

Engineers, Planners & Landscape Architects

Engineering

Land / Site Development

Municipal Infrastructure

Environmental / Water Resources

Traffic / Transportation

Structural

Recreational

Planning

Land / Site Development

Planning Application Management

Municipal Planning Documents & Studies

Expert Witness (OMB)

Wireless Industry

Landscape

Architecture

Urban Design & Streetscapes

Open Space, Parks & Recreation Planning

Community & Residential Developments

Commercial & Institutional Sites

Environmental Restoration

335 Roosevelt Avenue

Transportation Impact Assessment

Residential Development

335 Roosevelt Avenue

Transportation Impact Assessment

Prepared By:

NOVATECH Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario K2M 1P6

July 2020

Novatech File: 110098 Ref: R-2020-053

July 31, 2020

City of Ottawa Planning and Growth Management Department 110 Laurier Ave. W., 4th Floor, Ottawa, Ontario K1P 1J1

Attention: Mr. Wally Dubyk Project Manager, Infrastructure Approvals

Dear Mr. Dubyk:

Reference: Residential Development, 335 Roosevelt Avenue Transportation Impact Assessment Report Novatech File No. 110098

We are pleased to submit the following Transportation Impact Assessment Report in support of Official Plan Amendment and Zoning By-law Amendment applications for the 335 Roosevelt Avenue. The structure and format of this report is in accordance with the City of Ottawa Transportation Impact Assessment Guidelines (June 2017).

If you have any questions or comments regarding this report, please feel free to contact the undersigned.

Yours truly,

NOVATECH

B. Byvelch

Brad Byvelds, P. Eng. Project Coordinator | Transportation/Traffic

M:\2010\110098\DATA\Reports\Traffic\TIA\Strategy\110098 TIA.docx

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below.

CERTIFICATION

- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- 3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- 4. I am either a licensed¹ or registered² professional in good standing, whose field of expertise [check √ appropriate field(s)] is either transportation engineering □ or transportation planning □.

^{1,2} License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

City Of Ottawa Infrastructure Services and Community Sustainability Planning and Growth Management 110 Laurier Avenue West, 4th fl. Ottawa, ON K1P 1J1 Tel. : 613-580-2424 Fax: 613-560-6006 Ville d'Ottawa Services d'infrastructure et Viabilité des collectivités Urbanisme et Gestion de la croissance 110, avenue Laurier Ouest Ottawa (Ontario) K1P 1J1 Tél.: 613-580-2424 Télécopieur: 613-560-6006

Dated at	Ottawa	this	31	_ day of	July	, 2020 .
	(City)					
Name:				Brad By	velds	
				(Please	Print)	
Professiona	l Title:		P. E	ng Projec	ct Coordinator	

 B. Byvelds

 Signature of Individual certifier that s/he meets the above four criteria

Office Contact Information (Please Print)							
Address:	240 Michael Cowpland Drive						
City / Postal Code:	Ottawa, ON K2M 1P6						
Telephone / Extension:	613-254-9643 ext. 286						
E-Mail Address:	b.byvelds@novaetch-eng.com						

TABLE OF CONTENTS

1.0	SC	CREENING	1
1.1	I	Introduction	1
1.2	I	Proposed Development	2
1.3	ę	Screening Form	2
2.0	SC	COPING	2
2.1	I	Existing Conditions	2
2	.1.1	.1 Roadways	2
2	.1.2	.2 Intersections	4
2	.1.3	.3 Driveways	6
2	.1.4	.4 Pedestrian and Cycling Facilities	6
2	.1.5	.5 Transit	7
2	.1.6	.6 Existing Area Traffic Management Measures	8
2	.1.7	.7 Existing Traffic Volumes	8
2	.1.8	.8 Collision Records	10
2.2	I	Planned Conditions	11
2.3	ç	Study Area and Time Periods	17
2.4	I	Exemptions Review	17
3.0		ORECASTING	
3.1	[Development-Generated Traffic	19
3	8.1.1	.1 Trip Generation	19
3	.1.2	,	
3.2	I	Background Traffic	21
3	.2.1	.1 General Background Growth Rate	21
3	.2.2	.2 Other Area Development	23
3.3	I	Demand Rationalization	23
4.0	AN	NALYSIS	26
4.1	[Development Design	26
4	.1.1	.1 Design for Sustainable Modes	26
4	.1.2	.2 Circulation and Access	26
4.2	I	Parking	30
4.3	ł	Boundary Streets	30
4.4	/	Access Intersections Design	33
4.5	-	Transportation Demand Management	34

5.0	С	ONC	CLUSIONS AND RECOMMENDATIONS	.39
	4.9.	.3	2026 and 2031 Total Intersection Operations	.38
	4.9.	.2	2026 and 2031 Background Intersection Operations	.38
	4.9.	.1	Existing Intersection MMLOS Analysis	.36
4	.9	Net	twork Intersections	.36
4	.8	Net	twork Concept	.36
4	.7	Tra	ansit	.36
4	.6	Nei	ighbourhood Traffic Management	.34

Figures

Figure 1: View of the Subject Site	. 1
Figure 2: Roadway Network	. 3
Figure 3: Existing Pedestrian and Cycling Infrastructure	. 7
Figure 4: OC Transpo Bus Stop Locations	. 8
Figure 5: Existing Traffic Volumes	. 9
Figure 6: LRT Phase 2 - Confederation Line Extension West	12
Figure 7: Scott Street Bus Detour	14
Figure 8: Scott Street Interim Design	15
Figure 9: Scott Street Ultimate Design	16
Figure 10: Site Generated Traffic	22
Figure 11: 2026 and 2031 Background Traffic	24
Figure 12: 2026 and 2029 Total Traffic	25
Figure 13: Fire Truck Turning Movements	27
Figure 14: Loading Turning Movements – Reverse In	
Figure 15: Loading Turning Movements – Reverse Out	29
Figure 16: Garbage Turning Movements – Drive In	31
Figure 17: Garbage Turning Movements – Reverse Out	32

Tables

Table 1: Reported Collisions	10
Table 2: TIA Exemptions	
Table 3: Person Trip Generation	
Table 4: Modal Shares by District/Zone	20
Table 5: Person Trips by Modal Share	20
Table 6: Adjacent Street Traffic and Site Generated Traffic	20
Table 7: Parking Requirements	30
Table 8: Segment MMLOS Summary	33
Table 9: Neighbourhood Traffic Impacts	35
Table 10: Intersection MMLOS Summary	37
Table 11: 2026 and 2031 Background Intersection Operations	38
Table 12: 2026 and 2031 Total Intersection Operations	39

Appendices

- Appendix A: Proposed Site Plan
- Appendix B: TIA Screening Form
- Appendix C: OC Transpo System Information
- Appendix D: Traffic Count Data and Long Range Model Screenshots
- Appendix E: Collision Records
- Appendix F: Relevant Traffic Study Excerpts
- Appendix G: TDM Checklists
- Appendix H: MMLOS Analysis
- Appendix I: Synchro Analysis Reports

EXECUTIVE SUMMARY

This Transportation Impact Assessment (TIA) report has been prepared in support of Official Plan Amendment and Zoning By-law Amendment applications for 335 Roosevelt Avenue.

The subject site is surrounded by the following:

- A Multi-Use Pathway (MUP) and the OC Transpo East-West Transitway to the north;
- Wilmont Avenue and low density residential development to the south;
- A high density residential apartment building to the east; and
- Roosevelt Avenue and low density residential development to the west.

The site currently has gated accesses at Roosevelt Avenue and at Wilmont Avenue, restricting local traffic from shortcutting between Richmond Road and Churchill Avenue.

The proposed development consists of two high-rise residential buildings providing a total of 323 units, and four low-rise residential buildings containing a total of 38 units. A total of 335 underground parking spaces will be provided in a single two-level parking garage with access on both Wilmont Avenue and Roosevelt Avenue. Eight surface parking spaces will also be provided from the Wilmont Avenue access. The proposed development is anticipated to be constructed in two phases. Phase one will contain the east building and is anticipated to be constructed by 2024. Phase two will include the remainder of the development and is anticipated to be constructed by 2026.

The extension of Winston Avenue will serve as an access to the subject site, as well as a new landscaped pedestrian plaza with connectivity to the east-west MUP along the OC Transpo corridor which links to the Westboro and Dominion Transit Stations (future LRT stations). Details regarding the ownership, maintenance and liability of this pedestrian plaza will be discussed further with the City during the future Site Plan Control application.

The conclusions and recommendations of this TIA can be summarized as follows:

Development Design

- The extension of Winston Avenue will serve as an access to the subject site, as well as a new landscaped pedestrian plaza with connectivity to the east-west MUP along the OC Transpo corridor which links to the Westboro and Dominion Transit Stations (future LRT stations). Details regarding the ownership, maintenance and liability of this pedestrian plaza will be discussed further with the City during the future Site Plan Control application.
- The new pedestrian plaza will serve residents of the proposed development, as well as provide pedestrian connectivity to the MUP for the existing residential developments between Winston Avenue and Churchill Avenue, which are currently required to use either Churchill Avenue or Richmond Road/Roosevelt Avenue.
- Pedestrian facilities will be provided between the main building entrances, and the existing sidewalks along Winston Avenue and Roosevelt Avenue, as well as the east-west MUP along the OC Transpo corridor. A pedestrian pathway will also be provided south of the west building to Winston Avenue, which provides pedestrian connectivity between the surface visitor parking and the west building.
- All required TDM-supportive design and infrastructure measures in the TDM checklist are met.

- A new cul-de-sac/hammerhead design is proposed at the northern terminus of Roosevelt Avenue, partially within the OC Transpo corridor. This design will facilitate pick-up/drop-off activity near the main building entrance to the west building and will accommodate a turnaround area for fire services.
- Two loading bays are proposed south of the east and west buildings. The loading bays will be used for both move-in/move-out and garbage collection.

Parking

- The proposed 343 vehicular parking spaces adhere to the requirements of the City's ZBL.
- The proposed bicycle parking will be located in bike storage rooms at grade and within the underground parking garage, and will adhere to the requirements of the City's ZBL.

Boundary Street Design

- Roosevelt Avenue, Winston Avenue, and Wilmont Avenue meet the target BLOS and Auto LOS. However, none of the roadways meet the target PLOS A.
- To achieve the target PLOS A, either a 1.8m sidewalk with a 2.0m wide boulevard or a 2.0m sidewalk with a minimum 0.5m wide boulevard is required along all boundary roadways. This is identified for the City's consideration as funding becomes available.

Access Intersections Design

- The proposed accesses along Roosevelt Avenue and Winston Avenue/Wilmont Avenue will have a width of 6.0m, adhering to the requirements of the PABL and ZBL.
- The location of the Winston Avenue/Wilmont Avenue access adheres to the requirements of the PABL.
- The proposed Roosevelt Avenue access is located approximately 27m from the northern property line and 1.8m from the southern property line. As the Roosevelt Avenue access is at the terminus of the roadway, and the adjacent driveway is located on the south side of the single detached residential dwelling at 345 Roosevelt Avenue, a waiver to the PABL is requested.
- As the proposed driveways are located near the terminus of Roosevelt Avenue, Wilmont Street and Winston Avenue, traffic along the adjacent roadways is anticipated to be minimal. Side street stop control is recommended at the proposed accesses.

Transportation Demand Management

- The following measures will be implemented upon opening of the proposed development:
 - Designate internal coordinator,
 - o Display local area maps with walking/cycling access routes and key destinations,
 - Display relevant transit schedules and route maps,
 - Unbundle parking from monthly rent, and
 - Provide a multi-modal travel option information package to new residents.
- The proposed development will provide bicycle parking spaces at a rate of 1 per unit, exceeding the requirement of the ZBL. The provision of additional bicycle parking spaces will encourage residents to use alternative modal shares and help achieve the target 25% non-auto modal shares.

Neighbourhood Traffic Management

• The weekday peak hour total traffic volumes along Wilmont Avenue and Roosevelt Avenue (adjacent to the residential units north of the commercial accesses) are

anticipated to be within the City's ATM thresholds, and overall capacity thresholds for a local roadway.

• The additional traffic generated by the proposed development during the weekday peak hours equates to one vehicle every 3-4 minutes and is not anticipated to have a significant impact on both Wilmont Avenue and Roosevelt Avenue.

<u>Transit</u>

- The proposed development is anticipated to generate an additional 129 transit trips (32 in, 97 out) during the weekday AM peak hour and 135 transit trips (84 in, 51 out) during the weekday PM peak hour.
- As the proposed development is located within a 600m walking distance of both the future Dominion and Westboro LRT stations, no capacity problems are anticipated.

MMLOS Analysis

Richmond Road/Churchill Avenue

- The Richmond Road/Churchill Avenue intersection does not meet the target PLOS, BLOS, TLOS, or TkLOS but meets the target Auto LOS.
- A reduction in the pedestrian crossing distance would have the greatest improvement to the PETSI score at this intersection. Leading pedestrian intervals are currently implemented at this intersection, improving overall pedestrian safety by enhancing the visibility of pedestrians in the intersection and reinforcing their right-of-way over turning vehicles.
- Consideration could be given by the City to providing a two-stage left turn bike box on all legs of this intersection.
- To achieve the target TkLOS D, an effective turn radius greater than 15m is required on all four corners of this intersection. Increasing the turn radius at this intersection could be considered by the City, however it should be noted that the increased radius will have a negative impact on the PLOS.

Richmond Road/Roosevelt Avenue

- The Richmond Road/Roosevelt Avenue intersection does not meet the target PLOS, BLOS, or TkLOS but meets the target TLOS and Auto LOS.
- A reduction in the pedestrian crossing distance would have the greatest improvement to the PETSI score at this intersection. Consideration could be given by the City to providing curb bulb-outs at this intersection to reduce the pedestrian crossing distance.
- Consideration could be given by the City to providing a two-stage left turn bike box on all legs of this intersection.
- To achieve the target TkLOS D, an effective turn radius greater than 15m is required on all four corners of this intersection. However, Roosevelt Avenue is not classified as a truck route, and Exhibit 22 of the MMLOS guidelines does not identify a TkLOS target for a local roadway that is not classified as a truck route within 600m of a rapid transit station or 300m of a school.

Background and Total Intersection Operations

- Under 2026 and 2031 background traffic conditions, all intersections are anticipated to operate with a LOS D or better during the weekday AM and PM peak hours.
- The 95th queue length on the northbound, southbound, and westbound approaches to the Richmond Road/Churchill Avenue intersection, and westbound approach to the Churchill

Avenue/Scott Street intersection may periodically extend through adjacent unsignalized intersections during the weekday AM and PM peak hours.

- The 95th percentile queue length on the northbound approach to the Churchill Avenue/Scott Street intersection is not anticipated to extend past the adjacent intersection of Wilmont Avenue.
- Traffic generated by the proposed development is not anticipated to have a significant impact on intersection operations within the study area. All study area intersections are anticipated to continue to operate with a LOS D or better during weekday peak hours.

1.0 SCREENING

1.1 Introduction

This Transportation Impact Assessment (TIA) report has been prepared in support of Official Plan Amendment and Zoning By-law Amendment applications for 335 Roosevelt Avenue.

The subject site is surrounded by the following:

- A Multi-Use Pathway (MUP) and the OC Transpo East-West Transitway to the north;
- Wilmont Avenue and low density residential development to the south;
- A high density residential apartment building to the east; and
- Roosevelt Avenue and low density residential development to the west.

A view of the subject site is provided in Figure 1.

The site currently has gated accesses at Roosevelt Avenue and at Wilmont Avenue, restricting local traffic from shortcutting between Richmond Road and Churchill Avenue.

Figure 1: View of the Subject Site

1.2 **Proposed Development**

The proposed development consists of two high-rise residential buildings providing a total of 323 units, and four low-rise residential buildings containing a total of 38 units. A total of 335 underground parking spaces will be provided in a single two-level parking garage with access on both Wilmont Avenue and Roosevelt Avenue. Eight surface parking spaces will also be provided from the Wilmont Avenue access. The proposed development is anticipated to be constructed in two phases. Phase one will contain the east building and is anticipated to be constructed by 2024. Phase two will include the remainder of the development and is anticipated to be constructed by 2026.

The extension of Winston Avenue will serve as an access to the subject site, as well as a new landscaped pedestrian plaza with connectivity to the east-west MUP along the OC Transpo corridor which links to the Westboro and Dominion Transit Stations (future LRT stations). Details regarding the ownership, maintenance and liability of this pedestrian plaza will be discussed further with the City during the future Site Plan Control application.

The site plan is currently being developed and is subject to refinement. A copy of the proposed site plan is included in **Appendix A**.

1.3 Screening Form

The City's 2017 TIA Guidelines identify three triggers for completing a TIA report, including trip generation, location, and safety. The criteria for each trigger are outlined in the City's TIA Screening Form. The trigger results are as follows:

- Trip Generation Trigger The development is anticipated to generate over 60 peak hour person trips; further assessment is required based on this trigger.
- Location Trigger The development is located in a Transit Oriented Development (TOD) zone (within 600m of Dominion and Westboro Transit Stations); further assessment is required based on this trigger.
- Safety Trigger No safety triggers outlined in the TIA Screening Form are met; no further assessment is required based on this trigger.

The proposed development satisfies the Trip Generation and Location Triggers for completing a TIA. A copy of the TIA screening form is included in **Appendix B**.

2.0 SCOPING

2.1 Existing Conditions

2.1.1 Roadways

The roadway network of the greater area surrounding the subject site is illustrated in Figure 2.

The Sir John A. Macdonald Parkway falls within the jurisdiction of the National Capital Commission. All other roadways within the study area fall under the jurisdiction of the City of Ottawa.

Roosevelt Avenue is a local roadway that generally runs on a north-south alignment from Cole Avenue, terminating at the OC Transpo East-West Transitway. It has a two lane semi-urban cross section (curb/sidewalk on east side). Roosevelt Avenue has a posted speed limit of 40km/hr and is not designated as a truck route. One-hour street parking from 7:00 AM to 7:00 PM is permitted on the east side of the road, beginning approximately 75m north of the Richmond Road intersection. Parking is prohibited on the west side of the roadway.

Winston Avenue is a local roadway that runs on a north-south alignment from north of Richmond Road (closed to vehicles at Richmond Road), terminating at a gated entrance to the subject site. It has a two-lane urban cross section with concrete sidewalks on both sides south of Madison Avenue. North of Madison Avenue, it has a two-lane semi-urban cross section (curb/asphalt sidewalk on west side). Winston Avenue has a regulatory speed limit of 50km/hr and is not designated as a truck route. On-street parking is permitted on the east side of the roadway south of Whitby Avenue, and the west side of the roadway north of Whitby Avenue.

Wilmont Avenue is a local roadway that runs on an east-west alignment between Winston Avenue and Churchill Avenue. It has a two-lane urban cross section with curb/sidewalk on the north side

of the roadway, and a gutter on the south side of the roadway. Wilmont Avenue has a regulatory speed limit of 50km/hr and is not designated as truck route. On-street parking is permitted on both sides of the roadway.

Churchill Avenue is classified as a major collector roadway between Carling Avenue and Richmond Road, an arterial roadway between Richmond Road and Scott Street, a collector roadway between Scott Street and Lanark Avenue, and a local roadway north of Lanark Avenue. It runs on a north-south alignment between Carling Avenue and north of Ferndale Avenue. In the vicinity of the subject site, Churchill Avenue has a two-lane undivided urban cross section with a regulatory speed limit of 50km/hr. Churchill Avenue is designated as a truck route between Carling Avenue and Scott Street, permitting full loads. On-street parking is permitted on both sides of the Churchill Avenue between Richmond Road and Scott Street.

Richmond Road is an arterial roadway that generally runs on an east-west alignment between Baseline Road/Robertson Road and Island Park Drive/Wellington Street. In the vicinity of the subject site, it has a two-lane undivided urban cross section with on-street parking permitted on both sides of the roadway, and a regulatory speed limit of 50 km/hr.

Scott Street is classified as an arterial roadway east of Churchill Avenue, and a local roadway west of Churchill Avenue. It runs on an east-west alignment from Bayview Station Road/Albert Street, terminating in a cul-de-sac approximately 50m west of Churchill Avenue. East of Churchill Avenue, Scott Street has a two-lane semi-urban cross section (curb/sidewalk on south side) with parking permitted on the north side of the roadway, and a posted speed limit of 50 km/hr. East of Churchill Avenue, it is also designated as a truck route, permitting full loads.

2.1.2 Intersections

Richmond Road/Roosevelt Avenue

- Signalized intersection
- One approach lane in all directions
- Standard crosswalks are provided on all approaches

Richmond Road/Churchill Avenue

- Signalized intersection
- Eastbound/Westbound: one left turn lane, one shared through/right turn lane
- Northbound/Southbound: one approach lane
- Ladder crosswalks are provided on all approaches

Wilmont Avenue/Churchill Avenue

- Unsignalized, with free flow on Churchill Avenue and stop-control on Wilmont Avenue
- Standard crosswalk provided on the west approach

Scott Street/Churchill Avenue

- Unsignalized, with all-way stop-control
- Ladder crosswalks provided on the north and south approaches, standard crosswalks provided on the east and west approaches
- A bike lane is provided on the east approach
- Sharks teeth provided after the stop bar on all approaches

2.1.3 Driveways

In accordance with the City's 2017 TIA guidelines, a review of adjacent driveways along the boundary roads (within 200m of the subject site) are provided as follows:

Roosevelt Avenue, east side:

- Sixteen driveways to residential dwellings at 339, 345, 349, 351, 353, 355, 357, 361, 363, 365/367, 371, 373/375, 377, 381, 383, and 385/387 Roosevelt Avenue
- One driveway to a parking lot serving a funeral home at 403 Roosevelt Avenue

Winston Avenue, east side:

 Seven driveways to residential dwellings at 349, 353, 355, 365/367, 373/375/377, 383, and 393 Winston Avenue

Wilmont Avenue, north side:

 Ten driveways to residential dwellings at 379, 377, 375, 369, 367, 365, 361, 359, 353, and 349 Wilmont Avenue

2.1.4 Pedestrian and Cycling Facilities

Roosevelt Avenue, west side:

- Fourteen driveways to residential dwellings at 342, 350/352, 354/356, 358, 362, 364, 366, 368, 370, 372, 378, 382, 386, and 390 Roosevelt Avenue
- One driveway serving a gravel parking lot at 346 Roosevelt Avenue

Winston Avenue, west side:

 Fifteen driveways to residential dwellings at 344, 348, 350, 352, 354, 358, 362, 364, 368/370, 374, 376, 378, 382, 386/388, and 390 Winston Avenue

Wilmont Avenue, south side:

• Thirteen driveways to residential dwellings at 378, 376 (a, b, c), 374/372, 368/366, 364, 360, 356, 352, 350, 346, and 344 Wilmont Avenue

The existing pedestrian and cycling infrastructure provided in the greater area surrounding the subject site is illustrated in **Figure 3**.

Sidewalks are currently provided on both sides of Churchill Avenue, Richmond Road, and Winston Avenue (south of Madison Avenue), the east side of Roosevelt Avenue, the west side of Winston Avenue (north of Madison Avenue), the north side of Wilmont Avenue, and the south side of Scott Street (east of Churchill Avenue).

Richmond Road, Scott Street, and Churchill Avenue are designated as Spine Routes in the City's Ultimate Cycling Network. Roosevelt Avenue is classified as a Local Route. Cross-town Bikeway #2 runs east-west through the study area and utilizes Richmond Road (west of Churchill Avenue), Churchill Avenue between Richmond Road and Scott Street, and Scott Street east of Churchill Avenue.

Within the study area, bike lanes are provided on Scott Street and a cycling track is provided on Churchill Avenue south of Byron Avenue. A MUP is also located along the north side of Scott Street, providing connectivity to Westboro Transit Station. This MUP continues west past the terminus of Scott Street and provides connectivity to Dominion Transit Station and the MUP system along Sir John A. Macdonald Parkway.

Figure 3: Existing Pedestrian and Cycling Infrastructure

2.1.5 Transit

The locations of OC Transpo bus stops in the vicinity of the subject site are described as follows:

- Stops #7379 and #7380 are located along Churchill Avenue north of Wilmont Avenue, a walking distance of 250m-350m, and serve OC Transpo Routes: 50 and 153.
- Stops #7403 and #2436 are located along Richmond Road east of Roosevelt Avenue, at a walking distance of approximately 300m-350m, and serve OC Transpo Routes: 11 and 153.
- Dominion Transit Station is located along the OC Transpo Transitway west of the subject site, a walking distance of approximately 300m-400m, and serves numerous OC Transpo Routes.
- Westboro Transit Station is located along the OC Transpo Transitway east of the subject site, a walking distance of approximately 500m-600m, and serves numerous OC Transpo Routes.

The location of the aforementioned transit facilities in relation to the subject site is shown in **Figure 4**. Detailed route information and an excerpt from the OC Transpo System Map are included in **Appendix C**.

Figure 4: OC Transpo Bus Stop Locations

2.1.6 Existing Area Traffic Management Measures

Traffic calming measures have been implemented along Churchill Avenue including intersection and mid-block narrowings. These measures were implemented per the recommendations of the 1996 Island Park, Kirkwood and Churchill Avenue Area Transportation Assessment and Traffic Calming Plan. The report identified Churchill Avenue as having excessive traffic volumes and speeds that impacted the quality of life of the residents. Seasonal flex-posts are also implemented along Churchill Avenue at Roy Duncan Park, north of Workman Avenue.

2.1.7 Existing Traffic Volumes

Weekday traffic counts were obtained from the City of Ottawa at the study area intersections to determine the existing pedestrian, cyclist and vehicular traffic volumes. The traffic counts were completed on the following dates:

- Churchill Avenue/Scott Street
- Roosevelt Avenue/Richmond Road

August 13, 2019 (Tuesday) January 23, 2020 (Thursday) •

Churchill Avenue/Richmond Road • Churchill Avenue/Wilmont Avenue January 23, 2020 (Thursday) January 13, 2016 (Wednesday)

Existing traffic volumes along the study area roadways are shown in Figure 5. Peak hour

summary sheets of the above traffic counts are included in Appendix D.

2.1.8 Collision Records

Historical collision data from the last five years was obtained from the City's Public Works and Service Department for the study area intersection. Copies of the collision summary report are included in **Appendix E**.

The collision data has been evaluated to determine if there are any identifiable collision patterns. The following summarizes the number of collisions at each intersection from January 1, 2014 to December 31, 2018.

		Total				
Intersection	Angle	Sideswipe	Rear End	Turning Movement	SMV ¹ / Other	Number of Collisions
Churchill Avenue/ Richmond Road	7	5	9	4	6	31
Churchill Avenue/ Scott Street	-	1	-	-	3	4
Roosevelt Avenue/ Richmond Road	-	-	2	1	1	4
Churchill Avenue/ Wilmont Avenue	-	1	1	-	-	2

1. SMV = Single Motor Vehicle

Churchill Avenue/Richmond Road

A total of thirty-one collisions were reported at this intersection over the course of the last five years. Of these, there were nine rear end impacts, seven angle impacts, six 'other' impacts, five sideswipe impacts, and four turning movement impacts. Of the total thirty-one collisions, seven caused injuries, but none caused fatalities.

Of the nine rear end impacts, five occurred on the eastbound approach, two occurred on the westbound approach, and two occurred on the southbound approach. Three of the rear end impacts caused injuries, but none caused fatalities.

Of the seven angle impacts, four occurred between eastbound through and southbound through vehicles, one occurred between an eastbound through vehicle and a northbound through vehicle, one occurred between a westbound through vehicle and a northbound left turning vehicle, and one occurred between a northbound right turning vehicle and an eastbound stopped vehicle. All angle impacts were classified as property damage only.

Of the six 'other' impacts, four involved pedestrians and two involved unattended vehicles. Two of the collisions with pedestrians occurred with eastbound left turning vehicles, one pedestrian collision occurred with a southbound right turning vehicle, and one collision involving two pedestrians occurred with a westbound left turning vehicle. Of the total six 'other' impacts, four caused injuries, but none caused fatalities.

Of the five sideswipe impacts, two occurred between southbound right turning vehicles, one occurred between westbound vehicles, one occurred between northbound vehicles, and one occurred between eastbound vehicles. All sideswipe impacts were classified as property damage only.

Of the total four turning movement impacts, two involved eastbound left turning vehicles, one involved a southbound left turning vehicle, and one involved a northbound right turning tractor. All turning movement impacts were classified as property damage only.

As the aforementioned collision history does not reflect a collision pattern, no mitigation measures have been identified.

Churchill Avenue/Scott Street

A total of four collisions were reported at this intersection over the course of the last five years. Of these, there was one sideswipe impact and three 'other' impacts. One of the collisions involved a pedestrian. One of the collisions caused injuries, but none caused fatalities.

As the aforementioned collision history does not reflect a collision pattern, no mitigation measures have been identified.

Roosevelt Avenue/Richmond Road

A total of four collisions were reported at this intersection over the course of the last five years. Of these, there were two rear end impacts, one turning movement impact, and one 'other' impact. One collision involved a pedestrian, and one collision involved an OC Transpo bus. Two of the collisions caused injuries, but none caused fatalities.

As the aforementioned collision history does not reflect a collision pattern, no mitigation measures have been identified.

Churchill Avenue/Wilmont Avenue

A total of two collisions were reported at this intersection over the course of the last five years. Of these, there was one sideswipe impact and one rear end impact. Both collisions occurred on the southbound approach and were reported as property damage only.

As the aforementioned collision history does not reflect a collision pattern, no mitigation measures have been identified.

2.2 Planned Conditions

The City of Ottawa's Transportation Master Plan (TMP) 2031 Affordable Rapid Transit and Transit Priority (RTTP) Network identifies the implementation of transit signal priority and queue jump lanes at select intersections along Richmond Road, Wellington Street W. and Somerset Street. In addition, the affordable RTTP Network identifies the extension of Light Rail Transit (LRT) to the east, west, and south (Phase 2).

Construction for Phase 2 of the LRT began in 2019. The Confederation Line Extension West is anticipated to be completed by 2025 and Westboro Transit Station and Dominion Transit Station will open as Westboro LRT Station and Dominion LRT Station. The proposed western Confederation Line extension is shown in **Figure 6**.

Figure 6: LRT Phase 2 - Confederation Line Extension West

During the LRT Phase 2 construction, buses will be routed off the existing Transitway, onto Scott Street which will be extended west of Churchill Avenue to Roosevelt Avenue, crossing to the north side of the Transitway on a temporary bridge at Roosevelt Avenue and extended westerly from Workman Avenue to the Sir John A. Macdonald Parkway. The proposed bus detour and temporary pedestrian connectivity is shown in **Figure 7**. This detour is anticipated to be built in 2022, and in use by buses only from 2022-2025. The existing multi-use pathway is to be reinstated post LRT Phase 2 construction.

As part of this LRT Phase 2 bus detour, upgrades to Scott Street and a new traffic control signal at the Scott Street/Churchill Avenue intersection are proposed. The signalization of the Scott Street at Churchill Avenue intersection is anticipated to occur by 2021 in order to accommodate bus volumes. As part of the signalization works, the intersection will be upgraded to include ladder crosswalks and cross-rides on all approaches. The interim design for Scott Street is shown in **Figure 8**. Ultimately, Scott Street will be improved to include cycle tracks and bike lanes along both sides of the road between Churchill Avenue and Island Park Drive. The ultimate design for Scott Street is shown in **Figure 9**. Although this design does not show signals at the Scott Street/Churchill Avenue intersection, it is noted that the new traffic signal control at this intersection is permanent and will remain in place after the bus detour.

Other area development includes:

- The mixed-use development at 2070 Scott Street, at the southeast corner of the Scott Street/Churchill Avenue intersection. The development proposes a 23-storey tower with 241 units and 5,500ft² of retail. An underground parking garage with access to Winona Avenue is proposed. A TIA was prepared by Stantec, dated November 2019, in support of this development. The estimated date of occupancy is 2022.
- The mixed-use development at 386 Richmond Road. This development proposes a sixstorey building with 16 residential units, 230m² of office space, and 230m² of ground floor retail. No vehicle access is proposed, and no parking will be provided on site. A TIA was prepared by Parsons, dated October 2017, in support of this development. The estimated date of occupancy is 2020.
- The multi-use development at 398-406 Roosevelt Avenue. This development proposes 33 residential apartment units and 555m² of ground floor retail. A TIA was prepared by Parsons, date December 2017, in support of this development. The estimated date of full occupancy was 2019.
- The residential development at 371 Richmond Road. This development proposes a ninestory condominium providing 100 dwelling units. Access was to be provided via Madison Avenue. A Transportation Brief was prepared by Parsons, dated July 2014, in support of this development.
- The residential development along Roosevelt Avenue between Byron Avenue and Ravenhill Avenue. A Zoning By-Law amendment was sought to allow the construction of low-rise apartments dwellings on the block. The proposed rezoning would permit a maximum of 72 residential units (an increase of 37 units compared to existing/approved number of units). A TIA was prepared by Novatech, dated March 2018, in support of this development.

Figure 7: Scott Street Bus Detour

Figure 8: Scott Street Interim Design

- The residential development at 433-435 Churchill Avenue and 468-472 Byron Place. This development proposes 76 apartment units and two retails units with a combined gross floor area of 3,450ft². A TIA was prepared by Novatech, dated April 2019, in support of this development. The estimated date of full occupancy was 2020.
- A mixed-use development is proposed at 320 McRae Avenue. This development proposes 307 apartment units, 11 townhouses, and 9,494ft² of commercial land uses. A TIA, dated January 2020, was prepared by CGH Transportation in support of this redevelopment. The estimated date of full occupancy is 2022.
- The residential development at 1950 Scott Street. This development proposes 141 condominium/apartment units. A TIA Strategy Report was prepared by Parsons, dated July 2018, in support of this development. The date of full occupancy is 2020.
- The residential development at 1946 Scott Street. This development proposes a 12storey building with approximately 60 apartment units. A TIA was prepared by Parsons, dated August 2017, in support of this development. The estimated date of full occupancy was 2019.

2.3 Study Area and Time Periods

A boundary street review will be conducted for Roosevelt Avenue, Wilmont Avenue, and Winston Avenue. The study area intersections include the proposed accesses and following intersections:

- Churchill Avenue/Scott Street,
- Churchill Avenue/Wilmont Avenue,
- Churchill Avenue/Richmond Road, and
- Roosevelt Avenue/Richmond Road.

A review of the adjacent street traffic at the Richmond Road/Churchill Avenue intersection was conducted. Based on a weekday count performed on January 23, 2020 and a Saturday count performed on July 11, 2015 at the Richmond Road/Churchill Avenue intersection, it was found that traffic along the study area roadways is highest during the weekday AM and PM peak hours. The intersection total traffic volumes are as follows:

- Weekday AM peak: 1,781 vehicles per hour
- Weekday PM peak: 2,033 vehicles per hour
- Saturday peak: 1,533 vehicles per hour

The selected time periods for the analysis are the weekday AM and PM peak hours, as they represent the 'worst case' combination of site generated traffic and adjacent street traffic. Analysis will be completed for the 2026 build-out year and 2031 horizon year.

2.4 Exemptions Review

This module reviews possible exemptions from the final TIA, as outlined in the TIA Guidelines. The applicable exemptions for this site are shown in **Table 3**.

Module	Element	Exemption Criteria	Exemption Applies			
Design Review	Component					
4.1 Development	4.1.2 Circulation and Access	Only required for site plans				
Design	<i>4.1.3</i> New Street Networks	Only required for plans of subdivision	Exempt			
4.2	4.2.1 Parking Supply	Only required for site plans	Not Exempt			
4.2 Parking	<i>4.2.2</i> Spillover Parking	 Only required for site plans where parking supply is 15% below unconstrained demand 	Exempt			
Network Impact	Component					
4.5 Transportation Demand Management	All elements	 Not required for site plans expected to have fewer than 60 employees and/or students on location at any given time 	Not Exempt			
4.6 Neighbourhood Traffic Management	<i>4.6.1</i> Adjacent Neighbourhoods	 Only required when the development relies on local or collector streets for access and total volumes exceed ATM capacity thresholds 	Not Exempt			
4.8 Network Concept	All elements	 Only required when proposed development generates more than 200 person-trips during the peak hour in excess of the equivalent volume permitted by the established zoning 	Exempt			

Table 2: TIA Exemptions

Based on the foregoing, the following modules will be included in the TIA report:

- Module 4.1: Development Design
- Module 4.2: Parking
- Module 4.3: Boundary Streets
- Module 4.4: Access Design
- Module 4.5: Transportation Demand Management
- Module 4.6: Neighbourhood Traffic Management
- Module 4.7: Transit
- Module 4.9: Intersection Design

3.0 FORECASTING

3.1 Development-Generated Traffic

3.1.1 Trip Generation

The proposed development, consisting of two residential buildings, will provide a total of 336 dwelling units.

