

P.O. Box 189 Kemptville, Ontario K0G 1J0

Hydrogeology •

(613) 860-0923

FAX: (613) 258-0475

REPORT ON

PHASE II ENVIRONMENTAL SITE ASSESSMENT 114 ISABELLA STREET CITY OF OTTAWA, ONTARIO

Submitted to:

Ashlar Homes 22 Huntview Private Ottawa, Ontario K1V 0M5

DATE November 25, 2013 REVISION DATE March 28, 2014

DISTRIBUTION

6 copies Ashlar Homes1 copy Kollaard Associates Inc.

130293-2 (rev.1)

Authorized by the Association of Professional Engineers of Ontario to offer professional engineering services.

TABLE OF CONTENTS

-i-

2.0 INTRODUCTION 2 2.1 BACKGROUND 2 2.2.3 SITE DESCRIPTION 2 2.3 PROPERTY OWNERSHIP 2 2.4 CURRENT AND PROPOSED FUTURE USES 3 3.5 APPLICABLE SITE CONDITION STANDARD 3 3.0 BACKGROUND INFORMATION 3 3.1 PHYSICAL SETTING 3 3.2 PAST INVESTIGATIONS 4 4.0 SCOPE OF THE INVESTIGATION 4 4.1 OVERVIEW 4 4.1 OVERVIEW 4 4.1 OVERVIEW 4 4.1 OVERVIEW 4 4.2 MEDIA INVESTIGATION 4 4.1 OVERVIEW 4 4.1 OVERVIEW 4 4.1 OVERVIEW 4 5.1 INVESTIGATION METHOD 5 5.1 GENERAL 8 5.1 GENERAL 8 5.2 DRILLING AND EXCAVATING 8 5.3 SOLD SAMPLING 8 5.4 FIELD SCREE	1.0 EXECUTIVE SUMMARY	1
22 SITE DESCRIPTION 2 23 PROPERTY OWNERSHIP 2 24 CURRENT AND PROPOSED FUTURE USES 3 30 BACKGROUND INFORMATION 3 31 PHYSICAL SETTING 3 32 PAST INVESTIGATIONS 4 40 SCOPE OF THE INVESTIGATIONS 4 41 OVERVIEW 4 42 MEDIA INVESTIGATED 5 43 PHASE ONE CONCEPTUAL SITE MODEL 5 44 DEVIATIONS FROM SAMPLING AND ANALYSIS PLAN 7 45 INVESTIGATION METHOD 8 51 GENERAL 8 52 DRILLING AND EXCAVATING 8 53 SOL SAMPLING 8 54 FIELD SCREENING MEASUREMENTS 9 55 GROUNDWATER: FIELD MEASUREMENTS 9 56 GROUNDWATER: SAMPLING 10 57 GROUNDWATER: SAMPLING 10 58 SEDIMENT SAMAGEMENT PROCEDURES 10 59 SALYLYTCALTESTING 10 510 REVIEW AND EVALUATION 12	2.0 INTRODUCTION	2
2.3 PROPERTY OWNERSHIP 2 2.4 CURRENT AND PROPOSED FUTURE USES 3 3.5 APPLICABLE SITE CONDITION STANDARD 3 3.0 BACKGROUND INFORMATION 3 3.1 PHYSICAL SETTING 3 3.2 PAST INVESTIGATIONS 4 4.0 SCOPE OF THE INVESTIGATION 4 4.1 OVERVIEW 4 4.2 MEDIA INVESTIGATED 5 4.3 PHASE ONE CONCEPTUAL SITE MODEL 5 4.4 DEVIATIONS FROM SAMPLING AND ANALYSIS PLAN 7 5.4 DEVIATION STROM SAMPLING AND ANALYSIS PLAN 7 5.1 IMPEDIMENTS 7 5.0 INVESTIGATION METHOD 8 5.1 GENERAL 8 5.2 DRILLING AND EXCAVATING 8 5.3 SOIL SAMPLING 8 5.4 FIELD SCREENING MEASUREMENTS 9 5.5 GROUNDWATER: FIELD MASUREMENT OF WATER QUALITY PARAMETERS 10 5.4 FIELD SCREENING MEASUREMENT OF WATER QUALITY PARAMETERS 10 5.5 GROUNDWATER SAMPLING 12 <t< td=""><td></td><td></td></t<>		
2.4 CURRENT AND PROPOSED FUTURE USES 3 2.5 APPLICABLE SITE CONDITION STANDARD 3 3.0 BACKGROUND INFORMATION 3 3.1 PHYSICAL SETTING 3 3.2 PAST INVESTIGATIONS 4 4.0 SCOPE OF THE INVESTIGATION 4 4.1 OVERVIEW 4 4.2 MEDIA INVESTIGATED 5 4.3 PHASE ONE CONCEPTUAL SITE MODEL 5 4.3 PHASE ONE CONCEPTUAL SITE MODEL 5 4.4 DEVIATIONS FROM SAMPLING AND ANALYSIS PLAN 7 5.0 INVESTIGATION METHOD 8 5.1 GENERAL 8 5.2 DRILLING AND EXCAVATING 8 5.3 SOL SAMPLING 8 5.4 FIELD SCREENING MEASUREMENTS 9 5.6 GROUNDWATER: MONITONING WELL INSTALLATION 9 5.6 GROUNDWATER: MANAGEMENT OF WATER QUALITY PARAMETERS 10 5.7 GROUNDWATER: SAMPLING 10 5.8 SOLIDAWATER SAMPLING 10 5.9 ANALYTICALTESTING 10 5		
2.5 APPLICABLE SITE CONDITION STANDARD 3 3.0 BACKGROUND INFORMATION 3 3.1 PHYSICAL SETTING 3 3.2 PAST INVESTIGATIONS 4 4.0 SCOPE OF THE INVESTIGATION 4 4.1 OVERVIEW 4 4.2 MEDIA INVESTIGATED 5 4.3 PHASE ONCEPTUAL SITE MODEL 5 4.4 DEVIATIONS FROM SAMPLING AND ANALYSIS PLAN 7 4.5 IMPEDIMENTS 7 5.0 INVESTIGATION METHOD 8 5.1 GENERAL 8 5.2 DRILLING AND EXCAVATING 8 5.3 SOLIS SAMPLING 8 5.4 GOUNDWATER: MONITORING WELL INSTALLATION 9 5.6 GROUNDWATER: SAMPLING 10 5.7 GROUNDWATER: SAMPLING 10 5.8 SEDIMENT SAMPLING 10 5.9 OUNDWATER: SAMPLING 10 5.10 RESIDUE MANAGEMENT PROCEDURES 11 5.11 ELEVATION SURVEYTING 12 6.0 REVIEW AND EVALUATION 12	2.3 PROPERTY OWNERSHIP 2.4 CURRENT AND PROPOSED FUTURE USES	2 3
3.1 PHYSICAL SETTING. 3 3.2 PAST INVESTIGATIONS. 4 4.0 SCOPE OF THE INVESTIGATION		
3.2 PAST INVESTIGATIONS. 4 4.0 SCOPE OF THE INVESTIGATION. 4 4.1 OVERVIEW. 4 4.2 MEDIA INVESTIGATED. 5 4.3 PHASE ONE CONCEPTUAL SITE MODEL. 5 4.4 DEVIATIONS FROM SAMPLING AND ANALYSIS PLAN. 7 5.0 INVESTIGATION METHOD. 8 5.1 GENERAL 8 5.2 DRILLING AND EXCAVATING. 8 5.3 SOIL SAMPLING. 8 5.4 FIELD SCREENING MEASUREMENTS 9 5.5 GROUNDWATER: FIELD MEASUREMENT OF WATER QUALITY PARAMETERS 10 5.7 GROUNDWATER: FIELD MEASUREMENT OF WATER QUALITY PARAMETERS 10 5.8 SEDIMENT SAMPLING 10 5.9 REGUNDWATER: FIELD MEASUREMENT OF WATER QUALITY PARAMETERS 10 5.10 RESIDUE MANAGEMENT PROCEDURES 11 5.11 ELEVATION SURVEYING. 12 5.12 QUALITY ASSURANCE AND QUALITY CONTROL MEASURES. 12 6.0 REVIEW AND EVALUATION. 12 6.1 GEOLOGY. 12 6.2 GRO	3.0 BACKGROUND INFORMATION	3
4.0 SCOPE OF THE INVESTIGATION 4 4.1 OVERVIEW 4 4.2 MEDIA INVESTIGATED 5 4.3 PHASE ONE CONCEPTUAL SITE MODEL 5 4.4 DEVIATIONS FROM SAMPLING AND ANALYSIS PLAN 7 4.5 IMPEDIMENTS 7 5.0 INVESTIGATION METHOD 8 5.1 GENERAL 8 5.2 DRILLING AND EXCAVATING 8 5.3 SOIL SAMPLING 8 5.4 FIELD SCREENING MEASUREMENTS 9 5.5 GROUNDWATER: MONTORING WELL INSTALLATION 9 5.6 GROUNDWATER: MONTORING WELL INSTALLATION 9 5.6 GROUNDWATER: SAMPLING 10 5.7 GROUNDWATER: SHELD MEASUREMENT OF WATER QUALITY PARAMETERS 10 5.7 GROUNDWATER SAMPLING 10 5.8 SEDIMENT SAMPLING 10 5.9 ANALYTICALTESTING 10 5.10 RESIDUE MANAGEMENT PROCEDURES 11 5.11 ELEVATION SURVEYING 12 5.12 QUALITY ASSURANCE AND QUALITY CONTROL MEASURES 12 <td></td> <td></td>		
4.1 OVERVIEW. 4 4.2 MEDIA INVESTIGATED. 5 4.3 PHASE ONE CONCEPTUAL SITE MODEL 5 4.4 DEVIATIONS FROM SAMPLING AND ANALYSIS PLAN 7 4.5 IMPEDIMENTS. 7 5.0 INVESTIGATION METHOD. 8 5.1 GENERAL 8 5.2 DRILLING AND EXCAVATING 8 5.3 SOIL SAMPLING. 8 5.4 FIELD SCREENING MEASUREMENTS 9 5.5 GROUNDWATER: FIED MEASUREMENT OF WATER QUALITY PARAMETERS 10 5.7 GROUNDWATER: SAMPLING. 10 5.8 SEDIMENT SAMPLING. 10 5.9 ANALYTICALTESTING 10 5.10 RESIDUE MANAGEMENT PROCEDURES. 11 5.11 ELEVATION SURVEYING. 12 6.0 REVIEW AND EVALUATION. 12 6.1 GEOLOGY 12 6.2 GROUNDWATER: ELEVATIONS AND FLOW DIRECTION. 12 6.3 GROUNDWATER: HYDRAULIC GRADIENTS 13 6.4 FINE-MEDIUM SOIL TEXTURE 13 6.5		
4.2 MEDIA INVESTIGATED. 5 4.3 PHASE ONE CONCEPTUAL SITE MODEL 5 4.4 DEVIATIONS FROM SAMPLING AND ANALYSIS PLAN. 7 4.5 IMPEDIMENTS. 7 5.0 INVESTIGATION METHOD 8 5.1 GENERAL 8 5.2 DRILLING AND EXCAVATING 8 5.3 SOIL SAMPLING 8 5.4 FIELD SCREENING MEASUREMENTS 9 5.5 GROUNDWATER: MONITORING WELL INSTALLATION 9 5.6 GROUNDWATER: FIELD MEASUREMENT OF WATER QUALITY PARAMETERS 10 5.7 GROUNDWATER: SAMPLING 10 5.8 SEDIMENT SAMPLING 10 5.9 ANALYTICALTESTING 10 5.10 RESIDUE MANAGEMENT PROCEDURES 11 5.11 ELEVATION SURVEYING 12 6.10 REVIEW AND EVALUATION 12 6.10 REVIEW AND EVALUATION 12 6.1 GEOLOGY 12 6.2 GROUNDWATER: ELEVATIONS AND FLOW DIRECTION 12 6.3 GROUNDWATER: HYDRAULIC GRADIENTS 13 <tr< td=""><td></td><td></td></tr<>		
4.3 PHASE ONE CONCEPTUAL SITE MODEL 5 4.4 DEVIATIONS FROM SAMPLING AND ANALYSIS PLAN 7 4.5 IMPEDIMENTS 7 5.0 INVESTIGATION METHOD 8 5.1 GENERAL 8 5.2 DRILLING AND EXCAVATING 8 5.3 SOIL SAMPLING 8 5.4 FIELD SCREENING MEASUREMENTS 9 5.6 GROUNDWATER: MONITORING WELL INSTALLATION 9 5.6 GROUNDWATER: SAMPLING 10 5.7 GROUNDWATER: SAMPLING 10 5.8 SEDIMENT SAMPLING 10 5.9 ANALYTICALTESTING 10 5.10 RESIDUE MANAGEMENT PROCEDURES 11 5.11 CUUALITY ASSURANCE AND QUALITY CONTROL MEASURES 12 6.0 REVIEW AND EVALUATION 12 6.1 GEOLOGY 12 6.2 GROUNDWATER: HYDRAULIC GRADIENTS 13 6.4 FINE-MEDIUM SOIL TEXTURE 13 6.5 SOIL: FIELD SCREENING 13 6.6 SOIL QUALITY 14 6.8 SEDIME		
4.4 DEVIATIONS FROM SAMPLING AND ANALYSIS PLAN 7 4.5 IMPEDIMENTS 7 5.0 INVESTIGATION METHOD 8 5.1 GENERAL 8 5.2 DRILLING AND EXCAVATING 8 5.3 SOIL SAMPLING 8 5.4 FIELD SCREENING MEASUREMENTS 9 5.5 GROUNDWATER: FIELD MEASUREMENT OF WATER QUALITY PARAMETERS 10 5.7 GROUNDWATER: SAMPLING 10 5.8 SEDIMENT SAMPLING 10 5.9 ANALYTICALTESTING 10 5.10 RESIDUE MANAGEMENT PROCEDURES 11 5.11 ELEVATION SURVEYING 12 5.12 QUALITY ASSURANCE AND QUALITY CONTROL MEASURES 12 5.13 RESIDUE MANAGEMENT PROCEDURES 11 5.14 GELEVATION SURVEYING 12 6.10 REVIEW AND EVALUATION 12 6.11 GEOLOGY 12 6.2 GROUNDWATER: HYDRAULIC GRADIENTS 13 6.4 FINE-MEDIUM SOIL TEXTURE 13 6.5 SOIL FIELD SCREENING 13 <td< td=""><td></td><td></td></td<>		
5.0 INVESTIGATION METHOD 8 5.1 GENERAL 8 5.2 DRILLING AND EXCAVATING 8 5.3 SOIL SAMPLING. 8 5.4 FIELD SCREENING MEASUREMENTS 9 5.5 GROUNDWATER: MONITORING WELL INSTALLATION 9 5.6 GROUNDWATER: FIELD MEASUREMENT OF WATER QUALITY PARAMETERS 10 5.7 GROUNDWATER: SAMPLING. 10 5.8 SEDIMENT SAMPLING. 10 5.9 ANALYTICALTESTING. 10 5.10 RESIDUE MANAGEMENT PROCEDURES. 11 5.11 ELEVATION SURVEYING. 12 5.12 QUALITY ASSURANCE AND QUALITY CONTROL MEASURES. 12 6.1 GEOLOGY 12 6.1 GEOLOGY 12 6.2 GROUNDWATER: HYDRAULIC GRADIENTS 13 6.4 FINE-MEDIUM SOIL TEXTURE 13 6.5 SOIL QUALITY 13 6.6 SOIL QUALITY 13 6.7 GROUNDWATER QUALITY 14		
5.1 GENERAL 8 5.2 DRILLING AND EXCAVATING 8 5.3 SOIL SAMPLING 8 5.4 FIELD SCREENING MEASUREMENTS 9 5.5 GROUNDWATER: MONITORING WELL INSTALLATION 9 5.6 GROUNDWATER: FIELD MEASUREMENT OF WATER QUALITY PARAMETERS 10 5.7 GROUNDWATER SAMPLING 10 5.8 SEDIMENT SAMPLING 10 5.9 ANALYTICALTESTING 10 5.10 RESIDUE MANAGEMENT PROCEDURES 10 5.11 ELEVATION SURVEYING 12 5.12 QUALITY ASSURANCE AND QUALITY CONTROL MEASURES 12 6.10 REVIEW AND EVALUATION 12 6.1 GEOLOGY 12 6.1 GEOLOGY 12 6.2 GROUNDWATER: ELEVATIONS AND FLOW DIRECTION 12 6.3 GROUNDWATER: HYDRAULIC GRADIENTS 13 6.4 FINE-MEDIUM SOIL TEXTURE 13 6.5 SOIL FIELD SCREENING 13 6.6 SOIL QUALITY 13 6.7 GROUNDWATER QUALITY 14 <td>4.5 IMPEDIMENTS</td> <td>7</td>	4.5 IMPEDIMENTS	7
5.2 DRILLING AND EXCAVATING 8 5.3 SOIL SAMPLING 8 5.4 FIELD SCREENING MEASUREMENTS 9 5.5 GROUNDWATER: MONITORING WELL INSTALLATION. 9 5.6 GROUNDWATER: SAMPLING. 10 5.7 GROUNDWATER SAMPLING. 10 5.8 SEDIMENT SAMPLING. 10 5.9 ANALYTICALTESTING. 10 5.10 RESIDUE MANAGEMENT PROCEDURES 11 5.11 ELEVATION SURVEYING. 12 5.12 QUALITY ASSURANCE AND QUALITY CONTROL MEASURES 12 6.0 REVIEW AND EVALUATION 12 6.1 GEOLOGY 12 6.2 GROUNDWATER: ELEVATIONS AND FLOW DIRECTION. 12 6.3 GROUNDWATER: HYDRAULIC GRADIENTS 13 6.4 FINE-MEDIUM SOIL TEXTURE 13 6.5 SOIL FIELD SCREENING 13 6.6 SOIL QU	5.0 INVESTIGATION METHOD	8
5.3 SOIL SAMPLING. 8 5.4 FIELD SCREENING MEASUREMENTS 9 5.5 GROUNDWATER: MONITORING WELL INSTALLATION. 9 5.6 GROUNDWATER: FIELD MEASUREMENT OF WATER QUALITY PARAMETERS 10 5.7 GROUNDWATER SAMPLING. 10 5.8 SEDIMENT SAMPLING. 10 5.8 SEDIMENT SAMPLING. 10 5.9 ANALYTICALTESTING. 10 5.10 RESIDUE MANAGEMENT PROCEDURES 10 5.11 ELEVATION SURVEYING. 12 5.12 QUALITY ASSURANCE AND QUALITY CONTROL MEASURES. 12 6.0 REVIEW AND EVALUATION 12 6.1 GEOLOGY 12 6.2 GROUNDWATER: ELEVATIONS AND FLOW DIRECTION. 12 6.3 GROUNDWATER: HYDRAULIC GRADIENTS 13 6.4 FINE-MEDIUM SOIL TEXTURE 13 6.5 SOIL FIELD SCREENING. 13 6.6 SOIL QUALITY 14 6.8 SEDIMENT QUALITY 14		
5.4 FIELD SCREENING MEASUREMENTS 9 5.5 GROUNDWATER: MONITORING WELL INSTALLATION 9 5.6 GROUNDWATER: FIELD MEASUREMENT OF WATER QUALITY PARAMETERS 10 5.7 GROUNDWATER SAMPLING 10 5.8 SEDIMENT SAMPLING 10 5.9 ANALYTICALTESTING 10 5.10 RESIDUE MANAGEMENT PROCEDURES 11 5.11 ELEVATION SURVEYING 12 5.12 QUALITY ASSURANCE AND QUALITY CONTROL MEASURES 12 6.1 GEOLOGY 12 6.1 GEOLOGY 12 6.2 GROUNDWATER: ELEVATIONS AND FLOW DIRECTION 12 6.3 GROUNDWATER: HYDRAULIC GRADIENTS 13 6.4 FINE-MEDIUM SOIL TEXTURE 13 6.5 SOIL: FIELD SCREENING 13 6.6 SOIL QUALITY 14 6.8 SEDIMENT QUALITY 14		
5.5 GROUNDWATER: MONITORING WELL INSTALLATION		
5.7 GROUNDWATER SAMPLING 10 5.8 SEDIMENT SAMPLING 10 5.9 ANALYTICALTESTING 10 5.10 RESIDUE MANAGEMENT PROCEDURES 11 5.11 ELEVATION SURVEYING 12 5.12 QUALITY ASSURANCE AND QUALITY CONTROL MEASURES 12 6.0 REVIEW AND EVALUATION 12 6.1 GEOLOGY 12 6.2 GROUNDWATER: ELEVATIONS AND FLOW DIRECTION 12 6.3 GROUNDWATER: HYDRAULIC GRADIENTS 13 6.4 FINE-MEDIUM SOIL TEXTURE 13 6.5 SOIL: FIELD SCREENING 13 6.6 SOIL QUALITY 13 6.7 GROUNDWATER QUALITY 14 6.8 SEDIMENT QUALITY 14	5.5 GROUNDWATER: MONITORING WELL INSTALLATION	9
5.8 SEDIMENT SAMPLING 10 5.9 ANALYTICALTESTING 10 5.10 RESIDUE MANAGEMENT PROCEDURES 11 5.11 ELEVATION SURVEYING 12 5.12 QUALITY ASSURANCE AND QUALITY CONTROL MEASURES 12 6.0 REVIEW AND EVALUATION 12 6.1 GEOLOGY 12 6.2 GROUNDWATER: ELEVATIONS AND FLOW DIRECTION 12 6.3 GROUNDWATER: HYDRAULIC GRADIENTS 13 6.4 FINE-MEDIUM SOIL TEXTURE 13 6.5 SOIL: FIELD SCREENING 13 6.6 SOIL QUALITY 14 6.8 SEDIMENT QUALITY 14		
5.10 RESIDUE MANAGEMENT PROCEDURES 11 5.11 ELEVATION SURVEYING 12 5.12 QUALITY ASSURANCE AND QUALITY CONTROL MEASURES 12 6.0 REVIEW AND EVALUATION 12 6.1 GEOLOGY 12 6.2 GROUNDWATER: ELEVATIONS AND FLOW DIRECTION 12 6.3 GROUNDWATER: HYDRAULIC GRADIENTS 13 6.4 FINE-MEDIUM SOIL TEXTURE 13 6.5 SOIL: FIELD SCREENING 13 6.6 SOIL QUALITY 13 6.7 GROUNDWATER QUALITY 14 6.8 SEDIMENT QUALITY 14		
5.11 ELEVATION SURVEYING		
5.12 QUALITY ASSURANCE AND QUALITY CONTROL MEASURES		
6.1 GEOLOGY 12 6.2 GROUNDWATER: ELEVATIONS AND FLOW DIRECTION. 12 6.3 GROUNDWATER: HYDRAULIC GRADIENTS 13 6.4 FINE-MEDIUM SOIL TEXTURE 13 6.5 SOIL: FIELD SCREENING 13 6.6 SOIL QUALITY 13 6.7 GROUNDWATER QUALITY 14 6.8 SEDIMENT QUALITY 14		
6.2GROUNDWATER: ELEVATIONS AND FLOW DIRECTION.126.3GROUNDWATER: HYDRAULIC GRADIENTS136.4FINE-MEDIUM SOIL TEXTURE136.5SOIL: FIELD SCREENING136.6SOIL QUALITY136.7GROUNDWATER QUALITY146.8SEDIMENT QUALITY14	6.0 REVIEW AND EVALUATION	12
6.3GROUNDWATER: HYDRAULIC GRADIENTS136.4FINE-MEDIUM SOIL TEXTURE136.5SOIL: FIELD SCREENING136.6SOIL QUALITY136.7GROUNDWATER QUALITY146.8SEDIMENT QUALITY14	6.1 GEOLOGY	12
6.3GROUNDWATER: HYDRAULIC GRADIENTS136.4FINE-MEDIUM SOIL TEXTURE136.5SOIL: FIELD SCREENING136.6SOIL QUALITY136.7GROUNDWATER QUALITY146.8SEDIMENT QUALITY14	6.2 GROUNDWATER: ELEVATIONS AND FLOW DIRECTION	12
6.4 FINE-MEDIUM SOIL TEXTURE 13 6.5 SOIL: FIELD SCREENING 13 6.6 SOIL QUALITY 13 6.7 GROUNDWATER QUALITY 14 6.8 SEDIMENT QUALITY 14		
6.5 SOIL: FIELD SCREENING 13 6.6 SOIL QUALITY 13 6.7 GROUNDWATER QUALITY 14 6.8 SEDIMENT QUALITY 14	6.3 GROUNDWATER: HYDRAULIC GRADIENTS	13
6.6 SOIL QUALITY	6.4 FINE-MEDIUM SOIL TEXTURE	13
6.7 GROUNDWATER QUALITY	6.5 SOIL: FIELD SCREENING	13
6.8 SEDIMENT QUALITY14	6.6 SOIL QUALITY	13
	6.7 GROUNDWATER QUALITY	14
6.9 QUALITY ASSURANCE AND QUALITY CONTROL RESULTS	6.8 SEDIMENT QUALITY	14
	6.9 QUALITY ASSURANCE AND QUALITY CONTROL RESULTS	14

