

Functional Site Servicing and Stormwater Management Report 1009 Trim Road, Ottawa, ON

Client:

Trim 1 GP Inc. 7 de Tellier Gatineau, QC J8T 8C2

Submitted for: Official Plan Amendment (OPA) and Zoning By-law Amendment (ZBL)

Project Name: 1009 Trim Road

Project Number: OTT-00259629-A0

Prepared By:

EXP 2650 Queensview Drive Ottawa, ON K2B 8H8 t: +1.613.688.1899 f: +1.613.225.7337

Date Submitted:

December 17, 2021

Functional Site Servicing and Stormwater Management Report 1009 Trim Road, Ottawa, ON

Client:

Trim 1 GP Inc. 7 de Tellier Gatineau, QC J8T 8C2

Submitted for: Official Plan Amendment (OPA) and Zoning By-law Amendment (ZBL)

Project Name: 1009 Trim Road

Project Number: OTT-00259629-A0

Prepared By:

EXP 2650 Queensview Drive Ottawa, ON K2B 8H8 t: +1.613.688.1899 f: +1.613.225.7337

Prepared by:

Approved by:

Jason Fitzpatrick, P.Eng. Project Engineer Bruce Thomas, P.Eng. Senior Project Manager

Date Submitted: December 17, 2021

i

Table of Contents

1	Introc	uction	. 1		
	1.1	Overview	. 1		
2	Existing Conditions				
	2.1	Site Topography	. 2		
3	Existir	ng Infrastructure	. 3		
4	Pre-Co	onsultation / Permits / Approvals	. 3		
	4.1	Design Guidelines	. 4		
5	Devel	opment Proposal	. 4		
6	Wate	- Servicing	. 5		
	6.1	Water Servicing Design Criteria	. 5		
	6.2	Water Servicing Proposal	. 5		
	6.3	Estimated Water Demands	. 6		
	6.4	Boundary Conditions	. 6		
	6.5	Fire Flow Requirements	. 7		
	6.6	Review of Hydrant Spacing	. 8		
	6.7	Water Servicing Design	9		
7	Sanita	ry Sewage Servicing	11		
	Sanita	ry Sewage Design Criteria	11		
	7.1	Proposed Sewage Conditions	11		
	7.2	Offsite Sanitary Sewer Review	12		
8	Storm	Servicing & Stormwater Management	14		
	8.1	Design Criteria	14		
	8.1.1	Minor System Design Criteria	14		
	8.1.2	Major System Design Criteria	14		
	8.2	Runoff Coefficients	14		
	8.3	Allowable Release Rate	14		
	8.4	Proposed Stormwater System	۱5		
	8.5	Flow Attenuation & Storage	15		
	8.6	Quality Control	16		
9	Erosic	n & Sediment Control	17		
10) Concl	usions and Recommendations	18		

1 Legal Notification

List of Figures

Figure 1-1 - Site Location	1
Figure 2-1 - Site Topography	2
Figure 6-1 – Review of Hydrant Spacing	9
Figure A1 – Conceptual Servicing Plan	A
Figure A2 – Sanitary Drainage Plan	A
Figure A3 – Storm Drainage Plan	A

List of Tables

Table 6-1 - Summary of Water Supply Design Criteria	5
Table 6-2 : Water Demand Summary	6
Table 6-3 - Summary of Design Parameters Used in Calculating Required Fire Flows (RFF) Using FUS	7
Table 6-4 –Fire Flows Based on Hydrant Spacing	8
Table 7-1 – Summary of Wastewater Design Criteria / Parameters	11
Table 7-2 – Summary of Anticipated Sewage Rates	12
Table 8-1 – Summary of Stormwater Peak Flows	15
Table 8-2 – Summary of Post-Development Storage	16
Table 8-3 – Design Parameters Used for Oil Grit Separator Sizing	16
Table B1 – Water Demand Chart	В
Table B2 – Summary of Required Fire Flows (RFFs)	В
Table B3 – Fire Flow Requirements Based on Fire Underwriters Survey (FUS) – Tower A	В
Table B4 – Fire Flow Requirements Based on Fire Underwriters Survey (FUS) – Tower B	В
Table B5 – Fire Flow Requirements Based on Fire Underwriters Survey (FUS) – Tower C	В
Table B6 – Fire Flow Requirements Based on Fire Underwriters Survey (FUS) – Tower D	В
Table B7 – Estimated Water Pressure at Proposed Building	В
Table B8 – Fire Flow Requirements Based on Hydrant Spacing	В
Table B9 – Sanitary Sewer Design Sheet	В
Table B10 – Estimation of Allowable Peak Flows (Based on Max C=0.50 with Tc=10mins)	В
Table B11 – Average Runoff Coefficients for Post-Development	В
Table B12 – Summary of Post-Development Peak Flows (Uncontrolled and Controlled)	В
Table B13 – Summary of Storage	В
Table B14 – Storage Volumes for 2-year, 5-year and 100-Year Storms (MRM) Tower A	В
Table B15 – Storage Volumes for 2-year, 5-year and 100-Year Storms (MRM) Tower B	В
Table B16 – Storage Volumes for 2-year, 5-year and 100-Year Storms (MRM) Tower C	В
Table B17 – Storage Volumes for 2-year, 5-year and 100-Year Storms (MRM) Tower D	В

Table B18 – Estimation of Roof Storage and Outflow – Tower A	В
Table B19 – Estimation of Roof Storage and Outflow – Tower B	В
Table B20 – Estimation of Roof Storage and Outflow – Tower C	В
Table B21 – Estimation of Roof Storage and Outflow – Tower D	В

List of Appendices

Appendix A – Figures	A
Appendix B – Design Tables	В
Appendix C – Manufacturers Information	C
Appendix D – Consultation / Correspondence	D
Appendix E – Drawings	E

EXP Services Inc. 1009 Trim Road, Ottawa, ON OTT-00259629-A0 December 17, 2021

1 Introduction

1.1 Overview

EXP Services Inc. (EXP) was retained by Trim 1 GP Inc. to prepare a Functional Site Servicing and Stormwater Management Report for the proposed development of 1009 Trim Road in support of an Official Plan Amendment (OPA) and Zoning By-Law Amendment (ZBL).

The site is situated at the north-east corner of Trim Road and Jeanne D'Arc Boulevard North and as illustrated in Figure 1-1 below. The site is within the City of Ottawa urban boundary and situated in Orleans Ward (Ward 1).

Figure 1-1 - Site Location

The development proposed will consist of four high-rise buildings. Tower A and C both will be 28 storey, tower B will be 32 storey and tower D will be 24 storeys high. All four towers will be constructed above underground parking. The development proposed will have total 983 residential units and around 5400 m² of commercial/retail space. Tower A will have 238 units, tower B will have 278 units, tower C will have 252 units and tower D will have 215 units.

This report will discuss the adequacy of the adjacent municipal watermain, sanitary sewers and storm sewers to provide the required water supply, convey the sewage and stormwater flows that will result from the proposed development.

2 Existing Conditions

2.1 Site Topography

The site is currently undeveloped. The site is bounded to the west by Trim Road, to the south by Jeanne-D'Arc Boulevard North (formerly Inlet Private), to the east by undeveloped land, and to the north by the Ottawa River. Figure 2-1 below illustrates the topography of the site which slopes in a northerly direction towards the Ottawa River.



Figure 2-1 - Site Topography

Within the site the topography ranges from $\pm 52m$ down to $\pm 42m$. A digital terrain model (DTM), was derived from the 2014 Digital Raster Acquisition Project of Eastern Ontario (DRAPE) and is shown in Figure 2-1. The normal water

'exp.

surface elevation within the adjacent Ottawa River is approximately \pm 42.0m, with a 100-year flood elevation being 45.0m.

3 Existing Infrastructure

From review of the sewer and watermain mapping, as-built drawings and the City's GeoOttawa mapping, the following summarizes the onsite and adjacent offsite infrastructure:

Within property

• Subject property is currently undeveloped with no services or utilities

Within Jeanne-D'Arc Boulevard North, opposite the site

- 406 mm watermain and fire hydrants
- 300mm sanitary sewer
- Open drainage ditches on east side of Trim Road and along the north side of Jeanne D'Arc Boulevard North
- Enbridge Consumers Gas
- Overhead hydro lines and communication cables

4 Pre-Consultation / Permits / Approvals

A pre-consultation meeting was held with the City prior to design commencement. This meeting, held June 1, 2020, outlined the submission requirements and provided information to assist with the development proposal.

The proposed site is located within the Rideau Valley Conservation Authority (RVCA) jurisdiction, therefore signoff from the RVCA will be required. From previous development consultation on the property, the RVCA has noted that enhanced protection (80% TSS removal) is required. The RVCA has been contacted to confirm the stormwater management quality control requirements.

Stormwater management quantity control will not be required for the portion of the development that will be discharging directly to the Ottawa River. Additional information on this will be provided in proceeding sections.

Generally, an Environmental Compliance Approval (ECA) would be obtained from the Ministry of Environment, Conservation and Parks (MECP), formerly the Ministry of the Environment and Climate Change (MOECC), for any onsite private sewage works. The onsite sewage works would generally include the onsite stormwater works such as flow controls, associated stormwater detention, and treatment works. An Approval Exemption under Ontario Regulation 525/98 may sometimes be applied. Under Section 3 of O'Reg 525/98, Section 53 (1) and (3) do not apply to the alteration, extension, replacement or a change to a stormwater management facility that 1) is designed to service one lot or parcel of land, b) discharges into a storm sewer that is not a combined sewer, c) does not service industrial land or a structure located on industrial land, and finally d) is not located on industrial land. However, the Exception to obtaining an ECA does not apply to sewage works that drain directly to a watercourse. As it is currently proposed to discharge storm runoff to the Ottawa River directly, an ECA for the onsite stormwater works discharging to the Ottawa River will be necessary. Prior to City signoff, a pre-consultation will be held with the local MECP, to confirm submission requirements.

🎙 exp.

4.1 Design Guidelines

Various design guidelines were referred to in preparing the current report including:

- Bulletin ISDTB-2012-4 (20 June 2012)
 - Technical Bulletin ISDTB-2014-01 (05 February 2014)
 - Technical Bulletin PIEDTB-2016-01 (September 6, 2016)
 - Technical Bulletin ISDTB-2018-01 (21 March 2018)
 - Technical Bulletin ISDTB-2018-04 (27 June 2018)
- Ottawa Design Guidelines Water Distribution, July 2010 (WDG001), including:
 - Technical Bulletin ISDTB-2014-02 (May 27, 2014)
 - Technical Bulletin ISTB-2018-02 (21 March 2018)
- Stormwater Management Planning and Design Manual, Ontario Ministry of the Environment and Climate Change, March 2003 (SMPDM).
- Design Guidelines for Drinking-Water Systems, Ontario Ministry of the Environment and Climate Change, 2008 (GDWS).
- Fire Underwriters Survey, Water Supply for Public Fire Protection (FUS), 1999.
- Ontario Building Code 2012, Ministry of Municipal Affairs and Housing.

5 Development Proposal

It is proposed to develop the site with four high-rise multi use towers A, B, C and D. Underground parking levels will be located beneath these four towers' footprint.

Vehicular entrances are proposed off of Jeanne D'Arc Boulevard North, with sidewalk connections along the frontage of the property linking Trim Road (to the west) and realigned Trim Road to the east.

[%]ехр.

6 Water Servicing

6.1 Water Servicing Design Criteria

Table 6-1 below summarizes the Design Criteria that was used to establish the water demands and the required fire flows, based on the proposed building uses. The design parameters that apply to this project and used for calculations are identified below.

Design Parameter	Value	Applies
Population Density – Single-family Home	3.4 persons/unit	
Population Density – Semi-detached Home	2.7 persons/unit	
Population Density – Townhome or Terrace Flat	1.8 persons/unit	
Population Density – Bachelor Apartment	1.4 persons/unit	
Population Density – Bachelor + Den Apartment	1.4 persons/unit	
Population Density – One Bedroom Apartment	1.4 persons/unit	✓
Population Density – One Bedroom plus Den Apartment	1.4 persons/unit	✓
Population Density – Two Bedroom Apartment	2.1 persons/unit	✓
Population Density – Two Bedroom plus Den Apartment	2.1 persons/unit	
Population Density – Three Bedroom Apartment	3.1 persons/unit	
Average Day Demands – Residential	350 L/person/day	✓ ✓
Average Day Demands – Commercial / Institutional	5 L/m ² floor area/day	✓
Average Day Demands – Light Industrial / Heavy Industrial	35,000 or 55,000 L/gross ha/day	
Maximum Day Demands – Residential	2.5 x Average Day Demands	✓
Maximum Day Demands – Commercial / Institutional	1.5 x Average Day Demands	✓
Peak Hour Demands – Residential	5.5 x Average Day Demands	✓
Peak Hour Demands – Commercial / Institutional	2.7 x Average Day Demands	✓
Fire Flow Requirements Calculation	FUS	✓
Depth of Cover Required	2.4m	✓
Maximum Allowable Pressure	551.6 kPa (80 psi)	✓
Minimum Allowable Pressure	275.8 kPa (40 psi)	✓
Minimum Allowable Pressure during fire flow conditions	137.9 kPa (20 psi)	✓

Table 6-1 - Summary of Water Supply Design Criteria

6.2 Water Servicing Proposal

The proposed development will include ±983 residential units and ±5410 square meters of level 1 and level 2 retail space housed within the four towers.

Architectural plans and rendering of the proposed building along with building statistics are provided in Appendix E.

[»]exp.

Water supply for the site will be provided by twin 200mm watermains supplied from the existing 406mm watermain on Jeanne D'Arc Boulevard North. The development will require independent and twin watermain, which is the result of the average day water demands exceeding 50 m³/day. The watermain feeds from the underground parking level will connect directly to the existing 406mm watermain on Jeanne D'Arc Boulevard and will have an isolation valve between them, consistent with City of Ottawa Water Design Guidelines. Figure A1 in Appendix A illustrates the conceptual water servicing of the property.

The buildings will be protected by an automatic sprinkler system. A fire department connection (or siamese) will be located within 45 metres of an adjacent municipally owned fire hydrant. In order to achieve this, it is proposed that a new hydrant will be installed off the existing 406mm watermain within the Jeanne D'Arc Boulevard right-of-way.

6.3 Estimated Water Demands

The following **Table 6-2** below summarizes the anticipated water demands for the proposed development based on following:

- 4 towers having total 983 residential units. Estimated residential population of 1678 persons.
- Commercial spaces on level 1 and 2. Estimated area of 5410 m².

Water Demand Conditions	Tower A Water Demands (L/sec)	Tower B Water Demands (L/sec)	Tower C Water Demands (L/sec)	Tower D Water Demands (L/sec)	Total Water Demands (L/sec)
Average Day	1.69	1.94	1.89	1.59	7.11
Max Day	4.12	4.76	4.66	3.93	17.46
Peak Hour	9.00	10.40	10.22	8.61	38.23

Table 6-2 : Water Demand Summary

6.4 Boundary Conditions

Hydraulic Grade Line (HGL) boundary conditions were obtained from the City for design purposes. A copy of the correspondence received from the City is provided in **Appendix D**.

The following hydraulic grade line (HGL) boundary conditions were provided:

- Maximum HGL = 113.6 m
- Peak Hour HGL = 106.7 m
- Max Day Plus Fire Flow 1 = 112.0 m (100 L/sec)
- Max Day Plus Fire Flow 2 = 102.9 m (167 L/sec)

The provided HGL ranges of 106.7 m - 113.6 m were used to estimate pressures at the building. Under Max Day Plus fire flow conditions, the lower HGL of 102.9 m was used, whereas for Peak Hour conditions the HGL of 106.7 m was used.

[®]exp.

6.5 Fire Flow Requirements

Water for fire protection will be available utilizing the proposed fire hydrants located along on Jeanne D'Arc Boulevard. The required fire flows for the proposed buildings were calculated based on typical values as established by the Fire Underwriters Survey 1999 (FUS).

The following equation from the Fire Underwriters document "Water Supply for Public Fire Protection", 1991, was used for calculation of the on-site supply rates required to be supplied by the hydrants:

F = 200 * C * V (A)

where:

F	=	Required Fire flow in Litres per minute
С	=	Coefficient related to type of Construction
А	=	Total Floor Area in square metres

The proceeding **Table 6-3** summarizes the parameters used for estimating the Required Fire Flows (RFF) based on the Fire Underwriters Survey (FUS) and the latest City of Ottawa Technical Bulletins. The RFFs were estimated in accordance with ISTB-2018-02, and based on floor areas provided by the architect, which are illustrates in **Appendix E.** The following summarizes the parameters used for all buildings.

Design Parameter	Value
Coefficient Related to type of Construction C	0.80
	(Tower A, B, C, D)
	5,834 (Tower A)
Total Floor Area (m2)	5,877 (Tower B)
	6,114 (Tower C)
	5,961 (Tower D)
	13,443 (Tower A)
Fire Flow. Prior to rounding to closest 1,000	13,492 (Tower B)
(L/min),	13,762 (Tower C)
	13,589 (Tower D)
	13,000 (Tower A)
Fire Flow. Rounded to closest 1,000 (L/min),	13,000 (Tower B)
File Flow. Rounded to closest 1,000 (L/IIIII),	14,000 (Tower C)
	14,000 (Tower D)
Reduction Due to Occupancy	
Non-combustible (-25%), Limited Combustible (-	-15%
15%), Combustible (0%),	(Tower A, B, C, D)
Free Burning (+15%), Rapid Burning (+25%)	(, _, _, _, _, _,
Reduction due to Sprinkler (Max 50%)	
Sprinkler Conforming to NFPA 13 (-30%), Standard	-50%
Water Supply (-10%), Fully Supervised Sprinkler (-	(Tower A, B, C, D)
10%)	
	+20% (Tower A)
Exposures	+30% (Tower B)
7	

	+30% (Tower C)
	+15% (Tower D)
	7,735 (Tower A)
Required Fire Flow, RFF, before rounded to closest	8,840 (Tower B)
1,000 (L/min)	9,520 (Tower C)
	7,735 (Tower D)
	8,000 (Tower A)
Required Fire Flow, RFF, rounded to closest 1,000	9,000 (Tower B)
(L/min)	10,000 (Tower C)
	8,000 (Tower D)

6.6 Review of Hydrant Spacing

A review of the hydrant spacing was completed to ensure compliance with Appendix I of Technical Bulletin ISTB-2018-02. As per Section 3 of Appendix I all hydrants within 150 metres were reviewed to assess the total possible available flow from these contributing hydrants. For each hydrant the distance to the proposed building was determined to arrive at the contribution of fire flow from each. All hydrants are expected to be of Class AA as per Section 5.1 of Appendix I. For each hydrant the straight-line distance, distance measured along a fire route or roadway, whether its location is accessible, and its contribution to the required fire flow.

Figure 6-1 below illustrates all the hydrants that are within the 75 metre and 150 metre offsets from the subject property. Fire hydrants that are denoted with a number having a HP versus H represents a PRIVATE hydrant rather than a CITY owned hydrant. All hydrants were reviewed to determine if they were accessible or non-accessible. For example, a hydrant would not be accessible if they were located on the opposite side of a median, limiting fire truck access. A summary table of the total fire flows available versus the required fire flows (RFFs) is presented in **Table 6-4** below.

Building	Required Fire Flow (L/min)	Available Fireflow Based on Hydrant Spacing as per ISTB-2018-02 (L/min)
Tower A	8,000 (or 133 L/sec)	11,400
Tower B	9,000 (or 150 L/sec)	17,100
Tower C	10,000 (or 167 L/sec)	19,000
Tower D	8,000 (or 133 L/sec)	15,200

Table 6-4 – Fire Flows Based on Hydrant Spacing

Detailed calculations of the available fire flows based on hydrant spacing is provided in **Table B8** found in **Appendix B.** Therefore, the available flows from hydrants exceed each building's fire flow requirements as identified in Appendix I of Technical Bulletin ISTB-2018-02.

*exp

EXP Services Inc. 1009 Trim Road, Ottawa, ON OTT-00259629-A0 December 17, 2021

Figure 6-1 – Review of Hydrant Spacing

6.7 Water Servicing Design

The water servicing requirements for the proposed building is designed in accordance with the City Design Guidelines (July 2010). The following steps indicate the basic methodology that was used in our analysis:

- Estimated water demands under average day, maximum day and peak hour conditions. As the total population estimate is greater than 500, standard residential peaking factors were used.
- Estimated the required fire flow (RFF) based on the Fire Underwriters Survey (FUS).
- Reviewed the available flows from hydrants within 150m of the buildings, based on the City's WDG002 and compared to the required fire flows (RFFs) based on the Fire Underwriters Survey (FUS).
- Obtained hydraulic boundary conditions (HGL) from the City, based on the above water demands and required fire flows.

'exp.

• Boundary condition data and water demands were used to estimate the pressure at the proposed building, and this was compared to the City's design criteria.

Since the average day demand exceed 50 m³ per day, two watermain feeds for the development will be necessary as per Section 4.31 of the WDG001. Please refer to **Table B1** in **Appendix B** for detailed calculations of the total water demands.

A review of the estimated watermain pressure at the building connection, based on the boundary conditions provided, was completed based on using two watermains. **Table B7** in **Appendix B** provides a comparison of anticipated pressures at the building connection based on using a single or double watermain feed. A single watermain analysis was completed to determined if the water pressure still met the City requirement during either the maximum day plus fire flow or peak hour condition, if one of the laterals was out of service.

Based on the hydraulic grade line (HGL) provided from the City it is evident that high pressures exist in the water distribution system at the property. Static pressures of \pm 70 psi – 90 psi are typically available. This is due to the lower elevation relative to the reservoir. Due of the relatively short distance that would be necessary between the buildings and the watermain connection, minimal pressure loss is anticipated. The pressure available at the building connection would be within \pm 4.6 psi of the pressure in the city main based on a 200mm supply. If only one of the two mains were in operation, the pressure at the building would be \pm 13.9 psi of the pressure in the city main, under maximum day plus fire flow conditions.

Under peak hour conditions, there is little difference if either one or two 200mm watermains are in use, with anticipated pressure at the building of ±1.5 psi of the city's distribution main pressure.

During the detailed design stage of the project the final selection of the watermain diameter required for each building will be coordinated with the mechanical consultant.

Based on the results, the installation of two 200mm watermains with a shut-off valve between them is proposed. As the maximum hydraulic grade line (HGL) provided by the city indicates pressures greater than 80 psi, pressure reducing measures will be required.

^kexp.

7 Sanitary Sewage Servicing

Sanitary Sewage Design Criteria

The sanitary sewer system is designed based on a population flow and an area-based infiltration allowance. The flows were calculated using City sewer design guidelines (SDG002). **Table 7-1** below summarizes the design parameters used.

Design Parameter	Value	Applies
Population Density – Single-family Home	3.4 persons/unit	
Population Density – Semi-detached Home	2.7 persons/unit	
Population Density – Duplex	2.3 persons/unit	
Population Density – Townhome (row)	2.7 persons/unit	
Population Density – Bachelor Apartment	1.4 persons/unit	
Population Density – Bachelor + Den Apartment	1.4 persons/unit	
Population Density – One Bedroom Apartment	1.4 persons/unit	✓
Population Density – One Bedroom plus Den Apartment	1.4 persons/unit	✓
Population Density – Two Bedroom Apartment	2.1 persons/unit	✓
Population Density – Two Bedroom plus Den Apartment	2.1 persons/unit	✓
Population Density – Three Bedroom Apartment	3.1 persons/unit	
Average Daily Residential Sewage Flow	280 L/person/day	✓
Average Daily Commercial / Intuitional Flow	28,000 L/gross ha/day	✓
Average Light / Heavy Industrial Daily Flow	35,000 / 55,000 L/gross ha/day	
Residential Peaking Factor – Harmon Formula (Min = 2.0, Max =4.0, with K=0.8)	$M = 1 + \frac{14}{4 + P^{0.5}} * k$	√
Commercial Peaking Factor	1.5	✓
Institutional Peaking Factor	1.5	
Industrial Peaking Factor	As per Table 4-B (SDG002)	
Unit of Peak Extraneous Flow (Dry Weather / Wet Weather)	0.05 or 0.28 L/s/gross ha	
Unit of Peak Extraneous Flow (Total I/I)	0.33 L/s/gross ha	✓

Table 7-1 – Summary of Wastewater Design Criteria / Parameters

7.1 Proposed Sewage Conditions

It is proposed that the mechanical piping from each building to a sanitary manhole onsite, which will then discharge to the existing sanitary sewer on Jeanne-D'Arc Boulevard. This manhole will be installed near the property line and be used as a monitoring manhole.

A 250mm diameter sanitary sewer is proposed with a minimum 2% slope, having a capacity of 68 L/sec based on Manning's Equation under full flow conditions. The estimated peak sanitary flow rate from the proposed property is **±17.1 L/sec** based on City Design Guidelines. Sewage rates include a total infiltration allowance of 0.33 L/ha/sec based on the total gross site area. **Table 7-2** below summarizes the sewage anticipated peak sewage flows for the proposed site.

»exp

Sewage Condition	Sanitary Sewage Flow (L/sec)
Peak Residential Flow (for 1,678 persons)	15.8
Peak Commercial Flow (for 5,410 m2)	0.18
Infiltration Flow (for 3.45 ha)	1.11
Peak Design Flow	17.10

Table 7-2 – Summary of Anticipated Sewage Rates

7.2 Offsite Sanitary Sewer Review

The sanitary sewer run on Jeanne D'Arc Boulevard North (from Trim Road easterly to municipal limits) was designed and constructed to allow for the development of Phase I (Tower 1) of Brigil's Petrie's Landing II to proceed. Approximately 320 metres of sanitary sewer was extended from the Trim Road intersection easterly to service Petrie's Landing II. A review of previous reports by David MacManus (DME) for Phase 1, and EXP Services (EXP) for Phase 2, confirmed that the sanitary sewer system on Jeanne D'Arc Boulevard North was sized, not only for the 3.9hectare Petrie's Landing development site, but also for an additional 9.9 hectares of commercial development along Jeanne D'Arc Boulevard North. The commercial flow allowance established was 50,000 L/ha/day and included an additional infiltration allowance at 0.28 L/ha/sec.

As taken from the DME report, the total peak sanitary flows from both Petrie's Landing development (all 5 phases) and the additional 9.9 hectares was 34.7 L/sec, which included ± 23.4 L/sec from Petrie's Landing and ± 11.4 L/sec from the additional area along Jeanne D'Arc Boulevard North. At the time of the design of Tower 1 by DME, this was based on a residential population of 1512 persons.

In 2016, during the design of Tower 2 by EXP Services Inc (EXP), further refinement of the sanitary sewage flows from the Petrie's II Landing development was completed, based on number of proposed residential units. A revised population of 1822 persons was used and included the same offsite commercial flow allowance for the 9.9-hectares along Jeanne D'Arc Boulevard North. The peak flow was updated to 39.2 L/sec with 27.8 L/sec from Petrie's Landing development and 11.4 L/sec from the offsite areas.

Now in 2021, the review of all sanitary sewer runs on Jean D'Arc Boulevard North were completed based on the most up to date information. A sanitary sewer design sheet was compiled based on data from the Petrie's Landing II project and based on the City's most recent Technical Bulletins. It should be noted that March 2018, revisions to the City's SDG002, were made to residential flow allowances as noted in Technical Bulletin ISTB-2018-01. The pre capita flow allowance was lowered from 350 L/p/day to 280 L/person/day, along with the addition of the correction factors of 0.8 to the Harmon Formula Peaking Factors. These revised allowances were used to review sanitary sewer capacities.

Table B9 in Appendix B summarizes the anticipated peak sewage flows in all sanitary sewers runs up to the TrimRoad intersection, whereas Figure A2 illustrates the sanitary drainage areas tributary to this sewer run.

The total peak flow is estimated at 40.05 L/sec, with includes peak flows of:

- ±20.1 L/sec from the 3.91-hectare Petrie's Landing (all phase), based on population of 1874.4 persons and 1,500m² commercial space
- An additional ±5.1 L/sec from 6.17 hectares along Jeanne D'Arc Boulevard North, based on 50,000 L/gross ha of commercial flow

éxh

An additional 17.1 L/sec from proposed site at 1009 Trim Road, based on 1,678 persons and 5,410 m² commercial space.

It should be noted that the difference in peak flows from Table 7-2 and the above noted is based on the accumulation of population and the resultant lowering of the peaking factor. It should also be noted that the developer has proposed to acquire Part 9 of Plan 50R-5818 – Jeanne D'Arc ROW at the north east corner of Jeanne D'Arc Boulevard North and Trim Road, from the City. Sanitary manhole #MHSA22037 is proposed to be relocated outside the property line. With this relocation, it is also proposed to upsize the pipes between MHSA22036-MHSA22037-MHSA54993 from 300mm dia. to 375mm dia. as shown on Figure A1 in Appendix A. Based on the total estimated peak flows there will be adequate capacity in all pipe runs, with the most downstream run at 86% capacity.

