Novatech Engineering Consultants Limited 240 Michael Cowpland Drive, Suite 200 Ottawa, ON K2M 1P6 Phase Two Environmental Site Assessment 393 McArthur Avenue Ottawa, Ontario June 2, 2022 Project: 64819.22 - V02 GEMTEC Consulting Engineers and Scientists Limited 32 Steacie Drive Ottawa, ON, Canada K2K 2A9 June 2, 2022 File: 64819.22 – V02 Novatech Engineering Consultants Limited 240 Michael Cowpland Drive, Suite 200 Ottawa, ON K2M 1P6 Attention: Murray Chown, MCIP, RPP. Re: Phase Two Environmental Site Assessment 393 McArthur Avenue Ottawa, ON Enclosed is our Phase Two ESA report for the above-noted for your review. The Phase Two ESA was completed in accordance with O.Reg 153/04, and describes the environmental conditions encountered at the property. We trust this information is sufficient for your current needs. If you have any questions or require further information, please contact the undersigned. Nicole Soucy, M.A.Sc., P.Eng Environmental Engineer Shaun Pelkey, M.Sc.E., P.Eng. Principal Engineer, Vice President KM/NS/DP/SP/EW Enclosures $\verb|\Lucid| Drawings and Files | Projects | 64800 | 64819.22 | Phase Two ESA | Report | 64819.22 | Phase Two ESA | RPT01 | V03 | 2022-06-02. docx | Phase Two ESA | RPT01 | V03 | Phase Two ESA Phase$ ### 1.0 EXECUTIVE SUMMARY GEMTEC Consulting Engineers and Scientist Limited (GEMTEC) was retained by Novatech Engineering Consultants Limited (Novatech) to carry out a Phase Two Environmental Site Assessment (ESA) for the property located at 393 McArthur Avenue, in Ottawa, Ontario (the 'subject property'). The property is legally described as Part of Lot 7, Concession Junction Gore, Being part 1 on Plan 5R-12736, City of Ottawa. The regional location plan is shown on Figure A.1, Appendix A. GEMTEC understands that the Phase Two ESA is required in support of a proposed development, with potential re-zoning of the property from vacant (or commercial) to residential land-use. Change in land use from vacant 'commercial' to residential' would represent a shift to a more stringent land use, a condition that would make the filing of a Record of Site Condition (RSC) mandatory under the Ontario Regulation (O.Reg.) 153/04 under the Environmental Protection Act. This Phase Two ESA was conducted in accordance of O.Reg 153/04, and may be used to support a future RSC application for the property, provided a legal survey of the property, and lawyers letter are included in the RSC application. Based on the findings of the Phase One ESA, GEMTEC identified four areas of potential environmental concern (APECs) at the subject property. These APECs are associated with the use of salt for de-icing purposes, importation of fill of unknown origin and a hydrocarbon spill from a truck on the subject property. One off-site potentially contaminating activity (dry cleaner) was identified within the study area with a potential to impact the subject property through contaminant migration. The Phase Two ESA included the installation of four boreholes BH19-1 to BH19-4, three of which were completed as monitoring wells (MW19-1, MW19-3 and MW19-4) to a maximum depth of 9.22 metres below ground surface (m bgs) and collection of soil and groundwater samples for chemical analysis. Soil and groundwater samples were analyzed for concentrations of metals and inorganics (M&I), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and petroleum hydrocarbons (PHCs). Analytical results were compared to the Ministry of the Environment, Conservation and Parks (MECP) Table 3 Site Condition Standards (SCS) for residential / parkland / institutional (RPI) property use in a non-potable groundwater setting and coarse textured soil. The following is a summary of the contaminants of concern identified in soil at the subject property: The electrical conductivity (EC) and sodium adsorption ratio (SAR) in a soil sample collected at the depth of 0.61 to 1.22 m bgs (silty sand fill) at BH19-2 was 0.707 mS/cm and 8.97, marginally exceeding the Table 3 SCS of 0.7 mS/cm and 5, respectively. An underlying sample collected from 4.27 to 4.88 m bgs (native glacial till) was below the Table 3 SCS for both parameters. The EC in a soil sample collected at a depth of 0.61 to 1.22 m bgs (silty sand fill) at BH19-3 was 1.25 mS/cm, exceeding the Table 3 SCS of 0.7 mS/cm. An underlying sample collected from 2.44 to 3.05 m bgs (native glacial till) was below the Table 3 SCS for all M&I parameters. However, it is interpreted that elevated EC and SAR in soil samples originating from the subject property are due to substances that have been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both. As such, according to section 20 (2) of O.Reg 407/19, MECP SCS exceedances of EC, and SAR are not considered to be contamination within the project limits. The soil analytical results are representative only of the sampling locations and conditions may vary between sampling locations. The sampling was conducted to give a general overview of soil quality and final acceptance by a receiving site may require supplemental sampling. The soil and groundwater analytical results are representative only of the sampling locations and conditions may vary between sampling locations. The sampling was conducted to give a general overview of soil and groundwater quality. # TABLE OF CONTENTS | 1.0 | EX | ECUTIVE SUMMARY | II | |----------|-----------|--|-----| | 2.0 | INT | FRODUCTION | . 1 | | 2. | 1 | Site Description | 1 | | 2.: | | Property Ownership | | | 2.3 | | Current and Proposed Future Uses | | | 2. | | Applicable Site Condition Standard | | | 3.0 | | CKGROUND INFORMATION | | | 3. | | Physical Setting | | | 3. | | Past Investigations | | | | ے
3.2. | • | | | | _ | | | | 3. | 3 | Contaminants of Concern | 4 | | 4.0 | SC | OPE OF THE INVESTIGATION | ۷. | | 4. | 1 | Overview of the Site Investigation | 4 | | • | FII | L OF UNKNOWN ORIGIN ON THE SUBJECT SITE; AND, | 2 | | | | | | | 4. | | Media Investigated | | | 4. | | Phase One Conceptual Site Model | | | | 4.3. | | | | | 4.3.2 | | | | | 4.3.4 | 3 3 | | | | 4.3.4 | | | | | 4.3.6 | | | | 4. | | Impediments and Deviations from Sampling and Analysis Plan | | | 5.0 | IN۱ | /ESTIGATION METHOD | - 7 | | 5. | | | | | 5.
5. | | General | | | | | Drilling | | | 5. | | Soil Sampling | | | 5. | | Field Screening Measurements | | | 5. | | Groundwater Monitoring Well Installation | | | 5. | | Groundwater Elevation Monitoring | | | 5. | | Groundwater Sampling | | | 5. | | Analytical Testing | | | 5. | | Residue Management Procedures | | | 5. | 10 | Elevation Surveying | 13 | | 5. | 11 | Qualit | y Assurance and Quality Control Measures | 13 | |------|-------|---------|---|----| | 6.0 | RE | VIEW | AND EVALUATION | 14 | | 6. | 1 | Geolo | gy and Hydrogeology | 14 | | 6. | 2 | Groun | dwater Elevations and Flow Direction | 15 | | 6. | 3 | Groun | dwater Hydraulic Gradients | 16 | | 6. | 4 | Soil Fi | ield Screening | 16 | | 6. | 5 | Soil Q | uality | 16 | | 6. | 6 | Groun | dwater Quality | 17 | | 6. | 7 | Qualit | y Assurance/Quality Control | 18 | | 6. | 8 | Phase | Two Conceptual Site Model | 19 | | | 6.8. | 1 0 | verview | 19 | | | 6.8. | 2 P | roposed Development | 19 | | | 6.8.3 | | ite Stratigraphy | | | | 6.8. | | pproximate Depth to Water Table | | | | 6.8. | | ydrogeological Characteristics | | | | 6.8. | | pplicability of Section 41 and 43.1 of the Regulation | | | | 6.8. | | otential ReceptorsCAs and APECs | | | | 0.0. |) F | CAS and Afecs | ∠۱ | | TAE | SLE 6 | .4: AR | EAS OF POTENTIAL ENVIRONMENTAL CONCERN | 21 | | | 6.8.9 | 9 E | nvironmental Conditions | 21 | | | 6.8. | 10 S | oil Quality | 21 | | | 6.8. | 11 S | oil and Groundwater Quality | 22 | | | 6.8. | 12 A | reas Where Contaminants Are Present | 22 | | 7.0 | CO | NCLU | SIONS AND RECOMMENDATIONS | 22 | | 8.0 | CL | OSUR | E | 23 | | 9.0 | LIM | 1ITATI | ON OF LIABILITY | 24 | | 10.0 |) RE | FEREI | NCES | 25 | ## LIST OF TABLES | Table 4.1: Summary of Borehole and Monitoring Well Location Rationale | 5 | |---|----| | Table 4.2: Summary of PCAs and APECs identified in the Phase One ESA | 0 | | Table 5.1: Details of Monitoring Well Installations | 11 | | Table 5.2 Summary of Residue Management Procedures | 12 | | Table 6.1 Summary of Groundwater Levels – October 18, 2019 | 15 | | Table 6.2: Summary of Soil Samples | 16 | | Table 6.3: Groundwater Sample Analyses | 18 | | Table 6.4: Areas of Potential Environmental Concern | 21 | | Table 6.5 Soil Parameters that Exceed Table 3 SCS | 22 | ### LIST OF FIGURES Figure 9.1 -Site Location Figure 9.2 – Site Layout Figure 9.3 – Phase One Conceptual Site Model Figure 9.4 – APECs and Phase Two ESA Sampling Locations Figure 9.5 – Plan Distrubution of Soil and Groundwater Quality Exceedances Figure 9.6 – Cross Section A-A' Soil Quality Exceedances Figure 9.7 - Cross Section B-B' Soil Quality Exceedances ### LIST OF APPENDICES Appendix A - Figures Appendix B – Soil and Groundwater Summary Tables Appendix C – Sampling and Analysis Plan Appendix D – Bore Hole Logs Appendix E - Certificate of Analysis ### 2.0 INTRODUCTION GEMTEC Consulting Engineers and Scientist Limited (GEMTEC) was retained by Novatech Engineering Consultants Limited (Novatech) to carry out a Phase Two Environmental Site Assessment (ESA) for the property located at 393 McArthur Avenue, in Ottawa, Ontario (the 'subject property'). Hydrogeological and geotechnical investigations are being completed under separate covers for the project. The property is legally described as Part of Lot 7, Concession Junction Gore, Being part 1 on Plan 5R-12736, City of Ottawa. The regional location plan is shown on Figure 9.1. GEMTEC understands that the Phase Two ESA is required in support of a proposed development, with
potential re-zoning of the property from vacant (or commercial) to residential land-use. Change in land use from vacant 'commercial' to residential' would represent a shift to a more stringent land use, a condition that would make the filing of a Record of Site Condition (RSC) mandatory under the Ontario Regulation (O.Reg.) 153/04, and O.Reg 407/19 under the Environmental Protection Act. This Phase Two ESA was conducted in general accordance of O.Reg 153/04, and may be used to support a future RSC application for the property, provided a legal survey of the property, and lawyers letter are included in the RSC application. ## 2.1 Site Description The subject property is rectangular in shape with approximately 21 m of frontage along McArthur Avenue and 57 m along the west side of Belisle Street, with an area of approximately 0.16 hectares (0.4 acres). The subject property is currently vacant with concrete block barricades around the property perimeter and a gated entrance off McArthur Avenue. Authorization to proceed with the work was granted to GEMTEC by Mr. Murray Chown of Novatech on July 16, 2019. Mr. Chown can be reached at 613-254-9643. ### 2.2 Property Ownership The subject property is owned by Elite Home Management and is located on the northwest quadrant of McArthur Avenue and Belisle Street. ### 2.3 Current and Proposed Future Uses As described above, the subject property is currently vacant. GEMTEC understands that the Phase Two ESA is required for a potential re-zoning to residential, or mixed residentla-commercial land use. ## 2.4 Applicable Site Condition Standard The MECP SCS are established under Part XV.1 of the Ontario Environmental Protection Act (EPA). Tabulated generic criteria are provided in the MECP document "Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (SGWS), dated March 9, 2004 and amended in April, 2011. For the purposes of this assessment, GEMTEC selected the MECP Table 3 SCS for residential / parkland / institutional (RPI) property use in a non-potable groundwater setting and coarse textured soil based on the following assumptions: - The Rideau River is situated approximately 1.5 km west of the subject property, which flows north towards the Ottawa River approximately 3.2 km north of the subject property; - Records indicated that six wells were identified within the study area; - Surrounding properties are a mix of residential, commercial, and community use; - The subject property is currently vacant, and is proposed to be developed into residential; - The subject property is 60 m above sea level (asl), and topography at the subject site and surrounding topography slopes down towards the west; - Geology mapping suggests that the subject property consists of dark brown to black shale, with laminations of calcareous siltstone underlying clay and silt underlying erosional terraces; - The surrounding properties are serviced by municipal water obtained from a surface water source (Ottawa River); - The subject property is not situated within a sensitive area (e.g. ANSI) or within 30 m of a waterbody; - Soil is consistent with the definition of coarse textured soils as per O. Reg. 153/04; - Stratified soil conditions were not used for evaluating laboratory result; and, - The site is not environmentally sensitive. Although the site currently has commercial use, proposed future development and use includes residential structures or units in addition to commercial uses, therefore, residential standards are applied during the Phase Two ESA. ### 3.0 BACKGROUND INFORMATION ### 3.1 Physical Setting Surficial and bedrock geology maps of the Ottawa area indicate that the overburden in the vicinity of the subject property generally consists of clay and silt underlying erosional terraces with a thickness between 2 and 5 metres (ESRI, 2016). Bedrock beneath the site is mapped as dark brown to black shale, with laminations of calcareous siltstone of the Billings Formation (ESRI, 2016). The review indicated that the subject property is approximately 60 m above sea level, and topography at the subject site and surrounding topography slopes downward towards the west. The Rideau River is situated approximately 1.5 km west of the subject property, and the Ottawa River is situated approximately 3.2 km north of the subject property. It is anticipated that the local shallow groundwater flow is westward towards the Rideau River, located approximately 1.5 kilometers (km) west of the subject site. ## 3.2 Past Investigations ### **3.2.1 Phase One ESA, GEMTEC – 2019** A Phase One ESA was completed for the subject property by GEMTEC dated May 31, 2022 in general accordance of O.Reg 153/04. Through an evaluation of the information from the records review, interview, and the site reconnaissance, GEMTEC identified Areas of Potential Environmental Concern (APECs) with the potential to impact soil and groundwater conditions at the subject property. The APECs identified at the subject property included: ## **APEC 1: Operation of Dry-Cleaning Equipment at 387 McArthur Avenue** The Ecolog ERIS report, city directory, and site reconnaissance identified 387 McArthur Avenue as a dry cleaner. As detailed in the ERIS manufacturing directory: Men's and boys' cut and sew suit, coat and overcoat manufacturing, and dry cleaning and laundry services. # APEC 2: Use of Salt for De-Icing purposes on the Subject Property It was identified through the site interview and aerial photographs that the subject property has been historically used as a commercial parking lot. As such, salt has likely been used at 393 McArthur Avenue as a de-icing agent. ### APEC 3: Importation of Fill Material of Unknown Quality on the Subject Property Fill material of unknown origin may have been brought to site during the development of the site as a parking lot or during the development of the structures historically present on the subject site. Furthermore, since no records are available regarding the demolishment of the historical buildings, deleterious building material may still be present on the subject property. ## **APEC 4: Hydrocarbon Spill from Truck on the Subject Property** A white pick-up truck was identified during the site reconnaissance. The truck was located on the east side of the property, staining and a hydrocarbon odour were identified on the asphalt below the truck. A Phase Two ESA was recommended to be completed for the subject property to investigate soil and groundwater quality in the vicinity of the identified APECs and assist in the preparation of a remedial or risk management strategy for the development of the subject property, if necessary. ### 3.3 Contaminants of Concern Contaminants of potential concern (COPCs) in soil and groundwater, associated with past activities at the subject property and adjacent lands include: metals and inorganics (M&I), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs) and petroleum hydrocarbon compounds (PHCs). ### 4.0 SCOPE OF THE INVESTIGATION ## 4.1 Overview of the Site Investigation The intent of the Phase Two ESA is to address both on-site and off-site Potentially Contaminating Activities (PCAs), and on-site Areas of Potential Environmental Concern (APECs) identified through the preparation of the Phase One ESA against MECP Table 3 SCS to support the development of a residential development. The Phase Two ESA sampling and analysis plan is included in Appendix A of this report. APECs identified during the Phase One ESA (GEMTEC, 2022) to exist on the subject site include: - Operation of Dry Cleaning Equipment; - Hydrocarbon Spill; - · Fill of Unknown Origin on the Subject Site; and, - Salt Manufacturing, Processing and Bulk Storage. To meet the objective, the following tasks were completed during the Phase Two ESA: - Preparation of a sample and analysis plan to document the rationale for the investigation, including the number of sampling points, sample frequency, analytical parameters and media to be sampled – A copy of the sampling and analysis plan can be found in Appendix A; - Co-ordination with the drilling contractor George Downing Estate Drilling Ltd. (Downing) and public locators to obtain utility locates near the proposed borehole locations; - Providing supervision during drilling to obtain samples of soil that are representative of the worst-case conditions observed during the investigation; - Advancement of four boreholes to a maximum depth of 9.22 metres (m). Soil samples were recovered from each borehole. Three of the boreholes (BH19-1, BH19-3 and BH19-4) were completed as groundwater monitoring wells, constructed with 51 mm diameter polyvinyl chloride (PVC) pipe with 1.5 and 3.0 m long screens and flush-mounted / monument casings; - Collection, screening and classifying soil samples at each borehole location for possible laboratory analysis. Soil sample headspace vapours were monitored using a combustible gas indicator (CGI) and a photoionization detector (PID), to assess the presence of VOCs and combustible petroleum contaminants; - Soil samples were selected for submission to AGAT Laboratories (AGAT), a CALA-accredited laboratory for chemical analysis of metals and inorganics (M&I), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), petroleum hydrocarbons (PHCs) including benzene, toluene, ethylbenzene and xylenes (BTEX); - Field screening soil vapour concentrations and water levels in the monitoring wells; - Collection of groundwater samples from the monitoring well and submission for the analysis of M&I, PHCs and VOCs; - Collection of quality assurance / quality control (QA/QC) duplicate samples at a frequency of 10% throughout the field program; and, - Comparison of laboratory analytical results of soil and groundwater samples to the MECP Table 3 for residential / parkland / institutional land use for coarse textured soils. ## 4.2 Media Investigated Boreholes were advanced
on site to access if the soil and groundwater conditions at selected test locations satisfy the applicable MECP SCS for the site. Boreholes were advanced using a truck-mounted drill rig supplied and operated by George Downing Estate Drilling Ltd. of Grenville-sur-la-Rouge, Quebec. Standard penetration testing was carried out in the boreholes using drive open sampling equipment. COPCs identified in the Phase One ESA (GEMTEC, 2022) for soil and groundwater at the site include metals and inorganics, PAHs, PHCs and BTEX, and possibly VOCs. The soil sampling program included the submission of a minimum of one representative overburden/fill soil sample from each borehole for laboratory analysis of the parameters summarized above. Duplicate soil samples were collected and analysed for QA/QC purposes at a frequency of one in 10 samples. The groundwater investigation program consisted of the collection of groundwater elevations from all three monitoring wells and the development, purging and sampling of groundwater for laboratory analysis of COCs. Duplicate groundwater samples were collected and analysed for QA/QC purposes at a frequency of one in 10 samples. The table below indicates the rational for each borehole and monitoring well location and the associated contaminants of concern. Table 4.1: Summary of Borehole and Monitoring Well Location Rationale | Borehole
ID | Rational for Location | Contaminants
of Potential
Concern | |----------------|---|---| | BH/MW
19-1 | This borehole is situated down gradient of the dry cleaning facility. Soil and overburden groundwater quality impacts from APEC 1 will be investigated at this location. Potential salt from winter maintenance | Metals &
Inorganics | | Borehole
ID | Rational for Location | Contaminants
of Potential
Concern | |----------------|---|---| | | impacts from APEC 2, and importation of fill material from APEC 3 will be investigated at this location. | VOCs
PAHs | | BH19-2 | This borehole is situated near the location where historical buildings are believed to have been on site, and demolition would have occurred. Potential salt from winter maintenance impacts from APEC 2, and importation of fill material from APEC 3 will be investigated at this location. | Metals & Inorganics VOCs PAHs PHCs | | BH/MW
19-3 | This borehole is situated near the hydrocarbon spill that was identified on the subject property. Soil and overburden groundwater quality impacts from APEC 4 will be investigated at this location. Potential salt from winter maintenance impacts from APEC 2, and importation of fill material from APEC 3 will also be investigated at this location. | Metals &
Inorganics
PAHs | | BH/MW
19-4 | This borehole is situated down gradient of the hydrocarbon spill that was identified on the subject property. Soil and overburden groundwater quality impacts from APEC 4 will be investigated at this location. Potential salt from winter maintenance impacts from APEC 2, and importation of fill material from APEC 3 will also be investigated at this location. | Metals &
Inorganics
PAHs
PHCs | # 4.3 Phase One Conceptual Site Model Interpreting the probable environmental conditions of the 393 McArthur Avenue site is undertaken by reference to a Phase One Conceptual Site Model (CSM). A Conceptual Site Model is an idealization of potential site contaminants and their interaction with the hydrogeological system and surrounding properties, based on the known conditions of a site. The CSM includes a description of the potential contaminating activities at the Phase One ESA property and surrounding properties, identifying COCs and their source locations, and defining on-site APECs for further investigation. Information considered in the development of this CSM was gathered from numerous sources (i.e. aerial photographs, city directories, environmental database searches, physical setting sources, interviews and a site reconnaissance), which reduces the potential for not identifying a former property use or PCA. ## 4.3.1 Current and Proposed Future Site Use The subject property is rectangular in shape with approximately 21 m of frontage along McArthur Avenue and 57 m along the west side of Belisle Street, with an area of approximately 0.16 hectares (0.4 acres). The subject property is currently vacant with concrete block barricades around the property perimeter and a gated entrance off of McArthur Avenue. GEMTEC understands that the Phase Two ESA is required for a potential re-zoning to residential, or mixed residential-commercial land use. ## 4.3.2 Waterbodies and Areas of Natural and Scientific Interest No surface water, lagoon or standing water is located on-site or within 250 m of the site. A review of the interactive natural heritage map published by the Ministry of Natural Resources and Forestry (MNRF, 2015), identified no areas of natural and scientific interested on-site or within 250 m of the site. Records indicated that six wells were identified within the study area. A topographic map based on Ontario Basic Mapping identified the subject property is 60 m asl, and topography at the subject site and surrounding topography slopes down towards the west. The Rideau River is situated approximately 1.5 km west of the subject property, which flows north towards the Ottawa River approximately 3.2 km north of the subject site. Groundwater flow often reflects topographic features and typically flows toward nearby lakes, drains and wetland areas. Based on the topography of the area, it is expected that the local shallow groundwater flow is north. ## 4.3.3 Existing Buildings and Structures The subject property is currently vacant, however, it was formerly developed with multiple structures. ### 4.3.4 PCAs, CoPCs and APECs The Phase One ESA (GEMTEC, 2022) identified several PCAs, and APECs within the Phase One study area; defined in the Phase One as the area located within a 250 metre radius of the site. A summary of PCAs, and APECs as outlined on Table 2 in Schedule D of the Regulation and identified in the Phase One ESA is provided in Table 4.2 below. Table 4.2: Summary of PCAs and APECs identified in the Phase One ESA | Type of PCA | Address /
Location | Distance
from
Subject
Property | Description | PCA
Resulted
in APEC /
No APEC | Rationale | Material of
Concern | Contaminants of Concern | |--|---------------------------|---|--|---|---|-------------------------|--------------------------------| | 48. Salt
Manufacturing,
Processing and
Bulk Storage | 393
McArthur
Avenue | On the subject site | Use of salts for a paring lot is typically de-icing activity for the winter. | Yes | Based on the use of salt as a de-icing agent on the subject site. | Soil | EC
SAR | | Other - Spill | 393
McArthur
Avenue | On the subject site | A white pick-up truck was located on the east side of the property, staining was identified below the truck and a hydrocarbon odour was identified. | Yes | Based on the presence of hydrocarbon staining and odour on the subject site. | Soil and
Groundwater | PHCs
BTEX
Metals | | 30. Importation of Fill Material of Unknown Quality | 393
McArthur
Avenue | On the subject site | Fill of unknown quantity is expected on site due to the potential of fill material during construction of the parking lot, and due to the demolishment of building historically on-site. | Yes | Based on the likelihood of fill of unknown origin being present on the subject site. | Soil | PAHs
Metals &
Inorganics | | 37 - Operation of
Dry Cleaning
Equipment (where
chemicals are
used) | 387
McArthur
Avenue | Adjacent
west | Listed as McArthur Tailor
and Dry Cleaning, a
men's and boys' cut and
sew suit, coat and
overcoat manufacturing,
dry cleaning and laundry
service. | Yes | Based on the presence of a dry cleaning business at an adjacent property to subject site. | Soil and
Groundwater | VOCs | | 58 - Waste Disposal and Waste Management, including thermal treatment, landfilling and | 373
McArthur
Avenue | Adjacent
northwest | Ottawa Carelton District
School Board listed as
producing paint/ pigment/
coating residues from
2009 to 2016, and as of | No | Based on anticipated groundwater flow direction, and anticipated minimal quantity of | - | - | | Type of PCA | Address /
Location | Distance
from
Subject
Property | Description | PCA
Resulted
in APEC /
No APEC | Rationale | Material of
Concern | Contaminants
of Concern | |---|---------------------------|---
--|---|--|------------------------|----------------------------| | transfer of waste,
other than use of
biosoils as soil
conditioners | | | Dec 2018 and March
2019. | | wastes
produced | | | | 58 - Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners | 390
McArthur
Avenue | 20 metres
south | Richmond Technical
Services - McArthur
Medical Centre listed as
producing
photoprocessing wastes
from 1986 to 1990, and
1992 to 2004, and
pathological wastes from
2014 to as of Mar 2019. | No | Based on
anticipated
groundwater
flow direction,
and anticipated
minimal
quantity of
wastes
produced | - | - | | 31 - Ink
Manufacturing,
Processing and
Bulk Storage | 377
McArthur
Avenue | 25 metres
west | Ray-Tek Printing Inc.
listed as digital printing,
other printing and
business service centers
in 1993. | No | Based on
anticipated
groundwater
flow direction | - | - | | Other - Spill | 400
McArthur
Avenue | 45 metres southeast | City of Ottawa reported a 40 litre douse water spill occurred in 2014 due to vehicle fire. | No | Based on anticipated groundwater flow direction. | - | - | | 31 - Ink
Manufacturing,
Processing and
Bulk Storage | 411
McArthur
Avenue | 70 metres
east | CR Printing listed as quick printing, digital printing, and other printing in 1994. | No | PCB wastes registered for only one year and situated down gradient based on anticipated groundwater flow direction. | - | - | | Type of PCA | Address /
Location | Distance
from
Subject
Property | Description | PCA
Resulted
in APEC /
No APEC | Rationale | Material of
Concern | Contaminants
of Concern | |---|---------------------------|---|---|---|--|------------------------|----------------------------| | 58 - Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners | 780
Church
Street | 70 metres
northeast | Conseil des Ecoles
Catholiques de Langue
listed as producing PCBs
from 1993 to 2001. | No | Based on
anticipated
groundwater
flow direction,
and anticipated
minimal
quantity of
wastes
produced | - | - | | Other - Spill | 362
McArthur
Avenue | 125
metres
southwest | A natural gas release occurred in 2006. | No | Based on distance to subject site and anticipated groundwater flow direction | - | - | | Other - Spill | 415
McArthur
Avenue | 140
metres
east | Enbridge Gas Distribution
Inc. reported an incident
occurred in 2009 when a
1/2" pipeline was hit. A
casual incident analysis
was complete. | No | Based on distance to subject site and anticipated groundwater flow direction | - | - | | 28 - Gasoline and
Associated
Products Storage
in Fixed Tanks | 414
McArthur
Avenue | 145
metres
southeast | 1067323 Ontario Ltd. owned a gasoline service station with at least five fuel storage tanks. Tanks included a 22,700 litre and a 25,500 litre liquid fuel single walled UST for gasoline, one 13,600 litre liquid fuel single walled UST for diesel, and one 13,600 litre liquid fuel | No | Based on
distance to
subject site and
anticipated
groundwater
flow direction | - | - | | Type of PCA | Address /
Location | Distance
from
Subject
Property | Description | PCA
Resulted
in APEC /
No APEC | Rationale | Material of
Concern | Contaminants
of Concern | |---|---------------------------|---|--|---|---|------------------------|----------------------------| | | | | single walled UST with
undefined contents. | | | | | | Other - Spill | 358
McArthur
Avenue | 155
metres
southwest | A natural gas release occurred in 2007 due to a pipeline strike at a construction site. | No | Based on
distance to
subject site and
anticipated
groundwater
flow direction | - | - | | Other - Spill | 350
McArthur
Avenue | 180
metres
southwest | A natural gas release occurred in 2007 due to a pipeline leak. The file was referred back to the MOE as the leak had migrated off-site. | No | Based on
distance to
subject site and
anticipated
groundwater
flow direction | - | - | | 58 - Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners | 420
McArthur
Avenue | 180
metres
southeast | Fred Trottier Construction Ltd. was listed as producing paint/ pigment/ coating residues from 2004 to 2016 and as od Dec 2018 to Mar 2019. | No | Based on
distance to
subject site and
anticipated
groundwater
flow direction | - | - | | 58 - Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of | 420
McArthur
Avenue | 180
metres
southeast | U A P Inc. listed as producing alkaline wastes, and emulsified oils from 1988 to 1990, and 1992 to 1998. | No | Based on
distance to
subject site and
anticipated
groundwater
flow direction | - | - | | Type of PCA | Address /
Location | Distance
from
Subject
Property | Description | PCA
Resulted
in APEC /
No APEC | Rationale | Material of
Concern | Contaminants
of Concern | |---|---------------------------|---|--|---|---|------------------------|----------------------------| | biosoils as soil conditioners | | | | | | | | | 58 - Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners | 485
Donald
Street | 180
metres
southeast | Ottawa Board of Education listed as producing inorganic laboratory chemicals, aliphatic solvents, petroleum distillates, light fuels, halogenated solvents, oils skimmings & sludges, waste oils & lubricants, and organic laboratory chemicals from 1986 to 1990, 1992 to 2016, and as od Dec 2018 to Mar 2019. | No | Based on
distance to
subject site and
anticipated
groundwater
flow direction | - | - | | Other - Spill | 485
Donald
Street | 180
metres
southeast | Ottawa-Carleton District
School Board reported an
unknown volume of oily
water spill occurred in
2005. Environmental
impact was not
anticipated soil
contamination. | No | Based on
distance to
subject site and
anticipated
groundwater
flow direction | - | - | | 58 - Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of | 422
McArthur
Avenue | 200
metres
southeast | Bytown Cat Hospital was listed as producing pharmaceutical wastes, pathological wastes, and photoprocessing wastes from 1992 to 2016, and ad of Dec 2018 to Mar 2019. | No | Based on
distance to
subject site and
anticipated
groundwater
flow direction | - | - | | Type of PCA | Address /
Location | Distance
from
Subject
Property | Description | PCA
Resulted
in APEC /
No APEC | Rationale | Material of
Concern | Contaminants
of Concern | |---|---|---|--|---|---|------------------------|----------------------------| | biosoils as soil conditioners | | | | | | | | | 58 - Waste Disposal
and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners | McArthur
Avenue at
Irwin Miller
Street | 210
metres
west | Greely Construction was listed as producing light fuel wastes in 2014. | No | Based on
distance to
subject site and
anticipated
groundwater
flow direction | - | - | | Other - Spill | 15
Eastwood
Place | 240
metres
west | N R Construction Co. Ltd.
