

# Phase II Environmental Site Assessment

1450, 1454, 1458, 1464 and 1468 Bankfield Road, and 5479 and 5485 Elijah Court Ottawa, Ontario

Prepared for Myers Automotive Group





# **TABLE OF CONTENTS**

| EXE | CUTIV | 'E SUMMARY                                                     | iii |
|-----|-------|----------------------------------------------------------------|-----|
| 1.0 | INTR  | RODUCTION                                                      | 1   |
|     | 1.1   | Site Description                                               | 1   |
|     | 1.2   | Property Ownership                                             | 1   |
|     | 1.3   | Current and Proposed Future Uses                               | 2   |
|     | 1.4   | Applicable Site Condition Standard                             | 2   |
| 2.0 | BAC   | KGROUND INFORMATION                                            |     |
|     | 2.1   | Physical Setting                                               | 3   |
|     | 2.2   | Past Investigations                                            | 3   |
| 3.0 | SCO   | PE OF INVESTIGATION                                            | 4   |
|     | 3.1   | Overview of Site Investigation                                 | 4   |
|     | 3.2   | Media Investigated                                             | 4   |
|     | 3.3   | Phase I Conceptual Site Model                                  |     |
|     | 3.4   | Deviations from Sampling and Analysis Plan                     | 8   |
|     | 3.5   | Impediments                                                    |     |
| 4.0 | INVE  | STIGATION METHOD                                               |     |
|     | 4.1   | Subsurface Investigation                                       | 9   |
|     | 4.2   | Soil Sampling                                                  | 9   |
|     | 4.3   | Field Screening Measurements                                   | 9   |
|     | 4.4   | Groundwater Monitoring Well Installation                       | 10  |
|     | 4.5   | Groundwater Sampling                                           | 10  |
|     | 4.6   | Analytical Testing                                             | 11  |
|     | 4.7   | Residue Management                                             | 12  |
|     | 4.8   | Elevation Surveying                                            | 12  |
|     | 4.9   | Quality Assurance and Quality Control Measures                 | 12  |
| 5.0 | REV   | IEW AND EVALUATION                                             | 13  |
|     | 5.1   | Geology                                                        | 13  |
|     | 5.2   | Groundwater Elevations, Flow Direction, and Hydraulic Gradient | 13  |
|     | 5.3   | Fine-Coarse Soil Texture                                       | 14  |
|     | 5.4   | Soil: Field Screening                                          | 14  |
|     | 5.5   | Soil Quality                                                   | 14  |
|     | 5.6   | Groundwater Quality                                            |     |
|     | 5.7   | Quality Assurance and Quality Control Results                  |     |
|     | 5.8   | Phase II Conceptual Site Model                                 |     |
| 6.0 | CON   | CLUSIONS                                                       |     |
|     | 6.1   | Assessment                                                     |     |
|     | 6.2   | Recommendations                                                |     |
| 7.0 | STA   | TEMENT OF LIMITATIONS                                          |     |

# **List of Figures**

Figure 1 - Key Plan

Drawing PE5397-1R- Site Plan

Drawing PE5397-2R- Surrounding Land Use Plan

Drawing PE5397-3R- Test Hole Location Plan & Groundwater Contour Plan

Drawing PE5397-4R – Analytical Testing Plan – Soil

Drawing PE5397-4AR - Cross-section A - A' - Soil

Drawing PE5397-5R – Analytical Testing Plan – Groundwater

Drawing PE5397-5AR – Cross-section A – A' – Groundwater

# **List of Appendices**

Appendix 1 Sampling and Analysis Plan

Soil Profile and Test Data Sheets

Symbols and Terms

Laboratory Certificates of Analysis

# **EXECUTIVE SUMMARY**

## **Assessment**

A Phase II ESA was conducted for the property addressed 1450, 1454, 1458, 1464 and 1468 Bankfield Road, and 5479 and 5485 Elijah Court, in the Ottawa, Ontario. The purpose of the Phase II ESA was to address potentially contaminating activities (PCAs) that were identified during the Phase I ESA and considered to result in areas of potential environmental concern (APECs) on the Phase II Property.

The subsurface investigations were conducted in August 2021 and July 2022. The program consisted of nine (9) boreholes, five (5) of which were instrumented with groundwater monitoring wells. The general soil profile encountered during the field program consisted of a consisted of crushed stone, gravel and silty was encountered in all of the boreholes, except in boreholes BH2-22, BH3-22 and BH4-22. Traces of clay and asphalt, wood and/or glass were identified in BH4-21, BH5-21 and BH1-22, followed by a silty sand layer with traces of gravel in BH1-21, BH2-21, BH3-21, BH1-22, BH2-22, BH3-22 and BH4-22, overlying glacial till. All of the boreholes were terminated in this layer at depths ranging from 6.71 to 10.52mbgs. Bedrock was inferred, based on a dynamic cone penetration test (DCPT), where practical refusal was encountered at 24.8 m below the exiting grade.

Thirteen (13) soil samples, including duplicate samples, were submitted for laboratory analysis of benzene, toluene, ethylbenzene and xylenes (BTEX), petroleum hydrocarbons (PHCs, Fractions F<sub>1</sub>-F<sub>4</sub>), polycyclic aromatic hydrocarbons (PAHs) and/or metals. All of the soil results complied with MECP Table 2 Commercial Standards.

Groundwater samples from monitoring wells BH1-21, BH2-21, BH3-21, BH1-22 and BH2-22 were collected on the August 24, 2021, and/or July 15, 2022, sampling events. No free product or petroleum hydrocarbon sheen was noted on the purge water during the groundwater sampling events.

Groundwater samples as well as duplicate samples were analyzed for volatile organic compounds (VOCs), which included the BTEX group, and PHCs (F1-F4). All of the groundwater results complied with the MECP Table 2 Standards.

Based on the findings of the Phase II ESA, no further environmental investigation is recommended at this time.



# Recommendations

It is our understanding that the Phase II Property will be redeveloped with an automotive dealership with an asphaltic concrete paved area which will utilize at least half of the property.

Any excess soil requiring off-site disposal during construction must be managed in accordance with Ontario Regulation 406/19 - On-site and Excess Soil Management. The presence of the wood, brick and asphalt concrete may restrict the reuse of this material if off-site removal is required for construction purposes. Any soils deemed excess during the site development will require additional analytical testing to determine the appropriate method of disposal. It is recommended that the future redevelopment be designed to minimize the volume of excess soil that will be generated and require offsite disposal.

# Monitoring Wells

If the monitoring wells installed on the Phase II Property are not going to be used in the future, or will be destroyed during site redevelopment, they should be abandoned according to Ontario Regulation 903. The wells will be registered with the MECP under this regulation. More information can be provided regarding the decommissioning of these wells.



#### 1.0 INTRODUCTION

At the request of Myers Automotive Group (Myers), Paterson Group (Paterson) conducted a Phase II Environmental Site Assessment at the Phase II Property, addressed 1450, 1454, 1458, 1464 and 1468 Bankfield Road, and 5479 and 5485 Elijah Court, in the City of Ottawa, Ontario. The purpose of this Phase II ESA has been to address areas of potential environmental concern (APECs) identified on the Phase II Property, during the Phase I ESA conducted by Paterson in November of 2022.

#### 1.1 **Site Description**

Address: 1450, 1454, 1458, 1464 and 1468 Bankfield Road,

and 5479 and 5485 Elijah Court, Ottawa, Ontario.

Location: The Phase II Property is located on the southeast

> corner of the Bankfield Road and Prince of Wales Drive intersection, in the City of Ottawa, Ontario. The Phase II Property is shown on Figure 1 - Key Plan

following the body of this report.

Latitude and Longitude: 45° 13' 5.59" N, 75° 42' 53.03" W

**Site Description:** 

Configuration: Irregular

Site Area: 19,200 m<sup>2</sup> or 1.92 hectares (approximate).

Zoning: DR1 – Development Reserved Zone

Current Use: The Phase II Property consists of residential

> properties at 1450, 1458 and 1468 Bankfield Road, and 5479 and 5485 Elijah Court, and commercial and residential uses (mixed-use) at 1454 and 1464 Bankfield Road: a small equipment rental and repair operation and an automotive service garage,

respectively.

#### 1.2 **Property Ownership**

Paterson was engaged to conduct this Phase II ESA by Mr. Geoff Publow of Myers Automotive Group.

The office of Myers Automotive Group is located at 1200 Baseline Road, Ottawa, Ontario. Mr. Publow can be reached by telephone at (613) 225-2277.

#### 1.3 **Current and Proposed Future Uses**

The Phase II Property consists of six (6) parcels of land, addressed 1450, 1454, 1458, 1464 and 1468 Bankfield Road, and 5479 and 5485 Elijah Court, consisting of residential lands and two mixed-use properties.

The residential properties of the Phase II Property, specifically 1450, 1458 and 1468 Bankfield Road, and 5479 and 5485 Elijah Court are occupied by the original 1950s to 1970s residential dwellings.

The mixed-used properties, 1454 and 1464 Bankfield Road operate as service garages for small non-road vehicles (i.e., backhoes) and automoblies, respectively.

It is our understanding that the proposed redevelopment of the Phase II Property will consist of an automotive dealership with associated vehicular parking and storage. A record of site condition (RSC) will not be required as per O.Reg 153/04.

#### 1.4 **Applicable Site Condition Standard**

The site condition standards for the property were obtained from Table 2 of the document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", prepared by the Ontario Ministry of Environment, Conservation and Parks (MECP), April 2011.

The selected MECP Table 2 Standards are based on the following considerations:

| J        | Coarse-grained soil conditions     |
|----------|------------------------------------|
| J        | Full depth generic site conditions |
| <b>J</b> | Potable groundwater conditions     |
| J        | Commercial land use                |

Section 35 of O.Reg. 153/04 does not apply to the Phase II Property in that the property and surrounding lands rely upon potable groundwater.

Section 41 of O.Reg. 153/04 does not apply to the Phase II Property, as the property is not within 30m of an environmentally sensitive area.

Section 43.1 of O.Reg. 153/04 does not apply to the Phase II Property in that the property is not a Shallow Soil property.

The intended use of the Phase II Property is commercial; therefore, the Commercial/Industrial Standards have been selected for the purpose of this Phase II ESA.

Additionally, the soil test results have been compared to the MECP Table 1 Standards, which are considered to be indicative of typical Ontario background concentrations and are commonly used to assess whether soil is clean for off-site disposal purposes.

# 2.0 BACKGROUND INFORMATION

# 2.1 Physical Setting

The Phase II Property is situated in a rural area, located on the southeast corner of Prince of Wales Drive and Bankfield Road, in the City of Ottawa, Ontario, and accessible from Bankfield Road and Elijah Court.

The Phase II Property is currently occupied by six (6) residential dwellings, two (2) of which operate as a small equipment rental and service garage and an automotive garage.

The majority of the subject land is landscaped, with asphaltic concrete paved or gravel covered driveways. Site drainage consists primarily of infiltration.

The site topography is above the grade of Prince of Wales Drive and generally slopes down in an easterly direction, while the southern portions of the properties at 1454, 1458, 1464 and 1468 Bankfield Road slope drastically down to the south. The regional topography slopes down in an easterly direction towards the Rideau River.

# 2.2 Past Investigations

Paterson completed a Phase I ESA in November of 2022, for the Phase II Property. Based on the findings of the Phase I ESA, four (4) potentially contaminating activities (PCAs) were considered to have resulted in areas of potential environmental concern (APECs) on the Phase I Property.

As per Table 2 of the O.Reg. 153/04, as amended, the following PCAs that generated APECs on the Phase I Property:

Ottawa, Ontario



- PCA 30 – "Importation of Fill Material of Unknown Quality," associated with importation of fill material on the southcentral portion of the site in 1990-1991 (APEC 2).
- PCA 52 - "Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems," associated with the presence of an automotive repair garage at 1464 Bankfield Road (APEC 3).
- PCA 52 "Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems," associated with the presence of and small equipment rental and repair company on the southern (rear) end of 1454 Bankfield Road (APEC 4).

The rationale for identifying the above PCAs and APECs is based on the aerial photographs, site visits and personal interviews. A Phase II ESA was recommended to address the aforementioned APECs.

#### 3.0 SCOPE OF INVESTIGATION

#### 3.1 **Overview of Site Investigation**

The subsurface investigations were conducted during the interim of August 13 to August 16, 2021, and on July 11, 2022. The field programs consisted of drilling nine (9) boreholes to address the APECs identified on the Phase II Property.

Five (5) of the nine (9) boreholes were completed with monitoring well installations. Boreholes were drilled to a maximum depth of 10.56 m below the ground surface (mbgs).

#### 3.2 Media Investigated

During the subsurface investigation, soil samples and groundwater samples were obtained and submitted for laboratory analysis. The rationale for sampling and analyzing these media is based on the Contaminants of Potential Concern (CPCs) identified in the Phase I ESA.

The CPCs on the Phase II Property include benzene, toluene, ethylbenzene and xylenes (BTEX) and petroleum hydrocarbons (PHCs, F1-F4), polycyclic aromatic hydrocarbons (PAHs), Volatile Organic Compounds (VOCs) and metals.

These CPCs may be present in the soil and/or groundwater beneath the Phase II Property.

# 3.3 Phase I Conceptual Site Model

# **Geological and Hydrogeological Setting**

Based on information from the Geological Survey of Canada mapping, drift thickness in the area of the Phase I Property is on the order of 15 to 25m across the site. The overburden consists of glaciofluvial deposits. Bedrock in the area consists of dolomite of the Oxford Formation.

#### Subsurface Services and Utilities

The Phase I Property is situated in an area where private services (potable water wells and septic systems) are relied upon. Other utilities and/or structures include electricity entering from Bankfield Road. There is no use of natural gas on the Phase I Property.

#### Fill Material

Based on the historical review, fill material of unknown quality was imported onto the southcentral portion of the Phase I Property in 1990-1991.

# **Existing Buildings and Structures**

1450 Bankfield Road is occupied by a single-storey residential dwelling and private garage. The dwelling was constructed in the early 1970s with a concrete block foundation and is heated by a propane fired furnace. The exterior of the dwelling is finished in vinyl siding and a sloped shingle style roof, while the private shed is finished in vinyl siding and a shingle style roof. The private shed is used to store lawn care equipment and a hobby car.

1454 Bankfield Road is occupied by a single-storey residential dwelling with a private garage and shed. The dwelling was constructed in the early 1970s with a concrete block foundation and heated by a propane fired furnace. The exterior of the dwelling is finished in red brick with a sloped shingle style roof, while the private shed and garage are both finished in vinyl siding with shingle covered roofs. The garage is constructed with a slab-on-grade concrete floor, which has been used to store equipment and tools, while lawn maintenance equipment and tools were stored in the private wooden shed. The south end of the property is occupied by a temporary workspace/garage, which was built using sheet metal cover, supported by in-ground 4x4 pressure treated wood columns and an above ground hoist. No signs of staining or sources of contamination were noted in the area of the make-shift workspace/garage. However, based on the presence of

this make-shift garage, and given that small engine services have been conducted on-site, it represents an APEC.

1458 Bankfield Road is occupied by a single-storey residential dwelling and private garage. The dwelling was constructed in 1970 with a concrete block foundation and heated by a propane fired furnace. The exterior of the dwelling is finished in vinyl siding with a sloped shingle style roof. The private garage was constructed with a slab-on-grade foundation, while the building is finished in vinyl siding. The shed is currently used to store small recreational motor vehicles.

1464 Bankfield Road is occupied by a 2-storey residential dwelling, a shed, and a commercial automotive garage. The residential dwelling was constructed in 1964 with a concrete block foundation. The exterior is finished in red brick with a sloped shingle style roof. The commercial garage at 1464 Bankfield Road was constructed in 1997 with a slab-on-grade concrete foundation and concrete block walls with a flat style roof. The dwelling and garage are heated by electrical baseboard heaters and ceiling suspended (electric) furnace, respectively.

1468 Bankfield Road is occupied by a 2-storey residential dwelling and private garage. The dwelling was constructed in 1952 with a concrete block foundation, vinyl exterior and a sloped shingle style roof. The residence is heated by furnace oil.

The properties addressed 5479 and 5485 Elijah Court are occupied by single-storey residential dwellings with a single basement level, and private garages. The dwellings were constructed circa 1960 with concrete block foundations. The dwelling at 5479 Elijah Court is finished in an aggregate-mixed glass stucco and a sloped shingled style roof. The private garage was constructed with a slab-on-grade foundation and wooden structure with a shingled cover roof.

The residential dwelling at 5485 Elijah Court is constructed with a concrete block foundation, finished in vinyl siding exterior and a sloped shingled style roof.

The private garage is a slab-on-grade structure, also finished in vinyl siding with a sloped shingled roof.

# **Drinking Water Wells**

The Phase I Property is situated in an area where potable water wells are relied upon. Each parcel/property is equipped with a private drinking well. Based on the well records, the wells were drilled between 1952 to 1962 to depths ranging from 18 to 38 m below the existing ground surface.



# **Areas of Natural Significance and Water Bodies**

No areas of natural significance or natural water bodies were identified in the Phase I Study Area.

# **Neighbouring Land Use**

Neighbouring land use in the Phase I study area consists primarily of residential. Land use is shown on Drawing PE5397-2R – Surrounding Land Use Plan.

# Potentially Contaminating Activities and Areas of Potential Environmental Concern

As per Section 7.1 of the Phase I ESA report, four (4) PCAs and the resultant APECs are summarized in Table 1, along with their respective locations and contaminants of potential concern (CPCs).

| Table 1: Pot                                                                                                                 | Table 1: Potentially Contaminating Activities and               |                                                                                                                                 |                                                    |                                                |                                                                 |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|
| Areas of Potential Environmental Concern                                                                                     |                                                                 |                                                                                                                                 |                                                    |                                                |                                                                 |  |  |  |  |
| Area of<br>Potential<br>Environmental<br>Concern                                                                             | Location of<br>Area of<br>Potential<br>Environmental<br>Concern | Potentially<br>Contaminating<br>Activity                                                                                        | Location<br>of PCA<br>(on-site<br>or off-<br>site) | Contaminants of Potential Concern              | Media Potentially Impacted (Groundwater, Soil, and/or Sediment) |  |  |  |  |
| APEC 1: Resulting from the presence of two (2) exterior waste oil totes associated the service garage at 1464 Bankfield Road | Central north<br>portion of the<br>Phase I<br>Property          | PCA –<br>Gasoline and<br>Associated<br>Products Storage<br>in Fixed Tanks                                                       | On-site                                            | BTEX<br>PHCs (F <sub>1</sub> -F <sub>4</sub> ) | Soil and<br>groundwater                                         |  |  |  |  |
| APEC 2:<br>Resulting from<br>fill material of<br>unknown<br>quality                                                          | Southcentral<br>portion of the<br>Phase I<br>Property           | PCA 30 –<br>Importation of Fill<br>Material of<br>Unknown Quality                                                               | On-site                                            | Metals<br>PAHs                                 | Soil                                                            |  |  |  |  |
| APEC 3:<br>Resulting from<br>the presence of<br>a service<br>garage at 1464<br>Bankfield Road                                | Northeastern<br>portion of the<br>Phase I<br>Property           | PCA 52 – Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems | On-site                                            | BTEX<br>PHCs (F <sub>1</sub> -F <sub>4</sub> ) | Soil and<br>Groundwater                                         |  |  |  |  |



| Table 1: Pot                                                                                        | Table 1: Potentially Contaminating Activities and   |                                                                                                                                 |                                                    |                                                |                                                                 |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|
| Areas of Potential Environmental Concern                                                            |                                                     |                                                                                                                                 |                                                    |                                                |                                                                 |  |  |  |  |
| Area of<br>Potential<br>Environmental<br>Concern                                                    | Location of Area of Potential Environmental Concern | Potentially<br>Contaminating<br>Activity                                                                                        | Location<br>of PCA<br>(on-site<br>or off-<br>site) | Contaminants of Potential Concern              | Media Potentially Impacted (Groundwater, Soil, and/or Sediment) |  |  |  |  |
| APEC 4:<br>Resulting from<br>the presence of<br>a service small<br>service garage<br>Bankfield Road | Eastern<br>portion of the<br>Phase I<br>Property    | PCA 52 – Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems | On-site                                            | BTEX<br>PHCs (F <sub>1</sub> -F <sub>4</sub> ) | Soil and<br>Groundwater                                         |  |  |  |  |

#### Contaminants of Potential Concern

As per Section 7.1 of the Phase I ESA report, the contaminants of potential concern (CPCs) in soil and/or groundwater include benzene, toluene, ethylbenzene, and xylenes (BTEX), petroleum hydrocarbons (PHCs, F1-F4), polycyclic aromatic hydrocarbons (PAHs) and metals.

## Assessment of Uncertainty and/or Absence of Information

The information available for review as part of the preparation of the Phase I-ESA is considered to be sufficient to conclude that there are PCAs that have resulted in APECs on the Phase I Property. A variety of independent sources were consulted as part of this assessment, and as such, the conclusions of this report are not affected by uncertainty which may be present with respect to the individual sources.

#### 3.4 **Deviations from Sampling and Analysis Plan**

There were no deviations from the Sampling and Analysis Plan which is included in Appendix 1 of this report.

#### 3.5 **Impediments**

Private septic systems and potable water wells near the residential dwellings constrained the placement of some of the boreholes during the Phase II ESA field program.

Page 8

Report: PE5397-2R



# 4.0 INVESTIGATION METHOD

# 4.1 Subsurface Investigation

The subsurface investigation conducted for this Phase II ESA consisted of drilling nine (9) boreholes across the Phase II Property to address the APECs identified in the Phase I ESA and in conjunction with a geotechnical investigation in August 2021 and July 2022. The boreholes were drilled to a maximum depth of 10.52 m below ground surface (mbgs) to intercept groundwater.

The boreholes were drilled using a low clearance track mounted drill rig operated by George Downing Estate Drilling of Hawkesbury, Ontario, under full-time supervision of Paterson personnel. The borehole locations are indicated on the attached Drawing PE5397-3R - Test Hole Location Plan.

# 4.2 Soil Sampling

A total of 90 soil samples were obtained from the boreholes by means of grab sampling from auger flights/auger samples and split spoon sampling. Split spoon samples were taken at approximate 0.76 m intervals.

The depths at which auger samples and split spoon samples were obtained from the boreholes are shown as "AU" and "SS", respectively on the Soil Profile and Test Data Sheets.

The borehole profiles generally consist of fill material comprised of crushed stone, gravel and silty sand, followed by silty sand, overlying glacial till consisting of silty sand, gravel, cobbles and boulders.

The fill material encountered in the southeastern portion of the site was considered an APEC on the Phase I Property.

# 4.3 Field Screening Measurements

Soil samples recovered at the time of sampling were placed immediately into airtight plastic bags with nominal headspace.

All lumps of soil inside the bags were broken by hand, and the soil was allowed to come to room temperature prior to conducting the vapour survey. Allowing the samples to stabilize to room temperature ensures consistency of readings between samples.

Ottawa, Ontario



To measure the soil vapours, the analyser probe is inserted into the nominal headspace above the soil sample. A photo ionization detector (PID) was used to measure the volatile organic vapour concentrations.

The sample is agitated/manipulated gently as the measurement is taken. The peak reading registered within the first 15 seconds is recorded as the vapour measurement.

The PID readings were found to range from 0 to 199 ppm in the soil samples obtained. These results are not necessarily indicative of contamination from volatile contaminants. Vapour readings are noted on the Soil Profile and Test Data Sheets in Appendix 1. The results of the vapour survey are presented on the Soil Profile and Test Data sheets.

#### 4.4 **Groundwater Monitoring Well Installation**

Five (5) groundwater monitoring wells were installed on the Phase II Property as part of the subsurface investigation.

The monitoring wells consisted of 50 mm diameter, Schedule 40 threaded PVC risers and screens. Monitoring well construction details are listed below in Table 2 and are also presented on the Soil Profile and Test Data Sheets provided in Appendix 1.

Borehole locations and elevations were surveyed geodetically by Paterson personnel.

| TABLE 2 | TABLE 2. Monitoring Well Construction Details |                           |                                 |                      |                              |                |  |  |  |  |  |
|---------|-----------------------------------------------|---------------------------|---------------------------------|----------------------|------------------------------|----------------|--|--|--|--|--|
| Well ID | Ground<br>Surface<br>Elevation                | Total<br>Depth<br>(m BGS) | Screened<br>Interval<br>(m BGS) | Sand Pack<br>(m BGS) | Bentonite<br>Seal<br>(m BGS) | Casing<br>Type |  |  |  |  |  |
| BH1-21  | 101.11                                        | 10.52                     | 6.91-9.91                       | 6.55-9.91            | 0.18-6.55                    | Flushmount     |  |  |  |  |  |
| BH2-21  | 99.36                                         | 9.14                      | 5.53-8.53                       | 5.26-8.53            | 0.18-5.26                    | Flushmount     |  |  |  |  |  |
| BH3-21  | 99.19                                         | 9.14                      | 5.59-8.59                       | 5.33-8.69            | 0.18-5.69                    | Flushmount     |  |  |  |  |  |
| BH1-22  | 96.89                                         | 8.99                      | 5.99-8.99                       | 5.60-8.99            | 0.18-5.60                    | Stick-up       |  |  |  |  |  |
| BH2-22  | 95.76                                         | 6.68                      | 3.86-6.86                       | 2.42-6.86            | 0.18-2.42                    | Stick-up       |  |  |  |  |  |

#### 4.5 **Groundwater Sampling**

Groundwater sampling protocols were followed using the MECP document entitled "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated May 1996. Groundwater samples were obtained from each monitoring well, using dedicated sampling equipment. Standing water was purged from each well prior to sampling. Samples were stored in coolers to reduce analyte volatilization during transportation. Details of our standard



operating procedure for groundwater sampling are provided in the Sampling and Analysis Plan in Appendix 1.

# 4.6 Analytical Testing

Based on the guidelines outlined in the Sampling and Analysis Plan appended to this report, the following soil and groundwater samples, as well as analyzed parameters, are presented in Tables 3 and 4.

| TABLE 3: Soil Samples Submitted and Analyzed Parameters |                       |                        |                         |   |        |                                                                                     |  |  |  |
|---------------------------------------------------------|-----------------------|------------------------|-------------------------|---|--------|-------------------------------------------------------------------------------------|--|--|--|
|                                                         | Sample Depth          | Parameters<br>Analyzed |                         |   | 5      |                                                                                     |  |  |  |
| Sample ID                                               | Stratigraphic<br>Unit | BTEX                   | PHCs<br>(F1-F4)<br>PAHs |   | Metals | Rationale                                                                           |  |  |  |
| August 13, 2021                                         |                       |                        |                         |   |        |                                                                                     |  |  |  |
| BH1-21-SS3                                              | 1.52-2.13m<br>Native  | Х                      | Х                       |   |        | Assess the potential impact in soil due to the current use of the site.             |  |  |  |
| BH2-21-SS2                                              | 0.76-1.37m<br>Native  | Х                      | Х                       |   |        | Assess the potential impact in soil due to the waste oil drums on-site.             |  |  |  |
| BH3-21-SS5                                              | 2.29-2.89m<br>Native  | X                      | Х                       |   |        | Assess the potential impact in soil due to the current use of the site as a garage. |  |  |  |
| DUP                                                     | 0.76-1.37m<br>Native  | X                      | Х                       |   |        | Duplicate soil sample (BH2-21-SS2) for QA/QC purposes.                              |  |  |  |
| August 16, 20                                           | 21                    |                        |                         |   |        |                                                                                     |  |  |  |
| BH4-21-SS2                                              | 0.76-1.37m<br>Fill    |                        |                         | Х | Х      | Assess the fill material of unknown quality.                                        |  |  |  |
| BH4-21-SS4                                              | 2.52-2.89m<br>Fill    |                        |                         | Х | Х      |                                                                                     |  |  |  |
| BH4-21-SS5                                              | 3.29-3.67m<br>Fill    |                        |                         | Х | Х      |                                                                                     |  |  |  |
| BH5-21-SS2                                              | 0.76-1.37m<br>Fill    |                        |                         | Х | Х      |                                                                                     |  |  |  |
| BH5-21-SS6                                              | 4.57-5.18m<br>Fill    |                        |                         | Х | Х      |                                                                                     |  |  |  |
| July 11, 2022                                           |                       |                        |                         |   |        |                                                                                     |  |  |  |
| BH1-22-SS2                                              | 0.76-1.37m<br>Fill    |                        |                         | Х | Х      | Assess the fill material of unknown quality.                                        |  |  |  |
| BH1-22-SS6                                              | 3.81-4.42m<br>Native  | Х                      | Х                       |   |        | Assess the potential impact in soil due to the current use of temporary work        |  |  |  |
| BH2-22-SS5                                              | 3.05-3.66m<br>Native  | Х                      | Х                       |   |        | area performing minor service repairs on off-road equipment.                        |  |  |  |
| DUP                                                     | 3.81-4.42m<br>Native  | Х                      | Х                       |   |        | Duplicate soil sample (BH1-22-SS6) for QA/QC purposes.                              |  |  |  |



| TABLE 4: Groundwater Samples Submitted and Analyzed Parameters |                       |                        |                 |                                                                                    |  |  |  |  |  |
|----------------------------------------------------------------|-----------------------|------------------------|-----------------|------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                |                       | Parameters<br>Analyzed |                 |                                                                                    |  |  |  |  |  |
| Sample ID                                                      | Screened<br>Interval  | VOCs                   | PHCs<br>(F1-F4) | Rationale                                                                          |  |  |  |  |  |
| August 24, 2021                                                |                       |                        |                 |                                                                                    |  |  |  |  |  |
| BH1-21-GW1                                                     | 6.91-9.61m            | Х                      | Х               | Assess potential groundwater impacts due to the current use as a garage.           |  |  |  |  |  |
| BH2-21-GW1                                                     | 3H2-21-GW1 5.53-8.53m |                        | Х               | Assess potential groundwater impacts due to the presence of waste oil drums.       |  |  |  |  |  |
| BH3-21-GW1                                                     | 5.69-8.69m            | X                      | Х               | Assess potential groundwater impacts due to the current use as a garage.           |  |  |  |  |  |
| DUP                                                            | 5.53-8.53m            | X                      | Х               | Duplicate groundwater sample (BH3-GW1) for QA/QC purposes.                         |  |  |  |  |  |
| July 15, 2022                                                  |                       |                        |                 |                                                                                    |  |  |  |  |  |
| BH1-22-GW1                                                     | 5.99-8.99m            | Χ                      | Х               | Assess potential groundwater impacts due to the current use of temporary work area |  |  |  |  |  |
| BH2-22-GW1                                                     | 3.86-6.86m            | Χ                      | Х               | performing minor service repairs on off-road equipment.                            |  |  |  |  |  |
| DUP1-22-GW1                                                    | 5.99-8.99m            | Х                      | Х               | Duplicate groundwater sample (BH1-22-GW1) for QA/QC purposes.                      |  |  |  |  |  |
| Note:<br>VOC group of                                          | of parameters in      | ncludes                | BTEX            |                                                                                    |  |  |  |  |  |

Paracel Laboratories (Paracel), of Ottawa, Ontario, performed the laboratory analysis on the samples submitted for analytical testing. Paracel is a member of the Standards Council of Canada/Canadian Association for Laboratory Accreditation (SCC/CALA). Paracel is accredited and certified by SCC/CALA for specific tests registered with the association.

# 4.7 Residue Management

All soil cuttings, purge water and fluids from equipment cleaning were retained on-site.

# 4.8 Elevation Surveying

Boreholes were surveyed at geodetic elevations by Paterson personnel.

# 4.9 Quality Assurance and Quality Control Measures

A summary of quality assurance and quality control (QA/QC) measures, including sampling containers, preservation, labelling, handling, and custody, equipment cleaning procedures, and field quality control measurements is provided in the Sampling and Analysis Plan in Appendix 1.



# 5.0 REVIEW AND EVALUATION

# 5.1 Geology

Site soils consist of topsoil or fill material consisting of crushed stone, gravel and silty sand, followed by silty sand, overlying glacial till consisting of silty sand, gravel, cobbles and boulders. The fill in BH1-21 to BH3-21 was limited to sand and gravel for use as access ways, while significant fill was identified in BH4-21, BH5-21 and BH1-22, with some fragments of brick, asphaltic concrete and/or wood.

Bedrock was not encountered during the field program, but rather inferred based on a dynamic cone penetration test (DCPT), where practical refusal was encountered at 24.8 m below the exiting grade.

Groundwater was encountered within the overburden at depths ranging from approximately 7.03 to 8.95 mbgs in August of 2021 and 3.76 to 6.45 m in July of 2022.

Site geology details are provided in the Soil Profile and Test Data Sheets provided in Appendix 1.

# 5.2 Groundwater Elevations, Flow Direction, and Hydraulic Gradient

Groundwater levels were measured during the groundwater sampling events on August 24, 2021, and July 15, 2022, using an electronic water level meter. Groundwater levels are summarized below in Table 5.

| TABLE 5: Groundwater Level Measurements |               |                 |             |                 |  |  |  |  |  |
|-----------------------------------------|---------------|-----------------|-------------|-----------------|--|--|--|--|--|
| Borehole                                | Ground        | Water Level     | Water Level | Date of         |  |  |  |  |  |
| Location                                | Surface       | Depth           | Elevation   | Measurement     |  |  |  |  |  |
|                                         | Elevation (m) | (m below grade) | (m ASL)     |                 |  |  |  |  |  |
| BH1-21                                  | 101.11        | 8.95            | 92.16       | August 24, 2021 |  |  |  |  |  |
| BH2-21                                  | 99.36         | 7.23            | 92.33       | August 24, 2021 |  |  |  |  |  |
| BH3-21                                  | 99.19         | 7.03            | 92.16       | August 24, 2021 |  |  |  |  |  |
| BH1-22                                  | 96.89         | 4.23            | 92.66       | July 15, 2022   |  |  |  |  |  |
| BH2-22                                  | 95.76         | 3.01            | 92.75       | July 15, 2022   |  |  |  |  |  |
| BH2-21                                  | 99.36         | 6.21            | 93.15       | July 15, 2022   |  |  |  |  |  |
| BH3-21                                  | 99.19         | 6.45            | 92.71       | July 15, 2022   |  |  |  |  |  |

Based on the groundwater elevations measured during the sampling event, groundwater contour mapping was completed. Groundwater contours are shown on Drawing PE5397-3R.

