MHT			
	LOCA	TION NAME		SAMPLE ID		Sample Type: R/T/D/P	Source Ty	Source Type: G / S	Reportable: Y / N	Reportable: Y	DATE		TIME	# of Containers	Free/Combined Chlorine Residual mg/L	Standing / Flushed: S / F (REG 243)	Total Coliform/E.				SUBLUIN	
1		<u></u>	(W23.	- (R	G	N		NOV 13/2	-3	2pm	11				,			X		
2					-			: : :- :	-	·		1 -	7					5,00		\perp	\perp	
3							1	1													$\perp \perp$	
4							7		7.		_				_					-	$\perp \perp$	
5				-		L					_		1		_					\perp		
6						L							-		_	,				107	\perp	
7										, ,		-			_	_	Ш			\perp		
8															_			,		\perp		
9															_			,				
10																						
Comm	ents: 	dor in tw tt	CW Filter	es meta	BIM	erc	vr	<i>)</i>							Metho	od of C	Deliver	ho	1		ln	
Reling	uished By (Sign	Works		Recei Driver	ved By /Depot:						Received Lab:)	156			S	P				
Reling	uished By (Prin	A. Paznelo	res _	Date/	Time:					4-1-4-1	Date/Tin	NOU	12	423	Date/	Time:	No	13	,20	023	3.56p	
Date/	Time: 🖊	UB/2) 3	10 pm.	Temp	erature:					°C	Tempera	iture: 12.6		°C	pH Ve	erified	Ø	By:	20			

1-800-749-1947 www.paracellabs.com

Certificate of Analysis

GEMTEC Consulting Engineers and Scientists Limited

32 Steacie Drive Kanata, ON K2K 2A9

Attn: Andrius Paznekas

Client PO:

Approved By:

Project: 100117.056

Custody: 19821

Report Date: 1-Feb-2024

Order Date: 26-Jan-2024

Order #: 2404397

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2404397-01	TW1 9hr

2404397-02 TW1 9hr (Filtered) 2404397-03 TW3043 18hr

2404397-04 TW3043 18hr (Filtered)

Dose

Certificate of Analysis

Order #: 2404397

Report Date: 01-Feb-2024

Client: GEMTEC Consulting Engineers and Scientists Limited

Order Date: 26-Jan-2024

Project Description: 100117.056

Client PO:

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Alkalinity, total to pH 4.5	EPA 310.1 - Titration to pH 4.5	31-Jan-24	31-Jan-24
Ammonia, as N	EPA 351.2 - Auto Colour	29-Jan-24	29-Jan-24
Anions	EPA 300.1 - IC	29-Jan-24	29-Jan-24
Colour	SM2120 - Spectrophotometric	26-Jan-24	26-Jan-24
Colour, apparent	SM2120 - Spectrophotometric	26-Jan-24	26-Jan-24
Conductivity	EPA 9050A- probe @25 °C	31-Jan-24	31-Jan-24
Dissolved Organic Carbon	MOE 3247B - Combustion IR	30-Jan-24	31-Jan-24
E. coli	MOE E3407	26-Jan-24	26-Jan-24
Fecal Coliform	SM 9222D	26-Jan-24	26-Jan-24
Heterotrophic Plate Count	SM 9215C	27-Jan-24	27-Jan-24
Mercury by CVAA	EPA 245.2 - Cold Vapour AA	26-Jan-24	26-Jan-24
Metals, ICP-MS	EPA 200.8 - ICP-MS	26-Jan-24	29-Jan-24
pH	EPA 150.1 - pH probe @25 °C	31-Jan-24	31-Jan-24
PHC F1	CWS Tier 1 - P&T GC-FID	26-Jan-24	27-Jan-24
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	26-Jan-24	27-Jan-24
Phenolics	EPA 420.2 - Auto Colour, 4AAP	29-Jan-24	29-Jan-24
Hardness	Hardness as CaCO3	26-Jan-24	29-Jan-24
Sulphide	SM 4500SE - Colourimetric	31-Jan-24	31-Jan-24
Tannin/Lignin	SM 5550B - Colourimetric	29-Jan-24	30-Jan-24
Total Coliform	MOE E3407	26-Jan-24	26-Jan-24
Total Dissolved Solids	SM 2540C - gravimetric, filtration	29-Jan-24	31-Jan-24
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	29-Jan-24	30-Jan-24
Turbidity	SM 2130B - Turbidity meter	26-Jan-24	26-Jan-24
VOCs by P&T GC-MS	EPA 624 - P&T GC-MS	27-Jan-24	27-Jan-24

Certificate of Analysis

Client PO:

Nitrite as N

0.05 mg/L

< 0.05

Client: GEMTEC Consulting Engineers and Scientists Limited

Project Description: 100117.056

Report Date: 01-Feb-2024

Order Date: 26-Jan-2024

	-						
	Client ID:	TW1 9hr	TW1 9hr (Filtered)	TW3043 18hr	TW3043 18hr		
	Sample Date:	26-Jan-24 00:00	26-Jan-24 00:00	26-Jan-24 09:00	(Filtered) 26-Jan-24 09:00	_	_
	Sample ID:	2404397-01	2404397-02	2404397-03	2404397-04	-	-
	Matrix:	Drinking Water	Drinking Water	Drinking Water	Drinking Water		
	MDL/Units						
Microbiological Parameters	<u> </u>						
E. coli	1 CFU/100mL	ND	-	ND	-	-	-
Total Coliforms	1 CFU/100mL	ND	-	ND	-	-	-
Fecal Coliforms	1 CFU/100mL	ND	-	ND	-	-	-
Heterotrophic Plate Count	10 CFU/mL	<10	-	<10	-	-	-
General Inorganics	-		•				
Alkalinity, total	5 mg/L	273	-	274	-	-	-
Ammonia as N	0.01 mg/L	0.32	-	0.31	-	-	-
Dissolved Organic Carbon	0.5 mg/L	1.6	-	1.3	-	-	-
Colour, apparent	2 ACU	73	-	26	-	-	-
Colour	2 TCU	2	-	2	-	-	-
Conductivity	5 uS/cm	768	-	774	-	-	-
Hardness	1 mg/L	345	-	340	-	-	-
рН	0.1 pH Units	8.4	-	8.3	-	-	-
Phenolics	0.001 mg/L	<0.001	-	<0.001	-	-	-
Total Dissolved Solids	10 mg/L	412	-	420	-	-	-
Sulphide	0.02 mg/L	<0.02	-	<0.02	-	-	-
Tannin & Lignin	0.1 mg/L	<0.1	-	<0.1	-	-	-
Total Kjeldahl Nitrogen	0.1 mg/L	0.3	-	0.3	-	-	-
Turbidity	0.1 NTU	13.0	-	3.2	-	-	-
Anions				-			
Chloride	1 mg/L	68	-	66	-	-	-
Fluoride	0.1 mg/L	0.4	-	0.4	-	-	-
Nitrate as N	0.1 mg/L	<0.1	-	<0.1	-	-	-
	1				1		

< 0.05

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO: Project Description: 100117.056

Report Date: 01-Feb-2024 Order Date: 26-Jan-2024

	Client ID:	TW1 9hr	TW1 9hr (Filtered)	TW3043 18hr	TW3043 18hr (Filtered)		
	Sample Date:	26-Jan-24 00:00	26-Jan-24 00:00	26-Jan-24 09:00	26-Jan-24 09:00	-	-
	Sample ID:	2404397-01	2404397-02	2404397-03	2404397-04		
	Matrix:	Drinking Water	Drinking Water	Drinking Water	Drinking Water		
	MDL/Units						
Anions							
Phosphate as P	0.5 mg/L	<0.5	-	<0.5	-	-	-
Sulphate	1 mg/L	45	-	46	-	-	-
Metals							•
Mercury	0.0001 mg/L	<0.0001	<0.0001	<0.0001	<0.0001	-	-
Aluminum	0.001 mg/L	0.036	<0.001	0.009	<0.001	-	-
Antimony	0.0005 mg/L	<0.0005	<0.0005	<0.0005	<0.0005	-	-
Arsenic	0.001 mg/L	<0.001	<0.001	<0.001	<0.001	-	-
Barium	0.001 mg/L	0.186	0.197	0.198	0.197	-	-
Beryllium	0.0005 mg/L	<0.0005	<0.0005	<0.0005	<0.0005	-	-
Boron	0.01 mg/L	0.13	0.13	0.12	0.13	-	-
Cadmium	0.0001 mg/L	<0.0001	<0.0001	<0.0001	<0.0001	-	-
Calcium	0.1 mg/L	90.5	88.6	88.9	88.2	-	-
Chromium	0.001 mg/L	<0.001	<0.001	<0.001	<0.001	-	-
Cobalt	0.0005 mg/L	<0.0005	<0.0005	<0.0005	<0.0005	-	-
Copper	0.0005 mg/L	<0.0005	<0.0005	0.0011	<0.0005	-	-
Iron	0.1 mg/L	0.5	0.5	0.5	0.5	-	-
Lead	0.0001 mg/L	<0.0001	<0.0001	0.0012	<0.0001	-	-
Magnesium	0.2 mg/L	28.8	28.7	28.6	28.6	-	-
Manganese	0.005 mg/L	0.019	0.017	0.017	0.018	-	-
Molybdenum	0.0005 mg/L	0.0009	0.0011	0.0009	0.0011	-	-
Nickel	0.001 mg/L	<0.001	<0.001	<0.001	<0.001	-	-
Potassium	0.1 mg/L	6.5	6.4	6.3	6.6	-	-
Selenium	0.001 mg/L	<0.001	<0.001	<0.001	<0.001	-	-
Silver	0.0001 mg/L	<0.0001	<0.0001	<0.0001	<0.0001	-	-

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO: Project Description: 100117.056

	Client ID:	TW1 9hr	TW1 9hr (Filtered)	TW3043 18hr	TW3043 18hr (Filtered)		
	Sample Date:	26-Jan-24 00:00	26-Jan-24 00:00	26-Jan-24 09:00	26-Jan-24 09:00	-	-
	Sample ID:	2404397-01	2404397-02	2404397-03	2404397-04		
	Matrix:	Drinking Water	Drinking Water	Drinking Water	Drinking Water		
	MDL/Units						
Metals							
Sodium	0.2 mg/L	61.1	63.8	61.1	64.6	-	-
Strontium	0.01 mg/L	5.09	5.14	4.97	5.37	-	-
Thallium	0.001 mg/L	<0.001	<0.001	<0.001	<0.001	-	-
Uranium	0.0001 mg/L	<0.0001	<0.0001	<0.0001	<0.0001	-	-
Vanadium	0.0005 mg/L	<0.0005	<0.0005	<0.0005	<0.0005	-	-
Zinc	0.005 mg/L	<0.005	<0.005	0.007	0.009	-	-
Volatiles			•		•	•	
Acetone	0.0050 mg/L	<0.0050	-	<0.0050	-	-	-
Benzene	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
Bromodichloromethane	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
Bromoform	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
Bromomethane	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
Carbon Tetrachloride	0.0002 mg/L	<0.0002	-	<0.0002	-	-	-
Chlorobenzene	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
Chloroethane	0.0010 mg/L	<0.0010	-	<0.0010	-	-	-
Chloroform	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
Dibromochloromethane	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
Dichlorodifluoromethane	0.0010 mg/L	<0.0010	-	<0.0010	-	-	-
1,2-Dibromoethane	0.0002 mg/L	<0.0002	-	<0.0002		-	-
1,2-Dichlorobenzene	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
1,3-Dichlorobenzene	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
1,4-Dichlorobenzene	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
1,1-Dichloroethane	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
1,2-Dichloroethane	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-

Report Date: 01-Feb-2024

Order Date: 26-Jan-2024

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO: Project Description: 100117.056

