

Phase Two Environmental Site Assessment 56 Capilano Drive, Ottawa, Ontario

Client:

McDonald Brothers Consulting Inc.

Type of Document:

Final

Project Name:

Phase Two Environmental Site Assessment

Project Number:

OTT-22003851-A0

Prepared By: Leah Wells, P.Eng.

Reviewed By: Mark McCalla, P.Geo.

EXP Services Inc. 100-2650 Queensview Drive Ottawa, Ontario K2B 8H6 t: +1.613.688.1899 f: +1.613.225.7337

Date Submitted:

2022-05-27

Legal Notification

This report was prepared by EXP Services Inc. for the account of McDonald Brothers Consulting Inc.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

Executive Summary

EXP Services Inc. (EXP) was retained by McDonald Brothers Consulting Inc. to conduct a Phase Two Environmental Site Assessment (ESA) at 56 Capilano Drive in Ottawa, Ontario (hereinafter referred to as the 'Phase Two property'). At the time of the investigation, the Phase Two property was vacant.

The objective of the Phase Two ESA investigation was to assess the quality of the soil conditions within the area of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP. It is understood that the report will be used to support a site zoning amendment with the City of Ottawa.

This report has been prepared in accordance with the Phase Two ESA standard as defined by Ontario Regulation 153/04 (as amended), and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

The Phase Two property has the municipal address 56 Capilano Drive in Ottawa. The Phase Two property is located on the south side of Capilano Drive, approximately 120 m east of Merivale Road. The Phase Two property is rectangular in shape with an area of approximately 0.28 hectares and consists of a manicured lawn.

The legal description of the Phase Two property is Part of Lot 15, Plan 356 being Part 2 on Plan 4R-27938, City of Ottawa. The Phase Two property has the property identification number (PIN) 046780068.

The Phase Two property, and all other properties located, in whole or in part, within 250 metres of the boundaries of the Phase Two property, are supplied by a municipal drinking water system provided by the City of Ottawa. Further, the Phase Two property is not located in an area designated in the municipal official plan as a well-head protection area and no properties within the Phase Two study area have a well that is being used or is intended for use as a source of potable water. Thus, in accordance with Section 35 of Ontario Regulation 153/04, non-potable water standards apply to the Phase Two property.

In accordance with Section 41 of Ontario Regulation 153/04, the Phase Two property is not an environmentally sensitive area. In addition, the Phase Two property is not located within an area of natural significance, and it does not include land that is within 30 metres of an area of natural significance.

The Phase Two property is not a shallow soil property as defined in Section 43.1 of the regulation. It does not include all or part of a water body or is adjacent to a water body or includes land that is within 30 metres of a water body.

Bedrock in the general area of the Phase Two property consists of dolostone and sandstone of the Beekmantown Group. Native surficial soil consists of sandy silt till. The ground surface is approximately 95 metres above sea level (masl).

The well records for the area have identified the bedrock as grey limestone. Based on previous investigations, the depth to the bedrock on the Phase Two property is approximately 2.5 metres below grade.

The groundwater flow direction is anticipated to be northeast, towards the Rideau River.

The following PCAs were identified:

- PCA 1 1537 Merivale Road (80 m west) Former gas station (PCA #28 Gasoline and Associated Products Storage
 in Fixed Tanks);
- PCA 2 1533 Merivale Road (100 m northwest) Automotive service shop with historic UST (PCA #10 Commercial Autobody Shops, PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 3 1507 Merivale Road (210 m northwest) Automotive service shop with historic UST (PCA #10 Commercial Autobody Shops, PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks);

- PCA 4 1516 Merivale Road (170 m northwest) Former dry cleaner (PCA#37 Operation of Dry-Cleaning Equipment);
- PCA 5 56 Capilano Drive (Phase One property) Previous investigation identified fill material on the Phase One property (PCA #30 – Importation of Fill Material of Unknown Quality);
- PCA 6 1541 Merivale Road (west adjacent) Presence of PHC impacted soil and groundwater (#Other PHC contaminant plume);
- PCA 7 1543 Merivale Road (100 m west) Active gas station (PCA #28 Gasoline and Associated Products Storage
 in Fixed Tanks);
- PCA 8 1509 Merivale Road (170 m northwest) Active dry cleaner that has been in operation since at least 1964 (PCA #37 – Operation of Dry Cleaning Equipment (where chemicals are used);
- PCA 9 1509 Merivale Road (130 m northwest) Former furnace oil UST on the east side of the building (PCA #28 –
 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 10 1545 Merivale Road (southwest adjacent) Former gas station (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 10 1541 Merivale Road (west adjacent) Former dry cleaner (PCA #37 Operation of Dry Cleaning Equipment (where chemicals are used);
- PCA 11 1545 Merivale Road (70 m southwest) Former gas station (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 12 1545 Merivale Road (southwest adjacent) Historic furnace oil spill (#Other furnace oil spill); and
- PCA 13 1548 Merivale Road (170 m southwest) Active gas station (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks.

Since the inferred groundwater flow direction is to the northeast, the properties within the Phase One study area northeast of the Phase Two property were considered to be hydraulically down-gradient; and the properties to the north and south of the Site were considered to be hydraulically trans-gradient to the Phase Two property.

Furthermore, any PCAs located significantly distant (greater than 100 m) from the Phase Two property were considered to be too distant to be contributing to an APEC on the Phase Two property.

In addition, several of the PCAs identified have been investigated and areas of impact delineated. Since soil and groundwater samples taken from the neighbouring property to the west near the property line were non-detect for the contaminants of concern in 2018, it can be inferred that the contamination found in the west part of the neighbouring site has not migrated onto the Phase Two property.

Ontario Regulation 153/04 defines an APEC as an area on a property where one or more contaminants are potentially present. The following APEC were identified on the Phase Two property, as shown in Table EX-1:

Table EX-1: Areas of Potential Environmental Concern

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
APEC#1	Entire Phase One property	PCA#30 – Importation of Fill Material of Unknown Quality	On-Site	Metals, petroleum hydrocarbons (PHC), polycyclic aromatic hydrocarbons (PAH), Volatile organic compounds (VOC)	Soil

The site investigative activities consisted of the excavation of test pits to facilitate the collection of soil samples for visual inspection and chemical analysis.

Prior to the commencement of excavation, the locations of underground public utilities including telephone, natural gas and electrical lines were marked at the subject property by public locating companies. A private utility locating contractor was also retained to clear the individual test pit locations.

Six test pits (TP22-1 to TP22-6) were advanced at the Phase Two property by Lacroix Equipment Rentals Ltd. (Lacroix) under the full-time supervision of EXP staff. Test pits were excavated to refusal on bedrock surface. Grab soil samples from the excavator bucket were collected from the fill layer. All soil samples were visually examined in the field for textural classification, logged, preserved in plastic bags and identified.

Six soil samples and a blind duplicate were collected from the fill material and submitted to Caduceon for analysis of PHC, PAH, VOC, and metals.

Results were compared to Regulation 153/04 Table 3 standards for residential/parkland/institutional property use and Table 3 standards for industrial/commercial/community property use and coarse textured soils in a non-potable groundwater condition.

All of the fill samples had concentrations of VOC, PHC, PAH, and metals that were within the Table 3 residential Site Condition Standards (SCS), with the exception of the fill sample from TP22-06 which exceeded the Table 3 residential SCS for benzo(a)anthracene, benzo(a)pyrene, and fluoranthene.

PAH impacted soil was identified in one fill sample from TP22-6 and is associated with poor fill quality, miscellaneous debris was also observed in the fill material at this location. The depth of fill at this location was 0.2 to 1.5 m bgs. Only a small part of the Phase Two property appears to be impacted and the contaminants do not appear to be migrating. It is recommended that the impacted soil be removed from the Phase Two property when the property is re-developed.

Based on the results of the soil sampling, groundwater sampling was not determined to be required at the Phase Two

The Qualified Person can confirm that the Phase Two Environmental Site Assessment was conducted per the requirements of Ontario Regulation 153/04, as amended, and in accordance with generally accepted professional practices.

This executive summary is a brief synopsis of the report and should not be read in lieu of reading the report in its entirety.

Table of Contents

Legal N	lotification	
Ū	ive Summary	
	Figures	
	Appendices	
1.0	Introduction	20
1.1	Site Description	20
1.2	Property Ownership	
1.3	Current and Proposed Future Use	21
1.4	Applicable Site Condition Standards	21
2.0	Background Information	23
2.1	Physical Setting	23
2.2	Past Investigations	23
3.0	Scope of the Investigation	25
3.1	Overview of Site Investigation	25
3.2	Scope of Work	25
3.3	Media Investigated	25
3.4	Phase One Conceptual Site Model	25
3.4.1	1 Buildings and Structures	25
3.4.2	2 Water Bodies and Groundwater Flow Direction	26
3.4.3	3 Areas of Natural Significance	26
3.4.4	4 Water Wells	26
3.4.5	Potentially Contaminating Activity	26
3.4.6	Areas of Potential Environmental Concern	27
3.4.7	7 Underground Utilities	27
3.4.8	3 Subsurface Stratigraphy	27
3.4.9		27
3.5	Deviations from Sampling and Analysis Plan	28
3.6	Impediments	28
4.0	Investigation Method	29
4.1	General	29
4.2	Test Pit Excavation	29

	4.3	Soil Sampling	29
	4.4	Field Screening Measurements	29
	4.5	Analytical Testing	30
	4.6	Residue Management	30
	4.7	Elevation Surveying	30
	4.8	Quality Assurance and Quality Control Measures	30
5.0)	Review and Evaluation	32
	5.1	Geology	32
	5.2	Soil: Field Screening	32
	5.3	Soil: Quality	32
	5.3.1	1 Chemical Transformation and Contaminant Sources	32
	5.3.2	2 Maximum Concentrations	33
	5.4	Quality Assurance and Quality Control Results	33
	5.5	Phase Two Conceptual Site Model	34
	5.5.1	1 Introduction	34
	5.5.2	2 Physical Site Description	34
	5.5.3	3 Geological and Hydrogeological	35
	5.5.4	4 Utilities and Impediments	35
	5.5.5	5 Potentially Contaminating Activities	36
	5.5.6	6 Areas of Potential Environmental Concern/Potential Contaminates of Concern	37
	5.5.7	7 Investigation	37
	5.5.8	8 Soil Sampling	37
	5.5.9	9 Contaminants of Concern	38
	5.5.1	10 Contaminant Fate and Transport	38
6.0)	Conclusion	39
7.0)	References	40
2 C)	General Limitations	Δ1

List of Figures

- Figure 1 Site Location Plan
- Figure 2 Test Pit Location Plan
- Figure 3 Conceptual Site Model Phase Two Study Area
- Figure 4 Cross Section Plan
- Figure 5 Cross Sections A-A' and B-B'
- Figure 6 Soil Analytical Results PHC & VOC
- Figure 7 Soil Analytical Results PAH
- Figure 8 Soil Analytical Results Inorganics
- Figure 9 Soil Cross Sections A-A' and B-B' PHC & VOC
- Figure 10 Soil Cross Sections A-A' and B-B' PAH
- Figure 11 Soil Cross Sections A-A' and B-B' Inorganics

List of Appendices

Appendix A: Figures

Appendix B: Sampling and Analysis Plan

Appendix C: Test Pit Logs

Appendix D: Analytical Summary Tables

Appendix E: Laboratory Certificates of Analysis

1.0 Introduction

EXP Services Inc. (EXP) was retained by McDonald Brothers Consulting Inc. to conduct a Phase Two Environmental Site Assessment (ESA) at 56 Capilano Drive in Ottawa, Ontario (hereinafter referred to as the 'Phase Two property'). At the time of the investigation, the Phase Two property was vacant.

The objective of the Phase Two ESA investigation was to assess the quality of the soil conditions within the area of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP. It is understood that the report will be used to support a site zoning amendment with the City of Ottawa.

This report has been prepared in accordance with the Phase Two ESA standard as defined by Ontario Regulation 153/04 (as amended), and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

1.1 Site Description

The Phase Two property has the municipal address 56 Capilano Drive in Ottawa. The Phase Two property is located on the south side of Capilano Drive, approximately 120 m east of Merivale Road. The Phase Two property is rectangular in shape with an area of approximately 0.28 hectares and consists of a manicured lawn.

The legal description of the Phase Two property is Part of Lot 15, Plan 356 being Part 2 on Plan 4R-27938, City of Ottawa. The Phase Two property has the property identification number (PIN) 046780068.

The approximate Universal Transverse Mercator (UTM) coordinates for the Phase Two property are Zone 18, 442483 m E and 5022758 m N. The UTM coordinates are based on measurements from Google Earth Pro, published by the Google Limited Liability Company (LLC). The accuracy of the centroid is estimated to be less than 10 m.

Refer to Table 1.1 for the Site identification information.

Table 1.1: Site Identification Details

Civic Address	56 Capilano Drive, Ottawa, Ontario
Current Land Use	Vacant
Proposed Future Land Use	Residential
Property Identification Number	046780068
UTM Coordinates	Zone 18, 442483 m E and 5022758 m N
Site Area	0.28 hectares
Property Owner	McDonald Brothers Consulting Inc.

1.2 Property Ownership

The registered owner of the Phase Two property is McDonald Brothers Consulting Inc. Authorization to proceed with this investigation on behalf of the property owner was provided by Mr. Allessandro Guarna. Contact information for Mr. Guarna is 262 Westbrook Road, Ottawa, Ontario, KOA 1LO.

1.3 Current and Proposed Future Use

The property is current vacant. The most recent use of the property was community (former curling club). The proposed future use of the property will likely be residential.

1.4 Applicable Site Condition Standards

Analytical results obtained for soil and groundwater samples were compared to Site Condition Standards (SCS) established under subsection 169.4(1) of the Environmental Protection Act, and presented in the document entitled *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act*, 2011. This document provides tabulated background SCS (Table 1) applicable to environmentally sensitive sites and effects-based generic SCS (Tables 2 to 9) applicable to non-environmentally sensitive sites. The effects-based SCS (Tables 2 to 9) are protective of human health and the environment for different groundwater conditions (potable and non-potable), land use scenarios (residential, parkland, institutional, commercial, industrial, community and agricultural/other), soil texture (coarse or medium/fine) and restoration depth (full or stratified).

Table 1 to 9 SCS are summarized as follows:

- Table 1 applicable to sites where background concentrations must be met (full depth), such as sensitive sites where site-specific criteria have not been derived
- Table 2 applicable to sites with potable groundwater and full depth restoration
- Table 3 applicable to sites with non-potable groundwater and full depth restoration
- Table 4 applicable to sites with potable groundwater and stratified restoration
- Table 5 applicable to sites with non-potable groundwater and stratified restoration
- Table 6 applicable to sites with potable groundwater and shallow soils (bedrock encountered at depths of 2 metres or less across one-third or more of the site)
- Table 7 applicable to sites with non-potable groundwater and shallow soils (bedrock encountered at depths of 2 metres or less across one-third or more of the site)
- Table 8 applicable to sites with potable groundwater and that are within 30 m of a water body
- Table 9 applicable to sites with non-potable groundwater and that are within 30 m of a water body

Application of the generic or background SCS to a specific site is based on a consideration of site conditions related to soil pH, thickness and extent of overburden material, and proximity to an area of environmental sensitivity or of natural significance. For some chemical parameters, consideration is also given to soil textural classification with SCS having been derived for both coarse and medium-fine textured soil conditions.

For assessment purposes, EXP selected the 2011 Table 3 SCS in a non-potable groundwater condition for residential/parkland/institutional property use (the proposed future use), and for commercial/industrial/community (the most recent property use). Analytical results were also compared to Table 1 background SCS.

The selection of these categories was based on the following factors:

- Bedrock is greater than 2 metres below grade across the subject property;
- The Phase Two property is not located within 30 metres of a waterbody;
- The Phase Two property is not located within an area of natural significance, does not include nor is adjacent to an
 area of natural significance, and does not include land that is within 30 metres of an area of natural significance;
- Potable water for the Phase Two property is provided by the City of Ottawa through its water distribution system;

- The Phase Two property is not located in an area designated in a municipal official plan as a well-head protection area;
- The proposed building is planned for residential use; and
- It is the opinion of the Qualified Person who oversaw this work that the Phase Two property is not a sensitive site.

2.0 Background Information

2.1 Physical Setting

The Phase Two property has the municipal address 56 Capilano Drive in Ottawa. The Phase Two property is located on the south side of Capilano Drive, approximately 120 m east of Merivale Road. The Phase Two property is rectangular in shape with an area of approximately 0.28 hectares and consists of a manicured lawn. At the time of the current investigation, the Phase Two property was vacant.

A site plan showing the Phase Two property is presented as Figure 2 in Appendix A.

The Phase Two property, and all other properties located, in whole or in part, within 250 metres of the boundaries of the Phase Two property, are supplied by a municipal drinking water system provided by the City of Ottawa. Further, the Phase Two property is not located in an area designated in the municipal official plan as a well-head protection area and no properties within the Phase Two study area have a well that is being used or is intended for use as a source of potable water. Thus, in accordance with Section 35 of Ontario Regulation 153/04, non-potable water standards apply to the Phase Two property.

In accordance with Section 41 of Ontario Regulation 153/04, the Phase Two property is not an environmentally sensitive area. In addition, the Phase Two property is not located within an area of natural significance, and it does not include land that is within 30 metres of an area of natural significance.

The Phase Two property is not a shallow soil property as defined in Section 43.1 of the regulation. It does not include all or part of a water body or is adjacent to a water body or includes land that is within 30 metres of a water body.

Bedrock in the general area of the Phase Two property consists of dolostone and sandstone of the Beekmantown Group. Native surficial soil consists of sandy silt till. The ground surface is approximately 95 metres above sea level (masl).

The well records for the area have identified the bedrock as gray limestone. Based on previous investigations, the depth to the bedrock on the Phase Two property is approximately 2.5 metres below grade.

The groundwater flow direction is anticipated to be northeast, towards the Rideau River.

2.2 Past Investigations

EXP prepared a report entitled *Phase One Environmental Site Assessment, 56 Capilano Drive, Ottawa, Ontario,* dated March 2, 2022. The Phase One study area included the entire Phase Two property as well properties within 250 m of the Phase Two property. Based on the results of the Phase One ESA, EXP identified one area of potential environmental concern (APEC) within the Phase One study area. A summary is provided in Table 2.1.

24

McDonald Brothers Consulting Inc.
Phase Two Environmental Site Assessment
56 Capilano Drive, Ottawa, Ontario
OTT-22003851-A0
May 27, 2022

Table 2.1: Findings of Phase One ESA

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
APEC#1	Entire Phase One property	PCA#30 – Importation of Fill Material of Unknown Quality	On-Site	Metals, petroleum hydrocarbons (PHC), polycyclic aromatic hydrocarbons (PAH), Volatile organic compounds (VOC)	Soil

The locations of the APEC are shown on Figures 2 and 3 in Appendix A.

The Phase One ESA was conducted per the requirements of Ontario Regulation 153/04, as amended, and in accordance with generally accepted professional practices. A copy of the Phase One conceptual site model is provided as Figure 3 in Appendix A.

3.0 Scope of the Investigation

3.1 Overview of Site Investigation

The objective of the Phase Two ESA was to assess the quality of soil on the Phase Two property.

3.2 Scope of Work

The scope of work for the Phase Two ESA was as follows:

- Request local utility locating companies (e.g., cable, telephone, gas, hydro) to mark any underground utilities present
 at the Phase Two property;
- Retain a private utility locating company to mark any underground utilities present in the vicinity of the test pits locations and to clear the test pit locations;
- Excavate six test pits on the subject property;
- Submit soil samples for laboratory analysis of petroleum hydrocarbons (PHC), volatile organic compounds (VOC), polycyclic aromatic hydrocarbons (PAH), and metals;
- Compare the results of the soil and groundwater chemical analyses to applicable criteria, as set out by the Ontario Ministry of the Environment, Conservation and Parks (MECP);
- Conduct an elevation survey of the test pits;
- Prepare a report summarizing the results of the assessment activities.

This report has been prepared in accordance with the Phase Two ESA standard as defined by Ontario Regulation 153/04 (as amended), and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

3.3 Media Investigated

The Phase Two ESA included the investigation of soil on the Phase Two property. Based on the nature of the APEC identified in the Phase One ESA, groundwater was not investigated. As there are no water bodies on the Phase Two property, no surface water or sediment sampling was required.

The contaminants of potential concern (COPC) identified in the Phase One ESA were identified as target parameters for this Phase Two ESA. The APEC and COPC identified in the Phase One ESA are outlined in Section 2.2.

3.4 Phase One Conceptual Site Model

The Phase One conceptual site model (CSM) was developed by considering the following physical characteristics and pathways. The CSM showing the topography of the site, inferred groundwater flow, general site features, APEC, and PCA is shown in Figures 2 and 3 in Appendix A.

3.4.1 Buildings and Structures

There are no buildings on the Phase Two property.

3.4.2 Water Bodies and Groundwater Flow Direction

Thera are no water bodies on the Phase Two property The nearest surface water body to the Phase Two property is Nepean Creek, approximately 1.6 km south of the Phase Two property. Nepean Creek flows into the Rideau River, approximately 2.4 km east of the Phase Two property.