Based on the contour mapping, groundwater flow at the subject site is in a northerly direction. A horizontal hydraulic gradient of approximately 0.02m/m was calculated.

#### 5.3 **Fine-Coarse Soil Texture**

Grain-size analysis was not completed for the Phase II Property. As such, the more stringent, coarse-grained soil standards were used.

#### 5.4 Soil: Field Screening

Field screening of the soil samples collected during drilling resulted in vapour readings ranging from 0 to 199 ppm. The field screening results of each individual soil sample are provided on the Soil Profile and Test Data Sheets appended to this report.

#### 5.5 **Soil Quality**

Eight (8) soil samples plus a duplicate sample were submitted for BTEX, PHCs (F1-F4), PAHs and/or metals analysis. The results of the analytical testing are presented below in Tables 6, 7 and 8. The laboratory certificates of analysis are provided in Appendix 1.

| TABLE 6: Analytical Test Results – Soil BTEX and PHCs F <sub>1</sub> -F <sub>4</sub> |        |                |                |                    |                       |                     |  |  |
|--------------------------------------------------------------------------------------|--------|----------------|----------------|--------------------|-----------------------|---------------------|--|--|
|                                                                                      |        |                | MECP           |                    |                       |                     |  |  |
| Parameter                                                                            | MDL    | Auç            | gust 13, 2021  | August 16,<br>2021 | Table 2<br>Commercial |                     |  |  |
|                                                                                      | (µg/g) | BH1-21-<br>SS3 | BH2-21-<br>SS2 | DUP                | BH3-21-SS5            | Standards<br>(µg/g) |  |  |
| Benzene                                                                              | 0.02   | nd             | nd             | nd                 | nd                    | 0.32                |  |  |
| Toluene                                                                              | 0.05   | nd             | nd             | nd                 | nd                    | 6.4                 |  |  |
| Ethylbenzene                                                                         | 0.05   | nd             | nd             | nd                 | nd                    | 1.1                 |  |  |
| Xylenes                                                                              | 0.05   | nd             | nd             | nd                 | nd                    | 26                  |  |  |
| PHC F <sub>1</sub>                                                                   | 7      | nd             | nd             | nd                 | nd                    | 55                  |  |  |
| PHC F <sub>2</sub>                                                                   | 4      | nd             | nd             | nd                 | nd                    | 230                 |  |  |
| PHC F <sub>3</sub>                                                                   | 8      | nd             | nd             | nd                 | nd                    | 1700                |  |  |
| PHC F <sub>4</sub>                                                                   | 6      | nd             | nd             | nd                 | nd                    | 3300                |  |  |

#### Notes:

- MDL Method Detection Limit
- nd not detected above the MDL
- DUP (BH2-21-SS2)

| TABLE 6 Continued: Analytical Test Results – Soil BTEX and PHCs F₁-F₄ |        |            |            |                            |                  |  |  |  |  |
|-----------------------------------------------------------------------|--------|------------|------------|----------------------------|------------------|--|--|--|--|
| Parameter                                                             | MDL    | So         | )          | MECP Table 2<br>Commercial |                  |  |  |  |  |
|                                                                       | (µg/g) | BH1-22-SS6 | BH2-22-SS5 | DUP                        | Standards (µg/g) |  |  |  |  |
| Benzene                                                               | 0.02   | nd         | nd         | nd                         | 0.32             |  |  |  |  |
| Toluene                                                               | 0.05   | nd         | nd         | nd                         | 6.4              |  |  |  |  |
| Ethylbenzene                                                          | 0.05   | nd         | nd         | nd                         | 1.1              |  |  |  |  |
| Xylenes                                                               | 0.05   | nd         | nd         | nd                         | 26               |  |  |  |  |
| PHC F <sub>1</sub>                                                    | 7      | nd         | nd         | nd                         | 55               |  |  |  |  |
| PHC F <sub>2</sub>                                                    | 4      | nd         | 9          | nd                         | 230              |  |  |  |  |
| PHC F <sub>3</sub>                                                    | 8      | nd         | 36         | nd                         | 1700             |  |  |  |  |
| PHC F <sub>4</sub>                                                    | 6      | nd         | nd         | nd                         | 3300             |  |  |  |  |

#### Notes:

- MDL Method Detection Limit
- nd not detected above the MDL
- DUP (BH1-22-SS6)

No detectable BTEX or PHC parameters were identified in any of the soil samples analyzed, with the exception of PHCs, fractions F2 and F3 concentrations in Sample BH2-22-SS5; however, all of the test results comply with the selected MECP Table 2 Commercial Standards. The soil results also comply with the MECP Table 1 Standards.

| TABLE 7: Analytical Test Results – Soil Metals |                                                       |                                                                                                                                                                                           |                                                                                                                                                                                                                                             |                                                                                                     |  |  |  |  |
|------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|
| MDL                                            | S                                                     | MECP Table 2                                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                     |  |  |  |  |
| (µg/g)                                         |                                                       |                                                                                                                                                                                           |                                                                                                                                                                                                                                             | Commercial                                                                                          |  |  |  |  |
|                                                | BH4-21-SS2                                            | BH4-21-SS4                                                                                                                                                                                | BH4-21-SS5                                                                                                                                                                                                                                  | Standards (µg/g)                                                                                    |  |  |  |  |
| 1.0                                            | nd                                                    | nd                                                                                                                                                                                        | nd                                                                                                                                                                                                                                          | 40                                                                                                  |  |  |  |  |
| 1.0                                            | 2.7                                                   | 2.7                                                                                                                                                                                       | 3.2                                                                                                                                                                                                                                         | 18                                                                                                  |  |  |  |  |
| 1.0                                            | 100                                                   | 159                                                                                                                                                                                       | 163                                                                                                                                                                                                                                         | 670                                                                                                 |  |  |  |  |
| 0.5                                            | nd                                                    | 0.6                                                                                                                                                                                       | 0.6                                                                                                                                                                                                                                         | 8                                                                                                   |  |  |  |  |
| 5.0                                            | nd                                                    | nd                                                                                                                                                                                        | 5.5                                                                                                                                                                                                                                         | 120                                                                                                 |  |  |  |  |
| 0.5                                            | nd                                                    | nd                                                                                                                                                                                        | nd                                                                                                                                                                                                                                          | 1.9                                                                                                 |  |  |  |  |
| 5.0                                            | 19.9                                                  | 59.8                                                                                                                                                                                      | 47.3                                                                                                                                                                                                                                        | 160                                                                                                 |  |  |  |  |
| 1.0                                            | 6.0                                                   | 12.4                                                                                                                                                                                      | 11.0                                                                                                                                                                                                                                        | 80                                                                                                  |  |  |  |  |
| 5.0                                            | 14.9                                                  | 27.4                                                                                                                                                                                      | 29.1                                                                                                                                                                                                                                        | 230                                                                                                 |  |  |  |  |
| 1.0                                            | 27.0                                                  | 8.8                                                                                                                                                                                       | 21.2                                                                                                                                                                                                                                        | 120                                                                                                 |  |  |  |  |
| 1.0                                            | nd                                                    | nd                                                                                                                                                                                        | nd                                                                                                                                                                                                                                          | 40                                                                                                  |  |  |  |  |
| 5.0                                            | 13.9                                                  | 33.3                                                                                                                                                                                      | 27.9                                                                                                                                                                                                                                        | 270                                                                                                 |  |  |  |  |
| 1.0                                            | nd                                                    | nd                                                                                                                                                                                        | nd                                                                                                                                                                                                                                          | 5.5                                                                                                 |  |  |  |  |
| 0.3                                            | nd                                                    | nd                                                                                                                                                                                        | nd                                                                                                                                                                                                                                          | 40                                                                                                  |  |  |  |  |
| 1.0                                            | nd                                                    | nd                                                                                                                                                                                        | nd                                                                                                                                                                                                                                          | 3.3                                                                                                 |  |  |  |  |
| 1.0                                            | nd                                                    | nd                                                                                                                                                                                        | nd                                                                                                                                                                                                                                          | 33                                                                                                  |  |  |  |  |
| 10.0                                           | 28.3                                                  | 57.4                                                                                                                                                                                      | 52.3                                                                                                                                                                                                                                        | 86                                                                                                  |  |  |  |  |
| 20.0                                           | 55.5                                                  | 67.2                                                                                                                                                                                      | 73.1                                                                                                                                                                                                                                        | 340                                                                                                 |  |  |  |  |
|                                                | MDL (µg/g)  1.0  1.0  1.0  0.5  5.0  1.0  5.0  1.0  1 | MDL (μg/g)  BH4-21-SS2  1.0 nd  1.0 2.7  1.0 100  0.5 nd  5.0 nd  5.0 19.9  1.0 6.0  5.0 14.9  1.0 27.0  1.0 nd  5.0 nd  1.0 27.0  1.0 nd  1.0 nd  1.0 nd  1.0 nd  1.0 nd  1.0 nd  1.0 nd | MDL (μg/g)  BH4-21-SS2 BH4-21-SS4  1.0 nd nd nd 1.0 2.7 2.7 1.0 100 0.5 nd 0.6 5.0 nd 0.5 nd nd 0.5 nd nd 0.5 19.9 59.8 1.0 6.0 12.4 5.0 14.9 27.4 1.0 100 13.9 13.9 33.3 1.0 nd nd 0.3 nd nd 0.3 nd nd 1.0 nd 1.0 nd 1.0 1.0 100 28.3 57.4 | MDL (μg/g)   Soil Samples (μg/g)   August 16, 2021     BH4-21-SS2   BH4-21-SS4   BH4-21-SS5     1.0 |  |  |  |  |

Notes:

- MDL Method Detection Limit
- nd not detected above the MDL



| Parameter  | MDL<br>(ug/g) | S          | MECP Table 2 |               |                  |
|------------|---------------|------------|--------------|---------------|------------------|
|            | (µg/g)        | August     | 16, 2021     | July 11, 2022 | Commercial       |
|            |               | BH5-21-SS2 | BH5-21-SS6   | BH1-22-SS2    | Standards (µg/g) |
| Antimony   | 1.0           | nd         | nd           | nd            | 40               |
| Arsenic    | 1.0           | 3.2        | 2.2          | 2.8           | 18               |
| Barium     | 1.0           | 110        | 69.8         | 110           | 670              |
| Beryllium  | 0.5           | nd         | nd           | nd            | 8                |
| Boron      | 5.0           | nd         | 6.6          | nd            | 120              |
| Cadmium    | 0.5           | nd         | nd           | nd            | 1.9              |
| Chromium   | 5.0           | 29.9       | 16.2         | 30.2          | 160              |
| Cobalt     | 1.0           | 7.8        | 6.5          | 7.8           | 80               |
| Copper     | 5.0           | 24.5       | 13.6         | 17.7          | 230              |
| Lead       | 1.0           | 62.0       | 11.7         | 27.5          | 120              |
| Molybdenum | 1.0           | nd         | nd           | nd            | 40               |
| Nickel     | 5.0           | 18.4       | 11.8         | 17.7          | 270              |
| Selenium   | 1.0           | nd         | nd           | nd            | 5.5              |
| Silver     | 0.3           | nd         | nd           | nd            | 40               |
| Thallium   | 1.0           | nd         | nd           | nd            | 3.3              |
| Uranium    | 1.0           | nd         | nd           | nd            | 33               |
| Vanadium   | 10.0          | 35.5       | 26.1         | 35.7          | 86               |
| Zinc       | 20.0          | 73.5       | 29.0         | 61.4          | 340              |

Notes:

Metal parameters were detected in all of the soil samples analyzed. All of these concentrations comply with the selected MECP Table 2 Commercial Standards. The results also comply with the MECP Table 1 Standards.

<sup>■</sup> MDL – Method Detection Limit

<sup>■</sup> nd – not detected above the MDL

| TABLE 8: Analytical Test Results – Soil PAHs |        |                |                     |                |                     |  |  |  |
|----------------------------------------------|--------|----------------|---------------------|----------------|---------------------|--|--|--|
| Parameter                                    | MDL    | So             | Soil Samples (µg/g) |                |                     |  |  |  |
|                                              | (µg/g) |                | August 16, 202      |                | Commercial          |  |  |  |
|                                              |        | BH4-<br>21-SS2 | BH4-<br>21-SS4      | BH4-<br>21-SS5 | Standards<br>(µg/g) |  |  |  |
| Acenaphthene                                 | 0.02   | nd             | nd                  | 0.05           | 21                  |  |  |  |
| Acenaphthylene                               | 0.02   | 0.09           | nd                  | nd             | 0.15                |  |  |  |
| Anthracene                                   | 0.02   | 0.09           | nd                  | 0.02           | 0.67                |  |  |  |
| Benzo[a]anthracene                           | 0.02   | 0.16           | nd                  | 0.03           | 0.96                |  |  |  |
| Benzo[a]pyrene                               | 0.02   | 0.19           | 0.02                | 0.03           | 0.3                 |  |  |  |
| Benzo[b]fluoranthene                         | 0.02   | 0.21           | nd                  | 0.04           | 0.96                |  |  |  |
| Benzo[g,h,i]perylene                         | 0.02   | 0.18           | 0.03                | 0.02           | 9.6                 |  |  |  |
| Benzo[k]fluoranthene                         | 0.02   | 0.10           | nd                  | nd             | 0.96                |  |  |  |
| Chrysene                                     | 0.02   | 0.15           | 0.02                | 0.03           | 9.6                 |  |  |  |
| Dibenzo[a,h]anthracene                       | 0.02   | 0.04           | nd                  | nd             | 0.1                 |  |  |  |
| Fluoranthene                                 | 0.02   | 0.26           | 0.03                | 0.06           | 9.6                 |  |  |  |
| Fluorene                                     | 0.02   | nd             | nd                  | 0.05           | 62                  |  |  |  |
| Indeno [1,2,3-cd] pyrene                     | 0.02   | 0.10           | nd                  | nd             | 0.76                |  |  |  |
| 1-Methylnaphthalene                          | 0.02   | nd             | nd                  | nd             | 30                  |  |  |  |
| 2-Methylnaphthalene                          | 0.02   | 0.02           | nd                  | nd             | 30                  |  |  |  |
| Methylnaphthalene (1&2)                      | 0.04   | 0.04           | nd                  | nd             | 30                  |  |  |  |
| Naphthalene                                  | 0.01   | 0.02           | nd                  | 0.01           | 9.6                 |  |  |  |
| Phenanthrene                                 | 0.02   | 0.13           | nd                  | 0.08           | 12                  |  |  |  |
| Pyrene                                       | 0.02   | 0.25           | 0.03                | 0.05           | 96                  |  |  |  |

# Pyrene Notes:

- MDL Method Detection Limit
- nd not detected above the MDL



| Parameter                | MDL    |                 | MECP Table 2   |               |                     |  |
|--------------------------|--------|-----------------|----------------|---------------|---------------------|--|
|                          | (µg/g) | August 16, 2021 |                | July 15, 2022 | Commercial          |  |
|                          |        | BH5-21-<br>SS2  | BH5-21-<br>SS6 | BH1-22-SS2    | Standards<br>(µg/g) |  |
| Acenaphthene             | 0.02   | 0.02            | nd             | nd            | 21                  |  |
| Acenaphthylene           | 0.02   | 0.02            | nd             | 0.04          | 0.15                |  |
| Anthracene               | 0.02   | 0.06            | nd             | 0.06          | 0.67                |  |
| Benzo[a]anthracene       | 0.02   | 0.18            | 0.07           | 0.15          | 0.96                |  |
| Benzo[a]pyrene           | 0.02   | 0.17            | 0.07           | 0.17          | 0.3                 |  |
| Benzo[b]fluoranthene     | 0.02   | 0.20            | 0.08           | 0.26          | 0.96                |  |
| Benzo[g,h,i]perylene     | 0.02   | 0.14            | 0.05           | 0.15          | 9.6                 |  |
| Benzo[k]fluoranthene     | 0.02   | 0.11            | 0.03           | 0.11          | 0.96                |  |
| Chrysene                 | 0.02   | 0.21            | 0.09           | 0.19          | 9.6                 |  |
| Dibenzo[a,h]anthracene   | 0.02   | 0.03            | nd             | 0.04          | 0.1                 |  |
| Fluoranthene             | 0.02   | 0.37            | 0.16           | 0.22          | 9.6                 |  |
| Fluorene                 | 0.02   | nd              | nd             | nd            | 62                  |  |
| Indeno [1,2,3-cd] pyrene | 0.02   | 0.12            | 0.04           | 0.13          | 0.76                |  |
| 1-Methylnaphthalene      | 0.02   | nd              | nd             | nd            | 30                  |  |
| 2-Methylnaphthalene      | 0.02   | 0.02            | nd             | nd            | 30                  |  |
| Methylnaphthalene (1&2)  | 0.04   | 0.04            | nd             | nd            | 30                  |  |
| Naphthalene              | 0.01   | 0.02            | 0.01           | 0.01          | 9.6                 |  |
| Phenanthrene             | 0.02   | 0.25            | 0.15           | 0.08          | 12                  |  |
| Pyrene                   | 0.02   | 0.30            | 0.13           | 0.21          | 96                  |  |

- MDL Method Detection Limit
- nd not detected above the MDL

PAH parameters were detected in all of the soil samples analyzed. All of these concentrations comply with the selected MECP Table 2 Commercial Standards. The results also comply with the MECP Table 1 Standards.

The analytical results for BTEX, PHCs, PAHs and Metals tested in soil are shown on Drawing PE5397-4R- Analytical Testing Plan - Soil.

The maximum concentrations of analyzed parameters in the soil at the site are summarized below in Table 9.

| TABLE 9: Maximum Cor     | ncentrations - S  | Soil                     |                    |
|--------------------------|-------------------|--------------------------|--------------------|
| Parameter                | Parameter Maximum |                          | Depth Interval     |
|                          | Concentration     |                          | (m BGS)            |
|                          | (µg/g)            |                          |                    |
| PHC-F2                   | 9                 | BH2-22-SS5               | 3.05-3.66m; Native |
| PHC-F3                   | 36                | BH2-22-SS5               | 3.05-3.66m; Native |
| Arsenic                  | 3.2               | BH4-21-SS4               | 1.52-2.13m; Fill   |
| Barium                   | 163               | BH4-21-SS5               | 2.29-2.89m; Fill   |
| Beryllium                | 0.6               |                          | ,                  |
| Boron                    | 6.6               | BH5-21-SS6               | 4.57-5.18m; Fill   |
| Chromium                 | 59.8              | <b>5 5</b> . <b>65</b> . |                    |
| Cobalt                   | 12.4              | BH4-21-SS4               | 1.52-2.13m; Fill   |
| Copper                   | 27.4              | DI 15 04 000             | 0.70.4.07. 5"      |
| Lead                     | 62.0              | BH5-21-SS2               | 0.76-1.37m; Fill   |
| Nickel                   | 33.3              | BH4-21-SS4               |                    |
| Vanadium<br>Zinc         | 57.4<br>73.5      | BH5-21-SS2               | 0.76-1.37m; Fill   |
|                          |                   | ВПЭ-21-552               | 0.76-1.37m; Fill   |
| Acenaphthylene           | 0.09<br>0.09      | BH4-21-SS2               | 0.70-1.37111, FIII |
| Anthracene               |                   | DI I 04 000              | 0.70.4.07          |
| Benzo[a]anthracene       | 0.18              | BH5-21-SS2               | 0.76-1.37m; Fill   |
| Benzo[a]pyrene           | 0.19              |                          | 0.76-1.37m; Fill   |
| Benzo[b]fluoranthene     | 0.21              | BH4-21-SS2               |                    |
| Benzo[g,h,i]perylene     | 0.18              |                          |                    |
| Benzo[k]fluoranthene     | 0.11              | BH5-21-SS2               | 0.76-1.37m; Fill   |
| Chrysene                 | 0.21              | DI 13-2 1-332            |                    |
| Dibenzo[a,h]anthracene   | 0.04              | BH4-21-SS2               | 0.76-1.37m; Fill   |
| Fluoranthene             | 0.37              | BH5-21-SS2               | 0.76-1.37m; Fill   |
| Fluorene                 | 0.05              | BH4-21-SS4               |                    |
| Indeno [1,2,3-cd] pyrene | 0.13              | BH1-22-SS2               | 0.76-1.37m; Fill   |
| 2-Methylnaphthalene      | 0.02              |                          |                    |
| Methylnaphthalene (1&2)  | 0.04              | BH4-21-SS2; BH5-21-SS2   | 0.76-1.37m; Fill   |
| Naphthalene              | 0.02              |                          |                    |
| Phenanthrene             | 0.25              | DUE 24 CC2               | 0.76.4.27m, F:II   |
| Pyrene                   | 0.30              | BH5-21-SS2               | 0.76-1.37m; Fill   |

No other parameters were identified above the laboratory method detection limits.



#### 5.6 **Groundwater Quality**

Groundwater samples from monitoring wells installed in BH1-21, BH2-21, BH3-21, BH1-22 and BH2-22 and duplicate groundwater samples were submitted for laboratory analysis of VOCs, which includes BTEX and PHC (fractions F1-F4) analyses. The groundwater samples were obtained from the screened intervals noted in Table 2. The results of the analytical testing are presented in Tables 10 and 11. The laboratory certificates of analysis are provided in Appendix 1.

| TABLE 10: Analytical Test Results – Groundwater BTEX and PHCs |        |               |               |               |     |                     |  |  |  |
|---------------------------------------------------------------|--------|---------------|---------------|---------------|-----|---------------------|--|--|--|
| Parameter                                                     | MDL    | Gr            | oundwater (   | Samples (µg   | /L) | MECP                |  |  |  |
|                                                               | (µg/L) |               | August        | 24, 2021      |     | Table 2             |  |  |  |
|                                                               |        | BH1-21-<br>GW | BH2-21-<br>GW | BH3-21-<br>GW | DUP | Standards<br>(µg/L) |  |  |  |
| Benzene                                                       | 0.5    | nd            | nd            | nd            | nd  | 0.5                 |  |  |  |
| Toluene                                                       | 0.5    | nd            | nd            | nd            | nd  | 24                  |  |  |  |
| Ethylbenzene                                                  | 0.5    | nd            | nd            | nd            | nd  | 2.4                 |  |  |  |
| Xylenes                                                       | 0.5    | nd            | nd            | nd            | nd  | 72                  |  |  |  |
| PHC F <sub>1</sub>                                            | 25     | nd            | nd            | nd            | NA  | 450                 |  |  |  |
| PHC F <sub>2</sub>                                            | 100    | nd            | nd            | nd            | NA  | 150                 |  |  |  |
| PHC F <sub>3</sub>                                            | 100    | nd            | nd            | nd            | NA  | 500                 |  |  |  |
| PHC F <sub>4</sub>                                            | 100    | nd            | nd            | nd            | NA  | 500                 |  |  |  |

#### Notes:

- MDL Method Detection Limit
- nd not detected above the MDL
- NA Parameter not analyzed
- **DUP (BH3-21-GW)**

| TABLE 10 Continued: Analytical Test Results – Groundwater BTEX and PHCs |        |                                |               |             |                     |  |
|-------------------------------------------------------------------------|--------|--------------------------------|---------------|-------------|---------------------|--|
| Parameter                                                               | MDL    | Groundwater Samples (µg/L) MEC |               |             |                     |  |
|                                                                         | (µg/L) |                                | July 15, 2022 | 2           | Table 2             |  |
|                                                                         |        | BH1-22-GW1                     | BH2-22-GW1    | DUP1-22-GW1 | Standards<br>(µg/L) |  |
| Benzene                                                                 | 0.5    | nd                             | nd            | nd          | 0.5                 |  |
| Toluene                                                                 | 0.5    | nd                             | nd            | nd          | 24                  |  |
| Ethylbenzene                                                            | 0.5    | nd                             | nd            | nd          | 2.4                 |  |
| Xylenes                                                                 | 0.5    | nd                             | nd            | nd          | 72                  |  |
| PHC F <sub>1</sub>                                                      | 25     | nd                             | nd            | nd          | 450                 |  |
| PHC F <sub>2</sub>                                                      | 100    | nd                             | nd            | nd          | 150                 |  |
| PHC F <sub>3</sub>                                                      | 100    | nd                             | nd            | nd          | 500                 |  |
| PHC F <sub>4</sub>                                                      | 100    | nd                             | nd            | nd          | 500                 |  |

#### Notes:

- MDL Method Detection Limit
- nd not detected above the MDL

No detectable BTEX or PHC concentrations were identified in the groundwater samples analyzed. The groundwater results comply with the MECP Table 2 Standards.

| TABLE 11: A | Analytical Test Results | s – Groun | dwater |
|-------------|-------------------------|-----------|--------|
| VOCs        |                         |           |        |

| VOCs Parameter                           | MDL    |           | er Samples            | MECP                |  |
|------------------------------------------|--------|-----------|-----------------------|---------------------|--|
|                                          | (µg/L) |           | g/L)                  | Table 2             |  |
|                                          |        | BH1-21-GW | 24, 2021<br>BH2-21-GW | Standards<br>(µg/L) |  |
|                                          |        |           |                       |                     |  |
| Acetone                                  | 5.0    | nd        | nd                    | 2700                |  |
| Benzene                                  | 0.5    | nd        | nd                    | 0.5                 |  |
| Bromodichloromethane                     | 0.5    | nd        | nd                    | 16                  |  |
| Bromoform                                | 0.5    | nd        | nd                    | 5                   |  |
| Bromomethane                             | 0.5    | nd        | nd                    | 0.89                |  |
| Carbon Tetrachloride                     | 0.2    | nd        | nd                    | 0.2                 |  |
| Chlorobenzene                            | 0.5    | nd        | nd                    | 30                  |  |
| Chloroform                               | 0.5    | nd        | nd                    | 2                   |  |
| Dibromochloromethane                     | 0.5    | nd        | nd                    | 25                  |  |
| Dichlorodifluoromethane                  | 1.0    | nd        | nd                    | 590                 |  |
| 1,2-Dichlorobenzene                      | 0.5    | nd        | nd                    | 3                   |  |
| 1,3-Dichlorobenzene                      | 0.5    | nd        | nd                    | 59                  |  |
| 1,4-Dichlorobenzene                      | 0.5    | nd        | nd                    | 0.5                 |  |
| 1,1-Dichloroethane                       | 0.5    | nd        | nd                    | 5                   |  |
| 1,2-Dichloroethane                       | 0.5    | nd        | nd                    | 0.5                 |  |
| 1,1-Dichloroethylene                     | 0.5    | nd        | nd                    | 0.5                 |  |
| cis-1,2-Dichloroethylene                 | 0.5    | nd        | nd                    | 1.6                 |  |
| trans-1,2-Dichloroethylene               | 0.5    | nd        | nd                    | 1.6                 |  |
| 1,2-Dichloropropane                      | 0.5    | nd        | nd                    | 0.58                |  |
| 1,3-Dichloropropene, total               | 0.5    | nd        | nd                    | 0.5                 |  |
| Ethylbenzene                             | 0.5    | nd        | nd                    | 2.4                 |  |
| Ethylene dibromide (dibromoethane, 1,2-) | 0.2    | nd        | nd                    | 0.2                 |  |
| Hexane                                   | 1.0    | nd        | nd                    | 5                   |  |
| Methyl Ethyl Ketone (2-Butanone)         | 5.0    | nd        | nd                    | 1800                |  |
| Methyl Isobutyl Ketone                   | 5.0    | nd        | nd                    | 640                 |  |
| Methyl tert-butyl ether                  | 2.0    | nd        | nd                    | 15                  |  |
| Methylene Chloride                       | 5.0    | nd        | nd                    | 26                  |  |
| Styrene                                  | 0.5    | nd        | nd                    | 5.4                 |  |
| 1,1,2-Tetrachloroethane                  | 0.5    | nd        | nd                    | 1.1                 |  |
| 1,1,2,2-Tetrachloroethane                | 0.5    | nd        | nd                    | 0.5                 |  |
| Tetrachloroethylene                      | 0.5    | nd        | nd                    | 0.5                 |  |
| Toluene                                  | 0.5    | nd        | nd                    | 24                  |  |
| 1,1,1-Trichloroethane                    | 0.5    | nd        | nd                    | 23                  |  |
| 1,1,2-Trichloroethane                    | 0.5    | nd        | nd                    | 0.5                 |  |
| Trichloroethylene                        | 0.5    | nd        | nd                    | 0.5                 |  |
| Trichlorofluoromethane                   | 1.0    | nd        | nd                    | 150                 |  |
| Vinyl Chloride                           | 0.5    | nd        | nd                    | 0.5                 |  |
| Xylenes, total                           | 0.5    | nd        | nd                    | 72                  |  |

# Notes:

- MDL Method Detection Limit
- nd not detected above the MDL

| Parameter                                | MDL<br>(µg/L) | Groundwater Samples (μg/L) |                |                 | MECP<br>Table 2     |
|------------------------------------------|---------------|----------------------------|----------------|-----------------|---------------------|
|                                          |               |                            | July 15, 2022  |                 |                     |
|                                          |               | BH1-22-<br>GW1             | BH1-22-<br>GW1 | DUP1-<br>22-GW1 | Standards<br>(µg/L) |
| Acetone                                  | 5.0           | nd                         | nd             | nd              | 2700                |
| Benzene                                  | 0.5           | nd                         | nd             | nd              | 0.5                 |
| Bromodichloromethane                     | 0.5           | nd                         | nd             | nd              | 16                  |
| Bromoform                                | 0.5           | nd                         | nd             | nd              | 5                   |
| Bromomethane                             | 0.5           | nd                         | nd             | nd              | 0.89                |
| Carbon Tetrachloride                     | 0.2           | nd                         | nd             | nd              | 0.2                 |
| Chlorobenzene                            | 0.5           | nd                         | nd             | nd              | 30                  |
| Chloroform                               | 0.5           | nd                         | nd             | nd              | 2                   |
| Dibromochloromethane                     | 0.5           | nd                         | nd             | nd              | 25                  |
| Dichlorodifluoromethane                  | 1.0           | nd                         | nd             | nd              | 590                 |
| 1,2-Dichlorobenzene                      | 0.5           | nd                         | nd             | nd              | 3                   |
| 1,3-Dichlorobenzene                      | 0.5           | nd                         | nd             | nd              | 59                  |
| 1,4-Dichlorobenzene                      | 0.5           | nd                         | nd             | nd              | 0.5                 |
| 1,1-Dichloroethane                       | 0.5           | nd                         | nd             | nd              | 5                   |
| 1,2-Dichloroethane                       | 0.5           | nd                         | nd             | nd              | 0.5                 |
| 1,1-Dichloroethylene                     | 0.5           | nd                         | nd             | nd              | 0.5                 |
| cis-1,2-Dichloroethylene                 | 0.5           | nd                         | nd             | nd              | 1.6                 |
| trans-1,2-Dichloroethylene               | 0.5           | nd                         | nd             | nd              | 1.6                 |
| 1,2-Dichloropropane                      | 0.5           | nd                         | nd             | nd              | 0.58                |
| 1,3-Dichloropropene, total               | 0.5           | nd                         | nd             | nd              | 0.5                 |
| Ethylbenzene                             | 0.5           | nd                         | nd             | nd              | 2.4                 |
| Ethylene dibromide (dibromoethane, 1,2-) | 0.2           | nd                         | nd             | nd              | 0.2                 |
| Hexane                                   | 1.0           | nd                         | nd             | nd              | 5                   |
| Methyl Ethyl Ketone (2-Butanone)         | 5.0           | nd                         | nd             | nd              | 1800                |
| Methyl Isobutyl Ketone                   | 5.0           | nd                         | nd             | nd              | 640                 |
| Methyl tert-butyl ether                  | 2.0           | nd                         | nd             | nd              | 15                  |
| Methylene Chloride                       | 5.0           | nd                         | nd             | nd              | 26                  |
| Styrene                                  | 0.5           | nd                         | nd             | nd              | 5.4                 |
| 1,1,1,2-Tetrachloroethane                | 0.5           | nd                         | nd             | nd              | 1.1                 |
| 1,1,2,2-Tetrachloroethane                | 0.5           | nd                         | nd             | nd              | 0.5                 |
| Tetrachloroethylene                      | 0.5           | nd                         | nd             | nd              | 0.5                 |
| Toluene                                  | 0.5           | nd                         | nd             | nd              | 24                  |
| 1,1,1-Trichloroethane                    | 0.5           | nd                         | nd             | nd              | 23                  |
| 1,1,2-Trichloroethane                    | 0.5           | nd                         | nd             | nd              | 0.5                 |
| Trichloroethylene                        | 0.5           | nd                         | nd             | nd              | 0.5                 |
| Trichlorofluoromethane                   | 1.0           | nd                         | nd             | nd              | 150                 |
| Vinyl Chloride                           | 0.5           | nd                         | nd             | nd              | 0.5                 |
| Xylenes, total                           | 0.5           | nd                         | nd             | nd              | 72                  |

#### Notes:

- MDL Method Detection Limit
- nd not detected above the MDL

The analytical results for VOCs and PHCs tested in groundwater are shown on Drawing PE5397-5R–Analytical Testing Plan – Groundwater.

All of the parameters analyzed were below the laboratory method detection limits.

# 5.7 Quality Assurance and Quality Control Results

All samples submitted as part of the August 2021 and July 2022 sampling events were handled in accordance with the Analytical Protocol with respect to preservation method, storage requirement, and container type.

As per Subsection 47(3) of O.Reg. 153/04, as amended, under the Environmental Protection Act, a Certificate of Analysis has been received for each sample submitted for analysis and all Certificates of Analysis are appended to this report.

Two (2) duplicate soil samples were obtained from BH2-21-SS2 and BH1-22-SS6 and analyzed for BTEX and PHCs (F1-F4), while two (2) groundwater samples from BH2-21-GW and BH1-22-GW1 were analyzed for PHCs (F1-F4) and VOCs. None of the analyzed parameter concentrations were detected above the laboratory limits.

Based on the analytical results, it is our opinion that the overall quality of the field data collected during this Phase II-ESA is considered to be sufficient to meet the overall objectives of this assessment.

