

2946 Baseline Road

TIA Strategy Report

Prepared for:
Brigil
98 Rue Lois
Gatineau, QC J8Y 3R7

Prepared by:

Parsons

1223 Michael Street North, Suite 100 Ottawa, ON K1J 7T2

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below.

CERTIFICATION

- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- 3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- 4. I am either a licensed¹ or registered² professional in good standing, whose field of expertise [check $\sqrt{\text{appropriate field(s)}}$ is either transportation engineering $\sqrt{}$ or transportation planning \square .

1,2 License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

Dated at	Ottawa	this	30	day of May, 2023.	
(Ci	ty)				
Name:	Austin	n Shih, M.		P.Eng se Print)	
Professional Title:	Ser	nior Transı		on Engineer	
		Har	LJ	?L	
Signat	ture of Individu	al certifie	r that e	he meets the above four	criteria

Office Contact Information (Please Print)
Address:
1223 Michael Street North, Suite 100
City / Postal Code:
Ottawa, Ontario, K1J 7T2
Telephone / Extension:
613-691-1569
E-Mail Address:
austin.shih@parsons.com

Document Control Page

CLIENT:	Brigil		
PROJECT NAME:	2946 Baseline Road		
REPORT TITLE:	TIA Step 4 Strategy Report		
PARSONS PROJECT NO:	477915 - 01000		
VERSION:			
DIGITAL MASTER:	DRAFT H:\ISO\477915\1000\DOCS\Phase 4-6 TIA for SPA\Step 4 Strategy Report\Strategy Report - 2946 Baseline Phase 4-6 TIA Site Plan Application-as.docx		
ORIGINATOR	Juan Lavin, P. Eng.		
REVIEWER:	Austin Shih, M.A.Sc., P.Eng.		
AUTHORIZATION:			
CIRCULATION LIST:	Mike Giampa, P.Eng.		
	1. TIA Step 1 Screening Form – April 26, 2023		
	2. TIA Step 2 Scoping Report – April 26, 2023		
HISTORY:	3. TIA Step 3 Forecasting Report – May 16, 2023		
	4. TIA Step 4 Strategy Report - May 30, 2023		

TABLE OF CONTENTS

DOCUME	INT CONTROL PAGE	l
1. SCRE	ENING FORM	1
2. SCOP	ING REPORT	1
2.1.	EXISTING AND PLANNED CONDITIONS	1
2.1.1.	PROPOSED DEVELOPMENT	1
2.1.2.	EXISTING CONDITIONS	
2.1.3.	PLANNED CONDITIONS	9
2.2.	STUDY AREA AND TIME PERIODS	11
2.3.	EXEMPTION REVIEW	
3. FORE	CASTING REPORT	
3.1.	DEVELOPMENT-GENERATED TRAVEL DEMAND	12
3.1.1.	TRIP GENERATION AND MODE SHARES	12
3.1.2.	TOD MODE SHARES FOR RESIDENTIAL	15
3.1.3.	TRIP DISTRIBUTION	
3.1.4.	TRIP ASSIGNMENT	16
3.2.	BACKGROUND NETWORK TRAVEL DEMANDS	17
3.2.1.	TRANSPORTATION NETWORK PLANS	17
3.2.2.	BACKGROUND GROWTH	17
3.2.3.	OTHER DEVELOPMENTS	17
3.3.	DEMAND RATIONALIZATION	18
4. STRA	TEGY REPORT	19
4.1.	DEVELOPMENT DESIGN	19
4.1.1.	DESIGN FOR SUSTAINABLE MODES	19
4.1.2.	CIRCULATION AND ACCESS	20
4.1.3.	NEW STREETS NETWORK	21
4.2.	PARKING	21
4.2.1.	PARKING SUPPLY	21
4.2.2.	SPILLOVER PARKING	22
4.3.	BOUNDARY STREET DESIGN	23
4.3.1.	EXISTING AND FUTURE CONDITIONS	23
4.4.	ACCESS INTERSECTION DESIGN	24
4.4.1.	LOCATION AND DESIGN OF ACCESS	24
4.4.2.	INTERSECTION CONTROL	
4.4.3.	INTERSECTION DESIGN	
4.5.	TRANSPORTATION DEMAND MANAGEMENT	25
4.5.1.	CONTEXT FOR TDM	25
4.5.2.	NEED AND OPPORTUNITY	25
4.5.3.	TDM PROGRAM	25
4.6.	NEIGHBORHOOD TRAFFIC MANAGEMENT	
4.6.1.	ADJACENT NEIGHBORHOODS	26
4.7.	TRANSIT	26
4.7.1.	ROUTE CAPACITY	26
4.7.2.	TRANSIT PRIORITY	27

4.8.	REVIEW OF NETWORK CONCEPT	27
4.9.	INTERSECTION DESIGN	27
4.9.1.	INTERSECTION CONTROL	27
4.9.2.	INTERSECTION DESIGN	
_	DINGS AND RECOMMENDATIONS	
J. TIND	NINGS AND INECOMMENDATIONS	52
LIST (OF FIGURES	
FIGURE	1: LOCAL CONTEXT	1
FIGURE	2: PROPOSED SITE PLAN	3
FIGURE	3: EXISTING DRIVEWAYS ADJACENT TO DEVELOPMENT	6
	4: AREA TRANSIT NETWORK	
	5: NEARBY TRANSIT STOPS	
	6: EXISTING PEAK HOUR TRAFFIC VOLUMES	
	7: EXISTING PEAK HOUR PEDESTRIAN/CYCLING VOLUMES	
	8: BASELINE BRT PROJECT LIMITS AND FUTURE STATIONS	
	9: EXISTING AND FUTURE 'ULTIMATE CYCLING NETWORK"	
	10: OTHER AREA DEVELOPMENTS	
	11: STUDY AREA BOUNDARIES AND INTERSECTIONS	
	12: ESTIMATED EXISTING SITE VEHICLE TRAFFIC TO BE REMOVED	
	13: SITE GENERATED TRAFFIC PERCENT DISTRIBUTION	
	14: 'NEW' SITE-GENERATED TRAFFIC	
	15: OTHER AREA DEVELOPMENT BACKGROUND VOLUMES	
	16: LANDSCAPING PLAN AND PROPOSED PEDESTRIAN FACILITIES	
	17: INTERNAL DRIVEWAY CIRCULATION AND PARKING GARAGE ACCESS LOCATIONS	
	18: 2035 BACKGROUND PROJECTED VOLUMES	
	19: 2030 TOTAL PROJECTED VOLUMES	
FIGURE	20: 2035 TOTAL PROJECTED VOLUMES	31
LIST (OF TABLES	
TABLE 1	L: PROPOSED SITE STATISTICS	2
	2: EXEMPTIONS REVIEW SUMMARY	
TABLE 3	3: 2020 TRANS RESIDENTIAL TRIP GENERATION RATES & ITE COMMERCIAL RATES	12
	1: PROJECTED RESIDENTIAL PEAK PERIOD PERSON TRIP GENERATION – TRANS MODEL 2020	
TABLE 5	5: RESIDENTIAL PEAK PERIOD TRIPS USING TRANS 2020 MODE SHARES	13
TABLE 6	S: PEAK PERIOD TO PEAK HOUR CONVERSION FACTOR (2020 TRANS MANUAL)	13
TABLE 7	7: RESIDENTIAL PEAK HOUR TRIPS GENERATED USING TRANS 2020 MODE SHARES	13
TABLE 8	3: TRANS 2020 AND PROPOSED MODE SHARES FOR BAYSHORE/CEDARVIEW COMMERCIAL	14
	S: STRIP RETAIL PLAZA PEAK HOUR TRIPS GENERATED BY MODE	
	LO: TRANS 2020 MODE SHARES RESIDENTIAL PEAK HOUR TRIPS WITH INTERNAL REDUCTION	
	L1: COMBINED RESIDENTIAL AND NON-RESIDENTIAL TRIPS GENERATED	
	L2: SANDCASTLE/BASELINE HISTORICAL BACKGROUND GROWTH (2010-2017)	
	L3: EXISTING INTERSECTION PERFORMANCE	
	L4: PROPOSED VEHICLE PARKING SPACE SUPPLY	
	L5: BICYCLE PARKING REQUIREMENTS	
	L6: MMLOS - BOUNDARY STREET SEGMENT EXISTING	
	L7: PROJECTED NUMBER OF UNITS ABOVE EXISTING ZONING	
	L8: MMLOS - EXISTING AND FUTURE ADJACENT SIGNALIZED INTERSECTIONS	
TABLE 1	L9: 2035 BACKGROUND INTERSECTION PERFORMANCE	29

TABLE 21: 2035 FULL BUILD-OUT INTERSECTION PERFORMANCE	31
LIST OF APPENDICES	
APPENDIX A – SCREENING FORM	
APPENDIX B – TRAFFIC COUNT DATA	
APPENDIX C – COLLISION DATA	
APPENDIX D - INTERNAL TRIP REDUCTION CALCULATIONS	
APPENDIX E - PROJECTED BACKGROUND GROWTH	
APPENDIX F - SYNCHRO ANALYSIS: EXISTING CONDITIONS	
APPENDIX G - TRUCK TURNING TEMPLATES	
APPENDIX H - MMLOS ANALYSIS: ROAD SEGMENTS	
APPENDIX I – TDM CHECKLIST	

APPENDIX J - REVIEW OF NETWORK CONCEPT CALCULATIONS

APPENDIX K - MMLOS ANALYSIS: INTERSECTIONS

APPENDIX L - SYNCHRO ANALYSIS: BACKGROUND CONDITIONS

APPENDIX M - SYNCHRO ANALYSIS: FUTURE CONDITIONS

TIA Strategy Report

Parsons has been retained by Brigil to prepare a Transportation Impact Assessment (TIA) in support of a Zoning By-Law Amendment (ZBLA) and a Site Plan Application (SPA) for a residential development located at 2946 Baseline Road in Bayshore/Cedarview district. This report represents Phase 4-6 of the development by Brigil. Phase 1 has already been built and Phases 2-3 have been captured in previous studies supporting Phases 1-3. This document follows the new TIA process, as outlined in the City Transportation Impact Assessment (TIA) Guidelines (2017). The following report represents Step 4 – Strategy Report.

1. Screening Form

The screening form confirmed the need for a TIA Report based on the Trip Generation trigger, given that the proposed development's Phase 4-6 consists of three mixed-use buildings with approximately 700 residential apartment units and 16,329 ft² of commercial space; the Location trigger, given that the development is located within a transit priority corridor and spine cycling route; and Safety trigger given that the proposed driveway is within the influence of an adjacent traffic signal at Sandcastle/Baseline. The Screening Form and responses to City of Ottawa comments have been provided in **Appendix A**.

2. Scoping Report

2.1. Existing and Planned Conditions

2.1.1. PROPOSED DEVELOPMENT

The subject site is located at the municipal addresses of 2946 Baseline Road on the southeast corner of the Sandcastle/Baseline intersection. Phases 1-3 are located on adjacent lot at 2940 Baseline Road, which have already been approved under a separate development application. The original 2940 Baseline Road Community Transportation Study by Delcan was submitted on October 21, 2011 and supported by an updated Memo TIA by Parsons submitted to the City on June 16, 2021.

The existing site has a small shopping plaza and surface parking which will be redeveloped to a high-density residential mixed used site. The proposed study area includes the intersections of Cedarview/Baseline, Valley Stream/Baseline, Sandcastle/Baseline, Monterey/Baseline, Morrison/Baseline, and roadway segments adjacent to site or between intersections as shown in **Figure 1**. More details regarding the study area can be found in **Section 2.1.2**.

Figure 1: Local Context

The property is currently zoned as GM[2138] S(325-h) which allows general mixed-use. Under this zoning's specific exceptions, Tower 6 is capped at 13-storeys, Tower 5 at 16-storeys and Tower 4 at 10-storeys, which triggers the re-zoning application to allow a higher maximum building height forecasted at 32-, 29- and 9-storeys respectively.

Brigil is proposing to advance with Phases 4, 5 and 6 of their development, which include three additional towers as summarized in **Table 1**.

Phase of Development	Number of Storeys	Number of Units	Proposed Commercial Space (ft²)	Proposed Number of Parking
P1 - Constructed	13	162	9,500	172
P2 - Approved	16	177	-	280
P3 - Approved	10	106	-	160
P4	9	104	4,908	214
P5	28	281	1,249	113
P6	32	315	10,172	99
	Total Phase 4-6	700	16,329	426
Tota	I Combined Phases	1,145	25,829	1,038

Table 1: Proposed Site Statistics

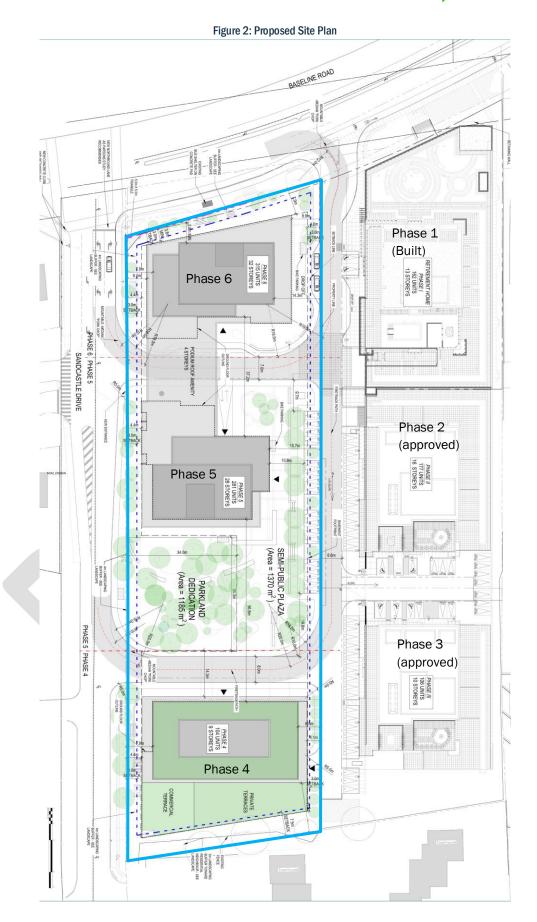
Full buildout of the site is estimated by 2030. Once complete, the full buildout of the site will make use of three accesses into the site: a right-in right-out (RIRO) to Baseline Road that has already been built and is located approximately 70m east of Sandcastle Drive; a full movement access located approximately 40m south of Baseline Road; and a second full movement access located approximately 135m south of Baseline Road. The latest site plan concept is shown in **Figure 2**.

2.1.2. EXISTING CONDITIONS

Area Road Network

Baseline Road is a major east-west arterial road, which extends from Richmond Road in the west to Prince of Wales Drive in the east where it continues as Heron Road. Within the study area, Baseline Road has a four-lane cross section with auxiliary turn lanes at major intersections and a posted speed limit of 70 km/h.

Cedarview Road is a north-south arterial road, which extends from the City's Barrhaven community in the south to the Queensway Carleton Hospital on Baseline Road. Within the study area, Cedarview Road has a two-lane cross section with auxiliary turn lanes at major intersections and a posted speed limit of 60 km/h.


Valley Stream Drive is a local road that serves the residential community directly south of the site. It extends from the Queensway Carleton Hospital's south driveway connection to Gladecrest Court. Valley Stream Drive has an approximate three-lane cross section with on street parking permitted on the south side only and auxiliary turn lanes at major intersections. The posted speed limit within the study area is 40 km/h.

Sandcastle Drive is a collector road, which extends from Baseline Road south to Valley Stream Drive. Sandcastle Drive has an approximate three-lane cross section with on street parking permitted on the east side only and auxiliary turn lanes at major intersections. The posted speed on Sandcastle Drive is 40 km/h.

Monterey Drive is a collector road, which extends from Baseline Road east to Greenbank Road. Monterey Drive has an approximate three-lane cross section with on street parking permitted on the north side only and auxiliary turn lanes at major intersections. The posted speed limit within the study area is 40 km/h.

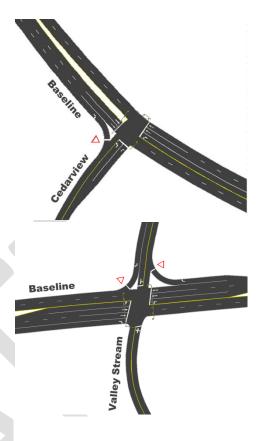
Morrison Drive is a collector road, which extends from Baseline Road north to Greenbank Road. Morrison Drive has an approximate three-lane cross section with on street parking permitted on the west side only and auxiliary turn lanes at major intersections. The unposted speed on Morrison Drive is 50 km/h.

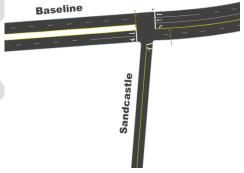
Existing Study Area Intersections

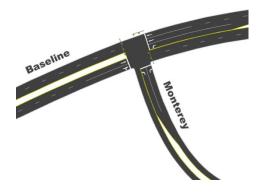
Cedarview/Baseline

The Cedarview/Baseline intersection is a signalized, 'T' intersection. The eastbound approach consists of a single right-turn lane and two through lanes. The westbound approach consists of a single left-turn lane and two through lanes. The northbound approach consists of a single all-movement lane, but is wide enough and operates as single left and right-turn lanes. All turning movements are permitted.

Valley Stream/Baseline

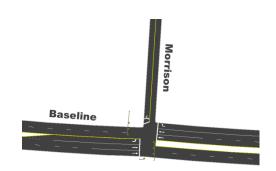

The Valley Stream/Baseline intersection is a signalized four-legged intersection. The westbound approach consists of single left and right-turn lanes with two through lanes. The eastbound approach consists of single left and right-turn lanes with two through lanes. The northbound approach consists of a single all-movement lane. The southbound approach consists of a single right-turn lane and a shared through/left-turn lane. All turning movements are permitted.


Sandcastle/Baseline


The Sandcastle/Baseline intersection is a signalized, 'T' intersection. The eastbound approach consists of a single through lane and a shared through/right-turn lane. The westbound approach consists of a single left-turn lane and two through lanes. The northbound approach consists of a single all-movement lane. All turning movements are permitted, except for U-turns on Baseline.

Monterey/Baseline

The Monterey/Baseline intersection is a signalized, 'T' intersection. The eastbound approach consists of a single through lane and a shared through/right-turn lane. The westbound approach consists of a single left-turn lane and two through lanes. The northbound approach consists of single right and left-turn lanes. All turning movements are permitted, except for U-turns on Baseline.



Morrison/Baseline

The Morrison/Baseline intersection is a signalized, 'T' intersection. The eastbound approach consists of a single left-turn lane and two through lanes. The westbound approach consists of a single right-turn lane and two through lanes. The southbound approach consists of a single all-movement lane. All turning movements are permitted, including U-turns.

Existing Driveways to Adjacent Developments

The existing driveways on adjacent roads to the development and within influence as shown in Figure 3 include:

- Access Driveways to Sandcastle Drive:
 - 2946 Baseline Road: there is an existing access to the proposed site approximately 25 meters south of Baseline Road. This access will be removed and replaced by two new accesses proposed on Sandcastle Drive.
 - 80 Sandcastle: there are two accesses to a parking garage for the 12-storey Carleton Condominium Corporation 336. These accesses are located approximately 155 and 220 meters south of Baseline Road.
 - 142 Valley Stream: a driveway to 10 surface lots and two driveways is located approximately
 215 meters south of Baseline Road.
 - 142 Valley Stream: there are 2 private driveways directly to Sandcastle Drive to duplex homes
 (4 units) approximately 235 and 250 meters south of Baseline Road.
- Access Driveways to Baseline Road:
 - 2944 Baseline: there is an existing access to the proposed site servicing the newly built Phase
 1 of the development. This driveway will remain in the future and is located approximately 70 meters east of Sandcastle Drive.
 - 2930 Baseline: driveway access to the office towers east of the proposed development. The access is located approximately 130 meters east of Sandcastle Drive.
- Access Driveways to Brookhaven Court (located across the street to the proposed site, off Sandcastle Drive):
 - 12 private driveways to single detached homes

Baseline

Nonterep

Seed and S

Figure 3: Existing Driveways Adjacent to Development

Existing Area Traffic Management Measures

Below are the existing area traffic management measures within the study area:

- Sidewalk facilities on all intersection approaches and on various road segments (further details in following section);
- On-street parking on Valley Stream Drive, Sandcastle Drive, Monterey Drive and Morrison Drive;
- 40km/h posted speed on Valley Stream Drive, Sandcastle Drive, and Monterey Drive;
- No U-turns allowed at various intersections;
- Centerline delineators on Monterey Drive.

Pedestrian/Cycling Network

Pedestrian sidewalk facilities are provided on both sides of Baseline Road (some parts as pathways). Valley Stream Drive has a sidewalk on the north side of the road, Sandcastle Drive on the west side of the road, Monterey Drive on the north side of the road, and Morrison Drive on the west side of the road. Cedarview Road has a multi-use pathway facility (MUP) on the east side of the roadway which connects to MUP facilities on the west side of Queensway Carleton Hospital. These MUP facilities are interconnected by pathways all the way up to the Trans-Canada Trail (Watts Creek Pathway) which provides connection to the Ottawa River Pathway.

Baselline Road is classified as a spine bike route, while Valley Stream Drive and nearby Beaumaris Drive are suggested routes.

Transit Network

The transit network for the study area is illustrated in **Figure 4** with nearby transit stops shows in **Figure 5**. The following OC Transpo routes currently operating within 600m walking distance to the site include:

Route #57 (Tunney's Pasture <-> N Rideau): identified by OC Transpo as a "Rapid Route", this route operates in all time periods, 7 days a week with high frequency. Route #57 provides quick connection from the Confederation LRT Line at Tunney's Pasture and provides connection to Bayshore Shopping Center, Moodie Station and Carling Campus. Bus stops for this route are available on both sides of Baseline Road, approximately 550 to 600 meters from the site.

- Route #88 (Hurdman <-> Terry Fox): identified by OC Transpo as a "Frequent Route", this route operates
 at a frequency of every 15 minutes or less on weekdays and operates 7 days a week. Route #88
 provides quick connection from the Confederation LRT Line at Hurdman Station, Trillium LRT Line at
 Mooney's Bay Station and provides connection to Baseline (Algonquin College) and Terry Fox. Bus stops
 for this route are available on both sides of Baseline Road, adjacent to the site.
- Route #283 (Tunney's Pasture <-> Richmond): identified by OC Transpo as a "Connexion Route", this route operates on weekday peak periods only and provides connection to rapid transit. Route #283 operates on a custom schedule. This route operates on Cedarview Drive, but there are no stops within 600-meter walk from the site.
- Route #58 (Crystal Bay <-> Lincoln Fields): identified by OC Transpo as a "Local Route", this route
 operates on customized routing and schedules, to serve local destinations with connection to the BRT
 Transitway at Lincoln Fields (future LRT), Bayshore Shopping Center and Carling Campus. Route #58
 operates at an average rate of every 30 minutes during weekdays. Bus stops for this route are available
 on both sides of Baseline Road, adjacent to the site.

Figure 4: Area Transit Network 66 Bayshor Pinecrest 155 Queensway 58 н Draper St. Paul SITE 0 Baseline C 0 0 82 Figure 5: Nearby Transit Stops Body 'N' Blood 8 8 Morrison Hershfield 0 apdd O 0 0 Valleystream East Park 0 Arch-Nova Design Inc 0 Oner Rd 0

Peak Hour Travel Demands

The existing peak hour traffic vehicle and active travel volumes within the study area, as illustrated in **Figure 6** and **Figure 7** respectively, were obtained from the City of Ottawa. The peak hour traffic volume count data has been provided in **Appendix B**.

Note that the Sancastle/North Access peak hour traffic volumes were taken from the 2940 Baseline TIS (Delcan, 2014). Although the count is dated, the existing site has not changed since that time. Therefore, the site access count was still considered valid.

Toler (197) PM Peak Hour Volumes (197) PM Peak

Figure 6: Existing Peak Hour Traffic Volumes

No counts were available for Baseline/RIRO. Phase 1-3 forecasted volumes will be layered on to background conditions.

AM volumes were balanced.

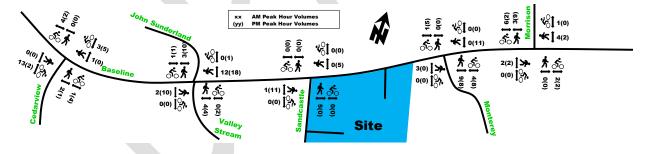


Figure 7: Existing Peak Hour Pedestrian/Cycling Volumes

Existing Road Safety Conditions

A five-year collision history data (2017-2021, inclusive) was requested and obtained from the City of Ottawa for all intersections and road segments within the study area. Upon analyzing the collision data, the total number of collisions observed within the study area was determined to be 68 collisions within the past five-years, with 79% causing property damage only and 21% causing non-fatal injuries. There were no fatal injuries recorded. Within the study area, the quantity of collisions, collisions per million entering vehicles (MEV) and/or distance of midblock at each location has occurred at a rate of:

- Cedarview/Baseline: 15, MEV 0.29
- Valley Stream/Baseline: 13, MEV 0.30
- Sandcastle/Baseline: 9, MEV 0.21
- Monterey/Baseline: 9, MEV 0.25
- Morrison/Baseline: 11, MEV 0.27
- Mid-block west of Cedarview: 3 (350m)
- Mid-block Cedarview to Sandcastle: 4 (750m)
- Mid-block Sandcastle to Morrison: 4 (580m)
- Collisions with Pedestrians: 0
- Collisions with Cyclists: 1 (1%)

The collision involving a cyclist occurred at the intersection of Cedarview/Baseline, which has since received a 36 second fully time separated phase for cyclists and pedestrians crossing Baseline Road from the MUP on Cedarview Road the active transportation facilities north of Baseline Road.

Valley Stream/Baseline and Sandcastle/Baseline both had more than 30% of collisions (but less than 40%) producing non-fatal injuries. The injuries are likely caused from the higher operating speed on Baseline Road, posted at 70km/h. Although some collisions did cause injury, overall, they were infrequent, and the overall likeliness of collision is low due to low MEVs compared to other major intersections along busy arterial roads around the city.

Detailed collision analysis has been provided in **Appendix C**.

2.1.3. PLANNED CONDITIONS

Planned Study Area Transportation Network Changes

Baseline BRT Corridor

The City of Ottawa has completed an EA and are currently preparing the detailed design for a future bus rapid transit (BRT) corridor on Baseline Road. The proposed works is expected to include median bus lanes from Bayshore Shopping Center and future LRT Station via Richmond Road and Baseline Road to Heron BRT Station as shown in **Figure 8.** The BRT corridor will cross the Confederation LRT Line twice, at Bayshore Shopping Center and at Baseline Station near Woodroffe Avenue. It will also connect to the Trillium LRT Line at Mooney's Bay Station near Confederation Heights.

Buses are anticipated to run every 5-6 minutes in the AM peak hour and every 7-8 minutes in the PM peak hour, with over 10,000 ridership per day forecasted. Time savings of up to 11 minutes along the corridor are expected. In addition to transit improvements, the Baseline BRT corridor will enhance active transportation by adding 22.8kms of new concrete sidewalks, 3.5kms of multi-use pathways (MUPs), 22.1kms of separated cycle tracks and 1.3kms of buffered shoulder lanes.

The full buildout of this transit priority corridor is estimated to be constructed between 2030 to 2035 timeframe based on current estimates from the City.

For the purpose of this analysis, existing conditions were assumed for year 2030 and the future transit priority design was expected to be constructed by the 2035 horizon year. The 2035 horizon year will include protected left-turns only on Baseline Road and transit priority measures where applicable.

Figure 8: Baseline BRT Project Limits and Future Stations

Note that the Confederation LRT Station has been renamed Mooney's Bay Station

Cycling Network

Within the Ottawa Ultimate Cycling Network, Valley Stream Drive and Beaumaris Drive are suggested local routes. Baseline Road will remain a spine route and Cedarview Road will be upgrade to spine route classification. Nearby Richmond Road is also classified a spine route. **Figure 9** depicts the existing and future network.

¹ https://documents.ottawa.ca/sites/documents/files/baseline brtboards final en.pdf. Date Accessed: May 29, 2023.

As previously discussed, the Baseline BRT project includes the addition of multi-use pathways, cycle tracks, and intersection modifications to support cyclists. Within the study area, the Baseline BRT project proposes new unidirectional cycle tracks and parallel sidewalk facilities on both sides of the road.

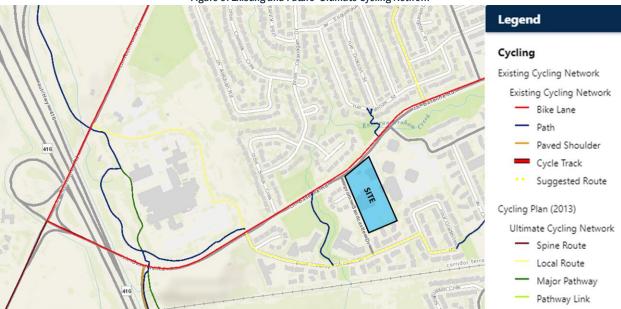


Figure 9: Existing and Future 'Ultimate Cycling Network"

Other Area Developments

The following section outlines adjacent developments in the general area that were considered in the TIA. The criteria for inclusion of other area developments are either approved developments or developments that have an active planning application that are generally within a 1-km radius of the subject site. **Figure 10** illustrates the location and relative size of relevant other area developments.

Figure 10: Other Area Developments

1 - 2940 Baseline Road

Phases 1 to 3 of this greater development have been captured within their own TIA. The proposed development includes three towers 10 to 16-storeys with 445-unit residential units and 9,500 ft² of commercial space. The latest TIA memorandum by Parsons projects 95 to 100 two-way trips in the AM and PM peaks respectively. These volumes will be layered on to future background conditions.

2 - 2785 Baseline Road

The site envisions a mixture of residential, commercial and medical land uses. The latest ZBLA according to the City's Development Application tool proposes 66 units in Building D, 80 units in Building E, 81 units and medical uses in Building F, which is an increase of approximately 31 units from the original proposal. A TIA from Castleglenn date June 18th, 2019 was found. It appears from Google Maps that the majority of the development has already been built. No further TIA's were found. For the purpose of this TIA, the projected volumes from the Castleglenn TIA will be layered on to future background conditions.

3 - 1300 McWaters Road

Proposed 25-storey 235-unit residential development. The TIA by GHD Limited projects 36 two-way trips in the AM peak and 37 two-way trips in the PM peak. Although this development is located further than 1km away, for completeness, trips forecasted on Baseline Road will be layered on to future background conditions.

2.2. Study Area and Time Periods

Full buildout of the proposed residential development is envisioned by 2030. As such, the horizon years being analyzed in this report are the 2030 and 2035 (five years after full buildout) horizon years, using the weekday morning and afternoon peak hour time periods.

Proposed study area intersections and boundary roads are outlined below and highlighted in Figure 11.

- Cedarview/Baseline intersection;
- Valley Stream/Baseline intersection:
- Sandcastle/Baseline intersection;
- Monterey/Baseline intersection;
- Morrison/Baseline intersection; and,
- Along Baseline Road and Sandcastle Drive adjacent to the site.

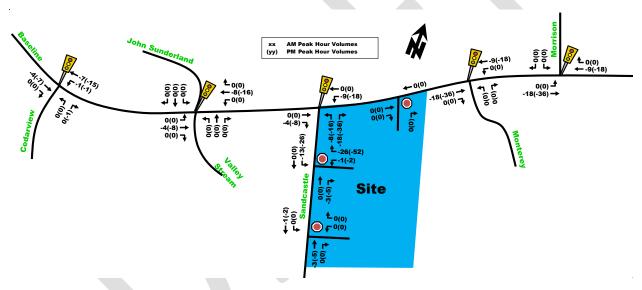
Figure 11: Study Area Boundaries and Intersections

2.3. Exemption Review

The following modules/elements of the TIA process recommended to be exempt in the subsequent steps of the TIA process, based on the City's TIA guidelines and the subject site:

Table 2: Exemptions Review Summary

Module	Element	Exemption Consideration	
4.1 Development Design	4.1.3 New Streets	Only required for plans of subdivision	
4.1 Development Design	Networks	Only required for plans of subdivision	
4.2 Parking	4.2.2 Spillover	Development anticipated to provide sufficient parking. This will be verified	
4.2 Faikilig	Parking	in Section 4.2.	


3. Forecasting Report

3.1. Development-Generated Travel Demand

3.1.1. TRIP GENERATION AND MODE SHARES

The existing site consists of a small shopping plaza which contains tenants such as Dollarama, Bar and Bistro, Edward Jones Bank, Appletree Medical Center, a small pharmacy, and a physiotherapy treatment center. As previously noted, the small shopping plaza was served by a single access which was counted in 2014 as part of the 2940 Baseline TIS Report (Delcan, December 2014). The existing traffic volumes from the single access were removed from the adjacent road network in future analysis scenarios. The net number of vehicles to be removed from the network and eventually be replaced by new site generated trips are illustrated in **Figure 12**.

Figure 12: Estimated Existing Site Vehicle Traffic to be Removed

The new right-in right-out (RIRO) access off Baseline Road now provides additional connectivity to this shopping plaza, which was captured in the Ph1-3 TIA and subsequent TIA Memo Phase 1-3 (Parsons, June 2021). Therefore, trips generated by Phase 1-3 were separately incorporated into the future analysis.

Trip generation rates for proposed residential units, consisting of approximately 700 high-rise apartment units within three towers, were based on the city's 2020 TRANS Trip Generation Manual. The trip generation rates for proposed commercial uses were based on the ITE's Trip Generation Manual 11th Edition. These trip generation rates have been summarized in **Table 3**.

Table 3: 2020 TRANS Residential Trip Generation Rates & ITE Commercial Rates

Land Use	Data Source	Units or Size	Trip Rates		
Lallu Ose	Data Soulce	Ullis of Size	AM Peak	PM Peak	
High Rise Apartments	TRANS 2020	700 units	T = 0.80(du)	T = 0.90(du)	
Strip Retail Plaza (<40K ft²)	ITE 822	16,329 ft ²	T = 0.66Ln(x) + 1.84	T = 0.71Ln(x) + 2.72	
Note: $T = Average Vehicle Trip Ends$; $du = dwelling units$; $x = GFA in 1,000 ft^2$					

Using the TRANS Trip Generation rates, the total amount of person trips generated by the proposed 690 residential units was calculated. The results are summarized in **Table 4**.

Table 4: Projected Residential Peak Period Person Trip Generation - TRANS Model 2020

Land Use	Dwelling Units	AM Peak Period Person Trips	PM Peak Period Person Trips
Three Residential Towers	700	560	630

The projected site peak period person trips were then divided based on the mode shares for Bayshore/Cedarview according to TRANS 2020 table 5, as summarized in **Table 5**.

Table 5: Residential Peak Period Trips using TRANS 2020 Mode Shares

Travel Mode	AM Pea	ık Period	PM Peak Period		
Travel Mode	Mode Share	Person Trip	Mode Share	Person Trips	
Auto Driver	40%	222	40%	252	
Auto Passenger	12%	69	15%	94	
Transit	38%	215	33%	205	
Cycling	2%	9	1%	7	
Walking	8%	45	11%	72	
Total Person Trips	100%	560	100%	630	

Standard traffic analysis is usually conducted using the morning and afternoon peak hour trips as they represent a worst-case scenario. The 2020 TRANS Manual uses peak periods which can exceed the peak hours. Table 4 within the 2020 TRANS Manual includes factors for converting peak periods into peak hour traffic volumes as seen in **Table 6**. Note that conversion factors for passenger trips are assumed to be the same as auto driver.

Table 6: Peak Period to Peak Hour Conversion Factor (2020 TRANS Manual)

Travel Mode	Peak Period to Peak Hour Conversion Factors			
Traver woue	AM	PM		
Auto Driver	0.48	0.44		
Passenger	0.48	0.44		
Transit	0.55	0.47		
Bike	0.58	0.48		
Walk	0.58	0.52		

Using the peak period to peak hour conversion rates from **Table 6**, the derived peak period trips by mode shares from **Table 5**, and the inbound and outbound splits from table 9 within the TRANS 2020 Manual, then the residential peak hour trips generated by the site for TRANS 2020 Bayshore/Cedarview mode share can be calculated, as seen summarized in **Table 7**.

Table 7: Residential Peak Hour Trips Generated using TRANS 2020 Mode Shares

Travel Mode	Mode	AM Peak Hour (Trips/h)			Mode	PM Peak Hour (Trips/h)		
Havel Mode	Share	In	Out	Total	Share	In	Out	Total
Auto Driver	40%	33	74	107	40%	64	47	111
Auto Passenger	12%	10	23	33	15%	24	17	41
Transit	38%	37	82	118	33%	56	40	96
Cycling	2%	2	3	5	1%	2	1	3
Walking	8%	8	18	26	11%	22	16	37
Total Person Trips	100%	90	200	289	100%	168	122	289
Total 'New' Residential A	uto Trips	33	74	107	-	64	47	111

The commercial elements of the proposed development are intended primarily to serve local people and nearby high-density developments such as office uses to the east, Carleton Condominiums, Revera Residence, and the Sophia Residence to the south, and nearby communities.

Given the mixture of land uses proposed onsite, an internal reduction rate was applied based on mixed-use parameters described in Section 6.5 of the ITE Trip Generation Manual 3rd Edition, to account for multi-purpose

trips such as a local resident shopping prior to travelling to work within the towers. These trips may be reduced to reflect double counted trips, which has been incorporated in the trip generation tables that follow. The base calculation for determining the quantity of internal reductions has been provided in **Appendix D**.

Pass-by trips were also considered for commercial uses. Pass-by trips are intermediate trips along the original route between the primary origin and destination, such as a trip to retail within this site between an origin and destination trip that is not within this site. These are not considered 'new' trips, but existing trips already on the network. Appendix E of the ITE Trip Generation Manual 3rd edition was used to determine pass-by rates. Pass-by trips were calculated after the internal reduction factor was applied.

The trip generation rates for commercial land uses from **Table 3** were used along with the proposed sizes for each commercial land use. The mode shares for the non-residential aspect of the site were justified based on the site context, location and with guidance from the TRANS 2020 mode share projections for Bayshore/Cedarview. The proposed non-residential mode shares are summarized in **Table 8**.

TRANS Proposed Commercial Mode Travel Mode **Share Proposed Modal Share Rationale** Mode **Shares** (AM & AM **PM** PM) Auto 64% 62% 50% A reduction in driver mode share from TRANS is justifiable given the close Driver proximity to nearby frequent transit and nearby high-density residential Auto 15% 20% 15% uses, commercial and offices (promoting walking). Passenger Transit anticipated to be higher than the ward based on proximity to 4% 6% 18% Transit frequent transit and being located adjacent to future Baseline BRT corridor. Cycling 0% 1% 2% The majority of trips are anticipated to be generated locally and will most likely attract nearby pedestrians, cyclists or even residents of the same 17% 11% 15% Walking development.

Table 8: TRANS 2020 and Proposed Mode Shares for Bayshore/Cedarview Commercial

The new strip retail plaza trips generated are shown in Table 9.