reported a 50 litre
hydraulic oil spill occurred
in 2015 due to equipment
failure. Nature of impact
was land. | No | Based on
distance to
subject site and
anticipated
groundwater
flow direction | - | - | | 52 - Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems | 416
McArthur
Avenue | 165
metres
southeast | Transmission Depot & Eliseo Signorini Garage were kisted as Motor Vehicle Repair Shops & Motor Vehicles, Wholesale. | No | Based on
distance to
subject site and
anticipated
groundwater
flow direction | - | - | | 37 - Operation of
Dry Cleaning
Equipment (where
chemicals are
used) | 425
McArthur
Avenue | 210
metres
east | Dutch Girl Cleaners were
listed as Laundries and
Cleaners | No | Based on distance to subject site | - | - | | Type of PCA | Address /
Location | Distance
from
Subject
Property | Description | PCA
Resulted
in APEC /
No APEC | Rationale | Material of
Concern | Contaminants
of Concern | |--|-------------------------|---|--|---|--|------------------------|----------------------------| | 31 - Ink
Manufacturing,
Processing and
Bulk Storage | 435
Donald
Street | 220
metres
south | Centre Franco Ontarien was listed as commercial printing industry. | No | Based on distance to subject site and anticipated groundwater flow direction | - | - | ## 4.3.5 Subsurface Structures and Utilities Buildings in the study area are fully serviced with hydro, water, natural gas, sanitary and storm sewers. Sewers were observed in the streets adjacent to the subject property. Structures in the study area are connected to overhead hydro and had natural gas hookups on the exterior of their homes. There is potential for underground utilities to affect contaminant transport on or to the subject property. ## 4.3.6 Uncertainty There is uncertainty with the Phase One Conceptual Site Model associated with using well record data, topographic and geology maps from external sources. Information based on these sources may have changed since publishing due to construction, seasonal variations, or other factors. There is also uncertainly associated with the origin of the truck identified on the subject property resulting in the hydrocarbon spill. # 4.4 Impediments and Deviations from Sampling and Analysis Plan The SAP prepared in advance of the Phase Two ESA sampling events are included in Appendix A. The intent of the plans was followed during the investigation, to ensure that the subsurface was adequately assessed at the APECs on the subject property. Deviations to the plans included: - MW19-3 was completed with a 1.52 m long screen; - BH19-2 SA5B and a duplicate sample were analyzed for PHC F1 to F4 including BTEX; - BH19-2 SA5B and BH19-2 SA105B were analyzed for VOCs; and, - MW19-101 (duplicate of MW19-1) was analyzed for PHCs including BTEX. The above noted deviations do not impact the investigation objectives and conclusions of this report. There were no impediments or denial of access that prevented the completion of the original defined scope of the investigation. ### 5.0 INVESTIGATION METHOD #### 5.1 General Prior to any intrusive investigation at the site, underground utility locates were completed, to identify the location of all underground buried utilities at the site. Utilities including telephone, gas, hydro, municipal services and private utilities were cleared through these services. Borehole drilling and soil sampling was completed between 0.0 and 9.2 mbgs using a truck-mounted drill rig. Boreholes were advanced though the overburden using a 203.2mm hollow stem auger, while advancing a 50mm diameter split-spoon at 0.6m intervals. Soil samples were collected by split-spoon soil sampler. Soil samples were logged for stratigraphy, moisture and visual/olfactory evidence of contamination. In addition, soil samples were collected in air tight bags and screened in the field using a photoionization detector (PID). Three of the four boreholes were completed as monitoring wells instrumented with 2" PVC risers, and well screens with 3.05m screen intervals. All new monitoring wells were sampled for groundwater quality in October 2019. Prior to groundwater sampling each monitoring well developed by removing three well volumes several days in advance of to low-flow sampling to ensure that samples were representative of formation conditions. Well development activities were performed using dedicated Waterra inertial hand pumps with purge water being containerized for proper offsite disposal. Groundwater samples were collected using peristaltic pump and dedicated sampling tubing following low-flow parameter stabilization techniques. Samples were collected directly into laboratory supplies sample containers and released to laboratory under chain-of-custody procedures. Samples were collected for analysis of metals, inorganics, PHC/BTEX, and VOCs. Metal samples were field filtered using in-line disposable filters. Field quality control measured used during the Phase Two ESA consisted of the collection of one field duplicated sample for metals & inorganics, PAHs, PHCs, VOCs in soil and one field duplicate for metals & inorganics, PHCs and BTEX analysis in groundwater. Additionally, relative percent difference (RPD) values for comparison of samples to corresponding field duplicates were calculated and compared to MECP quality requirements. Residual wastes generated during drilling activities, such as contaminated soil cuttings and wash water, was contained and sealed on site in approved waste containers. ### 5.2 Drilling Four boreholes, including three monitoring wells were advanced at the site to assess the soil and groundwater conditions in accordance with the sampling plan described in the Drilling Program from the Phase Two ESA Sampling and Analysis Plan. All boreholes were completed by George Downing Estate Drilling Ltd. All drilling was completed using hollow-stem auger, split-spoon techniques and coring methods. Monitoring wells were installed at three of the boreholes. The installed boreholes/monitoring wells are illustrated on Figure 9.2. The boreholes were advanced using a truck-mounted drill rig supplied and operated by George Downing Estate Drilling Ltd. of Grenville-sur-la-Rouge, Quebec. Standard penetration testing was carried out in the boreholes using drive open sampling equipment. Prior to drilling, GEMTEC retained the services of an underground services locating company to coordinate clearance of the public and private buried utilities at the borehole locations. The field work for the borehole investigation was carried out on September 30, 2019, and October 1, 2019. During that time, four boreholes, numbered 19-1 through 19-4, were advanced at the site using both hollow stem auger and rotary diamond drilling techniques, supplied and operated by George Downing Estate Drilling Ltd. of Grenville-sur-la-Rouge, Quebec. Split spoon samples were obtained to assess soil quality. The boreholes were advanced to depths of between 4.9 and 9.2 mbgs, terminated within the glacial till (BH19-1, BH19-2, and BH19-3), and bedrock (BH19-4). Three environmental wells were instrumented with a monitoring well to intercept the groundwater. Monitoring well installation was completed using a 50-mm diameter, 3.05 metre, flush-threaded PVC screen and risers with a silica sand pack and bentonite seal. Solid stem augers were used to drill through the packed gravel/ asphalt surface (approximately 0.1m) prior to the beginning of continuous split spoon soil sampling. Following the collection of each soil sample, the remaining soil was containerized and each split spoon was cleaned. If visual or olfactory evidence contamination was noted during the advancement of a particular borehole than all drilling equipment, including auger flights, split spoons, and drill rods used for coring were decontaminated prior to re-use at the next borehole location. ## 5.3 Soil Sampling All soil samples were collected via a 50mm diameter split-spoon. Samples were split, with a portion transferred immediately into laboratory supplied containers, and placed in a cooler. The remainder of the soils were placed in a re-sealable bag to allow for field screening. For samples considered for laboratory analysis of benzene, toluene, ethylbenzene, xylenes and F1 fraction of hydrocarbon (BTEX-F1), a core was recovered from the undisturbed portion of the bag and placed in laboratory prepared vials containing a measured amount of methanol. Efforts were made to avoid splashing the methanol during the sample placement. Soil samples are identified as BH/MWX-Y where X indicates the year the borehole was constructed and Y is the borehole identifier. For example, BH/MW19-2 indicates the borehole was constructed in 2019 and is identified as borehole number two. Boreholes 19-1, 19-2 and 19-4 encountered a layer of asphaltic concrete and an underlying layer of base/subbase material. The base/subbase material can generally be described as grey, sand and gravel, with some silt. Boreholes 19-1, 19-2 and 19-4 contained fill material below the
existing pavement, and borehole 19-3 has fill material from surface. The fill material can generally be described as brown to reddish brown silty sand, some clay and trace gravel. Glacial till was identified in all four boreholes below the fill material. The glacial till can be generally described as compact to dense light grey silty sand, with some gravel and clay, boreholes 19-1, 19-2, and 19-3 were terminated within the glacial till layer. Bedrock was encountered in borehole 19-4, and was classified as shale bedrock. Borehole stratigraphic logs are included in Appendix B, and borehole locations are shown on Figure 9.2. Site geological conditions were observed in the soil samples and recorded in the field log by a GEMTEC field technologist indicating the colour, odour, texture, soil type and moisture. Clean gloves were worn and changed between each sample and the split barrel sampler was washed and rinsed between each sampling event. Soil samples were inspected in the field for visual, tactile and olfactory evidence of impact. ## **5.4 Field Screening Measurements** Soil samples were screened using an RKI Eagle 2, which operates as a PID and CGI, to measure total organic vapours and combustible vapours. Results of field screening and the soil samples submitted to the laboratory for chemical analysis are included on the borehole logs in Appendix B. The PID was equipped with a 10.6 electron-volt (eV) lamp, which was calibrated with a known concertation of isobutylene. This instrument detects VOCs that emit below an ionization potential of 10.6 eV, which includes a wide range of chemicals such as solvents and fuels. The detection limit of the instrument ranges from 0 to 15,000 ppm, and accuracy is +/- 10% for VOCs in the range of 0 and 2,000 ppm and +/- 20% of the reading above 2,000 ppm. The resolution of this instrument is 0.1 ppm for VOCs in the range of 0 and 1,000 ppm and 1 ppm for readings above 1,000 ppm. The PID provides an indication of organic contamination in soil but does not measure concentrations of individual contaminants. The CGI detects combustible vapours such as those associated with fuels. This instrument measures a concentration of total combustible gas, calibrated to a known concentration of hexane. The instrument operates in the methane elimination mode. The detection limit of the instrument ranges from 0 to 11,000 ppm (i.e., 100 % LEL of hexane). The CGI has an accuracy of 25 ppm below 1,000 ppm and 5% of the lower explosive limit (LEL) between 1,000 ppm and 100% LEL. As with the PID, it provides an indication of contamination but not chemical specific concentrations. The instrument was obtained by GEMTEC from Maxim Environmental & Safety Inc. (Maxim) for this project. Maxim calibrates their instruments on a regular basis, including prior to the use on this project, to ensure consistent results. Site calibration of the field instrument was completed by GEMTEC each day according to the manufacturer's instructions. ## 5.5 Groundwater Monitoring Well Installation Installation of all the monitoring wells were completed using a 50-mm diameter, 3.05 metre length, flush-threaded PVC screen and risers with a silica sand pack and bentonite seal. Each monitoring well was finished at surface with flush-mount protective casings. Silica sand was placed around the screened intervals and bentonite hole plug was used to seal the borehole to ground surface. Monitoring well instrumentation details are included on the borehole stratigraphic logs in Appendix B. Monitoring well instrumentation was completed by George Downing Estate Drilling Ltd., under the direct supervision of GEMTEC personnel. Monitoring wells were installed in three of the four boreholes and were completed in conjunction with the borehole drilling to determine static groundwater elevation, subsurface hydraulic properties, and to permit the collection of groundwater samples for geochemical analysis. Monitoring wells were installed by George Downing Estate Drilling Ltd, a MECP-licenced well driller. Monitoring wells were installed by hand, lowering PVC components through the surface drill casing. Wells were labelled sequentially as MW19-1, MW19-3, and MW19-4, following the same numbering as the boreholes, detailed of the well installations can be found in Table 5.1 **Table 5.1: Details of Monitoring Well Installations** | MW ID | Depth of MW
(m bgs) | Length of Screen
(m) | Screened Interval (m bgs) | |--------|------------------------|-------------------------|---------------------------| | MW19-1 | 6.10 | 3.05 | 3.05-6.10 | | MW19-3 | 4.57 | 1.52 | 3.05-4.57 | | MW19-4 | 7.62 | 3.05 | 4.57-7.62 | m bgs - metres below ground surface Development of monitoring wells took place concurrently with monitoring well purging activities prior to groundwater sampling. ## 5.6 Groundwater Elevation Monitoring On October 15, October 18, and October 30, 2019, groundwater elevations were recorded in all newly installed monitoring wells to determine static groundwater elevations on site. Static groundwater levels were measured relative to Top of PVC Riser (TOPVC) using an electronic water level tape (Heron Instruments water meter). The water level meter probe was decontaminated between wells with soapy water (water and alconox solution) and rinsed with deionised water. Static groundwater levels were recorded to the nearest 0.01m. Top of PVC riser elevations were surveyed into a geodetic elevation in October 2019. ### 5.7 Groundwater Sampling On September 18, 2019 groundwater samples were collected using peristaltic pump and dedicated sample tubing following low-flow parameter stabilization techniques ensuring that the sampled groundwater is representative of formation conditions and not monitoring well conditions. Groundwater samples were collected from monitoring wells using dedicated polyethylene tubing with a peristaltic pump. Groundwater samples were collected from MW19-1, MW19-2, and MW19-4 using a peristaltic pump with tubing lowered to a depth of approximately the mid-point of the well screen. Groundwater samples were collected from the monitoring wells in laboratory supplied bottles. The groundwater samples were collected, stored in dedicated coolers and then submitted to AGAT Laboratories Ltd., a CALA accredited laboratory for analyses. Well development was conducted on October 15, 2019, at the newly installed monitoring wells. The depth to groundwater was measured using an interface probe with water level measurements recorded from the top of the monitoring well PVC pipe. No non-aqueous phase liquid, NAPL (I.e., free product) was noted at the monitoring well locations. The wells were then developed using Waterra tubing and an inertial lift system to remove three well volumes of groundwater and any fine-grained material from around the well screens to ensure proper groundwater movement through the aquifer surrounding the monitoring wells. # 5.8 Analytical Testing Soil and groundwater samples collected for metals/inorganics, PAH, PHC/BTEX, and VOC analysis were collected directly into laboratory-supplied sampling containers. All samples were stored and shipped in coolers with ice packs. Samples were submitted to AGAT Laboratories Ltd., of Mississauga, Ontario, a CALA-certified analytical laboratory, under standard chain-of-custody procedures and in accordance with GEMTEC QA/QC procedures. Complete laboratory analytical reports for 2019 analyses are included in Appendix C. # 5.9 Residue Management Procedures The management of residues such as soil cuttings, purge and development groundwater and fluids from equipment cleaning was conducted as indicated in the following table. **Table 5.2 Summary of Residue Management Procedures** | | Residue | Management Procedure | | | |-----|---|---|--|--| | i. | Soil cuttings from drilling | Soil cuttings from the drilling were placed into steel 205 litre drums and left on-site | | | | ii. | Water from well development and purging | Groundwater from the development and purging of the monitoring wells was emptied into steel 205 litre drums and left on-site. | | | | | Residue | Management Procedure | |------|--------------------------------|---| | iii. | Fluids from equipment cleaning | Equipment cleaning water was emptied into steel 205 litre drums and left on-site. | ## 5.10 Elevation Surveying The borehole and monitoring well locations were selected by GEMTEC Consulting Engineers and Scientists Limited personnel, and were constrained by accessibility and underground service locations. The ground surface elevations at the location of the boreholes (ground surface) and monitoring wells (with elevations from the PVC risers) were determined using a Trimble R10 global positioning system. The coordinates of the boreholes are referenced to NAD83 (CSRS) Epoch 2010, vertical network CGVD28 and are considered to be accurate within the tolerance of the instrument. ## **5.11 Quality Assurance and Quality Control Measures** Soil and groundwater samples collected for metals/inorganics, PAH, PHC/BTEX, VOC analysis were collected directly into laboratory-supplied sampling containers. All samples were stored and shipped in coolers. Samples were submitted to AGAT Laboratories Ltd., under standard chain-of-custody procedures and in accordance with GEMTEC QA/QC procedures. Equipment cleaning procedures for soil sampling consisted of manual cleaning of both split spoons and auger flights. Following each split spoon sample all loose soils were removed from the spoons by heavy brush. Following the removal of loose soils, split spoons were washed prior to a final deionised water rinse. If visual or olfactory evidence of contamination was noted during the advancement of a particular borehole,
all drilling equipment including auger flights and split spoons were decontaminated prior to use at the next borehole. Prior to groundwater sampling, static groundwater levels were determined using an electronic water level tape. To ensure no cross contamination between wells, the water level meter probe was decontaminated between wells with soapy water (water and alconox solution) and then rinsed with deionised water. During the process of groundwater sampling, a multiparameter unit, Horiba U-52, was used to determine field parameters of the groundwater. To ensure no cross contamination, the unit probes as well as flow cell was rinsed with deionised water between each monitoring well. Due to the dedicated nature of all monitoring well instrumentation (Waterra inertial hand pump, ¼-inch and ¾-inch tubing) no decontamination procedures were required during groundwater sampling. All required lengths of tubing for the groundwater sampling (both ¼-inch and ¾-inch tubing) were disposed of after usage at each designated well. New tubing (both ¼-inch and ¾-inch) was used for groundwater sampling at each well. Standard field protocols were strictly adhered to in effort to prevent the contamination of sampling equipment (peristaltic pump) during the groundwater sampling program. Field quality control measures used during the Phase Two ESA consisted of the collection of one field duplicated sample for metals & inorganics, PAHs, PHCs, VOCs in soil and one field duplicate for metals & inorganics, PHCs and BTEX analysis in groundwater. Duplicate soil and groundwater samples were submitted to AGAT Laboratories Ltd. for analysis of selected parameters at a minimum rate of one field duplicate per 10 samples collected. The field duplicate samples will be assessed by calculating the relative percent difference and comparing the average of the analytical testing group to the scientific acceptance criteria ### 6.0 REVIEW AND EVALUATION ## 6.1 Geology and Hydrogeology The surficial geology of the subject site was obtained from the geotechnical investigation conducted by GEMTEC entitled "Geotechnical Investigation, 393 McArthur Avenue, Ottawa, Ontario" and dated November 1, 2019. Borehole logs with detailed soil descriptions and depths are included in Appendix C. The geology encountered during the investigation is detailed within the geotechnical report and summarized below. A layer of asphaltic concrete was encountered at surface at boreholes 19-1, 19-2, and 19-4. The thickness of the asphaltic concrete is about 30 to 80 millimetres. Base/Subbase material was encountered below the asphaltic concrete at boreholes 19-1, 19-2, and 19-4. The base/subbase material consists generally of sand and gravel with some silt and clay content, and extends to depths of about 0.2 to 0.4 metres below surface grade. Fill material was encountered below the base/subbase materials at boreholes 19-1, 19-2, and 19-4, and from surface at borehole 19-3. The fill material can generally be described as dark brown/brown/reddish brown/light brown/grey brown sand to silty sand with some gravel and clay, as well as brick fragments. The thickness of the fill ranges between 0.4 to 2.3 metres, and extends to depths of between 0.8 to 2.5 metres below existing grade (approximate elevation of 60.2 to 61.9 metres). A native deposit of light brown/reddish brown/ grey brown sand and silt with some clay and a trace of gravel was encountered below the fill at boreholes 19-1 and 19-2. The thickness of the silty sand deposit ranges between 0.7 to 2.3 metres, and extends to depths between about 3.1 and 3.2 metres below existing grade (approximate elevation between 59.5 and 59.6 metres). A native deposit of glacial till was encountered below the sand and silt deposit at boreholes 19-1 and 19-2, and below the fill at boreholes 19-3 and 19-4, at depths between about 1.8 and 3.2 metres below existing grade (elevation 59.6 to 61.1 metres). Glacial till is a heterogeneous mixture of all grain sizes, however, the glacial till encountered at this site can be described as dark brown to dark grey to light grey silty sand with some clay and gravel, including shale fragments. Borehole 19-1 was terminated within the glacial till at a depth of 6.1 metres (elevation 56.5 metres). Boreholes 19-2 and 19-3 were terminated due to refusal to further advancement on boulders or inferred bedrock at depths of 4.9 and 7.8 metres below existing grade (elevation 55.2 and 57.8 metres). At borehole 19-3, coring equipment was required in order to penetrate the cobble and boulder obstructions within the glacial till. At borehole 19-4, the glacial till has a thickness of 6.1 metres and extends to a depth of 8.4 metres (elevation 54.4 metres). At borehole 19-4, shale bedrock was encountered at a depth of approximately 8.4 metres below existing grade (elevation 54.4 metres) and was penetrated with the auguring equipment to a depth of about 9.2 metres below existing grade (elevation 53.6 metres), at which depth the borehole was terminated due to anticipated bedrock refusal to further advancement of the borehole. The water table at the site is generally found within the glacial till overburden unit, at depths between 2.8 and 3.2 mBGS. Groundwater monitoring wells were installed specifically to target the groundwater quality in the shallowest aquifer present beneath the site. No aquitard, perched aquifer, or confined aquifer were identified during the 2019 investigations. Groundwater flow is discussed in further detail below. ### 6.2 Groundwater Elevations and Flow Direction The rationale for choosing locations of monitoring wells was to investigate APECs, identified in the Phase One ESA by GEMTEC. The monitoring wells were designed and installed to intersect the inferred groundwater table. A groundwater monitoring program was completed by GEMTEC at the subject property on October 15, 18, and 31, 2019. Free product or sheen was not observed or measured in the monitoring wells as part of this investigation. The measured water levels ranged from 2.86 to 3.11 m bgs in the wells which corresponds to groundwater elevations ranging from 59.65 to 59.92 m asl. A table showing the water levels and elevations is presented in Table 6.1. Table 6.1 Summary of Groundwater Levels – October 18, 2019 | Monitoring Well | Coordinates (UTM NAD 1983
Zone 18N) | | Elevation (m asl) | | | |-----------------|--|-----------|-------------------|--------------------------|-----------------------------------| | ID | Easting | Northing | Ground surface | Groundwater
Elevation | Free product
thickness
(mm) | | MW19-1 | 449141.7 | 5031181.3 | 62.626 | 59.764 | 0.00 | | MW19-3 | 449160.6 | 5031177.7 | 62.928 | 59.921 | 0.00 | | MW19-4 | 449154.0 | 5031189.5 | 62.766 | 59.651 | 0.00 | m asl' - metres above sea level Based on the measured groundwater elevations, the groundwater flow is interpreted to be towards the northwest. The groundwater contours were prepared using groundwater elevations at the subject property measured during the sampling event on October 18, 2019. A plan of groundwater contours is shown in Figure A-3. ### 6.3 Groundwater Hydraulic Gradients The horizontal hydraulic gradients, calculated based on the following monitoring well pairs, are summarized below: - BH19-1 to BH19-3 = 0.008 m/m - BH19-1 to BH19-4 = 0.009 m/m - BH19-3 to BH19-4 = 0.020 m/m The average horizontal hydraulic gradient is approximately 0.012 m/m. It should be noted that vertical hydraulic gradients were not evaluated for the site as only one water bearing unit was encountered at the depths investigated at the site. ## 6.4 Soil Field Screening Soil vapours were screened for soil samples following a period of equilibration to ambient temperature, using a combustible gas detector (RKI Eagle combustible gas detector calibrated to hexane standards, with methane elimination enabled). Combustible headspace soil vapour readings ranged from 0 ppm and 40 ppm. Field screening results are provided with the borehole logs in Appendix B. ### 6.5 Soil Quality Soil samples were selected for analytical analysis based on the combustible headspace gas readings, visual, olfactory and tactile evidence of impact, fill material as well as the proximity to the groundwater table. A total of 13 soil samples (including two duplicates) were submitted to AGAT Laboratories, a CALA accredited laboratory, for analysis of selected parameters. The soil samples submitted for analyses and the selected parameters are summarized in Table 6.3: Table 6.2: Summary of Soil Samples | Sample ID | UMT Coo | rdinates | Sample
Depth
(mBGS) | Sample
Collection
Date | Analysis | |------------|---------|----------|---------------------------|------------------------------|---------------------| | BH19-1 SA2 | 5031181 | 449141 | 0.15-0.61 | 01-Oct-19 | Metals & inorganics | | BH19-1 SA3 | 5031181 | 449141 | 1.52-2.13 | 01-Oct-19 | PAHs, VOCs | | BH19-1 SA5 | 5031181 | 449141 | 3.05-3.66 | 01-Oct-19 | VOCs | | Sample ID | UMT Coo | rdinates | Sample
Depth
(mBGS) | Sample
Collection
Date | Analysis | |---------------|---------|----------|---------------------------|------------------------------|---------------------------------------| | BH19-1 SA7 | 5031181 | 449141 | 4.57-4.82 | 01-Oct-19 | Metals & inorganics, PAHs | | BH19-2 SA2 | 5031193 | 449155 | 0.61-1.22 | 30-Sep-2019 | Metals & inorganics | | BH19-2 SA102 | 5031193 | 449155 | 0.61-1.22 | 30-Sep-2019 | Metals & inorganics | | BH19-2 SA5B | 5031193 | 449155 | 2.51-3.05 | 30-Sep-2019 | PAHs, PHCs, VOCs | | BH19-2 SA105B | 5031193 | 449155 | 2.51-3.05 | 30-Sep-2019 | PAHs, PHCs, VOCs | | BH19-2 SA8 | 5031193 | 449155 | 4.27-4.88 | 30-Sep-2019 | Metals & inorganics, PAHs | | BH19-3 SA2 | 5031177 | 449160 | 0.61-1.22 | 30-Sep-2019 | Metals & inorganics, PAHs | | BH19-3 SA5 | 5031177 | 449160 | 2.44-3.05 | 30-Sep-2019 | Metals & inorganics, PAHs | | BH19-4 SA4 | 5031189 | 449154 |
2.29-2.90 | 01-Oct-19 | Metals & inorganics, PAHs, PHCs, BTEX | | BH19-4 SA6 | 5031189 | 449154 | 3.81-4.42 | 01-Oct-19 | Metals & inorganics, PAHs, PHCs, BTEX | Analytical results for the soil samples submitted for analyses and the selected MECP Table 3 SCS are presented in Tables 9.3 through 9.8 in Section 9. Laboratory Certificates of Analysis for the soil samples are provided in Appendix C. The sample collected from BH19-2 from 0.61 to 1.22 m bgs (SA2 within the silty sand fill) had concentrations of EC, and SAR above the Table 3 SCS, and BH19-3 SA2 (silty sand fill) had a concentration of EC above the Table 3 SCS. The underlying samples were all below the applicable Table 3 SCS for M&I. All other parameters analysed were either not detected or were less than the Table 3 SCS. # 6.6 Groundwater Quality Well screens were installed in the overburden the three boreholes (MW19-1, MW19-2, and MW19-4), to measure the depth to groundwater and to facilitate groundwater sampling. Groundwater samples were collected from the monitoring wells in laboratory supplied bottles using a peristaltic pump with disposable tubing. A total of six groundwater samples (including one duplicate, one groundwater field blank, and one groundwater trip blank) were submitted to AGAT Laboratories for analysis of selected parameters. The groundwater samples submitted for analyses of selected parameters is summarized in Table 6.3 a more detailed description can be found in Table 9.9, in Section 9. **Table 6.3: Groundwater Sample Analyses** | Sample
