2095 Dilworth Road

IBI GROUP

400-333 Preston Street Ottawa ON K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

Transmittal

To/Attention	Company/Address	Telephone No
Mike Giampa, P.Eng.	Project Manager, Senior Engineer Infrastructure Applications City of Ottawa 110 Laurier Avenue West (4 th Floor) Ottawa, ON K2P-2H9	613-580-2424 x23567
Cc Gary Collauti	Dilworth Developments	

Delivery E-mail/Electronic Submission

From David Hook, P.Eng.

Sent By David Hook

Date July 21, 2021

Project No 134297

Subject 2095 Dilworth TIA - Step 4

Please find enclosed the TIA – Step 4 in support of a Zoning Bylaw Amendment application relating to a proposed gas station with convenience store, mini-warehouse self-storage facility, cross-dock warehouse and a commercial cardlock fuelling station to be located at 2095 Dilworth Road on behalf of Dilworth Developments. All comments and responses associated with this study have been documented and provided in Appendix A. Attached are the Synchro analysis files associated with this report.

If you require anything else, please don't hesitate to contact me at 613-225-1311 x64029 or by email at dhook@ibigroup.com.

Best Regards,

David Hook, P.Eng.

TIA Plan Reports - Certification

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associate documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below:

CERTIFICATION

- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review:
- I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- 4. I am either a licensed¹ or registered¹ professional in good standing, whose field of expertise [check $\sqrt{\ }$ appropriate field(s)] is either transportation engineering \Box or transportation planning \Box .

License or registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

Dated at Ottawa this 21st Day of July,2021. (City)

Name: David Hook, P.Eng.

Professional Title: Associate - Manager, Transportation Engineering

Signature of Individual certifier that she/he meets the above four criteria

Office Contact Information (Please Print)

Address: 400-333 Preston Street

City / Postal Code: K1S 5N4

Telephone / Extension: 613-225-1311 ext. 64029

E-Mail Address: dhook@ibigroup.com

Stamp

Document Control Page

CLIENT:	Dilworth Developments				
PROJECT NAME:	2095 Dilworth Road				
REPORT TITLE:	Transportation Impact Assessment				
IBI REFERENCE:	134297				
VERSION:	Final				
DIGITAL MASTER:	134297 2095 Dilworth Road - Internal Documents\6.0_Technical\6.23_Traffic\03_Tech-Reports				
ORIGINATOR:	Ben Pascolo-Neveu/Ryan Ward				
REVIEWER:	David Hook				
AUTHORIZATION:	David Hook				
CIRCULATION LIST:	Mike Giampa - City of Ottawa Transportation Project Manager				
HISTORY:	1.0 – TIA Step 1 & 2 Submitted for City Review – May 10, 2021 2.0 – TIA Step 3 Submitted for City Review – June 14, 2021 3.0 – TIA Step 4 Submitted for City Review – July 21, 2021				

Exe	cutive S	Summary	y	ES-i			
1	Introduction						
2	Page 2 TIA Screening						
3	Proje	ct Scopi	ing	2			
	3.1	Descri	iption of Proposed Development	2			
		3.1.1	Site Location	2			
		3.1.2	Land Use Details	4			
		3.1.3	Development Phasing & Date of Occupancy	4			
	3.2	Existin	ng Conditions	6			
		3.2.1	Existing Road Network	6			
		3.2.2	Existing Bicycle and Pedestrian Facilities	8			
		3.2.3	Existing Transit Facilities and Service	8			
		3.2.4	Collision History	8			
	3.3	Planne	ed Conditions	9			
		3.3.1	Transportation Network	9			
		3.3.2	Future Adjacent Developments	9			
		3.3.3	Network Concept Screenline	9			
	3.4	Study	Area	9			
	3.5	Time F	Periods	10			
	3.6	Study	Horizon Year	10			
	3.7	Exemp	ptions Review	11			
4	Fore	casting		12			
	4.1	Develo	opment Generated Traffic	12			
		4.1.1	Trip Generation Methodology	12			
		4.1.2	Trip Generation Results	12			
		4.1.3	Trip Distribution and Assignment	17			
	4.2	Backg	ground Network Traffic	20			

		4.2.1	Changes to the Background Transportation Network	20
		4.2.2	General Background Growth Rates	20
		4.2.3	Other Area Development	20
	4.3	Demar	nd Rationalization	21
		4.3.1	Description of Capacity Issues	21
		4.3.2	Adjustment to Development Generated Demands	21
		4.3.3	Adjustment to Background Network Demands	21
	4.4	Traffic	Volume Summary	21
		4.4.1	Future Background Traffic Volumes	21
		4.4.2	Future Total Traffic Volumes	21
5	Analys	sis		25
	5.1		opment Design	
		5.1.1	Design for Sustainable Modes	
		5.1.2	Circulation and Access	
		5.1.3	New Street Networks	25
	5.2	Parkin	g	25
		5.2.1	Parking Supply	25
		5.2.2	Spillover Parking	25
	5.3	Bound	lary Streets	26
		5.3.1	Mobility	26
		5.3.2	Road Safety	26
	5.4	Acces	s Intersections	26
		5.4.1	Location and Design of Access	26
		5.4.2	Access Intersection Control	28
		5.4.3	Intersection Design (MMLOS)	28
	5.5	Transp	portation Demand Management (TDM)	28
		5.5.1	Context for TDM	28
		5.5.2	Need and Opportunity	28
		5.5.3	TDM Program	28

6	Conclu	ısion		36
	5.11	Summa	ary of Improvements Indicated and Modification Options	35
		5.10.2	Auxiliary Lane Analyses	34
		5.10.1	Sight Distance and Corner Clearances	34
	5.10	Geome	etric Review	34
		5.9.4	Intersection Design (MMLOS)	34
		5.9.3	Intersection Capacity Analysis	31
		5.9.2	Intersection Analysis Criteria (Automobile)	29
		5.9.1	Intersection Control	29
	5.9	Interse	ction Design	29
	5.8	Review	of Network Concept	28
		5.7.2	Transit Priority Measures	28
		5.7.1	Route Capacity	28
	5.7	Transit		28
		5.6.1	Adjacent Neighbourhoods	28
	5.6	Neighb	ourhood Traffic Management	28

July 21, 2021 ii

List of Tables

Table 1 - Land Use Statistics	4
Table 2 - Exemptions Review	
Table 4 - Person-Trip Generation	
Table 5 - 2011 O-D Survey Mode Share Distributions and Proposed Mode Share Targets	
Table 6 - Peak Hour Person Trips by Mode	16
Table 7 - Distributions for Pass-by Trips	17
Table 8 – Segment-based MMLOS - Existing & Proposed Conditions	26
Table 9 - LOS Criteria for Signalized Intersections	30
Table 10 - LOS Criteria for Unsignalized Intersections	30
Table 11 - Intersection Capacity Analysis: Existing (2021) Traffic	31
Table 12 - Intersection Capacity Analysis: 2022 Background Traffic	32
Table 13 - Intersection Capacity Analysis: 2027 Background Traffic	32
Table 14 - Intersection Capacity Analysis: 2022 Total Traffic	33
Table 15 - Intersection Capacity Analysis: 2027 Total Traffic	33
Table 16 - Auxiliary Left-Turn Lane Analysis at Unsignalized Intersections	34

July 21, 2021 iv

List of FiguresFigure 1 – Existing Lane Configurations & Intersection Control7Figure 2 – Existing (2021) Traffic8Figure 3 – Rural Southwest TAZ14Figure 4 - Site Generated Traffic (New Auto Trips)18Figure 5 - Site Generated Traffic (Pass-by Trips)18Figure 6 - Future (2022) Background Traffic22Figure 7 - Future (2027) Background Traffic22

List of Exhibits

Exhibit 1 -	- Site Location	3
Exhibit 2 -	- Proposed Development	5

July 21, 2021 v

List of Appendices

Appendix A - City Circulation Comments

Appendix B – TIA Screening Form

Appendix C - Traffic Data

Appendix D - Trip Generation Data

Appendix E – MMLOS Analyses

Appendix F - Intersection Control Warrants

Appendix G – Intersection Capacity Analyses

Appendix H - Auxiliary Lane Analyses

July 21, 2021 vi

Executive Summary

IBI Group (IBI) was retained by Dilworth Developments to undertake a Transportation Impact Assessment (TIA) in support of a Zoning By-law Amendment application for a proposed gas station with convenience store, a mini-warehouse self-storage facility, a cross-dock warehouse and a commercial cardlock fuelling station to be located at 2095 Dilworth Road, Ottawa. The site will be accessed via two full-movement private approaches with direct connections to Dilworth Road.

In terms of build-out timing, the subject development is anticipated to be constructed and fully occupied in a single phase by 2022. In accordance with the TIA Guidelines, a 2027 horizon year was therefore applied, representing 5 years beyond the expected full build-out of the site.

There were no known developments of significance identified in the vicinity of the subject site that are either in the development application approval process, are in pre-construction or are in varying stages of construction. Given the proximity of the subject site to the Highway 416 Dilworth interchange, background growth was instead accounted for through the application of a 3% growth rate to remain consistency with historical trends on the segment of Veteran's Memorial Highway within the vicinity of the site.

Based on the trip generation undertaken for this study, the proposed development is expected to generate up to 157 and 148 new two-way vehicular trips during the weekday morning and afternoon peak hours, respectively. Pass-by traffic generated by the gas station use was also considered in the analysis, with up to 68 and 70 trips expected to occur during the weekday morning and afternoon peak hours, respectively. The mode share targets applied in this study were based on the Rural Southwest Traffic Assessment Zone (TAZ) and further refined to reflect the auto-oriented nature of the proposed development.

A segment-based multi-modal analysis identified deficiencies for sustainable modes on Dilworth Road adjacent to the site. It should be noted, however, that due to the rural context of the site and auto dependency of uses proposed, no improvements are required to safely accommodate the transportation demands of the subject development.

Based on the intersection capacity analyses conducted for this study, all four study area intersections are expected to operate at an acceptable level of service beyond the 2027 horizon year.

Queuing analysis conducted under Future (2027) Total Traffic conditions provided further indication that traffic operational issues are not expected to be a concern at any of the study area intersections within the timeframe of this study. Auxiliary left- or right-turn lanes at both existing ramp terminal intersections are expected to sufficiently accommodate future travel demands within the timeframe of this study. Further, the analysis did not identify the need for any auxiliary lanes to support site-generated traffic volumes on Dilworth Road at either proposed site access driveway.

As all study area intersections were shown to operate well within the capacity constraints of the adjacent transportation network, an RMA will <u>not</u> be required. Further, a post-development Monitoring Plan is also <u>not</u> a requirement of this study.

Based on the findings of this study, it is the overall opinion of IBI Group that the proposed development will integrate well with and can be safely accommodated by the adjacent transportation network.

1 Introduction

IBI Group (IBI) was retained by Dilworth Developments to undertake a Transportation Impact Assessment (TIA) in support of a Zoning By-law Amendment application for a proposed gas station with convenience store, a mini-warehouse self-storage facility, a cross-dock warehouse and a commercial cardlock fuelling station to be located at 2095 Dilworth Road, Ottawa.

In accordance with the City of Ottawa's Transportation Impact Assessment Guidelines, published in June 2017, the following report is divided into four major components:

- Screening Prior to the commencement of a TIA, an initial assessment of the proposed development is undertaken to establish the need for a comprehensive review of the site based on three triggers: Trip Generation, Location and Safety.
- Scoping This component of the TIA report describes both the existing and planned
 conditions in the vicinity of the development and defines study parameters such as the
 study area, analysis periods and analysis years of the development. It also provides an
 opportunity to identify any scope exemptions that would eliminate elements of scope
 described in the TIA Guidelines but not relevant to the development proposal, based on
 consultation with City staff.
- Forecasting The Forecasting component of the TIA is intended to review both the
 development-generated travel demand and the background network travel demand. It
 also provides an opportunity to rationalize this demand to ensure projections are within
 the capacity constraints of the transportation network.
- Analysis This component documents the results of any analyses undertaken to ensure
 that the transportation related features of the proposed development are in conformance
 with prescribed technical standards and that its impacts on the transportation network are
 both sustainable and effectively managed. It also identifies a development strategy to
 ensure that what is being proposed is aligned with the City of Ottawa's policies and citybuilding objectives.

Throughout the development of a TIA report, each of the four study components above are submitted in draft form to the City of Ottawa and undergo a review by a designated Transportation Project Manager. Any comments received are addressed to the satisfaction of the City's Transportation Project Manager before proceeding with subsequent components of the study. All technical comments and responses throughout this process are included in **Appendix A**.

Dependent on the findings of this report, the complete submission of this Transportation Impact Assessment may also require Functional Design Drawings of recommended roadway improvements to support a Roadway Modification Application (RMA). The submission may require a post-development Monitoring Plan to track performance of the planned TIA Strategy, however the need for a Monitoring Plan will be confirmed through the analysis undertaken in this report.

Due to the proximity of the proposed development to Highway 416, the Ontario Ministry of Transportation (MTO) will review the final TIA report, however the study will be carried out using the Ottawa TIA Guidelines, as described above.

1

2 TIA Screening

An initial screening was completed to confirm the need for a Transportation Impact Assessment by reviewing the following three triggers:

- Trip Generation: Preliminary trip generation estimates were developed based on the Institute of Transportation Engineers (ITE) Trip Generation Manual (10th Edition). A 1.28 person-trip conversion factor was applied to the base trip generation data to obtain person-trip generation. The 60 person-trip threshold prescribed by the TIA Guidelines is exceeded during the weekday morning and afternoon peak hours, therefore the Trip Generation trigger is satisfied.
- Location: The proposed development will not be accessed from a boundary street that is
 designated as part of the City's Transit Priority, Rapid Transit network or Spine Bicycle
 Networks nor is the subject site within a Design Priority Area or Transit-Oriented
 Development zone, therefore, the Location trigger is not satisfied.
- Safety: Boundary street conditions were reviewed to determine if there is an elevated
 potential for safety concerns adjacent to the site. Given that Dilworth Road has a posted
 speed limit of 80km/h and that its vertical alignment may limit visibility and the proposed
 site access location, the Safety trigger is satisfied.

As the proposed development meets the Trip Generation trigger, the need to undertake a Transportation Impact Assessment is confirmed.

A copy of the Screening Form is provided in **Appendix B**.

3 Project Scoping

3.1 Description of Proposed Development

3.1.1 Site Location

The proposed development is located in rural south Ottawa and is bound by Dilworth Road to the south and Highway 416 to the west. A full interchange exists on Highway 416 adjacent to the site.

The site location and its surrounding context is illustrated in **Exhibit 1**.

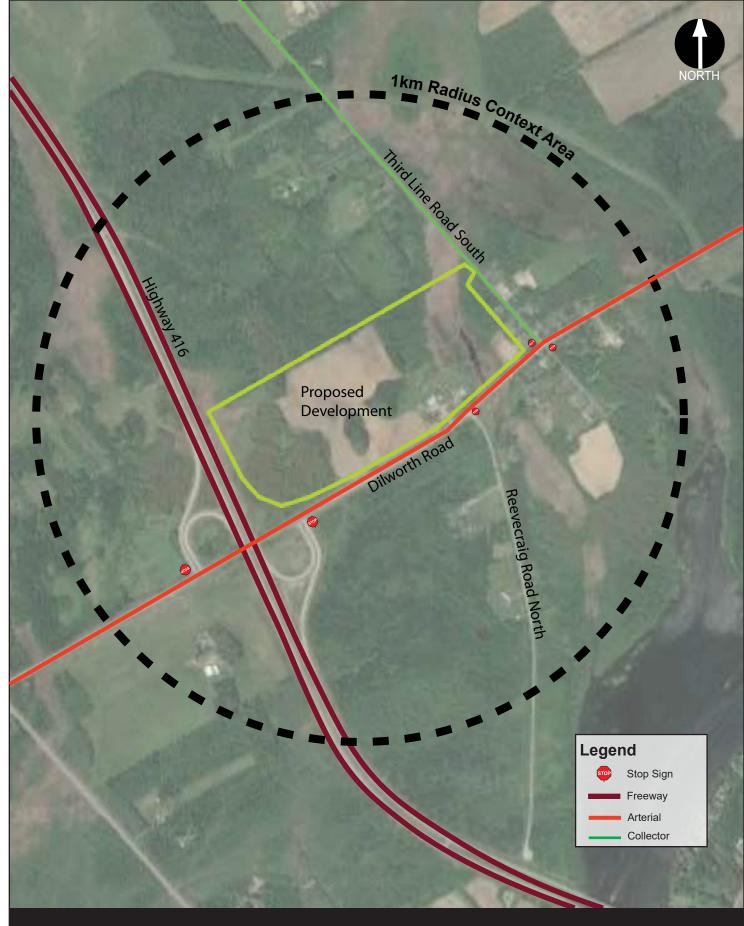


Exhibit 1:

PROJECT No. 134297

> 125m 250m 0m

3.1.2 Land Use Details

The concept plan for this site includes a gas station with convenience store, a 20 cross-dock warehouse, a mini-warehouse self-storage facility and a commercial cardlock fuelling station. The primary function of this site is to serve as a commercial refuelling station for goods movements in and out of the Ottawa region.

Table 1 below summarizes the proposed land uses statistics for this development.

Table 1 - Land Use Statistics

LAND USE	SIZE		
Gas Station with Convenience Market	8 fuelling positions		
Warehousing	~8,361 m² (90,000 ft²)		
Mini-Warehouse Self-Storage Facility	~1,394 m² (15,000 ft²)		
Commercial Cardlock Fuelling Station	8 fuelling positions		

The proposed development is illustrated in **Exhibit 2** below.

The site will be accessed via two full-movement private approaches with direct connections to Dilworth Road.

3.1.3 Development Phasing & Date of Occupancy

The proposed development will be constructed in a single phase. It is anticipated that the development will be constructed and fully occupied by 2022.

It should be noted that the conceptual site plan identifies a 'Future Expansion Phase' which is not included in the scope of this TIA.

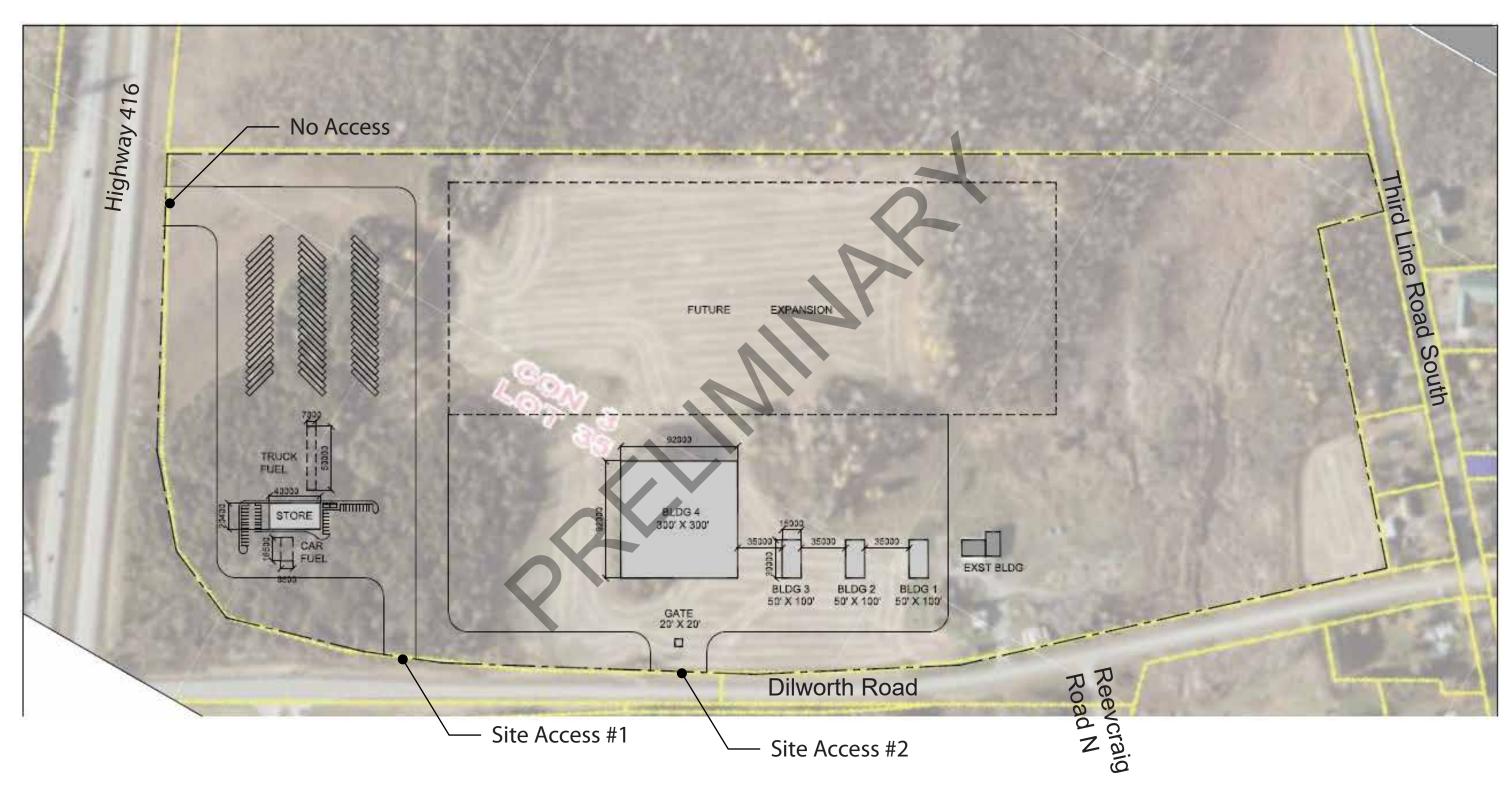


Exhibit 2: Proposed Development

3.2 Existing Conditions

3.2.1 Existing Road Network

3.2.1.1 Roadways

The proposed development is bound by the following street(s):

- **Highway 416** is a four-lane, divided highway under the jurisdiction of the Ontario Ministry of Transportation with a right-of-way protection of approximately 30 metres and a posted speed limit of 100 km/h.
- **Dilworth Road** is a two-lane rural arterial road extending east-west from McCordick Road to Rideau Valley Drive. Within the context area, the road has an approximate 30m right-of-way, a posted speed limit of 80 km/h and is identified as a Truck Route in the TMP.

Other streets within the vicinity of the proposed development are as follows:

- Third Line Road South is a two-lane rural road extending from Phelan Road in the north to approximately 280 metres south of Dilworth Road. Within the context area, this road is classified as a 'collector' north of Dilworth Road and a local road further south. Third Line Road South has an approximate 26-metre right-of-way and an unposted speed limit of 50 km/h.
- Reevecraig Road North is a two-lane, local road with an unposted speed limit of 50 km/h
 within the vicinity of the subject lands and a right-of-way protection of approximately 20
 metres.
- **Fourth Line Road** is two lane arterial road with a posted speed limit of 80km/h and a right-of-way protection of approximately 30 metres.

3.2.1.2 Intersections

The following existing intersections have been identified as having the greatest potential to be impacted by the proposed development:

Highway 416 Northbound On/Off-Ramp & Dilworth Road is a three-legged, unsignalized intersection with stop-control on the ramp terminal approach. On Dilworth Road, a right-turn auxiliary lane exists on the eastbound approach, while a slip-around lane exists on the westbound direction to segregate through and left-turning vehicles.

Highway 416 Southbound On/Off-Ramp & Dilworth Road is a three-legged, unsignalized intersection with stop-control on the ramp terminal approach. On Dilworth Road, a right-turn auxiliary lane exists on the westbound approach, while a slip-around lane exists on the eastbound approach to segregate through and left-turning vehicles.

The existing lane configurations and intersection control are illustrated in Figure 1 below.

