780 Baseline Road Transportation Impact Assessment

Step 1 Screening Report
Step 2 Scoping Report
Step 3 Forecasting Report
Step 4 Strategy Report

Prepared for:

Theberge Developments Ltd. 1600 Laperriere Avenue, Suite 205 Ottawa ON K1Z 8P5

Prepared by:

6 Plaza Court Ottawa, ON K2H 7W1

October 2022

PN: 2021-083

Table of Contents

1		Screeni	ing	. 1
2		Existing	g and Planned Conditions	. 1
	2.1	Propo	osed Development	. 1
	2.2	Existi	ing Conditions	. 3
	2.2	2.1	Area Road Network	. 3
	2.2	2.2	Existing Intersections	. 3
	2.2	2.3	Existing Driveways	. 4
	2.2	2.4	Cycling and Pedestrian Facilities	
	2.2	2.5	Existing Transit	. 8
	2.2	2.6	Existing Area Traffic Management Measures	. :
	2.2	2.7	Existing Peak Hour Travel Demand	. 🤉
	2.2	2.8	Collision Analysis	11
	2.3	Plann	ned Conditions	14
	2.3	3.1	Changes to the Area Transportation Network	14
	2.3	3.2	Other Study Area Developments	16
3		Study A	Area and Time Periods	16
	3.1	Study	y Area	16
	3.2	Time	Periods	16
	3.3	Horiz	on Years	16
4		Exempt	tion Review	17
5		Develo	pment-Generated Travel Demand	17
	5.1	Mode	e Shares	17
	5.2	Trip (Generation	18
	5.3	Trip [Distribution	19
	5.4	Trip A	Assignment	19
6		Backgro	ound Network Travel Demands	21
	6.1	Trans	sportation Network Plans	2:
	6.2	Backg	ground Growth	2:
	6.3	Othe	r Developments	22
	6.4	Trip F	Reductions from Existing Site Land Uses	22
7		Deman	nd Rationalization	23
	7.1	2034	Future Background Operations	23
	7.2	Dema	and Rationalization Conclusions	26
8		Transp	ortation Demand Management	26
	8.1	Conte	ext for TDM	26
	8.2	Need	l and Opportunity	26
	8.3	TDM	Program	26
9		Transit		27
	9.1	Trans	sit Priority	27
10)	Netwo	rk Intersection Design	27
	10.1	Netw	ork Intersection Control	27
	10.2	Netw	ork Intersection Design	27

	10.2.1	2034 Future Total Operations	27
	10.2.2	2034 Future Total Operations – Sensitivity Without Baseline Rapid Transit	29
	10.2.3	Network Intersection MMLOS	32
	10.2.4	Recommended Design Elements	32
11	Sumr	nary of Improvements Indicated and Modifications Options	32
12	Conc	lusion	35
Lis	t of Fig	rures	
Figu	ire 1: Area	a Context Plan	1
Figu	ıre 2: Con	cept Plan	2
Figu	ıre 3: Exis	ting Driveways	5
Figu	ıre 4: Stud	ly Area Pedestrian Facilities	6
Figu	ıre 5: Stud	ly Area Cycling Facilities	6
Figu	ıre 6: Exis	ting Pedestrian Volumes	7
Figu	ıre 7: Exis	ting Cyclist Volumes	7
Figu	ıre 8: Exis	ting Study Area Transit Service	8
Figu	ıre 9: Exis	ting Study Area Transit Stops	9
Figu	ıre 10: Exi	sting Traffic Counts	10
Figu	ıre 11: Stı	udy Area Collision Records – Representation of 2015-2019	12
Figu	ıre 12: Ba	seline Road Rapid Transit Corridor	15
Figu	ıre 13: Pri	nce of Wales Drive at Baseline Road/Heron Road	16
Figu	ıre 14: Ne	w Site Generation Auto Volumes	20
Figu	ıre 15: Pa	ss-By Auto Volumes	21
Figu	ıre 16: Tri	p Reduction Volumes	23
Figu	ıre 17: 20	34 Future Background Volumes	24
Figu	ıre 18: 20	34 Future Total Volumes	28
Figu	ıre 19: 20	34 Future Total Volumes – Fisher Avenue at Baseline Road Without Baseline Rapid Transit	31
Ta	ble of ⁻	Tahles	
		section Count Date	9
		ing Intersection Operations	
		y Area Collision Summary, 2015-2019	
		mary of Collision Locations, 2015-2019	
		er Avenue at Baseline Road Collision Summary	
		line Road between Marson Street and Fisher Avenue Collision Summary	
		er Avenue between McCooey Lane and Baseline Road Collision Summary	
		nption Review	
		NS Trip Generation Manual Recommended Mode Shares – Merivale	
		posed Development Mode Shares	
		Generation Person Trip Rates	
		al Person Trip Generation	
		ernal Capture Rates	
		•	

Table 14: Trip Generation by Mode	19
Table 15: OD Survey Distribution – Merivale	19
Table 16: Trip Assignment	20
Table 17: TRANS Regional Model Projections – Study Area Growth Rates	22
Table 18: Study Area Growth Rates Applied	22
Table 19: Trip Generation Person Trip Rates by Peak Hour	22
Table 20: Estimated Existing Auto Trip Volumes vs Forecasted Auto Trip Volumes	23
Table 21: 2034 Future Background Intersection Operations	24
Table 22: Trip Generation by Transit Mode	27
Table 23: Forecasted Site-Generated Transit Ridership	27
Table 24: 2034 Future Total Intersection Operations	28
Table 25: Trip Generation by Mode – Without Baseline Rapid Transit	30
Table 26: Proposed Site Generation Vehicle Trip Volumes Without BRT vs Proposed Site Generation	ı Vehicle Trip
Volumes With BRT	30
Table 27: 2034 Future Total Intersection Operations— Fisher Avenue at Baseline Road Without Ba	seline Rapio
Transit	31
Table 28: Study Area Intersection MMLOS Analysis	32

List of Appendices

Appendix A – TIA Screening Form and Certification Form

Appendix B – Turning Movement Count Data

Appendix C – Synchro Intersection Worksheets – Existing Conditions

Appendix D - Collision Data

Appendix E - TRANS Model Plots

Appendix F – Background Development Volumes

Appendix G – Existing Site Generated Trip

Appendix H – Synchro Intersection Worksheets – 2034 Future Background Conditions

Appendix I – TDM Checklist

Appendix J – Synchro Intersection Worksheets – 2034 Future Total Conditions

Appendix K – Synchro Worksheets – Fisher Avenue at Baseline Road Without Baseline Rapid Transit

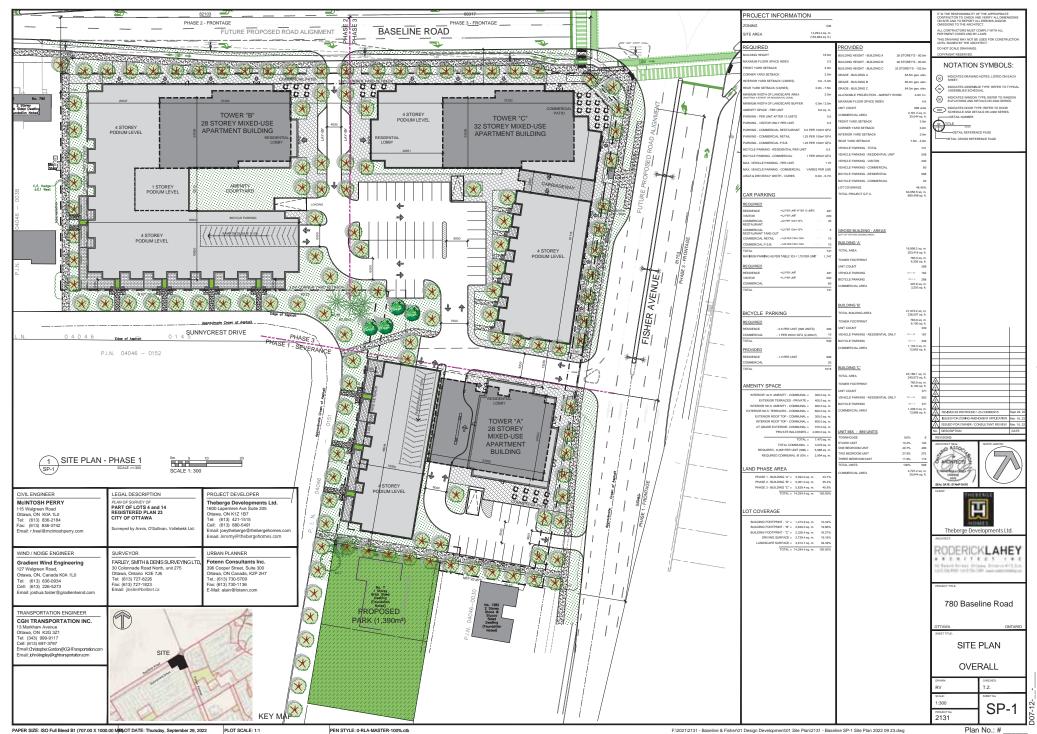
Appendix L – MMLOS Analysis

1 Screening

This study has been prepared according to the City of Ottawa's 2017 Transportation Impact Assessment (TIA) Guidelines. Accordingly, a Step 1 Screening Form has been prepared and is included as Appendix A, along with the Certification Form for the TIA Study PM. As shown in the Screening Form, a TIA is required including the Network Impact Component. This study has been prepared to support an Official Plan amendment and zoning by-law amendment.

2 Existing and Planned Conditions

2.1 Proposed Development


The existing site, located at 780 Baseline Road, is zoned as General Mixed Use (GM) and includes a business strip consisting of retail, service, and restaurant land uses with surrounding surface parking lots. The proposed development is anticipated to include a total of 998 dwelling units and 30,044 sq. ft of commercial space in three mixed-used buildings and is to be constructed across multiple phases with the anticipated full build-out and occupancy horizon is 2034. The first phase is understood to consist of constructing a mixed-use building comprising a 25-storey tower at the south of the parcel in the present location of the surface parking lot. The remaining two phases are understood to include the demolition of the existing business strip and the construction of two mixed-use buildings, one 25-storey tower adjacent to the residential lands to the west, and a 29-storey tower at the Baseline Road and Fisher Avenue intersection. The development proposes the use of an existing right-in-only access on Baseline Road, an existing full-movements access, and a newly proposed outbound access on Fisher Avenue. A total of 508 residential, 200 visitor, 60 retail vehicle parking spaces, and 998 residential and 20 commercial bicycle parking spaces are proposed. The site is located within the Carleton Heights Secondary Plan area. Figure 1 illustrates the Study Area Context. Figure 2 illustrates the proposed concept plan.

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: May 11, 2022

Ψ

2.2 Existing Conditions

2.2.1 Area Road Network

Baseline Road: Baseline Road is a City of Ottawa arterial road with a divided four-lane urban cross-section. Sidewalks are provided on the south side of the roadway, at intersections and bus stops on the north side of the road to the west, and on both sides of the road to the east of Prince of Wales Drive. The posted speed limit is 60 km/h within the study area and the City-protected right of way is 44.5 metres. Baseline Road is designated as a truck route.

Heron Road: Heron Road is a City of Ottawa arterial road with a divided six-lane urban cross-section, including bus lanes and sidewalks on both sides of the road. Bike lanes are present over the Heron Bridge. The posted speed limit is 60 km/h within the study area and the City-protected right of way is 44.5 metres. Heron Road is designated as a truck route.

Fisher Avenue: Fisher Avenue is a City of Ottawa arterial road with a two-lane rural cross-section with paved shoulders on both sides of the road. North of Baseline Road, a sidewalk is present on the west side of the road and sidewalks are present on both sides of the road to the south. The posted speed limit is 50 km/h, the City-protected right of way is 34.0 metres north of Baseline Road, and the measured right of way varies between 24.5 and 30.0 metres south of Baseline Road within the study area. Fisher Avenue is designated as a truck route.

Prince of Wales Drive: Prince of Wales Drive is a City of Ottawa arterial road with a two-lane semi-urban cross-section to the north and a two-lane urban cross-section to the south of Baseline Road. To the north, a paved shoulder is provided on the west side of the road and a curbside bike lane with a sidewalk is provided on the east side of the road within the study area. South of Baseline Road, sidewalks are provided on both sides of the road and bike lanes transition to cycletracks. The posted speed limit is 60 km/h north of Baseline Road and 50 km/h south of Baseline Road. The city-protected right of way is 26.0 metres to the north, and the measured right of way varies between 28.5 and 73.5 metres to the south of Baseline Road. Prince of Wales Drive is designated as a truck route.

Deer Park Road: Deer Park Road is a City of Ottawa collector road with a two-lane urban cross-section. Sidewalks are present on both sides of the road east of Millbrook Crescent and on the south side of the road to the west. The posted speed limit is 40 km/h, and the City-protected right of way is 26.0 metres.

Dynes Road: Dynes Road is a City of Ottawa collector road with a two-lane urban cross-section. Sidewalks and bike lanes are present on both sides of the road. The posted speed limit is 50 km/h, and the measured right of way is 18.0 metres.

Sunnycrest Drive: Sunnycrest Drive is a City of Ottawa local road with a two-lane urban cross-section with onstreet parking permitted on both sides of the road. The posted speed limit is 40 km/h and the measured right of way is 20.0 metres.

Hilliard Avenue: Hilliard Avenue is a City of Ottawa local road with a two-lane urban cross-section with on-street parking permitted on both sides of the road. The posted speed limit is 40 km/h and the measured right of way is 20.0 metres.

2.2.2 Existing Intersections

The existing signalized area intersections within 400 metres of the site have been summarized below and comprise only Baseline Road at Fisher Avenue. The intersection of Baseline Road/Heron Road at Prince of Wales Drive has additionally been included as a key intersection for the purposes of this study:

Fisher Avenue at Baseline Road

The intersection of Fisher Avenue at Baseline Road is a signalized intersection. The northbound and southbound approaches each consist of an auxiliary left-turn lane, two through lanes, and a channelized auxiliary right-turn lane. The eastbound approach consists of an auxiliary left-turn lane, two through lanes, and a channelized auxiliary right-turn lane, and the westbound approach consists of two auxiliary left-turn lanes, a through lane and a shared through/channelized right-turn lane. Eastbound and westbound U-turn movements are prohibited, and trucks are prohibited from making westbound left turns.

Prince of Wales Drive at Baseline Road/Heron Road

The intersection of Prince of Wales Drive at Baseline Road and Heron Road is a signalized intersection. The northbound and southbound approaches each consist of an auxiliary left-turn lane, two through lanes, a floating bike lane, and a channelized auxiliary right-turn lane. The eastbound approach consists of an auxiliary left-turn lane, two through lanes, an auxiliary through lane, and a channelized auxiliary right-turn lane, and the westbound approach consists of two auxiliary left-turn lanes, two through lanes, a transit queue-jump lane, and a channelized auxiliary right-turn lane. No turn restrictions were noted.

Fisher Avenue at Deer Park Road / Dynes Road The intersection of Fisher Avenue at Deer Park Road/Dynes Road is a signalized intersection. The northbound approach consists of a shared left-turn/through lane and a right-turn lane, and the southbound approach consists of a shared left-turn/through lane and an auxiliary through/right-turn lane. The eastbound and westbound approaches each consist of a shared all-movement lane. Cycle tracks are provided on all approaches. No turn restrictions were noted.

2.2.3 Existing Driveways

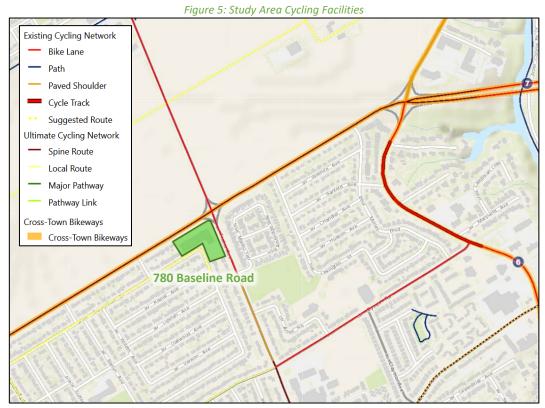
Within 200 metres of the site accesses, eight driveways semi-detached and detached dwellings are located on the west side of Baseline Road. Eight driveways semi-detached and detached dwellings are present on the south side of Fisher Avenue. None of the driveways within the area of consideration are significant traffic generators. Figure 3 illustrates the existing driveways.

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: May 11, 2022

2.2.4 Cycling and Pedestrian Facilities

Figure 4 illustrates the pedestrian facilities in the study area and Figure 5 illustrates the cycling facilities.

Sidewalks are provided along the south side of Baseline Road and Deer Park Road west of Millbrook Crescent, on the east side of Prince of Wales Drive, on the west side of Fisher Avenue north of Baseline Road, on both sides of Fisher Avenue south of Baseline Road, Dynes Road, and Deer Park Road east of Millbrook Crescent. Sidewalks are also present at intersections and bus stops on the north side of Baseline Road to the west of Fisher Avenue.


A paved shoulder is present on both sides of Fisher Avenue except through the intersection with Baseline Avenue where bike lanes are present and on the east side of the road between Malibu Terrace and the auxiliary northbound right turn lane taper at Baseline Road where a cycletrack is present. Cycletracks are also present at the Fisher Avenue at Deer Park Road/Dynes Road intersection, and bike lanes are present along Dynes Road.

Fisher Avenue, Prince of Wales Drive, Baseline Road, and Heron Road are spine routes. Baseline Road, Heron Road and Prince of Wales Drive are cross-town bikeways. Malibu Terrace west of Fisher Avenue, Hilliard Avenue north of Malibu Terrace, Sunnycrest Drive, Deer Park Road, Dynes Road, and McCooey Lane are local routes.

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: May 11, 2022

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: May 11, 2022

Pedestrian and cyclist volumes included in study area intersection counts, presented in Section 2.2.7, have been compiled and are illustrated in Figure 6 and Figure 7 respectively.

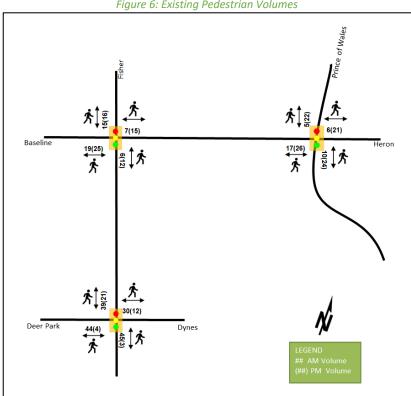
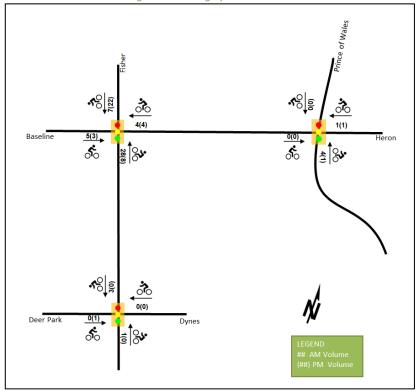
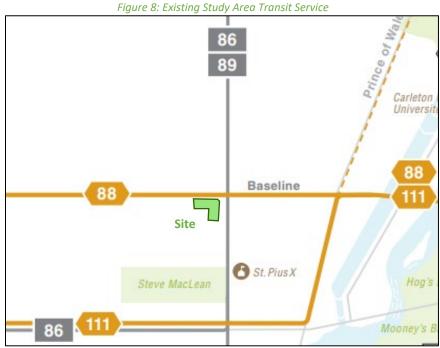



Figure 6: Existing Pedestrian Volumes



2.2.5 Existing Transit

Figure 8 illustrates the transit system map in the study area and Figure 9 illustrates nearby transit stops. All transit information is from May 11, 2022 and is included for general information purposes and context to the surrounding area.

Within the study area, routes #86 and #89 travel along Fisher Avenue and route #88 travels along Baseline Road and Heron Road. Primary stops are located at Marson Street at Baseline Road and Fisher Avenue at Baseline Road intersections. The frequency of these routes within proximity of the proposed site based on May 11, 2022 service levels are:

- Route #86 15-minute service in the peak period/direction, 30-minute service all day
- Route #88 10-12-minute service in the peak period/direction, 15-minute service all day
- Route #89 15-minute service in the peak period/direction, 30-minute service all day

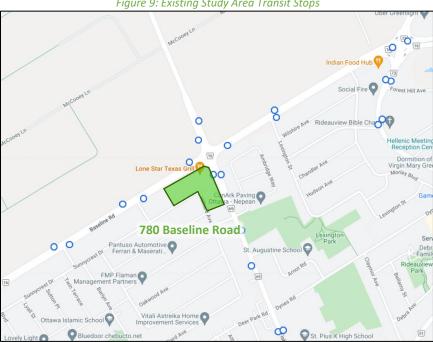


Figure 9: Existing Study Area Transit Stops

Source: http://www.octranspo.com/ Accessed: May 11, 2022

2.2.6 Existing Area Traffic Management Measures

The primary traffic calming measure within the study area is on-road messaging stating the speed limit on Sunnycrest Drive.

2.2.7 Existing Peak Hour Travel Demand

Existing turning movement counts were acquired from the City of Ottawa for the existing Study Area intersection. Table 1 summarizes the intersection count dates.

Intersection **Count Date** Fisher Avenue at Baseline Road Wednesday, August 03, 2016 Prince of Wales Drive at Baseline Road/Heron Road Wednesday, March 04, 2020 Fisher Avenue at Deer Park Road/Dynes Road Wednesday, March 09, 2016

Table 1: Intersection Count Date

Figure 10 illustrates the existing traffic counts, balanced along the Baseline Road and Fisher Avenue corridors, and Table 2 summarizes the existing intersection operations. At the time of the Prince of Wales Drive at Baseline Road/Heron Road turning movement count, the Hog's Back Bridge was closed, and it is noted that the count includes detour volumes from this closure. The level of service for signalized intersections is based on the volume to capacity ratio (v/c) calculation for individual lane movements and HCM 2000 v/c calculations for the overall intersection. Detailed turning movement count data is included in Appendix B and the Synchro worksheets are provided in Appendix C.

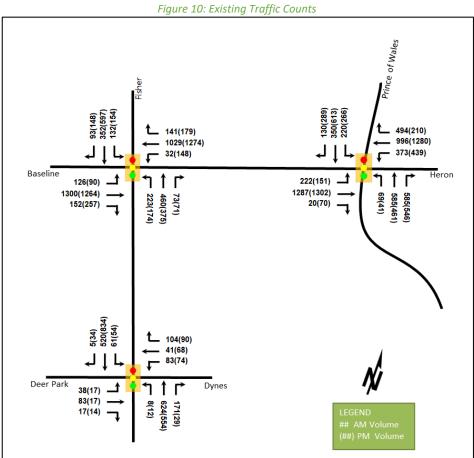


Table 2: Existing Intersection Operations

Intersection	Lana	AM Peak Hour			PM Pe	ak Hour			
	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)
	EBL	В	0.70	73.0	55.3	В	0.64	74.7	43.2
	EBT	E	0.95	49.6	#272.2	F	1.08	86.2	#266.5
	EBR	Α	0.23	3.8	12.2	Α	0.45	18.6	55.9
	WBL	Α	0.23	82.3	m2.7	Α	0.57	64.0	32.0
Fisher Avenue	WBT/R	F	1.14	91.0	m112.3	F	1.26	156.8	#328.2
at Baseline	NBL	D	0.86	78.6	#100.0	D	0.85	86.3	#86.3
Road	NBT	С	0.73	53.6	81.1	В	0.65	53.7	70.5
Signalized	NBR	Α	0.18	0.9	0.0	Α	0.21	2.4	2.3
	SBL	С	0.76	79.3	#62.8	С	0.79	79.9	#72.4
	SBT	С	0.76	62.4	66.7	F	1.07	106.8	#136.5
	SBR	Α	0.25	1.4	0.0	Α	0.43	13.9	24.6
	Overall	E	0.98	62.8	-	F	1.07	99.6	-

Intersection	Lana		AM Pe	ak Hour			PM Pea	ak Hour	
	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)
	EBL	F	1.28	198.6	m#93.0	F	1.63	361.0	#107.8
	EBT/R	F	1.16	106.8	m#179.4	F	1.20	139.0	#206.3
	WBL	D	0.82	66.1	70.2	F	1.24	174.3	#114.8
Prince of	WBT	F	1.87	426.7	#268.6	F	1.59	305.7	#319.7
Wales Drive at	WBR	D	0.87	25.5	#90.8	Α	0.42	7.1	19.8
Baseline	NBL	Α	0.53	69.3	34.4	Α	0.32	62.4	24.0
Road/Heron Road	NBT	D	0.82	56.2	105.8	В	0.62	47.5	81.0
Signalized	NBR	F	1.05	71.4	#177.9	F	1.10	95.6	#196.2
Signanzea	SBL	F	1.06	129.1	#120.1	F	1.13	144.4	#145.1
	SBT/R	Α	0.53	37.8	78.7	Е	0.96	61.8	#172.4
	Overall	F	1.03	144.8	-	F	1.34	156.2	-
	EB	Α	0.44	26.4	31.2	Α	0.18	23.0	14.2
Fisher Avenue	WB	В	0.69	30.3	46.5	С	0.80	48.3	62.2
at Deer Park	NBL/T	В	0.70	18.7	#148.5	Α	0.57	12.9	105.0
Road/Dynes Road	NBR	Α	0.23	2.5	9.1	Α	0.03	1.6	2.4
	SBL	Α	0.44	11.6	46.4	Α	0.55	11.3	77.7
Signalized	Overall	В	0.69	16.8	-	В	0.62	16.7	-

Saturation flow rate of 1800 veh/h/lane

Notes: Queue is measured in metres

Peak Hour Factor = 0.90

V/C = volume-to-capacity ratio

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

Generally, the study area intersections experience capacity issues and significant delays along Baseline Road during both AM and PM peak hours.

At the intersection of Fisher Avenue at Baseline Road, movements that are over theoretical capacity and may be subject to high delays and extended queues are the westbound shared through/right-turn movement during AM peak hour and the eastbound through, westbound shared through/right-turn, and southbound through movements during PM peak hour. Extended queues may also be exhibited on the eastbound through movement during AM peak hour, and on the northbound and southbound left-turn movements during both peak hours. High delays may be experienced on the westbound left-turn movement during AM peak hour and on the northbound left-turn movement during PM peak hour. The overall intersection operates over theoretical capacity with high delays during the PM peak hour.

The intersection of the Prince of Wales Drive at Baseline Road/Heron Road may exhibit extended queues on the westbound right-turn movement during AM peak hour and on the southbound shared through/right-turn movement during PM peak hour. The eastbound and southbound left-turn, eastbound shared through right-turn, westbound through, and northbound right-turn movements are over theoretical capacity and may be subject to high delays and extended queues during both peak hours as with the westbound left-turn during PM peak hour. The overall intersection operates over theoretical capacity and may be subject to high delays during both peak hours.

At the intersection of Fisher Avenue at Deer Park Road/Dynes Road intersection, extended queues may be exhibited on the northbound left-turn/through movements during AM peak hour.

2.2.8 Collision Analysis

Collision data have been acquired from the City of Ottawa open data website (data.ottawa.ca) for five years prior to the commencement of this TIA for the surrounding study are road network. Table 3 summarizes the collision

types and conditions in the study area, Figure 11 illustrates the intersections and segments analyzed, and Table 4 summarizes the total collisions for each of these locations. Collision data are included in Appendix D.

Table 3: Study Area Collision Summary, 2015-2019

		Number	%
Total C	Collisions	133	100%
	Fatality	1	1%
Classification	Non-Fatal Injury	24	18%
	Property Damage Only	108	82%
	Angle	8	6%
	Rear end	87	65%
	Sideswipe	17	13%
Initial Impact Type	Turning Movement	8	6%
	SMV Unattended	1	1%
	SMV Other	8	6%
	Other	4	3%
	Dry	95	71%
	Wet	19	14%
Road Surface Condition	Loose Snow	8	6%
Noau Surface Condition	Slush	3	2%
	Packed Snow	5	4%
	Ice	3	2%
Pedestrian Involved		4	3%
Cyclists Involved		1	1%

Study Area

Central
Experimental
Farm

1 - 3
4 - 8
9 - 14
15 - 22
23+

Table 4: Summary of Collision Locations, 2015-2019

	Number	%
Intersections / Segments	133	100%
Fisher Ave @ Baseline Rd	81	61%
Fisher Ave @ Malibu Ter	7	5%
Baseline Rd btwn Marson St & Fisher Ave	12	9%
Baseline Rd btwn Fisher Ave & Lexington St	10	8%
Fisher Ave btwn McCooey Lane & Baseline Rd	13	10%
Fisher Ave btwn Baseline Rd & Malibu Ter	10	8%

Within the study area, the intersection of Fisher Avenue at Baseline Road and segments of Baseline Road between Marson Street and Fisher Avenue, and Fisher Avenue between McCooey Lane and Baseline Road are noted to have experienced higher collisions than other locations. Table 5, Table 6, and Table 7summarize the collision types and conditions for each of these locations respectively.

Table 5: Fisher Avenue at Baseline Road Collision Summary

		Number	%
Total	Collisions	81	100%
	Fatality	1	1%
Classification	Non-Fatal Injury	9	11%
	Property Damage Only	71	88%
	Angle	2	2%
	Rear end	59	73%
	Sideswipe	11	14%
Initial Impact Type	Turning Movement	2	2%
	SMV Unattended	1	1%
	SMV Other	5	6%
	Other	1	1%
	Dry	60	74%
	Wet	7	9%
Road Surface Condition	Loose Snow	7	9%
Road Surface Condition	Slush	2	2%
	Packed Snow	2	2%
	Ice	3	4%
Pedestrian Involved		3	4%
Cyclists Involved		1	1%

The Fisher Avenue at Baseline Road intersection had a total of 81 collisions during the 2015-2019 time period, including one angle collision involving a fatality. The fatality occurred during the morning at 7:46 am in dry driving conditions in November 2018, where a pedestrian was killed as a result of a two-vehicle collision. Seventy-one collisions had property damage only and the remaining nine having non-fatal injuries. The collision types are most represented by rear end with 59, followed by 11 sideswipe collisions, five SMV other collisions, two collisions each for angle and turning movement, and with the remaining collisions as SMV unattended and other. Rear end collisions are typical of congested areas and the sideswipe collisions may be influenced by the channelized right-turn runout lanes and merging movements required around the intersection. No further patterns are noted. Weather conditions do not affect collisions at this location. No further examination is required as part of this study.

Table 6: Baseline Road between Marson Street and Fisher Avenue Collision Summary

		Number	%
Total	Collisions	12	100%
	Fatality	0	0%
Classification	Non-Fatal Injury	4	33%
	Property Damage Only	8	67%
Initial Impact Type	Rear end	10	83%
Initial Impact Type	Sideswipe	2	17%
	Dry	7	58%
Road Surface Condition	Wet	4	33%
	Packed Snow	1	8%
Pedestrian Involved		0	0%
Cyclists Involved		0	0%

The segment of Baseline Road between Marson Street and Fisher Avenue had a total of 12 collisions during the 2015-2019 time period, with eight involving property damage only and the remaining four having non-fatal injuries. The collision types are most represented by rear end with ten collisions, followed by two sideswipe collisions. Rear end collisions are typical of congested conditions. Weather conditions are not considered to affect collisions at this location. No further examination is required as part of this study.

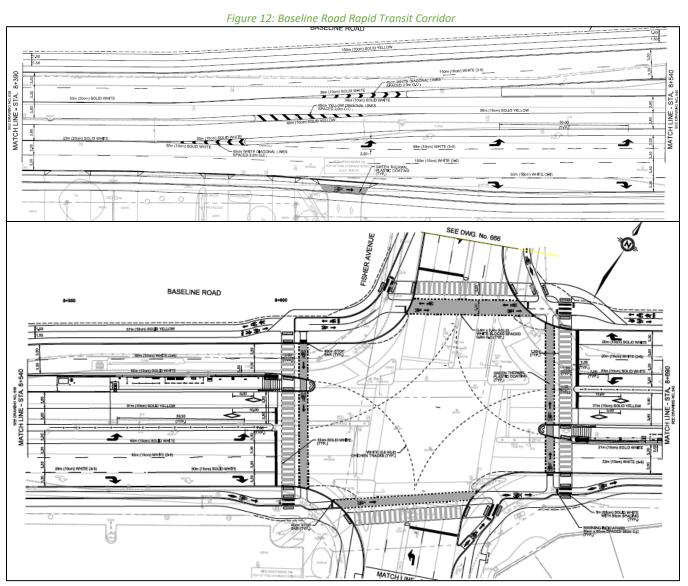
Table 7: Fisher Avenue between McCooey Lane and Baseline Road Collision Summary

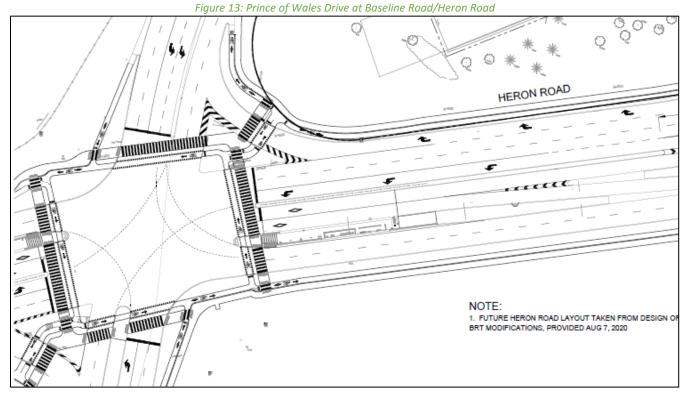
		Number	%
Tota	Total Collisions		100%
	Fatality	0	0%
Classification	Non-Fatal Injury	3	23%
	Property Damage Only	10	77%
	Rear end	7	54%
Initial Impact Type	Sideswipe	2	15%
Initial Impact Type	Turning Movement	2	15%
	SMV Other	2	15%
	Dry	8	62%
Road Surface Condition	Wet	3	23%
Road Surface Colldition	Slush	1	8%
	Packed Snow	1	8%
Pedestrian Involved		0	0%
Cyclists Involved		0	0%

The segment of Fisher Avenue between McCooey Lane and Baseline Road had a total of 13 collisions during the 2015-2019 time period, with ten involving property damage only and the remaining three having non-fatal injuries. The collision types are most represented by rear end with the remaining collisions split between sideswipe, turning movement, and SMV other. As previously stated, rear end collisions are typical of congested areas and no further identifiable patterns are evident in the collision types. Weather conditions are not considered to affect collisions at this location. No further examination is required as part of this study.