ID | UMT Coordinates | | Screened MT Coordinates Stratigraphic Interval Unit | | Analysis | | |--------------|-----------------|----------|---|-------------|---------------------------------|--| | | Easting | Northing | 5 | (mASL) | | | | MW 19-1 | 5031181 | 449141 | Overburden | 56.53-59.58 | Metals & inorganics, PHCs, VOCs | | | MW 19-3 | 5031177 | 449160 | Overburden | 58.15-59.67 | Metals & inorganics, PHCs, BTEX | | | MW 19-4 | 5031189 | 449154 | Overburden | 55.31-59.36 | Metals & inorganics, PHCs, BTEX | | Analytical results for the groundwater samples submitted for analyses and the selected MECP Table 3 SCS are presented in Tables 9.9 through 9.13 in Section 9. Laboratory Certificates of Analysis for the soil samples are provided in Appendix C. All parameters analysed were either not detected or were less than the MECP Table 3 SCS. # 6.7 Quality Assurance/Quality Control A quality assurance/quality control (QA/QC) program was implemented during the Phase Two ESA field investigations as described in Section 5.11. The QA/QC program consisted of the use of standard field protocols. The QA/QC program also included internal laboratory QC performed by AGAT Laboratories of Ottawa, Ontario. AGAT completed a variety of QA/QC measures on the soil and groundwater samples submitted as part of this sampling program. These QA/QC measures include: sample replicas, matrix spiked laboratory blanks and process blanks. Based on review of the groundwater analytical report, tap water was reportedly analysed as QC sample testing for duplicate and matrix spike due to insufficient sample volume. No other QA/QC comments were present within the report. A laboratory supplied trip blank for VOCs was transported to the project limits during groundwater sampling activities and submitted to AGAT for VOC analysis to determine if contamination occurred during shipping and field handling procedures. Soil and groundwater samples were randomly selected by GEMTEC field staff for field duplicate testing. Duplicate samples were selected for every 10 samples submitted for analysis. GEMTEC submitted two soil, and one groundwater field duplicate. BH19-2 SA102 was a blind field duplicate of BH19-2 SA2 (0.61 to 1.22 m) and analyzed for M&I, and BH19-2 SA105B was a blind field duplicate of BH19-2 SA5B (2.51 to 3.05 m) and analyzed for PAHs, PHCs and VOCs.MW19-101 was a blind field duplicate of MW19-1 and analyzed for M&I and VOCs, and MW19-104 was a blind field duplicate of MW19-4 and analyzed for PHCs and BTEX. The results from the duplicate samples were used to assess the accuracy and reliability of the laboratory procedures and instruments. Precision is determined by the relative percent difference (RPD) between the set of duplicate samples and was calculated as follows: RPD = $$\frac{ABS(x1 - x2)}{\left(\frac{x1 + x2}{2}\right)} \times 100$$ Where: X1 is the concentration of the original sample; and X2 is the concentration of the duplicate sample; RPD values for homogeneous samples are generally considered acceptable in laboratory QC if they are less than 30%. As well, because the uncertainty associated with a value increases dramatically as the result approaches the MDL, the MECP recommends using a duplicate result in RPD calculations only if the average of the two duplicates is greater than five times the MDL (5x MDL) (MOE, 2004). A calculation of the relative percent difference (RPD) between the sample and its duplicate was performed and compared to the acceptance limits outlined in the 'Protocol for Analytical Methods Used in the Assessment of Properties' under Part XV.1 of the Environmental Protection Act, April 2011. The RPD calculation is only applicable when the average of the sample and the field duplicate concentrations are greater than five times the reported detection limit. The RPDs for soil and groundwater met the MECP Alert criteria which is considered acceptable. ### 6.8 Phase Two Conceptual Site Model #### 6.8.1 Overview The subject property consists of one municipal address, 393 McArthur Avenue. The subject property is rectangular in shape with approximately 21 m of frontage along McArthur Avenue and 57 m along the west side of Belisle Street, with an area of approximately 0.16 hectares (0.4 acres). The subject property is currently vacant with concrete block barricades around the property perimeter and a gated entrance off of McArthur Avenue. The subject property was first developed sometime prior to 1928. A structure is visible on the subject property in the 1928 aerial photograph. Land use in the study area prior to 1928 was primarily agricultural followed by residential, and commercial. ### 6.8.2 Proposed Development GEMTEC understands that the Phase Two ESA is required in support of a proposed development, with potential re-zoning of the property from vacant (commercial) to residential land-use. ## 6.8.3 Site Stratigraphy Geological conditions encountered on the subject property during the drilling program consist of fill materials (sand to silty sand) to depths between 0.8 to 2.5 m bgs underlain by native sand and silt and/or glacial till. The glacial till consists of a heterogeneous mixture of silty sand, clay, gravel and shale fragments. The glacial till extends to approximately 8.4 m bgs, where shale bedrock was encountered. ## 6.8.4 Approximate Depth to Water Table Based on groundwater levels measured on October 31, 2019, the depth to the water table at the site ranges from 2.8 mBGS to 3.2 mBGS (elevations of 59.4m to 60.1m). ## 6.8.5 Hydrogeological Characteristics To date, three groundwater monitoring wells have been advanced at the site and are identified as, MW19-1, MW19-3, and MW19-4, as illustrated on Figure 9.2. Based on groundwater elevations obtained during the Phase Two ESA flow is interpreted to be directed to the north, as illustrated on Figure 9.5. The horizontal hydraulic gradient, calculated based on the two monitoring well pairs, are summarized below: - BH19-1 to BH19-3 = 0.008 m/m - BH19-1 to BH19-4 = 0.009 m/m - BH19-3 to BH19-4 = 0.020 m/m The average horizontal hydraulic gradient is approximately 0.012 m/m. It should be noted that vertical hydraulic gradients were not evaluated for the site as only one water bearing unit was encountered at the depths investigated at the site. ### 6.8.6 Applicability of Section 41 and 43.1 of the Regulation There were no conditions on the subject property which would apply under Section 41 Environmentally Sensitive Areas and Section 43.1 Shallow Soil Property or Lands Present within 30 m of a Water Body of O.Reg 153/04. ### 6.8.7 Potential Receptors On-site human an ecological receptors considered during future site residential use include tenants (potentially including pregnant females and/or children), sub-surface workers and outdoor workers. Off-site human receptors considered during future site residential use include sub-surface workers and indoor workers. Ecological receptors are represented by on-site and off-sited valued urban ecological components such as mammals and birds, plants, and soil organisms. #### 6.8.8 PCAs and APECs The PCAs that created four APECs on the subject property are summarized in the Table 6.4 below. Table 6.4: Areas of Potential Environmental Concern | APEC
| PCA and Location | Location of APEC
on Phase
OnePhase One
Property | Contaminants of
Potential Concern | Media
Potentially
Impacted | |-----------|--|--|--------------------------------------|----------------------------------| | 1 | PCA # 37: Operation of
Dry Cleaning Equipment
at 387 McArthur Avenue | West boundary of subject property adjacent to structure at 387 McArthur Avenue | VOCs | Soil and
Groundwater | | 2 | PCA # 48: Use of Salt for de-icing purposes on the subject property | Across the subject site | EC
SAR | Soil | | 3 | PCA # 30: Importation of
Fill Material of Unknown
Quality on the subject
property | Across the subject site, and two former buildings along east boundary | PAHs
Metals & Inorganics | Soil | | 4 | PCA # Other:
Hydrocarbon spill from
truck on the subject
property | Along the eastern boundary midway through the subject property. | PHCs
BTEX
Metals |
Soil and
Groundwater | #### 6.8.9 Environmental Conditions Based on the findings of the Phase One and Phase Two ESA reports, the applicable Site Condition Standards for the future use of the site is Table 3 Generic Site Condition Standards for use in a Non-Potable Ground Water Condition, Course Textured Soils (MOE, 2011a). Environmental conditions at the subject site, as part of the Phase Two CSM are illustrated in plan view on Figure 9.4 and in cross sections A-A' and B-B', Figures 9.6 and 9.7, respectively. #### 6.8.10 Soil Quality A comparison of analytical results to the MECP Table 3 SCS for coarse-grained soils identified elevated EC and SAR for soil samples collected at BH19-2 and BH19-3 (See Table B-1): Table 6.5 Soil Parameters that Exceed Table 3 SCS | Analytical Suite | BH ID / Sample
ID | Parameter | Concentration | Table 3 SCS | |-----------------------|----------------------|----------------------------|---------------|-------------| | Metals and Inorganics | BH19-2 SA2 | Electrical
Conductivity | 0.707 mS/cm | 0.7 mS/cm | | Metals and Inorganics | BH19-2 SA2 | Sodium
Adsorption Ratio | 8.97 | 5 | | Metals and Inorganics | BH19-3 SA2 | Electrical
Conductivity | 1.25 mS/cm | 0.7 mS/cm | It is anticipated that elevated EC, and SAR in soil samples originating from the subject property are due to substances that have been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both. As such, according to section 20 (2) of O.Reg 407/19, "If an applicable site condition standard is exceeded at a property solely because a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both", as provided for under section 2 of Regulation 339 of the Revised Regulations of Ontario, 1990, Classes of Contaminants – Exemptions, the applicable site condition standard is deemed to not be exceeded for the purpose of Part XV.1 of the Act". Therefore, MECP SCS exceedances of EC, and SAR in soil samples on are not considered to be contamination within the project limits. #### 6.8.11 Soil and Groundwater Quality The analytical results indicate groundwater samples collected at each of the sampled monitoring wells met the applicable Table 3 SCS. #### 6.8.12 Areas Where Contaminants Are Present The results of the Phase Two ESA indicate the presence of soil contamination at the property at concentrations exceeding MECP Table 3 SCS. The area of soil contamination was along the east boundary of the main rental facility along Belisle Street. However, as indicated above, based on the conditions in which the contamination was incurred, and which conditions are likely to continue, EC and SAR in soil samples on are not considered to be contaminants within the project limits. #### 7.0 CONCLUSIONS AND RECOMMENDATIONS The site consists of 393 McArthur Avenue in Ottawa, Ontario and has been subject to development of the property, and demolishment, indicating several APECs on the site. - APEC 1: Operation of Dry-Cleaning Equipment at 387 McArthur Avenue; - APEC 2: Use of Salt for de-icing purposes on the subject property. - APEC 3: Importation of Fill Material of Unknown Quality on the subject property; and, - APEC 4: Hydrocarbon spill from truck on the subject property. Geological conditions encountered on the subject property during the drilling program consist of fill materials (sand to silty sand) to depths between 0.8 to 2.5 m bgs underlain by native sand and silt and/or glacial till. The glacial till consists of a heterogeneous mixture of silty sand, clay, gravel and shale fragments. The glacial till extends to approximately 8.4 m bgs, where shale bedrock was encountered. A total of thirteen soil samples and five groundwater samples (including two supplicates for soil, one duplicate for groundwater, one groundwater trip blank, and one groundwater field blank) were selected based on the combustible headspace gas readings, visual, olfactory and tactile evidence of impacts and submitted to AGAT Laboratories for analysis of selected parameters. Parameters identified in the Phase One ESA (GEMTEC, 2022) for soil and groundwater at the site include metals and inorganics, PAHs, PHCs and BTEX, and VOCs. The following is a summary of the contaminants of concern identified in soil at the subject property: - The EC and SAR in a soil sample collected at the depth of 0.61 to 1.22 m bgs (silty sand fill) at BH19-2 was 0.707 mS/cm and 8.97, marginally exceeding the Table 3 SCS of 0.7 mS/cm and 5, respectively; and, - The EC in a soil sample collected at a depth of 0.61 to 1.22 m bgs (silty sand fill) at BH19-3 was 1.25 mS/cm, exceeding the Table 3 SCS of 0.7 mS/cm. It is interpreted that elevated SAR and EC within the fill materials in BH19-2 and BH19-3 originate from the subject property are due to substances that have been applied to surfaces for the safety of vehicular or pedestrian traffic under conditions of snow or ice or both. Accordingly, as indicated above according to Section 20 (2) of O.Reg 407/19, MECP SCS exceedances of SAR, and EC in are not considered to be contamination within the project limits. As such, no further work is recommended. The soil and groundwater analytical results are representative only of the sampling locations and conditions may vary between sampling locations. The sampling was conducted to give a general overview of soil and groundwater quality. Based on the results of the Phase Two ESA, the soil quality at the subject property does not meet the applicable site condition standards established in the MECP document Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (SGWS), dated March 9, 2004, and amended in April 2011. However, based on Section 20 (2) of O.Reg. 407/19, EC and SAR exceedances do not represent soil contamination at the Subject Property. #### 8.0 CLOSURE We trust this report provides sufficient information for your present purposes. If you have any questions concerning this report, please do not hesitate to contact the undersigned. NS Nicole Soucy, M.A.Sc., P.Eng Environmental Engineer Shaun Pelkey, M.Sc.E., P.Eng. Principal Engineer, Vice President #### 9.0 LIMITATION OF LIABILITY This report was prepared for and the work referred to within it has been undertaken by GEMTEC Consulting Engineers and Scientists Ltd for Novatech . It is intended for the exclusive use of Novatech . This report may not be relied upon by any other person or entity without the express written consent of GEMTEC, Novatech . Nothing in this report is intended to provide a legal opinion. The investigation undertaken by GEMTEC with respect to this report and any conclusions or recommendations made in this report reflect the best judgements of GEMTEC based on the site conditions observed during the investigations undertaken at the date(s) identified in the report and on the information available at the time the report was prepared. This report has been prepared for the application noted and it is based, in part, on visual observations made at the site, subsurface investigations at discrete locations and depths and laboratory analyses of specific chemical parameters and material during a specific time interval, all as described in the report. Unless otherwise stated, the findings contained in this report cannot be extrapolated or extended to previous or future site conditions, portions of the site that were unavailable for direct investigation, subsurface locations on the site that were not investigated directly, or chemical parameters, materials or analysis which were not addressed. Chemical parameters other than those addressed by the investigation described in this report may exist in soil and groundwater elsewhere on the site, the chemical parameters addressed in the report may exist in soil and groundwater at other locations at the site that were not investigated, and concentrations of the chemical parameters addressed which are different than those reported may exist at other locations on the site than those from where the samples were taken. Should new information become available during future work, including excavations, borings, or other studies, GEMTEC should be requested to review the information and, if necessary, reassess the conclusions presented herein. #### **10.0 REFERENCES** The CSA Group, 2006, reaffirmed in 2018. Environmental Site Assessment Guidelines (CZ-768-01, R2018) Environmental Systems Research Institute (ESRI). 2011. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute. GEMTEC Consulting Engineers and Scientists Limited, 2022. Phase One Environmental Site Assessment, Proposed Residential Development, 393 McArthur Avenue, Ottawa, Ontario. Ontario Geological Survey, 2010. Surficial geology of southern Ontario; Ontario Geological Survey, Miscellaneous Release – Data 128 – Revised. Ontario Ministry of the Environment and Energy, 1996 (Version 1). Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario. Ontario Ministry of the Environment, 2004. Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Revised in 2011 Ontario Ministry of the Environment, 2011. Ontario Regulation 153/04, Made under the Environmental Protection Act, Part XV.1 – Records of Site Condition. Revised in 2014. | Sample ID MECP TABLE 3 STANDARD REPORTING Lab Job # LIMIT UNITS 0.15-0.61 1.52-2.13 3.05-3.66 4.57-4.82 0.61-1.22 0.61-1.22 2.51-3.05 192526729
192526729 19252672 | The image | |--|--| | Depth (m) | 3H19-2 SA5B 2.51-3.05 | | Depth (m) Lab Job # STANDARD LIMIT D.15-0.61 1.52-2.13 3.05-3.66 4.57-4.82 0.61-1.22 0.61-1.22 2.51-3.05 192526729 | 2.51-3.05
19Z526729
30-Sep-2019
30-Sep-2019
NA < 0.8
NA 4
NA 52
NA <0.5
NA 0.15
NA 0.15
NA <0.5
NA <0.5
NA <0.5
NA <0.5 | | Depth (m) Lab Job # 192526729 192 | NA <0.8 | | 192526729 1925 | NA <0.8 | | Sampling Date 01-Oct-19 01-Oct-19 01-Oct-19 30-Sep-2019 30- | NA <0.8 NA 4 NA 52 NA <0.5 | | Metals and Inorganics Antimony 7.5 0.8 μg/g <0.8 NA NA <0.8 <0.8 <0.8 NA Arsenic 18 1 μg/g 2 NA NA 4 2 2 NA Barium 390 2 μg/g 114 NA NA 98 147 154 NA Beryllium 4 0.5 μg/g <0.5 NA NA NA <0.5 0.5 NA Boron (Hot Water Soluble) 1.5 0.1 μg/g 0.14 NA NA NA 0.2 0.18 NA Cadmium 1.2 0.5 μg/g <0.5 NA NA NA <0.5 <0.5 NA Chromium 160 2 μg/g <0.5 NA NA NA 17 49 47 NA Chromium VI 8 0.2 μg/g <0.2 NA NA NA <t< th=""><th>NA <0.8 NA 4 NA 52 NA <0.5 NA 0.15 NA 0.15 NA <0.5 NA <0.5 NA <0.5 NA <0.5 NA 6.5</th></t<> | NA <0.8 NA 4 NA 52 NA <0.5 NA 0.15 NA 0.15 NA <0.5 NA <0.5 NA <0.5 NA <0.5 NA 6.5 | | Antimony 7.5 0.8 μg/g <0.8 | NA 4 NA 52 NA <0.5 NA 0.15 NA <0.5 NA 12 NA <0.2 NA 6.5 | | Arsenic 18 1 μg/g 2 NA NA 4 2 2 NA Barium 390 2 μg/g 114 NA NA 98 147 154 NA Beryllium 4 0.5 μg/g <0.5 NA NA NA <0.5 0.5 0.5 NA Boron (Hot Water Soluble) 1.5 0.1 μg/g 0.14 NA NA NA 0.35 0.2 0.18 NA Cadmium 1.2 0.5 μg/g <0.5 NA NA NA <0.5 <0.5 <0.5 NA Chromium 160 2 μg/g 41 NA NA NA 17 49 47 NA Chromium VI 8 0.2 μg/g <0.2 NA NA NA <0.2 <0.2 <0.2 NA Cobalt 22 0.5 μg/g 22 NA NA <t< th=""><th>NA 4 NA 52 NA <0.5 NA 0.15 NA <0.5 NA 12 NA <0.2 NA 6.5</th></t<> | NA 4 NA 52 NA <0.5 NA 0.15 NA <0.5 NA 12 NA <0.2 NA 6.5 | | Barium 390 2 μg/g 114 NA NA 98 147 154 NA Beryllium 4 0.5 μg/g <0.5 | NA 52 NA <0.5 | | Beryllium 4 0.5 μg/g <0.5 NA NA < <0.5 0.5 NA Boron (Hot Water
Soluble) 1.5 0.1 μg/g 0.14 NA NA 0.35 0.2 0.18 NA Cadmium 1.2 0.5 μg/g <0.5 | NA <0.5 NA 0.15 NA <0.5 | | Boron (Hot Water Soluble) 1.5 0.1 μg/g 0.14 NA NA 0.35 0.2 0.18 NA Cadmium 1.2 0.5 μg/g <0.5 | NA 0.15 NA <0.5 | | Cadmium 1.2 0.5 μg/g <0.5 NA NA <0.5 <0.5 <0.5 NA Chromium 160 2 μg/g 41 NA NA 17 49 47 NA Chromium VI 8 0.2 μg/g <0.2 | NA <0.5
NA 12
NA <0.2
NA 6.5 | | Chromium 160 2 μg/g 41 NA NA 17 49 47 NA Chromium VI 8 0.2 μg/g <0.2 | NA <0.2
NA 6.5 | | Chromium VI 8 0.2 μg/g <0.2 NA NA <0.2 <0.2 <0.2 NA Cobalt 22 0.5 μg/g 10.1 NA NA 7.5 10.5 10.5 NA Copper 140 1 μg/g 22 NA NA 21 23 22 NA Lead 120 1 μg/g 5 NA NA 10 6 6 NA | NA 6.5 | | Copper 140 1 μg/g 22 NA NA 21 23 22 NA Lead 120 1 μg/g 5 NA NA 10 6 6 NA | | | Lead 120 1 μg/g 5 NA NA 10 6 6 NA | NA 23 | | | INA ZU | | Mercury 0.27 0.1 μg/g <0.10 NA NA <0.10 <0.10 NA | NA 7 | | , | NA <0.10 | | Molybdenum 6.9 0.5 μg/g 0.8 NA NA 1.8 <0.5 <0.5 NA | NA 1.4 | | Nickel 100 1 μg/g 23 NA NA 19 27 26 NA | NA 16 | | Selenium 2.4 0.4 μg/g <0.4 NA NA <0.4 <0.4 <0.4 NA | NA <0.4 | | Silver 20 0.2 μg/g <0.2 NA NA <0.2 <0.2 <0.2 NA | NA <0.2 | | Thallium 1 0.4 μg/g <0.4 NA NA <0.4 <0.4 <0.4 NA | NA <0.4 | | Vanadium 86 1 μg/g 47 NA NA 23 50 48 NA | NA 20 | | Zinc 340 5 μg/g 42 NA NA 27 46 45 NA | NA 26 | | pH 5 to 9 NV pH Units 7.31 7.63 7.95 8.15 7.73 7.74 NA | NA 8.08 | | Electrical Conductivity 0.7 0.005 mS/cm 0.461 NA NA 0.285 0.707 0.681 NA | NA 0.207 | | Sodium Adsorption Ratio 5 NV N/A 6.81 NA NA 0.604 8.97 8.56 NA | NA 0.399 | | Cyanide, Free 0.051 0.04 μg/g <0.040 NA NA <0.040 <0.040 <0.040 NA | NA <0.040 | | Boron (Total) 120 5 μg/g <5 NA NA 7 <5 <5 NA | NA <5 | | Uranium 23 0.5 μg/g 0.8 NA NA 1 0.9 0.9 NA | NA 0.8 | | Polycyclic Aromatic Hydrocarbons (PAHs) | | | Acenaphthene 7.9 0.05 μg/g NA <0.05 NA <0.05 NA NA <0.05 | <0.05 <0.05 | | Acenaphthylene 0.15 0.05 μg/g NA <0.05 NA <0.05 NA NA <0.05 | <0.05 <0.05 | | Anthracene 0.67 0.05 μg/g NA <0.05 NA <0.05 NA NA <0.05 | <0.05 | | Benzo(a)anthracene 0.5 0.05 μg/g NA <0.05 NA <0.05 NA <0.05 | <0.05 | | Benzo(a)pyrene 0.3 0.05 μg/g NA <0.05 NA <0.05 NA <0.05 | <0.05 | | Benzo(b/j)fluoranthene 0.78 0.05 μg/g NA <0.05 NA NA <0.05 Renzo(sb/j)endene 6.6 0.05 μg/g NA <0.05 | <0.05 | | Benzo(ghi)perylene 6.6 0.05 μg/g NA <0.05 NA <0.05 NA NA <0.05 Benzo(k)fluoranthene 0.78 0.05 μg/g NA <0.05 | <0.05 <0.05
<0.05 <0.05 | | | <0.05 <0.05
<0.05 <0.05 | | Chrysene 7 0.05 μg/g NA <0.05 NA <0.05 NA NA <0.05 Dibenzo(a,h)anthracene 0.1 0.05 μg/q NA <0.05 | <0.05 <0.05 | | | | | Fluoranthene 0.69 0.05 μg/g NA <0.05 NA <0.05 NA NA <0.05 <0. | <0.05 <0.05
<0.05 <0.05 | | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | <0.05 | | 1,2-Methylnaphthalene 0.99 0.05 μ g/g NA <0.05 NA <0.05 NA <0.05 NA <0.05 | <0.05 | | Naphthalene 0.6 0.05 μ g/g NA <0.05 NA <0.05 NA <0.05 NA <0.05 | <0.05 | | Phenanthrene 6.2 0.05 μg/g NA <0.05 NA <0.05 NA NA <0.05 | <0.05 | | Pyrene 78 0.05 μg/g NA <0.05 NA <0.05 NA <0.05 NA <0.05 | | | 10 0.00 pg/g (a) 0.00 fa/t 0.00 fa/t 0.00 | <0.05 | 'NV': No Standard established NA: Parameter not analyzed MECP Table 3: Ontario Ministry of the Environment, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " March 2004, amended July 1, 2011. Full Depth Generic Site Condition Standards for Soil in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use with Coarse Textured Soils. 100 Exceeds MECP Table 3: Standards 100 Detection Limit Exceeds MECP Standard Page 1 of 2 64819.22 ## Table B-1: Summary of Analytical Results in Soil Metals, Inorganics and PAHs 393 McArthur Avenue, Ottawa, Ontario | | | | | BH19-3 SA2 | BH19-3 SA5 | BH19-4 SA4 | BH19-4 SA6 | |--|--------------------------|--------------------|--------------|---------------------------------------|---------------------------------------|-------------------------------------|-------------------------------------| | Sample ID Depth (m) Lab Job # Sampling Date | MECP TABLE 3
STANDARD | REPORTING
LIMIT | UNITS | 0.61-1.22
19Z526729
30-Sep-2019 | 2.44-3.05
19Z526729
30-Sep-2019 | 2.29-2.90
19Z526729
01-Oct-19 | 3.81-4.42
19Z526729
01-Oct-19 | | Metals and Inorganics | | | | | | | | | Antimony | 7.5 | 0.8 | μg/g | <0.8 | <0.8 | <0.8 | <0.8 | | Arsenic | 18 | 1 | μg/g | 5 | 7 | 7 | 7 | | Barium | 390 | 2 | μg/g | 133 | 269 | 112 | 202 | | Beryllium | 4 | 0.5 | μg/g | <0.5 | 0.5 | 0.5 | 0.7 | | Boron (Hot Water Soluble) | 1.5 | 0.1 | μg/g | 0.36 | 0.22 | 0.23 | 0.42 | | Cadmium | 1.2 | 0.5 | μg/g | 0.6 | <0.5 | <0.5 | <0.5 | | Chromium | 160 | 2 | μg/g | 34 | 18 | 18 | 24 | | Chromium VI | 8 | 0.2 | μg/g | <0.2 | <0.2 | <0.2 | <0.2 | | Cobalt | 22 | 0.5 | μg/g | 8.7 | 11.1 | 10.7 | 14.2 | | Copper | 140 | 1 | μg/g | 22 | 30 | 29 | 37 | | Lead | 120 | 1 | μg/g | 104 | 13 | 13 | 19 | | Mercury | 0.27 | 0.1 | μg/g | 0.12 | <0.10 | <0.10 | <0.10 | | Molybdenum | 6.9 | 0.5 | μg/g | 1.2 | 4.9 | 4.9 | 5.3 | | Nickel | 100 | 1 | μg/g | 22 | 35 | 36 | 43 | | Selenium | 2.4 | 0.4 | μg/g | 0.5 | 0.6 | 0.4 | 0.7 | | Silver | 20 | 0.2 | µg/g | <0.2 | <0.2 | <0.2 | <0.2 | | Thallium | 1 | 0.4 | μg/g | <0.4 | <0.4 | <0.4 | <0.4 | | Vanadium | 86 | 1 | µg/g | 38 | 26 | 27 | 28 | | Zinc | 340 | 5 | μg/g | 275 | 39 | 39 | 38 | | pH | 5 to 9 | NV | pH Units | 8.11 | 7.9 | 7.87 | 8.03 | | Electrical Conductivity | 0.7 | 0.005 | mS/cm | 1.25 | 0.458 | 0.676 | 0.366 | | Sodium Adsorption Ratio | 5 | NV | N/A | 3.71 | 0.59 | 1.25 | 0.928 | | Cyanide, Free | 0.051 | 0.04 | µg/g | <0.040 | <0.040 | <0.040 | <0.040 | | Boron (Total) | 120 | 5 | μg/g | 7 | 9 | 9 | 11 | | Uranium | 23 | 0.5 | μg/g | 0.9 | 1.8 | 1.9 | 2.3 | | Polycyclic Aromatic Hyd | | | P9/9 | 0.0 | 1.0 | 1.0 | 2.0 | | Acenaphthene | 7.9 | 0.05 | μg/g | <0.05 | <0.05 | <0.05 | <0.05 | | Acenaphthylene | 0.15 | 0.05 | | <0.05 | <0.05 | <0.05 | <0.05 | | Anthracene | 0.13 | 0.05 | μg/g
μg/g | <0.05 | <0.05 | <0.05 | <0.05 | | Benzo(a)anthracene | 0.5 | 0.05 | μg/g
μg/g | 0.09 | <0.05 | <0.05 | <0.05 | | Benzo(a)pyrene | 0.3 | 0.05 | μg/g
μg/g | 0.09 | <0.05 | <0.05 | <0.05 | | Benzo(b/j)fluoranthene | 0.78 | 0.05 | μg/g
μg/g | 0.07 | <0.05 | <0.05 | <0.05 | | Benzo(ghi)perylene | 6.6 | 0.05 | μg/g
μg/g | <0.05 | <0.05 | <0.05 | <0.05 | | Benzo(k)fluoranthene | 0.78 | 0.05 | μg/g
μg/g | <0.05 | <0.05 | <0.05 | <0.05 | | Chrysene | 7 | 0.05 | μg/g
μg/g | 0.07 | <0.05 | <0.05 | <0.05 | | Dibenzo(a,h)anthracene | 0.1 | 0.05 | μg/g
μg/g | <0.05 | <0.05 | <0.05 | <0.05 | | Fluoranthene | 0.69 | 0.05 | μg/g
μg/g | <0.05 | <0.05 | <0.05 | <0.05 | | Fluorene | 62 | 0.05 | μg/g
μg/g | 0.12 | <0.05 | <0.05 | <0.05 | | Indeno(1,2,3-cd)pyrene | 0.38 | 0.05 | μg/g
μg/g | <0.05 | <0.05 | <0.05 | <0.05 | | 1,2-Methylnaphthalene | 0.99 | 0.05 | | <0.05 | <0.05 | <0.05 | <0.05 | | | 0.99 | 0.05 | μg/g | <0.05 | <0.05 | <0.05 | <0.05 | | Naphthalene
Phenanthrene | 6.2 | 0.05 | μg/g | <0.05 | <0.05 | <0.05 | <0.05 | | | | | μg/g | | | | | | Pyrene | 78 | 0.05 | μg/g | 0.13 | <0.05 | <0.05 | <0.05 | 'NV': No Standard established NA: Parameter not analyzed MECP Table 3: Ontario Ministry of the Environment, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " March 2004, amended July 1, 2011. Full Depth Generic Site Condition Standards for Soil in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use with Coarse Textured Soils. 100 Exceeds MECP Table 3: Standards 100 Detection Limit Exceeds MECP Standard Page 2 of 2 64819.22 November 2019 ## Table B-2: Summary of Analytical Results in Soil PHCs and VOCs 393 McArthur Avenue, Ottawa, Ontario | | | | | BH19-1 SA3 | BH19-1 SA5 | BH19-2 SA5B | BH19-2 SA105B | BH19-4 SA4 | BH19-4 SA6 | |---|--------------------------|--------------------|--------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------| | Sample ID | MECP TABLE 3
STANDARD | REPORTING
LIMIT | UNITS | | | | Duplicate of
BH19-2 SA5B | | | | Depth (m)
Lab Job #
Sampling Date | 317111271113 | | | 1.52-2.13
19Z526729
01-Oct-19 | 3.05-3.66
19Z526729
01-Oct-19 | 2.51-3.05
19Z526729
30-Sep-19 | 2.51-3.05
19Z526729
30-Sep-19 | 2.29-2.90
19Z526729
01-Oct-19 | 3.81-4.42
19Z526729
01-Oct-19 | | Petroleum Hydrocarbon Compou | ınds (PHCs) | | | 0_ 00 | 02 000 20 | 50 00 20 | 00 00p 20 | 01 000 17 | 02 000 25 | | F1 (C6-C10) | 55 | 5 | μg/g | NA | NA | <5 | <5 | 10 | 24 | | F1 (C6-C10) - BTEX | 55 | 5 | µg/g | NA | NA | <5 | <5 | 10 | 24 | | F2 (C10-C16) | 98 | 10 | µg/g | NA | NA | <10 | 22 | 11 | <10 | | F3 (C16-C34) | 300 | 50 | µg/g | NA | NA | <50 | <50 | <50 | <50 | | F4 (C34-C50) | 2800 | 50 | µg/g | NA | NA | <50 | <50 | <50 | <50 | | F4 Gravimetric | 2800 | 50 | µg/g | NA | NA | NA | NA | NA | NA | | Reached Baseline at C50 | NV | YES/NO | NV | NA | NA | YES | YES | YES | YES | | Volatile Organic Compounds (VO | OCs) | | I. | | Į. | | l | | | | Acetone | 16 | 0.5 | μg/g | <0.50 | <0.50 | <0.50 | <0.50 | NA | NA | | Benzene | 0.21 | 0.02 | μg/g | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 | | Bromodichloromethane | 13 | 0.05 | μg/g | <0.05 | <0.05 | <0.05 | <0.05 | NA | NA | | Bromoform | 0.27 | 0.05 | μg/g | <0.05 | <0.05 | <0.05 | <0.05 | NA
NA | NA
NA | | Bromomethane | 0.05 | 0.05 | μg/g
μg/g | <0.05 | <0.05 | <0.05 | <0.05 | NA
NA | NA
NA | | Carbon Tetrachloride | 0.05 | 0.05 | μg/g | <0.05 | <0.05 | <0.05 | <0.05 | NA NA | NA NA | | Chlorobenzene | 2.4 | 0.05 | μg/g | <0.05 | <0.05 | <0.05 | <0.05 | NA NA | NA NA | | Chloroform | 0.05 | 0.04 | μg/g | <0.03 | <0.04 | <0.04 | <0.04 | NA
NA | NA
NA | | Dibromochloromethane | 9.4 |
0.05 | μg/g | <0.05 | <0.05 | <0.05 | <0.05 | NA
NA | NA
NA | | 1,2-Dichlorobenzene | 3.4 | 0.05 | μg/g | <0.05 | <0.05 | <0.05 | <0.05 | NA
NA | NA
NA | | 1,3-Dichlorobenzene | 4.8 | 0.05 | μg/g | <0.05 | <0.05 | <0.05 | <0.05 | NA
NA | NA
NA | | 1,4-Dichlorobenzene | 0.083 | 0.05 | μg/g
μg/g | <0.05 | <0.05 | <0.05 | <0.05 | NA
NA | NA
NA | | 1,1-Dichloroethane | 3.5 | 0.02 | μg/g | <0.02 | <0.02 | <0.02 | <0.02 | NA
NA | NA
NA | | 1.2-Dichloroethane | 0.05 | 0.02 | μg/g