Based on previous investigations, the groundwater flow direction varies in the vicinity of the Phase Two property, likely due to subsurface infrastructure. Groundwater flow direction is inferred to be to the east/northeast.

3.4.3 Areas of Natural Significance

There are no ANSI within the Phase Two study area.

3.4.4 Water Wells

There were 92 well records within the Phase One study area. One of the wells records was for a potable well on the Phase Two property. The well was installed in 1957 and served as the water supply well for the former City View Curling Club. Forty-seven of the records were for water supply wells installed in the 1950s. As there is now municipal water in the Phase One study area, it is assumed that these wells are no longer in use. The remainder of the well records were for monitoring wells on adjacent properties.

3.4.5 Potentially Contaminating Activity

The following PCAs were identified:

- PCA 1 1537 Merivale Road (80 m west) Former gas station (PCA #28 Gasoline and Associated Products Storage
 in Fixed Tanks);
- PCA 2 1533 Merivale Road (100 m northwest) Automotive service shop with historic UST (PCA #10 Commercial Autobody Shops, PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 3 1507 Merivale Road (210 m northwest) Automotive service shop with historic UST (PCA #10 Commercial Autobody Shops, PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 4 1516 Merivale Road (170 m northwest) Former dry cleaner (PCA#37 Operation of Dry-Cleaning Equipment);
- PCA 5 56 Capilano Drive (Phase One property) Previous investigation identified fill material on the Phase One property (PCA #30 – Importation of Fill Material of Unknown Quality);
- PCA 6 1541 Merivale Road (west adjacent) Presence of PHC impacted soil and groundwater (#Other PHC contaminant plume);
- PCA 7 1543 Merivale Road (100 m west) Active gas station (PCA #28 Gasoline and Associated Products Storage
 in Fixed Tanks);
- PCA 8 1509 Merivale Road (170 m northwest) Active dry cleaner that has been in operation since at least 1964 (PCA #37 – Operation of Dry Cleaning Equipment (where chemicals are used);
- PCA 9 1509 Merivale Road (130 m northwest) Former furnace oil UST on the east side of the building (PCA #28 –
 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 10 1545 Merivale Road (southwest adjacent) Former gas station (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);

- PCA 10 1541 Merivale Road (west adjacent) Former dry cleaner (PCA #37 Operation of Dry Cleaning Equipment (where chemicals are used);
- PCA 11 1545 Merivale Road (70 m southwest) Former gas station (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 12 1545 Merivale Road (southwest adjacent) Historic furnace oil spill (#Other furnace oil spill); and
- PCA 13 1548 Merivale Road (170 m southwest) Active gas station (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks.

Since the inferred groundwater flow direction is inferred to be to the northeast, the properties within the Phase One study area northeast of the Phase Two property were considered to be hydraulically down-gradient; and the properties to the north and south of the Site were considered to be hydraulically trans-gradient to the Phase Two property.

Furthermore, any PCAs located significantly distant (greater than 100 m) from the Phase Two property were considered to be too distant to be contributing to an APEC on the Phase Two property.

In addition, several of the PCAs identified have been investigated and areas of impact delineated. Since soil and groundwater samples taken from the neighbouring property to the west near the property line were non-detect for the contaminants of concern in 2018, it can be inferred that the contamination found in the west part of the neighbouring site has not migrated onto the Phase Two property.

3.4.6 Areas of Potential Environmental Concern

The APEC identified are summarized in Table 3.1.

Table 3.1: Areas of Potential Environmental Concern

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
APEC #1	Entire Phase One property	PCA#30 – Importation of Fill Material of Unknown Quality	On-Site	Metals, PHC, PAH, VOC	Soil

3.4.7 Underground Utilities

The Phase Two property is not currently serviced. However, surrounding properties are serviced by municipal sewer and water, and natural gas.

3.4.8 Subsurface Stratigraphy

Bedrock in the general area of the Phase Two property consists of dolostone and sandstone of the Beekmantown Group. Native surficial soil consists of sandy silt till. The ground surface is approximately 95 metres above sea level (masl).

The well records for the area have identified the bedrock as gray limestone. Based on previous investigations, the depth to the bedrock on the Phase Two property is approximately 2.5 metres below grade.

3.4.9 Uncertainty Analysis

The CSM is a simplification of reality, which aims to provide a description and assessment of any areas where potentially contaminating activity that occurred within the Phase Two study area may have adversely affected the Phase Two property.

All information collected during this investigation, including records, interviews, and site reconnaissance, has contributed to the formulation of the CSM.

Information was assessed for consistency, however EXP has confirmed neither the completeness nor the accuracy of any of the records that were obtained or of any of the statements made by others. All reasonable inquiries to obtain accessible information were made, as required by Schedule D, Table 1, Mandatory Requirements for Phase Two Environmental Site Assessment Reports. The CSM reflects our best interpretation of the information that was available during this investigation.

3.5 Deviations from Sampling and Analysis Plan

The field investigative and sampling program was carried out following the requirements of the Phase Two property, as described in Section 4.

No significant deviations from the SAAP, as provided in Appendix C, were reported that affected the sampling and data quality objectives for the Phase Two property.

3.6 Impediments

No impediments were encountered during this investigation.

4.0 Investigation Method

4.1 General

The current investigation was performed following requirements given under Ontario Regulation 153/04 and in accordance with generally accepted professional practices.

4.2 Test Pit Excavation

The site investigative activities consisted of the excavation of six test pits to facilitate the collection of soil samples for visual inspection and chemical analysis.

Prior to the commencement of excavation, the locations of underground public utilities including telephone, natural gas and electrical lines were marked at the subject property by public locating companies. A private utility locating contractor was also retained to clear the individual borehole locations.

On May 16, 2022, six test pits (TP22-1 to TP22-6) were advanced at the Phase Two property by Lacroix Equipment Rentals Ltd. (Lacroix) under the full-time supervision of EXP staff. Test pits were excavated to refusal on bedrock surface. Dedicated nitrile gloves (one pair per sample) were used during sample handling. No petroleum-based greases or solvents were used during excavation activities. EXP staff continuously monitored the excavating activities to log the stratigraphy observed from the pits, to record the depth of the samples, to record total depths of excavation, and to screen the samples by recording visual or olfactory observations of potential impacts and measuring petroleum vapours.

Grab soil samples from the excavator bucket were collected from the fill layer. All soil samples were visually examined in the field for textural classification, logged, preserved in plastic bags and identified.

The locations of the test pits are shown on Figure 2 in Appendix A.

4.3 Soil Sampling

The soil sampling during the completion of this Phase Two ESA was undertaken in general accordance with the SAAP presented in Appendix C.

Soil samples were selected for laboratory analysis based on combustible vapour measurements and visual and olfactory evidence of impacts, where observed. Soil samples identified for possible laboratory analysis were placed directly into precleaned, laboratory-supplied glass sample jars/vials. Samples to be analysed for PHC fraction F1 and BTEX were collected using a soil core sampler and placed into vials containing methanol as a preservative. The jars and vials were sealed with Teflon-lined lids to minimize headspace and reduce the potential for induced volatilization during storage/transport prior to analysis. All soil samples were placed in clean coolers containing ice prior to and during transportation to the subcontract laboratory, Caduceon Environmental Laboratories (Caduceon) of Ottawa, Ontario. The samples were transported/submitted within 24 hours of collection to the laboratory following chain of custody protocols for chemical analysis. Soil samples were submitted for laboratory analysis of PHC, VOC, PAH, and metals.

EXP staff continuously monitored the excavating activities to log the stratigraphy observed, to record the depth of soil sample collection, to record total depths of excavation, and to record visual or olfactory observations of potential impacts. Field observations are summarized on the borehole logs provided in Appendix C.

4.4 Field Screening Measurements

Soil samples were placed in a sealed Ziploc plastic bag and allowed to reach ambient temperature prior to field screening with a combustible vapour meter calibrated to hexane gas prior to use. The field screening measurements were made by

inserting the instrument's probe into the plastic bag while manipulating the sample to ensure volatilization of the soil gases. These 'headspace' readings provide a real-time indication of the relative concentration of combustible vapours encountered in the subsurface during drilling and are used to aid in the assessment of the vertical and horizontal extent of potential impacts and the selection of soil samples for analysis.

Readings of combustible vapour concentrations in the soil samples collected during the drilling investigation were recorded using an RKI Eagle 2, where there was sufficient recovery. This instrument is designed to detect and measure concentrations of combustible gas in the atmosphere to within 5 parts per million by volume (ppmv) from 0 ppmv to 200 ppmv, 10 ppmv increments from 200 ppmv to 1,000 ppmv, 50 ppmv increments from 1,000 ppmv to 10,000 ppmv, and 250 ppmv increments above 10,000 ppmv. It is equipped with two ranges of measurement, reading concentrations in ppmv or in percentage lower explosive limit (% LEL). The RKI Eagle 2 instrument can determine combustible vapour concentrations in the range equivalent to 0 to 11,000 ppmv of hexane.

The instrument was configured to eliminate any response from methane for all sampling conducted at the subject property. Instrument calibration is checked on a daily basis in both the ppmv range and % LEL range using standard gases comprised of known concentrations of hexane (400 ppmv, 40% LEL) in air. If the instrument readings are within ±10% of the standard gas value, then the instrument is deemed to be calibrated, however if the readings are greater than ±10% of the standard gas value then the instrument is re-calibrated prior to use.

The field screening measurements, in parts per million by volume (ppmv), are presented in the borehole logs provided in Appendix C.

4.5 Analytical Testing

The contracted laboratory selected to perform chemical analysis on all soil samples was Caduceon Environmental Laboratories (Caduceon). Caduceon is an accredited laboratory under the Standards Council of Canada/Canadian Association for Laboratory Accreditation in accordance with ISO/IEC 17025:1999- General Requirements for the Competence of Testing and Calibration Laboratories.

4.6 Residue Management

The excavated soil from test pit advancement was backfilled in the test pit after samples were collected.

4.7 Elevation Surveying

A relative elevation survey was conducted by EXP. The test pit ground surface elevation was surveyed relative to a sanitary manhole located on Capilano Drive.

4.8 Quality Assurance and Quality Control Measures

All soil and groundwater samples were placed in coolers containing ice packs prior to and during transportation to the contract laboratory, Caduceon. Caduceon is accredited to the ISO/IEC 17025:2005 standard - General Requirements for the Competence of Testing and Calibration Laboratories.

A QA/QC program was also implemented to ensure that the analytical results received are accurate and dependable. A QA/QC program is a system of documented checks that validate the reliability of the data. Quality Assurance is a system that ensures that quality control procedures are correctly performed and documented. Quality Control refers to the established procedures observed both in the field and in the laboratory, designed to ensure that the resulting end data meet intended quality objectives. The QA/QC program implemented by EXP incorporated the following components:

Collecting and analysing field duplicate samples to ensure analytical precision;

- Using dedicated and/or disposable sampling equipment;
- Following proper decontamination protocols to minimize cross-contamination;
- Maintaining field notes and completing field forms to document field activities; and
- Using only laboratory-supplied sample containers and following prescribed sample protocols, including using proper
 preservation techniques, meeting sample hold times, and documenting sample transmission on chains of custody,
 to ensure the integrity of the samples is maintained.

Caduceon's QA/QC program involved the systematic analysis of control standards for the purpose of optimizing the measuring system as well as establishing system precision and accuracy and included calibration standards, method blanks, reference standards, spiked samples, surrogates and duplicates.

5.0 Review and Evaluation

5.1 Geology

A 60 to 80 mm layer of topsoil was contacted at the surface of all of the test pits. In TP22-1, TP22-2, TP22-3, and TP22-6, the topsoil was underlain by a layer of granular fill that extends to a depth of 0.2 to 0.3 m below the existing ground surface. Underlying the granular fill or topsoil was a layer of sandy clay and gravel fill to a depth of 1.0 to 1.5 m below ground surface. Small amounts of debris material (bricks, concrete, rubber debris) were present in the fill material in TP22-5 and TP22-6.

Native silty sand was encountered below the fill in all the test pits, with the exception of TP22-4, between 0.1 and 0.7 metres thick. The silty sand extends to depths of 1.2 m to 2.1 m. In TP22-1, TP22-2, and TP22-4, the silty clay or fill was underlain by a layer of glacial till that extends to 2.2 m to 2.4 m depth.

There were no odours or staining observed in the fill or native material in any of the test-pits. Refusal was met in all the test pits at depths ranging between 2.0 m to 2.4 m.

A plan view showing cross-sections is provided as Figure 4 in Appendix A, while the Phase Two property geology is depicted in cross-sections on Figure 5 in Appendix A.

5.2 Soil: Field Screening

The methodology for the collection of soil vapour concentration measurements is described in Section 4.4.

Petroleum vapours ranged from non-detectable to 20 ppm in samples collected from the boreholes. Field screening data is presented in the borehole logs in Appendix C.

5.3 Soil: Quality

In accordance with the scope of work, chemical analyses were performed on selected soil samples recovered from the test pits. Six soil samples and a duplicate were collected from the fill material and submitted to Caduceon for analysis of PHC, PAH, VOC, and metals.

All of the fill sample concentrations were within the Table 3 residential SCS for VOC, PHC, PAH, and metals, with the exception of the fill sample from TP22-6 which exceeded the Table 3 residential SCS for benzo(a)anthracene, benzo(a)pyrene, and fluoranthene.

The soil results are provided in Tables 1 to 3 in Appendix D. They are shown in plan view on Figures 6 to 8 and on cross-sections on Figures 9 to 11 in Appendix A.

Copies of the laboratory Certificates of Analysis are provided in Appendix E.

5.3.1 Chemical Transformation and Contaminant Sources

A variety of physical, chemical and biochemical mechanisms affect the fate and transport of the potential COC in soil and groundwater, the contribution of which is dependent on the soil and groundwater conditions at the Phase Two property, as well as the chemical/physical properties of the COC. Relevant fate and transport mechanisms are natural attenuation mechanisms, including advection mixing, mechanical dispersion/molecular diffusion, phase partitions (i.e. sorption and volatilization), and possibly abiotic or biotic chemical reactions, which effectively reduce COC concentrations.

PAH impacted soil was identified in one fill sample from TP22-6 and is associated with poor fill quality, miscellaneous debris was also observed in the fill material at this location. The depth of fill at this location was 0.2 to 1.5 m bgs.

Only a small part of the Phase Two property appears to be impacted and the contaminants do not appear to be migrating. It is recommended that the impacted soil be removed from the Phase Two property when the property is re-developed.

Based on the results of the soil sampling, groundwater sampling was not determined to be required at the Phase Two property.

5.3.2 Maximum Concentrations

Contaminants that exceeded the Table 3 SCS for residential land use were:

Soil: benzo(a)anthracene, benzo(a)pyrene, and fluoranthene.

Maximum soil concentrations are provided in Table 4 in Appendix D.

5.4 Quality Assurance and Quality Control Results

Quality assurance and quality control measures were taken during the field activities to meet the objectives of the sampling and quality assurance plan to collect unbiased and representative samples to characterize existing conditions in the fill materials and groundwater at the site. QA/QC measures, included:

- Collection and analysis of blind duplicate soil and groundwater samples to ensure sample collection precision;
- Analysis of a groundwater field blank for all parameters that were analysed to assess potential impact during sampling;
- Using dedicated and/or disposable sampling equipment;
- Following proper decontamination protocols to minimize cross-contamination;
- Maintaining field notes and completing field forms to document on-site activities; and
- Using only laboratory supplied sample containers and following prescribed sample protocols, including proper preservation, meeting sample hold times, proper chain of custody documentation, to ensure integrity of the samples.

Caduceon's QA/QC program consisted of the preparation and analysis of laboratory duplicate samples to assess precision and sample homogeneity, method blanks to assess analytical bias, spiked blanks and QC standards to evaluate analyte recovery, matrix spikes to evaluate matrix interferences and surrogate compound recoveries to evaluate extraction efficiency. The laboratory QA/QC results are presented in the Quality Assurance Report provided in the Certificates of Analysis prepared by Caduceon. The QA/QC results are reported as percent recoveries for matrix spikes, spiked blanks and QC standards, relative percent difference for laboratory duplicates and analyte concentrations for method blanks.

Review of the laboratory QA/QC results reported indicated that they were mostly within acceptable control limits or below applicable alert criteria for the sampled media and analytical test groups. The exceptions are summarized in the table below.

Table 5.6: Laboratory QA/QC Results

Caduceon Job#	Matrix	Test Affected	Deviation	Interpretation
B22-14241	Soil	VOC	Spike Recovery for dichlorodifluoromethane (36.0%) is less than the acceptance criteria (50-140%).	Possible low bias of data. Since all VOCs were well below the standards, the deviation should have no effect on the interpretation of results.

For QA/QC purposes, the analytical sample results are quantitatively evaluated by calculating the relative percent difference (RPD) between the samples and their duplicates. To accurately calculate a statistically valid RPD, the concentration of the analytes found in both the original and duplicate sample must be greater than five times the reporting detection limit (RDL).

The results of the RPD calculations are provided in Appendix D in Tables 5 to 7. All of the RPD for soil were either not calculable or within the applicable alert limits.

5.5 Phase Two Conceptual Site Model

A Conceptual Site Model (CSM) provides a narrative, graphical and tabulated description integrating information related to the Phase Two property's geologic and hydrogeological conditions, areas of potential environmental concern/potential contaminating activities, the presence and distribution of contaminants of concern, contaminant fate and transport, and potential exposure pathways.

5.5.1 Introduction

EXP Services Inc. (EXP) was retained by McDonald Brothers Consulting Inc. to conduct a Phase Two Environmental Site Assessment (ESA) at 56 Capilano Drive in Ottawa, Ontario (hereinafter referred to as the 'Phase Two property'). At the time of the investigation, the Phase Two property was vacant.

The objective of the Phase Two ESA investigation was to assess the quality of the soil conditions within the area of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP. It is understood that the report will be used to support a site zoning amendment with the City of Ottawa.

The most recent use of the property was community. The proposed future use of the property will likely be residential.

5.5.2 Physical Site Description

The Phase Two property has the municipal address 56 Capilano Drive in Ottawa. The Phase Two property is located on the south side of Capilano Drive, approximately 120 m east of Merivale Road. The Phase Two property is rectangular in shape with an area of approximately 0.28 hectares and consists of a manicured lawn.

The legal description of the Phase Two property is Part of Lot 15, Plan 356 being Part 2 on Plan 4R-27938, City of Ottawa. The Phase Two property has the property identification number (PIN) 046780068. The site layout is shown on Figure 2.

Refer to Table 5.7 for the Site identification information.

Table 5.7: Site Identification Details

Civic Address	56 Capilano Drive, Ottawa, Ontario
Current Land Use	Vacant
Proposed Future Land Use	Residential
Property Identification Number	046780068
UTM Coordinates	Zone 18, 442483 m E and 5022758 m N
Site Area	0.28 hectares
Property Owner	McDonald Brothers Consulting Inc.

The Phase One Conceptual Site Model is provided as Figure 3.

The Phase Two property, and all other properties located, in whole or in part, within 250 metres of the boundaries of the Phase Two property, are supplied by a municipal drinking water system provided by the City of Ottawa. Further, the Phase Two property is not located in an area designated in the municipal official plan as a well-head protection area and no properties within the Phase Two study area have a well that is being used or is intended for use as a source of potable water.

Thus, in accordance with Section 35 of Ontario Regulation 153/04, non-potable water standards apply to the Phase Two property.

In accordance with Section 41 of Ontario Regulation 153/04, the Phase Two property is not an environmentally sensitive area. In addition, the Phase Two property is not located within an area of natural significance, and it does not include land that is within 30 metres of an area of natural significance.

The Phase Two property is not a shallow soil property as defined in Section 43.1 of the regulation. It does not include all or part of a water body or is adjacent to a water body or includes land that is within 30 metres of a water body.

Bedrock in the general area of the Phase Two property consists of dolostone and sandstone of the Beekmantown Group. Native surficial soil consists of sandy silt till. The ground surface is approximately 95 metres above sea level (masl).

The well records for the area have identified the bedrock as gray limestone. Based on previous investigations, the depth to the bedrock on the Phase Two property is approximately 2.5 metres below grade.

The groundwater flow direction is anticipated to be northeast, towards the Rideau River.

5.5.3 Geological and Hydrogeological

Soil at the Phase Two property generally consisted of sandy clay and gravel fill material overlying silty clay and glacial till. Small amounts of debris material (bricks, concrete, rubber debris) were present in the fill material in TP22-5 and TP22-6. There were no odours or staining observed in the fill or native material in any of the test-pits. Refusal was met in all the test pits at depths ranging between 2.0 m to 2.4 m.

A plan view showing cross-sections is provided as Figure 4, while the Phase Two property geology is depicted in cross-sections on Figure 5.

A summary of factors that apply to the Phase Two property is provided in Table 5.8.

Table 5.8: Site Characteristics

Characteristic	Description	
Minimum Depth to Bedrock	2.0 metres below ground surface	
Minimum Depth to Groundwater	N/A	
Shallow Soil Property	No, bedrock is greater than 2.0 mbgs	
Proximity to water body or ANSI	Approximately 1.6 km – Nepean Creek	
Soil pH	7.46 – 7.65	
Soil Texture	Coarse	
Current Property Use	Community	
Future Property Use	Residential	
Areas Containing Suspected Fill	Entire Phase Two property	

5.5.4 Utilities and Impediments

The Phase Two property is not currently serviced. However, surrounding properties are serviced by municipal sewer and water, and natural gas.

