

600 March Road Transportation Impact Assessment Report

Prepared for: Nokia Canada Inc. Prepared by: Stantec Consulting Ltd.

Sign-off Sheet

This document entitled 600 March Road Transportation Impact Assessment was prepared by Stantec Consulting Ltd. ("Stantec") for the account of Nokia Canada Inc. (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

(signature)

Constance Sentongo, EIT.

Transportation Engineering Intern

constancesentongo@stantec.com

(613) 724-4343

June 7, 2022

Table of Contents

1.0	SCREENING	3	1
1.1	SUMMARY	OF DEVELOPMENT	1
1.2	TRIP GENE	RATION TRIGGER	1
1.3	LOCATION -	TRIGGERS	2
1.4		IGGERS	
1.5			
2.0	SCOPING		3
2.1	EXISTING A	ND PLANNED CONDITIONS	3
	2.1.1	Proposed Development	
	2.1.2 2.1.3	Existing Conditions	
		Planned Conditions	
2.2	2.2.1	AND TIME PERIODS Study Area	
	2.2.2	Time Periods	
	2.2.3	Horizon Years	
2.3	EXEMPTION	NS REVIEW	19
3.0		ING	
3.1		ENT GENERATED TRAVEL DEMAND	
	3.1.1	Existing Trip Generation	
	3.1.2 3.1.3	Future Trip Generation and Mode Shares Internal Capture and Pass-By	
	3.1.4	Trip Distribution	
	3.1.5	Trip Assignment	
3.2	BACKGROU	JND NETWORK TRAVEL DEMAND	
	3.2.1	Transportation Network Plans	
	3.2.2	Background Growth	
	3.2.3	Other Developments	
3.3			
	3.3.1 3.3.2	2032 Future Background Traffic Volumes 2032 Future Background Traffic Volumes - Rationalized	
	3.3.3	2032 Total Future Traffic Volumes	
	3.3.4	2032 Total Future Traffic Volumes - Rationalized	
	3.3.5	2037 Total Future Traffic Volumes - Rationalized	
4.0		REPORT	
4.1		ENT DESIGN	
	4.1.1 4.1.2	Design for Sustainable Modes	
	4.1.3	New Street Networks	••••••
4.2	PARKING		39
	4.2.1	Parking Supply	
	4.2.2	Spillover Parking	
4.3	BOUNDARY	STREET DESIGN	
	4.3.1	Multi Modal Level of Service	
4.4		TERSECTION DESIGN	
	4.4.1	Access Location	
	4.4.2	Intersection Control	

600 March Road Transportation Impact Assessment

June 7, 2022

4.5	TRANSPOR	RTATION DEMAND MANAGEMENT	40
	4.5.1	Context for TDM Measures	40
	4.5.2	Need and Opportunity	
	4.5.3	TDM Program	
4.6	NEIGHBHO	URHOOD TRAFFIC MANAGEMENT	44
4.7	TRANSIT		
	4.7.1	Route Capacity	
4.8	REVIEW OF	NETWORK CONCEPT	46
4.9	INTERSECT	FION DESIGN	
	4.9.1	Intersection Control	
	4.9.2	Intersection Design	47
	4.9.3	Summary of Required Road Improvements	64

5.0	SUMMARY AND CONCLUSIONS	.65

LIST OF TABLES

LIST OF TABLES	
Table 1 - Collision Statistics	13
Table 2 - Terry Fox at March Rear-End Collisions	13
Table 3 - March at Solandt Rear-End and Angle/Turning movement and Sideswipe Collisions	13
Table 4 - City of Ottawa Transportation Master Plan Projects	
Table 5 - Background Developments	17
Table 6 - Exemptions Review	19
Table 7 – Existing Trip Generation Rates	20
Table 8 – Existing Person Trips Generated	
Table 9 – Existing Trip Generation by Travel Mode	
Table 10 – Adjusted Existing Trips	
Table 11 – Future Land Uses and Trip Generation Rates	
Table 12 – Future Person Trips Generated by Land Use	22
Table 13 – Future Trip Generation by Travel Mode	
Table 14 – Future Pass-By and Internal Capture Trips	
Table 15 - 2022 Existing Conditions - Intersection Operations	
Table 16 – 2022 Existing - Multi-Modal Level of Service Assessment	
Table 17 - 2032 Future Background Intersection Operations	
Table 18 - 2032 Future Total Traffic Intersection Operations	
Table 19: 2037 Ultimate Intersection Operations	
Table 20 - 2037 Ultimate – Multi- Modal Level of Service Assessment	62

LIST OF FIGURES

Figure 1 - Site Location	5
Figure 2 - Proposed Development Concept Plan	
Figure 3 - Existing Lane Configuration and Traffic Control	
Figure 4 - Existing Pedestrian and Cycling Network	9
Figure 5 - Study Area Transit Routes and Stops	
Figure 6 - 2022 Existing Traffic Volumes	
Figure 7 - Planned Network Modifications	
Figure 8 - Background Developments Key Plan	
Figure 9 - Trip Distribution – Office Land Use (excluding truck deliveries)	
Figure 10 - Trip Distribution - Residential Land Use	
Figure 11 - Trip Distribution - Commercial Land Use	
Figure 12 - Site Generated Traffic Volumes - Office Land Use (including truck deliveries)	29
Figure 13 - Site Generated Traffic Volumes – Residential Land Use	
Figure 14 - Site Generated Traffic Volumes – Commercial Land Use	31
Figure 15 - Site Generated Traffic Volumes - All Land Uses & Pass-by Trips	
Figure 16 - 2032 Future Background Traffic Volumes	
Figure 17 - 2032 Future Background Traffic Volumes - Rationalized	35

600 March Road Transportation Impact Assessment

June 7, 2022

Figure 18 - 2032 Total Future Traffic Volumes	
Figure 19 - 2032 Total Future Traffic Volumes - Rationalized	
Figure 20 - 2037 Total Future Traffic Volumes - Rationalized	

LIST OF APPENDICES

APPENDIX A	TRAFFIC DATA	1
APPENDIX B	TRANSPORTATION DEMAND MANAGEMENT CHECKLISTS	.1
APPENDIX C	INTERSECTION PERFORMANCE WORKSHEETSC	.1
APPENDIX D	MMLOS TABLE	.D

R T

1.0 SCREENING

1.1 SUMMARY OF DEVELOPMENT

Municipal Address	600 March Road
Description of Location	Southeast quadrant of the March Road at Terry Fox Drive intersection
Land Use Classification	Mixed-Use Development (Residential High-Rise, Retail, Office)
Development Size (units)	Residential units = 1,900
Development Size (m²)	Office/Lab: 46,000 m ² Retail: 11,350 m ²
Number of Accesses and Locations	Four (4) accesses from March Road, One (1) access from Terry Fox Drive, Three (3) accesses from Legget Drive.
Phase of Development	Unknown
Buildout Year	2032 (10 year build out)

If available, please attach a sketch of the development or site plan to this form.

1.2 TRIP GENERATION TRIGGER

Considering the Development's Land Use type and Size (as filled out in the previous section), please refer to the Trip Generation Trigger checks below.

Land Use Type	Minimum Development Size	Triggered
Single-family homes	40 units	×
Townhomes or apartments	90 units	\checkmark
Office	3,500 m ²	\checkmark
Industrial	5,000 m ²	×
Fast-food restaurant or coffee shop	100 m ²	×
Destination retail	1,000 m ²	\checkmark
Gas station or convenience market	75 m ²	×

* If the development has a land use type other than what is presented in the table above, estimates of person-trip generation may be made based on average trip generation characteristics represented in the current edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual.

If the proposed development size is greater than the sizes identified above, <u>the Trip Generation Trigger is</u> <u>satisfied</u>.

1.3 LOCATION TRIGGERS

	Yes	No
Does the development propose a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit or Spine Bicycle Networks?	✓	
Is the development in a Design Priority Area (DPA) or Transit-oriented Development (TOD) zone? *		×

*DPA and TOD are identified in the City of Ottawa Official Plan (DPA in Section 2.5.1 and Schedules A and B; TOD in Annex 6). See Chapter 4 for a list of City of Ottawa Planning and Engineering documents that support the completion of TIA).

If any of the above questions were answered with 'Yes,' the Location Trigger is satisfied.

1.4 SAFETY TRIGGERS

	Yes	No
Are posted speed limits on a boundary street are 80 km/hr or greater?	\checkmark	
Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway?	~	
Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions)?	~	
Is the proposed driveway within auxiliary lanes of an intersection?		×
Does the proposed driveway make use of an existing median break that serves an existing site?		×
Is there is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?		×
Does the development include a drive-thru facility?		×

If any of the above questions were answered with 'Yes,' the Safety Trigger is satisfied.

1.5 SUMMARY

	Yes	No
Does the development satisfy the Trip Generation Trigger?	✓	
Does the development satisfy the Location Trigger?	✓	
Does the development satisfy the Safety Trigger?	\checkmark	

If none of the triggers are satisfied, <u>the TIA Study is complete</u>. If one or more of the triggers is satisfied, <u>the TIA Study must continue into the next stage</u> (Screening and Scoping).

2.0 SCOPING

2.1 EXISTING AND PLANNED CONDITIONS

2.1.1 Proposed Development

Nokia Canada Inc. is proceeding with a Zoning By-Law Amendment application for a proposed mixed-use development. The proposed development is located at 600 March Road (southeast quadrant of the March Road at Terry Fox Drive intersection) in the Brookside-Briarbrook-Morgan's Grant community in Kanata, Ontario. The current development concept consists of eleven residential buildings, six of which have a commercial component, as well as two office buildings, which both have a commercial component. It should be noted that this concept plan is subject to change as the development proceeds through the approvals process. The site is bound by an existing office building to the south, March Road to the west, Legget Drive to the east, and Terry Fox Drive to the north.

Figure 1 illustrates the site location. The subject site currently carries two different zoning designations. The northern portion of the proposed site is zoned IP6 H (44) and as outlined in the City of Ottawa's Zoning By-Law, the purpose of the IP- Business Park Industrial Zone is to:

- accommodate mixed office, office-type uses and low impact, light industrial uses in a business park setting, in accordance with the Enterprise Area designations of the Official Plan or, the Employment Area or the General Urban Area designation where applicable;
- allow in certain Enterprise or General Urban Areas, a variety of complementary uses such as recreational, health and fitness uses and service commercial (e.g., convenience store, personal service business, restaurant, automobile service station and gas bar), occupying small sites as individual occupancies or in groupings as part of a small plaza, to serve the employees of the Enterprise, Employment or General Urban Area, the general public in the immediate vicinity, and passing traffic;
- prohibit retail uses in areas designated as Enterprise Area but allow limited sample and showroom space that
 is secondary and subordinate to the primary use of buildings for the manufacturing or warehousing of the
 product;
- prohibit uses which are likely to generate noise, fumes, odors, or other similar obnoxious impacts, or are hazardous; and
- provide development standards that would ensure compatibility between uses and would minimize the negative impact of the uses on adjacent non-industrial areas.

The southern portion of the proposed site is zoned IG6 and as outlined in the City of Ottawa's Zoning By-Law, the purpose of the IG- General Industrial Zone is to:

• permit a wide range of low to moderate impact, light industrial uses in accordance with the Employment Area designation of the Official Plan or, the General Urban Area designation where applicable;

- June 7, 2022
 - allow in certain Employment Areas or General Urban Areas, a variety of complementary uses such as
 recreational, health and fitness uses and service commercial (e.g. convenience store, personal service
 business, restaurant, automobile service station and gas bar), occupying small sites as individual occupancies
 or in groupings as part of a small plaza, to serve the employees of the Employment or General Urban Area,
 the general public in the immediate vicinity, and passing traffic;
 - prohibit retail uses in areas designated as Employment Area but allow limited sample and showroom space that is secondary and subordinate to the primary use of buildings for the manufacturing or warehousing of the product; and
 - provide development standards that would ensure that the industrial uses would not impact on the adjacent non-industrial areas

A full build-out and occupancy of the proposed development is anticipated to occur by 2032, with an unknown number of phases. There are four proposed site accesses to March Road, one proposed site access to Terry Fox Road, and three proposed site accesses to Legget Drive. The number and location of proposed site accesses is subject to change as the development proceeds through the approvals process. Underground vehicle parking spaces will be provided on-site as part of the development; however, the exact layout of the proposed parking garages is not yet known.

As the subject application is for Zoning By-Law Amendment, detailed information regarding the current concept is not yet known. The current concept includes 1,900 residential units 46,000 m² of office space, and 11,350 m² of retail space.

Figure 2 illustrates the current development concept plan.

Figure 1 - Site Location

 \bigcirc

2.1.2 Existing Conditions

2.1.2.1 Roads and Traffic Control

The roadways and intersections under consideration in the study area are described as follows:

March Road	March Road is a four-lane arterial roadway with a posted speed limit of 80 km/h. Across the frontage of the subject site, there are buffered on-street cycle lanes in both
	directions. In addition, sidewalks are provided along both sides of March Road. The
	roadway is designated as a Spine route as per the City of Ottawa's Ultimate Cycling
	Plan and is also designated as a truck route. On-street parking on March Road in the
	vicinity of the subject site is prohibited at all times. The intersection with Terry Fox Drive
	is signalized with dual left turn lanes in the northbound, westbound, and eastbound
	directions. In addition, there are channelized right turn lanes in all directions. The
	intersection with Solandt Road is signalized with dual left turn lanes in the westbound
	direction. In addition, the March Road at Solandt Road intersection has channelized
	right turn lanes in all directions.

- Terry Fox Drive Across the frontage of the subject development, Terry Fox Drive is a two-lane major collector roadway with a posted speed limit of 60 km/h. This portion of Terry Fox Drive has on-street cycling lanes. Continuous sidewalks are provided along the south side of Terry Fox Drive. A sidewalk is provided along the north side of Terry Fox Drive between March Road and McKinnley Drive. West of March Road, Terry Fox Drive is designated as a truck route, Cross Town Bikeway, and a cycling spine route. East of March Road, Terry Fox Drive is designated as cycling spine route. On-street parking along Terry Fox Drive in the vicinity of the study area is prohibited at all times. The intersection with Legget Drive is a full movements intersection that is stop-controlled along Legget Drive.
- Legget Drive Across the frontage of the subject site, Legget Drive is a two-lane collector roadway with a posted speed limit of 50 km/h. There is an existing sidewalk along the east side of Legget Drive and an on-street cycle lane along the west side. The roadway is designated as a Local Route per the City of Ottawa's Ultimate Cycling Plan. On-street parking on Legget Drive in the vicinity of the subject site is prohibited at all times. The intersection with Solandt Road is signalized with auxiliary left turn lanes in all directions.
- Solandt Road Solandt Road is a two-lane collector road with a default speed limit of 50 km/h. West of Legget Drive, there are sidewalks along both sides of Solandt Road. Currently, the roadway is classified as a suggested cycling route per the City's Existing Cycling Network. The roadway is also designated as a Local Route and Major Pathway per the City of Ottawa's Ultimate Cycling Plan. On-street parking on Solandt Road in the vicinity of the subject site is prohibited at all times.

```
Morgan's Grant Way /
Shirley's Brook Drive
```

Morgan's Grant Way is a two-lane collector roadway with a posted speed limit of 40 km/h. Sidewalks are provided along the south of Morgan's Grant Way / Shirley's Brook Drive. On-street cycle lanes are provided on both sides of the roadway. Currently, Morgan's Grant Way / Shirley's Brook Drive are designed as suggested cycling routes per the City of Ottawa's Existing Cycling Network. They are both designated as local routes per the City's Ultimate Cycling Network. The intersection with March Road is signalized with channelized right turn lanes in all directions.

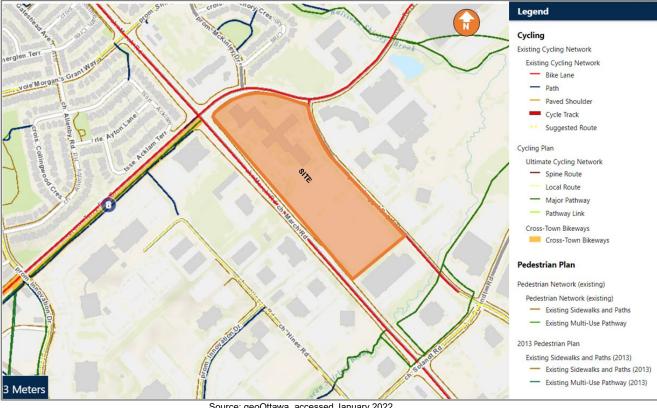
McKinley Drive McKinley Drive is a two-lane collector road with a speed limit of 40 km/h. There are sidewalks along both sides of McKinley Drive within the vicinity of the development. Onstreet parking on McKinley Drive in the vicinity of the subject site is prohibited at all times.

Figure 3 illustrates the existing lane configuration and traffic control.

Currently, there are several driveways along March Road, within the vicinity of the subject development. There is also one commercial access along the north side of Terry Fox Drive, just east of March Road. Along Legget Drive, there are also several driveways that access the existing office buildings in the Kanata North Business Park.

Figure 3 - Existing Lane Configuration and Traffic Control

2.1.2.2 Walking and Cycling


The study area is currently well-serviced by pedestrian facilities with sidewalks along all study area roadways.

Currently, March Road and Terry Fox Drive are designated as Spine Routes as outlined in the City of Ottawa's Ultimate Cycling Plan. Terry Fox Drive is also designated as a Cross-Town Bikeway west of March Road. The City's Ultimate Cycling Plan also identifies Legget Drive, Solandt Road, and Morgan's Grant Way / Shirley's Brook Drive as Local Cycling Routes. The Ultimate Cycling Network also includes a Major Pathway link along Solandt Road, that connects the Kanata North Business Park to the South March Highlands Conservation Forest.

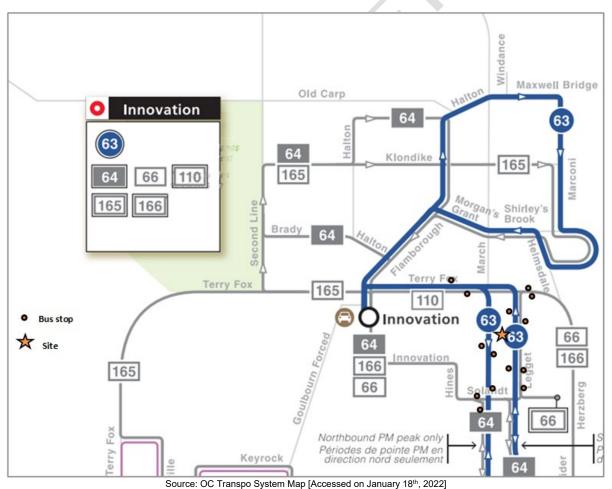
Figure 4 illustrates the existing pedestrian and cycling facilities within the vicinity of the subject site.

Figure 4 - Existing Pedestrian and Cycling Network

Source: geoOttawa, accessed January 2022

2.1.2.3 Transit

OC Transpo service is currently provided in the vicinity of the subject site via routes 63, 66, 110, and 166.


Route 63 is a Rapid Route that runs 7 days per week between Innovation Station and Tunney's Pasture. It runs with 20-minute headways during the weekday peak periods and 30-minute headways during the weekend peak periods.

Route 66 is a Local Route that runs Monday to Friday between Kanata and Gatineau. It runs with 15-minute headways during both peak periods.

Route 110 is a Local Route that runs Monday to Friday between Innovation and Fallowfield. It runs with 30-minute headways during both peak periods.

Route 166 is a Local Route that runs Monday to Friday between Innovation and Eagleson. It runs only one bus in each direction during the morning peak hour.

Figure 5 illustrates the transit routes and stops.

2.1.2.4 Traffic Management Measures

There are currently no traffic management measures in the vicinity of the subject development.

2.1.2.5 Traffic Volumes

Traffic volumes at the study area intersections were collected in the fall of 2016-2019. Using the City of Ottawa's long-range model (exhibit 2.11 of the 2013 TMP), the weighted forecasted trip growth was calculated to / from the inner area (from 2011 to 2031), and it was found that the growth rate is approximately 1.9% per year. This annual growth rate was applied to the traffic counts to represent the 2022 existing traffic volumes.

The 2022 existing traffic volumes can be seen in **Figure 6** for the AM and PM peak hours.

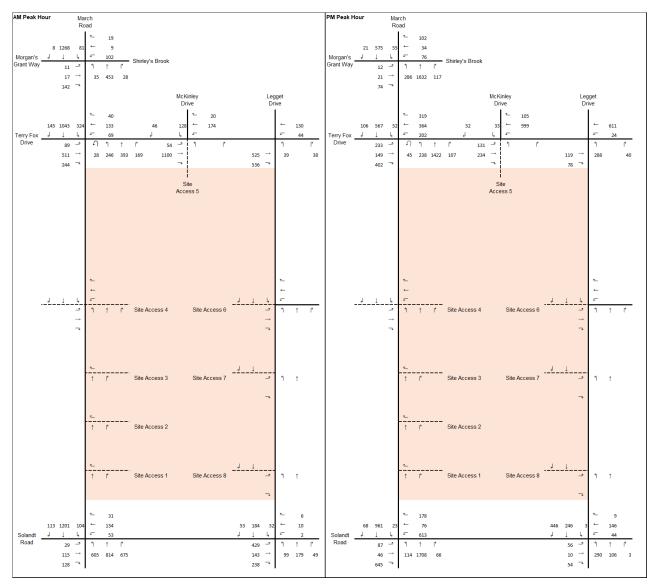


Figure 6 - 2022 Existing Traffic Volumes

2.1.2.6 Collision History

Collision data was provided by the City of Ottawa and included collisions from 2015 to 2019 in the vicinity of the subject site.

Overall, there were a total 186 reported collisions between 2015 to 2019. It was found that 144 collisions (77%) resulted in property damage only, suggesting that they occurred at low speeds, thereby circumventing bodily harm. The analysis also found that 42 collisions (23%) resulted in non-fatal injuries, and 0 collision (0%) resulted in a fatal injury. The collision statistics are shown in **Table 1** below.

At the intersection of Terry Fox Drive at March Road, a total of 56 collisions were reported, which accounts for 30% of the total collisions in the identified intersections and segments. Of these 56 collisions, 43 of them (77%) resulted in property damage only and 13 of them (23%) resulted in non-fatal injuries. Of these 56 collisions, the vast majority of them were rear end collisions (64%). These rear end collisions were analyzed further to determine if there are any significant patterns in the rear end collisions at this intersection, which can be seen in **Table 2** below. It was found that 50% of the rear end collisions occurred between vehicles traveling in the northbound direction. As there does not appear to be any geometric issues that could explain the frequency of the northbound rear end collisions at this location, the combination of the high volume of vehicles coupled with the high posted speed limit could have been factors.

At the intersection of March Road at Solandt Road, a total of 53 collisions were reported, accounting for 29% of the total collisions. Of the 53 collisions, 47 collisions (89%) resulted in property damage only and 6 collisions (11%) resulted in non-fatal injuries. Of these 53 collisions, a significant portion of them were rear end collisions (45%) and angle / turning collisions (45%). These collisions were reviewed further to determine if there are any significant patterns, which can be seen in **Table 3** below.

The rear end collision analysis at this intersection found that 9 collisions (25%) occurred along the southbound approach and 7 collisions (19%) occurred along the northbound approach. The angle / turning movement analysis at this intersection found that 11 collisions (31%) occurred in the southbound approach and 10 collisions (28%) occurred in the northbound approach. Similar to the findings of the Terry Fox Drive at March Road intersection, as there are no geometric issues that could contribute to these rear end and angle collisions, they are likely due to the combination of the high volume of traffic with the high posted speed limit.

		Terry Fox @ March	March @ Morgan Grant	March @ Solandt	Solandt @ Legget	Terry Fox @ Legget	Terry Fox between March & Legget	March between Terry Fox & Solandt	Legget between Solandt & Terry Fox	Solandt between March and Legget	Terry Fox Drive & McKinley Drive
	Property Damage Only	43	27	47	4	6	1	13	1	1	1
Classification	Non-Fatal Injury	13	10	6		1	2	7	2		1
	Fatal Injury										
	Sideswipe	7	2	4				3			
	Angle / Turning	6	20	24	1	4		1	2	1	2
Collision	Rear End	36	13	24	2	3	1	7			
Туре	Single Motor Vehicle	5	2	1	1		2	9	1		
	Other	2				-					
	Clear	41	31	39	2	3	3	16	3		2
Environment	Rain	10	2	6	1	2		2		1	
Environment al Condition	Snow	4	4	7	1	2		2			
	Freezing Rain	1		1							

Table 1 - Collision Statistics

Table 2 - Terry Fox at March Rear-End Collisions

Vehicle Direction	Number of Collisions
North	18
South	8
East	5
West	5

Table 3 - March at Solandt Rear-End and Angle/Turning movement and Sideswipe Collisions

March at Solandt Rear-End and Angle/Turning movement Collisions								
		North	7					
Deer End Collision Statistics	Vahiela 1 Direction	South	9					
Rear End Collision Statistics	Vehicle 1 Direction	East	4					
		West	4					
		North	10					
Angle/Turning movements	Vehicle 1 Direction	South	11					
Collision Statistics		East	2					
		West	1					

2.1.3 Planned Conditions

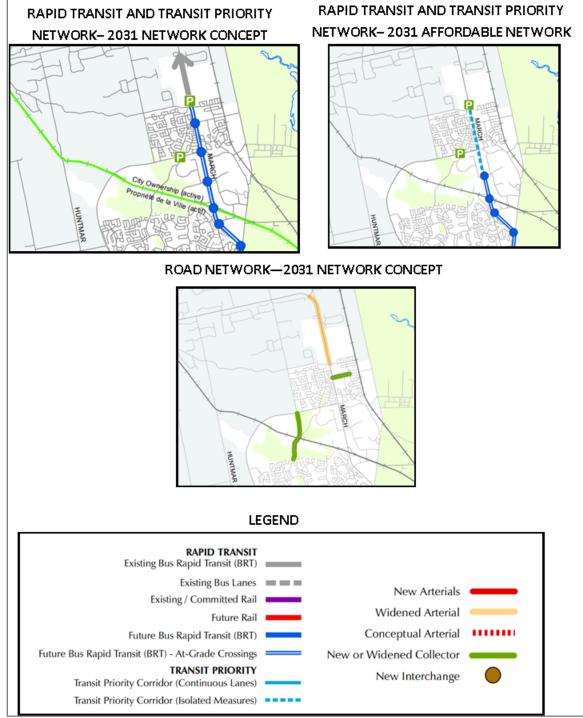
2.1.3.1 Road Network Modifications

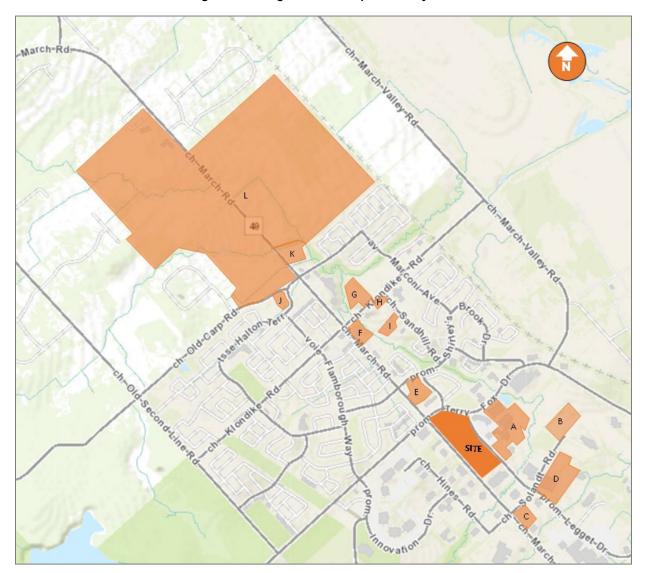
Table 4 identifies the City of Ottawa's Transportation Master Plan (TMP) projects located in the vicinity of the subject site, as well as projects that are anticipated to influence modal share characteristics in the future.

Figure 7 illustrates planned network modifications near the proposed development.

Project	Description	TMP Phase
Kanata North Transitway	Affordable: At-grade BRT between Solandt Road and Hwy. 417 Concept: At-grade BRT between Maxwell Bridge Road and Highway 417	Affordable Network Network Concept
March Road	Transit signal priority and queue jump lanes between Maxwell Bridge Road and Carling Avenue. Allows for future conversion to BRT at a later time to connect with planned BRT south of Carling Avenue	Affordable Network
March Road	Widen from two to four lanes between Old Carp Road and Dunrobin Road	Network Concept
Klondike Road	Urbanize existing two-lane rural cross section between March Road and Sandhill Road	Affordable Network and Network Concept
Goulbourn Forced Road Realignment	Re-aligned and new two-lane road between Terry Fox Drive and Kanata Avenue	Network Concept

Table 4 - City of Ottawa Transportation Master Plan Projects




Figure 7 - Planned Network Modifications

Source: City of Ottawa TMP, accessed January 2022

2.1.3.2 Future Background Developments

There are numerous developments scheduled to occur in the vicinity of the subject site as illustrated in **Figure 8** and described in **Table 5**.

Table 5	Background Developments	
---------	-------------------------	--

Key Plan Reference	Development	Location	Description
A	359 Terry Fox Drive & 525 Legget Drive	Southeast corner of the Terry Fox Drive and Legget Drive	30-storey high-rise residential building with 256 rental dwellings and approx. 3,850 ft ² GFA of rooftop restaurant space
В	2707 Solandt Road	At the eastern limits of Solandt Road	8-storey, 198,615ft ² office building
с	3026 Solandt Road	Southeast corner of the March Road and Solandt Road intersection	5 storey building, 100,000ft ² office building
D	415 Legget Drive & 2700 Solandt Road	Northeast corner of Legget Drive and Solandt Road intersection	2-storey warehousing, GFA 14,350m² and 2 warehouse buildings, GFA 18,580m² $$
E	706,710, and 714 March Road	Bound by Shirley's Brook Drive to the north, McKinley Drive to the east, March Road to the west, and Terry Fox Drive to the south	4,165 m ² supermarket, 350m ² fast-food restaurant with drive-through, and multi-unit commercial space 1500m ² , 237 parking stalls
F	788 March Road	Southeast corner of the Klondike and March Road	111 residential units
G	1055 Klondike Road	Northeast corner of the Klondike Road and March Road intersection	12 Semi-detached & 46 townhomes dwellings, 56 apartment dwellings
н	1050 Klondike Road**	Southwest corner of the Klondike Road and Sandhill Road	Seven 3- storey townhomes and a 2-storey stacked dwelling with 9 dwellings
1	100 Attwell Private**	Southwest corner of the Sandhill Road and Attwell Private	14 blocks of townhomes, 60 units on private street.
J	1104 Halton Terrace	Northeast corner of the Halton Terrace and Flamborough Way intersection	86 apartment dwellings
к	910 March Road	Northeast corner of the March Road and Maxwell Bridge Road intersection	1,835 m^2 hardware store, 234 m^2 restaurant with drive-through, 191 m^2 coffee shop with drive-through, 416 m^2 retail store, and 249 m^2 gas bar.
L	KNUEA***	North of the established urban area of Kanata	960 single-detached homes, 1282 townhomes, 2,170 multi-unit residential units, and 145,600 ft2 GFA of commercial space

TIA not yet submitted and thus traffic for these developments have not been explicitly added *This KNUEA (Kanata North Urban Expansion Area_ development includes 927 March Road, 936 March Road, 1020 and 1070 March Road, 1053,1075 and 1145 March Road

2.2 STUDY AREA AND TIME PERIODS

2.2.1 Study Area

The study area was limited to the following intersections:

- 1. Terry Fox Drive at March Road;
- 2. Terry Fox Drive at Legget Drive;
- 3. March Road at Solandt Road;
- 4. March Road at Morgan's Grant Way / Shirley's Brook Drive;
- 5. Solandt Road at Legget Drive;
- 6. Terry Fox Drive at McKinley Drive
- 7. All site access intersections (as shown on the Concept Plan in Figure 2)

2.2.2 Time Periods

The scope of the transportation assessment includes the following analysis time periods:

- Weekday AM peak hour of roadway; and
- Weekday PM peak hour of roadway.

2.2.3 Horizon Years

The scope of the transportation assessment includes the following horizon years:

- 2022 existing conditions;
- 2032 future background conditions;
- 2032 total future conditions (site build-out); and
- 2037 total future conditions (5 years beyond build-out).

2.3 EXEMPTIONS REVIEW

Table 6 summarizes the Exemptions Review table from the City of Ottawa's 2017 Transportation Impact Assessment

 Guidelines.

As the subject TIA is in support of a Zoning By-Law Amendment application, Modules 4.1 to 4.4 have been omitted from the study.

Module	Element	Exemption Considerations	Exempted?							
Design Review Component										
4.1 Development	4.1.2 Circulation and Access	Only required for site plans	Yes							
Design	4.1.3 New Street Networks	Only required for plans of subdivision	Yes							
	4.2.1 Parking Supply	Only required for site plans	Yes							
4.2 Parking	4.2.2 Spillover Parking	Only required for site plans where parking supply is 15% below unconstrained demand	Yes							
Network Impact Compon	ent									
4.5 Transportation Demand Management	All Elements	Not required for site plans expected to have fewer than 60 employees and/or students on location at any given time	No							
4.6 Neighbourhood Traffic Management	4.6.1 Adjacent Neighbourhoods	Only required when the development relies on local or collector streets for access and total volumes exceed ATM capacity thresholds	Yes							
4.8 Network Concept		Only required when proposed development generates more than 200 person-trips during the peak hour in excess of the equivalent volume permitted by established zoning	Yes							
4.9 Intersection Design	All Elements	Not required if site generation trigger is not met	No							

Table 6 - Exemptions Review

3.0 FORECASTING

3.1 DEVELOPMENT GENERATED TRAVEL DEMAND

3.1.1 Existing Trip Generation

As the subject site currently includes office space, the trip generation for the existing office building was calculated and subsequently removed from the transportation network. This is to avoid double counting the future trips associated with this development parcel.

The *Institute of Transportation (ITE) Trip Generation Manual (11th Edition)* was used to forecast the auto trip generation for the existing office land use. Land use 710 – General Office Building was thought to be the most representative of the existing land use. The size of the future campus is smaller in terms of overall gross floor area as compared to the existing campus while the number of employees will be higher for the future campus. Therefore, if the GFA is used as the independent variable, it will incorrectly show a decrease in site trips for the future campus as compared to the existing campus. As such, the number of employees was used as the independent variable which more accurately represents the increase in employees between the existing and future Nokia campus.

Table 7 outlines the assumed land uses and the trip generation rates for each land use.

Table 7 – Existing Trip Generation Rates

LUC	Land Use	Employeee	Weekday AM Peak Hour			Weekday PM Peak Hour		
LUC	Lanu Use	Employees	In	Out	Total	In	Out	Total
710	General Office Building	2,000	88%	12%	0.42	17%	83%	0.34

Table 8 outlines development-generated person trips for each land use.

Table 8 – Existing Person Trips Generated

LUC	Land Use		Weekd	ay AM Pea	k Hour	Weekd	ay PM Pea	k Hour
LUC	Lanu Use	Trip Conversion	In	Out	Total	In	Out	Total
		Auto Trips	743	101	844	115	560	675
710	General Office Building	Person Trip Factor			1.2	28		
		Person Trips	951	129	1080	147	717	864

To reflect local travel characteristics, the person trips were assigned to the four primary modal shares (i.e., auto, passenger, transit, and active moves). The modal shares were obtained from the TRANS Committee's 2011 Origin-Destination (O-D) Survey for the Kanata / Stittsville District. **Table 9** below outlines the existing trips generated by modal share. These trips were removed from the transportation network.

LUC	Land Use	Use Trip Conversion		Week	day AM Pe	ak Hour	Weeko	lay PM Pe	ak Hour
				In	Out	Total	In	Out	Total
		Auto Driver	48%	694	94	788	107	523	631
	Concerct Office	Auto Passenger	23%	209	28	238	32	158	190
710	General Office Building	Transit	25%	10	1	11	1	7	9
	Dunung	Cycling	0%	0	0	0	0	0	0
		Walking	5%	38	5	43	6	29	35

Table 9 – Existing Trip Generation by Travel Mode

Comparing the vehicle trips associated with the existing Nokia campus, as outlined in **Table 9** above, to the existing traffic volumes along Legget Drive, it is clear that the volumes outlined in **Table 9** are an overestimation of the actual volumes the existing Nokia campus is generating. As the main entrances to the existing Nokia campus are on Legget Drive, the vehicle trips outlined in **Table 9** above are not realistic and thus were decreased to more accurately match the existing volumes along Legget Drive. This reduction was done in conjunction with assessing the existing volumes on Legget Drive along with the surrounding land uses. **Table 10** below outlines the existing Nokia volumes after the reductions were applied, which are more in line with the turning movement counts collected in the area.

Table 10 – Adjusted Existing Trips

LUC	Land Use	se Trip Conversion		Weekday AM Peak Hour			Weekday PM Peak Hour		
				In	Out	Total	In	Out	Total
710	General Office Building	Reduction	30%	486	66	552	75	366	442

3.1.2 Future Trip Generation and Mode Shares

The *Institute of Transportation (ITE) Trip Generation Manual (11th Edition)* was used to forecast the auto trip generation for the retail and office land uses and the *Trans Trip Generation Study* was used to forecast the auto trip generation for the residential land use. Land use codes 222 – Multi-Unit High Rise Building, 821 – Shopping Plaza, and 710 – General Office Building were thought to be the most representative of the proposed land uses.

Table 11 outlines the assumed land uses and the trip generation rates for each land use.

LUC	Land Use	Units/Employees/	Weekd	ay AM Pea	ak Hour	Weekday PM Peak Hour		
		GFA (1000's SF)	In	Out	Total	In	Out	Total
222	Multi - Unit (High-Rise)	1900 Units	31%	69%	0.80	58%	42%	0.90
710	General Office Building	2400	88%	12%	0.42	17%	83%	0.32
821	Shopping Plaza	122 GFA	62%	38%	1.73	48%	52%	5.19

It is noted that as per direction from Nokia, the office land use is anticipated to generate an additional 25 inbound and 25 outbound delivery trips during each of the AM and PM peak hours. Of the net 25 deliveries, 3 are anticipated to be tractor trailers (entering the site from Legget Drive), and 22 are anticipated to be box trucks / vans (entering the site from March Road). The delivery trips are not included in the trip generation tables and were accounted for as part of the total office land use trips shown in **Figure 12**.

Table 12 outlines development-generated person trips for each land use.

LUC	Land Use	Trip Conversion	Weekd	ay AM Pea	k Hour	Weekday PM Peak Hour		
			In	Out	Total	In	Out	Total
		Person Trips (Peak Period	471	1049	1520	992	718	1710
222	Multi - Unit (High-Rise)	Person Trips (Peak Hour) 0.50 for AM & 0.40 for PM	236	525	761	436	316	752
		Auto Trips	880	120	1000	131	641	772
710	General Office	Person Trip Factor	1.28					
	Person Trips	1126	154	1280	168	820	988	
	821 Shopping Plaza	Auto Trips	131	80	211	304	330	634
821		Person Trip Factor	1.28					
		Person Trips	168	102	270	389	422	812
Total Development		Total Person Trips	1530	781	2311	993	1558	2552

Table 12 – Future Person Trips Generated by Land Use

To reflect local travel characteristics, the person trips were assigned to the four primary modal shares (i.e., auto, passenger, transit, and active moves). As per the City of Ottawa's TMP, the March Road Bus Rapid Transit (BRT) is scheduled to be implemented by 2031, between Solandt Road and Highway 417. The subject development is planned to be built and occupied by 2032. The office portion of the subject development is anticipated to be within 400m of the planned BRT station at Solandt Road. Per direction from the City of Ottawa, the March Road BRT, north of Solandt Road, is scheduled to occur beyond the horizons of this subject study (i.e., post 2037). The residential / retail portion of the subject development (north half) are not anticipated to be within 400m of a rapid transit station during the study horizons. As such, the modal shares for the northern and southern portions of the subject development will differ as a direct result of the implementation plan of the March Road BRT.

Residential Trips – Mode Shares

Section 4.2 (Table 8) of the *TRANS Trip Generation Summary Report* was utilized to determine the residential mode share for high rise multi-family housing for the Kanata / Stittsville district. The average mode shares for the district include a 49% auto mode share and a 25% transit mode share. As the existing transit mode share is notably high for the general area, it is not anticipated to see increase as a result of the planned March Road BRT (between Highway 417 and Solandt Road) as the distance between the transit station and the residential component of the proposed development is anticipated to be greater than 400m.

Office Trips – Mode Shares

Section 6.2 (Table 12) of the *TRANS Trip Generation Summary Report* was utilized to determine the employment generator mode share by district. The report exclusively cites AM mode shares, however, it is expected that the PM mode shares would be identical as the commute from employment generators during the PM peak hour is very unlikely to differ from the commute to employment generators during the AM peak hour. For the Kanata / Stittsville district, the aforementioned report cites an 8% transit mode share and an 84% auto mode share. To account for the planned March Road BRT (between Highway 417 and Solandt Road), the transit mode share for the office land use was increased from 8% to 20% (a 12% net increase) while subsequently reducing the auto mode share by 12% to a total of 72%.

Commercial Trips – Mode Shares

Section 6.3 (Table 13) of the *TRANS Trip Generation Summary Report* was utilized to determine the commercial generator mode share for the Kanata / Stittsville district. The report exclusively cites that the sample size for shopping

trips during the AM peak tends to be low. As such, more emphasis was placed on the mode shares during the PM peak period to better represent the activity in the district. During the PM peak, the mode shares for the district include a 73% auto mode share and a 1% transit mode share. To account for the enhanced overall transit service as a result of the planned March Road BRT (between Highway 417 and Solandt Road), the transit mode share for the commercial land use was increased from 1% to 10% (a 9% net increase) while subsequently reducing the 73% auto mode share by 9% for a total of 64%.

 Table 13 outlines the modal shares that were used for the proposed development.

LUC	Land Use	Trip Conversion		Week	day AM Pe	ak Hour	Weekday PM Peak Hour		
				In	Out	Total	In	Out	Total
222	Multi - Unit (High- Rise)	Auto Driver	49%	116	257	373	214	155	369
		Auto Passenger	22%	52	116	168	96	70	166
		Transit	25%	58	129	187	107	77	184
		Cycling	0%	0	0	0	0	0	0
		Walking	4%	9	21	30	17	13	30
	General Office Building	Auto Driver	72%	811	111	922	121	590	712
710		Auto Passenger	4%	45	6	51	7	33	39
		Transit	20%	225	31	256	34	164	198
		Cycling	1%	11	2	12	2	8	11
		Walking	3%	34	5	37	5	25	31
	Shopping Plaza	Auto Driver	64%	108	65	173	249	270	519
		Auto Passenger	22%	37	22	59	86	93	179
821		Transit	10%	17	10	27	39	42	81
		Cycling	0%	0	0	0	0	0	0
		Walking	4%	7	4	11	16	17	33
Total Development Total Development		•	1035	433	1468	584	1015	1600	
		Auto Passenger		134	144	278	189	196	384
		Transit		300	170	470	180	283	463
		Cycling		11	2	12	2	8	11
		Walking		50	30	78	38	55	94

Table 13 – Future Trip Generation by Travel Mode

3.1.3 Internal Capture and Pass-By

When predicting trips that are associated with different land use types the interaction between those land use types must be accounted for by applying the principals of internal capture adjustments. Internal capture trips are trips which are shared between two or more uses on the same site. A portion of the generated trips for each individual land use is therefore drawn from the adjacent land uses. Internal capture adjustments were made to account for vehicles that visit more than one land use within the subject development. Since these trips are contained within the subject site, accounting for each trip separately on the roadway network would result in "double-counting". For this reason, land uses that may have associated internal capture trips between one another ultimately had their net new trips adjusted consistent with typical industry standards. In the subject development, the land uses that are subject to internal capture reductions are the retail and office land uses.

In addition, a portion of the auto trips generated by the proposed retail land uses will be 'pass-by' in nature. Pass-by trips are considered intermediate stops between an origin and a destination. They are site trips that are drawn from existing traffic volumes on the road network that are "passing-by" the site. While the total number of trips generated by

600 March Road Transportation Impact Assessment Forecasting

June 7, 2022

a given development remains the same, the turning movements at study area intersections and site accesses require adjustments to reflect pass-by traffic. The rate of pass-by traffic is based on the specific land use which was obtained from the *ITE Trip Generation Manual*. A pass-by rate of 34% was used for the retail land use.

Table 14 outlines the pass-by, internal capture, and net new trips anticipated for the proposed development.

LUC Land Use		Trip Conversion		Weekday AM Peak Hour			Weekday PM Peak Hour			
				In	Out	Total	In	Out	Total	
		Auto Trips		811	111	922	121	590	712	
		Internal Capture	AM	PM						
710	General Office Building	Inbound	4%	10%	-32	-31	-63	-12	-30	-42
	Dullullig	Outbound	28%	5%						
		Net New Auto Trips			779	80	859	109	560	670
		Auto Trips		108	65	173	249	270	519	
	Shopping Plaza	Internal Capture	AM	PM						
821		Inbound	24%	16%	-26	-21	-47	-40	-76	-116
		Outbound	33%	28%						
		Net New Auto Trips		82	44	126	209	194	403	
821 – Shopping Plaza		Auto Trips			82	44	126	209	194	403
		Pass-By		34%				71	66	137
		Net Auto Trips			82	44	126	138	128	266
Net New Auto Trips										
222 – Multi Unit (High Rise)				116	257	373	214	155	369	
710 – Office Building/ Lab					779	80	859	109	560	670
821 – Shopping Plaza				82	44	126	138	128	266	
Total Development										
	Net New Auto Trips				977	381	1358	461	843	1305
821 – Shopping Plaza Total Development						44	126	138	128	20

 Table 14 – Future Pass-By and Internal Capture Trips

3.1.4 Trip Distribution

The distribution of traffic to / from the proposed development was developed using the relative traffic flows and volumes at the study area inlets / outlets. To account for the significant Kanata North Urban Expansion Area (KNUEA) development north of the study area (anticipated to be fully built by the 2032 horizon year and is projected to add 800 vehicles to / from the north during the peak hours), the 2032 future background horizon volumes were utilized for this exercise.

Overall, for the office land use, the following trip distribution is anticipated:

- 35% to / from the North (via March Road)
- 50% to / from the South (via March Road)
- 15% to / from the West (via Terry Fox Drive)
- Note: Terry Fox Road (E) and Legget Drive (S) are anticipated to carry negligible development traffic due to the limited connectivity to the adjacent transportation network. Traffic to / from the south of the proposed development is projected to be predominantly on March Road due to the higher speeds and superior connectivity to Highway 417 and the district to the south.

For the commercial and residential components, the anticipated trips to / from the north were reduced to better reflect the area characteristics, resulting in the following trip distribution:

- 20% to / from the North (via March Road)
- 60% to / from the South (via March Road)
- 20% to / from the West (via Terry Fox Drive)

The trip distribution was done separately for each land use to account for the specific access arrangements.

Figure 9 through Figure 11 illustrates the site traffic distribution for the proposed land uses.

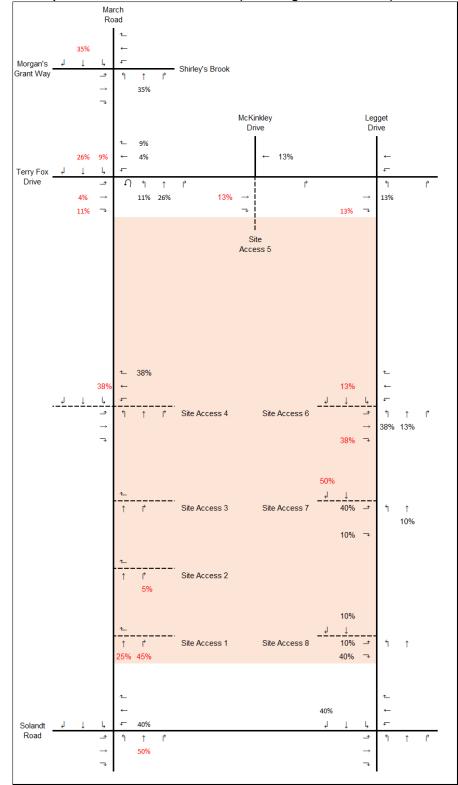


Figure 9 - Trip Distribution – Office Land Use (excluding truck deliveries)

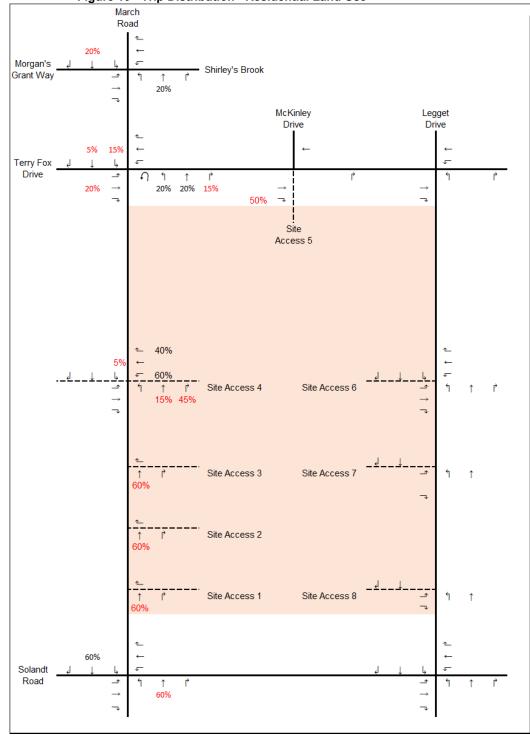


Figure 10 - Trip Distribution - Residential Land Use

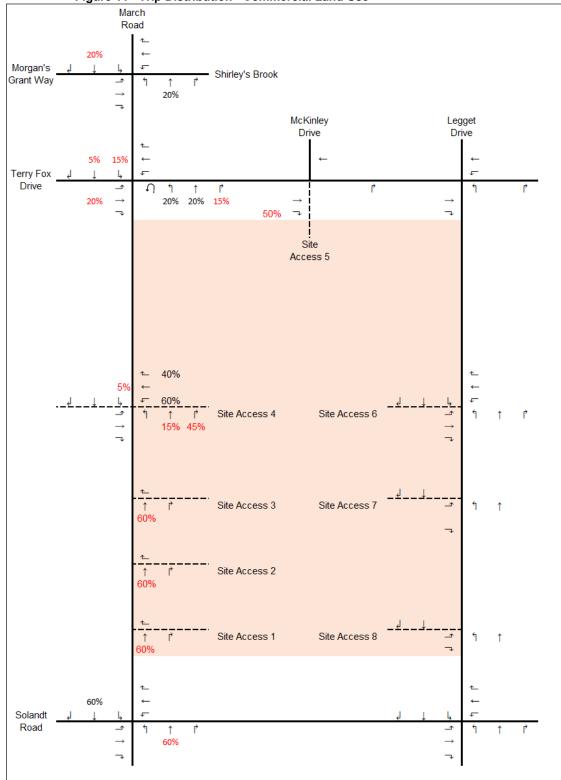
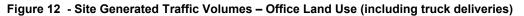
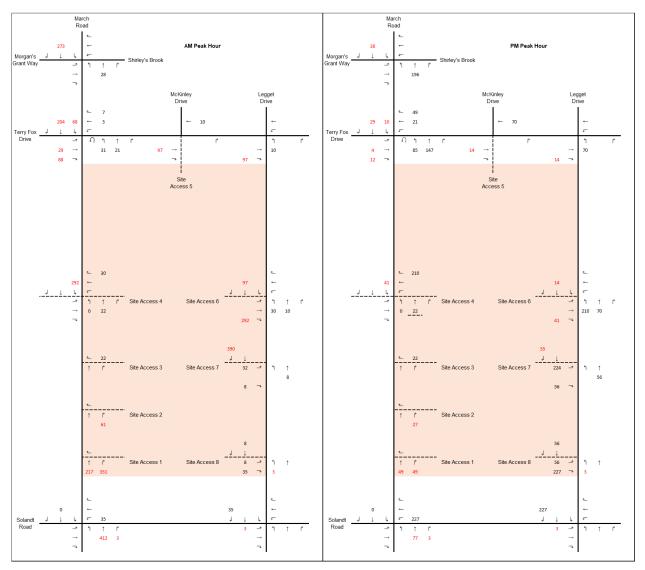




Figure 11 - Trip Distribution - Commercial Land Use

3.1.5 Trip Assignment

Site generated trips were assigned to the study area road network based on the trip distribution assumptions outlined above in **Section 3.1.4. Figure 12** through **Figure 15** illustrates the new site generated trips.

29

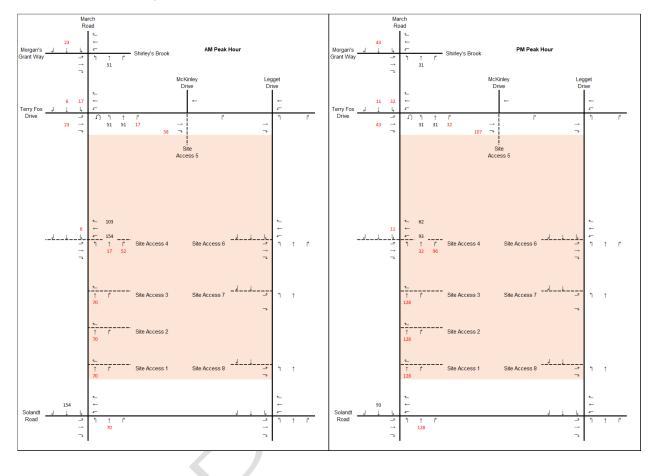


Figure 13 - Site Generated Traffic Volumes – Residential Land Use

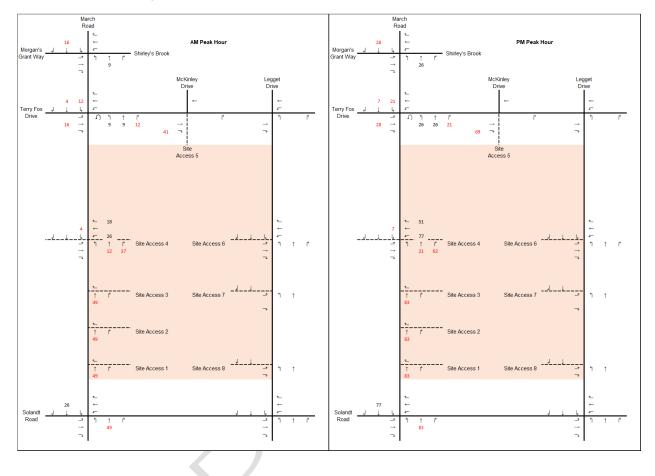


Figure 14 - Site Generated Traffic Volumes – Commercial Land Use

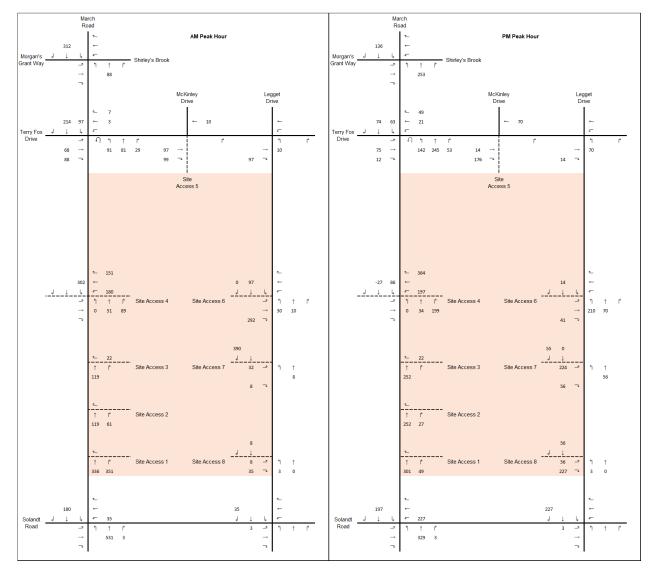


Figure 15 - Site Generated Traffic Volumes - All Land Uses & Pass-by Trips

3.2 BACKGROUND NETWORK TRAVEL DEMAND

3.2.1 Transportation Network Plans

Table 4 includes the transportation network plans in the vicinity of the subject site.

3.2.2 Background Growth

As outlined in **Section 2.1.2.5**, a 1.9% per annum growth rate was applied to the traffic volumes at the study area intersections to represent 2022 existing traffic volumes. This growth rate was calculated based on the long-range model in the City of Ottawa's 2013 TMP.

Due to the limited connections from Solandt Road, Legget Drive, and Terry Fox Drive (E), the established land uses in the vicinity of the proposed development, as well as the consideration of future planned background developments in the area, the calculated annual growth rate was not applied beyond existing conditions to represent future volumes. Any growth to the turning movements at the study area intersections is anticipated to be directly correlated with planned background developments as opposed to natural traffic growth when considering the factors above. Furthermore, analysis of existing conditions found that several study area intersections currently operate above their theoretical capacities, indicating that March Road (just south of Terry Fox) does not have the capacity to grow unconstrained.

3.2.3 Other Developments

As outlined in **Table 5** in **Section 2.1.3.2**, there are numerous developments in the study area that are scheduled to be constructed within the horizons of the subject study. The traffic volumes from these developments were obtained from their respective traffic studies, where available, and added to the transportation network as background traffic.

3.3 DEMAND RATIONALIZATION

Recognizing that the future traffic volumes in the study area are projected to be extremely high, particularly along March Road, it is feasible to assume some demand rationalization will inevitably occur. The two-way peak hour traffic volumes along March Road are projected to be in the range of 3,300 – 4,300 during the 2032 future background horizon. A large portion of these traffic volumes are attributed to the Kanata North Urban Expansion Area.

While a portion of the forecasted future volume is envisioned to be accommodated by the planned March Road BRT (between Highway 417 and Solandt Road), the overall future volumes are still anticipated to drive March Road, Terry Fox Drive, Solandt Road, and Legget Drive beyond their respective theoretical capacities, effectively placing a limitation on background traffic growth in the area.

In light of the projected future congestion in the area, motorists may begin to alter their travel times to travel outside of the peak period, thereby reducing demand on the network during the peak hour and subsequently increasing demand on the network just before and just after the peak hour, which is referred to as peak spreading. This is often realized with flexible work schedules, a now common arrangement borne of the COVID-19 pandemic.

As a high-level observation, it is also noted that a significant proportion of the existing land uses in the vicinity of the proposed development are Information Technology (IT) based companies. As such, it is also expected that a portion of the employees would elect to "work-from-home" or telecommute to eliminate all travel during the peak hours.

Overall, it was assumed that peak hour traffic in the study area would be reduced by 15% due to the combination of peak spreading (flexible work schedules) and telecommuting. This reduction may need to be adjusted as part of the Step 4 – Forecasting Report once the intersection operations are analyzed and the capacities at each intersection are determined.

3.3.1 2032 Future Background Traffic Volumes

Figure 16 illustrates the 2032 future background traffic volumes at the study area intersections.

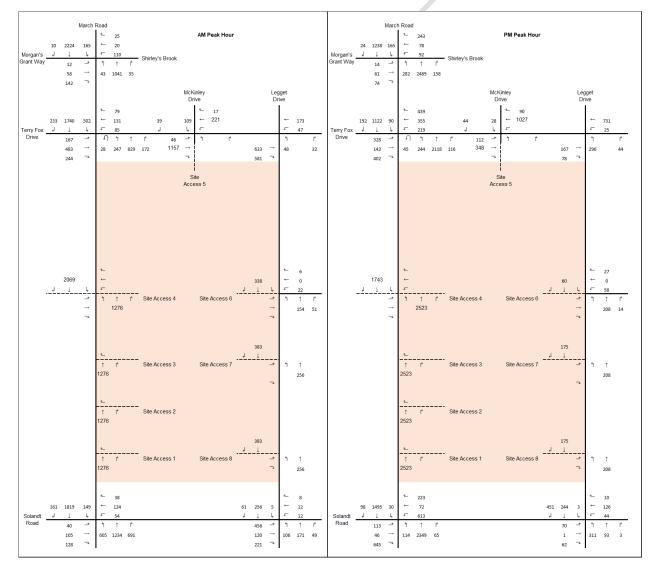
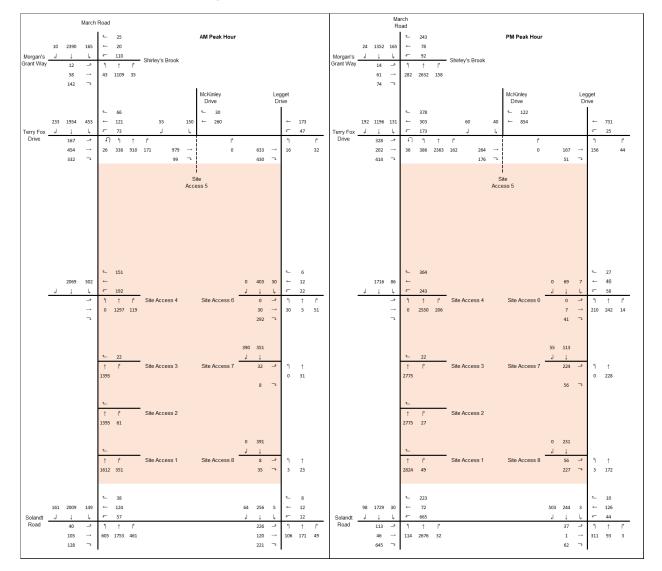



Figure 16 - 2032 Future Background Traffic Volumes

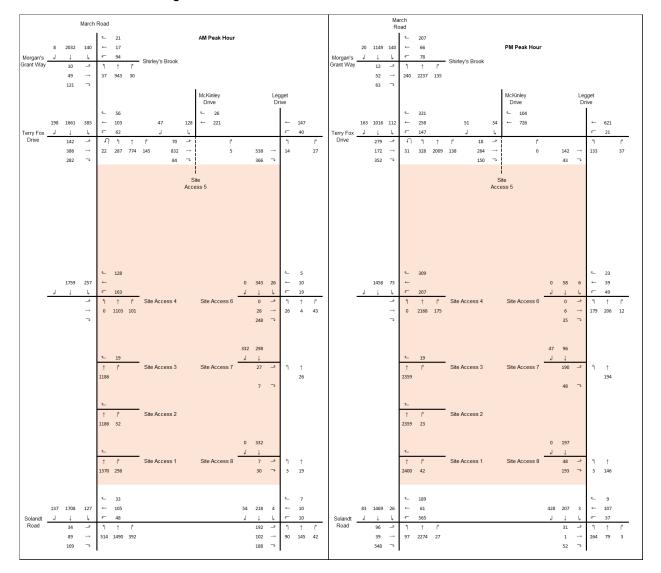
3.3.2 2032 Future Background Traffic Volumes - Rationalized

Figure 17 illustrates the 2032 rationalized future background traffic volumes at the study area intersections.



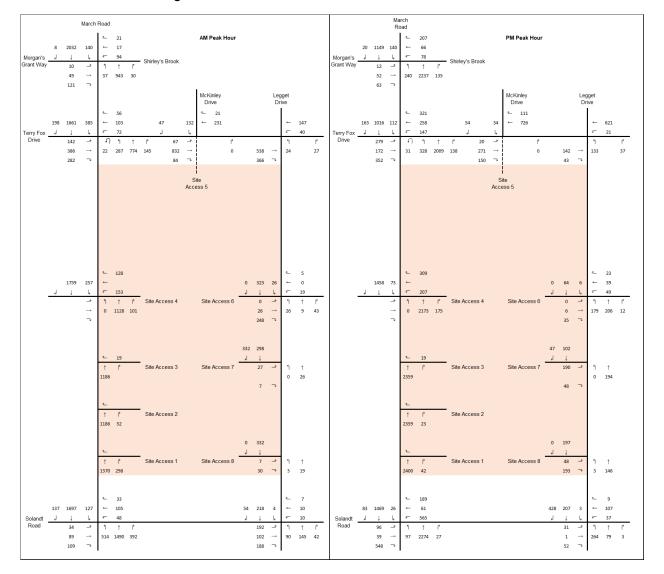
3.3.3 2032 Total Future Traffic Volumes

Figure 18 illustrates the 2032 total future traffic volumes at the study area intersections.



3.3.4 2032 Total Future Traffic Volumes - Rationalized

Figure 19 illustrates the 2032 rationalized total future traffic volumes at the study area intersections.



3.3.5 2037 Total Future Traffic Volumes - Rationalized

Figure 20 illustrates the 2037 rationalized total future traffic volumes at the study area intersections.

4.0 STRATEGY REPORT

4.1 DEVELOPMENT DESIGN

4.1.1 Design for Sustainable Modes

Not applicable; exempted during screening and scoping.

4.1.2 Circulation and Access

Not applicable; exempted during screening and scoping.

4.1.3 New Street Networks

Not applicable; exempted during screening and scoping.

4.2 PARKING

4.2.1 Parking Supply

Not applicable; exempted during screening and scoping.

4.2.2 Spillover Parking

Not applicable; exempted during screening and scoping.

4.3 BOUNDARY STREET DESIGN

4.3.1 Multi Modal Level of Service

Not applicable; exempted during screening and scoping.

4.4 ACCESS INTERSECTION DESIGN

4.4.1 Access Location

Not applicable; exempted during screening and scoping.

4.4.2 Intersection Control

Not applicable; exempted during screening and scoping.

4.5 TRANSPORTATION DEMAND MANAGEMENT

4.5.1 Context for TDM Measures

The proposed development includes 1,900 residential units, 495,000ft² of office space, and 122,000 ft² of retail space. As the current development application is for Zoning, the exact unit breakdown of the residential buildings (i.e., studios, one-bedroom, two-bedrooms, etc.) is not known at this time.

The majority of the proposed development is located within 600m of a future Bus Rapid Transit station (stations at March Road and Solandt Road). However, per direction from the City of Ottawa, the March Road BRT is currently planned to terminate at Solandt Road by the horizons of the subject study. As such, only the southern portion of the subject site (i.e., the office component and the southern retail component) will be within 600m of a Bus Rapid Transit station at Solandt Road for the subject horizons. Due to the proximity of the proposed land uses to the future BRT station at Solandt, and the nature of the land uses themselves, the Transportation Demand Management (TDM) measures are different for the various proposed land uses.

4.5.2 Need and Opportunity

The mode shares for the residential portion of the proposed development were taken from the *TRANS Trip Generation Summary Report*, which states that the transit modal share for this district is 25%. As this transit mode share is notably high for the general area, it is not anticipated to see increase as a result of the planned March Road BRT (between Highway 417 and Solandt Road) as the distance between the transit station and the residential component of the proposed development is anticipated to be greater than 400m.

The modal shares for the office portion of the proposed development were also taken from the *TRANS Trip Generation Summary Report*, which states that the transit modal share for this district is 8%. To account for the planned March Road BRT (between Highway 417 and Solandt Road), the transit mode share for the office land use was increased from 8% to 20% (a 12% net increase) while subsequently reducing the auto mode share by 12% to a total of 72%.

The modal shares for the commercial portion of the proposed development were also taken from the *TRANS Trip Generation Summary Report*, which states that the transit modal share for this district is 1%. To account for the enhanced overall transit service as a result of the planned March Road BRT (between Highway 417 and Solandt Road), the transit mode share for the commercial land use was increased from 1% to 10% (a 9% net increase) while subsequently reducing the 73% auto mode share by 9% for a total of 64%.

Should the aforementioned transit modal share targets not be fully realized at the buildout of the subject development for the office and commercial land uses, the increase in two-way traffic volumes would equate to:

- AM Peak Hour: an additional 124 number of vehicle trips (increasing from 1,146 to 1,270)
- PM Peak Hour: an additional 142 number of vehicle trips (increasing from 1,255 to 1,397)

This represents roughly an 11% increase in vehicle trips should the desired transit modal share targets not be realized for the office and commercial land uses. As outlined in Section 4.9, there are existing congestion issues at the majority of the study area intersections, which will be exacerbated by the future growth, particularly in relation to the Kanata North Urban Expansion Area. Should the development not reach their transit modal share targets for the office and

commercial land uses, it is not expected to substantially impact the future operations at the study area intersections as it is a relatively small increase to future traffic. However, given the low assumed transit modal share targets for these two land uses, it is anticipated that these targets will be able to be met, particularly with the TDM measures, as described in the following subsection. According to the *March BRT Environmental Project Report (Final)* states that; to reflect Ottawa's growth transportation vision, the TMP aims for the highest level of future transit usage that can reasonably be achieved during commuter peak hours. The set target is 30% which means that 30% of all person-trips made using motorized modes (transit/auto) during peak hours would be by transit and 70% by automobile.

The TMP notes that while a 30% peak hour transit modal split represents a real challenge, it can be achieved if the required service strategies, transit priority measure and a variety of essential supporting actions are implemented in a coordinated and comprehensive fashion. One of the four TMP recommendations of response to this major transportation challenge, both in terms of encouraging desirable shifts in travel and in serving the resulting transit and traffic volumes in Transportation Demand Management discussed below for this development.

4.5.3 TDM Program

The City of Ottawa's TDM-supportive design and infrastructure elements checklist was consulted to identify and incorporate TDM supportive measures into the design stage. The various land uses within the proposed development are planned to include specific TDM measures, as described below.

RESIDENTIAL

The following is a list of the TDM measures that apply to the residential land uses within the proposed development:

Walking and Cycling routes

- Locate building close to the street, and do not locate parking areas between the street and building entrances
- Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations
- Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort
- Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort
- Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances
- Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks
- Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps
- Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation.

- Provide safe, direct and attractive walking routes from building entrances to nearby transit stops
- Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible
- Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility
- Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails
- Provide wayfinding signage for site access (where required,

Walking and cycling: end-of-trip facilities

- Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible
- Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well-used areas
- Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored
- Provide bicycle parking spaces equivalent to the expected number of resident-owned bicycles, plus the expected peak number of visitor cyclists
- Where more than 50 bicycle parking spaces are provided for a single residential building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers

Transit

- Provide shelters, lighting and benches at any on-site transit stops
- Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public rightof-way, protect land for a shelter and/or install a shelter

Ridesharing

• Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones

Parking

- Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for
- Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking

June 7, 2022

 Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly

TDM Program Management

• Designate an internal coordinator, or contract with an external coordinator

Walking and Cycling

• Display local area maps with walking/cycling access routes and key destinations at major entrances;

Transit

- Display relevant transit schedules and route maps at entrances;
- Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit

Parking

• Unbundle parking cost from the purchase/lease price; and

TDM Marketing and Communications

• Provide a multimodal travel option information package to new residents. The package would be redistributed to residents once transit projects in the vicinity of the area are completed, i.e., post the year 2026.

OFFICE

In addition to the TDM measures listed above, the following is a list of the TDM measures that apply to the office and retail land uses within the proposed development.

Walking and cycling: end-of-trip facilities

• Provide shower and change facilities for the use of active commuters

Transit

- Provide signed parking spaces for carpools in a priority location close to a major building entrance, sufficient in number to accommodate the mode share target for carpools
- Provide online links to OC Transpo and STO information

Ride sharing

• Provide a dedicated ride matching portal at OttawaRideMatch.com

Parking

• Charge for long-term parking (daily, weekly, monthly)

• Unbundle parking cost from lease rates at multi-tenant sites

TDM Marketing & Communications

· Provide a multimodal travel option information package to new/relocating employees and students

Other incentives & amenities

- Encourage flexible work hours
- Provide local business travel options that minimize the need for employees to bring a personal car to work

The TDM checklists are contained in Appendix B.

4.6 NEIGHBHOURHOOD TRAFFIC MANAGEMENT

Not applicable; exempted during screening and scoping.

4.7 TRANSIT

4.7.1 Route Capacity

Due to the limits of the future March Road BRT (i.e., terminating at Solandt Road), the transit users for the specific proposed land uses will utilize different transit facilities based on their proximity (i.e., office employees will be within 400m of the BRT station at Solandt, whereas the residents of the residential buildings and the users of the retail components will not).

The March Road BRT will support growth along March Road, by providing fast, reliable, comfortable service which is an attractive alternative to the automobile; and supplying increased transportation network capacity necessary to support increased development densities in designated areas including this proposed development. It provides reliable and high-quality transit service and provides the best multimodal and TOD opportunities.

Residential and Commercial

Per the distribution of the future residential and commercial trips as outlined in **Section 3.1.4**, 20% of the trips associated with the residential and commercial components will be destined to / from the north (via March Road north), 20% will be destined to / from the west (via Terry Fox Drive west), and 60% will be destined to / from the south (via March Road south). The residential and commercial components of the proposed development is anticipated to generate the following transit trips:

- 214 transit trips during the AM peak hour (75 inbound and 139 outbound); and
- 265 transit trips during the PM peak hour (146 inbound and 119 outbound).

Those traveling to / from the north equates to roughly 43 and 53 transit trips during the AM and PM peak hours, respectively. Based on the current transit schedule, there is only one transit route (Route 63- Innovation Station and Tunney's Pasture) that these transit users can take that head north, which operates with three buses per hour during

June 7, 2022

the peak hours. This provides a total transit capacity of 294 based on a total individual bus capacity of 98 people (the average between standard and articulated buses). As such, the transit users destined to / from the north are anticipated to occupy roughly 15%-18% of transit capacity, based on the current transit schedules.

Those traveling to / from the west equates to roughly 43 and 53 transit trips during the AM and PM peak hours, respectively. Based on the current transit schedule, there are three transit routes (Routes 66,110,166 - refer to **Section 2.1.2.3**) that these transit users can take that head west, which operate with six buses per hour during the peak hours. This provides a total transit capacity of 588 based on a total individual bus capacity of 98 people (the average between standard and articulated buses). As such, the transit users destined to / from the west are anticipated to occupy roughly 7%-9% of transit capacity, based on the current transit schedules.

Those traveling to / from the south equates to roughly 128 and 159 transit trips during the AM and PM peak hours, respectively. Based on the current transit schedule, there are four transit routes (Routes, 63,66,110,166- refer to **Section 2.1.2.3**) that these transit users can take that head south, which operate with 10 buses per hour during the peak hours. This provides a total transit capacity of 980 based on a total individual bus capacity of 98 people (the average between standard and articulated uses). As such, the transit users destined to / from the south are anticipated to occupy roughly 13%-16% of transit capacity, based on the current transit schedules.

The area to the east is all an employment area of offices, considering this, we do not anticipate trips being generated.

Office

Per the distribution of the future office trips as outlined in **Section 3.1.4**, 50% of the office employees will be coming from the north and west (i.e., March Road north and Terry Fox Drive west) and 50% will be coming from the south (i.e., March Road south). The office component of the proposed development is anticipated to generate the following transit trips:

- 193 transit trips during the AM peak hour (170 inbound and 23 outbound); and
- 183 transit trips during the PM peak hour (31 inbound and 152 outbound).

The employees that are arriving to the proposed site via transit from the west and north are all assumed to take local transit routes. This equates to approximately 97 and 92 two-way transit trips during the AM and PM peak hours, respectively. Based on the current transit schedule, there are three transit routes (Routes, 63, 110,166) that these transit users can take that head north and west, which operate with six buses per hour during the peak hours. This provides a total transit capacity of 588 based on a total individual bus capacity of 98 people (the average between standard and articulated buses). As such, the office transit users destined to / from the north and west are anticipated to occupy roughly 15%-17% of transit capacity, based on the current transit schedules.

The employees that will be arriving to the proposed site via transit from the south are all assumed to take the future March Road BRT. This equates to approximately 97 and 92 two-way transit trips during the AM and PM peak hours, respectively. Per the *West Transitway Connection – Highway 417 / Eagleson Road to North of Maxwell Bridge Road Environmental Project Report (Final)* (Delcan 2013), the future March Road BRT is anticipated to operate with 25 buses during the peak hours in the peak directions. As no indication was given as to how many buses will operate in the off-peak directions, it was assumed that 15 buses will do so, for a total of 40 two-way buses during the peak hours. OC Transpo buses have total capacities of approximately 98 (the average between the standard and articulated buses),

which equates to a total two-way March Road BRT capacity of 3,920 people during the peak hours. As such, the future office component of the proposed development is projected to occupy approximately 2% of the future March Road BRT.

The area to the east is all an employment area of offices, considering this, we do not anticipate trips being generated

4.8 REVIEW OF NETWORK CONCEPT

The current zoning permits a total GFA of appx 2,275,000 ft². As there are numerous land uses permitted under the existing zoning, it was assumed that the worst-case scenario in terms of traffic generation would be to construct an office of this size. This would result in appx 4,426 and 4,193 person trips during the AM and PM peak hours, respectively.

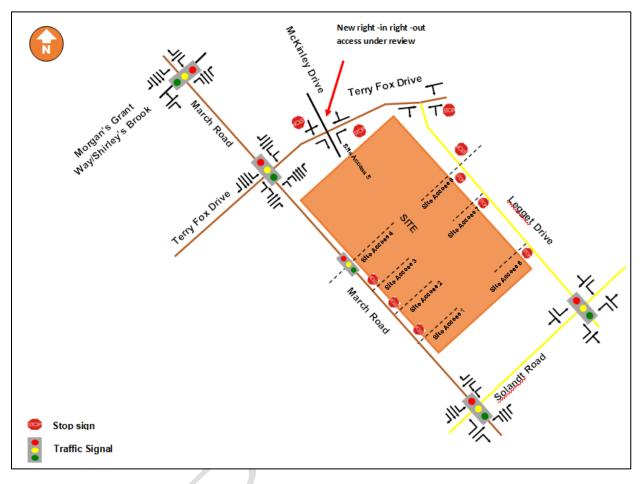
The proposed concept plan is reflection of the maximum allowable GFA of the proposed zoning. Therefore, the person trips associated with the proposed zoning is outlined in **Table 12**, which outlines there are 2311 and 2552 projected person trips during the AM and PM peak hours, respectively.

As such, the proposed zoning is not anticipated to generate more than 200 peak hour person-trips over the existing zoning, and thus, **Section 4.8** is exempt from the subject TIA.

4.9 INTERSECTION DESIGN

4.9.1 Intersection Control

The concept plan is proposing to include a total of eight site accesses to the subject development, seven of which will be stop controlled at the accesses and one signalized intersection at the proposed 'lifestyle' street. Access to Terry Fox Drive will be a right-in / right-out on the south side of Terry Fox Drive opposite the existing unsignalized intersection of Terry Fox Drive and McKinley Drive. This site access will be reinforced with a right-in/right-out island that will prevent motorists from turning left onto Terry Fox Drive as well as vehicles turning left from Terry Fox into the site.


There are three accesses proposed on Legget Drive, which will all be stop-controlled at the entrances to Legget Drive. Legget Drive users will be free flowing.

Four accesses to the site are proposed on March Road, three are stop controlled, right-in right-out due to a median island along March Road, and one signalized all movement intersection. This signalized intersection is proposed to be located approximately 350m south of Terry Fox Drive. It should be noted that the exact location of this intersection may change slightly as the development proceeds through the approvals process.

Figure 6 summarizes the accesses and traffic control proposed for the subject site.

Figure 6 - Future Intersection Control

4.9.2 Intersection Design

An assessment of the study area intersections was undertaken to determine the operational characteristics under the various horizons identified in the Screening and Scoping report. Intersection operational analysis was performed with Synchro 10.0[™] software package and the MMLOS analysis was completed for all modes and compared against the City of Ottawa's MMLOS targets.

4.9.2.1 2022 Existing Conditions

Existing traffic volumes were used to determine the base year 2022 for analysis at the study area intersections. Using the City of Ottawa's long-range model (exhibit 2.11 of the 2013 TMP), the weighted forecasted trip growth was calculated to / from the inner area (from 2011 to 2031), and it was found that the growth rate is approximately 1.9% per year. This annual growth rate was applied to the traffic counts to represent the 2022 existing traffic volumes.

Figure 6 illustrates 2022 existing traffic volumes at the study area intersection during the AM and PM peak hours, respectively.

Intersection Capacity Analysis

Table 15 summarizes the results of the Synchro analysis for the 2022 existing intersection operations.

March Road at Morgan's Grant

During the 2022 horizon year, the intersection of March Road and Morgan's Grant will operate at very good levels of service of A and B during the AM and PM peak hours, respectively.

The March Road BRT will support growth along March Road, by providing fast, reliable, comfortable service which is an attractive alternative to the automobile; and supplying increased transportation network capacity necessary to support increased development densities in designated areas including this proposed development.

March Road at Terry Fox Drive

The intersection of March Road at Terry Fox Drive currently has several individual movements operating with delays exceeding 50 seconds. In addition, the southbound left turn movement is operating at the theoretical capacity during the AM peak hour. This suggests there is little residual capacity for any future growth at this intersection. This signal timing plan at this intersection will be optimized in subsequent horizons to determine if the operations can be improved.

The March Road BRT will support growth along March Road, by providing fast, reliable, comfortable service which is an attractive alternative to the automobile; and supplying increased transportation network capacity necessary to support increased development densities in designated areas including this proposed development.

March Road at Solandt Road

The intersection of March Road at Solandt Road currently has several individual movements operating at or above theoretical capacity with excessive delays during both the AM and PM peak hours. Of particular note are the eastbound right turn movement during the PM peak hour (9 minutes of delay), the northbound through movement during the PM peak hour (2.5 minutes of delay), and the northbound left turn movement during the AM peak hour (4 minutes of delay). Overall, this intersection is exceeding capacity and motorists are currently having to wait for several cycles to clear the intersection. The signal timing plan of this intersection will be optimized in subsequent horizons to determine if the operations can be improved.

The March Road BRT will support growth along March Road, by providing fast, reliable, comfortable service which is an attractive alternative to the automobile; and supplying increased transportation network capacity necessary to support increased development densities in designated areas including this proposed development.

Solandt Road at Legget Drive

The southbound through movement at the intersection of Solandt Road at Legget Drive currently operates at or above theoretical capacity during the PM peak hour with delays exceeding 1.5 minutes. The signal timing plan will be optimized in subsequent horizons to determine if the operations can be improved.

Terry Fox Drive at Legget Drive

The intersection of Terry Fox Drive at Legget Drive currently operates at or above theoretical capacity with delays exceeding two minutes in the northbound direction during the PM peak hour. This intersection will be further reviewed

in subsequent horizons to determine if geometric changes or traffic control upgrades are required to improve the operations of this intersection.

Terry Fox Drive and McKinley Drive

The intersection of Terry Fox Drive and McKinley Drive will operate at satisfactory levels of service of C and D during both the AM and PM peak hours, respectively, in 2022.

All other study area intersections were found to operate acceptably.

Synchro analysis results can be found in Appendix C.