Table 9: Strip Retail Plaza Peak Hour Trips Generated by Mode

Travel Mode	Mode Share	AM I	Peak Hour (Trip	s/hr)	PM Peak Hour (Trips/hr)			
	Mode Share	In	Out	Total	In	Out	Total	
Auto Driver		14	10	24	31	27	58	
Pre-Internal Reduction	50%	15	11	26	35	36	71	
Vehicles Reduced		-1	-1	-2	-4	-9	-13	
Auto Passenger	15%	5	4	9	11	11	22	
Transit	18%	5	3	8	13	12	25	
Cycling	2%	1	0	1	1	1	3	
Walking	15%	4	3	7	10	11	20	
Total Person Trips	100%	29	20	49	66	62	128	
Less Pass-by 0% AM (35% PM)		0	0	0	-11	-11	-22	
Total 'New' Strip Ro	etail Plaza Auto Trips	14	10	24	20	16	36	

Additionally, an internal reduction to residential trips is applicable, as shown in **Table 10**.

Table 10: TRANS 2020 Mode Shares Residential Peak Hour Trips with Internal Reduction

Travel Mode		AM F	eak Hour (Trips	s/hr)	PM Peak Hour (Trips/hr)		
		In	Out	Total	In	Out	Total
Auto Driver		32	73	105	55	43	98
	Pre-Internal Reduction	33	74	107	64	47	111
	Vehicles Reduced	-1	-1	-2	-9	-4	-13
Auto Passenger, Transit, Cycling, Walking, Total Person Trips all remain the same (refer to Table 7)							
	Total 'New' Residential Auto Trips	32	73	105	55	43	98

Using the total commercial trips generated from **Table 9** and the internally reduced residential trips generated from **Table 10**, the combined trips generated at full buildout using TRANS mode shares for residential and custom mode shares for non-residential can be found on **Table 11**.

Table 11: Combined Residential and Non-Residential Trips Generated

Travel Mode	AM F	Peak Hour (Trips	s/hr)	PM Peak Hour (Trips/hr)			
Traver Mode	In	Out	Total	In	Out	Total	
Auto Driver	46	83	129	86	70	156	
Pre-Internal Reduction	48	85	133	99	83	182	
Vehicles Reduced	-2	-2	-4	-13	-13	-26	
Auto Passenger	15	27	42	35	28	63	
Transit	42	85	126	69	52	121	
Cycling	3	3	6	3	2	6	
Walking	12	21	33	32	27	57	
Total Person Trips	118	219	336	225	180	404	
Less Pass-by AM (PM)	0	0	0	-11	-11	-22	
Total 'New' Shopping Auto Trips	46	83	129	75	59	134	

As shown in **Table 11**, based on the 2020 TRANS Trip Generation Manual, the proposed site is projected to generate approximately 130 to 135 new auto-trips per hour during the weekday commuter peak hours if the proposed three towers at 700 units total with ground retail were built.

The increase in two-way transit trips is estimated to be approximately 120 to 125 persons per hour, and the increase in walk/cycling trips is approximately 40 to 65 persons per hour during the peak hours.

3.1.2. TOD MODE SHARES FOR RESIDENTIAL

While it is expected there will be an increase in the development transit mode share with a partial reduction in vehicle mode share upon completion of the Baseline BRT, the TRANS 2020 Trip Generation Manual for Bayshore/Cedarview mode shares were maintained to represent a worst-case scenario. Typical TOD targets were not considered reasonable since the site is not located within 600m walking distance to a major LRT Station.

3.1.3. TRIP DISTRIBUTION

Based on the OD Mode Share Survey, existing traffic volume counts and the location of adjacent arterial roadways and neighborhoods, the distribution of site-generated traffic volumes has been illustrated in **Figure 13**.

Figure 13: Site Generated Traffic Percent Distribution

3.1.4. TRIP ASSIGNMENT

The site, including Phases 1 through 6 will all share three accesses to the surrounding network. The three accesses include a RIRO to Baseline Road approximately 70m east of Sandcastle Drive and two full movement accesses to Sandcastle Drive located approximately 40m and 170m south of Baseline Road. The 'new' sitegenerated vehicle trips provided in Table 11, were assigned to the study area network as shown in Figure 14. Note that negative numbers reflect pass-by trips.

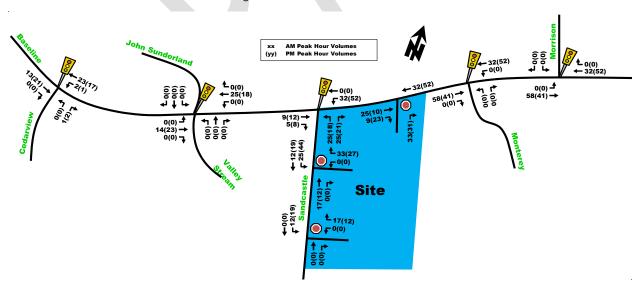


Figure 14: 'New' Site-Generated Traffic

3.2. Background Network Travel Demands

3.2.1. TRANSPORTATION NETWORK PLANS

As mentioned in **Section 2.1.3** Planned Conditions, Baseline Road is designated as a 'transit priority corridor with isolated measures' from Bayshore Shopping Center to Baseline Station within the 2031 Affordable Network.

The City of Ottawa is currently undertaking a study to provide future bus rapid transit (BRT). Though the design is still in its early stages, the study aims at improving transit efficiency and connectivity to LRT while also improving the travel environment for all other modes of transportation such as pedestrians and cyclists. These conditions are anticipated to be in place by the 2035 horizon.

For further detail, refer to **Section 2.1.3**.

3.2.2. BACKGROUND GROWTH

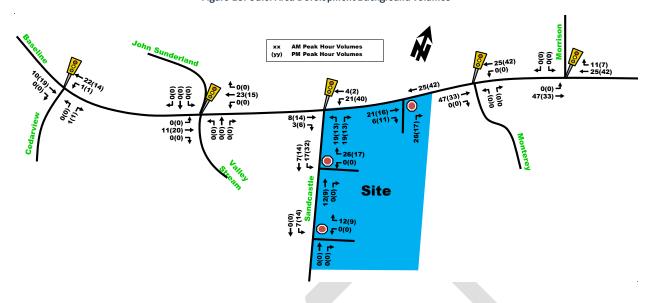
The emphasis in the City's recent Official Plan and current Transportation Master Plan is to place priority on transit, encourage intensification around transit stations, encourage mixed-use developments and provide "complete streets" that better accommodate the active transportation needs of its residents and reduce the use of the private auto. Given the location of the site near frequent bus service within the Baseline Road transit priority corridor, close bus connectivity to the LRT Confederation Line Stage 2 at Baseline Station and future Baseline BRT corridor, the trips generated from this development as well as nearby developments will likely choose alternate modes of transportation over driving as transit infrastructure improves.

The following background traffic growth (summarized in **Table 12**) was calculated based on historical traffic count data (years 2010, 2011, 2012, 2015, and 2017) provided by the City of Ottawa at the Sandcastle/Baseline intersection near the site. Note that the year 2022 was omitted as counts were very low compared to any other year count due to the COVID-19 pandemic. Detailed background traffic growth analysis is included as **Appendix E**.

Time Deviced	Percent Annual Change						
Time Period	South Leg	East Leg	West Leg				
8 hrs	0.27%	0.63%	0.72%				
AM Peak	-1.55%	1.21%	1.08%				
PM Peak	0.00%	0.99%	1.09%				

Table 12: Sandcastle/Baseline Historical Background Growth (2010-2017)

As shown in **Table 12**, the Sandcastle/Baseline intersection, has experienced on average negligible growth on the south leg, but approximately 1% growth for the east and west legs during the AM and PM peak hours.


A growth rate of 1% annually will be added to background growth on east-west through traffic on Baseline Road and on all movements at Cedarview/Baseline intersection to account for future potential growth along the corridor and towards the suburbs. Other area developments will also be manually added.

3.2.3. OTHER DEVELOPMENTS

The volumes from the other area development as mentioned in **Section 2.1.3** were layered onto the existing traffic volumes for the future analysis volumes. **Figure 15** outlines the site generated volumes for other area developments including Phases 1 to 3 of this development (2940 Baseline Road), 1300 McWatters Road and 2785 Baseline Road.

Figure 15: Other Area Development Background Volumes

3.3. Demand Rationalization

The following **Table 13** provides a summary of the existing traffic operations at the study area intersection based on the Synchro (V11) traffic analysis software. The subject intersections were assessed in terms of the volume-to-capacity (v/c) ratio and the corresponding Level of Service (LoS) for the critical movement(s). The Synchro model outputs of existing conditions are provided within **Appendix F** and the volumes used were obtained from **Figure 6**.

Table 13: Existing Intersection Performance

	Weekday AM Peak (PM Peak)									
Intersection		Critical Moveme	ent	Intersection						
intersection	LoS	oS max. v/c or avg. delay (s) Movement		Delay (s)	LoS	v/c				
Cedarview/Baseline	B(B)	0.66(0.61)	NBL(NBL)	13.2(11.4)	A(A)	0.54(0.40)				
Valley Stream/Baseline	A(A)	0.59(0.52)	EBT(SBT)	10.0(10.4)	A(A)	0.56(0.44)				
Sandcastle/Baseline	B(A)	0.64(0.51)	EBT(NBL)	9.1(7.3)	B(A)	0.62(0.45)				
Monterey/Baseline	A(A)	0.59(0.43)	EBT(WBT)	10.5(8.7)	A(A)	0.57(0.42)				
Morrison/Baseline	A(B)	0.54(0.61)	EBT(SBL)	6.8(11.0)	A(A)	0.53(0.52)				
Note: Analysis of signalized inter	rsections a	ssumes a PHF of 0.9	and a saturation flo	w rate of 1800 veh/h,	/lane. U = l	Jnsignalized.				

As seen in **Table 13** all intersections operate overall at very good LoS 'B' or better with critical movements operating at LoS 'B' or better during the existing conditions. The Synchro analysis confirms that the overall network is expected to operate well, with ample capacity remaining.

Although a 1% annual growth rate is proposed for future horizon years based on historical traffic counts, it is anticipated to gradually taper as city wide initiatives aimed at reducing auto-usage take place. Some of the more relevant initiatives for this study area include the Baseline BRT corridor which would provide improved transit connectivity from the site to Baseline Station on Woodroffe Road. Baseline Station, along with nearby Bayshore Station will both become LRT stations as part of the Stage 2 LRT expansion which will add 44kms of new rail and 24 new LRT stations by 2026.

Given the city-wide initiatives to promote alternate modes of transportation, including advancements to the greater transit network such as LRT Stage 2 and the transit network adjacent to the site with the Baseline BRT corridor, coupled with changes to the ways people commute and work from home/hybrid workspace, then the

1% annual growth rate is considered very conservative. There is an argument to be made that a 0% growth rate is justifiable; however, the current 1% background growth rate will be maintained. If congestion is observed in future horizons, then the lower growth rate may be tested to assess sensitivity of the network to a less conservative assumption.

4. Strategy Report

4.1. Development Design

4.1.1. DESIGN FOR SUSTAINABLE MODES

Location of Transit Facilities

The subject site has bus stops located along the site frontage and across the street from the site, for frequent route #88 and local route #58. Within 600m walk, there are bus stops for rapid route #57. All these routes provide connectivity to the Confederation (and some Trillium) LRT Lines.

Within the City of Ottawa TMP Affordable Network, Baseline Road is proposed to be upgraded to a transit priority corridor with isolated measures. As previously described in **Section 2.1.3**, the City of Ottawa Baseline Road Transit Priority Corridor Planning Study between future Bayshore LRT Station to Heron BRT Station, with proposed segregated median bus lanes and connectivity to both the Confederation and Trillium LRT Lines. The project aims at improving travel times for bus routes by up to 11 minutes within the corridor and provide improved connectivity to the Confederation LRT Line at future Baseline Station to the east, Bayshore Station to the northwest and Mooney's Bay Station on the Trillium Line. Future bus headways are forecasted every 5-6 minutes in the AM peak hour and 7-8 minutes in PM peak hours.

Pedestrian/Cycling Routes and Facilities

The site proposes sidewalk facilities bordering all the adjacent roads to the site and internal to the site as shown in **Figure 16**. Phases 4, 5 and 6 will all have direct connectivity from the front door to new and existing sidewalk facilities, including the ones on Baseline Road which connect to transit stops.

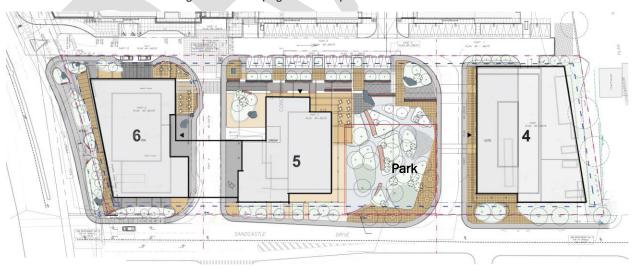


Figure 16: Landscaping Plan and Proposed Pedestrian Facilities

Bicycle Parking

A combined total of 398 bicycle parking is currently proposed. The indoor bike parking spaces will be located close to elevators which provide access to the ground floor. There are also outdoor bike racks proposed near the commercial uses, including racks on the east and west sides of P6 Tower.

4.1.2. CIRCULATION AND ACCESS

This report focuses on Phases 4, 5 and 6 within the subject site. Once the site is fully developed, it will consist of 6 towers, approximately 1,145 residential units and 25,829 ft² of commercial space accessible via three private driveways, referred to as RIRO Access Baseline, North Access Sandcastle and South Access Sandcastle as illustrated in **Figure 17**.

The right-in-right-out (RIRO) access to Baseline Road has already been built to serve the completed Phase 1 tower, as well as future Phases 2 and 3 which are under construction. Naturally, this access will also provide connectivity to Phases 4, 5 and 6. The RIRO drive aisle to/from Baseline Road will connect to two new eastwest private driveways with connectivity to Sandcastle Drive.

The northern private driveway is proposed as an all-movement access and will be located approximately 40m south of Baseline Road, which would be further away from Baseline Road compared to the existing driveway to the retail plaza and would line up closer to Brookhaven Court. This adjustment of the location of the existing access further away from Baseline Road is seen as an overall improvement by providing a larger distance buffer from a major arterial road. The second all-movement access from Sandcastle Drive is proposed approximately 135m south of Baseline Road.

The Baseline Road private driveway and the northern Sandcastle Drive private driveway are both 7m wide at their narrowest and wider where on street parking or laybys are located, which conforms with the minimum 6.7m requirement. The northern Sandcastle Drive private aisle has a 2.5m wide layby for commercial delivery trucks on the south side of Tower 6 tower. A new drop off lay-by has also been proposed on the east side of Tower 6. The southern Sandcastle Drive private driveway has a width of 8m. Surface level short-term parking will be provided on the east side of Tower 5 for commercial and visitor parking.

Figure 17 illustrates driveway circulation, proposed garbage pick-up locations, layby locations and underground parking ramp locations.

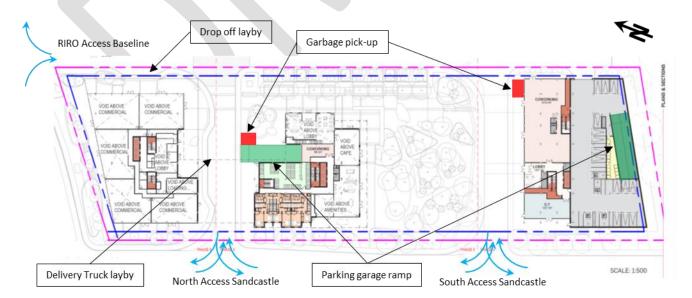


Figure 17: Internal Driveway Circulation and Parking Garage Access Locations

The parking garage for Towers 4, 5, and 6 are all located within a shared structure, with two floors below grade under Towers 5 and 6 and an additional floor underground for Tower 4. This parking garage structure will be accessed via two 6m wide two-way ramps, one located on the north side of Tower 5 tower and the other located on the southeast side of Tower 4. The ramps propose transitions from 8% to a maximum of 16% incline, which is considered acceptable. Sight lines internal to the site are expected to be adequate. Buildings are set back a notable distance from the main aisle which allows for adequate sight lines. Additionally, the main private driveways are designed for low operating speeds and present low risk for vehicle circulation conflict.

Internal circulation has been designed to accommodate MSU/HSU style trucks for deliveries to the retail and garbage pick-up. Garbage pick-ups for all towers will be located on ground level near the north side of Tower 5 and the north side of Tower 4 and are expected to be rear loading vehicles. The truck turning templates have been provided in **Appendix G.**

Bike storage is predominantly proposed indoors within the parking garage structure or within the central core of Tower 5. In general, bike parking is located within the first level of underground parking, the ground floor or 2nd floor above grade. There is additional bike parking located outdoors, catered to commercial users.

4.1.3. NEW STREETS NETWORK

Exempt. See Table 2.

4.2. Parking

4.2.1. PARKING SUPPLY

According to Part 4 – Parking, Queueing and Loading Provisions for the City of Ottawa By-Laws, the site is located in Area C based on Schedule 1A and is not within Rapid Transit Stations within Schedule 2A. **Table 14** summarizes the vehicle parking minimum allowed within the parking by-law and the quantities proposed. Note that some towers will provide parking for adjacent towers. Only the parking numbers dedicated for such towers will be considered in the table below.

Required Vehicle Spaces Proposed Spaces₁ Rate per Unit/Size **Land Use Residents Residents** Res. Visitor **Commercial Res. Visitor** Commercial Phase 4, T4: 104 units 1.0 base residential 104 21 16 35 21 16 and 456 m² retail per unit; 0.2 visitor parking Phase 5, T5: 281 units 281 4 56 93 56 4 and 116 m2 retail per unit; 3.4 spaces per 100 Phase 6, T6: 315 units 315 63 32 104 34 63 m² of commercial and 945 m² retail 700 140 52 232 140 54 Totals

Table 14: Proposed Vehicle Parking Space Supply

 Although some towers such as T4 will provide parking for T6 and T5, the proposed spaces documented reflect the allotted quantity of parking reserved for that tower, despite their physical parking location possibly being in an adjacent tower.

Table 15 summarizes the bicycle parking requirements as per City of Ottawa Zoning By-Law-Part 4, sections 100-114.

Table 15: Bicycle Parking Requirements

Land Use Rate per U		Rate per Unit/Size	Required Bicycle Spaces	Proposed Spaces
Residential	700 units	0.5 per unit	350	200
Strip Retail Plaza	1,517 m ²	1 per 250 m ²	6	398
		Totals	356	Meets mins.

The Parking By-law requires a minimum of 700 residential vehicle parking spaces, 140 residential visitor spaces and 52 commercial spaces. The development proposes 140 residential visitor spaces and 54 commercial spaces which both meet the minimum requirements.

The base residential parking quantities however are lower than the minimum suggested by the Parking, Queueing and Loading Provisions By-laws. The developer is proposing a reduced residential parking rate of approximately 0.33 spaces per unit for Phases 4, 5 and 6. However, Phases 1, 2 and 3 consists of 447 units and 9,500 m² of commercial use, and will provide a total of 612 parking spaces. Assuming similar parking rates are applied from **Table 14**, amongst the 612 spaces, 30 spaces would be allotted to commercial uses and 89 to visitors, which leaves approximately 493 resident occupant parking spaces. When considering the site as a whole, there will be approximately 725 residential parking spaces (232 + 493) for 1,145 residents, which represents a parking ratio of approximately 0.63 spaces per unit. **Section 4.2.2.** below will address the potential implications for residential vehicle parking demand.

The Parking By-law requires a minimum of 356 bike parking spaces. The proposed development proposes a total of 398 bike parking spaces, with the majority of bike parking located indoors in a well-lit secured area, within the 1 underground parking lot, the ground floor, and the 2nd floor of the towers. Additional outdoor bike parking spaces are proposed near Tower 6 for visitors and commercial patrons. The proposed development exceeds the bicycle parking requirements in the Parking By-law.

4.2.2. SPILLOVER PARKING

The site is meeting both commercial and residential visitor parking requirements. However, the site is proposing a reduced residential vehicle parking rate to the Parking By-laws. The site context offers the opportunity for alternate modes of transportation and a reduced reliance on vehicles, which justifies the reduced proposed residential occupant vehicle parking rates.

The City's long-term plan for Baseline Road includes a new transit priority BRT median bus lanes with bus stops along the development frontage and across the street, as well as augmented pedestrian and cycling facilities at study area intersections. As mentioned in **Section 2.1.3**, the Baseline BRT project will increase rapid transit frequency to 5-6 minute headways in the AM and 7-8 minutes in the PM. In addition, new uni-directional cycle tracks are proposed on Baseline Road and improvements to sidewalk facilities. A strong TDM program is proposed to encourage alternate modes of transportation that will leverage the existing and planned infrastructure provided by the City which reduces the need for excess vehicle parking.

The site will provide higher than minimum requirements for bike parking quantities to encourage the use of bicycles over vehicles. In addition, the developer plans to include bike-share and car-share facilities and contracts to augment the use of shared mobility, thus reducing the need for personal vehicles.

The site is located near an office building plaza and the site itself offers commercial uses, which can promote walkable neighbourhoods where tenants can live, work and shop within a walkable distance. The city has already seen changes in travel behaviours post Covid-19, with people working more flexible schedules and working from home, thus eliminating some trips altogether.

The subject site (all phases) will provide a residential parking rate of approximately 0.63 space per unit. Based on the existing Parking By-law provisions, areas such as the Inner Urban, Outer Urban, within the influence of rapid transit or inner urban mainstreets, residential occupant rates between 0 to 0.5 per unit are suggested. The New Official Plan identifies various goals to minimize provisions of vehicle parking and in some cases, discourages parking such as Bank Street and Elgin Street (Section 3.3.2, 18 and 44a)², suggesting a strong desire to minimize parking where possible. Furthermore, clause 117 states "in future planning, land use should be the initial determinant of transportation needs. The latter should then be used to set any necessary limits on the provision of parking in light of motor vehicle impacts on existing streets", and Section 4.6.1 "Minimum and maximum parking requirements shall be reduced to reflect downtown urban conditions and ratios that support

2946 Baseline Road - TIA Strategy Report

² New official plan, Volume 2A

high transit use". Given the site's proximity to future high frequency BRT corridor with three connections to LRT stations, this development should aim at having a reduced residential occupant parking ratio. A residential parking rate of 0.63 spaces per unit was considered acceptable.

In the unlikely event that parking spillover were to occur, Sandcastle Drive, Brookhaven Court and Valley Stream Drive all provide on-street parking. Additional parking capacity may be available at neighbouring lot 2934 Baseline Road which has off-street parking managed by Impark. City By-Law is equipped to respond with greater enforcement if there is an observed increase in parking infractions.

4.3. Boundary Street Design

4.3.1. EXISTING AND FUTURE CONDITIONS

The boundary street for the development is Baseline Road and Sandcastle Drive. The existing roadway geometries consist of the following features:

Baseline Road:

- 2 vehicle travel lanes in each direction;
- >2m sidewalk with no boulevard separation on both sides of roadway;
- More than 3,000 vehicles per day;
- Posted speed limit is 70km/h;
- Classified as major arterial roadway and identified as a trucking route;
- o Identified as a transit priority corridor; and,
- o Identified as a spine route with curbside painted cycling facilities.

Sandcastle Drive:

- 1 vehicle travel lane in each direction;
- 1.5m sidewalk with 0.5m boulevard separation on west side, partial to no sidewalks currently on east side. Future site proposes a 2m sidewalk with no boulevard separation;
- Less than 3,000 vehicles per day;
- Posted speed limit is 40km/h;
- Classified as local roadway and is not part of a trucking route; and,
- Not part of a transit priority corridor or cycling route.

Multi-modal Level of Service (MMLOS) analysis for the subject road segments adjacent to the site is summarized in **Table 16** with detail analysis provided in **Appendix H**. It is acknowledged that Baseline Road may look different in the future, but no official plan has been made public yet.

Multi-Modal Level of Service Road Segment PLoS BLoS TLoS TkLoS Target Target Target **Target** Existing Baseline Rd - both sides between F C E D C D Α Sandcastle & Monterey Sandcastle Dr - west side between C C В D n/a n/a **Baseline & Valley Stream** Sandcastle Dr - east side between F C В D n/a n/a Baseline & Valley Stream **Future** Sandcastle Dr - east side between В C В D n/a n/a Baseline & Valley Stream

Table 16: MMLOS - Boundary Street Segment Existing

Pedestrian

 The west side of Sandcastle Drive meets the pedestrian PLoS targets. Once the proposed development builds sidewalks along their site frontage on Sandcastle Drive, then both sides of the road will meet

PLoS targets. Baseline Road does not meet existing PLoS targets. For the targets to be met, Baseline Road would require its posted speed be reduced to at least 60km/h and have a speed test confirm compliance.

Bicycle

The cyclist BLoS targets were met on Sandcastle Drive. Baseline Road did not meet the BLoS targets
given the fast-operating speeds. If the speeds were reduced to 50km/h posted or 60km/h with a
confirmed speed test, then the BLoS targets would be met.

Transit

Only Baseline Road has active transit services. The transit TLoS targets were met.

Truck

Only Baseline Road is classified as a truck route. The trucking TkLoS targets were met.

4.4. Access Intersection Design

4.4.1. LOCATION AND DESIGN OF ACCESS

As described in **Section 4.1.2**, the site proposes three private accesses to the municipal road network. Of these accesses, one of them is already constructed, located approximately 70m east of Sandcastle/Baseline intersection on Baseline Road operating as a right-in-right-out (RIRO). The remaining two accesses are located off Sandcastle Drive, approximately 40m and 135m south of Sandcastle/Baseline intersection, both of which will operate as full-movement accesses.

The access proposed approximately 40m south of Sandcastle/Baseline intersection will replace an existing access that is currently located approximately 20m south of Baseline Road. Shifting this access further south provides greater separation from the Baseline signalized intersection, which reduces the risk of queued northbound vehicles at signal from blocking the access. Furthermore, the subject site does have an additional access further south, so residents may avoid a potential blockage and use the alternate entrance.

The development as a whole (Phases 1-6) proposes approximately 1,038 parking spaces serviced by three accesses. As such, it can be assumed that each access will serve likely more than 300 parking spaces each. The Private Approach By-Law Section 25 m(ii) suggests that for residential developments with more than 300 parking spaces (per access), then the distance between a private approach and the nearest intersecting street line should be 60m and the distance between a two-way private approach and any other private approach shall be 60m or more. All accesses exceed a 60m separation from the nearest two-way private approach, however the northern Sandcastle access is proposed less than 60m from Sandcastle/Baseline signalized intersection. Although the northern access falls short of the minimum distance away from a signalized intersection by approximately 20m, it is supplemented by a southern access which can absorb vehicles turning in if a vehicle queue occurs impact the northern intersection. Given the redundancy in access options to the site, the noncompliance to the Private Approach By-law by the northern access was considered acceptable.

4.4.2. INTERSECTION CONTROL

Due to the forecasted traffic volumes at study area intersections, it is not anticipated that traffic signals or all-way-stop-control (AWSC) will be required. The site accesses are all proposed as STOP-controlled for the site access and free-flow on the city roads (Baseline Road and Sandcastle Drive). **Section 4.9.2** will confirm if any access has sub-par operation and if the need for alternate intersection controls are recommended.

4.4.3. INTERSECTION DESIGN

The site has approximately 190m of frontage on Sandcastle Drive and 120m of frontage on Baseline Road, which allows for two two-way private approaches on Sandcastle Drive and on Baseline Road. The proposed accesses align with the Private Approach By-Law Section 25 for quantity and type of accesses.

According to the Transportation Association of Canada (TAC) Section 8.9.10, all driveways with direct access to a collector or arterial road should provide sufficient clear throat lengths to prevent internal spillback on to the major roads. Only the RIRO provides access to a collector or arterial road. For apartment buildings with more than 200 units and accessing an arterial road, TAC suggests a clear throat length of 40m. The RIRO site access has its first minor conflict point located about 40m from Baseline Road, where on-street layby and parking are proposed. This distance adheres to TAC and the risk of spillback to Baseline Road is considered very low.

Storage lanes for the site accesses are not anticipated for this site based on the low turning volumes. **Section 4.9.2** will confirm if any access has sub-par operation and if storage lanes are recommended.

4.5. Transportation Demand Management

4.5.1. CONTEXT FOR TDM

Based on the type of development, it is assumed that most trips generated by the proposed site will be residents leaving the site in the AM peak to go to work and returning from work to the proposed site in the PM peak. Sections 3.1.1 and 3.1.2 describe how many trips are anticipated per travel mode and anticipates the likely locations that they will travel to and from based on the OD-Survey 2011 for Ottawa. The site is not located within 600m of rapid transit; however, it is located in a transit priority corridor with isolated measures and the City of Ottawa is currently undertaking a study to include median bus lanes as part of a BRT corridor on Baseline Road.

4.5.2. NEED AND OPPORTUNITY

Since the development is located in a transit priority corridor with isolated measures (and future BRT being studied by the city), measures to provide sustainable active mode shares are encouraged. Such measures are described in more detail in Section 4.5.3 below, but include reduced parking ratios (proposed 0.33/unit for residents), more aggressive Multi-Modal Levels of Service (MMLOS) as described in Section 4.3 and 4.9 and safe and efficient connectivity to public transit as described in Section 4.7, to name a few.

4.5.3. TDM PROGRAM

The TDM infrastructure checklist and TDM Measures are attached as Appendix I.

Regarding the TDM Supportive Development Design and Infrastructure Checklist:

- Nine (9) out of the ten (10) "Required" measures have been satisfied, with the exception of providing less vehicle parking than required by zoning.
- At least ten (10) of fourteen (14) Basic measures related to Walking and Cycling, Transit, Ridesharing and Parking have been <u>satisfied</u> or are not applicable
- Four (4) of the of the seven (7) candidate Better measures are also proposed or are non-applicable, including:
 - Client investigating the potential to include car and bike share facilities
 - Separate long-term and short-term parking areas

Regarding the TDM Measures Checklist:

- Five (5) out of seven (7) "Basic" measures related to Walking and Cycling, Transit, Parking and TDM Marketing have been satisfied. Three (3) of those, which have been designated by an asterisk (*), are considered by the TDM Measures to be some of the most dependably effective tools to encourage sustainable travel modes. This includes:
 - Display walking and cycling information at major entrances.
 - Display transit information at major entrances.
 - *Offer preloaded PRESTO card to residents with one monthly transit pass.
 - * Unbundle parking costs from monthly rent.

- * Provide multi-modal travel information package to new residents.
- Five (5) out of eleven (11) "Better" measures related to Walking and Cycling, Transit, Carsharing and Bikesharing, Parking and TDM Marketing have been satisfied. One (1) of those, which has been designated by an asterisk (*), is considered by the TDM Measures to be some of the most dependably effective tools to encourage sustainable travel modes. This includes:
 - Offer on-site cycling courses for residents or subsidize off-site courses.
 - Install on-site bikeshare station.
 - Provide on-site carshare vehicles for residents.
 - *Offer personalized trip planning to new residents.

4.6. Neighborhood Traffic Management

4.6.1. ADJACENT NEIGHBORHOODS

The RIRO access to Baseline Road will connect to an arterial roadway, hence no further analysis is required there. However, Sandcastle Drive is a collector road which will receive two new site accesses.

Based on the City of Ottawa TIA Guidelines, collector roads have a suggested maximum threshold of 300 vehicles per hour or 2,500 vehicles per day limit and major collectors 600 per peak hour and 5,000 per day limit.

Sandcastle Drive approaching Baseline Road, the peak hour two-way volumes are forecasted at 270 and 350 vehicles for the AM and PM peak respectively. This vehicular range falls between a collector and major collector roadway, fitting its current designation. There are only private low-density driveways within the 265m stretch of road, posing a low driveway density consistent with a collector road and higher vehicle volumes.

On-street parking is allowed on Sandcastle Drive, functioning as an artificial road narrowing and promoting slower driving speeds. The short segment of road leads to a small low-density community south of the roadway which does not connect to the greater network aside from Sandcastle Drive and Valley Stream Drive, which is the adjacent intersection on Baseline Road. Since both accesses to the neighbourhood are close to each other and do not provide access to surrounding neighbourhoods, then the risk of shortcutting via Sandcastle Drive is low

If future speeds along Sandcastle Drive are observed to be high, then adjustments to the roadway such as speed humps, centerline flex poles or horizontal deflections could be used to reduce driving speeds, subject to a formal review that satisfies the process requirements set by the Neighbourhood Traffic Calming Branch.

4.7. Transit

4.7.1. ROUTE CAPACITY

Route 88 has average headways of 15 minutes during the day, and occasionally less than 15 minutes during peak hours. OC Transpo has buses such as the New Flyer D60L with a total capacity of 110 passengers or Alexander Dennis Enviro 500 with approximately 100 passengers, so it is expected to have sufficient capacity to support roughly 125 'new' two-way transit passenger trips forecasted during the AM and PM peak hours.

Furthermore, local route 58 provides additional capacity with service every 30 minutes.

The city is currently investigating and designing the future Baseline Road transit priority corridor with median segregated bus rapid transit (BRT) lanes. Once these lanes are incorporated into Baseline Road, adjacent to the site, then the capacity of the corridor is anticipated to be greatly increased, with more than 10,000 daily riders projected and rapid transit identified routes operating at high frequency at all time periods, with headways of 5-6 minutes during the AM peak and 7-8 minutes during the PM peak, subject to City Transit Services Branch.

4.7.2. TRANSIT PRIORITY

Future BRT bus lanes on Baseline Road will provide high quality transit priority since vehicle queues in general purpose lanes will not affect bus travel times. **Section 4.9.2** will examine the anticipated delays from a high-level perspective for east-west through travel on Baseline Road.

4.8. Review of Network Concept

The site is currently zoned as GM[2138] S(325-h) which allows general mixed-use. Under this zoning's specific exceptions, Tower 6 is capped at 13-storeys, Tower 5 at 16-storeys and Tower 4 at 10-storeys. The future commercial land uses will be smaller but similar in context to the existing permitted land uses and as such, the future commercial uses should be allowed within the existing zoning.

For the residential aspect however, the developer is proposing 9-storeys for Tower 4 which is within the 10-storey allowable but 28-storeys for Tower 5 and 32-storeys for Tower 6.

It is assumed that the first floor of each tower will be occupied by a lobby and commercial uses, with no units on the first floor. Additionally, it will be assumed that each floor has the same number of units, disregarding setbacks which would probably have a smaller GFA and fewer units on higher floors for a more conservative analysis. Using the above assumptions, a base calculation for how many projected units above existing zoning can be derived as seen in **Table 17**.

Tower	Storeys Allowed	Storeys Proposed	Floors Above Existing Zoning	Units Proposed	Units / Storey Proposed1	Units Above Permitted Height
Tower 4	10	9	0	104	13.0	0
Tower 5	16	28	12	281	10.4	125
Tower 6	13	32	19	315	10.2	194
			Totals	700	-	319
Units per storey was calculated by di	viding numbe	er of units by nun	nber of storevs m	inus 1 floor.		

Table 17: Projected Number of Units Above Existing Zoning

Based on **Table 17**, approximately 319 units will be located above allowable zoning which would create approximate 132 more peak hour person trips than the equivalent volume permitted by established zoning (refer to **Appendix J** for calculations).

Since 200 peak hour person trips or more above the equivalent volume permitted by established zoning is the trigger according to the TIA Guidelines, the remainder of this step can be exempt.

4.9. Intersection Design

4.9.1. INTERSECTION CONTROL

Both of the intersections to Sandcastle Drive will operate as unsignalized intersections with STOP-control on the site access and free-flow on Sandcastle Drive. The access to Baseline Road will be a right-in-right-out (RIRO) with a STOP-control on the site access and free-flow on Baseline Road. No changes are proposed at the Sandcastle/Baseline intersection at this time. An on-going study for the feasibility of bus rapid transit (BRT) with median segregated bus lanes on Baseline Road between Bayshore Shopping Center and Heron BRT via Richmond Road and Baseline Road will likely result in new intersection geometries along the Baseline Road corridor, however no official public details have been released at this time.

4.9.2. INTERSECTION DESIGN

Multi-Modal Level of Service

As stated in the MMLOS Guidelines, only signalized intersections are considered for the intersection Level of Service measures. The MMLOS analysis is summarized in **Table 18**, with detailed analyses provided in **Appendix K**.

Table 18: MMLOS - Existing and Future Adjacent Signalized Intersections

	Multi-Modal Level of Service									
Road Segment	Pedestrian		Bicycle		Transit		Truck			
	PLoS	Target	BLoS	Target	TLoS	Target	TkLoS	Target		
Cedarview/Baseline	F	С	F	C	C	D	С	D		
Valley Stream/Baseline	F	С	F	В	D	D	-	n/a		
Sandcastle/Baseline	F	С	F	C	В	D	-	n/a		
Monterey/Baseline	F	С	F	C	С	D	-	n/a		
Morrison/Baseline	F	C	F	C	E	D	-	n/a		

Pedestrian

• For all intersections, pedestrians must cross the equivalent of at least 8 lanes of traffic due to the Baseline Road cross-section plus median width. There are no options that can help improve the PLoS significantly enough to come anywhere near achieving the target PLoS 'C'.

Bicycle

• The bicycle BLoS target was not met at any intersection due to the lack of 2-stage left-turn boxes and high operating speeds on Baseline Road.

Transit

To achieve the TLoS targets, a maximum transit delay of 30 seconds or less for the bus movements
must be met. All movements having buses met this criterion and the TLoS target was met, with the
exception of the southbound movement at Morrison/Baseline which had delays of up to 40 seconds.
The east-west movements where the future Baseline BRT is proposed all meet the TLoS targets.

Truck

• Truck target level of service was met for Cedarview/Baseline. No other intersection had receiving truck routes.

Background Conditions 2035

The future background 2035 conditions represent the impact of additional development including Phases 1, 2 and 3 for 2940 Baseline, 2785 Baseline and 1300 McWatters, along with forecasted east-west annual growth in background volumes. Since 2035 background has the same intersection layouts as 2030 and is the more critical of the two scenarios, only 2035 will be analyzed. The future projected 2035 background volumes are illustrated in **Figure 18** with projected operation outputs in **Table 19**. The detailed Synchro results can be found in **Appendix L**.

