

Engineering

Land/Site Development

Municipal Infrastructure

Environmental/ Water Resources

Traffic/ Transportation

Recreational

Planning

Land/Site Development

Planning Application Management

Municipal Planning

Urban Design

Expert Witness (LPAT)

Wireless Industry

Landscape Architecture

Streetscapes & Public Amenities

Open Space, Parks & Recreation

Community &

Residential

Commercial & Institutional

Environmental Restoration

1450, 1454, 1464, 1468 Bankfield Road and 5479 & 5485 Elijah Court

Transportation Impact Assessment in support of a Major Zoning By-law Amendment

Prepared for: Zena Investment Corporation

Proposed Commercial Development 1464 & 1468 Bankfield Road Transportation Impact Assessment

Prepared By:

NOVATECH

Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario K2M 1P6

Dated: July 2024

Novatech File: 122002 Ref: R-2023-171

July 12, 2024

City of Ottawa Planning and Growth Management Department 110 Laurier Ave. W., 4th Floor, Ottawa, Ontario K1P 1J1

Attention: Mr. Mike Giampa

Transportation Project Manager, Transportation Review

Dear Mr. Giampa:

Reference: 1464 & 1468 Bankfield Road

Transportation Impact Assessment

Novatech File No. 122002

We are pleased to submit the following Transportation Impact Assessment (TIA), in support of a Zoning By-law Amendment application at 1450-1468 Bankfield Road & 5479-5485 Elijah Court, for your review and signoff. The structure and format of this report is in accordance with the City of Ottawa Transportation Impact Assessment Guidelines (June 2023).

If you have any questions or comments regarding this report, please feel free to contact Brad Byvelds, or the undersigned.

Yours truly,

NOVATECH

Trevor Van Wiechen, M.Eng.

to Van Will

E.I.T. | Transportation

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below.

CERTIFICATION

- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- 3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- 4. I am either a licensed¹ or registered² professional in good standing, whose field of expertise [check $\sqrt{\text{appropriate field(s)}}$] is either transportation engineering \square or transportation planning \square .
- 1,2 License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

Dated at Ottawa	this day of, 2024.	
(City)		
Name:	Brad Byvelds	
	(Please Print)	
Professional Title:	P. Eng Project Manager	
	3. Byvelds	
Signature of	Individual certifier that s/he meets the above four criteria	

Office Contact Information (Please Print)						
Address:	240 Michael Cowpland Drive					
City / Postal Code:	Ottawa, ON K2M 1P6					
Telephone / Extension:	613-254-9643 ext. 286					
E-Mail Address:	b.byvelds@novaetch-eng.com					

TABLE OF CONTENTS

1.0	SCRI	EENING	1
1.1	INT	RODUCTION	. 1
1.2	Pro	OPOSED DEVELOPMENT	. 1
1.3	Sci	REENING FORM	. 1
2.0	SCO	PING	2
2.1	Exi	STING CONDITIONS	2
	.1.1	Roadways	
	.1.2	Intersections	
2	.1.3	Driveways	
2	.1.4	Pedestrian and Cycling Facilities	4
2	.1.5	Transit	
	.1.6	Area Traffic Management	
	1.1.7	Existing Traffic Volumes	
	1.1.8	Collision Records	
		ANNED CONDITIONS	
	2.2.1	Planned Roadway and Transit Projects	
2.3	2.2.2	Other Area Developments	
2.3		VELOPMENT GENERATED TRAFFIC	
	.4.1	Site Generated Traffic Volumes	
	.4.2	Trip Distribution	
2.5		CESS LOCATION	
2.6	EXE	EMPTIONS REVIEW	. 9
3.0	FORE	ECASTING	11
3.1	Bac	CKGROUND TRAFFIC	11
_	i.1.1	Other Area Developments	
3	.1.2	General Background Growth Rate	
3.2		TURE TRAFFIC CONDITIONS	
3.3		MAND RATIONALIZATION	
	.3.1	Existing Intersection Operations	
	.3.2	2025 Background Traffic Conditions	
	.3.3	2030 Background Traffic Conditions	
4.0	ANA	LYSIS	16
4.1		VELOPMENT DESIGN	
4.2		RKING	
4.3		UNDARY STREET DESIGN	
4.4		ANSPORTATION DEMAND MANAGEMENT	
4.5		ERSECTION DESIGN	
	.5.1 .5.2	2025 Total Intersection Operations	
		•	10 19
7 II	L.CJN(LI USIUNS AND KELUMMENDA HUNS	14

Figures	
	v of the Subject Site2
Figure 2: Exis	ting Traffic Volumes5
	-Generated Volumes12
Figure 4: 2025	5 Background Traffic 12
	0 Background Traffic13
	5 Total Traffic 13
Figure 7: 2030	0 Total Traffic 14
Tables	
	orted Collisions 6
	on Trip Generation8
	Exemptions10
	ing Traffic Operations14
	Background Traffic Operations15
	Background Traffic Operations 16
	nent MMLOS Summary17
	Total Traffic Operations 18
Table 9: 2030	Total Traffic Operations 18
Appendices	
Appendix A:	Preliminary Concept Plan
Appendix B:	TIA Screening Form
Appendix C:	Traffic Count Data
Appendix D:	Collision Records
Appendix E:	Other Area Developments
Appendix F:	Signal Timing Plans
Appendix G:	Detailed Analysis Reports
Appendix H:	MMLOS Review

EXECUTIVE SUMMARY

This Transportation Impact Assessment (TIA) has been prepared in support of a Zoning By-law Amendment application for the commercial development at 1450-1468 Bankfield Road & 5479-5485 Elijah Court. The subject site is currently occupied by commercial and residential uses.

The subject site is located in the southeast corner of the Bankfield Road/Prince of Wales Drive intersection and is surrounded by the following:

- Bankfield Road followed by residential developments and farmlands to the north,
- Undeveloped lands followed by First Line Road to the east,
- Undeveloped lands followed by First Line Road/Elijah Court intersection to the south, and
- Elijah Court and Prince of Wales Drive to the west.

The proposed development includes a 2,130m² automobile dealership with a drop-off vehicle service and approximately 440 vehicle parking spaces for purchasable vehicles and employees/visitors. Access to the development is proposed via two all-movement accesses to Bankfield Road and one all-movement access to Elijah Court. The proposed development is anticipated to be completed in one phase, with buildout occurring in 2025.

The Subject Property is designated Village within the Rural Transect of the City of Ottawa Official Plan (2021). The Subject Property is designated Mixed Residential-Commercial in the Village of Manotick Secondary Plan. The property is zoned Development Review Zone 1 (DR1) in the City of Ottawa Zoning By-law 2008-250.

The conclusions and recommendations of this TIA can be summarized as follows:

Forecasting

- The proposed development is projected to generate 43 person/vehicle trips during the AM peak hour and 55 person/vehicle trips during the PM peak hour.
- Due to existing queueing along Bankfield Road the proponent plans to instruct all employees travelling westbound to use the Elijah Court access and travel to Bankfield Road via First Line Road. To account for this, 50% of outbound trips traveling towards the Bankfield Road/Prince of Wales Drive intersection have been assigned to the Bankfield Road/First Line Road intersection.

Boundary Streets

- Both boundary streets do not meet the target pedestrian level of service (PLOS).
- Both boundary streets do not meet the target bicycle level of service (BLOS).
- No target transit level of service (TLOS) has been identified for either boundary street however both streets achieve a TLOS of D.
- Bankfield Road meets the target truck level of service (TkLOS) and no target TkLOS has been identified for Elijah Court, however Elijah Court achieves a LOS F.
- Both sides of Bankfield Road do not meet the target PLOS C. As part of the recent resurfacing of Bankfield Avenue, the City implemented a depressed curb and a paved

shoulder along the site frontage. Given the rural context of Bankfield Road, no further modifications are recommended as part of the proposed development.

- Both sides of Elijah Court do not meet the target PLOS C. Elijah Court is currently a twolane undivided rural roadway with a road platform width of approximately 6.5m that serves two single detached dwelling units that are to be removed as part of this application. As a new pedestrian facility along the site frontage will not provide system connectivity to the greater network, no recommendations are proposed as part of the proposed development.
- On Elijah Court a BLOS C can be achieved by reducing the operating speed to 40km/h. This is identified for the City's consideration.

Background Traffic Analysis

 Under 2030 background traffic conditions, all movements at traffic signal controlled intersections are anticipated to operate with a LOS D or better during AM and PM peak hour conditions.

Total Traffic Analysis

- The site traffic does not impact delays at any study area intersection and does not significantly impact the existing westbound queues at the Bankfield Road/Prince of Wales Drive intersection. The proposed development is expected to generate four outbound left turning vehicles at the site access during the AM peak hour and 12 outbound left turning vehicles at the site access during the PM peak hour. This equates to roughly one outbound left turning vehicle every 15 minutes in the AM peak hour and one outbound left turning vehicle every 5 minutes during the PM peak hour.
- The access to Bankfield Road is proposed as a full movement access but due to existing queuing issues along Bankfield Road the proponent plans on directing all westbound employees to travel through Bankfield Road/First Line Road intersection via Elijah Court. As the volumes of customers exiting the access are relatively low during the peak hours drivers may use courtesy from other drivers in order to access Bankfield Road or they may use Elijah Court and travel to the Bankfield Road/First Line Road intersection to gain access to Bankfield Road. It is assumed that the proposed access configuration will present an improvement to the study area as the development removes three accesses to five different properties that currently have access to Bankfield Road within the turn lane.

Based on the foregoing, the proposed development is recommended from a transportation perspective.

Novatech Page ii

1.0 SCREENING

1.1 Introduction

This Transportation Impact Assessment (TIA) has been prepared in support of a Zoning By-law Amendment application for the commercial development at 1450-1468 Bankfield Road & 5479-5485 Elijah Court. The subject site is currently occupied by commercial and residential uses.

The subject site is located in the southeast corner of the Bankfield Road/Prince of Wales Drive intersection and is surrounded by the following:

- Bankfield Road followed by residential developments and farmlands to the north,
- Undeveloped lands followed by First Line Road to the east,
- Undeveloped lands followed by First Line Road/Elijah Court intersection to the south, and
- Elijah Court and Prince of Wales Drive to the west.

An aerial of the vicinity around the subject site is provided in **Figure 1**.

1.2 Proposed Development

The proposed development includes a 2,130m² automobile dealership with a drop-off vehicle service and approximately 440 vehicle parking spaces for purchasable vehicles and employees/visitors. Access to the development is proposed via two all-movement accesses to Bankfield Road and one all-movement access to Elijah Court. The proposed development is anticipated to be completed in one phase, with buildout occurring in 2025.

The Subject Property is designated Village within the Rural Transect of the City of Ottawa Official Plan (2021). The Subject Property is designated Mixed Residential-Commercial in the Village of Manotick Secondary Plan. The property is zoned Development Review Zone 1 (DR1) in the City of Ottawa Zoning By-law 2008-250.

A copy of the concept plan is included in **Appendix A**.

1.3 Screening Form

The City's 2023 TIA Guidelines identify three triggers for completing a TIA report, including trip generation, location, and safety. The criteria for each trigger are outlined in the City's TIA Screening Form, which is included in **Appendix B**. The trigger results are as follows:

- Trip Generation Trigger The development is not expected to generate a net additional 60 peak hour person trips; further assessment is **not required** based on this trigger.
- Location Triggers The development is not located within a design priority area; further assessment is **not required** based on this trigger.
- Safety Triggers The development proposes access to a roadway with vertical curvature limiting sight lines, is within 300m of a traffic signal, and proposes an access within the auxiliary lane of an intersection; further assessment is **required** based on this trigger.

2.0 SCOPING

2.1 Existing Conditions

2.1.1 Roadways

All roadways within the study area fall under the jurisdiction of the City of Ottawa.

Bankfield Road is an arterial roadway that runs in an east-west direction between Highway 416 and Rideau Valley Drive. Bankfield Road is classified as a truck route allowing full loads. Within the study area it has a two-lane undivided rural cross-section. Mid-block between Prince of Wales Drive and First Line Road the posted speed limit transitions between 60km/h and 80km/h eastwards. Paved shoulders are provided on both sides of the roadway. Schedule C16 of the City of Ottawa's

Official Plan identifies a right-of-way protection requirement of 34m along Bankfield Road between Highway 416 and 100m west of Colony Heights. The Concept Plan in Appendix A shows the required road widening.

Prince of Wales Drive is an arterial roadway that runs in a north-south direction between Preston Street and Fourth Line Road. Prince of Wales Drive is classified as a truck route allowing full loads. Within the study area, it has a two-lane undivided rural cross-section with a posted speed limit of 80 km/h. Paved shoulders are provided on Prince of Wales Drive north of Bankfield Road.

First Line Road is a collector roadway that runs in a north-south direction between Bankfield Road and Roger Stevens Drive. First Line Road is classified as a truck route allowing full loads. It has a two-lane undivided rural cross-section with a posted regulatory speed limit of 60km/h.

Elijah Court is a local roadway that runs in a north-south direction that ends in a cul-de-sac to the north and First Line Road to the south. It has a two-lane undivided rural cross-section with an unposted regulatory speed limit of 50km/h.

2.1.2 Intersections

Prince of Wales Drive/Bankfied Road

- Four-legged signalized intersection
- Northbound Approach (Prince of Wales Drive): one left turn lane and one shared through/right turn lane
- Southbound Approach (Prince of Wales Drive): one left turn lane, one through lane, and one right turn lane
- Westbound Approach (Bankfield Road): one left turn lane and one shared through/right turn lane
- Eastbound Approach (Bankfield Road): one left turn lane and one shared through/right turn lane
- Standard pedestrian crossings on all approaches

Bankfield Road/First Line Road

- Three-legged signalized intersection
- Northbound Approach (First Line Road): one shared all-movement lane
- Westbound Approach (Bankfield Road): one left turn lane and one through lane
- Eastbound Approach (*Bankfield Road*): one shared all-movement lane
- Standard pedestrian crossings on all approaches

2.1.3 Driveways

A review of adjacent driveways along the boundary roads are provided as follows:

Bankfield Road, North Side:

 Three driveways to residences at 3690, 3680, and 3668 Bankfield Road

Elijah Court, East Side

- Two driveways to residences at 5479 and 5485 Elijah Court
- One access to undeveloped property located between 5485 Elijah Court and 5500 Elijah Court

Bankfield Road, South Side:

 Three driveways to residences at 1468, 1464, 1458, 1454, and 1450 Bankfield Road

Elijah Court, West Side

None

It is noteworthy that the existing driveways on the south side of Bankfield Road and the east side of Elijah Court will be removed as part of this application.

2.1.4 Pedestrian and Cycling Facilities

Paved shoulders are provided on Bankfield Road and on Prince of Wales Drive to the north of Bankfield Road. Concrete sidewalks are provided on all corners of the signalized intersections within the study area.

2.1.5 Transit

There are no OC Transpo bus stops in proximity of the subject site and the closest bus stops are located roughly 2km away in the Manotick town centre.

2.1.6 Area Traffic Management

There are no Area Traffic Management (ATM) studies within the study area that have been completed or are currently in progress.

2.1.7 Existing Traffic Volumes

Weekday traffic counts were obtained from the City of Ottawa to determine existing pedestrian, cyclist, and vehicular traffic volumes at the study area intersections. These counts were completed on the following dates:

Bankfield Road/First Line Road

July 5, 2023

Prince of Wales Drive/Bankfield Road

November 23, 2023

All traffic count data is included in **Appendix C**. Traffic volumes within the study area are shown in **Figure 2**.

Figure 2: Existing Traffic Volumes

2.1.8 Collision Records

Historical collision data from the last five years was obtained from the City's Public Works and Service Department for the study area intersections and road segments between intersections. Copies of the collision summary reports are included in **Appendix D**.

The collision data has been evaluated to determine if there are any identifiable collision patterns, defined in the 2017 TIA Guidelines as 'more than six collisions in five years' for any one movement. The number of collisions at each intersection from January 1, 2017 to December 31, 2021 is summarized in **Table 1**.

Table 1: Reported Collisions

	Impact Types							
Location	Approach	Angle	Rear End		Turning Mvmt	SMV ⁽¹⁾ / Other	Total	
Bankfield Road/Prince of Wales Drive	-	2	21	1	5	-	29	
Bankfield Road/First Line Road	-	-	-	-	-	-	0	
Bankfield Road between Prince of Wales Drive and Frist Line Road	1	-	2	1	-	3	7	

^{1.} SMV = Single Motor Vehicle

Bankfield Road/Prince of Wales Drive

A total of 29 collisions were reported at this intersection over the last five years, of which there was two angle impacts, 21 rear-end impacts, one sideswipe impacts, and five turning movement impacts. Six collisions resulted in injuries, but none caused fatalities. None of the collisions involved cyclists or pedestrians.

Of the 29 collisions at this location, three of them occurred during rain conditions, for all other collisions weather was not a factor. Additionally, of the 29 collisions, 23 of them occurred during daylight hours.

Of the 21 rear end collisions, six involved northbound vehicles, two involved southbound vehicles, nine involved eastbound vehicles, and four involved westbound vehicles. The eastbound rear end collision pattern at this location are anticipated to be attributed to high traffic volumes and high speeds. The northbound rear end collision pattern at this location are anticipated to be attributed to high speeds.

Calculations of the intersection collision rate per Million Entering Vehicles (MEV) for all collision types across the five-year study period showed an intersection collision rate of 0.75/MEV. Based on this analysis, Bankfield Road/Prince of Wales Drive does not experience an abnormally high rate of collisions.

Bankfield Road/First Line Road

No collisions were reported at the Bankfield Road/First Line Road intersection in the last five years of available data.

Bankfield Road between Prince of Wales Drive and First Line Road

A total of seven collisions were reported within this roadway segment over the last five years, of which there was one approaching impact, two rear-end impacts, one sideswipe impact, and three single motor vehicle impacts. All collisions resulted in property damage only with no injuries. None of the collisions involved cyclists or pedestrians.

Of the seven collisions at this location, three of them occurred during snow conditions, for all other collisions weather was not a factor. Additionally, of the seven collisions, five of them occurred during daylight hours. Of the seven collisions at this location, four involved westbound vehicles, two involved eastbound vehicles, and one involved eastbound and westbound vehicles.

As there are less than six collisions of any given type there is no discernible collision pattern at this location.

Calculations of the segment collision rate per Million Entering Vehicles (MEV) for all collision types across the five-year study period showed an intersection collision rate of 0.32/MEV. Based on this

analysis, Bankfield Road between Prince of Wales Drive and Frist Line Road does not experience an abnormally high rate of collisions.

2.2 Planned Conditions

2.2.1 Planned Roadway and Transit Projects

The City of Ottawa's Draft 2023 Transportation Master Plan proposes paved shoulders along Prince of Wales Drive, Bankfield Road and First Line Road in its Rural Active Transportation Network. This is consistent with the Manotick Secondary Plan within Volume 2B of the City of Ottawa's Official Plan which identifies proposed cycling routes along Prince of Wales Road, Bankfield Road, and First Line Road. The Manotick Secondary Plan also identifies proposed sidewalks on both sides of First Line Road and on Bankfield Road east of Prince of Wales Drive.

It is understood that a roundabout is planned at the Prince of Wales Drive/Bankfied Road intersection. The roundabout will have two approach lanes on all legs, as well as an eastbound right turn by-pass lane. Based on the City's 2013 TMP, this project is not part of the 2031 Affordable Road Network and does not have a timeline for implementation.

2.2.2 Other Area Developments

In proximity to the proposed development, the Stinson Farms Subdivision at 4386 Rideau Valley Drive has been identified as a development in the study area.

A TIA was prepared by Novatech in October 2022, in support of a development including 62 single detached houses, 14 semi-detached houses, and 72 townhouses. The TIA identified a buildout year of 2028.

Excerpts from relevant transportation studies have been attached in **Appendix E**.

2.3 Study Area and Time Periods

The study area for this report includes the boundary roadways Bankfield Road and Elijah Court, as well as the following intersections:

- Bankfield Road/Prince of Wales Drive; and
- Bankfield Road/First Line Road.

Analysis will be completed for the weekday AM and PM peak hours, as this represents the worst-case combination of site generated traffic and adjacent street traffic.

2.4 Development Generated Traffic

2.4.1 Site Generated Traffic Volumes

The proposed development is a 2,130m² automobile dealership and 441 vehicle parking spaces for vehicle storage and employees/visitors. Person trips for the commercial uses have been estimated using Land Use Code 840: Automobile Sales (New) rates from the Institute of Transportation Engineer's (ITE) *Trip Generation Manual, 11th Edition.* Due to the location and nature of the business, vehicle trips from ITE are assumed to equal person trips. The estimated trip generation is summarized in **Table 2**.

Table 2: Person Trip Generation

Land Use	ITE Code	GFA	AM Pea	ak Hour (pph ⁽¹⁾)	PM Peak Hour (pph)		
	ITE Code	GFA	IN	OUT	TOT	IN	OUT	TOT
Automobile Sales	840	22,900ft ²	31	12	43	22	33	55

^{1.} pph: peak person trips per hour

From the previous table, the proposed development is projected to generate 43 person/vehicle trips during the AM peak hour and 55 person/vehicle trips during the PM peak hour.

2.4.2 Trip Distribution

The assumed distribution of trips generated by the proposed development have been derived based on existing traffic patterns and local area knowledge. The assumed distribution is summarized as follows:

- 45% to/from the west via Bankfield Road
- 30% to/from the east via Bankfield Road
- 20% to/from the north via Prince of Wales Drive
- 5% to/from the south via Prince of Wales Drive

Based on the site layout and surrounding traffic patterns it is assumed the western access along Bankfield Road will serve as the primary access and serve most incoming traffic to the subject site. The eastern access is anticipated to be primarily used for vehicle storage. Due to existing queueing along Bankfield Road the proponent plans to instruct all employees travelling westbound to use the Elijah Court access and travel to Bankfield Road via First Line Road. To account for this, 50% of outbound trips traveling towards the Bankfield Road/Prince of Wales Drive intersection have been assigned to the Bankfield Road/First Line Road intersection.

2.5 Access Location

This section provides a preliminary review of the proposed access design presented within the Concept Plan. The access design has been reviewed with respect to relevant requirements of the City's *Private Approach By-Law* (PABL), *Zoning By-law* (ZBL) and the Transportation Association of Canada (TAC) *Geometric Design Guidelines for Canadian Roads*. However, the final access design will be confirmed as part of the future Site Plan Control application.

Section 25(a) of the PABL identifies that a property with 46-150m of frontage may have a maximum of two two-way private approaches. This requirement is met, as the subject site has approximately 130m of frontage to Bankfield Road and is proposing two two-way accesses. It has roughly 70m of frontage to Elijah Court and is proposing one full movement access.