Intersection	Intersection Control	Ap	proach / Movement	LOS	V/C	Delay (s)	Queue 95th (m)
		EB	Through	A (A)	0.15 (0.23)	50.9 (53.7)	16 (18)
		EB	Right	A (A)	0.10 (0.05)	50.5 (52.1)	18 (14)
March Road			Left	B (A)	0.68 (0.59)	64.6 (61.2)	46 (37)
		WB	Through	A (A)	0.05 (0.19)	49.9 (53.3)	7 (19)
			Right	A (A)	0.01 (0.07)	49.7 (52.3)	0 (17)
and	Cignolizod		Left	A (C)	0.41 (0.75)	54.6 (73.9)	23 (m#119)
Morgan's	Signalized	NB	Through	A (A)	0.17 (0.55)	10.4 (3.0)	15 (23)
Grant Way			Right	A (A)	0.02 (0.10)	9.2 (0.2)	0 (m0)
			Left	A (A)	0.56 (0.53)	60.9 (63.3)	39 (29)
		SB	Through	A (A)	0.43 (0.27)	10.8 (19.6)	86 (43)
			Right	A (A)	0.01 (0.02)	7.5 (17.0)	0 (0)
		C	verall Intersection	A (B)	0.49 (0.62)	19.4 (19.5)	()
			Left	A (B)	0.46 (0.68)	60.0 (60.1)	22 (47)
		EB	Through	C (A)	0.74 (0.20)	50.8 (38.6)	86 (27)
			Right	A (D)	0.19 (0.90)	41.3 (71.2)	22 (#136)
		WB	Left	A (B)	0.46 (0.63)	61.8 (59.1)	18 (41)
			Through	A (A)	0.21 (0.48)	42.6 (42.7)	24 (61)
March Road			Right	A (A)	0.03 (0.40)	40.9 (42.0)	0 (46)
and Terry	Signalized	alized NB	Left	B (C)	0.69 (0.79)	54.6 (66.1)	51 (m31)
Fox Drive			Through	A (D)	0.31 (0.87)	48.7 (19.4)	52 (m132)
			Right	A (A)	0.13 (0.08)	136.4 (28.0)	37 (m3)
		SB	Left	E (A)	0.97 (0.52)	85.2 (65.7)	#183 (31)
			Through	A (A)	0.60 (0.41)	26.0 (29.5)	118 (42)
			Right	A (A)	0.12 (0.08)	17.7 (22.5)	16 (5)
		C	verall Intersection	C (D)	0.75 (0.89)	48.7 (38.3)	()
			Left	A (A)	0.60 (0.59)	79.9 (61.5)	19 (41)
		EB	Through	A (A)	0.49 (0.15)	52.4 (43.3)	48 (23)
			Right	A (F)	0.10 (<mark>2.08</mark>)	48.2 (<mark>548.3</mark>)	17 (#324)
		WB	Left	A (E)	0.41 (0.95)	62.4 (71.7)	15 (#124)
		VVD	Through / Right	B (A)	0.66 (0.45)	57.1 (36.5)	65 (73)
March Road	Ciana aliana d		Left	F (F)	1.38 (1.01)	226.3 (112.6)	#292 (#60)
and Solandt Road	Signalized	NB	Through	A (F)	0.41 <mark>(1.25</mark>)	10.6 (<mark>154</mark> .1)	77 (#361)
1.000			Right	A (A)	0.56 (0.05)	13.9 (20.7)	57 (8)
			Left	A (A)	0.57 (0.47)	48.3 (45.9)	#51 (m10)
		SB	Through	F (D)	1.09 (0.90)	96.6 (37.5)	#263 (#151)
			Right	A (A)	0.09 (0.05)	86.4 (26.0)	24 (m0)
		C	verall Intersection	F (F)	1.24 (1.45)	78.2 (159.3)	()

Table 15 - 2022 Existing Conditions - Intersection Operations

June 7, 2022

20		C	verall Intersection	C (D)	0.78 (0.85)	19.4 (3.6)	()
Drive		SB	Left/Right	F (A)	1.14 (0.53)	167.6 (45.4)	77.0 (20.4)
Drive and McKinley	Minor Stop	WB	Left/Through	A (C)	0.13 (0.72)	0.0 (0.0)	0.0 (0.0)
Terry Fox		ED	Through	C (A)	0.72 (0.15)	0.0 (0.0)	0.0 (0.0)
		EB	Left	A (A)	0.04 (0.26)	7.8 (13.5)	1.1 (7.7)
209901 01110		C	Overall Intersection		0.77 (0.77)	2.4 (37.9)	()
Legget Drive	Minor Stop	NB	Left / Right	D (F)	0.38 (<mark>1.15</mark>)	30.4 (133.2)	13 (114)
Terry Fox Drive and	Minor Stop	WB	Left / Through	A (A)	0.11 (0.02)	4.7 (0.5)	3 (1)
		EB	Through / Right	B (A)	0.69 (0.13)	0.0 (0.0)	0 (0)
		C	Verall Intersection	B (E)	0.64 (<mark>0.91</mark>)	14.5 (<mark>63.5</mark>)	()
		30	Through / Right	A (F)	0.52 (<mark>1.10</mark>)	18.1 (<mark>96.2</mark>)	58 (#258)
		NB SB	Left	A (A)	0.13 (0.01)	15.5 (17.9)	12 (2)
Legget Drive			Through / Right	A (A)	0.50 (0.10)	18.0 (5.2)	56 (15)
Road and	Signalized	ND	Left	A (C)	0.41 (0.75)	17.7 (34.3)	30 (#87)
Solandt		WB	Through / Right	A (B)	0.02 (0.66)	7.2 (43.8)	4 (53)
			Left	A (A)	0.0 (0.21)	7.1 (34.9)	1 (19)
		ED	Through / Right	A (A)	0.45 (0.08)	9.6 (33.8)	49 (13)
		EB	Left	C (A)	0.71 (0.33)	14.4 (36.4)	86 (23)

Notes:

1. Table format: AM (PM)

v/c - represents the anticipated volume divided by the predicted capacity
 # 95th percentile volume exceeds capacity; queue may be longer. Queue shown is maximum after two cycles

4. Level of Service (LOS) calculation is based on volume-to-capacity (v/c) ratios for signalized intersections and delays for unsignalized intersections

Intersection Multi-Modal Level of Service (MMLOS)

A multi-modal level of service (MMLOS) assessment was completed for the signalized intersection within the study area under 2022 existing conditions. The results of this analyses can be found in Table 16 below.

Intersectio	Intersection		BLOS	TLOS	TkLOS	VLOS
March Road at	Existing	F	F	F	С	В
Morgan's Grant Way	Target	С	В	D	D	D
March Road at Terry	Existing	F	F	F	А	D
Fox Drive	Target	С	В	D	В	D
March Road at	Existing	F	F	F	А	F
Solandt Road	Target	С	С	D	В	D
Solandt Road at	Existing	F	С	F	С	E
Legget Drive	Target	С	С	D	D	D

Table 16 – 2022 Existing - Multi-Modal Level of Service Assessment

March Road and Morgan's Grant Way

The intersection of March Road and Morgan's Grant is situated in a General Urban Area. March Road is classified as an Arterial roadway and Morgan's Grant Way is classified as a collector roadway. The Pedestrian Level of Service (PLOS) at this intersection is operating at PLOS F, which does not meet the desired target of C for both the Arterial and Collector Roadway. Reducing the number of lanes at the intersection is not feasible. However, incorporating pedestrian refuge areas by means of wide medians (ie >2.4m) is not expected to improve the PLOS.

The Bicycle Level of Service (BLOS) is currently operating at a BLOS of F at the intersection of March Road at Morgan's Grant Way, which does not meet the desired target of B. Based on the MMLOS guidelines, intersection BLOS is influenced by the availability of dedicated cycling amenities, number of lanes cyclists must cross to negotiate a turn at intersections, and roadway operating speeds. Introducing dedicated bike lanes as well as reducing the speed limit to 50 km/h is expected to result in meeting the desired BLOS target of E. As the March Road BRT plans include cycling infrastructure (i.e. cycle tracks), it is not recommended to implement any improvements as an interim mitigation measure. The Ultimate Cycling Network from the City of Ottawa's Cycling Plan (2013) designates March Road as a spine cycling route. The intersection is therefore subject to a Bicycle Level of Service (BLOS) target of B.

March Road and Terry Fox Drive

The intersection of March Road and Terry Fox Drive is situated in an Urban Employment Area with March Road being classified as an arterial roadway and Terry Fox Drive classified as a major collector roadway across the frontage of the subject site. Based on these classifications, the governing Pedestrian Level of Service (PLOS) target is C (for a Urban Employment Area). The Ultimate Cycling Network from the City of Ottawa's Cycling Plan (2013) designates both March Road and Terry Fox Drive as a spine cycling route. The intersection is therefore subject to a Bicycle Level of Service (BLOS) target of C. March Road is designated as a transit route with isolated transit priority measures in 2021 in the vicinity of the intersection, equating to a Transit Level of Service (TLOS) target of D. The Truck Level of Service (TkLOS) is D.

The intersection of March Road and Terry Fox Drive currently operates with a Pedestrian Level of Service (PLOS) of F, which does not meet the target of C. This is attributed to the 130s cycle length during the PM peak period coupled with the short effective walk times in the east-west direction due to the 28s phase length. Another contributing factor is the high number of lanes that have to be crossed by pedestrians (10+ lanes) along all the legs of the intersection. Reducing the cycle length and the number of lanes on March Road and Terry Fox Drive and incorporating raised crosswalks at this intersection would improve the PLOS based on the PETSI score. To improve the PLOS based on the pedestrian delay, the cycle length would need to be greatly reduced. Although these methods would improve the PLOS at this intersection, they are not feasible options as they would be to the detriment of the vehicles. It is noted that the future March Road cross section (2031 and beyond) will see different infrastructure and lane arrangements.

The Bicycle Level of Service (BLOS) at the intersection of March Road and Terry Fox Drive currently operates with a BLOS of F, which does not meet the target of B. Methods for improving the BLOS at this intersection include reducing the speed limit and number of lanes along March Road and Terry Fox Drive, but this approach is not feasible as it would be to the detriment of the vehicles on the roadway. Another method for improving the BLOS operations would be to install multi-use pathways with two-stage left turns. It is noted that the future March Road cross section (2031 and beyond) will see different infrastructure and lane arrangements.

The Transit Level of Service (TLOS) at the intersection of March Road and Terry Fox Drive currently operates with a TLOS of F, which does not meet the target of D. Based on the MMLOS guidelines, intersection TLOS is governed by

the delay at the intersection. It is noted that transit measures including transit priority and queue jump lanes signaling along March Road will be constructed by 2031 and coupled with the March Road BRT between Maxwell Bridge and Highway 417 (by 2031), is anticipated to result in reductions in vehicular traffic that would allow for shorter bus travel times and signal timing optimizations.

The Truck Level of Service (TkLOS) at the intersection of March Road and Terry Fox Drive currently operates with a TkLOS of A, which meets the desired target of B.

Once the aforementioned transit priority measures and BRT are completed, the operations and lane geometry at this intersection will change. It is therefore not recommended to address the MMLOS at this time.

March Road at Solandt Road

The PLOS, BLOS and TLOS current operations are similar to those at March Road at Terry Fox Drive, the aforementioned solutions apply to this intersection to meet their respective targets.

The Vehicular Level of Service (VLOS) at the intersection of March Road at Terry Fox Drive is currently operating at VLOS of F, which does not meet the desired target of D. With the implementation of BRT along this intersection, transit ridership is expected to increase hence reducing auto passenger trips.

Solandt at Legget Drive

The intersection of Solandt at Legget Drive is situated in the Employment Area. Both Solandt Road and Legget Drive are classified as collector roadways. The Pedestrian Level of Service (PLOS) is projected to operate at F, which does not meet the desired target C. Based on the MMLOS guidelines, intersection PLOS is largely influenced by the number of lanes pedestrians cross. Due to the nature of arterial roads, reducing the number of lanes at the intersection is not a feasible option especially with the implementation of the March Road BRT.

The intersection meets the Bicycle Level of Service (BLOS) target of C.

The Transit Level of Service (TLOS) is projected to operate with a TLOS of F, which does not meet the targeted value of C. Based on the MMLOS guidelines, intersection TLOS is governed by the delay at the intersection. Buses are expected to operate with less than 40 seconds of delay, which is significantly high compared to general traffic. Implementing intersection modifications or operating aggressive forms of TSP operations (i.e. skipping and rotating traffic phases) could improve transit service but can severely impact other modes of transportation.

The Vehicular Level of Service (VLOS) is projected to operate with a VLOS of E, which does not meet the desired target of D. Increasing the number of lanes at this intersection would increase capacity and thus improve the VLOS, however, it would be to the detriment of the other modes of transportation and is therefore not recommended.

Intersection MMLOS results can be found in Appendix D.

4.9.2.2 2032 Future Background Conditions

The 2032 future background traffic volumes represent traffic volumes adjacent to the site before adding in trips generated by the site. **Figure 17** illustrates 2032 Future Background traffic volumes at the study area intersection during the AM and PM peak hours, respectively.

Intersection Capacity Analysis

Table 17 summarizes the results of the Synchro analysis for the 2032 Future Background intersection operations.

March Road at Morgan's Grant

During the 2032 horizon year, the intersection of March Road and Morgan's Grant will begin to experience at capacity operations at several movements during both the AM and PM peak hours. More specifically, the westbound and southbound left turn movements during the AM peak hour, and the westbound, northbound, and southbound left turn movements during the PM peak hour.

March Road at Terry Fox Drive

The intersection of March Road at Terry Fox Drive will operate with several individual movements operating with delays exceeding 60 seconds. In addition, the eastbound and westbound left turn movements are operating at capacity during the AM and PM peak hours. This suggests there is little residual capacity for any future growth at this intersection. This signal timing plan at this intersection will be optimized in subsequent horizons to determine if the operations can be improved.

March Road at Solandt Road

The intersection of March Road at Solandt Road will continue to operate with several individual movements operating at or above theoretical capacity with excessive delays during both the AM and PM peak hours. Of particular note are the westbound and northbound left turn movements which will operate with excessive delays. Overall, this intersection is expected to continue experiencing major capacity issues with motorists having to wait for significant periods of time. The signal timing plan of this intersection will be optimized in subsequent horizons to determine if the operations can be improved.

Solandt Road at Legget Drive

This intersection will operate under capacity during background conditions as a result of signal timing optimization.

Terry Fox Drive at Legget Drive

The intersection of Terry Fox Drive at Legget Drive will generally operate at acceptable levels.

Terry Fox Drive and McKinley Drive

The intersection of Terry Fox Drive and McKinley Drive will operate at satisfactory levels of service in 2032 during background traffic conditions.

All other study area intersections were found to operate acceptably.

Synchro analysis results can be found in Appendix C.

Intersection	Intersection Control	Ap	oproach / Movement	LOS	V/C	Delay (s)	Queue 95th (m)
March Road	Signalized	EB	Through	A (A)	0.31 (0.36)	52.7 (54.1)	28 (30)
and			Right	A (A)	0.09 (0.05)	50.7 (51.1)	17 (11)
Morgan's Grant Way		WB	Left	B (A)	0.66 (0.58)	63.8 (60.1)	43 (37)
Grant way			Through	A (A)	0.09 (0.38)	50.7 (54.3)	11 (31)
			Right	A (A)	0.02 (0.29)	50.0 (53.5)	0 (30)
		NB	Left	A (B)	0.43 (0.67)	53.6 (<u>66.7</u>)	m19 (m71)
			Through	A (D)	0.36 (0.85)	8.5 (10.2)	35 (m206)
			Right	A (A)	0.02 (0.13)	11.3 (0.2)	m0 (m0)
		SB	Left	B (B)	0.66 (0.66)	60.2 (60.2)	59 (59)
			Through	B (A)	0.64 (0.48)	13.6 (22.7)	175 (93)
			Right	A (A)	0.01 (0.01)	7.4 (17.0)	0 (0)
		Overall Intersection		B (D)	0.66 (0.81)	18.5 (23.0)	()
March Road	Signalized	EB	Left	B (C)	0.70 (0.77)	68.1 (63.7)	#34 (55)
and Terry			Through	B (A)	0.68 (0.20)	51.4 (43.8)	72 (22)
Fox Drive			Right	A (A)	0.16 (0.49)	43.8 (47.7)	21 (50)
		WB	Left	A (A)	0.47 (0.62)	61.8 (59.3)	18 (38)
			Through	A (A)	0.20 (0.55)	45.6 (49.7)	22 (51)
			Right	A (C)	0.05 (0.73)	44.3 (59.9)	0 (71)
		NB	Left	B (B)	0.64 (0.66)	39.1 (60.1)	45 (41)
			Through	A (F)	0.56 (1.08)	64.1 (70.0)	90 (#299)
			Right	A (A)	0.11 (0.07)	154 .1 (32.5)	37 (m5.2)
		SB	Left	F (A)	1.14 (0.55)	136.0 (60.6)	#234 (41)
			Through	C (A)	0.79 (0.57)	24.0 (41.7)	#187 (86)
			Right	A (A)	0.17 (0.13)	6.2 (79 . 7)	8 (25)
		C	Overall Intersection	E (E)	0.89 (0.91)	53.4 (<mark>58.5</mark>)	()
March Road	Signalized	EB	Left	A (A)	0.55 (0.59)	70.1 (76.3)	21 (#54)
and Solandt			Through	A (A)	0.44 (0.15)	54.1 (38.3)	39 (19)
Road			Right	A (F)	0.08 (2.08)	50.5 (<mark>290.6</mark>)	6 (#257)
		WB	Left	A (E)	0.36 (<mark>0.95</mark>)	62.2 (407.9)	13 (#149)
			Through / Right	B (A)	0.68 (0.45)	63.0 (42.4)	56 (67)
		NB	Left	F (F)	1.83 (1.01)	439.0 (320.4)	#307 (#479)
			Through/Right	F (F)	1.08 (1.25)	77.5 (268.8)	#83 (#19)
		SB	Left	B (A)	0.62 (0.47)	57.9 (117.4)	#83 (#19)
			Through/Right	F (E)	1.23 (0.90)	146.5 (84.1)	#383 (#268)
		C	Overall Intersection	F (F)	1.25 (1.59)	144.1 (218.9)	()
Solandt	Signalized	EB	Left	A (A)	0.73 (0.32)	15.8 (35.9)	97 (24)
Road and			Through / Right	A (A)	0.39 (0.04)	9.5 (33.4)	40 (11)
Legget Drive		WB	Left	A (A)	0.02 (0.19)	7.5 (34.6)	3 (16)
DIIVe			Through / Right	A (A)	0.02 (0.53)	7.4 (38.8)	4 (41)
		NB	Left	A (B)	0.42 (0.64)	19.2 (21.7)	31 (58)
			Through / Right	A (A)	0.40 (0.07)	18.4 (4.5)	49 (10)
		SB	Left	A (A)	0.01 (0.01)	15.9 (16.4)	3 (2)
			Through / Right	A (E)	0.58 (0.90)	20.7 (40.5)	72 (#191)
		C	Overall Intersection	A (C)	0.68 (0.75)	15.6 (33.0)	()
Terry Fox	Minor Stop	EB	Through / Right	B (A)	0.67 (0.02)	0.0 (0.5)	0 (0)
Drive and		WB	Left / Through	A (A)	0.09 (1.06)	3.8 (0.5)	2 (92)
Legget		NB	Left / Right	A (A)	0.35 (0.14)	29.9 (133.2)	11 (0)
Drive			Overall Intersection	C(F)	0.74 (1.06)	2.1 (27.0)	()

Table 17 - 2032 Future Background Intersection Operations

600 March Road Transportation Impact Assessment

Strategy Report

June 7, 2022

Terry Fox and McKinley Drive		EB	Left	A (A)	0.03 (0.16)	7.8 (11.5)	1 (4)	
			Through	B (A)	0.64 (0.19)	0.0 (0.0)	0 (0)	
	WB	Through/Right	A (B)	0.13 (0.62)	0.0 (0.0)	0 (0)		
		SB	Left/Through/Right	F (A)	1.07 (0.28)	164.8 (8.5)	60 (9)	
2		C	Verall Intersection		0.69 (0.73)	15.6 (1.9)	()	
Notes: 1. Table format: AM (PM)								

- 2. v/c represents the anticipated volume divided by the predicted capacity
- 3. # 95th percentile volume exceeds capacity; queue may be longer. Queue shown is maximum after two cycles
- 4. Level of Service (LOS) calculation is based on volume-to-capacity (v/c) ratios for signalized intersections and delays for unsignalized intersections

Multi-Modal Level of Service Assessment

The intersection operations remain similar to existing conditions; therefore, the intersection MMLOS discussion in **Section 4.9.2.1** applies to the 2022 future background analysis.

Appendix D contains the detailed MMLOS analysis and is provided for reference

4.9.2.3 2032 Future Total Traffic Conditions

The 2032 future total traffic volumes represent traffic volumes at the site after adding the trips generated by the site to the 2032 background traffic network. **Figure 19** illustrates 2032 Total Future traffic volumes at the study area intersection during the AM and PM peak hours, respectively.

Intersection Capacity Analysis

Table 18 summarizes the results of the Synchro analysis for the 2032 Future Total Traffic intersection operations.

March Road at Morgan's Grant

During the 2032 horizon year, the intersection of March Road and Morgan's Grant will operate at similar levels of service as the 2032 background traffic volume scenario with the westbound and southbound left turn movements during the AM peak hour, and the westbound, northbound, and southbound left turn movements during the PM peak hour experiencing delays in excess of 1 minute.

March Road at Terry Fox Drive

The intersection of March Road at Terry Fox Drive will operate with a few individual movements operating at or above theoretical capacity with excessive delays during both the AM and PM peak hours. Of particular note is the northbound through movement with almost two minutes of delay, and the southbound right turn movement with slightly over 90 seconds of delay per vehicle. Overall, this intersection is not experiencing major capacity issues and motorists will not have to wait for significant periods of time.

March Road at Solandt Road

The intersection of March Road at Solandt Road will operate with several individual movements operating at or above theoretical capacity with excessive delays during both the AM and PM peak hours. Of particular note are the northbound

and southbound approaches during both peak hours and the eastbound and westbound approaches during the PM peak hour. Overall, this intersection will experience major capacity issues and motorists will have to wait for significant periods of time. The completion of the BRT to Maxwell Bridge is anticipated to reduce the number of vehicle trips as people transition to transit. The current shift to telecommuting may also contribute to improved operations at this intersection.

Solandt Road at Legget Drive

The southbound through movement at the intersection of Solandt Road at Legget Drive will operate slightly below theoretical capacity during the PM peak hour with a v/c ratio of 0.96 and a delay of 53 seconds per vehicle. Therefore, the delays at this intersection are not significant.

Terry Fox Drive at Legget Drive

The intersection of Terry Fox Drive at Legget Drive will generally operate at acceptable levels.

Terry Fox Drive and McKinley Drive

The intersection of Terry Fox Drive and McKinley Drive will operate at satisfactory levels of service with the addition of site traffic opposite McKinley Drive.

Site Accesses

The northbound through movement at site accesses 1-4 currently operate at or above theoretical capacity during the PM peak hour with delay of 2 minutes at the unsignalized access (March Road and site access 4).

The other study area intersections were found to operate at acceptable levels of service.

Synchro analysis results can be found in Appendix C.

Intersection	Intersection Control	Ap	pproach / Movement	LOS	V/C	Delay (s)	Queue 95th (m)
March Road	Signalized	EB	Through	A (A)	0.31 (0.36)	52.7 (54.1)	28 (30)
and			Right	A (A)	0.09 (0.05)	50.7 (51.1)	17 (11)
Morgan's Grant Way	WB	Left	B (A)	0.66 (0.58)	63.8 <mark>(60.1)</mark>	43 (37)	
			Through	A (A)	0.09 (0.38)	50.7 (54.3)	11 (31)
		Right	A (A)	0.02 (0.29)	50.0 (53.5)	0 (30)	
		NB	Left	A (B)	0.43 (0.67)	51.6 <mark>(67.2)</mark>	m19 (m71)
			Through	A (D)	0.38 (0.90)	10.3 (9.1)	31 (m206)
		SB	Right	A (A)	0.02 (0.13)	11.3 (0.0)	m0 (m0)
			Left	B (B)	0.66 (0.66)	60.2 (60.2)	59 (59)
			Through	B (A)	0.68 (0.52)	14.6 (23.4)	175 (93)
			Right	A (A)	0.01 (0.01)	7.4 (17.0)	0 (0)
		C	Verall Intersection	B (D)	0.70 (0.84)	19.2 (22.3)	()
March Road	Signalized	EB	Left	B (C)	0.70 (0.77)	68.1 (63.7)	#34 (55)
and Terry			Through	B (A)	0.65 (0.31)	50.9 (46.5)	68 (31)
Fox Drive			Right	A (A)	0.21 (0.50)	44.8 (49.5)	24 (50)
		WB	Left	A (A)	0.42 (0.56)	61.4 (58.8)	17 (32)
			Through	A (A)	0.19 (0.56)	46.1 (52.8)	20 (46)

Table 18 - 2032 Future Total Traffic Intersection Operations

NB Left C (C) 0.71 (0.74) 47.0 (49.5) 59 Through B (F) 0.61 (1.18) 58.6 (117.6) 90.3 Right A (A) 0.11 (0.11) 148.9 (35.9) m3 SB Left E (B) 1.00 (0.64) 94.3 (58.6) #20 Through E (B) 0.93 (0.63) 32.3 (46.6) #22 Right A (A) 0.20 (0.13) 7.5 (93.0) 11 March Road and Solandt Road Signalized EB Left A (C) 0.55 (0.74) 70.1 (76.3) 21 Through / Right A (F) 0.08 (1.50) 50.5 (290.6) 6 (0 (WB Left A (F) 0.08 (1.60) 50.5 (290.6) 6 (WB Left A (F) 0.08 (1.60) 50.5 (290.6) 6 (0 (WB Left A (E) 0.38 (1.90) 62.2 (473.4) 144 Through / Right B (A) 0.68 (0.49) 63.0 (42.4) 56 57 57.9 (117.4) 74.33 Soland	0 (52) 9 (m42) 3 (m#299) 35 (m6) 207 (54) 235 (94) 11 (27) () 11 (#54) 39 (19) 6 (#257) 4 (#163) 566 (67) 900 (#75) 900 (#75) 900 (#556) 83 (#19) 34 (#330) () 27 (14) 27 (11) 3 (16) 3 (40) 16 (66) 26 (10) 2 (2) 2 (2) 2 (14) 2 (11) 3 (40) 2 (2) 2 (14) 2 (11) 3 (40) 2 (2) 2 (14) 2 (11) 3 (40) 2 (2) 2 (14) 2 (11) 3 (40) 3 (40) 4 (41) 3 (40) 4 (41) 4 (41) 4 (41) 4 (41) 5 (
March Road and Solandt Road Signalized EB EB Left E(B) 0.61 (1.18) 58.6 (117.6) 90.3 March Road and Solandt Road Signalized EB Left E(B) 1.00 (0.64) 94.3 (58.6) #22 (#20) March Road and Solandt Road Signalized EB Left E(B) 0.93 (0.63) 32.3 (46.6) #22 (#20) March Road and Solandt Road Signalized EB Left A(A) 0.20 (0.3) 7.5 (93.0) 111 March Road and Solandt Road Signalized EB Left A(A) 0.44 (0.10) 54.1 (38.3) 335 March Road and Solandt Road Signalized EB Left A(F) 0.08 (1.50) 50.5 (290.6) 6 (0) WB Left A(E) 0.38 (1.90) 62.2 (473.4) 144 439.0 (320.4) #29 Through / Right A(F) 0.082 (0.74) 57.9 (117.4) #434 Through / Right F (F) 1.33 (1.44) 439.0 (320.4) #29 Through / Right F (F) 1.33 (1.41)<	3 (m#299) 335 (m6) 207 (54) 235 (94) 11 (27) () 11 (#54) 39 (19) 6 (#257) 4 (#163) 56 (67) 90 (#75) 90 (#556) 83 (#19) 34 (#330) () 27 (14) 27 (11) 3 (16) 3 (40) 16 (66) 26 (10) 2 (2)
March Road and Solandt Road Signalized EB Left E (B) 1.00 (0.64) 94.3 (58.6) #20 (#20) March Road and Solandt Road Signalized Signalized EB Left E (B) 0.93 (0.63) 32.3 (46.6) #23 (#20) March Road and Solandt Road Signalized EB Left A (A) 0.20 (0.13) 7.5 (93.0) 11 Werall Intersection E (E) 0.92 (0.97) 50.2 (77.4)	35 (m6) 207 (54) 235 (94) 11 (27) () 11 (#54) 39 (19) 6 (#257) 4 (#163) 56 (67) 90 (#75) 90 (#556) 33 (#19) 34 (#330) () 27 (14) 27 (11) 3 (16) 3 (40) 16 (66) 26 (10) 2 (2)
March Road and Solandt Road Signalized Eff Right A (A) 0.11 (0.11) 148.9 (35.9) m33 March Road and Solandt Road Signalized Eff E (B) 1.00 (0.64) 94.3 (58.6) #20 March Road and Solandt Road Signalized EB Left E (B) 0.93 (0.63) 32.3 (46.6) #23 March Road and Solandt Road Signalized EB Left A (A) 0.20 (0.13) 7.5 (93.0) 11 March Road and Solandt Road Signalized EB Left A (C) 0.92 (0.97) 50.2 (77.4)	207 (54) 235 (94) 11 (27) () 11 (#54) 39 (19) 6 (#257) 4 (#163) 56 (67) 90 (#75) 90 (#75) 90 (#556) 83 (#19) 34 (#330) () 27 (14) 27 (11) 3 (16) 3 (40) 16 (66) 26 (10) 2 (2)
SB Left E (B) 1.00 (0.64) 94.3 (58.6) #20 March Road and Solandt Road Signalized Right A (A) 0.20 (0.13) 7.5 (93.0) 11 Warch Road and Solandt Road Signalized EB Left A (C) 0.55 (0.74) 70.1 (76.3) 21 March Road and Solandt Road Signalized EB Left A (C) 0.55 (0.74) 70.1 (76.3) 21 March Road and Solandt Road Signalized EB Left A (C) 0.55 (0.74) 70.1 (76.3) 21 March Road and Solandt Road Signalized EB Left A (F) 0.08 (1.50) 50.5 (290.6) 6 (0.4) WB Left A (E) 0.38 (1.90) 62.2 (473.4) 144 Through/Right B (A) 0.68 (0.49) 63.0 (42.4) 56 NB Left F (F) 1.83 (1.44) 439.0 (320.4) #29 Through/Right F (F) 1.83 (1.41) 439.0 (320.4) #29 Solandt Signalized EB	207 (54) 235 (94) 11 (27) () 11 (#54) 39 (19) 6 (#257) 4 (#163) 56 (67) 90 (#75) 90 (#75) 90 (#556) 83 (#19) 34 (#330) () 27 (14) 27 (11) 3 (16) 3 (40) 16 (66) 26 (10) 2 (2)
March Road and Solandt Road Signalized EB EB Left A (A) 0.20 (0.13) 32.3 (46.6) #23 (46.6) March Road and Solandt Road Signalized EB Left A (A) 0.20 (0.13) 7.5 (93.0) 111 WB Left A (C) 0.55 (0.74) 70.1 (76.3) 211 Through A (A) 0.44 (0.10) 54.1 (38.3) 335 Right A (F) 0.08 (1.50) 50.5 (290.6) 66 (WB Left A (E) 0.38 (1.90) 62.2 (473.4) 114 Through / Right B (A) 0.68 (0.49) 63.0 (42.4) 56 WB Left F (F) 1.83 (1.44) 439.0 (320.4) #29 Through/Right F (F) 1.83 (1.44) 439.0 (320.4) #29 Through/Right F (F) 1.83 (1.44) 439.0 (320.4) #29 Through/Right F (F) 1.81 (1.71) 187.2 (276.6) - SB Left B (C) 0.62 (0.74) 57.9 (117.4) #36	235 (94) 11 (27) () 11 (#54) 39 (19) 6 (#257) 4 (#163) 56 (67) 90 (#75) 90 (#75) 90 (#556) 83 (#19) 34 (#330) () 27 (14) 27 (11) 3 (16) 3 (40) 16 (66) 26 (10) 2 (2)
March Road and Solandt Road Signalized EB EB Left A (A) 0.20 (0.13) 7.5 (93.0) 111 WW Left A (C) 0.92 (0.97) 50.2 (77.4)	11 (27) () 11 (#54) 39 (19) 6 (#257) 4 (#163) 56 (67) 90 (#75) 90 (#75) 90 (#556) 83 (#19) 34 (#330) () 27 (14) 27 (11) 3 (16) 3 (40) 16 (66) 26 (10) 2 (2)
March Road and Solandt Road Signalized EB EB Left A (C) 0.92 (0.97) 50.2 (77.4)	() 11 (#54) 39 (19) 6 (#257) 4 (#163) 56 (67) 90 (#75) 90 (#75) 90 (#556) 83 (#19) 34 (#330) () 27 (14) 27 (14) 27 (11) 3 (16) 3 (40) 16 (66) 26 (10) 2 (2)
March Road and Solandt Road Signalized EB Left A (C) 0.55 (0.74) 70.1 (76.3) 21 March Road Through A (A) 0.44 (0.10) 54.1 (38.3) 33 Right A (F) 0.08 (1.50) 50.5 (290.6) 66 (0.40) WB Left A (E) 0.38 (1.90) 62.2 (473.4) 14 Through / Right B (A) 0.68 (0.49) 63.0 (42.4) 56 NB Left F (F) 1.83 (1.44) 439.0 (320.4) #29 Through/Right F (F) 1.24 (1.69) 145.4 (349.6) #390 SB Left B (C) 0.62 (0.74) 57.9 (117.4) #83 Through/Right F (F) 1.35 (1.23) 197.9 (147.7) #434 Overall Intersection F (F) 1.31 (1.71) 187.2 (276.6) Signalized EB Left A (A) 0.39 (0.04) 9.3 (33.5) 277 WB Left A (A) 0.03 (0.17) 9.5 (34.5) 276	11 (#54) 39 (19) 39 (19) 4 (#163) 56 (67) 90 (#75) 90 (#756) 93 (#19) 34 (#330) () 27 (14) 27 (11) 3 (40) 16 (66) 26 (10) 2 (2)
and Solandt Road Finough A (A) 0.44 (0.10) 54.1 (38.3) 335 Right A (F) 0.08 (1.50) 50.5 (290.6) 6 (0.6) WB Left A (E) 0.38 (1.90) 62.2 (473.4) 144 Through / Right B (A) 0.68 (0.49) 63.0 (42.4) 56 NB Left F (F) 1.83 (1.44) 439.0 (320.4) #29 Through/Right F (F) 1.24 (1.69) 145.4 (349.6) #390 SB Left B (C) 0.62 (0.74) 57.9 (117.4) #833 Through/Right F (F) 1.35 (1.23) 197.9 (147.7) #434 Overall Intersection F (F) 1.31 (1.71) 187.2 (276.6) Solandt Road and Legget Drive Signalized EB Left A (A) 0.40 (0.17) 9.5 (34.5) 27 WB Left A (A) 0.03 (0.63) 7.7 (34.7) 33 34 Moad and Legget NB Left A (A) 0.03 (0.53) 7.7 (34.5) 37 </th <td>39 (19) 6 (#257) 4 (#163) 56 (67) 90 (#75) 90 (#556) 33 (#19) 34 (#330) () 27 (14) 27 (11) 3 (16) 3 (40) 16 (66) 26 (10) 2 (2)</td>	39 (19) 6 (#257) 4 (#163) 56 (67) 90 (#75) 90 (#556) 33 (#19) 34 (#330) () 27 (14) 27 (11) 3 (16) 3 (40) 16 (66) 26 (10) 2 (2)
Road Right A (F) 0.08 (1.50) 50.5 (290.6) 66 (WB Left A (E) 0.38 (1.90) 62.2 (473.4) 14 Through / Right B (A) 0.68 (0.49) 63.0 (42.4) 56 NB Left F (F) 1.83 (1.44) 439.0 (320.4) #29 Through/Right F (F) 1.24 (1.69) 145.4 (349.6) #390 SB Left B (C) 0.62 (0.74) 57.9 (117.4) #833 Through/Right F (F) 1.35 (1.23) 197.9 (147.7) #434 Overall Intersection F (F) 1.35 (1.23) 197.9 (147.7) #434 Legget Through/Right F (F) 1.35 (1.23) 197.9 (147.7) #434 Legget Through/Right A (A) 0.40 (0.17) 9.5 (34.5) 277 WB Left A (A) 0.03 (0.04) 9.3 (33.5) 277 WB Left A (A) 0.03 (0.53) 7.7 (38.5) 33 NB Left A (A)	6 (#257) 4 (#163) 56 (67) 90 (#75) 90 (#556) 83 (#19) 34 (#330) () 27 (14) 27 (11) 3 (16) 3 (40) 16 (66) 26 (10) 2 (2)
WB Left A (E) 0.38 (1.90) 62.2 (473.4) 14 Through / Right B (A) 0.68 (0.49) 63.0 (42.4) 56 NB Left F (F) 1.83 (1.44) 439.0 (320.4) #29 Through/Right F (F) 1.24 (1.69) 145.4 (349.6) #390 SB Left B (C) 0.62 (0.74) 57.9 (117.4) #83 Through/Right F (F) 1.35 (1.23) 197.9 (147.7) #434 Overall Intersection F (F) 1.31 (1.71) 187.2 (276.6) Solandt Legget Drive Signalized EB Left A (A) 0.40 (0.17) 9.5 (34.5) 27 WB Left A (A) 0.39 (0.04) 9.3 (33.5) 27 WB Left A (A) 0.03 (0.19) 7.7 (34.7) 3 MB Left A (B) 0.34 (0.69) 11.8 (29.0) 16 WB Left A (A) 0.38 (0.07) 11.7 (4.5) 26 SB Left	4 (#163) 56 (67) 90 (#75) 90 (#556) 93 (#19) 34 (#330) () 27 (14) 27 (11) 3 (16) 3 (40) 16 (66) 26 (10) 2 (2)
Solandt Road and Legget Drive Signalized EB EB EB EB Left F (F) 1.83 (1.44) 439.0 (320.4) #290 #390 Solandt Road and Legget Drive Signalized EB Left B (C) 0.62 (0.74) 57.9 (117.4) #833 NB Left B (C) 0.62 (0.74) 57.9 (147.7) #434 Through/Right F (F) 1.35 (1.23) 197.9 (147.7) #434 Through/Right F (F) 1.31 (1.71) 187.2 (276.6) MB Left A (A) 0.40 (0.17) 9.5 (34.5) 277 MB Left A (A) 0.39 (0.04) 9.3 (33.5) 277 WB Left A (A) 0.03 (0.19) 7.7 (34.7) 33 MB Left A (A) 0.03 (0.53) 7.7 (38.5) 33 NB Left A (B) 0.34 (0.69) 11.8 (29.0) 10.6 SB Left A (A) 0.01 (0.01) 10.0 (16.4) 22	56 (67) 90 (#75) 90 (#556) 83 (#19) 34 (#330) () 27 (14) 27 (11) 3 (16) 3 (40) 16 (66) 26 (10) 2 (2)
NB Left F (F) 1.83 (1.44) 439.0 (320.4) #29 Through/Right F (F) 1.24 (1.69) 145.4 (349.6) #390 SB Left B (C) 0.62 (0.74) 57.9 (117.4) #83 Through/Right F (F) 1.35 (1.23) 197.9 (147.7) #434 Overall Intersection F (F) 1.31 (1.71) 187.2 (276.6) Solandt Road and Legget Drive Signalized EB Left A (A) 0.40 (0.17) 9.5 (34.5) 277 WB Left A (A) 0.39 (0.04) 9.3 (33.5) 277 WB Left A (A) 0.39 (0.04) 9.3 (33.5) 277 WB Left A (A) 0.03 (0.19) 7.7 (34.7) 33 Through / Right A (A) 0.03 (0.53) 7.7 (38.5) 33 NB Left A (B) 0.34 (0.69) 11.8 (29.0) 166 Through / Right A (A) 0.38 (0.07) 11.7 (4.5) 266 SB Left	90 (#75) 90 (#556) 33 (#19) 34 (#330) () 27 (14) 27 (11) 3 (16) 3 (40) 16 (66) 26 (10) 2 (2)
Solandt Road and Legget Drive Signalized EB NB Left Left F (F) 1.24 (1.69) 145.4 (349.6) #390 #390 MB Left B (C) 0.62 (0.74) 57.9 (117.4) #83 #830 MB Left B (C) 0.62 (0.74) 57.9 (147.7) #434 Overall Intersection F (F) 1.31 (1.71) 187.2 (276.6) MB Left A (A) 0.40 (0.17) 9.5 (34.5) 27 MB Left A (A) 0.39 (0.04) 9.3 (33.5) 27 MB Left A (A) 0.03 (0.19) 7.7 (34.7) 33 MB Left A (B) 0.34 (0.69) 11.8 (29.0) 16 MB Left A (A) 0.38 (0.07) 11.7 (4.5) 26 SB Left A (A) 0.01 (0.01) 10.0 (16.4) 22	90 (#556) 33 (#19) 34 (#330) () 27 (14) 27 (11) 3 (16) 3 (40) 16 (66) 26 (10) 2 (2)
Solandt Road and Legget Drive Signalized EB EB Left B (C) 0.62 (0.74) 57.9 (117.4) #833 (1.23) WB Verall Intersection F (F) 1.35 (1.23) 197.9 (147.7) #434 (1.71) WB Left A (A) 0.40 (0.17) 9.5 (34.5) 277 (1.77) WB Left A (A) 0.39 (0.04) 9.3 (33.5) 277 (1.77) WB Left A (A) 0.03 (0.19) 7.7 (34.7) 33 (1.85) NB Left A (B) 0.34 (0.69) 11.8 (29.0) 167 (1.77) SB Left A (A) 0.01 (0.01) 10.0 (16.4) 22	33 (#19) 34 (#330) () 27 (14) 27 (11) 3 (16) 3 (40) 16 (66) 26 (10) 2 (2)
Solandt Road and Legget Drive Signalized EB Left A (A) 0.40 (0.17) 9.5 (34.5) 27 WB Left A (A) 0.39 (0.04) 9.3 (33.5) 27 WB Left A (A) 0.03 (0.19) 7.7 (34.7) 33 MB Left A (B) 0.34 (0.69) 11.8 (29.0) 16 SB Left A (A) 0.38 (0.07) 11.7 (4.5) 26	34 (#330) () 27 (14) 27 (11) 3 (16) 3 (40) 16 (66) 26 (10) 2 (2)
Solandt Road and Legget Drive Signalized EB Left A (A) 0.40 (0.17) 9.5 (34.5) 27 WB Left A (A) 0.39 (0.04) 9.3 (33.5) 27 WB Left A (A) 0.03 (0.19) 7.7 (34.7) 33 MB Left A (B) 0.34 (0.69) 11.8 (29.0) 16 SB Left A (A) 0.38 (0.07) 11.7 (4.5) 26	() 27 (14) 27 (11) 3 (16) 3 (40) 16 (66) 26 (10) 2 (2)
Solandt Road and Legget Drive Signalized EB Left A (A) 0.40 (0.17) 9.5 (34.5) 277 WB Inrough / Right A (A) 0.39 (0.04) 9.3 (33.5) 277 WB Left A (A) 0.03 (0.19) 7.7 (34.7) 33 MB Left A (A) 0.03 (0.53) 7.7 (38.5) 33 NB Left A (B) 0.34 (0.69) 11.8 (29.0) 166 Through / Right A (A) 0.38 (0.07) 11.7 (4.5) 266 SB Left A (A) 0.01 (0.01) 10.0 (16.4) 266	27 (14) 27 (11) 3 (16) 3 (40) 16 (66) 26 (10) 2 (2)
Road and Legget Drive Through / Right A (A) 0.39 (0.04) 9.3 (33.5) 27 WB Left A (A) 0.03 (0.19) 7.7 (34.7) 33 Through / Right A (A) 0.03 (0.53) 7.7 (34.7) 33 MB Left A (B) 0.34 (0.69) 11.8 (29.0) 16 Through / Right A (A) 0.38 (0.07) 11.7 (4.5) 26 SB Left A (A) 0.01 (0.01) 10.0 (16.4) 22	27 (11) 3 (16) 3 (40) 16 (66) 26 (10) 2 (2)
Legget Drive WB Left A (A) 0.03 (0.19) 7.7 (34.7) 33 MB Left A (A) 0.03 (0.53) 7.7 (38.5) 33 NB Left A (B) 0.34 (0.69) 11.8 (29.0) 16 Through / Right A (A) 0.38 (0.07) 11.7 (4.5) 26 SB Left A (A) 0.01 (0.01) 10.0 (16.4) 22	3 (16) 3 (40) 16 (66) 26 (10) 2 (2)
Drive Through / Right A (A) 0.03 (0.53) 7.7 (38.5) 33 NB Left A (B) 0.34 (0.69) 11.8 (29.0) 16 Through / Right A (A) 0.38 (0.07) 11.7 (4.5) 26 SB Left A (A) 0.01 (0.01) 10.0 (16.4) 22	3 (40) 16 (66) 26 (10) 2 (2)
NB Left A (B) 0.34 (0.69) 11.8 (29.0) 16 Through / Right A (A) 0.38 (0.07) 11.7 (4.5) 26 SB Left A (A) 0.01 (0.01) 10.0 (16.4) 22	16 (66) 26 (10) 2 (2)
Through / Right A (A) 0.38 (0.07) 11.7 (4.5) 26 SB Left A (A) 0.01 (0.01) 10.0 (16.4) 2	26 (10) 2 (2)
SB Left A (A) 0.01 (0.01) 10.0 (16.4) 2	2 (2)
Inrough / Right A (E) 0.55 (0.96) 13.2 (53.0) 38	
	8 (#211)
	()
	0 (0)
	2 (26)
Drive NB Left / Right A (A) 0.16 (0.12) 19.9 (0.0) 2	4 (0)
	()
	0 (0)
	0 (0)
Right A (A) 0.49 (0.55) 0.0 (0.0) (0 (0)
	0 (0)
	()
	0 (0)
	0 (0)
Right A (A) 0.29 (0.53) 0.0 (0.0)	0 (0)
	0 (0)
	0 (0)
	()
	1 (1)
	0 (1)
Right A (A) 0.26 (0.52) 0.0 (0.0)	0 (0)
	0 (0)
	0 (0)
	()
	5 (6)
	8 (7)
WB Left B(E) 0.08 (0.99) 55.0 (108.3) 63	3 (#111)
	0 (#146)
	n2 (m0)
Through C (F) 0.77 (1.04) 19.6 (34.4) m61	61 (m18)

		Right	A (A)	0.00 (0.14)	65.0 (0.0)	m3 (m0)
	SB	Left	C (B)	0.71 (0.68)	71.3 (86.1)	m90 (m#23)
		Through	D (B)	0.83 (0.63)	23.2 (11.5)	#144 (66)
	Overall In	tersection	D (F)	0.83 (<mark>1.05</mark>)	29.4 (37.5)	()
Minor Stop	EB	Left	A (A)	0.06 (0.03)	8.0 (9.8)	1.5 (0.6)
		Through/Right	A (A)	0.56 (0.27)	0.0 (0.0)	0.0 (0.0)
	WB	Right/Through	A (A)	0.16 (0.52)	0.0 (0.0)	0.0 (0.0)
	NB	Right	A (A)	0.02 (0.01)	16.2 (10.2)	0.4 (0.2)
	SB	Left/Right	C (A)	0.75 (0.29)	50.9 (20.1)	40.8 (8.8)
	Overall In	tersection	A (A)	0.72 (0.57)	7.1 (1.5)	()
te Access Signalized 6	EB	Left/Through/ Right	A (A)	0.50 (0.09)	16.4 (11.5)	21 (2)
	WB	Left/Through/ Right	A (A)	0.16 (0.37)	23.6 (22.0)	4 (13)
	NB	Right	A (A)	0.02 (0.13)	3.1 (4.1)	1 (3)
	SB	Left/Right	A (A)	0.02 (0.01)	0.7 (0.7)	0 (0)
	Overall Intersection		A (A)	0.46 (0.49)	7.7 (7.5)	()
Minor Stop	E	B	A (A)	0.10 (0.39)	12.6 (13.7)	3 (14)
	N	IB	A (A)	0.01 (0.00)	1.6 (0.0)	0 (0)
	S	B	A (A)	0.41 (0.09)	0.0 (0.0)	0 (0)
	Overall In	tersection	A (A)	0.48 (0.36)	0.9 (5.7)	()
Minor Stop	EB	Left / Right	A (A)	0.06 (0.35)	10.8 (12.2)	2 (12)
	NB	Left/ Through	A (A)	0.00 (0.00)	1.2 (0.2)	0 (0)
	SB	Through/Right	A (A)	0.22 (0.13)	0.0 (0.0)	0 (0)
	Overall In	tersection	A (A)	0.28 (0.33)	1.1 (5.0)	()
	Signalized Minor Stop	Minor Stop EB WB WB WB WB SB Overall In Signalized EB WB NB SB Overall In Minor Stop EB NB SS Overall In NB SS Overall In SS SS SS SS SS SS SS SS SS S	SBLeft ThroughMinor StopEBLeftMinor StopEBLeftWBRight/ThroughWBRight/ThroughSBLeft/RightSBLeft/RightWBRightSignalizedEBLeft/Through/ RightSignalizedEBLeft/Through/ RightSignalizedEBLeft/RightMinor StopOverall I==Minor StopEBLeft/RightMinor StopEBLeft/Right	$\begin{array}{c c c c c } & SB & Left & C (B) \\ \hline Through & D (B) \\ \hline \mbox{Through} & D (F) \\ \hline \mbox{Overall Intersection} & D (F) \\ \hline \mbox{Minor Stop} & EB & Left & A (A) \\ \hline \mbox{Through/Right} & A (A) \\ \hline \mbox{WB} & Right/Through & A (A) \\ \hline \mbox{WB} & Right/Through & A (A) \\ \hline \mbox{NB} & Right & A (A) \\ \hline \mbox{SB} & Left/Right & C (A) \\ \hline \mbox{Overall Intersection} & A (A) \\ \hline \mbox{Signalized} & EB & Left/Through/ \\ Right & Right & A (A) \\ \hline \mbox{Signalized} & EB & Left/Through/ \\ Right & Right & A (A) \\ \hline \mbox{WB} & Left/Through/ \\ Right & A (A) \\ \hline \mbox{NB} & Left/Right & A (A) \\ \hline \mbox{NB} & Right & Right & Right \\ \hline \mbox{NB} & Right & Right & Ri$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c } \hline SB & Left & C (B) & 0.71 (0.68) & 71.3 (86.1) \\ \hline Through & D (B) & 0.83 (0.63) & 23.2 (11.5) \\ \hline Overall Intersection & D (F) & 0.83 (1.05) & 29.4 (37.5) \\ \hline Overall Intersection & D (F) & 0.83 (1.05) & 29.4 (37.5) \\ \hline Overall Intersection & D (F) & 0.83 (1.05) & 29.4 (37.5) \\ \hline Overall Intersection & D (F) & 0.83 (1.05) & 29.4 (37.5) \\ \hline WB & Right/Right & A (A) & 0.06 (0.03) & 8.0 (9.8) \\ \hline Through/Right & A (A) & 0.056 (0.27) & 0.0 (0.0) \\ \hline WB & Right/Through & A (A) & 0.16 (0.52) & 0.0 (0.0) \\ \hline WB & Right & A (A) & 0.02 (0.01) & 16.2 (10.2) \\ \hline SB & Left/Right & C (A) & 0.75 (0.29) & 50.9 (20.1) \\ \hline Overall Intersection & A (A) & 0.72 (0.57) & 7.1 (1.5) \\ \hline Signalized & EB & Left/Through \\ Right & Right & A (A) & 0.50 (0.09) & 16.4 (11.5) \\ \hline WB & Left/Through \\ Right & Right & A (A) & 0.02 (0.13) & 3.1 (4.1) \\ \hline SB & Left/Right & A (A) & 0.02 (0.13) & 3.1 (4.1) \\ \hline SB & Left/Right & A (A) & 0.02 (0.01) & 0.7 (0.7) \\ \hline Overall Intersection & A (A) & 0.46 (0.49) & 7.7 (7.5) \\ \hline Minor Stop & EB & A (A) & 0.01 (0.00) & 1.6 (0.0) \\ \hline SB & Left/Right & A (A) & 0.01 (0.00) & 1.6 (0.0) \\ \hline MB & EB & Left/Right & A (A) & 0.01 (0.00) & 1.6 (0.0) \\ \hline MB & EB & Left/Right & A (A) & 0.01 (0.00) & 1.6 (0.0) \\ \hline MB & EB & Left/Right & A (A) & 0.01 (0.00) & 1.6 (0.0) \\ \hline MB & EB & Left/Right & A (A) & 0.01 (0.00) & 1.6 (0.0) \\ \hline MB & EB & Left/Right & A (A) & 0.01 (0.00) & 1.6 (0.0) \\ \hline MB & Left/Right & A (A) & 0.00 (0.00) & 1.2 (0.2) \\ \hline MB & Left/Right & A (A) & 0.00 (0.00) & 1.2 (0.2) \\ \hline MB & Left/Right & A (A) & 0.02 (0.13) & 0.0 (0.0) \\ \hline MB & Left/Right & A (A) & 0.02 (0.13) & 0.0 (0.0) \\ \hline MB & Left/Right & A (A) & 0.00 (0.00) & 1.2 (0.2) \\ \hline MB & Left/Right & A (A) & 0.00 (0.00) & 1.2 (0.2) \\ \hline MB & Left/Right & A (A) & 0.02 (0.13) & 0.0 (0.0) \\ \hline MB & Left/Right & A (A) & 0.02 (0.13) & 0.0 (0.0) \\ \hline MB & Left/Right & A (A) & 0.02 (0.13) & 0.0 (0.0) \\ \hline MB & Left/Right & A (A) & 0.02 (0.13) & 0.0 (0.0) \\ \hline MB & Left/Right & A (A) & 0.02 (0.13) & 0.0 (0.0) \\ \hline MB & Left/Right$

Notes:

1. Table format: AM (PM)

2. v/c - represents the anticipated volume divided by the predicted capacity

3. # 95th percentile volume exceeds capacity; queue may be longer. Queue shown is maximum after two cycles

4. Level of Service (LOS) calculation is based on volume-to-capacity (v/c) ratios for signalized intersections and delays

for unsignalized intersections

Multi-Modal Level of Service Assessment - 2032 Total future background

The intersection operating conditions remain similar to existing conditions; therefore, the intersection MMLOS discussion in **Section 4.9.2.1** applies to the 2032 total future background analysis.

Appendix D contains the detailed MMLOS analysis and is provided for reference.

4.9.2.4 2037 Ultimate Conditions

The 2037 ultimate total future traffic volumes represent traffic volumes at the site 5 years after full build-out of the site. **Figure 20** illustrates 2037 Ultimate traffic volumes at the study area intersection during the AM and PM peak hours, respectively.

Intersection Capacity Analysis

March Road at Morgan's Grant

During the 2032 ultimate horizon year, the intersection of March Road and Morgan's Grant will operate at similar levels of service as the 2032 total traffic volume scenario with the westbound and southbound left turn movements during the AM peak hour, and the westbound, northbound, and southbound left turn movements during the PM peak hour experiencing delays in excess of 1 minute.

June 7, 2022

March Road at Terry Fox Drive

The intersection of March Road at Terry Fox Drive will operate at satisfactory levels of service in the ultimate scenario with only one movement operating at capacity. The northbound through movement during the PM peak hour will experience 2.1 minutes of delay during the PM peak hour, Overall, this intersection is not experiencing major capacity issues and motorists will not have to wait for significant periods of time. The City could advance the timing of the March Road BRT to Maxwell Bridge in order to increase transit capacity and thus decrease the reliance of auto vehicles which will improve intersection operations and increase telecommuting.

March Road at Solandt Road

The intersection of March Road at Solandt Road will have several individual movements operating at or above theoretical capacity with excessive delays during both the AM and PM peak hours. Of particular note is the westbound left turn movement (5 minutes of delay) during the PM peak hour. During the AM peak hour, the northbound left turn movement experiences 6.7 minutes of delay, and the southbound through movement experiences 3.4 minutes of delay. Overall, this intersection will experience major capacity issues and motorists will have to wait for significant periods of time. The completion of the BRT to Maxwell Bridge is anticipated to reduce the number of vehicle trips as people transition to transit. The current shift to telecommuting may also contribute to improved operations at this intersection.

Solandt Road at Legget Drive

The southbound through movement at the intersection of Solandt Road at Legget Drive will operate at or above theoretical capacity during the PM peak hour with delay of 0.9 minutes. Therefore, the delays at this intersection are not significant. All other movements operate at acceptable delay levels.

Terry Fox Drive at Legget Drive

The intersection of Terry Fox Drive at Legget Drive will generally operate at acceptable levels.

Terry Fox Drive and McKinley Drive

The intersection of Terry Fox Drive and McKinley Drive will operate at satisfactory levels of service five years after the site has been built-out.

Site Accesses

The northbound through movements at site accesses 1-4 currently (Figure 21) operate at or above theoretical capacity during the PM peak hour with delay of 1.2 minutes at the signalized access (March Road and Site Access 4).

The other study area intersections were found to operate at acceptable levels of service. The proposed development is not anticipated to have a substantial effect on the study area intersections

Table 19 summarizes the results of the Synchro analysis for the 2037 Ultimate intersection operations.

Intersection	Intersection Control	Ap	oproach / Movement	LOS	V/C	Delay (s)	Queue 95th (m)
March Road	Signalized	EB	Through	A (A)	0.31 (0.36)	52.7 (54.1)	28 (30)
and Moreon's			Right	A (A)	0.09 (0.05)	50.7 (51.1)	17 (11)
Morgan's Grant Way		WB	Left	B (A)	0.66 (0.58)	63.8 (60.1)	43 (37)
Chant May			Through	A (A)	0.09 (0.38)	50.7 (54.3)	11 (31)
			Right	A (A)	0.02 (0.29)	50.0 (53.5)	0 (30)
		NB	Left	A (B)	0.43 (0.67)	55.1 (67.3)	m16 (m71)
			Through	A (D)	0.38 (0.90)	8.0 (9.2)	m22 (m206)
			Right	A (A)	0.02 (0.13)	11.3 (0.1)	m0 (m0)
		SB	Left	B (B)	0.66 (0.66)	60.2 (60.2)	59 (59)
			Through	B (A)	0.68 (0.52)	14.6 (23.4)	175 (93)
			Right	A (A)	0.01 (0.01)	7.4 (17.0)	0 (0)
		Overall Intersection		B (D)	0.70 (0.84)	18.6 (22.4)	()
March Road	Signalized	EB	Left	D (C)	0.89 (0.77)	99.8 (63.7)	#42 (55)
and Terry Fox Drive			Through	B (A)	0.63 (0.29)	49.9 (46.3)	67 (29)
FOX Drive			Right	A (A)	0.42 (0.50)	46.7 (49.5)	44 (50)
		WB	Left	A (A)	0.59 (0.56)	67.4 (58.8)	19 (32)
			Through	A (A)	0.18 (0.56)	44.8 (52.8)	20 (46)
			Right	A (A)	0.04 (0.57)	43.5 (54.9)	0 (52)
		NB	Left	B (C)	0.67 (0.73)	56.1 (44.3)	#62 (m39)
			Through	C (F)	0.74 (1.18)	49.0 (<mark>124</mark> .1)	94 (m#276)
			Right	A (A)	0.14 (0.10)	14.3 (14.1)	14 (m4)
		SB	Left	D (B)	0.82 (0.64)	59.2 (58.6)	#163 (54)
			Through	E (B)	0.94 (0.63)	35.3 (46.4)	#209 (94)
			Right	A (A)	0.18 (0.13)	12.5 (92.7)	13 (27)
			Verall Intersection	D (E)	0.89 (0.97)	44.2 (79.0)	()
March Road	Signalized E	EB	Left	A (C)	0.55 (0.74)	70.1 (75.3)	21 (#53)
and Solandt Road			Through	A (A)	0.44 (0.18)	54.1 (50.2)	39 (20)
Noau			Right	A (A)	0.08 (0.53)	8.8 (11.8)	2 (34)
		WB	Left	A (F)	0.38 (1. <mark>54</mark>)	62.2 (<mark>313.3</mark>)	14 (#153)
			Through / Right	B (C)	0.68 (0.72)	63.0 (60.6)	56 (71)
		NB	Left	F (B)	1.76 (0.63)	405.7 (36.8)	#286 (#51)
			Through/Right	F (F)	1.24 (1.45)	145.4 (237.8)	#390 (#543)
		SB	Left	B (A)	0.62 (0.52)	57.9 (69.7)	#83 (#19)
			Through/Right	F (F)	1.37 (1.07)	204.9 (79.1)	#434 (#315)
			Overall Intersection	F (F)	1.31 (1.36)	185.4 (161.3)	()
Solandt Road and	Signalized	EB	Left	A (A)	0.40 (0.17)	9.5 (34.5)	27 (14)
Legget		14/5	Through / Right	A (A)	0.39 (0.04)	9.3 (33.4)	27 (11)
Drive		WB	Left	A (A)	0.03 (0.19)	7.7 (34.6)	3 (16)
			Through / Right	A (A)	0.03 (0.53)	7.7 (38.8)	3 (41)
		NB	Left	A (B)	0.34 (0.69)	11.8 (29.1)	16 (67)
			Through / Right	A (A)	0.38 (0.07)	11.7 (4.5)	26 (10)
		SB	Left	A (A)	0.01 (0.01)	10.0 (16.4)	2 (2)
			Through / Right	A (E)	0.55 (0.97)	13.2 (53.4)	38 (#211)
Torm: Fox	Minor Stop		Overall Intersection	A (C)	0.47 (0.80)	10.9 (41.5)	()
Terry Fox Drive and	Minor Stop	EB	Through / Right	A (A)	0.59 (0.02)	0.0 (0.5)	0 (0)
Legget		WB	Left / Through	A (A)	0.08 (0.57)	3.3 (29.5)	2 (25.6)
Drive		NB	Left / Right	A (A)	0.21 (0.12)	22.0 (0.0)	6 (0)
	Minorator		Verall Intersection	B (A)	0.65 (0.57)	1.5 (5.3)	()
	Minor stop		VB Right	A (A)	0.01 (0.01)	12.0 (0.0)	0 (0)
		L L	NB Through	A (F)	0.60 (1.05)	0.0 (0.0)	0 (0)

Table 19: 2037 Ultimate Intersection Operations

June 7, 2022

March Road			Right	A (A)	0.49 (0.55)	0.0 (0.0)	0 (0)
& Site Access 1		SB	Through	A (A)	0.0 (0.00)	0.0 (0.0)	0 (0)
Access 1		Overall In	itersection	A (D)	0.60 (0.81)	0.0 (0.0)	()
March and	Minor Stop	WB	Right	A (A)	0.01 (0.01)	11.2 (11.9)	0 (0)
Site Access		NB	Through	A (F)	0.52 (<mark>1.03</mark>)	0.0 (0.0)	0 (0)
2			Right	A (A)	0.29 (0.53)	0.0 (0.0)	0 (0)
		SB	Left	A (A)	0.00 (0.00)	0.0 (0.0)	0 (0)
			Through	A (A)	0.00 (0.00)	0.0 (0.0)	0 (0)
		Overall In	tersection	A (C)	0.46 (0.80)	0.0 (0.0)	()
March Road	Minor Stop	WB	Right	A (A)	0.03 (0.04)	11.1 (12.1)	1 (1)
and Site		NB	Through	A (F)	0.52 (1.03)	0.0 (0.0)	0 (1)
Access 3			Right	A (A)	0.26 (0.52)	0.0 (0.0)	0 (0)
		SB	Left	A (A)	0.0 (0.00)	0.0 (0.0)	0 (0)
			Through	A (A)	0.0 (0.00)	0.0 (0.0)	0 (0)
		Overall In	tersection	A (C)	0.45 (0.79)	0.2 (0.1)	()
March Road Signalized	Signalized	EB	Left	A (A)	0.04 (0.09)	39.3 (40.5)	5 (5)
and Site	Ũ		Through	A (A)	0.03 (0.02)	39.2 (39.4)	6 (6)
Access 4		WB	Left	D (C)	0.81 (0.77)	64.3 (58.6)	#65 (82)
			Through	A (D)	0.12 (0.87)	39.9 (68.6)	18 (#113)
		NB	Left	A (A)	0.07 (0.05)	14.7 (3.6)	3 (m0)
			Through	C (F)	0.72 (1.14)	23.0 (73.8)	144 (m41)
			Right	A (A)	0.07 (0.16)	13.6 (0.4)	9 (m0)
		SB	Left	D (A)	0.83 (0.60)	57.9 (69.4)	#89 (m#24)
		0D	Through	C (B)	0.76 (0.68)	9.7 (11.6)	145 (221)
	-	Overall In	itersection	C (F)	0.80 (1.06)	21.1 (48.6)	()
Terry Fox	Stop & Right	EB	Left	A (A)	0.06 (0.03)	8.0 (9.8)	1.4 (0.7)
Drive and	in right out	LD	Len	~ (~)	0.00 (0.03)	0.0 (9.0)	1.4 (0.7)
McKinley			Through/Right	A (A)	0.56 (0.27)	0.0 (0.0)	0.0 (0.0)
Drive (Site		WB	Right/Through	A (A)	0.16 (0.52)	0.0 (0.0)	0.0 (0.0)
Access 5)		NB	Right	A (A)	0.02 (0.01)	16.2 (10.2)	0.4 (0.2)
		SB	Left/Right	C (A)	0.76 (0.32)	52.8 (21.1)	42.7 (10.2)
		Overall In	tersection	C (B)	0.72 (0.58)	7.4 (1.7)	()
Site Access 6	Signalized	EB	Left/Through/ Right	A (A)	0.48 (0.09)	15.8 (11.6)	20 (2)
		WB	Left/Through/ Right	A (A)	0.15 (0.37)	23.7 (22.3)	4 (13)
		NB	Left/Through/ Right	A (A)	0.02 (0.13)	2.8 (4.1)	1 (3)
		SB	Left/Through/ Right	A (A)	0.02 (0.01)	0.7 (0.7)	0 (0)
_			itersection	A (A)	0.45 (0.49)	7.5 (7.5)	()
Legget	Minor Stop		B	A (A)	0.08 (0.39)	12.8 (13.5)	2 (14)
Drive and Site Access			NB	A (A)	0.01 (0.00)	1.6 (0.0)	0 (0)
7			SB	A (A)	0.41 (0.10)	0.0 (0.0)	0 (0)
			itersection	A (A)	0.48 (0.32)	0.7 (5.5)	()
Legget	Minor Stop	EB	Left / Right	A (A)	0.06 (0.35)	10.8 (12.1)	2 (12)
Drive and		NB	Left/ Through	A (A)	0.00 (0.00)	1.0 (0.2)	0 (0)
Site Access 8		SB	Through/Right	A (A)	0.22 (0.13)	0.0 (0.0)	0 (0)
0		Overall In	tersection	A (A)	0.29 (0.33)	1.1 (5.0)	()

Notes:

Table format: AM (PM) 1.

2.

3.

v/c – represents the anticipated volume divided by the predicted capacity # 95th percentile volume exceeds capacity; queue may be longer. Queue shown is maximum after two cycles Level of Service (LOS) calculation is based on volume-to-capacity (v/c) ratios for signalized intersections and delays 4. for unsignalized intersections

Multi-Modal Level of Service Assessment- 2037 Ultimate MMLOS

A multi-modal level of service (MMLOS) assessment was completed for the signalized intersection within the study area under 2037 existing conditions. The results of this analyses can be found in **Table 20** below.

Intersection		PLOS	BLOS	TLOS	TkLOS	VLOS
March Road at Morgan's Grant Way	Ultimate	F	F	С	С	F
	Target	С	В	D	D	D
March Road at Terry	Ultimate	F	F	С	А	F
Fox Drive	Target	С	В	D	В	D
March Road at	Ultimate	F	F	С	С	F
Solandt Road	Target	С	C	D	В	D
Solandt Road at	Ultimate	F	E	С	С	С
Legget Drive	Target	С	С	D	D	D

Table 20 - 2037 Ultimate - Multi- Modal Level of Service Assessment

As per the City of Ottawa's TMP, the March Road Bus Rapid Transit (BRT) is scheduled to be implemented by 2031, between Solandt Road and Highway 417. The subject development is planned to be built and occupied by 2032. The office portion of the subject development is anticipated to be within 400m of the planned BRT station at Solandt Road. Per direction from the City of Ottawa, the March Road BRT, north of Solandt Road, is scheduled to occur beyond the horizons of this subject study (i.e., post 2037). The residential / retail portion of the subject development (north half) are not anticipated to be within 400m of a rapid transit station during the study horizons. As such, the modal shares for the northern and southern portions of the subject development will differ as a direct result of the implementation plan of the March Road BRT.

The multi-modal level of service (MMLOS) targets at intersections are determined by taking the most stringent of the MMLOS targets for each individual roadway segment.

March Road and Morgan's Grant Way

The Pedestrian Level of Service (PLOS) is projected to operate with a PLOS of F, which does not meet the desired target of C for both the Arterial and Collector Roadway. PLOS is largely influenced by the number of lanes pedestrians cross. Due to the nature of arterial roads, reducing the number of lanes at the intersection is not a feasible option. Incorporating other improvements such as pedestrian leading intervals or reducing the corner radii are not expected to highly improve the PLOS to the desired targets and will have minimal impacts to the PLOS.

June 7, 2022

The Ultimate Cycling Network from the City of Ottawa's Cycling Plan (2013) designates March Road as a spine cycling route. The intersection is therefore subject to a Bicycle Level of Service (BLOS) target of D.

The Vehicular Level of Service (VLOS) is projected to operate with a VLOS of F, which does not meet the desired target of D. Increasing the number of lanes at this intersection would increase capacity and thus improve the VLOS, however, it would be to the detriment of the other modes of transportation and is therefore not recommended.

Once the aforementioned transit priority measures and BRT are completed, the operations and lane geometry at this intersection will change. It is therefore not recommended to address the MMLOS at this time.

The March Road BRT will support growth along March Road, by providing fast, reliable, comfortable service which is an attractive alternative to the automobile; and supplying increased transportation network capacity necessary to support increased development densities in designated areas including this proposed development.

March Road and Terry Fox Drive

The intersection of March Road and Terry Fox Drive is situated in an Urban Employment Area with March Road being classified as an arterial roadway and Terry Fox Drive classified as a major collector roadway across the frontage of the subject site. Based on these classifications, the governing Pedestrian Level of Service (PLOS) target is C (for a Urban Employment Area). The intersection of March Road and Terry Fox Drive is projected to operate with a Pedestrian Level of Service (PLOS) of F, which does not meet the target of C. This is attributed to the 130s cycle length during the PM peak period coupled with the short effective walk times in the east-west direction due to the 28s phase length. Another contributing factor is the high number of lanes that have to be crossed by pedestrians (10+ lanes) along all the legs of the intersection. Reducing the cycle length and the number of lanes on March Road and Terry Fox Drive and incorporating raised crosswalks at this intersection would improve the PLOS based on the PETSI score. To improve the PLOS based on the pedestrian delay, the cycle length would need to be greatly reduced. Although these methods would improve the PLOS at this intersection, they are not feasible options as they would be to the detriment of the vehicles. It is noted that the future March Road cross section (2031 and beyond) will see different infrastructure and lane arrangements.

The Bicycle Level of Service (BLOS) at the intersection of March Road and Terry Fox Drive is projected to operate with a BLOS of F, which does not meet the target of B. Methods for improving the BLOS at this intersection include reducing the speed limit and number of lanes along March Road and Terry Fox Drive, but this approach is not feasible as it would be to the detriment of the vehicles on the roadway. Another method for improving the BLOS operations would be to install multi-use pathways with two-stage left turns. It is noted that the future March Road cross section (2031 and beyond) will see different infrastructure and lane arrangements.

Once the aforementioned transit priority measures and BRT are completed, the operations and lane geometry at this intersection will change. It is therefore not recommended to address the MMLOS at this time.

March Road at Solandt Road

The Pedestrian Level of Service (PLOS) is projected to operate with a PLOS of F, which does not meet the desired target of C. Based on the MMLOS guidelines, intersection PLOS is largely influenced by the number of lanes pedestrians cross. Due to the nature of arterial roads, reducing the number of lanes at the intersection is not a feasible

option. Incorporating other improvements such as pedestrian leading intervals or reducing the corner radii are not expected to highly improve the PLOS to the desired targets and will have minimal impacts to the PLOS.

The Bicycle Level of Service (BLOS) at the intersection of March Road and Solandt Road is projected to operate with a BLOS of F, which does not meet the target of C. Methods for improving the BLOS at this intersection include reducing the speed limit and number of lanes along March Road and Solandt Road, but this approach is not feasible as it would be to the detriment of the vehicles on the roadway. Another method for improving the BLOS operations would be to install multi-use pathways with two-stage left turns. It is noted that the future March Road cross section (2031 and beyond) will see different infrastructure and lane arrangements.

The Transit Level of Service (TLOS) at the intersection of March Road and Solandt Road is projected to operate with a TLOS of C, which meets the target of D.

The Truck Level of Service (TkLOS) at the intersection of March Road and Solandt Road is projected to operate with a TkLOS of C, which meets the desired target of D.

The Vehicular Level of Service (VLOS) is projected to operate with a VLOS of F, which does not meet the desired target of D. Increasing the number of lanes at this intersection would increase capacity and thus improve the VLOS, however, would not be possible with the implementation of the March Road BRT. It is anticipated that as transit ridership increases the VLOS will improve.

Solandt Road at Legget Drive

The PLOS is projected to operate with a PLOS of F, which does not meet the desired target of C. No conceptual measures will reduce the pedestrian crossing delay and no geometric changes will improve the PETSE scores.

Solandt at Legget Drive is projected to be a local route by the City of Ottawa's Ultimate Cycling Plan which is likely to improve the level of service to meet the target of C for the Bicycle Level of Service (BLOS) at the intersection of Solandt Road and Legget Drive

The Transit Level of Service (TLOS), Truck Level of Service (TkLOS) and Vehicular Level of Service (VLOS) all meet the required targets for their respective roadways.

4.9.3 Summary of Required Road Improvements

According to *Appendix E of the March Road BRT* study, the implementation of the March Road BRT will significantly assist in buses encountering less delays when operating in a dedicated transit facility compared to a mixed-use roadway. The queue length transit priority measure up-stream of March/Solandt intersection was found to have limited benefit because of the residual northbound left- turning queues at March and Terry Fox Drive intersection. There is also an opportunity to minimize the impact of auto delays/queues by providing a two-stage pedestrian crossing associated with a median in place. Reducing the east/west pedestrian clearance times to facilitate the two-stage pedestrian crossing, green time can be provided to the major northbound and south bound movements in form of additional capacity.

The construction of the March Road BRT improves the modal splits from Section 4.2 (Table 8) of the *TRANS Trip Generation Summary Report* reducing the auto driver split for the area by 12% and increasing the transit split by 12%

for the office trips and 9% increase in transit split percentage for retail trips. The supplemental transportation demand management measures discussed in **Section 4.5** are expected to reduce the auto trips generated by the proposed development in the future.

5.0 SUMMARY AND CONCLUSIONS

This Transportation Impact Assessment (TIA) was prepared in support of a Zoning By-Law Amendment application for a proposed mixed-use development to be build out by 2032. The proposed development is located at 600 March Road (southeast quadrant of the March Road at Terry Fox Drive intersection) in the Brookside-Briarbrook-Morgan's Grant community in Kanata, Ontario. The current development concept consists of eleven residential buildings, six of which have a commercial component, as well as two office buildings, which both have a commercial component. It should be noted that this concept plan is subject to change as the development proceeds through the approvals process. The site is bound by an existing office building to the south, March Road to the west, Legget Drive to the east, and Terry Fox Drive to the north.

Bicycle lanes will be provided along the March Road corridor to encourage active mode of transportation within the area. Bicycle lanes will be designed as a segregated facility during detail design stage of the project.

The March Road BRT will support growth along March Road, by providing fast, reliable, comfortable service which is an attractive alternative to the automobile; and supplying increased transportation network capacity necessary to support increased development densities in designated areas including this proposed development.

The proposed development is anticipated to generate 1358 and 1305 net new auto trips (two-way) during the AM and PM peak hours, respectively. As the subject site currently includes office space, the trip generation for the existing office building was calculated to be 552 during the am peak hour and 442 during the pm peak hour and subsequently removed from the transportation network. This is to avoid double counting the future trips associated with this development parcel.

The trip generation accounted for transit modal shares observed in the TRANS 2011 O-D Survey, and as such, resulted in a slightly conservative analysis of total and ultimate future conditions, however due to the construction of the March Road BRT, the targets were adjusted accordingly reducing the auto driver split by 12% and increasing the transit split by 12% for the office trips and 9% increase in transit split percentage for retail trips. The supplemental transportation demand management measures discussed in **Section 4.5** are expected to reduce the auto trips generated by the proposed development in the future.

Applying the concept of demand rationalization, the traffic was reduced by 15% during the year 2032 due to peak spreading (flexible work schedules), telecommuting, and the expansion of the BRT line to the west.

The analysis of the study area intersections under the base year (2032 background traffic) conditions found that the signalized intersection of March Road and Terry Fox Drive has a number of movements that are expected to operate at capacity with an overall LOS of E during both the AM and PM peak hours. The southbound left movement was found to operate with a v/c ratio of 1.14 and a delay of 136s. At the signalized intersection of March Road and Solandt Road,

600 March Road Transportation Impact Assessment Summary and conclusions

June 7, 2022

the analysis found that the overall intersection LOS is F during both the AM and PM peak hours. The westbound and northbound left turn movements will operate over capacity with excessive delays during both AM and PM peak hours. All remaining study area intersections were found to operate satisfactorily.

Under the 2032 total future conditions, carrying forward the demand rationalization and signal timing plan improvements from the future background conditions, the analysis found that the operations in the study area are not projected to significantly change as a result of the addition of the site traffic. The signalized intersection of March Road and Terry Fox Drive has a number of movements that are expected to operate at capacity with an overall intersection LOS of E during both the AM and PM peak hours. The signalized intersection of March Road and Solandt Drive will continue to operate with several movements over capacity and overall intersection LOS of F during both the AM and PM Peak hours. The newly signalized intersection of March Road and Ste Access #4 along with the remaining study area intersections are anticipated to operate satisfactorily.

Under the 2037 ultimate future conditions, March Road in the vicinity of the subject site is expected to see numerous cross-sectional changes. By this horizon, the median BRT system is anticipated to be finalized.

Traffic operations under the 2037 ultimate horizon are similar to that of the 2032 total traffic horizon. The intersection operations of March Road and Terry Fox Drive will slightly improve with an overall intersection LOS D during the AM peak hour and E during the PM peak hour. The intersection of March Road and Solandt Drive will continue to operate at LOS F during both the AM and PM peak hours with slight improvements to the delays at the intersection in both the northbound and southbound directions.

The TMP sets the objective of increasing the walking modal share across the city from 9.5% in 2011 to 10% in 2031 for the morning peak period. This increase reflects the City's strategic direction to build compact, mixed-use developments. In 2009, the City released the final Ottawa Pedestrian Plan. The goals and objectives of the plan include recommendations to:

- Increase the pedestrian modal share across the city.
- Develop and integrated network of pedestrian facilities that includes sidewalks, pathways and pedestrian friendly spaces throughout the city, providing connections to important destinations and transit facilities.

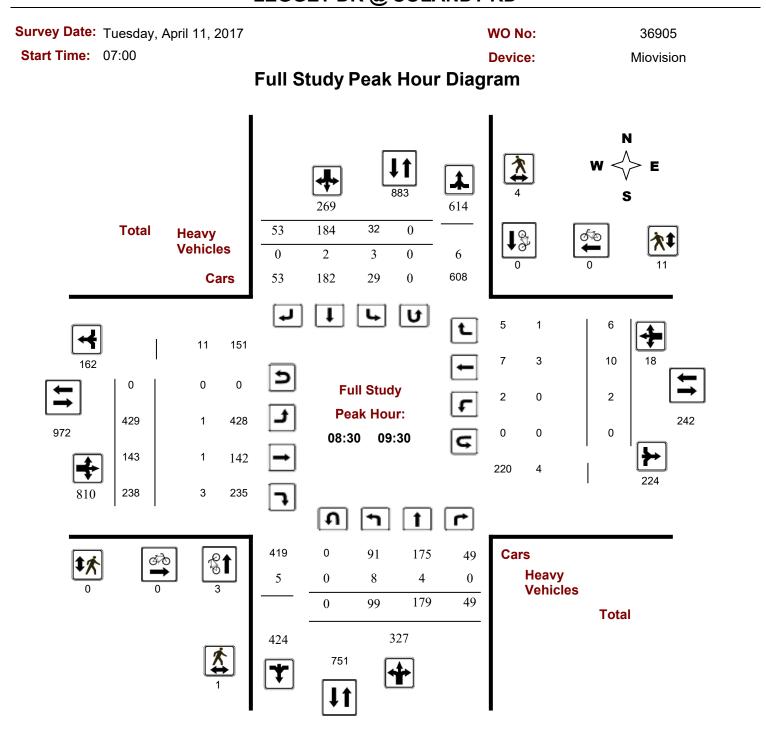
Considering this and the future BRT Sidewalks will be widened and enhanced ladder style crosswalks at intersections installed that will encourage pedestrian activity. Achieving target PLOS is difficult along the corridor due to the crossing distances. This development will benefit from these enhancements.

The future plans for March Road by the city is for bicycle lanes to be provided along the corridor to encourage active mode of transportation within the area. Bicycle lanes are planned to be designed as a segregated facility during detail design stage of the project. Separating the cycling facility from the general purpose lanes will help increase the BLOS. This development will benefit from these enhancements.

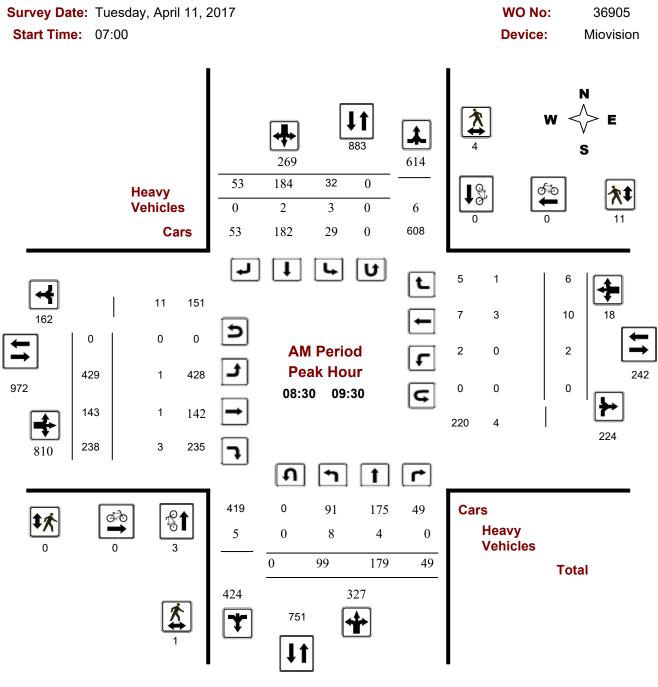
The March Road BRT will support growth along March Road, by providing fast, reliable, comfortable service which is an attractive alternative to the automobile; and supplying increased transportation network capacity necessary to support increased development densities in designated areas including this proposed development.