	Client ID:	TW1 9hr	TW1 9hr (Filtered)	TW3043 18hr	TW3043 18hr		
	Sample Date:	26-Jan-24 00:00	26-Jan-24 00:00	26-Jan-24 09:00	(Filtered) 26-Jan-24 09:00		
	Sample ID:	2404397-01	2404397-02	2404397-03	2404397-04	-	-
	Matrix:	Drinking Water	Drinking Water	Drinking Water	Drinking Water		
	MDL/Units	-					
Volatiles					<u> </u>		
1,1-Dichloroethylene	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
cis-1,2-Dichloroethylene	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
trans-1,2-Dichloroethylene	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
1,2-Dichloroethylene, total	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
1,2-Dichloropropane	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
cis-1,3-Dichloropropylene	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
trans-1,3-Dichloropropylene	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
1,3-Dichloropropene, total	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
Ethylbenzene	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
Hexane	0.0010 mg/L	<0.0010	-	<0.0010	-	-	-
Methyl Ethyl Ketone (2-Butanone)	0.0050 mg/L	<0.0050	-	<0.0050	-	-	-
Methyl Isobutyl Ketone	0.0050 mg/L	<0.0050	-	<0.0050	-	-	-
Methyl tert-butyl ether	0.0020 mg/L	<0.0020	-	<0.0020	-	-	-
Methylene Chloride	0.0050 mg/L	<0.0050	-	<0.0050	-	-	-
Styrene	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
1,1,1,2-Tetrachloroethane	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
1,1,2,2-Tetrachloroethane	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
Tetrachloroethylene	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
Toluene	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
1,1,1-Trichloroethane	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
1,1,2-Trichloroethane	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
Trichloroethylene	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
Trichlorofluoromethane	0.0010 mg/L	<0.0010	-	<0.0010	-	-	-
Vinyl chloride	0.0002 mg/L	<0.0002	-	<0.0002	-	-	-

Report Date: 01-Feb-2024

Order Date: 26-Jan-2024

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Order Date: 26-Jan-2024

Project Description: 100117.056

Report Date: 01-Feb-2024

Client PO:

	Client ID:	TW1 9hr	TW1 9hr (Filtered)	TW3043 18hr	TW3043 18hr (Filtered)		
	Sample Date:	26-Jan-24 00:00	26-Jan-24 00:00	26-Jan-24 09:00	26-Jan-24 09:00	-	-
	Sample ID:	2404397-01	2404397-02	2404397-03	2404397-04		
	Matrix:	Drinking Water	Drinking Water	Drinking Water	Drinking Water		
	MDL/Units						
Volatiles	-						
m,p-Xylenes	0.0005 mg/L	<0.0005	-	<0.0005	-	-	=
o-Xylene	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
Xylenes, total	0.0005 mg/L	<0.0005	-	<0.0005	-	-	-
Toluene-d8	Surrogate	103%	-	105%	-	-	-
4-Bromofluorobenzene	Surrogate	101%	-	100%	-	-	-
Dibromofluoromethane	Surrogate	95.7%	-	93.9%	-	-	-
Hydrocarbons							
F1 PHCs (C6-C10)	0.0250 mg/L	<0.0250	-	<0.0250	-	-	-
F2 PHCs (C10-C16)	0.1 mg/L	<0.1	-	<0.1	-	-	-
F3 PHCs (C16-C34)	0.1 mg/L	<0.1	-	<0.1	-	-	-
F4 PHCs (C34-C50)	0.1 mg/L	<0.1	-	<0.1	-	-	-

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Order Date: 26-Jan-2024 Project Description: 100117.056

Report Date: 01-Feb-2024

Client PO:

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions								
Chloride	ND	1	mg/L					
Fluoride	ND	0.1	mg/L					
Nitrate as N	ND	0.1	mg/L					
Nitrite as N	ND	0.05	mg/L					
Phosphate as P	ND	0.5	mg/L					
Sulphate	ND	1	mg/L					
General Inorganics								
Alkalinity, total	ND	5	mg/L					
Ammonia as N	ND	0.01	mg/L					
Dissolved Organic Carbon	ND	0.5	mg/L					
Colour	ND	2	TCU					
Colour, apparent	ND	2	ACU					
Conductivity	ND	5	uS/cm					
Phenolics	ND	0.001	mg/L					
Total Dissolved Solids	ND	10	mg/L					
Sulphide	ND	0.02	mg/L					
Tannin & Lignin	ND	0.1	mg/L					
Total Kjeldahl Nitrogen	ND	0.1	mg/L					
Turbidity	ND	0.1	NTU					
Hydrocarbons								
F1 PHCs (C6-C10)	ND	0.0250	mg/L					
F2 PHCs (C10-C16)	ND	0.1	mg/L					
F3 PHCs (C16-C34)	ND	0.1	mg/L					
F4 PHCs (C34-C50)	ND	0.1	mg/L					
Metals								
Mercury	ND	0.0001	mg/L					
Aluminum	ND	0.001	mg/L					
Antimony	ND	0.0005	mg/L					
Arsenic	ND	0.001	mg/L					
Barium	ND	0.001	mg/L					
Beryllium	ND	0.0005	mg/L					
Boron	ND	0.01	mg/L					

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Order Date: 26-Jan-2024 Project Description: 100117.056

Report Date: 01-Feb-2024

Client PO:

Mothod Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Cadmium	ND	0.0001	mg/L					
Calcium	ND	0.1	mg/L					
Chromium	ND	0.001	mg/L					
Cobalt	ND	0.0005	mg/L					
Copper	ND	0.0005	mg/L					
Iron	ND	0.1	mg/L					
Lead	ND	0.0001	mg/L					
Magnesium	ND	0.2	mg/L					
Manganese	ND	0.005	mg/L					
Molybdenum	ND	0.0005	mg/L					
Nickel	ND	0.001	mg/L					
Potassium	ND	0.1	mg/L					
Selenium	ND	0.001	mg/L					
Silver	ND	0.0001	mg/L					
Sodium	ND	0.2	mg/L					
Strontium	ND	0.01	mg/L					
Thallium	ND	0.001	mg/L					
Uranium	ND	0.0001	mg/L					
Vanadium	ND	0.0005	mg/L					
Zinc	ND	0.005	mg/L					
Microbiological Parameters								
E. coli	ND	1	CFU/100mL					
Total Coliforms	ND	1	CFU/100mL					
Fecal Coliforms	ND	1	CFU/100mL					
Heterotrophic Plate Count	ND	10	CFU/mL					
Volatiles								
Acetone	ND	0.0050	mg/L					
Benzene	ND	0.0005	mg/L					
Bromodichloromethane	ND	0.0005	mg/L					
Bromoform	ND	0.0005	mg/L					
Bromomethane	ND	0.0005	mg/L					
Carbon Tetrachloride	ND	0.0002	mg/L					
Chlorobenzene	ND	0.0005	mg/L					

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Report Date: 01-Feb-2024
Order Date: 26-Jan-2024
Project Description: 100117.056

Client PO:

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Chloroethane	ND	0.0010	mg/L					
Chloroform	ND	0.0005	mg/L					
Dibromochloromethane	ND	0.0005	mg/L					
Dichlorodifluoromethane	ND	0.0010	mg/L					
1,2-Dibromoethane	ND	0.0002	mg/L					
1,2-Dichlorobenzene	ND	0.0005	mg/L					
1,3-Dichlorobenzene	ND	0.0005	mg/L					
1,4-Dichlorobenzene	ND	0.0005	mg/L					
1,1-Dichloroethane	ND	0.0005	mg/L					
1,2-Dichloroethane	ND	0.0005	mg/L					
1,1-Dichloroethylene	ND	0.0005	mg/L					
cis-1,2-Dichloroethylene	ND	0.0005	mg/L					
trans-1,2-Dichloroethylene	ND	0.0005	mg/L					
1,2-Dichloroethylene, total	ND	0.0005	mg/L					
1,2-Dichloropropane	ND	0.0005	mg/L					
cis-1,3-Dichloropropylene	ND	0.0005	mg/L					
trans-1,3-Dichloropropylene	ND	0.0005	mg/L					
1,3-Dichloropropene, total	ND	0.0005	mg/L					
Ethylbenzene	ND	0.0005	mg/L					
Hexane	ND	0.0010	mg/L					
Methyl Ethyl Ketone (2-Butanone)	ND	0.0050	mg/L					
Methyl Isobutyl Ketone	ND	0.0050	mg/L					
Methyl tert-butyl ether	ND	0.0020	mg/L					
Methylene Chloride	ND	0.0050	mg/L					
Styrene	ND	0.0005	mg/L					
1,1,1,2-Tetrachloroethane	ND	0.0005	mg/L					
1,1,2,2-Tetrachloroethane	ND	0.0005	mg/L					
Tetrachloroethylene	ND	0.0005	mg/L					
Toluene	ND	0.0005	mg/L					
1,1,1-Trichloroethane	ND	0.0005	mg/L					
1,1,2-Trichloroethane	ND	0.0005	mg/L					
Trichloroethylene	ND	0.0005	mg/L					
Trichlorofluoromethane	ND	0.0010	mg/L					

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Cheft. OLM 120 Consulting Engineers and Ocientists Elimite

Client PO:

Report Date: 01-Feb-2024

Order Date: 26-Jan-2024

Project Description: 100117.056

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Vinyl chloride	ND	0.0002	mg/L					
m,p-Xylenes	ND	0.0005	mg/L					
o-Xylene	ND	0.0005	mg/L					
Xylenes, total	ND	0.0005	mg/L					
Surrogate: 4-Bromofluorobenzene	0.0804		%	101	50-140			
Surrogate: Dibromofluoromethane	0.0786		%	98.2	50-140			
Surrogate: Toluene-d8	0.0828		%	103	50-140			

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 01-Feb-2024

Order Date: 26-Jan-2024

Project Description: 100117.056

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	66.3	1	mg/L	66.4			0.2	20	
Fluoride	0.38	0.1	mg/L	0.38			0.5	20	
Nitrate as N	ND	0.1	mg/L	ND			NC	20	
Nitrite as N	ND	0.05	mg/L	ND			NC	20	
Phosphate as P	ND	0.5	mg/L	ND			NC	20	
Sulphate	45.1	1	mg/L	46.0			2.0	20	
General Inorganics									
Alkalinity, total	270	5	mg/L	273			0.9	14	
Ammonia as N	0.234	0.01	mg/L	0.232			1.0	17.7	
Dissolved Organic Carbon	1.5	0.5	mg/L	1.6			5.2	37	
Colour	2	2	TCU	2			0.0	12	
Colour, apparent	75	2	ACU	73			2.7	12	
Conductivity	784	5	uS/cm	768			2.0	5	
pH	8.4	0.1	pH Units	8.4			0.0	3.3	
Phenolics	ND	0.001	mg/L	ND			NC	10	
Total Dissolved Solids	96.0	10	mg/L	98.0			2.1	10	
Sulphide	ND	0.02	mg/L	ND			NC	10	
Tannin & Lignin	ND	0.1	mg/L	ND			NC	11	
Total Kjeldahl Nitrogen	0.37	0.1	mg/L	0.34			9.5	16	
Turbidity	13.1	0.1	NTU	13.0			8.0	10	
Hydrocarbons									
F1 PHCs (C6-C10)	ND	0.0250	mg/L	ND			NC	30	
Metals									
Mercury	ND	0.0001	mg/L	ND			NC	20	
Aluminum	0.037	0.001	mg/L	0.036			3.6	20	
Antimony	ND	0.0005	mg/L	ND			NC	20	
Arsenic	ND	0.001	mg/L	ND			NC	20	
Barium	0.194	0.001	mg/L	0.186			4.2	20	
Beryllium	ND	0.0005	mg/L	ND			NC	20	
Boron	0.13	0.01	mg/L	0.13			0.3	20	

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 01-Feb-2024

Order Date: 26-Jan-2024

Project Description: 100117.056

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Cadmium	ND	0.0001	mg/L	ND			NC	20	
Calcium	95.2	0.1	mg/L	90.5			5.1	20	
Chromium	ND	0.001	mg/L	ND			NC	20	
Cobalt	ND	0.0005	mg/L	ND			NC	20	
Copper	ND	0.0005	mg/L	ND			NC	20	
Iron	0.6	0.1	mg/L	0.5			0.9	20	
Lead	ND	0.0001	mg/L	ND			NC	20	
Magnesium	31.3	0.2	mg/L	28.8			8.2	20	
Manganese	0.019	0.005	mg/L	0.019			2.3	20	
Molybdenum	0.0010	0.0005	mg/L	0.0009			9.0	20	
Nickel	ND	0.001	mg/L	ND			NC	20	
Potassium	6.8	0.1	mg/L	6.5			4.5	20	
Selenium	ND	0.001	mg/L	ND			NC	20	
Silver	ND	0.0001	mg/L	ND			NC	20	
Sodium	65.8	0.2	mg/L	61.1			7.4	20	
Thallium	ND	0.001	mg/L	ND			NC	20	
Uranium	ND	0.0001	mg/L	ND			NC	20	
Vanadium	ND	0.0005	mg/L	ND			NC	20	
Zinc	ND	0.005	mg/L	ND			NC	20	
Microbiological Parameters									
E. coli	ND	1	CFU/100mL	ND			NC	30	
Total Coliforms	ND	1	CFU/100mL	ND			NC	30	
Fecal Coliforms	ND	1	CFU/100mL	ND			NC	30	
Heterotrophic Plate Count	ND	10	CFU/mL	ND			NC	30	
Volatiles									
Acetone	ND	0.0050	mg/L	ND			NC	30	
Benzene	ND	0.0005	mg/L	ND			NC	30	
Bromodichloromethane	ND	0.0005	mg/L	ND			NC	30	
Bromoform	ND	0.0005	mg/L	ND			NC	30	
Bromomethane	ND	0.0005	mg/L	ND			NC	30	
Carbon Tetrachloride	ND	0.0002	mg/L	ND			NC	30	