Section 25(c) of the PABL identifies a maximum width requirement of 9.0m for any two-way private approach, as measured at the street line. Since the proposed accesses are approximately 9.0m in width, this requirement is met.

Section 25(m) of the PABL identifies a minimum space requirement of 18m for a private approach and the nearest intersecting street line and 15m between a two-way private approach and any other private approach. As the western proposed access along Bankfield Road is roughly 100m from the nearest intersecting street line and the two accesses along Bankfield Road are spaced roughly 58m from each other this requirement is met.

Section 25(p) of the PABL identifies a minimum separation requirement of 3.0m between the nearest edge of a private approach and the closest property line, as measured at the street line. Since the nearest edge of the access is proposed to be approximately 8.0m from the eastern property line, this requirement is met.

Section 25(u) of the PABL identifies a maximum driveway grade of 2% for a distance of 9m within the property, for driveways serving more than 50 parking spaces. The site grading is not finalized at this time and will be confirmed as part of the future Site Plan Application.

Intersection sight distance (ISD) at the proposed accesses have been determined using the TAC *Geometric Design Guidelines for Canadian Roads*. The ISD requirements for the Bankfield Road access, based on a design speed of 70km/h, is as follows:

Left Turn from Minor Road
 Right Turn from Minor Road
 130 metres
 110 metres

As the access meets Bankfield Road at a perpendicular angle and no sightline obstruction has been identified based on a desktop review, available sightlines are within recommended guidelines to allow safe all directional access to the development.

The TAC Geometric Design Guide for Canadian Roads identifies minimum clear throat lengths based on road classification and land use. For a light industrial land use under 10,000m² or a shopping centre under 25,000m² a minimum clear throat length of 15m is required for both land uses on arterial roads. Based on the concept plan, the clear throat length is approximately 12m and just short of the TAC requirements. Opportunities to improve the clear throat length to the TAC thresholds will be reviewed and the clear throat length will be confirmed as part of a subsequent Site Plan Control application.

The TAC Geometric Design Guide for Canadian Roads identifies a minimum corner clearance distance of 70m for an access downstream of a signal on an undivided arterial road. As the nearest access is roughly 100m away this requirement is met. The available corner clearance will be confirmed as part of the final TIA report once the Site Plan is finalized.

Based on the assumed distribution presented in Section 2.4.2 it is estimated that 4-12 vehicles will perform a westbound left turn at the proposed access during the AM and PM peak hours. The expected left turn volumes would equate to 1-2% of the existing advancing volumes. It is assumed that the proposed access configuration will present an improvement to the study area as the development removes three accesses to five different properties that currently have access to Bankfield Road within the turn lane. As no collision history exists within the study area and the assumed left turn volumes do not project to be a significant amount of through traffic the access configuration is recommended.

A detailed review of access operations and queuing from adjacent traffic signals is conducted in Section 4.9.

2.6 Exemptions Review

This module reviews possible exemptions from the final Transportation Impact Assessment, as outlined in the *2017 TIA Guidelines*. The applicable exemptions for this site are shown in **Table 3**.

Table 3: TIA Exemptions

Module	Element	Exemption Criteria	Exemption Status
4.1 Development	4.1.2 Circulation and Access	Only required for Site Plan and Zoning By-law Applications	Not Exempt
Design	4.1.3 New Street Networks	Only required for plans of subdivision	Exempt
4.2 Parking	4.2.1 Parking Supply	 Only required for Site Plan and Zoning By-law Applications 	Not Exempt
4.6 Neighbourhood Traffic Management	4.6.1 Adjacent Neighbourhoods	 If the development meets <u>all</u> of the following criteria along the route(s) site generated traffic is expected to utilize between arterial road and the site's access: Access to a Collector or Local; "Significant sensitive land use presence" exists where there is at least two of the following adjacent to the subject street segment (School, Park, Retirement/Older Adult Facility, Licenced Child Care Centre, Community Centre, or 50% or greater of the property is occupied by residential land uses) Application is for Zoning By-Law Amendment or Draft Plan of Subdivision At least 75 site generated auto trips Site Trip Infiltration expected 	Exempt
4.7	4.7.1 Transit Route Capacity	Greater than 75 site transit trips	Exempt
Transit	4.7.2 Transit Priority Requirements	Greater than 75 site auto trips	Exempt
4.8 Network Concept	All elements	Only required when proposed development generates more than 200 person-trips during the peak hour in excess of the equivalent volume permitted by the established zoning	Exempt
4.9 Intersection	4.9.1 Intersection Controls	Greater than 75 site auto trips	Exempt
Design	4.9.2 Intersection Design	Greater than 75 site auto trips	Exempt

Given the high traffic volumes along Bankfield Road and the proposed access configuration, City staff have requested a review of intersection operations within the area. Therefore, the following modules will be included in the TIA report:

- Module 4.1: Development Design
- Module 4.2: Parking
- Module 4.3: Boundary Streets
- Module 4.5: Transportation Demand Management
- Module 4.9: Intersection Design

Intersection capacity analysis will be completed in order to confirm if queuing from either study intersection will have an impact on the proposed accesses to Bankfield Road.

3.0 FORECASTING

3.1 Background Traffic

3.1.1 Other Area Developments

Buildout of the Stinson Farms Subdivision is anticipated by 2028. Traffic generated by this development has been added to the 2030 horizon year, using the distribution as outlined in the 2022 TIS. Relevant excerpts from the TIS are included in **Appendix E**.

3.1.2 General Background Growth Rate

Based on snapshots of the City's long-range model a growth rate of roughly 2% is expected on Bankfield Road to the east of Prince of Wales Drive and a 0%-1% growth rate is expected on Prince of Wales Drive and Bankfield Road to the west of Prince of Wales Drive.

An annual growth rate of 1.5% has been applied to Bankfield Road and Prince of Wales Drive in order to match the growth rate used within the TIA report for the Stinson Farms Subdivision.

3.2 Future Traffic Conditions

The figures listed below present the following future traffic conditions:

- Proposed site-generated traffic volumes in 2025 are shown in Figure 3;
- Background traffic volumes in 2025 are shown in Figure 4;
- Background traffic volumes in 2030 are shown in Figure 5;
- Total traffic volumes in 2025 are shown in **Figure 6**;
- Total traffic volumes in 2030 are shown in Figure 7.

Figure 3: Site-Generated Volumes

Figure 4: 2025 Background Traffic

Figure 5: 2030 Background Traffic

Figure 6: 2025 Total Traffic

Figure 7: 2030 Total Traffic

3.3 Demand Rationalization

A review of the existing intersection operations has been conducted to determine if queues from the study area intersections impede movements to/from the proposed accesses. The intersection parameters used in the analysis are consistent with the *2017 TIA Guidelines* (Saturated Flow Rate: 1,800 vphpl, Peak Hour Factor: 0.9 in existing conditions and 1.0 in future conditions).

Signal timing plans were obtained from the City, and are included in **Appendix H**.

3.3.1 Existing Intersection Operations

Intersection Capacity analysis has been conducted for the existing traffic conditions. The results of the analysis are summarized in **Table 4** for the weekday AM and PM peak hours. Detailed reports are included in **Appendix I**.

Table 4: Existing Traffic Operations

		Storage/		AM Peak		PM Peak			
Intersection	Mvmt	Spacing ⁽¹⁾	v/c [LOS]	50 th % Queue (m)	95 th % Queue (m)	v/c [LOS]	50 th % Queue (m)	95 th % Queue (m)	
	NBL	60m	0.05 [A]	2	8	0.08 [A]	3	10	
	NBT/R	-	0.70 [B]	55	85	0.59 [A]	42	68	
	SBL	80m	0.28 [A]	11	21	0.40 [A]	25	40	
Bankfield	SBT	-	0.16 [A]	14	26	0.40 [A]	46	69	
Road/Prince of	SBR	240m	0.30 [A]	10	23	0.45 [A]	36	61	
Wales Drive	EBL	180m	0.82 [D]	33	#92	0.92 [E]	56	#126	
	EBT/R	-	0.35 [A]	41	75	0.45 [A]	67	106	
	WBL	170m	0.05 [A]	2	8	0.07 [A]	4	11	
	WBT/R	380m	0.88 [D]	111	#205	0.88 [D]	148	#238	
	NB	-	0.43 [A]	11	24	0.39 [A]	9	28	
	EB	380m	0.49 [A]	20	45	0.70 [B]	38	85	
	WBL	180m	0.05 [A]	1	4	0.10 [A]	1	5	

		Storage/		AM Peak		PM Peak			
Intersection	Mvmt	Spacing ⁽¹⁾	v/c [LOS]	50 th % Queue (m)	95 th % Queue (m)	v/c [LOS]	50 th % Queue (m)	95 th % Queue (m)	
Bankfield Road/First Line Road	WBT	-	0.42 [A]	18	38	0.56 [A]	28	62	

#: volume for the 95th percentile cycle exceeds capacity

Under existing traffic conditions, all movements at the Bankfield Road/First Line Road intersection are currently operating with a LOS of B or better during AM and PM peak hour conditions. The eastbound left turn movement at the Bankfield Road/Prince of Wales Drive intersection operates with a LOS D during AM peak hour and a LOS E during the PM peak hour. The westbound through/right turn movement operates with a LOS D during the AM and PM peak hours. All other movements at the Bankfield Road/Prince of Wales Drive intersection operate with a LOS B or better.

The westbound 95th percentile queue lengths at the Bankfield Road/Prince of Wales Drive intersection currently extends past the proposed site accesses during the AM and PM peak hours.

3.3.2 2025 Background Traffic Conditions

Operating conditions at study area intersections are summarized in **Table 5** for the 2025 weekday AM and PM peak periods. Detailed reports are included in **Appendix I**.

Table 5: 2025 Background Traffic Operations

		Storage/		AM Peak		PM Peak			
Intersection	Mvmt	Spacing ⁽¹⁾	v/c [LOS]	50 th % Queue (m)	95 th % Queue (m)	v/c [LOS]	50 th % Queue (m)	95 th % Queue (m)	
	NBL	60m	0.04 [A]	2	7	0.07 [A]	3	10	
	NBT/R	-	0.63 [B]	49	78	0.51 [A]	35	62	
	SBL	80m	0.23 [A]	10	20	0.33 [A]	21	37	
Bankfield	SBT	-	0.14 [A]	13	24	0.35 [A]	39	63	
Road/Prince of	SBR	240m	0.26 [A]	4	15	0.38 [A]	21	45	
Wales Drive	EBL	180m	0.68 [B]	27	#63	0.79 [C]	41	#94	
	EBT/R	-	0.33 [A]	36	65	0.43 [A]	58	90	
	WBL	170m	0.04 [A]	2	8	0.07 [A]	4	10	
	WBT/R	380m	0.85 [D]	96	#171	0.88 [D]	127	187	
Bankfield	NB	-	0.41 [A]	10	22	0.33 [A]	8	23	
Road/First Line	EB	380m	0.44 [A]	18	37	0.57 [A]	32	68	
	WBL	180m	0.04 [A]	1	3	0.07 [A]	1	4	
Road	WBT	-	0.38 [A]	16	32	0.46 [A]	25	51	

#: volume for the 95th percentile cycle exceeds capacity

Under 2025 background traffic conditions, all movements at the Bankfield Road/First Line Road intersection operate with a LOS of A during AM and PM peak hour conditions. All movements at the Bankfield Road/Prince of Wales Drive intersection operate with a LOS D or better. The westbound 95th percentile queue lengths at the Bankfield Road/Prince of Wales Drive intersection is anticipated to extend past the proposed site accesses during the AM and PM peak hours.

3.3.3 2030 Background Traffic Conditions

Operating conditions at study area intersections are summarized in **Table 6** for the 2030 weekday AM and PM peak periods. Detailed reports are included in **Appendix I**.

Table 6: 2030 Background Traffic Operations

		Storage/		AM Peak		PM Peak			
Intersection	Mvmt	Spacing ⁽¹⁾	v/c	50 th %	95 th %	v/c	50 th %	95 th %	
		opacing	[LOS]	Queue (m)	Queue (m)	[LOS]	Queue (m)	Queue (m)	
	NBL	60m	0.04 [A]	2	7	0.07 [A]	3	10	
	NBT/R	-	0.69 [B]	53	83	0.57 [A]	41	66	
	SBL	80m	0.25 [A]	10	20	0.36 [A]	22	37	
Bankfield	SBT	-	0.16 [A]	14	25	0.39 [A]	45	68	
Road/Prince of	SBR	240m	0.27 [A]	8	19	0.41 [A]	29	51	
Wales Drive	EBL	180m	0.72 [C]	27	#71	0.82 [D]	44	#99	
	EBT/R	-	0.35 [A]	40	74	0.45 [A]	66	104	
	WBL	170m	0.04 [A]	2	8	0.06 [A]	4	10	
	WBT/R	380m	0.86 [D]	108	#198	0.87 [D]	142	#226	
Bankfield	NB	-	0.41 [A]	10	21	0.34 [A]	8	25	
Road/First Line	EB	380m	0.47 [A]	20	42	0.61 [B]	36	79	
	WBL	180m	0.05 [A]	1	3	0.08 [A]	1	4	
Road	WBT	-	0.42 [A]	18	37	0.49 [A]	28	59	

#: volume for the 95th percentile cycle exceeds capacity

Under 2030 background traffic conditions, all movements at the Bankfield Road/First Line Road intersection operate with a LOS of B or better during AM and PM peak hour conditions. All movements at the Bankfield Road/Prince of Wales Drive intersection operate with a LOS D or better. The westbound 95th percentile queue lengths at the Bankfield Road/Prince of Wales Drive intersection is anticipated to extend past the proposed site accesses during the AM and PM peak hours.

4.0 ANALYSIS

4.1 Development Design

As the concept plan is preliminary at this time, a detailed review of the development design will be conducted as part of the future Site Plan Control application when the final plan is prepared.

4.2 Parking

As the concept plan is preliminary at this time, a detailed review of the on-site parking provisions will be conducted as part of the future Site Plan Control application when the final plan is prepared.

4.3 Boundary Street Design

This section provides a review of the boundary streets Bankfield Road and Elijah Court using complete streets principles. The Multi-Modal Level of Service (MMLOS) Guidelines, produced by IBI Group in October 2015, were used to evaluate the levels of service for each alternative mode of transportation on the boundary streets. The subject site is located within a Village Area (per Schedule A of the City's previous Official Plan, which is referenced by the MMLOS Guidelines).

A detailed segment MMLOS review of the boundary streets is included in **Appendix H**. A summary of the segment MMLOS analysis is provided below in **Table 7**.

Table 7: Segment MMLOS Summary

Segment	PLOS		BLOS		TLOS		TkLOS	
Segment	Actual	Target	Actual	Target	Actual	Target	Actual	Target
Bankfield Road	F	С	E	D	D	-	D	D
Elijah Court	F	С	F	D	D	-	F	-

The results of the segment MMLOS analysis can be summarized as follows:

- Both boundary streets do not meet the target pedestrian level of service (PLOS);
- Both boundary streets do not meet the target bicycle level of service (BLOS);
- No target transit level of service (TLOS) has been identified for either boundary street however both streets achieve a TLOS of D; and
- Bankfield Road meets the target truck level of service (TkLOS) and no target TkLOS has been identified for Elijah Court, however Elijah Court achieves a LOS F.

Pedestrian Level of Service

Both sides of Bankfield Road do not meet the target PLOS C. As part of the recent resurfacing of Bankfield Avenue, the City implemented a depressed curb and a paved shoulder along the site frontage. Given the rural context of Bankfield Road, no further modifications are recommended as part of the proposed development.

Both sides of Elijah Court do not meet the target PLOS C. Elijah Court is currently a two-lane undivided rural roadway with a road platform width of approximately 6.5m that serves two single detached dwelling units that are to be removed as part of this application. As a new pedestrian facility along the site frontage will not provide system connectivity to the greater network, no recommendations are proposed as part of the proposed development.

Bicycle Level of Service

Within the study area neither boundary road meets the target BLOS. On Bankfield Road a BLOS D can be achieved by either reducing the operating speed to 60km/h or implementing a separated cycling facility. This is identified for the City's consideration.

On Elijah Court a BLOS C can be achieved by reducing the operating speed to 40km/h. This is identified for the City's consideration.

4.4 Transportation Demand Management

A detailed review of Transportation Demand Management initiatives will be conducted as part of the future Site Plan Control application.

4.5 Intersection Design

4.5.1 2025 Total Intersection Operations

Intersection capacity analysis has been conducted for the 2025 total traffic conditions. The results of the analysis are summarized in **Table 8** for the weekday AM and PM peak hours. Detailed reports are included in **Appendix I**.

Table 8: 2025 Total Traffic Operations

		Storagol	AM Peak			PM Peak			
Intersection	Mvmt	Storage/ Spacing ⁽¹⁾	v/c	50 th %	95 th %	v/c	50 th %	95 th %	
		Spacing	[LOS]	Queue (m)	Queue (m)	[LOS]	Queue (m)	Queue (m)	
	NBL	60m	0.04 [A]	2	7	0.07 [A]	3	10	
	NBT/R	-	0.64 [B]	50	78	0.53 [A]	37	62	
	SBL	80m	0.26 [A]	11	21	0.35 [A]	23	38	
Bankfield	SBT	-	0.14 [A]	13	24	0.36 [A]	41	63	
Road/Prince of	SBR	240m	0.26 [A]	4	16	0.39 [A]	25	47	
Wales Drive	EBL	180m	0.69 [B]	27	#65	0.80 [C]	43	#97	
	EBT/R	-	0.34 [A]	38	69	0.43 [A]	60	94	
	WBL	170m	0.05 [A]	2	8	0.07 [A]	4	11	
	WBT/R	380m	0.85 [D]	98	#177	0.87 [D]	135	#211	
Bankfield	NB	-	0.41 [A]	10	22	0.36 [A]	9	26	
Road/First Line	EB	380m	0.45 [A]	18	38	0.58 [A]	33	72	
	WBL	180m	0.04 [A]	1	3	0.07 [A]	1	4	
Road	WBT	-	0.39 [A]	16	34	0.46 [A]	25	54	
Bankfield Road/Access	NB	15m	14 sec [B]	-	0	15 sec [B]	-	1	
	EB	100m	0 sec [A]	-	0	0 sec [A]	-	0	
	WBL	25m	8 sec [A]	-	0	9 sec [A]	-	0	
" I OSTA	WBT	280m	0 sec [A]	-	0	0 sec [A]	-	0	

^{#:} volume for the 95th percentile cycle exceeds capacity

Compared to the 2025 background traffic conditions, site-generated traffic is anticipated to have marginal impacts on traffic operations within the study area.

The 95th percentile queues from westbound traffic at the Bankfield Road/Prince of Wales Drive intersection is expected to extend past the proposed Bankfield Road access during the AM and PM peak hours.

4.5.2 2030 Total Intersection Operations

Intersection capacity analysis has been conducted for the 2030 total traffic conditions. The results of the analysis are summarized in **Table 9** for the weekday AM and PM peak hours. Detailed reports are included in **Appendix I**.

Table 9: 2030 Total Traffic Operations

		Mymt Storage/		AM Peak			PM Peak			
Intersection	Mvmt	Spacing ⁽¹⁾	v/c	50 th %	95 th %	v/c	50 th %	95 th %		
		Spacing	[LOS]	Queue (m)	Queue (m)	[LOS]	Queue (m)	Queue (m)		
	NBL	60m	0.04 [A]	2	7	0.07 [A]	3	10		
	NBT/R	-	0.69 [B]	54	84	0.58 [A]	41	66		
	SBL	80m	0.27 [A]	11	21	0.38 [A]	23	38		
Bankfield	SBT	-	0.16 [A]	14	25	0.40 [A]	45	68		
Road/Prince of	SBR	240m	0.27 [A]	8	20	0.41 [A]	30	53		
Wales Drive	EBL	180m	0.73 [C]	27	#75	0.84 [D]	47	#104		
	EBT/R	-	0.37 [A]	43	78	0.46 [A]	68	108		
	WBL	170m	0.05 [A]	2	8	0.07 [A]	4	11		
	WBT/R	380m	0.88 [D]	111	#204	0.88 [D]	151	#242		
Bankfield Road/First Line Road	NB	-	0.41 [A]	10	22	0.36 [A]	9	28		
	EB	380m	0.48 [A]	20	43	0.61 [B]	37	84		
	WBL	180m	0.05 [A]	1	3	0.08 [A]	1	5		
	WBT	-	0.43 [A]	18	39	0.50 [A]	29	62		

		Storage/	AM Peak			PM Peak		
Intersection	Mvmt	Spacing ⁽¹⁾	v/c	50 th %	95 th %	v/c	50 th %	95 th %
		Spacing	[LOS]	Queue (m)	Queue (m)	[LOS]	Queue (m)	Queue (m)
	NB	15m	14 sec [B]	-	1	15 sec [C]	-	1
Bankfield	EB	100m	0 sec [A]	-	0	0 sec [A]	-	0
Road/Access	WBL	25m	8 sec [A]	-	0	9 sec [A]	-	0
	WBT	280m	0 sec [A]	-	0	0 sec [A]	-	0

#: volume for the 95th percentile cycle exceeds capacity

Compared to the 2030 background traffic conditions, site-generated traffic is anticipated to have marginal impacts on traffic operations within the study area.

The 95th percentile queues from westbound traffic at the Bankfield Road/Prince of Wales Drive intersection is expected to extend past the proposed Bankfield Road access during the AM and PM peak hours.

The site traffic does not impact delays at any study area intersection and does not significantly impact the existing westbound queues at the Bankfield Road/Prince of Wales Drive intersection. The proposed development is expected to generate four outbound left turning vehicles at the Bankfield Road site access during the AM peak hour and 12 outbound left turning vehicles during the PM peak hour. This equates to roughly one outbound left turning vehicle every 15 minutes in the AM peak hour and one outbound left turning vehicle every 5 minutes during the PM peak hour.

The access to Bankfield Road is proposed as a full movement access but due to existing queuing issues along Bankfield Road the proponent plans on directing all westbound employees to travel through Bankfield Road/First Line Road intersection via Elijah Court. As the volumes of customers exiting the access are relatively low during the peak hours drivers may use courtesy from other drivers in order to access Bankfield Road or they may use Elijah Court and travel to the Bankfield Road/First Line Road intersection to gain access to Bankfield Road. As previously stated in Section 2.5, it is assumed that the proposed access configuration will present an improvement to the study area as the development removes three accesses to five different properties that currently have access to Bankfield Road within the turn lane.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the foregoing, the conclusions and recommendations of this TIA can be summarized as follows:

Forecasting

- The proposed development is projected to generate 43 person/vehicle trips during the AM peak hour and 55 person/vehicle trips during the PM peak hour.
- Due to existing queueing along Bankfield Road the proponent plans to instruct all employees travelling westbound to use the Elijah Court access and travel to Bankfield Road via First Line Road. To account for this, 50% of outbound trips traveling towards the Bankfield Road/Prince of Wales Drive intersection have been assigned to the Bankfield Road/First Line Road intersection.