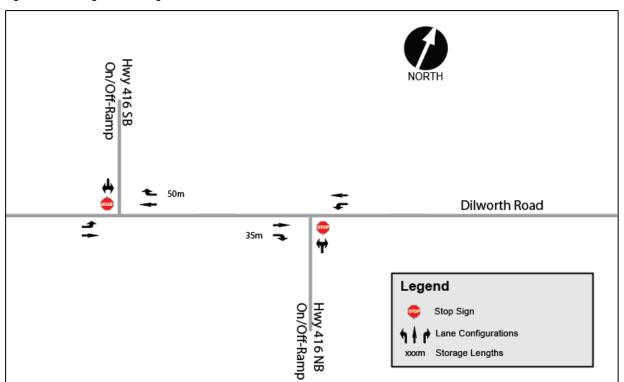


Figure 1 - Existing Lane Configurations & Intersection Control

3.2.1.3 Traffic Management Measures

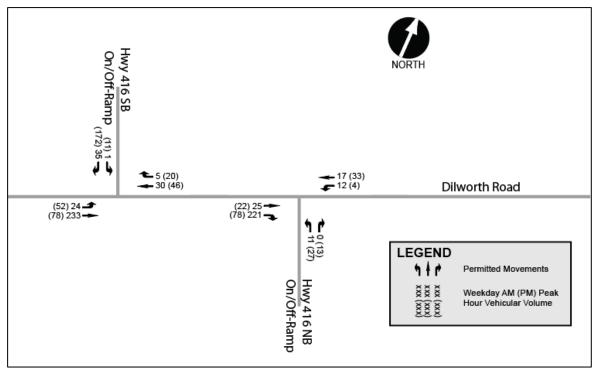
There are currently no traffic management or traffic calming measures on the boundary streets within the vicinity of the proposed development.

3.2.1.4 Nearby Driveways

There are currently no driveways within 200 metres of the proposed site access driveway. The adjacent snowmobile dealer to the east has a private approach, with the nearest being approximately 240 metres from the proposed site access.

3.2.1.5 Existing Traffic Volumes

Weekday morning and afternoon peak hour turning movement counts from the Ministry of Transportation were obtained at the following ramp terminal locations:


- Highway 416 NB On/Off Ramp & Dilworth Road (MTO May 24, 2018)
- Highway 416 SB On/Off Ramp & Dilworth Road (MTO September 12, 2013)

It is recognized that the above noted counts were conducted more than 3 years ago, however as a result of the ongoing COVID-19 pandemic and Stay-At-Home order restrictions, it was not possible to collect data representative of typical conditions at either location. As such, the

application of growth rate was used applied to these counts to approximate existing (2021) traffic volumes. Justification of background traffic volumes is discussed further in the Forecasting section of this report.

Peak hour vehicle volumes representative of existing (2021) conditions are shown in **Figure 2**. Traffic count data is provided in **Appendix C**.

3.2.2 Existing Bicycle and Pedestrian Facilities

A desktop review of the context area indicates that no formal bicycle or pedestrian facilities presently exist within the vicinity of the proposed development.

3.2.3 Existing Transit Facilities and Service

There are no transit facilities in the vicinity of the proposed development.

3.2.4 Collision History

A review of historical collision data is typically conducted for the road network surrounding the proposed development for the most recent 5 years of collision data available. The TIA Guidelines require a safety review if at least six collisions for any one movement or of a discernible pattern, over a five-year period have occurred.

Through correspondence with City of Ottawa technical staff, it was determined that there have been no reported collisions within the context area of the proposed development. Further, it was confirmed by MTO that a collision/ safety analysis would not be required as part of this study.

3.3 Planned Conditions

3.3.1 Transportation Network

3.3.1.1 Future Road Network Projects

The 2013 Transportation Master Plan (TMP) '2031 Affordable Network' or '2031 Network Concept Plan' does not identify any planned road network modifications within the context area.

3.3.1.2 Future Transit Facilities and Services

Due to its rural context, the TMP does not identify any planned Rapid Transit or Transit Priority (RTTP) projects within the vicinity of the proposed development as part of the '2031 Affordable Network' or '2031 Network Concept'.

3.3.1.3 Future Cycling and Pedestrian Facilities

It is not anticipated that any additional pedestrian and cycling facilities will be implemented within the vicinity of the proposed development.

3.3.2 Future Adjacent Developments

The City of Ottawa Transportation Impact Assessment (TIA) Guidelines specify that all significant developments proposed within the surrounding area which are likely to occur within the study's horizon year must be identified and taken into consideration in the development of future background traffic projections. A review of the City's development application data, DevApps, indicates that there are presently no adjacent developments within the context area.

3.3.3 Network Concept Screenline

Not Applicable: Network screenline analysis is not expected to be necessary for this development, as it does not trigger the threshold prescribed in the TIA Guidelines of 200 person-trips beyond what is otherwise permitted by the current zoning. Detailed trip generation calculations will be provided in the Forecasting section of the report.

3.4 Study Area

The information presented thus far provides a base level of information for the development's context. Based on preliminary trip generation estimates, the proposed development is expected to generate approximately 241 person-trips during the weekday morning and afternoon peak hours. Given the site's proximity to the Highway 416 Dilworth interchange, the vast majority of site-generated trips will access the site via this interchange. As such, minimal downstream impacts east of the proposed site access at the intersections of Dilworth with Reevecraig or Third Line are anticipated.

A condensed study area is therefore proposed for this TIA, consisting of the following intersections:

- Dilworth Road & Highway 416 Northbound On/Off-Ramp
- Dilworth Road & Highway 416 Southbound On/Off-Ramp
- Dilworth Road & Site Access #1 (proposed)
- Dilworth Road & Site Access #2 (proposed)

The remainder of this TIA will focus on site-specific impacts, integration with its boundary streets, including a functional review of the site access geometry and intersection control, on-site drive aisle requirements to accommodate proposed design vehicles and a review of the site's parking and loading requirements.

An intersection Multi-Modal Level of Service (MMLOS) analysis is only required for signalized intersections and based on the relatively low impact expected for the proposed development, it is not anticipated that the need for traffic signals will be triggered at either of the study area intersections. This will be verified through intersection capacity analysis in the Analysis component of the study. Segment-based MMLOS analysis will be limited to Dilworth Road along the subject site's frontage.

3.5 Time Periods

Based on a preliminary review of trip generation rates associated with the proposed land uses, traffic generated during the weekday morning and afternoon peak hour is expected to result in the most significant impact to traffic operations on the adjacent road network. These two time periods will constitute the critical analysis periods for this study.

3.6 Study Horizon Year

Traffic analyses associated with TIA's typically involve a review of existing conditions, as well as the anticipated future conditions, both with- and without the proposed development, at the year of full-occupancy as well as five years beyond. Phased developments will often require interim analyses to provide a timeline for any necessary transportation infrastructure improvements.

For the purpose of this study, it is expected that the proposed development will be constructed and fully occupied in a single phase in 2022. The horizon year for this study is therefore 2027.

3.7 Exemptions Review

The TIA Guidelines provide exemption considerations for elements of the Design Review and Network Impact components. **Table 2** summarizes the TIA modules that are not applicable to this study.

Table 2 - Exemptions Review

TIA MODULE	ELEMENT	EXEMPTION CONISDERATIONS	REQUIRED
DESIGN REVIEW	COMPONENT		
4.1 Development Design	4.1.2 Circulation and Access	Only required for site plans	✓
	4.1.3 New Street Networks	 Only required for plans of subdivision 	×
4.2 Parking	4.2.1 Parking Supply	Only required for site plans	✓
	4.2.2 Spillover Parking	Only required for site plans where parking supply is 15% below unconstrained demand	X
NETWORK IMPAC	T COMPONENT		
4.5 Transportation Demand Management	All Elements	Not required for site plans expected to have fewer than 60 employees and/or students on location at any given time	X
4.6 Neighbourhood Traffic Management	4.6.1 Adjacent Neighbourhoods	Only required when the development relies on local or collector streets for access and total volumes exceed ATM capacity thresholds	X
4.8 Network Concept	n/a	Only required when proposed development generates more than 200 person-trips during the peak hour in excess of the equivalent volume permitted by established zoning	×

4 Forecasting

4.1 Development Generated Traffic

4.1.1 Trip Generation Methodology

Peak hour site-generated traffic volumes were developed using the Institute of Transportation Engineers' (ITE) Trip Generation Manual (10th Edition). The TIA Guidelines indicate that vehicle-trip generation rates from the ITE Trip Generation Manual should be converted to person-trips through the application of a 1.28 vehicle-to-person-trip conversion factor.

Following the application of the vehicle-to-person-trip conversion factor, the person-trips were then subdivided based on representative mode share percentages applicable to the study area to determine the number of auto driver, auto passenger, transit, pedestrian, cycling and 'other' trip types.

Mode share targets were developed based on a review of local mode share distributions from the 2011 Origin-Destination Survey and further refined to reflect the site context.

4.1.2 Trip Generation Results

4.1.2.1 Base Vehicle Trip Generation

Peak hour vehicular traffic volumes associated with the proposed development were determined using appropriate peak hour trip generation rates from the ITE Trip Generation Manual.

The baseline vehicular trip generation for the Commercial Cardlock Gas Station is not represented by any ITE land uses, therefore trip generation rates derived for a similar facility analysed as part of the Northwest Paradise Park Road development Portland, Oregon was applied.¹

In accordance with the TIA Guidelines, a heavy vehicle factor of 1.7 was applied to the Commercial Cardlock Fuelling Station and Warehousing trip generation to convert truck trips to Passenger Car Equivalent (PCE) vehicles.

The vehicular trip generation results have been summarized in **Table 3** below.

Relevant extracts relating to trip generation data are provided in **Appendix D**.

Source (page 2): https://www.ci.lacenter.wa.us/city_departments/pdfs/K%20Trip%20Generation%20Letter.pdf

Table 3 - Base Vehicular Trip Generation Results

LANDUCE	617E	DEDIOD	GENERATED TRIPS (VPH)			
LAND USE	SIZE	PERIOD	IN	OUT	TOTAL	
Gasoline/Service Station w/ Convenience Market	8 fuelling	AM	51	49	100	
(ITE Code 945)	positions	PM	57	55	112	
Warehousing	~8,361 m ² (90,000 ft ²)	AM	13	13	26	
(ITE Code 150) ¹		PM	15	15	30	
Mini-Warehouse	~1,394 m²	AM	1	1	2	
(ITE Code 151)	(15,000 ft ²)	PM	1	2	3	
Commercial Cardlock	8 fuelling	AM	30	30	60	
Fuelling Station 1,2	positions	PM	20	20	40	

Notes: vph = vehicles per hour

4.1.2.2 Person Trip Generation

As mentioned previously, the TIA Guidelines indicate that a 1.28 vehicle-to-person-trip conversion rate should be applied to convert the base ITE vehicular trip generation results into person trips. For consistency, the same conversion factor was also applied to the Commercial Cardlock Fuelling Station baseline trip generation data.

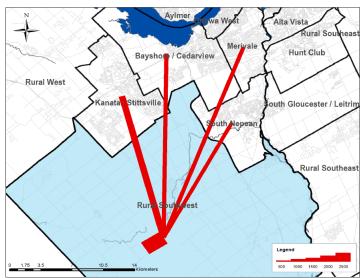
The resulting number of site-generated person-trips is summarized in **Table 3** below.

¹ Trip generation rates were increased by heavy vehicle factor of 1.7 in accordance with the TIA Guidelines

² Source (page 2): <u>https://www.ci.lacenter.wa.us/city_departments/pdfs/K%20Trip%20Generation%20Letter.pdf</u>

Table 3 - Person-Trip Generation

	PERSON-TRIP	PERIOD	PERSON TRIPS (PPH)			
LAND USE	CONVERSION FACTOR		IN	OUT	TOTAL	
Gasoline/Service	1.28	AM	65	63	128	
Station with Convenience Market	1.28	PM	73	70	143	
Manala ala	1.28	AM	17	17	34	
Warehousing	1.28	PM	19	19	38	
Mini-Warehouse	1.28	AM	1	1	2	
Self-Storage Facility	1.28	PM	1	2	3	
Commercial	1.28	AM	39	39	78	
Cardlock Fuelling Station	1.28	PM	26	26	52	
		AM Total	122	119	241	
		PM Total	118	117	235	


Notes: pph = persons per hour

4.1.2.3 Mode Share Proportions

The 2011 TRANS Origin-Destination (O-D) Survey provides approximations of the existing modal share within the Rural Southwest Traffic Assessment Zone (TAZ). The extents of the Rural Southwest TAZ are illustrated in **Figure 3** below.

Relevant extracts from the 2011 O-D Survey are provided in **Appendix D**.

Figure 3 - Rural Southwest TAZ

Source: 2011 O-D Survey

A blended mode share for the proposed development was derived based on weighted averages of mode share distributions from the weekday morning and afternoon peak periods of the Rural Southwest TAZ and further refined to better represent realistic mode share targets for the

proposed development. Given the rural context of the site and the nature of the uses proposed within the subject development, any sustainable or 'other' mode share allocations were redistributed proportionally to 'auto driver'.

Table 4 below summarizes the existing 2011 O-D Survey mode share distribution and proposed mode share targets.

Table 4 - 2011 O-D Survey Mode Share Distributions and Proposed Mode Share Targets

	EXISTING MODE SHARE WITHIN TAZ				BLENDED	MODE
MODE	AM TO	AM WITHIN	PM FROM	PM WITHIN	MODE SHARE ¹	SHARE TARGETS ²
Auto Driver	61%	38%	73%	49%	56%	87%
Auto Passenger	9%	10%	17%	15%	13%	13%
Transit	7%	0%	6%	1%	4%	0%
Cycling	1%	1%	1%	2%	1%	0%
Walking	1%	4%	0%	10%	3%	0%
Other	21%	47%	4%	23%	23%	0%

Notes:

4.1.2.4 Trip Reduction Factors

Deduction of Existing Development Trips

Not Applicable: The proposed development lands are currently undeveloped, and do not generate any traffic volumes.

Pass-by Traffic

Based on survey data collected for the *ITE Trip Generation Handbook (3rd edition)*, the gas station with convenience market land use was shown to generate an average of 62% and 56% pass-by trips during the weekday morning and afternoon peak periods, respectively. As such, these pass-by rates were applied in the development of site-generated traffic volumes.

It is assumed that the self-storage facility will not generate pass-by traffic.

Synergy/ Internalization

Synergy or internalization is typically applied to developments with two or more land uses to prevent double-counting of trips with multiple intermediate destinations within the same site. With respect to this site, the interaction between the self-storage and gas station uses as the primary trip purpose is not expected to be significant. As such, no internalization has been considered in the analysis.

¹ – Weighted average of the 'AM To', 'AM Within', 'PM From' and 'PM Within' mode share distributions.

² – The sustainable and 'other' mode share percentages derived from the weighted average were distributed proportionally to the 'auto driver' and 'auto passenger' modes.

4.1.2.5 Trip Generation by Mode

The mode share targets from **Table 4** were applied to the number of development-generated person-trips to establish the expected number of trips per travel mode, as summarized in **Table 5** below. Any mode share targets with a 0% allocation were excluded. It should be noted that commercial trucks typically do not have passengers, therefore for the 'Warehousing' and 'Commercial Cardlock Fuelling Station' land uses 100% of the mode share is allocated to auto driver.

Table 5 - Peak Hour Person Trips by Mode

Table 5 - Peak Hour Person Trip	AM			PM				
MODE	IN	OUT	TOTAL	IN	OUT	TOTAL		
GAS STATION W/ CONVENIENCE MARKET								
Persons Trips	65	63	128	73	70	143		
Auto Driver (87%)	57	54	111	64	61	125		
Auto Passenger (13%)	8	8	17	9	9	19		
Pass-by Trips ¹	34	34	68	35	35	70		
New Auto Trips	23	20	43	29	26	55		
WAREHOUSING								
Persons Trips	17	17	34	19	19	38		
Auto Driver (100%)	17	17	34	19	19	38		
New Auto Trips	17	17	34	19	19	38		
MINI-WAREHOUSE SELF-STORAGE FACILITY								
Persons Trips	1	1	2	1	2	3		
Auto Driver (87%)	1	1	2	1	2	3		
Auto Passenger (13%)	0	0	0	0	0	0		
New Auto Trips	1	1	2	1	2	3		
COMMERCIAL CARDLOCK FUELLING STATION								
Persons Trips	39	39	78	26	26	52		
Auto Driver (100%)	39	39	78	26	26	52		
New Auto Trips	39	39	78	26	26	52		
TOTAL NEW AUTO TRIPS	80	77	157	75	73	148		

Notes: 1 AM Pass-by rate is 62%; PM Pass-by rate is 56%

Based on the results provided in **Table 5** above, it is anticipated that the proposed development will generate up to 157 and 148 new two-way vehicular trips during the weekday morning and afternoon peak hours, respectively.

4.1.3 Trip Distribution and Assignment

As the proposed development is expected to primarily generate traffic from Highway 416 via the Dilworth interchange, new site-generated auto trips have been distributed to the adjacent road network based on a comparison of ramp volume data reviewed provided for this study.

Distribution for New Auto Trips

- 85% to/from the North
 - o 100% on Highway 416
- 15% to/from the South
 - 100% on Highway 416

Alternative distributions were derived to reflect the expected travel patterns of pass-by trips associated with the proposed gas station and convenience market land use, as shown in **Table 6** below.

Table 6 - Distributions for Pass-by Trips

CARDINAL DIRECTION	АМ	РМ	
Northbound	85% on Highway 416	15% on Highway 416	
Southbound	15% on Highway 416	85% on Highway 416	

Utilizing the estimated number of new auto trips and pass-by trips and applying the corresponding distributions at each study area intersection, the resulting traffic volumes are illustrated in **Figure 4** and **Figure 5**, respectively.

Figure 4 - Site Generated Traffic (New Auto Trips)

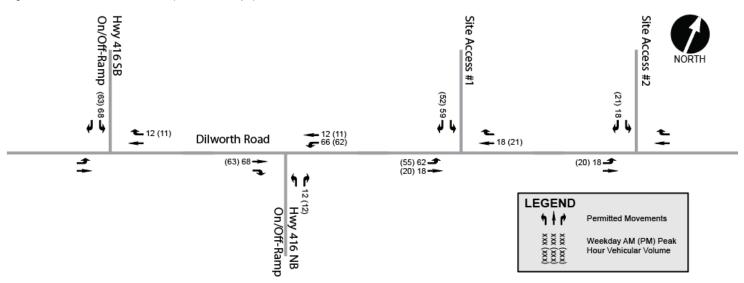
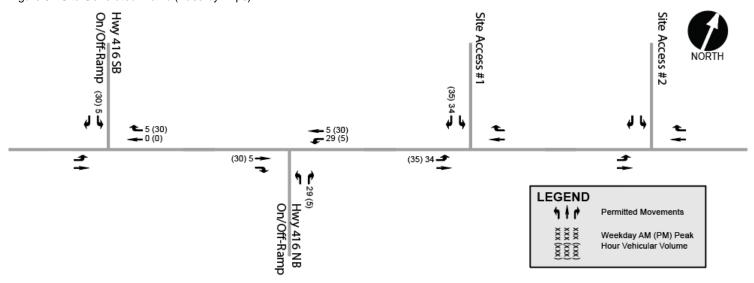



Figure 5 - Site Generated Traffic (Pass-by Trips)

4.2 Background Network Traffic

4.2.1 Changes to the Background Transportation Network

To properly assess future traffic conditions, planned modifications to the transportation network that may impact travel patterns or demand within the study area must be considered. The Scoping section of this TIA reviewed the anticipated changes to the study area transportation network based on the Transportation Master Plan (TMP), the Ottawa Cycling Plan, the Ottawa Pedestrian Plan, as well as the 2019 City-Wide Development Charges Background Study and determined that there are no network modifications planned within the timeframe of this study.

4.2.2 General Background Growth Rates

The background growth rate is intended to represent regional growth from outside the study area that will travel along the adjacent road network.

A review of historical Average Annual Daily Traffic (AADT) collected by the Ontario Ministry of Transportation (MTO) on Highway 416 near the Dilworth Road interchange indicates that this segment of the Veteran's Memorial Highway has experienced overall growth in the order of 3% per annum. As such, this growth rate has been applied to all movements at the Dilworth Road ramp terminal intersections, while its application has been limited to through movements at the proposed site access driveways.

Relevant extracts from MTO historical traffic data are provided in Appendix C.

4.2.3 Other Area Development

As discussed previously in the Scoping component of this study, there are presently no development applications of significance within the context area of the subject development.

4.3 Demand Rationalization

The purpose of this section is to rationalize future travel demands within the study area to account for potential capacity limitations in the transportation network and its ability to effectively accommodate the additional demand generated by a new development.

4.3.1 Description of Capacity Issues

It is generally accepted that the capacity of an arterial road is 1,000 vehicles per hour per lane (vphpl). Traffic count data collected by the City indicates that peak hour volumes on Dilworth Road are presently in the order of 220 to 260 vehicles per hour in the peak direction which is well within the capacity limitations for a two-lane arterial roadway. Based on this preliminary capacity review, it expected that any additional traffic resulting from development-generated and background network demands will not result in the exceedance of the arterial threshold. The Analysis section of this TIA will confirm any traffic operational issues at the study area intersections under both background and total traffic conditions and suggest mitigation measures where applicable.

4.3.2 Adjustment to Development Generated Demands

Recognizing the lack of documented capacity issues at any of the study area intersections, no adjustments have been made to future background traffic volumes.

4.3.3 Adjustment to Background Network Demands

As prescribed in the TIA Guidelines, the effects of peak-hour spreading have been considered in in future analysis years of this study. It is anticipated that as traffic volumes continue to gradually increase, vehicular trips will have a natural tendency to be more evenly distributed across the peak hour (PHF = 1.0) and eventually increase demands in the shoulders of the peak as well. The impacts of peak hour spreading are accounted for in the Synchro modelling, completed as part of the Analysis component of this study.

As no specific capacity issues have been identified through previous studies, no further adjustments to background network demands are necessary.

4.4 Traffic Volume Summary

4.4.1 Future Background Traffic Volumes

Future background traffic volumes have been established through the application of a growth rate to the Existing (2021) Traffic, as discussed previously.

Figure 6 and **Figure 7** present the future background traffic volumes anticipated for the 2022 build-out year, as well as the 2027 study horizon, respectively.

4.4.2 Future Total Traffic Volumes

Future total volumes have been derived by superimposing the new site-generated auto trips from Figure 4 and the pass-by trips from Figure 5 onto the future background volumes presented in Figure 6 and Figure 7.

Figure 8 and **Figure 9** present the future total traffic volumes anticipated for 2022 and 2027 analysis years, respectively.