Figure 18: 2035 Background Projected Volumes

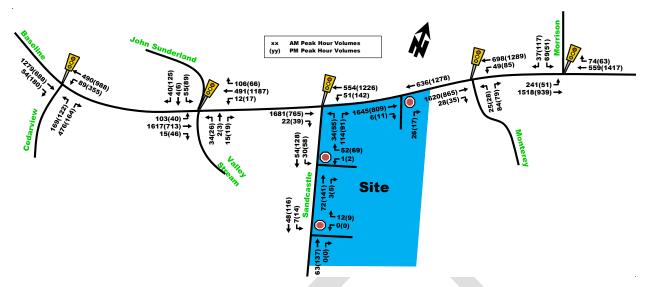


Table 19: 2035 Background Intersection Performance

	Weekday AM Peak (PM Peak)									
Intersection		Critical Movem	ent	Intersection						
intersection	LoS	.oS max. v/c or avg. Movement Delay (s)		Delay (s)	LoS	v/c				
Cedaview/Baseline	B(B)	0.68(0.63)	NBL(NBL)	14.1(13.1)	A(A)	0.59(0.47				
Valley Stream/Baseline	B(A)	0.65(0.49)	EBT(WBT)	10.6(10.2)	B(A)	0.62(0.47				
Sandcastle/Baseline	C(A)	0.71(0.56)	EBT(NBL)	10.9(8.0)	B(A)	0.69(0.49				
Monterey/Baseline	B(A)	0.66(0.48)	EBT(WBT)	11.4(9.6)	B(A)	0.64(0.47				
Morrison/Baseline	A(A)	0.60(0.58)	EBT(WBT)	7.0(11.0)	A(A)	0.58(0.57				
N Access/Sandcastle (U)	A(A)	9(9)	WB(WB)	3(3)	A(A)	-				
S Access/Sandcastle (U)	A(A)	9(9)	WB(WB)	1(1)	A(A)	-				
RIRO Access/Baseline (U)	C(B)	18(11)	NB(NB)	0(0)	A(A)	-				

As seen in **Table 19**, all intersections operate overall at good LoS 'B' or better with critical movements operating at LoS 'C' or better during the 2035 background volumes. Operations are slightly worse than existing intersection performance as expected considering that a 1% annual growth rate has been added for approximately 19 years and other area developments.

Future Conditions 2030 - Full Buildout

The future full build-out 2030 volumes were derived by superimposing background 2030 volumes which include other area developments and background growth, with future site-generated volumes. The future projected 2030 volumes are illustrated in **Figure 19** with projected operation outputs in **Table 20**. The detailed Synchro results can be found in **Appendix M**. No right on red for eastbound right turns is proposed.

Figure 19: 2030 Total Projected Volumes

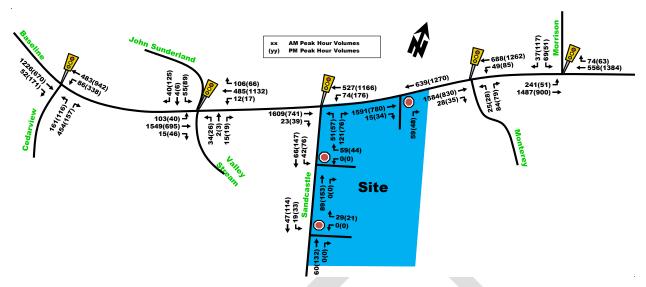


Table 20: 2030 Full Build-out Intersection Performance

	Weekday AM Peak (PM Peak)							
Intersection		Critical Movem	ent	Intersection				
meisecuon	LoS	LoS max. v/c or avg. delay (s) Movement		Delay (s)	LoS	v/c		
Cedarview/Baseline	B(B)	0.67(0.62)	NBL(NBL)	13.5(12.3)	A(A)	0.56(0.44)		
Valley Stream/Baseline	B(A)	0.62(0.48)	0.62(0.48) EBT(SBT)		A(A)	0.59(0.45)		
Sandcastle/Baseline	B(A)	0.69(0.56)	EBT(NBL)	11.7(7.8)	B(A)	0.68(0.47)		
Monterey/Baseline	B(A)	0.64(0.47)	EBT(WBT)	11.2(9.3)	B(A)	0.62(0.46)		
Morrison/Baseline	A(A)	0.59(0.59)	EBT(SBL)	7.1(11.0)	A(A)	0.57(0.56)		
N Access/Sandcastle (U)	A(B)	9(10)	WB(WB)	3(2)	A(A)	-		
S Access/Sandcastle (U)	A(A)	9(9)	WB(WB)	3(2)	A(A)	-		
RIRO Access/Baseline (U)	C(B)	20(12)	NB(NB)	1(0)	A(A)	-		
Note: Analysis of signalized inte	rsections a	ssumes a PHF of 1.0	and a saturation flo	w rate of 1800 veh/h	/lane. U = l	Jnsignalized.		

As seen in **Table 20**, all study area intersections are expected to operate similarly to existing conditions and future background 2035 conditions, with minor delays.

Future Conditions 2035 - Full Buildout + 5 Years

This scenario assumes that the Baseline BRT Corridor has been implemented. Given that no detailed design has been made public yet, this analysis will assume that all left-turns from east and west travel on Baseline Road will require a protected phase.

The future full build-out 2035 volumes were derived by superimposing background 2035 volumes which include other area developments and background growth, with future site-generated volumes. The future projected 2035 volumes are illustrated in **Figure 20** with projected operation outputs in **Table 21**. The detailed Synchro results can be found in **Appendix M**.

Figure 20: 2035 Total Projected Volumes

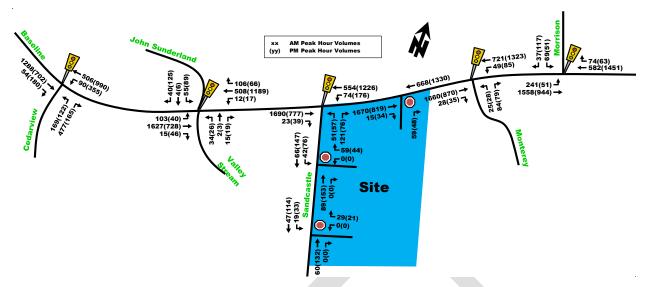


Table 21: 2035 Full Build-out Intersection Performance

			Weekday AM	Peak (PM Peak)			
Intersection		Critical Movem	ent	Intersection			
meisecuon	LoS max. v/c or avg. Movement delay (s)		Delay (s)	LoS	v/c		
Cedarview/Baseline	B(B)	0.68(0.63)	NBL(NBL)	17.5(21.1)	B(A)	0.64(0.58	
Valley Stream/Baseline	B(A)	0.68(0.55)	EBT(WBT)	15.8(11.7)	B(A)	0.65(0.53)	
Sandcastle/Baseline	D(B)	0.90(0.67)	EBT(WBL)	24.0(17.1)	D(A)	0.85(0.50	
Monterey/Baseline	C(A)	0.74(0.52)	EBT(WBL)	10.3(10.8)	C(A)	0.71(0.41	
Morrison/Baseline	C(B)	0.76(0.68)	EBL(WBT)	20.9(13.3)	A(B)	0.46(0.66	
N Access/Sandcastle (U)	A(B)	9(10)	WB(WB)	3(3)	A(A)	-	
S Access/Sandcastle (U)	A(A)	9(9)	WB(WB)	3(2)	A(A)	-	
RIRO Access/Baseline (U)	C(B)	21(12)	NB(NB)	1(0)	A(A)	-	

As seen in **Table 21**, a slight deterioration in intersection performance from existing and background 2035 conditions has occurred, predominantly influenced by signal timings with new protected only eastbound and westbound left-turns to eliminate the risk of left-turners colliding with through advancing buses in the median lanes. Despite these worsening intersection performance, all intersections operate with overall and critical movement LoS 'D' or better, which is considered acceptable to good performance.

Queuing Assessment

The 2035 future projected scenario was used to determine the most critical queues within the study area. Overall, the animations from SimTraffic showed a relatively fluid network, with occasional platoon buildups. To reduce these platoons, the City of Ottawa could consider coordinating and optimizing the intersections to provide a more fluid 'green light' corridor along Baseline Road.

The site accesses and Sandcastle/Baseline intersection all had modest queues and no concerns were noted.

Within Synchro, some signalized intersections exhibited queues of up to 250m on the eastbound and westbound movements on Baseline Road. Most intersection-to-intersection distances are beyond 300m apart, meaning that no queue spillback would occur.

Finally, it is worth noting that this scenario analyzed may be overly conservative, with a continuous growth rate of 1% annually and fully protected left-turn movements. It is likelier that over time, traffic volume growth will taper and possibly even decrease over the years as the transit network matures and city-wide active transportation initiatives take charge.

Future Transit Priority Corridor - Baseline BRT

At the time of this report, the detailed design for the Baseline BRT project was ongoing. Consequently, the future 2035 scenario only included addition of protected eastbound and westbound left-turn signal timing to eliminate conflicts with through moving median buses, but a detailed analysis with the future road geometry was not done.

The future conditions 2035 scenario had good overall intersection performance, and given the modest increase in vehicular volumes to the study area intersections, the development is not expected to affect operations for the planned Baseline BRT corridor.

5. Findings and Recommendations

Based on the results summarized herein the following findings and recommendations are provided:

Existing Conditions

- The site is currently occupied by commercial uses and is zoned as GM[2138] S(325-h).
- The site is located in a transit priority corridor with isolated measures. The City of Ottawa is currently undertaking a study for the Baseline Road BRT Corridor with exclusive median bus lanes from Bayshore Shopping Center to Heron BRT, via Richmond Road and Baseline Road. The site will have direct frontage to a BRT Station. The BRT corridor will connect to the Confederation LRT Line at Bayshore Shopping Center and Baseline Station (near Woodroffe) and Trillium Line at Mooney's Bay Station.
- Overall, there were 68 collisions recorded in five years within the study area. No areas were flagged as high risk.
- The site is currently accessed by a full movement access approximately 20m south of Baseline Road which is proposed to be shifted approximately 20m further south and a right-in-right-out approximately 70m east of Sandcastle Drive which will remain for future phases.
- Existing intersections operate at good overall LoS 'B' or better with all critical movements operating at LoS 'B' or better during the weekday peak hours.

Proposed Development

- This report focuses on the 4th, 5th and 6th phase of the development. Phase 1 has already been built and phases 2 and 3 have already been approved.
- In total, the site will have approximately 1,145 residential units and 25,829 ft² of commercial space. This report focuses on the remainder 4, 5, and 6th phase which will comprise of approximately 700 residential units and 16,329 ft² of retail space in three 9 to 32-storey buildings.
- The site will make use of the existing RIRO on Baseline Road, will shift the full movement existing access on Sandcastle Drive further south by 20m and will provide a new full movement access located approximately 135m south of Sandcastle Drive.
- The proposed development is projected to generate approximately 125 'new' transit trips during the AM
 and PM peak hour periods, which can be accommodated by frequent route 88 and local route 58 which
 operate on Baseline Road. Additional capacity is anticipated once the Baseline BRT Corridor is built,

which will operate with headways of 5-6 minutes during the AM peak and 7-8 minutes during the PM peak.

- The proposed development is projected to generate 'new' vehicle volumes of approximately 135 veh/h two-way total during the weekday morning and afternoon peak hours.
- The developer proposes 398 bike parking spaces which exceeds the minimum by-law requirements.
 The majority of bike parking will be located indoors in a well-lit secured area near elevators, outdoor bike parking spaces proposed near the commercial uses.
- Once the entire site is fully built-out, a total of 1,038 parking spaces will be available. The commercial and resident visitor spaces meet the city's minimum parking requirements; however, the resident occupant parking quantities fall short with a proposed overall site rate of 0.63 spaces per unit. Given the sites location near future BRT corridor and strong TDM program, the reduction in parking is justifiable and jives closer to 0.5 spaces per unit rate used near rapid transit or in the downtown core. A reduced parking rate is also consistent with New Official Plan guidance.
- A strong TDM plan is proposed for this development to encourage the use of alternate modes of transportation and reduce the need for vehicular reliance. Refer to **Section 4.5** for further details.

Future Conditions

- Other nearby developments and a 1% growth rate were applied to existing volumes to estimate background conditions. The 2035 background overall intersection performance of all study area intersections was LoS 'B' or better and with critical movement of 'C' or better which is similar to existing.
- The MMLOS road segment analysis shows that pedestrian and cyclist targets could be met in the future based on proposed conditions, however, would still be deficient at Baseline Road due to high operating speeds and daily curb volumes. All other targets were met at all locations.
- The MMLOS intersection analysis shows that truck target goals are met at all intersections. Given the
 higher-operating speeds and number of travel lanes, it is not possible to meet pedestrian target goals.
 The bicycle target goals were also not met given the lack of cycling facilities on all approaches, the
 quantity of lanes required to be crossed and the higher operating speeds. The transit TLoS was met at
 all locations except for Morrison/Baseline as the bus movement delays were over 30 seconds at that
 location.
- The 2035 full buildout conditions assumed the Baseline BRT Corridor to be built. Although no official
 design plans have been revealed, it is understood that the eastbound and westbound left-turns would
 have to be protected to eradicate conflicts between median lane through buses and left-turning general
 traffic.
- Future conditions with the addition of pedestrians, cyclists, and protected eastbound and westbound left-turns on Baseline Road to simulate transit BRT, along with site vehicle traffic performed at acceptable levels of service with respect to v/c and delay resulting in overall LoS 'D' or better and with critical movement of 'D' or better.
- No major queueing implications were noted, however coordinating the traffic signals could reduce queues and reduce delays for east-west transit buses on the future BRT.
- The development is forecasted to have negligible impacts to travel times and operations for the future Baseline BRT corridor. The future corridor is anticipated to have minor delays at study area intersections.
- The future Baseline BRT project will enhance the pedestrian and cycling facilities along the Baseline corridor, namely adding uni-directional cycle tracks fronting the site and upgrades to sidewalk facilities.
 The site proposes new sidewalks along all building frontages which will connect to the new facilities on Baseline Road.

Based on the foregoing findings, the proposed development located at 2946 Baseline Road is recommended from a transportation perspective.

Prepared By:

Reviewed By:

Juan Lavin, P. Eng. Transportation Engineer Austin Shih, P.Eng. Senior Transportation Engineer

SCREENING FORM

City of Ottawa 2017 TIA Guidelines

TIA Screening Form

Date 18-Apr-23

Project 2946 Baseline Road - Phase 4-6
Project Number 477915

	-3	
Results of Screening	Yes/No	
Development Satisfies the Trip Generation Trigger	Yes	
Development Satisfies the Location Trigger	Yes	
Development Satisfies the Safety Trigger	Yes	

Module 1.1 - Description of Proposed Development	
Municipal Address	2946 Baseline Road
Description of location	
Land Use	Residential
Development Size	Three towers ranging from 9 to 32-storeys, combined 700 units and 16,300 sq ft of commercial use
Number of Accesses and Locations	Two full movement off Sandcastle Drive, one RIRO off Baseline Rd
Development Phasing	3 Phases; 3 other phases have been completed/TIA done
Buildout Year	Assumed 2030
Sketch Plan / Site Plan	See attached

Module 1.2 - Trip Generation Trigger				
Land Use Type	Townhomes or Apartments			
Development Size	700 Units			
Trip Generation Trigger Met?	Yes			

Module 1.3 - Location Triggers		
Development Proposes a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit, or Spine Bicycle Networks (See Sheet 3)	Yes	Baseline Road is part of a transit priority corridor (isolated measures) and is a spine route.
Development is in a Design Priority Area (DPA) or Transit- oriented Development (TOD) zone. (See Sheet 3)	No	
Location Trigger Met?	Yes	

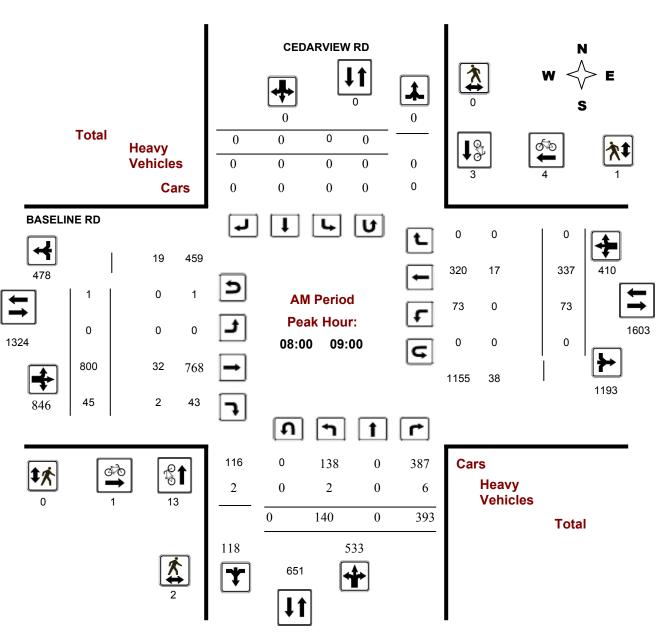
Module 1.4 - Safety Triggers		
Posted Speed Limit on any boundary road	<80	km/h
Horizontal / Vertical Curvature on a boundary street limits sight lines at a proposed driveway	No	
A proposed driveway is within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions) or within auxiliary lanes of an intersection;	Yes	An all movement access on Sandcastle is proposed, which is located approximately 40 meters south of Baseline Road. A RIRO on Baseline is proposed approximately 70 m east of Sandcastle Drive.
A proposed driveway makes use of an existing median break that serves an existing site	No	
There is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development	No	
The development includes a drive-thru facility	No	
Safety Trigger Met?	Yes	

APPENDIX B

TRAFFIC COUNT DATA

Turning Movement Count - Full Study Peak Hour Diagram

BASELINE RD @ CEDARVIEW RD


Survey Date: Wednesday, August 26, 2015

Start Time: 07:00

WO No: 35295

Device: Jamar

Jamar Technologies, Inc

Comments

2017-Aug-21 Page 1 of 4

Turning Movement Count - Full Study Peak Hour Diagram

BASELINE RD @ CEDARVIEW RD

Survey Date: Wednesday, August 26, 2015

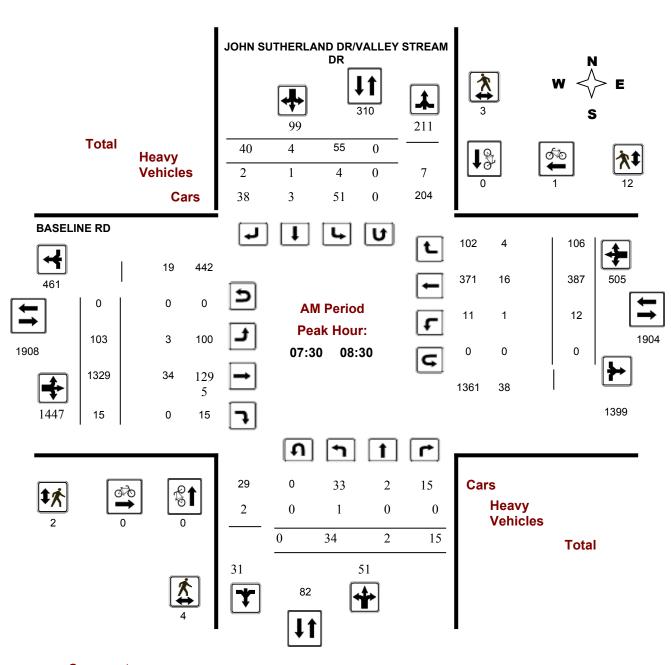
Start Time: 07:00

WO No: 35295

Device: Jamar Technologies,

Inclogies

Comments

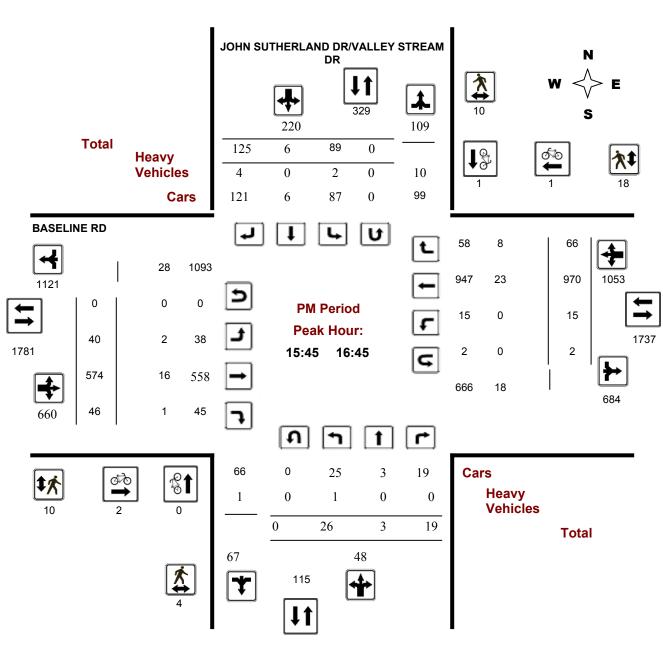

2017-Aug-21 Page 4 of 4

Turning Movement Count - Full Study Peak Hour Diagram

BASELINE RD @ JOHN SUTHERLAND DR/VALLEY STREAM

Survey Date: Wednesday, March 23, 2016 WO No: 35814
Start Time: 07:00 Device: Miovision

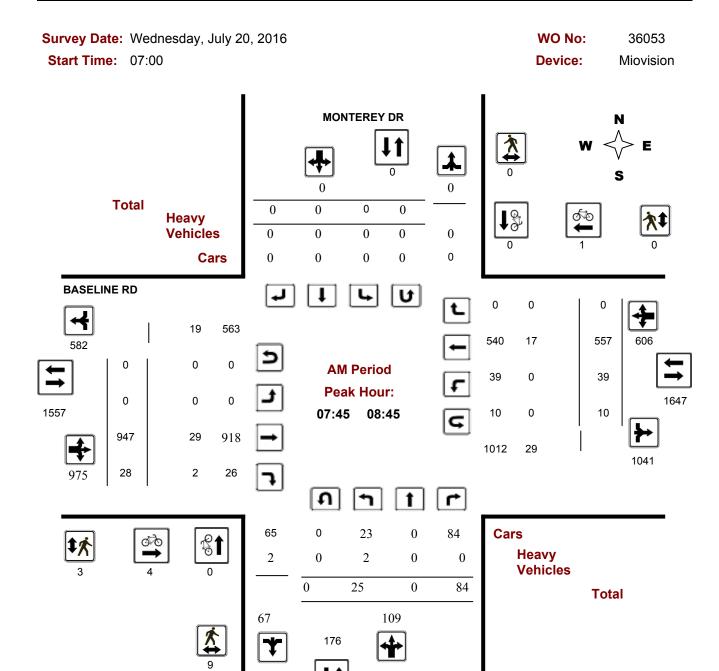
Comments


2017-Aug-21 Page 1 of 4

Turning Movement Count - Full Study Peak Hour Diagram

BASELINE RD @ JOHN SUTHERLAND DR/VALLEY STREAM

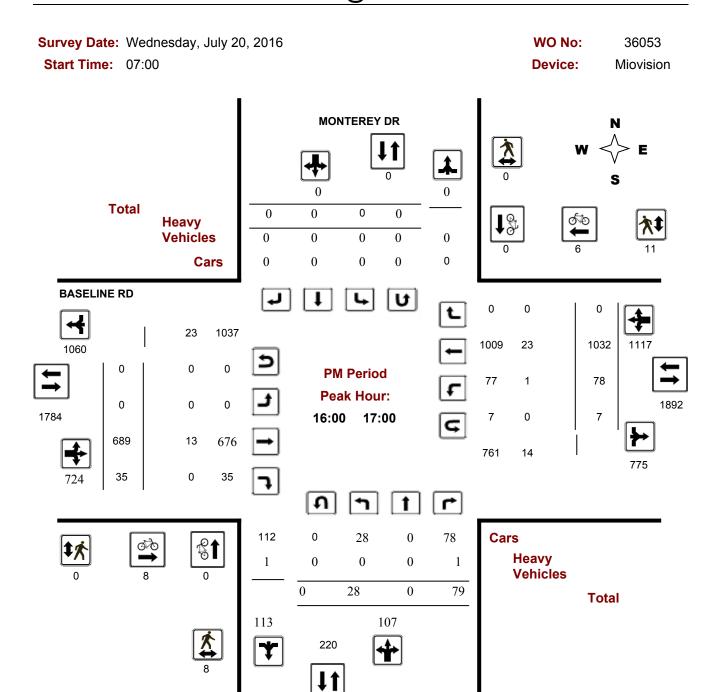
Survey Date: Wednesday, March 23, 2016 WO No: 35814
Start Time: 07:00 Device: Miovision


Comments

2017-Aug-21 Page 4 of 4

Turning Movement Count - Full Study Peak Hour Diagram

BASELINE RD @ MONTEREY DR

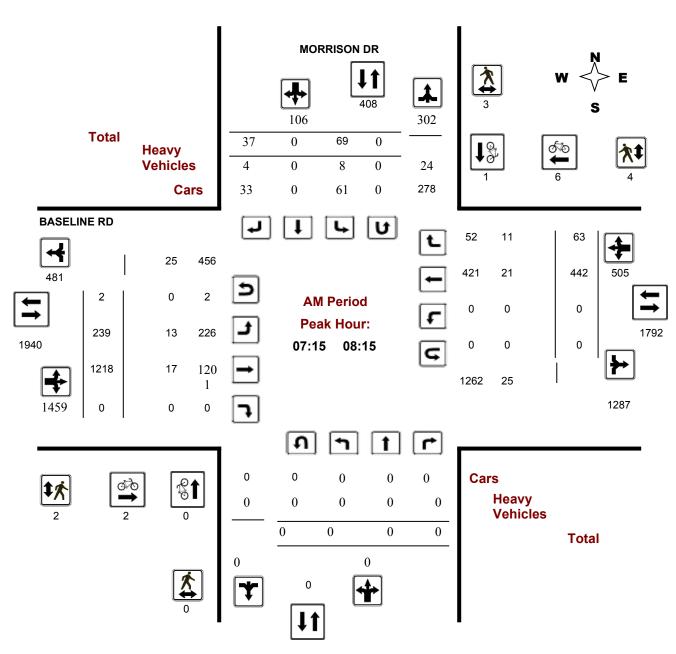

Comments

2017-Aug-21 Page 1 of 4

Turning Movement Count - Full Study Peak Hour Diagram

BASELINE RD @ MONTEREY DR

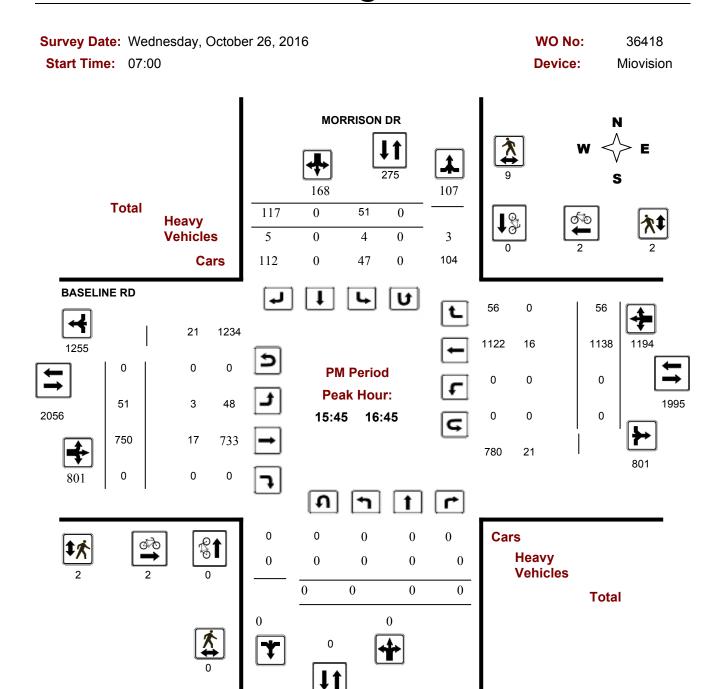
Comments


2017-Aug-21 Page 4 of 4

Turning Movement Count - Full Study Peak Hour Diagram

MORRISON DR @ BASELINE RD

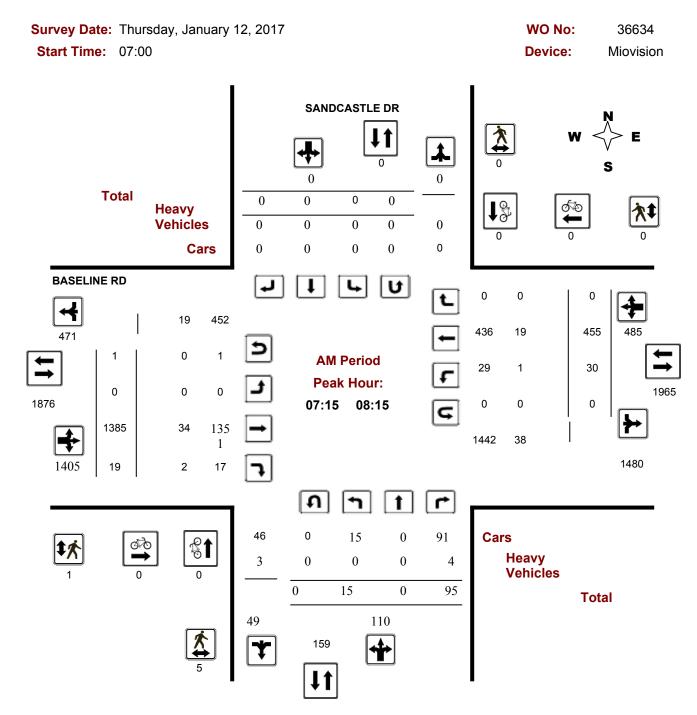
Survey Date: Wednesday, October 26, 2016 WO No: 36418
Start Time: 07:00 Device: Miovision


Comments

2017-Aug-21 Page 1 of 4

Turning Movement Count - Full Study Peak Hour Diagram

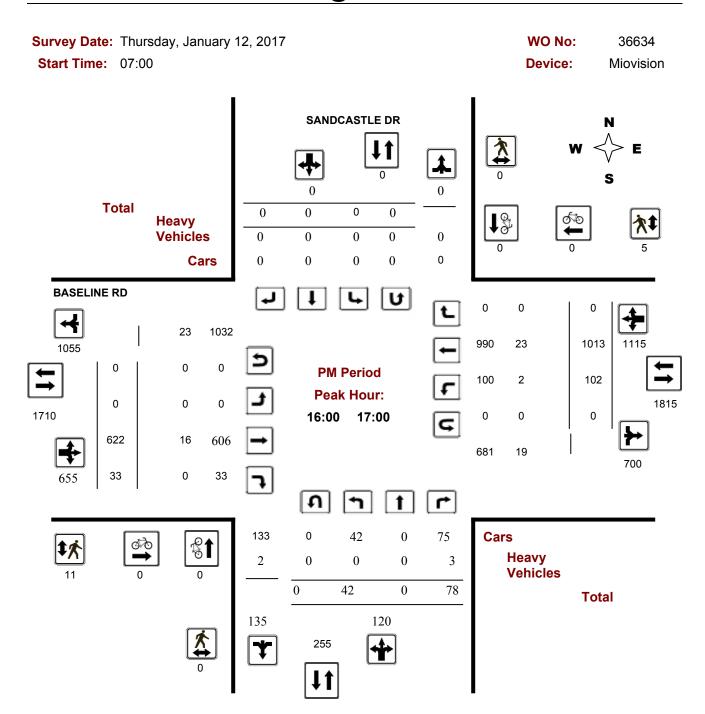
MORRISON DR @ BASELINE RD


Comments

2017-Aug-21 Page 4 of 4

Turning Movement Count - Full Study Peak Hour Diagram

BASELINE RD @ SANDCASTLE DR


Comments

2017-Aug-21 Page 1 of 4

Turning Movement Count - Full Study Peak Hour Diagram

BASELINE RD @ SANDCASTLE DR

Comments

2017-Aug-21 Page 4 of 4

COLLISION DATA

Total Area

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	SMV other	SMV unattended vehicle	Other	Total	
P.D. only	23	8	13	2	0	5	0	3	54	79
Non-fatal injury	5	6	0	1	0	2	0	0	14	2:
Non-reportable	0	0	0	0	0	0	0	0	0	0
Total	28	14	13	3	0	7	0	3	68	10
	#1 0= 410/	#2 ~= 210/	#3 a= 100/	#E on 40/	#7 0= 00/	#4 0= 100/	#7 0= 00/	#F a= 40/		-

21% 0% 100%

BASELINE RD/CEDARVIEW RD

DAULTINE IND	,				
Years	Total #	24 Hr AADT	Davs	Collisions/MEV	
	Collisions	Veh Volume	/-		
2017-2021	15	27,974	1825	0.29	

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	SMV other	SMV unattended vehicle	Other	Total
P.D. only	3	3	4	0	0	1	0	1	12
Non-fatal injury	1	2	0	0	0	0	0	0	3
Non-reportable	0	0	0	0	0	0	0	0	0
Total	4	5	4	0	0	1	0	1	15
	27%	33%	27%	0%	0%	7%	0%	7%	

80% 20% 0% 100%

BASELINE RD/JOHN SUTHERLAND DR/VALLEY STREAM

Years	rs Total # 24 Hr AADT Collisions Veh Volume		Days	Collisions/MEV
2017-2021	13	24,065	1825	0.30

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	SMV other	SMV unattended vehicle	Other	Total
P.D. only	3	4	1	0	0	0	0	0	8
Non-fatal injury	0	3	0	1	0	1	0	0	5
Non-reportable	0	0	0	0	0	0	0	0	0
Total	3	7	1	1	0	1	0	0	13
	23%	54%	8%	8%	0%	8%	0%	0%	

62% 38% 0% 100%

BASELINE RD/SANDCASTLE DR

DAULTINE IND	, 54.15			
Years	Total #	24 Hr AADT	Davs	Collisions/MEV
rears	Collisions	Veh Volume	Days	Comsions/PILV
2017-2021	9	23 142	1825	0.21

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	SMV other	SMV unattended vehicle	Other	Total
P.D. only	3	0	2	1	0	0	0	0	6
Non-fatal injury	2	1	0	0	0	0	0	0	3
Non-reportable	0	0	0	0	0	0	0	0	0
Total	5	1	2	1	0	0	0	0	9
	56%	11%	22%	11%	0%	0%	0%	0%	

67% 33% 0% 100%

BASELINE RD/MONTEREY DR

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2017-2021	0	20.048	1825	0.25

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	SMV other	SMV unattended vehicle	Other	Total	
P.D. only	5	1	1	0	0	1	0	1	9	
Non-fatal injury	0	0	0	0	0	0	0	0	0	
Non-reportable	0	0	0	0	0	0	0	0	0	
Total	5	1	1	0	0	1	0	1	9	
	56%	11%	11%	0%	0%	11%	0%	11%		•

100% 0% 0% 100%

MORRISON DR/BASELINE RD

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2017-2021	11	22,626	1825	0.27

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	SMV other	SMV unattended vehicle	Other	Total	
P.D. only	6	0	1	1	0	1	0	1	10	1
Non-fatal injury	1	0	0	0	0	0	0	0	1	Ī
Non-reportable	0	0	0	0	0	0	0	0	0	Ī
Total	7	0	1	1	0	1	0	1	11	1
	64%	0%	9%	9%	0%	9%	0%	9%		-

91% 9% 0% 100%

ROAD SEGMENTS

BASELINE RD, CEDARVIEW RD to TURN LANE

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
117165275.7943	3	n/a	371.3259829	n/a

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	SMV other	SMV unattended vehicle	Other	Total
P.D. only	0	0	1	0	0	1	0	0	2
Non-fatal injury	0	0	0	0	0	1	0	0	1
Non-reportable	0	0	0	0	0	0	0	0	0
Total	0	0	1	0	0	2	0	0	3
	0%	00/-	220/-	00/-	00/-	670/-	00/-	0.0%	

67% 33% 0% 100%

BASELINE RD Btwn CEDARVIEW & VALLEY STREAM

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
117165275.7943	2	n/a	371.3259829	n/a

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	SMV other	SMV unattended vehicle	Other	Total
P.D. only	1	0	1	0	0	0	0	0	2
Non-fatal injury	0	0	0	0	0	0	0	0	0
Non-reportable	0	0	0	0	0	0	0	0	0
Total	1	0	1	0	0	0	0	0	2
	50%	0%	50%	0%	0%	0%	0%	0%	

100% 0% 0% 100%

BASELINE RD, SANDCASTLE DR to SIOUX CRES

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
117165275 7943	2	n/a	371 3259829	n/a

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	SMV other	SMV unattended vehicle	Other	Total	İ
P.D. only	1	0	0	0	0	1	0	0	2	1
Non-fatal injury	0	0	0	0	0	0	0	0	0	ĺ
Non-reportable	0	0	0	0	0	0	0	0	0	ĺ
Total	1	0	0	0	0	1	0	0	2	
	50%	0%	0%	0%	0%	50%	0%	0%		

100% 0% 0% 100%

BASELINE RD, MONTEREY DR to SANDCASTLE DR

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
117165275.7943	4	n/a	371.3259829	n/a

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	SMV other	SMV unattended vehicle	Other	Total	
P.D. only	1	0	2	0	0	0	0	0	3	7
Non-fatal injury	1	0	0	0	0	0	0	0	1	7
Non-reportable	0	0	0	0	0	0	0	0	0	Ī
Total	2	0	2	0	0	0	0	0	4	1
<u> </u>	50%	0%	50%	0%	0%	0%	0%	0%	•	-

75% 25% 0% 100%

INTERNAL TRIP REDUCTION CALCULATIONS

	NCHRP 684 Internal Trip Capture Estimation Tool										
Project Name:	2942 Baseline Road	Organization:	Parsons								
Project Location:			Performed By:								
Scenario Description:	AM Internal Reduction		Date:	5/10/2023							
Analysis Year:			Checked By:								
Analysis Period:	AM Street Peak Hour		Date:								

	Table 1-	A: Base Vehicle	-Trip Generation E	stimates (Single-Use S	ite Estimate)	
Land Use	Developme	ent Data (For Info	rmation Only)		Estimated Vehicle-Trips ³	
Land USE	ITE LUCs1	Quantity	Units	Total	Entering	Exiting
Office				0		
Retail				26	15	11
Restaurant				0		
Cinema/Entertainment				0		
Residential				107	33	74
Hotel				0		
All Other Land Uses ²				0		
				133	48	85

	Table 2-A: Mode Split and Vehicle Occupancy Estimates										
Land Use		Entering Tri	ps		Exiting Trips						
Land Ose	Veh. Occ.4	% Transit	% Non-Motorized		Veh. Occ.4	% Transit	% Non-Motorized				
Office				Γ							
Retail				Γ							
Restaurant				Γ							
Cinema/Entertainment				Γ							
Residential				Γ							
Hotel											
All Other Land Uses ²											

Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance)										
Origin (Fram)				Destination (To)						
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel				
Office										
Retail										
Restaurant										
Cinema/Entertainment										
Residential										
Hotel										

											
Table 4-A: Internal Person-Trip Origin-Destination Matrix*											
Origin (From)				Destination (To)							
Oligili (Floili)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office		0	0	0	0	0					
Retail	0		0	0	1	0					
Restaurant	0	0		0	0	0					
Cinema/Entertainment	0	0	0		0	0					
Residential	0	1	0	0		0					
Hotel	0	0	0	0	0						

Table 5-A: Computations Summary										
	Total Entering Exiting									
All Person-Trips	133	48	85							
Internal Capture Percentage	3%	4%	2%							
External Vehicle-Trips ⁵	129	46	83							
External Transit-Trips ⁶ 0 0										
External Non-Motorized Trips ⁶	0	0	0							

Table 6-A: Internal Trip Capture Percentages by Land Use									
Land Use Entering Trips Exiting Trip									
Office	N/A	N/A							
Retail	7%	9%							
Restaurant	N/A	N/A							
Cinema/Entertainment	N/A	N/A							
Residential	3%	1%							
Hotel	N/A	N/A							

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

⁴Enter vehicle occupancy assumed in Table 1-A vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made to Tables 5-A, 9-A (O and D). Enter transit, non-motorized percentages that will result with proposed mixed-use project complete.

Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A.

⁶Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

Project Name:	2942 Baseline Road
Analysis Period:	AM Street Peak Hour

	Table 7-A: Conversion of Vehicle-Trip Ends to Person-Trip Ends										
Landilla	Tab	le 7-A (D): Enter	ing Trips			Table 7-A (O): Exiting Trips	3				
Land Use	Veh. Occ.	Vehicle-Trips	Person-Trips*		Veh. Occ.	Vehicle-Trips	Person-Trips*				
Office	1.00	0	0		1.00	0	0				
Retail	1.00	15	15		1.00	11	11				
Restaurant	1.00	0	0		1.00	0	0				
Cinema/Entertainment	1.00	0	0		1.00	0	0				
Residential	1.00	33	33		1.00	74	74				
Hotel	1.00	0	0		1.00	0	0				

	Table 8-A (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)										
Destination (To)											
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office		0	0	0	0	0					
Retail	3		1	0	2	0					
Restaurant	0	0		0	0	0					
Cinema/Entertainment	0	0	0		0	0					
Residential	1	1	15	0		0					
Hotel	0	0	0	0	0						

	Table 8-A (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)										
Ovidin (Evam)		Destination (To)									
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office		5	0	0	0	0					
Retail	0		0	0	1	0					
Restaurant	0	1		0	2	0					
Cinema/Entertainment	0	0	0		0	0					
Residential	0	3	0	0		0					
Hotel	0	1	0	0	0						

	Table 9-A (D): Internal and External Trips Summary (Entering Trips)									
		Person-Trip Esti		li irip	External Trips by Mode*					
Destination Land Use	Internal	External	Total	1	Vehicles ¹	Transit ²	Non-Motorized ²			
Office	0	0	0	1	0	0	0			
Retail	1	14	15		14	0	0			
Restaurant	0	0	0	1	0	0	0			
Cinema/Entertainment	0	0	0		0	0	0			
Residential	1	32	33		32	0	0			
Hotel	0	0	0		0	0	0			
All Other Land Uses ³	0	0	0	1	0	0	0			

Table 9-A (O): Internal and External Trips Summary (Exiting Trips)									
Original and Han	I	Person-Trip Esti	mates			External Trips by Mode*			
Origin Land Use	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²		
Office	0	0	0		0	0	0		
Retail	1	10	11		10	0	0		
Restaurant	0	0	0		0	0	0		
Cinema/Entertainment	0	0	0		0	0	0		
Residential	1	73	74		73	0	0		
Hotel	0	0	0		0	0	0		
All Other Land Uses ³	0	0	0		0	0	0		

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A ²Person-Trips

³Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator *Indicates computation that has been rounded to the nearest whole number.

	NCHRP 684 Internal Trip Capture Estimation Tool								
Project Name:	Parsons								
Project Location:			Performed By:						
Scenario Description:	PM Internal Reduction		Date:	5/10/2023					
Analysis Year:			Checked By:						
Analysis Period:	PM Street Peak Hour		Date:						

	Table 1-	P: Base Vehicle	-Trip Generation I	Estimates (Single-Use	Site Estimate)	
1 111	Developme	ent Data (For Info	ormation Only)		Estimated Vehicle-Trips ³	
Land Use	ITE LUCs1	Quantity	Units	Total	Entering	Exiting
Office				0		
Retail				71	35	36
Restaurant				0		
Cinema/Entertainment				0		
Residential				111	64	47
Hotel				0		
All Other Land Uses ²				0		
				182	99	83

	Table 2-P: Mode Split and Vehicle Occupancy Estimates									
Land Use		Entering Tri	ps			Exiting Trips				
Land Ose	Veh. Occ.4	% Transit	% Non-Motorized		Veh. Occ.4	% Transit	% Non-Motorized			
Office										
Retail				Ī						
Restaurant				Ī						
Cinema/Entertainment										
Residential				Ī						
Hotel										
All Other Land Uses ²										

Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance)										
Origin (From)				Destination (To)						
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel				
Office										
Retail					150					
Restaurant										
Cinema/Entertainment										
Residential		150								
Hotel										

Table 4-P: Internal Person-Trip Origin-Destination Matrix*											
Origin (From)		Destination (To)									
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office		0	0	0	0	0					
Retail	0		0	0	9	0					
Restaurant	0	0		0	0	0					
Cinema/Entertainment	0	0	0		0	0					
Residential	0	4	0	0		0					
Hotel	0	0	0	0	0						

Table 5-P: Computations Summary									
Total Entering Exiting									
All Person-Trips	182	99	83						
Internal Capture Percentage	14%	13%	16%						
External Vehicle-Trips ⁵	156	86	70						
External Transit-Trips ⁶	0	0	0						
External Non-Motorized Trips ⁶	0	0	0						

Table 6-P: Internal Trip Capture Percentages by Land Use								
Land Use	Entering Trips	Exiting Trips						
Office	N/A	N/A						
Retail	11%	25%						
Restaurant	N/A	N/A						
Cinema/Entertainment	N/A	N/A						
Residential	14%	9%						
Hotel	N/A	N/A						

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

Enter vehicle occupancy assumed in Table 1-P vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be

⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P.

⁶Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

Project Name:	2942 Baseline Road
Analysis Period:	PM Street Peak Hour

Table 7-P: Conversion of Vehicle-Trip Ends to Person-Trip Ends									
	Table	e 7-P (D): Entering	g Trips		Table 7-P (O): Exiting Trips				
Land Use	Veh. Occ.	Vehicle-Trips	Person-Trips*		Veh. Occ.	Vehicle-Trips	Person-Trips*		
Office	1.00	0	0		1.00	0	0		
Retail	1.00	35	35		1.00	36	36		
Restaurant	1.00	0	0		1.00	0	0		
Cinema/Entertainment	1.00	0	0		1.00	0	0		
Residential	1.00	64	64		1.00	47	47		
Hotel	1.00	0	0		1.00	0	0		

	Table 8-P (C)): Internal Pers	on-Trip Origin-De	stination Matrix (Compute	d at Origin)	
Origin (From)				Destination (To)		
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		0	0	0	0	0
Retail	1		10	1	9	2
Restaurant	0	0		0	0	0
Cinema/Entertainment	0	0	0		0	0
Residential	2	20	10	0		1
Hotel	0	0	0	0	0	

	Table 8-P (D):	Internal Persor	-Trip Origin-Desti	nation Matrix (Computed a	t Destination)	
Origin (Fram)				Destination (To)		
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		3	0	0	3	0
Retail	0		0	0	29	0
Restaurant	0	18		0	10	0
Cinema/Entertainment	0	1	0		3	0
Residential	0	4	0	0		0
Hotel	0	1	0	0	0	

	Table 9-P (D): Internal and External Trips Summary (Entering Trips)										
Destination Land Use	Pe	erson-Trip Estima	ites		External Trips by Mode*						
Destination Land Ose	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²				
Office	0	0	0		0	0	0				
Retail	4	31	35		31	0	0				
Restaurant	0	0	0		0	0	0				
Cinema/Entertainment	0	0	0		0	0	0				
Residential	9	55	64		55	0	0				
Hotel	0	0	0		0	0	0				
All Other Land Uses ³	0	0	0		0	0	0				

	Ta	ble 9-P (O): Inter	nal and External 1	rips	s Summary (Exiting Tri	ps)		
Origin Land Use	Po	erson-Trip Estima	ites		External Trips by Mode*			
Origin Land Ose	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²	
Office	0	0	0	1 [0	0	0	
Retail	9	27	36		27	0	0	
Restaurant	0	0	0		0	0	0	
Cinema/Entertainment	0	0	0		0	0	0	
Residential	4	43	47		43	0	0	
Hotel	0	0	0		0	0	0	
All Other Land Uses ³	0	0	0		0	0	0	

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P

²Person-Trips

³Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator

*Indicates computation that has been rounded to the nearest whole number.

PROJECTED BACKGROUND GROWTH

Sandcastle/Baseline

8 hrs

Year	Date	Nort	h Leg	Sout	h Leg	East Leg		West Leg		Total
real	Date	SB	NB	NB	SB	WB	EB	EB	WB	iotai
2010	Friday June 11, 2010	0	0	776	795	5658	6117	5810	5332	24488
2011	Tuesday July 19, 2011	0	0	984	790	5483	5285	4773	5165	22480
2012	Wednesday June 27, 2012	0	0	857	802	5868	6221	5828	5530	25106
2015	Wednesday Feb 18, 2015	0	0	852	809	5590	5710	5350	5273	23584
2017	Thursday Jan 12, 2017	0	0	888	800	5780	6430	6041	5479	25418

North Leg

Year		Co	unts			% C	hange	
rear	NB	SB	NB+SB	INT	NB	SB	NB+SB	INT
2010				24488				
2011				22480				-8.2%
2012				25106				11.7%
2015				23584				-6.1%
2017				25418				7.8%

Regression Estimate Regression Estimate 2010 2017

Average Annual Change

West Leg

Year		Cou	ınts		% Change				
rear	EB	WB	EB+WB	INT	EB	WB	EB+WB	INT	
2010	5810	5332	11142	24488					
2011	4773	5165	9938	22480	-17.8%	-3.1%	-10.8%	-8.2%	
2012	5828	5530	11358	25106	22.1%	7.1%	14.3%	11.7%	
2015	5350	5273	10623	23584	-8.2%	-4.6%	-6.5%	-6.1%	
2017	6041	5479	11520	25418	12.9%	3.9%	8.4%	7.8%	

Regression Estimate Regression Estimate 2010 2017 5379 5302 5803 5427 10681 11230

Average Annual Change

1.09%

0.33% 0.72%

East Leg

Year		Cou	ınts		% Change				
i cai	EB	WB	EB+WB	INT	EB	WB	EB+WB	INT	
2010	6117	5658	11775	24488					
2011	5285	5483	10768	22480	-13.6%	-3.1%	-8.6%	-8.2%	
2012	6221	5868	12089	25106	17.7%	7.0%	12.3%	11.7%	
2015	5710	5590	11300	23584	-8.2%	-4.7%	-6.5%	-6.1%	
2017	6430	5780	12210	25418	12.6%	3.4%	8.1%	7.8%	

Regression Estimate Regression Estimate 5776 6188 5632 5734

11409 11921

Average Annual Change

0.99%

0.25% 0.63%

South Leg

Year		Cou	ınts		% Change				
rear	NB	SB	NB+SB	INT	NB	SB	NB+SB	INT	
2010	776	795	1571	24488					
2011	984	790	1774	22480	26.8%	-0.6%	12.9%	-8.2%	
2012	857	802	1659	25106	-12.9%	1.5%	-6.5%	11.7%	
2015	852	809	1661	23584	-0.6%	0.9%	0.1%	-6.1%	
2017	888	800	1688	25418	4.2%	-1.1%	1.6%	7.8%	

Regression Estimate Regression Estimate **Average Annual Change** 2010 2017

2010

2017

862 795 884 805 **0.35% 0.19%** 1657 1689 **0.27%**

Sandcastle/Baseline AM Peak

Year	Data	Nort	h Leg	Sout	h Leg	East	Leg	West Leg		Total
real	Date	SB	NB	NB	SB	WB	EB	EB	WB	IOLAI
2010	Friday June 11, 2010	0	0	106	70	604	1263	1198	575	3816
2011	Tuesday July 19, 2011	0	0	86	60	492	1152	1116	482	3388
2012	Wednesday June 27, 2012	0	0	108	84	539	1239	1198	522	3690
2015	Wednesday Feb 18, 2015	0	0	105	40	454	1321	1242	440	3602
2017	Thursday Jan 12, 2017	0	0	110	49	485	1480	1405	471	4000

North Leg

Year		Co	unts		% Change NB SB NB+SB INT -11.2% 8.9%			
rear	NB	SB	NB+SB	INT	NB	SB	NB+SB	INT
2010				3816				
2011				3388				-11.2%
2012				3690				8.9%
2015				3602				-2.4%
2017				4000				11.0%

Regression Estimate Regression Estimate **Average Annual Change** 2010 2017

-

West Leg

Year		Cou	ınts		% Change			
i cai	EB	WB	EB+WB	INT	EB	WB	EB+WB	INT
2010	1198	575	1773	3816				
2011	1116	482	1598	3388	-6.8%	-16.2%	-9.9%	-11.2%
2012	1198	522	1720	3690	7.3%	8.3%	7.6%	8.9%
2015	1242	440	1682	3602	3.7%	-15.7%	-2.2%	-2.4%
2017	1405	471	1876	4000	13.1%	7.0%	11.5%	11.0%

Regression Estimate Regression Estimate **Average Annual Change** 2010 1137 537 1674 2017 1359 445 1804 2.59% -2.65% 1.08%

East Leg

Year		Coi	unts			% CI	nange	
i cai	EB	WB	EB+WB	INT	EB	WB	EB+WB	INT
2010	1263	604	1867	3816				
2011	1152	492	1644	3388	-8.8%	-18.5%	-11.9%	-11.2%
2012	1239	539	1778	3690	7.6%	9.6%	8.2%	8.9%
2015	1321	454	1775	3602	6.6%	-15.8%	-0.2%	-2.4%
2017	1480	485	1965	4000	12.0%	6.8%	10.7%	11.0%

Regression Estimate Regression Estimate **Average Annual Change** 2010 1182 558 1740 2017 1436 458 1893 **2.81% -2.79% 1.21%**

South Leg

Year		Cor	ınts			% Cr	nange	
i eai	NB	SB	NB+SB	INT	NB	SB	NB+SB	INT
2010	106	70	176	3816				
2011	86	60	146	3388	-18.9%	-14.3%	-17.0%	-11.2%
2012	108	84	192	3690	25.6%	40.0%	31.5%	8.9%
2015	105	40	145	3602	-2.8%	-52.4%	-24.5%	-2.4%
2017	110	49	159	4000	4.8%	22.5%	9.7%	11.0%

Regression Estimate Regression Estimate **Average Annual Change** 2010 98 73 171 2017 109 44 153 **1.49% -6.83% -1.55%**

Sandcastle/Baseline PM Peak

Year	Date	Nort	h Leg	Sout	h Leg	East	: Leg	Wes	t Leg	Total
real	Date	SB	NB	NB	SB	WB	EB	EB	WB	IOLAI
2010	Friday June 11, 2010	0	0	99	107	1047	704	675	1010	3642
2011	Tuesday July 19, 2011	0	0	184	140	991	602	505	938	3360
2012	Wednesday June 27, 2012	0	0	105	135	1123	725	692	1060	3840
2015	Wednesday Feb 18, 2015	0	0	113	130	1160	650	621	1114	3788
2017	Thursday Jan 12, 2017	0	0	120	135	1115	700	655	1055	3780

North Leg

Year		Co	ounts			% C	hange	
Tear	NB	SB	NB+SB	INT	NB	SB	NB+SB	INT
2010				3642				
2011				3360				-7.7%
2012				3840				14.3%
2015				3788				-1.4%
2017				3780				-0.2%

Regression Estimate Regression Estimate 2010 2017

2010

2017

Average Annual Change

West Leg

Year		Cou	ınts			% Ch	nange	
rear	EB	WB	EB+WB	INT	EB	WB	EB+WB	INT
2010	675	1010	1685	3642				
2011	505	938	1443	3360	-25.2%	-7.1%	-14.4%	-7.7%
2012	692	1060	1752	3840	37.0%	13.0%	21.4%	14.3%
2015	621	1114	1735	3788	-10.3%	5.1%	-1.0%	-1.4%
2017	655	1055	1710	3780	5.5%	-5.3%	-1.4%	-0.2%

1611

1738

1.09%

Regression Estimate Regression Estimate Average Annual Change 2010 993 618 2017 645 1092 0.63% 1.37%

East	Lec

Year		Cou	ınts			% Cl	nange	
rear	EB	WB	EB+WB	INT	EB	WB	EB+WB	INT
2010	704	1047	1751	3642				
2011	602	991	1593	3360	-14.5%	-5.3%	-9.0%	-7.7%
2012	725	1123	1848	3840	20.4%	13.3%	16.0%	14.3%
2015	650	1160	1810	3788	-10.3%	3.3%	-2.1%	-1.4%
2017	700	1115	1815	3780	7.7%	-3.9%	0.3%	-0.2%

Regression Estimate Regression Estimate

683 0.26%

1040 1711 1150 1833 1.45% 0.99%

Average Annual Change

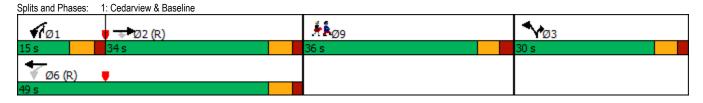
South Leg

Year		Cou	ınts			% CI	hange	
Tear	NB	SB	NB+SB	INT	NB	SB	NB+SB	INT
2010	99	107	206	3642				
2011	184	140	324	3360	85.9%	30.8%	57.3%	-7.7%
2012	105	135	240	3840	-42.9%	-3.6%	-25.9%	14.3%
2015	113	130	243	3788	7.6%	-3.7%	1.3%	-1.4%
2017	120	135	255	3780	6.2%	3.8%	4.9%	-0.2%

Regression Estimate Regression Estimate
Average Annual Change 2010 130 124 254 2017 117 137 254 -1.52% 1.46% 0.00%

SYNCHRO ANALYSIS: EXISTING CONDITIONS

	-	•	1	←	•	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	Ø9
Lane Configurations	44	7	*	44	*	#	
Traffic Volume (vph)	1050	45	73	387	140	393	
Future Volume (vph)	1050	45	73	387	140	393	
Satd. Flow (prot)	3390	1517	1695	3390	1695	1517	
Flt Permitted			0.178		0.950		
Satd. Flow (perm)	3390	1476	318	3390	1695	1517	
Satd. Flow (RTOR)		37				437	
Lane Group Flow (vph)	1167	50	81	430	156	437	
Turn Type	NA	Perm	pm+pt	NA	Prot	pt+ov	
Protected Phases	2		1	6	3	3 1	9
Permitted Phases		2	6				
Detector Phase	2	2	1	6	3	3 1	
Switch Phase							
Minimum Initial (s)	10.0	10.0	5.0	10.0	10.0		10.0
Minimum Split (s)	27.4	27.4	11.2	27.4	16.0		36.0
Total Split (s)	34.0	34.0	15.0	49.0	30.0		36.0
Total Split (%)	29.6%	29.6%	13.0%	42.6%	26.1%		31%
Yellow Time (s)	4.2	4.2	4.2	4.2	4.0		3.7
All-Red Time (s)	1.9	1.9	1.9	1.9	2.0		2.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.1	6.1	6.1	6.1	6.0		
Lead/Lag	Lag	Lag	Lead				
Lead-Lag Optimize?	Yes	Yes	Yes				
Recall Mode	C-Min	C-Min	None	C-Min	None		None
Act Effct Green (s)	73.7	73.7	86.9	86.9	16.0	29.2	
Actuated g/C Ratio	0.64	0.64	0.76	0.76	0.14	0.25	
v/c Ratio	0.54	0.05	0.25	0.17	0.66	0.61	
Control Delay	13.3	4.5	6.2	4.5	59.7	6.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	13.3	4.5	6.2	4.5	59.7	6.9	
LOS	В	Α	Α	Α	Е	Α	
Approach Delay	12.9			4.8	20.8		
Approach LOS	В			Α	С		
Queue Length 50th (m)	69.3	1.0	4.0	12.0	33.8	0.0	
Queue Length 95th (m)	106.8	6.5	9.8	21.3	52.0	22.2	
Internal Link Dist (m)	136.9			418.5	239.0		
Turn Bay Length (m)			100.0			30.0	
Base Capacity (vph)	2172	959	346	2560	353	719	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.54	0.05	0.23	0.17	0.44	0.61	


Intersection Summary

Cycle Length: 115
Actuated Cycle Length: 115
Offset: 30 (26%), Referenced to phase 2:EBT and 6:WBTL, Start of Green
Natural Cycle: 105

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.66 Intersection Signal Delay: 13.2 Intersection Capacity Utilization 66.5%

Intersection LOS: B ICU Level of Service C

Analysis Period (min) 15

Parsons Synchro 11 - Report

•	-	•	₩	•	_	7	ı		*	+	*
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
*	44	7	*	44	7		43-			4	7
103	1329	15	12	387	106	34	2	15	55	4	40
103	1329	15	12	387	106	34	2	15	55	4	40
1695	3390	1517	1695	3390	1517	0	1647	0	0	1704	1517
0.502			0.139				0.760			0.698	
893	3390	1479	248	3390	1475	0	1292	0	0	1235	1496
		45			118		16				44
114	1477	17	13	430	118	0	57	0	0	65	44
Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	Perm
	2			6			8			4	
2		2	6		6	8			4		4
2	2	2	6	6	6	8	8		4	4	4
10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	10.0
					32.2		37.5				37.5
											38.0
											44.7%
											3.3
											3.2
						V.=			0.2		0.0
											6.5
0.2	V. <u>_</u>	0.2	V. <u></u>	V. <u>_</u>	V. <u>_</u>		0.0			0.0	0.0
C-Min	C-Min	C-Min	C-Min	C-Min	C-Min	None	None		None	None	None
						110.10			1100		14.5
											0.17
			0.07		0.11		0.24			0.31	0.15
											8.6
											0.0
											8.6
					-						A
		,,									, ,
				-							
4.6		0.0	0.5		0.0						0.0
											6.4
		0.0	•								U
50.0		140 0	50.0		50.0		200.0				40.0
	2487			2487			488			457	582
											0
										-	0
											0
										-	0.08
	103 103 1695 0.502 893 114 Perm	103 1329 103 1329 1695 3390 0.502 893 3390 114 1477 Perm NA 2 2 2 2 2 10.0 10.0 32.2 32.2 47.0 47.0 55.3% 55.3% 4.2 4.2 2.0 2.0 0.0 0.0 6.2 6.2 C-Min C-Min 62.4 62.4 0.73 0.73 0.17 0.59 8.0 10.5 0.0 0.0 8.0 10.5 A B 10.3 B 4.6 48.6 21.2 #157.6 418.5 50.0 655 2487 0 0 0 0 0 0	103 1329 15 103 1329 15 103 1329 15 10695 3390 1517 0.502 893 3390 1479 45 114 1477 17 Perm NA Perm 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	103 1329 15 12 103 1329 15 12 10695 3390 1517 1695 0.502 0.139 893 3390 1479 248 45 114 1477 17 13 Perm NA Perm Perm 2 2 2 2 6 2 2 2 6 10.0 10.0 10.0 10.0 32.2 32.2 32.2 32.2 47.0 47.0 47.0 47.0 55.3% 55.3% 55.3% 55.3% 4.2 4.2 4.2 4.2 2.0 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 6.2 6.2 6.2 6.2 C-Min C-Min C-Min C-Min 62.4 62.4 62.4 0.73 0.73 0.73 0.73 0.17 0.59 0.02 0.07 8.0 10.5 0.7 9.6 0.0 0.0 0.0 0.0 0.0 8.0 10.5 0.7 9.6 0.0 0.0 0.0 0.0 8.0 10.5 0.7 9.6 0.0 0.0 0.0 0.0 8.0 10.5 0.7 9.6 0.0 0.0 0.0 0.0 8.0 10.5 0.7 9.6 0.0 0.0 0.0 0.0 8.0 10.5 0.7 9.6 0.0 0.0 0.0 0.0 8.0 10.5 0.7 9.6 0.0 0.0 0.0 0.0 8.0 10.5 0.7 9.6 0.0 0.0 0.0 0.0 8.0 10.5 0.7 9.6 0.0 0.0 0.0 0.0 8.0 10.5 0.7 9.6 0.0 0.0 0.0 0.0 8.0 10.5 0.7 9.6 0.0 0.0 0.0 0.0 8.0 10.5 0.7 9.6 0.0 0.0 0.0 0.0 8.0 10.5 0.7 9.6 0.0 0.0 0.0 0.0 8.0 10.5 0.7 9.6 0.0 0.0 0.0 0.0 8.0 10.5 0.7 9.6 0.0 0.0 0.0 0.0 8.0 10.5 0.7 9.6 0.0 0.0 0.0 0.5 21.2 #157.6 0.8 4.6 418.5 50.0 140.0 50.0 655 2487 1097 181 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	103 1329 15 12 387 103 1329 15 12 387 1695 3390 1517 1695 3390 0.502 0.139 893 3390 1479 248 3390 45 114 1477 17 13 430 Perm NA Perm Perm NA 2 6 2 2 2 6 6 2 2 2 6 6 2 2 2 6 6 10.0 10.0 10.0 10.0 10.0 10.0 32.2 32.2 32.2 32.2 32.2 32.2 47.0 47.0 47.0 47.0 47.0 47.0 55.3% 55.3% 55.3% 55.3% 55.3% 4.2 4.2 4.2 4.2 4.2 2.0 2.0 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 6.2 6.2 6.2 6.2 6.2 6.2 C-Min C-Min C-Min C-Min C-Min 62.4 62.4 62.4 0.73 0.73 0.73 0.73 0.73 0.17 0.59 0.02 0.07 0.17 8.0 10.5 0.7 9.6 6.2 0.0 0.0 0.0 0.0 0.0 0.0 8.0 10.5 0.7 9.6 6.2 0.0 0.0 0.0 0.0 0.0 0.0 8.0 10.5 0.7 9.6 6.2 0.0 0.0 0.0 0.0 0.0 0.0 8.0 10.5 0.7 9.6 6.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 10.5 0.7 9.6 6.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 10.5 0.7 9.6 6.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 10.5 0.7 9.6 6.2 4 8 A A A A 10.3 5.4 B A	103 1329 15 12 387 106 103 1329 15 12 387 106 1695 3390 1517 1695 3390 1517 0.502 0.139 893 3390 1479 248 3390 1475 45 118 114 1477 17 13 430 118 Perm NA Perm Perm NA Perm 2 6 6 2 2 2 2 6 6 6 2 2 2 2 6 6 6 2 2 2 2	103 1329 15 12 387 106 34 103 1329 15 12 387 106 34 1695 3390 1517 1695 3390 1517 0 0.502 0.139 893 3390 1479 248 3390 1475 0 45 118 114 1477 17 13 430 118 0 Perm NA Perm Perm NA Perm Perm 2 6 6 2 2 2 6 6 6 8 2 2 2 2 6 6 6 6 8 2 2 2 2 6 6 6 6 8 2 2 2 2 6 6 6 6 8 2 2 2 2 2 6 6 6 6 8 2 10.0 10.0 10.0 10.0 10.0 10.0 10.0 32.2 32.2 32.2 32.2 32.2 32.2 37.5 47.0 47.0 47.0 47.0 47.0 47.0 47.0 38.0 55.3% 55.3% 55.3% 55.3% 55.3% 55.3% 54.7% 4.2 4.2 4.2 4.2 4.2 4.2 4.2 3.3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.2 6.2 6.2 6.2 6.2 6.2 6.2 C-Min C-Min C-Min C-Min C-Min C-Min None 62.4 62.4 62.4 62.4 62.4 62.4 62.4 0.73 0.73 0.73 0.73 0.73 0.73 0.17 0.59 0.02 0.07 0.17 0.11 8.0 10.5 0.7 9.6 6.2 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 10.5 0.7 9.6 6.2 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 10.5 0.7 9.6 6.2 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 10.5 0.7 9.6 6.2 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21.2 #157.6 0.8 4.6 29.7 7.9 418.5 413.1 50.0 140.0 50.0 50.0 50.0 6555 2487 1097 181 2487 1113 0	103	103	103 1329 15 12 387 106 34 2 15 55 103 1329 15 12 387 106 34 2 15 55 1695 3390 1517 1695 3390 1517 0 1647 0 0 0.502 0.139 0.760 893 3390 1479 248 3390 1475 0 1292 0 0 114 1477 17 13 430 118 0 57 0 0 Perm	103 1329 15 12 387 106 34 2 15 55 4 103 1329 15 12 387 106 34 2 15 55 4 1695 3390 1517 1695 3390 1517 0 1647 0 0 1704 0.502

Intersection Summary

Cycle Length: 85

Actuated Cycle Length: 85

Offset: 37 (44%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.59

Intersection Signal Delay: 10.0

Intersection Capacity Utilization 78.1%

Intersection LOS: A ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	-	•	•	•	•	~		
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	Ø9	
Lane Configurations	↑ 13		ሻ	44	W			
Fraffic Volume (vph)	1385	19	30	455	15	95		
future Volume (vph)	1385	19	30	455	15	95		
atd. Flow (prot)	3382	0	1695	3390	1566	0		
It Permitted	0002	v	0.119	0000	0.993	•		
Satd. Flow (perm)	3382	0	212	3390	1566	0		
Satd. Flow (RTOR)	2	v		0000	84	•		
ane Group Flow (vph)	1560	0	33	506	123	0		
Turn Type	NA	v	Perm	NA	Perm	•		
Protected Phases	2		1 01111	6	7 01111		9	
Permitted Phases			6	0	8		3	
Detector Phase	2		6	6	8			
Switch Phase	_		•	•	· ·			
Minimum Initial (s)	10.0		10.0	10.0	10.0		1.0	
Minimum Split (s)	23.9		23.9	23.9	35.5		5.0	
Total Split (s)	47.0		47.0	47.0	38.0		5.0	
Fotal Split (%)	52.2%		52.2%	52.2%	42.2%		6%	
Yellow Time (s)	4.2		4.2	4.2	3.0		2.0	
All-Red Time (s)	1.7		1.7	1.7	3.5		0.0	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0		0.0	
Total Lost Time (s)	5.9		5.9	5.9	6.5			
ead/Lag	0.0		0.0	0.0	0.0			
_ead-Lag Optimize?								
Recall Mode	C-Min		C-Min	C-Min	None		None	
act Effct Green (s)	64.4		64.4	64.4	12.2		140110	
Actuated g/C Ratio	0.72		0.72	0.72	0.14			
/c Ratio	0.64		0.72	0.21	0.43			
Control Delay	9.6		11.1	5.3	17.9			
Queue Delay	0.0		0.0	0.0	0.0			
otal Delay	9.6		11.1	5.3	17.9			
.OS	A		В	Α	В			
Approach Delay	9.6			5.7	17.9			
Approach LOS	A			A	В			
Queue Length 50th (m)	52.7		1.4	10.8	6.3			
Queue Length 95th (m)	134.2		9.5	29.8	18.9			
nternal Link Dist (m)	413.1		5.5	132.4	26.3			
Furn Bay Length (m)	710.1		70.0	102.7	20.0			
Base Capacity (vph)	2420		151	2425	602			
Starvation Cap Reductn	0		0	0	0			
Spillback Cap Reductn	0		0	0	0			
Storage Cap Reductn	0		0	0	0			
Reduced v/c Ratio	0.64		0.22	0.21	0.20			
	0.04		0.22	V.Z I	0.20			
ntersection Summary Cycle Length: 90 Actuated Cycle Length: 90								
Offset: 55 (61%), Referenced to p latural Cycle: 90 Control Type: Actuated-Coordinat		6:WBTL, S	tart of Gree	en				
ontroi Type: Actuated-Coordinat Maximum v/c Ratio: 0.64	Eu							
ntersection Signal Delay: 9.1				ام ا	ersection LC	Λ· Δ		
ntersection Signal Delay, 9,1 ntersection Capacity Utilization 59	0.7%				U Level of S			
Analysis Period (min) 15	J. 1 /0			ICI	o readini 2	CI VICE D		
, ,	tle & Baseline							
J → Ø2 (R)						k øĐ		
4/ S					5 s	•	30	
∮ Ø6 (R)					- 1	3.5	Ø8	

Parsons Synchro 11 - Report

Ø6 (R)

	-	•	•	←	4	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	A 13	LDIX	7	44	ሻ	7
Traffic Volume (vph)	1302	28	49	557	25	84
Future Volume (vph)	1302	28	49	557	25	84
Satd. Flow (prot)	3377	0	1695	3390	1695	1517
Flt Permitted	0011		0.141	0300	0.950	.011
Satd. Flow (perm)	3377	0	251	3390	1691	1517
Satd. Flow (RTOR)	4					23
Lane Group Flow (vph)	1478	0	54	619	28	93
Turn Type	NA		Perm	NA	Perm	Perm
Protected Phases	2			6		
Permitted Phases			6		8	8
Detector Phase	2		6	6	8	8
Switch Phase						
Minimum Initial (s)	10.0		10.0	10.0	10.0	10.0
Minimum Split (s)	34.1		34.1	34.1	35.1	35.1
Total Split (s)	50.0		50.0	50.0	35.0	35.0
Total Split (%)	58.8%		58.8%	58.8%	41.2%	41.2%
Yellow Time (s)	4.2		4.2	4.2	3.0	3.0
All-Red Time (s)	1.9		1.9	1.9	3.1	3.1
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.1		6.1	6.1	6.1	6.1
Lead/Lag	0.1		V.1	V. 1	V.1	Ų.,
Lead-Lag Optimize?						
Recall Mode	C-Min		C-Min	C-Min	None	None
Act Effct Green (s)	63.2		63.2	63.2	14.0	14.0
Actuated g/C Ratio	0.74		0.74	0.74	0.16	0.16
v/c Ratio	0.59		0.74	0.74	0.10	0.10
Control Delay	9.5		19.8	8.8	27.5	25.7
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	9.5		19.8	8.8	27.5	25.7
LOS	9.5 A		19.0 B	0.0 A	27.5 C	23.7 C
Approach Delay	9.5		ь	9.7	26.1	U
Approach LOS	9.5 A			9.7 A	Z0.1	
Queue Length 50th (m)	47.2		2.2	13.0	4.2	10.7
	133.5		2.2	65.2	8.5	18.0
Queue Length 95th (m)	103.0		20.8	384.9	183.4	18.0
Internal Link Dist (m)	103.0		FF 0	304.9		
Turn Bay Length (m)	0540		55.0	0504	30.0	F20
Base Capacity (vph)	2513		186	2521	574	530
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.59		0.29	0.25	0.05	0.18
Intersection Summary						
Cycle Length: 85						
Actuated Cycle Length: 85						
Offset: 65 (76%), Referenced to	phase 2:EDT and	6-WDTI C	Start of Grad	n.		
Natural Cycle: 80	priase z.EDT ariu	O.VVDIL, S	olari di Gree	#11		
	ato d					
Control Type: Actuated-Coordina Maximum v/c Ratio: 0.59	aleu					
				اسا	araastian I (C. D
Intersection Signal Delay: 10.5	04 50/				ersection LO	
Intersection Capacity Utilization (01.5%			IC	U Level of S	ervice B
Analysis Period (min) 15						
Outre and Discours A. Marilana	0. D !'					
Splits and Phases: 4: Montere	y & Baseline					
■Ø2 (R)						
50 s						

Parsons Synchro 11 - Report

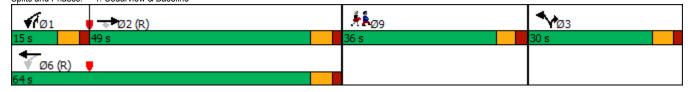
₹/<u>Ø8</u>

	•	→	+	•	/	4	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	*	44	44	7	**		
Traffic Volume (vph)	241	1218	442	63	69	37	
Future Volume (vph)	241	1218	442	63	69	37	
Satd. Flow (prot)	1695	3390	3390	1517	1638	0	
Flt Permitted	0.473				0.968		
Satd. Flow (perm)	842	3390	3390	1472	1635	0	
Satd. Flow (RTOR)				70	35		
Lane Group Flow (vph)	268	1353	491	70	118	0	
Turn Type	Perm	NA	NA	Perm	Perm		
Protected Phases		2	6				
Permitted Phases	2			6	4		
Detector Phase	2	2	6	6	4		
Switch Phase							
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0		
Minimum Split (s)	30.4	30.4	30.4	30.4	36.5		
Total Split (s)	49.0	49.0	49.0	49.0	36.0		
Total Split (%)	57.6%	57.6%	57.6%	57.6%	42.4%		
Yellow Time (s)	4.2	4.2	4.2	4.2	3.3		
All-Red Time (s)	1.7	1.7	1.7	1.7	2.7		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	5.9	5.9	5.9	5.9	6.0		
Lead/Lag							
Lead-Lag Optimize?	C Mire	O MAI:	O MAI:	O Mire	Mess		
Recall Mode	C-Min	C-Min	C-Min	C-Min	None		
Act Effct Green (s)	63.1	63.1	63.1	63.1	14.3		
Actuated g/C Ratio v/c Ratio	0.74 0.43	0.74 0.54	0.74 0.19	0.74 0.06	0.17 0.39		
Control Delay	7.0	5.9	5.8	2.6	24.1		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay	7.0	5.9	5.8	2.6	24.1		
LOS	7.0 A	5.9 A	3.6 A	2.0 A	24.1 C		
Approach Delay	Α	6.1	5.4	^	24.1		
Approach LOS		Α	3.4 A		24.1 C		
Queue Length 50th (m)	12.0	58.8	10.1	0.0	12.8		
Queue Length 95th (m)	64.6	119.5	32.4	5.9	20.4		
Internal Link Dist (m)	04.0	384.9	355.9	5.5	174.0		
Turn Bay Length (m)	55.0	304.3	000.0	160.0	174.0		
Base Capacity (vph)	625	2518	2518	1111	599		
Starvation Cap Reductn	023	0	0	0	0		
Spillback Cap Reductn	0	0	0	0	0		
Storage Cap Reductin	0	0	0	0	0		
Reduced v/c Ratio	0.43	0.54	0.19	0.06	0.20		
	0.40	0.04	0.13	0.00	0.20		
Intersection Summary							
Cycle Length: 85							
Actuated Cycle Length: 85							
Offset: 11 (13%), Referenced to ph	nase 2:EBTL ar	nd 6:WBT, S	Start of Gree	en			
Natural Cycle: 75							
Control Type: Actuated-Coordinate	ed						
Maximum v/c Ratio: 0.54							
Intersection Signal Delay: 6.8					ersection LC		
Intersection Capacity Utilization 58	.3%			ICI	J Level of S	ervice B	
Analysis Period (min) 15							
Splits and Phases: 5: Baseline 8	k Morrison						
A							
→ Ø2 (R)							34
49 s						36 s	
4*							
Ø6 (R)							
40 =							