5.5.5 Potentially Contaminating Activities

The following potentially contaminating activities (PCA) were identified:

- PCA 1 1537 Merivale Road (80 m west) Former gas station (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 2 1533 Merivale Road (100 m northwest) Automotive service shop with historic UST (PCA #10 Commercial Autobody Shops, PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 3 1507 Merivale Road (210 m northwest) Automotive service shop with historic UST (PCA #10 Commercial Autobody Shops, PCA #28 – Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 4 1516 Merivale Road (170 m northwest) Former dry cleaner (PCA#37 Operation of Dry-Cleaning Equipment);
- PCA 5 56 Capilano Drive (Phase One property) Previous investigation identified fill material on the Phase One property (PCA #30 Importation of Fill Material of Unknown Quality);
- PCA 6 1541 Merivale Road (west adjacent) Presence of PHC impacted soil and groundwater (#Other PHC contaminant plume);
- PCA 7 1543 Merivale Road (100 m west) Active gas station (PCA #28 Gasoline and Associated Products Storage
 in Fixed Tanks);
- PCA 8 1509 Merivale Road (170 m northwest) Active dry cleaner that has been in operation since at least 1964 (PCA #37 – Operation of Dry Cleaning Equipment (where chemicals are used);
- PCA 9 1509 Merivale Road (130 m northwest) Former furnace oil UST on the east side of the building (PCA #28 –
 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 10 1545 Merivale Road (southwest adjacent) Former gas station (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 10 1541 Merivale Road (west adjacent) Former dry cleaner (PCA #37 Operation of Dry Cleaning Equipment (where chemicals are used);
- PCA 11 1545 Merivale Road (70 m southwest) Former gas station (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks);
- PCA 12 1545 Merivale Road (southwest adjacent) Historic furnace oil spill (#Other furnace oil spill); and
- PCA 13 1548 Merivale Road (170 m southwest) Active gas station (PCA #28 Gasoline and Associated Products Storage in Fixed Tanks.

Since the inferred groundwater flow direction is inferred to be to the northeast the properties within the Phase One study area northeast of the Phase Two property were considered to be hydraulically down-gradient; and the properties to the north and south of the Phase Two property were considered to be hydraulically trans-gradient.

Furthermore, any PCAs located significantly distant (greater than 100 m) from the Phase Two property were considered to be too distant to be contributing to an APEC

In addition, several of the PCAs identified have been investigated and areas of impact delineated (Section 3.5.2). Since soil and groundwater samples taken from the neighbouring property to the west near the property line were non-detect for the contaminants of concern in 2018, it can be inferred that the contamination found in the west part of the neighbouring site has not migrated onto the Phase Two property.

5.5.6 Areas of Potential Environmental Concern/Potential Contaminates of Concern

Ontario Regulation 153/04 defines an APEC as an area on a property where one or more contaminants are potentially present. The following APEC were identified on the Phase Two property, as shown on Figure 2 and Table 5.9 below:

Table 5.9: Areas of Potential Environmental Concern

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
APEC #1	Entire Phase One property	PCA#30 – Importation of Fill Material of Unknown Quality	On-Site	Metals, PHC, PAH, VOC	Soil

5.5.7 Investigation

The site investigative activities consisted of the excavation of six test pits to facilitate the collection of soil samples for visual inspection and chemical analysis.

Prior to the commencement of excavation, the locations of underground public utilities including telephone, natural gas and electrical lines were marked at the subject property by public locating companies. A private utility locating contractor was also retained to clear the individual test pit locations.

On May 16, 2022, six test pits (TP22-1 to TP22-6) were advanced at the Phase Two property by Lacroix Equipment Rentals Ltd. (Lacroix) under the full-time supervision of EXP staff. Test pits were excavated to refusal on bedrock surface. Dedicated nitrile gloves (one pair per sample) were used during sample handling. No petroleum-based greases or solvents were used during excavation activities. EXP staff continuously monitored the excavating activities to log the stratigraphy observed from the pits, to record the depth of the samples, to record total depths of excavation, and to screen the samples by recording visual or olfactory observations of potential impacts and measuring petroleum vapours.

Grab soil samples from the excavator bucket were collected from the fill layer. All soil samples were visually examined in the field for textural classification, logged, preserved in plastic bags and identified

The locations of the test pits are shown on Figure 2 in Appendix A.

5.5.8 Soil Sampling

Soil samples were selected for laboratory analysis based on combustible vapour measurements and visual and olfactory evidence of impacts, where observed. Soil samples identified for possible laboratory analysis were placed directly into precleaned, laboratory-supplied glass sample jars/vials. Samples to be analyzed for PHC fraction F1 and VOC were collected using a soil core sampler and placed into vials containing methanol as a preservative. The jars and vials were sealed with Teflon-lined lids to minimize headspace and reduce the potential for induced volatilization during storage/transport prior to analysis. All soil samples were placed in clean coolers containing ice prior to and during transportation to the subcontract laboratory, Caduceon Environmental Laboratories (Caduceon) of Ottawa, Ontario. The samples were transported/submitted within 24 hours of collection to the laboratory following chain of custody protocols for chemical analysis.

Six soil samples and a duplicate were collected from the fill material and submitted to Caduceon for analysis of PHC, PAH, VOC, and metals.

All of the fill samples had concentrations of VOC, PHC, PAH, and metals that were within the Table 3 residential SCS, with the exception of the fill sample from TP22-6 which exceeded the Table 3 residential SCS for benzo(a)anthracene, benzo(a)pyrene, and fluoranthene.

The soil results are provided in Tables 1 to 3 in Appendix D. They are shown in plan view on Figures 6 to 8 and on cross-sections on Figures 9 to 11 in Appendix A.

5.5.9 Contaminants of Concern

Contaminants that exceeded the Table 3 SCS for residential land use were:

Soil: benzo(a)anthracene, benzo(a)pyrene, and fluoranthene.

5.5.10 Contaminant Fate and Transport

A variety of physical, chemical and biochemical mechanisms affect the fate and transport of the potential COC in soil and groundwater, the contribution of which is dependent on the soil and groundwater conditions at the Phase Two property, as well as the chemical/physical properties of the COC. Relevant fate and transport mechanisms are natural attenuation mechanisms, including advection mixing, mechanical dispersion/molecular diffusion, phase partitions (i.e. sorption and volatilization), and possibly abiotic or biotic chemical reactions, which effectively reduce COC concentrations.

PAH impacted soil was identified in one fill sample from TP22-6 and is associated with poor fill quality, miscellaneous debris was also observed in the fill material at this location. The depth of fill at this location was 0.2 to 1.5 m bgs.

Only a small part of the Phase Two property appears to be impacted and the contaminants do not appear to be migrating. It is recommended that the impacted soil be removed from the Phase Two property when the property is re-developed.

Based on the results of the soil sampling, groundwater sampling was not determined to be required at the Phase Two property.

.

6.0 Conclusion

During the current investigation, the soil quality at the Phase Two property was investigated. The investigation included a soil sampling program. Results were compared to Regulation 153/04 Table 3 standards for residential/parkland/institutional property use and Table 3 standards for industrial/commercial/community property use and coarse textured soils in a non-potable groundwater condition.

PAH impacted soil was identified in one fill sample from TP22-6 and is associated with poor fill quality, miscellaneous debris was also observed in the fill material at this location. The depth of fill at this location was 0.2 to 1.5 m bgs.

Only a small part of the Phase Two property appears to be impacted and the contaminants do not appear to be migrating. It is recommended that the impacted soil be removed from the Phase Two property when the property is re-developed.

Based on the results of the soil sampling, groundwater sampling was not determined to be required at the Phase Two

The Qualified Person can confirm that the Phase Two Environmental Site Assessment was conducted per the requirements of Ontario Regulation 153/04, as amended, and in accordance with generally accepted professional practices.

Leah Wells, P.Eng. Environmental Engineer Earth and Environment Mark McCalla, P.Geo.
Team Lead/Senior Project Manager
Earth and Environment

Ma myall-

7.0 References

This study was conducted in accordance with the applicable Regulations, Guidelines, Policies, Standards, Protocols and Objectives. Specific reference is made to the following documents.

- EXP Services Inc., Phase One Environmental Site Assessment, 56 Capilano Drive, Ottawa, Ontario, March 2, 2022.
- Freeze and Cherry, Groundwater, Prentice Hall, 1979.
- Ontario Ministry of the Environment, Conservation and Parks, *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario*, December 1996.
- Ontario Ministry of the Environment, Conservation and Parks, Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.
- Ontario Ministry of the Environment, Conservation and Parks, Guide for Completing Phase Two Environmental Site Assessments under Ontario Regulation 153/04, June 2011.
- Ontario Ministry of the Environment, Conservation and Parks, Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, July 1, 2011.
- Ontario Ministry of the Environment, Conservation and Parks, Management of Excess Soil A Guide for Best Management Practices, January 2014.
- Ontario Regulation 153/04, made under the Environmental Protection Act, as amended.
- Ontario R.R.O. 1990, Regulation 347, made under the Environmental Protection Act, as amended.
- Ontario R.R.O. 1990, Regulation 903, made under the Water Resources Act, as amended.

8.0 General Limitations

Basis of Report

This report ("Report") is based on site conditions known or inferred by the investigation undertaken as of the date of the Report. Should changes occur which potentially impact the condition of the site the recommendations of EXP may require reevaluation. Where special concerns exist, or McDonald Brothers Consulting Inc. ("the Client") has special considerations or requirements, these should be disclosed to EXP to allow for additional or special investigations to be undertaken not otherwise within the scope of investigation conducted for the purpose of the Report.

Reliance on Information Provided

The evaluation and conclusions contained in the Report are based on conditions in evidence at the time of site inspections and information provided to EXP by the Client and others. The Report has been prepared for the specific site, development, building, design or building assessment objectives and purpose as communicated by the Client. EXP has relied in good faith upon such representations, information and instructions and accepts no responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of any misstatements, omissions, misrepresentation or fraudulent acts of persons providing information. Unless specifically stated otherwise, the applicability and reliability of the findings, recommendations, suggestions or opinions expressed in the Report are only valid to the extent that there has been no material alteration to or variation from any of the information provided to exp. If new information about the environmental conditions at the Site is found, the information should be provided to EXP so that it can be reviewed and revisions to the conclusions and/or recommendations can be made, if warranted.

Standard of Care

The Report has been prepared in a manner consistent with the degree of care and skill exercised by engineering consultants currently practicing under similar circumstances and locale. No other warranty, expressed or implied, is made. Unless specifically stated otherwise, the Report does not contain environmental consulting advice.

Complete Report

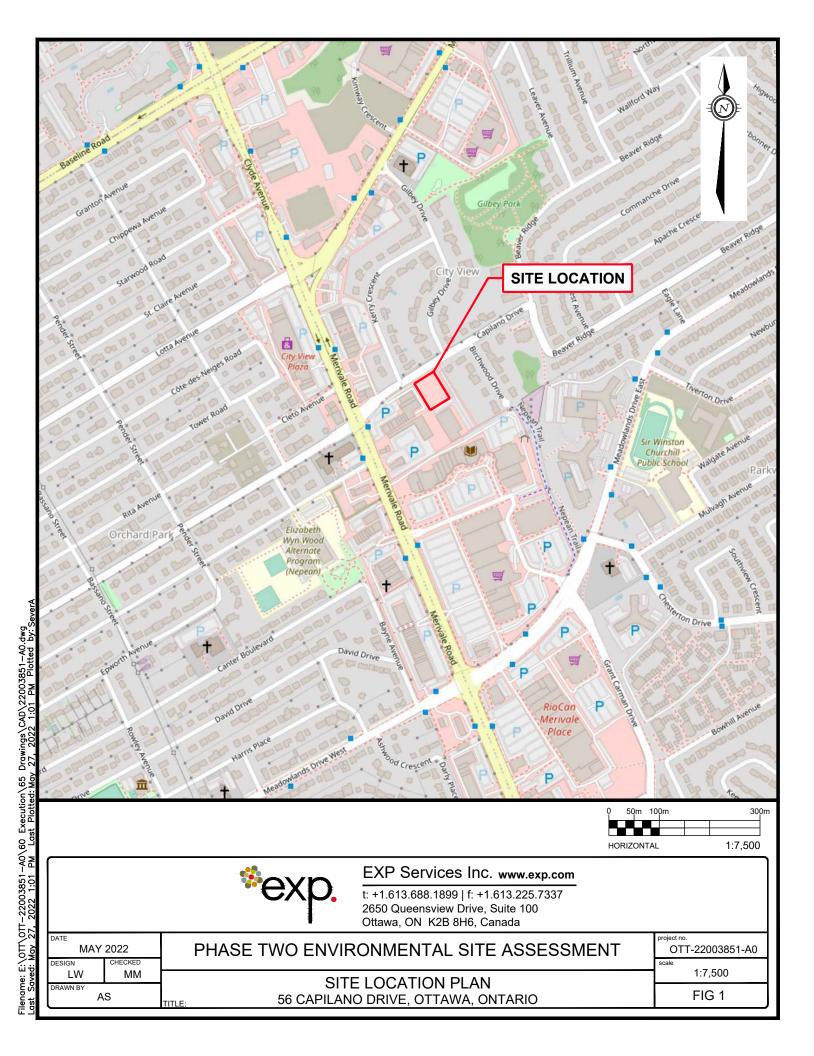
All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment form part of the Report. This material includes, but is not limited to, the terms of reference given to EXP by the Client, communications between EXP and the Client, other reports, proposals or documents prepared by EXP for the Client in connection with the site described in the Report. In order to properly understand the suggestions, recommendations and opinions expressed in the Report, reference must be made to the Report in its entirety. EXP is not responsible for use by any party of portions of the Report.

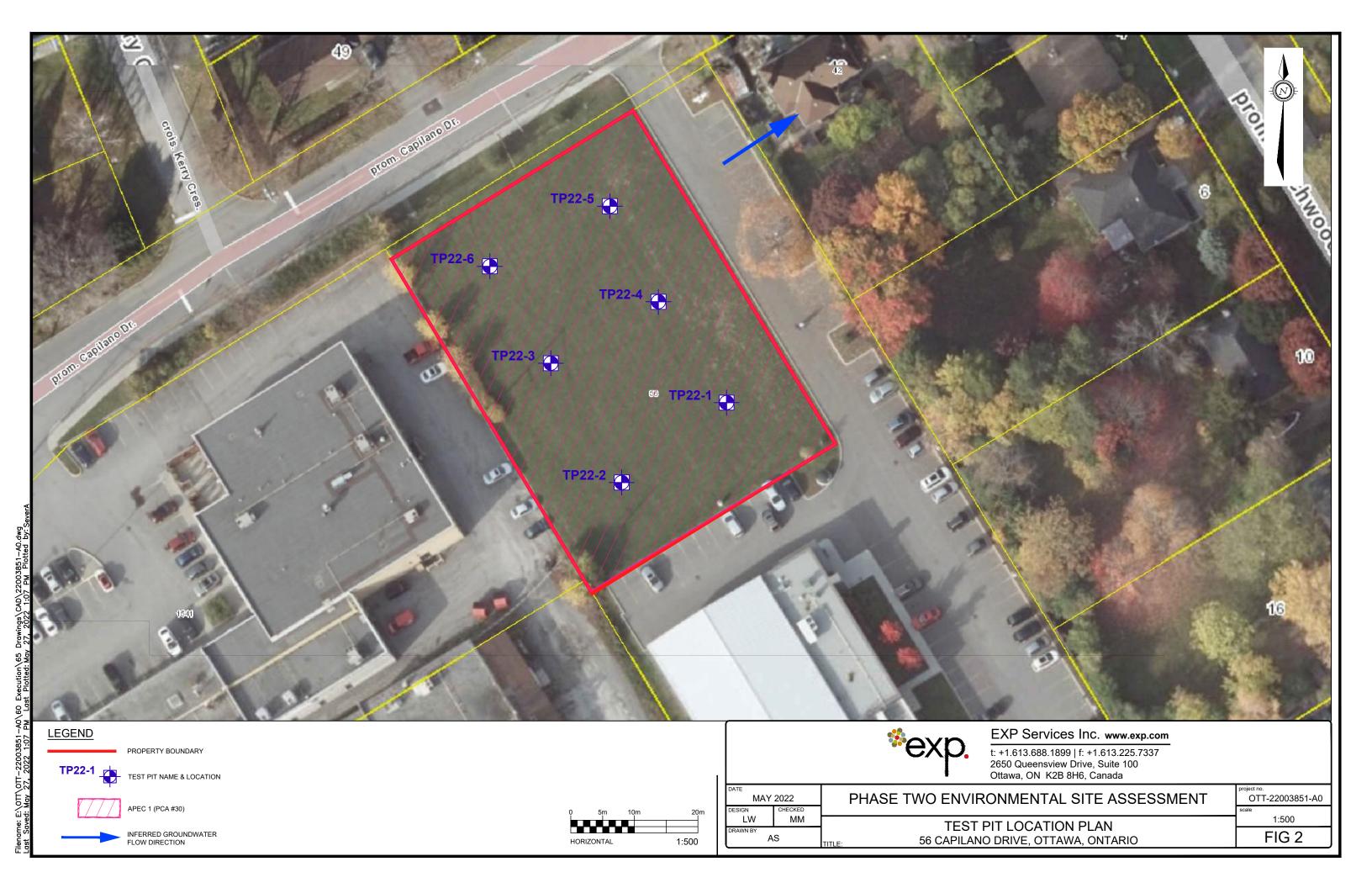
Use of Report

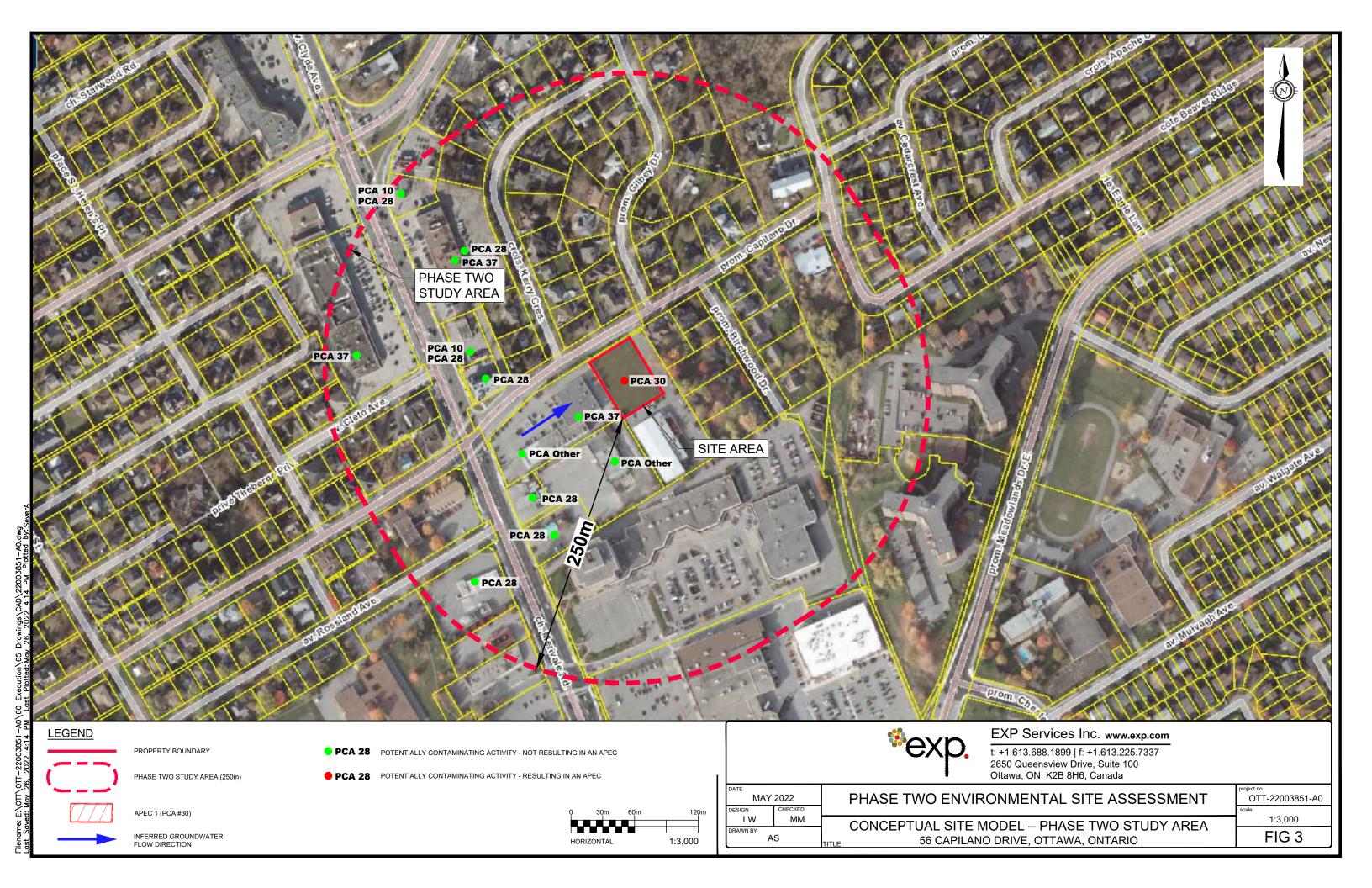
The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. No other party may use or rely upon the Report in whole or in part without the written consent of EXP. Any use of the Report, or any portion of the Report, by a third party are the sole responsibility of such third party. EXP is not responsible for damages suffered by any third party resulting from unauthorised use of the Report.