6.10	PHASE II CONCEPTUAL SITE MODEL	14
7.0	CONCLUSIONS	16
8.0	REFERENCES	18
9.0	QUALIFICATIONS OF ASSESSORS	18

-ii-

ATTACHMENTS

Record of Boreholes BH1 and BH2 Tables I and II Figure 1, Site Plan Attachment A

1.0 EXECUTIVE SUMMARY

A Phase II Environmental Site Assessment (ESA) was carried out for the subject site, a vacant lot at 114 Isabella Street, Ottawa, Ontario. The site was formerly occupied by a single family dwelling that burned down in 2003 and has been vacant since that time. It is planned to redevelop the site as a residential property. This Phase II ESA was requested by the client to assist with development plan approvals and it is understood that a Record of Site Condition is not required for this property.

The Phase II property consists of a vacant lot, located at civic address 114 Isabella Street. The site has an area of approximately 341 square metres (0.08 acres) and is located south of Highway 417, between O'Connor and Metcalfe Streets, for which the legal description is: Lot 32, Plan 35403, in the City of Ottawa, Ontario (See Key Plan, Figure 1) (PIN 04123-0086).

Areas of Potential Environmental Concern were identified at the site related to presence of fill materials containing building debris from the former building at the site, which may contain deleterious materials, off-site sources including the former use of the adjacent property east of the site, for which a clean-up and a Record of Site Condition were carried out in 2005, and some hydrocarbon impacts due to the proximity of nearby automotive garage (Griffin Auto).

Based on the results of soil and groundwater sampling and testing carried out for this Partial Phase II ESA, there is evidence of some possible minor impact in relation to the fill materials at the site from metals, including cobalt and vanadium. Extensive testing of the fill materials was not carried out because it is understood that the site is to be redeveloped into a residential apartment building and that all fill materials within the footprint of the building and adjacent parking areas are to be removed. When removed, the fill materials should be disposed of at a facility licensed to accept that type of waste. The underlying native soils meet the applicable MOE standards outlined in Table 5 with respect to metals and PAHs. No further soil and groundwater testing is warranted at this site.

-1-

2.0 INTRODUCTION

2.1 BACKGROUND

This Phase II Environmental Site Assessment (ESA) was carried out by Kollaard Associates Inc. for Ashlar Homes of Ottawa, Ontario for a vacant property at civic address 114 Isabella Street, which occupies an area of about 341 square metres (0.08 acres), located south of Highway 417, between O'Connor and Metcalfe Streets, in the City of Ottawa, Ontario. The Phase II ESA was carried out subsequent to a Phase I ESA for the same property in June 2013.

It is understood that the property is to be redeveloped for the purposes of residential redevelopment. The historical use of the former building was for residential purposes followed by mixed commercial and residential use. A Phase II ESA is required to address concerns identified in the above noted Phase I ESA report and to assist in site development approvals. It is understood that the City of Ottawa does not require that a Record of Site Condition (RSC) be filed for this property.

2.2 SITE DESCRIPTION

The site is bordered on the north by Isabella Street, followed by Highway 417, on the east and south by residential development and on the west by commercial development. The site is vacant. The property was formerly occupied by a single family dwelling which burnt down and was subsequently demolished prior to current ownership.

The Phase II property consists of a vacant lot, located at civic address 114 Isabella Street. The site has an area of approximately 341 square metres (0.08 acres) and is located south of Highway 417, between O'Connor and Metcalfe Streets, in the City of Ottawa, Ontario(PIN 04123-0086). The approximate property boundary is shown on Figure 1.

2.3 PROPERTY OWNERSHIP

The property is currently owned by Ashlar Construction Ltd. Authorization to proceed with this work was granted by Stephan Samne of Ashlar Construction Ltd.