μg/g | <0.02 | <0.02 | <0.02 | <0.02 | NA
NA | NA
NA | | 1,1-Dichloroethylene | 0.05 | 0.05 | μg/g
μg/g | <0.05 | <0.05 | <0.05 | <0.05 | NA
NA | NA
NA | | Cis-1,2-Dichloroethylene | 3.4 | 0.03 | μg/g
μg/g | <0.03 | <0.03 | <0.03 | <0.03 | NA
NA | NA
NA | | Trans-1,2-Dichloroethylene | 0.084 | 0.02 | μg/g
μg/g | <0.02 | <0.05 | <0.05 | <0.05 | NA
NA | NA
NA | | 1,2-Dichloropropane | 0.05 | 0.03 | μg/g
μg/g | <0.03 | <0.03 | <0.03 | <0.03 | NA
NA | NA
NA | | 1,3-Dichloropropylene | 0.05 | 0.03 | μg/g
μg/g | <0.03 | <0.03 | <0.03 | <0.03 | NA
NA | NA
NA | | Ethylbenzene | 0.05 | 0.04 | μg/g
μg/g | <0.04 | <0.05 | <0.04 | <0.05 | <0.05 | <0.05 | | Ethylene Dibromide (1,2-Dibromoethane | 0.05 | 0.05 | μg/g
μg/g | <0.05 | <0.03 | <0.05 | <0.05 |
NA | VI.05 | | Methyl Ethyl Ketone | 16 | 0.5 | μg/g
μg/g | <0.50 | <0.50 | <0.50 | <0.50 | NA
NA | NA
NA | | Methylene Chloride | 0.1 | 0.05 | μg/g
μg/g | <0.05 | <0.05 | <0.05 | <0.05 | NA
NA | NA
NA | | , | 1.7 | 0.05 | μg/g
μg/g | <0.05 | <0.50 | <0.03 | <0.05 | NA
NA | NA
NA | | Methyl Isobutyl Ketone Methyl-t-Butyl Ether | 0.75 | 0.05 | μg/g
μg/g | <0.05 | <0.05 | <0.05 | <0.05 | NA
NA | NA
NA | | | 0.75 | 0.05 | | <0.05 | <0.05 | <0.05 | <0.05 | NA
NA | NA
NA | | Styrene
1,1,1,2-Tetrachloroethane | 0.058 | 0.05 | μg/g | <0.05 | <0.03 | <0.05 | <0.05 | NA
NA | NA
NA | | 1.1.2.2-Tetrachloroethane | 0.05 | 0.04 | μg/g
μg/g | <0.04 | <0.04 | <0.04 | <0.04 | NA
NA | NA
NA | | Toluene | 2.3 | 0.05 | | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | Tetrachloroethylene | 0.28 | 0.05 | μg/g | <0.05 | <0.05 | <0.05 | <0.05 | <0.05
NA | <0.05
NA | | 1,1,1-Trichloroethane | 0.28 | 0.05 | μg/g | <0.05 | <0.05 | <0.05 | <0.05 | NA
NA | NA
NA | | 1.1.2-Trichloroethane | 0.38 | 0.05 | μg/g | | | | <0.05 | NA
NA | NA
NA | | , , | 0.05 | 0.04 | μg/g | <0.04
<0.03 | <0.04
<0.03 | <0.04
<0.03 | <0.04 | NA
NA | NA
NA | | Trichloroethylene | | | μg/g | | | | | | | | Vinyl Chloride | 0.02 | 0.02 | µg/g | <0.02 | <0.02 | <0.02 | <0.02 | NA
NA | NA
NA | | m-Xylene & p-Xylene | NV
NV | 0.05 | µg/g | < 0.05 | <0.05 | <0.05 | < 0.05 | NA
NA | NA
NA | | o-Xylene | NV
2.1 | 0.05 | µg/g | <0.05 | <0.05 | <0.05 | <0.05 | NA
FO. O.F. | NA
40.05 | | Total Xylenes | 3.1 | 0.05 | μg/g | < 0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | | Dichlorodifluoromethane | 16 | 0.05 | μg/g | <0.05 | <0.05 | <0.05 | <0.05 | NA NA | NA
NA | | Dioxane, 1,4- | 1.8 | NA
0.05 | μg/g | NA
10.05 | NA
10.05 | NA
10.05 | NA
10.05 | NA
NA | NA
NA | | Hexane(n) | 2.8 | 0.05 | μg/g | <0.05 | <0.05 | <0.05 | <0.05 | NA NA | NA
NA | | Trichlorofluoromethane | 4 | 0.05 | μg/g | <0.05 | <0.05 | <0.05 | <0.05 | NA | NA | Notes: 'NV': No Standard established NA: Parameter not analyzed MECP Table 3: Ontario Ministry of the Environment, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " March 2004, amended July 1, 2011. Full Depth Generic Site Condition Standards for Soil in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property Use with Coarse Textured Soils. Exceeds MECP Table 3: Standards 100 Detection Limit Exceeds MECP Standard Page 1 of 1 64819.22 # Table B-3: Summary of Analytical Results in Groundwater Metals, Inorganics and PAHs 393 McArthur Avenue, Ottawa, Ontario | 393 MCAI thui Avenue, Ottawa, Ontario | | | | | | | | | | |---|--------------------------|--------------------|----------|---|--|---|---|--|--| | Sample ID Screen Interval (mbgs) Lab Job # Sampling Date | MECP TABLE 3
STANDARD | REPORTING
LIMIT | UNITS | MW19-1
3.05-6.10
19Z532666
18-Oct-2019 | MW19-101 Duplicate of MW19-1 3.05-6.10 19Z532666 18-Oct-2019 | MW19-3
3.05-4.57
19Z532666
18-Oct-2019 | MW19-4
4.57-7.62
19Z532666
18-Oct-2019 | | | | Metals and Inorganics | | | | | | | | | | | Antimony | 20000 | 1.0 | ug/L | <1.0 | <1.0 | <1.0 | <1.0 | | | | Arsenic | 1900 | 1.0 | ug/L | <1.0 | 1.2 | <1.0 | <1.0 | | | | Barium | 29000 | 2.0 | ug/L | 187 | 185 | 231 | 160 | | | | Beryllium | 67 | 0.5 | ug/L | <0.5 | <0.5 | <0.5 | <0.5 | | | | Boron (Total) | 45000 | 10.0 | ug/L | 152 | 158 | 134 | 121 | | | | Cadmium | 2.7 | 0.2 | ug/L | <0.2 | <0.2 | <0.2 | <0.2 | | | | Chromium | 810 | 2.0 | ug/L | 2.6 | 2.2 | <2.0 | <2.0 | | | | Chromium VI | 140 | 5 | ug/L | <5 | <5 | <5 | <5 | | | | Cobalt | 66 | 0.5 | ug/L | 1.6 | 1.5 | 1.1 | <0.5 | | | | Copper | 87 | 1.0 | ug/L | <1.0 | <1.0 | 1.3 | <1.0 | | | | Lead | 25 | 0.5 | ug/L | <0.5 | <0.5 | <0.5 | <0.5 | | | | Mercury | 0.29 | 0.02 | ug/L | <0.02 | <0.02 | <0.02 | <0.02 | | | | Molybdenum | 9200 | 0.5 | ug/L | 2.5 | 2.4 | 13.6 | <0.5 | | | | Nickel | 490 | 1.0 | ug/L | 1.5 | 1.4 | 3.8 | <1.0 | | | | Selenium | 63 | 1.0 | ug/L | <1.0 | 1.7 | <1.0 | 1.1 | | | | Silver | 1.5 | 0.2 | ug/L | <0.2 | <0.2 | <0.2 | <0.2 | | | | Thallium | 510 | 0.3 | ug/L | <0.3 | <0.3 | <0.3 | <0.3 | | | | Vanadium | 250 | 0.4 | ug/L | 0.6 | 1.1 | 1.1 | 0.9 | | | | Zinc | 1100 | 5.0 | ug/L | <5.0 | <5.0 | 5.3 | <5.0 | | | | рН | 5 to 9 | NA | pH Units | 7.64 | 7.83 | 7.69 | 7.76 | | | | Electrical Conductivity | NV | 2 | mS/cm | 2270 | 2280 | 3050 | 1550 | | | | Cyanide, Free | 66 | 2 | ug/L | <2 | <2 | <2 | <2 | | | | Sodium | 2300000 | 2500 | ug/L | 110000 | 112000 | 234000 | 94200 | | | | Chloride | 2300000 | 1000 | ug/L | 576000 | 595000 | 885000 | 347000 | | | | Uranium | 420 | 0.5 | ug/L | 1.4 | 1.4 | 2.2 | <0.5 | | | #### Notes: 'NV ': No Standard established NA: Parameter not analyzed MECP Table 3: Ontario Ministry of the Environment, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " March 2004, amended July 1, 2011. Full Depth Generic Site Condition Standards in a Non-Potable Ground Water for All Types of Property Use with coarse textured soils. | 100 | Exceeds MECP Table 3: Standards | |-----|---| | 100 | Detection Limit Exceeds Applicable Standard | # Table B-4: Summary of Analytical Results in Groundwater PHCs and VOCs 393 McArthur Avenue, Ottawa, Ontario | Sample ID
Screen Interval (mbgs)
Lab Job #
Sampling Date | MECP TABLE 3
STANDARD | REPORTING
LIMIT | UNITS | MW19-1
3.05-6.10
19Z532666
18-Oct-2019 | MW19-101
Duplicate of
MW19-1
3.05-6.10
19Z532666
18-Oct-2019 | MW19-4
4.57-7.62
192532666
18-Oct-2019 | 4.57-7.62
19Z532666
18-Oct-2019 | |---|--------------------------|--------------------|-------|---|---|---|---------------------------------------| | Petroleum Hydrocarbon Compounds (| PHCs) | | | | | | | | F1 (C6-C10) | 750 | 25 | ug/L | NA | <25 | <25 | <25 | | F1 (C6-C10) - BTEX | 750 | 25 | ug/L | NA | <25 | <25 | <25 | | F2 (C10-C16) | 150 | 100 | ug/L | NA | <100 | <100 | <100 | | F3 (C16-C34) | 500 | 100 | ug/L | NA | <100 | <100 | <100 | | F4 (C34-C50) | 500 | 100 | ug/L | NA | <100 | <100 | <100 | | F4 Gravimetric | 500 | 500 | ug/L | NA | NA | NA | NA | | Reached Baseline at C50 | NV | YES/No | NV | NA | YES | YES | YES | | Volatile Organic Compounds (VOCs) | | | | | | | | | Acetone | 130000 | 1 | ug/L | <1.0 | <1.0 | NA | NA | | Benzene | 44 | 0.2 | ug/L | <0.20 | <0.20 | <0.20 | <0.20 | | Bromodichloromethane | 85000 | 0.2 | ug/L | <0.20 | <0.20 | NA | NA | | Bromoform | 380 | 0.1 | ug/L | <0.10 | <0.10 | NA | NA | | Bromomethane | 5.6 | 0.2 | ug/L | <0.20 | <0.20 | NA | NA | | Carbon Tetrachloride | 0.79 | 0.2 | ug/L | <0.20 | <0.20 | NA | NA | | Chlorobenzene | 630 | 0.1 | ug/L | <0.10 | <0.10 | NA | NA | | Chloroform | 2.4 | 0.2 | ug/L | <0.20 | <0.20 | NA | NA | | Dibromochloromethane | 82000 | 0.1 | ug/L | <0.10 | <0.10 | NA | NA | | 1,2-Dichlorobenzene | 4600 | 0.1 | ug/L | <0.10 | <0.10 | NA | NA | | 1,3-Dichlorobenzene | 9600 | 0.1 | ug/L | <0.10 | <0.10 | NA | NA | | 1,4-Dichlorobenzene | 8 | 0.1 | ug/L | <0.10 | <0.10 | NA | NA | | 1,1-Dichloroethane | 320 | 0.3 | ug/L | <0.30 | <0.30 | NA | NA | | 1,2-Dichloroethane | 1.6 | 0.2 | ug/L | <0.20 | <0.20 | NA | NA | | 1,1-Dichloroethylene | 1.6 | 0.3 | ug/L | < 0.30 | < 0.30 | NA | NA | | Cis-1,2-Dichloroethylene | 1.6 | 0.2 | ug/L | <0.20 | <0.20 | NA | NA | | Trans-1,2-Dichloroethylene | 1.6 | 0.2 | ug/L | <0.20 | <0.20 | NA | NA | | 1,2-Dichloropropane | 16 | 0.2 | ug/L | <0.20 | <0.20 | NA | NA | | Cis-1,3-Dichloropropylene | NV | NA | ug/L | NA | NA | NA | NA | | Trans-1,3-Dichloropropylene | NV | NA | ug/L | NA | NA | NA | NA | | 1,3-Dichloropropylene | 5.2 | 0.3 | ug/L | <0.30 | <0.30 | NA | NA | | Ethylbenzene | 2300 | 0.1 | ug/L | <0.10 | <0.10 | <0.10 | <0.10 | | Ethylene Dibromide (1,2-Dibromoethane) | 0.25 | 0.1 | ug/L | <0.10 | <0.10 | NA | NA | | Methyl Ethyl Ketone | 470000 | 1 | ug/L | <1.0 | <1.0 | NA | NA | | Methylene Chloride | 610 | 0.3 | ug/L | <0.30 | <0.30 | NA | NA | | Methyl Isobutyl
Ketone | 140000 | 1 | ug/L | <1.0 | <1.0 | NA | NA | | Methyl-t-Butyl Ether | 190 | 0.2 | ug/L | <0.20 | <0.20 | NA | NA | | Styrene | 1300 | 0.1 | ug/L | <0.10 | <0.10 | NA | NA | | 1,1,1,2-Tetrachloroethane | 3.3 | 0.1 | ug/L | <0.10 | <0.10 | NA | NA | | 1,1,2,2-Tetrachloroethane | 3.2 | 0.1 | ug/L | <0.10 | <0.10 | NA
NA | NA | | Toluene | 18000 | 0.2 | ug/L | <0.20 | <0.20 | NA
NA | NA | | Tetrachloroethylene | 1.6 | 0.2 | ug/L | <0.20 | <0.20 | NA NA | NA | | 1,1,1-Trichloroethane | 640 | 0.3 | ug/L | <0.30 | <0.30 | NA NA | NA | | 1,1,2-Trichloroethane | 4.7 | 0.2 | ug/L | <0.20
<0.20 | <0.20 | NA
NA | NA
NA | | Trichloroethylene | 1.6 | | ug/L | | <0.20 | NA
NA | | | Vinyl Chloride | 0.5 | 0.17 | ug/L | <0.17 | <0.17 | NA
NA | NA
NA | | m-Xylene & p-Xylene | NV | 0.2 | ug/L | <0.20 | <0.20 | NA
NA | NA
NA | | o-Xylene | NV | 0.1 | ug/L | <0.10 | <0.10 | NA
0.07 | NA
0.04 | | Total Xylenes | 4200 | 0.2 | ug/L | <0.20 | <0.20 | 0.27 | 0.24 | | Dichlorodifluoromethane | 4400 | 0.2 | ug/L | <0.20 | <0.20 | NA
NA | NA | | Dioxane, 1,4- | 1900000 | NA
0.2 | ug/L | NA -0.20 | NA =0.20 | NA
50.20 | NA
ro 20 | | Hexane(n) | 51 | 0.2 | ug/L | <0.20 | <0.20 | <0.20
NA | <0.20 | | Trichlorofluoromethane | 2500 | 0.4 | ug/L | <0.40 | <0.40 | NA | NA | #### Notes: NOTE: "NV": No Standard established MECP Table 3: Ontario Miristry of the Environment, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, "March 2004, amended July 1, 2011. Full Depth Generic Site Condition Standards in a Non-Potable Ground Water for All Types of Property Use with coarse textured soils. Exceeds MECP Table 3: Standards Detection Limit Exceeds Applicable Standard 100 Page 1 of 1 November 2019 64819.22 | Parameter | MECP Alert | RDL | Sample ⁽¹⁾ | Duplicate | % Difference | | |---------------------------------|------------|-------|-----------------------|--------------|---------------|--| | raiametei | Criteria | KDL | BH19-2 SA2 | BH19-2 SA102 | 70 Difference | | | Metals and Inorganic | s | | | | | | | Antimony | 30% | 0.8 | <0.8 | <0.8 | - | | | Arsenic | 30% | 1 | 2 | 2 | - | | | Barium | 30% | 2 | 147 | 154 | 4.7% | | | Beryllium | 30% | 0.5 | 0.5 | 0.5 | - | | | Boron (Hot Water Soluble) | 40% | 0.1 | 0.2 | 0.18 | - | | | Cadmium | 30% | 0.5 | <0.5 | <0.5 | - | | | Chromium | 30% | 2 | 49 | 47 | 4.2% | | | Chromium VI | 35% | 0.2 | <0.2 | <0.2 | - | | | Cobalt | 30% | 0.5 | 10.5 | 10.5 | 0.0% | | | Copper | 30% | 1 | 23 | 22 | 4.4% | | | _ead | 30% | 1 | 6 | 6 | 0.0% | | | Mercury | 30% | 0.1 | <0.10 | <0.10 | - | | | Molybdenum | 30% | 0.5 | <0.5 | <0.5 | - | | | Nickel | 30% | 1 | 27 | 26 | 3.8% | | | Selenium | 30% | 0.4 | <0.4 | <0.4 | - | | | Silver | 30% | 0.2 | <0.2 | <0.2 | - | | | Γhallium | 30% | 0.4 | <0.4 | <0.4 | - | | | /anadium | 30% | 1 | 50 | 48 | 4.1% | | | Zinc | 30% | 5 | 46 | 45 | 2.2% | | | oH (pH Units) | 0.3 | NV | 7.73 | 7.74 | 0.13% | | | Electrical Conductivity (mS/cm) | 10% | 0.005 | 0.707 | 0.681 | 3.7% | | | Sodium Adsorption Ratio | 30% | NV | 8.97 | 8.56 | 4.7% | | | Cyanide, Free | 35% | 0.04 | <0.040 | <0.040 | - | | | Boron (Total) | 30% | 5 | <5 | <5 | - | | | Uranium | 30% | 0.5 | 0.9 | 0.9 | - | | | - | | | | | | |-------------------------|------------------------|--------|-----------------------|---------------|--------------| | Parameter | MECP Alert
Criteria | RDL | Sample ⁽¹⁾ | Duplicate | % Difference | | | Criteria | | BH19-2 SA5B | BH19-2 SA105B | | | Polycyclic Aromatic | : Hydrocarbons (| (PAHs) | | | | | Acenaphthene | 40% | 0.05 | <0.05 | <0.05 | - | | Acenaphthylene | 40% | 0.05 | <0.05 | <0.05 | - | | Anthracene | 40% | 0.05 | <0.05 | <0.05 | - | | Benzo(a)anthracene | 40% | 0.05 | <0.05 | <0.05 | - | | Benzo(a)pyrene | 40% | 0.05 | <0.05 | <0.05 | - | | Benzo(b/j)fluoranthene | 40% | 0.05 | <0.05 | <0.05 | - | | Benzo(ghi)perylene | 40% | 0.05 | <0.05 | <0.05 | - | | Benzo(k)fluoranthene | 40% | 0.05 | <0.05 | <0.05 | - | | Chrysene | 40% | 0.05 | <0.05 | <0.05 | - | | Dibenzo(a,h)anthracene | 40% | 0.05 | <0.05 | <0.05 | - | | Fluoranthene | 40% | 0.05 | <0.05 | <0.05 | - | | Fluorene | 40% | 0.05 | <0.05 | <0.05 | - | | Indeno(1,2,3-cd)pyrene | 40% | 0.05 | <0.05 | <0.05 | - | | 1-, 2-Methylnaphthalene | 40% | 0.05 | <0.05 | <0.05 | - | | Naphthalene | 40% | 0.05 | <0.05 | <0.05 | - | | Phenanthrene | 40% | 0.05 | <0.05 | <0.05 | - | | Pyrene | 40% | 0.05 | <0.05 | <0.05 | - | | Parameter | MECP Alert
Criteria | RDL | Sample ⁽¹⁾ | Duplicate | % Difference | | | | | | |--|------------------------|-----|-----------------------|---------------|--------------|--|--|--|--|--| | | Criteria | | BH19-2 SA5B | BH19-2 SA105B | | | | | | | | Petroleum Hydrocarbon Compounds (PHCs) | | | | | | | | | | | | F1 (C6-C10) | 30% | 5 | <5 | <5 | - | | | | | | | F1 (C6-C10) - BTEX | 30% | 5 | <5 | <5 | - | | | | | | | F2 (C10-C16) | 30% | 10 | <10 | 22 | - | | | | | | | F3 (C16-C34) | 30% | 50 | <50 | <50 | - | | | | | | | F4 (C34-C50) | 30% | 50 | <50 | <50 | - | | | | | | | Parameter | MECP Alert | RDL | Sample ⁽¹⁾ | Duplicate | % Difference | |----------------------------|-------------|------|-----------------------|---------------|--------------| | | Criteria | | BH19-2 SA5B | BH19-2 SA105B | | | Volatile Organic Comp | ounds (VOCs | , | | | | | Acetone | 50% | 0.5 | <0.50 | <0.50 | - | | Benzene | 50% | 0.02 | <0.02 | <0.02 | - | | Bromodichloromethane | 50% | 0.05 | <0.05 | <0.05 | - | | Bromoform | 50% | 0.05 | <0.05 | <0.05 | - | | Bromomethane | 50% | 0.05 | <0.05 | <0.05 | - | | Carbon Tetrachloride | 50% | 0.05 | <0.05 | <0.05 | - | | Chlorobenzene | 50% | 0.05 | <0.05 | <0.05 | - | | Chloroform | 50% | 0.04 | <0.04 | <0.04 | - | | Dibromochloromethane | 50% | 0.05 | <0.05 | <0.05 | - | | 1,2-Dichlorobenzene | 50% | 0.05 | <0.05 | <0.05 | - | | 1,3-Dichlorobenzene | 50% | 0.05 | <0.05 | <0.05 | | | 1,4-Dichlorobenzene | 50% | 0.05 | <0.05 | <0.05 | - | | 1,1-Dichloroethane | 50% | 0.02 | <0.02 | <0.02 | - | | 1,2-Dichloroethane | 50% | 0.03 | <0.03 | <0.03 | - | | 1,1-Dichloroethylene | 50% | 0.05 | <0.05 | <0.05 | - | | Cis-1,2-Dichloroethylene | 50% | 0.02 | <0.02 | <0.02 | - | | Trans-1,2-Dichloroethylene | 50% | 0.05 | <0.05 | <0.05 | - | | 1,2-Dichloropropane | 50% | 0.03 | <0.03 | <0.03 | - | | 1,3-Dichloropropylene | 50% | 0.04 | <0.04 | <0.04 | - | | Ethylbenzene | 50% | 0.05 | <0.05 | <0.05 | - | | Ethylene Dibromide | 50% | 0.04 | <0.04 | <0.04 | - | | Methyl Ethyl Ketone | 50% | 0.5 | <0.50 | <0.50 | - | | Methylene Chloride | 50% | 0.05 | <0.05 | <0.05 | - | | Methyl Isobutyl Ketone | 50% | 0.5 | <0.50 | <0.50 | - | | Methyl-t-Butyl Ether | 50% | 0.05 | <0.05 | <0.05 | - | | Styrene | 50% | 0.05 | <0.05 | <0.05 | - | | 1,1,1,2-Tetrachloroethane | 50% | 0.04 | <0.04 | <0.04 | - | | 1,1,2,2-Tetrachloroethane | 50% | 0.05 | <0.05 | <0.05 | - | | Toluene | 50% | 0.05 | <0.05 | <0.05 | - | | Tetrachloroethylene | 50% | 0.05 | <0.05 | <0.05 | - | | 1,1,1-Trichloroethane | 50% | 0.05 | <0.05 | <0.05 | - | | 1,1,2-Trichloroethane | 50% | 0.04 | <0.04 | <0.04 | - | | Trichloroethylene | 50% | 0.03 | <0.03 | <0.03 | - | | Vinyl Chloride | 50% | 0.02 | <0.02 | <0.02 | - | | m-Xylene & p-Xylene | 50% | 0.05 | <0.05 | <0.05 | - | | o-Xylene | 50% | 0.05 | <0.05 | <0.05 | - | | Total Xylenes | 50% | 0.05 | <0.05 | <0.05 | - | | Dichlorodifluoromethane | 50% | 0.05 | <0.05 | <0.05 | - | | Dioxane, 1,4- | 50% | NA | NA | NA | NA | | Hexane(n) | 50% | 0.05 | <0.05 | <0.05 | - | | Trichlorofluoromethane | 50% | 0.05 | <0.05 | <0.05 | - | | Notes: | | |---------------|---| | (1) | All results reported in micrograms per gram (μg/g) unless otherwise noted. | | < | Parameter not detected above value specified | | 70 Dilloronoo | Relative Percent Difference = (X-Y)/Average(X,Y) x 100% where X is the sample and Y is the duplicate RPD could not be calculated as either one or both of the results are less than the detection limit or the results are less than 5 times the | | | detection limit. | | 50.2% | RPD exceeds MECP Alert Criteria | Page 1 of 1 64819.22 November 2019 #### Table B-6: Summary of Relative Percent Differences (RPDs) in Groundwater 393 McArthur Avenue, Ottawa, Ontario | Parameter | MECP Alert | RDL | Sample ⁽¹⁾ | Duplicate | % Difference | |---------------------------------|------------|------|-----------------------|-----------|-----------------| | . arameter | Criteria | | MW19-1 | MW19-101 | 70 Dillor Gilee | | Metals and Inorganics | | | | | | | Antimony | 20% | 1.0 | <1.0 | <1.0 | - | | Arsenic | 20% | 1.0 | <1.0 | 1.2 | - | | Barium | 20% | 2.0 | 187 | 185 | 1.1% | | Beryllium | 20% | 0.5 | <0.5 | <0.5 | - | | Boron (Total) | 20% | 10.0 | 152 | 158 | 3.9% | | Cadmium | 20% | 0.2 | <0.2 | <0.2 | - | | Chromium | 20% | 2.0 | 2.6 | 2.2 | - | | Chromium VI | 20% | 5 | <5 | <5 | - | | Cobalt | 20% | 0.5 | 1.6 | 1.5 | - | | Copper | 20% | 1.0 | <1.0 | <1.0 | - | | Lead | 20% | 0.5 | <0.5 | <0.5 | - | | Mercury | 20% | 0.02 | <0.02 | <0.02 | - | | Molybdenum | 20% | 0.5 | 2.5 | 2.4 | - | | Nickel | 20% | 1.0 | 1.5 | 1.4 | - | | Selenium | 20% | 1.0 | <1.0 | 1.7 | - | | Silver | 20% | 0.2 | <0.2 | <0.2 | - | | Thallium | 20% | 0.3 | <0.3 | <0.3 | - | | Vanadium | 20% | 0.4 | 0.6 | 1.1 | - | | Zinc | 20% | 5.0 | <5.0 | <5.0 | - | | pH (pH Units) | 0.3 | NA | 7.64 | 7.83 | 0.02 | | Electrical Conductivity (mS/cm) | 10% | 2 | 2270 | 2280 | 0.4% | | Cyanide, Free | 20% | 2 | <2 | <2 | - | | Sodium | 20% | 2500 | 110000 | 112000 | 1.8% | | Chloride | 20% | 1000 | 576000 | 595000 | 3.2% | | Uranium | 20% | 0.5 | 1.4 | 1.4 | - | | Parameter | MECP Alert | RDL | Sample ⁽¹⁾ | Duplicate | % Difference |
-----------------------|---------------|------|-----------------------|-----------|----------------| | , arameter | Criteria | | MW19-4 | MW19-104 | 70 Dinier enec | | Petroleum Hydrocarbon | Compounds (Pl | HCs) | | | | | F1 (C6-C10) | 30% | 25 | <25 | <25 | - | | F1 (C6-C10) - BTEX | 30% | 25 | <25 | <25 | - | | F2 (C10-C16) | 30% | 100 | <100 | <100 | - | | F3 (C16-C34) | 30% | 100 | <100 | <100 | - | | F4 (C34-C50) | 30% | 100 | <100 | <100 | - | | F4 Gravimetric | 30% | 500 | NA | NA | NA | | Parameter | MECP Alert | RDL | Sample ⁽¹⁾ | Duplicate | % Difference | | | |-----------------------------|--------------|------|-----------------------|-----------|---------------|--|--| | rarameter | Criteria | IND_ | MW19-1 | MW19-101 | 70 Dillerence | | | | Volatile Organic Comp | ounds (VOCs) | | | | | | | | Acetone | 30% | 1 | <1.0 | <1.0 | - | | | | Benzene | 30% | 0.2 | <0.20 | <0.20 | - | | | | Bromodichloromethane | 30% | 0.2 | <0.20 | <0.20 | - | | | | Bromoform | 30% | 0.1 | <0.10 | <0.10 | - | | | | Bromomethane | 30% | 0.2 | <0.20 | <0.20 | - | | | | Carbon Tetrachloride | 30% | 0.2 | <0.20 | <0.20 | - | | | | Chlorobenzene | 30% | 0.1 | <0.10 | <0.10 | - | | | | Chloroform | 30% | 0.2 | <0.20 | <0.20 | - | | | | Dibromochloromethane | 30% | 0.1 | <0.10 | <0.10 | - | | | | 1,2-Dichlorobenzene | 30% | 0.1 | <0.10 | <0.10 | - | | | | 1,3-Dichlorobenzene | 30% | 0.1 | <0.10 | <0.10 | - | | | | I,4-Dichlorobenzene | 30% | 0.1 | <0.10 | <0.10 | - | | | | 1,1-Dichloroethane | 30% | 0.3 | <0.30 | <0.30 | - | | | | 1,2-Dichloroethane | 30% | 0.2 | <0.20 | <0.20 | - | | | | 1,1-Dichloroethylene | 30% | 0.3 | <0.30 | <0.30 | - | | | | Cis-1,2-Dichloroethylene | 30% | 0.2 | <0.20 | <0.20 | - | | | | Frans-1,2-Dichloroethylene | 30% | 0.2 | <0.20 | <0.20 | - | | | | 1,2-Dichloropropane | 30% | 0.2 | <0.20 | <0.20 | - | | | | Cis-1,3-Dichloropropylene | 30% | NA | NA | NA | NA | | | | Frans-1,3-Dichloropropylene | 30% | NA | NA | NA | NA | | | | 1,3-Dichloropropylene | 30% | 0.3 | <0.30 | <0.30 | - | | | | Ethylbenzene | 30% | 0.1 | <0.10 | <0.10 | - | | | | Ethylene Dibromide | 30% | 0.1 | <0.10 | <0.10 | - | | | | Methyl Ethyl Ketone | 30% | 1 | <1.0 | <1.0 | - | | | | Methylene Chloride | 30% | 0.3 | <0.30 | <0.30 | - | | | | Methyl Isobutyl Ketone | 30% | 1 | <1.0 | <1.0 | - | | | | Methyl-t-Butyl Ether | 30% | 0.2 | <0.20 | <0.20 | - | | | | Styrene | 30% | 0.1 | <0.10 | <0.10 | - | | | | 1,1,1,2-Tetrachloroethane | 30% | 0.1 | <0.10 | <0.10 | - | | | | 1,1,2,2-Tetrachloroethane | 30% | 0.1 | <0.10 | <0.10 | - | | | | Γoluene | 30% | 0.2 | <0.20 | <0.20 | - | | | | Γetrachloroethylene | 30% | 0.2 | <0.20 | <0.20 | - | | | | 1,1,1-Trichloroethane | 30% | 0.3 | <0.30 | <0.30 | - | | | | 1,1,2-Trichloroethane | 30% | 0.2 | <0.20 | <0.20 | - | | | | Trichloroethylene | 30% | 0.2 | <0.20 | <0.20 | - | | | | Vinyl Chloride | 30% | 0.17 | <0.17 | <0.17 | - | | | | m-Xylene & p-Xylene | 30% | 0.2 | <0.20 | <0.20 | - | | | | o-Xylene | 30% | 0.1 | <0.10 | <0.10 | - | | | | Total Xylenes | 30% | 0.2 | <0.20 | <0.20 | - | | | | Dichlorodifluoromethane | 30% | 0.2 | <0.20 | <0.20 | - | | | | Dioxane, 1,4- | 30% | NA | NA | NA | NA | | | | Hexane(n) | 30% | 0.2 | <0.20 | <0.20 | - | | | | Frichlorofluoromethane | 30% | 0.4 | <0.40 | <0.40 | - | | | All results reported in micrograms per gram ($\mu g/L$) unless otherwise noted. Parameter not detected above value specified $Relative\ Percent\ Difference = |(X-Y)/Average(X,Y)|\ x\ 100\%\ where\ X\ is\ the\ sample\ and\ Y\ is\ the\ duplicate$ % Difference RPD could not be calculated as either one or both of the results are less than the detection limit or the results are less than 5 times the detection limit. RPD exceeds MECP Alert Criteria 40.5% Page 1 of 1 November 2019 64819.22 # Sampling and Analysis Plan Phase Two Environmental Site Assessment 393 McArthur Avenue Ottawa, Ontario | | | | Soil | | | | |------------------------|---------------------------------------|-------------------------------|------|--|--------------|--------------| | Monitoring
Location | Proposed
Borehole Depth
(m bgs) | Reg 153 Metals and Inorganics | рН | Reg 153 PHCs F1-
F4 including
BTEX | Reg 153 VOCs | Reg 153 PAHs | | BH19-1 | 6.1 or until refusal | 2 | 4 | 0 | 2 | 2 | | BH19-2 | 6.1 or until refusal | 2 | 2 | 0 | 0 | 2 | | BH19-3 | 6.1 or until refusal | 2 | 2 | 0 | 0 | 2 | | BH19-4 | 6.1 or until refusal | 2 | 2 | 2 | 0 | 2 | | Sub total | | 8 | 10 | 2 | 2 | 8 | | Field Duplicates | | 1 | 1 | 1 | 1 | 1 | | Total Samples | | 9 | 11 | 3 | 3 | 9 | #### Notes: *Each sample parameter requires a field duplicate *Collect VOC/PHC within the fill at location of highest HEX and ISBL concentration (if no visual evidence) ^{*}VOC and PHC F1 -BTEX samples (5 g of soil) to be collected with syringe and placed directly into vials with preservative (if methanol splashes, it is no longer valid and you must use a new vial.) No headspace in jars. ^{*}Collect samples within the fill material in each borehole ^{*}Each stratigraphy encountered should be placed into separate polyethylene bags and screened with the CGI/PID meter # Sampling and Analysis Plan Phase Two Environmental Site Assessment 393 McArthur Avenue Ottawa, Ontario | | | | Ground | lwater | | | | | |------------------------|----------------|------|----------------------------------|---------------------------------|--------------|---------------------------------------|--|--| | Monitoring
Location | 9 | | Reg 153 Metals
and Inorganics | Reg 153 PHCs F1-
F4 and BTEX | Reg 153 VOCs | Environmental
Investigation Notes | | | | MW19-1 | 6.1 | 3.05 | 1 | 0 | 1 | | | | | MW19-3 | V19-3 6.1 3.05 | | | 0 | 0 | Take headspace | | | | MW19-4 | W19-4 6.1 3.05 | | 1 | 1 | 0 | vapour readings | | | | Sub total | | | 1 | 1 | 1 | before purging and collecting samples | | | | Field Duplicates | | | 1 | 1 | 1 | | | | | Trip Blank | | | 0 | 0 | 1 | | | | | Total Samples | | | 2 | 2 | 3 | | | | #### Notes: ^{*}Parameters in select wells may change based on results of soil quality analysis results CLIENT: Novatech PROJECT: 393 McArthur Ave., Ottawa, ON JOB#: 64819.22 LOCATION: See Figure 1 - Borehole Location Plan SHEET: 1 OF 1 DATUM: CGVD28 BORING DATE: Oct 1 2019 | 2 | | SOIL PROFILE | 1 | | | | | SAIVIF | PLE DATA | u z | | | | | |------------------------------|---|--|-------------|--|-------------------|----------------|---------------|---------------------------|-----------------------------------|---|-------|-------------|-------------------------------------|---| | METRES BORING METHOD | DESC | CRIPTION | STRATA PLOT | ELEV.
DEPTH
(m) | NUMBER | TYPE | RECOVERY (mm) | BLOWS/0.3m | LABORATORY
ANALYSES | COMBUSTIBLE
VAPOUR
CONCENTRATION
(ppm) | ODOUR | TPH (mg/kg) | MC I | ONITORING WELL
NSTALLATION
AND NOTES | | 0 1 0 0 1 Power/Orland Auger | Sand some grave Loose to compact brown SAND and trace gravel Compact to very brown/dark grey gravel, some clay | sand and gravel,
lay
E)
n/light brown silty
el and clay (FILL)
t, light brown/reddish
I SILT, some clay, | | 62.63
0.03
62.27
0.36
61.87
0.76
59.58
3.05 | 1 2 3 4 5 6 7 8 8 | SS SS SS SS SS | 203 | 4 8 9 17 >50 for 100 tenm | M&I pH, PAH, VOC pH, VOC M&I, PAH | 1A - HEX - 0, ISBL - 0 1B - HEX - 0, ISBL - 0 HEX - 5, ISBL - 0 HEX - 5, ISBL - 0 | | | GROUN DATE Oct. 15/19 Oct. 31/19 | Bentonite Seal No. 2 Filter Sand TOP OF SCREEN ELEV:: 59.58 m 50 mm diameter, 3.05 m long well screen. BOTTOM OF SCREEN ELEV:: 56.53 m | CLIENT: Novatech PROJECT: 393 McArthur Ave., Ottawa, ON JOB#: 64819.22 LOCATION: See Figure 1 - Borehole Location Plan SHEET: 1 OF 1 DATUM: CGVD28 BORING DATE: Sep 30 2019 CLIENT: Novatech PROJECT: 393 McArthur Ave., Ottawa, ON JOB#: 64819.22 LOCATION: See Figure 1 - Borehole Location Plan SHEET: 1 OF 1 DATUM: CGVD28 BORING DATE: Sep 30 2019 | , | 90 | SOIL PROFILE | | <u> </u> | | | | SAMI | PLE DATA | | | | | | |--------|--------------------------------|---|-------------|-----------------------|--------|------|---------------|------------------------|------------------------|--|-------|-------------|----------------------------|--| | METRES | BORING METHOD | DESCRIPTION | STRATA PLOT | ELEV.
DEPTH
(m) | NUMBER | TYPE | RECOVERY (mm) | BLOWS/0.3m | LABORATORY
ANALYSES | COMBUSTIBLE
VAPOUR
CONCENTRATION
(PPM) | ODOUR | TPH (mg/kg) | MC | ONITORING WELL
INSTALLATION
AND NOTES | | 0 - | | Ground Surface Brown sand and gravel some silt trace clay (FILL) | | 62.93 | 1 | SS | 381 | 7 | | HEX - 0,
ISBL - 0 | | | | | | 1 | | gravel and clay, ash, shale fragments
(FILL) | | | 2 | SS | 229 | 4 | M&I, PAH | HEX - 0,
ISBL - 0 | | | | Bentonite Seal | | 0 | nm OD) | Compact to very dense, dark | | 61.10
1.83 | 3 | SS | 330 | 8 | | HEX - 0,
ISBL - 0 | | | | | | 2 | Power Auger
em Auger (210mm | brown/dark grey silty sand, some
gravel, some clay, possible
cobbles/boulders, granitic rock
fragments (GLACIAL TILL). | | | 4 | | 356 | | | HEX - 0,
ISBL - 0 | | | | No. 2 Filter Sand | | 3 | Power Au
Hollow Stem Auger | | | | 5 | | 508 | | M&I, PAH | HEX -
0,
ISBL - 0 | | | Y | TOP OF SCREEN
ELEV.: 59.88 m | | 4 | | | | | 7 | | 432 | | | HEX - 0,
ISBL - 0
7A - HEX -
40, ISBL - | | | | 50 mm diameter,
1.52 m long slotted
pipe | | | | Turning light grey | | 4.27 | 8 | SS | 432 | 37 | | 0 7B -
HEX - 35,
ISBL - 0
HEX - 35,
ISBL - 0 | | | | BOTTOM OF SCREE
ELEV.: 58.36 m | | 5 | | | | | 9 | (SS) | | 50
for
50
mm | | HEX - 10, -
ISBL - 0 | | | | | | 6 | NQ (70mm OD) | | | | 10 | RC | | | | HEX - 0,
ISBL - 0 | | | | Bentonite Seal | | 7 | n Auger (210mm OD) | | | | 11 | RC | | | | HEX - 0,
ISBL - 0 | | | | | | | Stem Auger (| Refusal to augering on inferred | | 55.16
7.77 | 12 | SS | | 95
for
229
mm | | HEX - 0,
ISBL - 0 | | | | | | | Hollow 8 | boulder or bedrock.
End of Borehole | | 58.66 | GROUN | IDWATER OBSERVATIONS | | | | | | | | | | | | | | | DATE Oct. 15/19 Oct. 18/19 | DEPTH (m) ELEVATION 3.01 | | | | | | | | | | | | | | | Oct. 31/19 | 2.85 | | | _ | SEMTEC_ | | | | | | | | | | | L | OGGED: KM | CLIENT: Novatech PROJECT: 393 McArthur Ave., Ottawa, ON JOB#: 64819.22 LOCATION: See Figure 1 - Borehole Location Plan SHEET: 1 OF 1 DATUM: CGVD28 BORING DATE: Sep 30 2019 | | ОС | SOIL PROFILE | | | | - 1 | | SAME | PLE DATA | щS | | | | | |--------|---|---|-------------|------------------------|--------|-------|---------------|--------------------------------------|------------------------|---|-------|-------------|---|---| | METRES | BORING METHOD | DESCRIPTION | STRATA PLOT | ELEV.
DEPTH
(m) | NUMBER | TYPE | RECOVERY (mm) | BLOWS/0.3m | LABORATORY
ANALYSES | COMBUSTIBLE
VAPOUR
CONCENTRATION
(ppm) | ODOUR | TPH (mg/kg) | MC
I | NITORING WELL
NSTALLATION
AND NOTES | | 0 - | | Ground Surface Asphaltic concrete pavement Grey sand and gravel (BASE/SUBBASE) Light brown/reddish brown/dark brown/brown silty sand, trace to some gravel and clay, brick (FILL) | | 62.77
0.08
0.15 | | SS SS | | | | 1A - HEX -
0, ISBL - 0
1B - HEX -
0, ISBL - 0
2A - HEX -
0, ISBL - 0 | | | | Flush Mount
Filter sand | | 2 | | Compact to very dense, dark | | 60.48
2.29 | 3 | SS : | 279 | 30 | | 2B - HEX -
(0, ISBL - 0)
3A - HEX -
0, ISBL - 0
3B - HEX -
(0, ISBL - 0) | | | | | | 3 | | brown/dark grey silty sand, some gravel, some clay, possible cobbles/boulders (GLACIAL TILL). | | 0 | | ss ss | | | M&I, PAH, PHC, BTEX | HEX - 0,
ISBL - 0
HEX - 0,
ISBL - 0 | | | Ā
Ā | Bentonite Seal | | 4 | Power Auger
Hollow Stem Auger (210mm OD) | Turning light grey | | 4.57 | 6 | SS | 610 | 50 | M&I, PAH, PHC, BTEX | HEX - 0,
ISBL - 0 | | | | No. 2 Filter Sand TOP OF SCREEN | | 5 | Pow.
