

Phase Two Environmental Site Assessment

Vacant Property 1098 Ogilvie Road and 1178 Cummings Avenue Ottawa, Ontario

6770967 Canada Inc.

Executive Summary

GHD was retained by 6770967 Canada Inc., represented by Mr. Francois Moffet, to conduct a Phase Two Environmental Site Assessment (ESA) of the vacant property municipally known as 1098 Ogilvie Road and 1178 Cummings Avenue in Ottawa, Ontario (Site or Property).

The Site is currently owned by 6770967 Canada Inc. The Site is 1.54 hectares in size and is comprised of two separate parcels of land. The West Parcel (1098 Ogilvie Road) is approximately 0.49 hectares (ha), and was identified with property identification number (PIN) 042640152. The East Parcel (1178 Cummings Avenue) is approximately 1.05 ha, and was identified with PIN 042640160. The approximate centre of the Site has Latitude and Longitude coordinates of 45° 25' 30" N, 75° 37' 55" W (540568 mE/5030362 mN, zone 18T, NAD 87). The municipal zoning for the Site is currently R3V V (Residential Third Density Zone).

The Site is legally described as Part of Lots 26 and 27, Concession 2; Part 1 on Registered Plan 5R-11857; Parts 1 to 3 on Registered Plan 5R-8415; Part 12 on Registered Plan 5R-2005; Part 1 on Registered Plan 4R-10638, in City of Ottawa.

The West Parcel was first developed prior to 1958 and was used for agricultural and rural residential land use. The residential dwelling on the West Parcel was demolished in 2017. The East Parcel was first developed prior to 1958 and was also used for agricultural and rural residential land use up until approximately the 1970s. The east parcel was potentially utilized as a gasoline bar in the 1960s. Between the 1970s and 1980s, the East Parcel was reportedly used as a contractor's yard. The buildings on the East Parcel were demolished prior to 1991. The Site is currently vacant and overgrown with brush, grass and trees.

The Site is planned to be redeveloped for residential land use. The Phase Two ESA was undertaken in support of a local municipal planning department requirement associated with the proposed redevelopment of the Site. The objective of the Phase Two ESA was to undertake a preliminary investigation of the general soil and groundwater quality on Site and in the Areas of Potential Environmental Concern (APECs) that were identified to be associated with the Site based on the findings of the Phase One ESA, the following APECs were identified:

- APEC #1 Surrounding Land Use (Service Stations/USTs/Releases)
- APEC #2 Surrounding Land Use (Drycleaner)
- APEC #3 Potential on-Site Gas Bar
- APEC # 4 Surrounding Land Use (Autobody Shops)
- APEC #5 Former Fuel Oil AST
- APEC #6 Former UST
- APEC #7 Fill Quality

_

¹ GHD –Phase One Environmental Site Assessment, Vacant Property, 1098 Ogilvie Road and 1178 Cummings Avenue in Ottawa, Ontario, dated December 5, 2019

The Phase Two ESA included the advancement of boreholes, installation of monitoring wells, field screening, and the collection and laboratory analysis of limited soil and groundwater samples. The Phase Two ESA was completed in conjunction with a geotechnical investigation, the findings of which are presented under separate cover. The soil and groundwater analytical results were assessed to the 2011 Ministry of the Environment Table 7 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property use for a shallow soil condition and coarse textured soils (Table 7 Standards)².

Based on the findings of the Phase Two ESA, all analyzed parameters in soil had concentrations below the MOE Table 7 standards with the exception of select metals (antimony and molybdenum). The impacts were identified in the surficial fill and are considered to be associated with APEC #7 (Fill Quality). Based on the groundwater analytical results, all analyzed parameters had concentrations below the MOE Table 7 standards at the sampled locations.

To meet the regulatory requirements outlined in O. Reg. 153/04 in support of an RSC, further Phase Two ESA investigative activities are required to more fully investigate the on-Site APECs and to define the soil impacts identified on the Site.

² Ontario Ministry of the Environment, "Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act", dated April 15, 2011.

