

BARRHAVEN SOUTH MASTER SERVICING STUDY ADDENDUM No. 2

DATE:	August 9 th , 2023	EMAIL
TO:	City of Ottawa, Attn: Jeff Shillington, P.Eng.	
SUBJECT:	Minto Communities Kennedy Lands	
OUR FILE:	20-1182	
ATTACHMENTS:	Attachment 1 – Stantec MSS Addendum October, 2017 (ex Attachment 2 - Geotechnical Investigation, PG5348-1, Rev Paterson Group, March 2022	cerpt) ision 4,

INTRODUCTION

The following memorandum is prepared to provide an update to the **Barrhaven South Master Servicing Study Addendum**, prepared by Stantec in October 2017 (Stantec MSS Addendum). The update is submitted in support of the Kennedy Lands Plan of Subdivision and Zoning Amendment planning applications on behalf of Minto Communities Inc. The subject property is within the study area of the **Barrhaven South Master Servicing Study** completed by Stantec dated June 2007 (MSS) and subsequent Stantec MSS Addendum. The following addendum update is presented to include the use of sump pumps for residential dwellings within a portion of the Kennedy Lands that are subject to grade raise restrictions. The Stantec MSS Addendum had already identified the area as requiring "alternative house design" and as such, the use of sump pumps is being proposed, consistent with this criterion. Per Technical Bulletin ISTB-2018-04, as the use of sump pumps was not identified in the Stantec MSS Addendum, an updated MSS Addendum is required.

The Stantec MSS indicates that to service the low-lying areas, given the existing ground elevations and grade raise restrictions, larger diameter sewers installed at flatter grades are required. Most of the storm sewer system has minimal cover due to a large portion of the site being subject to grade raise restrictions. The Stantec MSS Addendum also specifically considered the use of private sump pumps for the development of areas with grade raise restrictions but did not carry forward this alternative solution based on City policy at the time of preparation of the study.

GEOTECHNICAL CONSIDERATIONS

The subsurface profile is divided into two areas, east and west. For the east portion, the subsurface profile consists of topsoil followed by compact to very dense silty sand and/or glacial till. The glacial till layer consists of dense to very dense silty sand with gravel, cobbles and boulders. For the west portion, the subsurface profile consists of a thin layer of topsoil and/or silty sand with clay overlying a silty clay deposit. The upper portion of the silty clay consists of stiff brown silty clay, while the lower portion consists of firm grey silty clay. The west portion of the site is subject to permissible grade raise elevations between 1.0 m to 2.5 m, based on the *Geotechnical Investigation*, PG5348-1, Revision 4 by Paterson Group, dated March 11, 2022 (Geotech Report), presented in *Attachment 2*. The grading and servicing has been designed to keep grades as low as possible, due to the grade raise restrictions in the area.

STORMWATER MANAGEMENT AND SERVICING

The storm sewers servicing the Kennedy Lands will discharge to the proposed Greenbank Pond Expansion (Ultimate Greenbank Pond) via one inlet and discharge from the pond to the Jock River via a naturalized channel.

In general, the location of the Ultimate Greenbank Pond and drainage boundaries are in conformance with the Stantec MSS Addendum. The overall storm design deviates from the Stantec MSS Addendum as it implements the amendment to the storm sewer and stormwater management elements of the Ottawa Design Guidelines – Sewer (Technical Bulletin PIEDTB-2016-01, September 6, 2018, ISTB-2018-04, June 27, 2018, and ISTB2019-02, July 8, 2019).

Based on the existing conditions and constraints, such as the permissible grade raise restrictions and existing HGLs in the Greenbank Pond, the Kennedy Lands will be serviced with the following strategy:

- Full site serviced by expansion of the existing Greenbank Pond to its ultimate configuration;
- Sump pumps per City technical bulletin for foundation drainage in the western portion of the site;
- Gravity drainage in the eastern portion of the site; and;
- Inlet to the expanded pond with an invert set at 1.15 m below the permanent pool elevation of 89.20 m, resulting in standing water in the storm sewer

Criteria established in ISTB 2018-04 are expected to be satisfied and as such the use of sump pumps is being recommended to service the Kennedy Lands residential development east of Street No 1.

Yours Truly, **David Schaeffer Engineering Ltd.**

Per: Alexandre Tourigny, P.Eng.

CC:	Minto Communities, Bronwyn Anderson	(email)
	Minto Communities, Curtiss Scarlett	(email)
	DSEL, Laurence Coulson	(email)

Attachment 1

1. Stantec MSS Addendum October, 2017 (excerpt)

BARRHAVEN SOUTH MASTER SERVICING STUDY ADDENDUM

STORMWATER MANAGEMENT AND SERVICING October 12, 2017

4.4 MAJOR SYSTEM DESIGN

Two DDSWMM models were created to generate runoff response for all catchment areas tributary to the Cedarview and Greenbank Ponds respectively. DDSWMM was selected because of its ability to account for inlet restrictions, the associated road sag storage, and the routing and connectivity of major system flow routes that are the basis of the 'dual-drainage' design principle. The major system network is presented in **Figure 4-3** and **Figure 4-4** for the Cedarview and Greenbank Ponds, respectively, while the master grading plan and overland flow direction is shown in **Drawing A.2** of **Appendix A**.

Detailed design of the major system is beyond the scope of a master servicing study; however, the proposed major system network should provide the basis for subsequent designs. Major system storage will generally consist of 30 m³/ha detained in road-sags for all residential and non-residential lands. Arterial roads have been assumed to provide no surface storage for conservatism, even though the profiles available for the proposed Greenbank realignment show road sags (see Greenbank realignment memo in **Appendix O**). Detailed arterial roadway design shall ensure that one lane is kept free of water during the 100-year event.

In principle, the major system will be designed with a minimum road grade of 0.5% except for dendritic systems where a grade of 0.1% is acceptable from highpoint to highpoint with a maximum flow depth (static ponding depth plus spill flow depth) of 35 cm within the roadway. This will be achieved with ponding areas of varying depths as shown in the DDSWMM output summary tables included in **Appendix F.2**.

The surface storage available was assumed to be 30 m³/ha in all areas and the allowable static ponding depth was estimated by subtracting the 100-year flow depth obtained from DDSWMM from an allowable 30 cm total flow depth that includes a 5 cm safety factor. The results indicate that the maximum allowable static ponding depth ranges between 14 and 19 cm within the Cedarview pond drainage area and 9 and 23 cm within the Greenbank pond drainage area. These static ponding depths are considered sufficient to meet the 30 m³/ha surface storage assumption. The results of the hydrologic analyses are summarized in **Appendix F.2**.

4.5 MINOR SYSTEM DESIGN

The design of the trunk sewers was generally established by following the proposed roadway layout and the storm sewer sizing criteria established in **Section 4.2** above. The storm trunk sewers were initially sized using the Rational Method to convey the 5-year peak flow in local areas and the 10-year peak flow along arterial roads under free flow conditions (as per the City Sewer Design Guidelines). In order to confirm the capacity of the minor system and to identify critical surcharge areas due to the proposed wet ponds' high water levels (HWL) and 100-year capture rates at arterial road crossings, HGL analyses of the storm systems were done by importing the hydrographs obtained from the DDSWMM models into separate hydraulic XP-SWMM models for each of the proposed wet ponds.

BARRHAVEN SOUTH MASTER SERVICING STUDY ADDENDUM

STORMWATER MANAGEMENT AND SERVICING October 12, 2017

In certain locations, such as those identified as "Alternative House Design Required" on **Drawing A.2** of **Appendix A** increased sewer sizes were necessary to reduce the hydraulic grade line (HGL) elevation. Storm sewer design sheets, included in **Appendix F.1**, provide sizes and slopes for all sewers depicted on the final storm servicing network shown in **Drawing A.5** of **Appendix A.**

As indicated above, in order to service the low-lying areas, given the existing ground elevations and grade raise restrictions, larger diameter sewers installed at flatter grades are required. As a large portion of the site is subject to grade raise restrictions, much of the storm sewer system has minimal cover. (**Drawing A.2** of **Appendix A** illustrates the areas of grade raise restriction). Preloading of the soils, the use of light weight fill and/or alternative building design will be required to achieve the minimum clearance of 0.3 m from underside of footing to the 100-year hydraulic grade line (HGL) at the detailed design stage.

In the early stages of a stormwater servicing concept, the use of a foundation drain collector system or sump pumps to provide basement drainage for homes located within the low-lying/grade-restricted areas of the site were investigated. The City expressed concerns regarding long-term maintenance of the foundation drain collector system and the use of sump pumps is not generally permitted in the urban area. Accordingly, an effort was made to maximize land uses in the affected areas, which will not require basements, thus being unaffected by the shallow storm sewers/elevated hydraulic grade line. In response, Greenbank Road was relocated to the west, and school sites and commercial lands were introduced to reduce the affected area. Additionally, more detailed geotechnical investigations at the subdivision design stage may identify engineering methods which may be applied to achieve sufficient grade raise to establish conventional foundation drainage.

The conceptual storm sewer design and master grading plan for the Barrhaven South MSS Addendum have been completed assuming no additional fill beyond the grade raise limit map obtained from Golder Associates (see **Drawings A.1** and A.2 in **Appendix A**). Further detailed geotechnical investigations will be required during the detailed design phase to justify any grade raise beyond the maximum shown in this study and to ensure that development proceeds in a manner consistent with the site-specific geotechnical recommendations.

4.5.1 Arterial Roads

As recommended by the City of Ottawa, inlet controls on arterial roadways shall be sized such that 10-year peak rates of runoff do not produce any surface ponding on the street. Street catchbasins and their connections to the storm sewers must therefore be capable of conveying the resulting 10-year peak flow without backing up onto the roadway for all arterial road areas. In addition, arterial roadways must be designed to provide at least one travel lane free from water during all rainfall events up to the 100-year storm. The DDSWMM results, located in **Appendix F.2**, indicate that the maximum depth of flow along arterial roadways is generally less than 0.16 m for the 100-year storm event.

Attachment 2

1. Geotechnical Investigation, PG5348-1, Rev 4, Paterson Group, March 2022

patersongroup

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Noise and Vibration Studies

Geotechnical Investigation

Proposed Residential Development 3432 Greenbank Road Ottawa, Ontario

Prepared For

Minto Communities Inc.

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa, Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

March 11, 2022

Report: PG5348-1 Revision 4

Table of Contents

Page

1.0	Introduction 1			
2.0	Proposed Development 1			
3.0	Method of Investigation3.1Field Investigation23.2Field Survey43.3Laboratory Testing43.4Analytical Testing4			
4.0	Observations4.1Surface Conditions54.2Subsurface Profile54.3Groundwater7			
5.0	Discussion5.1Geotechnical Assessment95.2Site Grading and Preparation95.3Foundation Design105.4Design for Earthquakes125.5Basement Slab125.6Pavement Structure125.7Sump Pump Feasibility Analysis14			
6.0	Design and Construction Precautions6.1Foundation Drainage and Backfill176.2Protection of Footings Against Frost Action186.3Excavation Side Slopes186.4Pipe Bedding and Backfill196.5Groundwater Control206.6Winter Construction216.7Corrosion Potential and Sulphate216.8Landscaping Considerations21			
7.0	Recommendations			
8.0	Statement of Limitations 25			

Appendices

- Appendix 1Soil Profile and Test Data Sheets
Symbols and Terms
Borehole Logs by Others
Grain-Size Distribution and Hydrometer Testing Results
Analytical Testing Results
- Appendix 2Figure 1 Key PlanDrawing PG5348-1 Test Hole Location PlanDrawing PG5348-2 Permissible Grade Raise PlanDrawing PG5348-3 Tree Planting Setback Plan

1.0 Introduction

Paterson Group (Paterson) was commissioned by Minto Communities Inc. (Minto) to complete a geotechnical investigation for the proposed residential development to be located at 3432 Greenbank Road, in the City of Ottawa, Ontario (refer to Figure 1 - Key Plan presented in Appendix 3 of this report).

The objectives of the current investigation were to:

- determine the subsoil and groundwater conditions at this site by means of test holes.
- □ provide geotechnical recommendations for the design of the proposed development including construction considerations which may affect its design.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. It contains our findings and includes geotechnical recommendations pertaining to the design and construction of the subject development as they are understood at the time of writing this report.

2.0 Proposed Development

Based on available design plans, it is understood that the proposed residential development will consist of a combination of two to three-storey townhouses and single family residential dwellings with associated parks, roadways, local access lanes and driveways. It is also expected that the proposed development will be municipally serviced.

3.0 Method of Investigation

3.1 Field Investigation

Field Program

The field program for the current geotechnical investigation was carried out on December 9, 10 and 13, 2021 and consisted of advancing 10 boreholes to a maximum depth of 5.1 m below the existing ground surface. Several previous geotechnical investigations were conducted within the subject site between May 2015 and February 2021. A total of 10 boreholes and 24 test pits were advanced to a maximum of 15.8 m below the ground surface. The test hole locations for the current and preliminary investigations were distributed in a manner to provide general coverage of the subject site. The approximate locations of the boreholes are shown on Drawing PG5348-1 - Test Hole Location Plan in Appendix 2.

Boreholes were advanced using a track-mounted auger drill rig operated by a twoperson crew. The test pits were completed using a hydraulic excavator at the selected locations and backfilled with the excavated soil upon completion. The test hole procedure consisted of augering or excavating to the required depths at the selected locations and sampling the overburden soils. All fieldwork was conducted under the full-time supervision of our personnel under the direction of a senior engineer from our geotechnical department.

Sampling and In-Situ Testing

Soil samples collected from the boreholes were either recovered directly from the auger flights (AU) or collected using a 50 mm diameter split-spoon (SS) sampler. Soil samples collected from the test pits were recovered from the side walls of the open excavation as grab samples. All soil samples were visually inspected and initially classified on site. The auger and split-spoon samples were placed in sealed plastic bags and transported to our laboratory for further examination and classification. The depths at which the auger, split spoon and grab samples were recovered from the test holes are shown as AU, SS and G, respectively, on the Soil Profile and Test Data sheets presented in Appendix 1.

The Standard Penetration Test (SPT) was conducted in conjunction with the recovery of the split-spoon samples. The SPT results are recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split-spoon sampler 300 mm into the soil after a 150 mm initial penetration using a 63.5 kg hammer falling from a height of 760 mm.

Undrained shear strength testing was carried out in cohesive soils using a field vane apparatus.

Overburden thickness was evaluated during the course of a previous investigation by dynamic cone penetration testing (DCPT) at BH5-20 and BH7-20. The DCPT consists of driving a steel drill rod, equipped with a 50 mm diameter cone at the tip, using a 63.5 kg hammer falling from a height of 760 mm. The number of blows required to drive the cone into the soil is recorded for each 300 mm increment. Due to the low resistance exerted by the silty clay in some boreholes, the cone was often pushed using the hydraulic head of the drill rig until resistance to penetration was encountered. The hammer was then used to further advance the cone to practical refusal.

The subsurface conditions observed in the test holes were recorded in detail in the field. The soil profiles are presented on the Soil Profile and Test Data sheets in Appendix 1.

Groundwater

Monitoring wells were installed in boreholes BH 1-21 to BH 10-21 to permit monitoring of the groundwater levels subsequent to the completion of the sampling program. Flexible polyethylene standpipes were installed in select boreholes to permit the monitoring of groundwater levels subsequent to the completion of the field program. Where observed, the depth of groundwater infiltration noted along the test pit sidewalls and/or excavation bases were recorded in detail at the time of the current test pit investigation.

Monitoring Well Installation

Typical monitoring well construction details are described below:

- Slotted 32 mm diameter PVC screen at the base of each borehole.
- □ 51 mm diameter PVC riser pipe from the top of the screen to the ground surface.
- □ No. 3 silica sand backfill within annular space around screen.
- Bentonite hole plug directly above PVC slotted screen.
- Clean backfill from top of bentonite plug to the ground surface.