Parsons Synchro 11 - Report

	-	•	•	←	1	~		
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	Ø9	
Lane Configurations	44	1	*	44	*	1		_
Traffic Volume (vph)	554	149	293	806	101	135		
Future Volume (vph)	554	149	293	806	101	135		
Satd. Flow (prot)	3390	1517	1695	3390	1695	1517		
Flt Permitted			0.343		0.950			
Satd. Flow (perm)	3390	1475	612	3390	1695	1517		
Satd. Flow (RTOR)		166				150		
Lane Group Flow (vph)	616	166	326	896	112	150		
Turn Type	NA	Perm	pm+pt	NA	Prot	pt+ov		
Protected Phases	2		1	6	3	3 1	9	
Permitted Phases		2	6					
Detector Phase	2	2	1	6	3	3 1		
Switch Phase								
Minimum Initial (s)	10.0	10.0	5.0	10.0	10.0		10.0	
Minimum Split (s)	27.4	27.4	11.2	27.4	16.0		36.0	
Total Split (s)	49.0	49.0	15.0	64.0	30.0		36.0	
Total Split (%)	37.7%	37.7%	11.5%	49.2%	23.1%		28%	
Yellow Time (s)	4.2	4.2	4.2	4.2	4.0		3.7	
All-Red Time (s)	1.9	1.9	1.9	1.9	2.0		2.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)	6.1	6.1	6.1	6.1	6.0			
Lead/Lag	Lag	Lag	Lead	***	***			
Lead-Lag Optimize?	Yes	Yes	Yes					
Recall Mode	C-Min	C-Min	None	C-Min	None		None	
Act Effct Green (s)	68.5	68.5	103.7	103.7	14.2	49.4	110110	
Actuated g/C Ratio	0.53	0.53	0.80	0.80	0.11	0.38		
v/c Ratio	0.34	0.19	0.45	0.33	0.61	0.22		
Control Delay	18.6	2.9	5.6	4.2	68.6	4.7		
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		
Total Delay	18.6	2.9	5.6	4.2	68.6	4.7		
LOS	В	2.5 A	3.0 A	Α.Δ	60.0 E	Α.		
Approach Delay	15.2	/1	/\	4.6	32.0	/\		
Approach LOS	В			4.0 A	C			
Queue Length 50th (m)	44.9	0.0	17.0	27.1	27.9	0.0		
Queue Length 95th (m)	61.9	10.9	31.2	42.2	45.7	12.8		
Internal Link Dist (m)	136.9	10.9	31.2	418.5	239.0	12.0		
Turn Bay Length (m)	130.9		100.0	410.5	239.0	30.0		
Base Capacity (vph)	1786	855	730	2704	312	666		
Starvation Cap Reductn	0	000	0	0	0	000		
	0	0	0	0	0	0		
Spillback Cap Reductn Storage Cap Reductn	0	0	0	0	0	0		
Reduced v/c Ratio	0.34	0.19	0.45	0.33	0.36	0.23		
	0.34	0.19	0.45	0.53	0.30	0.23		
Intersection Summary								

Cycle Length: 130


Analysis Period (min) 15

Actuated Cycle Length: 130
Offset: 30 (23%), Referenced to phase 2:EBT and 6:WBTL, Start of Green Natural Cycle: 95

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.61 Intersection Signal Delay: 11.4 Intersection Capacity Utilization 58.1%

Intersection LOS: B ICU Level of Service B

Splits and Phases: 1: Cedarview & Baseline

Synchro 11 - Report Parsons

	•	-	•	•	←	•	4	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	44	7	¥	44	7		43-			વ	7
Traffic Volume (vph)	40	574	46	17	970	66	26	3	19	89	6	125
Future Volume (vph)	40	574	46	17	970	66	26	3	19	89	6	125
Satd. Flow (prot)	1695	3390	1517	1695	3390	1517	0	1625	0	0	1704	1517
Flt Permitted	0.238			0.407				0.790			0.702	
Satd. Flow (perm)	423	3390	1473	724	3390	1457	0	1313	0	0	1234	1484
Satd. Flow (RTOR)			51			73		21				79
Lane Group Flow (vph)	44	638	51	19	1078	73	0	53	0	0	106	139
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	Perm
Protected Phases		2			6			8			4	
Permitted Phases	2		2	6		6	8			4		4
Detector Phase	2	2	2	6	6	6	8	8		4	4	4
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	10.0
Minimum Split (s)	32.2	32.2	32.2	32.2	32.2	32.2	37.5	37.5		37.5	37.5	37.5
Total Split (s)	62.0	62.0	62.0	62.0	62.0	62.0	38.0	38.0		38.0	38.0	38.0
Total Split (%)	62.0%	62.0%	62.0%	62.0%	62.0%	62.0%	38.0%	38.0%		38.0%	38.0%	38.0%
Yellow Time (s)	4.2	4.2	4.2	4.2	4.2	4.2	3.3	3.3		3.3	3.3	3.3
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	3.2	3.2		3.2	3.2	3.2
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	V.=	0.0		0.2	0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	6.2	6.2	6.2		6.5			6.5	6.5
Lead/Lag			<u> </u>									
Lead-Lag Optimize?												
Recall Mode	C-Min	C-Min	C-Min	C-Min	C-Min	C-Min	None	None		None	None	None
Act Effct Green (s)	70.7	70.7	70.7	70.7	70.7	70.7	110110	16.6		110.10	16.6	16.6
Actuated g/C Ratio	0.71	0.71	0.71	0.71	0.71	0.71		0.17			0.17	0.17
v/c Ratio	0.15	0.27	0.05	0.04	0.45	0.07		0.23			0.52	0.45
Control Delay	8.7	6.7	2.6	7.2	8.2	2.3		23.9			45.2	20.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	0.0
Total Delay	8.7	6.7	2.6	7.2	8.2	2.3		23.9			45.2	20.3
LOS	A	Α	Α.	Α.Δ	Α	Α		C			D	20.0 C
Approach Delay	, ,	6.5	,,	, , , , , , , , , , , , , , , , , , ,	7.8	/ \		23.9			31.1	
Approach LOS		0.5 A			7.0 A			23.3 C			C C	
Queue Length 50th (m)	2.1	18.0	0.0	0.9	36.2	0.0		5.5			19.6	10.6
Queue Length 95th (m)	10.2	43.7	4.8	4.8	84.3	5.7		13.2			29.3	22.6
Internal Link Dist (m)	10.2	418.5	4.0	4.0	413.1	5.1		206.5			123.4	22.0
Turn Bay Length (m)	50.0	410.3	140.0	50.0	410.1	50.0		200.3			120.4	40.0
Base Capacity (vph)	299	2398	1056	512	2398	1051		427			388	521
Starvation Cap Reductn	0	2390	0	0	2390	0		0			0	0
Spillback Cap Reductin	0	0	0	0	0	0		0			0	0
Storage Cap Reductn	0	0	0	0	0	0		0			0	0
Reduced v/c Ratio	0.15	0.27	0.05	0.04	0.45	0.07		0.12			0.27	0.27
Noudoca Wo Natio	0.13	0.21	0.03	0.04	0.40	0.07		0.12			0.21	0.27

Intersection Summary

Cycle Length: 100 Actuated Cycle Length: 100

Offset: 37 (37%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.52 Intersection Signal Delay: 10.4 Intersection Capacity Utilization 74.5%

Intersection LOS: B ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 2: Valley Stream/John Sutherland & Baseline

₩ Ø6 (R)


	-	\rightarrow	•	•	1	/		
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	Ø9	
Lane Configurations	♦ %		*	44	W		10.0	
Traffic Volume (vph)	622	33	102	1013	42	78		
Future Volume (vph)	622	33	102	1013	42	78		
Satd. Flow (prot)	3359	0	1695	3390	1579	0		
Flt Permitted	0000		0.367	0000	0.983	•		
Satd. Flow (perm)	3359	0	655	3390	1570	0		
Satd. Flow (RTOR)	8			0000	87	· ·		
Lane Group Flow (vph)	728	0	113	1126	134	0		
Turn Type	NA		Perm	NA	Perm			
Protected Phases	2			6			9	
Permitted Phases			6		8			
Detector Phase	2		6	6	8			
Switch Phase								
Minimum Initial (s)	10.0		10.0	10.0	10.0		1.0	
Minimum Split (s)	23.9		23.9	23.9	35.5		5.0	
Total Split (s)	62.0		62.0	62.0	38.0		5.0	
Total Split (%)	59.0%		59.0%	59.0%	36.2%		5%	
Yellow Time (s)	4.2		4.2	4.2	3.0		2.0	
All-Red Time (s)	1.7		1.7	1.7	3.5		0.0	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0			
Total Lost Time (s)	5.9		5.9	5.9	6.5			
Lead/Lag								
Lead-Lag Optimize?								
Recall Mode	C-Min		C-Min	C-Min	None		None	
Act Effct Green (s)	78.7		78.7	78.7	12.4			
Actuated g/C Ratio	0.75		0.75	0.75	0.12			
v/c Ratio	0.29		0.23	0.44	0.51			
Control Delay	5.4		6.9	6.6	23.6			
Queue Delay	0.0		0.0	0.0	0.0			
Total Delay	5.4		6.9	6.6	23.6			
LOS	Α		Α	Α	С			
Approach Delay	5.4			6.6	23.6			
Approach LOS	Α			Α	С			
Queue Length 50th (m)	16.7		4.8	30.8	9.1			
Queue Length 95th (m)	46.4		20.4	82.2	24.4			
Internal Link Dist (m)	413.1			132.4	26.3			
Turn Bay Length (m)			70.0					
Base Capacity (vph)	2518		490	2539	531			
Starvation Cap Reductn	0		0	0	0			
Spillback Cap Reductn	0		0	0	0			
Storage Cap Reductn	0		0	0	0			
Reduced v/c Ratio	0.29		0.23	0.44	0.25			
Intersection Summary								
Cycle Length: 105								
Actuated Cycle Length: 105								
Offset: 55 (52%), Referenced to pl	hasa 2:EDT and	6-M/DTI	Start of Grac	n				
Natural Cycle: 75	liase Z.LDT allu	U.VVDTL,	otali di Giec	11				
Control Type: Actuated-Coordinate	nd							
Maximum v/c Ratio: 0.51	s u							
Intersection Signal Delay: 7.3				Int	ersection LC	nQ· Δ		
Intersection Capacity Utilization 52	2 6%				J Level of So			
Analysis Period (min) 15	2.0 70			101	J Level of Si	ervice A		
miaiyaia Feliou (IIIIII) 13								
Splits and Phases: 3: Sandcastl	e & Baseline							
•						2	1	
→ Ø2 (R)						Ħ	k g9	
62 s						5 s		
←							-	

	→	•	•	←	4	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑ Ъ		ች	44	ች	7
Traffic Volume (vph)	689	35	85	1032	28	79
Future Volume (vph)	689	35	85	1032	28	79
Satd. Flow (prot)	3361	0	1695	3390	1695	1517
Flt Permitted	0001		0.342	0000	0.950	.017
Satd. Flow (perm)	3361	0	608	3390	1690	1482
Satd. Flow (RTOR)	9	•	000	0000	1000	88
Lane Group Flow (vph)	805	0	94	1147	31	88
Turn Type	NA	U	Perm	NA	Perm	Perm
Protected Phases	2		ı Gilli	6	1 61111	1 61111
Permitted Phases			6	U	8	8
Detector Phase	2		6	6	8	8
Switch Phase			0	0	0	0
	10.0		10.0	10.0	10.0	10.0
Minimum Initial (s)						
Minimum Split (s)	34.1		34.1	34.1	35.1	35.1
Total Split (s)	65.0		65.0	65.0	35.0	35.0
Total Split (%)	65.0%		65.0%	65.0%	35.0%	35.0%
Yellow Time (s)	4.2		4.2	4.2	3.0	3.0
All-Red Time (s)	1.9		1.9	1.9	3.1	3.1
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.1		6.1	6.1	6.1	6.1
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Min		C-Min	C-Min	None	None
Act Effct Green (s)	78.4		78.4	78.4	13.8	13.8
Actuated g/C Ratio	0.78		0.78	0.78	0.14	0.14
v/c Ratio	0.31		0.20	0.43	0.13	0.31
Control Delay	5.3		9.4	10.1	35.9	10.1
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	5.3		9.4	10.1	35.9	10.1
LOS	3.5 A		9.4 A	В	33.9 D	В
Approach Delay	5.3		^	10.1	16.8	D
Approach LOS	5.3 A			10.1 B	16.8 B	
			7.0		5.6	0.0
Queue Length 50th (m)	18.7		7.9	63.3		0.0
Queue Length 95th (m)	53.3		27.4	130.8	11.1	10.8
Internal Link Dist (m)	103.0		^	384.9	183.4	
Turn Bay Length (m)			55.0		30.0	
Base Capacity (vph)	2638		477	2659	488	490
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.31		0.20	0.43	0.06	0.18
Intersection Summary						
Cycle Length: 100						
Actuated Cycle Length: 100						
Offset: 65 (65%), Referenced to	phase 2:EBT and	6:WBTL, S	Start of Gree	en		
Natural Cycle: 70						
Control Type: Actuated-Coordin	ated					
Maximum v/c Ratio: 0.43						
Intersection Signal Delay: 8.7				Int	ersection Lo	OS: A
Intersection Capacity Utilization	60.1%			ICI	U Level of S	ervice B
Analysis Period (min) 15						
, ,						
Splits and Phases: 4: Montered	ey & Baseline					
	oy a 20000					
→ Ø2 (R)						
- 62 (K)						
65 S						
4-						
● ♥ Ø6 (R)						
CE -						

	ၨ	→	—	4	\	4	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	- 75	44	44	7	W		
Traffic Volume (vph)	51	750	1138	56	51	117	
Future Volume (vph)	51	750	1138	56	51	117	
Satd. Flow (prot)	1695	3390	3390	1517	1577	0	
Flt Permitted	0.187	0000	0000	1017	0.985	U	
Satd. Flow (perm)	333	3390	3390	1457	1576	0	
Satd. Flow (RTOR)	333	3330	3330	62	57	U	
Lane Group Flow (vph)	57	833	1264	62	187	0	
		NA			Perm	U	
Turn Type	Perm	NA 2	NA	Perm	Pellii		
Protected Phases	0	2	6	_	4		
Permitted Phases	2	•	^	6	4		
Detector Phase	2	2	6	6	4		
Switch Phase							
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0		
Minimum Split (s)	30.4	30.4	30.4	30.4	36.5		
Total Split (s)	64.0	64.0	64.0	64.0	36.0		
Total Split (%)	64.0%	64.0%	64.0%	64.0%	36.0%		
Yellow Time (s)	4.2	4.2	4.2	4.2	3.3		
All-Red Time (s)	1.7	1.7	1.7	1.7	2.7		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	5.9	5.9	5.9	5.9	6.0		
Lead/Lag							
Lead-Lag Optimize?							
Recall Mode	C-Min	C-Min	C-Min	C-Min	None		
Act Effct Green (s)	71.8	71.8	71.8	71.8	16.3		
Actuated g/C Ratio	0.72	0.72	0.72	0.72	0.16		
v/c Ratio	0.72	0.72	0.72	0.72	0.10		
Control Delay	15.5	9.8	8.5	2.2	34.1		
•							
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay	15.5	9.8	8.5	2.2	34.1		
LOS	В	Α	A	Α	С		
Approach Delay		10.2	8.2		34.1		
Approach LOS		В	Α		С		
Queue Length 50th (m)	2.9	24.4	44.4	0.0	24.1		
Queue Length 95th (m)	23.4	97.4	101.6	5.1	37.7		
Internal Link Dist (m)		384.9	355.9		174.0		
Turn Bay Length (m)	55.0			160.0			
Base Capacity (vph)	239	2432	2432	1063	512		
Starvation Cap Reductn	0	0	0	0	0		
Spillback Cap Reductn	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0		
Reduced v/c Ratio	0.24	0.34	0.52	0.06	0.37		
Intersection Summary							
Cycle Length: 100							
Actuated Cycle Length: 100							
	0 EDTL -	. I C MIDT (N-1-10				
Offset: 11 (11%), Referenced to phase	Z:EBIL a	na 6:VVB1, 8	Start of Gree	en			
Natural Cycle: 70							
Control Type: Actuated-Coordinated							
Maximum v/c Ratio: 0.61							
Intersection Signal Delay: 11.0					ersection LC		
Intersection Capacity Utilization 66.3%				ICI	J Level of S	ervice C	
Analysis Period (min) 15							
Outre and Phones - F. Booking & Ma							
Splits and Phases: 5: Baseline & Mo	rrison						
- A 32 (D)							Total Control of the
→ Ø2 (R)							[®] Ø4
64 s							36 s
4.							
Ø6 (R)							1

TRUCK TURNING TEMPLATES

MMLOS ANALYSIS: ROAD SEGMENTS

Multi-Modal Level of Service - Segments Form

Consultant	Parsons	Project	477915
Scenario	2946 Baseline	Date	23-May-23
Comments			

SEGMENTS		Street A	Baseline Both Sides	Sandcastle West Side	Sandcastle East Side	Sandcastle Future Both Sides	Section 5	Mitigation 6	Section 7	Section 8	Section 9
	Sidewalk Width Boulevard Width		≥ 2 m < 0.5	1.5 m 0.5 - 2 m	no sidewalk n/a	≥ 2 m < 0.5	Ü	≥ 2 m > 2 m			Ü
	Avg Daily Curb Lane Traffic Volume		> 3000	≤ 3000	≤ 3000	≤ 3000		> 3000			
⊊	Operating Speed		> 60 km/h	> 30 to 50 km/h		 		> 60 km/h			
Pedestrian	On-Street Parking		no	no	yes	yes		no			
es es	Exposure to Traffic PLoS	-	F	С	F	В	•	D	-	-	-
be d	Effective Sidewalk Width Pedestrian Volume										
ш.	Crowding PLoS		-	-	-	-	-	-	-	-	-
	Level of Service		-	-	-	-	-	-		-	•
	Type of Cycling Facility		Curbside Bike Lane	Mixed Traffic	Mixed Traffic	Mixed Traffic					
	Number of Travel Lanes		2 ea. dir. (w median)	≤ 2 (no centreline)	≤ 2 (no centreline)	≤ 2 (no centreline)					
	Operating Speed		> 70 km/h	>40 to <50 km/h							
	# of Lanes & Operating Speed LoS		E	В	В	В	-	-	-	-	-
Bicycle	Bike Lane (+ Parking Lane) Width		≥1.5 to <1.8 m								
Š	Bike Lane Width LoS	E	В	-	-	-	-	-	-	-	-
適	Bike Lane Blockages		Rare								
	Blockage LoS Median Refuge Width (no median = < 1.8 m)		< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge	-	-	-	-	-
	No. of Lanes at Unsignalized Crossing		≤ 3 lanes	≤ 3 lanes	≤ 3 lanes	≤ 3 lanes					
	Sidestreet Operating Speed		>40 to 50 km/h	>40 to 50 km/h	>40 to 50 km/h	>40 to 50 km/h					
	Unsignalized Crossing - Lowest LoS		В	В	В	В	-	-	-	-	-
	Level of Service		E	В	В	В	-	-	-	-	-
Ħ	Facility Type		Mixed Traffic					Segregated ROW			
Transit	Friction or Ratio Transit:Posted Speed	D	Vt/Vp ≥ 0.8								_
T	Level of Service		D	-	-	-	-	Α	-	-	-
	Truck Lane Width		≤ 3.5 m								
<u>3</u>	Travel Lanes per Direction	Λ	> 1								
Truck	Level of Service	Α	Α	-	-	-	-	-	-	-	-

TDM CHECKLIST

TDM-Supportive Development Design and Infrastructure Checklist:

Residential Developments (multi-family or condominium)

Legend The Official Plan or Zoning By-law provides related guidance that must be followed The measure is generally feasible and effective, and in most cases would benefit the development and its users The measure could maximize support for users of sustainable modes, and optimize development performance

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	no parking between front door and street
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	☑ buildings near sidewalk
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	☑ modern design building
	1.2	Facilities for walking & cycling	
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	sidewalks connect to existing bus stops on Baseline Road
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official Plan policy 4.3.12)	sidewalks connect building entrance to existing facilities connecting to transit

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	sidewalks built to city standards.
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	sidewalks built to city standards.
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and onroad cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	sidewalks connect building entrance to existing facilities connecting to transit
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	✓ refer to comment above
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	existing street lighting and bus shelter
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	✓ refer to landscape plan
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	☑ signage will be added

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILITY	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	mostly located indoors in sheltered secure area
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well-used areas (see Zoning By-law Section 111)	☑ exceeds minimum
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	☑ meets bylaw
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of resident-owned bicycles, plus the expected peak number of visitor cyclists	
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single residential building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	✓ meets bylaw
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to at least the number of units at condominiums or multifamily residential developments	
	2.3	Bicycle repair station	
BETTER	2.3.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	shelter and lighting already exist on Baseline Road
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	drop off layby on east side of Tower 6
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide up to three carshare parking spaces in an R3, R4 or R5 Zone for specified residential uses (see Zoning By-law Section 94)	☐ carshare proposed and being investigated
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	bikeshare proposed and being investigated
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	less provided and variance applied for.
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	✓ visitor and resident parking separated
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)	✓ shared parking provisions proposed
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking (see Zoning By-law Section 111)	lockers and bike storage proposed. Car parking numbers reduced from minimum by-law
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Provide separate areas for short-term and long-term parking (using signage or physical barriers) to permit access controls and simplify enforcement (i.e. to discourage residents from parking in visitor spaces, and vice versa)	visitor and resident parking separated, with commercial located outdoors

TDM Measures Checklist:

Residential Developments (multi-family, condominium or subdivision)

Legend The measure is generally feasible and effective, and in most cases would benefit the development and its users The measure could maximize support for users of sustainable modes, and optimize development performance The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDN	measures: Residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC	★ 1.1.1	Designate an internal coordinator, or contract with an external coordinator	
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & des	tinations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major	
		entrances (multi-family, condominium)	
	2.2		

	TDM	measures: Residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances (multi-family, condominium)	\
BETTER	3.1.2	Provide real-time arrival information display at entrances (multi-family, condominium)	
	3.2	Transit fare incentives	
BASIC ★	3.2.1	Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit	
BETTER	3.2.2	Offer at least one year of free monthly transit passes on residence purchase/move-in	
	3.3	Enhanced public transit service	
BETTER ★	3.3.1	Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels (subdivision)	
	3.4	Private transit service	
BETTER	3.4.1	Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)	
	4.	CARSHARING & BIKESHARING	
	4.1	Bikeshare stations & memberships	
BETTER	4.1.1	Contract with provider to install on-site bikeshare station (<i>multi-family</i>)	
BETTER	4.1.2	Provide residents with bikeshare memberships, either free or subsidized (multi-family)	
	4.2	Carshare vehicles & memberships	:
BETTER	4.2.1	Contract with provider to install on-site carshare vehicles and promote their use by residents	✓
BETTER	4.2.2	Provide residents with carshare memberships, either free or subsidized	
	5.	PARKING	
	5.1	Priced parking	
BASIC *	5.1.1	Unbundle parking cost from purchase price (condominium)	
BASIC ★	5.1.2	Unbundle parking cost from monthly rent (multi-family)	

	TDM	measures: Residential developments	Check if proposed & add descriptions
	6.	TDM MARKETING & COMMUNICATIONS	
	6.1	Multimodal travel information	
BASIC *	6.1.1	Provide a multimodal travel option information package to new residents	
	6.2	Personalized trip planning	
BETTER ★	6.2.1	Offer personalized trip planning to new residents	\square

TDM-Supportive Development Design and Infrastructure Checklist:

Non-Residential Developments (office, institutional, retail or industrial)

Legend			
REQUIRED	The Official Plan or Zoning By-law provides related guidance that must be followed		
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users		
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance		

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	lacktriangledown
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	▽
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	
	1.2	Facilities for walking & cycling	
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official Plan policy 4.3.12)	

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and onroad cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	\checkmark
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILI	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well-used areas (see Zoning By-law Section 111)	▽
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met), plus the expected peak number of customer/visitor cyclists	
BETTER	2.1.5	Provide bicycle parking spaces equivalent to the expected number of commuter and customer/visitor cyclists, plus an additional buffer (e.g. 25 percent extra) to encourage other cyclists and ensure adequate capacity in peak cycling season	
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single office building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met)	
	2.3	Shower & change facilities	
BASIC	2.3.1	Provide shower and change facilities for the use of active commuters	
BETTER	2.3.2	In addition to shower and change facilities, provide dedicated lockers, grooming stations, drying racks and laundry facilities for the use of active commuters	
	2.4	Bicycle repair station	
BETTER	2.4.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	

	TDM-supportive design & infrastructure measures: Non-residential developments		Check if completed & add descriptions, explanations or plan/drawing references
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	M
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	,
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	
	4.2	Carpool parking	
BASIC	4.2.1	Provide signed parking spaces for carpools in a priority location close to a major building entrance, sufficient in number to accommodate the mode share target for carpools	
BETTER	4.2.2	At large developments, provide spaces for carpools in a separate, access-controlled parking area to simplify enforcement	
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide carshare parking spaces in permitted non-residential zones, occupying either required or provided parking spaces (see Zoning By-law Section 94)	
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	

	TDM-supportive design & infrastructure measures: Non-residential developments			Check if completed & descriptions, explanations plan/drawing references
	6.	PARKING		
	6.1	Number of parking spaces	,	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	\square	variance applied
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	Ø	
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)	∀	
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking (see Zoning By-law Section 111)		
	6.2	Separate long-term & short-term parking areas		
BETTER	6.2.1	Separate short-term and long-term parking areas using signage or physical barriers, to permit access controls and simplify enforcement (i.e. to discourage employees from parking in visitor spaces, and vice versa)	V	
	7.	OTHER		
	7.1	On-site amenities to minimize off-site trips		
BETTER	7.1.1	Provide on-site amenities to minimize mid-day or mid-commute errands	☑′	daycare envisioned in Tower 4

TDM Measures Checklist:

Non-Residential Developments (office, institutional, retail or industrial)

Legend The measure is generally feasible and effective, and in most cases would benefit the development and its users The measure could maximize support for users of sustainable modes, and optimize development performance The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC	★ 1.1.1	Designate an internal coordinator, or contract with an external coordinator	
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & destin	ations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances	
	2.2	Bicycle skills training	
		Commuter travel	
BETTER	★ 2.2.1	Offer on-site cycling courses for commuters, or subsidize off-site courses	\square
	2.3	Valet bike parking	
		Visitor travel	
BETTER	2.3.1	Offer secure valet bike parking during public events when demand exceeds fixed supply (e.g. for festivals, concerts, games)	

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances	
BASIC	3.1.2	Provide online links to OC Transpo and STO information	\square
BETTER	3.1.3	Provide real-time arrival information display at entrances	
	3.2	Transit fare incentives	
		Commuter travel	
BETTER	3.2.1	Offer preloaded PRESTO cards to encourage commuters to use transit	\square
BETTER *	3.2.2	Subsidize or reimburse monthly transit pass purchases by employees	
		Visitor travel	
BETTER	3.2.3	Arrange inclusion of same-day transit fare in price of tickets (e.g. for festivals, concerts, games)	
	3.3	Enhanced public transit service	
		Commuter travel	
BETTER	3.3.1	Contract with OC Transpo to provide enhanced transit services (e.g. for shift changes, weekends)	
		Visitor travel	
BETTER	3.3.2	Contract with OC Transpo to provide enhanced transit services (e.g. for festivals, concerts, games)	
	3.4	Private transit service	
		Commuter travel	
BETTER	3.4.1	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for shift changes, weekends)	
		Visitor travel	
BETTER	3.4.2	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for festivals, concerts, games)	

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	4.	RIDESHARING	
	4.1	Ridematching service	
		Commuter travel	
BASIC	4.1.1	Provide a dedicated ridematching portal at OttawaRideMatch.com	
	4.2	Carpool parking price incentives	
		Commuter travel	
BETTER	4.2.1	Provide discounts on parking costs for registered carpools	
	4.3	Vanpool service	
		Commuter travel	
BETTER	4.3.1	Provide a vanpooling service for long-distance commuters	
	5.	CARSHARING & BIKESHARING	
	5.1	Bikeshare stations & memberships	<u> </u>
BETTER	5.1.1	Contract with provider to install on-site bikeshare station for use by commuters and visitors	
		Commuter travel	
BETTER	5.1.2	Provide employees with bikeshare memberships for local business travel	☑∕
	5.2	Carshare vehicles & memberships	
		Commuter travel	
BETTER	5.2.1	Contract with provider to install on-site carshare vehicles and promote their use by tenants	
BETTER	5.2.2	Provide employees with carshare memberships for local business travel	
	6.	PARKING	
	6.1	Priced parking	
		Commuter travel	
BASIC 🖈	6.1.1	Charge for long-term parking (daily, weekly, monthly)	
BASIC	6.1.2	Unbundle parking cost from lease rates at multi-tenant sites	
		Visitor travel	
BETTER	6.1.3	Charge for short-term parking (hourly)	

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	7.	TDM MARKETING & COMMUNICATIONS	
	7.1	Multimodal travel information	
		Commuter travel	
BASIC *	7.1.1	Provide a multimodal travel option information package to new/relocating employees and students	\square
	•	Visitor travel	:
BETTER ★	7.1.2	Include multimodal travel option information in invitations or advertising that attract visitors or customers (e.g. for festivals, concerts, games)	
	7.2	Personalized trip planning	
		Commuter travel	
BETTER ★	7.2.1	Offer personalized trip planning to new/relocating employees	
	7.3	Promotions	
		Commuter travel	
BETTER	7.3.1	Deliver promotions and incentives to maintain awareness, build understanding, and encourage trial of sustainable modes	
	8.	OTHER INCENTIVES & AMENITIES	
	8.1	Emergency ride home	
		Commuter travel	
BETTER ★	8.1.1	Provide emergency ride home service to non-driving commuters	
	8.2	Alternative work arrangements	
		Commuter travel	
BASIC ★	8.2.1	Encourage flexible work hours	
BETTER	8.2.2	Encourage compressed workweeks	
BETTER 🛨	8.2.3	Encourage telework	
	8.3	Local business travel options	
		Commuter travel	
BASIC *			
	8.3.1	Provide local business travel options that minimize the need for employees to bring a personal car to work	
	8.3.1 8.4		
		need for employees to bring a personal car to work	
BETTER		need for employees to bring a personal car to work Commuter incentives	
BETTER	8.4	need for employees to bring a personal car to work Commuter incentives Commuter travel Offer employees a taxable, mode-neutral commuting	
BETTER	8.4 8.4.1	need for employees to bring a personal car to work Commuter incentives Commuter travel Offer employees a taxable, mode-neutral commuting allowance	

REVIEW OF NETWORK CONCEPT CALCULATIONS

Time	Number of Units	Type of Unit	District			AM peak			PM peak		AM peak	PM peak
Peak Hour	319	High-Rise	Bayshore/Cedarview		In	Out	Total	In	Out	Total	Mode Share	Mode Share
				Auto Driver	15	34	49	29	21	51	40%	40%
				Auto Passenger	5	10	15	11	8	19	12%	15%
				Transit	17	37	54	25	18	44	38%	33%
				Cycling	1	2	2	1	1	2	2%	1%
				Pedestrian	4	8	12	10	7	17	8%	11%
				Total	41	91	132	76	55	132	100%	100%

MMLOS ANALYSIS: INTERSECTIONS

Multi-Modal Level of Service - Intersections Form

Consultant Scenario Comments

Parsons	Project	477915
946 Baseline Road	Date	23-May-23

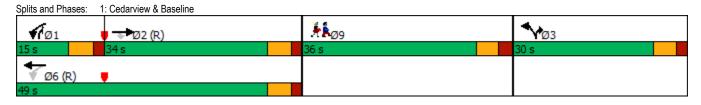
Unlocked Rows for Replicating

	INTERSECTIONS		Cedarvie	w/Baseline			Valley Stre	am/Baseline			Sandcastl	e/Baseline			Monterey/Basel
	Crossing Side	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH
	Lanes		7	9	8	6	7	8	10+		4	8	8		6
	Median		No Median - 2.4 m		No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m		No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m		No Median - 2.4 m
	Conflicting Left Turns		Protected	Protected/ Permissive	No left turn / Prohib.	Permissive	Permissive	Permissive	Permissive		Permissive	Permissive	No left turn / Prohib.		Permissive
	Conflicting Right Turns		Protected	No right turn	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control		Permissive or yield control	No right turn	Permissive or yield control		Permissive or yield control
	Right Turns on Red (RToR) ?		RTOR allowed	RTOR prohibited	RTOR allowed	RTOR allowed	RTOR allowed	RTOR prohibited	RTOR allowed		RTOR allowed	RTOR prohibited	RTOR allowed		RTOR allowed
	Ped Signal Leading Interval?		Yes	Yes	Yes	No	No	No	No		Yes	No	No		No
Pedestrian	Right Turn Channel		No Channel	No Right Turn	Conv'tl without Receiving Lane	Conventional with Receiving Lane	No Channel	Conv'tl without Receiving Lane	No Channel		No Channel	No Right Turn	No Channel		No Channel
str	Corner Radius		10-15m	No Right Turn	>25m	15-25m	10-15m	15-25m	10-15m		5-10m	No Right Turn	10-15m		5-10m
မွ	Crosswalk Type		Std transverse	Std transverse	Std transverse markings	Std transverse	Std transverse	Std transverse	Std transverse		Std transverse	Std transverse	Std transverse		Std transverse
ڇ	PETSI Score		markings 19	markings -9	-1	markings 19	markings 4	markings -7	markings -45		markings 56	markings 6	markings -4		markings 21
	Ped. Exposure to Traffic LoS		F	-9 F	-1 F	F		-/ F	#N/A		D	F	-4 F		F
	Cycle Length					•			TIVA			•	•		
	Effective Walk Time														
	Average Pedestrian Delay														
	Pedestrian Delay LoS	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Lovel of Comice	-	F	F	F	F	F	F	#N/A	-	D	F	F	-	F
	Level of Service			F			#1	N/A				F		F	
	Approach From	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH
	Bicycle Lane Arrangement on Approach		Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP	Pocket Bike Lane	Mixed Traffic	Mixed Traffic	Pocket Bike Lane	Pocket Bike Lane		Mixed Traffic	Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP		Mixed Traffic
	Right Turn Lane Configuration		Not Applicable	Not Applicable	> 50 m Introduced right turn lane	≤ 50 m	≤ 50 m	> 50 m Introduced right turn lane	> 50 m Introduced right turn lane		≤ 50 m	Not Applicable	Not Applicable		≤ 50 m
	Right Turning Speed		Not Applicable	Not Applicable	>25 to 30 km/h	>25 km/h	≤ 25 km/h	>25 to 30 km/h	≤ 25 km/h		≤ 25 km/h	Not Applicable	Not Applicable		≤ 25 km/h
0	Cyclist relative to RT motorists	-	Not Applicable	Not Applicable	D	E	D	D	D	-	D	Not Applicable	Not Applicable	-	D
<u> </u>	Separated or Mixed Traffic	-	Separated	Separated	Separated	Mixed Traffic	Mixed Traffic	Separated	Separated	-	Mixed Traffic	Separated	Separated	-	Mixed Traffic
Bicycle	Left Turn Approach		No lane crossed	≥ 2 lanes crossed	No lane crossed	No lane crossed	No lane crossed	≥ 2 lanes crossed	≥ 2 lanes crossed		No lane crossed	≥ 2 lanes crossed	No lane crossed		No lane crossed
	Operating Speed		≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	> 50 to < 60 km/h	> 40 to ≤ 50 km/h	≥ 60 km/h	≥ 60 km/h		> 40 to ≤ 50 km/h	≥ 60 km/h	≥ 60 km/h		> 40 to ≤ 50 km/h
	Left Turning Cyclist	-	С	F	С	С	В	F	F	-	В	F	С	-	В
		-	С	F	D	E	D	F	F	-	D	F	С	-	D
	Level of Service			F				F				F		F	
+	Average Signal Delay			≤ 10 sec	≤ 20 sec	≤ 30 sec		≤ 10 sec	≤ 20 sec			≤ 10 sec	≤ 10 sec		
nsi		-	-	В	С	D	-	В	С	-	-	В	В	-	-
Transit	Level of Service			С				D			ı	В		С	
	Effective Corner Radius		10 - 15 m		> 15 m	> 15 m	10 - 15 m	> 15 m	10 - 15 m		< 10 m		10 - 15 m		< 10 m
×	Number of Receiving Lanes on Departure from Intersection		≥ 2		1	≥ 2	≥ 2	1	1		≥ 2		1		≥ 2
Truck		-	В		С	Α	В	С	Е	-	D	-	Е	-	D
	Level of Service			С				E						E	
0	Volume to Capacity Ratio														
Auto	Level of Service														
- A	Level of Service													_	

ine			Morrison/Basel	ine	
EAST	WEST	NORTH	SOUTH	EAST	WEST
8	7	5		8	8
No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m		No Median - 2.4 m	No Median - 2.4 m
Permissive	No left turn / Prohib.	Permissive		No left turn / Prohib.	Permissive
No right turn	Permissive or yield control	Permissive or yield control		Permissive or yield control	No right turn
RTOR prohibited	RTOR allowed	RTOR allowed		RTOR allowed	RTOR prohibited
No	No	No		No	No
No Right Turn	No Channel	No Channel		No Channel	No Right Turn
No Right Turn	10-15m	10-15m		10-15m	No Right Turn
Std transverse markings	Std transverse markings	Std transverse markings		Std transverse markings	Std transverse markings
6	12	37		-4	6
F	F	E	-	F	F

-	-	-	-	-	-
F	F	Е		F	F
		F			
EAST	WEST	NORTH	SOUTH	EAST	WEST
Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP	Mixed Traffic		Pocket Bike Lane	Curb Bike Lane Cycletrack or MU
Not Applicable	Not Applicable	≤ 50 m		> 50 m Introduced right turn lane	Not Applicable
Not Applicable	Not Applicable	≤ 25 km/h		≤ 25 km/h	Not Applicable
Not Applicable	Not Applicable	D	-	D	Not Applicable
Separated	Separated	Mixed Traffic	-	Separated	Separated
≥ 2 lanes crossed	No lane crossed	No lane crossed		No lane crossed	≥ 2 lanes crosse
≥ 60 km/h	≥ 60 km/h	> 50 to < 60 km/h		≥ 60 km/h	≥ 60 km/h
F	С	С	-	С	F
F	С	D	-	D	F
		F			
≤ 20 sec	≤ 10 sec	≤ 40 sec		≤ 10 sec	≤ 20 sec
С	В	E	-	В	С
		E			
	10 - 15 m	10 - 15 m		10 - 15 m	
	1	≥ 2		1	
-	Е	В	-	E	-
		Е			

SYCNHRO ANALYSIS: BACKGROUND CONDITIONS


	→	•	•	←	4	/	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	Ø9
Lane Configurations	^	#	*	44	*	1	
Traffic Volume (vph)	1279	54	89	490	169	476	
Future Volume (vph)	1279	54	89	490	169	476	
Satd. Flow (prot)	3390	1517	1695	3390	1695	1517	
Flt Permitted			0.146		0.950		
Satd. Flow (perm)	3390	1476	261	3390	1695	1517	
Satd. Flow (RTOR)		36				476	
Lane Group Flow (vph)	1279	54	89	490	169	476	
Turn Type	NA	Perm	pm+pt	NA	Prot	pt+ov	
Protected Phases	2		1	6	3	3 1	9
Permitted Phases		2	6				
Detector Phase	2	2	1	6	3	3 1	
Switch Phase							
Minimum Initial (s)	10.0	10.0	5.0	10.0	10.0		10.0
Minimum Split (s)	27.4	27.4	11.2	27.4	16.0		36.0
Total Split (s)	34.0	34.0	15.0	49.0	30.0		36.0
Total Split (%)	29.6%	29.6%	13.0%	42.6%	26.1%		31%
Yellow Time (s)	4.2	4.2	4.2	4.2	4.0		3.7
All-Red Time (s)	1.9	1.9	1.9	1.9	2.0		2.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.1	6.1	6.1	6.1	6.0		
Lead/Lag	Lag	Lag	Lead				
Lead-Lag Optimize?	Yes	Yes	Yes				
Recall Mode	C-Min	C-Min	None	C-Min	None		None
Act Effct Green (s)	72.3	72.3	85.9	85.9	17.0	30.6	
Actuated g/C Ratio	0.63	0.63	0.75	0.75	0.15	0.27	
v/c Ratio	0.60	0.06	0.31	0.19	0.68	0.63	
Control Delay	15.3	5.3	7.5	5.0	59.1	6.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	15.3	5.3	7.5	5.0	59.1	6.7	
LOS	В	Α	Α	Α	Е	Α	
Approach Delay	14.9			5.4	20.5		
Approach LOS	В			Α	С		
Queue Length 50th (m)	81.9	1.4	4.5	14.5	36.6	0.0	
Queue Length 95th (m)	129.6	7.6	10.9	25.3	55.4	22.4	
Internal Link Dist (m)	136.9			418.5	239.0		
Turn Bay Length (m)			100.0			30.0	
Base Capacity (vph)	2131	941	309	2531	353	754	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.60	0.06	0.29	0.19	0.48	0.63	
Intersection Summary							