For the site at 1009 Trim Road, a single 300mm diameter PVC sewer lateral having a slope of 2.0% is proposed to service the development, at this time. The estimated capacity of a 300mm pipe at 2% is \pm 142 L/sec. A lateral at this slope would permit 8,300 fixture units as per OBC. Further detail will be advanced as the project progresses.

[»]exp.

8 Storm Servicing & Stormwater Management

8.1 Design Criteria

The subject property is located within the Rideau Valley subwatershed; therefore, stormwater works are subject to both the Rideau Valley Conservation Authority (RVCA) and City of Ottawa (COO) approval.

The RVCA has noted that (80% TSS removal) quality control requirements for the site will be required.

Also clarified during the pre-consultation meeting, the requirements related to stormwater quantity control are noted as follows:

- No quantity control is required for this development ONLY if it is discharging to the river.
- Please contact the City if this development will require municipal stormwater servicing.

The proposed stormwater system is designed in conformance with the latest version of the City of Ottawa Design Guidelines (October 2012). Section 5 "Storm and Combined Sewer Design" and Section 8 "Stormwater Management". A summary of the design criteria that relates to this design report is the proceeding sections below.

8.1.1 Minor System Design Criteria

- The storm sewer sizing will be based on the Rational Method and Manning's Equation under free flow conditions for the 2-year storm using a 10-minute inlet time.
- Minimum sewer slopes to be based on minimum velocities for storm sewers of 0.80 m/sec.

8.1.2 Major System Design Criteria

- On-site storage is calculated based on the 100-year design storm. The on-site detention storage requirements will be determined during the Site Plan submission stage. It is proposed that roof top storage be incorporated where possible.
- Overland flow routes will be reviewed during the Site Plan submission stage.
- The vertical distance from the spill elevation on the street and the ground elevation at the buildings is at least 150mm.
- The emergency overflow spill elevation is at least 30 cm below the lowest building opening.

8.2 Runoff Coefficients

Runoff coefficients used were based on actual areas taken from CAD. Runoff coefficients for impervious surfaces (roofs, asphalt, and concrete) were taken as 0.90, whereas those for pervious surfaces (grass/landscaping) were taken as 0.20. Average runoff coefficients were calculated for catchments (or drainage areas) using the area-weighting method in excel. The runoff coefficients for all post-development catchments are provided in **Table B11**.

8.3 Allowable Release Rate

Rather than meeting pre-development release rates, the City of Ottawa allowed for "NO" quantity control of runoff due to the sites proximity to the Ottawa River.

[»]exp.

The majority of storm runoff occurring on the site will discharge to roof drains or area drains, which will permit for stormwater storage, simply by using flow-controlled drains. For this reason, an allowable discharge rate based on a runoff coefficient of C=0.50 was established. Peak flows for all storm events were established based on this runoff coefficient.

The 2-yr, 5-yr and 100-yr allowable release rates from the proposed site was estimated at 121.2 L/sec, 164.5 L/sec, 281.7 L/sec, respectively. **Table B10** in **Appendix B** provides detailed calculations on the total allowable peak flow.

Development	Discharge Rates (L/sec)							
Development	2-year	5-year	100-year					
1009 Trim Road	121.2	164.5	281.7					

8.4 Proposed Stormwater System

Stormwater runoff from the proposed site will drain from a combination of controlled and uncontrolled areas. A storm drainage plan is illustrated on Figure A3. A total six (6) subcatchments (or drainage areas) are shown on this drawing with average runoff coefficients calculated for each drainage area. The stormwater works shall consist of the following elements:

- For Towers A, B, C and D, Flow-control roof drains to be provided.
- Runoff from surface areas surrounding the proposed towers will be collected by area drains and discharge to internal drainage piping in the underground parking structure. This in turn discharges directly to an oil-grit separator manhole, prior to discharging to the Ottawa River

All roof area will utilize flow-controlled weirs and based on the roof areas an estimate of the number of roof drains was completed. WATTS ACCUTROL weirs were used to determine the total discharge rates from the roof areas based on the estimated number of drains. In addition, the total cumulative prism volumes on the roofs were calculated at a maximum permitted depth of 150mm. Information on the estimated 100-year volumes on each roof is provided in **Table B18** to **Table B21** in **Appendix B**.

It should be noted that the Jeanne D'Arc Boulevard will be urbanized as indicated on drawing #EJV-S0O174-RWY-DWG-3915 received from the City. As a result of urbanization and proposed development at 1009 Trim Road, a storm sewer is proposed under Jeanne D'Arc. To allow for the development, the existing culvert and associated upstream drainage area will need to be rerouted to discharge into the proposed storm sewer. Detailed design will be provided at the Site Plan Application after coordination with the City.

8.5 Flow Attenuation & Storage

The attenuation of stormwater will be achieved by utilizing roof storage. Using the release rates estimated on the roofs, the Modified Rational Method was used to determine the 2-year, 5-year, and 100-year volumes that will occur for corresponding release rates.

Table B14 through **Table B17**, provide the storage volumes necessary on the roof to attenuate the controlled release rates. **Table B12** summarizes the combined controlled and uncontrolled flows leaving the subject site. A summary of release rates, storage volume requirements, and provided storage volumes are identified in **Table 8-2** below.

°exp.

Area	Location	Relea	ase Rate	(L/s)	Stor	age Re (m ³)	quired	•	e Provided m³)	Control Method	
		2-yr	5-yr	100-yr	2-yr	5-yr	100-yr	Roof	Surface	Method	
S01	Tower A roof	5.9	8.0	15.1	10.4	14.1	26.7	44.8		Flow Controlled Roof Drains	
S02	Tower B roof	5.9	8.0	15.1	9.6	12.9	24.4	42.4		Flow Controlled Roof Drains	
S03	Tower C roof	6.6	8.9	17.0	10.7	14.5	27.4	47.7		Flow Controlled Roof Drains	
S04	Tower D roof	6.6	8.9	17.0	10.4	14.1	26.7	46.4		Flow Controlled Roof Drains	
S05	Area around Tower A & B	71.0	96.4	193.4						none	
S06	Area around Tower C & D	47.8	64.9	139.0						none	
Total (All)		143.8	195.0	396.7	41.2	55.5	105.2	181.3			

Table 8-2 – Summary of Post-Development Storage

8.6 Quality Control

As a total suspended solids (TSS) removal efficiency of 80% is required, it is proposed to provide an oil grit separator for quality control. The following summarizes the design parameters used in the sizing of the Stormceptor manhole.

Table 8-3 – Design Parameters	Used for Oil Grit Separator Sizing
-------------------------------	------------------------------------

Parameter	Value Used
Drainage Area	1.1347 hectares
Runoff Coefficient	0.85
TSS Removal Requirements	80 %
Runoff Volume Capture	90 %
Flow attenuation upstream of OG separator (taken as 100-yr discharge & storage upstream of OG)	none
Particle distribution	fine

Output from the PCSWMM for Stormceptor program is provided in Appendix E for reference. A Stormceptor model EF06 is necessary to meet the required TSS removal of 80%. The EF06 will provide an approximate TSS removal of 80%.

*exp.

9 Erosion & Sediment Control

During all construction activities, erosion and sedimentation shall be controlled by the following techniques:

- Filter cloth shall be installed between the frame and cover of all adjacent catch basins and catch basin manhole structures.
- Heavy duty silt fencing will be used to control runoff around the construction area. Silt fencing locations are identified on the site grading and erosion control plan.
- A mud mat will be installed at the construction entrance to help avoid mud from being transported to offsite roads.
- Visual inspection shall be completed daily on sediment control barriers and any damage repaired immediately. Care will be taken to prevent damage during construction operations.
- In some cases, barriers may be removed temporarily to accommodate the construction operations. The affected barriers will be reinstated at night when construction is completed.
- Sediment control devices will be cleaned of accumulated silt as required. The deposits will be disposed of as per the requirements of the contract.
- During the course of construction, if the engineer believes that additional prevention methods are required to control erosion and sedimentation, the contractor will install additional silt fences or other methods as required to the satisfaction of the engineer.
- Construction and maintenance requirements for erosion and sediment controls are to comply with Ontario Provincial Standard Specification (OPSS) OPSS 805 and City of Ottawa specifications.

[»]exp.

10 Conclusions and Recommendations

This Functional Servicing & Stormwater Report outlines the rationale which will be used to service the proposed development. The following summarizes the servicing requirements for the site:

Water

- Two parallel 200mm watermains are proposed to service the development, as the average day demands exceed 50 m³ per day, which is mandatory as per Section 4.31 of the WDG001.
- The Required Fire Flows (RFFs) were estimated at 8,000 L/min (133 L/sec) for Tower A, 9,000 L/min (150 L/sec) for Tower B, 10,000 L/min (167 L/sec) for Tower C and 8,000 L/min (133 L/sec) for Tower D. The total minimum available flows for firefighting purposes, based on the contribution from hydrants, was estimated at 11,400 L/min, 17,100 L/min, 19,000 L/min and 15,200 L/min for each building, respectively.
- Based on hydraulic boundary conditions (HGL) provided by the City of Ottawa, a system pressure of ±77.5 psi under peak hourly demands is anticipated at the proposed building. This exceeds the City's guideline of 40 psi.

<u>Sewage</u>

Estimated peak sewage flows of 17.1 L/sec are anticipated. A review of the sanitary sewers on Jeanne D'Arc Boulevard was completed. It was determined that the sanitary main between MHSA 22036 and MHSA 54993 will be upsized from 300mm diameter to 375mm diameter pipes to match with the downstream pipes. It is also determined that the sanitary manhole MHSA 22037 will need to relocated outside the property line as a result of Part 9 of Plan 50R-5818 acquisition.

Stormwater

- For the stormwater system, the total discharge rate from the entire site was calculated based on a runoff coefficient of 0.50 and a time of concentration of 10 minutes. The City did not impose onsite quantity control due to the proximity to the Ottawa River. This is contingent on using a direct connection to the River rather than discharging to a storm sewer.
- The release rate for the entire site was calculated to be using a C_{AVG} of 0.50 for all storms up to the 100-year event. Although runoff does not need to be detained onsite, stormwater on the roof of the proposed buildings will occur.
- Runoff on the building roofs will be controlled using flow-controlled roof drains. Each roof-drain is equipped with WATTS ACCUTROL weirs and set at the OPEN position and having maximum discharge rate of 30 gpm at 150mm depth. An estimate of the number of roof drains, based on roof areas was completed, resulting in maximum 100-year discharge rates of 64.2 L/sec (Tower A, B, C, D).
- The remaining areas will not have flow controls with 100-yr anticipated peak flows of **332.4 L/sec.** A total 100yr peak flow of **396.7 L/sec** is estimated.
- Based on the discharge rates from the flat roofs a total retention volume of ± 105.2 m³ is required. These volumes are based on the above release rates, using the Modified Rational Method.
- The volumes available on the roofs are ±181.3 m³ based on a maximum 150mm ponding depth.
- Runoff from the surface areas above the parking structure will not be controlled.
- An oil-grit separator (OG) is required to meet the TSS removal efficiency of 80%. A Stormceptor Model EF06 was selected which is estimated to have a removal efficiency of **80%**.

[»]exp.

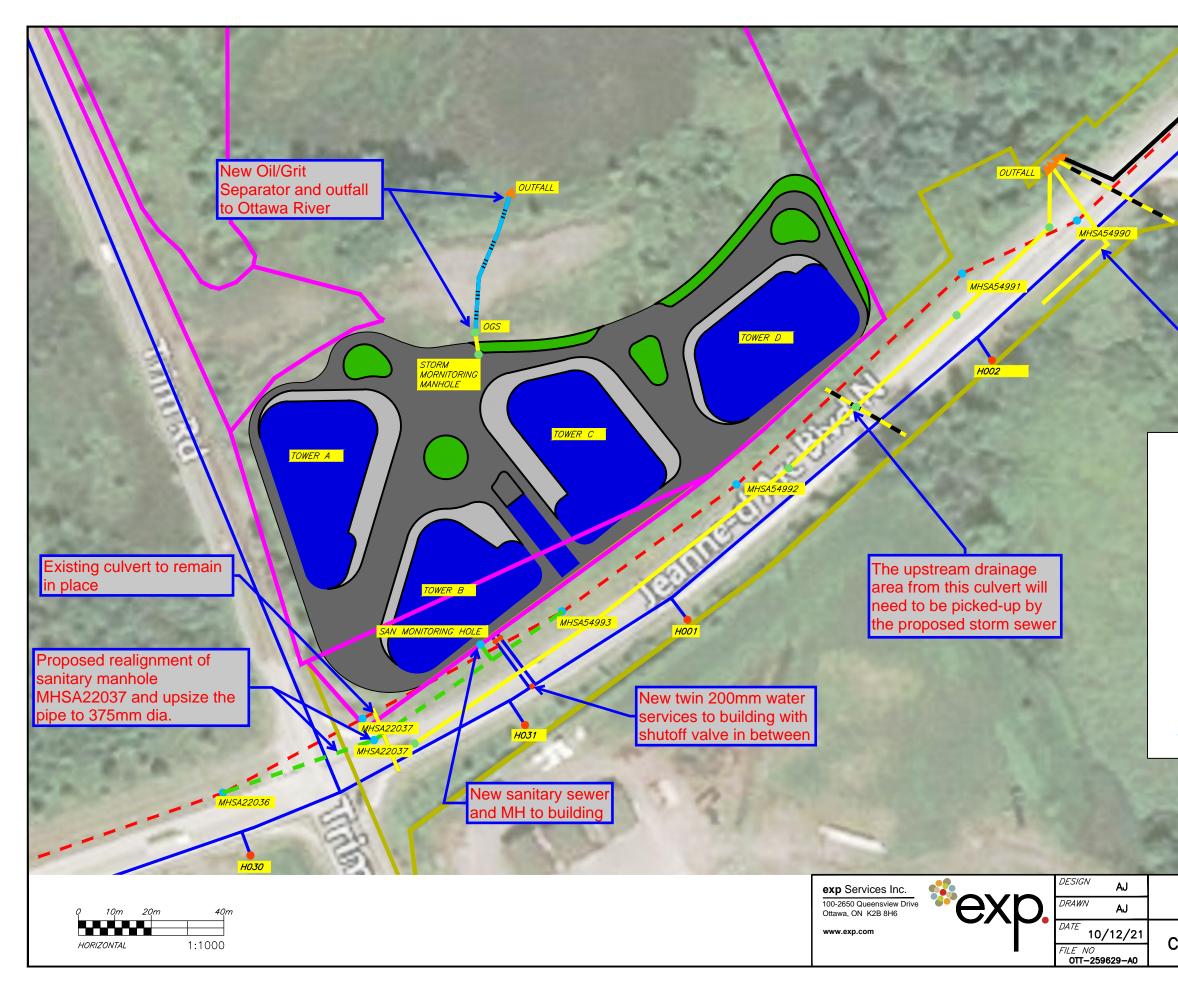
11 Legal Notification

This report was prepared by EXP Services Inc. for the account of Trim 1 GP Inc.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

*exp.

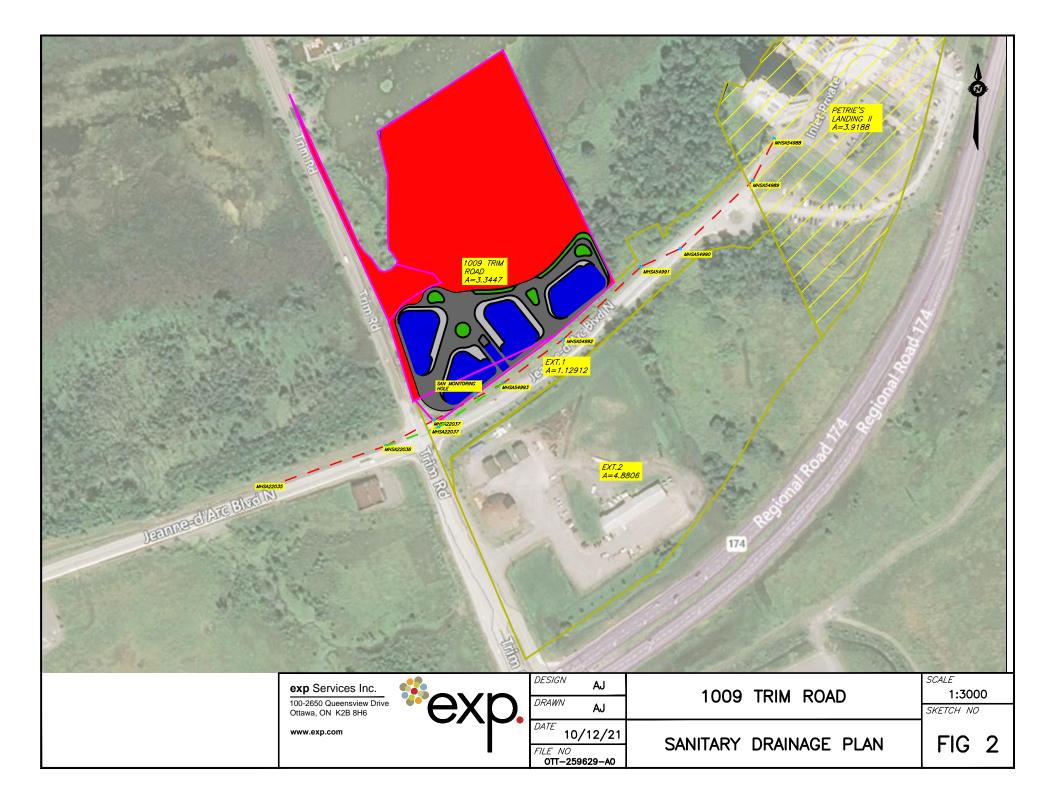
١

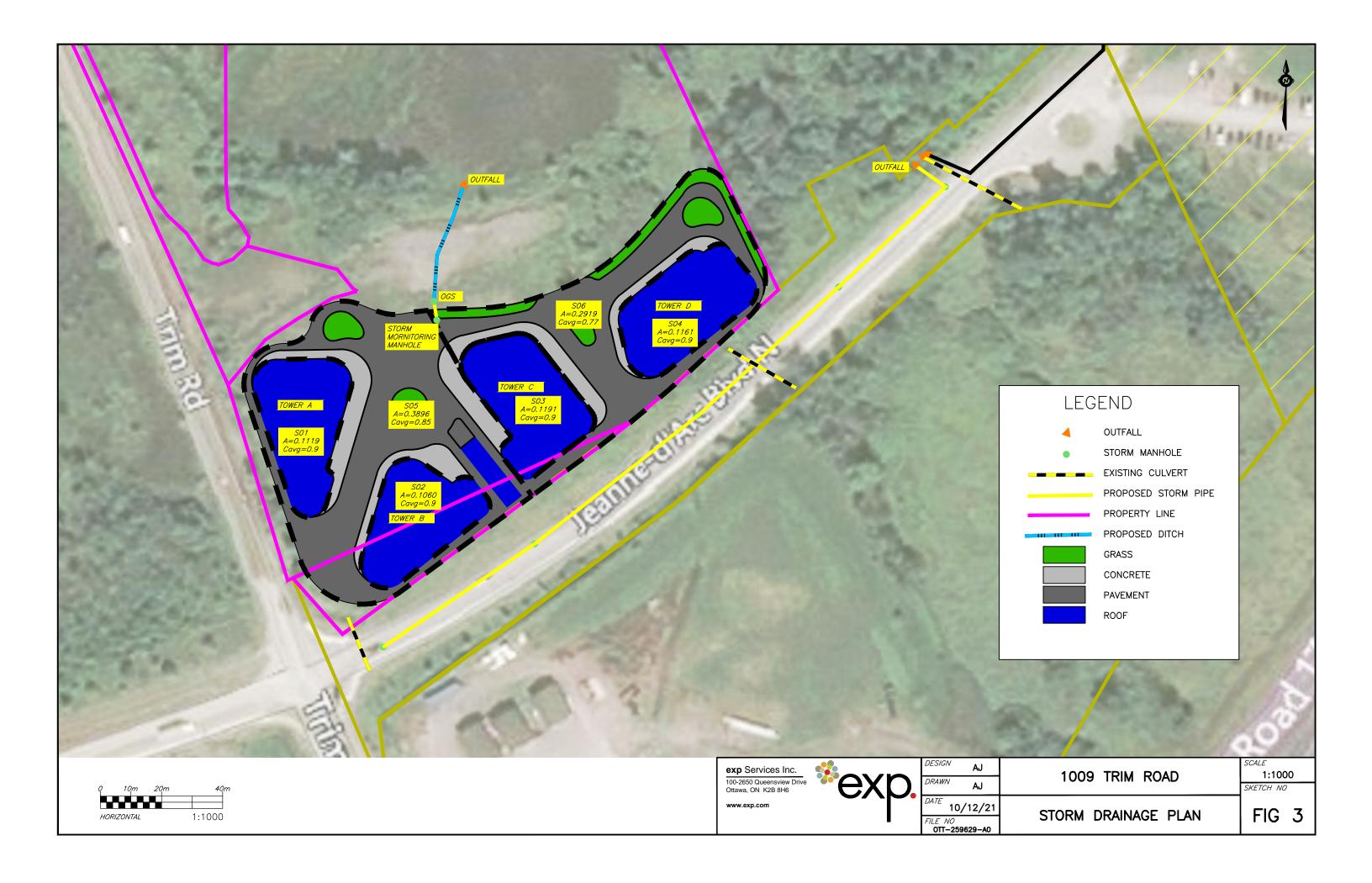

EXP Services Inc. 1009 Trim Road, Ottawa, ON OTT-00259629-A0 December 17, 2021

Appendix A – Figures

Figure A1 – Conceptual Servicing Plan

Figure A2 – Sanitary Drainage Plan


Figure A3 – Storm Drainage Plan



New storm outlet as proposed on the LRT drawings

LEGEND

4	OUTFALL		
•	STORM MANHOLE		
•	SANITARY MANHOLE		
	EXISTING CULVERT	Del.	
	PROPOSED STORM PIPE	20	
	EXISTING SANITARY PIPE	1	
	PROPOSED SANITARY PIPE	1.5-	
	PROPERTY LINE	C. C.	
•	FIRE HYDRANTS	N. A	
	WATER MAIN	1.35	
	PROPOSED DITCH	1:-1	
		0	
1009	TRIM ROAD	SCALE 1:1000 SKETCH NO)
CONCEPTUA	L SERVICING PLAN	FIG	1

EXP Services Inc. 1009 Trim Road, Ottawa, ON OTT-00259629-A0 December 17, 2021

Appendix B – Design Tables

Table B1 – Water Demand Chart
Table B2 – Summary of Required Fire Flows (RFFs)
Table B3 – Fire Flow Requirements Based on Fire Underwriters Survey (FUS) – Tower A
Table B4 – Fire Flow Requirements Based on Fire Underwriters Survey (FUS) – Tower B
Table B5 – Fire Flow Requirements Based on Fire Underwriters Survey (FUS) – Tower C
Table B6 – Fire Flow Requirements Based on Fire Underwriters Survey (FUS) – Tower D
Table B7 – Estimated Water Pressure at Proposed Building
Table B8 – Fire Flow Requirements Based on Hydrant Spacing
Table B9 – Sanitary Sewer Design Sheet
Table B10 – Estimation of Allowable Peak Flows (Based on Max C=0.50 with Tc=10mins)
Table B11 – Average Runoff Coefficients for Post-Development
Table B12 – Summary of Post-Development Peak Flows (Uncontrolled and Controlled)
Table B13 – Summary of Storage
Table B14 – Storage Volumes for 2-year, 5-year and 100-Year Storms (MRM) Tower A
Table B15 – Storage Volumes for 2-year, 5-year and 100-Year Storms (MRM) Tower B
Table B16 – Storage Volumes for 2-year, 5-year and 100-Year Storms (MRM) Tower C
Table B17 – Storage Volumes for 2-year, 5-year and 100-Year Storms (MRM) Tower D
Table B18 – Estimation of Roof Storage and Outflow – Tower A
Table B19 – Estimation of Roof Storage and Outflow – Tower B

- Table B20 Estimation of Roof Storage and Outflow Tower C
- Table B21 Estimation of Roof Storage and Outflow Tower D

TABLE B1

Water Demand Chart

				Ν	lo. of U	Jnits							Resid	dential Der	Residential Demands				Commercial						Totla Demands in (L/sec)		
	Sing	les/Sen	nis/Towi	าร	Apartments						Max		Peak				Factors		Peak								
Junction Number (Building)	Single Familty	Semi		Townh ome	Bach elor	1- Bed Apt	1-Bed +Den Apt	2 Bed Apt	3 Bed Apt	Avg Apt.	Total Pop		Max Day Peaking Factor	Peaking	Max Day Demand (L/day)		Area (m²)	Avg Demand (L/day)	Max Day	Peak Hour	Max Day Demand (L/day)	Hour Demand (L/day)	Avg Day (L/s)	Max Day (L/s)	Peak Hour (L/s)		
Tower A (Trim Rd)						156		82			390.6	136,710	2.5	5.5	341,775		1884.0	9,420	1.5	2.7	14,130	25,434	1.69	4.12	9.00		
Tower B (Trim Rd)						184		94			455.0	159,250	2.5	5.5	398,125		1696.0	8,480	1.5	2.7	12,720	22,896	1.94	4.76	10.40		
Tower C (Trim Rd)						111		141			451.5	158,025	2.5	5.5	395,063		1031.0	5,155	1.5	2.7	7,733	13,919	1.89	4.66	10.22		
Tower D (Trim Rd)						101		114			380.8	133,280	2.5	5.5	333,200	733,040	799.0	3,995	1.5	2.7	5,993	10,787	1.59	3.93	8.61		
Tetale						552		404			4077.0	507.005			4 400 400	2 220 050	5440.0				40.575	72.025	7.11	47.40	20.22		
Totals =	Totals = 552 431 1677.9 587,265 1,468,163 3,229,958 5410.0 40,575 73,0 Project:								73,035	7.11	17.46	38.23															
Unit Densities	Persons/U	nit		Resider	ntial																						
Singles	3.4			Resident	tial Cons	sumption	n (L/pers/	'day) =		350								259629 - 1009 Trim Road									
Semi-Detached	2.7			Max Day	/ Peakin	g Factor	(* avg da	iy) =		2.5							200020 -	1003 1111	Intodu								
Duplex	2.3			Peak Ho	ur Facto	or (* avg	day) =			5.5																	
Townhome	2.7																Designed	:		Location:							
Bachelor Apt Unit	1.4			Industr	rial/Co	mmerc	ial/Instit	utional	Water	Consum	nption						Aaditya J	larwiala, N	I.Eng.								
1-Bed Apt Unit	1.4			Light Ind	lustrial (L/gross	ha/day) =			35,000							Checked:			Ottawa, O	ntario						
1-Bed + Den Apt Unit	1.4						s ha/day)			55,000		Chris Collins, P.Eng.															
2-Bed Apt Unit	2.1			Commer	r/Instit (L/m ² flo	or/day) =			5							File Refe	rence:		Page No:							
3-Bed Apt Unit	3.1			Max Day	Peakin	g Factor	(* avg da	iy) =		1.5							250620 \	Vater - De	mand								
Avg. Apt Unit	1.8			Peak Ho	ur Facto	or (* avg	day) =			2.7								ec 2021.xls		1 of 1							

TABLE B2 SUMMARY OF REQUIRED FIREFLOWS (RFFs)

Building #	Description	¹ No of Storeys	Fire Flow, F (L/min)	² Type of Constr.	³ Reduction Due to Occupancy	⁴ Reduction Due to Sprinklers	⁵ Total Increase due to	⁶ Required Fire Flow in		
		Storeys	. (_,,	Coeff, C	(%)	(%)	Exposures	(L/min) (L/sec)		
PROPOSED TOWER A	high-rise condo	28	13,000	0.8	-15%	-50%	20%	8,000	133	
PROPOSED TOWER B	high-rise condo	32	13,000	0.8	-15%	-50%	30%	9,000	150	
PROPOSED TOWER C	high-rise condo	28	14,000	0.8	-15%	-50%	30%	10,000	167	
PROPOSED TOWER D	high-rise condo	24	14,000	0.8	-15%	-50%	15%	8,000	133	

Notes

1 - If basements are included (<50% below grade) then denoted as +.

2 -Types of constructions: 0.8 for non-combustible, 1.0 for ordinary construction, 1.5 for wood frame construction.

3 - Reductions due to Occupancy are -25% for non-combustible or -15% for limited combustible.

4 - Reductions due to Sprinkler Systems

5 – Increase due to exposures were calculated based on FUS and technical bulletin ISTB-2018-02.

6 – Required Fire Flows are rounded to nearest 1,000 L/min.

