

September 4, 2024 File: 100011.082

Millers Farm 6158 Rideau Valley Drive North Manotick, Ontario K4M 1B3

Attention: Jaime Mallory, Planner I, Development Review – Rural Services

Re: Hydrogeological Investigation, Terrain Analysis, and Groundwater Impact Assessment
Zoning Amendment
6158 Rideau Valley Drive, Ottawa, Ontario

This report presents the results of a hydrogeological investigation, terrain analysis, and groundwater impact assessment in support of a minor zoning by-law application with the City of Ottawa for the property located at 6158 Rideau Valley Drive, Ottawa, Ontario.

1.0 INTRODUCTION

The subject property covers an approximate area of 60.9 hectares (609,000 m²), but for the purposes of the minor zoning by-law application investigations, the 'Site' referenced herein refers to the 5.4 hectare (54,400 m²) portion of the subject property stretching from the frontage of the property along Rideau Valley Drive to a drainage ditch located west of the existing structures. The Site boundary is outlined in Figure 1 (Appendix A). It is understood that the current investigation is required to support a minor zoning by-law amendment in support of bringing existing home-based businesses on the Site into compliance with requirements of the Zoning By-law.

The work is being completed in accordance with MECP Procedure D-5-4 and D-5-5, and also with the City of Ottawa Hydrogeological and Terrain Analysis Guidelines (March, 2021). A technical consultation was also completed with relevant City Officials and NOVATECH on January 16th, 2024.

The objective of the hydrogeological investigation and terrain analysis presented herein is:

- To demonstrate that the construction of any new well on the property is in accordance with the requirements of the Ministry of the Environment, Conservation and Parks;
- To demonstrate that the quality of the well water meets the Ontario Drinking Water Quality Standards (ODWQS) and maximum treatable limits prescribed in Ontario Ministry of Environment, Conservation and Parks (MECP) Procedure D-5-5;

- To demonstrate that the quantity of water meets the MECP Procedure D-5-5 requirements; and
- To demonstrate that the results of the septic impact assessment meets the MECP Procedure D-5-4 requirements.

In addition to the hydrogeological investigation and terrain analysis, a groundwater impact assessment (GWA) was completed, which included the assessment of current on-site activities and their associated impacts and recommendations for applicable Best Management Practices (BMPs).

This report is subject to the Conditions and Limitations of This Report which follow the text of the report, and which are considered an integral part of the report.

2.0 TERRAIN ANALYSIS

2.1 Site Features, Topography and Drainage

The Site consists mainly of cleared and agricultural area, with unpaved access roadways, existing home-based business buildings, and agricultural structures (nine total structures). It is understood the Site consists of one domestic four-bedroom dwelling, and a workshop that is used by six employees. Two existing onsite domestic wells and two individual sewage systems are located on the Site, as displayed in the Detailed Site Plan (Figure 2, Appendix A). The Site is bounded to the east by Rideau Valley Dr N, with primarily agricultural crop and/or pasture land to the north, west, and south. Sections of provincially significant wetlands are present approximately 300 meters to the west and 90 meters to the east of the Site. The Rideau River is located approximately 300 meters to the east of the Site.

Topographic mapping data indicates that elevations across the Site range from approximately 88 metres above sea level (masl) in the west and eastern portions of the property to 93 masl in the central portion of the property. The elevation increases to a topographic ridge that strikes in an approximate north-south direction which is associated with a glacial drumlin feature that the Site is situated on. Drainage of the Site is expected to follow the topography and drain generally to the west and east down the associated banks of the drumlin.

Regional topography indicates decreasing elevations to the east, towards the Rideau River. Local overburden groundwater flow direction is expected to follow local topography and flow to the west for the western portion of the Site and east for the eastern portion for the Site, as the topographic ridge is expected to act as a local groundwater flow divide. Bedrock groundwater flow direction is expected to follow regional topography and flow generally to the east toward the Rideau River.

2.2 Potential Sources of Contamination

Potential sources of on-Site contamination to the water supply aquifer include ongoing agricultural activities, greenhouse farming, and existing commercial business activities (i.e., trucking business and landscaping supply business), and onsite sewage systems.

Potential off-Site sources of contamination include impacts from Rideau Valley Drive N bordering the Site to the east, agricultural activity on properties north, west, and south of the Site, and neighbouring sewage systems.

2.3 Surficial and Bedrock Geology

Surficial geology maps (Ontario Geologic Survey, 2010) indicate the Site is mainly underlain by fine-textured glaciolacustrine deposits of silt and clay, with minor sand and gravel. A portion of the eastern section of the Site is mapped as stone-poor sandy silt to silty sand-textured till on Paleozoic terrain. Available MECP water well records in the area indicate the overburden thickness ranges from approximately 15.9 to 24.5 meters below ground surface (10th and 90th percentile respectively).

Bedrock geology maps (Armstrong and Dodge, 2007) indicate the Site is underlain by limestone of the Oxford Formation. Available karst mapping (Brunton and Dodge, 2008) indicates that there are no documented karst formations within 10 kilometres of the Site.

2.4 Subsurface Conditions

Six boreholes (labelled BH24-01 through BH24-06) were advanced by Strata Drilling Group using a Geomachine GM100 to depths ranging between 3.65 m below ground surface (bgs) to 6.10 m bgs as part of the GETMEC Phase Two Environmental Site Assessment (ESA) investigation, conducted on July 18, 2024. The details and conclusions of this Phase Two ESA are provided under separate cover.

The macro core soil samples were obtained at regular depth intervals and logged in the field. The subsurface conditions and detailed soil stratigraphy were documented by GEMTEC staff during the drilling program. Four out of six locations were installed with groundwater monitoring wells (labelled BH/MW24-01, BH/MW24-03, BH/MW24-04, and BH/MW24-05) as part of the investigation.

The soil conditions encountered during the borehole drilling program are presented in the Record of Borehole Logs provided in Appendix B.

2.4.1 Geologic Conditions

The soil stratigraphy was visually observed and logged during the field investigation. The Record of Borehole Logs indicate the subsurface conditions encountered at the specific locations only. Boundaries between zones on the logs are often not distinct, but rather are transitional and have

been interpreted based on observations by trained GEMTEC field personnel. The precision with which subsurface conditions are indicated depends on the method of drilling, the frequency and recovery of samples, the method of sampling, and the uniformity of the subsurface conditions. Subsurface conditions at other than the test locations may vary from the conditions encountered in the boreholes. The following presents an overview of the subsurface conditions encountered in the boreholes advanced as part of this investigation.

The subsurface soil conditions encountered in the boreholes generally consists of brown silty sand with varying amounts of gravel from BH24-01 to BH24-04, whereas the subsurface soil conditions at BH24-05 and BH24-06 consisted of brown silty sand with varying amounts of gravel underlain by silty clay.

The overburden thickness is greater than 3 meters, and therefore, the Site does not display evidence of thin soils (i.e., less than 2 meters thick). The subsurface conditions are generally consistent with geologic mapping.

2.4.2 Groundwater - Elevations and Flow Direction

Groundwater elevations were calculated based on depth to groundwater measurements collected on August 2, 2024. Groundwater depths were measured directly from the top of each monitoring well riser using an electronic water level tape. Depth measurements were converted to groundwater elevations by subtracting the measured depth from the elevation of the top of each monitoring well riser.

All the monitoring wells were installed to straddle the anticipated water table based on conditions observed during drilling. The well screens were located within the overburden for all the monitoring wells.

The location of these monitoring wells is shown in Figure 2, Appendix A. The details of these monitoring wells are provided in Table 1.

Table 1: Monitoring Well Details

MW ID	Soil stratigraphy at Screen	Water Level (m Top of Casing)	Height of riser pipe (m)	Ground Elevation (m)	GW Elevation (m)
MW24-1	Overburden	3.36	0.10	93.43	89.97
MW24-3	Overburden	1.36	0.11	91.17	89.70
MW24-4	Overburden	1.46	0.12	91.41	89.83
MW24-5	Overburden	3.14	0.02	91.61	88.45

Groundwater elevations ranged from 88.45 and 89.97 masl on August 2, 2024. It is noted that each of the onsite monitoring wells were installed on the southwestern portion of the property, on the western side of the onsite drumlin. In the area of the Site that was investigated with monitoring wells, the inferred direction of shallow groundwater flow is generally to the southwest, based on measured groundwater elevations.

Seasonal fluctuation in water levels at the Site should be expected. Considering only one monitoring event was conducted, seasonal trends could not be identified. However, shallow groundwater level elevations are typically highest following the spring recharge and decline throughout the summer months.

2.5 MECP Water Well Records

A search of the Ministry of Environment, Conservation and Parks (MECP) water well records (https://www.ontario.ca/environment-and-energy/map-well-records) returned 32 water well records within 500 metres of the Site (Figure 1). Of the 32 wells, 21 were domestic supply wells, 2 were monitoring or test wells, and 9 were unidentified. A summary of the water well record data is provided in Appendix C.

Table 2 provides a summary of the well characteristics for the 32 water well records, including depth to water found, , depth to bedrock, and total well depth.

Table 2: Summary of Water Well Records Search Results

Parameter	10 th Percentile	90 th Percentile	Average / Geometric Mean
Depth Water Found (m)	22.8	84.4	53.9/46.1
Depth to Bedrock (m)	15.9	24.5	19.7/19.3
Total Well Depth (m)	28.4	76.0	53.3/48.0

The MECP Water Well Records for drinking water wells within 500 meters of the site indicate that the majority of existing private wells are completed in limestone bedrock. Bedrock geology maps (Ontario Geologic Survey, 2011) indicate the overburden at the Site is underlain by limestone of the Oxford Formation, with aligns with observations during drilling.

The well records indicate that soil thicknesses range from approximately 15.9 to 24.5 meters below ground surface (10th and 90th percentile respectively) with a geometric mean of 19.3 metres, and therefore, thin soils (i.e., less than 2 meters thick) are not expected on the Site.

3.0 WATER QUALITY AND QUANTITY ASSESSMENT

3.1 Test Well Construction

Two existing wells located on the Site were reviewed as part of the hydrogeological investigation, herein referred to as 'TW1' and 'PW1. The MECP water well record for TW1 is provided in Appendix D and the construction details are summarized in Table 3, below. The water well record was unavailable for PW1 at the time of this investigation. The approximate locations of the water wells are provided on the Detailed Site Plan, Figure 2.

Table 3: TW1 Water Well Construction Details

Well Construction Details – TW1	(Well Tag# A025676)
Depth to Bedrock	27.70 metres
Length of Well Casing Above Ground Surface	0.69 metres ⁽¹⁾
Length of Well Casing Below Ground Surface	28.64 metres
Depth Water Found	20.71 metres
Total Well Depth	75.58 metres
Bedrock Description	Limestone

Notes: 1. Casing height measured by GEMTEC staff during Site work.

3.2 Groundwater Quantity

3.2.1 Assessment of Groundwater Quantity Requirements

The zoning amendment for the Site is being completed in support of bringing existing home-based businesses on the Site into compliance with requirements of the Zoning By-law. Water usage for the Site is unknown and for the purposes of re-zoning, the water demand is assumed to be equal to the maximum allowable septic flow of 10,000 litres per day under MECP Procedure D-5-4. For commercial uses, water usage is estimated over an eight-hour period, which would require well yields of approximately 21 litres per minute.

The Site well(s) are currently servicing one residential dwelling, one office worker, and six seasonal workers. The total water demand based on the current Site usage is expected to be less than 10,000 litres per day.

3.2.2 Pumping Test

A pumping test was carried out on test well TW1 by a member of GEMTEC staff on June 19, 2024. Test well TW1 is an existing water supply well currently servicing a residential dwelling, with no groundwater quantity issues being reported. A licensed well technician (Air Rock Drilling Ltd.) removed the existing pump and installed a temporary submersible pump for the purposes of the pumping test. Following completion of the pumping test, the temporary submersible pump was removed and the existing pump re-installed following chlorination / disinfection.

The well was pumped at a constant rate of approximately 38 litres per minute for a period of eight hours. The test was started at a pumping rate of approximately 66 litres per minute for approximately 20 minutes, and then decreased to a flow rate of 38 litres per minute and pumped constantly at this rate for 8 hours (total test length 8 hours and 20 minutes). The water from the pumping test was discharged to the ground surface approximately 10 metres away from the test well such that the discharge flow was directed away from the well head.

Water level and flow rate measurements were taken at regular intervals throughout the pumping test. Water levels were also taken during the recovery phase of the pumping test (after the pump was turned off) for a total of 20 minutes. The pumping test drawdown and recovery graph is provided in Appendix E.

During the eight-hour pumping test, the water level decreased approximately 2.76 metres, from a static water level of 8.69 metres below ground surface. Frequent flow rate measurements confirmed that the pumping was maintained at a constant rate of approximately 38 litres per minute, excluding the first 20 minutes of the test. The pumping test withdrew a total volume of approximately 18,200 litres, and the well recovered 95 % after the pump was turned off within approximately 15 minutes.

3.2.3 Pumping Test Analyses

The transmissivity of the water supply aquifer was estimated from the pumping test drawdown data using Aqtesolv (Version 4.5), a commercially available software program from HydroSOLVE Inc. The Theis recovery method was employed to analyze the pumping test data. Insufficient drawdown was observed during the pumping test for analysis of aquifer properties. Analyses performed using the Theis recovery method calculated the transmissivity of the water supply aquifer to be 3.8 m²/day (Appendix E).

Based on these results, the test well is considered to be capable of repeat pumping at a constant rate of 38 litres per minute over an 8-hour period, equal to a total volume pumped of 18,200 litres. If the daily water requirement for the existing Site usage is in excess of 18,200 litres per day, or if the peak demand is greater than 38 litres per minute, additional investigations may be required.

3.3 Water Quality

3.3.1 Methodology

Preliminary water sampling was conducted at TW1 and PW1 on April 2, 2024, in which water samples were collected from untreated taps supplied by the wells. The samples were collected in laboratory supplied bottles after stabilization of field measured water quality parameters, and submitted to Paracel laboratories in Ottawa, Ontario for 'subdivision package' parameters.

Total chlorine tests were conducted in the field using a Hach DR 900 colorimeter to ensure that chlorine levels were at non-detectable concentrations prior to bacteriological testing. The temperature, conductivity, total dissolved solids, pH, turbidity, colour and free chlorine levels of the groundwater were measured at periodic intervals during the sampling events and are summarized in Appendix F. The field equipment used during the sampling is calibrated by GEMTEC and the details of field equipment are provided in Table 4.

Table 4: Field Equipment Overview

Field Parameters	Manufacturer	Model No.	Detection Limit
Total and Free Chlorine	Hach	DR 900	0.02 mg/L
pH, temperature, Conductivity	Hanna	HI 98130	-
Turbidity	Hanna	HI 98703	0.05 NTU
Colour	Hach	DR 900	5 TCU

Notes:

- 1. Hach DR900: colour and chlorine zeroed using distilled water prior to measuring field parameters.
- 2. Hanna HI 98130 calibration check using 4.0, 7.0 and 10.0 pH solutions (within +/- 0.02).
- 3. Hanna HI 98130 calibration check using 12.88 mS/cm solution (within +/- 0.05)
- 4. Hanna HI98703 calibration check using <0.10, 15.0, 100 NTU (within 2%).

Water samples were collected from TW1 following eight hours of pumping during the pumping test completed on June 19, 2024. The groundwater samples were collected directly from the discharge hose into laboratory supplied bottles. The groundwater samples were subsequently submitted to Paracel laboratories in Ottawa, Ontario for analysis of 'subdivision package', volatile organic compounds (VOCs), petroleum hydrocarbons (PHCs), and 'trace metals' parameters.

Additional samples were collected from TW1 on August 1, 2024, from an untreated tap from the residential dwelling supplied by the test well. The samples were collected in laboratory supplied bottles after stabilization of field measured water quality parameters and submitted to Paracel laboratories in Ottawa, Ontario for bacteria and turbidity.

3.3.2 PW1 Water Quality

A summary of the chemical, physical and bacteriological analyses on the water samples from PW1 and the laboratory certificate of analyses are provided in Appendix F. The water quality discussed below includes the exceedances of the ODWQS.

Hardness

Per the laboratory results, the hardness from the April 2, 2024 was reported to be 307 mg/L. Water having a hardness above 100 milligrams per litre as CaCO₃ is often softened for domestic use, and thus is treatable. Water softeners are widely used throughout rural areas to treat hardness and there is no upper treatable limit for hardness. The ODWQS indicates that hardness levels exceeding 200 mg/L as CaCO₃ is considered poor but tolerable and hardness levels exceeding 500 mg/L as CaCO₃ is unacceptable for most domestic purposes, but a maximum treatable value is not available.

Turbidity

Per the laboratory results, turbidity from April 2, 2024 was reported to be 28.1 NTU, which exceeds the ODWQS aesthetic objective of 5 NTU. The field measured turbidity was less than 1 NTU at the time of sampling and is considered to be more representative of the raw groundwater quality. The elevated laboratory reported turbidity is likely associated with the high iron concentrations of 2.5 mg/L.

Iron

Per the laboratory results, iron from April 2, 2024 was reported to be 2.5 mg/L in PW1, which exceeds the ODWQS aesthetic objective of 0.3 mg/L, but is below the maximum concentration considered reasonably treatable of 10 mg/L listed in MECP Procedure D-5-5. Therefore, iron is considered to be acceptable based on the water sampling completed at PW1.

Organic Nitrogen

The organic nitrogen concentration (kjeldahl nitrogen – ammonia) for the sampling on April 2, 2024 was calculated to be 0.2 mg/L, which exceeds the ODWQS operational guidelines of 0.15 mg/L. The ODWQS indicates that levels of organic nitrogen in excess of 0.15 mg/L may be caused by septic tank or sewage contamination and is typically associated with elevated DOC concentrations. The organic nitrogen concentrations in slight exceedance of the operational guideline may be attributed to local wetlands and watercourse, on Site and off-Site septic systems.

Organic nitrogen can react with chlorine and severely reduce its disinfectant power; in addition, taste and odour problems may occur. It is not expected that ongoing chlorination will be utilized by the property owner on site, and, as such, no concerns with the operational exceedance for organic nitrogen were identified.

3.3.3 Test Well TW1 Water Quality

A summary of the chemical, physical and bacteriological analyses on the water samples from test well TW1 and the laboratory certificate of analyses are provided in Appendix F. The water quality discussed below includes the results of interest, i.e., exceedances, from all sampling events.

Bacteriological Parameters

Bacteriological laboratory results for TW1 for the initial sampling completed on April 2, 2024 reported non-detectable concentrations for E.coli and fecal coliforms and total coliform. After eight hours of pumping on June 19, 2024, the water quality sample reported elevated turbidity (turbidity attributed to install of external pump, discussed further in Section 3.3.3), and therefore the laboratory reported 'no data: overgrown with nontarget' for bacteriological parameters.

TW1 was resampled on August 1, 2024 for bacteria after resolving elevated turbidity levels, and reported non-detectable concentrations of E.Coli and Fecal Coliform. Total Coliform concentrations were reported to be 2 CFU/100 mL, which exceeds the Ontario Drinking Water Quality Standards (ODWQS) maximum acceptable concentration (MAC) of 0 CFU/100 mL. In accordance with MECP Procedure D-5-5, total coliform counts of less than 6 CFU/100 mL is considered indicative of acceptable water quality when E.Coli and Fecal Coliform are non-detectable in the sample. Therefore, the water sample meets the D-5-5 standard for acceptable water quality.

Based on the bacterial laboratory results reported for TW1, the water quality is acceptable.

Hardness

Per the laboratory results, the hardness from the April 2, 2024 and June 19, 2024 was reported to be 215 mg/L and 220 mg/L respectively. Water having a hardness above 100 milligrams per litre as CaCO₃ is often softened for domestic use, and thus is treatable. Water softeners are widely used throughout rural areas to treat hardness and there is no upper treatable limit for hardness. The ODWQS indicates that hardness levels exceeding 200 mg/L as CaCO₃ is considered poor but tolerable and hardness levels exceeding 500 mg/L as CaCO₃ is unacceptable for most domestic purposes, but a maximum treatable value is not available.