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Chlorobenzene	ND	0.0005	mg/L	ND			NC	30	
Chloroethane	ND	0.0010	mg/L	ND			NC	30	
Chloroform	ND	0.0005	mg/L	ND			NC	30	
Dibromochloromethane	ND	0.0005	mg/L	ND			NC	30	
Dichlorodifluoromethane	ND	0.0010	mg/L	ND			NC	30	
1,2-Dibromoethane	ND	0.0002	mg/L	ND			NC	30	
1,2-Dichlorobenzene	ND	0.0005	mg/L	ND			NC	30	
1,3-Dichlorobenzene	ND	0.0005	mg/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.0005	mg/L	ND			NC	30	
1,1-Dichloroethane	ND	0.0005	mg/L	ND			NC	30	
1,2-Dichloroethane	ND	0.0005	mg/L	ND			NC	30	
1,1-Dichloroethylene	ND	0.0005	mg/L	ND			NC	30	
cis-1,2-Dichloroethylene	ND	0.0005	mg/L	ND			NC	30	
trans-1,2-Dichloroethylene	ND	0.0005	mg/L	ND			NC	30	
1,2-Dichloropropane	ND	0.0005	mg/L	ND			NC	30	
cis-1,3-Dichloropropylene	ND	0.0005	mg/L	ND			NC	30	
trans-1,3-Dichloropropylene	ND	0.0005	mg/L	ND			NC	30	
Ethylbenzene	ND	0.0005	mg/L	ND			NC	30	
Hexane	ND	0.0010	mg/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND	0.0050	mg/L	ND			NC	30	
Methyl Isobutyl Ketone	ND	0.0050	mg/L	ND			NC	30	
Methyl tert-butyl ether	ND	0.0020	mg/L	ND			NC	30	
Methylene Chloride	ND	0.0050	mg/L	ND			NC	30	
Styrene	ND	0.0005	mg/L	ND			NC	30	
1,1,1,2-Tetrachloroethane	ND	0.0005	mg/L	ND			NC	30	
1,1,2,2-Tetrachloroethane	ND	0.0005	mg/L	ND			NC	30	
Tetrachloroethylene	ND	0.0005	mg/L	ND			NC	30	
Toluene	ND	0.0005	mg/L	ND			NC	30	
1,1,1-Trichloroethane	ND	0.0005	mg/L	ND			NC	30	
1,1,2-Trichloroethane	ND	0.0005	mg/L	ND			NC	30	
Trichloroethylene	ND	0.0005	mg/L	ND			NC	30	

Report Date: 01-Feb-2024

Order Date: 26-Jan-2024

Project Description: 100117.056

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Project Description: 100117.056

Report Date: 01-Feb-2024

Order Date: 26-Jan-2024

Client PO:

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Trichlorofluoromethane	ND	0.0010	mg/L	ND			NC	30	
Vinyl chloride	ND	0.0002	mg/L	ND			NC	30	
m,p-Xylenes	ND	0.0005	mg/L	ND			NC	30	
o-Xylene	ND	0.0005	mg/L	ND			NC	30	
Surrogate: 4-Bromofluorobenzene	0.0812		%		101	50-140			
Surrogate: Dibromofluoromethane	0.0755		%		94.4	50-140			
Surrogate: Toluene-d8	0.0835		%		104	50-140			

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Project Description: 100117.056

Report Date: 01-Feb-2024

Order Date: 26-Jan-2024

Client PO:

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	76.5	1	mg/L	66.4	101	70-124			
Fluoride	1.25	0.1	mg/L	0.38	87.4	70-130			
Nitrate as N	1.00	0.1	mg/L	ND	100	77-126			
Nitrite as N	0.953	0.05	mg/L	ND	95.3	82-115			
Phosphate as P	4.98	0.5	mg/L	ND	99.5	76-130			
Sulphate	55.2	1	mg/L	46.0	92.2	70-130			
General Inorganics									
Ammonia as N	1.26	0.01	mg/L	0.232	103	81-124			
Dissolved Organic Carbon	11.3	0.5	mg/L	1.3	100	60-133			
Phenolics	0.026	0.001	mg/L	ND	106	67-133			
Total Dissolved Solids	94.0	10	mg/L	ND	94.0	75-125			
Sulphide	0.52	0.02	mg/L	ND	104	79-115			
Гаnnin & Lignin	0.9	0.1	mg/L	ND	94.7	71-113			
Total Kjeldahl Nitrogen	1.39	0.1	mg/L	0.34	105	81-126			
Hydrocarbons									
F1 PHCs (C6-C10)	1.86	0.0250	mg/L	ND	92.9	85-115			
F2 PHCs (C10-C16)	1.4	0.1	mg/L	ND	86.7	60-140			
F3 PHCs (C16-C34)	4.0	0.1	mg/L	ND	103	60-140			
F4 PHCs (C34-C50)	2.5	0.1	mg/L	ND	102	60-140			
Metals									
Mercury	0.0028	0.0001	mg/L	ND	92.8	70-130			
Aluminum	83.1	0.001	mg/L	35.7	94.7	80-120			
Arsenic	49.0	0.001	mg/L	0.062	97.9	80-120			
Barium	234	0.001	mg/L	186	95.1	80-120			
Beryllium	44.1	0.0005	mg/L	0.0147	88.2	80-120			
Boron	173	0.01	mg/L	128	89.4	80-120			
Cadmium	46.9	0.0001	mg/L	0.0016	93.8	80-120			
Calcium	8740	0.1	mg/L	ND	87.4	80-120			
Chromium	48.4	0.001	mg/L	0.102	96.6	80-120			
Cobalt	46.1	0.0005	mg/L	0.0299	92.1	80-120			

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 01-Feb-2024

Order Date: 26-Jan-2024

Project Description: 100117.056

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Copper	42.9	0.0005	mg/L	0.110	85.6	80-120			
Iron	2800	0.1	mg/L	547	90.1	80-120			
Lead	43.7	0.0001	mg/L	ND	87.3	80-120			
Magnesium	39300	0.2	mg/L	28800	105	80-120			
Manganese	66.5	0.005	mg/L	18.8	95.2	80-120			
Molybdenum	42.3	0.0005	mg/L	1.11	82.4	80-120			
Nickel	44.3	0.001	mg/L	0.165	88.2	80-120			
Potassium	15700	0.1	mg/L	6460	92.8	80-120			
Selenium	44.1	0.001	mg/L	0.027	88.1	80-120			
Silver	49.8	0.0001	mg/L	ND	99.7	80-120			
Sodium	71800	0.2	mg/L	61100	107	80-120			
Thallium	43.6	0.001	mg/L	0.017	87.1	80-120			
Uranium	47.3	0.0001	mg/L	0.0270	94.6	80-120			
Vanadium	49.4	0.0005	mg/L	0.106	98.6	80-120			
Zinc	44.0	0.005	mg/L	0.899	86.3	80-120			
Volatiles									
Acetone	0.0847	0.0050	mg/L	ND	84.7	50-140			
Benzene	0.0305	0.0005	mg/L	ND	76.3	60-130			
Bromodichloromethane	0.0398	0.0005	mg/L	ND	99.6	60-130			
Bromoform	0.0334	0.0005	mg/L	ND	83.5	60-130			
Bromomethane	0.0363	0.0005	mg/L	ND	90.8	50-140			
Carbon Tetrachloride	0.0294	0.0002	mg/L	ND	73.5	60-130			
Chlorobenzene	0.0373	0.0005	mg/L	ND	93.3	60-130			
Chloroethane	0.0307	0.0010	mg/L	ND	76.8	50-140			
Chloroform	0.0292	0.0005	mg/L	ND	73.1	60-130			
Dibromochloromethane	0.0336	0.0005	mg/L	ND	84.1	60-130			
Dichlorodifluoromethane	0.0261	0.0010	mg/L	ND	65.3	50-140			
1,2-Dibromoethane	0.0347	0.0002	mg/L	ND	86.6	60-130			
1,2-Dichlorobenzene	0.0341	0.0005	mg/L	ND	85.2	60-130			
1,3-Dichlorobenzene	0.0347	0.0005	mg/L	ND	86.7	60-130			
1,4-Dichlorobenzene	0.0350	0.0005	mg/L	ND	87.4	60-130			

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Project Description: 100117.056

Report Date: 01-Feb-2024

Order Date: 26-Jan-2024

Client PO:

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,1-Dichloroethane	0.0359	0.0005	mg/L	ND	89.8	60-130			
1,2-Dichloroethane	0.0307	0.0005	mg/L	ND	76.7	60-130			
1,1-Dichloroethylene	0.0309	0.0005	mg/L	ND	77.2	60-130			
cis-1,2-Dichloroethylene	0.0345	0.0005	mg/L	ND	86.3	60-130			
trans-1,2-Dichloroethylene	0.0347	0.0005	mg/L	ND	86.7	60-130			
1,2-Dichloropropane	0.0385	0.0005	mg/L	ND	96.2	60-130			
cis-1,3-Dichloropropylene	0.0288	0.0005	mg/L	ND	72.1	60-130			
trans-1,3-Dichloropropylene	0.0330	0.0005	mg/L	ND	82.5	60-130			
Ethylbenzene	0.0375	0.0005	mg/L	ND	93.8	60-130			
Hexane	0.0282	0.0010	mg/L	ND	70.5	60-130			
Methyl Ethyl Ketone (2-Butanone)	0.0660	0.0050	mg/L	ND	66.0	50-140			
Methyl Isobutyl Ketone	0.0677	0.0050	mg/L	ND	67.7	50-140			
Methyl tert-butyl ether	0.0715	0.0020	mg/L	ND	71.5	50-140			
Methylene Chloride	0.0250	0.0050	mg/L	ND	62.6	60-130			
Styrene	0.0342	0.0005	mg/L	ND	85.4	60-130			
1,1,1,2-Tetrachloroethane	0.0404	0.0005	mg/L	ND	101	60-130			
1,1,2,2-Tetrachloroethane	0.0343	0.0005	mg/L	ND	85.7	60-130			
Tetrachloroethylene	0.0412	0.0005	mg/L	ND	103	60-130			
Toluene	0.0370	0.0005	mg/L	ND	92.4	60-130			
1,1,1-Trichloroethane	0.0334	0.0005	mg/L	ND	83.5	60-130			
1,1,2-Trichloroethane	0.0329	0.0005	mg/L	ND	82.2	60-130			
Trichloroethylene	0.0368	0.0005	mg/L	ND	92.1	60-130			
Trichlorofluoromethane	0.0289	0.0010	mg/L	ND	72.2	60-130			
Vinyl chloride	0.0399	0.0002	mg/L	ND	99.8	50-140			
m,p-Xylenes	0.0735	0.0005	mg/L	ND	91.8	60-130			
o-Xylene	0.0349	0.0005	mg/L	ND	87.3	60-130			
Surrogate: 4-Bromofluorobenzene	0.0842		%		105	50-140			
Surrogate: Dibromofluoromethane	0.0847		%		106	50-140			
Surrogate: Toluene-d8	0.0809		%		101	50-140			

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Report Date: 01-Feb-2024 Order Date: 26-Jan-2024

Project Description: 100117.056

Qualifier Notes:

Client PO:

Login Qualifiers:

Container(s) - Labeled improperly/insufficient information - Sample dated as Jan. 26 2024; chain of custody reads Jan. 25 2024; client confirmed

sample collected Jan. 26, 2024.