# 5.8 Phase II Conceptual Site Model

The following section has been prepared in accordance with the requirements of O.Reg. 153/04, as amended by the Environmental Protection Act. Conclusions and recommendations are discussed in a subsequent section.

# **Site Description**

# Potentially Contaminating Activity and Areas of Potential Environmental Concern

As per Section 3.3, four (4) on-site PCAs resulted in APECs, which have been summarized in Table 1, along with their respective locations and contaminants of potential concern (CPCs).

#### Contaminants of Potential Concern

As per Section 3.3, the contaminants of potential concern (CPCs) in soil and/or groundwater include benzene, toluene, ethylbenzene, and xylenes (BTEX), petroleum hydrocarbons (PHCs, F1-F4), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and metals.

#### Subsurface Structures and Utilities

The Phase II Property is situated in an area where private services (potable water wells and septic systems) are relied upon. Other utilities and/or structures include electricity entering from Bankfield Road.

# Physical Setting

# Site Stratigraphy

The site stratigraphy, from ground surface to the deepest aquifer or aquitard investigated, is illustrated on Drawings PE5397-4A and 5A. The stratigraphy consists of:

| Topsoil was encountered in boreholes BH1-22 through BH4-22, extending to depths ranging from 0.15 to 0.30 mbgs.                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A fill layer consisting of crushed stone, gravel and silty was encountered in all of the boreholes, except in boreholes BH2-22, BH3-22 and BH4-22. Traces of clay and asphalt, wood and/or glass were identified in BH4-21, BH5-21 and BH1-22. This fill layer extended to depths of approximately 0.31 to 6.25 mbgs. Groundwater was encountered in this layer. |
| Silty sand was encountered in BH1-21, BH2-21, BH3-21, BH2-22, BH3-22 and BH4-22, extending to depths of approximately 2.13 to 3.96 mbgs. Groundwater was not encountered in this layer.                                                                                                                                                                          |
| Glacial till consisting of silty sand, gravel, cobles and boulders was encountered in all of the boreholes, which were terminated in this layer at depths ranging from 5.18 to 10.52 mbgs. Groundwater was encountered in this layer in BH1-21, BH2-21, BH3-21, BH1-22 and BH2-22.                                                                               |

# **Hydrogeological Characteristics**

Groundwater at the Phase II Property was encountered within the glacial till during the groundwater sampling events in August 2021 and July 2022. This unit is interpreted to function as the shallow aquifer on the Phase II Property.

Water levels were measured at the Phase II Property on August 24, 2021 and July 15, 2022. Groundwater levels in August 2021, ranged in depths from approximately 7.03 to 8.95m below grade. Groundwater levels in July 2022, ranged in depths from approximately 3.01 to 6.45m below grade. Groundwater levels are expected to fluctuate throughout the year.

Groundwater contour mapping was conducted for groundwater elevations identified during the July 2022 sampling event. Groundwater flow at the Phase II Property was in a northerly direction, with an average hydraulic gradient of approximately 0.02 m/m. Groundwater contours are shown on Drawing PE5397-3R – Test Hole Location Plan.

# **Approximate Depth to Bedrock**

Bedrock was not encountered during the field program, but rather inferred based on a dynamic cone penetration test (DCPT), where practical refusal was encountered at 24.8 m below the exiting grade.

# **Approximate Depth to Water Table**

The depth to the water table at the subject site varies between approximately 3.01 to 8.95m below existing grade.

## Sections 35, 41 and 43.1 of the Regulation

Section 35 of O.Reg. 153/04 does not apply to the Phase II Property in that the property and properties within the study area rely upon potable groundwater.

Section 41 of O.Reg. 153/04 does not apply to the Phase II Property, as the property is not within 30m of an environmentally sensitive area.

Section 43.1 of O.Reg. 153/04 does not apply to the Phase II Property in that the property is not a Shallow Soil property.

#### Fill Placement

The fill material consisted of crushed stone, gravel and silty sand and was identified in all of the boreholes, except boreholes BH2-22, BH3-22 and BH4-22. Traces of clay, asphalt, wood and/or glass were identified in BH4-21, BH5-21 and BH1-22. The fill material extended to depths of approximately 0.31 to 6.25 mbgs.

# **Existing Buildings and Structures**

1450 Bankfield Road is occupied by a single-storey residential dwelling and private garage. The dwelling was constructed in the early 1970s with a concrete block foundation and is heated by a propane fired furnace. The exterior of the dwelling is finished in vinyl siding and a sloped shingle style roof, while the private shed is finished in vinyl siding and a shingle style roof. The private shed is used to store lawn care equipment and a hobby car.

1454 Bankfield Road is occupied by a single-storey residential dwelling with a private garage and shed. The dwelling was constructed in the early 1970s with a concrete block foundation and heated by a propane fired furnace. The exterior of the dwelling is finished in red brick with a sloped shingle style roof, while the private shed and garage are both finished in vinyl siding with shingle covered roofs. The garage is constructed with a slab-on-grade concrete floor, which has been used to store equipment and tools, while lawn maintenance equipment and tools were stored in the private wooden shed. The south end of the property is occupied by a temporary workspace/garage, which was built using sheet metal cover, supported by in-ground 4x4 pressure treated wood columns and an above ground hoist. No signs of staining or sources of contamination were noted in the area of the make-shift workspace/garage. However, based on the presence of this make-shift garage, and given that small engine services have been conducted on-site, it represents an APEC.

1458 Bankfield Road is occupied by a single-storey residential dwelling and private garage. The dwelling was constructed in 1970 with a concrete block foundation and heated by a propane fired furnace. The exterior of the dwelling is finished in vinyl siding with a sloped shingle style roof. The private garage was constructed with a slab-on-grade foundation, while the building is finished in vinyl siding. The shed is currently used to store small recreational motor vehicles.

1464 Bankfield Road is occupied by a 2-storey residential dwelling, a shed, and a commercial automotive garage. The residential dwelling was constructed in 1964 with a concrete block foundation. The exterior is finished in red brick with a sloped shingle style roof. The commercial garage at 1464 Bankfield Road was constructed in 1997 with a slab-on-grade concrete foundation and concrete block walls with a flat style roof. The dwelling and garage are heated by electrical baseboard heaters and ceiling suspended (electric) furnace, respectively.

1468 Bankfield Road is occupied by a 2-storey residential dwelling and private garage. The dwelling was constructed in 1952 with a concrete block foundation, vinyl exterior and a sloped shingle style roof. The residence is heated by furnace oil.

The properties addressed 5479 and 5485 Elijah Court are occupied by single-storey residential dwellings with a single basement level, and private garages. The dwellings were constructed circa 1960 with concrete block foundations. The dwelling at 5479 Elijah Court is finished in an aggregate-mixed glass stucco and a sloped shingled style roof. The private garage was constructed with a slab-on-grade foundation and wooden structure with a shingled cover roof.

The residential dwelling at 5485 Elijah Court is constructed with a concrete block foundation, finished in vinyl siding exterior and a sloped shingled style roof. The private garage is a slab-on-grade structure, also finished in vinyl siding with a sloped shingled roof.

# **Proposed Buildings and Other Structures**

The proposed development for the Phase II Property will include a commercial automotive dealership with associated parking and vehicular storage.

# Areas of Natural Significance and Natural Water Bodies

There are no areas of natural significance or natural water bodies in the Phase I Study Area.

# **Environmental Condition**

#### Areas Where Contaminants are Present

Based on the analytical results for soil and groundwater, there are no contaminants present on or beneath the Phase II Property.

# **Types of Contaminants**

Based on the analytical results for soil and groundwater, there are no contaminants on or beneath the Phase II Property.

#### **Contaminated Media**

Based on the analytical results for soil and groundwater, there are no contaminated media on the Phase II Property.

#### What Is Known About Areas Where Contaminants Are Present

Based on the findings of the Phase II ESA, soil and groundwater beneath the Phase II Property comply with the MECP Table 2 Standards.

# **Distribution and Migration of Contaminants**

Based on the findings of the Phase II ESA, distribution and migration of contaminants is not considered to have occurred on the Phase II Property.

# **Discharge of Contaminants**

Based on the findings of the Phase II ESA, soil and groundwater concentrations comply with the selected MECP Table 2 Standards. Discharge of contaminants is not considered to have occurred on the Phase II Property.

# **Climatic and Meteorological Conditions**

In general, climatic and meteorological conditions have the potential to affect contaminant distribution. Two (2) ways by which climatic and meteorological conditions may affect contaminant distribution include the downward leaching of contaminants by means of the infiltration of precipitation, and the migration of contaminants via groundwater levels and/or flow, which may fluctuate seasonally.

Based on the analytical results, contaminant distribution is not considered to have occurred on the Phase II Property.

# **Potential for Vapour Intrusion**

Based on the findings of the Phase II ESA, there is no potential for vapour intrusion on the Phase II Property.

# 6.0 CONCLUSIONS

# 6.1 Assessment

A Phase II ESA was conducted for the property addressed 1450, 1454, 1458, 1464 and 1468 Bankfield Road, and 5479 and 5485 Elijah Court, in the Ottawa, Ontario. The purpose of the Phase II ESA was to address potentially contaminating activities (PCAs) that were identified during the Phase I ESA and considered to result in areas of potential environmental concern (APECs) on the Phase II Property.

The subsurface investigations were conducted in August 2021 and July 2022. The program consisted of nine (9) boreholes, five (5) of which were instrumented with groundwater monitoring wells. The general soil profile encountered during the field program consisted of crushed stone, gravel and silty sand was encountered in all of the boreholes, except in boreholes BH2-22, BH3-22 and BH4-22. Traces of clay and asphalt, wood and/or glass were identified in BH4-21, BH5-21 and BH1-22, followed by a silty sand layer with traces of gravel in BH1-21, BH2-21, BH3-21, BH1-22, BH2-22, BH3-22 and BH4-22, overlying glacial till. All of the boreholes were terminated in this layer at depths ranging from 6.71 to 10.52mbgs. Bedrock was inferred, based on a dynamic cone penetration test (DCPT), where practical refusal was encountered at 24.8 m below the exiting grade in BH5-21.

Thirteen (13) soil samples, including duplicate samples, were submitted for laboratory analyses of benzene, toluene, ethylbenzene and xylenes (BTEX), petroleum hydrocarbons (PHCs, Fractions F<sub>1</sub>-F<sub>4</sub>), polycyclic aromatic hydrocarbons (PAHs) and/or metals. All of the soil results complied with MECP Table 2 Commercial Standards.

Groundwater samples from monitoring wells BH1-21, BH2-21, BH3-21, BH1-22 and BH2-22 were collected on the August 24, 2021, and July 15, 2022, sampling events. No free product or petroleum hydrocarbon sheen was noted on the purge water during the groundwater sampling events.

Groundwater samples as well as duplicate samples were analyzed for volatile organic compounds (VOCs), which included the BTEX group, and PHCs (F1-F4). All of the groundwater results complied with the MECP Table 2 Standards.

Based on the findings of the Phase II ESA, no further environmental investigation is recommended at this time.

## 6.2 Recommendations

It is our understanding that the Phase II Property will be redeveloped with an automotive dealership with an asphaltic concrete paved area which will utilize at least half of the property.

Any excess soil requiring off-site disposal during construction must be managed in accordance with Ontario Regulation 406/19 – On-site and Excess Soil Management. The presence of the wood, brick and asphaltic concrete may restrict the reuse of this material if off-site removal is required for construction purposes. Any soils deemed excess during the site development will require additional analytical testing to determine the appropriate method of disposal. It is recommended that the future redevelopment be designed to minimize the volume of excess soil that will be generated and require off-site disposal.

# **Monitoring Wells**

If the monitoring wells installed on the Phase II Property are not going to be used in the future, or will be destroyed during site redevelopment, they should be abandoned according to Ontario Regulation 903. The wells will be registered with the MECP under this regulation. More information can be provided regarding the decommissioning of these wells.



# 7.0 STATEMENT OF LIMITATIONS

This Phase II - Environmental Site Assessment report has been prepared by a Qualified Person (QP), in general accordance with O.Reg. 153/04, as amended, and CSA Z769-00. The conclusions presented herein are based on information gathered from a limited sampling and testing program. The test results represent conditions at specific test locations at the time of the field program.

The client should be aware that any information pertaining to soils and all test hole logs are furnished as a matter of general information only and test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes themselves.

Should any conditions be encountered at the subject site and/or historical information that differ from our findings, we request that we be notified immediately in order to allow for a reassessment.

This report was prepared for the sole use of Myers Automotive Group. Notification from Myers Automotive Group and Paterson Group will be required to release this report to any other party.

# Paterson Group Inc.

Mandy Witteman, B.Eng., M.A.Sc., P.Eng.

Mark S. D'Arcy, P.Eng., QPESA

# M. S. D'ARCY 90377839 PROVINCE OF ONTARO

# **Report Distribution:**

- Myers Automotive Group
- Paterson Group Inc.

### **FIGURES**

Figure 1 - Key Plan

**Drawing PE5397-1R- Site Plan** 

**Drawing PE5397-2R- Surrounding Land Use Plan** 

Drawing PE5397-3R – Test Hole Location Plan & Groundwater Contour Plan

**Drawing PE5397-4R - Analytical Testing Plan - Soil** 

Drawing PE5397-4AR - Cross-section A - A' - Soil

**Drawing PE5397-5R – Analytical Testing Plan – Groundwater** 

Drawing PE5397-5AR – Cross-section A – A' – Groundwater



# FIGURE 1 KEY PLAN

















### **APPENDIX 1**

SAMPLING AND ANALYSIS PLAN

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

LABORATORY CERTIFICATES OF ANALYSIS



### Sampling and Analysis Plan

Phase II-Environmental Site Assessment 1450, 1458, 1464 and 1468 Bankfield Road, and 5479 and 5485 Elijah Court Ottawa, Ontario

Prepared for Myers Automotive Group

Report: PE5397-SAP August 2021





### **TABLE OF CONTENTS**

| 1.0 | SAMPLING PROGRAM                                 | 1  |
|-----|--------------------------------------------------|----|
| 2.0 | ANALYTICAL TESTING PROGRAM                       | 2  |
| 3.0 | STANDARD OPERATING PROCEDURES                    | 3  |
|     | 3.1 Environmental Drilling Procedure             |    |
|     | 3.2 Monitoring Well Installation Procedure       |    |
|     | 3.3 Monitoring Well Sampling Procedure           | 7  |
| 4.0 | QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)        | 8  |
| 5.0 | DATA QUALITY OBJECTIVES                          | g  |
| 6.0 | PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN | 10 |

#### 1.0 SAMPLING PROGRAM

Paterson Group Inc. (Paterson) was commissioned by Mr. Geoff Publow of Myers Automotive Group to conduct a Phase II Environmental Site Assessment (ESA) for the Phase II ESA Property addressed 1450, 1458, 1464 and 1468 Bankfield Road, and 5479 and 5485 Ottawa, Ontario.

The Phase II ESA was carried out to address the APECs identified in the Paterson Phase I ESA that was initially completed in August of 2021 and revised in July of 2022, to include additional properties. The following subsurface investigation programs were developed to identify and delineate potential environmental concerns that were identified in August 2021 and July 2022.

| Borehole | Location & Rationale                                                                                                                        | Proposed Depth & Rationale                                                          |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| BH1-21   | Assess soil and groundwater conditions on the Phase I Property due to current use of the subject site.                                      | Boreholes to be advanced to approximately 10.50 to intercept the groundwater table. |
| BH2-21   | Assess soil and groundwater conditions on the Phase I Property due to current use of the subject site.                                      | Boreholes to be advanced to approximately 9.0m to intercept the groundwater table.  |
| BH3-21   | Assess soil and groundwater conditions on the Phase I Property due to current use of the subject site.                                      | Boreholes to be advanced to approximately 9.0m to intercept the groundwater table.  |
| BH4-21   | Assess soil conditions on the Phase I Property due to the importation of fill material.                                                     | Boreholes to be advanced to approximately 6.70m.                                    |
| BH5-21   | Assess soil conditions on the Phase I Property due to the importation of fill material.                                                     | Boreholes to be advanced to approximately 7.40m.                                    |
| BH1-22   | Assess site conditions on the Phase I Property due to the importation of fill material and the use of the neighbouring property as a garage | Boreholes to be advanced to approximately 9.0m to intercept the groundwater table.  |
| BH2-22   | Assess site conditions on the Phase I Property due to use of the neighbouring property as a garage                                          | Boreholes to be advanced to approximately 6.7m to intercept the groundwater table.  |
| BH3-22   | Assess soil conditions on the Phase I Property.                                                                                             | Boreholes to be advanced to approximately 5.0m.                                     |
| BH4-22   | Assess soil conditions on the Phase I Property.                                                                                             | Boreholes to be advanced to approximately 5.0m.                                     |

At each borehole, split-spoon samples of overburden soils will be obtained at 0.76 m (2'6") intervals until groundwater was intercepted. All soil samples will be retained, and samples will be selected for submission following a preliminary screening analysis.

Report: PE5397-SAP

Page 1



Following borehole drilling, monitoring wells will be installed in selected boreholes (as above) for the measurement of water levels and the collection of groundwater samples. Borehole locations are shown on the Test Hole Location Plan appended to the main report.

### 2.0 ANALYTICAL TESTING PROGRAM

The analytical testing program for soil at the subject site is based on the following general considerations: ☐ At least one sample from each borehole should be submitted, in order to delineate the horizontal extent of contamination across the site. At least one sample from each stratigraphic unit should be submitted, in order to delineate the vertical extent of contamination at the site. In boreholes where there is visual or olfactory evidence of contamination, or where organic vapour meter or photoionization detector readings indicate the presence of contamination, the 'worst-case' sample from each borehole should be submitted for comparison with MECP's site condition standards. ☐ In boreholes with evidence of contamination as described above, a sample should be submitted from the stratigraphic unit below the 'worst-case' sample to determine whether the contaminant(s) have migrated downward. Parameters analyzed should be consistent with the Contaminants of Potential Concern identified in the Phase I ESA. The analytical testing program for groundwater at the subject site is based on the following general considerations: Groundwater monitoring wells should be installed in all boreholes with visual or olfactory evidence of soil contamination, in stratigraphic units where soil contamination was encountered, where those stratigraphic units are at or below the water table (i.e. a water sample can be obtained). Groundwater monitoring well screens should straddle the water table at sites where the contaminants of concern are suspected to be LNAPLs. At least one groundwater monitoring well should be installed in a stratigraphic unit below the suspected contamination, where said stratigraphic unit is waterbearing. Parameters analyzed should be consistent with the Contaminants of Concern identified in the Phase I ESA and with the contaminants identified in the soil

Report: PE5397-SAP August 2021

samples.

#### STANDARD OPERATING PROCEDURES 3.0

#### 3.1 **Environmental Drilling Procedure**

### **Purpose**

The purpose of environmental boreholes is to identify and/or delineate contamination within the soil and/or to install groundwater monitoring wells in order to identify contamination within the groundwater.

### Equipment

| _  | larbo                                                                                                                                                                                                                                                                                                                                               |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | ne following is a list of equipment that is in addition to regular drilling equipment ated in the geotechnical drilling SOP:                                                                                                                                                                                                                        |
|    | glass soil sample jars two buckets cleaning brush (toilet brush works well) dish detergent methyl hydrate water (if not available on site - water jugs available in trailer) latex or nitrile gloves (depending on suspected contaminant) RKI Eagle organic vapour meter or MiniRae photoionization detector (depending on contamination suspected) |
| De | etermining Borehole Locations                                                                                                                                                                                                                                                                                                                       |
| be | conditions on site are not as suspected, and planned borehole locations cannot drilled, call the office to discuss. Alternative borehole locations will be etermined in conversation with the field technician and supervising engineer.                                                                                                            |
| Di | ter drilling is completed a plan with the borehole locations must be provided. stances should be measured using a measuring tape or wheel rather than paced. Elevations were surveyed at geodetic elevations by Paterson personnel.                                                                                                                 |
| Dr | illing Procedure                                                                                                                                                                                                                                                                                                                                    |
| ge | ne actual drilling procedure for environmental boreholes is the same as otechnical boreholes (see SOP for drilling and sampling) with a few exceptions follows:                                                                                                                                                                                     |
|    | Continuous split spoon samples (every 0.6 m or 2') or semi-continuous (every 0.76 m or 2'6") are required.  Make sure samples are well sealed in plastic bags with no holes prior to screening and are kept cool but unfrozen.                                                                                                                      |

Report: PE5397-SAP

Page 3



|     | which may be analyzed must be taken and placed in the laboratory-provided methanol vial.                                                                                             |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Note all and any odours or discolouration of samples.                                                                                                                                |
|     | If at all possible, soil samples should be submitted to a preliminary screening procedure on site, either using a RKI Eagle, PID, etc. depending on type of suspected contamination. |
| Sp  | oon Washing Procedure                                                                                                                                                                |
|     |                                                                                                                                                                                      |
|     | sampling equipment (spilt spoons, etc.) must be washed between samples in der to prevent cross contamination of soil samples.                                                        |
| ord |                                                                                                                                                                                      |

The methyl hydrate eliminates any soap residue that may be on the spoon, and is especially important when dealing with suspected VOCs.

### **Screening Procedure**

The RKI Eagle is used to screen most soil samples, particularly where petroleum hydrocarbon contamination is suspected. The MiniRae is used when VOCs are suspected, however it also can be useful for detecting petroleum. These tools are for screening purposes only and cannot be used in place of laboratory testing. Vapour results obtained from the RKI Eagle and the PID are relative and must be interpreted.

Screening equipment should be calibrated on an approximately monthly basis, more frequently if heavily used.

Report: PE5397-SAP Page 4





| Samples should be brought to room temperature; this is specifically important    |
|----------------------------------------------------------------------------------|
| in colder weather. Soil must not be frozen.                                      |
| Turn instrument on and allow to come to zero - calibrate if necessary            |
| If using RKI Eagle, ensure instrument is in methane elimination mode unless      |
| otherwise directed.                                                              |
| Ensure measurement units are ppm (parts per million) initially. RKI Eagle will   |
| automatically switch to %LEL (lower explosive limit) if higher concentrations    |
| are encountered.                                                                 |
| Break up large lumps of soil in the sample bag, taking care not to puncture bag. |
| Insert probe into soil bag, creating a seal with your hand around the opening.   |
| Gently manipulate soil in bag while observing instrument readings.               |
| Record the highest value obtained in the first 15 to 25 seconds                  |
| Make sure to indicate scale (ppm or LEL); also note which instrument was used    |
| (RKI Eagle 1 or 2, or MiniRae).                                                  |
| Jar samples and refrigerate as per Sampling and Analysis Plan.                   |

Report: PE5397-SAP Page 5

August 2021



### 3.2 Monitoring Well Installation Procedure

### **Equipment** ☐ 5' x 2" [1.52 m x 50 mm] threaded sections of Schedule 40 PVC slotted well screen (5' x 1 1/4" [1.52 m x 32 mm] if installing in cored hole in bedrock) ☐ 5' x 2" [1.52 m x 50 mm] threaded sections of Schedule 40 PVC riser pipe (5' x 1 1/4" [1.52 m x 32 mm] if installing in cored hole in bedrock) ☐ Threaded end-cap ☐ Slip-cap or J-plug Asphalt cold patch or concrete ☐ Silica Sand ☐ Bentonite chips (Holeplug) Steel flushmount casing **Procedure** Drill borehole to required depth, using drilling and sampling procedures described above. ☐ If borehole is deeper than required monitoring well, backfill with bentonite chips to required depth. This should only be done on wells where contamination is not suspected, in order to prevent downward migration of contamination. Only one monitoring well should be installed per borehole. ☐ Monitoring wells should not be screened across more than one stratigraphic unit to prevent potential migration of contaminants between units. ☐ Where LNAPLs are the suspected contaminants of concern, monitoring wells should be screened straddling the water table in order to capture any free product floating on top of the water table. ☐ Thread the end cap onto a section of screen. Thread second section of screen if required. Thread risers onto screen. Lower into borehole to required depth. Ensure slip-cap or J-plug is inserted to prevent backfill materials entering well. ☐ As drillers remove augers, backfill borehole annulus with silica sand until the level of sand is approximately 0.3 m above the top of the screen. ☐ Backfill with holeplug until at least 0.3 m of holeplug is present above the top of the silica sand. ☐ Backfill remainder of borehole with holeplug or with auger cuttings (if contamination is not suspected).

Report: PE5397-SAP Page 6

☐ Install flushmount casing. Seal space between flushmount and borehole annulus with concrete, cold patch, or holeplug to match surrounding ground

August 2021

surface.



### 3.3 Monitoring Well Sampling Procedure

### **Equipment** ☐ Water level metre or interface probe on hydrocarbon/LNAPL sites ☐ Spray bottles containing water and methanol to clean water level tape or interface probe Peristaltic pump Polyethylene tubing for peristaltic pump ☐ Flexible tubing for peristaltic pump Latex or nitrile gloves (depending on suspected contaminant) ☐ Allen keys and/or 9/16" socket wrench to remove well caps Graduated bucket with volume measurements ☐ pH/Temperature/Conductivity combo pen □ Laboratory-supplied sample bottles Sampling Procedure Locate well and use socket wrench or Allan key to open metal flush mount protector cap. Remove plastic well cap. ☐ Measure water level, with respect to existing ground surface, using water level meter or interface probe. If using interface probe on suspected NAPL site, measure the thickness of free product. Measure total depth of well. Clean water level tape or interface probe using methanol and water. Change gloves between wells. Calculate volume of standing water within well and record. ☐ Insert polyethylene tubing into well and attach to peristaltic pump. Turn on peristaltic pump and purge into graduated bucket. Purge at least three well volumes of water from the well. Measure and record field chemistry. Continue to purge, measuring field chemistry after every well volume purged, until appearance or field chemistry stabilizes. ■ Note appearance of purge water, including colour, opacity (clear, cloudy, silty), sheen, presence of LNAPL, and odour. Note any other unusual features (particulate matter, effervescence (bubbling) of dissolved gas, etc.). ☐ Fill required sample bottles. If sampling for metals, attach 75-micron filter to discharge tube and filter metals sample. If sampling for VOCs, use low flow rate to ensure continuous stream of non-turbulent flow into sample bottles. Ensure no headspace is present in VOC vials.

Report: PE5397-SAP August 2021

Replace well cap and flushmount casing cap.



### 4.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

The QA/QC program for this Phase II ESA is as follows:
 All non-dedicated sampling equipment (split spoons) will be decontaminated according to the SOPs listed above.
 All groundwater sampling equipment is dedicated (polyethylene and flexible peristaltic tubing is replaced for each well).
 Where groundwater samples are to be analyzed for VOCs, one laboratory-provided trip blank will be submitted for analysis with every laboratory submission.
 Approximately one (1) field duplicate will be submitted for every ten (10) samples submitted for laboratory analysis. A minimum of one (1) field duplicate per project will be submitted. Field duplicates will be submitted for soil and groundwater samples
 Where combo pens are used to measure field chemistry, they will be calibrated

on an approximately monthly basis, according to frequency of use.

Report: PE5397-SAP Page 8

August 2021

### 5.0 DATA QUALITY OBJECTIVES

The purpose of setting data quality objectives (DQOs) is to ensure that the level of uncertainty in data collected during the Phase II ESA is low enough that decision-making is not affected, and that the overall objectives of the investigation are met.

The quality of data is assessed by comparing field duplicates with original samples. If the relative percent difference (RPD) between the duplicate and the sample is within 20%, the data are considered to be of sufficient quality so as not to affect decision-making. The RPD is calculated as follows:

$$RPD = \left| \frac{x_1 - x_2}{(x_1 + x_2)/2} \right| \times 100\%$$

Where  $x_1$  is the concentration of a given parameter in an original sample and  $x_2$  is the concentration of that same parameter in the field duplicate sample.

For the purpose of calculating the RPD, it is desirable to select field duplicates from samples for which parameters are present in concentrations above laboratory detection limits, i.e. samples which are expected to be contaminated. If parameters are below laboratory detection limits for selected samples or duplicates, the RPD may be calculated using a concentration equal to one half (0.5 x) the laboratory detection limit.

It is also important to consider data quality in the overall context of the project. For example, if the DQOs are not met for a given sample, yet the concentrations of contaminants in both the sample and the duplicate exceed the MOE site remediation standards by a large margin, the decision-making usefulness of the sample may not be considered to be impaired. The proximity of other samples which meet the DQOs must also be considered in developing the Phase II Conceptual Site Model; often there are enough data available to produce a reliable Phase II Conceptual Site Model even if DQOs are not met for certain individual samples.

These considerations are discussed in the body of the report.



### 6.0 PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN

| Ph | ysical impediments to the Sampling and Analysis plan may include:                                                          |
|----|----------------------------------------------------------------------------------------------------------------------------|
|    | The location of underground utilities                                                                                      |
|    | Poor recovery of split-spoon soil samples                                                                                  |
|    | Insufficient groundwater volume for groundwater samples                                                                    |
|    | Breakage of sampling containers following sampling or while in transit to the laboratory                                   |
|    | Elevated detection limits due to matrix interference (generally related to soi colour or presence of organic material)     |
|    | Elevated detection limits due to high concentrations of certain parameters necessitating dilution of samples in laboratory |
|    | Drill rig breakdowns                                                                                                       |
|    | Winter conditions                                                                                                          |
|    | Other site-specific impediments                                                                                            |
|    | e-specific impediments to the Sampling and Analysis plan are discussed in the dy of the Phase II ESA report.               |

Report: PE5397-SAP Page 10

August 2021

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

**SOIL PROFILE AND TEST DATA** 

Phase II - Environmental Site Assessment 1450, 1454, 1458, 1464 & 1468 Bankfield Road, and 5479 and 5485 Elijah Court. Ottawa, Ontario

**DATUM** Elevations are referenced to a geodetic datum.

FILE NO.

PE5397

| REMARKS  BORINGS BY CME-55 Low Clearance D                                         | )rill         |          |                                 | Г             | ΔTF               | August 13 | 3 2021          |    | HOLE NO.                                     | BH 1-2 | <br>1                           |
|------------------------------------------------------------------------------------|---------------|----------|---------------------------------|---------------|-------------------|-----------|-----------------|----|----------------------------------------------|--------|---------------------------------|
| SOIL DESCRIPTION                                                                   |               |          | SAMPLE DEPTH ELEV. Photo Ioniza |               |                   |           |                 |    |                                              | ector  |                                 |
| GROUND SURFACE                                                                     | STRATA PLOT   | TYPE     | NUMBER                          | %<br>RECOVERY | N VALUE<br>or RQD | (m)       | (m)             |    | r Explosive L                                | imit % | Monitoring Well<br>Construction |
| FILL: Crushed stone with gravel                                                    |               | Ž AU     | 1                               |               |                   | 0-        | -101.11         | 20 |                                              |        |                                 |
| and brown silty sand. 0.46                                                         |               | SS       | 2<br>2                          | 25            | 18                | 1 -       | -100.11<br>-    |    |                                              |        |                                 |
| Compact, brown <b>SILTY SAND,</b>                                                  |               | ss       | 3                               | 58            | 22                | 2-        | -99.11 <b>(</b> |    |                                              |        |                                 |
| trace gravel.                                                                      |               | ss<br>ss | 4<br>5                          | 58<br>50      | 29                | 3-        | -98.11          |    |                                              |        |                                 |
| 3.96                                                                               | ^^^^          | 7.<br>SS | 6                               | 58            | 47                | 4-        | -97.11          |    |                                              |        |                                 |
|                                                                                    | ^^^^^<br>^^^^ | ss       | 7                               | 58            | 31                | 5-        | -96.11 <b>•</b> | •  |                                              |        |                                 |
|                                                                                    |               | ss       | 8                               | 58            | 26                | 6-        | -95.11          |    |                                              |        |                                 |
| GLACIAL TILL: Compact to dense, brown silty sand with gravel, cobbles and boulders |               | ss<br>ss | 9                               | 55<br>42      | 50+               | 7-        | -94.11          |    |                                              |        |                                 |
|                                                                                    |               | ss       | 11                              | 50            | 20                | 8-        | -93.11 <b>•</b> |    |                                              |        |                                 |
| - running sand encountered at 9.8m depth                                           |               | ss<br>ss | 12<br>13                        | 67<br>75      | 28                | 9-        | -92.11          |    |                                              |        |                                 |
| 10.52                                                                              |               | ss       | 14                              | 75            | 15                | 10-       | -91.11          |    |                                              |        |                                 |
| End of Borehole (GWL @ 8.95m - August 25, 2021)                                    |               |          |                                 |               |                   |           |                 |    |                                              |        |                                 |
|                                                                                    |               |          |                                 |               |                   |           |                 |    | 200 300<br>Eagle Rdg. (pl<br>as Resp. △ Meth |        | )                               |

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

**SOIL PROFILE AND TEST DATA** 

Phase II - Environmental Site Assessment 1450, 1454, 1458, 1464 & 1468 Bankfield Road, and 5479 and 5485 Elijah Court. Ottawa, Ontario

**DATUM** Elevations are referenced to a geodetic datum.

FILE NO.

HOLE NO.