Water softening by conventional sodium ion exchange water softeners that use sodium chloride may introduce relatively high concentrations of sodium into the drinking water, which may be of concern to persons on a sodium restricted diet. The use of potassium chloride in the water softener (which adds potassium to the water instead of sodium) could be considered as a means of keeping sodium concentrations in softened water at the background level. Alternatively, consideration could be given to providing a cold-water bypass water line for drinking water purposes that is not treated by a water softener.

Turbidity

Per the laboratory results, turbidity from April 2, 2024 and June 19, 2024 was reported to be 0.7 NTU and 10.1 NTU in TW1, respectively. The results from June 19, 2024 exceed the ODWQS aesthetic objective of 5 NTU.

The water quality results from the preliminary sampling on April 2, 2024 indicated acceptable turbidity levels well below the ODWQS aesthetic objective of 5 NTU. The elevated concentrations reported on June 19, 2024 are expected to be attributed to the removal of the existing pump, and installing an external pump in TW1 to perform the eight hour pumping test. During this process, loose sediment and/or material from the well casing may have been dislodged into the water column, increasing levels of total suspended solids and turbidity.

To confirm the in-situ groundwater does not display elevated levels of turbidity, TW1 was resampled after regular domestic use on August 1, 2024, and reported non-detectable levels of turbidity. Therefore, turbidity is considered to be acceptable based on the water sampling completed at TW1.

Iron

Per the laboratory results, iron from June 19, 2024 was reported to be 0.4 mg/L in TW1, which exceeds the ODWQS aesthetic objective of 0.3 mg/L, but is below the maximum concentration considered reasonably treatable of 10 mg/L listed in MECP Procedure D-5-5. Iron can be treated using water softeners or manganese greensand filtered at concentrations up to 5.0 mg/L.

It should be noted that iron during the first sampling event completed on April 2, 2024 reported concentrations of 0.1 mg/L, which is below the ODWQS aesthetic objective of 0.3 mg/L. It is expected that the elevated levels of iron on June 19th, 2024 are associated with elevated turbidity during the pumping test. Further, the filtered iron concentrations were reported to be non-detectable (less than 0.1 mg/L) on June 19th, which supports the theory that slightly elevated concentrations of iron are related to elevated turbidity levels.

4.0 SEPTIC IMPACT ASSESSMENT

The impact on groundwater resources due to wastewater treatment and disposal by the existing onsite sewage disposal system and development on the Site is assessed in the following sections.

4.1 Hydrogeological Sensitivity

Areas of thin soils cover, highly permeable soils, fractured bedrock exposed at ground surface and karst environments can contribute to hydrogeological sensitivity, which may not allow for sufficient attenuative processes for on-site septic systems and negatively impact the receiving aquifer. Areas of thin soil cover, generally taken to be less than two metres, or highly permeable soils, were not encountered at the Site. The overburden thickness on site was reported to be greater than 3.0 meters thick based on the borehole investigations, and karst mapping (Brunton

and Dodge, 2008) does not indicate the presence of any inferred or potential karstic features on the Site. Based on this information, the Site is not considered to be hydrogeologically sensitive.

4.2 Overburden Groundwater Quality

Groundwater quality samples from two overburden monitoring wells, MW24-1 and MW24-3 were collected on August 2, 2024 for analysis of nitrate and nitrite. Table 5 outlines the monitoring well groundwater sampling results, and the laboratory result sheets are provided in Appendix G.

Table 5: Monitoring Well Sampling Summary

MW ID	Soil Stratigraphy at Screen	Nitrate (mg/L)	Nitrite (mg/L)
MW24-1	Overburden	1.03	0.05
MW24-3	Overburden	5.33	0.09

Sources of nitrate include on-site septic systems and agricultural land use, both on and off-site. Monitoring well MW24-3 was drilled within close proximity of an existing septic system (exact location unknown), which is expected to the source of the elevated concentrations of nitrates. Therefore, the elevated nitrate concentration of 5.33 mg/L is not considered to be representative of background nitrate levels in the receiving aquifer. Based on the inferred groundwater flow direction to the southwest (GEMTEC, 2024), MW24-1 is upgradient of the septic system and representative of background nitrate concentrations in the overburden, i.e., the septic receiving unit.

4.3 Hydrogeological Conceptual Site Model

A Hydrogeological Conceptual Site Model (CSM) was developed for the Site to outline the different hydrogeological units, including the septic receiving unit and the water supply aquifer, based on the following information:

- Surficial geology mapping indicate the Site is underlain by fine-textured glaciolacustrine
 deposits of silt and clay, with minor sand and gravel. A portion of the eastern section of
 the Site is mapped as stone-poor sandy silt to silty sand-textured till on Paleozoic terrain.
 Subsurface soil conditions encountered in the boreholes generally consists of brown silty
 sand with varying amounts of gravel (3 to 5+ metres in thickness) underlain by silty clay.
- Shallow groundwater flow is to the southwest, based on the results of the Phase 2 ESA (GEMTEC, 2024).
- Available MECP water well records in the area indicate the overburden thickness ranges from approximately 15.9 to 24.5 meters below ground surface (10th and 90th percentile respectively).

- Two overburden wells were identified, which are completed in coarse grained sands and gravels at depths of greater than 12 metres below ground surface.
- The overburden on-site is approximately 27.7 metres in thickness based on the on-site well record (TW1, well record A025676).
- Bedrock geology maps (Armstrong and Dodge, 2007) indicate the Site is underlain by limestone of the Oxford Formation. Available karst mapping (Brunton and Dodge, 2008) indicates that there are no documented karst formations within 10 kilometres of the Site.

Based a review of relevant information mentioned, the CSM defines a shallow overburden unit generally consisting of silty sand and gravel, underlain by a generally low-permeability overburden unit consisting of silt and clay, which is underlain by a limestone bedrock aquifer at depths of approximately 15.9 to 24.5 meters below ground surface. The septic receiving aquifer is expected to be the shallow silty sand and gravel overburden logged during the borehole drilling program, but based on the water well record study, it is expected to be variable in thickness and extent. Water well records within 500 meters of the Site indicate the majority of well users utilize the bedrock supply aquifer, and overburden wells are completed in coarse grained sands and gravels at depths greater than 12 metres below ground surface, and therefore, septic effluent contamination to nearby well users in the septic receiving unit is not expected.

4.4 Septic Impact Assessment

The potential risk to groundwater resources on and off the Site was assessed in accordance with Ministry of Environment Procedure D-5-4: Technical Guideline for Individual On-Site Sewage Systems: Water Quality Impact Risk Assessment. To evaluate the groundwater impacts, step three of the Three-Step Assessment Process outlining in MECP D-5-4 was followed for commercial properties.

4.4.1 Nitrate Dilution Calculations

The risk of individual Site septic systems will be assessed using nitrate-nitrogen contaminant loading for commercial properties. The maximum allowable concentration of nitrate in the groundwater at the boundaries of the subject property is 10 mg/L as per the Ministry of the Environment, Conservation and Parks guideline D-5-4, dated August 1996.

The nitrate concentration at the Site boundaries was calculated using the following information, and are summarized in Appendix H:

- Site area: 54,000 m².
- Assumed hard surface area: 20% of total Site area.
- Infiltration factors and water holding capacity of soils (WHC) based on information obtained from Table 3.1 of the Ministry of Environment Stormwater Management Planning and Design Manual, dated March 2003.
- Soil Factor: 0.2, which represents a medium combination of clay and loam.

- Cover Factor: 0.10 for cultivated land.
- Topography Factor: 0.2, representative of rolling land with an average slope of 2.8 to 3.8 m/km.
- Water holding capacity: 125 mm for urban lawns / shallow rooted crops, silt loam soil;
- An annual water surplus of 0.344 metres/year for soils with a water holding capacity of 125 mm.
 - Ottawa Airport Weather Station (1939-2020), Station ID: DC20492. Water surplus datasheet provided in Appendix H.
- Background nitrate concentration (MW24-01, sampled on August 2, 2024) of 1.03 mg/L in the septic receiving aguifer.

The maximum design flow for proposed conventional septic systems servicing on the Site is 6,790 liters per day assuming hard surface area of 20%, as outlined in Table 6, below.

Table 6: Calculated Maximum Septic Flows

Hard Surface	Background Nitrate	Maximum Septic Flow-
Area	Concentration (mg/L)	Conventional ¹ (litres per day)
20%	1.03	6,790

Notes:

For the purposes of zoning by-law amendment, the septic impact assessment indicates that the Site can support a residential septic (1,000 L/day) as per D-5-4 requirements, plus septic demands of 5,790 litres per day for commercial uses.

The Site is currently serviced by two septic systems, one of which is for the existing residential dwelling. Based on information provided by the owner, the sewage demands for the site was calculated to be 2,400 litres per day for the 4-bedroom residential dwelling and 825 litres per day for commercial uses, i.e., one office employee (1 x 75 L/day) and six seasonal workers that use shower and toilet (6 x 125 L/day), as per Ontario Building Code (OBC) Section 8.2.1.3 – Septic System Design Flows. The current septic demands are within the maximum calculated septic flows of 6,790 litres per day.

5.0 GROUNDWATER IMPACT STUDY

A groundwater impact assessment was completed for the Site to assess impacts to the groundwater based on the zoned usage(s). It is understood that under the zoning by-law amendment, two businesses will be in operation at the Site:

- A Trucking Business
 - Trucking of aggregates and soils, and snow removal in the winter months.

MECP guideline D-5-4: (40 mg/L x Flow) / (Flow + Infiltration) = 10 mg/L - background nitrates.

- Trucks include various tractor trailers, dump trucks, straight trucks and backhoes.
- A Landscaping Supply Business
 - Sale of landscaping material such as soil, mulch and gravel, which is stockpiled on the Site.

The following sections outline the data sources reviewed as part of the groundwater impact assessment.

5.1 Rideau Valley Source Protection Area Review

The Assessment Report for the Mississippi-Rideau Source Protection Area (RVCA, 2011) and the MECP online resource: Source Protection Information Atlas (https://www.lioapplications.lrc.gov.on.ca/SourceWaterProtection/index.html?viewer=SourceWaterProtection.SWPViewer&locale=en-CA), was reviewed, and indicated the following points of interest for the Site:

- The Site is <u>not</u> located in an area designated as a highly vulnerable aquifer zone.
- The Site is not located in close proximity to a significant groundwater recharge area.
- The Site is <u>not</u> located in a surface water intake protection zone, or a wellhead protection area.

5.2 Groundwater Vulnerability Analysis

Due to the proposed zoning amendment, a groundwater impact assessment is required to assess the risk of the water supply aquifer to impact from surficial activity. Based on a review of available background geologic and source water information, boreholes advanced on Site, septic impact assessment, and the water quality and quantity testing of existing domestic wells on the Site, the existing land use is not expected to negatively impact the groundwater aquifer. The determination is based on multiple lines of evidence, including:

- The Site is underlain by greater than three meters of soil, with no evidence of shallow/thin soils, highly permeable soils, or exposed bedrock.
 - Low permeability soils were encountered at depth in boreholes 24-05 and 24-06.
 - The Site is not considered to be hydrogeologically sensitive.
- Well records within 500 meters of the Site indicate that bedrock depths range from 15.7 to 24.5 meters below ground surface (10th and 90th percentile), with depths of logged water bearing zones ranging from 22.8 to 84.4 meters below ground surface (10th and 90th percentile).
- Geological mapping resources (Brunton and Dodge, 2008; OGS, 2010; OGS 2011) indicate that the Site is not underlain by inferred or potential karstic features. The Site is primarily underlain by limestone bedrock.

 Rideau Valley Source Protection Area indicates that the Site is <u>not</u> located in a highly vulnerable aquifer zone, a significant groundwater recharge zone, a surface water intake protection zone, or a wellhead protection zone.

The minor zoning by-law amendment is being completed in support of bringing existing home-based businesses on the Site into compliance with requirements of the Zoning By-law. As such, Site activity and/or Site usage remains unchanged. Based on the results of the Phase 2 ESA (GEMTEC, 2024), no impacts on the Site were identified. It is understood that equipment / vehicle (e.g., tractors) washing is completed in the most south-western building, which is equipped with an oil-water separator, acting as a mitigation measure for the washing station.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of this investigation, the following conclusions and professional opinions are provided:

6.1 Hydrogeological Conceptual Model

- The soil conditions encountered generally consisted of brown silty sand with varying amounts of gravel, underlain by silty clay.
- Based on boreholes advanced, the overburden thickness is greater than three meters on the Site. No thin soils, highly permeable soils or exposed bedrock were observed on the Site, and therefore is not considered to be hydrogeologically sensitive. A review of geologic mapping and MECP well records suggests that the silty sand is variable in thickness and extent in the vicinity of the site and underlain by relatively thick deposits of low permeability glaciomarine deposits.
- Shallow groundwater flow within the silty sand overburden is towards the southwest (GEMTEC, 2024).
- The water supply aquifer at the Site consists of limestone of the Oxford Formation. A
 review of MECP well records indicate two overburden well users, which are completed in
 coarse grained sands and gravels at depths of greater than 12 metres below ground
 surface.

6.2 Groundwater Quantity

 The quantity of groundwater available from the proposed water supply aquifer is sufficient for the Site and will sustain repeated pumping at the test rate and duration at 24-hour intervals over the long term.

- For the purposes of assessing groundwater quantity, one of the two on-site water supply wells, TW1, was utilized, which was capable of repeat pumping at a constant rate of 38 litres per minute over an 8-hour period, equal to a total volume pumped of 18,200 litres.
- For the purposes of re-zoning, the water demand is assumed to be equal to the maximum allowable septic flow of 10,000 litres per day under MECP Procedure D-5-4. For commercial uses, water usage is estimated over an eight-hour period, which would require well yields of approximately 21 litres per minute. The results of the pumping test indicate that TW1 is capable of supplying 1.8 times the estimated water demand.
- If the daily water requirement for the proposed Site usage is in excess of 18,200 litres per day, or if the peak demand is greater than 38 litres per minute, additional investigations may be required.
- The well yields determined in the course of the investigation are representative of the yields in the long term.

6.3 Groundwater Quality

- For the purposes of the groundwater quality assessment to support re-zoning, TW1 was utilized. Test well TW1 is completed in the bedrock and currently services the existing residential dwelling. A second well is located on-site, PW1, for which no water well record is available and the well construction details are unknown.
- The groundwater quality meets the ODWQS health-related and maximum acceptable concentrations for all parameters tested. The groundwater is safe for consumption based on the absence of health-related exceedances; however, groundwater treatment for operational and aesthetic parameters may be desired.
 - Bacteriological testing of TW1 initially reported non-detectable total coliform, E.coli and fecal coliform concentrations. At the time of the pumping test, elevated turbidity associated with pump removed resulted in laboratory reported 'no data, overgrown with non-target' and following re-sampling reported total coliform of 2 CFU/100mL. The groundwater quality is within acceptable limits for private wells, with total coliform counts less than 6 CFU/100mL and non-detectable E.coli.
 - The levels of hardness and iron are considered to be reasonably treatable using a conventional water softener and/or manganese greensand filters.
 - Sodium exceeds the 'warning level' for persons on sodium restricted diets and as per MECP Procedure D-5-5, the sodium concentration should be reported to the Local Medical Officer of Health.

6.4 Septic Impact Assessment

- The septic impact assessment indicates that the maximum allowable septic flows for the site 6,790 litres per day, for which the resultant nitrate concentration at the property boundary will be less than 10 mg/L in accordance with MECP Procedure D-5-4.
 - For the purposes of re-zoning, the Site is able to accommodate 'home-based' businesses, with maximum allowable septic flows of 5,790 litres per day for commercial use and 1,000 litres per day for residential use.
 - For purposes of the septic impact assessment, the Site use currently includes 1,000 litres per day for residential septic use and 825 litres per day for commercial use, consisting of 75 litres per day for 1 office employee and 125 litres per day for 6 seasonal workers. The current septic demand for the Site is within the calculated maximum allow septic flows.
- The site is underlain by a silty sand layer of variable thickness (3 to 5 metres) and extent, which is considered to be the 'receiving aquifer' for septic effluent. Nitrate concentrations of 5.33 mg/L were reported for MW24-03 and are likely associated with the existing septic located in close proximity to the monitoring point. Given the proximity to the existing septic system, the nitrate concentration in MW24-03 is not considered to be representative of the background nitrate concentration in the receiving aquifer. Monitoring well MW24-01, located upgradient, had a nitrate concentration of 1.03 mg/L and is considered to be more representative of the background nitrate concentration in the overburden aquifer. Nitrate sources at the site include the two on-site septic systems and agricultural site use (on-site and off-site).
 - No nitrate or nitrite was detected in the bedrock water supply aquifer.

6.5 Groundwater Impact Assessment

- The groundwater impact assessment did not identify risk of impacts to the groundwater based on the zoned usage(s), based on the following lines of evidence:
 - The Site is underlain by greater than three meters of soil, with no evidence of shallow/thin soils, highly permeable soils, or exposed bedrock. Low permeability soils were encountered at depth in boreholes 24-05 and 24-06.
 - The Site is not considered to be hydrogeologically sensitive.
 - Well records within 500 meters of the Site indicate that bedrock depths range from surface 15.7 to 24.5 meters below ground surface (10th and 90th percentile), with depths of logged water bearing zones ranging from 22.8 to 84.4 meters below ground surface (10th and 90th percentile).
 - Geological mapping resources (Brunton and Dodge, 2008; OGS, 2010; OGS 2011 indicate that the Site is not underlain by inferred or potential karstic features. The Site is primarily underlain by limestone bedrock.

- Rideau Valley Source Protection Area indicates that the Site is <u>not</u> located in a highly vulnerable aquifer zone, a significant groundwater recharge zone, a surface water intake protection zone, or a wellhead protection zone.
- Based on the Phase 2 ESA (GEMTEC, 2024), no impacts on the Site were identified.
- It is understood that equipment / vehicle (e.g., tractors) washing is completed in the most south-western building, which is equipped with an oil-water separator, acting as a mitigation measure for the washing station.

It is our professional opinion that the water quality, quantity and septic impact assessment meets the requirements of MECP Procedure D-5-4 and D-5-5 for the purposes of re-zoning.

6.6 Recommendations

- If desired by owners, water softeners and manganese green sand filters may be used to treat operational guideline exceedances of hardness and iron.
 - Water softening by conventional sodium ion exchange water softeners that use sodium chloride may introduce relatively high concentrations of sodium into the drinking water, which may be of concern to persons on a sodium restricted diet. Alternatively, consideration could be given to providing a cold-water bypass water line for drinking water purposes that is not treated by a water softener or utilizing groundwater for plumbing systems only and providing potable water.
- Well construction details for PW1 are unknown. It is recommended that a licensed well technician carry out an inspection of PW1 to confirm the well is in acceptable condition.
- It is recommended that the property owners maintain and test their drinking water well in accordance with the Ministry of the Environment and Climate Change document "Water Supply Wells Requirements and Best Management Practices, Revised April 2015".
- It is recommended that the property owners maintain and check their Site septic system in accordance with the Ontario Building Code and best management practices.

7.0 CLOSURE

We trust this report provides sufficient information for your present purposes. If you have any questions concerning this report, please do not hesitate to contact our office.

Brent Redmond, M.A.Sc., P.Geo, Hydrogeologist

Andrius Paznekas, M.Sc., P.Geo Hydrogeologist

a. Parvetas

BRENT A. REDMOND

BRENT A. REDMOND

PRACTISING MEMBER

3819

04 Sep 2024

N T A R 10

ANDRIUS PAZNEKAS SPRACTISING MEMBER

3154
04 Sep 2024

8.0 REFERENCES

Armstrong, D.K. and Dodge, J.E.P. 2007. Paleozoic geology of southern Ontario; Ontario Geological Survey, Miscellaneous Release--Data 219

Brunton, F.R. and Dodge, J.E.P. 2008. Karst of southern Ontario and Manitoulin Island; Ontario Geological Survey, Groundwater Resources Study 5.

Ontario Geological Survey. 2010. Surficial geology of Southern Ontario. Ontario Geological Survey, Miscellaneous Release-Data 128-Revision 1.

Ontario Geological Survey. 2011. 1:250 000 scale bedrock geology of Ontario. Ontario Geological Survey, Miscellaneous Release-Data 126-Revision 1.

Ontario Ministry of the Environment and Climate Change. 1996. Procedure D-5-5, Technical Guideline for Private Wells: Water Supply Assessment. August 1996.