2.4 CURRENT AND PROPOSED FUTURE USES

The subject site was first developed prior to 1933 and has been used as a single family dwelling since that time. The main floor of the building was occupied by Milligan Dental Laboratory for the years from about 1970 to 2001, with residential occupancy on the second floor. The building was abandoned subsequent to 2001, and was destroyed by a fire in 2003. The site has been vacant since that time.

-3-

The proposed future use of the site is for a multi-unit residential building.

2.5 APPLICABLE SITE CONDITION STANDARD

Stratified soil standards established by the Ministry of the Environment (MOE) in *Soil, Groundwater and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act* dated April 15, 2011 were used to assess the soil quality at the site. The site meets the following criteria; the site and all sites within 250 metres of the property boundaries are serviced by municipal water supply, the site is not located in a municipal wellhead protection area or other groundwater protected area, and is not an agricultural use. The results were compared to the MOE *Soil, Groundwater and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act: Table 5* dated April 15, 2011, stratified site condition standards for residential/parkland/institutional property use in a non-potable groundwater condition. Fill materials were compared to standards for coarse grained soils while underlying clay soils were compared to standards for medium to fine grained soils, where applicable.

3.0 BACKGROUND INFORMATION

3.1 PHYSICAL SETTING

The site is located in a relatively flat lying area, at an elevation of approximately 67 metres above mean sea level. Surface water drainage at the site and surrounding areas is considered to occur typically towards catch basins along Isabella Street and in general towards the north from the site.

There are no buried utilities at the subject site. A buried hydro cable exists north of the site within the sidewalk (road allowance).

-4-

The Rideau and Ottawa Rivers are located some 1.1 kilometres southeast and 2.0 kilometres north of the site, respectively. The Rideau Canal is located some 390 metres east of the site. Based on a review of the topographical map for the site area, the upper groundwater flow is possibly north towards the Ottawa River, or east towards the Rideau River and Canal.

Based on a review of a geotechnical report that was prepared for the subject site, the overburden consists of some 0.30 to 1.5 metres of fill material, followed by approximately 27.3 metres (90 feet) of silty clay. Saturated soil conditions were encountered at about 7.6 to 8.5 metres below existing ground surface at the time of borehole investigation in May 2013. The bedrock occurs at or deeper than about 28.8 metres below existing ground surface.

Based on a review of the surficial geology map for the site area, it is expected that the site is underlain by deposits of clay and silt. Bedrock geology maps indicate that the bedrock underlying the site likely consists of black shale of the Billings Formation, dark grey almost black limestone of the Eastview Formation and/or limestone of the Ottawa Formation.

3.2 PAST INVESTIGATIONS

There were no environmental reports reviewed for the subject site, with the exception of the Phase I Environmental Site Assessment carried out by Kollaard Associates in June 2013 (Section 2.1).

4.0 SCOPE OF THE INVESTIGATION

4.1 OVERVIEW

Soil and groundwater sampling carried out to address issues of potential environmental concern identified by a previous Phase I Environmental Site Assessment (ESA) carried out for the site by Kollaard Associates Inc. (KAI) Those issues include the presence of fill materials containing building debris from the former building at the site, and risk associated with off-site neighbouring sources. Those risks include the former use of the adjacent property east of the site, for which a clean-up and

a Record of Site Condition were carried out in 2005 and risk for some hydrocarbon impacts due to the proximity of a nearby automotive garage (Griffin Auto). The tasks completed for the Phase II ESA consist of the following:

- Excavating of seven test pits carried out on September 25 and November 13, 2013
- Groundwater sampling carried out on September 27 and November 13, 2013

-5-

- Submitting soil and groundwater samples for the analysis of potential contaminants
- Compare analytical results to stratified soil and groundwater standards (Table 3 and Table 5)

4.2 MEDIA INVESTIGATED

The soil and groundwater were investigated at the site. No sediment was encountered at the site.

Soil samples were collected from seven test pits to determine the soil quality of surficial fill materials and the underlying native soils. Soil samples obtained from the test pits were collected and prepared/preserved in the field using appropriate techniques and submitted to Exova Laboratories Ltd. in Nepean, Ontario, for testing.

The groundwater was assessed in one groundwater monitoring well, on two occasions. The monitoring well was purged repeatedly until approximately three volumes of groundwater were removed from the standpipe prior to a sample being obtained. The groundwater sample, obtained September 27, 2013, was prepared/preserved in the field using appropriate techniques and submitted to Exova Laboratories Ltd. in Nepean, Ontario. A second groundwater sample was obtained from the standpipe on November 13, 2013, after repeated purging and was tested for PAHs at Paracel laboratories in Ottawa, Ontario.

4.3 PHASE ONE CONCEPTUAL SITE MODEL

Based on the Phase I Conceptual Site Model and information acquired through the course of the Phase II site investigation, the following information is provided for the Phase II property and study area.

-6-

- There are no underground utilities on the subject site. A buried hydro cable exists north of the site within the sidewalk.
- The Study Area is serviced by municipal water supply and there are no water wells in the Study Area.
- The site is not in a municipal wellhead protection area and is not a current or proposed agricultural use.
- The stratigraphy at the site consists of some 0.30 to 1.5 metres of fill material, followed by approximately 27.3 metres (90 feet) of low permeability silty clay.
- The bedrock is expected to be at or deeper than about 28.8 metres below existing ground surface.
- Saturated soil conditions were encountered at about 7.6 to 8.5 metres below existing ground surface at the time of borehole investigation in May 2013.
- Groundwater flow direction in the overburden is expected to be to the north towards the Ottawa River, with possible northeast flow due to the influence of the Rideau River and canal east of the site. The Rideau and Ottawa Rivers are located some 1.1 kilometres southeast and 2.0 kilometres north of the site, respectively.
- Based on a review of the City of Ottawa website zoning information, there are no areas of natural significance within the Phase I Study Area.

Potentially Contaminating Activities: The following PCAs were identified in the Phase I study area:

- Possible presence of lead and other contaminants associated with building debris in the fill materials at the site
- Possible presence of metals and other contaminants due to the proximity of a former printers and machine shop east of the site (112 Isabella) and a Record of Site Condition filing which indicates contamination clean up was carried out on the adjacent property east of the site at 100 Isabella Street (Palisades retirement residence)
- Risk of hydrocarbon impacts within west/southwest portion of site from a nearby automotive garage (Griffin Auto/Elie Autobody)

<u>Areas of Potential Environmental Concern</u>: Due to the PCAs at and near the subject site, the following APECs have been identified at the site, locations as shown in Figure 2:

-7-

- APEC 1 fill and building debris within the former building footprint at the site which may contain deleterious metals and PAHs, due to the effects of a fire at the site
- APEC 2 –associated with off-site sources of metals due to the previous use of the 100 Isabella Street as a printers and a machine shop and information from the RSC filing (Attachment F) that indicated that the soils at the site were impacted mainly by metals (no groundwater impacts)
- APEC 3 possible impacts from an offsite source at 120 Isabella Street due to the automotive fluids such as waste oil and possible gasoline compounds (VOCs) which could impact the soils and groundwater at the site

4.4 DEVIATIONS FROM SAMPLING AND ANALYSIS PLAN

The original sampling and analysis plan included two test pits put down on the east portion of the Phase II property to obtain soil samples for testing of potential contaminants of metals, due to the historical use of the adjacent property for a printers shop as well as a RSC filing on that same adjacent property. The laboratory results reported by Exova on October 2, 2013, indicated that two metals, vanadium and cobalt, slightly exceeded the MOE standards for those parameters in some of the samples. At the request of the client, the samples were submitted to a different laboratory for confirmatory testing.

One test pit was put down on the west portion of the site with the intention of obtain soil and groundwater samples for testing of hydrocarbon compounds due to the historical and current automotive garage and body shop that exists west of the site. No olfactory or visual evidence of hydrocarbons was observed in the test pit on the west portion of the site, therefore it was not considered necessary to place a monitoring well in this portion of the site to obtain a groundwater sample.

4.5 IMPEDIMENTS

There were no impediments that prevented the completion of the original defined scope of investigation.

5.0 INVESTIGATION METHOD

5.1 GENERAL

The soil and groundwater quality at the subject site was investigated at the locations shown on Figure 1 through test pit excavating and the installation of a groundwater monitoring well (at BH1 only.) The investigation methods are described in the following sections.

5.2 DRILLING AND EXCAVATING

Two boreholes were put down at the site for the purposes of a geotechnical investigation. On May 27, 2013 two boreholes, numbered BH1 and BH2 were put down at the site using a track mounted drill rig equipped with a hollow stem auger owned and operated by OGS Inc. of Almonte, Ontario. A groundwater monitoring well was installed at BH1. The Borehole Logs are provided herein.

On September 25, 2013, three test pits were put down at the site (TP1A, TP2A and TP3A), using a backhoe supplied and operated by a local contractor (Crepin Cartage). On November 13, 2013, four additional test pits were put down at the site and labelled as TP1B, TP2B, TP3B and TP4B, using a backhoe supplied and operated by a local contractor (Crepin Cartage).

5.3 SOIL SAMPLING

The field work was supervised throughout by a member of our engineering staff, who logged the test pits and cared for the samples obtained. The test pit locations are approximately as shown on the attached Site Plan, Figure 1. The test pits logs are provided as Table II.

- TP1A SA1 from a depth of about 4.0 metres
- TP2A SA1 from a depth of 0.8 to 1.0 metres
- TP2A SA2 from a depth of 1.8 metres
- TP3A SA1 from a depth of 1.8 metres

The subsurface soil conditions at the test pits were identified based on visual examination of the samples recovered from the test pits. Groundwater conditions in the test pits were noted at the time

of excavating. Soil samples were collected manually using black nitrile gloves and were placed in laboratory prepared glass jars and immediately placed in coolers. For samples considered for volatile organic compounds (VOC) or BTEX-F1 (benzene, toluene, ethylbenzene, xylenes and petroleum hydrocarbon fraction 1) testing, samples were collected using a core sampler and placed in a laboratory prepared vial containing a methanol preservative. All of the soil samples obtained from the test pits were collected and prepared/preserved in the field using appropriate techniques and submitted to Exova Laboratories Ltd. in Nepean, Ontario, for testing.

-9-

In general, the upper overburden materials encountered at the site are indicated to consist of topsoil and/or fill followed by a peat layer overlying silty clay.

5.4 FIELD SCREENING MEASUREMENTS

No field screening equipment was used for this project.

5.5 GROUNDWATER: MONITORING WELL INSTALLATION

Borehole 1 was constructed as a monitoring well, and was constructed as follows:

- A 31.75 mm diameter well screen was installed with a PVC riser pipe
- The screened interval was 1.5 metres long with a No.10 size slot screen (at a depth of about 7.5 to 9 metres below existing ground surface)
- Silica sand was placed around the annular space to the outer diameter of about 50 mm for the length of the screened interval
- The annular space was backfilled with auger cuttings to the ground surface.

At the time that water samples were obtained in September and November 2013, the monitoring well was developed by using a foot valve and inertial pump. Approximately three water volumes were removed and the water levels allowed a recovery period prior to obtaining water samples for chemical testing.

5.6 GROUNDWATER: FIELD MEASUREMENT OF WATER QUALITY PARAMETERS

-10-

Groundwater levels were measured in BH1 on May 29, 2013. At that time, the groundwater level was approximately 8.2 metres below existing ground surface.

No measurement of field water quality parameters was carried out due to the nature of the soil at the site, which is low permeability silty clay. Field screening is carried out to measure parameters while pumping until water quality stabilizes at which time a well is considered to be properly developed (i.e. water in well is from formation and not from stagnant water in the well.) In this case, the well was pumped dry until three well volumes were removed from the well in order to ensure that water samples obtained are representative of the formation water.

5.7 GROUNDWATER SAMPLING

At the time that water samples were obtained in September and November 2013, the monitoring well was developed by using a foot valve and inertial pump. Approximately three water volumes were removed and the water levels allowed a recovery period prior to obtaining water samples for chemical testing.

Well purging was carried out on September 25 and September 27, 2013. A water sample was obtained on September 27, 2013 and was stored in laboratory prepared bottles for PHC F1-F4 and BTEX testing.

Well purging was carried out on November 13, 2013. A water sample was obtained on November 13, 2013, and was stored in laboratory prepared bottles for PAHs testing.

5.8 SEDIMENT SAMPLING

No sediment sampling was carried out for this investigation.

5.9 ANALYTICALTESTING

The following soil and groundwater samples, obtained from the site on September 25, 2013, were submitted to Exova Laboratories Ltd. in Nepean, Ontario, for testing as described below:

- TP1A-SA1 was tested for PHC F1-F4, BTEX (soil)
- TP2A-SA1, TP2A-SA2 and TP3-SA1 were tested for metals (soil)
- BH1-SA1 was tested for PHC F1-F4, BTEX (groundwater)

The following samples were re-submitted to Paracel Laboratories on October 10, 2013, for confirmatory testing:

• TP2A-SA1, TP2A-SA2 and TP3-SA1 were tested for cobalt and vanadium (soil)

The following samples, obtained from the site on November 13, 2013, were submitted to Paracel Laboratories for testing:

- TP3B-SA3, TP3B-SA4, TP4B-SA5, were tested for metals.
- TP1B-SA1, TP2B-SA2 were tested for metals and PAHs.
- BH1-SA2, a groundwater sample was tested for PAHs.

A summary of the test results is provided as Table 2 and the analytical results are included as Attachment A. The results were compared to the MOE *Soil, Groundwater and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act: Table 3* dated April 15, 2011, full depth generic site condition standards for residential/parkland/institutional property use in a non-potable groundwater condition. However, it was noted that for this site, the Table 5 stratified soil standards may be used because the following conditions are met; the site and all sites within 250 metres of the property boundaries are serviced by municipal water supply, the site is not located in a municipal wellhead protection area or other groundwater protected area, and is not an agricultural use. Where samples were obtained from depths below 1.5 metres below existing ground surface, they were compared to the MOE *Soil, Groundwater and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act: Table 5* dated April 15, 2011, stratified site condition standards for residential/parkland/institutional property use in a non-potable groundwater condition.

5.10 RESIDUE MANAGEMENT PROCEDURES

Soil cuttings from borehole construction were used in the annular space created by drilling. The groundwater did not show any visual or odour indicators of contamination. A minimal volume of purge water removed from the monitoring well was disposed of on the ground surface at the site. Material excavated from the test pits was put back into the ground at the site.

5.11 ELEVATION SURVEYING

No elevation surveying was carried out at the site.

