147 Langstaff Drive, Carp, Ontario

Fluvial Geomorphological and Erosion Hazard Assessment

Prepared for: Inverness Homes 69 Moore Street Richmond ON KOA 2Z0

October 23, 2019 PN19072

> GEO MORPHIX Geomorphology Earth Science

Observations

Report Prepared by:	GEO Morphix Ltd. 36 Main Street North PO Box 205 Campbellville, ON LOP 1B0
Report Title:	147 Langstaff Drive, Carp Ontario Fluvial Geomorphological and Erosion Hazard Assessment
Project Number:	PN19072
Status:	Final
Version:	1.0
First Submission Date:	October 23, 2019
Revision Date	
Prepared by:	Melisa Kopan, M.Sc., Ben Miller, B.Sc., CAN-CISEC and Suzanne St. Onge, M.Sc.
Approved by:	Paul Villard, Ph.D., P.Geo., CAN-CISEC, EP, CERP
Approval Date:	October 23, 2019

Table of Contents

1	Intro	luction	. 1
2	Backg	round Review and Desktop Assessment	1
	2.1	Geology and Physiography	1
	2.2	Site History	2
3	Wate	course Characteristics	3
	3.1	Reach Delineation	.3
	3.2	General Reach Observations	.3
	3.3	Rapid Assessments	.4
4	Erosio	on Hazard Delineation	.5
5	Recor	nmendations for Proposed Crossings	.6
6	Sumn	nary	.6
7	Refer	ences	.8

Appendices

Appendix A Historical Aerial Photographs Appendix B Reach Delineation Appendix C Photographic Record Appendix D Field Assessment Sheets

1 Introduction

GEO Morphix was retained by Inverness Homes to complete a fluvial geomorphological and erosion hazard assessment for a proposed development located at 147 Langstaff Drive in the community of Carp, Ontario. The subject lands are approximately 8.12 ha in area and bounded by Langstaff Drive to the north, Carp Road and existing residences to the south and east, and existing residential and commercial/industrial development to the west. A tributary of the Carp River flows in a generally north to south orientation through the central portion of the subject lands. A second tributary flows immediately west of the subject lands. Existing land uses consist of vacant greenfield and natural areas associated with the Carp River tributaries.

The City of Ottawa, as part of the pre-application consultation, requested the completion of a Fluvial Geomorphology Report. The following activities have been completed in support of our assessment:

- Review available background reports and mapping (e.g., watershed/subwatershed reporting, geology, and topography) related to channel form and function and controlling factors related to fluvial geomorphology
- Delineate watercourse reaches through a desktop assessment
- Complete rapid geomorphological assessments on a reach basis to document channel conditions and verify the desktop assessment
- Document any areas of significant erosion and locations of valley wall contacts/valley wall systems
- Collect instream measurements of bankfull channel dimensions and characterize bed and bank material composition and structure
- Delineate limits of the erosion hazard on a reach basis using field observations and historical aerial photography
- Prepare recommendations for the two proposed trail crossings over the central tributary to ensure that natural hazards are addressed from a fluvial geomorphological perspective

This report summarizes the results of our desktop and field-based assessment. It identifies site constraints from a fluvial geomorphological perspective and should be considered in conjunction with studies being completed by other disciplines in support of the proposed development.

2 Background Review and Desktop Assessment

2.1 Geology and Physiography

Geology and physiography act as constraints to channel development and tendency. These factors determine the nature and quantity of the availability and type of sediment. Secondary variables that affect the channel include land use and riparian vegetation. These factors are explored as they not only offer insight into existing conditions, but also potential changes that could be expected in the future as they relate to a proposed activity.

The subject lands are located within the Ottawa Valley Clay Plains physiographic region and Clay Plains physiographic landform. Areas north (upstream) of the subject lands are located within the Shallow Till and Rock Ridges physiographic landform (Chapman and Putnam, 1984 and 2007). Based on published surficial geology mapping, the majority of the subject lands contain coarse-textured glaciomarine deposits of sand, gravel, minor silt and clay. The north tip of the subject

lands and areas north of Langstaff Drive contain fine-textured glacio-marine deposits of silt and clay, minor sand and gravel that are massive to well laminated (OGS, 2010).

Available mapping is generally consistent with boreholes recovered by Paterson Group (2008) in support of a previous geotechnical study. Six boreholes were advanced to a maximum depth of 18.9 m. Borehole logs showed that subsurface conditions consisted of topsoil overlying a thin silty sand layer, which was underlain by a stiff silty clay deposit, and then a silty sand deposit.

2.2 Site History

A series of historical aerial photographs were reviewed to determine changes to the channel and surrounding land use/cover. This information, in part, provides an understanding of the historical factors that have contributed to current channel morphodynamics. Aerial photographs from 1945, 1964, 1966, 1967, 1975, 1978, and 1989 from the National Air Photo Library (NAPL), imagery available online through the GEO Ottawa web mapping application, and recent satellite imagery from Google Earth Pro were reviewed. Refer to **Appendix A** for copies of select imagery obtained from the National Air Photo Library.

In 1946, agriculture and rural land uses were predominant. Outbuildings/agricultural facilities were visible adjacent to the top of the bank of the central tributary near what is now Langstaff Drive and near the downstream extent of the central tributary. The defined valleys were apparent, but the watercourse was not clearly visible in the imagery. Natural riparian vegetation had been removed from the upstream portion of the central tributary, likely to facilitate agricultural uses, while the western tributary that flows adjacent to the subject lands retained natural vegetation in the immediate riparian zone. A large natural area was present upstream, which coincides with Precambrian bedrock based on published surficial geology mapping (OGS, 2010).

There were limited changes to land use and land cover by 1966, with areas within the subject lands under active cultivation; however, rural residential development had expanded westward along Donald B Munro Drive. In 1967, a large industrial/commercial facility was constructed northwest of the subject lands, west of what is now Langstaff Drive, but was set well back from the central tributary.

In 1975, the subject lands remained under active cultivation, while lands to the east and west were converted from agriculture to relatively small residential subdivisions. An access road was constructed over the western most tributary immediately adjacent to the subject lands, likely to facilitate access to agricultural fields.

By 1989, residential subdivisions had begun to encroach on the central tributary north of what is now Langstaff Road, and commercial/industrial development had expanded to the immediate west. The crossing visible in the 1975 imagery along the western tributary was no longer present, likely due to expansion of the local road network west of the subject lands. Portions of the central tributary north of the subject lands also appeared to have been straightened or modified to accommodate residential development, with landscaped rear yards of several residences abutting the central tributary upstream of the subject lands. Between 1975 and 1989, headwaters of the western tributary appeared to be straightened to follow property boundaries or enclosed in storm sewers. These channel modifications likely resulted in limited/reduced natural channel form upstream of the subject lands, as well as potentially more rapid run-off to receiving features due to increases in impervious surfaces.

By 2004, the current alignment of Langstaff Drive had been constructed and residential development had expanded further in the upstream extents of both the central and western tributaries. An online stormwater management facility and access road were recently constructed

immediately upstream of the subject lands on the north side of Langstaff Road. In addition, an access road and watercourse crossing were apparent at the upstream extent of the central tributary within the subject lands, approximately 110 m downstream of Langstaff Drive. A second access to the central tributary was visible amongst the trees in the lower third of the central tributary. The purpose of these two crossings was unclear based on the aerial photograph record but it is inferred that they may provide a stormwater management function. There was limited change between 2004 and 2018, with the exception of the construction of additional residences on the west side of the central tributary upstream of Langstaff Drive.

3 Watercourse Characteristics

3.1 Reach Delineation

Reaches are homogeneous segments of channel used in geomorphological investigations. Reaches are studied semi-independently as each is expected to function in a manner that is at least slightly different from adjoining reaches. This method allows for a meaningful characterization of a watercourse as the aggregate of reaches, or an understanding of a particular reach, for example, as it relates to a proposed activity. Reaches are typically delineated based on changes in the following:

- Channel planform
- Channel gradient
- Physiography
- Land cover (land use or vegetation)
- Flow, due to tributary inputs
- Soil type and surficial geology
- Historical channel modifications

Reach delineation follows scientifically defensible methodology proposed by Montgomery and Buffington (1997), Richards et al. (1997), and the Toronto and Region Conservation Authority (2004) as well as others. A single reach, **CR-1**, was delineated along the central tributary that bisects the subject lands. Reaches **CR-2** and **CR-2a** were delineated along the tributary to the immediate west. Due to site access limitations, only approximately 50 m of **Reach CR-2** was assessed in the field. Refer to **Appendix B** for the location and extent of each reach.