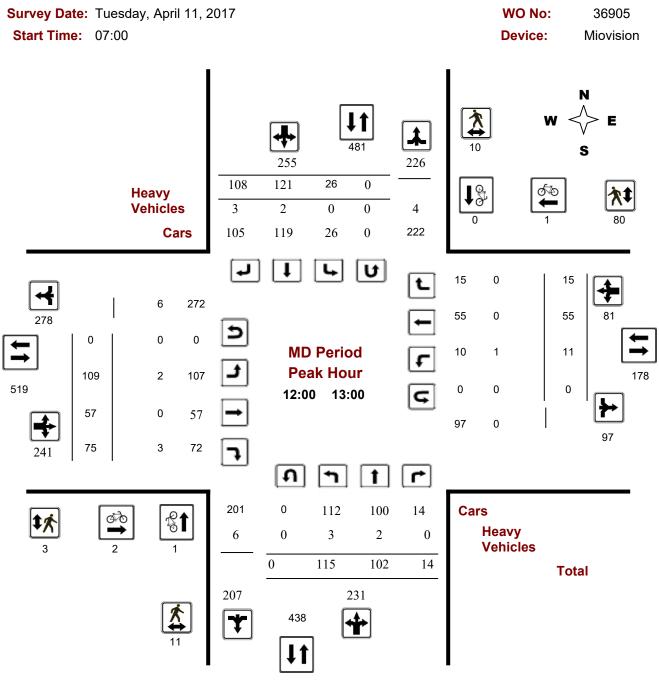
600 March Road Transportation Impact Assessment Summary and conclusions June 7, 2022

In conclusion, the analysis found that the background traffic in the area is a major factor behind the deteriorated operations at the intersections Terry Fox and March Road, and March Road and Solandt Road. The development generated site traffic was found to result in some impact to the overall traffic operations in the area. The analysis found that with signal timing and offset optimizations, the signalized study area intersections are projected to operate acceptably. From a transportation standpoint, the proposed development at 600 March Road can be accommodated by the future transportation network without requiring geometric improvements. Signal timing plan improvements are anticipated to be required by the years 2032 and 2037.


600 March Road Transportation Impact Assessment Appendices June 7, 2022

Appendix A TRAFFIC DATA





Turning Movement Count - Peak Hour Diagram LEGGET DR @ SOLANDT RD

Turning Movement Count - Peak Hour Diagram LEGGET DR @ SOLANDT RD

Turning Movement Count - Peak Hour Diagram LEGGET DR @ SOLANDT RD

Survey D	ate: ⊺	uesda	y, Apr	il 11, 2	017							WO I	No:			36	905		
Start Tin	ne: 0	7:00										Devi	ce:			Miov	vision		
				F	ull S	Stud	y Sı	umma	ary (8	B HR	Sta	ndar	d)						
Survey Da	ate:	Tuesda	ay, Ap				-					Turns					AAD.	T Facto	or
							Ν	lorthbour	nd: 2		Sout	hbound:	0				.90		
								Eastboun	id: 0		Wes	tbound:	0				.,,,		
	No	rthboui	nd		So	uthbou	und			E	astbou	und		W	estboi	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grano Tota
07:00 08:00	25	100	12	137	11	98	36	145	282	309	86	137	532	3	6	3	12	544	826
08:00 09:00	84	161	36	281	37	207	59	303	584	427	147	213	787	5	8	3	16	803	1387
09:00 10:00	69	147	37	253	29	132	49	210	463	372	113	173	658	1	17	6	24	682	114
11:30 12:30	129	116	13	258	14	89	131	234	492	91	37	47	175	13	68	25	106	281	773
12:30 13:30	68	68	12	148	23	117	94	234	382	131	67	110	308	7	35	8	50	358	740
15:00 16:00	96	67	4	167	5	110	201	316	483	90	12	52	154	23	54	12	89	243	726
16:00 17:00	212	96	3	311	5	238	419	662	973	74	12	43	129	35	124	17	176	305	1278
17:00 18:00	270	106	1	377	1	216	375	592	969	40	11	56	107	37	146	5	188	295	1264
Sub Total	953	861	118	1932	125	1207	1364	2696	4628	1534	485	831	2850	124	458	79	661	3511	8139
U Turns	2			2	0			0	2	0			0	0			0	0	2
Total	955	861	118	1934	125	1207	1364	2696	4630	1534	485	831	2850	124	458	79	661	3511	8141
EQ 12Hr Note: These	1327 values a	1197 re calcul	164 lated by	2688 / multiply	174 /ing the	1678 totals b	1896 by the a	3748 ppropriate	6436 e expans	2132 sion fact	674 or.	1155	3961	172 1.39	637	110	919	4880	11316
AVG 12Hr	1194	1077	148	2419	157	1510	1706	3373	5792	1919	607	1040	3566	155	573	99	827	4393	10185
Note: These	volumes	are calo	ulated	by multip	olying th	ne Equiv	alent 1	2 hr. tota	ls by the	AADT f	actor.			.90					
AVG 24Hr	1564	1411	194	3169	206	1978	2235	4419	7588	2514	795	1362	4671	203	751	130	1084	5755	13343
Note: These														1.31					

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

Survey Da	ate: T	uesda	ay, Apr	il 11,	2017								wo	No:			3	6905	
Start Tim	e: 0	7:00											Dev	ice:			Mio	ovisior	1
						F	ull S	stud	v 1!	5 Mii	nute	Inc	rem	ent	S				
						•		, tuu	,			,		Unit					
	N	orthbo	und		Sc	outhbou	nd			F	astbour	hd		\٨/	estbour	hd			
				N				S	STR				Е				w	STR	Grand
Time Period	LT	ST	RT	тот	LT	ST	RT	тот	тот	LT	ST	RT	тот	LT	ST	RT	тот	тот	Total
07:00 07:15	5 9	19	3	31	2	16	7	25	56	40	11	27	78	1	3	0	4	82	138
07:15 07:30) 5	17	6	28	4	23	4	31	59	72	16	22	110	1	2	1	4	114	173
07:30 07:45	5 7	32	2	41	3	29	8	40	81	77	29	31	137	1	1	1	3	140	221
07:45 08:00) 5	32	1	38	2	30	17	49	87	120	30	57	207	0	0	1	1	208	295
08:00 08:15	5 13	32	13	58	3	45	12	60	118	116	39	43	198	2	3	0	5	203	321
08:15 08:30) 17	35	5	57	16	61	15	92	149	104	42	50	196	1	0	1	2	198	347
08:30 08:45	5 27	47	10	84	10	59	14	83	167	105	35	62	202	1	1	1	3	205	372
08:45 09:00) 27	47	8	82	8	42	18	68	150	102	31	58	191	1	4	1	6	197	347
09:00 09:15	5 23	35	18	76	6	38	11	55	131	108	49	59	216	0	1	0	1	217	348
09:15 09:30) 22	50	13	85	8	45	10	63	148	114	28	59	201	0	4	4	8	209	357
09:30 09:45	5 13	34	4	51	10	27	16	53	104	81	20	35	136	0	8	1	9	145	249
09:45 10:00) 11	28	2	41	5	22	12	39	80	69	16	20	105	1	4	1	6	111	191
11:30 11:45	5 34	19	5	58	0	18	34	52	110	24	5	11	40	4	17	6	27	67	177
11:45 12:00) 28	30	1	59	2	17	37	56	115	23	7	16	46	2	18	7	27	73	188
12:00 12:15	5 39	39	1	79	7	23	38	68	147	22	8	10	40	3	25	4	32	72	219
12:15 12:30) 29	28	6	63	5	31	22	58	121	22	17	10	49	4	8	8	20	69	190
12:30 12:45	5 27	16	1	44	6	30	28	64	108	32	17	25	74	3	17	1	21	95	203
12:45 13:00) 20	19	6	45	8	37	20	65	110	33	15	30	78	1	5	2	8	86	196
13:00 13:15	5 14	15	2	31	4	26	25	55	86	38	24	32	94	2	4	4	10	104	190
13:15 13:30) 7	18	3	28	5	24	21	50	78	28	11	23	62	1	9	1	11	73	151
15:00 15:15	5 23	15	3	41	1	13	32	46	87	13	4	14	31	5	7	3	15	46	133
15:15 15:30) 15	17	0	32	3	24	45	72	104	16	1	13	30	2	13	3	18	48	152
15:30 15:45	5 26	17	0	43	1	31	70	102	145	35	5	10	50	11	24	2	37	87	232
15:45 16:00) 32	18	1	51	0	42	54	96	147	26	2	15	43	5	10	4	19	62	209
16:00 16:15	5 40	26	1	67	1	68	115	184	251	22	5	11	38	7	33	8	48	86	337
16:15 16:30) 52	22	0	74	2	49	83	134	208	16	3	11	30	5	28	1	34	64	272
16:30 16:45	52	25	2	79	2	56	104	162	241	21	1	7	29	13	34	4	51	80	321
16:45 17:00	68	23	0	91	0	65	117	182	273	15	3	14	32	10	29	4	43	75	348
17:00 17:15	5 94	31	1	126	0	66	121	187	313	12	3	13	28	9	46	0	55	83	396
17:15 17:30) 76	27	0	103	1	59	104	164	267	8	3	20	31	12	37	1	50	81	348
17:30 17:45	56	26	0	82	0	54	83	137	219	10	3	12	25	10	38	2	50	75	294
17:45 18:00) 44	22	0	66	0	37	67	104	170	10	2	11	23	6	25	2	33	56	226
Total:	955	861	118	1934	125	1207	1364	2696	4630	1534	485	831	2850	124	458	79	661	4630	8,141

Note: U-Turns are included in Totals.

Survey Date: Tuesday, April 11, 2017

WO No:

36905

Start Time: 07:00

Device:

Miovision

Full Study Cyclist Volume

Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	1	0	1	0	0	0	1
07:15 07:30	0	0	0	0	0	0	0
07:30 07:45	0	1	1	0	0	0	1
07:45 08:00	1	0	1	0	0	0	1
08:00 08:15	0	0	0	0	0	0	0
08:15 08:30	0	0	0	1	0	1	1
08:30 08:45	0	0	0	0	0	0	0
08:45 09:00	0	0	0	0	0	0	0
09:00 09:15	3	0	3	0	0	0	3
09:15 09:30	0	0	0	0	0	0	0
09:30 09:45	1	0	1	1	0	1	2
09:45 10:00	0	0	0	0	0	0	0
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	0	0	0	0	0	0	0
12:00 12:15	1	0	1	0	1	1	2
12:15 12:30	0	0	0	0	0	0	0
12:30 12:45	0	0	0	1	0	1	1
12:45 13:00	0	0	0	1	0	1	1
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	0	0	0	0	0	0	0
15:15 15:30	0	0	0	0	0	0	0
15:30 15:45	0	0	0	0	0	0	0
15:45 16:00	0	0	0	0	0	0	0
16:00 16:15	0	0	0	0	0	0	0
16:15 16:30	0	0	0	0	0	0	0
16:30 16:45	0	0	0	0	0	0	0
16:45 17:00	0	0	0	0	0	0	0
17:00 17:15	0	0	0	0	0	0	0
17:15 17:30	0	0	0	0	0	0	0
17:30 17:45	0	3	3	0	0	0	3
17:45 18:00	0	1	1	0	0	0	1
Total	7	5	12	4	1	5	17

Survey Da Start Tim	i te: Tuesday, Ap e: 07:00	oril 11, 2017			WO No: Device:		36905 Miovision
		F	ull Study	y Pedestriar	n Volume		
Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total

(-	o	(<u>_</u> 0. 11 0.000g)		((
07:00 07:15	0	0	0	0	0	0	0
07:15 07:30	0	0	0	0	1	1	1
07:30 07:45	0	1	1	1	2	3	4
07:45 08:00	0	0	0	0	0	0	0
08:00 08:15	3	3	6	0	7	7	13
08:15 08:30	2	2	4	2	2	4	8
08:30 08:45	0	1	1	0	1	1	2
08:45 09:00	0	2	2	0	1	1	3
09:00 09:15	1	1	2	0	2	2	4
09:15 09:30	0	0	0	0	7	7	7
09:30 09:45	0	0	0	0	0	0	0
09:45 10:00	0	0	0	0	2	2	2
1:30 11:45	1	2	3	0	5	5	8
11:45 12:00	1	1	2	2	10	12	14
12:00 12:15	0	1	1	1	14	15	16
12:15 12:30	4	0	4	1	23	24	28
12:30 12:45	3	5	8	0	23	23	31
12:45 13:00	4	4	8	1	20	21	29
13:00 13:15	0	2	2	1	11	12	14
13:15 13:30	1	0	1	0	5	5	6
15:00 15:15	2	2	4	0	5	5	9
15:15 15:30	0	0	0	0	4	4	4
15:30 15:45	0	0	0	5	0	5	5
15:45 16:00	0	0	0	0	3	3	3
16:00 16:15	1	0	1	0	1	1	2
16:15 16:30	0	0	0	0	3	3	3
16:30 16:45	1	0	1	0	2	2	3
16:45 17:00	1	1	2	0	3	3	5
7:00 17:15	2	0	2	0	3	3	5
17:15 17:30	2	2	4	2	5	7	11
17:30 17:45	2	0	2	2	7	9	11
17:45 18:00	0	0	0	1	1	2	2
Total	31	30	61	19	173	192	253

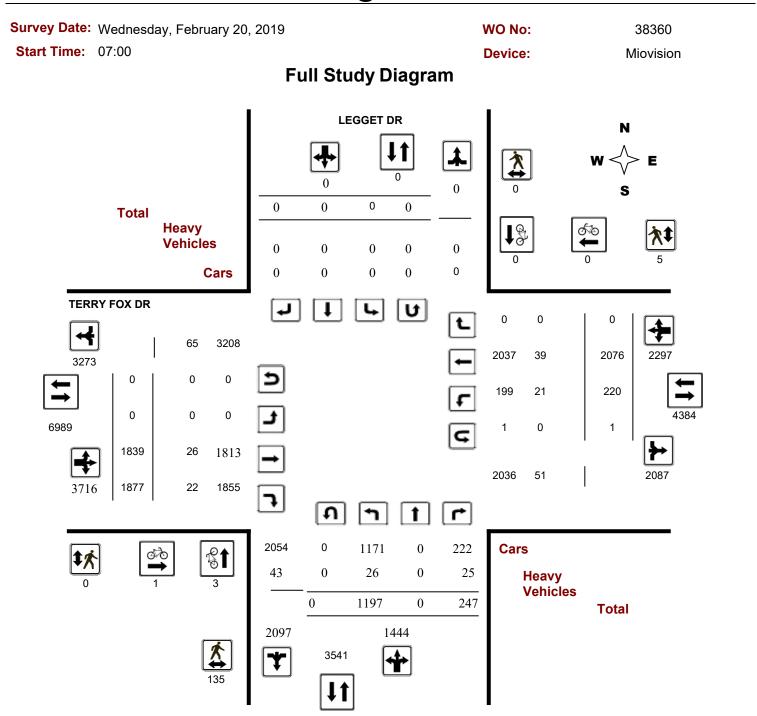
Survey Date: Tuesday, April 11, 2017 WO No: Start Time: 07:00 **Device:** Miovision **Full Study Heavy Vehicles** Northbound Southbound Eastbound Westbound Ν S STR Е w STR Grand LT RT LT ST RT Time Period ST RT ST RT LT ST тот тот тот тот тот LT тот Total 07:00 07:15 07:15 07:30 07:30 07:45 07:45 08:00 08:00 08:15 08:15 08:30 08:30 08:45 08:45 09:00

09:00 09:15 1 1 0 1 3 0 0 2 2 0 1	06.45	09.00	ა	0	0	3	I	U	U		4	0	1		2	0		0		3	1
09:30 09:45 0 2 0 1 1 2 4 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	09:00	09:15	1	1	0	2	0	1	0	1	3	0	0	2	2	0	0	0	0	2	5
09:45 10:00 1 2 0 3 1 1 1 3 6 1 0 1 2 0 1 0 1 3 9 11:30 11:45 2 1 2 5 0 2 1 3 8 0 1 1 2 0 2 4 12 11:45 12:00 1 1 0 2 0 2 4 0 0 1 1 0 0 1 5 12:00 12:15 1 0 0 1 0 1 0 1 2 1 0 0 1 3 6 12:15 1:230 0 1 0 1 1 0 1 2 0 0 1 2 0 0 1 3 6 1 1 0 0 0 1 3 1 1 1 1 1 0 0 0 1 1 1 1	09:15	09:30	2	0	0	2	2	1	0	3	5	0	0	0	0	0	1	1	2	2	7
11:30 11:45 2 1 2 5 0 2 1 3 8 0 1 1 2 0 2 4 12 11:45 12:00 1 1 0 2 0 2 0 2 4 0 0 1 1 0 0 1 5 12:00 12:15 1 0 0 1 0 1 0 1 0 0 1 3 6 12:15 12:30 0 1 0 1 0 1 1 0 1 0 0 1 3 6 12:45 1 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 1 3 1 3 4 13 1 <	09:30	09:45	0	2	0	2	0	1	1	2	4	0	0	1	1	0	1	0	1	2	6
11:45 12:00 1 1 0 2 0 2 4 0 0 1 1 0 0 1 5 12:00 12:15 1 0 0 1 0 0 1 2 1 0 0 1 3 6 12:15 12:30 0 1 0 1 0 1 2 1 0 0 1 3 6 12:15 12:30 0 1 0 1 0 1 2 1 0 0 1 0 0 1 1 0 0 1 3 6 1 0 <td>09:45</td> <td>10:00</td> <td>1</td> <td>2</td> <td>0</td> <td>3</td> <td>1</td> <td>1</td> <td>1</td> <td>3</td> <td>6</td> <td>1</td> <td>0</td> <td>1</td> <td>2</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>3</td> <td>9</td>	09:45	10:00	1	2	0	3	1	1	1	3	6	1	0	1	2	0	1	0	1	3	9
12:00 12:15 1 0 0 1 0 0 2 2 3 1 0 1 2 1 0 0 1 3 6 12:15 12:30 0 1 0 1 0 1 0 1 2 1 0 0 1 0 0 1 3 6 12:15 12:30 0 1 0 0 1 1 0 1 1 0 0 1 3 0 0 0 1 0 0 1 3 0 1 1 1 0 0 0 <t< th=""><td>11:30</td><td>11:45</td><td>2</td><td>1</td><td>2</td><td>5</td><td>0</td><td>2</td><td>1</td><td>3</td><td>8</td><td>0</td><td>1</td><td>1</td><td>2</td><td>0</td><td>2</td><td>0</td><td>2</td><td>4</td><td>12</td></t<>	11:30	11:45	2	1	2	5	0	2	1	3	8	0	1	1	2	0	2	0	2	4	12
12:15 12:30 0 1 0 1 0 1 2 1 0 0 1 0 0 1 3 12:30 12:45 1 0 0 1 1 2 0 0 2 2 0 0 0 0 2 4 12:45 13:00 1 1 0 2 0 1 1 2 0 1 <t< th=""><td>11:45</td><td>12:00</td><td>1</td><td>1</td><td>0</td><td>2</td><td>0</td><td>2</td><td>0</td><td>2</td><td>4</td><td>0</td><td>0</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>5</td></t<>	11:45	12:00	1	1	0	2	0	2	0	2	4	0	0	1	1	0	0	0	0	1	5
12:30 12:45 1 0 0 1 1 2 0 0 2 2 0 0 0 0 2 4 12:45 13:00 1 1 0 2 0 1 0 1 3 0 0 0 0 0 0 0 3 13:00 13:15 1 0 0 1 0 0 1 1 0 0 1 1 3 4 13:15 1 0 0 1 0 1 1 1 1 0 0 1 4 5 15:0 15:15 1 0 0 1 0 0 1 1 1 1 1 1 1 4 5 15:15 1 0 0 1 1 1 3 6 1 1 3 0 0 1 1 4 5 15:30 1 2 0 3 1 1 <td>12:00</td> <td>12:15</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>2</td> <td>2</td> <td>3</td> <td>1</td> <td>0</td> <td>1</td> <td>2</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>3</td> <td>6</td>	12:00	12:15	1	0	0	1	0	0	2	2	3	1	0	1	2	1	0	0	1	3	6
12:45 13:00 1 1 0 1 0 1 3 0 1 1 0 1 1 0 0 0 0 1	12:15	12:30	0	1	0	1	0	1	0	1	2	1	0	0	1	0	0	0	0	1	3
13:00 13:15 1 0 0 1 0 1 1 1 0 1 1 3 4 13:15 13:30 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 3 4 13:15 13:30 0 1 1 0 0 1 1 1 1 0 0 0 1 4 15:00 15:15 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 5 15:15 15:30 1 2 0 3 6 1 1 3 5 0 0 0 5 11 15:45 2 1 0 3 1 1 1 3 6 1 1 3 0 0 1 1 4 5 16:00 16:15 1	12:30	12:45	1	0	0	1	0	0	1	1	2	0	0	2	2	0	0	0	0	2	4
13:15 13:30 0 1 1 0 1 1 0 0 1 1 0 0 1 4 15:00 15:15 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 4 5 15:15 1 0 0 1 2 0 3 6 0 0 0 0 1 4 5 15:15 15:30 1 2 0 3 6 0 0 0 0 0 0 1 1 2 2 8 15:30 15:45 2 1 0 3 1 1 1 3 6 1 1 3 0 0 0 0 5 11 15:45 16:00 0 0 1 1 0 2 3 2 1 0 3 0 1 1 4 5 5 11 16	12:45	13:00	1	1	0	2	0	1	0	1	3	0	0	0	0	0	0	0	0	0	3
15:00 15:15 1 0 0 1 0 0 0 1 1 1 1 1 3 0 0 1 1 4 5 15:15 15:30 1 2 0 3 1 2 0 3 6 0 0 0 0 1 1 2 2 8 15:30 15:45 2 1 0 3 1 1 1 3 6 1 1 3 5 0 0 0 5 11 15:45 2 1 0 3 1 1 1 3 6 1 1 3 0 0 0 0 5 11 15:45 1 0 0 1 1 0 1 1 1 2 0 1 1 2 3 6 9 16:45 1 2 3 6 9 16:45 1 1 1 1 1 1 1	13:00	13:15	1	0	0	1	0	0	0	0	1	1	0	1	2	0	0	1	1	3	4
15:15 15:30 1 2 0 3 6 0 0 0 0 1 1 2 2 8 15:30 15:45 2 1 0 3 1 1 1 3 6 1 1 3 5 0 1 1 3 6 1 1 3 5 0 0 0 0 5 11 15:45 16:00 0 0 0 1 1 0 2 3 2 1 0 3 0 1 1 2 3 6 9 16:15 16:30 0 0 0 1 1 2 3 3 0 1 1 2 3 3 1 1 1 <td>13:15</td> <td>13:30</td> <td>0</td> <td>1</td> <td>1</td> <td>2</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>3</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>4</td>	13:15	13:30	0	1	1	2	0	1	0	1	3	0	0	1	1	0	0	0	0	1	4
15:30 15:45 2 1 0 3 1 1 1 3 6 1 1 3 5 0 0 0 0 5 11 15:45 16:00 0 0 0 0 1 0 1 1 2 0 1 3 0 0 1 1 4 5 16:00 16:15 1 0 0 1 1 0 2 3 2 1 0 3 0 1 1 4 5 16:00 16:15 1 0 0 1 1 0 2 3 2 1 0 3 0 1 4 5 16:15 16:30 0 0 0 1 1 1 1 2 0 0 2 0 0 2 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15:00	15:15	1	0	0	1	0	0	0	0	1	1	1	1	3	0	0	1	1	4	5
15:45 16:00 0 0 0 1 0 1 1 2 0 1 3 0 0 1 1 4 5 16:00 16:15 1 0 0 1 1 0 2 3 2 1 0 3 0 1 2 3 6 9 16:15 1 0 0 1 1 1 0 2 3 2 1 0 3 0 1 2 3 6 9 16:15 16:30 0 0 0 0 1 2 3 3 0 1 1 2 0 0 0 0 2 5 16:30 16:45 0 0 0 0 1 1 1 2 0 0 2 0 0 2 3 3 1 1 1 1 1 1 5 7 1 16:45 0 0 0 1 1	15:15	15:30	1	2	0	3	1	2	0	3	6	0	0	0	0	0	1	1	2	2	8
16:00 16:15 1 0 0 1 1 1 0 2 3 2 1 0 3 0 1 2 3 6 9 16:15 16:30 0 0 0 0 1 2 3 3 0 1 1 2 3 6 9 16:15 16:30 0 0 0 0 1 2 3 3 0 1 1 2 0 0 0 0 2 5 16:30 16:45 0 0 0 0 1 0 1 1 2 0 0 2 0 0 2 3 3 0 1 <td>15:30</td> <td>15:45</td> <td>2</td> <td>1</td> <td>0</td> <td>3</td> <td>1</td> <td>1</td> <td>1</td> <td>3</td> <td>6</td> <td>1</td> <td>1</td> <td>3</td> <td>5</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>5</td> <td>11</td>	15:30	15:45	2	1	0	3	1	1	1	3	6	1	1	3	5	0	0	0	0	5	11
16:15 16:30 0 0 0 1 2 3 3 0 1 1 2 0 0 0 0 2 5 16:30 16:45 0 0 0 0 1 1 1 2 0 0 2 5 16:30 16:45 0 0 0 0 1 1 1 2 0 0 2 0 0 2 3 3 16:45 17:00 0 0 0 1 1 2 2 1 4 0 0 1 1 5 7 17:00 17:15 0 0 0 1 1 1 1 1 1 1 5 7 17:00 17:15 0 0 0 0 1 0 1 1 1 1 1 1 1 3 0 0 0 3 4 17:15 17:30 0 0 0 0	15:45	16:00	0	0	0	0	0	1	0	1	1	2	0	1	3	0	0	1	1	4	5
16:30 16:45 0 0 0 1 0 1 1 2 0 0 2 0 0 2 3 16:45 17:00 0 0 0 1 1 2 2 1 4 0 0 1 1 5 7 17:00 17:15 0 0 0 0 1 1 1 1 1 3 0 0 0 3 4 17:15 17:30 0 0 0 1 0 1 1 1 1 1 1 1 1 1 3 0 0 0 3 4 17:15 17:30 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 2 3 4 1 1 1 1 1 1 1 1	16:00	16:15	1	0	0	1	1	1	0	2	3	2	1	0	3	0	1	2	3	6	9
16:45 17:00 0 0 0 1 1 2 2 1 2 1 4 0 0 1 1 5 7 17:00 17:15 0 0 0 0 1 0 1 1 1 1 3 0 0 0 0 3 4 17:15 17:30 0 0 0 0 1 0 1 1 1 1 3 0 0 0 3 4 17:15 17:30 0 0 0 0 1 0 1 1 1 1 0 1 2 3 4 17:30 17:45 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 3 4 17:45 0 0 0 0 0 0 0 0 1 1 2 0 1 0 0 0 2	16:15	16:30	0	0	0	0	0	1	2	3	3	0	1	1	2	0	0	0	0	2	5
17:00 17:15 0 0 0 0 1 0 1 1 1 1 3 0 0 0 0 3 4 17:15 17:30 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 3 4 17:15 17:30 0 0 0 0 1 0 1 0 1 1 0 1 2 3 4 17:30 17:45 0 0 0 0 0 0 0 0 0 0 2 2 17:45 18:00 0 1 0 1 2 0 1 0 1 2 4	16:30	16:45	0	0	0	0	0	1	0	1	1	2	0	0	2	0	0	0	0	2	3
17:15 17:30 0 0 0 0 1 0 1 1 0 1 1 0 1 2 3 4 17:30 17:45 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 2 3 4 17:30 17:45 0 0 0 0 0 0 0 1 1 2 0 0 0 2 2 17:45 18:00 0 1 0 1 0 1 0 1 2 0 1 0 0 1 2 2 17:45 18:00 0 1 0 1 0 1 0 1 0 1 1 2 4	16:45	17:00	0	0	0	0	0	1	1	2	2	1	2	1	4	0	0	1	1	5	7
17:30 17:45 0 0 0 0 0 0 0 1 1 1 2 0 0 0 0 2 2 17:45 18:00 0 1 0 1 0 1 1 1 2 0 0 0 0 2 2 17:45 18:00 0 1 0 1 0 1 1 1 2 2	17:00	17:15	0	0	0	0	0	1	0	1	1	1	1	1	3	0	0	0	0	3	4
17:45 18:00 0 1 0 1 0 1 0 1 2 0 1 0 1 0 1 2 4	17:15	17:30	0	0	0	0	0	1	0	1	1	0	1	0	1	1	0	1	2	3	4
	17:30	17:45	0	0	0	0	0	0	0	0	0	0	1	1	2	0	0	0	0	2	2
Total: None 24 26 4 54 10 23 14 47 101 17 13 25 55 3 11 11 25 80 181	17:45	18:00	0	1	0	1	0	1	0	1	2	0	1	0	1	0	0	1	1	2	4
	Total:	None	24	26	4	54	10	23	14	47	101	17	13	25	55	3	11	11	25	80	181

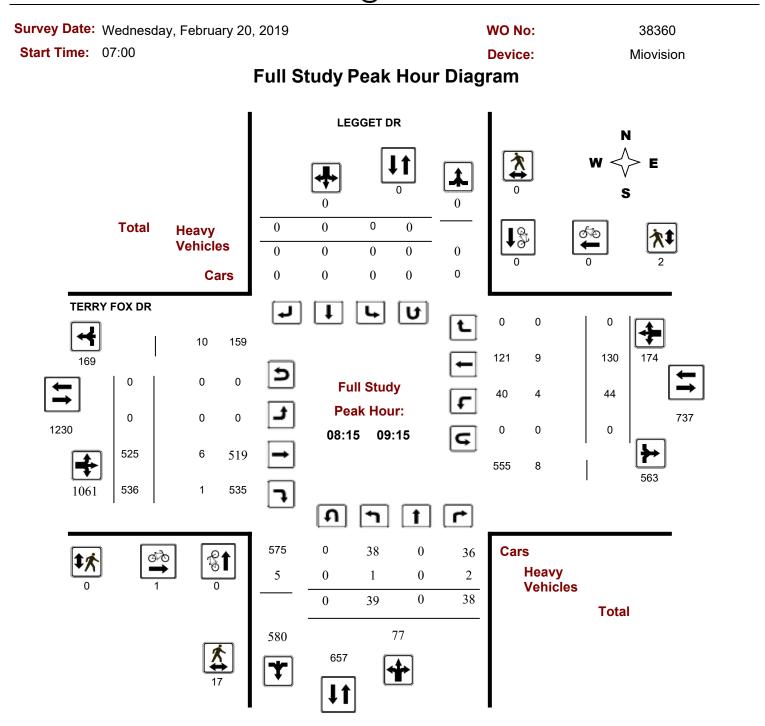
Survey Date: Tuesday, April 11, 2017

Start Time: 07:00

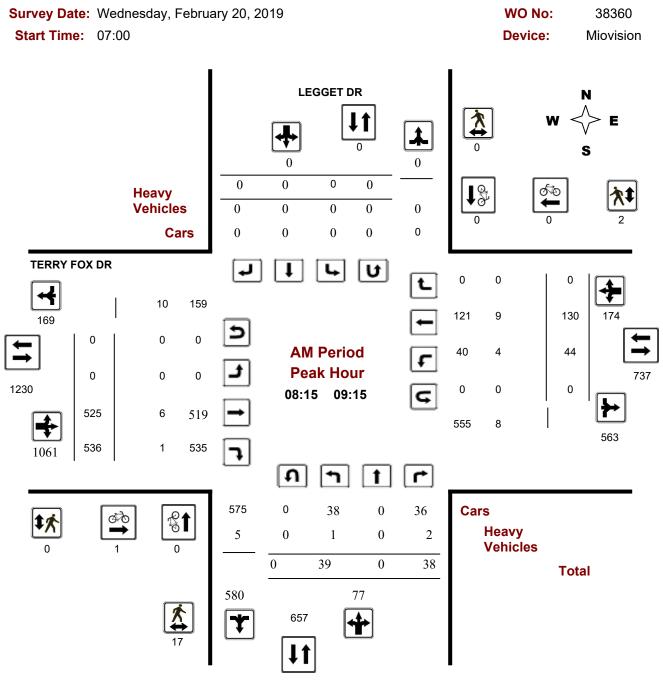
WO No:

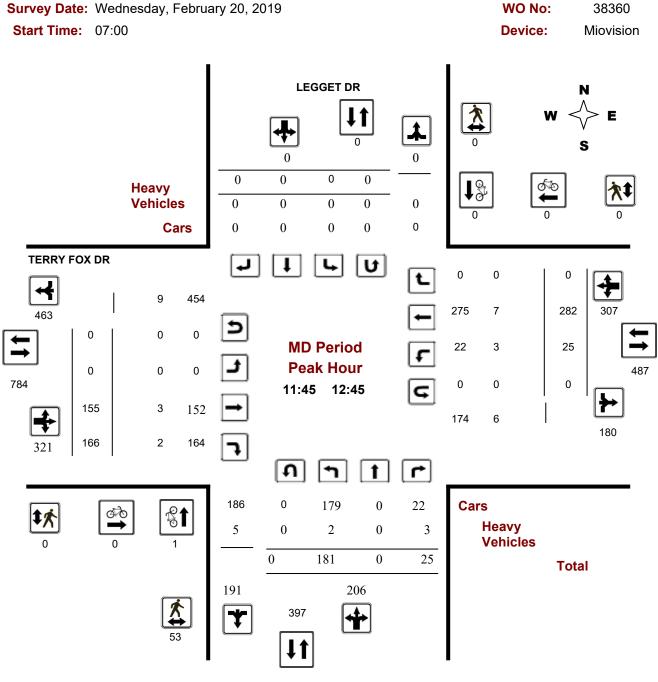

Device:

36905 Miovision

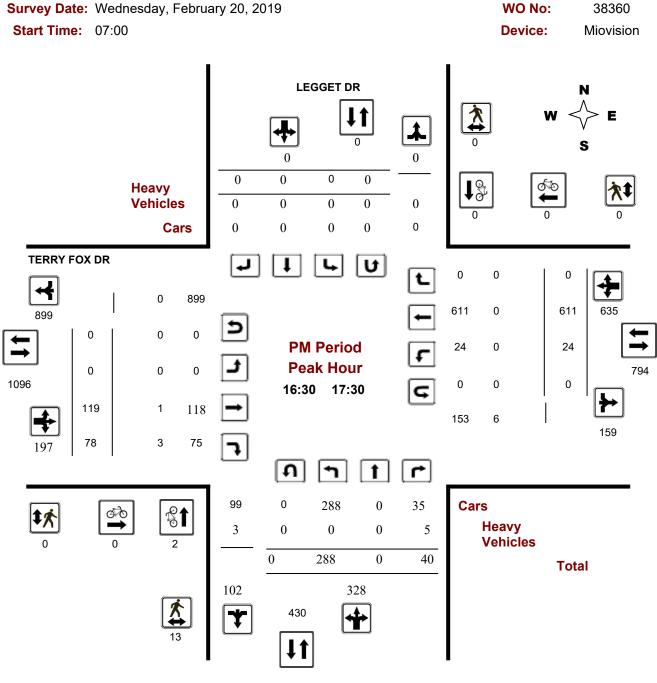

Full Study 15 Minute U-Turn Total

Time P	eriod	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	1	0	0	0	1
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	0	0
08:15	08:30	0	0	0	0	0
08:30	08:45	0	0	0	0	0
08:45	09:00	0	0	0	0	0
09:00	09:15	0	0	0	0	0
09:15	09:30	0	0	0	0	0
09:30	09:45	0	0	0	0	0
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	0	0	0
11:45	12:00	1	0	0	0	1
12:00	12:15	0	0	0	0	0
12:15	12:30	0	0	0	0	0
12:30	12:45	0	0	0	0	0
12:45	13:00	0	0	0	0	0
13:00	13:15	0	0	0	0	0
13:15	13:30	0	0	0	0	0
15:00	15:15	0	0	0	0	0
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	0	0	0
15:45	16:00	0	0	0	0	0
16:00	16:15	0	0	0	0	0
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	0	0
16:45	17:00	0	0	0	0	0
17:00	17:15	0	0	0	0	0
17:15	17:30	0	0	0	0	0
17:30	17:45	0	0	0	0	0
17:45	18:00	0	0	0	0	0
То	tal	2	0	0	0	2





Turning Movement Count - Peak Hour Diagram LEGGET DR @ TERRY FOX DR



Turning Movement Count - Peak Hour Diagram LEGGET DR @ TERRY FOX DR

Turning Movement Count - Peak Hour Diagram LEGGET DR @ TERRY FOX DR

Survey D	ate: M	/ednes	sday,	Februa	ary 20,	2019						WO	No:			38	360		
Start Tin	ne: 0	7:00										Dev	ice:			Miov	vision		
				F	ull S	Stud	v Su	Imma	rv (8	B HR	Sta	nda	rd)						
Survey Da	ate: \	Nedne	esdav.	, Febru			,					Turns	-					T Facto	or
		2019	,		,	,	N	lorthbound				hbound						TTack	
							E	Eastbound	: 0		Wes	tbound:					1.00		
			LEO	GGET I	DR				÷			TER	RY FC)X DR					
	No	rthbou				uthbou	nd			F	astbou				/estbou	Ind			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WВ TOT	STR TOT	Gran Tota
07:00 08:00	27	0	21	48	0	0	0	0	48	0	324	365	689	38	82	0	120	809	857
07.00 00.00	21	0	21	40	U	0	0	U	40	0	524	305	009	30	02	0	120	009	00
08:00 09:00	41	0	39	80	0	0	0	0	80	0	476	553	1029	37	122	0	159	1188	1268
09:00 10:00	61	0	28	89	0	0	0	0	89	0	390	370	760	37	105	0	142	902	99 [,]
11:30 12:30	208	0	29	237	0	0	0	0	237	0	125	144	269	22	288	0	310	579	810
12:30 13:30	115	0	21	136	0	0	0	0	136	0	228	206	434	21	147	0	168	602	738
15:00 16:00	188	0	27	215	0	0	0	0	215	0	84	89	173	21	239	0	260	433	648
16:00 17:00	301	0	45	346	0	0	0	0	346	0	107	81	188	18	540	0	558	746	1092
17:00 18:00	256	0	37	293	0	0	0	0	293	0	105	69	174	26	553	0	579	753	1040
Sub Total	1197	0	247	1444	0	0	0	0	1444	0	1839	1877	3716	220	2076	0	2296	6012	745
U Turns	0			0	0			0	0	0			0	1			1	1	1
Total	1197	0	247	1444	0	0	0	0	1444	0	1839	1877	3716	221	2076	0	2297	6013	7457
EQ 12Hr	1664	0	343	2007	0	0	0	0	2007	0	2556	2609	5165	307	2886	0	3193	8358	1036
Note: These	alues a	re calcu	lated by	y multiply	ing the	totals b	y the ap	opropriate	expans	ion fact	or.			1.39					
AVG 12Hr	1664	0	343	2007	0	0	0	0	2007	0	2556	2609	5165	307	2886	0	3193	8358	1036
Note: These	olumes/	are calo	culated	by multip	olying th	e Equiv	alent 12	2 hr. totals	by the	AADT	factor.			1.00					
AVG 24Hr	2180	0	449	2629	0	0	0	0	2629	0	3348	3418	6766	402	3781	0	4183	10949	13578
								y 12 hr. to						1.31					

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

Survey Da	te: W	edne	sday,	Febru	ary 2	0, 20 ⁻	19						wo	No:			3	8360	
Start Time	e: 07	2:00											Devi	ice:			Mie	ovision	
						F	ull S	tud	v 1	5 Mi	nute	e Inc	rem	ents	S				
			LEG	GET	DR				,				RY FO						
	N	orthbo	und		Sc	outhbou	nd			E	astboui	nd		W	estbour	nd			
Time Period	LT	ST	RT	Ν	LT	ST	RT	S	STR	LT	ST	RT	Е	LT	ST	RT	w	STR	Grand
	1			тот				тот	TOT		-	r	тот		-		тот	тот	Total
07:00 07:15	6	0	3	9	0	0	0	0	9	0	65	54	119	2	17	0	19	138	147
07:15 07:30	7	0	4	11	0	0	0	0	11	0	99	91	190	7	18	0	25	215	226
07:30 07:45	8	0	7	15	0	0	0	0	15	0	74	89	163	14	18	0	32	195	210
07:45 08:00	6	0	7	13	0	0	0	0	13	0	86	131	217	15	29	0	44	261	274
08:00 08:15	12	0	6	18	0	0	0	0	18	0	83	137	220	6	24	0	30	250	268
08:15 08:30	8	0	11	19	0	0	0	0	19	0	110	141	251	16	31	0	47	298	317
08:30 08:45	12	0	12	24	0	0	0	0	24	0	145	147	292	7	35	0	42	334	358
08:45 09:00	9	0	10	19	0	0	0	0	19	0	138	128	266	8	32	0	40	306	325
09:00 09:15	10	0	5	15	0	0	0	0	15	0	132	120	252	13	32	0	45	297	312
09:15 09:30	25	0	10	35	0	0	0	0	35	0	111	116	227	10	31	0	41	268	303
09:30 09:45	15	0	6	21	0	0	0	0	21	0	79	72	151	5	20	0	25	176	197
09:45 10:00	11	0	7	18	0	0	0	0	18	0	68	62	130	9	22	0	31	161	179
11:30 11:45	57	0	6	63	0	0	0	0	63	0	23	24	47	5	55	0	60	107	170
11:45 12:00	44	0	7	51	0	0	0	0	51	0	22	40	62	6	86	0	92	154	205
12:00 12:15	63	0	10	73	0	0	0	0	73	0	33	34	67	7	87	0	94	161	234
12:15 12:30	44	0	6	50	0	0	0	0	50	0	47	46	93	4	60	0	64	157	207
12:30 12:45	30	0	2	32	0	0	0	0	32	0	53	46	99	8	49	0	57	156	188
12:45 13:00	28	0	5	33	0	0	0	0	33	0	58	57	115	2	43	0	45	160	193
13:00 13:15	30	0	5	35	0	0	0	0	35	0	61	52	113	7	29	0	36	149	184
13:15 13:30	27	0	9	36	0	0	0	0	36	0	56	51	107	4	26	0	30	137	173
15:00 15:15	40	0	0	40	0	0	0	0	40	0	20	17	37	6	50	0	56	93	133
15:15 15:30	38	0	5	43	0	0	0	0	43	0	16	21	37	4	56	0	60	97	140
15:30 15:45	56	0	9	65	0	0	0	0	65	0	24	20	44	7	61	0	68	112	177
15:45 16:00	54	0	13	67	0	0	0	0	67	0	24	31	55	5	72	0	77	132	199
16:00 16:15	87	0	12	99	0	0	0	0	99	0	20	23	43	2	129	0	131	174	273
16:15 16:30	63	0	13	76	0	0	0	0	76	0	34	20	54	5	130	0	135	189	265
16:30 16:45		0	13	88	0	0	0	0	88	0	21	18	39	5	142	0	147	186	274
16:45 17:00	-	0	7	83	0	0	0	0	83	0	32	20	52	6	139	0	145	197	280
17:00 17:15	-	0	8	78	0	0	0	0	78	0	35	23	58	5	168	0	173	231	309
17:15 17:30	-	0	12	79	0	0	0	0	79	0	31	17	48	8	162	0	170	218	297
17:30 17:45		0	10	82	0	0	0	0	82	0	21	17	38	5	134	0	139	177	259
17:45 18:00	-	0	7	54	0	0	0	0	54	0	18	12	30	8	89	0	97	127	181
Total:	1197	0	247	1444	0	0	0	0	1444	0	1839	1877	3716		2076	0	2297	1444	7,457

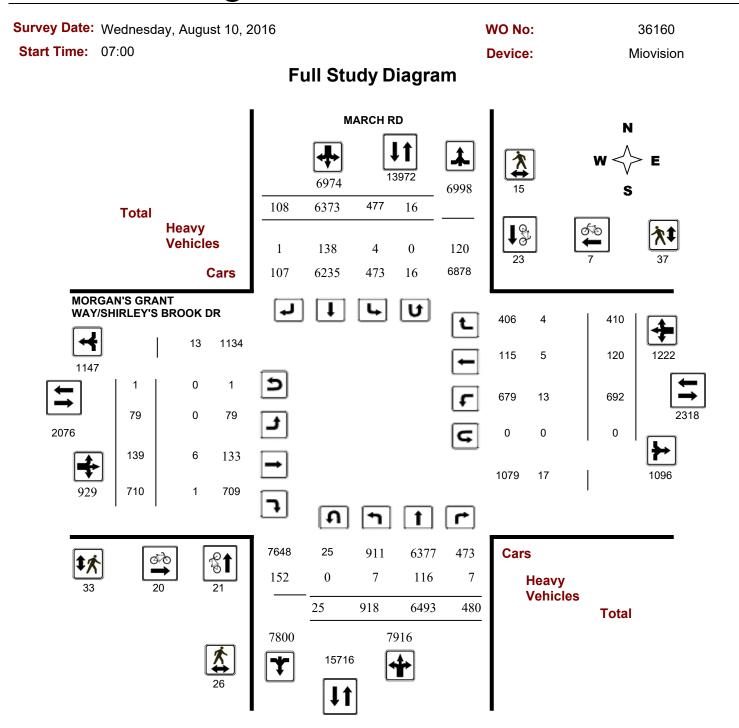
Note: U-Turns are included in Totals.

Survey Da	te: Wednesda	y, February 20,	2019		WO No:		38360
Start Time	e: 07:00				Device:	I	Miovision
			Full Study	Cyclist V	olume		
		LEGGET DR	i un otuay	Oyonst V	TERRY FOX D	P	
Time Denie d	Northhorsed		Ctreat Tatal	Eastbound			
Time Period	Northbound	Southbound	Street Total 0		Westbound	Street Total	Grand Total
07:00 07:15 07:15 07:30	0	0	0	0	0	0	0
07:30 07:45	0	0	0	0	0	0	0
07:45 08:00	0	0	0	0	0	0	0
08:00 08:15	0	0	0	0	0	0	0
08:15 08:30	0	0	0	0	0	0	0
08:30 08:45	0	0	0	0	0	0	0
08:45 09:00	0	0	0	1	0	1	1
09:00 09:15	0	0	0	0	0	0	0
09:15 09:30	0	0	0	0	0	0	0
09:30 09:45	0	0	0	0	0	0	0
09:45 10:00	0	0	0	0	0	0	0
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	0	0	0	0	0	0	0
12:00 12:15	0	0	0	0	0	0	0
12:15 12:30	0	0	0	0	0	0	0
12:30 12:45	1	0	1	0	0	0	1
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	0	0	0	0	0	0	0
15:15 15:30	0	0	0	0	0	0	0
15:30 15:45	0	0	0	0	0	0	0
15:45 16:00	0	0	0	0	0	0	0
16:00 16:15	0	0	0	0	0	0	0
16:15 16:30	0	0	0	0	0	0	0
16:30 16:45	0	0	0	0	0	0	0
16:45 17:00	0	0	0	0	0	0	0
17:00 17:15	1	0	1	0	0	0	1
17:15 17:30	1	0	1	0	0	0	1
17:30 17:45	0	0	0	0	0	0	0
17:45 18:00	0	0	0	0	0	0	0
Total	3	0	3	1	0	1	4

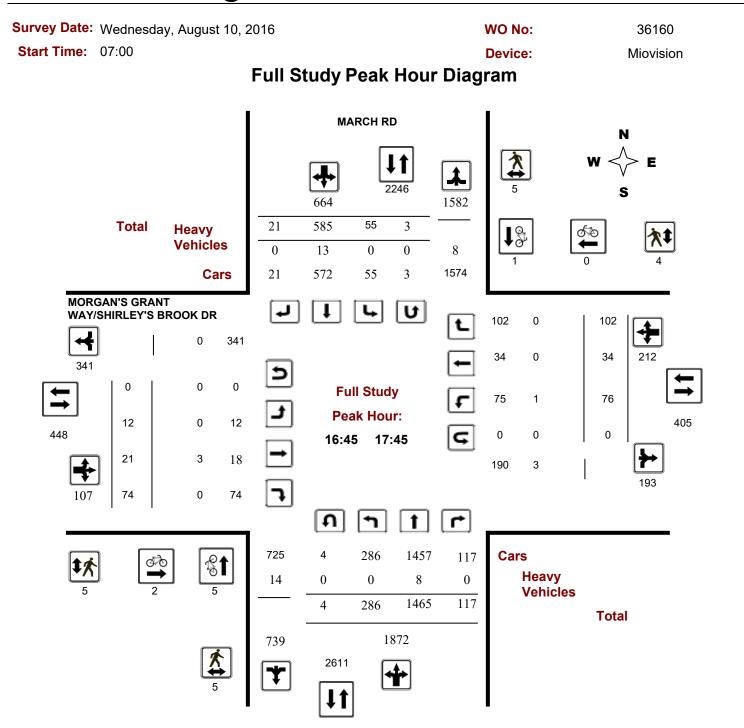
Turning Movement Count - Study Results

LEGGET DR @ TERRY FOX DR

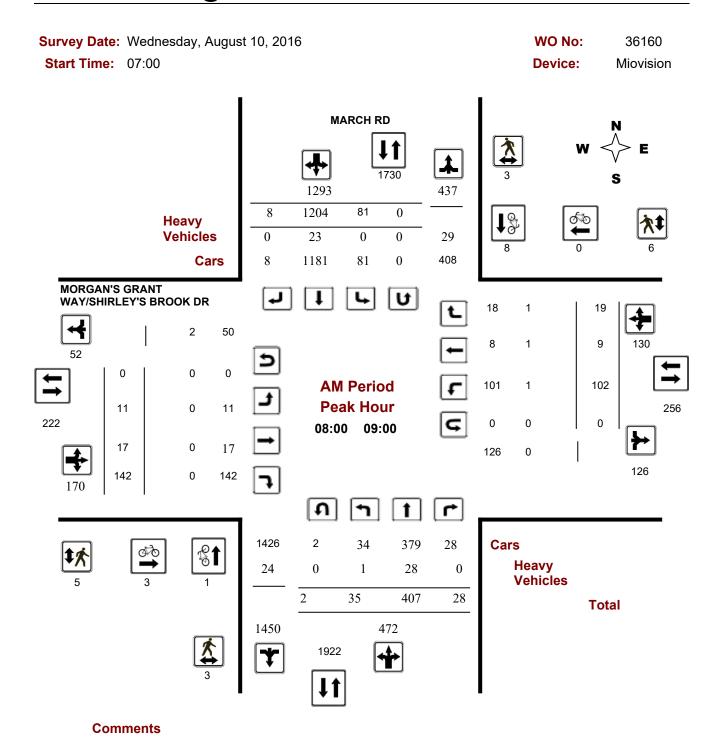
Survey Da	ate: Wednesda	y, February 20, 20	19		WO No:		38360
Start Tim	1e: 07:00				Device:		Miovision
		F	ull Stud	ly Pedestria			
				iy redesilia			
		LEGGET DR			TERRY FOX DR		
Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	1	0	1	0	0	0	1
07:15 07:30	1	0	1	0	0	0	1
07:30 07:45	2	0	2	0	0	0	2
07:45 08:00	2	0	2	0	0	0	2
08:00 08:15	5	0	5	0	0	0	5
08:15 08:30	4	0	4	0	2	2	6
08:30 08:45	7	0	7	0	0	0	7
08:45 09:00	3	0	3	0	0	0	3
09:00 09:15	3	0	3	0	0	0	3
09:15 09:30	2	0	2	0	0	0	2
09:30 09:45	3	0	3	0	0	0	3
09:45 10:00	0	0	0	0	0	0	0
11:30 11:45	2	0	2	0	0	0	2
11:45 12:00	12	0	12	0	0	0	12
12:00 12:15	11	0	11	0	0	0	11
12:15 12:30	19	0	19	0	0	0	19
12:30 12:45	11	0	11	0	0	0	11
12:45 13:00	6	0	6	0	0	0	6
13:00 13:15	4	0	4	0	0	0	4
13:15 13:30	2	0	2	0	0	0	2
15:00 15:15	4	0	4	0	0	0	4
15:15 15:30	1	0	1	0	0	0	1
15:30 15:45	3	0	3	0	0	0	3
15:45 16:00	1	0	1	0	2	2	3
16:00 16:15	0	0	0	0	0	0	0
16:15 16:30	2	0	2	0	1	1	3
16:30 16:45	4	0	4	0	0	0	4
16:45 17:00	2	0	2	0	0	0	2
17:00 17:15	3	0	3	0	0	0	3
17:15 17:30	4	0	4	0	0	0	4
17:30 17:45	6	0	6	0	0	0	6
17:45 18:00	5	0	5	0	0	0	5
Total	135	0	135	0	5	5	140


Survey Date			sday,	Febru	uary 2	0, 20 ⁻	19						wo					8360	
Start Time	: 07	2:00											Devi	ce:			Mio	ovisior	ו
						F	ull S	Stud	у Не	avy	Veł	nicle	es						
			LEG	GET	DR							TERF	RY FO	X DR					
	No	orthbou	und		Sc	outhbou	Ind			E	astbour	nd		We	estbour	nd			
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:15	2	0	0	2	0	0	0	0	2	0	2	0	2	1	1	0	2	4	6
07:15 07:30	2	0	0	2	0	0	0	0	2	0	0	0	0	1	1	0	2	2	4
07:30 07:45	2	0	1	3	0	0	0	0	3	0	0	1	1	1	2	0	3	4	7
07:45 08:00	1	0	1	2	0	0	0	0	2	0	1	0	1	2	1	0	3	4	6
08:00 08:15	2	0	0	2	0	0	0	0	2	0	0	0	0	1	1	0	2	2	4
08:15 08:30	0	0	0	0	0	0	0	0	0	0	1	0	1	1	4	0	5	6	6
08:30 08:45	1	0	2	3	0	0	0	0	3	0	3	0	3	1	2	0	3	6	9
08:45 09:00	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	2	2
09:00 09:15	0	0	0	0	0	0	0	0	0	0	1	1	2	2	2	0	4	6	6
09:15 09:30	1	0	1	2	0	0	0	0	2	0	0	1	1	0	1	0	1	2	4
09:30 09:45	1	0	1	2	0	0	0	0	2	0	1	1	2	1	2	0	3	5	7
09:45 10:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30 11:45	2	0	0	2	0	0	0	0	2	0	2	0	2	0	2	0	2	4	6
11:45 12:00	0	0	0	0	0	0	0	0	0	0	0	1	1	1	3	0	4	5	5
12:00 12:15	1	0	1	2	0	0	0	0	2	0	1	0	1	1	2	0	3	4	6
12:15 12:30	0	0	1	1	0	0	0	0	1	0	1	0	1	0	1	0	1	2	3
12:30 12:45	1	0	1	2	0	0	0	0	2	0	1	1	2	1	1	0	2	4	6
12:45 13:00	2	0	0	2	0	0	0	0	2	0	3	0	3	0	1	0	1	4	6
13:00 13:15	2	0	0	2	0	0	0	0	2	0	1	0	1	1	2	0	3	4	6
13:15 13:30	1	0	0	1	0	0	0	0	1	0	1	1	2	2	0	0	2	4	5
15:00 15:15	1	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	1	1	2
15:15 15:30	1	0	3	4	0	0	0	0	4	0	0	3	3	1	0	0	1	4	8
15:30 15:45	3	0	3	6	0	0	0	0	6	0	2	1	3	0	2	0	2	5	11
15:45 16:00	0	0	1	1	0	0	0	0	1	0	0	1	1	1	2	0	3	4	5
16:00 16:15	0	0	1	1	0	0	0	0	1	0	3	1	4	0	3	0	3	7	8
16:15 16:30	0	0	2	2	0	0	0	0	2	0	0	3	3	1	1	0	2	5	7
16:30 16:45	0	0	1	1	0	0	0	0	1	0	0	1	1	0	0	0	0	1	2
16:45 17:00	0	0	1	1	0	0	0	0	1	0	0	1	1	0	0	0	0	1	2
17:00 17:15	0	0	2	2	0	0	0	0	2	0	0	1	1	0	0	0	0	1	3
17:15 17:30	0	0	1	1	0	0	0	0	1	0	1	0	1	0	0	0	0	1	2
17:30 17:45	0	0	0	0	0	0	0	0	0	0	0	3	3	0	1	0	1	4	4
17:45 18:00	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
Total: None	26	0	25	51	0	0	0	0	51	0	26	22	48	21	39	0	60	108	159

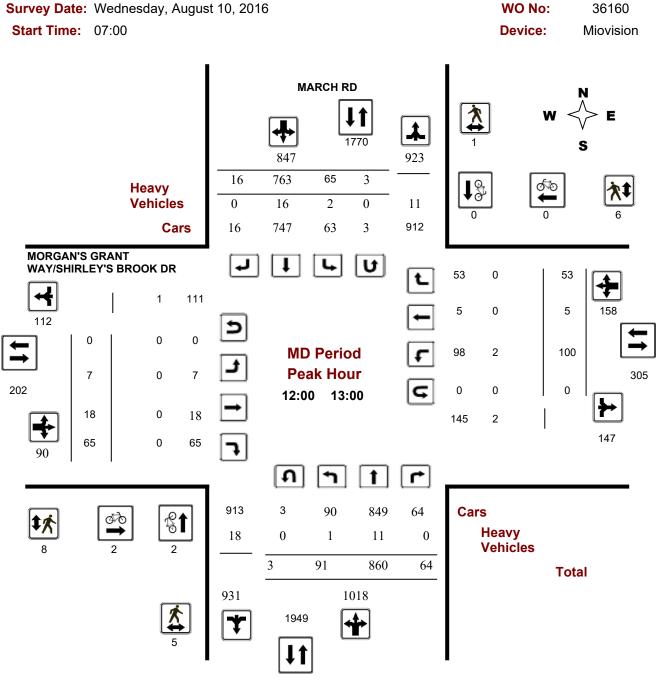
rvey Da	ate: Wedne	sday, Febru	uary 20, 2019	WC	38360							
tart Tim	e: 07:00			De	Miovision							
			Full S	Full Study 15 Minute U-Turn Total								
			LEGGET	-		TERRY FOX DR						
_	Time F	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total					
	07:00	07:15	0	0	0	0	0					
-	07:15 07:30		0	0	0	0	0					
_	07:30	07:45	0	0	0	0	0					
	07:45	08:00	0	0	0	0	0					
	08:00	08:15	0	0	0	0	0					
	08:15	08:30	0	0	0	0	0					
	08:30	08:45	0	0	0	0	0					
	08:45	09:00	0	0	0	0	0					
_	09:00	09:15	0	0	0	0	0					
_	09:15	09:30	0	0	0	0	0					
_	09:30	09:45	0	0	0	0	0					
_	09:45	10:00	0	0	0	0	0					
_	11:30	11:45	0	0	0	0	0					
_	11:45	12:00	0	0	0	0	0					
_	12:00	12:15	0	0	0	0	0					
_	12:15	12:30	0	0	0	0	0					
-	12:30	12:45	0	0	0	0	0					
-	12:45	13:00	0	0	0	0	0					
—	13:00	13:15	0	0	0	0	0					
—	13:15	13:30	0	0	0	0	0					
-	15:00	15:15	0	0	0	0	0					
_	15:15	15:30	0	0	0	0	0					
_	15:30	15:45	0	0	0	1	1					
—	15:45	16:00	0	0	0	0	0					
_	16:00	16:15	0	0	0	0	0					
_	16:15	16:30	0	0	0	0	0					
_	16:30	16:45	0	0	0	0	0					
	16:45	17:00	0	0	0	0	0					
—	17:00	17:15	0	0	0	0	0					
-	17:15	17:30	0	0	0	0	0					
_	17:30	17:45	0	0	0	0	0					
_	17:45	18:00	0	0	0	0	0					
=		otal	0	0	0	1	1					



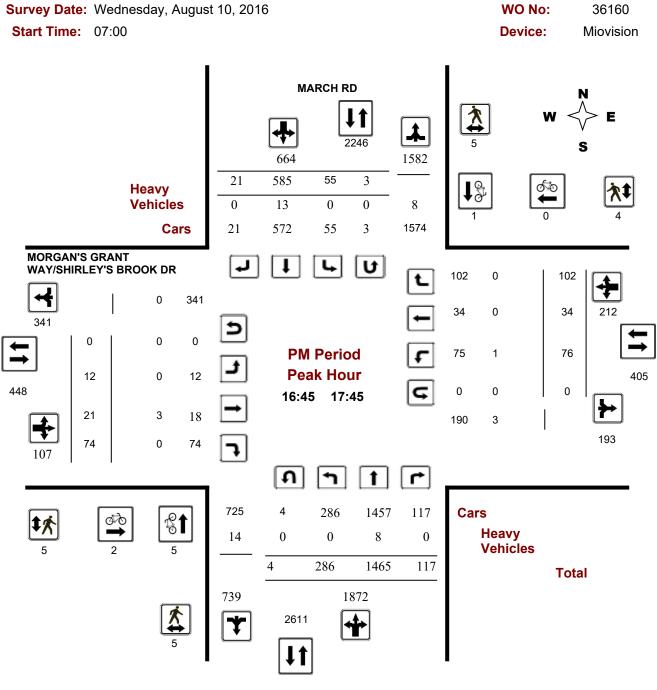
Turning Movement Count - Study Results MARCH RD @ MORGAN'S GRANT WAY/SHIRLEY'S BROOK



Turning Movement Count - Study Results MARCH RD @ MORGAN'S GRANT WAY/SHIRLEY'S BROOK



Turning Movement Count - Peak Hour Diagram MARCH RD @ MORGAN'S GRANT WAY/SHIRLEY'S BROOK



Turning Movement Count - Peak Hour Diagram MARCH RD @ MORGAN'S GRANT WAY/SHIRLEY'S BROOK

Turning Movement Count - Peak Hour Diagram MARCH RD @ MORGAN'S GRANT WAY/SHIRLEY'S BROOK

Turning Movement Count - Study Results

MARCH RD @ MORGAN'S GRANT WAY/SHIRLEY'S BROOK

Survey D Start Tin			sday,	Augus	t 10, 2	2016						WOI					160		
Start	ne. c	07.00				Ctud	., 6.	mm	om / () C to	Devi				IVIIO	vision		
Sum ou D	ato :	Madaa	adav				y St		ary (8				u)						
Survey Da	ate:	Wedne	esday	, Augu	st TU,	2010		Total Observed U-Turns Northbound: 25 Southbound:					16				T Factor		
								Eastbou	2.	>		tbound:	16 0				.90		
			MA	ARCH	RD			Lasibou	1	10RG/		GRANT	WAY	//SHIR	LEY'S	BRO	ОК		
	No	orthbou	nd		So	outhbou	ind		_	F	astbou	Ind	DR	١٨	/estboi	Ind			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Total
07:00 08:00	19	283	25	327	95	1082	9	1186	1513	10	16	140	166	97	9	12	118	284	1797
08:00 09:00	35	407	28	470	81	1204	8	1293	1763	11	17	142	170	102	9	19	130	300	2063
09:00 10:00	55	445	31	531	61	873	12	946	1477	6	18	108	132	91	8	28	127	259	1736
11:30 12:30	86	863	59	1008	52	672	15	739	1747	10	14	46	70	93	3	50	146	216	1963
12:30 13:30	81	740	52	873	57	787	12	856	1729	9	19	72	100	95	12	50	157	257	1986
15:00 16:00	136	990	64	1190	29	600	14	643	1833	10	10	56	76	56	14	62	132	208	2041
16:00 17:00	235	1359	109	1703	46	579	15	640	2343	13	24	77	114	83	31	92	206	320	2663
17:00 18:00	271	1406	112	1789	56	576	23	655	2444	10	21	69	100	75	34	97	206	306	2750
Sub Total	918	6493	480	7891	477	6373	108	6958	14849	79	139	710	928	692	120	410	1222	2150	16999
U Turns	25			25	16			16	41	1			1	0			0	1	42
Total	943	6493	480	7916	493	6373	108	6974	14890	80	139	710	929	692	120	410	1222	2151	17041
EQ 12Hr	1311	9025	667	11003	685	8858	150	9693	20696	111	193	987	1291	962	167	570	1699	2990	23686
Note: These	values a	are calcu	lated b	y multipi	ying the	e totais d	y the a	ppropriat	e expans	sion fact	or.			1.39					
AVG 12Hr	1180	8122	600	9902	616	7972	135	8723	18625	100	174	888	1162	866	150	513	1529	2691	21316
Note: These	volumes	are calo	culated	by multi	plying t	he Equiv	alent 1	2 hr. tota	als by the	AADT	actor.			.90					
AVG 24Hr	1546	10640	786	12972	807	10443	177	11427	24399	131	228	1163	1522	1134	196	672	2002	3524	27923
Note: These	volumes	are calo	culated	by multi	plying t	he Avera	age Dai	ly 12 hr.	totals by	12 to 24	4 expan	sion fact	or.	1.31					

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

Turning Movement Count - Study Results

MARCH RD @ MORGAN'S GRANT WAY/SHIRLEY'S BROOK

Surve	ey Dat	e: W	/edne	sday,	Augu	st 10,	2016							wo	No:			3	6160	
Star	t Time	: 07	7:00										Device:					Miovision		
	Full Study 15 Minute Increments MARCH RD MORGAN'S GRANT WAY/SHIRLEY'S BROOK DR Northbound Southbound Eastbound Westbound																			
Time F	Period	LT	ST	RT	N TOT	LT	ST	RT	s тот	STR TOT	LT	ST	RT	Е ТОТ	LT	ST	RT	w тот	STR TOT	Grand Total
07:00	07:15	6	54	5	65	26	237	0	263	328	0	3	31	34	22	3	2	27	61	389
07:15	07:30	2	74	10	86	27	248	2	277	363	3	3	35	41	22	3	3	28	69	432
07:30	07:45	8	66	2	76	15	292	4	311	387	3	5	33	41	24	1	5	30	71	458
07:45	08:00	5	89	8	102	27	305	3	335	437	5	5	41	51	29	2	2	33	84	521
08:00	08:15	9	102	3	114	20	298	1	319	433	7	2	39	48	23	2	5	30	78	511
08:15	08:30	11	101	7	119	28	287	3	318	437	1	2	46	49	23	2	7	32	81	518
08:30	08:45	7	100	6	113	13	312	3	328	441	2	8	31	41	25	1	4	30	71	512
08:45	09:00	10	104	12	126	20	307	1	328	454	1	5	26	32	31	4	3	38	70	524
09:00	09:15	23	118	8	149	14	243	1	258	407	0	3	31	34	23	2	7	32	66	473
09:15	09:30	8	113	9	130	21	217	6	244	374	2	7	29	38	23	4	7	34	72	446
09:30	09:45	12	116	4	132	14	241	4	259	391	2	2	29	33	26	1	2	29	62	453
09:45	10:00	15	98	10	123	14	172	1	187	310	2	6	19	27	19	1	12	32	59	369
11:30	11:45	20	181	12	213	11	150	3	164	377	1	3	11	15	22	0	9	31	46	423
11:45	12:00	22	215	14	251	8	168	3	179	430	6	2	14	22	28	1	17	46	68	498
12:00	12:15	26	228	20	274	19	169	5	193	467	1	6	9	16	19	0	11	30	46	513
12:15	12:30	19	239	13	271	17	185	4	206	477	2	3	12	17	24	2	13	39	56	533
12:30	12:45	22	185	12	219	20	209	3	232	451	1	6	19	26	25	1	13	39	65	516
12:45	13:00	27	208	19	254	12	200	4	216	470	3	3	25	31	32	2	16	50	81	551
13:00	13:15	18	173	11	202	14	200	2	216	418	3	5	15	23	23	6	11	40	63	481
13:15	13:30	21	174	10	205	11	178	3	192	397	2	5	13	20	15	3	10	28	48	445
15:00	15:15	23	191	7	221	10	156	2	168	389	3	3	18	24	17	3	9	29	53	442
15:15	15:30	32	258	23	313	7	152	4	163	476	1	3	8	12	9	2	24	35	47	523
15:30	15:45	41	273	16	330	6	146	2	154	484	5	0	13	18	22	7	13	42	60	544
15:45	16:00	44	268	18	330	9	146	6	161	491	1	4	17	22	8	2	16	26	48	539
16:00	16:15	48	309	26	383	16	157	6	179	562	2	6	18	26	24	6	20	50	76	638
16:15	16:30	54	351	32	437	13	143	3	159	596	2	5	26	33	16	13	24	53	86	682
16:30	16:45	63	343	24	430	7	138	3	148	578	5	9	14	28	23	6	19	48	76	654
16:45	17:00	72	356	27	455	13	141	3	157	612	4	4	19	27	20	6	29	55	82	694
17:00	17:15	78	399	35	512	17	141	4	162	674	2	3	10	15	13	11	33	57	72	746
17:15	17:30	86	391	27	504	15	147	6	168	672	2	7	19	28	16	7	18	41	69	741
17:30	17:45	54	319	28	401	13	156	8	177	578	4	7	26	37	27	10	22	59	96	674
17:45	18:00	57	297	22	376	16	132	5	153	529	2	4	14	20	19	6	24	49	69	598
Total:		943	6493	480	7916	493	6373	108	6974	14890	80	139	710	929	692	120	410	1222	14890	17,041

Note: U-Turns are included in Totals.

Turning Movement Count - Study Results MARCH RD @ MORGAN'S GRANT WAY/SHIRLEY'S BROOK

Survey Date: Wednesday, August 10, 2016 WO No: Start Time: 07:00 Device: Miovision **Full Study Cyclist Volume** MARCH RD **MORGAN'S GRANT WAY/SHIRLEY'S BROOK DR Time Period** Northbound Southbound Street Total Eastbound Westbound Street Total Grand Total 07:00 07:15 07:15 07:30 07:30 07:45 08:00 07:45 08:00 08:15 08:15 08:30 08:30 08:45 08:45 09:00 09:00 09:15 09:30 09:15 09:45 09:30 09:45 10:00 11:30 11:45 11:45 12:00 12:00 12:15 12:15 12:30 12:30 12:45 12:45 13:00 13:00 13:15 13:15 13:30 15:00 15:15 15:30 15:15 15:30 15:45 15:45 16:00 16:15 16:00 16:15 16:30 16:30 16:45 16:45 17:00 17:00 17:15 17:15 17:30 17:30 17:45 17:45 18:00 Total

Turning Movement Count - Study Results MARCH RD @ MORGAN'S GRANT WAY/SHIRLEY'S BROOK

Survey Dat	e: Wednesday	y, August 10, 2016	i		WO No:		36160
Start Time	: 07:00				Device:		Miovision
		F	ull Stuc	ly Pedestrian	Volume		
		MARCH RD		-	S GRANT WAY/S BROOK DR	SHIRLEY'S	
Time Period (NB Approach E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	2	0	2	0	0	0	2
07:15 07:30	0	0	0	1	0	1	1
07:30 07:45	0	0	0	1	1	2	2
07:45 08:00	1	1	2	0	0	0	2
08:00 08:15	0	0	0	0	1	1	1
08:15 08:30	1	1	2	2	3	5	7
08:30 08:45	1	1	2	1	0	1	3
08:45 09:00	1	1	2	2	2	4	6
09:00 09:15	4	0	4	2	1	3	7
09:15 09:30	2	0	2	2	1	3	5
09:30 09:45	1	0	1	3	2	5	6
09:45 10:00	0	1	1	0	4	4	5
11:30 11:45	0	0	0	0	3	3	3
11:45 12:00	0	0	0	1	1	2	2
12:00 12:15	3	0	3	2	2	4	7
12:15 12:30	0	0	0	5	2	7	7
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	2	1	3	1	2	3	6
13:00 13:15	2	0	2	0	2	2	4
13:15 13:30	0	1	1	2	0	2	3
15:00 15:15	0	0	0	1	1	2	2
15:15 15:30	1	0	1	0	0	0	1
15:30 15:45	0	0	0	0	0	0	0
15:45 16:00	0	0	0	0	1	1	1
16:00 16:15	0	0	0	0	0	0	0
16:15 16:30	0	0	0	1	0	1	1
16:30 16:45	0	1	1	0	1	1	2
16:45 17:00	2	1	3	0	1	1	4
17:00 17:15	2	0	2	1	0	1	3
17:15 17:30	1	2	3	3	2	5	8
17:30 17:45	0	2	2	1	1	2	4
17:45 18:00	0	2	2	1	3	4	6
Total	26	15	41	33	37	70	111

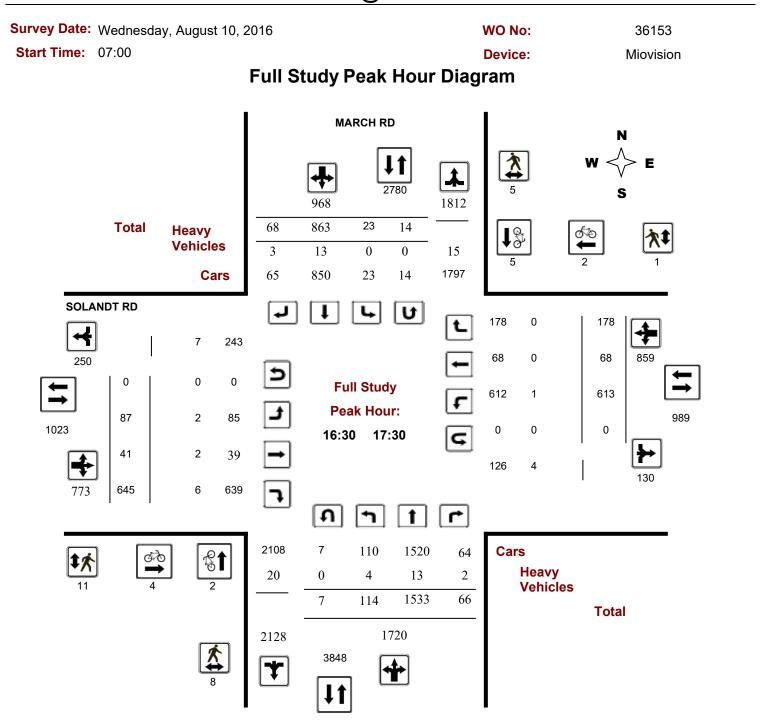
Turning Movement Count - Study Results

MARCH RD @ MORGAN'S GRANT WAY/SHIRLEY'S BROOK

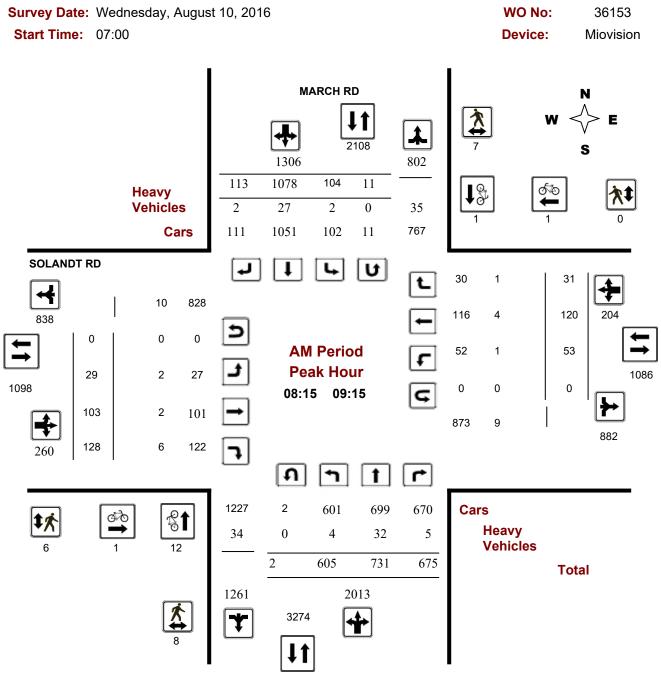
Survey Date: Wednesday, August 10, 2016													wo	No:			36160				
Start Time	: 07	7:00										Device:					Miovision				
						F	ull S	Study	v He	avv	Veł	nicle	s								
			МА	RCH	RD	•			<i>y</i>	-			ANT V	VAY/S	SHIRL	EY'S					
													OOK								
	N	orthbo	und																		
Time Period	LT	ST	RT	N ТОТ	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W тот	STR TOT	Grand Total		
07:00 07:15	0	2	0	2	1	5	0	6	8	0	0	0	0	0	1	0	1	1	9		
07:15 07:30	1	8	1	10	0	2	0	2	12	0	0	0	0	1	0	0	1	1	13		
07:30 07:45	1	4	0	5	0	6	0	6	11	0	0	0	0	1	1	0	2	2	13		
07:45 08:00	0	7	0	7	0	3	0	3	10	0	0	0	0	0	1	0	1	1	11		
08:00 08:15	1	9	0	10	0	4	0	4	14	0	0	0	0	0	0	1	1	1	15		
08:15 08:30	0	10	0	10	0	6	0	6	16	0	0	0	0	0	1	0	1	1	17		
08:30 08:45	0	3	0	3	0	7	0	7	10	0	0	0	0	0	0	0	0	0	10		
08:45 09:00	0	6	0	6	0	6	0	6	12	0	0	0	0	1	0	0	1	1	13		
09:00 09:15	0	5	0	5	0	10	0	10	15	0	0	0	0	0	0	0	0	0	15		
09:15 09:30	0	3	0	3	0	4	0	4	7	0	0	0	0	1	1	2	4	4	11		
09:30 09:45	0	2	1	3	0	2	0	2	5	0	0	0	0	0	0	0	0	0	5		
09:45 10:00	0	5	0	5	0	4	0	4	9	0	0	1	1	1	0	0	1	2	11		
11:30 11:45	0	2	1	3	0	7	0	7	10	0	0	0	0	0	0	0	0	0	10		
11:45 12:00	1	2	0	3	0	2	0	2	5	0	0	0	0	1	0	0	1	1	6		
12:00 12:15	0	3	0	3	1	3	0	4	7	0	0	0	0	0	0	0	0	0	7		
12:15 12:30	0	5	0	5	0	3	0	3	8	0	0	0	0	2	0	0	2	2	10		
12:30 12:45	0	1	0	1	0	4	0	4	5	0	0	0	0	0	0	0	0	0	5		
12:45 13:00	1	2	0	3	1	6	0	7	10	0	0	0	0	0	0	0	0	0	10		
13:00 13:15	0	6	0	6	0	2	0	2	8	0	0	0	0	0	0	0	0	0	8		
13:15 13:30	0	1	0	1	0	7	0	7	8	0	0	0	0	0	0	0	0	0	8		
15:00 15:15	0	3	0	3	0	3	0	3	6	0	0	0	0	1	0	0	1	1	7		
15:15 15:30	0	4	2	6	0	3	1	4	10	0	0	0	0	0	0	1	1	1	11		
15:30 15:45	0	2	0	2	0	5	0	5	7	0	0	0	0	2	0	0	2	2	9		
15:45 16:00	0	2	0	2	1	7	0	8	10	0	1	0	1	0	0	0	0	1	11		
16:00 16:15	1	4	1	6	0	5	0	5	11	0	0	0	0	0	0	0	0	0	11		
16:15 16:30	0	4	0	4	0	5	0	5	9	0	0	0	0	0	0	0	0	0	9		
16:30 16:45	1	2	1	4	0	3	0	3	7	0	1	0	1	1	0	0	1	2	9		
16:45 17:00	0	5	0	5	0	2	0	2	7	0	0	0	0	0	0	0	0	0	7		
17:00 17:15	0	3	0	3	0	4	0	4	7	0	1	0	1	1	0	0	1	2	9		
17:15 17:30	0	0	0	0	0	4	0	4	4	0	1	0	1	0	0	0	0	1	5		
17:30 17:45	0	0	0	0	0	3	0	3	3	0	1	0	1	0	0	0	0	1	4		
17:45 18:00	0	1	0	1	0	1	0	1	2	0	1	0	1	0	0	0	0	1	3		
Total: None	7	116	7	130	4	138	1	143	273	0	6	1	7	13	5	4	22	29	302		

Turning Movement Count - Study Results MARCH RD @ MORGAN'S GRANT WAY/SHIRLEY'S BROOK

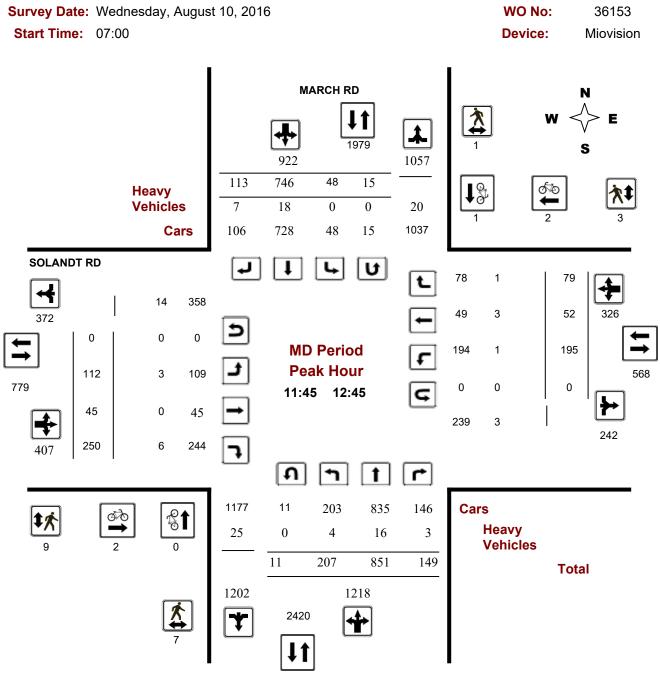
Survey [Date: Wedne	sday, Augu	st 10, 2016	WC) No:	36160								
Start Ti	me: 07:00				De	vice:	Miovision							
			Full S	Full Study 15 Minute U-Turn Total										
			MARCH	MORGAN'S GRANT WAY/SHIRLEY'S										
	Time F	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	ROOK DR Westbound U-Turn Total	Total							
	07:00	07:00 07:15		0	0	0	1							
	07:15 07:30		<u> </u>	0	1	0	1							
	07:30	07:45	1	0	0	0	1							
	07:45	08:00	0	0	0	0	0							
	08:00	08:15	0	0	0	0	0							
	08:15	08:30	0	0	0	0	0							
	08:30	08:45	2	0	0	0	2							
	08:45	09:00	0	0	0	0	0							
	09:00	09:15	0	1	0	0	1							
	09:15	09:30	1	1	0	0	2							
	09:30	09:45	0	0	0	0	0							
	09:45	10:00	2	0	0	0	2							
	11:30	11:45	0	0	0	0	0							
	11:45	12:00	0	0	0	0	0							
	12:00	12:15	1	2	0	0	3							
	12:15	12:30	0	1	0	0	1							
	12:30	12:45	2	0	0	0	2							
	12:45	13:00	0	0	0	0	0							
	13:00	13:15	3	0	0	0	3							
	13:15	13:30	2	0	0	0	2							
	15:00	15:15	1	0	0	0								
	15:15	15:30	1	1	0	0	2							
	15:30	15:45	1	0	0	0								
	15:45	16:00	1	2	0	0	3							
	16:00	16:15	0	2	0	0	2							
	16:15	16:30	1	1	0	0	2							
	16:30	16:45	1	0	0	0	 1							
	16:45	17:00	0	0	0	0	0							
	17:00	17:15	0	0	0	0	0							
	17:15	17:30	3	2	0	0	5							
	17:30	17:45	1	1	0	0	2							
	17:45	18:00	0	2	0	0	2							
		otal	25	16	1	0	42							



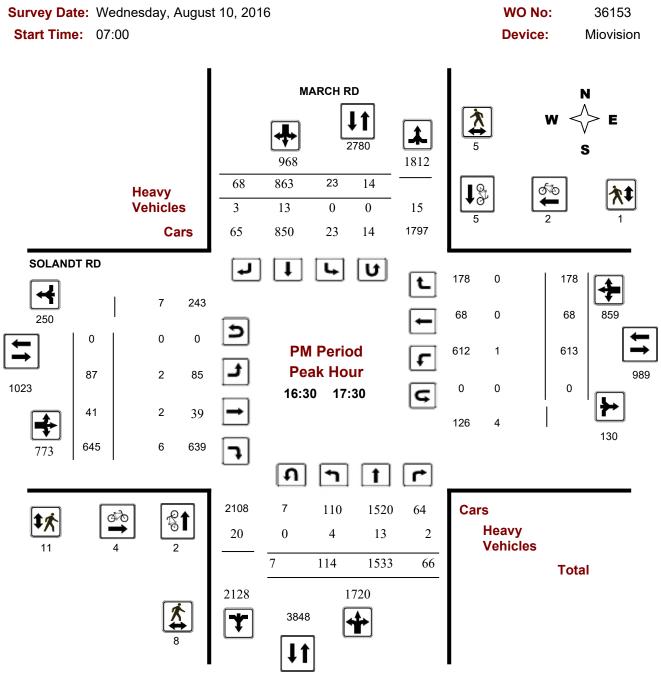
Turning Movement Count - Study Results MARCH RD @ SOLANDT RD



Turning Movement Count - Study Results MARCH RD @ SOLANDT RD



Turning Movement Count - Peak Hour Diagram MARCH RD @ SOLANDT RD



Turning Movement Count - Peak Hour Diagram MARCH RD @ SOLANDT RD

Turning Movement Count - Peak Hour Diagram MARCH RD @ SOLANDT RD

Survey D	ate:	Vedne	sday,	Augus	t 10, 2	2016						NO N	No:			36	153		
Start Tin	ne: C	07:00										Devi	ce:			Miov	vision		
				F	ull	Stud	y Sı	umma	ary (8	3 HR	Sta	ndar	d)						
Survey Da	ate:	Wedne	esday				-		otal O								AAD [.]	T Facto	or
							I	Northbour	nd: 34	1	Sout	nbound:	81				.90		
								Eastboun	d: 0		Wes	tbound:	0						
			M	ARCH F	RD							SOL	AND	T RD					
	No	orthbou	Ind		Sc	outhbou	und			E	astbou	und		W	estbou	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Gran Tota
07:00 08:00	301	467	367	1135	65	1214	103	1382	2517	8	29	65	102	56	17	10	83	185	2702
08:00 09:00	560	685	645	1890	99	1147	125	1371	3261	27	93	132	252	45	91	29	165	417	3678
09:00 10:00	472	736	518	1726	67	891	83	1041	2767	22	52	111	185	67	71	23	161	346	3113
11:30 12:30	178	824	118	1120	35	728	102	865	1985	109	46	257	412	199	51	87	337	749	2734
12:30 13:30	231	776	182	1189	75	771	149	995	2184	70	40	162	272	122	36	49	207	479	2663
15:00 16:00	104	1098	118	1320	13	698	48	759	2079	57	26	280	363	273	18	53	344	707	2786
16:00 17:00	145	1439	71	1655	21	779	79	879	2534	88	46	573	707	541	65	134	740	1447	398 [,]
17:00 18:00	98	1512	46	1656	21	916	50	987	2643	72	23	487	582	520	59	154	733	1315	3958
Sub Total	2089	7537	2065	11691	396	7144	739	8279	19970	453	355	2067	2875	1823	408	539	2770	5645	25615
U Turns	34			34	81			81	115	0			0	0			0	0	115
Total	2123	7537	2065	11725	477	7144	739	8360	20085	453	355	2067	2875	1823	408	539	2770	5645	25730
EQ 12Hr Note: These	2951	10476	2870 Jated b	16297	663 ving the	9930 a totals k	1027	11620	27917	630	493 or	2873	3996	2534 1.39	567	749	3850	7846	35763
AVG 12Hr	2656	9428	2583 culatod	14667	597 olving t	8937 bo Equiv	924 (alont 1	10458	25125	567	444	2586	3597	2281	510	674	3465	7062	32187
Note: These						· ·			-					.90					
AVG 24Hr	3479	12351	3384	19214	782	11707	1210	13699	32913	743	582	3388	4713	2988	668	883	4539	9252	42165

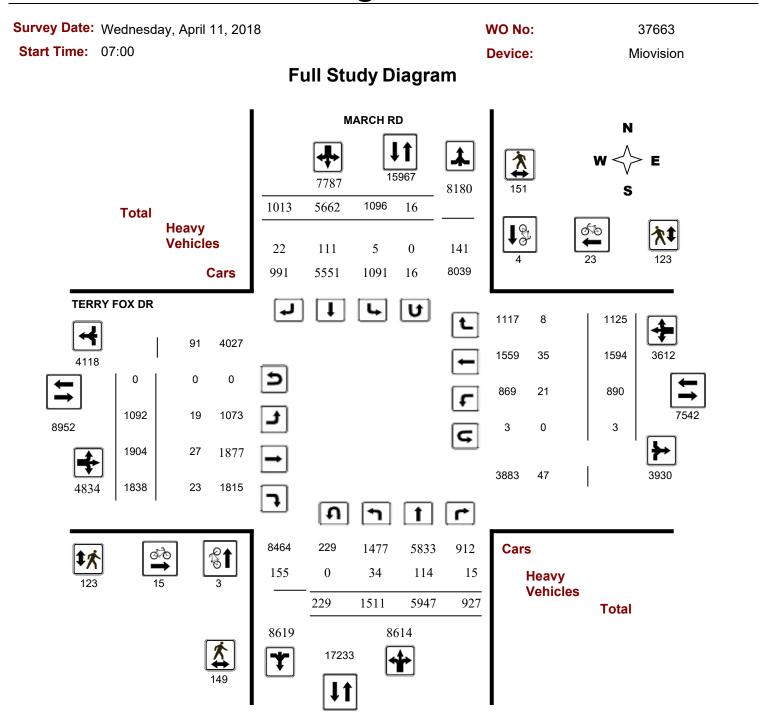
Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

Surve	ey Dat	e: W	edne	sday,	Augu	st 10,	2016							wo	No:			3	6153	
Star	t Time	: 07	2:00											Dev	ice:			Mie	ovision	
							F	ull S	Stud	v 15	5 Mi	nute	e Inc	rem	ents	S				
				MA	RCH	RD														
		No	orthbou	und		Sc	outhbou	nd			E	astbou	nd		We	estbour	nd			
Time F	Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	Е ТОТ	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00	07:15	47	89	48	184	16	268	27	311	495	4	3	13	20	13	1	2	16	36	531
07:15	07:30	51	126	77	254	10	307	28	345	599	3	5	17	25	11	2	1	14	39	638
07:30	07:45	66	110	96	272	24	333	24	381	653	1	4	20	25	19	4	2	25	50	703
)7:45	08:00	138	142	146	426	19	306	24	349	775	0	17	15	32	13	10	5	28	60	835
00:80	08:15	107	152	152	411	24	292	37	353	764	7	16	31	54	14	3	9	26	80	844
08:15	08:30	158	154	152	464	29	273	29	331	795	10	25	31	66	14	17	8	39	105	900
08:30	08:45	139	181	171	491	18	312	30	360	851	7	28	35	70	6	19	4	29	99	950
)8:45	09:00	157	198	170	525	39	270	29	338	863	3	24	35	62	11	52	8	71	133	996
09:00	09:15	153	198	182	533	29	223	25	277	810	9	26	27	62	22	32	11	65	127	937
)9:15	09:30	138	190	154	482	18	222	20	260	742	3	14	24	41	14	23	7	44	85	827
9:30	09:45	97	171	113	381	8	253	25	286	667	3	5	35	43	17	10	3	30	73	740
)9:45	10:00	86	177	69	332	13	193	13	219	551	7	7	25	39	14	6	2	22	61	612
11:30	11:45	32	169	27	228	11	189	19	219	447	15	8	58	81	45	9	21	75	156	603
1:45	12:00	59	208	29	296	14	173	18	205	501	33	15	85	133	54	15	20	89	222	723
2:00	12:15	48	228	29	305	14	173	27	214	519	38	11	61	110	50	12	29	91	201	720
2:15	12:30	52	219	33	304	10	193	38	241	545	23	12	53	88	50	15	17	82	170	715
2:30	12:45	59	196	58	313	25	207	30	262	575	18	7	51	76	41	10	13	64	140	715
2:45	13:00	72	192	49	313	24	206	49	279	592	19	15	34	68	30	11	10	51	119	711
13:00	13:15	61	196	43	300	22	192	37	251	551	16	12	49	77	27	12	15	54	131	682
3:15	13:30	41	192	32	265	22	166	33	221	486	17	6	28	51	24	3	11	38	89	575
15:00	15:15	20	207	18	245	9	167	16	192	437	12	7	102	121	51	7	13	71	192	629
15:15	15:30	19	291	29	339	6	178	8	192	531	15	11	49	75	52	2	12	66	141	672
15:30	15:45	33	295	40	368	2	197	10	209	577	13	3	49	65	98	5	15	118	183	760
15:45	16:00	34	305	31	370	4	156	14	174	544	17	5	80	102	72	4	13	89	191	735
16:00	16:15	38	355	17	410	6	192	18	216	626	23	10	122	155	143	20	27	190	345	971
16:15	16:30	40	372	17	429	7	200	22	229	658	27	7	113	147	98	13	30	141	288	946
16:30	16:45	47	328	15	390	14	173	25	212	602	19	19	183	221	164	19	43	226	447	1049
16:45	17:00	25	384	22	431	5	214	14	233	664	19	10	155	184	136	13	34	183	367	1031
17:00	17:15	25	418	16	459	7	219	6	232	691	31	7	185	223	192	19	53	264	487	1178
7:15	17:30	24	403	13	440	11	257	23	291	731	18	5	122	145	121	17	48	186	331	1062
	17:45	25	337	4	366	9	241	10	260	626	16	8	95	119	124	14	29	167	286	912
17:45	18:00	32	354	13	399	8	199	11	218	617	7	3	85	95	83	9	24	116	211	828
Total:		2123	7537	2065	1172	477	7144	739		20085		355	2067	2875	1823	408	539		20085	25,730

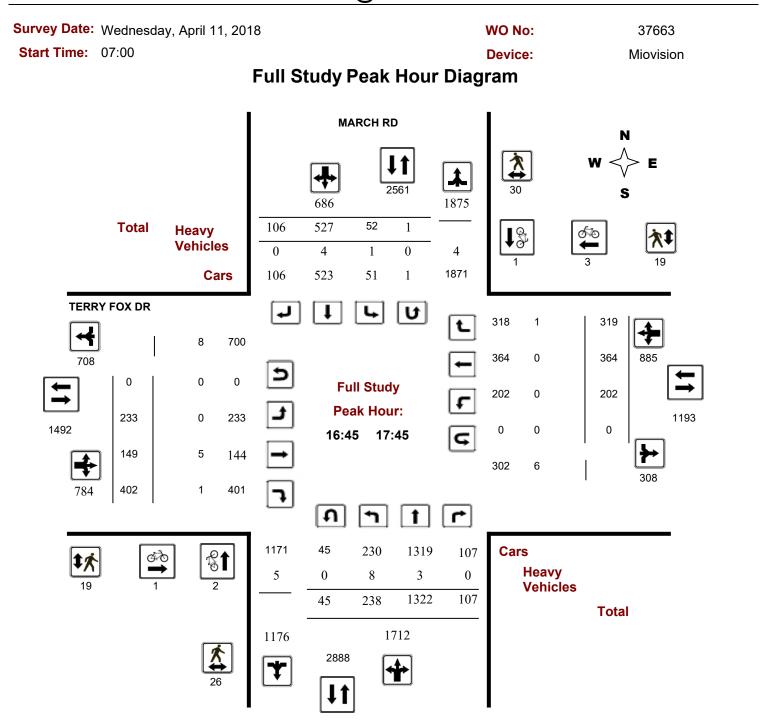
Note: U-Turns are included in Totals.