Cycle Length: 115

Actuated Cycle Length: 115
Offset: 30 (26%), Referenced to phase 2:EBT and 6:WBTL, Start of Green Natural Cycle: 115

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.68 Intersection Signal Delay: 14.1

Intersection LOS: B Intersection Capacity Utilization 78.6% Analysis Period (min) 15 ICU Level of Service D

	•	-	•	•	←	•	4	†	~	\	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	44	*	¥	44	*		4			વી	7
Traffic Volume (vph)	103	1617	15	12	491	106	34	2	15	55	4	40
Future Volume (vph)	103	1617	15	12	491	106	34	2	15	55	4	40
Satd. Flow (prot)	1695	3390	1517	1695	3390	1517	0	1648	0	0	1704	1517
Flt Permitted	0.473			0.112				0.763			0.703	
Satd. Flow (perm)	841	3390	1479	200	3390	1475	0	1297	0	0	1244	1496
Satd. Flow (RTOR)			45			106		10				41
Lane Group Flow (vph)	103	1617	15	12	491	106	0	51	0	0	59	40
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	Perm
Protected Phases		2			6			8			4	
Permitted Phases	2		2	6		6	8			4		4
Detector Phase	2	2	2	6	6	6	8	8		4	4	4
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	10.0
Minimum Split (s)	32.2	32.2	32.2	32.2	32.2	32.2	37.5	37.5		37.5	37.5	37.5
Total Split (s)	47.0	47.0	47.0	47.0	47.0	47.0	38.0	38.0		38.0	38.0	38.0
Total Split (%)	55.3%	55.3%	55.3%	55.3%	55.3%	55.3%	44.7%	44.7%		44.7%	44.7%	44.7%
Yellow Time (s)	4.2	4.2	4.2	4.2	4.2	4.2	3.3	3.3		3.3	3.3	3.3
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	3.2	3.2		3.2	3.2	3.2
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	6.2	6.2	6.2		6.5			6.5	6.5
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	C-Min	C-Min	C-Min	C-Min	C-Min	C-Min	None	None		None	None	None
Act Effct Green (s)	62.5	62.5	62.5	62.5	62.5	62.5		14.4			14.4	14.4
Actuated g/C Ratio	0.74	0.74	0.74	0.74	0.74	0.74		0.17			0.17	0.17
v/c Ratio	0.17	0.65	0.01	0.08	0.20	0.10		0.22			0.28	0.14
Control Delay	8.0	11.6	0.3	10.2	6.2	2.3		25.3			31.5	8.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	0.0
Total Delay	8.0	11.6	0.3	10.2	6.2	2.3		25.3			31.5	8.6
LOS	Α	В	Α	В	Α	A		С			С	Α
Approach Delay		11.3			5.6			25.3			22.3	
Approach LOS		В			Α			С			С	
Queue Length 50th (m)	4.2	57.5	0.0	0.5	10.6	0.0		6.2			9.0	0.0
Queue Length 95th (m)	19.7	#183.4	0.4	4.5	34.0	7.5		11.5			14.3	5.9
Internal Link Dist (m)		418.5	***		413.1			206.5			123.4	
Turn Bay Length (m)	50.0		140.0	50.0		50.0						40.0
Base Capacity (vph)	618	2491	1099	147	2491	1112		486			461	580
Starvation Cap Reductn	0	0	0	0	0	0		0			0	0
Spillback Cap Reductn	0	0	Ő	0	0	0		0			0	0
Storage Cap Reductn	0	0	0	0	0	0		0			0	0
Reduced v/c Ratio	0.17	0.65	0.01	0.08	0.20	0.10		0.10			0.13	0.07
Intersection Summary	0.11	0.00	0.01	0.00	0.20	- U		00			J3	0.01

Intersection Summary

Cycle Length: 85

Actuated Cycle Length: 85

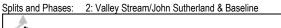
Offset: 37 (44%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.65

Intersection Signal Delay: 10.6


Intersection Capacity Utilization 86.5%

Intersection LOS: B
ICU Level of Service E

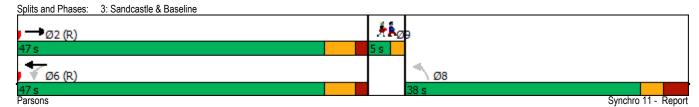
Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	Ø9
Lane Configurations	↑ Ъ	LDIN	YVDL T	**	W	NDIX	พร
Traffic Volume (vph)	1681	22	51	554	34	114	
Future Volume (vph)	1681	22	51	554	34	114	
Satd. Flow (prot)	3382	0	1695	3390	1581	0	
Flt Permitted	3302	U	0.092	3390	0.989	U	
Satd. Flow (perm)	3382	0	164	3390	1581	0	
Satd. Flow (RTOR)	2	U	104	3330	80	U	
Lane Group Flow (vph)	1703	0	51	554	148	0	
Turn Type	NA	U	Perm	NA	Perm	U	
Protected Phases	2		I CIIII	6	I CIIII		9
Permitted Phases	Z		6	U	8		J
Detector Phase	2		6	6	8		
Switch Phase			U	U	U		
Minimum Initial (s)	10.0		10.0	10.0	10.0		1.0
Minimum Split (s)	23.9		23.9	23.9	35.5		5.0
Total Split (s)	47.0		47.0	47.0	38.0		5.0
Total Split (%)	52.2%		52.2%	52.2%	42.2%		6%
Yellow Time (s)	4.2		4.2	4.2	3.0		2.0
All-Red Time (s)	1.7		1.7	1.7	3.5		0.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0		0.0
Total Lost Time (s)	5.9		5.9	5.9	6.5		
Lead/Lag	0.0		5.5	0.0	0.0		
Lead-Lag Optimize?							
Recall Mode	C-Min		C-Min	C-Min	None		None
Act Effct Green (s)	64.0		64.0	64.0	12.6		110110
Actuated g/C Ratio	0.71		0.71	0.71	0.14		
v/c Ratio	0.71		0.44	0.23	0.51		
Control Delay	11.2		24.7	5.6	23.2		
Queue Delay	0.0		0.0	0.0	0.0		
Total Delay	11.2		24.7	5.6	23.2		
LOS	В		24.7 C	J.0	23.2 C		
Approach Delay	11.2		<u> </u>	7.2	23.2		
Approach LOS	В			7.2 A	23.2 C		
Queue Length 50th (m)	62.4		2.6	12.1	11.1		
Queue Length 95th (m)	159.9		#24.0	32.8	25.3		
Internal Link Dist (m)	413.1		π ∠ ¬.0	132.4	26.3		
Turn Bay Length (m)	710.1		70.0	102.7	20.0		
Base Capacity (vph)	2406		116	2412	605		
Starvation Cap Reductn	0		0	0	0		
Spillback Cap Reductn	0		0	0	0		
Storage Cap Reductn	0		0	0	0		
Reduced v/c Ratio	0.71		0.44	0.23	0.24		
	0.71		0.44	0.20	0.24		
Intersection Summary							
Cycle Length: 90							
Actuated Cycle Length: 90							
Offset: 55 (61%), Referenced to	. I O EDT	CIMPTI	V - 1 - 1 O				

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.71


Intersection Signal Delay: 10.9 Intersection Capacity Utilization 69.5%

Intersection LOS: B ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	-	•	•	←	•	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑ Ъ	LUI	YVDL	**	NDL T	TADIX
Traffic Volume (vph)	1620	28	49	TT 698	25	84
Future Volume (vph)	1620	28	49	698	25	84
Satd. Flow (prot)	3378	0	1695	3390	1695	1517
Flt Permitted	3370	U	0.109	0000	0.950	1011
Satd. Flow (perm)	3378	0	194	3390	1691	1517
Satd. Flow (RTOR)	3370	U	107	0000	1001	14
Lane Group Flow (vph)	1648	0	49	698	25	84
Turn Type	NA	U	Perm	NA	Perm	Perm
Protected Phases	2		FEIIII	6	Feiiii	Feiiii
Permitted Phases	2		6	0	8	8
	0			^		
Detector Phase	2		6	6	8	8
Switch Phase	40.0		40.0	40.0	40.0	40.0
Minimum Initial (s)	10.0		10.0	10.0	10.0	10.0
Minimum Split (s)	34.1		34.1	34.1	35.1	35.1
Total Split (s)	50.0		50.0	50.0	35.0	35.0
Total Split (%)	58.8%		58.8%	58.8%	41.2%	41.2%
Yellow Time (s)	4.2		4.2	4.2	3.0	3.0
All-Red Time (s)	1.9		1.9	1.9	3.1	3.1
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.1		6.1	6.1	6.1	6.1
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Min		C-Min	C-Min	None	None
Act Effct Green (s)	63.3		63.3	63.3	14.0	14.0
Actuated g/C Ratio	0.74		0.74	0.74	0.16	0.16
v/c Ratio	0.66		0.34	0.28	0.09	0.32
Control Delay	11.0		24.3	9.1	27.3	27.6
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	11.0		24.3	9.1	27.3	27.6
LOS	В		24.5 C	Α	Z1.5	Z7.0
Approach Delay	11.0		U	10.1	27.5	U
Approach LOS	11.0 B			В	27.3 C	
	58.0		2.2	15.2	3.7	10.7
Queue Length 50th (m)						
Queue Length 95th (m)	#180.8		#22.5	73.8	7.8	17.6
Internal Link Dist (m)	103.0			384.9	183.4	
Turn Bay Length (m)	0=11		55.0	0.500	30.0	-0-
Base Capacity (vph)	2514		144	2522	574	525
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.66		0.34	0.28	0.04	0.16
Intersection Summany						
Intersection Summary						
Cycle Length: 85						

Actuated Cycle Length: 85

Offset: 65 (76%), Referenced to phase 2:EBT and 6:WBTL, Start of Green Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.66

Intersection Signal Delay: 11.4

Intersection Capacity Utilization 66.7%

Intersection LOS: B ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	•	•	\	4	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	*	44	44	#	W		
Traffic Volume (vph)	241	1518	559	74	69	37	
Future Volume (vph)	241	1518	559	74	69	37	
Satd. Flow (prot)	1695	3390	3390	1517	1638	0	
Flt Permitted	0.442				0.968	•	
Satd. Flow (perm)	787	3390	3390	1472	1635	0	
Satd. Flow (RTOR)		0000	0000	74	35	•	
Lane Group Flow (vph)	241	1518	559	74	106	0	
Turn Type	Perm	NA	NA	Perm	Perm	v	
Protected Phases	I CIIII	2	6	1 Cilli	1 Cilli		
Permitted Phases	2	2	U	6	4		
Detector Phase	2	2	6	6	4		
Switch Phase			U	U	4		
	10.0	10.0	10.0	10.0	10.0		
Minimum Initial (s)				10.0			
Minimum Split (s)	30.4 49.0	30.4 49.0	30.4 49.0	30.4 49.0	36.5 36.0		
Total Split (s)							
Total Split (%)	57.6%	57.6%	57.6%	57.6%	42.4%		
Yellow Time (s)	4.2	4.2	4.2	4.2	3.3		
All-Red Time (s)	1.7	1.7	1.7	1.7	2.7		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	5.9	5.9	5.9	5.9	6.0		
_ead/Lag							
_ead-Lag Optimize?							
Recall Mode	C-Min	C-Min	C-Min	C-Min	None		
Act Effct Green (s)	63.3	63.3	63.3	63.3	14.2		
Actuated g/C Ratio	0.74	0.74	0.74	0.74	0.17		
v/c Ratio	0.41	0.60	0.22	0.07	0.35		
Control Delay	6.1	6.7	5.9	2.5	22.9		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay	6.1	6.7	5.9	2.5	22.9		
LOS	Α	Α	Α	A	C		
Approach Delay		6.7	5.5		22.9		
Approach LOS		A	A		C		
Queue Length 50th (m)	2.4	23.6	11.8	0.0	10.8		
Queue Length 95th (m)	53.8	#163.8	37.2	6.0	18.2		
Internal Link Dist (m)	30.0	384.9	355.9	0.0	174.0		
Turn Bay Length (m)	55.0	001.0	000.0	160.0	1.0		
Base Capacity (vph)	586	2524	2524	1115	599		
Starvation Cap Reductn	0	0	0	0	0		
Spillback Cap Reductn	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0		
Reduced v/c Ratio	0.41	0.60	0.22	0.07	0.18		
	0.41	0.00	0.22	0.07	0.10		
Intersection Summary							
Cycle Length: 85							

Offset: 11 (13%), Referenced to phase 2:EBTL and 6:WBT, Start of Green Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.60

Intersection Signal Delay: 7.0

Intersection Capacity Utilization 63.6%

Intersection LOS: A ICU Level of Service B

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 5: Baseline & Morrison

Intersection						
Int Delay, s/veh	3.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	**		1.			4
Traffic Vol, veh/h	1	52	72	3	30	54
Future Vol, veh/h	1	52	72	3	30	54
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	_	-	_	-
Veh in Median Storage, #	0	-	0	_		0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	100	100	100	100	100	100
	2	2	2	2	2	2
Heavy Vehicles, %						
Mvmt Flow	1	52	72	3	30	54
Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	188	74	0	0	75	0
Stage 1	74	-	_	-	_	_
Stage 2	114	-	_	-	-	_
Critical Hdwy	6.42	6.22	_		4.12	_
Critical Hdwy Stg 1	5.42	-	_	_	7.12	_
Critical Hdwy Stg 2	5.42	_	_	_	_	
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	801	988		_	1524	-
	949				-	
Stage 1		-	-	-	-	-
Stage 2	911	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	785	988	-	-	1524	-
Mov Cap-2 Maneuver	785	-	-	-	-	-
Stage 1	949	-	-	-	-	-
Stage 2	893	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	8.9		0		2.6	
HCM LOS	6.9 A		U		2.0	
I IOIVI LOS	A					
Minor Lane/Major Mvmt		NBT	NBR	WBLn1	SBL	SBT
Capacity (veh/h)		-	-	983	1524	-
HCM Lane V/C Ratio		-	-	0.054	0.02	-
HCM Control Delay (s)		-	-	8.9	7.4	0
HCM Lane LOS		-	-	Α	Α	A
HCM 95th %tile Q(veh)		_	-	0.2	0.1	-
70 4(1011)				Ų. <u> </u>	V. 1	

Intersection						
Int Delay, s/veh	1.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		T _a			4
Traffic Vol, veh/h	0	12	63	0	7	48
Future Vol, veh/h	0	12	63	0	7	48
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- -	None	-	None	-	None
Storage Length	0	-	_	-	_	-
Veh in Median Storage, #	0	_	0	_		0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	100	100	100	100	100	100
	2	2	2	2	2	2
Heavy Vehicles, %						
Mvmt Flow	0	12	63	0	7	48
Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	125	63	0	0	63	0
Stage 1	63	-	-	-	_	_
Stage 2	62	_	-	_	-	-
Critical Hdwy	6.42	6.22	_	_	4.12	_
Critical Hdwy Stg 1	5.42	0.22	_	_	7.12	_
Critical Hdwy Stg 2	5.42	_		_		
	3.518	3.318	-	-	2.218	-
Follow-up Hdwy	3.516 870	1002	-	-	1540	
Pot Cap-1 Maneuver						
Stage 1	960	-	-	-	-	-
Stage 2	961	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	866	1002	-	-	1540	-
Mov Cap-2 Maneuver	866	-	-	-	-	-
Stage 1	960	-	-	-	-	-
Stage 2	956	-	-	-	-	-
·						
Approach	WB		NB		SB	
HCM Control Delay, s	8.6		0		0.9	
HCM LOS	0.0 A		U		0.9	
HOW LOS	А					
Minor Lane/Major Mvmt		NBT	NBR	WBLn1	SBL	SBT
Capacity (veh/h)		-	-	1002	1540	-
HCM Lane V/C Ratio		-	-	0.012	0.005	-
HCM Control Delay (s)		-	-	8.6	7.3	0
HCM Lane LOS		_	-	A	A	Ä
HCM 95th %tile Q(veh)		_	-	0	0	-
HOW JOHN JOHN Q(VEII)				U	U	

Intersection						
Int Delay, s/veh	0.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
		EDK		<u>₩</u>	INDL	NBR 7
Lane Configurations	4%	^	7		٥	26
Traffic Vol, veh/h	1645	6	0	636	0	
Future Vol, veh/h	1645	6	0	636	0	26
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	45	-	-	0
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1645	6	0	636	0	26
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	1651	0	-	826
Stage 1	-	-	1031	-	-	020
Stage 2	-	-	-	-	-	-
			4.14	-		6.94
Critical Hdwy					-	
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	2.22	-	-	3.32
Pot Cap-1 Maneuver	-	-	387	-	0	315
Stage 1	-	-	-	-	0	-
Stage 2	-	-	-	-	0	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	387	-	-	315
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		NB	
	0		0		17.5	
HCM Control Delay, s HCM LOS	U		U		17.5 C	
HOW LUS					U	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		315	-	-	387	-
HCM Lane V/C Ratio		0.083	-	-	-	-
HCM Control Delay (s)		17.5	-	-	0	-
			-	-	Ä	_
HCM Lane LOS		U	-	-		-
HCM Lane LOS HCM 95th %tile Q(veh)		C 0.3	-	-	0	-

	-	•	•	←	4	/		
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	Ø9	
ane Configurations	44	7	*	44	*	7		
Fraffic Volume (vph)	688	180	355	988	122	164		
Future Volume (vph)	688	180	355	988	122	164		
Satd. Flow (prot)	3390	1517	1695	3390	1695	1517		
FIt Permitted			0.289		0.950			
Satd. Flow (perm)	3390	1475	516	3390	1695	1517		
Satd. Flow (RTOR)		180				164		
_ane Group Flow (vph)	688	180	355	988	122	164		
Turn Type	NA	Perm	pm+pt	NA	Prot	pt+ov		
Protected Phases	2		1	6	3	3 1	9	
Permitted Phases		2	6					
Detector Phase	2	2	1	6	3	3 1		
Switch Phase								
Minimum Initial (s)	10.0	10.0	5.0	10.0	10.0		10.0	
/linimum Split (s)	27.4	27.4	11.2	27.4	16.0		36.0	
otal Split (s)	49.0	49.0	15.0	64.0	30.0		36.0	
Total Split (%)	37.7%	37.7%	11.5%	49.2%	23.1%		28%	
/ellow Time (s)	4.2	4.2	4.2	4.2	4.0		3.7	
All-Red Time (s)	1.9	1.9	1.9	1.9	2.0		2.5	
ost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)	6.1	6.1	6.1	6.1	6.0			
Lead/Lag	Lag	Lag	Lead					
_ead-Lag Optimize?	Yes	Yes	Yes					
Recall Mode	C-Min	C-Min	None	C-Min	None		None	
Act Effct Green (s)	60.9	60.9	103.1	103.1	14.8	57.0	110.10	
Actuated g/C Ratio	0.47	0.47	0.79	0.79	0.11	0.44		
/c Ratio	0.43	0.23	0.48	0.37	0.63	0.22		
Control Delay	23.6	3.2	6.2	4.7	69.0	4.1		
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		
otal Delay	23.6	3.2	6.2	4.7	69.0	4.1		
.OS	C	A	A	A	E	A		
Approach Delay	19.4		/ \	5.1	31.8			
Approach LOS	В			A	C			
Queue Length 50th (m)	56.6	0.0	19.6	32.1	30.4	0.0		
Queue Length 95th (m)	72.8	11.6	35.9	49.9	48.5	13.1		
nternal Link Dist (m)	136.9	11.0	00.0	418.5	239.0	10.1		
Furn Bay Length (m)	100.0		100.0	410.0	200.0	30.0		
Base Capacity (vph)	1587	786	736	2687	312	752		
Starvation Cap Reductn	0	0	0	0	0	0		
Spillback Cap Reductn	0	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0	0		
Reduced v/c Ratio	0.43	0.23	0.48	0.37	0.39	0.22		
	0.43	0.23	0.40	0.51	0.55	0.22		
ntersection Summary								
Cycle Length: 130								
Actuated Cycle Length: 130								
Offset: 30 (23%), Referenced to ph	ase 2:EBT and	d 6:WBTL, S	Start of Gree	en				
Natural Cycle: 105								
Control Type: Actuated-Coordinate	d							
Maximum v/c Ratio: 0.63								
ntersection Signal Delay: 13.1				Int	ersection LO	OS: B		
ntersection Capacity Utilization 64.	.3%			IC	U Level of S	ervice C		
Analysis Period (min) 15								
Splits and Phases: 1: Cedarview	& Baseline							
_	~ Dassille							
√ rø1 • → ø2 (R)				# ko	9		Y ø3
15 s 49 s	,				36 s			30 s
13 5					30.8			30 \$
7 ac (n)								1
♥ Ø6 (R) ♥					-			l

	•	-	*	•	•	•	1	T		-	¥	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	44	7	¥	44	7		43-			વ	*
Traffic Volume (vph)	40	713	46	17	1187	66	26	3	19	89	6	125
Future Volume (vph)	40	713	46	17	1187	66	26	3	19	89	6	125
Satd. Flow (prot)	1695	3390	1517	1695	3390	1517	0	1626	0	0	1704	1517
FIt Permitted	0.208			0.373				0.799			0.705	
Satd. Flow (perm)	370	3390	1473	664	3390	1457	0	1328	0	0	1239	1484
Satd. Flow (RTOR)			46			65		19				60
Lane Group Flow (vph)	40	713	46	17	1187	66	0	48	0	0	95	125
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	Perm
Protected Phases		2			6			8			4	
Permitted Phases	2		2	6		6	8			4		4
Detector Phase	2	2	2	6	6	6	8	8		4	4	4
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	10.0
Minimum Split (s)	32.2	32.2	32.2	32.2	32.2	32.2	37.5	37.5		37.5	37.5	37.5
Total Split (s)	62.0	62.0	62.0	62.0	62.0	62.0	38.0	38.0		38.0	38.0	38.0
Total Split (%)	62.0%	62.0%	62.0%	62.0%	62.0%	62.0%	38.0%	38.0%		38.0%	38.0%	38.0%
Yellow Time (s)	4.2	4.2	4.2	4.2	4.2	4.2	3.3	3.3		3.3	3.3	3.3
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	3.2	3.2		3.2	3.2	3.2
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	6.2	6.2	6.2		6.5			6.5	6.5
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	C-Min	C-Min	C-Min	C-Min	C-Min	C-Min	None	None		None	None	None
Act Effct Green (s)	71.3	71.3	71.3	71.3	71.3	71.3		16.0			16.0	16.0
Actuated g/C Ratio	0.71	0.71	0.71	0.71	0.71	0.71		0.16			0.16	0.16
v/c Ratio	0.15	0.29	0.04	0.04	0.49	0.06		0.21			0.48	0.44
Control Delay	8.9	6.7	2.6	7.1	8.5	2.4		24.1			44.1	23.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	0.0
Total Delay	8.9	6.7	2.6	7.1	8.5	2.4		24.1			44.1	23.4
LOS	Α	Α	Α	Α	Α	Α		С			D	С
Approach Delay		6.6			8.1			24.1			32.3	
Approach LOS		Α			Α			С			С	
Queue Length 50th (m)	1.9	19.7	0.0	0.7	40.0	0.1		5.1			17.6	11.6
Queue Length 95th (m)	9.7	49.6	4.6	4.5	96.7	5.5		12.1			26.6	22.7
Internal Link Dist (m)		418.5			413.1			206.5			123.4	
Turn Bay Length (m)	50.0		140.0	50.0		50.0						40.0
Base Capacity (vph)	263	2417	1063	473	2417	1057		431			390	508
Starvation Cap Reductn	0	0	0	0	0	0		0			0	0
Spillback Cap Reductn	0	0	0	0	0	0		0			0	0
Storage Cap Reductn	0	0	0	0	0	0		0			0	0
Reduced v/c Ratio	0.15	0.29	0.04	0.04	0.49	0.06		0.11			0.24	0.25
Intersection Summary												
Cycle Length: 100												

Cycle Length: 100 Actuated Cycle Length: 100

Offset: 37 (37%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.49 Intersection Signal Delay: 10.2 Intersection Capacity Utilization 80.8%

Intersection LOS: B ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 2: Valley Stream/John Sutherland & Baseline

	-	•	•	←	•	/			
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	Ø9		
Lane Configurations	∳ 1₃		*	44	W				
Traffic Volume (vph)	765	39	142	1226	55	91			
Future Volume (vph)	765	39	142	1226	55	91			
Satd. Flow (prot)	3363	0	1695	3390	1585	0			
Flt Permitted			0.335		0.982				
Satd. Flow (perm)	3363	0	598	3390	1575	0			
Satd. Flow (RTOR)	7				81				
Lane Group Flow (vph)	804	0	142	1226	146	0			
Turn Type	NA		Perm	NA	Perm				
Protected Phases	2			6			9		
Permitted Phases			6		8				
Detector Phase	2		6	6	8				
Switch Phase									
Minimum Initial (s)	10.0		10.0	10.0	10.0		1.0		
Minimum Split (s)	23.9		23.9	23.9	35.5		5.0		
Total Split (s)	62.0		62.0	62.0	38.0		5.0		
Total Split (%)	59.0%		59.0%	59.0%	36.2%		5%		
Yellow Time (s)	4.2		4.2	4.2	3.0		2.0		
All-Red Time (s)	1.7		1.7	1.7	3.5		0.0		
Lost Time Adjust (s)	0.0		0.0	0.0	0.0				
Total Lost Time (s)	5.9		5.9	5.9	6.5				
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	C-Min		C-Min	C-Min	None		None		
Act Effct Green (s)	78.4		78.4	78.4	12.7				
Actuated g/C Ratio	0.75		0.75	0.75	0.12				
v/c Ratio	0.32		0.32	0.48	0.56				
Control Delay	5.7		8.4	7.1	28.2				
Queue Delay	0.0		0.0	0.0	0.0				
Total Delay	5.7		8.4	7.1	28.2				
LOS	Α		Α	Α	С				
Approach Delay	5.7			7.2	28.2				
Approach LOS	Α			Α	С				
Queue Length 50th (m)	19.1		6.5	35.0	12.8				
Queue Length 95th (m)	52.3		27.7	93.4	28.9				
Internal Link Dist (m)	413.1			132.4	26.3				
Turn Bay Length (m)			70.0						
Base Capacity (vph)	2513		446	2531	529				
Starvation Cap Reductn	0		0	0	0				
Spillback Cap Reductn	0		0	0	0				
Storage Cap Reductn	0		0	0	0				
Reduced v/c Ratio	0.32		0.32	0.48	0.28				
Intersection Summary									
Cycle Length: 105									
Actuated Cycle Length: 105									
Offset: 55 (52%), Referenced to ph	ase 2:EBT and	6:WBTL, S	Start of Gree	n					
Natural Cycle: 75									
Control Type: Actuated-Coordinate	d								
Maximum v/c Ratio: 0.56									
Intersection Signal Delay: 8.0				Int	ersection LC	S: A			
Intersection Capacity Utilization 57	.9%				U Level of So				
Analysis Period (min) 15									
Splits and Phases: 3: Sandcastle	e & Baseline								
	J & DUJUINO					1	k ø9		
→ Ø2 (R)							~ Ø9		
62 s						5 s			
▼ Ø6 (R)							 Ø8		

	-	\rightarrow	•	←	4	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑ 13	LDIK	7	44	ሻ	7
Traffic Volume (vph)	865	35	85	1289	28	79
Future Volume (vph)	865	35	85	1289	28	79
Satd. Flow (prot)	3365	0	1695	3390	1695	1517
Flt Permitted	0000	0	0.306	0000	0.950	1017
Satd. Flow (perm)	3365	0	544	3390	1690	1482
Satd. Flow (RTOR)	7	U	011	0000	1000	79
Lane Group Flow (vph)	900	0	85	1289	28	79
Turn Type	NA	U	Perm	NA	Perm	Perm
Protected Phases	2		Feiiii	6	Feiiii	Feiiii
Permitted Phases	2		c	0	0	0
	0		6		8	8
Detector Phase	2		6	6	8	ď
Switch Phase	40.0		40.0	40.0	40.0	40.0
Minimum Initial (s)	10.0		10.0	10.0	10.0	10.0
Minimum Split (s)	34.1		34.1	34.1	35.1	35.1
Total Split (s)	65.0		65.0	65.0	35.0	35.0
Total Split (%)	65.0%		65.0%	65.0%	35.0%	35.0%
Yellow Time (s)	4.2		4.2	4.2	3.0	3.0
All-Red Time (s)	1.9		1.9	1.9	3.1	3.1
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.1		6.1	6.1	6.1	6.1
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Min		C-Min	C-Min	None	None
Act Effct Green (s)	78.4		78.4	78.4	13.8	13.8
Actuated g/C Ratio	0.78		0.78	0.78	0.14	0.14
v/c Ratio	0.34		0.20	0.48	0.12	0.29
Control Delay	5.5		10.3	11.7	35.6	10.2
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	5.5		10.3	11.7	35.6	10.2
LOS	3.5 A		В	В	D	В
Approach Delay	5.5			11.6	16.8	
Approach LOS	3.5 A			11.0 B	10.0 B	
Queue Length 50th (m)	22.0		7.5	79.5	5.1	0.0
Queue Length 95th (m)	61.4		m25.3	153.8	10.3	10.2
			IIIZƏ.Ə	384.9	183.4	10.2
Internal Link Dist (m)	103.0		EE O	304.9		
Turn Bay Length (m)	0044		55.0	2050	30.0	404
Base Capacity (vph)	2641		427	2659	488	484
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.34		0.20	0.48	0.06	0.16
Intersection Summary						
Cycle Length: 100						
Actuated Cycle Length: 100						

Actuated Cycle Length: 100
Offset: 65 (65%), Referenced to phase 2:EBT and 6:WBTL, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.48

Intersection Signal Delay: 9.6

Intersection Capacity Utilization 63.2%

Intersection LOS: A ICU Level of Service B

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 4: Monterey & Baseline

Synchro 11 - Report Parsons

	۶	→	+	•	/	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	44	^	#	W	
Traffic Volume (vph)	51	939	1417	63	51	117
Future Volume (vph)	51	939	1417	63	51	117
Satd. Flow (prot)	1695	3390	3390	1517	1577	0
Flt Permitted	0.152				0.985	
Satd. Flow (perm)	271	3390	3390	1457	1576	0
Satd. Flow (RTOR)	= 4	000	=	63	39	
Lane Group Flow (vph)	51	939	1417	63	168	0
Turn Type Protected Phases	Perm	NA 2	NA 6	Perm	Perm	
Permitted Phases	2	2	Ö	6	4	
Detector Phase	2	2	6	6	4	
Switch Phase	2	2	U	U	4	
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	30.4	30.4	30.4	30.4	36.5	
Total Split (s)	64.0	64.0	64.0	64.0	36.0	
Total Split (%)	64.0%	64.0%	64.0%	64.0%	36.0%	
Yellow Time (s)	4.2	4.2	4.2	4.2	3.3	
All-Red Time (s)	1.7	1.7	1.7	1.7	2.7	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.9	5.9	5.9	5.9	6.0	
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	C-Min	C-Min	C-Min	C-Min	None	
Act Effct Green (s)	71.9	71.9	71.9	71.9	16.2	
Actuated g/C Ratio v/c Ratio	0.72 0.26	0.72 0.39	0.72 0.58	0.72 0.06	0.16 0.58	
Control Delay	16.0	9.4	9.3	2.2	36.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	16.0	9.4	9.3	2.2	36.2	
LOS	В	9.4 A	9.5 A	Α.2	D	
Approach Delay		9.8	9.0	,,	36.2	
Approach LOS		A	A		D	
Queue Length 50th (m)	2.7	29.4	53.1	0.0	24.0	
Queue Length 95th (m)	21.7	107.7	122.2	5.1	36.3	
Internal Link Dist (m)		384.9	355.9		174.0	
Turn Bay Length (m)	55.0			160.0		
Base Capacity (vph)	194	2436	2436	1064	500	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.26	0.39	0.58	0.06	0.34	
Intersection Summary						
Cycle Length: 100						
Actuated Cycle Length: 100						
Offset: 11 (11%), Referenced to pha	ase 2:EBTL ar	nd 6:WBT, S	Start of Gree	en		
Natural Cycle: 80						
Control Type: Actuated-Coordinated	t					
Maximum v/c Ratio: 0.58						
Intersection Signal Delay: 11.0					ersection LO	
Intersection Capacity Utilization 66.3	3%			IC	U Level of S	ervice C
Analysis Period (min) 15						
Califo and Dhoose: F: Deceline 9	Marriaan					
Splits and Phases: 5: Baseline &	INOLLIPOLI					
J → Ø2 (R)						
64 c						
0TS						
(36 (D)						
Ø6 (R)						

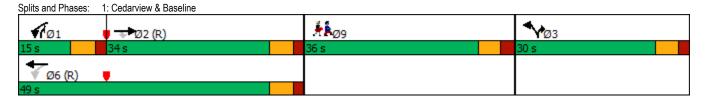
Intersection						
Int Delay, s/veh	2.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	**	1151	î,	HUIN	ODL	4
Traffic Vol, veh/h	2	69	141	5	58	128
Future Vol, veh/h	2	69	141	5	58	128
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Slop -	None	-	None	-	None
	0	None -	-	None -	-	None -
Storage Length	0		0			0
Veh in Median Storage, #	_	-	_	-		-
Grade, %	0	-	0	-	-	0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	2	69	141	5	58	128
Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	388	144	0	0	146	0
Stage 1	144	-	-	_	-	-
Stage 2	244	-	-	-	-	-
	6.42	6.22			4.12	
Critical Hdwy			-			-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	616	903	-	-	1436	-
Stage 1	883	-	-	-	-	-
Stage 2	797	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	590	903	-	-	1436	-
Mov Cap-2 Maneuver	590	-	-	-	-	-
Stage 1	883	-	-	-	-	-
Stage 2	763	-	-	-	-	-
· · · · · · · · · · · · · · · · · ·						
Annroach	WB		NB		SB	
Approach						
HCM Control Delay, s	9.4		0		2.4	
HCM LOS	Α					
Minor Lane/Major Mvmt		NBT	NBR	WBLn1	SBL	SBT
Capacity (veh/h)		-	-	890	1436	
HCM Lane V/C Ratio		-	-	0.08	0.04	-
HCM Control Delay (s)				9.4	7.6	0
HCM Lane LOS		_	-	9.4 A	7.0 A	A
I IOIVI LAITE LOS						
HCM 95th %tile Q(veh)				0.3	0.1	_

Intersection						
Int Delay, s/veh	0.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W	WEIT	T _a	HEIT	ODL	4
Traffic Vol, veh/h	0	9	137	0	14	116
Future Vol, veh/h	0	9	137	0	14	116
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	0	_	0	_	_	0
Grade, %	0	_	0	_	-	0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	9	137	0	14	116
IVIVIII(I IOW	U	9	101	U	14	110
Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	281	137	0	0	137	0
Stage 1	137	-	-	-	-	-
Stage 2	144	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	709	911	-	-	1447	-
Stage 1	890	-	-	_	_	-
Stage 2	883	-	-	-	_	-
Platoon blocked, %			_			-
Mov Cap-1 Maneuver	702	911	_	_	1447	_
Mov Cap-1 Maneuver	702	-	-	_	-	_
Stage 1	890	_				
Stage 2	874	-	-	_		-
Stage 2	074			-	-	
Approach	WB		NB		SB	
HCM Control Delay, s	9		0		8.0	
HCM LOS	Α					
Minor Lane/Major Mvmt		NBT	NRR	WBLn1	SBL	SBT
		-	NDIX	911	1447	-
Capacity (veh/h) HCM Lane V/C Ratio			-	0.01	0.01	
		-	-	0.01	7.5	0
HCM Long LOS		-	-		-	
HCM Lane LOS		-	-	A	A	Α
HCM 95th %tile Q(veh)		-	-	0	0	-

Intersection						
Int Delay, s/veh	0.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	† 13	LDIN	**	*	HUL	7
Traffic Vol, veh/h	809	11	0	TT 1278	0	17
Future Vol, veh/h	809	11	0	1278	0	17
Conflicting Peds, #/hr	0	0	0	0	0	0
				Free		
Sign Control RT Channelized	Free	Free None	Free	None	Stop	Stop
			-		-	None
Storage Length	-	-	45	-	-	0
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	809	11	0	1278	0	17
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	1VIAJUI 1 0	0	820	0	-	410
	-		020			
Stage 1		-		-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	4.14	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	2.22	-	-	3.32
Pot Cap-1 Maneuver	-	-	805	-	0	591
Stage 1	-	-	-	-	0	-
Stage 2	-	-	-	-	0	-
Platoon blocked, %				-		
Mov Cap-1 Maneuver	_	_	805	-	_	591
Mov Cap-2 Maneuver	_	-	-	_	_	-
Stage 1		-		_	_	
Stage 2	-	_	_	-	_	_
Staye 2	-	-	-	-	-	-
Approach	EB		WB		NB	
HCM Control Delay, s	EB 0		WB 0		11.3	
HCM Control Delay, s					11.3	
HCM Control Delay, s HCM LOS		NBI n1	0	FBR	11.3 B	WRT
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt		NBLn1	0 EBT	EBR	11.3 B WBL	WBT
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h)		591	0 EBT	-	11.3 B WBL 805	-
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio		591 0.029	0 EBT -	-	11.3 B WBL 805	-
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		591 0.029 11.3	0 EBT - -	- - -	11.3 B WBL 805	- - -
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio		591 0.029	0 EBT -	-	11.3 B WBL 805	-