3.2 General Reach Observations

Field investigations were completed on July 10 and September 4, 2019, and included the following:

- Completion of reach-scale habitat sketch maps based on Newson and Newson (2000) outlining channel substrate, flow patterns, geomorphological units (e.g., riffle, run, pool), and riparian vegetation
- Descriptions of riparian conditions
- Estimates of bankfull channel dimensions
- Determination of bed and bank material composition and structure
- Observations of erosion, scour, or deposition
- Collection of photographs to document the watercourses, riparian areas and/or valley, surrounding land use, and channel disturbances such as crossing structures

These observations and measurements are summarized below. The descriptions are supplemented and supported with representative photographs, which are included in **Appendix**

C. Field sheets, including reach summaries, habitat sketch maps and rapid assessments, are provided in **Appendix D**.

Reach **CR-1** was a single thread, irregularly meandering channel within a transfer zone. The riparian zone was continuous and consisted of established trees (5-30 years), shrubs, grasses and herbaceous species, and was approximately 4-10 channel widths. The reach had a perennial flow regime and was moderately entrenched. Evidence of groundwater inputs (i.e., iron staining) was observed within the reach. Riffle-pool spacing was approximately 10 m, with riffle lengths ranging between 2 and 5 m. Riffle substrates consisted of sand, gravel and cobble and pool substrates consisted of clay/silt and sand. Bank materials consisted of clay, silt, sand and rootlets. There was minimal undercutting, with the highest measured undercut being 0.05 m.

Average bankfull channel width and depth were approximately 3.0 m and 0.4 m, respectively. Average wetted width and depth were 0.61 m and 0.19 m, respectively. Bank angles ranged from 0-90°. The upstream portion of **Reach CR-1** was extensively encroached with vegetation and was situated within a partially confined valley with minimal woody debris. Meander amplitude was measured in the upstream portion of the reach to be approximately 3.9 m. The downstream portion of the reach flowed through a forest within a confined valley and minimal vegetation encroachment. The channel became less defined and had multiple valley wall contacts and a few slumps. There was more woody debris present in the downstream portion of the reach relative to the upstream portion.

Based on the extent assessed, **Reach CR-2** was a single thread, irregularly meandering channel flowing through a confined valley. The riparian zone was continuous and consisted mainly of established trees (5-30 years) and herbaceous species and was approximately 4-10 channel widths. The reach has an intermittent to perennial flow regime and had low entrenchment. No true riffle-pool sequences were present but spacing between geomorphic units was approximately 6 m, with riffle lengths ranging between 1 and 2 m. Riffle substrates consisted mainly of sand, gravel and small cobbles and pool substrates consisted of clay/silt and sand. Bank angles ranged from 30-90° and materials consisted of clay/silt, sand and rootlets.

Average bankfull channel width and depth were 2.3 m and 0.25 m, respectively. At the time of the assessment, average wetted width and depth were 0.93 m and 0.04 m, respectively. The valley corridor had a bottom width of approximately 4-5 m and minimal bank erosion was observed even though the channel was in contact with the left valley wall for a significant portion of the reach. One larger eroded bank was present near the downstream extent assessed and was approximately two metres in height and 5 metres in length.

3.3 Rapid Assessments

Channel instability was objectively quantified through the application of the Ontario Ministry of the Environment's (2003) Rapid Geomorphic Assessment (RGA). Observations were quantified using an index that identifies channel sensitivity based on evidence of aggradation, degradation, channel widening, and planimetric adjustment. The index produces values that indicate whether a channel is stable/in regime (score <0.20), stressed/transitional (score 0.21-0.40), or adjusting (score >0.41).

The Rapid Stream Assessment Technique (RSAT) was also employed to provide a broader view of the system as it considers the ecological function of the watercourse (Galli, 1996). Observations were made of channel stability, channel scouring or sediment deposition, instream and riparian habitats, and water quality. The RSAT score ranks the channel as maintaining a poor (<13), fair (13-24), good (25-34), or excellent (35-42) degree of stream health.

Reaches **CR-1** and **CR-2** were also classified according to a modified Downs (1995) Channel Evolution Model. The Downs Model describes successional stages of a channel as a result of a perturbation, namely hydromodification. Understanding the current stage of the system is beneficial as this allows one to predict how the channel will continue to evolve or respond to an alteration to the system. The results of these assessments are summarized below in **Table 1**.

For Reach **CR-1**, an RGA score of 0.19 was assigned, indicating the reach was in regime. The dominant geomorphological indicator was evidence of widening, shown by occurrences of large organic debris and exposed roots. **Reach CR-1** had an RSAT score of 32.5, or good. There was no definitive limiting factor, as the reach scored 'good' in all categories. The reach was given a Downs classification of 'M' for lateral migration.

For **Reach CR-2**, an RGA score of 0.24 was assigned, indicating the reach was in transition/stress. The dominant geomorphological indicator was evidence of aggradation, evidenced by siltation in pools, medial bars, accretion on point bars, and deposition in the overbank zone. Reach **CR-2** had an RSAT score of 30, or good. The limiting factor was physical instream habitat due to the few shallow pools and small riffle substrate sizes present. The reach was given a Downs classification of `M' for lateral migration.

		RGA (MOE,	2003)	ľ	RSAT (Galli,	1996)	Downs
Reach	Score	Condition	Dominant Systematic Adjustment	Score	Condition	Limiting Feature(s)	Evolution Model (1995)
CR-1	0.19	In Regime	Widening	32.5	Good	N/A	M – lateral migration
CR-2*	0.24	In Transition	Evidence of Aggradation	30	Good	Physical Instream Habitat	M – lateral migration

Table 1: Summary of rapid assessment results

 $* \sim 50$ m of reach assessed due to the feature being located on private property

4 Erosion Hazard Delineation

Most watercourses in southern Ontario have a natural tendency to develop and maintain a meandering planform, provided there are no spatial constraints. A meander belt width or erosion hazard assessment estimates the lateral extent that a meandering channel has historically occupied and will likely occupy in the future. This assessment is therefore useful for determining the potential hazard to proposed activities in the vicinity of a stream.

When defining the meander belt width for a creek system, the TRCA (2004) and MNR (2002) protocols treat unconfined and confined systems differently. Unconfined systems are those with poorly defined valleys or slopes well-outside where the channel could realistically migrate. Confined systems are those where the watercourse is contained within a defined valley, where valley wall contact is possible.

Based on our desktop review and field observations, the Carp River tributaries within and adjacent to the subject lands are confined systems. Notably, channel migration rates could not be measured due to the presence of trees along the tributary corridors, the size of the features, and the resolution of available aerial photography. The MNR (2002) provides recommendations for an appropriate toe erosion allowance based on evidence of erosion, channel bank composition and bankfull channel width. As noted previously, the channel banks were composed of clay, silt and

sand, and the average bankfull channel widths were estimated to be approximately 3.0 m and 2.3 m along the central and western tributaries, respectively. MNR (2002) guidelines indicate that for channels with no active erosion, a bankfull channel width of less than 5 m and banks composed of soft/firm cohesive soils, a 1-2 m toe erosion allowance should be applied. As Reach **CR-1** contained limited evidence of erosion, had an average bankfull width of 3.0 m, with bank materials consisting of clay, silt and sand, an erosion setback of 2 m is appropriate. A toe erosion allowance of 1 m is recommended for Reach **CR-2**, as it has an intermittent to perennial flow regime, an average bankfull width of 2.3 m and bank materials consisting of clay, silt and sand. These values should be considered in conjunction with the geotechnical study, prepared under separate cover by the Patterson Group Inc.