Hollow Stem A | | | | | SS | 152 | | | HEX - 0,
ISBL - 0
HEX - 0,
ISBL - 0 | | | | ELEV.: 58.20 m | | 6 | | | | | | SS | 100 | 50
for
100
mm | | HEX - 0, ISBL - 0 | | | | 50 mm diameter,
3.05 m long well
screen. | | 8 | | | | | | SS | 152 | for
100
mm
50
for
152 | | HEX - 0, | | | | BOTTOM OF SCREE
ELEV.: 55.15 m | | 9 | | Bedrock - Shale | | 54.39
8.38
58.20 | | SS | 100 | for
100
mm | | HEX - 0,
ISBL - 0 | | | | Bentonite Seal | | - | | End of Borehole | | 53.55
9.22 | 13 | SS | | 50
for
76
mm | | HEX - 0, ISBL - 0 | | | GROUN DATE Oct. 15/19 Oct. 18/19 Oct. 31/19 | DWATER OBSERVATIONS DEPTH (m) ELEVATION 3.23 | | | _ | SEMTEC_ INSULTING ENGINEERS | | | | | | | | | | | | OGGED: KM | 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS 32 STEACIE DRIVE OTTAWA, ON K2K 2A9 (613) 836-1422 **ATTENTION TO: Kathryn Maton** PROJECT: Phase Two ESA - 64819.22 AGAT WORK ORDER: 19Z526729 SOIL ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Supervisor TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor DATE REPORTED: Oct 15, 2019 PAGES (INCLUDING COVER): 23 **VERSION*: 1** Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100 | *NOTES | |--------| All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time. **AGAT** Laboratories (V1) Page 1 of 23 Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement. SAMPLING SITE:393 McArthur CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS # **Certificate of Analysis** AGAT WORK ORDER: 19Z526729 PROJECT: Phase Two ESA - 64819.22 **ATTENTION TO: Kathryn Maton** SAMPLED BY:K. Maton ## O. Reg. 153(511) - Metals & Inorganics (Soil) DATE RECEIVED: 2019-10-04 **DATE REPORTED: 2019-10-15** SAMPLE DESCRIPTION: BH19-1 SA2 BH19-1 SA7 BH19-2 SA2 BH19-2 SA102 BH19-2 SA8 BH19-3 SA2 SAMPLE TYPE: Soil Soil Soil Soil Soil Soil DATE SAMPLED: 2019-10-01 2019-10-01 2019-09-30 2019-09-30 2019-09-30 2019-09-30 G/S RDL 592948 592952 592959 592960 592964 592965 Parameter Unit Date Prepared Date Analyzed 7.5 8.0 2019-10-10 2019-10-10 <0.8 <0.8 <0.8 <0.8 <0.8 < 0.8 Antimony μg/g Arsenic 18 2019-10-10 2019-10-10 2 2 4 5 µg/g Barium 390 114 147 52 μg/g 2 2019-10-10 2019-10-10 98 154 133 <0.5 < 0.5 <0.5 Beryllium 4 0.5 2019-10-10 2019-10-10 0.5 0.5 < 0.5 μg/g Boron 120 5 2019-10-10 2019-10-10 <5 7 <5 <5 <5 7 μg/g 0.20 Boron (Hot Water Soluble) μg/g 1.5 0.10 2019-10-10 2019-10-10 0.14 0.35 0.18 0.15 0.36 Cadmium μg/g 1.2 0.5 2019-10-10 2019-10-10 < 0.5 < 0.5 <0.5 < 0.5 < 0.5 0.6 Chromium µg/g 160 2 2019-10-10 2019-10-10 41 17 49 47 12 34 Cobalt 22 10.1 7.5 10.5 10.5 6.5 μg/g 0.5 2019-10-10 2019-10-10 8.7 140 2019-10-10 22 21 23 22 23 22 Copper μg/g 2019-10-10 Lead μg/g 120 1 2019-10-10 2019-10-10 5 10 6 6 7 104 Molybdenum 6.9 8.0 < 0.5 < 0.5 1.4 µg/g 0.5 2019-10-10 2019-10-10 1.8 1.2 27 16 Nickel 100 23 19 26 22 μg/g 2019-10-10 2019-10-10 < 0.4 < 0.4 <0.4 <0.4 Selenium μg/g 2.4 0.4 2019-10-10 2019-10-10 < 0.4 0.5 Silver 20 0.2 2019-10-10 2019-10-10 < 0.2 < 0.2 <0.2 < 0.2 <0.2 < 0.2 μg/g Thallium µg/g 1 0.4 2019-10-10 2019-10-10 < 0.4 < 0.4 < 0.4 < 0.4 <0.4 < 0.4 Uranium μg/g 23 0.5 2019-10-10 2019-10-10 8.0 1.0 0.9 0.9 8.0 0.9 Vanadium 86 2019-10-10 2019-10-10 47 23 50 48 20 38 μg/g Zinc μg/g 340 5 2019-10-10 2019-10-10 42 27 46 45 26 275 Chromium VI 8 0.2 2019-10-10 2019-10-10 <0.2 < 0.2 <0.2 < 0.2 <0.2 < 0.2 µg/g Cyanide μg/g 0.051 0.040 2019-10-10 2019-10-10 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 < 0.040 0.27 0.10 2019-10-10 2019-10-10 <0.10 < 0.10 < 0.10 < 0.10 < 0.10 0.12 Mercury μg/g **Electrical Conductivity** mS/cm 0.7 0.461 0.285 0.707 0.681 0.207 1.25 0.005 2019-10-11 2019-10-11 Sodium Adsorption Ratio NA 5 NA 2019-10-11 2019-10-11 6.81 0.604 8.97 8.56 0.399 3.71 pH, 2:1 CaCl2 Extraction pH Units NA 2019-10-10 2019-10-10 7.31 8.15 7.73 7.74 8.08 8.11 Certified By: 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 http://www.agatlabs.com TEL (905)712-5100 FAX (905)712-5122 **SAMPLING SITE:393 McArthur** **CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS** # **Certificate of Analysis** **AGAT WORK ORDER: 19Z526729** PROJECT: Phase Two ESA - 64819.22 **SAMPLED BY:K. Maton** **ATTENTION TO: Kathryn Maton** #### O. Reg. 153(511) - Metals & Inorganics (Soil) | DATE RECEIVED: 2019-10-04 | | | | | | | | | DATE REPORTED: 2019-10-15 | |---------------------------|----------|-------|-------|---------------|----------------|------------|------------|------------|---------------------------| | | | | | SAMPL | E DESCRIPTION: | BH19-3 SA5 | BH19-4 SA4 | BH19-4 SA6 | | | | | | | | SAMPLE TYPE: | Soil | Soil | Soil | | | | | | | | DATE SAMPLED: | 2019-09-30 | 2019-10-01 | 2019-10-01 | | | Parameter | Unit | G/S | RDL | Date Prepared | Date Analyzed | 592967 | 592968 | 592983 | | | Antimony | μg/g | 7.5 | 8.0 | 2019-10-10 | 2019-10-10 | <0.8 | <0.8 | <0.8 | | | Arsenic | μg/g | 18 | 1 | 2019-10-10 | 2019-10-10 | 7 | 7 | 7 | | | Barium | μg/g | 390 | 2 | 2019-10-10 | 2019-10-10 | 269 | 112 | 202 | | | Beryllium | μg/g | 4 | 0.5 | 2019-10-10 | 2019-10-10 | 0.5 | 0.5 | 0.7 | | | Boron | μg/g | 120 | 5 | 2019-10-10 | 2019-10-10 | 9 | 9 | 11 | | | Boron (Hot Water Soluble) | μg/g | 1.5 | 0.10 | 2019-10-10 | 2019-10-10 | 0.22 | 0.23 | 0.42 | | | Cadmium | μg/g | 1.2 | 0.5 | 2019-10-10 | 2019-10-10 | <0.5 | <0.5 | <0.5 | | | Chromium | μg/g | 160 | 2 | 2019-10-10 | 2019-10-10 | 18 | 18 | 24 | | | Cobalt | μg/g | 22 | 0.5 | 2019-10-10 | 2019-10-10 | 11.1 | 10.7 | 14.2 | | | Copper | μg/g | 140 | 1 | 2019-10-10 | 2019-10-10 | 30 | 29 | 37 | | | Lead | μg/g | 120 | 1 | 2019-10-10 | 2019-10-10 | 13 | 13 | 19 | | | Molybdenum | μg/g | 6.9 | 0.5 | 2019-10-10 | 2019-10-10 |
4.9 | 4.9 | 5.3 | | | Nickel | μg/g | 100 | 1 | 2019-10-10 | 2019-10-10 | 35 | 36 | 43 | | | Selenium | μg/g | 2.4 | 0.4 | 2019-10-10 | 2019-10-10 | 0.6 | 0.4 | 0.7 | | | Silver | μg/g | 20 | 0.2 | 2019-10-10 | 2019-10-10 | <0.2 | <0.2 | <0.2 | | | Thallium | μg/g | 1 | 0.4 | 2019-10-10 | 2019-10-10 | <0.4 | <0.4 | < 0.4 | | | Uranium | μg/g | 23 | 0.5 | 2019-10-10 | 2019-10-10 | 1.8 | 1.9 | 2.3 | | | Vanadium | μg/g | 86 | 1 | 2019-10-10 | 2019-10-10 | 26 | 27 | 28 | | | Zinc | μg/g | 340 | 5 | 2019-10-10 | 2019-10-10 | 39 | 39 | 38 | | | Chromium VI | μg/g | 8 | 0.2 | 2019-10-10 | 2019-10-10 | <0.2 | <0.2 | <0.2 | | | Cyanide | μg/g | 0.051 | 0.040 | 2019-10-11 | 2019-10-11 | < 0.040 | < 0.040 | < 0.040 | | | Mercury | μg/g | 0.27 | 0.10 | 2019-10-10 | 2019-10-10 | <0.10 | <0.10 | <0.10 | | | Electrical Conductivity | mS/cm | 0.7 | 0.005 | 2019-10-11 | 2019-10-11 | 0.458 | 0.676 | 0.366 | | | Sodium Adsorption Ratio | NA | 5 | NA | 2019-10-11 | 2019-10-11 | 0.590 | 1.25 | 0.928 | | | pH, 2:1 CaCl2 Extraction | pH Units | | NA | 2019-10-10 | 2019-10-10 | 7.90 | 7.87 | 8.03 | | Certified By: 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 http://www.agatlabs.com TEL (905)712-5100 FAX (905)712-5122 **CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS** # **Certificate of Analysis** **AGAT WORK ORDER: 19Z526729** PROJECT: Phase Two ESA - 64819.22 **SAMPLED BY:K. Maton** **ATTENTION TO: Kathryn Maton** O. Reg. 153(511) - Metals & Inorganics (Soil) **DATE RECEIVED: 2019-10-04 DATE REPORTED: 2019-10-15** Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 592948-592983 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated SAMPLING SITE:393 McArthur Analysis performed at AGAT Toronto (unless marked by *) 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 http://www.agatlabs.com TEL (905)712-5100 FAX (905)712-5122 # **Certificate of Analysis** AGAT WORK ORDER: 19Z526729 O. Reg. 153(511) - ORPs (Soil) PROJECT: Phase Two ESA - 64819.22 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com **CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS** SAMPLING SITE:393 McArthur **DATE RECEIVED: 2019-10-04** **ATTENTION TO: Kathryn Maton** SAMPLED BY:K. Maton | |
• | , | • | · | | |---|-------|---|---|---|---------------------------| | 4 | | | | | DATE REPORTED: 2019-10-15 | | | | | | SAMPL | E DESCRIPTION: | BH19-1 SA3 | BH19-1 SA5 | | |--------------------------|----------|-----|-----|---------------|----------------|------------|------------|--| | | | | | | SAMPLE TYPE: | Soil | Soil | | | | | | | I | DATE SAMPLED: | 2019-10-01 | 2019-10-01 | | | Parameter | Unit | G/S | RDL | Date Prepared | Date Analyzed | 592950 | 592951 | | | pH, 2:1 CaCl2 Extraction | pH Units | | NA | 2019-10-10 | 2019-10-10 | 7.63 | 7.95 | | Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard 592950-592951 pH was determined on the 0.01M CaCl2 extract obtained from 2:1 leaching procedure (2 parts extraction fluid:1 part wet soil). Analysis performed at AGAT Toronto (unless marked by *) manjot Bhells Amanjo Bhels CHEMIST # **Certificate of Analysis** AGAT WORK ORDER: 19Z526729 O. Reg. 153(511) - VOCs (Soil) PROJECT: Phase Two ESA - 64819.22 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS SAMPLING SITE:393 McArthur ATTENTION TO: Kathryn Maton SAMPLED BY:K. Maton | | () | | |--|-----|--| | | | | | DATE RECEIVED: 2019-10-04 | | | | | | | DATE REPORTED: 2019-10-15 | |-----------------------------|------|-------|------|---------------|----------------|------------|---------------------------| | | | | | SAMPL | E DESCRIPTION: | BH19-1 SA5 | | | | | | | | SAMPLE TYPE: | Soil | | | | | | | | DATE SAMPLED: | 2019-10-01 | | | Parameter | Unit | G/S | RDL | Date Prepared | Date Analyzed | 592951 | | | Dichlorodifluoromethane | μg/g | 16 | 0.05 | 2019-10-10 | 2019-10-10 | <0.05 | | | Vinyl Chloride | ug/g | 0.02 | 0.02 | 2019-10-10 | 2019-10-10 | <0.02 | | | Bromomethane | ug/g | 0.05 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | | | Trichlorofluoromethane | ug/g | 4 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | | | Acetone | ug/g | 16 | 0.50 | 2019-10-10 | 2019-10-10 | < 0.50 | | | 1,1-Dichloroethylene | ug/g | 0.05 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | | | Methylene Chloride | ug/g | 0.1 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | | | Trans- 1,2-Dichloroethylene | ug/g | 0.084 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | | | Methyl tert-butyl Ether | ug/g | 0.75 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | | | 1,1-Dichloroethane | ug/g | 3.5 | 0.02 | 2019-10-10 | 2019-10-10 | < 0.02 | | | Methyl Ethyl Ketone | ug/g | 16 | 0.50 | 2019-10-10 | 2019-10-10 | < 0.50 | | | Cis- 1,2-Dichloroethylene | ug/g | 3.4 | 0.02 | 2019-10-10 | 2019-10-10 | < 0.02 | | | Chloroform | ug/g | 0.05 | 0.04 | 2019-10-10 | 2019-10-10 | < 0.04 | | | 1,2-Dichloroethane | ug/g | 0.05 | 0.03 | 2019-10-10 | 2019-10-10 | < 0.03 | | | 1,1,1-Trichloroethane | ug/g | 0.38 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | | | Carbon Tetrachloride | ug/g | 0.05 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | | | Benzene | ug/g | 0.21 | 0.02 | 2019-10-10 | 2019-10-10 | < 0.02 | | | 1,2-Dichloropropane | ug/g | 0.05 | 0.03 | 2019-10-10 | 2019-10-10 | < 0.03 | | | Trichloroethylene | ug/g | 0.061 | 0.03 | 2019-10-10 | 2019-10-10 | < 0.03 | | | Bromodichloromethane | ug/g | 13 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | | | Methyl Isobutyl Ketone | ug/g | 1.7 | 0.50 | 2019-10-10 | 2019-10-10 | < 0.50 | | | 1,1,2-Trichloroethane | ug/g | 0.05 | 0.04 | 2019-10-10 | 2019-10-10 | < 0.04 | | | Toluene | ug/g | 2.3 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | | | Dibromochloromethane | ug/g | 9.4 | 0.05 | 2019-10-10 | 2019-10-10 | <0.05 | | | Ethylene Dibromide | ug/g | 0.05 | 0.04 | 2019-10-10 | 2019-10-10 | <0.04 | | | Tetrachloroethylene | ug/g | 0.28 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | | | 1,1,1,2-Tetrachloroethane | ug/g | 0.058 | 0.04 | 2019-10-10 | 2019-10-10 | <0.04 | | | Chlorobenzene | ug/g | 2.4 | 0.05 | 2019-10-10 | 2019-10-10 | <0.05 | | | Ethylbenzene | ug/g | 2 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | | | m & p-Xylene | ug/g | | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | | Certified By: Jung **CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS** ### **Certificate of Analysis** AGAT WORK ORDER: 19Z526729 PROJECT: Phase Two ESA - 64819.22 **ATTENTION TO: Kathryn Maton** SAMPLED BY:K. Maton SAWFLE O. Reg. 153(511) - VOCs (Soil) | DATE RECEIVED: 2019-10-0 |)4 | | | | | | DATE REPORTED: 2019-10-15 | |---------------------------|------------|-----------|----------|---------------|----------------|------------|---------------------------| | | | | | SAMPL | E DESCRIPTION: | BH19-1 SA5 | | | | | | | | SAMPLE TYPE: | Soil | | | | | | | I | DATE SAMPLED: | 2019-10-01 | | | Parameter | Unit | G/S | RDL | Date Prepared | Date Analyzed | 592951 | | | Bromoform | ug/g | 0.27 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | | | Styrene | ug/g | 0.7 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | | | 1,1,2,2-Tetrachloroethane | ug/g | 0.05 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | | | o-Xylene | ug/g | | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | | | 1,3-Dichlorobenzene | ug/g | 4.8 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | | | 1,4-Dichlorobenzene | ug/g | 0.083 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | | | 1,2-Dichlorobenzene | ug/g | 3.4 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | | | Xylene Mixture | ug/g | 3.1 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | | | 1,3-Dichloropropene | μg/g | 0.05 | 0.04 | 2019-10-10 | 2019-10-10 | <0.04 | | | n-Hexane | μg/g | 2.8 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | | | Moisture Content | % | | 0.1 | 2019-10-10 | 2019-10-10 | 10.3 | | | Surrogate | Unit | Acceptabl | e Limits | | | | | | Toluene-d8 | % Recovery | 50-1 | 40 | 2019-10-10 | 2019-10-10 | 90 | | | 4-Bromofluorobenzene | % Recovery | 50-1 | 40 | 2019-10-10 | 2019-10-10 | 92 | | Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil. Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene. 1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene. Analysis performed at AGAT Toronto (unless marked by *) 592951 Certified By: Jung 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 http://www.agatlabs.com TEL (905)712-5100 FAX (905)712-5122 **CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS** ### **Certificate of Analysis** **AGAT WORK ORDER: 19Z526729** PROJECT: Phase Two ESA - 64819.22 **SAMPLED BY:K. Maton** **ATTENTION TO: Kathryn Maton** O. Reg. 153(511) - PAHs (Soil)
| DATE RECEIVED: 2019-10-04 | | | | | | | | | DATE REPORTE | D: 2019-10-15 | | |----------------------------|------|----------|-----------|----------------------|----------------|------------|------------|-------------|---------------|---------------|------------| | | | | | SAMPL | E DESCRIPTION: | BH19-1 SA3 | BH19-1 SA7 | BH19-2 SA5B | BH19-2 SA105B | BH19-2 SA8 | BH19-3 SA2 | | | | | | | SAMPLE TYPE: | Soil | Soil | Soil | Soil | Soil | Soil | | | | | | | DATE SAMPLED: | 2019-10-01 | 2019-10-01 | 2019-09-30 | 2019-09-30 | 2019-09-30 | 2019-09-30 | | Parameter | Unit | G/S | RDL | Date Prepared | Date Analyzed | 592950 | 592952 | 592961 | 592963 | 592964 | 592965 | | Naphthalene | μg/g | 0.6 | 0.05 | 2019-10-09 | 2019-10-09 | <0.05 | < 0.05 | < 0.05 | < 0.05 | <0.05 | < 0.05 | | Acenaphthylene | μg/g | 0.15 | 0.05 | 2019-10-09 | 2019-10-09 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Acenaphthene | μg/g | 7.9 | 0.05 | 2019-10-09 | 2019-10-09 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Fluorene | μg/g | 62 | 0.05 | 2019-10-09 | 2019-10-09 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Phenanthrene | μg/g | 6.2 | 0.05 | 2019-10-09 | 2019-10-09 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Anthracene | μg/g | 0.67 | 0.05 | 2019-10-09 | 2019-10-09 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Fluoranthene | μg/g | 0.69 | 0.05 | 2019-10-09 | 2019-10-09 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.12 | | Pyrene | μg/g | 78 | 0.05 | 2019-10-09 | 2019-10-09 | < 0.05 | <0.05 | < 0.05 | < 0.05 | < 0.05 | 0.13 | | Benz(a)anthracene | μg/g | 0.5 | 0.05 | 2019-10-09 | 2019-10-09 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.09 | | Chrysene | μg/g | 7 | 0.05 | 2019-10-09 | 2019-10-09 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.07 | | Benzo(b)fluoranthene | μg/g | 0.78 | 0.05 | 2019-10-09 | 2019-10-09 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.07 | | Benzo(k)fluoranthene | μg/g | 0.78 | 0.05 | 2019-10-09 | 2019-10-09 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Benzo(a)pyrene | μg/g | 0.3 | 0.05 | 2019-10-09 | 2019-10-09 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.07 | | Indeno(1,2,3-cd)pyrene | μg/g | 0.38 | 0.05 | 2019-10-09 | 2019-10-09 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Dibenz(a,h)anthracene | μg/g | 0.1 | 0.05 | 2019-10-09 | 2019-10-09 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Benzo(g,h,i)perylene | μg/g | 6.6 | 0.05 | 2019-10-09 | 2019-10-09 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | 2-and 1-methyl Naphthalene | μg/g | 0.99 | 0.05 | 2019-10-09 | 2019-10-09 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Moisture Content | % | | 0.1 | 2019-10-09 | 2019-10-09 | 20.5 | 9.1 | 14.1 | 14.3 | 10.1 | 20.7 | | Surrogate | Unit | Acceptab | le Limits | | | | | | | | | | Chrysene-d12 | % | 50- | 140 | 2019-10-09 | 2019-10-09 | 80 | 82 | 76 | 73 | 73 | 87 | Certified By: 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 http://www.agatlabs.com TEL (905)712-5100 FAX (905)712-5122 **CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS** ### **Certificate of Analysis** AGAT WORK ORDER: 19Z526729 PROJECT: Phase Two ESA - 64819.22 **ATTENTION TO: Kathryn Maton** SAMPLED BY:K. Maton 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com O. Reg. 153(511) - PAHs (Soil) | | | | | 0.110 | g. 100(011) | 1 7110 (00 | '' <i>j</i> | | | |----------------------------|------|------------|--------|---------------|----------------|------------|-------------|------------|---------------------------| | DATE RECEIVED: 2019-10-04 | | | | | | | | | DATE REPORTED: 2019-10-15 | | | | | | SAMPL | E DESCRIPTION: | BH19-3 SA5 | BH19-4 SA4 | BH19-4 SA6 | | | | | | | | SAMPLE TYPE: | Soil | Soil | Soil | | | | | | | | DATE SAMPLED: | 2019-09-30 | 2019-10-01 | 2019-10-01 | | | Parameter | Unit | G/S | RDL | Date Prepared | Date Analyzed | 592967 | 592968 | 592983 | | | Naphthalene | μg/g | 0.6 | 0.05 | 2019-10-09 | 2019-10-09 | <0.05 | <0.05 | <0.05 | | | Acenaphthylene | μg/g | 0.15 | 0.05 | 2019-10-09 | 2019-10-09 | < 0.05 | < 0.05 | < 0.05 | | | Acenaphthene | μg/g | 7.9 | 0.05 | 2019-10-09 | 2019-10-09 | < 0.05 | <0.05 | < 0.05 | | | Fluorene | μg/g | 62 | 0.05 | 2019-10-09 | 2019-10-09 | <0.05 | < 0.05 | < 0.05 | | | Phenanthrene | μg/g | 6.2 | 0.05 | 2019-10-09 | 2019-10-09 | < 0.05 | < 0.05 | < 0.05 | | | Anthracene | μg/g | 0.67 | 0.05 | 2019-10-09 | 2019-10-09 | <0.05 | < 0.05 | < 0.05 | | | Fluoranthene | μg/g | 0.69 | 0.05 | 2019-10-09 | 2019-10-09 | < 0.05 | < 0.05 | < 0.05 | | | Pyrene | μg/g | 78 | 0.05 | 2019-10-09 | 2019-10-09 | <0.05 | < 0.05 | < 0.05 | | | Benz(a)anthracene | μg/g | 0.5 | 0.05 | 2019-10-09 | 2019-10-09 | < 0.05 | < 0.05 | < 0.05 | | | Chrysene | μg/g | 7 | 0.05 | 2019-10-09 | 2019-10-09 | <0.05 | < 0.05 | < 0.05 | | | Benzo(b)fluoranthene | μg/g | 0.78 | 0.05 | 2019-10-09 | 2019-10-09 | < 0.05 | < 0.05 | < 0.05 | | | Benzo(k)fluoranthene | μg/g | 0.78 | 0.05 | 2019-10-09 | 2019-10-09 | < 0.05 | < 0.05 | < 0.05 | | | Benzo(a)pyrene | μg/g | 0.3 | 0.05 | 2019-10-09 | 2019-10-09 | <0.05 | <0.05 | < 0.05 | | | Indeno(1,2,3-cd)pyrene | μg/g | 0.38 | 0.05 | 2019-10-09 | 2019-10-09 | <0.05 | < 0.05 | < 0.05 | | | Dibenz(a,h)anthracene | μg/g | 0.1 | 0.05 | 2019-10-09 | 2019-10-09 | < 0.05 | < 0.05 | < 0.05 | | | Benzo(g,h,i)perylene | μg/g | 6.6 | 0.05 | 2019-10-09 | 2019-10-09 | <0.05 | < 0.05 | < 0.05 | | | 2-and 1-methyl Naphthalene | μg/g | 0.99 | 0.05 | 2019-10-09 | 2019-10-09 | <0.05 | < 0.05 | < 0.05 | | | Moisture Content | % | | 0.1 | 2019-10-09 | 2019-10-09 | 8.5 | 9.3 | 6.4 | | | Surrogate | Unit | Acceptable | Limits | | | | | | | | Chrysene-d12 | % | 50-14 | 10 | 2019-10-09 | 2019-10-09 | 82 | 80 | 95 | | Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 592950-592983 Results are based on the dry weight of the soil. Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column. 2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. Analysis performed at AGAT Toronto (unless marked by *) CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS #### **Certificate of Analysis** AGAT WORK ORDER: 19Z526729 PROJECT: Phase Two ESA - 64819.22 **ATTENTION TO: Kathryn Maton** SAMPLED BY:K. Maton O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil) DATE RECEIVED: 2019-10-04 DATE REPORTED: 2019-10-15 | | | | | SAMPL | E DESCRIPTION: | BH19-2 SA5B | BH19-2 SA105B | | |-----------------------------------|------|------------|--------|---------------|----------------|-------------|---------------|--| | | | | | | SAMPLE TYPE: | Soil | Soil | | | | | | | | DATE SAMPLED: | 2019-09-30 | 2019-09-30 | | | Parameter | Unit | G/S | RDL | Date Prepared | Date Analyzed | 592961 | 592963 | | | F1 (C6 to C10) | μg/g | 55 | 5 | 2019-10-07 | 2019-10-07 | <5 | <5 | | | F1 (C6 to C10) minus BTEX | μg/g | 55 | 5 | 2019-10-07 | 2019-10-07 | <5 | <5 | | | F2 (C10 to C16) | μg/g | 98 | 10 | 2019-10-10 | 2019-10-11 | <10 | 22 | | | F2 (C10 to C16) minus Naphthalene | μg/g | | 10 | 2019-10-10 | 2019-10-11 | <10 | 22 | | | F3 (C16 to C34) | μg/g | 300 | 50 | 2019-10-10 | 2019-10-11 | <50 | <50 | | | F3 (C16 to C34) minus PAHs | μg/g | | 50 | 2019-10-10 | 2019-10-11 | <50 | <50 | | | F4 (C34 to C50) | μg/g | 2800 | 50 | 2019-10-10 | 2019-10-11 | <50 | <50 | | | Gravimetric Heavy Hydrocarbons | μg/g | 2800 | 50 | 2019-10-10 | 2019-10-11 | NA | NA | | | Moisture Content | % | | 0.1 | 2019-10-08 | 2019-10-08 | 14.1 | 14.3 | | | Surrogate | Unit | Acceptable | Limits | | | | | | | Terphenyl | % | 60-140 |) | 2019-10-10 | 2019-10-11 | 79 | 65 | | | | | | | | | | | | Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 592961-592963 Results are based on sample dry weight. The C6-C10 fraction is calculated using toluene response factor. C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50. Total C6 - C50 results are corrected for BTEX and PAH contributions. C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene. C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene). This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 + nC34 average. Linearity is within
15%. Extraction and holding times were met for this sample. Analysis performed at AGAT Toronto (unless marked by *) Certified By: Jung 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 http://www.agatlabs.com TEL (905)712-5100 FAX (905)712-5122 AGAT WORK ORDER: 19Z526729 PROJECT: Phase Two ESA - 64819.22 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS SAMPLING SITE:393 McArthur SAMPLED BY:K. Maton **ATTENTION TO: Kathryn Maton** | O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil) | Ο. | Reg. 153 | (511) - | PHCs F1 | - F4 (with | PAHs) (| Soil) | |--|----|----------|---------|---------|------------|---------|-------| |--|----|----------|---------|---------|------------|---------|-------| | DATE RECEIVED: 2019-10-04 | | | | | | | | DATE REPORTED: 2019-10-15 | |-----------------------------------|------|------------|--------|---------------|----------------|------------|------------|---------------------------| | | | | | SAMPL | E DESCRIPTION: | BH19-4 SA4 | BH19-4 SA6 | | | | | | | | SAMPLE TYPE: | Soil | Soil | | | | | | | | DATE SAMPLED: | 2019-10-01 | 2019-10-01 | | | Parameter | Unit | G/S | RDL | Date Prepared | Date Analyzed | 592968 | 592983 | | | Benzene | μg/g | 0.21 | 0.02 | 2019-10-07 | 2019-10-07 | <0.02 | <0.02 | | | Toluene | μg/g | 2.3 | 0.05 | 2019-10-07 | 2019-10-07 | < 0.05 | < 0.05 | | | Ethylbenzene | μg/g | 2 | 0.05 | 2019-10-07 | 2019-10-07 | < 0.05 | < 0.05 | | | Xylene Mixture | μg/g | 3.1 | 0.05 | 2019-10-07 | 2019-10-07 | < 0.05 | < 0.05 | | | F1 (C6 to C10) | μg/g | 55 | 5 | 2019-10-07 | 2019-10-07 | 10 | 24 | | | F1 (C6 to C10) minus BTEX | μg/g | 55 | 5 | 2019-10-07 | 2019-10-07 | 10 | 24 | | | F2 (C10 to C16) | μg/g | 98 | 10 | 2019-10-10 | 2019-10-11 | 11 | <10 | | | F2 (C10 to C16) minus Naphthalene | μg/g | | 10 | 2019-10-10 | 2019-10-11 | 11 | <10 | | | F3 (C16 to C34) | μg/g | 300 | 50 | 2019-10-10 | 2019-10-11 | <50 | <50 | | | F3 (C16 to C34) minus PAHs | μg/g | | 50 | 2019-10-10 | 2019-10-11 | <50 | <50 | | | F4 (C34 to C50) | μg/g | 2800 | 50 | 2019-10-10 | 2019-10-11 | <50 | <50 | | | Gravimetric Heavy Hydrocarbons | μg/g | 2800 | 50 | 2019-10-10 | 2019-10-11 | NA | NA | | | Moisture Content | % | | 0.1 | 2019-10-08 | 2019-10-08 | 9.3 | 6.4 | | | Surrogate | Unit | Acceptable | Limits | | | | | | | Terphenyl | % | 60-14 | 0 | 2019-10-10 | 2019-10-11 | 87 | 78 | | | | | | | | | | | | CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS #### **Certificate of Analysis** AGAT WORK ORDER: 19Z526729 PROJECT: Phase Two ESA - 64819.22 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 ATTENTION TO: Kathryn Maton SAMPLED BY:K. Maton O. Reg. 153(511) - PHCs F1 - F4 (with PAHs) (Soil) DATE RECEIVED: 2019-10-04 DATE REPORTED: 2019-10-15 Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soils Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. **592968-592983** Results are based on sample dry weight. SAMPLING SITE:393 McArthur The C6-C10 fraction is calculated using toluene response factor. Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene. C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50. Total C6 - C50 results are corrected for BTEX and PAH contributions. C>10 – C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene. C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene). This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 + nC34 average. Linearity is within 15%. Extraction and holding times were met for this sample. Analysis performed at AGAT Toronto (unless marked by *) Certified By: Jung **CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS** ### **Certificate of Analysis** **AGAT WORK ORDER: 19Z526729** PROJECT: Phase Two ESA - 64819.22 **SAMPLED BY:K. Maton** **ATTENTION TO: Kathryn Maton** O. Reg. 153(511) - VOCs (Soil) | DATE RECEIVED: 2019-10-04 | | | | | | | | | DATE REPORTED: 2019-10-15 | |-----------------------------|------|-------|------|---------------|----------------|------------|-------------|---------------|---------------------------| | | | | | SAMPL | E DESCRIPTION: | BH19-1 SA3 | BH19-2 SA5B | BH19-2 SA105B | | | | | | | | SAMPLE TYPE: | Soil | Soil | Soil | | | | | | | | DATE SAMPLED: | 2019-10-01 | 2019-09-30 | 2019-09-30 | | | Parameter | Unit | G/S | RDL | Date Prepared | Date Analyzed | 592950 | 592961 | 592963 | | | Dichlorodifluoromethane | µg/g | 16 | 0.05 | 2019-10-10 | 2019-10-10 | <0.05 | < 0.05 | <0.05 | | | Vinyl Chloride | ug/g | 0.02 | 0.02 | 2019-10-10 | 2019-10-10 | <0.02 | < 0.02 | <0.02 | | | Bromomethane | ug/g | 0.05 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | < 0.05 | <0.05 | | | Trichlorofluoromethane | ug/g | 4 | 0.05 | 2019-10-10 | 2019-10-10 | <0.05 | < 0.05 | <0.05 | | | Acetone | ug/g | 16 | 0.50 | 2019-10-10 | 2019-10-10 | <0.50 | <0.50 | <0.50 | | | 1,1-Dichloroethylene | ug/g | 0.05 | 0.05 | 2019-10-10 | 2019-10-10 | <0.05 | < 0.05 | <0.05 | | | Methylene Chloride | ug/g | 0.1 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | < 0.05 | <0.05 | | | Trans- 1,2-Dichloroethylene | ug/g | 0.084 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | < 0.05 | <0.05 | | | Methyl tert-butyl Ether | ug/g | 0.75 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | < 0.05 | < 0.05 | | | 1,1-Dichloroethane | ug/g | 3.5 | 0.02 | 2019-10-10 | 2019-10-10 | <0.02 | < 0.02 | < 0.02 | | | Methyl Ethyl Ketone | ug/g | 16 | 0.50 | 2019-10-10 | 2019-10-10 | <0.50 | <0.50 | < 0.50 | | | Cis- 1,2-Dichloroethylene | ug/g | 3.4 | 0.02 | 2019-10-10 | 2019-10-10 | <0.02 | < 0.02 | < 0.02 | | | Chloroform | ug/g | 0.05 | 0.04 | 2019-10-10 | 2019-10-10 | <0.04 | < 0.04 | < 0.04 | | | 1,2-Dichloroethane | ug/g | 0.05 | 0.03 | 2019-10-10 | 2019-10-10 | < 0.03 | < 0.03 | < 0.03 | | | 1,1,1-Trichloroethane | ug/g | 0.38 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | < 0.05 | < 0.05 | | | Carbon Tetrachloride | ug/g | 0.05 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | < 0.05 | < 0.05 | | | Benzene | ug/g | 0.21 | 0.02 | 2019-10-10 | 2019-10-10 | <0.02 | < 0.02 | < 0.02 | | | 1,2-Dichloropropane | ug/g | 0.05 | 0.03 | 2019-10-10 | 2019-10-10 | < 0.03 | < 0.03 | < 0.03 | | | Trichloroethylene | ug/g | 0.061 | 0.03 | 2019-10-10 | 2019-10-10 | < 0.03 | < 0.03 | < 0.03 | | | Bromodichloromethane | ug/g | 13 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | < 0.05 | < 0.05 | | | Methyl Isobutyl Ketone | ug/g | 1.7 | 0.50 | 2019-10-10 | 2019-10-10 | <0.50 | <0.50 | <0.50 | | | 1,1,2-Trichloroethane | ug/g | 0.05 | 0.04 | 2019-10-10 | 2019-10-10 | <0.04 | < 0.04 | <0.04 | | | Toluene | ug/g | 2.3 | 0.05 | 2019-10-10 | 2019-10-10 | <0.05 | < 0.05 | < 0.05 | | | Dibromochloromethane | ug/g | 9.4 | 0.05 | 2019-10-10 | 2019-10-10 | <0.05 | < 0.05 | < 0.05 | | | Ethylene Dibromide | ug/g | 0.05 | 0.04 | 2019-10-10 | 2019-10-10 | <0.04 | <0.04 | < 0.04 | | | Tetrachloroethylene | ug/g | 0.28 | 0.05 | 2019-10-10 | 2019-10-10 | <0.05 | < 0.05 | < 0.05 | | | 1,1,1,2-Tetrachloroethane | ug/g | 0.058 | 0.04 | 2019-10-10 | 2019-10-10 | <0.04 | <0.04 | <0.04 | | | Chlorobenzene | ug/g | 2.4 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | < 0.05 | < 0.05 | | | Ethylbenzene | ug/g | 2 | 0.05 | 2019-10-10 | 2019-10-10 | <0.05 | < 0.05 | <0.05 | | | m & p-Xylene | ug/g | | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | < 0.05 | < 0.05 | | Certified By: 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 http://www.agatlabs.com TEL (905)712-5100 FAX (905)712-5122 CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS ### **Certificate of Analysis** **AGAT WORK ORDER: 19Z526729** PROJECT: Phase Two ESA - 64819.22 **ATTENTION TO: Kathryn Maton** **SAMPLED BY:K. Maton** O. Reg. 153(511) - VOCs (Soil) **DATE REPORTED: 2019-10-15** DATE RECEIVED: 2019-10-04 | | | | | SAMPL | E DESCRIPTION: | BH19-1 SA3 | BH19-2 SA5B | BH19-2 SA105B | |---------------------------|------------|-----------|----------|---------------|----------------|------------|-------------|---------------| | | | | | | SAMPLE TYPE: | Soil | Soil | Soil | | | | | | | DATE SAMPLED: | 2019-10-01 | 2019-09-30 | 2019-09-30 | | Parameter | Unit | G/S | RDL | Date Prepared | Date Analyzed | 592950 | 592961 | 592963 | | Bromoform | ug/g | 0.27 | 0.05 | 2019-10-10 | 2019-10-10 | <0.05 | < 0.05 | <0.05 | | Styrene | ug/g | 0.7 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | < 0.05 | < 0.05 | | 1,1,2,2-Tetrachloroethane | ug/g | 0.05 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | < 0.05 | < 0.05 | | o-Xylene | ug/g | | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | < 0.05 | < 0.05 | | 1,3-Dichlorobenzene | ug/g | 4.8 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | < 0.05 | < 0.05 | |