Boundary Streets

Both boundary streets do not meet the target pedestrian level of service (PLOS).

- Both boundary streets do not meet the target bicycle level of service (BLOS).
- No target transit level of service (TLOS) has been identified for either boundary street however both streets achieve a TLOS of D.
- Bankfield Road meets the target truck level of service (TkLOS) and no target TkLOS has been identified for Elijah Court, however Elijah Court achieves a LOS F.
- Both sides of Bankfield Road do not meet the target PLOS C. As part of the recent resurfacing of Bankfield Avenue, the City implemented a depressed curb and a paved shoulder along the site frontage. Given the rural context of Bankfield Road, no further modifications are recommended as part of the proposed development.
- Both sides of Elijah Court do not meet the target PLOS C. Elijah Court is currently a twolane undivided rural roadway with a road platform width of approximately 6.5m that serves two single detached dwelling units that are to be removed as part of this application. As a new pedestrian facility along the site frontage will not provide system connectivity to the greater network, no recommendations are proposed as part of the proposed development.
- On Elijah Court a BLOS C can be achieved by reducing the operating speed to 40km/h. This is identified for the City's consideration.

Background Traffic Analysis

 Under 2030 background traffic conditions, all movements at traffic signal controlled intersections are anticipated to operate with a LOS D or better during AM and PM peak hour conditions.

Total Traffic Analysis

- The site traffic does not impact delays at any study area intersection and does not significantly impact the existing westbound queues at the Bankfield Road/Prince of Wales Drive intersection. The proposed development is expected to generate four outbound left turning vehicles at the Bankfield Road site access during the AM peak hour and 12 outbound left turning vehicles during the PM peak hour. This equates to roughly one outbound left turning vehicle every 15 minutes in the AM peak hour and one outbound left turning vehicle every 5 minutes during the PM peak hour.
- The access to Bankfield Road is proposed as a full movement access but due to existing queuing issues along Bankfield Road the proponent plans on directing all westbound employees to travel through Bankfield Road/First Line Road intersection via Elijah Court. As the volumes of customers exiting the access are relatively low during the peak hours drivers may use courtesy from other drivers in order to access Bankfield Road or they may use Elijah Court and travel to the Bankfield Road/First Line Road intersection to gain access to Bankfield Road. It is assumed that the proposed access configuration will present an improvement to the study area as the development removes three accesses to five different properties that currently have access to Bankfield Road within the turn lane.

Based on the foregoing, the proposed development is recommended from a transportation perspective.

NOVATECH

Prepared by:

Trevor Van Wiechen, M.Eng. E.I.T. | Transportation

In Van Wilh

Reviewed by:

Brad Byvelds, P.Eng. Project Manager | Transportation

APPENDIX A

Preliminary Concept Plan

APPENDIX B

TIA Screening Form

City of Ottawa 2017 TIA Guidelines TIA Screening

1. Description of Proposed Development

Municipal Address	1450, 1454, 1458, 1464, & 1468 Bankfield Rd, and 5479 & 5485 Elijah Crt,
Description of Location	Southeast corner of Bankfield Rd/Prince of Wales Dr
Land Use Classification	Automobile Sales
Development Size (units)	
Development Size square metre (m²)	2,130
Number of Accesses and Locations	Two to Bankfield Rd, One to Elijah Crt
Phase of Development	One
Buildout Year	2024

If available, please attach a sketch of the development or site plan to this form.

2. Trip Generation Trigger

Considering the Development's Land Use type and Size (as filled out in the previous section), please refer to the Trip Generation Trigger checks below.

Table notes:

- 1. Table 2, Table 3 & Table 4 TRANS Trip Generation Manual
- 2. Institute of Transportation Engineers (ITE) Trip Generation Manual 11.1 Ed.

Land Use Type	Minimum Development Size
Single-family homes	60 units
Multi-Use Family (Low-Rise) ¹	90 units
Multi-Use Family (High-Rise) ¹	150 units
Office ²	1,400 m ²
Industrial ²	7,000 m ²
Fast-food restaurant or coffee shop ²	110 m²
Destination retail ²	1,800 m ²
Gas station or convenience market ²	90 m²

Revision Date: June, 2023

If the proposed development size is equal to or greater than the sizes identified above, the Trip Generation Trigger is satisfied.

3. Location Triggers

	Yes	No
Does the development propose a new driveway to a boundary street that is designated as part of the Transit Priority Network, Rapid Transit network or Cross-Town Bikeways?		✓
Is the development in a Hub, a Protected Major Transit Station Area (PMTSA), or a Design Priority Area (DPA)? ²		✓

If any of the above questions were answered with 'Yes,' the Location Trigger is satisfied.

4. Safety Triggers

	Yes	No
Are posted speed limits on a boundary street are 80 kilometers per hour (km/h) or greater?		✓
Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway?	✓	
Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 metre [m] of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions)?	V	
Is the proposed driveway within auxiliary lanes of an intersection?	✓	
Does the proposed driveway make use of an existing median break that serves an existing site?		/

Revision Date: June, 2023

² Hubs are identified in Schedules B1 to B8 of the City of Ottawa Official Plan. PMTSAs are identified in Schedule C1 of the Official Plan. DPAs are identified in Schedule C7A and C7B of the Official. See Chapter 4 for a list of City of Ottawa Planning and Engineering documents that support the completion of TIA.

Transportation Impact Assessment Guidelines

	Yes	No
Is there is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?		✓
Does the development include a drive-thru facility?		✓

If any of the above questions were answered with 'Yes,' the Safety Trigger is satisfied.

5. Summary

Results of Screening	Yes	No
Does the development satisfy the Trip Generation Trigger?		✓
Does the development satisfy the Location Trigger?		✓
Does the development satisfy the Safety Trigger?	✓	

If none of the triggers are satisfied, the TIA Study is complete. If one or more of the triggers is satisfied, the TIA Study must continue into the next stage (Screening and Scoping).

Revision Date: June, 2023

APPENDIX C

Traffic Count Data

Peak Hour Diagram

07:00:00

10:00:00

Specified Period

One Hour Peak

To:

From: To:

From: 07:30:00

08:30:00

Prince of Wales Dr & Bankfield Rd

 Site Code:
 2337700001

 Count Date:
 Nov 23, 2023

Intersection:

Weather conditions:

Clear

** Signalized Intersection **

Major Road: Bankfield Rd runs E/W

North Approach

	Out	In	Total
	368	549	917
	15	24	39
<i>₹</i>	0	0	0
	383	573	956

Prince of Wales

	44	1	L	Ú
Totals	234	83	66	0
	227	81	60	0
	7	2	6	0
<i>₫</i>	0	0	0	0

East Approach

	Out	In	Total
	445	347	792
	68	52	120
₫ %	0	0	0
	513	399	912

Bankfield Rd

	Totals			ॐ	
7	0	0	0	0	
4	247	235	12	0	
\Rightarrow	313	269	44	0	
4	2	2	0	0	

Peds: 0

Peds: 0

Bankfield Rd

	Totals			ॐ
C	0	0	0	0
Ł	107	100	7	0
-	391	333	58	0
F	15	12	3	0

West Approach

	Out	In	Total
	506	570	1076
	56	66	122
<i>₫</i>	0	0	0
	562	636	1198

	4	1		J.
Totals	11	219	20	0
	10	214	18	0
	1	5	2	0
<i>₫</i> %	0	0	0	0

Peds: 0

Prince of Wales

South Approach

	Out	ln	Total
	242	95	337
	8	5	13
₫	0	0	0
	250	100	350

Comments

Peak Hour Diagram

Specified Period

One Hour Peak

From: 11:30:00 To: 13:30:00

From: 11:30:00 To: 12:30:00

Intersection: Prince of Wales Dr & Bankfield Rd

Site Code: 2337700001 **Count Date:** Nov 23, 2023 Weather conditions:

Clear

** Signalized Intersection **

Major Road: Bankfield Rd runs E/W

North Approach

	Out	In	Total
	294	280	574
	17	16	33
<i>₹</i>	0	0	0
	311	296	607

Prince of Wales

	48	1	L	Ú
Totals	160	86	65	0
	144	86	64	0
	16	0	1	0
<i>₫</i>	0	0	0	0

Peds: 0

East Approach

	Out	In	Total
	315	282	597
	31	42	73
₫ %	0	0	0
	346	324	670

Bankfield Rd

	Totals			₫ %	
7	0	0	0	0	
4	126	113	13	0	
→	241	202	39	0	
4	1	1	0	0	

Peds: 0

Bankfield Rd

	Totals			<i>₫</i>
C	0	0	0	0
Ł	73	70	3	0
-	258	230	28	0
F	15	15	0	0

West Approach

	Out	In	Total
	316	378	694
	52	44	96
<i>₫</i>	0	0	0
	368	422	790

	4	1		.1
Totals	4	97	18	0
	4	97	16	0
	0	0	2	0
₫	0	0	0	0

Peds: 0

Prince of Wales

South Approach

	Out	In	Total
	117	102	219
	2	0	2
ॐ	0	0	0
	119	102	221

- Trucks

♂ - Bicycles

Comments

Peak Hour Diagram

Specified Period

One Hour Peak

From: 15:00:00 To: 18:00:00

From: 16:30:00 To: 17:30:00

Intersection: Prince of Wales Dr & Bankfield Rd

 Site Code:
 2337700001

 Count Date:
 Nov 23, 2023

Weather conditions:

Clear

** Signalized Intersection **

Major Road: Bankfield Rd runs E/W

North Approach

	Out	In	Total
	626	508	1134
	17	17	34
<i>₹</i>	0	0	0
	643	525	1168

Prince of Wales

	4	1	L	Ĵ
Totals	340	194	109	0
	326	192	108	0
	14	2	1	0
<i>₫</i>	0	0	0	0

East Approach

	Out	In	Total
	522	513	1035
	53	40	93
₫ %	0	0	0
	575	553	1128

Bankfield Rd

	Totals			₫	
7	0	0	0	0	
4	298	291 393	7	0	
\Rightarrow	432	393	39	0	
4	2	1	1	0	

Peds: 0

Peds: 0

Bankfield Rd

	Totals			æ
C	0	0	0	0
£	88	86	2	0
-	465	414	51	0
F	22	22	0	0

West Approach

	Out	In	Total
	685	752	1437
	47	66	113
<i>₫</i>	0	0	0
	732	818	1550

	4	1		J.
Totals	13	139	12	0
⊟	12	131	12	0
	1	8	0	0
₫	0	0	0	0

Peds: 0

Prince of Wales

South Approach

	Out	In	Total
	155	215	370
	9	3	12
₫6	0	0	0
	164	218	382

Comments

Turning Movement Count - Peak Hour Diagram

BANKFIELD RD @ FIRST LINE RD

Comments

2023-Nov-15 Page 2 of 9

Turning Movement Count - Peak Hour Diagram

BANKFIELD RD @ FIRST LINE RD

Comments

2023-Nov-15 Page 3 of 9

Turning Movement Count - Peak Hour Diagram

BANKFIELD RD @ FIRST LINE RD

Comments

2023-Nov-15 Page 1 of 9

APPENDIX D

Collision Records

Collision Details Report - Public Version

From: January 1, 2017 **To:** December 31, 2021

Location: BANKFIELD RD @ PRINCE OF WALES DR

Traffic Control: Traffic signal Total Collisions: 29

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver Vehicle type		First Event	No. Ped
2017-Jan-11, Wed,15:38	Clear	Rear end	P.D. only	Dry	North	Going ahead	Pick-up truck	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2017-Mar-30, Thu,14:20	Clear	Angle	P.D. only	Dry	South	Unknown	Unknown	Other motor vehicle	0
					East	Going ahead	Pick-up truck	Other motor vehicle	
2017-Apr-27, Thu,16:04	Clear	Rear end	P.D. only	Dry	South	Going ahead	Delivery van	Other motor vehicle	0
					South	Slowing or stoppin	g Pick-up truck	Other motor vehicle	
					South	Stopped	Passenger van	Other motor vehicle	
2017-May-29, Mon,08:55	Rain	Turning movement	Non-fatal injury	Wet	North	Turning left	Passenger van	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2017-Jun-11, Sun,08:15	Clear	Rear end	P.D. only	Dry	West	Going ahead	Automobile, station wagon	Other motor vehicle	0
					West	Stopped	Automobile, station wagon	Other motor vehicle	
2017-Jul-14, Fri,12:59	Rain	Rear end	P.D. only	Wet	North	Slowing or stoppin	g Pick-up truck	Other motor vehicle	0
					North	Stopped	Pick-up truck	Other motor vehicle	
2017-Aug-08, Tue,15:57	Clear	Rear end	P.D. only	Dry	West	Going ahead	Truck - dump	Other motor vehicle	0
					West	Stopped	Pick-up truck	Other motor vehicle	
2017-Sep-02, Sat,14:30	Clear	Rear end	P.D. only	Dry	East	Slowing or stoppin	g Automobile, station wagon	Other motor vehicle	0
					East	Slowing or stoppin	g Automobile, station wagon	Other motor vehicle	
2017-Oct-01, Sun,13:27	Clear	Rear end	Non-fatal injury	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Automobile, station wagon	Other motor vehicle	
					South	Stopped	Automobile, station wagon	Other motor vehicle	
2017-Nov-27, Mon,16:01	Clear	Rear end	P.D. only	Ice	East	Stopped	Automobile, station wagon	Other motor vehicle	0
					East	Slowing or stoppin	g Pick-up truck	Other motor vehicle	

December 01, 2023 Page 1 of 3

Collision Details Report - Public Version

From: January 1, 2017 **To:** December 31, 2021

Location: BANKFIELD RD @ PRINCE OF WALES DR

Traffic Control: Traffic signal Total Collisions: 29

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	r Vehicle type	First Event	No. Ped
2017-Dec-27, Wed,15:24	Clear	Rear end	P.D. only	Ice	East	Going ahead	Automobile, station wagon	Other motor vehicle	0
					East	Stopped	Automobile, station wagon	Other motor vehicle	
					East	Stopped	Automobile, station wagon	Other motor vehicle	
2018-Feb-20, Tue,13:18	Rain	Turning movement	P.D. only	Wet	South	Overtaking	Automobile, station wagon	Other motor vehicle	0
					South	Turning right	Truck - tractor	Other motor vehicle	
2018-Feb-25, Sun,17:30	Clear	Rear end	P.D. only	Dry	East	Going ahead	Automobile, station wagon	Other motor vehicle	0
					East	Stopped	Automobile, station wagon	Other motor vehicle	
2018-Jul-06, Fri,13:57 Cle	Clear	Turning movement	Non-fatal injury	Dry	East	Turning left	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Aug-02, Thu,08:00 Cl	Clear	Sideswipe	P.D. only	Dry	East	Overtaking	Unknown	Other motor vehicle	0
					East	Stopped	Automobile, station wagon	Other motor vehicle	
2018-Sep-13, Thu,06:26	Clear	Rear end	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					North	Stopped	Pick-up truck	Other motor vehicle	
2018-Oct-26, Fri,17:03	Clear	Rear end	Non-fatal injury	Dry	West	Going ahead	Automobile, station wagon	Other motor vehicle	0
					West	Stopped	Automobile, station wagon	Other motor vehicle	
					West	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Apr-25, Thu,17:46	Clear	Turning movement	P.D. only	Dry	North	Turning left	Automobile, station wagon	Other motor vehicle	0
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Oct-07, Mon,14:50	Clear	Rear end	P.D. only	Dry	East	Slowing or stopping	g Truck and trailer	Other motor vehicle	0
					East	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Oct-20, Sun,17:00	Clear	Rear end	Non-fatal injury	Ice	East	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	0
					East	Turning right	Automobile, station wagon	Other motor vehicle	
2019-Dec-03, Tue,06:45	Clear	Rear end	P.D. only	Dry	East	Going ahead	Automobile, station wagon	Other motor vehicle	0
					East	Stopped	Pick-up truck	Other motor vehicle	

December 01, 2023 Page 2 of 3

Collision Details Report - Public Version

From: January 1, 2017 **To:** December 31, 2021

Location: BANKFIELD RD @ PRINCE OF WALES DR

Traffic Control: Traffic signal Total Collisions: 29

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver Vehicle type		First Event	No. Ped
2020-Jan-03, Fri,19:16	Clear	Rear end	P.D. only	Dry	West	Going ahead	Pick-up truck	Other motor vehicle	0
					West	Stopped	Automobile, station wagon	Other motor vehicle	
2020-Feb-20, Thu,08:50	Clear	Rear end	P.D. only	Dry	North	Going ahead	Pick-up truck	Other motor vehicle	0
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2020-Jul-09, Thu,06:16 Clea	Clear	Rear end	P.D. only	Dry	East	Going ahead	Automobile, station wagon	Other motor vehicle	0
					East	Stopped	Automobile, station wagon	Other motor vehicle	
2020-Sep-25, Fri,12:02	Clear	Rear end	P.D. only	Dry	North	Going ahead	Pick-up truck	Other motor vehicle	0
					North	Slowing or stoppin	g Pick-up truck	Other motor vehicle	
					North	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	
2020-Dec-04, Fri,16:15	Clear	Rear end	P.D. only	Dry	North	Unknown	Unknown	Other motor vehicle	0
					North	Stopped	Pick-up truck	Other motor vehicle	
2021-Aug-17, Tue,13:02	Clear	Rear end	P.D. only	Dry	East	Turning left	Pick-up truck	Other motor vehicle	0
					East	Turning left	Automobile, station wagon	Other motor vehicle	
2021-Aug-26, Thu,16:37	Clear	Angle	Non-fatal injury	Dry	North	Turning right	Pick-up truck	Other motor vehicle	0
					East	Going ahead	Truck and trailer	Other motor vehicle	
2021-Sep-30, Thu,08:45	Clear	Turning movement	P.D. only	Dry	South	Turning left	Automobile, station wagon	Other motor vehicle	0
					North	Going ahead	Automobile, station wagon	Other motor vehicle	

December 01, 2023 Page 3 of 3

Collision Details Report - Public Version

From: January 1, 2017 **To:** December 31, 2021

Location: BANKFIELD RD btwn PRINCE OF WALES DR & FIRST LINE RD

Traffic Control: No control

Total Collisions: 7

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver Vehicle type		First Event	No. Ped
2017-Mar-14, Tue,16:35	Snow	Approaching	P.D. only	Loose snow	West	Going ahead	Automobile, station wagon	Other motor vehicle	0
					East	Going ahead	Pick-up truck	Other motor vehicle	
2018-Feb-02, Fri,16:44	Clear	Rear end	P.D. only	Dry	West	Going ahead	Automobile, station wagon	Other motor vehicle	0
					West	Stopped	Pick-up truck	Other motor vehicle	
					West	Stopped	Delivery van	Other motor vehicle	
2018-Feb-05, Mon,15:37	Snow	SMV other	P.D. only	Loose snow	East	Going ahead	Automobile, station wagon	Ran off road	0
2018-Aug-28, Tue,17:38	Clear	Rear end	P.D. only	Dry	West	Slowing or stoppin	ng Automobile, station wagon	Other motor vehicle	0
					West	Stopped	Automobile, station wagon	Other motor vehicle	
2019-Jan-20, Sun,21:01	Snow	SMV other	P.D. only	Loose snow	East	Going ahead	Automobile, station wagon	Ran off road	0
2020-Jul-04, Sat,18:10	Clear	SMV other	P.D. only	Dry	West	Going ahead	Automobile, station wagon	Animal - wild	0
2021-Jul-30, Fri,07:45	Clear	Sideswipe	P.D. only	Dry	West	Turning left	Pick-up truck	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	

December 01, 2023 Page 1 of 1

Collision Details Report - Public Version

From: January 1, 2017 To: December 31, 2021

Location: FIRST LINE RD btwn ELIJAH CRT & BANKFIELD RD

Traffic Control: No control

Total Collisions: 1

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	r Vehicle type	First Event	No. Ped
2018-Feb-23, Fri,22:15	Freezing Rain	SMV other	P.D. only	Packed snow	South	Going ahead	Passenger van	Skidding/sliding	0

December 01, 2023 Page 1 of 1

APPENDIX E

Other Area Developments

Dxx-xx-xx

Website

DEVELOPMENT DEPARTMENT, CITY OF OTTAWA

www.novatech-eng.com

5.2 Background Traffic

5.2.1 Other Area Developments

A description of other study area development is included in Section 4.2.

Buildout of Stage 2 of the Minto Mahogany Subdivision is anticipated by 2027. Traffic generated by this development has been added to the 2028 buildout and 2033 horizon years, using the distribution as outlined in the 2017 TIS. Relevant excerpts from the TIS for Stage 2 of the Minto Mahogany Subdivision are included in **Appendix F**.

A review of available documents on the City's Development Application search tool suggests that traffic generated by the following developments is expected to have a negligible impact on the adjacent roadways:

- The residential redevelopment at 5497 Manotick Main Street
- The residential development at 1164-1166 Highcroft Drive
- The retail/office development at 5514 Manotick Main Street

As the trip generation trigger for these developments was not met, traffic generated by these developments has been considered negligible and has not been explicitly added to background traffic.