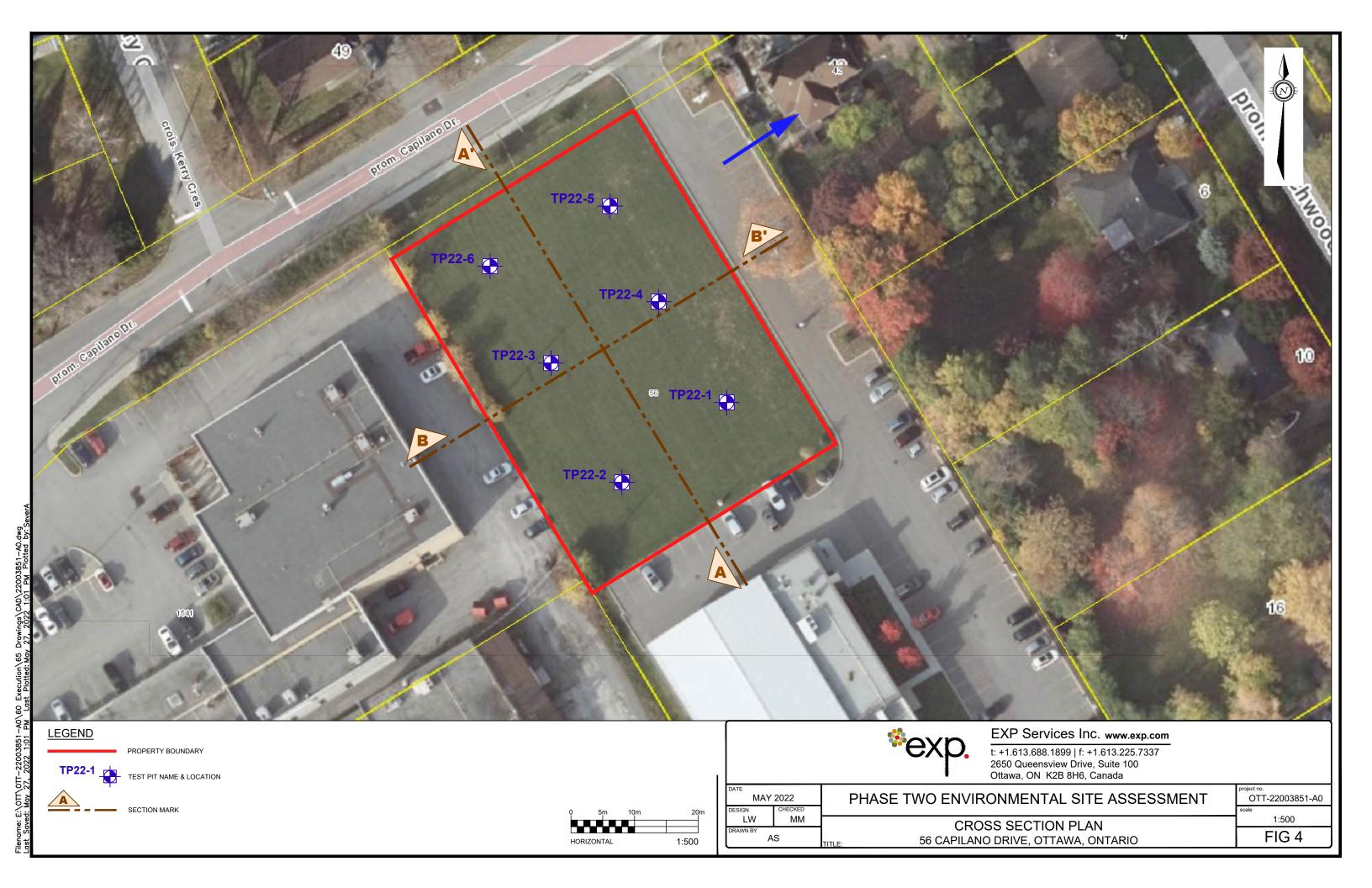
Report ormat

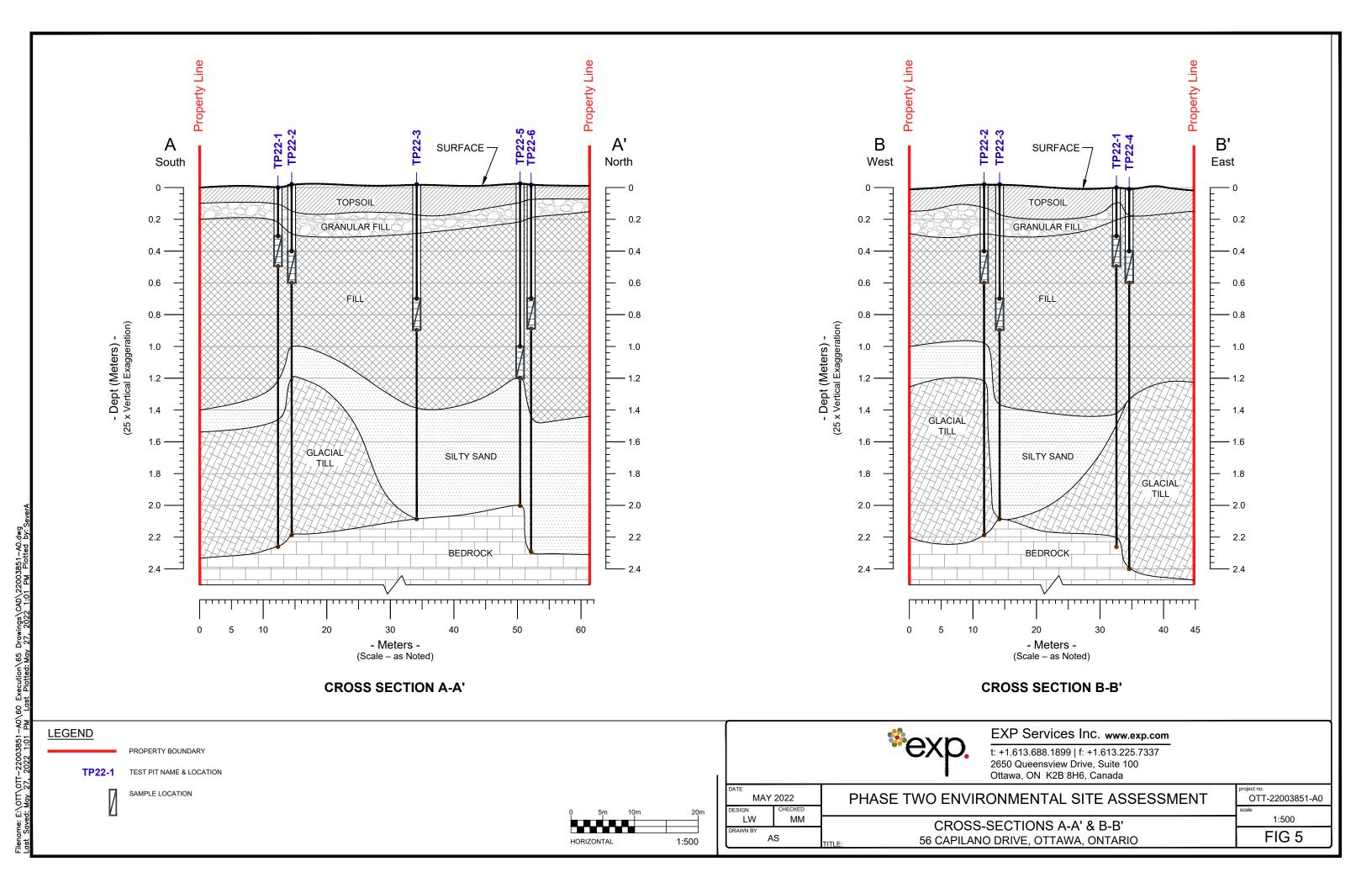
Where EXP has submitted both electronic file and a hard copy of the Report, or any document forming part of the Report, only the signed and sealed hard copy shall be the original documents for record and working purposes. In the event of a dispute or discrepancy, the hard copy shall govern. Electronic files transmitted by EXP utilize specific software and hardware systems. EXP makes no representation about the compatibility of these files with the Client's current or future software and hardware systems. Regardless of format, the documents described herein are EXP's instruments of professional service and shall not be altered without the written consent of EXP.



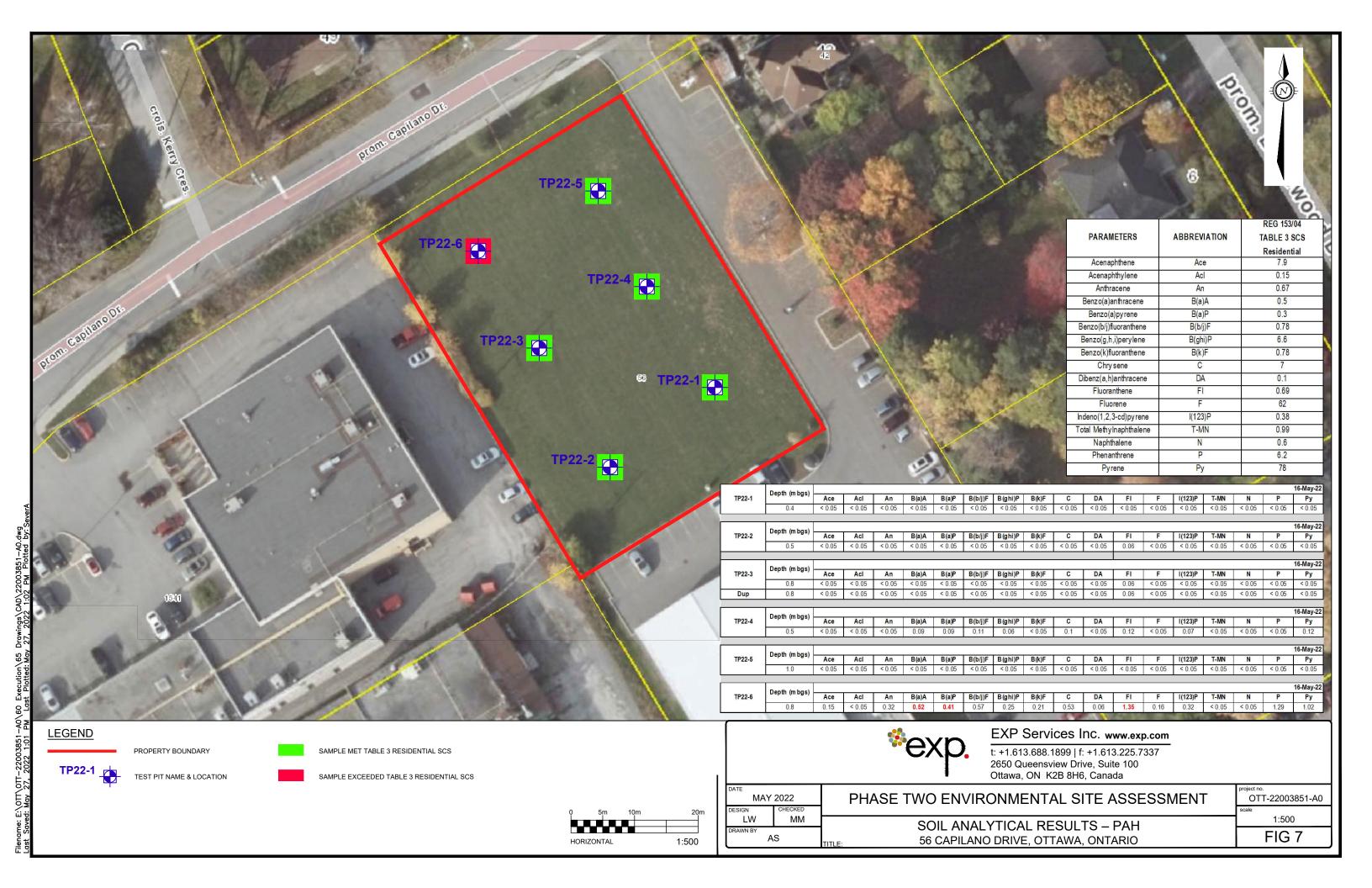

EXP Services Inc.

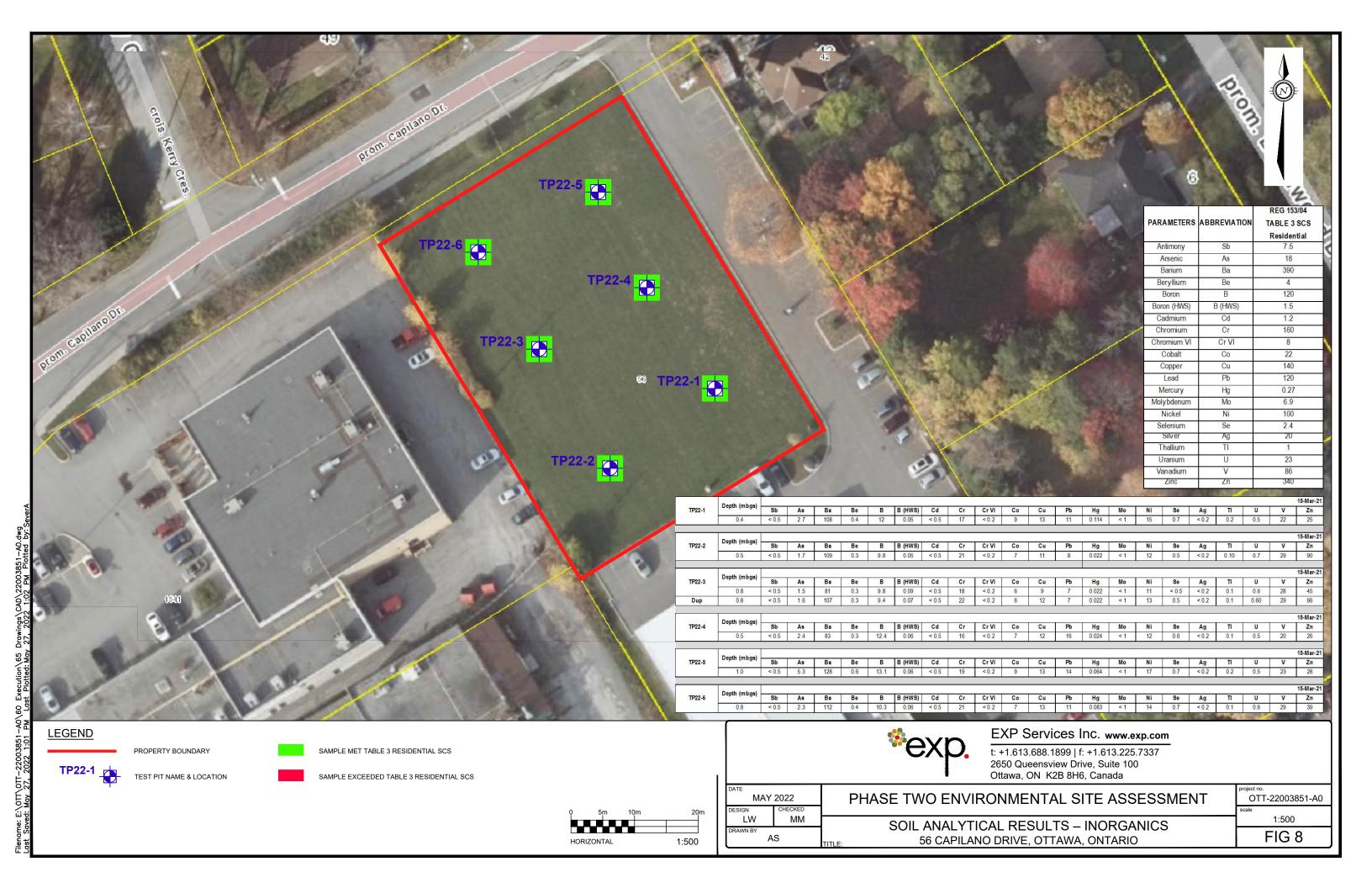

McDonald Brothers Consulting Inc.
Phase Two Environmental Site Assessment
56 Capilano Drive, Ottawa, Ontario
OTT-22003851-A0
May 27, 2022

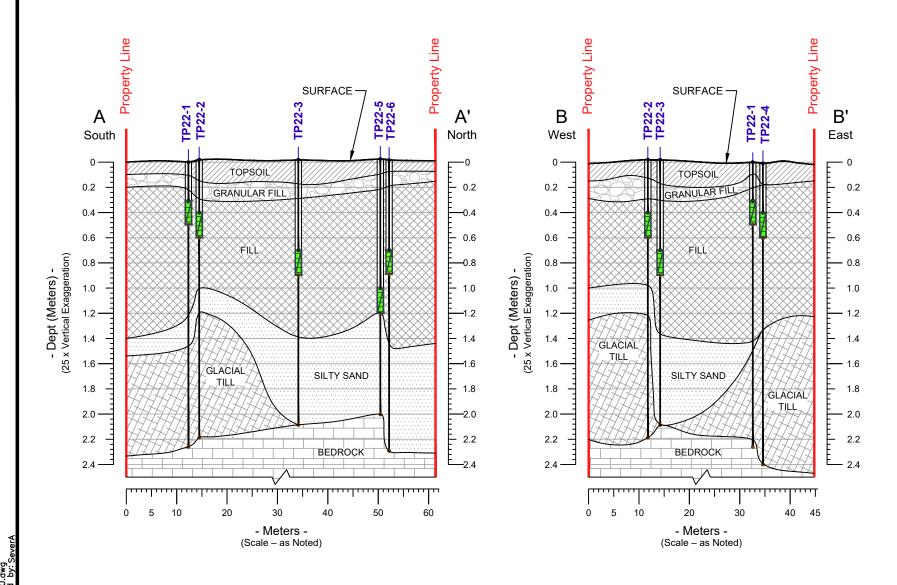

Appendix A: Figures









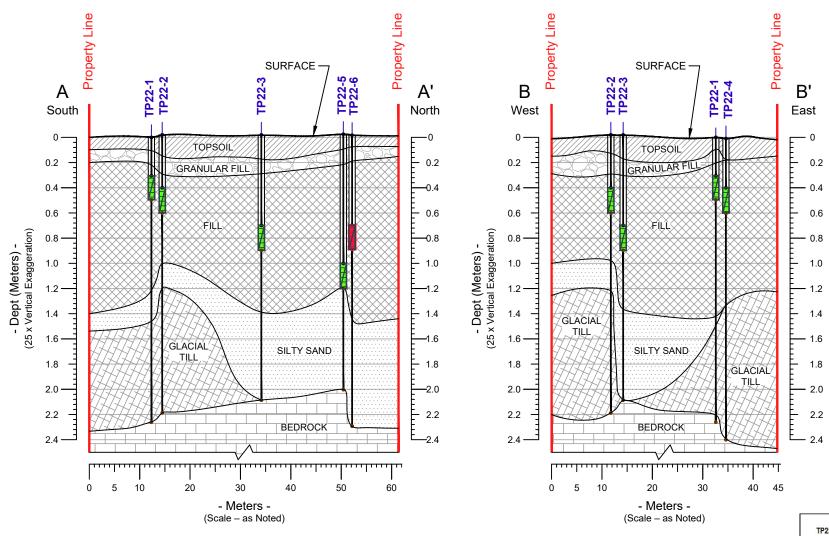


		REG 153/04
PARAMETERS	ABBREVIATION	TABLE 3 SCS
		Residential
Benzene	В	0.21
Toluene	Т	2.3
Ethy Ibenzene	E	2
Total Xy lenes	X	3.1
F1	F1 (C6-C10)	65
F2	F2 (C10-C16)	250
F3	F3 (C16-C34)	2500
F4	F4 (C34-C50)	6600
1,1-Dichloroethane	1,1-DCA	3.5
1,2-Dichlororethane	1,2-DCA	0.05
1,1-Dichloroethy lene	1,1-DCE	0.05
Cis-1,2-Dichloroethy lene	c-1,2-DCE	3.4
Trans-1,2,-Dichlorothy lene	t-1,2-DCE	0.084
Tetrachloroethy lene	PCE	0.28
Trichloroethy lene	TCE	0.061
Viny I Chloride	VC	0.02