Refer to the Soil Profile and Test Data sheets in Appendix 1 for specific well construction details.

Sample Storage

All samples from the current investigation will be stored in the laboratory for a period of one month after issuance of this report. They will then be discarded unless we are otherwise directed.

3.2 Field Survey

The locations and the ground surface elevation at the test hole locations were recovered in the field by Paterson personnel. The ground surface elevations were determined in the field using a hand held GPS unit and are referred to a geodetic datum. The ground surface elevation at each borehole location in the previous investigation completed by others are understood to be referenced to a geodetic datum.

The locations of the test holes and the ground surface elevation at the test hole location are presented on Drawing PG5348-1 - Test Hole Location Plan included in Appendix 2.

3.3 Laboratory Testing

The soil samples recovered from the test holes were examined in our laboratory to review the results of the field logging.

A total of three (3) grain size distribution analysis and one (1) Atterberg limit test were completed on selected soil samples recovered during the current investigation. In addition, a total of three (3) grain size distribution analysis and 10 Atterberg limit tests were completed on selected soil samples recovered as part of previous investigations. The results are presented in Subsection 4.2 and on Grain Size Distribution and Hydrometer testing, and Atterberg Limit Results presented in Appendix 1.

All samples will be stored in the laboratory for a period of one month after issuance of this report. They will then be discarded unless we are otherwise directed.

3.4 Analytical Testing

One (1) soil sample was submitted for analytical testing to assess the corrosion potential for exposed ferrous metals and the potential of sulphate attacks against subsurface concrete structures. The sample was submitted to determine the concentration of sulphate and chloride, the resistivity and the pH of the sample. The results are presented in Appendix 1 and are discussed further in Subsection 6.7.

4.0 Observations

4.1 Surface Conditions

The subject site is currently undeveloped and is primarily used for agricultural purposes. The site is relatively flat with a gradual upward slope towards the centre of the site. Four drainage ditches were observed in a north-south orientation along with some tree lines along the ditches and northern property boundary. The site is bordered to the east by Greenbank Road, to the south by a residential subdivision and to the north and west by vacant lands. Jock River meanders throughout the vacant lands to the north and east of the subject site.

4.2 Subsurface Profile

Overburden

East Portion

Generally, the subsurface profile encountered at the test holes locations (BH 1-20 to BH 3-20, TP 1-21 to TP 3-21, TP 16-21 and TP 19-21) at the east portion of the site consists of a topsoil followed by compact to very dense silty sand and/or glacial till. The glacial till layer consisting of dense to very dense silty sand with gravel, cobbles and boulders.

Practical refusal to augering was encountered at all boreholes within the east portion of the site at depths ranging between 1.4 and 4.7 m below existing grade. Practical refusal to excavation was encountered at TP 1-20 at a depth of 3.4 m below existing grade. Reference should be made to the Soil Profile and Test Data sheets in Appendix 1 for specific details of the soil profiles encountered at each test hole location.

West Portion

Generally, the subsurface profile encountered at the remaining test holes locations throughout the remainder of the subject site consists of a thin layer of topsoil and/or silty sand with clay overlying a silty clay deposit. The upper portion of the silty clay consists of stiff brown silty clay while the lower portion consists of firm grey silty clay. Practical refusal to DCPT was encountered at a depth of 8.9 and 12.6 m below the existing grade at BH 5-20 and BH 7-20, respectively. Reference should be made to the Soil Profile and Test Data sheets in Appendix 1 for specific details of the soil profiles encountered at each test hole location.

Grain Size Distribution and Hydrometer Testing

The results of the soil samples submitted for grain size analysis from the test holes from the current and previous investigations are summarized in Table 1 and presented on the Grain Size Distribution and Hydrometer Testing Results sheets in Appendix 1.

Table 1 - Grain Size Distribution					
Test Hole	Sample	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
TP 4-21	G4	0	7	57.2	35.8
TP 8-21	G2	0	11.4	54.8	33.8
TP 12-21	G2	0	28.2	46.2	25.6
BH 3-21	SS3	0	9.5	58.5	32.0
BH 6-21	SS3	0	12.3	59.7	28.0
BH 10-21	SS3	0	1.5	41.5	57.0

Atterberg Limits Testing

Atterberg limits testing, as well as associated moisture content testing, was completed on the recovered silty clay samples at selected locations throughout the subject site. The results are summarized in Table 2 and presented on the Grain Size Distribution sheet in Appendix 1.

Table 2 - Summary of Atterberg Limits Tests					
Sample	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index %	Classification
TP 4-21 - G4	26.6	35	18	17	CL
TP 5-21 - G3	31.1	44	21	23	CL
TP 6-21 - G3	28.2	37	19	18	CL
TP 7-21 - G2	29.4	38	20	18	CL
TP 8-21 - G2	29.9	39	24	15	CL
TP 9-21 - G2	28.6	35	22	13	CL
TP 10-21 - G2	30.2	35	19	16	CL
TP 11-21 - G2	29.8	36	18	18	CL
TP 12-21 - G2	29.2	38	19	19	CL
TP 13-21 - G2	32.6	42	21	21	CL
BH 10-21 SS2	27.8	33	23	10	CL
Notes: CL: Inorganic Clay of Low Plasticity					

The shrinkage limit and ratio of the tested soil sample (TP 4-21) are 16.7 percent and 1.87, respectively.

Bedrock

Based on available geological mapping, the bedrock in this area consists of interbedded limestone and dolomite of the Gull River formation with an overburden drift thickness of 3 to 15 m depth.

4.3 Groundwater

Groundwater levels were measured at the standpipe piezometers in the borehole locations on May 22, 2020 and at the monitoring wells on December 20 and 21, 2021. Depths of sidewall groundwater infiltration, as observed during the test pit investigation, were also recorded. The majority of the test pits were dry upon completion with the exception of some minor infiltration noted where test pits were carried out below the long-term groundwater table. The measured groundwater levels in the piezometers, monitoring wells, and groundwater infiltration at the test hole locations are presented in Table 3. It is important to note that groundwater readings at piezometers can be influenced by surface water perched within the borehole backfill material.

The long term groundwater level can also be estimated based on observations of the recovered soil samples, such as moisture levels, colouring and consistency. Based on these observations, **the long term groundwater table is anticipated to be at a depth of approximately 2.5 to 3.5 m below the existing ground surface**.

Table 3 - Summary of Groundwater Levels				
		Measured Ground		
Borenoie Number	Metnoa	Depth (m)	Elevation (m)	Recording Date
BH 1A-20	Piezometer	Blocked	n/a	May 22, 2020
BH 2-20	Piezometer	1.67	90.11	May 22, 2020
BH 3-20	Piezometer	-	n/a	May 22, 2020
BH 4-20	Piezometer	5.10	87.07	May 22, 2020
BH 5-20	Piezometer	1.49	90.50	May 22, 2020
BH 6-20	Piezometer	1.16	90.62	May 22, 2020
BH 7-20	Piezometer	1.02	91.02	May 22, 2020
TP 14-21	Infiltration	2.85	89.50	February 3, 2021

Table 3 - Summary of Groundwater Levels				
D		Measured Groun		
Borenole Number	Method	Depth (m)	Elevation (m)	Recording Date
TP 15-21	Infiltration	1.17	92.13	February 3, 2021
TP 17-21	Infiltration	1.59	90.90	February 3, 2021
TP 19-21	Infiltration	1.11	91.15	February 3, 2021
TP 20-21	Infiltration	2.13	89.91	February 3, 2021
TP 21-21	Infiltration	1.73	90.40	February 3, 2021
TP 22-21	Infiltration	4.93	87.33	February 3, 2021
TP 23-21	Infiltration	1.80	90.27	February 3, 2021
BH 1-21	Monitoring Well	3.05	88.95	December 20, 2021
BH 2-21	Monitoring Well	3.05	89.15	December 20, 2021
BH 3-21	Monitoring Well	3.07	88.88	December 20, 2021
BH 4-21	Monitoring Well	2.72	89.27	December 21, 2021
BH 5-21	Monitoring Well	3.00	89.46	December 21, 2021
BH 6-21	Monitoring Well	2.91	89.36	December 21, 2021
BH 7-21	Monitoring Well	2.91	88.88	December 21, 2021
BH 8-21	Monitoring Well	2.90	89.25	December 21, 2021
BH 9-21	Monitoring Well	3.00	88.59	December 21, 2021
BH 10-21	Monitoring Well	3.00	89.24	December 20, 2021

It should be noted that groundwater levels are subject to seasonal fluctuations. Therefore, groundwater level could vary at the time of construction.

5.0 Discussion

5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is satisfactory for the current phase of the proposed development. It is anticipated that the proposed buildings will be founded on conventional style shallow foundations placed on an undisturbed, stiff to firm silty clay, glacial till and/or bedrock bearing surface.

Due to the presence of a silty clay deposit throughout the western portion of the site, recommendations have been provided for permissible grade raise and tree planting setback restrictions for the western portion of the subject site. The areas of the grade raise restrictions and tree planting setbacks may be referenced in further detail on Drawing PG5348-2 - Permissible Grade Raise Plan and on Drawing PG5348-3 - Tree Planting Setback Areas, respectively, in Appendix 2.

Further, the area of the clay deposit indicated throughout the western portion of the subject site and on the above-noted drawings is considered acceptable for the implementation of sump pump systems as part of the proposed residential development, from a geotechnical perspective. This will reduce the need for high grade raises which in turn lowers the possibility of differential settlements due to exceedance of grade raise restrictions.

The above and other considerations are further discussed in the following sections.

5.2 Site Grading and Preparation

Stripping Depth

Topsoil and deleterious fill, such as material containing a high content of organic materials, should be stripped from under the proposed building footprints and other settlement sensitive structures such as roadways and service pipes.

Fill Placement

Fill used for grading beneath the proposed buildings should consist of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II. This material should be tested and approved prior to delivery to the site. The fill should be placed in lifts no greater than 300 mm thick and compacted using suitable compaction equipment for the lift thickness. Fill placed beneath the building and paved areas should be compacted to at least 98% of the material's standard Proctor maximum dry density (SPMDD).

Non-specified existing fill, along with site-excavated soil, can be used as general landscaping fill where settlement of the ground surface is of minor concern. This material should be spread in thin lifts and at least compacted by the tracks of the spreading equipment to minimize voids. If this material is to be used to build up the subgrade level for areas to be paved, it should be compacted in thin lifts to at least 95% of the material's SPMDD.

Non-specified existing fill and site-excavated soils are not suitable for use as backfill against foundation walls unless used in conjunction with a composite foundation drainage board.

In-filling the existing ditches should be completed in a stepped fashion within the lateral support of the proposed buildings. The fill should consist of clean imported granular fill, such as OPSS Granular A or OPSS Granular B Type II material. The steps should have a minimum horizontal length of 1.5 m and minimum vertical height of 0.5 m and should be compacted using suitable compaction equipment to a minimum 98% of the material's SPMDD.

5.3 Foundation Design

Bearing Resistance Values

Strip footings, up to 3 m wide, and pad footings, up to 6 m wide, placed in an undisturbed, stiff brown silty clay bearing surface or engineered backfill placed on an undisturbed brown silty clay bearing surface can be designed using a bearing resistance value at SLS of **150 kPa** and a factored bearing resistance value at ULS of **225 kPa** incorporating a geotechnical factor of 0.5 at ULS.

Strip footings, up to 2 m wide, and pad footings, up to 4 m wide, placed in an undisturbed, firm grey silty clay bearing surface bearing surface can be designed using a bearing resistance value at SLS of **60 kPa** and a factored bearing resistance value at ULS of **90 kPa** incorporating a geotechnical factor of 0.5 at ULS.

Footings placed in an undisturbed, compact glacial till bearing surface can be designed using a bearing resistance value at SLS of **150 kPa** and a factored bearing resistance value at ULS of **225 kPa** incorporating a geotechnical factor of 0.5 at ULS.

Footings placed in an clean, surface sounded bedrock bearing surface can be designed using a bearing resistance value at ULS of **500 kPa** incorporating a geotechnical factor of 0.5.

An undisturbed soil bearing surface consists of one from which all topsoil and deleterious materials, such as loose, frozen or disturbed soil, have been removed prior to the placement of concrete for footings.

The bearing resistance value at SLS given for footings will be subjected to potential post construction total and differential settlements of 25 and 20 mm, respectively.

A clean, surface-sounded bedrock bearing surface should be free of loose materials, and have no near surface seams, voids, fissures or open joints which can be detected from surface sounding with a rock hammer.

Footings bearing on an acceptable bedrock bearing surface and designed using the bearing resistance values provided herein will be subjected to negligible potential post-construction total and differential settlements.

Bedrock/Soil Transition

Where a building is founded partly on bedrock and partly on soil, it is recommended to decrease the soil bearing resistance value by 25% for the footings placed on a soil bearing medium to reduce the potential long-term total and differential settlements. At the soil/bedrock transitions, it is recommended that a minimum depth of 500 mm of bedrock be removed from below the founding elevation for a minimum length of 2 m on the bedrock side. This area should be subsequently reinstated with an engineered fill, such as OPSS Granular A or Granular B Type II and compacted to a minimum of 98% of the material SPMDD.

Lateral Support

The bearing medium under footing-supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels. Adequate lateral support is provided to a deposit of silty sand, silty clay and/or glacial till above the groundwater table when a plane extending down and out from the bottom edge of the footing at a minimum of 1.5H:1V passes only through in situ soil of the same or higher capacity as the bearing medium soil. The lateral support zone for footings placed on bedrock will be 1H:6V from the edge of footings.

Permissible Grade Raise Recommendations

Based on the undrained shear strength values of the silty clay deposit encountered within the west portion of the site, the recommended permissible grade raise areas for buildings are defined in Drawing PG5348-2 - Permissible Grade Raise Areas in Appendix 2.

5.4 Design for Earthquakes

The site class for seismic site response can be taken as **Class C** for the shallow foundations at the subject site. The soils underlying the subject site are not susceptible to liquefaction. Reference should be made to the latest revision of the 2012 Ontario Building Code for a full discussion of the earthquake design requirements.

5.5 Basement Slab

With the removal of all topsoil and deleterious fill, such as material containing a high content of organic materials, the native soil, approved by the geotechnical consultant at the time of excavation, will be considered to be an acceptable subgrade surface on which to commence backfilling for floor slab construction. Any soft areas should be removed and backfilled with appropriate backfill material. OPSS Granular A or OPSS Granular B Type II, with a maximum particle size of 50 mm, are recommended for backfilling below the floor slab for this purpose.

A clear crushed stone fill is recommended for backfilling below the floor slab for limited span slab-on-grade areas, such as front porch or garage footprints. It is recommended that the upper 200 mm of sub-slab fill consist of 19 mm clear crushed stone below basement floor slabs.

5.6 Pavement Structure

For design purposes, the pavement structure presented in the following tables could be used for the design of driveways, local residential streets and roadways with bus traffic. It should be noted that for residential driveways and car only parking areas, an Ontario Traffic Category A is applicable. For local roadways an Ontario Traffic Category B should be used for design purposes.

Table 4 - Recommended Pavement Structure - Driveways			
Thickness (mm)	Material Description		
50	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete		
150	BASE - OPSS Granular A Crushed Stone		
300	SUBBASE - OPSS Granular B Type II		
Notes: 1-SUBGRADE - Either in situ soils or OPSS Granular B Type I or II material placed over in situ soil 2- Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this Pavement			

Structure.