5 Recommendations for Proposed Crossings

Two pedestrian crossings are proposed in Reach **CR-1** where concrete culverts are currently located. At this time, it is uncertain as to whether the existing concrete culverts will be maintained or replaced. At the time of our assessment, no erosion concerns were documented in vicinity of either culvert. Should the culverts be replaced, we recommend the new structures consider the following from a fluvial geomorphic perspective:

- Replacement structures should be open bottom or embedded a minimum of 0.3 m
- Where possible, avoid the need for channel armouring or adjustment
- Address potential channel migration
- Maintain flow velocities and sediment transport processes for frequent storm events
- Be located at a straight section of channel
- Cross the channel at a perpendicular angle
- Be located at a reasonably stable length of channel

The above recommendations are consistent with crossing guidelines developed by Greater Golden Horseshoe Conservation Authorities such as Toronto and Region Conservation Authority (TRCA) and Credit Valley Conservation (CVC). The TRCA (2015) recommends that crossing structures span the meander belt width, where feasible, or, at minimum, the 100-year erosion limit to avoid the migration of the channel into the crossing structure within the next 100 years. The TRCA guidelines also allow smaller crossing structures that accommodate relatively small, stable watercourses provided that they consider physical channel characteristics (e.g., alignment, width and depth) and fluvial processes (e.g., erosion and scour).

6 Summary

GEO Morphix was retained to complete a fluvial geomorphological assessment of two tributaries of the Carp River located within and adjacent to the property located at 147 Langstaff Drive, Ottawa. The desktop assessment included a review of available reporting, and surficial geology and topographic mapping, as well as reach delineation. A historical assessment was also completed using imagery available from the National Air Photo Library, the GEO Ottawa web mapping application and Google Earth Pro.

The desktop assessment was confirmed through the completion of reach-based rapid field reconnaissance on July 10 and September 4, 2019. Reach **CR-1**, along the central tributary, consisted of a confined channel and was evaluated to be in regime, with an RGA score of 0.19. The dominant systematic adjustment was evidence of widening. This reach had an RSAT score of 32.5, or good. Due to site access limitations, only approximately 50 m of Reach **CR-2** was assessed. This reach was also confined and assigned an RGA score of 0.24, indicating it was in

transition/stress. The RSAT resulted in a score of 30, or good. The dominant systematic adjustment was evidence of aggradation. Both reaches were assigned a score of 'M' for lateral migration. Overall, although the channels were in contact with the valley walls at multiple locations, there was minor evidence of erosion along each tributary.

Where channel systems are confined, the erosion hazard can be defined using the 100-year erosion limit or through the selection of an appropriate toe erosion allowance based on MNR (2002) guidelines. For this study, channel migration rates could not be measured due to the presence of trees along the tributary corridors, the relatively small size of the features, and the resolution of available aerial photography. Therefore, toe erosion allowances were determined following Table 3 of the MNR (2002) guideline document. A 2 m toe erosion allowance was determined for Reach **CR-1** and a 1 m toe erosion allowance of 1 m was determined for Reach **CR-2**. These values should be considered in conjunction with the geotechnical study, prepared under separate cover by the Patterson Group Inc.

We trust this report meets your requirements at this time. Should you have any questions please contact the undersigned.

Respectfully submitted,

Paul Villard, Ph.D., P.Geo., CAN-CISEC, EP, CERP Director, Principal Geomorphologist

wanne St. Onge

Suzanne St. Onge, M.Sc. Senior Environmental Scientist

7 References

Chapman, L.J. and Putnam, D.F. 1984. The Physiography of Southern Ontario. Ontario Geological Survey, Special Volume 2, Map 226.

Chapman, L.J. and Putnam, D.F. 2007. The Physiography of Southern Ontario. Ontario Geological Survey Miscellaneous Release—Data 228.

Credit Valley Conservation (CVC). 2015. Credit Valley Conservation Fluvial Geomorphic Guidelines.

Downs, P.W. 1995. Estimating the probability of river channel adjustment. Earth Surface Processes and Landforms, 20: 687-705.

Galli, J. 1996. Rapid Stream Assessment Technique, Field Methods. Metropolitan Washington Council of Governments.

Ministry of Environment (MOE). 2003. Ontario Ministry of Environment. Stormwater Management Guidelines.

Ministry of Natural Resources and Forestry. 2002. Technical Guide – River and Stream Systems: Erosion Hazard Limit.

Montgomery, D.R. and J.M. Buffington. 1997. Channel-reach morphology in mountain drainage basins. Geological Society of America Bulletin, 109 (5): 596-611.

Newson, M. D. & Newson C. L. 2000. Geomorphology, ecology and river channel habitat: Mesoscale approaches to basin-scale challenges. Progress in Physical Geography, 2: 195–217.

Ontario Geological Survey 2010. Surficial geology of Southern Ontario; Ontario Geological Survey, Miscellaneous Release--Data 128-REV.

Patterson Group Inc. 2008. Geotechnical Investigation, Proposed Residential Development, Honeywell Estates, Langstaff Drive, Ottawa, Ontario. Prepared for Honeywell Estates c/o FoTenn Consultants.

Toronto and Region Conservation Authority (TRCA). 2004. Belt Width Delineation Procedures.

Toronto and Region Conservation Authority. 2015. Crossing Guidelines for Valley and Stream Corridors. 60 pp.

Vermont Agency of Natural Resources (VANR). 2007. Step 7: Rapid Geomorphic Assessment (RGA). Phase 2 Stream Geomorphic Assessment.

Appendix A Historical Aerial Photographs

geomorphix.com | The science of earth + balance.

Appendix B Reach Delineation

Inverness Homes 147 Langstaff Drive Reach Delineation

Service Layer Credits Source: Esri, DigitalGlobe, CeeEye, Earthstar Geographics, CNES/Arbus DS, USDA, USOS, AeroGRID, ION, and the CIS User Community Imagery. December, 2016 Watercourse: Cky of Ottawa, 2019. Reach Break and Extent Assessed GEO Morphic Itd, 2019. Print Date: September 2019. PM1072. Drawn By: W B, S S.

Appendix C Photographic Record

Appendix D Field Assessment Sheets

GEO MORPHIX Bennogenality Demonstration

General Site Characteristics

Project Code: DAL 100

Date:		JUN 10,201	Stream/Reach:	CR-1
Weath	er:	SUNNY 25°C	Location:	Langstat Rd
Field S	Staff:	MK	Watershed/Subwatershed:	carp river trib
Featur x x > ()	es Reach break Cross-section Flow direction Riffle Pool		Site Sketch:	N N
······	Medial bar Eroded bank Undercut bank Rip rap/stabilization Leaning tree	n/gabion		y y y H wo shirt
	Fence Culvert/outfall Swamp/wetland Grasses Tree Instream log/tree		V / v V / Q Q	
米米米 只 可 Flow T H1	Woody debris Station location Vegetated island ype Standing water		V 1 4 50	v v
H2 H3 H4 H5	Scarcely perceptible Smooth surface flow Upwelling Rippled	e flow N		y soon we pool
H6 H7 H8 H9 Substr	Unbroken standing Broken standing wa Chute Free fall	wave ave		V V V -53
S1 S2 S3 S4 S5	Silt Sand Gravel Small cobble Large cobble	 S6 Small boulder S7 Large boulder S8 Bimodal S9 Bedrock/till 	6' V B/ V B/	V V V V V S3 -TD5 S4 S5 - TD5
Other BM BS DS WD1	Benchmark Backsight Downstream Woody debris jam	EP Erosion pin RB Rebar US Upstream TR Terrace	Press V	Rol I I
VWC BOS TOS	Valley wall contact Bottom of slope Top of slope	FC Flood chute FP Flood plain KP Knick point	Additional Notes: 9707000	Scale:

pg lof 3

PL_____ Checked by: R_____ Completed by: M

GEO MORPHIX Generatives

General Site Characteristics

Project Code: PN 19072

		20	N10,20019				(each:				C	K-	-1					
Weath	ner:	sur	My 25°C		Locat	ion:					La	an	254	aP	F	20	1	
Field S	Staff:	M	K		Wate	rshe	d/Sub	wate	rshe	d:	C	art		-170	3	17	-16	
Featur	es				Site S	ketc	h:	K		5								ľ
X	Reach break			f	1					1/	VW	0				_	_	
	Cross-section			F	<i>S⁽)</i>				S		-						_	
	Flow direction			F					GD	=								J -
	Riffle			-		_			100			101	W	10	CM		-	
	Pool			-				1		NA		6	90	- 2	30	w.	<u> </u>	
	Medial bar			+				>		F		- 2	41					
	Eroded bank			+				1	Y	13	γ	1			243	13	-	
	Undercut bank			-				1	V	1			1		-40	1		
	Rip rap/stabilization	n/gabi	on	-				- \		.10	4	1						
747	Leaning tree							1	XX	XZ	X	7	KIE	ra	8 (0	C	xos	Sine
1 1	rence			-				9	$\langle \rangle$	(YA)	A	XP	1 13	-				
	Cuivert/outfall			-					1	L	-2		-					
	Swamp/wetland								1		-23	AS	V	>			-	
V V V	Grasses			-							-	K.	R	1				
	I ree			_				-			V	-X	1	V				
	Instream log/tree							ì	1		-	B	1	1	1		_	
× × ×	Woody debris			-				1		1	X	k.	/				-	
X	Station location			+				-	6	5	1	11	4					
				ŀ				1	4		19					1		
-10W 1	Standing water									.0	$\pm l'$	9						
цэ ПТ	Scanding water	a flow		+						V		X						
H2	Smooth surface flor			ŀ						V	1	51	1	9			-	
нл	Upwelling	vv					/					U	,			1		
45	Dippled			ŀ			1	V		N	1	at	1	-				
46	Upbroken standing	Wave		-								71	4	Y		1		
H7	Broken standing wa	wave				-	/		9)/					4-		
п7 ЦQ	Chute	ave		ŀ		1			(r	1	A	1	1.1			-	
ПО	Ereo fall					-	. 1				HI,		1	Y		-		
n9 Subst	rate						Y		V	WC	1	VY	MN	WC	<i>a</i>	-		
C1	Silt	56	Small boulder			1			V		1	14/	1			alc	100	
\$2	Sand	57	Large boulder	ŀ		4			-	hil	Je.	1	1	1	100.	13	ical.	AJINI
52	Gravel	SR	Bimodal	ŀ		4				14	MA	621	Y					
SA	Small cobble	50	Bedrock/till				1	19	X	16	1	1		11				
55	Large cobble	39	Dear outy un	-		1	- 11) !	/	3						
Other	Large cobble					4	V	V		Tr		100	12	0		-		
BM	Benchmark	FP	Frosion pin		1	-		~	X	++	(N	NN	v x	ant.	5	S		
s	Backsight	RR	Rebar	2	50	L	N				T		90	din	,			
05	Downstream	US	Unstream	1		1				121	1	ND:	150	ml				
NDI	Woody debris iam	TR	Terrace						/	11	PR	FOR	25	m				
WC	Valley wall contact	FC	Flood chute	0	5	1		V	r	11	n	DA	W	Sc	ale:			1
BOS	Bottom of clone	FD	Flood plain		Add	ition	al Not	ec.			• • •	U V						
503	Top of alars		Kniek seist		Aud	i ci Off												
IUS	i op of slope	KP	KNICK point															

Completed by: <u>MK</u> Checked by: <u>R</u>

GEO MORPHIX

General Site Characteristics

Project Code: PN 19072

Date:		July 10, 201	Stream/Reach:	CR-1
Weath	ner:	Sunny 25°C	Location:	Largstad pr
Field S	Staff:	mk	Watershed/Subwatershed:	Carp River Trib
Weath Field S Featur X Y O S S S S S S S S S S S S S	ner: Staff: es Reach break Cross-section Flow direction Riffle Pool Medial bar Eroded bank Undercut bank Rip rap/stabilization Leaning tree Fence Culvert/outfall Swamp/wetland Grasses Tree Instream log/tree Woody debris Station location Vegetated island Ype Standing water Scarcely perceptible Smooth surface flow Upwelling Rippled Unbroken standing water	/gabion	Location: Watershed/Subwatershed: Site Sketch:	Largstold Dr Carp River Trib V V · N riprap Corossing Co
H8 HQ	Chute			105 1
Substr	ate			\$31
SUDSTR S1 S2 S3 S4 S5 Other BM BS DS WDJ	Silt Sand Gravel Small cobble Large cobble Benchmark Backsight Downstream Woody debris iam	 S6 Small boulder S7 Large boulder S8 Bimodal S9 Bedrock/till EP Erosion pin RB Rebar Upstream TR Terrace 	$1 \qquad 3 \qquad \text{vwc}$ $1 \qquad 3 \qquad 1 \qquad 1 \qquad 3 \qquad 1 \qquad 1 \qquad 1 \qquad 1 \qquad 1 \qquad $	×*** E3 TOS.
VWC BOS TOS	Valley wall contact Bottom of slope Top of slope	FC Flood chute FP Flood plain KP Knick point	Additional Notes:	Scale:

Pg. 3 of 3

GEO MORPHIX

Project Code: PN19072 **Rapid Geomorphic Assessment** Date: Stream/Reach: Weather: Watershed/Subwatershed: CILPC 800 Field Staff: Location: Rol ar Geomorphological Indicator Present? Factor Process No. Description Value Yes No 1 Lobate bar 2 Coarse materials in riffles embedded 3 Siltation in pools Evidence of Aggradation 4 Medial bars (AI) 5 Accretion on point bars 6 Poor longitudinal sorting of bed materials 7 Deposition in the overbank zone Sum of indices = 6 14 NA 1 Exposed bridge footing(s) 2 Exposed sanitary / storm sewer / pipeline / etc. NA Elevated storm sewer outfall(s) 3 4 Undermined gabion baskets / concrete aprons / etc. Evidence of 5 Scour pools downstream of culverts / storm sewer outlets Degradation 6 Cut face on bar forms (DI) 7 Head cutting due to knickpoint migration 8 Terrace cut through older bar material 9 Suspended armour layer visible in bank 10 Channel worn into undisturbed overburden / bedrock Sum of indices = 57 n. 1 Fallen / leaning trees / fence posts / etc. 2 Occurrence of large organic debris 3 Exposed tree roots 4 Basal scour on inside meander bends Evidence of 5 Basal scour on both sides of channel through riffle Widening Outflanked gabion baskets / concrete walls / etc. 6 (WI) 7 Length of basal scour >50% through subject reach 8 Exposed length of previously buried pipe / cable / etc. 1 9 Fracture lines along top of bank 10 Exposed building foundation AN Sum of indices = 2 1 Formation of chute(s) 1 2 Single thread channel to multiple channel Evidence of 3 Evolution of pool-riffle form to low bed relief form Planimetric Cut-off channel(s) Form 4 Adjustment 5 Formation of island(s) P. (PI) 6 Thalweg alignment out of phase with meander form 7 Bar forms poorly formed / reworked / removed Sum of indices = 0.14 6 Additional notes: Stability Index (SI) = (AI+DI+WI+PI)/4 = 0,19 Condition In Regime In Transition/Stress **In Adjustment** 10.00 - 0.20 SI score = 0.21 - 0.40 0.41

Completed by: MK Checked by:

Rapid Stream Assessment Technique

Project Code: PN 19072

Date:	JUN 10,2019	Stream/Reach:	CR-1	10/6
Weather:	sunny 25°C	Location:	Lanostaf	Rd
Field Staff:	NK	Watershed/Subwate	rshed: OVP RIVE	of the
Evaluation Category	Poor	Fair	Good	Excellent
	 < 50% of bank network stable Recent bank sloughing, slumping or failure frequently observed 	 50-70% of bank network stable Recent signs of bank sloughing, slumping or failure fairly common 	 71-80% of bank network stable Infrequent signs of bank sloughing, slumping or failure 	 > 80% of bank network stable No evidence of bank sloughing, slumping or failure
Channel	 Stream bend areas highly unstable Outer bank height 1.2 m above stream bank (2.1 m above stream bank for large mainstem areas) Bank overhang > 0.8-1.0 m 	 Stream bend areas unstable Outer bank height 0.9- 1.2 m above stream bank (1.5-2.1 m above stream bank for large mainstem areas) Bank overhang 0.8-0.9m 	 Stream bend areas stable Outer bank height 0.6-0.9 m above stream bank (1.2- 1.5 m above stream bank for large mainstem areas) Bank overhang 0.6-0.8 m 	 Stream bend areas very stable Height < 0.6 m above stream (< 1.2 m above stream bank for large mainstem areas) Bank overhang < 0.6 m
Stability	 Young exposed tree roots abundant > 6 recent large tree falls per stream mile 	 Young exposed tree roots common 4-5 recent large tree falls per stream mile 	 Exposed tree roots predominantly old and large, smaller young roots scarce 2-3 recent large tree falls per stream mile 	 Exposed tree roots old, large and woody Generally 0-1 recent large tree falls per stream mile
	 Bottom 1/3 of bank is highly erodible material Plant/soil matrix severely compromised 	 Bottom 1/3 of bank is generally highly erodible material Plant/soil matrix compromised 	• Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material	 Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material
	 Channel cross-section is generally trapezoidally- shaped 	 Channel cross-section is generally trapezoidally- shaped 	Channel cross-section is generally V- or U-shaped	 Channel cross-section is generally V- or U-shaped
Point range	0 0 1 0 2	□ 3 □ 4 □ 5	0607 08	□ 9 □ 10 □ 11
	 > 75% embedded (> 85% embedded for large mainstem areas) 	 50-75% embedded (60- 85% embedded for large mainstem areas) 	 25-49% embedded (35- 59% embedded for large mainstem areas) 	Biffle embeddedness < 25% sand-silt (< 35% embedded for large mainstem areas)
	 Few, if any, deep pools Pool substrate composition >81% sand- silt 	 Low to moderate number of deep pools Pool substrate composition 60-80% sand-silt 	 Moderate number of deep pools Pool substrate composition 30-59% sand-silt 	 High number of deep pools (> 61 cm deep) (> 122 cm deep for large mainstem areas) Pool substrate composition <30% sand=silt
Channel Scouring/ Sediment Deposition	 Streambed streak marks and/or "banana"-shaped sediment deposits common 	 Streambed streak marks and/or "banana"-shaped sediment deposits common 	 Streambed streak marks and/or "banana"-shaped sediment deposits uncommon 	• Streambed streak marks and/or "banana"-shaped sediment deposits absent
	 Fresh, large sand deposits very common in channel Moderate to heavy sand deposition along major portion of overbank area 	 Fresh, large sand deposits common in channel Small localized areas of fresh sand deposits along top of low banks 	 Fresh, large sand deposits uncommon in channel Small localized areas of fresh sand deposits along top of low banks 	 Fresh, large sand deposits rare or absent from channel No evidence of fresh sediment deposition on overbank
	 Point bars present at most stream bends, moderate to large and unstable with high amount of fresh sand 	 Point bars common, moderate to large and unstable with high amount of fresh sand 	Point bars small and stable, well-vegetated and/or armoured with little or no fresh sand	 Point bars few, small and stable, well-vegetated and/or armoured with little or no fresh sand
Point range	00102	□ 3 □ 4	□ 5 <u>/</u> 6	□ 7 □ 8

Date:	JUN 101209	Reach: OR -)	Project Code:	PN 19072
Evaluation Category	Poor	Fair	Good	Excellent
	Wetted perimeter < 40% of bottom channel width (< 45% for large mainstem areas)	Wetted perimeter 40- 60% of bottom channel width (45-65% for larg mainstem areas)	Wetted perimeter 61-85% of bottom channel width (66-90% for large mainstem areas)	• Wetted perimeter > 85% of bottom channel width () 90% for large mainstem areas)
	 Dominated by one habitat type (usually runs) and by one velocity and depth condition (slow and shallow) (for large mainstem areas, few riffles present, runs and pools dominant, velocity and depth diversity low) 	 Few pools present, riffle and runs dominant. Velocity and depth generally slow and shallow (for large mainstem areas, runs and pools dominant, velocity and depth diversity intermediate) 	 Good mix between riffles, runs and pools Relatively diverse velocity and depth of flow 	 Riffles, runs and pool habitat present Diverse velocity and depth of flow present (i.e., slow, fast, shallow and deep water)
Physical Instream	 Riffle substrate composition: predominantly gravel with high amount of sand < 5% cobble 	 Riffle substrate composition: predominantly small cobble, gravel and sand 5-24% cobble 	Riffle substrate composition: good mix of gravel, cobble, and rubble material 25-49% cobble	 Riffle substrate composition: cobble, gravel, rubble, boulder mix with little sand > 50% cobble
Habitat	• Riffle depth < 10 cm for large mainstem areas	• Riffle depth 10-15 cm f large mainstem areas	• Riffle depth 15-20 cm for large mainstem areas	 Riffle depth > 20 cm for large mainstem areas
	Large pools generally < 30 cm deep (< 61 cm for large mainstem areas) and devoid of overhead cover/structure	 Large pools generally 3 46 cm deep (61-91 cm for large mainstem areas) with little or no overhead cover/structu 	0- • Large pools generally 46-61 cm deep (91-122 cm for large mainstem areas) with some overhead re cover/structure	Large pools generally > 61 cm deep (> 122 cm for large mainstem areas) with good overhead cover/structure
	Extensive channel alteration and/or point bar formation/enlargement	 Moderate amount of channel alteration and/ moderate increase in point bar formation/enlargement 	or Slight amount of channel alteration and/or slight increase in point bar formation/enlargement	No channel alteration or significant point bar formation/enlargement
	• Riffle/Pool ratio 0.49:1 ; ≥1.51:1	 Riffle/Pool ratio 0.5- 0.69:1 ; 1.31-1.5:1 	• Riffle/Pool ratio 0.7-0.89:1 ; 1.11-1.3:1	Riffle/Pool ratio 0.9-1.1:1
	 Summer afternoon water temperature > 27°C 	 Summer afternoon wat temperature 24-27°C 	er • Summer afternoon water temperature 20-24°C	 Summer afternoon water N temperature < 20°C
Point range	00102	□ 3 □ 4	□ 5 Ø 6	□ 7 □ 8
	Substrate fouling level: High (> 50%)	 Substrate fouling level: Moderate (21-50%) 	 Substrate fouling level: Very light (11-20%) 	Substrate fouling level) Rock underside (0-10%)
Water Quality	 Brown colour TDS: > 150 mg/L 	• Grey colour • TDS: 101-150 mg/L	Slightly grey colourTDS: 50-100 mg/L	Clear flow TDS: < 50 mg/L
water Quality	Objects visible to depth < 0.15m below surface	 Objects visible to depth 0.15-0.5m below surface 	• Objects visible to depth 0.5-1.0m below surface	 Objects visible to depth > 1.0m below surface
	 Moderate to strong organic odour 	 Slight to moderate organic odour 	 Slight organic odour 	• No odour
Point range	00102	□ 3 □ 4	□ 5 □ 6	7 🗆 8
Riparian	 Narrow riparian area of mostly non-woody vegetation 	 Riparian area predominantly wooded but with major localized gaps 	 Forested buffer generally > 31 m wide along major portion of both banks 	 Wide (> 60 m) mature forested buffer along both banks
Conditions	 Canopy coverage: <50% shading (30% for large mainstem areas) 	 Canopy coverage: 50- 60% shading (30-44% for large mainstem areas) 	• Canopy coverage: 60-79% shading (45-59% for large mainstem areas)	• Canopy coverage: >80% shading (> 60% for large mainstem areas)
Point range	001	□ 2 □ 3	04255.	5 26 0 7
Total overall s	score $(0-42) = 32.5$	Poor (<13)	Fair (13-24) Good (25-	34) Excellent (>35)