TABLE B3 (Tower A) FIRE FLOW REQUIREMENTS BASED ON FIRE UNDERWRITERS SURVEY(FUS) 1999 FOR PROPOSED TOWER A

An estimate of the Fire Flow required for a given fire area may be estimated by:

F = 220 * C * SQRT(A)

where:

 $\label{eq:F} \mbox{F} = \mbox{required fire flow in litres per minute} \\ \mbox{A} = \mbox{total floor area in } m^2 \mbox{ (including all storeys, but excluding basements at least 50% below grade)} \\ \mbox{C} = \mbox{coefficient related to the type of construction} \\ \end{tabular}$

Task	Options	Multiplier			Inpu	t	Value Used	Fire Flow Total (L/min)
	Wood Frame	1.5						
Choose Building	Ordinary Construction	1]					
Frame (C)	Non-combustible Construction	0.8		Non-com	nbustible	Construction	0.8	
	Fire Resistive Construction	0.6						
			Area	% Used	Area Used	Comment		
	Floor 11 to 28		827	0%	0			
	Floor 10		827	50%	414	1		
	Floor 9		827	50%	414			
	Floor 8		827	50%	414	The laws of a distance		
	Floor 7		827	50%	414	Two largest adjoining		
Floor Areas (A)	Floor 6		827	50%	414	floors+ 50% of floors		
	Floor 5		827	50%	414	above (up to eight)		
	Floor 4		1117.7	50%	559			
	Floor 3		1117.7	50%	559			
	Floor 2		1117.7	100%	1,118			
	Floor 1 (Ground)		1117.7	100%	1,118			
	Basement (At least 50% bel	ow grade, not included)			5,834			
Fire Flow (F)	F = 220 * C * SQRT(A)							13,443
Fire Flow (F)	Rounded to nearest 1,000							13,000

lon-combustible			ier				Input		Value Used	Change (L/min)	Total (L/min)	
		-25%										
imited Combustible		-15%										
combustible		0%				Limited	l Combustibl	e		-15%	-1,950	11,050
ree Burning		15%										
		25%										
		200/										
onforms to NFPA13		-30%			Adequa	te Sprinkl	er Conforms		-30%	-3,315	7,735	
lo Sprinkler		0%										
atandard Water Supply or Fire Department Hose ine and for Sprinkler system		-10%		Standard	Water Su		e and for	-10%	-1,105	6,630		
lot Standard Water Supply or Unavailable		0%										
ystem		-10%			Fully	Supervis	ed Sprinkler	System		-10%	-1,105	5,525
lot Fully Supervised or I/A		0%										
	Sonar					E	xposed Wall	Length			Exposure	
xposures	ation Dist (m)	Cond	Separation Conditon	Exposed Wall type	Length (m)	No of Storeys	Length- Height Factor	Sub- Conditon	Charge (%)	Total Charge (%)	Exposure Charge	
ide 1	46	6	> 45 1	Type B	0	0	0	6	0%		(L/min)	
					37	28	1036	3E		1		
	-				-	-			-	20%	2,210	7,735
	-											
ack	40	0	245.1	туре в	0	-		-			000 L /min	
						Tota	i Required F	Ire Flow, Ro			1	8,000
									I otal F	Required Fir	e Flow, L/s =	133
Vood-Frame or non-conbustibl ordinary or fire-resisitve with up ordinary or fire-resisitve with se	le nprotecteo emi-proteo	d openings	3	35)								
tion condition												
onution												
	apid Burning dequate Sprinkler onforms to NFPA13 o Sprinkler tandard Water Supply r Fire Department Hose ne and for Sprinkler ystem ot Standard Water upply or Unavailable ully Supervised Sprinkler ystem ot Fully Supervised or /A xposures ide 1 ide 2 ront ack Exposing Walls of Wood F 'ood-Frame or non-conbustib rdinary or fire-resisitve with u rdinary or fire-resisitve with u	apid Burning dequate Sprinkler onforms to NFPA13 o Sprinkler tandard Water Supply r Fire Department Hose ne and for Sprinkler ystem of Standard Water upply or Unavailable ully Supervised Sprinkler ystem of Fully Supervised or (A xposures Separ- ation Dist (m) ide 1 46 ide 2 16 ront 37 ack 46	apid Burning 25% dequate Sprinkler -30% onforms to NFPA13 -30% o Sprinkler 0% tandard Water Supply r Fire Department Hose ne and for Sprinkler -10% ystem 0% ot Standard Water 0% uply or Unavailable 0% ully Supervised Sprinkler -10% ystem -10% ot Fully Supervised or 0% A Separ- ation Dist 0% ide 1 46 ide 2 16 oront 37 ack 46 Exposing Walls of Wood Frame Construction 'ood-Frame or non-conbustible rdinary or fire-resisitive with unprotected openings rdinary or fire-resisitive with blank wall ion	apid Burning 25% dequate Sprinkler -30% onforms to NFPA13 -30% o Sprinkler 0% tandard Water Supply -10% r Fire Department Hose -10% ne and for Sprinkler 0% upply or Unavailable 0% ully Supervised Sprinkler -10% system -10% ot Standard Water 0% upply or Unavailable 0% ully Supervised Sprinkler -10% ystem -10% ot Fully Supervised or 0% /A Cond Separation condition 0 Separation ide 1 46 6 >45.1 ide 2 16 3 10.1 to 20 ront 37 5 30.1 to 45 ack 46 6 >45.1 Exposing Walls of Wood Frame Constructon (from Table Or 'ood-Frame or non-conbustible rdinary or fire-resisitive with uprotected openings rdinary or fire-resisitive with semi-protected openings rdinary or fire-resisitive with blank wall ion Separation Separation	apid Burning 25% dequate Sprinkler -30% onforms to NFPA13 -30% o Sprinkler 0% tandard Water Supply -10% r Fire Department Hose -10% ne and for Sprinkler -10% ystem -10% ot Standard Water 0% uply or Unavailable 0% ully Supervised Sprinkler -10% ystem -10% ot Fully Supervised or 0% A 0% ide 1 46 46 > 45.1 Type B ront 37 5 30.1 to 45 rope B ront 37 ack 46 6 > 45.1 Type B ront 37 dod-Frame or non-conbustible rondinary or fire-resisitive with uprotected openings rdinary or fire-resisitive with blank wall ion	apid Burning 25% dequate Sprinkler -30% onforms to NFPA13 -30% o Sprinkler 0% tandard Water Supply -10% r Fire Department Hose -10% ne and for Sprinkler -10% system 0% ot Standard Water 0% upply or Unavailable -10% vystem -10% ot Fully Supervised Sprinkler -10% vystem 0% vystem 0% vikler 0% ide 1 46 46 > 45.1 Type B 0 ide 2 16 37 5 30.1 to 45 Type B ack 46 46 > 45.1 vod-Frame or non-conbustible rdinary or fire-resisitive with unprotected openings rdinary or fire-resisitive with blank wall ion	apid Burning 25% dequate Sprinkler -30% onforms to NFPA13 -30% offermation of Sprinkler 0% tandard Water Supply -10% r Fire Department Hose -10% ne and for Sprinkler 0% of Standard Water 0% upply or Unavailable 0% ully Supervised Sprinkler -10% stem 0% of Fully Supervised Sprinkler -10% System 0% vstem 0% of Fully Supervised or 0% Adequate Sprinkler -10% field 1 46 5 ide 1 46 5 ide 2 16 3 10.1 to 20 ront 37 5 30.1 to 45 Type B 32 ack 46 6 >45.1 Type B 28 ack 46 6 >45.1 Type B 32 28 ack 46 6 >45.1 Type B 0 2 tode 2 or onon-conbustible <td>apid Burning 25% dequate Sprinkler -30% onforms to NFPA13 -30% o Sprinkler 0% tandard Water Supply -10% standard Water Supply or Sprinkler System -10% ot Standard Water 0% uply or Unavailable 0% ully Supervised Sprinkler yestem -10% ot Standard Water 0% uply or Unavailable -10% standard Water 0% ully Supervised Sprinkler yestem -10% ot Fully Supervised or A 0% xposures Separation Dist (m) Separation Conditon Dist (m) Cond Separation Conditon Image: Separation Storey ide 1 46 5 >45.1 Type B 0 0 ide 2 16 3 10.1 to 20 Type B 37 28 1064 ack 46 > 45.1 Type B 3 2 30 Total Required F Total Required F Cond Separation Control Type B 38 28 1064</td> <td>apid Burning 25% dequate Sprinkler -30% onforms to NFPA13 -30% Adequate Sprinkler 0% tandard Water Supply -10% r Fire Department Hose -10% upply or Unavailable 0% bit fill -10% Separtment Hose -10% standard Water Supply for Fire Department Hose Ling system -10% upply or Unavailable 0% upply or Unavailable 0% upply or Unavailable -10% standard Water Supply for Fire Department Hose Ling system -10% fill -10% standard Water Supply for Fire Department Hose Ling system -10% standard Water Supply for Fire Department Hose Ling system -10% standard Water Supply for Fire Department Hose Ling</td> <td>apid Burning 25% dequate Sprinkler -30% o Sprinkler -30% o Sprinkler 0% tandard Water Supply -10% r Fire Department Hose -10% ne and for Sprinkler -10% of Standard Water Supply -10% of Standard Water Supply -10% of Standard Water Supply of Pire Department Hose Line and for Sprinkler System of Standard Water 0% ully Supervised Sprinkler ystem -10% of Fully Supervised Sprinkler System -10% Kator Separation Separation Dist Cond Separation Separation Dist Cond Separation Separation Cond Separ</td> <td>apid Burning 25% dequate Sprinkler -30% o Sprinkler 0% tandard Water Supply r Fire Department Hose -10% of Standard Water Supply vstem -10% of Standard Water Supply vstem -10% of Standard Water upply or Unavailable 0% ully Supervised Sprinkler vstem 0% to f Standard Water upply or Unavailable 0% ully Supervised Sprinkler (m) -10% Separ- (A 0% xposures Separ- Dist (m) Cond (ad 2 16 37 5 30.1 to 45 Type B 38 28 10% Total Required Fire Flow, Rounded to the Nearest 1 Total Required Fire Flow, Rounded to the Nearest 1 Total Required Fire Flow, Rounded to the Nearest 1 Total Required Fire Flow, Rounded to the Nearest 1 Total Required Fire Flow, Rounded to the Nearest 1 Total Required Fire Flow, With blank wall</td> <td>apid Burning 25% dequate Sprinkler -30% o Sprinkler 0% andard Water Supply -10% r Fire Department Hose -10% standard Water Supply -10% ot Standard Water 0% ully Supervised Sprinkler -10% vystem 0% ully Supervised Sprinkler -10% vystem -10% ot Fully Supervised Sprinkler -10% fully Supervised Sprinkler -10% ot Fully Supervised Sprinkler -10% (m) 0% Dist Cond Separation Separation Dist Cond iton (m) Separation Dist Cond iton Separation Separation Conditon Separation <</td>	apid Burning 25% dequate Sprinkler -30% onforms to NFPA13 -30% o Sprinkler 0% tandard Water Supply -10% standard Water Supply or Sprinkler System -10% ot Standard Water 0% uply or Unavailable 0% ully Supervised Sprinkler yestem -10% ot Standard Water 0% uply or Unavailable -10% standard Water 0% ully Supervised Sprinkler yestem -10% ot Fully Supervised or A 0% xposures Separation Dist (m) Separation Conditon Dist (m) Cond Separation Conditon Image: Separation Storey ide 1 46 5 >45.1 Type B 0 0 ide 2 16 3 10.1 to 20 Type B 37 28 1064 ack 46 > 45.1 Type B 3 2 30 Total Required F Total Required F Cond Separation Control Type B 38 28 1064	apid Burning 25% dequate Sprinkler -30% onforms to NFPA13 -30% Adequate Sprinkler 0% tandard Water Supply -10% r Fire Department Hose -10% upply or Unavailable 0% bit fill -10% Separtment Hose -10% standard Water Supply for Fire Department Hose Ling system -10% upply or Unavailable 0% upply or Unavailable 0% upply or Unavailable -10% standard Water Supply for Fire Department Hose Ling system -10% fill -10% standard Water Supply for Fire Department Hose Ling system -10% standard Water Supply for Fire Department Hose Ling system -10% standard Water Supply for Fire Department Hose Ling	apid Burning 25% dequate Sprinkler -30% o Sprinkler -30% o Sprinkler 0% tandard Water Supply -10% r Fire Department Hose -10% ne and for Sprinkler -10% of Standard Water Supply -10% of Standard Water Supply -10% of Standard Water Supply of Pire Department Hose Line and for Sprinkler System of Standard Water 0% ully Supervised Sprinkler ystem -10% of Fully Supervised Sprinkler System -10% Kator Separation Separation Dist Cond Separation Separation Dist Cond Separation Separation Cond Separ	apid Burning 25% dequate Sprinkler -30% o Sprinkler 0% tandard Water Supply r Fire Department Hose -10% of Standard Water Supply vstem -10% of Standard Water Supply vstem -10% of Standard Water upply or Unavailable 0% ully Supervised Sprinkler vstem 0% to f Standard Water upply or Unavailable 0% ully Supervised Sprinkler (m) -10% Separ- (A 0% xposures Separ- Dist (m) Cond (ad 2 16 37 5 30.1 to 45 Type B 38 28 10% Total Required Fire Flow, Rounded to the Nearest 1 Total Required Fire Flow, Rounded to the Nearest 1 Total Required Fire Flow, Rounded to the Nearest 1 Total Required Fire Flow, Rounded to the Nearest 1 Total Required Fire Flow, Rounded to the Nearest 1 Total Required Fire Flow, With blank wall	apid Burning 25% dequate Sprinkler -30% o Sprinkler 0% andard Water Supply -10% r Fire Department Hose -10% standard Water Supply -10% ot Standard Water 0% ully Supervised Sprinkler -10% vystem 0% ully Supervised Sprinkler -10% vystem -10% ot Fully Supervised Sprinkler -10% fully Supervised Sprinkler -10% ot Fully Supervised Sprinkler -10% (m) 0% Dist Cond Separation Separation Dist Cond iton (m) Separation Dist Cond iton Separation Separation Conditon Separation <

TABLE B4 (Tower B) FIRE FLOW REQUIREMENTS BASED ON FIRE UNDERWRITERS SURVEY(FUS) 1999 FOR PROPOSED TOWER B

An estimate of the Fire Flow required for a given fire area may be estimated by:

F = 220 * C * SQRT(A)

where:

 $\label{eq:F} \mbox{F} = \mbox{required fire flow in litres per minute} \\ \mbox{A} = \mbox{total floor area in } m^2 \mbox{ (including all storeys, but excluding basements at least 50% below grade)} \\ \mbox{C} = \mbox{coefficient related to the type of construction} \\ \end{tabular}$

Task	Options	Multiplier			Inpu	t	Value Used	Fire Flow Total (L/min)
	Wood Frame	1.5						
Choose Building	Ordinary Construction	1						
Frame (C)	Non-combustible Construction	0.8		Non-com	0.8			
	Fire Resistive Construction	0.6						
			Area	% Used	Area Used	Comment		
	Floor 11 to 32		827	0%	0			
	Floor 10	827	50%	414				
	Floor 9		827	50%	414	1		
	Floor 8		827	50%	414			
	Floor 7		827	50%	414	Two largest adjoining		
Floor Areas (A)	Floor 6		1055.75	50%	528	floors+ 50% of floors		
	Floor 5		1055.75	50%	528	above (up to eight)		
	Floor 4		1055.75	50%	528			
	Floor 3		1055.75	50%	528			
	Floor 2		1055.75	100%	1,056			
	Floor 1 (Ground)		1055.75	100%	1,056			
	Basement (At least 50% bel	ow grade, not included)			5,877			
Fire Flow (F)	F = 220 * C * SQRT(A)							13,492
Fire Flow (F)	Rounded to nearest 1,000							13,000

Task	Options		Multipl	ier				Input			Value Used	Fire Flow Change (L/min)	Fire Flow Total (L/min)
Choose	Non-combustible		-25%										
Combustibility of	Limited Combustible		-15%)									
Building	Combustible		0%				Limited	d Combustib	le		-15%	-1,950	11,050
Contents	Free Burning		15%		1								
	Rapid Burning		25%										
	Adequate Sprinkler Conforms to NFPA13		-30%			Adequate Sprinkler Conforms to NFPA13						-3,315	7,735
	No Sprinkler		0%										
Choose Reduction Due to Sprinkler	Standard Water Supply for Fire Department Hose Line and for Sprinkler System		-10%	5	Standard	Water Su	pply for I Sprin	-10%	-1,105	6,630			
System	Not Standard Water Supply or Unavailable		0%										
	Fully Supervised Sprinkler System		-10%)		Fully	Supervis	ed Sprinkler	System		-10%	-1,105	5,525
	Not Fully Supervised or N/A		0%			,							
	Separ-					E	xposed Wall	Length					
	_	ation		Separation	Exposed			Length-			Total	Total	
Choose	Exposures	Dist	Cond	Conditon	Wall type	Length	No of	Height	Sub-	Charge	Charge	Exposure	
Structure		(m)	(m)			(m)	Storeys	Factor	Conditon	(%)	(%)	Charge	
Exposure											(70)	(L/min)	
Distance	Side 1	16	3	10.1 to 20	Type B	48	28	1344	3E	15%			
	Side 2	17	3	10.1 to 20	Туре В	40	28	1120	3E	15%	30%	3,315	8.840
	Front	46	6	> 45.1	Туре В	38	2	76	6	0%	3070	3,313	0,040
	Back	46	6	> 45.1	Туре В	0	2	30	6	0%			
Obtain Required		Total Required Fire Flow, Rounded to								unded to th	e Nearest 1	,000 L/min =	9,000
Fire Flow										Total F	Required Fir	e Flow, L/s =	150
Exposure Charges	for Exposing Walls of Wood F	rame Con	struciton	(from Table	G5)								
Туре А	Wood-Frame or non-conbustib												
Type B	Ordinary or fire-resisitve with u												
Type C	Ordinary or fire-resisitve with s		cted openi	ings									
Туре D	Ordinary or fire-resisitve with b	lank wall											
Conditons for Sepa													
Separation Dist	Condition												
0m to 3m 3.1m to 10m	1 2												
3.1m to 10m 10.1m to 20m	3												
20.1m to 20m	3												
20.1m to 30m 30.1m to 45m	4 5												
> 45.1m	6												
	-												

TABLE B5 (Tower C) FIRE FLOW REQUIREMENTS BASED ON FIRE UNDERWRITERS SURVEY(FUS) 1999 FOR PROPOSED TOWER C

An estimate of the Fire Flow required for a given fire area may be estimated by:

F = 220 * C * SQRT(A)

where:

 $\label{eq:F} \mbox{F} = \mbox{required fire flow in litres per minute} \\ \mbox{A} = \mbox{total floor area in } m^2 \mbox{ (including all storeys, but excluding basements at least 50% below grade)} \\ \mbox{C} = \mbox{coefficient related to the type of construction} \\ \end{tabular}$

Task	Options	Multiplier			Input	t	Value Used	Fire Flow Total (L/min)
	Wood Frame	1.5						
Choose Building	Ordinary Construction	1						
Frame (C)	Non-compustible	0.8		Non-com	bustible	Construction	0.8	
	Construction							
	Fire Resistive Construction	0.6						
			A	% Used	Area	Comment		
			Area	% Used	Used	connient		
	Floor 11 to 28		827	0%	0			
	Floor 10		827	50%	414			
	Floor 9		827	50%	414			
	Floor 8		827	50%	414			
	Floor 7		827	50%	414			
Floor Areas (A)	Floor 6		827	50%	414			
	Floor 5		827	50%	414			
	Floor 4		1211	50%	606			
	Floor 3		1211	50%	606			
	Floor 2		1211	100%	1,211			
	Floor 1 (Ground)		1211	100%	1,211			
	Basement (At least 50% bel	ow grade, not included)			6,114			
Fire Flow (F)	F = 220 * C * SQRT(A)							13,762
Fire Flow (F)	Rounded to nearest 1,000							14,000

Task	Options		Multipl	ier				Input			Value Used	Fire Flow Change (L/min)	Fire Flow Total (L/min)
Choose	Non-combustible		-25%)								, <u>(</u>	
Combustibility of	Limited Combustible		-15%)									
Building	Combustible		0%				Limited	Combustib	le		-15%	-2,100	11,900
Contents	Free Burning		15%		1								
Contento	Rapid Burning		25%		1								
	Adequate Sprinkler Conforms to NFPA13		-30%)		Adequa	e Sprinkl		-30%	-3,570	8,330		
	No Sprinkler		0%										
Choose Reduction Due to Sprinkler	Standard Water Supply for Fire Department Hose Line and for Sprinkler System		-10%	•	Standard	Water Su	pply for I Sprin	-10%	-1,190	7,140			
System	Not Standard Water Supply or Unavailable		0%										
	Fully Supervised Sprinkler System		-10%	,		Fully	Supervis	ed Sprinkler	System		-10%	-1,190	5,950
	Not Fully Supervised or N/A		0%	-		,							
		Separ-					E:	xposed Wall	Length				
	_	ation		Separation	Exposed			Length-			Total	Total	
Choose	Exposures	Dist	Cond	Conditon	Wall type	Length	No of	Height	Sub-	Charge	arge %) Charge (%) (L/min) 5%		
Structure		(m)				(m)	Storeys	Factor	Conditon	(%)	-	Charge	
Exposure								ractor			(70)	(L/min)	
Distance	Side 1	17	3	10.1 to 20	Type B	30	28	840	3E	15%			
	Side 2	19	3	10.1 to 20	Туре В	25	24	600	3E	15%	30%	3.570	9.520
	Front	46	6	> 45.1	Туре В	0	0	0	6	0%	30%	3,570	9,520
	Back	46	6	> 45.1	Type B	0	0	0	6	0%			
Obtain Required				-			Tota	I Required F	ire Flow, Ro	unded to th	e Nearest 1	1,000 L/min =	10,000
Fire Flow										Total F	Required Fir	re Flow, L/s =	167
Exposure Charges	for Exposing Walls of Wood F	rame Con	struciton	(from Table 0	G5)								
Туре А	Wood-Frame or non-conbustib	le											
Туре В	Ordinary or fire-resisitve with u												
Туре С	Ordinary or fire-resisitve with s		cted openi	ngs									
Type D	Ordinary or fire-resisitve with b	lank wall											
Conditons for Sepa													
Separation Dist	Condition												
0m to 3m	1												
3.1m to 10m	2												
10.1m to 20m	3												
20.1m to 30m	4												
30.1m to 45m	5												
> 45.1m	6												

TABLE B6 (Tower D) FIRE FLOW REQUIREMENTS BASED ON FIRE UNDERWRITERS SURVEY(FUS) 1999 FOR PROPOSED TOWER D

An estimate of the Fire Flow required for a given fire area may be estimated by:

F = 220 * C * SQRT(A)

where:

 $\label{eq:F} \mbox{F} = \mbox{required fire flow in litres per minute} \\ \mbox{A} = \mbox{total floor area in } m^2 \mbox{ (including all storeys, but excluding basements at least 50% below grade)} \\ \mbox{C} = \mbox{coefficient related to the type of construction} \\ \end{tabular}$

Task	Options	Multiplier			Inpu	t	Value Used	Fire Flow Total (L/min)
	Wood Frame	1.5						
Choose Building	Ordinary Construction	1						
Frame (C)	Non-combustible Construction	0.8		Non-com	nbustible	Construction	0.8	
	Fire Resistive Construction	0.6						
			Area	% Used	Area Used	Comment		
	Floor 11 to 24		827	0%	0			
	Floor 10		827	50%	414	1		
	Floor 9		827	50%	414			
	Floor 8		827	50%	414	The langest set is the later		
			827	50%	414	Two largest adjoining		
Floor Areas (A)	Floor 8 Floor 7 Floor 6		827	50%	414	floors+ 50% of floors		
	Floor 5		827	50%	414	above (up to eight)		
	Floor 4		1160	50%	580			
	Floor 3		1160	50%	580			
	Floor 2		1160	100%	1,160			
	Floor 1 (Ground)		1160	100%	1,160			
	Basement (At least 50% belo	ow grade, not included)			5,961			
Fire Flow (F)	F = 220 * C * SQRT(A)							13,589
Fire Flow (F)	Rounded to nearest 1,000							14,000

Task	Options		Multipl	ier				Input			Value Used	Fire Flow Change (L/min)	Fire Flow Total (L/min)
Choose	Non-combustible		-25%										
Combustibility of	Limited Combustible		-15%)									
Building	Combustible		0%				Limited	l Combustib	le		-15%	-2,100	11,900
Contents	Free Burning		15%		1								
Contents	Rapid Burning		25%		1								
	Adequate Sprinkler		-30%										
	Conforms to NFPA13			0		Adequa	te Sprinkl	er Conforms		-30%	-3,570	8,330	
	No Sprinkler		0%										
Choose Reduction Due to Sprinkler	Standard Water Supply for Fire Department Hose Line and for Sprinkler System		-10%		Standard	Water Su		Fire Departm kler System	nent Hose Lin	e and for	-10%	-1,190	7,140
System	Not Standard Water Supply or Unavailable		0%										
	Fully Supervised Sprinkler System		-10%)		Fully	/ Supervis	ed Sprinkler	System		-10%	-1,190	5,950
	Not Fully Supervised or N/A		0%							,	- ,		
		Separ-					E	xposed Wall	Length				
		ation		Separation	Exposed			Length-			Total	Total	
0	Exposures	Dist	Cond	Conditon	Wall type	Length	No of	-	Sub-	Charge		Exposure	
Choose		(m)		Condition	wan type	(m)	Storeys	Height	Conditon	(%)	Charge	Charge	
Structure		()					· · ·	Factor			(%)	(L/min)	
Exposure Distance	Side 1	19	3	10.1 to 20	Type B	39	24	936	3E	15%		(2/)	
Distance	Side 2	46	6	> 45.1	Type B	0	0	0	6	0%	1		
	Front	46	6	> 45.1	Type B	0	0	0	6	0%	15%	1,785	7,735
	Back	46	6	> 45.1		0	0	0	6	0%			
Ohtele Demulard	Dack	40	0	245.1	Type B	0	-		Fire Flow, Ro	-	e Neerest	0001/min -	0.000
Obtain Required Fire Flow							1018	ii Required F	-ire Flow, Ro				8,000
										I otal F	Required Fil	re Flow, L/s =	133
	for Exposing Walls of Wood F		struciton	(from Table (G5)								
Type A	Wood-Frame or non-conbustit			_									
Type B	Ordinary or fire-resisitve with u												
Type C	Ordinary or fire-resisitve with s Ordinary or fire-resisitve with b		ctea openi	ings									
Гуре D	Ordinary of file-resistive with t	narik wali											
Conditons for Sepa													
Separation Dist	Condition												
Om to 3m	1												
3.1m to 10m	2												
10.1m to 20m	3												
20.1m to 30m	4												
30.1m to 45m	5												
> 45.1m	6												

TABLE B7 ESTIMATED WATER PRESSURE AT PROPOSED BUILDING

Description	From	То	Demand (L/sec)	Pipe Length (m)	Pipe Dia (mm)	Dia (m)	Slope of HGL (m/m)	Head Loss (m)	Elev From (m)	Elev To (m)	*Elev Diff (m)		re From (psi)	Pressu kPa	re To (psi)	Pressure Drop (psi)
													1			
Avg Day Conditons																
Single 200mm watermain	Main	Basement	7.110	20 m	204	0.204	0.00043	0.0086	51.60	52.30	-0.7	610.2	(88.5)	603.2	(87.5)	1.0
Double 200mm watermain	Main	Basement	3.555	20 m	204	0.204	0.00012	0.0024	51.60	52.30	-0.7	610.2	(88.5)	603.3	(87.5)	1.0
Max Day Conditons																
Single 200mm watermain	Main	Basement	17.462	20 m	204	0.204	0.00226	0.0452	51.60	52.30	-0.7	610.2	(88.5)	602.9	(87.4)	1.1
Double 200mm watermain	Main	Basement	8.731	20 m	204	0.204	0.00063		51.60	52.30	-0.7	610.2	(88.5)	603.2		1.0
Peak Hour Conditons	_															
Single 200mm watermain	Main	Basement	38.229	20 m	204	0.204	0.00964	0.1928	51.60	52.30	-0.7	542.5	(78.7)	533.7	(77.4)	1.3
Double 200mm watermain	Main	Basement	19.115	20 m	204	0.204			51.60	52.30	-0.7	542.5	(78.7)	535.1	· /	1.1
Max Day Plus Fireflow Condi	tons															
Single 200mm watermain	Main	Basement	184.5	20 m	204	0.204	0.1778	3.556	51.60	52.30	-0.7	505.2	(73.3)	463.5	(67.2)	6.1
Double 200mm watermain	Main	Basement	92.231	20 m	204	0.204	0.04925		51.60	52.30	-0.7	505.2	(73.3)	403.5	· /	2.4
Max Day Plus Fireflow Condi	tons (Review	of 150mm dia	1													
Single 150mm watermain	Main	Basement	184.5	20 m	150	0.150			51.60	52.30	-0.7	505.2	(73.3)	342.4		23.6
Double 150mm watermain	Main	Basement	92.231	20 m	150	0.150	0.22017	4.4035	51.60	52.30	-0.7	505.2	(73.3)	455.2	(66.0)	7.3
Water Demand Info						Pipe Len	ath c									
Average Demand =	7.11	L/sec					termain to l	auilding –				51 m				
Max Day Demand =	17.46	L/sec								s in Pipe, C:	=	110				
Peak Hr Deamand =	38.23	L/sec								- 1, -						
						Elevation										
Fireflow Requriement =	167		C highest RFF)		At roadw	,	51.6								
Max Day Plus FF Demand =	184.5	L/sec				At buildir	ng (FF) =	52.3								
Boundary Conditon		Marchiel	Dealetta	Maria												
HGL (m)	<u>Min HGL</u> 100.0	<u>Max HGL</u> 113.6	<u>Peak Hour</u> 106.7	<u>Max Day</u> 102.9	Plus Firefl		y of Ottawa	.)								
Approx Ground Elev (m) =	100.0 51.4	51.4	51.4	102.9 51.4			ection point									
Pressure (m) =	48.6	62.2	55.3	51.4 51.5			.ccion point	,								
Pressure (Pa) =	476,766	610,182	542,493	505,215												
Pressure (psi) =	69.1	88.5	78.7	73.3												

TABLE B8 FIRE FLOW REQUIREMENTS BASED ON HYDRANT SPACING

	То	wer A	Тоу	ver B	То	wer C	То	wer D
Hydrant #	¹ Distance (m)	² Fire Flow Contribution (L/min)	¹ Distance (m)	² Fire Flow Contributio n (L/min)	¹ Distance (m)	² Fire Flow Contribution (L/min)	¹ Distance (m)	² Fire Flow Contribution (L/min)
H029	175	0	161	0	230	0	276	0
H030	80	3,800	65	5,700	125	3,800	180	0
H031	93	3,800	18	5,700	44	5,700	97	3,800
H001	130	3,800	65	5,700	15	5,700	49	5,700
H002	232	0	166	0	114	3,800	20	5,700
Total (L/min)		11,400		17,100		19,000		15,200
FUS RFF in L/min or (L/sec)		8,000 (133)		9,000 (150)		10,000 (167)		8,000 (133)
Meets Requreiment (Yes/No)		Yes		Yes		Yes		Yes

Notes:

¹Distance is measured along a road or fire route.