Table 5 - Recommended Pavement Structure - Local Residential Roadways			
Thickness (mm)	Material Description		
40	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete		
50	Binder Course - HL-8 or Superpave 19.0 Asphaltic Concrete		
150	BASE - OPSS Granular A Crushed Stone		
450	SUBBASE - OPSS Granular B Type II		

Notes:

1-SUBGRADE - Either in situ soils or OPSS Granular B Type I or II material placed over in situ soil

2- Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this Pavement Structure.

Table 6 - Recommended Pavement Structure - Arterial Roadways with Bus Traffic			
Thickness (mm)	Material Description		
40	Wear Course - Superpave 12.5 Asphaltic Concrete		
50	Upper Binder Course - Superpave 19.0 Asphaltic Concrete		
50	Lower Binder Course - Superpave 19.0 Asphaltic Concrete		
150	BASE - OPSS Granular A Crushed Stone		
600	SUBBASE - OPSS Granular B Type II		
Notes:			

1-SUBGRADE - Either in situ soils or OPSS Granular B Type I or II material placed over in situ soil 2- Minimum Performance Graded (PG) 64-34 asphalt cement should be used for this Pavement Structure.

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with OPSS Granular B Type II material. Weak subgrade conditions may be experienced over service trench fill materials. This may require the use of a geotextile, thicker subbase or other measures that can be recommended at the time of construction as part of the field observation program.

Minimum Performance Graded (PG) 58-34 asphalt cement should be used for driveways and local roadways and PG 64-34 asphalt cement should be used for roadways with bus traffic. The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 100% of the material's SPMDD using suitable vibratory equipment.

Pavement Structure Drainage

Satisfactory performance of the pavement structure is largely dependent on the contact zone between the subgrade material and the base stone in a dry condition. Failure to provide adequate drainage under conditions of heavy wheel loading can result in the fine subgrade soil being pumped into the voids in the stone subbase, thereby reducing load carrying capacity.

Due to the low permeability of the subgrade materials consideration should be given to installing subdrains during the pavement construction as per City of Ottawa standards. The subdrain inverts should be approximately 300 mm below subgrade level. The subgrade surface should be crowned to promote water flow to the drainage lines.

5.7 Sump Pump Feasibility Analysis

Based on our general review of the current site conditions in conjunction with the City of Ottawa guidelines for the use of sump pump systems, the western portion of the subject site is considered acceptable to received sump pumps from both geotechnical and hydrogeological perspectives. The location of the clay area for sump pumps is outlined in Drawing PG5348-2 - Permissible Grade Raise Plan and on Drawing PG5348-3 - Tree Planting Setback Areas, respectively, in Appendix 2.

It should be noted that based on the Technical Bulletin ISTB-2018-04 and ISTB-2019-02 issued by the City of Ottawa regarding installation of sump pumps, for typical sites, a minimum 300 mm vertical separation is recommended between the design underside of footing elevation and the seasonal high groundwater level. If this condition cannot be confirmed before the finalized design drawings are completed, the development should meet the minimum requirements for the following items as per Appendix 8 of the above noted technical bulletin:

- Clay Continuity within the site
- Estimation of Seasonal High Groundwater Table
- Hydraulic Conductivity of the Underlying Silty Clay
- □ The Groundwater Ingress Rate

The following sections summarize our assessment of the above noted requirements and our conclusion on the feasibility of the installation of sump pumps along the eastern portion of the proposed residential development.

Clay Continuity

The boreholes completed within the western portion of the subject site are in conformance with the City of Ottawa borehole spacing guidelines. The native silty clay soils within the study area are considered to be laterally continuous. The boreholes within this portion of the subject site identify a silty clay deposit at the majority of the borehole locations at similar elevations throughout. Therefore, the silty clay deposit is continuous across the proposed eastern side of the subject development. Refer to the attached Drawing PG5348-2 - Permissible Grade Raise Plan and on Drawing PG5348-3 - Tree Planting Setback Areas, respectively, in Appendix 2.

Seasonal High Groundwater Table

Generally, the groundwater levels recovered at the test hole locations were measure in the field and are summarized in Table 3, under Subsection 4.3. It is important to note that groundwater readings at the piezometers can be influenced by surface water perched within the borehole backfill material. Long-term groundwater conditions can also be estimated based on the observed color and consistency of the recovered soil samples.

Based on these observations, it is estimated that long-term groundwater level, as per the discussion in Subsection 4.3, can be expected between 2.5 to 3.5 m depth below existing ground surface. Groundwater levels are subject to seasonal fluctuations and therefore could vary during time of construction.

As indicated above, the long-term groundwater table is anticipated at a depth ranging between 2.5 and 3.5 m below existing grade. When considering the low permeability silty clay deposit present across the western portion of the subject site, the seasonal high groundwater table can be conservatively estimated expected to be 0.5 m above the long-term groundwater table in the pre-development stage. It is important to note that Paterson will be conducting a groundwater table. The results of the groundwater monitoring program will be provided post the spring melt of 2022 and towards the end of the 12 month period under a separate cover.

Based on our review of the preliminary roadway grading plans of the subject site, the average underside of footing elevation for the proposed lots/blocks will be approximately 1.8 to 2.1 m below the center line of the proposed roadways. The average road elevation will range from 92.5 to 94 m within the western portion of the subject site. Assuming that each lot will be graded at an approximately 500 mm above the adjacent roadways (low point), the proposed dwellings will have an approximate underside of footing elevation ranging between approximately 92 and 93.5 m which is well above the expected seasonal high groundwater table.

It is also important to note that the groundwater levels recorded for the site are considered pre-development groundwater levels. From a geotechnical perspective, the pre-development groundwater levels should not impact the design of the underside of footing elevations. Based on our experience with post-development groundwater levels at sites with similar subsoil conditions, the post-development groundwater table will be lowered approximately 0.5 m within the immediate area of the subject site based on the inverts of the proposed site servicing pipes.

Permeability of Soils and Groundwater Ingress Rate

Based upon previous experience at similar sites in the area with similar stratigraphy and typical published values, the hydraulic conductivity values for silty clay varies from 1×10^{-7} to 1×10^{-9} m/sec and is dependent on the consistency of the material. As such, the silty clay material encountered at the subject site meets the requirement for a low permeability soils. It should be noted that site specific slug testing (falling/rising head tests) will be completed in spring 2022 to confirm the hydraulic conductivity of the silty clay deposit.

Based on the subsoil profile below the proposed footings, the groundwater ingress rate was calculated to be less than 25,000 L/day which is considered to be very low in comparison with the minimum pump capacity of 0.9 L/s as per the above noted sump pump design Bulletin. Also, due to the characteristics of the underlying silty clay, any surface water infiltrating the upper permeable layers will be perched above the silty clay layer.

Based on the above, the sump pumps are not expected to be overloaded and/or continuously running. As such, the minimum design requirements for the main sump pump system and the backup pump battery will be achieved for the estimated groundwater rate of ingress under worst case scenarios.

Additional Considerations

It should also be noted that the backfill used against the foundation walls should consist of workable site excavated silty clay. Any imported silty clay should be reviewed and approved by Paterson prior to placement to confirm that the material meets the characteristics of the existing silty clay within the site. All surfaces adjacent to the proposed buildings should be shaped to shed water away from the building's foundation.

All the sump pump installations should be inspected and approved by Paterson at the time of installation.

6.0 Design and Construction Precautions

6.1 Foundation Drainage and Backfill

Foundation Drainage

It is recommended that a perimeter foundation drainage system be provided for the proposed structure. The system should consist of a 150 mm diameter perforated corrugated plastic pipe, surrounded on all sides by 150 mm of 10 mm clear crushed stone which is placed at the footing level around the exterior perimeter of the structure. The perimeter drainage pipe should direct water to sump pit(s) located within the lower basement levels or provided a gravity connection to the storm sewer.

Foundation Backfill - Basements Unequipped with Sump Pump Systems

Backfill against the exterior sides of the foundation walls should consist of free-draining, non frost susceptible granular materials. The greater part of the site excavated materials will be frost susceptible and, as such, are not recommended for re-use as backfill against the foundation walls, unless used in conjunction with a drainage geocomposite, such as Miradrain G100N or Delta Drain 6000, connected to the perimeter foundation drainage system. Imported granular materials, such as clean sand or OPSS Granular B Type I granular material, should otherwise be used for this purpose.

Foundation Backfill - Basements Equipped with Sump Pump Systems

Backfill against the exterior sides of the foundation walls should consists of workable, brown silty clay extending a minimum of 1.5 m away from and along the perimeter of the foundations. The clay backfill must be implemented in conjunction with a composite drainage system, such as Delta Drain 6000 or an approved equivalent. Imported granular materials, such as clean sand or OPSS Granular B Type I granular material, is not recommended to be used for this purpose where sump pump systems are considered.

Sump Pump Systems - Additional Considerations

Service trenches for service lateral extending between the public service alignment and the residential dwelling should be provided with a clay seal. The clay seal should be installed in accordance with City of Ottawa Standard Detail Drawing S8- Clay Seals for Pipe Trenches. The clay seal must extend a minimum of 300 mm above the dwellings storm service discharge pipe within the service trench. The placement of clay seals should be reviewed and approved at the time of placement by the geotechnical consultant as part of site servicing reviews.

Reference should be made to the latest revision of the Ottawa Design Guidelines -Sewer, Second Edition dated 2012, and the latest revision to Drawing P01 - Standard Sump Pump Configuration Greenfield Subdivisions with Clay Soils and Full Municipal Services and the associated specifications.

6.2 **Protection of Footings Against Frost Action**

Perimeter footings of heated structures are required to be insulated against the deleterious effect of frost action. A minimum of 1.5 m thick soil cover (or equivalent) should be provided in this regard.

Exterior unheated footings, such as those for isolated exterior piers, are more prone to deleterious movement associated with frost action than the exterior walls of the heated structure and require additional protection, such as soil cover of 2.1 m or an equivalent combination of soil cover and foundation insulation.

6.3 Excavation Side Slopes

The side slopes of excavations in the soil and fill overburden materials should either be cut back at acceptable slopes or should be retained by shoring systems from the start of the excavation until the structure is backfilled. It is expected that sufficient room will be available for the greater part of the excavation to be undertaken by open-cut methods (i.e. unsupported excavations).

The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be excavated at 1H:1V or shallower. The shallower slope is required for excavation below groundwater level. The subsurface soils are considered to be a Type 2 and 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should be kept away from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

It is recommended that a trench box be used at all times to protect personnel working in trenches with steep or vertical sides. It is expected that services will be installed by "cut and cover" methods and excavations will not be left open for extended periods of time.

6.4 Pipe Bedding and Backfill

Bedding and backfill materials should be in accordance with the most recent Material Specifications & Standard Detail Drawings from the Department of Public Works and Services, Infrastructure Services Branch of the City of Ottawa.

The pipe bedding for sewer and water pipes should consist of a minimum of 150 mm of OPSS Granular A material. Where the bedding is located within the firm to stiff grey silty clay or bedrock subgrade, the thickness of the bedding material should be increased to a minimum of 300 mm. The material should be placed in a maximum 225 mm thick loose lifts and compacted to a minimum of 99% of its SPMDD. The bedding material should extend at least to the spring line of the pipe.

The cover material, which should consist of OPSS Granular A, should extend from the spring line of the pipe to at least 300 mm above the obvert of the pipe. The material should be placed in a maximum 225 mm thick loose lifts and compacted to a minimum of 99% of its SPMDD.

Based on the soil profile encountered at the time of the investigation, it is expected that site services will be founded partially on bedrock and overburden soils. At transitions between bedrock and soil subgrade, it is recommended that the founding medium be reviewed in the field to determine how steeply the bedrock surface drops off. A transition treatment should be provided where the bedrock slopes downwards at more than 3H:1V. At these locations, the bedrock should be excavated, and additional bedding material should be placed to provide a 3H:1V transition form the bedrock subgrade toward the soil subgrade. This treatment will reduce the propensity for bending stresses to occur in the pipes.

It should generally be possible to re-use the moist (not wet) brown silty clay above the cover material if the excavation and filling operations are carried out in dry weather conditions. Wet silty clay materials will be difficult to re-use, as the high water contents make compacting impractical without an extensive drying period.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to minimize differential frost heaving. The trench backfill should be placed in a maximum 300 mm thick loose lifts and compacted to a minimum of 95% of the material's SPMDD.

Clay Seals

To reduce long-term lowering of the groundwater level at this site, clay seals should be provided in the service trenches. The seals should be at least 1.5 m long and should extend from trench wall to trench wall.

Generally, the seals should extend from the frost line and fully penetrate the bedding, subbedding and cover material. The barriers should consist of relatively dry and compactable brown silty clay placed in a maximum 225 mm thick loose lifts and compacted to a minimum of 95% of the material's SPMDD. The clay seals should be placed at the site boundaries and at strategic locations at no more than 60 m intervals in the service trenches.

6.5 Groundwater Control

Groundwater Control for Building Construction

Due to the relatively impervious nature of the silty clay and existing groundwater table depth, it is anticipated that groundwater infiltration into the excavations should be low to medium and controllable using open sumps. Pumping from open sumps should be sufficient to control the groundwater influx through the sides of shallow excavations.

Permit to Take Water

A temporary Ministry of Environment, Conservation and Parks (MECP) permit to take water (PTTW) may be required if more than 400,000 L/day of ground and/or surface water are to be pumped during the construction phase. At least 4 to 5 months should be allowed for completion of the application and issuance of the permit by the MECP.

For typical ground or surface water volumes being pumped during the construction phase, typically between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16.

If a project qualifies for a PTTW based upon anticipated conditions, an EASR will not be allowed as a temporary dewatering measure while awaiting the MECP review of the PTTW application.

The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

Long-term Groundwater Control

Our recommendations for the long-term groundwater control for proposed construction are presented in Subsection 6.1. Any groundwater encountered along the proposed structure's perimeter or sub-slab drainage system will be directed to the proposed structure's sump pit. It is expected that groundwater flow will be low as noted in Subsection 5.7 with peak periods noted after rain events. It is anticipated that the groundwater flow will be controllable using conventional open sumps.

6.6 Winter Construction

The subsoil conditions at this site mostly consist of frost susceptible materials. In presence of water and freezing conditions ice could form within the soil mass. Heaving and settlement upon thawing could occur. Precautions should be taken if winter construction is considered for this project.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the use of straw, propane heaters, tarpaulins or other suitable means. In this regard, the base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

The trench excavations should be carried out in a manner that will avoid the introduction of frozen materials into the trenches. As well, pavement construction is difficult during winter. The subgrade consists of frost susceptible soils which will experience total and differential frost heaving as the work takes place. In addition, the introduction of frost, snow or ice into the pavement materials, which is difficult to avoid, could adversely affect the performance of the pavement structure. Additional information could be provided, if required.

6.7 Corrosion Potential and Sulphate

The results on analytical testing show that the sulphate content is less than 0.1%. The results are indicative that Type 10 Portland Cement would be appropriate for this site. The chloride content and the pH of the sample indicate that they are not significant factors in creating a corrosive environment for exposed ferrous metals at this site, whereas the resistivity in indicative of a moderate to slightly aggressive corrosive environment.

6.8 Landscaping Considerations

Tree Planting Restrictions

Paterson completed a soils review of the site to determine applicable tree planting setbacks, in accordance with the City of Ottawa Tree Planting in Sensitive Marine Clay Soils (2017 Guidelines) for trees planted within a public right-of-way (ROW). Atterberg limits testing was completed for recovered silty clay samples at selected locations throughout the subject site. Grain size distribution and hydrometer testing was also completed on selected soil samples. The above-noted test results were completed on samples taken at depths between the anticipated underside of footing elevation and a 3.5 m depth below finished grade. The results of our testing are presented in Tables 1 and 2 in Subsection 4.2 and in Appendix 1.

Based on the results of our review, the two tree planting setback areas are present within the subject site. The two areas are detailed below and have been outlined in Drawing PG5348-3 - Tree Planting Setback Recommendations presented in Appendix 2.