Ontario Ministry of the Environment and Climate Change. 1996. Procedure D-5-4, Technical Guideline for Individual On-Site Sewage Systems: Water Quality Impact Risk Assessment. August 1996.

CONDITIONS AND LIMITATIONS OF THIS REPORT

- 1. **Standard of Care:** GEMTEC has prepared this report in a manner consistent with generally accepted engineering or environmental consulting practice in the jurisdiction in which the services are provided at the time of the report. No other warranty, expressed or implied is made.
- 2. Copyright: The contents of this report are subject to copyright owned by GEMTEC, save to the extent that copyright has been legally assigned by us to another party or is used by GEMTEC under license. To the extent that GEMTEC owns the copyright in this report, it may not be copied without our prior written agreement for any purpose other than the purpose indicated in this report. The methodology (if any) contained in this report is provided to the Client in confidence and must not be disclosed or copied to third parties without the prior written agreement of GEMTEC. Disclosure of that information may constitute an actionable breach of confidence or may otherwise prejudice our commercial interests.
- 3. Complete Report: This report is of a summary nature and is not intended to stand alone without reference to the instructions given to GEMTEC by the Client, communications between GEMTEC and the Client and to any other reports prepared by GEMTEC for the Client relative to the specific site described in the report. In order to properly understand the suggestions, recommendations and opinions expressed in this report, reference must be made to the whole of the report. GEMTEC cannot be responsible for use of portions of the report without reference to the entire report.
- 4. Basis of Report: This Report has been prepared for the specific site, development, design objectives and purposes that were described to GEMTEC by the Client. The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. The applicability and reliability of any of the findings, recommendations, suggestions, or opinions expressed in the document, subject to the limitations provided herein, are only valid to the extent that this report expressly addresses the proposed development, design objectives and purposes. Any change of site conditions, purpose or development plans may alter the validity of the report and GEMTEC cannot be responsible for use of this report, or portions thereof, unless GEMTEC is requested to review any changes and, if necessary, revise the report.
- 5. **Time Dependence:** If the proposed project is not undertaken by the Client within 18 months following the issuance of this report, or within the timeframe understood by GEMTEC to be contemplated by the Client, the guidance and recommendations within the report should not be considered valid unless reviewed and amended or validated by GEMTEC in writing.
- 6. Use of This Report: The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without GEMTEC's express written consent. If the report was prepared to be included for a specific permit application process, then upon the reasonable request of the client, GEMTEC may authorize in writing the use of this report by the regulatory agency as an Approved User for the specific and identified purpose of the applicable permit review process.
 - Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual data presented in the report, as to how subsurface conditions may affect their work, including but not limited to proposed construction techniques, schedule, safety and equipment capabilities.
- 7. No Legal Representations: GEMTEC makes no representations whatsoever concerning the legal significance of its findings, or as to other legal matters touched on in this report, including but not limited to, ownership of any property, or the application of any law to the facts set forth herein. With respect to regulatory compliance issues, regulatory statutes are subject to interpretation and change. Such interpretations and regulatory changes should be reviewed with legal counsel.
- 8. **Decrease in Property Value:** GEMTEC shall not be responsible for any decrease, real or perceived, of the property or site's value or failure to complete a transaction, as a consequence of the information contained in this report.
- 9. Reliance on Provided Information: The evaluation and conclusions contained in this report have been prepared on the basis of conditions in evidence at the time of site inspections and on the basis of information provided to us. We have relied in good faith upon representations. information and instructions provided by the Client and others concerning the site. Accordingly, we cannot accept responsibility for any deficiency, misstatement or inaccuracy contained in this report as a result of misstatements, omissions,

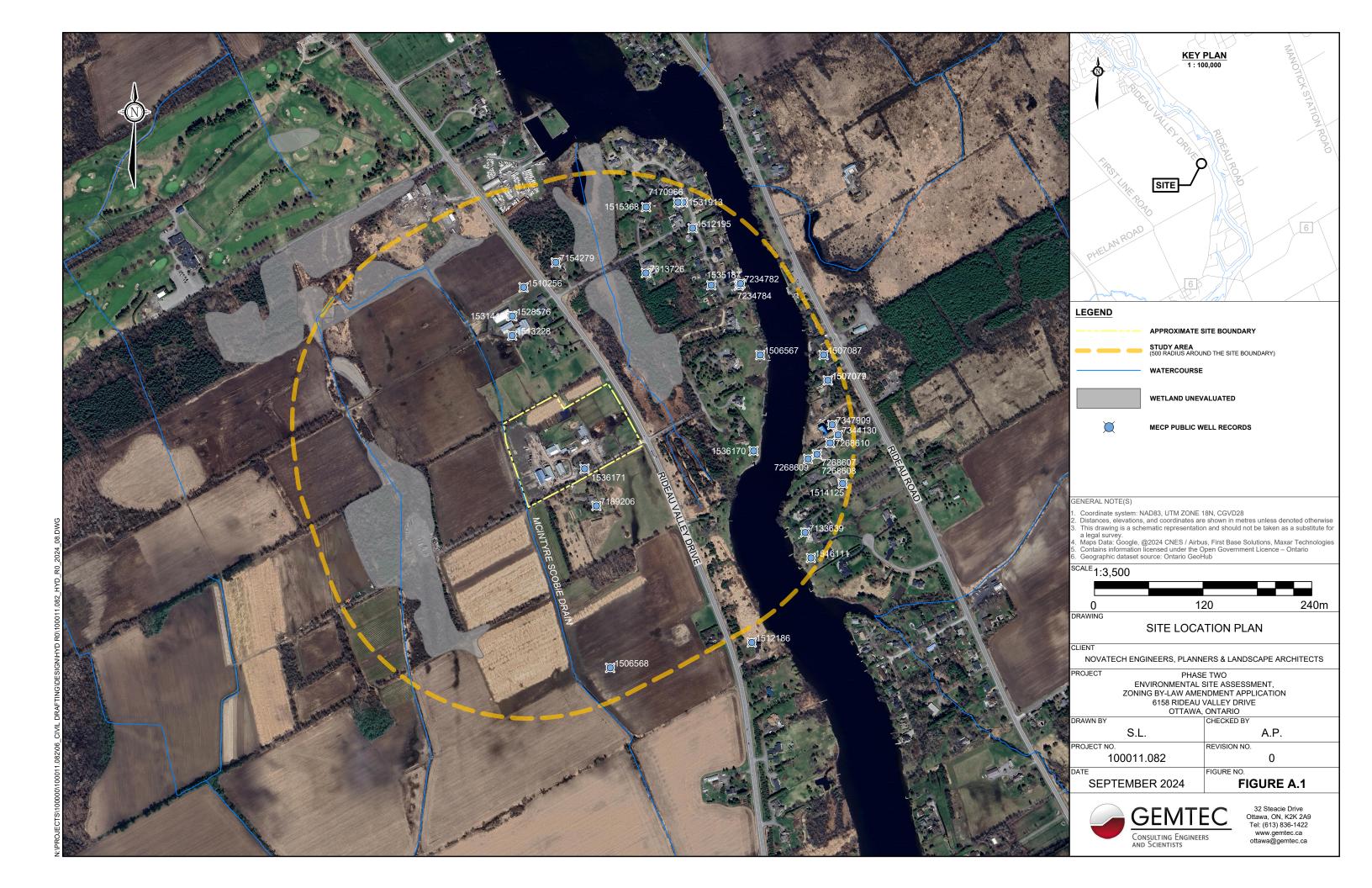
misrepresentations. or fraudulent acts of the Client or other persons providing information relied on by us. We are entitled to rely on such representations, information and instructions and are not required to carry out investigations to determine the truth or accuracy of such representations, information and instructions.

10. **Investigation Limitations:** Site investigation programs are a professional estimate of the scope of investigation required to provide a general profile of subsurface conditions but even a comprehensive investigation, sampling and testing program may fail to detect all or certain subsurface conditions.

The data derived from the site investigation program and subsequent laboratory testing are interpreted by trained personnel and extrapolated across the site to form an inferred geological representation and an engineering opinion is rendered about overall subsurface conditions and their likely behaviour with regard to the proposed development. Conditions between and beyond the borehole/test hole locations may differ from those encountered at the borehole/test hole locations and the actual conditions at the site might differ from those inferred to exist, since no subsurface exploration program, no matter how comprehensive, can reveal all subsurface details and anomalies. Accordingly, GEMTEC does not warrant or guarantee the exactness of of the subsurface descriptions.

Soil and groundwater conditions shown in the factual data and described in the report are the observed conditions at the time of their determination or measurement. Unless otherwise noted, those conditions form the basis of the recommendations in the report. Groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. The condition of the soil, rock and groundwater may be significantly altered by construction activities (traffic, excavation, groundwater level lowering, pile driving, blasting, etc.) on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying or frost. Unless otherwise indicated the soil must be protected from these changes during construction.

In addition, fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties. The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at the site, unless otherwise specifically stated and identified in the report. The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this project and have not been investigated or addressed.


- 11. **Sample Disposal:** GEMTEC will dispose of all uncontaminated soil and/or rock samples 60 days following issue of this report or, upon written request of the Client, will store uncontaminated samples and materials at the Client's expense. In the event that actual contaminated soils, fill materials or groundwater are encountered or are inferred to be present, all contaminated samples shall remain the property and responsibility of the Client for proper disposal.
- 12. **Follow-Up and Construction Services:** All details of the design were not known at the time of submission of GEMTEC's report. GEMTEC should be retained to review the final design, project plans and documents prior to construction, to confirm that they are consistent with the intent of GEMTEC's report.


During construction, GEMTEC should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those interpreted conditions considered in the preparation of GEMTEC's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in GEMTEC's report. Adequate field review, observation and testing during construction are necessary for GEMTEC to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, GEMTEC's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.

- 13. **Changed Conditions:** Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of this report that GEMTEC be notified of any changes and be provided with an opportunity to review or revise the recommendations within this report. Recognition of changed soil and rock conditions requires experience and it is recommended that GEMTEC be employed to visit the site with sufficient frequency to detect if conditions have changed significantly.
- 14. **Drainage:** Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage or dewatering can have serious consequences. GEMTEC takes no responsibility for the effects of drainage unless specifically involved in the detailed design and construction monitoring of the system.

CLIENT: Novatech

PROJECT: Phase Two Environmental Site Assessment, 6158 Rideau Valley Drive, Ottawa, Ontario

JOB#: 100011.082

LOCATION: See Figure A.4, Appendix A

SHEET: 1 OF 1 DATUM: CGVD28 BORING DATE: Jul 18 2024

_	9	SOIL PROFILE						SAMI	PLE DATA	u s					
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	RECOVERY (mm)	BLOWS/0.3m	LABORATORY ANALYSES	COMBUSTIBLE VAPOUR CONCENTRATION (ppm)	ODOUR	TPH (mg/kg)	MC I	ONITORING W INSTALLATION AND NOTES	ELL N
. 0-		Ground Surface TOPSOIL Loose to compact, brown SILTY SAND, trace gravel	<u> </u>	93.43 93.23 0.20	1	SS	200	NA		Hex: 5; IBL:	None				
1					2	SS	1200	NA	рН	Hex: 30; IBL: 0	None			Bentonite s	eal
2	h (DO ר				3	SS	600	NA		Hex: 25; IBL: 1	None				
3	Direct Push Casing (155mm OD)	Compact to dense, brown SILTY SAND,		<u>90.38</u> 3.05	4	SS	550	NA		Hex: 35; IBL: 0	None				
4		trace gravel			5	SS	750	NA	EC, SAR	Hex: 1100; IBL: 0	None			Filter sand 50 millimet diameter w	
4		Loose, brown SILTY SAND, trace gravel		<u>88.86</u> 4.57	6	SS				Hex: 30; IBL: 1	None				
5		End of borehole Sampler refusal		88.25 5.18	7	SS	610	NA		Hex: 850; IBL: 0	None				
													GROUN	DWATER OBSER	VATIONS
													DATE Aug. 02/24	3.36 <u>∑</u>	ELEVATIO 90.07
	Со	SEMTEC NSULTING ENGINEERS S SCIENTISTS												OGGED: MB	

CLIENT: Novatech

PROJECT: Phase Two Environmental Site Assessment, 6158 Rideau Valley Drive, Ottawa, Ontario

JOB#: 100011.082

LOCATION: See Figure A.4, Appendix A

SHEET: 1 OF 1 DATUM: CGVD28 BORING DATE: Jul 18 2024

	٥	SOIL PROFILE						SAMI	PLE DATA	Z			
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	RECOVERY (mm)	BLOWS/0.3m	LABORATORY ANALYSES	COMBUSTIBLE VAPOUR CONCENTRATION (ppm)	ODOUR	TPH (mg/kg)	MONITORING WELL INSTALLATION AND NOTES
- 0 -		Ground Surface Brown sand and gravel, non-cohesive, dry (FILL MATERIAL)	****	93.85									150002501
- 1	(Q)	dry (FILL MATERĬAL)		02.35	1	SS	255	NA		Hex: 35; IBL: 0	None		
	Direct Push Casing (155mm OD)	Brown SILTY SAND, some gravel, some clay		92.35	2	ss	255	NA		Hex: 30; IBL: 0	None		Backfilled with auger cuttings
- 3		End of borehole Sampler refusal		90.20	3	SS	610	NA	EC, SAR	Hex: 640; IBL: 1	None		
		SEMTEC INSULTING ENGINEERS D SCIENTISTS											LOGGED: MB CHECKED: NS

CLIENT: Novatech

PROJECT: Phase Two Environmental Site Assessment, 6158 Rideau Valley Drive, Ottawa, Ontario

JOB#: 100011.082

LOCATION: See Figure A.4, Appendix A

SHEET: 1 OF 1 DATUM: CGVD28 BORING DATE: Jul 18 2024

	<u>.</u>	8	SOIL PROFILE	1 1					C/ uvii	PLE DATA 	u g					
OPSOIL 1.5 1	METRES	BORING METH	DESCRIPTION	STRATA PLOT	DEPTH	NUMBER	TYPE	RECOVERY (mm)	BLOWS/0.3m	LABORATORY ANALYSES	COMBUSTIBL VAPOUR CONCENTRATI (ppm)	ODOUR	TPH (mg/kg)	MO II	NITORING W NSTALLATIOI AND NOTES	ELL N
DATE DEPTH(m) ELEVATION	1 1 3		TOPSOIL Grey to brown, SILTY SAND, some gravel, some clay, non-cohesive Loose, grey SILTY SAND, some clay, some gravel, wet	Z1 /Z: Z1/	90.93 0.25 87.37 3.81	3 4 5	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	250 1300 650 500	NA NA NA	PAHs, PHC F1-F4, BTEX	Hex: 0; IBL: 0 Hex: 55; IBL: 2 Hex: 65; IBL: 0 Hex: 400; IBL: 0	None None			Filter sand 50 millimed diameter w screen	eal
Aug. 02/24 1.36 ∑ 89.8.																VATIONS ELEVATION
														Aug. 02/24	1.36 ∑	89.82

CLIENT: Novatech

PROJECT: Phase Two Environmental Site Assessment, 6158 Rideau Valley Drive, Ottawa, Ontario

JOB#: 100011.082

LOCATION: See Figure A.4, Appendix A

SHEET: 1 OF 1 DATUM: CGVD28 BORING DATE: Jul 18 2024

	ac l	SOIL PROFILE	, , ,		<u> </u>			SAMI	PLE DATA						
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	RECOVERY (mm)	BLOWS/0.3m	LABORATORY ANALYSES	COMBUSTIBLE VAPOUR CONCENTRATION (ppm)	ODOUR	TPH (mg/kg)	MO II	NITORING WI NSTALLATION AND NOTES	≣LL N
. 0 -	Direct Push BORI Casing (155mm OD) BORI	clay, non-cohesive	STRA O O O O O	91.42	1 2 3 4 5 6	\$\$ \$\$ \$\$	350 1200 600 550	NA NA	pH PAHs, PHC F1-F4, BTEX	Hex: 0; IBL: 1 Hex: 0; IBL: 1 Hex: 0; IBL: 1 Hex: 0; IBL: 0 Hex: 0; IBL: 0 Hex: 0; IBL:	None None None	11.		Filter sand 50 millimet diameter w screen	eal
													GROUNI DATE Aug. 02/24	DWATER OBSER DEPTH (m) 1.46 \(\frac{\sqrt{\sq}}}}}}}}}}}}} \signtarightimeset\sintitta}}}}}} \end{\sqrt{\sq}}}}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}} \sqrt{\sqrt{\sqrt{	VATIONS ELEVATION 89.96
	Со	SEMTEC INSULTING ENGINEERS D SCIENTISTS												OGGED: MB	

CLIENT: Novatech

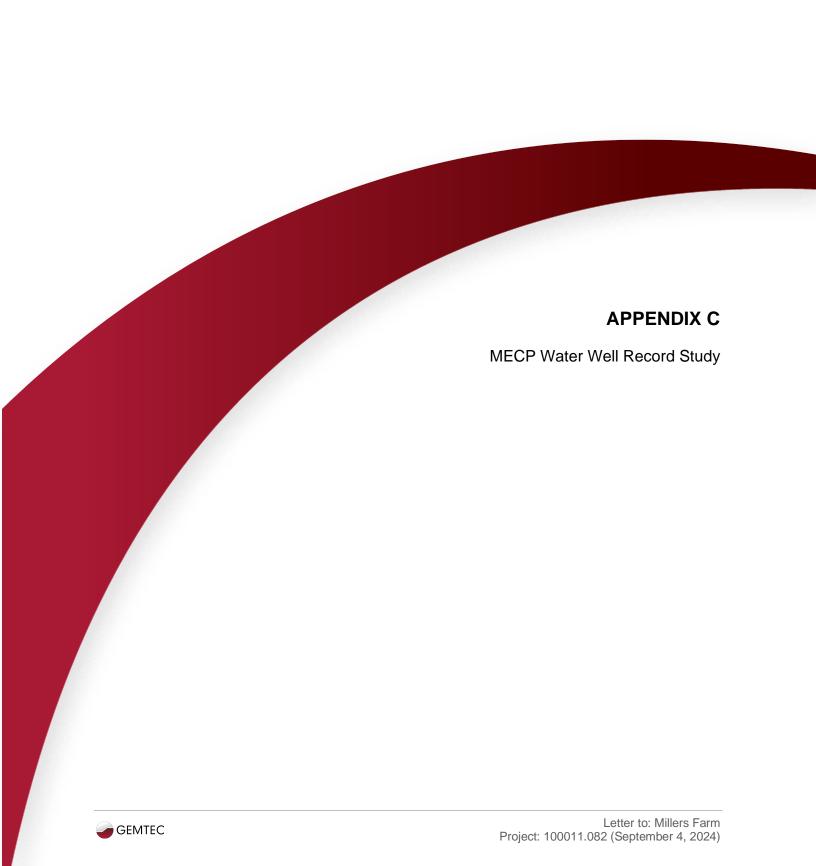
PROJECT: Phase Two Environmental Site Assessment, 6158 Rideau Valley Drive, Ottawa, Ontario

JOB#: 100011.082

LOCATION: See Figure A.4, Appendix A

SHEET: 1 OF 1 DATUM: CGVD28 BORING DATE: Jul 18 2024

💂	ŀ	SOIL PROFILE			_			SAMI	PLE DATA	z					
DEPTH SCALE METRES BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	RECOVERY (mm)	BLOWS/0.3m	LABORATORY ANALYSES	COMBUSTIBLE VAPOUR CONCENTRATION (ppm)	ODOUR	TPH (mg/kg)	MO II	NITORING WI NSTALLATION AND NOTES	ELL N
0 1 2 3 4 5 6 6 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	Casing (155mm OD)	Ground Surface GRAVEL Loose to compact, brown SILTY SAND, trace gravel Compact to dense, brown SILTY SAND, trace gravel with some clay Firm, brown SILTY SAND with some clay Firm to soft, grey SILTY CLAY with some gravel Brown CLAY and SILT with some gravel Grey CLAY and SILT with some gravel End of borehole		90.09 1.52 88.56 3.05	1 2 3 4 5 6 8 8	\$\$ \$\$ \$\$ \$\$	457 457 432 762 635	NA NA NA NA	PAHs, PHC F1-F4, VOCs	Hex: 0; IBL: 0 Hex: 0; IBL: 0 Hex: 0; IBL: 0 Hex: 0; IBL: 0 Hex: 0; IBL: 0	None None None None None		DATE	Filter sand 50 millimed diameter we screen	eal re ell
													Aug. 02/24	3.14 ∑	88.47
		SEMTEC_ ISULTING ENGINEERS SCIENTISTS											L	OGGED: MB	