2.3 Planned Conditions

2.3.1 Changes to the Area Transportation Network


The Transportation Master Plan's (TMP) Rapid Transit and Transit Priority Network (RTTP) identifies Bus Rapid Transit (BRT) along Baseline Road and Heron Road, and isolated transit priority measures along Fisher Avenue


within the Affordable Network diagram. Isolated transit priority measures are additionally noted in the Network Concept diagram on Prince of Wales Drive south of Baseline Road.

The timing of the Baseline Road Rapid Transit Corridor project is subject to the timing of funding sources. The project includes median BRT lanes and segregated cycling facilities on Baseline Road through the study area. Changes along the site frontage include a new eastbound cycletrack along the south side of Baseline Road and crossrides to the adjacent intersection quadrants, but notably no tie-ins for cycling facilities along Fisher Avenue.

The Baseline Road Rapid Transit Corridor project is assumed to be build-out prior to 2034 and will be analyzed in the future horizons. The future geometry is based upon the preliminary detailed design from the Baseline Road Rapid Transit Corridor project for the site frontage and the Baseline Road at Fisher Avenue intersection provided by the City and illustrated in Figure 12, and the 1111 Prince of Wales Drive TIA (Novatech, 2020) for the intersection Baseline Road/Heron Road at Price and Price of Wales Drive intersection, illustrated in Figure 13.

2.3.2 Other Study Area Developments

1111 Prince of Wales Drive

The proposed development includes a site plan for additional parking spaces for the office building. The reconfiguration is expected to provide a total of 319 parking spaces. No new trips are expected to / from the site, and the site trips will be reassigned due to the new driveway. (Novatech, 2020)

3 Study Area and Time Periods

3.1 Study Area

The study area will include the intersections of Fisher Avenue at Baseline Road, Prince of Wales Drive at Baseline Road/Heron Road, Fisher at Deer Park Road/Dynes Road, and the newly proposed site accesses onto Baseline Road and Fisher Avenue.

The boundary roads will be Baseline Road, Fisher Avenue, Sunnycrest Drive, and Hilliard Avenue. TRANS screenlines SL20 and SL27 are located to the east along the Rideau River/Canal and will not be assessed in this study.

3.2 Time Periods

As the proposed development is mixed-use development with residential units and commercial units, the AM and PM peak hours will be examined.

3.3 Horizon Years

The anticipated build-out year is 2034 for the entire site and this single horizon will be reviewed in support of the OPA/ZBA.

4 Exemption Review

Table 8 summarizes the exemptions for this TIA.

Table 8: Exemption Review

Module	Element	Explanation	Exempt/Required
Design Review Compo	nent		
4.1 Development	4.1.2 Circulation and Access	Only required for site plans	Required at Site Plan Application
Design	4.1.3 New Street Networks	Only required for plans of subdivision	Exempt
	4.2.1 Parking Supply	Only required for site plans	Required at Site Plan Application
4.2 Parking	4.2.2 Spillover Parking	Only required for site plans where parking supply is 15% below unconstrained demand	Exempt. May be required at Site Plan Application
Network Impact Comp	onent		
4.5 Transportation Demand Management	All Elements	Not required for site plans expected to have fewer than 60 employees and/or students on location at any given time	Required
4.6 Neighbourhood Traffic Management	4.6.1 Adjacent Neighbourhoods	Only required when the development relies on local or collector streets for access and total volumes exceed ATM capacity thresholds	Exempt
4.8 Network Concept		Only required when proposed development generates more than 200 person-trips during the peak hour in excess of equivalent volume permitted by established zoning	Exempt

5 Development-Generated Travel Demand

5.1 Mode Shares

Examining the mode shares recommended in the TRANS Trip Generation Manual (2020) for the subject district, derived from the most recent National Capital Region Origin-Destination survey (OD Survey), the existing average district mode shares by land use for Merivale have been summarized in Table 9.

Table 9: TRANS Trip Generation Manual Recommended Mode Shares – Merivale

Travel Mode	Multi-Unit	(High-Rise)	Commercial Generator		
Travel Wode	AM	PM	AM	PM	
Auto Driver	41%	41%	71%	61%	
Auto Passenger	6%	11%	19%	16%	
Transit	42%	33%	1%	8%	
Cycling	2%	2%	0%	1%	
Walking	8%	13%	9%	14%	
Total	100%	100%	100%	100%	

As a result of the planned cycling and Baseline Road Rapid Transit Corridor project, along which a station at Fisher Avenue will be provided, the site transit and cycling mode shares are expected to surpass the values recommended for the Merivale area. Table 10 summarizes the proposed mode share targets for the subject development.

Table 10: Proposed Development Mode Shares

Travel Mode	Multi-Unit	(High-Rise)	Commercial Generator		
	AM	PM	AM	PM	
Auto Driver	29%	29%	61%	51%	
Auto Passenger	6%	11%	19%	16%	
Transit	52%	43%	11%	18%	
Cycling	4%	4%	0%	1%	
Walking	8%	13%	9%	14%	
Total	100%	100%	100%	100%	

5.2 Trip Generation

This TIA has been prepared using the vehicle and person trip rates for the residential dwellings using the TRANS Trip Generation Manual (2020) and the vehicle trip rates and derived person trip rates for commercial component from the ITE Trip Generation Manual 11th Edition (2017) using the City-prescribed conversion factor of 1.28. Table 11 summarizes the person trip rates for the proposed residential land use for each peak period and the person trip rates for the non-residential land use by peak hour.

Table 11: Trip Generation Person Trip Rates

			Peak P	Period	Peak Hour		
Land Use	Land Use Code	Peak	Vehicle Trip Rate	Person Trip Rates	Vehicle Trip Rate	Person Trip Rates	
Banki Heia (Hisk Biss)	221 & 222	AM	-	0.80	-	-	
Multi-Unit (High-Rise)	(TRANS)	PM	-	0.90	-	-	
Retail (<40k sq. ft.)	822	AM	-	-	2.36	3.02	
	(ITE)	PM	-	-	6.59	8.36	

Using the above person trip rates, the total person trip generation has been estimated. Table 12 summarizes the total person trip generation for the residential land use and for the non-residential land use.

Table 12: Total Person Trip Generation

Land Use	Units		AM Peak Perio	od	PM Peak Period			
	Onits	In	Out	Total	In	Out	Total	
Multi-Unit (High-Rise)	998	247	551	798	521	377	898	
Land Use	GFA	AM Peak Hour			PM Peak Hour			
Land Ose	(sq. ft.)	In	Out	Total	In	Out	Total	
Retail (<40k sq. ft.)	30,044	55	36	91	127	127	254	

Internal capture rates from the ITE Trip Generation Handbook 3rd Edition have been assigned to the development's retail component for mixed-use developments. The rates summarized in Table 13 represent the percentage of trips to/from the retail use based on the residential component.

Table 13: Internal Capture Rates

Land Use	Α	М	PM		
Land Ose	ln	Out	In	Out	
Residential to/from Retail	17%	14%	10%	26%	

Pass-by reductions applied to the retail trip generation at a rate of 40% have been included using the recommended value presented in the ITE Trip Generation Manual 11th Edition (2021) for the most similar land use with a recommended rate, "Retail (40k – 150k sq. ft.)".

Using the above mode share targets for a BRT area, the internal capture and pass-by rates, and the person trip rates, the person trips by mode have been projected. Trip generation by peak hour has been forecasted using the prescribed peak period conversion factors presented in the TRANS Trip Generation Manual (2020) for the residential component. Table 14 summarizes the total trip generation.

Table 14: Trip Generation by Mode

_		1	VI Peak H		on by wiec	I	И Peak H	lour	
ı	ravel Mode	Mode Share	In	Out	Total	Mode Share	In	Out	Total
	Auto Driver	29%	35	77	112	29%	66	48	114
it (e)	Auto Passenger	6%	7	16	23	11%	25	18	43
구 호	Transit	52%	70	158	228	43%	105	76	181
Multi-Unit (High-Rise)	Cycling	4%	6	13	19	4%	10	7	17
ΣΞ	Walking	8%	12	26	38	13%	35	25	60
	Total	100%	130	290	420	100%	241	174	415
_	Auto Driver	61%	8	6	14	51%	10	4	14
Ę.	Auto Passenger	19%	9	6	15	16%	19	17	36
Şq.	Transit	11%	5	4	9	18%	21	19	40
Retail (<40k sq.	Cycling	0%	0	0	0	1%	1	1	2
\ 4	Walking	9%	4	3	7	14%	17	15	32
i <u>e</u>	Pass-by	40%	-22	-14	-36	40%	-51	-51	-102
Ret	Internal Capture	varies	-6	-3	-9	varies	-8	-20	-28
	Total	100%	26	19	45	100%	68	56	124
	Auto Driver	-	43	83	126	-	76	52	128
	Auto Passenger	-	16	22	38	-	44	35	79
Total	Transit	-	75	162	237	-	126	95	221
P	Cycling	-	6	13	19	-	11	8	19
	Walking	-	16	29	45	-	52	40	92
	Total	-	156	309	465	-	309	230	539

As shown above, a total of 126 AM and 128 PM new peak hour two-way vehicle trips are projected as a result of the proposed development.

5.3 Trip Distribution

To understand the travel patterns of the subject development, the OD Survey has been reviewed to determine the travel, and these patterns were applied based on the build-out of Merivale. Table 15 below summarizes the distributions.

Table 15: OD Survey Distribution – Merivale

Tubic 13. Ob survey distribution Wichvale						
To/From	% of Trips					
North	30%					
South	25%					
East	20%					
West	25%					
Total	100%					

5.4 Trip Assignment

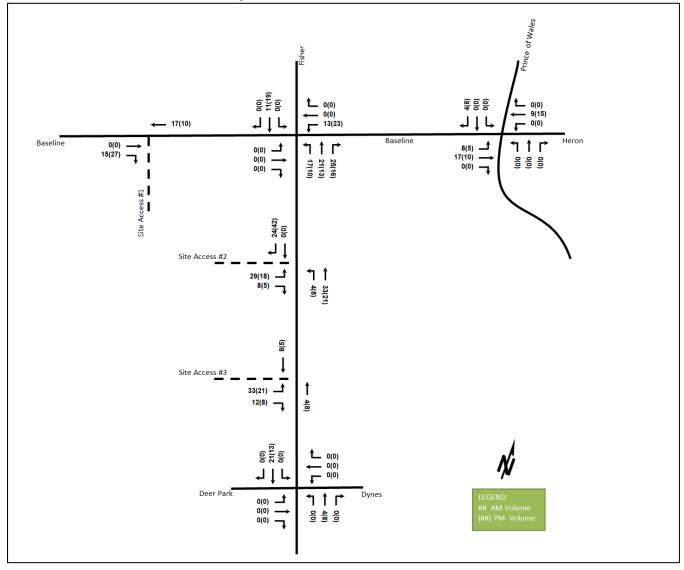

Using the distribution outlined above, turning movement splits, and access to major transportation infrastructure, the trips generated by the site have been assigned to the study area road network. Table 16 summarizes the proportional assignment to the study area roadways, and Figure 14 and Figure 15 illustrate the new site generated volumes and pass-by volumes, respectively.

Table 16: Trip Assignment

To/From	Inbound Via	Outbound Via		
North	20% Fisher Ave (N)	20% Fisher Ave (N)		
North	10% Prince of Wales Dr (N)	10% Prince of Wales Dr (N)		
Cauth	10% Fisher Ave (S)	25% Fisher Ave (S)		
South	15% Baseline Rd (W)	25% FISHER AVE (5)		
East	20% Heron Rd (E)	20% Heron Rd (E)		
Most	20% Baseline Rd (W)	20% Baseline Rd (W)		
West	5% Fisher Ave (N)	5% Fisher Ave (N)		
Total	100%	100%		

Figure 14: New Site Generation Auto Volumes

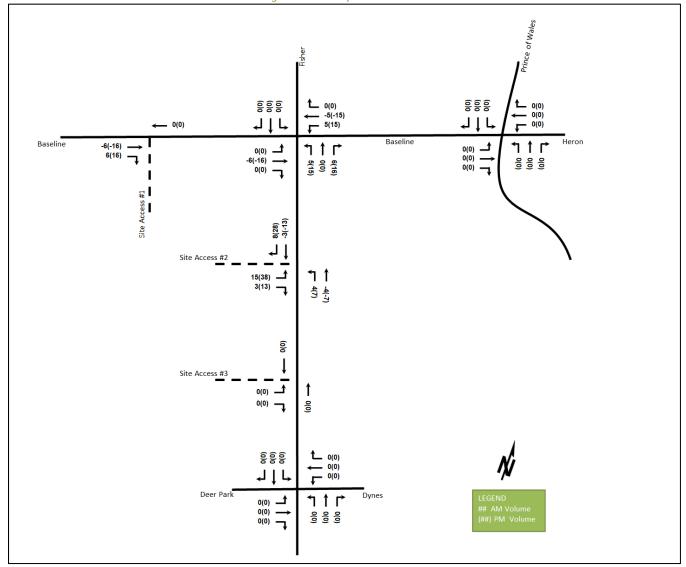


Figure 15: Pass-By Auto Volumes

6 Background Network Travel Demands

6.1 Transportation Network Plans

The transportation network plans were discussed in Section 2.3. The Baseline Road Rapid Transit Corridor project is the only confirmed project within the study and will be incorporated into the road network analysis. The future geometry is based upon the preliminary detailed design from the Baseline Road Rapid Transit Corridor project for the Baseline Road at Fisher Avenue intersection provided by the City, and the 1111 Prince of Wales Drive TIA (Novatech, 2020) for the intersection of Prince of Wales Drive at Baseline Road/Heron Road. No other improvements impacting the transportation network elements or traffic were noted within the study area.

6.2 Background Growth

A review of the background projections from the City's TRANS Regional Model for the 2011 and 2031 horizons was completed to determine the background growth for each of the study area roadways. The background TRANS model growth rates are summarized in Table 17 and the TRANS model plots are provided in Appendix E.

Table 17: TRANS Regional Model Projections – Study Area Growth Rates

Street	TRANS Rate				
Street	Eastbound	Westbound			
Baseline Road	-0.28%	0.07%			
Heron Road	-0.05%	0.41%			
	Northbound	Southbound			
Prince of Wales Drive	0.77%	0.72%			
Fisher Avenue	0.61%	0.12%			

The growth rates derived from the 2011 and 2031 TRANS model horizons are projected to be positive in the westbound direction along Baseline Road and Heron Road, and in the northbound and southbound directions along Prince of Wales Drive and Fisher Avenue. Annual growth rates rounded to the nearest 0.25% will be applied to the mainline volumes of the appropriate study area roads in the AM peak hour and reversed in the PM peak hour. Table 18 summarizes the growth rates applied.

Table 18: Study Area Growth Rates Applied

Street	AM Pea	ak Hour	PM Peak Hour			
	Eastbound	Westbound	Eastbound	Westbound		
Baseline Road	-	-	-	-		
Heron Road	-	0.50%	0.50%	-		
	Northbound	Southbound	Northbound	Southbound		
Prince of Wales Drive	0.75%	0.75%	0.75%	0.75%		
Fisher Avenue	0.50%	0.25%	0.25%	0.50%		

6.3 Other Developments

The background developments explicitly considered in the background conditions include 1111 Prince of Wales Drive and these volumes have been provided in Appendix F.

6.4 Trip Reductions from Existing Site Land Uses

To account for the removal of the existing commercial strip and associated reductions in the network traffic for the auto trips, an approximation of the existing land uses was derived from the ITE Trip Generation Manual 11th Edition (2017) using the City-prescribed conversion factor of 1.28. Table 19 summarizes the land uses and GFA approximations, and the estimated existing site generated trips by mode have been provided in Appendix G..

Table 19: Trip Generation Person Trip Rates by Peak Hour

Land Use	Land Use Code	GFA (sq. ft.)
High-Turnover (Sit-Down) Restaurant	932 (ITE)	6,954
Convenience store	851 (ITE)	2,573
Bank	911 (ITE)	3,552
Fast Casual Restaurant	930 (ITE)	1,130
Fast-Food Restaurant without Drive- Through Window	933 (ITE)	1,130
Clinic	630 (ITE)	8,547
Hair Salon	918 (ITE)	2,260
Toy/Children's Superstore	864 (ITE)	1,130

The existing site is estimated to produce 83 AM two-way auto trips in the AM peak hour and 92 two-way auto trips in the PM peak hour based on the existing land uses and the recommended area mode shares. Figure 16 illustrates the trip reduction from the existing site and Table 20 compares the estimated existing auto trips and forecasted site-generated auto trips.

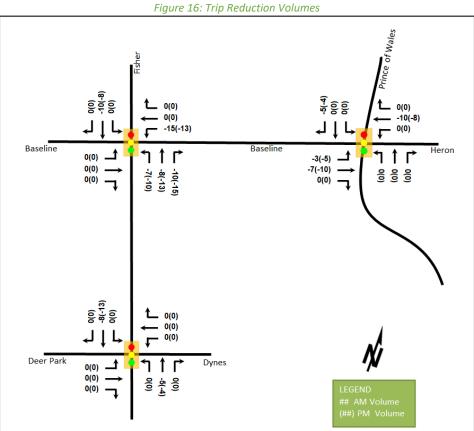


Table 20: Estimated Existing Auto Trip Volumes vs Forecasted Auto Trip Volumes

Scanaria	AM Peak Hour				PM Peak Hour			
Scenario	Mode Share	In	Out	Total	Mode Share	In	Out	Total
Existing	Varies	50	33	83	Varies	42	50	92
Proposed	Varies	43	83	126	Varies	76	52	128
Difference	-	-7	+50	+43	-	+34	+2	+36

Demand Rationalization

7.1 2034 Future Background Operations

Figure 17 illustrates the 2034 background volumes and Table 21 summarizes the 2034 background intersection operations which include signal timing adjustments for the new intersection approach configurations including the BRT corridor. The Prince of Wales Drive at Baseline Road/Heron Road intersection counts have been factored to remove the detour volumes. The level of service for signalized intersections is based on v/c calculations for individual lane movements and HCM 2000 v/c calculations for the overall intersection. The synchro worksheets for the 2034 future background horizon are provided in Appendix H.

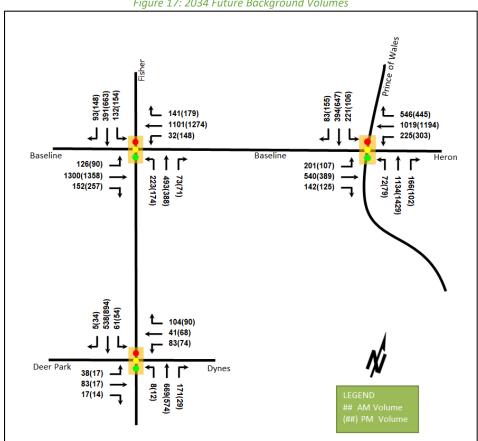


Figure 17: 2034 Future Background Volumes

Table 21: 2034 Future Background Intersection Operations

Interception	Long	AM Peak Hour					PM Peak Hour		
Intersection	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)
	EBL	С	0.71	78.0	#73.4	Е	0.92	131.2	#56.4
	EBT	D	0.89	43.9	#242.4	F	1.14	110.7	#255.3
	EBR	Α	0.24	26.9	45.5	Α	0.50	36.3	77.1
F!-b A	WBL	Α	0.42	59.0	m10.6	F	1.10	128.7	m#46.8
Fisher Avenue	WBT	E	0.97	88.0	m#169.6	Е	0.99	62.6	m123.1
at Baseline	WBR	Α	0.29	65.4	m40.9	Α	0.32	42.2	m33.9
Road Signalized	NBL	E	0.95	102.1	#105.9	F	1.09	151.1	#96.8
Signanzea	NBT/R	С	0.72	50.5	85.6	Α	0.52	42.7	69.6
	SBL	С	0.73	78.9	#55.0	F	1.02	136.1	#84.7
	SBT/R	С	0.73	53.9	74.5	Е	0.96	68.8	#146.3
	Overall	E	0.92	62.7	-	F	1.07	81.7	-

1			AM Pe	ak Hour		PM Peak Hour				
Intersection	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)	
	EBL	F	1.20	156.5	m#82.4	F	1.18	126.9	m#28.5	
	EBT/R	D	0.81	69.9	m111.3	D	0.87	63.8	m67.1	
Prince of	WBL	E	0.95	101.6	#107.1	E	0.98	100.0	#135.5	
Wales Drive at	WBT	F	1.02	78.7	#186.8	F	1.13	110.9	#228.2	
Baseline Road/Heron Road Signalized	WBR	F	1.24	165.2	#240.9	E	0.99	83.4	#180.7	
	NBL	Α	0.53	70.1	32.9	Α	0.53	70.1	36.2	
	NBT/R	F	1.18	129.8	#252.3	F	1.21	138.8	#294.4	
	SBL	F	1.26	204.0	#62.3	D	0.85	110.7	#31.1	
	SBT/R	Α	0.45	37.3	71.3	С	0.75	44.1	119.8	
	Overall	F	1.38	107.3	-	F	1.49	100.6	-	
1 4	EB	Α	0.40	25.9	29.4	Α	0.17	23.6	13.1	
Fisher Avenue	WB	В	0.63	27.5	42.2	С	0.76	45.9	54.7	
at Deer Park	NBL/T	В	0.67	16.7	117.4	Α	0.52	11.3	93.7	
Road/Dynes Road	NBR	Α	0.20	2.3	8.2	Α	0.03	1.3	2.1	
Signalized	SB	Α	0.38	10.5	39.0	Α	0.51	10.1	72.1	
Signalizea	Overall	В	0.64	15.3	-	Α	0.57	15.1	-	

Saturation flow rate of 1800 veh/h/lane

Notes: Queue is measured in metres
Peak Hour Factor = 1.00

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

The planned geometric changes at the Baseline Road intersections focus on the development and facilitation of transit service along the corridor and will not directly mitigate auto operational constraints.

At the intersection of Fisher Avenue and Baseline Road, the future geometry and background growth are forecasted to change operations. During the AM peak hour, the eastbound left turn movement is anticipated to exhibit extended queues and the northbound left turn movement may be subject to high delays at this horizon. During the PM peak hour, the eastbound left movement may be subject to high delays and extended queues, the westbound left movement is forecasted to be over theoretical capacity with high delays and extended queues, the northbound left movement is forecasted to be over theoretical capacity and the southbound left movement is forecasted to be over theoretical capacity with high delays.

At the intersection of Prince of Wales Drive and Baseline Road/Heron Road, the geometric changes, background growth, and the reversion to the condition without the detour volumes are anticipated to be associated with operations that are different and improved from the existing horizon. Under these conditions, during the AM peak hour the eastbound left, westbound through, westbound right, northbound through/right and southbound left movements are anticipated to be over capacity with high delays and extended queues, the westbound left movement is anticipated to be subject to high delays and extended queues, and the overall intersection is forecasted to be over theoretical capacity with high delays. During the PM peak hour, the eastbound left, westbound through, and northbound through/right movements are anticipated to be over theoretical capacity with high delays and extended queues, the westbound left, westbound right, and southbound left movements are anticipated to be subject to high delays and extended queues, and the overall intersection is forecasted to be over theoretical capacity with high delays.

The Fisher Avenue and Deer Park Road/Dynes Road intersection is anticipated to continue to operate well.

7.2 Demand Rationalization Conclusions

Overall, the proposed development is anticipated to constitute a minor increase in volumes on the study area road network above the existing land uses, as described in Section 6.4, and therefore no rationalization for site traffic is required.

With respect to rationalization of background traffic, after coming online and serving existing demands, it is anticipated that residual trip capacity will be available in the Baseline Road corridor will be available in the form of transit and cycling trips. For the BRT corridor to maintain intersection operations commensurate with the existing conditions, shifts from auto trips to transit trips of 3% of the volumes at the intersection of Fisher Avenue and Baseline Road in the PM peak hour. For the intersection of Prince of Wales Drive at Baseline Road/Heron Road, the intersection is anticipated to be overcapacity with delay and queuing issues in the future even if shifts to transit in area and regional trips are achieved through the construction of the BRT corridor based upon the high regional demand.

8 Transportation Demand Management

8.1 Context for TDM

The mode shares used within the TIA represent a shift from auto modes to transit and cycling modes. As the future Baseline Road Rapid Transit Corridor project will enhance the cycling connectivity and transit access of the development and result in residual trip capacity for these modes, the increases in these mode shares is likely to be achieved. Supportive TDM measures should be included aimed at ensuring this outcome and encouraging further shifts towards transit.

The subject site is not within a design priority area. Total bedrooms within the development are subject to the unit breakdown. No age restrictions are noted.

8.2 Need and Opportunity

The subject site has been assumed to rely on auto travel and transit with an increase in transit and cycling ridership with the immediate proximity to the future BRT corridor, and those assumptions have been carried through the analysis. Risks associated with failing to meet mode share targets may be increased volumes on the existing overcapacity movements at the intersections of Fisher Avenue at Baseline Road and Prince of Wales Drive at Baseline Road/Heron Road. The presence of further operational issues will, however, encourage transit uptake.

8.3 TDM Program

The "suite of post occupancy TDM measures" has been summarized in the TDM checklist for the residential land uses. The checklist is provided in Appendix I. The key TDM measures recommended to be considered in future site plan applications include:

- Display local area maps with walking and cycling routes, and transit route information and schedules at major entrances
- Provide real-time arrival information display at entrances
- Provide a multimodal travel option information package to new residents
- Contract with providers to install on-site bikeshare (or other micro-mobility, e.g., scootershare)
- Contract with providers to install on-site carshare spaces
- Inclusion of a 1-year Presto card for the initial purchase of condo purchase and/or rental of apartment
- Unbundle parking cost from purchase or rental costs

9 Transit

In Section 5.1 the trip generation by mode was estimated, including an estimate of the number of transit trips that will be generated by the proposed development. Table 22 summarizes the transit trip generation.

Table 22: Trip Generation by Transit Mode

Tuescal Basels	Mode Share In Out Total In C	M Peak Ho	ur				
Travel Mode		In	Out	Total	In	Out	Total
Transit	Varies	75	162	237	126	95	221

The proposed development is anticipated to generate 350 AM and 260 PM peak hour two-way transit trips. These transit trips are new trips associated with the residential land use and provided for the purposes of transit service and schedule planning for residential origins and destinations. Transit trips from the existing commercial development are not considered or discounted within this section.

From the trip distribution found in section 5.3, these values can be further broken down. Table 23 summarizes forecasted site-generated transit ridership trips by direction and the equivalent bus loads. It is assumed that trips to the north and south may be taken by connecting to the LRT Trillium Line east of the site via the bus routes.

Table 23: Forecasted Site-Generated Transit Ridership

Divantian	AM Pea	ak Hour	PM Pea	ak Hour	Comice True	For the least Compton to the constant			
Direction	In	Out	In	Out	Service Type	Equivalent Service Increase			
North	20	43	34	25		Half standard bus load			
South	17	35	28	21	Due DDT /future)	Half standard bus load			
East	13	28	23	16	Bus, BRT (future)	Half standard bus load			
West	17	35	28	21		Two-thirds standard bus load			

9.1 Transit Priority

Examining the study area intersection operations, negligible impacts on delay are anticipated on transit movements at the study area intersections as a result of the development site traffic. No additional transit priority measures are required for Baseline Road beyond those being implemented through the EA. Presently, no transit turning movements exist between Baseline Road and the isolated transit priority corridor on Fisher Avenue.

10 Network Intersection Design

10.1 Network Intersection Control

No change to the existing signalized control is recommended for the network intersections.

10.2 Network Intersection Design

10.2.1 2034 Future Total Operations

Figure 18 illustrates the 2034 total volumes and Table 24 summarizes the 2034 total intersection operations including signal timing adjustments as in the background conditions. The level of service for signalized intersections is based on v/c calculations for individual lane movements and HCM 2000 v/c calculations for the overall intersection. The synchro worksheets for the 2034 total horizon are provided in Appendix J.

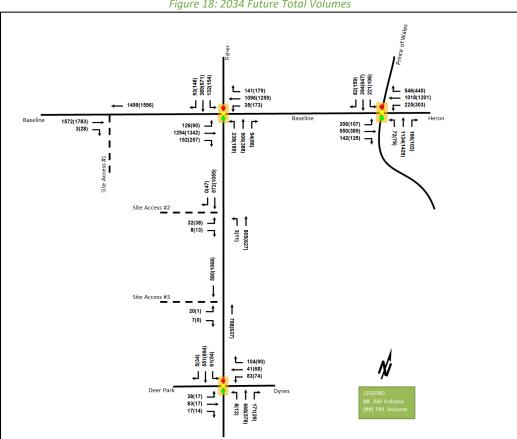


Figure 18: 2034 Future Total Volumes

Table 24: 2034 Future Total Intersection Operations

Intovocation	lana		AM Pe	ak Hour		PM Peak Hour				
intersection	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)	
	EBL	С	0.71	78.2 #73.4		Е	0.92	131.2	#56.4	
	Lane	105.7	#250.8							
	EBR	Α	0.32	30.2	47.8	В	0.62	V/C Delay (s) 0.92 131.2 1.12 105.7 0.62 41.9 1.28 191.3 0.98 60.0 0.33 42.2 1.22 190.4 0.55 43.3 1.02 136.1 0.97 71.0	84.0	
F: 1 A	WBL	WBL A 0.44 59.7 m11.2 F 1.28 191.3	m#59.6							
	WBT	Е	0.98	88.7	m#168.4	Е	0.98	60.0	m121.3	
	WBR	Α	0.29	65.8	m41.2	Α	0.33	42.2	m33.6	
	NBL	F	1.01	116.9	#115.5	F	1.22	190.4	#106.4	
Signalizea	NBT/R	С	0.77	52.1	91.5	Α	0.55	43.3	72.5	
	SBL	С	0.73	78.9	78.9 #55.0 F 1.02 136.1	136.1	#84.7			
	SBT/R	С	0.73	53.6	74.4	Е	0.97	71.0	#149.8	
	Overall	E	0.95	66.2	-	F	1.10	84.3	-	

lusta va a ati a va	Lana		AM Pe	ak Hour		PM Peak Hour					
Intersection	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)		
	EBL	F	1.23	163.7	m#80.0	F	1.18	127.4	m#29.5		
	EBT/R	D	0.83	72.6	m108.3	D	0.88	63.5	m68.1		
Prince of	WBL	E	0.95	101.6	#107.1	E	0.98	100.0	#135.5		
Wales Drive at Baseline Road/Heron Road Signalized	WBT	F	1.02	78.5	#186.6	F	1.14	113.3	#230.1		
	WBR	F	1.24	166.3	#241.3	E	0.99	85.2	#181.3		
	NBL	Α	0.53	70.1	32.9	Α	0.53	70.1	36.2		
	NBT/R	F	1.18	129.8	#252.3	F	1.21	138.8	#294.4		
	SBL	F	1.26	204.0	#62.3	D	0.85	110.7	#31.1		
	SBT/R	Α	0.45	37.2	71.3	С	0.76	44.3	120.9		
	Overall	F	1.22	108.1	-	F	1.19	Delay (s) C 127.4 n 63.5 1 100.0 # 113.3 # 85.2 # 70.1 138.8 # 110.7	-		
	EB	Α	0.40	25.7	29.0	Α	0.17	23.4	13.2		
Fisher Avenue	WB	В	0.65	28.3	42.2	С	0.78	47.5	55.5		
at Deer Park	NBL/T	В	0.67	17.0	120.2	Α	0.53	11.6	94.4		
Road/Dynes	NBR	Α	0.21	2.4	8.4	Α	0.03	1.3	2.1		
Road	SB	Α	0.39	10.7	41.0	Α	0.52	10.4	72.2		
Signalized	Overall	В	0.65	15.6	-	Α	0.58	15.5	-		

Saturation flow rate of 1800 veh/h/lane

Notes: Queue is measured in metres Peak Hour Factor = 1.00 m = metered queue

= volume for the 95th %ile cycle exceeds capacity

The study area intersections at the 2034 future total horizon will operate similarly to the 2034 background conditions except for the northbound left-turn movement at Fisher Avenue and Baseline Road intersection during AM peak hour, which will be over theoretical capacity with high delays and extended queues.

A network reduction of approximately two northbound left-turn vehicles would reduce the v/c of this movement to 1.00 or below.

10.2.2 2034 Future Total Operations – Sensitivity Without Baseline Rapid Transit

The City requested a sensitivity analysis of the site buildout without the Baseline Rapid Transit corridor having been implemented. As no reduction in area traffic has been assumed within this report as a result of this implementation, the resultant change will be to the transit mode share target for site traffic. The existing recommended district mode shares by land use for Merivale, which is summarized in Table 9, have been used, resulting in a 12% increase in auto modes for residential and a 10% increase in auto modes for commercial above the targets with the BRT improvements. Table 25 summarizes the total trip generation without Baseline Rapid Transit.

Table 25: Trip Generation by Mode – Without Baseline Rapid Transit

_		Al	VI Peak H				VI Peak H	lour	
·	Travel Mode	Mode Share	In	Out	Total	Mode Share	In	Out	Total
	Auto Driver	41%	49	113	162	41%	95	68	163
e) it	Auto Passenger	6%	7	16	23	11%	25	18	43
구 호	Transit	42%	58	128	186	33%	81	59	110
Multi-Unit (High-Rise)	Cycling	2%	4	7	11	2%	5	4	9
ΣΞ	Walking	8%	12	26	38	13%	35	25	60
	Total	100%	130	290	420	100%	241	174	415
	Auto Driver	71%	13	9	22	61%	22	14	36
£ (±)	Auto Passenger	19%	9	6	15	16%	19	17	36
Retail (<40k sq. ft.)	Transit	1%	0	1	1	8%	9	9	18
충	Cycling	0%	0	0	0	1%	1	1	2
<u>^</u>	Walking	9%	4	3	7	14%	17	15	32
i <u>e</u>	Pass-by	40%	-22	-14	-36	40%	-51	-51	-102
Ret	Internal Capture	varies	-6	-3	-9	varies	-8	-20	-28
	Total	100%	26	19	45	100%	68	56	124
	Auto Driver	-	62	122	184	-	117	82	199
	Auto Passenger	-	16	22	38	-	44	35	79
Total	Transit	-	58	129	187	-	90	68	128
P	Cycling	-	4	7	11	-	6	5	11
	Walking	-	16	29	45	-	52	40	92
	Total	-	156	309	465	-	309	230	539

As shown above, a total of 184 AM and 199 PM new peak hour two-way vehicle trips are projected as a result of the proposed development. Table 26 summarizes the auto trip generation comparison between the scenarios without Baseline Rapid Transit and with Baseline Rapid Transit.