Figure 6 - Future (2022) Background Traffic

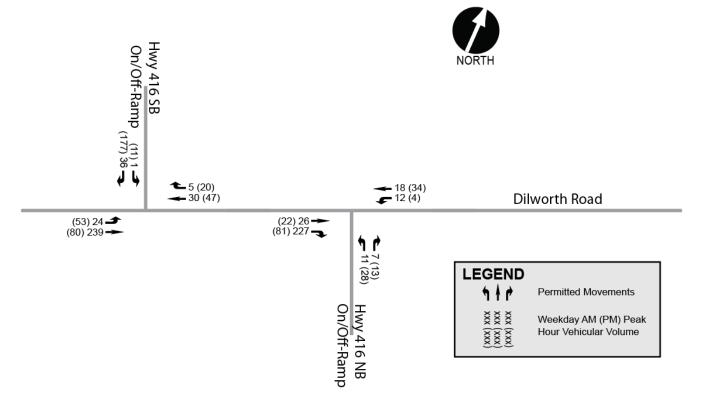


Figure 7 - Future (2027) Background Traffic

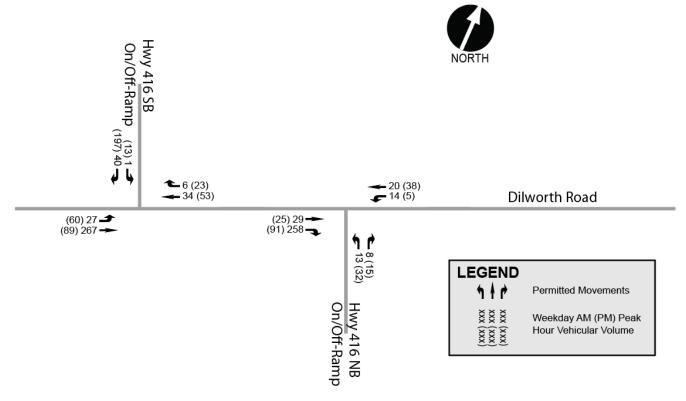


Figure 8 - Future (2022) Total Traffic

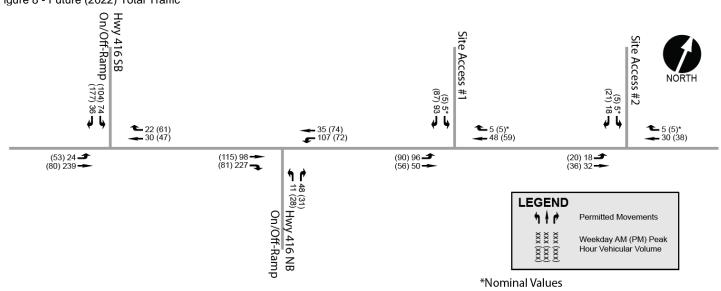
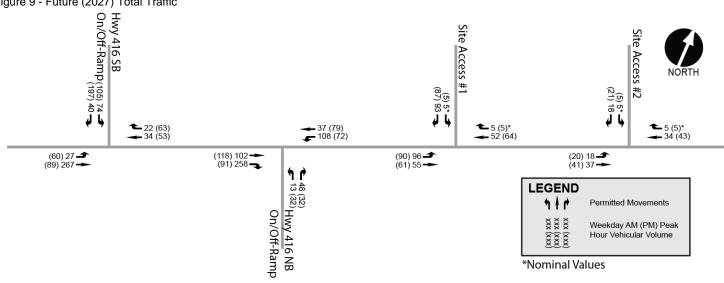



Figure 9 - Future (2027) Total Traffic

5 Analysis

5.1 Development Design

5.1.1 Design for Sustainable Modes

Due to the rural context of the site, there are no design features proposed specifically to support sustainable modes of transportation within the subject development. Further, there are no existing or planned active transportation facilities which require integration on the adjacent transportation network. As such, the TDM-Supportive Development Design and Infrastructure Checklist is not applicable for this particular development.

5.1.2 Circulation and Access

As discussed previously, Dilworth Road is identified as a Truck Route in the Official Plan along the site's frontage and is therefore expected to integrate well with adjacent road network.

The internal drive aisle of the site will be at least 6.0 metres wide and will therefore be designed to accommodate a Fire Route. Waste collection and delivery vehicles will be easily accommodated as well.

The oversized parking stalls in the northwest corner of the site are oriented at 45-degree angles and have been designed with internal drive aisle widths of approximately 19 metres which exceeds the minimum requirement of 11 metres prescribed in the Zoning By-law.

5.1.3 New Street Networks

Not Applicable: The New Street Networks element is exempt from this TIA, as defined in the study scope. This element is not required for Site Plan Control applications.

5.2 Parking

5.2.1 Parking Supply

Based on the size of the proposed gas station with convenience store, a minimum of 28 vehicle parking spaces are required, while the warehousing uses require at least 59 spaces for a total of 87 parking spaces, as prescribed for Area 'D' in the Zoning By-law. The conceptual site plan indicates that 97 vehicle parking spaces will be provided for the development and therefore the proposed parking supply is within the permissible range. Further review of the by-law indicates that at least 34 of the 97 spaces should be oversized and therefore the 60 oversized spaces proposed satisfy this requirement.

In accordance with Section 111 of the by-law, no bicycle parking spaces are required for the proposed development, as the site is not located within the limits of a village.

5.2.2 Spillover Parking

The minimum parking supply requirements specified in the Zoning By-law have been met, therefore no further review of parking is necessary for the purposes of this study.

5.3 Boundary Streets

5.3.1 Mobility

There are three existing boundary streets adjacent to the proposed development: Dilworth Road, Third Line Road South and Highway 416. As discussed in Section 3.4, segment-based MMLOS analysis for this study was limited to Dilworth Road along the site's frontage.

The results of the segment-based MMLOS analysis are summarized in **Table 7** below. Detailed results are provided in **Appendix I**.

Table 7 - Segment-based MMLOS - Existing & Proposed Conditions

LOCATION	LEVEL OF SERVICE BY MODE					
	PEDESTRIAN (PLOS)	BICYCLE (BLOS)	TRANSIT (TLOS)	TRUCK (TkLOS)		
TARGET	N/A	N/A	N/A	С		
SEGMENTS						
Dilworth Road – Site Frontage	F	F	N/A ¹	С		

Notes: ¹ Dilworth Road is not identified as a transit priority corridor in the TMP and is not served by regular transit service.

As shown in **Table 7** above, both the segment-based PLOS and BLOS are presently operating at 'F', however given the rural context of the area and lack of active transportation facilities on Dilworth Road adjacent to the site, no targets are identified in the MMLOS Guidelines for either mode.

In terms of transit, since Dilworth Road is not identified as an existing or planned transit priority corridor and is not served by regular transit service through the study area, a TLOS evaluation is not required in accordance with the MMLOS Guidelines.

The TkLOS target of 'C' is met on Dilworth Road within the site's frontage and is attributable to travel lane widths which can accommodate oversized vehicles which is appropriate given its Truck Route designation.

5.3.2 Road Safety

As discussed previously, there have been no reported collisions within the study area over the last 5 years, therefore no collision analysis was conducted for this study.

5.4 Access Intersections

5.4.1 Location and Design of Access

As discussed previously, two full-movement access driveways on Dilworth Road are proposed to service the subject development, including:

- Site Access #1 The western site access driveway will provide direct access to the gas station with convenience store and commercial cardlock refuelling station.
- Site Access #2 The eastern site access driveway will provide direct access to the miniwarehouse self-storage facility and cross-dock warehouse.

The proposed site access driveways, as described above, were reviewed with respect to the City of Ottawa Private Approach By-law 2003-447, with particular confirmation of the following items:

- Width: A private approach should have a minimum width of 2.4m and a maximum width of 9.0m.
 - According to the conceptual site plan presented in **Exhibit 2**, Site Access #1 will be 25m wide, while Site Access #2 is proposed with a width of 45 metres. The Private Approach Bylaw permits widths beyond 9 metres for transport loading areas and therefore both site access driveways are compliant with the bylaw. Despite generally meeting the bylaw requirements, however, it should be noted that this plan is highly conceptual and may not accurately represent the actual proposed site access driveway widths. As such, this component of the bylaw will be revisited during the Site Plan Control application stage. ✓
- <u>Distance from Intersecting Road</u>: For a commercial development on or within 46m of an arterial or major collector with between 50 and 99 parking spaces, the proposed private approach must be at least 30 metres from the nearest intersecting street line or another two-way private approach.
 - ➤ Site Access #1 is approximately 95 metres from the nearest intersecting street line and is therefore in compliance with the by-law. ✓
 - ➤ Site Access #2 is approximately 315 metres from the nearest intersecting street line and is therefore in compliance with the by-law. ✓
 - ▶ Both proposed site access driveways are separated by a distance of approximately 215 metres.
- Quantity and Spacing of Private Approaches: For sites with frontage between 46 and 150 metres, the maximum number of private approaches is as follows, one (1) two-way private approach, and two (2) one-way private approaches, or two (2) two-way private approaches are allowed. For each additional 90 meters in excess of 150 meters, one (1) two-way private approache, or two (2) one-way approaches are allowed. Any two private approaches must be separated by at least 9.0m and can be reduced to 2.0m in the case of two one-way driveways. On lots that abut more than one roadway, these provisions apply to each frontage separately.
 - ➤ The proposed development has a frontage of approximately 590 metres, therefore both proposed two-way private approaches are compliant with the bylaw. ✓
- <u>Distance from Property Line</u>: Private approaches must be at least 3.0m from the abutting property line, however this requirement can be reduced to 0.3m provided that the access is a safe distance from the access serving the adjacent property, sight lines are adequate and that it does not create a traffic hazard.
 - The proposed private approach exceeds the minimum distance required.
- Grade of Private Approach: The grade of a private approach serving a parking area of more than 50 spaces must not exceed 2% within the private property for a distance of 9m from the highway/curb line.
 - This level of detail is not expected to be available until the Site Plan Control application stage and therefore this requirement will be assessed at that time.

The Transportation Association of Canada's (TAC) Geometric Design Guide for Canadian Roads (June 2017) suggests a minimum clear throat length of 30 metres for the proposed site access

which coincides with the throat length indicated on **Exhibit 2**. As such, any internal spillback towards the site access is not expected to result in operational concerns on Dilworth Road.

5.4.2 Access Intersection Control

The proposed site access driveway on Dilworth Road will be stop-controlled.

5.4.3 Intersection Design (MMLOS)

Not Applicable – The proposed site access driveway will be unsignalized, therefore Multi-Modal Level of Service (MMLOS) analysis is not required.

5.5 Transportation Demand Management (TDM)

Not Applicable – The Transportation Demand Management (TDM) element is exempt from this TIA, as the proposed development is assumed to remain well below the minimum threshold of 60 employees and/or students on location at any given time.

5.5.1 Context for TDM

Not Applicable.

5.5.2 Need and Opportunity

Not Applicable.

5.5.3 TDM Program

Not Applicable.

5.6 Neighbourhood Traffic Management

5.6.1 Adjacent Neighbourhoods

Not Applicable – The site proposes a single direct connection to Dilworth Road, an arterial, and therefore will not be dependant on local or collector roads for access.

5.7 Transit

5.7.1 Route Capacity

Due to the rural context of the site, no transit service is currently provided or expected on the adjacent road network within the vicinity of the proposed development.

5.7.2 Transit Priority Measures

As discussed in the study scope, there are no Transit Priority Measures existing or planned within the study area during the timeframe of this study.

5.8 Review of Network Concept

Not Applicable – The Network Concept element is exempt from this TIA, as defined in the study scope. This element is not required for proposed developments expected to generate less than 200 person-trips beyond what is otherwise permitted by zoning during the weekday morning and afternoon peak hours.

5.9 Intersection Design

The following sections summarize the methodology and results of the multi-modal intersection capacity analysis conducted within the study area.

5.9.1 Intersection Control

5.9.1.1 Traffic Signal Warrants

Traffic signal warrants were completed for both ramp terminal intersections, as well as the proposed site access driveways. Based on the results of the analysis, warrants were not triggered at any of the study area intersections under Future (2027) Total Traffic conditions.

The results of the traffic signal warrant analysis are provided in Appendix F.

5.9.1.2 Roundabout Analysis

As per the City's Roundabout Implementation Policy, intersections that satisfy any of the following criteria should be screened utilizing the Roundabout Initial Feasibility Screening Tool:

- At any new City intersection
- Where traffic signals are warranted
- At intersections where capacity or safety problems are being experienced

Since neither of the study area intersections meet any of the above noted requirements, no roundabout analysis is required for this study. Further, the proposed site access will be configured as a stop-controlled intersection, as discussed previously, therefore no consideration will be given to implementing a roundabout at this location either.

5.9.2 Intersection Analysis Criteria (Automobile)

The following section outlines the City of Ottawa's methodology for determining motor vehicle Level of Service (LOS) at signalized and unsignalized intersections.

5.9.2.1 Signalized Intersections

In qualitative terms, the Level of Service (LOS) defines operational conditions within a traffic stream and their perception by motorists. A LOS definition generally describes these conditions in terms of such factors as delay, speed and travel time, freedom to manoeuvre, traffic interruptions, safety, comfort and convenience. LOS can also be related to the ratio of the volume to capacity (v/c) which is simply the relationship of the traffic volume (either measured or forecast) to the capability of the intersection or road section to accommodate a given traffic volume. This capability varies depending on the factors described above. LOS are given letter designations from 'A' to 'F'. LOS 'A' represents the best operating conditions and LOS 'E' represents the level at which the intersection or an approach to the intersection is carrying the maximum traffic volume that can, practicably, be accommodated. LOS 'F' indicates that the intersection is operating beyond its theoretical capacity.

The City of Ottawa has developed criteria as part of the Transportation Impact Assessment Guidelines, which directly relate the volume to capacity (v/c) ratio of a signalized intersection to a LOS designation. These criteria are shown in **Table 8** below.

Table 8 - LOS Criteria for Signalized Intersections

LOS	VOLUME TO CAPACITY RATIO (v/c)
А	0 to 0.60
В	0.61 to 0.70
С	0.71 to 0.80
D	0.81 to 0.90
E	0.91 to 1.00
F	> 1.00

The intersection capacity analysis technique provides an indication of the LOS for each movement at the intersection under consideration and for the intersection as a whole. The overall v/c ratio for an intersection is defined as the sum of equivalent volumes for all critical movements at the intersection divided by the sum of capacities for all critical movements.

The Level of Service calculation is based on locally-specific parameters as described in the TIA Guidelines and incorporates existing signal timing plans obtained from the City of Ottawa. The analysis existing conditions utilized a Peak Hour Factor (PHF) of 0.90, while future conditions considers optimized signal timing plans and use of a Peak Hour Factor (PHF) of 1.0 to recognize peak spreading beyond a 15-minute period in congested conditions.

5.9.2.2 Unsignalized Intersections

The capacity of an unsignalized intersection can also be expressed in terms of the LOS it provides. For an unsignalized intersection, the Level of Service is defined in terms of the average movement delays at the intersection. This is defined as the total elapsed time from when a vehicle stops at the end of the queue until the vehicle departs from the stop line; this includes the time required for a vehicle to travel from the last-in-queue position to the first-in-queue position. The average delay for any particular minor movement at the un-signalized intersection is a function of the capacity of the approach and the degree of saturation.

The Highway Capacity Manual 2010 (HCM), prepared by the Transportation Research Board, includes the following Levels of Service criteria for un-signalized intersections, related to average movement delays at the intersection, as indicated in **Table 9** below.

Table 9 - LOS Criteria for Unsignalized Intersections

LOS	DELAY (seconds)			
А	<10			
В	>10 and <15			
С	>15 and <25			
D	>25 and <35			
Е	>35 and <50			
F	>50			

The unsignalized intersection capacity analysis technique included in the HCM and used in the current study provides an indication of the Level of Service for each movement of the intersection under consideration. By this technique, the performance of the unsignalized intersection can be compared under varying traffic scenarios, using the Level of Service concept in a qualitative sense. One unsignalized intersection can be compared with another unsignalized intersection using this concept. Level of Service 'E' represents the capacity of the movement under consideration and generally, in large urban areas, Level of Service 'D' is considered to represent an acceptable operating condition. Level of Service 'E' is considered an acceptable operating condition for planning purposes for intersections located within Ottawa's Urban Core the downtown and its vicinity). Level of Service 'F' indicates that the movement is operating beyond its design capacity.

5.9.3 Intersection Capacity Analysis

Following the established intersection capacity analysis criteria described above, the existing and future conditions are analyzed during the weekday peak hour traffic volumes derived in this study.

The following section presents the results of the intersection capacity analysis. All tables summarize study area intersection LOS results during the weekday morning and afternoon peak hour periods.

The Synchro output files have been provided in **Appendix G**.

5.9.3.1 Existing (2021) Traffic

An intersection capacity analysis has been undertaken using the Existing (2021) Traffic volumes presented in **Figure 2**, yielding the following results:

Table 10 -	Intersection	Canacity	Analysis.	Evicting	(2021)	Traffic

		AM PEA	K HOUR	PM PEAK HOUR	
INTERSECTION	TRAFFIC CONTROL	OVERALL LOS (V/C OR DELAY)	CRITICAL MOVEMENTS (V/C OR DELAY)	OVERALL LOS (V/C OR DELAY)	CRITICAL MOVEMENTS (V/C OR DELAY)
Dilworth Road & Highway 416 NB On/Off-Ramp	Unsignalized	A (8.7s)	SBRL (8.7s)	A (9.6s)	SBRL (9.6s)
Dilworth Road & Highway 416 SB On/Off-Ramp	Unsignalized	A (8.8s)	NBRL (8.8s)	A (8.9s)	NBRL (8.9s)

Based on the above, both study area intersections are presently operating at an acceptable level of service (LOS 'D' or better) under Existing (2021) Traffic conditions.

5.9.3.2 Future (2022) Background Traffic

An intersection capacity analysis has been undertaken using the Future (2022) Background Traffic volumes presented in **Figure 6**, yielding the following results:

Table 11 - Intersection Capacity Analysis: 2022 Background Traffic

		AM PEA	K HOUR	PM PEAK HOUR	
INTERSECTION	TRAFFIC CONTROL	OVERALL LOS	CRITICAL MOVEMENTS	OVERALL LOS	CRITICAL MOVEMENTS
		(V/C OR DELAY)	(V/C OR DELAY)	(V/C OR DELAY)	(V/C OR DELAY)
Dilworth Road & Highway 416 NB On/Off-Ramp	Unsignalized	A (8.6s)	SBRL (8.6s)	A (9.4s)	SBRL (9.4s)
Dilworth Road & Highway 416 SB On/Off-Ramp	Unsignalized	A (8.8s)	NBRL (8.8s)	A (8.9s)	NBRL (8.9s)

Based on the above, both study area intersections are expected to continue operating at an acceptable level of service (LOS 'D' or better) under Future (2022) Background Traffic conditions.

5.9.3.3 Future (2027) Background Traffic

An intersection capacity analysis has been undertaken using the Future (2027) Background Traffic volumes presented in **Figure 7**, yielding the following results:

Table 12 - Intersection Capacity Analysis: 2027 Background Traffic

		AM PEA	K HOUR	PM PEAK HOUR	
INTERSECTION	TRAFFIC CONTROL	OVERALL LOS	CRITICAL MOVEMENTS (V/C OR DELAY)	OVERALL LOS	CRITICAL MOVEMENTS (V/C OR DELAY)
Dilworth Road & Highway 416 NB On/Off-Ramp	Unsignalized	A (8.7s)	SBRL (8.7s)	A (9.6s)	SBRL (9.6s)
Dilworth Road & Highway 416 SB On/Off-Ramp	Unsignalized	A (8.8s)	NBRL (8.8s)	A (8.9s)	NBRL (8.9s)

Based on the above, both study area intersections are expected to continue operating at an acceptable level of service (LOS 'D' or better) under Future (2027) Background Traffic conditions.

5.9.3.4 Future (2022) Total Traffic

An intersection capacity analysis has been undertaken using the Future (2022) Total Traffic volumes presented in **Figure 8**, yielding the following results:

Table 13 - Intersection Capacity Analysis: 2022 Total Traffic

		AM PEA	K HOUR	PM PEAK HOUR	
INTERSECTION	TRAFFIC CONTROL	OVERALL LOS (V/C OR DELAY)	CRITICAL MOVEMENTS (V/C OR DELAY)	OVERALL LOS (V/C OR DELAY)	CRITICAL MOVEMENTS (V/C OR DELAY)
Dilworth Road & Highway 416 NB On/Off-Ramp	Unsignalized	B (10.6s)	SBRL (10.6s)	B (10.9s)	SBRL (10.9s)
Dilworth Road & Highway 416 SB On/Off-Ramp	Unsignalized	A (9.5s)	NBRL (9.5s)	B (10.1s)	NBRL (10.1s)
Dilworth & Site Access #1	Unsignalized	A (8.9s)	SBRL (8.9s)	A (8.9s)	SBRL (8.9s)
Dilworth & Site Access #2	Unsignalized	A (8.5s)	SBRL (8.5s)	A (8.6s)	SBRL (8.6s)

Based on the above, all four study area intersections are expected to operate at an acceptable level of service (LOS 'D' or better) under Future (2022) Total Traffic conditions.

5.9.3.5 Future (2027) Total Traffic

An intersection capacity analysis has been undertaken using the Future (2027) Total Traffic volumes presented in **Figure 9**, yielding the following results:

Table 14 - Intersection Capacity Analysis: 2027 Total Traffic

		AM PEA	K HOUR	PM PEAK HOUR	
INTERSECTION	TRAFFIC CONTROL	OVERALL LOS (V/C OR DELAY)	CRITICAL MOVEMENTS (V/C OR DELAY)	OVERALL LOS (V/C OR DELAY)	CRITICAL MOVEMENTS (V/C OR DELAY)
Dilworth Road & Highway 416 NB On/Off-Ramp	Unsignalized	B (10.8s)	SBRL (10.8s)	B (11.3s)	SBRL (11.3s)
Dilworth Road & Highway 416 SB On/Off-Ramp	Unsignalized	A (9.6s)	NBRL (9.6s)	B (10.3s)	NBRL (10.3s)
Dilworth & Site Access #1	Unsignalized	A (8.9s)	SBRL (8.9s)	A (8.9s)	SBRL (8.9s)
Dilworth & Site Access #2	Unsignalized	A (8.5s)	SBRL (8.5s)	A (8.6s)	SBRL (8.6s)

Based on the above, all four study area intersections are expected to operate at an acceptable level of service (LOS 'D' or better) under Future (2027) Total Traffic conditions.

5.9.4 Intersection Design (MMLOS)

Not Applicable – As verified through intersection capacity analyses presented in the preceding sections, intersection Multi-Modal Level of Service (MMLOS) analysis is not required, since none of the study area intersections are expected to trigger the need for traffic signals within the timeframe of this study.

5.10 Geometric Review

The following section provides a review of all geometric requirements for the study area intersections.

5.10.1 Sight Distance and Corner Clearances

The proposed site access driveway are located on a segment of Dilworth Road with a minor vertical curve to the west and a gradual horizontal curve to the east. Despite these constraints, the, both locations are expected to allow for visibility in excess of the 160-metre distance suggested by TAC for a road with a 90 km/h design speed. Provided that vegetation is kept clear of the intersection sightlines, sight distances and corner clearances are not expected to be a concern for the proposed development's site access driveway.

5.10.2 Auxiliary Lane Analyses

5.10.2.1 Auxiliary Left-Turn Lane Requirements (Unsignalized)

Auxiliary left-turn lane analyses for all unsignalized study area intersections were completed under the Future (2027) Total Traffic conditions. The operating speed on Dilworth Road was assumed to be 90 km/h, representing 10 km/h over the posted speed limit.

The MTO Geometric Design Standards for Ontario Highways left-turn warrant was applied to main street approaches at all unsignalized intersections using the highest left-turn volume from either the weekday morning or afternoon peak hour. The results have been summarized in **Table 10**Table 15 below.

Table 15 - Auxiliary Left-Turn Lane Analysis at Unsignalized Intersections

INTERSECTION	APPROACH	VOLUME ADVANCING (V _A)	VOLUME OPPOSING (V ₀)	% LEFT TURN IN V _A ¹	EXISTING PARALLEL LANE LENGTH (M)	STORAGE DEFICIENCY (M)
Dilworth & Hwy 416 SB On/Off- Ramp	EB	294	56	10%	75	Existing Storage Adequate
Dilworth & Hwy 416 NB On/Off- Ramp	WB	145	360	40%	85	Existing Storage Adequate
Dilworth & Site Access #1	EB	150	52	40%	-	No Storage Required
Dilworth & Site Access #2	EB	61	43	35%	-	No Storage Required

Note: ¹MTO left-turn warrant graphs do not exceed 40% turning vehicles relative to approach volumes.

Based on the analysis presented in **Table 15** above, the existing auxiliary left-turn lanes at the Highway 416 ramp terminal intersections are expected to sufficiently accommodate Future (2027) Total Traffic conditions, while the proposed site access driveways do not warrant an auxiliary left-turn lane.

TAC also recommends consideration be given to implementing a left-turn slip lane when volumes do not warrant full left-turn lanes. Based on the estimated east-west traffic volumes on Dilworth Road, which are expected to remain well below the general capacity threshold of 1,000 vehicle per hour per lane (vphpl) assumed for arterial roads, sufficient gaps are likely to be available to accommodate the relatively low volume of inbound left-turning traffic during the weekday peak hours. As such, a left-turn slip lane is not required at the site access either.