²Fire Flow Contribution for Class AA Hydrant from Table 1 of Appendix I, ISTB-2018-02

TABLE B9 SANITARY SEWER CALCULATION SHEET

	LOCA	TION							RESED	ENTIAL AF	REAS AND	POPULAI	TONS							COM	MERCIAL			NDUSTRI	AL	INSTITU	UTIONAL		NFILTRATI	ON					SEWER	DATA		
						1			NUMB	ER OF UNI	ITS				POP	JLATION			AR	EA (ha)			ARE	A (ha)	Peak			ARE	A (ha)		1							
Street	U/S МН	D/S MH	Desc	Area (ha)	ACCU Area (ha)		Semis	Towns	Batch Apt.	1-Bed Apt.	1-Bed + Den Apt.	2-Bed Apt.	3-Bed Apt.	Total Units	INDIV	ACCU	Peak Factor	Peak Flow (L/sec)	INDIV	ACCU	% of total	Peak Flow (L/sec)	INDIV	ACCU	Factor (per MOE)	AREA (Ha)	ACCU AREA (Ha)	INDIV	ACCU	INFILT FLOW (L/s)	TOTAL FLOW (L/s)	Nom Dia (mm)	Dia	Slope (%)	Length (m)	Capacity (L/sec)	Q/Q _{CAP} (%)	Full Velocity (m/s)
		14/10/14/00	T	0.0007	0.0007				4		74	70	10	100	050.0	050.0	4.00	1.0.1										0.010	0.010	0.00	4.04							<u> </u>
Private	MHSA101	MHSA100	Tower 4	0.6097	0.6097				1	36	71	72	18	198	358.2	358.2	4.00	4.64	-									0.610	0.610	0.20	4.64	050	054.44	1.00	00.00	00.40	0.40	
	14/10/14/00	1410474040	Tower 3	0.5676	1.1773				2	15	75	70	_	162	275.8	634	3.34		-									0.568	1.177	0.39	7.25	250	251.46	1.00	28.80	60.40	0.12	1.21
	MHSA100	MHSA71642			1.1773											634	3.34			_									1.177	0.39	7.25	250	251.46	0.23	34.05	29.28	0.25	0.58
	MHSA71642	MHSA70588			1.1773											634	3.34												1.177	0.39	7.25	250	251.46	0.31	22.69	33.55	0.22	0.67
	MHSA70588	MHSA70591	Ex.Tower 2	0.6852	1.8625					84		61		145	245.7	879.7	3.27											0.685	1.863	0.61	9.94	250	251.46	0.35	5.79	35.50	0.28	0.71
	MHSA70591	MHSA70589			1.8625											879.7	3.27												1.863	0.61	9.94	250	251.46	0.29	62.68	32.37	0.31	0.65
	MHSA70589	MHSA70590	Towers 5A	0.7769	2.6394					54	112	120		286	484.4	1364.1	3.17	_		0.04	2%	0.01						0.777	2.639	0.87	14.90	250	251.46	0.24	38.01	29.39	0.51	0.59
	MHSA70590	MHSA54986			2.6394											1364.1	3.17	-	_	0.04		0.02							2.639	0.87	14.90	250	251.46	0.54	11.04	44.53	0.33	0.89
	MHSA54986	MHSA54987	Ex.Tower 1	0.8895	3.5289					14		75		89	177.1	1541.2	3.14	15.68		0.04		0.02						0.890	3.529	1.16	16.87	250	251.46	0.51	15.66	43.17	0.39	0.86
	MHSA54987	MHSA54988			3.5289											1541.2	3.14	15.68		0.04		0.02							3.529	1.16	16.87	250	251.46	0.56	12.56	45.09	0.37	0.90
	MHSA54988	MHSA54989	Towers 5B	0.3899	3.9188					36	76	84		196	333.2	1874.4	3.09	18.77	0.11	0.15	3%	0.05						0.390	3.919	1.29	20.11	250	251.46	0.33	33.03	34.86	0.58	0.70
Jeane D'Arc Blvd North	MHSA54989	MHSA54990			3.9188											1874.4	3.09	18.77		0.15		0.07							3.919	1.29	20.14	300	299.36	0.15	79.36	37.39	0.54	0.53
	MHSA54990	MHSA54991	Ext-1, Ext-2	6,1710									-		-	1874.4			6.171		61%	3.07						6,171	10.090	3.33	25.17		299.36		34.70	51.62	0.49	0.73
	MHSA54991	MHSA54992			10.0898								-		+	1874.4		18.77		6.321		3.07							10.090	3.33	25.17		299.36		85.00	39.02	0.65	0.55
	MHSA54992	MHSA54993			10.0898								-		+	1874.4		18.77		6.32		3.07							10.09	3.33	-		299.36		55.13	46.69	0.86	0.66
	MHSA54993	MHSA22037	1009 TRIM	3.3567	13.4465					552		431		983	1677.	3552.3		33.39			4%	2.22						3.357				375	100 C		66.40	77.58	0.52	0.70
	MHSA22037	MHSA22036																															375		66.40	96.03		0.86
	MHSA22036	MHSA22035											-		-			-	-													X	375	0.31	66.40	97.62		0.88
	MHSA22035	MHSA22028											-		+	-		-	-	-											<u>└──┐∕</u>	4—	375	0.29	66.40	94.42		0.85
	MHSA22028	MHSA22027											-		+	-		-	-	-									Pr	oposed up	sized 💾	-	375		66.40	74.39		0.67
		111107422021																	-														010	0.10	00.40	14.00		
																																900	900	0.12	66.40	627.11		0.98
														-		-		-	-											-				0.12	00.40	027.11		0.50
														-		-		-	-											-		-						L'
				13.447					3	791	334	913	18	2059	3552.3	, I			6.862									13.447							916.90			<u> </u>
				13.447						751	554	515	10	2035	3332.	,			0.002									13.447		Designe	d٠			Project:	510.50			
Residential Avg	Daily Flow, q (L/p/d	av) =				280		Commer	cial Peak F	actor =				1.5	(when a	rea >20%)		Peak Po	nulation Fl	ow, (L/sec)	=		P*q*M/8	64		Unit Type	_	Persons/L	Init	Designe	u.			TTOJECT.				
-	. Daily Flow (L/gross	••				28,000		commer	ciai i cak i							rea <20%)				low, (L/sec)			I*Ac	0.4		Singles	-	3.4		Torny De	scoe, B.E	na		1009 Tri	m Road			
or L/gross ha		na/aay) =				0.324								1.0	(which c	100 (20/0)				g Factor, M				+P^0.5)) *	к	Semi-Det	ached	5.7		Tenyra	1300E, D.L	.ng.		1003 111	mittoau			
	. Daily Flow (L/s/ha)	=				28,000		Institutio	nal Peak F	Factor =				1.5	(when a	rea >20%)				ea (hectare			- (-)()	0.5//		Townhon		2.7		Checked	:			Location	:			
or L/gross ha						0.324								1.0		rea <20%)			ulation (the							Batch Ap		1.4										
	low (L/gross ha/day) =				35,000										,		•	·							1-bed Ap		1.4		J. Fitzpa	trick, P.E	na.		Ottawa,	Ontario			
or L/gross ha						0.40509		Resident	ial Correct	tion Factor,	К =			0.80				Sewer C	apacity, Q	cap (L/sec)	=		1/N S*/*	R ^{*/ °} A _c		1-bed + D		1.4		· ·	<i>.</i>	5		· · · ·				
	low (L/gross ha/day) =				55,000		Manning	N =					0.013				(Mannin	ig's Equati	on)						2-bed Ap	t. Unit	2.1		File Refe	erence:			Page No	:			
or L/gross ha,						0.637		-		ow, I (L/s/ł	na) =				(Total I/	1)										3-bed Ap		3.1			Sanitary - lec 2021.>		Design	1 of 1				

TABLE B10 ESTIMATION OF ALLOWABLE PEAK FLOWS (Based on Max C=0.50 & Tc=10mins)

			St	torm = 2 yr			Storm = 5 y	r	St	orm = 100 y	۳
Catchment No.	Area (ha)	Time of Conc, Tc (min)			Q _{ALLOW}			Q _{ALLOW}			Q _{ALLOW}
			I ₂ (mm/hr)	Cavg	(L/sec)	I₅ (mm/hr)	Cavg	(L/sec)	I₅ (mm/hr)	Cavg	(L/sec)
Pre-Dev	1.1348	10	76.81	0.50	121.2	104.29	0.50	164.5	178.56	0.50	281.7
Total (All)	1.1348	10			121.2			164.5			281.7
Notes											

1) Allowable Capture Rates are based on meeting pre-development peak flows for all storms up to 100-year event. Allowable runoff coefficent based on Cavg or C = 0.50 (maximum)

TABLE B11

AVERAGE RUNOFF COEFFICIENTS FOR POST-DEVELOPMENT

unoff Coeffients	C _{ASPH/CONC} =	<u>0.90</u>	C _{ROOF} =	<u>0.90</u>	C _{GRASS} =	<u>0.20</u>					
Area No.	Outlet Location	Asphalt & Conc Areas (m ²)	A * C _{asph}	Roof Areas (m ²)	A * C _{ROOF}	Grassed Areas (m ²)	A * C _{GRASS}	Sum AC	Total Area (m ²)	C _{AVG} (see note)	Comment
S01	Roof Drains			1119.17	1007.3			1007.3	1119	0.90	
S02	Roof Drains			1060.09	954.1			954.1	1060	0.90	
S03	Roof Drains			1191.29	1072.2			1072.2	1191	0.90	
S04	Roof Drains			1161.13	1045.0			1045.0	1161	0.90	
S05	Area Drains	3492.62	3143.4	147.24	132.5	256.16	51	3327.1	3896	0.85	
S06	Area Drains	2365.49	2128.9			553.86	111	2239.7	2919	0.77	
Total (All)		5,858	5,272	4,679	4,211	810	162	9,645	11,347	0.85	

TABLE B12 SUMMARY OF POST-DEVELOPMENT PEAK FLOWS (Uncontrolled and Controlled)

		Time of Conc, Tc (min)		Storm =	: 2 yr			Storm	ı = 5 yr			Storm	і = 100 уг			
		, <i>,</i> ,			Q	Q _{CAP}			Q			I ₁₀₀	Q			
Area No	Area (ha)		C _{AVG}	I ₂ (mm/hr)	(L/sec)	(L/sec)	C _{AVG}	I ₅ (mm/hr)	(L/sec)	Q _{CAP} (L/sec)	C _{AVG}	(mm/hr)	(L/sec)	Q _{CAP} (L/sec)	Outlet Location	Comments
S01	0.1119	10	0.90	76.81	21.5	(5.9)	0.90	104.19	29.2	(8.0)	1.00	178.56	55.6	(15.1)	Roof Drains	Tower A roof
S02	0.1060	10	0.90	76.81	20.4	(5.9)	0.90	104.19	27.6	(8.0)	1.00	178.56	52.6	(15.1)	Roof Drains	Tower B roof
S03	0.1191	10	0.90	76.81	22.9	(6.6)	0.90	104.19	31.1	(8.9)	1.00	178.56	59.1	(17.0)	Roof Drains	Tower C roof
S04	0.1161	10	0.90	76.81	22.3	(6.6)	0.90	104.19	30.3	(8.9)	1.00	178.56	57.6	(17.0)	Roof Drains	Tower D roof
S05	0.3896	10	0.85	76.81	71.0	71.0	0.85	104.19	96.4	96.4	1.00	178.56	193.4	193.4	Area Drains	Area around Tower A & B
S06	0.2919	10	0.77	76.81	47.8	47.8	0.77	104.19	64.9	64.9	0.96	178.56	139.0	139.0	Area Drains	Area around Tower C & D
Total (All)	1.1347				205.9	143.8			279.4	195.0			557.3	396.7		
Notes																
2-yr Storm Inten	nsity, I = 732.9	051/(Tc+6.199)^(0.810 (City o	of Ottawa)												

5-yr Storm Intensity, I = 998.071/(Tc+6.035)^0.814 (City of Ottawa)

100-yr Storm Intensity, I = 1735.688/(Tc+6.014)&^0.820 (City of Ottawa)

Time of Concentration (min), Tc = **10**

For Flows under column Qcap which are shown in brackets **(0.0)**, denotes flows that are controlled

TABLE B13

SUMMARY OF STORAGE

	Re	elease Rate (L/s	5)	Storage R	equired (m ³) (MRM)	Storage Pro	ovided (m ³)	Control Method	Area Desc
Area No	2-yr	5-yr	100-yr	2-yr	5-yr	100-yr	Roof	Surface		
S01	5.9	8.0	15.1	10.4	14.1	26.7	44.8		Flow Controlled Roof Drains	Tower A roof
S02	5.9	5.9 8.0 15.1		9.6	12.9	24.4	42.4		Flow Controlled Roof Drains	Tower B roof
S03	6.6	8.9	17.0	10.7	14.5	27.4	47.7		Flow Controlled Roof Drains	Tower C roof
S04	6.6	8.9	17.0	10.4	14.1	26.7	46.4		Flow Controlled Roof Drains	Tower D roof
S05	71.0	96.4	193.4						none	
S06	47.8	64.9	139.0						none	
Total (All)	143.8	195.0	396.7	41.2	55.5	105.2	181.3			

TABLE B14

Storage Volumes for 2-v	ear, 5-Year and 100-Year Storms	(MRM)

	Area No.	TOWER A													
	$C_{AVG} =$	0.90	_ (2-yr)												
	C _{AVG} =	0.90	_(5-yr)												
	C _{AVG} =	1.00	_(100-yr, Max	1.0)					А	ctual Release	Rate (L/sec) =	15.1			
Tim	e Interval =	2.00	_(), , , , , , , , , , , , , , , , ,	,			Perce	entage of Actu			equirement) =		 (Set to 50% w	/hen U/G stora	e used)
	nage Area =	0.1119	(hectares)					•	•		orage (L/sec) =				Se useu)
	ty Incr (%) =	0%	(Use 20% for	Climate Ch	ange)		nerease ne			. 200 year old	1080 (1,000)		-		
	· · · -		_ `		0,								Ļ		
		Release Rate =	5.9	(L/sec)			Release Rate =	8.0	(L/sec)			Release Rate =	15.1	(L/sec)	
	R	eturn Period =	2.0	(years)		F	Return Period =	5.0	(years)			• Return Period =	100.0	(years)	
	IDF P	arameters, A =	733.0	, B =	0.810	IDF F	Parameters, A =	998.1	, B =	0.814	IDF F	Parameters, A =	1735.7	, B =	0.820
ouration (min)		$(I = A/(T_{c}))$	+C)	, C =	6.199		$(I = A/(T_c+C))$, C =	6.053		$(I = A/(T_c+C))$, C =	6.014
	Rainfall		Dalaasa	Storage		Rainfall	Deals Flass	Dalaasa	Storage		Rainfall	Deals Flass	Dalaasa	Charman	
	Intensity, I	Peak Flow	Release Rate (L/sec)	Rate	Storage (m ³)	Intensity, I	Peak Flow	Release Rate (L/sec)	Rate	Storage (m ³)	Intensity, I	Peak Flow	Release	Storage	Storage (m
	(mm/hr)	(L/sec)	Rate (L/Sec)	(L/sec)		(mm/hr)	(L/sec)	Rate (L/Sec)	(L/sec)		(mm/hr)	(L/sec)	Rate (L/Sec)	Rate (L/sec)	
0	167.2	46.8	5.9	41.0	0.0	230.5	64.5	8.0	56.6	0.0	398.6	124.0	15.1	108.9	0.0
2	133.3	37.3	5.9	31.5	3.8	182.7	51.2	8.0	43.2	5.2	315.0	98.0	15.1	82.9	9.9
4	111.7	31.3	5.9	25.4	6.1	152.5	42.7	8.0	34.8	8.3	262.4	81.6	15.1	66.5	16.0
6	96.6	27.1	5.9	21.2	7.6	131.6	36.8	8.0	28.9	10.4	226.0	70.3	15.1	55.2	19.9
8	85.5	23.9	5.9	18.1	8.7	116.1	32.5	8.0	24.6	11.8	199.2	62.0	15.1	46.8	22.5
10	76.8	21.5	5.9 5.9	15.6	9.4 9.9	104.2	29.2	8.0	21.2	12.7	178.6	55.6 50.4	15.1	40.4	24.2
12 14	69.9 64.2	19.6 18.0	5.9	13.7 12.1	9.9	94.7 86.9	26.5 24.3	8.0 8.0	18.6 16.4	13.4 13.8	162.1 148.7	46.3	15.1 15.1	35.3 31.1	25.4 26.1
14	59.5	18.0	5.9	12.1	10.2	80.5	24.3	8.0	16.4	13.8	148.7	46.3	15.1	27.7	26.1
18	55.5	15.5	5.9	9.7	10.4	75.0	21.0	8.0	14.0	14.0	137.5	39.9	15.1	24.7	26.7
20	52.0	14.6	5.9	8.7	10.4	70.3	19.7	8.0	11.7	14.1	120.0	37.3	15.1	22.2	26.6
22	49.0	13.7	5.9	7.9	10.4	66.1	18.5	8.0	10.6	14.0	112.9	35.1	15.1	20.0	26.4
24	46.4	13.0	5.9	7.1	10.3	62.5	17.5	8.0	9.6	13.8	106.7	33.2	15.1	18.0	26.0
26	44.0	12.3	5.9	6.5	10.1	59.3	16.6	8.0	8.7	13.5	101.2	31.5	15.1	16.3	25.5
28	41.9	11.7	5.9	5.9	9.9	56.5	15.8	8.0	7.9	13.2	96.3	30.0	15.1	14.8	24.9
30	40.0	11.2	5.9	5.4	9.6	53.9	15.1	8.0	7.1	12.9	91.9	28.6	15.1	13.4	24.2
32	38.3	10.7	5.9	4.9	9.4	51.6	14.5	8.0	6.5	12.5	87.9	27.3	15.1	12.2	23.4
34	36.8	10.3	5.9	4.4	9.1	49.5	13.9	8.0	5.9	12.1	84.3	26.2	15.1	11.1	22.6
36	35.4	9.9	5.9	4.0	8.7	47.6	13.3	8.0	5.4	11.6	81.0	25.2	15.1	10.0	21.7
38 40	34.1 32.9	9.5 9.2	5.9 5.9	3.7 3.3	8.4 8.0	45.8 44.2	12.8 12.4	8.0 8.0	4.9 4.4	11.1 10.6	77.9 75.1	24.2 23.4	15.1 15.1	9.1 8.2	20.8 19.8
40 Max =	52.9	9.2	5.9	5.5	8.0 10.4	44.Z	12.4	0.0	4.4	10.6 14.1	/3.1	23.4	15.1	0.Z	19.8 26.7
					10.4					14.1	City of Ott				20.7
otes) Peak flow is equ	al to the prod	luct of 2.78 x C x	(IXA									a IDF Data (from			
Rainfall Intensity	•											equations (Intens	•		:20
Release Rate = N	•										100 year Int 50 year Inte	tensity $= 1735$. Insity $= 1569$.688 / (Time in 580 / (Time in	$\frac{\min + 6.014}{\min + 6.014} \right)^{0.8}$	20
Storage Rate = F											25 year Inte	= 1402	.884 / (Time in	min + 6.018) ^{0.8}	19
Storage = Durati Maximium Stora			ion								10 year Inte	= 1174	.184 / (Time in	$min + 6.014)^{0.8}$	16
Parameters a,b,o	-	•	-								5 year Inten	sity = 998.0	071 / (Time in n 051 / (Time in n	nin + 6.053)	

TABLE B15 Storage Volumes for 2-year, 5-Year and 100-Year Storms (MRM)

	Area No: C _{AVG} = C _{AVG} =	0.90 0.90	(2-yr) (5-yr)												
	C _{AVG} =	1.00	(100-yr, Max	1.0)					А	ctual Release	Rate (L/sec) =	15.1			
Tim	e Interval =	2.00	(mins)				Perce	entage of Actu	al Rate (Cit	y of Ottawa re	equirement) =	100%	(Set to 50% w	hen U/G storag	ge used)
Draii	nage Area =	0.1060	(hectares)				Release Ra	ate Used for E	stimation o	f 100-year Sto	rage (L/sec) =	15.1			
Intensit	ty Incr (%) =	0%	(Use 20% for	Climate Ch	ange)					·			_		
		Release Rate =	5.9	(L/sec)			Release Rate =		(L/sec)			Release Rate =		(L/sec)	
	F	eturn Period =	2.0	(years)		F	Return Period =	5.0	(years)			Return Period =	100.0	(years)	
	IDF P	arameters, A =		, B =		IDF F	arameters, A =	998.1	, B =		IDF F	Parameters, A =	1735.7	, B =	0.820
ouration (min)		(I = A/(T _c	+C)	, C =	6.199		$(I = A/(T_c+C))$, C =	6.053		$(I = A/(T_c+C))$, C =	6.014
	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m
0	167.2	44.4	5.9	38.5	0.0	230.5	61.1	8.0	53.2	0.0	398.6	117.5	15.1	102.3	0.0
2	133.3	35.4	5.9	29.5	3.5	182.7	48.5	8.0	40.5	4.9	315.0	92.8	15.1	77.7	9.3
4	111.7	29.6	5.9	23.8	5.7	152.5	40.5	8.0	32.5	7.8	262.4	77.3	15.1	62.2	14.9
6	96.6	25.6	5.9	19.8	7.1	131.6	34.9	8.0	26.9	9.7	226.0	66.6	15.1	51.5	18.5
8	85.5	22.7	5.9	16.8	8.1	116.1	30.8	8.0	22.8	11.0	199.2	58.7	15.1	43.6	20.9
10	76.8	20.4	5.9	14.5	8.7	104.2	27.6	8.0	19.7	11.8	178.6	52.6	15.1	37.5	22.5
12	69.9	18.5	5.9	12.7	9.1	94.7	25.1	8.0	17.2	12.4	162.1	47.8	15.1	32.6	23.5
14	64.2	17.0	5.9	11.2	9.4	86.9	23.1	8.0	15.1	12.7	148.7	43.8	15.1	28.7	24.1
16	59.5	15.8	5.9	9.9	9.5	80.5	21.3	8.0	13.4	12.9	137.5	40.5	15.1	25.4	24.4
18	55.5	14.7	5.9	8.9	9.6	75.0	19.9	8.0	11.9	12.9	128.1	37.7	15.1	22.6	24.4
20	52.0	13.8	5.9	7.9	9.5	70.3	18.6	8.0	10.7	12.8	120.0	35.3	15.1	20.2	24.3
22	49.0	13.0	5.9	7.1	9.4	66.1	17.5	8.0	9.6	12.7	112.9	33.3	15.1	18.1	23.9
24	46.4	12.3	5.9	6.4	9.3	62.5	16.6	8.0	8.6	12.4	106.7	31.4	15.1	16.3	23.5
26	44.0	11.7	5.9	5.8	9.1	59.3	15.7	8.0	7.8	12.1	101.2	29.8	15.1	14.7	22.9
28 30	41.9	11.1 10.6	5.9 5.9	5.3 4.8	8.8 8.6	56.5	15.0 14.3	8.0 8.0	7.0 6.4	11.8 11.4	96.3 91.9	28.4 27.1	15.1 15.1	13.2 11.9	22.2 21.5
30 32	40.0 38.3	10.6	5.9			53.9		8.0 8.0			91.9 87.9	27.1	15.1 15.1		21.5
32 34	38.3 36.8	9.8	5.9	4.3 3.9	8.3 7.9	51.6 49.5	13.7 13.1	8.0 8.0	5.7 5.2	11.0 10.6	87.9 84.3	25.9 24.8	15.1 15.1	10.8 9.7	20.7
34	36.8 35.4	9.8	5.9	3.9	7.9	49.5 47.6	13.1	8.0 8.0	5.2 4.7	10.6	84.3 81.0	24.8	15.1 15.1	9.7 8.7	19.8
36 38	35.4 34.1	9.4	5.9	3.5	7.6	47.6	12.6	8.0 8.0	4.7	9.6	81.0 77.9	23.9	15.1	8.7 7.8	18.8
38 40	34.1	9.0	5.9	3.2 2.9	6.9	45.8	12.2	8.0 8.0	4.2 3.8	9.6	77.9	23.0	15.1	7.8	17.8
40 Max =	52.9	0.7	5.9	2.9	9.6	44.Z	11./	0.0	5.0	9.0 12.9	/3.1	22.1	15.1	7.0	24.4
ividx =					9.0					12.9					24.4

100 year Intensity	$= 1735.688 / (Time in min + 6.014)^{0.820}$
50 year Intensity	$= 1569.580 / (Time in min + 6.014)^{0.820}$
25 year Intensity	$= 1402.884 / (Time in min + 6.018)^{0.819}$
10 year Intensity	$= 1174.184 / (Time in min + 6.014)^{0.816}$
5 year Intensity	$= 998.071 / (Time in min + 6.053)^{0.814}$
2 year Intensity	$= 732.951 / (Time in min + 6.199)^{0.810}$

Peak flow is equal to the product of 2.78 x C x I x A
 Rainfall Intensity, I = A/(Tc+C)°
 Release Rate = Min (Release Rate, Peak Flow)
 Storage Rate = Peak Flow - Release Rate
 Storage = Duration x Storage Rate
 Maximium Storage = Max Storage Over Duration
 Parameters a,b,c are for City of Ottawa