																	40.11 00
	Depth (mbgs)							1 ==									16-May-22
TP22-1		В	T	E	X	F1	F2	F3	F4	1,1-DCA	1,2-DCA	1,1-DCE	c-1,2-DCE	,	PCE	TCE	VC
	0.4	< 0.02	< 0.2	< 0.05	< 0.03	<10	<5	<10	<10	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
	Depth (mbgs)																16-May-22
TP22-2		В	Т	E	X	F1	F2	F3	F4	1,1-DCA	1,2-DCA	1,1-DCE	,	t-1,2-DCE	PCE	TCE	VC
	0.5	< 0.02	< 0.2	< 0.05	< 0.03					< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
	Depth (mbgs)																16-May-22
TP22-3		В	T	E	X	F1	F2	F3	F4	1,1-DCA	1,2-DCA	1,1-DCE	1	t-1,2-DCE	PCE	TCE	VC
	0.8	< 0.02	< 0.2	< 0.05	< 0.03					< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
Dup	0.8	< 0.02	< 0.2	< 0.05	< 0.03					< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
	Depth (mbgs)																16-May-22
TP22-4	Dopair (mage)	В	T	E	X	F1	F2	F3	F4	1,1-DCA	1,2-DCA	1,1-DCE	c-1,2-DCE	t-1,2-DCE	PCE	TCE	VC
	0.5	< 0.02	< 0.2	< 0.05	< 0.03					< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
		,															
	Depth (mbgs)																16-May-22
TP22-5	Dopair (mbgo)	В	T	E	X	F1	F2	F3	F4	1,1-DCA	1,2-DCA	1,1-DCE	c-1,2-DCE	t-1,2-DCE	PCE	TCE	VC
	1.0	< 0.02	< 0.2	< 0.05	< 0.03					< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02
	Depth (mbgs)																16-May-22
TP22-6	Dopan (mbgo)	В	T	E	X	F1	F2	F3	F4	1,1-DCA	1,2-DCA	1,1-DCE	c-1,2-DCE	t-1,2-DCE	PCE	TCE	VC
	0.8	< 0.02	< 0.2	< 0.05	< 0.03					< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.05	< 0.02

EXP Services Inc. www.exp.com

t: +1.613.688.1899 | f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada


ΙΑΥ	2022	
	CHECKED	
	MM	
	C	

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

OTT-22003851-A0

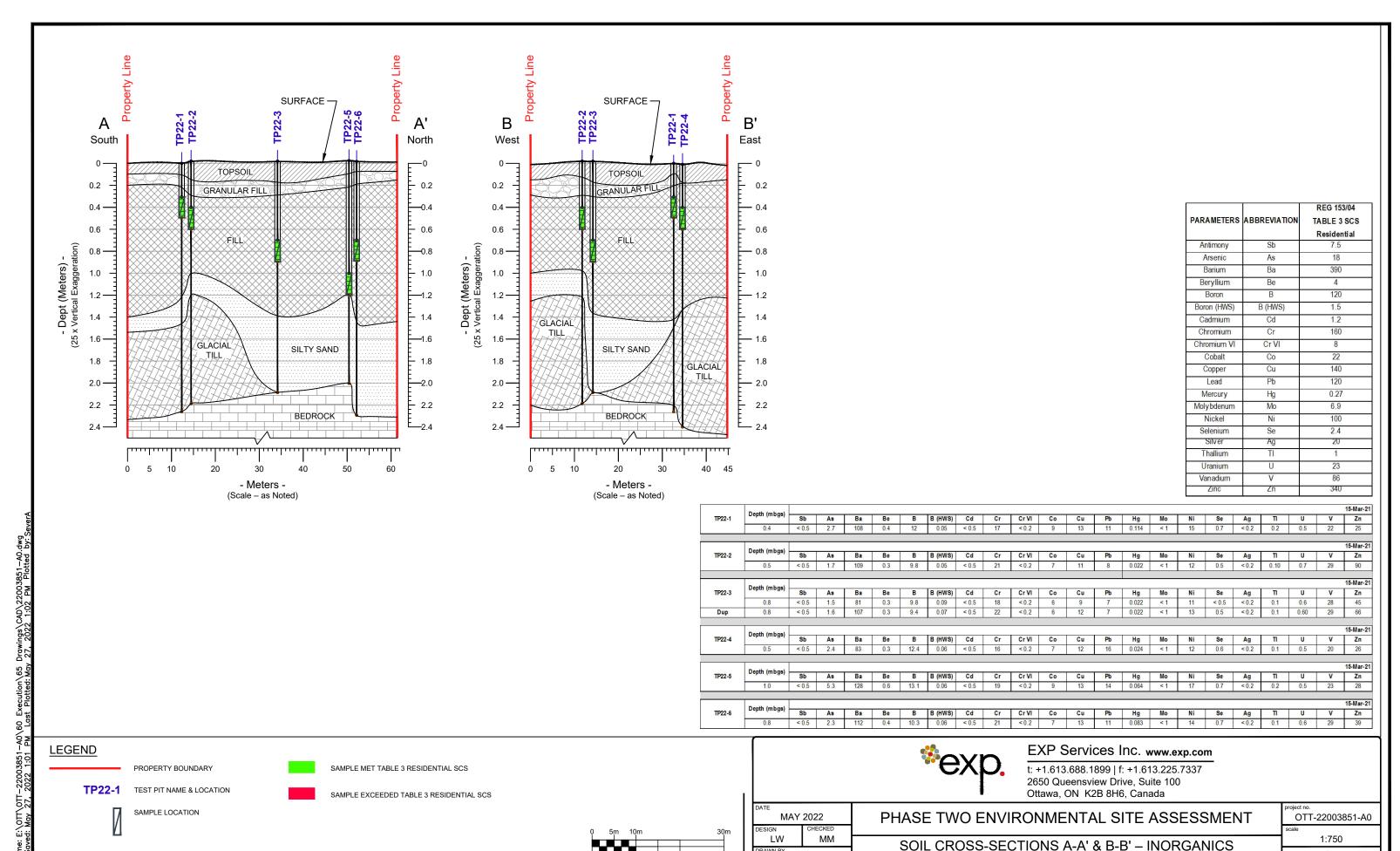
SOIL CROSS-SECTIONS A-A' & B-B' - PHC & VOC 56 CAPILANO DRIVE, OTTAWA, ONTARIO

FIG 9

PARAMETERS	ABBREVIATION	REG 153/04 TABLE 3 SCS Residential
Acenaphthene	Ace	7.9
Acenaphthylene	Acl	0.15
Anthracene	An	0.67
Benzo(a)anthracene	B(a)A	0.5
Benzo(a)pyrene	B(a)P	0.3
Benzo(b/j)fluoranthene	B(b/j)F	0.78
Benzo(g,h,i)perylene	B(ghi)P	6.6
Benzo(k)fluoranthene	B(k)F	0.78
Chry sene	С	7
Dibenz(a,h)anthracene	DA	0.1
Fluoranthene	FI	0.69
Fluorene	F	62
Indeno(1,2,3-cd)pyrene	I(123)P	0.38
Total Methylnaphthalene	T-MN	0.99
Naphthalene	N	0.6
Phenanthrene	Р	6.2
Pyrene	Ру	78

																-		
	Danth (mhna)																	16-May-22
TP22-1	Depth (m bgs)	Ace	Acl	An	B(a)A	B(a)P	B(b/j)F	B(ghi)P	B(k)F	С	DA	FI	F	I(123)P	T-MN	N	Р	Py
	0.4	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	I																	16-May-22
TP22-2	Depth (mbgs)	Ace	Acl	An	B(a)A	B(a)P	B(b/j)F	B(ghi)P	B(k)F	С	DA	FI	F	I(123)P	T-MN	N	P	Py
	0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.06	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	Depth (mbgs)																	16-May-22
TP22-3	181 18 18 18	Ace	Acl	An	B(a)A	B(a)P	B(b/j)F	B(ghi)P	B(k)F	С	DA	FI	F	I(123)P	T-MN	N	P	Py
	0.8	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.06	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dup	0.8	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.06	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	_																	46 May 22
TP22-4	Depth (m bgs)	Ace	Acl	An	B(a)A	B(a)P	B(b/j)F	B(ghi)P	B(k)F	С	DA	FI	F	I(123)P	T-MN	N	P	16-May-22 Py
1722-4	0.5	< 0.05	< 0.05	< 0.05	0.09	0.09	0.11	0.06	< 0.05	0.1	< 0.05	0.12	< 0.05	0.07	< 0.05	< 0.05	< 0.05	0.12
	0.5	V 0.03	₹ 0.03	₹0.05	0.09	0.09	0.11	0.00	₹ 0.05	0.1	₹0.05	0.12	₹ 0.05	0.07	₹0.05	₹ 0.05	₹ 0.05	0.12
	D # 4 1 3																	16-May-22
TP22-5	Depth (mbgs)	Ace	Acl	An	B(a)A	B(a)P	B(b/j)F	B(ghi)P	B(k)F	С	DA	FI	F	I(123)P	T-MN	N	Р	Py
	1.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	Depth (m bgs)																_	16-May-22
TP22-6		Ace	Acl	An	B(a)A	B(a)P	B(b/j)F	B(ghi)P	B(k)F	C	DA	FI	F	I(123)P	T-MN	N	P	Py
	0.8	0.15	< 0.05	0.32	0.52	0.41	0.57	0.25	0.21	0.53	0.06	1.35	0.16	0.32	< 0.05	< 0.05	1.29	1.02

EXP Services Inc. www.exp.com


t: +1.613.688.1899 | f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada

MAY	2022	
DESIGN	CHECKED	
LW	MM	
DRAWN BY	0	

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

SOIL CROSS-SECTIONS A-A' & B-B' – PAH 56 CAPILANO DRIVE, OTTAWA, ONTARIO 1:750 FIG 10

OTT-22003851-A0

1:750

HORIZONTAL

FIG 11

56 CAPILANO DRIVE, OTTAWA, ONTARIO

EXP Services Inc.

McDonald Brothers Consulting Inc. Phase Two Environmental Site Assessment 56 Capilano Drive, Ottawa, Ontario OTT-22003851-A0 May 27, 2022

Appendix B: Sampling and Analysis Plan

OTT-22003851-A0 56 Capilano Drive, Ottawa, Ontario Sampling and Analysis Plan

Project Objective

Future use of the property is intended to be residential. Based on a Phase One ESA completed by EXP, the previous use of the RSC property was defined as community, based on the definitions outlined in Ontario Regulation 153/04.

Test Pits

Based on the previous uses of the Phase Two property, the following on-site potentially contaminating activities (PCA) were identified:

PCA #30 – Importation of Fill of Unknown Quality

Consequently, the following areas of potential environmental concern (APEC) were identified:

• APEC #1 – Entirety of Phase Two property

Investigative requirements are as follows:

- Excavate six test pits to bedrock surface.
- Bedrock is expected to be present at approximately 2.0 mbgs.
- As excavation progresses, log stratigraphy, describing soil type, colour, staining, odour.
- One fill sample will be collected from each test pit.

Locates

• See project folder and HASP binder.

Soil Sampling

- Soil samples should be submitted to Caduceon
- Six samples and a duplicate shall be submitted for analysis of metals, PHC, PAH, and VOC

Soil Cuttings

• Test pits will be backfilled upon completion

EXP Services Inc.

McDonald Brothers Consulting Inc.
Phase Two Environmental Site Assessment
56 Capilano Drive, Ottawa, Ontario
OTT-22003851-A0
May 27, 2022

Appendix C: Borehole Logs

Project: Phase Two Environments Phase Two Environments 56 Cpailano Drive	onmental Site Assessm e, Ottawa, ON			_	_			Pa	ge	1_ of _			
Date Drilled: 5/16/22			Split Spoo	n Sample		\boxtimes		Combus	tible Vap	our Readir	ng	[
Orill Type:			Auger Sar SPT (N) V			II		Natural I	Moisture (Content	⊢	>	X €
Oatum: Relative			Dynamic (Cone Tes	t ·			Undraine	ed Triaxia at Failur		•	(Ŭ ⊕
ogged by: L.W. C	hecked by: M.M.	_	Shelby Tu Shear Stre Vane Test	ength by		+ s		Shear St	trength by	y		4	•
S Y M SOIL DESCI	RIPTION Appro	ximate Elevate	t Shear S	40 rength		0 8	80 kPa	Nat Atterb	50 5 ural Moist perg Limits	our Readin 600 75 ture Conter s (% Dry W	nt % /eight)	Ρ̈́U	Na Jn kN
TOPSOIL ~100mm thick	k /	(50	10	0 15	00 2	00	20	20	40 6	0		
FILL Sandy clay fill with cobb	oles, brown, moist,					-2-2-2-2						8	;
no odours or staining.	-		1 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -										
SILTY SAND Silty sand, brown/grey, staining.	moist, no odours of			1-3-3-1-1		-2 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0		<u> </u>				M ₂	
GLACIAL TILL Silty clay with cobbles, on odours of staining.	dark brown, moist,		2										
OTES: Borehole/Test Pit data requires Interpreta	ation by exp.	WATER	LEVEL RE	CORDS	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		·	СО	RE DRI	LLING RE	ECORD		_
before use by others Test pit was backfilled upon completion.	Elapse Time		Water Level (m)	F	lole Ope To (m)	en	Run No.	Dep (m		% Red	C	RQI	D
Field work supervised by an EXP repress See Notes on Sample Descriptions This Figure is to read with exp. Services													

Project No: Project:	OTT-22003851-A0 Phase Two Environmental Site	e Assessment									_	F	igure				;-2 -			
_ocation:	56 Cpailano Drive, Ottawa, ON	N											P	age.	_	<u>1</u> (of _	1		
Date Drilled:	5/16/22		_	Spli	t Spo	on S	ampl	e		\boxtimes			Comb	ustible	Vapo	our Re	eadin	g		
Orill Type:				_	er Sa								Natura			Conte	nt		_	×
Datum:	Relative			Dyn	amic	Cone		st	_	-			Undra	ined Ti	riaxia					— Ф
ogged by:	L.W. Checked by:	M.M.		She	lby To ar Sto e Tes	engt	th by			+ s			% Stra Shear Peneti	Streng	gth by	/				•
S Y M B O L	SOIL DESCRIPTION	Approximate Elev m	t h		2 near S	:0	4 gth		Test N 60 150	8	30	Pa		oustible 250 latural erberg 20	5 Moist Limits	00	75	it % eight)	1	Nat Unit
	SOIL ~150mm thick		0																	
FILL		moist,	1									-:E) : : : ; 					-0.00	- P	<u> </u>
SIL1 Silty stain	TY SAND sand, brown/grey, moist, no odd ning.	ours of	ľ				0.1.					[-2-3-1	7	<u>7</u>
Silty	ACIAL TILL clay with cobbles, dark brown, r dours of staining.	noist, _	2															:: :::: ::::::::::::::::::::::::::::::		
110 0	Refusal at 2.2 m Depth																			
OTES:	Dit data requires Interpretation have	WATE	RIF	EVF	LR	-:)RD9	⊥:::: ——— S		 7	I ::-			ORE	DRII	L IN	G RF	COF	∴ RD	
before use by ot		Elapsed Time		Wa	ter			Hole Op		+	Rur		De	epth			Rec			RQD
	ckfilled upon completion.	Time	L	<u>eve</u>	<u>l (m)</u>			<u>To (m</u>	<u>')</u>		No		(<u>m)</u>						
	ample Descriptions																			
This Figure is to OTT-22003851-	read with exp. Services Inc. report -A0																			

Project No:	OTT-22003851-A0	y Or Te.	<u>ی</u>				<u> </u>	<u></u>	<u> </u>		. Figu	ıre N	No.	C	<u>-3</u>	C	X
Project:	Phase Two Environmental Site										-		_	<u>1</u> o	f _1	_	•
Location:	56 Cpailano Drive, Ottawa, ON	N.											_	_			
Date Drilled:	5/16/22		-	Split Spor			e							pour Re Conten			□ X
Drill Type:	Deletive			SPT (N) \	/alue	Э	t	_	0		Atte	erberç	g Limits			-	—O
Datum:	Relative	NA NA	-	Shelby To	ıbe					,	% 5	Strain	ed Triax ı at Failu trength l	ire			\oplus
Logged by:	L.W. Checked by:	M.M		Shear Str Vane Tes		th by			s				meter Te				A
G W L BO	SOIL DESCRIPTION	Approximate Elev	D atteo p t h	Shear S	0 Stren	4 gth		60		80 kPa		2: Nat Atterb	50 ural Moi perg Lim	500 sture Co its (% Dr	ading (pp 750 ntent % y Weight	1	Natura Unit W
	SOIL ~180mm thick		0	5	0	10	10	150		200		2	20	40	60	::::	5
FILL																	
Sand no o	dy clay fill with cobbles, brown, r dours or staining.	noist,	1	-2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -			· · · · · · · · · · · · · · · · · · ·		:: (:) :- (:) :- (:)		Ď.					<u></u>	S1
	TY SAND			-0.0-1-0							0						7 ~~
Silty Stair	sand, brown/grey, moist, no odd ning.	ours of	2	-2 (-1 -2 -		2.1.					 	. ;				2	§ S2
	Refusal at 2.1 m Depth																
NOTES: 1.Borehole/Test F	Pit data requires Interpretation by exp.	WATER	. R L	EVEL RE	CO	RDS	3	:1:	<u>: : :</u>	1::::	111	СО	RE DR	ILLING	RECO	RD	
NOTES: 1. Borehole/Test F before use by o' 2. Test pit was bac	thers ckfilled upon completion.	Elapsed Time	L	Water evel (m)		H	Hole O To (n			Run No.		Dep (m		% I	Rec.	ı	RQD %
3. Field work supe	ervised by an EXP representative.																
	o read with exp. Services Inc. report																

Proje		Phase Two Environmental Site									Figure F		1 of	<u>4</u> 1		
	tion:	56 Cpailano Drive, Ottawa, Of	N									J ,				
	Drilled:	5/16/22			Split Spo		ple						apour Rea	-		□ X
rill 7	Гуре:				Auger Sa SPT (N)				C			ai Moistui erg Limit	re Content s		<u> </u>	$\stackrel{\boldsymbol{\wedge}}{=}$
atur	m:	Relative			Dynamic Shelby T		est		_	- I		ained Tria ain at Fai				\oplus
ogg	ed by:	L.W. Checked by:	M.M.		Shear St Vane Te		у		 	-		r Strength trometer				A
S				Г)	ndard P	enetra	tion T	est N Va	alue	Com	bustible V 250	apour Rea	ding (ppn 750	n) S	Na
M M O		SOIL DESCRIPTION	Approximate n	l p	Shear	-		6		80 kPa	Att	Natural Mo erberg Lir	oisture Con nits (% Dry	tent % Weight)) SAMPLES	Un
1 <u>1,1</u> ,		OIL ~180mm thick		0		0	100	15		200		20	40	60	S	
	FILL Sand	y clay fill with cobbles, brown, r	moist,		3313						0 : : : 	31333			m	2
	no od	lours or staining.		1	33.13	1.3.4						3 3 3 3				
	×	OLAL TILL] '							0					
	Silty	CIAL TILL clay with cobbles, dark brown, r	moist,			11124		- 2 - 2 - 1 - 2 - 2 - 1 - 2 - 2 - 1			P				m	2
	no od	lours of staining.	_	2	3313	11.50		333	-3 (-4 -			3 4 5 6			3	
].	Refusal at 2.4 m Depth			13313										3 :	\vdash
OTES Borel	nole/Test Pit	t data requires Interpretation by exp.	W	ATER L	EVEL R	ECORI	os					ORE D	RILLING	RECOR	RD.	
	e use by oth pit was back	ers filled upon completion.	Elapsed Time	ı	Water ₋evel (m)			Ope (m)		Run No.		epth (m)	% R	ec.	R	RQD
		vised by an EXP representative. mple Descriptions read with exp. Services Inc. report														

Project: Location:	Phase Two Environmental Sit 56 Cpailano Drive, Ottawa, O														Pa	ge.	_	<u>1_</u>	of .	_1	_		
		14									_	_											
Date Drilled:	5/16/22			Split Auge				е										our R Conte	Readii ent	ng			□ X
Orill Type:				SPT				~+			0				erber	-		-1 -4			H		⊕
)atum: 	Relative			Dyna Shel			e res	5l				I		% \$	Strair	n at F	riaxia Failur	e					\oplus
ogged by:	L.W. Checked by:	M.M.		Shea Vane			th by				+ s	-					gth b er Te						•
s y			Г		Sta	ndar	d Per	netra	tion T	Γest I	N Va	llue		Co		stible		our F	Readir	ng (p	pm)	S	Nat
V M - O	SOIL DESCRIPTION	Approximate m	, F	Sh	2 ear S	0 Stren		10	6	0		80	kPa	Ι.	Na Atterl	tural berg	Mois Limit	ture C	Conte Dry W	nt % Veigh	nt)	ΡÏ	Unit
L	SOIL ~200mm thick		ľ	- 1	5	0	1(00	1;	50		200				20		40	6	30		E S	
FILL	ly clay fill with cobbles, brown,	moist -																				<u>]</u>	
no oc (<1%	dours or staining, some minor o	lebris		1.2.2																		:	
(*17)	·)·	-	1	1 2 3 3									E	0 ∐∷								m	5
	Y SAND sand, brown/grey, moist, no od	ours of		-5.5			· · · · · ·						· · · · []								m	5
staini		ours or			1.22																		
	Refusal at 2.0 m Depth											İ				T		T				\prod	
														: :									
									::			li				1						Ш	
IOTES:	t data requires Interpretation by eve	WA	ATER I	EVF	L RF	CC)RDS								CC	RF	DRI	LLIN	IG R	ECC			
before use by oth		Elapsed		Wat	er			Hole	Оре		\dashv		un		Dep	oth	7.4		6 Re		T		QD
.Test pit was back	kfilled upon completion.	Time		Level	(m)			To	(m))	-	N	0.		(m	1)	+				+		
Field work super	vised by an EXP representative.																						
	imple Descriptions																						
	read with exp. Services Inc. report	1					1																

•	OTT-22003851-A0	g or re.	Sti i	<u> </u>			igure No.	C-6	Θ	X
Project:	Phase Two Environmental Site					_	Page.	1 of 1	_	•
Location:	56 Cpailano Drive, Ottawa, Of	N .				_				
Date Drilled:	5/16/22		Split Spoo				Combustible Va	_		□ X
Drill Type:			SPT (N) V	alue	0		Atterberg Limits	Content	<u> </u>	$\stackrel{\frown}{\circ}$
Datum:	Relative		Dynamic (Shelby Tu		_		Undrained Triax % Strain at Failu			\oplus
Logged by:	L.W. Checked by:	M.M.	Shear Stre Vane Test	ngth by	+ s		Shear Strength Penetrometer To			A
S Y			D Stan	dard Penetration T	est N Valu	ıe		pour Reading (ppr	n) S	
G Y W B L O	SOIL DESCRIPTION	Approximate Elev m	ateon p 20	40 6	0 8	0 kPa	250 Natural Moi Atterberg Lim	500 750 sture Content % its (% Dry Weight)	m) SAMPLES	Natural Unit Wt kN/m ³
[]	SOIL ~100mm thick		h 50	100 15	0 20	00	20	40 60	.; .	
	NULAR FILL									
Sanc	ly clay fill with cobbles, brown, r dours or staining, some minor d	noist,	-0.0-1-0.1				о П		m ₂	S1
(<1%		CDII3	1 3 2 1 2 1						:	
SILT	TY SAND						o □		m	S2
Silty Stain	sand, brown/grey, moist, no odd ing.	ours of	2							
	Refusal at 2.3 m Depth									
	•									
55										
7 5/24/22										
A.GDT										
WATT										
TROW OTTAWA.GDT										
표										
OGS.G										
- - -										
NOTES: 88 Notes Pibefore use by other controls of the control of t	it data requires Interpretation by exp.	WATER	R LEVEL RE	CORDS			CORE DR	ILLING RECOF	RD	
before use by oth	hers	Elapsed Time	Water Level (m)	Hole Ope	n	Run No.	Depth (m)	% Rec.		QD %
	kfilled upon completion.	IIIIE	reaci (III)	10 (111)		INU.	(111)			
1. See Notes on Sa	vised by an EXP representative.									
4. See Notes on Sa										
5. This Figure is to OTT-22003851-	read with exp. Services Inc. report A0									

EXP Services Inc.