Table 26: Proposed Site Generation Vehicle Trip Volumes Without BRT vs Proposed Site Generation Vehicle Trip Volumes With BRT

Scenario	AN	1 Peak H	our	PM Peak Hour			
Scenario	In	Out	Total	In	Out	Total	
With BRT	43	83	126	76	52	128	
Without BRT	62	122	184	117	82	199	
Difference	+19	+39	+58	+41	+30	+70	

Figure 19 illustrates the 2034 total volumes at Fisher Avenue at Baseline Road intersection without the Baseline Rapid Transit Corridor project having been implemented and Table 27 summarizes the 2034 future total operations at Fisher Avenue at Baseline Road intersection under this scenario. The level of service for signalized intersections is based on v/c calculations for individual lane movements and HCM 2000 v/c calculations for the overall intersection. The synchro worksheets for the 2034 future total horizon at Fisher Avenue at Baseline Road without Baseline Rapid Transit are provided in Appendix K.

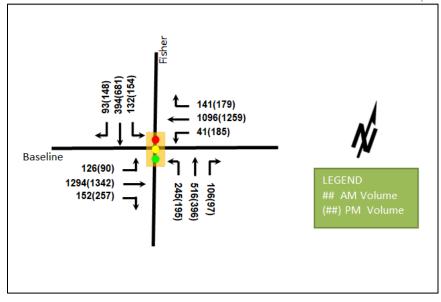


Figure 19: 2034 Future Total Volumes – Fisher Avenue at Baseline Road Without Baseline Rapid Transit

Table 27: 2034 Future Total Intersection Operations—Fisher Avenue at Baseline Road Without Baseline Rapid Transit

Interception	lana		AM Pe	ak Hour		PM Peak Hour				
intersection	Lane	LOS	V/C	Delay (s)	Q (95 th)	LOS	V/C	Delay (s)	Q (95 th)	
EBL B 0.67 71	EBL	В	0.67	71.5	50.4	Α	0.60	72.6	39.5	
	45.1	#229.9	F	1.11	100.9	#249.1				
	EBR	Α	0.21	Delay (s) Q (95 th) LOS V/C Delay (s) Q 71.5 50.4 A 0.60 72.6 3 45.1 #229.9 F 1.11 100.9 #2 2.7 8.6 A 0.43 17.5 2 82.9 m6.3 E 0.94 107.1 # 29.1 m97.3 E 0.96 55.3 #2 9.0 m10.4 A 0.27 7.3 1 77.8 #97.9 D 0.86 86.7 # 52.6 82.0 A 0.59 51.5 6 1.2 0.0 A 0.25 4.7 76.5 53.7 C 0.75 77.2 6 62.5 67.1 F 1.10 115.7 #1 1.2 0.0 A 0.40 14.0 2	47.3					
	WBL	Α	0.47 82.9 m6.3 E 0.94 107.1 0.93 29.1 m97.3 E 0.96 55.3 0.21 9.0 m10.4 A 0.27 7.3	#95.9						
Fisher Avenue	WBT	E	0.93	29.1	m97.3	Е	0.96	55.3	#223.8	
	WBR	Α	0.21	9.0	m10.4	Α	0.27	7.3	19.8	
	NBL	D	0.85	77.8	#97.9	D	0.86	86.7	#87.4	
	NBT	С	0.72	52.6	82.0	Α	0.59	86.7	66.7	
Signanzea	NBR	Α	0.23	1.2	0.0	Α	0.25	4.7	7.6	
	SBL	С	0.71	76.5	53.7	С	0.75	77.2	60.8	
	SBT	С	0.77	62.5	67.1	F	1.10	115.7	#141.8	
	SBR	Α	0.22	1.2	0.0	Α	0.40	14.0	23.0	
	Overall	D	0.89	42.8	-	F	1.05	73.8	-	

Saturation flow rate of 1800 veh/h/lane

Notes: Queue is measured in metres Peak Hour Factor = 1.00 m = metered queue

= volume for the 95th %ile cycle exceeds capacity

Without Baseline BRT, Fisher Avenue at Baseline Road at the 2034 future total horizon operate similarly to the existing conditions. While it may be counterintuitive that road improvements would reduce the intersection capacity, the addition of the BRT and geometric requirements for this facility will be a trade off on auto modes for transit. Similarly, protected pedestrian and cycling movements that have been incorporated into the design will also reduce intersection operations. The results of these trade-offs are the existing conditions will indicate that the proposed redevelopment can be better supported than once the BRT is constructed and auto capacity reductions inflate potential operational constraints, some in an exaggerated fashion.

With respect to other TIA conclusions of which the City requested re-examination as part of the subject sensitivity analysis, no reduction in transit MMLOS is noted on any approach at the intersection of Fisher Avenue at Baseline Road between this scenario and the existing conditions, and no intersection design elements would be required to support the development.

10.2.3 Network Intersection MMLOS

Table 28 summarizes the MMLOS analysis for the network intersections within the study area. The existing and future conditions for both intersections will be the same and are considered in one row. The intersection analysis of Fisher Avenue at Baseline Road and Prince of Wales Drive at Baseline Road/Heron Road are based on the policy area within 600 metres of a rapid transit station, and Fisher Avenue at Deer Park Road/Dynes Road is based on the policy area of within 300 metres of a school. The MMLOS worksheets has been provided in Appendix L.

			1 4010 20. 00				. ,				
Intersection	Havisan	Pedestrian LOS		Bicycle LOS		Transit LOS		Truck LOS		Auto LOS	
	Horizon	PLOS	Target	BLOS	Target	TLOS	Target	TrLOS	Target	ALOS	Target
Fisher Ave at Baseline Rd	Existing	F	Α	F	Α	F	Α	Α	D	F	E
	Future	F	Α	Α	Α	F	Α	Α	D	F	Е
Prince of Wales Dr at Baseline	Existing	F	А	F	Α	F	Α	Α	D	F	E
Rd/ Heron Rd	Future	F	Α	Α	Α	F	Α	Α	D	F	E
Fisher Ave at Deer Park Rd/ Dynes Rd	Existing /Future	E	А	А	В	С	D	-	-	В	E

Table 28: Study Area Intersection MMLOS Analysis

The pedestrian LOS will not be met at the intersections throughout the study area. As is typical for arterial roads, the crossing distances do not permit the targets to be met. To meet pedestrian LOS targets, the maximum crossing distance on all pedestrian crossings would need to be reduced to two lane-widths.

The bicycle LOS will not be met at the existing intersections of Fisher Avenue at Baseline Road and Prince of Wales Drive at Baseline Road/Heron Road, but it will be met once the planned modifications are completed.

The transit LOS will not be met at the intersections throughout the study area except for Fisher Avenue at Deer Park Road/Dynes Road intersection. To meet transit LOS, the delay would need to be reduced to zero seconds on all transit movements. The future Baseline Road Rapid Transit Corridor is anticipated to improve the eastbound and westbound operations, but the northbound and southbound movements will not meet the transit LOS.

The auto LOS will not be met throughout the study area except for Fisher Avenue at Deer Park Road/Dynes Road intersection.

The MMLOS scores for the future conditions are highlighted for the City's review given their planned improvements for these intersections, and meeting these targets are not considered the responsibility of the developer.

10.2.4 Recommended Design Elements

No study area intersection design elements are proposed as part of this study.

11 Summary of Improvements Indicated and Modifications Options

The following summarizes the analysis and results presented in this TIA report:

Proposed Site and Screening

- The proposed site includes three mixed-use buildings with a total of 998 dwelling units and 30,044 sq. ft of commercial space
- The first phase of development is to include the construction of the southern building in the location of an existing parking lot, and the remaining phases are to involve the demolition of the strip retail plaza

- The development proposes the use of an existing right-in-only access on Baseline Road, an existing full-movements access, and a newly proposed outbound access on Fisher Avenue
- The development is proposed to be completed across multiple phases in 2034
- The trip generation, location, and safety triggers were met for the TIA Screening
- This report accompanies an Official Plan amendment and zoning by-law amendment

Existing Conditions

- Baseline Road, Heron Road, Fisher Avenue, Prince of Wales Drive are arterial roads in the study area, and Deer Park Road and Dynes Road are collector roads
- Sidewalks are provided along the south side of Baseline Road and of Deer Park Road west of Millbrook
 Crescent, on the east side of Prince of Wales Drive, on the west side of Fisher Avenue north of Baseline
 Road, on both sides of Fisher Avenue south of Baseline Road, Dynes Road, and Deer Park Road east of
 Millbrook Crescent
- A paved shoulder is present on both sides of Fisher Avenue except through the intersection with Baseline
 Avenue where bike lanes are present and on Fisher Avenue of the road between Malibu Terrace and the
 auxiliary northbound right turn lane taper at Baseline Road where a cycletrack is present
- Cycletracks are also present at the Fisher Avenue at Deer Park Road/Dynes Road intersection, and bike lanes are present along Dynes Road
- Fisher Avenue, Prince of Wales Drive, Baseline Road, and Heron Road are spine routes, and Baseline Road, Heron Road and Prince of Wales Drive are cross-town bikeways
- Malibu Terrace west of Fisher Avenue, Hilliard Avenue north of Malibu Terrace, Sunnycrest Drive, Deer Park Road, Dynes Road, and McCooey Lane are local routes
- The high volumes roadways have produced a high number of collisions at the study area intersections, primarily at the Fisher Avenue at Baseline Road intersection
- The Fisher Avenue at Baseline Road intersection had an angle collision involving a fatality where a
 pedestrian was killed as a result of a two-vehicle collision, but the remaining collisions are largely
 associated with congestion
- The study area intersections of Fisher Avenue at Baseline Road and of Prince of Wales Drive at Baseline Road/Heron Road experience capacity issues and significant delay and queuing during both peak hours
- Existing volumes were noted to include detour volumes from the closure of the Hog's Back Bridge

Development Generated Travel Demand

- The proposed development is forecasted produce 465 two-way person trips during the AM peak hour and 539 two-way person trips during the PM peak hour
- The proposed development is forecasted produce 126 two-way vehicle trips during the AM peak hour and 128 two-way vehicle trips during the PM peak hour based upon an increase in transit and cycling from the typical district mode shares given the proximity of the Baseline BRT improvements
- Of the forecasted trips, 30% are anticipated to travel north, 25% to the south and the west, and 20% to the east

Background Conditions

• In addition to accounting for changes in volumes from the background developments, the annual background growth derived from the two TRANS model horizons was rounded to the nearest 0.25% and applied in the AM peak hour and reversed int the PM peak hour

- Changes from the Baseline Road Rapid Transit Corridor project are included in future horizons and volumes at the intersection of Prince of Wales Drive and Baseline Road/Heron Road have been factored to remove the detour volumes
- The existing site comprises a 3,247 m² of commercial building and is estimated to produce 83 AM twoway auto trips in the AM peak hour and 92 two-way auto trips in the PM peak hour based on the existing land uses and the recommended area mode shares
- The planned geometric changes at the Baseline Road intersections are not anticipated to directly mitigate operational issues, which are anticipated to persist at the 2034 future background horizon
- Operational improvements are noted at the intersection of Prince of Wales Drive and Baseline Road/Heron Road where the detour volumes are not included

Demand Rationalization

- After construction, residual trip capacity will be available via the Baseline BRT corridor for the transit and cycling modes
- To maintain operations at a similar performance to the existing conditions, a reduction in auto traffic of 3% is required at the intersection of Fisher Avenue at Baseline Road via a shift in auto traffic to transit
- Given the high regional demand, capacity issues are anticipated to persist despite shifts from auto to transit at the intersection of Prince of Wales Drive and Baseline Road/Heron Road

TDM

- A TDM program should be employed to utilize the added trip capacity from the BRT corridor improvements
- Supportive TDM measures to be included within the proposed development should include:
 - Display local area maps with walking and cycling routes, and transit route information and schedules at major entrances
 - o Provide a multimodal travel option information package to new residents
 - Contract with providers to install on-site bikeshare (or other micro-mobility, e.g., scootershare)
 - Contract with providers to install on-site carshare spaces
 - Inclusion of a 1-year Presto card for the initial purchase of condo purchase and/or rental of apartment
 - Unbundle parking cost from purchase or rental costs

Transit

- The forecasted transit trips will include 237 two-way trips during the AM peak and 221 two-way trips during the PM peak, and these transit trips are new trips associated with the residential land use and provided for the purposes of transit service and schedule planning for residential origins and destinations
- It is assumed that trips to the north and south may be taken by connecting to the LRT Trillium Line east of the site via the bus routes
- Peak hour transit ridership resulting from the site equate to half standard bus load northerly and southerly of the site, and two thirds of a bus load easterly and westerly of the site
- Negligible impacts are anticipated on transit movement delays at the study area intersections from the subject development and no additional transit priority measures are required for Baseline Road beyond those being implemented through the EA

 Presently, no transit turning movements exist between Baseline Road and the isolated transit priority corridor on Fisher Avenue

Network Intersection Design

- The future total operations are similar to the future background operation and the traffic impacts from the redevelopment are anticipated to be negligible
- A sensitivity analysis for the future conditions without the Baseline BRT implementation concluded that
 the traffic conditions were improved from the conditions with the improvements given the changes in
 geometry and signals to support the median BRT impacted network performance
- No change in transit MMLOS is noted on any approach at the intersection of Fisher Avenue at Baseline Road between the scenario without Baseline BRT from the existing conditions, and no intersection design elements would be required to support the development in this scenario
- The pedestrian, transit, and auto LOS will not be met at the intersections of Fisher Avenue at Baseline Road and Prince of Wales Drive at Baseline Road/Heron Road in the existing or future conditions
- The bicycle LOS at the future intersections of Fisher Avenue at Baseline Road and Prince of Wales Drive at
 Baseline Road/Heron Road will be met but are not met in the existing conditions, and the pedestrian LOS
 will not be met at the intersection of Fisher Avenue at Deer Park Road/Dynes Road
- The MMLOS scores for the future conditions are highlighted for the City's review given their planned improvements for these intersections, and meeting these targets are not considered the responsibility of the developer

12 Conclusion

It is recommended that, from a transportation perspective, the proposed development applications proceed.

Prepared By:

Reviewed By:

Yu-Chu Chen, EIT
Transportation Engineering-Intern

Andrew Harte, P.Eng. Senior Transportation Engineer

Appendix A

TIA Screening Form and PM Certification Form

City of Ottawa 2017 TIA Guidelines Step 1 - Screening Form Date: 25-Feb-22
Project Number: 2021-083
Project Reference: 780 Baseline Road

1.1 Description of Proposed Development	
Municipal Address	780 Baseline Road
Description of Location	Ward 9. 1.36 ha parcel area on south side of Baseline Rd and West side of Fisher Ave
Land Use Classification	General Mixed Use (GM)
Development Size	900 residential units and approximatly 25,000 sq.ft commercial space
Accesses	One on Baseline Road, Two on Fisher Avenue
Phase of Development	Two
Buildout Year	2027
TIA Requirement	Full TIA Required

1.2 Trip Generation Trigger	
Land Use Type	Townhomes or apartments
Development Size	900 Units
Trip Generation Trigger	Yes

1.3 Location Triggers		
Does the development propose a new driveway to a boundary street that is		
designated as part of the City's Transit Priority, Rapid Transit or Spine	Yes	Transit Priority, Rapid Transt, and
Bicycle Networks?		Spine
Is the development in a Design Priority Area (DPA) or Transit-oriented	No	
Development (TOD) zone?	No	
Location Trigger	Yes	

1.4. Safety Triggers	
Are posted speed limits on a boundary street 80 km/hr or greater?	No
Are there any horizontal/vertical curvatures on a boundary street limits	No
sight lines at a proposed driveway?	NO
Is the proposed driveway within the area of influence of an adjacent traffic	
signal or roundabout (i.e. within 300 m of intersection in rural conditions, or	Yes
within 150 m of intersection in urban/ suburban conditions)?	
Is the proposed driveway within auxiliary lanes of an intersection?	No
Does the proposed driveway make use of an existing median break that	No
serves an existing site?	INO
Is there is a documented history of traffic operations or safety concerns on	Yes
the boundary streets within 500 m of the development?	res
Does the development include a drive-thru facility?	No
Safety Trigger	Yes

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below.

CERTIFICATION

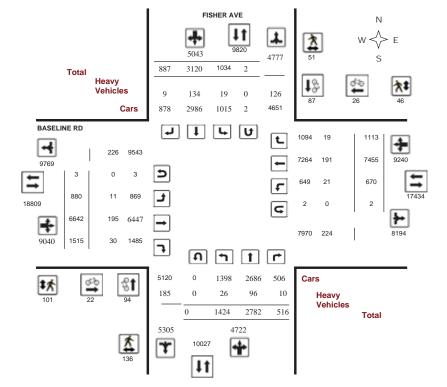
- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- 3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- 4. I am either a licensed¹ or registered² professional in good standing, whose field of expertise [check $\sqrt{\text{appropriate field(s)}}$] is either transportation engineering $\sqrt{\text{or}}$ or transportation planning \square .
- License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

Dated at Ottawa (City)	this 20 day of September	, 2018
Name:	Andrew Harte	
Ivame.	(Please Print)	
Professional Title:	Professional Engineer	
Signature	of Individual certifier that s/he meets the above four criteria	

Office Contact Information (Please Print)
Address: 6 Plaza Court
City / Postal Code: Ottawa / K2H 7W1
Telephone / Extension: (613) 697-3797
E-Mail Address: Andrew.Harte@CGHTransportation.com

Appendix B

Turning Movement Counts



Turning Movement Count - Study Results

BASELINE RD @ FISHER AVE

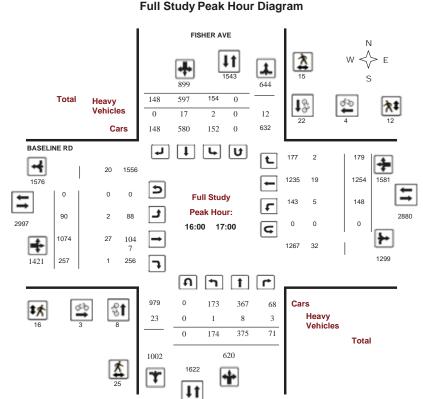
Survey Date: Wednesday, August 03, 2016 WO No: 36121 Start Time: 07:00 Device: Miovision

Full Study Diagram

Start Time: 07:00

Transportation Services - Traffic Services

Turning Movement Count - Study Results

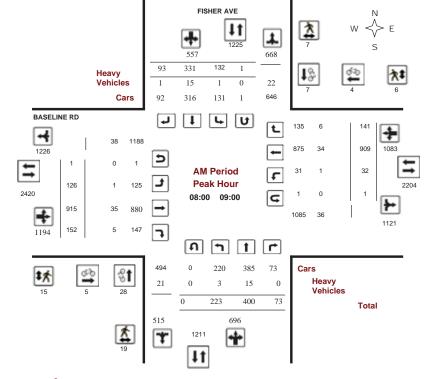

BASELINE RD @ FISHER AVE

Survey Date: Wednesday, August 03, 2016 WO No:

Device:

36121

Miovision

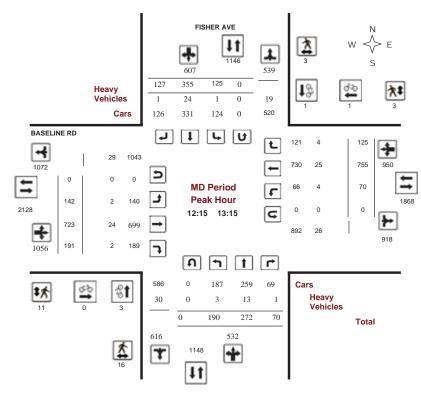

Page 2 of 8 July 9, 2021 Page 1 of 8 July 9, 2021

Turning Movement Count - Peak Hour Diagram

BASELINE RD @ FISHER AVE

Survey Date: Wednesday, August 03, 2016 WO No: 36121
Start Time: 07:00 Device: Miovision

Comments

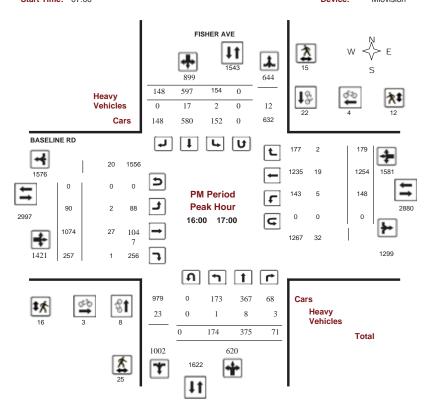

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

BASELINE RD @ FISHER AVE

 Survey Date:
 Wednesday, August 03, 2016
 WO No:
 36121

 Start Time:
 07:00
 Device:
 Miovision


Comments

Turning Movement Count - Peak Hour Diagram

BASELINE RD @ FISHER AVE

Survey Date: Wednesday, August 03, 2016 WO No: 36121
Start Time: 07:00 Device: Microsion

Comments

2021-Jul-09 Page 3 of 3

Transportation Services - Traffic Services

Turning Movement Count - Study Results

BASELINE RD @ FISHER AVE

 Survey Date:
 Wednesday, August 03, 2016
 WO No:
 36121

 Start Time:
 07:00
 Device:
 Miovision

Full Study Summary (8 HR Standard)

Survey Date: Wednesday, August 03, 2016 Total Observed U-Turns

Northbound: 0 Southbound: 2 .90

Eastbound: 3 Westbound: 2

			FIS	HER A	VE							ВА	SELIN	E RD					
	No	rthbou	nd		So	uthbou	und			Е	astbo	und		٧	Vestbo	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Gran Tota
07:00 08:00	174	406	68	648	121	309	57	487	1135	104	835	106	1045	36	702	105	843	1888	302
08:00 09:00	223	400	73	696	132	331	93	556	1252	126	915	152	1193	32	909	141	1082	2275	352
09:00 10:00	172	343	55	570	121	269	96	486	1056	70	670	151	891	58	685	120	863	1754	281
11:30 12:30	172	276	59	507	121	365	135	621	1128	128	658	187	973	71	802	123	996	1969	309
12:30 13:30	168	283	68	519	108	337	124	569	1088	139	707	211	1057	71	718	125	914	1971	305
15:00 16:00	153	345	52	550	128	442	120	690	1240	115	848	212	1175	113	1179	173	1465	2640	388
16:00 17:00	174	375	71	620	154	597	148	899	1519	90	1074	257	1421	148	1254	179	1581	3002	452
17:00 18:00	188	354	70	612	149	470	114	733	1345	108	935	239	1282	141	1206	147	1494	2776	412
Sub Total	1424	2782	516	4722	1034	3120	887	5041	9763	880	6642	1515	9037	670	7455	1113	9238	18275	2803
U Turns	0			0	2			2	2	3			3	2			2	5	7
Total	1424	2782	516	4722	1036	3120	887	5043	9765	883	6642	1515	9040	672	7455	1113	9240	18280	2804
EQ 12Hr Note: These v	1979 /alues a	3867	717 lated by	6563	1440	4337	1233	7010	13573 e expans	1227	9232 tor	2106	12565	934 1.39	10362	1547	12843	25408	3898
AVG 12Hr	1781	3480	645	5906	1296		1110	6309	12215	1104	8309	1895	11308	841	9326	1392	11559	22867	3508
Note: These v	olumes/	are calc	culated	by multi	plying tl	ne Equiv	alent 12	2 hr. tota	als by the	AADT	factor.			.90					
AVG 24Hr	2333	4559	845	7737	1698	5113	1454	8265	16002	1446	10885	2482	14813	1102	12217	1824	15143	29956	4595
Note: These v	olumes/	are calc	culated	by multi	plying tl	ne Avera	age Dail	y 12 hr.	totals by	12 to 2	4 expan	sion fac	ctor.	1.31					

July 9, 2021 Page 3 of 8

Turning Movement Count - Study Results

BASELINE RD @ FISHER AVE

Survey Date: Wednesday, August 03, 2016 WO No: 36121 Start Time: 07:00 Device: Miovision

Full Study 15 Minute Increments

FISHER AVE **BASELINE RD** Northbound Eastbound LT LT ST RT LT ST 855 845 53 110 14 177 32 80 21 133 **310** 34 218 29 281 16 144 289 34 255 862 133 302 40 38 280 847 303 23 902 125 **289** 17 33 91 14 138 22 77 23 122 **260** 19 177 42 238 53 68 10 131 35 61 22 118 688 **249** 16 155 41 212 184 30 227 **439** 43 75 19 137 25 70 26 121 **258** 18 145 32 195 668 **279** 25 43 76 11 130 28 88 30 146 **276** 36 177 41 254 12 54 66 12 132 42 100 35 177 **309** 29 182 37 248 21 833 759 52 78 11 141 22 93 29 144 285 41 179 45 265 162 33 209 474 41 58 31 130 38 86 23 147 **277** 42 187 781 43 70 16 129 23 76 40 139 **268** 30 175 59 264 187 33 772 139 **258** 26 747 292 154 **282** 31 1015 12 154 37 115 31 183 337 28 239 **329** 26 1075 1147

> **400** 17 220 358 23 248 **351** 27 222

1424 2782 516 4722 1036 3120 887 5043 **9765** 883 6642 1515 9040 672 7455 1113 9240 **9765**

89 31 158 **321** 32 229

20 134 35 130 17 182 **316** 26 236 60 322

52 301

327 38 411 **712**

1063

1016

Note: U-Turns are included in Totals.

Transportation Services - Traffic Services

Turning Movement Count - Study Results

BASELINE RD @ FISHER AVE

Survey Date: Wednesday, August 03, 2016 WO No: 36121 Start Time: 07:00 Device: Miovision

Full Study Cyclist Volume

		FISHER AVE					
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	5	4	9	0	0	0	9
07:15 07:30	5	2	7	0	0	0	7
07:30 07:45	12	2	14	0	0	0	14
07:45 08:00	8	2	10	1	2	3	13
08:00 08:15	7	2	9	2	0	2	11
08:15 08:30	9	1	10	1	2	3	13
08:30 08:45	10	4	14	1	0	1	15
08:45 09:00	2	0	2	1	2	3	5
09:00 09:15	3	4	7	2	1	3	10
09:15 09:30	1	1	2	0	2	2	4
09:30 09:45	0	0	0	0	0	0	0
09:45 10:00	2	2	4	0	0	0	4
11:30 11:45	1	1	2	0	0	0	2
11:45 12:00	0	0	0	1	0	1	1
12:00 12:15	0	1	1	0	1	1	2
12:15 12:30	2	1	3	0	0	0	3
12:30 12:45	0	0	0	0	1	1	1
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15	1	0	1	0	0	0	1
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	2	2	4	1	0	1	5
15:15 15:30	1	1	2	3	0	3	5
15:30 15:45	0	3	3	0	0	0	3
15:45 16:00	1	5	6	1	0	1	7
16:00 16:15	2	2	4	0	0	0	4
16:15 16:30	4	7	11	2	3	5	16
16:30 16:45	1	9	10	0	1	1	11
16:45 17:00	1	4	5	1	0	1	6
17:00 17:15	2	8	10	1	3	4	14
17:15 17:30	5	6	11	2	6	8	19
17:30 17:45	4	8	12	1	0	1	13
17:45 18:00	3	5	8	1	2	3	11
Total	94	87	181	22	26	48	229

Page 4 of 8 July 9, 2021 July 9, 2021 Page 5 of 8

Turning Movement Count - Study Results

BASELINE RD @ FISHER AVE

 Survey Date:
 Wednesday, August 03, 2016
 WO No:
 36121

 Start Time:
 07:00
 Device:
 Miovision

Full Study Pedestrian Volume

FISHER AVE BASELINE RD

Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	6	3	9	5	3	8	17
07:15 07:30	2	2	4	3	3	6	10
07:30 07:45	5	1	6	3	3	6	12
07:45 08:00	4	2	6	4	2	6	12
08:00 08:15	3	1	4	4	1	5	9
08:15 08:30	5	3	8	3	3	6	14
08:30 08:45	3	2	5	4	1	5	10
08:45 09:00	8	1	9	4	1	5	14
09:00 09:15	0	1	1	2	1	3	4
09:15 09:30	3	1	4	3	2	5	9
09:30 09:45	0	1	1	1	1	2	3
09:45 10:00	1	0	1	1	1	2	3
11:30 11:45	1	1	2	1	1	2	4
11:45 12:00	0	0	0	0	0	0	0
12:00 12:15	1	0	1	1	1	2	3
12:15 12:30	4	0	4	2	1	3	7
12:30 12:45	5	0	5	3	0	3	8
12:45 13:00	2	2	4	3	2	5	9
13:00 13:15	5	1	6	3	0	3	9
13:15 13:30	3	1	4	2	0	2	6
15:00 15:15	5	0	5	8	0	8	13
15:15 15:30	0	3	3	2	1	3	6
15:30 15:45	3	3	6	1	1	2	8
15:45 16:00	15	0	15	4	1	5	20
16:00 16:15	6	10	16	6	4	10	26
16:15 16:30	7	1	8	1	0	1	9
16:30 16:45	9	3	12	3	4	7	19
16:45 17:00	3	1	4	6	4	10	14
17:00 17:15	8	2	10	5	1	6	16
17:15 17:30	10	2	12	4	0	4	16
17:30 17:45	5	2	7	6	2	8	15
17:45 18:00	4	1	5	3	1	4	9
Total	136	51	187	101	46	147	334

Transportation Services - Traffic Services

Turning Movement Count - Study Results

BASELINE RD @ FISHER AVE

 Survey Date:
 Wednesday, August 03, 2016
 WO No:
 36121

 Start Time:
 07:00
 Device:
 Miovision

Full Study Heavy Vehicles

FISHER AVE BASELINE RD

	N	orthbo	und		Sc	outhbou	ınd			E	astbour	nd		Westbound					
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:15	3	7	0	10	1	1	0	2	12	0	4	0	4	0	6	0	6	10	22
07:15 07:30	1	1	0	2	0	5	0	5	7	0	7	1	8	0	8	1	9	17	24
07:30 07:45	0	6	0	6	0	2	0	2	8	0	5	0	5	0	5	0	5	10	18
07:45 08:00	1	4	0	5	0	3	1	4	9	1	10	1	12	0	4	2	6	18	27
08:00 08:15	0	2	0	2	0	4	0	4	6	0	8	0	8	0	8	2	10	18	24
08:15 08:30	2	6	0	8	1	4	0	5	13	1	6	4	11	0	7	1	8	19	32
08:30 08:45	0	3	0	3	0	2	0	2	5	0	11	1	12	1	9	2	12	24	29
08:45 09:00	1	4	0	5	0	5	1	6	11	0	10	0	10	0	10	1	11	21	32
09:00 09:15	3	2	0	5	0	4	0	4	9	0	6	2	8	0	13	0	13	21	30
09:15 09:30	1	3	1	5	0	6	0	6	11	1	6	2	9	1	6	0	7	16	27
09:30 09:45	0	3	0	3	3	2	1	6	9	1	5	1	7	0	9	0	9	16	25
09:45 10:00	1	2	0	3	1	3	0	4	7	0	3	2	5	2	6	0	8	13	20
11:30 11:45	1	3	2	6	2	2	1	5	11	0	8	2	10	0	5	1	6	16	27
11:45 12:00	2	3	1	6	0	2	0	2	8	0	3	2	5	1	6	1	8	13	21
12:00 12:15	3	2	0	5	0	4	1	5	10	1	7	1	9	0	8	0	8	17	27
12:15 12:30	0	3	1	4	0	7	1	8	12	1	6	1	8	2	8	1	11	19	31
12:30 12:45	0	3	0	3	0	8	0	8	11	1	4	0	5	0	7	2	9	14	25
12:45 13:00	2	4	0	6	1	5	0	6	12	0	5	1	6	2	4	1	7	13	25
13:00 13:15	1	3	0	4	0	4	0	4	8	0	9	0	9	0	6	0	6	15	23
13:15 13:30	0	3	0	3	1	3	1	5	8	1	7	2	10	1	8	1	10	20	28
15:00 15:15	1	3	0	4	1	6	0	7	11	0	5	0	5	1	6	0	7	12	23
15:15 15:30	0	2	0	2	1	4	1	6	8	0	5	2	7	0	4	0	4	11	19
15:30 15:45	0	6	0	6	1	4	0	5	11	1	6	1	8	1	6	0	7	15	26
15:45 16:00	2	2	0	4	0	3	0	3	7	0	5	1	6	1	3	1	5	11	18
16:00 16:15	0	1	1	2	1	4	0	5	7	1	8	0	9	1	6	1	8	17	24
16:15 16:30	0	2	1	3	0	4	0	4	7	0	6	0	6	1	4	0	5	11	18
16:30 16:45	0	2	0	2	0	4	0	4	6	1	11	1	13	1	5	0	6	19	25
16:45 17:00	1	3	1	5	1	5	0	6	11	0	2	0	2	2	4	1	7	9	20
17:00 17:15	0	1	0	1	2	5	0	7	8	0	4	0	4	1	4	0	5	9	17
17:15 17:30	0	3	0	3	1	7	0	8	11	0	3	0	3	2	2	0	4	7	18
17:30 17:45	0	3	1	4	0	5	1	6	10	0	6	0	6	0	3	0	3	9	19
17:45 18:00	0	1	1	2	1	7	0	8	10	0	4	2	6	0	1	0	1	7	17
Total: None	26	96	10	132	19	134	9	162	294	11	195	30	236	21	191	19	231	467	761

July 9, 2021 Page 6 of 8 July 9, 2021 Page 7 of 8

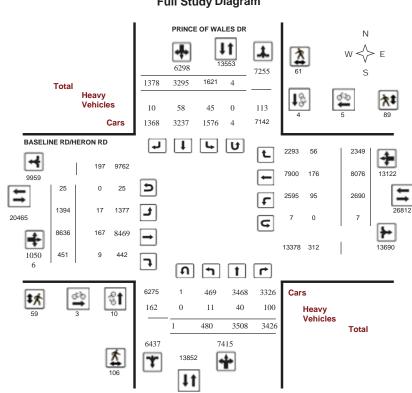
Turning Movement Count - Study Results

BASELINE RD @ FISHER AVE

Survey Date: Wednesday, August 03, 2016 WO No: 36121 Start Time: 07:00 Device: Miovision