TABLE B16

	C _{AVG} =	TOWER C 0.90	_(2-yr)			·									
Drair	$C_{AVG} =$ $C_{AVG} =$ e Interval = nage Area = cy Incr (%) =		_(5-yr) _(100-yr, Max _(mins) _(hectares) _(Use 20% for		ange)				al Rate (Cit	y of Ottawa re	Rate (L/sec) = equirement) = prage (L/sec) =		(Set to 50% w	hen U/G storag	ge used)
		Release Rate =	6.6	(L/sec)			Release Rate =	8.9	(L/sec)			Release Rate =	17.0	(L/sec)	
		Return Period = Parameters, A =	733.0	(years) , B =			Return Period = Parameters, A =		(years) , B =			Return Period = Parameters, A =	1735.7	(years) , B =	
Duration (min)		(I = A/(T _c	+C)	, C =	6.199		$(I = A/(T_c+C)$, C =	6.053		$(I = A/(T_c+C)$, C =	6.014
	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	(L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	(L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	, ,	Storage Rate (L/sec)	
0	167.2	49.8	6.6	43.2	0.0	230.5	68.7	8.9	59.8	0.0	398.6	132.0	17.0	115.0	0.0
3	121.5	36.2	6.6	29.6	5.3	166.1	49.5	8.9	40.6	7.3	286.0	94.7	17.0	77.7	14.0
6	96.6	28.8	6.6	22.2	8.0	131.6	39.2	8.9	30.3	10.9	226.0	74.8	17.0	57.8	20.8
9	80.9	24.1	6.6	17.5	9.5	109.8	32.7	8.9	23.8	12.8	188.3	62.3	17.0	45.3	24.5
12	69.9	20.8	6.6	14.2	10.3	94.7	28.2	8.9	19.3	13.9	162.1	53.7	17.0	36.7	26.4
15	61.8	18.4	6.6	11.8	10.6	83.6	24.9	8.9	16.0	14.4	142.9	47.3	17.0	30.3	27.3
18	55.5	16.5	6.6	9.9	10.7	75.0	22.3	8.9	13.4	14.5	128.1	42.4	17.0	25.4	27.4
21	50.5	15.0	6.6	8.5	10.6	68.1	20.3	8.9	11.4	14.3	116.3	38.5	17.0	21.5	27.1
24	46.4	13.8	6.6	7.2	10.4	62.5	18.6	8.9	9.7	14.0	106.7	35.3	17.0	18.3	26.3
27	43.0	12.8	6.6	6.2	10.1	57.9	17.3	8.9	8.3	13.5	98.7	32.7	17.0	15.6	25.3
30	40.0	11.9	6.6	5.3	9.6	53.9	16.1	8.9	7.1	12.8	91.9	30.4	17.0	13.4	24.1
33	37.5	11.2	6.6	4.6	9.1	50.5	15.1	8.9	6.1	12.1	86.0	28.5	17.0	11.5	22.7
36	35.4	10.5	6.6	3.9	8.5	47.6	14.2	8.9	5.2	11.3	81.0	26.8	17.0	9.8	21.1
39	33.5	10.0	6.6	3.4	7.9	45.0	13.4	8.9	4.5	10.4	76.5	25.3	17.0	8.3	19.4
42	31.8	9.5	6.6	2.9	7.2	42.7	12.7	8.9	3.8	9.5	72.6	24.0	17.0	7.0	17.6
45	30.2	9.0	6.6	2.4	6.5	40.6	12.1	8.9	3.2	8.5	69.1	22.9	17.0	5.8	15.8
48 51	28.9	8.6 8.2	6.6 6.6	2.0	5.8 5.0	38.8	11.6 11.1	8.9 8.9	2.6	7.5 6.5	65.9	21.8 20.9	17.0	4.8	13.8 11.8
51 54	27.6	-		1.6		37.1			2.1		63.0		17.0 17.0	3.8	9.7
	26.5	7.9	6.6	1.3	4.2	35.6	10.6	8.9	1.7	5.4	60.4	20.0		3.0	
57 60	25.5 24.6	7.6 7.3	6.6 6.6	1.0 0.7	3.4 2.6	34.2 32.9	10.2 9.8	8.9 8.9	1.3 0.9	4.3 3.1	58.1 55.9	19.2 18.5	17.0 17.0	2.2 1.5	7.5 5.3
	24.0	7.3	0.0	0.7	2.0 10.7	32.9	9.8	8.9	0.9	^{3.1} 14.5	55.9	18.5	17.0	1.5	27.4
Max = lotes) Peak flow is equ) Rainfall Intensit) Release Rate = I) Storage Rate =	y, I = A/(Tc+C Vin (Release) ^s Rate, Peak Flow) elease Rate			10.7					14.3	IDF curve 100 year Int 50 year Inte 25 year Inte 10 year Inte	nsity = 1569. nsity = 1402. nsity = 1174.	688 / (Time in 1 580 / (Time in 1 884 / (Time in 1 184 / (Time in 1	$\begin{array}{l} \min + 6.014) \stackrel{0.8:}{\underset{\underset{\underset{\underset{\underset{\underset{\underset{\underset{\underset{\underset{\underset{\underset{\underset{\underset{\underset{\underset{\underset{\underset$	20 20 19 6

5) Storage = Duration x Storage Rate 6) Maximium Storage = Max Storage Over Duration 7) Parameters a,b,c are for City of Ottawa

100 year Intensity	$= 1735.688 / (Time in min + 6.014)^{0.820}$
50 year Intensity	$= 1569.580 / (Time in min + 6.014)^{0.820}$
25 year Intensity	$= 1402.884 / (Time in min + 6.018)^{0.819}$
10 year Intensity	$= 1174.184 / (Time in min + 6.014)^{0.816}$
5 year Intensity	$= 998.071 / (Time in min + 6.053)^{0.814}$
2 year Intensity	$= 732.951 / (Time in min + 6.199)^{0.810}$

TABLE B17 ~ .

Storage Volumes for 2-year, 5-Year and 100-Year Storms (MRM)
storage volumes for 2 years of rear and 200 rear otorins (initity

	Area No: C _{AVG} = C _{AVG} = C _{AVG} =	TOWER D 0.90 0.90 1.00	_ _(2-yr) _(5-yr) (100-yr, Max	1.0)					A	ctual Release	Rate (L/sec) =	17.0			
Drai	ne Interval = nage Area = ty Incr (%) =	2.00 0.1161 0%	(mins) (hectares) (Use 20% for	Climate Ch	ange)				•		equirement) = prage (L/sec) =	100% 17.0	(Set to 50% w	hen U/G storag	ge used)
		Release Rate =	6.6	(L/sec)			Release Rate =	8.9	(L/sec)			Release Rate =	17.0	(L/sec)	
	R	eturn Period =	2.0	(years)		F	Return Period =	5.0	(years)			Return Period =	100.0	(years)	
	IDF P	arameters, A =	733.0	, B =	0.810	IDF F	arameters, A =	998.1	, B =	0.814	IDF F	Parameters, A =	1735.7	, B =	0.820
ouration (min)		(I = A/(T _c	+C)	, C =	6.199		$(I = A/(T_c+C))$, C =	6.053		$(I = A/(T_c+C))$, C =	6.014
	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m ³)	Rainfall Intensity, I (mm/hr)	Peak Flow (L/sec)	Release Rate (L/sec)	Storage Rate (L/sec)	Storage (m
0	167.2	48.6	6.6	42.0	0.0	230.5	67.0	8.9	58.0	0.0	398.6	128.7	17.0	111.6	0.0
2	133.3	38.7	6.6	32.1	3.9	182.7	53.1	8.9	44.1	5.3	315.0	101.7	17.0	84.6	10.2
4	111.7	32.5	6.6	25.9	6.2	152.5	44.3	8.9	35.4	8.5	262.4	84.7	17.0	67.7	16.2
6	96.6	28.1	6.6	21.5	7.7	131.6	38.2	8.9	29.3	10.5	226.0	73.0	17.0	55.9	20.1
8	85.5	24.8	6.6	18.2	8.8	116.1	33.7	8.9	24.8	11.9	199.2	64.3	17.0	47.3	22.7
10	76.8	22.3	6.6	15.7	9.4	104.2	30.3	8.9	21.3	12.8	178.6	57.6	17.0	40.6	24.4
12	69.9	20.3	6.6	13.7	9.9	94.7	27.5	8.9	18.6	13.4	162.1	52.3	17.0	35.3	25.4
14	64.2	18.7	6.6	12.1	10.1	86.9	25.3	8.9 8.9	16.3	13.7	148.7	48.0	17.0	31.0	26.0
16 18	59.5 55.5	17.3 16.1	6.6 6.6	10.7 9.5	10.3 10.3	80.5 75.0	23.4 21.8	8.9 8.9	14.4 12.8	13.9 13.9	137.5 128.1	44.4 41.3	17.0 17.0	27.4 24.3	26.3 26.3
20	52.0	15.1	6.6	9.5 8.5	10.3	70.3	21.8	8.9	12.8	13.8	128.1	38.7	17.0	24.3	26.0
20	49.0	14.2	6.6	7.6	10.2	66.1	19.2	8.9	10.3	13.6	112.9	36.4	17.0	19.4	25.6
24	46.4	13.5	6.6	6.9	9.9	62.5	18.2	8.9	9.2	13.3	106.7	34.4	17.0	17.4	25.0
26	44.0	12.8	6.6	6.2	9.7	59.3	17.2	8.9	8.3	12.9	100.7	32.7	17.0	15.6	24.4
28	41.9	12.2	6.6	5.6	9.4	56.5	16.4	8.9	7.5	12.5	96.3	31.1	17.0	14.0	23.6
30	40.0	11.6	6.6	5.0	9.1	53.9	15.7	8.9	6.7	12.1	91.9	29.7	17.0	12.6	22.7
32	38.3	11.1	6.6	4.5	8.7	51.6	15.0	8.9	6.0	11.6	87.9	28.4	17.0	11.3	21.8
34	36.8	10.7	6.6	4.1	8.3	49.5	14.4	8.9	5.4	11.1	84.3	27.2	17.0	10.2	20.7
36	35.4	10.3	6.6	3.7	7.9	47.6	13.8	8.9	4.9	10.5	81.0	26.1	17.0	9.1	19.7
38	34.1	9.9	6.6	3.3	7.5	45.8	13.3	8.9	4.4	9.9	77.9	25.2	17.0	8.1	18.5
40	32.9	9.5	6.6	3.0	7.1	44.2	12.8	8.9	3.9	9.3	75.1	24.3	17.0	7.2	17.3
Max =					10.3					13.9					26.3

Xainfail intensity, I = A/(1C+C)
 Release Rate = Min (Release Rate, Peak Flow)
 Storage Rate = Peak Flow - Release Rate
 Storage = Duration x Storage Rate
 Maximium Storage = Max Storage Over Duration
 Parameters a,b,c are for City of Ottawa

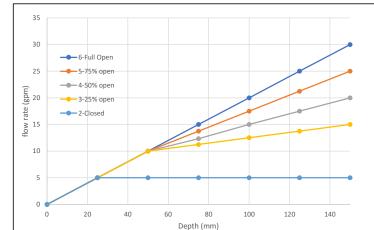
100 year Intensity	$= 1735.688 / (Time in min + 6.014)^{0.820}$
50 year Intensity	$= 1569.580 / (Time in min + 6.014)^{0.820}$
25 year Intensity	$= 1402.884 / (Time in min + 6.018)^{0.819}$
10 year Intensity	$= 1174.184 / (Time in min + 6.014)^{0.816}$
5 year Intensity	$= 998.071 / (Time in min + 6.053)^{0.814}$
2 year Intensity	$= 732.951 / (Time in min + 6.199)^{0.810}$

TABLE B18 **ESTIMATION OF ROOF STORAGE AND OUTFLOW - TOWER A**

WATTS ADJ ACCUTROL WEIR FLOW RATES (Flow Rates at Various Depths)

	Weir Position									
Depth	1-None	2-Closed	3-25%	4-50%	5-75%	6-Full				
Deptil	I-NOTIE	2-Closed	open	open	open	Open				
	Max Flow Rate per wier @150mm in gpm									
0	0	0	0	0	0	0				
0.025	0	5	5	5	5	5				
0.05	0	5	10	10	10	10				
0.075	0	5	11.25	12.35	13.75	15				
0.1	0	5	12.5	15	17.5	20				
0.125	0	5	13.75	17.5	21.25	25				
0.15	0	5	15	20	25	30				

WATTS ADJ ACCUTROL WEIR FLOW RATES (Data From Manufacturer's Catalog)


	Flow (gpm) per depth								
Weir Position	0	25	50	75	100	125	150	Rate per Weir	
	0	0.025	0.05	0.075	0.1	0.125	0.15	@150mm	
1-None	0	0	0	0	0	0	0	0	
2-Closed	0	5	5	5	5	5	5	0.315	
3-25% open	0	5	10	11.25	12.5	13.75	15	0.946	
4-50% open	0	5	10	12.35	15	17.5	20	1.262	
5-75% open	0	5	10	13.75	17.5	21.25	25	1.577	
6-Full Open	0	5	10	15	20	25	30	1.893	

BUILDING ROOF INFORMATION

Duidling Number	Tower B1	
Buidling Number		
Total Roof Area (m2)	1119	
Minimium Number of Drains Required	1.2	Minimium of 1 dra
15-min Rainfall Factor for Ottawa (mm)	23	(OBC Supp SB-1
Max Permitted Load from All Drains (Litres)	25,741	
Max Permitted Load from All Drains (L/sec)	28.6	Hydraulic Load e
Estimated area per drain (m2)	144	-
Estimated Distance from roof edge to drains (m)	6	Not more than 15
Estimated No. of Drains Requried	8	Based on Total R
Actual No. of Drains Used	8	Use if known
Effecive Roof Percentage (%)	80%	Allowance for Me
Effecive Total Roof Area (m2)	895	
Area per Drain (m2)	112	Based on Effectii
Max Depth of Ponding at Drains (mm)	150	
Estimated Total Volume for Ponding on Roof (m3)	56.0	Prisim formula, V
Maximium release rate per drain at 150mm (usgpm)	30	Based on 1 Wier
Max Release Rate from Roof (L/sec)	15.1	Based on Maxim
Equiv Runoff C for 100-yr Storm	0.27	Based on 100-yr

RATING CURVE FOR ROOF

DIS	CHARGE VE	RSUS DEPT	Ή	AREA	Total		
Ponding Depth (m)	Discharge Rate Per Drain (gpm)	Discharge Rate Per Drain (m3/sec)	Total Discharge All Drains (m3/sec)	Ponding Depth (m)	Ponding Area (m2)	Ponding Volume Per Drain (m3)	Ponding Volume - All Drains (m3)
0	0	0.00	0.00000	0	0.0	0.0	0.0
0.025	5	0.32	0.00252	0.025	3.1	0.0	0.2
0.05	10	0.63	0.00505	0.05	12.4	0.2	1.7
0.075	15	0.95	0.00757	0.075	28.0	0.7	5.6
0.1	20	1.26	0.01009	0.1	49.7	1.7	13.3
0.125	25	1.58	0.01262	0.125	77.7	3.2	25.9
0.15	30	1.89	0.01514	0.15	111.9	5.6	44.8
Weir Position =	6-Full Open						

Irain every 900 sqaure metres (OBC 7.4.10.4) -1)

expressed in L/sec (OBC Section 7.4.10.3)

15m from Edge of Roof and 30m to Adjacent Dains (OBC Section 7.4.10.3) Roof Area / Area per Drain

lechanical units on roof

tiive Roof Area / Actual Number of Drains Used

V = 1/3 * A * d

er Per Drain and Fully Open Position mum Depth of Ponding of 150mm yr storm Intensity of 178.6 mm/hr, where I =1735.688 / (Tc + 6.014)^0.820, with Tc=10min)

RATING CURVE FOR								
MODELLING OUTLET								
Head or Ponding Depth (m)	OutIfow (L/sec)							
0	0.0000							
0.025	2.5236							
0.05	5.0472							
0.075	7.5708							
0.1	10.0944							
0.125	12.6180							
0.15	15.1416							

RATING CURVE FOR MODELLING ROOF STORAGE				
Head or	Ponding			
Ponding	Area			
Depth (m)	(m2)			

12.4

28.0

49.7

77.7

111.9

Head or Ponding Depth (m)	Pondin Area (m2)
0	0.0
0.025	3.1

0.05

0.075

0.1

0.125

0.15

GRAPH OF FLOW RATE VERSUS DEPTH FOR VARIOUS WEIR POSITIONS

TABLE B19 ESTIMATION OF ROOF STORAGE AND OUTFLOW - TOWER B

WATTS ADJ ACCUTROL WEIR FLOW RATES (Flow Rates at Various Depths)

	Weir Position									
Depth	1-None	2-Closed	3-25%	4-50%	5-75%	6-Full				
Deptil	1-NOTIE	2-Closed	open	open	open	Open				
		Max Flo	w Rate per w	rier @150mm in gpm						
0	0	0	0	0	0	0				
0.025	0	5	5	5	5	5				
0.05	0	5	10	10	10	10				
0.075	0	5	11.25	12.35	13.75	15				
0.1	0	5	12.5	15	17.5	20				
0.125	0	5	13.75	17.5	21.25	25				
0.15	0	5	15	20	25	30				

WATTS ADJ ACCUTROL WEIR FLOW RATES (Data From Manufacturer's Catalog)

	Flow (gpm) per depth							
Weir Position	0	25	50	75	100	125	150	Rate per Weir
T	0	0.025	0.05	0.075	0.1	0.125	0.15	@150mm
1-None	0	0	0	0	0	0	0	0
2-Closed	0	5	5	5	5	5	5	0.315
3-25% open	0	5	10	11.25	12.5	13.75	15	0.946
4-50% open	0	5	10	12.35	15	17.5	20	1.262
5-75% open	0	5	10	13.75	17.5	21.25	25	1.577
6-Full Open	0	5	10	15	20	25	30	1.893

BUILDING ROOF INFORMATION

Buidling Number	Podium B1 / B2	
Total Roof Area (m2)	1060	
Minimium Number of Drains Required	1.2	Minimium
15-min Rainfall Factor for Ottawa (mm)	23	(OBC Su
Max Permitted Load from All Drains (Litres)	24,382	
Max Permitted Load from All Drains (L/sec)	27.1	Hydraulic
Estimated area per drain (m2)	144	
Estimated Distance from roof edge to drains (m)	6	Not more
Estimated No. of Drains Requried	8	Based on
Actual No. of Drains Used	8	Use if kno
Effecive Roof Percentage (%)	80%	Allowance
Effecive Total Roof Area (m2)	848	
Area per Drain (m2)	106	Based on
Max Depth of Ponding at Drains (mm)	150	
Estimated Total Volume for Ponding on Roof (m3)	53.0	Prisim for
Maximium release rate per drain at 150mm (usgpm)	30	Based or
Max Release Rate from Roof (L/sec)	15.1	Based or
Equiv Runoff C for 100-yr Storm	0.29	Based or

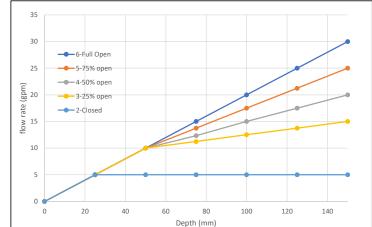
Minimium of 1 drain every 900 sqaure metres (OBC 7.4.10.4) (OBC Supp SB-1)
Hydraulic Load expressed in L/sec (OBC Section 7.4.10.3)
Not more than 15m from Edge of Roof and 30m to Adjacent Dains (OBC Section 7.4.10.3) Based on Total Roof Area / Area per Drain
Use if known Allowance for Mechanical units on roof

on Effectiive Roof Area / Actual Number of Drains Used

ormula, V = 1/3*A*d

on 1 Wier Per Drain and Fully Open Position

on Maximum Depth of Ponding of 150mm on 100-yr storm Intensity of 178.6 mm/hr, where I =1735.688 / (Tc + 6.014)^0.820, with Tc=10min)


RATING CURVE FOR ROOF

DIS	CHARGE VE	RSUS DEPT	Н	AREA	Total		
Ponding Depth (m)	Discharge Rate Per Drain (gpm)	Discharge Rate Per Drain (m3/sec)	Total Discharge All Drains (m3/sec)	Ponding Depth (m)	Ponding Area (m2)	Ponding Volume Per Drain (m3)	Ponding Volume - All Drains (m3)
0	0	0.00	0.00000	0	0.0	0.0	0.0
0.025	5	0.32	0.00252	0.025	2.9	0.0	0.2
0.05	10	0.63	0.00505	0.05	11.8	0.2	1.6
0.075	15	0.95	0.00757	0.075	26.5	0.7	5.3
0.1	20	1.26	0.01009	0.1	47.1	1.6	12.6
0.125	25	1.58	0.01262	0.125	73.6	3.1	24.5
0.15	30	1.89	0.01514	0.15	106.0	5.3	42.4
Weir Position =	6-Full Open						

RATING CL	JRVE FOR	
MODELLIN	G OUTLET	
Head or Ponding Depth (m)	Outlfow (L/sec)	
0	0.0000	
0.025	2.5236	
0.05	5.0472	
0.075	7.5708	
0.1	10.0944	
0.125	12.6180	
0.15	15.1416	

GRAPH OF FLOW RATE VERSUS DEPTH FOR VARIOUS WEIR POSITIONS	
	GRAPH OF FLOW RATE VERSUS DEPTH FOR VARIOUS WEIR POSITIONS

RATING CURVE FOR

MODELLING ROOF STORAGE Head or

Ponding

Depth (m)

0 0.025

0.05

0.075

0.1 0.125

0.15

Ponding

Area

(m2) 0.0

2.9

11.8

26.5 47.1

73.6

106.0

TABLE B20 ESTIMATION OF ROOF STORAGE AND OUTFLOW - TOWER C

WATTS ADJ ACCUTROL WEIR FLOW RATES (Flow Rates at Various Depths)

		Weir Position								
Depth	1-None	2-Closed	3-25%	4-50%	5-75%	6-Full				
Deptil	1-NOTIE	2-Closed	open	open	open	Open				
		Max Flo	w Rate per w	vier @150mn	n in gpm					
0	0	0	0	0	0	0				
0.025	0	5	5	5	5	5				
0.05	0	5	10	10	10	10				
0.075	0	5	11.25	12.35	13.75	15				
0.1	0	5	12.5	15	17.5	20				
0.125	0	5	13.75	17.5	21.25	25				
0.15	0	5	15	20	25	30				

WATTS ADJ ACCUTROL WEIR FLOW RATES (Data From Manufacturer's Catalog)

	Flow (gpm) per depth								
Weir Position	0	25	50	75	100	125	150	Rate per Weir	
	0	0.025	0.05	0.075	0.1	0.125	0.15	@150mm	
1-None	0	0	0	0	0	0	0	0	
2-Closed	0	5	5	5	5	5	5	0.315	
3-25% open	0	5	10	11.25	12.5	13.75	15	0.946	
4-50% open	0	5	10	12.35	15	17.5	20	1.262	
5-75% open	0	5	10	13.75	17.5	21.25	25	1.577	
6-Full Open	0	5	10	15	20	25	30	1.893	

BUILDING ROOF INFORMATION

Buidling Number	Tower B2
Total Roof Area (m2)	1191
Minimium Number of Drains Required	1.3
15-min Rainfall Factor for Ottawa (mm)	23
Max Permitted Load from All Drains (Litres)	27,400
Max Permitted Load from All Drains (L/sec)	30.4
Estimated area per drain (m2)	144
Estimated Distance from roof edge to drains (m)	6
Estimated No. of Drains Requried	9
Actual No. of Drains Used	9
Effecive Roof Percentage (%)	80%
Effecive Total Roof Area (m2)	953
Area per Drain (m2)	106
Max Depth of Ponding at Drains (mm)	150
Estimated Total Volume for Ponding on Roof (m3)	59.6
Maximium release rate per drain at 150mm (usgpm)	30
Max Release Rate from Roof (L/sec)	17.0
Equiv Runoff C for 100-yr Storm	0.29

Minimium of 1 drain every 900 sqaure metres (OBC 7.4.10.4) (OBC Supp SB-1)

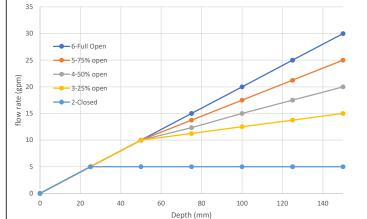
Hydraulic Load expressed in L/sec (OBC Section 7.4.10.3)

Not more than 15m from Edge of Roof and 30m to Adjacent Dains (OBC Section 7.4.10.3) Based on Total Roof Area / Area per Drain

Use if known N0 Allowance for Mechanical units on this roof

Based on Effectiive Roof Area / Actual Number of Drains Used

Prisim formula, V = 1/3*A*d


Based on 1 Wier Per Drain and Fully Open Position Based on Maximum Depth of Ponding of 150mm Based on 100-yr storm Intensity of 178.6 mm/hr, where I =1735.688 / (Tc + 6.014)^0.820, with Tc=10min)

RATING CURVE FOR ROOF

DIS	CHARGE VE	RSUS DEPT	Н	AREA	Total		
Ponding Depth (m)	Discharge Rate Per Drain (gpm)	Discharge Rate Per Drain (m3/sec)	Total Discharge All Drains (m3/sec)	Ponding Depth (m)	Ponding Area (m2)	Ponding Volume Per Drain (m3)	Ponding Volume - All Drains (m3)
0	0	0.00	0.00000	0	0.0	0.0	0.0
0.025	5	0.32	0.00284	0.025	2.9	0.0	0.2
0.05	10	0.63	0.00568	0.05	11.8	0.2	1.8
0.075	15	0.95	0.00852	0.075	26.5	0.7	6.0
0.1	20	1.26	0.01136	0.1	47.1	1.6	14.1
0.125	25	1.58	0.01420	0.125	73.5	3.1	27.6
0.15	30	1.89	0.01703	0.15	105.9	5.3	47.7
Weir Position =	6-Full Open						

RATING CU	JRVE FOR	
MODELLIN	G OUTLET	
Head or Ponding Depth (m)	OutIfow (L/sec)	
0	0.0000	
0.025	2.8391	
0.05	5.6781	
0.075	8.5172	
0.1	11.3562	
0.125	14.1953	
0.15	17.0344	

GRAPH OF FLOW RATE VERSUS DEPTH FOR VARIOUS WEIR POSITIONS

MODELLING ROOF STORAGE						
Head or Ponding Depth (m)	Ponding Area (m2)					
0	0.0					
0.025	2.9					
0.05	11.8					
0.075	26.5					
0.1	47.1					
0.125	73.5					
0.15	105.9					

RATING CURVE FOR

TABLE B21 ESTIMATION OF ROOF STORAGE AND OUTFLOW - TOWER D

WATTS ADJ ACCUTROL WEIR FLOW RATES (Flow Rates at Various Depths)

	Weir Position							
Depth	1-None	2-Closed	3-25%	4-50%	5-75%	6-Full		
	1-None	2-Closed	2-Closed open	open	open	Open		
	Max Flow Rate per wier @150mm in gpm							
0	0	0	0	0	0	0		
0.025	0	5	5	5	5	5		
0.05	0	5	10	10	10	10		
0.075	0	5	11.25	12.35	13.75	15		
0.1	0	5	12.5	15	17.5	20		
0.125	0	5	13.75	17.5	21.25	25		
0.15	0	5	15	20	25	30		

WATTS ADJ ACCUTROL WEIR FLOW RATES (Data From Manufacturer's Catalog)

	Flow (gpm) per depth							
Weir Position	0	25	50	75	100	125	150	Rate per Weir
	0	0.025	0.05	0.075	0.1	0.125	0.15	@150mm
1-None	0	0	0	0	0	0	0	0
2-Closed	0	5	5	5	5	5	5	0.315
3-25% open	0	5	10	11.25	12.5	13.75	15	0.946
4-50% open	0	5	10	12.35	15	17.5	20	1.262
5-75% open	0	5	10	13.75	17.5	21.25	25	1.577
6-Full Open	0	5	10	15	20	25	30	1.893

BUILDING ROOF INFORMATION

Buidling Number	Podium B2 / B3
Total Roof Area (m2)	1161
Minimium Number of Drains Required	1.3
15-min Rainfall Factor for Ottawa (mm)	23
Max Permitted Load from All Drains (Litres)	26,706
Max Permitted Load from All Drains (L/sec)	29.7
Estimated area per drain (m2)	144
Estimated Distance from roof edge to drains (m)	6
Estimated No. of Drains Requried	9
Actual No. of Drains Used	9
Effecive Roof Percentage (%)	80%
Effecive Total Roof Area (m2)	929
Area per Drain (m2)	103
Max Depth of Ponding at Drains (mm)	150
Estimated Total Volume for Ponding on Roof (m3)	58.1
Maximium release rate per drain at 150mm (usgpm)	30
Max Release Rate from Roof (L/sec)	17.0
Equiv Runoff C for 100-yr Storm	0.30

Minimium of 1 drain every 900 sqaure metres (OBC 7.4.10.4)
(OBC Supp SB-1)

Hydraulic Load expressed in L/sec (OBC Section 7.4.10.3)

Not more than 15m from Edge of Roof and 30m to Adjacent Dains (OBC Section 7.4.10.3) Based on Total Roof Area / Area per Drain

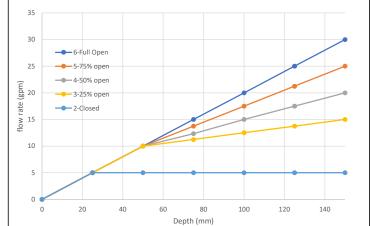
Use if known N0 Allowance for Mechanical units on this roof

Based on Effective Roof Area / Actual Number of Drains Used

Prisim formula, V = 1/3*A*d

Based on 1 Wier Per Drain and Fully Open Position Based on Maximum Depth of Ponding of 150mm

Based on 100-yr storm Intensity of 178.6 mm/hr, where I =1735.688 / (Tc + 6.014)^0.820, with Tc=10min)


RATING CURVE FOR ROOF

DISCHARGE VERSUS DEPTH AREA VERSUS DEPTH					Total		
Ponding Depth (m)	Discharge Rate Per Drain (gpm)	Discharge Rate Per Drain (m3/sec)	Total Discharge All Drains (m3/sec)	Ponding Depth (m)	Ponding Area (m2)	Ponding Volume Per Drain (m3)	Ponding Volume - All Drains (m3)
0	0	0.00	0.00000	0	0.0	0.0	0.0
0.025	5	0.32	0.00284	0.025	2.9	0.0	0.2
0.05	10	0.63	0.00568	0.05	11.5	0.2	1.7
0.075	15	0.95	0.00852	0.075	25.8	0.6	5.8
0.1	20	1.26	0.01136	0.1	45.9	1.5	13.8
0.125	25	1.58	0.01420	0.125	71.7	3.0	26.9
0.15	30	1.89	0.01703	0.15	103.2	5.2	46.4
Weir Position =	6-Full Open						

RATING CURVE FOR						
MODELLING OUTLET						
Head or Ponding Depth (m)	OutIfow (L/sec)					
0	0.0000					
0.025	2.8391					
0.05	5.6781					
0.075	8.5172					
0.1	11.3562					
0.125	14.1953					
0.15	17.0344					

GRAPH OF FLOW RATE VERSUS DEPTH FOR VARIOUS WEIR POSITIONS

RATING CURVE FOR

MODELLING ROOF

STORAGE Ponding

Area

(m2) 0.0

2.9

11.5

25.8 45.9

71.7 103.2

Head or Ponding

Depth (m)

0 0.025

0.05

0.075

0.1 0.125

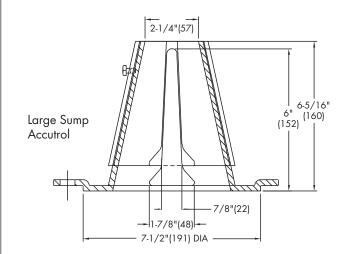
0.15

EXP Services Inc. 1009 Trim Road, Ottawa, ON OTT-00259629-A0 December 17, 2021

Appendix C – Manufacturers Information

Watts ACCUTROL Flow Control Specification Stormceptor Sizing Report Stormceptor EF Brochure Stormceptor EF06 Detail

WATTS	Adjustable Accutrol Weir Tag:	Adjustable Flow Control for Roof Drains
-------	----------------------------------	--


ADJUSTABLE ACCUTROL (for Large Sump Roof Drains only)

For more flexibility in controlling flow with heads deeper than 2", Watts Drainage offers the Adjustable Accutrol. The Adjustable Accutrol Weir is designed with a single parabolic opening that can be covered to restrict flow above 2" of head to less than 5 gpm per inch, up to 6" of head. To adjust the flow rate for depths over 2" of head, set the slot in the adjustable upper cone according to the flow rate required. Refer to Table 1 below. Note: Flow rates are directly proportional to the amount of weir opening that is exposed.