McDonald Brothers Consulting Inc. Phase Two Environmental Site Assessment 56 Capilano Drive, Ottawa, Ontario OTT-22003851-A0 May 27, 2022

Appendix D: Analytical Summary Tables

Table 1 - Analytical Results in Soil - PHC and VOC 56 Capilano Drive, Ottawa, Ontario

OTT-22003851-A0

			Provincial		Samples						
		MECP Table 3	MECP Table 3	MECP Table 1				DUP			
Sample ID		Commercial 1	Residential ²	Commercial 3	TP22-1	TP22-2	TP22-3	(Field Duplicate	TP22-4	TP22-5	TP22-6
	UNITS	Commercial	Residential	Commerciai				TP22-3)			
Sampling Date		Dark Orange	Light Orange	Bold	16-May-22	16-May-22	16-May-22	16-May-22	16-May-22	16-May-22	16-May-22
Sample Depth (mbgs)					0.4 m	0.5 m	0.8 m	0.8 m	0.5 m	1.0 m	0.8 m
Petroleum Hydrocarbons											
F1 PHC (C6-C10)	μg/g	55	55	25	< 10	< 10	< 10	< 10	< 10	< 10	< 10
F2 PHC (C10-C16)	μg/g	98	98	10	< 5	< 5	< 5	< 5	< 5	< 5	< 5
F3 PHC (C16-C34)	μg/g	300	300	240	< 10	15	11	14	19	12	34
F4 PHC (C34-C50)	μg/g	2800	2800	120	< 10	172	< 10	< 10	< 10	< 10	23
Volatile Organic Compounds				•		•	•	•	•	•	•
Acetone	μg/g	16	16	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Benzene	μg/g	0.320	0.21	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Bromodichloromethane	μg/g	18	13	0.05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Bromoform	μg/g	0.61	0.27	0.05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Bromomethane	μg/g	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Carbon Tetrachloride	μg/g	0.21	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chlorobenzene	μg/g	2.4	2.4	0.05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chloroform	μg/g	0.47	0.05	0.05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Dibromochloromethane	μg/g	13	9.4	0.05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
1,2-Dichlorobenzene	μg/g	6.8	3.4	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,3-Dichlorobenzene	μg/g	9.6	4.8	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,4-Dichlorobenzene	μg/g	0.2	0.083	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dichlorodifluoromethane	μg/g	16	16	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,1-Dichloroethane	μg/g	17	3.5	0.05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
1,2-Dichloroethane	μg/g	0.05	0.05	0.05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
1,1-Dichloroethylene	μg/g	0.064	0.05	0.05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Cis-1,2-Dichloroethylene	μg/g	55	3.4	0.05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Trans-1,2-Dichloroethylene	μg/g	1.3	0.084	0.05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
1,2-Dichloropropane	μg/g	0.16	0.05	0.05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Cis-1,3-Dichloropropylene	μg/g	NV	NV	NV	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Trans-1,3-Dichloropropylene	μg/g	NV	NV	NV	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
1,3-Dichloropropylene, Total	μg/g	0.18	0.05	0.05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Ethylbenzene	μg/g	9.5	2	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Ethylene Dibromide	μg/g	0.05	0.05	0.05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Hexane(n)	μg/g	46	2.8	0.05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Methyl Ethyl Ketone	μg/g	70	16	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Methyl Isobutyl Ketone	μg/g	31	1.7	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Methyl-t-Butyl Ether	μg/g	11	0.75	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methylene Chloride	μg/g	1.6	0.1	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Styrene	μg/g	34	0.7	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,1,1,2-Tetrachloroethane	μg/g	0.087	0.058	0.05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
1,1,2,2-Tetrachloroethane	μg/g	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Tetrachloroethylene	μg/g	4.5	0.28	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Toluene	μg/g	68	2.3	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
1,1,1-Trichloroethane	μg/g	6.1	0.38	0.05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
1,1,2-Trichloroethane	μg/g	0.05	0.05	0.05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Trichloroethylene	μg/g	0.91	0.061	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Trichlorofluoromethane	μg/g	4	4	0.25	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Vinyl Chloride	μg/g	0.032	0.02	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Xylene, m,p-	μg/g	NV	NV	NV	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Xylene, o-	μg/g	NV	NV	NV	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Total Xylenes	μg/g	26	3.1	0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03

NOTES:

Bold

- Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 3 Full Depth Generic Site Condition Standards (SCS) in a Non-Potable Ground Water Condition for Industrial/Commercial/Community Property Use (coarse textured soils)
- Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 3 Full Depth Generic Site Condition Standards (SCS) in a Non-Potable Ground Water Condition for Residential/Institutional/Parkland Property Use (coarse textured soils)
- Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 1 Full Depth Background Site Condition Standards (SCS) for Parkland/Residential/Institutional/Industrial/Community Property Use (coarse textured soils)
- < RDL Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

NV No Value

Parameter not analyzed

m bgs Metres below ground surface

Indicates soil exceedance of MECP Table 3 SCS for industrial/commercial/community land use Indicates soil exceedance of MECP Table 3 SCS for residential/institutional/parkland land use Indicates soil exceedance of MECP Table 1 SCS

Table 2 - Analytical Results in Soil - PAH 56 Capilano Drive, Ottawa, Ontario OTT-22003851-A0

			Provincial					Samples			
Sample ID	UNITS	MECP Table 3 Commercial 1	MECP Table 3 Residential ²	MECP Table 1 Commercial ³	TP22-1	TP22-2	TP22-3	DUP (Field Duplicate TP22-3)	TP22-4	TP22-5	TP22-6
Sampling Date		Dark Orange	Light Orange	Bold	16-May-22	16-May-22	16-May-22	16-May-22	16-May-22	16-May-22	16-May-22
Sample Depth (mbgs)					0.4 m	0.5 m	0.8 m	0.8 m	0.5 m	1.0 m	0.8 m
Polycyclic Aromatic Hydrocarbons											
Acenaphthene	μg/g	96	7.9	0.072	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.15
Acenaphthylene	μg/g	0.15	0.15	0.093	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	μg/g	0.67	0.67	0.16	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.32
Benzo(a)anthracene	μg/g	0.96	0.5	0.36	< 0.05	< 0.05	< 0.05	< 0.05	0.09	< 0.05	0.52
Benzo(a)pyrene	μg/g	0.3	0.3	0.3	< 0.05	< 0.05	< 0.05	< 0.05	0.09	< 0.05	0.41
Benzo(b)fluoranthene	μg/g	0.96	0.78	0.47	< 0.05	< 0.05	< 0.05	< 0.05	0.11	< 0.05	0.57
Benzo(b+k)fluoranthene	μg/g	NV	NV	NV	< 0.05	< 0.05	< 0.05	< 0.05	0.16	< 0.05	0.78
Benzo(g,h,i)perylene	μg/g	9.6	6.6	0.68	< 0.05	< 0.05	< 0.05	< 0.05	0.06	< 0.05	0.25
Benzo(k)fluoranthene	μg/g	0.96	0.78	0.48	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.21
Chrysene	μg/g	9.6	7	2.8	< 0.05	< 0.05	< 0.05	< 0.05	0.1	< 0.05	0.53
Dibenzo(a,h)anthracene	μg/g	0.1	0.1	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.06
Fluoranthene	μg/g	9.6	0.69	0.56	< 0.05	0.06	0.06	0.06	0.12	< 0.05	1.35
Fluorene	μg/g	62	62	0.12	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.16
Indeno(1,2,3,-cd)pyrene	μg/g	0.76	0.38	0.23	< 0.05	< 0.05	< 0.05	< 0.05	0.07	< 0.05	0.32
Methylnaphthalene,1-	μg/g	76	0.99	0.59	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methylnaphthalene,2-	μg/g	76	0.99	0.59	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Methylnaphthalene 2-(1-)	μg/g	76	0.99	0.59	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene	μg/g	9.6	0.6	0.09	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	μg/g	12	6.2	0.69	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	1.29
Pyrene	μg/g	96	78	1	< 0.05	< 0.05	< 0.05	< 0.05	0.12	< 0.05	1.02

- Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 3 Full Depth Generic Site Condition Standards (SCS) in a Non-Potable Ground Water Condition for Industrial/Community Property Use (coarse textured soils)
- Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 3 Full Depth Generic Site Condition Standards (SCS) in a Non-Potable Ground Water Condition for Residential/Institutional/Parkland Property Use (coarse textured soils)
- Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 1 Full Depth Background Site Condition Standards (SCS) for Parkland/Residential/Institutional/Industrial/Community Property Use (coarse textured soils)
- < RDL Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

NV No Value

Parameter not analyzed

m bgs Metres below ground surface

Indicates soil exceedance of MECP Table 3 SCS for industrial/commercial/community land use Indicates soil exceedance of MECP Table 3 SCS for residential/institutional/parkland land use

Bold Indicates soil exceedance of MECP Table 1 SCS

Table 3 - Analytical Results in Soil - Inorganic Parameters 56 Capilano Drive, Ottawa, Ontario

OTT-22003851-A0

	I		Provincial		Samples						
Sample ID	UNITS	MECP Table 3 Commercial 1	MECP Table 3 Residential ²	MECP Table 1 Commercial ³	TP22-1	TP22-2	TP22-3	DUP (Field Duplicate TP22-3)	TP22-4	TP22-5	TP22-6
Sampling Date		Dark Orange	Light Orange	Bold	16-May-22	16-May-22	16-May-22	16-May-22	16-May-22	16-May-22	16-May-22
Sample Depth (mbgs)					0.4 m	0.5 m	0.8 m	0.8 m	0.5 m	1.0 m	0.8 m
Metals											
Antimony	μg/g	40	7.5	1.3	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Arsenic	μg/g	18	18	18	2.7	1.7	1.5	1.6	2.4	5.3	2.3
Barium	μg/g	670	390	220	108	109	81	107	83	128	112
Beryllium	μg/g	8	4	2.5	0.4	0.3	0.3	0.3	0.3	0.6	0.4
Boron (Total)	μg/g	120	120	36	12	9.8	9.8	9.4	12.4	13.1	10.3
Boron (Hot Water Soluble)	μg/g	2	1.5	NV	0.05	0.05	0.09	0.07	0.06	0.06	0.06
Cadmium	μg/g	1.9	1.2	1.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chromium (Total)	μg/g	160	160	70	17	21	18	22	16	19	21
Chromium (VI)	μg/g	8	8	0.66	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Cobalt	μg/g	80	22	21	9	7	6	6	7	9	7
Copper	μg/g	230	140	92	13	11	9	12	12	13	13
Lead	μg/g	120	120	120	11	8	7	7	16	14	11
Mercury	μg/g	3.9	0.27	0.27	0.114	0.022	0.022	0.022	0.024	0.064	0.083
Molybdenum	μg/g	40	6.9	2	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Nickel	μg/g	270	100	82	15	12	11	13	12	17	14
Selenium	μg/g	5.5	2.4	1.5	0.7	0.5	< 0.5	0.5	0.6	0.7	0.7
Silver	μg/g	40	20	0.5	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Thallium	μg/g	3.3	1	1	0.2	0.10	0.1	0.1	0.1	0.2	0.1
Uranium	μg/g	33	23	2.5	0.5	0.7	0.6	0.60	0.5	0.5	0.6
Vanadium	μg/g	86	86	86	22	29	28	29	20	23	29
Zinc	μg/g	340	340	290	25	90	45	66	26	28	39
Inorganic Parameters						·		·			
Sodium Adsorption Ratio	N/A	12	5	2.4	0.343	0.07	0.109	0.103	0.0747	3.28	0.0961
Conductivity	mS/cm	1.4	0.7	0.57	0.16	0.161	0.151	0.145	0.14	0.457	0.156
pH	No units	5 to 9	5 to 9	5 to 9	7.57	7.46	7.47	7.53	7.65	7.58	7.53

NOTES:

- Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 3 Full Depth Generic Site Condition Standards (SCS) in a Non-Potable Ground Water Condition for Industrial/Commercial/Community Property Use (coarse textured soils)
- Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 3 Full Depth Generic Site Condition Standards (SCS) in a Non-Potable Ground Water Condition for Residential/Institutional/Parkland Property Use (coarse textured soils)
- Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 1 Full Depth Background Site Condition Standards (SCS) for Parkland/Residential/Institutional/Industrial/Commercial/Community Property Use (coarse textured soils)
- < RDL Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

NV No Value

Parameter not analyzed

m bgs Metres below ground surface

Indicates soil exceedance of MECP Table 3 SCS for industrial/commercial/community land use Indicates soil exceedance of MECP Table 3 SCS for residential/institutional/parkland land use

Bold Indicates soil exceedance of MECP Table 1 SCS

Table 4 - Maximum Concntrations in Soil 56 Capilano Drive, Ottawa, Ontario OTT-22003851-A0

Parameter	Sample Location	Sample Depth (m bgs)	Sampling Date	Maximum Concentration	MECP Table 3 Community	MECP Table 3 Residential
Petroleum Hydrocarbons			l		l	l
F1 PHC (C6-C10)	All sample locations	0.4 to 1.0	16-May-22	< 10	55	55
F2 PHC (C10-C16)	All sample locations	0.4 to 1.0	16-May-22	< 5	98	98
F3 PHC (C16-C34)	TP22-6	0.8	16-May-22	34	300	300
F4 PHC (C34-C50)	TP22-2	0.5	16-May-22	172	2800	2800
Volatile Organic Compounds Acetone	All sample locations	0.4 to 1.0	16-May-22	< 0.5	16	16
Benzene	All sample locations	0.4 to 1.0	16-May-22	< 0.02	0.320	0.21
Bromodichloromethane	All sample locations	0.4 to 1.0	16-May-22	< 0.02	18	13
Bromoform	All sample locations	0.4 to 1.0	16-May-22	< 0.02	0.61	0.27
Bromomethane	All sample locations	0.4 to 1.0	16-May-22	< 0.05	0.05	0.05
Carbon Tetrachloride	All sample locations	0.4 to 1.0	16-May-22	< 0.05	0.21	0.05
Chlorobenzene	All sample locations	0.4 to 1.0	16-May-22	< 0.02	2.4	2.4
Chloroform Dibromochloromethane	All sample locations	0.4 to 1.0 0.4 to 1.0	16-May-22	< 0.02 < 0.02	0.47 13	0.05 9.4
1,2-Dichlorobenzene	All sample locations All sample locations	0.4 to 1.0	16-May-22 16-May-22	< 0.05	6.8	3.4
1,3-Dichlorobenzene	All sample locations	0.4 to 1.0	16-May-22	< 0.05	9.6	4.8
1,4-Dichlorobenzene	All sample locations	0.4 to 1.0	16-May-22	< 0.05	0.2	0.083
Dichlorodifluoromethane	All sample locations	0.4 to 1.0	16-May-22	< 0.05	16	16
1,1-Dichloroethane	All sample locations	0.4 to 1.0	16-May-22	< 0.02	17	3.5
1,2-Dichloroethane	All sample locations	0.4 to 1.0	16-May-22	< 0.02	0.05	0.05
1,1-Dichloroethylene	All sample locations	0.4 to 1.0	16-May-22	< 0.02	0.064	0.05
Cis-1,2-Dichloroethylene	All sample locations	0.4 to 1.0	16-May-22	< 0.02	55	3.4
Trans-1,2-Dichloroethylene	All sample locations All sample locations	0.4 to 1.0	16-May-22 16-May-22	< 0.02	1.3	0.084
1,2-Dichloropropane Cis-1,3-Dichloropropylene	All sample locations All sample locations	0.4 to 1.0 0.4 to 1.0	16-May-22	< 0.02 < 0.02	0.16 NV	0.05 NV
Trans-1,3-Dichloropropylene	All sample locations	0.4 to 1.0	16-May-22	< 0.02	NV	NV
1,3-Dichloropropylene, Total	All sample locations	0.4 to 1.0	16-May-22	< 0.02	0.18	0.05
Ethylbenzene	All sample locations	0.4 to 1.0	16-May-22	< 0.05	9.5	2
Ethylene Dibromide	All sample locations	0.4 to 1.0	16-May-22	< 0.02	0.05	0.05
Hexane(n)	All sample locations	0.4 to 1.0	16-May-22	< 0.02	46	2.8
Methyl Ethyl Ketone	All sample locations	0.4 to 1.0	16-May-22	< 0.5	70	16
Methyl Isobutyl Ketone	All sample locations	0.4 to 1.0	16-May-22	< 0.5	31	1.7
Methyl-t-Butyl Ether Methylene Chloride	All sample locations All sample locations	0.4 to 1.0 0.4 to 1.0	16-May-22 16-May-22	< 0.05 < 0.05	11 1.6	0.75 0.1
Styrene	All sample locations	0.4 to 1.0	16-May-22	< 0.05	34	0.7
1,1,1,2-Tetrachloroethane	All sample locations	0.4 to 1.0	16-May-22	< 0.02	0.087	0.058
1,1,2,2-Tetrachloroethane	All sample locations	0.4 to 1.0	16-May-22	< 0.05	0.05	0.05
Tetrachloroethylene	All sample locations	0.4 to 1.0	16-May-22	< 0.05	4.5	0.28
Toluene	All sample locations	0.4 to 1.0	16-May-22	< 0.2	68	2.3
1,1,1-Trichloroethane	All sample locations	0.4 to 1.0	16-May-22	< 0.02	6.1	0.38
1,1,2-Trichloroethane Trichloroethylene	All sample locations All sample locations	0.4 to 1.0 0.4 to 1.0	16-May-22 16-May-22	< 0.02 < 0.05	0.05 0.91	0.05 0.061
Trichlorofluoromethane	All sample locations	0.4 to 1.0	16-May-22	< 0.02	4	4
Vinyl Chloride	All sample locations	0.4 to 1.0	16-May-22	< 0.02	0.032	0.02
Xylene, m,p-	All sample locations	0.4 to 1.0	16-May-22	< 0.03	NV	NV
Xylene, o-	All sample locations	0.4 to 1.0	16-May-22	< 0.03	NV	NV
Total Xylenes	All sample locations	0.4 to 1.0	16-May-22	< 0.03	26	3.1
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	Tp22-6	0.8	16-May-22	0.15	96	7.9
Acenaphthylene	All sample locations	0.4 to 1.0	16-May-22	<0.05	0.15	0.15
Anthracene Benzo(a)anthracene	TP22-6 TP22-6	0.8	16-May-22 16-May-22	0.32 0.52	0.67 0.96	0.67 0.5
Benzo(a)pyrene	TP22-6	0.8	16-May-22	0.52	0.96	0.3
Benzo(b)fluoranthene	TP22-6	0.8	16-May-22	0.57	0.96	0.78
Benzo(b+k)fluoranthene	TP22-6	0.8	16-May-22	0.78	NV	NV
Benzo(g,h,i)perylene	TP22-6	0.8	16-May-22	0.25	9.6	6.6
Benzo(k)fluoranthene	TP22-6	0.8	16-May-22	0.21	0.96	0.78
Chrysene	TP22-6	0.8	16-May-22	0.53	9.6	7
Dibenzo(a,h)anthracene	TP22-6	0.8	16-May-22	0.06	0.1	0.1
Fluoranthene Fluorene	TP22-6 TP22-6	0.8	16-May-22 16-May-22	1.35 0.16	9.6 62	0.69 62
Indeno(1,2,3,-cd)pyrene	TP22-6	0.8	16-May-22	0.16	0.76	0.38
Methylnaphthalene,1-	All sample locations	0.4 to 1.0	16-May-22	< 0.05	76	0.99
Methylnaphthalene,2-	All sample locations	0.4 to 1.0	16-May-22	< 0.05	76	0.99
Methylnaphthalene 2-(1-)	All sample locations	0.4 to 1.0	16-May-22	< 0.05	76	0.99
Naphthalene	All sample locations	0.4 to 1.0	16-May-22	< 0.05	9.6	0.6
Phenanthrene	TP22-6	0.8	16-May-22	1.29	12	6.2
Pyrene	TP22-6	0.8	16-May-22	1.02	96	78