Trips generated by the proposed residential uses during the weekday AM and PM peak hours have been estimated using the relevant recommended rates outlined in the 2009 TRANS *Trip Generation Manual.* The vehicle trip generation rates, taken from Table 6.3 of the TRANS report, correspond to High-Rise Apartments (10+ floors) and Mid-Rise Apartments (3-10 Floors) in the Urban Area (inside the greenbelt). The vehicle trip generation using the aforementioned rates have been converted to person trips using the assumed modal shares in the in Table 3.13 of the TRANS report. The directional split between inbound and outbound trips are based on the blended splits presented in Table 3.17 of the TRANS report.

As the TRANS manual does not include residential trip generation data for the Saturday peak hour, the Institute of Transportation Engineers (ITE) *Trip Generation Manual, 10th Edition* was used to identify a ratio of Saturday trips to PM peak hour trips. This ratio was then applied to the calculated TRANS person trips in the PM peak hour in order to estimate Saturday person trip generation. The directional splits between inbound and outbound trips for the Saturday peak hour is based on the splits identified in the ITE *Trip Generation Manual, 10th Edition*.

Estimates of the person trips generated by the proposed development are summarized in **Table 3**.

Land Use	Unito	AM Peak (PPH ¹)			PM Peak (PPH)			Saturday Peak (PPH)			
	Units	IN	OUT	ΤΟΤ	IN	OUT	ТОТ	IN	OUT	ТОТ	
High-Rise Apartments (10+ Floors)	323	51	160	211	135	83	218	125	102	227	
Mid-Rise Apartments (3-10 Floors)	38	6	18	24	17	11	28	16	13	29	
	Total	57	178	235	152	94	246	141	115	256	

Table 3: Person Trip Generation

The 2011 TRANS O-D Survey Report indicates that the study area lies within the Ottawa West district. Additionally, the site is located within 600m of the Dominion Transit Station and Westboro Transit Station and is therefore considered a Transit-Oriented Development (TOD). In TOD zones, the transit share is assumed to increase significantly compared to any TRANS O-D district.

Using the 2011 TRANS O-D Survey Report, the typical residential commuter pattern is represented by all observed trips from/within a district in the AM peak hour and all observed trips to/within a district in the PM peak hour. A comparison of the assumed modal shares for a TOD, and the modal shares for commuter trips in the Ottawa West district, is presented in **Table 4**.

Travel Mode	TOD Zone	Ottawa West
Auto Driver	15%	45%
Auto Passenger	5%	10%
Transit	65%	20%
Non-Auto	15%	25%

Table 4: Modal Shares by District/Zone

Given the sites proximity to the Dominion and Westboro Transit Stations which are both future LRT stations, the modal shares associated with the Ottawa West district have been adjusted to reflect a lower auto modal share and increased transit modal share. The adjusted TOD modal shares have been assumed for the weekday AM and PM peak periods. The modal shares observed for the Ottawa West region have been assumed for the Saturday peak period. A full breakdown of the projected site-generated person trips by modal share is shown in **Table 5**.

Trevel Mede	Modal	AM Peak			PM Peak			Saturday Peak			
Travel Mode	Share ¹	IN	OUT	тот	IN	OUT	тот	IN	OUT	тот	
Total Person Trips		57	178	235	152	94	246	141	115	256	
Auto Driver	15%/45%	8	27	35	23	14	37	64	51	115	
Auto Passenger	5%/10%	3	9	12	7	5	12	14	12	26	
Transit	55%/20%	32	97	129	84	51	135	28	23	51	
Non-Auto	25%/25%	14	45	59	38	24	62	35	29	64	

Table 5: Person Trips by Modal Share

1. Weekday/Saturday

From the previous table, the proposed development is projected to generate an additional 35 vehicle trips (8 in, 27 out) during the AM peak hour, 37 vehicle trips (23 in, 14 out) during the PM peak hour, and 115 vehicle trips (64 in, 51 out) in the Saturday peak hour.

As discussed in Section 4.3, the total traffic volumes on a weekday and Saturday at the Richmond Road/Churchill Avenue intersection were reviewed. The following table demonstrates the adjacent street traffic, the site generated traffic, and total traffic (adjacent traffic with the addition of site generated traffic) for the AM, PM, and Saturday peak hours.

Table 6: Adjacent Street Traffic and Site Generated Traffic

Period	Adjacent Street Traffic (vehicles per hour)	Site Generated Traffic (vehicles per hour)	Total Traffic (vehicles per hour)
AM Peak	1,781	35	1,816
PM Peak	2,033	37	2,070
Saturday Peak	1,533	115	1,648

As shown in Table 6, total traffic (adjacent street traffic plus site generated traffic) is highest during the weekday AM and PM peak hours. The selected time periods for the analysis are the weekday AM and PM peak hours, as they represent the 'worst case' combination of site generated traffic and adjacent street traffic.

3.1.2 Trip Distribution

Site generated traffic was distributed based on the peak hour traffic patterns within the study area. The distribution can be described as follows:

- 30% to/from the east via Richmond Road
- 25% to/from the east via Scott Street
- 20% to/from the west via Richmond Road
- 20% to/from the south via Churchill Avenue
- 5% to/from the south via Roosevelt Avenue

For the purpose of this analysis, it is assumed that all site traffic using the Winston Avenue access will travel to and from Churchill Avenue using Wilmont Avenue. The assignment of trips to the proposed site accesses has been assumed based on logical trip routing, and is summarized as follows:

Winston Avenue Access

- All trips to/from the east via Scott Street
- 50% of trips to/from the east via Richmond Road
- 50% of trips to/from the south via Churchill Avenue

Roosevelt Avenue Access

- All trips to/from the west via Richmond Road
- All trips to/from the south via Roosevelt Avenue
- 50% of trips to/from the east via Richmond Road
- 50% of trips to/from the south via Churchill Avenue

Traffic generated by the proposed development during the weekday AM and PM peak hours is shown in **Figure 10**.

3.2 Background Traffic

3.2.1 General Background Growth Rate

A review of historic traffic counts, as well as snapshots from the City's Long Range Transportation Model were reviewed to determine an appropriate background growth rate along the study area roadways.

Based on the historic traffic counts (2015, 2016, 2017, 2019, and 2020 at Churchill Avenue/Richmond Road), traffic volumes have generally decreased along the study area roadways. This is consistent with the 2031 and 2011 snapshots from the City's Long Range Transportation Model, which suggests no growth along the study area roadways. Summary sheets of the above counts and screenshots of the Long Range Model can be found in **Appendix D**.

Based on the foregoing, no background growth rate has been applied to the existing traffic volumes within the study area.

Figure 10: Site Generated Traffic

The OC Transpo LRT Phase 2 bus detour is anticipated to be in place from 2022 to 2025. As part of this detour, approximately 180 buses per direction are anticipated to be added along Scott Street. As the detour is anticipated to be decommissioned prior to the 2026 build-out year, additional bus traffic was not accounted for in the background traffic projections.

3.2.2 Other Area Development

A description of other study area developments is included in Section 4.2.

A review of traffic studies for the following study area developments suggest that traffic generated by these developments is expected to have a negligible impact on the adjacent roadways:

- The mixed-use development at 386 Richmond Road.
- The residential development along Byron Avenue and Ravenhill Avenue.
- The multi-use development at 398-406 Roosevelt Avenue.
- The residential development at 1946 Scott Street.

The projected traffic volumes generated by the following developments have been added to the background traffic at all relevant intersections within the study area:

- The residential development at 371 Richmond Road.
- The residential development at 433-435 Churchill Avenue and 468-472 Byron Place.
- The mixed-use development at 320 McRae Avenue, 1976 Scott Street and 315 Tweedsmuir Avenue.
- The residential development at 1950 Scott Street.
- The mixed-use development at 2070 Scott Street.

Excerpts of site generated traffic figures from the respective traffic studies for the above developments are included in **Appendix F**.

Background and total traffic volumes for the 2026 build-out and 2031 horizon years are shown in **Figure 11** and **12**.

3.3 Demand Rationalization

No capacity constraints are identified for any movement in the study area. Analysis of the study area intersections are included in Section 4.9.

Figure 11: 2026 and 2031 Background Traffic

Figure 12: 2026 and 2029 Total Traffic

4.0 ANALYSIS

4.1 Development Design

4.1.1 Design for Sustainable Modes

The extension of Winston Avenue will serve as an access to the subject site, as well as a new landscaped pedestrian plaza with connectivity to the east-west MUP along the OC Transpo corridor which links to the Westboro and Dominion Transit Stations (future LRT stations). This new pedestrian plaza will serve residents of the proposed development, as well as provide pedestrian connectivity to the MUP for the existing residential developments between Winston Avenue and Churchill Avenue, which are currently required to use either Churchill Avenue or Richmond Road/Roosevelt Avenue. Details regarding the ownership, maintenance and liability of this pedestrian plaza will be discussed further with the City during the future Site Plan Control application.

The proposed Winston Avenue access will serve the underground parking garage, eight surface visitor parking spaces, and a pick-up/drop-off loop near the main entrance to the east building. An access to the underground parking garage is also proposed along Roosevelt Avenue.

Pedestrian facilities will be provided between the main building entrances, and the existing sidewalks along Winston Avenue and Roosevelt Avenue, as well as the east-west MUP along the OC Transpo corridor. A pedestrian pathway will also be provided south of the west building to Winston Avenue, which provides pedestrian connectivity between the surface visitor parking and the west building.

OC Transpo's service design guideline for peak period service is to provide service within a five minute (400m) walk of the home, school and work location of 95% of urban residents. There are several OC Transpo stops within this 400m walk, including OC Transpo stops #7406, #2436, #7380, #7379, and Dominion Transit Station (future LRT station).

Bicycle parking for the proposed development will be in accordance with the minimum requirement of the City's Zoning By-law (ZBL), as described in Section 6.2.

A review of the Transportation Demand Management (TDM) – *Supportive Development Design and Infrastructure Checklist* has been conducted. A copy of the TDM checklist is included in **Appendix G**. All required TDM-supportive design and infrastructure measures in the TDM checklist are met.

4.1.2 Circulation and Access

A new cul-de-sac/hammerhead design is proposed at the northern terminus of Roosevelt Avenue, partially within the OC Transpo corridor. This design will facilitate pick-up/drop-off activity near the main building entrance to the west building and will accommodate a turnaround area for fire services. The turning movements of a Pumper Fire Truck at the proposed cul-de-sac/hammerhead are shown in **Figure 13**.

Two loading bays are proposed south of the east and west buildings. The turning movements of a Medium Single Unit (MSU) truck reversing into and driving out of the loading bays are shown in **Figure 14** and **15**.

SHT8X11.DWG - 216mmx279mm

- 4:55pm 2020 -LOADING- IN, Jul 21 M:\2010\110098\CAD\Design\Figures\Traffic\20200720 - Autoturn\110098 - Autoturn.dwg,

SHT8X11.DWG - 216mmx279mm

2020 - 4:55pm, LOADING- OUT, Jul 21, M:\2010\110098\CAD\Design\Figures\Traffic\20200720 - Autoturn\110098 - Autoturn dwg,

SHT8X11.DWG - 216mmx279mm

Garbage collection will occur in the loading bays located south of the east and west buildings. As Transportation Association of Canada (TAC) Geometric Design Guidelines do not include a design vehicle for garbage trucks, an MSU truck driving in and reversing out has been used as the design vehicle. The turning movements of an MSU truck driving into and reversing out of the loading bays are shown in **Figures 16** and **17**.

4.2 Parking

The subject site is located in Area B on Schedule 1 and Area X on Schedule 1A of the City of Ottawa's Zoning By-Law (ZBL). Minimum vehicular and bicycle parking rates for the proposed development are identified in the ZBL and are summarized in the following table.

Land Use	Minimum Parking Rate	Units	Required	Provided			
Vehicle Parking							
Mid-Rise	Resident: 0.5 per unit in excess of 12	361	156	311			
Apartments	Visitor: 0.1 per unit in excess of 12;	501	32	32			
Bicycle Parking							
Apartment Building	0.5 per unit	361	180	361			

Table 7: Parking Requirements

As the proposed development is also located within 600 metres of a rapid transit station, the number of vehicle parking spaces provided for a use must not exceed the maximum limits set out in the Section 103 of the City's ZBL. Based on the ZBL, a maximum of 1.75 parking spaces are permitted per unit (combined total of resident and visitor), equating to a maximum of 593 on-site parking spaces. The proposed 343 vehicular parking spaces adhere to the requirements of the City's ZBL.

The proposed bicycle parking will be located in bike storage rooms at grade and within the underground parking garage, and will exceed the requirements of the City's ZBL.

4.3 Boundary Streets

This section provides a review of the boundary streets using complete streets principles. The Multi-Modal Level of Service (MMLOS) guidelines produced by IBI Group in 2015 were used to evaluate the LOS of the boundary roadways for each mode of transportation. Schedule 'B' of the City of Ottawa's Official Plan indicates that Roosevelt Avenue, Wilmont Avenue and Winston Avenue are located within the General Urban Area. All boundary streets are also located within 600m of a rapid transit station.

4:55pm, 2020 GARBAGE- IN, Jul 21, M:\2010\110098\CAD\Design\Figures\Traffic\20200720 - Autoturn\110098 - Autoturn dwg,

SHT8X11.DWG - 216mmx279mm

- 4:55pm, 2020 -GARBAGE- OUT, Jul 21, M:\2010\110098\CAD\Design\Figures\Traffic\20200720 - Autoturn\110098 - Autoturn dwg,

SHT8X11.DWG - 216mmx279mm

Targets for the Pedestrian Level of Service (PLOS), Bicycle Level of Service (BLOS), and Vehicular Level of Service (Auto LOS) for the study area roadways are based on the targets for roadways within 600m of a rapid transit station, as identified in Exhibit 22 of the MMLOS guidelines. As none of the boundary roadways serve transit and are not classified as truck routes, the Transit Level of Service (TLOS) and Truck Level of Service (TkLOS) has not been reviewed.

A summary of the results of the segment MMLOS analysis for the boundary roadways is provided in the following table. Detailed segment MMLOS calculations can be found in **Appendix H**.

Segment	PLOS	BLOS	TLOS	TkLOS	Auto LOS
Roosevelt Avenue	В	А	-	-	А
Target	Α	В	-	-	E
Wilmont Avenue	С	В	-	-	А
Target	А	D	-	-	А
Winston Avenue	E	В	-	-	А
Target	Α	D	-	-	E

Table 8: Segment MMLOS Summary

Based on the foregoing, all roadways meet the target BLOS and Auto LOS. However, none of the roadways meet the target PLOS A.

The east side of Roosevelt Avenue has a 1.8m sidewalk and no boulevard which earns a PLOS of B. The north side of Wilmont Avenue has a 1.5m sidewalk with a 1.0m boulevard which earns a PLOS C. The west side of Winston Avenue has a 1.5m asphalt sidewalk and no boulevard which earns a PLOS E. To achieve the target PLOS A, either a 1.8m sidewalk with a 2.0m wide boulevard or a 2.0m sidewalk with a minimum 0.5m wide boulevard is required along all boundary roadways. This is identified for the City's consideration as funding becomes available.

4.4 Access Intersections Design

A new cul-de-sac area will be developed at the northern terminus of Roosevelt Avenue. This culde-sac will serve as a pick-up/drop-off loop near the main entrance to the west building, as well as provide access to the underground parking garage. A new access is also proposed at the northern terminus of Winston Avenue. This access will serve eight surface visitor parking spaces, a ramp to the underground parking garage, and a pick-up/drop-off loop near the main entrance to the east building.

Section 25 (c) of the City of Ottawa's Private Approach By-law (PABL) identifies a requirement for two-way accesses to have a width no greater than 9m, as measured at the street line. Section 107 (1)(a) of the ZBL identifies a minimum width of 6.0m and maximum width of 6.7m for a two-way driveway to a parking garage. The proposed accesses along Roosevelt Avenue and Winston Avenue/Wilmont Avenue will have a width of 6.0m, adhering to the requirements of the PABL and ZBL.

Section 25 (p) of the PABL identifies a minimum spacing requirement of 3.0m between the nearest limit of a private approach and the property line, as measured at the street line. The proposed Winston Avenue/Wilmont Avenue access adheres to the requirements of the PABL. The proposed Roosevelt Avenue access is located approximately 27m from the northern property line and 1.8m from the southern property line. As the Roosevelt Avenue access is at the terminus of the roadway, and the adjacent driveway is located on the south side of the single detached residential dwelling at 345 Roosevelt Avenue, a waiver to the PABL is requested.

As the proposed driveways are located near the terminus of Roosevelt Avenue, Wilmont Street and Winston Avenue, traffic along the adjacent roadways is anticipated to be minimal. Side street stop control is recommended at the proposed accesses.

4.5 Transportation Demand Management

A review of the Transportation Demand Management (TDM) – *Measures Checklist* has been conducted. A copy of the TDM checklist is included in **Appendix G**.

The following measures will be implemented upon opening of the proposed development:

- Designate internal coordinator,
- Display local area maps with walking/cycling access routes and key destinations,
- Display relevant transit schedules and route maps,
- Unbundle parking from monthly rent, and
- Provide a multi-modal travel option information package to new residents.

The proposed development will provide bicycle parking spaces at a rate of 1 per unit, exceeding the requirement of the ZBL. The provision of additional bicycle parking spaces will encourage residents to use alternative modal shares and help achieve the target 25% non-auto modal shares identified in Section 3.1.

4.6 Neighbourhood Traffic Management

Roosevelt Avenue, Winston Avenue, and Wilmont Avenue are local roadways that provide connectivity to the subject site. As the subject site only has frontage on the aforementioned local roadways, vehicular access to the development is proposed on Roosevelt Avenue and Winston Avenue (via Wilmont Avenue). The following table provides a summary of the existing traffic, proposed additional traffic, and total traffic volumes along both Roosevelt Avenue and Wilmont Avenue.

Table 9: Neighbourhood Traffic Impacts	Table 9:	Neiahbourhood	Traffic Impacts
--	----------	---------------	-----------------

Roadway	AM Peak			PM Peak		
Ruduway	Existing ¹	Proposed	Total	Existing ¹	Proposed	Total
Wilmont Avenue						
Eastbound	10	14	24	6	7	13
Westbound	25	4	29	25	12	37
Two-way	35	18	53	31	19	50
Roosevelt Avenue						
Northbound	39	4	43	59	11	70
Southbound	51	13	64	57	7	64
Two-way	90	17	107	116	18	134

1. Based on existing traffic count at Richmond Road/Roosevelt Avenue intersection

2. Based on existing traffic count at Churchill Avenue/Wilmont Avenue intersection

The City of Ottawa Area Traffic Management (ATM) guidelines identify a maximum threshold of 1,000 vehicles per day, or 120 vehicles during the peak hour for local roadways. The total traffic volumes along Wilmont Avenue will be well within the aforementioned threshold for a local roadway during weekday peak hours. Roosevelt Avenue north of Richmond Road is anticipated to operate within the threshold during the AM peak hour. However, the 120 vehicle per hour threshold is anticipated to be exceeded along Roosevelt Avenue north of Richmond Road during the PM peak hour. Based on the traffic projections presented in this TIA, the proposed development is anticipated to add 18 two-way vehicle trips during the PM peak hour to Roosevelt Avenue. This equates to one vehicle every 3-4 minutes during the peak hour.

It is noted that a commercial plaza (including a pharmacy and Starbucks) and funeral home are located on the northeast and northwest corners of the Richmond Road/Roosevelt Avenue intersection, with access on Roosevelt Avenue. Traffic generated by these commercial developments are included in the traffic volumes along Roosevelt Avenue at Richmond Road. As such, traffic along Roosevelt Avenue adjacent to the existing residential dwellings north of the commercial accesses is anticipated to be lower and is not anticipated to exceed the ATM threshold of 120 vehicles.

The overall capacity of a local roadway is estimated at 400 vehicles per hour per lane based on the City's TRANS Long Range Transportation Model. Total traffic volumes along Roosevelt Avenue are projected to be 70 vehicles northbound and 64 vehicles southbound during the PM peak hour. This equates to a critical volume to capacity (V/C) ratio of 0.18, corresponding to a Level of Service (LOS) A, along Roosevelt Avenue.

Based on the foregoing, the weekday peak hour total traffic volumes along Wilmont Avenue and Roosevelt Avenue (adjacent to the residential units north of the commercial accesses) are anticipated to be within the City's ATM thresholds, and overall capacity thresholds for a local roadway. The additional traffic generated by the proposed development during the weekday peak hours equates to one vehicle every 3-4 minutes during peak hours and is not anticipated to have a significant impact on both Wilmont Avenue and Roosevelt Avenue. As such, no Neighbourhood Traffic Management measures are recommended along the adjacent roadways.

4.7 Transit

Based on the trip generation presented in Section 5.1, the proposed development is anticipated to generate an additional 129 transit trips (32 in, 97 out) during the weekday AM peak hour and 135 transit trips (84 in, 51 out) during the weekday PM peak hour.

As the proposed development is located within a 600m walking distance of both the future Dominion and Westboro LRT stations, no capacity problems are anticipated.

4.8 Network Concept

Per Section 2.4, this module is exempt from the analysis.

4.9 Network Intersections

4.9.1 Existing Intersection MMLOS Analysis

This section provides a review of the study area intersections using the complete streets principles. The MMLOS guidelines produced by IBI Group in October 2015 were used to evaluate the LOS of all signalized study area intersections for each mode of transportation. Schedule 'B' of the City of Ottawa's Official Plan indicates that the Richmond Road/Churchill Avenue and Richmond Road/Roosevelt Avenue intersections are located within the General Urban Area. Richmond Road is also classified as a Traditional Mainstreet within the study area.

Additionally, both intersections are located within 300m of the Churchill Alternative School (345 Ravenhill Avenue) and within 600m of a rapid transit station (Dominion and Westboro Transit Stations).

Aerial photos of the study area intersections are provided in Section 4.1.2.

Target PLOS, BLOS, TLOS, TkLOS, and Auto LOS for the study area intersections are based on targets for intersections within 300m of a school and 600m of a rapid transit station, as identified in Exhibit 22 of the MMLOS guidelines.

Although the north and south approaches to the Richmond Road/Churchill Avenue intersection are painted as one approach lane, the wide lane widths permit drivers to travel around a queued vehicle. For the purposes of the intersection capacity analysis, the north and south approaches to this intersection have been modeled as a left turn lane and a through/right turn lane.

A summary of the results of the intersection MMLOS analysis for the study area intersections is provided in the following table. Detailed intersection MMLOS calculations can be found in **Appendix H**.

Table 10: Intersection MMLOS Summary

Intersection	PLOS	BLOS	TLOS	TkLOS	Auto LOS
Richmond Road/Churchill Avenue	D	D	Е	F	С
Target	А	А	D	D	Е
Richmond Road/Roosevelt Avenue	D	В	С	F	С
Target	Α	Α	D	D	E

Richmond Road/Churchill Avenue

The Richmond Road/Churchill Avenue intersection does not meet the target PLOS, BLOS, TLOS, or TkLOS but meets the target Auto LOS.

The intersection is currently operating with a PLOS D. A reduction in the pedestrian crossing distance would have the greatest improvement to the PETSI score at this intersection. Leading pedestrian intervals are currently implemented at this intersection, improving overall pedestrian safety by enhancing the visibility of pedestrians in the intersection and reinforcing their right-of-way over turning vehicles.

The intersection is currently operating with a BLOS D, based on left turn characteristics alone. To achieve the target BLOS A, consideration could be given by the City to providing a two-stage left turn bike box on all legs of this intersection.

The east and west approaches to this intersection are currently operating with a TLOS D, meeting the target. However, the north and south approaches are currently operating with a TLOS E. As Churchill Avenue is not identified as a transit priority corridor, there is no target TLOS identified for this roadway.

The intersection is currently operating with a TkLOS F. To achieve the target TkLOS D, an effective turn radius greater than 15m is required on all four corners of this intersection. Increasing the turn radius at this intersection could be considered by the City, however it should be noted that the increased radius will have a negative impact on the PLOS.

Richmond Road/Roosevelt Avenue

The Richmond Road/Roosevelt Avenue intersection does not meet the target PLOS, BLOS, or TkLOS but meets the target TLOS and Auto LOS.

The intersection is currently operating with a PLOS D. A reduction in the pedestrian crossing distance would have the greatest improvement to the PETSI score at this intersection. Consideration could be given by the City to providing curb bulb-outs at this intersection to reduce the pedestrian crossing distance.

The intersection is currently operating with a BLOS B, based on left turn characteristics alone. To achieve the target BLOS A, consideration could be given by the City to providing a two-stage left turn bike box on all legs of this intersection.

The intersection is currently operating with a TkLOS F. To achieve the target TkLOS D, an effective turn radius greater than 15m is required on all four corners of this intersection. However, Roosevelt Avenue is not classified as a truck route, and Exhibit 22 of the MMLOS guidelines does not identify a TkLOS target for a local roadway that is not classified as a truck route within 600m of a rapid transit station or 300m of a school. As such, no modifications to improve the TkLOS at this intersection are recommended.

4.9.2 2026 and 2031 Background Intersection Operations

Intersection capacity analysis has been completed for the 2026 and 2031 background traffic conditions. The intersection parameters used in the analysis are consistent with the TIA guidelines (saturation flow rate: 1800 vphpl, PHF: 1.0). For the purposes of this analysis, it has been assumed that the transit detours along Scott Street have been removed and the geometry at the Churchill Avenue/Scott Street intersection is consistent with the Scott Street Ultimate Design presented in Figure 9.

The results of the synchro analysis are summarized in the following table for the weekday AM and PM peak hours. Detailed reports are included in **Appendix I**.

		AM Peak			PM Peak	
Intersection	Max V/C or Delay	LOS	Movement	Max V/C or Delay	LOS	Movement
Richmond Road/ Churchill Avenue	0.78	С	SBT/L	0.74	С	NBT/L
Richmond Road/ Roosevelt Avenue	0.47	A	EB	0.69	В	WB
Churchill Avenue/ Scott Street	0.73	С	WB	0.84	D	WB
Churchill Avenue/ Wilmont Avenue	12 sec	В	EB	15 sec	С	EB

Table 11: 2026 and 2031 Background Intersection Operations

Under background traffic conditions, all intersections are anticipated to operate with a LOS D or better during the weekday AM and PM peak hours.

The 95th queue length on the northbound, southbound, and westbound approaches to the Richmond Road/Churchill Avenue intersection, and westbound approach to the Churchill Avenue/Scott Street intersection may periodically extend through adjacent unsignalized intersections during the weekday AM and PM peak hours. The 95th percentile queue length on the northbound approach to the Churchill Avenue/Scott Street intersection is not anticipated to extend past the adjacent intersection of Wilmont Avenue.

4.9.3 2026 and 2031 Total Intersection Operations

Intersection capacity analysis has been completed for the 2029 total traffic conditions. The intersection parameters used in the analysis are consistent with the TIA guidelines (saturation flow rate: 1800 vphpl, PHF: 1.0). The results of the synchro analysis are summarized in the following table for the weekday AM and PM peak hours. Detailed reports are included in **Appendix I**.

		AM Peak			PM Peak	
Intersection	Max V/C or Delay	LOS	Movement	Max V/C or Delay	LOS	Movement
Richmond Road/ Churchill Avenue	0.78	С	SBT/L	0.72	С	NBT/L
Richmond Road/ Roosevelt Avenue	0.47	A	EB	0.70	В	WB
Churchill Avenue/ Scott Street	0.73	С	WB	0.85	D	WB
Churchill Avenue/ Wilmont Avenue	15 sec	В	EB	17 sec	С	EB

Table 12: 2026 and 2031 Total Intersection Operations

Based on the foregoing, traffic generated by the proposed development is not anticipated to have a significant impact on intersection operations within the study area. All study area intersections are anticipated to continue to operate with a LOS D or better during weekday peak hours.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the foregoing, the conclusions and recommendations of this TIA can be summarized as follows:

Development Design

- The extension of Winston Avenue will serve as an access to the subject site, as well as a new landscaped pedestrian plaza with connectivity to the east-west MUP along the OC Transpo corridor which links to the Westboro and Dominion Transit Stations (future LRT stations). Details regarding the ownership, maintenance and liability of this pedestrian plaza will be discussed further with the City during the future Site Plan Control application.
- The new pedestrian plaza will serve residents of the proposed development, as well as provide pedestrian connectivity to the MUP for the existing residential developments between Winston Avenue and Churchill Avenue, which are currently required to use either Churchill Avenue or Richmond Road/Roosevelt Avenue.
- Pedestrian facilities will be provided between the main building entrances, and the existing
 sidewalks along Winston Avenue and Roosevelt Avenue, as well as the east-west MUP
 along the OC Transpo corridor. A pedestrian pathway will also be provided south of the
 west building to Winston Avenue, which provides pedestrian connectivity between the
 surface visitor parking and the west building.
- All required TDM-supportive design and infrastructure measures in the TDM checklist are met.
- A new cul-de-sac/hammerhead design is proposed at the northern terminus of Roosevelt Avenue, partially within the OC Transpo corridor. This design will facilitate pick-up/dropoff activity near the main building entrance to the west building and will accommodate a turnaround area for fire services.
- Two loading bays are proposed south of the east and west buildings. The loading bays will be used for both move-in/move-out and garbage collection.

<u>Parking</u>

- The proposed 343 vehicular parking spaces adhere to the requirements of the City's ZBL.
- The proposed bicycle parking will be located in bike storage rooms at grade and within the underground parking garage, and will adhere to the requirements of the City's ZBL.

Boundary Street Design

- Roosevelt Avenue, Winston Avenue, and Wilmont Avenue meet the target BLOS and Auto LOS. However, none of the roadways meet the target PLOS A.
- To achieve the target PLOS A, either a 1.8m sidewalk with a 2.0m wide boulevard or a 2.0m sidewalk with a minimum 0.5m wide boulevard is required along all boundary roadways. This is identified for the City's consideration as funding becomes available.

Access Intersections Design

- The proposed accesses along Roosevelt Avenue and Winston Avenue/Wilmont Avenue will have a width of 6.0m, adhering to the requirements of the PABL and ZBL.
- The location of the Winston Avenue/Wilmont Avenue access adheres to the requirements of the PABL.
- The proposed Roosevelt Avenue access is located approximately 27m from the northern property line and 1.8m from the southern property line. As the Roosevelt Avenue access is at the terminus of the roadway, and the adjacent driveway is located on the south side of the single detached residential dwelling at 345 Roosevelt Avenue, a waiver to the PABL is requested.
- As the proposed driveways are located near the terminus of Roosevelt Avenue, Wilmont Street and Winston Avenue, traffic along the adjacent roadways is anticipated to be minimal. Side street stop control is recommended at the proposed accesses.

Transportation Demand Management

- The following measures will be implemented upon opening of the proposed development:
 - Designate internal coordinator,
 - Display local area maps with walking/cycling access routes and key destinations,
 - Display relevant transit schedules and route maps,
 - Unbundle parking from monthly rent, and
- Provide a multi-modal travel option information package to new residents.
- The proposed development will provide bicycle parking spaces at a rate of 1 per unit, exceeding the requirement of the ZBL. The provision of additional bicycle parking spaces will encourage residents to use alternative modal shares and help achieve the target 25% non-auto modal shares.

Neighbourhood Traffic Management

- The weekday peak hour total traffic volumes along Wilmont Avenue and Roosevelt Avenue (adjacent to the residential units north of the commercial accesses) are anticipated to be within the City's ATM thresholds, and overall capacity thresholds for a local roadway.
- The additional traffic generated by the proposed development during the weekday peak hours equates to one vehicle every 3-4 minutes and is not anticipated to have a significant impact on both Wilmont Avenue and Roosevelt Avenue.

<u>Transit</u>

•

- The proposed development is anticipated to generate an additional 129 transit trips (32 in, 97 out) during the weekday AM peak hour and 135 transit trips (84 in, 51 out) during the weekday PM peak hour.
- As the proposed development is located within a 600m walking distance of both the future Dominion and Westboro LRT stations, no capacity problems are anticipated.

MMLOS Analysis

Richmond Road/Churchill Avenue

- The Richmond Road/Churchill Avenue intersection does not meet the target PLOS, BLOS, TLOS, or TkLOS but meets the target Auto LOS.
- A reduction in the pedestrian crossing distance would have the greatest improvement to the PETSI score at this intersection. Leading pedestrian intervals are currently implemented at this intersection, improving overall pedestrian safety by enhancing the visibility of pedestrians in the intersection and reinforcing their right-of-way over turning vehicles.
- Consideration could be given by the City to providing a two-stage left turn bike box on all legs of this intersection.
- To achieve the target TkLOS D, an effective turn radius greater than 15m is required on all four corners of this intersection. Increasing the turn radius at this intersection could be considered by the City, however it should be noted that the increased radius will have a negative impact on the PLOS.

Richmond Road/Roosevelt Avenue

- The Richmond Road/Roosevelt Avenue intersection does not meet the target PLOS, BLOS, or TkLOS but meets the target TLOS and Auto LOS.
- A reduction in the pedestrian crossing distance would have the greatest improvement to the PETSI score at this intersection. Consideration could be given by the City to providing curb bulb-outs at this intersection to reduce the pedestrian crossing distance.
- Consideration could be given by the City to providing a two-stage left turn bike box on all legs of this intersection.
- To achieve the target TkLOS D, an effective turn radius greater than 15m is required on all four corners of this intersection. However, Roosevelt Avenue is not classified as a truck route, and Exhibit 22 of the MMLOS guidelines does not identify a TkLOS target for a local roadway that is not classified as a truck route within 600m of a rapid transit station or 300m of a school.

Background and Total Intersection Operations

- Under 2026 and 2031 background traffic conditions, all intersections are anticipated to operate with a LOS D or better during the weekday AM and PM peak hours.
- The 95th queue length on the northbound, southbound, and westbound approaches to the Richmond Road/Churchill Avenue intersection, and westbound approach to the Churchill Avenue/Scott Street intersection may periodically extend through adjacent unsignalized intersections during the weekday AM and PM peak hours.
- The 95th percentile queue length on the northbound approach to the Churchill Avenue/Scott Street intersection is not anticipated to extend past the adjacent intersection of Wilmont Avenue.
- Traffic generated by the proposed development is not anticipated to have a significant impact on intersection operations within the study area. All study area intersections are anticipated to continue to operate with a LOS D or better during weekday peak hours.

NOVATECH

Prepared by:

Brad Byvelds, P. Eng. Project Coordinator | Transportation/Traffic

APPENDIX A

Site Plan

APPENDIX B

TIA Screening Form

Transportation Impact Assessment Screening Form

City of Ottawa 2017 TIA Guidelines Screening Form

1. Description of Proposed Development

Municipal Address	335 Roosevelt Avenue
Description of Location	South of Transitway, north of Wilmont Avenue and east of Roosevelt Avenue
Land Use Classification	Residential
Development Size (units)	339 units
Development Size (m ²)	
Number of Accesses and Locations	Two accesses on Roosevelt Avenue and Wilmont Avenue
Phase of Development	1
Buildout Year	2024

If available, please attach a sketch of the development or site plan to this form.

2. Trip Generation Trigger

Considering the Development's Land Use type and Size (as filled out in the previous section), please refer to the Trip Generation Trigger checks below.