EXAMPLE:

For example, if the adjustable upper cone is set to cover 1/2 of the weir opening, flow rates above 2"of head will be restricted to 2-1/2 gpm per inch of head.

Therefore, at 3" of head, the flow rate through the Accutrol Weir that has 1/2 the slot exposed will be: [5 gpm (per inch of head) x 2 inches of head] + 2-1/2 gpm (for the third inch of head) = 12-1/2 gpm.

Wair Opening	1"	2"	3"	4"	5"	6"		
Weir Opening Exposed	Flow Rate (gallons per minute)							
Fully Exposed	5	10	15	20	25	30		
3/4	5	10	13.75	17.5	21.25	25		
1/2	5	10	12.5	15	17.5	20		
1/4	5	10	11.25	12.5	13.75	15		
Closed	5	5	5	5	5	5		

Job Name

Job Location

Engineer

Adjustable Upper Cone Fixed Weir

Contractor _

Contractor's P.O. No.

Representative ____

Watts product specifications in U.S. customary units and metric are approximate and are provided for reference only. For precise measurements, please contact Watts Technical Service. Watts reserves the right to change or modify product design, construction, specifications, or materials without prior notice and without incurring any obligation to make such changes and modifications on Watts products previously or subsequently sold.

USA: Tel: (800) 338-2581 • Fax: (828) 248-3929 • Watts.com **Canada:** Tel: (905) 332-4090 • Fax: (905) 332-7068 • Watts.ca **Latin America:** Tel: (52) 81-1001-8600 • Fax: (52) 81-8000-7091 • Watts.com

A Watts Water Technologies Company

Province:	Ontario	Project Nar	ne:	1009 Trim Road	
City:	Ottawa	Project Nu	mber:	259629	
Vearest Rainfall Station:	OTTAWA CDA RCS	Designer N	ame:	Aaditya Jariwala	
Climate Station Id:	6105978	Designer C	ompany:	EXP Inc	
Years of Rainfall Data:	20	Designer Ei	mail:	aaditya.jariwala@e	exp.com
		Designer Pl	hone:	613-816-5961	
Site Name:	1009 Trim Road	EOR Name	:		
Drainage Area (ha):	1.135	EOR Compa	any:		
Runoff Coefficient 'c':	0.85	EOR Email:			
		EOR Phone	:		
Particle Size Distribution: Target TSS Removal (%): Required Water Quality Run	Fine 80.0	90.00		(TSS) Load	l Sediment Reduction ummary
Estimated Water Quality Flo		32.73		Stormceptor	TSS Removal
				Model	Provided (%)
Dil / Fuel Spill Risk Site?		No		EF4	70
Ipstream Flow Control?		No		EF6	80
Peak Conveyance (maximum	ו) Flow Rate (L/s):			EF8	86
Site Sediment Transport Rat	e (kg/ha/yr):			EF10	91
				EF12	94
	Estima	ted Net Annual Sec	liment (TS	Stormceptor EF SS) Load Reduct ff Volume Capt	ion (%):

Forterra

THIRD-PARTY TESTING AND VERIFICATION

► Stormceptor® EF and Stormceptor® EFO are the latest evolutions in the Stormceptor® oil-grit separator (OGS) technology series, and are designed to remove a wide variety of pollutants from stormwater and snowmelt runoff. These technologies have been third-party tested in accordance with the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators and performance has been third-party verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol.

PERFORMANCE

► Stormceptor® EF and EFO remove stormwater pollutants through gravity separation and floatation, and feature a patentpending design that generates positive removal of total suspended solids (TSS) throughout each storm event, including highintensity storms. Captured pollutants include sediment, free oils, and sediment-bound pollutants such as nutrients, heavy metals, and petroleum hydrocarbons. Stormceptor is sized to remove a high level of TSS from the frequent rainfall events that contribute the vast majority of annual runoff volume and pollutant load. The technology incorporates an internal bypass to convey excessive stormwater flows from high-intensity storms through the device without resuspension and washout (scour) of previously captured pollutants. Proper routine maintenance ensures high pollutant removal performance and protection of downstream waterwavs.

PARTICLE SIZE DISTRIBUTION (PSD)

► The **Canadian ETV PSD** shown in the table below was used, or in part, for this sizing. This is the identical PSD that is referenced in the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators** for both sediment removal testing and scour testing. The Canadian ETV PSD contains a wide range of particle sizes in the sand and silt fractions, and is considered reasonably representative of the particle size fractions found in typical urban stormwater runoff.

Particle	Percent Less	Particle Size	Dorsont
Size (µm)	Than	Fraction (µm)	Percent
1000	100	500-1000	5
500	95	250-500	5
250	90	150-250	15
150	75	100-150	15
100	60	75-100	10
75	50	50-75	5
50	45	20-50	10
20	35	8-20	15
8	20	5-8	10
5	10	2-5	5
2	5	<2	5

Rainfall Intensity (mm / hr)	Percent Rainfall Volume (%)	Cumulative Rainfall Volume (%)	Flow Rate (L/s)	Flow Rate (L/min)	Surface Loading Rate (L/min/m²)	Removal Efficiency (%)	Incremental Removal (%)	Cumulative Removal (%)	
1	22.3	22.3	2.68	161.0	61.0	96	21.4	21.4	
2	17.8	40.0	5.36	322.0	122.0	87	15.4	36.7	
3	13.1	53.1	8.05	483.0	184.0	80	10.4	47.2	
4	9.2	62.4	10.73	644.0	245.0	75	7.0	54.2	
5	6.5	68.9	13.41	805.0	306.0	73	4.7	58.9	
6	5.1	74.0	16.09	966.0	367.0	70	3.6	62.5	
7	3.4	77.3	18.77	1126.0	428.0	68	2.3	64.8	
8	3.0	80.3	21.46	1287.0	489.0	67	2.0	66.8	
9	3.6	84.0	24.14	1448.0	551.0	66	2.4	69.2	
10	2.5	86.5	26.82	1609.0	612.0	66	1.7	70.8	
11	1.7	88.2	29.50	1770.0	673.0	65	1.1	72.0	
12	1.4	89.6	32.18	1931.0	734.0	65	0.9	72.9	
13	1.9	91.5	34.87	2092.0	795.0	64	1.2	74.1	
14	1.3	92.8	37.55	2253.0	857.0	64	0.9	75.0	
15	1.3	94.1	40.23	2414.0	918.0	64	0.8	75.8	
16	0.8	94.9	42.91	2575.0	979.0	63	0.5	76.3	
17	0.8	95.7	45.59	2736.0	1040.0	64	0.5	76.8	
18	0.4	96.1	48.28	2897.0	1101.0	65	0.3	77.0	
19	0.5	96.6	50.96	3057.0	1163.0	66	0.3	77.3	
20	0.2	96.8	53.64	3218.0	1224.0	67	0.2	77.5	
21	0.5	97.3	56.32	3379.0	1285.0	68	0.3	77.8	
22	0.3	97.6	59.00	3540.0	1346.0	69	0.2	78.0	
23	1.1	98.7	61.69	3701.0	1407.0	70	0.8	78.8	
24	0.3	99.0	64.37	3862.0	1468.0	67	0.2	79.0	
25	0.0	99.0	67.05	4023.0	1530.0	64	0.0	79.0	
30	1.0	100.0	80.46	4828.0	1836.0	54	0.5	79.5	
35	0.0	100.0	93.87	5632.0	2142.0	46	0.0	79.5	
40	0.0	100.0	107.28	6437.0	2447.0	40	0.0	79.5	
45	0.0	100.0	120.69	7241.0	2753.0	36	0.0	79.5	
50	0.0	100.0	134.10	8046.0	3059.0	33	0.0	79.5	
	-	-	Es	timated Ne	t Annual Sedim	ent (TSS) Loa	d Reduction =	80 %	

Climate Station ID: 6105978 Years of Rainfall Data: 20

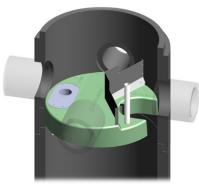
Stormceptor[®]

Stormceptor[®]EF Sizing Report

FORTERRA

Maximum Pipe Diameter / Peak Conveyance										
Stormceptor EF / EFO	Model Diameter		Min Angle Inlet / Outlet Pipes	Max Inle Diame		Max Out Diame	•		nveyance Rate	
	(m)	(ft)		(mm)	(in)	(mm)	(in)	(L/s)	(cfs)	
EF4 / EFO4	1.2	4	90	609	24	609	24	425	15	
EF6 / EFO6	1.8	6	90	914	36	914	36	990	35	
EF8 / EFO8	2.4	8	90	1219	48	1219	48	1700	60	
EF10 / EFO10	3.0	10	90	1828	72	1828	72	2830	100	
EF12 / EF012	3.6	12	90	1828	72	1828	72	2830	100	

SCOUR PREVENTION AND ONLINE CONFIGURATION


► Stormceptor® EF and EFO feature an internal bypass and superior scour prevention technology that have been demonstrated in third-party testing according to the scour testing provisions of the Canadian ETV Procedure for Laboratory Testing of Oil-Grit Separators, and the exceptional scour test performance has been third-party verified in accordance with the ISO 14034 ETV protocol. As a result, Stormceptor EF and EFO are approved for online installation, eliminating the need for costly additional bypass structures, piping, and installation expense.

DESIGN FLEXIBILITY

► Stormceptor[®] EF and EFO offers design flexibility in one simplified platform, accepting stormwater flow from a single inlet pipe or multiple inlet pipes, and/or surface runoff through an inlet grate. The device can also serve as a junction structure, accommodate a 90-degree inlet-to-outlet bend angle, and can be modified to ensure performance in submerged conditions.

OIL CAPTURE AND RETENTION

► While Stormceptor® EF will capture and retain oil from dry weather spills and low intensity runoff, **Stormceptor® EFO** has demonstrated superior oil capture and greater than 99% oil retention in third-party testing according to the light liquid reentrainment testing provisions of the Canadian ETV **Procedure for Laboratory Testing of Oil-Grit Separators**. Stormceptor EFO is recommended for sites where oil capture and retention is a requirement.

45*-90* 0*-45* 0*-45* 45*-90*

INLET-TO-OUTLET DROP

Elevation differential between inlet and outlet pipe inverts is dictated by the angle at which the inlet pipe(s) enters the unit.

0° - 45° : The inlet pipe is 1-inch (25mm) higher than the outlet pipe.

45° - 90° : The inlet pipe is 2-inches (50mm) higher than the outlet pipe.

HEAD LOSS

The head loss through Stormceptor EF is similar to that of a 60-degree bend structure. The applicable K value for calculating minor losses through the unit is 1.1. For submerged conditions the applicable K value is 3.0.

	-				Poll	utant C	apacity							
Stormceptor EF / EFO		Diameter		h (Outlet Invert to Oi p Floor)		Oil Volume		Recommended Sediment Maintenance Depth *		Sediment Sediment Volume *			Maxin Sediment	
	(m)	(ft)	(m)	(ft)	(L)	(Gal)	(mm)	(in)	(L)	(ft³)	(kg)	(lb)		
EF4 / EFO4	1.2	4	1.52	5.0	265	70	203	8	1190	42	1904	5250		
EF6 / EFO6	1.8	6	1.93	6.3	610	160	305	12	3470	123	5552	15375		
EF8 / EFO8	2.4	8	2.59	8.5	1070	280	610	24	8780	310	14048	38750		
EF10 / EFO10	3.0	10	3.25	10.7	1670	440	610	24	17790	628	28464	78500		
EF12 / EF012	3.6	12	3.89	12.8	2475	655	610	24	31220	1103	49952	137875		

*Increased sump depth may be added to increase sediment storage capacity

** Average density of wet packed sediment in sump = 1.6 kg/L (100 lb/ft³)

Feature	Benefit	Feature Appeals To			
Patent-pending enhanced flow treatment and scour prevention technology	Superior, verified third-party performance	Regulator, Specifying & Design Engineer			
Third-party verified light liquid capture	Proven performance for fuel/oil hotspot	Regulator, Specifying & Design Engineer,			
and retention for EFO version	locations	Site Owner			
Functions as bend, junction or inlet structure	Design flexibility	Specifying & Design Engineer			
Minimal drop between inlet and outlet	Site installation ease	Contractor			
Large diameter outlet riser for inspection and maintenance	Easy maintenance access from grade	Maintenance Contractor & Site Owner			

STANDARD STORMCEPTOR EF/EFO DRAWINGS

For standard details, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef STANDARD STORMCEPTOR EF/EFO SPECIFICATION

For specifications, please visit http://www.imbriumsystems.com/stormwater-treatment-solutions/stormceptor-ef

STANDARD PERFORMANCE SPECIFICATION FOR "OIL GRIT SEPARATOR" (OGS) STORMWATER QUALITY TREATMENT DEVICE

PART 1 – GENERAL

1.1 WORK INCLUDED

This section specifies requirements for selecting, sizing, and designing an underground Oil Grit Separator (OGS) device for stormwater quality treatment, with third-party testing results and a Statement of Verification in accordance with ISO 14034 Environmental Management – Environmental Technology Verification (ETV).

1.2 REFERENCE STANDARDS & PROCEDURES

ISO 14034:2016 Environmental management – Environmental technology verification (ETV)

Canadian Environmental Technology Verification (ETV) Program's **Procedure for Laboratory Testing of Oil-Grit Separators.**

1.3 SUBMITTALS

1.3.1 All submittals, including sizing reports & shop drawings, shall be submitted upon request with each order to the contractor then forwarded to the Engineer of Record for review and acceptance. Shop drawings shall detail all OGS components, elevations, and sequence of construction.

1.3.2 Alternative devices shall have features identical to or greater than the specified device, including: treatment chamber diameter, treatment chamber wet volume, sediment storage volume, and oil storage volume.

1.3.3 Unless directed otherwise by the Engineer of Record, OGS stormwater quality treatment product substitutions or alternatives submitted within ten days prior to project bid shall not be accepted. All alternatives or substitutions submitted shall be signed and sealed by a local registered Professional Engineer, based on the exact same criteria detailed in Section 3, in entirety, subject to review and approval by the Engineer of Record.

PART 2 – PRODUCTS

2.1 OGS POLLUTANT STORAGE

The OGS device shall include a sump for sediment storage, and a protected volume for the capture and storage of petroleum hydrocarbons and buoyant gross pollutants. The <u>minimum</u> sediment & petroleum hydrocarbon storage capacity shall be as follows:

2.1.1 4 ft (1219 mm) Diameter OGS Units:

6 ft (1829 mm) Diameter OGS Units:

8 ft (2438 mm) Diameter OGS Units:

10 ft (3048 mm) Diameter OGS Units: 12 ft (3657 mm) Diameter OGS Units: $\begin{array}{l} 1.19 \ m^3 \ sediment \ / \ 265 \ L \ oil \\ 3.48 \ m^3 \ sediment \ / \ 609 \ L \ oil \\ 8.78 \ m^3 \ sediment \ / \ 1,071 \ L \ oil \\ 17.78 \ m^3 \ sediment \ / \ 1,673 \ L \ oil \\ 31.23 \ m^3 \ sediment \ / \ 2,476 \ L \ oil \\ \end{array}$

PART 3 – PERFORMANCE & DESIGN

3.1 GENERAL

The OGS stormwater quality treatment device shall be verified in accordance with ISO 14034:2016 Environmental management – Environmental technology verification (ETV). The OGS stormwater quality treatment device shall remove oil, sediment and gross pollutants from stormwater runoff during frequent wet weather events, and retain these pollutants during less frequent high flow wet weather events below the insert within the OGS for later removal during maintenance. The Manufacturer shall have at least ten (10) years of local experience, history and success in engineering design, manufacturing and production and supply of OGS stormwater quality treatment device systems, acceptable to the Engineer of Record.

3.2 SIZING METHODOLOGY

The OGS device shall be engineered, designed and sized to provide stormwater quality treatment based on treating a minimum of 90 percent of the average annual runoff volume and a minimum removal of an annual average 60% of the sediment (TSS) load based on the Particle Size Distribution (PSD) specified in the sizing report for the specified device. Sizing shall be determined using historical rainfall data and a sediment removal performance curve derived from the actual third-party verified laboratory testing data. The OGS device shall also have sufficient annual sediment storage capacity as specified and calculated in Section 2.1.

3.3 CANADIAN ETV or ISO 14034 ETV VERIFICATION OF SCOUR TESTING

The OGS device shall have Canadian ETV or ISO 14034 ETV Verification of third-party scour testing conducted in accordance with the Canadian ETV Program's **Procedure for Laboratory Testing of Oil-Grit Separators**.

3.3.1 To be acceptable for on-line installation, the OGS device must demonstrate an average scour test effluent concentration less than 10 mg/L at each surface loading rate tested, up to and including 2600 L/min/m^2 .

Stormceptor[®]EF

C

19

6

C

Stormcepto

SYSTD

Stormceptor

IL

C

Stormceptor® EF Overview

About Imbrium® Systems

3

0,

Imbrium[®] Systems is dedicated to protecting Canada's waterways. Based on our knowledge and experience in the Canadian stormwater industry, we have the ability to provide the most effective stormwater treatment technologies that capture and retain harmful pollutants from urban runoff before it enters our streams, rivers, lakes, and oceans.

Imbrium's engineered treatment solutions have been third-party tested and verified in accordance with the ISO 14034 Environmental Technology Verification (ETV) protocol to ensure performance in real-world conditions as designed. Our team of highly skilled engineers and partners provide the highest level of service from design to installation and longterm maintenance.

By working with Imbrium and our partners, you can expect superior treatment technology, unparalleled customer service, compliance with local stormwater regulations, and cleaner water. To find your local representative, please visit **www.imbriumsystems.com/localrep**.

0 0

Learn About the Stormceptor® EF

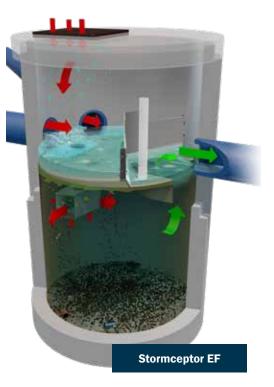
Go online and watch our animation to learn how the Stormceptor EF works. The animation highlights important features of the Stormceptor EF including:

- Functionality
- Applications
- Inspection and Maintenance

To view the Stormceptor EF animation, visit www.imbriumsystems.com/stormceptoref

Stormceptor® EF

A CONTINUATION AND EVOLUTION OF THE MOST GLOBALLY RECOGNIZED OIL GRIT SEPARATOR (OGS) STORMWATER TREATMENT TECHNOLOGY


Stormceptor EF effectively targets sediment (TSS), free oils, gross pollutants and other pollutants that attach to particles, such as nutrients and metals. Stormceptor EF's independently tested and verified, patent- pending treatment and scour prevention platform ensures pollutants are captured and contained during all rainfall events.

0,000

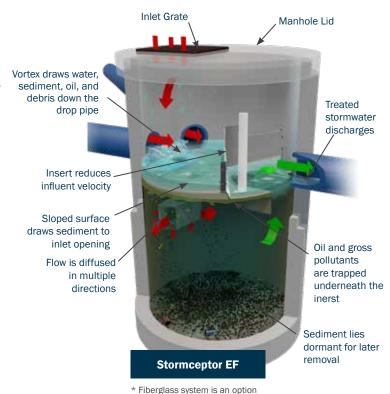
Stormceptor EF also offers design flexibility in one platform, accepting flow from a single inlet pipe, multiple inlet pipes, and from the surface through an inlet grate. Stormceptor EF can also accommodate a 90-degree inlet to outlet bend angle, and tailwater conditions.

Ideal Uses

- Sediment (TSS) removal
- Hydrocarbon control and hotspots (Stormceptor EF)
- Debris and small floatables capture
- Pretreatment for filtration, detention/retention systems, ponds, wetlands, and bioretention
- Retrofit and redevelopment projects

0 0 0

Stormceptor EF and Stormceptor EFO have been verified in accordance with ISO 14034 Environment Management -Environmental Technology Verification (ETV) protocol.



How the Stormceptor® EF Works

)

0,

- Flow enters the Stormceptor through one or more inlet pipes or an inlet grate.
- A specially designed insert reduces influent velocity by creating a pond upstream of the weir, allowing sediments to begin settling.
- Swirling flow sweeps water and pollutants across the sloped insert surface to the drop pipe, where a strong vortex draws water, sediment, oil, and debris down the drop pipe cone and into the lower chamber.
- Flow exits the drop pipe through two large rectangular openings, while also diffusing through perforations in multiple directions. This reduces stream velocities and increases pollutant removal efficiency while preventing resuspension and washout of previously captured pollutants.
- Floatables, such as oil and gross pollutants, rise up and are trapped beneath the insert.
- Sediment settles to the sump.
- Treated stormwater discharges to the top side of the insert downstream of the weir, where it exits through the outlet pipe.
- During intense storm events excess influent passes over the weir and exits through the outlet pipe. The pond continues to separate sediment from all incoming flows, while full treatment in the lower chamber continues at the maximum flow rate, without scour of previously captured pollutants.

Stormceptor® EF Features & Benefits

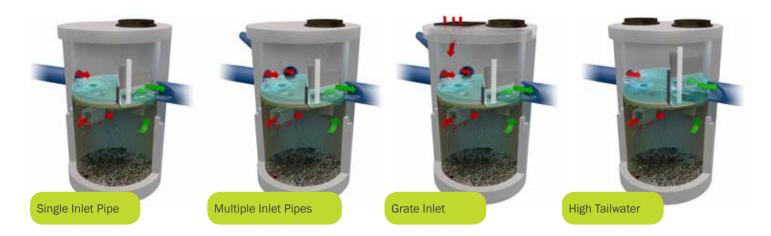
100 000 00 00 00 00

1

1

0 0 0

FEATURES	BENEFITS
Patent-pending enhanced flow treatment and scour	Superior, third-party verified performance
prevention technology	
Third-party verified light liquid capture and retention (EFO version)	Proven performance for fuel/oil hotspot locations
Functions as bend, junction or inlet structure	Cost savings and design flexibility
Minimal drop between inlet and outlet	Site installation ease
Large diameter outlet riser for inspection and maintenance	Easy maintenance access from grade



Stormceptor[®] EF Standard Configurations

9

0,

OPTIONS & ACCESSORIES

The following options and accessories are available for specific functions and site conditions:

- Tailwater/Submerged Site For sites with standing water during dry weather periods, weir modifications can be implemented to ensure optimal performance.
- Additional Sediment Storage Volume For sites with high pollutant loads or remote sites, additional sediment storage volume can easily be added.
- **Oil Alarm** To mitigate spill liability, a monitoring system can be employed to trigger a visual and audible alarm when an oil or fuel spill occurs.
- Additional Oil Capture A draw-off tank can be incorporated to increase spill storage capacity.
- High Load Standard design loading is CHBDC or AASHTO H-20.
 Specialized loading can be designed to withstand very high loadings typical of airports and port facilities.
- **Lightweight** Sites that required lightweight or above ground units are available as complete fiberglass systems.

For any of these options or accessories, please contact your Stormceptor representative for design assistance.

Stormceptor® EFO

00000

Accidents and spills happen, whether it is a fueling station, port, ndustrial site, or general hot spot with daily vehicle traffic. Protect the environment and your site from potentially costly clean-up, remediation, litigation and fines with the Stormceptor EFO configuration.

The Stormceptor EFO has been third-party tested to ensure oil capture, and retention during high flow events. The hydraulics of the Stormceptor EFO have been optimized to enhance oil and hydrocarbon capture.

STORMCEPTOR EFO – HYDROCARBON SPILL PROTECTION

- Stormceptor EFO configuration has been third-party performance tested for safe oil capture and retention.
- Patent-pending technology ensures captured oil and sediment are retained even during the largest rain events, for secure storage, environmental protection and easy removal.
- Stormceptor EFO provides double wall containment for captured hydrocarbons.
- Stormceptor EFO is ideal for gas stations, fuel depots, ports, garages, loading docks, industrial sites, fast food locations, high-collision intersections and other hotspots with spill-prone areas.
- Stormceptor EFO can accommodate an optional oil alarm and additional storage to increase spill storage capacity.

Stormceptor® Inspection & Maintenance

Conducted at grade, the Stormceptor EF design makes inspection and maintenance an easy and inexpensive process. Once maintained, the Stormceptor EF is functionally restored as designed, with full pollutant capture capacity.

MAINTENANCE RECOMMENDATIONS:

- Inspect every six months for the first year to determine the pollutant accumulation rate.
- In subsequent years, inspections can be based on observations or local requirements.
- Inspect the unit immediately after an oil, fuel or chemical spill. A licensed waste management company should remove oil and sediment, and dispose responsibly.

0 0 0

Stormceptor maintenance is performed at grade with a standard vacuum truck

FILTERRA BIORETENTION

The Filterra[®] Bioretention System is an engineered biofiltration device with components that make it similar to bioretention in pollutant removal and application, but has been optimized for high volume/flow treatment in a compact system.

JELLYFISH FILTER

The Jellyfish[®] Filter is a stormwater treatment technology featuring pretreatment and membrane filtration in a compact stand-alone treatment system that removes a high level and a wide variety of stormwater pollutants.

2

LITTATRAP CATCH BASIN

The LittaTrap[™] is a simple and effective solution to remove sediment and trash from stormwater systems at its source. The LittaTrap sits inside the storm drain and captures and retains sediment and trash before it enters stormwater infrastructure, effectively pretreating downstream structures and aiding in pollutant removal.

LEARN MORE

• Access project profiles, photos, videos, and more online at www.imbriumsystems.com/stormceptoref.

REQUEST DESIGN ASSISTANCE

• Call us at (888) 279-8826 or 301-279-8827 to talk to one of our engineers for technical support or design assistance.

START A PROJECT

Submit your system requirements on our product
 Design Worksheet at www.imbriumsystems.com/pdw.