Full Study 15 Minute U-Turn Total FISHER AVE BASELINE RD

0 0 0 0 0 0 0 0	0 0 0 0 1 0 0	0 0 0 0 1 0	0 0 0 0 0	0 0 0 0
0 0 0 0 0 0 0	0 0 1 0	0 0 1 0	0 0 0	0 0 2
0 0 0 0 0 0	0 1 0 0	0 1 0	0	0
0 0 0 0 0	1 0 0	1 0	0	2
0 0 0 0	0	0		
0 0 0 0	0		0	
0 0 0		0		0
0	0		0	0
0		0	1	1
	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	1	1	2
0	0	0	0	0
0	0	1	0	1
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
	0	0	0	0
0	1	0	0	1
	0 0 0	0 0 0 0 0 1	0 0 0 0 0 0 0 1 0	0 0 0 0 0 0


Transportation Services - Traffic Services

Turning Movement Count - Study Results

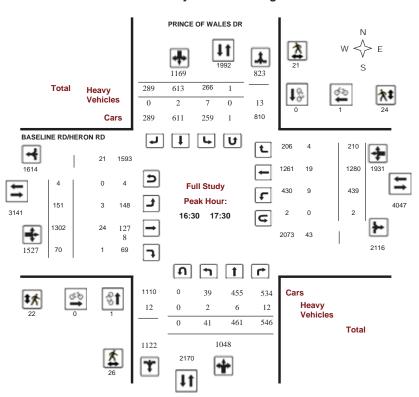
BASELINE RD/HERON RD @ PRINCE OF WALES DR

Survey Date: Wednesday, March 04, 2020 WO No: 39636 Start Time: 07:00 Device: Miovision

Full Study Diagram

5478543 - MAR 4, 2020 - 8HR REIMPORT

April 2, 2020 Page 1 of 8 July 9, 2021 Page 8 of 8


Turning Movement Count - Study Results

BASELINE RD/HERON RD @ PRINCE OF WALES DR

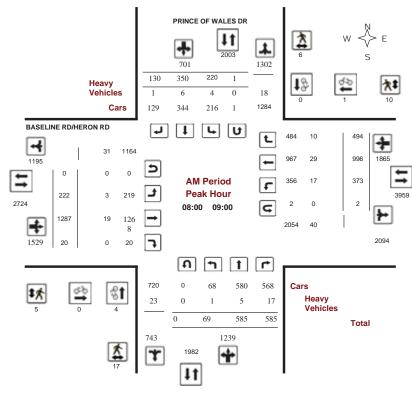
 Survey Date:
 Wednesday, March 04, 2020
 WO No:
 39636

 Start Time:
 07:00
 Device:
 Miovision

Full Study Peak Hour Diagram

5478543 - MAR 4, 2020 - 8HR REIMPORT

April 2, 2020 Page 2 of 8


Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

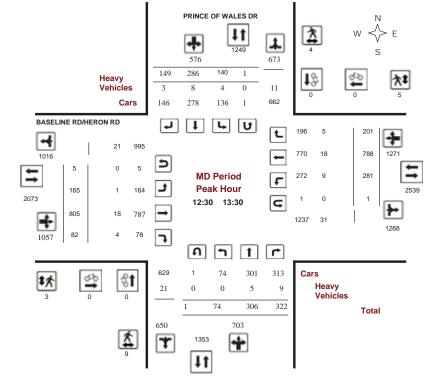
BASELINE RD/HERON RD @ PRINCE OF WALES DR

 Survey Date:
 Wednesday, March 04, 2020
 WO No:
 39636

 Start Time:
 07:00
 Device:
 Miovision

Comments 5478543 - MAR 4, 2020 - 8HR REIMPORT

2020-Apr-02 Page 1 of 3



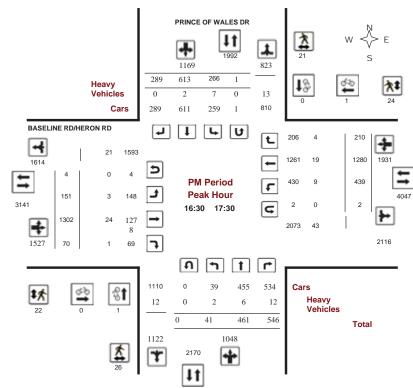
Turning Movement Count - Peak Hour Diagram

BASELINE RD/HERON RD @ PRINCE OF WALES DR

 Survey Date:
 Wednesday, March 04, 2020
 Wo No:
 39636

 Start Time:
 07:00
 Device:
 Miovision

Comments 5478543 - MAR 4, 2020 - 8HR REIMPORT



Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram BASELINE RD/HERON RD @ PRINCE OF WALES DR

 Survey Date:
 Wednesday, March 04, 2020
 WO No:
 39636

 Start Time:
 07:00
 Device:
 Miovision

Comments 5478543 - MAR 4, 2020 - 8HR REIMPORT

Turning Movement Count - Study Results

BASELINE RD/HERON RD @ PRINCE OF WALES DR

 Survey Date:
 Wednesday, March 04, 2020
 WO No:
 39636

 Start Time:
 07:00
 Device:
 Miovision

Full Study Summary (8 HR Standard)

Survey Date: Wednesday, March 04, 2020 Total Observed U-Turns

Northbound: 1 Southbound: 4 1.00

Eastbound: 25 Westbound: 7

								Lasiboui	iu. 2	5	wesi	Dound	. /						
		PR	RINCE	OF W	ALES	DR					BAS	SELIN	E RD/I	HERO	N RD				
	No	rthbou	ınd		So	uthbou	und		_	Е	astbou	ınd		٧	Vestbo	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Gran Tota
07:00 08:00	53	669	421	1143	179	315	73	567	1710	205	1201	40	1446	274	809	433	1516	2962	467
08:00 09:00	69	585	585	1239	220	350	130	700	1939	222	1287	20	1529	373	996	494	1863	3392	533
09:00 10:00	68	436	359	863	155	282	103	540	1403	186	977	55	1218	264	826	269	1359	2577	398
11:30 12:30	70	272	290	632	163	302	153	618	1250	130	695	44	869	272	848	198	1318	2187	343
12:30 13:30	74	306	322	702	140	286	149	575	1277	165	805	82	1052	281	788	201	1270	2322	359
15:00 16:00	57	387	414	858	234	572	218	1024	1882	161	1101	73	1335	368	1213	325	1906	3241	512
16:00 17:00	41	430	528	999	287	607	292	1186	2185	160	1265	70	1495	426	1278	208	1912	3407	559
17:00 18:00	48	423	507	978	243	581	260	1084	2062	165	1305	67	1537	432	1318	221	1971	3508	557
Sub Total	480	3508	3426	7414	1621	3295	1378	6294	13708	1394	8636	451	10481	2690	8076	2349	13115	23596	3730
U Turns				1				4	5				25				7	32	37
Total	480	3508	3426	7415	1621	3295	1378	6298	13713	1394	8636	451	10506	2690	8076	2349	13122	23628	3734
EQ 12Hr	667	4876	4762	10307	2253	4580	1915	8754	19061	1938	12004	627	14603	3739	11226	3265	18240	32843	5190
Note: These v	/alues a	ire calcu	ılated b	y multipl	ying the	totals b	y the a	ppropriat	e expans	sion fac	tor.			1.39					
AVG 12Hr	629	4595	4488	9714	2124	4316	1805	8250	19061	1826	11313	591	13763	3524	10580	3077	17190	32843	5190
lote: These v	volumes	are cal	culated	by multi	iplying th	he Equi	/alent 1	2 hr. tota	ls by the	AADT	factor.			1					
AVG 24Hr	824	6020	5879	12725	2782	5655	2365	10808	23533	2392	14820	774	18029	4616	13859	4031	22519	40548	6408
lote: These v	volumes	are cal	culated	by multi	plying th	he Avera	age Dai	ly 12 hr.	totals by	12 to 2	4 expans	sion fac	ctor.	1.31					

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

Transportation Services - Traffic Services

Turning Movement Count - Study Results

BASELINE RD/HERON RD @ PRINCE OF WALES DR

 Survey Date:
 Wednesday, March 04, 2020
 Wo No:
 39636

 Start Time:
 07:00
 Device:
 Miovision

Full Study 15 Minute Increments

PRINCE OF WALES DR BASELINE RD/HERON RD

		No	orthbo	und		Sc	uthbou	nd			E	astbour	nd		We	estbour	nd			
Time Peri	iod	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07	7:15	13	142	88	243	37	62	12	111	6	47	265	5	317	60	184	88	332	6	1003
07:15 07	7:30	7	169	91	267	41	74	14	129	7	67	333	12	412	61	198	111	370	7	1178
07:30 07	7:45	18	171	109	298	54	80	27	161	12	44	339	7	391	75	209	110	394	12	1244
07:45 08	3:00	15	187	133	335	47	99	20	166	12	47	264	16	327	78	218	124	420	12	1248
08:00 08	3:15	16	140	134	290	53	73	34	160	5	58	297	4	359	112	253	144	511	5	1320
08:15 08	3:30	16	143	124	283	59	81	25	165	11	55	332	5	392	79	228	137	444	11	1284
08:30 08	3:45	22	151	152	325	56	78	46	180	10	45	323	3	371	106	257	119	482	10	1358
08:45 09	9:00	15	151	175	341	52	118	25	196	8	64	335	8	407	76	258	94	428	8	1372
09:00 09	9:15	19	126	116	261	39	77	23	139	9	65	340	10	416	76	236	80	392	9	1208
09:15 09	9:30	13	109	98	220	29	68	22	119	13	40	231	13	286	74	216	77	367	13	992
09:30 09	9:45	15	96	79	190	42	71	25	138	13	51	223	12	286	52	160	51	263	13	877
09:45 10	0:00	21	105	66	192	45	66	33	144	7	30	183	20	233	62	214	61	337	7	906
11:30 11	1:45	16	62	70	148	35	72	31	138	10	34	144	13	194	62	223	49	335	10	815
11:45 12	2:00	15	71	58	144	39	76	45	160	7	28	210	12	251	80	220	48	348	7	903
12:00 12	2:15	22	70	78	170	37	71	51	160	6	25	186	10	222	79	209	44	332	6	884
12:15 12	2:30	17	69	84	170	52	83	26	161	8	43	155	9	209	51	196	57	304	8	844
12:30 12	2:45	13	83	87	183	40	77	44	161	6	45	210	25	282	53	209	55	317	6	943
12:45 13	3:00	20	56	76	152	34	74	33	142	8	32	223	19	275	68	190	56	314	8	883
13:00 13	3:15	18	75	76	169	34	54	35	123	8	52	192	25	269	83	194	40	318	8	879
13:15 13	3:30	23	92	83	199	32	81	37	150	7	36	180	13	231	77	195	50	322	7	902
15:00 15	5:15	18	70	90	178	46	115	64	225	4	34	234	22	290	74	356	81	511	4	1204
15:15 15	5:30	17	106	105	228	65	141	59	265	10	49	243	19	311	94	298	84	476	10	1280
15:30 15	5:45	14	109	99	222	60	172	47	279	13	32	274	19	326	82	255	86	423	13	1250
15:45 16	6:00	8	102	120	230	63	144	48	255	6	46	350	13	410	118	304	74	496	6	1391
16:00 16	3:15	8	101	133	242	76	163	47	286	13	58	278	20	356	118	307	55	481	13	1365
16:15 16	5:30	8	89	123	220	75	134	88	297	6	29	352	17	398	100	342	45	487	6	1402
16:30 16	6:45	17	122	146	285	55	147	90	292	11	38	334	19	392	108	344	64	517	11	1486
16:45 17	7:00	8	118	126	252	81	163	67	311	11	35	301	14	352	100	285	44	430	11	1345
17:00 17	7:15	11	104	147	262	61	136	71	268	4	41	344	16	401	111	320	40	471	4	1402
17:15 17	7:30	5	117	127	249	69	167	61	298	3	37	323	21	382	120	331	62	513	3	1442
17:30 17	7:45	13	110	124	247	62	156	59	277	9	43	333	15	393	86	313	67	466	9	1383
17:45 18	3:00	19	92	109	220	51	122	69	242	1	44	305	15	365	115	354	52	521	1	1348
Total:		480	3508	3426	7415	1621	3295	1378	6298	264	1394	8636	451	10506	2690	8076	2349	13122	264	37,341

Note: U-Turns are included in Totals.

April 2, 2020 Page 3 of 8 April 2, 2020 Page 4 of 8

Turning Movement Count - Study Results

BASELINE RD/HERON RD @ PRINCE OF WALES DR

 Survey Date:
 Wednesday, March 04, 2020
 WO No:
 39636

 Start Time:
 07:00
 Device:
 Miovision

DDINGE OF WALES DD

Full Study Cyclist Volume

	PRI	NCE OF WALE	S DR	BAS	ELINE RD/HER	ON RD	
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	0	1	1	0	0	0	1
07:15 07:30	0	0	0	0	0	0	0
07:30 07:45	0	0	0	1	0	1	1
07:45 08:00	0	1	1	0	0	0	1
08:00 08:15	0	0	0	0	0	0	0
08:15 08:30	0	0	0	0	0	0	0
08:30 08:45	4	0	4	0	1	1	5
08:45 09:00	0	0	0	0	0	0	0
09:00 09:15	0	0	0	0	0	0	0
09:15 09:30	0	0	0	0	0	0	0
09:30 09:45	0	0	0	0	1	1	1
09:45 10:00	2	0	2	1	0	1	3
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	2	0	2	1	0	1	3
12:00 12:15	0	0	0	0	0	0	0
12:15 12:30	0	0	0	0	0	0	0
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	0	0	0	0	0	0	0
15:15 15:30	0	0	0	0	0	0	0
15:30 15:45	0	1	1	0	0	0	1
15:45 16:00	0	0	0	0	0	0	0
16:00 16:15	0	0	0	0	1	1	1
16:15 16:30	0	1	1	0	1	1	2
16:30 16:45	0	0	0	0	0	0	0
16:45 17:00	0	0	0	0	1	1	1
17:00 17:15	0	0	0	0	0	0	0
17:15 17:30	1	0	1	0	0	0	1
17:30 17:45	1	0	1	0	0	0	1
17:45 18:00	0	0	0	0	0	0	0
T ()	40			0	-		00

Transportation Services - Traffic Services

Turning Movement Count - Study Results

BASELINE RD/HERON RD @ PRINCE OF WALES DR

 Survey Date:
 Wednesday, March 04, 2020
 WO No:
 39636

 Start Time:
 07:00
 Device:
 Miovision

Full Study Pedestrian Volume

PRINCE OF WALES DR BASELINE RD/HERON RD

Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
7:00 07:15	0	0	0	0	4	4	4
7:15 07:30	4	0	4	0	2	2	6
7:30 07:45	3	0	3	2	3	5	8
7:45 08:00	3	4	7	4	4	8	15
8:00 08:15	6	2	8	0	3	3	11
8:15 08:30	4	3	7	5	1	6	13
8:30 08:45	6	0	6	0	4	4	10
8:45 09:00	1	1	2	0	2	2	4
9:00 09:15	0	1	1	1	3	4	5
9:15 09:30	0	0	0	0	0	0	0
9:30 09:45	5	0	5	0	5	5	10
9:45 10:00	6	0	6	0	6	6	12
1:30 11:45	2	2	4	2	2	4	8
1:45 12:00	2	0	2	0	3	3	5
2:00 12:15	0	2	2	2	0	2	4
2:15 12:30	1	0	1	0	2	2	3
2:30 12:45	1	0	1	0	0	0	1
2:45 13:00	4	0	4	1	1	2	6
3:00 13:15	3	2	5	1	4	5	10
3:15 13:30	1	2	3	1	0	1	4
5:00 15:15	1	1	2	1	1	2	4
5:15 15:30	2	0	2	0	3	3	5
:30 15:45	4	0	4	0	0	0	4
5:45 16:00	4	2	6	2	1	3	9
6:00 16:15	1	7	8	4	3	7	15
6:15 16:30	7	7	14	6	2	8	22
6:30 16:45	6	5	11	4	5	9	20
3:45 17:00	7	2	9	3	12	15	24
7:00 17:15	9	10	19	5	5	10	29
7:15 17:30	4	4	8	10	2	12	20
7:30 17:45	8	4	12	3	6	9	21
7:45 18:00	1	0	1	2	0	2	3
otal	106	61	167	59	89	148	315

5478543 - MAR 4, 2020 - 8HR REIMPORT

April 2, 2020 Page 5 of 8 April 2, 2020 Page 6 of 8

PRINCE OF WALES DR

Transportation Services - Traffic Services

Turning Movement Count - Study Results

BASELINE RD/HERON RD @ PRINCE OF WALES DR

 Survey Date:
 Wednesday, March 04, 2020
 WO No:
 39636

 Start Time:
 07:00
 Device:
 Miovision

Full Study Heavy Vehicles R BASELINE RD/HERON RD

				o							סאכ		- 110/1						
	N	orthbo	und		Sc	outhbou	ınd			Е	astbou	nd		We	estbour	nd			
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:15	0	1	3	4	1	1	0	2	6	0	0	1	1	2	3	2	7	8	14
07:15 07:30	0	2	4	6	0	0	1	1	7	0	6	0	6	4	3	3	10	16	23
07:30 07:45	0	2	2	4	2	5	1	8	12	2	1	0	3	5	7	3	15	18	30
07:45 08:00	0	2	6	8	2	2	0	4	12	1	5	0	6	6	7	3	16	22	34
08:00 08:15	0	0	4	4	1	0	0	1	5	0	3	0	3	4	13	2	19	22	27
08:15 08:30	0	2	4	6	1	3	1	5	11	0	4	0	4	7	6	4	17	21	32
08:30 08:45	1	2	5	8	1	1	0	2	10	3	5	0	8	2	5	2	9	17	27
08:45 09:00	0	1	4	5	1	2	0	3	8	0	7	0	7	4	5	2	11	18	26
09:00 09:15	1	2	5	8	0	1	0	1	9	1	7	0	8	2	10	2	14	22	31
09:15 09:30	1	3	5	9	1	2	1	4	13	1	5	0	6	4	4	1	9	15	28
09:30 09:45	1	1	3	5	0	7	1	8	13	1	5	1	7	3	3	2	8	15	28
09:45 10:00	0	0	1	1	2	4	0	6	7	0	9	1	10	0	5	0	5	15	22
11:30 11:45	0	0	5	5	2	3	0	5	10	1	4	0	5	3	2	2	7	12	22
11:45 12:00	0	2	3	5	0	1	1	2	7	0	4	0	4	3	7	4	14	18	25
12:00 12:15	0	1	3	4	2	0	0	2	6	1	3	0	4	6	6	2	14	18	24
12:15 12:30	2	0	2	4	2	1	1	4	8	1	3	0	4	1	2	4	7	11	19
12:30 12:45	0	1	1	2	0	2	2	4	6	0	4	0	4	3	3	2	8	12	18
12:45 13:00	0	1	2	3	2	2	1	5	8	0	5	2	7	1	3	1	5	12	20
13:00 13:15	0	1	4	5	0	3	0	3	8	1	5	1	7	3	8	1	12	19	27
13:15 13:30	0	2	2	4	2	1	0	3	7	0	4	1	5	2	4	1	7	12	19
15:00 15:15	2	0	2	4	0	0	0	0	4	0	6	0	6	2	3	0	5	11	15
15:15 15:30	0	1	2	3	5	2	0	7	10	0	6	0	6	3	6	1	10	16	26
15:30 15:45	0	1	5	6	2	5	0	7	13	1	6	1	8	1	15	2	18	26	39
15:45 16:00	0	0	2	2	2	2	0	4	6	0	9	0	9	5	7	3	15	24	30
16:00 16:15	0	4	5	9	1	3	0	4	13	0	11	0	11	1	6	0	7	18	31
16:15 16:30	0	2	1	3	3	0	0	3	6	0	7	0	7	2	5	0	7	14	20
16:30 16:45	1	4	6	11	0	0	0	0	11	1	11	1	13	2	4	3	9	22	33
16:45 17:00	0	2	4	6	4	1	0	5	11	1	5	0	6	1	5	1	7	13	24
17:00 17:15	0	0	2	2	2	0	0	2	4	1	6	0	7	4	5	0	9	16	20
17:15 17:30	1	0	0	1	1	1	0	2	3	0	2	0	2	2	5	0	7	9	12
17:30 17:45	1	0	2	3	3	3	0	6	9	0	5	0	5	4	4	2	10	15	24
17:45 18:00	0	0	1	1	0	0	0	0	1	0	4	0	4	3	5	1	9	13	14

Total: None 11 40 100 151 45 58 10 113 264 17 167 9 193 95 176 56 327 520

Transportation Services - Traffic Services

Turning Movement Count - Study Results

BASELINE RD/HERON RD @ PRINCE OF WALES DR

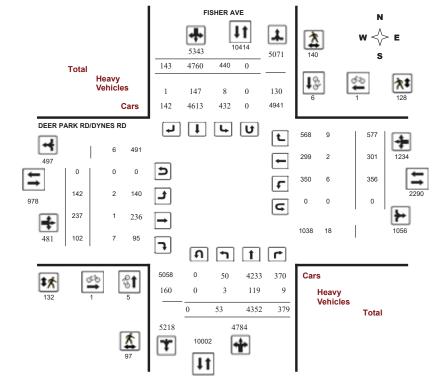
 Survey Date:
 Wednesday, March 04, 2020
 WO No:
 39636

 Start Time:
 07:00
 Device:
 Miovision

Full Study 15 Minute U-Turn Total PRINCE OF WALES DR BASELINE RD/HERON RD

		I KINGE OF W	ALLO DIX	DAGLEIN	L KDITILKON KD	
Time I	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	1	0	1
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	2	2
08:15	08:30	0	0	0	0	0
08:30	08:45	0	0	0	0	0
08:45	09:00	0	1	0	0	1
09:00	09:15	0	0	1	0	1
09:15	09:30	0	0	2	0	2
09:30	09:45	0	0	0	0	0
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	3	1	4
11:45	12:00	0	0	1	0	1
12:00	12:15	0	1	1	0	2
12:15	12:30	0	0	2	0	2
12:30	12:45	0	0	2	0	2
12:45	13:00	0	1	1	0	2
13:00	13:15	0	0	0	1	1
13:15	13:30	1	0	2	0	3
15:00	15:15	0	0	0	0	0
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	1	0	1
15:45	16:00	0	0	1	0	1
16:00	16:15	0	0	0	1	1
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	1	1	2
16:45	17:00	0	0	2	1	3
17:00	17:15	0	0	0	0	0
17:15	17:30	0	1	1	0	2
17:30	17:45	0	0	2	0	2
17:45	18:00	0	0	1	0	1
To	otal	1	4	25	7	37

April 2, 2020 Page 7 of 8 April 2, 2020 Page 8 of 8


Turning Movement Count - Study Results

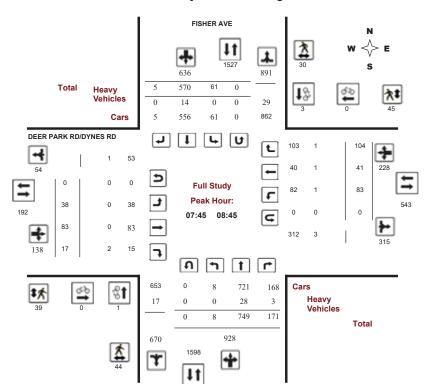
FISHER AVE @ DEER PARK RD/DYNES RD

 Survey Date:
 Wednesday, March 09, 2016
 WO No:
 35788

 Start Time:
 07:00
 Device:
 Miovision

Full Study Diagram

Transportation Services - Traffic Services


Turning Movement Count - Study Results

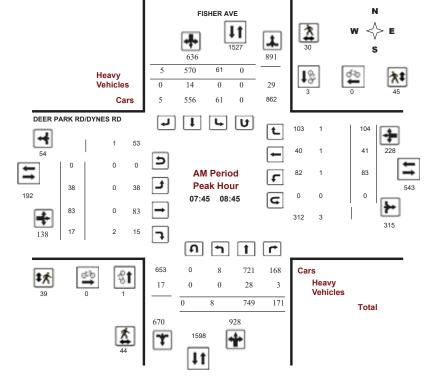
FISHER AVE @ DEER PARK RD/DYNES RD

 Survey Date:
 Wednesday, March 09, 2016
 WO No:
 35788

 Start Time:
 07:00
 Device:
 Miovision

Full Study Peak Hour Diagram

March 18, 2022 Page 1 of 8 March 18, 2022 Page 2 of 8



Turning Movement Count - Peak Hour Diagram

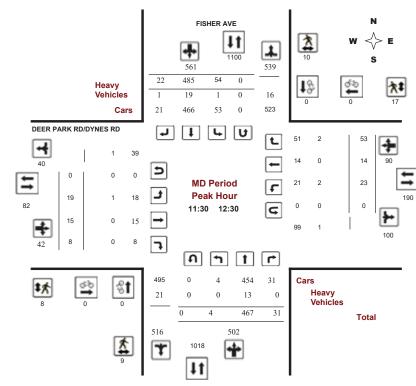
FISHER AVE @ DEER PARK RD/DYNES RD

 Survey Date:
 Wednesday, March 09, 2016
 WO No:
 35788

 Start Time:
 07:00
 Device:
 Miovision

Comments

Ottawa

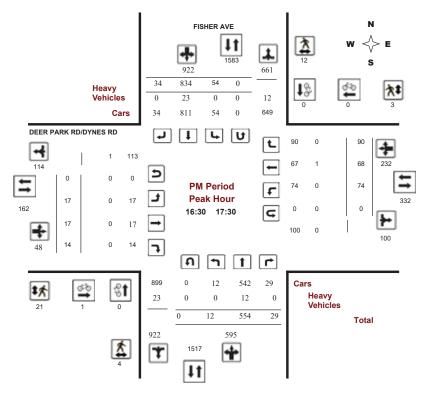

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

FISHER AVE @ DEER PARK RD/DYNES RD

 Survey Date:
 Wednesday, March 09, 2016
 WO No:
 35788

 Start Time:
 07:00
 Device:
 Miovision


Comments

Turning Movement Count - Peak Hour Diagram

FISHER AVE @ DEER PARK RD/DYNES RD

Survey Date: Wednesday, March 09, 2016 WO No: 35788 Start Time: 07:00 Device: Miovision

Comments

2022-Mar-18 Page 2 of 9

Transportation Services - Traffic Services

Turning Movement Count - Study Results

FISHER AVE @ DEER PARK RD/DYNES RD

Survey Date: Wednesday, March 09, 2016 WO No: 35788 Start Time: 07:00 Device: Miovision

Full Study Summary (8 HR Standard)

Survey Date: Wednesday, March 09, 2016 **Total Observed U-Turns AADT Factor** Northbound: 0 Southbound: 0 1.00

								Eastbour	nd: ()		West	tbound:	0						
			FIS	HER A	VE						DEE	R PAF	RK RD	/DYNE	S RD				
·	No	rthbou	nd		Sc	uthbou	ınd			Е	astbou	ınd		V	/estbo	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Tota
07:00 08:00	6	632	69	707	51	512	7	570	1277	24	52	13	89	37	14	83	134	223	1500
08:00 09:00	6	746	140	892	49	584	10	643	1535	35	68	13	116	66	48	95	209	325	1860
09:00 10:00	6	468	30	504	45	448	13	506	1010	9	26	20	55	17	24	63	104	159	1169
11:30 12:30	4	467	31	502	54	485	22	561	1063	19	15	8	42	23	14	53	90	132	1195
12:30 13:30	5	410	23	438	45	445	15	505	943	11	10	10	31	18	11	44	73	104	1047
15:00 16:00	8	567	28	603	71	696	21	788	1391	9	31	13	53	59	57	75	191	244	1635
16:00 17:00	10	529	33	572	45	839	30	914	1486	14	22	10	46	84	77	78	239	285	1771
17:00 18:00	8	533	25	566	80	751	25	856	1422	21	13	15	49	52	56	86	194	243	1665
Sub Total	53	4352	379	4784	440	4760	143	5343	10127	142	237	102	481	356	301	577	1234	1715	11842
U Turns	0			0	0			0	0	0			0	0			0	0	0
Total	53	4352	379	4784	440	4760	143	5343	10127	142	237	102	481	356	301	577	1234	1715	11842
EQ 12Hr	74	6049	527	6650	612	6616	199	7427	14077	197	329	142	668	495	418	802	1715	2383	16460
Note: These v	alues a	re calcu	lated b	y multipl	ying the	e totals b	y the a	ppropriat	e expans	ion fac	tor.			1.39					
AVG 12Hr	74	6049	527	6650	612	6616	199	7427	14077	197	329	142	668	495	418	802	1715	2383	16460
Note: These v	olumes	are cal	culated	by multi	plying t	he Equiv	alent 1	2 hr. tota	ls by the	AADT	factor.			1.00					
AVG 24Hr	97	7924	690	8711	802	8667	261	9730	18441	258	431	186	875	648	548	1051	2247	3122	21563
Note: These v	olumes	are cal	culated	by multi	plying t	he Avera	age Dai	ly 12 hr.	totals by	12 to 2	4 expan	sion fac	tor.	1.31					

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

March 18, 2022 Page 3 of 8

FISHER AVE

Transportation Services - Traffic Services

Turning Movement Count - Study Results

FISHER AVE @ DEER PARK RD/DYNES RD

 Survey Date:
 Wednesday, March 09, 2016
 WO No:
 35788

 Start Time:
 07:00
 Device:
 Miovision

Full Study 15 Minute Increments

DEER PARK RD/DYNES RD

Eastbound LT ST RT E LT ST RT N LT ST RT Time Period LT ST RT тот тот тот тот 268 07:00 07:15 120 9 104 2 246 3 2 3 10 22 135 1 311 3 15 39 350 171 125 3 333 15 68 401 94 481 173 44 376 86 462 155 0 446 32 135 581 212 62 355 406 188 25 127 2 6 14 51 162 6 358 12 21 53 411 272 57 329 13 19 108 2 254 38 30 300 117 10 128 3 270 2 6 2 12 95 3 98 1 214 5 4 5 12 34 248 243 36 279 104 111 9 5 3 15 128 124 1 278 6 12 36 314 257 35 292 132 8 285 25 310 12:30 12:45 120 3 2 11 22 273 251 234 254 12:45 13:00 102 5 1 20 101 4 223 25 248 235 272 142 9 144 5 319 4 12 16 45 364 186 7 75 440 150 4 365 11 4 22 25 53 402 349 143 5 172 3 11 13 12 194 6 358 10 22 71 429 60 406 76 447 231 8 398 58 456 209 11 371 23 27 91 462 183 7 359 16 19 64 423 211 8 389 13 25 67 456 420 122 169 4 324 4 10 17 42 366

10127 0 237 102 0

301 577 0

10127 11,842

Note: U-Turns are included in Totals.