5.12 QUALITY ASSURANCE AND QUALITY CONTROL MEASURES

Quality assurance and quality control measures were taken to ensure the integrity of the samples and the analytical testing, as follows:

- Samples were obtained using appropriately labelled and prepared containers supplied by a laboratory
- A chain of custody form was completed for the samples which documented the sample movement from collection and includes the sample conditions upon receipt at the laboratory, including temperature of container, hold times, etc.
- Quality control measures were taken by the laboratory by testing blanks and/or duplicates and/or spikes of one or more samples to verify all results

6.0 **REVIEW AND EVALUATION**

6.1 GEOLOGY

Based on a review of the surficial geology map for the site area, it is expected that the site is underlain by deposits of clay and silt. Bedrock geology maps indicate that the bedrock underlying the site likely consists of black shale of the Billings Formation, dark grey almost black limestone of the Eastview Formation and/or limestone of the Ottawa Formation.

In general, the upper overburden materials encountered at the site are indicated to consist of topsoil and/or fill followed by a peat layer overlying silty clay. The bedrock is expected to be at or deeper than about 28.8 metres below existing ground surface.

6.2 GROUNDWATER: ELEVATIONS AND FLOW DIRECTION

Saturated soil conditions were encountered at about 7.6 to 8.5 metres below existing ground surface at the time of borehole investigation in May 2013. Groundwater levels were measured in

BH1 on May 29, 2013. At that time, the groundwater level was approximately 8.2 metres below existing ground surface.

-13-

Groundwater flow direction in the overburden is expected to be to the north towards the Ottawa River, with possible northeast flow due to the influence of the Rideau River and canal east of the site. The Rideau and Ottawa Rivers are located some 1.1 kilometres southeast and 2.0 kilometres north of the site, respectively.

6.3 GROUNDWATER: HYDRAULIC GRADIENTS

The scope of the investigation included only one monitoring well installation, and hydraulic gradients at the site were not established.

6.4 FINE-MEDIUM SOIL TEXTURE

While the native soils at the site may be considered fine to medium grained for the purposes of analytical testing, no grain size distribution analyses were carried out on any samples. The fill materials were considered to be coarse grained. The Table 3 and Table 5 standards used and summarized in the attached Table 2, include only the standards for all soil types.

6.5 SOIL: FIELD SCREENING

No field screening was carried out on soil samples obtained from the subject site.

6.6 SOIL QUALITY

The results of the laboratory testing indicate that cobalt and vanadium may exceed the surface soil standards within fill materials at the location of TP2A (in the southeast corner of the site). However, confirmatory testing at a second laboratory indicated that the same sample met the applicable standards. All of the underlying native silty clay meets the Table 5 stratified site condition standards for metals and for PAHs (where tested).

-14-

6.7 GROUNDWATER QUALITY

The groundwater sampled at BH1 met the applicable standards for PHC F1-F4, BTEX and PAHs.

6.8 SEDIMENT QUALITY

Sediment samples were not tested as part of this investigation.

6.9 QUALITY ASSURANCE AND QUALITY CONTROL RESULTS

Laboratory blanks tested for quality control measures were within acceptable limits and analysis was not repeated for samples submitted to Exova in September 2013. Duplicates and spiked samples tested at Paracel for the samples submitted in October and November 2013 to verify results was outside the acceptable limits. However, other QC were acceptable and the results were considered acceptable.

6.10 PHASE II CONCEPTUAL SITE MODEL

The Phase I Conceptual Site Model (CSM), provided as Section 4.3, provides a description and assessment of areas where potentially contaminating activities (PCAs) have occurred, and areas of potential environmental concern, as well as any subsurface structures or utilities that may affect contaminant distribution and transport. This Phase II CSM provides updated information based on the information provided in this report.

Potential Contaminating Activities and Areas of Potential Environmental Concern

The Phase I CSM identified the following:

- Possible metals and PAHs associated with building debris and fill materials at the site
- Possible metals due to a former printing shop and machine shop east of the site, for which an RSC and clean-up were performed (100 Isabella)
- Possible hydrocarbon impacts within south/southwest portion of the site due to off-site garage (Griffin Auto)

The Phase II sampling and analytical program was provided to determine whether the APECs identified at the site have resulted in impacts at the subject site. This included testing of soil and

groundwater at the site for the following contaminants of concern; PAHs, metals and hydrocarbons (PHC F1-F4, BTEX)

Subsurface Structures and Utilities

No subsurface structures or utilities were encountered or are known to exist on the subject site, with the exception of an underground hydro corridor north of the site.

Physical Setting

- The overburden at the site consists of fill materials, including some buried building debris, followed by native peat and silty clay.
- Groundwater was encountered at about 7.6 to 8.5 metres below existing ground surface at the time of borehole investigation in May 2013. Groundwater levels were measured in BH1 on May 29, 2013. At that time, the groundwater level was approximately 8.2 metres below existing ground surface.
- Site soil conditions indicate soils are of low permeability silty clay for contaminant migration.

Distribution and Extent of Soil and Groundwater Impacts

Based on the results of soil and groundwater sampling and testing carried out for this Partial Phase II ESA, there is evidence of some possible minor impact in relation to the fill materials at the site from metals, including cobalt and vanadium. Extensive testing of the fill materials was not carried out because it is understood that the site is to be redeveloped into a residential apartment building and that all fill materials within the footprint of the building and adjacent parking areas are to be removed. When removed, the fill materials should be disposed of at a facility licensed to accept that type of waste. The underlying native soils meet the applicable MOE standards outlined in Table 5 with respect to metals and PAHs. No further soil and groundwater testing is warranted at this site.

The groundwater samples obtained from the subject site meet the applicable standards for PHC F1 to F4, BTEX and PAHs.

-15-

7.0 CONCLUSIONS

Based on the results of soil and groundwater sampling and testing carried out for this Partial Phase II ESA, there is evidence of some possible minor impact in relation to the fill materials at the site from metals, including cobalt and vanadium. Extensive testing of the fill materials was not carried out because it is understood that the site is to be redeveloped into a residential apartment building and that all fill materials within the footprint of the building and adjacent parking areas are to be removed. When removed, the fill materials should be disposed of at a facility licensed to accept that type of waste. The underlying native soils meet the applicable MOE standards outlined in Table 5 with respect to metals and PAHs. No further soil and groundwater testing is warranted at this site.

<u>Disclaimer</u>

This letter was prepared for the exclusive use of Ashlar Homes and is based on data and information collected by Kollaard Associates Inc. This letter may not be relied upon by any other person or entity without the express written consent of Ashlar Homes and Kollaard Associates Inc. Any use of this letter by a third party is the responsibility of the third party. Kollaard Associates Inc. accepts no responsibility for damages, if any, sustained by any third party as a result of decisions made or action based on this letter. Kollaard Associates Inc. has relied in good faith on information provided by others. We accept no responsibility for any deficiencies, or inaccuracies in this letter as a result of omissions, misinterpretations, or fraudulent acts of others.

The material in this letter reflects Kollaard Associates Inc. best judgement in view of the scope of work, and information available at the time of preparation. Due to the nature of the investigation and the limited data available, we cannot warrant against undiscovered environmental liabilities. If new information is discovered during future work, including excavations, borings or other studies, Kollaard Associates Inc. should be requested to re-evaluate the conclusions presented in this report and provide amendments as required.

We trust that this letter is sufficient for your present requirements. If you have any questions concerning this letter, please do not hesitate to contact our office.

Yours truly,

Kollaard Associates Inc.

C.E. Vermeersch, P. Eng.

William Kollaard, P. Eng.

8.0 **REFERENCES**

Topographic Map: NRCan Topographic Maps, Ottawa, Ontario, 31 G/5, Edition 11, published 1998, current as of 1994, scale 1:50,000.

Surficial Geology Map: Geological Survey of Canada, Surficial Geology, Ottawa, Ontario, Map 1506A, published 1982, scale 1:50,000.

Bedrock Geology Map: Geological Survey of Canada, Generalized Bedrock Geology, Ottawa-Hull, Ontario and Quebec, Map 1508A, published 1979, scale 1:125,000.

9.0 QUALIFICATIONS OF ASSESSORS

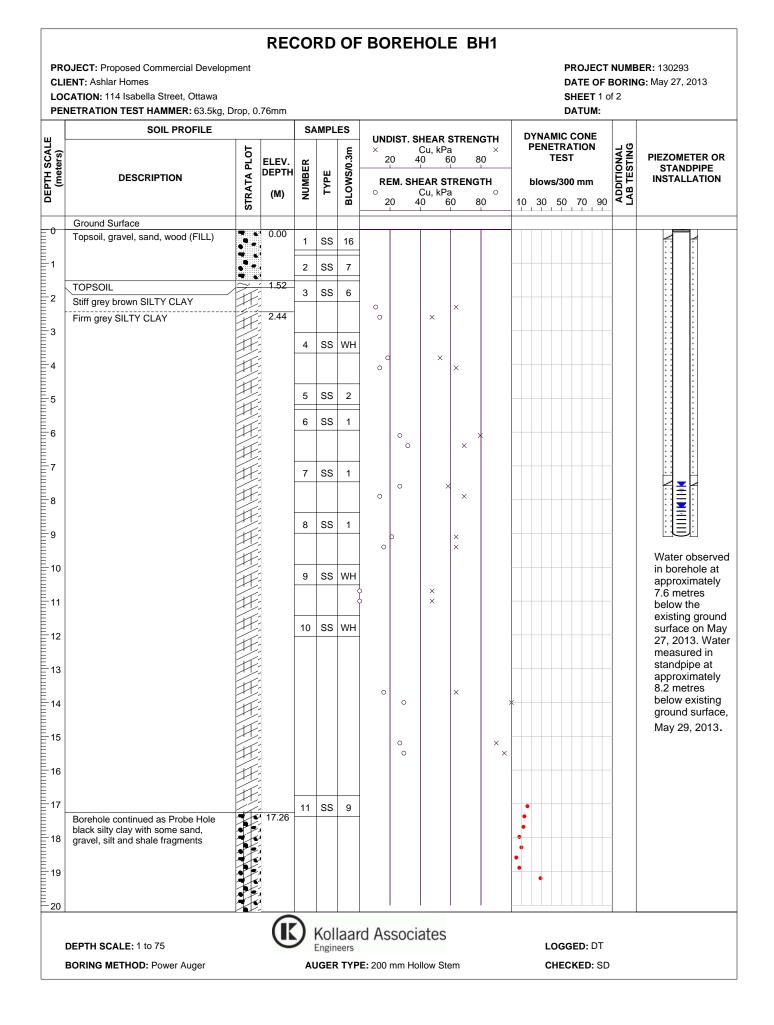
Colleen Vermeersch, P. Eng.

Colleen Vermeersch is a professional engineer with Kollaard Associates Inc. in Kemptville, Ontario. Colleen has been conducting Phase I ESAs in accordance with the CSA Standard and Environmental Protection Act for more than four years. Colleen has conducted more than thirty Phase I ESAs for commercial/residential clients over her career and several Phase II ESAs, some of which have involved clean up supervision. Colleen Vermeersch obtained a Bachelor of Engineering (Environmental) from Carleton University in 2007.

Colleen joined Kollaard Associates Inc. in 2007 and has worked on numerous environmental and hydrogeological projects since that time. Colleen is fully trained in carrying out and analyzing pumping tests, and field and lab based testing to determine soil and aquifer properties, such as hydraulic conductivity, transmissivity and groundwater flow directions/gradients, as these apply to contaminant transport and migration, coordinating and conducting environmental site assessments, environmental remediation, and storage tank assessment and removal.

William Kollaard, P.Eng. - Owner - Kollaard Associates Inc.

Mr. William Kollaard is the founding member of Kollaard Associates and is a professional engineer and principal consultant with more than 15 years of experience in the environmental consulting industry. Mr. Kollaard provides leadership, technical guidance to other project staff, senior review of deliverables and direct consulting to clients. His work experience has included: project management, conducting site and field work, business development, report and proposal writing and review. His duties also include providing technical and professional advice to various clients throughout the industry. Mr. Kollaard provides liaison between clients, other stakeholders, regulatory officials and legal counsel where required.


As principal, Mr. Kollaard actively participates in the direction and planning of the company, and has various active roles in mentorship, business development, protocols and procedures and quality control/quality assurance.

Kollaard Associates is an engineering consulting firm that provides a complete range of engineering services for developers, builders and homeowners in Eastern Ontario. Kollaard Associates

specializes in providing civil, structural, geotechnical, hydrogeological and environmental services to our clients. Kollaard Associates Inc. has been established as a team of engineers and consultants since 2005. Mr. William Kollaard is responsible for the overall company development and management of the firm.