Area 1 - No Tree Planting Setback Restrictions

Cohesive soils were not encountered within the subsurface profile throughout Area 1. Therefore, tree planting restrictions are not required for Area 1 illustrated on Drawing PG5348-3 - Tree Planting Setback Recommendations in Appendix 2.

Area 2 - Low/Medium Sensitivity Clay Soils

A low to medium sensitivity clay soil was encountered between design underside of footing elevations and 3.5 m below finished grade throughout this area. Based on our Atterberg Limits test results, the modified plasticity limit generally does not exceed 40%. The following tree planting setbacks are recommended for Area 2.

Large trees (mature height over 14 m) can be planted within Area 2 provided a tree to foundation setback equal to the full mature height of the tree can be provided (e.g. in a park or other green space).

Tree planting setback limits may be reduced to 4.5 m for small (mature tree height up to 7.5m) and medium size trees (mature tree height 7.5 m to 14 m) provided that the following conditions are met:

- □ The underside of footing (USF) is 2.1 m or greater below the lowest finished grade must be satisfied for footings within 10 m from the tree, as measured from the centre of the tree trunk and verified by means of the Grading Plan as indicated procedural changes below. It should be noted that a 1.8 m depth for footings is considered acceptable provided that additional measures be taken. These measures can be discussed upon request under a separate cover.
- A small tree must be provided with a minimum of 25 m³ of available soil volume while a medium tree must be provided with a minimum of 30 m³ of available soil volume, as determined by the Landscape Architect. The developer is to ensure that the soil is generally un-compacted when backfilling in street tree planting locations.
- □ The tree species must be small (mature tree height up to 7.5 m) to medium size (mature tree height 7.5 m to 14 m) as confirmed by the Landscape Architect.
- □ The foundation walls are to be reinforced at least nominally (minimum of two upper and two lower 15M bars in the foundation wall).
- Grading surround the tree must promote drainage to the tree root zone (in such a manner as not to be detrimental to the tree), as noted on the subdivision Grading Plan.

Aboveground Swimming Pools, Hot Tubs, Decks and Additions

The in-situ soils are considered to be acceptable for in-ground swimming pools. Above ground swimming pools must be placed at least 5 m away from the residence foundation and neighbouring foundations. Otherwise, pool construction is considered routine, and can be constructed in accordance with the manufacturer's requirements.

Additional grading around the hot tub should not exceed permissible grade raises. Otherwise, hot tub construction is considered routine, and can be constructed in accordance with the manufacturer's specifications. Additional grading around proposed deck or addition should not exceed permissible grade raises. Otherwise, standard construction practices are considered acceptable.

7.0 Recommendations

It is a requirement for the foundation design data provided herein to be applicable that the following material testing and observation program be performed by the geotechnical consultant.

- Grading plan review from a geotechnical perspective, once the final grading plan is available.
- Observation of all bearing surfaces prior to the placement of concrete.
- Sampling and testing of the concrete and fill materials used.
- Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
- Observation of all subgrades prior to backfilling.
- **□** Field density tests to determine the level of compaction achieved.
- Sampling and testing of the bituminous concrete including mix design reviews.

All excess soils should be handled as per Ontario Regulation 406/19: On-Site and Excess Soil Management.

A report confirming that these works have been conducted in general accordance with our recommendations could be issued, upon request, following the completion of a satisfactory material testing and observation program by the geotechnical consultant.

8.0 Statement of Limitations

The recommendations provided in this report are in accordance with our present understanding of the project. We request permission to review our recommendations when the drawings and specifications are completed.

A geotechnical investigation of this nature is a limited sampling of a site. Should any conditions at the site be encountered which differ from those at the test locations, we request immediate notification to permit reassessment of our recommendations.

The recommendations provided herein should only be used by the design professionals associated with this project. They are not intended for contractors bidding on or undertaking the work. The latter should evaluate the factual information provided in this report and determine its suitability and completeness for their intended construction schedule and methods. Additional testing may be required for their purposes.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Minto Communities or their agents is not authorized without review by Paterson Group for the applicability of our recommendations to the altered use of the report.

Paterson Group Inc.

Drew Petahtegoose, B.Eng.

Report Distribution

- Minto Communities (1 digital copy)
- Paterson Group (1 copy)

Faisal I. Abou-Seido, P.Eng.

APPENDIX 1

SOIL PROFILE & TEST DATA SHEETS

SYMBOLS AND TERMS

BOREHOLE LOGS BY OTHERS

GRAIN-SIZE DISTRIBUTION AND HYDROMETER TESTING RESULTS

ANALYTICAL TESTING RESULTS
SOIL PROFILE AND TEST DATA

FILE NO.

PG5348

Supplemental Geotechnical Investigation Kennedy Lands - 3432 Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

REMARKS

BOBINGS BY Track-Mount Power Auge	r			П	ATF	Decembe	er 9 2021		HOLE	^{Е NO.} В	H 1-21	
SOIL DESCRIPTION	. Тол		SAN	IPLE		DEPTH	ELEV.	Pen. Re	esist. 0 mm	Blows Dia. Co	/0.3m one	Well
	RATA I	(PE	IBER	° NERY	ALUE RQD	(m)	(m)	N	lator (Content	%	itoring structic
GROUND SURFACE	STF	T	NUN	RECO	N V. OF			20	40	60	80	Moni Cons
TOPSOIL						0-	-92.00					
0.23		AU	1					O				<u>1111111111111111111111111111111111111</u>
Very stiff, brown SILTY CLAY, trace sand		SS	2	33	6	1-	-91.00		0			
2.21		-				2-	-90.00		<u> </u>		1	29
		ss	3	50	9	3-	-89.00	0				
GLACIAL TILL: Loose to compact, grey silty sand with gravel, occasional cobbles		ss	4	0	5							
		ss	5	67	2	4-	-88.00	0				
5.18		ss	6	83	10	5-	-87.00	0				
End of Borehole												
(GWL @ 3.05m - Dec. 20, 2021)												
		20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded									⊣ 00	

SOIL PROFILE AND TEST DATA

FILE NO.

PG5348

Supplemental Geotechnical Investigation Kennedy Lands - 3432 Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

REMARKS

BORINGS BY Track-Mount Power Auge	ər			D	ATE	Decembe	er 9, 2021		HOL	^{Е NO.} В	H 2-21	
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)	Pen. Re 5	esist. 0 mm	Blows Dia. Co	:/0.3m one	g Well ion
	STRATA	ТҮРЕ	NUMBER	* ECOVER	N VALUE of RQD			• Water Content %				Aonitoring Sonstruct
GROUND SURFACE				щ		0-	92.20	20	40	60	80	
10PSOIL 0.28		AU	1					0				तिमित्रमिति <u>स्टिल्ल</u> विभिन्नति विभिन्न स्टिल्ल
						1-	-91.20					
Very stiff to stiff, brown SILTY CLAY, trace sand						2-	-90.20					
- grey by 2.3m depth - firm and grey by 3.0m depth						3-	-89.20					
						4-	-88.20					
End of Borehole5.03						5-	-87.20					
								20 Shea ▲ Undist	40 ar Stre	60 ength (I △ Rer	80 (Pa) moulded	⊣ I 00

SOIL PROFILE AND TEST DATA

FILE NO.

PG5348

Supplemental Geotechnical Investigation Kennedy Lands - 3432 Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

REMARKS

									HOLE	NO.	х н 3-0-	
BORINGS BY Track-Mount Power Auge	er			D	ATE	Decembe	r 9, 2021			L	511 5-2	•
SOIL DESCRIPTION	PLOT		SAN		_	DEPTH (m)	ELEV. (m)	Pen. R ● 5	esist. 0 mm	g Well ion		
	TRATA	ТҮРЕ	IUMBER	COVER!	VALUE r RQD			• v	Vater C	onter	nt %	onitorin, onstruct
GROUND SURFACE	01		Ч	RE	zo		01.05	20	40	60	80	žŏ
TOPSOIL						0-	-91.95					
0.20		AU	1					þ				
		ss	2	67	5	1-	-90.95	0				
Very stiff to stiff, brown SILTY CLAY		ss	3	100	3	2-	-89.95				ſ	
		ss	4	100	Ρ					0		
- firm and grey by 3.0m depth		ss	5	100	Ρ	3-	-88.95					
		ss	6		Ρ	4-	-87.95				0	
5. <u>18</u> End of Borehole		ss	7		Ρ	5-	-86.95	<u>A</u>		0		
(GWL @ 3.07m - Dec. 20, 2021)												
								20 Shea ▲ Undist	40 ar Stre urbed	60 ngth (△ Re	80 kPa) moulded	100

SOIL PROFILE AND TEST DATA

FILE NO.

HOLE NO.

PG5348

Supplemental Geotechnical Investigation Kennedy Lands - 3432 Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

REMARKS

DATUM

BORINGS BY	Track-Mount	Power	Auge	r

Geodetic

BORINGS BY Track-Mount Power Auge	DATE December 9, 2021					BH 4-21				
SOIL DESCRIPTION	LOT		SAN	IPLE	1	DEPTH	ELEV.	Pen. Re ● 50	sist. Blows/0.3m	Mell N
	RATA F	(PE	IBER	° ©VERY	ALUE ROD	(m)	(m)		/ater Content %	itoring structio
GROUND SURFACE	STI	Ĥ	IUN	RECO	N OF	5		20	40 60 80	Mon Con:
TOPSOIL						- 0-	-91.99			
		AU	1					O		
		ss	2	100	Р	1-	-90.99	c		
Very stiff to stiff, brown SILTY CLAY, trace sand		ss	3	67	Ρ	2-	-89.99		o	
- firm and grey by 3.0m depth		ss	4	100	Ρ	3-	-88.99			
						4-	-87.99			
- trace sand by 4.9m depth GLACIAL TILL: Grey silty sand with gravel, occasional cobbles, trace clay End of Borehole (GWL @ 2.72m - Dec. 21, 2021)		SS	5	100	Ρ	5-	-86.99		Ó	
								20 Shea ▲ Undistu	40 60 80 100 r Strength (kPa) urbed △ Remoulded)

SOIL PROFILE AND TEST DATA

FILE NO.

PG5348

Supplemental Geotechnical Investigation Kennedy Lands - 3432 Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

REMARKS

SOIL PROFILE AND TEST DATA

FILE NO.

PG5348

Supplemental Geotechnical Investigation Kennedy Lands - 3432 Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

REMARKS

				_			10.000		HOLE	^{NO.} B	H 6-21		
BORINGS BY Track-Mount Power Auge	er 			D	ATE	Decembe	er 10, 202	21					
SOIL DESCRIPTION	А РЬОТ		SAN œ		Ĕ٥	DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3 ● 50 mm Dia. Cone			one	ing Well Iction	
	STRAT.	ТҮРЕ	NUMBEI		UALU			• Water Content %		t %	onitori onstru		
GROUND SURFACE			I	8	ZŸ	0-	-92 27	20	40	60	80	ΣŬ	
TOPSOIL		δ Διι	1				02.27						
		ss	2	100	Ρ	1-	-91.27	0					
Very stiff to stiff, brown SILTY CLAY, some to trace sand		ss	3	100	Ρ	2-	-90.27		/ 0				
- firm and grey by 2.4m depth		ss	4	100	Ρ))				
		ss	5	100	Ρ	3-	-89.27				0		
		ss	6	100	Ρ	4-	-88.27	A		C)		
End of Borehole (GWL @ 2.91m - Dec. 21, 2021)						5-	-87.27						
								20 Shea ▲ Undist	40 ar Strei urbed	60 ngth (I △ Rer	80 kPa) moulded	100	

SOIL PROFILE AND TEST DATA

FILE NO.

PG5348

 Supplemental Geotechnical Investigation Kennedy Lands - 3432 Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

REMARKS

BORINGS BY Track-Mount Power Auge	er			D	ATE	Decembe	er 10, 202	21	HOLE NO. BH 7-21		
SOIL DESCRIPTION	LOT		SAN	IPLE		DEPTH	ELEV.	Pen. Re	esist. Blows/0.3m $=$ \odot \leq 0 mm Dia. Cone		
	TRATA E	LYPE	UMBER	°° COVERY	VALUE r RQD	(m)	(m)	• Water Content %			
GROUND SURFACE	ι. Γ		IN	REC	z Ö	0	01 70	20	40 60 80 ≥ Ö		
TOPSOIL 0.30		AU	1			0-	-91.79	Ō			
		ss	2	100	Ρ	1-	-90.79	· · · · · · · · · · · · · · · · · · ·			
Stiff, brown SILTY CLAY, trace		ss	3	92	Ρ	2-	-89.79	4	0		
- firm and grey by 3.0m depth		ss	4	100	Ρ			·····			
		ss	5	100	Ρ	3-	-88.79				
		ss	6	100	Ρ	4-	-87.79		0		
5.18		ss	7	100	Ρ	5-	-86.79		• 0		
End of Borehole (GWL @ 2.91m - Dec. 21, 2021)											
								20 Shea ▲ Undist	40 60 80 100 ar Strength (kPa) urbed △ Remoulded		

SOIL PROFILE AND TEST DATA

FILE NO.

PG5348

 Supplemental Geotechnical Investigation Kennedy Lands - 3432 Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

REMARKS

REMARKS	r				ATE	Dooomho	r 10 000		HOLE NO.	BH 8-21		
BORINGS BY TTACK-MOUTH FOWER Auge	E		SAN	IPLE			Pen. Re			esist. Blows/0.3m 🚍		
SOIL DESCRIPTION	PLO			<u>א</u>	M .	DEPTH (m)	ELEV. (m)	• 50	0 mm Dia. (Cone	ition tion	
	RATA	YPE	MBER	°° OVER	VALUE RQD			0 W	later Conte	ent %	nitorin Istruc	
GROUND SURFACE	LS	H	NN	REC	N O	0-	-02 15	20	40 60	80	Mor Cor	
TOPSOIL 0.30						0	92.15					
		aU a	1					ρ				
		×										
			2	67	D	1-	-91.15					
			2	07	1			V				
		ss	3	100	Р			<u> </u>	0			
Stiff to firm, brown SILTY CLAY,						2-	-90.15					
some to trace sand		$\overline{\mathbf{n}}$										
firm and arou by 2.7m donth		ss	4	100	Р				4			
- Inni and grey by 2.7m depth		\square									X	
		$\overline{\mathbf{N}}$				3-	-89.15					
		ss	5	100	Р			4	o		-	
		\square										
		$\overline{\mathbf{N}}$					00.45					
		ss	6	100	Р	4-	-88.15	4	0			
		$\overline{\mathbf{N}}$										
		ss	7	100	Р	5-	-87.15	<u> </u>	▲ O			
5.18 End of Borehole	XX										-	
(GWL @ 2.90m - Dec. 21, 2021)												
								20	40 60	80 1	00	
								Shea ▲ Undistu	urbed $\triangle R$	(kPa) emoulded		

SOIL PROFILE AND TEST DATA

FILE

Supplemental Geotechnical Investigation Kennedy Lands - 3432 Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

DATUM

NO.	PG5348	

REMARKS HOLE NO. BH 9-21 BORINGS BY Track-Mount Power Auger DATE December 13, 2021 SAMPLE Pen. Resist. Blows/0.3m Monitoring Well Construction STRATA PLOT DEPTH ELEV. SOIL DESCRIPTION • 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER TYPE o/0 Water Content % Ο **GROUND SURFACE** 80 20 40 60 0+91.59TOPSOIL 0.33 AU 1 C) 1+90.59 SS 2 75 3 O Very stiff to stiff, brown SILTY CLÁY, some to trace sand SS 3 100 Ρ 2+89.59 - firm and grey by 2.4m depth SS 4 100 Ρ 3+88.59 SS 5 Ρ 100 4+87.59 SS 6 100 Ρ Ó 5 + 86.595.18 End of Borehole (GWL @ 3.00m - Dec. 21, 2021) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

FILE NO.