1,4-Dichlorobenzene | ug/g | 0.083 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | < 0.05 | < 0.05 | | 1,2-Dichlorobenzene | ug/g | 3.4 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | < 0.05 | < 0.05 | | Xylene Mixture | ug/g | 3.1 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | < 0.05 | < 0.05 | | 1,3-Dichloropropene | μg/g | 0.05 | 0.04 | 2019-10-10 | 2019-10-10 | <0.04 | < 0.04 | <0.04 | | n-Hexane | μg/g | 2.8 | 0.05 | 2019-10-10 | 2019-10-10 | < 0.05 | < 0.05 | < 0.05 | | Surrogate | Unit | Acceptabl | e Limits | | | | | | | Toluene-d8 | % Recovery | 50-1 | 40 | 2019-10-10 | 2019-10-10 | 101 | 103 | 107 | | 4-Bromofluorobenzene | % Recovery | 50-1 | 40 | 2019-10-10 | 2019-10-10 | 73 | 76 | 73 | RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Soil -Comments: Residential/Parkland/Institutional Property Use - Coarse Textured Soils Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 592950-592963 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil. Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene. 1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene. Analysis performed at AGAT Toronto (unless marked by *) Certified By: 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 http://www.agatlabs.com TEL (905)712-5100 FAX (905)712-5122 #### **Guideline Violation** AGAT WORK ORDER: 19Z526729 PROJECT: Phase Two ESA - 64819.22 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com **CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS** **ATTENTION TO: Kathryn Maton** | SAMPLEID | SAMPLE TITLE | GUIDELINE | ANALYSIS PACKAGE | PARAMETER | UNIT | GUIDEVALUE | RESULT | |----------|--------------|----------------|---|-------------------------|-------|------------|--------| | 592948 | BH19-1 SA2 | ON T3 S RPI CT | O. Reg. 153(511) - Metals & Inorganics (Soil) | Sodium Adsorption Ratio | NA | 5 | 6.81 | | 592959 | BH19-2 SA2 | ON T3 S RPI CT | O. Reg. 153(511) - Metals & Inorganics (Soil) | Electrical Conductivity | mS/cm | 0.7 | 0.707 | | 592959 | BH19-2 SA2 | ON T3 S RPI CT | O. Reg. 153(511) - Metals & Inorganics (Soil) | Sodium Adsorption Ratio | NA | 5 | 8.97 | | 592960 | BH19-2 SA102 | ON T3 S RPI CT | O. Reg. 153(511) - Metals & Inorganics (Soil) | Sodium Adsorption Ratio | NA | 5 | 8.56 | | 592965 | BH19-3 SA2 | ON T3 S RPI CT | O. Reg. 153(511) - Metals & Inorganics (Soil) | Electrical Conductivity | mS/cm | 0.7 | 1.25 | ### **Quality Assurance** CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS AGAT WORK ORDER: 19Z526729 PROJECT: Phase Two ESA - 64819.22 ATTENTION TO: Kathryn Maton SAMPLING SITE:393 McArthur SAMPLED BY:K. Maton | SAMPLING SITE.393 MICAI | uiui | | | | | | | MINIE | LLU B | i .r. ivia | ton | | | | | |---------------------------------|---------------|--------|--------|----------|---------|-----------------|----------|--------|-----------------|------------|-------|----------------|----------|---------|----------------| | | | | | Soi | l Ana | alysis | 6 | | | | | | | | | | RPT Date: Oct 15, 2019 | | | | UPLICATE | | | REFEREN | NCE MA | TERIAL | METHOD | BLANK | SPIKE | MAT | RIX SPI | KE | | PARAMETER | Batch | Sample | Dup #1 | Dup #2 | RPD | Method
Blank | Measured | | eptable
mits | Recovery | Lie | ptable
nits | Recovery | Lie | ptable
nits | | | | ld | | | | | Value | Lower | Upper | | Lower | Upper | | Lower | Upper | | O. Reg. 153(511) - Metals & Inc | organics (Soi | l) | | | | | | | | | | | | | | | Antimony | 592948 | 592948 | <0.8 | <0.8 | NA | < 0.8 | 110% | 70% | 130% | 93% | 80% | 120% | 92% | 70% | 130% | | Arsenic | 592948 | 592948 | 2 | 3 | NA | < 1 | 107% | 70% | 130% | 101% | 80% | 120% | 103% | 70% | 130% | | Barium | 592948 | 592948 | 114 | 117 | 2.6% | < 2 | 107% | 70% | 130% | 101% | 80% | 120% | 101% | 70% | 130% | | Beryllium | 592948 | 592948 | <0.5 | <0.5 | NA | < 0.5 | 99% | 70% | 130% | 115% | 80% | 120% | 99% | 70% | 130% | | Boron | 592948 | 592948 | <5 | <5 | NA | < 5 | 81% | 70% | 130% | 109% | 80% | 120% | 89% | 70% | 130% | | Boron (Hot Water Soluble) | 592948 | 592948 | 0.14 | 0.15 | NA | < 0.10 | 101% | 60% | 140% | 100% | 70% | 130% | 101% | 60% | 140% | | Cadmium | 592948 | 592948 | <0.5 | <0.5 | NA | < 0.5 | 113% | 70% | 130% | 102% | 80% | 120% | 105% | 70% | 130% | | Chromium | 592948 | 592948 | 41 | 41 | 0.0% | < 2 | 99% | 70% | 130% | 109% | 80% | 120% | 101% | 70% | 130% | | Cobalt | 592948 | 592948 | 10.1 | 10.0 | 1.0% | < 0.5 | 99% | 70% | 130% | 106% | 80% | 120% | 101% | 70% | 130% | | Copper | 592948 | 592948 | 22 | 22 | 0.0% | < 1 | 94% | 70% | 130% | 108% | 80% | 120% | 98% | 70% | 130% | | Lead | 592948 | 592948 | 5 | 5 | 0.0% | < 1 | 107% | 70% | 130% | 104% | 80% | 120% | 102% | 70% | 130% | | Molybdenum | 592948 | 592948 | 0.8 | 0.7 | NA | < 0.5 | 111% | 70% | 130% | 107% | 80% | 120% | 110% | 70% | 130% | | Nickel | 592948 | 592948 | 23 | 24 | 4.3% | < 1 | 101% | 70% | 130% | 108% | 80% | 120% | 101% | 70% | 130% | | Selenium | 592948 | 592948 | <0.4 | <0.4 | NA | < 0.4 | 110% | 70% | 130% | 98% | 80% | 120% | 100% | 70% | 130% | | Silver | 592948 | 592948 | <0.2 | <0.2 | NA | < 0.2 | 116% | 70% | 130% | 104% | 80% | 120% | 101% | 70% | 130% | | Thallium | 592948 | 592948 | <0.4 | <0.4 | NA | < 0.4 | 98% | 70% | 130% | 104% | 80% | 120% | 103% | 70% | 130% | | Uranium | 592948 | 592948 | 0.8 | 0.9 | NA | < 0.5 | 112% | 70% | 130% | 105% | 80% | 120% | 106% | 70% | 130% | | Vanadium | 592948 | 592948 | 47 | 48 | 2.1% | < 1 | 100% | 70% | 130% | 107% | 80% | 120% | 100% | 70% | 130% | | Zinc | 592948 | 592948 | 42 | 43 | 2.4% | < 5 | 100% | 70% | 130% | 103% | 80% | 120% | 101% | 70% | 130% | | Chromium VI | 592967 | 592967 | <0.2 | <0.2 | NA | < 0.2 | 82% | 80% | 120% | 85% | 70% | 130% | 86% | 70% | 130% | | Cyanide | 581486 | | <0.040 | <0.040 | NA | < 0.040 | 100% | 70% | 130% | 91% | 80% | 120% | 91% | 70% | 130% | | Mercury | 592948 | 592948 | <0.10 | <0.10 | NA | < 0.10 | 100% | 70% | 130% | 100% | 80% | 120% | 100% | 70% | 130% | | Electrical Conductivity | 592948 | 592948 | 0.461 | 0.468 | 1.5% | < 0.005 | 101% | 90% | 110% | NA | | | NA | | | | Sodium Adsorption Ratio | 592948 | 592948 | 6.81 | 6.30 | 7.8% | NA | NA | | | NA | | | NA | | | | pH, 2:1 CaCl2 Extraction | 592959 | 592959 | 7.73 | 7.72 | 0.1% | NA | 101% | 80% | 120% | NA | | | NA | Comments: NA signifies Not Applicable. Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document. O. Reg. 153(511) - ORPs (Soil) pH, 2:1 CaCl2 Extraction 592959 592959 7.73 7.72 0.1% NA 101% 90% 110% NA NA Comments: NA signifies Not Applicable. Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document. AGAT QUALITY ASSURANCE REPORT (V1) Page 16 of 23 ## **Quality Assurance** CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS AGAT WORK ORDER: 19Z526729 PROJECT: Phase Two ESA - 64819.22 ATTENTION TO: Kathryn Maton SAMPLING SITE:393 McArthur SAMPLED BY:K. Maton | | | | Trac | ce Or | gani | cs Ar | nalys | is | | | | | | | | |--------------------------------|--------|--------|--------|----------|-------|-----------------|----------|--------|----------------|----------|-------|----------------|----------|---------|-----------------| | RPT Date: Oct 15, 2019 | | | | UPLICATI | E | | REFERE | NCE MA | TERIAL | METHOD | BLANK | SPIKE | MAT | RIX SPI | IKE | | PARAMETER | Batch | Sample | Dup #1 | Dup #2 | RPD | Method
Blank | Measured | | ptable
nits | Recovery | | ptable
nits | Recovery | | eptable
mits | | IANAMETER | Dateii | ld | Бир#1 | Dup #2 | IXI D | | Value | Lower | Upper | Recovery | Lower | Upper | Recovery | Lower | Upper | | O. Reg. 153(511) - VOCs (Soil) | | | | | | • | | • | | | | | | | | | Dichlorodifluoromethane | 589748 | | < 0.05 | < 0.05 | NA | < 0.05 | 71% | 50% | 140% | 79% | 50% | 140% | 79% | 50% | 140% | | Vinyl Chloride | 589748 | | < 0.02 | < 0.02 | NA | < 0.02 | 102% | 50% | 140% | 106% | 50% | 140% | 87% | 50% | 140% | | Bromomethane | 589748 | | < 0.05 | < 0.05 | NA | < 0.05 | 76% | 50% | 140% | 105% | 50% | 140% | 74% | 50% | 140% | | Trichlorofluoromethane | 589748 | | < 0.05 | < 0.05 | NA | < 0.05 | 78% | 50% | 140% | 72% | 50% | 140% | 87% | 50% | 140% | | Acetone | 589748 | | < 0.50 | < 0.50 | NA | < 0.50 | 95% | 50% | 140% | 82% | 50% | 140% | 81% | 50% | 140% | | 1,1-Dichloroethylene | 589748 | | < 0.05 | < 0.05 | NA | < 0.05 | 70% | 50% | 140% | 94% | 60% | 130% | 91% | 50% | 140% | | Methylene Chloride | 589748 | | < 0.05 | < 0.05 | NA | < 0.05 | 82% | 50% | 140% | 103% | 60% | 130% | 74% | 50% | 140% | | Trans- 1,2-Dichloroethylene | 589748 | | < 0.05 | < 0.05 | NA | < 0.05 | 87% | 50% | 140% | 97% | 60% | 130% | 93% | 50% | 140% | | Methyl tert-butyl Ether | 589748 | | < 0.05 | < 0.05 | NA | < 0.05 |
100% | 50% | 140% | 80% | 60% | 130% | 96% | 50% | 140% | | 1,1-Dichloroethane | 589748 | | < 0.02 | < 0.02 | NA | < 0.02 | 83% | 50% | 140% | 77% | 60% | 130% | 79% | 50% | 140% | | Methyl Ethyl Ketone | 589748 | | < 0.50 | < 0.50 | NA | < 0.50 | 70% | 50% | 140% | 83% | 50% | 140% | 83% | 50% | 140% | | Cis- 1,2-Dichloroethylene | 589748 | | < 0.02 | < 0.02 | NA | < 0.02 | 83% | 50% | 140% | 98% | 60% | 130% | 91% | 50% | 140% | | Chloroform | 589748 | | < 0.04 | < 0.04 | NA | < 0.04 | 94% | 50% | 140% | 100% | 60% | 130% | 79% | 50% | 140% | | 1,2-Dichloroethane | 589748 | | < 0.03 | < 0.03 | NA | < 0.03 | 75% | 50% | 140% | 103% | 60% | 130% | 91% | 50% | 140% | | 1,1,1-Trichloroethane | 589748 | | < 0.05 | < 0.05 | NA | < 0.05 | 88% | 50% | 140% | 79% | 60% | 130% | 93% | 50% | 140% | | Carbon Tetrachloride | 589748 | | < 0.05 | < 0.05 | NA | < 0.05 | 97% | 50% | 140% | 80% | 60% | 130% | 100% | 50% | 140% | | Benzene | 589748 | | < 0.02 | < 0.02 | NA | < 0.02 | 92% | 50% | 140% | 83% | 60% | 130% | 101% | 50% | 140% | | 1,2-Dichloropropane | 589748 | | < 0.03 | < 0.03 | NA | < 0.03 | 90% | 50% | 140% | 86% | 60% | 130% | 91% | 50% | 140% | | Trichloroethylene | 589748 | | < 0.03 | < 0.03 | NA | < 0.03 | 100% | 50% | 140% | 87% | 60% | 130% | 77% | 50% | 140% | | Bromodichloromethane | 589748 | | < 0.05 | < 0.05 | NA | < 0.05 | 93% | 50% | 140% | 89% | 60% | 130% | 94% | 50% | 140% | | Methyl Isobutyl Ketone | 589748 | | < 0.50 | < 0.50 | NA | < 0.50 | 74% | 50% | 140% | 85% | 50% | 140% | 80% | 50% | 140% | | 1,1,2-Trichloroethane | 589748 | | < 0.04 | < 0.04 | NA | < 0.04 | 88% | 50% | 140% | 77% | 60% | 130% | 97% | 50% | 140% | | Toluene | 589748 | | < 0.05 | < 0.05 | NA | < 0.05 | 88% | 50% | 140% | 101% | 60% | 130% | 102% | 50% | 140% | | Dibromochloromethane | 589748 | | < 0.05 | < 0.05 | NA | < 0.05 | 103% | 50% | 140% | 101% | 60% | 130% | 102% | 50% | 140% | | Ethylene Dibromide | 589748 | | < 0.04 | < 0.04 | NA | < 0.04 | 91% | 50% | 140% | 98% | 60% | 130% | 99% | 50% | 140% | | Tetrachloroethylene | 589748 | | < 0.05 | < 0.05 | NA | < 0.05 | 84% | 50% | 140% | 95% | 60% | 130% | 77% | 50% | 140% | | 1,1,1,2-Tetrachloroethane | 589748 | | < 0.04 | < 0.04 | NA | < 0.04 | 89% | 50% | 140% | 77% | 60% | 130% | 91% | 50% | 140% | | Chlorobenzene | 589748 | | < 0.05 | < 0.05 | NA | < 0.05 | 104% | 50% | 140% | 105% | 60% | 130% | 117% | 50% | 140% | | Ethylbenzene | 589748 | | < 0.05 | < 0.05 | NA | < 0.05 | 98% | 50% | 140% | 90% | 60% | 130% | 80% | 50% | 140% | | m & p-Xylene | 589748 | | < 0.05 | < 0.05 | NA | < 0.05 | 85% | 50% | 140% | 89% | 60% | 130% | 101% | 50% | 140% | | Bromoform | 589748 | | < 0.05 | < 0.05 | NA | < 0.05 | 100% | 50% | 140% | 97% | 60% | 130% | 100% | 50% | 140% | | Styrene | 589748 | | < 0.05 | < 0.05 | NA | < 0.05 | 95% | | 140% | 95% | | 130% | 91% | 50% | | | 1,1,2,2-Tetrachloroethane | 589748 | | < 0.05 | < 0.05 | NA | < 0.05 | 93% | | 140% | 90% | 60% | 130% | 96% | 50% | | | o-Xylene | 589748 | | < 0.05 | < 0.05 | NA | < 0.05 | 87% | | 140% | 89% | | 130% | 101% | | 140% | | 1,3-Dichlorobenzene | 589748 | | < 0.05 | < 0.05 | NA | < 0.05 | 89% | | 140% | 77% | | 130% | 91% | | 140% | | 1,4-Dichlorobenzene | 589748 | | < 0.05 | < 0.05 | NA | < 0.05 | 107% | 50% | 140% | 93% | 60% | 130% | 103% | 50% | 140% | | 1,2-Dichlorobenzene | 589748 | | < 0.05 | < 0.05 | NA | < 0.05 | 91% | | 140% | 95% | 60% | 130% | 79% | 50% | | | 1,3-Dichloropropene | 589748 | | < 0.04 | < 0.04 | NA | < 0.04 | 104% | | 140% | 89% | 60% | 130% | 104% | 50% | | | n-Hexane | 589748 | | < 0.05 | < 0.05 | NA | < 0.05 | 100% | | 140% | 114% | | 130% | 98% | | 140% | #### AGAT QUALITY ASSURANCE REPORT (V1) Page 17 of 23 AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results. # **Quality Assurance** CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS AGAT WORK ORDER: 19Z526729 PROJECT: Phase Two ESA - 64819.22 ATTENTION TO: Kathryn Maton SAMPLING SITE:393 McArthur SAMPLED BY:K. Maton | | Т | race | Org | anics | Ana | alysis | (Co | ntin | ued | 1) | | | | | | |--------------------------------|------------------|---------|--------|----------|-----|-----------------|----------|-------|----------------|----------|-------|----------------|----------|--------|-----------------| | RPT Date: Oct 15, 2019 | | | | UPLICATI | | | REFERE | | | | BLANK | SPIKE | MAT | RIX SP | IKE | | PARAMETER | Batch | Sample | Dup #1 | Dup #2 | RPD | Method
Blank | Measured | | ptable
nits | Recovery | | ptable
nits | Recovery | 1 1: | eptable
mits | | ., | | ld | | . | | | Value | Lower | Upper | , | Lower | Upper | , | Lower | Upper | | O. Reg. 153(511) - PAHs (Soil |) | | | | | | | | | | | | | | | | Naphthalene | ,
589718 | | < 0.05 | < 0.05 | NA | < 0.05 | 103% | 50% | 140% | 115% | 50% | 140% | 113% | 50% | 140% | | Acenaphthylene | 589718 | | < 0.05 | < 0.05 | NA | < 0.05 | 117% | 50% | 140% | 113% | 50% | 140% | 110% | 50% | 140% | | Acenaphthene | 589718 | | < 0.05 | < 0.05 | NA | < 0.05 | 109% | 50% | 140% | 108% | 50% | 140% | 104% | 50% | 140% | | Fluorene | 589718 | | < 0.05 | < 0.05 | NA | < 0.05 | 106% | 50% | 140% | 113% | 50% | 140% | 105% | 50% | 140% | | Phenanthrene | 589718 | | < 0.05 | < 0.05 | NA | < 0.05 | 108% | 50% | 140% | 105% | 50% | 140% | 98% | 50% | 140% | | Anthracene | 589718 | | < 0.05 | < 0.05 | NA | < 0.05 | 108% | 50% | 140% | 105% | 50% | 140% | 111% | 50% | 140% | | Fluoranthene | 589718 | | < 0.05 | < 0.05 | NA | < 0.05 | 89% | 50% | 140% | 99% | 50% | 140% | 88% | 50% | 140% | | Pyrene | 589718 | | < 0.05 | < 0.05 | NA | < 0.05 | 118% | 50% | 140% | 109% | 50% | 140% | 107% | 50% | 140% | | Benz(a)anthracene | 589718 | | < 0.05 | < 0.05 | NA | < 0.05 | 88% | 50% | 140% | 91% | 50% | 140% | 80% | 50% | 140% | | Chrysene | 589718 | | < 0.05 | < 0.05 | NA | < 0.05 | 97% | 50% | 140% | 102% | 50% | 140% | 96% | 50% | 140% | | Benzo(b)fluoranthene | 589718 | | < 0.05 | < 0.05 | NA | < 0.05 | 93% | 50% | 140% | 96% | 50% | 140% | 107% | 50% | 140% | | Benzo(k)fluoranthene | 589718 | | < 0.05 | < 0.05 | NA | < 0.05 | 102% | 50% | 140% | 100% | 50% | 140% | 98% | 50% | 140% | | Benzo(a)pyrene | 589718 | | < 0.05 | < 0.05 | NA | < 0.05 | 99% | 50% | 140% | 106% | 50% | 140% | 99% | 50% | 140% | | Indeno(1,2,3-cd)pyrene | 589718 | | < 0.05 | < 0.05 | NA | < 0.05 | 76% | 50% | 140% | 86% | 50% | 140% | 72% | 50% | 140% | | Dibenz(a,h)anthracene | 589718 | | < 0.05 | < 0.05 | NA | < 0.05 | 93% | 50% | 140% | 91% | 50% | 140% | 93% | 50% | 140% | | Benzo(g,h,i)perylene | 589718 | | < 0.05 | < 0.05 | NA | < 0.05 | 100% | 50% | 140% | 96% | 50% | 140% | 99% | 50% | 140% | | O. Reg. 153(511) - PHCs F1 - I | F4 (with PAHs a | nd VOC) | (Soil) | | | | | | | | | | | | | | F2 (C10 to C16) | 584661 | | < 10 | < 10 | NA | < 10 | 114% | 60% | 130% | 86% | 80% | 120% | 77% | 70% | 130% | | F3 (C16 to C34) | 584661 | | < 50 | < 50 | NA | < 50 | 112% | 60% | 130% | 110% | 80% | 120% | 80% | 70% | 130% | | F4 (C34 to C50) | 584661 | | < 50 | < 50 | NA | < 50 | 93% | 60% | 130% | 98% | 80% | 120% | 107% | 70% | 130% | | O. Reg. 153(511) - PHCs F1 - I | F4 (with PAHs) (| Soil) | | | | | | | | | | | | | | | Benzene | 588168 | | < 0.02 | < 0.02 | NA | < 0.02 | 101% | 60% | 130% | 75% | 60% | 130% | 75% | 60% | 130% | | Toluene | 588168 | | < 0.05 | < 0.05 | NA | < 0.05 | 96% | 60% | 130% | 81% | 60% | 130% | 76% | 60% | 130% | | Ethylbenzene | 588168 | | < 0.05 | < 0.05 | NA | < 0.05 | 99% | 60% | 130% | 90% | 60% | 130% | 74% | 60% | 130% | | Xylene Mixture | 588168 | | < 0.05 | < 0.05 | NA | < 0.05 | 107% | 60% | 130% | 97% | 60% | 130% | 88% | 60% | 130% | | F1 (C6 to C10) | 588168 | | < 5 | < 5 | NA | < 5 | 75% | 60% | 130% | 96% | 85% | 115% | 95% | 70% | 130% | Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA). Certified By: Juz AGAT QUALITY ASSURANCE REPORT (V1) Page 18 of 23 # **Method Summary** CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS AGAT WORK ORDER: 19Z526729 PROJECT: Phase Two ESA - 64819.22 ATTENTION TO: Kathryn Maton SAMPLING SITE:393 McArthur SAMPLED BY:K. Maton | OAMI LING OFFE.555 MOAITIG | | OAMI LED DT.K. Maton | | | | | | | | | |----------------------------|--------------|---|-------------------------|--|--|--|--|--|--|--| | PARAMETER | AGAT S.O.P | LITERATURE REFERENCE | ANALYTICAL TECHNIQUE | | | | | | | | | Soil Analysis | - | | | | | | | | | | | Antimony | MET-93-6103 | EPA SW-846 3050B & 6020A | ICP-MS | | | | | | | | | Arsenic | MET-93-6103 | EPA SW-846 3050B & 6020A | ICP-MS | | | | | | | | | Barium | MET-93-6103 | EPA SW-846 3050B & 6020A | ICP-MS | | | | | | | | | Beryllium | MET-93-6103 | EPA SW-846 3050B & 6020A | ICP-MS | | | | | | | | | Boron | MET-93-6103 | EPA SW-846 3050B & 6020A | ICP-MS | | | | | | | | | Boron (Hot Water Soluble) | MET-93-6104 | EPA SW 846 6010C; MSA, Part 3,
Ch.21 | ICP/OES | | | | | | | | | Cadmium | MET-93-6103 | EPA SW-846 3050B & 6020A | ICP-MS | | | | | | | | | Chromium | MET-93-6103 | EPA SW-846 3050B & 6020A | ICP-MS | | | | | | | | | Cobalt | MET-93-6103 | EPA SW-846 3050B & 6020A | ICP-MS | | | | | | | | | Copper | MET-93-6103 | EPA SW-846 3050B & 6020A | ICP-MS | | | | | | | | |
Lead | MET-93-6103 | EPA SW-846 3050B & 6020A | ICP-MS | | | | | | | | | Molybdenum | MET-93-6103 | EPA SW-846 3050B & 6020A | ICP-MS | | | | | | | | | Nickel | MET-93-6103 | EPA SW-846 3050B & 6020A | ICP-MS | | | | | | | | | Selenium | MET-93-6103 | EPA SW-846 3050B & 6020A | ICP-MS | | | | | | | | | Silver | MET-93-6103 | EPA SW-846 3050B & 6020A | ICP-MS | | | | | | | | | Thallium | MET-93-6103 | EPA SW-846 3050B & 6020A | ICP-MS | | | | | | | | | Uranium | MET-93-6103 | EPA SW-846 3050B & 6020A | ICP-MS | | | | | | | | | Vanadium | MET-93-6103 | EPA SW-846 3050B & 6020A | ICP-MS | | | | | | | | | Zinc | MET-93-6103 | EPA SW-846 3050B & 6020A | ICP-MS | | | | | | | | | Chromium VI | INOR-93-6029 | SM 3500 B; MSA Part 3, Ch. 25 | SPECTROPHOTOMETER | | | | | | | | | Cyanide | INOR-93-6052 | MOE CN-3015 & E 3009 A;SM 4500
CN | TECHNICON AUTO ANALYZER | | | | | | | | | Mercury | MET-93-6103 | EPA SW-846 3050B & 6020A | ICP-MS | | | | | | | | | Electrical Conductivity | INOR-93-6036 | McKeague 4.12, SM 2510 B | EC METER | | | | | | | | | Sodium Adsorption Ratio | INOR-93-6007 | McKeague 4.12 & 3.26 & EPA SW-84 6010C | ⁶ ICP/OES | | | | | | | | | pH, 2:1 CaCl2 Extraction | INOR-93-6031 | MSA part 3 & SM 4500-H+ B | PH METER | | | | | | | | | pH, 2:1 CaCl2 Extraction | INOR-93-6031 | MSA part 3 & SM 4500-H+ B | pH METER | | | | | | | | ### **Method Summary** CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS AGAT WORK ORDER: 19Z526729 PROJECT: Phase Two ESA - 64819.22 ATTENTION TO: Kathryn Maton SAMPLING SITE:393 McArthur SAMPLED BY:K. Maton | PARAMETER | AGAT S.O.P | LITERATURE REFERENCE | ANALYTICAL TECHNIQUE | | | | | | |-----------------------------|----------------------------|--|--------------------------|--|--|--|--|--| | Trace Organics Analysis | ı | 1 | 1 | | | | | | | Dichlorodifluoromethane | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | Vinyl Chloride | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | Bromomethane | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | Trichlorofluoromethane | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | Acetone | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | 1,1-Dichloroethylene | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | Methylene Chloride | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | Trans- 1,2-Dichloroethylene | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | Methyl tert-butyl Ether | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | 1,1-Dichloroethane | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | Methyl Ethyl Ketone | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | Cis- 1,2-Dichloroethylene | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | Chloroform | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | 1,2-Dichloroethane | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | 1,1,1-Trichloroethane | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | Carbon Tetrachloride | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | Benzene | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | 1,2-Dichloropropane | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | Trichloroethylene | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | Bromodichloromethane | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | Methyl Isobutyl Ketone | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | 1,1,2-Trichloroethane | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | Toluene | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | Dibromochloromethane | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | Ethylene Dibromide | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | Tetrachloroethylene | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | 1,1,1,2-Tetrachloroethane | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | Chlorobenzene | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | Ethylbenzene | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | m & p-Xylene | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | Bromoform | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | Styrene | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | 1,1,2,2-Tetrachloroethane | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | o-Xylene | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | 1,3-Dichlorobenzene | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | 1,4-Dichlorobenzene | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | 1,2-Dichlorobenzene | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | Xylene Mixture | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | 1,3-Dichloropropene | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | n-Hexane | VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | Toluene-d8 | VOL-91-5002
VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS | | | | | | | 4-Bromofluorobenzene | VOL-91-5002
VOL-91-5002 | EPA SW-846 5035 & 8260D | (P&T)GC/MS
(P&T)GC/MS | | | | | | | Moisture Content | V OE 31-3002 | MOE E3139 | BALANCE | | | | | | | Naphthalene | ORG-91-5106 | EPA SW846 3541 & 8270E | GC/MS | | | | | | | Acenaphthylene | ORG-91-5106
ORG-91-5106 | EPA SW846 3541 & 8270E
EPA SW846 3541 & 8270E | GC/MS | | | | | | | Acenaphthene | | | GC/MS | | | | | | | Acenaphtnene