Applies to Samples: TW1 9hr, TW1 9hr (Filtered)

Sample Qualifiers:

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

ent Blvd. (1G 4J8

Paracel Order Number

Chain Of Custody Ontario Drinking Water Samples

Nº 19821

	L	ADORATORI	LJ								bom		0,10		,				-	-	.00		
Client I	Name:	Gentec		Project Ref:	100	113	1.0	56			Waterworks N	ame:							Sample	es Take	en By:		
Contac	t Name:	Gentec A Paznela	5	Quote #:							Waterworks N	umber:				Name		A	Pa	re	kur		
Addres	is:			PO #:						Address:		Name: A. Porzekus Signature: March											
After H	lours Contact:			E-mail:	andrib	5.8	uv	ek	45	a a	entec.	La						Pa	ge	of		- drods	
Teleph	one:	613-295-	8425	Fax:						0	Public Health U	Jnit:										X ⁴ d	iay
□ 01	es Submitted N REG 170/0 N REG 243/0	Under: (Indicate ONLY on 3 ON REG 319/08	ne) Private W	/ell	,	Sou	rce T	ype:	G =	= Ground	Water; S = Su	ırface W	oution; P = Plui /ater ulation - Y = Ye		No				Requ	uired	Analy	·	
Are th	ese samples f	en submitted to MOE/MO or human consumption?: n must be completed b	HLTC?: □ Yes □ Yes ÞØNo		cessed.	R/T/D/P	Source Type: G / S	Reportable: Y / N	Resample		SAMPLE (,		# of Containers	Free/Combined Chlorine Residual mg/L	Standing / Flushed: S / F (REG 243)	Total Coliform/E. Coli	нРС	Level PHC)C)_	10 Pechag	mely is	hosphale
	LOCAT	TION NAME		SAMPLE ID		Sample Type:	Source	Reporta	Res		DATE		TIME	# of Cc	Free/Comb Resid	Standing S/F (Total C				SUBDICTION	Trace	5
1			TWI	94		R	6	N	-	5	an 25/24		12am	15					×	L	X	K	X
2			TW3	043 181	~	R	G	N	-	2	n 26/24	(994	15					٧	メ	×	X	×
3																							\perp
4									-					Ш							Ш	_	\perp
5														Ш						1		\perp	\perp
6														Ш								\perp	\perp
7						_				-												_	_
8									_	_						_					\vdash	\dashv	+
9							_					-				_	-				\vdash	+	+
10 Comme	nts: cola	r in Aevetw	/			L								Ш		Metho	od of D	PeliveR					<u>n</u>
telinqui	ished By (Sign):	likes	3	Receive Driver/							Receiv Lab:	ed at	18		209	Verifie		50				V	
	,	241104		Date/T	me:						Date/T	īme:	San	2	3/24	Date/	ime:	90	16,3	202	41	6.4	Oun
ate/Tir	me: Tax	76/24 10:	Bam	Tempe	rature:					°C	Tempe	rature:	10.8		°c l	pH Ve	rified:	N	BIS	0			

GEMTEC Consulting Engineers and Scientists Limited
32 Steacie Drive
Ottawa, ON, Canada

32 Steacie Drive 613.836.1422 Ottawa, ON, Canada 624 ottawa@gemtec.ca 613.836.1422

December 20, 2024 File: 100117.056

LaPlante Poultry Farms Limited 3043 Dunning Road Ottawa, Ontario K0A 3E0

Attention: Jamie Batchelor, Planner

Re: Geotechnical Investigation

Proposed Chicken Processing Plant

3043 Dunning Road

Sarsfield (Ottawa), Ontario

This letter presents the results of a geotechnical investigation carried out for the proposed chicken processing plant located at 3043 Dunning Road in Ottawa, Ontario.

PROJECT AND SITE DESCRIPTION

Project Description

The LaPlante Poultry Farms Limited (LPFL) farm is located in Sarsfield, Ontario, a village in the Cumberland Ward in the east portion of the City of Ottawa. The farm has an area of approximately 1.7 hectares. It is bounded to the west by Dunning Road, just north of the intersection of Dunning Road with Giroux Road, and to the north, east and west by agricultural use properties at 3085 and 3105 Dunning Road which are also owned by LPFL. The farm is referred to further in this document as the Site.

It is understood that the existing facility at the Site is undergoing a Zoning By-law Amendment and Site Plan Approval associated with the proposed chicken processing plant. It is also understood that the existing barn at the Site will be rehabilitated and converted to a processing plant. No details of the proposed rehabilitation are known at the time of writing this letter, however, it is understood that the new water demands for the facility may lower the groundwater level resulting in settlement of the underlying silty clay deposit.

GEMTEC carried out an assessment of the potential for surficial settlement, the results were provided in the following letter:

 Letter titled "Potential for Surficial Settlement, Proposed Chicken Processing Plant Pumping Well, 3043 Dunning Road, Sarsfield (Ottawa), Ontario" dated February 7, 2024 (Project No. 100117.056)

Previous Investigations

GEMTEC completed a series of hydrogeological studies at the Site in support of an environmental activity and sector registry (EASR). As part of this work four boreholes were advanced to depths of about 7 to 18 metres below ground surface for installation of groundwater observation wells. While information on the general soil stratigraphy was obtained, measurements of soil strength and compressibility were not taken (as these boreholes were advanced for hydrogeological investigation purposes only).

The results were provided in the following reports:

- Report titled "Hydrogeological Investigation & Terrain Analysis, Proposed Chicken Processing Facility, Part of Lot 7, Concession 4 (3043 Dunning Road), Ottawa, Ontario" dated February 8, 2024 (Report No. 110117.056); and,
- Report titled "Pumping Test Design Report, Environmental Activity and Sector Registry, Proposed Chicken Processing Facility, 3043 Dunning Road, Ottawa, Ontario" dated January 19, 2024 (Report No. 100117.056).

Review of Geology Maps

Based on surficial geology maps, the Site is underlain by thick deposits of silty clay over glacial till and bedrock. Bedrock geology maps indicate that limestone bedrock of the Lindsay formation is present below the soil cover. Drift thickness mapping indicates the bedrock surface is expected at depths ranging from 10 to 25 metres, sloping down to the east.

The results of the boreholes from the hydrogeological investigation encountered silty clay overlying glacial till and limestone bedrock, which corresponds to the geology maps, however, the soil cover was found to be greater than about 15 metres in thickness.

SUBSURFACE INVESTIGATION

The fieldwork for the geotechnical investigation was carried out in two phases, the hydrogeological investigation was carried out between January 5 and 9, 2024 and the geotechnical investigation was carried out on July 22, 2024. On those days, six boreholes (numbered 24-1D, 24-1S, 24-2D, 24-2S, 24-03, and 24-04) were advanced at the approximate locations shown on the Site Plan, Figure 1. Boreholes 24-1S and 24-2S were advanced, without sampling, adjacent to

The boreholes were advanced using a track mounted, hollow stem auger drill rig supplied and operated by George Downing Estate Drilling of Grenville-sur-la-rouge, Quebec. The boreholes were advanced to depths ranging from about 6.7 to 17.4 metres below ground surface, respectively. Upon reaching the bedrock surface in boreholes 24-1D and 24-2D, the boreholes were advanced into the bedrock for a length of 0.6 and 0.2 meters using rotary diamond drilling techniques, while retrieving HQ sized bedrock core.

Standard penetration tests were carried out in the boreholes and samples of the soils encountered were recovered using a 50 millimetre diameter drive open sampler. In-situ shear vane testing was carried out in boreholes 24-03 and 24-04, where possible, to measure the undrained shear strength of the clay deposits.

A single well screens was installed in each of the boreholes to measure the groundwater levels. The groundwater levels were measured on January 15, 25, and 31 and July 29, 2024.

Following the borehole drilling fieldwork, the soil samples were returned to our laboratory for examination by the geotechnical engineer and for geotechnical laboratory testing. Selected samples of the soil were tested for Atterberg Limit, water content, and grain size distribution testing.

The borehole locations were selected by GEMTEC and positioned on site relative to existing features. The ground surface elevations at the borehole locations were determined using a Trimble R10 GPS. The elevations are referenced to geodetic datum NAD83 (CSRS) Epoch 2010, vertical network CGVD1928.

SUBSURFACE CONDITIONS

The results of the boreholes are provided on the Record of Borehole sheets in the Attachments. The approximate locations of the boreholes are shown on the Site Plan, Figure 1. The results of the laboratory classification tests on the soil samples are provided on the borehole logs and in the Attachments

The following presents an overview of the subsurface conditions encountered in the boreholes. Boreholes 24-1D and 24-1S and boreholes 24-2D and 24-2S are referred to as 24-1 and 24-2, respectively, for simplicity.

Topsoil

A layer of topsoil was encountered at the ground surface in the boreholes with a thickness of about 100 millimetres.

Silty Clay

Native deposits of silty clay were encountered below topsoil in the boreholes. The silty clay, where fully penetrated, extends to depths ranging from about 13.2 to 15.4 metres below the existing ground surface.

The upper portion of the silty clay deposit has been weathered to a grey brown crust. The weathered silty clay crust extends to depths ranging from about 2.9 to 3.1 metres below ground surface.

Standard penetration tests carried out in the weathered crust gave N values ranging from 2 to 8 blows per 0.3 metres of penetration, which reflect a stiff to very stiff consistency.

The results of Atterberg limit testing carried out on one sample of the weathered silty clay crust are provided on Plasticity Chart in the Attachments and are summarized in Table 1. The measured water content of four samples of the weathered silty clay crust ranges from about 40 to 51 percent.

Table 1 – Summary of Atterberg Limit Testing (Weathered Silty Clay)

Borehole ID	Sample Number	Sample Depth (metres)	Water Content (%)	LL (%)	PL (%)	PI (%)
24-03	3	1.5 to 2.1	41	55	24	31

Grain size distribution tests were carried out on two samples of the weathered crust from boreholes 24-1 and 24-2. The results are provided in the Attachments and are summarized in Table 3.

Table 3 – Summary of Grain Size Distribution Test (Silty Clay)

Borehole ID	Sample Number	Sample Depth (metres)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
24-1	3	1.5 to 2.1	0	1	44	55
24-2	3	2.3 to 2.9	0	1	43	57

The silty clay below the depth of weathering is grey in colour. The grey silty clay extends to a depth of about 13.2 metres below ground surface in boreholes 24-03. The grey silty clay was not fully penetrated in borehole 24-04, but was proven to a depth of about 6.7 metres below the existing ground surface.

Standard penetration tests carried out in the silty clay gave N values ranging from 'weight of hammer' (WH) to 3 blows per 0.3 metres of penetration. In-situ vane testing gave undrained shear strengths ranging from about 31 to 54 kilopascals, which reflect a firm to stiff consistency.

The results of Atterberg limit testing carried out on one sample of the grey silty clay are provided on Plasticity Chart in the Attachments and are summarized in Table 2. The measured water content of seven samples of the grey silty clay ranges from about 55 to 85 percent.

Table 2 – Summary of Atterberg Limit Testing (Unweathered Silty Clay)

Borehole ID	Sample Number	Sample Depth (metres)	Water Content (%)	LL (%)	PL (%)	PI (%)
24-1D	15	10.7 to 11.3	85	48	26	22
24-2D	11	8.4 to 9.0	81	49	28	22
24-03	10	10.7 to 11.3	84	51	26	24

Grain size distribution tests were carried out on two samples of the silty clay from boreholes 24-1 and 24-2. The results are provided in the Attachments and are summarized in Table 3.

Table 3 – Summary of Grain Size Distribution Test (Silty Clay)

Borehole ID	Sample Number	Sample Depth (metres)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
24-1	15	10.7 to 11.3	0	1	43	56
24-2	11	8.4 to 9.0	0	1	40	59

Glacial Till

Native deposits of glacial till was encountered below the silty clay in boreholes 24-1, 24-2, and 24-03 at depths ranging from about 13.2 to 15.4 metres. The glacial till extends to depths of 17.4 and 15.3 metres below the existing ground surface in boreholes 24-1 and 24-2, respectively. The glacial till was not fully penetrated in borehole24-03, but was proven to a depth of about 14.5 metres.

The glacial till is considered to be a heterogeneous mixture of all grain sizes, which at this site, can be described as grey silty sand to sandy silt with varying amounts of gravel and with some clay. Although not directly encountered in the boreholes, the glacial till deposit is known to contain cobbles and boulders.

Standard penetration tests carried out within the glacial till gave N values of 4 and 82 blows per 0.3 metres of penetration, which reflects a loose to very dense relative density, and may also indicate the presence of cobble and boulder size fragments of rock in the deposit.