PG5348

Supplemental Geotechnical Investigation Kennedy Lands - 3432 Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic

REMARKS	r			п		Decembe	r 13 202	1	HOLE NO. BH10-21
SOIL DESCRIPTION	гот		SAN	IPLE		DEPTH	ELEV.	Pen. R	esist. Blows/0.3m = 0 mm Dia, Cone
	FRATA F	LYPE	JMBER	°∾ COVERY	VALUE ROD	(m)	(m)	0 V	/ater Content %
GROUND SURFACE	S.	L .	IN	REC	z Ö	0-	-02.24	20	40 60 80 ^O ⊃ O
TOPSOIL 0.38						0	52.24		
		AU	1					O	
		ss	2	50	Ρ	1-	-91.24	40	
Very stiff to stiff, brown SILTY CLAY, some to trace sand		ss	3	100	Ρ	2-	-90.24		O 121
		SS	4	100	Ρ	3-	-80.24		• • • • • • • • • • • • • • • • • • •
- firm and grey by 3.0m depth		SS	5	100	Ρ	0	00.24		
		SS	6	100	Ρ	4-	-88.24		A 0
<u>GLACIAL TILL: Very dense, grey</u> silty sand to sandy silt with gravel, cobbles and boulders, trace clay End of Borehole (GWL @ 3.00m - Dec. 20, 2021)		SS	7	100	66	5-	-87.24	O	
								20 Shea ▲ Undist	40 60 80 100 ar Strength (kPa) urbed △ Remoulded

patersongroup Consulting Engineers

SOIL PROFILE AND TEST DATA

FILE NO.

Geotechnical Investigation Half Moon Bay North - Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

										PG5348	
REMARKS									HOLE	^{NO.} TD 1 21	
BORINGS BY Excavator	1			D	ATE 2	2021 Jan	uary 14				
SOIL DESCRIPTION	LOT		SAN	IPLE	1	DEPTH	ELEV.	Pen. Re ● 50	esist.E) mm D	Blows/0.3m Dia. Cone	- 5
	LATA I	ЪE	BER	VERY	ALUE ROD	(m)	(m)		latar C	entant 9/	omete
GROUND SUBFACE	STR	цХ	NUM		N VI						Piezo Cons
				Ц		0-	91.42		40	60 80	шО
	* <u>*</u> *	_ G									
GLACIAL TILL: Brown silty sand with gravel, cobbles and boulders, some clay		G	2			1-	-90.42				
		G	3								
		_									
						2-	-89.42				
2. <u>3</u> 3											
GLACIAL TILL: Grey silty sand with clay, gravel, cobbles and boulders		G	4								
						3-	-88.42				
3.42 End of Test Pit									<u></u>		
Practical refusal to excavation encountered at 3.42 m depth											
(Minor groundwater infiltration noted at 3.40 m depth)											
								20 Shea ▲ Undistr	40 I r Stren urbed	60 80 10 gth (kPa) △ Remoulded	00

SOIL PROFILE AND TEST DATA

FILE NO.

Geotechnical Investigation Half Moon Bay North - Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

										[.] PG5348	
REMARKS									HOLE N	^{0.} TD O O I	
BORINGS BY Excavator				D	ATE 2	2021 Jan	uary 14	T		IP 2-21	
SOIL DESCRIPTION	LOT		SAN	AMPLE DEPTH			ELEV.	Pen. R	esist. B 0 mm Di	lows/0.3m a Cone	. 드
	A P		Ř	RΥ	Ba	(m)	(m)				leter Lotio
	STRAT	ТҮРЕ	NUMBE	SCOVE	I VALI			0 V	/ater Co	ntent %	ezom onstru
GROUND SURFACE			-	8	ZŬ	0-	-94.10	20	40	60 80	ΞÖ
TOPSOIL 0.31		G	1				••				
GLACIAL TILL: Brown silty sand with gravel, cobbles and boulders		_				1-	-93 10				
		_ G	2				33.10				
		-	0				00.10				
		- -	3			2-	-92.10				
GLACIAL TILL: Grey silty sand with						3-	-91.10				
gravel, cobbles and boulders		G	4								
4 52						4-	-90.10				
End of Test Pit											
(TP dry upon completion)											
								20 Shea ▲ Undist	40 I r Strenç urbed 2	60 80 10 g th (kPa) ∆ Remoulded	00

SOIL PROFILE AND TEST DATA

FILE NO.

Geotechnical Investigation Half Moon Bay North - Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

										^{//} PG5348	
REMARKS									HOLE	^{10.} TD 0 01	
BORINGS BY Excavator				D	ATE 2	2021 Jan	uary 14	1		IP 3-21	
SOIL DESCRIPTION	гот		SAN	IPLE		DEPTH	ELEV.	Pen. R	esist.B 0 mm D	. 5	
	TA F	ы	ER	ERY	Ba	(m)	(m)				neter uctio
	TRA	[J.L.	IUMB	COV ∾	VAI V R			0 V	later Co	ontent %	ezon onstr
GROUND SURFACE	03		Z	RE	zo	0-	-92 65	20	40	60 80	ΞÖ
TOPSOIL 0.34		G	1				02.00				
GLACIAL TILL: Brown silty sand with gravel, cobbles and boulders, some clay		G	2			1-	-91.65		· · · · · · · · · · · · · · · · · · ·		
2.44		G	3			2-	-90.65				
GLACIAL TILL: Grey silty sand with clay, gravel, cobbles and boulders		_ _ G	4			3-	-89.65				
4.52						4-	-88.65				
(TP dry upon completion)								20	10	60 90 11	
								20 Shea ▲ Undist	40 Ir Streng urbed	60 80 10 gth (kPa) △ Remoulded	00

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Half Moon Bay North - Greenbank Road Ottawa, Ontario

								FILE	E NO.	PG	5348	
								HOL	E NO.	тр /	_91	
			D	ATE	2021 Jan	uary 14				15 4	-21	
РІОТ		SAN	/IPLE		DEPTH (m)	ELEV. (m)	Pen. R • 5	esist. 0 mm	. Blo 1 Dia.	ws/0.3 Cone	m	ter tion
STRATA	ТҮРЕ	NUMBER	COVER.	VALUE Dr RQD			• v	/ater	Cont	ent %		ezomet
			R	zv	0-	-92.17	20	40	60	80)	ĒŎ
6	G	1 2										
	G	3			1-	-91.17						-
3	G	4			2-	-90.17	Ō					-
	G	5			3-	-89.17						
4					4-	-88.17				· · · · · · · · · · · · · · · · · · ·		-
							20 Shea	40 ar Str	60 renati) 80 h (kPa)) 11	00
	TRATA PLOT	LICTA VLIVE G G G G G G G G G G G G G G G G G G G	LIOTA VIEWUN G G G G C G C C C C C C C C C C C C C	A Constant of the second secon	ATE 3 A A A A A A A A A A A A A	DATE 2021 Jan Image: Sample DEPTH Image: Sample Image:		DATE 2021 January 14 Pen. Fr. SAMPLE DEPTH ELEV. (m) Pen. Fr. 6 - <	FILE DATE 2021 January 14 Pen. Resist O Water G 1 0 90 G 1 0 90 92.17 0 92.17 G 3 1 91.17 0 0 0 0 G 3 3 1 91.17 1 0 0 0 G 4 4 89.17 3 89.17 3 89.17 3 4 88.17 4 4 88.17 4 88.17 3 50 min 3 3 4 88.17	FILE NO. DATE 2021 January 14 Pen. Resist. Bio 9 50 mm Dia. G 1 4 O 92.17 G 2 G 3 1 - 91.17 G 3 1 - 91.17 G 4 2 - 90.17 G 5 4 - 88.17 4 - 88.17	FILE NO. HOLE NO. TP 4 SAMPLE DEPTH (m) ELEV. (m) Pen. Resist. Blows/0.3 • 50 mm Dia. Cone 6 G 1 0 92.17 6 G 1 0 92.17 G 3 1 91.17 G 3 1 91.17 G 3 1 91.17 G 5 3 89.17 G 5 4 88.17 4 4 88.17 20 40 60 80 C 5 0 20 40 60 80 C 4 2 90.17 1 <td>FILE NO. PG5348 HOLE NO. TP 4-21 Image: Same service of the service of t</td>	FILE NO. PG5348 HOLE NO. TP 4-21 Image: Same service of the service of t

SOIL PROFILE AND TEST DATA

FILE NO.

Geotechnical Investigation Half Moon Bay North - Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

										PG5348	
REMARKS									HOLE N	0	
BORINGS BY Excavator				D	ATE 2	2021 Jani	uary 14			TP 5-21	
	гот		SAN	IPLE		DEPTH	ELEV.	Pen. R	esist. Bl	ows/0.3m	
SOIL DESCRIPTION	A P		ጜ	RY	Що	(m)	(m)	• 5			eter
	STRAT	ТҮРЕ	NUMBE	ECOVE	I VALI or RQ			• •	later Co	ntent %	iezom onstru
GROUND SURFACE	_		-	8	2	0-	-91.87	20	40 (60 80	ĒΟ
TOPSOIL 0.30		G	1								
Very stiff to firm brown SILTY CLAY some sand seams		G	2				00.07				
						1-	-90.87				
			_								
		_ G	3						, 		
						2-	-89 87				
		G	4			_	00.07				
									/		
3 13						3-	-88.87				
									•		-
Firm grey SILTY CLAY		G	5					l i i i i i i i i i i i i i i i i i i i			
						4-	-87.87				
4.24_	ZXXZ								<u> </u>		
(TP dry upon completion)											
								20 Shea ▲ Undist	40 Ir Streng urbed ∠	60 80 10 I th (kPa) ⊾ Remoulded	òo

patersongroup Consulting Engineers

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Half Moon Bay North - Greenbank Road Ottawa, Ontario

DATUM Geodetic									FILE	NO.	G5348	
REMARKS									HOL		6-21	
BORINGS BY Excavator				D	ATE	2021 Jan	uary 14				0-21	
SOIL DESCRIPTION	PLOT		SAN	/IPLE		DEPTH (m)	ELEV. (m)	Pen. Re ● 5	esist. 0 mm	Blows/(Dia. Co).3m 1e	ter tion
	STRATA	ТҮРЕ	NUMBER	ecover	I VALUE or RQD			0 V	/ater	Content	%	iezomet onstruc
GROUND SURFACE				R	2 0	0-	-92.21	20	40	60	80	ĒΟ
1 TOPSOIL 0.26		⊑ G [≠] G	1 2									
Brown SILTY SAND with clay		1										-
Very stiff to firm brown SILTY CLAY some sand seams						1-	-91.21					-
		G	3					O				
0.04		⊨ G	4			2-	-90.21					-
2.34												
Firm grey SILTY CLAY												
						3-	-89.21					
		G	5									
3.47	'fXX								·····			
base of test pit upon completion)												
								20 Shea ▲ Undist	40 I r Stre urbed	60 ength (kl △ Remo	80 10 Pa) pulded	oo

SOIL PROFILE AND TEST DATA

FILE NO.

Geotechnical Investigation Half Moon Bay North - Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

										PG5348	
REMARKS									HOLE N	^{0.} TD 7 04	
BORINGS BY Excavator				D	ATE 2	2021 Jani	uary 14			IP 7-21	
SOIL DESCRIPTION	гот		SAN	IPLE	1	DEPTH ELEV.		Pen. Resist. Blows/0.3m			. =
	ATA F	ы	BER	ÆRY	SOD LUE	(m)	(m)				
	STRI	ілт	IMUN	ECO1	N VA or I			0 W	ater Co	ntent %	iezo Const
				щ		0-	-92.26		40 0	60 80	шО
10PSOIL 0.26	(XX)	·									
Very stiff to firm brown SILTY CLAY , some sand seams		∃ G	1			1-	-91 26				
						•	01.20				
		⊑ G	2			2-	-90 26	0	^		
							00.20				
3.05		<u> </u>	3			3-	-89.26				
Firm, grey SILTY CLAY											
3. <u>60</u> End of Test Pit	XX	G	4								
(TP dry upon completion)											
								20 Shea ▲ Undist	40 0 r Streng urbed ∠	b0 80 10]th (kPa) ∆ Remoulded	UU

patersongroup Consulting Engineers

SOIL PROFILE AND TEST DATA

FILE NO.

Geotechnical Investigation Half Moon Bay North - Greenbank Road Ottawa, Ontario

										P	G5348	
REMARKS									HOLE	^{Е NO.} тг	0 01	
BORINGS BY Excavator	1			D	ATE	2021 Jan	uary 15	1		11	′ ŏ-2 I	
SOIL DESCRIPTION	PLOT		SAN	AMPLE DEPTH		DEPTH	ELEV.	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone			- 5	
	LATA	ζ₽E	IBER	°° NERY	ALUE RQD	(ጠ)			lator (%	omete structio	
GROUND SURFACE	STI	f	NUN	RECO	л И И			20	/10	60	/0 80	Piez Cons
TOPSOIL 0.31						0-	-92.13		40			<u> </u>
Very stiff to firm brown SILTY CLAY , some sand seams		G	1									
		⊑ G	2			1-	-91.13		D			
						2-	-90.13			/		
2.93		_ G	3			3-	-89.13					
Firm, grey SILTY CLAY												-
3.50 End of Test Pit		<u> </u>	4									
(TP dry upon completion)												
								20 Shea ▲ Undist	40 ar Stre urbed	60 ength (k △ Rem	80 10 P a) oulded	00

SOIL PROFILE AND TEST DATA

FILE NO.

Geotechnical Investigation Half Moon Bay North - Greenbank Road Ottawa, Ontario

RF	MΔ	RK	2

DATUM	Geodetic

										[°] PG5348	
					A.T.E.	0001 lon	100 1E		HOLE N	^{o.} TP 9-21	
BORINGS BY Excavator			C 4 4		AIE	2021 Jan	uary 15	Den D			
SOIL DESCRIPTION	PLOT					ELEV.	Pen. Ro ● 50) mm Di	ro Du		
	ATA	ATA PE		VERY	ALUE ROD						tructi
GROUND SURFACE	STR	Т	MUN	RECO	N VJ			20			Piezo
						0-	-92.42				
		Z⁻G	1								
Very stiff to firm brown SILTY CLAY , some sand seams											-
		G	2			1-	91.42				-
						2-	90.42				-
		G	3								
						3-	89.42				-
3.25		⊨ G	4								
Eirm, grey SILTY CLAY 3.57	<u>PZZ</u>										-
(TP dry upon completion)											
								20 Choo	40	60 80 10	⊣ 00
								Snea ▲ Undist	urbed 2	Jun (KPa) △ Remoulded	

SOIL PROFILE AND TEST DATA

FILE NO.

Geotechnical Investigation Half Moon Bay North - Greenbank Road Ottawa, Ontario

DATUM	Geodetic

										PC	35348	
REMARKS									HOL	^{Е NO.} ТР	10_21	
BORINGS BY Excavator				D	ATE	2021 Jan	uary 15				10-21	1
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)	Pen. Re ● 5	esist. 0 mm	Blows/0 Dia. Cor	i.3m ne	er ion
	RATA	ЪE	MBER	%	VALUE		(,	• N	/ater	Content	%	zometo
GROUND SURFACE	LS I	н	NN	REC	N O			20	40	60	80	Cor Cor
TOPSOIL 0.31		<i></i>				0-	-92.06					
Very stiff to firm brown SILTY CLAY , some sand seams		G	1			1-	-91.06					
		⊑ G	2								•	
2.38		_ G	3			2-	-90.06					
Firm, grey SILTY CLAY						3-	-89.06			· · · · · · · · · · · · · · · · · · ·		-
3.47 End of Test Pit		L G	4						·····			-
(TP dry upon completion)												
								20 Shea ▲ Undist	40 I r Stre urbed	60 ength (kF △ Remo	80 10 Pa) oulded	00

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Half Moon Bay North - Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

REMARKS

DATUM

L NO.	PG	53	34	8
LE NO.				