Fluorene | ORG-91-5106 | EPA SW846 3541 & 8270E | | | | | | | | | ORG-91-5106 | EPA SW846 3541 & 8270E | GC/MS | | | | | | | Phenanthrene | ORG-91-5106 | EPA SW846 3541 & 8270E | GC/MS | | | | | | | Anthracene | ORG-91-5106 | EPA SW846 3541 & 8270E | GC/MS | | | | | | 5835 COOPERS AVENUE TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 # **Method Summary** **CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS** AGAT WORK ORDER: 19Z526729 PROJECT: Phase Two ESA - 64819.22 **ATTENTION TO: Kathryn Maton** **SAMPLING SITE:393 McArthur SAMPLED BY:K. Maton** | SAMPLING SITE:393 MCARTNUR | | SAMPLED BY:K | SAMPLED BY:K. Maton | | | | | | | |-----------------------------------|-------------|-------------------------|----------------------|--|--|--|--|--|--| | PARAMETER | AGAT S.O.P | LITERATURE REFERENCE | ANALYTICAL TECHNIQUE | | | | | | | | Fluoranthene | ORG-91-5106 | EPA SW846 3541 & 8270E | GC/MS | | | | | | | | Pyrene | ORG-91-5106 | EPA SW846 3541 & 8270E | GC/MS | | | | | | | | Benz(a)anthracene | ORG-91-5106 | EPA SW846 3541 & 8270E | GC/MS | | | | | | | | Chrysene | ORG-91-5106 | EPA SW846 3541 & 8270E | GC/MS | | | | | | | | Benzo(b)fluoranthene | ORG-91-5106 | EPA SW846 3541 & 8270E | GC/MS | | | | | | | | Benzo(k)fluoranthene | ORG-91-5106 | EPA SW846 3541 & 8270E | GC/MS | | | | | | | | Benzo(a)pyrene | ORG-91-5106 | EPA SW846 3541 & 8270E | GC/MS | | | | | | | | Indeno(1,2,3-cd)pyrene | ORG-91-5106 | EPA SW846 3541 & 8270E | GC/MS | | | | | | | | Dibenz(a,h)anthracene | ORG-91-5106 | EPA SW846 3541 & 8270E | GC/MS | | | | | | | | Benzo(g,h,i)perylene | ORG-91-5106 | EPA SW846 3541 & 8270E | GC/MS | | | | | | | | 2-and 1-methyl Naphthalene | ORG-91-5106 | EPA SW846 3541 & 8270E | GC/MS | | | | | | | | Moisture Content | ORG-91-5106 | EPA SW-846 3541 & 8270E | BALANCE | | | | | | | | Chrysene-d12 | ORG-91-5106 | EPA SW846 3541 & 8270E | GC/MS | | | | | | | | F1 (C6 to C10) | VOL-91-5009 | CCME Tier 1 Method | P&T GC/FID | | | | | | | | F1 (C6 to C10) minus BTEX | VOL-91-5009 | CCME Tier 1 Method | P&T GC/FID | | | | | | | | F2 (C10 to C16) | VOL-91-5009 | CCME Tier 1 Method | GC/FID | | | | | | | | F2 (C10 to C16) minus Naphthalene | VOL-91-5009 | CCME Tier 1 Method | GC/FID | | | | | | | | F3 (C16 to C34) | VOL-91-5009 | CCME Tier 1 Method | GC/FID | | | | | | | | F3 (C16 to C34) minus PAHs | VOL-91-5009 | CCME Tier 1 Method | GC/FID | | | | | | | | F4 (C34 to C50) | VOL-91-5009 | CCME Tier 1 Method | GC/FID | | | | | | | | Gravimetric Heavy Hydrocarbons | VOL-91-5009 | CCME Tier 1 Method | BALANCE | | | | | | | | Moisture Content | VOL-91-5009 | CCME Tier 1 Method | BALANCE | | | | | | | | Terphenyl | VOL-91-5009 | | GC/FID | | | | | | | | Benzene | VOL-91-5009 | EPA SW-846 5035 & 8260 | P&T GC/MS | | | | | | | | Toluene | VOL-91-5009 | EPA SW-846 5035 & 8260 | P&T GC/MS | | | | | | | | Ethylbenzene | VOL-91-5009 | EPA SW-846 5035 & 8260 | P&T GC/MS | | | | | | | | Xylene Mixture | VOL-91-5009 | EPA SW-846 5035 & 8260 | P&T GC/MS | | | | | | | If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans) **Chain of Custody Record** 5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com | Laboratory | | |---------------|-----------| | Nork Order #: | 192526729 | | Cooler Quantity: | one | ice | pack | |-----------------------|------|-----|--------| | Arrival Temperatures: | 5.0 | 4.7 | 15.0 | | | 1.3 | 6.1 | 3.4 | | Custody Seal Intact: | □Yes | □No | - □N/A | | Report Information: GEMT | EC, | | | | Regulatory Requirements: (Please check all applicable boxes) | | o Regula | atory Requ | irement | 11 | ustody
otes:_ | Seal Ir | | on_ | res | | □No | | □N/ | |---|-------------------------------|-----------------|---------------------|-------------------|--|-----------------------------------|--------------------------------------
---|---|-------------------|------------------|---|------------------|----------------------|----------------------------|---------------------|---------------------|-----------------------------------|--------------| | Contact: Kallyn Address: 32 Steach Kanda O | N | 9 | .11 | _ ^ç | Table | | | Regulation 55 | 58 | 11 | | ound
r TAT | Tim | e (TA | | equir
Busine | | ys | | | Phone: 613-223-55 Reports to be sent to: 1. Email: Kathuyn.m. | 85 Fax: | entec | . <i>c</i> a | s | Soil Texture (Check One) Goarse | te One | | Prov. Water Q Objectives (P) Other | WQO) | Ru | | l Busin
Jays | ess | | 2 Busi
Days | | es Ma | Next B
Day
by Apply): | | | Project Information: Project: Site Location: Sampled By: Project Information: 393 McAr | Two Es | A. | | | Is this submission for a Record of Site Condition? Yes No | | | Guideline
ate of Anai | on
ysis | | * | Plea :
TAT is e | se pro | vide pri
ve of we | or noth | ficatior
s and s | n for ru
statuto | ush TAT
ory holida
r AGAT C | ays | | AGAT Quote #: Please note: If quotation num Invoice Information: Company: Contact: Address: Email: | ber is not provided, client w | | . ^ | | Sample Matrix Legend B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water | Field Filtered - Metals, Hg, CrVI | rganics
3 Metals (excl. Hydrides) | S DC: DCN: | Full Metals Soan Regulation/Custom Metals Nutrients: ☐ TP ☐ NH, ☐ TKN | S: NOC DETEX DTHM | 1 - F4 | | Total □ Aroclors | ine Pesticides | Miki Livous Liabns Libras. | /電グ | | | THE WAY WELL | | Sample Identification | Date
Sampled | Time
Sampled | # of
Containers | Sample
Matrix | | Y/N | Metals and Ino | ORPS: 🗆 B-H | Regulat | UNO UN | PHCs F1 - F4 | ABNS | PCBs: [] | Огдано | Sewer Use | | | | | | BH19-1 SA2
BH19-1 SA3
BH19-1 SA5
BH19-2 SA2
BH19-2 SA5B
BH19-2 SA5B
BH19-2 SA5B
BH19-2 SA5B
BH19-2 SA5B | 30/09/19 | Som | 1 2 2 1 1 2 2 2 1 3 | 5 | | | X | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | | ×× | X X / | × > > > > > > > > > > > > > > > > > > > | | | | | | | | | imples Rellinquished By (Print Name and Sten): | Makon | Date 1 | 0/2019 | 7:49 | Samples Societed By (Print Name and Sign): | 2 | Ű. | 2 | 2019 | olor | 1 10 | 13 N | 00 | 18. | | | | | | 5835 Coopers Avenue Mississauga, Ontario 147 1Y2 | Laboratory Use Only | | | | | | | | | | | | |---------------------|-----------------|--|--|--|--|--|--|--|--|--|--| | Work Order #: _ | 197526729 | | | | | | | | | | | | Cooler Quantity: | one - ice packs | | | | | | | | | | | | Tabo | ratories | Ph: 905.712.5100 Fax: 905.712.5122 | Work Order #: | LJAK | 2 1 | |---|--|------------------------------------|-----------------------|----------|-----| | Lave | 14101163 | webearth.agatlabs.com | Cooler Quantity: | me - i | ce | | nain of Custody Record If this is a Drinking Water sample | e, please use Drinklng Water Chain of Custody Form | (potable water consumed by humans) | Arrival Temperatures: | 5-0 | M. | | eport Information: | Regulatory Requirements: | ☐ No Regulatory Requirement | Custody Seal Intact: |
□Yes | | | Chain of Custody Reco | d If this Is | a Drinking Wat | er sample, p | lease use l | Drinking Water Chain of Custody Form (p | otable w | ater consume | d by humans) | | Ar | rival Te | mpera | tures: | 5 | -0 1 | 17 | 5.0 | |--|------------------|-----------------|--------------------|------------------|---|-----------------------------------|---|--|--|------------|----------------|----------------------|-----------------|---|------------------|-----------------|----------------------------------| | Report Information: Company: GEM | | | | | Regulatory Requirements: | | lo Regula | tory Requir | ement | | istody (| Seal In | tact: | Y€ | es | □No | □N/A | | Contact: Address: 32 Steams | Make | | | | Begulation 153/04 Sewer | | | egulation 558
CME | | | rnaro
gular | | Time | 1 |) Requ | uired: | | | Phone: 613-223-5 8 Reports to be sent to: 1. Email: Kathuyn, M | 85 Fax: | Doen to | C. CO | s | Ges/Park | | | rov. Water Qua
Objectives (PWo | | | 3 | Busine | Surcharg | Apply) | Business | ,
,
, | Next Busines | | 2. Email: | | 0 | | | □ Indicate Indicate | | 19- | Indicate One | | | | ays
R Date | Requi | | ays
sh Surcha | ப்
arges May | Day
Apply): | | Project Information: Project: Site Location: Sampled By: Project Information: Pho56 393 McArth | Two E | SA | 4 | | Is this submission for a Record of Site Condition? Yes | | | Guldeline of Analys | sis | | | AT is ex | clusive | of wee | kends an | | sh TAT
y holidays
AGAT CPM | | AGAT Quote #: Please note: If quotation number Invoice Information: Company: Contact: Address: Email: | | | 4 | | I | Field Filtered - Metals, Hg, CrVI | Metals and Inorganics □ All Metals □ 153 Metals (excl. Hydrides) □ Hydride Metals □ 153 Metals (Incl. Hydrides) | □ Cr □ CN·
FOC □ Hg | Regulation/Custom Metals Nutrients: ☐ TP ☐ NH, ☐ TKN | ၂ ပွ | - F4 | | otal ☐ Aroclors | Organochlorine Pesticides TCLP: □ M&I □ VOCs □ ABNs □ B(a)P □PCBs | Φ | | | | Sample Identification | Date
Sampled | Time
Sampled | # of
Containers | Sample
Matrix | | Y/N | Metals and All Metals | ORPs: □B-HWS □ Cr* □ EC □ ©HpH □ SAR Full Metals Scan | Regulation/Cu | Volatiles: | 17 | ABINS
PAHS | PCBs: □ Total | Organochlo
TCLP: □ M&I | Sewer Use | | | | BM19-3 SA 5
BM19-4 SA 4
BM19-4 SA 6 | 300119
ગાંગી9 | 12 pm
11 2m | 2 2 2 | 5 | | | X X X | X | | | × | XXX | | | | N 952 | | | 70 | | | N ₂ - | | JI | | | | | | | | | | | | | | A BOOK A STATE OF | | | | | | | | | | A | | | | | | | | | No. of the second | | 7 | | | | | | | | | | | | | | | | | Samples Relinquished By (Print Name and Sligh): Samples Relinquished By (Print Name And Sligh): | 2 | Date Date | | | Samples Repelled by Print Name and Sign): Samples Received by Print Name and Sign): | | | | Pare Ol | .04 | Time | 3h | <u>Ø</u> | | Page | Z of | 2 | | N | | | | | | | | | | | -11- | II. | | | |---------------------------------------|---------------|--------|----------|--------|-------|--|-----|-------|----------|-------|------|-----|--|---| | | | | .00 | Magazi | | | - 1 | =_,,= | | | | | | | | 459 | | | | | | yı | | | | | = 4 | | | | | 770 | | | | | - | | | | | | | | | 3 | | | 45 | | | | | | | | | N. | ~ | | | | | | | | | | | | | | | | | | 57 | | | | | | | | | | | nples Relinquished By (Print Name and | n Mato | \sim | Date | 119 | 1816 | Samples Received by (Point Name and Sign): | | | 1977 | olbU | Time | 200 | | | | 1 -0 10 000 | W I I I I I I | | 11271111 | 444 | 7.700 | 1 /1 /1 /1 | | | -1-8-1-1 | CIOVI | | 100 | | | Document ID: DIV 78 1511 015 Pink Copy - Client | Yellow Copy - AGAT | White Copy - AGAT Page 23 of 23 16 2018 CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS 32 STEACIE DRIVE OTTAWA, ON K2K 2A9 (613) 836-1422 **ATTENTION TO: Kathryn Maton** PROJECT: Phase 2 ESA - 64819.22 AGAT WORK ORDER: 19Z532666 TRACE ORGANICS REVIEWED BY: Navdeep Kaur Kansera, Senior Lab Technician WATER ANALYSIS REVIEWED BY: Jacky Zhu, Spectroscopy Technician DATE REPORTED: Oct 28, 2019 PAGES (INCLUDING COVER): 14 **VERSION*: 1** Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100 | *NOTES | | |--------|--| All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time. **AGAT** Laboratories (V1) Page 1 of 14 Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement. AGAT WORK ORDER: 19Z532666 PROJECT: Phase 2 ESA - 64819.22 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com **CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS** **SAMPLING SITE:393 McArthur Ave** ATTENTION TO: Kathryn Maton SAMPLED BY:Kathryn Maton | DATE RECEIVED: 2019-10-18 | | | | | | | DATE REPORTED: 2019-10-28 | |---------------------------|------|-----|-----|---------------|----------------|------------|---------------------------| | | | | | SAMPL | E DESCRIPTION: | MW19-101 | | | | | | | | SAMPLE TYPE: | Water | | | | | | | 1 | DATE SAMPLED: | 2019-10-18 | | | Parameter | Unit | G/S | RDL | Date Prepared | Date Analyzed |
630825 | | | F1 (C6 - C10) | μg/L | | 25 | 2019-10-30 | 2019-10-30 | <25 | | | F1 (C6 to C10) minus BTEX | μg/L | | 25 | 2019-10-30 | 2019-10-30 | <25 | | | F2 (C10 to C16) | μg/L | | 100 | 2019-10-22 | 2019-10-23 | <100 | | | F3 (C16 to C34) | μg/L | | 100 | 2019-10-22 | 2019-10-23 | <100 | | 2019-10-23 2019-10-23 2019-10-23 O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Water) Comments: Terphenyl F4 (C34 to C50) Gravimetric Heavy Hydrocarbons Surrogate RDL - Reported Detection Limit: G / S - Guideline / Standard µg/L μg/L Unit % 630825 The C6-C10 fraction is calculated using Toluene response factor. C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. **Acceptable Limits** 60-140 The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34. 2019-10-22 2019-10-22 2019-10-22 Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons > C50 are present. <100 NA 76 The chromatogram has returned to baseline by the retention time of nC50. Total C6-C50 results are corrected for BTEX contribution. This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. 100 500 nC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 nC34 average. Linearity is within 15%. Extraction and holding times were met for this sample. Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client. Analysis performed at AGAT Toronto (unless marked by *) AGAT WORK ORDER: 19Z532666 PROJECT: Phase 2 ESA - 64819.22 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com **CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS** **SAMPLING SITE:393 McArthur Ave** ATTENTION TO: Kathryn Maton SAMPLED BY:Kathryn Maton | DATE RECEIVED: 2019-10-18 | | | | | | | | DATE REPORTED: 2019-10-28 | |--------------------------------|------|-----------|----------|---------------|---|-------------------------------|---------------------------------|----------------------------------| | | | | | | E DESCRIPTION:
SAMPLE TYPE:
DATE SAMPLED: | MW19-4
Water
2019-10-18 | MW19-104
Water
2019-10-18 | | | Parameter | Unit | G/S | RDL | Date Prepared | Date Analyzed | 630823 | 630837 | | | Benzene | μg/L | 44 | 0.20 | 2019-10-30 | 2019-10-30 | <0.20 | <0.20 | | | Toluene | μg/L | 18000 | 0.20 | 2019-10-30 | 2019-10-30 | 0.24 | 0.23 | | | Ethylbenzene | μg/L | 2300 | 0.10 | 2019-10-30 | 2019-10-30 | <0.10 | 0.23 | | | Xylene Mixture | μg/L | 4200 | 0.20 | 2019-10-30 | 2019-10-30 | 0.27 | 0.27 | | | F1 (C6 - C10) | μg/L | 750 | 25 | 2019-10-30 | 2019-10-30 | <25 | <25 | | | F1 (C6 to C10) minus BTEX | μg/L | 750 | 25 | 2019-10-30 | 2019-10-30 | <25 | <25 | | | F2 (C10 to C16) | μg/L | 150 | 100 | 2019-10-22 | 2019-10-23 | <100 | <100 | | | F3 (C16 to C34) | μg/L | 500 | 100 | 2019-10-22 | 2019-10-23 | <100 | <100 | | | F4 (C34 to C50) | μg/L | 500 | 100 | 2019-10-22 | 2019-10-23 | <100 | <100 | | | Gravimetric Heavy Hydrocarbons | μg/L | 500 | 500 | 2019-10-22 | 2019-10-23 | NA | NA | | | Surrogate | Unit | Acceptabl | e Limits | | | | | | | Terphenyl | % | 60-1 | 40 | 2019-10-22 | 2019-10-23 | 83 | 94 | | Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 630823-630837 The C6-C10 fraction is calculated using Toluene response factor. Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene. C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34. Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons > C50 are present. The chromatogram has returned to baseline by the retention time of nC50. Total C6-C50 results are corrected for BTEX contribution. This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. nC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 nC34 average. Linearity is within 15%. Extraction and holding times were met for this sample. Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153/04, results are considered valid without determining the PAH contribution if not requested by the client. NA = Not Applicable Analysis performed at AGAT Toronto (unless marked by *) AGAT WORK ORDER: 19Z532666 PROJECT: Phase 2 ESA - 64819.22 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS SAMPLING SITE:393 McArthur Ave ATTENTION TO: Kathryn Maton SAMPLED BY:Kathryn Maton #### O. Reg. 153(511) - VOCs (Water) | DATE RECEIVED: 2019-10-18 | | | | | | | | | DATE REPORTED: 2019-10-28 | |-----------------------------|------|--------|------|---------------|----------------|------------|------------|------------|----------------------------------| | | | | | SAMPL | E DESCRIPTION: | MW19-1 | MW19-101 | Trip Blank | | | | | | | | SAMPLE TYPE: | Water | Water | Water | | | | | | | | DATE SAMPLED: | 2019-10-18 | 2019-10-18 | 2019-10-18 | | | Parameter | Unit | G/S | RDL | Date Prepared | Date Analyzed | 630821 | 630825 | 630826 | | | Dichlorodifluoromethane | μg/L | 4400 | 0.20 | 2019-10-25 | 2019-10-26 | <0.20 | <0.20 | <0.20 | | | Vinyl Chloride | μg/L | 0.5 | 0.17 | 2019-10-25 | 2019-10-26 | <0.17 | <0.17 | <0.17 | | | Bromomethane | μg/L | 5.6 | 0.20 | 2019-10-25 | 2019-10-26 | <0.20 | <0.20 | <0.20 | | | Trichlorofluoromethane | μg/L | 2500 | 0.40 | 2019-10-25 | 2019-10-26 | < 0.40 | <0.40 | < 0.40 | | | Acetone | μg/L | 130000 | 1.0 | 2019-10-25 | 2019-10-26 | <1.0 | <1.0 | <1.0 | | | 1,1-Dichloroethylene | μg/L | 1.6 | 0.30 | 2019-10-25 | 2019-10-26 | < 0.30 | < 0.30 | < 0.30 | | | Methylene Chloride | μg/L | 610 | 0.30 | 2019-10-25 | 2019-10-26 | < 0.30 | < 0.30 | < 0.30 | | | trans- 1,2-Dichloroethylene | μg/L | 1.6 | 0.20 | 2019-10-25 | 2019-10-26 | <0.20 | <0.20 | <0.20 | | | Methyl tert-butyl ether | μg/L | 190 | 0.20 | 2019-10-25 | 2019-10-26 | <0.20 | <0.20 | <0.20 | | | 1,1-Dichloroethane | μg/L | 320 | 0.30 | 2019-10-25 | 2019-10-26 | < 0.30 | < 0.30 | < 0.30 | | | Methyl Ethyl Ketone | μg/L | 470000 | 1.0 | 2019-10-25 | 2019-10-26 | <1.0 | <1.0 | <1.0 | | | cis- 1,2-Dichloroethylene | μg/L | 1.6 | 0.20 | 2019-10-25 | 2019-10-26 | <0.20 | <0.20 | <0.20 | | | Chloroform | μg/L | 2.4 | 0.20 | 2019-10-25 | 2019-10-26 | <0.20 | <0.20 | <0.20 | | | 1,2-Dichloroethane | μg/L | 1.6 | 0.20 | 2019-10-25 | 2019-10-26 | <0.20 | <0.20 | <0.20 | | | 1,1,1-Trichloroethane | μg/L | 640 | 0.30 | 2019-10-25 | 2019-10-26 | < 0.30 | < 0.30 | < 0.30 | | | Carbon Tetrachloride | μg/L | 0.79 | 0.20 | 2019-10-25 | 2019-10-26 | <0.20 | <0.20 | <0.20 | | | Benzene | μg/L | 44 | 0.20 | 2019-10-25 | 2019-10-26 | <0.20 | <0.20 | <0.20 | | | 1,2-Dichloropropane | μg/L | 16 | 0.20 | 2019-10-25 | 2019-10-26 | <0.20 | <0.20 | <0.20 | | | Trichloroethylene | μg/L | 1.6 | 0.20 | 2019-10-25 | 2019-10-26 | <0.20 | <0.20 | <0.20 | | | Bromodichloromethane | μg/L | 85000 | 0.20 | 2019-10-25 | 2019-10-26 | <0.20 | <0.20 | <0.20 | | | Methyl Isobutyl Ketone | μg/L | 140000 | 1.0 | 2019-10-25 | 2019-10-26 | <1.0 | <1.0 | <1.0 | | | 1,1,2-Trichloroethane | μg/L | 4.7 | 0.20 | 2019-10-25 | 2019-10-26 | <0.20 | <0.20 | <0.20 | | | Toluene | μg/L | 18000 | 0.20 | 2019-10-25 | 2019-10-26 | <0.20 | <0.20 | <0.20 | | | Dibromochloromethane | μg/L | 82000 | 0.10 | 2019-10-25 | 2019-10-26 | <0.10 | <0.10 | <0.10 | | | Ethylene Dibromide | μg/L | 0.25 | 0.10 | 2019-10-25 | 2019-10-26 | <0.10 | <0.10 | <0.10 | | | Tetrachloroethylene | μg/L | 1.6 | 0.20 | 2019-10-25 | 2019-10-26 | <0.20 | <0.20 | <0.20 | | | 1,1,1,2-Tetrachloroethane | μg/L | 3.3 | 0.10 | 2019-10-25 | 2019-10-26 | <0.10 | <0.10 | <0.10 | | | Chlorobenzene | μg/L | 630 | 0.10 | 2019-10-25 | 2019-10-26 | <0.10 | <0.10 | <0.10 | | | Ethylbenzene | μg/L | 2300 | 0.10 | 2019-10-25 | 2019-10-26 | <0.10 | <0.10 | <0.10 | | | m & p-Xylene | μg/L | | 0.20 | 2019-10-25 | 2019-10-26 | <0.20 | <0.20 | <0.20 | | **AGAT WORK ORDER: 19Z532666 PROJECT: Phase 2 ESA - 64819.22** 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com **CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS** SAMPLING SITE:393 McArthur Ave **ATTENTION TO: Kathryn Maton SAMPLED BY: Kathryn Maton** #### O. Reg. 153(511) - VOCs (Water) | DATE RECEIVED: 2019-10-18 | | | | | | | | | DATE REPORTED: 2019-10-28 | |---------------------------|------------|----------|-----------|---------------|--------------------------------|-----------------|-------------------|---------------------|---------------------------| | | | | | SAMPL | E DESCRIPTION:
SAMPLE TYPE: | MW19-1
Water | MW19-101
Water | Trip Blank
Water | | | | | | | | DATE SAMPLED: |
2019-10-18 | 2019-10-18 | 2019-10-18 | | | Parameter | Unit | G/S | RDL | Date Prepared | Date Analyzed | 630821 | 630825 | 630826 | | | Bromoform | μg/L | 380 | 0.10 | 2019-10-25 | 2019-10-26 | <0.10 | <0.10 | <0.10 | | | Styrene | μg/L | 1300 | 0.10 | 2019-10-25 | 2019-10-26 | <0.10 | <0.10 | <0.10 | | | 1,1,2,2-Tetrachloroethane | μg/L | 3.2 | 0.10 | 2019-10-25 | 2019-10-26 | <0.10 | <0.10 | <0.10 | | | o-Xylene | μg/L | | 0.10 | 2019-10-25 | 2019-10-26 | <0.10 | <0.10 | <0.10 | | | 1,3-Dichlorobenzene | μg/L | 9600 | 0.10 | 2019-10-25 | 2019-10-26 | <0.10 | <0.10 | <0.10 | | | 1,4-Dichlorobenzene | μg/L | 8 | 0.10 | 2019-10-25 | 2019-10-26 | <0.10 | <0.10 | <0.10 | | | 1,2-Dichlorobenzene | μg/L | 4600 | 0.10 | 2019-10-25 | 2019-10-26 | <0.10 | <0.10 | <0.10 | | | 1,3-Dichloropropene | μg/L | 5.2 | 0.30 | 2019-10-25 | 2019-10-26 | < 0.30 | < 0.30 | < 0.30 | | | Xylene Mixture | μg/L | 4200 | 0.20 | 2019-10-25 | 2019-10-26 | <0.20 | <0.20 | <0.20 | | | n-Hexane | μg/L | 51 | 0.20 | 2019-10-25 | 2019-10-26 | <0.20 | <0.20 | <0.20 | | | Surrogate | Unit | Acceptab | le Limits | | | | | | | | Toluene-d8 | % Recovery | 50-1 | 40 | 2019-10-25 | 2019-10-26 | 103 | 107 | 106 | | | 4-Bromofluorobenzene | % Recovery | 50-1 | 40 | 2019-10-25 | 2019-10-26 | 97 | 81 | 98 | | RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Comments: Types of Property Uses - Coarse Textured Soils Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 630821-630826 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene. 1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene. Analysis performed at AGAT Toronto (unless marked by *) Navdeep Karwera Certified By: AGAT WORK ORDER: 19Z532666 PROJECT: Phase 2 ESA - 64819.22 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS SAMPLING SITE:393 McArthur Ave ATTENTION TO: Kathryn Maton SAMPLED BY:Kathryn Maton #### O. Reg. 153(511) - Metals & Inorganics (Water) | DATE RECEIVED: 2019-10-18 | | | | | | | | DA | ATE REPOR | TED: 2019-10-28 | | |---------------------------|----------|---------|------|---------------|---|-------------------------------|------|-------------------------------|-----------|-----------------|--| | | | | | | E DESCRIPTION:
SAMPLE TYPE:
DATE SAMPLED: | MW19-1
Water
2019-10-18 | | MW19-3
Water
2019-10-18 | | | | | Parameter | Unit | G/S | RDL | Date Prepared | Date Analyzed | 630821 | RDL | 630822 | RDL | Date Prepared | | | Antimony | μg/L | 20000 | 1.0 | 2019-10-22 | 2019-10-22 | <1.0 | 1.0 | <1.0 | 1.0 | 2019-10-22 | | | Arsenic | μg/L | 1900 | 1.0 | 2019-10-22 | 2019-10-22 | <1.0 | 1.0 | <1.0 | 1.0 | 2019-10-22 | | | Barium | μg/L | 29000 | 2.0 | 2019-10-22 | 2019-10-22 | 187 | 2.0 | 231 | 2.0 | 2019-10-22 | | | Beryllium | μg/L | 67 | 0.5 | 2019-10-22 | 2019-10-22 | <0.5 | 0.5 | <0.5 | 0.5 | 2019-10-22 | | | Boron | μg/L | 45000 | 10.0 | 2019-10-22 | 2019-10-22 | 152 | 10.0 | 134 | 10.0 | 2019-10-22 | | | Cadmium | μg/L | 2.7 | 0.2 | 2019-10-22 | 2019-10-22 | <0.2 | 0.2 | <0.2 | 0.2 | 2019-10-22 | | | Chromium | μg/L | 810 | 2.0 | 2019-10-22 | 2019-10-22 | 2.6 | 2.0 | <2.0 | 2.0 | 2019-10-22 | | | Cobalt | μg/L | 66 | 0.5 | 2019-10-22 | 2019-10-22 | 1.6 | 0.5 | 1.1 | 0.5 | 2019-10-22 | | | Copper | μg/L | 87 | 1.0 | 2019-10-22 | 2019-10-22 | <1.0 | 1.0 | 1.3 | 1.0 | 2019-10-22 | | | Lead | μg/L | 25 | 0.5 | 2019-10-22 | 2019-10-22 | <0.5 | 0.5 | <0.5 | 0.5 | 2019-10-22 | | | Molybdenum | μg/L | 9200 | 0.5 | 2019-10-22 | 2019-10-22 | 2.5 | 0.5 | 13.6 | 0.5 | 2019-10-22 | | | Nickel | μg/L | 490 | 1.0 | 2019-10-22 | 2019-10-22 | 1.5 | 1.0 | 3.8 | 1.0 | 2019-10-22 | | | Selenium | μg/L | 63 | 1.0 | 2019-10-22 | 2019-10-22 | <1.0 | 1.0 | <1.0 | 1.0 | 2019-10-22 | | | Silver | μg/L | 1.5 | 0.2 | 2019-10-22 | 2019-10-22 | <0.2 | 0.2 | <0.2 | 0.2 | 2019-10-22 | | | Thallium | μg/L | 510 | 0.3 | 2019-10-22 | 2019-10-22 | <0.3 | 0.3 | <0.3 | 0.3 | 2019-10-22 | | | Uranium | μg/L | 420 | 0.5 | 2019-10-22 | 2019-10-22 | 1.4 | 0.5 | 2.2 | 0.5 | 2019-10-22 | | | Vanadium | μg/L | 250 | 0.4 | 2019-10-22 | 2019-10-22 | 0.6 | 0.4 | 1.1 | 0.4 | 2019-10-22 | | | Zinc | μg/L | 1100 | 5.0 | 2019-10-22 | 2019-10-22 | <5.0 | 5.0 | 5.3 | 5.0 | 2019-10-22 | | | Mercury | μg/L | 0.29 | 0.02 | 2019-10-21 | 2019-10-21 | <0.02 | 0.02 | < 0.02 | 0.02 | 2019-10-21 | | | Chromium VI | μg/L | 140 | 5 | 2019-10-26 | 2019-10-26 | <5 | 5 | <5 | 5 | 2019-10-26 | | | Cyanide | μg/L | 66 | 2 | 2019-10-22 | 2019-10-22 | <2 | 2 | <2 | 2 | 2019-10-22 | | | Sodium | μg/L | 2300000 | 2500 | 2019-10-22 | 2019-10-22 | 110000 | 2500 | 234000 | 2500 | 2019-10-22 | | | Chloride | μg/L | 2300000 | 1000 | 2019-10-21 | 2019-10-21 | 576000 | 2000 | 885000 | 1000 | 2019-10-25 | | | Electrical Conductivity | uS/cm | | 2 | 2019-10-21 | 2019-10-21 | 2270 | 2 | 3050 | 2 | 2019-10-21 | | | pH | pH Units | | NA | 2019-10-21 | 2019-10-21 | 7.64 | NA | 7.69 | NA | 2019-10-21 | | Certified By: Jacky Zh AGAT WORK ORDER: 19Z532666 PROJECT: Phase 2 ESA - 64819.22 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS SAMPLING SITE:393 McArthur Ave ATTENTION TO: Kathryn Maton SAMPLED BY:Kathryn Maton #### O. Reg. 153(511) - Metals & Inorganics (Water) | DATE RECEIVED: 2019-10-1 | 18 | | | | | | | DATE REPORTED: 2019-10-28 | |--------------------------|----------|---------|------|---------------|---|-------------------------------|---------------------------------|---------------------------| | | | | | - | E DESCRIPTION:
SAMPLE TYPE:
DATE SAMPLED: | MW19-4
Water
2019-10-18 | MW19-101
Water
2019-10-18 | | | Parameter | Unit | G/S | RDL | Date Prepared | Date Analyzed | 630823 | 630825 | | | Antimony | μg/L | 20000 | 1.0 | 2019-10-22 | 2019-10-22 | <1.0 | <1.0 | | | Arsenic | μg/L | 1900 | 1.0 | 2019-10-22 | 2019-10-22 | <1.0 | 1.2 | | | Barium | μg/L | 29000 | 2.0 | 2019-10-22 | 2019-10-22 | 160 | 185 | | | Beryllium | μg/L | 67 | 0.5 | 2019-10-22 | 2019-10-22 | <0.5 | <0.5 | | | Boron | μg/L | 45000 | 10.0 | 2019-10-22 | 2019-10-22 | 121 | 158 | | | Cadmium | μg/L | 2.7 | 0.2 | 2019-10-22 | 2019-10-22 | <0.2 | <0.2 | | | Chromium | μg/L | 810 | 2.0 | 2019-10-22 | 2019-10-22 | <2.0 | 2.2 | | | Cobalt | μg/L | 66 | 0.5 | 2019-10-22 | 2019-10-22 | <0.5 | 1.5 | | | Copper | μg/L | 87 | 1.0 | 2019-10-22 | 2019-10-22 | <1.0 | <1.0 | | | Lead | μg/L | 25 | 0.5 | 2019-10-22 | 2019-10-22 | <0.5 | <0.5 | | | Molybdenum | μg/L | 9200 | 0.5 | 2019-10-22 | 2019-10-22 | <0.5 | 2.4 | | | Nickel | μg/L | 490 | 1.0 | 2019-10-22 | 2019-10-22 | <1.0 | 1.4 | | | Selenium | μg/L | 63 | 1.0 | 2019-10-22 | 2019-10-22 | 1.1 | 1.7 | | | Silver | μg/L | 1.5 | 0.2 | 2019-10-22 | 2019-10-22 | <0.2 | <0.2 | | | Thallium | μg/L | 510 | 0.3 | 2019-10-22 | 2019-10-22 | <0.3 | <0.3 | | | Uranium | μg/L | 420 | 0.5 | 2019-10-22 | 2019-10-22 | <0.5 | 1.4 | | | Vanadium | μg/L | 250 | 0.4 | 2019-10-22 | 2019-10-22 | 0.9 | 1.1 | | | Zinc | μg/L | 1100 | 5.0 | 2019-10-22 | 2019-10-22 | <5.0 | <5.0 | | | Mercury | μg/L | 0.29 | 0.02 | 2019-10-21 | 2019-10-21 | <0.02 | <0.02 | | | Chromium VI | μg/L | 140 | 5 | 2019-10-26 | 2019-10-26 | <5 | <5 | | | Cyanide | μg/L | 66 | 2 | 2019-10-22 | 2019-10-22 | <2 | <2 | | | Sodium | μg/L | 2300000 | 2500 | 2019-10-22 | 2019-10-22 | 94200 | 112000 | | | Chloride | μg/L | 2300000 | 1000 | 2019-10-25 | 2019-10-25 | 347000 | 595000 | | | Electrical Conductivity | uS/cm | | 2 | 2019-10-21 | 2019-10-21 | 1550 | 2280 | | | рН | pH Units | | NA | 2019-10-21 | 2019-10-21 | 7.76 | 7.83 | | Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 630821-630825 Elevated RDL indicates the degree of sample dilution prior to the analysis in order to keep analytes within the calibration range of the instrument and to reduce matrix interference. Analysis performed at AGAT Toronto (unless marked by *) Certified By: Jacky The # **Quality Assurance** CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS PROJECT: Phase 2 ESA - 64819.22 SAMPLING SITE:393 McArthur Ave AGAT WORK ORDER: 19Z532666 ATTENTION TO: Kathryn Maton SAMPLED BY:Kathryn Maton | Trace Organics Analysis RPT Date: Oct 28, 2019 DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE MATRIX SPIKE | | | | | | | | | | | | | | | | |--|--------|---------------|--------|--------|-----|-----------------|----------|--------|----------------|----------|--------|-----------------|----------|-------|----------------| | RPT Date: Oct 28, 2019 | | Method Accept | | | | | TERIAL | METHOD | BLAN | K SPIKE | MAT | RIX SPI | KE | | | | PARAMETER | Batch | Sample | Dup #1 | Dup #2 | RPD | Method