Table of Contents

Exe	cutive S	Summary	
1.		duction	
	1.1	Site Description	
	1.2	Property Ownership	2
	1.3	Current and Proposed Future Uses	2
	1.4	Applicable Site Condition Standards	2
2.	Back	ground Information	3
	2.1	Physical Setting	3
	2.2	Past Investigations	4
3.	Scop	e of the Investigation	7
	3.1	Media Investigated	7
	3.2	Phase One Conceptual Site Model	8
	3.3	Deviations from the Sampling and Analysis Plan	9
	3.4	Impediments	9
4.	Inves	stigation Methods	g
	4.1	General	9
	4.2	Drilling	10
	4.3	Soil Sampling	10
	4.4	Field Screening Measurements	11
	4.5	Groundwater: Monitoring Well Installation	11
	4.6	Groundwater Field Measurements of Water Quality Parameters	12
	4.7	Groundwater Sampling	13
	4.8	Sediment Sampling	14
	4.9	Analytical Testing	14
	4.10	Residue Management Procedures	14
	4.11	Elevation Surveying	14
	4.12	Quality Assurance and Quality Control Measures	14
5.	Revie	ew and Evaluation	15
	5.1	Geology	15
	5.2	Groundwater Elevations and Flow Direction	16
	5.3	Groundwater Hydraulic Gradients	16
	5.4	Fine-Medium Soil Texture	16
	5.5	Soil: Field Screening	16

		5.6	Soil Quality
		5.7	Groundwater Quality
		5.8	Sediment Quality
		5.9	Phase Two Conceptual Site Model
	6.	Concl	usions
Fiç	gure	Inc	dex
	Figure	: 1	Site Location Map
	Figure	2	Site Plan
	Figure	3	Surrounding Land Use Plan
	Figure	4	Investigative Locations
	Tak	ole	Index
	Table	4.1	Monitoring Well Installation
	Table	5.1	Soil Sample Details
	Table	1	DNAPL/LNAPL Layers
	Table	2	Summary of Soil Analysis
	Table	3	Summary of Groundwater Analysis
	Table	4	Maximum Soil Parameter Concentrations
	Table	5	Maximum Groundwater Parameter Concentrations
A p	pen	dix	Index
	Appen	ıdix A	Utility Locates
	Appen	ıdix B	Stratigraphic and Instrumentation Logs
	Appen	ndix C	Laboratory Certificates of Analysis
	Appen	ndix D	Grain Size Analysis

1. Introduction

This report presents the results of the Phase Two Environmental Site Assessment (ESA) completed by GHD of the vacant property municipally known as 1098 Ogilvie Road and 1178 Cummings Avenue in Ottawa, Ontario (Site or Property). A Site Location Map is presented on Figure 1 and a Site Plan is presented on Figure 2.

It is GHD's understanding that the Phase Two ESA was undertaken to support a local municipal planning department requirement associated with the development of the Site. The Site is planned to be redeveloped for residential land use. A Record of Site Condition (RSC) is intended to be filed for the Site in accordance with the requirements of O. Reg. 153/04 at a later date due to the change in land use to a more sensitive use.

The objective of the Phase Two ESA was to undertake a preliminary investigation of the general soil and groundwater quality on Site and in the Areas of Potential Environmental Concern (APECs) that were identified to be associated with the Site based on the findings of the Phase One ESA³ completed by GHD. Based on the results of the Phase One ESA, the following APECs were identified:

- APEC #1 Surrounding Land Use (Service Stations/USTs/Releases)
- APEC #2 Surrounding Land Use (Drycleaners)
- APEC #3 Potential on-Site Gas Bar
- APEC # 4 Surrounding Land Use (Autobody Shops)
- APEC #5 Former Fuel Oil AST
- APEC #6 Former UST
- APEC #7 Fill Quality

This report has been prepared for the use of the 6770967 Canada Inc. and may not be relied upon by others without the written consent of GHD.

1.1 Site Description

The Site is 1.54 hectares in size and is comprised of two separate parcels of land. The West Parcel (1098 Ogilvie Road) is approximately 0.49 hectares (ha), and was identified with property identification number (PIN) 042640152. The East Parcel (1178 Cummings Avenue) is approximately 1.05 ha, and was identified with PIN 042640160. The approximate centre of the Site has Latitude and Longitude coordinates of 45° 25' 30" N, 75° 37' 55" W (540568 mE/5030362 mN, zone 18T, NAD 87). The municipal zoning for the Site is currently R3V V (Residential Third Density Zone).

³ GHD –Phase One Environmental Site Assessment, Vacant Property, 1098 Ogilvie Road and 1178 Cummings Avenue in Ottawa, Ontario, dated December 5, 2019

The Site is legally described as Part of Lots 26 and 27, Concession 2; Part 1 on Registered Plan 5R-11857; Parts 1 to 3 on Registered Plan 5R-8415; Part 12 on Registered Plan 5R-2005; Part 1 on Registered Plan 4R-10638, in City of Ottawa.