FILE NO.

HO **TP11-21** BORINGS BY Excavator DATE 2021 January 15 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER TYPE o/0 Water Content % Ο **GROUND SURFACE** 80 20 40 60 0+92.100.31 TOPSOIL G 1 Very stiff to stiff brown SILTY CLAY, some sand seams 1+91.10 G 2 2+90.10 G 3 2.85 3+89.10 Firm, grey SILTY CLAY 4 G 3.32 End of Test Pit (TP dry upon completion) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

FILE NO.

PG5348

Geotechnical Investigation Half Moon Bay North - Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

REMARKS

				_	/		4 5		HOLE	^{NO.} TP12-21	
BORINGS BY Excavator				D	ATE 2	2021 Jan	uary 15				
SOIL DESCRIPTION	A PLOT		SAN œ	MPLE	Ĕ٥	DEPTH (m)	ELEV. (m)	Pen. R	esist. 0 mm [Blows/0.3m Dia. Cone	eter ction
	STRAT	ЛУРЕ	NUMBEI	ECOVEI	N VALU or RQI			0 V	Vater C	Content %	onstrue
				щ		0-	92.24	20	40	60 80	шО
TOPSOIL	XX	<i>í</i>									
Very stiff to stiff brown SILTY CLAY		G	1								
		- G	2			1-	-91.24				-
		– G	3					0			
		_ •				2-	-90.24				
0.51		_ G	4								
Stiff. arev SILTY CLAY		G	5								
3.24						3-	-89.24				
5.24											
(TP dry upon completion)											
								20 Shea	40 ar Strei	60 80 1 ngth (kPa)	00
								▲ Undist	urbed	△ Remoulded	

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Half Moon Bay North - Greenbank Road Ottawa, Ontario

DATUM Geodetic									FILE	NO.	G5348	
REMARKS									HOL	^{Е NO.} т	012-01	
BORINGS BY Excavator				D	DATE 2	2021 Jan	uary 15				10-21	
SOIL DESCRIPTION	PLOT		SAN	MPLE 거	M	DEPTH (m)	ELEV. (m)	Pen. Ref. 5	əsist. 0 mm	Blows/ Dia. Co	0.3m ne	ter tion
	STRATA	ТҮРЕ	NUMBER	°°°	VALUE Sr RQD			• v	/ater	Content	%	ezomei onstruc
GROUND SURFACE	01		4	RE	z	- 0-	-91.95	20	40	60	80	ΞŬ
(TOPSOIL 0.20	XX	, I										
Very stiff to firm brown SILTY CLAY with sand seams		G	1							•••••••••••••••••••••••••••••••••••••••		-
						1-	-90.95					
		⊑ G	2									≜
		G	3			2-	-89.95				1	
2.20		<u>_</u> .G	4			_						
Stiff, grey SILTY CLAY												-
		- G	5									
		_ u				3-	88.95					-
3.31	μX											-
(TP dry upon completion)												
								20		<u> </u>	80 10	⊣ 00
								Shea ▲ Undist	ir Stre urbed	ength (k ∆ Rem	Pa) ioulded	

SOIL PROFILE AND TEST DATA

FILE NO.

Geotechnical Investigation Half Moon Bay North - Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

DATUM Geodelic										PG5348	
REMARKS						2021 Eab	ruony 2		HOLE	^{NO.} TP14-21	
BORINGS BY EXCAVALUI	H		SAN	/IPLE				Pen. R	esist.	Blows/0.3m	
SOIL DESCRIPTION	A PLC		~	ХХ	Шо	DEPTH (m)	ELEV. (m)	• 5	0 mm	Dia. Cone	ter
	TRAT?	ТҮРЕ	UMBEF	~ COVEF	VALU r RQD			0 V	later C	Content %	ezome
GROUND SURFACE	S		z	RE	z ^o	0-	-02 35	20	40	60 80	in C
TOPSOIL0.23		G	1			0	92.00				
Very stiff to stiff brown SILTY CLAY , with sand seams		G	2								
- Decreasing sand content with depth						1-	-91.35				-
										••••••••••••••••••••••••••••••••••••••	
		G	3			2-	-90.35				
0.05										./	
<u>2.85</u>						3-	-89.35				
Stiff grey SILTY CLAY											
		G	4								
		_				4-	-88.35				-
		G	5			5-	-87.35				
6 10						6-	-86 35				-
End of Test Pit							00.00				
(GWL @ 2.85 m depth based on site											
observations - Feb 3, 2021)											
								20 Shea	40 ar Stre	60 80 10 ngth (kPa)	UU
								▲ Undist	urbed	△ Remoulded	

patersongroup Consulting Engineers

SOIL PROFILE AND TEST DATA

FILE NO.

Geotechnical Investigation Half Moon Bay North - Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

											PG5348	
REMARKS										HOLE N	0.	
BORINGS BY Excavator					D	ATE 2	2021 Feb	ruary 3	T		TP15-21	
		Е		SAN	IPLE		DEDTU	EL EV	Pen. R	esist. B	lows/0.3m	
SOIL DESCRIPTION		PL.			ĸ	El e	(m)	(m)	• 5	0 mm Di	a. Cone	ter
		TRATA	ТҮРЕ	UMBER	°∾ COVER	VALUI r RQD			• v	/ater Co	ntent %	zome
GROUND SURFACE		ũ	-	IN	RE	zö			20	40	60 80	S E
).21		G	1			0-	-93.30				
GLACIAL TILL: Compact to dense brown silty sand with clay, gravel, cobbles and boulders			G	2								
-	1 17		G	3			1-	92.30		<u> </u>		
End of Test Pit												
(GWL @ 1.17 m based on site observations - Feb 3, 2021)									20	10		
									20 Shea ▲ Undist	40 Ir Streng urbed 2	60 80 10 jth (kPa) ∖ Remoulded	DO

patersongroup Consulting Engineers

SOIL PROFILE AND TEST DATA

FILE NO.

Geotechnical Investigation Half Moon Bay North - Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

								HOLE NO)	
			D	ATE 2	2021 Feb	ruary 3	1		TP16-21	
EI O		SAN	IPLE				Pen. R	esist. Bl	ows/0.3m	
A PL		~	ХХ	Но	(m)	(m)	• 5	0 mm Dia	a. Cone	ster ction
TRAT	ТҮРЕ	UMBEF	COVEF	VALU r RQI			0 V	/ater Cor	ntent %	szome nstruc
ũ	-	ž	RE	zö			20	40 6	60 80	e S
	G G	1			0-	-94.18				
		2								-
	G	3			1-	-93.18				
<u> </u>	-									
							20 Shea	40 C	50 80 10 th (kPa)	00
	STRATA PLOT	STRATA PLOT	SAN SAN BILLING SALVER	SAMPLE SLATA BLOT CONTRACTOR SLATA BLOT SLATA BLOT	LOTE 2 SAMPLE A LOT A LABAN CONSTRUCT ON C		DATE 2021 February 3 SAMPLE PEPTH ELEV. G 1 -	DATE 2021 February 3 February 3 SAMPLE DEPTH ELEV. (m) Pen. R. 94.18	DATE 2021 February 3 SAMPLE DEPTH (m) ELEV. (m) Pen. Resist. Bl • 50 mm Dia G 1 0 94.18 0 G 3 1 1 93.18 0 G 3 1 93.18 0 0 G 3 1 1 93.18 0 G 3 1 1 93.18 0	DATE 2021 February 3 Pen. Resist. Blows/0.3m Image: Solution of the state of the

SOIL PROFILE AND TEST DATA

40

Shear Strength (kPa)

20

▲ Undisturbed

60

80

 \triangle Remoulded

100

Geotechnical Investigation

REMARKS

154 Colonnade Road South, Ottawa, On	tario ł	(2E 7J	15			alf Moon I tawa, Or	Bay Nort ntario	th - Greent	bank Roa	ad	
DATUM Geodetic					1				FILE NC	PG5348	
REMARKS									HOLE N	^{0.} TD17 01	
BORINGS BY Excavator	1			D	ATE	2021 Feb	oruary 3	1		IP1/-21	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	Pen. R • 5	esist. B 0 mm Di	lows/0.3m a. Cone	er on
	TRATA	ГYРЕ	UMBER	% COVERY	VALUE r RQD	(,		• V	Vater Co	ntent %	zomete
GROUND SURFACE	N.	2.	Ň	REC	zö			20	40	60 80	Co Fie
TOPSOIL 0.24		G	1			- 0-	-92.49				_
Very stiff to stiff brown SILTY CLAY trace sand		G	2								15
- Decreasing sand content with depth						1-	-91.49				20
GLACIAL TILL: Compact to dense brown silty clay with sand, gravel, cobbles and boulders		G	3			2-	-90.49				
2.71											-
(GWL @ 1.59 m depth based on site observations - Feb 3, 2021)											

patersongroup Consulting Engineers

SOIL PROFILE AND TEST DATA

FILE NO.

Geotechnical Investigation Half Moon Bay North - Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

										PG5348	
REMARKS						2001 Eab			HOLE NO	^{).} TP18-21	
BORINGS BY Excavator	.		CAN				oruary 3	Don D	noiot Pl	owo/0.2m	
SOIL DESCRIPTION	PLO1		SAN	NPLE X	M -	DEPTH (m)	ELEV. (m)	● 5) mm Dia	a. Cone	ter tion
	TRATA	ТҮРЕ	UMBER	cover	VALUI r RQD			• v	/ater Cor	ntent %	ezome
GROUND SURFACE	N		z	E	z °	0	02.42	20	40 6	50 80	i s S
TOPSOIL0.21		G	1			0-	-92.43				
Stiff brown SILTY CLAY 0.39											
GLACIAL TILL: Compact to dense brown silty clay with sand, gravel and boulders		G	2			1-	-91.43				
		-									
1.00		G	3								
End of Test Pit	<u>`^^^^</u>										-
(TP dry upon completion)											
								20 Shea	40 (ur Streng	50 80 1 th (kPa)	00

SOIL PROFILE AND TEST DATA

FILE NO.

PG5348

Geotechnical Investigation Half Moon Bay North - Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

REMARKS)	
BORINGS BY Excavator				D	ATE 2	2021 Feb	ruary 3			^{⁷ TP19-21}	
SOIL DESCRIPTION	PLOT		SAN	IPLE	1	DEPTH	ELEV.	Pen. R ● 5	esist. Bl	ows/0.3m a. Cone	r n
	[RATA	IYPE	JMBER	% COVERY	VALUE ROD	(11)	(11)	0 V	Vater Cor	ntent %	zomete 1structio
GROUND SURFACE	ŗ.	L .	IN	REC	z ⁰			20	40 e	60 80	C Pie
TOPSOIL0.22		G	1			0-	-92.26				
GLACIAL TILL: Compact to dense brown silty sand with clay, gravel, cobbles and boulders		G	2								
1.21		<u> </u>	3			1-	-91.26				
End of Test Pit											
(GWL @ 1.11 m depth based on site observations - Feb 3, 2021)								20 Shea ▲ Undis	40 € ar Streng	0 80 14 h (kPa) Remoulded	00

SOIL PROFILE AND TEST DATA

FILE NO.

Geotechnical Investigation Half Moon Bay North - Greenbank Road Ottawa, Ontario

REMARKS

DATUM	Geodetic

DEMARKO										PG5348	
REMARKS							_		HOLE N	^{0.} TP20-21	
BORINGS BY Excavator				D	ATE	2021 Feb	oruary 3			1720-21	
SOIL DESCRIPTION	LOT		SAN	IPLE		DEPTH	ELEV.	Pen. R	esist. B 0 mm Di	lows/0.3m a Cone	
	LA P		Ř	IRY	Ba	(m)	(m)				leter Lotio
	TRAT	TYPE		VALI r RQ			• v	later Co	ntent %	zom nstru	
GROUND SURFACE	Ω.	_	ž	RE	zö	0	00.04	20	40	60 80	C Pie
TOPSOIL 0.27		G	1			0-	-92.04				
Very stiff to stiff brown SILTY CLAY										π	20
trace sand		G	2								T
1.02						1-	91.04				-
GLACIAL TILL: Compact to dense											
cobbles and boulders		G	3								
							00.04				
2.19						2-	-90.04				
observations - Feb 3, 2021)											
								20	40	60 80 1	⊣ 00
								Shea	ır Strenç	oth (kPa)	

SOIL PROFILE AND TEST DATA

FILE NO.

Geotechnical Investigation Half Moon Bay North - Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

DEMA DIZO										F	PG5348	
REMARKS									HOL	^{Ε ΝΟ.} Τ	D21_21	
BORINGS BY Excavator				D		-	FZ1-21					
SOIL DESCRIPTION	тол		SAN	IPLE		DEPTH	ELEV.	Pen. R	lesist. 50 mm	;/0.3m one	<u>ر ا</u>	
	LA I	ы	R	ΞRΥ	Ba	(m)	(m)					netel Lotio
	[RA]	IYPI	IMBE	∾ N	VAL R			0	Nater (Conten	t %	zon 1str
GROUND SURFACE	s.	5	IN	REC	z ^ö			20	40	60	80	Pie O
TOPSOIL 0.24		G	1			0-	-92.13					
Very stiff to stiff brown SILTY CLAY trace sand			0								1	5
		G	2			1-	-91.13			······································		
		_				2-	-90.13				1	20
		G	3			3-	-89.13					
- Grey by 4.2 m depth		_				4-	-88.13					
- Sidewall instability encoutered at a depth of 5.5 m		G	4			5-	-87.13					
5.90 GLACIAL TILL: Compact grey silty 6.07 clay with sand, gravel, cobbles and boulders		 ! !				6-	-86.13					
End of Test Pit												
(GWL @ 1.73 m depth based on site observations - Feb 3, 2021)												
								20 She a ▲ Undis	40 ar Stre turbed	60 ength (I	80 10 kPa) noulded	 DO

patersongroup Consulting Engineers

SOIL PROFILE AND TEST DATA

FILE NO.

PG5348

Geotechnical Investigation Half Moon Bay North - Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

REMARKS

BORINGS BY Excavator				D	ATE 2	2021 Feb	ruary 3		HOLE	^{NO.} TP22-21	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH (m)	ELEV. (m)	Pen. R ● 5	esist. E 0 mm D	Blows/0.3m Jia. Cone	er ion
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	RECOVER)	N VALUE of RQD			0 V 20	Vater Co	ontent %	Piezomet
TOPSOIL 0.18		G	1			0-	-92.26				
Very stiff to stiff brown SILTY CLAY											
		G	2			1-	-91.26		· · · · · · · · · · · · · · · · · · ·		
						2-	-90.26				
		G	3			3-	-89.26				
4.41 GLACIAL TILL: Stiff grey silty clay with sand, gravel, cobbles and boulders 4.93		 G	4			4-	-88.20				
(GWL @ 4.93 m depth based on site observations - Feb 3, 2021)											
								20 Shea ▲ Undist	40 ar Stren	60 80 10 gth (kPa) △ Remoulded	00

SOIL PROFILE AND TEST DATA

FILE NO.