SYCNHRO ANALYSIS: FUTURE CONDITIONS

	-	•	•	←	4	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	Ø9
Lane Configurations	44	1	*	44	*	1	
Traffic Volume (vph)	1226	52	86	483	161	454	
Future Volume (vph)	1226	52	86	483	161	454	
Satd. Flow (prot)	3390	1517	1695	3390	1695	1517	
FIt Permitted			0.161		0.950		
Satd. Flow (perm)	3390	1434	287	3390	1683	1517	
Satd. Flow (RTOR)		37				454	
Lane Group Flow (vph)	1226	52	86	483	161	454	
Turn Type	NA	Perm	pm+pt	NA	Prot	pt+ov	
Protected Phases	2		1	6	3	3 1	9
Permitted Phases		2	6				
Detector Phase	2	2	1	6	3	3 1	
Switch Phase							
Minimum Initial (s)	10.0	10.0	5.0	10.0	10.0		10.0
Minimum Split (s)	27.4	27.4	11.2	27.4	16.0		36.0
Total Split (s)	34.0	34.0	15.0	49.0	30.0		36.0
Total Split (%)	29.6%	29.6%	13.0%	42.6%	26.1%		31%
Yellow Time (s)	4.2	4.2	4.2	4.2	4.0		3.7
All-Red Time (s)	1.9	1.9	1.9	1.9	2.0		2.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.1	6.1	6.1	6.1	6.0		
Lead/Lag	Lag	Lag	Lead				
Lead-Lag Optimize?	Yes	Yes	Yes				
Recall Mode	C-Min	C-Min	None	C-Min	None		None
Act Effct Green (s)	73.1	73.1	86.6	86.6	16.3	29.8	
Actuated g/C Ratio	0.64	0.64	0.75	0.75	0.14	0.26	
v/c Ratio	0.57	0.06	0.28	0.19	0.67	0.62	
Control Delay	14.3	4.9	6.8	4.7	59.9	6.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	14.3	4.9	6.8	4.7	59.9	6.8	
LOS	В	Α	Α	Α	E	Α	
Approach Delay	13.9			5.0	20.7		
Approach LOS	В			Α	С		
Queue Length 50th (m)	75.5	1.1	4.3	14.0	34.9	0.0	
Queue Length 95th (m)	119.4	6.9	10.4	24.4	53.3	22.1	
Internal Link Dist (m)	136.9			418.5	239.0		
Turn Bay Length (m)			100.0			30.0	
Base Capacity (vph)	2154	924	328	2552	353	735	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.57	0.06	0.26	0.19	0.46	0.62	
Intersection Summary							


Cycle Length: 115
Actuated Cycle Length: 115
Offset: 30 (26%), Referenced to phase 2:EBT and 6:WBTL, Start of Green
Natural Cycle: 105

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.67 Intersection Signal Delay: 13.5

Intersection Capacity Utilization 76.1%

Intersection LOS: B ICU Level of Service D

Analysis Period (min) 15

	•	-	•	•	←	•	4	†	<i>></i>	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	44	7	7	44	7		4			વી	7
Traffic Volume (vph)	103	1549	15	12	485	106	34		15	55	4	40
Future Volume (vph)	103	1549	15	12	485	106	34	2	15	55	4	40
Satd. Flow (prot)	1695	3390	1517	1695	3390	1517	0	1646	0	0	1704	1517
Flt Permitted	0.476			0.125				0.763			0.703	
Satd. Flow (perm)	842	3390	1456	223	3390	1456	0	1291	0	0	1241	1486
Satd. Flow (RTOR)			45			106		12				41
Lane Group Flow (vph)	103	1549	15	12	485	106	0	51	0	0	59	40
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	Perm
Protected Phases		2			6			8			4	
Permitted Phases	2		2	6		6	8			4		4
Detector Phase	2	2	2	6	6	6	8	8		4	4	4
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	10.0
Minimum Split (s)	32.2	32.2	32.2	32.2	32.2	32.2	37.5	37.5		37.5	37.5	37.5
Total Split (s)	47.0	47.0	47.0	47.0	47.0	47.0	38.0	38.0		38.0	38.0	38.0
Total Split (%)	55.3%	55.3%	55.3%	55.3%	55.3%	55.3%	44.7%	44.7%		44.7%	44.7%	44.7%
Yellow Time (s)	4.2	4.2	4.2	4.2	4.2	4.2	3.3	3.3		3.3	3.3	3.3
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	3.2	3.2		3.2	3.2	3.2
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	6.2	6.2	6.2		6.5			6.5	6.5
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	C-Min	C-Min	C-Min	C-Min	C-Min	C-Min	None	None		None	None	None
Act Effct Green (s)	62.5	62.5	62.5	62.5	62.5	62.5		14.4			14.4	14.4
Actuated g/C Ratio	0.74	0.74	0.74	0.74	0.74	0.74		0.17			0.17	0.17
v/c Ratio	0.17	0.62	0.01	0.07	0.19	0.10		0.22			0.28	0.14
Control Delay	8.0	11.1	0.3	9.8	6.2	2.3		24.3			31.5	8.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	0.0
Total Delay	8.0	11.1	0.3	9.8	6.2	2.3		24.3			31.5	8.6
LOS	A	В	A	A	A	A		C			C	A
Approach Delay	7.	10.8	, ,	, ,	5.6			24.3			22.3	, ,
Approach LOS		В			A			C			C	
Queue Length 50th (m)	4.2	52.9	0.0	0.5	10.4	0.0		5.9			9.0	0.0
Queue Length 95th (m)	19.7	#171.0	0.4	4.4	33.6	7.5		11.2			14.3	5.9
Internal Link Dist (m)	10.1	418.5	0.1		413.1	7.0		206.5			123.4	0.0
Turn Bay Length (m)	50.0	1.0.0	140.0	50.0		50.0		200.0				40.0
Base Capacity (vph)	619	2491	1082	164	2491	1098		485			459	576
Starvation Cap Reductn	0	0	0	0	0	0		0			0	0
Spillback Cap Reductn	0	0	0	0	0	0		0			0	0
Storage Cap Reductn	0	0	0	0	0	0		0			0	0
Reduced v/c Ratio	0.17	0.62	0.01	0.07	0.19	0.10		0.11			0.13	0.07
Tioddood v/o Hallo	0.17	0.02	0.01	0.07	0.10	0.10		0.11			0.10	0.01

Cycle Length: 85

Actuated Cycle Length: 85

Offset: 37 (44%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.62

Intersection Signal Delay: 10.2

Intersection Capacity Utilization 85.6%

Intersection LOS: B
ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

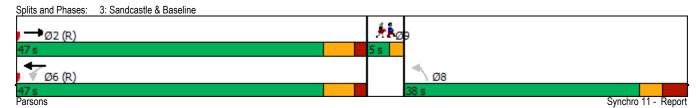
	-	•	•	•	1	~		
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	Ø9	
Lane Configurations	♦ %		*	44	W			
Traffic Volume (vph)	1609	23	74	527	51	121		
Future Volume (vph)	1609	23	74	527	51	121		
Satd. Flow (prot)	3379	0	1695	3390	1468	0		
FIt Permitted			0.103		0.985			
Satd. Flow (perm)	3379	0	184	3390	1454	0		
Satd. Flow (RTOR)	2				81			
Lane Group Flow (vph)	1632	0	74	527	172	0		
Turn Type	NA		Perm	NA	Perm			
Protected Phases	2			6			9	
Permitted Phases			6		8			
Detector Phase	2		6	6	8			
Switch Phase								
Minimum Initial (s)	10.0		10.0	10.0	10.0		1.0	
Minimum Split (s)	23.9		23.9	23.9	35.5		5.0	
Total Split (s)	47.0		47.0	47.0	38.0		5.0	
Total Split (%)	52.2%		52.2%	52.2%	42.2%		6%	
Yellow Time (s)	4.2		4.2	4.2	3.0		2.0	
All-Red Time (s)	1.7		1.7	1.7	3.5		0.0	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0			
Total Lost Time (s)	5.9		5.9	5.9	6.5			
Lead/Lag								
Lead-Lag Optimize?								
Recall Mode	C-Min		C-Min	C-Min	None		None	
Act Effct Green (s)	63.3		63.3	63.3	13.3			
Actuated g/C Ratio	0.70		0.70	0.70	0.15			
v/c Ratio	0.69		0.57	0.22	0.61			
Control Delay	11.0		33.0	5.8	27.8			
Queue Delay	0.0		0.0	0.0	0.0			
Total Delay	11.0		33.0	5.8	27.8			
LOS	В		С	A	C			
Approach Delay	11.0			9.1	27.8			
Approach LOS	В			Α	С			
Queue Length 50th (m)	62.0		4.6	12.2	14.9			
Queue Length 95th (m)	146.5		#34.3	31.1	30.9			
Internal Link Dist (m)	413.1			132.4	26.3			
Turn Bay Length (m)			70.0					
Base Capacity (vph)	2377		129	2384	561			
Starvation Cap Reductn	0		0	0	0			
Spillback Cap Reductn	0		0	0	0			
Storage Cap Reductn	0		0	0	0			
Reduced v/c Ratio	0.69		0.57	0.22	0.31			
Intersection Summary								

Cycle Length: 90 Actuated Cycle Length: 90

Offset: 55 (61%), Referenced to phase 2:EBT and 6:WBTL, Start of Green

Natural Cycle: 110

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.69

Intersection Signal Delay: 11.7 Intersection Capacity Utilization 88.6%

Intersection LOS: B ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

		•	•		,	- 1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1 2		*	44	*	7
Traffic Volume (vph)	1584	28	49	688	25	84
Future Volume (vph)	1584	28	49	688	25	84
Satd. Flow (prot)	3377	0	1695	3390	1695	1517
Flt Permitted			0.115		0.950	
Satd. Flow (perm)	3377	0	205	3390	1680	1485
Satd. Flow (RTOR)	3					15
Lane Group Flow (vph)	1612	0	49	688	25	84
Turn Type	NA		Perm	NA	Perm	Perm
Protected Phases	2			6	*****	*****
Permitted Phases	_		6		8	8
Detector Phase	2		6	6	8	8
Switch Phase						
Minimum Initial (s)	10.0		10.0	10.0	10.0	10.0
Minimum Split (s)	34.1		34.1	34.1	35.1	35.1
Total Split (s)	50.0		50.0	50.0	35.0	35.0
Total Split (%)	58.8%		58.8%	58.8%	41.2%	41.2%
Yellow Time (s)	4.2		4.2	4.2	3.0	3.0
All-Red Time (s)	1.9		1.9	1.9	3.1	3.1
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.1		6.1	6.1	6.1	6.1
Lead/Lag	0.1		0.1	0.1	0.1	0.1
Lead-Lag Optimize?						
Recall Mode	C-Min		C-Min	C-Min	None	None
Act Effct Green (s)	63.2		63.2	63.2	14.0	14.0
Actuated g/C Ratio	0.74		0.74	0.74	0.16	0.16
v/c Ratio	0.64		0.74	0.74	0.10	0.10
Control Delay	10.7		23.1	9.1	27.2	27.4
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	10.7		23.1	9.1	27.2	27.4
LOS	10.7 B		23.1 C	9.1 A	21.2 C	27.4 C
	10.7		U	10.1	27.4	U
Approach LOS	10.7 B			10.1 B	27.4 C	
Approach LOS			0.1			10 E
Queue Length 50th (m)	55.5		2.1	15.0	3.7	10.5
Queue Length 95th (m)	#174.1		#21.1	73.0	7.8 183.4	17.5
Internal Link Dist (m)	103.0		FF 0	384.9		
Turn Bay Length (m)	0540		55.0	0500	30.0	F4.4
Base Capacity (vph)	2513		152	2522	571	514
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.64		0.32	0.27	0.04	0.16

Cycle Length: 85

Actuated Cycle Length: 85

Offset: 65 (76%), Referenced to phase 2:EBT and 6:WBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.64

Intersection Signal Delay: 11.2

Intersection Capacity Utilization 70.2%

Intersection LOS: B ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

	۶	→	←	4	-	4	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	*	44	44	7	W	02.1	
Traffic Volume (vph)	241	1487	556	74	69	37	
Future Volume (vph)	241	1487	556	74	69	37	
Satd. Flow (prot)	1695	3390	3390	1517	1634	0	
Flt Permitted	0.444	0000			0.968	•	
Satd. Flow (perm)	786	3390	3390	1449	1625	0	
Satd. Flow (RTOR)				74	35		
Lane Group Flow (vph)	241	1487	556	74	106	0	
Turn Type	Perm	NA	NA	Perm	Perm		
Protected Phases		2	6				
Permitted Phases	2			6	4		
Detector Phase	2	2	6	6	4		
Switch Phase							
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0		
Minimum Split (s)	30.4	30.4	30.4	30.4	36.5		
Total Split (s)	49.0	49.0	49.0	49.0	36.0		
Total Split (%)	57.6%	57.6%	57.6%	57.6%	42.4%		
Yellow Time (s)	4.2	4.2	4.2	4.2	3.3		
All-Red Time (s)	1.7	1.7	1.7	1.7	2.7		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	5.9	5.9	5.9	5.9	6.0		
Lead/Lag							
Lead-Lag Optimize?							
Recall Mode	C-Min	C-Min	C-Min	C-Min	None		
Act Effct Green (s)	63.3	63.3	63.3	63.3	14.2		
Actuated g/C Ratio	0.74	0.74	0.74	0.74	0.17		
v/c Ratio	0.41	0.59	0.22	0.07	0.35		
Control Delay	6.3	6.7	5.9	2.5	22.9		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay	6.3	6.7	5.9	2.5	22.9		
LOS	Α	Α	Α	Α	С		
Approach Delay		6.7	5.5		22.9		
Approach LOS		Α	Α		С		
Queue Length 50th (m)	5.0	47.4	11.7	0.0	10.8		
Queue Length 95th (m)	56.3	158.3	36.9	6.0	18.3		
Internal Link Dist (m)		384.9	355.9		174.0		
Turn Bay Length (m)	55.0			160.0			
Base Capacity (vph)	585	2523	2523	1097	596		
Starvation Cap Reductn	0	0	0	0	0		
Spillback Cap Reductn	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0		
Reduced v/c Ratio	0.41	0.59	0.22	0.07	0.18		
Intersection Summary							
Cycle Length: 85							
Actuated Cycle Length: 85							
Offset: 11 (13%), Referenced to pha	ase 2:EBTL a	nd 6:WBT. S	Start of Gree	en			
Natural Cycle: 80		,					
Control Type: Actuated-Coordinated	d						
Maximum v/c Ratio: 0.59							
Intersection Signal Delay: 7.1				Int	ersection LO	OS: A	
Intersection Capacity Utilization 66.	4%				U Level of S		
Analysis Period (min) 15							
Splits and Phases: 5: Baseline &	Morrison						
<u> </u>							
● Ø2 (R)						Ø	14
49 s						36 s	
44							
Ø6 (R)							
40 e							

Intersection						
Int Delay, s/veh	3.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W	WEIT	1.	INDIX	ODL	্ব
Traffic Vol, veh/h	0	59	89	0	42	66
Future Vol, veh/h	0	59	89	0	42	66
Conflicting Peds, #/hr	0	0	0	20	20	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -	None	-	None	-	None
Storage Length	0	-	_	-	_	-
Veh in Median Storage, #	0		0		_	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	59	89	0	42	66
Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	259	109	0	0	109	0
Stage 1	109	-	-	-	-	-
Stage 2	150	-	-	-	-	-
Critical Hdwy	6.42	6.22	_	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	_	-	_
Critical Hdwy Stg 2	5.42	-	-	-	_	_
Follow-up Hdwy	3.518	3.318	_	_	2.218	_
Pot Cap-1 Maneuver	730	945		-	1481	_
Stage 1	916	343	-	-	1-101	-
Stage 2	878	-			-	
Platoon blocked, %	070	-	-	-	-	-
Mov Cap-1 Maneuver	696	929		-	1456	_
Mov Cap-1 Maneuver Mov Cap-2 Maneuver	696	929	-	-	1456	-
			-	-	-	-
Stage 1	900	-	-	-	-	-
Stage 2	852	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9.1		0		2.9	
HCM LOS	A				2.5	
	,,					
Minor Lane/Major Mvmt		NBT	NBR	WBLn1	SBL	SBT
Capacity (veh/h)		-	-	929	1456	-
HCM Lane V/C Ratio		-	-	0.064	0.029	-
HCM Control Delay (s)		-	-	9.1	7.5	0
HCM Lane LOS		-	-	Α	Α	Α
				0.2	0.1	

Intersection						
Int Delay, s/veh	2.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
		WBR		INDIX	SDL	
Lane Configurations	**	20	1	٥	10	4
Traffic Vol, veh/h	0	29	60	0	19	47
Future Vol, veh/h	0	29	60	0	19	47
Conflicting Peds, #/hr	0	0	0	15	15	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	29	60	0	19	47
	•			Ū		••
Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	160	75	0	0	75	0
Stage 1	75	-	-	-	-	-
Stage 2	85	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	_	2.218	-
Pot Cap-1 Maneuver	831	986	_	_	1524	-
Stage 1	948	-	_			_
Stage 2	938	_	_			_
Platoon blocked. %	330	-	-	-	-	-
	000	070		-	4505	-
Mov Cap-1 Maneuver	809	973	-	-	1505	-
Mov Cap-2 Maneuver	809	-	-	-	-	-
Stage 1	936	-	-	-	-	-
Stage 2	926	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	8.8		0		2.1	
HCM LOS	Α					
Minor Lane/Major Mvmt		NBT	NBR	WBLn1	SBL	SBT
Capacity (veh/h)			-	973	1505	
HCM Lane V/C Ratio		-	-	0.03	0.013	-
HCM Control Delay (s)		-		8.8	7.4	0
HCM Lane LOS		-		8.8 A	7.4 A	A
HCM 95th %tile Q(veh)				0.1	0	-

Intersection						
Int Delay, s/veh	0.5					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑ Ъ	LDIX	YVDL	*	HUL	T T
	1591	15	0	TT 639	0	59
Traffic Vol, veh/h						
Future Vol, veh/h	1591	15	0	639	0	59
Conflicting Peds, #/hr	0	25	25	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	45	-	-	0
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1591	15	0	639	0	59
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	1631	0	-	828
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	4.14	-	-	6.94
Critical Hdwy Stg 1	_	-	_	-	_	-
Critical Hdwy Stg 2	_	_	_	_	_	_
Follow-up Hdwy	_	_	2.22	_	_	3.32
Pot Cap-1 Maneuver	_	-	394	-	0	314
Stage 1		_	-	_	0	-
Stage 2			_	_	0	
		_	-		U	-
Platoon blocked, %	-	-	222	-		
Mov Cap-1 Maneuver	-	-	386	-	-	307
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		NB	
			0		19.5	
	n					
HCM Control Delay, s	0		U		C	
	0				С	
HCM Control Delay, s HCM LOS	0	NIDL 4		EDD		MOT
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt	0	NBLn1	EBT	EBR	WBL	WBT
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h)	0	307		EBR -	WBL 386	WBT -
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	0	307 0.192	EBT	EBR - -	WBL	
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h)	0	307	EBT -	-	WBL 386	-
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	0	307 0.192	EBT -	-	WBL 386	-
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	0	307 0.192 19.5	EBT	- - -	WBL 386 - 0	- - -

	-	•	•	←	1	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	Ø9
Lane Configurations	44	7	ች	44	*	7	~ ~ ~
Traffic Volume (vph)	670	171	338	942	116	157	
Future Volume (vph)	670	171	338	942	116	157	
Satd. Flow (prot)	3390	1517	1695	3390	1695	1517	
Flt Permitted	0000	1017	0.307	0000	0.950	1017	
Satd. Flow (perm)	3390	1424	548	3390	1668	1517	
Satd. Flow (RTOR)	0000	171	0-10	0000	1000	157	
Lane Group Flow (vph)	670	171	338	942	116	157	
Turn Type	NA	Perm	pm+pt	NA	Prot	pt+ov	
Protected Phases	2	1 01111	1	6	3	3 1	9
Permitted Phases	_	2	6		•	0 1	•
Detector Phase	2	2	1	6	3	3 1	
Switch Phase	_	_	•			•	
Minimum Initial (s)	10.0	10.0	5.0	10.0	10.0		10.0
Minimum Split (s)	27.4	27.4	11.2	27.4	16.0		36.0
Total Split (s)	49.0	49.0	15.0	64.0	30.0		36.0
Total Split (%)	37.7%	37.7%	11.5%	49.2%	23.1%		28%
Yellow Time (s)	4.2	4.2	4.2	4.2	4.0		3.7
All-Red Time (s)	1.9	1.9	1.9	1.9	2.0		2.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0
Total Lost Time (s)	6.1	6.1	6.1	6.1	6.0		
Lead/Lag	Lag	Lag	Lead	0.1	0.0		
Lead-Lag Optimize?	Yes	Yes	Yes				
Recall Mode	C-Min	C-Min	None	C-Min	None		None
Act Effct Green (s)	64.5	64.5	103.4	103.4	14.5	53.4	110110
Actuated g/C Ratio	0.50	0.50	0.80	0.80	0.11	0.41	
v/c Ratio	0.40	0.22	0.47	0.35	0.62	0.22	
Control Delay	21.2	3.1	5.9	4.4	68.7	4.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	21.2	3.1	5.9	4.4	68.7	4.5	
LOS	C	Α	A	Α.	E	4.5 A	
Approach Delay	17.5			4.8	31.7	А	
Approach LOS	17.3 B			4.0 A	C		
Queue Length 50th (m)	52.3	0.0	18.1	29.4	28.9	0.0	
Queue Length 95th (m)	69.2	11.3	33.1	45.9	46.6	13.0	
Internal Link Dist (m)	136.9	11.0	JJ. I	418.5	239.0	13.0	
Turn Bay Length (m)	130.5		100.0	410.5	203.0	30.0	
Base Capacity (vph)	1682	793	725	2697	312	711	
Starvation Cap Reductn	0	0	0	2097	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.40	0.22	0.47	0.35	0.37	0.22	
	0.40	0.22	0.47	0.33	0.37	0.22	
Intersection Summary							
Cycle Length: 130							
Actuated Cycle Length: 130							
Offset: 30 (23%), Referenced to pha	ise 2:EBT and	d 6:WBTL, S	Start of Gree	n			
Natural Cycle: 95							
Control Type: Actuated-Coordinated							
Maximum v/c Ratio: 0.62							
Intersection Signal Delay: 12.3					ersection LC		
Intersection Capacity Utilization 62.8	3%			ICI	U Level of S	ervice B	
Analysis Period (min) 15							
0.150	0 D l'						
Splits and Phases: 1: Cedarview	& Baseline						

	•	→	•	•	←	•	4	†	/	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	44	*	7	44	7		4			4ĵ	7
Traffic Volume (vph)	40	695	46	17	1132	66	26	3	19	89	6	125
Future Volume (vph)	40	695	46	17	1132	66	26	3	19	89	6	125
Satd. Flow (prot)	1695	3390	1517	1695	3390	1517	0	1625	0	0	1704	1517
Flt Permitted	0.223			0.381				0.799			0.705	
Satd. Flow (perm)	396	3390	1453	675	3390	1439	0	1324	0	0	1237	1477
Satd. Flow (RTOR)			46			66		19				68
Lane Group Flow (vph)	40	695	46	17	1132	66	0	48	0	0	95	125
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	Perm
Protected Phases		2			6			8			4	
Permitted Phases	2		2	6		6	8			4		4
Detector Phase	2	2	2	6	6	6	8	8		4	4	4
Switch Phase												
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0		10.0	10.0	10.0
Minimum Split (s)	32.2	32.2	32.2	32.2	32.2	32.2	37.5	37.5		37.5	37.5	37.5
Total Split (s)	62.0	62.0	62.0	62.0	62.0	62.0	38.0	38.0		38.0	38.0	38.0
Total Split (%)	62.0%	62.0%	62.0%	62.0%	62.0%	62.0%	38.0%	38.0%		38.0%	38.0%	38.0%
Yellow Time (s)	4.2	4.2	4.2	4.2	4.2	4.2	3.3	3.3		3.3	3.3	3.3
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	3.2	3.2		3.2	3.2	3.2
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	V.=	0.0		V. <u>_</u>	0.0	0.0
Total Lost Time (s)	6.2	6.2	6.2	6.2	6.2	6.2		6.5			6.5	6.5
Lead/Lag	V. <u> </u>	V	V	V. <u> </u>	V. <u>_</u>	V. <u>_</u>		0.0			0.0	0.0
Lead-Lag Optimize?												
Recall Mode	C-Min	C-Min	C-Min	C-Min	C-Min	C-Min	None	None		None	None	None
Act Effct Green (s)	71.3	71.3	71.3	71.3	71.3	71.3	140110	16.0		110110	16.0	16.0
Actuated g/C Ratio	0.71	0.71	0.71	0.71	0.71	0.71		0.16			0.16	0.16
v/c Ratio	0.14	0.29	0.04	0.04	0.47	0.06		0.10			0.48	0.43
Control Delay	8.6	6.6	2.6	7.1	8.2	2.3		24.1			44.2	21.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	0.0
Total Delay	8.6	6.6	2.6	7.1	8.2	2.3		24.1			44.2	21.2
LOS	0.0 A	0.0 A	2.0 A	7.1 A	0.2 A	2.5 A		24.1 C			74.2 D	C C
Approach Delay	^	6.5			7.9			24.1			31.1	U
Approach LOS		0.5 A			7.5 A			24.1 C			C C	
Queue Length 50th (m)	1.9	19.2	0.0	0.7	37.1	0.0		5.1			17.6	10.2
Queue Length 95th (m)	9.6	48.3	4.6	4.5	90.2	5.4		12.1			26.6	21.4
Internal Link Dist (m)	9.0	418.5	4.0	4.5	413.1	5.4		206.5			123.4	21.4
	50.0	410.5	140.0	50.0	413.1	50.0		200.5			123.4	40.0
Turn Bay Length (m) Base Capacity (vph)	282	2417	140.0	481	2417	1044		430			389	40.0 511
	202		1049		2417	1044		430			309	0
Starvation Cap Reductn		0		0	0	0		0			0	
Spillback Cap Reductn	0	0	0	0	0	0		0			-	0
Storage Cap Reductn				0							0	0.04
Reduced v/c Ratio	0.14	0.29	0.04	0.04	0.47	0.06		0.11			0.24	0.24
Intersection Summary												

Cycle Length: 100 Actuated Cycle Length: 100

Offset: 37 (37%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.48 Intersection Signal Delay: 10.0

Intersection LOS: B
ICU Level of Service D

Intersection Capacity Utilization 81.9% Analysis Period (min) 15

Splits and Phases: 2: Valley Stream/John Sutherland & Baseline

	→	•	•	•	•	~			
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	Ø9		
Lane Configurations	∳ ሴ		*	44	14				
Traffic Volume (vph)	741	39	176	1166	57	76			
Future Volume (vph)	741	39	176	1166	57	76			
Satd. Flow (prot)	3347	0	1695	3390	1497	0			
Flt Permitted		•	0.345		0.979	•			
Satd. Flow (perm)	3347	0	604	3390	1473	0			
Satd. Flow (RTOR)	8				65				
Lane Group Flow (vph)	780	0	176	1166	133	0			
Turn Type	NA		Perm	NA	Perm				
Protected Phases	2			6			9		
Permitted Phases	_		6	•	8		•		
Detector Phase	2		6	6	8				
Switch Phase	_		•	•	•				
Minimum Initial (s)	10.0		10.0	10.0	10.0		1.0		
Minimum Split (s)	23.9		23.9	23.9	35.5		5.0		
Total Split (s)	62.0		62.0	62.0	38.0		5.0		
Total Split (%)	59.0%		59.0%	59.0%	36.2%		5%		
Yellow Time (s)	4.2		4.2	4.2	30.2 /6		2.0		
All-Red Time (s)	1.7		1.7	1.7	3.5		0.0		
Lost Time Adjust (s)	0.0		0.0	0.0	0.0		0.0		
Total Lost Time (s)	5.9		5.9	5.9	6.5				
Lead/Lag	3.5		5.5	5.5	0.5				
Lead/Lag Lead-Lag Optimize?									
Recall Mode	C-Min		C-Min	C-Min	Mana		None		
					None 12.9		None		
Act Effet Green (s)	78.7		78.7	78.7					
Actuated g/C Ratio	0.75		0.75	0.75	0.12				
v/c Ratio	0.31		0.39	0.46	0.56				
Control Delay	5.3		9.1	6.5	31.5				
Queue Delay	0.0		0.0	0.0	0.0				
Total Delay	5.3		9.1	6.5	31.5				
LOS	Α		Α	A	C				
Approach Delay	5.3			6.9	31.5				
Approach LOS	Α		0.0	A	C				
Queue Length 50th (m)	18.7		8.8	33.2	13.3				
Queue Length 95th (m)	46.8		34.3	80.3	29.1				
Internal Link Dist (m)	413.1			132.4	26.3				
Turn Bay Length (m)	0=11		70.0	0=44	40=				
Base Capacity (vph)	2511		452	2541	487				
Starvation Cap Reductn	0		0	0	0				
Spillback Cap Reductn	0		0	0	0				
Storage Cap Reductn	0		0	0	0				
Reduced v/c Ratio	0.31		0.39	0.46	0.27				
Intersection Summary									
Cycle Length: 105									
Actuated Cycle Length: 105									
Offset: 55 (52%), Referenced to	phase 2:EBT and	6:WBTL, S	tart of Gree	en					
Natural Cycle: 80									
Control Type: Actuated-Coordina	ated								
Maximum v/c Ratio: 0.56									
ntersection Signal Delay: 7.8				Int	ersection LC	S: A			
ntersection Capacity Utilization 6	65.6%				U Level of So				
Analysis Period (min) 15									
Splits and Phases: 3: Sandcas	stle & Baseline								
•						2.	1		
→ Ø2 (R)							Å ø9		
62 s						5 s			
4-							- 10		
▼ Ø6 (R)						ı	70	8	

	-	•	•	←	4	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑ 13		**	44	7	7
Traffic Volume (vph)	830	35	85	1262	28	79
Future Volume (vph)	830	35	85	1262	28	79
Satd. Flow (prot)	3363	0	1695	3390	1695	1517
Flt Permitted		•	0.319		0.950	
Satd. Flow (perm)	3363	0	565	3390	1678	1475
Satd. Flow (RTOR)	7					79
Lane Group Flow (vph)	865	0	85	1262	28	79
Turn Type	NA		Perm	NA	Perm	Perm
Protected Phases	2			6		
Permitted Phases			6	-	8	8
Detector Phase	2		6	6	8	8
Switch Phase	_					
Minimum Initial (s)	10.0		10.0	10.0	10.0	10.0
Minimum Split (s)	34.1		34.1	34.1	35.1	35.1
Total Split (s)	65.0		65.0	65.0	35.0	35.0
Total Split (%)	65.0%		65.0%	65.0%	35.0%	35.0%
Yellow Time (s)	4.2		4.2	4.2	3.0	3.0
All-Red Time (s)	1.9		1.9	1.9	3.1	3.1
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.1		6.1	6.1	6.1	6.1
Lead/Lag	27.		***		*	***
Lead-Lag Optimize?						
Recall Mode	C-Min		C-Min	C-Min	None	None
Act Effct Green (s)	78.4		78.4	78.4	13.8	13.8
Actuated g/C Ratio	0.78		0.78	0.78	0.14	0.14
v/c Ratio	0.33		0.19	0.47	0.12	0.29
Control Delay	5.4		9.7	11.3	35.6	10.2
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	5.4		9.7	11.3	35.6	10.2
LOS	A.4		Α.	В	D	В
Approach Delay	5.4		/\	11.2	16.9	
Approach LOS	A			В	В	
Queue Length 50th (m)	20.8		7.3	75.7	5.1	0.0
Queue Length 95th (m)	58.5		m24.8	151.1	10.3	10.3
Internal Link Dist (m)	103.0		11124.0	384.9	183.4	10.0
Turn Bay Length (m)	100.0		55.0	007.0	30.0	
Base Capacity (vph)	2639		443	2659	484	482
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.33		0.19	0.47	0.06	0.16
	0.00		0.13	0.47	0.00	0.10
Intersection Summary						

Cycle Length: 100 Actuated Cycle Length: 100

Offset: 65 (65%), Referenced to phase 2:EBT and 6:WBTL, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.47

Intersection Signal Delay: 9.3

Intersection Capacity Utilization 63.6%

Intersection LOS: A ICU Level of Service B

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

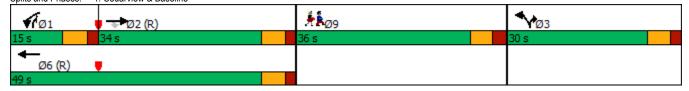
	٠	→	←	4	\	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	44	44	7	W	
Traffic Volume (vph)	51	900	1384	63	51	117
Future Volume (vph)	51	900	1384	63	51	117
Satd. Flow (prot)	1695	3390	3390	1517	1568	0
Flt Permitted	0.159				0.985	
Satd. Flow (perm)	283	3390	3390	1435	1563	0
Satd. Flow (RTOR)			100	63	41	
Lane Group Flow (vph)	51	900	1384	63	168	0
Turn Type	Perm	NA	NA	Perm	Perm	
Protected Phases		2	6	^	4	
Permitted Phases	2	0		6	4	
Detector Phase	2	2	6	6	4	
Switch Phase	10.0	10.0	10.0	10.0	10.0	
Minimum Initial (s) Minimum Split (s)	30.4	30.4	30.4	30.4	36.5	
Minimum Split (s) Total Split (s)	30.4 64.0	64.0	64.0	64.0	36.0	
Total Split (%)	64.0%	64.0%	64.0%	64.0%	36.0%	
Yellow Time (s)	64.0% 4.2	4.2	4.2	4.2	36.0%	
All-Red Time (s)	1.7	1.7	1.7	1.7	3.3 2.7	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.9	5.9	5.9	5.9	6.0	
Lead/Lag	5.5	J.5	J.9	J.5	0.0	
Lead-Lag Optimize?						
Recall Mode	C-Min	C-Min	C-Min	C-Min	None	
Act Effct Green (s)	71.9	71.9	71.9	71.9	16.2	
Actuated g/C Ratio	0.72	0.72	0.72	0.72	0.16	
v/c Ratio	0.25	0.37	0.57	0.06	0.59	
Control Delay	16.2	9.7	9.1	2.2	35.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	16.2	9.7	9.1	2.2	35.8	
LOS	В	Α	Α.	Α.Α	D	
Approach Delay		10.0	8.8	/ \	35.8	
Approach LOS		В	Α		D	
Queue Length 50th (m)	2.7	27.4	51.0	0.0	23.6	
Queue Length 95th (m)	21.6	105.3	117.7	5.1	36.0	
Internal Link Dist (m)	21.0	384.9	355.9	V. 1	174.0	
Turn Bay Length (m)	55.0		2.50.0	160.0		
Base Capacity (vph)	203	2436	2436	1049	497	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.25	0.37	0.57	0.06	0.34	
Intersection Summary						
Cycle Length: 100						
Actuated Cycle Length: 100						
Offset: 11 (11%), Referenced to p	hase 2:EBTL ar	nd 6:WBT, S	Start of Gree	en		
Natural Cycle: 75						
Control Type: Actuated-Coordinate	ed					
Maximum v/c Ratio: 0.59						
Intersection Signal Delay: 11.0					ersection LC	
Intersection Capacity Utilization 69	9.8%			IC	U Level of S	ervice C
Analysis Period (min) 15						
0.111 - 5 11						
Splits and Phases: 5: Baseline	& Morrison					
A						
J						
64 s						
*						
Ø6 (R)						

Intersection						
Int Delay, s/veh	2.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	₩.	WDIX		NON	ODL	्री
	0	44	1 53	0	76	147
Traffic Vol, veh/h						
Future Vol, veh/h	0	44	153	0	76	147
Conflicting Peds, #/hr	0	0	0	25	25	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	44	153	0	76	147
Major/Minor	Minor4		Majort		Major	
Major/Minor	Minor1	1=6	Major1		Major2	
Conflicting Flow All	477	178	0	0	178	0
Stage 1	178	-	-	-	-	-
Stage 2	299	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	547	865	-	-	1398	-
Stage 1	853	-	-	-	-	-
Stage 2	752	-	-	-	-	-
Platoon blocked. %			-	-		-
Mov Cap-1 Maneuver	503	847	_	-	1368	_
Mov Cap-2 Maneuver	503	-	-	_	-	_
Stage 1	835	_	_		_	_
Stage 2	707	_		-	-	-
Glaye 2	101	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9.5		0		2.7	
HCM LOS	Α					
					251	
Minor Lane/Major Mvmt		NBT		WBLn1	SBL	SBT
Capacity (veh/h)		-	-	847	1368	-
HCM Lane V/C Ratio		-	-	0.052	0.056	-
HCM Control Delay (s)		-	-	9.5	7.8	0
HCM Lane LOS		-	-	Α	Α	Α
HCM 95th %tile Q(veh)		-	-	0.2	0.2	-

Intersection						
Int Delay, s/veh	1.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		1.			4
Traffic Vol, veh/h	0	21	132	0	33	114
Future Vol, veh/h	0	21	132	0	33	114
Conflicting Peds, #/hr	0	0	0	15	15	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- -	None	-	None	-	None
Storage Length	0	-		-	-	-
Veh in Median Storage, #	0	_	0	-		0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	21	132	0	33	114
Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	327	147	0	0	147	0
Stage 1	147		-	_	- ' ' -	_
Stage 2	180	-	-	-	-	-
Critical Hdwy	6.42	6.22	-		4.12	_
		0.22		-	4.12	
Critical Hdwy Stg 1	5.42		-			-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	667	900	-	-	1435	-
Stage 1	880	-	-	-	-	-
Stage 2	851	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	642	889	-	-	1417	-
Mov Cap-2 Maneuver	642	-	-	-	-	-
Stage 1	869	-	-	-	-	-
Stage 2	830	-	-	-	-	-
Annragah	NA/D		ND		OD.	
Approach	WB		NB		SB	
HCM Control Delay, s	9.1		0		1.7	
HCM LOS	Α					
Minor Lane/Major Mvmt		NBT	NBR	WBLn1	SBL	SBT
Capacity (veh/h)		-	TABIL	889	1417	-
HCM Lane V/C Ratio		-	-	0.024	0.023	-
		-	_	9.1	7.6	
HCM Control Delay (s)		_	-	9.1 A	7.6 A	0 A
HCM Lane LOS		_	-	Δ	Δ	Δ
HCM 95th %tile Q(veh)				0.1	0.1	-

Intersection						
Int Delay, s/veh	0.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	LDI	7	*	HUL	7
Traffic Vol, veh/h	780	34	0	TT 1270	0	48
Future Vol, veh/h	780	34	0	1270	0	48
	760	25	25			40
Conflicting Peds, #/hr				0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	45	-	-	0
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	780	34	0	1270	0	48
Major/Minor	Major1		Major2		Minor1	
						420
Conflicting Flow All	0	0	839	0	-	432
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	4.14	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	2.22	-	-	3.32
Pot Cap-1 Maneuver	-	-	791	-	0	572
Stage 1	-	-	-	-	0	-
Stage 2	-	-	-	-	0	-
Platoon blocked, %		-		-		
Mov Cap-1 Maneuver		-	774	_	-	560
Mov Cap-1 Maneuver	-	-	-	-	-	-
Stage 1	-	_			_	
	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		12	
					В	
HCM LOS						
HCM LOS						
		NDI n1	EDT	EDD	W/DI	W/DT
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Minor Lane/Major Mvmt Capacity (veh/h)		560	-	-	774	-
Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio		560 0.086		-	774 -	-
Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		560 0.086 12	-	-	774 - 0	-
Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio		560 0.086		-	774 -	-