Survey Dat	te: Wednesda	y, August 10, 2	016		WO No:		36153
Start Time	e: 07:00				Device:	Ν	liovision
			Full Study	Cvclist V	olume		
		MARCH RD	,	,	SOLANDT RD		
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	1	0	1	2	0	2	3
07:15 07:30	2	0	2	1	0	1	3
07:30 07:45	0	0	0	0	0	0	0
07:45 08:00	4	0	4	0	0	0	4
08:00 08:15	3	0	3	0	1	1	4
08:15 08:30	2	1	3	0	0	0	3
08:30 08:45	3	0	3	0	1	1	4
08:45 09:00	5	0	5	1	0	1	6
09:00 09:15	2	0	2	0	0	0	2
09:15 09:30	4	0	4	0	0	0	4
09:30 09:45	2	0	2	0	0	0	2
09:45 10:00	1	4	5	0	0	0	5
11:30 11:45	1	0	1	0	0	0	1
11:45 12:00	0	1	1	2	1	3	4
12:00 12:15	0	0	0	0	0	0	0
12:15 12:30	0	0	0	0	1	1	1
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	1	0	1	0	0	0	1
15:00 15:15	1	1	2	0	1	1	3
15:15 15:30	2	1	3	2	0	2	5
15:30 15:45	0	0	0	0	0	0	0
15:45 16:00	1	1	2	1	2	3	5
16:00 16:15	0	1	1	1	2	3	4
16:15 16:30	0	1	1	0	1	1	2
16:30 16:45	0	3	3	0	1	1	4
16:45 17:00	1	0	1	2	1	3	4
17:00 17:15	1	1	2	1	0	1	3
17:15 17:30	0	1	1	1	0	1	2
17:30 17:45	0	1	1	1	1	2	3
17:45 18:00	0	0	0	0	1	1	1
Total	37	17	54	15	14	29	83

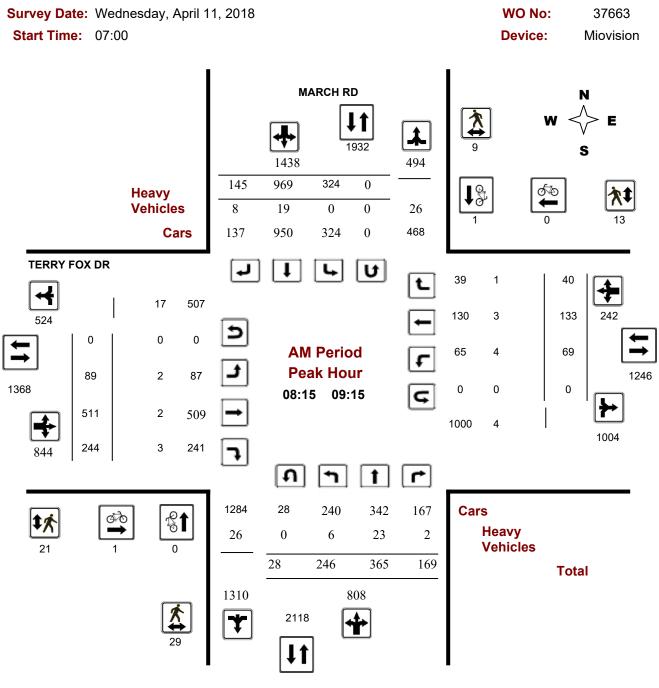
Survey Date	: Wednesda	y, August 10, 2016	6		WO No:		36153
Start Time:	07:00				Device:		Miovision
		F	ull Stud	ly Pedestriar	n Volume		
		MARCH RD		. ,	SOLANDT RD		
	NB Approach or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	0	0	0	0	0	0	0
07:15 07:30	0	0	0	0	1	1	1
07:30 07:45	0	0	0	0	0	0	0
07:45 08:00	1	2	3	0	0	0	3
08:00 08:15	0	3	3	0	0	0	3
08:15 08:30	0	0	0	1	0	1	1
08:30 08:45	7	2	9	2	0	2	11
08:45 09:00	1	0	1	2	0	2	3
09:00 09:15	0	5	5	1	0	1	6
09:15 09:30	0	3	3	2	0	2	5
09:30 09:45	0	1	1	0	0	0	1
09:45 10:00	0	1	1	0	0	0	1
11:30 11:45	1	0	1	3	0	3	4
11:45 12:00	0	0	0	1	0	1	1
12:00 12:15	2	0	2	5	1	6	8
12:15 12:30	3	0	3	1	0	1	4
12:30 12:45	2	1	3	2	2	4	7
12:45 13:00	0	2	2	1	4	5	7
13:00 13:15	6	2	8	3	0	3	11
13:15 13:30	1	5	6	1	2	3	9
15:00 15:15	5	2	7	1	0	1	8
15:15 15:30	0	0	0	1	0	1	1
15:30 15:45	2	0	2	2	0	2	4
15:45 16:00	2	2	4	2	1	3	7
16:00 16:15	1	0	1	0	0	0	1
16:15 16:30	0	0	0	0	0	0	0
16:30 16:45	1	2	3	1	0	1	4
16:45 17:00	7	1	8	4	1	5	13
17:00 17:15	0	2	2	3	0	3	5
17:15 17:30	0	0	0	3	0	3	3
17:30 17:45	2	0	2	1	0	1	3
17:45 18:00	0	2	2	0	0	0	2
Total	44	38	82	43	12	55	137

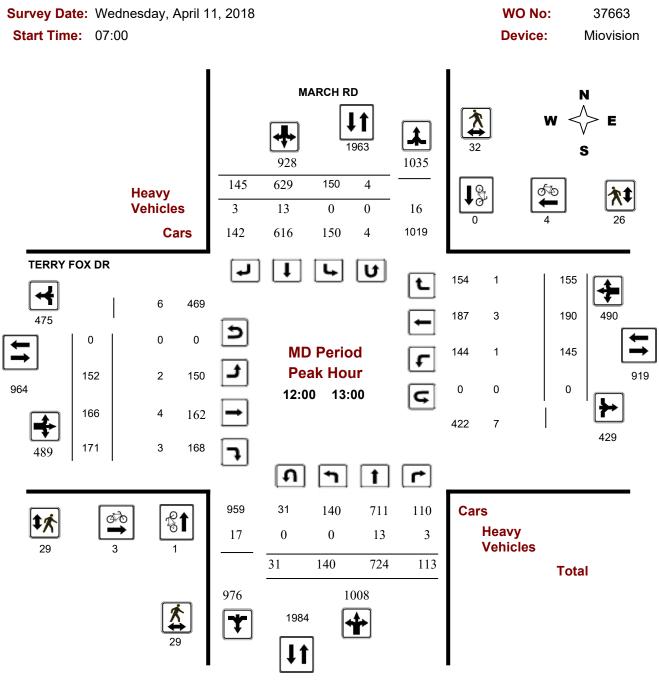


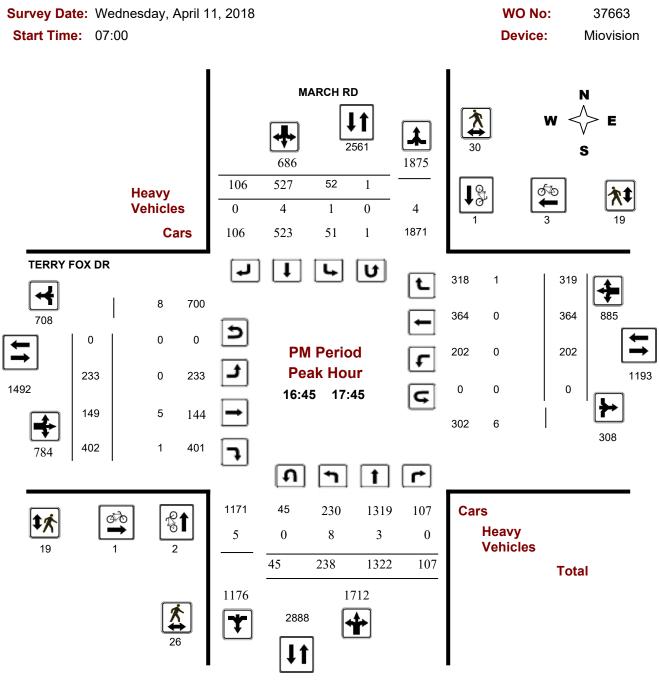
Survey Dat	e: W	'edne	sday,	Augu	st 10,	2016							wo	No:			3	6153	
Start Time	: 07	7:00											Dev	ice:			Mie	ovisior	า
						E		Stud			Vał	nicle)e						
			МА	RCH	חס			nuu	yiic	avy	VCI		.AND						
				коп						_			AND						
	N	orthbou	und		Sc	outhbou	Ind	-		E	astbour	nd	_	W	estbour	nd			- ·
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:15	1	7	0	8	0	5	1	6	14	1	0	5	6	0	0	0	0	6	20
07:15 07:30	0	9	0	9	0	4	1	5	14	1	0	2	3	0	0	0	0	3	17
07:30 07:45	2	4	0	6	0	7	0	7	13	0	0	1	1	0	2	0	2	3	16
07:45 08:00	1	4	0	5	0	5	1	6	11	0	1	0	1	0	0	0	0	1	12
08:00 08:15	2	10	0	12	0	5	0	5	17	0	0	2	2	0	1	0	1	3	20
08:15 08:30	2	12	0	14	0	7	0	7	21	2	0	0	2	0	1	0	1	3	24
08:30 08:45	1	4	1	6	0	4	0	4	10	0	1	1	2	0	3	0	3	5	15
08:45 09:00	1	7	1	9	2	8	1	11	20	0	0	4	4	1	0	1	2	6	26
09:00 09:15	0	9	3	12	0	8	1	9	21	0	1	1	2	0	0	0	0	2	23
09:15 09:30	4	4	2	10	0	3	1	4	14	0	0	2	2	1	1	1	3	5	19
09:30 09:45	2	10	0	12	0	5	0	5	17	0	0	6	6	0	1	1	2	8	25
09:45 10:00	1	4	2	7	0	5	0	5	12	0	0	2	2	1	0	0	1	3	15
11:30 11:45	2	0	0	2	0	8	0	8	10	0	0	1	1	0	0	0	0	1	11
11:45 12:00	0	3	0	3	0	5	1	6	9	2	0	3	5	0	0	0	0	5	14
12:00 12:15	2	5	1	8	0	3	1	4	12	0	0	0	0	0	0	0	0	0	12
12:15 12:30	1	7	2	10	0	5	4	9	19	0	0	1	1	1	2	1	4	5	24
12:30 12:45	1	1	0	2	0	5	1	6	8	1	0	2	3	0	1	0	1	4	12
12:45 13:00	4	2	0	6	0	8	1	9	15	0	1	1	2	0	1	0	1	3	18
13:00 13:15	2	10	1	13	1	4	0	5	18	0	1	3	4	1	2	0	3	7	25
13:15 13:30	0	4	1	5	1	4	1	6	11	1	1	3	5	2	0	0	2	7	18
15:00 15:15	0	3	0	3	0	1	1	2	5	0	2	2	4	1	1	0	2	6	11
15:15 15:30	1	6	1	8	0	4	0	4	12	1	2	1	4	0	0	0	0	4	16
15:30 15:45	1	1	0	2	0	6	2	8	10	0	0	0	0	1	0	1	2	2	12
15:45 16:00	2	5	0	7	0	7	0	7	14	0	0	3	3	0	0	0	0	3	17
16:00 16:15	2	5	0	7	0	4	0	4	11	0	0	0	0	1	0	0	1	1	12
16:15 16:30	1	5	0	6	0	7	0	7	13	0	0	1	1	0	0	1	1	2	15
16:30 16:45	1	6	1	8	0	3	1	4	12	0	1	1	2	0	0	0	0	2	14
16:45 17:00	1	2	0	3	0	3	2	5	8	1	0	3	4	1	0	0	1	5	13
17:00 17:15	1	4	0	5	0	2	0	2	7	1	0	1	2	0	0	0	0	2	9
17:15 17:30	1	1	1	3	0	5	0	5	8	0	1	1	2	0	0	0	0	2	10
17:30 17:45	0	2	0	2	0	3	0	3	5	0	0	0	0	0	0	0	0	0	5
17:45 18:00	2	0	0	2	0	3	1	4	6	0	0	0	0	0	0	0	0	0	6
Total: None	42	156	17	215	4	156	22	182	397	11	12	53	76	11	16	6	33	109	506



Date: Wedne	sday, Augu	st 10, 2016		WC	O No:	36153
me: 07:00				De	vice:	Miovisior
		Full S March		nute U-Turr so	n Total LANDT RD	
Time F	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	3	0	0	3
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	1	1	0	0	2
08:00	08:15	0	0	0	0	0
08:15	08:30	1	3	0	0	4
08:30	08:45	0	1	0	0	1
08:45	09:00	0	7	0	0	7
09:00	09:15	1	0	0	0	1
09:15	09:30	1	1	0	0	2
09:30	09:45	0	0	0	0	0
09:45	10:00	0	0	0	0	0
11:30	11:45	2	4	0	0	6
11:45	12:00	3	6	0	0	9
12:00	12:15	6	1	0	0	7
12:15	12:30	2	3	0	0	5
12:30	12:45	0	5	0	0	5
12:45	13:00	0	5	0	0	5
13:00	13:15	0	5	0	0	5
13:15	13:30	2	3	0	0	5
15:00	15:15	1	2	0	0	3
15:15	15:30	0	4	0	0	4
15:30	15:45	0	1	0	0	1
15:45	16:00	1	1	0	0	2
16:00	16:15	0	1	0	0	1
16:15	16:30	3	1	0	0	4
16:30	16:45	1	7	0	0	8
16:45	17:00	1	2	0	0	3
17:00	17:15	0	4	0	0	4
17:15	17:30	5	1	0	0	6
17:30	17:45	1	4	0	0	5
17:45	18:00	2	5	0	0	7
	otal	34	81	0	0	115







bound ST RT 301 99 359 167 357 139 676 123		11, 20 RD		1	Northbou Eastbour SB TOT 1421 1429	Total C	Dbserv 29 E LT 49	red U- South	Turns nbound: tbound: TERF	r d) 16 3	DX DR W LT 55	/estbo ST 74		vision AAD .90 WB TOT 149	T Facto STR TOT 731	Gran Tota 268
M bound ST RT 301 99 359 167 357 139 676 123	r, April ARCH NB TOT 535 755 739	11, 20 RD LT 182 328 192	018 0uthbou ST 1128 966	und RT 111 135	Northbour Eastbour SB TOT 1421 1429	Total C nd: 2: nd: 0 	Dbserv 29 E LT 49	ved U- South West astbou ST	Turns nbound: tbound: TERF Ind RT	16 3 RY FC EB TOT	W LT	ST	RT	.90 WB TOT	STR TOT	Gran Tota
M bound ST RT 301 99 359 167 357 139 676 123	ARCH 1 NB TOT 535 755 739	RD So LT 182 328 192	outhbou ST 1128 966	und RT 111 135	Northbou Eastbour SB TOT 1421 1429	nd: 2: nd: 0 	29 E LT 49	South West astbou ST	nbound: tbound: TERF Ind RT	3 RY FC EB TOT	W LT	ST	RT	.90 WB TOT	STR TOT	Gran Tota
bound ST RT 301 99 359 167 357 139 676 123	NB TOT 535 755 739	So LT 182 328 192	ST 1128 966	und RT 111 135	Eastbour SB TOT 1421 1429	nd: 0 	E LT 49	West astbou ST	tbound: TERF Ind RT	3 RY FC EB TOT	W LT	ST	RT	WB TOT	TOT	Tot
bound ST RT 301 99 359 167 357 139 676 123	NB TOT 535 755 739	So LT 182 328 192	ST 1128 966	und RT 111 135	SB TOT 1421 1429	STR TOT 1956	LT 49	astbou ST	TERF Ind RT	EB TOT	W LT	ST	RT	тот	TOT	Tot
bound ST RT 301 99 359 167 357 139 676 123	NB TOT 535 755 739	So LT 182 328 192	ST 1128 966	RT 111 135	TOT 1421 1429	TOT 1956	LT 49	ST	Ind RT	EB TOT	W LT	ST	RT	тот	TOT	Tot
ST RT 301 99 359 167 357 139 676 123	TOT 535 755 739	LT 182 328 192	ST 1128 966	RT 111 135	TOT 1421 1429	TOT 1956	LT 49	ST	RT	TOT	LT	ST	RT	тот	TOT	Tot
301 99 359 167 357 139 676 123	TOT 535 755 739	182 328 192	1128 966	111 135	TOT 1421 1429	TOT 1956	49			TOT				тот	TOT	Tot
359 167 357 139 676 123	755 739	328 192	966	135	1429			304	229	582	55	74	20	149	731	260
357 139 676 123	739	192				2184	<u>.</u>									200
676 123			836	154			84	480	266	830	55	113	38	206	1036	322
	932	10/			1182	1921	83	412	165	660	65	128	35	228	888	280
050 400		104	593	120	817	1749	143	119	172	434	150	222	170	542	976	272
653 106	873	144	625	146	915	1788	134	216	156	506	122	152	99	373	879	266
076 96	1364	51	463	110	624	1988	183	92	153	428	96	213	166	475	903	289
242 105	1592	36	510	125	671	2263	187	126	291	604	132	327	272	731	1335	359
283 92	1595	59	541	112	712	2307	229	155	406	790	215	365	325	905	1695	400
947 927	8385	1096	5662	1013	7771	16156	1092	1904	1838	4834	890	1594	1125	3609	8443	2459
	229	16			16	245	0			0	3			3	3	24
947 927	8614	1112	5662	1013	7787	16401	1092	1904	1838	4834	893	1594	1125	3612	8446	2484
266 1289 calculated b	11974 by multipl	1546 ying the	7870 e totals b	1408 by the a	10824 ppropriat	22798 e expans	1518 sion fact	2647 or.	2555	6720	1241 1.39	2216	1564	5021	11741	3453
439 1160	10776	1391	7083	1267	9741	20517	1366	2382	2300	6048	1117	1994	1408	4519	10567	3108
e calculated	l by multi	iplying tl	he Equiv	valent 1	2 hr. tota	als by the	AADT	factor.			.90					
745 1520	14117	1822	9279	1660	12761	26878	1789	3120	3013	7922	1463	2612	1844	5919	13841	4071
	283 92 947 927 947 927 266 1289 calculated t 439 1160 a calculated 745 1520	283 92 1595 947 927 8385 229 947 927 8614 266 1289 11974 calculated by multiple 439 1160 10776 e calculated by multiple 1520 14117 e calculated by multiple 14117	283 92 1595 59 947 927 8385 1096 947 927 8614 1112 947 927 8614 1112 266 1289 11974 1546 calculated by multiplying the 1100 10776 1391 a calculated by multiplying t 1520 14117 1822 a calculated by multiplying t 14117 1822	283 92 1595 59 541 947 927 8385 1096 5662 229 16 16 16 947 927 8614 1112 5662 947 927 8614 1112 5662 266 1289 11974 1546 7870 calculated by multiplying the totals by a calculated by multiplying the Equit 1160 10776 1391 7083 a calculated by multiplying the Equit 1520 14117 1822 9279 a calculated by multiplying the Aver 500 14117 1822 1520	283 92 1595 59 541 112 947 927 8385 1096 5662 1013 229 16 1112 5662 1013 947 927 8614 1112 5662 1013 266 1289 11974 1546 7870 1408 calculated by multiplying the totals by the atals 1160 10776 1391 7083 1267 a calculated by multiplying the Equivalent 1 745 1520 14117 1822 9279 1660 a calculated by multiplying the Average Data a calculated by multiplying the Average Data 5662 1013	283 92 1595 59 541 112 712 947 927 8385 1096 5662 1013 7771 229 16 16 947 927 8614 1112 5662 1013 7787 266 1289 11974 1546 7870 1408 10824 calculated by multiplying the totals by the appropriate 439 1160 10776 1391 7083 1267 9741 a calculated by multiplying the Equivalent 12 hr. total 12 hr. total 1520 14117 1822 9279 1660 12761 a calculated by multiplying the Average Daily 12 hr. 12 hr. 12 hr. 12 hr. 12 hr.	283 92 1595 59 541 112 712 2307 947 927 8385 1096 5662 1013 7771 16156 229 16 16 245 947 927 8614 1112 5662 1013 7787 16401 947 927 8614 1112 5662 1013 7787 16401 266 1289 11974 1546 7870 1408 10824 22798 calculated by multiplying the totals by the appropriate expanse 439 1160 10776 1391 7083 1267 9741 20517 a calculated by multiplying the Equivalent 12 hr. totals by the 745 1520 14117 1822 9279 1660 12761 26878	283 92 1595 59 541 112 712 2307 229 947 927 8385 1096 5662 1013 7771 16156 1092 947 927 8614 1112 5662 1013 7771 16156 1092 947 927 8614 1112 5662 1013 7787 16401 1092 266 1289 11974 1546 7870 1408 10824 22798 1518 calculated by multiplying the totals by the appropriate expansion fact 439 1160 10776 1391 7083 1267 9741 20517 1366 a calculated by multiplying the Equivalent 12 hr. totals by the AADT 12 1250 14117 1822 9279 1660 12761 26878 1789 a calculated by multiplying the Average Daily 12 hr. totals by 12 to 24 150 12 to 24 12 to 24	283 92 1595 59 541 112 712 2307 229 155 947 927 8385 1096 5662 1013 7771 16156 1092 1904 947 927 8614 1112 5662 1013 7771 16156 1092 1904 947 927 8614 1112 5662 1013 7787 16401 1092 1904 947 927 8614 1112 5662 1013 7787 16401 1092 1904 266 1289 11974 1546 7870 1408 10824 22798 1518 2647 calculated by multiplying the totals by the appropriate expansion factor. 3120 3141 7083 1267 9741 20517 1366 2382 a calculated by multiplying the Equivalent 12 hr. totals by the AADT factor. 3120 3120 3120 a calculated by multiplying the Average Daily 12 hr. totals by 12 to 24 expan	283 92 1595 59 541 112 712 2307 229 155 406 947 927 8385 1096 5662 1013 7771 16156 1092 1904 1838 947 927 8385 1096 5662 1013 7771 16156 1092 1904 1838 947 927 8614 1112 5662 1013 7787 16401 1092 1904 1838 947 927 8614 1112 5662 1013 7787 16401 1092 1904 1838 266 1289 11974 1546 7870 1408 10824 22798 1518 2647 2555 calculated by multiplying the totals by the appropriate expansion factor. 1391 7083 1267 9741 20517 1366 2382 2300 a calculated by multiplying the Equivalent 12 hr. totals by the AADT factor. 745 1520 14117 1822 9279 1660 12761 26878 1789 3120 3013 <td>283 92 159 59 541 112 712 2307 229 155 406 790 947 927 8385 1096 5662 1013 7771 16156 1092 1904 1838 4834 229 16 16 245 0 0 947 927 8614 1112 5662 1013 7787 16401 1092 1904 1838 4834 266 1289 11974 1546 7870 1408 10824 22798 1518 2647 2555 6720 calculated by multiplying the totals by the appropriate expansion factor. 1391 7083 1267 9741 20517 1366 2382 2300 6048 e calculated by multiplying the Equivalent 12 hr. totals by the AADT factor. 4017 1408 1408 1408 1408 20517 1366 2382 2300 6048</td> <td>283 92 1595 59 541 112 712 2307 229 155 406 790 215 947 927 8385 1096 5662 1013 7771 16156 1092 1904 1838 4834 890 247 927 8385 1096 5662 1013 7771 16156 1092 1904 1838 4834 890 947 927 8614 1112 5662 1013 7787 16401 1092 1904 1838 4834 893 266 1289 11974 1546 7870 1408 10824 22798 1518 2647 2555 6720 1241 calculated by multiplying the totals by the appropriate expansion factor. 1339 1439 1160 10776 1391 7083 1267 9741 20517 1366 2382 2300 6048 1117 439 1160 10776 1391 7083 1267 9741 20517 1366 2382 2300 6048 1117<!--</td--><td>283 92 1595 59 541 112 712 2307 229 155 406 790 215 365 947 927 8385 1096 5662 1013 7771 16156 1092 1904 1838 4834 890 1594 947 927 8614 1112 5662 1013 7771 16156 1092 1904 1838 4834 890 1594 947 927 8614 1112 5662 1013 7787 16401 1092 1904 1838 4834 893 1594 266 1289 11974 1546 7870 1408 10824 22798 1518 2647 2555 6720 1241 2216 calculated by multiplying the totals by the appropriate expansion factor. 1.39 139 160 10776 1391 7083 1267 9741 20517 1366 2382 2300 6048 1117 1994 493 1520 14117 1822 9279 1660 12761</td><td>283 92 1595 59 541 112 712 2307 229 155 406 790 215 365 325 947 927 8385 1096 5662 1013 7771 16156 1092 1904 1838 4834 890 1594 1125 947 927 8385 1096 5662 1013 7771 16156 1092 1904 1838 4834 890 1594 1125 947 927 8614 1112 5662 1013 7787 16401 1092 1904 1838 4834 893 1594 1125 947 927 8614 1112 5662 1013 7787 16401 1092 1904 1838 4834 893 1594 1125 266 1289 11974 1546 7870 1408 10824 22798 1518 2647 2555 6720 1241 2216 1564 2439 1160 10776 1391 7083 1267 9</td><td>283 92 1595 59 541 112 712 2307 229 155 406 790 215 365 325 905 947 927 8385 1096 5662 1013 7771 16156 1092 1904 1838 4834 890 1594 1125 3609 947 927 8385 1096 5662 1013 7771 16156 1092 1904 1838 4834 890 1594 1125 3609 947 927 8614 1112 5662 1013 7787 16401 1092 1904 1838 4834 893 1594 1125 3612 947 927 8614 1112 5662 1013 7787 16401 1092 1904 1838 4834 893 1594 1125 3612 266 1289 11974 1546 7870 1408 10824 22798 1518 2647 2555 6720 1241 241 245 501 439<td>2839215959541112712230722915540679021536532590516959479278385109656621013777116156109219041838483489015941125360984432479278614111256621013778716401109219041838483489315941125361284462661289119741546787014081082422798151826472555672012412216156450211174126611391708312679741205171366238223006048111719941408451910567274515201411718229279166012761268781789312030137922146326121844591913841</td></td></td>	283 92 159 59 541 112 712 2307 229 155 406 790 947 927 8385 1096 5662 1013 7771 16156 1092 1904 1838 4834 229 16 16 245 0 0 947 927 8614 1112 5662 1013 7787 16401 1092 1904 1838 4834 266 1289 11974 1546 7870 1408 10824 22798 1518 2647 2555 6720 calculated by multiplying the totals by the appropriate expansion factor. 1391 7083 1267 9741 20517 1366 2382 2300 6048 e calculated by multiplying the Equivalent 12 hr. totals by the AADT factor. 4017 1408 1408 1408 1408 20517 1366 2382 2300 6048	283 92 1595 59 541 112 712 2307 229 155 406 790 215 947 927 8385 1096 5662 1013 7771 16156 1092 1904 1838 4834 890 247 927 8385 1096 5662 1013 7771 16156 1092 1904 1838 4834 890 947 927 8614 1112 5662 1013 7787 16401 1092 1904 1838 4834 893 266 1289 11974 1546 7870 1408 10824 22798 1518 2647 2555 6720 1241 calculated by multiplying the totals by the appropriate expansion factor. 1339 1439 1160 10776 1391 7083 1267 9741 20517 1366 2382 2300 6048 1117 439 1160 10776 1391 7083 1267 9741 20517 1366 2382 2300 6048 1117 </td <td>283 92 1595 59 541 112 712 2307 229 155 406 790 215 365 947 927 8385 1096 5662 1013 7771 16156 1092 1904 1838 4834 890 1594 947 927 8614 1112 5662 1013 7771 16156 1092 1904 1838 4834 890 1594 947 927 8614 1112 5662 1013 7787 16401 1092 1904 1838 4834 893 1594 266 1289 11974 1546 7870 1408 10824 22798 1518 2647 2555 6720 1241 2216 calculated by multiplying the totals by the appropriate expansion factor. 1.39 139 160 10776 1391 7083 1267 9741 20517 1366 2382 2300 6048 1117 1994 493 1520 14117 1822 9279 1660 12761</td> <td>283 92 1595 59 541 112 712 2307 229 155 406 790 215 365 325 947 927 8385 1096 5662 1013 7771 16156 1092 1904 1838 4834 890 1594 1125 947 927 8385 1096 5662 1013 7771 16156 1092 1904 1838 4834 890 1594 1125 947 927 8614 1112 5662 1013 7787 16401 1092 1904 1838 4834 893 1594 1125 947 927 8614 1112 5662 1013 7787 16401 1092 1904 1838 4834 893 1594 1125 266 1289 11974 1546 7870 1408 10824 22798 1518 2647 2555 6720 1241 2216 1564 2439 1160 10776 1391 7083 1267 9</td> <td>283 92 1595 59 541 112 712 2307 229 155 406 790 215 365 325 905 947 927 8385 1096 5662 1013 7771 16156 1092 1904 1838 4834 890 1594 1125 3609 947 927 8385 1096 5662 1013 7771 16156 1092 1904 1838 4834 890 1594 1125 3609 947 927 8614 1112 5662 1013 7787 16401 1092 1904 1838 4834 893 1594 1125 3612 947 927 8614 1112 5662 1013 7787 16401 1092 1904 1838 4834 893 1594 1125 3612 266 1289 11974 1546 7870 1408 10824 22798 1518 2647 2555 6720 1241 241 245 501 439<td>2839215959541112712230722915540679021536532590516959479278385109656621013777116156109219041838483489015941125360984432479278614111256621013778716401109219041838483489315941125361284462661289119741546787014081082422798151826472555672012412216156450211174126611391708312679741205171366238223006048111719941408451910567274515201411718229279166012761268781789312030137922146326121844591913841</td></td>	283 92 1595 59 541 112 712 2307 229 155 406 790 215 365 947 927 8385 1096 5662 1013 7771 16156 1092 1904 1838 4834 890 1594 947 927 8614 1112 5662 1013 7771 16156 1092 1904 1838 4834 890 1594 947 927 8614 1112 5662 1013 7787 16401 1092 1904 1838 4834 893 1594 266 1289 11974 1546 7870 1408 10824 22798 1518 2647 2555 6720 1241 2216 calculated by multiplying the totals by the appropriate expansion factor. 1.39 139 160 10776 1391 7083 1267 9741 20517 1366 2382 2300 6048 1117 1994 493 1520 14117 1822 9279 1660 12761	283 92 1595 59 541 112 712 2307 229 155 406 790 215 365 325 947 927 8385 1096 5662 1013 7771 16156 1092 1904 1838 4834 890 1594 1125 947 927 8385 1096 5662 1013 7771 16156 1092 1904 1838 4834 890 1594 1125 947 927 8614 1112 5662 1013 7787 16401 1092 1904 1838 4834 893 1594 1125 947 927 8614 1112 5662 1013 7787 16401 1092 1904 1838 4834 893 1594 1125 266 1289 11974 1546 7870 1408 10824 22798 1518 2647 2555 6720 1241 2216 1564 2439 1160 10776 1391 7083 1267 9	283 92 1595 59 541 112 712 2307 229 155 406 790 215 365 325 905 947 927 8385 1096 5662 1013 7771 16156 1092 1904 1838 4834 890 1594 1125 3609 947 927 8385 1096 5662 1013 7771 16156 1092 1904 1838 4834 890 1594 1125 3609 947 927 8614 1112 5662 1013 7787 16401 1092 1904 1838 4834 893 1594 1125 3612 947 927 8614 1112 5662 1013 7787 16401 1092 1904 1838 4834 893 1594 1125 3612 266 1289 11974 1546 7870 1408 10824 22798 1518 2647 2555 6720 1241 241 245 501 439 <td>2839215959541112712230722915540679021536532590516959479278385109656621013777116156109219041838483489015941125360984432479278614111256621013778716401109219041838483489315941125361284462661289119741546787014081082422798151826472555672012412216156450211174126611391708312679741205171366238223006048111719941408451910567274515201411718229279166012761268781789312030137922146326121844591913841</td>	2839215959541112712230722915540679021536532590516959479278385109656621013777116156109219041838483489015941125360984432479278614111256621013778716401109219041838483489315941125361284462661289119741546787014081082422798151826472555672012412216156450211174126611391708312679741205171366238223006048111719941408451910567274515201411718229279166012761268781789312030137922146326121844591913841

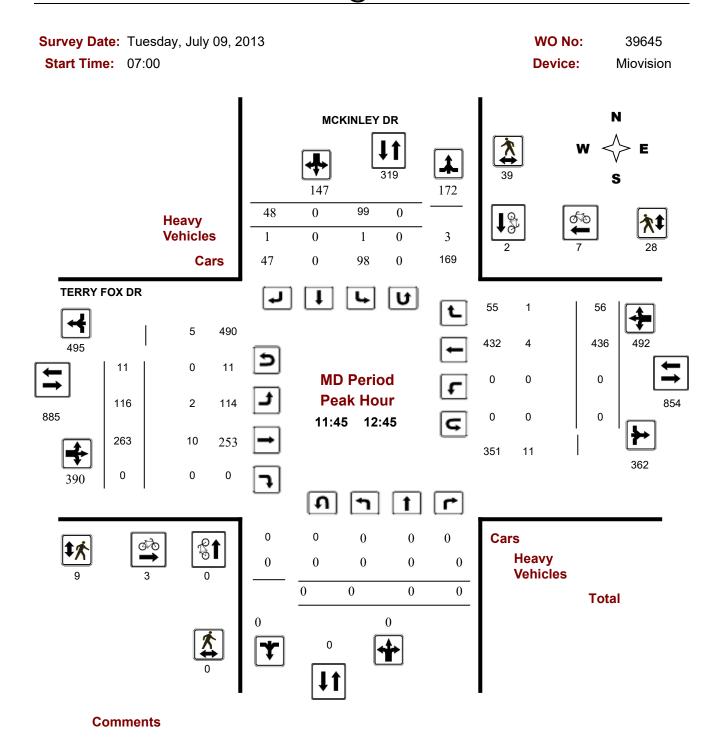
Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

Survey Date	e: W	edne	sday,	April	11, 20	018							wo	No:			3	7663	
Start Time	: 07	7:00											Dev	ice:			Mio	ovision	
						F	ull S	Stud	y 15	5 Mi	nute	Inc	rem	ents	S				
			MA	RCH	RD			•					RY FO						
	No	orthbou	und		Sc	outhbou	ind			E	astbour	nd		We	estbour	nd			
Time Period	LT	ST	RT	N тот	LT	ST	RT	s тот	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	w тот	STR TOT	Grand Total
07:00 07:15	27	58	21	106	26	282	20	328	434	7	42	54	103	11	11	4	26	129	563
07:15 07:30	34	83	21	138	35	274	23	332	470	12	74	62	148	14	16	7	37	185	655
07:30 07:45	37	89	25	151	52	313	28	393	544	10	74	55	139	16	20	7	43	182	726
07:45 08:00	50	71	32	153	71	259	40	370	523	20	114	58	192	15	27	2	44	236	759
08:00 08:15	61	72	46	179	84	259	41	384	563	11	92	68	171	11	24	8	43	214	777
08:15 08:30	59	95	46	200	80	237	22	339	539	26	130	75	231	15	24	15	54	285	824
08:30 08:45	60	96	31	187	86	249	30	365	552	21	124	60	205	13	26	5	44	249	801
08:45 09:00	72	96	44	212	78	221	42	341	553	26	134	63	223	16	39	10	65	288	841
09:00 09:15	83	78	48	209	80	262	51	393	602	16	123	46	185	25	44	10	79	264	866
09:15 09:30	75	90	37	202	58	233	42	333	535	25	135	39	199	13	40	8	61	260	795
09:30 09:45	79	99	27	205	32	183	37	252	457	19	100	45	164	19	27	8	54	218	675
09:45 10:00	41	90	27	158	25	158	24	207	365	23	54	35	112	8	17	9	34	146	511
11:30 11:45	26	149	25	200	26	130	29	185	385	28	19	41	88	31	51	31	113	201	586
11:45 12:00	45	147	34	226	23	163	26	212	438	36	32	45	113	36	59	53	148	261	699
12:00 12:15	54	202	34	290	26	165	29	220	510	44	32	40	116	43	71	41	155	271	781
12:15 12:30	46	178	30	254	34	135	36	205	459	35	36	46	117	40	41	45	126	243	702
12:30 12:45	25	191	21	237	51	176	37	264	501	30	33	39	102	24	35	42	101	203	704
12:45 13:00	46	153	28	227	43	153	43	239	466	43	65	46	154	38	43	27	108	262	728
13:00 13:15	29	175	26	230	32	166	31	229	459	30	63	34	127	32	42	19	93	220	679
13:15 13:30	28	134	31	193	20	130	35	185	378	31	55	37	123	28	32	11	71	194	572
15:00 15:15	54	230	21	305	18	121	27	166	471	45	22	45	112	27	40	22	89	201	672
15:15 15:30	34	238	27	299	11	101	16	128	427	51	18	31	100	28	42	36	106	206	633
15:30 15:45	63	303	21	387	10	120	28	158	545	41	26	34	101	16	66	50	132	233	778
15:45 16:00	67	305	27	399	13	121	39	173	572	46	26	43	115	26	65	58	149	264	836
16:00 16:15	90	285	31	406	16	130	33	179	585	45	34	68	147	30	89	74	193	340	925
16:15 16:30	62	336	23	421	5	131	30	166	587	47	37	65	149	37	51	76	164	313	900
16:30 16:45	61	272	19	352	9	117	36	162	514	52	30	77	159	38	101	59	198	357	871
16:45 17:00	68	349	32	449	8	132	26	166	615	43	25	81	149	27	86	63	176	325	940
17:00 17:15	74	302	29	405	12	145	26	183	588	68	56	111	235	60	127	92	279	514	1102
17:15 17:30	82	373	22	477	17	126	21	164	641	56	36	107	199	65	70	84	219	418	1059
17:30 17:45	59	298	24	381	16	124	33	173	554	66	32	103	201	50	81	80	211	412	966
17:45 18:00	49	310	17	376	15	146	32	193	569	39	31	85	155	41	87	69	197	352	921
Total:	1740	5947	927	8614	1112	5662	1013	7787	16401	1092	1904	1838	4834	893	1594	1125	3612	16401	24,847

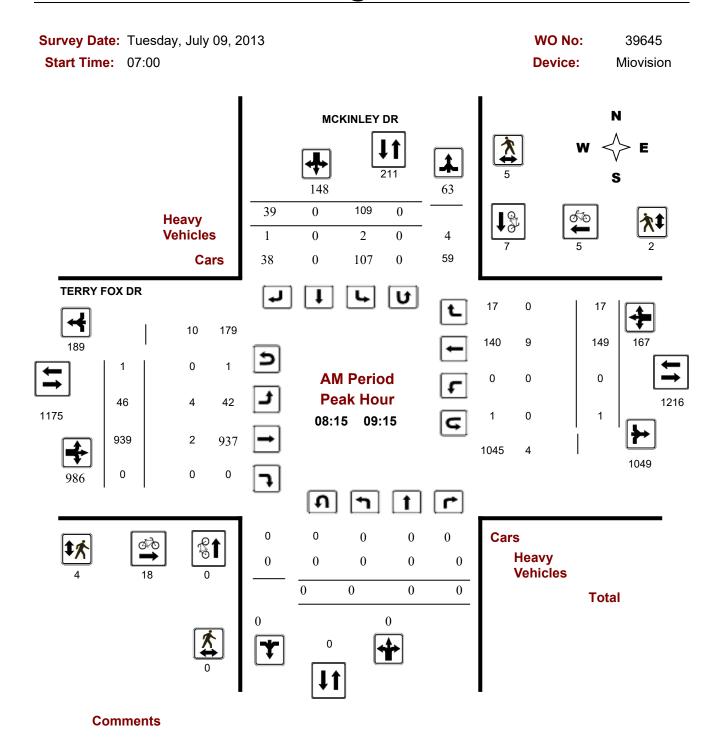
Note: U-Turns are included in Totals.

Survey Dat	e: Wednesda	y, April 11, 2018	3		WO No:		37663
Start Time	07:00				Device:	Ν	liovision
			Full Study	Cvclist V	olume		
		MARCH RD	· · · · · · · · · · · · · · · · · · ·	J = = =	TERRY FOX DE	ર	
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	0	1	1	1	0	1	2
07:15 07:30	0	0	0	0	1	1	1
07:30 07:45	0	0	0	1	1	2	2
07:45 08:00	0	1	1	2	1	3	4
08:00 08:15	0	0	0	1	1	2	2
08:15 08:30	0	0	0	1	0	1	1
08:30 08:45	0	1	1	0	0	0	1
08:45 09:00	0	0	0	0	0	0	0
09:00 09:15	0	0	0	0	0	0	0
09:15 09:30	0	0	0	1	0	1	1
09:30 09:45	0	0	0	0	0	0	0
09:45 10:00	0	0	0	1	1	2	2
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	0	0	0	1	6	7	7
12:00 12:15	0	0	0	0	2	2	2
12:15 12:30	0	0	0	0	2	2	2
12:30 12:45	1	0	1	1	0	1	2
12:45 13:00	0	0	0	2	0	2	2
13:00 13:15	0	0	0	1	0	1	1
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	0	0	0	0	0	0	0
15:15 15:30	0	0	0	0	1	1	1
15:30 15:45	0	0	0	0	0	0	0
15:45 16:00	0	0	0	0	0	0	0
16:00 16:15	0	0	0	0	0	0	0
16:15 16:30	0	0	0	0	0	0	0
16:30 16:45	0	0	0	1	3	4	4
16:45 17:00	1	1	2	0	1	1	3
17:00 17:15	0	0	0	0	1	1	1
17:15 17:30	1	0	1	0	0	0	1
17:30 17:45	0	0	0	1	1	2	2
17:45 18:00	0	0	0	0	1	1	1
Total	3	4	7	15	23	38	45

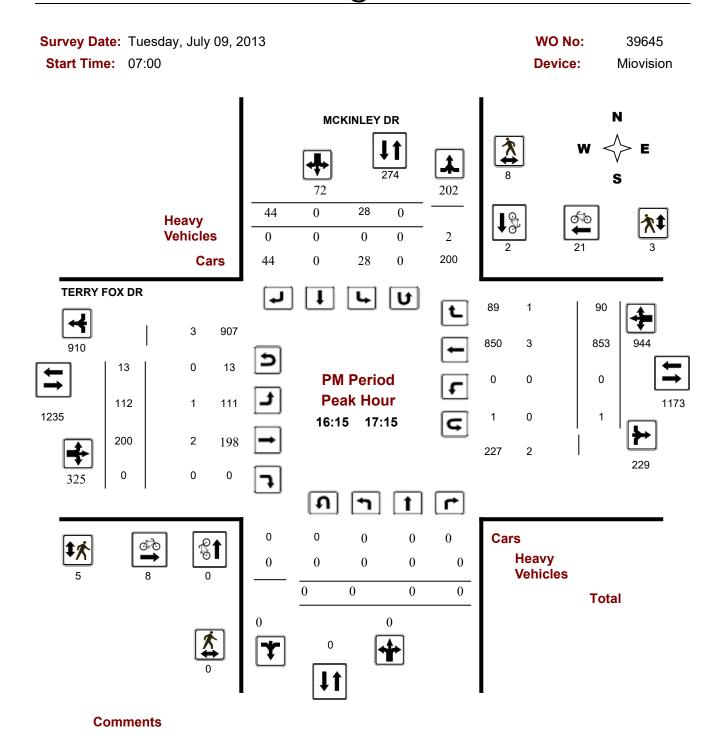
Start Time		y, April 11, 2018			Device:		Miovision
•••••		E		ly Podostria			10100131011
			un Stud	ly Pedestria			
		MARCH RD			TERRY FOX DR		
Time Period (E	NB Approach E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	4	0	4	0	1	1	5
07:15 07:30	0	2	2	0	0	0	2
07:30 07:45	3	1	4	4	3	7	11
07:45 08:00	2	1	3	3	2	5	8
08:00 08:15	3	0	3	1	1	2	5
08:15 08:30	6	1	7	6	2	8	15
08:30 08:45	6	3	9	5	1	6	15
8:45 09:00	10	1	11	4	2	6	17
9:00 09:15	7	4	11	6	8	14	25
9:15 09:30	5	0	5	5	5	10	15
9:30 09:45	1	0	1	1	1	2	3
9:45 10:00	2	0	2	0	1	1	3
1:30 11:45	2	1	3	2	7	9	12
1:45 12:00	14	9	23	9	10	19	42
2:00 12:15	5	7	12	6	2	8	20
2:15 12:30	10	16	26	16	8	24	50
12:30 12:45	7	2	9	0	10	10	19
2:45 13:00	7	7	14	7	6	13	27
3:00 13:15	11	16	27	14	9	23	50
13:15 13:30	7	7	14	7	7	14	28
5:00 15:15	0	4	4	1	0	1	5
15:15 15:30	1	0	1	1	0	1	2
5:30 15:45	1	3	4	0	1	1	5
5:45 16:00	1	3	4	1	3	4	8
16:00 16:15	4	1	5	0	6	6	11
6:15 16:30	0	11	11	2	1	3	14
6:30 16:45	2	14	16	1	4	5	21
6:45 17:00	5	5	10	2	6	8	18
7:00 17:15	12	9	21	8	8	16	37
7:15 17:30	5	9	14	6	4	10	24
7:30 17:45	4	7	11	3	1	4	15
17:45 18:00	2	7	9	2	3	5	14
Total	149	151	300	123	123	246	546

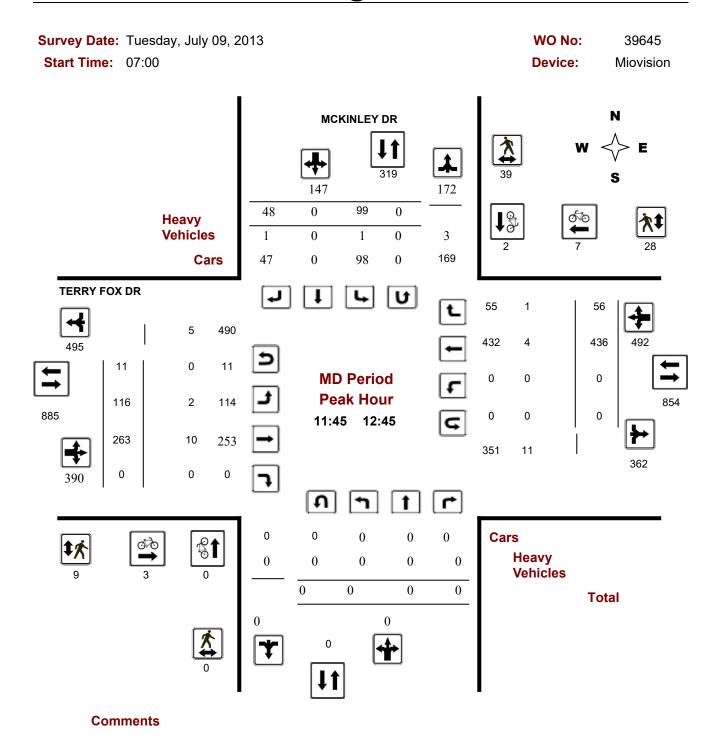


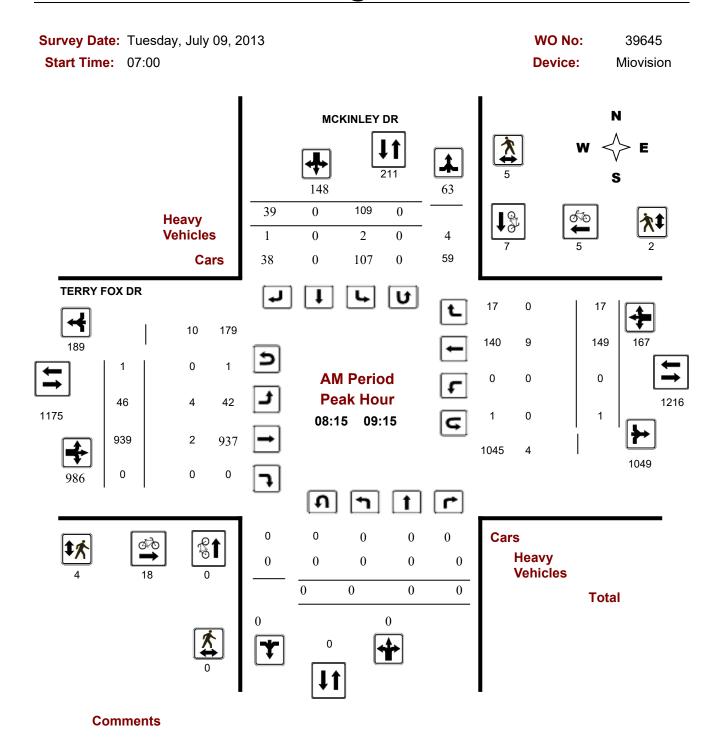
Survey Date:	We	dnes	sday, J	April	11, 20	018							wo	No:			3	7663	
Start Time:	07:0	00											Devi	ice:			Mio	ovisior	า
						F	ull S	Stud	v He	avv	Veł	nicle	s						
			MΔ	RCH	RD	• •		, tuu	y i ic	, u v y	• • •		RY FO	X DR					
	Nort	thbou				outhbou	nd			-	astbour				estbour	d			
				N				s	STR				F				w	STR	Grand
Time Period	Т	ST	RT	тот	LT	ST	RT	тот	тот	LT	ST	RT	Е ТОТ	LT	ST	RT	тот	тот	Total
07:00 07:15 1		3	1	5	0	3	1	4	9	0	1	1	2	0	1	0	1	3	12
07:15 07:30 1		2	0	3	1	2	2	5	8	1	1	3	5	0	2	0	2	7	15
07:30 07:45 2	2	1	0	3	0	4	1	5	8	0	0	1	1	3	2	0	5	6	14
07:45 08:00 0)	3	0	3	0	0	1	1	4	2	0	2	4	4	0	0	4	8	12
08:00 08:15 0)	2	0	2	0	3	1	4	6	1	0	1	2	0	2	0	2	4	10
08:15 08:30 2	2	5	1	8	0	4	0	4	12	1	2	2	5	3	0	1	4	9	21
08:30 08:45 2	2	5	1	8	0	5	2	7	15	0	0	0	0	0	2	0	2	2	17
08:45 09:00 1		10	0	11	0	6	2	8	19	0	0	1	1	1	0	0	1	2	21
09:00 09:15 1		3	0	4	0	4	4	8	12	1	0	0	1	0	1	0	1	2	14
09:15 09:30 1		5	1	7	0	1	2	3	10	1	0	0	1	0	2	0	2	3	13
09:30 09:45 0)	7	0	7	1	6	0	7	14	0	1	0	1	0	2	1	3	4	18
09:45 10:00 1		6	0	7	0	6	0	6	13	0	1	0	1	1	2	0	3	4	17
11:30 11:45 1		4	0	5	0	5	0	5	10	1	1	0	2	2	3	1	6	8	18
11:45 12:00 1		3	0	4	0	3	0	3	7	1	2	0	3	0	0	0	0	3	10
12:00 12:15 0)	3	0	3	0	7	1	8	11	2	0	0	2	0	1	1	2	4	15
12:15 12:30 0)	3	1	4	0	1	1	2	6	0	1	1	2	0	0	0	0	2	8
12:30 12:45 0)	6	1	7	0	1	1	2	9	0	1	1	2	0	1	0	1	3	12
12:45 13:00 0)	1	1	2	0	4	0	4	6	0	2	1	3	1	1	0	2	5	11
13:00 13:15 0)	6	2	8	1	5	0	6	14	0	1	1	2	1	1	1	3	5	19
13:15 13:30 2	2	2	1	5	0	3	1	4	9	0	1	0	1	1	3	2	6	7	16
15:00 15:15 1		3	0	4	0	4	0	4	8	0	0	3	3	1	3	0	4	7	15
15:15 15:30 1		4	1	6	0	5	0	5	11	2	0	0	2	1	1	0	2	4	15
15:30 15:45 0)	6	1	7	0	1	0	1	8	2	2	0	4	0	5	0	5	9	17
15:45 16:00 2	2	4	1	7	0	8	0	8	15	2	2	1	5	1	0	0	1	6	21
16:00 16:15 1		4	1	6	0	5	1	6	12	0	1	0	1	1	0	0	1	2	14
16:15 16:30 2		5	0	7	0	4	1	5	12	1	1	2	4	0	0	0	0	4	16
16:30 16:45 2	2	1	1	4	1	5	0	6	10	1	0	1	2	0	0	0	0	2	12
16:45 17:00 1		0	0	1	0	2	0	2	3	0	1	0	1	0	0	1	1	2	5
17:00 17:15 3	}	0	0	3	1	1	0	2	5	0	2	1	3	0	0	0	0	3	8
17:15 17:30 2	2	2	0	4	0	1	0	1	5	0	1	0	1	0	0	0	0	1	6
17:30 17:45 2	2	1	0	3	0	0	0	0	3	0	1	0	1	0	0	0	0	1	4
17:45 18:00 1		4	0	5	0	2	0	2	7	0	1	0	1	0	0	0	0	1	8
Total: None 34	4 1	114	15	163	5	111	22	138	301	19	27	23	69	21	35	8	64	133	434

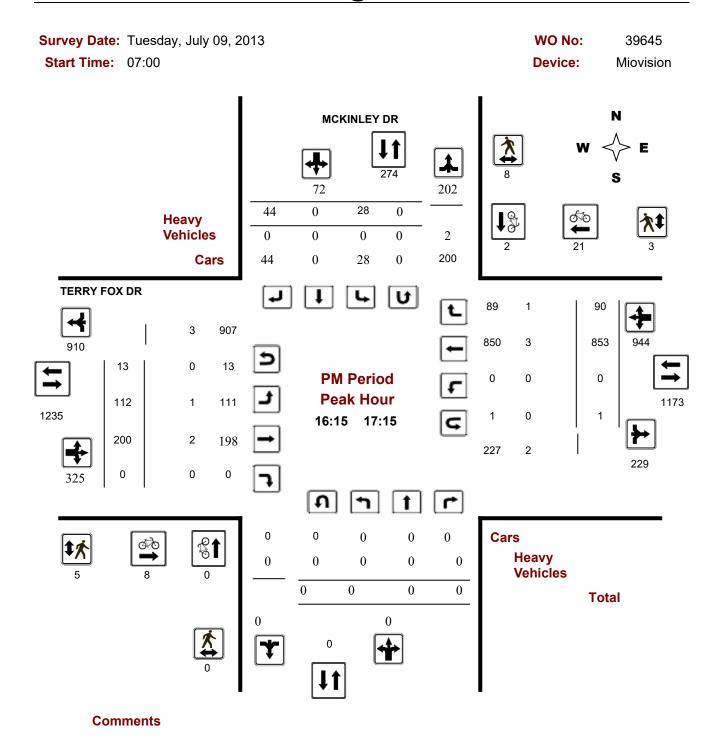


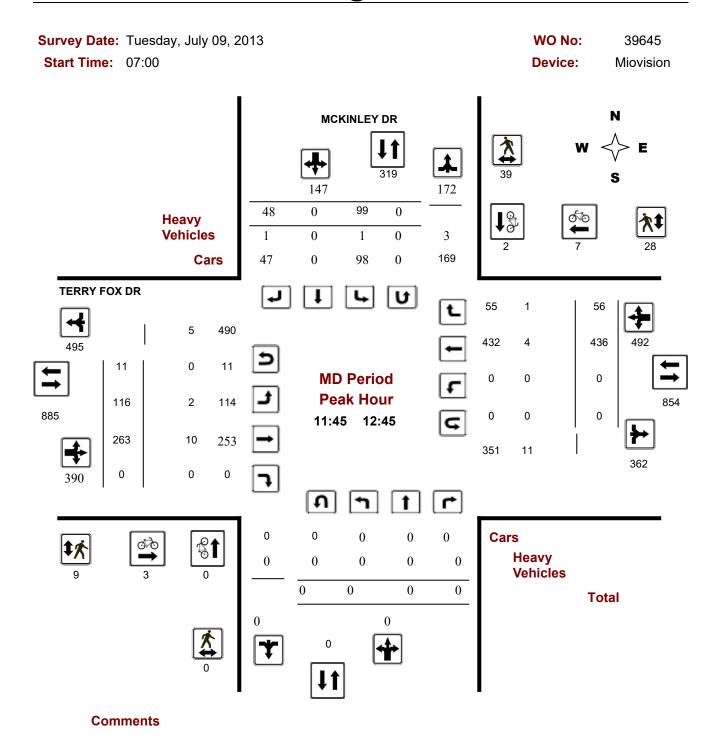
urvey D	ate: Wedne	sday, April	11, 2018		wo) No:	37663
Start Tin	ne: 07:00				De	vice:	Miovision
			Full S	tudy 15 Mir	nute U-Turr	n Total	
			MARCH			RY FOX DR	
_	Time F	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
	07:00	07:15	2	0	0	0	2
-	07:15	07:30	4	1	0	0	5
-	07:30	07:45	4	0	0	0	4
-	07:45	08:00	3	1	0	1	5
-	08:00	08:15	6	0	0	0	6
-	08:15	08:30	5	0	0	0	5
-	08:30	08:45	4	0	0	0	4
-	08:45	09:00	8	0	0	0	8
-	09:00	09:15	11	0	0	0	11
-	09:15	09:30	10	2	0	0	12
-	09:30	09:45	10	1	0	0	11
-	09:45	10:00	4	0	0	0	4
-	11:30	11:45	7	0	0	0	7
-	11:45	12:00	10	1	0	0	11
-	12:00	12:15	13	2	0	0	15
-	12:15	12:30	8	2	0	0	10
-	12:30	12:45	3	0	0	0	3
-	12:45	13:00	7	0	0	0	7
-	13:00	13:15	3	1	0	0	4
-	13:15	13:30	1	1	0	0	2
-	15:00	15:15	5	0	0	0	5
-	15:15	15:30	6	0	0	1	7
-	15:30	15:45	8	0	0	0	8
-	15:45	16:00	7	1	0	0	8
-	16:00	16:15	18	2	0	0	20
-	16:15	16:30	6	0	0	0	6
-	16:30	16:45	5	0	0	0	5
-	16:45	17:00	7	0	0	0	7
-	17:00	17:15	14	0	0	0	14
-	17:15	17:30	13	1	0	0	14
-	17:30	17:45	11	0	0	0	11
-	17:45	18:00	6	0	0	1	7
=		otal	229	16	0	3	248

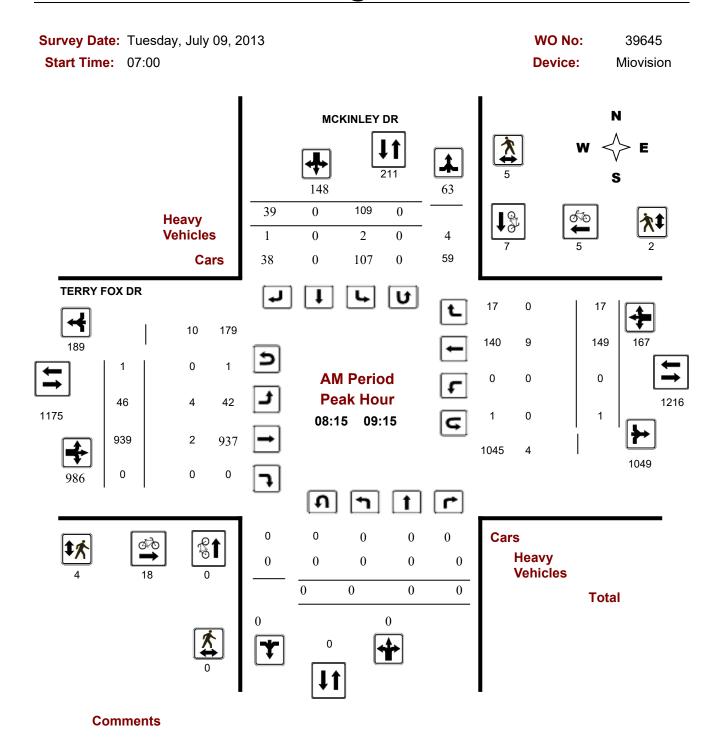


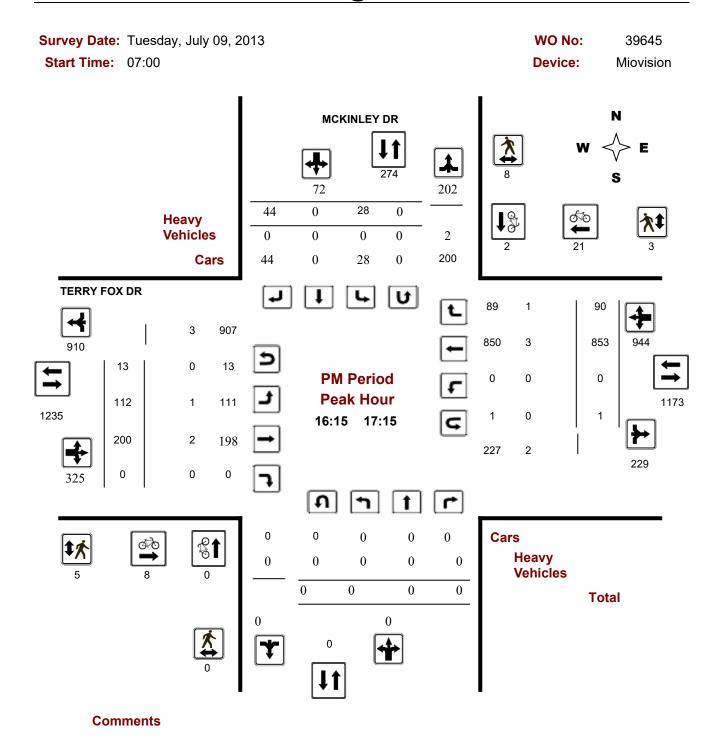


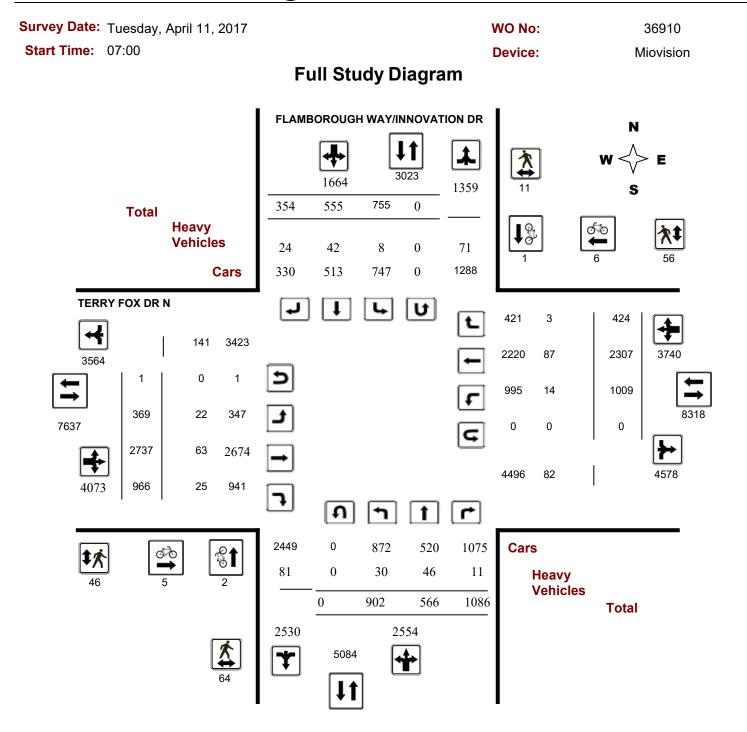


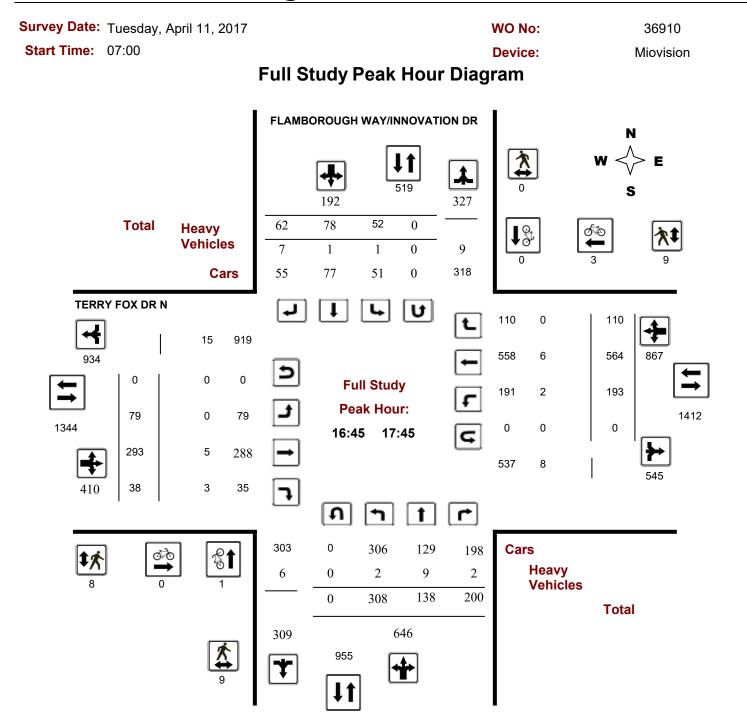












Survey D	ate: T	uesda	ıy, Apr	ril 11, 2	2017							woı	No:			36	910		
Start Time: 07:00											ce:								
				F	Full S	Stud	y Sı	umma	ry (8	3 HR	R Sta	ndar	d)						
Survey Da	ate: 🗆	Fuesd	ay, Ap	oril 11,								Turns	,				AAD	T Facto	or
							١	Northbound	d: 0		Sout	hbound:	0				.90		
								Eastbound	l: 1		Wes	tbound:	0						
	FLAM	IBOR	DUGH	WAY/	INNO\	/ATIO	N DR					TERR	Y FO	X DR I	N				
	Noi	rthbou	nd		So	uthbou	Ind			E	astbou	und		V	Vestbou	und			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Granc Tota
07:00 08:00	23	33	90	146	188	105	37	330	476	23	391	142	556	74	113	21	208	764	1240
08:00 09:00	30	74	182	286	143	122	59	324	610	38	562	322	922	150	160	23	333	1255	1865
09:00 10:00	26	38	163	227	120	93	44	257	484	31	434	235	700	169	155	19	343	1043	1527
11:30 12:30	128	65	119	312	52	33	30	115	427	29	211	50	290	117	318	42	477	767	1194
12:30 13:30	53	45	110	208	65	37	36	138	346	28	308	101	437	99	223	29	351	788	1134
15:00 16:00	98	65	83	246	49	45	33	127	373	68	293	41	402	75	316	77	468	870	1243
16:00 17:00	249	113	147	509	76	53	57	186	695	65	241	36	342	123	495	113	731	1073	1768
17:00 18:00	295	133	192	620	62	67	58	187	807	87	297	39	423	202	527	100	829	1252	2059
Sub Total	902	566	1086	2554	755	555	354	1664	4218	369	2737	966	4072	1009	2307	424	3740	7812	12030
U Turns	0			0	0			0	0	1			1	0			0	1	1
Total	902	566	1086	2554	755	555	354	1664	4218	370	2737	966	4073	1009	2307	424	3740	7813	12031
EQ 12Hr Note: These v	1254 /alues ai	787 re calcu	1510 Ilated by	3551 y multipl	1049 ying the	771 totals b	492 y the a	2312 ppropriate	5863 expans	514 ion fact	3804 tor.	1343	5661	1403 1.39	3207	589	5199	10860	16723
AVG 12Hr	1129	708	1359	3196	944	694	443	2081	5277	463	3424	1209	5096	1263	2886	530	4679	9775	15052
Note: These \	olumes	are cal	culated	by multi	plying th	ne Equiv	alent 1	2 hr. totals	by the	AADT	factor.			.90					
AVG 24Hr	1479	927	1780	4186	1237	909	580	2726	6912	607	4485	1584	6676	1655	3781	694	6130	12806	19718
Note: These \	olumes	are cal	culated	by multi	plying th	ne Avera	age Dai	ily 12 hr. to	tals by	12 to 2	4 expan	sion fact	or.	1.31					