5.10.2.2 Auxiliary Right-Turn Lane Requirements (Unsignalized)

The Transportation Association of Canada (TAC) suggests that auxiliary right-turn lanes be considered "when the volume of decelerating or accelerating vehicles compared with through vehicles causes undue hazard." Consideration for auxiliary right-turn lanes is typically given when the right-turning traffic exceeds 10% of the through volume and is at least 60 vehicles per hour.

The Highway 416 & Dilworth Road ramp terminal intersections are presently configured with right-turn auxiliary lanes which are capable of accommodating 95th percentile queues under Future (2027) Total Traffic conditions. With regards to the proposed site access driveways, site-generated traffic volumes on the westbound approaches are expected to be nominal and therefore right-turn auxiliary lanes are not required. As such, no additional auxiliary right-turn lanes are needed on the adjacent road network as a result of projected background or site-generated traffic volumes within the timeframe of this study.

5.11 Summary of Improvements Indicated and Modification Options

Based on the intersection capacity analyses conducted for this study, all four study area intersections are expected to operate at an acceptable level of service beyond the 2027 horizon year.

An analysis of auxiliary lane requirements found that auxiliary storage lanes at both existing ramp terminal intersections are expected to sufficiently accommodate future travel demands within the timeframe of this study. Further, no auxiliary left- or right-turn lanes would be required to support site-generated travel demand on Dilworth Road at either of the proposed site access driveway locations.

6 Conclusion

The proposed development includes a gas station with convenience store, a mini-warehouse self-storage facility, a cross-dock warehouse and a commercial cardlock fuelling station at 2095 Dilworth Road, Ottawa. The results of the trip generation exercise conducted as part of this study indicate that 157 and 148 new two-way vehicular trips are expected during the weekday morning and afternoon peak hours, respectively. Pass-by traffic generated by the gas station use was also considered in the analysis, with up to 68 and 70 trips expected to occur during the weekday morning and afternoon peak hours, respectively. The mode share targets applied in this study were based on the Rural Southwest Traffic Assessment Zone (TAZ) and further refined to reflect the auto-oriented nature of the proposed development. The site-generated traffic projections were divided amongst two proposed site access driveways which will help to mitigate the potential for traffic operational issues from occurring on the adjacent road network.

A segment-based multi-modal analysis identified deficiencies for sustainable modes on Dilworth Road adjacent to the site. It should be noted, however, that due to the rural context of the site and auto dependency of uses proposed, no improvements are required to safely accommodate the transportation demands of the subject development.

Based on the intersection capacity analyses conducted for this study, all four study area intersections are expected to operate at an acceptable level of service beyond the 2027 horizon year.

Queuing analysis conducted under Future (2027) Total Traffic conditions provided further indication that traffic operational issues are not expected to be a concern at any of the study area intersections within the timeframe of this study. Auxiliary left- or right-turn lanes at both existing ramp terminal intersections are expected to sufficiently accommodate future travel demands within the timeframe of this study. Further, the analysis did not identify the need for any auxiliary lanes to support site-generated traffic volumes on Dilworth Road at either Site Access #1 or Site Access #2

As all study area intersections were shown to operate well within the capacity constraints of the adjacent transportation network, an RMA will <u>not</u> be required. Further, a post-development Monitoring Plan has been deemed unnecessary to support this study.

Based on the findings of this study, it is the overall opinion of IBI Group that the proposed development will integrate well with and can be safely accommodated by the adjacent transportation network.

Step 1 & 2 Submission (Screening & Scoping) – Circulation Comments & Response

Report Submitted: May 10, 2021 Comments Received: May 14, 2021

Transportation Project Manager: Mike Giampa

1) No comments were received from the City as part of the Step 1 & 2: Screening & Scoping for the 2095 Dilworth Road Transportation Impact Assessment (TIA).

Step 3 Submission (Forecasting) - Circulation Comments & Response

Report Submitted: June 15, 2021 Comments Received: July 12, 2021

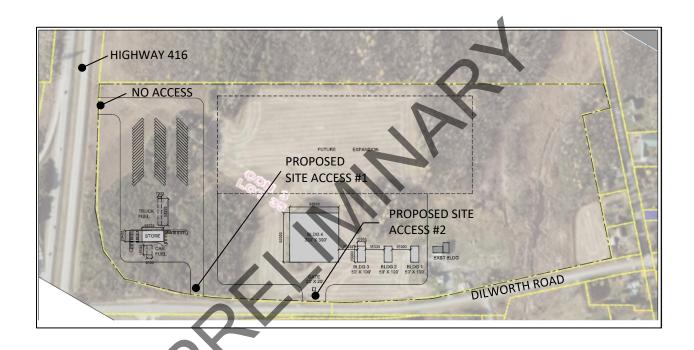
Transportation Project Manager: Mike Giampa

Transportation Engineering Services

- 1) 4.1.2.3 Mode Share Proportions: In Table 5, the determined mode share targets on Auto Passenger may be too high as the proposed site is in a rural area with many of the trips generated by Auto drivers.
 - ➢ IBI Response: It is acknowledged that the Auto Passenger mode share may have been previously overestimated at 19%, therefore it is proposed to reduce its allocation to 13% and maintain consistency with the weighted average from the Rural Southwest TAZ. Consequently, the remaining sustainable modes derived from the TAZ were redistributed directly to Auto Driver, resulting in its increase from 81% to 87%.
- 2) Section 4.1.3 Trip Distribution and Assignment: In Figure 4, the total exiting trips from both proposed accesses for the AM peak is 71, which contradicts the numbers been provided in Table 6 for 75. Update the figures in both Figure 4 and 5 based on the assumptions made in previous sections.
 - ➤ IBI Response: Figures 4 and 5 have been revised accordingly to ensure that vehicle trips illustrated correspond with the values presented previously in Table 5.

Appendix B – TIA Screening Form

City of Ottawa 2017 TIA Guidelines Screening Form


1. Description of Proposed Development

Municipal Address	2095 Dilworth Road, Ottawa, ON
Description of Location	North Gower-Kars Community – Northeast corner of Highway 416 & Dilworth Road
	2095 DILWORTH RD X Q Whose surph regards to 2096 Alleursh A P V Second
Land Use Classification	Rural Commercial
Development Size (units)	Proposed Gas Station with Convenience Store – 6 to 8 pumps
Development Size (m²)	Self-Storage Facility – 9,755 m ² (105,000 ft ²)
Number of Accesses and Locations	Two (2) full-movement private approaches on Dilworth Road
Phase of Development	Single-phase
Buildout Year	2022

If available, <u>please attach a sketch of the development or site plan</u> to this form.

Transportation Impact Assessment Screening Form

2. Trip Generation Trigger

Considering the Development's Land Use type and Size (as filled out in the previous section), please refer to the Trip Generation Trigger checks below.

Land Use Type	Minimum Development Size
Single-family homes	40 units
Townhomes or apartments	90 units
Office	3,500 m ²
Industrial	5,000 m ²
Fast-food restaurant or coffee shop	100 m ²
Destination retail	1,000 m ²
Gas station or convenience market	75 m ²

^{*} If the development has a land use type other than what is presented in the table above, estimates of person-trip generation may be made based on average trip generation characteristics represented in the current edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual.

Based on the above, the Trip Generation Trigger is satisfied.

3. Location Triggers

	Yes	No
Does the development propose a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit or Spine Bicycle Networks?		✓
Is the development in a Design Priority Area (DPA) or Transit-oriented Development (TOD) zone?*		✓

^{*}DPA and TOD are identified in the City of Ottawa Official Plan (DPA in Section 2.5.1 and Schedules A and B; TOD in Annex 6). See Chapter 4 for a list of City of Ottawa Planning and Engineering documents that support the completion of TIA).

Based on the above, the Location Trigger is <u>not</u> satisfied.

4. Safety Triggers

	Yes	No
Are posted speed limits on a boundary street are 80 km/hr or greater?	\checkmark	
Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway?	✓	
Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions)?		✓
Is the proposed driveway within auxiliary lanes of an intersection?		√
Does the proposed driveway make use of an existing median break that serves an existing site?		✓
Is there is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?		✓
Does the development include a drive-thru facility?		✓

Based on the above, the Safety Trigger is satisfied.

5. Summary

	Yes	No
Does the development satisfy the Trip Generation Trigger?	✓	
Does the development satisfy the Location Trigger?		✓
Does the development satisfy the Safety Trigger?	√	

Based on the results of the TIA Screening Form, the Trip Generation and Safety Triggers are satisfied. As such, a TIA is required for the proposed development at 2095 Dilworth Road.

Appendix C – Traffic Data

0%

RMOC RD 13 - DILWORTH

ROAD IC Total vehicles

Trucks% Ped.

0

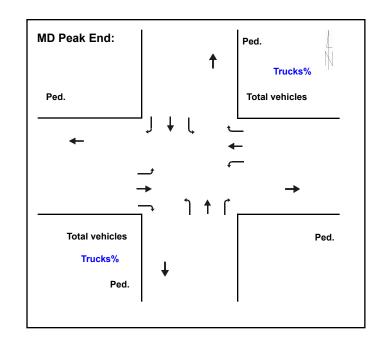
203 —

HWY 416 @ RMOC RD 13 - DILWORTH ROAD IC

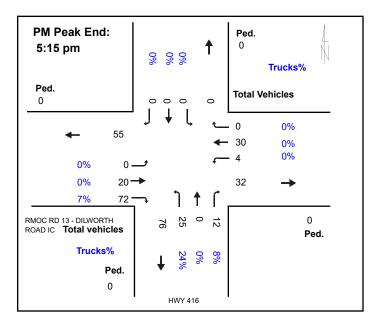
Eastern

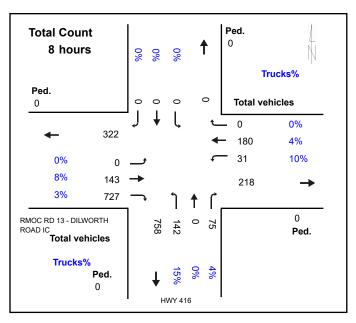
Count Day: Thursday

Intersection ID:491850000(--E--)


AM Peak End: Ped. 8:00 am Trucks% Ped. **Total vehicles** 0 0% 26 16 0% 11 0 -0% 29 13% 23 -

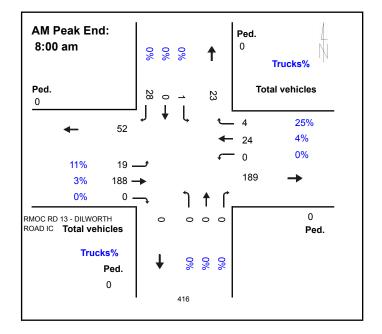
0 6

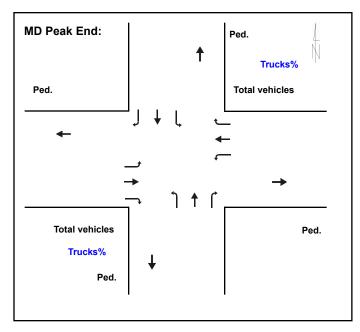

HWY 416


0

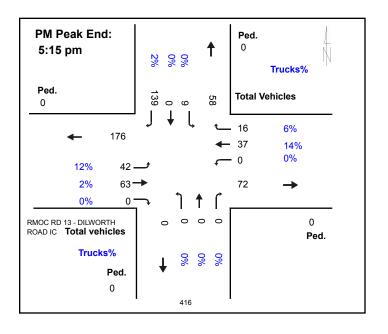
Ped.

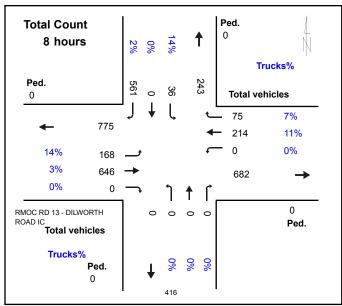
Count Date: 24-May-2018




HWY 416 @ RMOC RD 13 - DILWORTH ROAD IC

Eastern


Intersection ID:491850000(--W--)


Count Day: Thursday

Count Date: 12-Sep-2013

		Dist.		Pattern					
Highway	Location Description	(KM)	Year	Туре	AADT		SAWDT	WADT	
			2008	IR	21,700	26,900		18,400	
			2009	IR	22,500	25,600		20,400	
			2010	IR	24,100			21,900	
			2011	IR	25,200	30,000		21,400	
			2012	IR	26,400	31,400		22,700	
			2013	IR	27,500	32,800		23,400	
			2014	IR	28,700	34,200		24,400	
			2015	IR	26,300	31,300		22,400	
			2016	IR	30,300			25,700	
416	L &G RD 19 - RIDEAU RIVER ROAD IC	2.1	1997	IR	7,900	10,100	9,700	6,650	
			1998	IR	8,300	10,500		7,000	
			1999	IR	8,800	11,100	10,700	7,400	
			2000	IR	10,300	13,000	12,500	8,700	1.2
			2001	IR	11,700	14,700	14,200	9,850	0.5
			2002	IR	13,200	16,700	16,000	11,100	1.4
			2003	IR	14,700	18,500	17,800	12,500	1.0
			2004	IR	16,200	20,100	19,300	13,700	0.9
			2005	IR	17,600	21,800	20,900	14,900	1.1
			2006	IR	19,000	23,500	22,500	16,100	0.8
			2007	IR	20,100	24,900	24,700	17,000	0.9
			2008	IR	21,200	26,200	25,700	18,000	0.3
			2009	IR	22,000	25,000	24,200	19,900	0.3
			2010	IR	25,100	30,800	27,600	20,200	0.5
			2011	IR	25,400	30,200	29,700	21,600	N/A
			2012	IR	26,800	31,800	31,000	23,000	N/A
			2013	IR	28,100	33,400	36,000	23,900	N/A
			2014	IR	29,400	35,000	35,000	25,000	N/A
			2015	IR	27,400	32,600	32,600	23,300	N/A
			2016	IR	31,400	37,300	37,300	26,700	N/A
416	RMOC RD 13 - DILWORTH ROAD IC	6.4	1997	CR	9,500	12,400	10,800	7,700	0.0
			1998	CR	10,000	12,900	11,400	8,100	0.3
			1999	CR	10,700	13,800	12,100	8,650	0.5
			2000	CR	15,100	18,500	17,700	12,800	0.5

		Dist.		Pattern					
Highway	Location Description	(KM)	Year	Туре	AADT		SAWDT	WADT	
			2001	CR	14,400	17,700	•	14,400	
			2002	CR	15,500	19,100		13,100	
			2003	CR	16,300	20,000		13,900	
			2004	CR	16,900	20,600		14,300	
			2005	CR	17,900	21,700		15,100	
			2006	CR	18,900	22,900		16,000	
			2007	CR	20,000	24,200		16,900	
			2008	CR	20,000	24,200		16,900	
			2009	CR	21,900	26,400		18,500	
			2010	CR	22,900	27,400		19,400	
			2011	CR	23,900	28,000		21,300	
			2012	CR	24,900	29,900		21,200	-
			2013	CR	23,500	28,200		20,000	
			2014	CR	26,900	31,700		22,900	
			2015	CR	27,400	32,300		23,300	
			2016	CR	28,400	33,500		24,100	
416	RMOC RD 6 - ROGER STEVENS DRIVE IC	8.4	1998	CR	10,000	11,300		8,950	
			1999	CR	10,500	11,900		9,350	
			2000	CR	16,200	19,900		13,700	
			2001	CR	15,000	18,500		15,000	
			2002	CR	16,100	19,800		13,600	
			2003	CR	17,600	21,600		15,000	
			2004	CR	18,800	22,900	22,000	15,900	0.3
			2005	CR	20,300	24,600	23,700	17,100	0.4
			2006	CR	22,000	26,700	25,600	18,600	0.4
			2007	CR	22,600	27,400	27,300	19,000	0.4
			2008	CR	23,800	28,800	28,600	20,100	0.3
			2009	CR	25,700	30,900	29,800	21,700	0.3
			2010	CR	25,100	30,100	29,000	21,200	0.3
			2011	CR	27,800	32,500	32,800	24,700	N/A
			2012	CR	29,000	34,900	34,300	24,700	N/A
			2013	CR	30,300	36,400	37,300	25,800	N/A
			2014	CR	31,600	37,300	37,000	26,900	N/A

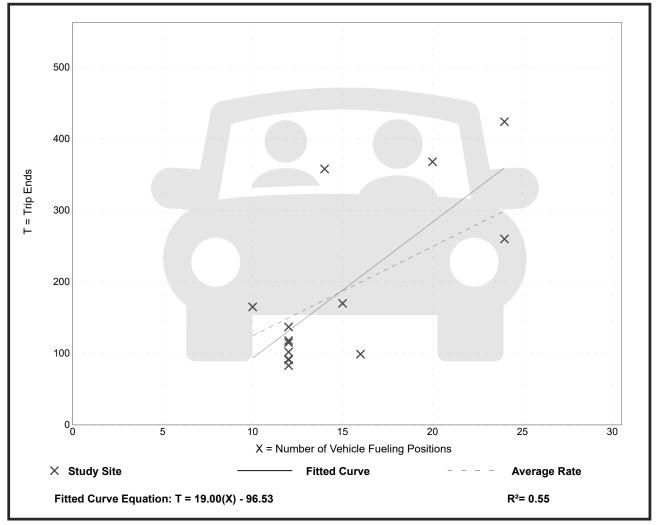
Gasoline/Service Station With Convenience Market (945)

Vehicle Trip Ends vs: Vehicle Fueling Positions

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban


Number of Studies: 14

Avg. Num. of Vehicle Fueling Positions: 15

Directional Distribution: 51% entering, 49% exiting

Vehicle Trip Generation per Vehicle Fueling Position

Average Rate	Range of Rates	Standard Deviation
12.47	6.19 - 25.57	5.56

Trip Gen Manual, 10th Ed + Supplement • Institute of Transportation Engineers

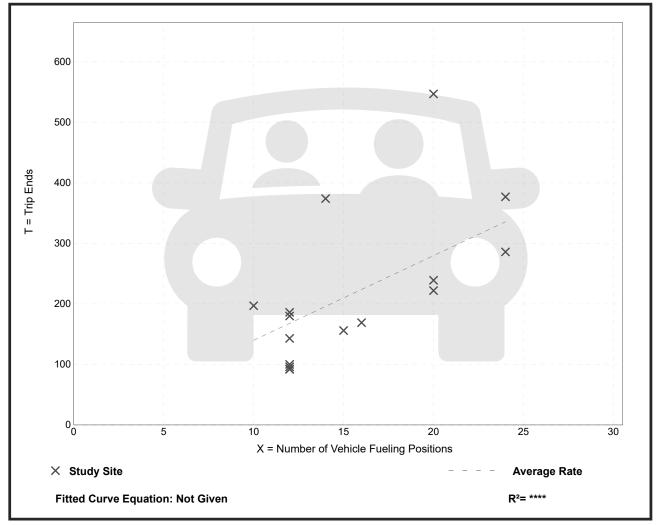
Gasoline/Service Station With Convenience Market (945)

Vehicle Trip Ends vs: Vehicle Fueling Positions

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban


Number of Studies: 16

Avg. Num. of Vehicle Fueling Positions: 15

Directional Distribution: 51% entering, 49% exiting

Vehicle Trip Generation per Vehicle Fueling Position

Average Rate	Range of Rates	Standard Deviation
13.99	7.67 - 27.35	6.18

Trip Gen Manual, 10th Ed + Supplement • Institute of Transportation Engineers

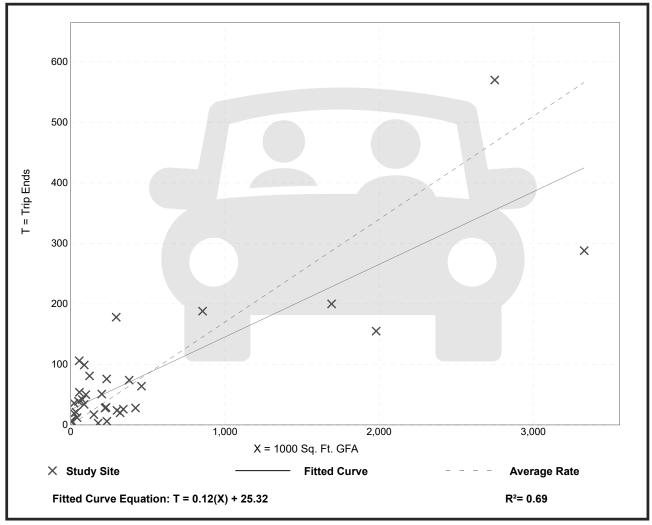
Warehousing

(150)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.


Setting/Location: General Urban/Suburban

Number of Studies: 34 Avg. 1000 Sq. Ft. GFA: 451

Directional Distribution: 77% entering, 23% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.17	0.02 - 1.93	0.20

Trip Gen Manual, 10th Ed + Supplement • Institute of Transportation Engineers

Warehousing

(150)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.


Setting/Location: General Urban/Suburban

Number of Studies: 47 Avg. 1000 Sq. Ft. GFA: 400

Directional Distribution: 27% entering, 73% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.19	0.01 - 1.80	0.18

Trip Gen Manual, 10th Ed + Supplement • Institute of Transportation Engineers

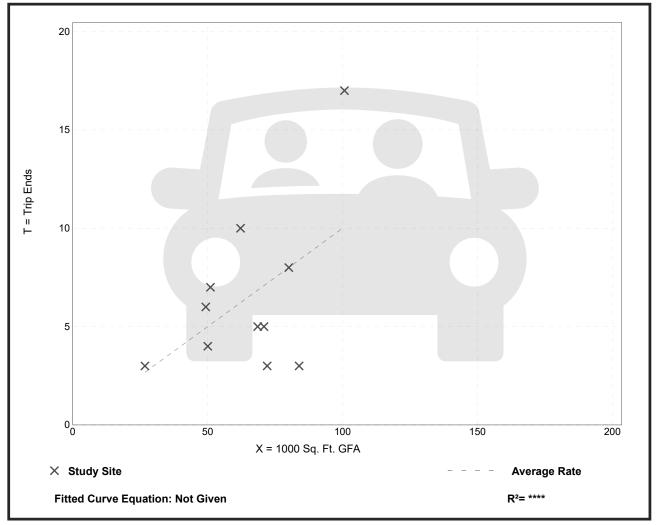
Mini-Warehouse

(151)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.


Setting/Location: General Urban/Suburban

Number of Studies: 11 Avg. 1000 Sq. Ft. GFA: 65

Directional Distribution: 60% entering, 40% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.10	0.04 - 0.17	0.05

Trip Gen Manual, 10th Ed + Supplement • Institute of Transportation Engineers

Mini-Warehouse

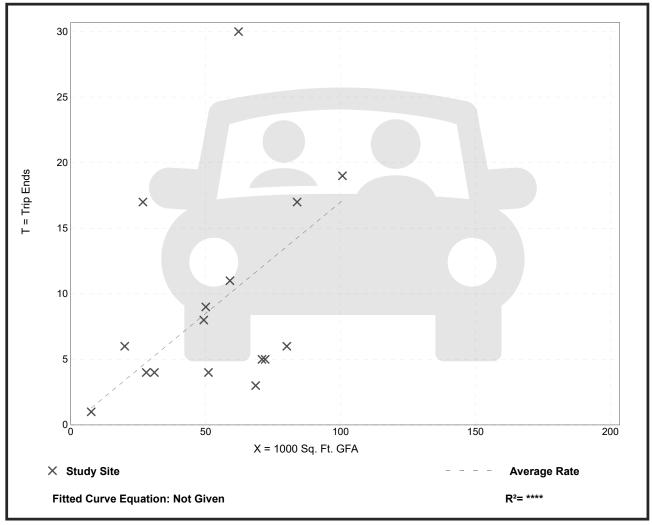
(151)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 4 and 6 p.m.