Geotechnical Investigation Half Moon Bay North - Greenbank Road Ottawa, Ontario

DATUM	Geodetic

									PG	i5348	
REMARKS									HOLE NO.		
BORINGS BY Excavator				D	ATE 2	2021 Feb	ruary 3	1	IP2	23-21	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	Pen. R ● 5	en. Resist. Blows/0.3m ● 50 mm Dia. Cone		
	RATA 1	ЯРЕ	MBER	° ∂VERY	'ALUE ROD	(m)	(m)	Water Content %			
GROUND SURFACE	S H	H	БN	REC	N N			20	40 60 8	Con 2	
TOPSOIL		G	1			0-	92.07				
Very stiff to stiff brown SILTY CLAY		G	2			1-	-91 07				
		_					51.07			110	
						2-	-90.07				
		G	3			3-	-89.07				
<u>4.35</u>						4-	-88.07				
clay with sand, gravel, cobbles and boulders		G	4			5-	-87.07				
End of Test Pit (GWL @ 1.8 m depth based on site observations - Feb 5, 2021)								20 Choc	40 60 8	30 100	
								▲ Undist	\triangle Remo	ulded	

SOIL PROFILE AND TEST DATA

FILE NO.

Geotechnical Investigation Half Moon Bay North - Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

DATUM Geodelic									FIL	.E NO.	PG	5348	
REMARKS BOBINGS BY Excavator				П		2021 Feb	ruary 3		но	DLE NO	^{).} TP2	4-21	
	Ĕ		SAN	/PLE				Pen. R	esis	t. Bl	ows/0.:	3m	
SOIL DESCRIPTION	A PLC		RY			(m)	ELEV. (m)	• 50 mm Dia. Cone					eter ction
	STRAT	ТҮРЕ	NUMBE	COVE	VALI DE RQ			• V	/ate	r Cor	ntent %	D	ezom
GROUND SURFACE	0.			R	zv	- 0-	-93.10	20	40	6	60 8	0	ΞŎ
TOPSOIL 0.21 GLACIAL TILL: Compact to dense brown silty sand with clay, gravel, cobbles and boulders 0.87		G	1				00.10						
End of Test Pit													
(TP dry upon completion)													
								Shea	ar St urbe	t reng d ∆	th (kPa Remou	a) Ilded	~~

SOIL PROFILE AND TEST DATA

Preliminary Geotechnical Investigation Proposed Development - 3432 Greenbank Road

... - - --

			5		Ot	tawa, Or	ntario					
DATUM Geodetic										FILE NO.	PC53/19	
REMARKS									\vdash		1 GJJ40	
BORINGS BY CME-55 Low Clearance	Drill			D	ATE	May 20, 2	2020				[°] BH 1A-2	0
SOIL DESCRIPTION	LOT		SAN	IPLE		DEPTH	ELEV.	Pen. Resist. Blows/0.3m				
	TA P	G	ER	ERY	E G	(m)	(m)					neter uctio
	TRA	TYP	IUMB	COV ∾	VAI r R			0	Wa	ter Cor	ntent %	ezon onstr
GROUND SURFACE	01	~	A	RE	zo	0-	-91 53	20		40 €	60 80	ĔŬ
0.30		<u>≩</u> AU	1			Ū	01.00					
			0	40	16	1-	-90 53		· · · · · · · · · · · · · · · · · · ·			
Compact to dense, brown SILTY SAND with gravel, trace clay		800	2	42	10		00.00					
		ss	3	33	47	2-	-89.53					
			4	E A	00		00.00					
- running sand from 2.7 to 4.0m depth.		800	4	54	30	3-	-88.53					
		ss	5	46	12							
4.04						4-	-87.53					
End of Borehole												
Practical refusal to augering at 4.04m depth												
(Piozomotor dry/blockod - May 22												
2020)												

Shear Strength (kPa) ▲ Undisturbed △ Remoulded

60

80

100

40

20

SOIL PROFILE AND TEST DATA

FILE NO.

D05040

Preliminary Geotechnical Investigation
Proposed Development - 3432 Greenbank Road
Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

DEMA BIZO										PG5348	
BOBINGS BY CME-55 Low Clearance I	Drill			D	HOLE NO. BH 1B-20						
	ТОЛ		SAN	IPLE			ELEV.	Pen. R	lows/0.3m	_ c	
	STRATA P	ТҮРЕ	NUMBER	°. SCOVERY	VALUE Dr RQD	(m)	(m)	• •	Vater Co	ntent %	ezometer onstructio
GROUND SURFACE			4	R	ZŸ	0-	01 52	20	40	60 80	ĒÖ
						0	91.55				
SAND with gravel, trace clay						1-	-90.53				
End of Borehole											
Practical refusal to augering at 1.14m depth											
								20 Shea ▲ Undist	40 ar Streng urbed 2	50 80 10 jth (kPa) ∆ Remoulded	00
SOIL PROFILE AND TEST DATA

FILE NO.

S Preliminary Geotechnical Investigation Proposed Development - 3432 Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

DATUM

										PG5348	
REMARKS									HOLE	^{10.} DU 40.00	<u> </u>
BORINGS BY CME-55 Low Clearance	Drill			D	ATE	May 20, 2	2020	1		BH 1C-20)
	Ц	5 SAMPLE				DEPTH	FI FV	Pen. Re	esist. B	lows/0.3m	
SOIL DESCRIPTION	A PI		æ	RY	ЩО	(m)	(m)	• 5) mm D	ia. Cone	eter ction
	TRAT	ТҮРЕ	IUMBEI	COVE!	VALU Sr RQI			0 W	later Co	ontent %	ezome
GROUND SURFACE	01		4	RE	z	0.	01 52	20	40	60 80	ΞŬ
Compact to dense, brown SIL TY							91.00				
SAND with gravel, trace clay 1.40						1-	-90.53				
End of Borehole											
Practical refusal to augering at 1.40m depth											
								20 Shea ▲ Undist	40 ar Stren	60 80 10 gth (kPa) △ Remoulded	00

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

		•		Ot	tawa, Or	itario				
								FILE NO.	PG5348	
							HOLE NO. BULOA DO			
Drill			D	ATE	May 20, 2	020	1		BH 2A-20	0
PLOT		SAMPLE			DEPTH	ELEV.	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone			
АТА	ы	BER	VERY	ROD	(11)	(11)				mete
STR	ТY	IMUN	ECO.	N VA OF J			0 M	ater Cor	ntent %	liezo Const
、 、	≋ AU	1	щ		0-	-91.78	20	40 6		
) 		-								
	ss	2	38	59	1-	-90.78				
	ss	3	54	47		00 70				
	<u> </u>				2-	-89.78				
	∦ ss	4	46	42		00 70			· · · · · · · · · · · · · · · · · · ·	
)	∑_ss	5	40	50+	3-	-88.78				
							20 Shea	40 c r Streng	50 80 1 th (kPa)	00
			Drill FIGURE SAM FIGURE SAM	Drill \mathbf{SAMPLE}	Drill Date Ot End SAMPLE End End <th>Drill Date May 20, 2 Drill SAMPLE DEPTH (m) Image: Signature of the second se</th> <th>Drill Date May 20, 2020 SAMPLE Depth ELEV. (m) No No 91.78 No SS 2 38 59 SS 3 54 47 2-89.78 SS 3 54 47 2-89.78 SS 3 54 60 50+ SS 5 40 50+ 3-88.78</th> <th>Ottawa, Ontario Drill DATE May 20, 2020 Pen. Re Image: state with the state stat</th> <th>Ottawa, Ontario FILE NO. SAMPLE DEPTH ELEV. (m) Pen. Resist. Bit No. No. 91.78 0 - 91.78 0 - 91.78 No. No. No. 0 - 91.78 0 - 91.78 0 - 91.78 No. No. No. No. 0 - 91.78 0 - 91.78 0 - 91.78 No. No. SS 2 38 59 1 - 90.78 0 - 91.78 <</th> <th>Containio FILE NO. PG5348 HOLE NO. BH 2A-22 Orill DATE May 20, 2020 Pen. Resist. Blows/0.3m • 50 mm Dia. Cone SAMPLE DEPTH BL 20, 2020 ELEV. (m) Pen. Resist. Blows/0.3m • 50 mm Dia. Cone X AU 1 0 -91.78 0 -91.78 X SS 2 38 59 1 -90.78 -</th>	Drill Date May 20, 2 Drill SAMPLE DEPTH (m) Image: Signature of the second se	Drill Date May 20, 2020 SAMPLE Depth ELEV. (m) No No 91.78 No SS 2 38 59 SS 3 54 47 2-89.78 SS 3 54 47 2-89.78 SS 3 54 60 50+ SS 5 40 50+ 3-88.78	Ottawa, Ontario Drill DATE May 20, 2020 Pen. Re Image: state with the state stat	Ottawa, Ontario FILE NO. SAMPLE DEPTH ELEV. (m) Pen. Resist. Bit No. No. 91.78 0 - 91.78 0 - 91.78 No. No. No. 0 - 91.78 0 - 91.78 0 - 91.78 No. No. No. No. 0 - 91.78 0 - 91.78 0 - 91.78 No. No. SS 2 38 59 1 - 90.78 0 - 91.78 <	Containio FILE NO. PG5348 HOLE NO. BH 2A-22 Orill DATE May 20, 2020 Pen. Resist. Blows/0.3m • 50 mm Dia. Cone SAMPLE DEPTH BL 20, 2020 ELEV. (m) Pen. Resist. Blows/0.3m • 50 mm Dia. Cone X AU 1 0 -91.78 0 -91.78 X SS 2 38 59 1 -90.78 -

SOIL PROFILE AND TEST DATA

Preliminary Geotechnical Investigation Proposed Development - 3432 Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

REMARKS

DATUM

BORINGS BY	CME-55 Low Clearance	Drill	

Geodetic

FILE NO.	
	PG5348

BORINGS BY CME-55 Low Clearance E	Drill	II DATE May 20, 2020 BH 2B-20								J	
SOIL DESCRIPTION	PLOT	SAM		IPLE		DEPTH	ELEV.	Pen. F	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone		
	TRATA	ТҮРЕ	UMBER	% COVERY	VALUE r ROD	(11)	(11)	0	Nater Co	ntent %	ezomete
GROUND SURFACE	S		Z	RE	z °	_		20	40	60 80	ĕ°ö
TOPSOIL 0.36						0-	-91.78				
Very dense to dense, brown SILTY SAND with gravel, trace clay						1-	-90.78				-
0.00						2-	89 78				
<u>2.2</u> 0							00.70				
CLACIAL THE Work danse grov						3-	88.78				
sandy silt to sity fine sand with gravel.		X SS	1	0	50						
cobbles and boulders											
		ss	2	42	61	4-	-87.78				
4 75			2		50.						
4.75		<u>≥</u> .33	3		+00						
Practical refusal to augering at 4.75m depth											
								She	ar Streng	ith (kPa) ∆ Remoulded	UU

SOIL PROFILE AND TEST DATA

eers Preliminary Geotechnical Investigation Proposed Development - 3432 Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

REMARKS

DATUM

FILE NO.	PG5348

3A-20

BORINGS BY CME-55 Low Clearance Drill DATE May 19, 2020 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER TYPE o/0 Ο Water Content % **GROUND SURFACE** 80 20 40 60 0+94.08TOPSOIL 0.25 AU 1 GLACIAL TILL: Brown silty clay with 1+93.08 SS 2 58 51 sand, gravel, cobbles, occasional boulders SS 3 41 39 2 + 92.082.16 End of Borehole Practical refusal to augering at 2.16m depth. 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

40

20

▲ Undisturbed

60

Shear Strength (kPa)

80

△ Remoulded

100

Preliminary Geotechnical Investigation Proposed Development - 3432 Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

F

DATUM Geodetic						,			FILE NO	PG5348	
REMARKS	2			_					HOLE NO	D. BH 3B-20)
		SAMPLE			DEPTH	ELEV.	Pen. Re	esist. Bl) mm Di	ows/0.3m a. Cone		
	TRATA F	ЗŢ	JMBER	% COVERY	VALUE RQD	(m)	(m)	• N	ater Cor	ntent %	zometer
GROUND SURFACE	_ 2		N	REC	z ^ö		04.00	20	40	60 80	Pie Die Die
TOPSOIL0.25	<u>`````````````````````````````````````</u>					- 0-	-94.08				-
GLACIAL TILL: Brown silty clay with sand, gravel, cobbles, occasional boulders						1-	-93.08				
2.16 GLACIAL TILL: Very dense, brown		⊥_ ∑ss	1	64	50+	2-	-92.08				
cobbles and boulders		ss	2	100	50+	3-	-91.08				
Practical refusal to augering at 3.38m depth.											

SOIL PROFILE AND TEST DATA

▲ Undisturbed △ Remoulded

Preliminary Geotechnical Investigation Proposed Development - 3432 Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic									FILE	NO. PG5	348
REMARKS	٦rill				ATE	May 20, 2	0000		HOLE	NO. BH 3	C-20
BORINGS BY CIVIE-55 LOW Clearance I			SVI			iviay 20, 2		Don D	neiet	Blowe/0.2	
SOIL DESCRIPTION	A PLOJ			건	Шо	DEPTH (m)	ELEV. (m)	• 5) mm	Dia. Cone	ter
	TRAT?	ТҮРЕ	IUMBEF	COVEF	VALU Sr RQI			0 V	later C	Content %	ezome
GROUND SURFACE	0		Z	RE	zo	0	04.00	20	40	60 80	j <u>e</u> o
TOPSOIL0.25		<u></u> -				- 0-	-94.08				
GLACIAL TILL: Brown silty clay with						1-	-93.08				
boulders											
GI ACIAL TILL: Very dense brown						2-	-92.08				
sandy silt to silty fine sand with gravel		, .									
End of Borehole											
								20 Shea	40 Ir Stre	60 80 ngth (kPa)	100

SOIL PROFILE AND TEST DATA

Preliminary Geotechnical Investigation Proposed Development - 3432 Greenbank Road Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

FILE NO.