CLIENT: Novatech

PROJECT: Phase Two Environmental Site Assessment, 6158 Rideau Valley Drive, Ottawa, Ontario

JOB#: 100011.082

LOCATION: See Figure A.4, Appendix A

SHEET: 1 OF 1 DATUM: CGVD28 BORING DATE: Jul 18 2024

MECP Water Well Record Compilation (6158 Rideau Valley- 500 m search radius)

Well ID	Completed	Depth (m)	Depth to Bedrock (m)	Static Water Level (m bgs)	Water Found (m bgs)	Water Detail	Well Use	Aquifer Type
1506567	09-08-61	20.7	-	3	19.8	FR	DO	ОВ
1506568	09-02-56	48.2	26.5	11.6	36.6, 43.6	FR	DO	BR
1507077	17-04-64	47.9	21.0	0.3	47.2	FR	DO	BR
1507079	23-09-64	29.9	16.5	7	29.9	FR	DO	BR
1507087	07-05-66	16.2	-	4.6	15.5	FR	DO	ОВ
1510256	27-09-69	45.1	24.7	6.7	44.8	FR	DO	BR
1512186	23-11-72	40.2	11.6	-	39.6	FR	DO	BR
1512195	05-12-72	86.3	21.0	7.9	24.7, 85.3	FR	DO	BR
1513228	11-05-73	75.6	17.7	9.1	57.9, 75.3	FR	DO	BR
1514125	10-06-74	39.6	21.3	0.9	39	FR	DO	BR
1515368	09-05-76	27.4	18.3	6.1	22.6, 26.2	FR	DO	BR
1516111	30-06-77	68.6	22.6	3	68.6	FR	DO	BR
1528576	18-07-95	54.9	17.1	5.8	54.6	UK	DO	BR
1531416	21-09-00	76.2	17.4	6.1	76.5	UK	DO	BR
1531913	22-05-01	134.7	14.3	2.1	131.1, 134.1	UK	DO	BR
1535187	22-10-04	48.8	17.7	7.8	43.6	-	DO	BR
1536170	20-11-05	-	-	-	-	-	-	-
1536171	20-11-05	75.6	27.7	9.1	-	-	DO	BR
7133639	29-10-09	31.1	-	-	-	UT	DO	-
7154279	26-10-10	-	-	-	-	-	-	-
7170966	24-08-11	71.6	18.0	5.3	70.1	UT	DO	BR
7189206	21-09-12	-	-	-	-	-	-	-
7234782	24-09-14	-	-	-	-	-	-	-
7234784	23-09-14	34.1	18.9	3.8	32	UT	DO	BR
7268607	16-06-16	-	-	-	-	-	MT	-
7268608	17-06-16	61	21.2	-	30.5	OT	TH	BR
7268609	15-06-16	-	-	-	-	-	-	-
7268610	18-07-16	40.8	22.9	3.7	37.8	UT	DO	BR
7313726	24-05-18	71	15.8	3.6	50.9, 59.1	-	-	BR
7344130	04-09-19	49.7	21.0	4.4	32, 39.6, 47.2	-	-	BR
7347909	28-10-19	37.5	20.1	3.6	24.4, 30.2, 34.7	-	-	BR
7451598	20-04-23	-	-	-	-	-	-	-

Project: 10011.082 Date: August 2024

MECP Water Well Record Compilation (6158 Rideau Valley- 500 m search radius)

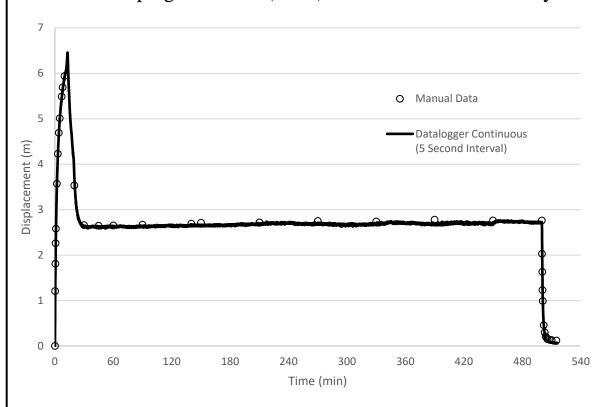
https://www.ontario.ca/page/map-well-records

"Well Use"		"Water Det	:ail"	"Aquifer Type	"
DO	Domestic	FR	Fresh	BR	Bedrock
ST	Livestock	SA	Salty	OB	Overburden
IR	Irrigation	SU	Sulphur		
IN	Industrial	MN	Mineral		
CO	Commercial	UK	Unknown		
MN	Municipal	GS	Gas		
PS	Public	IR	Iron		
AC	Cooling and A/C				
NU	Not Used				
OT	Other				
TH	Test Hole				
DE	Dewatering				
MO	Monitoring				
MT	Monitoring Test				

Project: 10011.082 Date: August 2024

⊗ O₁	ntario	Ministry of the Enviro		Well Tag	Number (Pi		rint number below)	Regulat	tion 903 Onta	Well F	Record
Instruction	s for Completi	ng Form			A025676					page	of
For useAll SectiQuestionAll metr	in the Province ons must be cons regarding conservation of the measurement or int clearly in blue	of Ontario mpleted in appleting this ts shall be	full to avoices application reported to the second contract to the s	docume d delays on can b	ent is a perr in processi e directed t	ng. Further o the Wate	instructions ar	nd explanations ement Coordina	are available	on the back o	f this form.
Well Owner	r's Information	and Loca	tion of W	ell Info		MUN		CON		LOT	
First Name	s Berrry Fa	Last Nam	е		M			oer/Name, RR,Le Ley Drive		1)	
County/District	t/Municipality Carleton		Township/0	City/Town otick	n/Village	P	rovince Pos	tal Code 1 1B3	Telephone	Number (includ	de area code
	ell Location (County	//District/Mu		OLICK	To	wnship	Ontario K4	TIJ	Lot	Concession	1
Ottawa RR#/Street Nu	Carleton Imber/Name			\		Rideau City/Town/V	/illage	Site	Compartment	A t/Block/Tract et	<u> </u>
GPS Reading	deau Valley NAD Zor 8 3 18	ne Eastin 449	435	North 500	04753	Unit Make/N	. · · · · · · · · · · · · · · · · · · ·	le of Operation:	Undifferentiate	ated XAver	
	rburden and Be		T	ee insti	ructions)						
General Colour				Other Mat	erials		Gener	al Description		Depth From	Metres To
brown	sandy soi	.1	bou	lders				· · · · · · · · · · · · · · · · · · ·		0	3.65
brown	hardpan sandy cla	.	hou	lders						3.65 6.70	6.70 27.7
gray gray	limestone	- ,	DOG.	racis						27,73	75.5%
Hole I	Diameter		1	Const	ruction Rec	ord			Test of W	ell Yield	
<u> </u>	letres Diameter	Inside		<u>. </u>	Wall	Depth	Metres	Pumping test r	method Drav	w Down R	ecovery
From	To Centimetres .64 22.75	diam centimetres	Materia	31	thickness centimetres	From	То	submers	ible min	Vater Level Time Metres min	Water Level Metres
0 28 28.6475			<u></u>		Casing	<u> </u>		Pump intake so (metres) 45		9.07	
20.0473	13.07			ibreglass				Pumping rate - (litres/min) 4	1 1	10.79 1	13.44
	r Record	15.86	Plastic C	oncrete	0.48	+.45	28.64	Duration of pur		11.50 2	11.62
Water found at Metres _/	/ Kind of Water		Steel F					hrs + Final water lev	min		
1-41 /1 -	Fresh Sulphur Salty Minerals		Plastic C	oncrete				of pumping 1	5hetres	12.13 3	10.42
Other: NOT mTEST	ED:			ibreglass		y was wastrance		Recommended type.	pump 4	13.03 4	9.85
Gas =	Fresh Sulphur Salty Minerals		Plastic C	oncrete				Recommended	pump 5	13.03 5	9.56
Other:	Fresh Sulphur		Galvanized		Screen			depth30_47 Recommended	pump 10	14 14 10	9.19
	Salty Minerals	Outside diam	Steel F	ibreglass	Slot No.			rate.	n) 15	14.79 15	9.16
After test of well	l yield, water was	- I	Plastic C	oncrete				If flowing give r (litres/mir	L	15.16 20 15.37 25	9.14
Clear and se			Galvanized	No Co	-i C			If pumping discoud ued, give reason		15.54 ³⁰	9.13
	1100 000		▼ Open hole	No Ca	sing or Scr	een		1		15.72 40 15.86 50	9.13
Chlorinated 🛣						28.64	75.58		60	15.97 60	9.12
Depth set at - Me	Plugging and Se etres Material and typ			Annular	etc Volun	bandonment ne Placed	In diagram belo	Loc w show distances of	ation of Well of well from road		ildina.
	0 ,				co. (cubi	c metres)	Indicate north b)プ
28.64	O Grouted	Benton	ite Slu	rry	.921	13	\/	Z			
											er a record
		*					<i>if</i> ,	o158	ł		
	N	lethod of C	onstruction	n			\$\frac{1}{2} - \frac{1}{2}			* *	
Cable Tool	Rotary ((air) mud	Dia	mond		Digging	3				
Rotary (conve	. 24	cussion	∐ Jet ☐ Dri	•		Other	8				
Domestic	□ Industria	Water		blic Supply	,	10#==	Adeau C	entury B	<u> </u>		
Stock	Comme	rcial	☐ No	t used	4	Other					
Irrigation	Municip	al Final Stat		oling & air	conditioning		Audit No. Z	39206	Date Well (Completed 2005	11 Q 3
Water Supply Observation v		ell insufficient su	_	finished watering	Abando	oned, (Other)		wner's information	Date Delive		MM DD
Test Hole	Abandoned,	poor quality	Re	placement			pastago delivel			ZUU3	11 90
Name of Well Co		tractor/Tec	hnician Info		1 I Contractor's I	icence No.	Data Source	MINIS	Contractor	E E O	
Capital V	vater SUpply s (street name, numb	y I.Td		1	558		Date Received	YYYY BABA T		558 pection yyyy	MM DD
	Stittsville chnician (last name, f		o K2S 1	A6 ,	Tool	liones N-	JAN 1	1 3°°2006 °			עט ייייני
		ırst name)			l Technician's TOO97	Licence No.	Remarks		Well Recor	a Number	
Signature of Tec	STephen hician/Contractor			Date	Submitted YYYY	MM DD ,		No.	,		
0506E (09/03)		Contr	ractor's Copy	Min			ner's Copy	*	Cette formule	est disponible	en français

Pumping Test A	nalysis	Report
----------------	---------	--------


Project: Scoped Hydrogeological Investigation

Project Number: 100011.082

Client: Novatech Engineers, Planners, & Architects

Location: 6158 Rideau Valley	Drive, Ottawa, ON.	
Test Conducted by: JG	Pumping Well: TW1	P-Test Date: June 19, 2024
Analysis Performed by: BR	Method: Manual Measurements	Analysis Date: August 22, 2024
Aquifer Thickness: 46.9 m	Discharge: Constant 38 L/min (1)	Duration: 8 hours

Pumping Test Data (TW1): Drawdown and Recovery

Water Levels TW23-1

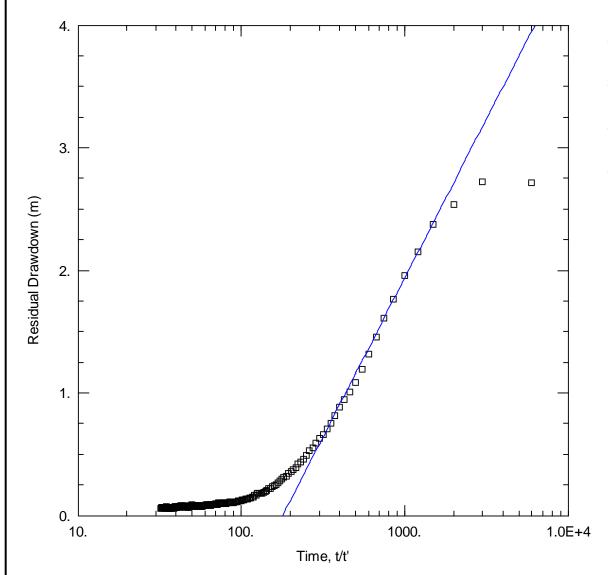
Static: 9.38 m below top of casing TOC = 0.69 m above ground surface

End of pump test (6-hours): 12.14 m below top of casing Following recovery (15 minutes): 9.50 m below top of casing

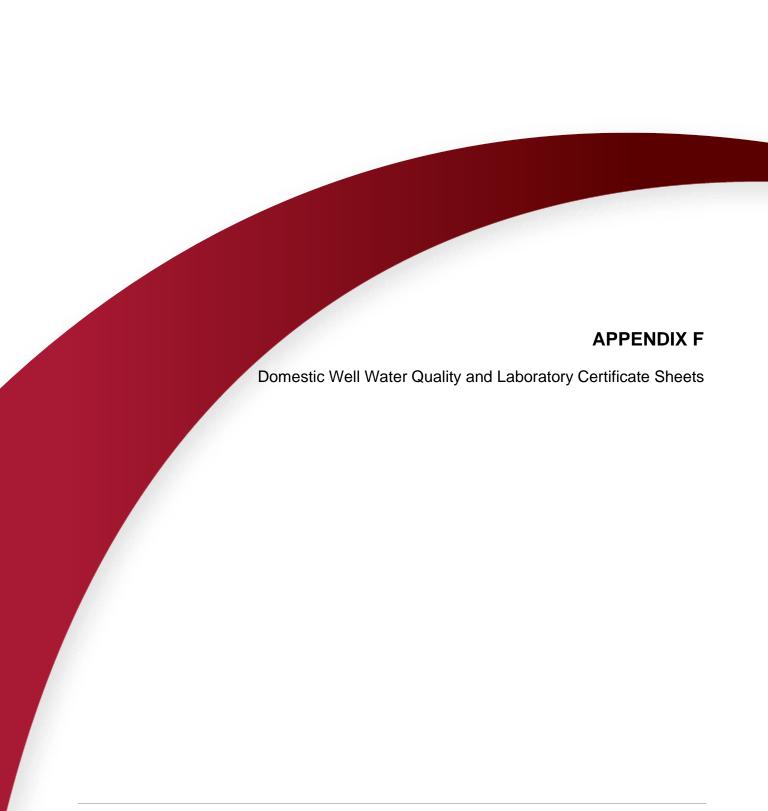
Notes

1. Pumping rate of 66 litres per minute for first 20 minutes of pumping test, reduced to 38 litres per minute for the remaining 8 hours of the test.

D		T4 /	1 -		D4
Pumi	oing	rest A	x nar	VS1S	Report


Project: Scoped Hydrogeological Investigation

Project Number: 100011.082


Client: Novatech Engineers, Planners, & Architects

Location: 6158 Rideau Valley	Drive, Ottawa, ON.	
Test Conducted by: JG	Pumping Well: TW1	P-Test Date: June 19, 2024
Analysis Performed by: BR	Method: Manual Measurements	Analysis Date: August 22, 2024
Aquifer Thickness: 46.9 m	Discharge: Constant 38 L/min	Duration: 8 hours

Pumping Test Analysis (TW1): Theis-Recovery (Confined Aquifer)

Estimated Transmissivity: 3.8 m²/day or 4 x 10⁻⁵ m²/s

Summary of Field Water Quality Measurements

Well ID	Date	Time Since Initiaion of Pump	Temp (°C)	рН	Electrical Conductivity (µS/cm)	Total Dissolved Solids (ppm)	Turbidity (NTU)	Colour (ACU ¹)	Colour (TCU ^{2,3})	Free Chlorine (mg/L)	Total Chlorine (mg/L)
PW1	2024-04-02	10 mins	14.3	7.67	593	296	0.64	-	-	-	-
LVVI		15 mins	13.2	7.66	590	290	0.53	<5	<5	<0.02	<0.02
TW1	2024-04-02	15 mins	10.4	7.88	563	279	1.2	-	-	-	-
1 44 1	2024-04-02	20 mins	11.1	7.63	535	268	0.93	<5	<5	<0.02	<0.02
		1 hour	12.5	7.76	572	293	13	-	-	-	-
		2 hours	13.0	7.77	582	294	24.8	-	-	-	-
		3 hours	12.9	7.67	579	281	16.3	-	-	-	-
TW1	2024-06-19	4 hours	13.3	7.58	560	294	11.8	20	3	<0.02	<0.02
1 0 0 1	2024-00-19	5 hours	13.9	7.53	582	296	12.1	-	-	-	-
		6 hours	13.2	7.51	571	285	8.97	-	-	-	-
		7 hours	13.5	7.53	558	284	7.82	-	-	-	-
		8 hours	13.5	7.50	571	286	10.3	55	4	<0.02	<0.02
TW1	2024-08-01	3 hours	10.5	7.84	540	269	0.79	-	1	<0.02	<0.02

NOTES:

- 1. ACU = Actual Colour Units
- 2. Field filtered using 0.45 micron filter
- 3. TCU = True Colour Units

Summary of Labratory Water Quality Measurements

Parameter	Units	PW1	TW1	TW1 8 hr	TW1 8 hr (Filtered)	TW1	Ontario Drinking Water Standard	Type of Standard ^(1,2,3)
	Date	04/02/2024	04/02/2024	06/19/2024	06/19/2024	08/01/2024		
Microbiological Parameters								
E. Coli	CFU/100 mL	ND (1)	ND (1)	NDOGN	-	ND (1)	0	MAC
Fecal Coliforms	CFU/100 mL	ND (1)	ND (1)	ND (1)	-	ND (1)	0	MAC
Total Coliforms	CFU/100 mL	ND (1)	ND (1)	NDOGN	-	2	0	MAC
Heterotrophic Plate Count	CFU/mL	40	10	90	-	-	-	-
General Inorganics								
Alkalinity, total	mg/L	218	200	199	-	-	30-500	OG
Ammonia as N	mg/L	0.42	0.15	0.15	-	-	-	-
Dissolved Organic Carbon	mg/L	2.1	0.8	0.5	-	-	5	AO
Colour	TCU	ND (2)	ND (2)	ND (2)	-	-	5	AO
Colour, apparent	ACU	200	5	19	-	-	-	-
Conductivity	uS/cm	599	573	615	-	-	-	-
Hardness	mg/L	307	215	220	-	-	80-100	OG
pН	pH Units	8.0	8.0	8.1	-	-	6.5-8.5	OG
Phenolics	mg/L	ND (0.001)	ND (0.001)	ND (0.001)	-	-	-	-
Total Dissolved Solids	mg/L	336	290	336	-	-	500	AO
Sulphide	mg/L	0.04	ND (0.02)	ND (0.02)	-	-	0.05	AO
Tannin & Lignin	mg/L	0.2	ND (0.1)	ND (0.1)	-	-	-	-
Total Kjeldahl Nitrogen	mg/L	0.6	0.2	0.2	-	-	-	-
Total Organic Nitrogen ⁽⁶⁾	mg/L	0.18	0.05	0.05	-	-	0.15	OG
Turbidity	NTU	28.1	0.7	10.1	-	ND (0.1)	5	AO
Anions	1110		011			(011)		7.10
Chloride	mg/L	35	36	44	-	-	250	AO
Fluoride	mg/L	0.7	0.8	0.9	-	-	1.5	MAC
Nitrate as N	mg/L	ND (0.1)	ND (0.1)	ND (0.1)	_	_	10 ⁽⁴⁾	MAC
Nitrite as N	mg/L	ND (0.05)	ND (0.05)	ND (0.05)			1.0 ⁽⁴⁾	MAC
		56	, ,	` '	-	-		
Sulphate	mg/L	30	45	51	-	-	500	AO
<i>Metals</i> Aluminum	m a/l			0.006	ND (0.001)		0.1	OG
	mg/L	-	-		ND (0.001)	-		
Antimony	mg/L	-	-	ND (0.0005)	ND (0.0005)	-	0.006	MAC
Arsenic	mg/L	-	-	ND (0.001) 0.049	ND (0.001)	-	0.025	MAC
Barium	mg/L	-	-		0.048	-	1	MAC
Beryllium	mg/L	-	-	ND (0.0005)	ND (0.0005)	-	-	-
Boron	mg/L	-	-	0.21	0.21	-	5	MAC
Calairea	mg/L	-	-	ND (0.0001)	ND (0.0001)	-	0.005	MAC
Calcium	mg/L	42.1	42.6	43.1	40.6	-	-	-
Chromium	mg/L	-	-	ND (0.001)	ND (0.001)	-	0.05	MAC
Cobalt	mg/L	-	-	ND (0.0005)	ND (0.0005)	-	-	-
Copper	mg/L	-	-	ND (0.0005)	ND (0.0005)	-	7	AO
Iron	mg/L	2.5	0.1	0.4	ND (0.1)	-	0.3	AO
Lead	mg/L	-	-	0.0001	ND (0.0001)	-	0.01	MAC
Magnesium	mg/L	49.1	26.3	27.3	25.7	-	- (11)	-
Manganese	mg/L	0.035	ND (0.005)	0.009	0.006	-	0.05/0.12 ⁽¹¹⁾	AO
Mercury	mg/L	-	-	ND (0.0001)	ND (0.0001)	-	0.001	MAC
Molybdenum	mg/L	-	-	0.0037	0.0052	-	-	-
Nickel	mg/L	-	-	ND (0.001)	ND (0.001)	-	-	-
Potassium	mg/L	14.4	7.5	7.5	7.4	-	-	-