One grain size distribution test was undertaken on a sample of the glacial till from borehole 24-03. The results are provided in Appendix B and are summarized in Table 3. The moisture content of one sample of the glacial till was about 14 percent.

Table 3 – Summary of Grain Size Distribution Test (Glacial Till)

Borehole ID	Sample Number	Sample Depth (metres)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
24-03	13	13.7 to 14.3	37	36	20	7

Auger Refusal and Bedrock

Practical auger refusal was encountered in borehole 24-03 at a depth of about 14.5 metres below the existing ground surface.

Inferred grey limestone bedrock was encountered in boreholes 24-1D and 24-3D at depths of about 17.4 and 15.3 metres below the existing ground surface, respectively, and cored using rotary diamond drilling techniques while retrieving HQ sized bedrock core. The bedrock was cored to a depth of about 18.0 and 15.5 metres below the existing ground surface, respectively.

Groundwater Levels

Monitoring wells were installed in the boreholes to measure stabilized groundwater conditions. Table 6 summarizes the groundwater levels observed on January 15, 25, and 31 and July 29, 2024.

It should be noted that the groundwater levels may be higher during wet periods of the year such as the early spring or following periods of precipitation.

Table 6 – Summary of Groundwater Levels

Borehole ID	Ground Surface Elevation (metres)	Groundwater Depth (metres)	Groundwater Elevation (metres)	Date of Reading
24-1S	86.1	1.5	84.6	January 15, 2024
		0.8	85.3	January 25, 2024
		0.7	85.4	January 31, 2024
		0.6	85.5	July 29, 2024
24-1D	86.2	1.1	85.1	January 15, 2024
		1.2	85.0	January 25, 2024
		1.2	85.0	January 31, 2024
		1.0	85.2	July 29, 2024

Borehole ID	Ground Surface Elevation (metres)	Groundwater Depth (metres)	Groundwater Elevation (metres)	Date of Reading
24-2S	86.5	0.9	85.6	January 15, 2024
		0.8	85.7	January 25, 2024
		0.6	85.8	January 31, 2024
		0.6	85.9	July 29, 2024
24-2D	86.5	1.4	85.6	January 15, 2024
		1.5	85.7	January 25, 2024
		1.5	85.8	January 31, 2024
		1.3	85.9	July 29, 2024
24-03	86.3	1.5	84.8	July 29, 2024
24-04	86.3	0.5	85.8	July 29, 2024

DISCUSSION

Assumptions of existing conditions

No information is known about the foundation width and depth of the structures on site. As such, the following assumptions were made for the settlement assessment:

- The existing footings have a width of about 1 metre and have an underside of footing depth of about 1.5 metres;
- Based on the subsurface conditions encountered in the boreholes and the ground surface elevations at the boreholes, the existing grade was not raised at the processing plant (i.e., no additional filling has occurred);
- The existing groundwater level in the silty clay deposit is at about 0.5 metres below the existing ground surface level; and,
- The loading on the footings is up to about 100 kilopascals.

The above are conservative assumptions it is considered, however, if the footings are deeper or wider than assumed above, or the anticipated loading on the footings is greater than the above, the amount of settlement should be reassessed.

Assessment of Potential for Ground Settlement

An assessment of the potential for soil settlement to occur because of the groundwater extraction has been carried out.

For the existing nearfield structures i.e. those adjacent to the test well, groundwater extraction may cause some settlement in the silt and clay which may present at ground surface as settlement. The assessment of potential impact on the near field structures are subject to the assumptions described below:

- The pump will not be operated continuously.
- Minimal change in groundwater level will occur in the silt and clay layer below the structures for the duration of the pumping, similar to that observed during the monitoring of the test well, and recovery will occur in the times when the pump will not be operated.

Based on the results of the geotechnical investigation, the existing loading conditions at the site has not exceeded the preconsolidation pressure of silty clay deposit (i.e., the existing loading will not cause excessive settlements of the silty clay deposit) and therefore some capacity for additional loading exists.

Based on an assessment of the increase in stresses due to groundwater extraction, the groundwater level can be lowered to a depth of about 5 metres below the existing ground surface at the near field structures without the structures experiencing significant settlements. In other words, lowering the groundwater level 3.5 metres from the measured water level of about 1.5 metres below the existing ground surface is possible without significant effects.

It should be noted that it is not anticipated that the groundwater extraction will lower the groundwater level by 3.5 metres, but some lowering of the groundwater level will inevitably occur at the pumping well location. Correspondingly, some settlement of the near field structures will occur because of the groundwater extraction (and groundwater level lowering), however, the level of ground settlement that may occur is anticipated to be minor and may be up to 25 millimetres (for groundwater level lowering of 3.5 metres) and reduce with increasing distance from the well and with smaller magnitude of groundwater level lowering. This magnitude of settlement is typically acceptable for normal structures in good condition.

As stated above, this is based on conservative assumptions on the existing structure, noting that the level of groundwater level lowering is difficult to predict with certainty.

Additional Actions

For the existing near field structures, it is considered pragmatic to develop a monitoring plan which should be implemented for an initial period of time (say initially up to 6 months). The monitoring plan should include the following:

 Install dataloggers in the monitoring wells for continuous water level readings as well as conduct monthly measurement of the water levels installed at the site. The dataloggers should be downloaded at the same time as the water level site visits. The water levels in

the wells should be measured when the pump is in operation, and also at a time when the pump is not operational;

- A survey point (or points) should be established on the existing structure and bi-monthly readings of the point(s) should be taken for the first year of operation for indications of movement. Natural seasonal variation in the groundwater levels in the shallow wells installed is to be anticipated and may not be a cause for concern, the surveying will assist in removing uncertainty around the effects of these variations.
 - Following the first year, if the groundwater trigger level is exceeded (i.e., water level decreases to greater than 5 meres below ground surface in overburden monitoring wells in the clay), the survey points should be measured bi-monthly for a period of one year.

In the instance that evidence of groundwater level lowering in the silty clay deposits of greater than 3.5 metres (i.e., greater than 5 metres below the existing ground surface), and/or settlement of the existing nearby structure is observed on site beyond an acceptable level (i.e., settlements of greater than about 15 millimetres), and is impacting existing structures, to avoid potential damage it may be necessary to:

- Adjust the planned water taking activities. This may include changes to extraction rates, increasing rest times, increased water level and survey point monitoring frequency; and/or,
- Modifications to existing structures.

It is recommended that a Qualified Professional (QP) be retained by LPFL to review the results of the water level monitoring and surveying. Following a review of the initial data from the 6-month period further commentary can be provided.

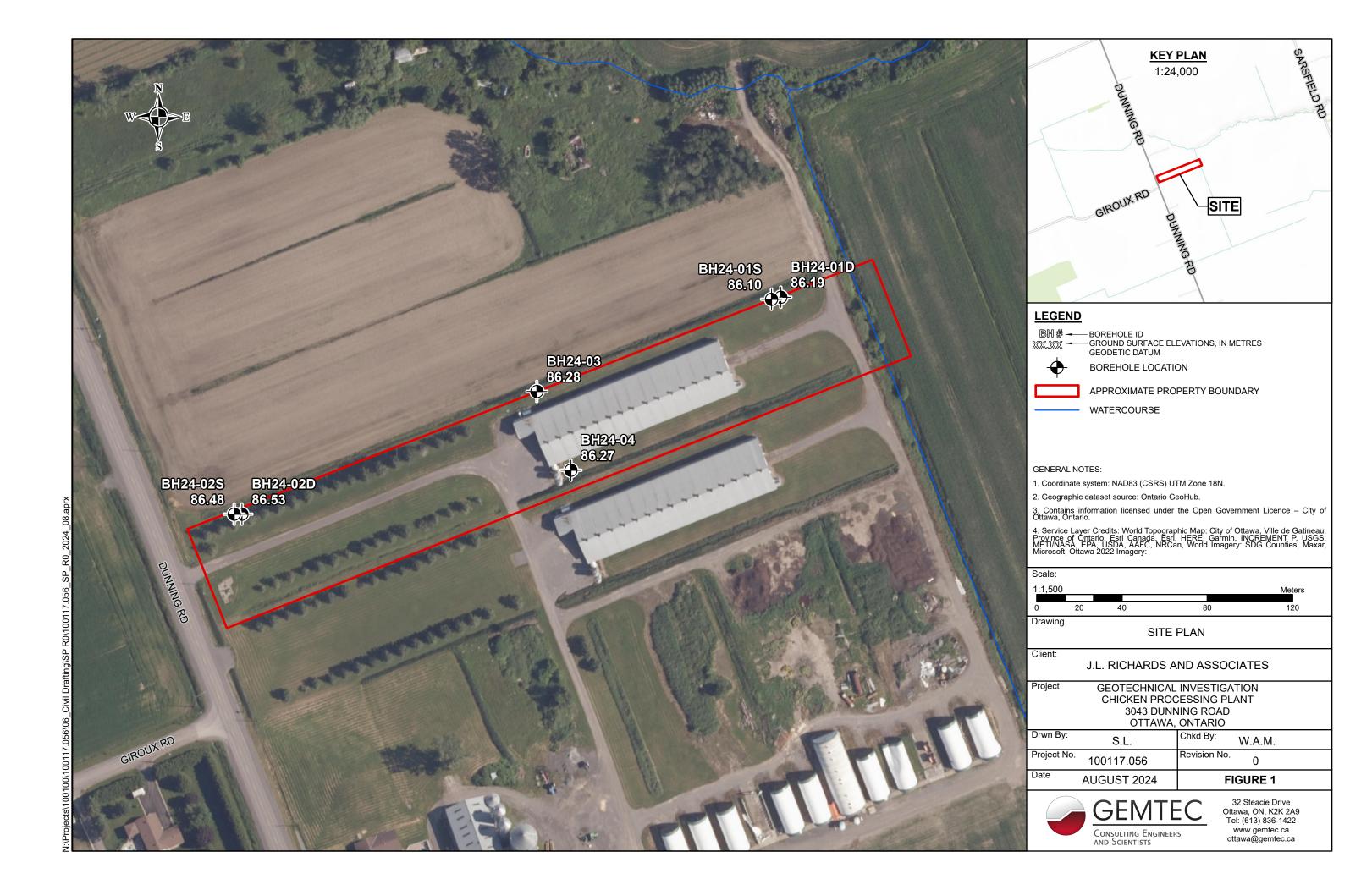
CLOSURE

We trust that this letter is sufficient for your purposes. If you have any questions concerning this information, please feel free to contact the undersigned.

Alex Meacoe, P.Eng.

Senior Geotechnical Engineer

WAM/DC


Daire Cummins, M.Sc.

Enclosures

N:\Projects\100100\100117.056\10_Deliverables\Geotech\100117.56_LTR_GEO_dunning road_Rev.1_2024-12-20.docx

Dec 20, 2024

ABBREVIATIONS AND TERMINOLOGY USED ON RECORDS OF BOREHOLES AND TEST PITS

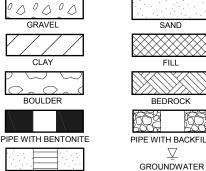
	SAMPLE TYPES
AS	Auger sample
CA	Casing sample
CS	Chunk sample
BS	Borros piston sample
GS	Grab sample
MS	Manual sample
RC	Rock core
SS	Split spoon sampler
ST	Slotted tube
ТО	Thin-walled open shelby tube
TP	Thin-walled piston shelby tube
WS	Wash sample

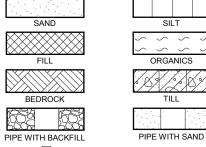
	SOIL TESTS
W	Water content
PL, w _p	Plastic limit
LL, W _L	Liquid limit
С	Consolidation (oedometer) test
D_R	Relative density
DS	Direct shear test
Gs	Specific gravity
М	Sieve analysis for particle size
МН	Combined sieve and hydrometer (H) analysis
MPC	Modified Proctor compaction test
SPC	Standard Proctor compaction test
OC	Organic content test
UC	Unconfined compression test
γ	Unit weight

PENETRATION RESISTANCE

Standard Penetration Resistance, N

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 millimetres (30 in.) required to drive a 50 mm split spoon sampler for a distance of 300 mm (12 in.). For split spoon samples where less than 300 mm of penetration was achieved, the number of blows is reported over the sampler penetration in mm.