Setting/Location: General Urban/Suburban

Number of Studies: 16 Avg. 1000 Sq. Ft. GFA: 54

Directional Distribution: 47% entering, 53% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
0.17	0.04 - 0.64	0.14

Trip Gen Manual, 10th Ed + Supplement • Institute of Transportation Engineers

MEMORANDUM

Date: March 2, 2020

To: Mike Odren, RLA

Associate Principal Olson Engineering, Inc. 222 East Evergreen Blvd Vancouver WA 98660

From: Frank Charbonneau, PE, PTOE

Subject: Trip Generation Assessment FL2024

Minit Management Development NW Paradise Park Road, La Center

This memo will serve as the trip generation assessment documenting the number of vehicular trips that will be produced by the proposed Minit Management development. The four acre site at address #2814 NW 319th Street is located in the northeast quadrant of NW La Center Road and the I-5 northbound on-ramp.

The development project will demolish the existing convenience store and gas station facilities and construct several new buildings consisting of 11,600 square feet of general retail, fast foot restaurant with drive-through totaling 2,800 square feet, convenience market with coffee drive-through totaling 4,510 square feet, and a 101 unit hotel. Parking on the site for 184 spaces will be provided, including eight ADA parking stalls. A copy of the project's site plan is attached to this memo.

The site we be served by three driveway accesses connecting to the perimeter road (NW Paradise Park Road) on the property's north and east sides. The nearest major intersections include NW La Center Road at the I-5 northbound off-ramp which is configured as a round-about and NW Paradise Park Road at NW La Center Road. This intersection is controlled by stop signing on the northbound Paradise Park Road approach and on the southbound Paradise Road approach.

The City of La Center issued a pre-application conference report (2019-018-PAC) dated June 11, 2019 documenting the application's process and requirements. The staff report detailed that the development agreement between the City and Minit Management LLC dated March 2016 vested a total of 199 PM peak hour trips for the site. As a result it was necessary to submit a trip generation assessment to verify the trip projection.

The number of trips were calculated based on the proposed building uses and sizes. Trip credits were applied for the existing facilities that will be demolished including the convenience market and gas station and a cardlock fueling station. The trip calculations were determined for the weekday average daily traffic (ADT) and the weekday AM and PM peak hours.

Phone: (503) 293-1118

The analysis used the <u>ITE Trip Generation</u> manual (10th edition, year 2017).

For the proposed site uses several ITE land use categories were applied including #310 (Hotel), #820 (shopping center), #852 (convenience market), #934 (fast food restaurant with drive-through), and #938 (coffee drive-through). For the existing uses ITE code #853 for convenience market was used and historical rates for Pacific Pride Cardlock were applied for the cardlock fueling station.

A summary of the site's trip generation is provided in the following tables. Table 1 provides the trip generation for the site's existing uses. Table 2 provides the trip generation for the proposed site uses. Table 3 lists the net site trips for the development.

Table 1 Existing Land Uses Trip Generation Summary

		Weekday						
ITE Land Use	Units	Units ADT	AM	Peak H	our	PM Peak Hour		
		וטא	Total	Enter	Exit	Total	Enter	Exit
Convenience Mkt with Gas (#853)	6 fueling							
Generation Rate ¹	posiitons	322.50	20.76	50%	50%	23.04	50%	50%
Total Driveway Trips	positions	1,935	125	63	62	138	69	69
Pass-By Trips ² (AM Peak=63%; PM Peak=66%)	,		79	40	39	91	46	45
New Site Trips			46	23	23	47	23	24
Cardlock Fueling Station	12 fueling							
Generation Rate ³	positions		4.44	50%	50%	2.96	50%	50%
Total Driveway Trips	positions	1445	53	27	26	36	18	18
Pass-By Trips ² (AM Peak=58%; PM Peak=42%)			31	16	15	15	8	7
New Trips			22	11	11	21	10	11
Total Site Trips			178	90	88	174	87	87
Pass-by Trips			110	56	54	106	54	52
New Trips ⁴		3,380	68	34	34	68	33	35

¹ Source: *Trip Generation* , 10th Edition, ITE, 2017, average rates.

² Pass-by percentage based on *Trip Generation Handbook, 3nd Edition*, ITE, 2017.

³ Source: Independent surveys at Tarr Inc. Pacific Pride. AM trip rate = 1.5x calculated PM trip rate, ADT = 70% of ITE #944 Gas Station Rate

⁴ New Trips = Total Trips - Internal Trips - Pass-by Trips.

Table 2 Proposed Land Uses Trip Generation Summary

				We	ekday			
ITE Land Use	Units	ADT	AM F	Peak H		PM	Peak F	lour
		ADT	Total	Enter	Exit	Total	Enter	Exit
Convenience Mkt [Open 15-16 hours] (#852)	4,410 sq.							
Generation Rate 1,2	ft.	345.70	31.02	50%	50%	34.57	49%	51%
Total Driveway Trips		1,525	137	69	68	152	74	78
Internal Trips ³ (AM Peak=16%; PM Peak=36%)			22	11	11	55	27	28
Pass-By Trips ⁴ (AM Peak=63%; PM Peak=66%)			72	36	36	64	31	33
New Site Trips		1,525	43	22	21	33	16	17
Shopping Center (#820)	11,600							
Generation Rate ²	sq. ft.	37.75	0.94	62%	38%	3.81	48%	52%
Total Driveway Trips		438	11	7	4	44	21	23
Internal Trips ³ (AM Peak=16%; PM Peak=36%)			2	1	1	16	8	8
Pass-By Trips ⁴ (AM Peak=N/A; PM Peak=34%)						10	5	5
New Site Trips ⁴		438	9	6	3	18	8	10
Hotel (#310)	101							
Generation Rate ²	rooms	8.36	0.47	59%	41%	0.60	51%	49%
Total Driveway Trips		844	47	28	19	61	31	30
Internal Trips ³ (AM Peak=16%; PM Peak=36%)			8	4	4	22	11	11
New Site Trips			39	24	15	39	20	19
Fast-Food with Drive-Through (#934)	2,800 sq.							
Generation Rate ²	ft.	470.95	40.19	51%	49%	32.67	52%	48%
Total Driveway Trips		1,319	113	58	55	91	48	43
Internal Trips ³ (AM Peak=16%; PM Peak=36%)			19	10	9	33	17	16
Pass-By Trips ⁴ (AM Peak=49%; PM Peak=50%)			46	24	22	29	15	14
New Trips			48	24	24	29	16	13
Coffee/Donut Shop with Drive-Through	100							
& No Indoor Seating (#938)	sq. ft.							
Generation Rate ²		2000.00	337.04	50%	50%	83.33	50%	50%
Total Driveway Trips		200	34	17	17	8	4	4
Internal Trips ³ (AM Peak=16%; PM Peak=36%)		0	6	3	3	3	2	1
Pass-By Trips ^{4,5} (AM Peak=83%; PM Peak=83%)		166	23	12	11	4	2	2
New Site Trips		34	5	2	3	1	0	1
Total Site Trips		4,326	342	179	163	356	178	178
Internal Trips			57	29	28	129	65	64
Pass-by Trips			141	72	69	107	53	54
New Trips			144	78	66	120	60	60

ADT trip rate estimated as ten times the PM peak hour trip rate.

² Source: *Trip Generation*, 10th Edition, ITE, 2017, average rates.

Internal capture calculated with unconstrained internal capture rates presented in the Center for Urban Transportation Research (CUTR) Trip Internalization in Multi-Use Developments, April 2014, FDOT.

⁴ Pass-by percentage based on Trip Generation Handbook, 3nd Edition, ITE, 2017.

⁵ The weekday PM peak pass-by rate used to calculate the daily and weekday AM peak pass-by trips.

⁶ New Trips = Total Trips - Internal Trips - Pass-by Trips.

Table 3 presents the net trip generation results (proposed site trips – existing site trips) for the development project. When the new facility is developed it is projected that the site will generate a net of 76 trips in the AM peak hour 52 trips in the PM peak hour. The ADT is projected to increase by 946 trips per day.

Table 3 Net New Trips

Weekday Peak Hour					Weekday		
Site Uses	А	M Peak Hοι	ır	Р	M Peak Hοι	ır	ADT
	Total	Enter	Exit	Total	Enter	Exit	
Proposed Site 1	144	78	66	120	60	60	4,326
Existing Site ²	-68	-34	-34	-68	-33	-35	3,380
Net New Trips 3	76	44	32	52	27	25	946

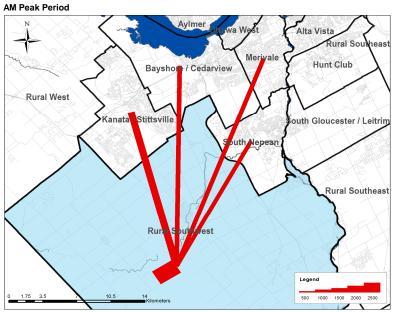
Refer to Table 2.

It is recommended that the City of La Center support the proposed development without the application of traffic impact fees as the projected number of site trips falls below the vested number of peak hour trips (199 trips) identified in the City's development agreement with Minit Management.

If you should need any additional traffic engineering support on this project or if there are any further questions, please contact Frank Charbonneau, PE, PTOE at 503.293.1118 or email Frank@CharbonneauEngineer.com.

Attachment

Site Plan


² Refer to Table 1.

 $^{^{3}}$ Net New Trips = Proposed Site Trips - Existing Site Trips.

Travel Patterns

Top Five Destinations of Trips from Rural Southwest

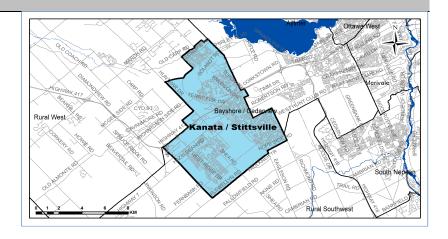
AM Peak Period (6:30 - 8:59)	Destinations of	(Origins of		
	Trips From		Trips To		
Districts	District	% Total	District	% Tota	
Ottawa Centre	620	5%	40	0%	
Ottawa Inner Area	580	5%	150	2%	
Ottawa East	120	1%	20	09	
Beacon Hill	90	1%	0	09	
Alta Vista	690	6%	160	29	
Hunt Club	220	2%	180	29	
Merivale	840	7%	200	29	
Ottawa West	400	3%	80	19	
Bayshore / Cedarview	810	7%	190	29	
Orléans	70	1%	70	19	
Rural East	0	0%	20	09	
Rural Southeast	390	3%	520	69	
South Gloucester / Leitrim	220	2%	120	19	
South Nepean	970	8%	580	79	
Rural Southwest	4,280	34%	4,280	53%	
Kanata / Stittsvile	1,850	15%	1,130	149	
Rural West	80	1%	160	29	
Île de Hull	120	1%	0	09	
Hull Périphérie	70	1%	30	09	
Plateau	0	0%	0	09	
Aylmer	0	0%	60	19	
Rural Northwest	0	0%	0	09	
Pointe Gatineau	0	0%	10	09	
Gatineau Est	0	0%	10	09	
Rural Northeast	0	0%	0	09	
Buckingham / Masson-Angers	0	0%	0	09	
Ontario Sub-Total:	12,230	98%	7,900	999	
Québec Sub-Total:	190	2%	110	19	
Total:	12,420	100%	8,010	1009	

Trips by Trip Purpose

24 Hours	From District		To District	٧	Vithin District	
Work or related	7,730	27%	3,170	11%	1,930	11%
School	2,200	8%	1,000	4%	2,640	15%
Shopping	3,390	12%	1,450	5%	1,610	9%
Leisure	3,560	13%	2,420	9%	1,700	9%
Medical	1,000	4%	660	2%	130	1%
Pick-up / drive passenger	1,980	7%	1,250	4%	750	4%
Return Home	7,290	26%	17,280	61%	7,960	44%
Other	1,130	4%	930	3%	1,250	7%
Total:	28,280	100%	28,160	100%	17,970	100%
AM Peak (06:30 - 08:59)	From District		To District	٧	Vithin District	
Work or related	4,820	59%	1,900	51%	1,110	26%
School	1,830	22%	960	26%	2,290	54%
Shopping	140	2%	20	1%	40	1%
Leisure	280	3%	220	6%	90	2%
Medical	210	3%	90	2%	0	0%
Pick-up / drive passenger	500	6%	230	6%	290	7%
Return Home	130	2%	190	5%	180	4%
Other	240	3%	80	2%	280	7%
Total:	8,150	100%	3,690	100%	4,280	100%
PM Peak (15:30 - 17:59)	From District		To District	V	Vithin District	
Work or related	260	5%	120	1%	60	2%
School	50	1%	0	0%	0	0%
Shopping	480	10%	390	5%	250	7%
Leisure	940	19%	760	9%	300	9%
Medical	10	0%	10	0%	30	1%
Pick-up / drive passenger	550	11%	360	4%	100	3%
Return Home	2,410	48%	6,370	77%	2,480	73%
Other	290	6%	220	3%	180	5%
Total:	4,990	100%	8,230	100%	3,400	100%
Peak Period (%)	Total:		% of 24 Hours		Within Distric	ct (%)
24 Hours	74,410		<u> </u>		24%	
AM Peak Period	16,120		22%		27%	
PM Peak Period	16,620		22%		20%	

Trips by Primary Travel Mode

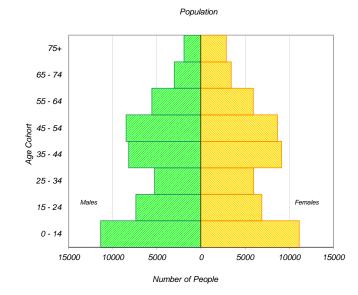
-	-					
24 Hours	From District		To District	Wi	thin Distric	t
Auto Driver	20,550	73%	20,370	72%	9,040	50%
Auto Passenger	4,420	16%	4,490	16%	2,460	14%
Transit	1,100	4%	1,130	4%	60	0%
Bicycle	60	0%	80	0%	250	1%
Walk	100	0%	120	0%	1,630	9%
Other	2,030	7%	1,960	7%	4,530	25%
Total:	28,260	100%	28,150	100%	17,970	100%
AM Peak (06:30 - 08:59)	From District		To District	Wi	thin Distric	t
Auto Driver	5,620	69%	2,280	61%	1,630	38%
Auto Passenger	910	11%	340	9%	420	10%
Transit	410	5%	270	7%	10	0%
Bicycle	20	0%	20	1%	30	1%
Walk	40	0%	20	1%	190	4%
Other	1,150	14%	800	21%	1,990	47%
Total:	8,150	100%	3,730	100%	4,270	100%
PM Peak (15:30 - 17:59)	From District		To District	Wi	thin Distric	t
Auto Driver	3,620	73%	6,060	74%	1,660	49%
Auto Passenger	860	17%	1,430	17%	510	15%
Transit	290	6%	430	5%	30	1%
Bicycle	40	1%	20	0%	80	2%
Walk	0	0%	80	1%	330	10%
Other	180	4%	220	3%	780	23%
Total:	4,990	100%	8,240	100%	3,390	100%
Avg Vehicle Occupancy	From District		To District	Wi	thin Distric	t
24 Hours	1.22		1.22		1.27	
AM Peak Period	1.16		1.15		1.26	
PM Peak Period	1.24		1.24		1.31	
Transit Modal Split	From District		To District	Wi	thin Distric	t
24 Hours	4%		4%		1%	
AM Peak Period	6%		9%		0%	
PM Peak Period	6%		5%		1%	

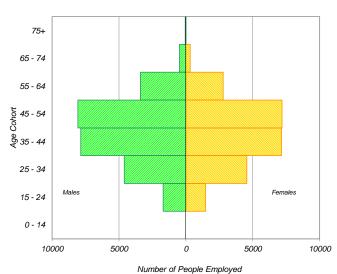

Kanata - Stittsville

Demographic Characteristics

Population	105,210	Actively Trav	/elled	83,460
Employed Population	49,640	Number of \	/ehicles	64,540
Households	38,010	Area (km²)		82.6
Occupation				
Status (age 5+)		Male	Female	Total
Full Time Employed		24,670	19,590	44,260
Part Time Employed		1,540	3,840	5,380
Student		13,630	13,410	27,040
Retiree		6,480	8,350	14,820
Unemployed		850	940	1,790
Homemaker		160	3,310	3,470
Other		350	1,010	1,360
Total:		47,690	50,440	98,120

Traveller Characteristics	Male	Female	Total
Transit Pass Holders	5,940	6,920	12,860
Licensed Drivers	36,280	36,790	73,070
Telecommuters	200	380	580
Trips made by residents	135,300	143,330	278,630


Selected Indicators	
Daily Trips per Person (age 5+)	2.84
Vehicles per Person	0.61
Number of Persons per Household	2.77
Daily Trips per Household	7.33
Vehicles per Household	1.70
Workers per Household	1.31
Population Density (Pop/km2)	1270



Household Size		
1 person	5,810	15%
2 persons	11,660	31%
3 persons	7,490	20%
4 persons	8,890	23%
5+ persons	4,160	11%
Total:	38,010	100%

Households by Vehicle Availability				
0 vehicles	1,050	3%		
1 vehicle	14,090	37%		
2 vehicles	19,110	50%		
3 vehicles	3,000	8%		
4+ vehicles	770	2%		
Total:	38,010	100%		

Households by Dwelling Type	2	
Single-detached	21,610	57%
Semi-detached	3,890	10%
Townhouse	10,550	28%
Apartment/Condo	1,960	5%
Total:	38,010	100%

Employed Population

^{*} In 2005 data was only collected for household members aged 11 $^{\circ}$ therefore these results cannot be compared to the 2011 data.

Appendix E – MMLOS Analyses

Multi-Modal Level of Service - Segments Form

Consultant	IBI Group	Project	2095 Dilworth Road
Scenario	Existing & Future Conditions	Date	08-Jun-21
Comments			

SEGMENTS		Dilworth Road	Section 1	Section 2	Section 3	Section 4	Section 5	Section 6	Section 7	Section 8	Section 9
	Sidewalk Width Boulevard Width Avg Daily Curb Lane Traffic Volume		no sidewalk n/a ≤ 3000								
trian	Operating Speed On-Street Parking		> 60 km/h no								
Pedestrian	Exposure to Traffic PLoS Effective Sidewalk Width	-	F	-	-	-	-	-	-	-	-
<u> </u>	Pedestrian Volume Crowding PLoS		-	-	-	-	-	-	-	-	-
	Level of Service		-	-	-	-	-	-	-	-	-
	Type of Cycling Facility		Mixed Traffic								
	Number of Travel Lanes		≤ 2 (no centreline)								
	Operating Speed # of Lanes & Operating Speed LoS		≥ 60 km/h F	-	-	-	-	-	-	-	-
<u> </u>	Bike Lane (+ Parking Lane) Width										
Bicycle	Bike Lane Width LoS Bike Lane Blockages	F	-	-	-	-	-	-	-	-	-
ш	Blockage LoS Median Refuge Width (no median = < 1.8 m)		- < 1.8 m refuge	-	-	-	-	-	-	-	-
	No. of Lanes at Unsignalized Crossing Sidestreet Operating Speed		≤ 3 lanes ≥ 65 km/h								
	Unsignalized Crossing - Lowest LoS		E	-	-	-	-	-	-	-	-
	Level of Service		F	-	-	-	-	-	-	-	-
sit	Facility Type										
Transit	Friction or Ratio Transit:Posted Speed Level of Service	-									
	Truck Lane Width		- ≤ 3.5 m	-	-	-	-	-	-	-	
Truck	Travel Lanes per Direction	С	1								
Ţĸ	Level of Service		С	-	-	-	-	-	-	-	-

OTM BOOK 12* - TRAFFIC SIGNAL WARRANT

Project:		2095 Dilworth Road			Date:	July 13, 2021
Project #:	134297					
Location:	Dilworth Road	at	Hwy 416 SB On/Off Ramp			
	(Major Roadway)		(Minor Roadway)			
Orientation:	East/West		North/South			
_						
Municipality:	City of Ottawa		Scenario:	Future (2027) Total Traffic		

Justification 1 - Minimum Vehicle Volume

	N	IINIMUM RE	QUIREMEN	IT				COMPL	LIANCE				
WARRANT	FREE FLOW	RESTR. FLOW	ADJUST. FREE FLOW	ADJUST. RESTR. FLOW	7:00 AM	8:00 AM	9:00 AM	10:00 AM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	SECTIONAL PERCENT
A. Vehicle volumes, all approaches	480	720	600	900	577	289	289	289	799	400	400	400	68%
approacties	460	720	600	900	96%	48%	48%	48%	100%	67%	67%	67%	00%
B. Vehicle volume along minor	120	170	180	055	114	57	57	57	303	151	151	151	0.40/
roads	120	170	180	255	63%	32%	32%	32%	100%	84%	84%	84%	64%

Justification 2 - Delay to Cross Traffic

	N	IINIMUM RE	QUIREMEN	IT				COMPI	IANCE				
WARRANT	FREE FLOW	RESTR. FLOW	ADJUST. FREE FLOW	ADJUST. RESTR. FLOW	7:00 AM	8:00 AM	9:00 AM	10:00 AM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	SECTIONAL PERCENT
A. Vehicle volumes, along	400	700	000	000	463	232	232	232	496	248	248	248	500/
artery	480	720	600	900	77%	39%	39%	39%	83%	41%	41%	41%	50%
B. Combined vehicle and		70	50	70	74	37	37	37	105	53	53	53	000/
pedestrian volume crossing artery from minor roads	50	70	50	70	100%	74%	74%	74%	100%	100%	100%	100%	90%

Justification 3 - Volume/Delay Combination

JUSTIFICATION	SATISFIED TO 80% OR MORE?	BOTH SATISFIED TO 80% OR MORE?
Justification 1 - Minimum Vehicular Volume	NO	NO
Justification 2 - Delay to Cross Traffic	NO	NO

Justification 7 - Projected Volumes

			MINIMUM RE	QUIREMENT			COMPLIANCE	
WARRANT	DESCRIPTION	FREE FLOW	RESTRICTED	ADJUSTED	ADJUSTED RESTRICTED	SECT	IONAL	ENTIRE %
		FREE FEOW	FLOW	FREE FLOW	FLOW	AHV	%	LINTINE /0
1. MINIMUM VEHICULAR VOLUME	A. Vehicle volumes, all approaches (Average Hour)	480	720	720	1080	344	48%	400/
	B. Vehicle volume along minor roads (Average Hour)	120	170	216	306	104	48%	48%
2. DELAY TO CROSS TRAFFIC	A. Vehicle volumes, along artery (Average Hour)	480	720	720	1080	240	33%	200/
	B. Combined vehicle and pedestrian volume crossing artery from minor roads (Average Hour)	50	75	60	90	45	75%	33%

Projected Traffic	Volun	nes:					A۱	/erag	е Ног	ırly Vo	lume	(AHV)	Equation:	Al	HV = (amPH	V + pr	nPHV)	/4
		AM P	eak H	our Vo	olumes		_		PM P	eak Ho	our Vo	lumes		Average Hourly Volumes (AHV)					HV)
	40 ⊭	0 ↓	74 \\	K ← ∠	67 102 0			197 ⊭	0	105 צ	K ← ∠	190 158 0		59 ⊭	0	45 \z	K ← ∠	64 65 0	
		27 267 0	Ŋ →	0	↑ 0	71 0	=		60 89 0	л →	0	↑ 0	7 0		22 89 0	У >	0	↑ 0	7 0

Eight Hour Traffic Volumes:

Hour			Major	Road	I				Minor	Road	ı		Ped*
Hour	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	reu
7:00 AM	27	267	0	0	102	67	0	0	0	74	0	40	0
8:00 AM	13	133	0	0	51	34	0	0	0	37	0	20	0
9:00 AM	13	133	0	0	51	34	0	0	0	37	0	20	0
10:00 AM	13	133	0	0	51	34	0	0	0	37	0	20	0
3:00 PM	60	89	0	0	158	190	0	0	0	105	0	197	0
4:00 PM	30	45	0	0	79	95	0	0	0	53	0	99	0
5:00 PM	30	45	0	0	79	95	0	0	0	53	0	99	0
6:00 PM	30	45	0	0	79	95	0	0	0	53	0	99	0

* Number of pedestrians crossing the major road

Notes:

1. Vehicle volume warrant (1A) and (2A) for intersections of roadways having two or more moving lanes in one direction should be 25% higher than the

2+ Lanes per Direction

2. Warrant values for free flow apply when the 85th percentile speed of artery traffic equals or exceeds 70 km/h or when the intersection lies within the built-up area of an isolated community having a population of less than 10,000. Warrant values for restricted flow apply to large urban communities when the 85th percentile speed of artery traffic does not exceed 70 km/h.