Completed by: <u>MK</u> Checked by: <u>R</u>

										GEC	M	ORPH	I X
											Soones Earth Se Observe	ให้หลังสูง สะหะอ เรื่องระ	
Ge	eneral Site C	hai	racteristics	5		Pro	Diect	Code	. 10	あっつ	3		
Dat	te:		09 - 04 - 70		hunner / P		Ject	Coue	3: 19	072			
We	ather		01010	19 3	cream/1	Reach:			C	R-2	. 1		
		0	bady 2001	L	ocation:				37	54 1	055 () (
rie	Id Staff:		BH AS	W	atershe	d/Sub	waters	hed:	1		D. L		
Fea	tures			Si	te Sketc	h:					Kiver		
×	Reach break												
	Elow direction												
~	Riffle												
	> Pool											N	Sec
0000	Medial bar												
HAMA	## Eroded bank												
	 Undercut bank 					-							
XXXX	🕅 Rip rap/stabilizat	ion/ga	abion							allest			
	Leaning tree							Conti	nea V				-
1	Fence												
Com	Swamp/wottan					795	-	No. 900- 1000	r			+	-
WW	Grasses								,			-	
C	Tree								1				1012
	Instream log/tree								2				10.0 AM
***	< Woody debris							\rightarrow	$\leftarrow \square$				CSP
<u></u>	Station location							and the second s			Si		
	Vegetated island											()	-Flow
FIOW	Type Standing web								CARELA	. 1.14	- C	AU I	diverting
H2	Scarcely perceptib	10 fl-							Uniter Ut	meteral		2. // # #	LB Side
НЗ	Smooth surface fl		w								33, 2	AFR.	of USP
H4	Upwelling	577										AB	
H5	Rippled					_						1 A	-Csposed
H6	Unbroken standing	wave	e			¢ -							Tool
H7	Broken standing w	ave			+ 9	4							1
H8	Chute					al			+				\$ 1.14
Subst	rate					5				1		75 ×	z - sugary
S1	Silt	56	Small have de)			R.	X	200	₩¥	eroded
S2	Sand	30 S7					+		X	*			bank
S 3	Gravel	58	Bimodal				-	+		X			
S 4	Small cobble	S 9	Bedrock/till			+	padee	1 bank	**	1			
S5	Large cobble					+ /	0000	might					
Other	Densi						n la	-	Ŧ	*K		<u> </u>	
BS	Denchmark Backcicht	EP	Erosion pin					6	52, 1	51		brick	& concrete
DS	Downstream	RB	Rebar						ZC	1		Rebrie	within channel
WDJ	Woody debris iam	TP	Upstream			5	1	-5	2174	$\gamma + 1$			
VWC	Valley wall contact	FC	Flood chute			1A							
BOS	Bottom of slope	FP	Flood plain	Δdd	itional					Sca	ile:		
TOS	Top of slope	КР	Knick point	Aud		votes:	Conci	rete	_cul.	vert	~0	,80 m	
			point								_	0.90 M	
			\rightarrow	only	had	acce	255 .	to r	5	0	1	n	
)	-	1-0-10	e 77		00	n of	che	annel	
							Com	alotad	TR	2000			
							comp	neted by	Y: 117	Che	cked by		_

Reach Characteristics	Project Cod	e: 19072		GEO	MORP Geomorphology Earth Science Observations	ніх
Under 2019 - 09 - 04 Weather: Cloudy Field Staff: TR UTM (Upstream) Image: Channel Type	Stream/Reach: Location: Watershed/Subwatershed: UTM (Downstream)	CR-2 3754 Carp	Carp Rd. River	,		
(Table 1) /+ (Table 2) // (Table 3) // // (Table 3) // // // (Table 3) //	Zone Z/3 Flow Type (Table 5) 1/2 Aquatic/Instream Veget Image: Constraint of the second secon	Groundwate ation Coverage of Reach (% Density of WD: Ø Low WDJ, Moderate High	50m: 2	ater Quality	Odour (Table 16)	
Sinuosity (Type) Sinuosity (Degree) Gradient Number (Table 9) 2 (Table 10) 2 (Table 11) 2 (Table Entrenchment Type of Bank Failure Downs's Classification (Table 13) (Table 14) (Table 15) M	per of Channels e 12) Riffle Substrate Pool Substrate Bank Material	Clay/Silt Sand ☆ 20 ☆	Gravel Co	bble Bo	bulder Parent	Rootlets
Bankfull Width (m) 2.1 2.2 2.7 Wetted Width (m) 0 Bankfull Depth (m) 0.20 0.25 0.30 Wetted Depth (m) 0 Riffle/Pool Spacing (m) -6m % Riffles: % Pools: Pool Depth (m) 0.23 Riffle Length (m) 1.6 Undercuts (m) Velocity (m/s) Wiffle ball / ADV / E	0.92 1.1 0.77 04 0.03 0.05 Meander Amplitude: Comments: <u>No</u> frue stimated	Bank Angle □ 0 - 30 ☑ - 30 - 60 ☑ 60 - 90 □ Undercut	Bank Erosion □ < 5% Ø-5 - 30% □ 30 - 60% □ 60 - 100% Sequences	Note - 50 - ~ - ~	nore bank extent bu	l <u>free</u> roots <u>crosian</u> at <u>ut largest</u> D(axb t
corridor -> ~ 4 m from toe of slope to the	6			0.00	m. altraine Mi	103 Chtent

GEO	м	0	R	Ρ	н	I	х	
							~ ~	

Date:		2019-00	ent	Projec	t Code: 1904	14	1						
Weathow		2011-09-0	24	tream/Reach:			CR	-2					
weather:		Cloudy Ze	V°C V	Vatershed/Subwate	ershed: (acc	o Ri	Ner						
Field Staff:		TR BUR	L	ocation:	276	<u>г (ч</u>							
Process			Geomorph			-1	Carp	Proad					
1100635	No	D. Description				P	resent?	Fact					
	1	Lobate bar				Yes	No	Valu					
	2	Coarse materials	in riffles em	beddod			X						
Evidence of	3	Siltation in pools	en lines en				X						
Aggradation	4	Medial bars				X		41					
(AI)	5	Accretion on poir	t bars			×		_ /7					
	6	Poor longitudinal	sorting of be	ed materials		X							
	7	Deposition in the	overbank zo	one			×	_					
					Sum of indiana	X							
	1	Exposed bridge for	poting(c)		Sum of mulces =	- 4		0.5					
	2	Exposed sanitary	/ storm source				NIA						
	3	Elevated storm se	/ storn sew	er / pipeline / etc.			NIA						
	4	Undermined gabi	phackote (5)			N/A						
Evidence of	5	Scour pools down	stream of cu	concrete aprons / etc			N/A						
(DI)	6	Cut face on bar fo	rms	iverts / storm sewer	outlets		X	D/					
()	7	Head cutting due	to knickpoint	migration			×	1 16					
	8	Terrace cut through	th older bar	matorial			Х	120					
	9	Suspended armou	r laver visibl				×						
	10	Channel worn into	undisturbed	Overburden / bodros			×						
				stabulden / bedioc	Sum of indices -		×						
	1	Fallen / leaning tre	es / fence n	Osts / ota	outri di maices -	0	6	0					
	2	Occurrence of larg	e organic de	bric		X							
	3	Exposed tree roots	a organic de	\times									
	4	Basal scour on insi	de meander	X									
Widence of	5	Basal scour on bot		×	31_								
(WI)	6	Outflanked gabion	baskets / co		×	18							
	7	Length of basal sco	our >50% th	rough subject reach			MA						
Ļ	8	Exposed length of	previously bu	uried pipe / cable / et	с.		+	-					
	9	Fracture lines along	top of bank	(NIA						
	10	Exposed building for	oundation				X						
					Sum of indices -	2	X						
	1	Formation of chute	(5)				0	0.38					
vidence of	2	Single thread chan	el to multipl	o channel			X						
lanimetric	3	Evolution of pool-rit	fle form to k	be channel			X						
Form	4	Cut-off channel(s)		ow bed relier form			X	~ /					
djustment	5	Formation of island	(s)				X	0/,					
(F1)	6	Thalweg alignment	out of phase	with moandar farm			X	16					
	7	Bar forms poorly for	med / rewor	ked / removed			×						
					Sum of indiana	0	×						
litional notes:				Stability T-		0	6	0					
			Condition	In Regime	In Transition (O)	+WI+P	I)/4 =	0.24					
			SI score -			ess	In Adjus	tment					
				0.00-0.20	🗷 0.21 - 0.40		D 0.4	41					