Table 4 - Maximum Concntrations in Soil 56 Capilano Drive, Ottawa, Ontario OTT-22003851-A0

Parameter	Sample Location	Sample Depth (m bgs)	Sampling Date	Maximum Concentration	MECP Table 3 Community	MECP Table 3 Residential
Metals						
Antimony	All sample locations	0.4 to 1.0	16-May-22		40	7.5
Arsenic	TP22-5	1.0	16-May-22	5.3	18	18
Barium	TP22-5	1.0	16-May-22	128	670	390
Beryllium	TP22-5	1.0	16-May-22	0.6	8	4
Boron (Total)	TP22-5	1.0	16-May-22	13.1	120	120
Boron (Hot Water Soluble)	TP22-3	0.8	16-May-22	0.09	2	1.5
Cadmium	All sample locations	0.4 to 1.0	16-May-22		1.9	1.2
Chromium (Total)	TP22-3 (Dup)	0.8	16-May-22	22	160	160
Chromium (VI)	All sample locations	0.4 to 1.0	16-May-22		8	8
Cobalt	TP22-5	1.0	16-May-22	9	80	22
Copper	TP22-5	1.0	16-May-22	13	230	140
Lead	TP22-4	0.5	16-May-22	16	120	120
Mercury	TP22-1	0.4	16-May-22	0.114	3.9	0.27
Molybdenum	All sample locations	0.4 to 1.0	16-May-22		40	6.9
Nickel	TP22-5	1.0	16-May-22	17	270	100
	TP22-1	0.4				
Selenium	TP22-5	1.0	16-May-22	0.7	5.5	2.4
	TP22-6	0.8				
Silver	All sample locations	0.4 to 1.0	16-May-22		40	20
Thallium	TP22-5	1.0	16-May-22	0.2	3.3	1
Uranium	TP22-2	0.5	16-May-22	0.7	33	23
	TP22-2	0.5				
'anadium	TP22-3 (Dup)	0.8	16-May-22	29	86	86
	TP22-6	0.8	1			
Zinc	TP22-2	0.5	16-May-22	90	340	340

- Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the
 Environmental Protection Act, April 2011, Table 3 Full Depth Generic Site Condition Standards (SCS) in a Non-Potable Ground Water Condition for Industrial/Commercial/Community Property Use (coarse textured soils)
- Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the
 Environmental Protection Act, April 2011, Table 3 Full Depth Generic Site Condition Standards (SCS) in a Non-Potable Ground Water Condition for Residential/Institutional/Parkland Property Use (coarse textured soils)

NV No Value

- Parameter not analyzed

m bgs Metres below ground surface

Table 5 - Relative Percent Differences - PHC and VOC in Soil 56 Capilano Drive, Ottawa, Ontario OTT-22003851-A0

Parameter	Units	RDL	TP22-3	Dup	RPD (%)	Alert Limit (%)
			16-May-2022	16-May-2022	. ,	
Petroleum Hydrocarbons						1
F1 PHC (C6 - C10) - BTEX	ug/g dry	10	< 10	< 10	nc	60
F2 PHC (C10-C16)	ug/g dry	5	< 5	< 5	nc	60
F3 PHC (C16-C34)	ug/g dry	10	11	14	nc	60
F4 PHC (C34-C50)	ug/g dry	10	< 10	< 10	nc	60
Volatiles	-6/8 /					
Acetone	ug/g dry	0.50	< 0.5	< 0.5	nc	100
Benzene	ug/g dry	0.0060	< 0.02	< 0.02	nc	100
Bromodichloromethane	ug/g dry	0.050	< 0.02	< 0.02	nc	100
Bromoform	ug/g dry	0.050	< 0.02	< 0.02	nc	100
Bromomethane	ug/g dry	0.050	< 0.05	< 0.05	nc	100
Carbon Tetrachloride	ug/g dry	0.050	< 0.05	< 0.05	nc	100
Chlorobenzene	ug/g dry	0.050	< 0.02	< 0.02	nc	100
Chloroform	ug/g dry	0.050	< 0.02	< 0.02	nc	100
Dibromochloromethane	ug/g dry	0.050	< 0.02	< 0.02	nc	100
Dichlorodifluoromethane	ug/g dry	0.050	< 0.05	< 0.05	nc	100
1,2-Dichlorobenzene	ug/g dry	0.050	< 0.05	< 0.05	nc	100
1,3-Dichlorobenzene	ug/g dry	0.050	< 0.05	< 0.05	nc	100
1.4-Dichlorobenzene	ug/g dry	0.050	< 0.05	< 0.05	nc	100
1,1-Dichloroethane	ug/g dry	0.050	< 0.02	< 0.02	nc	100
1.2-Dichloroethane	ug/g dry	0.050	< 0.02	< 0.02	nc	100
1,1-Dichloroethylene	ug/g dry	0.050	< 0.02	< 0.02	nc	100
cis-1,2-Dichloroethylene	ug/g dry	0.050	< 0.02	< 0.02	nc	100
trans-1.2-Dichloroethylene	ug/g dry	0.050	< 0.02	< 0.02	nc	100
1,2-Dichloropropane	ug/g dry	0.050	< 0.02	< 0.02	nc	100
cis-1,3-Dichloropropylene	ug/g dry	0.030	< 0.02	< 0.02	nc	100
trans-1,3-Dichloropropylene	ug/g dry	0.040	< 0.02	< 0.02	nc	100
1,3-Dichloropropene, total	ug/g dry	0.050	< 0.02	< 0.02	nc	100
Ethylbenzene	ug/g dry	0.010	< 0.05	< 0.05	nc	100
Ethylene dibromide (dibromoethane, 1,2-	ug/g dry	0.050	< 0.02	< 0.02	nc	100
Hexane	ug/g dry	0.050	< 0.02	< 0.02	nc	100
Methyl Ethyl Ketone (2-Butanone)	ug/g dry	0.50	< 0.5	< 0.5	nc	100
Methyl Isobutyl Ketone	ug/g dry	0.50	< 0.5	< 0.5	nc	100
Methyl tert-butyl ether	ug/g dry	0.50	< 0.05	< 0.05	nc	100
Methylene Chloride	ug/g dry	0.050	< 0.05	< 0.05	nc	100
Styrene	ug/g dry	0.050	< 0.05	< 0.05	nc	100
1,1,1,2-Tetrachloroethane	ug/g dry	0.050	< 0.02	< 0.02	nc	100
1,1,2,2-Tetrachloroethane	ug/g dry	0.050	< 0.05	< 0.05	nc	100
Tetrachloroethylene	ug/g dry	0.050	< 0.05	< 0.05	nc	100
Toluene	ug/g dry	0.020	< 0.2	< 0.2	nc	100
1,1,1-Trichloroethane	ug/g dry	0.050	< 0.02	< 0.02	nc	100
1,1,2-Trichloroethane	ug/g dry	0.050	< 0.02	< 0.02	nc	100
Trichloroethylene	ug/g dry	0.010	< 0.05	< 0.05	nc	100
Trichlorofluoromethane	ug/g dry	0.050	< 0.02	< 0.02	nc	100
Vinyl Chloride	ug/g dry	0.020	< 0.02	< 0.02	nc	100
Xvlenes. total	ug/g dry	0.020	< 0.03	< 0.03	nc	100

Analysis by Caduceon Environmental Labratories

All results on dry weight basis; Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in $\underline{\text{\bf bold}}$

Table 6 - Relative Percent Differences - PAH in Soil 56 Capilano Drive, Ottawa, Ontario OTT-22003851-A0

Parameter	Units	RDL	TP22-3	Dup	RPD (%)	Alert Limit (%)
			16-May-2022	16-May-2022		
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	ug/g dry	0.05	< 0.05	< 0.05	nc	80
Acenaphthylene	ug/g dry	0.05	< 0.05	< 0.05	nc	80
Anthracene	ug/g dry	0.05	< 0.05	< 0.05	nc	80
Benzo(a)anthracene	ug/g dry	0.05	< 0.05	< 0.05	nc	80
Benzo(a)pyrene	ug/g dry	0.05	< 0.05	< 0.05	nc	80
Benzo(b)fluoranthene	ug/g dry	0.05	< 0.05	< 0.05	nc	80
Benzo(b+k)fluoranthene	ug/g dry	0.05	< 0.05	< 0.05	nc	80
Benzo(g,h,i)perylene	ug/g dry	0.05	< 0.05	< 0.05	nc	80
Benzo(k)fluoranthene	ug/g dry	0.05	< 0.05	< 0.05	nc	80
Chrysene	ug/g dry	0.05	< 0.05	< 0.05	nc	80
Dibenzo(a,h)anthracene	ug/g dry	0.05	< 0.05	< 0.05	nc	80
Fluoranthene	ug/g dry	0.05	0.06	0.06	nc	80
Fluorene	ug/g dry	0.05	< 0.05	< 0.05	nc	80
Indeno(1,2,3,-cd)pyrene	ug/g dry	0.05	< 0.05	< 0.05	nc	80
Methylnaphthalene,1-	ug/g dry	0.05	< 0.05	< 0.05	nc	80
Methylnaphthalene,2-	ug/g dry	0.05	< 0.05	< 0.05	nc	80
Methylnaphthalene 2-(1-)	ug/g dry	0.05	< 0.05	< 0.05	nc	80
Naphthalene	ug/g dry	0.05	< 0.05	< 0.05	nc	80
Phenanthrene	ug/g dry	0.05	< 0.05	< 0.05	nc	80
Pyrene	ug/g dry	0.05	< 0.05	< 0.05	nc	80

Analysis by Caduceon Environmental Labratories

All results on dry weight basis; Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are $<\!5x~RDL$

Exceedances of alert limits are shown in $\underline{\text{\bf bold}}$

Table 7 - Relative Percent Differences - Inorganics in Soil 56 Capilano Drive, Ottawa, Ontario OTT-22003851-A0

Parameter	Units	RDL	TP22-3	Dup	RPD (%)	Alert Limit (%)
			16-May-2022	16-May-2022		
Inorganic Parameters						
Antimony	ug/g dry	0.5	< 0.5	< 0.5	nc	60
Arsenic	ug/g dry	0.5	1.5	1.6	nc	60
Barium	ug/g dry	1	81	107	28	60
Beryllium	ug/g dry	0.2	0.3	0.3	nc	60
Boron	ug/g dry	0.5	9.8	9.4	4	60
Boron (HWS)	ug/g dry	0.02	0.09	0.07	nc	60
Cadmium	ug/g dry	0.5	< 0.5	< 0.5	nc	60
Chromium	ug/g dry	1	18	22	20	60
Chromium (VI)	ug/g dry	0.2	< 0.2	< 0.2	nc	60
Cobalt	ug/g dry	1	6	6	0	60
Copper	ug/g dry	1	9	12	29	60
Lead	ug/g dry	5	7	7	nc	60
Mercury	ug/g dry	0.005	0.022	0.022	nc	60
Molybdenum	ug/g dry	1	< 1	< 1	nc	60
Nickel	ug/g dry	1	11	13	17	60
Selenium	ug/g dry	0.5	< 0.5	0.5	nc	60
Silver	ug/g dry	0.2	< 0.2	< 0.2	nc	60
Thallium	ug/g dry	0.1	0.1	0.1	nc	60
Vanadium	ug/g dry	1	28	29	4	60
Zinc	ug/g dry	3	45	66	38	60
Uranium	ug/g dry	0.1	0.6	0.6	0	60

Analysis by Caduceon Environmental Labratories

All results on dry weight basis; Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are $<5x\ RDL$

Exceedances of alert limits are shown in $\underline{\text{\textbf{bold}}}$

EXP Services Inc.

McDonald Brothers Consulting Inc. Phase Two Environmental Site Assessment 56 Capilano Drive, Ottawa, Ontario OTT-22003851-A0 May 27, 2022

Appendix E: Laboratory Certificates of Analysis

Final Report

C.O.C.: G110723 REPORT No. B22-14241

Report To:

EXP Services Inc

2650 Queensview Drive, Suite 100 Ottawa ON K2B 8H6 Canada **Attention:** Leah Wells

DATE RECEIVED: 16-May-22

DATE REPORTED: 19-May-22

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123 Fax: 613-526-1244

JOB/PROJECT NO.: OTT-22003851-BO

P.O. NUMBER:

WATERWORKS NO.

Parameter	Qty	Site Analyzed	Analyst Initials	Date Analyzed	Lab Method	Reference Method
% Moisture	7	Richmond Hill	FAL	17-May-22	A-% moisture RH	
Conductivity	7	Holly Lane	ST	18-May-22	A-COND-01 (o)	SM 2510B
рН	7	Holly Lane	ST	18-May-22	A-PH-01 (o)	SM 4500H
SVOC	7	Kingston	esi	18-May-22	C-NAB-S-001 (k)	EPA 8270
PHC(F2-F4)	7	Kingston	KPR	17-May-22	C-PHC-S-001 (k)	CWS Tier 1
PHC(F2-F4)	1	Kingston	SmT	19-May-22	C-PHC-S-001 (k)	CWS Tier 1
VOC's	7	Richmond Hill	FAL	17-May-22	C-VOC-02 (rh)	EPA 8260
PHC(F1)	7	Richmond Hill	FAL	17-May-22	C-VPHS-01 (rh)	CWS Tier 1
Chromium (VI)	7	Holly Lane	ST	17-May-22	D-CRVI-02 (o)	EPA7196A
Mercury	7	Holly Lane	PBK	17-May-22	D-HG-01 (o)	EPA 7471A
Boron - HWS	7	Holly Lane	NHG	18-May-22	D-HWE s	MOE3470
Sodium Adsorption Ratio	7	Holly Lane	NHG	18-May-22	D-ICP-01 SAR (o)	SM 3120
Metals - ICP-OES	7	Holly Lane	NHG	18-May-22	D-ICP-02 (o)	EPA 6010
Metals - ICP-MS	7	Holly Lane	TPR	18-May-22	D-ICPMS-01 (o)	EPA 6020

μg/g = micrograms per gram (parts per million) and is equal to mg/Kg

F1 C6-C10 hydrocarbons in µg/g, (F1-btex if requested)

F2 C10-C16 hydrocarbons in $\mu g/g$, (F2-napth if requested)

F3 C16-C34 hydrocarbons in µg/g, (F3-pah if requested)

F4 C34-C50 hydrocarbons in µg/g

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

Any deviations from the method are noted and reported for any particular sample.

nC6 and nC10 response factor is within 30% of response factor for toluene:

nC10,nC16 and nC34 response factors within 10% of each other:

C50 response factors within 70% of nC10+nC16+nC34 average:

Linearity is within 15%:

All results expressed on a dry weight basis.

Unless otherwise noted all chromatograms returned to baseline by the retention

time of nC50.

Unless otherwise noted all extraction, analysis, QC requirements and limits for holding time were met. If analyzed for F4 and F4G they are not to be summed but the greater of the two numbers are to be used in application to the CWS PHC

QC will be made available upon request.

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 3 - ICC (f/m) - Table 3 - Ind./Commer/Commun Soil (fine/med)

Tbl. 3 - ICC Soil - Table 3 - Ind./Commercial/Community Soil Std

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Greg Clarkin , BSc., C. Chem Lab Manager - Ottawa District

The analytical results reported herein refer to the samples as received. Reproduction of this analytical report in full or in part is prohibited without prior consent from Caduceon Environmental Laboratories.

Final Report

C.O.C.: G110723 REPORT No. B22-14241

Report To:

EXP Services Inc

2650 Queensview Drive, Suite 100 Ottawa ON K2B 8H6 Canada

Attention: Leah Wells

DATE RECEIVED: 16-May-22

DATE REPORTED: 19-May-22

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123

Fax: 613-526-1244

JOB/PROJECT NO.: OTT-22003851-BO

P.O. NUMBER:

WATERWORKS NO.

	Client I.D.		TP22-1	TP22-2	TP22-3	TP22-4	O. Re	g. 153
	Sample I.D).	B22-14241-1	B22-14241-2	B22-14241-3	B22-14241-4	Tbl. 3 - ICC	Tbl. 3 - ICC
	Date Colle	cted	16-May-22	16-May-22	16-May-22	16-May-22	(f/m)	Soil
Parameter	Units	R.L.						
pH @25°C	pH Units		7.57	7.46	7.47	7.65		
Conductivity @25°C	mS/cm	0.001	0.16	0.161	0.151	0.14	1.4	1.4
Sodium Adsorption Ratio	units		0.343	0.0740	0.109	0.0747	12	12
Antimony	μg/g	0.5	< 0.5	< 0.5	< 0.5	< 0.5	50	40
Arsenic	μg/g	0.5	2.7	1.7	1.5	2.4	18	18
Barium	μg/g	1	108	109	81	83	670	670
Beryllium	μg/g	0.2	0.4	0.3	0.3	0.3	10	8
Boron	μg/g	0.5	12.0	9.8	9.8	12.4	120	120
Boron (HWS)	μg/g	0.02	0.05	0.05	0.09	0.06	2	2
Cadmium	μg/g	0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.9	1.9
Chromium	μg/g	1	17	21	18	16	160	160
Chromium (VI)	μg/g	0.2	< 0.2	< 0.2	< 0.2	< 0.2	10	8
Cobalt	μg/g	1	9	7	6	7	100	80
Copper	μg/g	1	13	11	9	12	300	230
Lead	μg/g	5	11	8	7	16	120	120
Mercury	μg/g	0.005	0.114	0.022	0.022	0.024	20	3.9
Molybdenum	μg/g	1	< 1	< 1	< 1	< 1	40	40
Nickel	μg/g	1	15	12	11	12	340	270
Selenium	μg/g	0.5	0.7	0.5	< 0.5	0.6	5.5	5.5
Silver	μg/g	0.2	< 0.2	< 0.2	< 0.2	< 0.2	50	40
Thallium	μg/g	0.1	0.2	0.1	0.1	0.1	3.3	3.3
Vanadium	μg/g	1	22	29	28	20	86	86
Zinc	μg/g	3	25	90	45	26	340	340
Uranium	μg/g	0.1	0.5	0.7	0.6	0.5	33	33
% moisture	%		9.9	11.2	12.4	10.0		
Acetone	μg/g	0.5	< 0.5	< 0.5	< 0.5	< 0.5	28	16
Benzene	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.4	0.32

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 3 - ICC (f/m) - Table 3 - Ind./Commer/Commun Soil (fine/med)

Tbl. 3 - ICC Soil - Table 3 - Ind./Commercial/Community Soil Std

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G110723 REPORT No. B22-14241

Report To:

EXP Services Inc

2650 Queensview Drive, Suite 100 Ottawa ON K2B 8H6 Canada

Attention: Leah Wells

DATE RECEIVED: 16-May-22

DATE REPORTED: 19-May-22

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123

Fax: 613-526-1244

JOB/PROJECT NO.: OTT-22003851-BO

P.O. NUMBER:

WATERWORKS NO.