FIND A LOCAL REPRESENTATIVE

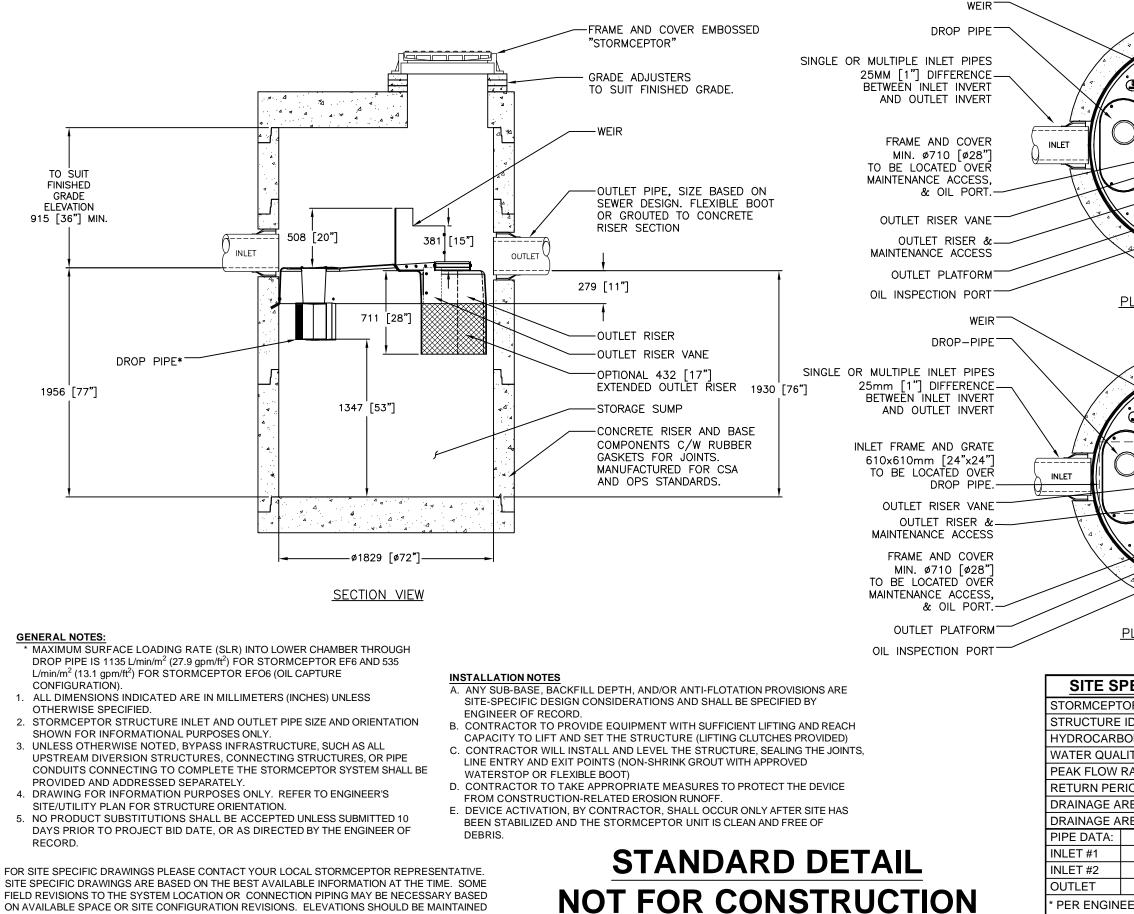
• Visit **www.imbrumsystems.com/localrep** for contact information for your local Imbrium representative.

© 2019 Imbrium Systems Inc.

+1 416-960-9900

www.imbriumsystems.com

All Rights Reserved. Printed in the USA.


Imbrium[®] Systems is an engineered stormwater treatment company that designs and manufactures stormwater treatment solutions that protect water resources from harmful pollutants. By developing technologies to address the long-term impact of urban runoff, Imbrium ensures our clients' projects are compliant with government water quality regulations. For information, visit www.imbriumsystems.com or call +1 416-960-9900.

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS AN EXPRESSED WARRANTY OR AN IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. SEE THE IMBRIUM STANDARD CONDITIONS OF SALE (VIEWABLE AT WWW.IMBRIUMSYSTEMS.COM/TERMS-OF-USE) FOR MORE INFORMATION.

IB-Stormceptor EF Bro 5/19 PDF

DRAWING NOT TO BE USED FOR CONSTRUCTION

FIELD REVISIONS TO THE SYSTEM LOCATION OR CONNECTION PIPING MAY BE NECESSARY BASED ON AVAILABLE SPACE OR SITE CONFIGURATION REVISIONS. ELEVATIONS SHOULD BE MAINTAINED EXCEPT WHERE NOTED ON BYPASS STRUCTURE (IF REQUIRED).

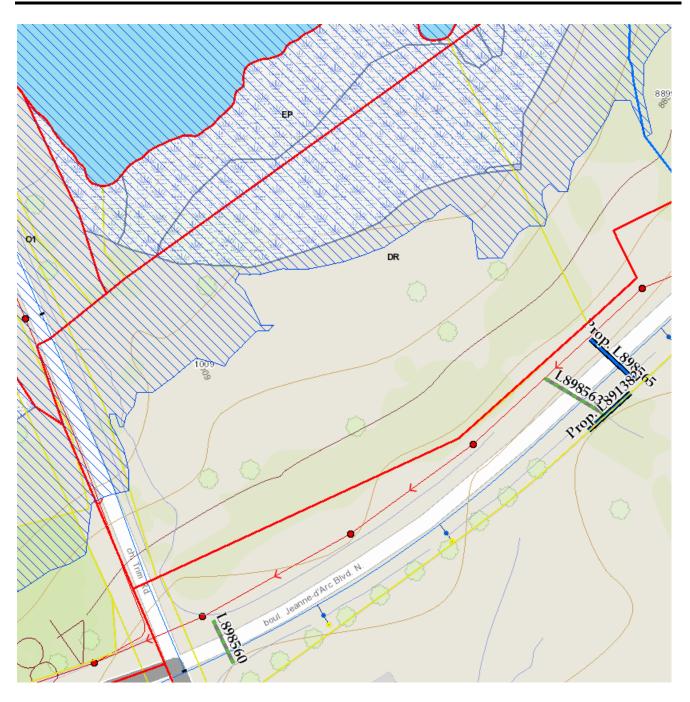
							<u> - 1 1</u>						
			20 20 20 20 20 20 20 20 20 20 20 20 20 2			The design and information shown on this drawing is provided as a service to the project owner, engineer	and contractor by Imbrium Systems ("Imbrium"). Neither this drawing, nor any part thereof, may be	_	discialms any liability or responsibility for such use. If discrepancies between the supplied information upon	which the drawing is based and actual field conditions are encountered as site work progresses, these	uscreparates must be reported to intertum minimum for re-evaluation of the design. Imbrium accepts no itability for designs based on missing, incomplete or	Inaccurate information supplied by others.	
~				<i>۱</i>			####	####	####	ЯSL	ЛSК	ВΥ	
		0.			ET ()		#####	####	#####	OUTLET PLATFORM	INITIAL RELEASE	REVISION DESCRIPTION	
<u>Plan Vi</u>	<u>IEW (STA</u>	<u>ANDARD</u>)				#####	####	####	6/8/18	05/26/17	DATE	
	4 4						####	####	####	-	0	MARK	
		ET TOF			ET							SCALE = NTS	
					T O					49 -960-9800	AND PATTERNS 1, 200,047		
	C DATA	EF		_IN	13				F	407 FAIRVIEW DRIVE, WHITBY, ON L1N 3A9 IF 800-565-4801 CA 416-980-9800 INTL +1-416-980-980	OF THE FOLLO	Contractor	
					*					HITBY, I	NE OR LEDNE		
	RAGE REC				*		ð			16-80-6	TILCIED BY C		
	W RATE (I	_/s)			*				Ĕ	T CA 4	ALL STREAM	TATING STATES	
		\\/ (;;;;c)			*			1		407 FAII 565-480	MICEPTON 8 Min Press No.		
REA (HA)	PEAK FLO	vv (yis)			*					908 11			
REA IMPERVIOUSNESS (%)								2017	,			-	
I.E.	MAT'L	DIA	SLOPE	%	HGL	DES	IGNE		C	RAW			
*	*	*	*		*		CKED):	A			:	
*	*	*	*	+	*	BS PRO	F	No.:		SP	INCE	No.:	
									,	SEQUENCE No.: *			
ER OF RECORD							ET:	1	1	OF	1		
											-		

PER ENGINE

EXP Services Inc. 1009 Trim Road, Ottawa, ON OTT-00259629-A0 December 17, 2021

Appendix D – Consultation / Correspondence

City of Ottawa Pre-Application Consolation Notes, June 01, 2020 Email from City of Ottawa on Water System Boundary Conditions


Planning, Infrastructure and Economic Development Department Services de la planification, de l'infrastructure et du développement économique

OPA and ZBL Pre- Application Consultation Notes

Date: 1 June 2020
Site Location: 1009 Trim Rd
Type of Development: ⊠ Residential (□ townhomes, □ stacked, □ singles, ⊠ apartments), □ Office Space, ⊠ Commercial, □ Retail, □ Institutional, □ Industrial, Other: N/A

Project Manager: Will Curry / Natasha Baird Assigned Planner: Shoma Murshid

Infrastructure

Water

Water District Plan No: 384-040 Existing public services:

• Jeanne d'Arc N Blvd – 406mm PVC

Boundary conditions:

Civil consultant must request boundary conditions from the City's assigned Project Manager prior to first submission.

• Water boundary condition requests must include the location of the service(s) and the expected loads required by the proposed developments. Please provide all the following information:

- Location of service(s)
- Type of development and the amount of fire flow required (as per FUS, 1999).
- Average daily demand: ____ l/s.
- Maximum daily demand: ____l/s.
- Maximum hourly daily demand: ____ l/s.
- Fire protection (Fire demand, Hydrant Locations)

General comments

- At time of Site Plan Control, a water meter sizing questionnaire [water card] will have to be completed prior to receiving a water permit (water card will be provided post approval).
- Service areas with a basic demand greater than 50 m³/day shall be connected with a minimum of two water services, separated by an isolation valve, to avoid creation of vulnerable service area.

Sanitary Sewer

Existing public services:

• Jeanne d'Arc N Blvd – 300mm PVC

Is a monitoring manhole required on private property? 🛛 Yes 🛛 🗆 No

General comments

- Adequacy of servicing will be required at the OPA stage for this development.
- Any premise in which there is commercial or institutional food preparation shall install a grease and oil inceptor on all fixtures.
- The Environmental Site Assessment (ESA) may provide recommendations where site contamination may be present. The recommendations from the ESA need to be coordinated with the servicing report to ensure compliance with the Sewer Use By-Law.

Storm Sewer

Existing public services:

• 2 culvert are located on Jeanne d'Arc N Blvd: 900mm CSP

General comments

- Adequacy of servicing will be required at the OPA stage for this development. An Environmental Assessment will be required if a storm outlet is discharging to the river is required.
- The site is required to accommodate the road drainage and the existing flow out-letting from the culverts towards the river.

Stormwater Management

Quality Control:

• Rideau Valley Conservation Authority to confirm quality control requirements.

Quantity Control:

- No quantity control is required for this development ONLY if it is discharging to the river.
- Please contact the City if this development will require municipal stormwater servicing.

Ministry of Environment, Conservation and Parks (MECEP)

At time of site plan control, this site will require an ECA for the outlet(s) to the river through direct submission.

- a. Pre-consultation with local District office of MECP is recommended for direct submission.
- b. Consultant completes an MECP request form for a pre-consultation. Sends request to <u>moeccottawasewage@ontario.ca</u>

NOTE: Site Plan Approval, or Draft Approval, is required before any Ministry of the Environment and Climate Change (MOECC) application is sent

General Service Design Comments

• The City of Ottawa requests that all new services be located within the existing service trench to minimize necessary road cuts.

- Monitoring manholes should be located within the property near the property line in an accessible location to City forces and free from obstruction (i.e. not a parking).
- Where service length is greater than 30 m between the building and the first maintenance hole / connection, a cleanout is required.
- Manholes are required for connections to sanitary or combined trunk sewers as per City of Ottawa Standards S13.
- The City of Ottawa Standard Detail Drawings should be referenced where possible for all work within the Public Right-of-Way.
- The upstream and downstream manhole top of grate and invert elevations are required for all new sewer connections.
- Services crossing the existing watermain or sewers need to clearly provide the obvert/invert elevations to demonstration minimum separation distances. A watermain crossing table may be provided.

Geotechnical and Slope Stability Analysis

- This development requires a geotechnical analysis and a slope stability analysis prior to the OPA to determine the developable lands. The site is adjacent to a waterway and is on sensitive clays with a slope. The City will require geotechnical information to ensure that the height and type of building supported by the OPA and ZA is satisfied.
- Provide an updated geotechnical report and slope stability analysis certified by a qualified engineer.
- Development shall comply to the current City of Ottawa Geotechnical Guideline: <u>https://documents.ottawa.ca/sites/documents/files/documents/cap137602.pdf</u>
- Development shall comply to the current City of Ottawa Slope Stability Guidelines for Development Applications:

https://documents.ottawa.ca/sites/documents/files/documents/cap137604.pdf

Environmental Site Assessment

- As per the Official Plan, the environmental site assessment shall be completed as per Environmental Protection Act O. Reg. 153/04, Part VII & VIII.
- Any reports older than 2 years shall be updated.

Other

At time of site plan control application, it will be required to verify if:

- Capital Works Projects will be within proximity to application.
- Watermain Frontage Fees are applicable.

References and Resources

- As per section 53 of the Professional Engineers Act, O. Reg 941/40, R.S.O. 1990, all documents prepared by engineers must be signed and dated on the seal.
- All required plans are to be submitted on standard A1 size sheets (594mm x 841mm) sheets, utilizing a reasonable and appropriate metric scale as per City of Ottawa Servicing and Grading Plan Requirements: title blocks are to be placed on the right of the sheets and not along the bottom. Engineering plans may be combined, but the Site Plans must be provided separately. Plans shall include the survey monument used to confirm datum. Information shall be provided to enable a non-surveyor to locate the survey monument presented by the consultant.
- All required plans & reports are to be provided in *.pdf format (at application submission and for any, and all, re-submissions)
- Please find relevant City of Ottawa Links to Preparing Studies and Plans below: https://ottawa.ca/en/city-hall/planning-and-development/information-developers/development-application-review-process/development-application-submission/guide-preparing-studies-and-plans#standards-policies-and-guidelines
- To request City of Ottawa plan(s) or report information please contact the City of Ottawa Information Centre: <u>InformationCentre@ottawa.ca<mailto:InformationCentre@ottawa.ca</u>>

(613) 580-2424 ext. 44455

geoOttawa
 <u>http://maps.ottawa.ca/geoOttawa/</u>

Boundary Conditions 1009 Trim Road

Provided Information

Scenario	Demand		
Scenano	L/min	L/s	
Average Daily Demand	342	5.70	
Maximum Daily Demand	852	14.20	
Peak Hour	1,866	31.10	
Fire Flow Demand #1	6,000	100.00	
Fire Flow Demand #2	10,020	167.00	

Location

<u>Results</u>

Connection 1 – Jeanne D'Arc Blvd.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	113.6	88.5
Peak Hour	106.7	78.6
Max Day plus Fire 1	112.0	86.2
Max Day plus Fire 2	102.9	73.3

¹ Ground Elevation = 51.4 m

Connection 2 – Jeanne D'Arc Blvd.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	113.6	89.2
Peak Hour	106.7	79.3
Max Day plus Fire 1	107.7	80.7
Max Day plus Fire 2	102.9	74.0

¹ Ground Elevation = 50.9 m

<u>Notes</u>

- 1. A second connection to the watermain is required to decrease vulnerability of the water system in case of breaks.
- 2. As per the Ontario Building Code in areas that may be occupied, the static pressure at any fixture shall not exceed 552 kPa (80 psi.) Pressure control measures to be considered are as follows, in order of preference:
 - a. If possible, systems to be designed to residual pressures of 345 to 552 kPa (50 to 80 psi) in all occupied areas outside of the public right-of-way without special pressure control equipment.
 - b. Pressure reducing valves to be installed immediately downstream of the isolation valve in the home/ building, located downstream of the meter so it is owner maintained.

Disclaimer

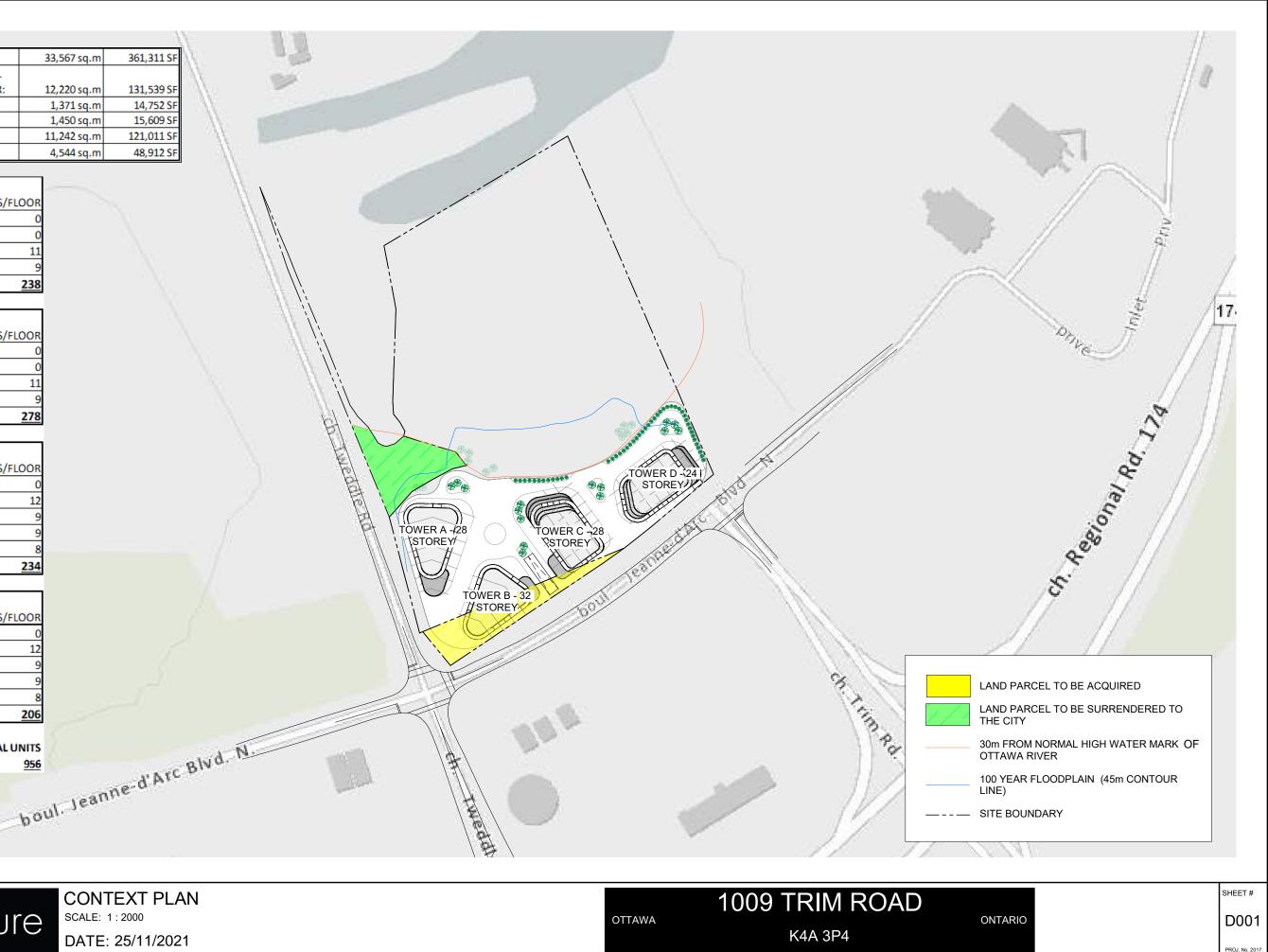
The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

EXP Services Inc. 1009 Trim Road, Ottawa, ON OTT-00259629-A0 December 17, 2021

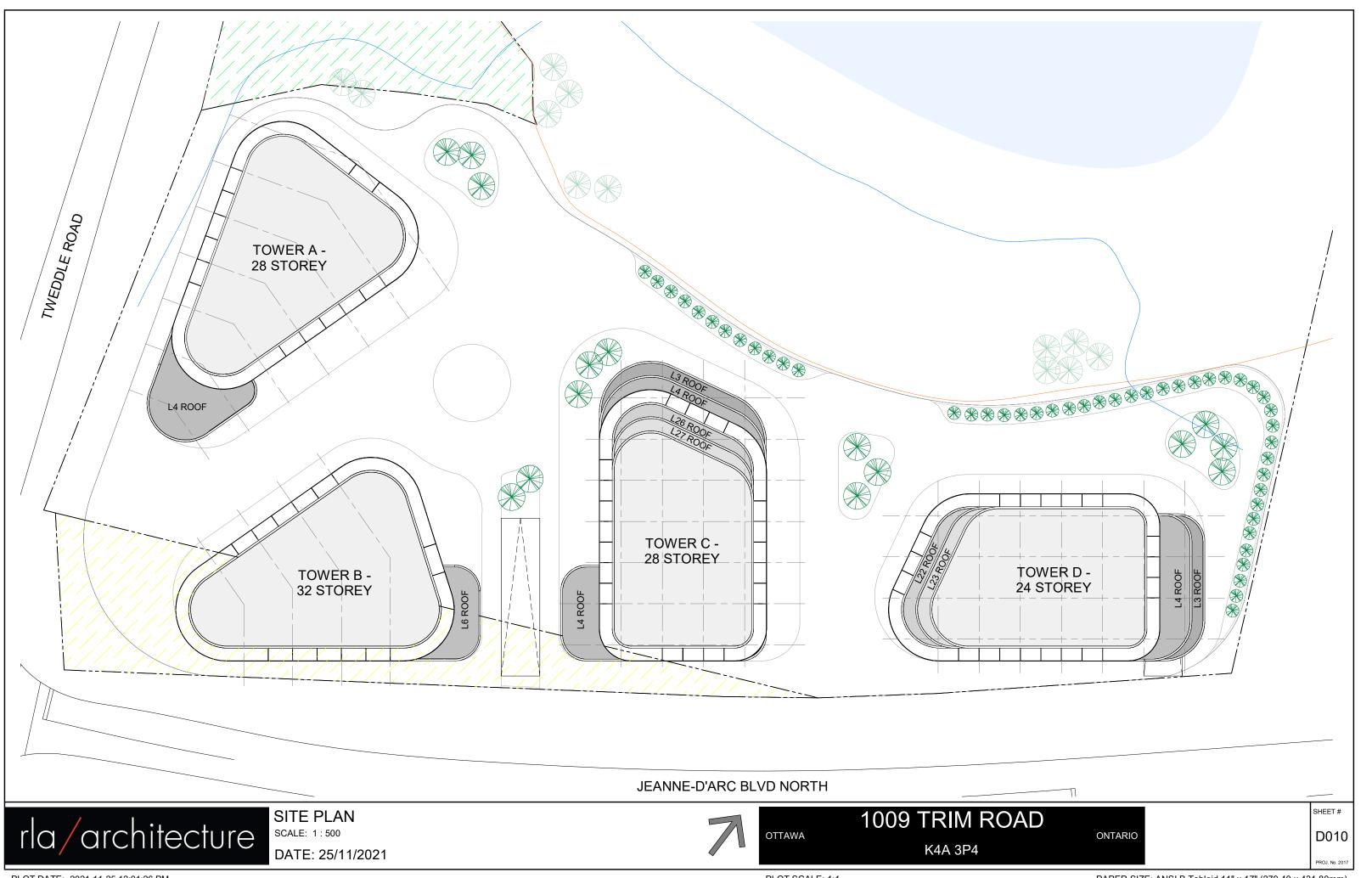
Appendix E – Drawings

Architectural Plans (17 pages)

		3
TOTAL SITE AREA:	33,567 sq.m	361,311 SF
SITE AREA ABOVE 30m FROM NORMAL		
HIGH WATER MARK OF OTTAWA RIVER:	12,220 sq.m	131,539 SF
AREA GIVEN TO CITY OF OTTAWA:	1,371 sq.m	14,752 SF
CITY AREA ACQUIRED:	1,450 sq.m	15,609 SF
SITE COVERAGE (BUILT-UP PARKING):	11,242 sq.m	121,011 SF
BUILDING FOOTPRINTS:	4,544 sq.m	48,912 SF

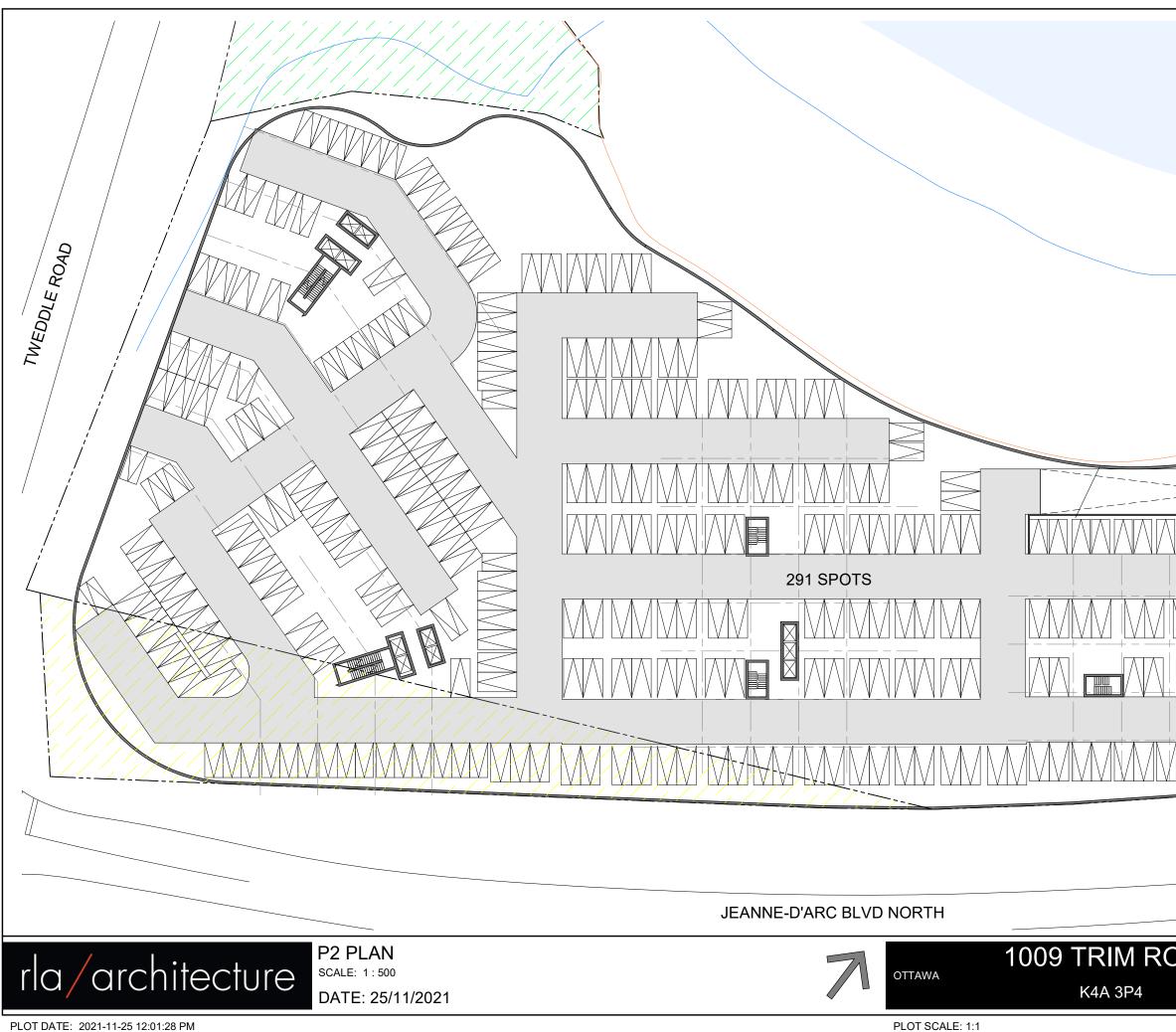

BUILDING A - 28 STOREYS		
	GFA	UNITS/FLOOR
L1	12,031 SF	0
L2	12,031 SF	0
L3-4	12,031 SF	11
L5-28	8,901 SF	9
TOTAL	<u>261,748 SF</u>	238