PE5397

**REMARKS** 

|                                        |                                         | SAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /DI E  |     |                                                                                         | Photo Ionization Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - 1                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 田〇  | DEPTH<br>(m)                                                                            | ELEV.<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| STRATA                                 | TYPE                                    | NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SCOVER |     |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | O Lowe                                | r Expl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | osive L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | imit %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        | **                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22     | Z   | 0-                                                                                      | -99.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 31                                     | & AU                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |     |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        | AU                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |     | 4                                                                                       | 00.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | SS                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 6   |                                                                                         | -90.30 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        | V 55                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 15  |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | '   | 2-                                                                                      | -97.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | ∬ ss                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67     | 50+ |                                                                                         | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 97                                     | #-                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |     | 3-                                                                                      | -96.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 튙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | ∭ ss                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 86     | 50+ |                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | $\sqrt{2}$                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.5    | 10  | 4-                                                                                      | -95.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| \^^^^                                  | <u> </u>                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /5     | 19  |                                                                                         | 00.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| \^^^                                   | ∜ ss                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100    | 50+ | _                                                                                       | 04.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | <u> </u>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |     | 5-                                                                                      | -94.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        | ∭ ss                                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80     | 50+ |                                                                                         | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| \^^^                                   | <del>/</del>                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |     | 6-                                                                                      | -93.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| \^^^^                                  | ∬ ss                                    | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0      | 50+ |                                                                                         | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>†</b>                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        | <del>-</del>                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |     | 7-                                                                                      | -92.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| \^^^^                                  | $\chi$ SS                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75     | 50+ |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        | ∭ ss                                    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67     |     | 0                                                                                       | 04.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ^^^^                                   | ¥ J                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | "      |     | 8-                                                                                      | -91.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        | ∯ ss                                    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 64     | 50+ |                                                                                         | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 14 [^^^^                               | <u> </u>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |     | 9-                                                                                      | -90.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |     |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |     |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |     |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |     |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |     |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |     |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |     |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |     |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |     |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                   | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |     |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Eagle F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rdg. (pp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | om)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        | 97 ************************************ | STRATA  STRATA | 31     | 31  | SS 4 67 50+  SS 5 86 50+  SS 7 100 50+  SS 8 80 50+  SS 9 0 50+  SS 11 67  SS 12 64 50+ | Old   Wald   Wall   Standard   Standard | SI                                    | Second   S | Second   S | Second   S | Second   S |

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

**SOIL PROFILE AND TEST DATA** 

Phase II - Environmental Site Assessment 1450, 1454, 1458, 1464 & 1468 Bankfield Road, and 5479 and 5485 Elijah Court. Ottawa, Ontario

DATUM Elevations are referenced to a geodetic datum.

**REMARKS** 

FILE NO.

PE5397

| BORINGS BY CME-55 Low Clearance D                        | Drill                                  |          |        | 0             | ATE A             | August 13 | 3, 2021 | HOLE NO. BH 3-2                                                                 |
|----------------------------------------------------------|----------------------------------------|----------|--------|---------------|-------------------|-----------|---------|---------------------------------------------------------------------------------|
| SOIL DESCRIPTION                                         | PLOT                                   |          | SAM    | /IPLE         |                   | DEPTH     | ELEV.   | Photo Ionization Detector  Volatile Organic Rdg. (ppm)                          |
|                                                          | STRATA                                 | TYPE     | NUMBER | %<br>RECOVERY | N VALUE<br>or RQD | (m)       | (m)     | Photo Ionization Detector  Volatile Organic Rdg. (ppm)  Lower Explosive Limit % |
| GROUND SURFACE                                           | ω<br>·                                 |          | Z      | E.            | z °               | n-        | 99.19   | 20 40 60 80                                                                     |
| FILL: Brown silty sand with crushed stone, trace gravel. |                                        | AU<br>AU | 1<br>2 |               |                   |           | 33.13   |                                                                                 |
| Compact to very dense, brown SILTY SAND.                 |                                        | ss       | 3      | 83            | 10                | 1 -       | -98.19  |                                                                                 |
| 2.13                                                     | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | ss       | 4      | 13            | 50+               | 2-        | -97.19  |                                                                                 |
|                                                          |                                        | ss       | 5      | 75            | 40                | 3-        | -96.19  |                                                                                 |
|                                                          |                                        | ss       | 6      | 27            | 50+               |           |         |                                                                                 |
|                                                          |                                        | ss       | 7      | 33            | 44                | 4-        | -95.19  | •                                                                               |
| LACIAL TILL: Compact to dense,                           |                                        | ss       | 8      | 67            | 21                | 5-        | -94.19  |                                                                                 |
| rown silty sand with gravel cobbles and boulders         |                                        | ss       | 9      | 67            | 18                | 6-        | -93.19  |                                                                                 |
|                                                          |                                        | ss       | 10     | 75            | 19                |           | 33.13   |                                                                                 |
|                                                          |                                        | ss       | 11     | 83            | 8                 | 7-        | -92.19  |                                                                                 |
| running sand encountered from 7.5<br>9.1m depth          |                                        | ss       | 12     | 83            | 36                | 8-        | -91.19  |                                                                                 |
| 9.14                                                     |                                        | ss       | 13     |               | 41                | 9-        | -90.19  |                                                                                 |
| nd of Borehole                                           |                                        |          |        |               |                   |           |         |                                                                                 |
| GWL @ 7.03m - August 25, 2021)                           |                                        |          |        |               |                   |           |         |                                                                                 |
|                                                          |                                        |          |        |               |                   |           |         | 100 200 300 400 500                                                             |
|                                                          |                                        |          |        |               |                   |           |         | RKI Eagle Rdg. (ppm)  ▲ Full Gas Resp. △ Methane Elim.                          |

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

**SOIL PROFILE AND TEST DATA** 

Phase II - Environmental Site Assessment 1450, 1454, 1458, 1464 & 1468 Bankfield Road, and 5479 and 5485 Elijah Court. Ottawa, Ontario

**DATUM** Elevations are referenced to a geodetic datum.

REMARKS

FILE NO.

PE5397

| AROUND SURFACE  ILL: Brown silty sand trace clay, 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SOIL DESCRIPTION                                                          |   |                |       |             |       |     |                     |    | onization D |    | I OW     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---|----------------|-------|-------------|-------|-----|---------------------|----|-------------|----|----------|
| ILL: Brown silty sand trace clay, 0.31   SS 2 50 14 1 98.62     ILL: Brown to grey silty clay with and, trace gravel, cobbles, oulders, asphaltic concrete   SS 4 42 6     ILL: Brown to grey silty clay with and, trace gravel, cobbles, oulders, asphaltic concrete   SS 5 33 5     ILL: Brown silty sand, trace clay, ravel and organics   SS 6 25 50+ 5 94.62     ILL: Brown silty sand, trace clay, ravel and organics   SS 7 50 13     ILACIAL TILL: Very dense, brown illy sand with gravel, cobbles and 6.71   SS 8 8 83 50+ oulders   SS 6 93.62     ILACIAL TILL: Very dense, brown illy sand with gravel, cobbles and 6.71   SS 8 8 83 50+ oulders   SS 6 93.62     ILACIAL TILL: Very dense, brown illy sand with gravel, cobbles and 6.71   SS 8 8 83 50+ oulders   SS 8 8 83 50+ oulde   | SOIL DESCRIPTION                                                          |   | LYPE           | JMBER | %<br>COVERY | VALUE | ł I |                     |    |             |    | Circlina |
| ILL: Brown to grey silty clay with and, trace gravel, cobbles, oulders, asphaltic concrete  SS 2 50 14 1 1 98.62  ILL: Brown to grey silty clay with and, trace gravel, cobbles, oulders, asphaltic concrete  SS 4 42 6 3 96.62  Trace wood and brick by 3.0m depth  SS 5 33 5  LL: Brown silty sand, trace clay, ravel and organics  SS 6 25 50+  5-94.62  LL: Brown silty sand, trace clay, ravel and organics  SS 7 50 13  6-93.62  LLACIAL TILL: Very dense, brown oulders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GROUND SURFACE                                                            | מ |                | N     | REC         | z ö   | ٥   | 00.60               | 20 | 40 60       | 80 | 2        |
| ILL: Brown to grey silty clay with and, trace gravel, cobbles, oulders, asphaltic concrete  SS 3 42 8 2-97.62  SS 4 42 6  Trace wood and brick by 3.0m depth  SS 5 33 5  Trace wood and brick by 3.0m depth  SS 6 25 50+  5-94.62  ILL: Brown silty sand, trace clay, ravel and organics  6.10  SS 7 50 13  6-93.62  ILL: Brown silty sand, trace clay, ravel and organics  6.10  SS 8 83 50+  Oulders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FILL: Brown silty sand trace clay, 0.31 gravel and asphaltic concrete.    |   | AU             | 1     |             |       | 0-  | -99.62              | •  |             |    |          |
| ILL: Brown to grey silty clay with and, trace gravel, cobbles, oulders, asphaltic concrete  SS 4 42 6  3-96.62  trace wood and brick by 3.0m depth  SS 5 33 5  4-95.62  ILL: Brown silty sand, trace clay, ravel and organics  6.10  SS 7 50 13  6-93.62  ILACIAL TILL: Very dense, brown silty sand with gravel, cobbles and 6.71 oulders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           |   | $\langle ss  $ | 2     | 50          | 14    | 1-  | -98.62              |    |             |    |          |
| trace wood and brick by 3.0m depth  SS 5 33 5  LL: Brown silty sand, trace clay, ravel and organics  6.10  SS 7 50 13  6-93.62  SS 7 50 13  6-93.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FILL: Brown to grey silty clay with                                       |   | $\langle ss  $ | 3     | 42          | 8     | 2-  | -97.62              |    |             |    |          |
| SS 6 25 50+  5.18  SS 6 25 50+  5-94.62  ILL: Brown silty sand, trace clay, ravel and organics  6.10  SS 7 50 13  6-93.62  AACIAL TILL: Very dense, brown ilty sand with gravel, cobbles and 6.71  AACIAL TILL: Very dense, brown oulders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and, trace gravel, cobbles, oulders, asphaltic concrete                   |   | ss             | 4     | 42          | 6     | 3-  | -96.62              |    |             |    |          |
| SS 6 25 50+    SS   6   25   50+   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5-94.62   5 | trace wood and brick by 3.0m depth                                        |   | ss             | 5     | 33          | 5     |     |                     |    |             |    |          |
| ILL: Brown silty sand, trace clay, ravel and organics  6.10  SS 7 50 13  6-93.62  6-93.62  SLACIAL TILL: Very dense, brown oulders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                           |   | 7              |       |             |       | 4-  | -95.62              |    |             |    |          |
| 6.10 6-93.62 SLACIAL TILL: Very dense, brown lilty sand with gravel, cobbles and 6.71 6-93.62 oulders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>ILL</b> : Brown silty sand, trace clay,                                |   | Δ.<br>7        |       |             |       | 5-  | -94.62 <sup>(</sup> |    |             |    |          |
| oulders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.10                                                                      |   | <u>}</u>       |       |             |       | 6-  | -93.62              |    |             |    |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ilty sand with gravel, cobbles and <sub>6.71</sub> ouldersind of Borehole |   | /              | 0     | 63          | 50+   |     |                     |    |             |    |          |

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

**SOIL PROFILE AND TEST DATA** 

Phase II - Environmental Site Assessment 1450, 1454, 1458, 1464 & 1468 Bankfield Road, and 5479 and 5485 Elijah Court. Ottawa, Ontario

**DATUM** Elevations are referenced to a geodetic datum.

**REMARKS** 

FILE NO.

PE5397

HOLE NO.

| BORINGS BY CME-55 Low Clearance D                                                                                   | \rill        |          |        | _                | ATE            | August 19 | 2 2021 |    | HOLE NO.                                   | BH 5-2 | 21              |
|---------------------------------------------------------------------------------------------------------------------|--------------|----------|--------|------------------|----------------|-----------|--------|----|--------------------------------------------|--------|-----------------|
|                                                                                                                     | PLOT         |          | SAN    | MPLE DEPTH ELEV. |                |           |        |    | onization De                               | tector |                 |
| SOIL DESCRIPTION                                                                                                    | STRATA PL    | TYPE     | NUMBER | %<br>RECOVERY    | VALUE<br>r RQD | (m)       | (m)    |    | r Explosive I                              |        | Monitoring Well |
| GROUND SURFACE                                                                                                      | S            | H        | N      | REC              | NON            |           |        | 20 | 40 60                                      | 80     | 50              |
| <b>FILL</b> : Brown silty sand, with crushed stone and gravel. 0.61                                                 |              | ≅ AU<br> | 1      |                  |                | 0-        | 101.43 |    |                                            |        |                 |
| FILL: Brown silty clay with silty                                                                                   |              | ss       | 2      | 50               | 9              | 1-        | 100.43 | •  |                                            |        |                 |
| sand, trace gravel and cobbles2.13                                                                                  |              | ss       | 3      | 50               | 5              | 2-        | 99.43  | •  |                                            |        |                 |
|                                                                                                                     |              | ss       | 4      | 8                | 7              | 3-        | -98.43 | •  |                                            |        |                 |
| FILL: Brown silty sand with clay,                                                                                   |              | ss       | 5      | 21               | 4              |           | •      |    |                                            |        |                 |
| trace gravel, wood and asphaltic concrete                                                                           |              |          |        |                  |                | 4-        | -97.43 |    |                                            |        |                 |
|                                                                                                                     |              | ss       | 6      | 75               | 10             | 5-        | 96.43  |    |                                            |        |                 |
| 6.25                                                                                                                |              | $\Box$   |        |                  |                | 6-        | -95.43 |    |                                            |        |                 |
| GLACIAL TILL: Loose, brown silty sand with gravel, cobbles and                                                      | ^^^^<br>^^^^ | ss       | 7      | 0                | 9              | 7         | 04.40  |    |                                            |        |                 |
| boulders 7.47                                                                                                       | ^^^^         | ss       | 8      | 42               | 8              | /-        | 94.43  |    |                                            |        |                 |
| Dynamic cone penetration test<br>commenced at 7.47m depth. DCPT<br>refusal at 24.79m depth. Borehole<br>terminated. |              |          |        |                  |                |           |        |    |                                            |        |                 |
|                                                                                                                     |              |          |        |                  |                |           |        |    |                                            |        |                 |
|                                                                                                                     |              |          |        |                  |                |           |        |    |                                            |        |                 |
|                                                                                                                     |              |          |        |                  |                |           |        |    |                                            |        |                 |
|                                                                                                                     |              |          |        |                  |                |           |        |    |                                            |        |                 |
|                                                                                                                     |              |          |        |                  |                |           |        |    |                                            |        |                 |
|                                                                                                                     |              |          |        |                  |                |           |        |    | 200 300<br>Eagle Rdg. (p<br>as Resp. △ Met |        | )0              |

9 Auriga Drive, Ottawa, Ontario K2E 7T9

Geodetic

### **SOIL PROFILE AND TEST DATA**

FILE NO.

Phase II - Environmental Site Assessment 1450, 1454, 1458, 1464 & 1468 Bankfield Road, and 5479 and 5485 Elijah Court. Ottawa, Ontario

DATUM PE5397 **REMARKS** HOLE NO. **BH 1-22** BORINGS BY CME-55 Low Clearance Drill **DATE** July 11, 2022 Monitoring Well Construction **SAMPLE Photo Ionization Detector** PLOT **DEPTH** ELEV. SOIL DESCRIPTION Volatile Organic Rdg. (ppm) (m) (m) STRATA RECOVERY VALUE r RQD NUMBER **Lower Explosive Limit %** N o H **GROUND SURFACE** 80 0+96.89TOPSOIL 0.15 1 1+95.89SS 2 22 75 FILL: Brown silty sand, some clay, SS 3 67 16 gravel, occasional cobbles, trace 2 + 94.89asphalt, glass and crushed stone SS 4 58 12 3+93.895 SS 568 28 3.96 4 + 92.89SS 6 75 19 SS 7 83 13 5+91.89**GLACIAL TILL:** Compact to very dense, brown silty sand to sand with gravel, occasional cobbles SS 8 75 44 6+90.89- some running sand by 5.8m depth SS 9 75 32 7 + 89.89SS 10 83 34 SS 11 92 65 8 + 88.898.30 Loose, grey SILTY SAND 12 58 6 8.99 End of Borehole (GWL @ 4.23m - July 15, 2022) 200 300 400 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

**SOIL PROFILE AND TEST DATA** 

▲ Full Gas Resp. △ Methane Elim.

Phase II - Environmental Site Assessment 1450, 1454, 1458, 1464 & 1468 Bankfield Road, and

9 Auriga Drive, Ottawa, Ontario K2E 7T9

5479 and 5485 Elijah Court. Ottawa, Ontario

**DATUM** Geodetic FILE NO. PE5397 **REMARKS** HOLE NO. **BH 2-22** BORINGS BY CME-55 Low Clearance Drill **DATE** July 11, 2022 Monitoring Well Construction **SAMPLE Photo Ionization Detector** PLOT DEPTH ELEV. **SOIL DESCRIPTION** Volatile Organic Rdg. (ppm) (m) (m) RECOVERY STRATA VALUE r RQD NUMBER **Lower Explosive Limit %** N o v **GROUND SURFACE** 80 0+95.76**TOPSOIL** 0.38 1 1+94.76SS 2 75 13 Compact to dense, brown SILTY SAND, some gravel SS 3 83 34 2+93.76SS 4 29 67 2.97 Ţ 3+92.76SS 5 75 27 GLACIAL TILL: Compact, brown silty sand to sand, some gravel, 4+91.76occasional cobbles SS 6 75 15 - some running sand by 4.3m depth SS 7 83 19 5+90.76SS 8 92 28 6 + 89.76SS 9 100 18 6.71 End of Borehole (GWL @ 3.01m - July 15, 2022) 200 300 400 500 RKI Eagle Rdg. (ppm)

9 Auriga Drive, Ottawa, Ontario K2E 7T9

**SOIL PROFILE AND TEST DATA** 

Phase II - Environmental Site Assessment 1450, 1454, 1458, 1464 & 1468 Bankfield Road, and 5479 and 5485 Elijah Court. Ottawa, Ontario

**DATUM** Geodetic FILE NO. PE5397 **REMARKS** HOLE NO. **BH 3-22** BORINGS BY CME-55 Low Clearance Drill **DATE** July 11, 2022 Monitoring Well Construction **SAMPLE Photo Ionization Detector** STRATA PLOT **DEPTH** ELEV. SOIL DESCRIPTION Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD NUMBER **Lower Explosive Limit % GROUND SURFACE** 80 0+95.30**TOPSOIL** 0.30 1 Compact, brown SILTY SAND, 1+94.30SS 2 17 50 some gravel, occasional cobbles SS 3 75 19 2+93.302.21 SS 4 54 83 3+92.30GLACIAL TILL: Very dense to compact, brown silty sand to sand, SS 5 100 31 some gravel, occasional cobbles 4 + 91.30SS 6 92 21 - some running sand by 4.1m depth SS 7 100 25 5+90.305.18 End of Borehole 100 200 300 400 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

9 Auriga Drive, Ottawa, Ontario K2E 7T9

**SOIL PROFILE AND TEST DATA** 

Phase II - Environmental Site Assessment 1450, 1454, 1458, 1464 & 1468 Bankfield Road, and 5479 and 5485 Elijah Court. Ottawa, Ontario

**DATUM** Geodetic FILE NO. PE5397 **REMARKS** HOLE NO. **BH 4-22** BORINGS BY CME-55 Low Clearance Drill **DATE** July 11, 2022 Monitoring Well Construction **SAMPLE Photo Ionization Detector** STRATA PLOT DEPTH ELEV. SOIL DESCRIPTION Volatile Organic Rdg. (ppm) (m) (m) RECOVERY N VALUE or RQD NUMBER **Lower Explosive Limit % GROUND SURFACE** 80 0+95.17**TOPSOIL** 0.30 1 1 + 94.17SS 2 75 18 Compact to dense, brown SILTY SAND, some gravel SS 3 67 46 2 + 93.172.21 SS 4 75 23 3+92.17GLACIAL TILL: Compact, brown silty sand to sand with gravel. SS 5 58 16 occasional cobbles 4 + 91.17- some running sand by 4.0m depth. SS 22 6 67 SS 7 67 5+90.175.18 End of Borehole 200 300 400 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

#### SYMBOLS AND TERMS

#### SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

| Desiccated       | - | having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.                                   |
|------------------|---|----------------------------------------------------------------------------------------------------------------------------|
| Fissured         | - | having cracks, and hence a blocky structure.                                                                               |
| Varved           | - | composed of regular alternating layers of silt and clay.                                                                   |
| Stratified       | - | composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.                               |
| Well-Graded      | - | Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution). |
| Uniformly-Graded | - | Predominantly of one grain size (see Grain Size Distribution).                                                             |

The standard terminology to describe the relative strength of cohesionless soils is the compactness condition, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm. An SPT N value of "P" denotes that the split-spoon sampler was pushed 300 mm into the soil without the use of a falling hammer.

| Compactness Condition | 'N' Value | Relative Density % |  |
|-----------------------|-----------|--------------------|--|
| Very Loose            | <4        | <15                |  |
| Loose                 | 4-10      | 15-35              |  |
| Compact               | 10-30     | 35-65              |  |
| Dense                 | 30-50     | 65-85              |  |
| Very Dense            | >50       | >85                |  |
|                       |           |                    |  |

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory shear vane tests, unconfined compression tests, or occasionally by the Standard Penetration Test (SPT). Note that the typical correlations of undrained shear strength to SPT N value (tabulated below) tend to underestimate the consistency for sensitive silty clays, so Paterson reviews the applicable split spoon samples in the laboratory to provide a more representative consistency value based on tactile examination.

| Consistency | Undrained Shear Strength (kPa) | 'N' Value |
|-------------|--------------------------------|-----------|
| Very Soft   | <12                            | <2        |
| Soft        | 12-25                          | 2-4       |
| Firm        | 25-50                          | 4-8       |
| Stiff       | 50-100                         | 8-15      |
| Very Stiff  | 100-200                        | 15-30     |
| Hard        | >200                           | >30       |

### **SYMBOLS AND TERMS (continued)**

### **SOIL DESCRIPTION (continued)**

Cohesive soils can also be classified according to their "sensitivity". The sensitivity,  $S_t$ , is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil. The classes of sensitivity may be defined as follows:

### **ROCK DESCRIPTION**

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NQ or larger size core. However, it can be used on smaller core sizes, such as BQ, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

| RQD %  | ROCK QUALITY                                                 |
|--------|--------------------------------------------------------------|
| 90-100 | Excellent, intact, very sound                                |
| 75-90  | Good, massive, moderately jointed or sound                   |
| 50-75  | Fair, blocky and seamy, fractured                            |
| 25-50  | Poor, shattered and very seamy or blocky, severely fractured |
| 0-25   | Very poor, crushed, very severely fractured                  |
|        |                                                              |

#### **SAMPLE TYPES**

| SS | - | Split spoon sample (obtained in conjunction with the performing of the Standard Penetration Test (SPT))                           |
|----|---|-----------------------------------------------------------------------------------------------------------------------------------|
| TW | - | Thin wall tube or Shelby tube, generally recovered using a piston sampler                                                         |
| G  | - | "Grab" sample from test pit or surface materials                                                                                  |
| AU | - | Auger sample or bulk sample                                                                                                       |
| WS | - | Wash sample                                                                                                                       |
| RC | - | Rock core sample (Core bit size BQ, NQ, HQ, etc.). Rock core samples are obtained with the use of standard diamond drilling bits. |

### **SYMBOLS AND TERMS (continued)**

#### PLASTICITY LIMITS AND GRAIN SIZE DISTRIBUTION

WC% - Natural water content or water content of sample, %

Liquid Limit, % (water content above which soil behaves as a liquid)
 PL - Plastic Limit, % (water content above which soil behaves plastically)

PI - Plasticity Index, % (difference between LL and PL)

Dxx - Grain size at which xx% of the soil, by weight, is of finer grain sizes

These grain size descriptions are not used below 0.075 mm grain size

D10 - Grain size at which 10% of the soil is finer (effective grain size)

D60 - Grain size at which 60% of the soil is finer

Cc - Concavity coefficient =  $(D30)^2 / (D10 \times D60)$ 

Cu - Uniformity coefficient = D60 / D10

Cc and Cu are used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4 Well-graded sands have: 1 < Cc < 3 and Cu > 6

Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded.

Cc and Cu are not applicable for the description of soils with more than 10% silt and clay

(more than 10% finer than 0.075 mm or the #200 sieve)

#### **CONSOLIDATION TEST**

p'o - Present effective overburden pressure at sample depth

p'c - Preconsolidation pressure of (maximum past pressure on) sample

Ccr - Recompression index (in effect at pressures below p'c)
 Cc - Compression index (in effect at pressures above p'c)

OC Ratio Overconsolidaton ratio = p'c / p'o

Void Ratio Initial sample void ratio = volume of voids / volume of solids

Wo - Initial water content (at start of consolidation test)

#### **PERMEABILITY TEST**

Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

### SYMBOLS AND TERMS (continued)

### STRATA PLOT



### MONITORING WELL AND PIEZOMETER CONSTRUCTION





300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

### Certificate of Analysis

### **Paterson Group Consulting Engineers**

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mandy Witteman

Client PO: 32699 Project: PE5397 Custody: 133075

Report Date: 19-Aug-2021 Order Date: 16-Aug-2021

Order #: 2134108

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

 Paracel ID
 Client ID

 2134108-01
 BH1-21-SS3

 2134108-02
 BH2-21-SS2

 2134108-03
 DUP

Approved By:

Mark Froto

Mark Foto, M.Sc. Lab Supervisor



Certificate of Analysis

Client: Paterson Group Consulting Engineers

Report Date: 19-Aug-2021

Order Date: 16-Aug-2021

Client PO: 32699 Project Description: PE5397

# **Analysis Summary Table**

| Analysis          | Method Reference/Description    | Extraction Date | Analysis Date |
|-------------------|---------------------------------|-----------------|---------------|
| BTEX by P&T GC-MS | EPA 8260 - P&T GC-MS            | 17-Aug-21       | 18-Aug-21     |
| PHC F1            | CWS Tier 1 - P&T GC-FID         | 17-Aug-21       | 18-Aug-21     |
| PHCs F2 to F4     | CWS Tier 1 - GC-FID, extraction | 17-Aug-21       | 19-Aug-21     |
| Solids, %         | Gravimetric, calculation        | 17-Aug-21       | 17-Aug-21     |



F4 PHCs (C34-C50)

Order #: 2134108

<6

<6

Report Date: 19-Aug-2021

Order Date: 16-Aug-2021

Project Description: PE5397

\_

Client: Paterson Group Consulting Engineers

Client PO: 32699

BH2-21-SS2 BH1-21-SS3 Client ID: DUP Sample Date: 13-Aug-21 09:00 13-Aug-21 09:00 13-Aug-21 09:00 2134108-01 2134108-02 2134108-03 Sample ID: Soil Soil Soil MDL/Units **Physical Characteristics** 0.1 % by Wt. % Solids 96.7 97.1 97.6 Volatiles 0.02 ug/g dry Benzene < 0.02 < 0.02 < 0.02 0.05 ug/g dry Ethylbenzene < 0.05 < 0.05 < 0.05 0.05 ug/g dry Toluene < 0.05 < 0.05 < 0.05 m,p-Xylenes 0.05 ug/g dry <0.05 <0.05 < 0.05 0.05 ug/g dry o-Xylene <0.05 <0.05 < 0.05 0.05 ug/g dry Xylenes, total < 0.05 < 0.05 < 0.05 Toluene-d8 Surrogate 96.8% 97.0% 90.0% Hydrocarbons 7 ug/g dry F1 PHCs (C6-C10) <7 <7 <7 4 ug/g dry F2 PHCs (C10-C16) <4 <4 <4 8 ug/g dry F3 PHCs (C16-C34) <8 <8 <8

<6

6 ug/g dry



Order #: 2134108

Report Date: 19-Aug-2021

Order Date: 16-Aug-2021

Project Description: PE5397

Client: Paterson Group Consulting Engineers

Client PO: 32699

**Method Quality Control: Blank** 

| Analyte               | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Hydrocarbons          |        |                    |       |                  |      |               |     |              |       |
| F1 PHCs (C6-C10)      | ND     | 7                  | ug/g  |                  |      |               |     |              |       |
| F2 PHCs (C10-C16)     | ND     | 4                  | ug/g  |                  |      |               |     |              |       |
| F3 PHCs (C16-C34)     | ND     | 8                  | ug/g  |                  |      |               |     |              |       |
| F4 PHCs (C34-C50)     | ND     | 6                  | ug/g  |                  |      |               |     |              |       |
| Volatiles             |        |                    |       |                  |      |               |     |              |       |
| Benzene               | ND     | 0.02               | ug/g  |                  |      |               |     |              |       |
| Ethylbenzene          | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Toluene               | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| m,p-Xylenes           | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| o-Xylene              | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Xylenes, total        | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Surrogate: Toluene-d8 | 8.56   |                    | ug/g  |                  | 107  | 50-140        |     |              |       |



Report Date: 19-Aug-2021

Order Date: 16-Aug-2021

Project Description: PE5397

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 32699

**Method Quality Control: Duplicate** 

| Analyte                  | Result | Reporting<br>Limit | Units    | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|--------------------------|--------|--------------------|----------|------------------|------|---------------|-----|--------------|-------|
| Hydrocarbons             |        |                    |          |                  |      |               |     |              |       |
| F1 PHCs (C6-C10)         | ND     | 7                  | ug/g dry | ND               |      |               | NC  | 40           |       |
| F2 PHCs (C10-C16)        | ND     | 4                  | ug/g dry | ND               |      |               | NC  | 30           |       |
| F3 PHCs (C16-C34)        | ND     | 8                  | ug/g dry | ND               |      |               | NC  | 30           |       |
| F4 PHCs (C34-C50)        | ND     | 6                  | ug/g dry | ND               |      |               | NC  | 30           |       |
| Physical Characteristics |        |                    |          |                  |      |               |     |              |       |
| % Solids                 | 96.8   | 0.1                | % by Wt. | 96.7             |      |               | 0.1 | 25           |       |
| Volatiles                |        |                    |          |                  |      |               |     |              |       |
| Benzene                  | ND     | 0.02               | ug/g dry | ND               |      |               | NC  | 50           |       |
| Ethylbenzene             | ND     | 0.05               | ug/g dry | ND               |      |               | NC  | 50           |       |
| Toluene                  | ND     | 0.05               | ug/g dry | ND               |      |               | NC  | 50           |       |
| m,p-Xylenes              | ND     | 0.05               | ug/g dry | ND               |      |               | NC  | 50           |       |
| o-Xylene                 | ND     | 0.05               | ug/g dry | ND               |      |               | NC  | 50           |       |
| Surrogate: Toluene-d8    | 8.96   |                    | ug/g dry |                  | 107  | 50-140        |     |              |       |



Report Date: 19-Aug-2021 Order Date: 16-Aug-2021

Project Description: PE5397

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 32699

**Method Quality Control: Spike** 

| method educity control. opine |        |                    |       |                  |      |               |     |              |       |
|-------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Analyte                       | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
| Hydrocarbons                  |        |                    |       |                  |      |               |     |              |       |
| F1 PHCs (C6-C10)              | 185    | 7                  | ug/g  | ND               | 92.7 | 80-120        |     |              |       |
| F2 PHCs (C10-C16)             | 85     | 4                  | ug/g  | ND               | 106  | 80-120        |     |              |       |
| F3 PHCs (C16-C34)             | 224    | 8                  | ug/g  | ND               | 114  | 80-120        |     |              |       |
| F4 PHCs (C34-C50)             | 144    | 6                  | ug/g  | ND               | 116  | 80-120        |     |              |       |
| Volatiles                     |        |                    |       |                  |      |               |     |              |       |
| Benzene                       | 4.15   | 0.02               | ug/g  | ND               | 104  | 60-130        |     |              |       |
| Ethylbenzene                  | 4.49   | 0.05               | ug/g  | ND               | 112  | 60-130        |     |              |       |
| Toluene                       | 4.59   | 0.05               | ug/g  | ND               | 115  | 60-130        |     |              |       |
| m,p-Xylenes                   | 9.49   | 0.05               | ug/g  | ND               | 119  | 60-130        |     |              |       |
| o-Xylene                      | 4.42   | 0.05               | ug/g  | ND               | 110  | 60-130        |     |              |       |
| Surrogate: Toluene-d8         | 9.77   |                    | ug/g  |                  | 122  | 50-140        |     |              |       |
|                               |        |                    |       |                  |      |               |     |              |       |



Report Date: 19-Aug-2021

 Client: Paterson Group Consulting Engineers
 Order Date: 16-Aug-2021

 Client PO: 32699
 Project Description: PE5397

# **Qualifier Notes:**

None

Certificate of Analysis

### **Sample Data Revisions**

None

# **Work Order Revisions / Comments:**

None

### **Other Report Notes:**

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

### CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Page 7 of 7



Paracel ID: 2134108



Paracel Order Number (Lab Use Only)

2134108

d.

om

Chain Of Custody
(Lab Use Only)