Summary of Labratory Water Quality Measurements

Parameter	Units	PW1	TW1	TW1 8 hr	TW1 8 hr (Filtered)	TW1	Ontario Drinking Water Standard	Type of Standard ^(1,2,3)
	Date	04/02/2024	04/02/2024	06/19/2024	06/19/2024	08/01/2024		
Selenium	mg/L	-	-	ND (0.001)	ND (0.001)	-	0.01	MAC
Silver	mg/L	-	-	ND (0.0001)	ND (0.0001)	-	-	-
Sodium	mg/L	12.1	44.9	45.2	41.9	-	200(20) ⁽⁵⁾	AO
Strontium	mg/L	-	-	1.53	1.46	-	7 ⁽¹⁰⁾	MAC
Thallium	mg/L	-	-	ND (0.001)	ND (0.001)	-	-	-
Uranium	mg/L	-	-	0.0003	0.0003	-	0.02	MAC
Vanadium	mg/L	-	-	ND (0.0005)	ND (0.0005)	-	-	-
Zinc	mg/L	-	-	ND (0.005)	ND (0.005)	-	5	AO
Volatiles	Ü							
Acetone	mg/L	-	-	ND (0.0050)	-	-	-	-
Benzene	mg/L	-	-	ND (0.0005)	-	-	0.001 mg/L	MAC
Bromodichloromethane	mg/L	-	-	ND (0.0005)	-	-	-	-
Bromoform	mg/L	-	-	ND (0.0005)	-	-	-	-
Bromomethane	mg/L	-	-	ND (0.0005)	-	-	-	-
Carbon Tetrachloride	mg/L	-	-	ND (0.0002)	-	-	0.002 mg/L	MAC
Chlorobenzene	mg/L	-	-	ND (0.0005)	-	-	0.08 mg/L	MAC
Chloroethane	mg/L	_	-	ND (0.0010)	_	-	-	-
Chloroform	mg/L	-	-	ND (0.0005)	-	-	-	-
Dibromochloromethane	mg/L	_	-	ND (0.0005)	-	-	-	-
Dichlorodifluoromethane	mg/L	_	-	ND (0.0010)	-	-	-	-
Ethylene dibromide (dibromoethane, 1	mg/L	_	-	ND (0.0002)	-	-	-	-
1,2-Dichlorobenzene	mg/L	-	-	ND (0.0005)	-	-	0.2 mg/L	MAC
1,3-Dichlorobenzene	mg/L	-	-	ND (0.0005)	-	-	-	-
1,4-Dichlorobenzene	mg/L	-	-	ND (0.0005)	-	-	0.005 mg/L	MAC
1,1-Dichloroethane	mg/L	-	-	ND (0.0005)	-	-		-
1,2-Dichloroethane	mg/L	-	-	ND (0.0005)	-	-	0.005 mg/L	MAC
1,1-Dichloroethylene	mg/L	_	-	ND (0.0005)	-	-	0.014 mg/L	MAC
cis-1,2-Dichloroethylene	mg/L	-	-	ND (0.0005)	-	-	-	-
trans-1,2-Dichloroethylene	mg/L	-	-	ND (0.0005)	-	-	-	_
1,2-Dichloroethylene, total	mg/L	_	-	ND (0.0005)	_	-	-	_
1,2-Dichloropropane	mg/L	-	-	ND (0.0005)	-	-	-	-
cis-1,3-Dichloropropylene	mg/L	_	_	ND (0.0005)	_	_	_	_
trans-1,3-Dichloropropylene	mg/L	_	-	ND (0.0005)	-	-	_	_
1,3-Dichloropropene, total	mg/L	_	_	ND (0.0005)	_	_	_	_
Ethylbenzene	mg/L	-	-	ND (0.0005)	-	-	0.14 mg/L	MAC
Hexane	mg/L	_	-	ND (0.0010)	_	-	0.14111g/L	IVIAO
Methyl Ethyl Ketone (2-Butanone)	mg/L	-	_	ND (0.0050)	-	-	-	-
Methyl Isobutyl Ketone	-	_	-	ND (0.0050)	_	_	_	_
Methyl tert-butyl ether	mg/L mg/L	-	-	ND (0.0030)	-	-	-	_
Methylene Chloride	mg/L	_	_	ND (0.0020)	_	_	0.05 mg/L	MAC
Styrene	mg/L	-	-	ND (0.0030)	-	-	0.03 mg/L	
1,1,1,2-Tetrachloroethane	-	_	-	ND (0.0005)	_	-	_	-
1,1,2-Tetrachioroethane	mg/L	-		ND (0.0005)	-		-	-
	mg/L	-	-	,	-	-	0.01 mg/l	MAC
Tetrachloroethylene	mg/L	-	-	ND (0.0005)	-	-	0.01 mg/L	
Toluene	mg/L	-	-	ND (0.0005)	-	-	0.06 mg/L	MAC
1,1,1-Trichloroethane	mg/L	-	-	ND (0.0005)	-	-	-	-
1,1,2-Trichloroethane	mg/L	-	-	ND (0.0005)	-	-	-	-

Summary of Labratory Water Quality Measurements

Parameter	Units	PW1	TW1	TW1 8 hr	TW1 8 hr (Filtered)	TW1	Ontario Drinking Water Standard	Type of Standard ^(1,2,3)
	Date	04/02/2024	04/02/2024	06/19/2024	06/19/2024	08/01/2024		
Trichloroethylene	mg/L	-	-	ND (0.0005)	-	-	0.005 mg/L	MAC
Trichlorofluoromethane	mg/L	-	-	ND (0.0010)	-	-	-	-
Vinyl Chloride	mg/L	-	-	ND (0.0002)	-	-	0.001 mg/L	MAC
m/p-Xylene	mg/L	-	-	ND (0.0005)	-	-	-	-
o-Xylene	mg/L	-	-	ND (0.0005)	-	-	-	-
Xylenes, total	mg/L	-	-	ND (0.0005)	-	-	0.09 mg/L	MAC
Hydrocarbons					-	-	-	-
F1 PHCs (C6-C10)	mg/L	-	-	ND (0.0250)	-	-	-	-
F2 PHCs (C10-C16)	mg/L	-	-	ND (0.1)	-	-	-	-
F3 PHCs (C16-C34)	mg/L	-	-	ND (0.1)	-	-	-	-
F4 PHCs (C34-C50)	mg/L	-	-	ND (0.1)	-	-	-	-

NOTES:

- 1. MAC = Maximum Acceptable Concentration;
- 2. OG = Operational Guideline
- 3. AO = Aesthetic Objective
- 4. The total of Nitrate and Nitrite should not exceed 10 mg/litre.
- 5. The aesthetic objective for sodium is 200 mg/litre. The local medical officer of health should be notified when the sodium concentration exceeds 20 mg/litre for persons on sodium restricted diets.
- 6. Organic Nitrogen = Total Kjeldahl Nitrogen $N-NH_3$ and should not exceed 0.15 mg/litre.
- 7. '-' signifies no value provided
- 8. Values listed in Table 3 in MOE Procedure D-5-5 Technical Guideline for Private Wells: Water Supply Assessment, August 1996
- 9. 'ND' = No concentration detected above method detection limit
- 10. Health Canada (2019) MAC for strontium
- 11. Health Canada (2019) MAC for manganese
- $12.\ Filtered\ metal\ concentrations\ are\ not\ directly\ comparable\ to\ Ontario\ Drinking\ Water\ Standards$

1-800-749-1947 www.paracellabs.com

Certificate of Analysis

GEMTEC Consulting Engineers and Scientists Limited

32 Steacie Drive Kanata, ON K2K 2A9

Attn: Brent Redmond

Client PO: Millers Farm

Project: 100011.082

Custody: 17657

Report Date: 8-Apr-2024

Order Date: 2-Apr-2024

Order #: 2414174

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID

2414174-01 PW1 2414174-02 PW2

Approved By:

Mark Froto

Mark Foto, M.Sc.

Lab Supervisor

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO: Millers Farm

Report Date: 08-Apr-2024

Order Date: 2-Apr-2024

Project Description: 100011.082

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Alkalinity, total to pH 4.5	EPA 310.1 - Titration to pH 4.5	4-Apr-24	4-Apr-24
Ammonia, as N	EPA 351.2 - Auto Colour	4-Apr-24	4-Apr-24
Anions	EPA 300.1 - IC	3-Apr-24	3-Apr-24
Colour	SM2120 - Spectrophotometric	4-Apr-24	4-Apr-24
Colour, apparent	SM2120 - Spectrophotometric	4-Apr-24	4-Apr-24
Conductivity	EPA 9050A- probe @25 °C	4-Apr-24	4-Apr-24
Dissolved Organic Carbon	MOE 3247B - Combustion IR	5-Apr-24	8-Apr-24
E. coli	MOE E3407	3-Apr-24	3-Apr-24
Fecal Coliform	SM 9222D	3-Apr-24	3-Apr-24
Heterotrophic Plate Count	SM 9215C	3-Apr-24	3-Apr-24
Metals, ICP-MS	EPA 200.8 - ICP-MS	3-Apr-24	3-Apr-24
pH	EPA 150.1 - pH probe @25 °C	4-Apr-24	4-Apr-24
Phenolics	EPA 420.2 - Auto Colour, 4AAP	4-Apr-24	4-Apr-24
Hardness	Hardness as CaCO3	3-Apr-24	3-Apr-24
Sulphide	SM 4500SE - Colourimetric	8-Apr-24	8-Apr-24
Tannin/Lignin	SM 5550B - Colourimetric	3-Apr-24	3-Apr-24
Total Coliform	MOE E3407	3-Apr-24	3-Apr-24
Total Dissolved Solids	SM 2540C - gravimetric, filtration	4-Apr-24	5-Apr-24
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	3-Apr-24	3-Apr-24
Turbidity	SM 2130B - Turbidity meter	3-Apr-24	4-Apr-24

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO: Millers Farm Project Description: 100011.082

	Client ID:	PW1	PW2	-	_		1
	Sample Date:	02-Apr-24 11:30	02-Apr-24 12:00	-	_	-	_
	Sample ID:	2414174-01	2414174-02	-	-		
	Matrix:	Drinking Water	Drinking Water	-	-		
	MDL/Units						
Microbiological Parameters			•		•		,
E. coli	1 CFU/100mL	ND	ND	-	-	-	-
Total Coliforms	1 CFU/100mL	ND	ND	-	-	-	-
Fecal Coliforms	1 CFU/100mL	ND	ND	-	-	-	-
Heterotrophic Plate Count	10 CFU/mL	40	10	-	-	-	-
General Inorganics						•	•
Alkalinity, total	5 mg/L	218	200	-	-	-	-
Ammonia as N	0.01 mg/L	0.42	0.15	-	-	-	-
Dissolved Organic Carbon	0.5 mg/L	2.1	0.8	-	-	-	-
Colour, apparent	2 ACU	200	5	-	-	-	-
Colour	2 TCU	<2	<2	-	-	-	-
Conductivity	5 uS/cm	599	573	-	-	-	-
Hardness	1 mg/L	307	215	-	-	-	-
рН	0.1 pH Units	8.0	8.0	-	-	-	-
Phenolics	0.001 mg/L	<0.001	<0.001	-	-	-	-
Total Dissolved Solids	10 mg/L	336	290	-	-	-	-
Sulphide	0.02 mg/L	0.04	<0.02	-	-	-	-
Tannin & Lignin	0.1 mg/L	0.2	<0.1	-	-	-	-
Total Kjeldahl Nitrogen	0.1 mg/L	0.6	0.2	-	-	-	-
Turbidity	0.1 NTU	28.1	0.7	-	-	-	-
Anions							
Chloride	1 mg/L	35	36	-	-	-	-
Fluoride	0.1 mg/L	0.7	0.8	-	-	-	-
Nitrate as N	0.1 mg/L	<0.1	<0.1	-	-	-	-
Nitrite as N	0.05 mg/L	<0.05	<0.05	-	-	-	-
Sulphate	1 mg/L	56	45	-	-	-	-

Report Date: 08-Apr-2024

Order Date: 2-Apr-2024

Certificate of Analysis

Magnesium

Manganese

Potassium

Sodium

Client: GEMTEC Consulting Engineers and Scientists Limited

0.2 mg/L

0.005 mg/L

0.1 mg/L

0.2 mg/L

49.1

0.035

14.4

12.1

Client PO: Millers Farm Project Description: 100011.082

26.3

< 0.005

7.5

44.9

	_						
	Client ID:	PW1	PW2	-	-		
	Sample Date:	02-Apr-24 11:30	02-Apr-24 12:00	-	-	-	-
	Sample ID:	2414174-01	2414174-02	-	-		
	Matrix:	Drinking Water	Drinking Water	-	-		
	MDL/Units						
Metals					•		
Calcium	0.1 mg/L	42.1	42.6	-	-	-	-
Iron	0.1 mg/L	2.5	0.1	-	-	-	-

Report Date: 08-Apr-2024

Order Date: 2-Apr-2024

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO: Millers Farm Project Description: 100011.082

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions								
Chloride	ND	1	mg/L					
Fluoride	ND	0.1	mg/L					
Nitrate as N	ND	0.1	mg/L					
Nitrite as N	ND	0.05	mg/L					
Sulphate	ND	1	mg/L					
General Inorganics								
Alkalinity, total	ND	5	mg/L					
Ammonia as N	ND	0.01	mg/L					
Dissolved Organic Carbon	ND	0.5	mg/L					
Colour	ND	2	TCU					
Colour, apparent	ND	2	ACU					
Conductivity	ND	5	uS/cm					
Phenolics	ND	0.001	mg/L					
Total Dissolved Solids	ND	10	mg/L					
Sulphide	ND	0.02	mg/L					
Tannin & Lignin	ND	0.1	mg/L					
Total Kjeldahl Nitrogen	ND	0.1	mg/L					
Turbidity	ND	0.1	NTU					
Metals								
Calcium	ND	0.1	mg/L					
Iron	ND	0.1	mg/L					
Magnesium	ND	0.2	mg/L					
Manganese	ND	0.005	mg/L					
Potassium	ND	0.1	mg/L					
Sodium	ND	0.2	mg/L					
Microbiological Parameters								
E. coli	ND	1	CFU/100mL					
Total Coliforms	ND	1	CFU/100mL					
Fecal Coliforms	ND	1	CFU/100mL					
Heterotrophic Plate Count	ND	10	CFU/mL					

Report Date: 08-Apr-2024

Order Date: 2-Apr-2024

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO: Millers Farm

Report Date: 08-Apr-2024 Order Date: 2-Apr-2024

Project Description: 100011.082

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	36.3	1	mg/L	36.3			0.0	20	
Fluoride	0.82	0.1	mg/L	0.79			4.4	20	
Nitrate as N	ND	0.1	mg/L	ND			NC	20	
Nitrite as N	ND	0.05	mg/L	ND			NC	20	
Sulphate	45.4	1	mg/L	45.2			0.4	10	
General Inorganics									
Alkalinity, total	217	5	mg/L	218			0.6	14	
Ammonia as N	0.148	0.01	mg/L	0.149			0.8	17.7	
Dissolved Organic Carbon	ND	0.5	mg/L	ND			NC	37	
Colour	ND	2	TCU	ND			NC	12	
Colour, apparent	200	2	ACU	200			0.0	12	
Conductivity	600	5	uS/cm	599			0.3	5	
pH	8.0	0.1	pH Units	8.0			0.1	3.3	
Phenolics	ND	0.001	mg/L	ND			NC	10	
Total Dissolved Solids	308	10	mg/L	290			6.0	10	
Sulphide	0.04	0.02	mg/L	0.04			2.5	10	
Tannin & Lignin	ND	0.1	mg/L	ND			NC	11	
Total Kjeldahl Nitrogen	0.54	0.1	mg/L	0.55			1.9	16	
Turbidity	28.1	0.1	NTU	28.1			0.0	10	
Metals									
Calcium	49.1	0.1	mg/L	48.4			1.4	20	
Iron	ND	0.1	mg/L	ND			NC	20	
Magnesium	17.5	0.2	mg/L	18.1			3.1	20	
Manganese	ND	0.005	mg/L	ND			NC	20	
Potassium	2.3	0.1	mg/L	2.3			0.9	20	
Sodium	15.8	0.2	mg/L	16.5			4.3	20	
Microbiological Parameters									
E. coli	ND	1	CFU/100mL	ND			NC	30	
Total Coliforms	ND	1	CFU/100mL	ND			NC	30	
Fecal Coliforms	ND	1	CFU/100mL	ND			NC	30	

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Report Date: 08-Apr-2024 Order Date: 2-Apr-2024

Client PO: Millers Farm

Project Description: 100011.082

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Heterotrophic Plate Count	ND	10	CFU/mL	ND			NC	30	

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO: Millers Farm

Report Date: 08-Apr-2024

Order Date: 2-Apr-2024

Project Description: 100011.082

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	45.5	1	mg/L	36.3	91.9	70-124			
Fluoride	1.83	0.1	mg/L	0.79	104	70-130			
Nitrate as N	1.04	0.1	mg/L	ND	104	77-126			
Nitrite as N	0.963	0.05	mg/L	ND	96.3	82-115			
Sulphate	53.5	1	mg/L	45.2	83.3	74-126			
General Inorganics									
Ammonia as N	1.10	0.01	mg/L	0.149	94.8	81-124			
Dissolved Organic Carbon	9.8	0.5	mg/L	ND	97.6	60-133			
Phenolics	0.026	0.001	mg/L	ND	104	67-133			
Total Dissolved Solids	90.0	10	mg/L	ND	90.0	75-125			
Sulphide	0.50	0.02	mg/L	0.04	92.4	79-115			
Tannin & Lignin	1.0	0.1	mg/L	ND	97.8	71-113			
Total Kjeldahl Nitrogen	1.51	0.1	mg/L	0.55	95.6	81-126			
Metals									
Calcium	55300	0.1	mg/L	48400	69.1	80-120			QM-07
Iron	2470	0.1	mg/L	11.5	98.5	80-120			
Magnesium	26800	0.2	mg/L	18100	87.9	80-120			
Manganese	53.3	0.005	mg/L	1.96	103	80-120			
Potassium	12900	0.1	mg/L	2320	106	80-120			
Sodium	25700	0.2	mg/L	16500	91.5	80-120			

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited Order Date: 2-Apr-2024

Qualifier Notes:

Sample Qualifiers : QC Qualifiers:

Client PO: Millers Farm

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 08-Apr-2024

Project Description: 100011.082

0	P	A	R	A	C	E
	LA	$B \cap F$	A T	0 R 1	FS	- $ -$

lvd. IJ8 s.com Paracel Order Number

Chain Of Custody
Ontario Drinking Water Samples

2414174

17657

																1		-1	001	
Client Name:	Gentec		Project Ref:	1000	11	.0	8	2 /	/M	Walterworks N	ame			1	٠,	15	Sampl	les Tak	en By:	
Contact Name:	Brent Re	dmore	Quote #:	AL .				. T.		Waterworks N				Name: Samue			101	San		
Address:			PO #:						Address:				Signature:			cinuci isenu				
After Hours Contact:			E-mail:	B	Break Sedmin			nch	160	anter o	100	7-	Page of							
Telephone:			Fax:	Brent Telmont asente - Ca						Turn Around Time Required: ☐ 1 day ☐ 2 day ☐ 3 day ☐ 4 day										
☐ ON REG 170/03 ☐ ON REG 243/07	Under: (Indicate ONLY on ON REG 319/08	Private Well	(0)		Sou	rce T	ype:	G =	Ground	Water; S = Su	= Distribution; P = Pl Irface Water per Regulation - Y =								Analyse	
	n submitted to MOE/MO or human consumption?:		□ No □•N/A		d/o	S	,		Ş	- i-	- 1	1	rine	1	8		-		100	
	n must be completed b		will be pro	cessed.	Type: R/T/D/P	e: G /	1/ X 3	ple	2: 1	SAMPLE (COLLECTED	iners	Chlo ng/L	ushed 243)	m/E.		,,	_	Š.	3
	TION NAME		AMPLE ID		Sample Type	Source Type: G / S	Reportable: Y / N	Resample		DATE	TIME	# of Containers	ree/Combined Chlorine Residual mg/L	Standing / Flushed: S / F (REG 243)	Total Coliform/E.	HPC	Lead	THM	206	NAU H
1		PU	M		12	G	Н	1	07-	04-24	11'20	S	-			\vdash	1.7	\dashv	1	+
2		DU	1/1	. 143	1	1	<i>\(\lambda \)</i>	1		T	12' 10	15			77.			\dashv	V	e can
3			10.7%				4	3.	71		16107	7-7		-	-	1 4	7.1	\dashv	+	++
4								Ů.		-		++	-	+	_	-	7	\dashv	-	
5												+				\vdash	\vdash	\dashv	+	++
6					-		 					+		+	_	\vdash		-	-	+
7					in a		, ,	:			- ,	1		-		\vdash	-	\dashv	_	1.2
8					1	* 1						+		-	_	\vdash		+		+
9							,	1 3	-			+				1	\dashv	+	-	++
10		7	-			7						++			s. 7.		\dashv	-	-	+-+
Comments:	Coloria	14CU\$	700								4			Metho	d of D	5				
Relinquished By (Sign):	CHANTED,	7.00	Receive Driver/E							Received Lab:	dat HP			Verifie	d By:	עו	100	<u>- ك</u>	30x	
telinquished By (Print):	· · · · · · · · · · · · · · · · · · ·	2	Date/Tir	me:						Date/Tir		24	17:30	Date/T	ime:	Ap	1)/ h	9,8	24/1	7:0
ate/Time: 02	-04-24;	17:10	Tempera	ature:					°C	Tempera	Color	7 0	С	pH Ver						. ()
hain of Custody (Drink	ing Water).xlsx						***************************************	Davis	ion E O	-	VI						411	7		

1-800-749-1947 www.paracellabs.com

Certificate of Analysis

GEMTEC Consulting Engineers and Scientists Limited

32 Steacie Drive Kanata, ON K2K 2A9

Attn: Brent Redmond

Client PO:

Project: 100011.082

Custody: 19923

Report Date: 26-Jun-2024

Order Date: 20-Jun-2024

Order #: 2425361

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 2425361-01 TW1 8hr

2425361-02 TW1 8hr (Filtered)

Approved By:

Certificate of Analysis

 Client:
 GEMTEC Consulting Engineers and Scientists Limited

 Order Date: 20-Jun-2024

Client PO: Project Description: 100011.082

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Alkalinity, total to pH 4.5	EPA 310.1 - Titration to pH 4.5	24-Jun-24	24-Jun-24
Ammonia, as N	EPA 351.2 - Auto Colour	24-Jun-24	24-Jun-24
Anions	EPA 300.1 - IC	20-Jun-24	20-Jun-24
Colour	SM2120 - Spectrophotometric	21-Jun-24	21-Jun-24
Colour, apparent	SM2120 - Spectrophotometric	20-Jun-24	20-Jun-24
Conductivity	EPA 9050A- probe @25 °C	24-Jun-24	24-Jun-24
Dissolved Organic Carbon	MOE 3247B - Combustion IR	24-Jun-24	24-Jun-24
E. coli	MOE E3407	20-Jun-24	20-Jun-24
Fecal Coliform	SM 9222D	20-Jun-24	20-Jun-24
Heterotrophic Plate Count	SM 9215C	20-Jun-24	20-Jun-24
Mercury by CVAA	EPA 245.2 - Cold Vapour AA	20-Jun-24	20-Jun-24
Metals, ICP-MS	EPA 200.8 - ICP-MS	20-Jun-24	21-Jun-24
рН	EPA 150.1 - pH probe @25 °C	24-Jun-24	24-Jun-24
PHC F1	CWS Tier 1 - P&T GC-FID	24-Jun-24	25-Jun-24
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	25-Jun-24	25-Jun-24
Phenolics	EPA 420.2 - Auto Colour, 4AAP	20-Jun-24	21-Jun-24
Hardness	Hardness as CaCO3	20-Jun-24	21-Jun-24
Sulphide	SM 4500SE - Colourimetric	24-Jun-24	24-Jun-24
Tannin/Lignin	SM 5550B - Colourimetric	24-Jun-24	24-Jun-24
Total Coliform	MOE E3407	20-Jun-24	20-Jun-24
Total Dissolved Solids	SM 2540C - gravimetric, filtration	21-Jun-24	21-Jun-24
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	21-Jun-24	25-Jun-24
Turbidity	SM 2130B - Turbidity meter	20-Jun-24	20-Jun-24
VOCs by P&T GC-MS	EPA 624 - P&T GC-MS	25-Jun-24	25-Jun-24

Report Date: 26-Jun-2024

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO: Project Description: 100011.082

	Client ID:	TW1 8hr	TW1 8hr (Filtered)	-	-		
	Sample Date:	19-Jun-24 16:30	19-Jun-24 16:30	-	-	-	-
	Sample ID:	2425361-01	2425361-02	-	-		
	Matrix:	Drinking Water	Drinking Water	-	-		
	MDL/Units						
Microbiological Parameters	•				•		•
E. coli	1 CFU/100mL	NDOGN [1]	-	-	-	-	-
Total Coliforms	1 CFU/100mL	NDOGN [1]	-	-	-	-	-
Fecal Coliforms	1 CFU/100mL	ND	-	-	-	-	-
Heterotrophic Plate Count	10 CFU/mL	90	-	-	-	-	-
General Inorganics							•
Alkalinity, total	5 mg/L	199	-	-	-	-	-
Ammonia as N	0.01 mg/L	0.15	-	-	-	-	-
Dissolved Organic Carbon	0.5 mg/L	0.5	-	-	-	-	-
Colour, apparent	2 ACU	19	-	-	-	-	-
Colour	2 TCU	<2	-	-	-	-	-
Conductivity	5 uS/cm	615	-	-	-	-	-
Hardness	1 mg/L	220	-	-	-	-	-
рН	0.1 pH Units	8.1	-	-	-	-	-
Phenolics	0.001 mg/L	<0.001	-	-	-	-	-
Total Dissolved Solids	10 mg/L	336	-	-	-	-	-
Sulphide	0.02 mg/L	<0.02	-	-	-	-	-
Tannin & Lignin	0.1 mg/L	<0.1	-	-	-	-	-
Total Kjeldahl Nitrogen	0.1 mg/L	0.2	-	-	-	-	-
Turbidity	0.1 NTU	10.1	-	-	-	-	-
Anions	•					•	
Chloride	1 mg/L	44	-	-	-	-	-
Fluoride	0.1 mg/L	0.9	-	-	-	-	-
Nitrate as N	0.1 mg/L	<0.1	-	-	-	-	-
Nitrite as N	0.05 mg/L	<0.05	-	-	-	-	-
Sulphate	1 mg/L	51	-	-	-	-	-

Report Date: 26-Jun-2024

Order Date: 20-Jun-2024

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO: Project Description: 100011.082

	Client ID:	TW1 8hr	TW1 8hr (Filtered)	-	-		
	Sample Date:	19-Jun-24 16:30	19-Jun-24 16:30	-	-	-	-
	Sample ID:	2425361-01	2425361-02	-	-		
	Matrix:	Drinking Water	Drinking Water	-	-		
	MDL/Units						
Metals							•
Mercury	0.0001 mg/L	<0.0001	<0.0001	-	-	-	-
Aluminum	0.001 mg/L	0.006	<0.001	-	-	-	-
Antimony	0.0005 mg/L	<0.0005	<0.0005	-	-	-	-
Arsenic	0.001 mg/L	<0.001	<0.001	-	-	-	-
Barium	0.001 mg/L	0.049	0.048	-	-	-	-
Beryllium	0.0005 mg/L	<0.0005	<0.0005	-	-	-	-
Boron	0.01 mg/L	0.21	0.21	-	-	-	-
Cadmium	0.0001 mg/L	<0.0001	<0.0001	-	-	-	-
Calcium	0.1 mg/L	43.1	40.6	-	-	-	-
Chromium	0.001 mg/L	<0.001	<0.001	-	-	-	-
Cobalt	0.0005 mg/L	<0.0005	<0.0005	-	-	-	-
Copper	0.0005 mg/L	<0.0005	<0.0005	-	-	-	-
Iron	0.1 mg/L	0.4	<0.1	-	-	-	-
Lead	0.0001 mg/L	0.0001	<0.0001	-	-	-	-
Magnesium	0.2 mg/L	27.3	25.7	-	-	-	-
Manganese	0.005 mg/L	0.009	0.006	-	-	-	-
Molybdenum	0.0005 mg/L	0.0037	0.0052	-	-	-	-
Nickel	0.001 mg/L	<0.001	<0.001	-	-	-	-
Potassium	0.1 mg/L	7.5	7.4	-	-	-	-
Selenium	0.001 mg/L	<0.001	<0.001	-	-	-	-
Silver	0.0001 mg/L	<0.0001	<0.0001	-	-	-	-
Sodium	0.2 mg/L	45.2	41.9	-	-	-	-
Strontium	0.01 mg/L	1.53	1.46	-	-	-	-
Thallium	0.001 mg/L	<0.001	<0.001	-	-	-	-
Uranium	0.0001 mg/L	0.0003	0.0003	-	-	-	-

Report Date: 26-Jun-2024

Order Date: 20-Jun-2024

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 26-Jun-2024 Order Date: 20-Jun-2024

Project Description: 100011.082

	Client ID:	TW1 8hr	TW1 8hr (Filtered)	_	_		
	Sample Date:	19-Jun-24 16:30	19-Jun-24 16:30	_			
	-	2425361-01	2425361-02	-	-	-	-
	Sample ID: Matrix:	Drinking Water	Drinking Water	-	-		
		Drinking Water	Difficing Water	_	_		
	MDL/Units						
Metals	0.0005	.0.0005	1 .0.005			T	
Vanadium	0.0005 mg/L	<0.0005	<0.0005	-	-	-	-
Zinc	0.005 mg/L	<0.005	<0.005	-	-	-	-
Volatiles	0.0050 #		<u> </u>			1	
Acetone	0.0050 mg/L	<0.0050	-	-	-	-	-
Benzene	0.0005 mg/L	<0.0005	-	-	-	-	-
Bromodichloromethane	0.0005 mg/L	<0.0005	-	-	-	-	-
Bromoform	0.0005 mg/L	<0.0005	-	-	-	-	-
Bromomethane	0.0005 mg/L	<0.0005	-	-	-	-	-
Carbon Tetrachloride	0.0002 mg/L	<0.0002	-	-	-	-	-
Chlorobenzene	0.0005 mg/L	<0.0005	-	-	-	-	-
Chloroethane	0.0010 mg/L	<0.0010	-	-	-	-	-
Chloroform	0.0005 mg/L	<0.0005	-	-	-	-	-
Dibromochloromethane	0.0005 mg/L	<0.0005	-	-	-	-	-
Dichlorodifluoromethane	0.0010 mg/L	<0.0010	-	-	-	-	-
1,2-Dibromoethane	0.0002 mg/L	<0.0002	-	-	-	-	-
1,2-Dichlorobenzene	0.0005 mg/L	<0.0005	-	-	-	-	-
1,3-Dichlorobenzene	0.0005 mg/L	<0.0005	-	-	-	-	-
1,4-Dichlorobenzene	0.0005 mg/L	<0.0005	-	-	-	-	-
1,1-Dichloroethane	0.0005 mg/L	<0.0005	-	-	-	-	-
1,2-Dichloroethane	0.0005 mg/L	<0.0005	-	-	-	-	-
1,1-Dichloroethylene	0.0005 mg/L	<0.0005	-	-	-	-	-
cis-1,2-Dichloroethylene	0.0005 mg/L	<0.0005	-	-	-	-	-
trans-1,2-Dichloroethylene	0.0005 mg/L	<0.0005	-	-	-	-	-
1,2-Dichloroethylene, total	0.0005 mg/L	<0.0005	-	-	-	-	-
1,2-Dichloropropane	0.0005 mg/L	<0.0005	-	-	-	-	-

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO: Project Description: 100011.082

	Client ID:	TW1 8hr	TW1 8hr (Filtered)	-	-		
	Sample Date:	19-Jun-24 16:30	19-Jun-24 16:30	-	-	_	_
	Sample ID:	2425361-01	2425361-02	-	-		
	Matrix:	Drinking Water	Drinking Water	-	-		
	MDL/Units						
Volatiles							,
cis-1,3-Dichloropropylene	0.0005 mg/L	<0.0005	-	-	-	-	-
trans-1,3-Dichloropropylene	0.0005 mg/L	<0.0005	-	-	-	-	-
1,3-Dichloropropene, total	0.0005 mg/L	<0.0005	-	-	-	-	-
Ethylbenzene	0.0005 mg/L	<0.0005	-	-	-	-	-
Hexane	0.0010 mg/L	<0.0010	-	-	-	-	-
Methyl Ethyl Ketone (2-Butanone)	0.0050 mg/L	<0.0050	-	-	-	-	-
Methyl Isobutyl Ketone	0.0050 mg/L	<0.0050	-	-	-	-	-
Methyl tert-butyl ether	0.0020 mg/L	<0.0020	-	-	-	-	-
Methylene Chloride	0.0050 mg/L	<0.0050	-	-	-	-	-
Styrene	0.0005 mg/L	<0.0005	-	-	-	-	-
1,1,1,2-Tetrachloroethane	0.0005 mg/L	<0.0005	-	-	-	-	-
1,1,2,2-Tetrachloroethane	0.0005 mg/L	<0.0005	-	-	-	-	-
Tetrachloroethylene	0.0005 mg/L	<0.0005	-	-	-	-	-
Toluene	0.0005 mg/L	<0.0005	-	-	-	-	-
1,1,1-Trichloroethane	0.0005 mg/L	<0.0005	-	-	-	-	-
1,1,2-Trichloroethane	0.0005 mg/L	<0.0005	-	-	-	-	-
Trichloroethylene	0.0005 mg/L	<0.0005	-	-	-	-	-
Trichlorofluoromethane	0.0010 mg/L	<0.0010	-	-	-	-	-
Vinyl chloride	0.0002 mg/L	<0.0002	-	-	-	-	-
m,p-Xylenes	0.0005 mg/L	<0.0005	-	-	-	-	-
o-Xylene	0.0005 mg/L	<0.0005	-	-	-	-	-
Xylenes, total	0.0005 mg/L	<0.0005	-	-	-	-	-
Toluene-d8	Surrogate	114%	-	-	-	-	-
4-Bromofluorobenzene	Surrogate	113%	-	-	-	-	-
Dibromofluoromethane	Surrogate	102%	-	-	-	-	-

Report Date: 26-Jun-2024

Order Date: 20-Jun-2024

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Report Date: 26-Jun-2024 Order Date: 20-Jun-2024

Client PO: Project Description: 100011.082

	Client ID:	TW1 8hr	TW1 8hr (Filtered)	-	-		
	Sample Date: 19-Jun-24 16:30		19-Jun-24 16:30	-	-	-	-
	Sample ID: 2425361-01		2425361-02	-	-		
	Matrix: Drir		Drinking Water	-	-		
	MDL/Units						
Hydrocarbons					•		
F1 PHCs (C6-C10)	0.0250 mg/L	<0.0250	•	-	-	-	-
F2 PHCs (C10-C16)	0.1 mg/L	<0.1	-	-	-	-	-
F3 PHCs (C16-C34)	0.1 mg/L	<0.1	-	-	-	-	-
F4 PHCs (C34-C50)	0.1 mg/L	<0.1	-	-	-	-	-

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Order Date: 20-Jun-2024

Project Description: 100011.082

Report Date: 26-Jun-2024

Client PO:

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions								
Chloride	ND	1	mg/L					
Fluoride	ND	0.1	mg/L					
Nitrate as N	ND	0.1	mg/L					
Nitrite as N	ND	0.05	mg/L					
Sulphate	ND	1	mg/L					
General Inorganics								
Alkalinity, total	ND	5	mg/L					
Ammonia as N	ND	0.01	mg/L					
Dissolved Organic Carbon	ND	0.5	mg/L					
Colour	ND	2	TCU					
Colour, apparent	ND	2	ACU					
Conductivity	ND	5	uS/cm					
Phenolics	ND	0.001	mg/L					
Total Dissolved Solids	ND	10	mg/L					
Sulphide	ND	0.02	mg/L					
Tannin & Lignin	ND	0.1	mg/L					
Total Kjeldahl Nitrogen	ND	0.1	mg/L					
Turbidity	ND	0.1	NTU					
Hydrocarbons								
F1 PHCs (C6-C10)	ND	0.0250	mg/L					
F2 PHCs (C10-C16)	ND	0.1	mg/L					
F3 PHCs (C16-C34)	ND	0.1	mg/L					
F4 PHCs (C34-C50)	ND	0.1	mg/L					
Metals								
Mercury	ND	0.0001	mg/L					
Aluminum	ND	0.001	mg/L					
Antimony	ND	0.0005	mg/L					
Arsenic	ND	0.001	mg/L					
Barium	ND	0.001	mg/L					
Beryllium	ND	0.0005	mg/L					
Boron	ND	0.01	mg/L					
Cadmium	ND	0.0001	mg/L					

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO: Project Description: 100011.082

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Calcium	ND	0.1	mg/L					
Chromium	ND	0.001	mg/L					
Cobalt	ND	0.0005	mg/L					
Copper	ND	0.0005	mg/L					
Iron	ND	0.1	mg/L					
Lead	ND	0.0001	mg/L					
Magnesium	ND	0.2	mg/L					
Manganese	ND	0.005	mg/L					
Molybdenum	ND	0.0005	mg/L					
Nickel	ND	0.001	mg/L					
Potassium	ND	0.1	mg/L					
Selenium	ND	0.001	mg/L					
Silver	ND	0.0001	mg/L					
Sodium	ND	0.2	mg/L					
Strontium	ND	0.01	mg/L					
Thallium	ND	0.001	mg/L					
Uranium	ND	0.0001	mg/L					
Vanadium	ND	0.0005	mg/L					
Zinc	ND	0.005	mg/L					
Microbiological Parameters								
E. coli	ND	1	CFU/100mL					
Total Coliforms	ND	1	CFU/100mL					
Fecal Coliforms	ND	1	CFU/100mL					
Heterotrophic Plate Count	ND	10	CFU/mL					
Volatiles								
Acetone	ND	0.0050	mg/L					
Benzene	ND	0.0005	mg/L					
Bromodichloromethane	ND	0.0005	mg/L					
Bromoform	ND	0.0005	mg/L					
Bromomethane	ND	0.0005	mg/L					
Carbon Tetrachloride	ND	0.0002	mg/L					
Chlorobenzene	ND	0.0005	mg/L					
Chloroethane	ND	0.0010	mg/L					

Report Date: 26-Jun-2024

Order Date: 20-Jun-2024

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Report Date: 26-Jun-2024 Order Date: 20-Jun-2024

Client PO:

Project Description: 100011.082

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Chloroform	ND	0.0005	mg/L					
Dibromochloromethane	ND	0.0005	mg/L					
Dichlorodifluoromethane	ND	0.0010	mg/L					
1,2-Dibromoethane	ND	0.0002	mg/L					
1,2-Dichlorobenzene	ND	0.0005	mg/L					
1,3-Dichlorobenzene	ND	0.0005	mg/L					
1,4-Dichlorobenzene	ND	0.0005	mg/L					
1,1-Dichloroethane	ND	0.0005	mg/L					
1,2-Dichloroethane	ND	0.0005	mg/L					
1,1-Dichloroethylene	ND	0.0005	mg/L					
cis-1,2-Dichloroethylene	ND	0.0005	mg/L					
trans-1,2-Dichloroethylene	ND	0.0005	mg/L					
1,2-Dichloroethylene, total	ND	0.0005	mg/L					
1,2-Dichloropropane	ND	0.0005	mg/L					
cis-1,3-Dichloropropylene	ND	0.0005	mg/L					
trans-1,3-Dichloropropylene	ND	0.0005	mg/L					
1,3-Dichloropropene, total	ND	0.0005	mg/L					
Ethylbenzene	ND	0.0005	mg/L					
Hexane	ND	0.0010	mg/L					
Methyl Ethyl Ketone (2-Butanone)	ND	0.0050	mg/L					
Methyl Isobutyl Ketone	ND	0.0050	mg/L					
Methyl tert-butyl ether	ND	0.0020	mg/L					
Methylene Chloride	ND	0.0050	mg/L					
Styrene	ND	0.0005	mg/L					
1,1,1,2-Tetrachloroethane	ND	0.0005	mg/L					
1,1,2,2-Tetrachloroethane	ND	0.0005	mg/L					
Tetrachloroethylene	ND	0.0005	mg/L					
Toluene	ND	0.0005	mg/L					
1,1,1-Trichloroethane	ND	0.0005	mg/L					
1,1,2-Trichloroethane	ND	0.0005	mg/L					
Trichloroethylene	ND	0.0005	mg/L					
Trichlorofluoromethane	ND	0.0010	mg/L					
Vinyl chloride	ND	0.0002	mg/L					

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Olonic Centres conducting Engineers and colonicists Enints

Client PO:

Report Date: 26-Jun-2024

Order Date: 20-Jun-2024

Project Description: 100011.082

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
m,p-Xylenes	ND	0.0005	mg/L					
o-Xylene	ND	0.0005	mg/L					
Xylenes, total	ND	0.0005	mg/L					
Surrogate: 4-Bromofluorobenzene	0.0916		%	114	50-140			
Surrogate: Dibromofluoromethane	0.0809		%	101	50-140			
Surrogate: Toluene-d8	0.0925		%	116	50-140			

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Project Description: 100011.082

Report Date: 26-Jun-2024

Order Date: 20-Jun-2024

Client PO:

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	6.72	1	mg/L	6.66			0.9	20	
Fluoride	0.58	0.1	mg/L	0.63			8.4	20	
Nitrate as N	0.29	0.1	mg/L	0.28			4.3	20	
Nitrite as N	ND	0.05	mg/L	ND			NC	20	
Sulphate	29.5	1	mg/L	29.8			1.1	20	
General Inorganics									
Alkalinity, total	197	5	mg/L	199			1.0	14	
Ammonia as N	ND	0.01	mg/L	ND			NC	17.7	
Dissolved Organic Carbon	4.6	0.5	mg/L	4.7			0.3	37	
Colour	ND	2	TCU	ND			NC	12	
Colour, apparent	18	2	ACU	19			5.4	12	
Conductivity	607	5	uS/cm	615			1.3	5	
pH	8.1	0.1	pH Units	8.1			0.4	3.3	
Phenolics	ND	0.001	mg/L	ND			NC	10	
Total Dissolved Solids	90.0	10	mg/L	90.0			0.0	10	
Sulphide	ND	0.02	mg/L	ND			NC	10	
Tannin & Lignin	ND	0.1	mg/L	ND			NC	11	
Total Kjeldahl Nitrogen	0.30	0.1	mg/L	0.30			0.3	16	
Turbidity	0.2	0.1	NTU	0.2			5.4	10	
Hydrocarbons									
F1 PHCs (C6-C10)	ND	0.0250	mg/L	ND			NC	30	
Metals									
Mercury	ND	0.0001	mg/L	ND			NC	20	
Aluminum	0.041	0.001	mg/L	0.042			2.3	20	
Antimony	ND	0.0005	mg/L	ND			NC	20	
Arsenic	ND	0.001	mg/L	ND			NC	20	
Barium	0.009	0.001	mg/L	0.009			0.6	20	
Beryllium	ND	0.0005	mg/L	ND			NC	20	
Boron	ND	0.01	mg/L	ND			NC	20	
Cadmium	ND	0.0001	mg/L	ND			NC	20	

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Report Date: 26-Jun-2024

Order Date: 20-Jun-2024

Project Description: 100011.082

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Calcium	9.5	0.1	mg/L	9.4			1.0	20	
Chromium	ND	0.001	mg/L	ND			NC	20	
Cobalt	ND	0.0005	mg/L	ND			NC	20	
Copper	0.0072	0.0005	mg/L	0.0072			0.7	20	
Iron	0.2	0.1	mg/L	0.2			0.1	20	
Lead	0.0002	0.0001	mg/L	0.0002			10.4	20	
Magnesium	1.9	0.2	mg/L	2.0			3.8	20	
Manganese	ND	0.005	mg/L	ND			NC	20	
Molybdenum	ND	0.0005	mg/L	ND			NC	20	
Nickel	ND	0.001	mg/L	ND			NC	20	
Potassium	0.7	0.1	mg/L	0.7			1.0	20	
Selenium	ND	0.001	mg/L	ND			NC	20	
Silver	ND	0.0001	mg/L	ND			NC	20	
Sodium	17.1	0.2	mg/L	18.1			5.6	20	
Thallium	ND	0.001	mg/L	ND			NC	20	
Uranium	ND	0.0001	mg/L	ND			NC	20	
Vanadium	ND	0.0005	mg/L	ND			NC	20	
Zinc	0.038	0.005	mg/L	0.039			1.4	20	
Microbiological Parameters									
E. coli	ND	1	CFU/100mL	ND			NC	30	
Total Coliforms	ND	1	CFU/100mL	ND			NC	30	
Fecal Coliforms	ND	1	CFU/100mL	ND			NC	30	
Heterotrophic Plate Count	150	10	CFU/mL	170			12.0	30	
Volatiles									
Acetone	ND	0.0050	mg/L	ND			NC	30	
Benzene	ND	0.0005	mg/L	ND			NC	30	
Bromodichloromethane	ND	0.0005	mg/L	ND			NC	30	
Bromoform	ND	0.0005	mg/L	ND			NC	30	
Bromomethane	ND	0.0005	mg/L	ND			NC	30	
Carbon Tetrachloride	ND	0.0002	mg/L	ND			NC	30	
Chlorobenzene	ND	0.0005	mg/L	ND			NC	30	

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Project Description: 100011.082

Report Date: 26-Jun-2024

Order Date: 20-Jun-2024

Client PO:

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Chloroethane	ND	0.0010	mg/L	ND			NC	30	
Chloroform	ND	0.0005	mg/L	ND			NC	30	
Dibromochloromethane	ND	0.0005	mg/L	ND			NC	30	
Dichlorodifluoromethane	ND	0.0010	mg/L	ND			NC	30	
1,2-Dibromoethane	ND	0.0002	mg/L	ND			NC	30	
1,2-Dichlorobenzene	ND	0.0005	mg/L	ND			NC	30	
1,3-Dichlorobenzene	ND	0.0005	mg/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.0005	mg/L	ND			NC	30	
1,1-Dichloroethane	ND	0.0005	mg/L	ND			NC	30	
1,2-Dichloroethane	ND	0.0005	mg/L	ND			NC	30	
1,1-Dichloroethylene	ND	0.0005	mg/L	ND			NC	30	
cis-1,2-Dichloroethylene	ND	0.0005	mg/L	ND			NC	30	
trans-1,2-Dichloroethylene	ND	0.0005	mg/L	ND			NC	30	
1,2-Dichloropropane	ND	0.0005	mg/L	ND			NC	30	
cis-1,3-Dichloropropylene	ND	0.0005	mg/L	ND			NC	30	
trans-1,3-Dichloropropylene	ND	0.0005	mg/L	ND			NC	30	
Ethylbenzene	ND	0.0005	mg/L	ND			NC	30	
Hexane	ND	0.0010	mg/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND	0.0050	mg/L	ND			NC	30	
Methyl Isobutyl Ketone	ND	0.0050	mg/L	ND			NC	30	
Methyl tert-butyl ether	ND	0.0020	mg/L	ND			NC	30	
Methylene Chloride	ND	0.0050	mg/L	ND			NC	30	
Styrene	ND	0.0005	mg/L	ND			NC	30	
1,1,1,2-Tetrachloroethane	ND	0.0005	mg/L	ND			NC	30	
1,1,2,2-Tetrachloroethane	ND	0.0005	mg/L	ND			NC	30	
Tetrachloroethylene	ND	0.0005	mg/L	ND			NC	30	
Toluene	ND	0.0005	mg/L	ND			NC	30	
1,1,1-Trichloroethane	ND	0.0005	mg/L	ND			NC	30	
1,1,2-Trichloroethane	ND	0.0005	mg/L	ND			NC	30	
Trichloroethylene	ND	0.0005	mg/L	ND			NC	30	
Trichlorofluoromethane	ND	0.0010	mg/L	ND			NC	30	

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Report Date: 26-Jun-2024

Order Date: 20-Jun-2024

Project Description: 100011.082

Client PO:

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Vinyl chloride	ND	0.0002	mg/L	ND			NC	30	
m,p-Xylenes	ND	0.0005	mg/L	ND			NC	30	
o-Xylene	ND	0.0005	mg/L	ND			NC	30	
Surrogate: 4-Bromofluorobenzene	0.0913		%		114	50-140			
Surrogate: Dibromofluoromethane	0.0821		%		103	50-140			
Surrogate: Toluene-d8	0.0915		%		114	50-140			

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO:

Project Description: 100011.082

Report Date: 26-Jun-2024

Order Date: 20-Jun-2024

Method C	Quality	Control:	Spike
----------	---------	----------	--------------

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	16.4	1	mg/L	6.66	97.7	70-124			
Fluoride	1.61	0.1	mg/L	0.63	98.2	70-130			
Nitrate as N	1.30	0.1	mg/L	0.28	102	77-126			
Nitrite as N	1.05	0.05	mg/L	ND	105	82-115			
Sulphate	38.3	1	mg/L	29.8	85.0	70-130			
General Inorganics									
Ammonia as N	0.983	0.01	mg/L	ND	98.3	81-124			
Dissolved Organic Carbon	13.9	0.5	mg/L	3.1	108	60-133			
Phenolics	0.025	0.001	mg/L	ND	98.4	74-126			
Total Dissolved Solids	102	10	mg/L	ND	102	75-125			
Sulphide	0.49	0.02	mg/L	ND	98.8	79-115			
Tannin & Lignin	1.0	0.1	mg/L	ND	104	71-113			
Total Kjeldahl Nitrogen	1.32	0.1	mg/L	0.30	102	81-126			
Hydrocarbons									
F1 PHCs (C6-C10)	1.98	0.0250	mg/L	ND	98.8	85-115			
F2 PHCs (C10-C16)	2.0	0.1	mg/L	ND	125	60-140			
F3 PHCs (C16-C34)	5.0	0.1	mg/L	ND	127	60-140			
F4 PHCs (C34-C50)	2.9	0.1	mg/L	ND	117	60-140			
Metals									
Mercury	0.0027	0.0001	mg/L	ND	90.2	70-130			
Aluminum	85.8	0.001	mg/L	41.5	88.5	80-120			
Arsenic	48.7	0.001	mg/L	0.219	97.0	80-120			
Barium	54.6	0.001	mg/L	8.63	91.9	80-120			
Beryllium	50.4	0.0005	mg/L	0.0173	101	80-120			
Boron	53.2	0.01	mg/L	5.64	95.1	80-120			
Cadmium	46.3	0.0001	mg/L	0.0066	92.6	80-120			
Calcium	18800	0.1	mg/L	9390	94.4	80-120			
Chromium	48.1	0.001	mg/L	0.155	95.8	80-120			
Cobalt	46.5	0.0005	mg/L	0.0217	92.9	80-120			
Copper	52.2	0.0005	mg/L	7.20	90.0	80-120			

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Order Date: 20-Jun-2024

Project Description: 100011.082

Report Date: 26-Jun-2024

Client PO:

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Iron	2550	0.1	mg/L	202	94.0	80-120			
Lead	47.2	0.0001	mg/L	0.209	94.0	80-120			
Magnesium	11500	0.2	mg/L	2020	95.0	80-120			
Manganese	53.1	0.005	mg/L	3.99	98.2	80-120			
Molybdenum	44.4	0.0005	mg/L	0.415	87.9	80-120			
Nickel	46.5	0.001	mg/L	0.327	92.4	80-120			
Potassium	11100	0.1	mg/L	702	104	80-120			
Selenium	47.7	0.001	mg/L	0.083	95.3	80-120			
Silver	45.5	0.0001	mg/L	0.0036	90.9	80-120			
Sodium	26200	0.2	mg/L	18100	80.6	80-120			
Thallium	46.5	0.001	mg/L	0.018	92.9	80-120			
Uranium	49.5	0.0001	mg/L	0.0093	99.0	80-120			
Vanadium	48.7	0.0005	mg/L	0.121	97.1	80-120			
Zinc	80.8	0.005	mg/L	38.6	84.5	80-120			
Volatiles									
Acetone	0.103	0.0050	mg/L	ND	103	50-140			
Benzene	0.0426	0.0005	mg/L	ND	106	60-130			
Bromodichloromethane	0.0456	0.0005	mg/L	ND	114	60-130			
Bromoform	0.0485	0.0005	mg/L	ND	121	60-130			
Bromomethane	0.0420	0.0005	mg/L	ND	105	50-140			
Carbon Tetrachloride	0.0426	0.0002	mg/L	ND	106	60-130			
Chlorobenzene	0.0478	0.0005	mg/L	ND	119	60-130			
Chloroethane	0.0441	0.0010	mg/L	ND	110	50-140			
Chloroform	0.0435	0.0005	mg/L	ND	109	60-130			
Dibromochloromethane	0.0484	0.0005	mg/L	ND	121	60-130			
Dichlorodifluoromethane	0.0434	0.0010	mg/L	ND	108	50-140			
1,2-Dibromoethane	0.0484	0.0002	mg/L	ND	121	60-130			
1,2-Dichlorobenzene	0.0454	0.0005	mg/L	ND	114	60-130			
1,3-Dichlorobenzene	0.0442	0.0005	mg/L	ND	110	60-130			
1,4-Dichlorobenzene	0.0453	0.0005	mg/L	ND	113	60-130			
1,1-Dichloroethane	0.0445	0.0005	mg/L	ND	111	60-130			

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Project Description: 100011.082

Report Date: 26-Jun-2024

Order Date: 20-Jun-2024

Client PO:

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,2-Dichloroethane	0.0440	0.0005	mg/L	ND	110	60-130			
1,1-Dichloroethylene	0.0459	0.0005	mg/L	ND	115	60-130			
cis-1,2-Dichloroethylene	0.0422	0.0005	mg/L	ND	106	60-130			
trans-1,2-Dichloroethylene	0.0492	0.0005	mg/L	ND	123	60-130			
1,2-Dichloropropane	0.0428	0.0005	mg/L	ND	107	60-130			
cis-1,3-Dichloropropylene	0.0401	0.0005	mg/L	ND	100	60-130			
trans-1,3-Dichloropropylene	0.0386	0.0005	mg/L	ND	96.4	60-130			
Ethylbenzene	0.0446	0.0005	mg/L	ND	112	60-130			
Hexane	0.0315	0.0010	mg/L	ND	78.8	60-130			
Methyl Ethyl Ketone (2-Butanone)	0.0992	0.0050	mg/L	ND	99.2	50-140			
Methyl Isobutyl Ketone	0.109	0.0050	mg/L	ND	109	50-140			
Methyl tert-butyl ether	0.111	0.0020	mg/L	ND	111	50-140			
Methylene Chloride	0.0404	0.0050	mg/L	ND	101	60-130			
Styrene	0.0424	0.0005	mg/L	ND	106	60-130			
1,1,1,2-Tetrachloroethane	0.0484	0.0005	mg/L	ND	121	60-130			
1,1,2,2-Tetrachloroethane	0.0331	0.0005	mg/L	ND	82.7	60-130			
Tetrachloroethylene	0.0485	0.0005	mg/L	ND	121	60-130			
Toluene	0.0462	0.0005	mg/L	ND	116	60-130			
1,1,1-Trichloroethane	0.0430	0.0005	mg/L	ND	108	60-130			
1,1,2-Trichloroethane	0.0448	0.0005	mg/L	ND	112	60-130			
Trichloroethylene	0.0469	0.0005	mg/L	ND	117	60-130			
Trichlorofluoromethane	0.0491	0.0010	mg/L	ND	123	60-130			
Vinyl chloride	0.0439	0.0002	mg/L	ND	110	50-140			
m,p-Xylenes	0.0878	0.0005	mg/L	ND	110	60-130			
o-Xylene	0.0444	0.0005	mg/L	ND	111	60-130			
Surrogate: 4-Bromofluorobenzene	0.0767		%		95.9	50-140			
Surrogate: Dibromofluoromethane	0.0823		%		103	50-140			
Surrogate: Toluene-d8	0.0793		%		99.2	50-140			

Certificate of Analysis

Report Date: 26-Jun-2024

Order Date: 20-Jun-2024

Project Description: 100011.082

Client: GEMTEC Consulting Engineers and Scientists Limited

Qualifier Notes:

Client PO:

Sample Qualifiers:

1: NO DATA: Overgrown with nontarget.