-19-

RECORD OF BOREHOLE BH1

PROJECT: Proposed Commercial Development **CLIENT:** Ashlar Homes

LOCATION: 114 Isabella Street, Ottawa

PENETRATION TEST HAMMER: 63.5kg, Drop, 0.76mm

SOIL PROFILE SAMPLES DYNAMIC CONE DEPTH SCALE (meters) UNDIST. SHEAR STRENGTH ADDITIONAL LAB TESTING PENETRATION Cu, kPa 40 60 STRATA PLOT BLOWS/0.3m Х × PIEZOMETER OR 20 60 80 TEST ELEV. NUMBER STANDPIPE ТҮРЕ DEPTH DESCRIPTION INSTALLATION **REM. SHEAR STRENGTH** blows/300 mm Cu, kPa 40 60 (M) 0 0 20 80 10 30 50 70 90 21 23 Ē -24 25 28 29 30 31 32 33 End of Borehole, refusal on large 28.80 boulders or bedrock 34 37 38 E - 39 40 K Kollaard Associates DEPTH SCALE: 1 to 75 LOGGED: DT Engineers BORING METHOD: Power Auger CHECKED: SD AUGER TYPE: 200 mm Hollow Stem

PROJECT NUMBER: 130293 DATE OF BORING: May 27, 2013 SHEET 2 of 2

DATUM:

LOC	ENT: Ashlar Homes CATION: 114 Isabella Street, Ottawa IETRATION TEST HAMMER: 63.5kg,	Drop, 0	.76mm									S	ATE C HEET ATUM	1 of		G: May 27, 2013
	SOIL PROFILE			SA	MPL	ES		T. SHEAR S	TRENGTH	C	OYNA	MIC	CONE			
UEFIN SUALE (meters)	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (M)	NUMBER	ТҮРЕ	BLOWS/0.3m	× 20	Cu, kPa 40 60 SHEAR ST Cu, kPa 40 60	0 80 ×		blov	TES1 vs/300	TION 7 0 mm 70		ADDITIONAL LAB TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
	Ground Surface						I		I			1 1				
0	Grey crushed stone (FILL)		0.00													
	Brown topsoil, brick, sand and clay (FILL)	2222	0.30	1	SS	14										
1		1,1,1,1		2	SS	14										
	Stiff grey brown SILTY CLAY	Ĩ	1.62	3	SS	5										
	Firm to stiff grey SILTY CLAY		2.44				0 0	×	×							
3		H		4	ss	wн										
				4	33	VVI	0	×								
4		H					0		×							
-5		Ħ		5	ss	1										
							0		*							
6		H		6	SS	2										Water observed
-7				-		-	0		×							in borehole at approximately 8.5 metres
		H					0		×							below the existing ground
-				7	ss	2										surface on May 28, 2013.
		H					0	×	×							Ţ
-9				8	SS	wн										
-9 -10 -11 -12		H					0	×								
		H					c									
-11		H														
		Ħ														
12							0	×								
13		H														
		H														
			(K)	Kol	laar	d Acc	ociates								

CLI LO(DJECT: Proposed Commercial Developn ENT: Ashlar Homes CATION: 114 Isabella Street, Ottawa NETRATION TEST HAMMER: 63.5kg, D		76mm								BORIN	ER: 130293 G: May 27, 2013
	SOIL PROFILE			SA	MPL	ES.				DYNAMIC CONE		
DEPTH SCALE (meters)	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (M)	NUMBER	ТҮРЕ	BLOWS/0.3m	20 40 REM. SHEA	, kPa 60 8	0 × TH ₀	blows/300 mm	ADDITIONAL LAB TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
-14		H H H		9	SS	WH						
14		1,4,4,4,4,4,4					¢ \$		× ×			
-17	Borehole continued as Probe Hole in grey/black sitty clay, some sand,		17.10	10	SS	wн						
18	gravel and silt and shale fragments											
-22 -23 -24 -25	End of Borehole, Practical refusal on large boulders		22.40									
			(K		Kol	laar	d Associat	es				
	DEPTH SCALE: 1 to 75 BORING METHOD: Power Auger			1	Engin	eers	E: 200 mm Hollo			LOGGED: DT CHECKED: SD		

RECORD OF BOREHOLE BH2

TABLE I - RESULTS OF ANALYTICAL TESTING

SAMPLE DESCRIPTION	Sample Depth	Analytes	Results (ug/g)	Table 3 Full Depth Standards (ug/g)	Table 5 Stratified Standards (ug/g)
September 25, 2013		r		1	
TP1-SA1 silty clay-med/fine	4.0 metres	PHC F1- F4/BTEX	Less than detection limits		
TP2-SA1	0.8-1.0	Metals			
fill-coarse	metres	Cobalt	27	22	250
		Vanadium	112	86	160
<u>TP2-SA2</u>	1.8 metres	Metals			
silty clay-med/fine		Cobalt	21	22	250
		Vanadium	95	86	160
TP3-SA1	1.8 metres	Metals			
silty clay-med/fine		Cobalt	25	22	250
		Vanadium	114	86	160
September 27, 2013				1	
BH1-SA1	NA	BTEX	Less than		
groundwater			detection		
		PHC F1	limits	750	
		F2	<100 <100	750	
		F2 F3	<100 500	150 500	
		F3 F4	<200	500	
October 10, 2013 - F		14	~200	500	
TP2-SA1	0.8-1.0	Cobalt	15.7	22	250
fill-coarse	metres	Vanadium	75.0	86	160
TP2-SA2	1.8 metres	Cobalt	12.2	22	250
silty clay-med/fine	1.0 110100	Vanadium	66.1	86	160
TP3-SA1	1.8 metres	Cobalt	17.2	22	250
silty clay-med/fine		Vanadium	95.2	86	160
November 13, 2013	- PARACEL				
TP1-SA1	1.6 metres	Metals	Meets		
silty clay-med/fine		PAHs	standards		
TP2-SA2	1.8 metres	Metals	Meets		
silty clay-med/fine		PAHs	standards		
TP3-SA3	1.2 metres	Metals	Meets		
silty clay-med/fine			standards		
TP3-SA4	1.8 metres	Metals	Meets		
silty clay-med/fine			standards]	
TP4-SA5	1.8 metres	Metals	Meets		
silty clay-med/fine			standards	ļ	
<u>BH1-SA2</u>		PAHs	Meets		
groundwater			standards	J	

130293-2

TABLE II RECORD OF TEST PITS 114 ISABELLA STREET OTTAWA, ONTARIO

TEST PIT NUMBER	DEPTH (METRES)	DESCRIPTION
TP1A	0.00 – 1.22	Topsoil, clay, gravel, glass, brick, plastic, pottery, peat (FILL)
	1.22 – 1.83	PEAT
	1.83 – 3.96	Grey SILTY CLAY, trace to some silt and sand (alluvium)
	3.96	End of test pit

Water entering excavation at about 3.81 metres below existing ground surface, September 25, 2013. Water level at about 3.96 metres below existing ground surface upon completion of excavating, September 25, 2013.

TP2A	0.00 - 0.99	Topsoil, sand, gravel, brick, concrete (FILL)
	0.99 – 1.75	PEAT
	1.75 – 3.20	Grey SILTY CLAY
	3.20	End of test pit

Test pit dry upon completion of excavating, September 25, 2013.

ТРЗА	0.00 - 0.76	Topsoil, sand, gravel, brick, concrete (FILL)
	0.76 – 0.97	TOPSOIL
	0.97 – 1.09	Red brown SILTY SAND, trace clay
	1.09 – 1.83	Grey brown SILTY CLAY
	1.83	End of test pit

Test pit dry upon completion of excavating, September 25, 2013.

130293-2

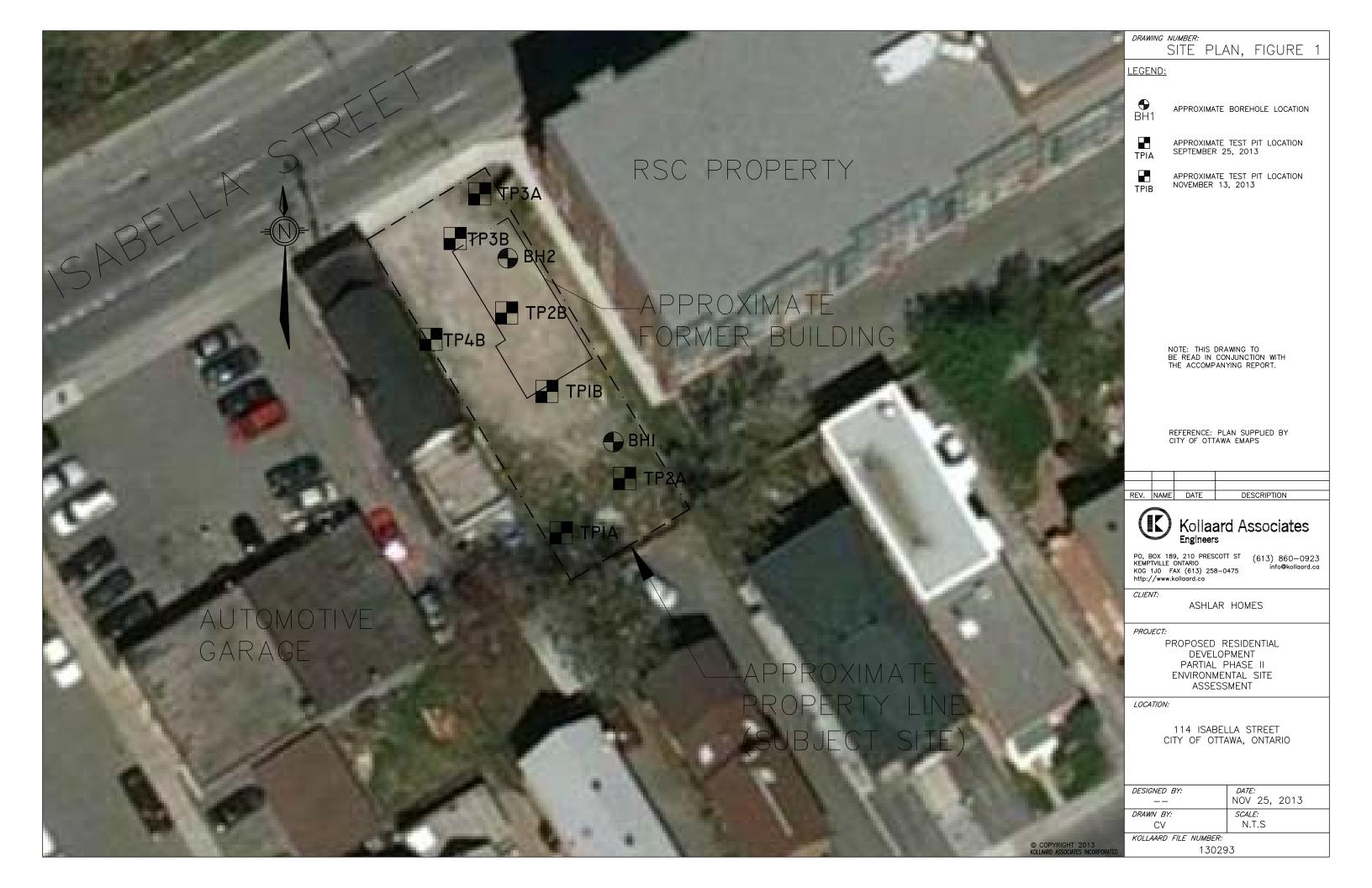
TABLE II (continued)

TEST PIT NUMBER	DEPTH (METRES)	DESCRIPTION
TP1B	0.00 – 1.22	Silty sand, topsoil, roots, foundation wall, brick, glass, ash (FILL)
	1.22 – 1.52	PEAT
	1.52 – 1.70	Grey brown SILTY CLAY
	1.70	End of test pit
Trace water entering excavation at 2013.	about 1.70 metres belo	ow existing ground surface, November 13,

TP2B	0.00 – 1.83	Boulders, bricks, wood, ash, topsoil, sand, gravel (FILL)
	1.83 – 1.98	Grey SILTY CLAY
	1.98	End of test pit

Trace water entering excavation at about 1.98 metres below existing ground surface, November 13, 2013.

ТРЗВ	0.00 – 0.15	Grey crushed stone, some sand (FILL)
	0.15 – 0.91	Sand, topsoil, bricks, gravel (FILL)
	0.91 – 1.09	PEAT
	1.09 – 1.78	Grey brown SILTY CLAY
	1.78	End of test pit


Trace water entering excavation at about 1.78 metres below existing ground surface, November 13, 2013.

130293-2

TABLE II (continued)

TEST PIT NUMBER	DEPTH (METRES)	DESCRIPTION
TP4B	0.00 – 0.15	Grey crushed stone, some sand (FILL)
	0.15 – 0.91	Topsoil, clay, gravel, glass, brick, plastic, pottery, peat (FILL)
	0.91 – 1.52	PEAT
	1.52 – 1.83	Grey SILTY CLAY
	1.83	End of test pit

Test pit dry upon completion of excavating, November 13, 2013.

ATTACHMENT A

LABORATORY TESTING RESULTS

Client: Attention: PO#:	Kollaard Associates Inc. 210 Prescott St., Box 189 Kemptville, ON K0G 1J0 Ms. Colleen Vermeersch		Report Number: Date Submitted: Date Reported: Project: COC #:	1321202 2013-09-26 2013-10-02 130293 152278	
Invoice to:	Kollaard Associates Inc.	Page 1 of 6			

Dear Colleen Vermeersch:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

Revised Report - Guideline changed as per client request.

APPROVAL:

Craig Thompson Project Manager

Exova (Ottawa) is certified and accredited for specific parameters by: CALA, Canadian Association for Laboratory Accreditation (to ISO 17025), OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils), Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is certified and accredited for specific parameters by: SCC, Standards Council of Canada (to ISO 17025)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only.

Client:	Kollaard Associates Inc.			
	210 Prescott St., Box 189			
	Kemptville, ON			
	K0G 1J0			
Attention:	Ms. Colleen Vermeersch			
PO#:				
Invoice to:	Kollaard Associates Inc.			

Report Number:	1321202
Date Submitted:	2013-09-26
Date Reported:	2013-10-02
Project:	130293
COC #:	152278

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1060807 Soil 2013-09-25 TP1-SA1	1060808 Soil 2013-09-25 TP2-SA1	1060809 Soil 2013-09-25 TP2-SA2	1060810 Soil 2013-09-25 TP3-SA1
Group	Analyte	MRL	Units	Guideline				
Inorganics	Antimony	1	ug/g	STD-7.5		<1	<1	<1
	Arsenic	1	ug/g	STD-18		2	1	1
	Barium	1	ug/g	STD-390		340	283	370
	Beryllium	1	ug/g	STD-5		<1	<1	<1
	Boron (total)	10	ug/g	STD-120		40	40	40
	Cadmium	0.5	ug/g	STD-1.2		<0.5	<0.5	<0.5
	Chromium Total	1	ug/g	STD-160		144	104	128
	Cobalt	1	ug/g	STD-22		27*	21	25*
	Copper	1	ug/g	STD-180		71	49	60
	Lead	1	ug/g	STD-120		27	9	8
	Molybdenum	1	ug/g	STD-6.9		1	<1	<1
	Nickel	1	ug/g	STD-130		85	62	75
	Selenium	1	ug/g	STD-2.4		<1	<1	<1
	Silver	0.2	ug/g	STD-25		<0.2	<0.2	<0.2
	Thallium	1	ug/g	STD-1		<1	<1	<1
	Uranium	0.5	ug/g	STD-23		1.3	1.9	1.1
	Vanadium	2	ug/g	STD-86		112*	95*	114*
	Zinc	2	ug/g	STD-340		148	126	143
Moisture	Moisture	0.1	%		44.5			
Petroleum	Petroleum Hydrocarbons F1	10	ug/g	STD-65	<10			
Hydrocarbons	Petroleum Hydrocarbons F1-BTEX	10	ug/g		<10			
	Petroleum Hydrocarbons F2	10	ug/g	STD-150	<10			
	Petroleum Hydrocarbons F3	20	ug/g	STD-1300	<20			
	Petroleum Hydrocarbons F4	20	ug/g	STD-5600	<20			
VOCs	Benzene	0.02	ug/g	STD-0.17	<0.02			
	Ethylbenzene	0.05	ug/g	STD-15	<0.05			

Guideline = O.Reg 153-T3-Res/Park-Med/Fine

* = Guideline Exceedence

**-Analysis completed in Mississauga

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Client:	Kollaard Associates Inc.		
	210 Prescott St., Box 189		
	Kemptville, ON		
	K0G 1J0		
Attention: PO#:	Ms. Colleen Vermeersch		
Invoice to:	Kollaard Associates Inc.		