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

Start Time Ord Sind Subsection	Survey Date: Tuesday, April 11, 2017 WO No:													36910							
PERPENDICULE DRUTEVENDE DRUTEVENDE CRUTEVENDE CRUTEVENDE CRUTEVENDE CRUTEVENDE CRUTEVENDE CRUTEVENDE CRUTEVENDE CRUTEVENDE NOTIVE CRUTEVENDE CRUTEVENDE CRUTEVENDE NOTIVE CRUTEVENDE CRUTEVENDE NOTIVE CRUTEVENDE NOTIVE CRUTEVENDE NOTIVE CRUTEVENDE NOTIVE CRUTEVENDE NOTIVE CRUTEVENDE NOTIVE CRUTEVENDE	Start Time: 07:00 Device:											Miovision									
PERPENDICULE DRUTINUE EXERNENCIAL NUTINUE SOLTINUE EXERNENCIAL NUTINUE EXERNENCIAL SOLTINUE EXERNENCIAL NOTINUE EXENTINUE SOLTINUE SOLTINUE <th co<="" td=""><td colspan="13">Full Study 15 Minute Increments</td><td></td></th>	<td colspan="13">Full Study 15 Minute Increments</td> <td></td>	Full Study 15 Minute Increments																			
INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE INTROVERSE										nuu	y i										
Image Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>110/</td><td></td><td>Y</td><td></td><td></td><td></td><td></td></th<>															110/		Y				
Interpende Li Si Ri TOT Li Si Ri TOT Li Si Ri TOT Total 07:00 07:15 6 4 12 22 39 19 7 65 87 7 71 25 103 13 27 7 7 7 150 237 07:15 07:30 4 8 25 37 60 26 7 93 130 6 90 38 134 17 28 5 50 184 314 07:45 4 8 21 36 65 35 44 12 14 66 131 51 121 37 40 4 81 290 37 400 412 215 37 40 41 83 233 23 32 37 37 47 420 433 08:10 09:12 93 81																					
07:00 07:15 6 4 12 22 39 19 7 65 87 7 71 25 103 13 27 7 47 150 237 07:15 07:30 4 9 19 32 51 18 10 79 111 4 99 25 128 15 26 4 45 173 284 07:30 07:45 80:00 9 12 34 55 38 42 13 93 148 6 131 54 191 29 32 5 66 257 405 08:00 9 19 54 82 44 12 91 156 6 138 71 215 37 40 4 81 296 452 08:30 9 19 54 82 20 12 166 113 11 145 80 233 32 80 64 41 6 111 244 242 433 200	Time Pe	riod	LT	ST	RT		LT	ST	RT			LT	ST	RT		LT	ST	RT			Grand
07:16 07:30 4 9 19 32 51 18 10 79 111 4 99 25 128 15 26 4 45 173 2284 07:30 07:45 4 8 25 37 60 26 7 93 130 6 90 38 134 17 28 5 50 184 314 07:45 08:00 9 12 34 55 36 42 13 93 148 6 131 54 14 18 156 6 138 71 215 37 40 4 81 296 452 39 3 74 307 472 08:15 08:00 12 22 58 92 29 38 17 80 141 186 236 39 36 9 84 320 433 08:45 09:00 12 22 58 92 29 32 18 141 166 94 31	07.00 0	7.15	6	1	12		30	10	7	-	-	7	71	25		13	27	7	-	-	
07:30 07:45 4 8 25 37 60 26 7 93 130 6 90 38 134 17 28 5 50 184 314 07:45 08:00 9 12 34 55 38 42 13 93 148 6 131 54 191 29 32 5 66 257 405 08:00 08:45 1 12 34 47 34 20 12 66 138 71 216 37 40 4 61 206 433 08:30 08:45 1 12 34 47 34 20 12 66 113 11 145 80 236 39 36 9 84 320 433 68 9 84 24 45 7 94 332 508 9 84 20 133 149 11 166 94 271 63 31 6 1011 24 429 429			-								_					-		-			
07:45 08:00 9 12 34 55 38 42 13 93 148 6 131 54 191 29 32 5 66 257 405 08:00 08:15 8 21 36 65 35 44 12 91 156 6 138 71 215 37 40 4 81 296 452 08:30 9 19 54 62 45 20 18 83 165 12 38 32 39 3 74 307 472 08:45 09:00 12 22 58 92 29 38 17 84 176 9 141 88 238 42 45 7 94 332 508 09:00 09:15 6 10 53 69 35 24 71 135 12 116 64 41 6 111 294 429 93 09:30 0 56 29 40 22				_	-				-							_					
08:00 08:15 8 21 36 65 35 44 12 91 156 6 138 71 215 37 40 4 81 296 452 08:15 08:30 9 19 54 82 45 20 18 83 165 12 138 83 233 32 39 3 74 307 472 08:30 09:04 12 22 58 92 29 38 17 80 149 11 166 94 238 42 45 7 94 332 508 09:00 09:15 6 10 53 69 35 28 17 80 149 116 55 183 64 41 6 111 294 429 429 429 429 429 429 42 55 111 135 120 111 13 111 <td< td=""><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td>-</td></td<>			-	-	-										-					-	-
08:15 08:30 9 19 54 82 45 20 18 83 165 12 138 83 233 32 39 3 74 307 472 08:30 08:45 1 12 34 47 34 20 12 66 113 11 145 80 236 39 36 9 84 320 433 08:45 010 12 22 58 92 29 38 17 84 176 9 141 88 288 42 45 7 94 332 508 09:00 09:15 6 10 47 64 35 32 4 71 135 131 6 110 31 6 111 294 429 429 423 45 12 111 135 24 55 133 64 41 6 111 132 107 <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td>			-		-				-			-		-		-		-			
08:30 08:45 1 12 34 47 34 20 12 66 113 11 145 80 236 39 36 9 84 320 433 08:45 09:00 12 22 58 92 29 38 17 84 176 9 141 88 238 42 45 7 94 332 508 09:00 09:15 6 10 53 69 35 28 17 80 149 11 166 94 271 63 31 6 100 371 520 09:30 7 10 47 64 35 32 4 71 135 12 45 24 52 4 80 215 335 09:45 10:00 5 6 29 40 22 106 4 84 47 135 24 52 163			-							-		-				-	-		-		-
08:45 09:00 12 22 58 92 29 38 17 84 176 9 141 88 238 42 45 7 94 332 508 09:00 09:15 6 10 53 69 35 28 17 80 149 11 166 94 271 63 31 6 100 371 520 09:15 09:30 7 10 47 64 35 32 4 71 135 12 116 55 183 64 41 6 111 294 429 09:30 09:45 8 12 34 74 84 23 15 66 120 4 84 47 135 24 52 4 80 215 335 11:30 11:45 12:00 15 30 75 16 51 11 32 107 8<			-		-				-							-		-	1		
09:00 09:15 6 10 53 69 35 28 17 80 149 11 166 94 271 63 31 6 100 371 520 09:15 09:30 7 10 47 64 35 32 4 71 135 12 116 55 183 64 41 6 111 294 429 09:30 09:45 8 12 34 54 28 23 15 66 120 4 84 47 135 24 52 4 80 215 335 09:30 05 6 29 40 22 10 8 40 80 44 68 31 11 18 31 3 52 163 243 11:45 12:00 30 13 31 74 8 11 6 25 99 8 61					-		-				-		-					-	-		
09:15 09:30 7 10 47 64 35 32 4 71 135 12 116 55 183 64 41 6 111 294 429 09:30 09:45 8 12 34 54 28 23 15 66 120 4 84 47 135 24 52 4 80 215 335 09:45 10:00 5 6 29 40 22 10 8 40 80 4 68 39 111 18 31 3 52 163 243 11:45 12:00 30 15 30 75 16 5 11 32 107 8 50 10 68 31 80 9 120 188 294 12:15 32:0 30 13 31 74 8 11 13 9 10 68 <							-			-		-							-		
09:30 09:45 8 12 34 54 28 23 15 66 120 4 84 47 135 24 52 4 80 215 335 09:45 10:00 5 6 29 40 22 10 8 40 80 4 68 39 111 18 31 3 52 163 243 11:30 11:45 36 17 26 79 19 9 8 36 115 4 51 12 67 24 75 9 108 175 290 11:45 12:00 30 15 30 75 16 5 11 32 107 8 50 10 68 24 80 11 115 183 290 12:00 12:15 32 32 13 31 74 8 11 33 98 24 <			-	_				-										-		-	
09:45 10:00 5 6 29 40 22 10 8 40 80 4 68 39 111 18 31 3 52 163 243 11:30 11:45 36 17 26 79 19 9 8 36 115 4 51 12 67 24 75 9 108 175 290 11:45 12:00 30 15 30 75 16 5 11 32 107 8 50 10 68 24 80 11 115 183 290 12:00 12:15 32 20 32 84 9 8 5 22 106 9 49 10 68 31 80 9 120 188 294 12:0 12:15 13:0 13 31 74 8 11 73 84 5 82 <td< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></td<>				_												-					
11:30 11:45 36 17 26 79 19 9 8 36 115 4 51 12 67 24 75 9 108 175 290 11:45 12:00 30 15 30 75 16 5 11 32 107 8 50 10 68 24 80 11 115 183 290 12:00 12:15 32 20 32 84 9 8 5 22 106 9 49 10 68 31 80 9 120 188 294 12:15 12:30 30 13 31 74 8 11 6 25 99 8 61 18 87 38 83 13 134 221 320 12:30 12:45 18 19 28 65 15 11 13 39 104 6 68 24 98 25 55 5 85 183 287 <t< td=""><td></td><td></td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td></t<>			-		-	-	-		-		-		-				-			-	
11:45 12:00 30 15 30 75 16 5 11 32 107 8 50 10 68 24 80 11 115 183 290 12:00 12:15 32 20 32 84 9 8 5 22 106 9 49 10 68 31 80 9 120 188 294 12:01 12:15 32 20 32 84 9 8 5 22 106 9 49 10 68 31 80 9 120 188 294 12:15 12:30 30 13 31 74 8 11 6 25 99 8 61 18 87 38 83 13 134 221 320 12:30 12:45 18 19 28 65 15 11 13 39 104 6 68 24 98 25 55 5 85 183 287 <td< td=""><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td></td<>			-	-				-	-							-	-	-			
12:00 12:15 32 20 32 84 9 8 5 22 106 9 49 10 68 31 80 9 120 188 294 12:15 12:30 30 13 31 74 8 11 6 25 99 8 61 18 87 38 83 13 134 221 320 12:30 12:45 18 19 28 65 15 11 13 39 104 6 68 24 98 25 55 5 85 183 287 12:45 13:00 14 10 23 47 18 9 10 37 84 5 82 24 111 22 57 13 92 203 287 13:00 13:15 10 9 31 50 15 10 7 32 82 11 84 27 122 35 58 6 99 21 303		-			-			-					-		-			-		-	
12:15 12:30 30 13 31 74 8 11 6 25 99 8 61 18 87 38 83 13 134 221 320 12:30 12:45 18 19 28 65 15 11 13 39 104 6 68 24 98 25 55 5 85 183 287 12:45 13:00 14 10 23 47 18 9 10 37 84 5 82 24 111 22 57 13 92 203 287 13:00 13:15 10 9 31 50 15 10 7 32 82 11 84 27 122 35 58 6 99 221 303 13:15 13:30 11 7 28 46 17 7 6 30 76 7 74 26 107 17 53 5 75 182 258							-														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					-		-	-	-	-		-	-					-			-
12:45 13:00 14 10 23 47 18 9 10 37 84 5 82 24 111 22 57 13 92 203 287 13:00 13:15 10 9 31 50 15 10 7 32 82 11 84 27 122 35 58 6 99 221 303 13:15 13:0 11 7 28 46 17 7 6 30 76 7 74 26 107 17 53 5 75 182 258 15:00 15:15 25 11 16 52 9 7 3 19 71 19 78 6 103 15 58 11 84 187 258 15:15 15:30 21 12 22 55 13 5 8 26 81 13 94 20 67 14 101 195 276 15:30 15:45				_	-		-		-			-	-	-	-			-			
13:00 13:15 10 9 31 50 15 10 7 32 82 11 84 27 122 35 58 6 99 221 303 13:15 13:30 11 7 28 46 17 7 6 30 76 7 74 26 107 17 53 5 75 182 258 15:00 15:15 25 11 16 52 9 7 3 19 71 19 78 6 103 15 58 11 84 187 258 15:15 15:30 21 12 25 13 5 8 26 81 13 94 20 67 14 101 195 276 15:30 15:45 27 24 20 71 12 12 10 34 105 19 75 10 104 18 94 29 141 245 350 15:45 16:00 25			-	_	-							-				-		-			
13:15 13:30 11 7 28 46 17 7 6 30 76 7 74 26 107 17 53 5 75 182 258 15:00 15:15 25 11 16 52 9 7 3 19 71 19 78 6 103 15 58 11 84 187 258 15:15 15:30 21 12 22 55 13 5 8 26 81 13 68 13 94 20 67 14 101 195 276 15:30 15:45 27 24 20 71 12 12 10 34 105 19 75 10 104 18 94 29 141 245 350 15:45 16:00 25 18 25 68 15 21 12 48 116 17 72 12 101 22 97 23 142 243 359 16:0								-	-		_	-	-						-		
15:00 15:15 25 11 16 52 9 7 3 19 71 19 78 6 103 15 58 11 84 187 258 15:15 15:30 21 12 22 55 13 5 8 26 81 13 68 13 94 20 67 14 101 195 276 15:30 15:45 27 24 20 71 12 12 10 34 105 19 75 10 104 18 94 29 141 245 350 15:45 16:00 25 18 25 68 15 21 12 48 116 17 72 12 101 22 97 23 142 243 359 16:00 16:15 54 27 31 112 24 16 16 56 168 19 55 13 87 34 121 25 180 267 435			-	-	-		-	-		-	_		-					-			
15:15 15:30 21 12 22 55 13 5 8 26 81 13 68 13 94 20 67 14 101 195 276 15:30 15:45 27 24 20 71 12 12 10 34 105 19 75 10 104 18 94 29 141 245 350 15:45 16:00 25 18 25 68 15 21 12 48 116 17 72 12 101 22 97 23 142 243 359 16:00 16:15 54 27 31 112 24 16 16 56 168 19 55 13 87 34 121 25 180 267 435 16:15 16:30 64 28 34 126 24 7 10 41 167 18 59 7 84 20 108 33 161 245 412 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>									-				1		-			-			
15:30 15:45 27 24 20 71 12 12 10 34 105 19 75 10 104 18 94 29 141 245 350 15:45 16:00 25 18 25 68 15 21 12 48 116 17 72 12 101 22 97 23 142 243 359 16:00 16:15 54 27 31 112 24 16 16 56 168 19 55 13 87 34 121 25 180 267 435 16:15 16:30 64 28 34 126 24 7 10 41 167 18 59 7 84 20 108 33 161 245 412 16:15 16:30 64 28 34 126 24 7 10 41 167 18 59 7 84 20 108 33 161 245 412					-		-		-	-	-	-	-	-		-				-	
15:45 16:00 25 18 25 68 15 21 12 48 116 17 72 12 101 22 97 23 142 243 359 16:00 16:15 54 27 31 112 24 16 16 56 168 19 55 13 87 34 121 25 180 267 435 16:15 16:30 64 28 34 126 24 7 10 41 167 18 59 7 84 20 108 33 161 245 412 16:30 16:45 65 29 33 127 14 11 15 40 167 16 53 10 79 36 125 28 189 268 435 16:45 17:00 66 29 49 144 19 16 49 193 12 74 6 92 33 141 27 201 293 486 17:00											-				-	_	-				
16:00 16:15 54 27 31 112 24 16 16 56 168 19 55 13 87 34 121 25 180 267 435 16:15 16:30 64 28 34 126 24 7 10 41 167 18 59 7 84 20 108 33 161 245 412 16:30 16:45 65 29 33 127 14 11 15 40 167 16 53 10 79 36 125 28 189 268 435 16:45 17:00 66 29 49 144 14 19 16 49 193 12 74 6 92 33 141 27 201 293 486 17:00 17:15 83 39 50 172 15 27 19 61 233 19 59 12 90 45 125 26 196 286 519									-	-			-		-	-	-	-	1	-	
16:15 16:30 64 28 34 126 24 7 10 41 167 18 59 7 84 20 108 33 161 245 412 16:30 16:45 65 29 33 127 14 11 15 40 167 16 53 10 79 36 125 28 189 268 435 16:45 17:00 66 29 49 144 14 19 16 49 193 12 74 6 92 33 141 27 201 293 486 17:00 17:15 83 39 50 172 15 27 19 61 233 19 59 12 90 45 125 26 196 286 519 17:15 17:30 83 37 54 174 14 15 144 3217 23 93 10 126 63 157 38 258 384 601 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td>							-						1		-		-	-			
16:30 16:45 65 29 33 127 14 11 15 40 167 16 53 10 79 36 125 28 189 268 435 16:45 17:00 66 29 49 144 14 19 16 49 193 12 74 6 92 33 141 27 201 293 486 17:00 17:15 83 39 50 172 15 27 19 61 233 19 59 12 90 45 125 26 196 286 519 17:15 17:30 83 37 54 174 14 15 14 43 217 23 93 10 126 63 157 38 258 384 601			-		-			-				-		-	-	-		-		-	
16:45 17:00 66 29 49 144 14 19 16 49 193 12 74 6 92 33 141 27 201 293 486 17:00 17:15 83 39 50 172 15 27 19 61 233 19 59 12 90 45 125 26 196 286 519 17:15 17:30 83 37 54 174 14 15 14 43 217 23 93 10 126 63 157 38 258 384 601					-				-						-					-	
17:00 17:15 83 39 50 172 15 27 19 61 233 19 59 12 90 45 125 26 196 286 519 17:15 17:30 83 37 54 174 14 15 14 43 217 23 93 10 126 63 157 38 258 384 601						1		1		1	-										
17:15 17:30 83 37 54 174 14 15 14 43 217 23 93 10 126 63 157 38 258 384 601					-											_					
						1										_					
17:45 18:00 53 24 41 118 24 8 12 44 162 20 78 7 105 42 104 17 163 268 430																					
		-														_					12,031

Note: U-Turns are included in Totals.

Survey Dat	e: Tuesday, A	April 11, 2017			WO No:		36910
Start Time	07:00				Device:		Miovision
			Full Study	Cyclist V	olume		
		UGH WAY/INN			TERRY FOX DF	2 N	
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	 Grand Total
07:00 07:15	0	0	0	0	1	Street Total	
07:15 07:30	0	0	0	0	0	0	0
07:30 07:45	0	0	-	1	0	1	1
	0	0	0	1	0	-	
07:45 08:00	-	-	0		-	1	1
08:00 08:15	0	0	0	1	0	1	1
08:15 08:30	0	1	1	0	0	0	1
08:30 08:45	0	0	0	1	0	1	1
08:45 09:00	0	0	0	0	0	0	0
09:00 09:15	0	0	0	0	0	0	0
09:15 09:30	0	0	0	0	0	0	0
09:30 09:45	0	0	0	0	0	0	0
09:45 10:00	0	0	0	0	0	0	0
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	0	0	0	0	0	0	0
12:00 12:15	0	0	0	0	0	0	0
12:15 12:30	1	0	1	0	1	1	2
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	0	0	0	0	1	1	1
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	0	0	0	0	0	0	0
15:15 15:30	0	0	0	0	0	0	0
15:30 15:45	0	0	0	0	0	0	0
15:45 16:00	0	0	0	0	0	0	0
16:00 16:15	0	0	0	0	0	0	0
16:15 16:30	0	0	0	1	0	1	1
16:30 16:45	0	0	0	0	0	0	0
16:45 17:00	0	0	0	0	0	0	0
17:00 17:15	0	0	0	0	1	1	1
17:15 17:30	1	0	1	0	2	2	3
17:30 17:45	0	0	0	0	0	0	0
	-	-	-		0	0	0
	0	0	0	0	-		-
Total	2	1	3	5	6	11	14

Survey Da	ate: Tuesday, A	April 11, 2017			WO No:		36910
Start Tim	e: 07:00				Device:		Miovision
		F	ull Study	/ Pedestria	n Volume		
	FLAMBO	- DROUGH WAY/IN	-		TERRY FOX DR N		
		DR				I	
Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	0	0	0	0	0	0	0
07:15 07:30	0	0	0	1	1	2	2
07:30 07:45	0	0	0	0	0	0	0
07:45 08:00	5	0	5	2	3	5	10
08:00 08:15	2	2	4	0	2	2	6
08:15 08:30	1	0	1	1	3	4	5
08:30 08:45	0	0	0	2	2	4	4
08:45 09:00	0	1	1	1	2	3	4
09:00 09:15	2	1	3	0	3	3	6
09:15 09:30	0	0	0	0	1	1	1
09:30 09:45	0	0	0	0	1	1	1
09:45 10:00	1	0	1	0	0	0	1
11:30 11:45	3	0	3	2	0	2	5
11:45 12:00	3	0	3	3	1	4	7
12:00 12:15	6	0	6	3	1	4	10
2:15 12:30	4	0	4	3	4	7	11
12:30 12:45	5	0	5	5	2	7	12
12:45 13:00	4	1	5	0	4	4	9
13:00 13:15	4	0	4	0	3	3	7
13:15 13:30	4	0	4	1	0	1	5
15:00 15:15	3	0	3	2	0	2	5
15:15 15:30	0	1	1	1	4	5	6
15:30 15:45	1	0	1	1	0	1	2
15:45 16:00	2	2	4	2	2	4	8
16:00 16:15	1	0	1	3	2	5	6
6:15 16:30	0	1	1	2	0	2	3
6:30 16:45	3	1	4	3	5	8	12
6:45 17:00	3	0	3	7	2	9	12
7:00 17:15	1	0	1	0	2	2	3
17:15 17:30	2	0	2	0	4	4	6
17:30 17:45	3	0	3	1	1	2	5
17:45 18:00	1	1	2	0	1	1	3
Total	64	11	75	46	56	102	177

Survey Date: Tuesday, April 11, 2017 WO No:													36910						
Start Time: 07:00 Device:													Miovision						
						F	ull S	stud	у Не	avv	Veł	nicle	s						
			FLAM	BOR	JUGH			, tuu	y 110	, a v y			Y FOX		N				
			Y/INN												•				
	N	orthbo	und		Sc	outhbou	Ind			E	astbour	nd		W	estbour	nd			
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	Е ТОТ	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:15	2	1	0	3	0	3	1	4	7	1	5	1	7	0	0	0	0	7	14
07:15 07:30	1	4	0	5	0	1	0	1	6	2	3	0	5	0	3	1	4	9	15
07:30 07:45	1	2	0	3	0	3	1	4	7	1	1	2	4	0	8	0	8	12	19
07:45 08:00	1	2	2	5	0	2	0	2	7	0	4	2	6	1	0	0	1	7	14
08:00 08:15	0	0	1	1	0	2	0	2	3	3	3	0	6	0	4	0	4	10	13
08:15 08:30	3	1	0	4	2	1	2	5	9	1	2	1	4	0	3	0	3	7	16
08:30 08:45	0	1	0	1	0	0	2	2	3	2	1	1	4	2	4	1	7	11	14
08:45 09:00	1	3	0	4	0	3	1	4	8	0	0	1	1	2	2	0	4	5	13
09:00 09:15	0	1	1	2	0	2	2	4	6	0	7	1	8	3	6	0	9	17	23
09:15 09:30	1	1	0	2	0	1	0	1	3	1	2	0	3	1	3	0	4	7	10
09:30 09:45	0	1	0	1	0	2	0	2	3	0	1	1	2	0	7	0	7	9	12
09:45 10:00	1	1	0	2	0	1	0	1	3	0	3	0	3	0	0	0	0	3	6
11:30 11:45	1	1	1	3	0	2	0	2	5	0	1	1	2	1	4	0	5	7	12
11:45 12:00	1	1	0	2	1	1	0	2	4	0	3	0	3	0	3	1	4	7	11
12:00 12:15	2	1	1	4	0	1	0	1	5	1	1	2	4	1	3	0	4	8	13
12:15 12:30	1	1	1	3	0	1	0	1	4	0	3	0	3	0	1	0	1	4	8
12:30 12:45	0	1	0	1	0	2	0	2	3	0	0	2	2	0	2	0	2	4	7
12:45 13:00	2	1	0	3	0	1	0	1	4	0	1	0	1	0	1	0	1	2	6
13:00 13:15	1	1	0	2	0	1	1	2	4	0	3	2	5	0	4	0	4	9	13
13:15 13:30	2	1	0	3	0	1	0	1	4	0	1	0	1	0	2	0	2	3	7
15:00 15:15	0	0	0	0	1	3	1	5	5	5	1	1	7	0	1	0	1	8	13
15:15 15:30	1	2	0	3	0	2	0	2	5	1	3	0	4	0	4	0	4	8	13
15:30 15:45	1	1	0	2	0	1	0	1	3	3	2	1	6	0	3	0	3	9	12
15:45 16:00	2	2	1	5	0	3	0	3	8	1	2	0	3	0	2	0	2	5	13
16:00 16:15	2	1	0	3	0	0	2	2	5	0	0	2	2	0	3	0	3	5	10
16:15 16:30	1	2	1	4	1	1	0	2	6	0	2	0	2	0	4	0	4	6	12
16:30 16:45	0	1	0	1	0	0	2	2	3	0	0	1	1	1	3	0	4	5	8
16:45 17:00		1	0	2	0	0	1	1	3	0	2	1	3	0	0	0	0	3	6
17:00 17:15		1	0	1	0	0	1	1	2	0	0	1	1	0	2	0	2	3	5
17:15 17:30	0	3	1	4	1	0	2	3	7	0	1	0	1	2	1	0	3	4	11
17:30 17:45	1	4	1	6	0	1	3	4	10	0	2	1	3	0	3	0	3	6	16
17:45 18:00		2	0	2	2	0	2	4	6	0	3	0	3	0	1	0	1	4	10
Total: None	30	46	11	87	8	42	24	74	161	22	63	25	110	14	87	3	104	214	375

Turning Movement Count - Study Results TERRY FOX DR N @ FLAMBOROUGH WAY/INNOVATION DR

urvey Date: Tuesday, April 11, 2017					WC) No:	36910
tart Time: 07:00			Device:		Miovision		
			Full S	Full Study 15 Minute U-Turn Total			
			FLAMBORO	DUGH		RY FOX DR N	
_	Time F	Period	WAY/INNOVA Northbound U-Turn Total	FION DR Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
	07:00	07:15	0	0	0	0	0
—	07:15	07:30	0	0	0	0	0
_	07:30	07:45	0	0	0	0	0
_	07:45	08:00	0	0	0	0	0
_	08:00	08:15	0	0	0	0	0
—	08:15	08:30	0	0	0	0	0
—	08:30	08:45	0	0	0	0	0
	08:45	09:00	0	0	0	0	0
_	09:00	09:15	0	0	0	0	0
_	09:15	09:30	0	0	0	0	0
	09:30	09:45	0	0	0	0	0
	09:45	10:00	0	0	0	0	0
_	11:30	11:45	0	0	0	0	0
_	11:45	12:00	0	0	0	0	0
_	12:00	12:15	0	0	0	0	0
_	12:15	12:30	0	0	0	0	0
_	12:30	12:45	0	0	0	0	0
-	12:45	13:00	0	0	0	0	0
_	13:00	13:15	0	0	0	0	0
-	13:15	13:30	0	0	1	0	1
_	15:00	15:15	0	0	0	0	0
_	15:15	15:30	0	0	0	0	0
-	15:30	15:45	0	0	0	0	0
_	15:45	16:00	0	0	0	0	0
_	16:00	16:15	0	0	0	0	0
—	16:15	16:30	0	0	0	0	0
_	16:30	16:45	0	0	0	0	0
—	16:45	17:00	0	0	0	0	0
_	17:00	17:15	0	0	0	0	0
_	17:15	17:30	0	0	0	0	0
_	17:30	17:45	0	0	0	0	0
_	17:45	18:00	0	0	0	0	0
=	To		0	0	1	0	1

600 March Road Transportation Impact Assessment Appendices June 7, 2022

Appendix B TRANSPORTATION DEMAND MANAGEMENT CHECKLISTS

R

TDM-Supportive Development Design and Infrastructure Checklist:

Residential Developments (multi-family or condominium)

Legend			
REQUIRED	The Official Plan or Zoning By-law provides related guidance that must be followed		
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users		
BETTER The measure could maximize support for users of sustainab modes, and optimize development performance			

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references	
	1.	WALKING & CYCLING: ROUTES		
	1.1	Building location & access points		
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances		
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations		
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort		
	1.2	Facilities for walking & cycling		
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)		
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official <i>Plan policy 4.3.12</i>)		

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and on- road cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILI	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well- used areas (see Zoning By-law Section 111)	
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of resident-owned bicycles, plus the expected peak number of visitor cyclists	
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single residential building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to at least the number of units at condominiums or multi-family residential developments	
	2.3	Bicycle repair station	
BETTER	2.3.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	

	TDM-s	upportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide up to three carshare parking spaces in an R3, R4 or R5 Zone for specified residential uses <i>(see Zoning By-law Section 94)</i>	
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly <i>(see Zoning By-law</i> <i>Section 104)</i>	
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking <i>(see Zoning By-law Section 111)</i>	
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Provide separate areas for short-term and long-term parking (using signage or physical barriers) to permit access controls and simplify enforcement (i.e. to discourage residents from parking in visitor spaces, and vice versa)	

TDM Measures Checklist:

Residential Developments (multi-family, condominium or subdivision)

BASIC The measure is generally feasible and effective, and in most cases would benefit the development and its users

BETTER The measure could maximize support for users of sustainable modes, and optimize development performance

The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC ★	1.1.1	Designate an internal coordinator, or contract with an external coordinator	
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & des	tinations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium)	
	2.2	Bicycle skills training	
BETTER	2.2.1	Offer on-site cycling courses for residents, or subsidize off-site courses	

	TDM	measures: Residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances (multi-family, condominium)	
BETTER	3.1.2	Provide real-time arrival information display at entrances (multi-family, condominium)	
	3.2	Transit fare incentives	
BASIC ★	3.2.1	Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit	
BETTER	3.2.2	Offer at least one year of free monthly transit passes on residence purchase/move-in	
	3.3	Enhanced public transit service	
BETTER ★	3.3.1	Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels (<i>subdivision</i>)	
	3.4	Private transit service	
BETTER	3.4.1	Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)	
	4.	CARSHARING & BIKESHARING	
	4.1	Bikeshare stations & memberships	
BETTER	4.1.1	Contract with provider to install on-site bikeshare station (<i>multi-family</i>)	
BETTER	4.1.2	Provide residents with bikeshare memberships, either free or subsidized <i>(multi-family)</i>	
	4.2	Carshare vehicles & memberships	
BETTER	4.2.1	Contract with provider to install on-site carshare vehicles and promote their use by residents	
BETTER	4.2.2	Provide residents with carshare memberships, either free or subsidized	
	5.	PARKING	
	5.1	Priced parking	
BASIC ★	5.1.1	Unbundle parking cost from purchase price (condominium)	
BASIC 🛧	5.1.2	Unbundle parking cost from monthly rent (multi-family)	

	TDM	measures: Residential developments	Check if proposed & add descriptions
	6.	TDM MARKETING & COMMUNICATIONS	
	6.1	Multimodal travel information	
BASIC ★	6.1.1	Provide a multimodal travel option information package to new residents	
	6.2	Personalized trip planning	
BETTER ★	6.2.1	Offer personalized trip planning to new residents	

TDM-Supportive Development Design and Infrastructure Checklist:

Non-Residential Developments (office, institutional, retail or industrial)

Legend			
REQUIRED	The Official Plan or Zoning By-law provides related guidance that must be followed		
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users		
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance		

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	
	1.2	Facilities for walking & cycling	
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official <i>Plan policy 4.3.12</i>)	

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and on- road cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILI	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well- used areas (see Zoning By-law Section 111)	
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met), plus the expected peak number of customer/visitor cyclists	
BETTER	2.1.5	Provide bicycle parking spaces equivalent to the expected number of commuter and customer/visitor cyclists, plus an additional buffer (e.g. 25 percent extra) to encourage other cyclists and ensure adequate capacity in peak cycling season	
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single office building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met)	
	2.3	Shower & change facilities	
BASIC	2.3.1	Provide shower and change facilities for the use of active commuters	
BETTER	2.3.2	In addition to shower and change facilities, provide dedicated lockers, grooming stations, drying racks and laundry facilities for the use of active commuters	
	2.4	Bicycle repair station	
BETTER	2.4.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	
	4.2	Carpool parking	
BASIC	4.2.1	Provide signed parking spaces for carpools in a priority location close to a major building entrance, sufficient in number to accommodate the mode share target for carpools	
BETTER	4.2.2	At large developments, provide spaces for carpools in a separate, access-controlled parking area to simplify enforcement	
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide carshare parking spaces in permitted non- residential zones, occupying either required or provided parking spaces (see Zoning By-law Section 94)	
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanation or plan/drawing references			
	6.	PARKING				
	6.1	Number of parking spaces				
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for				
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking				
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)				
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking <i>(see Zoning By-law Section 111)</i>				
	6.2	Separate long-term & short-term parking areas				
BETTER	6.2.1	Separate short-term and long-term parking areas using signage or physical barriers, to permit access controls and simplify enforcement (i.e. to discourage employees from parking in visitor spaces, and vice versa)				
	7.	OTHER				
	7.1	On-site amenities to minimize off-site trips				
BETTER	7.1.1	Provide on-site amenities to minimize mid-day or mid-commute errands				

TDM Measures Checklist:

Non-Residential Developments (office, institutional, retail or industrial)

Legend

BASIC The measure is generally feasible and effective, and in most cases would benefit the development and its users

BETTER The measure could maximize support for users of sustainable modes, and optimize development performance

The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC 🚽	1.1.1	Designate an internal coordinator, or contract with an external coordinator	
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & destin	ations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances	
	2.2	Bicycle skills training	
		Commuter travel	
BETTER	2.2.1	Offer on-site cycling courses for commuters, or subsidize off-site courses	
	2.3	Valet bike parking	
		Visitor travel	
BETTER	2.3.1	Offer secure valet bike parking during public events when demand exceeds fixed supply (e.g. for festivals, concerts, games)	

TDM Measures Checklist

Version 1.0 (30 June 2017)

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances	
BASIC	3.1.2	Provide online links to OC Transpo and STO information	
BETTER	3.1.3	Provide real-time arrival information display at entrances	
	3.2	Transit fare incentives	
		Commuter travel	
BETTER	3.2.1	Offer preloaded PRESTO cards to encourage commuters to use transit	
BETTER	★ 3.2.2	Subsidize or reimburse monthly transit pass purchases by employees	
		Visitor travel	
BETTER	3.2.3	Arrange inclusion of same-day transit fare in price of tickets (e.g. for festivals, concerts, games)	
	3.3	Enhanced public transit service	
		Commuter travel	
BETTER	3.3.1	Contract with OC Transpo to provide enhanced transit services (e.g. for shift changes, weekends)	
		Visitor travel	
BETTER	3.3.2	Contract with OC Transpo to provide enhanced transit services (e.g. for festivals, concerts, games)	
	3.4	Private transit service	
		Commuter travel	
BETTER	3.4.1	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for shift changes, weekends)	
		Visitor travel	
BETTER	3.4.2	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for festivals, concerts, games)	

	TDM	measures: Non-residential developments	Check if proposed & add descriptions				
	4.	RIDESHARING					
	4.1	Ridematching service					
		Commuter travel					
BASIC ★	4.1.1	Provide a dedicated ridematching portal at OttawaRideMatch.com					
	4.2	Carpool parking price incentives					
		Commuter travel					
BETTER	4.2.1	Provide discounts on parking costs for registered carpools					
	4.3	Vanpool service					
		Commuter travel					
BETTER	4.3.1	Provide a vanpooling service for long-distance commuters					
	5.	CARSHARING & BIKESHARING					
	5.1	Bikeshare stations & memberships					
BETTER	5.1.1	Contract with provider to install on-site bikeshare station for use by commuters and visitors					
		Commuter travel					
BETTER	5.1.2	Provide employees with bikeshare memberships for local business travel					
	5.2	Carshare vehicles & memberships					
		Commuter travel					
BETTER	5.2.1	Contract with provider to install on-site carshare vehicles and promote their use by tenants					
BETTER	5.2.2	Provide employees with carshare memberships for local business travel					
	6.	PARKING					
	6.1	Priced parking					
		Commuter travel					
BASIC ★	6.1.1	Charge for long-term parking (daily, weekly, monthly)					
BASIC	6.1.2	Unbundle parking cost from lease rates at multi-tenant sites					
		Visitor travel					
BETTER	6.1.3	Charge for short-term parking (hourly)					

TDM Measures Checklist

Version 1.0 (30 June 2017)

	TDM	measures: Non-residential developments		Check if proposed & add descriptions
	7.	TDM MARKETING & COMMUNICATIONS		
	7.1	Multimodal travel information		
		Commuter travel		
BASIC ★	7.1.1	Provide a multimodal travel option information package to new/relocating employees and students <i>Visitor travel</i>		
BETTER ★	712	Include multimodal travel option information in		
DEITER X	1.1.2	invitations or advertising that attract visitors or customers (e.g. for festivals, concerts, games)		
	7.2	Personalized trip planning		
		Commuter travel		
BETTER ★	7.2.1	Offer personalized trip planning to new/relocating employees		
	7.3	Promotions		
		Commuter travel		
BETTER	7.3.1	Deliver promotions and incentives to maintain awareness, build understanding, and encourage trial of sustainable modes		
	8.	OTHER INCENTIVES & AMENITIES		
	8.1	Emergency ride home		
		Commuter travel		
BETTER ★	8.1.1	Provide emergency ride home service to non-driving commuters		
	8.2	Alternative work arrangements		
		Commuter travel		
BASIC ★	8.2.1	Encourage flexible work hours	\checkmark	
BETTER	8.2.2	Encourage compressed workweeks		
BETTER ★	8.2.3	Encourage telework		
	8.3	Local business travel options		
		Commuter travel		
BASIC ★	8.3.1	Provide local business travel options that minimize the need for employees to bring a personal car to work	\checkmark	
	8.4	Commuter incentives		
		Commuter travel		
BETTER	8.4.1	Offer employees a taxable, mode-neutral commuting allowance		
	8.5	On-site amenities		
		Commuter travel		
BETTER	8.5.1	Provide on-site amenities/services to minimize mid-day or mid-commute errands		

Appendix C INTERSECTION PERFORMANCE WORKSHEETS

Queues 1: March Road N/March Road S & Morgan's Grant Way/Shirley's Brook Dr

06/03/2022

	-	\mathbf{r}	4	-	•	1	Ť	~	1	Ļ	1	
Lane Group	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	31	158	113	10	21	39	503	31	90	1409	9	
v/c Ratio	0.15	0.48	0.67	0.05	0.08	0.35	0.17	0.03	0.56	0.42	0.01	
Control Delay	49.6	12.0	72.7	46.9	0.6	58.3	11.5	0.8	69.1	11.6	0.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	49.6	12.0	72.7	46.9	0.6	58.3	11.5	0.8	69.1	11.6	0.0	
Queue Length 50th (m)	7.2	0.0	28.1	2.3	0.0	10.7	18.8	0.0	22.4	59.1	0.0	
Queue Length 95th (m)	15.8	18.4	45.7	7.2	0.0	22.6	14.9	0.2	38.6	86.2	0.0	
Internal Link Dist (m)	116.4			136.8			274.6			145.2		
Turn Bay Length (m)		10.0	38.0		38.0	130.0		25.0	68.0		25.0	
Base Capacity (vph)	391	487	320	401	411	188	2907	956	200	3339	1029	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.08	0.32	0.35	0.02	0.05	0.21	0.17	0.03	0.45	0.42	0.01	
Intersection Summary												

1: March Road N/M	-	-		Vay/Sh	nirley's	Brook	Dr		06/0)3/2022		
	۶	-	*	4	+	*	≺	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		÷	1	7	•	1	ľ	<u> </u>	1	ľ	<u> </u>	1
Traffic Volume (vph)	11	17	142	102	9	19	35	453	28	81	1268	8
Future Volume (vph)	11	17	142	102	9	19	35	453	28	81	1268	8
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		7.5	7.5	7.5	7.5	7.5	6.4	6.1	6.1	6.4	6.1	6.1
Lane Util. Factor		1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.00	1.00	0.91	1.00
Frpb, ped/bikes		1.00	0.98	1.00	1.00	0.98	1.00	1.00	0.95	1.00	1.00	0.96
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.98	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1783	1515	1706	1655	1450	1679	4644	1476	1729	4969	1488
Flt Permitted		0.89	1.00	0.74	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)		1614	1515	1323	1655	1450	1679	4644	1476	1729	4969	1488
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	12	19	158	113	10	21	39	503	31	90	1409	9
RTOR Reduction (vph)	0	0	138	0	0	18	0	0	12	0	0	3
Lane Group Flow (vph)	0	31	20	113	10	3	39	503	19	90	1409	6
Confl. Peds. (#/hr)	3		3	3		3	5		6	6		5
Confl. Bikes (#/hr)			3						8			1
Heavy Vehicles (%)	0%	0%	0%	1%	10%	5%	3%	7%	0%	0%	0%	0%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4		4	8		8			2			6
Actuated Green, G (s)		16.5	16.5	16.5	16.5	16.5	7.4	81.4	81.4	12.1	86.1	86.1
Effective Green, g (s)		16.5	16.5	16.5	16.5	16.5	7.4	81.4	81.4	12.1	86.1	86.1
Actuated g/C Ratio		0.13	0.13	0.13	0.13	0.13	0.06	0.63	0.63	0.09	0.66	0.66
Clearance Time (s)		7.5	7.5	7.5	7.5	7.5	6.4	6.1	6.1	6.4	6.1	6.1
Vehicle Extension (s)		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		204	192	167	210	184	95	2907	924	160	3291	985
v/s Ratio Prot					0.01		0.02	0.11		c0.05	c0.28	
v/s Ratio Perm		0.02	0.01	c0.09		0.00			0.01			0.00
v/c Ratio		0.15	0.10	0.68	0.05	0.01	0.41	0.17	0.02	0.56	0.43	0.01
Uniform Delay, d1		50.5	50.2	54.2	49.8	49.6	59.2	10.2	9.2	56.4	10.3	7.4
Progression Factor		1.00	1.00	1.00	1.00	1.00	0.88	1.01	1.00	1.00	1.00	1.00
Incremental Delay, d2		0.3	0.2	10.4	0.1	0.0	2.8	0.1	0.0	4.5	0.4	0.0
Delay (s)		50.9	50.5	64.6	49.9	49.7	54.6	10.4	9.2	60.9	10.8	7.5
Level of Service		D	D	E	D	D	D	B	Α	E	B	A
Approach Delay (s)		50.5			61.4			13.4			13.7	
Approach LOS		D			E			В			В	
Intersection Summary												
HCM 2000 Control Delay			19.4	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capac	ity ratio		0.49	-								
, , ,		130.0		um of lost				20.0				
Intersection Capacity Utilization			64.6%	IC	U Level o	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 1: March Road N/March Road S & Morgan's Grant Way/Shirley's Brook Dr

Queues 2: March Road & Terry Fox Drive

	٦	-	•	•	+	•	•	Ť	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	99	568	271	77	148	44	273	437	188	360	1159	161
v/c Ratio	0.46	0.74	0.51	0.38	0.22	0.11	0.69	0.30	0.32	0.97	0.59	0.24
Control Delay	65.4	53.0	8.0	63.8	42.2	0.5	58.7	47.4	20.2	88.0	26.9	4.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	65.4	53.0	8.0	63.8	42.2	0.5	58.7	47.4	20.2	88.0	26.9	4.2
Queue Length 50th (m)	12.7	72.2	0.4	9.9	16.5	0.0	35.2	32.5	2.8	~99.3	89.8	10.5
Queue Length 95th (m)	21.9	86.3	21.7	18.0	24.2	0.0	51.4	51.9	36.9	#183.1	118.0	15.9
Internal Link Dist (m)		245.5			128.6			223.1			274.6	
Turn Bay Length (m)	104.0		52.0	72.0		100.0	142.0		82.0	100.0		98.0
Base Capacity (vph)	232	931	590	223	912	502	457	1452	579	370	1971	661
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.43	0.61	0.46	0.35	0.16	0.09	0.60	0.30	0.32	0.97	0.59	0.24

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite. ~

Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 2: March Road & Terry Fox Drive

06/03/2022	2
------------	---

	٦	-	\mathbf{F}	∢	←	•	1	Ť	۲	5	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	^	1	ሻሻ	- † †	1	ኘኘ	ተተተ	1	ľ	<u></u>	7
Traffic Volume (vph)	89	511	244	69	133	40	246	393	169	324	1043	145
Future Volume (vph)	89	511	244	69	133	40	246	393	169	324	1043	145
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	6.8	7.0	7.0	6.8	7.0	7.0	6.9	6.7	6.7	6.9	6.7	6.7
Lane Util. Factor	0.97	0.95	1.00	0.97	0.95	1.00	0.97	0.91	1.00	1.00	0.91	1.00
Frpb, ped/bikes	1.00	1.00	0.96	1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.96
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	3288	3458	1463	3164	3390	1469	3288	4687	1483	1729	4871	1397
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	3288	3458	1463	3164	3390	1469	3288	4687	1483	1729	4871	1397
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	99	568	271	77	148	44	273	437	188	360	1159	161
RTOR Reduction (vph)	0	0	209	0	0	35	0	0	132	0	0	98
Lane Group Flow (vph)	99	568	62	77	148	9	273	437	56	360	1159	63
Confl. Peds. (#/hr)	9		29	29		9	21		13	13		21
Confl. Bikes (#/hr)			1						1			
Heavy Vehicles (%)	2%	0%	1%	6%	2%	3%	2%	6%	1%	0%	2%	6%
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			4			8			2			6
Actuated Green, G (s)	8.6	28.9	28.9	6.9	27.2	27.2	15.6	38.9	38.9	27.9	51.2	51.2
Effective Green, g (s)	8.6	28.9	28.9	6.9	27.2	27.2	15.6	38.9	38.9	27.9	51.2	51.2
Actuated g/C Ratio	0.07	0.22	0.22	0.05	0.21	0.21	0.12	0.30	0.30	0.21	0.39	0.39
Clearance Time (s)	6.8	7.0	7.0	6.8	7.0	7.0	6.9	6.7	6.7	6.9	6.7	6.7
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	217	768	325	167	709	307	394	1402	443	371	1918	550
v/s Ratio Prot	c0.03	c0.16		0.02	0.04		0.08	0.09		c0.21	c0.24	
v/s Ratio Perm			0.04			0.01			0.04			0.05
v/c Ratio	0.46	0.74	0.19	0.46	0.21	0.03	0.69	0.31	0.13	0.97	0.60	0.12
Uniform Delay, d1	58.4	47.0	41.0	59.7	42.5	40.9	54.9	35.2	33.2	50.6	31.3	25.0
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.37	4.09	0.95	0.79	0.69
Incremental Delay, d2	1.5	3.8	0.3	2.0	0.1	0.0	4.9	0.5	0.6	37.1	1.3	0.4
Delay (s)	60.0	50.8	41.3	61.8	42.6	40.9	54.6	48.7	136.3	85.2	26.0	17.7
Level of Service	E	D	D	Е	D	D	D	D	F	F	С	В
Approach Delay (s)		49.0			47.8			68.8			37.9	
Approach LOS		D			D			Е			D	
Intersection Summary												
HCM 2000 Control Delay			48.7	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		0.75									
Actuated Cycle Length (s)	,		130.0	S	um of los	t time (s)			27.4			
Intersection Capacity Utiliza	ation		93.0%			of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 3: March Road & Solandt Road

	٦	-	\mathbf{r}	4	-	•	Ť	1	1	Ļ	∢	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	32	128	142	59	183	672	904	750	116	1334	126	
v/c Ratio	0.36	0.52	0.44	0.33	0.66	1.38	0.40	0.62	0.54	1.03	0.20	
Control Delay	71.3	58.6	11.6	64.5	60.7	215.0	10.7	5.5	51.1	75.3	15.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	71.3	58.6	11.6	64.5	60.7	215.0	10.7	5.5	51.1	75.3	15.9	
Queue Length 50th (m)	8.1	30.7	0.0	7.6	43.5	~215.4	53.0	16.8	15.5	~192.4	0.5	
Queue Length 95th (m)	18.9	47.7	17.4	14.8	64.7	#291.6	76.7	57.1	#51.1	#262.5	24.4	
Internal Link Dist (m)		112.5			205.8		333.2			181.1		
Turn Bay Length (m)	65.0		100.0	90.0		157.0			140.0		76.0	
Base Capacity (vph)	88	349	395	179	341	488	2274	1205	215	1289	644	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.36	0.37	0.36	0.33	0.54	1.38	0.40	0.62	0.54	1.03	0.20	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite. ~

Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 3: March Road & Solandt Road

06/03/2022

Lane Configurations T		٦	-	*	4	Ļ	•	•	1	1	1	Ŧ	~
Traffic Volume (vph) 29 115 128 53 134 31 605 814 675 104 1201 113 Future Volume (vph) 29 115 128 53 134 31 605 814 675 104 1201 113 Future Volume (vph) 1800 1800 1800 1800 1800 1800 1800 180	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Future Volume (vph) 29 115 128 53 134 31 605 814 675 104 1201 1130 ideal Flow (vphp) 1800 100 100 100	Lane Configurations		↑		ካካ			ሻ	- † †	1	ሻ	- † †	1
Ideal Flow (vphp) 1800 100 0.95 1.00	Traffic Volume (vph)												113
Total Lost time (s) 5.9 6.5 6.3<	Future Volume (vph)												113
Lane Ulii, Factor 1.00 1.00 0.97 1.00 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Ideal Flow (vphpl)						1800						1800
Frpb, ped/bikes 1.00	· · · · · · · · · · · · · · · · · · ·												6.3
Fipb, ped/bikes 1.00													1.00
Frit 1.00 1.00 0.85 1.00 0.97 1.00 0.08 1.00 1.00 0.85 Filt Protected 0.95 1.00 0.00 0.95 1.00 0.00 0.95 1.00 0.00 0.95 1.00 0.00 0.95 1.00 0.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.32 1.00 1.00 0.32 1.00 1.00 0.32 1.00 1.00 0.32 1.00 1.00 0.32 1.00 1.00 0.32 1.00 1.00 0.32 1.00 1.00 0.32 1.00 1.00 0.32 1.00 1.00 0.32 1.00 1.00 0.32 1.00 1.00 0.32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 </td <td>Frpb, ped/bikes</td> <td></td>	Frpb, ped/bikes												
Fit Protected 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.03 0.35 1.00 0.03 0.03 0.03 0.03 0.90 </td <td>Flpb, ped/bikes</td> <td></td> <td>1.00</td>	Flpb, ped/bikes												1.00
Satd. Flow (prot) 1616 1784 1435 3288 1710 1712 3325 1500 1695 3357 1469 FIL Permitted 0.95 1.00 0.09 1.00 0.07 1.00 1.00 0.32 1.00 1.00 Satd. Flow (perm) 1616 1784 1435 3288 1710 134 3325 1500 562 3357 1469 Peak-hour factor, PHF 0.90 <td>Frt</td> <td></td>	Frt												
Fit Permitted 0.95 1.00 1.00 0.95 1.00 0.07 1.00 1.00 0.32 1.00 1.00 Satd. Flow (perm) 1616 1784 1435 328 1710 1.34 325 1500 562 3357 1460 Satd. Flow (perm) 0.90<													
Satd. Flow (perm) 1616 1784 1435 3288 1710 134 3325 1500 562 3357 1469 Peak-hour factor, PHF 0.90 <td></td>													
Peak-hour factor, PHF 0.90													
Adj. Flow (vph) 32 128 142 59 149 34 672 904 750 116 1334 126 RTOR Reduction (vph) 0 0 121 0 7 0	Satd. Flow (perm)		1784		3288	1710				1500	562		
RTOR Reduction (vph) 0 0 121 0 7 0 0 190 0 0 80 Lane Group Flow (vph) 32 128 21 59 176 0 672 904 560 116 1334 46 Confl. Bikes (#/hr) 7 8 8 7 6 6 6 Confl. Bikes (#/hr) 1	Peak-hour factor, PHF		0.90		0.90		0.90			0.90	0.90		0.90
Lane Group Flow (vph) 32 128 21 59 176 0 672 904 560 116 1334 46 Confl. Bikes (#hr) 7 8 8 7 6 6 6 Confl. Bikes (#hr) 1 1 1 1 12 12 12 Heavy Vehicles (%) 7% 2% 5% 2% 3% 3% 1% 4% 1% 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 2% 2% 3% 2% 2% 3% 2% 2% 3% 2% 2% 6	Adj. Flow (vph)	32	128		59		34	672	904			1334	126
Confl. Peds. (#/hr) 7 8 8 7 6 6 Confl. Bikes (#/hr) 1	RTOR Reduction (vph)						0						80
Confl. Bikes (#/hr) 1	Lane Group Flow (vph)		128			176			904	560	116	1334	46
Heavy Vehicles (%) 7% 2% 5% 2% 3% 3% 1% 4% 1% 2% 3% 2% Turn Type Prot NA Perm Prot NA pm+pt NA Perm Perm NA Perm Perm NA Perm Perm NA Perm Perm Perm NA Perm Perm NA Perm	Confl. Peds. (#/hr)	7		8	8		7	6					6
Turn Type Prot NA perm Prot NA pm+pt NA Perm Perm NA Perm Protected Phases 7 4 3 8 5 2 6 6 Permitted Phases 4 2 2 6 6 6 Actuated Green, G (s) 4.3 19.1 19.1 5.7 20.5 86.5 86.5 47.5 47.5 47.5 Actuated Green, G (s) 4.3 19.1 19.1 5.7 20.5 86.5 86.5 86.5 47.5 4	Confl. Bikes (#/hr)			•						1			12
Protected Phases 7 4 3 8 5 2 6 Permitted Phases 4 2 2 6 6 Actuated Green, G (s) 4.3 19.1 19.1 5.7 20.5 86.5 86.5 47.5 47.5 47.5 Effective Green, g (s) 4.3 19.1 19.1 5.7 20.5 86.5 86.5 47.5 47.5 47.5 Actuated g/C Ratio 0.03 0.15 0.04 0.16 0.67 0.67 0.67 0.37 0.37 0.37 0.37 0.37 0.37 0.30 3.0	Heavy Vehicles (%)	7%	2%	5%	2%	3%	3%	1%	4%	1%	2%	3%	2%
Permitted Phases 4 2 2 6 6 Actuated Green, G (s) 4.3 19.1 19.1 5.7 20.5 86.5 86.5 47.5 47.5 47.5 47.5 Effective Green, g (s) 4.3 19.1 19.1 5.7 20.5 86.5 86.5 86.5 47.5 47.5 47.5 47.5 Actuated g/C Ratio 0.03 0.15 0.15 0.04 0.16 0.67 0.67 0.67 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.30 3.0	Turn Type	Prot	NA	Perm	Prot	NA		pm+pt	NA	Perm	Perm	NA	Perm
Actuated Green, G (s) 4.3 19.1 19.1 5.7 20.5 86.5 86.5 47.5 47.5 47.5 Effective Green, g (s) 4.3 19.1 19.1 5.7 20.5 86.5 86.5 86.5 47.5 47.5 47.5 Actuated g/C Ratio 0.03 0.15 0.15 0.04 0.16 0.67 0.67 0.37 0.37 0.37 0.37 Clearance Time (s) 5.9 6.5 6.5 5.9 6.5 6.3 6	Protected Phases	7	4		3	8		5	2			6	
Effective Green, g (s) 4.3 19.1 19.1 5.7 20.5 86.5 86.5 47.5 47.5 47.5 Actuated g/C Ratio 0.03 0.15 0.15 0.04 0.16 0.67 0.67 0.37 0.37 0.37 0.37 Clearance Time (s) 5.9 6.5 6.5 5.9 6.5 6.3	Permitted Phases			4				2		2	6		6
Actuated g/C Ratio 0.03 0.15 0.15 0.04 0.16 0.67 0.67 0.30 3.0 3.0 3.0	Actuated Green, G (s)	4.3	19.1	19.1	5.7	20.5		86.5	86.5	86.5	47.5	47.5	47.5
Clearance Time (s) 5.9 6.5 6.5 5.9 6.5 6.3 </td <td>Effective Green, g (s)</td> <td>4.3</td> <td>19.1</td> <td>19.1</td> <td>5.7</td> <td>20.5</td> <td></td> <td>86.5</td> <td>86.5</td> <td>86.5</td> <td>47.5</td> <td>47.5</td> <td>47.5</td>	Effective Green, g (s)	4.3	19.1	19.1	5.7	20.5		86.5	86.5	86.5	47.5	47.5	47.5
Vehicle Extension (s) 3.0	Actuated g/C Ratio	0.03	0.15	0.15	0.04	0.16		0.67	0.67	0.67	0.37	0.37	0.37
Lane Grp Cap (vph) 53 262 210 144 269 486 2212 998 205 1226 536 v/s Ratio Prot c0.02 0.07 0.02 c0.10 c0.35 0.27 0.40 v/s Ratio Perm 0.01 c0.57 0.37 0.21 0.03 v/c Ratio 0.60 0.49 0.10 0.41 0.66 1.38 0.41 0.56 0.57 1.09 0.09 Uniform Delay, d1 62.0 51.0 48.0 60.5 51.4 41.6 10.0 11.6 33.0 41.2 27.0 Progression Factor 1.00 <t< td=""><td>Clearance Time (s)</td><td>5.9</td><td>6.5</td><td>6.5</td><td>5.9</td><td>6.5</td><td></td><td>6.3</td><td>6.3</td><td>6.3</td><td>6.3</td><td>6.3</td><td>6.3</td></t<>	Clearance Time (s)	5.9	6.5	6.5	5.9	6.5		6.3	6.3	6.3	6.3	6.3	6.3
v/s Ratio Prot c0.02 0.07 0.02 c0.10 c0.35 0.27 0.40 v/s Ratio Perm 0.01 c0.57 0.37 0.21 0.03 v/c Ratio 0.60 0.49 0.10 0.41 0.66 1.38 0.41 0.56 0.57 1.09 0.09 Uniform Delay, d1 62.0 51.0 48.0 60.5 51.4 41.6 10.0 11.6 33.0 41.2 27.0 Progression Factor 1.00 1.0	Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
v/s Ratio Perm 0.01 c0.57 0.37 0.21 0.03 v/c Ratio 0.60 0.49 0.10 0.41 0.66 1.38 0.41 0.56 0.57 1.09 0.09 Uniform Delay, d1 62.0 51.0 48.0 60.5 51.4 41.6 10.0 11.6 33.0 41.2 27.0 Progression Factor 1.00	Lane Grp Cap (vph)		262	210	144	269		486	2212	998	205	1226	536
v/c Ratio 0.60 0.49 0.10 0.41 0.66 1.38 0.41 0.56 0.57 1.09 0.09 Uniform Delay, d1 62.0 51.0 48.0 60.5 51.4 41.6 10.0 11.6 33.0 41.2 27.0 Progression Factor 1.00<	v/s Ratio Prot	c0.02	0.07		0.02	c0.10		c0.35	0.27			0.40	
Uniform Delay, d1 62.0 51.0 48.0 60.5 51.4 41.6 10.0 11.6 33.0 41.2 27.0 Progression Factor 1.00 1.18 1.09 3.19 Incremental Delay, d2 17.9 1.4 0.2 1.9 5.6 184.7 0.6 2.3 9.4 51.6 0.3 Delay (s) 79.9 52.4 48.2 62.4 57.1 226.3 10.6 13.9 48.3 96.6 86.4 Level of Service E F B B D F F F F F F F	v/s Ratio Perm			0.01				c0.57		0.37	0.21		0.03
Progression Factor 1.00 1.18 1.09 3.19 Incremental Delay, d2 17.9 1.4 0.2 1.9 5.6 184.7 0.6 2.3 9.4 51.6 0.3 Delay (s) 79.9 52.4 48.2 62.4 57.1 226.3 10.6 13.9 48.3 96.6 86.4 Level of Service E D D E F B D F F Approach Delay (s) 53.3 58.4 74.0 92.2 92.2 92.2 92.2 92.2 92.2 92.2 92.2 92.2 92.2 92.2 92.2 92.2 92.2 92.2 92.2	v/c Ratio	0.60	0.49	0.10	0.41	0.66		1.38	0.41	0.56	0.57	1.09	0.09
Incremental Delay, d2 17.9 1.4 0.2 1.9 5.6 184.7 0.6 2.3 9.4 51.6 0.3 Delay (s) 79.9 52.4 48.2 62.4 57.1 226.3 10.6 13.9 48.3 96.6 86.4 Level of Service E D D E E F B B D F F Approach Delay (s) 53.3 58.4 74.0 92.2	Uniform Delay, d1	62.0	51.0	48.0	60.5	51.4		41.6	10.0	11.6	33.0	41.2	27.0
Delay (s) 79.9 52.4 48.2 62.4 57.1 226.3 10.6 13.9 48.3 96.6 86.4 Level of Service E D D E E F B D F F Approach Delay (s) 53.3 58.4 74.0 92.2 92.	Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.18	1.09	3.19
Level of ServiceEDDEEFBDFFApproach Delay (s)53.358.474.092.2Approach LOSDEEFIntersection SummaryHCM 2000 Control Delay78.2HCM 2000 Level of ServiceEHCM 2000 Volume to Capacity ratio1.24Actuated Cycle Length (s)130.0Sum of lost time (s)25.0Intersection Capacity Utilization109.0%ICU Level of ServiceHAnalysis Period (min)151515	Incremental Delay, d2	17.9	1.4	0.2	1.9	5.6		184.7	0.6	2.3	9.4	51.6	0.3
Approach Delay (s)53.358.474.092.2Approach LOSDEEFIntersection SummaryHCM 2000 Control Delay78.2HCM 2000 Level of ServiceEHCM 2000 Volume to Capacity ratio1.24	Delay (s)	79.9	52.4	48.2	62.4	57.1		226.3	10.6	13.9	48.3	96.6	86.4
Approach LOSDEEFIntersection SummaryHCM 2000 Control Delay78.2HCM 2000 Level of ServiceEHCM 2000 Volume to Capacity ratio1.24Actuated Cycle Length (s)130.0Sum of lost time (s)25.0Intersection Capacity Utilization109.0%ICU Level of ServiceHAnalysis Period (min)151515	Level of Service	E	D	D	E	E		F	В	В	D	F	F
Intersection Summary HCM 2000 Control Delay 78.2 HCM 2000 Level of Service E HCM 2000 Volume to Capacity ratio 1.24 Actuated Cycle Length (s) 130.0 Sum of lost time (s) 25.0 Intersection Capacity Utilization 109.0% ICU Level of Service H Analysis Period (min) 15	Approach Delay (s)		53.3			58.4			74.0			92.2	
HCM 2000 Control Delay 78.2 HCM 2000 Level of Service E HCM 2000 Volume to Capacity ratio 1.24 Actuated Cycle Length (s) 130.0 Sum of lost time (s) 25.0 Intersection Capacity Utilization 109.0% ICU Level of Service H Analysis Period (min) 15 15 15	Approach LOS		D			E			Е			F	
HCM 2000 Volume to Capacity ratio1.24Actuated Cycle Length (s)130.0Sum of lost time (s)25.0Intersection Capacity Utilization109.0%ICU Level of ServiceHAnalysis Period (min)151510	Intersection Summary												
HCM 2000 Volume to Capacity ratio1.24Actuated Cycle Length (s)130.0Sum of lost time (s)25.0Intersection Capacity Utilization109.0%ICU Level of ServiceHAnalysis Period (min)151510				78.2	Н	CM 2000	Level of	Service		E			
Actuated Cycle Length (s)130.0Sum of lost time (s)25.0Intersection Capacity Utilization109.0%ICU Level of ServiceHAnalysis Period (min)15		city ratio											
Intersection Capacity Utilization 109.0% ICU Level of Service H Analysis Period (min) 15					S	um of los	t time (s)			25.0			
Analysis Period (min) 15		ation						Э					
	Analysis Period (min)												
	c Critical Lane Group												

Queues 4: Legget Road & ما 4+ D 1 10 . .

Lane Group

v/c Ratio Control Delay Queue Delay

Lane Group Flow (vph)

<u>k So</u>	landt	Road /	Solan	dt Roa	d				06/03/2022
	≯	→	4	+	•	Ť	*	Ŧ	
	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
	477	423	2	18	110	253	36	263	
	0.72	0.50	0.00	0.03	0.42	0.52	0.14	0.54	
	19.2	9.3	8.0	6.6	26.0	23.6	21.0	23.7	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	19.2	9.3	8.0	6.6	26.0	23.6	21.0	23.7	
	32.7	16.9	0.1	0.5	8.7	19.5	2.6	20.3	
	85.9	48.7	1.1	3.6	29.8	55.6	11.7	57.7	
		205.8		177.5		261.1		580.4	

Total Delay	19.2	9.3	8.0	6.6	26.0	23.6	21.0	23.7	
Queue Length 50th (m)	32.7	16.9	0.1	0.5	8.7	19.5	2.6	20.3	
Queue Length 95th (m)	85.9	48.7	1.1	3.6	29.8	55.6	11.7	57.7	
Internal Link Dist (m)		205.8		177.5		261.1		580.4	
Turn Bay Length (m)	130.0		42.0		65.0		35.0		
Base Capacity (vph)	1229	1483	781	1241	706	1270	698	1288	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.39	0.29	0.00	0.01	0.16	0.20	0.05	0.20	
Internetion Cummory									
Intersection Summary									

	٦	→	\mathbf{r}	1	+	*	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	ef 🗧		۲.	eî 🗧		7	et 🗧		7	et 🗧	
Traffic Volume (vph)	429	143	238	2	10	6	99	179	49	32	184	53
Future Volume (vph)	429	143	238	2	10	6	99	179	49	32	184	53
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	6.2	6.2		6.2	6.2		6.2	6.2		6.2	6.2	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	0.99		1.00	0.99		1.00	0.99		1.00	1.00	
Flpb, ped/bikes	0.99	1.00		1.00	1.00		1.00	1.00		0.99	1.00	
Frt	1.00	0.91		1.00	0.94		1.00	0.97		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1719	1611		1728	1358		1601	1721		1554	1740	
Flt Permitted	0.75	1.00		0.47	1.00		0.57	1.00		0.58	1.00	
Satd. Flow (perm)	1349	1611		854	1358		955	1721		954	1740	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	477	159	264	2	11	7	110	199	54	36	204	59
RTOR Reduction (vph)	0	57	0	0	3	0	0	9	0	0	10	0
Lane Group Flow (vph)	477	366	0	2	15	0	110	244	0	36	253	0
Confl. Peds. (#/hr)	4		1	1		4			11	11		
Confl. Bikes (#/hr)												3
Heavy Vehicles (%)	0%	1%	1%	0%	30%	17%	8%	2%	0%	10%	1%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	28.6	28.6		28.6	28.6		16.1	16.1		16.1	16.1	
Effective Green, g (s)	28.6	28.6		28.6	28.6		16.1	16.1		16.1	16.1	
Actuated g/C Ratio	0.50	0.50		0.50	0.50		0.28	0.28		0.28	0.28	
Clearance Time (s)	6.2	6.2		6.2	6.2		6.2	6.2		6.2	6.2	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	675	806		427	680		269	485		268	490	
v/s Ratio Prot		0.23			0.01			0.14			c0.15	
v/s Ratio Perm	c0.35			0.00			0.12	-		0.04		
v/c Ratio	0.71	0.45		0.00	0.02		0.41	0.50		0.13	0.52	
Uniform Delay, d1	11.0	9.2		7.1	7.2		16.6	17.1		15.3	17.2	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	3.4	0.4		0.0	0.0		1.0	0.8		0.2	0.9	
Delay (s)	14.4	9.6		7.1	7.2		17.7	18.0		15.5	18.1	
Level of Service	В	А		А	А		В	В		В	В	
Approach Delay (s)		12.1			7.2			17.9			17.8	
Approach LOS		В			А			В			В	
Intersection Summary												
HCM 2000 Control Delay			14.5	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	icity ratio		0.64									
Actuated Cycle Length (s)			57.1	S	um of lost	time (s)			12.4			
Intersection Capacity Utilization	ation		69.7%	IC	U Level o	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

	-	\mathbf{r}	4	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4Î			र्स	¥	
Traffic Volume (veh/h)	525	536	44	130	39	38
Future Volume (Veh/h)	525	536	44	130	39	38
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	583	596	49	144	43	42
Pedestrians				2	17	
Lane Width (m)				3.7	3.7	
Walking Speed (m/s)				1.1	1.1	
Percent Blockage				0	2	
Right turn flare (veh)				Ű	-	
Median type	None			None		
Median storage veh)	110110			110110		
Upstream signal (m)	323					
pX, platoon unblocked	020		0.80		0.80	0.80
vC, conflicting volume			1196		1140	900
vC1, stage 1 conf vol			1130			500
vC2, stage 2 conf vol						
vCu, unblocked vol			1118		1048	746
tC, single (s)			4.2		6.4	6.2
tC, 2 stage (s)			۲.۲		U. 7	0.2
tF (s)			2.3		3.5	3.3
p0 queue free %			2.3 90		76	87
cM capacity (veh/h)			467		176	319
,					170	515
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	1179	193	85			
Volume Left	0	49	43			
Volume Right	596	0	42			
cSH	1700	467	226			
Volume to Capacity	0.69	0.10	0.38			
Queue Length 95th (m)	0.0	2.7	12.5			
Control Delay (s)	0.0	4.6	30.2			
Lane LOS		А	D			
Approach Delay (s)	0.0	4.6	30.2			
Approach LOS			D			
Intersection Summary						
Average Delay			2.4			
Intersection Capacity Utiliza	ation		76.7%	IC	U Level o	of Service
Analysis Period (min)			15			
J						

HCM Unsignalized Intersection Capacity Analysis 11: Terry Fox Drive & McKinley Drive

	٨	+	\mathbf{r}	4	Ļ	•	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	•			4î						4	
Traffic Volume (veh/h)	54	1100	0	0	174	20	0	0	0	128	0	46
Future Volume (Veh/h)	54	1100	0	0	174	20	0	0	0	128	0	46
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	60	1222	0	0	193	22	0	0	0	142	0	51
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		Raised			Raised							
Median storage veh)		1			1							
Upstream signal (m)		153										
pX, platoon unblocked				0.81			0.81	0.81	0.81	0.81	0.81	
vC, conflicting volume	215			1222			1597	1557	1222	1546	1546	204
vC1, stage 1 conf vol							1342	1342		204	204	
vC2, stage 2 conf vol							255	215		1342	1342	
vCu, unblocked vol	215			1155			1620	1571	1155	1557	1557	204
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)							6.1	5.5		6.1	5.5	
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	96			100			100	100	100	0	100	94
cM capacity (veh/h)	1355			488			127	150	193	131	152	837
Direction, Lane #	EB 1	EB 2	WB 1	SB 1								
Volume Total	60	1222	215	193								
Volume Left	60	0	0	142								
Volume Right	0	0	22	51								
cSH	1355	1700	1700	169								
Volume to Capacity	0.04	0.72	0.13	1.14								
Queue Length 95th (m)	1.1	0.0	0.0	77.0								
Control Delay (s)	7.8	0.0	0.0	167.6								
Lane LOS	A			F								
Approach Delay (s)	0.4		0.0	167.6								
Approach LOS				F								
Intersection Summary												
Average Delay			19.4									
Intersection Capacity Utiliza	ation		78.2%	10	CU Level o	f Service			D			
Analysis Period (min)			15									

Queues 25:

Lane Group
Lane Group Flow (vph)
v/c Ratio
Control Delay
Queue Delay
Total Delay
Queue Length 50th (m)
Queue Length 95th (m)
Internal Link Dist (m)
Turn Bay Length (m)
Base Capacity (vph)
Starvation Cap Reductn
Spillback Cap Reductn
Storage Cap Reductn
Reduced v/c Ratio
Intersection Summary

	≯	-	\mathbf{F}	4	+	A.	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations												
Traffic Volume (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Future Volume (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)												
Lane Util. Factor												
Frt												
Flt Protected												
Satd. Flow (prot)												
Flt Permitted												
Satd. Flow (perm)												
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	0	0	0	0	0	0	0	0	0	0	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Turn Type												
Protected Phases												
Permitted Phases												
Actuated Green, G (s)												
Effective Green, g (s)												
Actuated g/C Ratio												
Clearance Time (s)												
Lane Grp Cap (vph)												
v/s Ratio Prot												
v/s Ratio Perm												
v/c Ratio												
Uniform Delay, d1												
Progression Factor												
Incremental Delay, d2												
Delay (s)												
Level of Service												
Approach Delay (s)		0.0			0.0			0.0			0.0	
Approach LOS		A			А			А			A	
Intersection Summary												
HCM 2000 Control Delay			0.0	Н	CM 2000	Level of S	Service		А			
HCM 2000 Volume to Capacity	ratio		0.00									
Actuated Cycle Length (s)			80.0		um of lost				0.0			
Intersection Capacity Utilization			0.0%	IC	U Level o	of Service			А			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 1: March Road N/March Road S & Morgan's Grant Way/Shirley's Brook Dr

06/03/2022

-	\mathbf{r}	4	-	•	1	Ť	1	1	Ŧ	1	
EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
36	82	84	38	113	318	1813	130	61	639	23	
0.23	0.35	0.59	0.20	0.43	0.75	0.54	0.12	0.46	0.27	0.03	
54.9	14.4	70.9	53.4	13.9	77.1	3.2	0.2	67.4	19.7	0.0	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
54.9	14.4	70.9	53.4	13.9	77.1	3.2	0.2	67.4	19.7	0.0	
8.6	0.0	20.9	9.1	0.0	86.0	14.9	0.0	15.2	34.1	0.0	
18.4	14.2	36.5	18.9	16.7 m	n#119.0	22.7	m0.0	28.9	42.6	0.0	
116.4			136.8			274.6			145.2		
	10.0	38.0		38.0	130.0		25.0	68.0		25.0	
352	429	321	436	453	426	3348	1045	194	2394	775	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	
0.10	0.19	0.26	0.09	0.25	0.75	0.54	0.12	0.31	0.27	0.03	
	36 0.23 54.9 0.0 54.9 8.6 18.4 116.4 352 0 0 0	$\begin{array}{ccccc} 36 & 82 \\ 0.23 & 0.35 \\ 54.9 & 14.4 \\ 0.0 & 0.0 \\ 54.9 & 14.4 \\ 8.6 & 0.0 \\ 18.4 & 14.2 \\ 116.4 \\ & & 10.0 \\ 352 & 429 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

1: March Road N/M			-	-		Vay/Sł	nirley's	Brook	Dr		06/0)3/2022
	۶	+	*	4	+	*	<	1	1	×	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		÷	1	7	•	1	ľ	<u> </u>	1	1	ተተተ	1
Traffic Volume (vph)	12	21	74	76	34	102	286	1632	117	55	575	21
Future Volume (vph)	12	21	74	76	34	102	286	1632	117	55	575	21
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		7.5	7.5	7.5	7.5	7.5	6.4	6.1	6.1	6.4	6.1	6.1
Lane Util. Factor		1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.00	1.00	0.91	1.00
Frpb, ped/bikes		1.00	0.98	1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.96
Flpb, ped/bikes		1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.98	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1637	1513	1719	1802	1519	1729	4919	1493	1729	4871	1483
Flt Permitted		0.87	1.00	0.73	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)		1454	1513	1327	1802	1519	1729	4919	1493	1729	4871	1483
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	13	23	82	84	38	113	318	1813	130	61	639	23
RTOR Reduction (vph)	0	0	73	0	0	101	0	0	30	0	0	12
Lane Group Flow (vph)	0	36	9	84	38	12	318	1813	100	61	639	11
Confl. Peds. (#/hr)	5		5	5		5	5		4	4		5
Confl. Bikes (#/hr)			2						1			5
Heavy Vehicles (%)	0%	14%	0%	0%	1%	0%	0%	1%	0%	0%	2%	0%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4		4	8		8			2			6
Actuated Green, G (s)		14.1	14.1	14.1	14.1	14.1	32.0	87.2	87.2	8.7	63.9	63.9
Effective Green, g (s)		14.1	14.1	14.1	14.1	14.1	32.0	87.2	87.2	8.7	63.9	63.9
Actuated g/C Ratio		0.11	0.11	0.11	0.11	0.11	0.25	0.67	0.67	0.07	0.49	0.49
Clearance Time (s)		7.5	7.5	7.5	7.5	7.5	6.4	6.1	6.1	6.4	6.1	6.1
Vehicle Extension (s)		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		157	164	143	195	164	425	3299	1001	115	2394	728
v/s Ratio Prot					0.02		c0.18	c0.37		0.04	0.13	
v/s Ratio Perm		0.02	0.01	c0.06		0.01			0.07			0.01
v/c Ratio		0.23	0.05	0.59	0.19	0.07	0.75	0.55	0.10	0.53	0.27	0.02
Uniform Delay, d1		53.0	52.0	55.2	52.8	52.1	45.3	11.2	7.6	58.7	19.3	16.9
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.53	0.23	0.01	1.00	1.00	1.00
Incremental Delay, d2		0.7	0.1	6.0	0.5	0.2	4.6	0.4	0.1	4.6	0.3	0.0
Delay (s)		53.7	52.1	61.2	53.3	52.3	73.9	3.0	0.2	63.3	19.6	17.0
Level of Service		D	D	E	D	D	E	А	A	E	В	В
Approach Delay (s)		52.6			55.6			12.8			23.2	
Approach LOS		D			E			В			С	
Intersection Summary			16 -						_			
HCM 2000 Control Delay			19.5	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	city ratio		0.62	Ē					06.5			
Actuated Cycle Length (s)	•		130.0		um of lost				20.0			
Intersection Capacity Utilizat	lion		72.9%	IC	U Level o	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 1: March Road N/March Road S & Morgan's Grant Way/Shirley's Brook Dr

Queues 2: March Road & Terry Fox Drive

	≯	+	*	4	Ļ	•	•	t	*	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	259	166	447	224	404	354	314	1580	119	58	630	118
v/c Ratio	0.68	0.20	0.92	0.63	0.48	0.62	0.79	0.84	0.18	0.45	0.41	0.21
Control Delay	64.4	38.1	56.5	63.4	43.6	14.6	66.5	22.3	2.7	70.2	30.9	2.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	64.4	38.1	56.5	63.4	43.6	14.6	66.5	22.3	2.7	70.2	30.9	2.6
Queue Length 50th (m)	33.1	16.9	75.0	28.7	45.0	14.6	35.1	157.1	3.4	15.8	31.7	0.3
Queue Length 95th (m)	46.5	26.7	#136.0	40.9	60.5	45.7	m31.0	m131.5	m3.1	30.6	42.1	4.5
Internal Link Dist (m)		245.5			130.3			223.1			274.6	
Turn Bay Length (m)	104.0		52.0	72.0		100.0	142.0		82.0	100.0		98.0
Base Capacity (vph)	443	921	517	443	934	602	412	1874	652	209	1529	563
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.58	0.18	0.86	0.51	0.43	0.59	0.76	0.84	0.18	0.28	0.41	0.21

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer. #

Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal.