Novatech Page 15

APPENDIX F

Signal Timing Plans

Traffic Signal Timing

City of Ottawa, Public Works Department

Traffic Signal Operations Unit

Intersection:	Main:	Bankfield	Side:	First Line
Controller:	MS 3200		TSD:	5926
Author:	Matthew	Anderson	Date:	24-Mar-2022

Existing Timing Plans[†]

Plan

Ped Minimum Time

	AM Peak	Off Peak	PM Peak		Weekend	Walk	DW	A+R
1	1	2	3	4	5			
Cycle	Free	Free	Free	Free Free				
Offset	-	-	-	-	-			
EB Thru	max=66.5	max=66.5	max=66.5	max=51.5	max=66.5	7	17	4.6+1.9
WB Thru	max=66.5	max=66.5	max=66.5	max=51.5	max=66.5	7	17	4.6+1.9
NB Thru	max=36	max=36	max=36	max=21	max=36	7	12	3.7+2.3
SB Thru	max=36	max=36	max=36	max=21	max=36	7	12	3.7+2.3

Phasing Sequence[‡]

Plan: All

Notes: 1) The EW movements have a min recall of 24s

Schedule

Weekday

Plan
4
1
2
3
2
4

Weekend

Time	Plan
0:15	4
9:00	5
21:30	4

Notes

Asterisk (*) Indicates actuated phase

Pedestrian signal

(fp): Fully Protected Left Turn

^{†:} Time for each direction includes amber and all red intervals

^{‡:} Start of first phase should be used as reference point for offset

Traffic Signal Timing

City of Ottawa, Public Works Department

Traffic Signal Operations Unit

Intersection: Prince of Wales Main: Side: Bankfield Controller: TSD: ATC 3 6375

Author: Matthew Anderson Date: 17-Nov-2023

Existing Timing Plans[†]

Plan **Ped Minimum Time** Walk DW A+R **AM Peak** Off Peak **PM Peak** Night Weekend 2 3 4 5 Cycle Free Free Free Free Free Offset 4.6+1.9 NB Thru max=41.5 max=41.5 max=41.5 max=41.5 max=41.5 SB Thru 7 4.6+1.9 max=56.5 max=56.5 max=61.5 max=56.5 max=56.5 14 EB Left max=21.9 max=21.9 max=26.9 max=21.9 max=21.9 3.7+3.2 SB Right max=21.9 max=21.9 max=26.9 max=21.9 max=21.9 3.7+3.2 EB Thru max=61.9 max=61.9 max=81.9 max=61.9 max=61.9 3.7+3.2 WB Thru max=46.9 max=46.9 max=61.9 max=46.9 max=46.9 23 3.7+3.2 SB Left max=21.5 max=21.5 max=26.5 max=21.5 4.6+1.9 max=21.5

Phasing Sequence[‡]

Notes: 1) The NS movements have a min recall of 21s

Schedule

Weekday

rroomaay	
Time	Plan
0:10	4
6:00	1
9:30	2
15:00	3
18:30	2
23:00	4

Weekend

Time	Plan
0:10	4
8:00	5
23:00	4

Notes

Asterisk (*) Indicates actuated phase

(fp): Fully Protected Left Turn

◄····· Pedestrian signal

^{†:} Time for each direction includes amber and all red intervals

^{‡:} Start of first phase should be used as reference point for offset

APPENDIX G

Detailed Analysis Reports

	۶	→	•	•	+	•	•	†	~	/	+	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	f,		ሻ	ĵ.		7	f a		*		7
Traffic Volume (vph)	247	313	2	15	391	107	11	219	20	66	83	234
Future Volume (vph)	247	313	2	15	391	107	11	219	20	66	83	234
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	180.0		0.0	200.0		0.0	100.0		0.0	80.0		240.0
Storage Lanes	1		0	1		0	1		0	1		1
Taper Length (m)	100.0			100.0			75.0			100.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.999			0.968			0.988				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1695	1783	0	1695	1727	0	1695	1763	0	1695	1784	1517
FIt Permitted	0.143			0.551			0.697			0.294		
Satd. Flow (perm)	255	1783	0	983	1727	0	1244	1763	0	525	1784	1517
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					11			3				167
Link Speed (k/h)		60			60			80			80	
Link Distance (m)		564.6			423.2			424.0			477.4	
Travel Time (s)		33.9			25.4			19.1			21.5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	274	348	2	17	434	119	12	243	22	73	92	260
Shared Lane Traffic (%)	_, _,	0.10	_		101	1.0		210		, 0	02	200
Lane Group Flow (vph)	274	350	0	17	553	0	12	265	0	73	92	260
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7			3.7			3.7			3.7	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane		1.0									1.0	
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)	24	1.00	14	24	1.00	14	24	1.00	14	24	1.00	14
Number of Detectors	1	2	• •	1	2	• •	1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	6.1
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	6.1
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex		CI+Ex	CI+Ex	Cl+Ex
Detector 1 Channel	OI LX	OI · Ex		OI LX	OI · Ex		OI · EX	OI LX		OI LX	OITEX	OI LX
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)	0.0	28.7		0.0	28.7		0.0	28.7		0.0	28.7	0.0
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			Cl+Ex			CI+Ex	
Detector 2 Channel		OITEX			OIILX			OIILX			OITEX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	nm±nt	NA		Perm	NA		Perm	NA		nm±nt	NA	pm+ov
Protected Phases	pm+pt 7	1NA 4		Fellii	NA 8		r ellili	NA 2		pm+pt	1NA 6	•
	7	4		0	Ŏ		2	Z		1	b	7
Permitted Phases	4			8						6		6

	•	→	\rightarrow	•	←	•	4	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	7	4		8	8		2	2		1	6	7
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		21.0	21.0		5.0	21.0	5.0
Minimum Split (s)	11.9	36.9		36.9	36.9		27.5	27.5		11.5	27.5	11.9
Total Split (s)	21.9	68.8		46.9	46.9		41.5	41.5		21.5	63.0	21.9
Total Split (%)	16.6%	52.2%		35.6%	35.6%		31.5%	31.5%		16.3%	47.8%	16.6%
Maximum Green (s)	15.0	61.9		40.0	40.0		35.0	35.0		15.0	56.5	15.0
Yellow Time (s)	3.7	3.7		3.7	3.7		4.6	4.6		4.6	4.6	3.7
All-Red Time (s)	3.2	3.2		3.2	3.2		1.9	1.9		1.9	1.9	3.2
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.9	6.9		6.9	6.9		6.5	6.5		6.5	6.5	6.9
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lead		Lead
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes		Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		Min	Min		None	Min	None
Walk Time (s)		7.0		7.0	7.0		7.0	7.0			7.0	
Flash Dont Walk (s)		23.0		23.0	23.0		14.0	14.0			14.0	
Pedestrian Calls (#/hr)		0		0	0		0	0			0	
Act Effct Green (s)	62.4	62.4		40.3	40.3		24.0	24.0		36.3	36.3	58.0
Actuated g/C Ratio	0.56	0.56		0.36	0.36		0.21	0.21		0.32	0.32	0.52
v/c Ratio	0.82	0.35		0.05	0.88		0.05	0.70		0.28	0.16	0.30
Control Delay	40.5	16.7		27.7	51.8		36.7	52.0		28.2	26.5	6.0
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	40.5	16.7		27.7	51.8		36.7	52.0		28.2	26.5	6.0
LOS	D	В		С	D		D	D		С	С	Α
Approach Delay		27.2			51.1			51.3			14.3	
Approach LOS		С			D			D			В	

Area Type: Other

Cycle Length: 131.8 Actuated Cycle Length: 112.2 Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.88 Intersection Signal Delay: 35.0 Intersection Capacity Utilization 100.4%

Intersection LOS: D ICU Level of Service G

Analysis Period (min) 15

3: Prince of Wales Drive & Bankfield Road Splits and Phases:

	-	•	•	•	1	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1		ኻ	<u></u>	N/	
Traffic Volume (vph)	326	80	21	352	122	26
Future Volume (vph)	326	80	21	352	122	26
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	1000	0.0	180.0	1000	0.0	0.0
Storage Lanes		0.0	100.0		1	0.0
		U	100.0		7.6	U
Taper Length (m) Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
		1.00	1.00	1.00		1.00
Frt	0.973		0.050		0.976	
Flt Protected	4700	•	0.950	4704	0.960	
Satd. Flow (prot)	1736	0	1695	1784	1672	0
FIt Permitted			0.477		0.960	
Satd. Flow (perm)	1736	0	851	1784	1672	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)	21				11	
Link Speed (k/h)	60			60	60	
Link Distance (m)	423.2			465.4	562.9	
Travel Time (s)	25.4			27.9	33.8	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	362	89	23	391	136	29
Shared Lane Traffic (%)	30L	- 00	20	301	100	20
Lane Group Flow (vph)	451	0	23	391	165	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.7			3.7	3.7	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.9			4.9	4.9	
Two way Left Turn Lane						
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)		14	24		24	14
Number of Detectors	2		1	2	1	
Detector Template	Thru		Left	Thru	Left	
Leading Detector (m)	30.5		6.1	30.5	6.1	
Trailing Detector (m)	0.0		0.0	0.0	0.0	
Detector 1 Position(m)	0.0		0.0	0.0	0.0	
Detector 1 Size(m)	1.8		6.1	1.8	6.1	
Detector 1 Type	CI+Ex		Cl+Ex	Cl+Ex	Cl+Ex	
Detector 1 Channel	OI+EX		CITEX	CITEX	CITEX	
	0.0		0.0	0.0	0.0	
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	
Detector 2 Position(m)	28.7			28.7		
Detector 2 Size(m)	1.8			1.8		
Detector 2 Type	Cl+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA		Perm	NA	Prot	
Protected Phases	2			6	8	
Permitted Phases	-		6	•	•	
T CHINGE F Hases			U			

	-	\rightarrow	•	←	•	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Detector Phase	2		6	6	8	
Switch Phase						
Minimum Initial (s)	24.0		24.0	24.0	10.0	
Minimum Split (s)	30.5		30.5	30.5	25.0	
Total Split (s)	66.5		66.5	66.5	36.0	
Total Split (%)	64.9%		64.9%	64.9%	35.1%	
Maximum Green (s)	60.0		60.0	60.0	30.0	
Yellow Time (s)	4.6		4.6	4.6	3.7	
All-Red Time (s)	1.9		1.9	1.9	2.3	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	
Total Lost Time (s)	6.5		6.5	6.5	6.0	
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0	3.0	3.0	
Recall Mode	Min		Min	Min	None	
Walk Time (s)	7.0		7.0	7.0	7.0	
Flash Dont Walk (s)	17.0		17.0	17.0	12.0	
Pedestrian Calls (#/hr)	0		0	0	0	
Act Effct Green (s)	25.3		25.3	25.3	10.8	
Actuated g/C Ratio	0.52		0.52	0.52	0.22	
v/c Ratio	0.49		0.05	0.42	0.43	
Control Delay	9.9		6.9	9.3	18.6	
Queue Delay	0.0		0.0	0.0	0.0	
Total Delay	9.9		6.9	9.3	18.6	
LOS	А		Α	Α	В	
Approach Delay	9.9			9.2	18.6	
Approach LOS	А			Α	В	
Intersection Summary						
Area Type:	Other					
Cycle Length: 102.5						
Actuated Cycle Length: 48	8.7					
Natural Cycle: 60						
Control Type: Actuated-U	ncoordinated					
Maximum v/c Ratio: 0.49						
Intersection Signal Delay:	11.0			lr	ntersection	LOS: B
Intersection Capacity Utili						of Service A
Analysis Period (min) 15						
Splits and Phases: 7: F	irst Line Road	0 Dank	fiold Door	J		
Spiils and Friases. 1. F	115t Lille Roau	& Daliki	ieiu Roac			
→ø2						
66.5 s						
4						

	۶	→	•	•	+	•	•	†	~	/	+	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	f)		ሻ	f)		ሻ	f)		*		7
Traffic Volume (vph)	298	432	2	22	465	88	13	139	12	109	194	340
Future Volume (vph)	298	432	2	22	465	88	13	139	12	109	194	340
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	180.0		0.0	200.0		0.0	100.0		0.0	80.0		240.0
Storage Lanes	1		0	1		0	1		0	1		1
Taper Length (m)	100.0			100.0			75.0			100.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.999			0.976			0.988				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1695	1783	0	1695	1741	0	1695	1763	0	1695	1784	1517
FIt Permitted	0.135			0.488			0.623			0.383		
Satd. Flow (perm)	241	1783	0	871	1741	0	1112	1763	0	683	1784	1517
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					7			2				157
Link Speed (k/h)		60			60			80			80	
Link Distance (m)		564.6			423.2			424.0			477.4	
Travel Time (s)		33.9			25.4			19.1			21.5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	331	480	2	24	517	98	14	154	13	121	216	378
Shared Lane Traffic (%)												
Lane Group Flow (vph)	331	482	0	24	615	0	14	167	0	121	216	378
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7	J		3.7	J •		3.7	J		3.7	J
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	6.1
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	6.1
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex		CI+Ex	CI+Ex	Cl+Ex
Detector 1 Channel	<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)	V. V	28.7			28.7		0.0	28.7		0.0	28.7	0.0
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		OI LX			OI LX			OI LX			O. LA	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		pm+pt	NA	pm+ov
Protected Phases	7	4		1 31111	8		. 51111	2		1	6	7
Permitted Phases	4	7		8	U		2	L		6	U	6
I GITHILLEU FHASES	4			U						U		

	۶	→	•	•	←	•	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	7	4		8	8		2	2		1	6	7
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		21.0	21.0		5.0	21.0	5.0
Minimum Split (s)	11.9	36.9		36.9	36.9		27.5	27.5		11.5	27.5	11.9
Total Split (s)	26.9	88.8		61.9	61.9		41.5	41.5		26.5	68.0	26.9
Total Split (%)	17.2%	56.6%		39.5%	39.5%		26.5%	26.5%		16.9%	43.4%	17.2%
Maximum Green (s)	20.0	81.9		55.0	55.0		35.0	35.0		20.0	61.5	20.0
Yellow Time (s)	3.7	3.7		3.7	3.7		4.6	4.6		4.6	4.6	3.7
All-Red Time (s)	3.2	3.2		3.2	3.2		1.9	1.9		1.9	1.9	3.2
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.9	6.9		6.9	6.9		6.5	6.5		6.5	6.5	6.9
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lead		Lead
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes		Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		Min	Min		None	Min	None
Walk Time (s)		7.0		7.0	7.0		7.0	7.0			7.0	
Flash Dont Walk (s)		23.0		23.0	23.0		14.0	14.0			14.0	
Pedestrian Calls (#/hr)		0		0	0		0	0			0	
Act Effct Green (s)	81.4	81.4		54.5	54.5		21.8	21.8		41.1	41.1	67.6
Actuated g/C Ratio	0.60	0.60		0.40	0.40		0.16	0.16		0.30	0.30	0.50
v/c Ratio	0.92	0.45		0.07	0.88		0.08	0.59		0.40	0.40	0.45
Control Delay	58.8	17.2		27.3	52.6		51.2	62.2		39.7	40.1	14.1
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	58.8	17.2		27.3	52.6		51.2	62.2		39.7	40.1	14.1
LOS	Е	В		С	D		D	Е		D	D	В
Approach Delay		34.1			51.7			61.4			26.3	
Approach LOS		С			D			Е			С	

Area Type: Other

Cycle Length: 156.8 Actuated Cycle Length: 135.9 Natural Cycle: 110

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.92 Intersection Signal Delay: 38.6 Intersection Capacity Utilization 106.2%

Intersection LOS: D
ICU Level of Service G

Analysis Period (min) 15

Splits and Phases: 3: Prince of Wales Drive & Bankfield Road

	→	•	•	•	1	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1				W	
Traffic Volume (vph)	474	141	28	501	106	18
Future Volume (vph)	474	141	28	501	106	18
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)		0.0	180.0	. , , , ,	0.0	0.0
Storage Lanes		0.0	1		1	0.0
Taper Length (m)		•	100.0		7.6	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.969	1.00	1.00	1.00	0.980	1.00
Flt Protected	0.000		0.950		0.959	
Satd. Flow (prot)	1729	0	1695	1784	1677	0
Flt Permitted	1123	U	0.297	1704	0.959	U
Satd. Flow (perm)	1729	0	530	1784	1677	0
Right Turn on Red	1123	Yes	330	1704	10//	Yes
Satd. Flow (RTOR)	25	165			8	169
` ,	60			60	60	
Link Speed (k/h)	423.2			465.4	562.9	
Link Distance (m)						
Travel Time (s)	25.4	0.00	0.00	27.9	33.8	0.00
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	527	157	31	557	118	20
Shared Lane Traffic (%)	CO 4	^	0.4	F F 7	400	
Lane Group Flow (vph)	684	0	31	557	138	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.7			3.7	3.7	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.9			4.9	4.9	
Two way Left Turn Lane						
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)		14	24		24	14
Number of Detectors	2		1	2	1	
Detector Template	Thru		Left	Thru	Left	
Leading Detector (m)	30.5		6.1	30.5	6.1	
Trailing Detector (m)	0.0		0.0	0.0	0.0	
Detector 1 Position(m)	0.0		0.0	0.0	0.0	
Detector 1 Size(m)	1.8		6.1	1.8	6.1	
Detector 1 Type	Cl+Ex		CI+Ex	CI+Ex	Cl+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	
Detector 2 Position(m)	28.7		0.0	28.7	0.0	
Detector 2 Size(m)	1.8			1.8		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel	OITEX			OITEX		
Detector 2 Extend (s)	0.0			0.0		
` ,	NA		Perm	NA	Prot	
Turn Type	NA 2		reiiii			
Protected Phases	2		e	6	8	
Permitted Phases			6			

	→	•	✓	←	•	<i>></i>	
Lane Group	EBT	EBR \	NBL	WBT	NBL	NBR	
Detector Phase	2		6	6	8		
Switch Phase							
Minimum Initial (s)	24.0		24.0	24.0	10.0		
Minimum Split (s)	30.5		30.5	30.5	25.0		
Total Split (s)	66.5		66.5	66.5	36.0		
Total Split (%)	64.9%		1.9%	64.9%	35.1%		
Maximum Green (s)	60.0		60.0	60.0	30.0		
Yellow Time (s)	4.6		4.6	4.6	3.7		
All-Red Time (s)	1.9		1.9	1.9	2.3		
Lost Time Adjust (s)	0.0		0.0	0.0	0.0		
Total Lost Time (s)	6.5		6.5	6.5	6.0		
Lead/Lag							
Lead-Lag Optimize?	3.0		3.0	3.0	3.0		
Vehicle Extension (s) Recall Mode	3.0 Min		Min	Min	None		
Walk Time (s)	7.0		7.0	7.0	7.0		
Flash Dont Walk (s)	17.0		17.0	17.0	12.0		
Pedestrian Calls (#/hr)	0		0	0	0		
Act Effct Green (s)	31.1		31.1	31.1	11.6		
Actuated g/C Ratio	0.56		0.56	0.56	0.21		
v/c Ratio	0.70		0.10	0.56	0.39		
Control Delay	13.3		7.1	10.6	21.6		
Queue Delay	0.0		0.0	0.0	0.0		
Total Delay	13.3		7.1	10.6	21.6		
LOS	В		Α	В	С		
Approach Delay	13.3			10.4	21.6		
Approach LOS	В			В	С		
Intersection Summary							
Area Type:	Other						
Cycle Length: 102.5							
Actuated Cycle Length: 55.	5						
Natural Cycle: 60							
Control Type: Actuated-Und	coordinated						
Maximum v/c Ratio: 0.70	0.0					1 00 D	
Intersection Signal Delay: 1					tersection		
Intersection Capacity Utiliza	ation 54.1%			IC	JU Level c	of Service A	
Analysis Period (min) 15							
Splits and Phases: 7: Fire	st Line Road	& Bankfield	Road				
→ Ø2							
66.5 s							
←]▲
₩ Ø6							1 Ø8

Lane Group EBL EBR EBR WBL WBR NBL NBT NBR SBL SBR SBR Lane Configurations 1 <t< th=""></t<>
Traffic Volume (vph) 247 318 2 15 397 107 11 222 20 66 84 234 Future Volume (vph) 247 318 2 15 397 107 11 222 20 66 84 234 Ideal Flow (vphpl) 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 240.0 Storage Lanes 1 0 1 0 1 0 1 0 1 <td< th=""></td<>
Traffic Volume (vph) 247 318 2 15 397 107 11 222 20 66 84 234 Future Volume (vph) 247 318 2 15 397 107 11 222 20 66 84 234 Ideal Flow (vphpl) 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 240.0 Storage Lanes 1 0 1 0 1 0 1 0 1
Ideal Flow (vphpl) 1800
Storage Length (m) 180.0 0.0 200.0 0.0 100.0 0.0 80.0 240.0 Storage Lanes 1 0 1 0 1 0 1 1
Storage Length (m) 180.0 0.0 200.0 0.0 100.0 0.0 80.0 240.0 Storage Lanes 1 0 1 0 1 0 1 1
Taper Length (m) 100.0 100.0 75.0 100.0
Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Frt 0.999 0.968 0.988 0.850
Flt Protected 0.950 0.950 0.950 0.950
Satd. Flow (prot) 1695 1783 0 1695 1727 0 1695 1763 0 1695 1784 1517
Flt Permitted 0.169 0.567 0.702 0.336
Satd. Flow (perm) 302 1783 0 1012 1727 0 1253 1763 0 600 1784 1517
Right Turn on Red Yes Yes Yes Yes
Satd. Flow (RTOR) 11 3 197
Link Speed (k/h) 60 60 80 80
Link Distance (m) 564.6 423.2 424.0 477.4
Travel Time (s) 33.9 25.4 19.1 21.5
Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Adj. Flow (vph) 247 318 2 15 397 107 11 222 20 66 84 234
Shared Lane Traffic (%)
Lane Group Flow (vph) 247 320 0 15 504 0 11 242 0 66 84 234
Enter Blocked Intersection No
Lane Alignment Left Left Right Left Right Left Right Left Right
Median Width(m) 3.7 3.7 3.7 3.7
Link Offset(m) 0.0 0.0 0.0 0.0
Crosswalk Width(m) 4.9 4.9 4.9
Two way Left Turn Lane
Headway Factor 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06
Turning Speed (k/h) 24 14 24 14 24 14 24 14
Number of Detectors 1 2 1 2 1 2 1
Detector Template Left Thru Left Thru Left Thru Right
Leading Detector (m) 6.1 30.5 6.1 30.5 6.1 30.5 6.1
Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Detector 1 Size(m) 6.1 1.8 6.1 1.8 6.1 1.8 6.1
Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex
Detector 1 Channel
Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Detector 2 Position(m) 28.7 28.7 28.7 28.7
Detector 2 Size(m) 1.8 1.8 1.8
Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex
Detector 2 Channel
Detector 2 Extend (s) 0.0 0.0 0.0 0.0
Turn Type pm+pt NA Perm NA Perm NA pm+pt NA pm+ov
Protected Phases 7 4 8 2 1 6 7
Permitted Phases 4 8 2 6 6

	•	-	\rightarrow	•	•	•	1	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	7	4		8	8		2	2		1	6	7
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		21.0	21.0		5.0	21.0	5.0
Minimum Split (s)	11.9	36.9		36.9	36.9		27.5	27.5		11.5	27.5	11.9
Total Split (s)	21.9	68.8		46.9	46.9		41.5	41.5		21.5	63.0	21.9
Total Split (%)	16.6%	52.2%		35.6%	35.6%		31.5%	31.5%		16.3%	47.8%	16.6%
Maximum Green (s)	15.0	61.9		40.0	40.0		35.0	35.0		15.0	56.5	15.0
Yellow Time (s)	3.7	3.7		3.7	3.7		4.6	4.6		4.6	4.6	3.7
All-Red Time (s)	3.2	3.2		3.2	3.2		1.9	1.9		1.9	1.9	3.2
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.9	6.9		6.9	6.9		6.5	6.5		6.5	6.5	6.9
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lead		Lead
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes		Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		Min	Min		None	Min	None
Walk Time (s)		7.0		7.0	7.0		7.0	7.0			7.0	
Flash Dont Walk (s)		23.0		23.0	23.0		14.0	14.0			14.0	
Pedestrian Calls (#/hr)		0		0	0		0	0			0	
Act Effct Green (s)	58.6	58.6		36.3	36.3		23.2	23.2		35.0	35.0	56.9
Actuated g/C Ratio	0.55	0.55		0.34	0.34		0.22	0.22		0.33	0.33	0.53
v/c Ratio	0.68	0.33		0.04	0.85		0.04	0.63		0.23	0.14	0.26
Control Delay	26.0	15.8		26.6	48.3		37.0	48.2		27.6	26.3	3.8
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	26.0	15.8		26.6	48.3		37.0	48.2		27.6	26.3	3.8
LOS	С	В		С	D		D	D		С	С	Α
Approach Delay		20.3			47.7			47.7			12.8	
Approach LOS		С			D			D			В	