Report Number:	1321202
Date Submitted:	2013-09-26
Date Reported:	2013-10-02
Project:	130293
COC #:	152278

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1060807 Soil 2013-09-25 TP1-SA1	1060808 Soil 2013-09-25 TP2-SA1	1060809 Soil 2013-09-25 TP2-SA2	1060810 Soil 2013-09-25 TP3-SA1
Group	Analyte	MRL	Units	Guideline				
VOCs	m/p-xylene	0.05	ug/g		<0.05			
	o-xylene	0.05	ug/g		<0.05			
	Toluene	0.20	ug/g	STD-6	<0.20			
	Xylene Mixture	0.05	ug/g	STD-25	<0.05			
VOCs Surrogates (%	Toluene-d8	0	%		107			

Guideline = O.Reg 153-T3-Res/Park-Med/Fine

* = Guideline Exceedence

**-Analysis completed in Mississauga Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline,

MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable

Client:	Kollaard Associates Inc.		
	210 Prescott St., Box 189		
	Kemptville, ON		
	K0G 1J0		
Attention:	Ms. Colleen Vermeersch		
PO#:			
Invoice to:	Kollaard Associates Inc.		

Report Number:	1321202
Date Submitted:	2013-09-26
Date Reported:	2013-10-02
Project:	130293
COC #:	152278

QC Summary

Analyte		Blank	QC % Rec	QC Limits
Run No 0	Analysis Date 2013	-09-30 Method	V 8260B	
Xylene Mixture				
Run No 258315	Analysis Date 2013	-09-27 Method	EPA 200.8	
Silver		<0.2 ug/g	86	70-130
Arsenic		<1 ug/g	96	70-130
Barium		<1 ug/g	90	70-130
Beryllium		<1 ug/g	95	70-130
Cadmium		<0.5 ug/g	90	70-130
Cobalt		<1 ug/g	93	70-130
Chromium Total		<1 ug/g	92	70-130
Copper		<1 ug/g	99	70-130
Molybdenum		<1 ug/g	92	70-130
Nickel		<1 ug/g	99	70-130
Lead		<1 ug/g	93	70-130
Antimony		<1 ug/g	94	70-130

Guideline = O.Reg 153-T3-Res/Park-Med/Fine

* = Guideline Exceedence

**-Analysis completed in Mississauga

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

Client:	Kollaard Associates Inc.
	210 Prescott St., Box 189
	Kemptville, ON
	K0G 1J0
Attention:	Ms. Colleen Vermeersch
PO#:	
Invoice to:	Kollaard Associates Inc.

Report Number:	1321202
Date Submitted:	2013-09-26
Date Reported:	2013-10-02
Project:	130293
COC #:	152278

Analyt	Analyte		QC % Rec	QC Limits
Selenium		<1 ug/g	93	70-130
Thallium		<1 ug/g	92	70-130
Uranium		<0.5 ug/g	90	70-130
Vanadium		<2 ug/g	86	70-130
Zinc		<2 ug/g	99	70-130
Run No 258340	Analysis Date 2013	B-09-27 Method	M SM3120B-3050B	_
Boron (total)		<10 ug/g	83	
Run No 258435	Analysis Date 2013	B-09-27 Method	V 8260B	
Benzene		<0.02 ug/g	94	80-120
Ethylbenzene		<0.05 ug/g	106	80-120
m/p-xylene		<0.05 ug/g	116	80-120
o-xylene		<0.05 ug/g	116	80-120
Toluene		<0.20 ug/g	112	80-120
Toluene-d8		106 %	109	
Run No 258455	Analysis Date 2013	3-09-30 Method	CCME	

QC Summary

Guideline = O.Reg 153-T3-Res/Park-Med/Fine

* = Guideline Exceedence

**-Analysis completed in Mississauga

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Petroleum Hydrocarbons F1

Petroleum Hydrocarbons F1-BTEX

MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

80-120

<10 ug/g

100

Client: Kollaard Associates Inc. 210 Prescott St., Box 189 Kemptville, ON K0G 1J0 Attention: Ms. Colleen Vermeersch PO#: Invoice to: Kollaard Associates Inc.

Report Number: 1321202 Date Submitted: Date Reported: Project: 130293 COC #: 152278

2013-09-26 2013-10-02

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Run No 258460 Analysis Date 2013-	09-30 Method CC	ME	
Petroleum Hydrocarbons F2	<10 ug/g	81	50-120
Petroleum Hydrocarbons F3	<20 ug/g	81	50-120
Petroleum Hydrocarbons F4	<20 ug/g	81	50-120
Run No 258463 Analysis Date 2013-	09-30 Method C	SM2540B	
Moisture	<0.1 %	100	80-120

Guideline = O.Reg 153-T3-Res/Park-Med/Fine

* = Guideline Exceedence

**-Analysis completed in Mississauga Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

Page 6 of 6

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA • KINGSTON • NIAGARA • MISSISSAUGA • SARNIA

Certificate of Analysis

Kollaard Associates Inc.

210 Prescott St. Unit 1 Kemptville, ON K1G 4J8 Attn: Colleen Vermeersch Phone: (613) 860-0923 Fax: (613) 860-0923

Client PO:	Report Date: 16-Oct-2013
Project:	Order Date: 10-Oct-2013
Custody: 12287	Order #: 1341268

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Client ID
TP2-SA1
TP3-SA1
TP2-SA2

Mark Fato Approved By:

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Order #: 1341268

Certificate of Analysis		Report Date: 16-Oct-2013
Client: Kollaard Associates Inc.		Order Date:10-Oct-2013
Client PO:	Project Description:	
Analysis Summary Table		

Analysis	Method Reference/Description	Extraction Date Analysis Date
MOE Metals by ICP-OES, soil	based on MOE E3470, ICP-OES	15-Oct-13 15-Oct-13
Reg 153 Solids, %	Gravimetric, calculation	11-Oct-13 11-Oct-13

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 7

Client: Kollaard Associates Inc.

Report Date: 16-Oct-2013 Order Date:10-Oct-2013

Client PO:		Project Descript	ion:		
	Client ID:	TP2-SA1	TP3-SA1	TP2-SA2	-
	Sample Date:	25-Sep-13	25-Sep-13	25-Sep-13	-
	Sample ID:	1341268-01	1341268-02	1341268-03	-
	MDL/Units	Soil	Soil	Soil	-
Physical Characteristics					
% Solids	0.1 % by Wt.	57.0	66.4	63.5	-
Metals					
Cobalt	1.0 ug/g dry	15.7	17.2	12.2	-
Vanadium	1.0 ug/g dry	75.0	95.2	66.1	-

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 7 123 Christina St. N. 3 Sarnia, ON N7T 5T7

Page 3 of 7

Client: Kollaard Associates Inc. Client PO:

Project Description:

Method Quality Cor	ntrol: Blank								
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	1.0	ug/g						
Boron	ND	1.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	1.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	1.0	ug/g						
Lead	ND	1.0	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	1.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.5	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	1.0	ug/g						
Zinc	ND	1.0	ug/g						

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 7

Order #: 1341268

Report Date: 16-Oct-2013 Order Date:10-Oct-2013

Client: Kollaard Associates Inc. Client PO:

Project Description:

Report Date: 16-Oct-2013 Order Date:10-Oct-2013

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	ND	1.0	ug/g dry	ND			0.0	30	
Arsenic	ND	1.0	ug/g dry	ND			0.0	30	
Barium	47.7	1.0	ug/g dry	46.3			3.0	30	
Beryllium	ND	1.0	ug/g dry	ND			0.0	30	
Boron	5.20	1.0	ug/g dry	4.77			8.5	30	
Cadmium	ND	0.5	ug/g dry	ND			0.0	30	
Chromium	8.79	1.0	ug/g dry	7.91			10.6	30	
Cobalt	2.94	1.0	ug/g dry	2.88			2.2	30	
Copper	6.43	1.0	ug/g dry	5.82			10.0	30	
Lead	3.94	1.0	ug/g dry	3.40			14.8	30	
Molybdenum	ND	1.0	ug/g dry	ND			0.0	30	
Nickel	5.08	1.0	ug/g dry	5.29			4.2	30	
Selenium	ND	1.0	ug/g dry	ND			0.0	30	
Silver	ND	0.5	ug/g dry	ND			0.0	30	
Thallium	ND	1.0	ug/g dry	ND			0.0	30	
Uranium	2.41	1.0	ug/g dry	ND			0.0	30	
Vanadium	16.8	1.0	ug/g dry	15.5			8.2	30	
Zinc	14.5	1.0	ug/g dry	27.4			61.4	30	QR-04
Physical Characteristics									
% Solids	85.7	0.1	% by Wt.	88.5			3.2	25	

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 7

Order #: 1341268

Silver

Zinc

Selenium

Thallium

Uranium

Vanadium

Certificate of Analysis

Client: Kollaard Associates Inc. Client PO:

Method Quality Control: Spike

Analyte	Result	Limit Units	Source Result	%REC	%REC Limit	RPD	Limit	Notes
Metals								
Antimony	210	ug/L	ND	85.8	70-130			
Arsenic	227	ug/L	ND	90.8	70-130			
Barium	1100	ug/L	926	70.3	70-130			
Beryllium	206	ug/L	2.62	81.2	70-130			
Boron	288	ug/L	95.4	77.2	70-130			
Cadmium	198	ug/L	1.43	78.8	70-130			
Chromium	343	ug/L	158	73.9	70-130			
Cobalt	233	ug/L	57.5	70.2	70-130			
Copper	308	ug/L	116	76.8	70-130			
Lead	255	ug/L	67.9	74.8	70-130			
Molybdenum	180	ug/L	3.66	70.5	70-130			
Nickel	284	ug/L	106	71.3	70-130			

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Project Description:

Source

ND

ND

3.05

ND

309

548

74.7

75.9

63.9

100

76.7

78.9

Reporting

171

190

163

251

501

745

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7 Order #: 1341268

Report Date: 16-Oct-2013 Order Date:10-Oct-2013

QM-07

RPD

%REC

70-130

70-130

70-130

70-130

70-130

70-130

Page 6 of 7

Client: Kollaard Associates Inc.

Client PO:

Qualifier Notes:

QC Qualifiers :

- QM-07 : The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.
- QR-04 : Duplicate results exceeds RPD limits due to non-homogeneous matrix.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

Blvd. 5415 Morning Gl Niagara Falls, ON SARNIA

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

123 Christina St. N. Sarnia, ON N7T 5T7

Page 7 of 7

Report Date: 16-Oct-2013 Order Date:10-Oct-2013

Order #: 1341268

Project Description:

6	CARACEL RESPONSIVE.							Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com			Chain of Custody (Lab Use Only) Nº 12287.					
OTTAW	A ® KINGSTON ® NIAGARA ® MISSISSA	UGA	● SAF	RNIA				www.pa	aracella	os.com		Р	age	_ of	_	
Client Name: Kollaard Associate Contact Name: Collecn Address:				Project Reference: Quote # PO # Email Address: Colleer a Kollaard . Ca				TAT [/ Regular [] 3 Day [] 2 Day [] 1 Day Date Required:								
	riteria: [] O. Reg. 153/04 (As Amended) Table [] RS								JB (Samt	ary) Municipali	ty:		[] Other	·		
Matrix Ty	pe: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS	(Storm/Sa	anitary Se	wer) P (Paint) A (Air) O (O	ther)				Req	uired A	nalyses				
Paracel	Order Number: 341268	rrix	Air Volume	f Containers	Sample	Taken	+	hadin	-							
	Sample ID/Location Name	Matrix	Air	# of	Date	Time		2				-		0.0		
1 -	TP RZ-SAI	S		1	25/09/13	10:30	X	V						357	ml	/ /
2 -	TP 3- SAI	1		1	25/09/15	11:00	V	V				1				/
3	LAZ-LAI	V		1	25/09/13	10130	N	7			-				V	
5													-			
6	11 Kenzelszaki			8		011/8										
7																
8								-				1				
9							-		-			-				
10													Mathed	of Delive	1957	
Comme	nts:												Welling	U	10	
and	hed By (Sign):	Receive Date/Ti	ed by Dri	ver/Depo	N:	Receiv Date/T	ed at Lab	DA R.	4.	Int	Verifie Date/T	M	let in	113	<u></u>	21
	e: 2013 10/10	Temper			°C		erature: _	89.7 .	*****	-10-		rified []	By:	N	A	~

Chain of Custody (Blank) - Rev 0.2 May 2013

Client:	Kollaard Associates Inc.		
	210 Prescott St., Box 189	Report Numb	per: 1321323
	Kemptville, ON	Date Submitte	ed: 2013-09-27
	KOG 1J0	Date Reporte	ed: 2013-10-04
Attention:	Ms. Colleen Vermeersch	Project:	130293
PO#:	130293	COC #:	174161
Invoice to:	Kollaard Associates Inc.	Page 1 of 4	

Dear Colleen Vermeersch:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

APPROVAL:

Charlie (Long) Qu Laboratory Supervisor, Organics

Exova (Ottawa) is certified and accredited for specific parameters by:

CALA, Canadian Association for Laboratory Accreditation (to ISO 17025), OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils), Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is certified and accredited for specific parameters by: SCC, Standards Council of Canada (to ISO 17025)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only.

Client:	Kollaard Associates Inc.
	210 Prescott St., Box 189
	Kemptville, ON
	K0G 1J0
Attention:	Ms. Colleen Vermeersch
PO#:	130293
Invoice to:	Kollaard Associates Inc.

Report Number:	1321323
Date Submitted:	2013-09-27
Date Reported:	2013-10-04
Project:	130293
COC #:	174161

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1061130 Groundwater 2013-09-27 BH1-SA1
Group	Analyte	MRL	Units	Guideline	
Petroleum	Petroleum Hydrocarbons F1	100	ug/L	STD-750	<100
Hydrocarbons	Petroleum Hydrocarbons F1-BTEX	100	ug/L		<100
	Petroleum Hydrocarbons F2	100	ug/L	STD-150	<100
	Petroleum Hydrocarbons F3	200	ug/L	STD-500	500
	Petroleum Hydrocarbons F4	200	ug/L	STD-500	<200
VOCs	Benzene	0.5	ug/L	STD-430	<0.5
	Ethylbenzene	0.5	ug/L	STD-2300	<0.5
	m/p-xylene	0.5	ug/L		<0.5
	o-xylene	0.5	ug/L		<0.5
	Toluene	0.5	ug/L	STD-18000	<0.5
	Xylene Mixture	1.0	ug/L	STD-4200	<1.0
VOCs Surrogates (%	Toluene-d8	0	%		108

Guideline = O.Reg 153-T3-Non-Potable GW

* = Guideline Exceedence

**-Analysis completed in Mississauga

١

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Page 2 of 4

MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

Client:	Kollaard Associates Inc.
	210 Prescott St., Box 189
	Kemptville, ON
	K0G 1J0
Attention:	Ms. Colleen Vermeersch
PO#:	130293
Invoice to:	Kollaard Associates Inc.