	Client I.D.		TP22-1	TP22-2	TP22-3	TP22-4	O. Re	g. 153
	Sample I.D) .	B22-14241-1	B22-14241-2	B22-14241-3	B22-14241-4	Tbl. 3 - ICC	Tbl. 3 - ICC
	Date Colle	cted	16-May-22	16-May-22	16-May-22	16-May-22	(f/m)	Soil
			·					
Parameter	Units	R.L.						
Bromodichloromethane	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	18	18
Bromoform	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	1.7	0.61
Bromomethane	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	0.05
Carbon Tetrachloride	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	1.5	0.21
Monochlorobenzene (Chlorobenzene)	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	2.7	2.4
Chloroform	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.18	0.47
Dibromochloromethane	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	13	9.4
Dichlorobenzene,1,2-	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	8.5	4.3
Dichlorobenzene,1,3-	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	12	9.6
Dichlorobenzene,1,4-	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.84	0.2
Dichlorodifluoromethane	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	25	16
Dichloroethane,1,1-	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	21	17
Dichloroethane,1,2-	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.05	0.05
Dichloroethylene,1,1-	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.48	0.064
Dichloroethene, cis-1,2-	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	37	55
Dichloroethene, trans-1,2-	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	9.3	1.3
Dichloropropane,1,2-	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.68	0.16
Dichloropropene, cis-1,3-	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02		
Dichloropropene, trans- 1,3-	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02		
Dichloropropene 1,3- cis+trans	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.21	0.18
Ethylbenzene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	19	9.5
Dibromoethane,1,2- (Ethylene Dibromide)	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.05	0.05
Hexane	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	88	46

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 3 - ICC (f/m) - Table 3 - Ind./Commer/Commun Soil (fine/med) Tbl. 3 - ICC Soil - Table 3 - Ind./Commercial/Community Soil Std

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G110723 REPORT No. B22-14241

Report To:

EXP Services Inc

2650 Queensview Drive, Suite 100 Ottawa ON K2B 8H6 Canada

<u>Attention:</u> Leah Wells

DATE RECEIVED: 16-May-22

DATE REPORTED: 19-May-22 SAMPLE MATRIX: Soil **Caduceon Environmental Laboratories**

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123

Fax: 613-526-1244

JOB/PROJECT NO.: OTT-22003851-BO

P.O. NUMBER:

WATERWORKS NO.

	Client I.D.		TP22-1	TP22-2	TP22-3	TP22-4		g. 153
	Sample I.D		B22-14241-1	B22-14241-2	B22-14241-3			Soil
	Date Colle	ctea	16-May-22	16-May-22	16-May-22	16-May-22	(f/m)	3011
Parameter	Units	R.L.						
Methyl Ethyl Ketone	μg/g	0.5	< 0.5	< 0.5	< 0.5	< 0.5	88	44
Methyl Isobutyl Ketone	μg/g	0.5	< 0.5	< 0.5	< 0.5	< 0.5	210	31
Methyl-t-butyl Ether	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	3.2	11
Dichloromethane (Methylene Chloride)	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	2	1.6
Styrene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	43	34
Tetrachloroethane,1,1,1,2	µg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.11	0.087
Tetrachloroethane,1,1,2,2	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.094	0.05
Tetrachloroethylene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	21	4.5
Toluene	μg/g	0.2	< 0.2	< 0.2	< 0.2	< 0.2	78	68
Trichloroethane,1,1,1-	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	12	6.1
Trichloroethane,1,1,2-	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.11	0.05
Trichloroethylene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.61	0.91
Trichlorofluoromethane	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	5.8	4
Vinyl Chloride	μg/g	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.25	0.032
Xylene, m,p-	μg/g	0.03	< 0.03	< 0.03	< 0.03	< 0.03		
Xylene, o-	μg/g	0.03	< 0.03	< 0.03	< 0.03	< 0.03		
Xylene, m,p,o-	μg/g	0.03	< 0.03	< 0.03	< 0.03	< 0.03	30	26
Dibromofluoromethane (SS)	% rec.		87.6	89.6	79.4	78.2		
Toluene-d8 (SS)	% rec.		96.9	98.8	96.2	99.2		
Bromofluorobenzene,4(S S)	% rec.		107	108	108	108		
PHC F1 (C6-C10)	μg/g	10	< 10	< 10	< 10	< 10	65	55
PHC F2 (>C10-C16)	μg/g	5	< 5	< 5	< 5	< 5	250	230

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 3 - ICC (f/m) - Table 3 - Ind./Commer/Commun Soil (fine/med) Tbl. 3 - ICC Soil - Table 3 - Ind./Commercial/Community Soil Std

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G110723 REPORT No. B22-14241

Report To:

EXP Services Inc

2650 Queensview Drive, Suite 100 Ottawa ON K2B 8H6 Canada

Attention: Leah Wells

DATE RECEIVED: 16-May-22 DATE REPORTED: 19-May-22

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123

Fax: 613-526-1244

JOB/PROJECT NO.: OTT-22003851-BO

P.O. NUMBER:

WATERWORKS NO.

	Client I.D.		TP22-1	TP22-2	TP22-3	TP22-4	O. Re	g. 153
	Sample I.D) .	B22-14241-1	B22-14241-2	B22-14241-3	B22-14241-4	Tbl. 3 - ICC	Tbl. 3 - ICC
	Date Colle	cted	16-May-22	16-May-22	16-May-22	16-May-22	(f/m)	Soil
Parameter	Units	R.L.						
PHC F3 (>C16-C34)	μg/g	10	< 10	15	11	19	2500	1700
PHC F4 (>C34-C50)	μg/g	10	< 10	12 1	< 10	< 10	6600	3300
PHC F4 (Gravimetric)	μg/g	50		170			6600	3300
Acenaphthene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	96	96
Acenaphthylene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.17	0.15
Anthracene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.74	0.67
Benzo(a)anthracene	μg/g	0.05	< 0.05	< 0.05	< 0.05	0.09	0.96	0.96
Benzo(a)pyrene	μg/g	0.05	< 0.05	< 0.05	< 0.05	0.09	0.3	0.3
Benzo(b)fluoranthene	μg/g	0.05	< 0.05	< 0.05	< 0.05	0.11	0.96	0.96
Benzo(b+k)fluoranthene	μg/g	0.05	< 0.05	< 0.05	< 0.05	0.16		
Benzo(g,h,i)perylene	μg/g	0.05	< 0.05	< 0.05	< 0.05	0.06	9.6	9.6
Benzo(k)fluoranthene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.96	0.96
Chrysene	μg/g	0.05	< 0.05	< 0.05	< 0.05	0.10	9.6	9.6
Dibenzo(a,h)anthracene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.1	0.1
Fluoranthene	μg/g	0.05	< 0.05	0.06	0.06	0.12	9.6	9.6
Fluorene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	69	62
Indeno(1,2,3,-cd)pyrene	μg/g	0.05	< 0.05	< 0.05	< 0.05	0.07	0.95	0.76
Methylnaphthalene,1-	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05		76
Methylnaphthalene,2-	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05		76
Methylnaphthalene 2-(1-)	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	85	76
Naphthalene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	28	9.6
Phenanthrene	μg/g	0.05	< 0.05	< 0.05	< 0.05	< 0.05	16	12
Pyrene	μg/g	0.05	< 0.05	< 0.05	< 0.05	0.12	96	96
Terphenyl-d14 (SS)	% rec.	10	97.0	96.0	94.0	99.0		

1 NOTE: PHC F4 Gravimetric Required.

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 3 - ICC (f/m) - Table 3 - Ind./Commer/Commun Soil (fine/med) Tbl. 3 - ICC Soil - Table 3 - Ind./Commercial/Community Soil Std

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G110723 REPORT No. B22-14241

Report To:

EXP Services Inc

2650 Queensview Drive, Suite 100 Ottawa ON K2B 8H6 Canada

Attention: Leah Wells

DATE RECEIVED: 16-May-22

DATE REPORTED: 19-May-22

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123

Fax: 613-526-1244

JOB/PROJECT NO.: OTT-22003851-BO

P.O. NUMBER:

WATERWORKS NO.

	Client I.D.		TP22-5	TP22-6	DUP		O. Reg. 153	
	Sample I.D).	B22-14241-5	B22-14241-6	B22-14241-7		Tbl. 3 - ICC	Tbl. 3 - ICC
	Date Colle	cted	16-May-22	16-May-22	16-May-22		(f/m)	Soil
Parameter	Units	R.L.						
pH @25°C	pH Units		7.58	7.53	7.53			
Conductivity @25°C	mS/cm	0.001	0.457	0.156	0.145		1.4	1.4
Sodium Adsorption Ratio	units		3.28	0.0961	0.103		12	12
Antimony	μg/g	0.5	< 0.5	< 0.5	< 0.5		50	40
Arsenic	μg/g	0.5	5.3	2.3	1.6		18	18
Barium	μg/g	1	128	112	107		670	670
Beryllium	μg/g	0.2	0.6	0.4	0.3		10	8
Boron	μg/g	0.5	13.1	10.3	9.4		120	120
Boron (HWS)	µg/g	0.02	0.06	0.06	0.07		2	2
Cadmium	μg/g	0.5	< 0.5	< 0.5	< 0.5		1.9	1.9
Chromium	µg/g	1	19	21	22		160	160
Chromium (VI)	μg/g	0.2	< 0.2	< 0.2	< 0.2		10	8
Cobalt	μg/g	1	9	7	6		100	80
Copper	μg/g	1	13	13	12		300	230
Lead	μg/g	5	14	11	7		120	120
Mercury	μg/g	0.005	0.064	0.083	0.022		20	3.9
Molybdenum	μg/g	1	< 1	< 1	< 1		40	40
Nickel	μg/g	1	17	14	13		340	270
Selenium	μg/g	0.5	0.7	0.7	0.5		5.5	5.5
Silver	μg/g	0.2	< 0.2	< 0.2	< 0.2		50	40
Thallium	μg/g	0.1	0.2	0.1	0.1		3.3	3.3
Vanadium	μg/g	1	23	29	29		86	86
Zinc	μg/g	3	28	39	66		340	340
Uranium	μg/g	0.1	0.5	0.6	0.6		33	33
% moisture	%		14.7	10.8	11.2			
Acetone	μg/g	0.5	< 0.5	< 0.5	< 0.5		28	16
Benzene	μg/g	0.02	< 0.02	< 0.02	< 0.02		0.4	0.32

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 3 - ICC (f/m) - Table 3 - Ind./Commer/Commun Soil (fine/med)

Tbl. 3 - ICC Soil - Table 3 - Ind./Commercial/Community Soil Std

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G110723 REPORT No. B22-14241

Report To:

EXP Services Inc

2650 Queensview Drive, Suite 100 Ottawa ON K2B 8H6 Canada

Attention: Leah Wells

DATE RECEIVED: 16-May-22

DATE REPORTED: 19-May-22

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123

Fax: 613-526-1244

JOB/PROJECT NO.: OTT-22003851-BO

P.O. NUMBER:

WATERWORKS NO.

	Client I.D.		TP22-5 TP22-6		DUP	O. Re	O. Reg. 153	
	Sample I.I).	B22-14241-5	B22-14241-6	B22-14241-7	Tbl. 3 - ICC	Tbl. 3 - ICC	
	Date Colle	ected	16-May-22	16-May-22	16-May-22	(f/m)	Soil	
		1						
Parameter	Units	R.L.						
Bromodichloromethane	μg/g	0.02	< 0.02	< 0.02	< 0.02	18	18	
Bromoform	μg/g	0.02	< 0.02	< 0.02	< 0.02	1.7	0.61	
Bromomethane	μg/g	0.05	< 0.05	< 0.05	< 0.05	0.05	0.05	
Carbon Tetrachloride	μg/g	0.05	< 0.05	< 0.05	< 0.05	1.5	0.21	
Monochlorobenzene (Chlorobenzene)	μg/g	0.02	< 0.02	< 0.02	< 0.02	2.7	2.4	
Chloroform	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.18	0.47	
Dibromochloromethane	μg/g	0.02	< 0.02	< 0.02	< 0.02	13	9.4	
Dichlorobenzene,1,2-	μg/g	0.05	< 0.05	< 0.05	< 0.05	8.5	4.3	
Dichlorobenzene,1,3-	μg/g	0.05	< 0.05	< 0.05	< 0.05	12	9.6	
Dichlorobenzene,1,4-	μg/g	0.05	< 0.05	< 0.05	< 0.05	0.84	0.2	
Dichlorodifluoromethane	μg/g	0.05	< 0.05	< 0.05	< 0.05	25	16	
Dichloroethane,1,1-	μg/g	0.02	< 0.02	< 0.02	< 0.02	21	17	
Dichloroethane,1,2-	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.05	0.05	
Dichloroethylene,1,1-	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.48	0.064	
Dichloroethene, cis-1,2-	μg/g	0.02	< 0.02	< 0.02	< 0.02	37	55	
Dichloroethene, trans-1,2-	μg/g	0.02	< 0.02	< 0.02	< 0.02	9.3	1.3	
Dichloropropane,1,2-	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.68	0.16	
Dichloropropene, cis-1,3-	μg/g	0.02	< 0.02	< 0.02	< 0.02			
Dichloropropene, trans- 1,3-	μg/g	0.02	< 0.02	< 0.02	< 0.02			
Dichloropropene 1,3-cis+trans	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.21	0.18	
Ethylbenzene	μg/g	0.05	< 0.05	< 0.05	< 0.05	19	9.5	
Dibromoethane,1,2- (Ethylene Dibromide)	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.05	0.05	
Hexane	μg/g	0.02	< 0.02	< 0.02	< 0.02	88	46	

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 3 - ICC (f/m) - Table 3 - Ind./Commer/Commun Soil (fine/med) Tbl. 3 - ICC Soil - Table 3 - Ind./Commercial/Community Soil Std

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G110723 REPORT No. B22-14241

Report To:

EXP Services Inc

2650 Queensview Drive, Suite 100 Ottawa ON K2B 8H6 Canada

Attention: Leah Wells

DATE RECEIVED: 16-May-22

DATE REPORTED: 19-May-22

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123

Fax: 613-526-1244

JOB/PROJECT NO.: OTT-22003851-BO

P.O. NUMBER:

WATERWORKS NO.

	Client I.D.		TP22-5 TP22-6		DUP	O. Re	O. Reg. 153	
	Sample I.D) .	B22-14241-5	B22-14241-6	B22-14241-7	Tbl. 3 - ICC	Tbl. 3 - ICC	
	Date Colle	cted	16-May-22	16-May-22	16-May-22	(f/m)	Soil	
Parameter	Units	R.L.						
Methyl Ethyl Ketone	μg/g	0.5	< 0.5	< 0.5	< 0.5	88	44	
Methyl Isobutyl Ketone	μg/g	0.5	< 0.5	< 0.5	< 0.5	210	31	
Methyl-t-butyl Ether	μg/g	0.05	< 0.05	< 0.05	< 0.05	3.2	11	
Dichloromethane (Methylene Chloride)	μg/g	0.05	< 0.05	< 0.05	< 0.05	2	1.6	
Styrene	μg/g	0.05	< 0.05	< 0.05	< 0.05	43	34	
Tetrachloroethane,1,1,1,2	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.11	0.087	
Tetrachloroethane,1,1,2,2	μg/g	0.05	< 0.05	< 0.05	< 0.05	0.094	0.05	
Tetrachloroethylene	μg/g	0.05	< 0.05	< 0.05	< 0.05	21	4.5	
Toluene	μg/g	0.2	< 0.2	< 0.2	< 0.2	78	68	
Trichloroethane,1,1,1-	μg/g	0.02	< 0.02	< 0.02	< 0.02	12	6.1	
Trichloroethane,1,1,2-	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.11	0.05	
Trichloroethylene	μg/g	0.05	< 0.05	< 0.05	< 0.05	0.61	0.91	
Trichlorofluoromethane	μg/g	0.02	< 0.02	< 0.02	< 0.02	5.8	4	
Vinyl Chloride	μg/g	0.02	< 0.02	< 0.02	< 0.02	0.25	0.032	
Xylene, m,p-	μg/g	0.03	< 0.03	< 0.03	< 0.03			
Xylene, o-	μg/g	0.03	< 0.03	< 0.03	< 0.03			
Xylene, m,p,o-	μg/g	0.03	< 0.03	< 0.03	< 0.03	30	26	
Dibromofluoromethane (SS)	% rec.		89.4	88.3	82.1			
Toluene-d8 (SS)	% rec.		100	99.5	97.6			
Bromofluorobenzene,4(S S)	% rec.		111	109	110			
PHC F1 (C6-C10)	μg/g	10	< 10	< 10	< 10	65	55	
PHC F2 (>C10-C16)	μg/g	5	< 5	< 5	< 5	250	230	

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 3 - ICC (f/m) - Table 3 - Ind./Commer/Commun Soil (fine/med) Tbl. 3 - ICC Soil - Table 3 - Ind./Commercial/Community Soil Std

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G110723 REPORT No. B22-14241

Report To:

EXP Services Inc

2650 Queensview Drive, Suite 100 Ottawa ON K2B 8H6 Canada **Attention:** Leah Wells

DATE RECEIVED: 16-May-22

DATE REPORTED: 19-May-22

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123

Fax: 613-526-1244

JOB/PROJECT NO.: OTT-22003851-BO

P.O. NUMBER:

WATERWORKS NO.

	Client I.D. Sample I.D.		TP22-5	TP22-6 5 B22-14241-6 E	DUP	O. Re	O. Reg. 153	
			B22-14241-5		B22-14241-7	Tbl. 3 - ICC	Tbl. 3 - ICC	
	Date Colle	cted	16-May-22	16-May-22	16-May-22	(f/m)	Soil	
Parameter	Units	R.L.						
PHC F3 (>C16-C34)	µg/g	10	12	34	14	2500	1700	
PHC F4 (>C34-C50)	µg/g	10	< 10	23	< 10	6600	3300	
PHC F4 (Gravimetric)	μg/g	50				6600	3300	
Acenaphthene	μg/g	0.05	< 0.05	0.15	< 0.05	96	96	
Acenaphthylene	μg/g	0.05	< 0.05	< 0.05	< 0.05	0.17	0.15	
Anthracene	μg/g	0.05	< 0.05	0.32	< 0.05	0.74	0.67	
Benzo(a)anthracene	μg/g	0.05	< 0.05	0.52	< 0.05	0.96	0.96	
Benzo(a)pyrene	μg/g	0.05	< 0.05	0.41	< 0.05	0.3	0.3	
Benzo(b)fluoranthene	μg/g	0.05	< 0.05	0.57	< 0.05	0.96	0.96	
Benzo(b+k)fluoranthene	µg/g	0.05	< 0.05	0.78	< 0.05			
Benzo(g,h,i)perylene	μg/g	0.05	< 0.05	0.25	< 0.05	9.6	9.6	
Benzo(k)fluoranthene	μg/g	0.05	< 0.05	0.21	< 0.05	0.96	0.96	
Chrysene	μg/g	0.05	< 0.05	0.53	< 0.05	9.6	9.6	
Dibenzo(a,h)anthracene	µg/g	0.05	< 0.05	0.06	< 0.05	0.1	0.1	
Fluoranthene	μg/g	0.05	< 0.05	1.35	0.06	9.6	9.6	
Fluorene	µg/g	0.05	< 0.05	0.16	< 0.05	69	62	
Indeno(1,2,3,-cd)pyrene	µg/g	0.05	< 0.05	0.32	< 0.05	0.95	0.76	
Methylnaphthalene,1-	μg/g	0.05	< 0.05	< 0.05	< 0.05		76	
Methylnaphthalene,2-	μg/g	0.05	< 0.05	< 0.05	< 0.05		76	
Methylnaphthalene 2-(1-)	<u>μg</u> /g	0.05	< 0.05	< 0.05	< 0.05	85	76	
Naphthalene	μg/g	0.05	< 0.05	< 0.05	< 0.05	28	9.6	
Phenanthrene	μg/g	0.05	< 0.05	1.29	< 0.05	16	12	
Pyrene	μg/g	0.05	< 0.05	1.02	< 0.05	96	96	
Terphenyl-d14 (SS)	% rec.	10	92.0	92.0	103			

1 NOTE: PHC F4 Gravimetric Required.

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 3 - ICC (f/m) - Table 3 - Ind./Commer/Commun Soil (fine/med) Tbl. 3 - ICC Soil - Table 3 - Ind./Commercial/Community Soil Std

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

Final Report

C.O.C.: G110723 REPORT No. B22-14241

Report To:

EXP Services Inc

2650 Queensview Drive, Suite 100 Ottawa ON K2B 8H6 Canada **Attention:** Leah Wells

DATE RECEIVED: 16-May-22

DATE REPORTED: 19-May-22

SAMPLE MATRIX: Soil

Caduceon Environmental Laboratories

2378 Holly Lane

Ottawa Ontario K1V 7P1 Tel: 613-526-0123

Fax: 613-526-1244

JOB/PROJECT NO.: OTT-22003851-BO

P.O. NUMBER:

WATERWORKS NO.

Summary of Exceedances

Table 3 - Ind./Commer/Commun Soil (fine/med)						
TP22-6	Found Value	Limit				
Benzo(a)pyrene (μg/g)	0.41	0.3				

Table 3 - Ind./Commercial/Community Soil Std						
TP22-6	Found Value	Limit				
Benzo(a)pyrene (µg/g)	0.41	0.3				

O. Reg. 153 - Soil, Ground Water and Sediment Standards Tbl. 3 - ICC (f/m) - Table 3 - Ind./Commer/Commun Soil (fine/med) Tbl. 3 - ICC Soil - Table 3 - Ind./Commercial/Community Soil Std

R.L. = Reporting Limit

Test methods may be modified from specified reference method unless indicated by an * Site Analyzed=K-Kingston,W-Windsor,O-Ottawa,R-Richmond Hill,B-Barrie

EXP Services Inc.

McDonald Brothers Consulting Inc. Phase Two Environmental Site Assessment 56 Capilano Drive, Ottawa, Ontario OTT-22003851-A0 May 27, 2022