Completed by: TR____ Checked by: _____

Rapid Stream Assessment Technique

Weather: CR-2	
Field Staff: The Division: 3754 Carp Road	l
Fighting R GM2 Watershed/Subwatershed: Carp River	
Category Poor Fair Good Excelle	ent
 Ct-annel Ct-annel<	network bank iping or 'eas very above n above r large s) - 0.6 m
 Young exposed tree roots abundant > 6 recent large tree falls per stream mile Young exposed tree roots common 4-5 recent large tree falls per stream mile Exposed tree roots predominantly old and large, smaller young roots scarce Exposed tree roots predominantly old and large, smaller young roots scarce Petter tree talls 	ots old, / ecent large eam mile
 Bottom 1/3 of bank is highly erodible material Plant/soil matrix severely compromised Bottom 1/3 of bank is generally highly erodible material Plant/soil matrix compromised Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material Bottom 1/3 of bank is generally highly resistant plant/soil matrix material 	ank is resistant or
 Channel cross-section is generally trapezoidally- shaped Channel cross-section is generally trapezoidally- shaped Channel cross-section is generally trapezoidally- shaped Channel cross-section is generally V- or U-shaped Channel cross-section is generally V- or U-shaped 	ection is J-shaped
	□ 11
 > 75% embedded (> 85% embedded for large mainstem areas) 50-75% embedded (60- 85% embedded for large mainstem areas) 25-49% embedded (35- 59% embedded for large mainstem areas) 8iffle embedded 25% sand-silt (< embedded for large mainstem areas) 	ress < 35% ge
 Pool substrate composition >81% sand-silt Streambod street work of deep pools Composition >81% sand-silt Composition >81% sand-silt Composition - 60-80% sand-silt Moderate number of deep pools Moderate number of deep pools Pool substrate composition - 30-59% sand-silt High number of deep pools Pool substrate composition - 30-59% sand-silt Streambod street work of the sand-silt 	leep pools for large mposition
Channel Foreambed streak marks • Streambed streak marks • Streambed streak marks • Streambed streak marks Scouring/ and/or "banana"-shaped and/or "banana"-shaped and/or "banana"-shaped • Streambed streak marks • Streambed streak marks Sediment sediment deposits sediment deposits sediment deposits and/or "banana"-shaped sediment deposits Deposition Fractor common common uncommon sediment deposits	t marks shaped s absent
 Fresh, large sand deposits very common in channel Moderate to heavy sand deposition along major portion of overbank area Point hars present at Fresh, large sand deposits common in channel Fresh, large sand deposits common in channel Small localized areas of fresh sand deposits along top of low banks Fresh, large sand deposits Small localized areas of fresh sand deposits along top of low banks 	deposits m esh on on
 Point bars common, most stream bends, moderate to large and unstable with high amount of fresh sand Point bars common, moderate to large and unstable with high amount of fresh sand Point bars common, moderate to large and unstable with high amount of fresh sand Point bars common, moderate to large and unstable with high amount of fresh sand Point bars common, moderate to large and unstable with high amount of fresh sand Point bars common, moderate to large and unstable with high amount of fresh sand Point bars common, moderate to large and unstable with high amount of fresh sand Point bars common, moderate to large and unstable with high amount of fresh sand Point bars common, moderate to large and unstable with high amount of fresh sand Point bars small and stable, armoured with little or no fresh sand Point bars few, sm stable, well-veget and/or armoured or no fresh sand 	ोबू॥ and ated with little
Point range 0 0 1 0 2 0 3 0 4 0 5 6 0 7 0	8