Nº 133075

| Client Name:                    | 1                        |        | Project | Ref:        | PE5397               |                              |            |          |      |        |          |        |       | Pag   | е _  | of _  |          |          |
|---------------------------------|--------------------------|--------|---------|-------------|----------------------|------------------------------|------------|----------|------|--------|----------|--------|-------|-------|------|-------|----------|----------|
| VATERSON GR                     |                          | 1      | Quote ! |             |                      | / / 1                        | 1          | F        |      |        |          |        | Ţ     | urnar | ound | Time  |          |          |
| Address: MANDY WIT              | TEMAN                    |        | PO #:   | 2           | 2699                 | TOB                          | 0.00       |          |      | A. 1   | n.       |        | 1 day |       |      |       | □ 3 da   | У        |
| 154 COLONNAD                    | 6 60                     |        | E-mail: | _           |                      | 170                          |            | 1        | /1   |        |          | 0      | 2 day |       |      | 5     | Reg      | ular     |
| Y                               |                          |        | 1       | ٧W          | I THE MAN            | PARRION                      | GRE        | ٦٠ ١٧-   | A    |        | April 18 | Date   | Requi | red:  |      |       | And<br>E |          |
| Telephone:                      |                          |        | 61.3    | 78/15/5     |                      |                              |            | 7,100    |      |        | V        |        |       |       |      | 078   |          | - 68     |
| REG 153/04 REG 406/19           | Other Regulation         |        |         |             | (Soil/Sed.) GW (Gr   |                              |            |          |      |        | Red      | quirec | Anal  | ysis  |      |       |          |          |
| ☐ Table 1 ☐ Res/Park ☐ Med/Fine | ☐ REG 558 ☐ PWQO         | 7, 5   | SW (Sur |             | Vater) SS (Storm/Sai |                              |            |          |      |        |          |        | _     |       |      |       |          | - 32     |
| ☐ Table 2 ☐ Ind/Comm ☐ Coarse   | □ CCME □ MISA            |        |         | <b>P</b> (P | aint) A (Air) O (Oth | ier)                         | Ě          |          | 1    |        |          |        |       |       |      |       |          |          |
| ☐ Table 3 ☐ Agri/Other          | □ SU - Sani □ SU - Storm |        |         | ers         | 300 at 201 at 2018   |                              | -F4+BTEX   |          | . (  | ICP    | 1. ( )   |        |       |       |      |       |          |          |
| ☑ Table →                       | Mun:                     |        | e .     | Containers  | Sample               | Taken                        | 1          | ji -0    | 4 }  | ğ      | je (,    | ,5 .   | (S)   | Ja ." | 1.0  | be s  | is .     |          |
| For RSC: Yes No                 | ☐ Other:                 | Matrix | Volume  | of Co       |                      | Т                            | PHCs       | VOCs     | PAHS | Metals | ΒĤ       | C Z    | (HWS) |       |      |       |          |          |
| Sample ID/Location              | on Name                  | Σ      | Air     | #           | Date                 | Time                         | , <u>a</u> | - S      | ů.   | Σ      | I        | 0      | m .   | J. 11 | is   | ditt. | 5        | $\dashv$ |
| 1 BH1-21 - SS                   | 3                        | S      |         | 2           | Aug 13/202           | 1                            | X          |          | ļ    |        |          | _      | -     | -     | 15.1 |       | 71       | -        |
| 2 BH2-21-SS 2                   |                          | S      |         | 2           |                      |                              | ×          |          | ,    |        |          |        |       | 7     |      |       | 110      | _        |
|                                 |                          | S      |         | 2           | -                    | THE PERSON NAMED IN COLUMN 1 | X          |          |      |        |          |        |       | 1     | -    | 1     |          |          |
| h. 70                           |                          | -      |         |             | 7 - 7 - 7 - 7        | 7                            |            | l. tatte |      |        |          | i.     |       |       |      |       |          |          |
| 4 ,                             | - 4D - 1 - 18 - 8        | -      | 1 1     |             | 7/807 15             |                              |            |          |      |        |          |        |       |       |      |       |          |          |
| 5                               |                          | +-     | +-      | +           |                      |                              |            |          |      |        |          |        |       |       |      |       |          |          |
| 6                               |                          | -      | +-      | -           |                      |                              | +          |          |      |        |          |        |       |       |      |       |          |          |
| 7                               |                          |        |         |             |                      |                              |            |          |      |        |          |        | -     | -     | -    | -     | -        | -        |

Relinquished By (Sign):

Received By Driver/Depot:

Received By Driver/Depo

Chain of Custody (Env) xlsx

9 10 Comments:

Revision 4.0



300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

# Certificate of Analysis

# **Paterson Group Consulting Engineers**

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mandy Witteman

Client PO: 32704 Project: PE5397 Custody: 133080

Report Date: 23-Aug-2021 Order Date: 17-Aug-2021

Order #: 2134259

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

| Paracel ID | Client ID  |
|------------|------------|
| 2134259-01 | BH3-21-SS5 |
| 2134259-02 | BH4-21-SS2 |
| 2134259-03 | BH4-21-SS4 |
| 2134259-04 | BH4-21-SS5 |
| 2134259-05 | BH5-21-SS2 |
| 2134259-06 | BH5-21-SS6 |

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor



Order #: 2134259

Report Date: 23-Aug-2021 Order Date: 17-Aug-2021

**Project Description: PE5397** 

Client: Paterson Group Consulting Engineers

Client PO: 32704

# **Analysis Summary Table**

| Analysis                        | Method Reference/Description    | Extraction Date | Analysis Date |
|---------------------------------|---------------------------------|-----------------|---------------|
| BTEX by P&T GC-MS               | EPA 8260 - P&T GC-MS            | 18-Aug-21       | 18-Aug-21     |
| PHC F1                          | CWS Tier 1 - P&T GC-FID         | 18-Aug-21       | 18-Aug-21     |
| PHCs F2 to F4                   | CWS Tier 1 - GC-FID, extraction | 18-Aug-21       | 18-Aug-21     |
| REG 153: Metals by ICP/MS, soil | EPA 6020 - Digestion - ICP-MS   | 19-Aug-21       | 19-Aug-21     |
| REG 153: PAHs by GC-MS          | EPA 8270 - GC-MS, extraction    | 18-Aug-21       | 23-Aug-21     |
| Solids, %                       | Gravimetric, calculation        | 18-Aug-21       | 18-Aug-21     |



Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date: 17-Aug-2021

Report Date: 23-Aug-2021

Client PO: 32704 **Project Description: PE5397** 

|                          | Client ID:<br>Sample Date:<br>Sample ID:<br>MDL/Units | BH3-21-SS5<br>13-Aug-21 12:00<br>2134259-01<br>Soil | BH4-21-SS2<br>16-Aug-21 12:00<br>2134259-02<br>Soil | BH4-21-SS4<br>16-Aug-21 12:00<br>2134259-03<br>Soil | BH4-21-SS5<br>16-Aug-21 12:00<br>2134259-04<br>Soil |
|--------------------------|-------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| Physical Characteristics | MDE/OIIItS                                            |                                                     |                                                     |                                                     | 00                                                  |
| % Solids                 | 0.1 % by Wt.                                          | 95.1                                                | 87.7                                                | 72.6                                                | 73.5                                                |
| Metals                   | +                                                     |                                                     | 1                                                   |                                                     |                                                     |
| Antimony                 | 1.0 ug/g dry                                          | -                                                   | <1.0                                                | <1.0                                                | <1.0                                                |
| Arsenic                  | 1.0 ug/g dry                                          | -                                                   | 2.7                                                 | 2.7                                                 | 3.2                                                 |
| Barium                   | 1.0 ug/g dry                                          | -                                                   | 100                                                 | 159                                                 | 163                                                 |
| Beryllium                | 0.5 ug/g dry                                          | -                                                   | <0.5                                                | 0.6                                                 | 0.6                                                 |
| Boron                    | 5.0 ug/g dry                                          | -                                                   | <5.0                                                | <5.0                                                | 5.5                                                 |
| Cadmium                  | 0.5 ug/g dry                                          | _                                                   | <0.5                                                | <0.5                                                | <0.5                                                |
| Chromium                 | 5.0 ug/g dry                                          | -                                                   | 19.9                                                | 59.8                                                | 47.3                                                |
| Cobalt                   | 1.0 ug/g dry                                          | -                                                   | 6.0                                                 | 12.4                                                | 11.0                                                |
| Copper                   | 5.0 ug/g dry                                          | _                                                   | 14.9                                                | 27.4                                                | 29.1                                                |
| Lead                     | 1.0 ug/g dry                                          | -                                                   | 27.0                                                | 8.8                                                 | 21.2                                                |
| Molybdenum               | 1.0 ug/g dry                                          | -                                                   | <1.0                                                | <1.0                                                | <1.0                                                |
| Nickel                   | 5.0 ug/g dry                                          | _                                                   | 13.9                                                | 33.3                                                | 27.9                                                |
| Selenium                 | 1.0 ug/g dry                                          | -                                                   | <1.0                                                | <1.0                                                | <1.0                                                |
| Silver                   | 0.3 ug/g dry                                          | -                                                   | <0.3                                                | <0.3                                                | <0.3                                                |
| Thallium                 | 1.0 ug/g dry                                          | -                                                   | <1.0                                                | <1.0                                                | <1.0                                                |
| Uranium                  | 1.0 ug/g dry                                          | -                                                   | <1.0                                                | <1.0                                                | <1.0                                                |
| Vanadium                 | 10.0 ug/g dry                                         | -                                                   | 28.3                                                | 57.4                                                | 52.3                                                |
| Zinc                     | 20.0 ug/g dry                                         | -                                                   | 55.5                                                | 67.2                                                | 73.1                                                |
| Volatiles                | -                                                     |                                                     |                                                     |                                                     |                                                     |
| Benzene                  | 0.02 ug/g dry                                         | <0.02                                               | -                                                   | -                                                   | -                                                   |
| Ethylbenzene             | 0.05 ug/g dry                                         | <0.05                                               | -                                                   | -                                                   | -                                                   |
| Toluene                  | 0.05 ug/g dry                                         | <0.05                                               | -                                                   | -                                                   | -                                                   |
| m,p-Xylenes              | 0.05 ug/g dry                                         | <0.05                                               | -                                                   | -                                                   | -                                                   |
| o-Xylene                 | 0.05 ug/g dry                                         | <0.05                                               | -                                                   | -                                                   | -                                                   |
| Xylenes, total           | 0.05 ug/g dry                                         | <0.05                                               | -                                                   | -                                                   | -                                                   |
| Toluene-d8               | Surrogate                                             | 109%                                                | -                                                   | -                                                   | -                                                   |
| Hydrocarbons             |                                                       |                                                     | •                                                   |                                                     |                                                     |
| F1 PHCs (C6-C10)         | 7 ug/g dry                                            | <7                                                  | -                                                   | -                                                   | -                                                   |
| F2 PHCs (C10-C16)        | 4 ug/g dry                                            | <4                                                  | -                                                   | -                                                   | -                                                   |
| F3 PHCs (C16-C34)        | 8 ug/g dry                                            | <8                                                  | -                                                   | -                                                   | -                                                   |
| F4 PHCs (C34-C50)        | 6 ug/g dry                                            | <6                                                  | -                                                   | -                                                   | -                                                   |
| Semi-Volatiles           |                                                       |                                                     | T                                                   |                                                     | <u> </u>                                            |
| Acenaphthene             | 0.02 ug/g dry                                         | -                                                   | <0.02                                               | <0.02                                               | 0.05                                                |



Client: Paterson Group Consulting Engineers

Certificate of Analysis

Order #: 2134259

Report Date: 23-Aug-2021

Order Date: 17-Aug-2021

Client PO: 32704 Project Description: PE5397

|                          | Client ID:<br>Sample Date:<br>Sample ID: | BH3-21-SS5<br>13-Aug-21 12:00<br>2134259-01 | BH4-21-SS2<br>16-Aug-21 12:00<br>2134259-02 | BH4-21-SS4<br>16-Aug-21 12:00<br>2134259-03 | BH4-21-SS5<br>16-Aug-21 12:00<br>2134259-04 |
|--------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
|                          | MDL/Units                                | Soil                                        | Soil                                        | Soil                                        | Soil                                        |
| Acenaphthylene           | 0.02 ug/g dry                            | -                                           | 0.09                                        | <0.02                                       | <0.02                                       |
| Anthracene               | 0.02 ug/g dry                            | -                                           | 0.09                                        | <0.02                                       | 0.02                                        |
| Benzo [a] anthracene     | 0.02 ug/g dry                            | -                                           | 0.16                                        | <0.02                                       | 0.03                                        |
| Benzo [a] pyrene         | 0.02 ug/g dry                            | -                                           | 0.19                                        | 0.02                                        | 0.03                                        |
| Benzo [b] fluoranthene   | 0.02 ug/g dry                            | -                                           | 0.21                                        | <0.02                                       | 0.04                                        |
| Benzo [g,h,i] perylene   | 0.02 ug/g dry                            | -                                           | 0.18                                        | 0.03                                        | 0.02                                        |
| Benzo [k] fluoranthene   | 0.02 ug/g dry                            | -                                           | 0.10                                        | <0.02                                       | <0.02                                       |
| Chrysene                 | 0.02 ug/g dry                            | -                                           | 0.15                                        | 0.02                                        | 0.03                                        |
| Dibenzo [a,h] anthracene | 0.02 ug/g dry                            | -                                           | 0.04                                        | <0.02                                       | <0.02                                       |
| Fluoranthene             | 0.02 ug/g dry                            | -                                           | 0.26                                        | 0.03                                        | 0.06                                        |
| Fluorene                 | 0.02 ug/g dry                            | -                                           | <0.02                                       | <0.02                                       | 0.05                                        |
| Indeno [1,2,3-cd] pyrene | 0.02 ug/g dry                            | -                                           | 0.10                                        | <0.02                                       | <0.02                                       |
| 1-Methylnaphthalene      | 0.02 ug/g dry                            | -                                           | <0.02                                       | <0.02                                       | <0.02                                       |
| 2-Methylnaphthalene      | 0.02 ug/g dry                            | -                                           | 0.02                                        | <0.02                                       | <0.02                                       |
| Methylnaphthalene (1&2)  | 0.04 ug/g dry                            | -                                           | 0.04                                        | <0.04                                       | <0.04                                       |
| Naphthalene              | 0.01 ug/g dry                            | -                                           | 0.02                                        | <0.01                                       | 0.01                                        |
| Phenanthrene             | 0.02 ug/g dry                            | -                                           | 0.13                                        | <0.02                                       | 0.08                                        |
| Pyrene                   | 0.02 ug/g dry                            | -                                           | 0.25                                        | 0.03                                        | 0.05                                        |
| 2-Fluorobiphenyl         | Surrogate                                | -                                           | 107%                                        | 90.6%                                       | 97.2%                                       |
| Terphenyl-d14            | Surrogate                                | -                                           | 116%                                        | 101%                                        | 102%                                        |



Order #: 2134259

Report Date: 23-Aug-2021 Order Date: 17-Aug-2021

Client: Paterson Group Consulting Engineers
Client PO: 32704

Project Description: PE5397

|                          | Client ID:<br>Sample Date:<br>Sample ID:<br>MDL/Units | BH5-21-SS2<br>16-Aug-21 12:00<br>2134259-05<br>Soil | BH5-21-SS6<br>16-Aug-21 12:00<br>2134259-06<br>Soil | -<br>-<br>-<br>- | -<br>-<br>- |
|--------------------------|-------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|------------------|-------------|
| Physical Characteristics |                                                       |                                                     |                                                     |                  |             |
| % Solids                 | 0.1 % by Wt.                                          | 84.4                                                | 87.9                                                | -                | -           |
| Metals                   | · · · · · · · · · · · · · · · · · · ·                 |                                                     | 1                                                   |                  | ·<br>       |
| Antimony                 | 1.0 ug/g dry                                          | <1.0                                                | <1.0                                                | -                | -           |
| Arsenic                  | 1.0 ug/g dry                                          | 3.2                                                 | 2.2                                                 | -                | -           |
| Barium                   | 1.0 ug/g dry                                          | 110                                                 | 69.8                                                | -                | -           |
| Beryllium                | 0.5 ug/g dry                                          | <0.5                                                | <0.5                                                | -                | -           |
| Boron                    | 5.0 ug/g dry                                          | <5.0                                                | 6.6                                                 | -                | -           |
| Cadmium                  | 0.5 ug/g dry                                          | <0.5                                                | <0.5                                                | -                | -           |
| Chromium                 | 5.0 ug/g dry                                          | 29.9                                                | 16.2                                                | -                | -           |
| Cobalt                   | 1.0 ug/g dry                                          | 7.8                                                 | 6.5                                                 | -                | -           |
| Copper                   | 5.0 ug/g dry                                          | 24.5                                                | 13.6                                                | -                | -           |
| Lead                     | 1.0 ug/g dry                                          | 62.0                                                | 11.7                                                | -                | -           |
| Molybdenum               | 1.0 ug/g dry                                          | <1.0                                                | <1.0                                                | -                | -           |
| Nickel                   | 5.0 ug/g dry                                          | 18.4                                                | 11.8                                                | -                | -           |
| Selenium                 | 1.0 ug/g dry                                          | <1.0                                                | <1.0                                                | -                | -           |
| Silver                   | 0.3 ug/g dry                                          | <0.3                                                | <0.3                                                | -                | -           |
| Thallium                 | 1.0 ug/g dry                                          | <1.0                                                | <1.0                                                | -                | -           |
| Uranium                  | 1.0 ug/g dry                                          | <1.0                                                | <1.0                                                | -                | -           |
| Vanadium                 | 10.0 ug/g dry                                         | 35.5                                                | 26.1                                                | -                | -           |
| Zinc                     | 20.0 ug/g dry                                         | 73.5                                                | 29.0                                                | -                | -           |
| Semi-Volatiles           |                                                       |                                                     |                                                     |                  |             |
| Acenaphthene             | 0.02 ug/g dry                                         | 0.02                                                | <0.02                                               | -                | -           |
| Acenaphthylene           | 0.02 ug/g dry                                         | 0.02                                                | <0.02                                               | -                | -           |
| Anthracene               | 0.02 ug/g dry                                         | 0.06                                                | <0.02                                               | -                | -           |
| Benzo [a] anthracene     | 0.02 ug/g dry                                         | 0.18                                                | 0.07                                                | -                | -           |
| Benzo [a] pyrene         | 0.02 ug/g dry                                         | 0.17                                                | 0.07                                                | -                | -           |
| Benzo [b] fluoranthene   | 0.02 ug/g dry                                         | 0.20                                                | 0.08                                                | -                | -           |
| Benzo [g,h,i] perylene   | 0.02 ug/g dry                                         | 0.14                                                | 0.05                                                | -                | -           |
| Benzo [k] fluoranthene   | 0.02 ug/g dry                                         | 0.11                                                | 0.03                                                | -                | -           |
| Chrysene                 | 0.02 ug/g dry                                         | 0.21                                                | 0.09                                                | -                | -           |
| Dibenzo [a,h] anthracene | 0.02 ug/g dry                                         | 0.03                                                | <0.02                                               | -                | -           |
| Fluoranthene             | 0.02 ug/g dry                                         | 0.37                                                | 0.16                                                | -                | -           |
| Fluorene                 | 0.02 ug/g dry                                         | <0.02                                               | <0.02                                               | -                | -           |
| Indeno [1,2,3-cd] pyrene | 0.02 ug/g dry                                         | 0.12                                                | 0.04                                                | -                | -           |
| 1-Methylnaphthalene      | 0.02 ug/g dry                                         | <0.02                                               | <0.02                                               | -                | -           |



Client: Paterson Group Consulting Engineers

Certificate of Analysis

Order #: 2134259

Report Date: 23-Aug-2021

Order Date: 17-Aug-2021

Client PO: 32704 Project Description: PE5397

|                         | Client ID:    | BH5-21-SS2      | BH5-21-SS6      | - | - |
|-------------------------|---------------|-----------------|-----------------|---|---|
|                         | Sample Date:  | 16-Aug-21 12:00 | 16-Aug-21 12:00 | - | - |
|                         | Sample ID:    | 2134259-05      | 2134259-06      | - | - |
|                         | MDL/Units     | Soil            | Soil            | - | - |
| 2-Methylnaphthalene     | 0.02 ug/g dry | 0.02            | <0.02           | - | - |
| Methylnaphthalene (1&2) | 0.04 ug/g dry | 0.04            | <0.04           | - | - |
| Naphthalene             | 0.01 ug/g dry | 0.02            | 0.01            | - | - |
| Phenanthrene            | 0.02 ug/g dry | 0.25            | 0.15            | - | - |
| Pyrene                  | 0.02 ug/g dry | 0.30            | 0.13            | - | - |
| 2-Fluorobiphenyl        | Surrogate     | 86.8%           | 86.3%           | - | - |
| Terphenyl-d14           | Surrogate     | 105%            | 113%            | - | - |



Report Date: 23-Aug-2021

Order Date: 17-Aug-2021 **Project Description: PE5397** 

Certificate of Analysis

Client: Paterson Group Consulting Engineers Client PO: 32704

|                             | Reporting |       |              | Source |      | %REC   |     | RPD   |       |
|-----------------------------|-----------|-------|--------------|--------|------|--------|-----|-------|-------|
| Analyte                     | Result    | Limit | Units        | Result | %REC | Limit  | RPD | Limit | Notes |
| lydrocarbons                |           |       |              |        |      |        |     |       |       |
| F1 PHCs (C6-C10)            | ND        | 7     | ug/g         |        |      |        |     |       |       |
| F2 PHCs (C10-C16)           | ND        | 4     | ug/g         |        |      |        |     |       |       |
| F3 PHCs (C16-C34)           | ND        | 8     | ug/g         |        |      |        |     |       |       |
| F4 PHCs (C34-C50)           | ND        | 6     | ug/g         |        |      |        |     |       |       |
| Metals                      |           |       |              |        |      |        |     |       |       |
| Antimony                    | ND        | 1.0   | ug/g         |        |      |        |     |       |       |
| Arsenic                     | ND        | 1.0   | ug/g         |        |      |        |     |       |       |
| Barium                      | ND        | 1.0   | ug/g         |        |      |        |     |       |       |
| Beryllium                   | ND        | 0.5   | ug/g         |        |      |        |     |       |       |
| Boron                       | ND        | 5.0   | ug/g         |        |      |        |     |       |       |
| Cadmium                     | ND        | 0.5   | ug/g         |        |      |        |     |       |       |
| Chromium                    | ND        | 5.0   | ug/g         |        |      |        |     |       |       |
| Cobalt                      | ND        | 1.0   | ug/g         |        |      |        |     |       |       |
| Copper                      | ND        | 5.0   | ug/g         |        |      |        |     |       |       |
| Lead                        | ND        | 1.0   | ug/g         |        |      |        |     |       |       |
| Molybdenum                  | ND        | 1.0   | ug/g         |        |      |        |     |       |       |
| Nickel                      | ND        | 5.0   | ug/g         |        |      |        |     |       |       |
| Selenium                    | ND        | 1.0   | ug/g         |        |      |        |     |       |       |
| Silver                      | ND        | 0.3   | ug/g         |        |      |        |     |       |       |
| Thallium                    | ND        | 1.0   | ug/g         |        |      |        |     |       |       |
| Uranium                     | ND        | 1.0   | ug/g         |        |      |        |     |       |       |
| Vanadium                    | ND        | 10.0  | ug/g         |        |      |        |     |       |       |
| Zinc                        | ND        | 20.0  | ug/g         |        |      |        |     |       |       |
| Semi-Volatiles              | 110       | _5.0  | ~⊒' ਬ        |        |      |        |     |       |       |
| Acenaphthene                | ND        | 0.02  | ug/g         |        |      |        |     |       |       |
| Acenaphthylene              | ND        | 0.02  | ug/g         |        |      |        |     |       |       |
| Anthracene                  | ND        | 0.02  | ug/g         |        |      |        |     |       |       |
| Benzo [a] anthracene        | ND        | 0.02  | ug/g         |        |      |        |     |       |       |
| Benzo [a] pyrene            | ND        | 0.02  | ug/g         |        |      |        |     |       |       |
| Benzo [b] fluoranthene      | ND        | 0.02  | ug/g         |        |      |        |     |       |       |
| Benzo [g,h,i] perylene      | ND        | 0.02  | ug/g         |        |      |        |     |       |       |
| Benzo [k] fluoranthene      | ND        | 0.02  | ug/g         |        |      |        |     |       |       |
| Chrysene                    | ND        | 0.02  | ug/g         |        |      |        |     |       |       |
| Dibenzo [a,h] anthracene    | ND        | 0.02  | ug/g         |        |      |        |     |       |       |
| Fluoranthene                | ND<br>ND  | 0.02  | ug/g<br>ug/g |        |      |        |     |       |       |
| Fluorene                    | ND<br>ND  | 0.02  |              |        |      |        |     |       |       |
|                             | ND<br>ND  | 0.02  | ug/g         |        |      |        |     |       |       |
| Indeno [1,2,3-cd] pyrene    | ND<br>ND  | 0.02  | ug/g         |        |      |        |     |       |       |
| 1-Methylnaphthalene         | ND<br>ND  |       | ug/g         |        |      |        |     |       |       |
| 2-Methylnaphthalene         |           | 0.02  | ug/g         |        |      |        |     |       |       |
| Methylnaphthalene (1&2)     | ND<br>ND  | 0.04  | ug/g         |        |      |        |     |       |       |
| Naphthalene                 | ND        | 0.01  | ug/g         |        |      |        |     |       |       |
| Phenanthrene                | ND        | 0.02  | ug/g         |        |      |        |     |       |       |
| Pyrene                      | ND        | 0.02  | ug/g         |        | 400  | 50 440 |     |       |       |
| Surrogate: 2-Fluorobiphenyl | 1.38      |       | ug/g         |        | 103  | 50-140 |     |       |       |
| Surrogate: Terphenyl-d14    | 1.64      |       | ug/g         |        | 123  | 50-140 |     |       |       |
| olatiles<br>-               |           |       |              |        |      |        |     |       |       |
| Benzene                     | ND        | 0.02  | ug/g         |        |      |        |     |       |       |
| Ethylbenzene                | ND        | 0.05  | ug/g         |        |      |        |     |       |       |
| Toluene                     | ND        | 0.05  | ug/g         |        |      |        |     |       |       |
| m,p-Xylenes                 | ND        | 0.05  | ug/g         |        |      |        |     |       |       |
| o-Xylene                    | ND        | 0.05  | ug/g         |        |      |        |     |       |       |
| Xylenes, total              | ND        | 0.05  | ug/g         |        |      |        |     |       |       |
| Surrogate: Toluene-d8       | 8.45      |       | ug/g         |        | 106  | 50-140 |     |       |       |

Page 7 of 11



Order #: 2134259

Report Date: 23-Aug-2021

Order Date: 17-Aug-2021
Project Description: PE5397

Client: Paterson Group Consulting Engineers

Client PO: 32704

**Method Quality Control: Duplicate** 

|                          |        | Reporting |          | Source |      | %REC   |      | RPD   |       |
|--------------------------|--------|-----------|----------|--------|------|--------|------|-------|-------|
| Analyte                  | Result | Limit     | Units    | Result | %REC | Limit  | RPD  | Limit | Notes |
| Hydrocarbons             |        |           |          |        |      |        |      |       |       |
| F1 PHCs (C6-C10)         | ND     | 7         | ug/g dry | ND     |      |        | NC   | 40    |       |
| F2 PHCs (C10-C16)        | ND     | 4         | ug/g dry | ND     |      |        | NC   | 30    |       |
| F3 PHCs (C16-C34)        | ND     | 8         | ug/g dry | ND     |      |        | NC   | 30    |       |
| F4 PHCs (C34-C50)        | ND     | 6         | ug/g dry | ND     |      |        | NC   | 30    |       |
| Metals                   |        |           |          |        |      |        |      |       |       |
| Antimony                 | ND     | 1.0       | ug/g dry | ND     |      |        | NC   | 30    |       |
| Arsenic                  | 1.5    | 1.0       | ug/g dry | 1.5    |      |        | 0.2  | 30    |       |
| Barium                   | 91.2   | 1.0       | ug/g dry | 89.7   |      |        | 1.6  | 30    |       |
| Beryllium                | ND     | 0.5       | ug/g dry | ND     |      |        | NC   | 30    |       |
| Boron                    | ND     | 5.0       | ug/g dry | ND     |      |        | NC   | 30    |       |
| Cadmium                  | ND     | 0.5       | ug/g dry | ND     |      |        | NC   | 30    |       |
| Chromium                 | 8.9    | 5.0       | ug/g dry | 9.1    |      |        | 1.8  | 30    |       |
| Cobalt                   | 3.8    | 1.0       | ug/g dry | 3.9    |      |        | 0.7  | 30    |       |
| Copper                   | 6.4    | 5.0       | ug/g dry | 7.2    |      |        | 12.2 | 30    |       |
| Lead                     | 5.1    | 1.0       | ug/g dry | 4.9    |      |        | 5.2  | 30    |       |
| Molybdenum               | ND     | 1.0       | ug/g dry | ND     |      |        | NC   | 30    |       |
| Nickel                   | 7.5    | 5.0       | ug/g dry | 7.8    |      |        | 4.4  | 30    |       |
| Selenium                 | ND     | 1.0       | ug/g dry | ND     |      |        | NC   | 30    |       |
| Silver                   | ND     | 0.3       | ug/g dry | ND     |      |        | NC   | 30    |       |
| Thallium                 | ND     | 1.0       | ug/g dry | ND     |      |        | NC   | 30    |       |
| Uranium                  | 3.1    | 1.0       | ug/g dry | ND     |      |        | NC   | 30    |       |
| Vanadium                 | 19.2   | 10.0      | ug/g dry | 19.8   |      |        | 2.9  | 30    |       |
| Zinc                     | 28.7   | 20.0      | ug/g dry | ND     |      |        | NC   | 30    |       |
| Physical Characteristics |        |           |          |        |      |        |      |       |       |
| % Solids                 | 92.2   | 0.1       | % by Wt. | 92.0   |      |        | 0.2  | 25    |       |
| Volatiles                |        |           |          |        |      |        |      |       |       |
| Benzene                  | ND     | 0.02      | ug/g dry | ND     |      |        | NC   | 50    |       |
| Ethylbenzene             | ND     | 0.05      | ug/g dry | ND     |      |        | NC   | 50    |       |
| Toluene                  | ND     | 0.05      | ug/g dry | ND     |      |        | NC   | 50    |       |
| m,p-Xylenes              | ND     | 0.05      | ug/g dry | ND     |      |        | NC   | 50    |       |
| o-Xylene                 | ND     | 0.05      | ug/g dry | ND     |      |        | NC   | 50    |       |
| Surrogate: Toluene-d8    | 13.9   |           | ug/g dry |        | 121  | 50-140 |      |       |       |



Client PO: 32704

Order #: 2134259

Report Date: 23-Aug-2021 Order Date: 17-Aug-2021

**Project Description: PE5397** 

Certificate of Analysis Client: Paterson Group Consulting Engineers

**Method Quality Control: Spike** 

RPD Reporting Source %REC RPD Result Units %REC Notes Analyte Limit Limit I imit Result Hydrocarbons F1 PHCs (C6-C10) 200 7 ND 100 80-120 ug/g F2 PHCs (C10-C16) 105 4 ND 121 60-140 ug/g 8 F3 PHCs (C16-C34) 292 ND 60-140 137 ug/g F4 PHCs (C34-C50) 166 6 ug/g ND 123 60-140 Metals Antimony 52.5 1.0 ug/g ND 105 70-130 56.7 ND 112 70-130 Arsenic 1.0 ug/g 103 Barium 87.2 1.0 ug/g 35.9 70-130 Beryllium 53.3 0.5 ND 107 70-130 ug/g Boron 49.2 5.0 ug/g ND 96.2 70-130 Cadmium 51.4 0.5 ua/a ND 103 70-130 Chromium 59.3 5.0 ug/g ND 111 70-130 Cobalt 56.5 1.0 ug/g 1.5 110 70-130 Copper 56.1 5.0 ug/g ND 106 70-130 51.0 1.0 1.9 98.2 70-130 Lead ug/g Molybdenum 55.9 1.0 ug/g ND 111 70-130 56.9 5.0 ND 108 70-130 Nickel ug/g ND Selenium 518 10 ug/g 103 70-130 Silver 51.0 0.3 ug/g ND 102 70-130 Thallium 50.5 1.0 ug/g ND 101 70-130 Uranium 1.0 ND 105 70-130 53.0 ug/g Vanadium 64.8 10.0 ND 114 70-130 ug/g Zinc 58.6 20.0 ND 102 70-130 ug/g Semi-Volatiles Acenaphthene 0.167 0.02 ug/g ND 100 50-140 Acenaphthylene 0.134 0.02 ug/g ND 80.4 50-140 0.02 108 Anthracene 0.180 ND 50-140 ug/g Benzo [a] anthracene 0.182 0.02 ug/g ND 109 50-140 Benzo [b] fluoranthene 0.204 0.02 ug/g ND 123 50-140 0.206 0.02 ND 124 50-140 Benzo [g,h,i] perylene ug/g ND Benzo [k] fluoranthene 0.178 0.02 ug/g 107 50-140 0.02 ND 50-140 0.184 111 Chrysene ug/g 0.201 0.02 ND 121 50-140 Dibenzo [a,h] anthracene ug/g Fluoranthene 0.185 0.02 ug/g ND 111 50-140 Fluorene 0.182 0.02 ug/g ND 109 50-140 Indeno [1,2,3-cd] pyrene 0.164 0.02 ug/g ND 98.7 50-140 1-Methylnaphthalene 0.162 0.02 ND 97.4 50-140 ug/g 2-Methylnaphthalene 0.177 0.02 ND 106 50-140 ug/g Naphthalene 0.01 ND 95.9 50-140 0.160 ug/g Phenanthrene 0.182 0.02 ND 109 50-140 ug/g 0.188 0.02 ND 113 50-140 ug/g Surrogate: 2-Fluorobiphenyl 1.32 99.0 50-140 ug/g 50-140 Surrogate: Terphenyl-d14 1.83 ug/g 137 **Volatiles** Renzene 0.02 ND 96.7 60-130 3.87 ug/g Ethylbenzene 3.74 0.05 ND 93 6 60-130 ug/g Toluene 4.17 0.05 ug/g ND 104 60-130 m,p-Xylenes 7.57 0.05 ND 94.7 60-130 ug/g



Report Date: 23-Aug-2021

Order Date: 17-Aug-2021
Project Description: PE5397

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 32704

**Method Quality Control: Spike** 

| memora quanty control opino |        |                    |       |                  |      |               |     |              |       |
|-----------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Analyte                     | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
| o-Xylene                    | 3.99   | 0.05               | ug/g  | ND               | 99.7 | 60-130        |     |              |       |
| Surrogate: Toluene-d8       | 8.27   |                    | ug/g  |                  | 103  | 50-140        |     |              |       |



Report Date: 23-Aug-2021 Order Date: 17-Aug-2021

 Client: Paterson Group Consulting Engineers
 Order Date

 Client PO: 32704
 Project Des

Project Description: PE5397

# **Qualifier Notes:**

None

Certificate of Analysis

### **Sample Data Revisions**

None

# **Work Order Revisions / Comments:**

None

### **Other Report Notes:**

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

### CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.





Chain Of Custody (Lab Use Only)