Free Flow

- 3. The lowest sectional percentage governs the entire warrant.
- 4. For "T" intersections the warrant values for the minor road should be increased by 50% (Warrant 1B only).
- 5. All flow values for Justification 1 and 2 are to be increased by 20% in the case of new intersections, Justification 3 is to only be used for existing intersections and all flow values for Warrant 1 and Warrant 2 of Justification 7 are to be increased by 20% for existing intersections and by 50% in the case of new intersections
- 3-legged Intersection

Existing Intersection

- The crossing volumes are defined as the sum of:
 (a) Left-turns from both minor road approaches.

 - (b) The heaviest through volume from the minor road.
 - (c) 50% of the heavier left turn movement from major road when both of the following are met:
 - (i) the left-turn volume >120 vph
 - (ii) the left-turn volume plus the opposing volume >720 vph
 - (d) Pedestrians crossing the main road.

* "Ontario Traffic Manual, Book 12 (March 2012)", Ontario Ministry of Transportation.

OTM BOOK 12* - TRAFFIC SIGNAL WARRANT

Project:	209	5 Dilworth Road			Date:	July 13, 2021
Project #:	134297					
Location:	Dilworth Road	at	Hwy 416 NB On/Off Ramp			
Orientation:	(Major Roadway) East/West		(Minor Roadway) North/South			
Municipality:	City of Ottawa		Scenario:	Future (2027) Total Traffic		

Justification 1 - Minimum Vehicle Volume

	M	IINIMUM RE	QUIREMEN	T				COMPL	IANCE				
WARRANT	FREE FLOW	RESTR. FLOW	ADJUST. FREE FLOW	ADJUST. RESTR. FLOW	7:00 AM	8:00 AM	9:00 AM	10:00 AM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	SECTIONAL PERCENT
A. Vehicle volumes, all					679	340	340	340	656	328	328	328	
approaches	480	720	600	900	100%	57%	57%	57%	100%	55%	55%	55%	67%
B. Vehicle volume along minor					61	31	31	31	64	32	32	32	
roads	120	170	180	255	34%	17%	17%	17%	36%	18%	18%	18%	22%

Justification 2 - Delay to Cross Traffic

	N	IINIMUM RE	QUIREMEN	IT				COMPI	IANCE				
WARRANT	FREE FLOW	RESTR. FLOW	ADJUST. FREE FLOW	ADJUST. RESTR. FLOW	7:00 AM	8:00 AM	9:00 AM	10:00 AM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	SECTIONAL PERCENT
A. Vehicle volumes, along	480	700	000	000	618	309	309	309	592	296	296	296	000/
artery	480	720	600	900	100%	51%	51%	51%	99%	49%	49%	49%	63%
B. Combined vehicle and	50	70	50	70	13	6	6	6	32	16	16	16	000/
pedestrian volume crossing artery from minor roads	50	70	50	70	25%	13%	13%	13%	64%	32%	32%	32%	28%

Justification 3 - Volume/Delay Combination

JUSTIFICATION	SATISFIED TO 80% OR MORE?	BOTH SATISFIED TO 80% OR MORE?
Justification 1 - Minimum Vehicular Volume	NO	NO
Justification 2 - Delay to Cross Traffic	NO	INO

Justification 7 - Projected Volumes

			MINIMUM RE	QUIREMENT			COMPLIANCE	
WARRANT	DESCRIPTION	FREE FLOW	RESTRICTED	ADJUSTED	ADJUSTED RESTRICTED	SECT	IONAL	ENTIRE %
		TREETEON	FLOW	FREE FLOW	FLOW	AHV	%	LIVING /6
1. MINIMUM VEHICULAR VOLUME	A. Vehicle volumes, all approaches (Average Hour)	480	720	720	1080	333	46%	4.40/
	B. Vehicle volume along minor roads (Average Hour)	120	170	216	306	31	14%	14%
2. DELAY TO CROSS TRAFFIC	A. Vehicle volumes, along artery (Average Hour)	480	720	720	1080	302	42%	400/
	B. Combined vehicle and pedestrian volume crossing artery from minor roads (Average Hour)	50	75	60	90	11	18%	18%

Projected Traffic \	AM Peak Hour Volumes						A	veraç	je Hou	rly Vo	olume	(AHV	Equation:	Al	HV = (amPH	V + pr	nPHV))/4
		AM Pe	eak H	our Vo	olumes				PM Pe	eak H	our Vo	lumes		Ave	erage l	Hourly	Volum	nes (A	HV)
	0 0 0 ← 105 ∠ ↓ 」 ∠ 108					0 Ľ	0 ↓	η 0	K	126 184 72		0 Ľ	0 ↓	0 V	K + N	43 72 45			
	0 カ ト ↑ カ 102 → 13 0 48 258 凶				118 → 32 0 32 91 \(\text{91}\)					0 55 87	⊼ → N	۲ 11	↑ 0	<i>7</i> 1 20					

Eight Hour Traffic Volumes:

Hour			Major	Road	I				Minor	Road	ı		Ped*
Hour	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Pea"
7:00 AM	0	102	258	108	105	45	13	0	48	0	0	0	0
8:00 AM	0	51	129	54	53	22	6	0	24	0	0	0	0
9:00 AM	0	51	129	54	53	22	6	0	24	0	0	0	0
10:00 AM	0	51	129	54	53	22	6	0	24	0	0	0	0
3:00 PM	0	118	91	72	184	126	32	0	32	0	0	0	0
4:00 PM	0	59	46	36	92	63	16	0	16	0	0	0	0
5:00 PM	0	59	46	36	92	63	16	0	16	0	0	0	0
6:00 PM	0	59	46	36	92	63	16	0	16	0	0	0	0

* Number of pedestrians crossing the major road

Notes:

1. Vehicle volume warrant (1A) and (2A) for intersections of roadways having two or more moving lanes in one direction should be 25% higher than the

2+ Lanes per Direction

2. Warrant values for free flow apply when the 85th percentile speed of artery traffic equals or exceeds 70 km/h or when the intersection lies within the built-up area of an isolated community having a population of less than 10,000. Warrant values for restricted flow apply to large urban communities when the 85th percentile speed of artery traffic does not exceed 70 km/h.

Free Flow

- 3. The lowest sectional percentage governs the entire warrant.
- 4. For "T" intersections the warrant values for the minor road should be increased by 50% (Warrant 1B only).
- 5. All flow values for Justification 1 and 2 are to be increased by 20% in the case of new intersections, Justification 3 is to only be used for existing intersections and all flow values for Warrant 1 and Warrant 2 of Justification 7 are to be increased by 20% for existing intersections and by 50% in the case of new intersections
- 3-legged Intersection

Existing Intersection

- The crossing volumes are defined as the sum of:
 (a) Left-turns from both minor road approaches.

 - (b) The heaviest through volume from the minor road.
 - (c) 50% of the heavier left turn movement from major road when both of the following are met:
 - (i) the left-turn volume >120 vph
 - (ii) the left-turn volume plus the opposing volume >720 vph
 - (d) Pedestrians crossing the main road.

* "Ontario Traffic Manual, Book 12 (March 2012)", Ontario Ministry of Transportation.

OTM BOOK 12* - TRAFFIC SIGNAL WARRANT

Project:	2095 Dilw	orth Road			Date:	July 13, 2021
Project #:_	134297					
Location:	Dilworth Road	at	Site Access #1			
Orientation:	(Major Roadway) East/West		(Minor Roadway) North/South			
Municipality:	City of Ottawa		Scenario:	Future (2027) Total Traffic		

Justification 1 - Minimum Vehicle Volume

	M	IINIMUM RE	QUIREMEN	IT				COMPL	IANCE				
WARRANT	FREE FLOW	RESTR. FLOW	ADJUST. FREE FLOW	ADJUST. RESTR. FLOW	7:00 AM	8:00 AM	9:00 AM	10:00 AM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	SECTIONAL PERCENT
A. Vehicle volumes, all					408	204	204	204	533	266	266	266	
approaches	480	720	720	1080	57%	28%	28%	28%	74%	37%	37%	37%	41%
B. Vehicle volume along minor					93	47	47	47	87	43	43	43	
roads	120	170	216	306	43%	22%	22%	22%	40%	20%	20%	20%	26%

Justification 2 - Delay to Cross Traffic

	N	MINIMUM RE	QUIREMEN	IT				COMPI	IANCE				
WARRANT	FREE FLOW	RESTR. FLOW	ADJUST. FREE FLOW	ADJUST. RESTR. FLOW	7:00 AM	8:00 AM	9:00 AM	10:00 AM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	SECTIONAL PERCENT
A. Vehicle volumes, along	400	700	700	1000	315	158	158	158	446	223	223	223	222/
artery	480	720	720	1080	44%	22%	22%	22%	62%	31%	31%	31%	33%
B. Combined vehicle and	50	70			0	0	0	0	0	0	0	0	201
pedestrian volume crossing artery from minor roads	50	70	60	84	0%	0%	0%	0%	0%	0%	0%	0%	0%

Justification 3 - Volume/Delay Combination

JUSTIFICATION	SATISFIED TO 80% OR MORE?	BOTH SATISFIED TO 80% OR MORE?
Justification 1 - Minimum Vehicular Volume	N/A	N/A
Justification 2 - Delay to Cross Traffic	N/A	IN/A

Justification 7 - Projected Volumes

			MINIMUM RE	QUIREMENT			COMPLIANCE	
WARRANT	DESCRIPTION	FREE FLOW	RESTRICTED	ADJUSTED	ADJUSTED RESTRICTED	SECT	IONAL	ENTIRE %
		TREE FLOW	FLOW	FREE FLOW	FLOW	AHV	%	LIVIIKE /0
1. MINIMUM VEHICULAR VOLUME	A. Vehicle volumes, all approaches (Average Hour)	480	720	900	1350	235	26%	17%
	B. Vehicle volume along minor roads (Average Hour)	120	170	270	383	45	17%	17%
2. DELAY TO CROSS TRAFFIC	A. Vehicle volumes, along artery (Average Hour)	480	720	900	1350	190	21%	201
	B. Combined vehicle and pedestrian volume crossing artery from minor roads (Average Hour)	50	75	75	113	0	0%	0%

Projected Traffic Vo	AM Peak Hour Volumes 93 0 0						A	verag	e Hou	rly Vo	lume	(AHV)	Equation:	Al	HV = (amPH	V + pr	nPHV)	/4
_	,	AM Pe	eak H	our Vo	olumes		,		PM P	eak H	our Vo	lumes		Ave	erage l	Hourly	Volun	nes (Al	HV)
9							87 Ľ	0 ↓	0 V	K ← ∠	126 169 0		45 ⊭	0 ↓	0 V	K + N	43 72 0		
_		96 55 0	∧ →	0	↑ 0	71 0	•		90 61 0	N →	0	0	71 0		46 29 0	N →	0	↑ 0	0

Eight Hour Traffic Volumes:

Hour			Major	Road	l				Minor	Road	ı		Ped*
Hour	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	reu
7:00 AM	96	55	0	0	120	45	0	0	0	0	0	93	0
8:00 AM	48	27	0	0	60	22	0	0	0	0	0	47	0
9:00 AM	48	27	0	0	60	22	0	0	0	0	0	47	0
10:00 AM	48	27	0	0	60	22	0	0	0	0	0	47	0
3:00 PM	90	61	0	0	169	126	0	0	0	0	0	87	0
4:00 PM	45	30	0	0	85	63	0	0	0	0	0	43	0
5:00 PM	45	30	0	0	85	63	0	0	0	0	0	43	0
6:00 PM	45	30	0	0	85	63	0	0	0	0	0	43	0

* Number of pedestrians crossing the major road

Notes:

1. Vehicle volume warrant (1A) and (2A) for intersections of roadways having two or more moving lanes in one direction should be 25% higher than the

2+ Lanes per Direction

2. Warrant values for free flow apply when the 85th percentile speed of artery traffic equals or exceeds 70 km/h or when the intersection lies within the built-up area of an isolated community having a population of less than 10,000. Warrant values for restricted flow apply to large urban communities when the 85th percentile speed of artery traffic does not exceed 70 km/h.

Free Flow

- 3. The lowest sectional percentage governs the entire warrant.
- 4. For "T" intersections the warrant values for the minor road should be increased by 50% (Warrant 1B only).
- 5. All flow values for Justification 1 and 2 are to be increased by 20% in the case of new intersections, Justification 3 is to only be used for existing intersections and all flow values for Warrant 1 and Warrant 2 of Justification 7 are to be increased by 20% for existing intersections and by 50% in the case of new intersections
- 3-legged Intersection

New Intersection

- The crossing volumes are defined as the sum of:
 (a) Left-turns from both minor road approaches.
 - (b) The heaviest through volume from the minor road.
 - (c) 50% of the heavier left turn movement from major road when both of the following are met:
 - (i) the left-turn volume >120 vph
 - (ii) the left-turn volume plus the opposing volume >720 vph
 - (d) Pedestrians crossing the main road.

* "Ontario Traffic Manual, Book 12 (March 2012)", Ontario Ministry of Transportation.

OTM BOOK 12* - TRAFFIC SIGNAL WARRANT

Project:	2095 Dilw	orth Road		1	Date:	July 13, 2021
Project #:_	134297					
Location:	Dilworth Road	at	Site Access #2			
Orientation:	(Major Roadway) East/West		(Minor Roadway) North/South			
Municipality:	City of Ottawa		Scenario:	Future (2027) Total Traffic		

Justification 1 - Minimum Vehicle Volume

	M	IINIMUM RE	QUIREMEN	IT				COMPL	IANCE				
WARRANT	FREE FLOW	RESTR. FLOW	ADJUST. FREE FLOW	ADJUST. RESTR. FLOW	7:00 AM	8:00 AM	9:00 AM	10:00 AM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	SECTIONAL PERCENT
A. Vehicle volumes, all					219	110	110	110	356	178	178	178	
approaches	480	720	720	1080	30%	15%	15%	15%	49%	25%	25%	25%	25%
B. Vehicle volume along minor					18	9	9	9	21	11	11	11	
roads	120	170	216	306	8%	4%	4%	4%	10%	5%	5%	5%	6%

Justification 2 - Delay to Cross Traffic

	N	IINIMUM RE	QUIREMEN	IT				COMPI	IANCE				
WARRANT	FREE FLOW	RESTR. FLOW	ADJUST. FREE FLOW	ADJUST. RESTR. FLOW	7:00 AM	8:00 AM	9:00 AM	10:00 AM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	SECTIONAL PERCENT
A. Vehicle volumes, along	400	700	700	4000	202	101	101	101	335	168	168	168	000/
artery	480	720	720	1080	28%	14%	14%	14%	47%	23%	23%	23%	23%
B. Combined vehicle and		70	-00		0	0	0	0	0	0	0	0	201
pedestrian volume crossing artery from minor roads	50	70	60	84	0%	0%	0%	0%	0%	0%	0%	0%	0%

Justification 3 - Volume/Delay Combination

JUSTIFICATION	SATISFIED TO 80% OR MORE?	BOTH SATISFIED TO 80% OR MORE?
Justification 1 - Minimum Vehicular Volume	N/A	N/A
Justification 2 - Delay to Cross Traffic	N/A	IN/A

Justification 7 - Projected Volumes

			MINIMUM RE	QUIREMENT			COMPLIANCE	
WARRANT	DESCRIPTION	FREE FLOW	RESTRICTED	ADJUSTED	ADJUSTED RESTRICTED	SECT	IONAL	ENTIRE %
		TREE FLOW	FLOW	FREE FLOW	FLOW	AHV	%	LINTINE /0
1. MINIMUM VEHICULAR VOLUME	A. Vehicle volumes, all approaches (Average Hour)	480	720	900	1350	144	16%	40/
	B. Vehicle volume along minor roads (Average Hour)	120	170	270	383	10	4%	4%
2. DELAY TO CROSS TRAFFIC	A. Vehicle volumes, along artery (Average Hour)	480	720	900	1350	134	15%	004
	B. Combined vehicle and pedestrian volume crossing artery from minor roads (Average Hour)	50	75	75	113	0	0%	0%

Projected Traffic Volum	nes:					A	verag	e Hou	rly Vo	olume	(AHV)	Equation:	Al	HV = (amPH	V + pr	nPHV)	/4
	AM P	eak H	our Vo	olumes				PM P	eak H	our Vo	lumes		Ave	erage I	lourly	Volum	nes (Al	HV)
18 _ ½	0 ↓	ا <i>لا</i> 0	K	45 102 0		_	21 Ľ	0 ↓	0 V	K + Y	126 148 0		10 ∠	0 ↓	0 V	ド	43 63 0	
	18 37 0	Ŋ →	0	↑ 0	0	=		20 41 0	⊼ → ∠	0	↑ 0	7 0		9 19 0	N →	0	↑ 0	0

Eight Hour Traffic Volumes:

Hour			Major	Road					Minor	Road	ı		Ped*
Hour	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Pea"
7:00 AM	18	37	0	0	102	45	0	0	0	0	0	18	0
8:00 AM	9	18	0	0	51	22	0	0	0	0	0	9	0
9:00 AM	9	18	0	0	51	22	0	0	0	0	0	9	0
10:00 AM	9	18	0	0	51	22	0	0	0	0	0	9	0
3:00 PM	20	41	0	0	148	126	0	0	0	0	0	21	0
4:00 PM	10	20	0	0	74	63	0	0	0	0	0	11	0
5:00 PM	10	20	0	0	74	63	0	0	0	0	0	11	0
6:00 PM	10	20	0	0	74	63	0	0	0	0	0	11	0

* Number of pedestrians crossing the major road

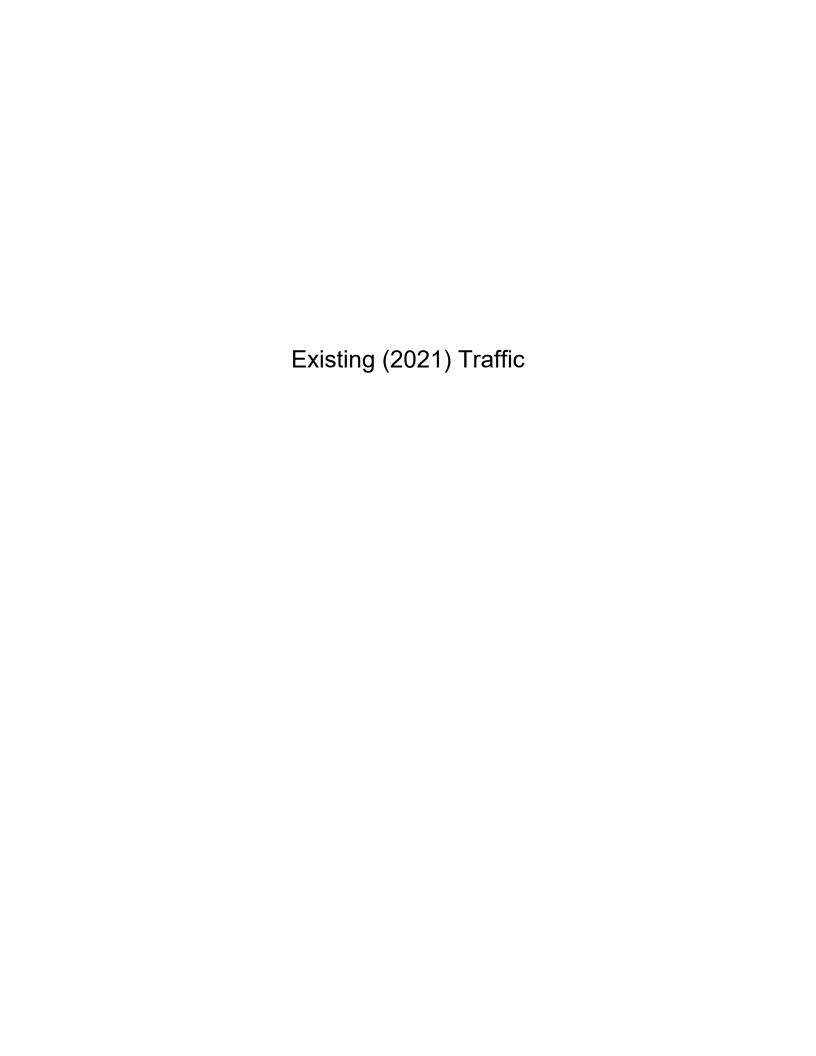
Notes:

1. Vehicle volume warrant (1A) and (2A) for intersections of roadways having two or more moving lanes in one direction should be 25% higher than the

2+ Lanes per Direction

2. Warrant values for free flow apply when the 85th percentile speed of artery traffic equals or exceeds 70 km/h or when the intersection lies within the built-up area of an isolated community having a population of less than 10,000. Warrant values for restricted flow apply to large urban communities when the 85th percentile speed of artery traffic does not exceed 70 km/h.

Free Flow


- 3. The lowest sectional percentage governs the entire warrant.
- 4. For "T" intersections the warrant values for the minor road should be increased by 50% (Warrant 1B only).
- 5. All flow values for Justification 1 and 2 are to be increased by 20% in the case of new intersections, Justification 3 is to only be used for existing intersections and all flow values for Warrant 1 and Warrant 2 of Justification 7 are to be increased by 20% for existing intersections and by 50% in the case of new intersections
- 3-legged Intersection

New Intersection

- The crossing volumes are defined as the sum of:
 (a) Left-turns from both minor road approaches.
 - (b) The heaviest through volume from the minor road.
 - (c) 50% of the heavier left turn movement from major road when both of the following are met:
 - (i) the left-turn volume >120 vph
 - (ii) the left-turn volume plus the opposing volume >720 vph
 - (d) Pedestrians crossing the main road.

* "Ontario Traffic Manual, Book 12 (March 2012)", Ontario Ministry of Transportation.