Dynamic Penetration Resistance


The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive a 50 mm (2 in.) diameter 60° cone attached to 'A' size drill rods for a distance of 300 mm (12 in.).

WH	Sampler advanced by static weight of hammer and drill rods
WR	Sampler advanced by static weight of drill rods
PH	Sampler advanced by hydraulic pressure from drill rig
РМ	Sampler advanced by manual pressure

COHESION Compa			SIVE SOIL istency
SPT N-Values	Description	Cu, kPa	Description
0-4	Very Loose	0-12	Very Soft
4-10	Loose	12-25	Soft
10-30	Compact	25-50	Firm
30-50	Dense	50-100	Stiff
>50	Very Dense	100-200	Very Stiff
		>200	Hard

LEVEL

GRAIN SIZE

0.01 0,1 1,0 10 100 1000 mm SILT CLAY SAND COBBLE BOULDER 0.08 0.4 2 5 80 200

SCREEN WITH SAND

DESCRIPTIVE TERMINOLOGY

(Based on the CANFEM 4th Edition)

() 1	0 2	0 3	5
	TRACE	SOME	ADJECTIVE	noun > 35% and main fraction
	trace clay, etc	some gravel, etc.	silty, etc.	sand and gravel, etc.

RECORD OF BOREHOLE 24-1D

CLIENT: Laplante Poultry Farms Limited

PROJECT: Hydrogeological Investigation and Terrain Analysis, Proposed Chicken Processing Plant, 3043 Dunning Road, Ottawa, Ontario

JOB#: 100117.056

LOCATION: 3043 Dunning Road - Refer to Figure 1 for location.

SHEET: 1 OF 2 DATUM: CGVD2013 BORING DATE: Jan 5 2024

METRES	RORING METHOD		SOIL PROFILE	, PLOT	ELEV.	3ER		RECOVERY, SATA			NETR SISTA NAMI					m +	WAT	RAL () RI	EMOI	ULD %	ED	ADDITIONAL LAB. TESTING	PIEZOMETE OR STANDPIP
ME	30RING		DESCRIPTION	STRATA PLOT	DEPTH (m)	NUMBER	TYPE	RECO\ mr	BLOWS/0.3m	l		NCE,	BLOV 30	WS/0			′ _P ├── 60	70	W Э— 80	<u> </u>	 90	W _L	ADD LAB.	INSTALLATI
\dashv	<u></u>	+	Ground Surface	ω	86.19				Н Ш	<u>'</u>	:::	_ <u></u>	30	:::		 	1:::	. J		:::	1	:::	+	-
0	7	\dashv	Topsoil		86.19 4 86.09 0.10																H		1	
			Stiff to very stiff, brown SILTY CLAY (WEATHERED CRUST)			1	SS	350	7	•														
					1																			
		9																						
1		0mm				2	SS	558	7	. •							1 1 1							¥
	⁴uger	er (21			1																			-
	Power Auger	Aug																						
	Ğ	Hollow Stem Auger (210mm OD)			1	3	SS	609	7	•					О								МН	
2		ollo			1																			
		_																						
					1	4	SS	558	2	•														
3 -		-	Grev SILTY CLAY (undrained shear		8 <u>3.29</u> 2.90																			
٦			Grey SILTY CLAY (undrained shear strength not determined)		1																			
						5	SS	609	1															
					1																			
4															::::		:::							
						6	SS	609	WH															
					1																			
5						7	SS	609	WH														4	Bentonite Seal
					1																			
					1	8	SS	609	WH															
6											: : :				::::	1	1 1 1 1			:::				
					1																			
					1	9	SS	609	WH															
7					1										::::		1 : : :			:::		: : :	-	
						10	SS	609	WH															
						1,,		600	,,,,															
8						11	SS	609	WH								1						1	
										1														
						12	SS	609	WH															
						14	33	009	VV FI															
9												1											1	
						13	SS	609	WH															
						13	33	009	***															
10				*****						::::						::::	:::						1	
		<u>(</u> -	SEMTEC																				LOGG	GED: SE

RECORD OF BOREHOLE 24-1D

CLIENT: Laplante Poultry Farms Limited

PROJECT: Hydrogeological Investigation and Terrain Analysis, Proposed Chicken Processing Plant, 3043 Dunning Road, Ottawa, Ontario

JOB#: 100117.056

LOCATION: 3043 Dunning Road - Refer to Figure 1 for location.

SHEET: 2 OF 2 DATUM: CGVD2013 BORING DATE: Jan 5 2024

ES	ETHOD	SOIL PROFILE	Ь			SAM	IPLES ≿		● PE RE	NETR SISTA	ATION NCE (N), BL	_OW	S/0.3n	1+ 1	NATUR	TRENC	REMO	DULI	DED	NAL	PIEZO	METER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	RECOVERY, mm	BLOWS/0.3m		NAMIC SISTA					W	.—	R CON			⊢W _L	ADDITIONAL LAB. TESTING	PIEZO C STAN INSTAL	R DPIPE LATIO
_	<u> </u>		ST	(111)			Ľ.	В		10	20 	30	40		0 6	0	70 	80	90) · · · ·		1	
10	Mud Rotary HW (114mm OD)				14	SS	609	WH															
11	MW (11				15	ss	609	WH										C)		МН		
									-														
12					16	SS	609	WH															
					17	ss	609	WH														Bentonite Se	al
13																							
					18	SS	609	WH															
14					19	ss	609	WH													-		
15					20	SS	609	WH													-		
		Loose to compact, grey SILTY SANDY GRAVEL, with cobbles and boulders (GLACIAL TILL)		70.80 15.39	21	ss	406	12		•													
16					22	ss	356	6	•													Filter Sar Par 50mm diamet	ıd .
																						PVC scree	
17	00)	Dark Grey Limestone (Inferred		68.84 17.35	23	SS	356	15		•													
18	Mud Rotary HQ (89mm OD)	Bedrock)		68.21 17.98	24	RC	254																
		End of Borehole		17.98																			
19																							
																						DATE (PTH m)
20																							3 <u>▼</u>
		SEMTEC_ DISJULTING ENGINEERS D SCIENTISTS	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>		1.:::	1.11	1:::	. : :	. :	<u> </u>	<u> </u>	1.111	1::::	1::	. : [. : : :	LOG	GED: SE	

RECORD OF BOREHOLE 24-1S

CLIENT: Laplante Poultry Farms Limited

PROJECT: Hydrogeological Investigation and Terrain Analysis, Proposed Chicken Processing Plant, 3043 Dunning Road, Ottawa, Ontario

JOB#: 100117.056

LOCATION: 3043 Dunning Road - Refer to Figure 1 for location.

1 OF 1 SHEET: DATUM: CGVD2013 BORING DATE: Jan 8 2024

<u> </u>	무	SOIL PROFILE				SAM	IPLES		● PEN RES	NETRA SISTAI	TION NCE (N), BLO	WS/0.3	m +	HEAR S NATUF	STRENG RAL \oplus	REMO	ULDE	وًا مَ	
METRES	BORING METHOD		STRATA PLOT		띪	111	RECOVERY, mm).3m						Í					ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE
MET	RING	DESCRIPTION	ATA F	ELEV. DEPTH	NUMBER	TYPE	COVE	BLOWS/0.3m	▲ DYN	SISTA	PENE NCE, B	LOWS	ON /0.3m	٧	v _P ├─	ER CON	'	— w	F G S	STANDPIPE INSTALLATIO
i	BOF		STR	(m)	ž		Ä	BLO	10) 2	20 ;	30 	40 	50 I	60 I	70 I	80 I	90	~ 3	
0	\perp	Ground Surface		86.10																
		Not Logged - See BH24-1D for details																		
																				$ar{ar{\Psi}}$
1																				
0																				
2																				Bentonite Seal
3												1 1 1 1					1			
	(QO																			
	0mm																			
	Augel jer (21																			
4	Power Auger Hollow Stem Auger (210mm OD)																			
	w Ste																			
	Holk																			
5																				
6																				Filter Sand Pack
																				50mm diameter PVC screen
7																				
		Fred of Bosseled		78.17 7.93																
8		End of Borehole		7.95																
9																				600111
																				GROUNDWATER OBSERVATIONS
																				DATE DEPTH (m) 24/01/25 1.7
9 10																				24/01/31 1.6 🕎
10																				
	G	SEMTEC																	LOGO	GED: SE

RECORD OF BOREHOLE 24-2D

CLIENT: Laplante Poultry Farms Limited

PROJECT: Hydrogeological Investigation and Terrain Analysis, Proposed Chicken Processing Plant, 3043 Dunning Road, Ottawa, Ontario

JOB#: 100117.056

LOCATION: 3043 Dunning Road - Refer to Figure 1 for location.

1 OF 2 SHEET: DATUM: CGVD2013 BORING DATE: Jan 9 2024

METRES	P.	ŀ	SOIL PROFILE	F			SAN	IPLES		J ● RE	SISTA	NCE (N), BLC)WS/	0.3m	+ N	EAR S IATUR	AL ⊕	RE	MOL	JLD	ED	ING ING	PIEZOMETE
ETRE	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	RECOVERY, mm	BLOWS/0.3m	DY	NAMIC	PEN	ETRATI BLOWS	ION	.		WATE	R CO	NTE V	ENT,		۱۸/	ADDITIONAL LAB. TESTING	OR STANDPIP
∑	SORIN		BESSIAI TISIN	TRAT	DEPTH (m)	NOM	}	RECC	LOW	1		20	30	40 40	11 50	W _F		70	80		90	W _L	ADI	INSTALLATI
\dashv	Ī	+	Ground Surface	σ	86.53				Н			1:::	: ::::	10		::::	<u> </u>	1:::	+		1:	: : :		
0		✝	Topsoil		86.43																1			
	i		Stiff to very stiff, brown SILTY CLAY (WEATHERED CRUST)																		1			
		E																			1			
1	\uger	er (21																			1			
	Power Auger	Aug				1	SS	558	7	•											1			
	٦	Ster																			1			₹
	:	Hollow Stem Auger (210mm OD)					00		_												1			
2						2	SS	609	7										+		1			
ľ																					1			
						3	SS	558	2	•))					1		МН	
					83.63				-														''''	
3			Grey SILTY CLAY (undrained shear strength not determined)		8 <u>3.63</u> 2.90					<u> </u>									:		1		1	
						4	SS	609	1												1			
										 											1			
4						5	SS	609	wн												1			
										 														
																					1			
5						6	SS	609	WH												1			Bentonite Seal
																					1			
						7	SS	600	WH															
						<i>'</i>	33	609	VVII															
6														: :			::::		:		1			
						8	SS	609	WH															
																					1			
7										 											1			
7						9	SS	609	wн															
										1											1			
8	li	ادَ				10	ss	609	wн									:::	1		1			
	otary	HW (114mm OD)								-														
	Mud Rotary	1141								1											1:			
		Ĭ				11	SS	609	WH										c) : : :			МН	
9										<u> </u>											1:		1	
									,,,,,												1:			
						12	SS	609	WH												1:			
										1											E			
10				[xxxxxx							::::						::::		:		1			

RECORD OF BOREHOLE 24-2D

CLIENT: Laplante Poultry Farms Limited

PROJECT: Hydrogeological Investigation and Terrain Analysis, Proposed Chicken Processing Plant, 3043 Dunning Road, Ottawa, Ontario

JOB#: 100117.056

LOCATION: 3043 Dunning Road - Refer to Figure 1 for location.