Area Type: Other

Cycle Length: 131.8 Actuated Cycle Length: 107.3 Natural Cycle: 90

Natural Cycle. 30

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.85 Intersection Signal Delay: 30.9 Intersection Capacity Utilization 100.7%

Intersection LOS: C
ICU Level of Service G

Analysis Period (min) 15

	→	\rightarrow	•	•	1	*
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u> </u>		ኻ	<u> </u>	W	
Traffic Volume (vph)	331	80	21	357	122	26
Future Volume (vph)	331	80	21	357	122	26
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	1000	0.0	180.0	1000	0.0	0.0
Storage Lanes		0.0	100.0		1	0.0
•		U	100.0		7.6	U
Taper Length (m)	1.00	1.00		1.00		1.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.974		0.050		0.976	
Flt Protected	4-00		0.950		0.960	
Satd. Flow (prot)	1738	0	1695	1784	1672	0
FIt Permitted			0.515		0.960	
Satd. Flow (perm)	1738	0	919	1784	1672	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)	20				11	
Link Speed (k/h)	60			60	60	
Link Distance (m)	423.2			465.4	562.9	
Travel Time (s)	25.4			27.9	33.8	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	331	80	21	357	122	26
Shared Lane Traffic (%)	001	30	<u> </u>	001	166	20
Lane Group Flow (vph)	411	0	21	357	148	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.7			3.7	3.7	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.9			4.9	4.9	
Two way Left Turn Lane						
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)		14	24		24	14
Number of Detectors	2		1	2	1	
Detector Template	Thru		Left	Thru	Left	
Leading Detector (m)	30.5		6.1	30.5	6.1	
Trailing Detector (m)	0.0		0.0	0.0	0.0	
Detector 1 Position(m)	0.0		0.0	0.0	0.0	
Detector 1 Size(m)	1.8		6.1	1.8	6.1	
Detector 1 Type	CI+Ex		Cl+Ex	Cl+Ex	CI+Ex	
Detector 1 Channel	OI'LX		OI · LX	OITEX	OI · LX	
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	
Detector 2 Position(m)	28.7			28.7		
Detector 2 Size(m)	1.8			1.8		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA		Perm	NA	Prot	
Protected Phases	2			6	8	
Permitted Phases			6			

	-	\rightarrow	•	←	•	~	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Detector Phase	2		6	6	8		
Switch Phase							
Minimum Initial (s)	24.0		24.0	24.0	10.0		
Minimum Split (s)	30.5		30.5	30.5	25.0		
Total Split (s)	66.5		66.5	66.5	36.0		
Total Split (%)	64.9%		64.9%	64.9%	35.1%		
Maximum Green (s)	60.0		60.0	60.0	30.0		
Yellow Time (s)	4.6		4.6	4.6	3.7		
All-Red Time (s)	1.9		1.9	1.9	2.3		
Lost Time Adjust (s)	0.0		0.0	0.0	0.0		
Total Lost Time (s)	6.5		6.5	6.5	6.0		
Lead/Lag							
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0		3.0	3.0	3.0		
Recall Mode	Min		Min	Min	None		
Walk Time (s)	7.0		7.0	7.0	7.0		
Flash Dont Walk (s)	17.0		17.0	17.0	12.0		
Pedestrian Calls (#/hr)	0		0	0	0		
Act Effct Green (s)	26.5		26.5	26.5	10.5		
Actuated g/C Ratio	0.53		0.53	0.53	0.21		
v/c Ratio	0.44		0.04	0.38	0.41		
Control Delay	8.8		6.4	8.5	18.3		
Queue Delay	0.0		0.0	0.0	0.0		
Total Delay	8.8		6.4	8.5	18.3		
LOS	A		Α	Α	В		
Approach Delay	8.8		7.1	8.4	18.3		
Approach LOS	A			A	В		
••	Λ			А			
Intersection Summary	0.11						
Area Type:	Other						
Cycle Length: 102.5	-						
Actuated Cycle Length: 49	./						
Natural Cycle: 60							
Control Type: Actuated-Un	coordinated						
Maximum v/c Ratio: 0.44							
Intersection Signal Delay:					ntersection		
Intersection Capacity Utiliz	ation 42.7%			IC	CU Level c	f Service A	
Analysis Period (min) 15							
Splits and Phases: 7: Fir	rst Line Road	& Bankf	ield Road	l			
→ Ø2							
66.5 s							ł
-							ا
▼ Ø6							↑ Ø8

	۶	→	•	•	+	•	•	†	~	/	+	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	f)		ሻ	ĵ.		ሻ	f)		*		7
Traffic Volume (vph)	298	438	2	22	472	88	13	141	12	109	197	340
Future Volume (vph)	298	438	2	22	472	88	13	141	12	109	197	340
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	180.0		0.0	200.0		0.0	100.0		0.0	80.0		240.0
Storage Lanes	1		0	1		0	1		0	1		1
Taper Length (m)	100.0			100.0			75.0			100.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.999			0.976			0.988				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1695	1783	0	1695	1741	0	1695	1763	0	1695	1784	1517
FIt Permitted	0.145			0.507			0.634			0.430		
Satd. Flow (perm)	259	1783	0	905	1741	0	1131	1763	0	767	1784	1517
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					7			3				187
Link Speed (k/h)		60			60			80			80	
Link Distance (m)		564.6			423.2			424.0			477.4	
Travel Time (s)		33.9			25.4			19.1			21.5	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	298	438	2	22	472	88	13	141	12	109	197	340
Shared Lane Traffic (%)	200	100	_			00	.0			100	101	0.10
Lane Group Flow (vph)	298	440	0	22	560	0	13	153	0	109	197	340
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7			3.7			3.7			3.7	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2	• •	1	2	• •	1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	6.1
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	6.1
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex		CI+Ex	CI+Ex	Cl+Ex
Detector 1 Channel	OI - EX	OI EX		OI - EX	OI EX		OI ZX	OI EX		OI - EX	OI LX	OI LX
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)	0.0	28.7		0.0	28.7		0.0	28.7		0.0	28.7	0.0
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		OI. LX			OI. LX			OI. LX			OI / LX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		pm+pt	NA	pm+ov
Protected Phases	рш+рt 7	4		i Cilli	NA 8		ı CIIII	2		ріпі+рі 1	6	•
Permitted Phases	4	4		8	0		2	Z		6	U	7 6
remilled Fliases	4			0			۷			Ö		0

	۶	-	•	•	•	•	•	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	7	4		8	8		2	2		1	6	7
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		21.0	21.0		5.0	21.0	5.0
Minimum Split (s)	11.9	36.9		36.9	36.9		27.5	27.5		11.5	27.5	11.9
Total Split (s)	26.9	88.8		61.9	61.9		41.5	41.5		26.5	68.0	26.9
Total Split (%)	17.2%	56.6%		39.5%	39.5%		26.5%	26.5%		16.9%	43.4%	17.2%
Maximum Green (s)	20.0	81.9		55.0	55.0		35.0	35.0		20.0	61.5	20.0
Yellow Time (s)	3.7	3.7		3.7	3.7		4.6	4.6		4.6	4.6	3.7
All-Red Time (s)	3.2	3.2		3.2	3.2		1.9	1.9		1.9	1.9	3.2
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.9	6.9		6.9	6.9		6.5	6.5		6.5	6.5	6.9
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lead		Lead
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes		Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		Min	Min		None	Min	None
Walk Time (s)		7.0		7.0	7.0		7.0	7.0			7.0	
Flash Dont Walk (s)		23.0		23.0	23.0		14.0	14.0			14.0	
Pedestrian Calls (#/hr)		0		0	0		0	0			0	
Act Effct Green (s)	73.6	73.6		46.4	46.4		21.6	21.6		39.9	39.9	66.7
Actuated g/C Ratio	0.58	0.58		0.37	0.37		0.17	0.17		0.31	0.31	0.53
v/c Ratio	0.79	0.43		0.07	0.88		0.07	0.51		0.33	0.35	0.38
Control Delay	37.7	16.6		26.9	53.0		49.9	56.0		36.5	37.0	9.6
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	37.7	16.6		26.9	53.0		49.9	56.0		36.5	37.0	9.6
LOS	D	В		С	D		D	Е		D	D	Α
Approach Delay		25.1			52.0			55.5			22.5	
Approach LOS		С			D			Е			С	

Area Type: Other

Cycle Length: 156.8 Actuated Cycle Length: 127 Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.88 Intersection Signal Delay: 34.0 Intersection Capacity Utilization 106.6% Analysis Period (min) 15

Intersection LOS: C
ICU Level of Service G

Splits and Phases: 3: Prince of Wales Drive & Bankfield Road

Lane Group		-	•	•	←	•	-
Lane Configurations	Lane Group	FBT	EBR	WBL	WBT	NBL	NBR
Traffic Volume (vph)			LDIN				, , DIX
Future Volume (vphy)			141				18
Ideal Flow (vphph)							
Storage Length (m) 0.0 180.0 0.0 0.0 100 100 100 100 100 1.00	\ \ \ \						
Storage Lanes		1000			1000		
Taper Length (m)							
Lane Util. Factor			0	•			U
Firt		1.00	1.00		1.00		1.00
Fit Protected 1729			1.00	1.00	1.00		1.00
Satd. Flow (prot) 1729 0 1695 1784 1677 0 Flt Permitted 0.360 0.959 0.952		0.909		0.050			
Fit Permitted 1729 0 642 1784 1677 0 1729 0 642 1784 1677 0 1784 1677 0 1784 1677 0 1784 1677 0 1784 1677 0 1784 1677 0 1784 1677 0 1784 1677 0 1784 1677 0 1784 1677 0 1784 1677 0 1784 1677 0 1784 1677 0 1784 1677 0 1784 1677 0 1784 1677 0 1784 1677 0 188 18		1700	0		1701		0
Satd. Flow (perm) 1729	(, ,	1/29	U		1/84		U
Right Turn on Red Yes Satd. Flow (RTOR) 25 8 8		4700	^		4704		^
Satd. Flow (RTOR) 25 8 Link Speed (k/h) 60 60 60 Link Distance (m) 423.2 465.4 562.9 Travel Time (s) 25.4 27.9 33.8 Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 Adj. Flow (vph) 481 141 28 509 106 18 Shared Lane Traffic (%) Lane Group Flow (vph) 622 0 28 509 124 0 Enter Blocked Intersection No		1/29		642	1/84	16//	
Link Speed (k/h) 60 60 60 Link Distance (m) 423.2 465.4 562.9 Travel Time (s) 25.4 27.9 33.8 Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 Adj. Flow (vph) 481 141 28 509 106 18 Shared Lane Traffic (%) Lane Group Flow (vph) 622 0 28 509 124 0 Enter Blocked Intersection No No <td>- C</td> <td>^=</td> <td>Yes</td> <td></td> <td></td> <td></td> <td>Yes</td>	- C	^=	Yes				Yes
Link Distance (m)							
Travel Time (s) 25.4 27.9 33.8 Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 Adj. Flow (vph) 481 141 28 509 106 18 Shared Lane Traffic (%) Lane Group Flow (vph) 622 0 28 509 124 0 Enter Blocked Intersection No No No No No No Lane Alignment Left Right Left Left Left Right Median Width(m) 3.7 3.7 3.7 Link Offset(m) 0.0 0.0 0.0 Crosswalk Width(m) 4.9 4.9 4.9 Two way Left Turn Lane Headway Factor 1.06 1.06 1.06 1.06 1.06 Turning Speed (k/h) 14 24 24 14 Number of Detectors 2 1 2 1 Detector Template Thru Left Thru Left Leading Detector (m) 30.5 6.1 30.5 6.1 Trailing Detector (m) 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 Detector 1 Size(m) 1.8 6.1 1.8 6.1 Detector 1 Channel Detector 1 Extend (s) 0.0 0.0 0.0 0.0 Detector 2 Position(m) 28.7 28.7 Detector 2 Size(m) 1.8 1.8 Detector 2 Type CI+Ex CI+Ex Detector 2 Type CI+Ex CI+Ex Detector 2 Extend (s) 0.0 0.0 Turn Type NA Perm NA Prot Protected Phases 2 6 8	. ,						
Peak Hour Factor 1.00 No	. ,						
Adj. Flow (vph) 481 141 28 509 106 18 Shared Lane Traffic (%) Lane Group Flow (vph) 622 0 28 509 124 0 Enter Blocked Intersection No No No No No No No Lane Alignment Left Right Left Left Left Left Right Left Left Left Right Left Left Left Left Right Left Left Left Right Left Left Left Right Left Left Left Left Left Right Left Left Left Left Left Left Left Left	` ,						
Shared Lane Traffic (%) Lane Group Flow (vph) 622 0 28 509 124 0							
Lane Group Flow (vph) 622 0 28 509 124 0 Enter Blocked Intersection No	Adj. Flow (vph)	481	141	28	509	106	18
Enter Blocked Intersection No Left Left Left Right Left Left Left Right Left Left Left Right Left	Shared Lane Traffic (%)						
Left Right Left Left Right Left Left Right	Lane Group Flow (vph)	622	0	28	509	124	0
Median Width(m) 3.7 3.7 3.7 Link Offset(m) 0.0 0.0 0.0 Crosswalk Width(m) 4.9 4.9 4.9 Two way Left Turn Lane Headway Factor 1.06 <t< td=""><td>Enter Blocked Intersection</td><td>No</td><td>No</td><td>No</td><td>No</td><td></td><td>No</td></t<>	Enter Blocked Intersection	No	No	No	No		No
Median Width(m) 3.7 3.7 3.7 Link Offset(m) 0.0 0.0 0.0 Crosswalk Width(m) 4.9 4.9 4.9 Two way Left Turn Lane Headway Factor 1.06 <t< td=""><td>Lane Alignment</td><td>Left</td><td>Right</td><td>Left</td><td>Left</td><td>Left</td><td>Right</td></t<>	Lane Alignment	Left	Right	Left	Left	Left	Right
Link Offset(m) 0.0 0.0 0.0 Crosswalk Width(m) 4.9 4.9 4.9 Two way Left Turn Lane Headway Factor 1.06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	•		_				
Crosswalk Width(m) 4.9 4.9 4.9 Two way Left Turn Lane Headway Factor 1.06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <td>. ,</td> <td>0.0</td> <td></td> <td></td> <td>0.0</td> <td>0.0</td> <td></td>	. ,	0.0			0.0	0.0	
Two way Left Turn Lane Headway Factor 1.06 1.00							
Headway Factor							
Turning Speed (k/h) 14 24 24 14 Number of Detectors 2 1 2 1 Detector Template Thru Left Thru Left Leading Detector (m) 30.5 6.1 30.5 6.1 Trailing Detector (m) 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 Detector 1 Size(m) 1.8 6.1 1.8 6.1 Detector 1 Size(m) 1.8 6.1 1.8 6.1 Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 Detector 2 Position(m) 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.		1.06	1.06	1.06	1.06	1.06	1.06
Number of Detectors 2 1 2 1 Detector Template Thru Left Thru Left Leading Detector (m) 30.5 6.1 30.5 6.1 Trailing Detector (m) 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 Detector 1 Size(m) 1.8 6.1 1.8 6.1 Detector 1 Size(m) 1.8 6.1 1.8 6.1 Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 Detector 2 Position(m) 28.7 28.7 28.7 28.7 Detector 2 Type CI+Ex CI+Ex CI+Ex Detector 2 Channel CI+Ex CI+Ex CI+Ex	•	7.00			1.00		
Detector Template Thru Left Thru Left Leading Detector (m) 30.5 6.1 30.5 6.1 Trailing Detector (m) 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 Detector 1 Size(m) 1.8 6.1 1.8 6.1 Detector 1 Size(m) 1.8 6.1 1.8 6.1 Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Channel 0.0 0.0 0.0 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 Detector 2 Position(m) 28.7 28.7 28.7 28.7 28.7 Detector 2 Type CI+Ex CI+Ex CI+Ex Detector 2 Channel 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		2	17		2		17
Leading Detector (m) 30.5 6.1 30.5 6.1 Trailing Detector (m) 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 Detector 1 Size(m) 1.8 6.1 1.8 6.1 Detector 1 Size(m) 1.8 6.1 1.8 6.1 Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Extend (s) 0.0 0.0 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 0.0 0.0 Detector 1 Delay (s) 0.0 0.0 0.0 0.0 Detector 2 Position(m) 28.7 28.7 Detector 2 Size(m) 1.8 1.8 Detector 2 Type CI+Ex CI+Ex Detector 2 Channel 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 Turn Type NA Perm NA Protected Phases				-			
Trailing Detector (m) 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 Detector 1 Size(m) 1.8 6.1 1.8 6.1 Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Channel CI+Ex CI+Ex CI+Ex Detector 1 Extend (s) 0.0 0.0 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 0.0 0.0 Detector 1 Delay (s) 0.0 0.0 0.0 0.0 Detector 2 Position(m) 28.7 28.7 28.7 Detector 2 Size(m) 1.8 1.8 1.8 Detector 2 Type CI+Ex CI+Ex CI+Ex Detector 2 Extend (s) 0.0 0.0 0.0 Turn Type NA Perm NA Protected Phases	•						
Detector 1 Position(m) 0.0 0.0 0.0 0.0 Detector 1 Size(m) 1.8 6.1 1.8 6.1 Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Channel 0.0 0.0 0.0 0.0 0.0 Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 Detector 2 Position(m) 28.7 28.7 28.7 28.7 0.0							
Detector 1 Size(m) 1.8 6.1 1.8 6.1 Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Channel 0.0 0.0 0.0 0.0 0.0 Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Queue (s) 0.0	. ,						
Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Channel Detector 1 Extend (s) 0.0 0.0 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 Detector 2 Position(m) 28.7 28.7 28.7 28.7 28.7 Detector 2 Size(m) 1.8 1.8 1.8 Detector 2 Cl+Ex Detect	` '						
Detector 1 Channel Outcome of the control	, ,						
Detector 1 Extend (s) 0.0 0.0 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 0.0 0.0 Detector 1 Delay (s) 0.0 0.0 0.0 0.0 Detector 2 Position(m) 28.7 28.7 Detector 2 Size(m) 1.8 1.8 Detector 2 Type CI+Ex CI+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 Turn Type NA Perm NA Protected Phases Protected Phases 2 6 8		CI+EX		CI+EX	CI+EX	CI+EX	
Detector 1 Queue (s) 0.0 0.0 0.0 0.0 Detector 1 Delay (s) 0.0 0.0 0.0 0.0 Detector 2 Position(m) 28.7 28.7 Detector 2 Size(m) 1.8 1.8 Detector 2 Type CI+Ex CI+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 Turn Type NA Perm NA Protected Phases Protected Phases 2 6 8					0.0		
Detector 1 Delay (s) 0.0 0.0 0.0 0.0 Detector 2 Position(m) 28.7 28.7 28.7 Detector 2 Size(m) 1.8 1.8 Detector 2 Type CI+Ex CI+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 Turn Type NA Perm NA Protected Phases Protected Phases 2 6 8	. ,						
Detector 2 Position(m) 28.7 28.7 Detector 2 Size(m) 1.8 1.8 Detector 2 Type CI+Ex CI+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 Turn Type NA Perm NA Protected Phases Protected Phases 2 6 8							
Detector 2 Size(m) 1.8 1.8 Detector 2 Type CI+Ex CI+Ex Detector 2 Channel 0.0 0.0 Turn Type NA Perm NA Protected Phases Protected Phases 2 6 8	• ()			0.0		0.0	
Detector 2 Type CI+Ex CI+Ex Detector 2 Channel 0.0 0.0 Detector 2 Extend (s) 0.0 Perm NA Protected Phases Protected Phases 2 6 8	,						
Detector 2 Channel 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 Turn Type NA Perm NA Protected Phases Protected Phases 2 6 8	. ,						
Detector 2 Extend (s) 0.0 0.0 Turn Type NA Perm NA Prot Protected Phases 2 6 8		CI+Ex			CI+Ex		
Turn TypeNAPermNAProtProtected Phases268							
Turn TypeNAPermNAProtProtected Phases268	Detector 2 Extend (s)	0.0			0.0		
Protected Phases 2 6 8		NA		Perm	NA	Prot	
Permitted Phases 6	Permitted Phases			6			

	→	•	•	←	•	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Detector Phase	2		6	6	8	
Switch Phase						
Minimum Initial (s)	24.0		24.0	24.0	10.0	
Minimum Split (s)	30.5		30.5	30.5	25.0	
Total Split (s)	66.5		66.5	66.5	36.0	
Total Split (%)	64.9%		64.9%	64.9%	35.1%	
Maximum Green (s)	60.0		60.0	60.0	30.0	
Yellow Time (s)	4.6		4.6	4.6	3.7	
All-Red Time (s)	1.9		1.9	1.9	2.3	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	
Total Lost Time (s)	6.5		6.5	6.5	6.0	
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0	3.0	3.0	
Recall Mode	Min		Min	Min	None	
Walk Time (s)	7.0		7.0	7.0	7.0	
Flash Dont Walk (s)	17.0		17.0	17.0	12.0	
Pedestrian Calls (#/hr)	0		0	0	0	
Act Effct Green (s)	30.7		30.7	30.7	10.8	
Actuated g/C Ratio	0.62		0.62	0.62	0.22	
v/c Ratio	0.57		0.07	0.46	0.33	
Control Delay	10.3		6.6	8.9	19.0	
Queue Delay	0.0		0.0	0.0	0.0	
Total Delay	10.3		6.6	8.9	19.0	
LOS	В		Α	Α	В	
Approach Delay	10.3			8.8	19.0	
Approach LOS	В			Α	В	
Intersection Summary						
Area Type:	Other					
Cycle Length: 102.5						
Actuated Cycle Length: 49	9.3					
Natural Cycle: 60						
Control Type: Actuated-U	ncoordinated					
Maximum v/c Ratio: 0.57						
Intersection Signal Delay:	10.5			Ir	ntersection	LOS: B
Intersection Capacity Utiliz				IC	CU Level o	of Service A
Analysis Period (min) 15						
0.00			5			
Splits and Phases: 7: F	irst Line Road	& Bankt	ield Road	<u></u>		
→ _{Ø2}						
66.5s						
+						
₩ Ø6						