Land Use Type	Minimum Development Size
Single-family homes	40 units
Townhomes or apartments	90 units
Office	3,500 m ²
Industrial	5,000 m ²
Fast-food restaurant or coffee shop	100 m²
Destination retail	1,000 m ²
Gas station or convenience market	75 m ²

* If the development has a land use type other than what is presented in the table above, estimates of person-trip generation may be made based on average trip generation characteristics represented in the current edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual.

If the proposed development size is greater than the sizes identified above, <u>the Trip Generation</u> Trigger is satisfied.

Transportation Impact Assessment Screening Form

3. Location Triggers

	Yes	No
Does the development propose a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit or Spine Bicycle Networks?		x
Is the development in a Design Priority Area (DPA) or Transit-oriented Development (TOD) zone?*	х	

*DPA and TOD are identified in the City of Ottawa Official Plan (DPA in Section 2.5.1 and Schedules A and B; TOD in Annex 6). See Chapter 4 for a list of City of Ottawa Planning and Engineering documents that support the completion of TIA).

If any of the above questions were answered with 'Yes,' the Location Trigger is satisfied.

4. Safety Triggers

5. Summary

	Yes	No
Are posted speed limits on a boundary street 80 km/hr or greater?		Х
Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway?		х
s the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions)?		x
s the proposed driveway within auxiliary lanes of an intersection?		Х
Does the proposed driveway make use of an existing median break that serves an existing site?		х
Is there is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?		х
Does the development include a drive-thru facility?		х

If any of the above questions were answered with 'Yes,' the Safety Trigger is satisfied.

	Yes	No
Does the development satisfy the Trip Generation Trigger?	x	
Does the development satisfy the Location Trigger?	х	
Does the development satisfy the Safety Trigger?		x

If none of the triggers are satisfied, <u>the TIA Study is complete</u>. If one or more of the triggers is satisfied, <u>the TIA Study must continue into the next stage</u> (Screening and Scoping).

APPENDIX C

OC Transpo System Information

🖈 Subject Site

7 days a week / 7 jours par semaine

All day service

Service toute la journée

de la Ligne 1 de l'O-Train Lost and Found / Objets perdus...... 613-563-4011

CC Transpo octranspo.com

Local

Monday to Saturday / Lundi au samedi

No service Sat. eve. or all day Sunday / Aucun service le soir le sam. ou toute la journée dimanche

2019.06

	2013.0
Text / Texto	
Customer Service Service à la clientèle	613-842-3600
	berdus 613-563-4011
Effective April 24, 2017 En vigueur 24 avril 2017	
C Transpo	INFO 613-741-4390 octranspo.com

7 days a week / 7 jours par semaine

Selected time periods only Périodes sélectionnées seulement

Schedule / Horaire613-560-1000 Text / Texto	
Customer Relations Service à la clientèle 613-842-3600	
Lost and Found / Objets perdus 613-563-4011 Security / Sécurité	
Effective October 6, 2019 En vigueur 6 octobre 2019	
CTranspo INFO 613-741-4390 octranspo.com	

APPENDIX D

Traffic Count Data and Long Range Model Screenshots

Turning Movement Count - Peak Hour Diagram CHURCHILL AVE @ RICHMOND RD

Comments

Turning Movement Count - Peak Hour Diagram CHURCHILL AVE @ RICHMOND RD

Turning Movement Count - Full Study Peak Hour Diagram CHURCHILL AVE @ WILMONT AVE

Comments

Turning Movement Count - Full Study Peak Hour Diagram CHURCHILL AVE @ WILMONT AVE

Comments

Turning Movement Count - Full Study Peak Hour Diagram CHURCHILL AVE @ SCOTT ST

Turning Movement Count - Full Study Peak Hour Diagram CHURCHILL AVE @ SCOTT ST

Comments

Turning Movement Count - Peak Hour Diagram ROOSEVELT AVE @ RICHMOND RD

Comments 5472203 - THU JAN 23, 2020 - 8HRS - LORETTA

Turning Movement Count - Peak Hour Diagram ROOSEVELT AVE @ RICHMOND RD

Comments 5472203 - THU JAN 23, 2020 - 8HRS - LORETTA

Transportation Services - Traffic Services

Turning Movement Count - Full Study Peak Hour Diagram CHURCHILL AVE @ RICHMOND RD

Comments

Turning Movement Count - Study Results CHURCHILL AVE @ RICHMOND RD

Survey D Start Tin			ay, Ja	nuary 2	23, 20	20						WO I Devi					644 /ision		
				F	ull s	Stud	v Si	umma	arv (8 HF	R Sta					in in o			
Survey Da	ate:	Thurso	dav. Ja	• anuary			., e.		• •		ved U-		~,					T Facto	or
· · · · · · , - ·			, ,	,	, _		١	Vorthboui				nbound:	0				1.00	TTACK	Л
								Eastbour	nd: 0		West	bound:	2				1.00		
			CHUF	RCHILL	AVE							RICH	IMON	ID RD					
	No	rthbou		-		uthbou	Ind			F	astbou		-		/estboi	ind			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Total
07:00 08:00	14	161	59	234	16	226	90	332	566	274	347	24	645	35	126	22	183	828	1394
08:00 09:00	16	270	93	379	21	296	136	453	832	287	373	32	692	40	182	16	238	930	1762
09:00 10:00	27	205	81	313	18	219	137	374	687	162	329	35	526	64	173	33	270	796	1483
11:30 12:30	42	173	77	292	36	195	161	392	684	122	289	72	483	79	308	33	420	903	1587
12:30 13:30	31	183	83	297	30	215	187	432	729	128	254	83	465	73	340	27	440	905	1634
15:00 16:00	28	201	84	313	18	247	276	541	854	145	283	78	506	116	393	29	538	1044	1898
16:00 17:00	28	260	71	359	16	256	270	542	901	145	279	57	481	132	453	25	610	1091	1992
17:00 18:00	25	238	84	347	19	234	261	514	861	162	266	42	470	117	410	39	566	1036	1897
Sub Total	211	1691	632	2534	174	1888	1518	3580	6114	1425	2420	423	4268	656	2385	224	3265	7533	13647
U Turns				1				0	1				0				2	2	3
Total	211	1691	632	2535	174	1888	1518	3580	6115	1425	2420	423	4268	656	2385	224	3267	7535	13650
EQ 12Hr Note: These	293 values a	2350 are calcu	878 Ilated by	3524 y multiply	242 ying the	2624 totals b	2110 by the a	4976 ppropriate	8500 e expans	1981 sion fac	3364 tor.	588	5933	912 1.39	3315	311	4541	10474	18974
AVG 12Hr	276	2215	828	3321	228	2473	1989	4690	8500	1867	3170	554	5591	859	3124	293	4280	10474	18974
Note: These	volumes	are cal	culated	by multi	plying tl	ne Equiv	valent 1	2 hr. tota	ls by the	AADT	factor.			1					
AVG 24Hr	362	2902	1085	4350	299	3240	2605	6144	10494	2445	4153	726	7324	1126	4093	384	5606	12930	23424
Note: These	volumes	are cal	culated	by multi	plying tl	ne Aver	age Dai	ly 12 hr. 1	totals by	12 to 2	4 expan	sion fact	or.	1.31					

38640

Turning Movement Count - Full Study Summary Report

CHURCHILL AVE @ RICHMOND RD

Survey Da	ate:	Thursd	lay, A	ugust (01, 20	19			Total C	Obser	ved U-	Turns	5				AAD	T Fact	or
								Northbou	ind: 0		South	nbound:	0				.90		
								Eastbou	nd: 0		West	tbound:	1						
								F	ull St	udy									
			СН	URCHI	LL AV	Έ						RIC	СНМС	ND R	D				
-	1	Northbo	ound		9	Southb	ound		_		Eastbo	ound			Westb	ound			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Gran Tota
07:00 08:00	15	132	39	186	8	194	93	295	481	197	280	30	507	26	123	21	170	677	1158
08:00 09:00	15	286	74	375	22	254	106	382	757	240	373	33	646	61	182	20	263	909	1666
09:00 10:00	24	211	70	305	23	197	159	379	684	158	303	38	499	39	200	24	263	762	1446
11:30 12:30	44	210	90	344	20	215	169	404	748	139	323	79	541	90	306	40	436	977	1725
12:30 13:30	43	156	73	272	24	232	155	411	683	150	305	71	526	81	319	45	445	971	1654
15:00 16:00	27	211	64	302	27	236	234	497	799	153	326	47	526	108	448	24	580	1106	1905
16:00 17:00	30	239	96	365	23	248	276	547	912	161	320	48	529	113	455	34	602	1131	2043
17:00 18:00	37	216	80	333	19	247	257	523	856	161	285	46	492	109	417	39	565	1057	1913
Sub Total	235	1661	586	2482	166	1823	1449	3438	5920	1359	2515	392	4266	627	2450	247	3324	7590	13510
U Turns				0				0	0				0				1	1	1
Total	235	1661	586	2482	166	1823	1449	3438	5920	1359	2515	392	4266	627	2450	247	3325	7591	13511
EQ 12Hr	327	2309	815	3450	231	2534	2014	4779	8229	1889	3496	545	5930	872	3405	343	4622	10552	18781
Note: These	values a	re calcu	lated by	y multiply	ying the	e totals b	by the a	opropriate	e expans	ion fac	tor.			1.39					
AVG 12Hr	294	2078	733	3105	208	2281	1813	4301	7406	1700	3146	490	5337	784	3065	309	4160	9497	16903
Note: These	volumes	are calo	culated	by multi	plying t	he Equiv	alent 1	2 hr. tota	ls by the	AADT	factor.			.90					
AVG 24Hr	385	2722	960	4068	272	2988	2375	5634	9702	2227	4122	642	6991	1028	4015	405	5449	12440	22142
Note: These	volumes	are calo	culated	by multi	plying tl	he Avera	age Dai	ly 12 hr. †	totals by	12 to 2	4 expans	sion fact	tor.	1.31					

Comments:

Turning Movement Count - Full Study Summary Report

CHURCHILL AVE @ RICHMOND RD

Survey D	ate:	Wedno 2017	esday	, Nove	mber	22,			Total	Obsei	rved U	-Turn	S				AA	OT Fact	lor
								Northbo	ound: ()	1	Sout	hbound	I: 0				.90		
								Eastbo	und: 1		Wes	tbound	: 0						
									Full St	udy									
~			CH	URCH	ILL A\	/E						RI	СНМС	ND R	D				
		Northb	ound			Southt	ound	,			Eastbo	ound			Westb	ound			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB Tot	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Gran Tota
07:00 08:00	20	142	44	206	19	254	104	377	583	244	328	32	604	49	112	19	180	784	1367
08:00 09:00	29	290	81	400	17	283	131	43 1	831	312	401	34	747	56	173	30	259	1006	1837
09:00 10:00	31	227	81	33 9	10	226	127	363	702	174	321	38	533	63	194	21	278	611	1513
11:30 12:30	43	206	92	341	36	220	158	414	755	146	294	75	515	60	349	33	442	957	1712
12:30 13:30	49	195	92	336	21	199	144	364	700	154	354	87	595	72	298	25	395	990	1690
15:00 16:00	27	208	69	304	25	247	282	554	858	159	256	47	462	114	370	22	506	968	1826
16:00 17:00	25	271	64	360	17	244	309	570	930	15 1	272	46	469	138	474	23	635	1104	2034
17:00 18:00	27	291	67	385	15	237	312	564	949	191	329	55	575	129	479	25	633	1208	2157
Sub Total	251	1830	590	2671	160	1910	1567	3637	6308	1531	2555	414	4500	681	2449	198	3328	7828	14136
U Turns				0				0	0				1				0	1	1
Total	251	1830	5 9 0	2671	160	1910	1567	3637	6308	1531	2555	414	4501	681	2449	198	3328	7829	14137
EQ 12Hr	349	2544	820	3713	222	2655	2178	5055	8768	2128	3551	575	6256	947	3404	275	4626	10882	19650
lote: These v	alues a	are calcul	ated by	/ multiply	ing the	totals b	y the a	ppropriat	e expans	ion fact	tor.		1	1.39					
AVG 12Hr	314	2289	738	3341	200	2389	1960	4550	7891	1915	3196	518	5631	852	3064	248	4163	9794	17685
lote: These v	olumes	are calc	ulated	by multip	olying th	ne Equiv	alent 1	2 hr. tota	is by the	AADT	factor.			90					
AVG 24Hr	411	299 9	967	4377	262	3130	2568	5960	10337	2509	4187	678	7376	1116	4013	324	5454	12830	23167
lote: These v	olumes	are calc	ulated I	by multip	olying th	ne Avera	age Dai	ly 12 hr.	totais by	12 to 24	4 expans	ion fac	tor. *	1.31					

Comments:

Turning Movement Count - Full Study Summary Report

CHURCHILL AVE @ RICHMOND RD

Survey D	ate:	Wedno 2016	esday	, Octo	ber 26	,			Total	Obsei	rved U	-Turns	5				AA	DT Fact	or
								Northbo	und: 2		Sout	hbound	: 0				.90		
	_							Eastbo	und: 0		Wes	tbound:	0						
									Full St	udy									
_			СН	URCH	ILL A\	/E			_			RIG	СНМС	ND R	D				
		Northb	ound		:	Southt	bound				Eastb	ound			Westb	ound			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB Tot	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR Tot	Gran Tota
07:00 08:00	29	156	34	219	23	206	118	347	566	233	331	29	593	32	14 9	17	198	791	1357
08:00 09:00	35	288	81	404	19	280	168	467	871	279	392	44	715	50	201	17	268	983	1854
09:00 10:00	33	213	76	322	30	240	148	418	740	180	329	42	551	51	198	34	283	834	1574
11:30 12:30	40	195	75	310	31	235	172	438	748	134	300	82	516	84	330	25	439	955	1703
12:30 13:30	43	198	94	335	34	19 9	158	391	726	147	312	67	526	90	318	23	431	957	1683
15:00 16:00	26	215	90	331	26	263	247	536	867	146	262	55	463	99	420	25	544	1007	1874
16:00 17:00	23	277	75	375	15	229	248	492	867	165	256	44	465	119	505	27	651	1116	1983
17:00 18:00	24	296	75	395	14	271	288	573	968	138	274	58	470	136	454	40	630	1100	2068
Sub Total	253	1838	600	2691	192	1923	1547	3662	6353	1422	2456	421	4299	661	2575	208	3444	7743	14096
U Turns				2				0	2				0				0	0	2
Total	253	1838	600	2693	192	1923	1547	3662	6355	1422	2456	421	4299	661	2575	208	3444	7743	14098
EQ 12Hr	352	2555	834	3743	267	2673	2150	5090	8833	1977	3414	585	5976	919	3579	289	4787	10763	19596
lote: These v	alues a	re calcul	ated by	/ multiply	ing the	totals b	y the ap	ppropriat	e expans	ion fact	or.		1	.39					
AVG 12Hr	317	2299	751	3369	240	2406	1935	4581	7950	1779	3072	527	5378	827	3221	260	4308	9686	17636
lote: These v	olumes	are calc	ulated	by multij	olying th	ne Equiv	alent 1	2 hr. tota	ls by the	AADT	factor.			90					
AVG 24Hr	415	3012	983	4413	315	3151	2535	6001	10414	2330	4025	690	7045	1083	4220	341	5644	12689	23103
ote: These v	olumes	are calc	ulated I	by multip	olying th	ie Avera	ige Dail	y 12 hr.	totals by	12 to 24	4 expans	ion fact	or. 1	.31					

Comments:

ttawa

Work Order 34652

Turning Movement Count - Full Study Summary Report

CHURCHILL AVE @ RICHMOND RD

Survey Da	ate:	Monda	ay, Ju	ne 08,	2015				Total	Obsei	rved U	-Turn	5				AAD	T Fact	or
								Northbo	und: ()	}	Sout	hbound	: 0				.90		
								Eastbou	und: ()	1	Wes	tbound	0						
								F	Full St	udy									
			СН	URCH	ILL A\	/E						Ri	СНМС	ND R	D				
8		Northb	ound		ł	Southt	ound		-		Eastbo	ound			Westb	ound			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grane Tota
07:00 08:00	11	97	30	138	18	215	109	342	480	216	241	15	472	19	116	16	151	623	1103
00:00 00:80	27	220	69	316	19	285	186	490	806	255	310	38	603	47	230	27	304	907	1713
09:00 10:00	33	209	59	301	16	228	134	378	679	167	278	51	496	42	233	33	308	804	1483
11:30 12:30	25	120	43	188	39	299	188	526	714	106	214	43	363	63	500	50	613	976	1690
12:30 13:30	21	126	58	205	27	185	148	360	565	110	230	55	395	65	444	38	547	942	1507
15:00 16:00	26	175	71	272	39	332	323	694	966	127	227	36	390	91	654	40	785	1175	2141
16:00 17:00	30	185	49	264	25	446	517	988	1252	135	220	38	393	98	579	42	719	1 112	2364
17:00 18:00	29	202	74	305	33	400	371	804	1109	139	211	20	370	119	695	66	880	1 250	2359
Sub Total	202	1334	453	1989	216	2390	1976	4582	6571	1255	1931	296	3482	544	3451	312	4307	7789	14360
U Turns				0				0	0				0				0	0	0
Total	202	1334	453	1989	216	2390	1976	4582	6571	1255	1931	296	3482	544	3451	312	4307	7789	14360
EQ 12Hr	281	1854	630	2765	300	3322	2747	6369	9134	1744	2684	411	4840	756	4797	434	5987	10827	19961
lote: These va	alues ai	re calcul	ated by	multiply	ing the	totals b	y the ap	opropriat	e expans	ion fact	or.		1	.39					
AVG 12Hr	253	1669	567	2488	270	2990	2472	5732	8220	1570	2416	370	4356	681	4317	390	5388	9744	17964
lote: These ve	olumes	are calc	ulated	by multip	olying th	ne Equiv	alent 12	2 hr. tota	is by the	AADT	factor.		-	90					
AVG 24Hr	331	2186	742	3260	354	3917	3238	7509	10769	2057	3165	485	5706	892	5656	511	7058	12764	23533
lote: These vo	olumes	are calc	ulated I	by multip	olying th	ne Avera	ige Dail	y 12 hr. ⁻	totals by	12 to 24	4 expans	sion fact	or. 1	.31					

Comments:

The TRANS model is continuously refined & maintained, and all information is provided in good faith. However, model outputs are provided "as is", and no warranty or guarantee is provided as to the accuracy, reliability or reasonableness of the results. In using this data, you agree to accept any and all risks arising from any incorrect, incomplete, or misleading information.

Recipients are required to use caution and professional judgement in using and interpreting model outputs. In particular, caution should be used when focusing on a geographically limited area (such as a single road or intersection), as the model is primarily designed to simulate regional-scale phenomena and has been calibrated at a regional level.

As general good practice, it is recommended that the user confirm the network coding within the area of interest, and compare base year forecasts against traffic count data to assess the extent to which the model may be over- or under-estimating the travel demand.

APPENDIX E

Collision Records

City Operations - Transportation Services Collision Details Report - Public Version

From: January 1, 2014 To: December 31, 2018

Traffic Control: Tra	ffic signal						Total C	ollisions: 31	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
2014-Feb-26, Wed,14:52	Clear	Angle	P.D. only	Dry	East	Going ahead	Automobile, station wagon	Other motor vehicle	
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2014-May-01, Thu,19:54	Clear	SMV other	Non-fatal injury	Dry	East	Turning left	Pick-up truck	Pedestrian	1
2014-Jun-13, Fri,06:47	Rain	Angle	P.D. only	Wet	East	Going ahead	Automobile, station wagon	Other motor vehicle	
					North	Going ahead	Pick-up truck	Other motor vehicle	
2014-Oct-06, Mon,00:46	Clear	Angle	P.D. only	Dry	South	Going ahead	Unknown	Other motor vehicle	
					East	Going ahead	Automobile, station wagon	Other motor vehicle	
2014-Oct-20, Mon,09:40	Clear	Sideswipe	P.D. only	Dry	North	Going ahead	Construction equipment	Other motor vehicle	
					North	Going ahead	Automobile, station wagon	Other motor vehicle	
2015-Jan-16, Fri,10:39	Clear	Angle	P.D. only	Slush	West	Pulling away from shoulder or curb		Other motor vehicle	
					North	Turning left	Automobile, station wagon	Other motor vehicle	

2015-Jan-25, Sun,14:02	Clear	Rear end	Non-fatal injury	Dry	East	Turning left	Pick-up truck	Other motor vehicle
					East	Turning left	Automobile, station wagon	Other motor vehicle
					East		Automobile, station wagon	Other motor vehicle
2015-Jan-31, Sat,20:21	Snow	Turning movement	P.D. only	Loose snow	East	Turning left	Automobile,	Other motor
					West		station wagon Automobile, station wagon	vehicle Other motor vehicle
2015-Feb-26, Thu,17:03	Clear	Angle	P.D. only	Wet	East		Automobile, station wagon	Other motor vehicle
					South		Pick-up truck	Other motor vehicle
2015-Apr-11, Sat,12:34	Clear	Sideswipe	P.D. only	Dry	West		Automobile, station wagon	Other motor vehicle
					West	Turning left	Pick-up truck	Other motor vehicle
2015-Jun-18, Thu,09:14	Clear	Sideswipe	P.D. only	Dry	South	Turning right	Truck - tank	Other motor vehicle
					South		Automobile, station wagon	Other motor vehicle
2015-Jul-24, Fri,14:25	Clear	Rear end	P.D. only	Dry	East		Automobile, station wagon	Other motor vehicle
					East	Stopped	Truck and trailer	Other motor vehicle
2015-Oct-03, Sat,11:00	Clear	Rear end	P.D. only	Dry	West	Slowing or stopping	Pick-up truck	Other motor vehicle
					West	Stopped	Pick-up truck	Other motor vehicle

2015-Nov-19, Thu,10:56	Clear	Rear end	P.D. only	Wet	West	Unknown	Unknown	Other motor vehicle	
					West	Stopped	Pick-up truck	Other motor vehicle	
2016-Jan-04, Mon,12:08	Clear	Rear end	P.D. only	Wet	South	Changing lanes	Pick-up truck	Other motor vehicle	
					South	Turning right	Automobile, station wagon	Other motor vehicle	
2016-Jun-02, Thu,14:22	Clear	SMV other	Non-fatal injury	Dry	South	Turning right	Automobile, station wagon	Pedestrian	1
2016-Jun-17, Fri,05:29	Clear	Angle	P.D. only	Dry	East	Going ahead	Pick-up truck	Other motor vehicle	
					South	Going ahead	Pick-up truck	Other motor vehicle	
2016-Aug-07, Sun,12:12	Clear	Rear end	P.D. only	Dry	South	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	
					South	Stopped	Pick-up truck	Other motor vehicle	
2016-Aug-13, Sat,00:00	Clear	SMV unattended vehicle	P.D. only	Dry	North	Unknown	Unknown	Unattended vehicle	
2016-Dec-09, Fri,08:40	Clear	Rear end	P.D. only	Ice	East	Slowing or stopping) Automobile, station wagon	Other motor vehicle	
					East	Stopped	Automobile, station wagon	Other motor vehicle	
2016-Dec-31, Sat,12:01	Snow	SMV other	Non-fatal injury	Loose snow	East	Turning left	Automobile, station wagon	Pedestrian	1

2017-Jan-28, Sat,15:02	Snow	Rear end	Non-fatal injury	Wet	East	Going ahead	Automobile, station wagon	Other motor vehicle	1
					East	Stopped	Automobile, station wagon	Other motor vehicle	
					West	Stopped	Automobile, station wagon	Other motor vehicle	
					West	Stopped	Automobile, station wagon	Other motor vehicle	
2017-Sep-06, Wed,00:00	Clear	SMV unattended vehicle	P.D. only	Dry	Unknown	Unknown	Unknown	Unattended vehicle	
2017-Sep-26, Tue,19:08	Clear	Turning movement	P.D. only	Dry	North	Going ahead	Pick-up truck	Other motor vehicle	
					South	Turning left	Automobile, station wagon	Other motor vehicle	
2018-Feb-09, Fri,12:45	Clear	Sideswipe	P.D. only	Wet	East	Changing lanes	Automobile, station wagon	Other motor vehicle	
					East	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Mar-12, Mon,10:21	Clear	Turning movement	P.D. only	Dry	North	Stopped	Pick-up truck	Other motor vehicle	
					North	Turning right	Truck - tractor	Other	
2018-Jun-09, Sat,10:48	Clear	Angle	P.D. only	Dry	North	Turning right	Automobile, station wagon	Other motor vehicle	
					East	Stopped	Automobile, station wagon	Other motor vehicle	
2018-Sep-11, Tue,18:51	Clear	Turning movement	P.D. only	Dry	East	Turning left	Automobile, station wagon	Other motor vehicle	
					East	Going ahead	Automobile, station wagon	Other motor vehicle	

2018-Oct-27, Sat,21:39	Snow	SMV other	Non-fatal injury	Wet	West	Turning left	Passenger van	Pedestrian	2
2018-Nov-06, Tue,13:25	Rain	Rear end	Non-fatal injury	Wet	East	Going ahead	Truck - closed	Other motor vehicle	
					East	Stopped	Automobile, station wagon	Other motor vehicle	
2018-Dec-17, Mon,10:39	Clear	Sideswipe	P.D. only	Dry	South	Turning right	Automobile, station wagon	Other motor vehicle	
					South	Turning right	Truck - open	Other motor vehicle	
	CHILL AVE @						Total Co	ollisions: 4	
							Total Co	ollisions: 4	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve		First Event	No. Ped
Traffic Control: Sto Date/Day/Time 2016-Feb-18, Thu,07:15		Impact Type SMV other	Classification P.D. only		Veh. Dir North	Vehicle Manoeuver Pulling away from shoulder or curb	Automobile,	First Event Skidding/sliding	No. Ped
Date/Day/Time	Environment			Cond'n		Pulling away from	Automobile,		No. Ped
Date/Day/Time 2016-Feb-18, Thu,07:15	Environment Clear	SMV other SMV unattended	P.D. only	Cond'n Ice	North	Pulling away from shoulder or curb	Automobile, station wagon	Skidding/sliding Unattended	No. Ped
2016-Feb-18, Thu,07:15 2017-Feb-10, Fri,00:00	Environment Clear Clear	SMV other SMV unattended vehicle	P.D. only P.D. only	Cond'n Ice Dry	North	Pulling away from shoulder or curb Unknown	Automobile, station wagon Unknown Automobile,	Skidding/sliding Unattended vehicle Other motor	No. Ped

	1 0								
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver Vehicle type	First Event	No. Ped	

2017-Apr-26, Wed,17:20	Clear	Sideswipe	P.D. only	Dry	South	Pulling away from shoulder or curb	Construction equipment	Other motor vehicle	
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Oct-25, Thu,18:13	Clear	Rear end	P.D. only	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	
					South	Stopped	Automobile, station wagon	Other motor vehicle	
Location: ROOSE	EVELT AVE @	RICHMOND RD							
Traffic Control: Trat	ffic signal						Total Co	ollisions: 4	
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	Vehicle type	First Event	No. Ped
2014-Jun-29, Sun,10:07	Clear	SMV other	Non-fatal injury	Dry	East	Going ahead	Automobile, station wagon	Pedestrian	1
2015-Nov-07, Sat,18:34	Clear	Turning movement	Non-fatal injury	Dry	West	Turning right	Automobile, station wagon	Other motor vehicle	
					West	Going ahead	Municipal transit bus	Other motor vehicle	
2016-Apr-09, Sat,10:57	Clear	Rear end	P.D. only	Dry	West	Going ahead	Automobile, station wagon	Other motor vehicle	
					West	Stopped	Automobile, station wagon	Other motor vehicle	
					West	Stopped	Automobile, station wagon	Other motor vehicle	
2018-Jan-02, Tue,12:14	Snow	Rear end	P.D. only	Loose snow	East	Slowing or stopping	Passenger van	Other motor vehicle	

APPENDIX F

Relevant Traffic Study Excerpts

Figure 4: 'New' Site-Generated Traffic Volumes

4. Future Traffic Operations

For the purpose of this study, the total projected traffic volumes were derived by superimposing 'new' sitegenerated traffic (Figure 4) onto existing volumes (Figure 3). As the amount of site traffic generation does not require any traffic analysis based on the City guidelines, we have not accounted for any potential background growth. The resulting total projected traffic volumes used in the subsequent analysis are illustrated as Figure 5.

4.1.2 Trip Distribution

The assumed distribution of trips generated by the proposed development has been derived from existing traffic patterns on the roadways within the study area. As the proposed development is predominantly residential, the majority of peak hour trips are anticipated to be to/from work. It is appropriate for the assumed trip distribution to be based on the distribution of existing traffic volumes exiting the study area during the AM peak hour and arriving to the study area during the PM peak hour. The projected distribution of trips is summarized as follows:

- 35% to/from the east via either Byron Avenue or Richmond Road
- 30% to/from the west via either Byron Avenue or Richmond Road
- 20% to/from the north via Churchill Avenue
- 15% to/from the south via Churchill Avenue

Site generated traffic volumes are shown in Figure 4.

Figure 4: Site Generated Traffic

Figure 14: New 2027 Site Generation Auto Volumes

6 Background Network Travel Demands

6.1 Transportation Network Plans

The transportation network plans were discussed in Section 2.3.1. The opening of the Westboro LRT station and Dominion LRT station, isolated measure transit priority along Richmond Road and TOD policies have been accounted for within the modal share assumptions. No road improvements within the study horizons are noted for this area.

The additional connectivity provided by future bicycle spine routes along Scott Street and Richmond Road as part of the City of Ottawa ultimate cycling plan will improve the active mode network.

PARSONS

Figure 9: 'New' Site-Generated Traffic

It is noteworthy that the existing turn restrictions are understood to be in place to help prevent cut-through traffic through the neighbourhood. Based on the existing count data at the Clifton/Scott intersection, there are a number of drivers that do not comply with these existing turn restrictions. Some site-generated traffic originating/destined from/to the east will be required to travel along the southern portion on Clifton Road during the peak hours to comply with the existing turn restrictions. This is represented in Figure 9.

3.2. BACKGROUND NETWORK TRAVEL DEMANDS

3.2.1. TRANSPORTATION NETWORK PLANS

Refer to section 2.1.3 Planned Conditions – Planned Study Area Transportation Network Changes.

3.2.2. BACKGROUND GROWTH

Background traffic growth for the area is expected to grow based on significant planned area developments. However, given Stage 2 LRT construction, the City is expecting to see negative vehicle growth along Scott Street in the future (see map attached as Appendix E). As such, for background traffic projections, the projected vehicle volumes from the planned area developments (1960 Scott Street and 320 McRae) were layered onto the existing traffic volumes for the build out year 2020. As the City expects to see a significant increase in transit modes once Stage 2 LRT is constructed in this area (2023) and a decline in traffic volumes, and as there is likely to be continued development growth in the area, the vehicle traffic volumes for horizon year 2025 is assumed to be the same as year 2020.

Figure 12 - Site Trips

3.2 BACKGROUND NETWORK TRAVEL DEMAND

3.2.1 Transportation Network Plans

As outlined in **Table 4** in **Section 2.1.3.1**, there are two transit projects that are expected to occur within the vicinity of the proposed development; Western Light Rail Transit and the Richmond Road Transit Signal Priority. Based on direction from the City of Ottawa, the Western LRT is planned to be implemented by the 2027 ultimate horizon of the subject development.

3.2.2 Background Growth

The City of Ottawa provided **Figure 13** below, which outlines the average annual growth rates based on trend lines. As illustrated in this figure, the average annual growth in the Westboro neighbourhood is in the range of 0.2% - 2.0%. To be conservative, a 2% annual background growth rate was used in the subject analysis.

APPENDIX G

TDM Checklists

TDM-Supportive Development Design and Infrastructure Checklist:

Residential Developments (multi-family or condominium)

Legend					
REQUIRED	The Official Plan or Zoning By-law provides related guidance that must be followed				
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users				
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance				

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	
	1.2	Facilities for walking & cycling	
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official <i>Plan policy 4.3.12</i>)	

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and on- road cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	

	TDM-s	supportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILI	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well- used areas (see Zoning By-law Section 111)	
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of resident-owned bicycles, plus the expected peak number of visitor cyclists	
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single residential building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to at least the number of units at condominiums or multi- family residential developments	
	2.3	Bicycle repair station	
BETTER	2.3.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	

	TDM-s	upportive design & infrastructure measures: Residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide up to three carshare parking spaces in an R3, R4 or R5 Zone for specified residential uses <i>(see Zoning By-law Section 94)</i>	
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)	
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking <i>(see Zoning By-law Section 111)</i>	
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Provide separate areas for short-term and long-term parking (using signage or physical barriers) to permit access controls and simplify enforcement (i.e. to discourage residents from parking in visitor spaces, and vice versa)	

TDM Measures Checklist:

Residential Developments (multi-family, condominium or subdivision)

Legend

BASIC The measure is generally feasible and effective, and in most cases would benefit the development and its users

BETTER The measure could maximize support for users of sustainable modes, and optimize development performance

The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC ★	1.1.1	Designate an internal coordinator, or contract with an external coordinator	
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & des	tinations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium)	
	2.2	Bicycle skills training	
BETTER	2.2.1	Offer on-site cycling courses for residents, or subsidize off-site courses	

	TDM	measures: Residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances (multi-family, condominium)	
BETTER	3.1.2	Provide real-time arrival information display at entrances (multi-family, condominium)	
	3.2	Transit fare incentives	
BASIC ★	3.2.1	Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit	
BETTER	3.2.2	Offer at least one year of free monthly transit passes on residence purchase/move-in	
	3.3	Enhanced public transit service	
BETTER ★	3.3.1	Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels <i>(subdivision)</i>	
	3.4	Private transit service	
BETTER	3.4.1	Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)	
	4.	CARSHARING & BIKESHARING	
	4.1	Bikeshare stations & memberships	
BETTER	4.1.1	Contract with provider to install on-site bikeshare station (<i>multi-family</i>)	
BETTER	4.1.2	Provide residents with bikeshare memberships, either free or subsidized <i>(multi-family)</i>	
	4.2	Carshare vehicles & memberships	
BETTER	4.2.1	Contract with provider to install on-site carshare vehicles and promote their use by residents	
BETTER	4.2.2	Provide residents with carshare memberships, either free or subsidized	
	5.	PARKING	
	5.1	Priced parking	
BASIC ★	5.1.1	Unbundle parking cost from purchase price (condominium)	
BASIC ★	5.1.2	Unbundle parking cost from monthly rent (multi-family)	

	TDM	measures: Residential developments	Check if proposed & add descriptions
	6.	TDM MARKETING & COMMUNICATIONS	
	6.1	Multimodal travel information	
BASIC ★	6.1.1	Provide a multimodal travel option information package to new residents	
	6.2	Personalized trip planning	
BETTER ★	6.2.1	Offer personalized trip planning to new residents	

APPENDIX H

MMLOS Analysis

Pedestrian Level of Service (PLOS)

Sidewalk Width	Boulevard Width	Avg. Daily Curb Lane Traffic Volume	Presence of On-Street Parking	Operating Speed	Segment PLOS			
Roosevelt Aver	Roosevelt Avenue (East Side)							
1.8m	0m	< 3,000 vpd	Yes	40 km/h	В			
Wilmont Avenu	e (North Side)		•					
1.5m	1.5m 0.5-2.0m <		Yes	50 km/h	С			
Winston Avenu	Winston Avenue (West Side)							
1.5m			Yes	50 km/h	E			

Bicycle Level of Service (BLOS)

Road Class	Bike Route	Type of Bikeway	Travel Lanes (Per Direction)	Operating Speed	Segment BLOS				
Roosevelt Ave	Roosevelt Avenue								
Local	Local Route	Mixed Traffic	1	40km/h	А				
Wilmont Avenu	ie	-							
Local N/A		Mixed Traffic 1		50km/h	В				
Winston Avenue									
Local N/A		Mixed Traffic	1	50km/h	В				

Vehicle Level of Service (Auto LOS)

	Directional	Traffic Volumes		V/C Ratio and LOS				
Direction	Capacity ¹	AM Peak	PM Peak	AM	Peak	PM Peak		
	Capacity	AW Feak	FINI FEAK	V/C	LOS	V/C	LOS	
Roosevelt A	venue			•				
Northbound	400	39	59	0.10	А	0.15	А	
Southbound	400	51	57	0.12	А	0.14	А	
Wilmont Ave	nue		•					
Eastbound	400	10	6	0.03	А	0.02	А	
Westbound	400	25	25	0.06	А	0.06	А	

1. Lane capacity based on the City's guidelines for the TRANS Long-Range Transportation Model

No traffic count data was available for Winston Avenue. Winston Avenue is a north-south local roadway that dead-ends north of Richmond Road and feeds onto Churchill Avenue via three east-west local roadways (Wilmont Avenue, Whitby Avenue and Madison Avenue). Currently, there are a total of approximately 40 properties on Winston Avenue, all of which are exclusively residential in nature. The lane capacity along Winston Avenue is estimated at 400 vehicles per hour per lane based on the City's TRANS Long Range Transportation Model. It is not anticipated that traffic generated by these residential uses will exceed the theoretical capacity along Winston Avenue. As such, an Auto LOS of A, which represents 240 vehicles per hour or less in each direction, has been assigned to Winston Avenue.