HCM Signalized Intersection Capacity Analysis 2: March Road & Terry Fox Drive

	۶	-	•	4	ł	•	ŧ	1	1	1	1	Ŧ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations	ሻሻ	- † †	1	ሻሻ	- † †	1		ልካ	ተተተ	1	٦	^
Traffic Volume (vph)	233	149	402	202	364	319	45	238	1422	107	52	567
Future Volume (vph)	233	149	402	202	364	319	45	238	1422	107	52	567
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	6.8	7.0	7.0	6.8	7.0	7.0		6.9	6.7	6.7	6.9	6.7
Lane Util. Factor	0.97	0.95	1.00	0.97	0.95	1.00		0.97	0.91	1.00	1.00	0.91
Frpb, ped/bikes	1.00	1.00	0.96	1.00	1.00	0.95		1.00	1.00	0.96	1.00	1.00
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00	1.00	0.85	1.00	1.00
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		0.95	1.00	1.00	0.95	1.00
Satd. Flow (prot)	3354	3357	1483	3354	3458	1474		3272	4969	1484	1695	4919
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00		0.95	1.00	1.00	0.95	1.00
Satd. Flow (perm)	3354	3357	1483	3354	3458	1474		3272	4969	1484	1695	4919
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	259	166	447	224	404	354	50	264	1580	119	58	630
RTOR Reduction (vph)	0	0	114	0	0	212	0	0	0	75	0	0
Lane Group Flow (vph)	259	166	333	224	404	142	0	314	1580	44	58	630
Confl. Peds. (#/hr)	30		26	26		30		19		19	19	
Confl. Bikes (#/hr)			1			3				1		
Heavy Vehicles (%)	0%	3%	0%	0%	0%	0%	0%	3%	0%	0%	2%	1%
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	Prot	NA	Perm	Prot	NA
Protected Phases	7	4		3	8		5	5	2		1	6
Permitted Phases			4			8				2		
Actuated Green, G (s)	14.8	32.5	32.5	13.8	31.5	31.5		15.8	47.7	47.7	8.6	40.5
Effective Green, g (s)	14.8	32.5	32.5	13.8	31.5	31.5		15.8	47.7	47.7	8.6	40.5
Actuated g/C Ratio	0.11	0.25	0.25	0.11	0.24	0.24		0.12	0.37	0.37	0.07	0.31
Clearance Time (s)	6.8	7.0	7.0	6.8	7.0	7.0		6.9	6.7	6.7	6.9	6.7
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	381	839	370	356	837	357		397	1823	544	112	1532
v/s Ratio Prot	c0.08	0.05		0.07	0.12			c0.10	c0.32		0.03	0.13
v/s Ratio Perm			c0.22			0.10				0.03		
v/c Ratio	0.68	0.20	0.90	0.63	0.48	0.40		0.79	0.87	0.08	0.52	0.41
Uniform Delay, d1	55.3	38.5	47.2	55.6	42.3	41.3		55.5	38.2	26.8	58.7	35.3
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		1.17	0.49	1.04	1.05	0.81
Incremental Delay, d2	4.8	0.1	24.0	3.5	0.4	0.7		1.0	0.6	0.0	3.9	0.8
Delay (s)	60.1	38.6	71.2	59.1	42.7	42.0		66.1	19.4	27.8	65.7	29.5
Level of Service	E	D	E	E	D	D		Е	В	С	E	С
Approach Delay (s)		61.7			46.2				27.2			31.1
Approach LOS		E			D				С			С
Intersection Summary												
HCM 2000 Control Delay			38.3	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.89									
Actuated Cycle Length (s)			130.0	S	um of losi	t time (s)			27.4			
Intersection Capacity Utiliza	ation		88.1%			of Service			E			
Analysis Period (min)			15									
c Critical Lane Group												

	1
Movement	SBR
	<u> </u>
Traffic Volume (vph)	106
Future Volume (vph)	106
Ideal Flow (vphpl)	1800
Total Lost time (s)	6.7
Lane Util. Factor	1.00
Frpb, ped/bikes	0.96
Flpb, ped/bikes	1.00
Frt	0.85
Flt Protected	1.00
Satd. Flow (prot)	1483
Flt Permitted	1.00
Satd. Flow (perm)	1483
Peak-hour factor, PHF	0.90
Adj. Flow (vph)	118
RTOR Reduction (vph)	81
Lane Group Flow (vph)	37
Confl. Peds. (#/hr)	19
Confl. Bikes (#/hr)	2
Heavy Vehicles (%)	0%
Turn Type	Perm
Protected Phases	
Permitted Phases	6
Actuated Green, G (s)	40.5
Effective Green, g (s)	40.5
Actuated g/C Ratio	0.31
Clearance Time (s)	6.7
Vehicle Extension (s)	3.0
Lane Grp Cap (vph)	462
v/s Ratio Prot	
v/s Ratio Perm	0.02
v/c Ratio	0.08
Uniform Delay, d1	31.6
Progression Factor	0.70
Incremental Delay, d2	0.3
Delay (s)	22.5
Level of Service	С
Approach Delay (s)	
Approach LOS	
Intersection Summary	
intersection outfinially	

Queues 3: March Road & Solandt Road

	≯	-	\mathbf{r}	4	+	1	1	۲	1	Ļ	-	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	97	51	717	681	282	127	1898	73	26	1068	76	
v/c Ratio	0.59	0.15	1.79	0.95	0.51	1.01	1.25	0.11	0.46	0.90	0.13	
Control Delay	69.9	44.7	393.1	73.5	30.2	110.6	150.7	4.3	49.2	38.0	0.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	69.9	44.7	393.1	73.5	30.2	110.6	150.7	4.3	49.2	38.0	0.6	
Queue Length 50th (m)	24.1	10.9	~249.7	89.1	41.8	~19.3	~318.7	0.0	4.3	94.1	0.1	
Queue Length 95th (m)	40.7	22.6	#323.8	#124.4	73.4	#60.1	#360.8	7.7	m10.2	#161.1	m0.0	
Internal Link Dist (m)		112.5			205.8		333.2			181.1		
Turn Bay Length (m)	65.0		100.0	90.0		157.0			140.0		76.0	
Base Capacity (vph)	352	342	400	724	554	126	1519	692	56	1191	590	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.28	0.15	1.79	0.94	0.51	1.01	1.25	0.11	0.46	0.90	0.13	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite. ~

Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 3: March Road & Solandt Road

06/03/2022)
------------	---

	۶	+	*	4	ł	*	•	1	1	×	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	1	ሻሻ	ef 👘		<u>۲</u>	- † †	1	ሻ	- † †	1
Traffic Volume (vph)	87	46	645	613	76	178	114	1708	66	23	961	68
Future Volume (vph)	87	46	645	613	76	178	114	1708	66	23	961	68
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	5.9	6.5	6.5	5.9	6.5		6.3	6.3	6.3	6.3	6.3	6.3
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00		1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes	1.00	1.00	0.98	1.00	0.98		1.00	1.00	0.97	1.00	1.00	0.96
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.89		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1631	1733	1495	3354	1599		1662	3424	1461	1729	3390	1435
Flt Permitted	0.95	1.00	1.00	0.95	1.00		0.08	1.00	1.00	0.09	1.00	1.00
Satd. Flow (perm)	1631	1733	1495	3354	1599		135	3424	1461	159	3390	1435
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	97	51	717	681	84	198	127	1898	73	26	1068	76
RTOR Reduction (vph)	0	0	104	0	56	0	0	0	41	0	0	49
Lane Group Flow (vph)	97	51	613	681	226	0	127	1898	32	26	1068	27
Confl. Peds. (#/hr)	8		5	5		8	11		1	1		11
Confl. Bikes (#/hr)			4			2			5			2
Heavy Vehicles (%)	6%	5%	1%	0%	0%	0%	4%	1%	3%	0%	2%	4%
Turn Type	Prot	NA	Perm	Prot	NA		pm+pt	NA	Perm	Perm	NA	Perm
Protected Phases	7	4		3	8		5	2			6	
Permitted Phases			4				2		2	6		6
Actuated Green, G (s)	13.1	25.7	25.7	27.9	40.5		57.7	57.7	57.7	45.7	45.7	45.7
Effective Green, g (s)	13.1	25.7	25.7	27.9	40.5		57.7	57.7	57.7	45.7	45.7	45.7
Actuated g/C Ratio	0.10	0.20	0.20	0.21	0.31		0.44	0.44	0.44	0.35	0.35	0.35
Clearance Time (s)	5.9	6.5	6.5	5.9	6.5		6.3	6.3	6.3	6.3	6.3	6.3
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	164	342	295	719	498		126	1519	648	55	1191	504
v/s Ratio Prot	0.06	0.03		c0.20	0.14		0.04	c0.55			0.32	
v/s Ratio Perm			c0.41				0.40		0.02	0.16		0.02
v/c Ratio	0.59	0.15	2.08	0.95	0.45		1.01	1.25	0.05	0.47	0.90	0.05
Uniform Delay, d1	55.9	43.1	52.1	50.3	35.9		30.3	36.1	20.6	32.8	39.9	27.9
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	0.73	0.72	0.93
Incremental Delay, d2	5.6	0.2	496.1	21.4	0.7		82.3	117.9	0.1	21.8	8.9	0.2
Delay (s)	61.5	43.3	548.3	71.7	36.5		112.6	154.1	20.7	45.9	37.5	26.0
Level of Service	E	D	F	E	D		F	F	С	D	D	С
Approach Delay (s)		463.9			61.4			146.9			36.9	
Approach LOS		F			Е			F			D	
Intersection Summary												
HCM 2000 Control Delay			159.3	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	city ratio		1.45									
Actuated Cycle Length (s)			130.0	S	um of lost	t time (s)			25.0			
Intersection Capacity Utiliza	tion		111.9%		U Level o		9		Н			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 4: Legget Road & Solandt Road /Solandt Road

	٦	→	4	←	1	Ť	1	ţ
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	62	71	49	172	322	121	3	769
v/c Ratio	0.33	0.21	0.21	0.66	0.75	0.10	0.01	1.10
Control Delay	41.0	13.3	37.2	50.5	35.4	5.8	21.0	91.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	41.0	13.3	37.2	50.5	35.4	5.8	21.0	91.2
Queue Length 50th (m)	10.8	1.8	8.4	31.6	41.9	6.4	0.4	~163.1
Queue Length 95th (m)	22.7	13.1	18.5	53.2	#87.4	15.2	2.3	#258.1
Internal Link Dist (m)		205.8		177.5		261.1		580.4
Turn Bay Length (m)	130.0		42.0		65.0		35.0	
Base Capacity (vph)	357	581	453	491	465	1271	438	701
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.17	0.12	0.11	0.35	0.69	0.10	0.01	1.10

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite. ~

Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	≯	-	\mathbf{i}	•	+	•	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	eî.		7	et 🗧		<u> </u>	eî 🗧		7	¢Î	
Traffic Volume (vph)	56	10	54	44	146	9	290	106	3	3	246	446
Future Volume (vph)	56	10	54	44	146	9	290	106	3	3	246	446
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	6.2	6.2		6.2	6.2		6.2	6.2		6.2	6.2	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	0.98		1.00	1.00		1.00	1.00		1.00	0.99	
Flpb, ped/bikes	0.99	1.00		1.00	1.00		1.00	1.00		0.98	1.00	
Frt	1.00	0.87		1.00	0.99		1.00	1.00		1.00	0.90	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1716	1544		1725	1393		1601	1776		1533	1624	
Flt Permitted	0.56	1.00		0.71	1.00		0.09	1.00		0.68	1.00	
Satd. Flow (perm)	1019	1544		1291	1393		145	1776		1096	1624	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	62	11	60	49	162	10	322	118	3	3	273	496
RTOR Reduction (vph)	0	49	0	0	2	0	0	1	0	0	50	0
Lane Group Flow (vph)	62	22	0	49	170	0	322	120	0	3	719	0
Confl. Peds. (#/hr)	4		1	1		4			11	11		
Confl. Bikes (#/hr)												3
Heavy Vehicles (%)	0%	1%	1%	0%	30%	17%	8%	2%	0%	10%	1%	0%
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		Perm	NA	
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	18.5	18.5		18.5	18.5		69.0	69.0		40.2	40.2	
Effective Green, g (s)	18.5	18.5		18.5	18.5		69.0	69.0		40.2	40.2	
Actuated g/C Ratio	0.19	0.19		0.19	0.19		0.69	0.69		0.40	0.40	
Clearance Time (s)	6.2	6.2		6.2	6.2		6.2	6.2		6.2	6.2	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	188	285		239	257		429	1226		441	653	
v/s Ratio Prot		0.01			c0.12		c0.17	0.07			c0.44	
v/s Ratio Perm	0.06			0.04			0.35			0.00		
v/c Ratio	0.33	0.08		0.21	0.66		0.75	0.10		0.01	1.10	
Uniform Delay, d1	35.3	33.6		34.5	37.8		27.0	5.1		17.9	29.9	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	1.0	0.1		0.4	6.0		7.2	0.0		0.0	66.4	
Delay (s)	36.4	33.8		34.9	43.8		34.3	5.2		17.9	96.2	
Level of Service	D	С		С	D		С	А		В	F	
Approach Delay (s)		35.0			41.8			26.3			95.9	
Approach LOS		С			D			С			F	
Intersection Summary												
HCM 2000 Control Delay			63.5	Н	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capa	city ratio		0.91									
Actuated Cycle Length (s)			99.9	S	um of lost	time (s)			18.6			
Intersection Capacity Utilization	ation		105.6%	IC	U Level o	of Service	e		G			
Analysis Period (min)			15									
c Critical Lane Group												

	∢	*	٦	1	\searrow	\mathbf{F}	
Movement	WBL	WBR	NBL	NBR	SEL	SER	
Lane Configurations		1	Ý		Y		
Traffic Volume (veh/h)	24	611	288	40	119	78	
Future Volume (Veh/h)	24	611	288	40	119	78	
Sign Control	Free		Stop		Free		
Grade	0%		0%		0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	27	679	320	44	132	87	
Pedestrians			13				
Lane Width (m)			3.7				
Walking Speed (m/s)			1.1				
Percent Blockage			1				
Right turn flare (veh)							
Median type	None				None		
Median storage veh)							
Upstream signal (m)					312		
pX, platoon unblocked							
vC, conflicting volume	232		922	188			
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	232		922	188			
tC, single (s)	4.1		6.4	6.3			
tC, 2 stage (s)							
tF (s)	2.2		3.5	3.4			
p0 queue free %	98		0	95			
cM capacity (veh/h)	1331		293	816			
Direction, Lane #	WB 1	NB 1	SE 1				
Volume Total	706	364	219				
Volume Left	27	320	0				
Volume Right	0	44	87				
cSH	1331	317	1700				
Volume to Capacity	0.02	1.15	0.13				
Queue Length 95th (m)	0.5	113.6	0.0				
Control Delay (s)	0.5	132.6	0.0				
Lane LOS	А	F					
Approach Delay (s)	0.5	132.6	0.0				
Approach LOS		F					
Intersection Summary							
Average Delay			37.7				
Intersection Capacity Utiliz	ation		Err%	IC	CU Level o	of Service	
Analysis Period (min)			15				

HCM Unsignalized Intersection Capacity Analysis 11: Terry Fox Drive & McKinley Drive

	۶	-	\mathbf{F}	*	+	*	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑			eî 👘						- ↔	
Traffic Volume (veh/h)	131	234	0	0	999	105	0	0	0	52	0	33
Future Volume (Veh/h)	131	234	0	0	999	105	0	0	0	52	0	33
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	146	260	0	0	1110	117	0	0	0	58	0	37
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		Raised			Raised							
Median storage veh)		1			1							
Upstream signal (m)		154										
pX, platoon unblocked				0.96			0.96	0.96	0.96	0.96	0.96	
vC, conflicting volume	1227			260			1758	1779	260	1720	1720	1168
vC1, stage 1 conf vol							552	552		1168	1168	
vC2, stage 2 conf vol							1206	1227		552	552	
vCu, unblocked vol	1227			214			1767	1789	214	1729	1729	1168
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)							6.1	5.5		6.1	5.5	
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	74			100			100	100	100	63	100	84
cM capacity (veh/h)	568			1308			39	90	796	156	171	235
Direction, Lane #	EB 1	EB 2	WB 1	SB 1								
Volume Total	146	260	1227	95								
Volume Left	140	200	0	58								
Volume Right	0	0	117	37								
cSH	568	1700	1700	180								
	0.26	0.15	0.72	0.53								
Volume to Capacity			0.72	20.4								
Queue Length 95th (m)	7.7	0.0										
Control Delay (s)	13.5	0.0	0.0	45.4								
Lane LOS	B		0.0	E								
Approach Delay (s)	4.9		0.0	45.4								
Approach LOS				E								
Intersection Summary												
Average Delay			3.6									
Intersection Capacity Utilization	tion		85.1%	10	CU Level o	of Service			E			
Analysis Period (min)			15									

Queues 1: March Road N/March Road S & Morgan's Grant Way/Shirley's Brook Dr

06/03/2022

	-	\mathbf{r}	4	-	*	1	Ť	~	1	Ļ	1	
Lane Group	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	65	134	104	19	23	41	983	33	156	2100	9	
v/c Ratio	0.31	0.44	0.66	0.09	0.09	0.36	0.36	0.04	0.67	0.63	0.01	
Control Delay	53.9	12.3	72.7	48.7	0.7	56.8	9.2	0.4	66.7	14.6	0.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	53.9	12.3	72.7	48.7	0.7	56.8	9.2	0.4	66.7	14.6	0.0	
Queue Length 50th (m)	15.4	0.0	25.8	4.4	0.0	11.3	21.3	0.2	38.4	108.3	0.0	
Queue Length 95th (m)	28.1	17.3	42.7	11.3	0.0	m20.1	25.7	m0.3	58.9	154.2	0.0	
Internal Link Dist (m)	116.4			136.8			274.6			145.2		
Turn Bay Length (m)		10.0	38.0		38.0	130.0		25.0	68.0		25.0	
Base Capacity (vph)	417	469	311	401	411	188	2723	902	242	3352	1033	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.16	0.29	0.33	0.05	0.06	0.22	0.36	0.04	0.64	0.63	0.01	
Intersection Summary												

-	March Road S & Morgan's Grant Way/Shirley's Brook Dr									06/0)3/2022	
	۶	-	•	4	+	*	≺	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ŧ	1	7	•	1	ľ	<u> </u>	1	ľ	<u> </u>	1
Traffic Volume (vph)	10	49	121	94	17	21	37	885	30	140	1890	8
Future Volume (vph)	10	49	121	94	17	21	37	885	30	140	1890	8
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		7.5	7.5	7.5	7.5	7.5	6.4	6.1	6.1	6.4	6.1	6.1
Lane Util. Factor		1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.00	1.00	0.91	1.00
Frpb, ped/bikes		1.00	0.98	1.00	1.00	0.98	1.00	1.00	0.95	1.00	1.00	0.96
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1804	1514	1706	1655	1450	1679	4644	1476	1729	4969	1488
Flt Permitted		0.95	1.00	0.71	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)		1720	1514	1283	1655	1450	1679	4644	1476	1729	4969	1488
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	11	54	134	104	19	23	41	983	33	156	2100	9
RTOR Reduction (vph)	0	0	117	0	0	20	0	0	14	0	0	3
Lane Group Flow (vph)	0	65	17	104	19	3	41	983	19	156	2100	6
Confl. Peds. (#/hr)	3		3	3		3	5		6	6		5
Confl. Bikes (#/hr)			3						8			1
Heavy Vehicles (%)	0%	0%	0%	1%	10%	5%	3%	7%	0%	0%	0%	0%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4		4	8		8			2			6
Actuated Green, G (s)		16.1	16.1	16.1	16.1	16.1	7.5	76.2	76.2	17.7	86.4	86.4
Effective Green, g (s)		16.1	16.1	16.1	16.1	16.1	7.5	76.2	76.2	17.7	86.4	86.4
Actuated g/C Ratio		0.12	0.12	0.12	0.12	0.12	0.06	0.59	0.59	0.14	0.66	0.66
Clearance Time (s)		7.5	7.5	7.5	7.5	7.5	6.4	6.1	6.1	6.4	6.1	6.1
Vehicle Extension (s)		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		213	187	158	204	179	96	2722	865	235	3302	988
v/s Ratio Prot					0.01		0.02	0.21		c0.09	c0.42	
v/s Ratio Perm		0.04	0.01	c0.08		0.00			0.01			0.00
v/c Ratio		0.31	0.09	0.66	0.09	0.02	0.43	0.36	0.02	0.66	0.64	0.01
Uniform Delay, d1		51.9	50.5	54.3	50.5	50.0	59.2	14.1	11.3	53.3	12.7	7.3
Progression Factor		1.00	1.00	1.00	1.00	1.00	0.86	0.58	1.00	1.00	1.00	1.00
Incremental Delay, d2		0.8	0.2	9.5	0.2	0.0	2.7	0.3	0.0	6.9	0.9	0.0
Delay (s)		52.7	50.7	63.8	50.7	50.0	53.6	8.5	11.3	60.2	13.6	7.4
Level of Service		D	D	E	D	D	D	А	В	E	В	A
Approach Delay (s)		51.3			59.9			10.3			16.8	
Approach LOS		D			E			В			В	
Intersection Summary									_			
HCM 2000 Control Delay			18.5	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capac	city ratio		0.66	_								
Actuated Cycle Length (s)			130.0		um of lost				20.0			
Intersection Capacity Utilizat	tion		76.1%	IC	U Level o	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 1: March Road N/March Road S & Morgan's Grant Way/Shirley's Brook Dr

Queues 2: March Road & Terry Fox Drive

	٠	→	*	4	Ļ	•	•	Ť	*	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	158	457	230	80	123	74	233	783	162	474	1643	220
v/c Ratio	0.69	0.68	0.49	0.39	0.22	0.20	0.64	0.54	0.28	1.14	0.77	0.30
Control Delay	75.3	54.0	8.9	64.0	45.5	1.2	43.2	62.3	23.9	129.4	24.7	2.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	75.3	54.0	8.9	64.0	45.5	1.2	43.2	62.3	23.9	129.4	24.7	2.1
Queue Length 50th (m)	20.7	58.8	0.0	10.3	14.3	0.0	28.0	75.8	16.7	~141.2	132.7	4.1
Queue Length 95th (m)	#33.9	72.3	20.5	18.4	21.7	0.0	44.7	89.5	37.1	#234.4	#187.1	7.5
Internal Link Dist (m)		245.5			95.7			295.3			274.6	
Turn Bay Length (m)	104.0		52.0	72.0		100.0	142.0		82.0	100.0		98.0
Base Capacity (vph)	232	931	562	223	912	502	459	1452	571	417	2144	729
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.68	0.49	0.41	0.36	0.13	0.15	0.51	0.54	0.28	1.14	0.77	0.30

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite. ~

Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 2: March Road & Terry Fox Drive

06/03/2022	2
------------	---

	۶	-	\mathbf{i}	•	+	×	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	^	1	ሻሻ	- † †	1	ካካ	ተተተ	1	ሻ	***	7
Traffic Volume (vph)	142	411	207	72	111	67	210	705	146	427	1479	198
Future Volume (vph)	142	411	207	72	111	67	210	705	146	427	1479	198
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	6.8	7.0	7.0	6.8	7.0	7.0	6.9	6.7	6.7	6.9	6.7	6.7
Lane Util. Factor	0.97	0.95	1.00	0.97	0.95	1.00	0.97	0.91	1.00	1.00	0.91	1.00
Frpb, ped/bikes	1.00	1.00	0.96	1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.96
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	3288	3458	1463	3164	3390	1469	3288	4687	1483	1729	4871	1397
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	3288	3458	1463	3164	3390	1469	3288	4687	1483	1729	4871	1397
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	158	457	230	80	123	74	233	783	162	474	1643	220
RTOR Reduction (vph)	0	0	185	0	0	61	0	0	114	0	0	116
Lane Group Flow (vph)	158	457	45	80	123	13	233	783	48	474	1643	104
Confl. Peds. (#/hr)	9		29	29		9	21		13	13		21
Confl. Bikes (#/hr)			1						1			
Heavy Vehicles (%)	2%	0%	1%	6%	2%	3%	2%	6%	1%	0%	2%	6%
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			4			8			2			6
Actuated Green, G (s)	9.0	25.3	25.3	7.0	23.3	23.3	14.5	38.9	38.9	31.4	55.8	55.8
Effective Green, g (s)	9.0	25.3	25.3	7.0	23.3	23.3	14.5	38.9	38.9	31.4	55.8	55.8
Actuated g/C Ratio	0.07	0.19	0.19	0.05	0.18	0.18	0.11	0.30	0.30	0.24	0.43	0.43
Clearance Time (s)	6.8	7.0	7.0	6.8	7.0	7.0	6.9	6.7	6.7	6.9	6.7	6.7
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	227	672	284	170	607	263	366	1402	443	417	2090	599
v/s Ratio Prot	c0.05	c0.13		0.03	0.04		0.07	0.17		c0.27	c0.34	
v/s Ratio Perm			0.03			0.01			0.03			0.07
v/c Ratio	0.70	0.68	0.16	0.47	0.20	0.05	0.64	0.56	0.11	1.14	0.79	0.17
Uniform Delay, d1	59.2	48.6	43.5	59.7	45.4	44.2	55.2	38.3	33.0	49.3	32.0	22.9
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.65	1.63	4.65	1.07	0.67	0.25
Incremental Delay, d2	8.9	2.8	0.3	2.1	0.2	0.1	3.4	1.5	0.5	83.0	2.5	0.5
Delay (s)	68.1	51.4	43.8	61.8	45.6	44.3	39.1	64.1	154.1	136.0	24.0	6.2
Level of Service	E	D	D	Е	D	D	D	Е	F	F	С	А
Approach Delay (s)		52.5			49.9			71.5			45.0	
Approach LOS		D			D			E			D	
Intersection Summary												
HCM 2000 Control Delay			53.4	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capa	city ratio		0.89						_			
Actuated Cycle Length (s)	.,		130.0	S	um of los	t time (s)			27.4			
Intersection Capacity Utiliza	ation		96.3%			of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 3: March Road & Solandt Road

	≯	-	\mathbf{r}	4	+	1	t	- \	Ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	38	99	121	51	154	571	1818	141	1870	
v/c Ratio	0.44	0.44	0.37	0.29	0.69	1.83	1.06	0.62	1.21	
Control Delay	75.5	57.7	5.2	63.5	66.2	416.6	67.6	67.0	132.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	75.5	57.7	5.2	63.5	66.2	416.6	67.6	67.0	132.5	
Queue Length 50th (m)	9.6	23.9	0.0	6.5	35.6	~220.9	~264.1	35.0	~317.3	
Queue Length 95th (m)	21.3	39.4	5.7	13.4	55.5	#289.5	#306.8	#82.8	#383.1	
Internal Link Dist (m)		112.5			205.8		333.2		208.2	
Turn Bay Length (m)	65.0		100.0	90.0		157.0		140.0		
Base Capacity (vph)	87	343	411	177	334	312	1719	229	1547	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.44	0.29	0.29	0.29	0.46	1.83	1.06	0.62	1.21	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite. ~

Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 3: March Road & Solandt Road

	٦	-		1	-	•	1	T.	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	1	ሻሻ	4		ሻ	A		٦.	∱1 ≽	
Traffic Volume (vph)	34	89	109	46	105	33	514	1049	587	127	1546	137
Future Volume (vph)	34	89	109	46	105	33	514	1049	587	127	1546	137
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	5.9	6.5	6.5	5.9	6.5		6.3	6.3		4.5	6.3	
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	1.00	0.97	1.00	0.99		1.00	0.99		1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	1.00	0.85	1.00	0.96		1.00	0.95		1.00	0.99	
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1616	1784	1435	3288	1693		1712	3155		1695	3311	
Flt Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1616	1784	1435	3288	1693		1712	3155		1695	3311	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	38	99	121	51	117	37	571	1166	652	141	1718	152
RTOR Reduction (vph)	0	0	106	0	10	0	0	59	0	0	4	0
Lane Group Flow (vph)	38	99	15	51	144	0	571	1759	0	141	1866	0
Confl. Peds. (#/hr)	7		8	8		7	6					6
Confl. Bikes (#/hr)			1			1			1			12
Heavy Vehicles (%)	7%	2%	5%	2%	3%	3%	1%	4%	1%	2%	3%	2%
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			4									
Actuated Green, G (s)	5.6	16.3	16.3	5.6	16.3		23.7	67.3		17.6	59.4	
Effective Green, g (s)	5.6	16.3	16.3	5.6	16.3		23.7	67.3		17.6	59.4	
Actuated g/C Ratio	0.04	0.13	0.13	0.04	0.13		0.18	0.52		0.14	0.46	
Clearance Time (s)	5.9	6.5	6.5	5.9	6.5		6.3	6.3		4.5	6.3	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	69	223	179	141	212		312	1633		229	1512	
v/s Ratio Prot	c0.02	0.06		0.02	c0.09		c0.33	0.56		0.08	c0.56	
v/s Ratio Perm			0.01									
v/c Ratio	0.55	0.44	0.08	0.36	0.68		1.83	1.08		0.62	1.23	
Uniform Delay, d1	61.0	52.7	50.3	60.5	54.4		53.1	31.4		53.0	35.3	
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	9.2	1.4	0.2	1.6	8.7		385.9	46.2		4.9	111.2	
Delay (s)	70.1	54.1	50.5	62.0	63.0		439.0	77.5		57.9	146.5	
Level of Service	E	D	D	E	E		F	E		E	F	
Approach Delay (s)		54.7			62.8			163.9			140.3	
Approach LOS		D			Е			F			F	
Intersection Summary												
HCM 2000 Control Delay			144.1	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capac	ity ratio		1.25									
Actuated Cycle Length (s)			130.0	S	um of lost	time (s)			25.0			
Intersection Capacity Utilizati	ion		117.8%			of Service			Н			
Analysis Period (min)			15									
c Critical Lane Group												

Queues
4: Legget Drive/Legget Road & Solandt Road /Solandt Road

	≯	→	4	-	1	1	1	ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	507	379	11	19	100	208	4	300	
v/c Ratio	0.75	0.44	0.02	0.03	0.43	0.42	0.01	0.60	
Control Delay	20.9	8.1	8.6	6.6	29.1	22.9	21.8	27.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	20.9	8.1	8.6	6.6	29.1	22.9	21.8	27.1	
Queue Length 50th (m)	39.9	14.6	0.6	0.6	8.7	16.7	0.3	26.5	
Queue Length 95th (m)	96.8	40.4	3.1	3.8	30.5	48.9	3.0	72.3	
Internal Link Dist (m)		205.8		177.5		261.1		203.5	
Turn Bay Length (m)	130.0		42.0		65.0		35.0		
Base Capacity (vph)	1188	1436	816	1199	571	1186	701	1210	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.43	0.26	0.01	0.02	0.18	0.18	0.01	0.25	
Intersection Summary									

4: Legget Drive/Leg	yget Ko	au & S	olandi	Road	1501ar	iul Roa	DE				00/0	3/2022
	≯	-	\mathbf{r}	1	-	*	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	et		٦	el 🗧		٦	eî 👘		٦	eî	
Traffic Volume (vph)	456	120	221	10	10	7	90	145	42	4	218	52
Future Volume (vph)	456	120	221	10	10	7	90	145	42	4	218	52
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	6.2	6.2		6.2	6.2		6.2	6.2		6.2	6.2	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	0.99		1.00	0.99		1.00	0.99		1.00	1.00	
Flpb, ped/bikes	0.99	1.00		1.00	1.00		1.00	1.00		0.99	1.00	
Frt	1.00	0.90		1.00	0.94		1.00	0.97		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1718	1604		1727	1354		1601	1717		1551	1748	
Flt Permitted	0.75	1.00		0.51	1.00		0.49	1.00		0.63	1.00	
Satd. Flow (perm)	1347	1604		919	1354		827	1717		1024	1748	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	507	133	246	11	11	8	100	161	47	4	242	58
RTOR Reduction (vph)	0	62	0	0	4	0	0	11	0	0	9	0
Lane Group Flow (vph)	507	317	0	11	15	0	100	197	0	4	291	0
Confl. Peds. (#/hr)	4		1	1		4			11	11		
Confl. Bikes (#/hr)												3
Heavy Vehicles (%)	0%	1%	1%	0%	30%	17%	8%	2%	0%	10%	1%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4		1 01111	8		1 01111	2			6	
Permitted Phases	4	•		8	Ū		2	-		6	Ū	
Actuated Green, G (s)	31.9	31.9		31.9	31.9		17.8	17.8		17.8	17.8	
Effective Green, g (s)	31.9	31.9		31.9	31.9		17.8	17.8		17.8	17.8	
Actuated g/C Ratio	0.51	0.51		0.51	0.51		0.29	0.29		0.29	0.29	
Clearance Time (s)	6.2	6.2		6.2	6.2		6.2	6.2		6.2	6.2	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	691	823		472	695		237	492		293	501	
v/s Ratio Prot	091	0.20		472	0.01		231	0.11		295	c0.17	
v/s Ratio Perm	c0.38	0.20		0.01	0.01		0.12	0.11		0.00	00.17	
v/c Ratio	0.73	0.39		0.01	0.02		0.12	0.40		0.00	0.58	
Uniform Delay, d1	11.8	9.2		7.4	7.4		18.0	17.9		15.9	19.0	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	4.0	0.3		0.0	0.0		1.00	0.5		0.0	1.00	
Delay (s)	15.8	9.5		7.5	7.4		19.2	18.4		15.9	20.7	
Level of Service	15.8 B	9.5 A			7.4 A			10.4 B		15.9 B	20.7 C	
	D			A	7.4		В	18.7		D		
Approach Delay (s) Approach LOS		13.1 B			7.4 A			16.7 B			20.6 C	
		D			A			D			C	
Intersection Summary												
HCM 2000 Control Delay			15.6	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capacity ratio			0.68									
Actuated Cycle Length (s)			62.1		um of lost				12.4			
ntersection Capacity Utilization			72.6%	IC	U Level o	of Service			С			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

	-	\mathbf{r}	1	+	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations				4	¥	
Traffic Volume (veh/h)	538	494	40	147	41	27
Future Volume (Veh/h)	538	494	40	147	41	27
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	598	549	44	163	46	30
Pedestrians	000	010		2	17	
Lane Width (m)				3.7	3.7	
Walking Speed (m/s)				1.1	1.1	
Percent Blockage				0	2	
Right turn flare (veh)				U	£	
Median type	None			None		
Median storage veh)				NULLE		
Upstream signal (m)	306					
pX, platoon unblocked	300		0.83		0.83	0.83
vC, conflicting volume			1164		0.65 1140	0.83 892
vC1, stage 1 conf vol			1104		1140	092
vC2, stage 2 conf vol						
vCu, unblocked vol			1093		1065	763
			4.2		6.4	6.2
tC, single (s)			4.Z		0.4	0.2
tC, 2 stage (s)			2.3		25	3.3
tF (s)			2.3 91		3.5	3.3 91
p0 queue free %					75	
cM capacity (veh/h)			495		182	324
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	1147	207	76			
Volume Left	0	44	46			
Volume Right	549	0	30			
cSH	1700	495	220			
Volume to Capacity	0.67	0.09	0.35			
Queue Length 95th (m)	0.0	2.2	11.1			
Control Delay (s)	0.0	3.8	29.8			
Lane LOS		А	D			
Approach Delay (s)	0.0	3.8	29.8			
Approach LOS			D			
Intersection Summary						
Average Delay			2.1			
Intersection Capacity Utiliza	ation		74.1%	IC	U Level o	f Service
Analysis Period (min)			15			
			10			

	4	•	1	1	1	Ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		1	≜ †⊅			<u>††</u>	
Traffic Volume (veh/h)	0	0	1085	0	0	0	
Future Volume (Veh/h)	0	0	1085	0	0	0	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	0	0	1206	0	0	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)			232			247	
pX, platoon unblocked	0.54	0.54			0.54		
vC, conflicting volume	1206	603			1206		
vC1, stage 1 conf vol	1200	000			1200		
vC2, stage 2 conf vol							
vCu, unblocked vol	0	0			0		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)	0.0	0.0					
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	100			100		
cM capacity (veh/h)	552	585			875		
,							
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	0	804	402	0	0		
Volume Left	0	0	0	0	0		
Volume Right	0	0	0	0	0		
cSH	1700	1700	1700	1700	1700		
Volume to Capacity	0.00	0.47	0.24	0.00	0.00		
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0		
Control Delay (s)	0.0	0.0	0.0	0.0	0.0		
Lane LOS	А						
Approach Delay (s)	0.0	0.0		0.0			
Approach LOS	А						
Intersection Summary							
Average Delay			0.0				
Intersection Capacity Utiliza	ation		35.0%	IC	Ulevel	of Service	
Analysis Period (min)			15	10			
			15				

	4	•	1	1	1	Ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		1	đβ			<u>††</u>	
Traffic Volume (veh/h)	0	0	1085	0	0	0	
Future Volume (Veh/h)	0	0	1085	0	0	0	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	0	0	1206	0	0	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)			322			157	
pX, platoon unblocked	0.56	0.56			0.56		
vC, conflicting volume	1206	603			1206		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	0	0			0		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	100			100		
cM capacity (veh/h)	572	606			907		
,							
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	0	804	402	0	0		
Volume Left	0	0	0	0	0		
Volume Right	0	0	0	0	0		
cSH	1700	1700	1700	1700	1700		
Volume to Capacity	0.00	0.47	0.24	0.00	0.00		
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0		
Control Delay (s)	0.0	0.0	0.0	0.0	0.0		
Lane LOS	А						
Approach Delay (s)	0.0	0.0		0.0			
Approach LOS	А						
Intersection Summary							
Average Delay			0.0				
Intersection Capacity Utiliza	ation		35.0%	IC	ULevel	of Service	
Analysis Period (min)			15	.0	2 201011		
			10				

	4	•	1	1	1	Ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		1	≜ †⊅			<u>††</u>	
Traffic Volume (veh/h)	0	0	1085	0	0	0	
Future Volume (Veh/h)	0	0	1085	0	0	0	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	0	0	1206	0	0	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)			401			78	
pX, platoon unblocked	0.58	0.58	101		0.58	10	
vC, conflicting volume	1206	603			1206		
vC1, stage 1 conf vol	1200	000			1200		
vC2, stage 2 conf vol							
vCu, unblocked vol	0	0			0		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)	0.0	0.5			7.1		
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	100			100		
cM capacity (veh/h)	589	625			935		
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	0	804	402	0	0		
Volume Left	0	0	0	0	0		
Volume Right	0	0	0	0	0		
cSH	1700	1700	1700	1700	1700		
Volume to Capacity	0.00	0.47	0.24	0.00	0.00		
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0		
Control Delay (s)	0.0	0.0	0.0	0.0	0.0		
Lane LOS	А						
Approach Delay (s)	0.0	0.0		0.0			
Approach LOS	А						
Intersection Summary							
Average Delay			0.0				
Intersection Capacity Utiliza	ation		35.0%			of Service	
				IC	O Level (
Analysis Period (min)			15				

.

.

	†	↓ I
Lane Group	NBT	SBT
Lane Group Flow (vph)	1206	1954
v/c Ratio	0.36	0.58
Control Delay	0.0	10.2
Queue Delay	0.0	0.0
Total Delay	0.0	10.2
Queue Length 50th (m)	0.0	109.9
Queue Length 95th (m)	m0.0	114.5
Internal Link Dist (m)	54.1	77.0
Turn Bay Length (m)		
Base Capacity (vph)	3390	3390
Starvation Cap Reductn	0	0
Spillback Cap Reductn	0	0
Storage Cap Reductn	0	0
Reduced v/c Ratio	0.36	0.58
Intersection Summary		

HCM Signalized Intersection Capacity Analysis 9: March Road & Site Access 4 (Lifestyle Street)

06/03/2022

	٦	+	*	4	Ļ	•	•	Ť	*	*	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	et		ľ	¢Î		ľ	<u></u>	1	ľ	<u></u>	
Traffic Volume (vph)	0	0	0	0	0	0	0	1085	0	0	1759	0
Future Volume (vph)	0	0	0	0	0	0	0	1085	0	0	1759	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)								4.5			4.5	
Lane Util. Factor								0.95			0.95	
Frt								1.00			1.00	
Flt Protected								1.00			1.00	
Satd. Flow (prot)								3390			3390	
Flt Permitted								1.00			1.00	
Satd. Flow (perm)								3390			3390	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	0	0	0	0	0	0	1206	0	0	1954	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	0	0	0	0	0	0	1206	0	0	1954	0
Turn Type	pm+pt			pm+pt			Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8	-		-			-	-	
Actuated Green, G (s)				-				130.0			130.0	
Effective Green, g (s)								130.0			130.0	
Actuated g/C Ratio								1.00			1.00	
Clearance Time (s)								4.5			4.5	
Vehicle Extension (s)								3.0			3.0	
Lane Grp Cap (vph)								3390			3390	
v/s Ratio Prot								0.36			c0.58	
v/s Ratio Perm								0.00			00.00	
v/c Ratio								0.36			0.58	
Uniform Delay, d1								0.0			0.0	
Progression Factor								1.00			1.00	
Incremental Delay, d2								0.0			0.5	
Delay (s)								0.0			0.5	
Level of Service								A			A	
Approach Delay (s)		0.0			0.0			0.0			0.5	
Approach LOS		A			A			A			A	
Intersection Summary												
HCM 2000 Control Delay			0.3	Н	CM 2000	Level of	Service		А			
HCM 2000 Volume to Capa	city ratio		0.67									
Actuated Cycle Length (s)			130.0	S	um of lost	t time (s)			18.0			
Intersection Capacity Utiliza	ation		55.1%			of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

	-	\mathbf{r}	*	-	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	4			•		1	
Traffic Volume (veh/h)	984	0	0	188	0	0	
Future Volume (Veh/h)	984	0	0	188	0	0	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	1093	0	0	209	0	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)	207						
pX, platoon unblocked			0.84		0.84	0.84	
vC, conflicting volume			1093		1302	1093	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			1014		1264	1014	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)					••••		
tF (s)			2.2		3.5	3.3	
p0 queue free %			100		100	100	
cM capacity (veh/h)			573		157	243	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	1093	209	0				
Volume Left	0	0	0				
Volume Right	0	0	0				
cSH	1700	1700	1700				
Volume to Capacity	0.64	0.12	0.00				
Queue Length 95th (m)	0.0	0.12	0.00				
Control Delay (s)	0.0	0.0	0.0				
Lane LOS	0.0	0.0	0.0 A				
Approach Delay (s)	0.0	0.0	0.0				
Approach LOS	0.0	0.0	0.0 A				
			~				
Intersection Summary							
Average Delay			0.0				
Intersection Capacity Utilizat	tion		58.0%	IC	CU Level o	of Service	
Analysis Period (min)			15				

HCM Unsignalized Intersection Capacity Analysis 11: Legget Drive/Legget Road & Site Access 6 (Lifestyle Street)

06/03/2022

	٦	-	$\mathbf{\hat{v}}$	4	←	•	•	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			÷			\$			¢	
Traffic Volume (veh/h)	0	0	0	19	0	5	0	130	43	0	288	0
Future Volume (Veh/h)	0	0	0	19	0	5	0	130	43	0	288	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	0	0	0	21	0	6	0	144	48	0	320	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	494	512	320	488	488	168	320			192		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	494	512	320	488	488	168	320			192		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	100	96	100	99	100			100		
cM capacity (veh/h)	482	465	721	490	480	876	1240			1381		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	0	27	192	320								
Volume Left	0	21	0	0								
Volume Right	0	6	48	0								
cSH	1700	543	1240	1381								
Volume to Capacity	0.00	0.05	0.00	0.00								
Queue Length 95th (m)	0.0	1.2	0.0	0.0								
Control Delay (s)	0.0	12.0	0.0	0.0								
Lane LOS	А	В										
Approach Delay (s)	0.0	12.0	0.0	0.0								
Approach LOS	А	В										
Intersection Summary												
Average Delay			0.6									
Intersection Capacity Utiliza	ation		26.0%	IC	U Level o	of Service			А			
Analysis Period (min)	-		15		,							

Lane Configurations V Image: Configuration of the second		٦	\mathbf{F}	•	1	Ļ	<
Lane Configurations Image: Configuration of the second secon	Movement	EBL	EBR	NBL	NBT	SBT	SBR
Traffic Volume (veh/h) 0 0 217 326 0 Future Volume (Veh/h) 0 0 0 217 326 0 Sign Control Stop Free Free Free 526 0 Grade 0% 0% 0% 0% 0% 0% 0% Peak Hour Factor 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 Peak Hour Factor 0.90							
Euture Volume (Veh/h) 0 0 0 217 326 0 Sign Control Stop Free Free Free Free Free Free Free Stop 0% <td< td=""><td></td><td></td><td>0</td><td>0</td><td></td><td></td><td>0</td></td<>			0	0			0
Sign Control Stop Free Free Free Grade 0%<	, ,						
Grade 0%							
Deak Hour Factor 0.90	Grade						
Hourly flow rate (vph) 0 0 0 241 362 0 Pedestrians	Peak Hour Factor		0.90	0.90			0.90
Dedestrians None None Valking Speed (m/s) Percent Blockage None None Valking Speed (m/s) Percent Blockage None None Valking Speed (m/s) Percent Blockage None None Valking Speed (m/s) None None None Validian type None None None Validian type None None None Validian type Status Status Status Validian type 603 362 362 CC, conflicting volume 603 362 362 CC, single (s) 6.4 6.2 4.1 C. 2 stage (s) F S 3.5 3.3 2.2 Volume free % 100 100 100 100 100 Mcapacity (veh/h) 462 683 1197 1197 Direction, Lane # EB 1 NB 1 SB 1 100 100 100 100 100 100 100 100							
Lane Width (m) Nalking Speed (m/s) Percent Blockage None Right turn flare (veh) None Median type None Median storage veh) Jpstream signal (m) Jpstream signal (m) 388 Xx, platoon unblocked C. C, conflicting volume 603 362 CC, stage 1 conf vol C2 CQ, unblocked vol 603 362 CQ, unblocked vol 603 362 CQ, stage 2 conf vol C2 4.1 C2, stage 2 conf vol C2 4.1 C2, stage (s) F (s) 3.5 3.3 2.2 D0 queue free % 100 100 100 Mcapacity (veh/h) 462 683 1197 Direction, Lane # EB 1 NB 1 SB 1 /olume Total 0 241 362 /olume Right 0 0 0 SH 1700 1197 1700 /olume to Capacity 0.0 0.0 0.0 Queue Length 95th (m) 0.0 0.0 0.0	Pedestrians						
Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median storage veh) Jpstream signal (m) Jpstream signal (m) OX, platoon unblocked CC, conflicting volume 603 GC, conflicting volume 603 V2, stage 1 conf vol VC2, stage 2 conf vol CCu, unblocked vol 603 CS, single (s) 6.4 C, stage (s) F (s) 3.5 O queue free % 100 100 100 Mcapacity (veh/h) 462 Acapacity (veh/h) 462 Volume Total 0 Volume Right 0 0 0 SH 1700 Volume to Capacity 0.0 Control Delay (s) 0.0 0.0 0.0 Control Delay (s) 0.0 Approach Delay (s) 0.0 Approach LOS A Average Delay 0.0 netersection Capacity Utilization 21.4%							
Percent Blockage Right turn flare (veh) Median type None Median storage veh) 388 Jpstream signal (m) 388 XX, platoon unblocked 7 CG, conflicting volume 603 362 362 CG, stage 1 conf vol 7 7 7 CQ, stage 2 conf vol 7 7 7 CG, stage 2 conf vol 7 7 7 CG, stage 2 conf vol 603 362 362 7 CG, stage 2 conf vol 7 7 7 7 CG, stage (s) 6.4 6.2 4.1 7 7 C, stage (s) 8 1100 100 100 100 Mcapacity (veh/h) 462 683 1197 1197 1197 Direction, Lane # EB 1 NB 1 SB 1 1197 1100 1197 1100 1117 1100 1117 1100 1117 1100 1111 1111 1111 1111 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
Right turn flare (veh) None None None Median storage veh) 388 388 388 Jpstream signal (m) 388 388 388 VX, platoon unblocked 603 362 362 CC, conflicting volume 603 362 362 C1, stage 1 conf vol C2, stage 2 conf vol C2 stage 2 conf vol CQu, unblocked vol 603 362 362 C, single (s) 6.4 6.2 4.1 C, 2 stage (s) F (s) 3.5 3.3 2.2 O0 queue free % 100 100 100 100 Mcapacity (veh/h) 462 683 1197 1197 Direction, Lane # EB 1 NB 1 SB 1 100 100 100 100 100 100 100 100 1197 1700 101 1197 1700 101 1197 1700 1197 100 100 100 100 100 100 100							
Median type None None Median storage veh) Jpstream signal (m) 388 Jpstream signal (m) 388 vX, platoon unblocked C, conflicting volume 603 362 362 CC, single 1 conf vol C2, stage 2 conf vol CQu, unblocked vol 603 362 362 C4.1 C, 2 stage (s) F F F S 3.5 3.3 2.2 00 queue free % 100 100 100 100 241 362 363 362 362 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
Median storage veh) 388 Jpstream signal (m) 388 DX, platoon unblocked 362 CC, conflicting volume 603 362 362 VC1, stage 1 conf vol 702, stage 2 conf vol 702, stage 2 conf vol 702, stage 2 conf vol VC2, stage 2 conf vol 603 362 362 362 C, single (s) 6.4 6.2 4.1 6.2 4.1 C, 2 stage (s) 5 3.3 2.2 50 9					None	None	
Jpstream signal (m) 388 DX, platoon unblocked 603 362 362 CC, conflicting volume 603 362 362 CQ, stage 1 conf vol 700 362 362 CQ, unblocked vol 603 362 362 CQ, unblocked vol 603 362 362 CQ, unblocked vol 603 362 362 C, single (s) 6.4 6.2 4.1 C, 2 stage (s) 53.5 3.3 2.2 D0 queue free % 100 100 100 M capacity (veh/h) 462 683 1197 Direction, Lane # EB 1 NB 1 SB 1 /olume Total 0 241 362 /olume Right 0 0 0 /olume to Capacity 0.00 0.0 0.21 Queue Length 95th (m) 0.0 0.0 0.0 Control Delay (s) 0.0 0.0 0.0 Approach LOS A A Approach LOS A Approach LOS A 0.0 0.0							
bX, platoon unblocked VC, conflicting volume 603 362 362 VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol 603 362 362 CQ, unblocked vol 603 362 362 C, single (s) 6.4 6.2 4.1 C, 2 stage (s) F 5 3.5 3.3 2.2 Pol queue free % 100 100 100 100 MC capacity (veh/h) 462 683 1197 Direction, Lane # EB 1 NB 1 SB 1 /olume Total 0 241 362 /olume Right 0 0 0 /olume Right 0 0 0 /olume to Capacity 0.00 0.0 0.21 Queue Length 95th (m) 0.0 0.0 0.0 /olume to Capacity (s) 0.0 0.0 0.0 /olume to Capacity (s) 0.0 0.0 0.0 /olume to Capacity (s) 0.0 0.0 0.0 Approach Delay (s) <t< td=""><td></td><td></td><td></td><td></td><td>388</td><td></td><td></td></t<>					388		
C, conflicting volume 603 362 362 VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, unblocked vol 603 362 362 C, single (s) 6.4 6.2 4.1 C, 2 stage (s) F F S 3.5 3.3 2.2 O0 queue free % 100 100 100 100 100 M capacity (veh/h) 462 683 1197 1197 Direction, Lane # EB 1 NB 1 SB 1 /olume Total 0 241 362 /olume Right 0 0 0 /olume Right 0 0 0 /olume to Capacity 0.00 0.0 0.21 Queue Length 95th (m) 0.0 0.0 0.0 Control Delay (s) 0.0 0.0 0.0 Approach Delay (s) 0.0 0.0 0.0 Approach LOS A A Approach LOS A Average Delay 0.0 0.0 1CU Level of Service					500		
AC1, stage 1 conf vol AC2, stage 2 conf vol AC4, unblocked vol 603 362 362 C, single (s) 6.4 6.2 4.1 C, 2 stage (s) 6 7 7 F (s) 3.5 3.3 2.2 AD0 queue free % 100 100 100 AC2 apacity (veh/h) 462 683 1197 Direction, Lane # EB 1 NB 1 SB 1 /olume Total 0 241 362 /olume Left 0 0 0 /olume Kight 0 0 0 /olume to Capacity 0.00 0.00 0.21 Queue Length 95th (m) 0.0 0.0 0.0 Control Delay (s) 0.0 0.0 0.0 Approach Delay (s) 0.0 0.0 0.0 Approach LOS A A Approach LOS A Average Delay 0.0 0.0 0.0 0.0 Intersection Capacity Utilization 21.4% ICU Level of Service		603	362	362			
AC2, stage 2 conf vol AC2, unblocked vol 603 362 362 C, single (s) 6.4 6.2 4.1 C, 2 stage (s) F (s) 3.5 3.3 2.2 D0 queue free % 100 100 100 M capacity (veh/h) 462 683 1197 Direction, Lane # EB 1 NB 1 SB 1 /olume Total 0 241 362 /olume Left 0 0 0 /olume Left 0 0 0 /olume to Capacity 0.00 0.0 0.21 Queue Length 95th (m) 0.0 0.0 0.0 /colume to Sapacity (s) 0.0 0.0 0.0 /colume to Capacity 0.00 0.0 0.0 /colume to Capacity 0.00 0.0 0.0 /colume to Capacity (s) 0.0 0.0 0.0 /colume to Capacity (s) 0.0 0.0 0.0 /colume to Capacity (s) 0.0 0.0 0.0 /control Delay (s) 0.0 0.0 0.0							
Cu, unblocked vol 603 362 362 C, single (s) 6.4 6.2 4.1 C, 2 stage (s) F (s) 3.5 3.3 2.2 O0 queue free % 100 100 100 100 M capacity (veh/h) 462 683 1197 Direction, Lane # EB 1 NB 1 SB 1 /olume Total 0 241 362 /olume Left 0 0 0 /olume kight 0 0 0 SH 1700 1197 1700 /olume to Capacity 0.00 0.0 0.21 Queue Length 95th (m) 0.0 0.0 0.0 Control Delay (s) 0.0 0.0 0.0 Approach Delay (s) 0.0 0.0 0.0 Approach LOS A A A Average Delay 0.0 0.0 0.0 Intersection Capacity Utilization 21.4% ICU Level of Service							
C, single (s) 6.4 6.2 4.1 C, 2 stage (s) 7 3.5 3.3 2.2 O0 queue free % 100 100 100 M capacity (veh/h) 462 683 1197 Direction, Lane # EB 1 NB 1 SB 1 /olume Total 0 241 362 /olume Right 0 0 0 /olume Right 0 0 0 /sSH 1700 1197 1700 /olume to Capacity 0.00 0.0 0.21 Queue Length 95th (m) 0.0 0.0 0.0 Control Delay (s) 0.0 0.0 0.0 Approach LOS A A Approach LOS A Average Delay 0.0 0.0 100 100 Intersection Capacity Utilization 21.4% ICU Level of Service		603	362	362			
C, 2 stage (s) F (s) 3.5 3.3 2.2 x00 queue free % 100 100 100 x01 capacity (veh/h) 462 683 1197 Direction, Lane # EB 1 NB 1 SB 1 /olume Total 0 241 362 /olume Left 0 0 0 /olume Right 0 0 0 /olume to Capacity 0.00 0.01 0.21 Queue Length 95th (m) 0.0 0.0 0.0 /olume to Capacity 0.0 0.0 0.0 Queue Length 95th (m) 0.0 0.0 0.0 Queue Length 95th (m) 0.0 0.0 0.0 Control Delay (s) 0.0 0.0 0.0 Approach Delay (s) 0.0 0.0 0.0 Approach LOS A A Average Delay 0.0 ntersection Capacity Utilization 21.4% ICU Level of Service							
F (s) 3.5 3.3 2.2 00 queue free % 100 100 100 2M capacity (veh/h) 462 683 1197 Direction, Lane # EB 1 NB 1 SB 1 /olume Total 0 241 362 /olume Left 0 0 0 /olume Right 0 0 0 /olume to Capacity 0.00 0.00 0.21 Queue Length 95th (m) 0.0 0.0 0.0 Control Delay (s) 0.0 0.0 0.0 Approach Delay (s) 0.0 0.0 0.0 Approach LOS A A Average Delay 0.0 0.0 ntersection Capacity Utilization 21.4% ICU Level of Service		0.1	0.2				
Output Information Infore Infore Infore </td <td></td> <td>35</td> <td>33</td> <td>22</td> <td></td> <td></td> <td></td>		35	33	22			
Ambigue							
Direction, Lane # EB 1 NB 1 SB 1 /olume Total 0 241 362 /olume Left 0 0 0 /olume Right 0 0 0 /olume Right 0 0 0 /olume to Capacity 0.00 0.021 Queue Length 95th (m) 0.0 0.0 Control Delay (s) 0.0 0.0 Approach Delay (s) 0.0 0.0 Approach LOS A Average Delay 0.0 ntersection Capacity Utilization 21.4% ICU Level of Service							
Volume Total 0 241 362 /olume Left 0 0 0 /olume Right 0 0 0 /SH 1700 1197 1700 /olume to Capacity 0.00 0.21 0.00 Queue Length 95th (m) 0.0 0.0 0.0 Control Delay (s) 0.0 0.0 0.0 Lane LOS A Approach Delay (s) 0.0 0.0 Approach Delay (s) 0.0 0.0 0.0 0.0 Average Delay 0.0 0.0 10.0 10.0 Intersection Capacity Utilization 21.4% ICU Level of Service	,						
Volume Left 0 0 0 /olume Right 0 0 0 /sSH 1700 1197 1700 /olume to Capacity 0.00 0.021 0.00 Queue Length 95th (m) 0.0 0.0 0.0 Control Delay (s) 0.0 0.0 0.0 Approach Delay (s) 0.0 0.0 0.0 Approach LOS A Average Delay 0.0 Average Delay 0.0 10.0 1CU Level of Service							
Volume Right 0 0 0 SH 1700 1197 1700 /olume to Capacity 0.00 0.00 0.21 Queue Length 95th (m) 0.0 0.0 0.0 Control Delay (s) 0.0 0.0 0.0 Approach Delay (s) 0.0 0.0 0.0 Approach LOS A A Average Delay 0.0 Intersection Summary 0.0 10.0 ICU Level of Service							
SH 1700 1197 1700 /olume to Capacity 0.00 0.00 0.21 Queue Length 95th (m) 0.0 0.0 0.0 Control Delay (s) 0.0 0.0 0.0 Lane LOS A Approach Delay (s) 0.0 0.0 Approach LOS A Approach LOS A Average Delay 0.0 0.0 100 Intersection Capacity Utilization 21.4% ICU Level of Service							
Volume to Capacity 0.00 0.00 0.21 Queue Length 95th (m) 0.0 0.0 0.0 Control Delay (s) 0.0 0.0 0.0 Lane LOS A Approach Delay (s) 0.0 0.0 Approach Delay (s) 0.0 0.0 0.0 0.0 Approach LOS A A Approach LOS A Average Delay 0.0 0.0 1CU Level of Service							
Queue Length 95th (m) 0.0 0.0 0.0 Control Delay (s) 0.0 0.0 0.0 Lane LOS A Approach Delay (s) 0.0 0.0 Approach Delay (s) 0.0 0.0 0.0 0.0 Approach LOS A Approach LOS A Average Delay 0.0 0.0 0.0 Intersection Capacity Utilization 21.4% ICU Level of Service							
Control Delay (s) 0.0 0.0 0.0 Lane LOS A A Approach Delay (s) 0.0 0.0 0.0 Approach LOS A A Intersection Summary 0.0 0.0 Average Delay 0.0 0.0 Intersection Capacity Utilization 21.4% ICU Level of Service							
Lane LOS A Approach Delay (s) 0.0 0.0 Approach LOS A Intersection Summary 0.0 Average Delay 0.0 Intersection Capacity Utilization 21.4%							
Approach Delay (s) 0.0 0.0 0.0 Approach LOS A A Intersection Summary 0.0 0.0 Average Delay 0.0 ICU Level of Service			0.0	0.0			
Approach LOS A ntersection Summary Average Delay 0.0 ntersection Capacity Utilization 21.4% ICU Level of Service							
ntersection Summary Average Delay 0.0 ntersection Capacity Utilization 21.4% ICU Level of Service			0.0	0.0			
Output 0.0 Intersection Capacity Utilization 21.4% ICU Level of Service	Approach LOS	A					
ntersection Capacity Utilization 21.4% ICU Level of Service	Intersection Summary						
	Average Delay			0.0			
Analysis Period (min) 15	Intersection Capacity Utiliz	ation		21.4%	IC	CU Level o	of Service
	Analysis Period (min)			15			

	٦	\mathbf{i}	•	t	Ļ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			र्स	4Î	
Traffic Volume (veh/h)	0	0	0	217	326	0
Future Volume (Veh/h)	0	0	0	217	326	0
Sign Control	Stop	Ŭ	Ŭ	Free	Free	Ŭ
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	0.00	0.00	0.00	241	362	0.00
Pedestrians	U	Ū	U	271	002	U
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				NULLE	NOLIG	
Upstream signal (m)				227		
pX, platoon unblocked				221		
vC, conflicting volume	603	362	362			
vC1, stage 1 conf vol	003	302	302			
vC2, stage 2 conf vol	602	200	362			
vCu, unblocked vol	603	362				
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)	0.5	0.0	0.0			
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	100	100			
cM capacity (veh/h)	462	683	1197			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	0	241	362			
Volume Left	0	0	0			
Volume Right	0	0	0			
cSH	1700	1197	1700			
Volume to Capacity	0.00	0.00	0.21			
Queue Length 95th (m)	0.0	0.0	0.0			
Control Delay (s)	0.0	0.0	0.0			
Lane LOS	А					
Approach Delay (s)	0.0	0.0	0.0			
Approach LOS	А					
Intersection Summary						
Average Delay			0.0			
Intersection Capacity Utiliza	ation		21.4%	10	CU Level o	of Service
Analysis Period (min)			15	I.		
			10			

HCM Unsignalized Intersection Capacity Analysis 20: Terry Fox Drive & McKinley Drive

	۶	+	\mathbf{F}	4	4	•	≺	1	1	*	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	↑			1 2						4	
Traffic Volume (veh/h)	39	984	0	0	188	14	0	0	0	93	0	33
Future Volume (Veh/h)	39	984	0	0	188	14	0	0	0	93	0	33
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	43	1093	0	0	209	16	0	0	0	103	0	37
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)		152										
pX, platoon unblocked				0.84			0.84	0.84	0.84	0.84	0.84	
vC, conflicting volume	225			1093			1433	1404	1093	1396	1396	217
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	225			1016			1420	1386	1016	1376	1376	217
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	97			100			100	100	100	0	100	96
cM capacity (veh/h)	1344			574			89	116	243	100	118	823
Direction, Lane #	EB 1	EB 2	WB 1	SB 1								
Volume Total	43	1093	225	140								
Volume Left	43	0	0	103								
Volume Right	0	0	16	37								
cSH	1344	1700	1700	131								
Volume to Capacity	0.03	0.64	0.13	1.07								
Queue Length 95th (m)	0.8	0.0	0.0	59.7								
Control Delay (s)	7.8	0.0	0.0	164.8								
Lane LOS	А			F								
Approach Delay (s)	0.3		0.0	164.8								
Approach LOS				F								
Intersection Summary												
Average Delay			15.6									
Intersection Capacity Utiliza	ation		68.9%	IC	CU Level o	f Service			С			
Analysis Period (min)			15									

Queues 1: March Road N/March Road S & Morgan's Grant Way/Shirley's Brook Dr

06/03/2022

	→	\mathbf{r}	4	-	*	•	Ť	1	1	Ļ	<	
Lane Group	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	71	70	87	73	230	267	2350	150	156	1170	22	
v/c Ratio	0.36	0.28	0.59	0.38	0.66	0.67	0.85	0.16	0.67	0.48	0.03	
Control Delay	56.6	10.7	69.2	57.2	19.2	69.2	12.0	0.2	66.7	22.8	0.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	56.6	10.7	69.2	57.2	19.2	69.2	12.0	0.2	66.7	22.8	0.1	
Queue Length 50th (m)	17.2	0.0	21.6	17.7	6.1	65.7	23.0	0.0	38.4	71.1	0.0	
Queue Length 95th (m)	30.3	10.6	36.8	30.8	30.2	m76.6	m210.1	m0.0	58.9	83.4	0.0	
Internal Link Dist (m)	116.4			136.8			274.6			145.2		
Turn Bay Length (m)		10.0	38.0		38.0	130.0		25.0	68.0		25.0	
Base Capacity (vph)	408	428	309	401	505	399	2756	911	242	2442	777	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.17	0.16	0.28	0.18	0.46	0.67	0.85	0.16	0.64	0.48	0.03	
Intersection Summary												

1: March Road N/M	arch Ro	bad S	& ivior	gan s C	srant v	vay/Sr	nirieys	BLOOK	L Dr		06/0)3/2022
	۶	-	\mathbf{F}	∢	-	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	1	ň	†	1	ሻ	^	1	ሻ	^	1
Traffic Volume (vph)	12	52	63	78	66	207	240	2115	135	140	1053	20
Future Volume (vph)	12	52	63	78	66	207	240	2115	135	140	1053	20
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		7.5	7.5	7.5	7.5	7.5	6.4	6.1	6.1	6.4	6.1	6.1
Lane Util. Factor		1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.00	1.00	0.91	1.00
Frpb, ped/bikes		1.00	0.98	1.00	1.00	0.98	1.00	1.00	0.95	1.00	1.00	0.96
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1802	1514	1706	1655	1450	1679	4644	1476	1729	4969	1488
Flt Permitted		0.93	1.00	0.71	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)		1684	1514	1276	1655	1450	1679	4644	1476	1729	4969	1488
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	13	58	70	87	73	230	267	2350	150	156	1170	22
RTOR Reduction (vph)	0	0	62	0	0	180	0	0	37	0	0	11
Lane Group Flow (vph)	0	71	8	87	73	50	267	2350	113	156	1170	11
Confl. Peds. (#/hr)	3		3	3		3	5		6	6		5
Confl. Bikes (#/hr)			3						8			1
Heavy Vehicles (%)	0%	0%	0%	1%	10%	5%	3%	7%	0%	0%	0%	0%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4		4	8		8			2			6
Actuated Green, G (s)		15.2	15.2	15.2	15.2	15.2	30.9	77.1	77.1	17.7	63.9	63.9
Effective Green, g (s)		15.2	15.2	15.2	15.2	15.2	30.9	77.1	77.1	17.7	63.9	63.9
Actuated g/C Ratio		0.12	0.12	0.12	0.12	0.12	0.24	0.59	0.59	0.14	0.49	0.49
Clearance Time (s)		7.5	7.5	7.5	7.5	7.5	6.4	6.1	6.1	6.4	6.1	6.1
Vehicle Extension (s)		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		196	177	149	193	169	399	2754	875	235	2442	731
v/s Ratio Prot					0.04		c0.16	c0.51		0.09	0.24	
v/s Ratio Perm		0.04	0.01	c0.07		0.03			0.08			0.01
v/c Ratio		0.36	0.05	0.58	0.38	0.29	0.67	0.85	0.13	0.66	0.48	0.01
Uniform Delay, d1		52.9	51.0	54.4	53.0	52.5	44.9	21.8	11.7	53.3	22.0	16.9
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.46	0.42	0.01	1.00	1.00	1.00
Incremental Delay, d2		1.1	0.1	5.7	1.2	1.0	1.3	1.1	0.1	6.9	0.7	0.0
Delay (s)		54.1	51.1	60.1	54.3	53.5	66.7	10.2	0.2	60.2	22.7	17.0
Level of Service		D	D	E	D	D	E	В	A	E	С	В
Approach Delay (s)		52.6			55.1			15.1			26.9	
Approach LOS		D			E			В			С	
Intersection Summary												
HCM 2000 Control Delay			23.0	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	ty ratio		0.81									
Actuated Cycle Length (s)			130.0	S	um of lost	t time (s)			20.0			
Intersection Capacity Utilizati	on		85.7%			of Service			E			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 1: March Road N/March Road S & Morgan's Grant Way/Shirley's Brook Dr

06/03/2022

Queues 2: March Road & Terry Fox Drive

	٨	→	\mathbf{r}	4	+	•	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	310	134	380	207	336	414	230	2000	110	86	1059	181
v/c Ratio	0.77	0.20	0.72	0.62	0.55	0.85	0.66	1.08	0.16	0.55	0.57	0.28
Control Delay	68.3	42.4	18.9	63.8	50.9	33.3	64.1	71.7	3.1	68.2	44.7	16.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	68.3	42.4	18.9	63.8	50.9	33.3	64.1	71.7	3.1	68.2	44.7	16.4
Queue Length 50th (m)	39.7	15.2	18.2	26.5	42.0	37.6	28.0	~214.1	0.5	22.5	68.3	4.1
Queue Length 95th (m)	55.3	22.2	50.2	38.4	50.7	70.8	41.3	#299.4	m5.2	40.8	86.1	24.8
Internal Link Dist (m)		245.5			118.4			283.0			274.6	
Turn Bay Length (m)	104.0		52.0	72.0		100.0	142.0		82.0	100.0		98.0
Base Capacity (vph)	435	931	611	418	912	594	407	1859	678	214	1851	643
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.71	0.14	0.62	0.50	0.37	0.70	0.57	1.08	0.16	0.40	0.57	0.28

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 2: March Road & Terry Fox Drive

06/03/2022	2
------------	---

	٦	-	\mathbf{F}	∢	←	*	•	Ť	۲	5	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	^	1	ካካ	- † †	1	ሻሻ	ተተተ	1	ሻ	<u></u>	7
Traffic Volume (vph)	279	121	342	186	302	373	207	1800	99	77	953	163
Future Volume (vph)	279	121	342	186	302	373	207	1800	99	77	953	163
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	6.8	7.0	7.0	6.8	7.0	7.0	6.9	6.7	6.7	6.9	6.7	6.7
Lane Util. Factor	0.97	0.95	1.00	0.97	0.95	1.00	0.97	0.91	1.00	1.00	0.91	1.00
Frpb, ped/bikes	1.00	1.00	0.96	1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.96
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	3288	3458	1463	3164	3390	1469	3288	4687	1483	1729	4871	1397
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	3288	3458	1463	3164	3390	1469	3288	4687	1483	1729	4871	1397
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	310	134	380	207	336	414	230	2000	110	86	1059	181
RTOR Reduction (vph)	0	0	239	0	0	223	0	0	66	0	0	112
Lane Group Flow (vph)	310	134	141	207	336	191	230	2000	44	86	1059	69
Confl. Peds. (#/hr)	9		29	29		9	21		13	13		21
Confl. Bikes (#/hr)			1						1			
Heavy Vehicles (%)	2%	0%	1%	6%	2%	3%	2%	6%	1%	0%	2%	6%
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			4			8			2			6
Actuated Green, G (s)	16.0	25.6	25.6	13.7	23.3	23.3	13.9	51.6	51.6	11.7	49.4	49.4
Effective Green, g (s)	16.0	25.6	25.6	13.7	23.3	23.3	13.9	51.6	51.6	11.7	49.4	49.4
Actuated g/C Ratio	0.12	0.20	0.20	0.11	0.18	0.18	0.11	0.40	0.40	0.09	0.38	0.38
Clearance Time (s)	6.8	7.0	7.0	6.8	7.0	7.0	6.9	6.7	6.7	6.9	6.7	6.7
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	404	680	288	333	607	263	351	1860	588	155	1850	530
v/s Ratio Prot	c0.09	0.04		0.07	0.10		c0.07	c0.43		0.05	0.22	
v/s Ratio Perm			0.10			c0.13			0.03			0.05
v/c Ratio	0.77	0.20	0.49	0.62	0.55	0.73	0.66	1.08	0.07	0.55	0.57	0.13
Uniform Delay, d1	55.2	43.6	46.4	55.7	48.6	50.3	55.7	39.2	24.4	56.7	31.9	26.3
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.04	0.72	1.33	1.00	1.27	3.02
Incremental Delay, d2	8.5	0.1	1.3	3.6	1.1	9.5	3.1	41.7	0.2	3.9	1.2	0.5
Delay (s)	63.7	43.8	47.7	59.3	49.7	59.9	60.9	70.0	32.5	60.6	41.7	79.7
Level of Service	E	D	D	Е	D	Е	Е	Е	С	Е	D	E
Approach Delay (s)		53.1			56.2			67.3			48.1	
Approach LOS		D			Е			Е			D	
Intersection Summary												
HCM 2000 Control Delay			58.5	Н	CM 2000	Level of	Service		E			
HCM 2000 Volume to Capa	acity ratio		0.91									
Actuated Cycle Length (s)			130.0	S	um of los	t time (s)			27.4			
Intersection Capacity Utiliza	ation		92.5%			of Service)		F			
Analysis Period (min)			15									
c Critical Lane Group												
r r												

Queues 3: March Road & Solandt Road

	٦	→	\mathbf{r}	4	-	1	t	1	Ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	107	43	609	579	278	108	2280	29	1503	
v/c Ratio	0.75	0.10	1.40	1.75	0.58	1.44	1.47	0.45	1.07	
Control Delay	87.4	39.1	224.2	383.2	30.3	300.7	242.4	82.4	82.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	87.4	39.1	224.2	383.2	30.3	300.7	242.4	82.4	82.5	
Queue Length 50th (m)	27.0	8.6	~185.9	~113.4	37.0	~37.5	~437.6	7.4	~224.6	
Queue Length 95th (m)	#53.5	18.5	#257.2	#148.7	66.5	#74.8	#478.6	#18.9	#267.8	
Internal Link Dist (m)		112.5			205.8		333.2		208.2	
Turn Bay Length (m)	65.0		100.0	90.0		157.0		140.0		
Base Capacity (vph)	152	432	435	331	476	75	1555	65	1401	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.70	0.10	1.40	1.75	0.58	1.44	1.47	0.45	1.07	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite. ~

Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 3: March Road & Solandt Road

06/03/2022	2
------------	---

	٦	+	\mathbf{F}	4	Ļ	•	•	1	1	*	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u> </u>	↑	1	ካካ	ef 👘		<u> </u>	≜ ⊅		- ሽ	∱ ⊅	
Traffic Volume (vph)	96	39	548	521	61	189	97	1997	55	26	1270	83
Future Volume (vph)	96	39	548	521	61	189	97	1997	55	26	1270	83
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	5.9	6.5	6.5	5.9	6.5		6.3	6.3		4.5	6.3	
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	1.00	0.97	1.00	0.98		1.00	1.00		1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	1.00	0.85	1.00	0.89		1.00	1.00		1.00	0.99	
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1616	1784	1436	3288	1539		1712	3312		1695	3322	
Flt Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1616	1784	1436	3288	1539		1712	3312		1695	3322	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	107	43	609	579	68	210	108	2219	61	29	1411	92
RTOR Reduction (vph)	0	0	87	0	85	0	0	2	0	0	3	0
Lane Group Flow (vph)	107	43	522	579	193	0	108	2278	0	29	1500	0
Confl. Peds. (#/hr)	7		8	8		7	6					6
Confl. Bikes (#/hr)			1			1			1			12
Heavy Vehicles (%)	7%	2%	5%	2%	3%	3%	1%	4%	1%	2%	3%	2%
Turn Type	Prot	NA	Perm	Prot	NA		Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			4									
Actuated Green, G (s)	11.6	31.5	31.5	13.1	33.0		5.7	59.2		3.0	54.7	
Effective Green, g (s)	11.6	31.5	31.5	13.1	33.0		5.7	59.2		3.0	54.7	
Actuated g/C Ratio	0.09	0.24	0.24	0.10	0.25		0.04	0.46		0.02	0.42	
Clearance Time (s)	5.9	6.5	6.5	5.9	6.5		6.3	6.3		4.5	6.3	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	144	432	347	331	390		75	1508		39	1397	
v/s Ratio Prot	0.07	0.02		c0.18	0.13		c0.06	c0.69		0.02	0.45	
v/s Ratio Perm			c0.36									
v/c Ratio	0.74	0.10	1.50	1.75	0.49		1.44	1.51		0.74	1.07	
Uniform Delay, d1	57.7	38.2	49.2	58.5	41.4		62.1	35.4		63.1	37.6	
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	18.6	0.1	241.3	349.4	1.0		258.2	233.4		54.3	46.4	
Delay (s)	76.3	38.3	290.6	407.9	42.4		320.4	268.8		117.4	84.1	
Level of Service	E	D	F	F	D		F	F		F	F	
Approach Delay (s)		246.1			289.3			271.1			84.7	
Approach LOS		F			F			F			F	
Intersection Summary												
HCM 2000 Control Delay			218.9	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	city ratio		1.59									
Actuated Cycle Length (s)			130.0	S	um of lost	t time (s)			25.0			
Intersection Capacity Utiliza	ation		110.6%			of Service			Н			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 4: Legget Drive/Legget Road & Solandt Road /Solandt Road

	٦	-	∢	+	•	1	1	Ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	66	59	41	129	293	91	3	656	
v/c Ratio	0.32	0.19	0.19	0.54	0.65	0.07	0.01	0.90	
Control Delay	40.9	11.6	37.7	45.3	21.7	4.7	19.0	41.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	40.9	11.6	37.7	45.3	21.7	4.7	19.0	41.9	
Queue Length 50th (m)	11.1	0.2	6.8	21.9	25.7	4.2	0.3	100.7	
Queue Length 95th (m)	24.1	10.6	16.4	40.8	57.6	10.1	2.3	#190.6	
Internal Link Dist (m)		205.8		177.5		261.1		203.5	
Turn Bay Length (m)	130.0		42.0		65.0		35.0		
Base Capacity (vph)	443	585	476	510	511	1317	467	726	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.15	0.10	0.09	0.25	0.57	0.07	0.01	0.90	
Interportion Cummon									

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

4: Legget Drive/Le			olana		700101						06
	٦	→	\mathbf{r}	1	-	*	1	1	1	1	ŧ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	<u> </u>	ef 👘		<u>۲</u>	€Î,		<u> </u>	ef 👘		<u>۲</u>	- Þ
Traffic Volume (vph)	59	1	52	37	107	9	264	79	3	3	207
Future Volume (vph)	59	1	52	37	107	9	264	79	3	3	207
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	6.2	6.2		6.2	6.2		6.2	6.2		6.2	6.2
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Frpb, ped/bikes	1.00	0.98		1.00	1.00		1.00	1.00		1.00	0.99
Flpb, ped/bikes	0.99	1.00		1.00	1.00		1.00	1.00		0.98	1.00
Frt	1.00	0.85		1.00	0.99		1.00	1.00		1.00	0.90
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00
Satd. Flow (prot)	1714	1502		1725	1391		1601	1774		1533	1623
Flt Permitted	0.67	1.00		0.72	1.00		0.13	1.00		0.70	1.00
Satd. Flow (perm)	1217	1502		1305	1391		215	1774		1127	1623
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	66	1	58	41	119	10	293	88	3	3	230
RTOR Reduction (vph)	0	48	0	0	3	0	0	1	0	0	50
Lane Group Flow (vph)	66	11	0	41	126	0	293	90	0	3	606
Confl. Peds. (#/hr)	4		1	1		4			11	11	
Confl. Bikes (#/hr)											
Heavy Vehicles (%)	0%	1%	1%	0%	30%	17%	8%	2%	0%	10%	1%
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		Perm	NA
Protected Phases		4			8		5	2			6
Permitted Phases	4			8			2			6	
Actuated Green, G (s)	16.3	16.3		16.3	16.3		67.4	67.4		40.1	40.1
Effective Green, g (s)	16.3	16.3		16.3	16.3		67.4	67.4		40.1	40.1
Actuated g/C Ratio	0.17	0.17		0.17	0.17		0.70	0.70		0.42	0.42
Clearance Time (s)	6.2	6.2		6.2	6.2		6.2	6.2		6.2	6.2
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0
Lane Grp Cap (vph)	206	254		221	235		455	1244		470	677
v/s Ratio Prot		0.01			c0.09		c0.14	0.05			c0.37
v/s Ratio Perm	0.05			0.03			0.31			0.00	
v/c Ratio	0.32	0.04		0.19	0.53		0.64	0.07		0.01	0.90
Uniform Delay, d1	35.0	33.4		34.2	36.4		18.6	4.5		16.4	26.1
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Incremental Delay, d2	0.9	0.1		0.4	2.3		3.1	0.0		0.0	14.4
Delay (s)	35.9	33.4		34.6	38.8		21.7	4.5		16.4	40.5
Level of Service	D	С		С	D		С	А		В	D
Approach Delay (s)		34.8			37.8			17.6			40.4
Approach LOS		С			D			В			D
Intersection Summary											
HCM 2000 Control Delay			33.0	Н	CM 2000	Level of	Service		С		
HCM 2000 Volume to Capa	acity ratio		0.75								
				-					10.0		

96.1

15

80.2%

Sum of lost time (s)

ICU Level of Service

HCM Signalized Intersection Capacity Analysis 2

5/03/2022

∡

SBR

383

383

1800

> 3 0%

Actuated Cycle Length (s)

Analysis Period (min)

c Critical Lane Group

Intersection Capacity Utilization

18.6

D

Intersection Sign configuration not allowed in HCM analysis.

	4	*	1	1	1	Ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		1	¥î≽			††	
Traffic Volume (veh/h)	0	0	2145	0	0	0	
Future Volume (Veh/h)	0	0	2145	0	0	0	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	0	0	2383	0	0	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)			232			247	
pX, platoon unblocked	0.55	0.55			0.55		
vC, conflicting volume	2383	1192			2383		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1888	0			1888		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	100			100		
cM capacity (veh/h)	34	602			174		
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	0	1589	794	0	0		
	0	1569			0		
Volume Left			0	0			
Volume Right	0	0	0	0	0		
cSH Maluma ta Canaaitu	1700	1700	1700	1700	1700		
Volume to Capacity	0.00	0.93	0.47	0.00	0.00		
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0		
Control Delay (s)	0.0	0.0	0.0	0.0	0.0		
Lane LOS	A						
Approach Delay (s)	0.0	0.0		0.0			
Approach LOS	А						
Intersection Summary							
Average Delay			0.0				
Intersection Capacity Utilization	ation		65.9%	IC	U Level	of Service	
Analysis Period (min)			15				

	∢	*	1	1	1	Ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		1	ŧ₽			<u>††</u>	
Traffic Volume (veh/h)	0	0	2145	0	0	0	
Future Volume (Veh/h)	0	0	2145	0	0	0	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	0	0	2383	0	0	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)			322			157	
pX, platoon unblocked	0.56	0.56			0.56		
vC, conflicting volume	2383	1192			2383		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1895	0			1895		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	100			100		
cM capacity (veh/h)	34	605			174		
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	0	1589	794	0	0		
Volume Left	0	0	0	0	0		
Volume Right	0	0	0	0	0		
cSH	1700	1700	1700	1700	1700		
Volume to Capacity	0.00	0.93	0.47	0.00	0.00		
Queue Length 95th (m)	0.00	0.95	0.47	0.00	0.00		
Control Delay (s)	0.0	0.0	0.0	0.0	0.0		
, ()		0.0	0.0	0.0	0.0		
Lane LOS	A	0.0		0.0			
Approach Delay (s) Approach LOS	0.0 A	0.0		0.0			
Approach LOS	A						
Intersection Summary							
Average Delay			0.0				
Intersection Capacity Utilizat	ion		65.9%	IC	U Level o	of Service	
Analysis Period (min)			15				

	<	*	1	1	5	Ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		1	ŧ₽			††	
Traffic Volume (veh/h)	0	0	2145	0	0	0	
Future Volume (Veh/h)	0	0	2145	0	0	0	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	0	0	2383	0	0	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)			401			78	
pX, platoon unblocked	0.56	0.56			0.56		
vC, conflicting volume	2383	1192			2383		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1901	0			1901		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)	0.0	010					
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	100			100		
cM capacity (veh/h)	34	609			174		
,							
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	0	1589	794	0	0		
Volume Left	0	0	0	0	0		
Volume Right	0	0	0	0	0		
cSH	1700	1700	1700	1700	1700		
Volume to Capacity	0.00	0.93	0.47	0.00	0.00		
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0		
Control Delay (s)	0.0	0.0	0.0	0.0	0.0		
Lane LOS	А						
Approach Delay (s)	0.0	0.0		0.0			
Approach LOS	А						
Intersection Summary							
Average Delay			0.0				
Intersection Capacity Utilization	ation		65.9%	IC	ULevel	of Service	
Analysis Period (min)			15	10			
			15				

.