SHEET: 2 OF 2 DATUM: CGVD2013 BORING DATE: Jan 9 2024

ן נְ	보	SOIL PROFILE	1 .	1		SAN	//PLES	_	● PE RE	NETR/ SISTA	ATION NCE (N), BLO	WS/0.3	ßm -	+ NA	TURA	AL +F	REMOL	ı), kPA JLDED	무일	
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	RECOVERY,	BLOWS/0.3m	DY	NAMIC	PENE	TRATIO	ON.			/ATEI	R CON'	TENT,		ADDITIONAL LAB. TESTING	PIEZOMETE OR STANDPIPI
٦ٍ≥	ORIN	DESCRIPTION		DEPTH (m)	MON	}	ZEC0	LOWS					0.3m 40	50	W _P ⊦	7	_	30 9	⊢ W _L	ADE LAB.	INSTALLATIO
	<u> </u>		.v				-	<u>m</u>	::::	::::	20	30	1:::	: ::	60	7	::::	::::	::::	\vdash	
10					13	SS	609	WH												-	
		Loose to compact, grey SANDY SILT, with trace to some gravel (GLACIAL		76.02 10.51																	
11		TILL)			14	SS	609	4												-	Bentonite Seal
12					15	SS	450	9													
12																					
					16	SS	540														
13		Compact to dense, grey SILTY SAND, some gravel, with cobbles and boulders (GLACIAL TILL)		7 <u>3.58</u> 12.95	17	ss	440	13		•											
		,																			
14					18	SS	580	35				•									Filter Pack 50mm diameter PVC screen
15	ud Kotary (89mm OD)																				
15	Mud Kotary HQ (89mm Ol	Dark Grey Limestone (Inferred		71.21 15.32	19	RC	720														
ŀ	+	Bedrock) End of Borehole		71.21 15.32 70.99 15.54					1												
16																					
17																					
18																					
19																					
																					GROUNDWATE OBSERVATION DATE DEPTH (m)
																					24/01/25 2.5 <u>V</u> 24/01/31 2.5 <u>V</u>
20																					_
		SEMTEC INSULTING ENGINEERS D SCIENTISTS																		LOGG	ED: SE

RECORD OF BOREHOLE 24-2S

CLIENT: Laplante Poultry Farms Limited

PROJECT: Hydrogeological Investigation and Terrain Analysis, Proposed Chicken Processing Plant, 3043 Dunning Road, Ottawa, Ontario

JOB#: 100117.056

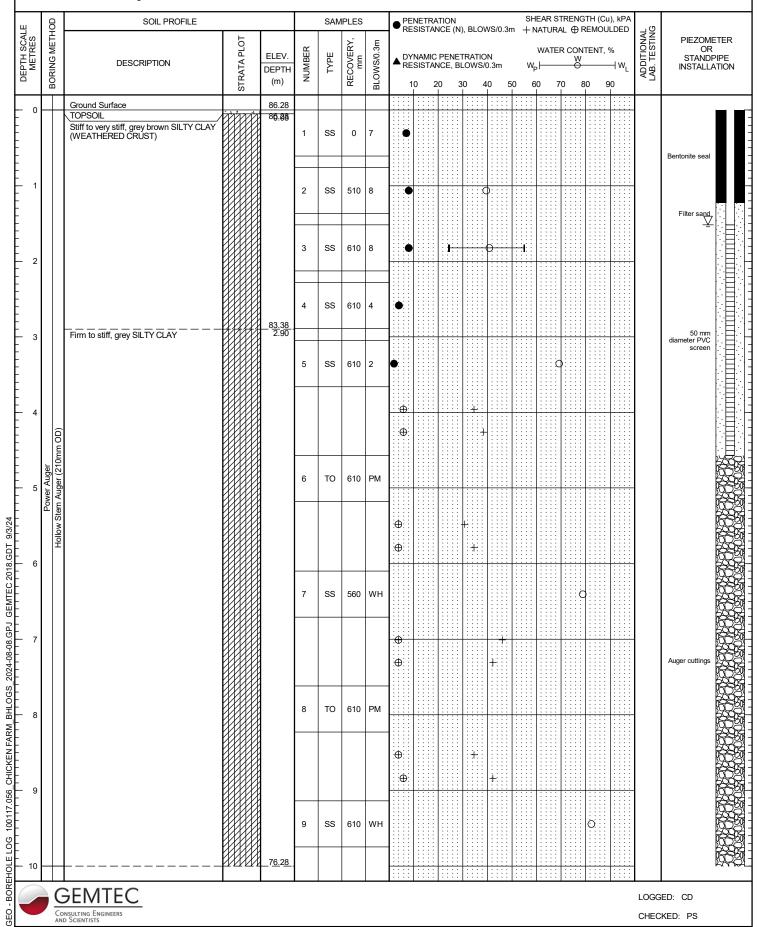
LOCATION: 3043 Dunning Road - Refer to Figure 1 for location.

SHEET: 1 OF 1 DATUM: CGVD2013 BORING DATE: Jan 8 2024

SALE	THOD	SOIL PROFILE	-	1		SAM	IPLES	_	● PEI RE	NETRA SISTA	ATION NCE (N), BLO\	WS/0.3r	HS 1+ m	IEAR S' NATUR/	TRENG AL ⊕ F	TH (Cu REMOU	ı), kPA ILDED	JAL	DIEZO	METE	ΕÞ
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	RECOVERY, mm	BLOWS/0.3m	1		PENE NCE, B			W	_P	R CON' W		\dashv W_L	ADDITIONAL LAB. TESTING	PIEZO (STAN INSTAL	DR IDPIPE LLATIO	-i^ E Ol
	<u> </u>	Cround Surface	ST	(m) 86.48			Ľ.	В	1	0 2	20 3	30 4	40 !	50 6	50 7	70 8	80 9	90	<u> </u>			_
0		Ground Surface Not Logged - See BH24-2D for details		86.48																		I
																						l
																					▼ ▼	l
1																						l
																						l
																						l
2																				Bentonite Se	nal	l
																				Domestico de	, , ,	l
																						l
3	<u> </u>																					l
	mm O[l
	Auger er (210																					l
4	Power Auger Hollow Stem Auger (210mm OD)																					l
	ow Ste																					ı
	亨																					ŀ
5																						E
																						ŀ
6																				Filter Sai Pa	nd	F
																				50mm diamet PVC scree	er 🗀	E
																						Ė
7																						
																						E
				78.55																		E
8		End of Borehole		78.55 7.93																		_
9																			1	GROUN OBSER	IDWATE	EF
																				DATE DE	PTH (m)	NS
																					7 <u>▼</u> 5 <u>▼</u>	
10																			1		-±	Γ

RECORD OF BOREHOLE 24-03

CLIENT: Laplante Poultry Farms Limited


PROJECT: Geotechnical Investigation, Proposed Chicken Processing Plant, 3043 Dunning Road, Sarsfield, Ontario

JOB#: 100117.056

LOCATION: See Site Plan, Figure 1

SHEET: 1 OF 2 DATUM: CGVD28 BORING DATE: Jul 22 2024

CHECKED: PS

RECORD OF BOREHOLE 24-03

CLIENT: Laplante Poultry Farms Limited

PROJECT: Geotechnical Investigation, Proposed Chicken Processing Plant, 3043 Dunning Road, Sarsfield, Ontario

JOB#: 100117.056

LOCATION: See Site Plan, Figure 1

2 OF 2 CGVD28 SHEET: DATUM: CGVD28
BORING DATE: Jul 22 2024

ပ္ပ	H.	SOIL PROFILE	<u> </u>			SAN	IPLES		- •	RE	NE IF SIST/	ANC	E (N)	, BLO	WS/0.3	3m -	+ NA	ATUR/	TRENC	REM	OULE	DED	NAL ING	PIEZOMETE
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	RECOVERY, mm	BLOWS/0.3m		DY RE	NAMI SIST/	C P	ENET E, BL	RATIO	ON '0.3m		V W _D	WATEI	R CON W	NTEN		w _L	ADDITIONAL LAB. TESTING	OR STANDPIP INSTALLATIO
	BOR		STRA	(m)	N	-	REC	BLOV		1		20	3			50	60) 7	0	80	90		43	
10 -	\blacksquare	For the Sife and Oll DVOLAV	<i>и</i> ииии.	10.00					111	::					:::				: : : :					hu.
		Firm to stiff, grey SILTY CLAY		10.00					: : :d	. <u>.</u>						: : : : : : : :	::							
									: :	7 						: : 								
11					10	SS	610	WH												10				
	(a																							
	0 mm									÷:: ⊕:					::+	: : :								
12	³r (210								1	Φ.						: :+								
	Fower Auger em Auger (21				44	-00	040	,,,,,																Auger cuttings 50
	Hollow Stem Auger (210mm OD)				11	SS	610	WH									?: ::							
13	Hollo								<u> </u>	::	:::	: :						:::::				:::		
		Dense to very dense, grey GRAVEL and SAND, some silt, trace clay, with		73.07 13.21	12	SS	610	44							•				:0:					
		cobbles and boulders (GLACIAL TILL)							∃ ∷ :::	:0														
14					13	SS	355	82	::						:::				: : : :				МН	
					10		333	02		::													IVIII	
ŀ	+	End of Borehole		71.80 14.48																				
		Auger Refusal																						
15										::														
16																								
17									:::	::					1									
																.								
18									::	::					:::				: : : :					
19															1:::		::							GROUNDWATE OBSERVATION
																								DATE DEPTH (m)
																								24/07/29 1.5 💆
20												: : : :												
	C	SEMTEC				•	•		_			-											LOGG	GED: CD

RECORD OF BOREHOLE 24-04

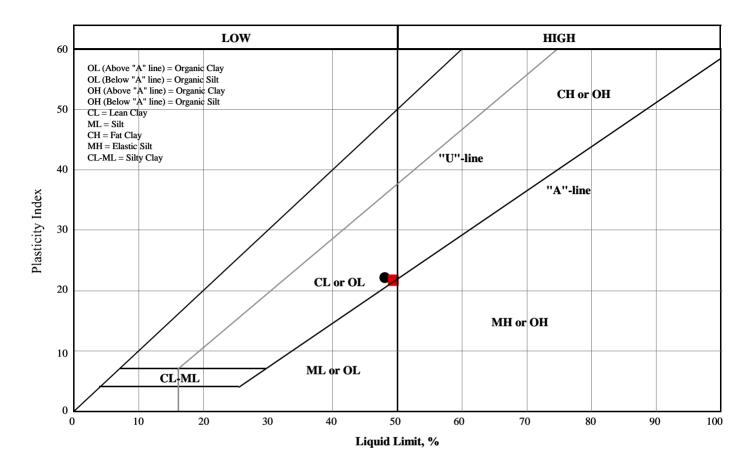
CLIENT: Laplante Poultry Farms Limited

PROJECT: Geotechnical Investigation, Proposed Chicken Processing Plant, 3043 Dunning Road, Sarsfield, Ontario

JOB#: 100117.056

LOCATION: See Site Plan, Figure 1

SHEET: 1 OF 1 DATUM: CGVD28 BORING DATE: Jul 22 2024

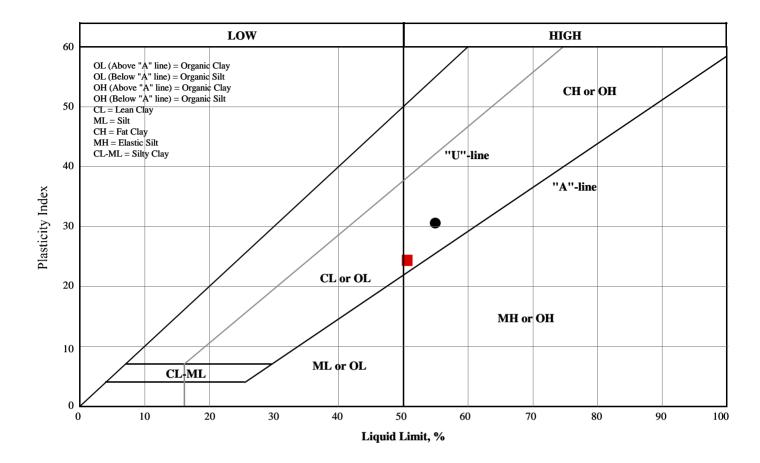

, L	HOD	SOIL PROFILE		ī		SAM	IPLES		● PE RE	NETRA SISTA	ATION NCE (N), BLC	WS/0).3m	+ N	EAR S	TRENG AL ⊕ F	STH (C REMOU	u), kPA JLDED	AR NG	DIEZOME	
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	RECOVERY, mm	BLOWS/0.3m	▲ DY RE	NAMIC SISTA	PENE NCE, B	TRATI	ON /0.3m	1	W _P		R CON W	TENT,	% W _L	ADDITIONAL LAB. TESTING	PIEZOME OR STANDF INSTALLA	PIPE
i	BO		STR	(m)	Ž		R	BLC	1	0 2	20 3	30 	40 	50	6	0 7	'0 E	30	90	٠, ٦		
0		Ground Surface TOPSOIL	-a1a1a a a1a	86.27 8 6 .08						::::							::::					
		Stiff to very stiff, grey brown SILTY CLAY (WEATHERED CRUST)		09:66	1	ss	355	5	•												∑_ Bentonite seal	
1																						
					2	SS	405	8	•												Filter sand	
					3	ss	610	5														
2																						
	(QO				4	SS	610	2	•													
3	ger (210mm OD)			83.22													: : : :		:::::		50 mm diameter PVC	
				8 <u>3.22</u> 3.05	_																screen	
	Power m Auc				5	SS	610	3														
	Power Au Hollow Stem Auger																					
4	불				6	SS	610	wн														
5					7	SS	610	WH														200
					8	SS	610	WH													Auger cuttings	
6						33	010	VVII													Auger Cuttings	
6																						
					9	SS	610	wн														
		End of Borehole		79.56 6.71																		60
7																						
8																						
9										::::			::									
9																					GROUNDW OBSERVAT	
																					DATE DEPTI (m) 24/07/29 0.4	_
10																::::	::::					‡
		CENATE C							::::	::::	::::	::::	::	:	:::	::::	::::	::::	::::			\perp
		DEMTEC DISJULTING ENGINEERS D SCIENTISTS																		LOGG	SED: CD	