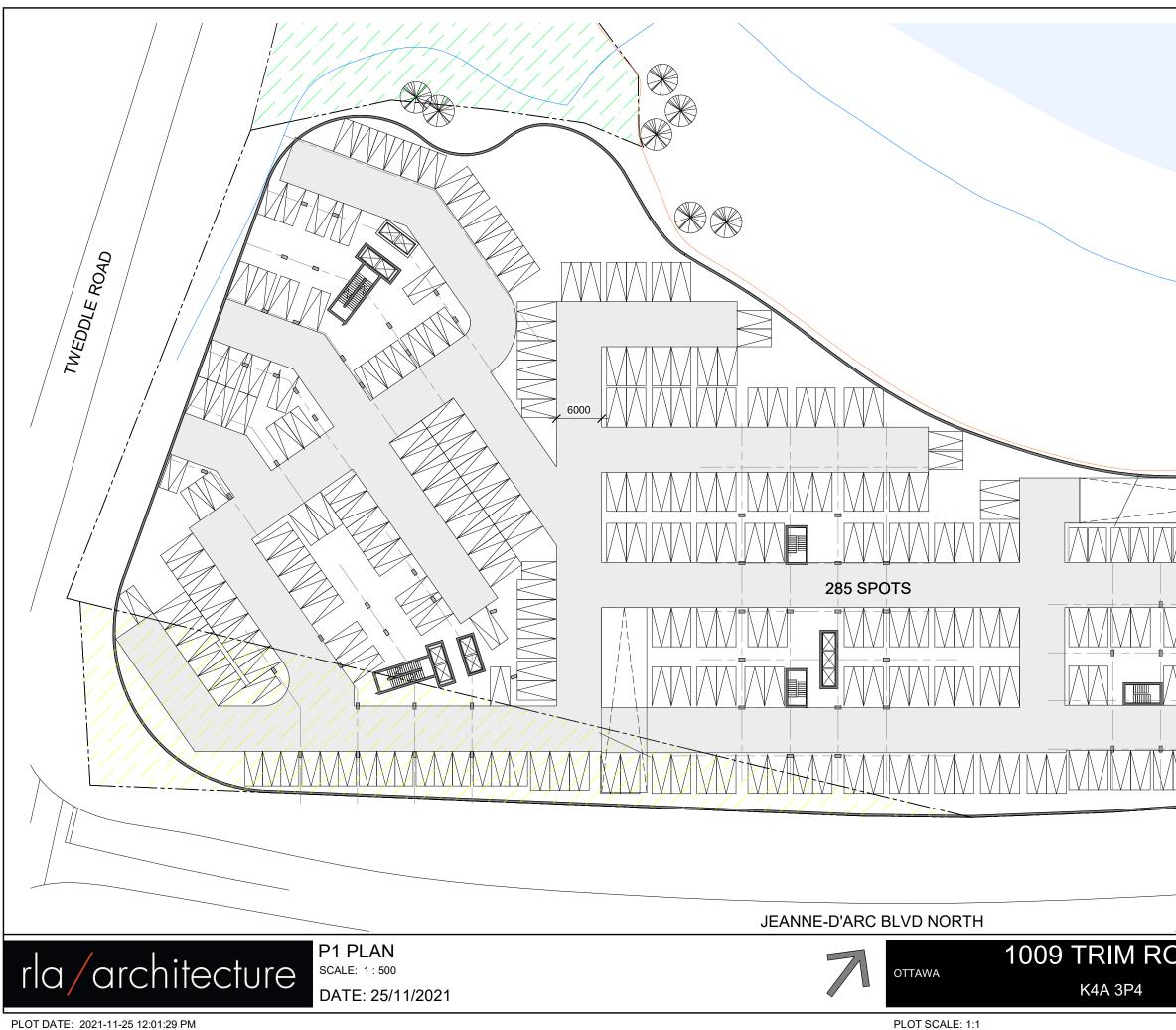
BUILDING B - 32 STOREYS		
	GFA	UNITS/FLOOR
L1	11,364 SF	0
L2	11,364 SF	0
L3-6	11,364 SF	11
L7-32	8,901 SF	9
TOTAL	299,610 SF	278


BUILDING C - 28 STOREYS		
	GFA	UNITS/FLOOF
L1	13,035 SF	C
L2-4	13,035 SF	12
L5-26	8,901 SF	0
L27	7,490 SF	01
L28	6,981 SF	¥
TOTAL	<u>262,433 SF</u>	234

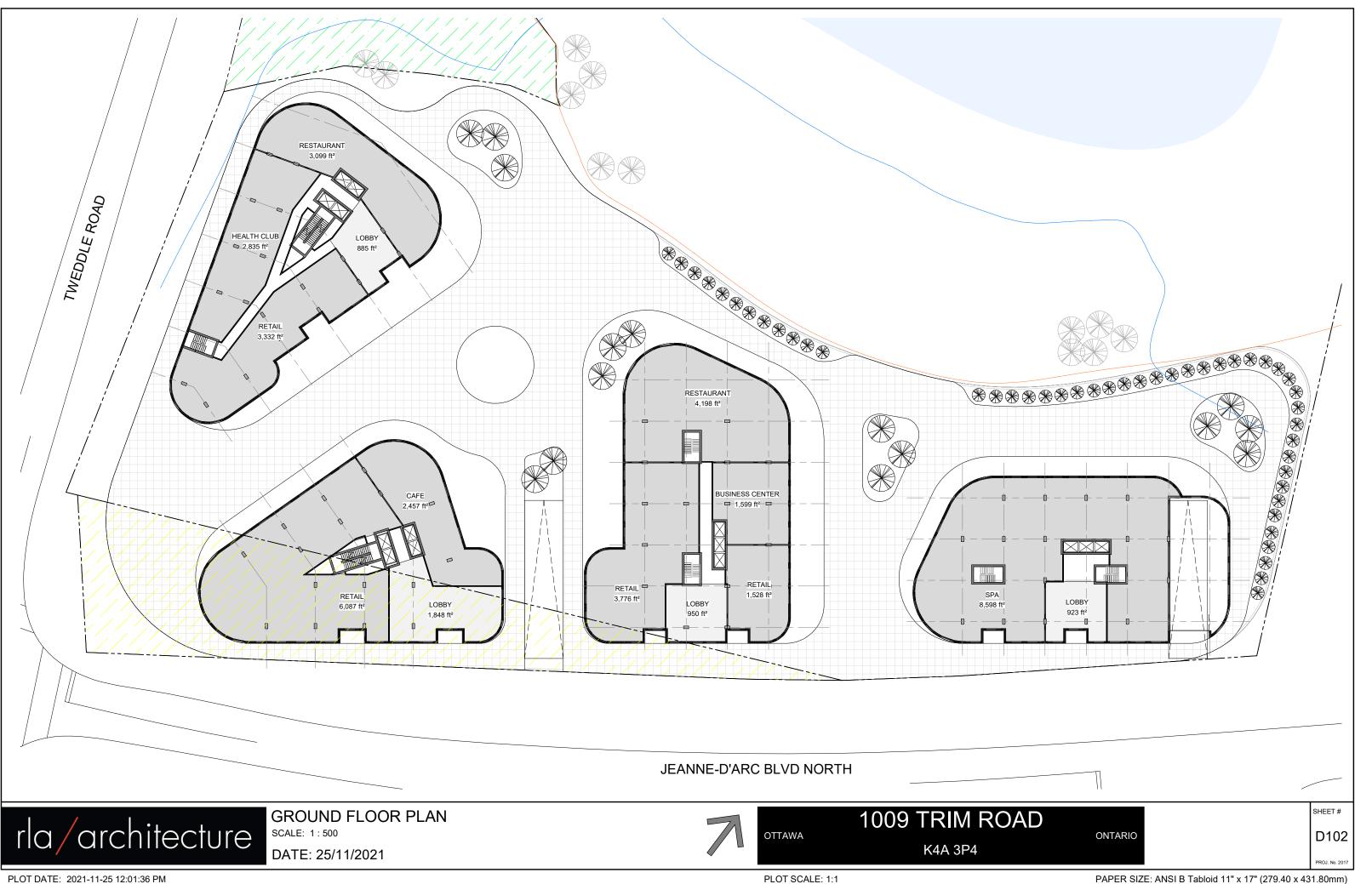
BUILDING D - 24 STOREYS		
	GFA	UNITS/FLOOR
L1	12,482 SF	0
L2-4	12,482 SF	12
L5-22	8,901 SF	9
L23	7,490 SF	9
L24	6,981 SF	8
TOTAL	224,617 SF	206

TOTAL GFA TOTAL UNITS 1,048,408 SF

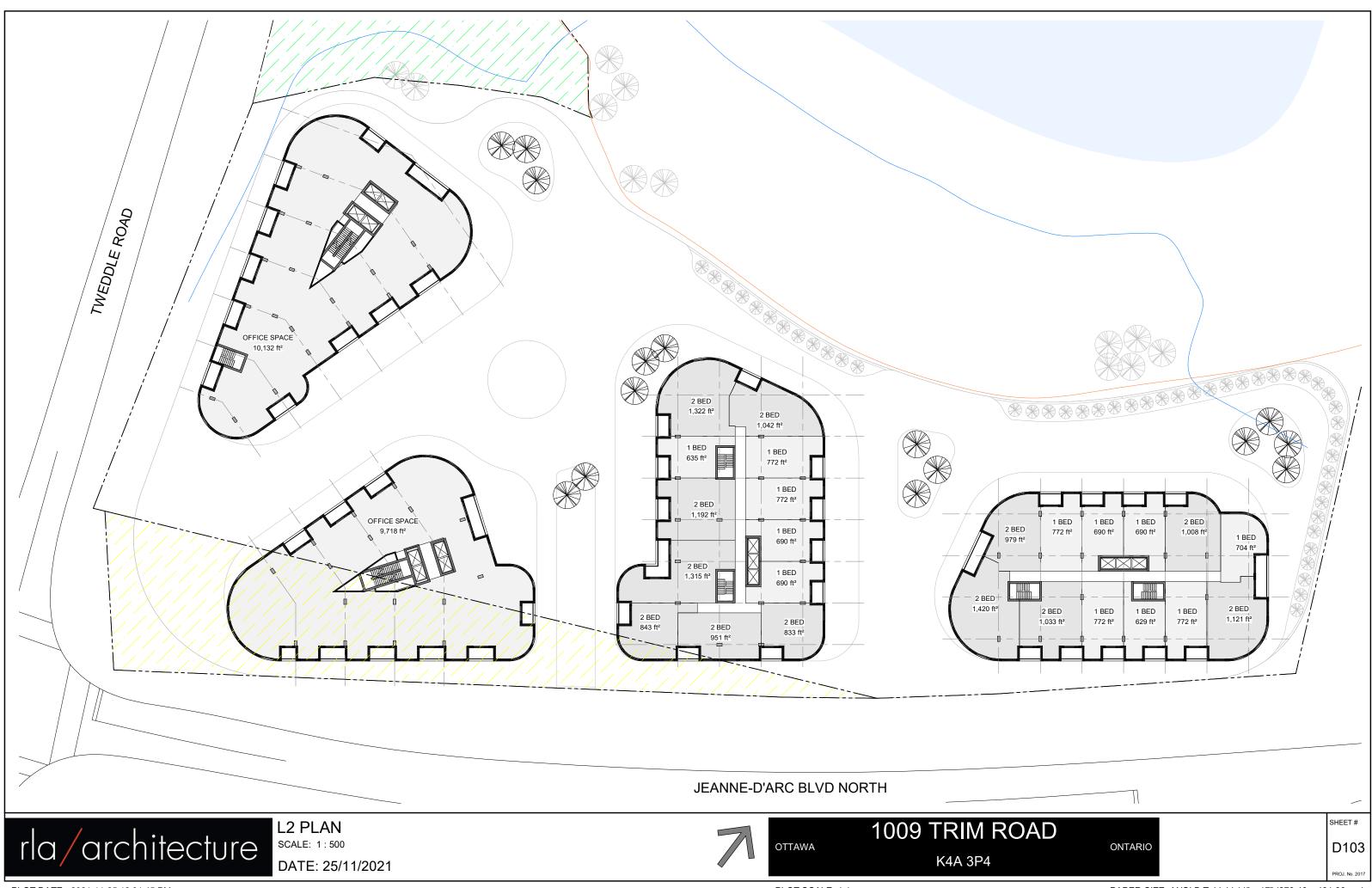



PLOT DATE: 2021-11-25 12:01:26 PM

PAPER SIZE: ANSI B Tabloid 11" x 17" (279.40 x 431.80mm)

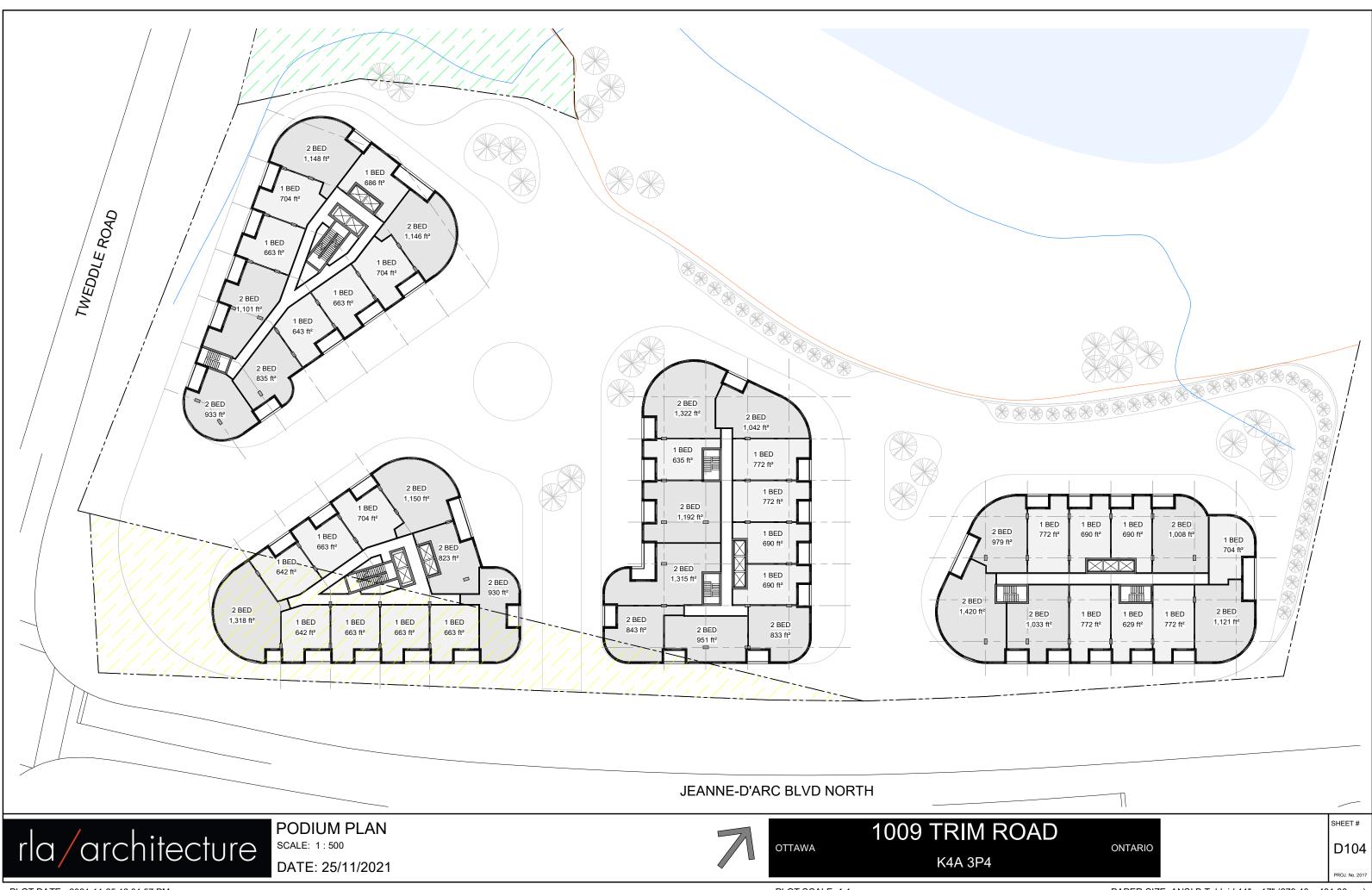

	SHEET #
ONTARIO	D100
	PROJ. No. 2017

PAPER SIZE: ANSI B Tabloid 11" x 17" (279.40 x 431.80mm)



	SUFET #
OAD	SHEET #
	PROJ. No. 2017

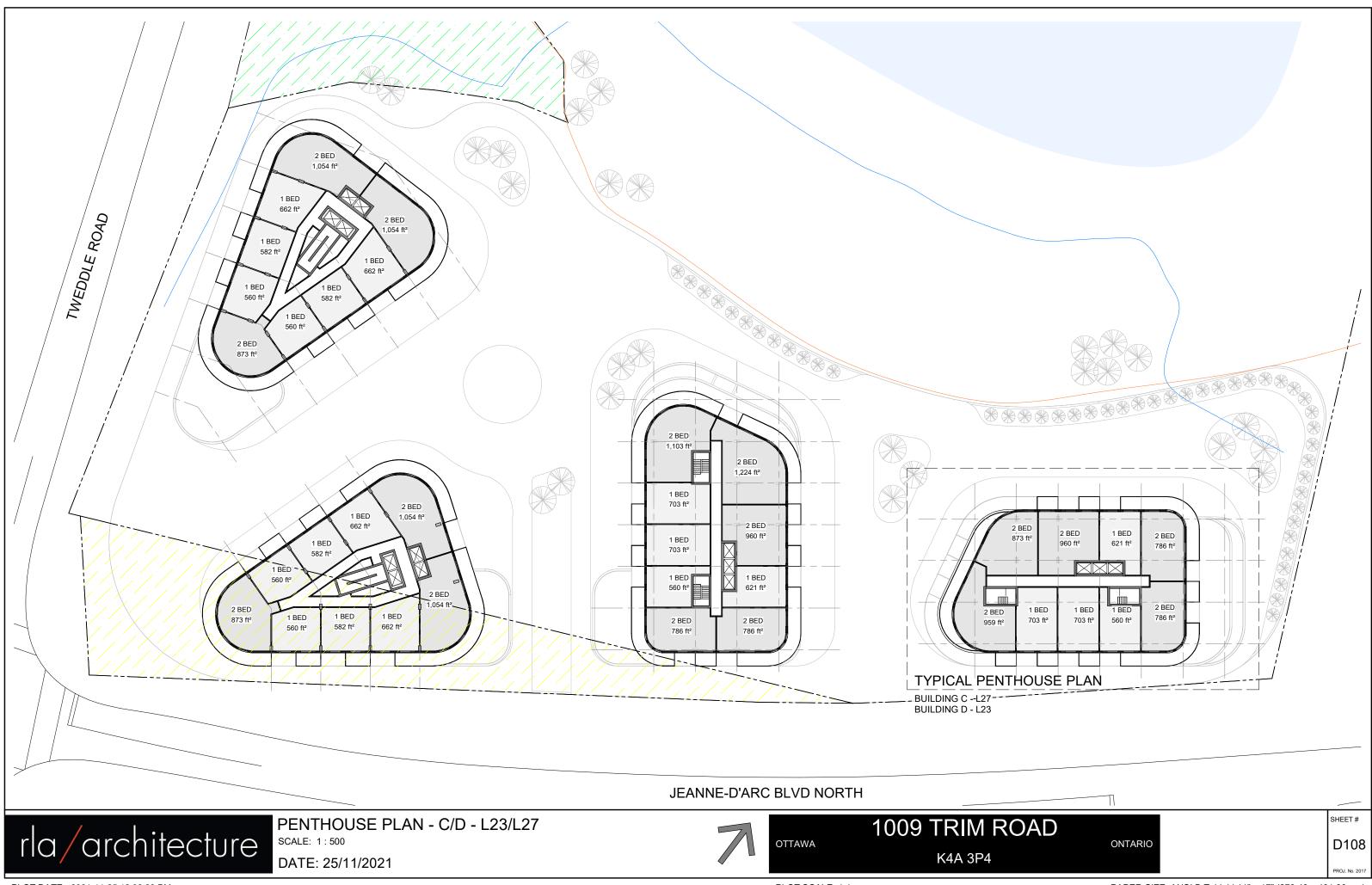
PAPER SIZE: ANSI B Tabloid 11" x 17" (279.40 x 431.80mm)



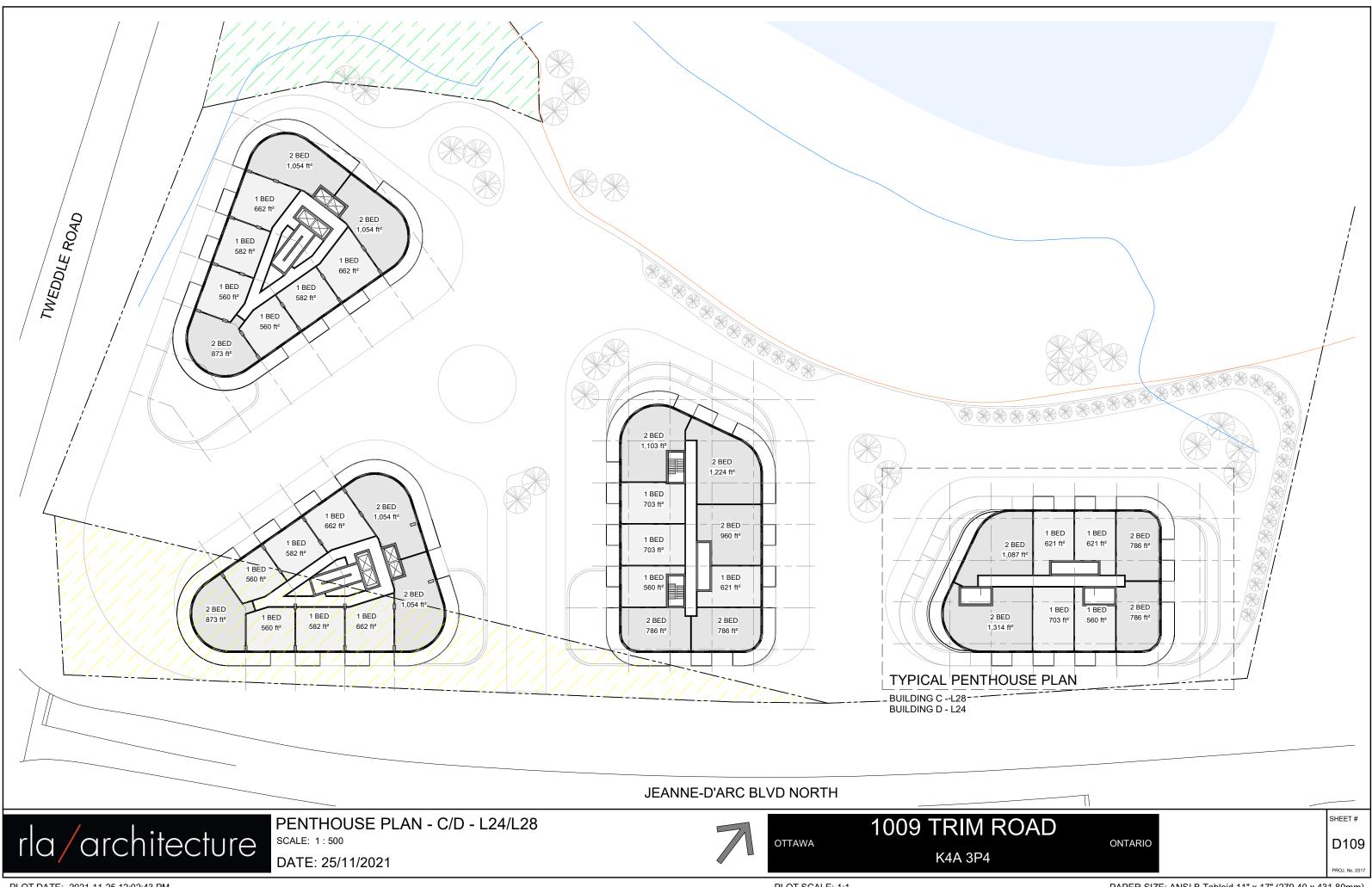
PAPER SIZE: ANSI B Tabloid 11" x 17" (279.40 x 431.80mm)


PLOT DATE: 2021-11-25 12:01:45 PM

PAPER SIZE: ANSI B Tabloid 11" x 17" (279.40 x 431.80mm)


PLOT DATE: 2021-11-25 12:01:57 PM

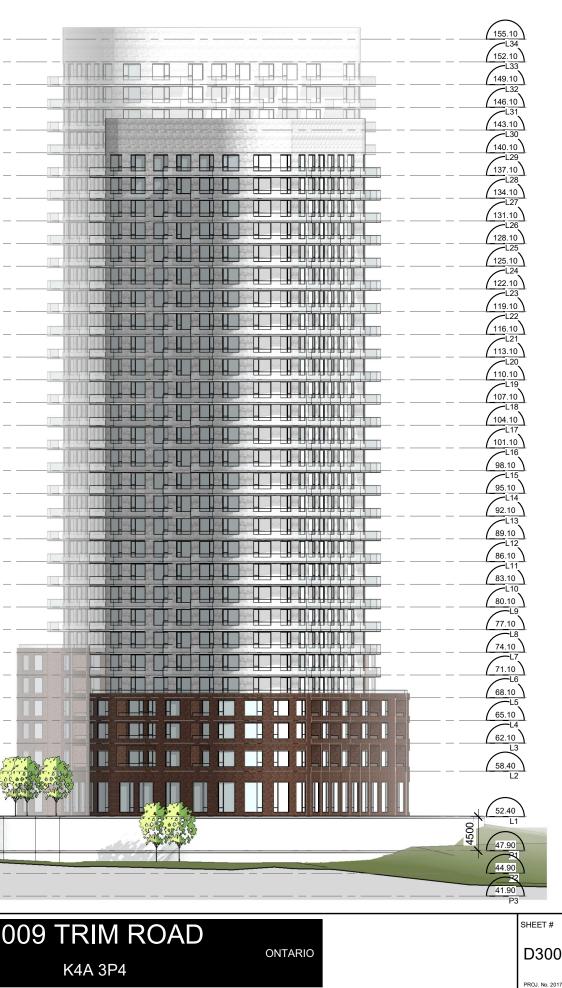
PAPER SIZE: ANSI B Tabloid 11" x 17" (279.40 x 431.80mm)


PLOT DATE: 2021-11-25 12:02:12 PM

PAPER SIZE: ANSI B Tabloid 11" x 17" (279.40 x 431.80mm)

PLOT DATE: 2021-11-25 12:02:28 PM

PAPER SIZE: ANSI B Tabloid 11" x 17" (279.40 x 431.80mm)



PLOT DATE: 2021-11-25 12:02:43 PM

PAPER SIZE: ANSI B Tabloid 11" x 17" (279.40 x 431.80mm)

PLOT DATE: 2021-11-25 12:03:26 PM

PAPER SIZE: ANSI B Tabloid 11" x 17" (279.40 x 431.80mm)

rla/architecture

SOUTH ELEVATION

SCALE: 1:500

DATE: 25/11/2021

PLOT DATE: 2021-11-25 12:04:06 PM

PLOT SCALE: 1:1

OTTAWA

155.10	
$- \qquad \qquad$	
(128.10)	
$- \underbrace{- \underbrace{65.0}_{L4}}_{L4}$	
47.90	
P2	
1009 TRIM ROAD	SHEET #
ONTARIO	D30
K4A 3P4	PROJ. No. :

PAPER SIZE: ANSI B Tabloid 11" x 17" (279.40 x 431.80mm)

EAST ELEVATION SCALE: 1:500

SCALE: 1:500

DATE: 25/11/2021

PLOT DATE: 2021-11-25 12:04:32 PM

PLOT SCALE: 1:1

OTTAWA

K4A 3P4

ONTARIO

SHEET #

D302

PROJ. No. 2017 PAPER SIZE: ANSI B Tabloid 11" x 17" (279.40 x 431.80mm)

rla/architecture West ELEVATION SCALE: 1:500 DATE: 25/11/2021	OTTAWA	1009 TRIM R к4а зр4

PLOT DATE: 2021-11-25 12:04:56 PM

PLOT SCALE: 1:1

155.10		
L34 152.10 L33		
L33 L32		
L32 L31		
(143.10)		
L30 140.10		
L29 137.10		
L28 134.10		
131.10		
128.10		
L25 125.10		
122.10		
L23 119.10		
L22 116.10		
L21 113.10		
L20 110.10		
L19 107.10		
L18 104.10		
L17 101.10		
L16 		
95.10		
L14 		
77.10		
<u>L7</u>		
<u>71.10</u>		
65.10 L4		
<u>62.10</u>		
58.40		
L2		
52.40		
<u>(47.90</u>		
<u>(44.90</u> P2		
OAD		
	ONTARIO	

SHEET #

D303

PROJ. No. 2017

PLOT DATE: 2021-11-25 12:11:49 PM

rla/architecture

PERSPECTIVE VIEW

DATE: 25/11/2021

PLOT DATE: 2021-11-25 12:12:16 PM

PLOT SCALE: 1:1

OTTAWA

1009 TRIM ROAD		SHEET #
K4A 3P4	ONTARIO	D400 PROJ. No. 2017

PLOT DATE: 2021-11-25 12:19:19 PM