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

ent Blvd. (1G 4J8

2425361

Paracel Order Number

Chain Of Custody Ontario Drinking Water Samples

Client	Name:	GEMTEC			Project Ref:	(0	00	(1	0	22) w	aterworks N	lame:				0.000	0/1	2.175	Sample	es Take	. By:		
ontac	t Name:	Brent Red	Mas	d	Quote #:	- (0	- (2		. (3	0	_	aterworks N					Name		_	- C	An. I	_		^
ddres	ss:	0	010		PO #:						_	ldress:					Signat		20	26	212		и 7) >	i el
fter H	fours Contact:				E-mail:	breat:	امم	No. 1	(A)	00					,		Signat	ure.	Page of					
leph	one:	343-571-95	326		Fax:	D. CKI S	40	140/0	O	70		blic Health	Unit:		,		+		Turn A	round	Time			ıv
101	es Submitted I N REG 170/03 N REG 243/07		O P	rivate We	3		Sou	rce T	ype:	G =	Ground W	ater; S = Si	urface Wa								ired /	_		_
e the	ese samples fo	n submitted to MOE/MO or human consumption?: n must be completed by	HLTC?:	□ Yes □	No ⊠ N/A	essed.	١.					SAMPLE (-,-	lation - Y = Y			Flushed: G 243)	orm/E. Coli	нРС	Lead	тнм	Pecka 9.6	meta >	
	LOCAT	ION NAME			AMPLE ID		Sample Type: R/T/D/P	Source Type: G / S	Reportable: Y / N	Resample	D/	ATE	\	TIME	# of Containers	Free/Combined Chlorine Residual mg/L	Standing / Flushed: S / F (REG 243)	Total Coliform/E.	I	e Le	Ė	20	11808 7	PHCA
1			T	W	Sh		R	C	₩	/	JUNE	19/24	167	30								1	1	
!																						\top		
+											-													
+								-				-			Ш									_
+								_							Ш									\perp
+							_	_	-	_					Ш						4	4	1	\perp
+							-	\dashv	\dashv	+					\sqcup						4	4	\perp	\perp
$^{+}$							\dashv	-	\dashv	+					\vdash					_	+	+	+	+
1							\dashv	\dashv	+	+				-	\vdash					-	+	+	+	+
men	ts: Golor	in ACU & 7	cu '														Metho	d of p	elivery					
	hed By (Sign)	mee .			Received Driver/De	pot	7	5	~		8.3	Seceive	1 at D -				Verifie	d By:	00	el	1			
5	onue	Eenwa 0624; 8			Date/Time	lez	9	2	0/	29	1 pm	m. e. her	14/6	149	13		Date/T	C		Ву: (021	11	0.52

1-800-749-1947 www.paracellabs.com

Certificate of Analysis

GEMTEC Consulting Engineers and Scientists Limited

32 Steacie Drive Kanata, ON K2K 2A9

Attn: Brent Redmond

Client PO: Millers Farm

Project: 100011.082

Custody: 19582

Report Date: 6-Aug-2024

Order Date: 1-Aug-2024

Order #: 2431471

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID

2431471-01 PW2

Das

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Report Date: 06-Aug-2024 Order Date: 1-Aug-2024

Client PO: Millers Farm

Project Description: 100011.082

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
E. coli	MOE E3407	2-Aug-24	2-Aug-24
Fecal Coliform	SM 9222D	2-Aug-24	2-Aug-24
Total Coliform	MOE E3407	2-Aug-24	2-Aug-24
Turbidity	SM 2130B - Turbidity meter	3-Aug-24	3-Aug-24

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Project Description: 100011.082

Report Date: 06-Aug-2024

Order Date: 1-Aug-2024

Client PO: Millers Farm Project D

Client ID:	PW2	-	-	-		
Sample Date:	01-Aug-24 15:30	-	-	-	-	-
Sample ID:	2431471-01	-	-	-		
Matrix:	Drinking Water	-	-	-		
MDL/Units						
			•	•		
1 CFU/100mL	ND	-	-	-	-	-
1 CFU/100mL	2	-	-	-	-	-
1 CFU/100mL	ND	-	-	-	-	-
•	•		•		•	
0.1 NTU	<0.1	-	-	-	-	-
	Sample Date: Sample ID: Matrix: MDL/Units 1 CFU/100mL 1 CFU/100mL 1 CFU/100mL	Sample Date: Sample ID: Matrix: 01-Aug-24 15:30 2431471-01 Drinking Water Drinking Water	Sample Date: 01-Aug-24 15:30 -	Sample Date: 01-Aug-24 15:30 - -	Sample Date: 01-Aug-24 15:30 - </td <td> Sample Date: 01-Aug-24 15:30 - - - - - - - - - </td>	Sample Date: 01-Aug-24 15:30 - - - - - - - - -

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO: Millers Farm

Report Date: 06-Aug-2024

Order Date: 1-Aug-2024

Project Description: 100011.082

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics Turbidity	ND	0.1	NTU					
Microbiological Parameters E. coli	ND	1	CFU/100mL					
Total Coliforms Fecal Coliforms	ND ND	1 1	CFU/100mL CFU/100mL					

PARACEL Order #: 2431471

Certificate of Analysis

Client: GEMTEC Consulting Engineers and Scientists Limited

Client PO: Millers Farm

Report Date: 06-Aug-2024

Order Date: 1-Aug-2024

Project Description: 100011.082

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics Turbidity	ND	0.1	NTU	ND			NC	10	
Microbiological Parameters E. coli	ND	1	CFU/100mL	ND			NC	30	
Total Coliforms	1	1	CFU/100mL	2			66.7	30	BAC04
Fecal Coliforms	ND	1	CFU/100mL	ND			NC	30	

Certificate of Analysis

Report Date: 06-Aug-2024

Order Date: 1-Aug-2024

Project Description: 100011.082

Client: GEMTEC Consulting Engineers and Scientists Limited

Qualifier Notes:

Sample Qualifiers : QC Qualifiers:

Client PO: Millers Farm

BAC04 Duplicate QC data falls within method prescribed 95% confidence limits.

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

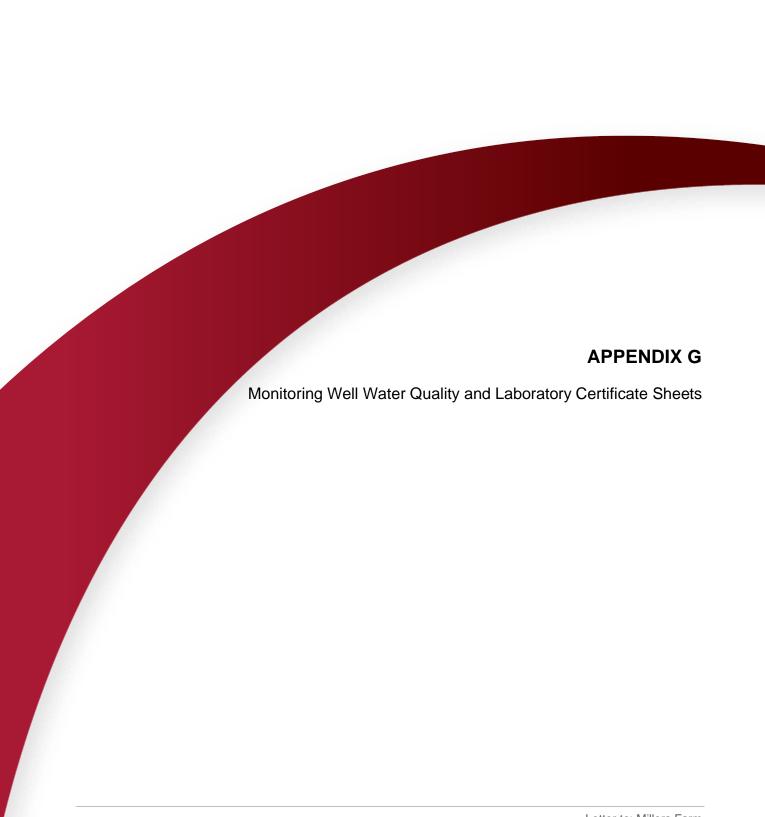
Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.


3lvd. 4J8 s.com

Paracel Order Number

Chain Of Custody Ontario Drinking Water Samples

Nº 19582

												"	,	(11.5		921			.000	,,,	
Client	Name:	& Gentec Brent		Project Ref:	loc	00	11.	0	8 2	/ Waterwark	s Name: /	carm						Sample	es Tak	en By:		
Contac	ct Name:	Break	Redmond	Quote #:						Waterwork					Name	:	_					-
Addre:	55:			PO #:						Address:					Signat		1	cin	166	()	106	
After H	fours Contact:			E-mail:	Oct	n 1		00	1	on i C Sei	. (Jaganas	510.	L_C Pa	ige	40	()		_
releph	one:			Fax:	(D) (C)	11+	- 1	<u>wc</u>	yn.	Public Heal	th Unit:	(g		-	1		Turn A	Around	d Time	e Requir	red:	
0 0	N REG 170/03 N REG 243/07	7 Other	Private W	16910	33	Sou	rce T	ype:	G =	Raw; T = Treated; Ground Water; S = es AWQI reporting	Surface W	ater								Analys		_
		n submitted to MOE/MO or human consumption?:	HLTC?: Yes	□ No □ N/A		1							T	T T	ü	Coli					4	
				re samples will be processed.				le: Y /	nple	SAMPL	E COLLEC	TED	ainers	ad Chlo	Flusher 5 243)	orm/E.	HPC HPC	Lead	THM	90	4,4	
	LOCAT	TON NAME		SAMPLE ID		Sample Type: R/T/D/P	Source Type: G / S	Reportable: Y / N	Resample	DATE		TIME	# of Containers	Free/Combined Chlorine Residual mg/L	Standing / Flushed: S / F (REG 243)	Total Coliform/E.	Ī	P	Ĕ	Bacter	MEN	
1			-	PWZ		R	G	N	1	01-Aug-2	4 1	5:30	3			\neg		\exists	\exists	7	1	_
2												5. 70				\neg	\Box	\exists	\forall		\forall	_
3																\neg	\Box	\top	\forall	\top	\top	_
4							- 1		-		-		П			\dashv	\forall	\top	\dashv	+		_
5																\forall	\forall	\top	\forall	+	$\forall \exists$	_
6																\exists	\top	\top	\top	\top	\top	_
7										,						\exists	\top	\top	\top	\top	\top	_
8																\neg	\top	\top	\top	\top	\top	
9																		\top	\top	\top	\top	
.0 mmen	te-									,								\top	\top	\top	\top	_
															Method	of De	livery:	7	10	7	In	
	hed By (Signary	MAR.		Received Driver/De						Recei Lab:	ved at	B	K	29	Verified	Ву:	50		14		V /	
		nuec Sa	ne	Date/Time						Date	Time:	lia	15	5	Date/Tir	ne:	Au	(A)	2	124	4.	4
e/Tim	e: 0/-	Aug-24; 1	6:25	Temperati	ure:				0	'C Temp	erature:	1008	1 0	'C	pH Verif	ied:		By:	100	102		
		/											-							-		637

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS 32 STEACIE DRIVE OTTAWA, ON K2K 2A9

(613) 836-1422

ATTENTION TO: Mohit Bhargav

PROJECT: 100011.082 AGAT WORK ORDER: 24Z181360

WATER ANALYSIS REVIEWED BY: Yris Verastegui, Inorganic Team Lead

DATE REPORTED: Aug 09, 2024

PAGES (INCLUDING COVER): 5 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information is available on request from AGAT Laboratories, in accordance with ISO/IEC 17025:2017, ISO/IEC 17025:2005 (Quebec), DR-12-PALA and/or NELAP Standards.
- This document is signed by an authorized signatory who meets the requirements of the MELCCFP, CALA, CCN and NELAP.
- For environmental samples in the Province of Quebec: The analysis is performed on and results apply to samples as received. A temperature above 6°C upon receipt, as indicated in the Sample Reception Notification (SRN), could indicate the integrity of the samples has been compromised if the delay between sampling and submission to the laboratory could not be minimized.

AGAT Laboratories (V1)

Page 1 of 5

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

Certificate of Analysis

AGAT WORK ORDER: 24Z181360

PROJECT: 100011.082

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS SAMPLING SITE:RVD

ATTENTION TO: Mohit Bhargav SAMPLED BY:Chris Dionne

				Nitra	ate and Nitr	ite in Water
DATE RECEIVED: 2024-08-02						DATE REPORTED: 2024-08-09
		SAMPLE DES	CRIPTION:	MW-1	MW-3	
		SAM	PLE TYPE:	Water	Water	
		DATES	SAMPLED:	2024-08-02	2024-08-02	
Parameter	Unit	G/S	RDL	6050317	6050318	
Nitrate as N	mg/L		0.05	1.03	5.33	
Nitrite as N	mg/L		0.05	0.05	0.09	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

AGAT WORK ORDER: 24Z181360

PROJECT: 100011.082

ATTENTION TO: Mohit Bhargav

SAMPLING SITE:RVD

SAMPLED BY:Chris Dionne

OAIIII EIITO OITE.ITTD		OAIII LED BT. OIIII O DIOIII C													
				Wat	er Ar	nalys	is								
RPT Date: Aug 09, 2024				UPLICAT	Έ		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	МАТ	TRIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
		ld					Value	Lower	Upper	1		Upper		Lower	Upper
Nitrate and Nitrite in Water															
Nitrate as N	6056692		9.62	9.76	1.4%	< 0.05	97%	70%	130%	102%	80%	120%	98%	70%	130%
Nitrite as N	6056692		<0.05	<0.05	NA	< 0.05	94%	70%	130%	100%	80%	120%	97%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

Method Summary

CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS

PROJECT: 100011.082

AGAT WORK ORDER: 24Z181360
ATTENTION TO: Mohit Bhargav
SAMPLED BY:Chris Dionne

SAMPLING SITE:RVD

PARAMETER
AGAT S.O.P
LITERATURE REFERENCE
ANALYTICAL TECHNIQUE

Water Analysis

Nitrate as N
Nitrate as N
Nitrite as N
Nitrite as N
Nitrite as N
NOR-93-6004
Nor-93-600

AGAT Laboratories

GEMTEC Consulting Engineers and Scientists Limited

Chain of Custody Record

32 Staecie Drive

Ottawa, ON

Report Information:

Company: Contact:

Address:

Have feedback? Scan here for a quick survey!

Regulatory Requirements:

Regulation 153/04 Regulation 406

Regulation 558

If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)

(Please check all applicable boxes)

Table ________Indicate One

☐Ind/Com Res/Park

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Sewer Use

Sanitary Storm

Prov. Water Quality

Laboratory Use Only

ork Order #:	ZU	7	18	360	
		_	-0-		

Cooler Quantity: Ou	0-1Ce	prolo	_
Arrival Temperatures:	13.61	13.0 1	13.3
	11-31	1201	145

	P	Oustody Notes:		ba	g	0			e		/ PN	I/A
		egulaı			~		7 Busi	ness	Days			
		ا ا	Busine ays OR Date		ed (R	2 Bus Days Sush S	urcha Uficat	rges lon fo	May A	TAT		ess
ı	1	For 'Sa	ime Da	y' analy	sis, į	please	e coni	tact y	our A	GAT (PM	
Į			O. Re	g 406		\Box	100		4	\neg	er.	
	PCBs: Arodors	Landfill Disposal Characterization TCLP: One TCLP: One TCLP: One TCLP: One DROP □ Ropp□ □ ROBS ONE	Regulation 406 SPLP Rainwater Leach .o SPLP. ☐ Metals ☐ VOCs ☐ SVOCs	Regulation 406 Characterization Peckage by PH, ICPMS Metals, BTEX, F1-F4	Corrosivity: Molsture Sulphide	Hold						Potentially Hazardous or High Concentration (Y/N)

PCBS: Aroclors Claracterization TCLP. Landfill Disposal Characterization TCLP. Landfill Disposal Characterization TCLP. Regulation 406 SPLP Reinwater Leach SPLP: Characterization Peckage pH, ICPMS Metals. BTCk. F1-F4 Corrosivity: Clandisture Claracterization or High Concentration (V/N) Potentially Hazardous or High Concentration (V/N)	3			*7	Pleas AT Is ex	se provid	de pr	lor no	tificat ds an	lon fo	r rus	h TAT y holl	days	
PCBS: Arodors Landfill Disposal Characterization TCLP: TCLP: Class Person Consolidation 406 SPLP Rainwater Leach SPLP: Divide Display PCBS: Regulation 406 SPLP Rainwater Leach SPLP: Divide Divide Display Brown Fockage Philipperson Concolidation 406 Characterization Peckage Philipperson Concolidation And Concolidation Concontration (V/N)	E,	99						pleas	e con	tact y	our	AGAT	CPM	_
	PAHS	PCBs	PCBs: Arodors		ach	_	Corrosivity: Molsture Sulphide	Hold						Potentially Hazardous or High Concentration (Y/N)
								XXX						

Nº:

Phone: Reports to be sent to: 1. Email: 2. Email: Chris. Champagender. Ca. Brent, redmond@genter.ca Project Information: Project: Site Location: Sampled By: Chris Dionne AGAT Quote #: Please note: If quotation number is not provided, allent will be billed full price for analysis. Invoice Information: Company: Contact: Address: Email:				Soil To	Agriculture Regulation 58 exture (check one) (Coarse Company)		Prov. Water Quality Objectives (PWQO) Other Indicate One					Rush TAT (Nush Surcharges Apply) 3 Business						
				Red	Is this submission for a Record of Site Condition? Yes No Sample Matrix Legend GW Ground Water O OII P Paint S Soil SD Sediment SW Surface Water			Report Guideline on Certificate of Analysis Yes No					Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM					
				GW O P S SD				5 - CCVI, CHE, CHWSB F1-F4 PHCs			- control		SPLP Rainwater Leach	haracteriza s, BTEX, F14	Corroswity: Limoisture Li Supnide		Hazardnie or High Concentration (V/N)	
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	N/K	Metals	Metals -	VOC	PAHS	PCBs	Landfill Disp	Regulation 406 S	Regulation pH, ICPM	Hol		Oxtentialk	
1 MW-1 2 MW-3 3 MW-4	Aug 2/24	AM AM AM AM	1	GU	Sumples on Hold			16							X			
4. MW-5 5. 6.	V	AM PM AM PM PM		GW					X		0.0				×			
7, 8. 9.		AMI PMI AMI PMI AMI PMI																
10. 11. Sargolea Rollinquished By (Print Name and Sign);		AM PM AM PM	/ Time	15	Secretes Received By (Print Name and Sign):					Date			lish;	1				
Samples Relinquished By (Print Name and Sign):		April 2/21	X Time	75 ~()	Samules Received By (Brint Magne and Slen)				-	Date	02/	T	5h	50	Page	01	f	

Pink Copy -

Document ID: DIV-78-1511,022

Arry and all products and/or services provided by AGAT Labs are pursuant to the terms and conditions as set forth at warrw.agatiabs.com/termsandconditions unless otherwise agreed in a current written contractual document.

Date Issued, Mar 30, 2023

Allowable Septic Systems Flow - 6158 Rideau Valley Drive, Ottawa, Ontario

Site	Area m²	Topography Factor	Soil Factor	Cover Factor	Infiltration Factor	Annual Water Surplus (m³/year)	Infiltration Volume (m³/year)
6158 Rideau Valley Drive	54,400	0.20	0.20	0.10	0.50	0.394	21434

Hard Surface Area	Background Nitrate concentration (mg/L)	Available Infiltration ¹ (litres per day)	Maximum Septic Flow-Conventional ² (litres per day)
20%	1.03	23,489	6,790

Notes:

- 1. Available infiltration (litres per day) = Infiltration volume (m3/year) x (1000 litres/m3) / (365 days/year) x (1 hard surface area) x Infiltration Factor
- 2. Calculated using the equation displayed in footnote 4. in MECP guideline D-5-4: (40 mg/L x Flow) / (Flow + Infiltration) 10 mg/L background nitrates. Formula was rearranged to solve for Septic Flow: Flow = (10 mg/L background nitrates) x Infiltation)/ (40 mg/L (10 mg/L background nitrates)).

Project: 100011.082 Date: August 2024

Ottawa	Intl A		WATE	R BUDG	ET ME	ANS FOR	R THE F	PERIOD	1939-2	020	DC20492
LAT LON	45.32 G 75.67	WA LO	TER HO	LDING NE	CAPAC	ITY1	125 MM 75 MM	НЕ <i>.</i> А.	AT IND	EX	36.69 1.079
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1		62	12		0	0			83	121	295
28- 2		56	10		1		0		112	122	351
31- 3		66	31			5			69	125	416
30- 4		73	68	74		31			0	125	490
31- 5	13.1	76	76	0	80	80		14	0	106	566
30- 6	18.3	85	85	0	116	115		5	0	72	651
31- 7	20.9	88	88	a	136	121	-15	3 1	0	35	739
31- 8	19.0	o 4	84	0	118	93	-25	1	0	26	823
30- 9	14.8	82	82	0	75		-9		0	39	906
31-10	8.3	77	77	0	37		-1		0	73	77
30-11	1.3	76	59	8	10	10	0	24	9	106	154
31-12	-6.9	79	27	14	1	1	0	28	47	118	233
AVE	6.0 TTL	904	699	205	610	559	-51	344			
0115	T.13. A		CTAN	ID 4 D D		TONG FO	ND THE	DEDIOD	1020	2020	DC20402
Ottawa	Intl A		STAN	IDAKD D	EVIAI.	TONS FC)K IHE	PEKTOD	1939-	2020	DC 20492
DATE	TEMP (C)	PCPN	RAIN	MELT	PE	AE	DEF	SURP	SNOW	SOIL	ACC P
31- 1		26	15	17	1	1	0	29	44	13	59
28- 2		26	14	26	1	1	0	35	59	12	63
31- 3	2.6	28	22	49	5	5	0	54	87	3	71
30- 4	1.8	32	33	88	9	9	0	88	2	2	80
31- 5	1.8	34	34	2	12	12	0	24	0	22	94
30- 6	1.2	38	38	0	8	9	4	16	0	39	105
31- 7	1.2	45	45	0	8	23	25	16	0	38	117
31- 8	1.3	37	37	0	8	26	27	4	0	36	126
30- 9	1.5	39	39	0	8	15	14	12	0	42	132
31-10	1.5	37	37	1	7	7	2	18	0	41	37
30-11		27	27	8	4	4		30	13	27	45
31-12	1.8 3.0	30	22	14	1	1	0	28	34	16	55

civil

geotechnical

environmental

field services

materials testing

civil

géotechnique

environnementale

surveillance de chantier

service de laboratoire des matériaux