	1	Ŧ
Lane Group	NBT	SBT
Lane Group Flow (vph)	2383	1646
v/c Ratio	0.70	0.49
Control Delay	10.5	4.0
Queue Delay	0.0	0.0
Total Delay	10.5	4.0
Queue Length 50th (m)	107.4	37.6
Queue Length 95th (m)	m6.4	55.5
Internal Link Dist (m)	54.1	89.2
Turn Bay Length (m)		
Base Capacity (vph)	3390	3390
Starvation Cap Reductn	0	0
Spillback Cap Reductn	0	0
Storage Cap Reductn	0	0
Reduced v/c Ratio	0.70	0.49
Intersection Summary		

HCM Signalized Intersection Capacity Analysis 9: March Road & Site Access 4 (Lifestyle Street)

06/03/2022

	٨	-	\mathbf{i}	•	+	•	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4		ሻ	ef 👘		ሻ	- † †	1	ሻ	- † †	
Traffic Volume (vph)	0	0	0	0	0	0	0	2145	0	0	1481	0
Future Volume (vph)	0	0	0	0	0	0	0	2145	0	0	1481	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)								4.5			4.5	
Lane Util. Factor								0.95			0.95	
Frt								1.00			1.00	
Flt Protected								1.00			1.00	
Satd. Flow (prot)								3390			3390	
Flt Permitted								1.00			1.00	
Satd. Flow (perm)								3390			3390	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	0	0	0	0	0	0	2383	0	0	1646	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	0	0	0	0	0	0	2383	0	0	1646	0
Turn Type	Perm		-	Perm	-	-	Perm	NA	Perm	pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8			2		2	6		
Actuated Green, G (s)				-				130.0			130.0	
Effective Green, g (s)								130.0			130.0	
Actuated g/C Ratio								1.00			1.00	
Clearance Time (s)								4.5			4.5	
Vehicle Extension (s)								3.0			3.0	
Lane Grp Cap (vph)								3390			3390	
v/s Ratio Prot								c0.70			0.49	
v/s Ratio Perm											01.10	
v/c Ratio								0.70			0.49	
Uniform Delay, d1								0.0			0.0	
Progression Factor								1.00			1.00	
Incremental Delay, d2								0.1			0.4	
Delay (s)								0.1			0.4	
Level of Service								A			A	
Approach Delay (s)		0.0			0.0			0.1			0.4	
Approach LOS		A			A			A			A	
Intersection Summary												
HCM 2000 Control Delay			0.2	Н	CM 2000	Level of	Service		А			
HCM 2000 Volume to Capa	city ratio		0.78									
Actuated Cycle Length (s)			130.0	S	um of los	t time (s)			13.5			
Intersection Capacity Utiliza	tion		66.3%		U Level)		С			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

	-	\mathbf{r}	4	-	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	¢Î,			•		1	
Traffic Volume (veh/h)	296	0	0	873	0	0	
Future Volume (Veh/h)	296	0	0	873	0	0	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	329	0	0	970	0	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (m)	214						
pX, platoon unblocked			0.98		0.98	0.98	
vC, conflicting volume			329		1299	329	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			299		1294	299	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			100		100	100	
cM capacity (veh/h)			1231		175	722	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	329	970	0				
Volume Left	0	0	0				
Volume Right	0	0	0				
cSH	1700	1700	1700				
Volume to Capacity	0.19	0.57	0.00				
Queue Length 95th (m)	0.0	0.0	0.0				
Control Delay (s)	0.0	0.0	0.0				
Lane LOS			A				
Approach Delay (s)	0.0	0.0	0.0				
Approach LOS			A				
Intersection Summary							
Average Delay			0.0				
Intersection Capacity Utilization	ation		51.8%	IC	U Level o	of Service	
Analysis Period (min)			15				

HCM Unsignalized Intersection Capacity Analysis 11: Legget Drive/Legget Road & Site Access 6 (Lifestyle Street)

06/03/2022

	٦	-	$\mathbf{\hat{z}}$	4	←	•	1	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			÷			¢			\$	
Traffic Volume (veh/h)	0	0	0	49	0	23	0	177	12	0	51	0
Future Volume (Veh/h)	0	0	0	49	0	23	0	177	12	0	51	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	0	0	0	54	0	26	0	197	13	0	57	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	286	267	57	260	260	204	57			210		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	286	267	57	260	260	204	57			210		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	100	92	100	97	100			100		
cM capacity (veh/h)	645	639	1009	692	644	837	1547			1361		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	0	80	210	57								
Volume Left	0	54	0	0								
Volume Right	0	26	13	0								
cSH	1700	734	1547	1361								
Volume to Capacity	0.00	0.11	0.00	0.00								
Queue Length 95th (m)	0.0	2.8	0.0	0.0								
Control Delay (s)	0.0	10.5	0.0	0.0								
Lane LOS	A	В										
Approach Delay (s)	0.0	10.5	0.0	0.0								
Approach LOS	A	В										
Intersection Summary												
Average Delay			2.4									
Intersection Capacity Utiliza	ation		21.6%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

	۶	*	~	1	ţ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			र्भ	4Î	
Traffic Volume (veh/h)	0	0	0	177	149	0
Future Volume (Veh/h)	0	0	0	177	149	0
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	0	0	0	197	166	0
Pedestrians	•	•	•			•
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				NULLE		
Upstream signal (m)				388		
pX, platoon unblocked				500		
vC, conflicting volume	363	166	166			
vC1, stage 1 conf vol	505	100	100			
vC2, stage 2 conf vol						
vCu, unblocked vol	363	166	166			
tC, single (s)	6.4	6.2	4.1			
	0.4	0.2	4.1			
tC, 2 stage (s)	3.5	3.3	2.2			
tF (s)	3.5 100	3.3 100	2.2			
p0 queue free %						
cM capacity (veh/h)	636	878	1412			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	0	197	166			
Volume Left	0	0	0			
Volume Right	0	0	0			
cSH	1700	1412	1700			
Volume to Capacity	0.00	0.00	0.10			
Queue Length 95th (m)	0.0	0.0	0.0			
Control Delay (s)	0.0	0.0	0.0			
Lane LOS	А					
Approach Delay (s)	0.0	0.0	0.0			
Approach LOS	А					
Intersection Summary						
Average Delay			0.0			
Intersection Capacity Utiliza	ation		13.2%	IC	CU Level o	of Service
Analysis Period (min)			15.278			
Analysis Fendu (mm)			10			

	٦	\mathbf{i}	•	t	Ļ	1
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			र्स	4	
Traffic Volume (veh/h)	0	0	0	177	149	0
Future Volume (Veh/h)	0	0	0	177	149	0
Sign Control	Stop	•	•	Free	Free	•
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	0	0	0	197	166	0
Pedestrians	•	•	•			•
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				NONE	None	
Upstream signal (m)				227		
pX, platoon unblocked				221		
vC, conflicting volume	363	166	166			
vC1, stage 1 conf vol	303	100	100			
vC2, stage 2 conf vol						
vCu, unblocked vol	363	166	166			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)	0.4	0.2	4.1			
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	100	100			
	636	878	1412			
cM capacity (veh/h)	030	0/0	1412			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	0	197	166			
Volume Left	0	0	0			
Volume Right	0	0	0			
cSH	1700	1412	1700			
Volume to Capacity	0.00	0.00	0.10			
Queue Length 95th (m)	0.0	0.0	0.0			
Control Delay (s)	0.0	0.0	0.0			
Lane LOS	А					
Approach Delay (s)	0.0	0.0	0.0			
Approach LOS	А					
Intersection Summary						
Average Delay			0.0			
Intersection Capacity Utiliza	ation		13.2%	10	CU Level o	of Service
Analysis Period (min)			15			
			10			

HCM Unsignalized Intersection Capacity Analysis 20: Terry Fox Drive & McKinley Drive

	٦	+	*	4	Ļ	×	•	1	1	*	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑			eî 🗧						4	
Traffic Volume (veh/h)	95	296	0	0	873	77	0	0	0	24	0	37
Future Volume (Veh/h)	95	296	0	0	873	77	0	0	0	24	0	37
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	106	329	0	0	970	86	0	0	0	27	0	41
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		Raised			Raised							
Median storage veh)		1			1							
Upstream signal (m)		142										
pX, platoon unblocked				0.96			0.96	0.96	0.96	0.96	0.96	
vC, conflicting volume	1056			329			1595	1597	329	1554	1554	1013
vC1, stage 1 conf vol							541	541		1013	1013	
vC2, stage 2 conf vol							1054	1056		541	541	
vCu, unblocked vol	1056			284			1599	1601	284	1556	1556	1013
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)							6.1	5.5		6.1	5.5	
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	84			100			100	100	100	86	100	86
cM capacity (veh/h)	659			1231			108	155	727	193	208	290
Direction, Lane #	EB 1	EB 2	WB 1	SB 1								
Volume Total	106	329	1056	68								
Volume Left	106	0	0	27								
Volume Right	0	0	86	41								
cSH	659	1700	1700	242								
Volume to Capacity	0.16	0.19	0.62	0.28								
Queue Length 95th (m)	4.3	0.0	0.0	8.5								
Control Delay (s)	11.5	0.0	0.0	25.6								
Lane LOS	В			D								
Approach Delay (s)	2.8		0.0	25.6								
Approach LOS				D								
Intersection Summary												
Average Delay			1.9									
Intersection Capacity Utiliza	ation		72.8%	IC	CU Level o	of Service			С			
Analysis Period (min)			15									

Queues 1: March Road N/March Road S & Morgan's Grant Way/Shirley's Brook Dr

06/01/2022

	-	\mathbf{i}	4	-	•	1	t	~	1	Ŧ	1	
Lane Group	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	65	134	104	19	23	41	1038	33	156	2258	9	
v/c Ratio	0.31	0.44	0.66	0.09	0.09	0.36	0.38	0.04	0.67	0.67	0.01	
Control Delay	53.9	12.3	72.7	48.7	0.7	54.8	11.1	0.4	66.7	15.7	0.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	53.9	12.3	72.7	48.7	0.7	54.8	11.1	0.4	66.7	15.7	0.0	
Queue Length 50th (m)	15.4	0.0	25.8	4.4	0.0	11.0	28.0	0.1	38.4	123.3	0.0	
Queue Length 95th (m)	28.1	17.3	42.7	11.3	0.0	m19.3	30.9	m0.2	58.9	174.8	0.0	
Internal Link Dist (m)	116.4			136.8			274.6			145.2		
Turn Bay Length (m)		10.0	38.0		38.0	130.0		25.0	68.0		25.0	
Base Capacity (vph)	417	469	311	401	411	188	2723	902	242	3352	1033	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.16	0.29	0.33	0.05	0.06	0.22	0.38	0.04	0.64	0.67	0.01	
Intersection Summary												

1: March Road N/M	arch Ro	bad S	<u>& Mor</u>	gan's (Grant V	Vay/Sł	nirley's	Brook	Dr		06/0)1/2022
	۶	-	\mathbf{F}	4	-	•	1	Ť	1	5	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	1	۲	1	1	7	^	1	5	^	1
Traffic Volume (vph)	10	49	121	94	17	21	37	934	30	140	2032	8
Future Volume (vph)	10	49	121	94	17	21	37	934	30	140	2032	8
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		7.5	7.5	7.5	7.5	7.5	6.4	6.1	6.1	6.4	6.1	6.1
Lane Util. Factor		1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.00	1.00	0.91	1.00
Frpb, ped/bikes		1.00	0.98	1.00	1.00	0.98	1.00	1.00	0.95	1.00	1.00	0.96
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1804	1514	1706	1655	1450	1679	4644	1476	1729	4969	1488
Flt Permitted		0.95	1.00	0.71	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)		1720	1514	1283	1655	1450	1679	4644	1476	1729	4969	1488
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	11	54	134	104	19	23	41	1038	33	156	2258	9
RTOR Reduction (vph)	0	0	117	0	0	20	0	0	14	0	0	3
Lane Group Flow (vph)	0	65	17	104	19	3	41	1038	19	156	2258	6
Confl. Peds. (#/hr)	3		3	3		3	5		6	6		5
Confl. Bikes (#/hr)			3						8			1
Heavy Vehicles (%)	0%	0%	0%	1%	10%	5%	3%	7%	0%	0%	0%	0%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4		4	8		8			2			6
Actuated Green, G (s)		16.1	16.1	16.1	16.1	16.1	7.5	76.2	76.2	17.7	86.4	86.4
Effective Green, g (s)		16.1	16.1	16.1	16.1	16.1	7.5	76.2	76.2	17.7	86.4	86.4
Actuated g/C Ratio		0.12	0.12	0.12	0.12	0.12	0.06	0.59	0.59	0.14	0.66	0.66
Clearance Time (s)		7.5	7.5	7.5	7.5	7.5	6.4	6.1	6.1	6.4	6.1	6.1
Vehicle Extension (s)		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		213	187	158	204	179	96	2722	865	235	3302	988
v/s Ratio Prot					0.01		0.02	0.22		c0.09	c0.45	
v/s Ratio Perm		0.04	0.01	c0.08		0.00			0.01			0.00
v/c Ratio		0.31	0.09	0.66	0.09	0.02	0.43	0.38	0.02	0.66	0.68	0.01
Uniform Delay, d1		51.9	50.5	54.3	50.5	50.0	59.2	14.3	11.3	53.3	13.4	7.3
Progression Factor		1.00	1.00	1.00	1.00	1.00	0.83	0.69	1.00	1.00	1.00	1.00
Incremental Delay, d2		0.8	0.2	9.5	0.2	0.0	2.6	0.3	0.0	6.9	1.2	0.0
Delay (s)		52.7	50.7	63.8	50.7	50.0	51.6	10.3	11.3	60.2	14.6	7.4
Level of Service		D	D	E	D	D	D	В	В	E	В	А
Approach Delay (s)		51.3			59.9			11.8			17.5	
Approach LOS		D			E			В			В	
Intersection Summary												
HCM 2000 Control Delay			19.2	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capac	ity ratio		0.70									
Actuated Cycle Length (s)			130.0		um of lost				20.0			
Intersection Capacity Utilizat	ion		79.0%	IC	U Level o	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 1: March Road N/March Road S & Morgan's Grant Way/Shirley's Brook Dr

Queues 2: March Road & Terry Fox Drive

	٦	-	\mathbf{F}	•	+	*	•	1	1	1	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	158	429	313	69	114	62	319	856	161	428	1846	220
v/c Ratio	0.69	0.65	0.59	0.35	0.21	0.17	0.71	0.59	0.28	1.00	0.90	0.32
Control Delay	75.3	53.5	9.4	63.1	45.9	1.0	49.8	57.1	23.0	92.7	32.0	2.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	75.3	53.5	9.4	63.1	45.9	1.0	49.8	57.1	23.0	92.7	32.0	2.9
Queue Length 50th (m)	20.7	54.8	0.0	8.9	13.3	0.0	44.6	58.4	10.7	~115.1	163.9	5.7
Queue Length 95th (m)	#33.9	68.0	24.0	16.5	20.4	0.0	59.1	90.3	m34.7	#207.2	#235.4	11.1
Internal Link Dist (m)		245.5			137.1			295.3			274.6	
Turn Bay Length (m)	104.0		52.0	72.0		100.0	142.0		82.0	100.0		98.0
Base Capacity (vph)	232	931	622	223	912	502	486	1452	570	427	2048	692
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.68	0.46	0.50	0.31	0.13	0.12	0.66	0.59	0.28	1.00	0.90	0.32

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 2: March Road & Terry Fox Drive

06/01/2022

Movement EBL EBT EBR WBL WBL WBT NBL NBT NBR SBL SBT Lane Configurations 11 44 7 11 44 7 11 44 7 14 335 1661 Future Volume (vph) 142 386 282 62 103 56 287 770 145 335 1661 Ideal Flow (vphp) 1800 100 1.00		٦	-	\mathbf{i}	4	+	•	1	1	1	1	Ŧ	~
Traffic Volume (vph) 142 386 282 62 103 56 287 770 145 385 1661 Future Volume (vph) 1400 1800 100 1.00 0.97 0.95 1.00 1.00 0.97 0.95 1.00 <t< th=""><th>Movement</th><th>EBL</th><th>EBT</th><th>EBR</th><th>WBL</th><th>WBT</th><th>WBR</th><th>NBL</th><th>NBT</th><th>NBR</th><th>SBL</th><th>SBT</th><th>SBR</th></t<>	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 142 386 282 62 103 56 287 770 145 385 1661 Future Volume (vph) 1400 1800 <	Lane Configurations	ካካ	††		ሻሻ	- † †	1	ሻሻ	^	1	ሻ	<u> </u>	1
deal Flow (vphpl) 1800 100	Traffic Volume (vph)								770				198
Total Lost time (s) 6.8 7.0 7.0 6.8 7.0 7.0 6.9 6.7 6.7 6.7 6.9 6.7 Lane Util, Factor 0.97 0.95 1.00 0.97 0.95 1.00 0.97 0.91 1.00 0.01 1.00 0.91 1.00 0.91 1.00 0.91 1.00 0.91 1.00 0.91 1.00 0.91 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	(, , ,												198
Lane Util. Factor 0.97 0.95 1.00 0.97 0.95 1.00 0.97 0.91 1.00 1.00 0.91 Frpb, ped/bikes 1.00													1800
Frpb, ped/bikes 1.00 1.00 0.96 1.00 1.00 0.98 1.00 1.00 0.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00	()												6.7
Flpb, ped/bikes 1.00													1.00
Frt 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90													0.96
Fit Protected 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 Satd. Flow (prot) 3288 3458 1463 3164 3390 1469 3288 4687 1483 1729 4871 Fit Permitted 0.95 1.00 0.00 0.95 1.00 0.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 0.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.90 </td <td></td> <td>1.00</td>													1.00
Satd. Flow (prot) 3288 3458 1463 3164 3390 1469 3288 4687 1483 1729 4871 Flt Permitted 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 0.90													0.85
Fit Permitted 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 0.91 0.90 0.91 0.90 0.91 0.90 0.91 0.91 0.91 0.91 0.91 </td <td>Flt Protected</td> <td></td> <td>1.00</td>	Flt Protected												1.00
Satd. Flow (perm) 3288 3458 1463 3164 3390 1469 3288 4687 1483 1729 4871 Peak-hour factor, PHF 0.90 0.91 0.90 0.91 0.90 0.91 0.90 148 11 11 319 856 48 428 1846 Confl. Bikes (#hr) 1 1 1 1 1 1 1													1397
Peak-hour factor, PHF 0.90													1.00
Adj. Flow (vph) 158 429 313 69 114 62 319 856 161 428 1846 RTOR Reduction (vph) 0 0 253 0 0 51 0 0 113 0 0 Lane Group Flow (vph) 158 429 60 69 114 11 319 856 48 428 1846 Confl. Bikes (#/hr) 9 29 29 9 21 13 13 Confl. Bikes (#/hr) 1 1 1 1 0 0% 2% Turn Type Prot NA Perm NA Perm NA Perm NA Perm NA Perm NA Perm 1 68 2 1 6 Permitted Phases 4 8 2 2 1 6 8 2 1 6 Protected Phases 4 8 6.8 22.6 22.6 17.8 38.9 38.9 32.1 53.2 Effective Green, g (s) 9.0	Satd. Flow (perm)	3288	3458	1463	3164	3390	1469	3288	4687	1483	1729	4871	1397
RTOR Reduction (vph) 0 0 253 0 0 51 0 0 113 0 0 Lane Group Flow (vph) 158 429 60 69 114 11 319 856 48 428 1846 Confl. Peds. (#/hr) 9 29 29 29 29 29 6% 13 13 Confl. Bikes (#/hr) 1 1 1 1 1 1 1 Heavy Vehicles (%) 2% 0% 1% 6% 2% 3% 2% 6% 1% 0% 2% Turn Type Prot NA Perm Prot NA	Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Lane Group Flow (vph) 158 429 60 69 114 11 319 856 48 428 1846 Confl. Peds. (#/hr) 9 29 29 9 21 13 13 13 Confl. Bikes (#/hr) 1 1 1 1 1 13 13 13 Heavy Vehicles (%) 2% 0% 1% 6% 2% 3% 2% 6% 1% 0% 2% Turn Type Prot NA Perm Prot NA Perm </td <td>Adj. Flow (vph)</td> <td>158</td> <td>429</td> <td>313</td> <td>69</td> <td>114</td> <td>62</td> <td>319</td> <td>856</td> <td>161</td> <td>428</td> <td>1846</td> <td>220</td>	Adj. Flow (vph)	158	429	313	69	114	62	319	856	161	428	1846	220
Confl. Peds. (#/hr) 9 29 29 9 21 13 13 Confl. Bikes (#/hr) 1	RTOR Reduction (vph)		0	253	0		51		0	113		0	107
Confl. Bikes (#/hr) 1 1 1 1 Heavy Vehicles (%) 2% 0% 1% 6% 2% 3% 2% 6% 1% 0% 2% Turn Type Prot NA Perm	Lane Group Flow (vph)		429			114			856			1846	113
Heavy Vehicles (%) 2% 0% 1% 6% 2% 3% 2% 6% 1% 0% 2% Turn Type Prot NA Perm Prot NA Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases 4 8 2 2 1 6 Actuated Green, G (s) 9.0 24.8 24.8 6.8 22.6 17.8 38.9 38.9 32.1 53.2 Effective Green, g (s) 9.0 24.8 24.8 6.8 7.0 7.0 6.9 6.7 6.7 6.9 6.7 Clearance Time (s) 6.8 7.0 7.0 6.8 7.0 7.0 6.9 6.7 6.7 6.9 6.7 Vehicle Extension (s) 3.0 3.0 3.0 3.0	Confl. Peds. (#/hr)	9		29	29		9	21		13	13		21
Turn Type Prot NA Perm Prot NA Perm Prot NA Perm Prot NA Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases 4 8 2 1 6 Permitted Phases 4 8 2 1 6 Actuated Green, G (s) 9.0 24.8 24.8 6.8 22.6 17.8 38.9 38.9 32.1 53.2 Effective Green, g (s) 9.0 24.8 24.8 6.8 22.6 22.6 17.8 38.9 38.9 32.1 53.2 Actuated g/C Ratio 0.07 0.19 0.19 0.05 0.17 0.14 0.30 0.30 3.0	Confl. Bikes (#/hr)												
Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases 4 8 2 4 4 8 2 4 53.2 5 2 1 6 Actuated Green, G (s) 9.0 24.8 24.8 6.8 22.6 22.6 17.8 38.9 38.9 32.1 53.2 Effective Green, g (s) 9.0 24.8 24.8 6.8 22.6 17.8 38.9 38.9 32.1 53.2 Actuated g/C Ratio 0.07 0.19 0.19 0.05 0.17 0.17 0.14 0.30 0.30 0.25 0.41 Clearance Time (s) 6.8 7.0 7.0 6.9 6.7 6.7 6.9 6.7 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Heavy Vehicles (%)	2%	0%	1%	6%	2%	3%	2%	6%	1%	0%	2%	6%
Permitted Phases 4 8 2 Actuated Green, G (s) 9.0 24.8 24.8 6.8 22.6 22.6 17.8 38.9 38.9 32.1 53.2 Effective Green, g (s) 9.0 24.8 24.8 6.8 22.6 22.6 17.8 38.9 38.9 32.1 53.2 Actuated g/C Ratio 0.07 0.19 0.19 0.05 0.17 0.17 0.14 0.30 0.30 0.25 0.41 Clearance Time (s) 6.8 7.0 7.0 6.8 7.0 7.0 6.9 6.7 6.7 6.9 6.7 Vehicle Extension (s) 3.0 3	Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Actuated Green, G (s) 9.0 24.8 24.8 6.8 22.6 17.8 38.9 38.9 32.1 53.2 Effective Green, g (s) 9.0 24.8 24.8 6.8 22.6 17.8 38.9 38.9 32.1 53.2 Actuated g/C Ratio 0.07 0.19 0.19 0.05 0.17 0.17 0.14 0.30 0.30 0.25 0.41 Clearance Time (s) 6.8 7.0 7.0 6.8 7.0 7.0 6.9 6.7 6.7 6.9 6.7 Vehicle Extension (s) 3.0	Protected Phases	7	4		3	8		5	2		1	6	
Effective Green, g (s) 9.0 24.8 24.8 6.8 22.6 17.8 38.9 38.9 32.1 53.2 Actuated g/C Ratio 0.07 0.19 0.19 0.05 0.17 0.17 0.14 0.30 0.30 0.25 0.41 Clearance Time (s) 6.8 7.0 7.0 6.8 7.0 7.0 6.9 6.7 6.7 6.9 6.7 Vehicle Extension (s) 3.0	Permitted Phases			4			8			2			6
Actuated g/C Ratio 0.07 0.19 0.19 0.05 0.17 0.17 0.14 0.30 0.30 0.25 0.41 Clearance Time (s) 6.8 7.0 7.0 6.8 7.0 7.0 6.9 6.7 6.7 6.9 6.7 Vehicle Extension (s) 3.0 <td< td=""><td>Actuated Green, G (s)</td><td>9.0</td><td>24.8</td><td>24.8</td><td>6.8</td><td>22.6</td><td>22.6</td><td>17.8</td><td>38.9</td><td>38.9</td><td>32.1</td><td>53.2</td><td>53.2</td></td<>	Actuated Green, G (s)	9.0	24.8	24.8	6.8	22.6	22.6	17.8	38.9	38.9	32.1	53.2	53.2
Clearance Time (s) 6.8 7.0 7.0 6.8 7.0 7.0 6.9 6.7 6.7 6.9 6.7 Vehicle Extension (s) 3.0 <	Effective Green, g (s)	9.0	24.8	24.8	6.8	22.6	22.6	17.8	38.9	38.9	32.1	53.2	53.2
Vehicle Extension (s) 3.0	Actuated g/C Ratio	0.07	0.19	0.19	0.05	0.17	0.17	0.14	0.30	0.30	0.25	0.41	0.41
Lane Grp Cap (vph) 227 659 279 165 589 255 450 1402 443 426 1993 v/s Ratio Prot c0.05 c0.12 0.02 0.03 0.10 0.18 c0.25 c0.38 v/s Ratio Perm 0.04 0.01 0.03 0.03 0.01 0.03 v/c v/c Ratio 0.70 0.65 0.21 0.42 0.19 0.04 0.71 0.61 0.11 1.00 0.93 Uniform Delay, d1 59.2 48.6 44.4 59.7 45.9 44.7 53.6 39.1 33.0 49.0 36.5 Progression Factor 1.00 1.00 1.00 1.00 1.00 0.81 1.46 4.50 1.12 0.69 Incremental Delay, d2 8.9 2.3 0.4 1.7 0.2 0.1 3.7 1.4 0.4 39.3 7.2 Delay (s) 68.1 50.9 44.8 61.4 46.1 44.8	Clearance Time (s)	6.8	7.0	7.0	6.8	7.0	7.0	6.9	6.7	6.7	6.9	6.7	6.7
v/s Ratio Prot c0.05 c0.12 0.02 0.03 0.10 0.18 c0.25 c0.38 v/s Ratio Perm 0.04 0.01 0.03 0.03 0.01 0.03 0.03 v/c Ratio 0.70 0.65 0.21 0.42 0.19 0.04 0.71 0.61 0.11 1.00 0.93 Uniform Delay, d1 59.2 48.6 44.4 59.7 45.9 44.7 53.6 39.1 33.0 49.0 36.5 Progression Factor 1.00 1.00 1.00 1.00 1.00 0.81 1.46 4.50 1.12 0.69 Incremental Delay, d2 8.9 2.3 0.4 1.7 0.2 0.1 3.7 1.4 0.4 39.3 7.2 Delay (s) 68.1 50.9 44.8 61.4 46.1 44.8 47.0 58.6 148.9 94.3 32.3 Level of Service E D D E F F C Approach LOS D D E D D Intersection Summary	Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
v/s Ratio Prot c0.05 c0.12 0.02 0.03 0.10 0.18 c0.25 c0.38 v/s Ratio Perm 0.04 0.01 0.03 0.01 0.03	Lane Grp Cap (vph)	227	659	279	165	589	255	450	1402	443	426	1993	571
v/s Ratio Perm 0.04 0.01 0.03 v/c Ratio 0.70 0.65 0.21 0.42 0.19 0.04 0.71 0.61 0.11 1.00 0.93 Uniform Delay, d1 59.2 48.6 44.4 59.7 45.9 44.7 53.6 39.1 33.0 49.0 36.5 Progression Factor 1.00 1.00 1.00 1.00 1.00 0.81 1.46 4.50 1.12 0.69 Incremental Delay, d2 8.9 2.3 0.4 1.7 0.2 0.1 3.7 1.4 0.4 39.3 7.2 Delay (s) 68.1 50.9 44.8 61.4 46.1 44.8 47.0 58.6 148.9 94.3 32.3 Level of Service E D D E D D E F F C Approach Delay (s) 51.8 50.1 66.8 40.7 40.7 Approach LOS D D E D D E D D Intersection Summary		c0.05	c0.12		0.02	0.03		0.10	0.18		c0.25	c0.38	
Uniform Delay, d1 59.2 48.6 44.4 59.7 45.9 44.7 53.6 39.1 33.0 49.0 36.5 Progression Factor 1.00 1.00 1.00 1.00 1.00 0.81 1.46 4.50 1.12 0.69 Incremental Delay, d2 8.9 2.3 0.4 1.7 0.2 0.1 3.7 1.4 0.4 39.3 7.2 Delay (s) 68.1 50.9 44.8 61.4 46.1 44.8 47.0 58.6 148.9 94.3 32.3 Level of Service E D D E D D E F F C Approach Delay (s) 51.8 50.1 66.8 40.7 Approach LOS D D D E D D Intersection Summary 50.2 HCM 2000 Level of Service D D HCM 2000 Level of Service D HCM 2000 Volume to Capacity ratio 0.92 0.92 0.92 0 0 0 0	v/s Ratio Perm			0.04			0.01			0.03			0.08
Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.81 1.46 4.50 1.12 0.69 Incremental Delay, d2 8.9 2.3 0.4 1.7 0.2 0.1 3.7 1.4 0.4 39.3 7.2 Delay (s) 68.1 50.9 44.8 61.4 46.1 44.8 47.0 58.6 148.9 94.3 32.3 Level of Service E D D E D D E F F C Approach Delay (s) 51.8 50.1 66.8 40.7 Approach LOS D D E D D Intersection Summary 50.2 HCM 2000 Level of Service D D HCM 2000 Level of Service D HCM 2000 Volume to Capacity ratio 0.92 0.92 0.92 D D D D	v/c Ratio	0.70	0.65	0.21	0.42	0.19	0.04	0.71	0.61	0.11	1.00	0.93	0.20
Incremental Delay, d2 8.9 2.3 0.4 1.7 0.2 0.1 3.7 1.4 0.4 39.3 7.2 Delay (s) 68.1 50.9 44.8 61.4 46.1 44.8 47.0 58.6 148.9 94.3 32.3 Level of Service E D D E D D E F F C Approach Delay (s) 51.8 50.1 66.8 40.7 Approach LOS D D D E D D Intersection Summary 50.2 HCM 2000 Level of Service D D HCM 2000 Level of Service D HCM 2000 Volume to Capacity ratio 0.92 0.92 0.92 0.92 0.92 0.92	Uniform Delay, d1	59.2	48.6	44.4	59.7	45.9	44.7	53.6	39.1	33.0	49.0	36.5	24.7
Incremental Delay, d2 8.9 2.3 0.4 1.7 0.2 0.1 3.7 1.4 0.4 39.3 7.2 Delay (s) 68.1 50.9 44.8 61.4 46.1 44.8 47.0 58.6 148.9 94.3 32.3 Level of Service E D D E D D E F F C Approach Delay (s) 51.8 50.1 66.8 40.7 Approach LOS D D D E D D Intersection Summary 50.2 HCM 2000 Level of Service D D HCM 2000 Level of Service D HCM 2000 Volume to Capacity ratio 0.92 0.92 0.92 0.92 0.92 0.92		1.00	1.00	1.00	1.00	1.00	1.00	0.81	1.46	4.50	1.12	0.69	0.28
Delay (s) 68.1 50.9 44.8 61.4 46.1 44.8 47.0 58.6 148.9 94.3 32.3 Level of Service E D D E D D E F F C Approach Delay (s) 51.8 50.1 66.8 40.7 Approach LOS D D D E D D Intersection Summary F 50.2 HCM 2000 Level of Service D D F F HCM 2000 Volume to Capacity ratio 0.92 0.92 50.2 10.000 Level of Service D D 10.00000 10.0000 10.00000 10.00000 10.00000 10.00000 10.00000000000 10.00000000000000000000000000000000000													0.6
Level of Service E D D E D D D E F F C Approach Delay (s) 51.8 50.1 66.8 40.7 Approach LOS D D E D D Intersection Summary F F C D D E D D HCM 2000 Control Delay 50.2 HCM 2000 Level of Service D D HCM 2000 Level of Service D E D E		68.1	50.9	44.8	61.4	46.1	44.8	47.0	58.6	148.9	94.3	32.3	7.5
Approach LOSDDEDIntersection SummaryHCM 2000 Control Delay50.2HCM 2000 Level of ServiceDHCM 2000 Volume to Capacity ratio0.92		E	D	D	E	D	D	D	Е	F	F	С	А
Approach LOSDDEDIntersection SummaryHCM 2000 Control Delay50.2HCM 2000 Level of ServiceDHCM 2000 Volume to Capacity ratio0.92			51.8			50.1			66.8			40.7	
HCM 2000 Control Delay50.2HCM 2000 Level of ServiceDHCM 2000 Volume to Capacity ratio0.92			D			D			Е			D	
HCM 2000 Volume to Capacity ratio 0.92	Intersection Summary												
HCM 2000 Volume to Capacity ratio 0.92	HCM 2000 Control Delay			50.2	Н	CM 2000	Level of	Service		D			
	,	city ratio								_			
	Actuated Cycle Length (s)	.,		130.0	S	um of los	t time (s)			27.4			
Intersection Capacity Utilization 89.7% ICU Level of Service E		ation											
Analysis Period (min) 15													
c Critical Lane Group	• • • •												

Queues 3: March Road & Solandt Road

	۶	-	\mathbf{r}	1	+	1	Ť	1	Ŧ	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	38	99	121	53	154	571	2092	141	2050	
v/c Ratio	0.44	0.44	0.37	0.30	0.69	1.83	1.22	0.62	1.32	
Control Delay	75.5	57.7	5.2	63.8	66.2	416.6	133.0	67.0	181.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	75.5	57.7	5.2	63.8	66.2	416.6	133.0	67.0	181.0	
Queue Length 50th (m)	9.6	23.9	0.0	6.8	35.6	~220.9	~348.5	35.0	~368.4	
Queue Length 95th (m)	21.3	39.4	5.7	13.7	55.5	#289.5	#390.4	#82.8	#433.6	
Internal Link Dist (m)		112.5			205.8		333.2		208.2	
Turn Bay Length (m)	65.0		100.0	90.0		157.0		140.0		
Base Capacity (vph)	87	343	411	177	334	312	1717	229	1548	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.44	0.29	0.29	0.30	0.46	1.83	1.22	0.62	1.32	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite. ~

Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 3: March Road & Solandt Road

06/01/2022

	٦	-	*	4	Ļ	•	•	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	1	ሻሻ	ef 👘		<u>۲</u>	≜ †≱		<u>۲</u>	≜ †≱	
Traffic Volume (vph)	34	89	109	48	105	33	514	1490	392	127	1708	137
Future Volume (vph)	34	89	109	48	105	33	514	1490	392	127	1708	137
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	5.9	6.5	6.5	5.9	6.5		6.3	6.3		4.5	6.3	
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	1.00	0.97	1.00	0.99		1.00	1.00		1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	1.00	0.85	1.00	0.96		1.00	0.97		1.00	0.99	
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1616	1784	1435	3288	1693		1712	3227		1695	3315	
Flt Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1616	1784	1435	3288	1693		1712	3227		1695	3315	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	38	99	121	53	117	37	571	1656	436	141	1898	152
RTOR Reduction (vph)	0	0	106	0	10	0	0	18	0	0	4	0
Lane Group Flow (vph)	38	99	15	53	144	0	571	2074	0	141	2046	0
Confl. Peds. (#/hr)	7		8	8		7	6					6
Confl. Bikes (#/hr)			1			1			1			12
Heavy Vehicles (%)	7%	2%	5%	2%	3%	3%	1%	4%	1%	2%	3%	2%
Turn Type	Prot	NA	Perm	Prot	NA	- / -	Prot	NA	.,.	Prot	NA	
Protected Phases	7	4	T OIL	3	8		5	2		1	6	
Permitted Phases	•	•	4	v	U		v	-		•	v	
Actuated Green, G (s)	5.6	16.3	16.3	5.6	16.3		23.7	67.3		17.6	59.4	
Effective Green, g (s)	5.6	16.3	16.3	5.6	16.3		23.7	67.3		17.6	59.4	
Actuated g/C Ratio	0.04	0.13	0.13	0.04	0.13		0.18	0.52		0.14	0.46	
Clearance Time (s)	5.9	6.5	6.5	5.9	6.5		6.3	6.3		4.5	6.3	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	69	223	179	141	212		312	1670		229	1514	
v/s Ratio Prot	c0.02	0.06	175	0.02	c0.09		c0.33	0.64		0.08	c0.62	
v/s Ratio Perm	00.02	0.00	0.01	0.02	00.00		00.00	0.04		0.00	00.02	
v/c Ratio	0.55	0.44	0.01	0.38	0.68		1.83	1.24		0.62	1.35	
Uniform Delay, d1	61.0	52.7	50.3	60.5	54.4		53.1	31.4		53.0	35.3	
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	9.2	1.4	0.2	1.7	8.7		385.9	114.1		4.9	162.6	
Delay (s)	70.1	54.1	50.5	62.2	63.0		439.0	145.4		57.9	197.9	
Level of Service	E	D	D	02.2 E	00.0 E		+33.0 F	F		57.5 E	F	
Approach Delay (s)	Ŀ	54.7	D	Ŀ	62.8		I	208.4		L	188.9	
Approach LOS		D4.7			02.0 E			200.4 F			F	
Intersection Summary												
HCM 2000 Control Delay			187.2	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	city ratio		1.31		2.11 2000	_0.0101						
Actuated Cycle Length (s)			130.0	S	um of losi	time (s)			25.0			
Intersection Capacity Utiliza	ation		122.5%		CU Level	()			20.0 H			
Analysis Period (min)			15									
c Critical Lane Group			10									

Queues
4: Legget Drive/Legget Road & Solandt Road /Solandt Road

	≯	-	4	-	1	Ť	1	ŧ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	213	322	11	19	100	208	4	302	
v/c Ratio	0.40	0.46	0.03	0.04	0.34	0.39	0.01	0.56	
Control Delay	12.6	8.4	9.0	7.3	15.2	13.2	10.5	16.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	12.6	8.4	9.0	7.3	15.2	13.2	10.5	16.4	
Queue Length 50th (m)	9.7	8.5	0.4	0.4	5.0	9.9	0.2	15.7	
Queue Length 95th (m)	26.7	26.8	2.8	3.4	15.9	25.7	1.7	38.2	
Internal Link Dist (m)		205.8		177.5		261.1		203.5	
Turn Bay Length (m)	130.0		42.0		65.0		35.0		
Base Capacity (vph)	1340	1603	1028	1351	918	1619	961	1653	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.16	0.20	0.01	0.01	0.11	0.13	0.00	0.18	
Intersection Summary									

	≯	_	`	~	+	•	•	•	*	1	1	1
		-	•	•	-		7		1	*	+	•
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	<u></u>	₽		<u></u>	ef 👘		<u></u>	4Î		<u> </u>	4Î	_
Traffic Volume (vph)	192	102	188	10	10	7	90	145	42	4	218	54
Future Volume (vph)	192	102	188	10	10	7	90	145	42	4	218	54
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	6.2	6.2		6.2	6.2		6.2	6.2		6.2	6.2	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	0.99		1.00	0.99		1.00	0.99		1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		0.99	1.00	
Frt	1.00	0.90		1.00	0.94		1.00	0.97		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1722	1604		1728	1355		1601	1719		1558	1747	
Flt Permitted	0.75	1.00		0.57	1.00		0.58	1.00		0.63	1.00	
Satd. Flow (perm)	1350	1604		1029	1355		971	1719		1029	1747	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	213	113	209	11	11	8	100	161	47	4	242	60
RTOR Reduction (vph)	0	77	0	0	5	0	0	10	0	0	8	(
Lane Group Flow (vph)	213	245	0	11	14	0	100	198	0	4	294	(
Confl. Peds. (#/hr)	4		1	1		4			11	11		
Confl. Bikes (#/hr)												3
Heavy Vehicles (%)	0%	1%	1%	0%	30%	17%	8%	2%	0%	10%	1%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	16.3	16.3		16.3	16.3		12.6	12.6		12.6	12.6	
Effective Green, g (s)	16.3	16.3		16.3	16.3		12.6	12.6		12.6	12.6	
Actuated g/C Ratio	0.39	0.39		0.39	0.39		0.31	0.31		0.31	0.31	
Clearance Time (s)	6.2	6.2		6.2	6.2		6.2	6.2		6.2	6.2	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	532	633		406	534		296	524		313	532	
v/s Ratio Prot		0.15			0.01			0.11			c0.17	
v/s Ratio Perm	c0.16			0.01			0.10	-		0.00		
v/c Ratio	0.40	0.39		0.03	0.03		0.34	0.38		0.01	0.55	
Uniform Delay, d1	9.0	8.9		7.6	7.6		11.1	11.3		10.0	12.0	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.5	0.4		0.0	0.0		0.7	0.5		0.0	1.2	
Delay (s)	9.5	9.3		7.7	7.7		11.8	11.7		10.0	13.2	
Level of Service	A	A		A	A		В	В		В	В	
Approach Delay (s)		9.4			7.7			11.7			13.2	
Approach LOS		A			А			В			В	
Intersection Summary												
HCM 2000 Control Delay			10.9	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	citv ratio		0.47						_			
Actuated Cycle Length (s)			41.3	Si	um of lost	time (s)			12.4			
Intersection Capacity Utiliza	tion		57.3%		U Level o				B			
Analysis Period (min)			15	.0		20.1100			-			

HCM Signalized Intersection Capacity Analysis 4: Legget Drive/Legget Road & Solandt Road /Solandt Roa

ro 10 Report

\rightarrow \rightarrow \checkmark	- +-	1	1
Movement EBT EBR WB	L WBT	NBL	NBR
Lane Configurations	<u>।</u> दी	Y	
Traffic Volume (veh/h) 538 366 4		14	27
Future Volume (Veh/h) 538 366 4		14	27
Sign Control Free	Free	Stop	
Grade 0%	0%	0%	
Peak Hour Factor 0.90 0.90 0.90		0.90	0.90
Hourly flow rate (vph) 598 407 44		16	30
Pedestrians	2	17	
Lane Width (m)	3.7	3.7	
Walking Speed (m/s)	1.1	1.1	
Percent Blockage	0	2	
Right turn flare (veh)	J	_	
Median type None	None		
Median storage veh)	Nono		
Upstream signal (m) 302			
pX, platoon unblocked 0.84	4	0.84	0.84
vC, conflicting volume 102		1070	820
vC1, stage 1 conf vol	_	1010	020
vC2, stage 2 conf vol			
vCu, unblocked vol 93	3	989	694
tC, single (s)		6.4	6.2
tC, 2 stage (s)	-	0.1	5.2
tF (s) 2.0	3	3.5	3.3
p0 queue free % 92		92	92
cM capacity (veh/h) 58		209	362
		200	002
,			
Volume Left04414Volume Right407034			
Volume to Capacity 0.59 0.08 0.1			
Queue Length 95th (m) 0.0 1.9 4.1			
Control Delay (s) 0.0 3.3 19.			
	C		
Approach Delay (s) 0.0 3.3 19.			
Approach LOS (С		
Intersection Summary			
Average Delay 1.3			
Intersection Capacity Utilization 64.8%		CU Level	of Service
Analysis Period (min) 1	5		

	4	×	1	۴	1	Ŧ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		1	≜ †⊅			<u>††</u>	
Traffic Volume (veh/h)	0	5	1370	298	0	0	
Future Volume (Veh/h)	0	5	1370	298	0	0	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	0	6	1522	331	0	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)			1 tonio			Tiono	
Upstream signal (m)			232			247	
pX, platoon unblocked	0.49	0.49	202		0.49		
vC, conflicting volume	1688	926			1853		
vC1, stage 1 conf vol	1000	020			1000		
vC2, stage 2 conf vol							
vCu, unblocked vol	347	0			682		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)	0.0	0.0					
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	99			100		
cM capacity (veh/h)	308	537			449		
,							
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	6	1015	838	0	0		
Volume Left	0	0	0	0	0		
Volume Right	6	0	331	0	0		
cSH	537	1700	1700	1700	1700		
Volume to Capacity	0.01	0.60	0.49	0.00	0.00		
Queue Length 95th (m)	0.3	0.0	0.0	0.0	0.0		
Control Delay (s)	11.8	0.0	0.0	0.0	0.0		
Lane LOS	В						
Approach Delay (s)	11.8	0.0		0.0			
Approach LOS	В						
Intersection Summary							
Average Delay			0.0				
Intersection Capacity Utiliza	ation		60.0%	IC		of Service	
			15	10	O LEVEL		
Analysis Period (min)			10				

	4	•	1	1	1	Ŧ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		1	A			††	
Traffic Volume (veh/h)	0	5	1186	52	0	0	
Future Volume (Veh/h)	0	5	1186	52	0	0	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	0	6	1318	58	0	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)			322			157	
pX, platoon unblocked	0.54	0.54	022		0.54	101	
vC, conflicting volume	1347	688			1376		
vC1, stage 1 conf vol	1011	000			1010		
vC2, stage 2 conf vol							
vCu, unblocked vol	0	0			0		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)	0.0	0.0					
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	99			100		
cM capacity (veh/h)	550	583			872		
,			-				
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	6	879	497	0	0		
Volume Left	0	0	0	0	0		
Volume Right	6	0	58	0	0		
cSH	583	1700	1700	1700	1700		
Volume to Capacity	0.01	0.52	0.29	0.00	0.00		
Queue Length 95th (m)	0.2	0.0	0.0	0.0	0.0		
Control Delay (s)	11.2	0.0	0.0	0.0	0.0		
Lane LOS	В						
Approach Delay (s)	11.2	0.0		0.0			
Approach LOS	В						
Intersection Summary							
Average Delay			0.0				
Intersection Capacity Utilization	ation		46.4%	IC	U Level (of Service	
Analysis Period (min)			15	.0	0.01		
			10				

	•	•	Ť	1	1	Ŧ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations		1	A			††	_	
Traffic Volume (veh/h)	0	19	1186	5	0	0		
Future Volume (Veh/h)	0	19	1186	5	0	0		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90		
Hourly flow rate (vph)	0	21	1318	6	0	0		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)								
Upstream signal (m)			401			78		
pX, platoon unblocked	0.56	0.56			0.56			
vC, conflicting volume	1321	662			1324			
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	15	0			21			
tC, single (s)	6.8	6.9			4.1			
tC, 2 stage (s)								
tF (s)	3.5	3.3			2.2			
p0 queue free %	100	97			100			
cM capacity (veh/h)	563	610			896			
				00.4				
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2			
Volume Total	21	879	445	0	0			
Volume Left	0	0	0	0	0			
Volume Right	21	0	6	0	0			
cSH	610	1700	1700	1700	1700			
Volume to Capacity	0.03	0.52	0.26	0.00	0.00			
Queue Length 95th (m)	0.8	0.0	0.0	0.0	0.0			
Control Delay (s)	11.1	0.0	0.0	0.0	0.0			
Lane LOS	В							
Approach Delay (s)	11.1	0.0		0.0				
Approach LOS	В							
Intersection Summary								
Average Delay			0.2					
Intersection Capacity Utiliza	ation		44.8%	IC	U Level of	of Service		
Analysis Period (min)	-		15					
			10					

Queues 9: March Road & Site Access 4 (Lifestyle Street)

	۶	+	4	ł	≺	1	1	1	ţ
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	6	12	181	148	6	1226	112	286	1954
v/c Ratio	0.05	0.14	0.75	0.44	0.08	0.72	0.68	0.71	0.77
Control Delay	43.8	45.7	69.0	12.7	56.8	19.0	17.3	74.5	19.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	43.8	45.7	69.0	12.7	56.8	19.0	17.3	74.5	19.2
Queue Length 50th (m)	1.5	1.5	45.6	1.4	1.7	53.4	5.4	77.3	84.4
Queue Length 95th (m)	4.9	8.0	63.1	20.4	m1.7	m60.9	m2.9	m89.7	#143.8
Internal Link Dist (m)		124.3		188.6		54.1			77.0
Turn Bay Length (m)	37.5		65.0		37.5			75.0	
Base Capacity (vph)	235	233	259	377	79	1694	164	400	2550
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.03	0.05	0.70	0.39	0.08	0.72	0.68	0.71	0.77

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	٦	-	\mathbf{F}	4	+	•	1	1	1	>	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	¢Î		1	et 🗧		۲	<u></u>	1	7	† †	
Traffic Volume (vph)	5	5	5	163	5	128	5	1103	101	257	1759	0
Future Volume (vph)	5	5	5	163	5	128	5	1103	101	257	1759	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.5	4.5		4.5	4.5		4.5	4.5	4.0	4.5	4.5	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95	1.00	1.00	0.95	
Frt	1.00	0.93		1.00	0.86		1.00	1.00	0.85	1.00	1.00	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1695	1650		1695	1528		1695	3390	1517	1695	3390	
Flt Permitted	1.00	1.00		0.48	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1784	1650		860	1528		1695	3390	1517	1695	3390	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	6	6	6	181	6	142	6	1226	112	286	1954	0
RTOR Reduction (vph)	0	6	0	0	122	0	0	0	112	0	0	0
Lane Group Flow (vph)	6	6	0	181	26	0	6	1226	0	286	1954	0
Turn Type	pm+pt	NA		pm+pt	NA		Prot	NA	NA	Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4			8								
Actuated Green, G (s)	5.2	3.8		24.5	18.6		1.4	61.3	0.0	30.7	90.6	
Effective Green, g (s)	5.2	3.8		24.5	18.6		1.4	61.3	0.0	30.7	90.6	
Actuated g/C Ratio	0.04	0.03		0.19	0.14		0.01	0.47	0.00	0.24	0.70	
Clearance Time (s)	4.5	4.5		4.5	4.5		4.5	4.5		4.5	4.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	70	48		266	218		18	1598	0	400	2362	
v/s Ratio Prot	0.00	0.00		c0.08	0.02		0.00	0.36		c0.17	c0.58	
v/s Ratio Perm	0.00			c0.04								
v/c Ratio	0.09	0.13		0.68	0.12		0.33	0.77	0.00	0.71	0.83	
Uniform Delay, d1	60.1	61.5		48.0	48.6		63.8	28.4	65.0	45.6	14.1	
Progression Factor	1.00	1.00		1.00	1.00		0.96	0.68	1.00	1.49	1.51	
Incremental Delay, d2	0.5	1.2		7.0	0.2		1.0	0.3	0.0	3.3	1.9	
Delay (s)	60.6	62.7		55.0	48.8		62.3	19.6	65.0	71.3	23.2	
Level of Service	E	E		D	D		E	В	E	E	С	
Approach Delay (s)		62.0			52.2			23.6			29.3	
Approach LOS		E			D			С			С	
Intersection Summary												
HCM 2000 Control Delay			29.4	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.83									
Actuated Cycle Length (s)			130.0	S	um of lost	t time (s)			18.0			
Intersection Capacity Utiliz	ation		82.9%	IC	U Level o	of Service			E			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

HCM Unsignalized Intersection Capacity Analysis 10: Site Access 5 (Resdiential)/McKinnley Drive & Terry Fox Drive

	٦	-	$\mathbf{\hat{z}}$	∢	←	•	•	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	¢Î			el el				1		\$	
Traffic Volume (veh/h)	70	772	84	0	215	26	0	0	5	128	0	47
Future Volume (Veh/h)	70	772	84	0	215	26	0	0	5	128	0	47
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	78	858	93	0	239	29	0	0	6	142	0	52
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		Raised			Raised							
Median storage veh)		1			1							
Upstream signal (m)		161										
pX, platoon unblocked				0.85			0.85	0.85	0.85	0.85	0.85	
vC, conflicting volume	268			951			1366	1328	904	1274	1360	254
vC1, stage 1 conf vol							1060	1060		254	254	
vC2, stage 2 conf vol							306	268		1020	1107	
vCu, unblocked vol	268			855			1343	1298	800	1234	1336	254
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)							6.1	5.5		6.1	5.5	
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	94			100			100	100	98	32	100	93
cM capacity (veh/h)	1296			668			189	212	328	208	205	785
Direction, Lane #	EB 1	EB 2	WB 1	NB 1	SB 1							
Volume Total	78	951	268	6	194							
Volume Left	78	0	0	0	142							
Volume Right	0	93	29	6	52							
cSH	1296	1700	1700	328	259							
Volume to Capacity	0.06	0.56	0.16	0.02	0.75							
Queue Length 95th (m)	1.5	0.0	0.0	0.4	40.8							
Control Delay (s)	8.0	0.0	0.0	16.2	50.9							
Lane LOS	А			С	F							
Approach Delay (s)	0.6		0.0	16.2	50.9							
Approach LOS				С	F							
Intersection Summary												
Average Delay			7.1									
Intersection Capacity Utiliza	ation		72.1%	IC	CU Level c	of Service			С			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis 11: Legget Drive/Legget Road & Site Access 6 (Lifestyle Street)

	≯	-	$\mathbf{\hat{v}}$	4	+	*	•	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		÷			\$			\$			÷	
Traffic Volume (veh/h)	5	26	248	19	10	5	26	4	43	26	343	5
Future Volume (Veh/h)	5	26	248	19	10	5	26	4	43	26	343	5
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	6	29	276	21	11	6	29	4	48	29	381	6
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	540	552	384	818	531	28	387			52		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	540	552	384	818	531	28	387			52		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	99	93	58	87	97	99	98			98		
cM capacity (veh/h)	427	423	664	158	434	1047	1171			1554		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	311	38	81	416								
Volume Left	6	21	29	29								
Volume Right	276	6	48	6								
cSH	624	231	1171	1554								
Volume to Capacity	0.50	0.16	0.02	0.02								
Queue Length 95th (m)	21.2	4.4	0.6	0.4								
Control Delay (s)	16.4	23.6	3.1	0.7								
Lane LOS	С	С	А	А								
Approach Delay (s)	16.4	23.6	3.1	0.7								
Approach LOS	С	С										
Intersection Summary												
Average Delay			7.7									
Intersection Capacity Utilizatio	n		46.0%	IC	U Level o	of Service			А			
Analysis Period (min)			15									

	≯	$\mathbf{\hat{v}}$	•	1	Ļ	∢
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			र्स	4Î	
Traffic Volume (veh/h)	20	27	5	26	298	332
Future Volume (Veh/h)	20	27	5	26	298	332
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	22	30	6	29	331	369
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				Tiono	Nono	
Upstream signal (m)				388		
pX, platoon unblocked				000		
vC, conflicting volume	556	516	700			
vC1, stage 1 conf vol	000	010	100			
vC2, stage 2 conf vol						
vCu, unblocked vol	556	516	700			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)	U.T	0.2	7.1			
tF (s)	3.5	3.3	2.2			
p0 queue free %	95	95	99			
cM capacity (veh/h)	488	559	897			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	52	35	700			
Volume Left	22	6	0			
Volume Right	30	0	369			
cSH	527	897	1700			
Volume to Capacity	0.10	0.01	0.41			
Queue Length 95th (m)	2.5	0.2	0.0			
Control Delay (s)	12.6	1.6	0.0			
Lane LOS	В	А				
Approach Delay (s)	12.6	1.6	0.0			
Approach LOS	В					
Intersection Summary						
Average Delay			0.9			
Intersection Capacity Utiliza	ation		48.0%	IC	CU Level o	of Service
Analysis Period (min)			15			
			10			

	۶	\mathbf{i}	1	1	ţ	~	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			ا ً}	4Î		
Traffic Volume (veh/h)	7	30	3	16	332	5	
Future Volume (Veh/h)	7	30	3	16	332	5	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	8	33	3	18	369	6	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)				Tionio	Tiono		
Upstream signal (m)				227			
pX, platoon unblocked							
vC, conflicting volume	396	372	375				
vC1, stage 1 conf vol	000	072	010				
vC2, stage 2 conf vol							
vCu, unblocked vol	396	372	375				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)	U.T	0.2	7.1				
tF (s)	3.5	3.3	2.2				
p0 queue free %	99	95	100				
cM capacity (veh/h)	607	674	1183				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	41	21	375				
Volume Left	8	3	0				
Volume Right	33	0	6				
cSH	660	1183	1700				
Volume to Capacity	0.06	0.00	0.22				
Queue Length 95th (m)	1.5	0.1	0.0				
Control Delay (s)	10.8	1.2	0.0				
Lane LOS	В	А					
Approach Delay (s)	10.8	1.2	0.0				
Approach LOS	В						
Intersection Summary							
Average Delay			1.1				
Intersection Capacity Utilizat	tion		28.8%	IC	CU Level o	of Service	
Analysis Period (min)			15				
			13				

Queues 1: March Road N/March Road S & Morgan's Grant Way/Shirley's Brook Dr

06/01/2022

	-	\mathbf{r}	4	-	•	•	Ť	1	5	Ļ	∢	
Lane Group	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	71	70	87	73	230	267	2486	150	156	1277	22	
v/c Ratio	0.36	0.28	0.59	0.38	0.66	0.67	0.90	0.16	0.67	0.52	0.03	
Control Delay	56.6	10.7	69.2	57.2	19.2	68.7	11.4	0.0	66.7	23.6	0.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	56.6	10.7	69.2	57.2	19.2	68.7	11.4	0.0	66.7	23.6	0.1	
Queue Length 50th (m)	17.2	0.0	21.6	17.7	6.1	63.3	219.1	0.0	38.4	79.9	0.0	
Queue Length 95th (m)	30.3	10.6	36.8	30.8	30.2	m70.7	m205.8	m0.0	58.9	93.0	0.0	
Internal Link Dist (m)	116.4			136.8			274.6			145.2		
Turn Bay Length (m)		10.0	38.0		38.0	130.0		25.0	68.0		25.0	
Base Capacity (vph)	408	428	309	401	505	399	2756	911	242	2442	777	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.17	0.16	0.28	0.18	0.46	0.67	0.90	0.16	0.64	0.52	0.03	
Intersection Summary												

1: March Road N/Ma	arch Ro	bad S	& ivior	gan's C	srant v	vay/Sr	nirieys	BLOOK	(Dr		06/0)1/2022
	۶	-	\mathbf{i}	∢	-	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	1	ň	†	1	ሻ	^	1	ሻ	^	1
Traffic Volume (vph)	12	52	63	78	66	207	240	2237	135	140	1149	20
Future Volume (vph)	12	52	63	78	66	207	240	2237	135	140	1149	20
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		7.5	7.5	7.5	7.5	7.5	6.4	6.1	6.1	6.4	6.1	6.1
Lane Util. Factor		1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.00	1.00	0.91	1.00
Frpb, ped/bikes		1.00	0.98	1.00	1.00	0.98	1.00	1.00	0.95	1.00	1.00	0.96
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1802	1514	1706	1655	1450	1679	4644	1476	1729	4969	1488
Flt Permitted		0.93	1.00	0.71	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)		1684	1514	1276	1655	1450	1679	4644	1476	1729	4969	1488
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	13	58	70	87	73	230	267	2486	150	156	1277	22
RTOR Reduction (vph)	0	0	62	0	0	180	0	0	37	0	0	11
Lane Group Flow (vph)	0	71	8	87	73	50	267	2486	113	156	1277	11
Confl. Peds. (#/hr)	3		3	3		3	5		6	6		5
Confl. Bikes (#/hr)			3						8			1
Heavy Vehicles (%)	0%	0%	0%	1%	10%	5%	3%	7%	0%	0%	0%	0%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4		4	8		8			2			6
Actuated Green, G (s)		15.2	15.2	15.2	15.2	15.2	30.9	77.1	77.1	17.7	63.9	63.9
Effective Green, g (s)		15.2	15.2	15.2	15.2	15.2	30.9	77.1	77.1	17.7	63.9	63.9
Actuated g/C Ratio		0.12	0.12	0.12	0.12	0.12	0.24	0.59	0.59	0.14	0.49	0.49
Clearance Time (s)		7.5	7.5	7.5	7.5	7.5	6.4	6.1	6.1	6.4	6.1	6.1
Vehicle Extension (s)		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		196	177	149	193	169	399	2754	875	235	2442	731
v/s Ratio Prot					0.04		c0.16	c0.54		0.09	0.26	
v/s Ratio Perm		0.04	0.01	c0.07		0.03			0.08			0.01
v/c Ratio		0.36	0.05	0.58	0.38	0.29	0.67	0.90	0.13	0.66	0.52	0.01
Uniform Delay, d1		52.9	51.0	54.4	53.0	52.5	44.9	23.2	11.7	53.3	22.6	16.9
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.49	0.37	0.00	1.00	1.00	1.00
Incremental Delay, d2		1.1	0.1	5.7	1.2	1.0	0.4	0.5	0.0	6.9	0.8	0.0
Delay (s)		54.1	51.1	60.1	54.3	53.5	67.2	9.1	0.0	60.2	23.4	17.0
Level of Service		D	D	E	D	D	E	А	A	E	С	В
Approach Delay (s)		52.6			55.1			14.0			27.3	
Approach LOS		D			E			В			С	
Intersection Summary												
HCM 2000 Control Delay			22.3	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capaci	ty ratio		0.84									
Actuated Cycle Length (s)			130.0	S	um of losi	t time (s)			20.0			
Intersection Capacity Utilizati	on		88.2%			of Service			E			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 1: March Road N/March Road S & Morgan's Grant Way/Shirley's Brook Dr

Queues 2: March Road & Terry Fox Drive

	٦	-	•	•	-	•	1	1	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	310	191	391	163	287	357	364	2232	153	124	1129	181
v/c Ratio	0.77	0.31	0.75	0.56	0.57	0.79	0.74	1.18	0.22	0.64	0.63	0.29
Control Delay	68.3	46.3	19.7	63.6	54.7	26.1	49.9	114.0	8.6	65.5	49.0	18.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	68.3	46.3	19.7	63.6	54.7	26.1	49.9	114.0	8.6	65.5	49.0	18.2
Queue Length 50th (m)	39.7	22.7	17.0	20.9	37.2	20.8	44.0	~250.8	5.5	31.9	76.0	7.1
Queue Length 95th (m)	55.3	31.0	50.2	31.6	45.8	52.0	m42.1 r	n#299.2	m6.3	54.1	93.7	26.8
Internal Link Dist (m)		245.5			116.0			283.0			274.6	
Turn Bay Length (m)	104.0		52.0	72.0		100.0	142.0		82.0	100.0		98.0
Base Capacity (vph)	435	931	625	418	912	594	497	1895	688	226	1781	625
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.71	0.21	0.63	0.39	0.31	0.60	0.73	1.18	0.22	0.55	0.63	0.29

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 2: March Road & Terry Fox Drive

06/01/2022

	٦	-	\mathbf{F}	∢	←	*	•	t	1	5	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	<u></u>	1	ሻሻ	<u></u>	1	ሻሻ	ተተተ	1	۲.	<u>_</u>	1
Traffic Volume (vph)	279	172	352	147	258	321	328	2009	138	112	1016	163
Future Volume (vph)	279	172	352	147	258	321	328	2009	138	112	1016	163
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	6.8	7.0	7.0	6.8	7.0	7.0	6.9	6.7	6.7	6.9	6.7	6.7
Lane Util. Factor	0.97	0.95	1.00	0.97	0.95	1.00	0.97	0.91	1.00	1.00	0.91	1.00
Frpb, ped/bikes	1.00	1.00	0.96	1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.96
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	3288	3458	1463	3164	3390	1469	3288	4687	1483	1729	4871	1397
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	3288	3458	1463	3164	3390	1469	3288	4687	1483	1729	4871	1397
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	310	191	391	163	287	357	364	2232	153	124	1129	181
RTOR Reduction (vph)	0	0	259	0	0	231	0	0	89	0	0	115
Lane Group Flow (vph)	310	191	132	163	287	126	364	2232	64	124	1129	66
Confl. Peds. (#/hr)	9		29	29		9	21		13	13		21
Confl. Bikes (#/hr)			1						1			
Heavy Vehicles (%)	2%	0%	1%	6%	2%	3%	2%	6%	1%	0%	2%	6%
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			4			8			2			6
Actuated Green, G (s)	16.0	23.5	23.5	12.0	19.5	19.5	19.6	52.5	52.5	14.6	47.5	47.5
Effective Green, g (s)	16.0	23.5	23.5	12.0	19.5	19.5	19.6	52.5	52.5	14.6	47.5	47.5
Actuated g/C Ratio	0.12	0.18	0.18	0.09	0.15	0.15	0.15	0.40	0.40	0.11	0.37	0.37
Clearance Time (s)	6.8	7.0	7.0	6.8	7.0	7.0	6.9	6.7	6.7	6.9	6.7	6.7
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	404	625	264	292	508	220	495	1892	598	194	1779	510
v/s Ratio Prot	c0.09	0.06		0.05	0.08		c0.11	c0.48		0.07	0.23	
v/s Ratio Perm			c0.09			c0.09			0.04			0.05
v/c Ratio	0.77	0.31	0.50	0.56	0.56	0.57	0.74	1.18	0.11	0.64	0.63	0.13
Uniform Delay, d1	55.2	46.2	48.0	56.5	51.3	51.4	52.7	38.8	24.1	55.2	34.1	27.5
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.93	0.93	1.48	0.95	1.32	3.37
Incremental Delay, d2	8.5	0.3	1.5	2.3	1.4	3.6	0.5	81.4	0.0	6.0	1.5	0.5
Delay (s)	63.7	46.5	49.5	58.8	52.8	54.9	49.6	117.6	35.9	58.6	46.6	93.0
Level of Service	Е	D	D	E	D	D	D	F	D	Е	D	F
Approach Delay (s)		53.8			54.9			104.1			53.5	
Approach LOS		D			D			F			D	
Intersection Summary												
HCM 2000 Control Delay			77.4	H	CM 2000	Level of	Service		E			
HCM 2000 Volume to Capa	city ratio		0.97									
Actuated Cycle Length (s)			130.0	S	um of los	t time (s)			27.4			
Intersection Capacity Utiliza	ation		97.4%			of Service)		F			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 3: March Road & Solandt Road

	٦	-	\mathbf{r}	4	-	1	t	1	Ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	107	43	609	628	278	108	2557	29	1724	
v/c Ratio	0.75	0.10	1.40	1.90	0.58	1.44	1.64	0.45	1.23	
Control Delay	87.4	39.1	224.2	446.1	30.3	300.7	318.8	82.4	143.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	87.4	39.1	224.2	446.1	30.3	300.7	318.8	82.4	143.7	
Queue Length 50th (m)	27.0	8.6	~185.9	~126.8	37.0	~37.5	~516.3	7.4	~287.4	
Queue Length 95th (m)	#53.5	18.5	#257.2	#163.3	66.5	#74.8	#555.8	#18.9	#330.4	
Internal Link Dist (m)		112.5			205.8		333.2		208.2	
Turn Bay Length (m)	65.0		100.0	90.0		157.0		140.0		
Base Capacity (vph)	152	432	435	331	476	75	1557	65	1402	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.70	0.10	1.40	1.90	0.58	1.44	1.64	0.45	1.23	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite. ~

Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 3: March Road & Solandt Road

06/01/2022

MovementEBLEBTLane ConfigurationsImage: ConfigurationsTraffic Volume (vph)969639Future Volume (vph)96981800Ideal Flow (vphpl)180018001800Total Lost time (s)5.96.56.5Lane Util. Factor1.00	548 1800 6.5	WBL 565 565 1800	WBT 61	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 96 39 Future Volume (vph) 96 39 Ideal Flow (vphpl) 1800 1800 Total Lost time (s) 5.9 6.5	548 548 1800 6.5	565 565	61	400	5	**				
Future Volume (vph) 96 39 Ideal Flow (vphpl) 1800 1800 Total Lost time (s) 5.9 6.5	548 1800 6.5	565		400		∱ ⊅		<u>۲</u>	A	
Ideal Flow (vphpl) 1800 1800 Total Lost time (s) 5.9 6.5	1800 6.5		• •	189	97	2274	27	26	1469	83
Total Lost time (s) 5.9 6.5	6.5	1800	61	189	97	2274	27	26	1469	83
			1800	1800	1800	1800	1800	1800	1800	1800
Lang I Itil Eactor 1.00 1.00	4 00	5.9	6.5		6.3	6.3		4.5	6.3	
		0.97	1.00		1.00	0.95		1.00	0.95	
Frpb, ped/bikes 1.00 1.00		1.00	0.98		1.00	1.00		1.00	1.00	
Flpb, ped/bikes 1.00 1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt 1.00 1.00		1.00	0.89		1.00	1.00		1.00	0.99	
Flt Protected 0.95 1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot) 1616 1784		3288	1539		1712	3319		1695	3327	
Flt Permitted 0.95 1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm) 1616 1784	1436	3288	1539		1712	3319		1695	3327	
Peak-hour factor, PHF 0.90 0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph) 107 43		628	68	210	108	2527	30	29	1632	92
RTOR Reduction (vph) 0 0		0	85	0	0	1	0	0	3	0
Lane Group Flow (vph) 107 43		628	193	0	108	2556	0	29	1721	0
Confl. Peds. (#/hr) 7	8	8		7	6					6
Confl. Bikes (#/hr)	1			1			1			12
Heavy Vehicles (%) 7% 2%	5%	2%	3%	3%	1%	4%	1%	2%	3%	2%
Turn Type Prot NA	Perm	Prot	NA		Prot	NA		Prot	NA	
Protected Phases 7 4		3	8		5	2		1	6	
Permitted Phases	4									
Actuated Green, G (s) 11.6 31.5	31.5	13.1	33.0		5.7	59.2		3.0	54.7	
Effective Green, g (s) 11.6 31.5	31.5	13.1	33.0		5.7	59.2		3.0	54.7	
Actuated g/C Ratio 0.09 0.24	0.24	0.10	0.25		0.04	0.46		0.02	0.42	
Clearance Time (s) 5.9 6.5	6.5	5.9	6.5		6.3	6.3		4.5	6.3	
Vehicle Extension (s) 3.0 3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph) 144 432	347	331	390		75	1511		39	1399	
v/s Ratio Prot 0.07 0.02		c0.19	0.13		c0.06	c0.77		0.02	0.52	
v/s Ratio Perm	c0.36									
v/c Ratio 0.74 0.10	1.50	1.90	0.49		1.44	1.69		0.74	1.23	
Uniform Delay, d1 57.7 38.2	49.2	58.5	41.4		62.1	35.4		63.1	37.6	
Progression Factor 1.00 1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2 18.6 0.1	241.3	415.0	1.0		258.2	314.2		54.3	110.1	
Delay (s) 76.3 38.3	290.6	473.4	42.4		320.4	349.6		117.4	147.7	
Level of Service E D	F	F	D		F	F		F	F	
Approach Delay (s) 246.1			341.2			348.5			147.2	
Approach LOS F			F			F			F	
Intersection Summary										
HCM 2000 Control Delay	276.6	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capacity ratio	1.71									
Actuated Cycle Length (s)	130.0	S	um of lost	t time (s)			25.0			
Intersection Capacity Utilization	119.0%			of Service			Н			
Analysis Period (min)	15									
c Critical Lane Group										

Queues 4: Legget Drive/Legget Road & Solandt Road /Solandt Road

	٦	-	∢	-	•	1	1	Ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	34	59	41	126	293	91	3	706	
v/c Ratio	0.17	0.20	0.19	0.53	0.69	0.07	0.01	0.97	
Control Delay	37.5	11.7	37.8	45.4	29.4	4.7	19.0	52.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	37.5	11.7	37.8	45.4	29.4	4.7	19.0	52.4	
Queue Length 50th (m)	5.6	0.2	6.8	21.6	33.5	4.2	0.3	113.9	
Queue Length 95th (m)	14.4	10.6	16.4	40.3	66.0	10.0	2.2	#210.9	
Internal Link Dist (m)		205.8		177.5		261.1		203.5	
Turn Bay Length (m)	130.0		42.0		65.0		35.0		
Base Capacity (vph)	444	585	476	511	483	1318	467	729	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.08	0.10	0.09	0.25	0.61	0.07	0.01	0.97	
Interpretion Common									

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis
4: Legget Drive/Legget Road & Solandt Road /Solandt Road

	٦	-	\mathbf{F}	4	+	*	•	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	ţ,		۲.	¢Î		۲	eî 🗧		۲.	¢Î	
Traffic Volume (vph)	31	1	52	37	107	6	264	79	3	3	207	428
Future Volume (vph)	31	1	52	37	107	6	264	79	3	3	207	428
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	6.2	6.2		6.2	6.2		6.2	6.2		6.2	6.2	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	0.98		1.00	1.00		1.00	1.00		1.00	0.99	
Flpb, ped/bikes	0.99	1.00		1.00	1.00		1.00	1.00		0.98	1.00	
Frt	1.00	0.85		1.00	0.99		1.00	1.00		1.00	0.90	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1714	1502		1725	1394		1601	1774		1533	1616	
Flt Permitted	0.68	1.00		0.72	1.00		0.09	1.00		0.70	1.00	
Satd. Flow (perm)	1220	1502		1305	1394		148	1774		1127	1616	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	34	1	58	41	119	7	293	88	3	3	230	476
RTOR Reduction (vph)	0	48	0	0	2	0	0	1	0	0	55	0
Lane Group Flow (vph)	34	11	0	41	124	0	293	90	0	3	651	0
Confl. Peds. (#/hr)	4		1	1		4			11	11		
Confl. Bikes (#/hr)												3
Heavy Vehicles (%)	0%	1%	1%	0%	30%	17%	8%	2%	0%	10%	1%	0%
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		Perm	NA	
Protected Phases		4		1 01111	8		5	2		1 01111	6	
Permitted Phases	4			8			2	_		6	•	
Actuated Green, G (s)	16.2	16.2		16.2	16.2		67.4	67.4		40.1	40.1	
Effective Green, g (s)	16.2	16.2		16.2	16.2		67.4	67.4		40.1	40.1	
Actuated g/C Ratio	0.17	0.17		0.17	0.17		0.70	0.70		0.42	0.42	
Clearance Time (s)	6.2	6.2		6.2	6.2		6.2	6.2		6.2	6.2	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	205	253		220	235		423	1245		470	675	
v/s Ratio Prot	200	0.01		220	c0.09		c0.15	0.05		110	c0.40	
v/s Ratio Perm	0.03	0.01		0.03	00.00		0.33	0.00		0.00	00.10	
v/c Ratio	0.17	0.04		0.19	0.53		0.69	0.07		0.01	0.96	
Uniform Delay, d1	34.1	33.4		34.2	36.4		24.1	4.5		16.3	27.2	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.4	0.1		0.4	2.1		4.9	0.0		0.0	25.8	
Delay (s)	34.5	33.5		34.7	38.5		29.0	4.5		16.3	53.0	
Level of Service	C	C		C	D		20.0 C	A		B	D	
Approach Delay (s)	0	33.9		U	37.6		U	23.2		5	52.9	
Approach LOS		C			D			C			D	
Intersection Summary												
HCM 2000 Control Delay			41.3	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	icity ratio		0.80									
Actuated Cycle Length (s)			96.0	S	um of losi	t time (s)			18.6			
Intersection Capacity Utiliza	ation		83.1%		U Level		Э		E			
Analysis Period (min)			15									
c Critical Lane Group												

	∢	*	٦	۲	\searrow	\rightarrow	
Movement	WBL	WBR	NBL	NBR	SEL	SER	
Lane Configurations		1	- ¥		¥		
Traffic Volume (veh/h)	21	621	133	37	142	43	
Future Volume (Veh/h)	21	621	133	37	142	43	
Sign Control	Free		Stop		Free		
Grade	0%		0%		0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	23	690	148	41	158	48	
Pedestrians	2		17				
Lane Width (m)	3.7		3.7				
Walking Speed (m/s)	1.1		1.1				
Percent Blockage	0		2				
Right turn flare (veh)							
Median type	None				None		
Median storage veh)							
Upstream signal (m)					308		
pX, platoon unblocked							
vC, conflicting volume	223		935	201			
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	223		935	201			
tC, single (s)	4.2		6.4	6.2			
tC, 2 stage (s)							
tF (s)	2.3		3.5	3.3			
p0 queue free %	98		48	95			
cM capacity (veh/h)	1279		284	818			
Direction, Lane #	WB 1	NB 1	SE 1				
Volume Total	713	189	206				
Volume Left	23	148	200				
Volume Right	0	41	48				
cSH	1279	330	1700				
Volume to Capacity	0.02	0.57	0.12				
Queue Length 95th (m)	0.02	25.6	0.12				
Control Delay (s)	0.4	29.5	0.0				
Lane LOS	0.5 A	29.5 D	0.0				
Approach Delay (s)	0.5	29.5	0.0				
Approach LOS	0.0	29.5 D	0.0				
		U					
Intersection Summary							
Average Delay			5.3				
Intersection Capacity Utilizat	tion		Err%	IC	U Level c	of Service	
Analysis Period (min)			15				

	4	•	1	1	1	Ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		1	ŧ₽			<u>††</u>	
Traffic Volume (veh/h)	0	5	2400	42	0	0	
Future Volume (Veh/h)	0	5	2400	42	0	0	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	0	6	2667	47	0	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)			Tiono			Tionio	
Upstream signal (m)			232			247	
pX, platoon unblocked	0.55	0.55	202		0.55	_ 11	
vC, conflicting volume	2690	1357			2714		
vC1, stage 1 conf vol	2000	1007			2117		
vC2, stage 2 conf vol							
vCu, unblocked vol	2442	38			2484		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)	0.0	0.5			7.1		
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	99			100		
cM capacity (veh/h)	14	569			100		
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	6	1778	936	0	0		
Volume Left	0	0	0	0	0		
Volume Right	6	0	47	0	0		
cSH	569	1700	1700	1700	1700		
Volume to Capacity	0.01	1.05	0.55	0.00	0.00		
Queue Length 95th (m)	0.2	0.0	0.0	0.0	0.0		
Control Delay (s)	11.4	0.0	0.0	0.0	0.0		
Lane LOS	В						
Approach Delay (s)	11.4	0.0		0.0			
Approach LOS	В						
Intersection Summary							
Average Delay			0.0				
Intersection Capacity Utiliza	ation		81.4%			of Service	
				iC	O Level (
Analysis Period (min)			15				

	4	*	1	۲	1	Ŧ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		1	≜ †⊅			††	
Traffic Volume (veh/h)	0	5	2359	23	0	0	
Future Volume (Veh/h)	0	5	2359	23	0	0	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	0	6	2621	26	0	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)			Nono			Tiono	
Upstream signal (m)			322			157	
pX, platoon unblocked	0.56	0.56	522		0.56	107	
vC, conflicting volume	2634	1324			2647		
vC1, stage 1 conf vol	2004	1024			2041		
vC2, stage 2 conf vol							
vCu, unblocked vol	2344	0			2368		
tC, single (s)	6.8	6.9			4.1		
	0.0	0.9			4.1		
tC, 2 stage (s) tF (s)	3.5	3.3			2.2		
p0 queue free %	100	99			100		
	100	99 605			113		
cM capacity (veh/h)	17	005					
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	6	1747	900	0	0		
Volume Left	0	0	0	0	0		
Volume Right	6	0	26	0	0		
cSH	605	1700	1700	1700	1700		
Volume to Capacity	0.01	1.03	0.53	0.00	0.00		
Queue Length 95th (m)	0.2	0.0	0.0	0.0	0.0		
Control Delay (s)	11.0	0.0	0.0	0.0	0.0		
Lane LOS	В						
Approach Delay (s)	11.0	0.0		0.0			
Approach LOS	В						
Intersection Summary							
Average Delay			0.0				
Intersection Capacity Utiliza	ation		79.6%			of Service	
				iC			
Analysis Period (min)			15				

	<	*	1	1	5	Ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		1	≜ †⊅			††	1
Traffic Volume (veh/h)	0	19	2359	5	0	0	
Future Volume (Veh/h)	0	19	2359	5	0	0	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	0	21	2621	6	0	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)			401			78	
pX, platoon unblocked	0.56	0.56			0.56	10	
vC, conflicting volume	2624	1314			2627		
vC1, stage 1 conf vol	2021	1011			2021		
vC2, stage 2 conf vol							
vCu, unblocked vol	2330	0			2335		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)	0.0	0.0			1.1		
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	97			100		
cM capacity (veh/h)	17	609			117		
				05.4			
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	21	1747	880	0	0		
Volume Left	0	0	0	0	0		
Volume Right	21	0	6	0	0		
cSH	609	1700	1700	1700	1700		
Volume to Capacity	0.03	1.03	0.52	0.00	0.00		
Queue Length 95th (m)	0.8	0.0	0.0	0.0	0.0		
Control Delay (s)	11.1	0.0	0.0	0.0	0.0		
Lane LOS	В						
Approach Delay (s)	11.1	0.0		0.0			
Approach LOS	В						
Intersection Summary							
Average Delay			0.1				
Intersection Capacity Utiliz	ation		79.0%	IC	U Level	of Service	
Analysis Period (min)			15				
			10				

Queues 9: March Road & Site Access 4 (Lifestyle Street)

	≯	→	4	+	•	1	1	1	Ļ
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	6	12	230	349	6	2409	194	81	1620
v/c Ratio	0.11	0.04	0.99	1.09	0.04	1.04	0.18	0.68	0.63
Control Delay	51.0	32.5	109.2	117.0	1.8	36.1	0.0	54.3	11.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	51.0	32.5	109.2	117.0	1.8	36.1	0.0	54.3	11.7
Queue Length 50th (m)	1.3	1.3	59.4	~85.8	0.1	~130.7	0.0	3.0	181.5
Queue Length 95th (m)	5.6	7.0	#110.8	#145.8	m0.1	m18.3	m0.0	m#23.0	65.5
Internal Link Dist (m)		124.3		188.6		54.1			89.2
Turn Bay Length (m)			37.5		37.5			37.5	
Base Capacity (vph)	54	293	233	320	155	2315	1082	120	2563
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.11	0.04	0.99	1.09	0.04	1.04	0.18	0.68	0.63

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

HCM Signalized Intersection Capacity Analysis 9: March Road & Site Access 4 (Lifestyle Street)

06/01/2022

	٦	-	\mathbf{r}	4	+	•	•	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	eţ.		ľ	et		ľ	<u></u>	1	1	<u></u>	
Traffic Volume (vph)	5	5	5	207	5	309	5	2168	175	73	1458	0
Future Volume (vph)	5	5	5	207	5	309	5	2168	175	73	1458	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.5	4.5		4.5	4.5		4.5	4.5	4.5	4.5	4.5	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95	1.00	1.00	0.95	
Frt	1.00	0.93		1.00	0.85		1.00	1.00	0.85	1.00	1.00	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1695	1650		1695	1521		1695	3390	1517	1695	3390	
Flt Permitted	0.18	1.00		0.75	1.00		0.13	1.00	1.00	0.04	1.00	
Satd. Flow (perm)	314	1650		1338	1521		229	3390	1517	76	3390	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	6	6	6	230	6	343	6	2409	194	81	1620	0
RTOR Reduction (vph)	0	5	0	0	54	0	0	0	47	0	0	0
Lane Group Flow (vph)	6	7	0	230	295	0	6	2409	147	81	1620	0
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	pm+pt	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8			2		2	6		
Actuated Green, G (s)	22.7	22.7		22.7	22.7		88.8	88.8	88.8	98.3	98.3	
Effective Green, g (s)	22.7	22.7		22.7	22.7		88.8	88.8	88.8	98.3	98.3	
Actuated g/C Ratio	0.17	0.17		0.17	0.17		0.68	0.68	0.68	0.76	0.76	
Clearance Time (s)	4.5	4.5		4.5	4.5		4.5	4.5	4.5	4.5	4.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	54	288		233	265		156	2315	1036	119	2563	
v/s Ratio Prot		0.00			c0.19			c0.71		0.03	c0.48	
v/s Ratio Perm	0.02			0.17			0.03		0.10	0.48		
v/c Ratio	0.11	0.02		0.99	1.11		0.04	1.04	0.14	0.68	0.63	
Uniform Delay, d1	45.2	44.5		53.5	53.6		6.7	20.6	7.2	37.5	7.4	
Progression Factor	1.00	1.00		1.00	1.00		0.25	0.71	0.00	1.97	1.42	
Incremental Delay, d2	0.9	0.0		54.8	88.5		0.0	19.9	0.0	12.1	1.0	
Delay (s)	46.1	44.5		108.3	142.2		1.7	34.4	0.0	86.1	11.5	
Level of Service	D	D		F	F		А	С	А	F	В	
Approach Delay (s)		45.0			128.7			31.8			15.1	
Approach LOS		D			F			С			В	
Intersection Summary												
HCM 2000 Control Delay			37.5	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		1.05									
Actuated Cycle Length (s)	,		130.0	S	um of lost	t time (s)			13.5			
Intersection Capacity Utiliza	ation		92.0%		U Level o				F			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

HCM Unsignalized Intersection Capacity Analysis 10: Site Access 5 (Residential)/McKinnley Drive & Terry Fox Drive

	≯	-	$\mathbf{\hat{z}}$	4	+	•	•	1	1	5	Ŧ	∢
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	¢Î			el el				1		\$	
Traffic Volume (veh/h)	18	264	150	0	685	104	0	0	5	34	0	51
Future Volume (Veh/h)	18	264	150	0	685	104	0	0	5	34	0	51
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	20	293	167	0	761	116	0	0	6	38	0	57
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		Raised			Raised							
Median storage veh)		1			1							
Upstream signal (m)		140										
pX, platoon unblocked				0.93			0.93	0.93	0.93	0.93	0.93	
vC, conflicting volume	877			460			1292	1294	376	1158	1319	819
vC1, stage 1 conf vol							416	416		819	819	
vC2, stage 2 conf vol							876	877		339	500	
vCu, unblocked vol	877			383			1277	1278	293	1133	1306	819
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)							6.1	5.5		6.1	5.5	
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	97			100			100	100	99	87	100	85
cM capacity (veh/h)	770			1094			212	260	695	283	269	375
Direction, Lane #	EB 1	EB 2	WB 1	NB 1	SB 1							
Volume Total	20	460	877	6	95							
Volume Left	20	0	0	0	38							
Volume Right	0	167	116	6	57							
cSH	770	1700	1700	695	332							
Volume to Capacity	0.03	0.27	0.52	0.01	0.29							
Queue Length 95th (m)	0.6	0.0	0.0	0.2	8.8							
Control Delay (s)	9.8	0.0	0.0	10.2	20.1							
Lane LOS	A			В	С							
Approach Delay (s)	0.4		0.0	10.2	20.1							
Approach LOS				В	С							
Intersection Summary												
Average Delay			1.5									
Intersection Capacity Utiliza	ition		56.7%	IC	CU Level o	f Service			В			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis 11: Legget Drive/Legget Road & Site Access 6 (Lifestyle Street)

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations
Traffic Volume (veh/h) 5 6 35 49 39 23 179 206 12 6 58 5 Future Volume (Veh/h) 5 6 35 49 39 23 179 206 12 6 58 5 Sign Control Stop Stop Stop Free Free Free Grade 0%
Traffic Volume (veh/h) 5 6 35 49 39 23 179 206 12 6 58 5 Future Volume (Veh/h) 5 6 35 49 39 23 179 206 12 6 58 5 Sign Control Stop Stop Stop Free Free Free 6 58 5 Grade 0%
Future Volume (Veh/h) 5 6 35 49 39 23 179 206 12 6 58 5 Sign Control Stop Stop Free Free Free Free Free Grade 0%
Grade 0% 0% 0% 0% Peak Hour Factor 0.90 <
Peak Hour Factor 0.90
Hourly flow rate (vph) 6 7 39 54 43 26 199 229 13 7 64 6 Pedestrians Lane Width (m) Valking Speed (m/s) Valking
Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median type None None Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume 762 721 67 757 718 236 70 242 vC1, stage 1 conf vol
Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median type None None Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume 762 721 67 757 718 236 70 242 vC1, stage 1 conf vol
Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median type None None Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume 762 721 67 757 718 236 70 242 vC1, stage 1 conf vol
Percent Blockage Right turn flare (veh) Median type None None Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume 762 721 67 757 718 236 70 242 vC1, stage 1 conf vol
Right turn flare (veh) Median type None None Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume 762 721 67 757 718 236 70 242 vC1, stage 1 conf vol
Median type None None Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume 762 721 67 757 718 236 70 242 vC1, stage 1 conf vol
Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume 762 721 67 757 718 236 70 242 vC1, stage 1 conf vol VC1
Upstream signal (m) pX, platoon unblocked vC, conflicting volume 762 721 67 757 718 236 70 242 vC1, stage 1 conf vol
Upstream signal (m) pX, platoon unblocked vC, conflicting volume 762 721 67 757 718 236 70 242 vC1, stage 1 conf vol
vC, conflicting volume 762 721 67 757 718 236 70 242 vC1, stage 1 conf vol
vC, conflicting volume 762 721 67 757 718 236 70 242 vC1, stage 1 conf vol
vC1, stage 1 conf vol
vCu, unblocked vol 762 721 67 757 718 236 70 242
tC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1
tC, 2 stage (s)
tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2
p0 queue free % 98 98 96 80 86 97 87 99
cM capacity (veh/h) 250 306 997 274 307 804 1531 1324
Direction, Lane # EB 1 WB 1 NB 1 SB 1
Volume Total 52 123 441 77
Volume Left 6 54 199 7
Volume Right 39 26 13 6
cSH 604 333 1531 1324
Volume to Capacity 0.09 0.37 0.13 0.01
Queue Length 95th (m) 2.1 12.5 3.4 0.1
Control Delay (s) 11.5 22.0 4.1 0.7
Lane LOS B C A A
Approach Delay (s) 11.5 22.0 4.1 0.7
Approach LOS B C
Intersection Summary
Average Delay 7.5
Intersection Capacity Utilization 49.2% ICU Level of Service A
Analysis Period (min) 15

	≯	*	•	1	ţ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			स्	4Î	
Traffic Volume (veh/h)	190	48	5	194	96	47
Future Volume (Veh/h)	190	48	5	194	96	47
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	211	53	6	216	107	52
Pedestrians			· ·			•=
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				NULLE	NULLE	
Upstream signal (m)				388		
pX, platoon unblocked				500		
vC, conflicting volume	361	133	159			
vC1, stage 1 conf vol	501	100	100			
vC2, stage 2 conf vol						
vCu, unblocked vol	361	133	159			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)	0.4	0.2	4.1			
tF (s)	3.5	3.3	2.2			
p0 queue free %	5.5 67	94	100			
	635	94 916	1420			
cM capacity (veh/h)						
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	264	222	159			
Volume Left	211	6	0			
Volume Right	53	0	52			
cSH	677	1420	1700			
Volume to Capacity	0.39	0.00	0.09			
Queue Length 95th (m)	14.1	0.1	0.0			
Control Delay (s)	13.7	0.2	0.0			
Lane LOS	В	А				
Approach Delay (s)	13.7	0.2	0.0			
Approach LOS	В					
Intersection Summary						
Average Delay			5.7			
Intersection Capacity Utiliza	ation		35.9%	10	CU Level o	of Service
Analysis Period (min)			15			
			13			

	٦	*	•	†	ţ	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	۲			र्भ	4		
Traffic Volume (veh/h)	48	193	3	146	197	5	
Future Volume (Veh/h)	48	193	3	146	197	5	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	53	214	3	162	219	6	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)				110110	10110		
Upstream signal (m)				227			
pX, platoon unblocked							
vC, conflicting volume	390	222	225				
vC1, stage 1 conf vol	000		220				
vC2, stage 2 conf vol							
vCu, unblocked vol	390	222	225				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)	0.4	0.2	7.1				
tF (s)	3.5	3.3	2.2				
p0 queue free %	91	74	100				
cM capacity (veh/h)	613	818	1344				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	267	165	225				
Volume Left	53	3	0				
Volume Right	214	0	6				
cSH	767	1344	1700				
Volume to Capacity	0.35	0.00	0.13				
Queue Length 95th (m)	11.9	0.1	0.0				
Control Delay (s)	12.2	0.2	0.0				
Lane LOS	В	А					
Approach Delay (s)	12.2	0.2	0.0				
Approach LOS	В						
Intersection Summary							
Average Delay			5.0				
Intersection Capacity Utiliza	ation		33.3%	IC	CU Level o	of Service	
Analysis Period (min)			15	IC.			
			10				

Queues 1: March Road N/March Road S & Morgan's Grant Way/Shirley's Brook Dr

06/01/2022

	→	\mathbf{r}	4	-	*	1	1	1	1	Ļ	1	
Lane Group	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	65	134	104	19	23	41	1041	33	156	2258	9	
v/c Ratio	0.31	0.44	0.66	0.09	0.09	0.36	0.38	0.04	0.67	0.67	0.01	
Control Delay	53.9	12.3	72.7	48.7	0.7	57.5	8.6	0.4	66.7	15.7	0.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	53.9	12.3	72.7	48.7	0.7	57.5	8.6	0.4	66.7	15.7	0.0	
Queue Length 50th (m)	15.4	0.0	25.8	4.4	0.0	11.1	18.6	0.1	38.4	123.3	0.0	
Queue Length 95th (m)	28.1	17.3	42.7	11.3	0.0	m16.3	m22.1	m0.1	58.9	174.8	0.0	
Internal Link Dist (m)	116.4			136.8			274.6			145.2		
Turn Bay Length (m)		10.0	38.0		38.0	130.0		25.0	68.0		25.0	
Base Capacity (vph)	417	469	311	401	411	188	2723	902	242	3352	1033	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.16	0.29	0.33	0.05	0.06	0.22	0.38	0.04	0.64	0.67	0.01	
Intersection Summary												

m Volume for 95th percentile queue is metered by upstream signal.