Pedestrian Level of Service (PLOS)

Criteria North Approac		h	South Approach		East Approach		West Approach	
Richmond Road/Churchil	l Avenue							
			PETSI SCORE					
CROSSING DISTANCE CONDITION	ONS							
Median > 2.4m in Width	No	88	No	88	No	88	No	00
Lanes Crossed (3.5m Lane Width)	4	88	4	88	4	88	4	88
SIGNAL PHASING AND TIMING	•							
Left Turn Conflict	Perm + Prot	-8	Permissive	-8	Permissive	-8	Permissive	-8
Right Turn Conflict	Permissive or Yield	-5						
Right Turn on Red	RTOR Allowed	-3						
Leading Pedestrian Interval	Yes	0	Yes	0	Yes	0	Yes	0
CORNER RADIUS							•	
Parallel Radius	> 5m to 10m	-5						
Parallel Right Turn Channel	No Right Turn Channel	-4						
Perpendicular Radius	N/A	0	N/A	0	N/A	0	N/A	0
Perpendicular Right Turn Channel	N/A	0	N/A	0	N/A	0	N/A	0
CROSSING TREATMENT								
Treatment	Zebra Stripe	-4						
	PETSI SCORE	59		59		59		59
	LOS	D		D		D		D
			DELAY SCORE					
Cycle Length		80		80		80		80
Pedestrian Walk Time		13.9		27.9		17.8		17.8
	DELAY SCORE	27.3		17		24.2		24.2
	LOS	С		В		С		С
	OVERALL	D		D		D		D

Criteria	North Approac	h	South Approac	:h	East Approac	h	West Approac	h
Richmond Road/Rooseve	elt Avenue							
			PETSI SCORE					
CROSSING DISTANCE CONDITI	ONS							
Median > 2.4m in Width	No		No	105	No	88	No	88
Lanes Crossed (3.5m Lane Width)	4	88	3		4		4	
SIGNAL PHASING AND TIMING								•
Left Turn Conflict	Permissive	-8	Permissive	-8	Permissive	-8	Permissive	-8
Right Turn Conflict	Permissive or Yield	-5						
Right Turn on Red	RTOR Allowed	-3						
Leading Pedestrian Interval	No	-2	No	-2	No	-2	No	-2
CORNER RADIUS								
Parallel Radius	> 5m to 10m	-5	> 3m to 5m	-4	> 3m to 5m	-4	> 5m to 10m	-5
Parallel Right Turn Channel	No Right Turn Channel	-4						
Perpendicular Radius	N/A	0	N/A	0	N/A	0	N/A	0
Perpendicular Right Turn Channel	N/A	0	N/A	0	N/A	0	N/A	0
CROSSING TREATMENT	-		-					
Treatment	Standard	-7	Standard	-4	Standard	-7	Standard	-7
	PETSI SCORE	54		79		55		54
	LOS	D		В		D		D
			DELAY SCORE					
Cycle Length		70		85		85		85
Pedestrian Walk Time		31.6		31.6		9.4		9.4
DELAY SCORE		10.5		16.8		33.6		33.6
	LOS	В		В		D		D
	OVERALL	D		В		D		D

Bicycle Level of Service (BLOS)

Approach	Bikeway Facility Type	Criteria	Travel Lanes and/or Speed	BLOS
Richmond Road	d/Churchill Avenu	le		
North Approach	Mixed Traffic	Right Turn Lane Characteristics	No Impact to LTS	А
		Left Turn Accommodation	No Lane Crossed; 50km/h	В
South Approach	Mixed Traffic	Right Turn Lane Characteristics	No Impact to LTS	А
		Left Turn Accommodation	No Lanes Crossed; 50km/h	В
East Approach	Mixed Traffic	Right Turn Lane Characteristics	No Impact to LTS	А
		Left Turn Accommodation	One Lane Crossed; 50km/h	D
West Approach	Mixed Traffic	Right Turn Lane Characteristics	No Impact to LTS	А
		Left Turn Accommodation	One Lanes Crossed; 50km/h	D
Richmond Road	d/Roosevelt Aven	ue		
North Approach	Mixed Traffic	Right Turn Lane Characteristics	No Impact to LTS	А
		Left Turn Accommodation	No Lane Crossed; 40km/h	В
South Approach	Mixed Traffic	Right Turn Lane Characteristics	No Impact to LTS	А
		Left Turn Accommodation	No Lanes Crossed; 40km/h	В
East Approach	Mixed Traffic	Right Turn Lane Characteristics	No Impact to LTS	А
		Left Turn Accommodation	No Lane Crossed; 50km/h	В
West Approach	Mixed Traffic	Right Turn Lane Characteristics	No Impact to LTS	А
		Left Turn Accommodation	No Lanes Crossed; 50km/h	В

Transit Level of Service (TLOS)

Approach	Delay	TLOS			
Approach	AM Peak	PM Peak	TLUS		
Richmond Road/Churchill Avenue	Richmond Road/Churchill Avenue				
East Approach	22 seconds	26 seconds	D		
West Approach	14 seconds	12 seconds	С		
North Approach	37 seconds	35 seconds	Е		
South Approach	40 seconds	37 seconds	E		
Richmond Road/Roosevelt Avenue					
East Approach	6 seconds	16 seconds	С		
West Approach	9 seconds	9 seconds	В		
North Approach	N/A	N/A	N/A		
South Approach	N/A	N/A	N/A		

Truck Level of Service (TkLOS)

Approach	Effective Corner Radius	Number of Receiving Lanes on Departure from Intersection	LOS		
Richmond Road/Churchill Avenue					
North	< 10m	One	F		
South	< 10m	One	F		
West	< 10m	One	F		
East	< 10m	One	F		
Richmond Road/Roosevelt Avenue					
North	< 10m	One	F		
South	< 10m	One	F		
West	< 10m	One	F		
East	< 10m	One	F		
Vehicle Level of Service (Auto LOS)

		AM Peak		PM Peak					
Intersection	Max V/C or Delay LOS		Movement	Max V/C or Delay	LOS	Movement			
Signalized Intersec	tions								
Richmond Road/ Churchill Avenue	0.79	С	NBT/L	0.69	В	NBT/L			
Richmond Road/ Roosevelt Avenue	0.55	А	EB	0.76	С	WB			
Unsignalized Inters	sections								
Churchill Avenue/ Scott Street	19 sec	С	NB	17 sec	С	WB			
Churchill Avenue/ Wilmont Avenue	13 sec	В	EB	16 sec	С	EB			

• The intersection parameters used in the analysis are consistent with the TIA guidelines (saturation flow rate: 1800 vphpl, PHF: 0.9)

• Detailed Synchro reports are included in Appendix I

APPENDIX I

Synchro Analysis Reports

3: Churchill & Richmond												AINI Feak
	٭	-	\mathbf{r}	1	-	•	1	†	1	-	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	- h	1 2		ሻ	1.			्री	1		4	1
Traffic Volume (vph)	262	390	29	43	183	19	24	273	83	21	319	135
Future Volume (vph)	262	390	29	43	183	19	24	273	83	21	319	135
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	30.0		0.0	25.0		0.0	15.0		15.0	15.0		15.0
Storage Lanes	1		0	1		0	0		1	0		1
Taper Length (m)	45.0			30.0			15.0			15.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.97	0.99		0.94	0.99			1.00	0.89		1.00	0.88
Frt		0.990			0.986				0.850			0.850
Flt Protected	0.950			0.950				0.996			0.997	
Satd. Flow (prot)	1695	1734	0	1647	1668	0	0	1715	1517	0	1744	1488
Flt Permitted	0.489			0.496				0.838	-		0.962	
Satd. Flow (perm)	843	1734	0	812	1668	0	0	1438	1353	0	1678	1312
Right Turn on Red	010	1101	Yes	012	1000	Yes	Ŭ	1100	Yes	Ū	1010	Yes
Satd. Flow (RTOR)		6	100		7	100			180			180
Link Speed (k/h)		50			50			50	100		50	100
Link Distance (m)		292.3			123.0			116.6			246.3	
Travel Time (s)		292.3			8.9			8.4			240.3	
	34	21.0	60	60	0.9	24	15	0.4	36	36	17.7	45
Confl. Peds. (#/hr)	34		68	68		34	45			30		45
Confl. Bikes (#/hr)			11			1			8			
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	2%	3%	2%	5%	7%	5%	2%	6%	2%	5%	4%	4%
Adj. Flow (vph)	291	433	32	48	203	21	27	303	92	23	354	150
Shared Lane Traffic (%)												
Lane Group Flow (vph)	291	465	0	48	224	0	0	330	92	0	377	150
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7	-		3.7			0.0	-		0.0	-
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2	••	1	2	1	1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5	6.1	6.1	30.5	6.1
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
	6.1	1.8		6.1	1.8		6.1	1.8	6.1	6.1	1.8	6.1
Detector 1 Size(m)	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Type	CI+EX	CI+EX		CI+EX	CI+EX		CI+EX	CI+EX	CI+EX	CI+EX	CI+EX	CI+EX
Detector 1 Channel	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2			6			8			4	
Permitted Phases	2			6			8		8	4		4
Detector Phase	5	2		6	6		8	8	8	4	4	4
Switch Phase	-	_		-				-	-			
Minimum Initial (s)	5.0	10.0		10.0	10.0		10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	11.1	31.1		31.1	31.1		30.0	30.0	30.0	30.0	30.0	30.0
Total Split (s)	14.0	40.1		31.1	31.1		30.0	30.0	30.0	30.0	30.0	30.0
Total Split (%)	14.0	50.1%		38.8%	38.8%		37.5%	37.5%	37.5%	37.5%	37.5%	37.5%
Maximum Green (s)	7.9	34.0		25.0	25.0		23.8	23.8	23.8	23.8	23.8	23.8
Yellow Time (s)	3.3	3.3		3.3	3.3		3.6	3.6	3.6	3.6	3.6	3.6

Brad Byvelds, Novatech

Lane & fungurations Traffic Volume (vph) Traffic Volume (vph) Vertue Vert	Lane Group	Ø1	Ø3	Ø7	
<form>Tenfic Volume (oph)Ideal Favor (oph)Ideal Favor (oph)Storage Length (oph)Storage Length (n)Lane U.B.I. FadorPape Langth (n)In Pape Langth (n)In Pape Langth (n)Storage Length (</form>		~ 1	~~	~1	
<form>Fune VorpholeStrange Length (m)Strange Length (m)Taper Length (m)Taper Length (m)Taper Length (m)Lane VolphaPer Black FactorFitPer Black FactorFitPer Black FactorFit Per Black Fac</form>					
<form>Ideal JawaStrage Length (m)Strage Length (m)Lare ULL FactorParel May FactorFitFit ProtectedStati Jawa (not)Stati Jawa</form>	Future Volume (vph)				
<form>Storage Length (m)Taper Length (m)Taper Length (m)Leng ULF. ActionPed Bike FactorFitPed Bike FactorFitPer DetededSafe Toxo (port)Fit PermittedSafe Toxo (port)Fit Permitted (port)Safe Toxo (port)Fit Permitted (port)Safe Toxo (port)Fit Permitted (port)Safe Toxo (port)Fit Permitted (port)Safe Toxo (port)<td></td><td></td><td></td><td></td><td></td></form>					
Shange Lanes Tape Length (m) Lane ULH Fackor Periode Fit Decised Periode Periode Stad. Flow (proft) Fit Fit Permited Stad. Flow (proft) Stad. Flow (proft) Fit The Permited Stad. Flow (proft) Link Obtaines (m) Stad. Flow (proft) Link Speed (kh) Stad. Flow (proft) Link Obtaines (m) Stad. Flow (proft) Fit Parmited Stad. Flow (proft) Fit Parmited (proft) Stad. Flow (proft) Fit Parmited (proft) Stad. Flow (proft) Fit Park Total Trane (proft) Stad. Flow (proft) Fit Park Total Traftic (%) Stad. Flow (proft) Link Obtain Stad. Flow (proft) Fit Park Total Traftic (%) Stad. Flow (proft) Link Obtain Stad. Flow (proft) Stad. Flow (proft) Stad. Flow (proft) Total Traftic (%) Stad. Flow (proft) Link Obtain(flow (proft) Stad. Flow (proft) Conswalk Work(flow (proft) Stad. Flow (proft) Total Stad. Flow (proft) Stad. Flow (proft)					
Taper Length (m) Bane MUI, Factor Ped Bike Factor Fit Fit Pottedad Said, Flow (pot) Fit Pottedad Said, Flow (pot) Fit Pottedad Said, Flow (pott) Fit Pottedad Said, Flow (pott) Link Speed (wh) Link Speed (wh) Conf. Risks (#hm) Conf. Risks (#hm) Said, Flow (rol) Facer Lengt (%h) Shared Lane Traffic (%h) <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
Lane ULI Factor Fri Fri Protected Fri Fri Protected Fri Fri Protected Satd. Flow (pron) Satd. Flow (pr					
Ped Bike PackarFit ProtectadSidd Flow (jord)Fit PentitedSidd Flow (jord)Sidd Flow (jord)Sidd Flow (jord)Link Speed (wh)Link Speed (wh)Sidd Flow (jord)Sidd Flow (jord) <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
Fin Fin Sahd. Flow (prot) Fin Fin Permited Sahd. Flow (prot) Fin Fin Permited Sahd. Flow (prot) Fin Sahd. Flow (prot) Fin Sahd. Flow (Prot) Final Link Distance (m) Toxel Time (s) Confil. Base, (frh) Final Confil. Base, (frh) Final Confil. Base, (frh) Final Sahd Flow (roth) Final Lane Group Flow (roth) Final Lane Alignment Final Median Hightinn Final Time Globed Intersection Final Lane Group Flow (roth) Final Crosswalk With(m) Final Time Globed (roth) Final Leading Detector (m) Final <					
File Plotted Solution (Second Second Se					
Sada J. Row (proft) File Parential de la serie de la ser					
<form>Fit PermittedStad. Flow (prom)Stad. Flow (prot NoLink Space (wh)Link Space (wh)Link Space (wh)Stad. Flow (Prot Space (wh)Stade Lane Space (wh)<</form>					
Sadd. Elow (perm) Repert unon Red Sadd. Elow (RTOR) Link Obsence (m) Link Obsence (m) Sadd. Elow (RTOR) Link Obsence (m) Sadd. Elow (RTOR) Versel Time (s) Sadd. Elow (RTOR) Conf. Besk, (Mn) Sadd. Elow (RTOR) Peak Hour Factor Sadd. Elow (RTOR) Heavy Vehicles (%) Sadd. Elow (RTOR) Shared Lane Traffic (%) Lane Alignment Bene Alignment Sadd. Elow (RTOR) Motion Woth(m) Link Offset(m) Crosswak Weith(m) Versel Vers					
Right Turn on Red Link Spearoe (kn) Link Spearoe (kn) Link Spearoe (kn) Travel Time (s) Confl. Bles (kn) Confl. Bles (kn) Peak Hour Factor Peak Hour Factor Peak Hour Factor Stand Lane Traffic (%) Lane Group Flow (vph) Enter Blocked Interscton Lane Algument Median Wath(m) Lane Algument Workey Sector Turning Spead (kh) Urning Spead (kh) <td></td> <td></td> <td></td> <td></td> <td></td>					
Said. J. Rox (RTOR)					
Link Bogend (kh) Link Objeance (m) Travel Time (s) Confl. Bikes (#hr) Confl. Bikes (#hr) Confl. Bikes (#hr) Confl. Bikes (#hr) Eake Hoary Vehicles (%) Jame Group Flow (vph) Eather Group Hoar (vph) Eather Group Hoar (vph) Eather Blocked Intersection Lane Gloup Hoar (vph) Eather Gloup Hoar (vph)					
Link Disknee (m) Confl. Pakes (ithr) Confl. Bikes (ithr) Pake Hour Factor Preak Hour Factor Preak Hour Factor Preak Hour Factor Preak Hour Factor Preak Hour F	Satd. Flow (RTOR)				
Link Disknee (m) Confl. Pakes (ithr) Confl. Bikes (ithr) Pake Hour Factor Preak Hour Factor Preak Hour Factor Preak Hour Factor Preak Hour Factor Preak Hour F	Link Speed (k/h)				
Trave Trave (s) Conf. Bikes (#hr) Confl. Bikes (#hr) See (Marria Conflict (S) Peak (Moir Factor) See (Marria Conflict (S) Adj. Flow (vph) See (Marria Conflict (S) Shard Lane Trafic (S) Lane Group Flow (vph) Eare Blowd Intersection Lane Alignment Median Woth(m) Lane Alignment Motion Moth(m) Trave and the Marria Conflict (S) Tors Ward (Min Tranitor) Trave and the Marria Conflict (S) Tors Ward (Min Tranitor) Trave and the Mathematica (S) Trave Ward (Marria Conflict (S) Trave and the Marria Conflict (S) Number of Detectors Trave and the Marria Conflict (S) Detector Tranito (S) Trave and the Marria Conflict (S) Detector Traniton Speed (Mh) Trave and the Marria (S) Detector Tranitor (S) Trave and the Marria (S) Detector Tranitor (S) Trave and the Marria (S) Detector Tranitor (S) Trave and the Marria (S) Detector To Speed (S) Trave and the Marria (S) Detector To Speed (S) Trave and the Marria (S) Detector To Speed (S) Trave and the Marria (S) Detector To Speed (S) Trave and the Marria (S)	Link Distance (m)				
Confi. Bikes (Hrh) Paek Horr Factor Paek Hour Factor Paek Hour Factor Heavy Vehicles (%) Add Prov (Ph) Shared Lane Traffic (%) Lane Group Provide (Vp) Earde Rilopment Lane Alignment Median Width(m) Link Offset(m) Crosswalk Width(m) Link Offset(m) Detector Template Leadin Detector (m) Detector Template Link Offset(m) Detector Tomplate Link Offset(m) Detector Subic (m					
Confl. Bikes (#hr) Peak Hour Factor Heary Vehicles (%) Alp. Flow (vph) Shared Lane Trific (%) Lane Group Flow (vph) Enter Blocked Intersection Lane Kong Hour (vph) Link Offset(m) Crosswalk Width(m) Link Offset(m) Tors valk Width(m) Link Offset(m) Tors valk Width(m) Link Offset(m) Tors valk Width(m) Tors valk Width(m) Link Offset(m) Tors valk Width(m) Tors valk Vidth(m) Link Offset(m) Link Offset(m) Delector Template Lading Delector (m) Delector 1 Size(m) Delector 2 Size(m) Delector 2 Size(m) Delector 2 Size(m					
Peak Use Tractor Heavy Vehicles (%) Adj, Flow (vph) Shared Lane Traffic (%) Lane Group Flow (vph) Flow (vph) Earder Blocked Intersection Lane Alignment Median Width(m) Intersection Lane Alignment Median Width(m) Crosswalk Width(m) Ventor Two way Left Turn Lane Headway Factor Turning Speed (wh) Number of Detectors Detector Topapite Land Speed (wh) Number of Detectors Detector (m) Detector 1 Position(m) Detector 1 Position(m) Detector 1 Queue (s) Detector 1 Queue (s) Detector 2 Sze(m) Detector 1 Queue (s) Detector 2 Sze(m) Detector 1 Queue (s) Detector 2 Channel Detector 1 Queue (s) Detector 2 Sze(m) Detector 1 Queue (s) Detector 2 Stare(m) Detector 2 Stare(m) Detect					
Heary Vehicles (%)	Peak Hour Factor				
Adj. Forw (roph) Shared Lane Traffic (%) Lane Group Plow (roph) Lane Group Plow (roph) Enter Blocked Intersection Lane Alignment Median Witht(m) Link Offset(m) Crosswalk Witht(m) Link Offset(m) Crosswalk Witht(m) Link Offset(m) Crosswalk Witht(m) Link Offset(m) Two way Left Turn Lane Headway Factor Number of Detectors Detector Template Leading Detector (m) Detector 1 Position(m) Detector 1 Position(m) Detector 1 Queue (s) Detector 1 Queue (s) Detector 1 Queue (s) Detector 2 Position(m) Detector 2 Position(m) Detector					
Shared Lane Traffic (%) Lane Group Flow (vph) Enre Blocked Intersection Lane Alignment Wedian Widh(m) Crosswalk Widh(m) Trow way Left Tum Lane Headway Factor Tuming Speed (kh) Number of Delectors Detector Template Leading Detector (m) Detector Template Detector 1 Size(m) Detector 2 Positon(m) Detector 1 Size(m) Detector 2 Positon(m) Detector 2 Positon(m) Detector 2 Positon(m)					
Lane Group Flow (roph) Enter Blocked Intersection Lane Alignment Median Width(m) Link Offset(m) Crosswalk Width(m) Two way Left Turn Lane Headway Factor Tuming Speed (k/h) Number of Detectors Detector Topiala Leading Detector (m) Trailing Detector (m) Detector 1 Size(m) Detector 2 Size(m) Detector 3 Size(m) Detector 4 Size(m) Detector 4 Size(m) Detector 5 Size(m) Detector 5 Size(m) Detector 5 Size(m) Detector 5 Size(m) Detector 6 Size(m) Detector 6 Size(m) D					
Enter Biokrad Intersection Lane Alignment Uane Alignment Median Widht(m) Unik Offset(m) Second Two way Left Turn Lane Second Headway Factor Second Turning Speed (kfh) Second Strain Second Second Detector Fomplate Second Leading Detector (m) Second Trailing Detector (m) Second Detector Tomplate Second Detector 1 Size(m) Second Detector 2 Second(m) Second Detector 2 Second(m) Second Detector 2 Second(m) Second Second Detector 2 Second(m) Second Second Detector 2 Second(m) Second Seco					
Lane Alignment Median Width(m) Link Offset(m) Crosswalk Width(m) Two way Left Tum Lane Headway Factor Tuming Speed (kh) Number of Detectors Detector Template Leading Detector (m) Tailing Detector (m) Detector 1 Size(m) Detector 2 Size(m) Detector 3 Size(m) Detector 4 Size(m) Detector 4 Size(m) Detector 5 Size(m) Detector 6 Size(m) Detector 7 Size(m) Det					
Media Width(m) Link Offsei(m) Two way Left Turn Lane Headway Factor Turning Speed (k/h) Number of Detectors Detector Template Leading Detector (m) Detector 1 Position(m) Detector 1 Size(m) Detector 2 Size(m) Detector 3 Size(m) Detector 3 Size(m) Detector 2 Size(m) De					
Link Offset(m) Crosswalk Width(m) Crosswalk Width(m) Two way Left Turn Lane Headway Factor Turning Speed (k/h) Number of Detectors Detector Template Leading Detector (m) Detector 1 Position(m) Detector 1 Position(m) Detector 1 Size(m) Detector 1 Channel Detector 1 Channel Detector 1 Channel Detector 1 Delay (s) Detector 1 Delay (s) Detector 2 Size(m) Detector 3 Size(m) Detector 4 Size(m) Detector 4 Size(m) Detector 4 Size(m) Detector 5 Size(m) Detector 7 Size(m) DETECT 7 Size(m) DET					
Crosswalk Width(m) Two way Left Turn Lane Headway Factor Turning Speed (k/h) Number of Detectors Detector Template Leading Detector (m) Trailing Detector (m) Detector Template Detector 1 Size(m) Detector 1 Size(m) Detector 1 Size(m) Detector 1 Channel Detector 1 Channel Detector 1 Channel Detector 1 Size(m) Detector 1 Channel Detector 2 Fosition(m) Detector 2 Fosition(m) Detector 2 Size(m) Detector 1 Size(m) Detector 2 Size(m) <tr< td=""><td></td><td></td><td></td><td></td><td></td></tr<>					
Two wy Left Turn Lane Headway Factor Turning Speed (kh) Number of Detectors Detector Template Leading Detector (m) Trailing Detector (m) Detector 1 Position(m) Detector 1 Size(m) Detector 2 Position(m) Detector 2 Size(m) Detector 1 Size(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Size(m) Detector 1 Size(m) Detector 1 Size(m) <td></td> <td></td> <td></td> <td></td> <td></td>					
Headway Factor Tuming Speed (k/h) Number of Detectors Detector Template Leading Detector (m) Trailing Detector (m) Detector 1 Size(m) Detector 1 Channel Detector 1 Delay (s) Detector 2 Position(m) Detector 2 Position(m) Detector 2 Position(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Channel Detector 2 Extend (s) Tum Type Protected Phases Detector Phase Switch Phase Minimum Spit (s) 3.0 5.0 5.0 Total Spit (%) 6% 6% 6% Maximum Green (s) 3.0					
Turning Speed (k/h) Number of Detectors Detector Implate Leading Detector (m) Trailing Detector 1 Position(m) Detector 1 Size(m) Detector 1 Size(m) Detector 1 Channel Detector 1 Channel Detector 1 Channel Detector 1 Size(m) Detector 1 Size(m) Detector 1 Size(m) Detector 1 Channel Detector 1 Size(m) Detector 1 Size(m) Detector 1 Size(m) Detector 1 Size(m) Detector 2 Size(m) Detector 1 Size(m) Detector 2 Size(m) Size(m) <					
Number of Detectors Detector Template Leading Detector (m) Trailing Detector (m) Detector 1 Position(m) Detector 1 Size(m) Detector 1 Type Detector 1 Type Detector 1 Channel Detector 1 Extend (s) Detector 1 Delay (s) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Channel Detector 2 Size(m) Detector 2 Channel Detector 2 Extend (s) Tum Type Protected Phases 1 3 Premitted Phases Detector Phase Switch Phase Minimun Initial (s) 3.0 3.0 Minimun Spit (s) 5.0 5.0 5.0 Total Spit (%) 6% 6% 6%					
Detector Template Leading Detector (m) Trailing Detector (m) Detector 1 Position(m) Detector 1 Size(m) Detector 1 Size(m) Detector 1 Channel Detector 1 Channel Detector 1 Queue (s) Detector 1 Queue (s) Detector 2 Position(m) Detector 2 Position(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Channel Detector 2 Size(m) Detector 2 Channel Detector 2 Size(m) Detector 1 Size(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Size(m) Detector 3 Size(m) Detector 4 Size(m) Detector 5 Size(m) Detector 1 Size(m) Detector 9 Size(m) Detector 1 Size(m) Detector 2 Size(m) Detector 1 Size(m) Detector 2 Size(m) Detector 1 Size(m)					
Leading Detector (m) Trailing Detector (m) Detector 1 Position(m) Detector 1 Size(m) Detector 1 Size(m) Detector 1 Channel Detector 1 Channel Detector 1 Queue (s) Detector 1 Queue (s) Detector 2 Noice Detector 2 Position(m) Detector 2 Position(m) Detector 2 Size(m) Detector 3 Size(m) Detector 3 Size(m) Detector 4 Size(m) Detector 4 Size(m) Detector 4 Size(m) Detector 4 Size(m) Detector 5 Size(m) Detector 5 Size(m) Detector 4 Size(m) Detector 4 Size(m) Detector 5 Size(m) Detector 4 Size(m) Detector 4 Size(m) Detector 5 Size(m) Detector 5 Size(m) Detector 4 Size(m) Detector 5 Size(m) Detector 7 Size(m) Detector 4 Size(m) Detector 5 Size(m) Detector 7 Size(m) Detecto					
Trailing Detector (m) Detector 1 Position(m) Detector 1 Size(m) Detector 1 Type Detector 1 Channel Detector 1 Channel Detector 1 Channel Detector 1 Channel Detector 1 Channel Detector 1 Channel Detector 1 Size(m) Detector 2 Size(m) Detector 2 Position(m) Detector 2 Size(m) Detector 2 Size(m) Size(m) Detector 3 Size(m) Size(m) Size(m) Size(m) Detector 4 Size(m) Size(m) Size(m) Size(m) Size(m) Size(m) Size(m) Size(m) Size(m) Size(m) Size(m)					
Detector 1 Position(m) Detector 1 Size(m) Detector 1 Type Detector 1 Channel Detector 1 Queue (s) Detector 1 Queue (s) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Channel Detector 2 Size(m) Detector 2 Channel Detector 2 Channel Detector 2 Size(m) Protected Phases 1 3 7 Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 3.0 3.0 Sign 5.0 5.0 5.0 Total Split (s) 5.0 5.0 Total Split (%) 6% 6% Maximum Green (s) 3.0 3.0					
Detector 1 Size(m) Detector 1 Type Detector 1 Channel Detector 1 Channel Detector 1 Queue (s) Detector 1 Delay (s) Detector 2 Position(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Channel Detector 2 Channel Detector 2 Channel Detector 2 Extend (s) Turn Type Protected Phases 1 3 7 Permitted Phases Detector 2 Side(m) Detector 2 Side(m) Detector 2 Side(m) Switch Phase 1 3 7 7 Permitted Phases 5.0 5.0 5.0 5.0 Switch Phase 5.0					
Detector 1 Type Detector 1 Channel Detector 1 Extend (s) Detector 1 Delay (s) Detector 2 Position(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Type Detector 2 Extend (s) Tum Type Protected Phases 1 3 7 Permitted Phases 1 3 7 Detector Phase 1 3 7 Switch Phase 1 3 7 Detector Phase 1 3 7 Minimum Initial (s) 3.0 3.0 3.0 Minimum Split (s) 5.0 5.0 5.0 Total Split (s) 5.0 5.0 5.0 Total Split (%) 6% 6% 6%					
Detector 1 Channel Detector 1 Extend (s) Detector 1 Queue (s) Detector 1 Delay (s) Detector 2 Position(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Channel Detector 2 Extend (s) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) 3.0 3.0 Minimum Spiti (s) 5.0 5.0 Total Spiti (%) 6.0 6.0 Maximum Green (s) 3.0 3.0					
Detector 1 Extend (s) Detector 1 Queue (s) Detector 1 Delay (s) Detector 2 Position(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Type Detector 2 Channel Detector 2 Extend (s) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) 3.0 3.0 Minimum Split (s) 5.0 5.0 Total Split (s) 5.0 5.0 Total Split (%) 6% 6% Maximum Green (s) 3.0 3.0					
Detector 1 Queue (s) Detector 2 Position(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Type Detector 2 Channel Detector 2 Extend (s) Turn Type Protected Phases 1 3 7 Permitted Phases Detector Phase 1 3 7 Switch Phase 1 3 0 Minimum Initial (s) 3.0 3.0 3.0 Minimum Split (s) 5.0 5.0 5.0 Total Split (%) 6% 6% 6% Maximum Green (s) 3.0 3.0 3.0	Detector 1 Channel				
Detector 1 Queue (s) Detector 2 Position(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Type Detector 2 Channel Detector 2 Extend (s) Turn Type Protected Phases 1 3 7 Permitted Phases Detector Phase 1 3 7 Switch Phase 1 3 0 Minimum Initial (s) 3.0 3.0 3.0 Minimum Split (s) 5.0 5.0 5.0 Total Split (%) 6% 6% 6% Maximum Green (s) 3.0 3.0 3.0	Detector 1 Extend (s)				
Detector 1 Delay (s) Detector 2 Position(m) Detector 2 Size(m) Detector 2 Type Detector 2 Channel Detector 2 Extend (s) Turn Type Protected Phases 1 3 7 Permitted Phases Detector Phase 1 3 7 Permitted Phases 1 3 7 Detector Phase 5.0 5.0 5.0 Switch Phase 1 3 0 3.0 Minimum Initial (s) 3.0 3.0 3.0 3.0 Total Split (s) 5.0 5.0 5.0 5.0 Total Split (%) 6% 6% 6% 6%	Detector 1 Queue (s)				
Detector 2 Position(m) Detector 2 Size(m) Detector 2 Type Detector 2 Channel Detector 2 Extend (s) Turn Type Protected Phases 1 3 7 Permitted Phases 1 3 7 Detector Phase 5 5.0 5.0 Switch Phase 5.0 5.0 5.0 Minimum Split (s) 5.0 5.0 5.0 Total Split (%) 6% 6% 6% Maximum Green (s) 3.0 3.0 3.0	Detector 1 Delay (s)				
Detector 2 Size(m) Detector 2 Type Detector 2 Channel Detector 2 Extend (s) Turn Type Protected Phases 1 3 7 Permitted Phases 1 3 7 Detector Phase 5 5.0 5.0 Switch Phase 5.0 5.0 5.0 Minimum Split (s) 5.0 5.0 5.0 Total Split (%) 6% 6% 6% Maximum Green (s) 3.0 3.0 3.0	Detector 2 Position(m)				
Detector 2 Type Detector 2 Channel Detector 2 Extend (s) Turn Type Protected Phases 1 3 7 Permitted Phases 1 3 7 Detector Phases 1 3 7 Detector Phases 5 5 5 Switch Phase	Detector 2 Size(m)				
Detector 2 Channel Detector 2 Extend (s) Turn Type Protected Phases 1 3 7 Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 3.0 3.0 Minimum Split (s) 5.0 5.0 Total Split (%) 6% 6% Maximum Green (s) 3.0 3.0					
Detector 2 Extend (s) Turn Type Protected Phases 1 3 7 Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 3.0 3.0 Minimum Split (s) 5.0 5.0 Total Split (s) 5.0 5.0 Total Split (%) 6% 6% Maximum Green (s) 3.0 3.0	Detector 2 Channel				
Turn Type Protected Phases 1 3 7 Permitted Phases					
Protected Phases 1 3 7 Permitted Phases					
Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 3.0 3.0 Minimum Split (s) 5.0 5.0 Total Split (s) 5.0 5.0 Total Split (%) 6% 6% Maximum Green (s) 3.0 3.0		1	3	7	
Detector Phase Switch Phase Minimum Initial (s) 3.0 3.0 Minimum Split (s) 5.0 5.0 Total Split (s) 5.0 5.0 Total Split (%) 6% 6% Maximum Green (s) 3.0 3.0			5	1	
Switch Phase Minimum Initial (s) 3.0 3.0 3.0 Minimum Split (s) 5.0 5.0 5.0 Total Split (s) 5.0 5.0 5.0 Total Split (%) 6% 6% 6% Maximum Green (s) 3.0 3.0 3.0					
Minimum Initial (s) 3.0 3.0 3.0 Minimum Split (s) 5.0 5.0 5.0 Total Split (s) 5.0 5.0 5.0 Total Split (%) 6% 6% 6% Maximum Green (s) 3.0 3.0 3.0	Switch Phase				
Minimum Split (s) 5.0 5.0 5.0 Total Split (s) 5.0 5.0 5.0 Total Split (%) 6% 6% Maximum Green (s) 3.0 3.0		2.0	2.0	20	
Total Split (s) 5.0 5.0 5.0 Total Split (%) 6% 6% 6% Maximum Green (s) 3.0 3.0 3.0					
Total Split (%) 6% 6% Maximum Green (s) 3.0 3.0 3.0					
Maximum Green (s) 3.0 3.0 3.0					
	I otal Split (%)				
Yellow Time (s) 2.0 2.0 2.0					
	Yellow Time (s)	2.0	2.0	2.0	