0 4352 379 0 0 4760 143 0

Transportation Services - Traffic Services

Turning Movement Count - Study Results

FISHER AVE @ DEER PARK RD/DYNES RD

 Survey Date:
 Wednesday, March 09, 2016
 WO No:
 35788

 Start Time:
 07:00
 Device:
 Miovision

Full Study Cyclist Volume

			i un otuay	Cyclist V	Olullie		
		FISHER AVE		DEE	R PARK RD/DY	NES RD	
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	0	0	0	0	0	0	0
07:15 07:30	0	0	0	0	0	0	0
07:30 07:45	0	0	0	0	0	0	0
07:45 08:00	0	0	0	0	0	0	0
08:00 08:15	0	0	0	0	0	0	0
08:15 08:30	1	1	2	0	0	0	2
08:30 08:45	0	2	2	0	0	0	2
08:45 09:00	0	0	0	0	0	0	0
09:00 09:15	0	0	0	0	0	0	0
09:15 09:30	1	1	2	0	0	0	2
09:30 09:45	1	0	1	0	0	0	1
09:45 10:00	0	0	0	0	0	0	0
11:30 11:45	0	0	0	0	0	0	0
1:45 12:00	0	0	0	0	0	0	0
12:00 12:15	0	0	0	0	0	0	0
12:15 12:30	0	0	0	0	0	0	0
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	0	0	0	0	0	0	0
15:15 15:30	0	1	1	0	0	0	1
15:30 15:45	0	0	0	0	0	0	0
15:45 16:00	0	0	0	0	0	0	0
16:00 16:15	0	0	0	0	0	0	0
16:15 16:30	1	0	1	0	1	1	2
16:30 16:45	0	0	0	0	0	0	0
6:45 17:00	0	0	0	0	0	0	0
17:00 17:15	0	0	0	1	0	1	1
17:15 17:30	0	0	0	0	0	0	0
17:30 17:45	0	0	0	0	0	0	0
17:45 18:00	1	1	2	0	0	0	2
Total	5	6	11	1	1	2	13

March 18, 2022 Page 4 of 8 March 18, 2022 Page 5 of 8

Turning Movement Count - Study Results

FISHER AVE @ DEER PARK RD/DYNES RD

 Survey Date:
 Wednesday, March 09, 2016
 WO No:
 35788

 Start Time:
 07:00
 Device:
 Miovision

Full Study Pedestrian Volume

FISHER AVE

DEER PARK RD/DYNES RD

Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	1	5	6	1	2	3	9
07:15 07:30	0	2	2	0	2	2	4
07:30 07:45	8	4	12	5	1	6	18
07:45 08:00	18	5	23	21	8	29	52
08:00 08:15	14	11	25	8	19	27	52
08:15 08:30	10	10	20	6	16	22	42
08:30 08:45	2	4	6	4	2	6	12
08:45 09:00	1	4	5	4	0	4	9
09:00 09:15	1	0	1	2	2	4	5
09:15 09:30	1	0	1	1	0	1	2
09:30 09:45	4	2	6	4	2	6	12
09:45 10:00	1	1	2	0	2	2	4
11:30 11:45	1	6	7	1	5	6	13
11:45 12:00	2	0	2	4	6	10	12
12:00 12:15	5	3	8	3	3	6	14
12:15 12:30	1	1	2	0	3	3	5
12:30 12:45	5	4	9	3	5	8	17
12:45 13:00	3	3	6	5	1	6	12
13:00 13:15	0	1	1	1	1	2	3
13:15 13:30	3	5	8	4	7	11	19
15:00 15:15	3	6	9	5	7	12	21
15:15 15:30	0	8	8	3	2	5	13
15:30 15:45	0	8	8	3	5	8	16
15:45 16:00	3	8	11	3	5	8	19
16:00 16:15	4	5	9	8	4	12	21
16:15 16:30	2	10	12	2	9	11	23
16:30 16:45	2	5	7	5	2	7	14
16:45 17:00	0	2	2	5	0	5	7
17:00 17:15	0	0	0	3	1	4	4
17:15 17:30	2	5	7	8	0	8	15
17:30 17:45	0	7	7	2	2	4	11
17:45 18:00	0	5	5	8	4	12	17
Total	97	140	237	132	128	260	497

FISHER AVE

Southbound

Northbound

Transportation Services - Traffic Services

Turning Movement Count - Study Results

FISHER AVE @ DEER PARK RD/DYNES RD

 Survey Date:
 Wednesday, March 09, 2016
 WO No:
 35788

 Start Time:
 07:00
 Device:
 Miovision

Full Study Heavy Vehicles

Eastbound

DEER PARK RD/DYNES RD

Westbound

0

0

6 14

12

11

11

			arra			Jun 1000				_	aotooa	101			ootboan	101			
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:15	5 0	7	0		0	4	0		11	0	0	0		0	0	1		1	12
07:15 07:30	0	5	0		0	2	0		7	0	1	0		0	0	0		1	8
07:30 07:45	0	9	0		0	5	0		14	0	0	2		0	0	1		3	17
07:45 08:00	0	4	0		0	4	0		8	0	0	0		0	0	0		0	8
08:00 08:15	5 0	10	0		0	5	0		15	0	0	1		0	1	1		3	18
08:15 08:30	0	8	1		0	2	0		11	0	0	0		0	0	0		0	11
08:30 08:45	0	6	2		0	3	0		11	0	0	1		1	0	0		2	13
08:45 09:00	0	5	1		0	6	0		12	0	0	0		1	0	1		2	14
09:00 09:15	5 0	3	0		1	4	0		8	0	0	0		0	0	1		1	9
09:15 09:30	1	3	0		0	8	0		12	0	0	0		0	0	0		0	12
09:30 09:45	0	3	1		0	3	0		7	1	0	0		0	0	0		1	8
09:45 10:00	0	5	1		0	3	0		9	0	0	1		0	0	2		3	12
11:30 11:45	5 0	4	0		1	6	1		12	0	0	0		1	0	0		1	13
11:45 12:00	0	5	0		0	5	0		10	1	0	0		1	0	2		4	14
12:00 12:15	5 0	2	0		0	2	0		4	0	0	0		0	0	0		0	4
12:15 12:30	0	2	0		0	6	0		8	0	0	0		0	0	0		0	8
12:30 12:45	5 0	3	0		0	3	0		6	0	0	0		0	0	0		0	6
12:45 13:00	0	4	0		0	2	0		6	0	0	0		0	0	0		0	6
13:00 13:15	0	1	0		0	2	0		3	0	0	0		0	0	0		0	3
13:15 13:30	1	1	0		2	5	0		9	0	0	0		0	0	0		0	9
15:00 15:16	1	4	Λ	1	Ω	5	Λ		10	Λ	Λ	-1		Λ	Λ	Λ		1	11

6 0

14

12

11

10

6

9 **0** 8 147 1 **0 287** 2

March 18, 2022 Page 6 of 8 March 18, 2022 Page 7 of 8

Turning Movement Count - Study Results

FISHER AVE @ DEER PARK RD/DYNES RD

 Survey Date:
 Wednesday, March 09, 2016
 WO No:
 35788

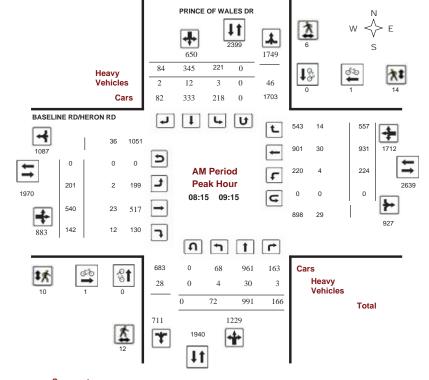
 Start Time:
 07:00
 Device:
 Miovision

Full Study 15 Minute U-Turn Total

FISHER AVE

DEER PARK RD/DYNES RD

Time I	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	0	0
08:15	08:30	0	0	0	0	0
08:30	08:45	0	0	0	0	0
08:45	09:00	0	0	0	0	0
09:00	09:15	0	0	0	0	0
09:15	09:30	0	0	0	0	0
09:30	09:45	0	0	0	0	0
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	0	0	0
11:45	12:00	0	0	0	0	0
12:00	12:15	0	0	0	0	0
12:15	12:30	0	0	0	0	0
12:30	12:45	0	0	0	0	0
12:45	13:00	0	0	0	0	0
13:00	13:15	0	0	0	0	0
13:15	13:30	0	0	0	0	0
15:00	15:15	0	0	0	0	0
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	0	0	0
15:45	16:00	0	0	0	0	0
16:00	16:15	0	0	0	0	0
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	0	0
16:45	17:00	0	0	0	0	0
17:00	17:15	0	0	0	0	0
17:15	17:30	0	0	0	0	0
17:30	17:45	0	0	0	0	0
17:45	18:00	0	0	0	0	0
To	tal	0	0	0	0	0

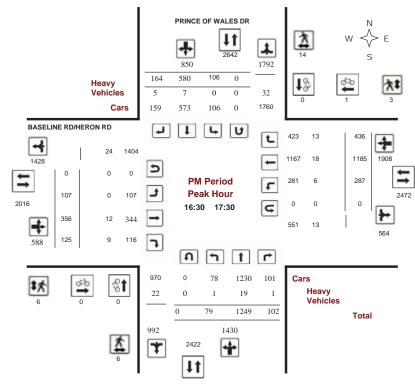

March 18, 2022 Page 8 of 8

Turning Movement Count - Peak Hour Diagram

BASELINE RD/HERON RD @ PRINCE OF WALES DR

Survey Date: Tuesday, January 19, 2016 WO No: 35667
Start Time: 07:00 Device: Miovision

Comments


Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

BASELINE RD/HERON RD @ PRINCE OF WALES DR

 Survey Date:
 Tuesday, January 19, 2016
 WO No:
 35667

 Start Time:
 07:00
 Device:
 Miovision

Comments

Appendix C

Synchro Intersection Worksheets – Existing Conditions

Lanes, Volumes, Timings 1: Fisher Ave & Baseline Rd Existing AM Peak Hour

	•	-	•	•	—	*	1	1		-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	1,1	↑ ↑		7	^	7	ሻ	^	7
Traffic Volume (vph)	126	1300	152	32	1029	141	223	460	73	132	352	93
Future Volume (vph)	126	1300	152	32	1029	141	223	460	73	132	352	93
Satd. Flow (prot)	1658	3252	1469	3185	3183	0	1658	3252	1483	1658	3221	1483
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1655	3252	1401	3171	3183	0	1634	3252	1414	1650	3221	1418
Satd. Flow (RTOR)			180		12				181			231
Lane Group Flow (vph)	140	1444	169	36	1300	0	248	511	81	147	391	103
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2						4			8
Detector Phase	5	2	2	1	6		7	4	4	3	8	8
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	11.3	29.1	29.1	11.3	29.1		10.9	30.3	30.3	10.9	30.3	30.3
Total Split (s)	26.0	56.0	56.0	13.0	43.0		30.7	38.0	38.0	23.0	30.3	30.3
Total Split (%)	20.0%	43.1%	43.1%	10.0%	33.1%		23.6%	29.2%	29.2%	17.7%	23.3%	23.3%
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7		3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	2.6	2.4	2.4	2.6	2.4		2.6	3.0	3.0	2.6	3.0	3.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.3	6.1	6.1	6.3	6.1		5.9	6.3	6.3	5.9	6.3	6.3
Lead/Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	C-Max	C-Max	None	C-Max		None	None	None	None	None	None
Act Effct Green (s)	15.7	60.5	60.5	6.4	46.4		22.7	28.1	28.1	15.2	20.7	20.7
Actuated g/C Ratio	0.12	0.47	0.47	0.05	0.36		0.17	0.22	0.22	0.12	0.16	0.16
v/c Ratio	0.70	0.95	0.23	0.23	1.14		0.86	0.73	0.18	0.76	0.76	0.25
Control Delay	73.0	49.6	3.8	82.3	91.0		78.6	53.6	0.9	79.3	62.4	1.4
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	73.0	49.6	3.8	82.3	91.0		78.6	53.6	0.9	79.3	62.4	1.4
LOS	E	D	Α	F	F		Е	D	Α	Е	Е	Α
Approach Delay		47.0			90.8			55.9			56.5	
Approach LOS		D			F			Е			Е	
Queue Length 50th (m)	34.8	~219.4	0.0	4.0	~216.0		61.1	64.1	0.0	36.5	51.0	0.0
Queue Length 95th (m)	55.3	#272.2	12.2	m2.7	m112.3		#100.0	81.1	0.0	#62.8	66.7	0.0
Internal Link Dist (m)		70.6			585.3			86.9			77.9	
Turn Bay Length (m)	124.5		58.5	134.0					85.0	65.0		60.0
Base Capacity (vph)	251	1513	748	165	1143		316	792	481	218	594	450
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	0
Reduced v/c Ratio	0.56	0.95	0.23	0.22	1.14		0.78	0.65	0.17	0.67	0.66	0.23
Intersection Summary												

ntersection Summar

Cycle Length: 130

Actuated Cycle Length: 130

Offset: 119 (92%), Referenced to phase 2:EBT and 6:WBT, Start of Green

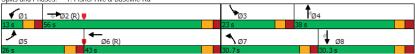
Natural Cycle: 135

Control Type: Actuated-Coordinated

Synchro 11 Report Page 1 Lanes, Volumes, Timings 1: Fisher Ave & Baseline Rd Existing AM Peak Hour

Maximum v/c Ratio: 1.14
Intersection Signal Delay: 62.8
Intersection Capacity Utilization 89.9%
Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite.


Oueue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Oueue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: Fisher Ave & Baseline Rd

	*	-	*	1	←	*	4	†	-	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations	*	ተ ተጉ		ሻሻ	^	7	*	^	7	*	† î>	
Traffic Volume (vph)	222	1287	20	373	996	494	69	585	585	220	350	13
Future Volume (vph)	222	1287	20	373	996	494	69	585	585	220	350	13
Satd. Flow (prot)	1658	4752	0	3124	3283	1483	1658	3316	1469	1658	3164	
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1654	4752	0	3104	3283	1449	1653	3316	1428	1649	3164	
Satd. Flow (RTOR)		2				452			364		38	
Lane Group Flow (vph)	247	1452	0	414	1107	549	77	650	650	244	533	
Turn Type	Prot	NA		Prot	NA	Perm	Prot	NA	Perm	Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases	_				_	6	•		4	-	_	
Detector Phase	5	2		1	6	6	7	4	4	3	8	
Switch Phase	-				-	-	•			-	-	
Minimum Initial (s)	5.0	10.0		5.0	10.0	10.0	5.0	12.0	12.0	5.0	12.0	
Minimum Split (s)	11.8	29.5		11.8	29.8	29.8	10.9	37.8	37.8	10.9	37.8	
Total Split (s)	22.0	38.0		30.0	30.0	30.0	24.0	38.0	38.0	24.0	38.0	
Total Split (%)	16.9%	29.2%		23.1%	23.1%	23.1%	18.5%	29.2%	29.2%	18.5%	29.2%	
Yellow Time (s)	3.7	3.0		3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	
All-Red Time (s)	3.1	2.8		3.1	2.8	2.8	2.2	3.1	3.1	2.2	3.1	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.8	5.8		6.8	6.5	6.5	5.9	6.8	6.8	5.9	6.8	
Lead/Lag	Lag	5.0		0.0	Lag	Lag	Lead	Lag	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes				Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	C-Max		None	C-Max	C-Max	None	Min	Min	None	Min	
Act Effct Green (s)	15.2	34.3		21.1	23.5	23.5	11.4	31.2	31.2	18.1	40.5	
Actuated g/C Ratio	0.12	0.26		0.16	0.18	0.18	0.09	0.24	0.24	0.14	0.31	
v/c Ratio	1.28	1.16		0.10	1.87	0.18	0.53	0.24	1.05	1.06	0.53	
Control Delay	198.6	106.8		66.1	426.7	25.5	69.3	56.2	71.4	129.1	37.8	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	198.6	106.8		66.1	426.7	25.5	69.3	56.2	71.4	129.1		
Total Delay LOS											37.8	
	F	F 120.1		Е	F 248.1	С	Е	64.1	Е	F	D 66.5	
Approach Delay												
Approach LOS	70.0	F		F0.0	F	040	40.0	E	405.5	(0.4	E	
Queue Length 50th (m)		~160.6		52.8	~226.9	24.0	19.2	83.3	~105.5	~68.4	56.6	
Queue Length 95th (m)	m#93.01			70.2	#268.6	#90.8	34.4	105.8	#177.9	#120.1	78.7	
Internal Link Dist (m)	400.0	188.2			122.0			142.9			135.6	
Turn Bay Length (m)	125.0	1054		115.0	500	184.0	117.0	705	40.0	66.0	1044	
Base Capacity (vph)	193	1254		557	593	632	230	795	619	230	1011	
Starvation Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.28	1.16		0.74	1.87	0.87	0.33	0.82	1.05	1.06	0.53	
Intersection Summary												
Cycle Length: 130												
Actuated Cycle Length: 13												
Offset: 42 (32%), Reference		e 2:EBT ar	nd 6:WB	T, Start o	f Green							
Vatural Cycle: 150												
Control Type: Actuated-Co	ordinated											

Lane Group	Ø13	Ø14
Lane Configurations		
Traffic Volume (vph)		
Future Volume (vph)		
Satd. Flow (prot)		
Flt Permitted		
Satd. Flow (perm)		
Satd. Flow (RTOR)		
Lane Group Flow (vph)		
Turn Type		
Protected Phases	13	14
Permitted Phases		
Detector Phase		
Switch Phase		
Minimum Initial (s)	1.0	1.0
Minimum Split (s)	3.0	3.0
Total Split (s)	8.0	8.0
Total Split (%)	6%	6%
Yellow Time (s)	2.0	2.0
All-Red Time (s)	0.0	0.0
Lost Time Adjust (s)	0.0	0.0
Total Lost Time (s)		
Lead/Lag	Lead	Lead
Lead-Lag Optimize?	Yes	Yes
Recall Mode	Max	Max
Act Effct Green (s)	IVIdX	IVIAX
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Queue Length 50th (m)		
Queue Length 95th (m)		
Internal Link Dist (m)		
Turn Bay Length (m)		
Base Capacity (vph)		
Starvation Cap Reductn		
Spillback Cap Reductn		
Storage Cap Reductn		
Reduced v/c Ratio		
Intersection Summary		
intersection Summary		

Existing AM Peak Hour

Μ	aximum v/c Ratio: 1.87							
In	tersection Signal Delay: 144.8	Intersection LOS: F						
In	tersection Capacity Utilization 96.1%	ICU Level of Service F						
Α	nalysis Period (min) 15							
~	Volume exceeds capacity, queue is theoretically infinite.							
Queue shown is maximum after two cycles.								
#	# 95th percentile volume exceeds capacity, queue may be longer.							
	Queue shown is maximum after two cycles.							
m	Valuma for 05th norcontila quaya is motored by unstroam s	ianal						

Splits and Phases: 2: Prince of Wales Dr & Baseline Rd/Heron Rd

ÿ1		→ ∅ (R)	Ø3		↑ ø4			
30 s	38	8 s		24 s	38	s		
●ø13 → ø5		●ø# ø6 (R)		★ Ø7	Ι,	Ø8		
0.0 22.0	0	20.0		24.0	20			

Lanes, Volumes, Timings 6: Deer Park Rd/Dynes Rd & Fisher Ave

Existing AM Peak Hour

	•	-	\rightarrow	1	←	*	4	†	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4			4			ની	7		↑ 1>	
Traffic Volume (vph)	38	83	17	83	41	104	8	624	171	61	520	Ę
Future Volume (vph)	38	83	17	83	41	104	8	624	171	61	520	5
Satd. Flow (prot)	0	1660	0	0	1577	0	0	1710	1483	0	3292	C
Flt Permitted		0.830			0.834			0.991			0.762	
Satd. Flow (perm)	0	1390	0	0	1323	0	0	1696	1289	0	2521	0
Satd. Flow (RTOR)		9			56				190		2	
Lane Group Flow (vph)	0	153	0	0	254	0	0	702	190	0	652	0
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2		2	6		
Detector Phase	4	4		8	8		2	2	2	6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	31.1	31.1		31.1	31.1		27.2	27.2	27.2	27.2	27.2	
Total Split (s)	33.0	33.0		33.0	33.0		47.0	47.0	47.0	47.0	47.0	
Total Split (%)	41.3%	41.3%		41.3%	41.3%		58.8%	58.8%	58.8%	58.8%	58.8%	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	4.1	4.1		4.1	4.1		2.9	2.9	2.9	2.9	2.9	
Lost Time Adjust (s)		0.0			0.0			0.0	0.0		0.0	
Total Lost Time (s)		7.1			7.1			6.2	6.2		6.2	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		C-Max	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)		19.6			19.6			47.1	47.1		47.1	
Actuated g/C Ratio		0.24			0.24			0.59	0.59		0.59	
v/c Ratio		0.44			0.69			0.70	0.23		0.44	
Control Delay		26.4			30.3			18.7	2.5		11.6	
Queue Delay		0.0			0.0			0.0	0.0		0.0	
Total Delay		26.4			30.3			18.7	2.5		11.6	
LOS		С			С			В	Α		В	
Approach Delay		26.4			30.3			15.2			11.6	
Approach LOS		С			С			В			В	
Queue Length 50th (m)		17.0			25.0			79.2	0.0		30.4	
Queue Length 95th (m)		31.2			46.5			#148.5	9.1		46.4	
Internal Link Dist (m)		152.1			156.9			172.3			30.0	
Turn Bay Length (m)												
Base Capacity (vph)		456			466			997	836		1483	
Starvation Cap Reductn		0			0			0	0		0	
Spillback Cap Reductn		0			0			0	0		0	
Storage Cap Reductn		0			0			0	0		0	
Reduced v/c Ratio		0.34			0.55			0.70	0.23		0.44	
Intersection Summary												
Cycle Length: 80												
Actuated Cycle Length: 80												
Offset: 78 (98%), Reference	ed to phase	2:NBTL	and 6:SB	TL, Start	of Green							
Natural Cycle: 70												

Lanes, Volumes, Timings 6: Deer Park Rd/Dynes Rd & Fisher Ave

Existing AM Peak Hour

Maximum v/c Ratio: 0.70							
Intersection Signal Delay: 16.8	Intersection LOS: B						
Intersection Capacity Utilization 90.4%	ICU Level of Service E						
Analysis Period (min) 15							
# 95th percentile volume exceeds capacity, queue may be longer.							
Queue shown is maximum after two cycles.							

Splits and Phases: 6: Deer Park Rd/Dynes Rd & Fisher Ave

↑ Ø _{2 (R)}	1 04				
47 s		33 s			
Ø6 (R)		▼ Ø8			
47.6		22.6			

Lanes, Volumes, Timings 1: Fisher Ave & Baseline Rd Existing PM Peak Hour

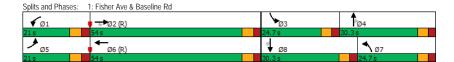
	•	-	*	1	—	*	1	1	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	1,1	↑ ₽		ሻ	44	7	ሻ	^	7
Traffic Volume (vph)	90	1264	257	148	1274	179	174	375	71	154	597	148
Future Volume (vph)	90	1264	257	148	1274	179	174	375	71	154	597	148
Satd. Flow (prot)	1658	3283	1483	3185	3240	0	1658	3316	1455	1658	3283	1483
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1653	3283	1401	3153	3240	0	1641	3316	1396	1640	3283	1391
Satd. Flow (RTOR)			128		13				129			143
Lane Group Flow (vph)	100	1404	286	164	1615	0	193	417	79	171	663	164
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2						4			8
Detector Phase	5	2	2	1	6		7	4	4	3	8	8
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0		5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	11.3	29.2	29.2	11.3	29.2		10.9	30.3	30.3	10.9	30.3	30.3
Total Split (s)	21.0	54.0	54.0	21.0	54.0		24.7	30.3	30.3	24.7	30.3	30.3
Total Split (%)	16.2%	41.5%	41.5%	16.2%	41.5%		19.0%	23.3%	23.3%	19.0%	23.3%	23.3%
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7		3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	2.6	2.5	2.5	2.6	2.5		2.6	2.5	2.5	2.6	2.5	2.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.3	6.2	6.2	6.3	6.2		5.9	5.8	5.8	5.9	5.8	5.8
Lead/Lag	Lead	Lag	Lag	Lead	Lag		Lag	Lag	Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	C-Max	C-Max	None	C-Max		None	None	None	None	None	None
Act Effct Green (s)	12.3	51.7	51.7	11.9	51.2		17.8	25.3	25.3	17.0	24.5	24.5
Actuated g/C Ratio	0.09	0.40	0.40	0.09	0.39		0.14	0.19	0.19	0.13	0.19	0.19
v/c Ratio	0.64	1.08	0.45	0.57	1.26		0.85	0.65	0.21	0.79	1.07	0.43
Control Delay	74.7	86.2	18.6	64.0	156.8		86.3	53.7	2.4	79.9	106.8	13.9
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	74.7	86.2	18.6	64.0	156.8		86.3	53.7	2.4	79.9	106.8	13.9
LOS	Е	F	В	Е	F		F	D	Α	Е	F	Е
Approach Delay		74.7			148.2			57.0			86.9	
Approach LOS		Е			F			Е			F	
Queue Length 50th (m)	24.9	~214.6	28.8	21.0	~279.3		48.5	52.6	0.0	42.3	~99.0	4.5
Queue Length 95th (m)	43.2	#266.5	55.9	32.0	#328.2		#86.3	70.5	2.3	#72.4	#136.5	24.6
Internal Link Dist (m)		45.3			582.5			85.7			67.0	
Turn Bay Length (m)	138.0		50.0	134.0			127.0		85.0	65.0		60.0
Base Capacity (vph)	187	1304	633	360	1284		239	645	375	239	618	378
Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	C
Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	(
Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	(
Reduced v/c Ratio	0.53	1.08	0.45	0.46	1.26		0.81	0.65	0.21	0.72	1.07	0.43
Intersection Summary												

Intersection Summai

Cycle Length: 130

Actuated Cycle Length: 130 Offset: 123 (95%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 145


Lanes, Volumes, Timings 1: Fisher Ave & Baseline Rd Existing PM Peak Hour

Maximum v/c Ratio: 1.26 Intersection Signal Delay: 99.6 Intersection LOS: F Intersection Capacity Utilization 97.5% ICU Level of Service F Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.

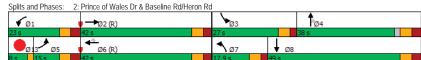
Queue shown is maximum after two cycles.

Vueue shown is maximum after two cycles.

Lanes, Volumes, Timings 2: Prince of Wales Dr & Baseline Rd/Heron Rd Existing PM Peak Hour

	•	\rightarrow	*	1	—	•	1	1	1	-	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ተተ _ጉ		ሻሻ	^	7	ች	^	7	*	↑ ↑	
Traffic Volume (vph)	151	1302	70	439	1280	210	41	461	546	266	613	289
Future Volume (vph)	151	1302	70	439	1280	210	41	461	546	266	613	289
Satd. Flow (prot)	1658	4713	0	3216	3316	1483	1610	3316	1483	1642	3117	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1650	4713	0	3187	3316	1412	1599	3316	1420	1617	3117	0
Satd. Flow (RTOR)		6				233			261		63	
Lane Group Flow (vph)	168	1525	0	488	1422	233	46	512	607	296	1002	0
Turn Type	Prot	NA		Prot	NA	Perm	Prot	NA	Perm	Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases						6			4			
Detector Phase	5	2		1	6	6	7	4	4	3	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0	10.0	12.0	12.0	12.0	5.0	10.0	
Minimum Split (s)	11.8	29.5		11.8	29.5	29.5	17.9	37.8	37.8	10.9	37.8	
Total Split (s)	15.0	42.0		23.0	42.0	42.0	17.9	38.0	38.0	27.0	49.0	
Total Split (%)	11.4%	31.8%		17.4%	31.8%	31.8%	13.6%	28.8%	28.8%	20.5%	37.1%	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	
All-Red Time (s)	3.1	2.8		3.1	2.8	2.8	2.2	3.1	3.1	2.2	3.1	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.8	6.5		6.8	6.5	6.5	5.9	6.8	6.8	5.9	6.8	
Lead/Lag	Lag						Lead	Lag	Lag	Lead	Lag	
Lead-Lag Optimize?	Yes						Yes	Yes	Yes	Yes	Yes	
Recall Mode	None	C-Max		None	C-Max	C-Max	Min	Min	Min	None	None	
Act Effct Green (s)	8.2	35.5		16.2	35.5	35.5	12.0	33.1	33.1	21.1	42.2	
Actuated g/C Ratio	0.06	0.27		0.12	0.27	0.27	0.09	0.25	0.25	0.16	0.32	
v/c Ratio	1.63	1.20		1.24	1.59	0.42	0.32	0.62	1.10	1.13	0.96	
Control Delay	361.0	139.0		174.3	305.7	7.1	62.4	47.5	95.6	144.4	61.8	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	361.0	139.0		174.3	305.7	7.1	62.4	47.5	95.6	144.4	61.8	
LOS	F	F		F	F	Α	Е	D	F	F	Е	
Approach Delay		161.0			243.3			73.2			80.6	
Approach LOS		F			F			Е			F	
Queue Length 50th (m)	~62.9	~176.1		~80.8	~277.4	0.0	11.4	62.4	~124.9	~89.0	128.1	
Queue Length 95th (m)	#107.8	#206.3		#114.8	#319.7	19.8	24.0	81.0	#196.2	#145.1	#172.4	
Internal Link Dist (m)		190.6			124.3			145.3			127.9	
Turn Bay Length (m)	125.0			115.0		243.0	117.0		40.0	66.0		
Base Capacity (vph)	103	1272		394	892	550	146	832	551	262	1040	
Starvation Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.63	1.20		1.24	1.59	0.42	0.32	0.62	1.10	1.13	0.96	

Intersection Summary


Cycle Length: 131.9

Actuated Cycle Length: 131.9 Offset: 84 (64%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 145

Lane Group	Ø13
Lane Configurations	
Traffic Volume (vph)	
Future Volume (vph)	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Satd. Flow (RTOR)	
Lane Group Flow (vph)	
Turn Type	
Protected Phases	13
Permitted Phases	10
Detector Phase	
Switch Phase	
Minimum Initial (s)	4.0
Minimum Split (s)	6.0
Total Split (s)	8.0
Total Split (%)	6%
Yellow Time (s)	2.0
All-Red Time (s)	0.0
Lost Time Adjust (s)	0.0
Total Lost Time (s)	
Lead/Lag	Lead
Lead-Lag Optimize?	Yes
Recall Mode	Max
Act Effct Green (s)	IVIDX
Actuated g/C Ratio	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
LOS Approach Dolov	
Approach LOS	
Approach LOS	
Queue Length 50th (m)	
Queue Length 95th (m)	
Internal Link Dist (m)	
Turn Bay Length (m)	
Base Capacity (vph)	
Starvation Cap Reductn	
Spillback Cap Reductn	
Storage Cap Reductn	
Reduced v/c Ratio	
Intersection Summary	

ľ	VIAXIMUM V/C RAIIO: 1.63									
1	ntersection Signal Delay: 156.2	Intersection LOS: F								
1	ntersection Capacity Utilization 106.2%	ICU Level of Service G								
ŀ	Analysis Period (min) 15									
-	Volume exceeds capacity, queue is theoretically infinite.									
Queue shown is maximum after two cycles.										
Ħ	# 95th percentile volume exceeds capacity, queue may be longer.									
	Queue shown is maximum after two cycles.									

Lanes, Volumes, Timings

2: Prince of Wales Dr & Baseline Rd/Heron Rd

Lanes, Volumes, Timings 6: Deer Park Rd/Dynes Rd & Fisher Ave

Existing PM Peak Hour

		\rightarrow	*	•	_	_	1	T		-	¥	*
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations		44			4			ર્લ	7		414	
raffic Volume (vph)	17	17	14	74	68	90	12	554	29	54	834	
uture Volume (vph)	17	17	14	74	68	90	12	554	29	54	834	
atd. Flow (prot)	0	1638	0	0	1612	0	0	1743	1483	0	3247	
It Permitted		0.818			0.873			0.973			0.872	
Satd. Flow (perm)	0	1359	0	0	1428	0	0	1698	1441	0	2840	
Satd. Flow (RTOR)		16			33				47		7	
ane Group Flow (vph)	0	54	0	0	258	0	0	629	32	0	1025	
Furn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4	-		8	-		2	_	2	6	-	
Detector Phase	4	4		8	8		2	2	2	6	6	
Switch Phase	•	•					_	_	_	Ū	Ü	
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	31.1	31.1		31.1	31.1		27.2	27.2	27.2	27.2	27.2	
Fotal Split (s)	33.0	33.0		33.0	33.0		62.0	62.0	62.0	62.0	62.0	
Fotal Split (%)	34.7%	34.7%		34.7%	34.7%		65.3%	65.3%	65.3%	65.3%	65.3%	
fellow Time (s)	34.7%	34.7%		3.0	3.0		3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	4.1	4.1		4.1	4.1		2.9	2.9	2.9	2.9	2.9	
	4.1	0.0		4.1	0.0		2.9	0.0	0.0	2.9	0.0	
Lost Time Adjust (s)		7.1			7.1			6.2	6.2		6.2	
Total Lost Time (s)		7.1			7.1			0.2	0.2		0.2	
_ead/Lag												
_ead-Lag Optimize?	Mana	Mana		Mana	Niere		C M	C M	C M	C M	C M	
Recall Mode	None	None		None	None		C-Max	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)		19.9			19.9			61.8	61.8		61.8	
Actuated g/C Ratio		0.21			0.21			0.65	0.65		0.65	
//c Ratio		0.18			0.80			0.57	0.03		0.55	
Control Delay		23.0			48.3			12.9	1.6		11.3	
Queue Delay		0.0			0.0			0.0	0.0		0.0	
Total Delay		23.0			48.3			12.9	1.6		11.3	
.OS		С			D			В	Α		В	
Approach Delay		23.0			48.3			12.3			11.3	
Approach LOS		С			D			В			В	
Queue Length 50th (m)		5.7			39.2			58.6	0.0		49.2	
Queue Length 95th (m)		14.2			62.2			105.0	2.4		77.7	
nternal Link Dist (m)		145.0			146.3			187.2			22.4	
Furn Bay Length (m)												
Base Capacity (vph)		382			413			1105	954		1851	
Starvation Cap Reductn		0			0			0	0		0	
Spillback Cap Reductn		0			0			0	0		0	
Storage Cap Reductn		0			0			0	0		0	
Reduced v/c Ratio		0.14			0.62			0.57	0.03		0.55	
ntersection Summary												
Cycle Length: 95												
Actuated Cycle Length: 95												
Offset: 10 (11%), Reference	ed to phase	2:NBTL a	and 6:SE	TL, Start	of Green							
Natural Cycle: 70	ordinatod											

6: Deer Park Rd/Dynes Rd & Fisher Ave Maximum v/c Ratio: 0.80 Intersection Signal Delay: 16.7

Lanes, Volumes, Timings

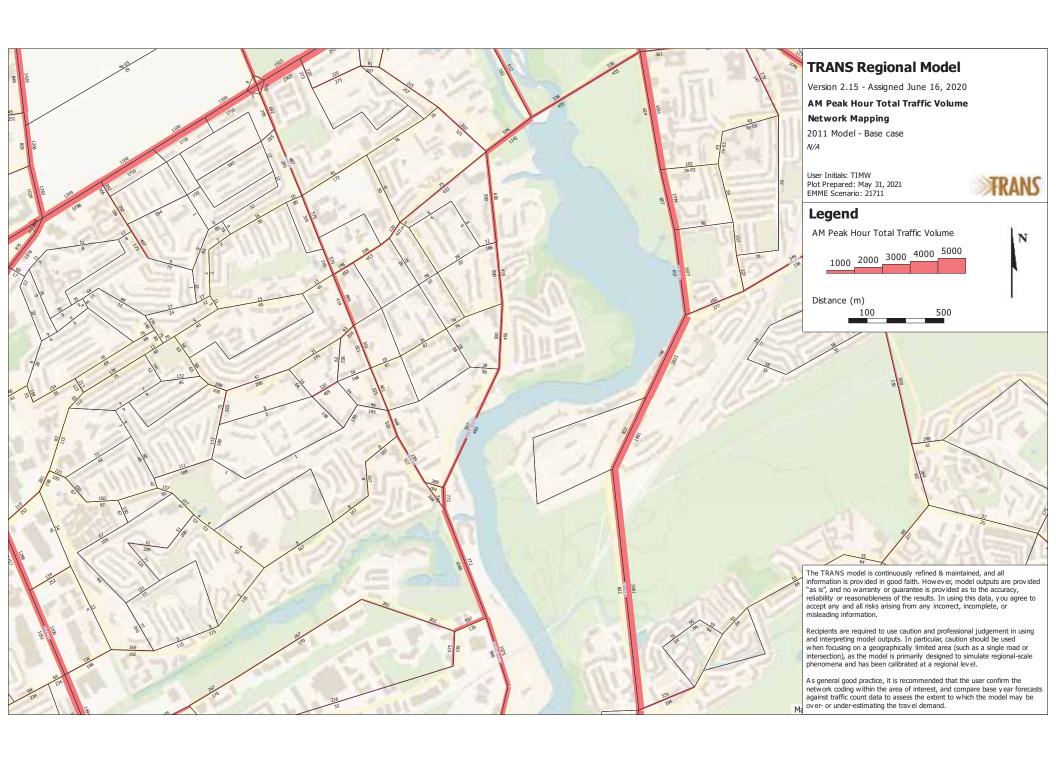
Existing PM Peak Hour

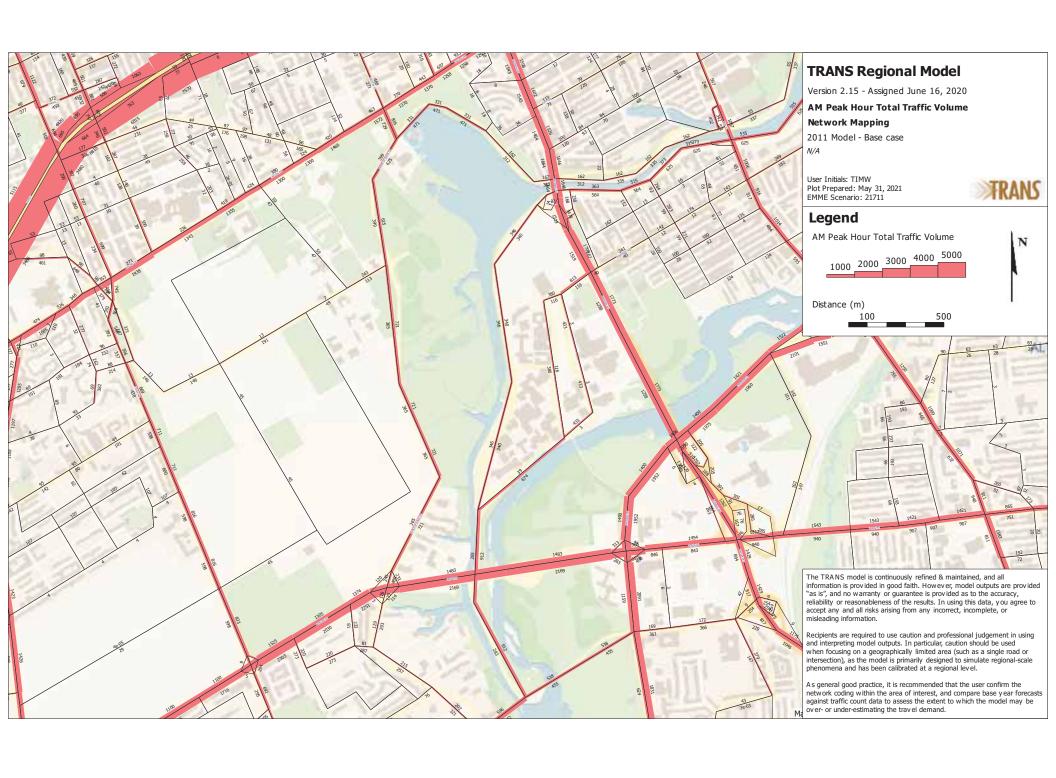
Intersection LOS: B Intersection Capacity Utilization 93.6% Analysis Period (min) 15 ICU Level of Service F