Lane Group EBL EBR EBR WBL WBR NBL NBT NBR SBL SBR SBR Lane Configurations 1 <t< th=""></t<>
Traffic Volume (vph) 247 347 2 15 439 107 11 239 20 66 90 234 Future Volume (vph) 247 347 2 15 439 107 11 239 20 66 90 234 Ideal Flow (vphpl) 1800 <t< th=""></t<>
Traffic Volume (vph) 247 347 2 15 439 107 11 239 20 66 90 234 Future Volume (vph) 247 347 2 15 439 107 11 239 20 66 90 234 Ideal Flow (vphpl) 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 240.0 240.0 Storage Lanes 1 0 1 0 1 0 1
Ideal Flow (vphpl) 1800
Storage Length (m) 180.0 0.0 200.0 0.0 100.0 0.0 80.0 240.0 Storage Lanes 1 0 1 0 1 0 1 1 Taper Length (m) 100.0 100.0 75.0 100.0
Storage Lanes 1 0 1 0 1 0 1 1 Taper Length (m) 100.0 100.0 75.0 100.0
Taper Length (m) 100.0 100.0 75.0 100.0
Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Frt 0.999 0.971 0.988 0.850
Flt Protected 0.950 0.950 0.950 0.950
Satd. Flow (prot) 1695 1783 0 1695 1733 0 1695 1763 0 1695 1784 1517
Flt Permitted 0.152 0.552 0.699 0.300
Satd. Flow (perm) 271 1783 0 985 1733 0 1247 1763 0 535 1784 1517
Right Turn on Red Yes Yes Yes Yes
Satd. Flow (RTOR) 10 3 163
Link Speed (k/h) 60 60 80 80
Link Distance (m) 564.6 423.2 424.0 477.4
Travel Time (s) 33.9 25.4 19.1 21.5
Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Adj. Flow (vph) 247 347 2 15 439 107 11 239 20 66 90 234
Shared Lane Traffic (%)
Lane Group Flow (vph) 247 349 0 15 546 0 11 259 0 66 90 234
Enter Blocked Intersection No
Lane Alignment Left Left Right Left Right Left Right Left Right
Median Width(m) 3.7 3.7 3.7 3.7
Link Offset(m) 0.0 0.0 0.0 0.0
Crosswalk Width(m) 4.9 4.9 4.9
Two way Left Turn Lane
Headway Factor 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06
Turning Speed (k/h) 24 14 24 14 24 14 24 14
Number of Detectors 1 2 1 2 1 2 1 2 1
Detector Template Left Thru Left Thru Left Thru Right
Leading Detector (m) 6.1 30.5 6.1 30.5 6.1 30.5 6.1
Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Detector 1 Size(m) 6.1 1.8 6.1 1.8 6.1 1.8 6.1
Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex
Detector 1 Channel
Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Detector 2 Position(m) 28.7 28.7 28.7 28.7
Detector 2 Size(m) 1.8 1.8 1.8
Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex
Detector 2 Channel
Detector 2 Extend (s) 0.0 0.0 0.0 0.0
Turn Type pm+pt NA Perm NA Perm NA pm+pt NA pm+ov
Protected Phases 7 4 8 2 1 6 7
Permitted Phases 4 8 2 6 6

	۶	-	•	•	•	•	4	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	7	4		8	8		2	2		1	6	7
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		21.0	21.0		5.0	21.0	5.0
Minimum Split (s)	11.9	36.9		36.9	36.9		27.5	27.5		11.5	27.5	11.9
Total Split (s)	21.9	68.8		46.9	46.9		41.5	41.5		21.5	63.0	21.9
Total Split (%)	16.6%	52.2%		35.6%	35.6%		31.5%	31.5%		16.3%	47.8%	16.6%
Maximum Green (s)	15.0	61.9		40.0	40.0		35.0	35.0		15.0	56.5	15.0
Yellow Time (s)	3.7	3.7		3.7	3.7		4.6	4.6		4.6	4.6	3.7
All-Red Time (s)	3.2	3.2		3.2	3.2		1.9	1.9		1.9	1.9	3.2
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.9	6.9		6.9	6.9		6.5	6.5		6.5	6.5	6.9
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lead		Lead
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes		Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		Min	Min		None	Min	None
Walk Time (s)		7.0		7.0	7.0		7.0	7.0			7.0	
Flash Dont Walk (s)		23.0		23.0	23.0		14.0	14.0			14.0	
Pedestrian Calls (#/hr)		0		0	0		0	0			0	
Act Effct Green (s)	62.3	62.3		40.3	40.3		23.6	23.6		35.7	35.7	57.3
Actuated g/C Ratio	0.56	0.56		0.36	0.36		0.21	0.21		0.32	0.32	0.51
v/c Ratio	0.72	0.35		0.04	0.86		0.04	0.69		0.25	0.16	0.27
Control Delay	30.0	16.3		27.1	49.5		36.6	51.5		28.0	26.7	5.3
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	30.0	16.3		27.1	49.5		36.6	51.5		28.0	26.7	5.3
LOS	С	В		С	D		D	D		С	С	Α
Approach Delay		22.0			48.9			50.9			14.1	
Approach LOS		С			D			D			В	

Area Type: Other

Cycle Length: 131.8 Actuated Cycle Length: 111.5 Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.86 Intersection Signal Delay: 32.9 Intersection Capacity Utilization 103.0%

Intersection LOS: C
ICU Level of Service G

Analysis Period (min) 15

	-	•	•	•	1	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4		*		W	
Traffic Volume (vph)	361	80	21	397	122	26
Future Volume (vph)	361	80	21	397	122	26
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	1000	0.0	180.0	1000	0.0	0.0
Storage Lanes		0.0	100.0		1	0.0
		U	100.0		7.6	U
Taper Length (m)	1.00	1.00		1.00		1.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.976		0.050		0.976	
Flt Protected			0.950		0.960	
Satd. Flow (prot)	1741	0	1695	1784	1672	0
FIt Permitted			0.488		0.960	
Satd. Flow (perm)	1741	0	871	1784	1672	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)	19				11	
Link Speed (k/h)	60			60	60	
Link Distance (m)	423.2			465.4	562.9	
Travel Time (s)	25.4			27.9	33.8	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	361	80	21	397	122	26
Shared Lane Traffic (%)	301	- 00	Z 1	331	ILL	20
Lane Group Flow (vph)	441	0	21	397	148	0
,						
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.7			3.7	3.7	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.9			4.9	4.9	
Two way Left Turn Lane						
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)		14	24		24	14
Number of Detectors	2		1	2	1	
Detector Template	Thru		Left	Thru	Left	
Leading Detector (m)	30.5		6.1	30.5	6.1	
Trailing Detector (m)	0.0		0.0	0.0	0.0	
Detector 1 Position(m)	0.0		0.0	0.0	0.0	
Detector 1 Size(m)	1.8		6.1	1.8	6.1	
· ,						
Detector 1 Type	CI+Ex		Cl+Ex	Cl+Ex	CI+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	
Detector 2 Position(m)	28.7			28.7		
Detector 2 Size(m)	1.8			1.8		
Detector 2 Type	Cl+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA		Perm	NA	Prot	
Protected Phases	2		. 51111	6	8	
			6	U	U	
Permitted Phases			6			

	-	\rightarrow	•	←	•	~	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Detector Phase	2		6	6	8		
Switch Phase							
Minimum Initial (s)	24.0		24.0	24.0	10.0		
Minimum Split (s)	30.5		30.5	30.5	25.0		
Total Split (s)	66.5		66.5	66.5	36.0		
Total Split (%)	64.9%		64.9%	64.9%	35.1%		
Maximum Green (s)	60.0		60.0	60.0	30.0		
Yellow Time (s)	4.6		4.6	4.6	3.7		
All-Red Time (s)	1.9		1.9	1.9	2.3		
Lost Time Adjust (s)	0.0		0.0	0.0	0.0		
Total Lost Time (s)	6.5		6.5	6.5	6.0		
Lead/Lag							
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0		3.0	3.0	3.0		
Recall Mode	Min		Min	Min	None		
Walk Time (s)	7.0		7.0	7.0	7.0		
Flash Dont Walk (s)	17.0		17.0	17.0	12.0		
Pedestrian Calls (#/hr)	0		0	0	0		
Act Effct Green (s)	26.5		26.5	26.5	10.6		
Actuated g/C Ratio	0.53		0.53	0.53	0.21		
v/c Ratio	0.47		0.05	0.42	0.41		
Control Delay	9.3		6.5	9.0	18.2		
Queue Delay	0.0		0.0	0.0	0.0		
Total Delay	9.3		6.5	9.0	18.2		
LOS	Α		Α.	Α	В		
Approach Delay	9.3		7.1	8.9	18.2		
Approach LOS	Α			Α	В		
••	Л			А			
Intersection Summary	0.11						
Area Type:	Other						
Cycle Length: 102.5	^						
Actuated Cycle Length: 49.	.8						
Natural Cycle: 60							
Control Type: Actuated-Un	coordinated						
Maximum v/c Ratio: 0.47							
Intersection Signal Delay: 1					ntersection		
ntersection Capacity Utilization	ation 44.4%			IC	CU Level c	f Service A	
Analysis Period (min) 15							
Splits and Phases: 7: Fir	st Line Road	& Bankf	ield Road	d			
→ _{Ø2}							
66.5 S							ا ا
▼ Ø6							↑ Ø8

	۶	→	•	•	+	4	•	†	/	/	+	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	f)		ሻ	f)		ሻ	f)		*		7
Traffic Volume (vph)	298	483	2	22	516	88	13	152	12	109	211	340
Future Volume (vph)	298	483	2	22	516	88	13	152	12	109	211	340
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	180.0		0.0	200.0		0.0	100.0		0.0	80.0		240.0
Storage Lanes	1		0	1		0	1		0	1		1
Taper Length (m)	100.0			100.0			75.0			100.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.999			0.978			0.989				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1695	1783	0	1695	1745	0	1695	1765	0	1695	1784	1517
FIt Permitted	0.139			0.487			0.626			0.394		
Satd. Flow (perm)	248	1783	0	869	1745	0	1117	1765	0	703	1784	1517
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					6			2				158
Link Speed (k/h)		60			60			80			80	
Link Distance (m)		564.6			423.2			424.0			477.4	
Travel Time (s)		33.9			25.4			19.1			21.5	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	298	483	2	22	516	88	13	152	12	109	211	340
Shared Lane Traffic (%)												
Lane Group Flow (vph)	298	485	0	22	604	0	13	164	0	109	211	340
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7	J		3.7	J •		3.7	J •		3.7	J
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	6.1
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	6.1
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex		CI+Ex	CI+Ex	Cl+Ex
Detector 1 Channel	OI - EX	OI EX		OI - EX	OI EX		OI ZX	OI EX		OI ZX	OI - EX	OI LX
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)	0.0	28.7		0.0	28.7		0.0	28.7		0.0	28.7	0.0
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		OI. LX			OI. LX			OI. LX			OI / LX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		pm+pt	NA	pm+ov
Protected Phases	рш+рt 7	4		i Cilli	NA 8		i Cilli	2		ріпі+рі 1	6	•
Permitted Phases	4	4		8	0		2	Z		6	U	7 6
remilled FlidSeS	4			0			۷			Ö		0

	۶	-	\rightarrow	•	←	•	1	†	/	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	7	4		8	8		2	2		1	6	7
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		21.0	21.0		5.0	21.0	5.0
Minimum Split (s)	11.9	36.9		36.9	36.9		27.5	27.5		11.5	27.5	11.9
Total Split (s)	26.9	88.8		61.9	61.9		41.5	41.5		26.5	68.0	26.9
Total Split (%)	17.2%	56.6%		39.5%	39.5%		26.5%	26.5%		16.9%	43.4%	17.2%
Maximum Green (s)	20.0	81.9		55.0	55.0		35.0	35.0		20.0	61.5	20.0
Yellow Time (s)	3.7	3.7		3.7	3.7		4.6	4.6		4.6	4.6	3.7
All-Red Time (s)	3.2	3.2		3.2	3.2		1.9	1.9		1.9	1.9	3.2
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.9	6.9		6.9	6.9		6.5	6.5		6.5	6.5	6.9
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lead		Lead
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes		Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		Min	Min		None	Min	None
Walk Time (s)		7.0		7.0	7.0		7.0	7.0			7.0	
Flash Dont Walk (s)		23.0		23.0	23.0		14.0	14.0			14.0	
Pedestrian Calls (#/hr)		0		0	0		0	0			0	
Act Effct Green (s)	79.9	79.9		52.9	52.9		21.7	21.7		40.2	40.2	66.8
Actuated g/C Ratio	0.60	0.60		0.40	0.40		0.16	0.16		0.30	0.30	0.50
v/c Ratio	0.82	0.45		0.06	0.87		0.07	0.57		0.36	0.39	0.41
Control Delay	41.1	16.9		26.8	51.6		50.6	60.6		38.8	39.7	12.3
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	41.1	16.9		26.8	51.6		50.6	60.6		38.8	39.7	12.3
LOS	D	В		С	D		D	Е		D	D	В
Approach Delay		26.1			50.8			59.8			25.4	
Approach LOS		С			D			Е			С	

Area Type: Other

Cycle Length: 156.8 Actuated Cycle Length: 133.5 Natural Cycle: 100

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.87 Intersection Signal Delay: 35.4 Intersection Capacity Utilization 109.1%

Intersection LOS: D
ICU Level of Service H

Analysis Period (min) 15

Splits and Phases: 3: Prince of Wales Drive & Bankfield Road

	•	*		١,	- /
ЕВТ	EBR	WBL	WBT	NBL	NBR
529	141				18
					18
					1800
			1000		0.0
					0.0
	U				U
00	1.00		1 00		1.00
	1.00	1.00	1.00		1.00
912		0.050			
70.4	0		4704		^
/ 34	U		1784		0
/34		585	1784	1677	0
	Yes				Yes
60			60	60	
23.2			465.4	562.9	
25.4			27.9	33.8	
.00	1.00	1.00	1.00	1.00	1.00
529					18
			- 300		
670	0	28	555	124	0
					No
	Right	Leit			Right
4.9			4.9	4.9	
.06			1.06		1.06
	14	24		24	14
2		1	2	1	
hru		Left	Thru	Left	
30.5		6.1	30.5	6.1	
0.0		0.0	0.0	0.0	
0.0					
· L^		OI · LX	OI · LX	OI · LX	
0.0		0.0	0.0	0.0	
		0.0		0.0	
+Ex			CI+Ex		
0.0					
NA		Perm	NA	Prot	
2			6	8	
		6			
558 1.9 7 7 7 231.5 6 L; (4 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	529 529 529 529 5300 .00 .072 734 23 60 3.2 5.4 .00 .05 .00 .eft 3.7 0.0 4.9 .06 2 hru 0.5 0.0 0.0 0.0 1.8 .Ex	734 0 734 1.00 730 1.00 730 1.00 730 1.00 730 1.00 740 1.00 750 1.00 760	141 28 1529 141 28 1529 141 28 1500 1800 1800 0.0 180.0 0 0 1 100.0 1.00 1.00 1.00 172 0.950 1734 0 1695 0.328 1734 0 585 174 0.0 1.00 0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.0 1.	141 28 555 529 141 28 555 529 141 28 555 5300 1800 1800 1800 0.0 180.0 0 1 100.0 0.00 1.00 1.00 1.00 0.72 0.950 0.328 0.34 0 1695 1784 0.328 0.34 0 585 1784 0.328 0.32 465.4 5.4 27.9 0.00 1.00 1.00 1.00 529 141 28 555 570 0 28 555 No No No No No Left Right Left Left 3.7 0.0 4.9 4.9 0.06 1.06 1.06 1.06 14 24 2 1 2 1 2	141

	-	\rightarrow	•	←	•	<i>></i>	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Detector Phase	2		6	6	8		
Switch Phase							
Minimum Initial (s)	24.0		24.0	24.0	10.0		
Minimum Split (s)	30.5		30.5	30.5	25.0		
Total Split (s)	66.5		66.5	66.5	36.0		
Total Split (%)	64.9%		64.9%	64.9%	35.1%		
Maximum Green (s)	60.0		60.0	60.0	30.0		
Yellow Time (s)	4.6		4.6	4.6	3.7		
All-Red Time (s)	1.9		1.9	1.9	2.3		
Lost Time Adjust (s)	0.0		0.0	0.0	0.0		
Total Lost Time (s)	6.5		6.5	6.5	6.0		
Lead/Lag							
Lead-Lag Optimize?	0.0		0.0	0.0	0.0		
Vehicle Extension (s)	3.0		3.0	3.0	3.0		
Recall Mode	Min		Min	Min	None		
Walk Time (s)	7.0		7.0	7.0	7.0		
Flash Dont Walk (s)	17.0 0		17.0	17.0	12.0 0		
Pedestrian Calls (#/hr) Act Effct Green (s)	32.3		0 32.3	0 32.3	11.1		
Actuated g/C Ratio	0.63		0.63	0.63	0.22		
v/c Ratio	0.61		0.03	0.03	0.22		
Control Delay	10.9		6.5	9.2	20.3		
Queue Delay	0.0		0.0	0.0	0.0		
Total Delay	10.9		6.5	9.2	20.3		
LOS	В		Α	Α	С		
Approach Delay	10.9			9.1	20.3		
Approach LOS	В			Α	С		
Intersection Summary							
Area Type:	Other						
Cycle Length: 102.5							
Actuated Cycle Length: 51.	1						
Natural Cycle: 60							
Control Type: Actuated-Und	coordinated						
Maximum v/c Ratio: 0.61							
Intersection Signal Delay: 1					ntersection		
Intersection Capacity Utiliza	ation 57.2%			IC	CU Level c	f Service B	
Analysis Period (min) 15							
Splits and Phases: 7: Fin	st Line Road	& Bankf	ield Road	t			
→ø2							
66.5 s							
4-							1_
₩ Ø6							7 Ø8

	۶	→	•	•	+	•	•	†	/	/	+	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	, j	ĥ		*	ĥ		ř	f)		ř	<u></u>	7
Traffic Volume (vph)	247	332	2	16	402	109	11	222	22	72	84	234
Future Volume (vph)	247	332	2	16	402	109	11	222	22	72	84	234
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	180.0		0.0	200.0		0.0	100.0		0.0	80.0		240.0
Storage Lanes	1		0	1		0	1		0	1		1
Taper Length (m)	100.0			100.0			75.0			100.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.999			0.968			0.986				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1695	1783	0	1695	1727	0	1695	1759	0	1695	1784	1517
Flt Permitted	0.166			0.559			0.702			0.330		
Satd. Flow (perm)	296	1783	0	997	1727	0	1253	1759	0	589	1784	1517
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					11			4				192
Link Speed (k/h)		60			60			80			80	
Link Distance (m)		564.6			143.8			424.0			477.4	
Travel Time (s)		33.9			8.6			19.1			21.5	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	247	332	2	16	402	109	11	222	22	72	84	234
Shared Lane Traffic (%)												
Lane Group Flow (vph)	247	334	0	16	511	0	11	244	0	72	84	234
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7	•		3.7	•		3.7	•		3.7	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	6.1
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	6.1
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			Cl+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		pm+pt	NA	pm+ov
Protected Phases	7	4			8			2		1	6	7
Permitted Phases	4			8			2			6		6

	ᄼ	-	•	•	•	*	1	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	7	4		8	8		2	2		1	6	7
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		21.0	21.0		5.0	21.0	5.0
Minimum Split (s)	11.9	36.9		36.9	36.9		27.5	27.5		11.5	27.5	11.9
Total Split (s)	21.9	68.8		46.9	46.9		41.5	41.5		21.5	63.0	21.9
Total Split (%)	16.6%	52.2%		35.6%	35.6%		31.5%	31.5%		16.3%	47.8%	16.6%
Maximum Green (s)	15.0	61.9		40.0	40.0		35.0	35.0		15.0	56.5	15.0
Yellow Time (s)	3.7	3.7		3.7	3.7		4.6	4.6		4.6	4.6	3.7
All-Red Time (s)	3.2	3.2		3.2	3.2		1.9	1.9		1.9	1.9	3.2
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.9	6.9		6.9	6.9		6.5	6.5		6.5	6.5	6.9
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lead		Lead
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes		Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		Min	Min		None	Min	None
Walk Time (s)		7.0		7.0	7.0		7.0	7.0			7.0	
Flash Dont Walk (s)		23.0		23.0	23.0		14.0	14.0			14.0	
Pedestrian Calls (#/hr)		0		0	0		0	0			0	
Act Effct Green (s)	59.4	59.4		37.1	37.1		23.2	23.2		35.4	35.4	57.2
Actuated g/C Ratio	0.55	0.55		0.34	0.34		0.21	0.21		0.33	0.33	0.53
v/c Ratio	0.69	0.34		0.05	0.85		0.04	0.64		0.26	0.14	0.26
Control Delay	26.7	16.2		26.9	48.6		37.2	48.7		27.9	26.4	3.9
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	26.7	16.2		26.9	48.6		37.2	48.7		27.9	26.4	3.9
LOS	С	В		С	D		D	D		С	С	Α
Approach Delay		20.7			47.9			48.2			13.2	
Approach LOS		С			D			D			В	

Area Type: Other

Cycle Length: 131.8 Actuated Cycle Length: 108.4

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.85 Intersection Signal Delay: 31.2 Intersection Capacity Utilization 101.1% Analysis Period (min) 15

Intersection LOS: C
ICU Level of Service G

	-	•	•	←	1	_
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1		*	†	W	
Traffic Volume (vph)	335	80	21	366	126	26
Future Volume (vph)	335	80	21	366	126	26
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	1000	0.0	180.0	1000	0.0	0.0
Storage Lanes		0.0	100.0		1	0.0
		U	100.0		7.6	U
Taper Length (m)	1.00	1.00	1.00	1.00	1.00	1.00
Lane Util. Factor		1.00	1.00	1.00		1.00
Frt	0.974		0.050		0.977	
Flt Protected	4700	•	0.950	4704	0.960	_
Satd. Flow (prot)	1738	0	1695	1784	1674	0
FIt Permitted			0.511		0.960	
Satd. Flow (perm)	1738	0	912	1784	1674	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)	20				10	
Link Speed (k/h)	60			60	60	
Link Distance (m)	279.4			465.4	562.9	
Travel Time (s)	16.8			27.9	33.8	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	335	80	21	366	126	26
Shared Lane Traffic (%)	- 000	30	<u> </u>	000	120	20
Lane Group Flow (vph)	415	0	21	366	152	0
Enter Blocked Intersection	No	No	No	No	No	No
	Left					
Lane Alignment		Right	Left	Left	Left	Right
Median Width(m)	3.7			3.7	3.7	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.9			4.9	4.9	
Two way Left Turn Lane						
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)		14	24		24	14
Number of Detectors	2		1	2	1	
Detector Template	Thru		Left	Thru	Left	
Leading Detector (m)	30.5		6.1	30.5	6.1	
Trailing Detector (m)	0.0		0.0	0.0	0.0	
Detector 1 Position(m)	0.0		0.0	0.0	0.0	
Detector 1 Size(m)	1.8		6.1	1.8	6.1	
Detector 1 Type	CI+Ex		Cl+Ex	CI+Ex	CI+Ex	
Detector 1 Channel	OI. LX		OI? EX	OI / LX	OI - LX	
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	
			0.0		0.0	
Detector 2 Position(m)	28.7			28.7		
Detector 2 Size(m)	1.8			1.8		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA		Perm	NA	Prot	
Protected Phases	2			6	8	
Permitted Phases			6			