	≯	-	\mathbf{r}	1	←	•	1	1	1	1	Ŧ	~
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
All-Red Time (s)	2.8	2.8		2.8	2.8		2.6	2.6	2.6	2.6	2.6	2
ost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.
otal Lost Time (s)	6.1	6.1		6.1	6.1			6.2	6.2		6.2	6
.ead/Lag	Lead	Lag		Lag	Lag		Lag	Lag	Lag	Lag	Lag	La
.ead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yes	Yes	Yes	Ye
/ehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3
Recall Mode	None	C-Max		C-Max	C-Max		None	None	None	None	None	Non
Valk Time (s)		14.0		14.0	14.0		7.0	7.0	7.0	7.0	7.0	7.
Flash Dont Walk (s)		11.0		11.0	11.0		11.0	11.0	11.0	11.0	11.0	11.
Pedestrian Calls (#/hr)		15		15	15		15	15	15	15	15	1
Act Effct Green (s)	44.6	44.6		28.7	28.7			23.2	23.2		23.2	23.
Actuated g/C Ratio	0.56	0.56		0.36	0.36			0.29	0.29		0.29	0.2
/c Ratio	0.51	0.48		0.16	0.37			0.79	0.18		0.78	0.3
Control Delay	14.6	13.9		21.8	22.2			40.0	0.7		37.0	3.
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.
Total Delay	14.6	13.9		21.8	22.2			40.0	0.7		37.0	3.
.OS	В	В		С	С			D	А		D	
Approach Delay		14.2			22.1			31.4			27.5	
Approach LOS		В			С			С			С	
Queue Length 50th (m)	22.6	40.1		5.3	25.9			45.2	0.0		51.4	0.
Queue Length 95th (m)	42.9	73.2		13.5	44.9			68.2	0.0		74.5	7.
nternal Link Dist (m)		268.3			99.0			92.6			222.3	
Гurn Bay Length (m)	30.0			25.0					15.0			15.
Base Capacity (vph)	573	967		291	602			457	553		534	54
Starvation Cap Reductn	0	0		0	0			0	0		0	
Spillback Cap Reductn	0	0		0	0			0	0		0	
Storage Cap Reductn	0	0		0	0			0	0		0	
Reduced v/c Ratio	0.51	0.48		0.16	0.37			0.72	0.17		0.71	0.2
ntersection Summary Area Type:	Other											
Cycle Length: 80.1	Other											
Actuated Cycle Length: 80.1												
Offset: 43 (54%), Referenced to	ohase 2:EBTL a	and 6:WBTL,	Start of Gr	een								
latural Cycle: 80		,										
Control Type: Actuated-Coordina	ted											
laximum v/c Ratio: 0.79												
ntersection Signal Delay: 22.5				Int	tersection LC	DS: C						
ntersection Capacity Utilization 8	37.6%			IC	U Level of S	ervice E						
Analysis Period (min) 15												
Splits and Phases: 3: Churchil	& Richmond											

🏄 🖉 🕹	Ø2 (R)	•	. ≜k ø₃ \$∿ø₄							
5s 40.1	s			5 s -		30 s				
		🕈 🖉 Ø6 (R)		H	Ø7	₩ Ø8				
14 s		31.1 s		5 s		30 s				

Lane Group	Ø1	Ø3	Ø7
All-Red Time (s)	0.0	0.0	0.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0
Recall Mode	None	None	None
Walk Time (s)			
Flash Dont Walk (s)			
Pedestrian Calls (#/hr)			
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			
Total Delay			
LOS			
Approach Delay			
Approach LOS			
Queue Length 50th (m)			
Queue Length 95th (m)			
Internal Link Dist (m)			
Turn Bay Length (m)			
Base Capacity (vph)			
Starvation Cap Reductn			
Spillback Cap Reductn			
Storage Cap Reductn			
Reduced v/c Ratio			
Intersection Summary			

	≯	-	~	1	+	*	•	Ť	-	1	Ļ	4
Lane Group	EBL	EBT	EBR	• WBL	WBT	WBR	NBL	• NBT	• NBR	SBL	• SBT	SBR
Lane Configurations			22.1							001		
Traffic Volume (vph)	3	4 633	10	14	4 290	26	26	4 10	32	32	12	7
Future Volume (vph)	3	633	10	14	290	26	26	10	32	32	12	7
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	0.99	1.00	1.00	0.91	1.00	1.00	0.94	1.00
Frt		0.998			0.989			0.936			0.94	
Flt Protected		0.990			0.909			0.930			0.969	
Satd. Flow (prot)	0	1761	0	0	1701	0	0	1563	0	0	1662	0
Flt Permitted	U	0.999	0	0	0.967	0	0	0.850	0	0	0.776	0
	0	1759	0	0	1646	0	0	1297	0	0	1275	0
Satd. Flow (perm)	0	1759		0	1040		0	1297		0	12/5	0
Right Turn on Red		0	Yes		10	Yes		20	Yes		0	Yes
Satd. Flow (RTOR)		2			10			36			8	
Link Speed (k/h)		50			50			40			40	
Link Distance (m)		84.5			292.3			66.1			286.3	
Travel Time (s)		6.1			21.0			5.9			25.8	
Confl. Peds. (#/hr)	74		69	69		74	65		40	40		65
Confl. Bikes (#/hr)			7			4			4			4
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	2%	3%	2%	2%	5%	2%	2%	2%	2%	2%	2%	2%
Adj. Flow (vph)	3	703	11	16	322	29	29	11	36	36	13	8
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	717	0	0	367	0	0	76	0	0	57	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7			3.7			0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			Cl+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)	_	0.0		_	0.0		_	0.0		_	0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase	40.0	40.0		10.0	40.0		40.0	40.0		40.0	40.0	
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	34.4	34.4		34.4	34.4		25.0	25.0		25.0	25.0	
Total Split (s)	45.0	45.0		45.0	45.0		25.0	25.0		25.0	25.0	
Total Split (%)	64.3%	64.3%		64.3%	64.3%		35.7%	35.7%		35.7%	35.7%	
Maximum Green (s)	39.6	39.6		39.6	39.6		19.4	19.4		19.4	19.4	
Yellow Time (s)	3.3	3.3		3.3	3.3		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.1	2.1		2.1	2.1		2.3	2.3		2.3	2.3	
Lost Time Adjust (s)		0.0 5.4			0.0 5.4			0.0 5.6			0.0 5.6	
Total Lost Time (s)												

Brad Byvelds, Novatech

	≯	-	\mathbf{r}	1	-	•	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max		C-Max	C-Max		None	None		None	None	
Walk Time (s)	18.0	18.0		18.0	18.0		9.0	9.0		9.0	9.0	
Flash Dont Walk (s)	8.0	8.0		8.0	8.0		10.0	10.0		10.0	10.0	
Pedestrian Calls (#/hr)	15	15		0	0		15	15		15	15	
Act Effct Green (s)		51.4			51.4			11.8			11.8	
Actuated g/C Ratio		0.73			0.73			0.17			0.17	
v/c Ratio		0.55			0.30			0.31			0.26	
Control Delay		8.8			5.8			18.0			24.3	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		8.8			5.8			18.0			24.3	
LOS		А			А			В			С	
Approach Delay		8.8			5.8			18.0			24.3	
Approach LOS		А			А			В			С	
Queue Length 50th (m)		38.3			14.5			4.7			5.8	
Queue Length 95th (m)		99.9			39.1			13.2			12.9	
Internal Link Dist (m)		60.5			268.3			42.1			262.3	
Turn Bay Length (m)												
Base Capacity (vph)		1292			1211			385			359	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.55			0.30			0.20			0.16	
Intersection Summary												
21	Other											
Cycle Length: 70												
Actuated Cycle Length: 70												
Offset: 0 (0%), Referenced to phase	se 2:EBTL and	d 6:WBTL, St	art of Gree	n								
Natural Cycle: 60												
Control Type: Actuated-Coordinate	ed											
Maximum v/c Ratio: 0.55												
Intersection Signal Delay: 9.2					tersection LC							
Intersection Capacity Utilization 61	.1%			IC	U Level of S	ervice B						
Analysis Period (min) 15												

Splits and Phases: 9: Roosevelt & Richmond

J → Ø2 (R)		▼Ø4
45 s	2	5 s
● Ø6 (R)		<\$ ₫ø8
45 s	2	5 s

	≯	+	1	4	t	•	•	t	*	ŕ	Ŧ	-∢
Movement	EBL	EBT	EBR	• WBL	WBT	WBR	NBL	NBT	• NBR	SBL	• SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	3	7	13	208	3	16	13	97	358	58	199	2
Future Volume (vph)	3	7	13	208	3	16	13	97	358	58	199	2
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	3	8	14	231	3	18	14	108	398	64	221	2
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	25	252	520	287								
Volume Left (vph)	3	231	14	64								
Volume Right (vph)	14	18	398	2								
Hadj (s)	-0.28	0.30	-0.39	0.07								
Departure Headway (s)	6.3	6.3	4.9	5.6								
Degree Utilization, x	0.04	0.44	0.71	0.45								
Capacity (veh/h)	463	524	709	603								
Control Delay (s)	9.6	14.1	18.8	13.2								
Approach Delay (s)	9.6	14.1	18.8	13.2								
Approach LOS	А	В	С	В								
Intersection Summary												
Delay			16.0									
Level of Service			С									
Intersection Capacity Utilization			69.8%	IC	U Level of Se	rvice			С			
Analysis Period (min)			15									

335 Roosevelt Avenue 12: Churchill & Wilmont

	≯	~	•	t	Ļ.	~
Movement	EBL	EBR	• NBL	• NBT	• SBT	SBR
Lane Configurations	V			<u>المار</u>	1	ODIN
Traffic Volume (veh/h)		9	20	513	448	5
Future Volume (Veh/h)	1	9	20	513	448	5
Sign Control	Stop	3	20	Free	Free	5
Grade	0%			0%	0%	
Peak Hour Factor	0,90	0.90	0.90	0.90	0.90	0.90
	0.90	10	22	570	498	0.90
Hourly flow rate (vph)		10	22			0
Pedestrians	30			2	1	
Lane Width (m)	3.7			3.7	3.7	
Walking Speed (m/s)	1.1			1.1	1.1	
Percent Blockage	3			0	0	
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)				246		
pX, platoon unblocked	0.83					
vC, conflicting volume	1146	533	534			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1075	533	534			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)		0.2				
tF (s)	3.5	3.3	2.2			
p0 queue free %	99	98	98			
cM capacity (veh/h)	192	530	1005			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	11	592	504			
Volume Left	1	22	0			
Volume Right	10	0	6			
cSH	457	1005	1700			
Volume to Capacity	0.02	0.02	0.30			
Queue Length 95th (m)	0.6	0.5	0.0			
Control Delay (s)	13.1	0.6	0.0			
Lane LOS	В	А				
Approach Delay (s)	13.1	0.6	0.0			
Approach LOS	В					
Intersection Summary						
Average Delay			0.4			
Intersection Capacity Utilization			56.2%		U Level of Serv	vice
Analysis Period (min)			15	10	O Level OI Selv	nce
Analysis Periou (min)			15			

3: Churchill & Richmond			_									FINIFEAK		
	٦	-	\mathbf{r}	4	-	*	1	1	1	1	↓	~		
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
Lane Configurations	2	î,		2	ĥ			ب ا ۲	1		<u>ل</u> ا	1		
Traffic Volume (vph)	157	298	46	128	451	31	27	263	76	19	257	280		
Future Volume (vph)	157	298	46	128	451	31	27	263	76	19	257	280		
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800		
Storage Length (m)	30.0		0.0	25.0		0.0	15.0		15.0	15.0		15.0		
Storage Lanes	1		0	1		0	0		1	0		1		
Taper Length (m)	45.0			30.0			15.0			15.0				
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Ped Bike Factor	0.96	0.96		0.83	0.99			0.99	0.85		1.00	0.77		
Frt		0.980			0.990				0.850			0.850		
Flt Protected	0.950			0.950				0.995			0.997			
Satd. Flow (prot)	1662	1677	0	1695	1747	0	0	1757	1517	0	1721	1517		
Flt Permitted	0.248			0.535				0.923			0.960			
Satd. Flow (perm)	416	1677	0	790	1747	0	0	1613	1284	0	1650	1169		
Right Turn on Red			Yes			Yes			Yes			Yes		
Satd. Flow (RTOR)		13			5				160			160		
Link Speed (k/h)		50			50			50			50			
Link Distance (m)		292.3			123.0			116.6			246.3			
Travel Time (s)		21.0			8.9			8.4			17.7			
Confl. Peds. (#/hr)	86		163	163		86	84		54	54		84		
Confl. Bikes (#/hr)			2			4			1			3		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90		
Heavy Vehicles (%)	4%	2%	2%	2%	2%	2%	4%	3%	2%	11%	5%	2%		
Adj. Flow (vph)	174	331	51	142	501	34	30	292	84	21	286	311		
Shared Lane Traffic (%)														
Lane Group Flow (vph)	174	382	0	142	535	0	0	322	84	0	307	311		
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No		
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right		
Median Width(m)		3.7	•		3.7	Ū		0.0	•		0.0	Ŭ		
Link Offset(m)		0.0			0.0			0.0			0.0			
Crosswalk Width(m)		4.9			4.9			4.9			4.9			
Two way Left Turn Lane														
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06		
Turning Speed (k/h)	24		14	24		14	24		14	24		14		
Number of Detectors	1	2		1	2		1	2	1	1	2	1		
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	Right		
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5	6.1	6.1	30.5	6.1		
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8	6.1	6.1	1.8	6.1		
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		Cl+Ex	CI+Ex	CI+Ex	Cl+Ex	Cl+Ex	Cl+Ex		
Detector 1 Channel														
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		
Detector 2 Position(m)		28.7			28.7			28.7			28.7			
Detector 2 Size(m)		1.8			1.8			1.8			1.8			
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex			
Detector 2 Channel														
Detector 2 Extend (s)		0.0			0.0			0.0			0.0			
Turn Type	pm+pt	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm		
Protected Phases	5	2			6			8			4			
Permitted Phases	2			6			8	-	8	4		4		
Detector Phase	5	2		6	6		8	8	8	4	4	4		
Switch Phase	-	_		-				-	-					
Minimum Initial (s)	5.0	10.0		10.0	10.0		10.0	10.0	10.0	10.0	10.0	10.0		
Minimum Split (s)	11.1	31.1		31.1	31.1		24.2	24.2	24.2	24.2	24.2	24.2		
Total Split (s)	12.0	52.0		45.0	45.0		28.0	28.0	28.0	28.0	28.0	28.0		
Total Split (%)	13.3%	57.8%		50.0%	50.0%		31.1%	31.1%	31.1%	31.1%	31.1%	31.1%		
Maximum Green (s)	5.9	45.9		38.9	38.9		21.8	21.8	21.8	21.8	21.8	21.8		
Yellow Time (s)	3.3	3.3		3.3	3.3		3.6	3.6	3.6	3.6	3.6	3.6		
	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		

Brad Byvelds, Novatech

Lane Group	Ø1	Ø3	Ø7	
Lane Configurations			21	
Traffic Volume (vph)				
Future Volume (vph)				
Ideal Flow (vphpl)				
Storage Length (m)				
Storage Lanes				
Taper Length (m)				
Lane Util. Factor				
Ped Bike Factor				
Frt				
Fit Protected				
Satd. Flow (prot)				
Flt Permitted				
Satd. Flow (perm)				
Right Turn on Red				
Satd. Flow (RTOR)				
Link Speed (k/h)				
Link Distance (m)				
Travel Time (s)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Heavy Vehicles (%)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Enter Blocked Intersection				
Lane Alignment				
Median Width(m)				
Link Offset(m)				
Crosswalk Width(m)				
Two way Left Turn Lane				
Headway Factor				
Turning Speed (k/h)				
Number of Detectors				
Detector Template				
Leading Detector (m)				
Trailing Detector (m)				
Detector 1 Position(m)				
Detector 1 Size(m)				
Detector 1 Type				
Detector 1 Channel				
Detector 1 Extend (s)				
Detector 1 Queue (s)				
Detector 1 Delay (s)				
Detector 2 Position(m)				
Detector 2 Size(m)				
Detector 2 Type				
Detector 2 Channel				
Detector 2 Extend (s)				
Turn Type				
Protected Phases	1	3	7	
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	3.0	3.0	3.0	
Minimum Split (s)	5.0	5.0	5.0	
Total Split (s)	5.0	5.0	5.0	
Total Split (%)	6%	6%	5.0 6%	
Maximum Green (s)	3.0	3.0	3.0	
Yellow Time (s)	2.0	2.0	2.0	
	2.0	2.0	2.0	

	IUIIU											
	٨	-	\mathbf{r}	4	-	*	1	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
All-Red Time (s)	2.8	2.8		2.8	2.8		2.6	2.6	2.6	2.6	2.6	2.6
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Lost Time (s)	6.1	6.1		6.1	6.1			6.2	6.2		6.2	6.2
Lead/Lag	Lead	Lag		Lag	Lag		Lag	Lag	Lag	Lag	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	C-Max		C-Max	C-Max		None	None	None	None	None	None
Walk Time (s)		14.0		14.0	14.0		7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)		11.0		11.0	11.0		11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)		15		15	15		15	15	15	15	15	15
Act Effct Green (s)	51.8	51.8		39.6	39.6			25.9	25.9		25.9	25.9
Actuated g/C Ratio	0.58	0.58		0.44	0.44			0.29	0.29		0.29	0.29
v/c Ratio	0.54	0.39		0.41	0.69			0.69	0.17		0.65	0.69
Control Delay	16.2	11.8		22.1	26.2			37.3	0.8		35.1	22.2
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Delay	16.2	11.8		22.1	26.2			37.3	0.8		35.1	22.2
LOS	В	В		С	С			D	А		D	С
Approach Delay		13.2			25.4			29.7			28.6	
Approach LOS		В			С			С			С	
Queue Length 50th (m)	13.6	33.2		16.5	72.7			48.6	0.0		45.5	22.2
Queue Length 95th (m)	23.6	52.2		32.6	109.9			77.2	0.1		72.5	52.4
Internal Link Dist (m)		268.3			99.0			92.6			222.3	
Turn Bay Length (m)	30.0			25.0					15.0			15.0
Base Capacity (vph)	323	971		347	771			464	483		474	450
Starvation Cap Reductn	0	0		0	0			0	0		0	0
Spillback Cap Reductn	0	0		0	0			0	0		0	0
Storage Cap Reductn	0	0		0	0			0	0		0	0
Reduced v/c Ratio	0.54	0.39		0.41	0.69			0.69	0.17		0.65	0.69
Intersection Summary												
Area Type:	Other											
Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: 0 (0%), Referenced to	phase 2:EBTL and	d 6:WBTL, S	tart of Gree	n								
Natural Cycle: 75												
Control Type: Actuated-Coord	linated											
Maximum v/c Ratio: 0.69												
Intersection Signal Delay: 24.	0			In	tersection L(DS: C						
1 C C 11 LICE C	00.00/			10								

Intersection Signal Delay: 24.0 Intersection Capacity Utilization 88.6% Analysis Period (min) 15

Splits and Phases: 3: Churchill & Richmond

Hø1 - Ø2 ()		i.	J3 ♥ Ø4
5 s 52 s		5 s		28 s
	₩ Ø6 (R)		i.	₩ Ø8
12 s	45 s	5 s		28 s

ICU Level of Service E

Lane Group	Ø1	Ø3	Ø7
All-Red Time (s)	0.0	0.0	0.0
Lost Time Adjust (s)	0.0	0.0	0.0
Total Lost Time (s)			
Lead/Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0
Recall Mode	None	None	None
Walk Time (s)	NONE	NULLE	NULLE
Flash Dont Walk (s)			
Pedestrian Calls (#/hr)			
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			
Total Delay			
LOS			
Approach Delay			
Approach LOS			
Queue Length 50th (m)			
Queue Length 95th (m)			
Internal Link Dist (m)			
Turn Bay Length (m)			
Base Capacity (vph)			
Starvation Cap Reductn			
Spillback Cap Reductn			
Storage Cap Reductn			
Reduced v/c Ratio			
Intersection Summary			

	≯	-	\mathbf{r}	1	-	*	•	†	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4										
Traffic Volume (vph)	6	4 03	22	24	4 696	35	34	4 18	48	32	4 11	14
Future Volume (vph)	6	403	22	24	696	35	34	18	48	32	11	14
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.98			0.98			0.82			0.84	
Frt		0.993			0.994			0.936			0.966	
Flt Protected		0.999			0.998			0.983			0.973	
Satd. Flow (prot)	0	1726	0	0	1750	0	0	1466	0	0	1560	0
Flt Permitted	0	0.989	U	0	0.978	0	U	0.883	0	0	0.805	0
Satd. Flow (perm)	0	1708	0	0	1708	0	0	1210	0	0	1170	0
Right Turn on Red	0	1700	Yes	0	1700	Yes	0	1210	Yes	0	1170	Yes
Satd. Flow (RTOR)		6	165		6	165		50	165		16	165
								50 40			40	
Link Speed (k/h)		50			50							
Link Distance (m)		84.5			292.3			66.1			286.3	
Travel Time (s)		6.1			21.0			5.9			25.8	
Confl. Peds. (#/hr)	135		182	182		135	116		92	92		116
Confl. Bikes (#/hr)			3			9			2			5
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	2%	3%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Adj. Flow (vph)	7	448	24	27	773	39	38	20	53	36	12	16
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	479	0	0	839	0	0	111	0	0	64	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7	Ŭ		3.7	, in the second se		0.0	Ŭ		0.0	Ŭ
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	Cl+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		Cl+Ex	CI+Ex	
Detector 1 Channel	OITLA				OI+LX					OI+LX		
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
	0.0	0.0		0.0	0.0		0.0			0.0		
Detector 1 Delay (s)	0.0			0.0			0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)	_	0.0		_	0.0		_	0.0		_	0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	34.4	34.4		34.4	34.4		25.0	25.0		25.0	25.0	
Total Split (s)	60.0	60.0		60.0	60.0		25.0	25.0		25.0	25.0	
Total Split (%)	70.6%	70.6%		70.6%	70.6%		29.4%	29.4%		29.4%	29.4%	
	54.6	54.6		54.6	54.6		19.4	19.4		19.4	19.4	
Maximum Green (s)		3.3		3.3	3.3		3.3	3.3		3.3	3.3	
Maximum Green (s) Yellow Time (s)	3.3	3.3 2.1		3.3 2.1	3.3 2.1		3.3 2.3	3.3 2.3		3.3 2.3	3.3 2.3	
Maximum Green (s) Yellow Time (s) All-Red Time (s) Lost Time Adjust (s)		3.3 2.1 0.0		3.3 2.1	3.3 2.1 0.0		3.3 2.3	3.3 2.3 0.0		3.3 2.3	3.3 2.3 0.0	

Brad Byvelds, Novatech

9: Rooseveit & Richmo	JIIU											Pivi Pea
	≯	-	\mathbf{i}	1	←	•	•	t	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max		C-Max	C-Max		Max	Max		Max	Max	
Walk Time (s)	18.0	18.0		18.0	18.0		9.0	9.0		9.0	9.0	
Flash Dont Walk (s)	8.0	8.0		8.0	8.0		10.0	10.0		10.0	10.0	
Pedestrian Calls (#/hr)	15	15		0	0		15	15		15	15	
Act Effct Green (s)		54.6			54.6			19.4			19.4	
Actuated g/C Ratio		0.64			0.64			0.23			0.23	
v/c Ratio		0.44			0.76			0.35			0.23	
Control Delay		9.0			16.4			19.8			23.8	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		9.0			16.4			19.8			23.8	
LOS		А			В			В			С	
Approach Delay		9.0			16.4			19.8			23.8	
Approach LOS		А			В			В			С	
Queue Length 50th (m)		33.7			84.4			8.1			6.3	
Queue Length 95th (m)		52.4			134.2			22.2			16.7	
Internal Link Dist (m)		60.5			268.3			42.1			262.3	
Turn Bay Length (m)												
Base Capacity (vph)		1099			1099			314			279	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.44			0.76			0.35			0.23	
Intersection Summary												
Area Type:	Other											
Cycle Length: 85												
Actuated Cycle Length: 85												
Offset: 78 (92%), Referenced to p	hase 2:EBTL a	and 6:WBTL,	Start of G	reen								
Natural Cycle: 70												
Control Type: Actuated-Coordinate	ed											
Maximum v/c Ratio: 0.76												
Intersection Signal Delay: 14.6					tersection LC							
Intersection Capacity Utilization 80 Analysis Period (min) 15	0.9%			IC	U Level of S	ervice D						
Analysis Fellou (IIIII) 15												

Splits and Phases: 9: Roosevelt & Richmond

, ▲ _{Ø2 (R)}	₩ Ø4
60 s	25 s
🗸 🗸 Ø6 (R)	≪ ¶ <i>ø</i> 8
60 s	25 s

	≯	+	1	4	t	•	•	t	*	ŕ	Ŧ	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	• NBR	SBL	• SBT	SBR
Lane Configurations		4			4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	1	7	11	291	8	46	18	148	208	41	117	3
Future Volume (vph)	1	7	11	291	8	46	18	148	208	41	117	3
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	1	8	12	323	9	51	20	164	231	46	130	3
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	21	383	415	179								
Volume Left (vph)	1	323	20	46								
Volume Right (vph)	12	51	231	3								
Hadj (s)	-0.30	0.14	-0.29	0.08								
Departure Headway (s)	6.0	5.7	5.1	5.9								
Degree Utilization, x	0.04	0.60	0.59	0.29								
Capacity (veh/h)	478	601	663	563								
Control Delay (s)	9.2	16.9	15.4	11.2								
Approach Delay (s)	9.2	16.9	15.4	11.2								
Approach LOS	А	С	С	В								
Intersection Summary												
Delay			15.1									
Level of Service			С									
Intersection Capacity Utilization			58.6%	IC	U Level of Sei	rvice			В			
Analysis Period (min)			15									

335 Roosevelt Avenue 12: Churchill & Wilmont

	≯	~	*	Ť	ţ.	1
Movement	EBL	EBR	NBL	NBT	• SBT	SBR
Lane Configurations	V	LDIX	NDL	4	1	ODIN
Traffic Volume (veh/h)	2	4	17	339	561	8
Future Volume (Veh/h)	2	4	17	339	561	8
Sign Control	Stop	4	17	Free	Free	0
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90		0.90
	0.90		0.90	0.90	0.90 623	0.90
Hourly flow rate (vph)		4	19	3//		9
Pedestrians	37				1	
Lane Width (m)	3.7				3.7	
Walking Speed (m/s)	1.1				1.1	
Percent Blockage	3				0	
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)				246		
pX, platoon unblocked	0.92					
vC, conflicting volume	1080	664	669			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1046	664	669			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	99	99	98			
cM capacity (veh/h)	221	444	889			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	6	396	632			
Volume Left	2	19	0			
Volume Right	4	0	9			
cSH	332	889	1700			
Volume to Capacity	0.02	0.02	0.37			
Queue Length 95th (m)	0.4	0.02	0.0			
Control Delay (s)	16.0	0.7	0.0			
Lane LOS	10.0 C	0.7 A	0.0			
	16.0	0.7	0.0			
Approach Delay (s) Approach LOS	16.0 C	0.7	0.0			
	U					
Intersection Summary						
Average Delay			0.4			
Intersection Capacity Utilization			43.4%	ICI	U Level of Serv	ice
Analysis Period (min)			15			

	٦	-	\mathbf{r}	∢	+	*	1	Ť	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	î,		5	ĥ			្ឋ	1		ų	1
Traffic Volume (vph)	265	391	30	43	187	20	26	4 285	83	27	343	145
Future Volume (vph)	265	391	30	43	187	20	26	285	83	27	343	145
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	30.0		0.0	25.0		0.0	15.0		15.0	15.0		15.0
Storage Lanes	1		0	1		0	0		1	0		1
Taper Length (m)	45.0			30.0			15.0			15.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.96	0.99		0.94	0.99			1.00	0.89		1.00	0.88
Frt		0.989			0.986				0.850			0.850
Flt Protected	0.950	(=0.0	•	0.950	1000	•	•	0.996		•	0.996	4 4 9 9
Satd. Flow (prot)	1695	1732	0	1647	1668	0	0	1716	1517	0	1742	1488
Flt Permitted	0.510	(=0.0	•	0.516	1000	•	•	0.852	10-50	•	0.955	1010
Satd. Flow (perm)	878	1732	0	840	1668	0	0	1462	1353	0	1665	1312
Right Turn on Red		0	Yes		-	Yes			Yes			Yes
Satd. Flow (RTOR)		6			7			50	180		50	180
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		292.3			123.0			116.6			246.3	
Travel Time (s)	24	21.0	00	00	8.9	04	45	8.4	00	20	17.7	45
Confl. Peds. (#/hr)	34		68	68		34	45		36	36		45
Confl. Bikes (#/hr)	4.00	4.00	11	4.00	4.00	1	4.00	4.00	8	4.00	4.00	4.00
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	3%	2%	5%	7%	5%	2%	6%	2%	5%	4%	4%
Adj. Flow (vph)	265	391	30	43	187	20	26	285	83	27	343	145
Shared Lane Traffic (%)	005	404	٥	10	207	0	0	244	83	0	270	445
Lane Group Flow (vph) Enter Blocked Intersection	265	421	0	43		0	0	311		0	370	145
	No Left	No	No	No	No	No	No Left	No Left	No	No	No	No
Lane Alignment Median Width(m)	Leit	Left 3.7	Right	Left	Left 3.7	Right	Leit	0.0	Right	Left	Left 0.0	Right
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane		4.9			4.5			4.9			4.3	
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)	24	1.00	1.00	24	1.00	1.00	24	1.00	14	24	1.00	14
Number of Detectors	1	2	17	1	2	17	1	2	1	1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5	6.1	6.1	30.5	6.1
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8	6.1	6.1	1.8	6.1
Detector 1 Type	CI+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2			6			8			4	
Permitted Phases	2			6			8		8	4		4
Detector Phase	5	2		6	6		8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	11.1	31.1		31.1	31.1		30.0	30.0	30.0	30.0	30.0	30.0
Total Split (s)	14.0	40.1		31.1	31.1		30.0	30.0	30.0	30.0	30.0	30.0
Total Split (%)	17.5%	50.1%		38.8%	38.8%		37.5%	37.5%	37.5%	37.5%	37.5%	37.5%
Maximum Green (s)	7.9	34.0		25.0	25.0		23.8	23.8	23.8	23.8	23.8	23.8
Yellow Time (s)	3.3	3.3		3.3	3.3		3.6	3.6	3.6	3.6	3.6	3.6

Brad Byvelds, Novatech

Lane Group	Ø1	Ø3	Ø7	
Lane Go nfigurations	~ '	~~	~!	
Traffic Volume (vph)				
Future Volume (vph)				
Ideal Flow (vphpl)				
Storage Length (m)				
Storage Lanes				
Taper Length (m)				
Lane Util. Factor				
Ped Bike Factor				
Frt				
Flt Protected				
Satd. Flow (prot)				
Flt Permitted				
Satd. Flow (perm)				
Right Turn on Red				
Satd. Flow (RTOR)				
Link Speed (k/h)				
Link Distance (m)				
Travel Time (s)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Heavy Vehicles (%)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Enter Blocked Intersection				
Lane Alignment				
Median Width(m)				
Link Offset(m)				
Crosswalk Width(m)				
Two way Left Turn Lane				
Headway Factor				
Turning Speed (k/h)				
Number of Detectors				
Detector Template				
Leading Detector (m)				
Trailing Detector (m)				
Detector 1 Position(m)				
Detector 1 Size(m)				
Detector 1 Type				
Detector 1 Channel				
Detector 1 Extend (s)				
Detector 1 Queue (s)				
Detector 1 Delay (s)				
Detector 2 Position(m)				
Detector 2 Size(m)				
Detector 2 Type Detector 2 Channel				
Detector 2 Extend (s) Turn Type				
Protected Phases	1	3	7	
Protected Phases Permitted Phases		3	1	
Detector Phase				
Switch Phase				
Minimum Initial (s)	3.0	3.0	3.0	
Minimum Split (s)	5.0	5.0	5.0	
Total Split (s)	5.0	5.0	5.0	
Total Split (%)	5.0 6%	5.0 6%	5.0 6%	
Maximum Green (s)	3.0	3.0	3.0	
Yellow Time (s)	2.0	2.0	2.0	
	2.0	2.0	2.0	

	٦	+	*	4	Ļ	•	•	1	*	*	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
All-Red Time (s)	2.8	2.8		2.8	2.8		2.6	2.6	2.6	2.6	2.6	2.6
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Lost Time (s)	6.1	6.1		6.1	6.1			6.2	6.2		6.2	6.2
Lead/Lag	Lead	Lag		Lag	Lag		Lag	Lag	Lag	Lag	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	C-Max		C-Max	C-Max		None	None	None	None	None	None
Walk Time (s)		14.0		14.0	14.0		7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)		11.0		11.0	11.0		11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)		15		15	15		15	15	15	15	15	15
Act Effct Green (s)	44.8	44.8		29.1	29.1			23.0	23.0		23.0	23.0
Actuated g/C Ratio	0.56	0.56		0.36	0.36			0.29	0.29		0.29	0.29
v/c Ratio	0.45	0.43		0.14	0.34			0.74	0.16		0.78	0.29
Control Delay	13.4	13.0		21.2	21.5			36.5	0.7		37.2	3.2
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Delay	13.4	13.0		21.2	21.5			36.5	0.7		37.2	3.2
LOS	В	В		С	С			D	А		D	A
Approach Delay		13.2			21.5			28.9			27.6	
Approach LOS		В			С			С			С	
Queue Length 50th (m)	20.1	34.9		4.7	23.3			41.9	0.0		50.4	0.0
Queue Length 95th (m)	39.0	64.2		12.3	41.4			63.2	0.0		73.2	7.1
Internal Link Dist (m)		268.3			99.0			92.6			222.3	
Turn Bay Length (m)	30.0			25.0					15.0			15.0
Base Capacity (vph)	589	971		305	610			463	551		527	538
Starvation Cap Reductn	0	0		0	0			0	0		0	0
Spillback Cap Reductn	0	0		0	0			0	0		0	0
Storage Cap Reductn	0	0		0	0			0	0		0	0
Reduced v/c Ratio	0.45	0.43		0.14	0.34			0.67	0.15		0.70	0.27
Intersection Summary												
Area Type:	Other											
Cycle Length: 80.1												
Actuated Cycle Length: 80.1												
Offset: 43 (54%), Referenced to	phase 2:EBTL a	and 6:WBTL,	Start of G	reen								
Natural Cycle: 80												
Control Type: Actuated-Coordina	ited											
Maximum v/c Ratio: 0.78												
Intersection Signal Delay: 21.7					tersection LC							
Intersection Capacity Utilization S	94.2%			IC	U Level of S	ervice F						
Analysis Period (min) 15												

Splits and Phases: 3: Churchill & Richmond

₩ø1 →ø2 (R) 🕊	Å Åø3 ↓ ø4
5s 40.1s	5 s 30 s
▶ _{Ø5} ↓	Ø6 (R)
14s 31.1s	5 s 30 s

Lane Group	Ø1	Ø3	Ø7
All-Red Time (s)	0.0	0.0	0.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0
Recall Mode	None	None	None
Walk Time (s)			
Flash Dont Walk (s)			
Pedestrian Calls (#/hr)			
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			
Total Delay			
LOS			
Approach Delay			
Approach LOS			
Queue Length 50th (m)			
Queue Length 95th (m)			
Internal Link Dist (m)			
Turn Bay Length (m)			
Base Capacity (vph)			
Starvation Cap Reductn			
Spillback Cap Reductn			
Storage Cap Reductn			
Reduced v/c Ratio			
Intersection Summary			