Nº 133080

| Client Name: Paterson Group                                 |          | Project Ref: PE5397                 |            |                       |                  |           |      |      |                                 |         |                   |         |                    |        |          |
|-------------------------------------------------------------|----------|-------------------------------------|------------|-----------------------|------------------|-----------|------|------|---------------------------------|---------|-------------------|---------|--------------------|--------|----------|
| Contact Name: Mandy Witteman / Mark.                        | D/Az     | Quote                               | #:         |                       |                  |           |      | ,    |                                 |         |                   | Tu      | rnaroun            | d Time |          |
| Address: 154 Colonkaole Rd S. Maga Telephone: (613/226-738/ |          | E-mail:  mwitheman@patersongroup.ca |            |                       |                  |           |      |      | ☐ 1 day ☐ 2 day  Date Required: |         |                   |         | □ 3 day<br>Regular |        |          |
| REG 153/04 REG 406/19 Other Regulation                      | N        | 1atrix 1                            | Type:      | S (Soil/Sed.) GW (Gro | ound Water)      |           |      |      |                                 | Red     | quired            | Analys  | is                 |        |          |
| ☐ Table 1 ☐ Res/Park ☐ Med/Fine ☐ REG 558 ☐ PWQO            |          | SW (Su                              |            | Vater) SS (Storm/San  |                  |           |      |      |                                 | _       |                   |         |                    |        | _        |
| ☐ Table 2 🔀 Ind/Comm 💢 Coarse ☐ CCME ☐ MISA                 |          | P (Paint) A (Air) O (Other)         |            |                       | +BTEX            |           |      |      |                                 |         |                   |         |                    |        |          |
|                                                             |          | . 5                                 |            |                       | -F4+B            |           |      | ICP  |                                 |         |                   |         |                    |        |          |
| ☐ Table Mun:                                                |          | nme                                 | Containers | Sample 1              | Taken            | Œ         |      |      | ò                               |         |                   | (S)     |                    |        |          |
| For RSC: Yes No Other:                                      | Matrix   | Air Volume                          | of Co      | 0                     | T                | PHCs      | VOCs | PAHs | Metals                          | Нg      | Cr.               | B (HWS) |                    |        | 4        |
| Sample ID/Location Name                                     | +        | Æ                                   | #          | Date                  | Time             | -         | _    | σ.   | 2                               |         | 0                 | ш       | _                  |        |          |
| 1 BH3-21-558                                                | 5        |                                     | 2          | Aug 13/21             | 1201             | X         |      | V    | 17                              | _       |                   | +       | +-                 |        |          |
| 2 BH4-21-552 (HOLD)                                         | S        |                                     | 1          | Aug 16/21             |                  | -         |      | X    | X                               |         |                   | _       | -                  |        | +        |
| 3 BH4-21-554 (HOLD)                                         | 1        |                                     | 4          |                       |                  | -         |      | X    | X                               |         |                   | -       | _                  |        | +        |
| 4 BH4-21-555 (HOLD                                          |          |                                     | Ш          |                       |                  | _         |      | 1    | $\Box$                          |         |                   | _       |                    |        | +-       |
| 5 BH5-21-552 (HOLD)                                         |          |                                     |            |                       |                  |           |      |      |                                 |         |                   | _       |                    |        | _        |
| 6 BH5-21-SS6 (HOLD)                                         | V        |                                     | V          | V                     |                  |           |      | V    |                                 |         |                   |         |                    |        | _        |
| 7                                                           |          |                                     |            |                       |                  |           |      |      |                                 |         |                   |         |                    |        |          |
| 8                                                           | 1        |                                     |            |                       |                  |           |      | -    |                                 |         |                   |         |                    |        |          |
| 9                                                           |          |                                     |            |                       |                  |           |      |      |                                 |         |                   |         |                    | 1      |          |
| 10                                                          |          |                                     |            |                       | -                |           |      |      |                                 |         |                   |         |                    |        |          |
| Comments:                                                   |          |                                     |            |                       |                  |           |      |      |                                 | Metho   | d of De           | livery: |                    | 1      |          |
|                                                             |          |                                     |            |                       |                  |           |      |      |                                 | -       | 1                 | CAC     | EL                 | Lan    | 450      |
| Relinquished By (Sign): Received By (                       | Driver/C | epot:                               | /          | Euse                  | Received at Lab: | ω.<br>(*) | . 1  | 00/1 | mai                             | Verifie | d By:             | P       |                    |        |          |
| Relinquished By (Print): 11 /- 11 Date/Time:                |          |                                     |            | - 7.34                | Charleman .      | 251       | V    | 04.  | ALCOUNTY                        | Date/   | Time <sub>A</sub> | 2A      | 1720               | 214    | :61      |
| Date/Time: 1/2 I Temperature                                | 1        | 108                                 | 1/2        | ( 2)                  | Tempe ature:     | 01        | °C   | 04,  | VV                              | pH Ve   | rified:           | X       | By:                |        | .01      |
| Chain of Custody Envisors                                   | K(C)     |                                     |            | Revision 4.0          |                  | 110       |      |      |                                 |         | /                 |         |                    | X      | - 1,3553 |



300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

# Certificate of Analysis

# **Paterson Group Consulting Engineers**

9 Auriga Drive Ottawa, ON K2E 7T9 Attn: Mandy Witteman

Client PO: 55265 Project: PE5397

Custody:

Report Date: 19-Jul-2022 Order Date: 12-Jul-2022

Order #: 2229286

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

| Paracel ID | Client ID  |
|------------|------------|
| 2229286-01 | BH1-22-SS2 |
| 2229286-02 | BH1-22-SS6 |
| 2229286-04 | BH2-22-SS5 |
| 2229286-05 | DUP        |

Approved By:



Dale Robertson, BSc Laboratory Director



Certificate of Analysis

Client: Paterson Group Consulting Engineers

Report Date: 19-Jul-2022

Order Date: 12-Jul-2022

Client PO: 55265 Project Description: PE5397

# **Analysis Summary Table**

| Analysis                        | Method Reference/Description    | Extraction Date | Analysis Date |
|---------------------------------|---------------------------------|-----------------|---------------|
| BTEX by P&T GC-MS               | EPA 8260 - P&T GC-MS            | 14-Jul-22       | 14-Jul-22     |
| PHC F1                          | CWS Tier 1 - P&T GC-FID         | 14-Jul-22       | 14-Jul-22     |
| PHCs F2 to F4                   | CWS Tier 1 - GC-FID, extraction | 14-Jul-22       | 16-Jul-22     |
| REG 153: Metals by ICP/MS, soil | EPA 6020 - Digestion - ICP-MS   | 18-Jul-22       | 18-Jul-22     |
| REG 153: PAHs by GC-MS          | EPA 8270 - GC-MS, extraction    | 14-Jul-22       | 16-Jul-22     |
| Solids, %                       | Gravimetric, calculation        | 18-Jul-22       | 18-Jul-22     |



Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date: 12-Jul-2022 **Project Description: PE5397** 

Report Date: 19-Jul-2022

Client PO: 55265

BH1-22-SS6 Client ID: BH1-22-SS2 BH2-22-SS5 DUP Sample Date: 11-Jul-22 09:00 11-Jul-22 09:00 11-Jul-22 09:00 11-Jul-22 09:00 2229286-01 2229286-02 2229286-04 2229286-05 Sample ID: MDL/Units Soil Soil Soil Soil **Physical Characteristics** 0.1 % by Wt. % Solids 86.8 87.1 88.7 86.4 Metals 1.0 ug/g dry Antimony <1.0 1.0 ug/g dry Arsenic 2.8 1.0 ug/g dry Barium 110 0.5 ug/g dry Beryllium < 0.5 5.0 ug/g dry Boron <5.0 0.5 ug/g dry Cadmium < 0.5 5.0 ug/g dry Chromium 30.2 1.0 ug/g dry Cobalt 7.8 5.0 ug/g dry Copper 17.7 1.0 ug/g dry Lead 27.5 1.0 ug/g dry Molybdenum <1.0 5.0 ug/g dry Nickel 17.7 1.0 ug/g dry Selenium <1.0 \_ 0.3 ug/g dry Silver < 0.3 Thallium 1.0 ug/g dry <1.0 1.0 ug/g dry Uranium <1.0 10.0 ug/g dry Vanadium 35.7 20.0 ug/g dry Zinc 61.4 Volatiles 0.02 ug/g dry Benzene < 0.02 < 0.02 < 0.02 0.05 ug/g dry Ethylbenzene < 0.05 < 0.05 < 0.05 0.05 ug/g dry Toluene < 0.05 < 0.05 < 0.05 m,p-Xylenes 0.05 ug/g dry < 0.05 < 0.05 < 0.05 o-Xylene 0.05 ug/g dry < 0.05 < 0.05 < 0.05 0.05 ug/g dry Xylenes, total < 0.05 <0.05 < 0.05 Toluene-d8 Surrogate 105% 105% 103% **Hydrocarbons** 7 ug/g dry F1 PHCs (C6-C10) <7 <7 <7 F2 PHCs (C10-C16) 4 ug/g dry 9 <4 <4 F3 PHCs (C16-C34) 8 ug/g dry 36 <8 <8 6 ug/g dry F4 PHCs (C34-C50) <6 <6 <6 Semi-Volatiles Acenaphthene 0.02 ug/g dry < 0.02



Order Date: 12-Jul-2022

Certificate of Analysis Report Date: 19-Jul-2022

Client: Paterson Group Consulting Engineers

Client PO: 55265 Project Description: PE5397

|                          | Client ID:<br>Sample Date:<br>Sample ID: | BH1-22-SS2<br>11-Jul-22 09:00<br>2229286-01 | BH1-22-SS6<br>11-Jul-22 09:00<br>2229286-02 | BH2-22-SS5<br>11-Jul-22 09:00<br>2229286-04 | DUP<br>11-Jul-22 09:00<br>2229286-05 |
|--------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------|
| Acenaphthylene           | MDL/Units<br>0.02 ug/g dry               | Soil                                        | Soil                                        | Soil                                        | Soil                                 |
| Anthracene               | 0.02 ug/g dry                            | 0.04                                        | -                                           | -                                           | -                                    |
|                          |                                          | 0.06                                        | -                                           | -                                           | -                                    |
| Benzo [a] anthracene     | 0.02 ug/g dry                            | 0.15                                        | -                                           | -                                           | -                                    |
| Benzo [a] pyrene         | 0.02 ug/g dry                            | 0.17                                        | -                                           | -                                           | -                                    |
| Benzo [b] fluoranthene   | 0.02 ug/g dry                            | 0.26                                        | -                                           | -                                           | -                                    |
| Benzo [g,h,i] perylene   | 0.02 ug/g dry                            | 0.15                                        | -                                           | -                                           | -                                    |
| Benzo [k] fluoranthene   | 0.02 ug/g dry                            | 0.11                                        | -                                           | -                                           | -                                    |
| Chrysene                 | 0.02 ug/g dry                            | 0.19                                        | -                                           | -                                           | -                                    |
| Dibenzo [a,h] anthracene | 0.02 ug/g dry                            | 0.04                                        | -                                           | -                                           | -                                    |
| Fluoranthene             | 0.02 ug/g dry                            | 0.22                                        | -                                           | -                                           | -                                    |
| Fluorene                 | 0.02 ug/g dry                            | <0.02                                       | -                                           | -                                           | -                                    |
| Indeno [1,2,3-cd] pyrene | 0.02 ug/g dry                            | 0.13                                        | -                                           | -                                           | -                                    |
| 1-Methylnaphthalene      | 0.02 ug/g dry                            | <0.02                                       | -                                           | -                                           | -                                    |
| 2-Methylnaphthalene      | 0.02 ug/g dry                            | <0.02                                       | -                                           | -                                           | -                                    |
| Methylnaphthalene (1&2)  | 0.04 ug/g dry                            | <0.04                                       | -                                           | -                                           | -                                    |
| Naphthalene              | 0.01 ug/g dry                            | 0.01                                        | -                                           | -                                           | -                                    |
| Phenanthrene             | 0.02 ug/g dry                            | 0.08                                        | -                                           | -                                           | -                                    |
| Pyrene                   | 0.02 ug/g dry                            | 0.21                                        | -                                           | -                                           | -                                    |
| 2-Fluorobiphenyl         | Surrogate                                | 88.3%                                       | -                                           | -                                           | -                                    |
| Terphenyl-d14            | Surrogate                                | 82.6%                                       | -                                           | -                                           | -                                    |



Report Date: 19-Jul-2022

Order Date: 12-Jul-2022 **Project Description: PE5397** 

Certificate of Analysis

Xylenes, total

Surrogate: Toluene-d8

o-Xylene

Client: Paterson Group Consulting Engineers Client PO: 55265

**Method Quality Control: Blank** 

| Analyte                     | Result   | Reporting<br>Limit | Units        | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------------|----------|--------------------|--------------|------------------|------|---------------|-----|--------------|-------|
| Hydrocarbons                |          |                    |              |                  |      |               |     |              |       |
| F1 PHCs (C6-C10)            | ND       | 7                  | ug/g         |                  |      |               |     |              |       |
| F2 PHCs (C10-C16)           | ND       | 4                  | ug/g         |                  |      |               |     |              |       |
| F3 PHCs (C16-C34)           | ND       | 8                  | ug/g         |                  |      |               |     |              |       |
| F4 PHCs (C34-C50)           | ND       | 6                  | ug/g         |                  |      |               |     |              |       |
| Metals                      |          | _                  | -9.9         |                  |      |               |     |              |       |
| Antimony                    | ND       | 1.0                | ug/g         |                  |      |               |     |              |       |
| Arsenic                     | ND       | 1.0                | ug/g         |                  |      |               |     |              |       |
| Barium                      | ND       | 1.0                | ug/g         |                  |      |               |     |              |       |
| Beryllium                   | ND       | 0.5                | ug/g         |                  |      |               |     |              |       |
| Boron                       | ND       | 5.0                | ug/g         |                  |      |               |     |              |       |
| Cadmium                     | ND       | 0.5                | ug/g         |                  |      |               |     |              |       |
| Chromium                    | ND       | 5.0                | ug/g         |                  |      |               |     |              |       |
| Cobalt                      | ND       | 1.0                | ug/g         |                  |      |               |     |              |       |
| Copper                      | ND<br>ND | 5.0                | ug/g         |                  |      |               |     |              |       |
| Lead                        | ND       | 1.0                | ug/g         |                  |      |               |     |              |       |
| Molybdenum                  | ND<br>ND | 1.0                | ug/g<br>ug/g |                  |      |               |     |              |       |
| Nickel                      | ND<br>ND | 5.0                | ug/g<br>ug/g |                  |      |               |     |              |       |
| Selenium                    | ND<br>ND | 1.0                |              |                  |      |               |     |              |       |
| Silver                      | ND<br>ND | 0.3                | ug/g         |                  |      |               |     |              |       |
|                             |          |                    | ug/g         |                  |      |               |     |              |       |
| Thallium                    | ND       | 1.0                | ug/g         |                  |      |               |     |              |       |
| Uranium                     | ND       | 1.0                | ug/g         |                  |      |               |     |              |       |
| Vanadium                    | ND       | 10.0               | ug/g         |                  |      |               |     |              |       |
| Zinc Semi-Volatiles         | ND       | 20.0               | ug/g         |                  |      |               |     |              |       |
|                             | ND       | 0.00               |              |                  |      |               |     |              |       |
| Acenaphthene                | ND       | 0.02               | ug/g         |                  |      |               |     |              |       |
| Acenaphthylene              | ND       | 0.02               | ug/g         |                  |      |               |     |              |       |
| Anthracene                  | ND       | 0.02               | ug/g         |                  |      |               |     |              |       |
| Benzo [a] anthracene        | ND       | 0.02               | ug/g         |                  |      |               |     |              |       |
| Benzo [a] pyrene            | ND       | 0.02               | ug/g         |                  |      |               |     |              |       |
| Benzo [b] fluoranthene      | ND       | 0.02               | ug/g         |                  |      |               |     |              |       |
| Benzo [g,h,i] perylene      | ND       | 0.02               | ug/g         |                  |      |               |     |              |       |
| Benzo [k] fluoranthene      | ND       | 0.02               | ug/g         |                  |      |               |     |              |       |
| Chrysene                    | ND       | 0.02               | ug/g         |                  |      |               |     |              |       |
| Dibenzo [a,h] anthracene    | ND       | 0.02               | ug/g         |                  |      |               |     |              |       |
| Fluoranthene                | ND       | 0.02               | ug/g         |                  |      |               |     |              |       |
| Fluorene                    | ND       | 0.02               | ug/g         |                  |      |               |     |              |       |
| Indeno [1,2,3-cd] pyrene    | ND       | 0.02               | ug/g         |                  |      |               |     |              |       |
| 1-Methylnaphthalene         | ND       | 0.02               | ug/g         |                  |      |               |     |              |       |
| 2-Methylnaphthalene         | ND       | 0.02               | ug/g         |                  |      |               |     |              |       |
| Methylnaphthalene (1&2)     | ND       | 0.04               | ug/g         |                  |      |               |     |              |       |
| Naphthalene                 | ND       | 0.01               | ug/g         |                  |      |               |     |              |       |
| Phenanthrene                | ND       | 0.02               | ug/g         |                  |      |               |     |              |       |
| Pyrene                      | ND       | 0.02               | ug/g         |                  |      |               |     |              |       |
| Surrogate: 2-Fluorobiphenyl | 1.65     |                    | ug/g         |                  | 124  | 50-140        |     |              |       |
| Surrogate: Terphenyl-d14    | 1.71     |                    | ug/g         |                  | 128  | 50-140        |     |              |       |
| Volatiles                   |          |                    |              |                  |      |               |     |              |       |
| Benzene                     | ND       | 0.02               | ug/g         |                  |      |               |     |              |       |
| Ethylbenzene                | ND       | 0.05               | ug/g         |                  |      |               |     |              |       |
| Toluene                     | ND       | 0.05               | ug/g         |                  |      |               |     |              |       |
| m,p-Xylenes                 | ND       | 0.05               | ug/g         |                  |      |               |     |              |       |
| o-Yvlene                    | ND       | 0.05               | g/g          |                  |      |               |     |              |       |

ug/g

ug/g

ug/g

84.5

50-140

ND

ND

2.70

0.05

0.05



Certificate of Analysis Client: Paterson Group Consulting Engineers

Order Date: 12-Jul-2022 Client PO: 55265

**Project Description: PE5397** 

Report Date: 19-Jul-2022

**Method Quality Control: Duplicate** 

| A. a. L. d.                 | _           | Reporting  |              | Source      |      | %REC   |              | RPD      |       |  |
|-----------------------------|-------------|------------|--------------|-------------|------|--------|--------------|----------|-------|--|
| Analyte                     | Result      | Limit      | Units        | Result      | %REC | Limit  | RPD          | Limit    | Notes |  |
| ydrocarbons                 |             |            |              |             |      |        |              |          |       |  |
| F1 PHCs (C6-C10)            | ND          | 7          | ug/g         | ND          |      |        | NC           | 40       |       |  |
| F2 PHCs (C10-C16)           | ND          | 4          | ug/g<br>ug/g | ND          |      |        | NC           | 30       |       |  |
| F3 PHCs (C16-C34)           | ND          | 8          | ug/g         | ND          |      |        | NC           | 30       |       |  |
| F4 PHCs (C34-C50)           | ND          | 6          | ug/g         | ND          |      |        | NC           | 30       |       |  |
| Metals                      | 112         | Ü          | ug/g         | 110         |      |        | 110          | 00       |       |  |
|                             |             |            |              |             |      |        |              |          |       |  |
| Antimony                    | 1.7         | 1.0        | ug/g         | 2.1         |      |        | 25.5         | 30       |       |  |
| Arsenic                     | 5.0         | 1.0        | ug/g         | 6.2         |      |        | 20.7         | 30       |       |  |
| Barium                      | 92.7        | 1.0        | ug/g         | 115         |      |        | 21.5         | 30       |       |  |
| Beryllium                   | 0.5         | 0.5        | ug/g         | 0.6         |      |        | 21.5         | 30       |       |  |
| Boron<br>Codmium            | 12.9        | 5.0        | ug/g         | 13.1        |      |        | 1.9          | 30       |       |  |
| Chromium                    | 1.6         | 0.5        | ug/g         | 2.0         |      |        | 26.7         | 30       |       |  |
| Coholt                      | 19.7        | 5.0        | ug/g         | 22.5        |      |        | 13.2         | 30       |       |  |
| Copper                      | 5.9         | 1.0        | ug/g         | 6.8<br>157  |      |        | 13.8<br>23.4 | 30<br>30 |       |  |
| Copper                      | 124<br>74.0 | 5.0        | ug/g         | 157<br>84.2 |      |        |              | 30<br>30 |       |  |
| Lead<br>Molyhdanum          | 74.9        | 1.0        | ug/g         | 84.2        |      |        | 11.8<br>NC   | 30<br>30 |       |  |
| Molybdenum<br>Nickel        | ND<br>15.2  | 1.0<br>5.0 | ug/g         | ND<br>17.6  |      |        | 14.3         | 30<br>30 |       |  |
| NICKEI<br>Selenium          | ND          | 5.0<br>1.0 | ug/g<br>ug/g | ND          |      |        | NC           | 30       |       |  |
| Silver                      | ND          | 0.3        |              | ND          |      |        | NC           | 30       |       |  |
| Thallium                    | ND          | 1.0        | ug/g         | ND          |      |        | NC           | 30       |       |  |
| Uranium                     | ND          | 1.0        | ug/g<br>ug/g | ND          |      |        | NC           | 30       |       |  |
| Vanadium                    | 25.5        | 10.0       |              | 29.7        |      |        | 15.2         | 30       |       |  |
| Zinc                        | 25.5<br>331 | 20.0       | ug/g<br>ug/g | 29.7<br>378 |      |        | 13.2         | 30       |       |  |
|                             | JJ 1        | 20.0       | ug/g         | 510         |      |        | 13.4         | 50       |       |  |
| Physical Characteristics    |             |            |              |             |      |        |              |          |       |  |
| % Solids                    | 66.6        | 0.1        | % by Wt.     | 67.7        |      |        | 1.6          | 25       |       |  |
| Semi-Volatiles              |             |            |              |             |      |        |              |          |       |  |
| Acenaphthene                | ND          | 0.02       | ug/g         | ND          |      |        | NC           | 40       |       |  |
| Acenaphthylene              | ND          | 0.02       | ug/g         | ND          |      |        | NC           | 40       |       |  |
| Anthracene                  | ND          | 0.02       | ug/g         | ND          |      |        | NC           | 40       |       |  |
| Benzo [a] anthracene        | ND          | 0.02       | ug/g         | ND          |      |        | NC           | 40       |       |  |
| Benzo [a] pyrene            | ND          | 0.02       | ug/g         | ND          |      |        | NC           | 40       |       |  |
| Benzo [b] fluoranthene      | ND          | 0.02       | ug/g         | ND          |      |        | NC           | 40       |       |  |
| Benzo [g,h,i] perylene      | ND          | 0.02       | ug/g         | ND          |      |        | NC           | 40       |       |  |
| Benzo [k] fluoranthene      | ND          | 0.02       | ug/g         | ND          |      |        | NC           | 40       |       |  |
| Chrysene                    | ND          | 0.02       | ug/g         | ND          |      |        | NC           | 40       |       |  |
| Dibenzo [a,h] anthracene    | ND          | 0.02       | ug/g         | ND          |      |        | NC           | 40       |       |  |
| Fluoranthene                | ND          | 0.02       | ug/g         | ND          |      |        | NC           | 40       |       |  |
| Fluorene                    | ND          | 0.02       | ug/g         | ND          |      |        | NC           | 40       |       |  |
| Indeno [1,2,3-cd] pyrene    | ND          | 0.02       | ug/g         | ND          |      |        | NC           | 40       |       |  |
| 1-Methylnaphthalene         | ND          | 0.02       | ug/g         | ND          |      |        | NC           | 40       |       |  |
| 2-Methylnaphthalene         | ND          | 0.02       | ug/g         | ND          |      |        | NC           | 40       |       |  |
| Naphthalene                 | ND          | 0.01       | ug/g         | ND          |      |        | NC           | 40       |       |  |
| Phenanthrene                | ND          | 0.02       | ug/g         | ND          |      |        | NC           | 40       |       |  |
| Pyrene                      | ND          | 0.02       | ug/g         | ND          |      |        | NC           | 40       |       |  |
| Surrogate: 2-Fluorobiphenyl | 1.12        |            | ug/g         |             | 77.4 | 50-140 |              |          |       |  |
| Surrogate: Terphenyl-d14    | 1.10        |            | ug/g         |             | 76.5 | 50-140 |              |          |       |  |
| olatiles                    |             |            |              |             |      |        |              |          |       |  |
| Benzene                     | ND          | 0.02       | ug/g         | ND          |      |        | NC           | 50       |       |  |
| Ethylbenzene                | ND          | 0.05       | ug/g         | ND          |      |        | NC           | 50       |       |  |
| Toluene                     | ND          | 0.05       | ug/g         | ND          |      |        | NC           | 50       |       |  |
| m,p-Xylenes                 | ND          | 0.05       | ug/g         | ND          |      |        | NC           | 50       |       |  |
| o-Xylene                    | ND          | 0.05       | ug/g         | ND          |      |        | NC           | 50       |       |  |
| Surrogate: Toluene-d8       | 4.31        |            | ug/g         |             | 106  | 50-140 |              |          |       |  |



Order #: 2229286

Report Date: 19-Jul-2022 Order Date: 12-Jul-2022

 Client:
 Paterson Group Consulting Engineers
 Order Date: 12-Jul-2022

 Client PO:
 55265
 Project Description: PE5397

**Method Quality Control: Spike** 

| Analyte                     | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Hydrocarbons                |        |                    |       |                  |      |               |     |              |       |
| F1 PHCs (C6-C10)            | 213    | 7                  | ug/g  | ND               | 107  | 80-120        |     |              |       |
| F2 PHCs (C10-C16)           | 106    | 4                  | ug/g  | ND               | 110  | 60-140        |     |              |       |
| F3 PHCs (C16-C34)           | 248    | 8                  | ug/g  | ND               | 105  | 60-140        |     |              |       |
| F4 PHCs (C34-C50)           | 156    | 6                  | ug/g  | ND               | 104  | 60-140        |     |              |       |
| Metals                      |        |                    |       |                  |      |               |     |              |       |
| Antimony                    | 35.3   | 1.0                | ug/g  | ND               | 70.6 | 70-130        |     |              |       |
| Arsenic                     | 52.1   | 1.0                | ug/g  | 2.5              | 99.2 | 70-130        |     |              |       |
| Barium                      | 66.9   | 1.0                | ug/g  | 20.0             | 94.0 | 70-130        |     |              |       |
| Beryllium                   | 53.9   | 0.5                | ug/g  | ND               | 107  | 70-130        |     |              |       |
| Boron                       | 55.6   | 5.0                | ug/g  | 5.2              | 101  | 70-130        |     |              |       |
| Cadmium                     | 37.9   | 0.5                | ug/g  | 0.8              | 74.2 | 70-130        |     |              |       |
| Chromium                    | 61.3   | 5.0                | ug/g  | 9.0              | 105  | 70-130        |     |              |       |
| Cobalt                      | 53.5   | 1.0                | ug/g  | 2.7              | 102  | 70-130        |     |              |       |
| Copper                      | 96.1   | 5.0                | ug/g  | 62.8             | 66.5 | 70-130        |     | (            | QM-07 |
| Lead                        | 81.5   | 1.0                | ug/g  | 33.7             | 95.7 | 70-130        |     |              |       |
| Molybdenum                  | 49.4   | 1.0                | ug/g  | ND               | 98.0 | 70-130        |     |              |       |
| Nickel                      | 55.8   | 5.0                | ug/g  | 7.0              | 97.5 | 70-130        |     |              |       |
| Selenium                    | 46.7   | 1.0                | ug/g  | ND               | 92.9 | 70-130        |     |              |       |
| Silver                      | 38.0   | 0.3                | ug/g  | ND               | 75.7 | 70-130        |     |              |       |
| Thallium                    | 39.6   | 1.0                | ug/g  | ND               | 79.1 | 70-130        |     |              |       |
| Uranium                     | 56.7   | 1.0                | ug/g  | ND               | 113  | 70-130        |     |              |       |
| Vanadium                    | 64.1   | 10.0               | ug/g  | 11.9             | 105  | 70-130        |     |              |       |
| Zinc                        | 71.3   | 20.0               | ug/g  | 23.3             | 96.0 | 70-130        |     |              |       |
| Semi-Volatiles              |        |                    |       |                  |      |               |     |              |       |
| Acenaphthene                | 0.142  | 0.02               | ug/g  | ND               | 78.7 | 50-140        |     |              |       |
| Acenaphthylene              | 0.136  | 0.02               | ug/g  | ND               | 75.5 | 50-140        |     |              |       |
| Anthracene                  | 0.142  | 0.02               | ug/g  | ND               | 78.9 | 50-140        |     |              |       |
| Benzo [a] anthracene        | 0.164  | 0.02               | ug/g  | ND               | 91.1 | 50-140        |     |              |       |
| Benzo [a] pyrene            | 0.207  | 0.02               | ug/g  | ND               | 115  | 50-140        |     |              |       |
| Benzo [b] fluoranthene      | 0.206  | 0.02               | ug/g  | ND               | 114  | 50-140        |     |              |       |
| Benzo [g,h,i] perylene      | 0.152  | 0.02               | ug/g  | ND               | 84.6 | 50-140        |     |              |       |
| Benzo [k] fluoranthene      | 0.174  | 0.02               | ug/g  | ND               | 96.9 | 50-140        |     |              |       |
| Chrysene                    | 0.159  | 0.02               | ug/g  | ND               | 88.4 | 50-140        |     |              |       |
| Dibenzo [a,h] anthracene    | 0.152  | 0.02               | ug/g  | ND               | 84.5 | 50-140        |     |              |       |
| Fluoranthene                | 0.143  | 0.02               | ug/g  | ND               | 79.3 | 50-140        |     |              |       |
| Fluorene                    | 0.146  | 0.02               | ug/g  | ND               | 81.3 | 50-140        |     |              |       |
| Indeno [1,2,3-cd] pyrene    | 0.159  | 0.02               | ug/g  | ND               | 88.4 | 50-140        |     |              |       |
| 1-Methylnaphthalene         | 0.195  | 0.02               | ug/g  | ND               | 108  | 50-140        |     |              |       |
| 2-Methylnaphthalene         | 0.210  | 0.02               | ug/g  | ND               | 116  | 50-140        |     |              |       |
| Naphthalene                 | 0.178  | 0.01               | ug/g  | ND               | 98.7 | 50-140        |     |              |       |
| Phenanthrene                | 0.147  | 0.02               | ug/g  | ND               | 81.6 | 50-140        |     |              |       |
| Pyrene                      | 0.145  | 0.02               | ug/g  | ND               | 80.7 | 50-140        |     |              |       |
| Surrogate: 2-Fluorobiphenyl | 1.32   |                    | ug/g  |                  | 91.3 | 50-140        |     |              |       |
| Surrogate: Terphenyl-d14    | 1.26   |                    | ug/g  |                  | 87.2 | 50-140        |     |              |       |
| olatiles                    |        |                    |       |                  |      |               |     |              |       |
| Benzene                     | 3.32   | 0.02               | ug/g  | ND               | 83.1 | 60-130        |     |              |       |
| Ethylbenzene                | 3.57   | 0.05               | ug/g  | ND               | 89.2 | 60-130        |     |              |       |
| Toluene                     | 3.78   | 0.05               | ug/g  | ND               | 94.6 | 60-130        |     |              |       |



Order #: 2229286

Report Date: 19-Jul-2022

Order Date: 12-Jul-2022 **Project Description: PE5397** 

Client: Paterson Group Consulting Engineers

Client PO: 55265

**Method Quality Control: Spike** 

| mountain quanty continues opinio |        |                    |       |                  |      |               |     |              |       |
|----------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Analyte                          | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
| m,p-Xylenes                      | 7.88   | 0.05               | ug/g  | ND               | 98.4 | 60-130        |     |              |       |
| o-Xylene                         | 4.06   | 0.05               | ug/g  | ND               | 102  | 60-130        |     |              |       |
| Surrogate: Toluene-d8            | 2.94   |                    | ug/g  |                  | 91.8 | 50-140        |     |              |       |



Report Date: 19-Jul-2022 Order Date: 12-Jul-2022

 Client:
 Paterson Group Consulting Engineers
 Order Date: 12-Jul-2022

 Client PO:
 55265
 Project Description: PE5397

#### **Qualifier Notes:**

QC Qualifiers:

Certificate of Analysis

QM-07: The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

### **Sample Data Revisions**

None

### **Work Order Revisions / Comments:**

None

### **Other Report Notes:**

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery. RPD: Relative percent difference.