The West Parcel was first developed prior to 1958 and was used for agricultural and rural residential land use. The residential dwelling on the West Parcel was demolished in 2017. The East Parcel was first developed prior to 1958 and was also used for agricultural and rural residential land use up until approximately the 1970s. The East Parcel was potentially utilized as a gasoline bar in the 1960s. Between the 1970s and 1980s, the East Parcel was reportedly used as a contractor's yard. The buildings on the East Parcel were demolished prior to 1991. The Site is currently vacant and overgrown with brush, grass and trees.

1.2 Property Ownership

The Site is currently owned by 6770967 Canada Inc.

1.3 Current and Proposed Future Uses

The Site is currently vacant. The Site is planned to be redeveloped for residential land use. The proposed development concept currently includes residential towers, a hotel, and underground and above grade parking.

1.4 Applicable Site Condition Standards

Generic site condition standards are provided in the Ontario Ministry of the Environment⁴ (MOE) document entitled, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act," dated April 15, 2011. The 2011 standards are referenced in Ontario Regulation (O. Reg.) 153/04 – Records of Site Condition, as amended by O. Reg. 511/09 (hereafter referred to as the 2011 MOE Standards).

The Standard provides site condition standards for certain chemicals, based on combinations of six different site-specific conditions, as follows:

- Property use type agricultural, residential/parkland/institutional, or industrial/commercial/ community. The Property had been used in the past for residential and commercial land uses. The Property is planned to be redeveloped for residential land use. As such, the standards for residential/parkland/institutional property use were applied to the Site.
- Restoration of groundwater quality potable/non-potable. The Property, and all other properties located, in whole or in part, within 250 m of the boundaries of the property, are supplied by a municipal drinking water system. The Site is not in an area designated on the City of Ottawa official plan as an intake protection zone. The Site is not in an area designated on the City of Ottawa official plan as a well-head protection area (WHPA). As such, the standards for a non-potable groundwater condition are considered applicable to the Site.

⁴ Ministry of the Environment (MOE) was renamed the Ministry of Environment and Climate Change (MOECC) in July 3, 2014 and as a result all references to the "Ministry of the Environment" and "MOE" refer to the MOECC.

- Restoration depth full depth and stratified depth. For comparative purposes, the full depth standards were applied to the Site.
- Soil texture coarse or medium to fine. Based on the results of the Phase Two ESA (presented herein), the predominant soil type on Site is considered to be coarse textured. As such, the standards for coarse textured soils were applied to the Site.
- Shallow soil property. The Site is considered to be a shallow soil property, due to depth to bedrock.
- Within 30 metres of a water body. There are no water bodies or water courses located on the Site.

The generic 2011 MOE Standards are not applicable if the Site is considered to be an environmentally sensitive area based on the conditions presented in Section 41 of O. Reg. 153/04, as amended. Based on GHD's review, there are no Areas of Natural Scientific Interest (ANSI) or Provincially Significant Wetlands (PSW) identified by the Ministry of Natural Resources and Forestry (MNRF) within the 250 m Study Area. There are no areas designated by the municipality in its current official plan (Bylaw 2008-250-Zoning) as 'EP' (Environmentally Protected zoning) within the Study Area. As the Site does not contain an area of natural significance as defined by O.Reg.153/04, and properties within 250 m of the Site limits do not contain areas of natural significance, the Site is not classified as an environmentally sensitive property (O. Reg. 153/04, s41). The pH of the soils was also tested as part of the Phase Two ESA and observed to be within the range of 5-9.

2. Background Information

2.1 Physical Setting

The Site is located in an area developed for commercial and residential land uses. The Site is currently vacant but was historically used for rural residential and commercial purposes (contractor's yard). The Site is 1.54 hectares in size and is comprised of two separate parcels of land. The West Parcel (1098 Ogilvie Road) is approximately 0.49 hectares (ha) and the East Parcel (1178 Cummings Avenue) is approximately 1.05 ha. The Site can be accessed via a driveway located on the south side of Ogilvie Road.

The following buildings or features were located on the properties surrounding the Site:

North: The Site is bound to the north by Ogilvie Road and a hydro transmission corridor and commercial property utilized as a food stand fronting onto Ogilvie Road and Cummings Avenue. A service station is located further north of the Site, on the northwest corner of the intersection of Ogilvie Road and Cummings Avenue (1111 Ogilvie Road). Residential properties are located beyond.