Blank | Measured | | ptable
nits | Recovery | 1 1 11 | eptable
mits | Recovery | | ptable
nits | | TANAMETER | Daten | ld | Dup#1 | Dup #2 | I I | | Value | Lower | Upper | Recovery | Lower | Upper | Recovery | Lower | Upper | | O. Reg. 153(511) -
VOCs (Wate | r) | • | | | | | | | • | | | | | | • | | Dichlorodifluoromethane | 630817 | | < 0.20 | < 0.20 | NA | < 0.20 | 88% | 50% | 140% | 84% | 50% | 140% | 89% | 50% | 140% | | Vinyl Chloride | 630817 | | < 0.17 | < 0.17 | NA | < 0.17 | 85% | 50% | 140% | 110% | 50% | 140% | 107% | 50% | 140% | | Bromomethane | 630817 | | < 0.20 | < 0.20 | NA | < 0.20 | 86% | 50% | 140% | 96% | 50% | 140% | 87% | 50% | 140% | | Trichlorofluoromethane | 630817 | | < 0.40 | < 0.40 | NA | < 0.40 | 91% | 50% | 140% | 105% | 50% | 140% | 106% | 50% | 140% | | Acetone | 630817 | | < 1.0 | < 1.0 | NA | < 1.0 | 107% | 50% | 140% | 104% | 50% | 140% | 118% | 50% | 140% | | 1,1-Dichloroethylene | 630817 | | < 0.30 | < 0.30 | NA | < 0.30 | 79% | 50% | 140% | 83% | 60% | 130% | 92% | 50% | 140% | | Methylene Chloride | 630817 | | < 0.30 | < 0.30 | NA | < 0.30 | 90% | 50% | 140% | 107% | 60% | 130% | 90% | 50% | 140% | | trans- 1,2-Dichloroethylene | 630817 | | < 0.20 | < 0.20 | NA | < 0.20 | 79% | 50% | 140% | 85% | 60% | 130% | 79% | 50% | 140% | | Methyl tert-butyl ether | 630817 | | < 0.20 | < 0.20 | NA | < 0.20 | 79% | 50% | 140% | 76% | 60% | 130% | 94% | 50% | 140% | | 1,1-Dichloroethane | 630817 | | < 0.30 | < 0.30 | NA | < 0.30 | 84% | 50% | 140% | 89% | 60% | 130% | 96% | 50% | 140% | | Methyl Ethyl Ketone | 630817 | | < 1.0 | < 1.0 | NA | < 1.0 | 82% | 50% | 140% | 95% | 50% | 140% | 99% | 50% | 140% | | cis- 1,2-Dichloroethylene | 630817 | | < 0.20 | < 0.20 | NA | < 0.20 | 97% | 50% | 140% | 92% | 60% | 130% | 97% | 50% | 140% | | Chloroform | 630817 | | < 0.20 | < 0.20 | NA | < 0.20 | 102% | 50% | 140% | 97% | 60% | 130% | 104% | 50% | 140% | | 1,2-Dichloroethane | 630817 | | < 0.20 | < 0.20 | NA | < 0.20 | 110% | 50% | 140% | 113% | 60% | 130% | 117% | 50% | 140% | | 1,1,1-Trichloroethane | 630817 | | < 0.30 | < 0.30 | NA | < 0.30 | 94% | 50% | 140% | 81% | 60% | 130% | 95% | 50% | 140% | | Carbon Tetrachloride | 630817 | | < 0.20 | < 0.20 | NA | < 0.20 | 81% | 50% | 140% | 86% | 60% | 130% | 81% | 50% | 140% | | Benzene | 630817 | | < 0.20 | < 0.20 | NA | < 0.20 | 101% | 50% | 140% | 97% | 60% | 130% | 101% | 50% | 140% | | 1,2-Dichloropropane | 630817 | | < 0.20 | < 0.20 | NA | < 0.20 | 105% | 50% | 140% | 93% | 60% | 130% | 82% | 50% | 140% | | Trichloroethylene | 630817 | | < 0.20 | < 0.20 | NA | < 0.20 | 105% | 50% | 140% | 111% | 60% | 130% | 103% | 50% | 140% | | Bromodichloromethane | 630817 | | < 0.20 | < 0.20 | NA | < 0.20 | 90% | 50% | 140% | 108% | 60% | 130% | 90% | 50% | 140% | | Methyl Isobutyl Ketone | 630817 | | < 1.0 | < 1.0 | NA | < 1.0 | 100% | 50% | 140% | 113% | 50% | 140% | 115% | 50% | 140% | | 1,1,2-Trichloroethane | 630817 | | < 0.20 | < 0.20 | NA | < 0.20 | 119% | 50% | 140% | 98% | 60% | 130% | 111% | 50% | 140% | | Toluene | 630817 | | < 0.20 | < 0.20 | NA | < 0.20 | 82% | 50% | 140% | 117% | 60% | 130% | 114% | 50% | 140% | | Dibromochloromethane | 630817 | | < 0.10 | < 0.10 | NA | < 0.10 | 97% | 50% | 140% | 118% | 60% | 130% | 110% | 50% | 140% | | Ethylene Dibromide | 630817 | | < 0.10 | < 0.10 | NA | < 0.10 | 115% | 50% | 140% | 105% | 60% | 130% | 105% | 50% | 140% | | Tetrachloroethylene | 630817 | | < 0.20 | < 0.20 | NA | < 0.20 | 73% | 50% | 140% | 112% | 60% | 130% | 109% | 50% | 140% | | 1,1,1,2-Tetrachloroethane | 630817 | | < 0.10 | < 0.10 | NA | < 0.10 | 87% | 50% | 140% | 117% | 60% | 130% | 114% | 50% | 140% | | Chlorobenzene | 630817 | | < 0.10 | < 0.10 | NA | < 0.10 | 89% | 50% | 140% | 97% | 60% | 130% | 115% | 50% | 140% | | Ethylbenzene | 630817 | | < 0.10 | < 0.10 | NA | < 0.10 | 75% | 50% | 140% | 109% | 60% | 130% | 107% | 50% | 140% | | m & p-Xylene | 630817 | | < 0.20 | < 0.20 | NA | < 0.20 | 79% | 50% | 140% | 113% | 60% | 130% | 112% | 50% | 140% | | Bromoform | 630817 | | < 0.10 | < 0.10 | NA | < 0.10 | 108% | 50% | 140% | 93% | 60% | 130% | 115% | 50% | 140% | | Styrene | 630817 | | < 0.10 | < 0.10 | NA | < 0.10 | 79% | 50% | 140% | 106% | 60% | 130% | 104% | 50% | 140% | | 1,1,2,2-Tetrachloroethane | 630817 | | < 0.10 | < 0.10 | NA | < 0.10 | 101% | 50% | 140% | 106% | 60% | 130% | 99% | 50% | 140% | | o-Xylene | 630817 | | < 0.10 | < 0.10 | NA | < 0.10 | 87% | 50% | 140% | 119% | 60% | 130% | 117% | 50% | 140% | | 1,3-Dichlorobenzene | 630817 | | < 0.10 | < 0.10 | NA | < 0.10 | 99% | 50% | 140% | 116% | 60% | 130% | 88% | 50% | 140% | | 1,4-Dichlorobenzene | 630817 | | < 0.10 | < 0.10 | NA | < 0.10 | 100% | 50% | 140% | 108% | 60% | 130% | 90% | 50% | 140% | | 1,2-Dichlorobenzene | 630817 | | < 0.10 | < 0.10 | NA | < 0.10 | 105% | 50% | 140% | 90% | 60% | 130% | 95% | 50% | 140% | | 1,3-Dichloropropene | 630817 | | < 0.30 | < 0.30 | NA | < 0.30 | 90% | 50% | 140% | 90% | 60% | 130% | 84% | 50% | 140% | | n-Hexane | 630817 | | < 0.20 | < 0.20 | NA | < 0.20 | 93% | 50% | 140% | 103% | 60% | 130% | 95% | 50% | 140% | #### AGAT QUALITY ASSURANCE REPORT (V1) Page 8 of 14 AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results. ## **Quality Assurance** **CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS** PROJECT: Phase 2 ESA - 64819.22 SAMPLING SITE:393 McArthur Ave AGAT WORK ORDER: 19Z532666 ATTENTION TO: Kathryn Maton SAMPLED BY:Kathryn Maton | Trace Organics Analysis (Continued) RPT Date: Oct 28, 2019 DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE MATRIX SPIKE | | | | | | | | | | | | | | | | |---|---------------------|--------|------------------|------------------|----------|------------------|-------------|--------|----------------|--------------|-------|--------------|--------------|---------|--------------| | RPT Date: Oct 28, 2019 | PARAMETER Batch San | | | DUPLICAT | E | | REFERE | NCE MA | TERIAL | METHOD | BLANK | SPIKE | MAT | RIX SPI | KE | | | | Sample | | | | Method
Blank | Measured | | ptable
nits | | | ptable | | | ptable | | PARAMETER | Batch | ld | Dup #1 | Dup #2 | RPD | Diank | Value | Lower | Upper | Recovery | Lower | Upper | Recovery | Lower | | | O D 450(544) BUO- 54 - 5 | 4 (04)-1> | | | | | | | | | | | | | | | | O. Reg. 153(511) - PHCs F1 - F
Benzene | 4 (water)
653359 | | < 0.20 | < 0.20 | NA | < 0.20 | 79% | 50% | 140% | 80% | 60% | 130% | 85% | 50% | 140% | | Toluene | 653359 | | < 0.20 | < 0.20 | NA | < 0.20 | 80% | 50% | 140% | 85% | 60% | 130% | 90% | 50% | 140% | | Ethylbenzene | 653359 | | < 0.10 | < 0.10 | NA | < 0.10 | 99% | 50% | 140% | 80% | 60% | 130% | 91% | 50% | 140% | | Xylene Mixture | 653359 | | < 0.20 | < 0.20 | NA | < 0.20 | 90% | 50% | 140% | 83% | 60% | 130% | 90% | 50% | 140% | | F1 (C6 - C10) | 653359 | | < 25 | < 25 | NA | < 25 | 92% | 60% | 140% | 109% | 60% | 140% | 110% | 60% | 140% | | (65 6.6) | 000000 | | 120 | 120 | 10. | 120 | 0270 | 0070 | 1 1070 | 10070 | 0070 | 1 10 70 | 11070 | 0070 | | | F2 (C10 to C16) | | TW | < 100 | < 100 | NA | < 100 | 81% | 60% | 140% | 90% | 60% | 140% | 92% | 60% | 140% | | F3 (C16 to C34) | | TW | < 100 | < 100 | NA | < 100 | 90% | 60% | 140% | 107% | 60% | 140% | 87% | 60% | 140% | | F4 (C34 to C50) | | TW | < 100 | < 100 | NA | < 100 | 89% | 60% | 140% | 84% | 60% | 140% | 119% | 60% | 140% | | O. Reg. 153(511) - VOCs (Wate | er) | | | | | | | | | | | | | | | | Dichlorodifluoromethane | 646411 | | < 0.20 | < 0.20 | NA | < 0.20 | 87% | 50% | 140% | 115% | 50% | 140% | 100% | 50% | 140% | | Vinyl Chloride | 646411 | | < 0.17 | < 0.17 | NA | < 0.17 | 85% | 50% | 140% | 122% | 50% | 140% | 95% | 50% | 140% | | Bromomethane | 646411 | | < 0.20 | < 0.20 | NA | < 0.20 | 80% | 50% | 140% | 117% | 50% | 140% | 108% | 50% | 140% | | Trichlorofluoromethane | 646411 | | < 0.40 | < 0.40 | NA | < 0.40 | 77% | 50% | 140% | 113% | 50% | 140% | 118% | 50% | 140% | | Acetone | 646411 | | < 1.0 | < 1.0 | NA | < 1.0 | 117% | 50% | 140% | 102% | 50% | 140% | 89% | 50% | 140% | | 1,1-Dichloroethylene | 646411 | | < 0.30 | < 0.30 | NA | < 0.30 | 91% | 50% | 140% | 109% | 60% | 130% | 109% | 50% | 140% | | Methylene Chloride | 646411 | | < 0.30 | < 0.30 | NA | < 0.30 | 103% | 50% | 140% | 84% | 60% | 130% | 97% | 50% | 140% | | trans- 1,2-Dichloroethylene | 646411 | | < 0.20 | < 0.20 | NA | < 0.20 | 100% | 50% | 140% | 116% | 60% | 130% | 116% | 50% | 140% | | Methyl tert-butyl ether | 646411 | | < 0.20 | < 0.20 | NA | < 0.20 | 104% | 50% | 140% | 83% | 60% | 130% | 90% | 50% | 140% | | 1,1-Dichloroethane | 646411 | | < 0.30 | < 0.30 | NA | < 0.30 | 101% | 50% | 140% | 120% | 60% | 130% | 115% | 50% | 140% | | Methyl Ethyl Ketone | 646411 | | < 1.0 | < 1.0 | NA | < 1.0 | 88% | 50% | 140% | 108% | 50% | 140% | 105% | 50% | 140% | | cis- 1,2-Dichloroethylene | 646411 | | < 0.20 | < 0.20 | NA | < 0.20 | 110% | 50% | 140% | 92% | 60% | 130% | 95% | 50% | 140% | | Chloroform | 646411 | | < 0.20 | < 0.20 | NA | < 0.20 | 114% | 50% | 140% | 91% | 60% | 130% | 99% | 50% | 140% | | 1,2-Dichloroethane | 646411 | | < 0.20 | < 0.20 | NA | < 0.20 | 119% | 50% | 140% | 100% | 60% | 130% | 105% | 50% | 140% | | 1,1,1-Trichloroethane | 646411 | | < 0.30 | < 0.30 | NA | < 0.30 | 100% | 50% | 140% | 118% | 60% | 130% | 103% | 50% | 140% | | Carbon Tetrachloride | 646411 | | < 0.20 | < 0.20 | NA | < 0.20 | 100% | 50% | 140% | 110% | 60% | 130% | 97% | 50% | 140% | | Benzene | 646411 | | < 0.20 | < 0.20 | NA | <
0.20 | 80% | 50% | 140% | 100% | 60% | 130% | 104% | 50% | 140% | | 1,2-Dichloropropane | 646411 | | < 0.20 | < 0.20 | NA | < 0.20 | 104% | 50% | 140% | 108% | 60% | 130% | 101% | 50% | 140% | | Trichloroethylene | 646411 | | < 0.20 | < 0.20 | NA | < 0.20 | 82% | 50% | 140% | 87% | 60% | 130% | 111% | 50% | 140% | | Bromodichloromethane | 646411 | | < 0.20 | < 0.20 | NA | < 0.20 | 104% | 50% | 140% | 113% | 60% | 130% | 104% | 50% | 140% | | Methyl Isobutyl Ketone | 646411 | | < 1.0 | < 1.0 | NA | < 1.0 | 87% | 50% | 140% | 91% | 50% | 140% | 99% | 50% | 140% | | 1,1,2-Trichloroethane | 646411 | | < 0.20 | < 0.20 | NA | < 0.20 | 96% | 50% | 140% | 102% | 60% | 130% | 95% | 50% | 140% | | Toluene | 646411 | | < 0.20 | < 0.20 | NA | < 0.20 | 106% | 50% | 140% | 95% | 60% | | 98% | | 140% | | Dibromochloromethane | 646411 | | < 0.10 | < 0.20 | NA | < 0.10 | 100% | | 140% | 97% | | 130% | 94% | | 140% | | Ethylene Dibromide | 646411 | | < 0.10 | < 0.10 | NA | < 0.10 | 100% | | 140% | 84% | | 130% | 101% | | 140% | | Tetrachloroethylene | 6/6/14 | | - 0.20 | | NΙΛ | - 0.20 | 060/ | 500/ | 1/00/ | 0/10/ | 60% | 130% | 00% | 50% | 140% | | • | 646411 | | < 0.20 | < 0.20 | NA | < 0.20 | 96% | | 140% | 94% | | | 90% | | | | 1,1,1,2-Tetrachloroethane | 646411 | | < 0.10 | < 0.10 | NA | < 0.10 | 90% | | | 78% | | 130% | 86% | 50% | 140% | | Chlorobenzene
Ethylbenzene | 646411
646411 | | < 0.10
< 0.10 | < 0.10
< 0.10 | NA
NA | < 0.10
< 0.10 | 106%
89% | 50% | 140%
140% | 101%
107% | 60% | 130%
130% | 114%
104% | 50% | 140%
140% | #### AGAT QUALITY ASSURANCE REPORT (V1) Page 9 of 14 AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results. #### **Quality Assurance** CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS AGAT WOR PROJECT: Phase 2 ESA - 64819.22 ATTENTION SAMPLING SITE:393 McArthur Ave AGAT WORK ORDER: 19Z532666 ATTENTION TO: Kathryn Maton SAMPLED BY:Kathryn Maton | SAMI LING SITE.393 MICA | AMI EINO OTTE.393 MICATUIUI AVE | | | | | | | | | i.Natiii | y i i ivia | ton | | | | |---------------------------|-------------------------------------|--------|--------|---------|-----|-----------------|-------------------|--------|----------------|----------|------------|----------------|----------|-----------|-----------------| | | Trace Organics Analysis (Continued) | | | | | | | | | | | | | | | | RPT Date: Oct 28, 2019 | | | С | UPLICAT | E | | REFERE | NCE MA | TERIAL | METHOD | BLANK | SPIKE | MAT | RIX SPI | KE | | PARAMETER | Batch | Sample | Dup #1 | Dup #2 | RPD | Method
Blank | Measured
Value | | ptable
nits | Recovery | Lie | ptable
nits | Recovery | 1 1 1 1 1 | eptable
mits | | | | ld | | | | | value | Lower | Upper | _ | Lower | Upper | | Lower | Upper | | m & p-Xylene | 646411 | | < 0.20 | < 0.20 | NA | < 0.20 | 97% | 50% | 140% | 105% | 60% | 130% | 104% | 50% | 140% | | Bromoform | 646411 | | < 0.10 | < 0.10 | NA | < 0.10 | 86% | 50% | 140% | 79% | 60% | 130% | 94% | 50% | 140% | | Styrene | 646411 | | < 0.10 | < 0.10 | NA | < 0.10 | 85% | 50% | 140% | 89% | 60% | 130% | 98% | 50% | 140% | | 1,1,2,2-Tetrachloroethane | 646411 | | < 0.10 | < 0.10 | NA | < 0.10 | 108% | 50% | 140% | 93% | 60% | 130% | 117% | 50% | 140% | | o-Xylene | 646411 | | < 0.10 | < 0.10 | NA | < 0.10 | 96% | 50% | 140% | 84% | 60% | 130% | 109% | 50% | 140% | | 1,3-Dichlorobenzene | 646411 | | < 0.10 | < 0.10 | NA | < 0.10 | 111% | 50% | 140% | 97% | 60% | 130% | 107% | 50% | 140% | | 1,4-Dichlorobenzene | 646411 | | < 0.10 | < 0.10 | NA | < 0.10 | 111% | 50% | 140% | 93% | 60% | 130% | 94% | 50% | 140% | | 1,2-Dichlorobenzene | 646411 | | < 0.10 | < 0.10 | NA | < 0.10 | 104% | 50% | 140% | 96% | 60% | 130% | 106% | 50% | 140% | | 1,3-Dichloropropene | 646411 | | < 0.30 | < 0.30 | NA | < 0.30 | 92% | 50% | 140% | 91% | 60% | 130% | 96% | 50% | 140% | | n-Hexane | 646411 | | < 0.20 | < 0.20 | NA | < 0.20 | 84% | 50% | 140% | 110% | 60% | 130% | 108% | 50% | 140% | Comments: Tap water analysis has been performed as QC sample testing for duplicate and matrix spike due to insufficient sample volume. When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA). #### **Quality Assurance** CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS PROJECT: Phase 2 ESA - 64819.22 SAMPLING SITE:393 McArthur Ave AGAT WORK ORDER: 19Z532666 ATTENTION TO: Kathryn Maton SAMPLED BY:Kathryn Maton | Water Analysis | | | | | | | | | | | | | | | | |--------------------------------|--------------|--------|--------|----------|----------|-----------------|----------|--------|-----------------|----------|-------|----------------|----------|---------|-----------------| | RPT Date: Oct 28, 2019 | | | | UPLICATE | . | | REFEREN | NCE MA | TERIAL | METHOD | BLANK | SPIKE | MAT | RIX SPI | KE | | PARAMETER | Batch | Sample | Dup #1 | Dup #2 | RPD | Method
Blank | Measured | | eptable
mits | Recovery | Lie | ptable
nits | Recovery | 1 1 10 | eptable
mits | | | | ld | | | | | Value | Lower | Upper | | Lower | Upper | | Lower | Upper | | O. Reg. 153(511) - Metals & Ir | organics (Wa | ter) | | | | | | | | | | | | | | | Antimony | 634952 | | <1.0 | <1.0 | NA | < 1.0 | 106% | 70% | 130% | 97% | 80% | 120% | 101% | 70% | 130% | | Arsenic | 634952 | | <1.0 | <1.0 | NA | < 1.0 | 103% | 70% | 130% | 103% | 80% | 120% | 120% | 70% | 130% | | Barium | 634952 | | 117 | 119 | 1.7% | < 2.0 | 102% | 70% | 130% | 104% | 80% | 120% | 98% | 70% | 130% | | Beryllium | 634952 | | <0.5 | < 0.5 | NA | < 0.5 | 103% | 70% | 130% | 103% | 80% | 120% | 115% | 70% | 130% | | Boron | 634952 | | 76.9 | 83.9 | 8.7% | < 10.0 | 96% | 70% | 130% | 101% | 80% | 120% | 108% | 70% | 130% | | Cadmium | 634952 | | <0.2 | <0.2 | NA | < 0.2 | 100% | 70% | 130% | 104% | 80% | 120% | 110% | 70% | 130% | | Chromium | 634952 | | <2.0 | <2.0 | NA | < 2.0 | 100% | 70% | 130% | 103% | 80% | 120% | 102% | 70% | 130% | | Cobalt | 634952 | | <0.5 | 0.5 | NA | < 0.5 | 101% | 70% | 130% | 100% | 80% | 120% | 101% | 70% | 130% | | Copper | 634952 | | <1.0 | <1.0 | NA | < 1.0 | 106% | 70% | 130% | 108% | 80% | 120% | 103% | 70% | 130% | | Lead | 634952 | | <0.5 | <0.5 | NA | < 0.5 | 99% | 70% | 130% | 104% | 80% | 120% | 99% | 70% | 130% | | Molybdenum | 634952 | | 6.8 | 7.2 | 5.7% | < 0.5 | 102% | 70% | 130% | 101% | 80% | 120% | 110% | 70% | 130% | | Nickel | 634952 | | 2.2 | 2.2 | NA | < 1.0 | 106% | 70% | 130% | 104% | 80% | 120% | 103% | 70% | 130% | | Selenium | 634952 | | <1.0 | <1.0 | NA | < 1.0 | 99% | 70% | 130% | 102% | 80% | 120% | 123% | 70% | 130% | | Silver | 634952 | | <0.2 | <0.2 | NA | < 0.2 | 104% | 70% | 130% | 106% | 80% | 120% | 98% | 70% | 130% | | Thallium | 634952 | | <0.3 | <0.3 | NA | < 0.3 | 100% | 70% | 130% | 107% | 80% | 120% | 100% | 70% | 130% | | Uranium | 634952 | | <0.5 | <0.5 | NA | < 0.5 | 97% | 70% | 130% | 99% | 80% | 120% | 100% | 70% | 130% | | Vanadium | 634952 | | <0.4 | <0.4 | NA | < 0.4 | 98% | 70% | 130% | 99% | 80% | 120% | 103% | 70% | 130% | | Zinc | 634952 | | <5.0 | <5.0 | NA | < 5.0 | 103% | 70% | 130% | 105% | 80% | 120% | 117% | 70% | 130% | | Mercury | 630821 | 630821 | < 0.02 | < 0.02 | NA | < 0.02 | 103% | 70% | 130% | 99% | 80% | 120% | 97% | 70% | 130% | | Chromium VI | 630821 | 630821 | <5 | <5 | NA | < 5 | 100% | 70% | 130% | 101% | 80% | 120% | 98% | 70% | 130% | | Cyanide | 630821 | 630821 | <2 | <2 | NA | < 2 | 107% | 70% | 130% | 106% | 80% | 120% | 81% | 70% | 130% | | Sodium | 630821 | 630821 | 110000 | 109000 | 0.9% | < 500 | 97% | 70% | 130% | 97% | 80% | 120% | 97% | 70% | 130% | | Chloride | 630861 | | 7820 | 8500 | 8.3% | < 100 | 110% | 70% | 130% | 100% | 70% | 130% | 106% | 70% | 130% | | Electrical Conductivity | 630782 | | 994 | 1000 | 0.6% | < 2 | 106% | 90% | 110% | | | | | | | | рН | 630782 | | 7.84 | 7.84 | 0.0% | NA | 100% | 90% | 110% | | | | | | | Comments: NA signifies Not Applicable. Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Certified By: Jacky The Page 11 of 14 ### **Method Summary** CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS AGAT WORK ORDER: 19Z532666 PROJECT: Phase 2 ESA - 64819.22 ATTENTION TO: Kathryn Maton SAMPLING SITE:393 McArthur Ave SAMPLED BY:Kathryn Maton | PARAMETER | AGAT S.O.P | LITERATURE REFERENCE | ANALYTICAL TECHNIQUE | | | | | | |--------------------------------|--------------|--------------------------|----------------------|--|--|--|--|--| | | AGAT 5.U.P | LITERATURE REFERENCE | ANALT HEAL TECHNIQUE | | | | | | | Trace Organics Analysis | VOL 04 FC:0 | MOE BUO FOAS: | (DOT) OO (EID | | | | | | | F1 (C6 - C10) | VOL-91- 5010 | MOE PHC E3421 | (P&T)GC/FID | | | | | | | F1 (C6 to C10) minus BTEX | VOL-91-5010 | MOE PHC E3421 | (P&T)GC/FID | | | | | | | F2 (C10 to C16) | VOL-91-5010 | MOE PHC E3421 | GC / FID | | | | | | | F3 (C16 to C34) | VOL-91-5010 | MOE PHC E3421 | GC / FID | | | | | | | F4 (C34 to C50) | VOL-91-5010 | MOE PHC E3421 | GC / FID | | | | | | | Gravimetric Heavy Hydrocarbons | VOL-91-5010 | MOE PHC E3421 | BALANCE | | | | | | | Terphenyl | VOL-91-5010
| | GC/FID | | | | | | | Benzene | VOL-91-5010 | MOE PHC-E3421 | P&T GC/MS | | | | | | | Toluene | VOL-91-5010 | MOE PHC-E3421 | P&T GC/MS | | | | | | | Ethylbenzene | VOL-91-5010 | MOE PHC-E3421 | P&T GC/MS | | | | | | | Xylene Mixture | VOL-91-5010 | MOE PHC-E3421 | P&T GC/MS | | | | | | | F1 (C6 - C10) | VOL-91- 5010 | MOE PHC-E3421 | P&T GC/FID | | | | | | | F1 (C6 to C10) minus BTEX | VOL-91-5010 | MOE PHC-E3421 | P&T GC/FID | | | | | | | F2 (C10 to C16) | VOL-91-5010 | MOE PHC-E3421 | GC/FID | | | | | | | F3 (C16 to C34) | VOL-91-5010 | MOE PHC-E3421 | GC/FID | | | | | | | F4 (C34 to C50) | VOL-91-5010 | MOE PHC-E3421 | GC/FID | | | | | | | Gravimetric Heavy Hydrocarbons | VOL-91-5010 | MOE PHC-E3421 | BALANCE | | | | | | | Terphenyl | VOL-91-5010 | MOE PHC-E3421 | GC/FID | | | | | | | Dichlorodifluoromethane | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | Vinyl Chloride | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | Bromomethane | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | Trichlorofluoromethane | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | Acetone | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | 1,1-Dichloroethylene | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | Methylene Chloride | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | trans- 1,2-Dichloroethylene | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | Methyl tert-butyl ether | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | 1,1-Dichloroethane | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | Methyl Ethyl Ketone | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | cis- 1,2-Dichloroethylene | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | Chloroform | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | 1,2-Dichloroethane | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | ' | | EPA SW-846 5030C & 8260D | | | | | | | | 1,1,1-Trichloroethane | VOL-91-5001 | | (P&T)GC/MS | | | | | | | Carbon Tetrachloride | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | Benzene | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | 1,2-Dichloropropane | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | Trichloroethylene | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | Bromodichloromethane | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | Methyl Isobutyl Ketone | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | 1,1,2-Trichloroethane | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | Toluene | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | Dibromochloromethane | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | Ethylene Dibromide | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | Tetrachloroethylene | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | 1,1,1,2-Tetrachloroethane | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | Chlorobenzene | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | Ethylbenzene | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | m & p-Xylene | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | | Bromoform | VOL-91-5001 | EPA SW-846 5030C & 8260D | (P&T)GC/MS | | | | | | ### **Method Summary** CLIENT NAME: GEMTEC CONSULTING ENGINEERS AND SCIENTISTS AGAT WORK ORDER: 19Z532666 PROJECT: Phase 2 ESA - 64819.22 ATTENTION TO: Kathryn Maton SAMPLING SITE:393 McArthur Ave SAMPLED BY:Kathryn Maton **PARAMETER** AGAT S.O.P LITERATURE REFERENCE **ANALYTICAL TECHNIQUE** Styrene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS EPA SW-846 5030C & 8260D (P&T)GC/MS 1,1,2,2-Tetrachloroethane VOI -91-5001 o-Xylene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,3-Dichlorobenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,4-Dichlorobenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,2-Dichlorobenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 1,3-Dichloropropene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS (P&T)GC/MS Xylene Mixture VOL-91-5001 EPA SW-846 5030C & 8260D VOL-91-5001 EPA SW-846 5030C & 8260D n-Hexane (P&T)GC/MS Toluene-d8 VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS 4-Bromofluorobenzene VOL-91-5001 EPA SW-846 5030C & 8260D (P&T)GC/MS Water Analysis MET-93-6103 EPA SW-846 6020A & 200.8 ICP-MS Antimony Arsenic MET-93-6103 EPA SW-846 6020A & 200.8 ICP-MS Barium MET-93-6103 EPA SW-846 6020A & 200.8 ICP-MS ICP-MS Beryllium MET-93-6103 EPA SW-846 6020A & 200.8 Boron MET-93-6103 EPA SW-846 6020A & 200.8 ICP-MS Cadmium MET-93-6103 EPA SW-846 6020A & 200.8 ICP-MS ICP-MS Chromium MET-93-6103 EPA SW-846 6020A & 200.8 ICP-MS Cobalt MET-93-6103 EPA SW-846 6020A & 200.8 ICP-MS Copper MET-93-6103 FPA SW-846 6020A & 200 8 Lead MET-93-6103 EPA SW-846 6020A & 200.8 ICP-MS Molybdenum MET-93-6103 EPA SW-846 6020A & 200.8 ICP-MS Nickel MET-93-6103 EPA SW-846 6020A & 200.8 ICP-MS Selenium MET-93-6103 EPA SW-846 6020A & 200.8 ICP-MS Silver MET-93-6103 EPA SW-846 6020A & 200.8 ICP-MS Thallium ICP-MS MET-93-6103 EPA SW-846 6020A & 200.8 Uranium MET-93-6103 EPA SW-846 6020A & 200.8 ICP-MS Vanadium MET-93-6103 EPA SW-846 6020A & 200.8 ICP-MS Zinc MET-93-6103 EPA SW-846 6020A & 200.8 ICP-MS Mercury MET-93-6100 EPA SW 846 7470 & 245.1 **CVAAS** Chromium VI INOR-93-6034 SM 3500-Cr B **SPECTROPHOTOMETER** MOE METHOD CN- 3015 & SM 4500 TECHNICON AUTO ANALYZER Cyanide INOR-93-6052 CN-I EPA SW-846 6010C & 200.7 Sodium MFT-93-6105 ICP/OFS Chloride INOR-93-6004 SM 4110 B ION CHROMATOGRAPH **Electrical Conductivity** INOR-93-6000 SM 2510 B PC TITRATE pН PC TITRATE SM 4500-H+ B INOR-93-6000 5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 **Laboratory Use Only** Cooler Quantity: Arrival Temperatures: Work Order #: 192532666 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com #### **Chain of Custody Record** If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans) | Report Information: Company: | | Regulatory Requirements (Please check all applicable boxes | irements: | □ N | lo Re | egula | tory Re | quire | nent | 11 | ustod
lotes: | y Sea | I Intac | t: | Ye | s | | No | DN/A | | | | | |--|-----------------|---|--------------------|-----------------------------------|---|---|--------------------------------|----------|---|---------------------------------|-----------------|---------------|-----------|-----------------------|---------------------------------|---------|-----------------|------------|--------------------------|--|-------------------------------------|-----------------------|------------| | Address: 32 Steams | Brive | | | | Regulation 153/04 Table | ☐ Sewe | | | | egulation | 558 | | | ırna
egula | | | | _ | | quire | | | _ | | Phone: 613-223-5888 Reports to be sent to: 1. Email: Kalhyn. M? 2. Email: | _ | genkc | .62 | | Res/Park Agriculture Soil Texture (Check One) Soarse Fine | Region | ate One | - | | rov. Wate
bjectives
other | (PWQC | | Rı | | 3 Bus
Days | siness | charges / | Apply) | Busine
ays | ess | | | 5 S | | Project Information: Project: Site Location: Sampled By: Project Information: Project: | Two Co | 5A
4819.3 | 22 | | Is this submission Record of Site Co | | | Cer | Yes | | | | | | TAT is | s exclu | isive o | is, ple | kends
ease c | and star | or rush TA
tutory ho
your
AGA | olidays | | | AGAT Quote #: Please note: If quotation number is Invoice Information: Company: Contact: Address: Email: |) | Sample Matrix Leg B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water | gend | Field Filtered - Metals, Hg, CrVI | Metals and Inorganics | ☐ All Metals ☐ 153 Metals (excl. Hydrides) ☐ Hydride Metals ☐ 153 Metals (incl. Hydrides) | :: DB-HWS DCI DCN DEC DFOC DHg | als Scan | Regulation/Custom Metals Nutrients: ☐ TP ☐ NH, ☐ TKN | Volatiles: XVoc BTEX THM | L-F4+ Brex | | | l fotal Li Aroclors | M&I □ VOCs □ ABNs □ B(a)P □PCBs | | | | Ilida Omoniention IV (N) | y Hazardous or High Concentration (1719) | | | | | Sample Identification | Date
Sampled | Time
Sampled | # of
Containers | Samp
Matri | | | Y/N | Metals | ☐ All Meta | ORPs: | Full Metals | Regulati | Volatiles | PHCs F1 - F4 | ABNs | PAHS | PCBS: U lotal 1 | TCLP: M& | Sewer U | | 1112 | Heitoto | Potentian | | MW19-1
MW19-3 | 18/10/19 | | 8 | Gy | N | | | XX | | | | | X | | | | | | | | | | _ | | MW19-101
TNP Blank
MW19-104 | 1:150m 9 | | | | | | H. V | / X X | | | | | × | × | | | | | | | | | | | | | | - × | | | | | 00 | | | | | | | | | | | | | | | | | Samples Relinquished By (Print Name and Sign): Date Time School 1 | | | | | Samples Received By (P) Samples Received By (P) Samples Received By (P) | rint Name and Sign): | SHK | 3 | 9 | 2 | | Date OC1 Date | 19 | 9 1 | ime 9 | 64 | 0 | Jo: | Page | 95 | of |) | | | iciiment ID: DIV 78-1511 016 | DIV 78-1511 01G | | | | | | . was kas ka | wa wa | | Pink | Сору - С | lient I | Yellow | Сору | - AGA | TIW | hite C | ору- А | | | dge 144 | of 14 ²⁰¹⁹ |) | civil geotechnical environmental field services materials testing civil géotechnique environnementale surveillance de chantier service de laboratoire des matériaux