	-	•	1	•	•	-	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	Ø9
Lane Configurations	44	#	*	44	*	#	
Traffic Volume (vph)	1288	54	90	506	169	477	
Future Volume (vph)	1288	54	90	506	169	477	
Satd. Flow (prot)	3390	1517	1695	3390	1695	1517	
Flt Permitted			0.950		0.950		
Satd. Flow (perm)	3390	1434	1687	3390	1683	1517	
Satd. Flow (RTOR)		36				477	
Lane Group Flow (vph)	1288	54	90	506	169	477	
Turn Type	NA	Perm	Prot	NA	Prot	pt+ov	
Protected Phases	2		1	6	3	3 1	9
Permitted Phases		2					
Detector Phase	2	2	1	6	3	3 1	
Switch Phase							
Minimum Initial (s)	10.0	10.0	5.0	10.0	10.0		10.0
Minimum Split (s)	27.4	27.4	11.2	27.4	16.0		36.0
Total Split (s)	34.0	34.0	15.0	49.0	30.0		36.0
Total Split (%)	29.6%	29.6%	13.0%	42.6%	26.1%		31%
Yellow Time (s)	4.2	4.2	4.2	4.2	4.0		3.7
All-Red Time (s)	1.9	1.9	1.9	1.9	2.0		2.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.1	6.1	6.1	6.1	6.0		
Lead/Lag	Lag	Lag	Lead				
Lead-Lag Optimize?	Yes	Yes	Yes				
Recall Mode	C-Min	C-Min	None	C-Min	None		None
Act Effct Green (s)	67.9	67.9	11.8	85.9	17.0	35.0	
Actuated g/C Ratio	0.59	0.59	0.10	0.75	0.15	0.30	
v/c Ratio	0.64	0.06	0.52	0.20	0.68	0.60	
Control Delay	18.9	6.6	58.6	5.0	59.1	5.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	18.9	6.6	58.6	5.0	59.1	5.7	
LOS	В	Α	Е	Α	Е	Α	
Approach Delay	18.5			13.1	19.7		
Approach LOS	В			В	В		
Queue Length 50th (m)	93.9	1.6	19.5	15.1	36.6	0.0	
Queue Length 95th (m)	147.7	8.6	34.4	26.1	55.4	19.6	
Internal Link Dist (m)	136.9			418.5	239.0		
Turn Bay Length (m)			100.0			30.0	
Base Capacity (vph)	2002	861	178	2531	353	781	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.64	0.06	0.51	0.20	0.48	0.61	


Analysis Period (min) 15

Cycle Length: 115
Actuated Cycle Length: 115
Offset: 30 (26%), Referenced to phase 2:EBT and 6:WBT, Start of Green
Natural Cycle: 115

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.68 Intersection Signal Delay: 17.5 Intersection Capacity Utilization 79.4%

Intersection LOS: B ICU Level of Service D

Splits and Phases: 1: Cedarview & Baseline

	•	-	•	•	•	•	4	†	/	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	44	*	¥	44	*		4			વી	7
Traffic Volume (vph)	103	1627	15	12	508	106	34	2	15	55	4	40
Future Volume (vph)	103	1627	15	12	508	106	34	2	15	55	4	40
Satd. Flow (prot)	1695	3390	1517	1695	3390	1517	0	1646	0	0	1704	1517
Flt Permitted	0.950			0.950				0.763			0.703	
Satd. Flow (perm)	1681	3390	1454	1692	3390	1453	0	1291	0	0	1241	1486
Satd. Flow (RTOR)			122			122		15				118
Lane Group Flow (vph)	103	1627	15	12	508	106	0	51	0	0	59	40
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Perm	NA		Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases			2			6	8			4		4
Detector Phase	5	2	2	1	6	6	8	8		4	4	4
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	10.0	10.0		10.0	10.0	10.0
Minimum Split (s)	11.0	32.2	32.2	11.0	32.2	32.2	37.5	37.5		37.5	37.5	37.5
Total Split (s)	14.0	36.5	36.5	11.0	33.5	33.5	37.5	37.5		37.5	37.5	37.5
Total Split (%)	16.5%	42.9%	42.9%	12.9%	39.4%	39.4%	44.1%	44.1%		44.1%	44.1%	44.1%
Yellow Time (s)	4.0	4.2	4.2	4.0	4.2	4.2	3.3	3.3		3.3	3.3	3.3
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	3.2	3.2		3.2	3.2	3.2
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	V.=	0.0		V. <u>_</u>	0.0	0.0
Total Lost Time (s)	6.0	6.2	6.2	6.0	6.2	6.2		6.5			6.5	6.5
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag		0.0			0.0	0.0
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes						
Recall Mode	None	C-Min	C-Min	None	C-Min	C-Min	None	None		None	None	None
Act Effct Green (s)	9.4	60.3	60.3	5.7	49.6	49.6	140110	14.4		110110	14.4	14.4
Actuated g/C Ratio	0.11	0.71	0.71	0.07	0.58	0.58		0.17			0.17	0.17
v/c Ratio	0.55	0.68	0.01	0.11	0.26	0.12		0.22			0.28	0.11
Control Delay	48.2	14.8	0.0	39.6	13.7	3.4		22.8			31.5	0.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	0.0
Total Delay	48.2	14.8	0.0	39.6	13.7	3.4		22.8			31.5	0.7
LOS	D	В	A	D	В	A		C			C	A
Approach Delay		16.7	,,		12.5	,,		22.8			19.1	,
Approach LOS		В			В			C			В	
Queue Length 50th (m)	15.8	58.1	0.0	1.9	22.2	0.0		5.4			9.0	0.0
Queue Length 95th (m)	#38.1	#224.9	0.0	7.1	48.3	8.3		10.9			14.3	0.0
Internal Link Dist (m)	#00.1	418.5	0.0	7.1	413.1	0.0		206.5			123.4	0.0
Turn Bay Length (m)	50.0	410.0	140.0	50.0	710.1	50.0		200.0			120.4	40.0
Base Capacity (vph)	193	2404	1066	113	1978	898		480			452	616
Starvation Cap Reductn	0	0	0	0	0	0		0			0	010
Spillback Cap Reductn	0	0	0	0	0	0		0			0	0
Storage Cap Reductn	0	0	0	0	0	0		0			0	0
Reduced v/c Ratio	0.53	0.68	0.01	0.11	0.26	0.12		0.11			0.13	0.06
Neudoed V/C Ralio	0.53	0.00	0.01	0.11	0.20	0.12		0.11			0.13	0.00

Cycle Length: 85

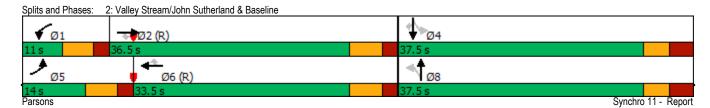
Actuated Cycle Length: 85

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 105

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.68


Intersection Signal Delay: 15.8

Intersection Capacity Utilization 83.6%

Intersection LOS: B
ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

	-	•	1	←	1	~		
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	Ø9	
Lane Configurations	ት ጌ		ች	44	W			
Traffic Volume (vph)	1690	23	74	554	51	121		
Future Volume (vph)	1690	23	74	554	51	121		
Satd. Flow (prot)	3380	0	1695	3390	1468	0		
Flt Permitted	0000	•	0.950	0000	0.985			
Satd. Flow (perm)	3380	0	1685	3390	1454	0		
Satd. Flow (RTOR)	2				121			
Lane Group Flow (vph)	1713	0	74	554	172	0		
Turn Type	NA		Prot	NA	Perm			
Protected Phases	2		1	6			9	
Permitted Phases					8			
Detector Phase	2		1	6	8			
Switch Phase								
Minimum Initial (s)	10.0		5.0	10.0	10.0		1.0	
Minimum Split (s)	23.9		11.0	23.9	35.5		5.0	
Total Split (s)	38.5		11.0	49.5	35.5		5.0	
Total Split (%)	42.8%		12.2%	55.0%	39.4%		6%	
Yellow Time (s)	4.2		4.0	4.2	3.0		2.0	
All-Red Time (s)	1.7		2.0	1.7	3.5		0.0	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0			
Total Lost Time (s)	5.9		6.0	5.9	6.5			
Lead/Lag	Lag		Lead					
Lead-Lag Optimize?	Yes		Yes					
Recall Mode	C-Min		None	C-Min	None		None	
Act Effct Green (s)	50.6		10.0	64.0	12.6			
Actuated g/C Ratio	0.56		0.11	0.71	0.14			
v/c Ratio	0.90		0.39	0.23	0.56			
Control Delay	28.6		45.6	8.3	19.2			
Queue Delay	0.0		0.0	0.0	0.0			
Total Delay	28.6		45.6	8.3	19.2			
LOS	С		D	Α	В			
Approach Delay	28.6			12.7	19.2			
Approach LOS	С			В	В			
Queue Length 50th (m)	126.0		13.7	11.2	8.3			
Queue Length 95th (m)	#254.1		27.8	48.1	23.8			
Internal Link Dist (m)	413.1			132.4	26.3			
Turn Bay Length (m)			70.0					
Base Capacity (vph)	1900		188	2412	550			
Starvation Cap Reductn	0		0	0	0			
Spillback Cap Reductn	0		0	0	0			
Storage Cap Reductn	0		0	0	0			
Reduced v/c Ratio	0.90		0.39	0.23	0.31			

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green Natural Cycle: 110

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.90

Intersection Signal Delay: 24.0

Intersection Capacity Utilization 87.0%

Intersection LOS: C ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

	-	•	1	←	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑ Ъ		7	44	7	7
Traffic Volume (vph)	1660	28	49	721	25	84
Future Volume (vph)	1660	28	49	721	25	84
Satd. Flow (prot)	3380	0	1695	3390	1695	1517
Flt Permitted	0000	U	0.950	0000	0.950	1017
Satd. Flow (perm)	3380	0	1691	3390	1679	1485
Satd. Flow (RTOR)	2	U	1001	0000	1073	84
Lane Group Flow (vph)	1688	0	49	721	25	84
Turn Type	NA	U	Prot	NA	Perm	Perm
Protected Phases	2		1	6	FEIIII	FEIIII
Permitted Phases	2		ſ	U	8	8
	2		1	6	8	8
Detector Phase	2		1	6	δ	δ
Switch Phase	40.0		F.0	40.0	40.0	40.0
Minimum Initial (s)	10.0		5.0	10.0	10.0	10.0
Minimum Split (s)	34.1		11.0	34.1	35.1	35.1
Total Split (s)	43.9		11.0	54.9	35.1	35.1
Total Split (%)	48.8%		12.2%	61.0%	39.0%	39.0%
Yellow Time (s)	4.2		4.0	4.2	3.0	3.0
All-Red Time (s)	1.9		2.0	1.9	3.1	3.1
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.1		6.0	6.1	6.1	6.1
Lead/Lag	Lag		Lead			
Lead-Lag Optimize?	Yes		Yes			
Recall Mode	C-Min		None	C-Min	None	None
Act Effct Green (s)	60.4		7.0	68.4	13.8	13.8
Actuated g/C Ratio	0.67		0.08	0.76	0.15	0.15
v/c Ratio	0.74		0.37	0.28	0.10	0.28
Control Delay	11.8		56.4	3.4	30.1	8.8
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	11.8		56.4	3.4	30.1	8.8
LOS	11.0 B		30.4 E	3.4 A	30.1 C	0.6 A
	11.8		<u> </u>	6.8	13.7	A
Approach LOS	11.8 B			6.8 A	13.7 B	
Approach LOS	24.4		9.1	5.4	4.0	0.0
Queue Length 50th (m)						
Queue Length 95th (m)	m#212.4		#23.9	24.5	8.4	9.4
Internal Link Dist (m)	103.0		4	384.9	183.4	
Turn Bay Length (m)			55.0	0	30.0	=0-
Base Capacity (vph)	2267		131	2577	541	535
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.74		0.37	0.28	0.05	0.16

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

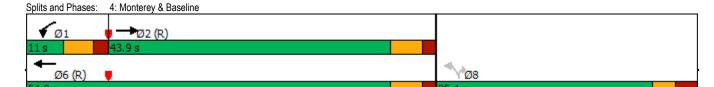
Natural Cycle: 105

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.74

Intersection Signal Delay: 10.3

Intersection Capacity Utilization 72.4%


Intersection LOS: B
ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

	•	→	←	*	>	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	44	44	7	W	ODIT
Traffic Volume (vph)	241	1558	582	74	69	37
Future Volume (vph)	241	1558	582	74	69	37
Satd. Flow (prot)	1695	3390	3390	1517	1634	0
Flt Permitted	0.950				0.968	•
Satd. Flow (perm)	1681	3390	3390	1438	1625	0
Satd. Flow (RTOR)				74	32	
Lane Group Flow (vph)	241	1558	582	74	106	0
Turn Type	Prot	NA	NA	Perm	Perm	
Protected Phases	5	2	6	*****	*****	
Permitted Phases				6	4	
Detector Phase	5	2	6	6	4	
Switch Phase						
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	11.0	30.4	30.4	30.4	36.5	
Total Split (s)	23.0	53.5	30.5	30.5	36.5	
Total Split (%)	25.6%	59.4%	33.9%	33.9%	40.6%	
Yellow Time (s)	4.0	4.2	4.2	4.2	3.3	
All-Red Time (s)	2.0	1.7	1.7	1.7	2.7	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	5.9	5.9	5.9	6.0	
Lead/Lag	Lead		Lag	Lag		
Lead-Lag Optimize?	Yes		Yes	Yes		
Recall Mode	None	C-Min	C-Min	C-Min	None	
Act Effct Green (s)	16.9	68.2	44.1	44.1	14.3	
Actuated g/C Ratio	0.19	0.76	0.49	0.49	0.16	
v/c Ratio	0.76	0.61	0.35	0.10	0.37	
Control Delay	37.1	19.8	18.3	6.1	25.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	37.1	19.8	18.3	6.1	25.7	
LOS	D	В	В	A	C	
Approach Delay	_	22.1	16.9		25.7	
Approach LOS		C	В		C	
Queue Length 50th (m)	31.7	128.3	31.4	0.0	12.1	
Queue Length 95th (m)	m61.7	162.8	63.5	9.7	20.2	
Internal Link Dist (m)		384.9	355.9	***	174.0	
Turn Bay Length (m)	55.0			160.0		
Base Capacity (vph)	342	2568	1660	741	571	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.70	0.61	0.35	0.10	0.19	
	00	0.07	0.00	0.10	0.10	

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.76

Intersection Signal Delay: 20.9

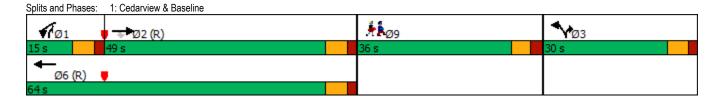
Intersection Capacity Utilization 68.4%

Intersection LOS: C
ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 5: Baseline & Morrison



Intersection						
Int Delay, s/veh	3.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	**	11511	1	HUIT	ODE	4
Traffic Vol, veh/h	0	59	89	0	42	66
Future Vol, veh/h	0	59	89	0	42	66
Conflicting Peds, #/hr	0	0	09	20	20	00
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -	None	riee -	None	riee -	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	59	89	0	42	66
Major/Minor	Minor1		Major1		Major2	
	259	109	0	0	109	0
Conflicting Flow All					109	
Stage 1	109	-	-	-	-	-
Stage 2	150	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	730	945	-	-	1481	-
Stage 1	916	-	-	-	-	-
Stage 2	878	-	_	_	-	-
Platoon blocked. %			-	_		-
Mov Cap-1 Maneuver	696	929	_		1456	_
Mov Cap-2 Maneuver	696	-	_	_	1400	_
	900					
Stage 1		-	-	-	_	-
Stage 2	852	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9.1		0		2.9	
HCM LOS	9.1 A		U		2.5	
I IOIVI LOS	A					
Minor Lane/Major Mvmt		NBT	NBR	WBLn1	SBL	SBT
Capacity (veh/h)		-	-	929	1456	-
HCM Lane V/C Ratio		-	-	0.064	0.029	
HCM Control Delay (s)			_	9.1	7.5	0
HCM Lane LOS		_	_	Α.	Α.	A
HCM 95th %tile Q(veh)				0.2	0.1	
HOW SOUT /OUIE Q(VEII)		-	-	0.2	0.1	-

Intersection						
Int Delay, s/veh	2.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		1.			4
Traffic Vol, veh/h	0	29	60	0	19	47
Future Vol, veh/h	0	29	60	0	19	47
Conflicting Peds, #/hr	0	0	0	15	15	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	_	-	-	-
Veh in Median Storage, #	0	_	0	_		0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	100	100	100	100	100	100
	2	2	2	2	2	2
Heavy Vehicles, %						
Mvmt Flow	0	29	60	0	19	47
Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	160	75	0	0	75	0
Stage 1	75	-	_	-	_	-
Stage 2	85	_	_	_	_	_
Critical Hdwy	6.42	6.22	_	_	4.12	_
Critical Hdwy Stg 1	5.42	0.22	_	_	7.12	_
Critical Hdwy Stg 2	5.42	_				
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	831	986		_	1524	_
	948				-	
Stage 1		-	-	-	-	-
Stage 2	938	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	809	973	-	-	1505	-
Mov Cap-2 Maneuver	809	-	-	-	-	-
Stage 1	936	-	-	-	-	-
Stage 2	926	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	8.8		0		2.1	
HCM LOS	0.0 A		U		۷.۱	
I IOIVI LOO	A					
Minor Lane/Major Mvmt		NBT	NBR	WBLn1	SBL	SBT
Capacity (veh/h)		-	-	973	1505	-
HCM Lane V/C Ratio		-	-	0.03	0.013	-
HCM Control Delay (s)		-	-	8.8	7.4	0
HCM Lane LOS		-	-	Α	Α	Α
HCM 95th %tile Q(veh)		-	-	0.1	0	-

Intersection						
Int Delay, s/veh	0.5					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ት ጌ	LDIT	*	^	NDL	7
Traffic Vol, veh/h	1670	15	0	668	0	59
Future Vol, veh/h	1670	15	0	668	0	59
Conflicting Peds, #/hr	0	25	25	000	0	0
Sign Control RT Channelized	Free	Free None	Free	Free None	Stop	Stop
			-		-	None
Storage Length	-	-	45	-	-	0
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1670	15	0	668	0	59
Major/Minor	Major1		Major2		Minor1	
						000
Conflicting Flow All	0	0	1710	0	-	868
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	4.14	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	2.22	-	-	3.32
Pot Cap-1 Maneuver	-	-	367	-	0	296
Stage 1	-	-	-	-	0	-
Stage 2	_	_	_	_	0	_
Platoon blocked, %		_				
Mov Cap-1 Maneuver		_	359		_	290
Mov Cap-1 Maneuver	-	_	-	-	-	230
Stage 1		-	-	-		
	•	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		20.6	
HCM LOS			-		C	
		NID!				
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		290	-	-	359	-
HCM Lane V/C Ratio		0.203	-	-	-	-
HCM Control Delay (s)		20.6	-	-	0	-
HCM Lane LOS		С	-	-	Α	-
HCM 95th %tile Q(veh)		0.7	-	-	0	-
HOW JOHN JOHN JUHIC WIVEIN		0.1			U	

		•	•	+	•	<i>></i>		
Lane Group	EBT	EBR	WBL	WBT	NBL	• NBR	Ø9	
Lane Configurations	*	Z Z	YVDL	<u>₩</u>	NDL T	NDIX	พร	
Traffic Volume (vph)	77	180	355	TT 990	122	165		
Future Volume (vph)	702	180	355	990	122	165		
Satd. Flow (prot)	3390	1517	1695	3390	1695	1517		
Flt Permitted	3330	1317	0.950	3330	0.950	1017		
Satd. Flow (perm)	3390	1424	1675	3390	1668	1517		
Satd. Flow (RTOR)	5550	180	1075	3030	1000	165		
Lane Group Flow (vph)	702	180	355	990	122	165		
Turn Type	NA	Perm	Prot	NA	Prot	pt+ov		
Protected Phases	2	1 01111	1	6	3	31	9	
Permitted Phases		2		0	U	01	•	
Detector Phase	2	2	1	6	3	3 1		
Switch Phase	_	_				31		
Minimum Initial (s)	10.0	10.0	5.0	10.0	10.0		10.0	
Minimum Split (s)	27.4	27.4	11.2	27.4	16.0		36.0	
Total Split (s)	49.0	49.0	15.0	64.0	30.0		36.0	
Total Split (%)	37.7%	37.7%	11.5%	49.2%	23.1%		28%	
Yellow Time (s)	4.2	4.2	4.2	4.2	4.0		3.7	
All-Red Time (s)	1.9	1.9	1.9	1.9	2.0		2.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)	6.1	6.1	6.1	6.1	6.0			
Lead/Lag	Lag	Lag	Lead	.	0.0			
Lead-Lag Optimize?	Yes	Yes	Yes					
Recall Mode	C-Min	C-Min	None	C-Min	None		None	
Act Effct Green (s)	45.1	45.1	51.8	103.1	14.8	72.8		
Actuated g/C Ratio	0.35	0.35	0.40	0.79	0.11	0.56		
v/c Ratio	0.60	0.29	0.53	0.37	0.63	0.18		
Control Delay	36.3	4.6	37.2	4.7	69.0	3.1		
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		
Total Delay	36.3	4.6	37.2	4.7	69.0	3.1		
LOS	D	A	D	A	E	A		
Approach Delay	29.8			13.3	31.1			
Approach LOS	C			В	С			
Queue Length 50th (m)	71.7	0.0	73.9	32.3	30.4	0.0		
Queue Length 95th (m)	87.0	13.6	117.0	50.1	48.5	11.1		
Internal Link Dist (m)	136.9			418.5	239.0			
Turn Bay Length (m)			100.0			30.0		
Base Capacity (vph)	1281	650	675	2687	312	917		
Starvation Cap Reductn	0	0	0	0	0	0		
Spillback Cap Reductn	0	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0	0		
Reduced v/c Ratio	0.55	0.28	0.53	0.37	0.39	0.18		
Intersection Summary								
Cycle Length: 130								
Actuated Cycle Length: 130								
Offset: 30 (23%), Referenced to phase	2:EBT and	d 6:WBT. St	art of Green	1				
Natural Cycle: 105	and	2 3 2 1, 00	0. 0.001					
Control Type: Actuated-Coordinated								
Maximum v/c Ratio: 0.63								
Intersection Signal Delay: 21.1				Int	ersection LC	S: C		
Intersection Capacity Utilization 64.7%	,				U Level of S			
Analysis Period (min) 15				.0				

	•	→	\rightarrow	•	←	•	4	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	7	44	7		4 3			વી	7
Traffic Volume (vph)	40	728	46	17	1189	66	26	3	19	89	6	125
Future Volume (vph)	40	728	46	17	1189	66	26	3	19	89	6	125
Satd. Flow (prot)	1695	3390	1517	1695	3390	1517	0	1625	0	0	1704	1517
Flt Permitted	0.950			0.950				0.799			0.705	
Satd. Flow (perm)	1686	3390	1452	1683	3390	1437	0	1324	0	0	1237	1477
Satd. Flow (RTOR)			104			104		19				125
Lane Group Flow (vph)	40	728	46	17	1189	66	0	48	0	0	95	125
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Perm	NA		Perm	NA	Perm
Protected Phases	5	2		1	6			8			4	
Permitted Phases			2			6	8			4		4
Detector Phase	5	2	2	1	6	6	8	8		4	4	4
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	10.0	10.0		10.0	10.0	10.0
Minimum Split (s)	11.0	32.2	32.2	11.0	32.2	32.2	37.5	37.5		37.5	37.5	37.5
Total Split (s)	11.0	51.5	51.5	11.0	51.5	51.5	37.5	37.5		37.5	37.5	37.5
Total Split (%)	11.0%	51.5%	51.5%	11.0%	51.5%	51.5%	37.5%	37.5%		37.5%	37.5%	37.5%
Yellow Time (s)	4.0	4.2	4.2	4.0	4.2	4.2	3.3	3.3		3.3	3.3	3.3
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	3.2	3.2		3.2	3.2	3.2
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	0.0
Total Lost Time (s)	6.0	6.2	6.2	6.0	6.2	6.2		6.5			6.5	6.5
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes						
Recall Mode	None	C-Min	C-Min	None	C-Min	C-Min	None	None		None	None	None
Act Effct Green (s)	6.8	66.5	66.5	6.0	63.3	63.3		16.0			16.0	16.0
Actuated g/C Ratio	0.07	0.66	0.66	0.06	0.63	0.63		0.16			0.16	0.16
v/c Ratio	0.35	0.32	0.05	0.17	0.55	0.07		0.21			0.48	0.37
Control Delay	53.5	10.1	0.1	69.8	8.8	0.6		24.1			44.2	8.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0		0.0			0.0	0.0
Total Delay	53.5	10.1	0.1	69.8	8.8	0.6		24.1			44.2	8.6
LOS	D	В	Α	Е	Α	Α		С			D	Α
Approach Delay		11.6			9.2			24.1			24.0	
Approach LOS		В			Α			С			С	
Queue Length 50th (m)	7.5	20.3	0.0	3.5	63.7	0.0		5.1			17.6	0.0
Queue Length 95th (m)	#20.1	65.8	0.0	m7.1	75.8	0.7		12.1			26.6	12.3
Internal Link Dist (m)		418.5			413.1			206.5			123.4	
Turn Bay Length (m)	50.0		140.0	50.0		50.0						40.0
Base Capacity (vph)	115	2252	999	101	2147	948		423			383	544
Starvation Cap Reductn	0	0	0	0	0	0		0			0	0
Spillback Cap Reductn	0	0	0	0	0	0		0			0	0
Storage Cap Reductn	0	0	0	0	0	0		0			0	0
Reduced v/c Ratio	0.35	0.32	0.05	0.17	0.55	0.07		0.11			0.25	0.23

Cycle Length: 100 Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 85

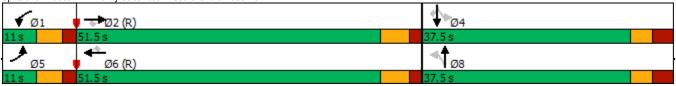
Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.55

Intersection Signal Delay: 11.7

Intersection Capacity Utilization 83.6%

Intersection LOS: B
ICU Level of Service E


Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 2: Valley Stream/John Sutherland & Baseline

Intersection Signal Delay: 17.1 Intersection Capacity Utilization 66.7% Analysis Period (min) 15

	-	•	•	←	4	/		
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	Ø9	
Lane Configurations	A 13		*	44	W	11211	20	
Traffic Volume (vph)	777	39	176	1226	57	76		
Future Volume (vph)	777	39	176	1226	57	76		
Satd. Flow (prot)	3351	0	1695	3390	1502	0		
Flt Permitted	0001	•	0.950	0000	0.979	•		
Satd. Flow (perm)	3351	0	1657	3390	1479	0		
Satd. Flow (RTOR)	5	•		0000	68			
Lane Group Flow (vph)	816	0	176	1226	133	0		
Turn Type	NA		Prot	NA	Perm			
Protected Phases	2		1	6			9	
Permitted Phases					8			
Detector Phase	2		1	6	8			
Switch Phase								
Minimum Initial (s)	10.0		5.0	10.0	10.0		1.0	
Minimum Split (s)	23.9		11.0	23.9	35.5		5.0	
Total Split (s)	37.4		22.0	59.4	35.6		5.0	
Total Split (%)	37.4%		22.0%	59.4%	35.6%		5%	
Yellow Time (s)	4.2		4.0	4.2	3.0		2.0	
All-Red Time (s)	1.7		2.0	1.7	3.5		0.0	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0			
Total Lost Time (s)	5.9		6.0	5.9	6.5			
Lead/Lag	Lag		Lead					
Lead-Lag Optimize?	Yes		Yes					
Recall Mode	C-Min		None	C-Min	None		None	
Act Effct Green (s)	52.3		15.6	73.9	12.7			
Actuated g/C Ratio	0.52		0.16	0.74	0.13			
v/c Ratio	0.46		0.67	0.49	0.54			
Control Delay	18.6		59.2	8.8	28.5			
Queue Delay	0.0		0.0	0.0	0.0			
Total Delay	18.6		59.2	8.8	28.5			
LOS	В		Е	Α	С			
Approach Delay	18.6			15.1	28.5			
Approach LOS	В			В	С			
Queue Length 50th (m)	36.3		36.9	48.7	12.1			
Queue Length 95th (m)	78.0		57.6	67.0	26.9			
Internal Link Dist (m)	413.1			132.4	26.3			
Turn Bay Length (m)			70.0					
Base Capacity (vph)	1756		295	2505	478			
Starvation Cap Reductn	0		0	0	0			
Spillback Cap Reductn	0		0	0	0			
Storage Cap Reductn	0		0	0	0			
Reduced v/c Ratio	0.46		0.60	0.49	0.28			
Intersection Summary								
Cycle Length: 100								
Actuated Cycle Length: 100								
Offset: 0 (0%), Referenced to ph	ase 2:EBT and 6:	WBT, Start	of Green					
Natural Cycle: 90								
Control Type: Actuated-Coordina	ated							
Maximum v/c Ratio: 0.67								
Interposition Cianal Delay 17.1				Int	orocotion I O	C. D		

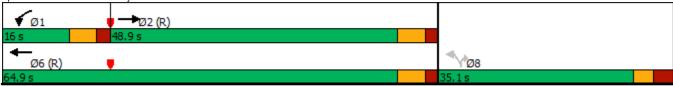
Intersection LOS: B ICU Level of Service C

	-	•	1	←	1	/
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑ 15	LDI	*	44	7	7
Traffic Volume (vph)	870	35	85	1323	28	79
Future Volume (vph)	870	35	85	1323	28	79
Satd. Flow (prot)	3363	0	1695	3390	1695	1517
Flt Permitted	0000	•	0.950	0000	0.950	1011
Satd. Flow (perm)	3363	0	1682	3390	1678	1475
Satd. Flow (RTOR)	5		.002	0000		79
Lane Group Flow (vph)	905	0	85	1323	28	79
Turn Type	NA	•	Prot	NA	Perm	Perm
Protected Phases	2		1	6		
Permitted Phases	_		•		8	8
Detector Phase	2		1	6	8	8
Switch Phase	_		•			
Minimum Initial (s)	10.0		5.0	10.0	10.0	10.0
Minimum Split (s)	34.1		11.0	34.1	35.1	35.1
Total Split (s)	48.9		16.0	64.9	35.1	35.1
Total Split (%)	48.9%		16.0%	64.9%	35.1%	35.1%
Yellow Time (s)	4.2		4.0	4.2	3.0	3.0
All-Red Time (s)	1.9		2.0	1.9	3.1	3.1
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	6.1		6.0	6.1	6.1	6.1
Lead/Lag	Lag		Lead	0.1	0.1	0.1
Lead-Lag Optimize?	Yes		Yes			
Recall Mode	C-Min		None	C-Min	None	None
Act Effct Green (s)	65.1		9.8	78.4	13.8	13.8
Actuated g/C Ratio	0.65		0.10	0.78	0.14	0.14
v/c Ratio	0.41		0.10	0.70	0.14	0.14
Control Delay	7.8		43.9	10.2	35.6	10.2
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	7.8		43.9	10.2	35.6	10.2
LOS	7.0 A		43.3 D	В	55.0 D	В
Approach Delay	7.8		U	12.3	16.9	ь
Approach LOS	7.0 A			12.3 B	10.9 B	
Queue Length 50th (m)	18.7		15.8	58.1	5.1	0.0
Queue Length 95th (m)	30.1		m26.6	98.2	10.3	10.3
Internal Link Dist (m)	103.0		11120.0	384.9	183.4	10.3
Turn Bay Length (m)	105.0		55.0	304.3	30.0	
Base Capacity (vph)	2202		182	2659	486	483
Starvation Cap Reductn	0		0	2039	0	403
	0		0	0	0	0
Spillback Cap Reductn Storage Cap Reductn	0		0	0	0	0
	0.41		0.47	0.50	0.06	0.16
Reduced v/c Ratio	0.41		0.47	0.50	0.00	0.16

Cycle Length: 100 Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 85


Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.52 Intersection Signal Delay: 10.8 Intersection Capacity Utilization 63.3%

Intersection LOS: B
ICU Level of Service B

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

	•	→	←	•	>	4
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	44	44	7	W	-02
Traffic Volume (vph)	51	944	1451	63	51	117
Future Volume (vph)	51	944	1451	63	51	117
Satd. Flow (prot)	1695	3390	3390	1517	1568	0
Flt Permitted	0.950				0.985	
Satd. Flow (perm)	1688	3390	3390	1434	1563	0
Satd. Flow (RTOR)				63	117	•
Lane Group Flow (vph)	51	944	1451	63	168	0
Turn Type	Prot	NA	NA	Perm	Perm	
Protected Phases	5	2	6	*****	*****	
Permitted Phases		_		6	4	
Detector Phase	5	2	6	6	4	
Switch Phase		_				
Minimum Initial (s)	5.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	11.0	30.4	30.4	30.4	36.5	
Total Split (s)	11.0	63.5	52.5	52.5	36.5	
Total Split (%)	11.0%	63.5%	52.5%	52.5%	36.5%	
Yellow Time (s)	4.0	4.2	4.2	4.2	3.3	
All-Red Time (s)	2.0	1.7	1.7	1.7	2.7	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	5.9	5.9	5.9	6.0	
Lead/Lag	Lead		Lag	Lag		
Lead-Lag Optimize?	Yes		Yes	Yes		
Recall Mode	None	C-Min	C-Min	C-Min	None	
Act Effct Green (s)	7.5	73.8	62.7	62.7	14.3	
Actuated g/C Ratio	0.08	0.74	0.63	0.63	0.14	
v/c Ratio	0.40	0.38	0.68	0.07	0.52	
Control Delay	62.3	4.9	16.9	3.7	18.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	62.3	4.9	16.9	3.7	18.3	
LOS	E	A	В	A	В	
Approach Delay		7.8	16.4		18.3	
Approach LOS		A	В		В	
Queue Length 50th (m)	10.5	2.2	86.3	0.0	9.4	
Queue Length 95th (m)	#26.3	47.6	#182.3	6.7	22.5	
Internal Link Dist (m)		384.9	355.9	***	174.0	
Turn Bay Length (m)	55.0			160.0		
Base Capacity (vph)	126	2500	2124	922	558	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.40	0.38	0.68	0.07	0.30	
	0.70	0.00	0.00	0.01	0.00	

Cycle Length: 100 Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green Natural Cycle: 90

Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.68

Intersection Signal Delay: 13.3 Intersection Capacity Utilization 69.8%

Intersection LOS: B ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Intersection						
Int Delay, s/veh	2.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	**	WDIX	1	INDIX	ODL	4
Traffic Vol, veh/h	0	44	153	0	76	147
Future Vol, veh/h	0	44	153	0	76 76	147
		0	153	25	76 25	0
Conflicting Peds, #/hr	0					
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	44	153	0	76	147
Major/Minor	Minor1		Major1		Major2	
		178				0
Conflicting Flow All	477		0	0	178	0
Stage 1	178	-	-	-	-	-
Stage 2	299	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	547	865	-	-	1398	-
Stage 1	853	-	-	-	-	-
Stage 2	752	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	503	847	-	-	1368	-
Mov Cap-2 Maneuver	503	-	-	-	-	-
Stage 1	835	-	-	-	-	-
Stage 2	707	_	_	_	_	-
Clago L	101					
Approach	WB		NB		SB	
HCM Control Delay, s	9.5		0		2.7	
HCM LOS	Α					
Minor Lang/Major Maret		NBT	NDD	WDI n4	SBL	SBT
Minor Lane/Major Mvmt				WBLn1		
Capacity (veh/h)		-	-	847	1368	-
HCM Lane V/C Ratio		-	-	0.052	0.056	-
HCM Control Delay (s)		-	-	9.5	7.8	0
HCM Lane LOS		-	-	Α	Α	Α
HCM 95th %tile Q(veh)		-	-	0.2	0.2	-

Intersection						
Int Delay, s/veh	1.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		1.			4
Traffic Vol, veh/h	0	21	132	0	33	114
Future Vol, veh/h	0	21	132	0	33	114
Conflicting Peds, #/hr	0	0	0	15	15	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- -	None	-	None	-	None
Storage Length	0	-		-	-	-
Veh in Median Storage, #	0	-	0	_		0
Grade, %	0	-	0	-	-	0
	100					100
Peak Hour Factor		100	100	100	100	
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	21	132	0	33	114
Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	327	147	0	0	147	0
Stage 1	147		-	_	- ' ' -	_
Stage 2	180	_	-	_	_	-
Critical Hdwy	6.42	6.22	-		4.12	-
	5.42	0.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42					
Critical Hdwy Stg 2		-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	667	900	-	-	1435	-
Stage 1	880	-	-	-	-	-
Stage 2	851	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	642	889	-	-	1417	-
Mov Cap-2 Maneuver	642	-	-	-	-	-
Stage 1	869	-	-	-	-	-
Stage 2	830	-	-	-	-	-
Annragah	MD		ND		OD.	
Approach	WB		NB		SB	
HCM Control Delay, s	9.1		0		1.7	
HCM LOS	Α					
Minor Lane/Major Mvmt		NBT	NBR	WBLn1	SBL	SBT
Capacity (veh/h)		-	TABIL	889	1417	-
HCM Lane V/C Ratio		-	-	0.024	0.023	-
		-	-	9.1	7.6	
HCM Control Delay (s)		_	-			0
HCM Lane LOS		-	-	Α	Α	Α
HCM 95th %tile Q(veh)				0.1	0.1	- '.

Intersection						
Int Delay, s/veh	0.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	† 13	LDIN	**	*	HUL	7
Traffic Vol, veh/h	819	34	0	TT	0	4 8
Future Vol, veh/h	819	34	0	1330	0	48
	0 19	34 25	25			40
Conflicting Peds, #/hr				0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	45	-	-	0
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	819	34	0	1330	0	48
Major/Minor	Major1		Major2		Minor1	
	1VIAJUI I 0	0	878	0	-	452
Conflicting Flow All						
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	4.14	-	-	6.94
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	2.22	-	-	3.32
Pot Cap-1 Maneuver	-	-	765	-	0	555
Stage 1	-	-	-	-	0	-
Stage 2	-	-	-	-	0	-
Platoon blocked, %				-		
Mov Cap-1 Maneuver	_	_	749	-	_	543
Mov Cap-2 Maneuver	-	-	-	_	_	-
Stage 1		_	_		_	_
			_	_	_	_
		_	_			
Stage 2	-	-	-	-		
	-	-		-		_
Stage 2 Approach	EB	-	WB	-	NB	-
Approach HCM Control Delay, s		-		-		
Approach	EB	-	WB		NB	
Approach HCM Control Delay, s	EB	-	WB		NB 12.3	
Approach HCM Control Delay, s HCM LOS	EB		WB 0		NB 12.3 B	
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt	EB	NBLn1	WB	EBR	NB 12.3 B	WBT
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h)	EB	NBLn1 543	WB 0	EBR -	NB 12.3 B WBL 749	WBT_
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	EB	NBLn1 543 0.088	WB 0	EBR - -	NB 12.3 B WBL 749	WBT -
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	EB	NBLn1 543 0.088 12.3	WB 0	EBR - -	NB 12.3 B WBL 749 -	WBT - -
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	EB	NBLn1 543 0.088	WB 0	EBR - -	NB 12.3 B WBL 749	WBT -