West: The Site is bound to the west by a commercial development occupied by various businesses including a laundromat and dry cleaners.

South: The Site is bound to the south by overgrown lands to the southwest and a commercial business (bank) to the southeast. Cyrville Road is located further south of the Site.

East: The Site is bound to the east by Cummings Avenue. A commercial office building is located on the east side of Cummings Avenue. A gasoline service station is located

further northeast of the Site, on the southeast corner of the intersection of Ogilvie Road and Cummings Avenue (1134 Ogilvie Road).

Based on a review of topographic and elevation mapping and the location of the Rideau River, regional groundwater flow in the Phase One Study Area is anticipated to be in a west to southwest direction. The Rideau River located approximately 2.4 km from the Site limits.

According to the Geological Survey of Canada Map 1506a titled 'Surficial Geology of Ottawa, Ontario-Quebec (1982)', the Site is described as Till Plains, with local relief of less than 5.0 m. Approximately 100 m southeast of the Site (near the intersection of Cummings Avenue and Cyrville Road) is described as Bedrock (limestone, dolomite, sandstone, and locally shale, relatively flat, often with areas of unconsolidated Quaternary sediments up to 1.0 m thick). Approximately 100 m northwest of the Site (on the north side of Ogilvie Road) is described as Post Champlain Sea Alluvial Deposits (medium grained stratified sands with some silt in the form of alluvial terraces and channels cut in marine clays, and in bars and spits within abandoned channels).

The online Ontario Geological Survey Map describes the Site as being Fine Textured Glaciomarine Deposits (silt and clay, minor sand and gravel, massive to well laminated), with a meltwater channel that bisects the site from the northwest to the southeast. South of the Site is described as Paleozoic Bedrock, while north of Ogilvie road to the northwest is described as older alluvial deposits (clay, silt, sand, gravel, may contain organic remnants).

The Ontario Geologic Survey Map P2716 titled 'Paleozoic Geology Ottawa Area Southern Ontario (1984)' was reviewed. The Site is described as the Upper Ordovician Billings Formation (dark brown to black shales, with laminations of calcareous siltstone). A fault approximately parallels Cyrville Road south of the Site. The south side of Cyrville Road is the down thrust (slightly younger) Upper Ordovician Carlsbad Formation (interbedded dark grey shale, fossiliferous calcareous siltstone, and silty bioclastic limestone).

The Site is currently not serviced. Historically, the Site was serviced with hydro, natural gas, water, and storm and sanitary sewer services.

Potable water in the area is supplied by the City. No water supply wells or septic tanks were reported or observed to be located on the Site.

2.2 Past Investigations

In 2011, a Phase I-II ESA was undertaken on the Site. More recently, GHD undertook a Phase One ESA for the Site. The findings are documented in the following reports:

- "Phase I-II Environmental Site Assessment 1098 Ogilvie Road and 1178 Cummings Avenue, Ottawa, Ontario" prepared by Patterson Group Inc. (Paterson), dated September 20, 2011 (Ref. PE2419-1)
- Phase One Environmental Site Assessment, Vacant Property, 1098 Ogilvie Road and 1178
 Cummings Avenue in Ottawa, Ontario, prepared by GHD, dated December 5, 2019

The salient findings of GHD's review as they relate to the Site are presented below.