	٦	-	\mathbf{i}	∢	←	•	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\$			4			4	
Traffic Volume (vph)	3	7	13	234	4 3	16	13	97	381	58	199	2
Future Volume (vph)	3	7	13	234	3	16	13	97	381	58	199	2
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	0.0		0.0	70.0		0.0	30.0		30.0	0.0		0.0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (m)	7.6			40.0			30.0			7.6		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.96			0.98			0.95			1.00	
Frt		0.924			0.991			0.895			0.999	
Flt Protected		0.994			0.956			0.999			0.989	
Satd. Flow (prot)	0	1236	0	0	1552	0	0	1493	0	0	1762	0
Flt Permitted		0.952			0.725			0.990			0.830	
Satd. Flow (perm)	0	1179	0	0	1160	0	0	1479	0	0	1476	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		13			7			376			1	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		72.6			123.8			85.2			89.5	
Travel Time (s)		5.2			8.9			6.1			6.4	
Confl. Peds. (#/hr)	33	0.2	12	12	0.0	33	32	0.1	10	10	0.1	32
Confl. Bikes (#/hr)	00		27			19	02		27	10		14
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	96%	2%	10%	98%	2%	2%	3%	4%	2%	2%	2%
Adj. Flow (vph)	3	7	13	234	3	16	13	97	381	58	199	2 /0
Shared Lane Traffic (%)	5	1	10	204	0	10	10	51	001	50	100	2
Lane Group Flow (vph)	0	23	0	0	253	0	0	491	0	0	259	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	Leit	0.0	Right	LEIL	0.0	Right	Leit	0.0	Right	Leit	0.0	Right
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane		4.9			4.5			4.3			4.9	
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)	24	1.00	1.00	24	1.00	1.00	24	1.00	1.00	24	1.00	1.00
Number of Detectors	1	2	14	1	2	14	1	2	14	24	2	14
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
	0.1	30.5 0.0		0.1	30.5 0.0		0.1	30.5 0.0		0.1	30.5 0.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	6.1			6.1	1.8		0.0 6.1	1.8		0.0 6.1	1.8	
Detector 1 Size(m)	CI+Ex	1.8 Cl+Ex		0.1 CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Type Detector 1 Channel	CI+EX	CI+EX		CI+EX	CI+EX		CI+EX	CI+EX		CI+EX	CI+EX	
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
	0.0			0.0	0.0		0.0 0.0	0.0		0.0		
Detector 1 Queue (s)	0.0	0.0		0.0	0.0			0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)	_	0.0		_	0.0			0.0		_	0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4		_	8			2		_	6	
Permitted Phases	4			8	-		2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	27.5	27.5		27.5	27.5		26.7	26.7		26.7	26.7	
Total Split (s)	27.5	27.5		27.5	27.5		27.5	27.5		27.5	27.5	
Total Split (%)	50.0%	50.0%		50.0%	50.0%		50.0%	50.0%		50.0%	50.0%	
	21.0	21.0		21.0	21.0		21.8	21.8		21.8	21.8	
Maximum Green (s)	21.0	21.0		21.0	21.0		21.0	21.0		21.0	21.0	

335 Roosevelt Avenue 6: Churchill & Scott

	٦	→	\mathbf{r}	4	←	*	1	1	1	1	¥	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
All-Red Time (s)	3.2	3.2		3.2	3.2		2.4	2.4		2.4	2.4	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		6.5			6.5			5.7			5.7	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	14.0	14.0		14.0	14.0		9.0	9.0		9.0	9.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)		16.3			16.3			26.5			26.5	
Actuated g/C Ratio		0.30			0.30			0.48			0.48	
v/c Ratio		0.06			0.73			0.54			0.36	
Control Delay		8.4			28.7			5.8			12.3	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		8.4			28.7			5.8			12.3	
LOS		А			С			А			В	
Approach Delay		8.4			28.7			5.8			12.3	
Approach LOS		А			С			А			В	
Queue Length 50th (m)		0.7			21.3			6.1			15.3	
Queue Length 95th (m)		4.1			38.0			27.5			34.3	
Internal Link Dist (m)		48.6			99.8			61.2			65.5	
Turn Bay Length (m)												
Base Capacity (vph)		458			447			907			712	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.05			0.57			0.54			0.36	
Intersection Summary												
Area Type:	Other											
Cycle Length: 55												
Actuated Cycle Length: 55												
Offset: 0 (0%), Referenced to ph	ase 2:NBTL and	6:SBTL, St	art of Greei	า								
Natural Cycle: 55												
Control Type: Actuated-Coordina	ated											
Maximum v/c Ratio: 0.73												
Intersection Signal Delay: 13.1					ersection LC							
Intersection Capacity Utilization	75.4%			IC	U Level of S	ervice D						
Analysis Period (min) 15												
Splits and Phases: 6: Churchi	II & Scott											
(m)					4							

🔊 🔊 Ø2 (R)	<u>→</u> _{Ø4}	
27.5 s	27.5 s	
Ø6 (R)	₩ Ø8	
27.5 s	27.5 s	

	≯	-	\mathbf{i}	∢	←	*	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4									4	
Traffic Volume (vph)	3	638	10	14	4 306	26	26	4 10	32	32	12	7
Future Volume (vph)	3	638	10	14	306	26	26	10	32	32	12	7
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			0.99			0.91			0.94	
Frt		0.998			0.990			0.936			0.981	
Flt Protected					0.998			0.981			0.970	
Satd. Flow (prot)	0	1761	0	0	1703	0	0	1563	0	0	1665	0
Flt Permitted		0.999			0.973			0.853			0.769	
Satd. Flow (perm)	0	1758	0	0	1658	0	0	1301	0	0	1264	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2			10			32			7	
Link Speed (k/h)		50			50			40			40	
Link Distance (m)		84.5			292.3			66.1			286.3	
Travel Time (s)		6.1			21.0			5.9			25.8	
Confl. Peds. (#/hr)	74		69	69		74	65		40	40		65
Confl. Bikes (#/hr)			7			4			4			4
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	3%	2%	2%	5%	2%	2%	2%	2%	2%	2%	2%
Adj. Flow (vph)	3	638	10	14	306	26	26	10	32	32	12	7
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	651	0	0	346	0	0	68	0	0	51	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7	, i i i i i i i i i i i i i i i i i i i		3.7	Ŭ		0.0	Ŭ		0.0	Ŭ
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			Cl+Ex			Cl+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	34.4	34.4		34.4	34.4		25.0	25.0		25.0	25.0	
Total Split (s)	45.0	45.0		45.0	45.0		25.0	25.0		25.0	25.0	
Total Split (%)	64.3%	64.3%		64.3%	64.3%		35.7%	35.7%		35.7%	35.7%	
Maximum Green (s)	39.6	39.6		39.6	39.6		19.4	19.4		19.4	19.4	
Yellow Time (s)	3.3	3.3		3.3	3.3		3.3	3.3		3.3	3.3	
	2.1	2.1		2.1	2.1		2.3	2.3		2.3	2.3	
All-Red Lime (s)												
All-Red Time (s) Lost Time Adjust (s)	2.1	0.0		<u> </u>	0.0			0.0		2.0	0.0	

Brad Byvelds, Novatech

	٦	-	\mathbf{r}	1	-	•	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max		C-Max	C-Max		None	None		None	None	
Walk Time (s)	18.0	18.0		18.0	18.0		9.0	9.0		9.0	9.0	
Flash Dont Walk (s)	8.0	8.0		8.0	8.0		10.0	10.0		10.0	10.0	
Pedestrian Calls (#/hr)	15	15		0	0		15	15		15	15	
Act Effct Green (s)		55.6			55.6			11.8			11.8	
Actuated g/C Ratio		0.79			0.79			0.17			0.17	
v/c Ratio		0.47			0.26			0.28			0.23	
Control Delay		6.9			4.9			17.7			23.9	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		6.9			4.9			17.7			23.9	
LOS		А			А			В			С	
Approach Delay		6.9			4.9			17.7			23.9	
Approach LOS		А			А			В			С	
Queue Length 50th (m)		32.7			13.4			4.2			5.2	
Queue Length 95th (m)		84.7			36.4			12.2			12.0	
Internal Link Dist (m)		60.5			268.3			42.1			262.3	
Turn Bay Length (m)												
Base Capacity (vph)		1397			1319			383			355	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.47			0.26			0.18			0.14	
Intersection Summary												
Area Type:	Other											
Cycle Length: 70												
Actuated Cycle Length: 70												
Offset: 0 (0%), Referenced to phase	e 2:EBTL and	d 6:WBTL, S	tart of Gree	en								
Natural Cycle: 60												
Control Type: Actuated-Coordinate	d											
Maximum v/c Ratio: 0.47												
Intersection Signal Delay: 7.7				In	tersection LC	DS: A						
Intersection Capacity Utilization 61	.4%			IC	U Level of S	ervice B						
Analysis Period (min) 15												

Splits and Phases: 9: Roosevelt & Richmond

●Ø2 (R)	↓ Ø4
45 s	25 s
₩ Ø6 (R)	▲ Ø8
45 s	25 s

335 Roosevelt Avenue 12: Churchill & Wilmont

	≯	~	•	Ť	Ļ.	~
Movement	EBL	EBR	NBL	∎ NBT	• SBT	SBR
Lane Configurations		LDK	NDL			JUN
	Y	0	20	1	1	5
Traffic Volume (veh/h) Future Volume (Veh/h)	1	9 9	20 20	536 536	474 474	5 5
		9	20			5
Sign Control	Stop			Free	Free	
Grade	0%	1.00	4.00	0%	0%	1.00
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00
Hourly flow rate (vph)	1	9	20	536	474	5
Pedestrians	30			2	1	
Lane Width (m)	3.7			3.7	3.7	
Walking Speed (m/s)	1.1			1.1	1.1	
Percent Blockage	3			0	0	
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)				246	85	
pX, platoon unblocked	0.88	0.96	0.96			
vC, conflicting volume	1084	508	509			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	911	462	463			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)	v . 1	0.2				
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	98	98			
cM capacity (veh/h)	255	556	1020			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	10	556	479			
Volume Left	1	20	0			
Volume Right	9	0	5			
cSH	497	1020	1700			
Volume to Capacity	0.02	0.02	0.28			
Queue Length 95th (m)	0.5	0.5	0.0			
Control Delay (s)	12.4	0.5	0.0			
Lane LOS	В	A				
Approach Delay (s)	12.4	0.5	0.0			
Approach LOS	В	0.0	0.0			
	_					
Intersection Summary						
Average Delay			0.4			
Intersection Capacity Utilization			57.5%	ICI	J Level of Serv	lice
Analysis Period (min)			15			

	۶	-	\mathbf{r}	4	+	•	1	Ť	۲	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	2	1.		5	ĥ			4 281	1		<u>ل</u> اً	1
Traffic Volume (vph)	164	1 302	48	128	453	35	28	281	76	21	274	284
Future Volume (vph)	164	302	48	128	453	35	28	281	76	21	274	284
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	30.0		0.0	25.0		0.0	15.0		15.0	15.0		15.0
Storage Lanes	1		0	1		0	0		1	0		1
Taper Length (m)	45.0			30.0			15.0			15.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.95	0.96		0.82	0.99			0.99	0.85		1.00	0.77
Frt		0.979			0.989				0.850			0.850
Flt Protected	0.950			0.950				0.995			0.996	
Satd. Flow (prot)	1662	1673	0	1695	1743	0	0	1757	1517	0	1719	1517
Flt Permitted	0.298			0.551				0.908			0.949	
Satd. Flow (perm)	496	1673	0	806	1743	0	0	1587	1284	0	1630	1169
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		13			5				160			160
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		292.3			123.0			116.6			246.3	
Travel Time (s)		21.0			8.9			8.4			17.7	
Confl. Peds. (#/hr)	86		163	163		86	84		54	54		84
Confl. Bikes (#/hr)			2			4			1			3
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	4%	2%	2%	2%	2%	2%	4%	3%	2%	11%	5%	2%
Adj. Flow (vph)	164	302	48	128	453	35	28	281	76	21	274	284
Shared Lane Traffic (%)												
Lane Group Flow (vph)	164	350	0	128	488	0	0	309	76	0	295	284
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	Lon	3.7	rugitt	Lon	3.7	rugin	Lon	0.0	rugitt	Lon	0.0	rugin
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane		v			.			7.0			4.0	
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)	24	1.00	14	24	1.00	1.00	24	1.00	14	24	1.00	14
Number of Detectors	1	2	14	1	2	14	1	2	1	1	2	14
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5	6.1	6.1	30.5	6.1
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8	6.1	6.1	1.8	6.1
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel	CI+EX	CI+EX		CI+EX				CI+EX	CI+EX	CI+EX		
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0 0.0
Detector 1 Delay (s)	0.0			0.0			0.0		0.0	0.0		0.0
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		0.0			0.0			0.0			• •	
Detector 2 Extend (s)		0.0		_	0.0		_	0.0	_	_	0.0	_
Turn Type	pm+pt	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2			6			8	_		4	
Permitted Phases	2			6			8		8	4		4
Detector Phase	5	2		6	6		8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	11.1	31.1		31.1	31.1		24.2	24.2	24.2	24.2	24.2	24.2
Total Split (s)	12.0	52.0		45.0	45.0		28.0	28.0	28.0	28.0	28.0	28.0
Total Split (%)	13.3%	57.8%		50.0%	50.0%		31.1%	31.1%	31.1%	31.1%	31.1%	31.1%
Maximum Green (s)	5.9	45.9		38.9	38.9		21.8	21.8	21.8	21.8	21.8	21.8
		3.3										

Brad Byvelds, Novatech

Lane Group	Ø1	Ø3	Ø7	
Lane Ønfigurations				
Traffic Volume (vph)				
Future Volume (vph)				
Ideal Flow (vphpl)				
Storage Length (m)				
Storage Lanes				
Taper Length (m)				
Lane Util. Factor				
Ped Bike Factor				
Frt				
Flt Protected				
Satd. Flow (prot)				
Flt Permitted				
Satd. Flow (perm)				
Right Turn on Red				
Satd. Flow (RTOR)				
Link Speed (k/h)				
Link Distance (m)				
Travel Time (s)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Heavy Vehicles (%)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Enter Blocked Intersection				
Lane Alignment				
Median Width(m)				
Link Offset(m)				
Crosswalk Width(m)				
Two way Left Turn Lane				
Headway Factor				
Turning Speed (k/h)				
Number of Detectors				
Detector Template				
Leading Detector (m)				
Trailing Detector (m)				
Detector 1 Position(m)				
Detector 1 Size(m)				
Detector 1 Type				
Detector 1 Channel				
Detector 1 Extend (s)				
Detector 1 Queue (s)				
Detector 1 Delay (s)				
Detector 2 Position(m)				
Detector 2 Size(m)				
Detector 2 Type				
Detector 2 Channel				
Detector 2 Extend (s)				
Turn Type				
Protected Phases	1	3	7	
Permitted Phases				
Detector Phase				
Switch Phase				
Minimum Initial (s)	3.0	3.0	3.0	
Minimum Split (s)	5.0	5.0	5.0	
Total Split (s)	5.0	5.0	5.0	
Total Split (%)	5.0 6%	5.0 6%	5.0 6%	
Maximum Green (s)	3.0	3.0	3.0	
Yellow Time (s)	2.0	2.0	2.0	
	2.0	2.0	2.0	

	≯	-	\mathbf{r}	4	-	×	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
All-Red Time (s)	2.8	2.8		2.8	2.8		2.6	2.6	2.6	2.6	2.6	2.6
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Lost Time (s)	6.1	6.1		6.1	6.1			6.2	6.2		6.2	6.2
Lead/Lag	Lead	Lag		Lag	Lag		Lag	Lag	Lag	Lag	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	C-Max		C-Max	C-Max		None	None	None	None	None	None
Walk Time (s)		14.0		14.0	14.0		7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)		11.0		11.0	11.0		11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)		15		15	15		15	15	15	15	15	15
Act Effct Green (s)	53.8	53.8		41.0	41.0			23.9	23.9		23.9	23.9
Actuated g/C Ratio	0.60	0.60		0.46	0.46			0.27	0.27		0.27	0.27
v/c Ratio	0.43	0.35		0.35	0.61			0.74	0.17		0.68	0.67
Control Delay	12.6	10.6		20.3	23.1			40.9	0.8		37.9	20.4
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Delay	12.6	10.6		20.3	23.1			40.9	0.8		37.9	20.4
LOS	В	В		С	С			D	А		D	С
Approach Delay		11.3			22.6			33.0			29.4	
Approach LOS		В			С			С			С	
Queue Length 50th (m)	12.3	28.6		14.5	63.8			47.3	0.0		44.4	17.5
Queue Length 95th (m)	22.2	47.2		29.0	96.9			74.2	0.0		69.9	44.2
Internal Link Dist (m)		268.3			99.0			92.6			222.3	
Turn Bay Length (m)	30.0			25.0					15.0			15.0
Base Capacity (vph)	383	1006		367	797			435	468		447	437
Starvation Cap Reductn	0	0		0	0			0	0		0	0
Spillback Cap Reductn	0	0		0	0			0	0		0	0
Storage Cap Reductn	0	0		0	0			0	0		0	0
Reduced v/c Ratio	0.43	0.35		0.35	0.61			0.71	0.16		0.66	0.65
Intersection Summary												
Area Type:	Other											
Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: 0 (0%), Referenced to ph	nase 2:EBTL and	16:WBTL, S	tart of Gree	n								

Offset: 0 (0%), Re Natural Cycle: 75 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.74 Intersection Signal Delay: 23.6 Intersection Capacity Utilization 91.6% Analysis Period (min) 15

Intersection LOS: C ICU Level of Service F

Splits and Phases: 3: Churchill & Richmond

₩ø1 - Ø2 (0	H	3 0 4
5 s 52 s		5 s	28 s
	√ Ø6 (R)	H	7 08
12 s	45 s	5 s	28 s

Lane Group	Ø1	Ø3	Ø7
All-Red Time (s)	0.0	0.0	0.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0
Recall Mode	None	None	None
Walk Time (s)			
Flash Dont Walk (s)			
Pedestrian Calls (#/hr)			
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			
Total Delay			
LOS			
Approach Delay			
Approach LOS			
Queue Length 50th (m)			
Queue Length 95th (m)			
Internal Link Dist (m)			
Turn Bay Length (m)			
Base Capacity (vph)			
Starvation Cap Reductn			
Spillback Cap Reductn			
Storage Cap Reductn			
Reduced v/c Ratio			
Intersection Summary			

	≯	-	\mathbf{r}	∢	+	•	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	1	4 7	11	314	4 8	46	18	148	231	41	117	3
Future Volume (vph)	1	7	11	314	8	46	18	148	231	41	117	3
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	0.0		0.0	70.0		0.0	30.0		0.0	0.0		0.0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (m)	7.6			40.0			30.0			7.6		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.97			0.97			0.96			1.00	
Frt		0.922			0.983			0.921			0.997	
Flt Protected		0.997			0.959			0.998			0.987	
Satd. Flow (prot)	0	1187	0	0	1609	0	0	1584	0	0	1753	0
Flt Permitted		0.980	-		0.744	-	-	0.984		-	0.846	-
Satd. Flow (perm)	0	1165	0	0	1225	0	0	1558	0	0	1499	0
Right Turn on Red	-		Yes			Yes	-		Yes			Yes
Satd. Flow (RTOR)		11			15			149			2	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		72.6			123.8			85.2			89.5	
Travel Time (s)		5.2			8.9			6.1			6.4	
Confl. Peds. (#/hr)	41	0.2	17	17	0.0	41	33	0.1	11	11	0.1	33
Confl. Bikes (#/hr)	- 1		12			61	00		22			26
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	96%	2%	2%	96%	9%	2%	2%	2%	2%	2%	2%
Adj. Flow (vph)	2 /0	30 % 7	11	314	3078	46	18	148	231	41	117	270
Shared Lane Traffic (%)	1	1	11	514	0	40	10	140	201	41	117	5
Lane Group Flow (vph)	0	19	0	0	368	0	0	397	0	0	161	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
	Left	Left	Right	Left	Left		Left	Left		Left	Left	Right
Lane Alignment	Leit	0.0	Right	Leit	0.0	Right	Leit	0.0	Right	Leit	0.0	Right
Median Width(m)		0.0			0.0			0.0			0.0	
Link Offset(m)		0.0 4.9			0.0 4.9			0.0 4.9			4.9	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane	1.00	1.00	1.00	1.00	1.00	1.00	1.00	4.00	1.00	1.00	1.00	1.00
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)	24	0	14	24	0	14	24	0	14	24	•	14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	Cl+Ex	Cl+Ex		CI+Ex	Cl+Ex		Cl+Ex	Cl+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	27.5	27.5		27.5	27.5		26.7	26.7		23.7	23.7	
Total Split (s)	28.0	28.0		28.0	28.0		27.0	27.0		27.0	27.0	
Total Split (%)	50.9%	50.9%		50.9%	50.9%		49.1%	49.1%		49.1%	49.1%	
Maximum Green (s)	21.5	21.5		21.5	21.5		21.3	21.3		21.3	21.3	
Yellow Time (s)	3.3	3.3		3.3	3.3		3.3	3.3		3.3	3.3	

335 Roosevelt Avenue 6: Churchill & Scott

	٦	-	\mathbf{r}	1	-	•	1	Ť	1	×	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
All-Red Time (s)	3.2	3.2		3.2	3.2		2.4	2.4		2.4	2.4	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		6.5			6.5			5.7			5.7	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	14.0	14.0		14.0	14.0		9.0	9.0		9.0	9.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)		19.2			19.2			23.6			23.6	
Actuated g/C Ratio		0.35			0.35			0.43			0.43	
v/c Ratio		0.05			0.84			0.53			0.25	
Control Delay		7.9			34.7			10.9			12.4	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		7.9			34.7			10.9			12.4	
LOS		А			С			В			В	
Approach Delay		7.9			34.7			10.9			12.4	
Approach LOS		А			С			В			В	
Queue Length 50th (m)		0.5			29.1			17.3			10.4	
Queue Length 95th (m)		3.5			#67.9			39.3			21.5	
Internal Link Dist (m)		48.6			99.8			61.2			65.5	
Turn Bay Length (m)												
Base Capacity (vph)		462			488			753			643	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.04			0.75			0.53			0.25	
Intersection Summary												
Area Type:	Other											
Cycle Length: 55												
Actuated Cycle Length: 55	0.11071											
Offset: 0 (0%), Referenced to ph	ase 2:NBTL and	16:SBTL, St	art of Greer	ו								
Natural Cycle: 55												
Control Type: Actuated-Coordina	ated											
Maximum v/c Ratio: 0.84												
Intersection Signal Delay: 20.4	C4 00/				ersection LC							
Intersection Capacity Utilization	04.0%			IC	U Level of S	ervice C						
Analysis Period (min) 15	ada aanaaitu		longor									
# 95th percentile volume excee Queue shown is maximum af		eue may be	longer.									
Splits and Phases: 6: Churchi	II & Scott				_							
(P)												

▶ ¶ Ø2 (R)	- 1 04	
27 s	28 s	
Ø6 (R)	↓ Ø8	
27 s	28 s	

	٦	-	\mathbf{r}	4	-	*	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			\$			4	
Traffic Volume (vph)	6	416	22	24	4 703	35	34	4 18	48	32	11	14
Future Volume (vph)	6	416	22	24	703	35	34	18	48	32	11	14
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.98			0.98			0.82			0.84	
Frt		0.993			0.994			0.935			0.967	
Flt Protected		0.999			0.998			0.983			0.973	
Satd. Flow (prot)	0	1727	0	0	1751	0	0	1463	0	0	1563	0
Flt Permitted		0.992			0.980			0.889			0.816	
Satd. Flow (perm)	0	1713	0	0	1711	0	0	1216	0	0	1185	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		6			6			48			14	
Link Speed (k/h)		50			50			40			40	
Link Distance (m)		84.5			292.3			66.1			286.3	
Travel Time (s)		6.1			21.0			5.9			25.8	
Confl. Peds. (#/hr)	135		182	182		135	116		92	92		116
Confl. Bikes (#/hr)			3			9			2			5
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	3%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Adj. Flow (vph)	6	416	22	24	703	35	34	18	48	32	11	14
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	444	0	0	762	0	0	100	0	0	57	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7			3.7			0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			Cl+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	34.4	34.4		34.4	34.4		25.0	25.0		25.0	25.0	
Total Split (s)	60.0	60.0		60.0	60.0		25.0	25.0		25.0	25.0	
Total Split (%)	70.6%	70.6%		70.6%	70.6%		29.4%	29.4%		29.4%	29.4%	
Maximum Green (s)	54.6	54.6		54.6	54.6		19.4	19.4		19.4	19.4	
Yellow Time (s)	3.3	3.3		3.3	3.3		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.1	2.1		2.1	2.1		2.3	2.3		2.3	2.3	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
		5.4			5.4			5.6				

Brad Byvelds, Novatech

	≯	-	\mathbf{r}	1	←	•	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max		C-Max	C-Max		Max	Max		Max	Max	
Walk Time (s)	18.0	18.0		18.0	18.0		9.0	9.0		9.0	9.0	
Flash Dont Walk (s)	8.0	8.0		8.0	8.0		10.0	10.0		10.0	10.0	
Pedestrian Calls (#/hr)	15	15		0	0		15	15		15	15	
Act Effct Green (s)		54.6			54.6			19.4			19.4	
Actuated g/C Ratio		0.64			0.64			0.23			0.23	
v/c Ratio		0.40			0.69			0.32			0.20	
Control Delay		8.6			13.9			18.8			23.5	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		8.6			13.9			18.8			23.5	
LOS		А			В			В			С	
Approach Delay		8.6			13.9			18.8			23.5	
Approach LOS		А			В			В			С	
Queue Length 50th (m)		30.3			70.2			6.8			5.6	
Queue Length 95th (m)		47.4			109.7			19.8			15.3	
Internal Link Dist (m)		60.5			268.3			42.1			262.3	
Turn Bay Length (m)												
Base Capacity (vph)		1102			1101			314			281	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.40			0.69			0.32			0.20	
Intersection Summary												
Area Type:	Other											
Cycle Length: 85												
Actuated Cycle Length: 85												
Offset: 78 (92%), Referenced to p	hase 2:EBTL a	and 6:WBTL,	Start of G	reen								
Natural Cycle: 60												
Control Type: Actuated-Coordinate	ed											
Maximum v/c Ratio: 0.69												
Intersection Signal Delay: 12.9	4 404				tersection LC							
Intersection Capacity Utilization 8	1.4%			IC	U Level of S	ervice D						
Analysis Period (min) 15												

Splits and Phases: 9: Roosevelt & Richmond

J → Ø2 (R)	₩ Ø4
60 s	25 s
🗸 🗸 Ø6 (R)	≪ ¶ <i>ø</i> 8
60 s	25 s

335 Roosevelt Avenue 12: Churchill & Wilmont

	≯	1	•	Ť	Ţ.	~						
Maxamant		TDD	1 NDI	NDT		000						
Movement	EBL	EBR	NBL	NBT	SBT	SBR						
Lane Configurations	۲			e f	1.							
Traffic Volume (veh/h)	2	4	17	362	584	8						
Future Volume (Veh/h)	2	4	17	362	584	8						
Sign Control	Stop			Free	Free							
Grade	0%			0%	0%							
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00						
Hourly flow rate (vph)	2	4	17	362	584	8						
Pedestrians	37				1							
Lane Width (m)	3.7				3.7							
Walking Speed (m/s)	1.1				1.1							
Percent Blockage	3				0							
Right turn flare (veh)												
Median type				None	None							
Median storage veh)												
Upstream signal (m)				246	85							
pX, platoon unblocked	0.93											
vC, conflicting volume	1022	625	629									
vC1, stage 1 conf vol		,	,									
vC2, stage 2 conf vol												
vCu, unblocked vol	985	625	629									
tC, single (s)	6.4	6.2	4.1									
tC, 2 stage (s)	v.+	0.2	T.1									
tF (s)	3.5	3.3	2.2									
p0 queue free %	99	99	98									
cM capacity (veh/h)	242	468	920									
Direction, Lane #	EB 1	NB 1	SB 1									
Volume Total	6	379	592									
Volume Left	2	17	0									
Volume Right	4	0	8									
cSH	357	920	1700									
Volume to Capacity	0.02	0.02	0.35									
Queue Length 95th (m)	0.4	0.4	0.0									
Control Delay (s)	15.3	0.6	0.0									
Lane LOS	C	A										
Approach Delay (s)	15.3	0.6	0.0									
Approach LOS	C	0.0	0.0									
	•											
Intersection Summary												
Average Delay			0.3									
Intersection Capacity Utilization			44.7%	ICI	J Level of Serv	vice						
Analysis Period (min)			15									
	٦	-	\mathbf{r}	∢	-	*	•	Ť	1	1	Ļ	~
-----------------------------------	---------	-------------	--------------	------------	-----------	-------	-------	-------	-------------	---------	-------------	-----------
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	ĥ		7	ĥ			ส์	1		<u>ل</u> اً	1
Traffic Volume (vph)	265	395	33	43	188	21	27	286	83	31	346	145
Future Volume (vph)	265	395	33	43	188	21	27	286	83	31	346	145
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	30.0		0.0	25.0		0.0	15.0		15.0	15.0		15.0
Storage Lanes	1		0	1		0	0		1	0		1
Taper Length (m)	45.0			30.0			15.0			15.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.97	0.99		0.94	0.99			1.00	0.89		1.00	0.88
Frt		0.988			0.985				0.850			0.850
Flt Protected	0.950			0.950				0.996			0.996	
Satd. Flow (prot)	1695	1729	0	1647	1666	0	0	1716	1517	0	1742	1488
Flt Permitted	0.506		-	0.513		-	-	0.843	-		0.944	
Satd. Flow (perm)	871	1729	0	836	1666	0	0	1447	1353	0	1645	1312
Right Turn on Red			Yes			Yes	-		Yes			Yes
Satd. Flow (RTOR)		7			7				180			180
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		292.3			123.0			116.6			246.3	
Travel Time (s)		21.0			8.9			8.4			17.7	
Confl. Peds. (#/hr)	34	21.0	68	68	0.5	34	45	0.4	36	36	17.7	45
Confl. Bikes (#/hr)	04		11	00		1	-10		8	00		40
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	3%	2%	5%	7%	5%	2%	6%	2%	5%	4%	4%
Adj. Flow (vph)	265	395	33	43	188	21	270	286	83	31	346	145
Shared Lane Traffic (%)	205	292	55	40	100	21	21	200	00	51	540	145
Lane Group Flow (vph)	265	428	0	43	209	0	0	313	83	0	377	145
Enter Blocked Intersection	No	420 No	No		209 No	No	No	No	No	No	No	No
	Left			No Left	Left		Left	Left		Left		
Lane Alignment Median Width(m)	Leit	Left 3.7	Right	Leit	3.7	Right	Leit	0.0	Right	Leit	Left 0.0	Right
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
		4.9			4.9			4.9			4.9	
Two way Left Turn Lane	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
Headway Factor		1.00	1.06		1.00			1.00	1.06		1.00	
Turning Speed (k/h)	24 1	0	14	24	0	14	24	0		24 1	0	14
Number of Detectors		2		1	2		1	2	1 Diabat		2	1 Dist
Detector Template	Left	Thru		Left	Thru		Left	Thru	Right	Left	Thru	Right
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5	6.1	6.1	30.5	6.1
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8	6.1	6.1	1.8	6.1
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex
Detector 1 Channel	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2			6			8			4	
Permitted Phases	2			6			8		8	4		4
Detector Phase	5	2		6	6		8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	11.1	31.1		31.1	31.1		30.0	30.0	30.0	30.0	30.0	30.0
Total Split (s)	14.0	40.1		31.1	31.1		30.0	30.0	30.0	30.0	30.0	30.0
Total Split (%)	17.5%	50.1%		38.8%	38.8%		37.5%	37.5%	37.5%	37.5%	37.5%	37.5%
	7.9	34.0		25.0	25.0		23.8	23.8	23.8	23.8	23.8	23.8
Maximum Green (s)	1.5				20.0			20.0	20.0	20.0	20.0	

Brad Byvelds, Novatech

Lane Group	Ø1	Ø3	Ø7	
Lane Coup	~ .	~~	~ '	
Traffic Volume (vph)				
Future Volume (vph)				
Ideal Flow (vphpl)				
Storage Length (m)				
Storage Lanes				
Taper Length (m)				
Lane Util. Factor				
Ped Bike Factor				
Frt				
Flt Protected				
Satd. Flow (prot)				
Flt Permitted				
Satd. Flow (perm)				
Right Turn on Red				
Satd. Flow (RTOR)				
Link Speed (k/h)				
Link Distance (m)				
Travel Time (s)				
Confl. Peds. (#/hr)				
Confl. Bikes (#/hr)				
Peak Hour Factor				
Heavy Vehicles (%)				
Adj. Flow (vph)				
Shared Lane Traffic (%)				
Lane Group Flow (vph)				
Enter Blocked Intersection				
Lane Alignment				
Median Width(m)				
Link Offset(m)				
Crosswalk Width(m)				
Two way Left Turn Lane				
Headway Factor				
Turning Speed (k/h)				
Number of Detectors				
Detector Template				
Leading Detector (m)				
Trailing Detector (m)				
Detector 1 Position(m)				
Detector 1 Size(m)				
Detector 1 Type				
Detector 1 Channel				
Detector 1 Extend (s)				
Detector 1 Queue (s)				
Detector 1 Delay (s)				
Detector 2 Position(m)				
Detector 2 Size(m)				
Detector 2 Type				
Detector 2 Channel				
Detector 2 Extend (s)				
Turn Type				
Protected Phases	1	3	7	
Permitted Phases		0	1	
Detector Phase				
Switch Phase				
Minimum Initial (s)	3.0	3.0	3.0	
Minimum Split (s)	5.0	5.0 5.0	5.0	
Total Split (s)	5.0	5.0	5.0	
Total Split (%)	5.0 6%	5.0 6%	5.0 6%	
Maximum Green (s)	3.0	3.0	3.0	
Yellow Time (s)	2.0	3.0 2.0	2.0	
	2.0	2.0	2.0	

	≯	-	\mathbf{r}	1	+	•	•	1	1	1	Ŧ	-
_ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
All-Red Time (s)	2.8	2.8		2.8	2.8		2.6	2.6	2.6	2.6	2.6	2.
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Lost Time (s)	6.1	6.1		6.1	6.1			6.2	6.2		6.2	6.
Lead/Lag	Lead	Lag		Lag	Lag		Lag	Lag	Lag	Lag	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yes	Yes	Yes	Ye
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	C-Max		C-Max	C-Max		None	None	None	None	None	None
Walk Time (s)		14.0		14.0	14.0		7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)		11.0		11.0	11.0		11.0	11.0	11.0	11.0	11.0	11.(
Pedestrian Calls (#/hr)		15		15	15		15	15	15	15	15	1:
Act Effct Green (s)	44.4	44.4		28.8	28.8			23.4	23.4		23.4	23.4
Actuated g/C Ratio	0.55	0.55		0.36	0.36			0.29	0.29		0.29	0.29
v/c Ratio	0.46	0.45		0.14	0.35			0.74	0.16		0.78	0.28
Control Delay	13.7	13.4		21.4	21.8			36.1	0.7		37.5	3.2
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Delay	13.7	13.4		21.4	21.8			36.1	0.7		37.5	3.2
LOS	В	В		С	С			D	А		D	A
Approach Delay		13.5			21.7			28.7			28.0	
Approach LOS		В			С			С			С	
Queue Length 50th (m)	20.4	36.1		4.7	23.9			41.9	0.0		51.3	0.0
Queue Length 95th (m)	39.0	65.5		12.3	41.8			63.9	0.0		75.2	7.1
Internal Link Dist (m)		268.3			99.0			92.6			222.3	
Turn Bay Length (m)	30.0			25.0					15.0			15.0
Base Capacity (vph)	580	960		299	602			462	554		525	541
Starvation Cap Reductn	0	0		0	0			0	0		0	C
Spillback Cap Reductn	0	0		0	0			0	0		0	C
Storage Cap Reductn	0	0		0	0			0	0		0	C
Reduced v/c Ratio	0.46	0.45		0.14	0.35			0.68	0.15		0.72	0.27
Intersection Summary	0.4											
Area Type: Cycle Length: 80.1	Other											
Actuated Cycle Length: 80.1												
Offset: 43 (54%), Referenced to p	hase 2:EBTL a	and 6:WBTL,	Start of Gr	reen								
Natural Cycle: 80												
Control Type: Actuated-Coordinat	ted											
Maximum v/c Ratio: 0.78												
Intersection Signal Delay: 21.9				In	tersection LO	DS: C						
Intersection Capacity Utilization 9	5.3%			IC	U Level of S	ervice F						
Analysis Period (min) 15												
Splits and Phases: 3: Churchill	& Richmond											
						1	4					