	-	•	•	←	•	/	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Detector Phase	2		6	6	8		
Switch Phase							
Minimum Initial (s)	24.0		24.0	24.0	10.0		
Minimum Split (s)	30.5		30.5	30.5	25.0		
Total Split (s)	66.5		66.5	66.5	36.0		
Total Split (%)	64.9%		64.9%	64.9%	35.1%		
Maximum Green (s)	60.0		60.0	60.0	30.0		
Yellow Time (s)	4.6		4.6	4.6	3.7		
All-Red Time (s)	1.9		1.9	1.9	2.3		
Lost Time Adjust (s)	0.0		0.0	0.0	0.0		
Total Lost Time (s)	6.5		6.5	6.5	6.0		
Lead/Lag							
Lead-Lag Optimize? Vehicle Extension (s)	3.0		3.0	3.0	3.0		
Recall Mode	Min		Min	Min	None		
Walk Time (s)	7.0		7.0	7.0	7.0		
Flash Dont Walk (s)	17.0		17.0	17.0	12.0		
Pedestrian Calls (#/hr)	0		0	0	0		
Act Effct Green (s)	26.3		26.3	26.3	10.6		
Actuated g/C Ratio	0.53		0.53	0.53	0.21		
v/c Ratio	0.45		0.04	0.39	0.41		
Control Delay	9.0		6.5	8.7	18.5		
Queue Delay	0.0		0.0	0.0	0.0		
Total Delay	9.0		6.5	8.7	18.5		
LOS	Α		Α	Α	В		
Approach Delay	9.0			8.6	18.5		
Approach LOS	Α			Α	В		
Intersection Summary							
Area Type:	Other						
Cycle Length: 102.5							
Actuated Cycle Length: 49	9.5						
Natural Cycle: 60							
Control Type: Actuated-Ur	ncoordinated						
Maximum v/c Ratio: 0.45	40.0				· · · · · · · · · · · · · · · · · · ·	100 D	
Intersection Signal Delay:					tersection		
Intersection Capacity Utiliz	zation 43.2%			IC	U Level o	f Service A	
Analysis Period (min) 15							
Splits and Phases: 7: Fi	irst Line Road	& Bankfi	eld Road	t			_
→ ø2							ı
66.5 s							
←-							٦.
₩ Ø6							L

	-	•	•	←	•	~
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1 >		ኘ	<u></u>	¥	,,,,,,
Traffic Volume (veh/h)	405	22	9	525	4	4
Future Volume (Veh/h)	405	22	9	525	4	4
Sign Control	Free			Free	Stop	'
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	405	22	9	525	4	4
Pedestrians	400	22	3	323	7	
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)	None			None		
Median type	None			None		
Median storage veh)	144			200		
Upstream signal (m)	144		0.90	280	0.04	0.00
pX, platoon unblocked					0.91	0.90
vC, conflicting volume			427		959	416
vC1, stage 1 conf vol						
vC2, stage 2 conf vol			204		000	000
vCu, unblocked vol			301		833	289
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)			0.0		0.5	0.0
tF (s)			2.2		3.5	3.3
p0 queue free %			99		99	99
cM capacity (veh/h)			1128		305	671
Direction, Lane #	EB 1	WB 1	WB 2	NB 1		
Volume Total	427	9	525	8		
Volume Left	0	9	0	4		
Volume Right	22	0	0	4		
cSH	1700	1128	1700	420		
Volume to Capacity	0.25	0.01	0.31	0.02		
Queue Length 95th (m)	0.0	0.2	0.0	0.4		
Control Delay (s)	0.0	8.2	0.0	13.7		
Lane LOS		Α		В		
Approach Delay (s)	0.0	0.1		13.7		
Approach LOS				В		
Intersection Summary						
Average Delay			0.2			
Intersection Capacity Utilizat	ion		39.2%	IC	U Level c	of Service
Analysis Period (min)			15			

	۶	→	•	•	+	4	•	†	/	/	+	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	f)		ሻ	ĵ.		ሻ	₽		*		7
Traffic Volume (vph)	298	448	2	24	487	95	13	141	13	113	197	340
Future Volume (vph)	298	448	2	24	487	95	13	141	13	113	197	340
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	180.0		0.0	200.0		0.0	100.0		0.0	80.0		240.0
Storage Lanes	1		0	1		0	1		0	1		1
Taper Length (m)	100.0			100.0			75.0			100.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.999			0.976			0.987				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1695	1783	0	1695	1741	0	1695	1761	0	1695	1784	1517
FIt Permitted	0.142			0.503			0.634			0.421		
Satd. Flow (perm)	253	1783	0	898	1741	0	1131	1761	0	751	1784	1517
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					7			3				176
Link Speed (k/h)		60			60			80			80	
Link Distance (m)		564.6			143.8			424.0			477.4	
Travel Time (s)		33.9			8.6			19.1			21.5	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	298	448	2	24	487	95	13	141	13	113	197	340
Shared Lane Traffic (%)												
Lane Group Flow (vph)	298	450	0	24	582	0	13	154	0	113	197	340
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7	J		3.7	J •		3.7	9 -		3.7	J
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	6.1
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	6.1
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex		CI+Ex	CI+Ex	Cl+Ex
Detector 1 Channel	<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>			<u> </u>	<u> </u>	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)	V. V	28.7			28.7		0.0	28.7		<u> </u>	28.7	0.0
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			Cl+Ex			CI+Ex	
Detector 2 Channel		OI LX			OI LX			OI LX			O. LA	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		pm+pt	NA	pm+ov
Protected Phases	7	4		1 31111	8		. 51111	2		1	6	7
Permitted Phases	4	7		8	U		2			6	U	6
I GITHILLEU FHASES	4			U						U		

	۶	-	•	•	•	•	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	7	4		8	8		2	2		1	6	7
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		21.0	21.0		5.0	21.0	5.0
Minimum Split (s)	11.9	36.9		36.9	36.9		27.5	27.5		11.5	27.5	11.9
Total Split (s)	26.9	88.8		61.9	61.9		41.5	41.5		26.5	68.0	26.9
Total Split (%)	17.2%	56.6%		39.5%	39.5%		26.5%	26.5%		16.9%	43.4%	17.2%
Maximum Green (s)	20.0	81.9		55.0	55.0		35.0	35.0		20.0	61.5	20.0
Yellow Time (s)	3.7	3.7		3.7	3.7		4.6	4.6		4.6	4.6	3.7
All-Red Time (s)	3.2	3.2		3.2	3.2		1.9	1.9		1.9	1.9	3.2
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.9	6.9		6.9	6.9		6.5	6.5		6.5	6.5	6.9
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lead		Lead
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes		Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		Min	Min		None	Min	None
Walk Time (s)		7.0		7.0	7.0		7.0	7.0			7.0	
Flash Dont Walk (s)		23.0		23.0	23.0		14.0	14.0			14.0	
Pedestrian Calls (#/hr)		0		0	0		0	0			0	
Act Effct Green (s)	76.7	76.7		49.6	49.6		21.6	21.6		40.2	40.2	66.9
Actuated g/C Ratio	0.59	0.59		0.38	0.38		0.17	0.17		0.31	0.31	0.51
v/c Ratio	0.80	0.43		0.07	0.87		0.07	0.53		0.35	0.36	0.39
Control Delay	39.5	16.6		26.9	52.4		50.7	57.9		37.8	38.1	10.7
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	39.5	16.6		26.9	52.4		50.7	57.9		37.8	38.1	10.7
LOS	D	В		С	D		D	Е		D	D	В
Approach Delay		25.7			51.4			57.3			23.7	_
Approach LOS		С			D			Е			С	

Area Type: Other

Cycle Length: 156.8 Actuated Cycle Length: 130.4 Natural Cycle: 100

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.87 Intersection Signal Delay: 34.7 Intersection Capacity Utilization 107.9%

Intersection LOS: C
ICU Level of Service G

Analysis Period (min) 15

Splits and Phases: 3: Prince of Wales Drive & Bankfield Road

Lane Group		→	•	•	←	1	_
Lane Configurations	Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Traffic Volume (vph)							
Future Volume (vph)			141				18
Ideal Flow (vphph)	\ . <i>,</i>						
Storage Length (m) 0.0 180.0 0.0 0.0 100 100 100 100 100 1.00	· · · /						
Storage Lanes	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1000			1000		
Taper Length (m)							
Lane Util. Factor			U				U
Firt		1.00	1.00		1.00		1.00
Fit Protected			1.00	1.00	1.00		1.00
Satd. Flow (prot)		0.310		0.050			
Fit Permitted		1721	٥		179/		٥
Satd. Flow (perm) 1731 0 630 1784 1679 0		1/31	U		1704		U
Right Turn on Red		1704	0		1704		0
Satd. Flow (RTOR) 24 8 Link Speed (k/h) 60 60 60 Link Distance (m) 279.4 465.4 562.9 Travel Time (s) 16.8 27.9 33.8 Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 Adj. Flow (vph) 491 141 28 516 118 18 Shared Lane Traffic (%) Lane Group Flow (vph) 632 0 28 516 136 0 Enter Blocked Intersection No		1/31		030	1/84	10/9	
Link Speed (k/h) 60 60 60 Link Distance (m) 279.4 465.4 562.9 Travel Time (s) 16.8 27.9 33.8 Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 Adj. Flow (vph) 491 141 28 516 118 18 Shared Lane Traffic (%) Lene Group Flow (vph) 632 0 28 516 136 0 Lane Group Flow (vph) 632 0 28 516 136 0 Lane Group Flow (vph) 632 0 28 516 136 0 Lane Group Flow (vph) 632 0 28 516 136 0 Lane Group Flow (vph) 632 0 28 516 136 0 Lane Group Flow (vph) 632 0 28 516 136 0 Lane Group Flow (vph) 632 0 28 516 136 0 0 0 0 <t< td=""><td></td><td>0.4</td><td>Yes</td><td></td><td></td><td>^</td><td>Yes</td></t<>		0.4	Yes			^	Yes
Link Distance (m) 279.4 465.4 562.9	,				-00		
Travel Time (s) 16.8 27.9 33.8 Peak Hour Factor 1.00 No							
Peak Hour Factor 1.00 No	. ,						
Adj. Flow (vph) 491 141 28 516 118 18 Shared Lane Traffic (%) Lane Group Flow (vph) 632 0 28 516 136 0 Enter Blocked Intersection No No <td>· ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	· ,						
Shared Lane Traffic (%) Lane Group Flow (vph) 632 0 28 516 136 0 Enter Blocked Intersection No No <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
Lane Group Flow (vph) 632 0 28 516 136 0 Enter Blocked Intersection No		491	141	28	516	118	18
Enter Blocked Intersection No Left Left Left Right Left Left Left Right Left Left Left Right Left	. ,						
Left Right Left Right Left Left Right	Lane Group Flow (vph)	632	0		516	136	
Median Width(m) 3.7 3.7 3.7 Link Offset(m) 0.0 0.0 0.0 Crosswalk Width(m) 4.9 4.9 4.9 Two way Left Turn Lane Headway Factor 1.06 1.00 <t< td=""><td>Enter Blocked Intersection</td><td>No</td><td>No</td><td>No</td><td>No</td><td>No</td><td>No</td></t<>	Enter Blocked Intersection	No	No	No	No	No	No
Median Width(m) 3.7 3.7 3.7 Link Offset(m) 0.0 0.0 0.0 Crosswalk Width(m) 4.9 4.9 4.9 Two way Left Turn Lane Headway Factor 1.06 <t< td=""><td>Lane Alignment</td><td>Left</td><td>Right</td><td>Left</td><td>Left</td><td>Left</td><td>Right</td></t<>	Lane Alignment	Left	Right	Left	Left	Left	Right
Link Offset(m) 0.0 0.0 0.0 Crosswalk Width(m) 4.9 4.9 4.9 Two way Left Turn Lane Headway Factor 1.06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	•						
Crosswalk Width(m) 4.9 4.9 4.9 Two way Left Turn Lane Headway Factor 1.06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <td>. ,</td> <td>0.0</td> <td></td> <td></td> <td>0.0</td> <td>0.0</td> <td></td>	. ,	0.0			0.0	0.0	
Two way Left Turn Lane Headway Factor 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06	,						
Headway Factor	, ,						
Turning Speed (k/h) 14 24 24 14 Number of Detectors 2 1 2 1 Detector Template Thru Left Thru Left Leading Detector (m) 30.5 6.1 30.5 6.1 Trailing Detector (m) 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 Detector 1 Size(m) 1.8 6.1 1.8 6.1 Detector 1 Size(m) 1.8 6.1 1.8 6.1 Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 Detector 2 Position(m) 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.	•	1.06	1.06	1.06	1.06	1.06	1.06
Number of Detectors 2 1 2 1 Detector Template Thru Left Thru Left Leading Detector (m) 30.5 6.1 30.5 6.1 Trailing Detector (m) 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 Detector 1 Size(m) 1.8 6.1 1.8 6.1 Detector 1 Size(m) 1.8 6.1 1.8 6.1 Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 Detector 2 Position(m) 28.7 28.7 28.7 28.7 28.7 Detector 2 Size(m) 1.8 1.8 1.8 1.8 1.8 2 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8							
Detector Template Thru Left Thru Left Leading Detector (m) 30.5 6.1 30.5 6.1 Trailing Detector (m) 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 Detector 1 Size(m) 1.8 6.1 1.8 6.1 Detector 1 Size(m) 1.8 6.1 1.8 6.1 Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Channel 0.0 0.0 0.0 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 Detector 2 Position(m) 28.7 28.7 28.7 28.7 28.7 Detector 2 Type CI+Ex CI+Ex CI+Ex Detector 2 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0<	• , ,	2	- 11		2		- 11
Leading Detector (m) 30.5 6.1 30.5 6.1 Trailing Detector (m) 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 Detector 1 Size(m) 1.8 6.1 1.8 6.1 Detector 1 Type Cl+Ex Cl+Ex Cl+Ex Cl+Ex Detector 1 Channel Cl+Ex Cl+Ex Cl+Ex Cl+Ex Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 Detector 2 Position(m) 28.7 28.7 28.7 28.7 28.7 Detector 2 Size(m) 1.8 1.8 1.8 Detector 2 Cl+Ex Detector 2 Extend Cl+Ex Cl+Ex Detector 2 Cl							
Trailing Detector (m) 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 Detector 1 Size(m) 1.8 6.1 1.8 6.1 Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Channel CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 Detector 1 Queue (s) 0.0	•						
Detector 1 Position(m) 0.0 0.0 0.0 0.0 Detector 1 Size(m) 1.8 6.1 1.8 6.1 Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Channel 0.0 0.0 0.0 0.0 0.0 Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 Detector 2 Position(m) 28.7 28.7 28.7 28.7 0.0							
Detector 1 Size(m) 1.8 6.1 1.8 6.1 Detector 1 Type Cl+Ex Cl+Ex Cl+Ex Cl+Ex Detector 1 Channel 0.0 0.0 0.0 0.0 Detector 1 Extend (s) 0.0 0.0 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 0.0 0.0 Detector 1 Delay (s) 0.0 0.0 0.0 0.0 Detector 2 Position(m) 28.7 28.7 28.7 Detector 2 Size(m) 1.8 1.8 1.8 Detector 2 Type Cl+Ex Cl+Ex Cl+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 Turn Type NA Perm NA Protected Phases 2 6 8	` ,						
Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Channel Detector 1 Extend (s) 0.0 0.0 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 Detector 2 Position(m) 28.7 28.7 28.7 28.7 28.7 Detector 2 Size(m) 1.8 1.8 1.8 Detector 2 Cl+Ex Detect							
Detector 1 Channel Outcome of the content							
Detector 1 Extend (s) 0.0 0.0 0.0 0.0 Detector 1 Queue (s) 0.0 0.0 0.0 0.0 Detector 1 Delay (s) 0.0 0.0 0.0 0.0 Detector 2 Position(m) 28.7 28.7 Detector 2 Size(m) 1.8 1.8 Detector 2 Type CI+Ex CI+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 Turn Type NA Perm NA Protected Phases Protected Phases 2 6 8		CI+EX		CI+EX	CI+EX	UI+EX	
Detector 1 Queue (s) 0.0 0.0 0.0 0.0 Detector 1 Delay (s) 0.0 0.0 0.0 0.0 Detector 2 Position(m) 28.7 28.7 Detector 2 Size(m) 1.8 1.8 Detector 2 Type Cl+Ex Cl+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 Turn Type NA Perm NA Protected Phases Protected Phases 2 6 8		0.0		0.0	0.0	0.0	
Detector 1 Delay (s) 0.0 0.0 0.0 0.0 Detector 2 Position(m) 28.7 28.7 28.7 Detector 2 Size(m) 1.8 1.8 Detector 2 Type CI+Ex CI+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 Turn Type NA Perm NA Protected Phases Protected Phases 2 6 8							
Detector 2 Position(m) 28.7 28.7 Detector 2 Size(m) 1.8 1.8 Detector 2 Type CI+Ex CI+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 0.0 Turn Type NA Perm NA Protected Phases Protected Phases 2 6 8							
Detector 2 Size(m) 1.8 1.8 Detector 2 Type CI+Ex CI+Ex Detector 2 Channel Detector 2 Extend (s) 0.0 Turn Type NA Perm NA Protected Phases Protected Phases 2 6 8				0.0		0.0	
Detector 2 Type CI+Ex CI+Ex Detector 2 Channel 0.0 0.0 Detector 2 Extend (s) 0.0 Perm NA Protected Phases Protected Phases 2 6 8							
Detector 2 Channel 0.0 0.0 Detector 2 Extend (s) 0.0 0.0 Turn Type NA Perm NA Protected Phases Protected Phases 2 6 8							
Detector 2 Extend (s) 0.0 0.0 Turn Type NA Perm NA Prot Protected Phases 2 6 8		CI+Ex			Cl+Ex		
Turn Type NA Perm NA Prot Protected Phases 2 6 8							
Protected Phases 2 6 8	Detector 2 Extend (s)						
Protected Phases 2 6 8	Turn Type	NA		Perm	NA	Prot	
		2			6	8	
1 Offinition 1 Habba	Permitted Phases			6			

	→	•	€	←	4	<i>></i>	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Detector Phase	2		6	6	8		
Switch Phase							
Minimum Initial (s)	24.0		24.0	24.0	10.0		
Minimum Split (s)	30.5		30.5	30.5	25.0		
Total Split (s)	66.5		66.5	66.5	36.0		
Total Split (%)	64.9%	64	4.9%	64.9%	35.1%		
Maximum Green (s)	60.0		60.0	60.0	30.0		
Yellow Time (s)	4.6		4.6	4.6	3.7		
All-Red Time (s)	1.9		1.9	1.9	2.3		
Lost Time Adjust (s)	0.0		0.0	0.0	0.0		
Total Lost Time (s)	6.5		6.5	6.5	6.0		
Lead/Lag							
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0		3.0	3.0	3.0		
Recall Mode	Min		Min	Min	None		
Walk Time (s)	7.0		7.0	7.0	7.0		
Flash Dont Walk (s)	17.0		17.0	17.0	12.0		
Pedestrian Calls (#/hr)	0		0	0	0		
Act Effct Green (s)	31.5		31.5	31.5	11.1		
Actuated g/C Ratio	0.63		0.63	0.63	0.22		
v/c Ratio	0.58		0.07	0.46	0.36		
Control Delay	10.6		6.6	9.1	19.8		
Queue Delay	0.0		0.0	0.0	0.0		
Total Delay	10.6		6.6	9.1	19.8		
LOS	В		Α	Α	В		
Approach Delay	10.6			9.0	19.8		
Approach LOS	В			Α	В		
Intersection Summary							
Area Type:	Other						
Cycle Length: 102.5							
Actuated Cycle Length: 50	0.3						
Natural Cycle: 60							
Control Type: Actuated-U	ncoordinated						
Maximum v/c Ratio: 0.58							
Intersection Signal Delay:					tersection		
Intersection Capacity Utili	zation 55.1%			IC	CU Level c	f Service B	
Analysis Period (min) 15							
Splits and Phases: 7: F	First Line Road &	& Bankfield	d Road				
→ Ø2							Ι
66.5 s							ı
-d							1
₩ Ø6							l
cc =							t

	-	•	•	←	•	/
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1>		ሻ	11.5 1	¥	.,_,,
Traffic Volume (veh/h)	561	15	7	596	12	10
Future Volume (Veh/h)	561	15	7	596	12	10
Sign Control	Free	10	,	Free	Stop	10
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	561	15	7	596	12	10
Pedestrians	301	10	'	550	12	10
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)	INOTIE			NOTIC		
Upstream signal (m)	144			280		
	144		0.82	200	0.89	0.82
pX, platoon unblocked vC, conflicting volume			576		1178	568
vC1, stage 1 conf vol			370		11/0	300
vC2, stage 2 conf vol			374		907	265
vCu, unblocked vol					807	365
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)			0.0		2.5	2.2
tF (s)			2.2		3.5	3.3
p0 queue free %			99		96	98
cM capacity (veh/h)			972		309	558
Direction, Lane #	EB 1	WB 1	WB 2	NB 1		
Volume Total	576	7	596	22		
Volume Left	0	7	0	12		
Volume Right	15	0	0	10		
cSH	1700	972	1700	387		
Volume to Capacity	0.34	0.01	0.35	0.06		
Queue Length 95th (m)	0.0	0.2	0.0	1.4		
Control Delay (s)	0.0	8.7	0.0	14.9		
Lane LOS		Α		В		
Approach Delay (s)	0.0	0.1		14.9		
Approach LOS				В		
Intersection Summary						
Average Delay			0.3			
Intersection Capacity Utilizati	ion		43.1%	IC	U Level o	of Service
Analysis Period (min)			15			