Report Number:	1321323
Date Submitted:	2013-09-27
Date Reported:	2013-10-04
Project:	130293
COC #:	174161

QC Summary

	Analyte				Blank		QC % Rec	QC Limits
Run No	0	Analysis Date	2013-	10-01	Method	V 8	3260B	
Xylene N	lixture							
Run No	258492	Analysis Date	2013-	10-01	Method	0	CCME Reg 153	
Petroleur	m Hydrocarbon	is F1			<100 ug/L		89	80-120
Run No	258495	Analysis Date	2013-	10-01	Method	V 8	3260B	
Benzene	•				<0.5 ug/L		106	80-120
Ethylben	zene				<0.5 ug/L		100	80-120
m/p-xylei	ne				<0.5 ug/L		107	80-120
o-xylene					<0.5 ug/L		107	80-120
Toluene					<0.5 ug/L		107	80-120
Toluene-	d8				99 %		102	80-120
Run No	258497	Analysis Date	2013-	10-01	Method	0	CCME Reg 153	
Petroleur	m Hydrocarbon	s F1-BTEX						
Run No	258547	Analysis Date	2013-	10-02	Method	00	CCME	
Petroleur	m Hydrocarbon	is F2			<100 ug/L		101	50-120

Guideline = O.Reg 153-T3-Non-Potable GW

* = Guideline Exceedence

**-Analysis completed in Mississauga

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

Client:	Kollaard Associates Inc.
	210 Prescott St., Box 189
	Kemptville, ON
	K0G 1J0
Attention:	Ms. Colleen Vermeersch
PO#:	130293
Invoice to:	Kollaard Associates Inc.

Report Number:	1321323
Date Submitted:	2013-09-27
Date Reported:	2013-10-04
Project:	130293
COC #:	174161

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Petroleum Hydrocarbons F3	<200 ug/L	101	50-120
Petroleum Hydrocarbons F4	<200 ug/L	101	50-120

Guideline = O.Reg 153-T3-Non-Potable GW

* = Guideline Exceedence

**-Analysis completed in Mississauga Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

146 Colonnade Rd. Unit 8, Ottawa, ON K2E 7Y1

MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA • KINGSTON • NIAGARA • MISSISSAUGA • SARNIA

Certificate of Analysis

Kollaard Associates Inc.

210 Prescott St. Unit 1 Kemptville, ON K1G 4J8 Attn: Colleen Vermeersch Phone: (613) 860-0923 Fax: (613) 860-0923

Client PO:	Report Date: 19-Nov-2013
Project: 130293	Order Date: 13-Nov-2013
Custody: 13968	Order #: 1346199

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1346199-01	TP1-SA1
1346199-02	TP2-SA2
1346199-03	TP3-SA3
1346199-04	TP3-SA4
1346199-05	TP4-SA5

Approved By:

Mark Fato

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Order #: 1346199

Report Date: 19-Nov-2013 Order Date:13-Nov-2013

Client PO: Analysis Summary Table

Client: Kollaard Associates Inc.

Analysis	Method Reference/Description	Extraction Date Analysis Da	ate
MOE Metals by ICP-OES, soil Reg 153	based on MOE E3470, ICP-OES	15-Nov-13 15-Nov	′-13
PAHs by GC-MS	EPA 8270 - GC-MS, extraction	13-Nov-13 14-Nov	/-13
Solids, %	Gravimetric, calculation	14-Nov-13 14-Nov	/-13

Project Description: 130293

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 8

Order #: 1346199

Report Date: 19-Nov-2013 Order Date:13-Nov-2013

Client PO:		Project Descript			
	Client ID: Sample Date: Sample ID: MDL/Units	TP1-SA1 13-Nov-13 1346199-01 Soil	TP2-SA2 13-Nov-13 1346199-02 Soil	TP3-SA3 13-Nov-13 1346199-03 Soil	TP3-SA4 13-Nov-13 1346199-04 Soil
Physical Characteristics	MDE/Onits				
% Solids	0.1 % by Wt.	70.3	68.7	86.9	76.9
Metals	1 1			•	1
Antimony	1.0 ug/g dry	<1.0	2.1	<1.0	<1.0
Arsenic	1.0 ug/g dry	1.6	1.3	<1.0	1.4
Barium	1.0 ug/g dry	257	291	37.3	227
Beryllium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Boron	1.0 ug/g dry	6.9	7.2	3.7	4.4
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Chromium	1.0 ug/g dry	110	121	24.8	97.5
Cobalt	1.0 ug/g dry	15.4	15.8	5.7	12.5
Copper	1.0 ug/g dry	30.5	36.9	15.7	42.6
Lead	1.0 ug/g dry	7.9	8.7	5.3	5.8
Molybdenum	1.0 ug/g dry	2.1	<1.0	<1.0	<1.0
Nickel	1.0 ug/g dry	43.6	45.2	15.2	35.3
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Silver	0.5 ug/g dry	<0.5	<0.5	<0.5	<0.5
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	<1.0
Vanadium	1.0 ug/g dry	75.2	68.9	29.3	48.8
Zinc	1.0 ug/g dry	72.8	75.4	24.4	59.0
Semi-Volatiles			•	•	
Acenaphthene	0.02 ug/g dry	<0.02	<0.02	-	-
Acenaphthylene	0.02 ug/g dry	<0.02	<0.02	-	-
Anthracene	0.02 ug/g dry	<0.02	<0.02	-	-
Benzo [a] anthracene	0.02 ug/g dry	<0.02	<0.02	-	-
Benzo [a] pyrene	0.02 ug/g dry	<0.02	<0.02	-	-
Benzo [b] fluoranthene	0.02 ug/g dry	<0.02	<0.02	-	-
Benzo [g,h,i] perylene	0.02 ug/g dry	<0.02	<0.02	-	-
Benzo [k] fluoranthene	0.02 ug/g dry	<0.02	<0.02	-	-
Biphenyl	0.02 ug/g dry	<0.02	<0.02	-	-
Chrysene	0.02 ug/g dry	<0.02	<0.02	-	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	<0.02	<0.02	-	-
Fluoranthene	0.02 ug/g dry	<0.02	<0.02	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 8

Client: Kollaard Associates Inc.

Order #: 1346199

Report Date: 19-Nov-2013 Order Date:13-Nov-2013

lient PO:		Project Descript	ion: 130293		Ofder Date: 13-NOV-20			
	Client ID: Sample Date: Sample ID:	TP1-SA1 13-Nov-13 1346199-01	TP2-SA2 13-Nov-13 1346199-02	TP3-SA3 13-Nov-13 1346199-03	TP3-SA4 13-Nov-13 1346199-04			
	MDL/Units	Soil	Soil	Soil	Soil			
Fluorene	0.02 ug/g dry	<0.02	<0.02	-	-			
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	<0.02	<0.02	-	-			
1-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	-	-			
2-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.02	-	-			
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	<0.04	-	-			
Naphthalene	0.01 ug/g dry	<0.01	<0.01	-	-			
Phenanthrene	0.02 ug/g dry	<0.02	<0.02	-	-			
Pyrene	0.02 ug/g dry	<0.02	<0.02	-	-			
2-Fluorobiphenyl	Surrogate	28.2% [2]	35.7% [2]	-	-			
Terphenyl-d14	Surrogate	82.8%	79.6%	-	-			
	Client ID: Sample Date: Sample ID:	TP4-SA5 13-Nov-13 1346199-05	-	-				
	MDL/Units	Soil	-	-	-			
Physical Characteristics				1	1			
% Solids	0.1 % by Wt.	64.9	-	-	-			
Metals	4.0		Г					
Antimony	1.0 ug/g dry	1.1	-	-	-			
Arsenic	1.0 ug/g dry	1.5	-	-	-			
Barium	1.0 ug/g dry	397	-	-	-			
Beryllium	1.0 ug/g dry	<1.0	-	-	-			
Boron	1.0 ug/g dry	3.6	-	-	-			
Cadmium	0.5 ug/g dry	<0.5	-	-	-			
Chromium	1.0 ug/g dry	126	-	-	-			
Cobalt	1.0 ug/g dry	16.3	-	-	-			
Copper	1.0 ug/g dry	39.6	-	-	-			
Lead	1.0 ug/g dry	6.7	-	-	-			
Molybdenum	1.0 ug/g dry	<1.0	-	-	-			
Nickel	1.0 ug/g dry	44.4	-	-	-			
Selenium	1.0 ug/g dry	<1.0	-	-	-			
Silver	0.5 ug/g dry	<0.5	-	-	-			
Thallium	1.0 ug/g dry	<1.0	-	-	-			
Uranium	1.0 ug/g dry	2.9	-	-	-			
Vanadium	1.0 ug/g dry	79.8	-	-	-			
Zinc	1.0 ug/g dry	85.3	-	-	-			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 8

Client: Kollaard Associates Inc. Client PO:

Order #: 1346199

Report Date: 19-Nov-2013 Order Date:13-Nov-2013

Project Description: 130293

Method Quality Control: Blanl	K								
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	1.0	ug/g						
Boron	ND	1.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	1.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	1.0	ug/g						
Lead	ND	1.0	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	1.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.5	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	1.0	ug/g						
Zinc	ND	1.0	ug/g						
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g						
Acenaphthylene	ND	0.02	ug/g						
Anthracene	ND	0.02	ug/g						
Benzo [a] anthracene	ND	0.02	ug/g						
Benzo [a] pyrene	ND	0.02	ug/g						
Benzo [b] fluoranthene	ND	0.02	ug/g						
Benzo [g,h,i] perylene	ND	0.02	ug/g						
Benzo [k] fluoranthene	ND	0.02	ug/g						
Biphenyl	ND	0.02	ug/g						
Chrysene	ND	0.02	ug/g						
Dibenzo [a,h] anthracene	ND	0.02	ug/g						
Fluoranthene	ND	0.02	ug/g						
Fluorene	ND	0.02	ug/g						
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g						
Methylnaphthalene (1&2)	ND	0.04	ug/g						
Naphthalene	ND	0.01	ug/g						
Phenanthrene	ND	0.02	ug/g						
Pyrene	ND	0.02	ug/g		00.0	50 1 10			
Surrogate: 2-Fluorobiphenyl	1.12		ug/g		83.8	50-140			
Surrogate: Terphenyl-d14	1.14		ug/g		85.3	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 8

Client: **Kollaard Associates Inc.** Client PO:

Order #: 1346199

Report Date: 19-Nov-2013 Order Date:13-Nov-2013

Project Description: 130293

Orde	Date:13-Nov-2013	3

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Metals									
Antimony	7.04	1.0	ug/g dry	6.35			10.4	30	
Arsenic	19.8	1.0	ug/g dry	20.3			2.7	30	
Barium	183	10.0	ug/g dry	168			8.6	30	
Beryllium	ND	1.0	ug/g dry	ND			0.0	30	
Boron	9.78	1.0	ug/g dry	9.82			0.5	30	
Cadmium	1.10	0.5	ug/g dry	1.02			7.6	30	
Chromium	134	10.0	ug/g dry	121			10.8	30	
Cobalt	150	10.0	ug/g dry	133			12.0	30	
Copper	606	10.0	ug/g dry	618			1.9	30	
Lead	115	1.0	ug/g dry	112			2.2	30	
Molybdenum	44.5	1.0	ug/g dry	46.2			3.8	30	
Nickel	674	10.0	ug/g dry	572			16.4	30	
Selenium	ND	1.0	ug/g dry	1.55			0.0	30	
Silver	ND	0.5	ug/g dry	0.66			0.0	30	
Thallium	ND	1.0	ug/g dry	ND				30	
Uranium	ND	1.0	ug/g dry	10.6			0.0	30	
Vanadium	41.1	1.0	ug/g dry	41.8			1.7	30	
Zinc	815	10.0	ug/g dry	677			18.5	30	
Physical Characteristics			· 3· 3 · 7	-					
	00.7	0.4	0/ 1	04.4			0.0	05	
% Solids	62.7	0.1	% by Wt.	61.4			2.2	25	
Semi-Volatiles									
Acenaphthene	ND	0.04	ug/g dry	ND			0.0	40	
Acenaphthylene	0.152	0.04	ug/g dry	0.093			48.9	40	QR-04
Anthracene	0.049	0.04	ug/g dry	ND			0.0	40	
Benzo [a] anthracene	0.046	0.04	ug/g dry	ND			0.0	40	
Benzo [a] pyrene	0.137	0.04	ug/g dry	0.061			77.4	40	QR-04
Benzo [b] fluoranthene	0.153	0.04	ug/g dry	0.067			77.9	40	QR-04
Benzo [g,h,i] perylene	0.215	0.04	ug/g dry	0.145			38.9	40	
Benzo [k] fluoranthene	0.053	0.04	ug/g dry	ND			0.0	40	
Biphenyl	ND	0.04	ug/g dry	ND			0.0	40	GEN09
Chrysene	0.126	0.04	ug/g dry	0.053			81.2	40	QR-04
Dibenzo [a,h] anthracene	ND	0.04	ug/g dry	ND			0.0	40	GEN09
Fluoranthene	0.117	0.04	ug/g dry	0.060			64.5	40	QR-04
Fluorene	0.053	0.04	ug/g dry	ND			0.0	40	
Indeno [1,2,3-cd] pyrene	0.077	0.04	ug/g dry	0.045			53.2	40	QR-04
1-Methylnaphthalene	0.055	0.04	ug/g dry	ND			0.0	40	
2-Methylnaphthalene	0.066	0.04	ug/g dry	0.046			35.7	40	
Naphthalene	0.276	0.02	ug/g dry	0.228			18.9	40	
Phenanthrene	0.197	0.04	ug/g dry	0.100			65.9	40	QR-04
Pyrene	0.170	0.04	ug/g dry	0.102			50.4	40	QR-04
Surrogate: 2-Fluorobiphenyl	1.51		ug/g dry	ND	97.3	50-140			
Surrogate: Terphenyl-d14	1.41		ug/g dry	ND					