Lane Group	Ø1	Ø3	Ø7
All-Red Time (s)	0.0	0.0	0.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0
Recall Mode	None	None	None
Walk Time (s)			
Flash Dont Walk (s)			
Pedestrian Calls (#/hr)			
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			
Total Delay			
LOS			
Approach Delay			
Approach LOS			
Queue Length 50th (m)			
Queue Length 95th (m)			
Internal Link Dist (m)			
Turn Bay Length (m)			
Base Capacity (vph)			
Starvation Cap Reductn			
Spillback Cap Reductn			
Storage Cap Reductn			
Reduced v/c Ratio			
Intersection Summary			

	٦	-	\mathbf{r}	1	+	*	1	Ť	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4 7			4			4 97			4	
Traffic Volume (vph)	3	7	13	236	3	16	13	97	388	58	199	2
Future Volume (vph)	3	7	13	236	3	16	13	97	388	58	199	2
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	0.0		0.0	70.0		0.0	30.0		30.0	0.0		0.0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (m)	7.6			40.0			30.0			7.6		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.96			0.98			0.95			1.00	
Frt		0.924			0.992			0.895			0.999	
Flt Protected		0.994			0.956			0.999			0.989	
Satd. Flow (prot)	0	1236	0	0	1554	0	0	1493	0	0	1762	0
Flt Permitted		0.951			0.725			0.990			0.828	
Satd. Flow (perm)	0	1178	0	0	1162	0	0	1478	0	0	1473	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		13			7			382			1	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		72.6			123.8			85.2			89.5	
Travel Time (s)		5.2			8.9			6.1			6.4	
Confl. Peds. (#/hr)	33		12	12		33	32		10	10		32
Confl. Bikes (#/hr)			27			19			27			14
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	96%	2%	10%	98%	2%	2%	3%	4%	2%	2%	2%
Adj. Flow (vph)	3	7	13	236	3	16	13	97	388	58	199	2
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	23	0	0	255	0	0	498	0	0	259	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0	•		0.0	Ū		0.0	Ū		0.0	Ū
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane												
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)	24		14	24		14	24		14	24		14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		Cl+Ex	Cl+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	27.5	27.5		27.5	27.5		26.7	26.7		26.7	26.7	
Total Split (s)	27.5	27.5		27.5	27.5		27.5	27.5		27.5	27.5	
Total Split (%)	50.0%	50.0%		50.0%	50.0%		50.0%	50.0%		50.0%	50.0%	
Maximum Green (s)	21.0	21.0		21.0	21.0		21.8	21.8		21.8	21.8	

335 Roosevelt Avenue 6: Churchill & Scott

	≯	-	\mathbf{r}	<	←	*	•	Ť	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
All-Red Time (s)	3.2	3.2		3.2	3.2		2.4	2.4		2.4	2.4	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		6.5			6.5			5.7			5.7	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	14.0	14.0		14.0	14.0		9.0	9.0		9.0	9.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)		16.3			16.3			26.5			26.5	
Actuated g/C Ratio		0.30			0.30			0.48			0.48	
v/c Ratio		0.06			0.73			0.55			0.37	
Control Delay		8.4			28.8			5.9			12.3	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		8.4			28.8			5.9			12.3	
LOS		А			С			А			В	
Approach Delay		8.4			28.8			5.9			12.3	
Approach LOS		А			С			А			В	
Queue Length 50th (m)		0.7			21.3			6.2			15.3	
Queue Length 95th (m)		4.1			38.3			28.0			34.3	
Internal Link Dist (m)		48.6			99.8			61.2			65.5	
Turn Bay Length (m)												
Base Capacity (vph)		457			448			909			709	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.05			0.57			0.55			0.37	
Intersection Summary												
Area Type:	Other											
Cycle Length: 55												
Actuated Cycle Length: 55												
Offset: 0 (0%), Referenced to pha	se 2:NBTL and	6:SBTL, St	art of Greer	า								
Natural Cycle: 55												
Control Type: Actuated-Coordinat	ed											
Maximum v/c Ratio: 0.73												
Intersection Signal Delay: 13.2					ersection LC							
Intersection Capacity Utilization 7	5.7%			IC	U Level of S	ervice D						
Analysis Period (min) 15												
Splits and Phases: 6: Churchill	& Scott											
Ø2 (R)					4	34						

Ø2 (R)		
27.5 s	27.5 s	
₩ Ø6 (R)	₩ Ø8	
27.5 s	27.5 s	

	٦	-	\mathbf{F}	4	+	*	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4.			4	
Traffic Volume (vph)	5	638	10	14	306	28	26	10	32	39	4 13	12
Future Volume (vph)	5	638	10	14	306	28	26	10	32	39	13	12
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			0.99			0.91			0.93	
Frt		0.998			0.989			0.936			0.975	
Flt Protected					0.998			0.981			0.970	
Satd. Flow (prot)	0	1761	0	0	1700	0	0	1563	0	0	1643	0
Flt Permitted		0.998			0.973			0.847			0.774	
Satd. Flow (perm)	0	1756	0	0	1656	0	0	1293	0	0	1257	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2			10			32			12	
Link Speed (k/h)		50			50			40			40	
Link Distance (m)		84.5			292.3			66.1			286.3	
Travel Time (s)		6.1			21.0			5.9			25.8	
Confl. Peds. (#/hr)	74		69	69		74	65		40	40		65
Confl. Bikes (#/hr)			7			4			4			4
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	3%	2%	2%	5%	2%	2%	2%	2%	2%	2%	2%
Adj. Flow (vph)	5	638	10	14	306	28	26	10	32	39	13	12
Shared Lane Traffic (%)						•						
Lane Group Flow (vph)	0	653	0	0	348	0	0	68	0	0	64	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	Eon	3.7	rugin	Lon	3.7	rugrit	Lon	0.0	rugit	Lon	0.0	rugin
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane		т.5			т.5			т.5			т.Ј	
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)	24	1.00	14	24	1.00	14	24	1.00	1.00	24	1.00	14
Number of Detectors	1	2	17	1	2	17	1	2	17	1	2	17
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.1	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		Cl+Ex	CI+Ex	
Detector 1 Channel	OI+LX				OI+LX					OITEX		
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)	0.0	28.7		0.0	28.7		0.0	28.7		0.0	28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Type		CI+EX			CI+EX			CI+EX				
Detector 2 Channel		0.0			0.0			0.0			0.0	
Detector 2 Extend (s)	Dawa	0.0 NA		Dame	0.0		Dama	0.0		Dama	0.0	
Turn Type	Perm			Perm	NA		Perm	NA		Perm	NA	
Protected Phases	0	2		0	6		0	8			4	
Permitted Phases	2	•		6	0		8	0		4		
Detector Phase	2	2		6	6		8	8		4	4	
Switch Phase	40.0	40.0		40.0	40.0		40.0	40.0		10.0	40.0	
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	34.4	34.4		34.4	34.4		25.0	25.0		25.0	25.0	
Total Split (s)	45.0	45.0		45.0	45.0		25.0	25.0		25.0	25.0	
Total Split (%)	64.3%	64.3%		64.3%	64.3%		35.7%	35.7%		35.7%	35.7%	
Maximum Green (s)	39.6	39.6		39.6	39.6		19.4	19.4		19.4	19.4	
Yellow Time (s)	3.3	3.3		3.3	3.3		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.1	2.1		2.1	2.1		2.3	2.3		2.3	2.3	
Lost Time Adjust (s)		0.0			0.0 5.4			0.0			0.0 5.6	
		5.4										

Brad Byvelds, Novatech

	≯	-	\mathbf{r}	1	←	۰.	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max		C-Max	C-Max		None	None		None	None	
Walk Time (s)	18.0	18.0		18.0	18.0		9.0	9.0		9.0	9.0	
Flash Dont Walk (s)	8.0	8.0		8.0	8.0		10.0	10.0		10.0	10.0	
Pedestrian Calls (#/hr)	15	15		0	0		15	15		15	15	
Act Effct Green (s)		55.6			55.6			11.8			11.8	
Actuated g/C Ratio		0.79			0.79			0.17			0.17	
v/c Ratio		0.47			0.26			0.28			0.29	
Control Delay		6.9			5.0			17.7			24.0	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		6.9			5.0			17.7			24.0	
LOS		А			А			В			С	
Approach Delay		6.9			5.0			17.7			24.0	
Approach LOS		А			А			В			С	
Queue Length 50th (m)		32.8			13.5			4.2			6.2	
Queue Length 95th (m)		85.0			36.5			12.2			13.8	
Internal Link Dist (m)		60.5			268.3			42.1			262.3	
Turn Bay Length (m)												
Base Capacity (vph)		1395			1317			381			357	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.47			0.26			0.18			0.18	
Intersection Summary												
Area Type:	Other											
Cycle Length: 70												
Actuated Cycle Length: 70												
Offset: 0 (0%), Referenced to pha	se 2:EBTL and	d 6:WBTL, S	tart of Gree	en								
Natural Cycle: 60												
Control Type: Actuated-Coordinate	ed											
Maximum v/c Ratio: 0.47												
Intersection Signal Delay: 7.9					tersection LC							
Intersection Capacity Utilization 62	2.2%			IC	U Level of Se	ervice B						
Analysis Period (min) 15												

Splits and Phases: 9: Roosevelt & Richmond

●Ø2 (R)	₩Ø4
45 s	25 s
🗸 🖉 Ø6 (R)	≪¶ Ø8
45 s	25 s

335 Roosevelt Avenue 12: Churchill & Wilmont

	≯	\mathbf{i}	•	Ť	↓ .	1
Movement	EBL	EBR	NBL	NBT	• SBT	SBR
Lane Configurations	¥	LDIX	NDL			ODIC
Traffic Volume (veh/h)	Y 8	16	22	4 536	1 474	7
Future Volume (Veh/h)	8	16	22	536	474	7
Sign Control	Stop	10	22	Free	Free	1
Grade	0%			0%	0%	
Peak Hour Factor	1.00	1 00	1.00		1.00	1.00
		1.00		1.00	474	
Hourly flow rate (vph)	8	16	22	536		7
Pedestrians	30			2	1	
Lane Width (m)	3.7			3.7	3.7	
Walking Speed (m/s)	1.1			1.1	1.1	
Percent Blockage	3			0	0	
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)				246	85	
pX, platoon unblocked	0.88	0.96	0.96			
vC, conflicting volume	1088	510	511			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	916	463	465			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)	0.1					
tF (s)	3.5	3.3	2.2			
p0 queue free %	97	97	98			
cM capacity (veh/h)	252	555	1018			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	24	558	481			
Volume Left	8	22	0			
Volume Right	16	0	7			
cSH	396	1018	1700			
Volume to Capacity	0.06	0.02	0.28			
Queue Length 95th (m)	1.5	0.5	0.0			
Control Delay (s)	14.7	0.6	0.0			
Lane LOS	В	A	0.0			
Approach Delay (s)	14.7	0.6	0.0			
Approach LOS	В	0.0	0.0			
	5					
Intersection Summary						
Average Delay			0.6			
Intersection Capacity Utilization			59.3%	ICI	J Level of Serv	ice
Analysis Period (min)			15			

	٦	-	\mathbf{r}	∢	←	*	1	Ť	۲	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	1.		<u>۲</u>	î,			्री	1		ਵੀ	1
Traffic Volume (vph)	164	304	49	128	456	38	30	284	76	23	275	284
Future Volume (vph)	164	304	49	128	456	38	30	284	76	23	275	284
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	30.0		0.0	25.0		0.0	15.0		15.0	15.0		15.0
Storage Lanes	1		0	1		0	0		1	0		1
Taper Length (m)	45.0	1 00	1 00	30.0	1.00	1 00	15.0	1 00	1 00	15.0	1 00	1 00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor Frt	0.95	0.96 0.979		0.82	0.99 0.988			0.99	0.85 0.850		0.99	0.77 0.850
Fit Protected	0.950	0.979		0.950	0.900			0.995	0.000		0.996	0.000
Satd. Flow (prot)	1662	1672	0	1695	1739	0	0	1757	1517	0	1719	1517
Flt Permitted	0.287	1072	U	0.550	1759	0	0	0.910	1317	0	0.944	1317
Satd. Flow (perm)	478	1672	0	805	1739	0	0	1590	1284	0	1621	1169
Right Turn on Red	470	1072	Yes	000	1700	Yes	U	1000	Yes	U	1021	Yes
Satd. Flow (RTOR)		13	100		6	100			160			160
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		292.3			123.0			116.6			246.3	
Travel Time (s)		21.0			8.9			8.4			17.7	
Confl. Peds. (#/hr)	86		163	163		86	84		54	54		84
Confl. Bikes (#/hr)			2			4			1			3
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	4%	2%	2%	2%	2%	2%	4%	3%	2%	11%	5%	2%
Adj. Flow (vph)	164	304	49	128	456	38	30	284	76	23	275	284
Shared Lane Traffic (%)												
Lane Group Flow (vph)	164	353	0	128	494	0	0	314	76	0	298	284
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		3.7			3.7			0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane	1.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Headway Factor	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
Turning Speed (k/h)	24 1	2	14	24 1	2	14	24 1	2	14 1	24 1	2	14 1
Number of Detectors Detector Template	Left	Z Thru		Left	Z Thru		Left	Z Thru	Right	Left	Z Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5	6.1	6.1	30.5	Right 6.1
Trailing Detector (m)	0.0	0.0		0.1	0.0		0.0	0.0	0.1	0.1	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8	6.1	6.1	1.8	6.1
Detector 1 Type	Cl+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex	Cl+Ex	CI+Ex	CI+Ex
Detector 1 Channel	OT EA	0. 2.4		0. 2.4	0. 2.4		0. 2/	0. 2.1	0. 2.4	0. 2.4	0. 2.4	0. 2.4
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		Cl+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	pm+pt	NA		Perm	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	5	2			6			8			4	
Permitted Phases	2			6			8		8	4		4
Detector Phase	5	2		6	6		8	8	8	4	4	4
Switch Phase												
Minimum Initial (s)	5.0	10.0		10.0	10.0		10.0	10.0	10.0	10.0	10.0	10.0
Minimum Split (s)	11.1	31.1		31.1	31.1		24.2	24.2	24.2	24.2	24.2	24.2
Total Split (s)	12.0	52.0		45.0	45.0		28.0	28.0	28.0	28.0	28.0	28.0
Total Split (%)	13.3%	57.8%		50.0%	50.0%		31.1%	31.1%	31.1%	31.1%	31.1%	31.1%
Maximum Green (s)	5.9	45.9		38.9	38.9		21.8	21.8	21.8	21.8	21.8	21.8
Yellow Time (s)	3.3	3.3		3.3	3.3		3.6	3.6	3.6	3.6	3.6	3.6

Brad Byvelds, Novatech

Lane Gonfigurations Traffic Volume (vph) Ideal Flow (vphpl) Storage Lanes Taper Length (m) Lane Util. Factor Ped Bike Factor Frt Fit Protected Satd. Flow (port) Fit Permitted Satd. Flow (perm) Right Turn on Red Satd. Flow (RTOR) Link Speed (k/h) Link Speed (k/h) Link Distance (m) Travel Time (s) Confl. Bides (#/hr)	Lane Group	Ø1	Ø3	Ø7	
<form>Tenfic Volume (oph)Ideal Flow (oph)Ideal Flow (oph)Strage Length (m)Strage Length (m)Iane U.H. FactorPoll lis FactorPol lis FactorStrage Length (m)Strage Length (m)Strag</form>		~ .	~~	~.	
<form>Funce YouldStrange Length (m)Strange Length (m)Strange Length (m)Taper Length (m)Lare Kingth (m)Lare Kingth (m)Lare Kingth (m)Strange Length (m)Strange Length (m)Strange Length (m)Fit PermitedStrange Length (m)Strange Length (m)S</form>					
<form>Storage Langik (npStorage Langik (nph)Lane U.H. FackoPed Bike FactorFriFri PortadedSafe J.Fox (prot)Fri PortadedSafe J.Fox (prot)Lane U.H. Spead (Nh)Lane U.H. Spead (Nh)Link Obtaken (Nh)<</form>					
<form>Strange Length (m)Taper Length (m)Taper Length (m)Lane ULI, FactoPed Bike FactorFitPed Bike FactorFitPed Bike FactorFitPentededSafi chow (pott)Fit PentededSafi chow (pott)Fit PentededSafi chow (Pott)Link Speed (wh)Link Speed (wh)Him Datamatic (with Safi chow (Pott)Safi chow (Pott)<t< td=""><td></td><td></td><td></td><td></td><td></td></t<></form>					
Shange Lanes Taper Length (m) Lane ULH Fackor Heiner Lane Length (L) Fackor Ped Bike Fackor Filler Contextor Filler Deckord (m) Stad - Row (prof) Filler Deckord (m) Stad - Row (prof) Stad - Row (prof) Stad - Row (prof) The Parented Stad - Row (prof) Stad - Row (prof) Stad - Row (prof) Link Spead (kh) Stad - Row (prof) Link Spead (kh) Stad - Row (prof) Stad - Row (prof) Stad - Row (prof) Filler Decko (m) Stad - Row (prof) Stad - Row (prof) Stad - Row (prof)					
Taper Length (m) Pace Siles Pactor Ped Siles Pactor Ped Siles Pactor Fil Sild. Flow (cont) File Pointed Sild. Flow (cont) File Pointed Sild. Flow (cont) Link. Speed (wh) Link. Speed (wh) Link. Speed (wh) Confil. Rels, Kilw (and the section) Sold. Flow (cont) Facer Link (Speed (wh) Link. Speed (wh) Shared Lane Traffic (Sk) Detedot Tophy<	Storage Lanes				
Lane Uki Factor Fri Fri Portitude Fri Fri Portitude Fri Fri Portitude Sadt Flow (pron) Fri Fri Portitude Sadt Flow (pron) Sad					
Ped Bike PackurFit ProtectadSidd Flow (jord)Fit PentitedSidd Flow (jord)Sidd Flow (jord)Sidd Flow (jord)Link Speed (with)Link Speed (with)Sidd Flow (jord)Sidd Flow (jord) <tr< td=""><td></td><td></td><td></td><td></td><td></td></tr<>					
Fin Fin Sald. Flow(prot) Fin Fin Parmited Sald. Flow(prot) Fin Fin Parmited Sald. Flow(prot) Fin Travel Time (s) Fin Confil Base, finh) Fin Confil Base, finh) Fin Confil Base, finh) Fin Sald. Flow(prot) Fin Paak Hoary Vehicles, finh) Fin Sald. Flow(prot) Fin Base Group Flow(prot) Fin Crosswalk With(m) Fin Turming Speed (wh) Fin Number O Datactors Fin Deteor To Datactors					
<form>File PlottedFile PermittedSada Flow (prom)Righ Turon RadSada Flow (prom)Link Speed (kh)Link Speed (kh)Link Speed (kh)Link Speed (kh)Link Speed (kh)Sada Flow (RTOR)Sada Flow (RTOR)Stade Take (Rth)Favel Tine (s)Confl. Bies (Rth)Favel Tine (s)Stared Lane Traffic (%)Lane Group Flow (vph)Stared Lane Traffic (%)Lane Starege (Rth)Lane Starege (Rth)Stared Lane Traffic (%)Lane Starege (Rth)Stared Lane Traffic (%)Link Offs(m)Trow take (Rth)Starege (Rth)Number of DetectorsDetector TampiasDetector Starege (Rth)Starege (Rth)Starege (Rth)Starege (Rth)Starege (Rth)Starege (Rth)Starege (Rth)Starege (Rth)Detector Starege (Rth)<!--</td--><td></td><td></td><td></td><td></td><td></td></form>					
Sadi. Jow (prom) F. Permited Sadi. Sow (perm) Sadi. Sow (perm) Sadi. Sow (perm) Sadi. Sow (PETOR) Som (Peter Sou Sow (Peter Sow (Peter Sou Sow (Peter Sow (Peter Sow (Peter Sow (Peter Sow (Peter Sow (Peter S					
<form>Fit PermittedStad. Flow (prom)Stad. Flow (prot NotLink Space (kn)Link Space (kn)Confl. Packs (kn)Stad. Flow (Prot Size (kn)Stare Lane Traffic (%)Stare Lane Traffic (%)Lane Group Flow (vph)Stare Lane Traffic (%)Lane Stade (kn)Stare Lane Traffic (%)Lane Stade (kn)Number of DateCorsStade Lane Traffic (%)Detector Traffic (%)Link Otherwice (kn)Stade (kn)Number of DateCorsDetector Stade(kn)Stade (kn)Stade (kn)<td></td><td></td><td></td><td></td><td></td></form>					
Sadd. Elox (parm) Rede (with) Link Open (with) Link Open (with) Link Open (with) Link Open (with) Conf. Beds. (Whth) Conf. Beds. (Whth) Conf. Beds. (Whth) Link Open (with) Share I Conf. Peds. (Whth) Link Open (with) Chare Redown (Whth) Link Open (with) Chare Share I Conf. (Whth) Link Open (Whth) Number of Detector (m) Link Open (Whth) Detector Share I Conf. (Whth) Link Open (Whth) Number of Detector (m) Link Open (Whth) Detector Share I Conf. (Whth) Link Open (Whth) Detector 1 Share (Whth) Link Open (Whth) Detector 1 Share (Whth)					
Right Turn on Red Link Spead (kfn) Link Spead (kfn) Link Spead (kfn) Confl. Peds (kfnr) Spead Long Flow (kph) Flow Vehicles (%) Spead Long Flow (kph) Lane Group Flow (kph) Lane Group Flow (kph) Lane Stand Lane Traffic (%) Lane Group Flow (kph) Cosswalk With(m) Lane Stand Lane Traffic (%) Lane Stand Lane Traffic (%) Cosswalk With(m) Cosswalk With(m) Toring Speed (kfn) Number Of Detectors Detector Tophate Land Glow (kfn) Turing Speed (kfn) Number Of Detectors Detector Tophate Lading Detector (m) Tailing Detector (m) Detector 1 Position(m) Detector 1 Position(m) Detector 1 Spead (kfn) Detector 1 Spead (kfn) Detector 1 Spead (kfn) Detector 1 Spead (kfn)					
Said. J. Rox (RTOR) Link Speed (k) Link Speed (k) Link Speed (k) Link Speed (k) Speed (k) Link Speed (k) Link Speed (k) Shard Lane Trafic (%) Lane Group Flow (k) Shard Lane Trafic (%) Lane Group Flow (k) Shard Lane Trafic (%) Lane Group Flow (k) Lane Group Flow	Right Turn on Red				
Link Speanor (m) Link Oslanor (m) Trava Trava Trans (s) Confl. Bikes (#hr) Confl. Bikes Confl.					
Link Disknee (m) Confl. Rikes (Hm) Confl. Rikes (Hm) Confl. Rikes (Hm) Peak Hour Factor Peak Hour Factor Heavy Vehicles (%) Add, Flow (vph) Enter Blocked Intersection Lane Alignment Median Wuthi(m) Link Offset(m) Conswalk Wuthi(m) Link Offset(m) Link Of					
Trave Trave (s) Conf. Beks; (#hr) Conf. Beks; (#hr) Sea (Laor Factor) Peak (Jour Factor) Sea (Laor Tarton) Heary Vehicles (%) Sared Laor Tarton (%) Shared Laor Tarton (%) Sared Laor Tarton (%) Lane Group Flow (vph) Emer Eloxed Intersection Lare Alignment Crosswalk Width(m) Modian Width(m) Trave value (Thu Laor Torswalk Width(m) Trave value (Thu Laor Headway Factor Trave value (Thu Laor Headway Factor (m) Edector Taropiale Detector Taropiale Sare (M) Number of Detector (m) Edector 1 Detector 1 Sare(m) Detector 1 Sare(m) Detector 1 Sare(m) Detector 1 Channel Sare(m) Detector 1 Channel Sare(m) Detector 1 Channel Sare(m) Detector 2 Sare(m) Sare(m) Det	Link Distance (m)				
Confl. Bkesk, Hinh					
Conf. Bikes (Whr) Peak Hour Factor Heary Vehicles (%) Aig. Flow (vph) Shared Lane Trific (%) Lane Group Flow (vph) Enter Blocked Intersection Lane Kingment Median Width(m) Link Offset(m) Crosswalk Width(m) Tow way Left Trun Lane Headway Factor Turning Speed (wh) Number of Detectors Detector Implate Leading Detector (m) Detector 1 Size(m) Detector 2 Size(m) Det					
Peak Use Teach Heavy Velnices (%) Adj. Flow (vpl) Shared Lane Traffic (%) Lane Group Provide Shared Lane Traffic (%) Lane Group Provide Shared Lane Traffic (%) Lane Group Provide Shared Lane Traffic (%) Lane Alignment Median Width(m) Median Width(m) Shared Lane Traffic (%) Lane Alignment Median Width(m) Crosswalk Width(m) Stared Lane Traffic (%) Two way Leff Turn Lane Headway Factor Turning Speed (wh) Number of Detectors Detector Topolite Land Traffic (%) Landing Detector (m) Traffing Detector (m) Detector 1 Position(m) Detector 1 Position(m) Detector 1 Position(m) Detector 1 Position(m) Detector 1 Channel Detector 1 Queue (s) Detector 1 Queue (s) Detector 1 Queue (s) Detector 2 Star(m) Detector 2 Star(m)					
Heavy Verhildes (%) Adj. Flow (vph) Shared Lane Traffic (%) Shared Lane Traffic (%) Lane Group Flow (vph) Enter Blocked Intersection Lane Algoment Median Width(m) Lane Algoment Median Width(m) Link Offset(m) Crosswalk Width(m) Trow way Left Tum Lane Headway Factor Tuming Speed (kth) Number of Detectors Detector Template Lang Detector (m) Trailing Detector (m) Trailing Detector (m) Detector 1 Positon(m) Detector 1 Positon(m) Detector 2 Positon(m) Detector 2 Positon(m) Detector 2 Positon(m) <td>Peak Hour Factor</td> <td></td> <td></td> <td></td> <td></td>	Peak Hour Factor				
Adj. Flow (vph) Lane Group Flow (vph) Enter Blocked Intersection Lane Alignment Median Witht(m) Link Offset(m) Crosswalk Witht(m) Link Offset(m) Crosswalk Witht(m) Link Offset(m) Crosswalk Witht(m) Link Offset(m) Crosswalk Witht(m) Link Offset(m) Number of Detectors Detector Template Leading Detector (m) Tailing Detector (m) Detector 1 Position(m) Detector 1 Size(m) Detector 1 Queue (s) Detector 1 Queue (s) Detector 2 Position(m) Detetor 2 Position(m) De					
Lene Group Flow (vph) Enter Blocked Intersection Lene Alignment Median Witht(m) Link Offset(m) Crosswalk Widh(m) Two way Left Turn Lane Headway Factor Tuming Speed (kh) Number of Detectors Detector Tempiate Leading Detector (m) Detector 1 Position(m) Detector 1 Size(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Position(m) Detector 2 Position(m) Detector 2 Size(m) Detector 3 Size(m) Detector 3 Size(m) Detector 3 Size(m) Detector 3 Size(m) Detector 4 Size(m) Detector 4 Size(m) Detector 4 Size(m) Detector 5 Size(m) Detector 6 Size(m) Detector 5 Size(m) Detector 6 Size(m) Detector 7 Size(Adj. Flow (vph)				
Lene Group Flow (vph) Enter Blocked Intersection Lene Alignment Median Witht(m) Link Offset(m) Crosswalk Widh(m) Two way Left Turn Lane Headway Factor Tuming Speed (kh) Number of Detectors Detector Tempiate Leading Detector (m) Detector 1 Position(m) Detector 1 Size(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Position(m) Detector 2 Position(m) Detector 2 Size(m) Detector 3 Size(m) Detector 3 Size(m) Detector 3 Size(m) Detector 3 Size(m) Detector 4 Size(m) Detector 4 Size(m) Detector 4 Size(m) Detector 5 Size(m) Detector 6 Size(m) Detector 5 Size(m) Detector 6 Size(m) Detector 7 Size(
Enter Bioked Intersection Lane Alignment Uane Alignment Median Widh(m) Unk Offsel(m) Second Two way Left Turn Lane Second Headway Factor Second Turning Speed (kh) Second Second Second Uning Speed (kh) Second Uning Speed (kh) Second Detector Inopiate Second Leading Detector (m) Second Detector Inopiate Second Detector Inopiate Second Detector I Size(m) Second Detector I Size(m) Second Detector 1 Size(m) Second Detector 1 Size(m) Second Detector 1 Size(m) Second Detector 1 Size(m) Second Detector 2 Second(m) Second Detector 2 Second(m) Second Detector 2 Second(m) Second Second Detector 2 Second(m) Second Second Detector 2 Second(m) Second Se					
Media Width(m) Link Offset(m) Two way Left Turn Lane Headway Factor Turning Speed (K/h) Number of Detectors Detector Template Leading Detector (m) Trailing Detector (m) Detector 1 Position(m) Detector 1 Size(m) Detector 1 Type Detector 1 Cueue (s) Detector 2 Size(m) Detector 1 Size(m) Detector 2 Size(m) Detector 3 Size(m) Detector 3 Size(m) Detector 3 Size(m)					
Media Width(m) Link Offset(m) Two way Left Turn Lane Headway Factor Turning Speed (K/h) Number of Detectors Detector Template Leading Detector (m) Trailing Detector (m) Detector 1 Position(m) Detector 1 Size(m) Detector 1 Type Detector 1 Cueue (s) Detector 2 Size(m) Detector 1 Size(m) Detector 2 Size(m) Detector 3 Size(m) Detector 3 Size(m) Detector 3 Size(m)	Lane Alignment				
Link Offset(m) Crosswalk Width(m) Crosswalk Width(m) Trow way Left Turn Lane Headway Factor Turning Speed (k/h) Number of Detectors Detector Template Leading Detector (m) Trailing Detector (m) Detector 1 Position(m) Detector 1 Size(m) Detector 1 Size(m) Detector 1 Channel Detector 1 Channel Detector 1 Delay (s) Detector 1 Delay (s) Detector 2 Size(m) Detector 3 Size(m) Detector 3 Size(m) Detector 3 Size(m) Detector 3 Size(m) Detector 4 Size(m) Detector 4 Size(m) Detector 4 Size(m) Detector 5 Size(m) Detector 7 Size(m)					
Two wy Left Turn Lane Headway Factor Turning Speed (kh) Number of Detectors Detector Template Leading Detector (m) Trailing Detector (m) Detector 1 Position(m) Detector 1 Size(m) Detector 2 Position(m) Detector 2 Size(m) Detector 1 Polay (s) Detector 2 Size(m) Detector 1 Size(m) Detector 2 Size(m) <	Link Offset(m)				
Headway Factor Tuming Speed (k/h) Number of Detectors Detector Template Leading Detector (m) Trailing Detector (m) Detector 1 Size(m) Detector 1 Delay (s) Detector 2 Position(m) Detector 2 Position(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Channel Detector 2 Extend (s) Tum Type Protectde Phases Detector Phase Switch Phase Minimum Spit (s) 3.0 3.0 3.0 Minimum Spit (s) 5.0 5.0 Total Spit (%) 6% 6% Maximum Green (s) 3.0 3.0	Crosswalk Width(m)				
Turning Speed (k/h) Number of Detectors Detector remplate Leading Detector (m) Trailing Detector 1 Position(m) Detector 1 Size(m) Detector 1 Size(m) Detector 1 Channel Detector 1 Extend (s) Detector 1 Size(m) Detector 1 Size(m) Detector 1 Size(m) Detector 1 Extend (s) Detector 1 Size(m) Detector 2 Size(m) Detector 1 Size(m) Detector 1 Size(m) Detector 2 Size(m) <td>Two way Left Turn Lane</td> <td></td> <td></td> <td></td> <td></td>	Two way Left Turn Lane				
Number of Detectors Detector Template Leading Detector (m) Trailing Detector (m) Detector 1 Position(m) Detector 1 Size(m) Detector 1 Type Detector 1 Type Detector 1 Extend (s) Detector 1 Delay (s) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Channel Detector 2 Size(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Extend (s) Tum Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) 3.0 Size (s) 5.0 Total Split (%) 6% Maximum Green (s) 3.0	Headway Factor				
Detector Template Leading Detector (m) Trailing Detector (m) Detector 1 Position(m) Detector 1 Size(m) Detector 1 Size(m) Detector 1 Type Detector 1 Channel Detector 1 Channel Detector 1 Queue (s) Detector 1 Delay (s) Detector 2 Position(m) Detector 2 Position(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Position(m) Detector 2 Channel Detector 2 Position(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Position(m) Detector 3 Size(m) Detector 2 Size(m) Detector 3 Size(m) Detector 2 Size(m) Detector 3 Size(m) Detector 3 Size(m) Size(m) Detector 4 Size(m) Size(m) Detector 5 Size(m) Size(
Leading Detector (m) Trailing Detector (m) Detector 1 Position(m) Detector 1 Size(m) Detector 1 Size(m) Detector 1 Channel Detector 1 Channel Detector 1 Queue (s) Detector 1 Queue (s) Detector 2 Note Detector 2 No					
Trailing Detector (m) Detector 1 Position(m) Detector 1 Size(m) Detector 1 Type Detector 1 Type Detector 1 Channel Detector 1 Extend (s) Detector 1 Channel Detector 1 Delay (s) Detector 2 Position(m) Detector 2 Position(m) Detector 2 Size(m) Detector 2 Position(m) Detector 2 Channel Detector 2 Position(m) Detector 2 Channel Detector 2 Size(m) Detector 2 Channel Detector 2 Notion(m) Detector 2 Channel Detector 2 Notion(m) Detector 2 Channel Detector 2 Size(m) Detector 2 Channel Detector 2 Size(m) Detector 2 Channel Detector 3 Size(m) Detector 3 Channel Detector 4 Size(m) Size(m) Size(m) Size(m) Detector 2 Size(m) Size(m) Detector 3 Size(m) Size(m) Size(m) Size(m) <td>Detector Template</td> <td></td> <td></td> <td></td> <td></td>	Detector Template				
Detector 1 Position(m) Detector 1 Size(m) Detector 1 Type Detector 1 Channel Detector 1 Queue (s) Detector 1 Queue (s) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Channel Detector 2 Channel Detector 2 Size(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Channel Detector 2 Channel Detector 2 Size(m) Detector 2 Size(m) Detector 2 Channel Detector 2 Size(m) Detector 2 Channel Detector 2 Size(m) Detector 2 Channel Detector 2 Channel Detector 2 Size(m) Protected Phases 1 3 7 Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 3.0 3.0 Sign 5.0 5.0 5.0 Total Split (s) 5.0 5.0 Total Split (%) 6% 6% Maximum Green (s) 3.0 3.0	Leading Detector (m)				
Detector 1 Size(m) Detector 1 Type Detector 1 Channel Detector 1 Channel Detector 1 Queue (s) Detector 1 Delay (s) Detector 2 Position(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Channel Detector 2 Channel Detector 2 Channel Detector 2 Extend (s) Turn Type Protected Phases 1 3 7 Permitted Phases Detector 5.0 Solution Solution Switch Phase 3.0 3.0 3.0 Solution Minimum Initial (s) 3.0 5.0 5.0 Tol Total Split (s) 5.0 5.0 5.0 Tol Maximum Green (s) 3.0 3.0 3.0 3.0					
Detector 1 Type Detector 1 Channel Detector 1 Extend (s) Detector 1 Queue (s) Detector 1 Delay (s) Detector 2 Position(m) Detector 2 Size(m) Detector 2 Type Detector 2 Channel Detector 2 Channel Detector 2 Extend (s) Tum Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) 3.0 3.0 Minimum Spiti (s) 5.0 5.0 Total Spiti (s) 5.0 5.0 Total Spiti (%) 6% 6% Maximum Green (s) 3.0 3.0	Detector 1 Position(m)				
Detector 1 Channel Detector 1 Extend (s) Detector 1 Queue (s) Detector 1 Delay (s) Detector 2 Position(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Channel Detector 2 Extend (s) Turn Type Protected Phases Detector Phase Switch Phase Minimum Initial (s) 3.0 3.0 Minimum Spit (s) 5.0 5.0 Total Spit (%) 6% 6% Maximum Green (s) 3.0 3.0					
Detector 1 Extend (s) Detector 1 Queue (s) Detector 1 Delay (s) Detector 2 Position(m) Detector 2 Size(m) Detector 2 Size(m) Detector 2 Type Detector 2 Channel Detector 2 Extend (s) Turn Type Protected Phases Detector Phase Switch Phase Switch Phase Minimum Initial (s) 3.0 3.0 Minimum Split (s) 5.0 5.0 Total Split (%) 6% 6% Maximum Green (s) 3.0 3.0	Detector 1 Type				
Detector 1 Queue (s) Detector 2 Position(m) Detector 2 Size(m) Detector 2 Extend (s) Turn Type Protected Phases 1 3 7 Permitted Phases 1 3 7 Detector Phase 1 3 7 Switch Phase					
Detector 1 Delay (s) Detector 2 Position(m) Detector 2 Size(m) Detector 2 Type Detector 2 Channel Detector 2 Extend (s) Turn Type Protected Phases 1 3 7 Permitted Phases Detector Phase 1 3 7 Permitted Phases 1 3 7 Detector Phase 1 3 7 Permitted Phases 1 3 7 Detector Phase 1 3 7 Permitted Phases 1 3 7 Detector Phase 5.0 5.0 5.0 Switch Phase					
Detector 2 Position(m) Detector 2 Size(m) Detector 2 Type Detector 2 Channel Detector 2 Extend (s) Turn Type Protected Phases 1 3 7 Permitted Phases 1 3 7 Detector Phase 5 5.0 5.0 Switch Phase 5.0 5.0 5.0 Minimum Initial (s) 3.0 3.0 3.0 Minimum Split (s) 5.0 5.0 5.0 Total Split (%) 6% 6% 6% Maximum Green (s) 3.0 3.0 3.0					
Detector 2 Size(m) Detector 2 Type Detector 2 Channel Detector 2 Extend (s) Turn Type Protected Phases 1 3 7 Permitted Phases 1 3 7 Detector Phases 1 3 7 Permitted Phases 1 3 7 Detector Phases 1 3 7 Switch Phase					
Detector 2 Type Detector 2 Channel Detector 2 Extend (s) Turn Type Protected Phases 1 3 7 Permitted Phases 1 3 7 Detector Phases 1 3 7 Detector Phases 5 5 5 Switch Phase					
Detector 2 Channel Detector 2 Extend (s) Turn Type Protected Phases 1 3 7 Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 3.0 3.0 Minimum Split (s) 5.0 5.0 Total Split (%) 6% 6% Maximum Green (s) 3.0 3.0					
Detector 2 Extend (s) Turn Type Protected Phases 1 3 7 Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 3.0 3.0 3.0 Minimum Split (s) 5.0 5.0 5.0 Total Split (s) 5.0 5.0 5.0 Total Split (%) 6% 6% 6% Maximum Green (s) 3.0 3.0 3.0					
Turn Type Protected Phases 1 3 7 Permitted Phases	Detector 2 Channel				
Protected Phases 1 3 7 Permitted Phases					
Permitted Phases Detector Phase Switch Phase Minimum Initial (s) 3.0 3.0 Minimum Split (s) 5.0 5.0 Total Split (s) 5.0 5.0 Total Split (%) 6% 6% Maximum Green (s) 3.0 3.0				_	
Detector Phase Switch Phase Minimum Initial (s) 3.0 3.0 Minimum Split (s) 5.0 5.0 Total Split (s) 5.0 5.0 Total Split (%) 6% 6% Maximum Green (s) 3.0 3.0	Protected Phases	1	3	7	
Switch Phase Minimum Initial (s) 3.0 3.0 Minimum Split (s) 5.0 5.0 Total Split (s) 5.0 5.0 Total Split (%) 6% 6% Maximum Green (s) 3.0 3.0					
Minimum Initial (s) 3.0 3.0 3.0 Minimum Split (s) 5.0 5.0 5.0 Total Split (s) 5.0 5.0 5.0 Total Split (%) 6% 6% 6% Maximum Green (s) 3.0 3.0 3.0					
Minimum Split (s) 5.0 5.0 5.0 Total Split (s) 5.0 5.0 5.0 Total Split (%) 6% 6% Maximum Green (s) 3.0 3.0					
Total Split (s) 5.0 5.0 5.0 Total Split (%) 6% 6% 6% Maximum Green (s) 3.0 3.0 3.0					
Total Split (%) 6% 6% Maximum Green (s) 3.0 3.0 3.0					
Maximum Green (s) 3.0 3.0 3.0	Total Split (s)				
Maximum Green (s) 3.0 3.0 3.0 Yellow Time (s) 2.0 2.0 2.0	Total Split (%)	6%		6%	
Yellow Time (s) 2.0 2.0 2.0				3.0	
	Yellow Time (s)	2.0	2.0	2.0	