DATUM Geodetic									FILE NO	PG5348	
REMARKS									HOLE N	^{D.} DU 0D 00	<u> </u>
BORINGS BY CME-55 Low Clearance	Drill			D	ATE	May 20, 2	2020			BH 3D-20)
	щ		SAN	IPLE		DEPTH	ELEV.	Pen. Re	esist. Bl	ows/0.3m	_
SOIL DESCRIPTION	A PI		ж	RY	Ħ۵	(m)	(m)	• 5	• 50 mm Dia. Cone		
	TRAT	ЭЧТ	IMBE	°∾ E	VALC RQ			0 N	ater Co	ntent %	zome
GROUND SURFACE	LS	F	NC N	REC	z ⁰			20	40	60 80	Cor
_ TOPSOIL 0.25	<u>, ~ ~ ~</u>					0-	-94.08				
GLACIAL TILL: Brown silty clay with sand, gravel, cobbles, occasional						1-	-93.08				
boulders											
2.16 GLACIAL TILL: Very dense, brown						2-	-92.08				
sandy silt to silty fine sand with gravel, cobbles and boulders						3-	-91.08				
3.43											
Practical refusal to augering at 3.43m depth.											
								20 Shea ▲ Undist	40 r Streng urbed 2	60 80 10 th (kPa) ∆ Remoulded	00

SOIL PROFILE AND TEST DATA

40

60

Shear Strength (kPa)

80

△ Remoulded

100

20

▲ Undisturbed

Preliminary Geotechnical Investigation Proposed Development - 3432 Greenbank Road

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

REMARKS

			-		Ot	tawa, Or	ntario				
DATUM Geodetic									FILE NO.	PG5348	
REMARKS									HOLE NO.		
BORINGS BY CME-55 Low Clearance I	Drill			D	ATE	May 19, 2	2020	1		BH 4-20	
SOIL DESCRIPTION	LOT		SAN	IPLE	1	DEPTH ELEV		Pen. Re	esist. Blo) mm Dia.	ws/0.3m Cone	c
	ATA I	ЪE	BER	VERY	LUE ROD	(m)	(m)				mete
	STR	Т	MUM	RECO	N VB			0 W	An 60	ent %	Piezo Cons
TOPSOIL 0.33		×	-			0-	92.17				\mathbb{R}
			1			1_	01.17				
		∦ss ∏	2	67	4		91.17				
						2-	-90.17				
stift to firm, brown SILTY CLAY with sand seams						3-	-89.17				
- grey by 3.0m depth											
						4-	-88.17		N		
						5-	-87.17				
						6	96 17				
6. <u>70</u>						0	00.17	4			
End of Borehole											
(GWL @ 5.10m - May 22, 2020)											

SOIL PROFILE AND TEST DATA

Undisturbed

△ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

						liawa, Oi	itano				
DATUM Geodetic									FILE NO.	G5348	
	 :II			_	• 	May 10. (2000		HOLE NO.	H 5-20	
BORINGS BY CIVIE-55 LOW Clearance I			644		DATE	May 19, 2	2020	Don D		/0.2m	
SOIL DESCRIPTION	PLOJ		JAN	SAMPLE		DEPTH	ELEV.	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone			
	АТА	ЪЕ	BER	VERY	LUE ROD	(11)			/		mete ructi
	STR	Т	MUN	RECO.	N V?				40 60	80	Piezo
		₩-AU	1			- 0-	-91.99				
			-				00.00				
Stiff, brown SILTY CLAY, some sand		∦ ss	2	92	4	1.	-90.99				
- sand content decreasing with depth		ss	3	100	3	2-	-89.99				
		ss	4	100	2						
<u>3.00</u>		Δ				3-	-88.99				
						4-	-87.99				
Firm, grey SILTY CLAY						5.	96.00				
						5	00.99				
						6-	-85.99				
<u>6.70</u>								Å			
Dynamic Cone Penetration Test commenced at 6.70m depth. Cone						7-	-84.99				
pushed to 7.0m depth.											
						8-	-83.99				
8.94											
Practical DCPT refusal at 8 94m depth											
(GWL @ 1.49m - May 22, 2020)											
(GWE @ 1.4011 May 22, 2020)											
								20	40 60	80 10	 00
								Shea	ar Strength (k	Pa)	

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic									FILE NC	». PG5348	
REMARKS	Drill			г		May 19 2	2020		HOLE N	^{ю.} BH 6-20	
SOIL DESCRIPTION	LOT		SAN			DEPTH	ELEV.	Pen. R	esist. B 0 mm Di	lows/0.3m ia. Cone	
	TRATA I	ТҮРЕ	UMBER	°° COVERY	VALUE r RQD	(m)	(m)	0 V	Vater Co	ontent %	szometei nstructic
GROUND SURFACE	S		N	RE	z °		04 70	20	40	60 80	ြန္က လိ
TOPSOIL0.28		≩-AU	1			0-	-91.78				
		ss	2	54	5	1-	-90.78				
		ss	3	88	2	2-	-89.78				
Stift to firm, brown SILTY CLAY, some to trace sand								*			
- soft to firm and grey by 3.0m depth						3-	-88.78	F			
						4-	87.78				
						5-	86.78	4			
						6	05 70				
						0-	-05.70				
6.70	μχ										<u>-888</u>
(GWI @ 1.16m - May 22. 2020)											
(GWL @ 1.16m - May 22, 2020)											
											_
								20 Shea	40 ar Strend	60 80 1 gth (kPa)	00
								▲ Undist	turbed 2	△ Remoulded	

SOIL PROFILE AND TEST DATA

▲ Undisturbed △ Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

							itano					
DATUM Geodetic									FILE	NO.	PG5348	3
REMARKS									HOLE	E NO.	BH 7-20	
BORINGS BY CME-55 Low Clearance [Drill			0	DATE	May 19, 2	2020				5117-20	
SOIL DESCRIPTION	РГОТ		SAN			DEPTH (m)	ELEV.	Pen. R • 5	esist. 0 mm	Blow Dia. C	ˈs/0.3m Cone	er L
	RATA	ЗТРЕ	MBER	° ℃	VALUE ROD	(,	(,	• V	Vater (Conte	nt %	zomete
GROUND SURFACE	ร	F	NC	REC	Z O			20	40	60	80	Pie
TOPSOIL 0.33 Brown SILTY SAND with clay 0.60		AU	1			0-	-92.04					
		ss	2	79	4	1-	-91.04					-
Stiff to firm, brown SILTY CLAY with sand		ss	3	46	2	2-	-90.04					
- sand content decreasing with depth						3-	-89.04					
						4-	-88.04		<u> </u>			
Firm, grey SILTY CLAY						5-	-87.04					
						6-	-86.04					
<u>6.70</u> Dynamic Cone Penetration Test commenced at 6.70m depth. Cone	XX					7-	-85.04					
						8-	-84.04					
						9-	-83.04					
						10-	-82.04					
						11-	-81.04		•			
						12-	-80.04		2			
												•
(GWL @ 1.02m - May 22, 2020)												
								20 Shea	40 ar Stre	60 enath	80 (kPa)	100

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %			
Very Loose	<4	<15			
Loose	4-10	15-35			
Compact	10-30	35-65			
Dense	30-50	65-85			
Very Dense	>50	>85			

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard
		Penetration Test (SPT))

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

MC%	-	Natural moisture content or water content of sample, %			
LL	-	Liquid Limit, % (water content above which soil behaves as a liquid)			
PL	-	Plastic limit, % (water content above which soil behaves plastically)			
PI	-	Plasticity index, % (difference between LL and PL)			
Dxx	-	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size			
D10	-	Grain size at which 10% of the soil is finer (effective grain size)			
D60	-	Grain size at which 60% of the soil is finer			
Сс	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$			
Cu	-	Uniformity coefficient = D60 / D10			
Cc and Cu are used to assess the grading of sands and gravels:					

Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Сс	-	Compression index (in effect at pressures above p'c)
OC Ratio		Overconsolidaton ratio = p'c / p'o
Void Ratio	D	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill Δ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

MONITORING WELL AND PIEZOMETER CONSTRUCTION

PROJECT: 1530273

LOCATION: See Site Plan

RECORD OF BOREHOLE: 15-1

SHEET 1 OF 1 DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: May 20, 2015

	0	SOIL PROFILE			SA	AMPL	.ES	DYNAMIC P	ENETR	ATIO	N	\	HYDF	RAULIC	ONDUCT	IVITY,			
S.	ETHO	JOIL PROFILE					E	RESISTANCE, BLOWS/0.3m					k, cm/s	6 10 ⁻⁵ 1/	TING	PIEZOMETER OR			
TRE	ВM	DECODIDITION	A PLO	ELEV.	BER	Ж	/0.30	SHEAR STE	RENGT		atV +	+ 0 - •	v	VATER	ONTENT	PERCE	й NT	TES	STANDPIPE
ž	ORIN	DESCRIPTION	RAT/	DEPTH	MUN	ĮΣ	ows	Cu, kPa		re	m V. ∉	ĐŨ-Õ	w w	/p	W_		wi	ADD LAB.	INSTALLATIO
	В		STF	(m)	Ĺ		BL(20	40	60)	80		20	40 6	0 E	30		
0		GROUND SURFACE		91.83															
		sand, trace gravel; dark brown		91.58															
		(SM-CI/CH) SILTY SAND and SILTY	10	0.25															
		non-cohesive, moist, loose																	
					\vdash	-													
1						22	4												
					'	00	-												
						-													
				90.15															Native Backfill
	Ctom/	[] (CI/CH) SILTY CLAY to CLAY, trace [8] sand; grey brown, highly fissured		1.68	2	SS	2												
2	ger	WEATHERED CRUST); cohesive,																	
	er Au	Ĕ																	
	Pov											>96 +							
	~ 000							Ð				+							
3		=		88.78															
		(CI/CH) SILTY CLAY to CLAY; grey, with thick laminations of silt; cohesive, w>PL,		3.05															
		stiff			3	SS	WH								D				
				88.07	.	-													Bentonite Seal
		(SM) gravelly SILTY SAND; grey		3.76	-														
4		very loose			4	SS	2												
				l l															Standpipe
				87.26															[
				4.57															
5																			WL in Standpipe at Elev. 91.04 m on
																			Way 20, 2015
6																			
0																			
7																			
8																			
Ĩ																			
9																			
10																			
		-			•	•							•						
DEI	PTH	SCALE					(Gold	ler								L	OGGED: RI
1:{	50							VA	SSO	cia	tes							CH	ECKED: WAM

PROJECT: 1530273

LOCATION: See Site Plan

RECORD OF BOREHOLE: 15-2

SHEET 1 OF 1 DATUM: Geodetic

BORING DATE: May 20, 2015

SAMPLER HAMMER, 64kg; DROP, 760mm

n F		SOIL PROFILE			SA	MPL	ES E	DYNAMIC RESISTAN	PENETR CE, BLC	RATION DWS/0.3m	80	HYDF	RAULIC (k, cm/	CONDUCT s	TIVITY,	n-3	NAL TING	PIEZOMETER	
ME I KE SORING MF		DESCRIPTION	TRATA PLC	ELEV. DEPTH (m)	NUMBER	TYPE	LOWS/0.30	SHEAR ST Cu, kPa	RENGT	H nat V. rem V	80 + Q-● ⊕ U-C					NT WI	ADDITIOI LAB. TES ¹	STANDPIPE INSTALLATION	
0		GROUND SURFACE TOPSOIL - (CL) SILTY CLAY, some sand, trace gravel; dark brown (SM-CI/CH) SILTY SAND and SILTY CLAY, interbedded; grey brown; non-cohesive, moist, loose	S	91.85 0.00 91.57 0.28					40	60	80		20	40 6	8 03	0			
1		(CI/CH) SILTY CLAY to CLAY, trace		90.33	1	SS	4						0					Z	
2		sand; grey brown, highly fissured (WEATHERED CRUST); cohesive, w>PL, very stiff			2	SS	5											Native Backfill	
3 Jabr	Iollow Stem)	(CI/CH) SILTY CLAY to CLAY; grey, with		88.80 3.05	3	SS	4							0					
Power Au	200 mm Diam. (H	firm to soft			4	SS	WН	Ð	+										
					5	TP	PM	⊕ +						- Ð			с	Bentonite Seal	
5				86.11		-		• +											
6		(SM) gravelly SILTY SAND; grey (GLACIAL TILL); non-cohesive, wet, loose	Xala a a a a a	5.74	6	SS	5	₽ +										Bentonite Seal	
7		End of Borehole		<u>85.14</u> 6.71														WL in Standpipe at Elev. 90.61 m on May 28, 2015	
8																			
9																			

PROJECT: 1530273

RECORD OF BOREHOLE: 15-3

LOCATION: See Site Plan

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: May 20-21, 2015

SHEET 1 OF 2

DATUM: Geodetic

Т	OD	SOIL PROFILE			SA	MPL	ES	DYNAMIC	PENETRA	TION VS/0.3m		HYDRA	ULIC C k. cm/s	ONDUCT	FIVITY,	.0	
METRES	RING METH	DESCRIPTION	XATA PLOT	ELEV. DEPTH	JUMBER	TYPE	WS/0.30m	20 SHEAR S Cu, kPa	40 TRENGTH	60 8 nat V. + rem V. ⊕	Q - • U - O	10 WA	⁻⁶ 1 ATER C	0 ⁻⁵ 1 1 ONTENT W	0 ⁻⁴ 10 ⁻³	ADDITIONAL AB. TESTIN	PIEZOME FER OR STANDPIPE INSTALLATION
0	BO	GROUND SURFACE TOPSOIL - (ML/SM) SILTY SAND to sandy SILT, trace gravel; dark brown	munu munuu munuu str	(m) 91.57 0.00	2		BLC	20	40	60 8	0	20) 2	10 e	50 80		
1		(SM-CI/CH) SILTY SAND and SILTY CLAY, interbedded; grey brown; non-cohesive, moist, loose		91.11 0.46		-											Ţ
2		(CH/CI) SILTY CLAY to CLAY, trace sand; grey brown, highly fissured, with thin laminations of silty sand (WEATHERED CRUST); cohesive, w>PL, stiff		90.05	2	ss	3							0			
3		(CH/CI) SILTY CLAY to CLAY; grey, with black organic mottling and thin to thick laminations of silty sand; cohesive, w>PL, soft to firm		88.5 <u>2</u> 3.05	3	ss	wн	⊕		+							
5	Power Auger Diam (Hollow Stem)				4	TP	PH	⊕ -	+			ŀ		0		с	Native Backfill
6	200 mm				5	SS	wн	⊕ + ⊕ +				F	—	>			
7					6	ss	WR	⊕ + ⊕ +									
8								⊕	++								
10 —		CONTINUED NEXT PAGE			7	ss	2								o 		
DEP	TH	SCALE		1	1	1			Gold	er				1	<u> </u>	L	DGGED: RI
1:5	0							V	SSOC	iates						CH	ECKED: WAM

LOCATION: See Site Plan

RECORD OF BOREHOLE: 15-3

SHEET 2 OF 2

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: May 20-21, 2015

	ЦĊ		SOIL PROFILE	SA	SAMPLES		DYNA RESIS	MIC PE	NETRA , BLOW	TION /S/0.3m	$\overline{)}$	HYDRAULIC CONDUCTIVITY, k, cm/s								
ETRES	G METH				ELEV.	BER	Ц	;/0.30m	20 40 SHEAR STRENG		40 NGTH	0 60 80 IGTH nat V. + Q - ●			6 1	0 ⁻⁵ 1	IO ⁻⁴ 1	0 ⁻³	TESTIN	OR STANDPIPE
M	BORIN		DESCRIPTION	STRAT/	DEPTH (m)	MUN	Σ	SNOUS	Cu, kF	'a	40	rem V. ∉	⇒ Ū-Õ	Wp	H			WI	ADC LAB.	INSTALLATION
10	_		CONTINUED FROM PREVIOUS PAGE	0)					2	20	40	60	80	20) 2	10	60 8	80		
11		-	(CI/CH) SILTY CLAY to CLAY; grey, with thin laminations of silt; cohesive, w>PL, firm		81.20 10.37	8	-	PM	⊕ ⊕	+										Native Backfill
									Ð	4	_									Bentonite Seal
12	Power Auger	00 mm Diam. (Hollow Stem)	(SM) gravelly SILTY SAND; grey (GLACIAL TILL); non-cohesive, wet, very loose to compact		79.02 12.55	2			Ð		+									Standpipe
14						9	ss	2						0						Cave
6			End of Borehole Note: 1. Blow up of silty clay up to 3.1 m inside		75.72 15.85	10	ss	16												WL in Standpipe at Elev. 91.07 m on May 28, 2015
7			depth.																	
8																				
19																				
20																				
) DEF 1 : {	PTH 50	нs	CALE					. (Ĵ	G	old soci	er ates		· .					L(CH	DGGED: RI ECKED: WAM

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO:

Report Date: 25-May-2020

Order Date: 20-May-2020

Project Description: PG5348

	Client ID:	BH4-20 SS2	-	-	-
	Sample Date:	19-May-20 11:00	-	-	-
	Sample ID:	2021151-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics			•		
% Solids	0.1 % by Wt.	75.1	-	-	-
General Inorganics					
рН	0.05 pH Units	7.37	-	-	-
Resistivity	0.10 Ohm.m	69.6	-	-	-
Anions					
Chloride	5 ug/g dry	11	-	-	-
Sulphate	5 ug/g dry	<5	-	-	-

APPENDIX 2

FIGURE 1 - KEY PLAN

DRAWING PG5348-1 - TEST HOLE LOCATION PLAN

DRAWING PG5348-2 - PERMISSIBLE GRADE RAISE PLAN

DRAWING PG5348-3 - TREE PLANTING SETBACK RECOMMENDATIONS

FIGURE 1

KEY PLAN

patersongroup

utocad drawings\geotechnical\pg53xx\pg5348\pg5348-1-thlp (rev.(

autocad drawings\geotechnical\pg53xx\pg5348\pg5348-1-thlp (rev.04).