1: March Road N/M	arch Ro	Jau S		yan s c		vay/Si	iii iey s	DIUUK		06/01/2022		
	٦	-	\mathbf{F}	4	-	*	1	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	1	۲	†	1	۲.	^	1	۲	<u> </u>	1
Traffic Volume (vph)	10	49	121	94	17	21	37	937	30	140	2032	8
Future Volume (vph)	10	49	121	94	17	21	37	937	30	140	2032	8
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		7.5	7.5	7.5	7.5	7.5	6.4	6.1	6.1	6.4	6.1	6.1
Lane Util. Factor		1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.00	1.00	0.91	1.00
Frpb, ped/bikes		1.00	0.98	1.00	1.00	0.98	1.00	1.00	0.95	1.00	1.00	0.96
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1804	1514	1706	1655	1450	1679	4644	1476	1729	4969	1488
Flt Permitted		0.95	1.00	0.71	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)		1720	1514	1283	1655	1450	1679	4644	1476	1729	4969	1488
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	11	54	134	104	19	23	41	1041	33	156	2258	9
RTOR Reduction (vph)	0	0	117	0	0	20	0	0	14	0	0	3
Lane Group Flow (vph)	0	65	17	104	19	3	41	1041	19	156	2258	6
Confl. Peds. (#/hr)	3		3	3		3	5		6	6		5
Confl. Bikes (#/hr)			3						8			1
Heavy Vehicles (%)	0%	0%	0%	1%	10%	5%	3%	7%	0%	0%	0%	0%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4		4	8		8			2			6
Actuated Green, G (s)		16.1	16.1	16.1	16.1	16.1	7.5	76.2	76.2	17.7	86.4	86.4
Effective Green, g (s)		16.1	16.1	16.1	16.1	16.1	7.5	76.2	76.2	17.7	86.4	86.4
Actuated g/C Ratio		0.12	0.12	0.12	0.12	0.12	0.06	0.59	0.59	0.14	0.66	0.66
Clearance Time (s)		7.5	7.5	7.5	7.5	7.5	6.4	6.1	6.1	6.4	6.1	6.1
Vehicle Extension (s)		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		213	187	158	204	179	96	2722	865	235	3302	988
v/s Ratio Prot					0.01		0.02	0.22		c0.09	c0.45	
v/s Ratio Perm		0.04	0.01	c0.08		0.00			0.01			0.00
v/c Ratio		0.31	0.09	0.66	0.09	0.02	0.43	0.38	0.02	0.66	0.68	0.01
Uniform Delay, d1		51.9	50.5	54.3	50.5	50.0	59.2	14.3	11.3	53.3	13.4	7.3
Progression Factor		1.00	1.00	1.00	1.00	1.00	0.89	0.54	1.00	1.00	1.00	1.00
Incremental Delay, d2		0.8	0.2	9.5	0.2	0.0	2.2	0.3	0.0	6.9	1.2	0.0
Delay (s)		52.7	50.7	63.8	50.7	50.0	55.1	8.0	11.3	60.2	14.6	7.4
Level of Service		D	D	E	D	D	E	A	В	E	В	A
Approach Delay (s)		51.3			59.9			9.8			17.5	
Approach LOS		D			E			А			В	
Intersection Summary												
HCM 2000 Control Delay			18.6	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capac	city ratio		0.70									
Actuated Cycle Length (s)			130.0	Si	um of lost	t time (s)			20.0			
Intersection Capacity Utilizat	ion		79.0%	IC	U Level o	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 1: March Road N/March Road S & Morgan's Grant Way/Shirley's Brook Dr

Queues 2: March Road & Terry Fox Drive

	٦	→	*	4	Ļ	•	•	Ť	*	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	158	429	313	80	114	62	319	860	161	428	1846	220
v/c Ratio	0.89	0.63	0.65	0.47	0.19	0.15	0.67	0.71	0.17	0.82	0.91	0.32
Control Delay	105.1	52.1	18.4	69.2	44.3	0.7	60.2	48.5	4.6	62.5	34.2	3.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	105.1	52.1	18.4	69.2	44.3	0.7	60.2	48.5	4.6	62.5	34.2	3.4
Queue Length 50th (m)	21.1	54.3	16.0	10.4	13.1	0.0	40.0	76.5	5.9	81.8	168.2	0.6
Queue Length 95th (m)	#41.5	66.8	44.4	18.8	20.1	0.0	#61.9	93.8	13.8	#163.4	#209.0	12.7
Internal Link Dist (m)		245.5			129.1			295.3			274.6	
Turn Bay Length (m)	104.0		52.0	72.0		100.0	142.0		82.0	100.0		98.0
Base Capacity (vph)	177	931	570	170	912	544	479	1216	1025	520	2020	695
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.89	0.46	0.55	0.47	0.13	0.11	0.67	0.71	0.16	0.82	0.91	0.32
Interportion Cummony												

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 2: March Road & Terry Fox Drive

	۶	-	\mathbf{F}	•	+	•	1	Ť	1	1	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	<u>††</u>	1	ሻሻ	- † †	1	ኘኘ	***	1	٦	<u> </u>	7
Traffic Volume (vph)	142	386	282	72	103	56	287	774	145	385	1661	198
Future Volume (vph)	142	386	282	72	103	56	287	774	145	385	1661	198
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	6.8	7.0	7.0	6.8	7.0	7.0	6.9	6.7	6.7	6.9	6.7	6.7
Lane Util. Factor	0.97	0.95	1.00	0.97	0.95	1.00	0.97	0.91	1.00	1.00	0.91	1.00
Frpb, ped/bikes	1.00	1.00	0.96	1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.96
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	3288	3458	1463	3164	3390	1469	3288	4687	1483	1729	4871	1397
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	3288	3458	1463	3164	3390	1469	3288	4687	1483	1729	4871	1397
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	158	429	313	80	114	62	319	860	161	428	1846	220
RTOR Reduction (vph)	0	0	194	0	0	51	0	0	48	0	0	118
Lane Group Flow (vph)	158	429	119	80	114	11	319	860	113	428	1846	102
Confl. Peds. (#/hr)	9		29	29		9	21		13	13		21
Confl. Bikes (#/hr)			1						1			
Heavy Vehicles (%)	2%	0%	1%	6%	2%	3%	2%	6%	1%	0%	2%	6%
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	custom	Prot	NA	Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			4			8			274			6
Actuated Green, G (s)	7.0	25.5	25.5	5.6	24.1	24.1	18.9	32.4	71.6	39.1	52.6	52.6
Effective Green, g (s)	7.0	25.5	25.5	5.6	24.1	24.1	18.9	32.4	71.6	39.1	52.6	52.6
Actuated g/C Ratio	0.05	0.20	0.20	0.04	0.19	0.19	0.15	0.25	0.55	0.30	0.40	0.40
Clearance Time (s)	6.8	7.0	7.0	6.8	7.0	7.0	6.9	6.7		6.9	6.7	6.7
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	177	678	286	136	628	272	478	1168	816	520	1970	565
v/s Ratio Prot	c0.05	c0.12		0.03	0.03		0.10	0.18		c0.25	c0.38	
v/s Ratio Perm			0.08			0.01			0.08			0.07
v/c Ratio	0.89	0.63	0.42	0.59	0.18	0.04	0.67	0.74	0.14	0.82	0.94	0.18
Uniform Delay, d1	61.1	48.0	45.7	61.1	44.6	43.5	52.6	44.9	14.2	42.2	37.1	24.8
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.21	0.73	0.48
Incremental Delay, d2	38.7	1.9	1.0	6.4	0.1	0.1	3.5	4.2	0.1	8.0	8.1	0.5
Delay (s)	99.8	49.9	46.7	67.4	44.8	43.5	56.1	49.0	14.3	59.2	35.3	12.5
Level of Service	F	D	D	E	D	D	Е	D	В	E	D	В
Approach Delay (s)		57.6			51.6			46.5			37.4	
Approach LOS		Е			D			D			D	
Intersection Summary												
HCM 2000 Control Delay			44.2	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.89									
Actuated Cycle Length (s)			130.0	S	um of losi	t time (s)			27.4			
Intersection Capacity Utiliza	ation		93.9%			of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 3: March Road & Solandt Road

	≯	-	\mathbf{r}	1	-	1	Ť	1	Ļ	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	38	99	121	53	154	571	2092	141	2038	
v/c Ratio	0.44	0.44	0.12	0.30	0.69	1.76	1.22	0.62	1.34	
Control Delay	75.5	57.7	0.9	63.8	66.2	384.8	133.0	67.0	187.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	75.5	57.7	0.9	63.8	66.2	384.8	133.0	67.0	187.4	
Queue Length 50th (m)	9.6	23.9	0.0	6.8	35.6	~217.3	~348.5	35.0	~368.7	
Queue Length 95th (m)	21.3	39.4	2.4	13.7	55.5	#286.0	#390.4	#82.8	#433.9	
Internal Link Dist (m)		112.5			205.8		333.2		208.2	
Turn Bay Length (m)	65.0		100.0	90.0		157.0		140.0		
Base Capacity (vph)	87	343	1078	177	334	325	1717	229	1523	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.44	0.29	0.11	0.30	0.46	1.76	1.22	0.62	1.34	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite. ~

Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 3: March Road & Solandt Road

06/01/2022

	٦	+	¥	4	Ļ	•	•	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	1	ሻሻ	ef 👘		<u>۲</u>	≜ †≱		<u>۲</u>	∱1 ≱	
Traffic Volume (vph)	34	89	109	48	105	33	514	1490	392	127	1697	137
Future Volume (vph)	34	89	109	48	105	33	514	1490	392	127	1697	137
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	5.9	6.5	6.5	5.9	6.5		6.3	6.3		4.5	6.3	
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	1.00	0.98	1.00	0.99		1.00	1.00		1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	1.00	0.85	1.00	0.96		1.00	0.97		1.00	0.99	
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1616	1784	1437	3288	1693		1712	3227		1695	3315	
Flt Permitted	0.95	1.00	1.00	0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	1616	1784	1437	3288	1693		1712	3227		1695	3315	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	38	99	121	53	117	37	571	1656	436	141	1886	152
RTOR Reduction (vph)	0	0	43	0	10	0	0	18	0	0	4	0
Lane Group Flow (vph)	38	99	78	53	144	0	571	2074	0	141	2034	0
Confl. Peds. (#/hr)	7		8	8		7	6		-			6
Confl. Bikes (#/hr)			1	-		1	-		1			12
Heavy Vehicles (%)	7%	2%	5%	2%	3%	3%	1%	4%	1%	2%	3%	2%
Turn Type	Prot	NA		Prot	NA	• / •	Prot	NA	. / •	Prot	NA	
Protected Phases	7	4	ouotoini	3	8		5	2		1	6	
Permitted Phases	•	•	42	v	U		Ŭ	-		•	v	
Actuated Green, G (s)	5.6	16.3	83.6	5.6	16.3		24.7	67.3		17.6	58.4	
Effective Green, g (s)	5.6	16.3	83.6	5.6	16.3		24.7	67.3		17.6	58.4	
Actuated g/C Ratio	0.04	0.13	0.64	0.04	0.13		0.19	0.52		0.14	0.45	
Clearance Time (s)	5.9	6.5	0.01	5.9	6.5		6.3	6.3		4.5	6.3	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	69	223	924	141	212		325	1670		229	1489	
v/s Ratio Prot	c0.02	0.06	524	0.02	c0.09		c0.33	0.64		0.08	c0.61	
v/s Ratio Perm	0.02	0.00	0.05	0.02	0.03		00.00	0.04		0.00	0.01	
v/c Ratio	0.55	0.44	0.08	0.38	0.68		1.76	1.24		0.62	1.37	
Uniform Delay, d1	61.0	52.7	8.8	60.5	54.4		52.6	31.4		53.0	35.8	
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	9.2	1.00	0.0	1.7	8.7		353.0	114.1		4.9	169.1	
Delay (s)	70.1	54.1	8.8	62.2	63.0		405.7	145.4		57.9	204.9	
Level of Service	E	D	0.0 A	02.2 E	00.0 E		+00.7 F	F		57.5 E	204.5 F	
Approach Delay (s)	Ŀ	35.2	~	Ŀ	62.8		I	201.2		L	195.4	
Approach LOS		55.2 D			02.0 E			201.2 F			195.4 F	
Intersection Summary												
HCM 2000 Control Delay			185.4	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	city ratio		1.31		2.11 2000	_0.0101						
Actuated Cycle Length (s)			130.0	S	um of losi	time (s)			25.0			
Intersection Capacity Utiliza	ation		122.2%		CU Level				20.0 H			
Analysis Period (min)			122.270									
c Critical Lane Group												

Queues
4: Legget Drive/Legget Road & Solandt Road /Solandt Road

	≯	-	4	-	1	Ť	1	ŧ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	213	322	11	19	100	208	4	302	
v/c Ratio	0.40	0.46	0.03	0.04	0.34	0.39	0.01	0.56	
Control Delay	12.6	8.4	9.0	7.3	15.2	13.2	10.5	16.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	12.6	8.4	9.0	7.3	15.2	13.2	10.5	16.4	
Queue Length 50th (m)	9.7	8.5	0.4	0.4	5.0	9.9	0.2	15.7	
Queue Length 95th (m)	26.7	26.8	2.8	3.4	15.9	25.7	1.7	38.2	
Internal Link Dist (m)		205.8		177.5		261.1		203.5	
Turn Bay Length (m)	130.0		42.0		65.0		35.0		
Base Capacity (vph)	1340	1603	1028	1351	918	1619	961	1653	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.16	0.20	0.01	0.01	0.11	0.13	0.00	0.18	
Intersection Summary									

	≯	_	`	~	+	•	•	•	*	1	1	1
		-	•	•	-		7		1	*	+	•
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	<u></u>	₽		<u></u>	ef 👘		<u></u>	4Î		<u> </u>	4Î	_
Traffic Volume (vph)	192	102	188	10	10	7	90	145	42	4	218	54
Future Volume (vph)	192	102	188	10	10	7	90	145	42	4	218	54
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	6.2	6.2		6.2	6.2		6.2	6.2		6.2	6.2	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	0.99		1.00	0.99		1.00	0.99		1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		0.99	1.00	
Frt	1.00	0.90		1.00	0.94		1.00	0.97		1.00	0.97	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1722	1604		1728	1355		1601	1719		1558	1747	
Flt Permitted	0.75	1.00		0.57	1.00		0.58	1.00		0.63	1.00	
Satd. Flow (perm)	1350	1604		1029	1355		971	1719		1029	1747	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	213	113	209	11	11	8	100	161	47	4	242	60
RTOR Reduction (vph)	0	77	0	0	5	0	0	10	0	0	8	(
Lane Group Flow (vph)	213	245	0	11	14	0	100	198	0	4	294	(
Confl. Peds. (#/hr)	4		1	1		4			11	11		
Confl. Bikes (#/hr)												3
Heavy Vehicles (%)	0%	1%	1%	0%	30%	17%	8%	2%	0%	10%	1%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	16.3	16.3		16.3	16.3		12.6	12.6		12.6	12.6	
Effective Green, g (s)	16.3	16.3		16.3	16.3		12.6	12.6		12.6	12.6	
Actuated g/C Ratio	0.39	0.39		0.39	0.39		0.31	0.31		0.31	0.31	
Clearance Time (s)	6.2	6.2		6.2	6.2		6.2	6.2		6.2	6.2	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	532	633		406	534		296	524		313	532	
v/s Ratio Prot		0.15			0.01			0.11			c0.17	
v/s Ratio Perm	c0.16			0.01			0.10	-		0.00		
v/c Ratio	0.40	0.39		0.03	0.03		0.34	0.38		0.01	0.55	
Uniform Delay, d1	9.0	8.9		7.6	7.6		11.1	11.3		10.0	12.0	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.5	0.4		0.0	0.0		0.7	0.5		0.0	1.2	
Delay (s)	9.5	9.3		7.7	7.7		11.8	11.7		10.0	13.2	
Level of Service	A	A		A	A		В	В		В	В	
Approach Delay (s)		9.4			7.7			11.7			13.2	
Approach LOS		A			А			В			В	
Intersection Summary												
HCM 2000 Control Delay			10.9	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	citv ratio		0.47						_			
Actuated Cycle Length (s)			41.3	Si	um of lost	time (s)			12.4			
Intersection Capacity Utiliza	tion		57.3%		U Level o				B			
Analysis Period (min)			15	.0		20.1100			-			

HCM Signalized Intersection Capacity Analysis 4: Legget Drive/Legget Road & Solandt Road /Solandt Roa

ro 10 Report

	→	\mathbf{r}	1	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<u>بر ا</u>			4	Y	
Traffic Volume (veh/h)	538	366	40	147	24	27
Future Volume (Veh/h)	538	366	40	147	24	27
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	598	407	44	163	27	30
Pedestrians	000	101		2	17	
Lane Width (m)				3.7	3.7	
Walking Speed (m/s)				1.1	1.1	
Percent Blockage				0	2	
Right turn flare (veh)				5	<u> </u>	
Median type	None			None		
Median storage veh)	NOTIC			NONC		
Upstream signal (m)	305					
pX, platoon unblocked	505		0.84		0.84	0.84
vC, conflicting volume			1022		1070	820
vC1, stage 1 conf vol			1022		1070	020
vC2, stage 2 conf vol						
vCu, unblocked vol			933		990	694
tC, single (s)			4.2		6.4	6.2
tC, 2 stage (s)			7.2		0.4	0.2
tF (s)			2.3		3.5	3.3
p0 queue free %			2.3 92		87	92
cM capacity (veh/h)			92 582		209	362
,					209	302
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	1005	207	57			
Volume Left	0	44	27			
Volume Right	407	0	30			
cSH	1700	582	269			
Volume to Capacity	0.59	0.08	0.21			
Queue Length 95th (m)	0.0	1.9	6.0			
Control Delay (s)	0.0	3.3	22.0			
Lane LOS		А	С			
Approach Delay (s)	0.0	3.3	22.0			
Approach LOS			С			
Intersection Summary						
Average Delay			1.5			
Intersection Capacity Utiliza	ation		64.8%	IC	U Level o	of Service
Analysis Period (min)			15			

	4	×	1	1	1	Ŧ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		1	≜ †⊅			<u>††</u>	
Traffic Volume (veh/h)	0	5	1370	298	0	0	
Future Volume (Veh/h)	0	5	1370	298	0	0	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	0	6	1522	331	0	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)			1 tonio			Tiono	
Upstream signal (m)			232			247	
pX, platoon unblocked	0.49	0.49	202		0.49		
vC, conflicting volume	1688	926			1853		
vC1, stage 1 conf vol	1000	020			1000		
vC2, stage 2 conf vol							
vCu, unblocked vol	347	0			682		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)	0.0	0.0					
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	99			100		
cM capacity (veh/h)	308	537			449		
,							
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	6	1015	838	0	0		
Volume Left	0	0	0	0	0		
Volume Right	6	0	331	0	0		
cSH	537	1700	1700	1700	1700		
Volume to Capacity	0.01	0.60	0.49	0.00	0.00		
Queue Length 95th (m)	0.3	0.0	0.0	0.0	0.0		
Control Delay (s)	11.8	0.0	0.0	0.0	0.0		
Lane LOS	В						
Approach Delay (s)	11.8	0.0		0.0			
Approach LOS	В						
Intersection Summary							
Average Delay			0.0				
Intersection Capacity Utiliza	ation		60.0%	IC		of Service	
			15	10	O LEVEL		
Analysis Period (min)			10				

	4	•	1	1	1	Ŧ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		1	A			††	
Traffic Volume (veh/h)	0	5	1186	52	0	0	
Future Volume (Veh/h)	0	5	1186	52	0	0	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	0	6	1318	58	0	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)			322			157	
pX, platoon unblocked	0.54	0.54	022		0.54	101	
vC, conflicting volume	1347	688			1376		
vC1, stage 1 conf vol	1011	000			1010		
vC2, stage 2 conf vol							
vCu, unblocked vol	0	0			0		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)	0.0	0.0					
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	99			100		
cM capacity (veh/h)	550	583			872		
,			-				
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	6	879	497	0	0		
Volume Left	0	0	0	0	0		
Volume Right	6	0	58	0	0		
cSH	583	1700	1700	1700	1700		
Volume to Capacity	0.01	0.52	0.29	0.00	0.00		
Queue Length 95th (m)	0.2	0.0	0.0	0.0	0.0		
Control Delay (s)	11.2	0.0	0.0	0.0	0.0		
Lane LOS	В						
Approach Delay (s)	11.2	0.0		0.0			
Approach LOS	В						
Intersection Summary							
Average Delay			0.0				
Intersection Capacity Utilization	ation		46.4%	IC	U Level (of Service	
Analysis Period (min)			15	.0	0.01		
			10				

	•	•	Ť	1	1	Ŧ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations		1	A			††	_	
Traffic Volume (veh/h)	0	19	1186	5	0	0		
Future Volume (Veh/h)	0	19	1186	5	0	0		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90		
Hourly flow rate (vph)	0	21	1318	6	0	0		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)								
Upstream signal (m)			401			78		
pX, platoon unblocked	0.56	0.56			0.56			
vC, conflicting volume	1321	662			1324			
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	15	0			21			
tC, single (s)	6.8	6.9			4.1			
tC, 2 stage (s)								
tF (s)	3.5	3.3			2.2			
p0 queue free %	100	97			100			
cM capacity (veh/h)	563	610			896			
				00.4				
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2			
Volume Total	21	879	445	0	0			
Volume Left	0	0	0	0	0			
Volume Right	21	0	6	0	0			
cSH	610	1700	1700	1700	1700			
Volume to Capacity	0.03	0.52	0.26	0.00	0.00			
Queue Length 95th (m)	0.8	0.0	0.0	0.0	0.0			
Control Delay (s)	11.1	0.0	0.0	0.0	0.0			
Lane LOS	В							
Approach Delay (s)	11.1	0.0		0.0				
Approach LOS	В							
Intersection Summary								
Average Delay			0.2					
Intersection Capacity Utiliza	ation		44.8%	IC	U Level of	of Service		
Analysis Period (min)	-		15					
			10					

Queues 9: March Road & Site Access 4 (Lifestyle Street)

	≯	-	∢	-	•	1	1	1	Ŧ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	6	12	170	148	6	1253	112	286	1960	
v/c Ratio	0.04	0.05	0.81	0.41	0.07	0.72	0.13	0.83	0.76	
Control Delay	38.4	27.7	71.6	11.1	18.6	24.6	3.5	62.4	10.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	38.4	27.7	71.6	11.1	18.6	24.6	3.5	62.4	10.5	
Queue Length 50th (m)	1.1	1.1	34.7	1.1	0.7	112.4	0.0	58.2	116.3	
Queue Length 95th (m)	4.8	6.4	#65.1	17.9	3.4	143.8	9.2	#89.4	145.3	
Internal Link Dist (m)		124.3		188.6		54.1			77.0	
Turn Bay Length (m)	37.5		65.0		37.5			75.0		
Base Capacity (vph)	163	297	237	387	91	1748	836	392	2575	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.04	0.04	0.72	0.38	0.07	0.72	0.13	0.73	0.76	
Intersection Summary										

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	٦	-	\mathbf{F}	*	ł	•	•	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	4Î		٦	et		٦	<u></u>	1	٦	↑ ĵ≽	
Traffic Volume (vph)	5	5	5	153	5	128	5	1128	101	257	1759	5
Future Volume (vph)	5	5	5	153	5	128	5	1128	101	257	1759	5
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.5	4.5		4.5	4.5		4.5	4.5	4.5	4.5	4.5	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95	1.00	1.00	0.95	
Frt	1.00	0.93		1.00	0.86		1.00	1.00	0.85	1.00	1.00	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1695	1650		1695	1528		1695	3390	1517	1695	3389	
Flt Permitted	0.52	1.00		0.75	1.00		0.10	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	925	1650		1338	1528		179	3390	1517	1695	3389	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	6	6	6	170	6	142	6	1253	112	286	1954	6
RTOR Reduction (vph)	0	5	0	0	120	0	0	0	54	0	0	0
Lane Group Flow (vph)	6	7	0	170	28	0	6	1253	58	286	1960	0
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	Prot	NA	
Protected Phases		4			8			2		1	6	
Permitted Phases	4			8			2		2			
Actuated Green, G (s)	17.4	17.4		17.4	17.4		56.8	56.8	56.8	22.3	83.6	
Effective Green, g (s)	17.4	17.4		17.4	17.4		56.8	56.8	56.8	22.3	83.6	
Actuated g/C Ratio	0.16	0.16		0.16	0.16		0.52	0.52	0.52	0.20	0.76	
Clearance Time (s)	4.5	4.5		4.5	4.5		4.5	4.5	4.5	4.5	4.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	146	261		211	241		92	1750	783	343	2575	
v/s Ratio Prot		0.00			0.02			0.37		c0.17	c0.58	
v/s Ratio Perm	0.01			c0.13			0.03		0.04			
v/c Ratio	0.04	0.03		0.81	0.12		0.07	0.72	0.07	0.83	0.76	
Uniform Delay, d1	39.2	39.1		44.7	39.7		13.3	20.4	13.4	42.1	7.5	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.1	0.0		19.6	0.2		1.4	2.5	0.2	15.8	2.2	
Delay (s)	39.3	39.2		64.3	39.9		14.7	23.0	13.6	57.9	9.7	
Level of Service	D	D		Е	D		В	С	В	Е	А	
Approach Delay (s)		39.2			53.0			22.1			15.8	
Approach LOS		D			D			С			В	
Intersection Summary												
HCM 2000 Control Delay			21.1	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	icity ratio		0.80									
Actuated Cycle Length (s)			110.0		um of lost				13.5			
Intersection Capacity Utiliza	ation		82.5%	IC	CU Level of	of Service)		E			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

HCM Unsignalized Intersection Capacity Analysis 10: Site Access 5 (Resdiential)/McKinnley Drive & Terry Fox Drive

	٦	-	$\mathbf{\hat{v}}$	∢	+	•	•	1	1	5	Ļ	∢
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	ĥ			eî				1		\$	
Traffic Volume (veh/h)	67	772	84	0	225	21	0	0	5	132	0	47
Future Volume (Veh/h)	67	772	84	0	225	21	0	0	5	132	0	47
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	74	858	93	0	250	23	0	0	6	147	0	52
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		Raised			Raised							
Median storage veh)		1			1							
Upstream signal (m)		153										
pX, platoon unblocked				0.85			0.85	0.85	0.85	0.85	0.85	
vC, conflicting volume	273			951			1366	1326	904	1274	1360	262
vC1, stage 1 conf vol							1052	1052		262	262	
vC2, stage 2 conf vol							314	273		1012	1099	
vCu, unblocked vol	273			856			1343	1295	802	1234	1336	262
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)							6.1	5.5		6.1	5.5	
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	94			100			100	100	98	30	100	93
cM capacity (veh/h)	1290			669			191	215	328	211	207	777
Direction, Lane #	EB 1	EB 2	WB 1	NB 1	SB 1							
Volume Total	74	951	273	6	199							
Volume Left	74	0	0	0	147							
Volume Right	0	93	23	6	52							
cSH	1290	1700	1700	328	260							
Volume to Capacity	0.06	0.56	0.16	0.02	0.76							
Queue Length 95th (m)	1.4	0.0	0.0	0.4	42.7							
Control Delay (s)	8.0	0.0	0.0	16.2	52.8							
Lane LOS	А			С	F							
Approach Delay (s)	0.6		0.0	16.2	52.8							
Approach LOS				С	F							
Intersection Summary												
Average Delay			7.4									
Intersection Capacity Utiliza	ation		72.3%	IC	CU Level o	f Service			С			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis 11: Legget Drive/Legget Road & Site Access 6 (Lifestyle Street)

	۶	-	$\mathbf{\hat{z}}$	∢	+	•	•	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			4			÷	
Traffic Volume (veh/h)	5	26	248	19	5	5	26	9	43	26	323	5
Future Volume (Veh/h)	5	26	248	19	5	5	26	9	43	26	323	5
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	6	29	276	21	6	6	29	10	48	29	359	6
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	521	536	362	802	515	34	365			58		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	521	536	362	802	515	34	365			58		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	99	93	60	87	99	99	98			98		
cM capacity (veh/h)	444	432	683	165	444	1039	1194			1546		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	311	33	87	394								
Volume Left	6	21	29	29								
Volume Right	276	6	48	6								
cSH	641	225	1194	1546								
Volume to Capacity	0.48	0.15	0.02	0.02								
Queue Length 95th (m)	20.2	3.8	0.6	0.4								
Control Delay (s)	15.8	23.7	2.8	0.7								
Lane LOS	С	C	A	A								
Approach Delay (s)	15.8	23.7	2.8	0.7								
Approach LOS	C	C		•								
Intersection Summary												
Average Delay			7.5									
Intersection Capacity Utiliza	ation		45.0%	IC	Ulevelo	of Service			А			
Analysis Period (min)			15						73			

	٦	$\mathbf{\hat{z}}$	•	1	Ļ	∢
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Υ			र्स	4Î	
Traffic Volume (veh/h)	27	7	5	26	298	332
Future Volume (Veh/h)	27	7	5	26	298	332
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	30	8	6	29	331	369
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)				388		
pX, platoon unblocked						
vC, conflicting volume	556	516	700			
vC1, stage 1 conf vol		••••				
vC2, stage 2 conf vol						
vCu, unblocked vol	556	516	700			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)	0.1	J.L				
tF (s)	3.5	3.3	2.2			
p0 queue free %	94	99	99			
cM capacity (veh/h)	488	559	897			
,						
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	38	35	700			
Volume Left	30	6	0			
Volume Right	8	0	369			
cSH	502	897	1700			
Volume to Capacity	0.08	0.01	0.41			
Queue Length 95th (m)	1.9	0.2	0.0			
Control Delay (s)	12.8	1.6	0.0			
Lane LOS	В	А				
Approach Delay (s)	12.8	1.6	0.0			
Approach LOS	В					
Intersection Summary						
Average Delay			0.7			
Intersection Capacity Utiliza	ation		48.0%	10	CU Level o	of Service
Analysis Period (min)			15			
			10			

	۶	\mathbf{i}	•	1	ţ	~	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			र्स	4		
Traffic Volume (veh/h)	7	30	3	19	332	5	
Future Volume (Veh/h)	7	30	3	19	332	5	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	8	33	3	21	369	6	
Pedestrians			Ū			•	
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)				NONE	NONC		
Upstream signal (m)				227			
pX, platoon unblocked				221			
vC, conflicting volume	399	372	375				
vC1, stage 1 conf vol	000	572	515				
vC2, stage 2 conf vol							
vCu, unblocked vol	399	372	375				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)	0.4	0.2	4.1				
	3.5	3.3	2.2				
tF (s) p0 queue free %	99	95	100				
	99 605	95 674	1183				
cM capacity (veh/h)	600	0/4	1103				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	41	24	375				
Volume Left	8	3	0				
Volume Right	33	0	6				
cSH	659	1183	1700				
Volume to Capacity	0.06	0.00	0.22				
Queue Length 95th (m)	1.5	0.1	0.0				
Control Delay (s)	10.8	1.0	0.0				
Lane LOS	В	А					
Approach Delay (s)	10.8	1.0	0.0				
Approach LOS	В						
Intersection Summary							
Average Delay			1.1				
Intersection Capacity Utiliza	ition		28.8%	IC	CU Level o	of Service	
Analysis Period (min)			15				
			10				

Queues 1: March Road N/March Road S & Morgan's Grant Way/Shirley's Brook Dr

06/01/2022

	-	\mathbf{r}	4	-	×	1	Ť	۲	1	Ļ	∢	
Lane Group	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Group Flow (vph)	71	70	87	73	230	267	2486	150	156	1277	22	
v/c Ratio	0.36	0.28	0.59	0.38	0.66	0.67	0.90	0.16	0.67	0.52	0.03	
Control Delay	56.6	10.7	69.2	57.2	19.2	68.7	11.5	0.0	66.7	23.6	0.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	56.6	10.7	69.2	57.2	19.2	68.7	11.5	0.0	66.7	23.6	0.1	
Queue Length 50th (m)	17.2	0.0	21.6	17.7	6.1	63.3	219.1	0.0	38.4	79.9	0.0	
Queue Length 95th (m)	30.3	10.6	36.8	30.8	30.2	m70.7	m205.7	m0.0	58.9	93.0	0.0	
Internal Link Dist (m)	116.4			136.8			274.6			145.2		
Turn Bay Length (m)		10.0	38.0		38.0	130.0		25.0	68.0		25.0	
Base Capacity (vph)	408	428	309	401	505	399	2756	911	242	2442	777	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.17	0.16	0.28	0.18	0.46	0.67	0.90	0.16	0.64	0.52	0.03	
Intersection Summary												

m Volume for 95th percentile queue is metered by upstream signal.

1: March Road N/Ma	arch Ro	bad S	& ivior	gan s C	srant v	vay/Sr	nirieys	BLOOK	(Dr		00/0)1/2022
	۶	-	\mathbf{F}	∢	-	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	1	ň	†	1	ሻ	^	1	ሻ	^	1
Traffic Volume (vph)	12	52	63	78	66	207	240	2237	135	140	1149	20
Future Volume (vph)	12	52	63	78	66	207	240	2237	135	140	1149	20
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		7.5	7.5	7.5	7.5	7.5	6.4	6.1	6.1	6.4	6.1	6.1
Lane Util. Factor		1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.00	1.00	0.91	1.00
Frpb, ped/bikes		1.00	0.98	1.00	1.00	0.98	1.00	1.00	0.95	1.00	1.00	0.96
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.99	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1802	1514	1706	1655	1450	1679	4644	1476	1729	4969	1488
Flt Permitted		0.93	1.00	0.71	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)		1684	1514	1276	1655	1450	1679	4644	1476	1729	4969	1488
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	13	58	70	87	73	230	267	2486	150	156	1277	22
RTOR Reduction (vph)	0	0	62	0	0	180	0	0	37	0	0	11
Lane Group Flow (vph)	0	71	8	87	73	50	267	2486	113	156	1277	11
Confl. Peds. (#/hr)	3		3	3		3	5		6	6		5
Confl. Bikes (#/hr)			3						8			1
Heavy Vehicles (%)	0%	0%	0%	1%	10%	5%	3%	7%	0%	0%	0%	0%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases		4			8		5	2		1	6	
Permitted Phases	4		4	8		8			2			6
Actuated Green, G (s)		15.2	15.2	15.2	15.2	15.2	30.9	77.1	77.1	17.7	63.9	63.9
Effective Green, g (s)		15.2	15.2	15.2	15.2	15.2	30.9	77.1	77.1	17.7	63.9	63.9
Actuated g/C Ratio		0.12	0.12	0.12	0.12	0.12	0.24	0.59	0.59	0.14	0.49	0.49
Clearance Time (s)		7.5	7.5	7.5	7.5	7.5	6.4	6.1	6.1	6.4	6.1	6.1
Vehicle Extension (s)		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		196	177	149	193	169	399	2754	875	235	2442	731
v/s Ratio Prot					0.04		c0.16	c0.54		0.09	0.26	
v/s Ratio Perm		0.04	0.01	c0.07		0.03			0.08			0.01
v/c Ratio		0.36	0.05	0.58	0.38	0.29	0.67	0.90	0.13	0.66	0.52	0.01
Uniform Delay, d1		52.9	51.0	54.4	53.0	52.5	44.9	23.2	11.7	53.3	22.6	16.9
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.49	0.37	0.00	1.00	1.00	1.00
Incremental Delay, d2		1.1	0.1	5.7	1.2	1.0	0.4	0.5	0.0	6.9	0.8	0.0
Delay (s)		54.1	51.1	60.1	54.3	53.5	67.3	9.2	0.0	60.2	23.4	17.0
Level of Service		D	D	E	D	D	E	А	A	E	С	В
Approach Delay (s)		52.6			55.1			14.1			27.3	
Approach LOS		D			E			В			С	
Intersection Summary												
HCM 2000 Control Delay			22.4	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capaci	ity ratio		0.84									
Actuated Cycle Length (s)			130.0	S	um of losi	t time (s)			20.0			
Intersection Capacity Utilizati	on		88.2%			of Service			E			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 1: March Road N/March Road S & Morgan's Grant Way/Shirley's Brook Dr

Queues 2: March Road & Terry Fox Drive

	۶	-	\mathbf{F}	1	+	×	1	1	1	1	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Group Flow (vph)	310	180	391	163	287	357	360	2232	153	124	1129	181
v/c Ratio	0.77	0.29	0.75	0.56	0.57	0.79	0.73	1.18	0.13	0.64	0.63	0.29
Control Delay	68.3	46.0	19.7	63.6	54.7	26.1	44.6	118.1	2.3	65.5	48.8	18.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	68.3	46.0	19.7	63.6	54.7	26.1	44.6	118.1	2.3	65.5	48.8	18.2
Queue Length 50th (m)	39.7	21.4	17.0	20.9	37.2	20.8	42.4	~254.1	3.7	31.9	76.0	7.1
Queue Length 95th (m)	55.3	29.3	50.2	31.6	45.8	52.0	m38.9 r	m#276.1	m3.6	54.1	93.7	26.8
Internal Link Dist (m)		245.5			137.0			283.0			274.6	
Turn Bay Length (m)	104.0		52.0	72.0		100.0	142.0		82.0	100.0		98.0
Base Capacity (vph)	435	931	625	418	912	594	493	1895	1294	226	1788	627
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.71	0.19	0.63	0.39	0.31	0.60	0.73	1.18	0.12	0.55	0.63	0.29

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite. ~

Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

HCM Signalized Intersection Capacity Analysis 2: March Road & Terry Fox Drive

06/01/2022

	٦	-	\mathbf{F}	∢	←	*	•	t	۲	5	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	<u></u>	1	ሻሻ	<u></u>	1	ሻሻ	ተተተ	1	۲.	<u></u>	1
Traffic Volume (vph)	279	162	352	147	258	321	324	2009	138	112	1016	163
Future Volume (vph)	279	162	352	147	258	321	324	2009	138	112	1016	163
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	6.8	7.0	7.0	6.8	7.0	7.0	6.9	6.7	6.7	6.9	6.7	6.7
Lane Util. Factor	0.97	0.95	1.00	0.97	0.95	1.00	0.97	0.91	1.00	1.00	0.91	1.00
Frpb, ped/bikes	1.00	1.00	0.96	1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.96
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	3288	3458	1463	3164	3390	1469	3288	4687	1484	1729	4871	1397
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	3288	3458	1463	3164	3390	1469	3288	4687	1484	1729	4871	1397
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	310	180	391	163	287	357	360	2232	153	124	1129	181
RTOR Reduction (vph)	0	0	259	0	0	231	0	0	37	0	0	115
Lane Group Flow (vph)	310	180	132	163	287	126	360	2232	116	124	1129	66
Confl. Peds. (#/hr)	9		29	29		9	21		13	13		21
Confl. Bikes (#/hr)			1						1			
Heavy Vehicles (%)	2%	0%	1%	6%	2%	3%	2%	6%	1%	0%	2%	6%
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	custom	Prot	NA	Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			4			8			274			6
Actuated Green, G (s)	16.0	23.5	23.5	12.0	19.5	19.5	19.4	52.5	98.7	14.6	47.7	47.7
Effective Green, g (s)	16.0	23.5	23.5	12.0	19.5	19.5	19.4	52.5	98.7	14.6	47.7	47.7
Actuated g/C Ratio	0.12	0.18	0.18	0.09	0.15	0.15	0.15	0.40	0.76	0.11	0.37	0.37
Clearance Time (s)	6.8	7.0	7.0	6.8	7.0	7.0	6.9	6.7		6.9	6.7	6.7
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	404	625	264	292	508	220	490	1892	1126	194	1787	512
v/s Ratio Prot	c0.09	0.05		0.05	0.08		c0.11	c0.48		0.07	0.23	
v/s Ratio Perm			c0.09			c0.09			0.08			0.05
v/c Ratio	0.77	0.29	0.50	0.56	0.56	0.57	0.73	1.18	0.10	0.64	0.63	0.13
Uniform Delay, d1	55.2	46.0	48.0	56.5	51.3	51.4	52.8	38.8	4.1	55.2	33.9	27.4
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.83	1.10	3.44	0.95	1.32	3.37
Incremental Delay, d2	8.5	0.3	1.5	2.3	1.4	3.6	0.5	81.4	0.0	6.0	1.5	0.5
Delay (s)	63.7	46.3	49.5	58.8	52.8	54.9	44.3	124.1	14.1	58.6	46.4	92.7
Level of Service	E	D	D	E	D	D	D	F	В	E	D	F
Approach Delay (s)		53.8			54.9			107.5			53.3	
Approach LOS		D			D			F			D	
Intersection Summary												
HCM 2000 Control Delay			79.0	Н	CM 2000	Level of	Service		E			
HCM 2000 Volume to Capa	acity ratio		0.97									
Actuated Cycle Length (s)			130.0	S	um of los	t time (s)			27.4			
Intersection Capacity Utiliza	ation		97.4%			of Service)		F			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 3: March Road & Solandt Road

	≯	-	\mathbf{r}	4	-	1	Ť	1	Ŧ	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	107	43	609	628	278	108	2557	29	1724	
v/c Ratio	0.74	0.18	0.56	1.54	0.79	0.64	1.42	0.34	1.07	
Control Delay	85.8	48.8	5.0	293.9	47.2	40.7	217.6	70.3	78.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	85.8	48.8	5.0	293.9	47.2	40.7	217.6	70.3	78.5	
Queue Length 50th (m)	27.0	9.9	17.9	~116.4	42.8	12.0	~486.1	7.3	~267.0	
Queue Length 95th (m)	#52.5	19.8	34.3	#152.9	70.5	#51.2	#543.0	#18.9	#314.7	
Internal Link Dist (m)		112.5			205.8		333.2		208.2	
Turn Bay Length (m)	65.0		100.0	90.0		157.0		140.0		
Base Capacity (vph)	156	343	1115	407	423	169	1805	86	1604	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.69	0.13	0.55	1.54	0.66	0.64	1.42	0.34	1.07	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite. ~

Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis 3: March Road & Solandt Road

06/01/2022

		-	•	-	-			Т			Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	•	1	ካካ	et 🗧		٦	↑ ĵ≽		٦	≜ ⊅	
Traffic Volume (vph)	96	39	548	565	61	189	97	2274	27	26	1469	83
Future Volume (vph)	96	39	548	565	61	189	97	2274	27	26	1469	83
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	5.9	6.5	6.5	5.9	6.5		6.3	6.3		4.5	6.3	
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00		1.00	0.95		1.00	0.95	
Frpb, ped/bikes	1.00	1.00	0.98	1.00	0.98		1.00	1.00		1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	1.00	0.85	1.00	0.89		1.00	1.00		1.00	0.99	
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1616	1784	1437	3288	1538		1712	3319		1695	3327	
Flt Permitted	0.95	1.00	1.00	0.95	1.00		0.06	1.00		0.95	1.00	
Satd. Flow (perm)	1616	1784	1437	3288	1538		105	3319		1695	3327	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	107	43	609	628	68	210	108	2527	30	29	1632	92
RTOR Reduction (vph)	0	0	104	0	91	0	0	0	0	0	3	0
Lane Group Flow (vph)	107	43	505	628	187	0	108	2557	0	29	1721	0
Confl. Peds. (#/hr)	7		8	8		7	6					6
Confl. Bikes (#/hr)			1			1			1			12
Heavy Vehicles (%)	7%	2%	5%	2%	3%	3%	1%	4%	1%	2%	3%	2%
Turn Type	Prot	NA	custom	Prot	NA		pm+pt	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			42				2					
Actuated Green, G (s)	11.7	17.5	86.4	16.1	21.9		77.7	68.9		4.3	62.6	
Effective Green, g (s)	11.7	17.5	86.4	16.1	21.9		77.7	68.9		4.3	62.6	
Actuated g/C Ratio	0.09	0.13	0.66	0.12	0.17		0.60	0.53		0.03	0.48	
Clearance Time (s)	5.9	6.5		5.9	6.5		6.3	6.3		4.5	6.3	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	145	240	955	407	259		171	1759		56	1602	
v/s Ratio Prot	0.07	0.02		c0.19	c0.12		c0.04	c0.77		0.02	0.52	
v/s Ratio Perm			0.35				0.33					
v/c Ratio	0.74	0.18	0.53	1.54	0.72		0.63	1.45		0.52	1.07	
Uniform Delay, d1	57.7	49.9	11.3	57.0	51.2		29.4	30.5		61.8	33.7	
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	17.7	0.4	0.5	256.3	9.5		7.4	207.3		7.9	45.4	
Delay (s)	75.3	50.2	11.8	313.3	60.6		36.8	237.8		69.7	79.1	
Level of Service	E	D	В	F	E		D	F		E	E	
Approach Delay (s)		22.9			235.7			229.7			78.9	
Approach LOS		С			F			F			Е	
Intersection Summary												
HCM 2000 Control Delay			161.3	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capaci	ity ratio		1.36									
Actuated Cycle Length (s)			130.0	S	um of lost	time (s)			25.0			
Intersection Capacity Utilizati	on		119.0%		U Level o)		Н			
Analysis Period (min)			15									
c Critical Lane Group												

Queues 4: Legget Drive/Legget Road & Solandt Road /Solandt Road

	٦	-	4	-	•	1	1	Ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	34	59	41	129	293	91	3	706	
v/c Ratio	0.17	0.19	0.19	0.54	0.70	0.07	0.01	0.97	
Control Delay	37.5	11.6	37.7	45.3	29.6	4.7	19.0	52.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	37.5	11.6	37.7	45.3	29.6	4.7	19.0	52.7	
Queue Length 50th (m)	5.6	0.2	6.8	21.9	33.6	4.2	0.3	113.9	
Queue Length 95th (m)	14.2	10.6	16.4	40.8	66.5	10.1	2.3	#211.4	
Internal Link Dist (m)		205.8		177.5		261.1		203.5	
Turn Bay Length (m)	130.0		42.0		65.0		35.0		
Base Capacity (vph)	443	585	476	510	482	1317	467	729	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.08	0.10	0.09	0.25	0.61	0.07	0.01	0.97	
Interpretion Summery									

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

HCM Signalized Intersection Capacity Analysis
4: Legget Drive/Legget Road & Solandt Road /Solandt Road

	≯	-	\mathbf{i}	4	+	*	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	4Î		5	4Î		۲.	eî.		۲.	eî 🗧	
Traffic Volume (vph)	31	1	52	37	107	9	264	79	3	3	207	428
Future Volume (vph)	31	1	52	37	107	9	264	79	3	3	207	428
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	6.2	6.2		6.2	6.2		6.2	6.2		6.2	6.2	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	0.98		1.00	1.00		1.00	1.00		1.00	0.99	
Flpb, ped/bikes	0.99	1.00		1.00	1.00		1.00	1.00		0.98	1.00	
Frt	1.00	0.85		1.00	0.99		1.00	1.00		1.00	0.90	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1714	1502		1725	1391		1601	1774		1533	1616	
Flt Permitted	0.67	1.00		0.72	1.00		0.09	1.00		0.70	1.00	
Satd. Flow (perm)	1217	1502		1305	1391		147	1774		1127	1616	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	34	1	58	41	119	10	293	88	3	3	230	476
RTOR Reduction (vph)	0	48	0	0	3	0	0	1	0	0	55	0
Lane Group Flow (vph)	34	11	0	41	126	0	293	90	0	3	651	0
Confl. Peds. (#/hr)	4		1	1		4			11	11		
Confl. Bikes (#/hr)												3
Heavy Vehicles (%)	0%	1%	1%	0%	30%	17%	8%	2%	0%	10%	1%	0%
Turn Type	Perm	NA		Perm	NA		pm+pt	NA		Perm	NA	
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8			2	_		6	•	
Actuated Green, G (s)	16.3	16.3		16.3	16.3		67.4	67.4		40.1	40.1	
Effective Green, g (s)	16.3	16.3		16.3	16.3		67.4	67.4		40.1	40.1	
Actuated g/C Ratio	0.17	0.17		0.17	0.17		0.70	0.70		0.42	0.42	
Clearance Time (s)	6.2	6.2		6.2	6.2		6.2	6.2		6.2	6.2	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	206	254		221	235		422	1244		470	674	
v/s Ratio Prot	200	0.01			c0.09		c0.15	0.05			c0.40	
v/s Ratio Perm	0.03	0.01		0.03	00.00		0.33	0.00		0.00	00.10	
v/c Ratio	0.17	0.04		0.19	0.53		0.69	0.07		0.01	0.97	
Uniform Delay, d1	34.1	33.4		34.2	36.4		24.2	4.5		16.4	27.3	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.4	0.1		0.4	2.3		4.9	0.0		0.0	26.1	
Delay (s)	34.5	33.4		34.6	38.8		29.1	4.5		16.4	53.4	
Level of Service	C	C		C	D		C	A		B	D	
Approach Delay (s)	Ŭ	33.8		U	37.8		U	23.3		0	53.2	
Approach LOS		C			D			C			D	
Intersection Summary												
HCM 2000 Control Delay			41.5	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		0.80									
Actuated Cycle Length (s)			96.1		um of losi				18.6			
Intersection Capacity Utiliza	ition		83.1%	IC	U Level	of Service	Э		E			
Analysis Period (min)			15									
c Critical Lane Group												

	-	\mathbf{i}	4	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4Î			स	¥	
Traffic Volume (veh/h)	142	43	21	621	133	37
Future Volume (Veh/h)	142	43	21	621	133	37
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	158	48	23	690	148	41
Pedestrians				2	17	
Lane Width (m)				3.7	3.7	
Walking Speed (m/s)				1.1	1.1	
Percent Blockage				0	2	
Right turn flare (veh)				Ŭ	-	
Median type	None			None		
Median storage veh)				1.0110		
Upstream signal (m)	302					
pX, platoon unblocked	002					
vC, conflicting volume			223		935	201
vC1, stage 1 conf vol			220		000	201
vC2, stage 2 conf vol						
vCu, unblocked vol			223		935	201
tC, single (s)			4.2		6.4	6.2
tC, 2 stage (s)			1.4		0.1	0.2
tF (s)			2.3		3.5	3.3
p0 queue free %			98		48	95
cM capacity (veh/h)			1279		284	818
					201	010
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	206	713	189			
Volume Left	0	23	148			
Volume Right	48	0	41			
cSH	1700	1279	330			
Volume to Capacity	0.12	0.02	0.57			
Queue Length 95th (m)	0.0	0.4	25.6			
Control Delay (s)	0.0	0.5	29.5			
Lane LOS		А	D			
Approach Delay (s)	0.0	0.5	29.5			
Approach LOS			D			
Intersection Summary						
Average Delay			5.3			
Intersection Capacity Utiliz	ation		68.2%	IC	U Level o	of Service
Analysis Period (min)			15			

	∢	•	1	1	1	Ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		1	≜ †⊅			<u>††</u>	
Traffic Volume (veh/h)	0	5	2400	42	0	0	
Future Volume (Veh/h)	0	5	2400	42	0	0	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	0	6	2667	47	0	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)			232			247	
pX, platoon unblocked	0.48	0.48	202		0.48		
vC, conflicting volume	2690	1357			2714		
vC1, stage 1 conf vol	2000	1001			2111		
vC2, stage 2 conf vol							
vCu, unblocked vol	2355	0			2404		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)	0.0	0.0					
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	99			100		
cM capacity (veh/h)	14	521			94		
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	6	1778	936	0	0		
Volume Left	0	0	0	0	0		
Volume Right	6	0	47	0	0		
cSH	521	1700	1700	1700	1700		
Volume to Capacity	0.01	1.05	0.55	0.00	0.00		
Queue Length 95th (m)	0.3	0.0	0.0	0.0	0.0		
Control Delay (s)	12.0	0.0	0.0	0.0	0.0		
Lane LOS	В						
Approach Delay (s)	12.0	0.0		0.0			
Approach LOS	В						
Intersection Summary							
Average Delay			0.0				
Intersection Capacity Utiliza	ation		81.4%			of Service	
				IC	O Level (
Analysis Period (min)			15				

	4	*	1	1	1	Ŧ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	J
Lane Configurations		1	≜ †⊅			<u>††</u>	
Traffic Volume (veh/h)	0	5	2359	23	0	0	
Future Volume (Veh/h)	0	5	2359	23	0	0	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	0	6	2621	26	0	0	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)			1 tonio			Tiono	
Upstream signal (m)			322			157	
pX, platoon unblocked	0.48	0.48	ULL		0.48	101	
vC, conflicting volume	2634	1324			2647		
vC1, stage 1 conf vol	2004	1024			2041		
vC2, stage 2 conf vol							
vCu, unblocked vol	2243	0			2270		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)	0.0	0.5			7.1		
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	99			100		
cM capacity (veh/h)	17	524			100		
,							
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	6	1747	900	0	0		
Volume Left	0	0	0	0	0		
Volume Right	6	0	26	0	0		
cSH	524	1700	1700	1700	1700		
Volume to Capacity	0.01	1.03	0.53	0.00	0.00		
Queue Length 95th (m)	0.3	0.0	0.0	0.0	0.0		
Control Delay (s)	11.9	0.0	0.0	0.0	0.0		
Lane LOS	В						
Approach Delay (s)	11.9	0.0		0.0			
Approach LOS	В						
Intersection Summary							
Average Delay			0.0				
Intersection Capacity Utiliza	ation		79.6%			of Service	
Analysis Period (min)			19.0%	iU			
			10				

	4	*	1	۲	1	Ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		1	≜ †}⊧			<u>†</u> †	
Traffic Volume (veh/h)	0	19	2359	5	0	0	
Future Volume (Veh/h)	0	19	2359	5	0	0	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	0	21	2621	6	0	0	
Pedestrians	•			Ū	•	•	
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)			401			78	
pX, platoon unblocked	0.49	0.49			0.49	10	
vC, conflicting volume	2624	1314			2627		
vC1, stage 1 conf vol	2024	1014			2021		
vC2, stage 2 conf vol							
vCu, unblocked vol	2227	0			2233		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)	0.0	0.9			4.1		
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	96			100		
cM capacity (veh/h)	18	528			111		
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	21	1747	880	0	0		
Volume Left	0	0	0	0	0		
Volume Right	21	0	6	0	0		
cSH	528	1700	1700	1700	1700		
Volume to Capacity	0.04	1.03	0.52	0.00	0.00		
Queue Length 95th (m)	0.9	0.0	0.0	0.0	0.0		
Control Delay (s)	12.1	0.0	0.0	0.0	0.0		
Lane LOS	В						
Approach Delay (s)	12.1	0.0		0.0			
Approach LOS	В						
Intersection Summary							
Average Delay			0.1				
Intersection Capacity Utiliz	zation		79.0%	IC		of Service	
Analysis Period (min)			15	10			
			15				

Queues 9: March Road & Site Access 4 (Lifestyle Street)

× + < *	⊢ ∢	t	1	1	ţ
Lane Group EBL EBT WBL W	/BT NBL	. NBT	NBR	SBL	SBT
Lane Group Flow (vph) 6 12 230 3	349 6	2414	194	81	1626
v/c Ratio 0.09 0.03 0.77 0	0.05 0.05	1.14	0.20	0.60	0.68
Control Delay 40.6 26.4 64.3 6	62.5 4.4	78.0	0.2	45.7	11.3
Queue Delay 0.0 0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0
Total Delay 40.6 26.4 64.3 6	62.5 4.4	78.0	0.2	45.7	11.3
Queue Length 50th (m) 1.2 1.2 54.3 6	69.6 0.2	~385.2	0.0	2.4	185.5
Queue Length 95th (m) 5.0 6.2 82.0 #11	2.5 m0.1	m41.1	m0.0	m#23.6	221.1
Internal Link Dist (m) 124.3 18	88.6	54.1			89.2
Turn Bay Length (m) 37.5	37.5	i		37.5	
Base Capacity (vph) 81 429 344 4	444 129	2122	992	134	2395
Starvation Cap Reductn 0 0 0	0 0	0	0	0	0
Spillback Cap Reductn 0 0 0	0 0	0	0	0	0
Storage Cap Reductn 0 0 0	0 0	0	0	0	0
Reduced v/c Ratio 0.07 0.03 0.67 0	0.05 0.05	1.14	0.20	0.60	0.68

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

HCM Signalized Intersection Capacity Analysis 9: March Road & Site Access 4 (Lifestyle Street)

06/01/2022

	٦	-	\mathbf{F}	•	+	*	•	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	¢Î		۲.	et		٦	<u></u>	1	٦	∱1 ≱	
Traffic Volume (vph)	5	5	5	207	5	309	5	2173	175	73	1458	5
Future Volume (vph)	5	5	5	207	5	309	5	2173	175	73	1458	5
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.5	4.5		4.5	4.5		4.5	4.5	4.5	4.5	4.5	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95	1.00	1.00	0.95	
Frt	1.00	0.93		1.00	0.85		1.00	1.00	0.85	1.00	1.00	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1695	1650		1695	1521		1695	3390	1517	1695	3388	
Flt Permitted	0.18	1.00		0.75	1.00		0.12	1.00	1.00	0.05	1.00	
Satd. Flow (perm)	316	1650		1338	1521		207	3390	1517	83	3388	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	6	6	6	230	6	343	6	2414	194	81	1620	6
RTOR Reduction (vph)	0	5	0	0	54	0	0	0	43	0	0	0
Lane Group Flow (vph)	6	7	0	230	295	0	6	2414	151	81	1626	0
Turn Type	Perm	NA		Perm	NA		Perm	NA	Perm	pm+pt	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2		2	6		
Actuated Green, G (s)	29.1	29.1		29.1	29.1		81.3	81.3	81.3	91.9	91.9	
Effective Green, g (s)	29.1	29.1		29.1	29.1		81.3	81.3	81.3	91.9	91.9	
Actuated g/C Ratio	0.22	0.22		0.22	0.22		0.63	0.63	0.63	0.71	0.71	
Clearance Time (s)	4.5	4.5		4.5	4.5		4.5	4.5	4.5	4.5	4.5	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	70	369		299	340		129	2120	948	134	2395	
v/s Ratio Prot		0.00			c0.19			c0.71		0.03	c0.48	
v/s Ratio Perm	0.02			0.17			0.03		0.10	0.40		
v/c Ratio	0.09	0.02		0.77	0.87		0.05	1.14	0.16	0.60	0.68	
Uniform Delay, d1	39.9	39.3		47.3	48.6		9.4	24.4	10.1	32.8	10.7	
Progression Factor	1.00	1.00		1.00	1.00		0.38	0.44	0.04	1.93	0.85	
Incremental Delay, d2	0.5	0.0		11.3	20.0		0.1	63.0	0.0	6.1	1.3	
Delay (s)	40.5	39.4		58.6	68.6		3.6	73.8	0.4	69.4	10.4	
Level of Service	D	D		E	E		А	Е	А	Е	В	
Approach Delay (s)		39.7			64.6			68.2			13.2	
Approach LOS		D			Е			Е			В	
Intersection Summary												
HCM 2000 Control Delay			48.6	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	icity ratio		1.06									
Actuated Cycle Length (s)			130.0	S	um of lost	t time (s)			13.5			
Intersection Capacity Utiliza	ation		92.0%	IC	CU Level o	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

HCM Unsignalized Intersection Capacity Analysis 10: Site Access 5 (Residential)/McKinnley Drive & Terry Fox Drive

	٠	-	$\mathbf{\hat{z}}$	4	+	•	•	t	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	f,			et 🗧				1		\$	
Traffic Volume (veh/h)	20	263	150	0	685	111	0	0	5	34	5	54
Future Volume (Veh/h)	20	263	150	0	685	111	0	0	5	34	5	54
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	22	292	167	0	761	123	0	0	6	38	6	60
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		Raised			Raised							
Median storage veh)		1			1							
Upstream signal (m)		161										
pX, platoon unblocked				0.93			0.93	0.93	0.93	0.93	0.93	
vC, conflicting volume	884			459			1305	1304	376	1164	1326	822
vC1, stage 1 conf vol							420	420		822	822	
vC2, stage 2 conf vol							886	884		342	503	
vCu, unblocked vol	884			385			1291	1290	296	1141	1313	822
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)							6.1	5.5		6.1	5.5	
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	97			100			100	100	99	86	98	84
cM capacity (veh/h)	765			1096			203	257	694	281	267	374
Direction, Lane #	EB 1	EB 2	WB 1	NB 1	SB 1							
Volume Total	22	459	884	6	104							
Volume Left	22	0	0	0	38							
Volume Right	0	167	123	6	60							
cSH	765	1700	1700	694	327							
Volume to Capacity	0.03	0.27	0.52	0.01	0.32							
Queue Length 95th (m)	0.7	0.0	0.0	0.2	10.2							
Control Delay (s)	9.8	0.0	0.0	10.2	21.1							
Lane LOS	A			В	С							
Approach Delay (s)	0.5		0.0	10.2	21.1							
Approach LOS				В	С							
Intersection Summary												
Average Delay			1.7									
Intersection Capacity Utiliza	tion		57.6%	IC	CU Level o	of Service			В			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis 11: Legget Drive/Legget Road & Site Access 6 (Lifestyle Street)

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations		≯	-	$\mathbf{\hat{z}}$	4	←	•	•	Ť	1	1	Ļ	~
Traffic Volume (veh/h) 5 6 35 49 39 23 179 206 12 6 64 5 Future Volume (Veh/h) 5 6 35 49 39 23 179 206 12 6 64 5 Sign Control Stop Stop Free Free Free Grade 0%	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (veh/h) 5 6 35 49 39 23 179 206 12 6 64 5 Future Volume (Veh/h) 5 6 35 49 39 23 179 206 12 6 64 5 Sign Control Stop Stop Free Free Free Grade 0%	Lane Configurations		\$			÷			\$			\$	
Future Volume (Veh/h) 5 6 35 49 39 23 179 206 12 6 64 5 Sign Control Stop Stop Free Free Free Free Free Free Grade 0% <t< td=""><td>Traffic Volume (veh/h)</td><td>5</td><td></td><td>35</td><td>49</td><td></td><td>23</td><td>179</td><td></td><td>12</td><td>6</td><td></td><td>5</td></t<>	Traffic Volume (veh/h)	5		35	49		23	179		12	6		5
Grade 0% 0% 0% 0% Peak Hour Factor 0.90 90 90 90 90 90 90	Future Volume (Veh/h)	5	6	35	49	39	23	179	206	12	6	64	
Peak Hour Factor 0.90 90 90	Sign Control		Stop			Stop			Free			Free	
Hourly flow rate (vph) 6 7 39 54 43 26 199 229 13 7 71 6 Pedestrians Lane Width (m) Valking Speed (m/s) Valking	Grade		0%			0%			0%			0%	
Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median type None Median storage veh) Upstream signal (m) pX, platoon unblocked	Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Pedestrians Lane Width (m) Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median type None Median storage veh) Upstream signal (m) pX, platoon unblocked	Hourly flow rate (vph)	6	7	39	54	43	26	199	229	13	7	71	6
Walking Speed (m/s) Percent Blockage Right turn flare (veh) Median type None None Median storage veh) Upstream signal (m) pX, platoon unblocked													
Percent Blockage Right turn flare (veh) Median type None None Median storage veh) Upstream signal (m) pX, platoon unblocked	Lane Width (m)												
Right turn flare (veh) None Median type None Median storage veh) Upstream signal (m) pX, platoon unblocked Velocked	Walking Speed (m/s)												
Median type None None Median storage veh) Upstream signal (m) Volume pX, platoon unblocked Volume Volume	Percent Blockage												
Median storage veh) Upstream signal (m) pX, platoon unblocked	Right turn flare (veh)												
Upstream signal (m) pX, platoon unblocked									None			None	
Upstream signal (m) pX, platoon unblocked	Median storage veh)												
	pX, platoon unblocked												
	vC, conflicting volume	769	728	74	764	724	236	77			242		
vC1, stage 1 conf vol													
vC2, stage 2 conf vol													
vCu, unblocked vol 769 728 74 764 724 236 77 242	vCu, unblocked vol	769	728	74	764	724	236	77			242		
tC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.1	tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)	• • • •												
tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2		3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free % 98 98 96 80 86 97 87 99		98	98	96	80	86	97	87			99		
cM capacity (veh/h) 247 303 988 271 304 804 1522 1324		247	303	988	271	304	804	1522			1324		
Direction, Lane # EB 1 WB 1 NB 1 SB 1	Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total 52 123 441 84	Volume Total	52	123	441	84								
Volume Left 6 54 199 7	Volume Left			199									
Volume Right 39 26 13 6		39			6								
cSH 598 330 1522 1324					1324								
Volume to Capacity 0.09 0.37 0.13 0.01													
Queue Length 95th (m) 2.2 12.7 3.4 0.1													
Control Delay (s) 11.6 22.3 4.1 0.7													
Lane LOS B C A A				А									
Approach Delay (s) 11.6 22.3 4.1 0.7													
Approach LOS B C													
Intersection Summary	Intersection Summary												
Average Delay 7.5	Average Delay			7.5									
Intersection Capacity Utilization 49.2% ICU Level of Service A		on		49.2%	IC	U Level o	of Service			А			
Analysis Period (min) 15				15									

	٦	*	•	1	ţ	
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			સુ	4Î	
Traffic Volume (veh/h)	190	48	0	194	102	47
Future Volume (Veh/h)	190	48	0	194	102	47
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	211	53	0	216	113	52
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)					None	
Upstream signal (m)				388		
pX, platoon unblocked				000		
vC, conflicting volume	355	139	165			
vC1, stage 1 conf vol	000	100	100			
vC2, stage 2 conf vol						
vCu, unblocked vol	355	139	165			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)	0.4	0.2	4.1			
tF (s)	3.5	3.3	2.2			
p0 queue free %	5.5 67	94	100			
	643	94 909	1413			
cM capacity (veh/h)						
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	264	216	165			
Volume Left	211	0	0			
Volume Right	53	0	52			
cSH	683	1413	1700			
Volume to Capacity	0.39	0.00	0.10			
Queue Length 95th (m)	13.9	0.0	0.0			
Control Delay (s)	13.5	0.0	0.0			
Lane LOS	В					
Approach Delay (s)	13.5	0.0	0.0			
Approach LOS	В					
Intersection Summary						
Average Delay			5.5			
Intersection Capacity Utiliza	ation		31.6%	10	CU Level a	f Service
Analysis Period (min)			15			
			10			

-	٦	7	•	†	ţ	~	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	¥			र्भ	4		
Traffic Volume (veh/h)	48	193	3	146	197	5	
Future Volume (Veh/h)	48	193	3	146	197	5	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	53	214	3	162	219	6	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)				227			
pX, platoon unblocked							
vC, conflicting volume	390	222	225				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	390	222	225				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	91	74	100				
cM capacity (veh/h)	613	818	1344				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	267	165	225				
Volume Left	53	3	225				
	55 214	0 0	6				
Volume Right cSH	767	1344	1700				
		0.00	0.13				
Volume to Capacity	0.35						
Queue Length 95th (m)	11.9	0.1	0.0				
Control Delay (s)	12.2	0.2	0.0				
Lane LOS	B	A	0.0				
Approach Delay (s)	12.2	0.2	0.0				
Approach LOS	В						
Intersection Summary							
Average Delay			5.0				
Intersection Capacity Utiliza	ation		33.3%	IC	CU Level o	of Service	
Analysis Period (min)			15				
,			-				

Appendix D MMLOS Table June 7, 2022

Appendix D MMLOS TABLE

Multi-Modal Level of Service - Intersections Form

Stantec Consulting	Project	Nokia Campus Re-development
2022 Existing	Date	
	Stantec Consulting 2022 Existing	<i>,</i>

	INTERSECTIONS March Road and Morgan's Grant Way					March Road and	Terry Fox Drive	e		March Road ar	d Solandt Road		Solandt Road and Legget Drive				
	Crossing Side	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST
	Lanes	10+	10+	9	9	10+	10+	10+	10+	10+	10+	10+	10+	6	6	6	6
	Median	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	Median > 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m
	Conflicting Left Turns	Permissive	Permissive	Protected	Protected	Protected	Protected	Protected	Protected	Protected	Protected	Permissive	Protected/ Permissive	Permissive	Permissive	Permissive	Protected/ Permissive
	Conflicting Right Turns	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control
	Right Turns on Red (RToR) ?	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed
	Ped Signal Leading Interval?	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
ian	Right Turn Channel	Conv'tl without Receiving Lane	Conventional with Receiving Lane	Conv'tl without Receiving Lane	Conv'tl without Receiving Lane	Conv'tl without Receiving Lane	Conventional with Receiving Lane	Conventional with Receiving Lane	Conventional with Receiving Lane	Conventional with Receiving Lane	Conventional with Receiving Lane	Conventional with Receiving Lane	Conventional with Receiving Lane	No Channel	No Channel	No Channel	No Channel
str	Corner Radius	15-25m	15-25m	15-25m	15-25m	15-25m	15-25m	15-25m	15-25m	15-25m	15-25m	15-25m	15-25m	15-25m	15-25m	15-25m	15-25m
Pedestrian	Crosswalk Type	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings	Std transverse markings
-	PETSI Score	-43	-46	-19	-10	-35	-38	-38	-38	-38	-38	-46	-46	18	18	18	18
	Ped. Exposure to Traffic LoS	#N/A	#N/A	#N/A	F	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	F	F	F	F
	Cycle Length	130	130	130	130	130	130	130	130	130	130	130	130	119	119	119	119
	Effective Walk Time	8	8	53	53	7	7	15	15	8	8	46	34	23	23	59	28
	Average Pedestrian Delay	57	57	23	23	58	58	51	51	57	57	27	35	39	39	15	35
	Pedestrian Delay LoS	E	E	С	С	E	E	E	E	E	E	С	D	D	D	В	D
		#N/A	#N/A	#N/A	F	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	F	F	F	F
	Level of Service				<u></u>									•		-	•
		#N/A			#N/A				#N/A				F				
	Approach From	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST
	Bicycle Lane Arrangement on Approach	Pocket Bike Lane	Pocket Bike Lane	Pocket Bike Lane	Pocket Bike Lane	Pocket Bike Lane	Pocket Bike Lane	Pocket Bike Lane	Pocket Bike Lane	Pocket Bike Lane	Pocket Bike Lane	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic
	IF Dedicated Right Turn Lane, THEN Right Turn Configuration, ELSE blank>	Bike lane shifts to the left of right turn		Bike lane shifts to the left of right turn	Bike lane shifts to the left of right turn	Bike lane shifts to the left of right turn	Bike lane shifts to the left of right turn	Bike lane shifts to the left of right turn	Bike lane shifts to the left of right turn	> 50 m Introduced right turn lane	> 50 m Introduced right turn lane		> 50 m				
	Dedicated Right Turning Speed	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h	≤ 25 km/h		≤ 25 km/h				
<u>e</u>	Cyclist Through Movement	D	D	D	D	D	D	D	D	D	D		F				
yc	Separated or Mixed Traffic	Separated	Separated	Separated	Separated	Separated	Separated	Separated	Separated	Separated	Separated	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic
Bicycle	Left Turn Approach	≥ 2 lanes crossed	≥ 2 lanes crossed	No lane crossed	No lane crossed	≥ 2 lanes crossed	≥ 2 lanes crossed	≥ 2 lanes crossed	≥ 2 lanes crossed	≥ 2 lanes crossed	≥ 2 lanes crossed	No lane crossed	No lane crossed	No lane crossed	No lane crossed	No lane crossed	No lane crossed
	Operating Speed	≥ 60 km/h	≥ 60 km/h	> 40 to ≤ 50 km/h	> 40 to ≤ 50 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h	≥ 60 km/h
	Left Turning Cyclist	F	F	В	В	F	F	F	F	F	F	С	С	С	С	С	С
		F	F	D	D	F	F	F	F	F	F	С	F	С	С	С	С
	Level of Service			F				=				F			(:	
L.	Average Signal Delay	≤ 30 sec	≤ 20 sec	> 40 sec	> 40 sec	≤ 40 sec	> 40 sec	> 40 sec	> 40 sec	> 40 sec	> 40 sec	> 40 sec	> 40 sec	> 40 sec	≤ 30 sec	> 40 sec	≤ 40 sec
nsit		D	С	F	F	E	F	F	F	F	F	F	F	F	D	F	E
Tran	Level of Service			F				=				F			I	-	
	Effective Corner Radius	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m
÷	Number of Receiving Lanes on Departure from Intersection	1	1	≥2	≥2	≥2	≥2	≥2	≥2	≥2	≥2	≥2	≥2	1	1	1	1
Truck		С	С	Α	Α	Α	А	Α	Α	A	Α	Α	Α	С	С	С	С
	Level of Service			С				4				A			(;	
0	Volume to Capacity Ratio		0.61	- 0.70			0.81	- 0.90			>	1.00			0.91	· 1.00	
Auto	Level of Service			В)				F				E	

Multi-Modal Level of Service - Intersections Form

Consultant	Stantec Consulting	Project	Nokia Campus Re-development
Scenario	2037 Ultimate	Date	
Comments			

	INTERSECTIONS	March Road and Morgan's Grant Way					March Road and	d Terry Fox Drive	9		March Road ar	d Solandt Road		Solandt Road and Legget Drive			
	Crossing Side	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST
	Lanes	10+	10+	5	4	10+	10+	8	7	10+	10+	5	5	3	3	3	3
	Median	Median > 2.4 m	Median > 2.4 m	No Median - 2.4 m	Median > 2.4 m	Median > 2.4 m	Median > 2.4 m	No Median - 2.4 m	Median > 2.4 m	Median > 2.4 m	Median > 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m	No Median - 2.4 m
	Conflicting Left Turns	Protected	Protected	Permissive	Permissive	Protected	Protected	Permissive	Permissive	Protected	Protected	Permissive	Permissive	Permissive	Protected/ Permissive	Permissive	Permissive
	Conflicting Right Turns	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control	Permissive or yield control
	Right Turns on Red (RToR) ?	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed	RTOR allowed
	Ped Signal Leading Interval?	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
edestrian	Right Turn Channel	Smart Channel	Smart Channel	Smart Channel	Smart Channel	Smart Channel	Smart Channel	Smart Channel	Smart Channel	Smart Channel	Smart Channel	Smart Channel	Smart Channel	No Channel	No Channel	No Channel	No Channel
st	Corner Radius	>25m	>25m	>25m	>25m	>25m	>25m	>25m	>25m	>25m	>25m	>25m	>25m	15-25m	15-25m	15-25m	15-25m
ě	One a serie III Trans	Std transverse	Std transverse	Std transverse	Std transverse	Std transverse	Std transverse	Std transverse	Std transverse	Std transverse	Std transverse	Std transverse	Std transverse	Std transverse	Std transverse	Std transverse	Std transverse
e E	Crosswalk Type	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings	markings
-	PETSI Score	-24	-24	40	58	-24	-24	-9	13	-24	-24	40	40	68	68	68	68
	Ped. Exposure to Traffic LoS	#N/A	#N/A	E	D	#N/A	#N/A	F	F	#N/A	#N/A	E	E	С	С	С	С
	Cycle Length	130	130	130	130	130	130	130	130	130	130	130	130	130	130	130	130
	Effective Walk Time	31	31	18	18	35	35	26	26	25	25	19	19	19	19	19	19
	Average Pedestrian Delay	38	38	48	48	35	35	42	42	42	42	47	47	47	47	47	47
	Pedestrian Delay LoS	D	D	E	E	D	D	E	E	E	E	E	E	E	E	E	E
		#N/A	#N/A	E	E	#N/A	#N/A	F	F	#N/A	#N/A	E	E	E	E	E	E
	Level of Service	#N/A		#N/A			#N/A				E						
	Approach From	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST
	Bicycle Lane Arrangement on Approach	Curb Bike Lane, Cvcletrack or MUP	Curb Bike Lane, Cycletrack or MUP	Mixed Traffic	Mixed Traffic	Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cycletrack or MUP	Mixed Traffic	Mixed Traffic	Curb Bike Lane, Cycletrack or MUP	Curb Bike Lane, Cvcletrack or MUP	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic
	IF Dedicated Right Turn Lane, THEN Right Turn Configuration, ELSE <blank></blank>	Not Applicable	Not Applicable	> 50 m	> 50 m	Not Applicable	Not Applicable	> 50 m	> 50 m	Not Applicable	Not Applicable	> 50 m	> 50 m				
	Dedicated Right Turning Speed	Not Applicable	Not Applicable	≤ 25 km/h	>25 km/h	Not Applicable	Not Applicable	>25 km/h	>25 km/h	Not Applicable	Not Applicable	>25 km/h	>25 km/h				
O	Cyclist Through Movement	Not Applicable	Not Applicable	F	F	Not Applicable	Not Applicable	F	F	Not Applicable	Not Applicable	F	F				
y cl	Separated or Mixed Traffic	Separated	Separated	Mixed Traffic	Mixed Traffic	Separated	Separated	Mixed Traffic	Mixed Traffic	Separated	Separated	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic	Mixed Traffic
Bicycle	Left Turn Approach	≥ 2 lanes crossed	≥ 2 lanes crossed	One lane crossed	No lane crossed	≥ 2 lanes crossed	≥ 2 lanes crossed	≥ 2 lanes crossed	≥ 2 lanes crossed	≥ 2 lanes crossed	≥ 2 lanes crossed	One lane crossed	One lane crossed	One lane crossed	One lane crossed	One lane crossed	One lane crossed
	Operating Speed	≥ 60 km/h	≥ 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	≥ 60 km/h	≥ 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	≥ 60 km/h	≥ 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h	> 50 to < 60 km/h
	Left Turning Cyclist	F	F	E	С	F	F	F	F	F	F	E	E	E	E	E	E
		F	F	F	F	F	F	F	F	F	F	F	F	E	E	E	E
	Level of Service			F				F				F			I	E	
<u>.</u>	Average Signal Delay	≤ 20 sec	≤ 20 sec	≤ 20 sec	≤ 20 sec	≤ 20 sec	≤ 20 sec	≤ 20 sec	≤ 20 sec	≤ 20 sec	≤ 20 sec	≤ 20 sec	≤ 20 sec	≤ 20 sec	≤ 20 sec	≤ 20 sec	≤ 20 sec
ransit		C	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С
Tra	Level of Service			с			(C			(С			(C	
	Effective Corner Radius	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m	> 15 m
č	Number of Receiving Lanes on Departure from Intersection	≥2	≥2	1	1	≥2	≥2	≥2	≥2	≥2	≥2	1	1	1	1	1	1
Truck		Α	Α	С	С	Α	А	Α	Α	A	А	С	С	С	С	С	С
	Level of Service			с				A				c			(C	
0	Volume to Capacity Ratio		>	1.00			> '	1.00			> '	1.00			0.71	- 0.80	
Auto	Level of Service			F				F				F			(C	