	٦	-	\mathbf{r}	4	←	•	1	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
All-Red Time (s)	2.8	2.8		2.8	2.8		2.6	2.6	2.6	2.6	2.6	2.6
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Lost Time (s)	6.1	6.1		6.1	6.1			6.2	6.2		6.2	6.2
Lead/Lag	Lead	Lag		Lag	Lag		Lag	Lag	Lag	Lag	Lag	Lag
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	C-Max		C-Max	C-Max		None	None	None	None	None	None
Walk Time (s)		14.0		14.0	14.0		7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)		11.0		11.0	11.0		11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)		15		15	15		15	15	15	15	15	15
Act Effct Green (s)	52.9	52.9		40.2	40.2			24.8	24.8		24.8	24.8
Actuated g/C Ratio	0.59	0.59		0.45	0.45			0.28	0.28		0.28	0.28
v/c Ratio	0.45	0.36		0.36	0.63			0.72	0.16		0.67	0.65
Control Delay	13.3	11.1		20.7	24.0			39.1	0.7		36.6	19.6
Queue Delay	0.0	0.0		0.0	0.0			0.0	0.0		0.0	0.0
Total Delay	13.3	11.1		20.7	24.0			39.1	0.7		36.6	19.6
LOS	В	В		С	С			D	А		D	В
Approach Delay		11.8			23.3			31.6			28.3	
Approach LOS		В			С			С			С	
Queue Length 50th (m)	12.7	29.9		14.5	64.8			47.3	0.0		44.1	17.1
Queue Length 95th (m)	22.2	47.4		29.0	98.6			75.3	0.0		70.7	44.2
Internal Link Dist (m)		268.3			99.0			92.6			222.3	
Turn Bay Length (m)	30.0			25.0					15.0			15.0
Base Capacity (vph)	366	987		359	781			447	476		455	443
Starvation Cap Reductn	0	0		0	0			0	0		0	0
Spillback Cap Reductn	0	0		0	0			0	0		0	0
Storage Cap Reductn	0	0		0	0			0	0		0	0
Reduced v/c Ratio	0.45	0.36		0.36	0.63			0.70	0.16		0.65	0.64
Intersection Summary												
Area Type:	Other											
Cycle Length: 90												
Actuated Cycle Length: 90												
Offset: 0 (0%), Referenced to p Natural Cycle: 75	phase 2:EBTL and	d 6:WBTL, S	tart of Gree	n								
Control Type: Actuated-Coordi	inated											
Maximum v/c Ratio: 0.72	nutou											
Intersection Circal Delay 02.4												_

Intersection Signal Delay: 23.4 Intersection Capacity Utilization 92.4% Analysis Period (min) 15

Intersection LOS: C ICU Level of Service F

Splits and Phases: 3: Churchill & Richmond

₩ø1 - Ø2 (0	H	ø	3 🗘 Ø4
5 s 52 s		5s		28 s
∕ _{Ø5}	₩ Ø6 (R)	H	ø	7 108
12 s	45 s	5s		28 s

Lane Group	Ø1	Ø3	Ø7
All-Red Time (s)	0.0	0.0	0.0
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag	Lead	Lead	Lead
Lead-Lag Optimize?	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0
Recall Mode	None	None	None
Walk Time (s)			
Flash Dont Walk (s)			
Pedestrian Calls (#/hr)			
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
Control Delay			
Queue Delay			
Total Delay			
LOS			
Approach Delay			
Approach LOS			
Queue Length 50th (m)			
Queue Length 95th (m)			
Internal Link Dist (m)			
Turn Bay Length (m)			
Base Capacity (vph)			
Starvation Cap Reductn			
Spillback Cap Reductn			
Storage Cap Reductn			
Reduced v/c Ratio			
Intersection Summary			

								ſ		•	•
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	4			4			4			4	
1	7	11	320	8	46	18	148	235	41	117	3
1	7	11	320	8	46	18	148	235	41	117	3
1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
0.0		0.0	70.0		0.0	30.0		0.0	0.0		0.0
0		0	0		0	0		0	0		0
7.6			40.0			30.0			7.6		
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	0.97			0.97			0.96			1.00	
	0.922			0.983			0.921			0.997	
	0.997			0.959			0.998			0.987	
0	1187	0	0	1610	0	0	1583	0	0	1753	0
	0.980			0.743			0.985			0.845	
0	1165	0	0	1225	0	0	1559	0	0	1497	0
		Yes			Yes			Yes			Yes
	11			15			151			2	
	50			50			50			50	
	72.6			123.8			85.2			89.5	
	5.2			8.9			6.1			6.4	
41		17	17		41	33		11	11		33
		12			61			22			26
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2%	96%	2%	2%	96%	9%	2%	2%	2%	2%	2%	2%
1	7	11		8		18	148		41		3
											-
0	19	0	0	374	0	0	401	0	0	161	0
		No	No			No		No	No		No
											Right
				0.0							
				4.9							
1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
											14
1	2		1	2		1	2		1	2	
Left	Thru		Left	Thru		Left	Thru		Left	Thru	
						CI+Ex					
0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
	0. 2.4			0. 2.			0. 2.4			0. 2.	
	0.0			0.0			0.0			0.0	
Perm			Perm			Perm			Perm		
T OIIII			T UIII			T OIIII			1 Unit		
4	-		8	Ū		2	4		6	Ū	
	4			8			2			6	
4	4		0	0		2	2		U	U	
10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
50.9% 21.5	50.9% 21.5		50.9% 21.5	50.9% 21.5		49.1% 21.3	49.1% 21.3		49.1% 21.3	49.1% 21.3	
	1 1800 0.0 0 7.6 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 7 1800 1800 0 0 7.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 7 11 320 1800 1800 1800 1800 0.0 0.0 70.0 0 0 0 0.0 1.00 1.00 1.00 1.00 1.00 0.97 0.922 0.997 0 1187 0 0 0.980 0 0 0.980 0 1165 0 0 72.6 5.2 11 17 11 50 72.6 5.2 41 17 17 12 1.00 1.00 1.00 1.00 2% 96% 2% 2% 1 7 11 320 0 19 0 0 No No No No 1 7 11 320 0 19 0 0 No No No No 1.06 <td>1 7 11 320 8 1800 1800 1800 1800 1800 0 0 0 0 0 7.6 40.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.97 0.97 0.97 0.922 0.983 0.997 0.959 0 1187 0 0 1610 0.980 0.743 0 1613 125 Yes </td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	1 7 11 320 8 1800 1800 1800 1800 1800 0 0 0 0 0 7.6 40.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.97 0.97 0.97 0.922 0.983 0.997 0.959 0 1187 0 0 1610 0.980 0.743 0 1613 125 Yes	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

335 Roosevelt Avenue 6: Churchill & Scott

	≯	-	\mathbf{r}	1	←	*	1	1	1	1	Ŧ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
All-Red Time (s)	3.2	3.2		3.2	3.2		2.4	2.4		2.4	2.4	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		6.5			6.5			5.7			5.7	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	14.0	14.0		14.0	14.0		9.0	9.0		9.0	9.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)		19.3			19.3			23.5			23.5	
Actuated g/C Ratio		0.35			0.35			0.43			0.43	
v/c Ratio		0.05			0.85			0.53			0.25	
Control Delay		7.9			35.8			10.9			12.4	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		7.9			35.8			10.9			12.4	
LOS		А			D			В			В	
Approach Delay		7.9			35.8			10.9			12.4	
Approach LOS		А			D			В			В	
Queue Length 50th (m)		0.5			29.8			17.5			10.4	
Queue Length 95th (m)		3.5			#69.4			39.8			21.5	
Internal Link Dist (m)		48.6			99.8			61.2			65.5	
Turn Bay Length (m)												
Base Capacity (vph)		462			488			752			640	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.04			0.77			0.53			0.25	
Intersection Summary	•											
Area Type: Cycle Length: 55	Other											
Actuated Cycle Length: 55												
Offset: 0 (0%), Referenced to pha	ase 2 [.] NBTL and	6.SBTI St	art of Gree	n								
Natural Cycle: 55		0.02.2, 0.		•								
Control Type: Actuated-Coordinat	ted											
Maximum v/c Ratio: 0.85												
Intersection Signal Delay: 20.9				Int	ersection LC	DS: C						
Intersection Capacity Utilization 6	5.4%				U Level of S							
Analysis Period (min) 15												
# 95th percentile volume excee	ds capacity, que	eue may be	longer.									
Queue shown is maximum after		·	Ŭ									
Splits and Phases: 6: Churchill	& Scott											
Ø2 (R)					4	4						
27 s					28 s							
Ø6 (R)					Tø							

28 s

27 s

	٦	-	\mathbf{F}	∢	+	*	1	Ť	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			\$	
Traffic Volume (vph)	11	416	22	24	4 703	40	34	4 19	48	35	12	17
Future Volume (vph)	11	416	22	24	703	40	34	19	48	35	12	17
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.98			0.98			0.82			0.84	
Frt		0.993			0.993			0.936			0.964	
Flt Protected		0.999			0.998			0.983			0.973	
Satd. Flow (prot)	0	1727	0	0	1746	0	0	1467	0	0	1549	0
Flt Permitted	0	0.981	0	0	0.980	0	0	0.888	0	0	0.815	0
Satd. Flow (perm)	0	1694	0	0	1707	0	0	1219	0	0	1176	0
" "	0	1094		0	1707		0	1219		U	1170	
Right Turn on Red		^	Yes		7	Yes		40	Yes		47	Yes
Satd. Flow (RTOR)		6			7			48			17	
Link Speed (k/h)		50			50			40			40	
Link Distance (m)		84.5			292.3			66.1			286.3	
Travel Time (s)		6.1			21.0			5.9			25.8	
Confl. Peds. (#/hr)	135		182	182		135	116		92	92		116
Confl. Bikes (#/hr)			3			9			2			5
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles (%)	2%	3%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Adj. Flow (vph)	11	416	22	24	703	40	34	19	48	35	12	17
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	449	0	0	767	0	0	101	0	0	64	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	Lon	3.7	rugitt	Lon	3.7	rugni	Lon	0.0	rugin	Lon	0.0	rugru
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.9			4.9			4.9			4.9	
Two way Left Turn Lane		4.5			4.3			4.3			4.3	
	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
Headway Factor		1.00			1.00			1.00			1.00	
Turning Speed (k/h)	24	•	14	24	•	14	24	0	14	24	0	14
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	6.1	30.5		6.1	30.5		6.1	30.5		6.1	30.5	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	6.1	1.8		6.1	1.8		6.1	1.8		6.1	1.8	
Detector 1 Type	CI+Ex	CI+Ex		Cl+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		28.7			28.7			28.7			28.7	
Detector 2 Size(m)		1.8			1.8			1.8			1.8	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	i enni	2		I GIIII	6		I GIIII	8		I CIIII	4	
Permitted Phases	2	2		6	0		8	0		4	4	
		0			6		8	0			4	
Detector Phase	2	2		6	0		0	8		4	4	
Switch Phase	40.0	40.0		40.0	40.0		40.0	40.0		40.0	40.0	
Minimum Initial (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	34.4	34.4		34.4	34.4		25.0	25.0		25.0	25.0	
Total Split (s)	60.0	60.0		60.0	60.0		25.0	25.0		25.0	25.0	
Total Split (%)	70.6%	70.6%		70.6%	70.6%		29.4%	29.4%		29.4%	29.4%	
Maximum Green (s)	54.6	54.6		54.6	54.6		19.4	19.4		19.4	19.4	
Yellow Time (s)	3.3	3.3		3.3	3.3		3.3	3.3		3.3	3.3	
All-Red Time (s)	2.1	2.1		2.1	2.1		2.3	2.3		2.3	2.3	
		0.0			0.0			0.0			0.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	

Brad Byvelds, Novatech

	٦	-	\mathbf{r}	1	←	•	•	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	C-Max	C-Max		C-Max	C-Max		Max	Max		Max	Max	
Walk Time (s)	18.0	18.0		18.0	18.0		9.0	9.0		9.0	9.0	
Flash Dont Walk (s)	8.0	8.0		8.0	8.0		10.0	10.0		10.0	10.0	
Pedestrian Calls (#/hr)	15	15		0	0		15	15		15	15	
Act Effct Green (s)		54.6			54.6			19.4			19.4	
Actuated g/C Ratio		0.64			0.64			0.23			0.23	
v/c Ratio		0.41			0.70			0.32			0.23	
Control Delay		8.7			14.1			18.9			23.4	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		8.7			14.1			18.9			23.4	
LOS		А			В			В			С	
Approach Delay		8.7			14.1			18.9			23.4	
Approach LOS		Α			В			В			С	
Queue Length 50th (m)		31.0			71.0			7.0			6.2	
Queue Length 95th (m)		48.3			111.4			20.1			16.5	
Internal Link Dist (m)		60.5			268.3			42.1			262.3	
Turn Bay Length (m)												
Base Capacity (vph)		1090			1099			315			281	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.41			0.70			0.32			0.23	
Intersection Summary												
Area Type:	Other											
Cycle Length: 85												
Actuated Cycle Length: 85												
Offset: 78 (92%), Referenced to	o phase 2:EBTL a	and 6:WBTL	, Start of G	reen								
Natural Cycle: 60												
Control Type: Actuated-Coordin	nated											
Maximum v/c Ratio: 0.70												
Intersection Signal Delay: 13.1					tersection LC							
Intersection Capacity Utilization	n 79.0%			IC	U Level of S	ervice D						
Analysis Period (min) 15												
Splits and Phases: 9: Roose	velt & Richmond											

J → Ø2 (R)	Ø4
60 s	25 s
₩ Ø6 (R)	<∎ Ø8
60 s	25 s

335 Roosevelt Avenue 12: Churchill & Wilmont

EBL EBR NBL NBT SBT SBR 9 Configurations 1		۶	>	•	t	Ļ	~
Configurations V C C Control Size	Movement	FBL	FBR	NRI	-	SBT	SBR
ic Volume (veh/h) 6 7 23 362 584 14 Control Stop Free Free <t< td=""><td></td><td></td><td>LDIX</td><td>NDL</td><td></td><td></td><td>ODIX</td></t<>			LDIX	NDL			ODIX
re Volume (Veh/h) 6 7 23 362 584 14 Control Stop Free Free le 0% 0% 0% 0% (Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 ty flow rate (vph) 6 7 23 362 584 14 estrians 37 1 e Widh (m) 3.7 3.7 ing Speed (m/s) 1.1 ent Blockage 3 0 t turn flare (veh) ian storage veh) ream signal (m) 246 85 stage 1 conf vol stage 2 conf vol unblocked 0.93 conflicting volume 1037 628 635 stage 1 conf vol stage 2 conf vol unblocked vol 1001 628 635 stage 2 conf vol unblocked vol 1001 628 635 ingle (s) 6.4 6.2 4.1 stage s)) 3.5 3.3 2.2 ueue free % 97 98 97 apacity (veh/h) 235 466 915 tion, Lane # EB 1 NB 1 SB 1 me Total 13 385 598 me Left 6 23 0 me Right 7 0 14 me Total 13 0.35 stage 1 conf vol stage 2 conf vol ueue free % 97 98 97 apacity (veh/h) 2.35 466 915 tion, Lane # EB 1 NB 1 SB 1 me Total 13 0.35 stage 1 conf vol stage 2 conf vol stage 2 conf vol ueue free % 97 98 97 apacity (veh/h) 2.35 466 915 tion, Lane # EB 1 NB 1 SB 1 me Total 13 0.35 stage 1 conf vol stage 2 conf vol stage 2 conf vol ueuen free % 97 98 97 apacity (veh/h) 2.35 466 915 tion, Lane # EB 1 NB 1 SB 1 me Total 13 0.35 ueuen free % 97 9.8 97 apacity 0.04 0.03 0.35 ueuen free % 97 ge Delay 0.5 section Summary age Delay 0.5 ICU Level of Service			7	23	362	584	1/
Control Stop Free Free Free le 0% 0% 0% 0% k Hour Factor 1.00 1.00 1.00 1.00 1.00 ly flow rate (vph) 6 7 23 362 584 14 settians 37 1 1 1 1 eWidth (m) 3.7 3.7 3.7 3.7 stage peed (m/s) 1.1 1.1 1.1 1.1 ent Blockage 3 0 0 1 ian storage veh) 246 85 3 3 stage 1 conf vol 1037 628 635 5 stage 1 conf vol 1001 628 635		-	-				
le 0% 0% 0% 0% k Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 ty flow rate (vph) 6 7 23 362 584 14 settians 37 1 1 1 1 eWidth (m) 3.7 3.7 3.7 3.7 sing Speed (m/s) 1.1 1.1 1.1 1.1 ewidth (m) 3.7 3.7 3.7 3.7 ian speed (m/s) 1.1 1.1 1.1 1.1 ent Blockage 3 0 0 0 1 ian storage veh)			1	20			14
K Hour Factor 1.00	Grade						
ty flow rate (vph) 6 7 23 362 584 14 estrians 37 1 e Width (m) 3.7 3.7 ding Speed (m/s) 1.1 et llockage 3 t turn flare (veh) an type None None ian storage veh) ream signal (m) 246 85 oblatoon unblocked 0.93 conflicting volume 1037 628 635 stage 1 conf vol stage 2 conf vol unblocked vol 1001 628 635 ingle (s) 6.4 6.2 4.1 'stage (s)) 3.5 3.3 2.2 ueue free % 97 98 97 apacity (veh/h) 235 466 915 ztion, Lane # EB 1 NB 1 SB 1 me Total 13 385 598 me Left 6 23 0 me Right 7 0 14 320 915 1700 me to Capacity 0.44 0.03 0.35 Le Length 95th (m) 1.0 0.6 0.0 rol Delay (s) 16.7 0.8 0.0 ±LOS C A coach LOS C section Summary age Delay 0.5 section Summary age Delay 0.5 section Summary age Delay 0.5 section Summary			1.00	1.00			1 00
Strians 37 1 Width (m) 3.7 3.7 ing Speed (m/s) 1.1 1.1 ent Blockage 3 0 tum flare (veh) 0 0 ian type None None ian storage veh) 246 85 ream signal (m) 246 85 oblatoon unblocked 0.93 conflicting volume 1037 628 635 stage 1 conf vol stage 2 conf vol unblocked vol 1001 628 635 ingle (s) 6.4 6.2 4.1 stage 2 conf vol vol vol vol vol vol vol							
Width (m) 3.7 3.7 sing Speed (m/s) 1.1 1.1 ent Blockage 3 0 t turn flare (veh) 0 0 ian type None None ian storage veh) 246 85 ream signal (m) 246 85 platoon unblocked 0.93 0 conflicting volume 1037 628 635 stage 1 conf vol stage 2 conf vol unblocked vol 1001 628 635 ingle (s) 6.4 6.2 4.1 4.1 4.1 stage (s) 0 3.5 3.3 2.2 4.6 915 y ueue free % 97 98 97 98 97 98 97 98 97 93			1	23	362		14
sing Speed (m/s) 1.1 1.1 ent Blockage 3 0 t turn flare (veh) 0 ian type None ian storage veh) ream signal (m) zeam signal (m) 246 blatoon unblocked 0.93 conflicting volume 1037 628 635 stage 1 conf vol stage 2 conf vol unblocked vol 1001 628 635 unblocked vol 1001 628 635 istage (s)	Pedestrians					-	
ent Blockage 3 0 t turn flare (veh) None None ian storage veh) None None ream signal (m) 246 85 Jolatoon unblocked 0.93 Stage 1 conf vol stage 1 conf vol 1037 628 635 stage 2 conf vol unblocked vol 1001 628 635 unblocked vol 1001 628 635 ingle (s) 6.4 6.2 4.1 'stage (s) 'stage (s) 'stage (s) 'stage (s)) 3.5 3.3 2.2 ueue free % '97 '98 '97 ueue free % '97 '98 '97 '98 '97 '98 '97 ueue free % '97 '98 '97 '98 '97 '98 '97 apacity (veh/h) '235 466 '915 '500 '100 me '100 '100 '100 '100 '100 '100 '100 '100 '100 '100 '100 '100 '100 '100 '100 <t< td=""><td>Lane Width (m)</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Lane Width (m)						
t turn flare (veh) ian type None None ian storage veh) ream signal (m) 246 85 oblatoon unblocked 0.93 conflicting volume 1037 628 635 stage 1 conf vol stage 2 conf vol unblocked vol 1001 628 635 ingle (s) 6.4 6.2 4.1 stage (s)) 3.5 3.3 2.2 ueue free % 97 98 97 apacity (veh/h) 235 466 915 ction, Lane # EB 1 NB 1 SB 1 me Total 13 385 598 me Left 6 23 0 me Right 7 0 14 320 915 1700 me to Capacity 0.04 0.03 0.35 ue Length 95th (m) 1.0 0.6 0.0 rol Delay (s) 16.7 0.8 0.0 a LOS C A coach Delay (s) 16.7 0.8 0.0 section Summary age Delay 0.5 section Summary age Delay 0.5 ICU Level of Service							
None None None ian storage veh) 246 85 ream signal (m) 246 85 opation unblocked 0.93 5 stage 1 conf vol 1037 628 635 stage 2 conf vol unblocked vol 1001 628 635 ingle (s) 6.4 6.2 4.1 5 ingle (s) 6.4 6.2 4.1 5 ingle (s) 6.4 6.2 4.1 5 istage (s) 97 98 97 98 97 apacity (veh/h) 235 466 915 5 5 ction, Lane # EB 1 NB 1 SB 1 5 5 me Total 13 385 598 5 5 me Eqft 6 23 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<	Percent Blockage	3				0	
ian storage veh) 246 85 ream signal (m) 246 85 platoon unblocked 0.93 5 stage 1 conf vol 1037 628 635 stage 2 conf vol 1001 628 635 ingle (s) 6.4 6.2 4.1 stage (s) 1001 628 635 ingle (s) 6.4 6.2 4.1 stage (s) 101 628 635) 3.5 3.3 2.2 ueue free % 97 98 97 apacity (veh/h) 235 466 915 ction, Lane # EB 1 NB 1 SB 1 me Total 13 385 598 me Left 6 23 0 me to Capacity 0.04 0.03 0.35 ue Length 95th (m) 1.0 0.6 0.0 rol Delay (s) 16.7 0.8 0.0 section Summary 0.5 ICU Level of Service section Capacity Utilization 50.0% ICU Level of Service </td <td>Right turn flare (veh)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Right turn flare (veh)						
ream signal (m) 246 85 balatoon unblocked 0.93 0.93 conflicting volume 1037 628 635 stage 1 conf vol stage 2 conf vol 1001 628 635 unblocked vol 1001 628 635 635 ingle (s) 6.4 6.2 4.1 1001 'stage (s) 3.5 3.3 2.2 2.2 ueue free % 97 98 97 389 97 apacity (veh/h) 235 466 915 508 100 ction, Lane # EB 1 NB 1 SB 1 100	Median type				None	None	
blatoon unblocked 0.93 conflicting volume 1037 628 635 stage 1 conf vol stage 2 conf vol unblocked vol 1001 628 635 unblocked vol 1001 628 635 635 64 6.2 4.1 stage (s) 6.4 6.2 4.1 628 635 635 ueue free % 97 98 97 98 97 98 97 apacity (veh/h) 235 466 915 64 915 64 915 623 0 623 0 623 0 623 0 635	Median storage veh)						
blatoon unblocked 0.93 conflicting volume 1037 628 635 stage 1 conf vol stage 2 conf vol unblocked vol 1001 628 635 unblocked vol 1001 628 635 635 64 6.2 4.1 stage (s) 6.4 6.2 4.1 628 635 635 ueue free % 97 98 97 98 97 98 97 apacity (veh/h) 235 466 915 64 915 64 915 623 0 623 0 623 0 623 0 635	Upstream signal (m)				246	85	
conflicting volume 1037 628 635 stage 1 conf vol stage 2 conf vol	pX, platoon unblocked	0.93					
stage 1 conf vol stage 2 conf vol unblocked vol 1001 628 635 ingle (s) 6.4 6.2 4.1 stage (s)	vC, conflicting volume	1037	628	635			
stage 2 conf vol unblocked vol 1001 628 635 ingle (s) 6.4 6.2 4.1 stage (s)	vC1, stage 1 conf vol						
unblocked vol 1001 628 635 ingle (s) 6.4 6.2 4.1 stage (s) 3.5 3.3 2.2 ueue free % 97 98 97 apacity (veh/h) 235 466 915 ction, Lane # EB 1 NB 1 SB 1 me Total 13 385 598 me Left 6 23 0 me Right 7 0 14 320 915 1700 me to Capacity 0.04 0.03 0.35 ue Length 95th (m) 1.0 0.6 0.0 rol Delay (s) 16.7 0.8 0.0 a LOS C A	vC2, stage 2 conf vol						
ingle (s) 6.4 6.2 4.1 I stage (s) 3.5 3.3 2.2 ueue free % 97 98 97 apacity (veh/h) 235 466 915 ction, Lane # EB 1 NB 1 SB 1 me Total 13 385 598 me Left 6 23 0 me Right 7 0 14 320 915 1700 me to Capacity 0.04 0.03 0.35 ue Length 95th (m) 1.0 0.6 0.0 irol Delay (s) 16.7 0.8 0.0 a LOS C A	vCu, unblocked vol	1001	628	635			
istage (s) 3.5 3.3 2.2 ueue free % 97 98 97 apacity (veh/h) 235 466 915 ction, Lane # EB 1 NB 1 SB 1 me Total 13 385 598 me Left 6 23 0 me Right 7 0 14 320 915 1700 me to Capacity 0.04 0.03 0.35 ue Length 95th (m) 1.0 0.6 0.0 trol Delay (s) 16.7 0.8 0.0 apoch LOS C A 0 0 section Summary 0.5 section Capacity Utilization 0.5	tC, single (s)						
3.5 3.3 2.2 ueue free % 97 98 97 apacity (veh/h) 235 466 915 ction, Lane # EB 1 NB 1 SB 1 me Total 13 385 598 me Left 6 23 0 me Right 7 0 14 320 915 1700 me to Capacity 0.04 0.03 0.35 ue Length 95th (m) 1.0 0.6 0.0 rol Delay (s) 16.7 0.8 0.0 e LOS C A	tC, 2 stage (s)	0.1	0.2				
ueue free % 97 98 97 vapacity (veh/h) 235 466 915 ction, Lane # EB 1 NB 1 SB 1 me Total 13 385 598 me Left 6 23 0 me Right 7 0 14 320 915 1700 me to Capacity 0.04 0.03 0.35 ue Length 95th (m) 1.0 0.6 0.0 trol Delay (s) 16.7 0.8 0.0 e LOS C A	tF (s)	35	33	22			
apacity (veh/h) 235 466 915 ction, Lane # EB 1 NB 1 SB 1 me Total 13 385 598 me Left 6 23 0 me Right 7 0 14 320 915 1700 me to Capacity 0.04 0.03 0.35 ue Length 95th (m) 1.0 0.6 0.0 rol Delay (s) 16.7 0.8 0.0 e LOS C A 0 oroach Delay (s) 16.7 0.8 0.0 section Summary 0.5 50.0% ICU Level of Service							
ction, Lane # EB 1 NB 1 SB 1 me Total 13 385 598 me Left 6 23 0 me Right 7 0 14 320 915 1700 me to Capacity 0.04 0.03 0.35 ue Length 95th (m) 1.0 0.6 0.0 trol Delay (s) 16.7 0.8 0.0 eLOS C A							
me Total 13 385 598 me Left 6 23 0 me Right 7 0 14 320 915 1700 me to Capacity 0.04 0.03 0.35 ue Length 95th (m) 1.0 0.6 0.0 rol Delay (s) 16.7 0.8 0.0 ach Delay (s) 16.7 0.8 0.0 section Summary 0.5 section Capacity Utilization 50.0%							
me Left 6 23 0 me Right 7 0 14 320 915 1700 me to Capacity 0.04 0.03 0.35 ue Length 95th (m) 1.0 0.6 0.0 rol Delay (s) 16.7 0.8 0.0 acch Delay (s) 16.7 0.8 0.0 coach Delay (s) 16.7 0.8 0.0 section Summary 0.5 section Capacity Utilization 50.0%	Direction, Lane #						
T 0 14 320 915 1700 me to Capacity 0.04 0.03 0.35 ue Length 95th (m) 1.0 0.6 0.0 trol Delay (s) 16.7 0.8 0.0 2 LOS C A	Volume Total						
320 915 1700 me to Capacity 0.04 0.03 0.35 ue Length 95th (m) 1.0 0.6 0.0 trol Delay (s) 16.7 0.8 0.0 acch Delay (s) 16.7 0.8 0.0 coach Delay (s) 16.7 0.8 0.0 section Summary 0.5 section Capacity Utilization 50.0% ICU Level of Service	Volume Left						
me to Capacity 0.04 0.03 0.35 ue Length 95th (m) 1.0 0.6 0.0 trol Delay (s) 16.7 0.8 0.0 e LOS C A toach Delay (s) 16.7 0.8 0.0 section Summary C A age Delay 0.5 Section Capacity Utilization	Volume Right	-					
ue Length 95th (m) 1.0 0.6 0.0 rol Delay (s) 16.7 0.8 0.0 2 LOS C A roach Delay (s) 16.7 0.8 0.0 coach LOS C section Summary age Delay 0.5 section Capacity Utilization 50.0% ICU Level of Service	cSH	320	915	1700			
ue Length 95th (m) 1.0 0.6 0.0 rol Delay (s) 16.7 0.8 0.0 2 LOS C A roach Delay (s) 16.7 0.8 0.0 coach LOS C section Summary age Delay 0.5 section Capacity Utilization 50.0% ICU Level of Service	Volume to Capacity	0.04	0.03	0.35			
Include Include <t< td=""><td>Queue Length 95th (m)</td><td>1.0</td><td>0.6</td><td>0.0</td><td></td><td></td><td></td></t<>	Queue Length 95th (m)	1.0	0.6	0.0			
LOS C A oach Delay (s) 16.7 0.8 0.0 oach LOS C Section Summary age Delay 0.5 section Capacity Utilization 50.0% ICU Level of Service	Control Delay (s)						
oach Delay (s) 16.7 0.8 0.0 oach LOS C section Summary age Delay 0.5 section Capacity Utilization 50.0% ICU Level of Service	Lane LOS			0.0			
exection Summary age Delay section Capacity Utilization 0.5 ICU Level of Service				0.0			
section Summary age Delay 0.5 section Capacity Utilization 50.0% ICU Level of Service	Approach LOS		0.0	0.0			
age Delay 0.5 section Capacity Utilization 50.0% ICU Level of Service		5					
section Capacity Utilization 50.0% ICU Level of Service	Intersection Summary						
	Average Delay						
vsis Period (min) 15	Intersection Capacity Utilization				IC	U Level of Serv	vice
	Analysis Period (min)			15			