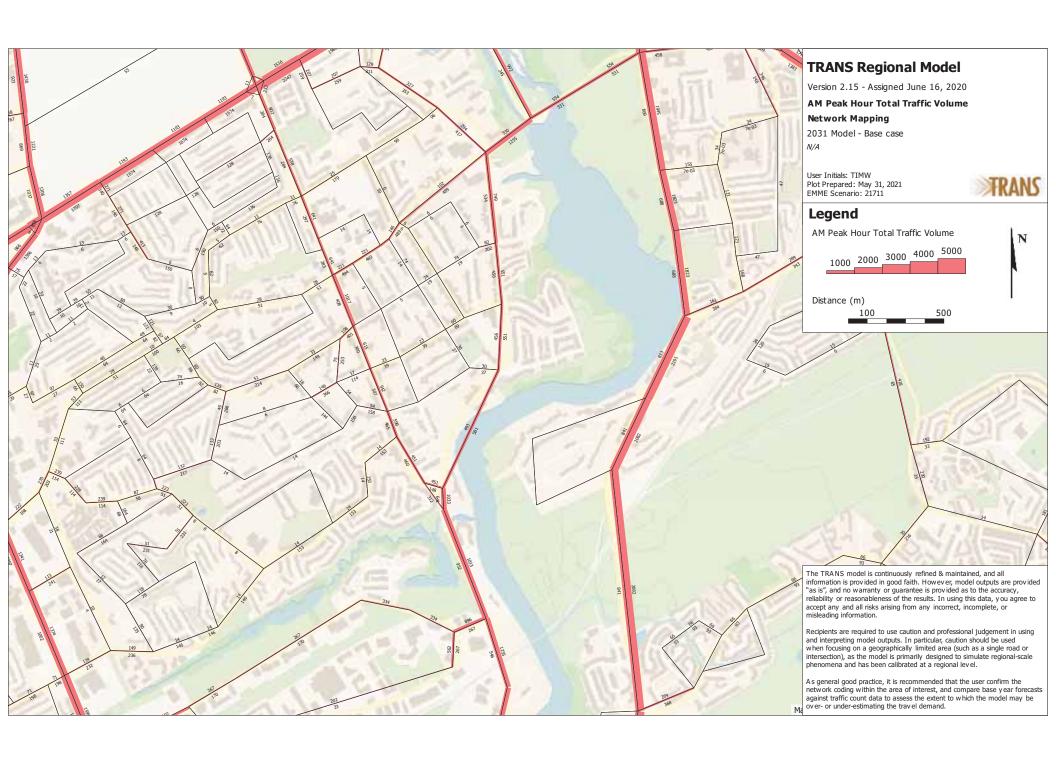
Splits and Phases: 6: Deer Park Rd/Dynes Rd & Fisher Ave

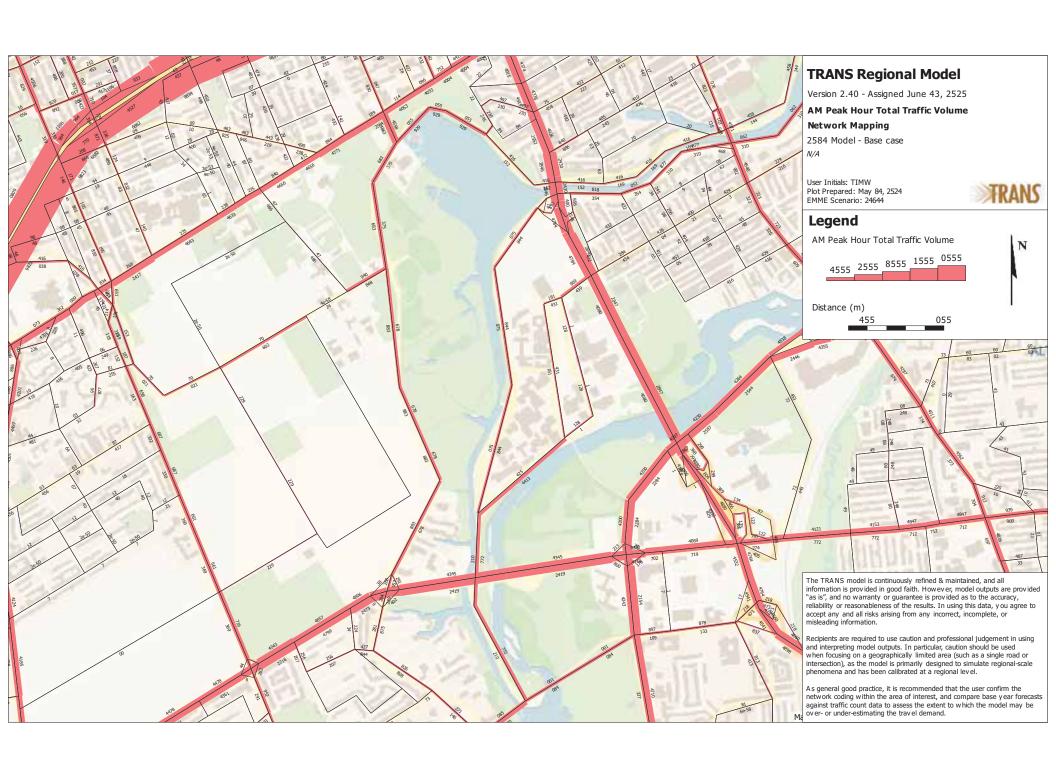
Appendix D

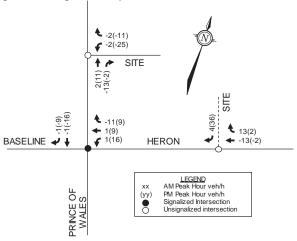
Collision Data




Accident Date	Accident Year	Accident Time	Location	Environment Condition	Light	Traffic Control	Traffic Control Condition	Classification Of Accident	Initial Impact Type	Road Surface Condition
3/6/2015	2015	14:51	BASELINE RD btwn MARSON ST & FISHER AVE	01 - Clear	01 - Daylight	10 - No control	Transc Control Condition	03 - P.D. only	03 - Rear end	01 - Dry
3/27/2015	2015	8:11	BASELINE RD btwn MARSON ST & FISHER AVE	03 - Snow	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	02 - Wet
12/2/2015	2015	18:23	BASELINE RD btwn MARSON ST & FISHER AVE	01 - Clear	07 - Dark	10 - No control		03 - P.D. only	03 - Rear end	02 - Wet
8/8/2017	2017	17:09	BASELINE RD btwn MARSON ST & FISHER AVE	01 - Clear	01 - Daylight	10 - No control		02 - Non-fatal injury	03 - Rear end	01 - Dry
9/12/2017	2017	10:35	BASELINE RD btwn MARSON ST & FISHER AVE	01 - Clear	01 - Daylight	10 - No control		02 - Non-fatal injury	03 - Rear end	01 - Dry
1/4/2017 1/24/2018	2017 2018	15:21 18:06	BASELINE RD btwn MARSON ST & FISHER AVE BASELINE RD btwn MARSON ST & FISHER AVE (3ZA4JL)	03 - Snow 01 - Clear	01 - Daylight 07 - Dark	10 - No control 10 - No control		03 - P.D. only 02 - Non-fatal injury	03 - Rear end 03 - Rear end	05 - Packed snow 01 - Dry
6/19/2018	2018	6:40	BASELINE RD DEWIT MARSON ST & FISHER AVE (01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	04 - Sideswipe	01 - Dry
9/21/2018	2018	8:36	BASELINE RD btwn MARSON ST & FISHER AVE (3ZA4JL)	02 - Rain	01 - Daylight	10 - No control		02 - Non-fatal injury	03 - Rear end	02 - Wet
1/10/2019	2019	13:42	BASELINE RD btwn MARSON ST & FISHER AVE (3ZA4JL)	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	02 - Wet
9/11/2019	2019	13:04	BASELINE RD btwn MARSON ST & FISHER AVE (3ZA4JL)	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	04 - Sideswipe	01 - Dry
12/5/2019	2019	17:00	BASELINE RD btwn MARSON ST & FISHER AVE (3ZA4JL)	01 - Clear	07 - Dark	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
7/14/2015	2015	16:33	FISHER AVE btwn MCCOOEY LANE & BASELINE RD	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
10/13/2015	2015	9:20	FISHER AVE btwn MCCOOEY LANE & BASELINE RD	02 - Rain	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	02 - Wet
10/27/2015	2015 2016	10:43 16:36	FISHER AVE btwn MCCOOEY LANE & BASELINE RD FISHER AVE btwn MCCOOEY LANE & BASELINE RD	01 - Clear 01 - Clear	01 - Daylight 01 - Daylight	10 - No control		03 - P.D. only 02 - Non-fatal injury	04 - Sideswipe 03 - Rear end	01 - Dry 01 - Dry
3/23/2016	2016	17:56	FISHER AVE blwn MCCOOEY LANE & BASELINE RD	01 - Clear	01 - Daylight	10 - No control		02 - Non-fatal injury	03 - Rear end	01 - Dry
6/4/2016	2016	11:05	FISHER AVE bown MCCOOEY LANE & BASELINE RD	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
10/27/2017	2017	10:19	FISHER AVE btwn MCCOOEY LANE & BASELINE RD	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	05 - Turning movement	01 - Dry
2/12/2018	2018	16:44	FISHER AVE btwn MCCOOEY LANE & BASELINE RD (3ZA4JS)	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	05 - Turning movement	05 - Packed snow
5/4/2018	2018	21:32	FISHER AVE btwn MCCOOEY LANE & BASELINE RD (3ZA4JS)	06 - Strong wind	07 - Dark	10 - No control		03 - P.D. only	07 - SMV other	01 - Dry
5/25/2018	2018	17:53	FISHER AVE btwn MCCOOEY LANE & BASELINE RD (3ZA4JS)	02 - Rain	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	02 - Wet
12/6/2018 1/25/2019	2018 2019	8:54 15:30	FISHER AVE btwn MCCOOEY LANE & BASELINE RD (3ZA4JS) FISHER AVE btwn MCCOOEY LANE & BASELINE RD (3ZA4JS)	01 - Clear 01 - Clear	01 - Daylight 01 - Daylight	10 - No control 10 - No control		02 - Non-fatal injury 03 - P.D. only	07 - SMV other 04 - Sideswipe	02 - Wet 04 - Slush
9/17/2019	2019	7:50	FISHER AVE blwn MCCOOEY DANE & BASELINE RD (3ZA4JS) FISHER AVE blwn MCCOOEY LANE & BASELINE RD (3ZA4JS)	01 - Clear	01 - Daylight 01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
1/2/2015	2015	20:32	FISHER AVE btwn BASELINE RD & MALIBU TER	01 - Clear	07 - Dark	10 - No control		03 - P.D. only	02 - Angle	01 - Dry
5/29/2015	2015	15:54	FISHER AVE btwn BASELINE RD & MALIBU TER	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	99 - Other	01 - Dry
9/28/2015	2015	5:30	FISHER AVE btwn BASELINE RD & MALIBU TER	02 - Rain	07 - Dark	10 - No control		03 - P.D. only	03 - Rear end	02 - Wet
12/17/2015	2015	16:15	FISHER AVE btwn BASELINE RD & MALIBU TER	02 - Rain	05 - Dusk	10 - No control		03 - P.D. only	05 - Turning movement	02 - Wet
9/30/2015	2015	16:28	FISHER AVE btwn BASELINE RD & MALIBU TER	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
8/26/2016	2016	18:16	FISHER AVE btwn BASELINE RD & MALIBU TER FISHER AVE btwn BASELINE RD & MALIBU TER	01 - Clear	01 - Daylight	10 - No control		02 - Non-fatal injury	03 - Rear end	01 - Dry
10/22/2016 12/7/2017	2016 2017	8:27 17:30	FISHER AVE DEWN BASELINE RD & MALIBU TER FISHER AVE betwn BASELINE RD & MALIBU TER	01 - Clear 01 - Clear	01 - Daylight 07 - Dark	10 - No control 10 - No control		03 - P.D. only 03 - P.D. only	05 - Turning movement 02 - Angle	01 - Dry 01 - Dry
4/30/2018	2017	17:22	FISHER AVE DEWI BASELINE RD & MALIBU TER (3ZA4JK)	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	99 - Other	01 - Dry
8/17/2019	2019	13:14	FISHER AVE btwn BASELINE RD & MALIBU TER (3ZA4JK)	02 - Rain	01 - Daylight	10 - No control		02 - Non-fatal injury	02 - Angle	02 - Wet
5/9/2015	2015	12:49	BASELINE RD btwn FISHER AVE & LEXINGTON ST	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
4/22/2015	2015	9:30	BASELINE RD btwn FISHER AVE & LEXINGTON ST	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	04 - Sideswipe	01 - Dry
5/11/2016	2016	17:43	BASELINE RD btwn FISHER AVE & LEXINGTON ST	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
11/8/2016	2016	17:55	BASELINE RD btwn FISHER AVE & LEXINGTON ST	01 - Clear	07 - Dark	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
6/5/2017	2017	8:40	BASELINE RD btwn FISHER AVE & LEXINGTON ST	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
9/15/2018	2018	13:06	BASELINE RD btwn FISHER AVE & LEXINGTON ST (3ZA4JR)	01 - Clear	01 - Daylight	10 - No control		02 - Non-fatal injury	03 - Rear end	01 - Dry
10/30/2018 2/12/2019	2018 2019	17:53 17:47	BASELINE RD btwn FISHER AVE & LEXINGTON ST (3ZA4JR) BASELINE RD btwn FISHER AVE & LEXINGTON ST (_3ZA4JR)	01 - Clear 03 - Snow	05 - Dusk 05 - Dusk	10 - No control 10 - No control		02 - Non-fatal injury 03 - P.D. only	03 - Rear end 04 - Sideswipe	01 - Dry 03 - Loose snow
6/25/2019	2019	15:49	BASELINE RD blwn FISHER AVE & LEXINGTON ST (3ZA4JR) BASELINE RD btwn FISHER AVE & LEXINGTON ST (3ZA4JR)	01 - Clear	01 - Daylight	10 - No control		03 - P.D. only	03 - Rear end	01 - Dry
11/10/2019	2019	20:17	BASELINE RD btwn FISHER AVE & LEXINGTON ST (_3ZA4JR)	01 - Clear	07 - Dark	10 - No control		03 - P.D. only	99 - Other	01 - Dry
2/27/2015	2015	8:39	FISHER AVE @ MALIBU TER	01 - Clear	01 - Daylight	02 - Stop sign		02 - Non-fatal injury	02 - Angle	01 - Dry
2/14/2015	2015	20:39	FISHER AVE @ MALIBU TER	03 - Snow	07 - Dark	02 - Stop sign		03 - P.D. only	05 - Turning movement	05 - Packed snow
6/3/2015	2015	8:14	FISHER AVE @ MALIBU TER	01 - Clear	01 - Daylight	02 - Stop sign		03 - P.D. only	02 - Angle	01 - Dry
9/30/2017	2017	10:05	FISHER AVE @ MALIBU TER	01 - Clear	01 - Daylight	02 - Stop sign		03 - P.D. only	02 - Angle	01 - Dry
2/15/2018	2018	16:01	FISHER AVE @ MALIBU TER (0003121)	01 - Clear	01 - Daylight	02 - Stop sign		02 - Non-fatal injury	05 - Turning movement	02 - Wet
10/18/2018	2018	8:00	FISHER AVE @ MALIBU TER (0003121)	01 - Clear	01 - Daylight	02 - Stop sign		02 - Non-fatal injury	07 - SMV other	01 - Dry
1/26/2019 7/4/2015	2019 2015	10:40 13:17	FISHER AVE @ MALIBU TER (0003121) BASELINE RD @ FISHER AVE	01 - Clear 01 - Clear	01 - Daylight 01 - Daylight	02 - Stop sign 01 - Traffic signal		02 - Non-fatal injury 02 - Non-fatal injury	03 - Rear end 03 - Rear end	02 - Wet 01 - Dry
2/4/2015	2015	10:15	BASELINE RD @ FISHER AVE	03 - Snow	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	03 - Loose snow
3/4/2015	2015	16:30	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
1/4/2015	2015	19:50	BASELINE RD @ FISHER AVE	04 - Freezing Rain	07 - Dark	01 - Traffic signal		03 - P.D. only	99 - Other	06 - Ice
8/18/2015	2015	17:10	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
3/6/2015	2015	16:32	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	04 - Sideswipe	01 - Dry
3/15/2015	2015	7:37	BASELINE RD @ FISHER AVE	03 - Snow	01 - Daylight	01 - Traffic signal		03 - P.D. only	07 - SMV other	03 - Loose snow
2/19/2015	2015	13:10	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	02 - Wet
2/19/2015 6/23/2015	2015 2015	13:29 8:45	BASELINE RD @ FISHER AVE BASELINE RD @ FISHER AVE	05 - Drifting Snow 01 - Clear	01 - Daylight 01 - Daylight	01 - Traffic signal 01 - Traffic signal		03 - P.D. only 03 - P.D. only	03 - Rear end 03 - Rear end	03 - Loose snow 01 - Dry
3/27/2015	2015	19:37	BASELINE RD @ FISHER AVE	03 - Snow	01 - Daylight 07 - Dark	01 - Traffic signal		03 - P.D. only	03 - Rear end	03 - Loose snow
5/13/2015	2015	10:38	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
4/26/2015	2015	11:30	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	04 - Sideswipe	01 - Dry
6/26/2015	2015	14:56	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
11/12/2015	2015	16:50	BASELINE RD @ FISHER AVE	02 - Rain	05 - Dusk	01 - Traffic signal		03 - P.D. only	03 - Rear end	02 - Wet
9/18/2015	2015	17:51	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
8/4/2015	2015	14:16	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
12/31/2015	2015	16:43	BASELINE RD @ FISHER AVE	03 - Snow	05 - Dusk	01 - Traffic signal		03 - P.D. only	03 - Rear end	03 - Loose snow
4/1/2016 9/20/2016	2016 2016	16:56 17:20	BASELINE RD @ FISHER AVE BASELINE RD @ FISHER AVE	01 - Clear 01 - Clear	01 - Daylight 01 - Daylight	01 - Traffic signal 01 - Traffic signal		02 - Non-fatal injury 03 - P.D. only	07 - SMV other 03 - Rear end	01 - Dry 01 - Dry
10/15/2016	2016	12:50	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
1/5/2016	2016	9:17	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	04 - Sideswipe	01 - Dry
1/28/2016	2016	16:44	BASELINE RD @ FISHER AVE	01 - Clear	05 - Dusk	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
7/16/2016	2016	20:52	BASELINE RD @ FISHER AVE	01 - Clear	05 - Dusk	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
3/22/2016	2016	12:14	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
11/2/2016	2016	18:06	BASELINE RD @ FISHER AVE	01 - Clear	07 - Dark	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
7/20/2016 10/11/2016	2016 2016	16:30 16:15	BASELINE RD @ FISHER AVE BASELINE RD @ FISHER AVE	01 - Clear 01 - Clear	01 - Daylight	01 - Traffic signal 01 - Traffic signal		03 - P.D. only 03 - P.D. only	03 - Rear end 03 - Rear end	01 - Dry 01 - Dry
	2016	3:08	BASELINE RD @ FISHER AVE	01 - Clear 01 - Clear	01 - Daylight 07 - Dark	01 - Traffic signal		03 - P.D. only		
10/19/2016 12/21/2016	2016	3:08 16:48	BASELINE RD @ FISHER AVE	01 - Clear 01 - Clear	05 - Dark	01 - Traffic signal		03 - P.D. only	06 - SMV unattended vehicle 03 - Rear end	01 - Dry 01 - Dry
12/21/2016	2016	21:20	BASELINE RD @ FISHER AVE BASELINE RD @ FISHER AVE	01 - Clear 01 - Clear	05 - Dusk 07 - Dark	01 - Traffic signal		03 - P.D. only	03 - Kear end 02 - Angle	01 - Dry 01 - Dry
7/21/2017	2017	9:19	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		02 - Non-fatal injury	04 - Sideswipe	01 - Dry
9/11/2017	2017	16:16	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
9/7/2017	2017	7:30	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		02 - Non-fatal injury	03 - Rear end	01 - Dry
10/6/2017	2017	9:29	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		02 - Non-fatal injury	03 - Rear end	01 - Dry
10/3/2017	2017	13:32	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
12/11/2017	2017	17:30	BASELINE RD @ FISHER AVE	01 - Clear	07 - Dark	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
12/6/2017	2017	16:43	BASELINE RD @ FISHER AVE	01 - Clear	05 - Dusk	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
1/5/2017 2/15/2017	2017 2017	10:47 10:48	BASELINE RD @ FISHER AVE BASELINE RD @ FISHER AVE	01 - Clear 03 - Snow	01 - Daylight 01 - Daylight	01 - Traffic signal 01 - Traffic signal		02 - Non-fatal injury 02 - Non-fatal injury	03 - Rear end 07 - SMV other	05 - Packed snow 03 - Loose snow
1/12/2017	2017	10:48 17:55	BASELINE RD @ FISHER AVE BASELINE RD @ FISHER AVE	03 - Snow 01 - Clear	01 - Daylight 07 - Dark	01 - Traffic signal		02 - Non-ratai injury 03 - P.D. only	07 - SMV otner 03 - Rear end	03 - Loose snow 02 - Wet
3/5/2017	2017	9:38	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
3/9/2017	2017	11:52	BASELINE RD @ FISHER AVE	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	04 - Sideswipe	01 - Dry
12/23/2017	2017	12:15	BASELINE RD @ FISHER AVE	03 - Snow	01 - Daylight	01 - Traffic signal		03 - P.D. only	05 - Turning movement	04 - Slush
1/2/2018	2018	17:00	BASELINE RD @ FISHER AVE (0002346)	03 - Snow	05 - Dusk	01 - Traffic signal		03 - P.D. only	03 - Rear end	05 - Packed snow
2/27/2018	2018	16:26	BASELINE RD @ FISHER AVE (0002346)	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
3/16/2018	2018	17:31	BASELINE RD @ FISHER AVE (0002346)	01 - Clear	01 - Daylight	01 - Traffic signal		03 - P.D. only	03 - Rear end	01 - Dry
3/16/2018	2018	20:07	BASELINE RD @ FISHER AVE (0002346)	01 - Clear	07 - Dark	01 - Traffic signal		03 - P.D. only	03 - Rear end	03 - Loose snow


Appendix E


TRANS Model Plots



Appendix F

Background development Volumes

Figure 6: Reassigned Site Trips

5.2 Background Traffic

5.2.1 Future Background Traffic

For the 'Inner Suburbs' area of Ottawa, Exhibit 2.10 of the 2013 TMP projects population and employment growth rates of approximately 0.3% and 1.2% per annum, respectively. To reflect the study area's development as an employment area, a 1% background growth rate has been applied to non-site traffic in this area.

This 1% background growth rate is in line with the annual historical (2000 to 2016) growth rate for this area (-2% to 2%) identified by the City of Ottawa (See **Figure 7**).

2020 and 2025 background traffic volumes for the study area are shown in **Figure 8** and **Figure 9**, respectively.

Novatech Page 11

Appendix G

Existing Site Generated Trip

-	Franci Mada	ΙA	M Peak F	lour	PM Peak Hour				
'	Travel Mode	Mode Share	In	Out	Total	Mode Share	In	Out	Total
	Auto Driver	71%	50	33	83	61%	42	50	92
	Auto Passenger	19%	32	26	58	16%	34	33	67
	1%	1	1	2	8%	17	16	33	
Total	Cycling	0%	0	0	0	1%	1	1	2
	Walking	9%	14	12	26	14%	29	28	57
	Total	100%	97	72	169	100%	123	128	251

Appendix H

Synchro Intersection Worksheets – 2034 Future Background Conditions

2034 Future Background AM Peak Hour

	•	-	*	•	←	*	1	†	1	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ች	^	7	ሻ	^	7	7	† 1>		ሻ	† }	
Traffic Volume (vph)	126	1300	152	32	1101	141	223	493	73	132	391	93
Future Volume (vph)	126	1300	152	32	1101	141	223	493	73	132	391	93
Satd. Flow (prot)	1658	3252	1469	1642	3252	1455	1658	3182	0	1658	3124	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1654	3252	1407	1634	3252	1419	1644	3182	0	1653	3124	0
Satd. Flow (RTOR)												
Lane Group Flow (vph)	126	1300	152	32	1101	141	223	566	0	132	484	0
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2			6						
Detector Phase	5	2	2	1	6	6	7	4		3	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0		5.0	10.0	
Minimum Split (s)	11.3	41.2	41.2	11.3	41.2	41.2	10.9	41.3		10.9	41.3	
Total Split (s)	16.2	53.0	53.0	11.3	48.1	48.1	24.4	43.7		22.0	41.3	
Total Split (%)	12.5%	40.8%	40.8%	8.7%	37.0%	37.0%	18.8%	33.6%		16.9%	31.8%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.6	2.5	2.5	2.6	2.5	2.5	2.6	3.0		2.6	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.3	6.2	6.2	6.3	6.2	6.2	5.9	6.3		5.9	6.3	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)	13.9	58.1	58.1	6.1	45.3	45.3	18.5	31.9		14.2	27.6	
Actuated g/C Ratio	0.11	0.45	0.45	0.05	0.35	0.35	0.14	0.25		0.11	0.21	
v/c Ratio	0.71	0.89	0.24	0.42	0.97	0.29	0.95	0.72		0.73	0.73	
Control Delay	78.0	43.9	26.9	59.0	88.0	65.4	102.1	50.5		78.9	53.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	78.0	43.9	26.9	59.0	88.0	65.4	102.1	50.5		78.9	53.9	
LOS	E	D	С	E	F	E	F	D		Е	D	
Approach Delay		45.0			84.8			65.1			59.3	
Approach LOS		D			F			E			E	
Queue Length 50th (m)	30.6	170.6	25.5	8.6	~161.2	37.6	57.4	73.1		32.8	62.6	
Queue Length 95th (m)	#73.4	#242.4	45.5	m10.6	m#169.6	m40.9	#105.9	85.6		#55.0	74.5	
Internal Link Dist (m)		271.5			796.1			86.9			158.3	
Turn Bay Length (m)	124.5		100.0	134.0		91.5				65.0		
Base Capacity (vph)	177	1453	628	77	1132	494	235	915		205	841	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.71	0.89	0.24	0.42	0.97	0.29	0.95	0.62		0.64	0.58	
Intersection Summary					_	_	_		_	_		

Cycle Length: 130

Actuated Cycle Length: 130
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 135

Control Type: Actuated-Coordinated

Scenario 1 780 Baseline Road 11:59 pm 03/16/2022 2034 Future Background

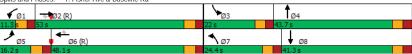
Synchro 11 Report

Page 1

Lanes, Volumes, Timings 1: Fisher Ave & Baseline Rd

2034 Future Background AM Peak Hour

Maximum v/c Ratio: 0.97 Intersection Signal Delay: 62.7 Intersection LOS: E Intersection Capacity Utilization 96.2%


Analysis Period (min) 15

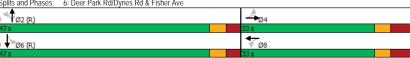
Volume exceeds capacity, queue is theoretically infinite. ICU Level of Service F Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 1: Fisher Ave & Baseline Rd

m Volume for 95th percentile queue is metered by upstream signal.

Lanes, Volumes, Timings 6: Deer Park Rd/Dynes Rd & Fisher Ave 2034 Future Background AM Peak Hour


•	\rightarrow	*	•	_	_	1	T		-	¥	*
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
	44			4			ની	7		↑ ↑	
38	83	17	83	41	104	8	669	171	61	538	
38	83	17	83	41	104	8	669	171	61	538	
0	1660	0	0	1577	0	0	1710	1483	0	3293	
	0.849			0.843			0.993			0.799	
0	1421	0	0	1336	0	0	1699	1289	0	2644	
	9			56				171		1	
0	138	0	0	228	0	0	677	171	0	604	
Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	
	4			8			2			6	
4			8			2		2	6		
4	4		8	8		2	2	2	6	6	
				-					_	_	
10.0	10.0		10.0	10.0		10.0	10.0	10.0	10.0	10.0	
7.1			7.1			2.7			2.7		
	7.1			7.1			0.2	0.2		0.2	
Mono	Mono		Mono	Nono		C May	C May	C May	C May	C May	
None			NONE			C-IVIAX			C-IVIAX		
								А			
								8.2			
	152.1			156.9			172.3			30.0	
							_				
	0.30			0.49			0.67	0.20		0.38	
ed to phase	2:NBTL :	and 6:SB	TL. Start	of Green							
o pasc		0.00	/ Otal t	2. 0.0011							
	88 38 38 0 0 0 Perm 4 4 4 10.0 31.1 33.0 41.3% 3.0 4.1	BBL BBT 38 83 38 83 0 1660 0.849 0 1421 9 0 138 Perm NA 4 4 4 4 4 10.0 10.0 31.1 31.1 33.0 33.0 41.3% 41.3% 41.3% 3.0 3.0 4.1 4.1 0.0 7.1 None None 19.0 0.24 0.40 25.9 C 25.9 C 25.9 C 25.9 C 25.9 C 25.9 C 466 0 0 0 0 0 0 0.30	BEL EBT EBR 38 83 17 38 83 17 0 1660 0 0.849 0 1421 0 9 0 138 0 Perm NA 4 4 4 4 4 10.0 10.0 31.1 31.1 33.0 33.0 41.3% 41.3% 3.0 3.0 4.1 4.1 0.0 7.1 None None 19.0 0.24 0.40 25.9 0.0 0.25.9 C 25.9 C 25.9 C 25.9 C 15.0 29.4 152.1	BBL BBT BBR WBL 38 83 17 83 38 83 17 83 0 1660 0 0 0 0.849 0 1421 0 0 9 0 138 0 0 Perm NA Perm 4 4 8 4 4 8 10.0 10.0 10.0 10.0 31.1 31.1 31.1 33.0 33.0 33.0 41.3% 41.3% 41.3% 3.0 3.0 3.0 3.0 4.1 4.1 4.1 0.0 7.1 None None 19.0 0.24 0.40 25.9 0.0 25.9 0.0 25.9 0.0 25.9 0.0 25.9 0.0 25.9 0.0 25.9 0.0 29.4 152.1	EBL EBT EBR WBL WBT 38 83 17 83 41 38 83 17 83 41 0 1660 0 0 1577 0.849 0.843 0 0 1336 9 56 0 138 0 0 228 Perm NA Perm NA 8 4 8 8 4 4 8 8 8 8 10.0 10.0 10.0 10.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 33.0 30.0 3.0 30.0 3.0 30.0 3.0 30.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	EBL EBT EBR WBL WBT WBR 38 83 17 83 41 104 38 83 17 83 41 104 0 1660 0 0 1577 0 0.849 0.843 0 0 228 0 9 56 0 1336 0 0 228 0 Perm NA Perm NA 8 4 8 4 4 8 8 4 4 8 8 8 4 10.0	EBL EBT EBR WBL WBT WBR NBL 38 83 17 83 41 104 8 38 83 17 83 41 104 8 0 1660 0 0 1577 0 0 0 0 1421 0 0 1336 0	EBL EBR EBR WBL WBT WBR NBL NBT	EBL EBR EBR WBL WBR WBR NBL NBR NBR	EBL EBR EBR WBL WBR WBR NBL NBR NBR SBL	Fig. Fig.