NC: Not Calculated

### CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

# @PARACEL

Paracel ID: 2229286

Chain Of Custody (Lab Use Only)

| Parka Cara                                               |                             | 0                                                                                               |               |                      |                  |                     |          |          |               |                   | 0.450    | 35400     |          | elit ( | Cast. |          |
|----------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------|---------------|----------------------|------------------|---------------------|----------|----------|---------------|-------------------|----------|-----------|----------|--------|-------|----------|
| nt Name: Paterson Group                                  |                             | _                                                                                               | ct Ref:       | PE5397               | 1                |                     |          |          |               |                   |          |           | Pag      | e Lo   | f_1   |          |
| tack Name: Mandy Witteman ress:                          |                             | Quote                                                                                           |               |                      |                  |                     |          |          |               |                   |          | T         | urnar    | ound 1 | ime   |          |
|                                                          |                             | E-mail:                                                                                         |               |                      |                  |                     |          |          | 1 day         |                   |          | □ 3       | day      |        |       |          |
| Auriga Dr. Ottana.                                       |                             |                                                                                                 |               |                      |                  |                     |          | 0        | 2 day         |                   |          | Ì∑∕R      | egular   |        |       |          |
| phone; (613) 800 - 5575 (direct).                        |                             |                                                                                                 |               |                      |                  |                     | 0        | 3        |               |                   | Date     | Requi     | red:     |        | -1    |          |
| REG 153/04 REG 406/19 Other Regulation                   |                             | Matriy 1                                                                                        | Tyne          | S (Spil/Spd ) CW (G  | round Water      |                     |          |          | . 13          |                   | 453      |           |          |        |       | 12(3)    |
| Table 1 Res/Park Med/Fine REG 558 PWQC                   |                             | Matrix Type: \$ (Soil/Sed.) GW (Ground Water,<br>SW (Surface Water) \$\$ (Storm/Sanitary Sewer) |               |                      |                  |                     |          |          |               | Required Analysis |          |           |          |        |       |          |
| Table 2                                                  |                             |                                                                                                 | <b>P</b> (P   | aint) A (Air) O (Oth | ier)             | ×                   | \$23VI   |          |               |                   | p/44 = 1 |           | T        | 1      |       | T        |
| Table 3 ☐ Agri/Other ☐ SU - Sani ☐ SU - S                | orm                         | Π                                                                                               | 2             |                      |                  | F1-F4+BTEX          |          |          | ۸             |                   |          |           |          |        |       |          |
| Table Mun:                                               |                             | e e                                                                                             | taine         | Sample               | Taken            | -F4                 |          |          | ICP           |                   |          |           |          |        |       |          |
| For RSC: Yes No Other:                                   | _   _ <u></u>               | Air Volume                                                                                      | of Containers |                      |                  |                     | g        | ø        | ls by         |                   |          | (HWS)     |          |        |       |          |
| Sample ID/Location Name                                  | Matrix                      | M Zig # Date                                                                                    |               |                      | Time             | PHCs                | VOCs     | PAHs     | Metals by ICP | БH                | CrZ      | B (H)     |          |        |       |          |
| BH1-22-552                                               | 5                           |                                                                                                 | 1             | July 11/2            |                  |                     |          | X        | Χ             |                   | Ť        |           | $\dashv$ | +      | +     | $\vdash$ |
| BH1-32-566                                               | (                           |                                                                                                 | 2             | 11/2                 |                  | $\overline{\nabla}$ |          |          |               |                   |          |           | $\dashv$ | +      | +     | $\vdash$ |
| BH1-22-857                                               | 1                           |                                                                                                 | 2             | 1/                   |                  | V                   |          | 51       | 10            | 1                 |          | $\forall$ | +        | +      | +     | Н        |
| B+12-22-555                                              | 3                           |                                                                                                 | 2             | 1                    |                  | $\Diamond$          |          | LT       | LŲ            |                   | -        | 1         | +        | +      | +     | Н        |
| DUP                                                      | 3                           |                                                                                                 | 2             |                      |                  | $\sqrt{}$           |          |          |               | -                 | +        | $\dashv$  | +        | +      | +     | $\vdash$ |
| U V V                                                    |                             |                                                                                                 |               |                      |                  |                     |          | $\dashv$ | $\dashv$      | +                 | -        | +         | +        | +      | +     | $\vdash$ |
|                                                          |                             |                                                                                                 |               |                      |                  |                     |          | $\dashv$ | $\dashv$      | $\dashv$          | +        | $\dashv$  | +        | +      | +     | Н        |
|                                                          |                             |                                                                                                 |               |                      |                  | $\vdash$            |          | $\dashv$ |               | $\dashv$          | +        | $\dashv$  | +        | +      | +     | $\vdash$ |
|                                                          | $\top$                      |                                                                                                 |               |                      |                  | $\vdash$            | $\dashv$ | +        | $\dashv$      | $\dashv$          | $\dashv$ | $\dashv$  | +        | +      | +     | $\vdash$ |
|                                                          |                             |                                                                                                 |               |                      |                  | $\vdash$            |          | $\dashv$ | $\dashv$      | $\dashv$          | $\dashv$ | +         | +        | +      | +     | $\vdash$ |
| ents:                                                    |                             |                                                                                                 |               |                      |                  |                     |          |          |               | Mathed            | of Date  | 11/2/1    |          | 7,000  | 1     |          |
|                                                          |                             |                                                                                                 |               |                      |                  |                     |          |          |               | Method            |          |           | 4        | 1      | WO E  |          |
| uished By (Sign)                                         | By Driver/De                | pot:                                                                                            | /             | 8                    | Receive yayyab:/ | 7                   |          |          |               | /erified          |          | 1         | _        | 2      | 000   |          |
| uished By (Print): \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | e: 171 - 11 7 Date/         |                                                                                                 |               | 1/le/N               | emos             |                     |          |          | /             | DOZ               |          |           |          |        |       |          |
| mandy Witteman                                           | ne: 17/07/77 4: 7 Date/Ty   |                                                                                                 | Date/Time:    |                      |                  |                     |          | Date/Tir | 11/100        |                   |          |           | à        |        |       |          |
| Custody (Blank),x/sx                                     | Temperature: Temperature: N |                                                                                                 |               | 13                   |                  |                     | 1        | H Veri   | fied: [       | J                 | By:      | 1119      |          |        |       |          |



300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

# Certificate of Analysis

# **Paterson Group Consulting Engineers**

154 Colonnade Road South Nepean, ON K2E 7J5

Attn: Mark D'Arcy

Client PO: 32090 Project: PE5397 Custody: 132410

Report Date: 31-Aug-2021 Order Date: 25-Aug-2021

Order #: 2135472

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

| Paracel ID | Client ID |
|------------|-----------|
| 2135472-01 | BH1-21-GW |
| 2135472-02 | BH2-21-GW |
| 2135472-03 | BH3-21-GW |
| 2135472-04 | DUP       |

Approved By:

Mark Froto

Mark Foto, M.Sc. Lab Supervisor



Client PO: 32090

Order #: 2135472

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Report Date: 31-Aug-2021

Order Date: 25-Aug-2021

Project Description: PE5397

# **Analysis Summary Table**

| Analysis                   | Method Reference/Description    | Extraction Date | Analysis Date |
|----------------------------|---------------------------------|-----------------|---------------|
| PHC F1                     | CWS Tier 1 - P&T GC-FID         | 27-Aug-21       | 28-Aug-21     |
| PHCs F2 to F4              | CWS Tier 1 - GC-FID, extraction | 30-Aug-21       | 30-Aug-21     |
| REG 153: VOCs by P&T GC/MS | EPA 624 - P&T GC-MS             | 27-Aug-21       | 28-Aug-21     |



Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 32090 Project Description: PE5397

| Γ                                        | Client ID:<br>Sample Date:<br>Sample ID:<br>MDL/Units | BH1-21-GW<br>24-Aug-21 09:00<br>2135472-01<br>Water | BH2-21-GW<br>24-Aug-21 09:00<br>2135472-02<br>Water | BH3-21-GW<br>24-Aug-21 09:00<br>2135472-03<br>Water | DUP<br>24-Aug-21 09:00<br>2135472-04<br>Water |
|------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|
| Volatiles                                | m Z o m c                                             |                                                     | !                                                   | !                                                   |                                               |
| Acetone                                  | 5.0 ug/L                                              | <5.0                                                | <5.0                                                | <5.0                                                | <5.0                                          |
| Benzene                                  | 0.5 ug/L                                              | <0.5                                                | <0.5                                                | <0.5                                                | <0.5                                          |
| Bromodichloromethane                     | 0.5 ug/L                                              | <0.5                                                | <0.5                                                | <0.5                                                | <0.5                                          |
| Bromoform                                | 0.5 ug/L                                              | <0.5                                                | <0.5                                                | <0.5                                                | <0.5                                          |
| Bromomethane                             | 0.5 ug/L                                              | <0.5                                                | <0.5                                                | <0.5                                                | <0.5                                          |
| Carbon Tetrachloride                     | 0.2 ug/L                                              | <0.2                                                | <0.2                                                | <0.2                                                | <0.2                                          |
| Chlorobenzene                            | 0.5 ug/L                                              | <0.5                                                | <0.5                                                | <0.5                                                | <0.5                                          |
| Chloroform                               | 0.5 ug/L                                              | <0.5                                                | <0.5                                                | <0.5                                                | <0.5                                          |
| Dibromochloromethane                     | 0.5 ug/L                                              | <0.5                                                | <0.5                                                | <0.5                                                | <0.5                                          |
| Dichlorodifluoromethane                  | 1.0 ug/L                                              | <1.0                                                | <1.0                                                | <1.0                                                | <1.0                                          |
| 1,2-Dichlorobenzene                      | 0.5 ug/L                                              | <0.5                                                | <0.5                                                | <0.5                                                | <0.5                                          |
| 1,3-Dichlorobenzene                      | 0.5 ug/L                                              | <0.5                                                | <0.5                                                | <0.5                                                | <0.5                                          |
| 1,4-Dichlorobenzene                      | 0.5 ug/L                                              | <0.5                                                | <0.5                                                | <0.5                                                | <0.5                                          |
| 1,1-Dichloroethane                       | 0.5 ug/L                                              | <0.5                                                | <0.5                                                | <0.5                                                | <0.5                                          |
| 1,2-Dichloroethane                       | 0.5 ug/L                                              | <0.5                                                | <0.5                                                | <0.5                                                | <0.5                                          |
| 1,1-Dichloroethylene                     | 0.5 ug/L                                              | <0.5                                                | <0.5                                                | <0.5                                                | <0.5                                          |
| cis-1,2-Dichloroethylene                 | 0.5 ug/L                                              | <0.5                                                | <0.5                                                | <0.5                                                | <0.5                                          |
| trans-1,2-Dichloroethylene               | 0.5 ug/L                                              | <0.5                                                | <0.5                                                | <0.5                                                | <0.5                                          |
| 1,2-Dichloropropane                      | 0.5 ug/L                                              | <0.5                                                | <0.5                                                | <0.5                                                | <0.5                                          |
| cis-1,3-Dichloropropylene                | 0.5 ug/L                                              | <0.5                                                | <0.5                                                | <0.5                                                | <0.5                                          |
| trans-1,3-Dichloropropylene              | 0.5 ug/L                                              | <0.5                                                | <0.5                                                | <0.5                                                | <0.5                                          |
| 1,3-Dichloropropene, total               | 0.5 ug/L                                              | <0.5                                                | <0.5                                                | <0.5                                                | <0.5                                          |
| Ethylbenzene                             | 0.5 ug/L                                              | <0.5                                                | <0.5                                                | <0.5                                                | <0.5                                          |
| Ethylene dibromide (dibromoethane, 1,2-) | 0.2 ug/L                                              | <0.2                                                | <0.2                                                | <0.2                                                | <0.2                                          |
| Hexane                                   | 1.0 ug/L                                              | <1.0                                                | <1.0                                                | <1.0                                                | <1.0                                          |
| Methyl Ethyl Ketone (2-Butanone)         | 5.0 ug/L                                              | <5.0                                                | <5.0                                                | <5.0                                                | <5.0                                          |
| Methyl Isobutyl Ketone                   | 5.0 ug/L                                              | <5.0                                                | <5.0                                                | <5.0                                                | <5.0                                          |
| Methyl tert-butyl ether                  | 2.0 ug/L                                              | <2.0                                                | <2.0                                                | <2.0                                                | <2.0                                          |
| Methylene Chloride                       | 5.0 ug/L                                              | <5.0                                                | <5.0                                                | <5.0                                                | <5.0                                          |
| Styrene                                  | 0.5 ug/L                                              | <0.5                                                | <0.5                                                | <0.5                                                | <0.5                                          |
| 1,1,1,2-Tetrachloroethane                | 0.5 ug/L                                              | <0.5                                                | <0.5                                                | <0.5                                                | <0.5                                          |
| 1,1,2,2-Tetrachloroethane                | 0.5 ug/L                                              | <0.5                                                | <0.5                                                | <0.5                                                | <0.5                                          |
| Tetrachloroethylene                      | 0.5 ug/L                                              | <0.5                                                | <0.5                                                | <0.5                                                | <0.5                                          |
| Toluene                                  | 0.5 ug/L                                              | <0.5                                                | <0.5                                                | <0.5                                                | <0.5                                          |
| 1,1,1-Trichloroethane                    | 0.5 ug/L                                              | <0.5                                                | <0.5                                                | <0.5                                                | <0.5                                          |

Report Date: 31-Aug-2021

Order Date: 25-Aug-2021



Report Date: 31-Aug-2021

Order Date: 25-Aug-2021

### Certificate of Analysis Client: Paterson Group Consulting Engineers

Client PO: 32090 **Project Description: PE5397** 

|                        | Client ID:   | BH1-21-GW       | BH2-21-GW       | BH3-21-GW       | DUP             |
|------------------------|--------------|-----------------|-----------------|-----------------|-----------------|
|                        | Sample Date: | 24-Aug-21 09:00 | 24-Aug-21 09:00 | 24-Aug-21 09:00 | 24-Aug-21 09:00 |
|                        | Sample ID:   | 2135472-01      | 2135472-02      | 2135472-03      | 2135472-04      |
|                        | MDL/Units    | Water           | Water           | Water           | Water           |
| 1,1,2-Trichloroethane  | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | <0.5            |
| Trichloroethylene      | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | <0.5            |
| Trichlorofluoromethane | 1.0 ug/L     | <1.0            | <1.0            | <1.0            | <1.0            |
| Vinyl chloride         | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | <0.5            |
| m,p-Xylenes            | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | <0.5            |
| o-Xylene               | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | <0.5            |
| Xylenes, total         | 0.5 ug/L     | <0.5            | <0.5            | <0.5            | <0.5            |
| 4-Bromofluorobenzene   | Surrogate    | 102%            | 99.4%           | 102%            | 102%            |
| Dibromofluoromethane   | Surrogate    | 88.0%           | 86.2%           | 86.7%           | 87.6%           |
| Toluene-d8             | Surrogate    | 103%            | 103%            | 103%            | 103%            |
| Hydrocarbons           |              |                 | •               | •               |                 |
| F1 PHCs (C6-C10)       | 25 ug/L      | <25             | <25             | <25             | -               |
| F2 PHCs (C10-C16)      | 100 ug/L     | <100            | <100            | <100            | -               |
| F3 PHCs (C16-C34)      | 100 ug/L     | <100            | <100            | <100            | -               |
| F4 PHCs (C34-C50)      | 100 ug/L     | <100            | <100            | <100            | -               |
|                        |              |                 |                 |                 |                 |



Order #: 2135472

Report Date: 31-Aug-2021

Order Date: 25-Aug-2021

Client: Paterson Group Consulting Engineers Client PO: 32090 **Project Description: PE5397** 

**Method Quality Control: Blank** 

| Analyte                                | Result   | Reporting | Linito       | Source | % DEC | %REC   | RPD | RPD<br>Limit | Notes |
|----------------------------------------|----------|-----------|--------------|--------|-------|--------|-----|--------------|-------|
| ,                                      | Result   | Limit     | Units        | Result | %REC  | Limit  | KYD | Limit        | notes |
| Hydrocarbons                           |          |           |              |        |       |        |     |              |       |
| F1 PHCs (C6-C10)                       | ND       | 25        | ug/L         |        |       |        |     |              |       |
| F2 PHCs (C10-C16)                      | ND       | 100       | ug/L         |        |       |        |     |              |       |
| F3 PHCs (C16-C34)                      | ND       | 100       | ug/L         |        |       |        |     |              |       |
| F4 PHCs (C34-C50)                      | ND       | 100       | ug/L         |        |       |        |     |              |       |
| Volatiles                              |          |           |              |        |       |        |     |              |       |
| Acetone                                | ND       | 5.0       | ug/L         |        |       |        |     |              |       |
| Benzene                                | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| Bromodichloromethane                   | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| Bromoform                              | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| Bromomethane                           | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| Carbon Tetrachloride                   | ND       | 0.2       | ug/L         |        |       |        |     |              |       |
| Chlorobenzene                          | ND<br>ND | 0.5       | ug/L         |        |       |        |     |              |       |
| Chloroform                             | ND<br>ND | 0.5       | ug/L<br>ug/L |        |       |        |     |              |       |
| Dibromochloromethane                   | ND<br>ND | 0.5       | ug/L<br>ug/L |        |       |        |     |              |       |
|                                        |          |           | •            |        |       |        |     |              |       |
| Dichlorodifluoromethane                | ND       | 1.0       | ug/L         |        |       |        |     |              |       |
| 1,2-Dichlorobenzene                    | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| 1,3-Dichlorobenzene                    | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| 1,4-Dichlorobenzene                    | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| 1,1-Dichloroethane                     | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| 1,2-Dichloroethane                     | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| 1,1-Dichloroethylene                   | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| cis-1,2-Dichloroethylene               | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| trans-1,2-Dichloroethylene             | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| 1,2-Dichloropropane                    | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| cis-1,3-Dichloropropylene              | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| trans-1,3-Dichloropropylene            | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| 1,3-Dichloropropene, total             | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| Ethylbenzene                           | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| Ethylene dibromide (dibromoethane, 1,2 | ND       | 0.2       | ug/L         |        |       |        |     |              |       |
| Hexane                                 | ND       | 1.0       | ug/L         |        |       |        |     |              |       |
| Methyl Ethyl Ketone (2-Butanone)       | ND       | 5.0       | ug/L         |        |       |        |     |              |       |
| Methyl Isobutyl Ketone                 | ND       | 5.0       | ug/L         |        |       |        |     |              |       |
| Methyl tert-butyl ether                | ND<br>ND | 2.0       | ug/L         |        |       |        |     |              |       |
| Methylene Chloride                     | ND       | 5.0       | ug/L         |        |       |        |     |              |       |
| Styrene                                | ND<br>ND | 0.5       | ug/L<br>ug/L |        |       |        |     |              |       |
| 1,1,1,2-Tetrachloroethane              | ND<br>ND | 0.5       |              |        |       |        |     |              |       |
|                                        |          |           | ug/L         |        |       |        |     |              |       |
| 1,1,2,2-Tetrachloroethane              | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| Tetrachloroethylene                    | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| Toluene                                | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| 1,1,1-Trichloroethane                  | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| 1,1,2-Trichloroethane                  | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| Trichloroethylene                      | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| Trichlorofluoromethane                 | ND       | 1.0       | ug/L         |        |       |        |     |              |       |
| Vinyl chloride                         | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| m,p-Xylenes                            | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| o-Xylene                               | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| Xylenes, total                         | ND       | 0.5       | ug/L         |        |       |        |     |              |       |
| Surrogate: 4-Bromofluorobenzene        | 68.6     |           | ug/L         |        | 85.7  | 50-140 |     |              |       |
| Surrogate: Dibromofluoromethane        | 59.2     |           | ug/L         |        | 74.0  | 50-140 |     |              |       |
| Surrogate: Toluene-d8                  | 82.8     |           | ug/L         |        | 104   | 50-140 |     |              |       |



Order #: 2135472

Report Date: 31-Aug-2021

Order Date: 25-Aug-2021 **Project Description: PE5397** 

Client: Paterson Group Consulting Engineers

Client PO: 32090

**Method Quality Control: Duplicate** 

| Analysis                                | _        | Reporting  |              | Source   |      | %REC   |          | RPD      |       |
|-----------------------------------------|----------|------------|--------------|----------|------|--------|----------|----------|-------|
| Analyte                                 | Result   | Limit      | Units        | Result   | %REC | Limit  | RPD      | Limit    | Notes |
| Hydrocarbons                            |          |            |              | _        | _    | _      | _        | _        |       |
| F1 PHCs (C6-C10)                        | ND       | 25         | ug/L         |          |      |        | NC       | 30       |       |
| Volatiles                               |          |            | -            |          |      |        |          |          |       |
| Acetone                                 | ND       | 5.0        | ug/L         | ND       |      |        | NC       | 30       |       |
| Benzene                                 | ND<br>ND | 0.5        | ug/L<br>ug/L | ND<br>ND |      |        | NC<br>NC | 30       |       |
| Bromodichloromethane                    | ND<br>ND | 0.5<br>0.5 | ug/L<br>ug/L | ND<br>ND |      |        | NC<br>NC | 30<br>30 |       |
| Bromoform                               | ND<br>ND | 0.5        | ug/L<br>ug/L | ND<br>ND |      |        | NC<br>NC | 30       |       |
| Bromomethane                            | ND<br>ND | 0.5        | ug/L<br>ug/L | ND<br>ND |      |        | NC<br>NC | 30       |       |
| Carbon Tetrachloride                    | ND<br>ND | 0.5        | ug/L<br>ug/L | ND<br>ND |      |        | NC<br>NC | 30       |       |
| Chlorobenzene                           | ND<br>ND | 0.2        | ug/L<br>ug/L | ND       |      |        | NC       | 30       |       |
| Chloroform                              | ND<br>ND | 0.5<br>0.5 | ug/L<br>ug/L | ND<br>ND |      |        | NC<br>NC | 30       |       |
| Dibromochloromethane                    | ND<br>ND | 0.5<br>0.5 | ug/L<br>ug/L | ND<br>ND |      |        | NC<br>NC | 30       |       |
| Dichlorodifluoromethane                 | ND<br>ND | 0.5<br>1.0 | ug/L<br>ug/L | ND<br>ND |      |        | NC<br>NC | 30       |       |
| 1.2-Dichlorobenzene                     | ND<br>ND | 0.5        | -            | ND<br>ND |      |        | NC<br>NC | 30       |       |
| 1,3-Dichlorobenzene 1,3-Dichlorobenzene | ND<br>ND | 0.5<br>0.5 | ug/L<br>ug/L | ND<br>ND |      |        | NC<br>NC | 30<br>30 |       |
| 1,3-Dichlorobenzene 1.4-Dichlorobenzene | ND<br>ND | 0.5<br>0.5 | -            | ND<br>ND |      |        | NC<br>NC | 30<br>30 |       |
| 1,1-Dichlorobenzene 1,1-Dichloroethane  | ND<br>ND | 0.5<br>0.5 | ug/L         | ND<br>ND |      |        | NC<br>NC | 30       |       |
| •                                       | ND<br>ND | 0.5<br>0.5 | ug/L         | ND<br>ND |      |        | NC<br>NC | 30<br>30 |       |
| 1,2-Dichloroethane                      | ND<br>ND | 0.5<br>0.5 | ug/L         | ND<br>ND |      |        | NC<br>NC | 30       |       |
| 1,1-Dichloroethylene                    | ND<br>ND | 0.5<br>0.5 | ug/L         |          |      |        |          | 30<br>30 |       |
| cis-1,2-Dichloroethylene                | ND<br>ND |            | ug/L         | ND<br>ND |      |        | NC<br>NC | 30       |       |
| trans-1,2-Dichloroethylene              |          | 0.5        | ug/L         |          |      |        |          |          |       |
| 1,2-Dichloropropane                     | ND       | 0.5        | ug/L         | ND       |      |        | NC       | 30       |       |
| cis-1,3-Dichloropropylene               | ND       | 0.5        | ug/L         | ND       |      |        | NC       | 30       |       |
| trans-1,3-Dichloropropylene             | ND       | 0.5        | ug/L         | ND       |      |        | NC<br>NC | 30       |       |
| Ethylbenzene                            | ND       | 0.5        | ug/L         | ND       |      |        | NC       | 30       |       |
| Ethylene dibromide (dibromoethane, 1,2  | ND       | 0.2        | ug/L         | ND       |      |        | NC       | 30       |       |
| Hexane Methyl Ethyl Ketone (2 Butenene) | ND       | 1.0        | ug/L         | ND       |      |        | NC       | 30       |       |
| Methyl Ethyl Ketone (2-Butanone)        | ND       | 5.0        | ug/L         | ND       |      |        | NC       | 30       |       |
| Methyl Isobutyl Ketone                  | ND       | 5.0        | ug/L         | ND       |      |        | NC       | 30       |       |
| Methyl tert-butyl ether                 | ND       | 2.0        | ug/L         | ND       |      |        | NC       | 30       |       |
| Methylene Chloride                      | ND       | 5.0        | ug/L         | ND       |      |        | NC       | 30       |       |
| Styrene                                 | ND       | 0.5        | ug/L         | ND       |      |        | NC       | 30       |       |
| 1,1,1,2-Tetrachloroethane               | ND       | 0.5        | ug/L         | ND       |      |        | NC       | 30       |       |
| 1,1,2,2-Tetrachloroethane               | ND       | 0.5        | ug/L         | ND       |      |        | NC       | 30       |       |
| Tetrachloroethylene                     | ND       | 0.5        | ug/L         | ND       |      |        | NC       | 30       |       |
| Toluene                                 | ND       | 0.5        | ug/L         | ND       |      |        | NC       | 30       |       |
| 1,1,1-Trichloroethane                   | ND       | 0.5        | ug/L         | ND       |      |        | NC       | 30       |       |
| 1,1,2-Trichloroethane                   | ND       | 0.5        | ug/L         | ND       |      |        | NC       | 30       |       |
| Trichloroethylene                       | ND       | 0.5        | ug/L         | ND       |      |        | NC       | 30       |       |
| Trichlorofluoromethane                  | ND       | 1.0        | ug/L         | ND       |      |        | NC       | 30       |       |
| Vinyl chloride                          | ND       | 0.5        | ug/L         | ND       |      |        | NC       | 30       |       |
| m,p-Xylenes                             | ND       | 0.5        | ug/L         | ND       |      |        | NC       | 30       |       |
| o-Xylene                                | ND       | 0.5        | ug/L         | ND       |      |        | NC       | 30       |       |
| Surrogate: 4-Bromofluorobenzene         | 80.9     |            | ug/L         |          | 101  | 50-140 |          |          |       |
| Surrogate: Dibromofluoromethane         | 69.2     |            | ug/L         |          | 86.4 | 50-140 |          |          |       |
| Surrogate: Toluene-d8                   | 83.0     |            | ug/L         |          | 104  | 50-140 |          |          |       |



Client PO: 32090

Order #: 2135472

Report Date: 31-Aug-2021 Order Date: 25-Aug-2021

Project Description: PE5397

**Method Quality Control: Spike** 

Client: Paterson Group Consulting Engineers

| Analyte                                                         | Result | Reporting<br>Limit | Units        | Source<br>Result | %REC         | %REC<br>Limit    | RPD | RPD<br>Limit | Notes |
|-----------------------------------------------------------------|--------|--------------------|--------------|------------------|--------------|------------------|-----|--------------|-------|
| lydrocarbons                                                    |        |                    |              |                  |              |                  |     |              |       |
| F1 PHCs (C6-C10)                                                | 1790   | 25                 | ug/L         | ND               | 89.3         | 68-117           |     |              |       |
| F2 PHCs (C10-C16)                                               | 1370   | 100                | ug/L         | ND               | 85.4         | 60-140           |     |              |       |
| F3 PHCs (C16-C34)                                               | 3220   | 100                | ug/L         | ND               | 82.2         | 60-140           |     |              |       |
| F4 PHCs (C34-C50)                                               | 2080   | 100                | ug/L         | ND               | 83.9         | 60-140           |     |              |       |
| /olatiles                                                       |        |                    |              |                  |              |                  |     |              |       |
| Acetone                                                         | 110    | 5.0                | ug/L         | ND               | 110          | 50-140           |     |              |       |
| Benzene                                                         | 31.6   | 0.5                | ug/L         | ND               | 79.1         | 60-130           |     |              |       |
| Bromodichloromethane                                            | 29.0   | 0.5                | ug/L         | ND               | 72.6         | 60-130           |     |              |       |
| Bromoform                                                       | 39.5   | 0.5                | ug/L         | ND               | 98.6         | 60-130           |     |              |       |
| Bromomethane                                                    | 28.0   | 0.5                | ug/L         | ND               | 70.0         | 50-140           |     |              |       |
| Carbon Tetrachloride                                            | 30.3   | 0.2                | ug/L         | ND               | 75.8         | 60-130           |     |              |       |
| Chlorobenzene                                                   | 31.5   | 0.5                | ug/L         | ND               | 78.8         | 60-130           |     |              |       |
| Chloroform                                                      | 31.2   | 0.5                | ug/L         | ND               | 78.1         | 60-130           |     |              |       |
| Dibromochloromethane                                            | 39.9   | 0.5                | ug/L<br>ug/L | ND               | 99.7         | 60-130           |     |              |       |
| Dichlorodifluoromethane                                         | 32.8   | 1.0                | ug/L         | ND               | 82.1         | 50-140           |     |              |       |
| 1,2-Dichlorobenzene                                             | 28.3   | 0.5                | ug/L         | ND               | 70.8         | 60-130           |     |              |       |
| 1,3-Dichlorobenzene                                             | 29.1   | 0.5                | ug/L         | ND               | 70.8         | 60-130           |     |              |       |
| 1,4-Dichlorobenzene                                             | 29.0   | 0.5                | ug/L         | ND               | 72.4         | 60-130           |     |              |       |
| 1,1-Dichloroethane                                              | 33.5   | 0.5                | ug/L<br>ug/L | ND               | 83.6         | 60-130           |     |              |       |
| 1,2-Dichloroethane                                              | 34.1   | 0.5                | ug/L<br>ug/L | ND               | 85.4         | 60-130           |     |              |       |
| 1,1-Dichloroethylene                                            | 29.3   | 0.5                | ug/L<br>ug/L | ND               | 73.3         | 60-130           |     |              |       |
| cis-1,2-Dichloroethylene                                        | 28.1   | 0.5                | _            | ND               | 70.4         | 60-130           |     |              |       |
| •                                                               | 28.2   | 0.5                | ug/L         | ND               | 70.4<br>70.4 | 60-130           |     |              |       |
| trans-1,2-Dichloroethylene                                      | 30.9   | 0.5                | ug/L         | ND               | 70.4<br>77.4 | 60-130           |     |              |       |
| 1,2-Dichloropropane                                             | 34.2   | 0.5                | ug/L         | ND               | 85.6         | 60-130           |     |              |       |
| cis-1,3-Dichloropropylene                                       |        |                    | ug/L         |                  |              |                  |     |              |       |
| trans-1,3-Dichloropropylene                                     | 27.5   | 0.5                | ug/L         | ND               | 68.8         | 60-130           |     |              |       |
| Ethylbenzene                                                    | 29.4   | 0.5                | ug/L         | ND               | 73.6         | 60-130           |     |              |       |
| Ethylene dibromide (dibromoethane, 1,2-                         | 39.7   | 0.2<br>1.0         | ug/L         | ND               | 99.4         | 60-130           |     |              |       |
| Hexane Methyl Ethyl Ketone (2 Butenene)                         | 37.1   | 5.0                | ug/L         | ND               | 92.8         | 60-130<br>50-140 |     |              |       |
| Methyl Ethyl Ketone (2-Butanone)                                | 73.1   |                    | ug/L         | ND               | 73.1         | 50-140           |     |              |       |
| Methyl Isobutyl Ketone                                          | 108    | 5.0                | ug/L         | ND               | 108          | 50-140           |     |              |       |
| Methyl tert-butyl ether                                         | 70.5   | 2.0                | ug/L         | ND               | 70.5         | 50-140           |     |              |       |
| Methylene Chloride                                              | 28.9   | 5.0                | ug/L         | ND               | 72.3         | 60-130           |     |              |       |
| Styrene                                                         | 33.9   | 0.5                | ug/L         | ND               | 84.6         | 60-130           |     |              |       |
| 1,1,1,2-Tetrachloroethane                                       | 41.9   | 0.5                | ug/L         | ND               | 105          | 60-130           |     |              |       |
| 1,1,2,2-Tetrachloroethane                                       | 34.1   | 0.5                | ug/L         | ND               | 85.2         | 60-130           |     |              |       |
| Tetrachloroethylene                                             | 40.4   | 0.5                | ug/L         | ND               | 101          | 60-130           |     |              |       |
| Toluene                                                         | 32.7   | 0.5                | ug/L         | ND               | 81.8         | 60-130           |     |              |       |
| 1,1,1-Trichloroethane                                           | 28.4   | 0.5                | ug/L         | ND               | 71.0         | 60-130           |     |              |       |
| 1,1,2-Trichloroethane                                           | 30.3   | 0.5                | ug/L         | ND               | 75.6         | 60-130           |     |              |       |
| Trichloroffyene                                                 | 27.1   | 0.5                | ug/L         | ND               | 67.8         | 60-130           |     |              |       |
| Trichlorofluoromethane                                          | 33.9   | 1.0                | ug/L         | ND               | 84.7         | 60-130           |     |              |       |
| Vinyl chloride                                                  | 31.0   | 0.5                | ug/L         | ND               | 77.6         | 50-140           |     |              |       |
| m,p-Xylenes                                                     | 61.5   | 0.5                | ug/L         | ND               | 76.9         | 60-130           |     |              |       |
| o-Xylene                                                        | 30.3   | 0.5                | ug/L         | ND               | 75.8         | 60-130           |     |              |       |
| Surrogate: 4-Bromofluorobenzene Surrogate: Dibromofluoromethane | 79.8   |                    | ug/L         |                  | 99.7         | 50-140<br>50-140 |     |              |       |
|                                                                 | 72.4   |                    | ug/L         |                  | 90.5         |                  |     |              |       |



Report Date: 31-Aug-2021 Order Date: 25-Aug-2021

 Client:
 Paterson Group Consulting Engineers
 Order Date: 25-Aug-2021

 Client PO:
 32090
 Project Description: PE5397

# **Qualifier Notes:**

None

Certificate of Analysis

### **Sample Data Revisions**

None

# **Work Order Revisions / Comments:**

None

### **Other Report Notes:**

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

### CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.



Paracel ID: 2135472



Blvd. 4J8

Paracel Order Number (Lab Use Only)