Phase I-II ESA (Patterson Group, 2011)\

- The 2011 Phase I-II ESA property was occupied by an abandoned residential building on the western portion of the Site. The building reportedly had a concrete foundation, was wood framed with an exterior stucco finish, and was heated with fuel oil. A 905-Litre aboveground storage tank (AST), used for heating oil, was present in the southwest corner of the basement of the dwelling. Fill and vent pipes were visible on the building exterior. The AST was described by Paterson as "in good condition with no visible rust or perforations".
- The eastern portion of the Site was vacant and overgrown with vegetation.
- A former underground storage tank (UST) was reportedly located on the eastern portion of the Site. The 2011 Phase I-II ESA reported that the UST (along with 240 metric tonnes of soil) was removed in 2003 under the supervision of Paterson Group Inc. Confirmatory samples were collected from the excavation in 2003. The 2011 Phase I-II ESA indicates that although low levels of petroleum concentrations were reported in the soils remaining in place; the concentrations were below the then current Ministry of the Environment (MOE) Table B site standards presented in the Guideline for Use at Contaminated Sites in Ontario (revised 1997). No additional information pertaining the UST (including a closure report) was available to GHD at the time of the Phase One ESA.
- The surrounding land uses were noted by Paterson to be as follows:
 - North | Hydro corridor and Ogilvie Road followed by a gasoline service station (northeast)
 - West | Commercial properties
 - South | Automotive service garage (southwest)
 - East | Cummings Avenue followed by a gasoline service station (northeast)
- A Phase II ESA was undertaken by Paterson to investigate soil and/or groundwater conditions in the vicinity of the former on-Site UST and off-Site service stations.
- The Phase II ESA included the advancement of five boreholes (BH1 to BH5) and was conducted in conjunction with a geotechnical investigation on Site. BH1 was advanced in the vicinity of the former UST, and was completed as a monitoring well. BH5 was advanced along the northern portion of the Property and was also completed as a monitoring well. The remaining boreholes were advanced throughout the Site for geotechnical purposes. The locations of the previously boreholes are presented on Figure 2.
 - The soil profile was found to consist of topsoil or gravel over fill followed by shale bedrock.
 The fill generally consists of brown sandy silt, with gravel, cobbles, brick, and wood chips in all five of the boreholes advanced in 2011.
 - Groundwater was encountered at depths ranging from 2.4 mBGS at BH1 to 5.1 mBGS at BH5 on September 13, 2011.
 - One soil samples was submitted for laboratory analysis of PHCs and BTEX form BH5.
 Groundwater samples were collected from BH1 and BH5 and were submitted for laboratory analysis of PHCs and BTEX. The analytical results were assessed to the 2009 interim Table 7 standards for a non-potable groundwater condition for shallow soils.

 $_{\odot}$ Elevated concentrations of benzene were detected in the groundwater at BH1 and BH5 at concentrations ranging from 8.3 μg/L to 18.5 μg/L and reported to be above the 2009 Table 7 standard of 0.5 μg/L.

Phase One ESA (GHD, 2019)

Based on the results of the Phase One ESA, including the Site inspection, information provided by Site representatives and regulatory agencies, documents reviewed, and the review of Site history, the following APECs were identified to be associated with the Site:

- i. Surrounding Land Use (Service Stations/USTs/Releases): Based on the findings of the information review and GHD's site observations, service stations (with USTs) are operated on properties located north and northeast of the Site at 111 Ogilvie Road and 1134 Ogilvie Road. Based on the findings of the ERIS database search, releases have occurred in the past at 1134 Ogilvie Road and at the intersection of Ogilvie Road and Cummings Avenue. In 2011, elevated concentrations of benzene were also detected in the groundwater in the northeastern portion of the Site. The operation of service stations (including USTs) and releases were identified as off-Site PCAs (28. Gasoline and Associated Products Storage in Fixed Tanks and 10. Commercial Autobody Shops). Based on the proximity of these PCAs to the Site, they were identified as having the potential to contribute to an APEC on the Site in the event that releases have occurred and migrated onto the Site. The northern boundary of the Site was identified as APEC #1.
- ii. Surrounding Land Use (Drycleaner): Based on the findings of the information review, a drycleaner is located approximately 65 metres southwest of the Site at 1097 (1099) Cryville Road. One Stop Laundromat & Dry Cleaning/Sketchley Cleaning Services, located at 1097/1099 Cyrville Road (approximately 65 m southwest of the Site) were identified as generators of halogenated solvents from 1986 to 2004. The operation of a drycleaner on a surrounding property in close proximity to the Site was identified as a PCA (37. Operation of Dry Cleaning Equipment) in accordance with O. Reg. 153/04, and was identified as having the potential to contribute to an APEC on the Site in the event that releases have occurred and migrated onto the Site. On this basis the southwestern Property boundary was identified as APEC #2.
- iii. Potential on-Site Gas Bar: Based on a review of the 2011 Phase I-II ESA, the Shamrock Gas Bar was listed as being located on the East Parcel of the Site (1178 Cummings Avenue) in 1965. At the time of the Phase One ESA, no additional information was obtained pertaining to the potential operation of a gas bar on Site. The potential operation of a gas bar on Site was identified as a PCA (28. Gasoline and Associated Products Storage in Fixed Tanks) in accordance with O. Reg. 153/04 and the central portion of the East Parcel was identified as APEC #3.
- iv. **Surrounding Land Use (Autobody Shops):** Based on the historical information reviewed, various autobody shops were located at 1125-1133 Cyrville Road, located adjacent to the south of the western portion of the Site. At the time of the GHD's site inspection, this property was vacant overgrown land. The operation of autobody shops on the adjacent property to the south of the Site was identified as an off-Site PCA (10. Commercial Autobody Shops) and