Scenario 1 780 Baseline Road 11:59 pm 03/16/2022 2034 Future Background

Synchro 11 Report Page 3 Lanes, Volumes, Timings 6: Deer Park Rd/Dynes Rd & Fisher Ave 2034 Future Background AM Peak Hour

Maximum v/c Ratio: 0.67
Intersection Signal Delay: 15.3 Intersection LOS: B
Intersection Capacity Utilization 93.4% ICU Level of Service F
Analysis Period (min) 15

Splits and Phases: 6: Deer Park Rd/Dynes Rd & Fisher Ave

Lanes, Volumes, Timings 8: Prince of Wales Dr & Baseline Rd/Heron Rd 2034 Future Background AM Peak Hour

	•	\rightarrow	*	1	—	•	1	Ť		-	¥	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	† 1>		ሻ	44	7	*	∱ î>		1,1	† 1>	
Traffic Volume (vph)	201	540	142	225	1019	546	72	1134	166	221	394	83
Future Volume (vph)	201	540	142	225	1019	546	72	1134	166	221	394	83
Satd. Flow (prot)	1658	3186	0	1610	3283	1483	1658	3237	0	3216	3219	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1654	3186	0	1592	3283	1450	1652	3237	0	3205	3219	0
Satd. Flow (RTOR)												
Lane Group Flow (vph)	201	682	0	225	1019	546	72	1300	0	221	477	0
Turn Type	Prot	NA		Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases						6						
Detector Phase	5	2		1	6	6	7	4		3	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0	10.0	5.0	12.0		5.0	12.0	
Minimum Split (s)	11.8	29.5		11.8	29.8	29.8	10.9	37.8		10.9	37.8	
Total Split (s)	20.0	40.0		26.0	46.0	46.0	20.4	51.0		13.0	43.6	
Total Split (%)	15.4%	30.8%		20.0%	35.4%	35.4%	15.7%	39.2%		10.0%	33.5%	
Yellow Time (s)	3.7	3.0		3.7	3.7	3.7	3.7	3.7		3.7	3.7	
All-Red Time (s)	3.1	2.8		3.1	2.8	2.8	2.2	3.1		2.2	3.1	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.8	5.8		6.8	6.5	6.5	5.9	6.8		5.9	6.8	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max		None	C-Max	C-Max	None	Min		None	Min	
Act Effct Green (s)	13.2	34.2		19.2	39.5	39.5	10.8	44.2		7.1	43.0	
Actuated g/C Ratio	0.10	0.26		0.15	0.30	0.30	0.08	0.34		0.05	0.33	
v/c Ratio	1.20	0.81		0.95	1.02	1.24	0.53	1.18		1.26	0.45	
Control Delay	156.5	69.9		101.6	78.7	165.2	70.1	129.8		204.0	37.3	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	156.5	69.9		101.6	78.7	165.2	70.1	129.8		204.0	37.3	
LOS	F	E		F	E	F	E	F		F	D	
Approach Delay		89.7			108.0			126.7			90.1	
Approach LOS		F			F			F			F	
Queue Length 50th (m)	~64.3	98.6		57.9	~145.7	~173.4	18.0	~210.0		~36.5	52.1	
Queue Length 95th (m)	m#82.4	m111.3		#107.1	#186.8	#240.9	32.9	#252.3		#62.3	71.3	
Internal Link Dist (m)		796.1			320.4			142.9			135.6	
Turn Bay Length (m)	125.0			118.0		184.0	117.0			74.0		
Base Capacity (vph)	168	838		237	997	440	184	1100		175	1064	
Starvation Cap Reductn	0	0		0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v/c Ratio	1.20	0.81		0.95	1.02	1.24	0.39	1.18		1.26	0.45	
Intersection Summary												

ntersection Summar

Cycle Length: 130

Actuated Cycle Length: 130

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 145

Control Type: Actuated-Coordinated

Scenario 1 780 Baseline Road 11:59 pm 03/16/2022 2034 Future Background Synchro 11 Report

Lanes, Volumes, Timings 8: Prince of Wales Dr & Baseline Rd/Heron Rd 2034 Future Background AM Peak Hour

Maximum v/c Ratio: 1.26
Intersection Signal Delay: 107.3
Intersection LOS: F
Intersection Capacity Utilization 108.6%
ICU Level of Service G
Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

2034 Future Background PM Peak Hour

	•	-	\rightarrow	1	←	*	1	†	1	-	Į.	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ች	^	7	7	^	7	7	† 1>		ሻ	↑ ↑	
Traffic Volume (vph)	90	1358	257	148	1274	179	174	388	71	154	663	148
Future Volume (vph)	90	1358	257	148	1274	179	174	388	71	154	663	148
Satd. Flow (prot)	1658	3283	1483	1642	3316	1483	1658	3214	0	1658	3173	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1652	3283	1410	1633	3316	1431	1648	3214	0	1646	3173	0
Satd. Flow (RTOR)												
Lane Group Flow (vph)	90	1358	257	148	1274	179	174	459	0	154	811	0
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2			6						
Detector Phase	5	2	2	1	6	6	7	4		3	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0		5.0	10.0	
Minimum Split (s)	11.3	33.2	33.2	11.3	33.2	33.2	10.9	41.5		10.9	41.5	
Total Split (s)	14.0	53.5	53.5	17.0	56.5	56.5	18.0	41.7		17.8	41.5	
Total Split (%)	10.8%	41.2%	41.2%	13.1%	43.5%	43.5%	13.8%	32.1%		13.7%	31.9%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.6	2.5	2.5	2.6	2.5	2.5	2.6	3.0		2.6	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.3	6.2	6.2	6.3	6.2	6.2	5.9	6.3		5.9	6.3	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lag	Lag		Lead	Lead	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)	7.7	47.3	47.3	10.7	50.3	50.3	12.5	35.4		11.9	34.8	
Actuated g/C Ratio	0.06	0.36	0.36	0.08	0.39	0.39	0.10	0.27		0.09	0.27	
v/c Ratio	0.92	1.14	0.50	1.10	0.99	0.32	1.09	0.52		1.02	0.96	
Control Delay	131.2	110.7	36.3	128.7	62.6	42.2	151.1	42.7		136.1	68.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	131.2	110.7	36.3	128.7	62.6	42.2	151.1	42.7		136.1	68.8	
LOS	F	F	D	F	Е	D	F	D		F	Е	
Approach Delay		100.6			66.4			72.5			79.6	
Approach LOS		F			E			E			E	
Queue Length 50th (m)	23.4	~213.1	50.9	~43.6	130.7	33.5	~51.5	52.6		~40.8	107.5	
Queue Length 95th (m)	#56.4	#255.3	77.1	m#46.8		m33.9	#96.8	69.6		#84.7	#146.3	
Internal Link Dist (m)		192.5			794.8			85.7			126.1	
Turn Bay Length (m)	124.5		100.0	134.0		91.5	127.0			65.0		
Base Capacity (vph)	98	1194	513	135	1283	553	160	875		151	859	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.92	1.14	0.50	1.10	0.99	0.32	1.09	0.52		1.02	0.94	
Intersection Summary												

Cycle Length: 130

Actuated Cycle Length: 130
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

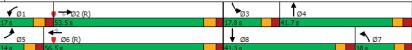
Natural Cycle: 150

Control Type: Actuated-Coordinated

Synchro 11 Report Page 1

Lanes, Volumes, Timings 1: Fisher Ave & Baseline Rd

2034 Future Background PM Peak Hour


Maximum v/c Ratio: 1.14 Intersection Signal Delay: 81.7 Intersection LOS: F Intersection Capacity Utilization 105.5%

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite. ICU Level of Service G Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: Fisher Ave & Baseline Rd

Lanes, Volumes, Timings 6: Deer Park Rd/Dynes Rd & Fisher Ave 2034 Future Background PM Peak Hour

	•	\rightarrow	*	1	-	•	1	Ť		-	¥	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
ane Configurations		4			4			ની	7		414	
raffic Volume (vph)	17	17	14	74	68	90	12	574	29	54	894	3-
uture Volume (vph)	17	17	14	74	68	90	12	574	29	54	894	3
Satd. Flow (prot)	0	1640	0	0	1611	0	0	1743	1483	0	3251	1
It Permitted		0.830			0.875			0.976			0.885	
Satd. Flow (perm)	0	1381	0	0	1431	0	0	1703	1441	0	2885	-
Satd. Flow (RTOR)		14			33				47		6	
ane Group Flow (vph)	0	48	0	0	232	0	0	586	29	0	982	
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2		2	6		
Detector Phase	4	4		8	8		2	2	2	6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0	10.0	10.0	10.0	
/linimum Split (s)	31.1	31.1		31.1	31.1		27.2	27.2	27.2	27.2	27.2	
Total Split (s)	33.0	33.0		33.0	33.0		62.0	62.0	62.0	62.0	62.0	
Total Split (%)	34.7%	34.7%		34.7%	34.7%		65.3%	65.3%	65.3%	65.3%	65.3%	
/ellow Time (s)	3.0	3.0		3.0	3.0		3.3	3.3	3.3	3.3	3.3	
All-Red Time (s)	4.1	4.1		4.1	4.1		2.9	2.9	2.9	2.9	2.9	
ost Time Adjust (s)		0.0			0.0			0.0	0.0		0.0	
Total Lost Time (s)		7.1			7.1			6.2	6.2		6.2	
.ead/Lag												
ead-Lag Optimize?												
Recall Mode	None	None		None	None		C-Max	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)		18.6			18.6			63.1	63.1		63.1	
Actuated g/C Ratio		0.20			0.20			0.66	0.66		0.66	
/c Ratio		0.17			0.76			0.52	0.03		0.51	
Control Delay		23.6			45.9			11.3	1.3		10.1	
Queue Delay		0.0			0.0			0.0	0.0		0.0	
Total Delay		23.6			45.9			11.3	1.3		10.1	
_OS		С			D			В	Α		В	
Approach Delay		23.6			45.9			10.9			10.1	
Approach LOS		С			D			В			В	
Queue Length 50th (m)		5.2			34.7			49.3	0.0		42.9	
Queue Length 95th (m)		13.1			54.7			93.7	2.1		72.1	
nternal Link Dist (m)		145.0			146.3			187.2			22.4	
Furn Bay Length (m)												
Base Capacity (vph)		386			414			1131	973		1919	
Starvation Cap Reductn		0			0			0	0		0	
Spillback Cap Reductn		0			0			0	0		0	
Storage Cap Reductn		0			0			0	0		0	
Reduced v/c Ratio		0.12			0.56			0.52	0.03		0.51	
ntersection Summary												
Cycle Length: 95												
Actuated Cycle Length: 95												
Offset: 10 (11%), Reference	ed to phase	2:NBTL a	and 6:SB	TL. Start	of Green							
Natural Cycle: 65	- 10 pridoc		0.00	, 0	2. 0.0011							
Control Type: Actuated-Coc	rdinated											

Scenario 1 780 Baseline Road 7:50 am 03/16/2022 2034 Future Background

Synchro 11 Report Page 3 Lanes, Volumes, Timings 6: Deer Park Rd/Dynes Rd & Fisher Ave 2034 Future Background PM Peak Hour

Maximum v/c Ratio: 0.76
Intersection Signal Delay: 15.1 Intersection LOS: B
Intersection Capacity Utilization 96.5% ICU Level of Service F
Analysis Period (min) 15

Splits and Phases: 6: Deer Park Rd/Dynes Rd & Fisher Ave

Lanes, Volumes, Timings 8: Prince of Wales Dr & Baseline Rd/Heron Rd 2034 Future Background PM Peak Hour

	•	-	•	•	-	*	1	†	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑ ↑		ሻ	^	7	*	↑ î>		ሻሻ	† }	
Traffic Volume (vph)	107	389	125	303	1194	445	79	1429	102	106	647	155
Future Volume (vph)	107	389	125	303	1194	445	79	1429	102	106	647	155
Satd. Flow (prot)	1658	3153	0	1658	3316	1483	1610	3273	0	3185	3195	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1647	3153	0	1622	3316	1413	1596	3273	0	3166	3195	0
Satd. Flow (RTOR)												
Lane Group Flow (vph)	107	514	0	303	1194	445	79	1531	0	106	802	0
Turn Type	Prot	NA		Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases						6						
Detector Phase	5	2		1	6	6	7	4		3	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0	10.0	12.0	12.0		5.0	10.0	
Minimum Split (s)	11.8	29.5		11.8	29.5	29.5	17.9	37.8		10.9	37.8	
Total Split (s)	14.0	31.0		31.0	48.0	48.0	18.0	57.0		11.0	50.0	
Total Split (%)	10.8%	23.8%		23.8%	36.9%	36.9%	13.8%	43.8%		8.5%	38.5%	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	3.7	3.7		3.7	3.7	
All-Red Time (s)	3.1	2.8		3.1	2.8	2.8	2.2	3.1		2.2	3.1	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.8	6.5		6.8	6.5	6.5	5.9	6.8		5.9	6.8	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max		None	C-Max	C-Max	Min	Min		None	None	
Act Effct Green (s)	7.2	24.5		24.2	41.5	41.5	12.0	50.2		5.1	43.3	
Actuated g/C Ratio	0.06	0.19		0.19	0.32	0.32	0.09	0.39		0.04	0.33	
v/c Ratio	1.18	0.87		0.98	1.13	0.99	0.53	1.21		0.85	0.75	
Control Delay	126.9	63.8		100.0	110.9	83.4	70.1	138.8		110.7	44.1	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	126.9	63.8		100.0	110.9	83.4	70.1	138.8		110.7	44.1	
LOS	F	Е		F	F	F	Ε	F		F	D	
Approach Delay		74.6			102.9			135.5			51.9	
Approach LOS		Е			F			F			D	
Queue Length 50th (m)	~32.7	74.0		78.1	~186.2	113.2	19.6	~251.8		14.1	96.0	
Queue Length 95th (m)	m#28.5	m67.1		#135.5	#228.2	#180.7	36.2	#294.4		#31.1	119.8	
Internal Link Dist (m)		794.8			323.7			145.3			127.9	
Turn Bay Length (m)	125.0			118.0		184.0	117.0			74.0		
Base Capacity (vph)	91	594		308	1058	451	149	1263		124	1063	
Starvation Cap Reductn	0	0		0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v/c Ratio	1.18	0.87		0.98	1.13	0.99	0.53	1.21		0.85	0.75	
Intersection Summary												

Cycle Length: 130

Actuated Cycle Length: 130 Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

Synchro 11 Report Page 5 Lanes, Volumes, Timings 8: Prince of Wales Dr & Baseline Rd/Heron Rd 2034 Future Background PM Peak Hour

Maximum v/c Ratio: 1.21 Intersection Signal Delay: 100.6 Intersection LOS: F Intersection Capacity Utilization 112.2% Analysis Period (min) 15 ICU Level of Service H Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 8: Prince of Wales Dr & Baseline Rd/Heron Rd ÿ1 T_{Ø4} →Ø2 (R) **▼** Ø8 Ø6 (R)

Appendix I

TDM Checklist

TDM Measures Checklist:

Non-Residential Developments (office, institutional, retail or industrial)

	Legend
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance
*	The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC	★ 1.1.1	Designate an internal coordinator, or contract with an external coordinator	
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & destin	ations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances	abla
	2.2	Bicycle skills training	
		Commuter travel	
BETTER	★ 2.2.1	Offer on-site cycling courses for commuters, or subsidize off-site courses	
	2.3	Valet bike parking	
		Visitor travel	
BETTER	2.3.1	Offer secure valet bike parking during public events when demand exceeds fixed supply (e.g. for festivals, concerts, games)	

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances	abla
BASIC	3.1.2	Provide online links to OC Transpo and STO information	
BETTER	3.1.3	Provide real-time arrival information display at entrances	
	3.2	Transit fare incentives	
		Commuter travel	
BETTER	3.2.1	Offer preloaded PRESTO cards to encourage commuters to use transit	
BETTER ★	3.2.2	Subsidize or reimburse monthly transit pass purchases by employees	
		Visitor travel	
BETTER	3.2.3	Arrange inclusion of same-day transit fare in price of tickets (e.g. for festivals, concerts, games)	
	3.3	Enhanced public transit service	
		Commuter travel	
BETTER	3.3.1	Contract with OC Transpo to provide enhanced transit services (e.g. for shift changes, weekends)	
		Visitor travel	
BETTER	3.3.2	Contract with OC Transpo to provide enhanced transit services (e.g. for festivals, concerts, games)	
	3.4	Private transit service	
		Commuter travel	
BETTER	3.4.1	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for shift changes, weekends)	
		Visitor travel	
BETTER	3.4.2	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for feetivals, concerts, games)	

sites Visitor travel

6.1.3 Charge for short-term parking (hourly)

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	7.	TDM MARKETING & COMMUNICATIONS	
	7.1	Multimodal travel information	
		Commuter travel	
BASIC *	7.1.1	Provide a multimodal travel option information package to new/relocating employees and students	abla
		Visitor travel	
BETTER ★	7.1.2	Include multimodal travel option information in invitations or advertising that attract visitors or customers (e.g. for festivals, concerts, games)	
	7.2	Personalized trip planning	
		Commuter travel	
BETTER ★	7.2.1	Offer personalized trip planning to new/relocating employees	
	7.3	Promotions	
		Commuter travel	
BETTER	7.3.1	Deliver promotions and incentives to maintain awareness, build understanding, and encourage trial of sustainable modes	
	8.	OTHER INCENTIVES & AMENITIES	
	8.1	Emergency ride home	
		Commuter travel	
BETTER ★	8.1.1	Provide emergency ride home service to non-driving commuters	
	8.2	Alternative work arrangements	
		Commuter travel	
BASIC *	8.2.1	Encourage flexible work hours	
BETTER	8.2.2	Encourage compressed workweeks	
BETTER *	8.2.3	Encourage telework	
	8.3	Local business travel options	
		Commuter travel	
BASIC *	8.3.1	Provide local business travel options that minimize the need for employees to bring a personal car to work	
	8.4	Commuter incentives	
		Commuter travel	
BETTER	8.4.1	Offer employees a taxable, mode-neutral commuting allowance	
	8.5	On-site amenities	
		Commuter travel	
BETTER	8.5.1	Provide on-site amenities/services to minimize	

TDM Measures Checklist:

Residential Developments (multi-family, condominium or subdivision)

	Legend
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance
*	The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC *	1.1.1	Designate an internal coordinator, or contract with an external coordinator	
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & des	tinations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium)	
	2.2	Bicycle skills training	
BETTER	2.2.1	Offer on-site cycling courses for residents, or subsidize off-site courses	

	TDM	measures: Residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances (multi-family, condominium)	♥
BETTER	3.1.2	Provide real-time arrival information display at entrances (multi-family, condominium)	
	3.2	Transit fare incentives	
BASIC *	3.2.1	Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit	
BETTER	3.2.2	Offer at least one year of free monthly transit passes on residence purchase/move-in	abla
	3.3	Enhanced public transit service	
BETTER ★	3.3.1	Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels (subdivision)	
	3.4	Private transit service	
BETTER	3.4.1	Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)	
	4.	CARSHARING & BIKESHARING	
	4.1	Bikeshare stations & memberships	
BETTER	4.1.1	Contract with provider to install on-site bikeshare station (multi-family)	
BETTER	4.1.2	Provide residents with bikeshare memberships, either free or subsidized (multi-family)	
	4.2	Carshare vehicles & memberships	.
BETTER	4.2.1	Contract with provider to install on-site carshare vehicles and promote their use by residents	☑
BETTER	4.2.2	Provide residents with carshare memberships, either free or subsidized	
	5.	PARKING	
	5.1	Priced parking	
BASIC ★	5.1.1	Unbundle parking cost from purchase price (condominium)	∀
BASIC ★	5.1.2	Unbundle parking cost from monthly rent (multi-family)	abla

TDM	measures: Residential developments	Check if proposed & add descriptions
6.	TDM MARKETING & COMMUNICATIONS	
6.1	Multimodal travel information	
BASIC ★ 6.1.1	Provide a multimodal travel option information package to new residents	\square
6.2	Personalized trip planning	
BETTER ★ 6.2.1	Offer personalized trip planning to new residents	

Appendix J

Synchro Intersection Worksheets – 2034 Future Total Conditions

2034 Future Total AM Peak Hour

	•	→	•	•	←	*	1	†	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	ሻ	^	7	*	∱ β		*	† }	
Traffic Volume (vph)	126	1294	152	35	1096	141	238	506	94	132	389	93
Future Volume (vph)	126	1294	152	35	1096	141	238	506	94	132	389	93
Satd. Flow (prot)	1658	3252	1469	1642	3252	1455	1658	3162	0	1658	3087	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1653	3252	1132	1583	3252	1409	1593	3162	0	1651	3087	0
Satd. Flow (RTOR)												
Lane Group Flow (vph)	126	1294	152	35	1096	141	238	600	0	132	482	0
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2			6						
Detector Phase	5	2	2	1	6	6	7	4		3	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0		5.0	10.0	
Minimum Split (s)	11.3	41.2	41.2	11.3	41.2	41.2	10.9	41.3		10.9	41.3	
Total Split (s)	16.2	53.0	53.0	11.3	48.1	48.1	24.4	43.7		22.0	41.3	
Total Split (%)	12.5%	40.8%	40.8%	8.7%	37.0%	37.0%	18.8%	33.6%		16.9%	31.8%	
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.3	3.3		3.3	3.3	
All-Red Time (s)	2.6	2.5	2.5	2.6	2.5	2.5	2.6	3.0		2.6	3.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.3	6.2	6.2	6.3	6.2	6.2	5.9	6.3		5.9	6.3	
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	
Act Effct Green (s)	13.9	55.0	55.0	6.3	44.9	44.9	18.5	32.3		14.2	27.9	
Actuated g/C Ratio	0.11	0.42	0.42	0.05	0.35	0.35	0.14	0.25		0.11	0.21	
v/c Ratio	0.71	0.94	0.32	0.44	0.98	0.29	1.01	0.77		0.73	0.73	
Control Delay	78.2	51.2	30.2	59.7	88.7	65.8	116.9	52.1		78.9	53.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	78.2	51.2	30.2	59.7	88.7	65.8	116.9	52.1		78.9	53.6	
LOS	E	D	С	Е	F	Ε	F	D		E	D	
Approach Delay		51.3			85.3			70.5			59.0	
Approach LOS		D			F			E			E	
Queue Length 50th (m)	30.6	~177.0	27.0	9.3	~165.2	37.7	~62.6	77.3		32.8	61.4	
Queue Length 95th (m)	#73.4	#240.7	47.8	m11.2	n#168.4	m41.2	#115.5	91.5		#55.0	74.4	
Internal Link Dist (m)		271.5			796.1			86.9			158.3	
Turn Bay Length (m)	124.5		100.0	134.0		91.5				65.0		
Base Capacity (vph)	177	1375	478	79	1124	487	235	909		205	831	
Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Reduced v/c Ratio	0.71	0.94	0.32	0.44	0.98	0.29	1.01	0.66		0.64	0.58	
Intersection Summary												

Cycle Length: 130

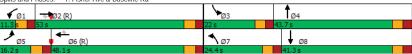
Actuated Cycle Length: 130
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 145

Control Type: Actuated-Coordinated

Synchro 11 Report

Lanes, Volumes, Timings 1: Fisher Ave & Baseline Rd


2034 Future Total AM Peak Hour

Maximum v/c Ratio: 1.01 Intersection Signal Delay: 66.2 Intersection LOS: E Intersection Capacity Utilization 104.2% Analysis Period (min) 15 ICU Level of Service G Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: Fisher Ave & Baseline Rd

Scenario 1 780 Baseline Road 11:59 pm 03/16/2022 2034 Future Total

Lanes, Volumes, Timings 6: Deer Park Rd/Dynes Rd & Fisher Ave 2034 Future Total AM Peak Hour

	•	\rightarrow	*	•	—	•	1	1	1	-	Į.	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations		4			4			ની	7		↑ 1>	
Traffic Volume (vph)	38	83	17	83	41	104	8	668	171	61	551	
uture Volume (vph)	38	83	17	83	41	104	8	668	171	61	551	
Satd. Flow (prot)	0	1634	0	0	1576	0	0	1710	1483	0	3292	
Flt Permitted		0.851			0.843			0.993			0.800	
Satd. Flow (perm)	0	1402	0	0	1284	0	0	1699	1281	0	2647	
Satd. Flow (RTOR)		9			56				171		1	
Lane Group Flow (vph)	0	138	0	0	228	0	0	676	171	0	617	
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4	•		8			2	_	2	6	Ū	
Detector Phase	4	4		8	8		2	2	2	6	6	
Switch Phase		-		0	U					U	U	
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0	10.0	10.0	10.0	
Viinimum Split (s)	31.1	31.1		31.1	31.1		27.2	27.2	27.2	27.2	27.2	
Total Split (s)	33.0	33.0		33.0	33.0		47.0	47.0	47.0	47.0	47.0	
Total Split (%)	41.3%	41.3%		41.3%	41.3%		58.8%	58.8%	58.8%	58.8%	58.8%	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.3	3.3	3.3	3.3	3.3	
					4.1			2.9	2.9	2.9	2.9	
All-Red Time (s)	4.1	4.1		4.1			2.9			2.9	0.0	
Lost Time Adjust (s)		0.0			0.0			0.0	0.0			
Total Lost Time (s)		7.1			7.1			6.2	6.2		6.2	
Lead/Lag												
Lead-Lag Optimize?								0.11	0.11			
Recall Mode	None	None		None	None		C-Max	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)		19.2			19.2			47.5	47.5		47.5	
Actuated g/C Ratio		0.24			0.24			0.59	0.59		0.59	
//c Ratio		0.40			0.65			0.67	0.21		0.39	
Control Delay		25.7			28.3			17.0	2.4		10.7	
Queue Delay		0.0			0.0			0.0	0.0		0.0	
Total Delay		25.7			28.3			17.0	2.4		10.7	
LOS		С			С			В	Α		В	
Approach Delay		25.7			28.3			14.1			10.7	
Approach LOS		С			С			В			В	
Queue Length 50th (m)		15.0			21.2			74.3	0.0		27.9	
Queue Length 95th (m)		29.0			42.2			120.2	8.4		41.0	
nternal Link Dist (m)		152.1			156.9			172.3			30.0	
Turn Bay Length (m)												
Base Capacity (vph)		459			453			1008	830		1572	
Starvation Cap Reductn		0			0			0	0		0	
Spillback Cap Reductn		0			0			0	0		0	
Storage Cap Reductn		0			0			0	0		0	
Reduced v/c Ratio		0.30			0.50			0.67	0.21		0.39	
Intersection Summary												
Cycle Length: 80												
Actuated Cycle Length: 80	and the large.	2 NIDTI		TI Ct .	-6 0							
Offset: 78 (98%), Reference	eu to pnase	S S:MRTF	and 6:SE	ort, Start	or Green							
Natural Cycle: 70	ordinatod											
Control Type: Actuated-Coo	ordinated											

Scenario 1 780 Baseline Road 11:59 pm 03/16/2022 2034 Future Total

Synchro 11 Report Page 3 Lanes, Volumes, Timings 6: Deer Park Rd/Dynes Rd & Fisher Ave 2034 Future Total AM Peak Hour

Maximum v/c Ratio: 0.67
Intersection Signal Delay: 15.6
Intersection Capacity Utilization 93.8%
ICU Level of Service F
Analysis Period (min) 15

Splits and Phases: 6: Deer Park Rd/Dynes Rd & Fisher Ave

Lanes, Volumes, Timings 8: Prince of Wales Dr & Baseline Rd/Heron Rd 2034 Future Total AM Peak Hour

	•	-	*	•	-	•	4	1	1	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	† 1>		ሻ	^	7	*	† \$		ሻሻ	† 1>	
Traffic Volume (vph)	206	550	142	225	1018	546	72	1134	166	221	394	82
Future Volume (vph)	206	550	142	225	1018	546	72	1134	166	221	394	82
Satd. Flow (prot)	1658	3156	0	1610	3283	1483	1658	3237	0	3216	3219	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1654	3156	0	1567	3283	1445	1652	3237	0	3205	3219	0
Satd. Flow (RTOR)												
Lane Group Flow (vph)	206	692	0	225	1018	546	72	1300	0	221	476	0
Turn Type	Prot	NA		Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases						6						
Detector Phase	5	2		1	6	6	7	4		3	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0	10.0	5.0	12.0		5.0	12.0	
Minimum Split (s)	11.8	29.5		11.8	29.8	29.8	10.9	37.8		10.9	37.8	
Total Split (s)	20.0	40.0		26.0	46.0	46.0	20.4	51.0		13.0	43.6	
Total Split (%)	15.4%	30.8%		20.0%	35.4%	35.4%	15.7%	39.2%		10.0%	33.5%	
Yellow Time (s)	3.7	3.0		3.7	3.7	3.7	3.7	3.7		3.7	3.7	
All-Red Time (s)	3.1	2.8		3.1	2.8	2.8	2.2	3.1		2.2	3.1	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.8	5.8		6.8	6.5	6.5	5.9	6.8		5.9	6.8	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max		None	C-Max	C-Max	None	Min		None	Min	
Act Effct Green (s)	13.2	34.2		19.2	39.5	39.5	10.8	44.2		7.1	43.0	
Actuated g/C Ratio	0.10	0.26		0.15	0.30	0.30	0.08	0.34		0.05	0.33	
v/c Ratio	1.23	0.83		0.95	1.02	1.24	0.53	1.18		1.26	0.45	
Control Delay	163.7	72.6		101.6	78.5	166.3	70.1	129.8		204.0	37.2	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	163.7	72.6		101.6	78.5	166.3	70.1	129.8		204.0	37.2	
LOS	F	Е		F	Е	F	Е	F		F	D	
Approach Delay		93.5			108.2			126.7			90.1	
Approach LOS		F			F			F			F	
Queue Length 50th (m)	~67.1	100.1		57.9	~145.4	~173.8	18.0	~210.0		~36.5	51.9	
Queue Length 95th (m)	m#80.0	m108.3		#107.1	#186.6	#241.3	32.9	#252.3		#62.3	71.3	
Internal Link Dist (m)		796.1			320.4			142.9			135.6	
Turn Bay Length (m)	125.0			118.0		184.0	117.0			74.0		
Base Capacity (vph)	168	830		237	997	439	184	1100		175	1064	
Starvation Cap Reductn	0	0		0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v/c Ratio	1.23	0.83		0.95	1.02	1.24	0.39	1.18		1.26	0.45	
Intersection Summary												

ntersection Summar

Cycle Length: 130

Actuated Cycle Length: 130

Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 145

Control Type: Actuated-Coordinated

Scenario 1 780 Baseline Road 11:59 pm 03/16/2022 2034 Future Total Syn

Lanes, Volumes, Timings 8: Prince of Wales Dr & Baseline Rd/Heron Rd 2034 Future Total AM Peak Hour

Maximum v/c Ratio: 1.26
Intersection Signal Delay: 108.1
Intersection LOS: F
Intersection Capacity Utilization 108.9%
ICU Level of Service G
Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

M Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 8: Prince of Wales Dr & Baseline Rd/Heron Rd