	۶	→	•	•	+	•	•	†	~	/	+	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	f)		ሻ	f)		ሻ	₽		*		7
Traffic Volume (vph)	247	361	2	16	444	109	11	239	22	72	90	234
Future Volume (vph)	247	361	2	16	444	109	11	239	22	72	90	234
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	180.0		0.0	200.0		0.0	100.0		0.0	80.0		240.0
Storage Lanes	1		0	1		0	1		0	1		1
Taper Length (m)	100.0			100.0			75.0			100.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.999			0.970			0.987				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1695	1783	0	1695	1731	0	1695	1761	0	1695	1784	1517
Flt Permitted	0.144			0.545			0.699			0.298		
Satd. Flow (perm)	257	1783	0	972	1731	0	1247	1761	0	532	1784	1517
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					10			3				159
Link Speed (k/h)		60			60			80			80	
Link Distance (m)		564.6			143.8			424.0			477.4	
Travel Time (s)		33.9			8.6			19.1			21.5	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	247	361	2	16	444	109	11	239	22	72	90	234
Shared Lane Traffic (%)												
Lane Group Flow (vph)	247	363	0	16	553	0	11	261	0	72	90	234
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7	J		3.7	J •		3.7	J		3.7	J
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	6.1
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	6.1
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex		CI+Ex	CI+Ex	Cl+Ex
Detector 1 Channel	OI - EX	OI EX		OI - EX	OI EX		OI ZX	OI EX		OI ZX	OI LX	OI LX
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)	0.0	28.7		0.0	28.7		0.0	28.7		0.0	28.7	0.0
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		OI LX			OI · LX			OI · LX			OI · LX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		pm+pt	NA	pm+ov
Protected Phases	ριτι - ρι 7	4		ı Gilli	8		1 61111	2		ριτι - ρι	6	•
Permitted Phases	4	4		8	0		2			6	U	7 6
r cillilleu FlidSeS	4			0						υ		<u> </u>

	۶	-	•	•	•	•	4	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	7	4		8	8		2	2		1	6	7
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		21.0	21.0		5.0	21.0	5.0
Minimum Split (s)	11.9	36.9		36.9	36.9		27.5	27.5		11.5	27.5	11.9
Total Split (s)	21.9	68.8		46.9	46.9		41.5	41.5		21.5	63.0	21.9
Total Split (%)	16.6%	52.2%		35.6%	35.6%		31.5%	31.5%		16.3%	47.8%	16.6%
Maximum Green (s)	15.0	61.9		40.0	40.0		35.0	35.0		15.0	56.5	15.0
Yellow Time (s)	3.7	3.7		3.7	3.7		4.6	4.6		4.6	4.6	3.7
All-Red Time (s)	3.2	3.2		3.2	3.2		1.9	1.9		1.9	1.9	3.2
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.9	6.9		6.9	6.9		6.5	6.5		6.5	6.5	6.9
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lead		Lead
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes		Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		Min	Min		None	Min	None
Walk Time (s)		7.0		7.0	7.0		7.0	7.0			7.0	
Flash Dont Walk (s)		23.0		23.0	23.0		14.0	14.0			14.0	
Pedestrian Calls (#/hr)		0		0	0		0	0			0	
Act Effct Green (s)	62.4	62.4		40.3	40.3		23.8	23.8		36.1	36.1	57.8
Actuated g/C Ratio	0.56	0.56		0.36	0.36		0.21	0.21		0.32	0.32	0.52
v/c Ratio	0.73	0.37		0.05	0.88		0.04	0.69		0.27	0.16	0.27
Control Delay	32.1	16.8		27.5	51.4		36.7	51.8		28.2	26.6	5.5
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	32.1	16.8		27.5	51.4		36.7	51.8		28.2	26.6	5.5
LOS	С	В		С	D		D	D		С	С	Α
Approach Delay		23.0			50.8			51.2			14.4	
Approach LOS		С			D			D			В	

Area Type: Other

Cycle Length: 131.8 Actuated Cycle Length: 112 Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.88 Intersection Signal Delay: 33.9 Intersection Capacity Utilization 103.4%

Intersection LOS: C
ICU Level of Service G

Analysis Period (min) 15

	→	\rightarrow	•	←	4	*
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u></u>		ሻ	<u></u>	W	
Traffic Volume (vph)	365	80	21	406	126	26
Future Volume (vph)	365	80	21	406	126	26
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	1000	0.0	180.0	1000	0.0	0.0
Storage Lanes		0.0	100.0		1	0.0
Taper Length (m)		U	100.0		7.6	U
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
		1.00	1.00	1.00		1.00
Frt	0.976		0.050		0.977	
Flt Protected	4744	•	0.950	4704	0.960	_
Satd. Flow (prot)	1741	0	1695	1784	1674	0
Flt Permitted			0.484		0.960	
Satd. Flow (perm)	1741	0	864	1784	1674	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)	19				10	
Link Speed (k/h)	60			60	60	
Link Distance (m)	279.4			465.4	562.9	
Travel Time (s)	16.8			27.9	33.8	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	365	80	21	406	126	26
Shared Lane Traffic (%)						
Lane Group Flow (vph)	445	0	21	406	152	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
	3.7	Rigiil	Leit	3.7	3.7	Rigiit
Median Width(m)						
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.9			4.9	4.9	
Two way Left Turn Lane						
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)		14	24		24	14
Number of Detectors	2		1	2	1	
Detector Template	Thru		Left	Thru	Left	
Leading Detector (m)	30.5		6.1	30.5	6.1	
Trailing Detector (m)	0.0		0.0	0.0	0.0	
Detector 1 Position(m)	0.0		0.0	0.0	0.0	
Detector 1 Size(m)	1.8		6.1	1.8	6.1	
Detector 1 Type	CI+Ex		Cl+Ex	CI+Ex	CI+Ex	
Detector 1 Channel	J. L.		J. L.	J L.	J. L.	
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	
Detector 2 Position(m)	28.7		0.0	28.7	0.0	
Detector 2 Size(m)	1.8			1.8		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0		_	0.0		
Turn Type	NA		Perm	NA	Prot	
Protected Phases	2			6	8	
Permitted Phases			6			

	-	\rightarrow	•	←	4	/	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Detector Phase	2		6	6	8		
Switch Phase							
Minimum Initial (s)	24.0		24.0	24.0	10.0		
Minimum Split (s)	30.5		30.5	30.5	25.0		
Total Split (s)	66.5		66.5	66.5	36.0		
Total Split (%)	64.9%		64.9%	64.9%	35.1%		
Maximum Green (s)	60.0		60.0	60.0	30.0		
Yellow Time (s)	4.6		4.6	4.6	3.7		
All-Red Time (s)	1.9		1.9	1.9	2.3		
Lost Time Adjust (s)	0.0		0.0	0.0	0.0		
Total Lost Time (s)	6.5		6.5	6.5	6.0		
Lead/Lag							
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0		3.0	3.0	3.0		
Recall Mode	Min		Min	Min	None		
Walk Time (s)	7.0		7.0	7.0	7.0		
Flash Dont Walk (s)	17.0		17.0	17.0	12.0		
Pedestrian Calls (#/hr)	0		0	0	0		
Act Effct Green (s)	26.3		26.3	26.3	10.7		
Actuated g/C Ratio	0.53		0.53	0.53	0.22		
v/c Ratio	0.48		0.05	0.43	0.41		
Control Delay	9.5		6.6	9.2	18.4		
Queue Delay	0.0		0.0	0.0	0.0		
Total Delay	9.5		6.6	9.2	18.4		
LOS	А		Α	Α	В		
Approach Delay	9.5			9.1	18.4		
Approach LOS	Α			Α	В		
Intersection Summary							
Area Type:	Other						
Cycle Length: 102.5							
Actuated Cycle Length: 49	.6						
Natural Cycle: 60							
Control Type: Actuated-Un	coordinated						
Maximum v/c Ratio: 0.48							
Intersection Signal Delay:	10.7			lr	ntersection	LOS: B	
Intersection Capacity Utiliz						of Service A	
Analysis Period (min) 15					2010.	7 001 1100 7 1	
Splits and Phases: 7: Fi	rst Line Road	l & Bankf	ield Road	I			
	. , , , , , , ,						
→ Ø2							
66.5 s							
₩ Ø6							↑ ø8

	-	•	•	←	•	~	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1 2		*		W		
Traffic Volume (veh/h)	441	22	9	576	4	4	
Future Volume (Veh/h)	441	22	9	576	4	4	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Hourly flow rate (vph)	441	22	9	576	4	4	
Pedestrians	771		J	070			
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
. ,	None			None			
Median type	INOTIE			NOTIE			
Median storage veh)	144			280			
Upstream signal (m)	144		0.88	∠ŏ∪	0.04	0.00	
pX, platoon unblocked					0.91	0.88	
vC, conflicting volume			463		1046	452	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol			005		0.47	040	
vCu, unblocked vol			325		847	313	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			99		99	99	
cM capacity (veh/h)			1090		301	642	
Direction, Lane #	EB 1	WB 1	WB 2	NB 1			
Volume Total	463	9	576	8			
Volume Left	0	9	0	4			
Volume Right	22	0	0	4			
cSH	1700	1090	1700	410			
Volume to Capacity	0.27	0.01	0.34	0.02			
Queue Length 95th (m)	0.0	0.2	0.0	0.5			
Control Delay (s)	0.0	8.3	0.0	14.0			
Lane LOS		Α		В			
Approach Delay (s)	0.0	0.1		14.0			
Approach LOS				В			
Intersection Summary							
Average Delay			0.2				
Intersection Capacity Utiliza	ation		42.0%	IC	U Level c	f Service)
Analysis Period (min)			15				

	۶	→	•	•	-	•	•	†	/	>	+	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	f)		*	1>		ሻ	₽		*		7
Traffic Volume (vph)	298	493	2	24	531	95	13	152	13	113	211	340
Future Volume (vph)	298	493	2	24	531	95	13	152	13	113	211	340
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	180.0		0.0	200.0		0.0	100.0		0.0	80.0		240.0
Storage Lanes	1		0	1		0	1		0	1		1
Taper Length (m)	100.0			100.0			75.0			100.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.999			0.977			0.988				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1695	1783	0	1695	1743	0	1695	1763	0	1695	1784	1517
FIt Permitted	0.130			0.482			0.626			0.387		
Satd. Flow (perm)	232	1783	0	860	1743	0	1117	1763	0	691	1784	1517
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					6			3				149
Link Speed (k/h)		60			60			80			80	
Link Distance (m)		564.6			143.8			424.0			477.4	
Travel Time (s)		33.9			8.6			19.1			21.5	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	298	493	2	24	531	95	13	152	13	113	211	340
Shared Lane Traffic (%)												
Lane Group Flow (vph)	298	495	0	24	626	0	13	165	0	113	211	340
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7	_		3.7	_		3.7	_		3.7	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	6.1
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	6.1
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			Cl+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		pm+pt	NA	pm+ov
Protected Phases	7	4			8			2		1	6	. 7
Permitted Phases	4			8			2			6		6

	۶	-	\rightarrow	•	←	•	4	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Detector Phase	7	4		8	8		2	2		1	6	7
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		21.0	21.0		5.0	21.0	5.0
Minimum Split (s)	11.9	36.9		36.9	36.9		27.5	27.5		11.5	27.5	11.9
Total Split (s)	26.9	88.8		61.9	61.9		41.5	41.5		26.5	68.0	26.9
Total Split (%)	17.2%	56.6%		39.5%	39.5%		26.5%	26.5%		16.9%	43.4%	17.2%
Maximum Green (s)	20.0	81.9		55.0	55.0		35.0	35.0		20.0	61.5	20.0
Yellow Time (s)	3.7	3.7		3.7	3.7		4.6	4.6		4.6	4.6	3.7
All-Red Time (s)	3.2	3.2		3.2	3.2		1.9	1.9		1.9	1.9	3.2
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.9	6.9		6.9	6.9		6.5	6.5		6.5	6.5	6.9
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lead		Lead
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes		Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		Min	Min		None	Min	None
Walk Time (s)		7.0		7.0	7.0		7.0	7.0			7.0	
Flash Dont Walk (s)		23.0		23.0	23.0		14.0	14.0			14.0	
Pedestrian Calls (#/hr)		0		0	0		0	0			0	
Act Effct Green (s)	81.9	81.9		55.0	55.0		21.7	21.7		40.4	40.4	67.0
Actuated g/C Ratio	0.60	0.60		0.41	0.41		0.16	0.16		0.30	0.30	0.49
v/c Ratio	0.84	0.46		0.07	0.88		0.07	0.58		0.38	0.40	0.41
Control Delay	45.5	17.1		27.0	52.9		50.8	61.4		39.5	40.3	13.1
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	45.5	17.1		27.0	52.9		50.8	61.4		39.5	40.3	13.1
LOS	D	В		С	D		D	Е		D	D	В
Approach Delay		27.8			52.0			60.6			26.3	
Approach LOS		С			D			Е			С	

Area Type: Other

Cycle Length: 156.8 Actuated Cycle Length: 135.8 Natural Cycle: 100

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.88 Intersection Signal Delay: 36.8 Intersection Capacity Utilization 110.3%

Intersection LOS: D
ICU Level of Service H

Analysis Period (min) 15

Splits and Phases: 3: Prince of Wales Drive & Bankfield Road

	-	\rightarrow	•	•	4	*
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1		*	†	W	
Traffic Volume (vph)	539	141	28	562	118	18
Future Volume (vph)	539	141	28	562	118	18
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	1000	0.0	180.0	1000	0.0	0.0
Storage Lanes		0.0	100.0		1	0.0
Taper Length (m)		U	100.0		7.6	U
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.972	1.00	1.00	1.00	0.982	1.00
Flt Protected	0.972		0.950		0.962	
	1724	0		1701		0
Satd. Flow (prot)	1734	0	1695	1784	1679	0
Flt Permitted	4704	•	0.321	4704	0.958	_
Satd. Flow (perm)	1734	0	573	1784	1679	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)	22				8	
Link Speed (k/h)	60			60	60	
Link Distance (m)	279.4			465.4	562.9	
Travel Time (s)	16.8			27.9	33.8	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Adj. Flow (vph)	539	141	28	562	118	18
Shared Lane Traffic (%)						
Lane Group Flow (vph)	680	0	28	562	136	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(m)	3.7	g		3.7	3.7	
Link Offset(m)	0.0			0.0	0.0	
Crosswalk Width(m)	4.9			4.9	4.9	
Two way Left Turn Lane	7.0			7.0	7.0	
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)	1.00	1.00	24	1.00	24	1.00
Number of Detectors	2	14	1	2	1	14
			Left		Left	
Detector Template	Thru			Thru		
Leading Detector (m)	30.5		6.1	30.5	6.1	
Trailing Detector (m)	0.0		0.0	0.0	0.0	
Detector 1 Position(m)	0.0		0.0	0.0	0.0	
Detector 1 Size(m)	1.8		6.1	1.8	6.1	
Detector 1 Type	CI+Ex		CI+Ex	CI+Ex	CI+Ex	
Detector 1 Channel						
Detector 1 Extend (s)	0.0		0.0	0.0	0.0	
Detector 1 Queue (s)	0.0		0.0	0.0	0.0	
Detector 1 Delay (s)	0.0		0.0	0.0	0.0	
Detector 2 Position(m)	28.7			28.7		
Detector 2 Size(m)	1.8			1.8		
Detector 2 Type	CI+Ex			CI+Ex		
Detector 2 Channel						
Detector 2 Extend (s)	0.0			0.0		
Turn Type	NA		Perm	NA	Prot	
Protected Phases	2		2	6	8	
Permitted Phases			6			
T GITHILLEU F HASES			U			

	→	•	•	←	~	/	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Detector Phase	2		6	6	8		
Switch Phase							
Minimum Initial (s)	24.0		24.0	24.0	10.0		
Minimum Split (s)	30.5		30.5	30.5	25.0		
Total Split (s)	66.5		66.5	66.5	36.0		
Total Split (%)	64.9%		64.9%	64.9%	35.1%		
Maximum Green (s)	60.0 4.6		60.0 4.6	60.0 4.6	30.0 3.7		
Yellow Time (s) All-Red Time (s)	1.9		1.9	1.9	2.3		
Lost Time Adjust (s)	0.0		0.0	0.0	0.0		
Total Lost Time (s)	6.5		6.5	6.5	6.0		
Lead/Lag	0.0		0.0	0.0	0.0		
Lead-Lag Optimize?							
Vehicle Extension (s)	3.0		3.0	3.0	3.0		
Recall Mode	Min		Min	Min	None		
Walk Time (s)	7.0		7.0	7.0	7.0		
Flash Dont Walk (s)	17.0		17.0	17.0	12.0		
Pedestrian Calls (#/hr)	0		0	0	0		
Act Effct Green (s)	32.9		32.9	32.9	11.4		
Actuated g/C Ratio	0.63		0.63	0.63	0.22		
v/c Ratio	0.61 11.2		0.08 6.7	0.50 9.4	0.36 21.0		
Control Delay Queue Delay	0.0		0.0	0.0	0.0		
Total Delay	11.2		6.7	9.4	21.0		
LOS	В		Α	Α.	C C		
Approach Delay	11.2		, ,	9.3	21.0		
Approach LOS	В			Α	С		
Intersection Summary							
Area Type:	Other						
Cycle Length: 102.5							
Actuated Cycle Length: 52)						
Natural Cycle: 60							
Control Type: Actuated-Ur	ncoordinated						
Maximum v/c Ratio: 0.61							
Intersection Signal Delay:					tersection		
Intersection Capacity Utiliz	zation 57.7%			IC	CU Level o	f Service B	
Analysis Period (min) 15							
Splits and Phases: 7: Fi	irst Line Road	& Bankf	ield Road	t			
→ Ø2							l
66.5 s							ı
4-							١.
₩ Ø6							L

	-	•	•	←	•	/
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u> </u>		ሻ	<u> </u>	¥	
Traffic Volume (veh/h)	615	15	7	648	12	10
Future Volume (Veh/h)	615	15	7	648	12	10
Sign Control	Free	10	,	Free	Stop	10
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	615	1.00	7	648	1.00	1.00
Pedestrians	013	13	, <u>, , , , , , , , , , , , , , , , , , </u>	040	12	10
Lane Width (m)						
. ,						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)	Nana			Mone		
Median type	None			None		
Median storage veh)	444			000		
Upstream signal (m)	144		0.00	280	0.00	0.00
pX, platoon unblocked			0.80		0.89	0.80
vC, conflicting volume			630		1284	622
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			418		838	409
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)						
tF (s)			2.2		3.5	3.3
p0 queue free %			99		96	98
cM capacity (veh/h)			918		296	517
Direction, Lane #	EB 1	WB 1	WB 2	NB 1		
Volume Total	630	7	648	22		
Volume Left	0	7	0	12		
Volume Right	15	0	0	10		
cSH	1700	918	1700	367		
Volume to Capacity	0.37	0.01	0.38	0.06		
Queue Length 95th (m)	0.0	0.2	0.0	1.4		
Control Delay (s)	0.0	9.0	0.0	15.4		
Lane LOS		Α		С		
Approach Delay (s)	0.0	0.1		15.4		
Approach LOS	0.0	<u> </u>		С		
Intersection Summary						
Average Delay			0.3			
Intersection Capacity Utiliza	ation		46.0%	IC	III evel c	of Service
Analysis Period (min)	AU () 1		15	10	O LOVEI C	, OCIVICE
Alialysis Feliou (IIIIII)			10			

APPENDIX H

MMLOS Review

Segment MMLOS Analysis

This section provides a review of the boundary streets Bankfield Road and Elijah Court using complete streets principles. The *Multi-Modal Level of Service (MMLOS) Guidelines*, produced by IBI Group in October 2015, were used to evaluate the levels of service for each alternative mode of transportation on Bankfield Road and Elijah Court, based on the targets for areas within 'Village' OP Designation/Policy Areas. Segments have been analyzed based on existing conditions.

Exhibit 4 of the *MMLOS Guidelines* has been used to evaluate the segment pedestrian level of service (PLOS) of Bankfield Road and Elijah Court. Exhibit 22 suggests a target PLOS C for all roadways within village areas. The results of the segment PLOS analysis are summarized in **Table 1**.

Exhibit 11 of the *MMLOS Guidelines* has been used to evaluate the segment bicycle level of service (BLOS) of Bankfield Road and Elijah Court. Within village areas, Exhibit 22 suggests a target BLOS D for roadways with no bike route designation. The results of the segment BLOS analysis are summarized in **Table 2**.

Exhibit 15 of the *MMLOS Guidelines* has been used to evaluate the segment transit level of service (TLOS) of Bankfield Road and Elijah Court. Within village areas, Exhibit 22 does not identify a target TLOS for any roadways.

Exhibit 20 of the *MMLOS Guidelines* has been used to evaluate the segment truck level of service (TkLOS) of Bankfield Road and Elijah Court. Within village areas, Exhibit 22 suggests a target TkLOS D for arterial roadways with a truck route designation (Bankfield Road) and no target TkLOS for local roadways with no truck route designation (Elijah Court). The results of the segment TkLOS analysis are summarized in **Table 3**.

Table 1: PLOS Segment Analysis

Sidewalk Width	Boulevard Width	Avg. Daily Curb Lane Traffic Volume	Presence of On- Street Parking	Operating Speed ⁽¹⁾	PLOS			
Bankfield Ro	Bankfield Road (north side, Prince of Wales Drive to First Line Road)							
2.0m ⁽²⁾	0m	> 3,000 vpd	No	70 km/h	F			
Bankfield Road (south side, Prince of Wales Drive to First Line Road)								
2.0m ⁽²⁾	0m	> 3,000 vpd	No	70 km/h	F			
Elijah Court (east side, cul-de-sac to First Line Road)								
No Sidewalk	N/A	N/A	N/A	60 km/h	F			
Elijah Court (west side, cul-de-sac to First Line Road)								
No Sidewalk	N/A	N/A	N/A	60 km/h	F			

- 1. Operating speed taken as the speed limit plus 10 km/h.
- 2. Paved shoulder treated as sidewalk in rural context with PLOS grade adjusted one grade lower if necessary

Table 2: BLOS Segment Analysis

- 446.6 2. 2200 0	egineni zunanye				
Road Class	Type of Route	Type of Bikeway	Travel Lanes	Operating Speed	BLOS
Bankfield Road	(both sides, Pr	ince of Wales Drive	e to First Line	Road)	
Arterial	N/A	Bike Lane	2	70 km/h	E
Elijah Court (bo	th sides, cul-de	e-sac to First Line F	Road)		
Local	N/A	Mixed Traffic	2	60 km/h	F

Table 3: TkLOS Segment Analysis

Curb Lane Width	Number of Travel Lanes Per Direction	TkLOS					
Bankfield Road (both sides, Prince of Wales Drive to First Line Road)							
≤ 3.3m	2	D					
Elijah Court (both sides, cul-de-sac to First Line Road)							
≤ 3.0m	2	F					