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

OTTAWA

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 8

Client: Kollaard Associates Inc. Client PO:

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	218		ug/L	ND	87.3	70-130			
Arsenic	222		ug/L	ND	88.6	70-130			
Barium	235		ug/L	ND	93.9	70-130			
Beryllium	223		ug/L	ND	89.3	70-130			
Boron	224		ug/L	ND	89.7	70-130			
Cadmium	221		ug/L	ND	88.5	70-130			
Chromium	229		ug/L	ND	91.8	70-130			
Cobalt	228		ug/L	ND	91.0	70-130			
Copper	229		ug/L	ND	91.4	70-130			
Lead	218		ug/L	ND	87.4	70-130			
Molybdenum	223		ug/L	ND	89.3	70-130			
Nickel	223		ug/L	ND	89.1	70-130			
Selenium	240		ug/L	ND	95.8	70-130			
Silver	221		ug/L	ND	88.3	70-130			
Thallium	225		ug/L	ND	89.9	70-130			
Uranium	246		ug/L	ND	98.2	70-130			
Vanadium	222		ug/L	ND	88.9	70-130			
Zinc	215		ug/L	ND	86.0	70-130			
Semi-Volatiles									
Acenaphthene	0.104	0.04	ug/g	ND	53.9	50-140			
Acenaphthylene	0.220	0.04	ug/g	0.093	65.6	50-140			
Anthracene	0.177	0.04	ug/g	ND	91.2	50-140			
Benzo [a] anthracene	0.169	0.04	ug/g	ND	87.3	50-140			
Benzo [a] pyrene	0.222	0.04	ug/g	0.061	83.1	50-140			
Benzo [b] fluoranthene	0.276	0.04	ug/g	0.067	108	50-140			
Benzo [g,h,i] perylene	0.219	0.04	ug/g	0.145	38.4	50-140		G	2M-06
Benzo [k] fluoranthene	0.192	0.04	ug/g	ND	99.0	50-140			
Biphenyl	0.098	0.04	ug/g	ND	50.6	50-140			
Chrysene	0.254	0.04	ug/g	0.053	104	50-140			
Dibenzo [a,h] anthracene	0.128	0.04	ug/g	ND	66.1	50-140			
Fluoranthene	0.224	0.04	ug/g	0.060	84.7	50-140			
Fluorene	0.155	0.04	ug/g	ND	80.2	50-140			
Indeno [1,2,3-cd] pyrene	0.148	0.04	ug/g	0.045	53.5	50-140			
1-Methylnaphthalene	0.122	0.04	ug/g	ND	63.0	50-140			
2-Methylnaphthalene	0.134	0.04	ug/g	0.046	45.7	50-140		G	2M-06
Naphthalene	0.287	0.02	ug/g	0.228	30.2	50-140		G	06-M
Phenanthrene	0.265	0.04	ug/g	0.100	85.5	50-140			
Pyrene	0.297	0.04	ug/g	0.102	101	50-140			
Surrogate: 2-Fluorobiphenyl	1.22		ug/g		78.8	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA

123 Christina St. N. Sarnia, ON N7T 5T7

Page 7 of 8

Order #: 1346199

Report Date: 19-Nov-2013

Order Date:13-Nov-2013

Project Description: 130293

Client: Kollaard Associates Inc. Client PO:

Project Description: 130293

Order #: 1346199

Report Date: 19-Nov-2013 Order Date:13-Nov-2013

Qualifier Notes:

Sample Qualifiers :

2: PAH surrogate recovery (2-Fluorobiphenyl) lower than expected due to matrix interference.

QC Qualifiers :

- GEN09 : Elevated detection limits due to the nature of the sample matrix.
- QM-06 : Due to noted non-homogeneity of the QC sample matrix, the spike recoveries were out side the accepted range. Batch data accepted based on other QC.
- QR-04 : Duplicate results exceeds RPD limits due to non-homogeneous matrix.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 8 of 8

Client Name: Kollaard Associates Contact Name: Colleen Address: 210 Prescott St, Kempt Telephone: 613 860 0923 ext 2	RE AUGA	ELIAE ● SAF	NSIV BLE . RNIA Project I Quote # PO # Email A COV	ddress: leen@kt	ollaard.	C 91	Ottawa, p: 1-800 e: parac www.pa	9 St. Lau Ontario 0-749-19- cel@para iracellabs	icellabs.com	TAT: Date Re	Pa Pa Kegula [] 2 Day quired:	(Lab Use 13) ge [968 _ of] 3 Day] 1 Day		
Criteria: 11/0. Reg. 153/04 (As Amended) Table Z 1/RS	C Filing	[]0.]	Reg. 558/	00 []PWQO [] CCME [] SU	B (Storn	1) []SU	B (Sanitar	y) Municipalit	V:	[] Other:			
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS	(Storm/Sa	nitary Se	wer) P (F	Paint) A (Air) O (O	ther)				Requ	ired Aı	alyses				
Paracel Order Number: $ \begin{array}{r} 346199 - 501 \\ 346200 - Water \\ \hline Sample ID/Location Name \\ \hline TPI-SA \\ \hline 2 TP2-SA2 \\ \hline 3 TP3-SA3 \\ \hline 4 TP3-SA4 \\ \hline 5 TP4-SA5 \\ \hline 6 BHI - SA2 \\ \hline 7 \\ \end{array} $		Air Volume		Sample Date 13/11/13 13/11/13 13/11/13 13/11/13 13/11/13 13/11/13	Taken Time 9:30 am 10 am 11 am 11:30 am 11:30 am	/	<t< td=""><td></td><td></td><td></td><td>250 1) 50 m</td><td>)</td><td>)</td><td></td><td></td></t<>				250 1) 50 m))		
8		_	-						-	-					
9										+					
Comments: Soil' samples all podium /fil	le qu	raik	ad e	except fi	br TP3	5-5	A3	(roa	rsegra	ind))	Method	of Delive	17: K-ir	1
Relinquished By (Sign): (UMULLAA Relinquished By (Print): CVermeersch Date/Time: 13/11/13 - 12'20 pm	Receive Date/Ti Temper	d by Dri me:	ver/Depo	t: C	Receive N Date/Ti	d at Lab	:	-1	12:24	Verifie Date/T	d By: M/ C	haiime H aannahaa	3 /13		49

Chain of Custody (Blank) - Rev 0.2 May 2013

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA • KINGSTON • NIAGARA • MISSISSAUGA • SARNIA

Certificate of Analysis

Kollaard Associates Inc.

210 Prescott St. Unit 1 Kemptville, ON K1G 4J8 Attn: Colleen Vermeersch Phone: (613) 860-0923 Fax: (613) 860-0923

Client PO:	Report Date: 19-Nov-2013
Project: 130293	Order Date: 13-Nov-2013
Custody: 13968	Order #: 1346200

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 1346200-01 BH1-SA2

Approved By:

Mark Fato

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client: Kollaard Associates Inc. Client PO:

Project Description: 130293

Order #: 1346200

Report Date: 19-Nov-2013 Order Date:13-Nov-2013

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date A	nalysis Date
PAHs by GC-MS	EPA 625 - GC-MS, extraction	16-Nov-13	18-Nov-13

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 6

PARACEL

Certificate of Analysis

Order #: 1346200

Report Date: 19-Nov-2013 Order Date:13-Nov-2013

Client: Kollaard Associates I	nc.				Date:13-Nov-2013
Client PO:		Project Description	n: 130293		
	Client ID:	BH1-SA2	-	-	-
	Sample Date:	13-Nov-13	-	-	-
	Sample ID:	1346200-01	-	-	-
• • • • • • •	MDL/Units	Water	-	-	-
Semi-Volatiles					
Acenaphthene	0.05 ug/L	<0.05	-	-	-
Acenaphthylene	0.05 ug/L	<0.05	-	-	-
Anthracene	0.01 ug/L	<0.01	-	-	-
Benzo [a] anthracene	0.01 ug/L	0.04	-	-	-
Benzo [a] pyrene	0.01 ug/L	0.02	-	-	-
Benzo [b] fluoranthene	0.05 ug/L	<0.05	-	-	-
Benzo [g,h,i] perylene	0.05 ug/L	<0.05	-	-	-
Benzo [k] fluoranthene	0.05 ug/L	<0.05	-	-	-
Biphenyl	0.05 ug/L	0.06	-	-	-
Chrysene	0.05 ug/L	<0.05	-	-	-
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	-	-	-
Fluoranthene	0.01 ug/L	0.05	-	-	-
Fluorene	0.05 ug/L	0.15	-	-	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	-	-	-
1-Methylnaphthalene	0.05 ug/L	0.08	-	-	-
2-Methylnaphthalene	0.05 ug/L	0.10	-	-	-
Methylnaphthalene (1&2)	0.10 ug/L	0.18	-	-	-
Naphthalene	0.05 ug/L	0.10	-	-	-
Phenanthrene	0.05 ug/L	0.37	-	-	-
Pyrene	0.01 ug/L	0.04	-	-	-
2-Fluorobiphenyl	Surrogate	79.1%	-	-	-
Terphenyl-d14	Surrogate	79.7%	-	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

Page 3 of 6

Client: Kollaard Associates Inc. Client PO:

Order #: 1346200

Report Date: 19-Nov-2013 Order Date:13-Nov-2013

Project Description: 130293

			Source		%REC		RPD		
Analyte	Result	Reporting Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Semi-Volatiles									
Acenaphthene	ND	0.05	ug/L						
Acenaphthylene	ND	0.05	ug/L						
Anthracene	ND	0.01	ug/L						
Benzo [a] anthracene	ND	0.01	ug/L						
Benzo [a] pyrene	ND	0.01	ug/L						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] perylene	ND	0.05	ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Biphenyl	ND	0.05	ug/L						
Chrysene	ND	0.05	ug/L						
Dibenzo [a,h] anthracene	ND	0.05	ug/L						
Fluoranthene	ND	0.01	ug/L						
Fluorene	ND	0.05	ug/L						
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
1-Methylnaphthalene	ND	0.05	ug/L						
2-Methylnaphthalene	ND	0.05	ug/L						
Methylnaphthalene (1&2)	ND	0.10	ug/L						
Naphthalene	ND	0.05	ug/L						
Phenanthrene	ND	0.05	ug/L						
Pyrene	ND	0.01	ug/L						
Surrogate: 2-Fluorobiphenyl	16.4		ug/L		82.2	50-140			
Surrogate: Terphenyl-d14	18.1		ug/L		90.3	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 6

2-Methylnaphthalene

Surrogate: 2-Fluorobiphenyl

Naphthalene

Pyrene

Phenanthrene

Certificate of Analysis

Client: Kollaard Associates Inc. Client PO:

Method Quality Control: Spike

Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	N
Semi-Volatiles									
Acenaphthene	3.82	0.05	ug/L	ND	76.4	50-140			
Acenaphthylene	3.95	0.05	ug/L	ND	79.1	50-140			
Anthracene	4.00	0.01	ug/L	ND	80.1	50-140			
Benzo [a] anthracene	3.55	0.01	ug/L	ND	71.1	50-140			
Benzo [a] pyrene	3.22	0.01	ug/L	ND	64.3	50-140			
Benzo [b] fluoranthene	4.11	0.05	ug/L	ND	82.1	50-140			
Benzo [g,h,i] perylene	3.84	0.05	ug/L	ND	76.8	50-140			
Benzo [k] fluoranthene	4.09	0.05	ug/L	ND	81.8	50-140			
Biphenyl	3.24	0.05	ug/L	ND	64.8	50-140			
Chrysene	4.36	0.05	ug/L	ND	87.3	50-140			
Dibenzo [a,h] anthracene	4.17	0.05	ug/L	ND	83.4	50-140			
Fluoranthene	4.42	0.01	ug/L	ND	88.4	50-140			
Fluorene	4.01	0.05	ug/L	ND	80.2	50-140			
Indeno [1,2,3-cd] pyrene	4.11	0.05	ug/L	ND	82.2	50-140			
1-Methylnaphthalene	3.77	0.05	ug/L	ND	75.5	50-140			
			"						

Reporting

0.05

0.05

0.05

0.01

4.03

3.68

4.06

4.56

15.2

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

SARNIA

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 6

Order #: 1346200

Report Date: 19-Nov-2013 Order Date:13-Nov-2013

Notes

RPD

%REC

50-140

50-140

50-140 50-140

50-140

Project Description: 130293

ug/L

ug/L

ug/L

ug/L

ug/L

Source

ND

ND

ND

ND

80.6

73.7

81.2

91.2

76.2

Client: Kollaard Associates Inc. Client PO:

Project Description: 130293

Order #: 1346200 Report Date: 19-Nov-2013

Order Date:13-Nov-2013

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

> P: 1-800-749-1947 E: paracel@paracellabs.com www.paracellabs.com

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 6

OTTAWA © KINGSTON © NIAGARA © MISSISS	RE	ELIA	NSIVE				Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com www.paracellabs.com								
Client Name: Kollaurd Associates Contact Name: Collecn Address: 210 Prescott St, Kempt Telephone: 613 860 0923 ext;	Project Reference: 130293 Quote # PO# Email Address: Colleen@kollaard.co							Page of TAT: []#Kégular [] 3 Day [] 2 Day [] 1 Day Date Required:							
Criteria: [1] O. Reg. 153/04 (As Amended) Table 3 [1] RS Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS						B (Ston	n) []St	B (Sanita		uired Ar] Other:		-	
Paracel Order Number: $\begin{vmatrix} 346 \\ 9 \end{vmatrix}$ Paracel Order Number: $\begin{vmatrix} 346 \\ 9 \end{vmatrix}$ Paracel Order Number: $\begin{vmatrix} 346 \\ 9 \end{vmatrix}$ Paracel Science Scienc	A C C C Matrix	Air Volume	C C # of Containers	Sample Date 13/11/13 13/11/13 13/11/13 13/11/13 13/11/13	Time 9:30 am 10 am 11 am	7	< $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$				2.50 1) 50 m 1	2)		
10 Comments:												Method	of Delive	īy:	
Soll' Samples all prodium /hin Relinquished By (Sign): Cumelusch Relinquished By (Print): C. Vermeersch Date/Time: 13/11/13 - 12:20 pm		d by Dri me:	ed e ver/Depol	1	Receive M Date/Ti	ind at Lab		3 [13]	rse gra	Verified Date/T	i By: M C	h lev 13	Jal 3/13	K-11	n 49

Chain of Custody (Blank) - Rev 0.2 May 2013