Intersection						
Int Delay, s/veh	1.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
	EDL Š					אמט
Lane Configurations Traffic Vol, veh/h	1 24	↑ 233	↑	Ť	Y	35
Future Vol, veh/h	24	233	30	5	1	35
<u> </u>	0		0	0		
Conflicting Peds, #/hr		0			0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	500	-	-	500	0	-
Veh in Median Storage,	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	27	259	33	6	1	39
Major/Minor N	//ajor1	N	Major2	1	Minor2	
Conflicting Flow All	39	0	-	0	346	33
Stage 1	-	-	_	-	33	-
Stage 2	_	_	_	_	313	_
Critical Hdwy	4.12	-	_	_	6.42	6.22
Critical Hdwy Stg 1	4.12	_	_	_	5.42	0.22
	_	-	-	_	5.42	-
Critical Hdwy Stg 2	2.218	_			3.518	
		-	-	-		
Pot Cap-1 Maneuver	1571	-	-	-	651	1041
Stage 1	-	-	-	-	989	-
Stage 2	-	-	-	-	741	-
Platoon blocked, %	44	-	-	-	0.40	1011
Mov Cap-1 Maneuver	1571	-	-	-	640	1041
Mov Cap-2 Maneuver	-	-	-	-	640	-
Stage 1	-	-	-	-	972	-
Stage 2	-	-	-	-	741	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.7		0		8.7	
HCM LOS	0.7		V		A	
TIOM EGG					, , <u>, , , , , , , , , , , , , , , , , </u>	
Minor Long/Major Mum	t	EBL	EBT	WBT	WBR:	
Minor Lane/Major Mvm		1571		_	-	1023
Capacity (veh/h)		1571	_			
Capacity (veh/h) HCM Lane V/C Ratio		0.017	-	-	-	0.039
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		0.017 7.3	-	-	-	8.7
Capacity (veh/h) HCM Lane V/C Ratio		0.017				

Intersection						
Int Delay, s/veh	0.9					
		EDD	WDI	WDT	NDI	NDD
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑	7	<u> </u>		Y	_
Traffic Vol, veh/h	25	221	12	17	11	7
Future Vol, veh/h	25	221	12	17	11	7
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	_ 0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	350	600	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	28	246	13	19	12	8
Major/Minor Major/Minor	ajor1	N	Major2	N	Minor1	
		0	274	0	73	28
Conflicting Flow All	0					
Stage 1	-	-	-	-	28	-
Stage 2	-	-	- 4.40	-	45	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1289	-	931	1047
Stage 1	-	-	-	-	995	-
Stage 2	-	-	-	-	977	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1289	-	922	1047
Mov Cap-2 Maneuver	-	-	-	-	922	-
Stage 1	-	-	-	-	995	-
Stage 2	_	_	_	_	967	-
J						
Amanaaah	ED		\A/D		NID	
Approach	EB		WB		NB	
HCM Control Delay, s	0		3.2		8.8	
HCM LOS					Α	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		967			1289	-
HCM Lane V/C Ratio		0.021	_	_	0.01	_
HCM Control Delay (s)		8.8	_	<u>-</u>	7.8	_
HCM Lane LOS		Α	_	<u>-</u>	7.0 A	_
			-	-	Н	-
HCM 95th %tile Q(veh)		0.1	_	_	0	-

Intersection						
Int Delay, s/veh	5.7					
		EDT	WDT	WDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	<u>ች</u>	†	↑	7	Y	470
Traffic Vol, veh/h	52	78	46	20	11	172
Future Vol, veh/h	52	78	46	20	11	172
Conflicting Peds, #/hr	0	_ 0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	500	-	-	500	0	-
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	58	87	51	22	12	191
Major/Minor N	//ajor1		Major2	N	Minor2	
	73		_			51
Conflicting Flow All		0	-	0	254	
Stage 1	-	-	-	-	51	-
Stage 2	4 40	-	-	-	203	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1527	-	-	-	735	1017
Stage 1	-	-	-	-	971	-
Stage 2	-	-	-	-	831	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1527	-	_	-	707	1017
Mov Cap-2 Maneuver	-	-	-	-	707	-
Stage 1	-	-	-	-	934	-
Stage 2	_	_	_	_	831	_
					30 1	
Approach	EB		WB		SB	
HCM Control Delay, s	3		0		9.6	
HCM LOS					Α	
Minor Lane/Major Mvm	t	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		1527	-	-	-	
HCM Lane V/C Ratio		0.038	-			0.205
HCM Control Delay (s)		7.5				9.6
How Control Delay (S)			-	-	- -	9.6 A
HCM Lana LOC					_	Δ
HCM Lane LOS HCM 95th %tile Q(veh)		A 0.1	-	_	_	0.8

Intersection						
Int Delay, s/veh	2.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u></u>	T T	VVDL T	<u>₩</u>	₩.	אטא
Traffic Vol, veh/h	T 22	78	<u>ግ</u>	T 33	'T' 27	13
Future Vol, veh/h	22	78	4	33	27	13
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	
Sign Control RT Channelized		None		None		Stop
	-		-		-	None
Storage Length	-	350	600	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	24	87	4	37	30	14
Major/Minor Ma	ajor1	ı	Major2	-	Minor1	
Conflicting Flow All	0	0	111	0	69	24
Stage 1	-	-	- 111	-	24	-
Stage 2	_	_	_	_	45	_
Critical Hdwy	-	-	4.12	-	6.42	6.22
		_			5.42	
Critical Hdwy Stg 1	-	-	-	-		-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-		2.218		3.518	
Pot Cap-1 Maneuver	-	-	1479	-	936	1052
Stage 1	-	-	-	-	999	-
Stage 2	-	-	-	-	977	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1479	-	933	1052
Mov Cap-2 Maneuver	-	-	-	-	933	-
Stage 1	-	-	-	-	999	-
Stage 2	-	-	-	-	974	-
Annroach	ΓD		WD		ND	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.8		8.9	
HCM LOS					Α	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		969	-		1479	
HCM Lane V/C Ratio		0.046	-	-	0.003	-
HCM Control Delay (s)		8.9	_	_	7.4	_
HCM Lane LOS		A	_	-	Α	-
HCM 95th %tile Q(veh)		0.1	_	_	0	_
		J. 1			J	

Intersection						
Int Delay, s/veh	1.5					
		EDT	WDT	WDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	7	1000	↑	- 7	Y	20
Traffic Vol, veh/h	24	239	30	5	1	36
Future Vol, veh/h	24	239	30	5	1	36
Conflicting Peds, #/hr	0	_ 0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	500	-	-	500	0	-
Veh in Median Storage,		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	24	239	30	5	1	36
Major/Minor M	lajor1	N	//ajor2	- 1	Minor2	
Conflicting Flow All	35	0	-	0	317	30
Stage 1	-	-	_	-	30	-
Stage 2	_	_	_	_	287	_
	4.12		-		6.42	6.22
Critical Hdwy Stg 1	4.12	_		_	5.42	0.22
Critical Hdwy Stg 1	_	_	_		5.42	_
	2.218			_	3.518	
	1576	<u>-</u>	-	-	676	1044
Stage 1	1370	_	-	_	993	1044
Stage 2		-	-	-	762	-
Platoon blocked, %	-	-	-	_	102	•
	1576	-	-		666	1044
	1576	-	-	-	666	
Mov Cap-2 Maneuver	-	-	-	-	666	-
Stage 1	-	-	-	-	978	-
Stage 2	-	-	-	-	762	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.7		0		8.6	
HCM LOS					Α	
		EDI	EDT	MOT	MDD	ODI 4
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR	
Minor Lane/Major Mvmt Capacity (veh/h)		1576	EBT -	WBT -	-	1028
Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio		1576 0.015	-	-	-	1028 0.036
Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		1576 0.015 7.3	-	- - -	- - -	1028 0.036 8.6
Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio		1576 0.015	-	-	-	1028 0.036

Intersection						
Int Delay, s/veh	0.8					
	EBT	EBR	\\/DI	\\/DT	NDI	NBR
			WBL	WBT	NBL	INRK
Lane Configurations	↑	707	ነ	↑	7	7
Traffic Vol, veh/h	26	227	12	18	11	7
Future Vol, veh/h	26	227	12	18	11	7
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	-	350	600	-	0	-
Veh in Median Storage, #		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	26	227	12	18	11	7
Major/Minor Ma	ajor1		Major2		Minor1	
Conflicting Flow All	0	0	253	0	68	26
Stage 1	-	-	233	-	26	-
Stage 2	_	_	_	_	42	_
Critical Hdwy	_	-	4.12	-	6.42	6.22
	-	-		-	5.42	0.22
Critical Hdwy Stg 1	-	-	-	-		
Critical Hdwy Stg 2	-	-	-	-	5.42	2 240
Follow-up Hdwy	-	-	2.218	-	3.518	
Pot Cap-1 Maneuver	-	-	1312	-	937	1050
Stage 1	-	-	-	-	997	-
Stage 2	-	-	-	-	980	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1312	-	929	1050
Mov Cap-2 Maneuver	-	-	-	-	929	-
Stage 1	-	-	-	-	997	-
Stage 2	-	-	-	-	971	-
Approach	EB		WB		NB	
	0		3.1		8.8	
HCM LOS	U		3.1			
HCM LOS					Α	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		973	_	_	1312	_
HCM Lane V/C Ratio		0.018	-		0.009	-
HCM Control Delay (s)		8.8	_	-		_
HCM Lane LOS		A	_	_	A	_
HCM 95th %tile Q(veh)		0.1	_	_	0	_

Intersection						
Int Delay, s/veh	5.6					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	T)	<u> </u>	<u>₩</u>	₩DIX	₩.	ODIN
Traffic Vol, veh/h	53	T 80	T 47	20	11	177
Future Vol, veh/h	53	80	47	20	11	177
· · · · · · · · · · · · · · · · · · ·	0	0	0	0	0	0
Conflicting Peds, #/hr						
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	500	-	-	500	0	-
Veh in Median Storage		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	53	80	47	20	11	177
Major/Minor N	Major1	N	Major2		Minor2	
Conflicting Flow All	67	0	viaj012 -	0	233	47
	- 07	-		-	233 47	47
Stage 1			-		186	
Stage 2	- 4.40	-	-	-		-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	1535	-	-	-	755	1022
Stage 1	-	-	-	-	975	-
Stage 2	-	-	-	-	846	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1535	-	-	-	729	1022
Mov Cap-2 Maneuver	-	-	-	-	729	-
Stage 1	-	-	-	-	941	-
Stage 2	-	-	-	-	846	-
Ü						
A I	- ED		MD		00	
Approach	EB		WB		SB	
HCM Control Delay, s	3		0		9.4	
HCM LOS					Α	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR	SBL _{n1}
Capacity (veh/h)		1535	-	-	-	999
HCM Lane V/C Ratio		0.035	_	-	_	0.188
HCM Control Delay (s)		7.4	_	_	_	9.4
HCM Lane LOS		A	-	-	_	Α
HCM 95th %tile Q(veh)	١	0.1	_	_	_	0.7

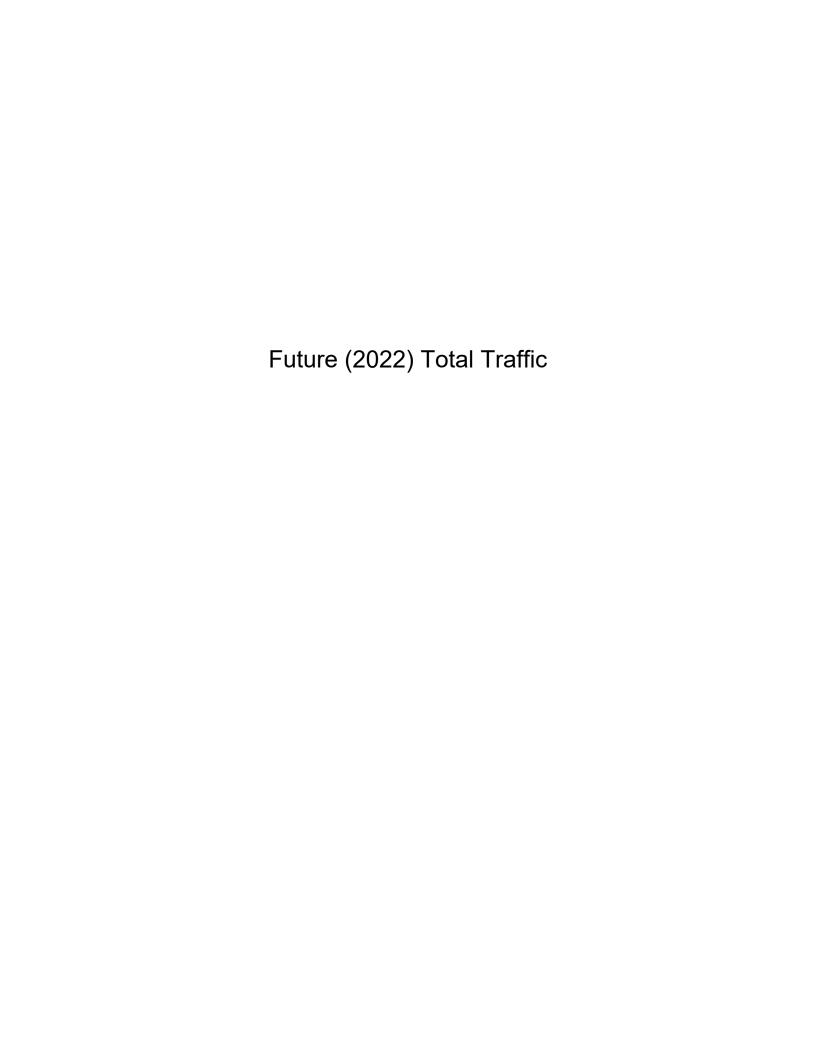
Intersection						
Int Delay, s/veh	2.2					
	EBT	EDD	WDI	\\/DT	NDI	NBR
		EBR	WBL	WBT	NBL	NRK
Lane Configurations	†	7	7		₩	40
Traffic Vol, veh/h	22	81	4	34	28	13
Future Vol, veh/h	22	81	4	34	28	13
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	0	0	0
0	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	350	600	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	22	81	4	34	28	13
Major/Minor Ma	ajor1	N	Major2	-	Minor1	
Conflicting Flow All	0	0	103	0	64	22
Stage 1	-	-	100	-	22	-
Stage 2	_	_	_	_	42	_
Critical Hdwy	_	_	4.12	_	6.42	6.22
•	_	_	4.12		5.42	0.22
Critical Hdwy Stg 1		-	-	-		
Critical Hdwy Stg 2	-	-	0.040	-	5.42	-
Follow-up Hdwy	-		2.218			
Pot Cap-1 Maneuver	-	-	1489	-	942	1055
Stage 1	-	-	-	-	1001	-
Stage 2	-	-	-	-	980	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1489	-	939	1055
Mov Cap-2 Maneuver	-	-	-	-	939	-
Stage 1	-	-	-	-	1001	-
Stage 2	-	-	-	-	977	-
Approach	EB		WB		NB	
			0.8		8.9	
HCM Control Delay, s HCM LOS	0		U.ŏ			
					Α	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		973	_		1489	-
HCM Lane V/C Ratio		0.042	-		0.003	_
HCM Control Delay (s)		8.9	_	_		-
HCM Lane LOS		Α	-	-	Α	_
HCM 95th %tile Q(veh)		0.1	_	_	0	-

	•	-	•	•	-	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ř	†	†	7	M.	
Traffic Volume (vph)	27	267	34	6	1	40
Future Volume (vph)	27	267	34	6	1	40
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	50.0			50.0	0.0	0.0
Storage Lanes	1			1	1	0
Taper Length (m)	7.6				7.6	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt				0.850	0.868	
Flt Protected	0.950				0.999	
Satd. Flow (prot)	1695	1784	1784	1517	1547	0
Flt Permitted	0.950				0.999	
Satd. Flow (perm)	1695	1784	1784	1517	1547	0
Link Speed (k/h)		80	80		50	
Link Distance (m)		230.7	352.9		128.7	
Travel Time (s)		10.4	15.9		9.3	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%
Adj. Flow (vph)	27	267	34	6	1	40
Shared Lane Traffic (%)						
Lane Group Flow (vph)	27	267	34	6	41	0
Sign Control		Free	Free		Stop	
Intersection Summary						
Area Type:	Other					

Control Type: Unsignalized
Intersection Capacity Utilization 24.8%
Analysis Period (min) 15 ICU Level of Service A

Synchro 11 Report July 2021 Lanes, Volumes, Timings

	-	•	•	—	1	_
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	7	, j		W	
Traffic Volume (vph)	29	258	14	20	13	8
Future Volume (vph)	29	258	14	20	13	8
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)		35.0	60.0		0.0	0.0
Storage Lanes		1	1		1	0
Taper Length (m)			7.6		7.6	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850			0.949	
Flt Protected			0.950		0.970	
Satd. Flow (prot)	1784	1517	1695	1784	1643	0
Flt Permitted			0.950		0.970	
Satd. Flow (perm)	1784	1517	1695	1784	1643	0
Link Speed (k/h)	80			80	50	
Link Distance (m)	352.9			112.7	118.0	
Travel Time (s)	15.9			5.1	8.5	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%
Adj. Flow (vph)	29	258	14	20	13	8
Shared Lane Traffic (%)						
Lane Group Flow (vph)	29	258	14	20	21	0
Sign Control	Free			Free	Stop	
Intersection Summary						


Area Type: Other

Control Type: Unsignalized
Intersection Capacity Utilization 26.9%
Analysis Period (min) 15 ICU Level of Service A

Synchro 11 Report July 2021 Lanes, Volumes, Timings

Intersection						
Int Delay, s/veh	5.7					
		CDT	WDT	WDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	<u>ነ</u>	↑	↑	7	Y	407
Traffic Vol, veh/h	60	89	53	23	13	197
Future Vol, veh/h	60	89	53	23	13	197
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	500	-	-	500	0	-
Veh in Median Storage,	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	60	89	53	23	13	197
Major/Minor	/lajor1	A	/laior2	, and the second	Minor2	
			Major2			EO
Conflicting Flow All	76	0	-	0	262	53
Stage 1	-	-	-	-	53	-
Stage 2	-	-	-	-	209	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	1523	-	-	-	727	1014
Stage 1	-	-	-	-	970	-
Stage 2	-	-	-	-	826	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1523	-	_	-	699	1014
Mov Cap-2 Maneuver	_	_	-	_	699	-
Stage 1	_	_	_	_	932	_
Stage 2	_	_	_	_	826	_
Olago 2					020	
Approach	EB		WB		SB	
HCM Control Delay, s	3		0		9.6	
HCM LOS					Α	
Minor Lane/Major Mvmt	t	EBL	EBT	WBT	WBR :	SRI n1
IVIII I CITE I IVICIO I IVIVIII		1523	LDI			
		17/1	-	-	-	
Capacity (veh/h)						በ ባላባ
Capacity (veh/h) HCM Lane V/C Ratio		0.039	-	-		0.213
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		0.039 7.5	-	-	-	9.6
Capacity (veh/h) HCM Lane V/C Ratio		0.039	- - -			

Intersection						
Int Delay, s/veh	2.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u></u>	T T	YVDL	<u>₩</u>	₩.	אטא
Traffic Vol, veh/h	T 25	91	"1 5	T 38	32	15
Future Vol, veh/h	25	91	5	38	32	15
Conflicting Peds, #/hr	0	0	0	0	0	0
		Free	Free	Free	Stop	
Sign Control RT Channelized	Free			None		Stop
	-	None	-		-	None
Storage Length	-	350	600	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	25	91	5	38	32	15
Major/Minor Ma	ajor1	ı	Major2	ı	Minor1	
Conflicting Flow All	0	0	116	0	73	25
Stage 1	-	-	- 110	-	25	-
•				_	48	_
Stage 2	-	-	4.12			6.22
Critical Hdwy	-	-		-	6.42	
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-		2.218		3.518	
Pot Cap-1 Maneuver	-	-	1473	-	931	1051
Stage 1	-	-	-	-	998	-
Stage 2	-	-	-	-	974	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1473	-	928	1051
Mov Cap-2 Maneuver	-	-	-	-	928	-
Stage 1	-	-	-	-	998	-
Stage 2	-	-	-	-	971	-
, and the second						
Annragah	ED		MD		ND	
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.9		8.9	
HCM LOS					Α	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		964	_	-	1473	-
HCM Lane V/C Ratio		0.049	_	_	0.003	-
HCM Control Delay (s)		8.9	-	_	7.5	-
HCM Lane LOS		A	-	-	A	-
HCM 95th %tile Q(veh)		0.2	_	_	0	_
		J.L			J	

Intersection						
Int Delay, s/veh	3.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
	FDL Š			WDR		אמט
Lane Configurations Traffic Vol, veh/h	1 24	↑ 239	↑	22	74	36
Future Vol, veh/h	24	239	30	22	74 74	36
· · · · · · · · · · · · · · · · · · ·	0		0	0		
Conflicting Peds, #/hr		0			0	0
Sign Control RT Channelized	Free	Free None	Free	Free	Stop	Stop
	-		-	None	-	None
Storage Length	500	-	-	500	0	-
Veh in Median Storage		0	0	-	0	-
Grade, %	400	0	0	-	0	400
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	24	239	30	22	74	36
Major/Minor I	Major1	N	Major2	-	Minor2	
Conflicting Flow All	52	0	-	0	317	30
Stage 1	-	-	_	-	30	-
Stage 2	_	_	_	_	287	_
Critical Hdwy	4.12	-	_	_	6.42	6.22
		-			5.42	
Critical Hdwy Stg 1	-	-	-	-		-
Critical Hdwy Stg 2	- 0.40	_	-	-	5.42	- 240
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	1554	-	-	-	676	1044
Stage 1	-	-	-	-	993	-
Stage 2	-	-	-	-	762	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1554	-	-	-	666	1044
Mov Cap-2 Maneuver	-	-	-	-	666	-
Stage 1	-	-	-	-	978	-
Stage 2	-	-	-	-	762	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.7		0		10.6	
HCM LOS	0.7		U		В	
TICIVI LOS					ь	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR S	SBLn1
Capacity (veh/h)		1554	-	-	-	756
HCM Lane V/C Ratio		0.015	-	-	-	0.146
HCM Control Delay (s)		7.4	-	-	-	10.6
HCM Lane LOS		Α	-	-	-	В
HCM 95th %tile Q(veh)	0	-	-	-	0.5

2.7					
EBT	EBR	WBL	WBT	NBL	NBR
	7	ř	^	¥	
98	227	107	35	11	48
98	227	107	35	11	48
0	0	0	0	0	0
Free	Free	Free	Free	Stop	Stop
-	None	-	None	-	None
-	350	600	-	0	-
# 0	-	-	0	0	-
0	-	-	0	0	-
100	100	100	100	100	100
					2
					48
		101		• •	.0
ajor1	N				
0	0	325	0	347	98
-	-	-	-	98	-
-	-	-	-	249	-
-	_	4.12	-	6.42	6.22
_	_	-	_		-
_	_	-	-		_
_	_	2.218	_		3.318
_	_		-		958
_	_	-	_		-
_	_	_	_		_
_	_			102	
_	_	1235		593	958
_	_				-
<u>-</u>	<u>-</u>	_			-
_	-				-
-	-	-	-	123	-
EB		WB		NB	
0		6.2		9.5	
١	NBLn1	EBT	EBR	WBL	WBT
	859	EBT -	-	1235	WBT -
	859 0.069		-	1235 0.087	
	859	-	-	1235	-
	859 0.069	-	-	1235 0.087	-
-	98 98 0 Free - - - 100 2 98 ajor1 0 - - - - - - - - - - - - - - - - - -	BBT BBR 98 227 98 227 0 0 Free Free - None - 350 # 0 - 0 - 100 100 2 2 98 227 ajor1	EBT EBR WBL 98 227 107 98 227 107 0 0 0 Free Free Free - None 350 600 # 0 100 100 100 2 2 2 98 227 107 ajor1 Major2 0 0 325 4.12 2.218 - 1235 1235 1235 1235 1235 1235 1235 1235 1235	EBT EBR WBL WBT 98 227 107 35 98 227 107 35 0 0 0 0 0 Free Free Free Free - None - 350 600 - None - 350 600 - O O O O 100 100 100 100 2 2 2 2 2 98 227 107 35 April Major2 0 0 325 0	EBT EBR WBL WBT NBL

Intersection						
Int Delay, s/veh	5.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
	EDL			WDN		SBR
Lane Configurations	96	વ	}	٥	Y	02
Traffic Vol, veh/h		50	48	0	0	93
Future Vol, veh/h	96	50	48	0	0	93
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	96	50	48	0	0	93
	Major1		//ajor2		Minor2	
Conflicting Flow All	48	0	-	0	290	48
Stage 1	-	-	-	-	48	-
Stage 2	-	-	-	-	242	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	_	5.42	-
Follow-up Hdwy	2.218	_	_	_		3.318
Pot Cap-1 Maneuver	1559	-	-	-	701	1021
Stage 1	-	_	_	_	974	-
Stage 2	_	_	_	_	798	-
Platoon blocked, %		_	_	_	700	
Mov Cap-1 Maneuver	1559	_	_	_	657	1021
Mov Cap-1 Maneuver	-	_	_	_	657	-
Stage 1	_	-	_	_	913	_
	_	-	_	_	798	_
Stage 2	-	-	-	_	790	-
Approach	EB		WB		SB	
HCM Control Delay, s	4.9		0		8.9	
HCM LOS					Α	
N. 1		EDI	БРТ	MOT	\\/DD	OD! 4
Minor Lane/Major Mvm	π	EBL	EBT	WBT	WBR	
Capacity (veh/h)		1559	-	-		1021
HCM Lane V/C Ratio		0.062	-	-	-	0.091
HCM Control Delay (s)		7.5	0	-	-	8.9
HCM Lane LOS		Α	Α	-	-	Α
HCM 95th %tile Q(veh)	0.2	-	-	-	0.3