Project: 3043 Dunning Road, Zoning By-law Amendment, Propo

Project #: 100117056

Plasticity Chart (D4318)

Symbol	Borehole /Test Pit	Sample Number	Depth	Liquid Limit	Plastic Limit	Plasticity Index	Non-Plastic	Moisture Content, %
•	24-01D	SA 15	10.67-11.28	48.1	25.9	22.1		85.23
	24-02D	SA 11	8.38-8.99	49.4	27.7	21.7		80.93

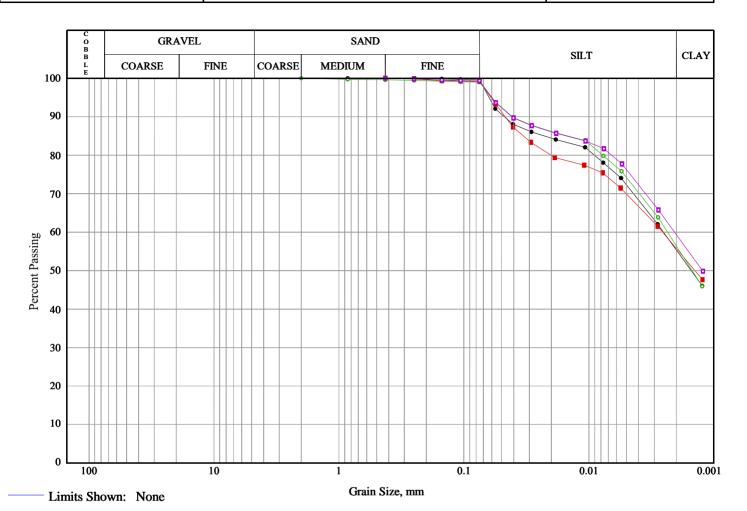


Project: 3043 Dunning Road, Zoning By-law Amendment, Propo

Project #: 100117056

Plasticity Chart (LS-7034/ASTM D4318)

Symbol	Borehole /Test Pit	Sample Number	Depth	Liquid Limit	Plastic Limit	Plasticity Index	Non-Plastic	Moisture Content, %
•	24-03	SA 03	1.52-2.13	54.9	24.4	31	N/A	40.8
	24-03	SA 10	10.67-11.27	50.6	26.2	24	N/A	83.5

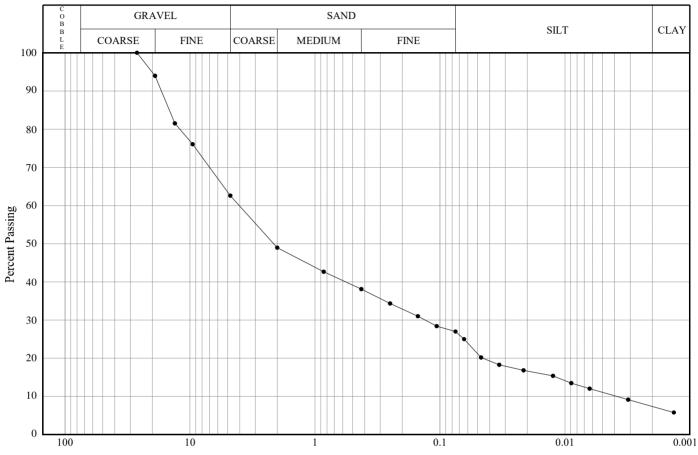


Project: 3043 Dunning Road, Zoning By-law Amendment, Propo

Project #: 100117056

Soils Grading Chart (LS-702/ ASTM D-422)

Line Symbol	Sample	Borehole/ Test Pit	Sample Number	Depth	% Cob.+ Gravel	% Sand	% Silt	% Clay
		24-01D	SA 03	1.52-2.13	0.0	0.4	44.2	55.4
		24-01D	SA 15	10.67-11.28	0.0	0.8	43.4	55.8
		24-02D	SA 03	2.28-2.89	0.0	1.0	42.5	56.5
		24-02D	SA 11	8.38-8.99	0.0	0.7	39.9	59.4


Line Symbol	CanFEM Classification	USCS Symbol	D ₁₀	D ₁₅	D ₃₀	D ₅₀	D ₆₀	D ₈₅	% 5-75μm
	Clay and silt, trace sand	-				0.00	0.00	0.02	44.2
-	Clay and silt, trace sand	CL				0.00	0.00	0.03	43.4
•	Clay and silt, trace sand	_				0.00	0.00	0.01	42.5
—	Clay and silt, trace sand	CL				0.00	0.00	0.02	39.9

Project: 3043 Dunning Road, Zoning By-law Amendment, Propo

Project #: 100117056

Soils Grading Chart (LS-702/ ASTM D-422)

 >	Limits	Shown:	None

Grain Size, mm

Line Symbol	Sample	Borehole/ Test Pit	Sample Number	Depth	% Cob.+ Gravel	% Sand	% Silt	% Clay
	GLACIAL TILL	24-03	SA 13	13.71-14.32	37.4	35.6	19.6	7.4

Line Symbol	CanFEM Classification	USCS Symbol	D ₁₀	D ₁₅	D ₃₀	D ₅₀	D ₆₀	D ₈₅	% 5-75μm
	Gravel and sand, some silt, trace clay	N/A	0.004	0.012	0.13	2.14	4.04	14.62	19.6

GEMTEC Consulting Engineers and Scientists Limited 32 Steacie Drive Ottawa, ON K2K 2A9

tel: 613.836.1422 fax: 613.836.9731 ottawa@gemtec.ca www.gemtec.ca

December 20, 2024 File: 100117.056

Ministry of the Environment, Conservation and Parks Environmental Assessment and Permissions Division Brownfields and Permit To Take Water Permit To Take Water Unit, Floor 1 135 St Clair Ave W, Toronto, ON, M4V 1P5

ATTN: Archana Uprety, Director, Environmental Permissions Branch

Re: Application for a Category 3 Permit To Take Water Hydrogeological Study Supporting Letter

3043 Dunning Road, Ottawa, Ontario

GEMTEC Consulting Engineers and Scientists Ltd. (GEMTEC) was retained by Laplante Poultry Farms Limited (LPF) to prepare a Category 3 Permit to Take Water (PTTW) application for their industrial supply well located at 3043 Dunning Road, Ottawa, Ontario. The proposed water taking consists of a long-term water taking exceeding 50,000 L/day for a chicken processing facility.

1.1 PTTW Application Documents

The required elements of a Category 3 PTTW application include:

- 1. Completed MECP PTTW application form (online application);
- 2. Completed Schedule 1 Implementation of Water Conservation in Accordance with Best Management Practices and Standards for the Relevant Sector (online application);
- 3. Scientific study completed by a qualified person that includes:
 - Appropriate mapping and figures;
 - Description of the proposed water taking activities;
 - Calculation of the water taking needs;
 - An assessment of the potential adverse impacts on existing groundwater users and/or the natural environment; and
 - Recommendations and monitoring/contingency measures for inclusion within the conditions of the PTTW.

1.2 Technical Study

A supporting hydrogeological study that serves as the third requirement of the application was completed by GEMTEC October 2, 2024 (revision 1) and is title "Hydrogeological Investigation & Terrain Analysis, Proposed Chicken Processing Facility, Part of Lot 7, Concession 4 (3043 Dunning Road), Ottawa, Ontario". This letter should be considered jointly with the technical report and online application documents to consist of the complete submission package in support of the PTTW application. Details regarding the water taking sources, volumes, anticipated impacts, and monitoring and contingency measures are summarised in this letter to facilitate the review process.

1.3 PTTW Sources

Sources of water taking include an existing groundwater supply well for industrial purposes, as summarised in Table 1.

Table 1 Summary of Proposed Water Taking Sources

Source Name	Source: Type:	Category and Description
Source 1 – Existing Supply Well (Industrial)	Well	Food Processing – chicken processing facility (abattoir); water used for processing and sanitary facilities

Daily water taking volumes were estimated as 98,900 L/day using historical data from an existing chicken processing facility owned by LPF and a 15% buffer. Water taking will occur over a 12-hour period (137.4 L/min), 5 days a week. A summary of the water taking volumes, pumping rates, and number of days requested per year are provided in Table 2. Excluding evaporative losses, well water will be directed for human or livestock consumption, septic uses, or to an approved off-site NASM facility via an approved transfer method.

Table 2 Summary of Water Taking Volumes, Rates and Days

Source	Water Taking Volume (L/day)	Pumping Rate (L/min)	Requested Days per Year		
Source 1	98.900	137.4	265		
(Supply Well)	90,900	137.4	203		

1.4 Proposed PTTW Conditions

No water quantity/quality impacts to the environment or adjacent well users are anticipated; however, some uncertainty relating to the sustainability of the water supply aquifer persists relating

to the lateral extent and thickness of the overburden and fractured rock aquifer (which is variable within 500 metres of the site) and aquifer recharge. Further, the geotechnical investigation did not identify any significant risk for soil settlement, but recommended monitoring following initial groundwater taking withdrawals. Accordingly, the following joint water quantity and soil settlement monitoring program is proposed:

- Continuous water level monitoring in on-site wells, including the supply well (TW1) and monitoring wells BH24-01S, BH24-01D, BH24-03 and BH24-04 (refer to Figure B.1 of Attachment B for monitoring well locations).
 - Continuous water level monitoring with the use of electronic dataloggers, monitoring at a minimum frequency of 6-hours.
 - Manual water levels measurements should be taken monthly.
- A survey point (or points) should be established on the existing structure and bi-monthly readings of the point(s) for the first year should be taken for indications of movement. Natural seasonal and interannual variation in the groundwater levels in the wells installed is to be anticipated and may not be a cause for concern. The surveying will assist in removing uncertainty around the effects of these variations.
 - Following the first year, if the groundwater trigger level is exceeded (i.e., water level decreases to greater than 5 metres below ground surface in the overburden monitoring wells in the clay), the survey points should be measured bi-monthly for a period of one year.
- Monitoring well groundwater quantity trigger level:
 - Trigger level: Monitoring well BH24-02D if groundwater levels decrease below 25% of available drawdown (4.25 metres below ground surface), a QP should be retained to review water level monitoring data and assess whether the pumping operations are likely causing unacceptable impacts to the water supply aquifer.
- Soil Settlement trigger level:
 - Trigger Level: If water levels in overburden (clay) monitoring wells decrease greater than 3.5 metres (to 5 metres below ground surface) a QP should be retained to investigate the matter by surveying the settlement markers and determine if it may be necessary to:
 - Adjust the planned water taking activities. This may include changes to extraction rates, increasing rest times, increased water level and survey point monitoring frequency; and/or
 - Modifications to existing structures.

It is recommended that a QP be retained by LPF to review the results of the water level monitoring and surveying to assess whether there are unacceptable impacts from groundwater takings on groundwater quantity and soil settlement and to provide recommendations for mitigation measures to alleviate impacts (e.g., water storage, reduced water taking, supplementation of the existing

water supply with other sources), if applicable. The proposed QP review schedule is as follows: 6-months, 1-year, 2-year, 4-year, 6-year, 8-year, 10-year.

1.5 Closure

We trust this letter provides sufficient information for your present purposes. If you have any questions concerning this letter, please do not hesitate to contact our office.

Sincerely,

Jason KarisAllen, M.A.Sc., P.Eng. Water Resources Engineer

Andrius Paznekas, M.Sc., P.Geo.

Hydrogeologist

a. Yawekas

civil

geotechnical

environmental

structural

field services

materials testing

civil

géotechnique

environnement

structures

surveillance de chantier

service de laboratoire des matériaux