Evaluation Category Poor Fair Good Excellent Wetted perimeter < 4.0% of bottom channel width (< 4.5% for large mainstem areas) Dominated by one habitat by no evolocity and depth of bottom channel width (< 4.5% for large mainstem areas) Dominated by one habitat by no evolocity and depth of low or work and pools Few_Padis present, rifter and pools dominant, velocity and depth of low or work of and pools dominant, velocity and depth of low present (Le, gifw, rest, shallow and	Date:	2019-09-04	Reach: CR-2	Project Code	10000
Once get f • Wetted perimeter < 40%	Evaluation	Poor	Eair	riojeci code	19072
of battom channel wider (< 45% for large mainstem areas) • Wettad perimeter 40- source and the strate in a set (6-60% for large mainstem areas) • Wettad perimeter 30- source and source and soure and soure and soure and source and source and source and source	category	• Wetted perimeter < 40%		Good	Excellent
 Dufinitied by one habitat: Personal provide present, Times and runs dominant. Velocity and depth shallow) (for large mainstem areas, runs and pool shallow (for large mainstem areas, runs and pool shallow) (for large mainstem areas, runs and pool shallow) (for large mainstem areas, runs and pool shallow). Riffe substrate composition: predominantly gravel which igh amount of sandow (for large mainstem areas). Riffe substrate composition: gravel and depth of flow which it large mainstem areas. Sindia (for large mainstem areas). Riffe substrate composition: gravel which igh amount of sandow (for large mainstem areas). Riffe substrate composition: gravel and depth 10 cm (for large mainstem areas). Sindia (for large for large mainstem areas). Sindia (for large mainstem are	Physical Instream Habitat	of bottom channel width (< 45% for large mainstem areas)	• Wetted perimeter 40- 60% of bottom channel width (45-65% for large mainstem areas)	Wetted perimeter 61-85%) of bottom channel width (66-90% for large mainstem areas)	 Wetted perimeter > 85% of bottom channel width (> 90% for large mainstem areas)
Physical Instream Habitat - Riffie substrate composition: predominantly gravel with migh amount of sand. - Riffie substrate composition: predominantly small cobile, gravel, nobble, strate and small cobile, gravel, nobble, material - Riffie substrate composition: gravel, nobble, and rubble material Physical Instream Habitat - Riffie substrate composition: symet, nobble redominantly small cobile, gravel, nobble, and rubble rade mainstem areas 30 cm deep (< 61 cm for large mainstem areas) - Riffie depth > 20 cm for large mainstem areas 30 cm deep (< 61 cm for large mainstem areas) with some overhead cover/structure - Large pools generally > 61 cm deep (>91-122 cm for large mainstem areas) with some overhead cover/structure - Large pools generally > 61 cm deep (>91-122 cm for large mainstem areas) with some overhead cover/structure - Large pools generally > 61 cm deep (>1-22 cm for large mainstem areas) with some overhead cover/structure - Large pools generally > 61 cm deep (>1-22 cm for large mainstem areas) with some overhead cover/structure - Silght apport of composition and/or silght increase in point bar formation/enlargement - Norsdannel alteration or significant point bar formation/enlargement • Riffe/Pool ratio 0.49:1 ; summer afternoon water temperature > 2/4°C - Summer afternoon water temperature 22-2/4°C Point range 0 1 2 3 4 5 6 7 8 Not starte foulin		 Dominated by one habitat type (usually runs) and by one velocity and depth condition (slow and shallow) (for large mainstem areas, few riffles present, runs and pools dominant, velocity and depth diversity low) 	 Few pools present, riffles and runs dominant. Velocity and depth generally slow and shallow (for large mainstem areas, runs and pools dominant, velocity and depth diversity intermediate) 	 Good mix between riffles, runs and pools Relatively diverse velocity and depth of flow 	 Riffles, runs and pool habitat present Diverse velocity and depth of flow present (i.e., slow, fast, shallow and deep water)
Iarge mainstem areas Iarge mainstem areas - Riffle depth > 20 cm for large mainstem areas - Riffle depth > 20 cm for large mainstem areas 30 cm deep (< 51 cm deep (< 10 mode) (51 - 10 mode)		 RIFTle substrate composition: predominantly gravel with high amount of sand < 5% cobble Riffle depth < 10 cm for 	Riffle substrate composition: predominantly small cobble, gravel and sand 5-24% cobble	 Riffle substrate composition: good mix of gravel, cobble, and rubble material 25-49% cobble 	 Riffle substrate composition: cobble, gravel, rubble, boulder mix with little sand > 50% cobble
90 cm deep (< 61 cm for large mainstem areas) and devoid of 0xerrfred cover/structure • Large pools generally 46.1 mode (> 1.22 cm for large mainstem areas) with good overhead cover/structure • Large pools generally 46.1 mode (> 1.22 cm for large mainstem areas) with good overhead cover/structure • Large pools generally 46.1 mode (> 1.22 cm for large mainstem areas) with good overhead cover/structure • Large pools generally 46.1 mode (> 1.22 cm for large mainstem areas) with good overhead cover/structure • Large pools generally 46.1 mode (> 1.22 cm for large mainstem areas) with good overhead cover/structure • Large pools generally 46.1 mode (> 1.22 cm for large mainstem areas) with good overhead cover/structure • Large pools generally 46.1 mode (> 1.22 cm for large mainstem areas) with good overhead cover/structure • Large pools generally 46.1 mode (> 1.22 cm for large mainstem areas) with good overhead cover/structure • Large pools generally 46.1 mode (> 1.22 cm for large mainstem areas) with good overhead cover/structure • Large pools generally 46.1 mode (> 1.22 cm for large mainstem areas) with good overhead cover/structure • Large pools generally 46.1 mode (> 1.22 cm for large mainstem areas) with good overhead cover/structure • Large pools generally 46.1 mode (> 1.22 cm for large mainstem areas) with good overhead cover/structure • Large pools generally 46.1 mode (> 1.22 cm for large mainstem areas) • Slight mode (> 1.22 cm for large mainstem areas) • Slight mode (> 1.22 cm for large mainstem areas) • Slight mode (> 1.22 cm for large mainstem areas) • Substrate fouling level: weight (> 1.12 cm for time for store (> 1.21 cm for time for	(large mainstem areas	large mainstem areas	Riffle depth 15-20 cm for large mainstem areas	 Riffle depth > 20 cm for large mainstem areas
 Extensive channel alteration and/or point bar formation/enlargement formation/enlargement formation/enlargement formation/enlargement formation/enlargement Noderate amount of channel alteration and/or slight increase in point bar formation/enlargement formation/enlargement Niffle/Pool ratio 0.49:1; Summer afternoon water temperature > 27°C Summer afternoon water temperature 24-27°C Substrate fouling level: Moderate (21-50%) Substrate fouling level: Moderate (21-50%) Substrate fouling level: Moderate (21-50%) Substrate fouling level: Ack water (21-50%) Substrate fouling level: Noderate (21-50%) Substrate foul		30 cm deep (< 61 cm for large mainstem areas) and devoid of overhead cover/structure	 Large pools generally 30- 46 cm deep (61-91 cm for large mainstem areas) with little or no overhead cover/structure 	 Large pools generally 46-61 cm deep (91-122 cm for large mainstem areas) with some overhead cover/structure 	 Large pools generally > 61 cm deep (> 122 cm for large mainstem areas) with good overhead cover/structure
• Riffle/Pool ratio 0.49:1; • Riffle/Pool ratio 0.5- 0.69:1; 1.31-1.5:1 • Riffle/Pool ratio 0.7-0.89:1 • Riffle/Pool ratio 0.9-1.1:1 • Summer afternoon water temperature > 27°C • Summer afternoon water temperature 20-24°C • Summer afternoon water temperature 20-24°C • Summer afternoon water temperature 20-24°C Point range 0 1 2 3 4 5 6 7 8 Water Quality • Substrate fouling level: High (> 50%) • Substrate fouling level: Moderate (21-50%) • Substrate fouling level: Very light (11-20%) • Substrate fouling level: Very light (11-20%) • Substrate fouling level: Noderate (21-50%) • Brown colour • Grey colour • Grey colour • Slightly grey colour • Clear flow • TDS: < 50 mg/L		 Extensive channel alteration and/or point bar formation/enlargement 	 Moderate amount of channel alteration and/or moderate increase in point bar formation/enlargement 	 Slight amount of channel alteration and/or slight increase in point bar formation/enlargement 	 No channel alteration or significant point bar formation/enlargement
Point range Summer afternoon water temperature > 27°C Summer afternoon water temperature 24-27°C Summer afternoon water temperature 20-24°C Summer afternoon water temperature 20-24°C Point range 0 1 2 3 4 5 6 7 8 Water Quality Substrate fouling level: High (> 50%) Substrate fouling level: Moderate (21-50%) Substrate fouling level: Very light (11-20%) Substrate fouling level: Rock underside (0-10%) Vater Quality Brown colour (-Dijects visible to depth <0.15m below surface		 Riffle/Pool ratio 0.49:1 ; ≥1.51:1 	• Riffle/Pool ratio 0.5- 0.69:1 ; 1.31-1.5:1	• Riffle/Pool ratio 0.7-0.89:1 ; 1.11-1.3:1	Riffle/Pool ratio 0.9-1.1:1
Number of the second	Point range	temperature > 27°C	 Summer afternoon water temperature 24-27°C 	 Summer afternoon water temperature 20-24°C 	 Summer afternoon water temperature < 20°C
• Substrate fouling level: High (> 50%) • Substrate fouling level: Moderate (21-50%) • Substrate fouling level: Very light (11-20%) • Substrate fouling level: Rock underside (0-10%) • Brown colour • TDS: > 150 mg/L • Grey colour • TDS: 101-150 mg/L • Slightly grey colour • TDS: 50-100 mg/L • Clear flow • TDS: < 50 mg/L			3 2 4	0506	□ 7 □ 8
Water Quality • Brown colour • TDS: > 150 mg/L • Objects visible to depth Objects visible to depth Objects visible to depth 	Water Quality	Substrate fouling level: High (> 50%)	 Substrate fouling level: Moderate (21-50%) 	Substrate fouling level: Very light (11-20%)	• Substrate fouling level:
Notice is visible to depth • Objects visible to depth <td< td=""><td>TDS: > 150 mg/L</td><td>• Grey colour • TDS: 101-150 mg/L</td><td>Slightly grey colour TDS: 50-100 mg/L</td><td>• Clear flow • TDS: < 50 mg/l</td></td<>		TDS: > 150 mg/L	• Grey colour • TDS: 101-150 mg/L	Slightly grey colour TDS: 50-100 mg/L	• Clear flow • TDS: < 50 mg/l
• Midderate to strong organic odour • Slight to moderate organic odour • Slight organic odour • No odour Point range • • • • • • • • • • • • • • • • • • •		 Objects visible to depth < 0.15m below surface 	 Objects visible to depth 0.15-0.5m below surface 	 Objects visible to depth 0.5-1.0m below surface 	 Objects visible to depth > 1.0m/below surface
Point range Image		Moderate to strong organic odour	 Slight to moderate organic odour 	Slight organic odour	• No odour
Riparian Habitat Conditions • Narrow riparian area of mostly non-woody vegetation • Riparian area predominantly wooded but with major localized gaps • Forested butfer generally > 31 m wide)along major portion of both banks • Wide (> 60 m) mature forested butfer along both banks • Canopy coverage: < 50% shading (30% for large mainstem areas) • Canopy coverage: 50- 60% shading (30-44% for large mainstem areas) • Canopy coverage: 60-79% shading (45-59% for large mainstem areas) • Canopy coverage: >80% shading (> 60% for large mainstem areas) Point range □ 0 □ 1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 Total overall score (0-42) = ? Poor (<13)	Point range	0 1 2	□ 3 □ 4	□ 5 □ 6	7 0 8
Conditions • Canopy coverage: <50% shading (30% for large mainstem areas) • Canopy coverage: 50- 60% shading (30-44% for large mainstem areas) • Canopy coverage: 60-79% shading (45-59% for large mainstem areas) • Canopy coverage: >80% shading (> 60% for large mainstem areas) Point range □ 1 □ 2 3 □ 4 5 □ 6 7 Total overall score (0-42) = ? Poor (<13)	Riparian Habitat Conditions	Narrow riparian area of mostly non-woody vegetation	Riparian area predominantly wooded but with major localized gaps	 Forested buffer generally > 31 m wide along major portion of both banks 	Wide (> 60 m) mature forested buffer along both banks
Point range \Box 0 \Box 1 \Box 2 \Box 3 \Box 4 5 \Box 6 7 Total overall score (0-42) = $2i$ Poor (<13)Fair (13-24)Fair (13-24)Fair (13-24)Fair (13-24)		 Canopy coverage: <50% shading (30% for large mainstem areas) 	Canopy coverage: 50- 60% shading (30-44% for large mainstem areas)	Canopy coverage: 60-79% shading (45-59% for large mainstem areas)	Canopy coverage: >80% shading (> 60% for large mainstem areas)
Total overall score (0-42) = $\frac{2}{3}$ Poor (<13) Fair (13-24)	Point range	□ 0 □ 1	□ 2 □ 3	□ 4 🖉 5	607
Good (25-34) Excellent (>35)					

Completed by: _____ Checked by: _____