Intersection						
Int Delay, s/veh	2.9					
	EDI	EDT	WDT	WDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	^}		¥	
Traffic Vol, veh/h	18	32	30	0	0	18
Future Vol, veh/h	18	32	30	0	0	18
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	18	32	30	0	0	18
manici ion	10	UL.	00		- 0	10
Major/Minor	Major1	N	Major2	l	Minor2	
Conflicting Flow All	30	0	-	0	98	30
Stage 1	-	_	-	-	30	_
Stage 2	_	_	-	_	68	_
Critical Hdwy	4.12	_	_	_	6.42	6.22
Critical Hdwy Stg 1		_	_	_	5.42	-
Critical Hdwy Stg 2	_		_	_	5.42	-
Follow-up Hdwy	2.218	<u> </u>	_		3.518	
	1583		-		901	1044
Pot Cap-1 Maneuver		-	_	-		1044
Stage 1	-	-	-	-	993	-
Stage 2	-	-	-	-	955	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1583	-	-	-	890	1044
Mov Cap-2 Maneuver	-	-	-	-	890	-
Stage 1	-	-	-	-	981	-
Stage 2	-	-	-	-	955	-
A			\A/P		0.0	
Approach	EB		WB		SB	
HCM Control Delay, s	2.6		0		8.5	
HCM LOS					Α	
Minor Long/Major Mym	- 4	EDI	EDT	W/DT	WBR	CDI n1
Minor Lane/Major Mvm	IL	EBL	EBT	WBT		
Capacity (veh/h)		1583	-	-		1044
HCM Lane V/C Ratio		0.011	-	-		0.017
HCM Control Delay (s)		7.3	0	-	-	8.5
HCM Lane LOS		Α	Α	-	-	Α
HCM 95th %tile Q(veh)	0	-	-	-	0.1

	•	→	←	•	-	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*			7	W	
Traffic Volume (vph)	53	80	47	61	104	177
Future Volume (vph)	53	80	47	61	104	177
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (m)	50.0			50.0	0.0	0.0
Storage Lanes	1			1	1	0
Taper Length (m)	7.6				7.6	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt				0.850	0.915	
Flt Protected	0.950				0.982	
Satd. Flow (prot)	1789	1883	1883	1601	1692	0
Flt Permitted	0.950				0.982	
Satd. Flow (perm)	1789	1883	1883	1601	1692	0
Link Speed (k/h)		80	80		50	
Link Distance (m)		230.7	352.9		128.7	
Travel Time (s)		10.4	15.9		9.3	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%
Adj. Flow (vph)	53	80	47	61	104	177
Shared Lane Traffic (%)						
Lane Group Flow (vph)	53	80	47	61	281	0
Sign Control		Free	Free		Stop	
Intersection Summary						
Area Type:	Othor					

Area Type:

Control Type: Unsignalized
Intersection Capacity Utilization 32.9%
Analysis Period (min) 15 ICU Level of Service A

Synchro 11 Report July 2021 Lanes, Volumes, Timings

	-	•	•	←	1	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	7	Ţ	†	, A	
Traffic Volume (vph)	115	81	72	74	28	31
Future Volume (vph)	115	81	72	74	28	31
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (m)		35.0	60.0		0.0	0.0
Storage Lanes		1	1		1	0
Taper Length (m)			7.6		7.6	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850			0.929	
Flt Protected			0.950		0.977	
Satd. Flow (prot)	1883	1601	1789	1883	1709	0
FIt Permitted			0.950		0.977	
Satd. Flow (perm)	1883	1601	1789	1883	1709	0
Link Speed (k/h)	80			80	50	
Link Distance (m)	352.9			112.7	118.0	
Travel Time (s)	15.9			5.1	8.5	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%
Adj. Flow (vph)	115	81	72	74	28	31
Shared Lane Traffic (%)						
Lane Group Flow (vph)	115	81	72	74	59	0
Sign Control	Free			Free	Stop	
Intersection Summary						

Area Type: Other

Control Type: Unsignalized
Intersection Capacity Utilization 20.8%
Analysis Period (min) 15 ICU Level of Service A

Synchro 11 Report July 2021 Lanes, Volumes, Timings

	•	→	+	•	/	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्स	₽.		**	
Traffic Volume (vph)	90	56	59	0	0	87
Future Volume (vph)	90	56	59	0	0	87
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt					0.865	
Flt Protected		0.970				
Satd. Flow (prot)	0	1731	1784	0	1543	0
Flt Permitted		0.970				
Satd. Flow (perm)	0	1731	1784	0	1543	0
Link Speed (k/h)		80	80		80	
Link Distance (m)		112.7	168.0		103.7	
Travel Time (s)		5.1	7.6		4.7	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%
Adj. Flow (vph)	90	56	59	0	0	87
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	146	59	0	87	0
Sign Control		Free	Free		Stop	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized	d					
Intersection Capacity Utiliz	zation 27.4%			IC	CU Level of	of Service A
Analysis Period (min) 15						

Lanes, Volumes, Timings Synchro 11 Report IL Synchro 11 Report July 2021

	•	→	←	•	>	4	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		4	f)		W		
Traffic Volume (vph)	20	36	38	0	0	21	
Future Volume (vph)	20	36	38	0	0	21	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt					0.865		
Flt Protected		0.982					
Satd. Flow (prot)	0	1850	1883	0	1629	0	
Flt Permitted		0.982					
Satd. Flow (perm)	0	1850	1883	0	1629	0	
Link Speed (k/h)		80	80		50		
Link Distance (m)		168.0	230.8		99.5		
Travel Time (s)		7.6	10.4		7.2		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	
Adj. Flow (vph)	20	36	38	0	0	21	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	0	56	38	0	21	0	
Sign Control		Free	Free		Stop		
Intersection Summary							
Area Type:	Other						
Control Type: Unsignalized	d						
Intersection Capacity Utiliz	zation 19.7%			IC	CU Level of	of Service	϶A
Analysis Period (min) 15							

Lanes, Volumes, Timings Synchro 11 Report IL Synchro 11 Report July 2021

	•	→	←	•	\	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ሻ	†	†	7	W	
Traffic Volume (vph)	27	267	34	22	74	40
Future Volume (vph)	27	267	34	22	74	40
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	50.0			50.0	0.0	0.0
Storage Lanes	1			1	1	0
Taper Length (m)	7.6				7.6	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt				0.850	0.953	
Flt Protected	0.950				0.969	
Satd. Flow (prot)	1695	1784	1784	1517	1648	0
Flt Permitted	0.950				0.969	
Satd. Flow (perm)	1695	1784	1784	1517	1648	0
Link Speed (k/h)		80	80		50	
Link Distance (m)		230.7	352.9		128.7	
Travel Time (s)		10.4	15.9		9.3	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%
Adj. Flow (vph)	27	267	34	22	74	40
Shared Lane Traffic (%)						
Lane Group Flow (vph)	27	267	34	22	114	0
Sign Control		Free	Free		Stop	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalized	d					

ICU Level of Service A

Intersection Capacity Utilization 28.4% Analysis Period (min) 15

Lanes, Volumes, Timings
IL

Synchro 11 Report
July 2021

	-	•	•	←	1	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	7	, j		W	
Traffic Volume (vph)	102	258	108	37	13	48
Future Volume (vph)	102	258	108	37	13	48
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)		35.0	60.0		0.0	0.0
Storage Lanes		1	1		1	0
Taper Length (m)			7.6		7.6	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850			0.894	
Flt Protected			0.950		0.989	
Satd. Flow (prot)	1784	1517	1695	1784	1578	0
Flt Permitted			0.950		0.989	
Satd. Flow (perm)	1784	1517	1695	1784	1578	0
Link Speed (k/h)	80			80	50	
Link Distance (m)	352.9			112.7	118.0	
Travel Time (s)	15.9			5.1	8.5	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%
Adj. Flow (vph)	102	258	108	37	13	48
Shared Lane Traffic (%)						
Lane Group Flow (vph)	102	258	108	37	61	0
Sign Control	Free			Free	Stop	
Intersection Summary						

Area Type: Other

Control Type: Unsignalized
Intersection Capacity Utilization 29.8%
Analysis Period (min) 15 ICU Level of Service A

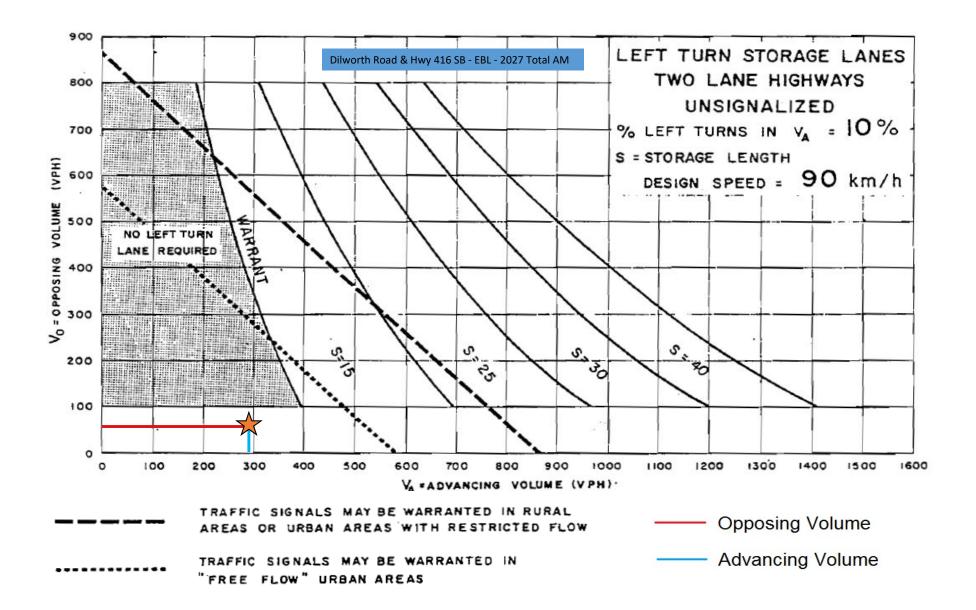
Synchro 11 Report July 2021 Lanes, Volumes, Timings

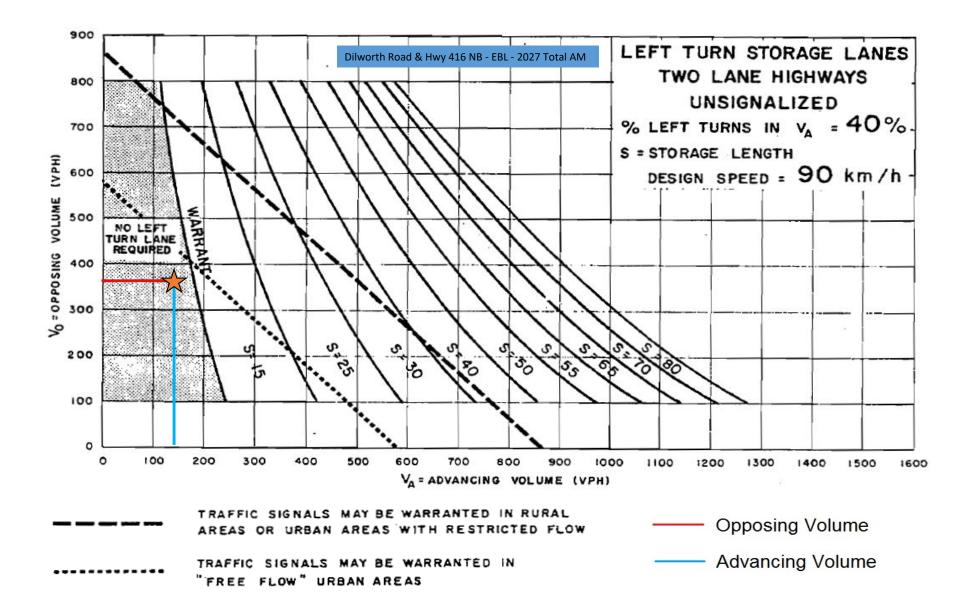
	۶	→	+	•	/	✓
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્ન	f)		W	
Traffic Volume (vph)	96	55	52	0	0	93
Future Volume (vph)	96	55	52	0	0	93
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt					0.865	
Flt Protected		0.969				
Satd. Flow (prot)	0	1729	1784	0	1543	0
Flt Permitted		0.969				
Satd. Flow (perm)	0	1729	1784	0	1543	0
Link Speed (k/h)		80	80		80	
Link Distance (m)		112.7	168.0		103.7	
Travel Time (s)		5.1	7.6		4.7	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%
Adj. Flow (vph)	96	55	52	0	0	93
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	151	52	0	93	0
Sign Control		Free	Free		Stop	
Intersection Summary						
Area Type:	Other					
Control Type: Unsignalize						
Intersection Capacity Utiliz	zation 28.1%			IC	CU Level of	of Service A
Analysis Period (min) 15						

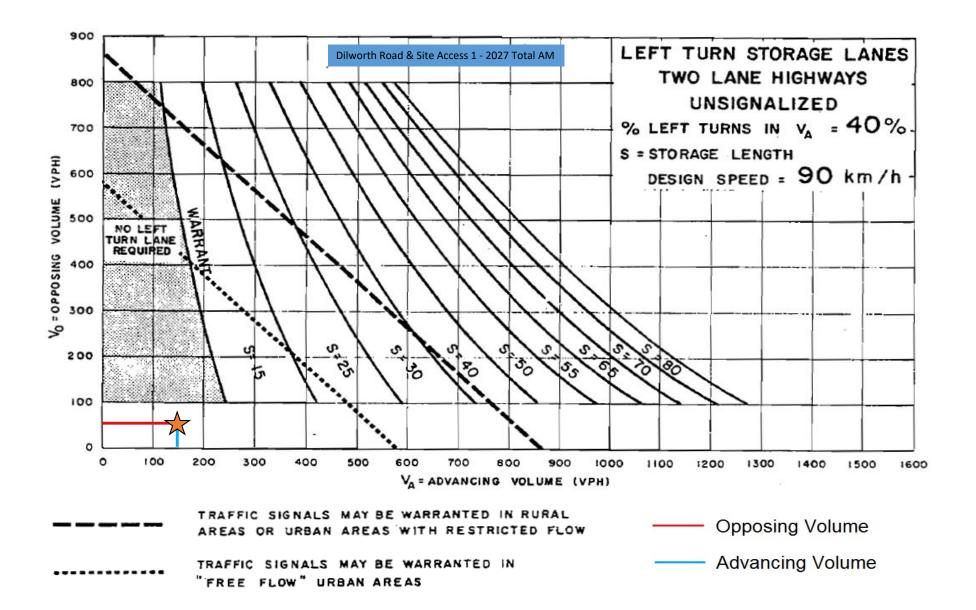
Synchro 11 Report July 2021

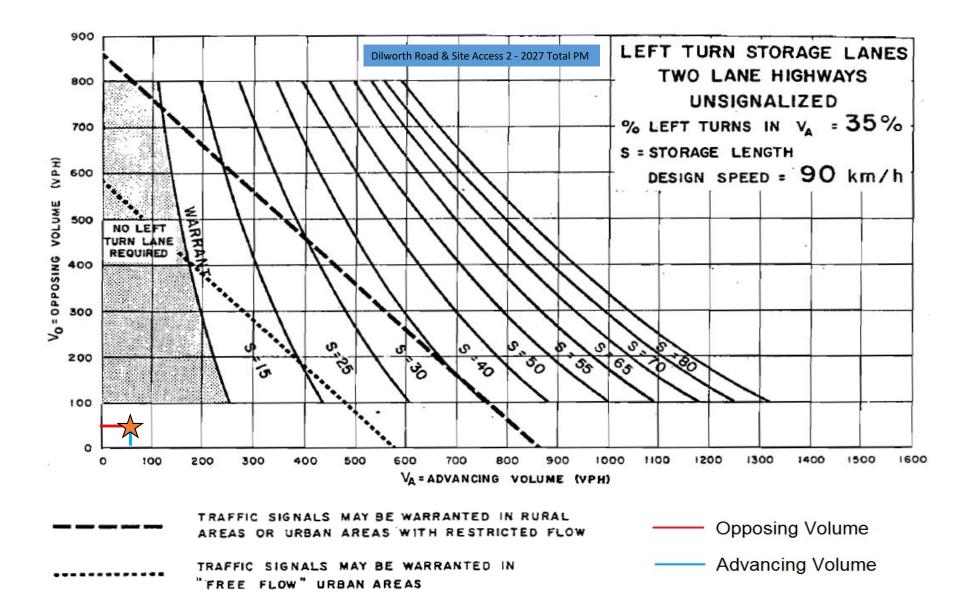
	•	→	←	•	>	4	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		4	ĵ.		W		
Traffic Volume (vph)	18	37	34	0	0	18	
Future Volume (vph)	18	37	34	0	0	18	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt					0.865		
Flt Protected		0.984					
Satd. Flow (prot)	0	1756	1784	0	1543	0	
Flt Permitted		0.984					
Satd. Flow (perm)	0	1756	1784	0	1543	0	
Link Speed (k/h)		80	80		50		
Link Distance (m)		168.0	230.8		99.5		
Travel Time (s)		7.6	10.4		7.2		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	
Adj. Flow (vph)	18	37	34	0	0	18	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	0	55	34	0	18	0	
Sign Control		Free	Free		Stop		
Intersection Summary							
Area Type:	Other						
Control Type: Unsignalized	d						
Intersection Capacity Utiliz	zation 19.8%			IC	CU Level o	of Service	λ
Analysis Period (min) 15							

Lanes, Volumes, Timings Synchro 11 Report IL Synchro 11 Report July 2021


Intersection						
Int Delay, s/veh	6.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	T T	<u></u>	VVD1	VVDIC.	SBL ₩	אומט
Traffic Vol, veh/h	60	T 89	T 53	63	105	197
Future Vol, veh/h	60	89	53	63	105	197
	0	09	0	03	0	0
Conflicting Peds, #/hr		Free		Free		
Sign Control RT Channelized	Free	None	Free		Stop	Stop
	500	None -	-	500	- 0	None
Storage Length						-
Veh in Median Storage		0	0	-	0	-
Grade, %	400	0	0	400	0	400
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	60	89	53	63	105	197
Major/Minor I	Major1	N	Major2	ı	Minor2	
Conflicting Flow All	116	0	-	0	262	53
Stage 1	-	-	_	-	53	-
Stage 2	_	_	_	_	209	_
Critical Hdwy	4.12	-	_	_	6.42	6.22
•					5.42	
Critical Hdwy Stg 1	-	-	-	-		-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-		3.518	
Pot Cap-1 Maneuver	1473	-	-	-	727	1014
Stage 1	-	-	-	-	970	-
Stage 2	-	-	-	-	826	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1473	-	-	-	697	1014
Mov Cap-2 Maneuver	-	-	-	-	697	-
Stage 1	-	-	-	-	930	-
Stage 2	-	-	-	-	826	-
Approach	EB		WB		SB	
HCM Control Delay, s	3		0		11.3	
HCM LOS	J		U		11.3 B	
TIGIVI LOS					D	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR S	SBLn1
Capacity (veh/h)		1473	-	-	-	876
HCM Lane V/C Ratio		0.041	-	-	-	0.345
HCM Control Delay (s)		7.5	-	-	-	11.3
HCM Lane LOS		Α	-	-	-	В
HCM 95th %tile Q(veh)	0.1	-	-	-	1.5


Intersection						
Int Delay, s/veh	2.9					
		EDD	WDI	WDT	NDI	NDD
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑	7	<u>`</u>		¥	00
Traffic Vol, veh/h	118	91	72	79	32	32
Future Vol, veh/h	118	91	72	79	32	32
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	_ 0	0	0
0	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	350	600	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	118	91	72	79	32	32
Major/Minor M	oior1		Majora		Minor1	
	ajor1		Major2		Minor1	440
Conflicting Flow All	0	0	209	0	341	118
Stage 1	-	-	-	-	118	-
Stage 2	-	-	-	-	223	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	
Pot Cap-1 Maneuver	-	-	1362	-	655	934
Stage 1	-	-	-	-	907	-
Stage 2	-	-	-	-	814	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1362	-	620	934
Mov Cap-2 Maneuver	-	-	-	-	620	-
Stage 1	-	-	-	-	907	-
Stage 2	-	-	-	-	771	-
J						
A	ED		WD		ND	
Approach	EB		WB		NB	
HCM Control Delay, s	0		3.7		10.3	
HCM LOS					В	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
			-		1362	-
		/// >	_	_		
Capacity (veh/h)		745			በ በፍን	_
Capacity (veh/h) HCM Lane V/C Ratio		0.086	-		0.053	-
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		0.086 10.3	-	-	7.8	-
Capacity (veh/h) HCM Lane V/C Ratio		0.086				


Intersection						
Int Delay, s/veh	4.8					
	EBL	EDT	WPT	WPD	CDI	CDD
Movement	ERL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	00	ન	^}	^	¥	07
Traffic Vol, veh/h	90	61	64	0	0	87
Future Vol, veh/h	90	61	64	0	0	87
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage		0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	90	61	64	0	0	87
Major/Minor N	/lajor1	N	//ajor2		Minor2	
Conflicting Flow All	64	0	-	0	305	64
Stage 1	-	_	_	-	64	-
Stage 2	_	_	_	_	241	_
Critical Hdwy	4.12	_	_		6.42	6.22
Critical Hdwy Stg 1		_	_	_	5.42	- 0.22
Critical Hdwy Stg 2	_				5.42	_
	2.218	_	_	_		
Pot Cap-1 Maneuver	1538	-	-	-	687	1000
Stage 1	1000	_	-	_	959	-
Stage 2		-	-	_	799	-
Platoon blocked, %	_	-	_		199	-
	1520	-	-	-	GAE	1000
Mov Cap-1 Maneuver	1538	-	-	-	645	
Mov Cap-2 Maneuver	-	-	-	-	645	-
Stage 1	-	-	-	-	901	-
Stage 2	-	-	-	-	799	-
Approach	EB		WB		SB	
HCM Control Delay, s	4.5		0		8.9	
HCM LOS					Α	
Minar Lana/Maiar M		EDI	EDT	WDT	WDD	CDL =1
Minor Lane/Major Mvm	l .	EBL	EBT	WBT	WBR:	
L'anacity (yoh/h)		1538	-	-		1000
Capacity (veh/h)		11 (15(1)	-	-	-	0.087
HCM Lane V/C Ratio		0.059				
HCM Lane V/C Ratio HCM Control Delay (s)		7.5	0	-	-	8.9
HCM Lane V/C Ratio					- -	8.9 A 0.3


Intersection						
Int Delay, s/veh	2.6					
Movement	EBL	EDT	\\/DT	WPD	CDI	CDD
Movement	CDL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	00	- ની	^	^	¥	0.4
Traffic Vol, veh/h	20	41	43	0	0	21
Future Vol, veh/h	20	41	43	0	0	21
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	20	41	43	0	0	21
			,,,			
Major/Minor I	Major1	N	Major2		Minor2	
Conflicting Flow All	43	0	-	0	124	43
Stage 1	-	-	-	-	43	-
Stage 2	-	-	-	-	81	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	_	-	-	_	5.42	-
Critical Hdwy Stg 2	-	_	-	_	5.42	_
Follow-up Hdwy	2.218	_	-	_	0 = 40	3.318
Pot Cap-1 Maneuver	1566	_	_	_	871	1027
Stage 1	-	_	_	_	979	-
Stage 2	_	_	_	_	942	_
Platoon blocked, %		_	_	_	J72	
	1566	-			860	1027
Mov Cap-1 Maneuver		-	-	-	860	
Mov Cap-2 Maneuver	-	-	-	-		-
Stage 1	-	-	-	-	966	-
Stage 2	-	-	-	-	942	-
Approach	EB		WB		SB	
HCM Control Delay, s	2.4		0		8.6	
HCM LOS	۷.٦		- 0		Α	
TIOWI LOG					٨	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR :	SBL _{n1}
Capacity (veh/h)		1566		-	_	1027
HCM Lane V/C Ratio		0.013	-	-	_	0.02
HCM Control Delay (s)		7.3	0	_	_	8.6
HCM Lane LOS		Α.	A	_	_	A
HCM 95th %tile Q(veh	\	0	-	_	_	0.1
HOW JOHN JUNE WIVELL		U	_	-	-	0.1