Chain Of Custody Nº 132410

| Client Name (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |              |            |            |                       | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21           | 3      | 5        | 4          | 70        | 1                                       | 1               |        |         |        |            |          |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------|------------|------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|----------|------------|-----------|-----------------------------------------|-----------------|--------|---------|--------|------------|----------|------|
| Contact Name: Name | Group                                  |              | Proje      | ect Ref:   | PE5397                | - /1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | * {    |          | Ē          | J         |                                         | <b>始</b> ,      | uly    | - P     | Page   | of         | į.       |      |
| contact Name: Mark D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Arcy                                   | gt           | Quot       | e #:       | marik Land            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , F          |        |          | ľ          |           |                                         | Turnaround Time |        |         |        |            |          |      |
| Contact Name: Mark D Address: 154 Colonna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | de Rais                                |              | PO #:      | 37         | 2090                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |          |            |           |                                         | □ 1 day □ 3 day |        |         |        |            |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |              |            |            |                       | KP Dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | en           | or     | ar       | 00         | p.0       | 20                                      | -               | ] 2 da | 3V      |        | (          | V        | gula |
| Telephone: 613 - 226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -738                                   | <b>3</b> /27 |            | m          | indreche<br>idancy    | @ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | terroli<br>1 |        | ر/       | ,          | `/        | 1                                       | Date            |        | uired:  |        | _          | 1        |      |
| Regulation 153/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Other Regulation                       | 1            | /latrix    | Type:      | S (Soil/Sed.) GW (Gr  | round Water)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |        |          |            |           |                                         |                 |        |         |        |            |          |      |
| ☐ Table 1 ☐ Res/Park ☐ Med/Fine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ☐ REG 558 ☐ PWQO                       |              |            | ırface '   | Water) SS (Storm/Sar  | nitary Sewer)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |        |          |            |           | 1                                       | Requ            | uired  | Analy   | sis    |            |          |      |
| Table 2 Ind/Comm X Coarse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | □ CCME □ MISA                          |              |            | P (        | Paint) A (Air) O (Oth | er)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |        |          |            |           | T                                       |                 |        |         | T      |            |          |      |
| ☐ Table 3 ☐ Agri/Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SU-Sani SU-Storm                       |              |            | 57.0       | 14 70 - 84            | 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BTEX         |        |          | ١,         | 1-5       |                                         |                 |        | 10.00   | 1 1    |            | 1 1      |      |
| □ Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mun:                                   |              | ne n       | Containers | Sample                | Taken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -F4+BT       |        |          | y ICP      |           |                                         |                 |        |         |        |            |          |      |
| For RSC: ☐ Yes 💢 No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Other:                                 | iż           | Air Volume |            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12           | 1      | s        | als by     | 11 21     |                                         | (HWS)           |        | (C 1)   | 17.00  | 3          | 67       |      |
| Sample ID/Locatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | Matrix       | Air        | # of       | Date                  | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PHCs         | VOCs   | PAHs     | Metals     | Ξ         | S-S                                     | B (H            |        |         | leste  | j. 101     |          |      |
| 1 BH1-21-GN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V                                      | GW           | /          | 3          | 24-AUG-21             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X            | X      |          |            |           |                                         |                 |        |         |        |            |          |      |
| 2 BH2-21-GV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V                                      | ĠW           | /          | 3          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V            | V      |          | П          | $\forall$ | $\dagger$                               | 7               | July   | 1, 1    | - L 3  |            |          |      |
| 3 BH3-21-GV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | And a street of the many of the second | GW           | 1          | 3          |                       | New State of the S | Ŷ            | X      | - 7°     | 7          | 777       | 21 1                                    | 7 7             | - 1    |         | 1 7 17 | y 100 - 11 |          |      |
| 4 DUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | GW           | 1          | 2          | 1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            | X      |          |            | +         | +                                       | +               |        |         | 7      |            |          |      |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | 9,,,         |            | _          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +            | /\     | 1 = / 1= |            |           | +                                       | +               |        |         | 3-82   | . 10. 1    | 90. 7.   | -1   |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | -            | 7.7        | 7          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +            | . 1    | -        | -          | +         | +                                       | +               | _      |         |        |            |          |      |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |              |            |            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +            |        | -        | _          | +         | +                                       | +               |        |         |        |            |          |      |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |              |            | -          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -            |        | -        | -          | +         | +                                       | +               | _      |         |        | 1 1        | 1 1      |      |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                      |              |            |            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н            |        |          | -          | +         | +                                       | +               | _      |         |        |            | $\dashv$ |      |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |              |            |            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н            | -      | -        | -          | +         | +                                       | 4               | _      |         |        |            | $\dashv$ |      |
| omments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |              | _          |            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |          |            | 4         |                                         |                 |        |         | 1      |            |          |      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |              |            |            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |          |            | N         | letho                                   | -               | Delive | •       |        | 1          | '        |      |
| linquished By (Sign):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Received By Dr                         | iver/De      | not:       | ,          |                       | Received at Lab:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5            |        | 1000     | TO SERVICE |           | /                                       | _               | -//    | ACE.    | Z      | La         | KI       | £    |
| 6.1 nunces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | XX                                     | /            | 1          | 1          | COURE                 | deceived at tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |        |          |            | V         | erifie                                  | d By:           | 8      | 0)      | K      |            |          |      |
| linquished By (Print) tesse A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ndrechek Date/Time:                    | 75           | 108        | 1/2        |                       | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2            | 170    | 5:       | 99         | D.        | 184                                     | ime:            | 0 =    | 2001    | 21     | P          | 7.0      | 5    |
| te/Time: 25-AUG-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12PM Temperature:                      | 1            | /          |            |                       | emperature: A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.7          | a de . | °C       |            |           | H Ver                                   | rified.         | -      | By:     | 41     | n          | .0       | 19   |
| hain of Custody (Env.) xlsx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |              |            |            | Revision 3.0          | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U 0          | -      |          | 8000       |           | *************************************** | -               |        | r swell | /\/    | 1+         |          |      |



300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

# Certificate of Analysis

# **Paterson Group Consulting Engineers**

9 Auriga Drive Ottawa, ON K2E 7T9 Attn: Curtis Black

Client PO: 55304 Project: PE4397 Custody: 136592

Report Date: 25-Jul-2022 Order Date: 18-Jul-2022

Order #: 2230061

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

| Paracel ID | Client ID   |
|------------|-------------|
| 2230061-01 | BH1-22-GW1  |
| 2230061-02 | BH2-22-GW1  |
| 2230061-03 | DUP1-22-GW1 |

Approved By:



Dale Robertson, BSc Laboratory Director



Order #: 2230061

Report Date: 25-Jul-2022

 Client:
 Paterson Group Consulting Engineers
 Order Date: 18-Jul-2022

 Client PO:
 55304
 Project Description: PE4397

# **Analysis Summary Table**

| Analysis                   | Method Reference/Description    | Extraction Date | Analysis Date |
|----------------------------|---------------------------------|-----------------|---------------|
| PHC F1                     | CWS Tier 1 - P&T GC-FID         | 19-Jul-22       | 19-Jul-22     |
| PHCs F2 to F4              | CWS Tier 1 - GC-FID, extraction | 22-Jul-22       | 22-Jul-22     |
| REG 153: VOCs by P&T GC/MS | EPA 624 - P&T GC-MS             | 19-Jul-22       | 19-Jul-22     |



Report Date: 25-Jul-2022

Order Date: 18-Jul-2022 **Project Description: PE4397** 

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 55304

|                                          | Client ID:<br>Sample Date:<br>Sample ID:<br>MDL/Units | BH1-22-GW1<br>15-Jul-22 09:00<br>2230061-01<br>Water | BH2-22-GW1<br>15-Jul-22 09:00<br>2230061-02<br>Water | DUP1-22-GW1<br>15-Jul-22 09:00<br>2230061-03<br>Water | -<br>-<br>- |
|------------------------------------------|-------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-------------|
| Volatiles                                |                                                       |                                                      | !                                                    | !                                                     |             |
| Acetone                                  | 5.0 ug/L                                              | <5.0                                                 | <5.0                                                 | <5.0                                                  | -           |
| Benzene                                  | 0.5 ug/L                                              | <0.5                                                 | <0.5                                                 | <0.5                                                  | -           |
| Bromodichloromethane                     | 0.5 ug/L                                              | <0.5                                                 | <0.5                                                 | <0.5                                                  | -           |
| Bromoform                                | 0.5 ug/L                                              | <0.5                                                 | <0.5                                                 | <0.5                                                  | -           |
| Bromomethane                             | 0.5 ug/L                                              | <0.5                                                 | <0.5                                                 | <0.5                                                  | -           |
| Carbon Tetrachloride                     | 0.2 ug/L                                              | <0.2                                                 | <0.2                                                 | <0.2                                                  | -           |
| Chlorobenzene                            | 0.5 ug/L                                              | <0.5                                                 | <0.5                                                 | <0.5                                                  | -           |
| Chloroform                               | 0.5 ug/L                                              | <0.5                                                 | <0.5                                                 | <0.5                                                  | -           |
| Dibromochloromethane                     | 0.5 ug/L                                              | <0.5                                                 | <0.5                                                 | <0.5                                                  | -           |
| Dichlorodifluoromethane                  | 1.0 ug/L                                              | <1.0                                                 | <1.0                                                 | <1.0                                                  | -           |
| 1,2-Dichlorobenzene                      | 0.5 ug/L                                              | <0.5                                                 | <0.5                                                 | <0.5                                                  | -           |
| 1,3-Dichlorobenzene                      | 0.5 ug/L                                              | <0.5                                                 | <0.5                                                 | <0.5                                                  | -           |
| 1,4-Dichlorobenzene                      | 0.5 ug/L                                              | <0.5                                                 | <0.5                                                 | <0.5                                                  | -           |
| 1,1-Dichloroethane                       | 0.5 ug/L                                              | <0.5                                                 | <0.5                                                 | <0.5                                                  | -           |
| 1,2-Dichloroethane                       | 0.5 ug/L                                              | <0.5                                                 | <0.5                                                 | <0.5                                                  | -           |
| 1,1-Dichloroethylene                     | 0.5 ug/L                                              | <0.5                                                 | <0.5                                                 | <0.5                                                  | -           |
| cis-1,2-Dichloroethylene                 | 0.5 ug/L                                              | <0.5                                                 | <0.5                                                 | <0.5                                                  | -           |
| trans-1,2-Dichloroethylene               | 0.5 ug/L                                              | <0.5                                                 | <0.5                                                 | <0.5                                                  | -           |
| 1,2-Dichloropropane                      | 0.5 ug/L                                              | <0.5                                                 | <0.5                                                 | <0.5                                                  | -           |
| cis-1,3-Dichloropropylene                | 0.5 ug/L                                              | <0.5                                                 | <0.5                                                 | <0.5                                                  | -           |
| trans-1,3-Dichloropropylene              | 0.5 ug/L                                              | <0.5                                                 | <0.5                                                 | <0.5                                                  | -           |
| 1,3-Dichloropropene, total               | 0.5 ug/L                                              | <0.5                                                 | <0.5                                                 | <0.5                                                  | -           |
| Ethylbenzene                             | 0.5 ug/L                                              | <0.5                                                 | <0.5                                                 | <0.5                                                  | -           |
| Ethylene dibromide (dibromoethane, 1,2-) | 0.2 ug/L                                              | <0.2                                                 | <0.2                                                 | <0.2                                                  | -           |
| Hexane                                   | 1.0 ug/L                                              | <1.0                                                 | <1.0                                                 | <1.0                                                  | -           |
| Methyl Ethyl Ketone (2-Butanone)         | 5.0 ug/L                                              | <5.0                                                 | <5.0                                                 | <5.0                                                  | -           |
| Methyl Isobutyl Ketone                   | 5.0 ug/L                                              | <5.0                                                 | <5.0                                                 | <5.0                                                  | -           |
| Methyl tert-butyl ether                  | 2.0 ug/L                                              | <2.0                                                 | <2.0                                                 | <2.0                                                  | -           |
| Methylene Chloride                       | 5.0 ug/L                                              | <5.0                                                 | <5.0                                                 | <5.0                                                  | -           |
| Styrene                                  | 0.5 ug/L                                              | <0.5                                                 | <0.5                                                 | <0.5                                                  | -           |
| 1,1,1,2-Tetrachloroethane                | 0.5 ug/L                                              | <0.5                                                 | <0.5                                                 | <0.5                                                  | -           |
| 1,1,2,2-Tetrachloroethane                | 0.5 ug/L                                              | <0.5                                                 | <0.5                                                 | <0.5                                                  | -           |
| Tetrachloroethylene                      | 0.5 ug/L                                              | <0.5                                                 | <0.5                                                 | <0.5                                                  | -           |
| Toluene                                  | 0.5 ug/L                                              | <0.5                                                 | <0.5                                                 | <0.5                                                  | -           |
| 1,1,1-Trichloroethane                    | 0.5 ug/L                                              | <0.5                                                 | <0.5                                                 | <0.5                                                  | -           |



Order #: 2230061

Report Date: 25-Jul-2022

Order Date: 18-Jul-2022

Client PO: 55304

Client: Paterson Group Consulting Engineers

**Project Description: PE4397** 

|                        | Client ID:<br>Sample Date:<br>Sample ID: | BH1-22-GW1<br>15-Jul-22 09:00<br>2230061-01 | BH2-22-GW1<br>15-Jul-22 09:00<br>2230061-02 | DUP1-22-GW1<br>15-Jul-22 09:00<br>2230061-03 | -<br>-<br>- |
|------------------------|------------------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------------|-------------|
|                        | MDL/Units                                | Water                                       | Water                                       | Water                                        | -           |
| 1,1,2-Trichloroethane  | 0.5 ug/L                                 | <0.5                                        | <0.5                                        | <0.5                                         | -           |
| Trichloroethylene      | 0.5 ug/L                                 | <0.5                                        | <0.5                                        | <0.5                                         | -           |
| Trichlorofluoromethane | 1.0 ug/L                                 | <1.0                                        | <1.0                                        | <1.0                                         | -           |
| Vinyl chloride         | 0.5 ug/L                                 | <0.5                                        | <0.5                                        | <0.5                                         | -           |
| m,p-Xylenes            | 0.5 ug/L                                 | <0.5                                        | <0.5                                        | <0.5                                         | -           |
| o-Xylene               | 0.5 ug/L                                 | <0.5                                        | <0.5                                        | <0.5                                         | -           |
| Xylenes, total         | 0.5 ug/L                                 | <0.5                                        | <0.5                                        | <0.5                                         | -           |
| 4-Bromofluorobenzene   | Surrogate                                | 93.8%                                       | 93.2%                                       | 92.5%                                        | -           |
| Dibromofluoromethane   | Surrogate                                | 83.0%                                       | 78.2%                                       | 80.4%                                        | -           |
| Toluene-d8             | Surrogate                                | 103%                                        | 104%                                        | 104%                                         | -           |
| Hydrocarbons           |                                          |                                             | •                                           |                                              | •           |
| F1 PHCs (C6-C10)       | 25 ug/L                                  | <25                                         | <25                                         | <25                                          | -           |
| F2 PHCs (C10-C16)      | 100 ug/L                                 | <100                                        | <100                                        | <100                                         | -           |
| F3 PHCs (C16-C34)      | 100 ug/L                                 | <100                                        | <100                                        | <100                                         | -           |
| F4 PHCs (C34-C50)      | 100 ug/L                                 | <100                                        | <100                                        | <100                                         | -           |



Order #: 2230061

Report Date: 25-Jul-2022

Order Date: 18-Jul-2022

Project Description: PE4397

Client: Paterson Group Consulting Engineers

Client PO: 55304

**Method Quality Control: Blank** 

|                                        |        | Reporting |       | Source |      | %REC   |     | RPD   |       |
|----------------------------------------|--------|-----------|-------|--------|------|--------|-----|-------|-------|
| Analyte                                | Result | Limit     | Units | Result | %REC | Limit  | RPD | Limit | Notes |
| Hydrocarbons                           |        |           |       |        |      |        |     |       |       |
| F1 PHCs (C6-C10)                       | ND     | 25        | ug/L  |        |      |        |     |       |       |
| F2 PHCs (C10-C16)                      | ND     | 100       | ug/L  |        |      |        |     |       |       |
| F3 PHCs (C16-C34)                      | ND     | 100       | ug/L  |        |      |        |     |       |       |
| F4 PHCs (C34-C50)                      | ND     | 100       | ug/L  |        |      |        |     |       |       |
| Volatiles                              |        |           |       |        |      |        |     |       |       |
| Acetone                                | ND     | 5.0       | ug/L  |        |      |        |     |       |       |
| Benzene                                | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| Bromodichloromethane                   | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| Bromoform                              | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| Bromomethane                           | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| Carbon Tetrachloride                   | ND     | 0.2       | ug/L  |        |      |        |     |       |       |
| Chlorobenzene                          | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| Chloroform                             | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| Dibromochloromethane                   | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| Dichlorodifluoromethane                | ND     | 1.0       | ug/L  |        |      |        |     |       |       |
| 1,2-Dichlorobenzene                    | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| 1,3-Dichlorobenzene                    | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| 1,4-Dichlorobenzene                    | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| 1,1-Dichloroethane                     | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| 1,2-Dichloroethane                     | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| 1,1-Dichloroethylene                   | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| cis-1,2-Dichloroethylene               | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| trans-1,2-Dichloroethylene             | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| 1,2-Dichloropropane                    | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| cis-1,3-Dichloropropylene              | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| trans-1,3-Dichloropropylene            | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| 1,3-Dichloropropene, total             | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| Ethylbenzene                           | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| Ethylene dibromide (dibromoethane, 1,2 | ND     | 0.2       | ug/L  |        |      |        |     |       |       |
| Hexane                                 | ND     | 1.0       | ug/L  |        |      |        |     |       |       |
| Methyl Ethyl Ketone (2-Butanone)       | ND     | 5.0       | ug/L  |        |      |        |     |       |       |
| Methyl Isobutyl Ketone                 | ND     | 5.0       | ug/L  |        |      |        |     |       |       |
| Methyl tert-butyl ether                | ND     | 2.0       | ug/L  |        |      |        |     |       |       |
| Methylene Chloride                     | ND     | 5.0       | ug/L  |        |      |        |     |       |       |
| Styrene                                | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| 1,1,1,2-Tetrachloroethane              | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| 1,1,2,2-Tetrachloroethane              | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| Tetrachloroethylene                    | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| Toluene                                | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| 1,1,1-Trichloroethane                  | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| 1,1,2-Trichloroethane                  | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| Trichlorethylene                       | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| Trichlorofluoromethane                 | ND     | 1.0       | ug/L  |        |      |        |     |       |       |
| Vinyl chloride                         | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| m,p-Xylenes                            | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| o-Xylene                               | ND     | 0.5       | ug/L  |        |      |        |     |       |       |
| Xylenes, total                         | ND     | 0.5       | ug/L  |        | 04.2 | E0 440 |     |       |       |
| Surrogate: 4-Bromofluorobenzene        | 75.4   |           | ug/L  |        | 94.3 | 50-140 |     |       |       |
| Surrogate: Dibromofluoromethane        | 67.0   |           | ug/L  |        | 83.8 | 50-140 |     |       |       |
| Surrogate: Toluene-d8                  | 83.9   |           | ug/L  |        | 105  | 50-140 |     |       |       |



Report Date: 25-Jul-2022 Order Date: 18-Jul-2022

Project Description: PE4397

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 55304

# **Method Quality Control: Duplicate**

|                                        |        | Reporting |       | Source |      | %REC   |     | RPD   |       |
|----------------------------------------|--------|-----------|-------|--------|------|--------|-----|-------|-------|
| Analyte                                | Result | Limit     | Units | Result | %REC | Limit  | RPD | Limit | Notes |
| Hydrocarbons                           |        |           |       |        |      |        |     |       |       |
| F1 PHCs (C6-C10)                       | ND     | 25        | ug/L  | ND     |      |        | NC  | 30    |       |
| Volatiles                              |        |           | -     |        |      |        |     |       |       |
| Acetone                                | ND     | 5.0       | ug/L  | ND     |      |        | NC  | 30    |       |
| Benzene                                | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| Bromodichloromethane                   | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| Bromoform                              | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| Bromomethane                           | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| Carbon Tetrachloride                   | ND     | 0.2       | ug/L  | ND     |      |        | NC  | 30    |       |
| Chlorobenzene                          | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| Chloroform                             | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| Dibromochloromethane                   | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| Dichlorodifluoromethane                | ND     | 1.0       | ug/L  | ND     |      |        | NC  | 30    |       |
| 1,2-Dichlorobenzene                    | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| 1,3-Dichlorobenzene                    | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| 1,4-Dichlorobenzene                    | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| 1,1-Dichloroethane                     | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| 1,2-Dichloroethane                     | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| 1,1-Dichloroethylene                   | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| cis-1,2-Dichloroethylene               | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| trans-1,2-Dichloroethylene             | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| 1,2-Dichloropropane                    | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| cis-1,3-Dichloropropylene              | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| trans-1,3-Dichloropropylene            | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| Ethylbenzene                           | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| Ethylene dibromide (dibromoethane, 1,2 | ND     | 0.2       | ug/L  | ND     |      |        | NC  | 30    |       |
| Hexane                                 | ND     | 1.0       | ug/L  | ND     |      |        | NC  | 30    |       |
| Methyl Ethyl Ketone (2-Butanone)       | ND     | 5.0       | ug/L  | ND     |      |        | NC  | 30    |       |
| Methyl Isobutyl Ketone                 | ND     | 5.0       | ug/L  | ND     |      |        | NC  | 30    |       |
| Methyl tert-butyl ether                | ND     | 2.0       | ug/L  | ND     |      |        | NC  | 30    |       |
| Methylene Chloride                     | ND     | 5.0       | ug/L  | ND     |      |        | NC  | 30    |       |
| Styrene                                | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| 1,1,1,2-Tetrachloroethane              | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| 1,1,2,2-Tetrachloroethane              | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| Tetrachloroethylene                    | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| Toluene                                | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| 1,1,1-Trichloroethane                  | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| 1,1,2-Trichloroethane                  | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| Trichloroethylene                      | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| Trichlorofluoromethane                 | ND     | 1.0       | ug/L  | ND     |      |        | NC  | 30    |       |
| Vinyl chloride                         | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| m,p-Xylenes                            | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| o-Xylene                               | ND     | 0.5       | ug/L  | ND     |      |        | NC  | 30    |       |
| Surrogate: 4-Bromofluorobenzene        | 74.2   |           | ug/L  |        | 92.7 | 50-140 |     |       |       |
| Surrogate: Dibromofluoromethane        | 65.3   |           | ug/L  |        | 81.6 | 50-140 |     |       |       |
| Surrogate: Toluene-d8                  | 83.3   |           | ug/L  |        | 104  | 50-140 |     |       |       |



Report Date: 25-Jul-2022 Order Date: 18-Jul-2022

Project Description: PE4397

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 55304

# **Method Quality Control: Spike**

| Analyte                                | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|----------------------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Hydrocarbons                           |        |                    |       |                  |      |               |     |              |       |
| F1 PHCs (C6-C10)                       | 1640   | 25                 | ug/L  | ND               | 82.1 | 68-117        |     |              |       |
| F2 PHCs (C10-C16)                      | 1620   | 100                | ug/L  | ND               | 101  | 60-140        |     |              |       |
| F3 PHCs (C16-C34)                      | 4310   | 100                | ug/L  | ND               | 110  | 60-140        |     |              |       |
| F4 PHCs (C34-C50)                      | 2630   | 100                | ug/L  | ND               | 106  | 60-140        |     |              |       |
| /olatiles                              |        |                    |       |                  |      |               |     |              |       |
| Acetone                                | 88.3   | 5.0                | ug/L  | ND               | 88.3 | 50-140        |     |              |       |
| Benzene                                | 38.8   | 0.5                | ug/L  | ND               | 97.1 | 60-130        |     |              |       |
| Bromodichloromethane                   | 33.5   | 0.5                | ug/L  | ND               | 83.8 | 60-130        |     |              |       |
| Bromoform                              | 42.6   | 0.5                | ug/L  | ND               | 106  | 60-130        |     |              |       |
| Bromomethane                           | 35.4   | 0.5                | ug/L  | ND               | 88.4 | 50-140        |     |              |       |
| Carbon Tetrachloride                   | 37.2   | 0.2                | ug/L  | ND               | 93.0 | 60-130        |     |              |       |
| Chlorobenzene                          | 38.5   | 0.5                | ug/L  | ND               | 96.2 | 60-130        |     |              |       |
| Chloroform                             | 32.3   | 0.5                | ug/L  | ND               | 80.8 | 60-130        |     |              |       |
| Dibromochloromethane                   | 42.0   | 0.5                | ug/L  | ND               | 105  | 60-130        |     |              |       |
| Dichlorodifluoromethane                | 46.5   | 1.0                | ug/L  | ND               | 116  | 50-140        |     |              |       |
| 1,2-Dichlorobenzene                    | 37.1   | 0.5                | ug/L  | ND               | 92.8 | 60-130        |     |              |       |
| 1,3-Dichlorobenzene                    | 33.4   | 0.5                | ug/L  | ND               | 83.5 | 60-130        |     |              |       |
| 1,4-Dichlorobenzene                    | 35.0   | 0.5                | ug/L  | ND               | 87.4 | 60-130        |     |              |       |
| 1,1-Dichloroethane                     | 34.2   | 0.5                | ug/L  | ND               | 85.5 | 60-130        |     |              |       |
| 1,2-Dichloroethane                     | 40.3   | 0.5                | ug/L  | ND               | 101  | 60-130        |     |              |       |
| 1,1-Dichloroethylene                   | 30.0   | 0.5                | ug/L  | ND               | 75.0 | 60-130        |     |              |       |
| cis-1,2-Dichloroethylene               | 31.4   | 0.5                | ug/L  | ND               | 78.4 | 60-130        |     |              |       |
| trans-1,2-Dichloroethylene             | 34.8   | 0.5                | ug/L  | ND               | 87.1 | 60-130        |     |              |       |
| 1,2-Dichloropropane                    | 38.9   | 0.5                | ug/L  | ND               | 97.3 | 60-130        |     |              |       |
| cis-1,3-Dichloropropylene              | 43.5   | 0.5                | ug/L  | ND               | 109  | 60-130        |     |              |       |
| trans-1,3-Dichloropropylene            | 43.8   | 0.5                | ug/L  | ND               | 109  | 60-130        |     |              |       |
| Ethylbenzene                           | 39.2   | 0.5                | ug/L  | ND               | 98.1 | 60-130        |     |              |       |
| Ethylene dibromide (dibromoethane, 1,2 | 39.2   | 0.2                | ug/L  | ND               | 98.0 | 60-130        |     |              |       |
| Hexane                                 | 45.3   | 1.0                | ug/L  | ND               | 113  | 60-130        |     |              |       |
| Methyl Ethyl Ketone (2-Butanone)       | 102    | 5.0                | ug/L  | ND               | 102  | 50-140        |     |              |       |
| Methyl Isobutyl Ketone                 | 117    | 5.0                | ug/L  | ND               | 117  | 50-140        |     |              |       |
| Methyl tert-butyl ether                | 112    | 2.0                | ug/L  | ND               | 112  | 50-140        |     |              |       |
| Methylene Chloride                     | 35.5   | 5.0                | ug/L  | ND               | 88.7 | 60-130        |     |              |       |
| Styrene                                | 31.1   | 0.5                | ug/L  | ND               | 77.8 | 60-130        |     |              |       |
| 1,1,1,2-Tetrachloroethane              | 44.0   | 0.5                | ug/L  | ND               | 110  | 60-130        |     |              |       |
| 1,1,2,2-Tetrachloroethane              | 45.8   | 0.5                | ug/L  | ND               | 114  | 60-130        |     |              |       |
| Tetrachloroethylene                    | 34.6   | 0.5                | ug/L  | ND               | 86.4 | 60-130        |     |              |       |
| Toluene                                | 38.7   | 0.5                | ug/L  | ND               | 96.7 | 60-130        |     |              |       |
| 1,1,1-Trichloroethane                  | 39.2   | 0.5                | ug/L  | ND               | 98.1 | 60-130        |     |              |       |
| 1,1,2-Trichloroethane                  | 38.3   | 0.5                | ug/L  | ND               | 95.8 | 60-130        |     |              |       |
| Trichloroethylene                      | 34.9   | 0.5                | ug/L  | ND               | 87.2 | 60-130        |     |              |       |
| Trichlorofluoromethane                 | 29.7   | 1.0                | ug/L  | ND               | 74.2 | 60-130        |     |              |       |
| Vinyl chloride                         | 26.4   | 0.5                | ug/L  | ND               | 66.1 | 50-140        |     |              |       |
| m,p-Xylenes                            | 75.7   | 0.5                | ug/L  | ND               | 94.7 | 60-130        |     |              |       |
| o-Xylene                               | 39.0   | 0.5                | ug/L  | ND               | 97.6 | 60-130        |     |              |       |
| Surrogate: 4-Bromofluorobenzene        | 73.8   |                    | ug/L  |                  | 92.2 | 50-140        |     |              |       |
| Surrogate: Dibromofluoromethane        | 55.5   |                    | ug/L  |                  | 69.4 | 50-140        |     |              |       |
| Surrogate: Toluene-d8                  | 81.3   |                    | ug/L  |                  | 102  | 50-140        |     |              |       |



Client: Paterson Group Consulting Engineers

Order #: 2230061

Report Date: 25-Jul-2022 Order Date: 18-Jul-2022

Client PO: 55304 Project Description: PE4397

**Qualifier Notes:** 

None

# **Sample Data Revisions**

Certificate of Analysis

None

# **Work Order Revisions / Comments:**

None

### **Other Report Notes:**

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

# CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.





Chain Of Custody (Lab Use Only)

| LABORATORIES          | LTD. I | RELIABLE. |                   |                  |
|-----------------------|--------|-----------|-------------------|------------------|
| Client Name: Paterson |        | Proj      | ject Ref: PE 4397 | Page <u>1</u> of |
| 1000307               |        | 0         | ato H.            | Turnaround T     |

| Contact Name: Cutis Black.  Address: 9 Auriga Delue, Nopean. |                            |        | Quote #: PO #: 55304                                                          |               |                     |                |            |      |      |               |                | Turnaround Time |                  |           |                  |              |          |
|--------------------------------------------------------------|----------------------------|--------|-------------------------------------------------------------------------------|---------------|---------------------|----------------|------------|------|------|---------------|----------------|-----------------|------------------|-----------|------------------|--------------|----------|
|                                                              |                            |        |                                                                               |               |                     |                |            |      |      |               |                | ☐ 1 day         |                  |           |                  | ☐ 3 day      |          |
| . 1                                                          | mwitteman@patersongroup.ca |        |                                                                               |               |                     |                |            |      |      |               | ☐ 2 day        |                 |                  | 59        | <b>⊠</b> Regular |              |          |
| Telephone: 613 226 1381                                      |                            |        |                                                                               |               |                     |                |            |      |      |               | Date Required: |                 |                  |           |                  |              |          |
| ▶ REG 153/04 ☐ REG 406/19 Other Regulation                   |                            |        | Matrix Type: \$ (Soil/Sed.) (W) Ground Water)                                 |               |                     |                |            | Re   |      |               |                |                 | equired Analysis |           |                  |              |          |
| ☐ Table 1 🗵 Res/Park ☐ Med/Fine ☐ REG 558 ☐ PWQO             |                            | S      | SW (Surface Water) SS (Storm/Sanitary Sewer)  P (Paint) A (Air) O (Other)   × |               |                     |                |            |      |      |               |                |                 |                  |           |                  | $\top$       |          |
| ☑ Table 2 ☐ Ind/Comm ☒ Coarse                                | □ CCME □ MISA              |        |                                                                               | P (P          | aint) A (Air) O (Ot | ner;           | F1-F4+BTEX |      |      |               |                |                 |                  |           |                  |              |          |
| ☐ Table 3 ☐ Agri/Other                                       | ☐ SU-Sani ☐ SU-Storm       |        |                                                                               | ers           |                     |                | 4+B        |      |      | ICP           |                |                 |                  |           | - 1              |              |          |
| □ Table .                                                    | Mun:                       |        | au.                                                                           | of Containers | Sample              | Taken          | F1-F       |      |      | Metals by ICP |                |                 | (S)              |           |                  |              |          |
| For RSC: Yes No                                              | Other:                     | Matrix | Air Volume                                                                    | f Co          |                     |                | PHCs       | VOCs | PAHS | etals         | 0              | CrZ             | (HWS)            |           |                  |              |          |
| Sample ID/Locatio                                            | n Name                     | Š      | Ą                                                                             | 11:           | Date                | Time           | ā          | ×    | ğ    | Σ             | Ε̈́Ε           | Ö               | 8                |           | $\dashv$         | +            | $\dashv$ |
| 1 BHI-22-GW1                                                 |                            | GW     |                                                                               | 3             | July 15             | 9:00 AM        | У          | X    |      |               |                |                 | _                | $\square$ | +                | +            | _        |
| 2 8H2-22-GW1                                                 |                            | GW     |                                                                               | 3             | 0                   |                | Χ          | Х    |      |               |                | _               |                  |           | $\dashv$         | $\dashv$     | $\perp$  |
| 3 DUPI - 2Z - GW                                             | /4                         | GW     |                                                                               | 3             | 1                   | - <i>V</i>     | λ          | X    |      |               |                |                 |                  |           |                  | $\downarrow$ |          |
| 4                                                            |                            |        |                                                                               |               |                     |                |            |      |      |               |                |                 |                  |           |                  |              |          |
| 5                                                            |                            |        |                                                                               |               |                     |                |            |      |      |               |                |                 |                  |           |                  |              |          |
| 6                                                            |                            | +      |                                                                               |               |                     |                |            |      |      |               |                |                 |                  |           |                  |              |          |
|                                                              |                            | +      | -                                                                             |               |                     |                | $\dagger$  |      |      |               |                |                 |                  | $\Box$    |                  |              |          |
| 7                                                            |                            | 12     | -                                                                             | -             |                     |                | $\vdash$   | +    | -    |               |                | $\vdash$        |                  | $\Box$    |                  | $\dashv$     |          |
| 8                                                            |                            | -      | -                                                                             | -             |                     |                | +          | -    |      | -             |                |                 |                  | $\vdash$  |                  | +            |          |
| 9 1                                                          |                            | -      | -                                                                             | -             |                     |                | +          | -    | -    | -             |                | -               | +                | $\vdash$  | $\vdash$         | +            | _        |
| 10                                                           |                            |        |                                                                               |               |                     |                |            |      |      |               |                | 1.60            |                  |           |                  |              |          |
| Comments:                                                    |                            |        |                                                                               |               |                     | 2              |            |      |      |               | Meth           | od of D         | elivery<br>AU    | T<br>GCEL | . 4              | l<br>OUL     | VIEC     |
| Relinquished By (Sign): Relinquished By (Sign):              | Received By I              |        | _                                                                             | /             | Tease               | Received (100) |            | 2    | 7    |               | Verifi         | /               | Ce               | 7         | _                |              |          |
| Relinquished By (Print): Curt's Bla                          | . L Date/Time:             | 18/    | 07                                                                            | 1/2           | 7 143               | Date/Time:     | 8/8        | 72   | 2:   | 200           | Date/          | Time            | dи               | 18/       | 22               | 3            | :020     |
| - in                                                         | 12:00 PM . Temperature     | 1      | -                                                                             | ~             | 2 1:43<br>° PH.     | Temperature:   | 13         | °C   |      |               | pH V           | erified:        | 7                | By:       | N                | A            | 1        |
| Date/Time: July 18, 2022 Chain of Custody (Bry) xlsx         |                            |        |                                                                               |               | Revision 4.0        |                |            |      |      |               |                |                 |                  |           |                  |              |          |