- identified as having the potential to contribute to an APEC on Site. The southwestern boundary of the Site was identified as **APEC #4**.
- v. **Former Fuel Oil AST:** The residential dwelling formerly located on the southwestern portion of the West Parcel was historically heated with fuel oil. A fuel oil AST was located in the basement of the residential dwelling. The residential dwelling was demolished on Site in 2017. The past operation of a fuel oil AST on Site was identified as an on-Site PCA (28. Gasoline and Associated Products Storage in Fixed Tanks) in accordance with O. Reg. 153/04 and the southwestern portion of the West Parcel was identified as **APEC #5**.
- vi. **Former UST:** Based on a review of the 2011 Phase I-II ESA, a UST was historically located in the central portion of the West Parcel. The UST and 240 tonnes of soil were reportedly removed in 2003. Based on the findings of the 2011 Phase I-II ESA, elevated concentrations of benzene were detected in the groundwater in the vicinity of the former UST. The historical operation of a UST on Site was identified as an on-Site PCA (28. Gasoline and Associated Products Storage in Fixed Tanks) in accordance with O. Reg. 153/04 and the central portion of the East Parcel was identified as **APEC #6**.
- vii. **Fill Quality:** Based on a review of historical aerial photographs and the findings of the 2011 Phase I-II ESA, fill material of unknown quality is present throughout the Site. The presence of fill of unknown quality was identified as an on-Site PCA (30. Fill of Unknown Quality) in accordance with O. Reg. 153/04 and the entire Site was identified as **APEC #7**.

The APECs are presented on Figure 2.

3. Scope of the Investigation

The Phase Two ESA included a preliminary assessment of the soil and groundwater quality on Site and was undertaken in conjunction with a geotechnical investigation, presented under separate cover. The Phase Two ESA field activities included the advancement of boreholes, installation of monitoring wells, field screening, and the collection and laboratory analysis of soil and groundwater samples as described in detail below.. The data generated GHD's investigative activities has been presented herein.

3.1 Media Investigated

The investigation of the soil and groundwater quality on Site included the following:

- Advancement of seven geo-environmental boreholes between September 23 and 25, 2019 to depths ranging from 3.0 to 15.80 mBGS
- Instrumentation of monitoring wells in the shallow overburden/bedrock at BH2A, BH2, BH3, BH4, and BH5 and in the deeper bedrock at BH1 and BH6.
- Field screening of soil and groundwater samples.
- Collection of groundwater levels from on-Site monitoring wells to determine depth to the groundwater table and groundwater flow direction.

- Laboratory analysis of soil samples collected from BH2, BH3, BH4 and BH5 (including field duplicates and one trip blank) and groundwater samples from BH2A, BH3, BH4, and BH5 (including field duplicates and a trip blank). Soil samples were submitted for laboratory analysis of one or more of the following: O. Reg. 153/04 metals and inorganics, petroleum hydrocarbons (PHC) fractions F1 to F4, volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), pH, and/or grain size. Groundwater samples were submitted for laboratory analysis of one or more of the following: O. Reg. 153/04 metals, PHC fractions F1 to F4, VOCs, and PAHs.
- Laboratory analysis of one composite sample for ignitability and toxicity characteristic leaching procedure (TCLP) VOCs, PAHs, PCBs, and metals and inorganics parameters.

The sample locations are shown on Figure 4.

There are no water bodies located on the Site; therefore, sediment was not sampled during the Phase Two ESA. Soil vapour sampling was not completed as part of the Phase Two ESA. There are no existing buildings on the Site.

3.2 Phase One Conceptual Site Model

The Site is located at 1098 Ogilvie Road and 1178 Cummings Avenue in Ottawa, Ontario (Site or Phase One Property). A Site Location Map and a Site Plan are provided on Figure 1 and Figure 2, respectively.