2034 Future Total PM Peak Hour

Lane Configurations		•	-	*	•	—	*	1	†	1	-	Ţ	4
Traeffice Volume (vph) 90 1342 257 173 1259 179 189 388 88 154 671 144 Sald Flow (prot) 1658 3283 1483 1642 3316 1483 1658 3189 0 1658 3138 0 154 671 144 Sald Flow (prot) 1650 3283 1136 1585 3316 1416 1617 3189 0 1658 3138 0 1584 5314 Sald Flow (prom) 1650 3283 1136 1585 3316 1416 1617 3189 0 1643 3138 0 1685 3184 Sald Flow (perm) 1650 3283 1136 1585 3316 1416 1617 3189 0 1643 3138 0 1685 3184 Sald Flow (perm) 1650 3283 1136 1585 3316 1416 1617 3189 0 1643 3138 0 1685 3184 Sald Flow (perm) 1650 3283 1136 1585 3316 1416 1617 3189 0 1643 3138 0 1685 3184 Sald Flow (perm) 1650 3283 1136 1585 3316 1416 1617 3189 0 1643 3138 0 1685 3180 Sald Flow (perm) 1650 3283 1136 1585 3316 1416 1617 3189 0 1643 3138 0 1685 3180 Sald Flow (perm) 1650 3283 1136 1585 3316 1416 1617 3189 0 1643 3138 0 1685 3180 Sald Flow (perm) 1650 3283 1136 1585 3316 1416 1617 3189 0 1643 3138 0 1685 3180 Sald Flow (perm) 1650 3283 1136 1585 315 140 1645 3189 0 1643 3138 0 1685 3180 Sald Flow (perm) 1650 3283 1136 1585 315 170 1645 3180 Minimum Initial (s) 160 100 100 100 100 100 100 100 100 100	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 90 1342 257 173 1259 179 189 388 88 154 671 144 Said. Flow (prot) 1658 3283 1483 1642 3316 1483 1658 3189 0 1658 3183 1642 3316 1476 1476 1476 1476 1476 1476 1476 14	Lane Configurations	ች	^	7	ሻ	^	7	7	† 1>		ሻ	↑ 1>	
Satid. Flow (prot)	Traffic Volume (vph)	90		257	173		179	189		88	154		148
Fit Permitted 0.950 0.950 0.950 0.950 0.950 0.950 Satd. Flow (perm) 1650 3283 1136 1885 3316 1416 1617 3189 0 1643 3138 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Future Volume (vph)	90	1342	257	173	1259	179	189	388	88	154	671	148
Sald. Flow (perm) 1650	Satd. Flow (prot)	1658	3283	1483	1642	3316	1483	1658	3189	0	1658	3138	0
Sald. Flow (RTOR) Lane Group Flow (vph) Pol 1342 257 173 1259 179 189 476 0 154 819 Protected Phases 5 2 1 6 7 4 3 8 Permitted Phases 5 2 2 1 6 6 7 4 3 8 Permitted Phases 5 2 2 1 6 6 7 4 3 8 Permitted Phases 5 2 2 1 6 6 7 4 3 8 Permitted Phases 5 2 2 1 6 6 7 4 3 8 Permitted Phases Elector Phase 5 2 2 1 6 6 7 4 3 8 Permitted Phases 6 0 10.0 5.0 10.0 10.0 5.0 10.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 10	Flt Permitted	0.950			0.950			0.950			0.950		
Lane Group Flow (vph) Prot NA Perm Prot NA P	Satd. Flow (perm)	1650	3283	1136	1585	3316	1416	1617	3189	0	1643	3138	C
Turn Type	Satd. Flow (RTOR)												
Protected Phases	Lane Group Flow (vph)	90	1342	257	173	1259	179	189	476	0	154	819	C
Permitted Phases 2 2 1 6 6 7 4 3 8	Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA		Prot	NA	
Detector Phase 5	Protected Phases	5	2		1	6		7	4		3	8	
Switch Phase Minimum Initial (s) 5.0 10.0 10.0 5.0 10.0 10.0 5.0 10.0 41.5 10.9 41.5 10.0 1	Permitted Phases			2			6						
Minimum Initial (s) 5.0 10.0 10.0 5.0 10.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 5.0 10.0 41.5 10.0 41.5 10.0 41.5 10.0 41.5 10.0 41.5 10.0 41.5 10.0 41.5 10.9 41.5 10.0 41.5 10.0 41.5 10.0 41.5 10.0 41.5 10.0 41.5 10.0 41.5 10.0 41.5 10.0 41.5 10.0 41.5 10.0 41.5 10.0 41.5 10.0 41.5 10.0 41.5 11.7 84.15 11.7 41.5 10.0 41.5 11.7 41.5 11.7 41.5 11.7 41.5 11.0 31.2 10.0 41.5 11.7 41.5 11.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	Detector Phase	5	2	2	1	6	6	7	4		3	8	
Minimum Split (s) 11.3 33.2 33.2 11.3 33.2 33.2 11.3 33.2 33.2 11.3 33.2 33.2 10.9 41.5 10.9 41.5 Total Split (s) 14.0 53.5 53.5 17.0 56.5 56.5 56.5 18.0 41.7 17.8 41.5 Vellow Time (s) 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.3	Switch Phase												
Total Split (s)	Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0		5.0	10.0	
Total Split (%)	Minimum Split (s)	11.3	33.2	33.2	11.3	33.2	33.2	10.9	41.5		10.9	41.5	
Yellow Time (s) 3.7 3.7 3.7 3.7 3.7 3.7 3.3 3.3 3.3 3.3	Total Split (s)	14.0	53.5	53.5	17.0	56.5	56.5	18.0	41.7		17.8	41.5	
All-Red Time (s)	Total Split (%)	10.8%	41.2%	41.2%	13.1%	43.5%	43.5%	13.8%	32.1%		13.7%	31.9%	
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.3	3.3		3.3	3.3	
Lost Time Adjust (s)	All-Red Time (s)	2.6	2.5	2.5	2.6	2.5	2.5	2.6	3.0		2.6	3.0	
Lead/Lag Lead Lag Lag Lead Lag Lead Lag Lead Lag Lead	Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Lead-Lag Optimize? Yes	Total Lost Time (s)	6.3	6.2	6.2	6.3	6.2	6.2	5.9	6.3		5.9	6.3	
Recall Mode None C-Max C-Max None C-Max C-Max C-Max C-Max C-Max C-Max C-Max None None None None Act Effet Green (s) 7.7 47.3 47.3 10.7 50.3 50.3 12.2 35.4 11.9 35.1 Actuated g/C Ratio 0.06 0.36 0.36 0.08 0.39 0.39 0.09 0.27 0.09 0.27 v/c Ratio 0.92 1.12 0.62 1.28 0.98 0.33 1.22 0.55 1.02 0.97 Control Delay 131.2 105.7 41.9 191.3 60.0 42.2 190.4 43.3 136.1 71.0 Queue Delay 0.0	Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lag	Lag		Lead	Lead	
Act Effct Green (s) 7.7 47.3 47.3 10.7 50.3 50.3 12.2 35.4 11.9 35.1 Actuated g/C Ratio 0.06 0.36 0.36 0.08 0.39 0.39 0.09 0.27 0.09 0.27 0.09 0.29 0.27 0.09 0.29 0.27 0.09 0.29 0.29	Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	
Actuated g/C Ratio 0.06 0.36 0.36 0.08 0.39 0.39 0.09 0.27 0.09 0.27 v/c Ratio 0.92 1.12 0.62 1.28 0.98 0.33 1.22 0.55 1.02 0.97 Control Delay 131.2 105.7 41.9 191.3 60.0 42.2 190.4 43.3 136.1 71.0 Queue Delay 0.0 0.	Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	
v/c Ratio 0.92 1.12 0.62 1.28 0.98 0.33 1.22 0.55 1.02 0.97 Control Delay 131.2 105.7 41.9 191.3 60.0 42.2 190.4 43.3 136.1 71.0 Oueue Delay 0.0<	Act Effct Green (s)	7.7	47.3	47.3	10.7	50.3	50.3	12.2	35.4		11.9	35.1	
Control Delay 131.2 105.7 41.9 191.3 60.0 42.2 190.4 43.3 136.1 71.0 Queue Delay 0.0 <	Actuated g/C Ratio	0.06	0.36	0.36	0.08	0.39	0.39	0.09	0.27		0.09	0.27	
Queue Delay 0.0 <th< td=""><td>v/c Ratio</td><td>0.92</td><td>1.12</td><td>0.62</td><td>1.28</td><td>0.98</td><td>0.33</td><td>1.22</td><td>0.55</td><td></td><td>1.02</td><td>0.97</td><td></td></th<>	v/c Ratio	0.92	1.12	0.62	1.28	0.98	0.33	1.22	0.55		1.02	0.97	
Total Delay	Control Delay	131.2	105.7	41.9	191.3	60.0	42.2	190.4	43.3		136.1	71.0	
LOS	Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Approach Delay 97.4 72.1 85.1 81.3 Approach LOS F E F F Queue Length 50th (m) 23.4 -208.6 53.8 -57.0 129.1 33.6 -59.5 55.1 -40.8 109.3 Queue Length 95th (m) #56.4 #250.8 84.0 m#59.6 m121.3 m33.6 #106.4 72.5 #84.7 #149.8 Internal Link Dist (m) 192.5 100.0 134.0 91.5 127.0 65.0 Base Capacity (vph) 98 1194 413 135 1283 547 155 868 151 849 Starvation Cap Reductn 0 <	Total Delay	131.2	105.7	41.9	191.3	60.0	42.2	190.4	43.3		136.1	71.0	
Approach LOS	LOS	F	F	D	F	Е	D	F	D		F	Е	
Queue Length 50th (m) 23.4 -208.6 53.8 -57.0 129.1 33.6 -59.5 55.1 -40.8 109.3 Queue Length 95th (m) #56.4 #250.8 84.0 m#59.6 m121.3 m33.6 #106.4 72.5 #84.7 #149.8 Internal Link Dist (m) 192.5 794.8 85.7 126.1 Turn Bay Length (m) 124.5 100.0 134.0 91.5 127.0 65.0 Base Capacity (vph) 98 1194 413 135 1283 547 155 868 151 849 Starvation Cap Reductn 0	Approach Delay		97.4			72.1			85.1			81.3	
Queue Length 95th (m) #56.4 #250.8 84.0 m#59.6 m121.3 m33.6 #106.4 72.5 #84.7 #149.8 Internal Link Dist (m) 192.5 794.8 85.7 126.1 Turn Bay Length (m) 124.5 100.0 134.0 91.5 127.0 65.0 Base Capacity (vph) 98 1194 413 135 1283 547 155 868 151 849 Starvation Cap Reductn 0	Approach LOS		F			Е			F			F	
Internal Link Dist (m)	Queue Length 50th (m)	23.4	~208.6	53.8	~57.0	129.1	33.6	~59.5	55.1		~40.8	109.3	
Turn Bay Length (m) 124.5 100.0 134.0 91.5 127.0 65.0 Base Capacity (vph) 98 1194 413 135 1283 547 155 868 151 849 Starvation Cap Reductn 0 <td>Queue Length 95th (m)</td> <td>#56.4</td> <td>#250.8</td> <td>84.0</td> <td>m#59.6</td> <td>m121.3</td> <td>m33.6</td> <td>#106.4</td> <td>72.5</td> <td></td> <td>#84.7</td> <td>#149.8</td> <td></td>	Queue Length 95th (m)	#56.4	#250.8	84.0	m#59.6	m121.3	m33.6	#106.4	72.5		#84.7	#149.8	
Base Capacity (vph) 98 1194 413 135 1283 547 155 868 151 849 Starvation Cap Reductn 0	Internal Link Dist (m)		192.5			794.8			85.7			126.1	
Base Capacity (vph) 98 1194 413 135 1283 547 155 868 151 849 Starvation Cap Reducth 0	Turn Bay Length (m)	124.5		100.0	134.0		91.5	127.0			65.0		
Starvation Cap Reductn 0	Base Capacity (vph)		1194	413	135	1283	547	155	868		151	849	
Spillback Cap Reductn 0	Starvation Cap Reductn	0	0	0	0	0	0	0	0		0	0	
Storage Cap Reductn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Spillback Cap Reductn	0	0		0	0	0	0	0			0	
Reduced v/c Ratio 0.92 1.12 0.62 1.28 0.98 0.33 1.22 0.55 1.02 0.96	Storage Cap Reductn	0	0	0	0	0	0	0	0		0	0	
	Reduced v/c Ratio	0.92	1.12	0.62	1.28	0.98	0.33	1.22	0.55		1.02	0.96	
	Interception Cummen												

Cycle Length: 130

Actuated Cycle Length: 130
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

Scenario 1 780 Baseline Road 7:50 am 03/16/2022 2034 Future Total

Lanes, Volumes, Timings 1: Fisher Ave & Baseline Rd 2034 Future Total PM Peak Hour

Maximum v/c Ratio: 1.28 Intersection Signal Delay: 84.3 Intersection LOS: F Intersection Capacity Utilization 109.7% Analysis Period (min) 15 ICU Level of Service H Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: Fisher Ave & Baseline Rd

Synchro 11 Report

Page 1

Lanes, Volumes, Timings 6: Deer Park Rd/Dynes Rd & Fisher Ave 2034 Future Total PM Peak Hour

	\rightarrow	*	•	•	_	7	- 1		-	+	*
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
	44			4			ર્ન	7		414	
17	17	14	74	68	90	12	578	29	54	894	3
17	17	14	74	68	90	12	578	29	54	894	:
0	1572	0	0	1609	0	0	1743	1483	0	3248	
	0.836			0.875			0.976			0.884	
0	1331	0	0	1367	0	0	1703	1423	0	2879	
	14			33				47		6	
0	48	0	0	232	0	0	590	29	0	982	
Perm	NA		Perm	NA		Perm	NA	Perm	Perm	NA	
	4			8			2			6	
4			8			2		2	6		
4	4		8	8		2	2	2	6	6	
10.0	10.0		10.0	10.0		10.0	10.0	10.0	10.0	10.0	
31.1	31.1		31.1	31.1		27.2	27.2	27.2	27.2	27.2	
33.0	33.0		33.0	33.0		62.0	62.0	62.0	62.0	62.0	
34.7%	34.7%		34.7%	34.7%		65.3%	65.3%	65.3%	65.3%	65.3%	
3.0	3.0		3.0	3.0		3.3	3.3	3.3	3.3	3.3	
4.1	4.1		4.1	4.1		2.9	2.9	2.9	2.9	2.9	
	0.0			0.0			0.0	0.0		0.0	
	7.1			7.1			6.2	6.2		6.2	
None	None		None	None		C-Max	C-Max	C-Max	C-Max	C-Max	
				19.0		-	62.7	62.7		62.7	
				0.20			0.66	0.66		0.66	
							0.53	0.03			
								- '			
	C			D			В			В	
								0.0			
	1 10.0			1 10.0			10712			LLII	
	373			396			1123	955		1902	
				_							
							-			-	
	0.13			0.07			0.00	0.00		0.02	
al de la le	2 NIDTI		TI C+- 1	-6 0							
ed to phase	2:NB1L	and 6:SB	IL, Start	of Green							
	17 17 0 0 Perm 4 4 10.0 31.1 33.0 34.7% 3.1 10.0 10.0 10.0 10.0 10.0 10.0 10.0	17 17 17 17 17 17 17 17 17 17 17 17 17 1	17 17 14 17 17 14 17 17 14 10 1572 0.836 0 1331 0 14 0 48 0 Perm NA 4 4 4 4 4 4 4 10.0 10.0 31.1 31.1 33.0 33.0 34.7% 34.7% 3.0 3.0 4.1 4.1 0.0 7.1 None None 19.0 0.20 0.17 23.4 0.0 23.4 C 23.4 C 23.4 C 5.1 13.2 145.0 0 0 0 0 0 0 0.13	17 17 14 74 17 17 14 74 17 17 14 74 0 1572 0 0 0.836 0 1331 0 0 144 0 0 Perm NA Perm 4 8 4 4 8 10.0 10.0 10.0 31.1 31.1 31.1 33.0 33.0 33.0 33.0 34.7% 34.7% 34.7% 3.0 3.0 3.0 3.0 4.1 4.1 4.1 4.1 0.0 7.1 None None None 19.0 0.20 0.17 23.4 0.0 23.4 0.0 23.4 0.0 23.4 0.0 23.4 0.0 23.4 0.0 23.4 0.0 23.4 0.0 23.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	17 17 14 74 68 17 17 14 74 68 17 17 14 74 68 0 1572 0 0 1609 0.836 0.875 0 1331 0 0 1367 14 33 0 48 0 0 232 Perm NA Perm NA 4 8 4 4 8 4 4 8 4 4 8 8 4 4 4 8 8 10.0 10.0 10.0 10.0 31.1 31.1 31.1 31.1 31.1 31.1 31.1 31.1	17 17 14 74 68 90 17 17 17 14 74 68 90 0 1572 0 0 1609 0 0.836 0.875 0 1331 0 0 1367 0 14 33 0 48 0 0 232 0 Perm NA Perm NA 4 8 4 4 8 4 4 8 8 10.0 10.0 10.0 10.0 31.1 31.1 31.1 31.1 31.1 31.1 31.1 31.1	17 17 14 74 68 90 12 17 17 17 14 74 68 90 12 10 1572 0 0 1609 0 0 0.836 0.875 0 1331 0 0 1367 0 0 14 33 0 48 0 0 232 0 0 Perm NA Perm NA Perm NA Perm 4 8 2 4 4 8 8 2 4 4 4 8 8 8 2 10.0 10.0 10.0 10.0 10.0 31.1 31.1 31.1 31.1 27.2 33.0 33.0 33.0 33.0 32.0 34.7% 34.7% 34.7% 65.3% 3.0 3.0 33.0 33.0 32.0 34.1 4.1 4.1 4.1 2.9 0.0 0 0.0 7.1 7.1 7.1 None None None None C-Max 19.0 0.20 0.20 0.17 0.78 23.4 47.5 0.0 0.0 23.4 47.5 C D 24.7 47.5 C D 25.5 5.5 C D 26.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7	17	17	17	17

Scenario 1 780 Baseline Road 7:50 am 03/16/2022 2034 Future Total

Synchro 11 Report Page 3 Lanes, Volumes, Timings 6: Deer Park Rd/Dynes Rd & Fisher Ave 2034 Future Total PM Peak Hour

Maximum v/c Ratio: 0.78
Intersection Signal Delay: 15.5
Intersection LOS: B
Intersection Capacity Utilization 97.9%
ICU Level of Service F
Analysis Period (min) 15

Splits and Phases: 6: Deer Park Rd/Dynes Rd & Fisher Ave

Lanes, Volumes, Timings 8: Prince of Wales Dr & Baseline Rd/Heron Rd 2034 Future Total PM Peak Hour

	•	-	•	1	—	*	1	†	-	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	† 1>		ሻ	^	7	*	↑ 1>		ሻሻ	† }	
Traffic Volume (vph)	107	389	125	303	1201	445	79	1429	102	106	647	159
Future Volume (vph)	107	389	125	303	1201	445	79	1429	102	106	647	159
Satd. Flow (prot)	1658	3113	0	1658	3316	1483	1610	3273	0	3185	3191	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1647	3113	0	1584	3316	1406	1596	3273	0	3166	3191	0
Satd. Flow (RTOR)												
Lane Group Flow (vph)	107	514	0	303	1201	445	79	1531	0	106	806	0
Turn Type	Prot	NA		Prot	NA	Perm	Prot	NA		Prot	NA	
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases						6						
Detector Phase	5	2		1	6	6	7	4		3	8	
Switch Phase												
Minimum Initial (s)	5.0	10.0		5.0	10.0	10.0	12.0	12.0		5.0	10.0	
Minimum Split (s)	11.8	29.5		11.8	29.5	29.5	17.9	37.8		10.9	37.8	
Total Split (s)	14.0	31.0		31.0	48.0	48.0	18.0	57.0		11.0	50.0	
Total Split (%)	10.8%	23.8%		23.8%	36.9%	36.9%	13.8%	43.8%		8.5%	38.5%	
Yellow Time (s)	3.7	3.7		3.7	3.7	3.7	3.7	3.7		3.7	3.7	
All-Red Time (s)	3.1	2.8		3.1	2.8	2.8	2.2	3.1		2.2	3.1	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.8	6.5		6.8	6.5	6.5	5.9	6.8		5.9	6.8	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Recall Mode	None	C-Max		None	C-Max	C-Max	Min	Min		None	None	
Act Effct Green (s)	7.2	24.5		24.2	41.5	41.5	12.0	50.2		5.1	43.3	
Actuated g/C Ratio	0.06	0.19		0.19	0.32	0.32	0.09	0.39		0.04	0.33	
v/c Ratio	1.18	0.88		0.98	1.14	0.99	0.53	1.21		0.85	0.76	
Control Delay	127.4	63.5		100.0	113.3	85.2	70.1	138.8		110.7	44.3	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	127.4	63.5		100.0	113.3	85.2	70.1	138.8		110.7	44.3	
LOS	F	E		F	F	F	E	F		F	D	
Approach Delay		74.5			104.8			135.5			52.0	
Approach LOS		E			F			F			D	
Queue Length 50th (m)	~32.7	74.0		78.1	~188.1	113.5	19.6	~251.8		14.1	96.6	
Queue Length 95th (m)	m#29.5	m68.1		#135.5	#230.1	#181.3	36.2	#294.4		#31.1	120.9	
Internal Link Dist (m)		794.8			323.7			145.3			127.9	
Turn Bay Length (m)	125.0	=0.		118.0	400	184.0	117.0	1015		74.0	404	
Base Capacity (vph)	91	586		308	1058	448	149	1263		124	1061	
Starvation Cap Reductn	0	0		0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v/c Ratio	1.18	0.88		0.98	1.14	0.99	0.53	1.21		0.85	0.76	
Intersection Summary												

Cycle Length: 130

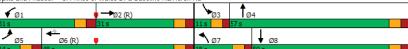
Actuated Cycle Length: 130
Offset: 0 (0%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

Scenario 1 780 Baseline Road 7:50 am 03/16/2022 2034 Future Total

Synchro 11 Report


Page 5

Lanes, Volumes, Timings 8: Prince of Wales Dr & Baseline Rd/Heron Rd 2034 Future Total PM Peak Hour

Maximum v/c Ratio: 1.21 Intersection Signal Delay: 101.4 Intersection LOS: F Intersection Capacity Utilization 112.4% Analysis Period (min) 15 ICU Level of Service H ~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 8: Prince of Wales Dr & Baseline Rd/Heron Rd

Appendix K

Synchro Worksheets – Fisher Avenue at Baseline Road Without Baseline Rapid Transit

2034 Future Total-without BRT AM Peak Hour

	•	-	•	•	←	*	4	†	1	-	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	^	7	٦	^	7	ሻ	^	7
Traffic Volume (vph)	126	1294	152	41	1096	141	245	516	106	132	394	93
Future Volume (vph)	126	1294	152	41	1096	141	245	516	106	132	394	93
Satd. Flow (prot)	1658	3252	1469	1642	3252	1455	1658	3252	1483	1658	3221	1483
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1654	3252	1401	1633	3252	1416	1636	3252	1414	1650	3221	1418
Satd. Flow (RTOR)			180			232			181			231
Lane Group Flow (vph)	126	1294	152	41	1096	141	245	516	106	132	394	93
Turn Type	Prot	NA	Perm									
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2			6			4			8
Detector Phase	5	2	2	1	6	6	7	4	4	3	8	8
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	11.3	29.1	29.1	11.3	29.1	29.1	10.9	30.3	30.3	10.9	30.3	30.3
Total Split (s)	26.0	56.0	56.0	13.0	43.0	43.0	30.7	38.0	38.0	23.0	30.3	30.3
Total Split (%)	20.0%	43.1%	43.1%	10.0%	33.1%	33.1%	23.6%	29.2%	29.2%	17.7%	23.3%	23.3%
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	2.6	2.4	2.4	2.6	2.4	2.4	2.6	3.0	3.0	2.6	3.0	3.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.3	6.1	6.1	6.3	6.1	6.1	5.9	6.3	6.3	5.9	6.3	6.3
Lead/Lag	Lead	Lag	Lag									
Lead-Lag Optimize?	Yes	Yes	Yes									
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None	None	None	None	None
Act Effct Green (s)	14.9	57.5	57.5	6.9	47.2	47.2	22.6	28.8	28.8	14.5	20.7	20.7
Actuated g/C Ratio	0.11	0.44	0.44	0.05	0.36	0.36	0.17	0.22	0.22	0.11	0.16	0.16
v/c Ratio	0.67	0.90	0.21	0.47	0.93	0.21	0.85	0.72	0.23	0.71	0.77	0.22
Control Delay	71.5	45.1	2.7	82.9	29.1	9.0	77.8	52.6	1.2	76.5	62.5	1.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	71.5	45.1	2.7	82.9	29.1	9.0	77.8	52.6	1.2	76.5	62.5	1.2
LOS	Е	D	Α	F	С	Α	Е	D	Α	Е	E	Α
Approach Delay		43.1			28.6			53.4			56.3	
Approach LOS		D			С			D			E	
Queue Length 50th (m)	31.4	~178.5	0.0	8.2	152.9	18.2	60.2	63.9	0.0	32.8	51.3	0.0
Queue Length 95th (m)	50.4	#229.9	8.6	m6.3	m97.3	m10.4	#97.9	82.0	0.0	53.7	67.1	0.0
Internal Link Dist (m)		70.6			585.3			86.9			77.9	
Turn Bay Length (m)	124.5		58.5	134.0		91.5			85.0	65.0		60.0
Base Capacity (vph)	251	1437	719	90	1180	661	316	792	481	218	594	450
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.50	0.90	0.21	0.46	0.93	0.21	0.78	0.65	0.22	0.61	0.66	0.21
Intersection Summary												

ntersection Summary

Cycle Length: 130

Actuated Cycle Length: 130

Offset: 119 (92%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 115

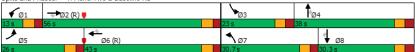
Control Type: Actuated-Coordinated

Scenario 1 780 Baseline Road 11:59 pm 03/16/2022 2034 Future Total-without BRT

Synchro 11 Report Page 1

Lanes, Volumes, Timings 1: Fisher Ave & Baseline Rd

2034 Future Total-without BRT


AM Peak Hour

Maximum v/c Ratio: 0.93
Intersection Signal Delay: 42.8
Intersection LOS: D
Intersection Capacity Utilization 91.6%
ICU Level of Service F
Analysis Period (min) 15
- Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 1: Fisher Ave & Baseline Rd

m Volume for 95th percentile queue is metered by upstream signal.

Scenario 1 780 Baseline Road 11:59 pm 03/16/2022 2034 Future Total-without BRT

Synchro 11 Report Page 2

2034 Future Total-without BRT PM Peak Hour

	*	-	•	•	•	*	1	1	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	7	^	7	*	^	7	7	^	7
Traffic Volume (vph)	90	1342	257	185	1259	179	195	396	97	154	681	148
Future Volume (vph)	90	1342	257	185	1259	179	195	396	97	154	681	148
Satd. Flow (prot)	1658	3283	1483	1642	3316	1483	1658	3316	1455	1658	3283	1483
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1652	3283	1401	1631	3316	1425	1643	3316	1396	1639	3283	1391
Satd. Flow (RTOR)			127			154			129			129
Lane Group Flow (vph)	90	1342	257	185	1259	179	195	396	97	154	681	148
Turn Type	Prot	NA	Perm									
Protected Phases	5	2		1	6		7	4		3	8	
Permitted Phases			2			6			4			8
Detector Phase	5	2	2	1	6	6	7	4	4	3	8	8
Switch Phase												
Minimum Initial (s)	5.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0	10.0	5.0	10.0	10.0
Minimum Split (s)	11.3	29.2	29.2	11.3	29.2	29.2	10.9	30.3	30.3	10.9	30.3	30.3
Total Split (s)	21.0	54.0	54.0	21.0	54.0	54.0	24.7	30.3	30.3	24.7	30.3	30.3
Total Split (%)	16.2%	41.5%	41.5%	16.2%	41.5%	41.5%	19.0%	23.3%	23.3%	19.0%	23.3%	23.3%
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	2.6	2.5	2.5	2.6	2.5	2.5	2.6	2.5	2.5	2.6	2.5	2.5
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.3	6.2	6.2	6.3	6.2	6.2	5.9	5.8	5.8	5.9	5.8	5.8
Lead/Lag	Lead	Lag	Lag	Lead	Lag	Lag	Lag	Lag	Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes									
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None	None	None	None	None
Act Effct Green (s)	11.8	47.8	47.8	15.6	51.6	51.6	17.9	26.3	26.3	16.1	24.5	24.5
Actuated g/C Ratio	0.09	0.37	0.37	0.12	0.40	0.40	0.14	0.20	0.20	0.12	0.19	0.19
v/c Ratio	0.60	1.11	0.43	0.94	0.96	0.27	0.86	0.59	0.25	0.75	1.10	0.40
Control Delay	72.6	100.9	17.5	107.1	55.3	7.3	86.7	51.5	4.7	77.2	115.7	14.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	72.6	100.9	17.5	107.1	55.3	7.3	86.7	51.5	4.7	77.2	115.7	14.0
LOS	Е	F	В	F	Е	Α	F	D	Α	Е	F	В
Approach Delay		86.7			55.9			54.9			94.3	
Approach LOS		F			Е			D			F	
Queue Length 50th (m)	22.4	~206.8	23.7	48.1	166.8	4.0	49.1	49.0	0.0	38.3	~104.1	4.1
Queue Length 95th (m)	39.5	#249.1	47.3	#95.9	#223.8	19.8	#87.4	66.7	7.6	60.8	#141.8	23.0
Internal Link Dist (m)		45.3			582.5			85.7			67.0	
Turn Bay Length (m)	138.0		50.0	134.0		91.5	127.0		85.0	65.0		60.0
Base Capacity (vph)	187	1207	595	197	1315	658	239	670	385	239	618	366
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.48	1.11	0.43	0.94	0.96	0.27	0.82	0.59	0.25	0.64	1.10	0.40
Intersection Summary												

Cycle Length: 130

Actuated Cycle Length: 130 Offset: 123 (95%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Natural Cycle: 135

Control Type: Actuated-Coordinated

Scenario 1 780 Baseline Road 7:50 am 03/16/2022 2034 Future Total-without BRT

Synchro 11 Report Page 1

Lanes, Volumes, Timings 1: Fisher Ave & Baseline Rd

2034 Future Total-without BRT PM Peak Hour

Maximum v/c Ratio: 1.11 Intersection Signal Delay: 73.8 Intersection LOS: E Intersection Capacity Utilization 101.5% Analysis Period (min) 15 ICU Level of Service G Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Appendix L

MMLOS Analysis

Multi-Modal Level of Service - Intersections Form

Consultant	CGH Transportation Inc.	Project	2021-083
Scenario	Existing/Future	Date	10/24/2022
Comments			

	NTERSECTIONS Fisher Avenue at Baseline Road (Existing)				Prince of Wales Drive at Baseline Road/Heron Road (Existing)				Fisher Avenue at Baseline Road (Future)				Prince of Wales Drive at Baseline Road/Heron Road (Future)				Fisher Avenue at Deer Park Road/Dynes Road				
	Crossing Side					NORTH				NORTH				NORTH				NORTH			WEST
Pedestrian	Lanes	6	7	6	7	7	6	9	9	7	9	10+	10+	7	7	9	9	5	5	3	3
	Median	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	Median > 2.4 m	Median > 2.4 m	Median > 2.4 m	Median > 2.4 m	Median > 2.4 m	Median > 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m			
	Conflicting Left Turns	Dont out of	Protected	Destroyed	Destroyed	Protected	Destroyed	Protected	Destructed	Protected	Destroye	Destroy d	D-st-st-st	Dont on a	Protected	Destroyed	Protected	Permissive	Description	Description	Permissive
	Conflicting Left Turns	Protected	Protected	Protected	Protected	Protected	Protected	Protected	Protected	Protected	Protected	Protected	Protected	Protected	Protected	Protected	Protected	Permissive	Permissive	Permissive	Permissive
	Conflicting Right Turns		Permissive or yield			Permissive or yield		Permissive or yield	Permissive or yield		Permissive or yield			Permissive or yield		Permissive or yield		Permissive or yield	Permissive or yield		Permissive or yield
	Connecting regit runis	control	control	control	control	control	control	control	control	control	control	control	control	control	control	control	control	control	control	control	control
	Right Tums on Red (RToR) ?	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR prohibited	RTOR prohibited	RTOR prohibited	RTOR prohibited	RTOR prohibited	RTOR prohibited	RTOR prohibited	RTOR prohibited	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed
	Ped Signal Leading Interval?	No	No .	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
	Right Turn Channel	Conventional with Receiving Lane	Conventional with Receiving Lane	Conventional with Receiving Lane	Conventional with Receiving Lane	Conv'tl without Receiving Lane	Conv'tl without Receiving Lane	Conventional with Receiving Lane	Conv'tl without Receiving Lane	No Channel	No Channel	No Channel	No Channel	Conv'tl without Receiving Lane	Conv'tl without Receiving Lane	No Channel	No Channel	No Channel	No Channel	No Channel	No Channel
	Comer Radius	15-25m	15-25m	15-25m	15-25m	>25m	>25m	>25m	>25m	15-25m	15-25m	15-25m	15-25m	>25m	>25m	>25m	>25m	10-15m	10-15m	15-25m	10-15m
		Std transverse	Std transverse	Std transverse	Std transverse	Zebra stripe hi-vis	Zebra stripe hi-vis	Zebra stripe hi-vis	Zebra stripe hi-vis	Std transverse	Std transverse	Std transverse	Std transverse	Zebra stripe hi-vis	Zebra stripe hi-vis			Zebra stripe hi-vis	Zebra stripe hi-vis	Zebra stripe hi-vis	
	Crosswalk Type	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings
	PETSI Score	27	11	27	11	16	32	-20	-17	13	-20	-26	-26	25	25	-9	-9	40	40	71	73
	Ped. Exposure to Traffic LoS	F	F	F	F	F	E	#N/A	#N/A	F	#N/A	#N/A	#N/A	F	F	F	F	Е	Е	С	С
	Cycle Length	130	130	130	130	130	130	130	130	130	130	130	130	130	130	130	130	95	95	95	95
	Effective Walk Time	7	7	21	34	10	10	11	19	9	7	28	31	10	10	11	19	83	83	76	76
	Average Pedestrian Delay	58	58	46	35	55	55	54	47	56	58	40	38	55	55	54	47	1	1	2	2
	Pedestrian Delay LoS	E	E	E	D	E	E	E	E	E	E	Е	D	E	Е	E	E	A	A	Α	A
		F	F	F	F	F	E	#N/A	#N/A	F	#N/A	#N/A	#N/A	F	F	F	F	E	E	С	С
	Level of Service	E		E			F			E				F							
		F		r e			T .			,				-							
	Approach From	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST
Bicycle	Bicycle Lane Arrangement on Approach	Curb Bike Lane,	Curb Bike Lane,	Mixed Traffic	Mixed Traffic	Curb Bike Lane,	Curb Bike Lane,	Mixed Traffic	Mixed Traffic	Curb Bike Lane,	Curb Bike Lane,	Curb Bike Lane,	Curb Bike Lane,	Curb Bike Lane,	Curb Bike Lane,	Curb Bike Lane,	Curb Bike Lane,	Curb Bike Lane,	Curb Bike Lane,	Curb Bike Lane,	Curb Bike Lane,
		Cycletrack or MUP	Cycletrack or MUP			Cycletrack or MUP	Cycletrack or MUP			Cycletrack or MUP	Cycletrack or MUP	Cycletrack or MUP	Cycletrack or MUP	Cycletrack or MUP	Cycletrack or MUP	Cycletrack or MUP	Cycletrack or MUP	Cycletrack or MUP	Cycletrack or MUP	Cycletrack or MUP	Cycletrack or MUP
	Right Turn Lane Configuration	Not Applicable	Not Applicable	> 50 m	> 50 m	Not Applicable	Not Applicable	> 50 m	> 50 m	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
		Not Applicable	Not Applicable	>25 km/h	>25 km/h	Not Applicable	Not Applicable	>25 km/h	>25 km/h	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
	Right Turning Speed Cyclist relative to RT motorists	Not Applicable	Not Applicable	>25 KM/M	>25 KHVN	Not Applicable	Not Applicable	>25 KHVN	>25 KM/N	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable
	Separated or Mixed Traffic	Separated	Separated Separated	Mixed Traffic	Mixed Traffic	Separated Separated	Separated Separated	Mixed Traffic	Mixed Traffic	Separated	Separated	Separated Separated	Separated Separated	Separated Separated	Separated Separated	Separated Separated	Separated Separated	Separated Separated	Separated Separated	Separated Separated	Separated Separated
			осраниси																		
	Left Turn Approach	≥ 2 lanes crossed	≥ 2 lanes crossed	One lane crossed	One lane crossed	≥ 2 lanes crossed	≥ 2 lanes crossed	≥ 2 lanes crossed	≥ 2 lanes crossed	2-stage, LT box	2-stage, LT box	2-stage, LT box	2-stage, LT box	2-stage, LT box	2-stage, LT box	2-stage, LT box	2-stage, LT box	2-stage, LT box	2-stage, LT box	2-stage, LT box	2-stage, LT box
	Operating Speed	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	> 50 to < 60 km/h
	Left Turning Cyclist	F	F	F	F	F	F	F	F	A	Α	Α	Α	Α	Α	A	A	A	Α	Α	A
		F	F	F	F	F	F	F	F	Α	Α	A	Α	А	Α	Α	Α	А	Α	Α	Α
	Level of Service			_				_													
		F				F				A					A				A		
Truck Transit	Average Signal Delay	> 40 sec	> 40 sec	> 40 sec	> 40 sec		> 40 sec	> 40 sec	> 40 sec	> 40 sec	> 40 sec	> 40 sec	> 40 sec		> 40 sec	> 40 sec	> 40 sec	≤ 20 sec	≤ 20 sec		
		F	F	F	F	-	F	F	F	F	F	F	F	-	F	F	F	С	С	-	-
	Level of Service			E				E				-				E				<u></u>	
		<u> </u>			· ·					•				r				С			
	Effective Corner Radius	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m				
	Number of Receiving Lanes on Departure from Intersection	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2	≥ 2				
	Level of Service	A	A	А	А	Α	A	A	Α	Α	A	A	A	A	А	А	A	-		-	-
	Level of Service	A				A				A				A							
	Volume to Capacity Ratio	> 1.00				> 1.00				> 1.00				> 1.00				0.61 - 0.70			
Auto		F				F.				E				F				B			
	Level of Service															-					