The Site is currently owned by 6770967 Canada Inc. The Site is 1.54 hectares in size and is comprised of two separate parcels of land. The West Parcel (1098 Ogilvie Road) is approximately 0.49 hectares (ha), and was identified with property identification number (PIN) 042640152. The East Parcel (1178 Cummings Avenue) is approximately 1.05 ha, and was identified with PIN 042640160. The approximate centre of the Site has Latitude and Longitude coordinates of 45° 25′ 30″ N, 75° 37′ 55″ W (540568 mE/5030362 mN, zone 18T, NAD 87). The municipal zoning for the Site is currently R3V V (Residential Third Density Zone).

The Site is legally described as Part of Lots 26 and 27, Concession 2; Part 1 on Registered Plan 5R-11857; Parts 1 to 3 on Registered Plan 5R-8415; Part 12 on Registered Plan 5R-2005; Part 1 on Registered Plan 4R-10638, in City of Ottawa.

The Site is located in an area of Ottawa primarily developed for mixed residential and commercial land use. Based on GHD's review of the historical documents, the Site was developed prior to 1958 for rural residential land use and was used in the past for agricultural purposes. The Site is currently vacant and comprised of overgrown grassed and tree covered lands. All former buildings have been demolished.

The Site topography is generally on grade with the adjacent properties with a gentle slope towards the north and east. The elevation on the Site ranges between 68.31 and 70.58 metres above sea level (mASL). Regionally, the topography in the Phase One Study Area slopes down towards the Rideau River to the west; however the Site gently slopes to the north and east.

There are no water bodies located on or adjacent to the Site. The closest significant surface water body is the Rideau River, located approximately 2.4 km west-southwest of the Site. Based on topography and the location of the Rideau River, groundwater flow direction is inferred to be to the west or southwest.

Based on the information reviewed and the definition of area of natural significance provided in O. Reg. 153/04, the Site is not considered an area of natural significance.

To the best of GHD's knowledge, no underground utilities are present beneath the Property with the exception of potential abandoned utilities. The Site is not currently serviced.

Based on the historical information reviewed, the following subsurface structures and utilities that may affect contaminant distribution and transport on Site included the following dating back to the early development of the Site: utility corridors, abandoned utility conduits, and the presence of several former building foundations.

Based on GHD's review of the previous environmental report, the soil conditions on Site consist of fill over a thin layer of glaciolacustrine sands, overlying bedrock found between 1.5 to 3.0 m below grade mBGS.

Based on the results of the Phase One ESA, PCAs were identified to be associated with historical operations on the Site and off Site on the surrounding properties to the north, southwest and south. A summary of the PCAs, APECs, and the associated potentially contaminated media and contaminants of concern (COCs) are presented in the Table of Areas of Potential Environmental Concern. In summary the potential contaminants of concern were identified as metals, PHCs, BTEX, VOCs, and PAHs.

The Phase One ESA CSM was based on the findings of the Phase One ESA. Limited information was available at the time of the Phase One ESA regarding specific details relating to the historical operations conducted on Site since its development. The findings presented herein are based on the Site inspection, information provided by Site representatives and regulatory agencies, documents reviewed, and the review of Site history.

The Phase One ESA Conceptual Site Model is depicted on Figures 1 through 3.

3.3 Deviations from the Sampling and Analysis Plan

There were no significant deviations from the sampling and analysis plan.

3.4 Impediments

There were no impediments encountered during the investigation.

4. Investigation Methods

4.1 General

The following investigative activities were undertaken between September 23 and October 16, 2019 and are described in detail in the following subsections:

- Advancement of boreholes.
- Installation of groundwater monitoring wells.
- Collection of field screening measurements and observations.

- Collection and laboratory analysis of soil and groundwater samples.
- Groundwater field measurements of water quality parameters.
- Collection of groundwater level measurements.
- Residue management.
- Quality assurance and quality control measures.
- Elevation surveying.

The field investigation activities were completed in accordance with MOE (now known as the MECP) protocols, GHD's standard operating procedures (SOPs), and standard industry practice.

Prior to completing the investigation activities undertaken by GHD, a Site-specific Health and Safety Plan (HASP) was prepared to provide specific guidelines and established procedures for the protection of personnel performing the Site investigation activities. In addition, the appropriate public utility notifications were completed and a private utility locator was retained to assist with on-Site utility clearances. Private utility locate services were completed prior to undertaking subsurface investigative activities. Copies of the utility locates are included in Appendix A.

4.2 Drilling

On September 23, 24 and 25, 2019, seven boreholes (BH1, BH2, BH2A, BH3, BH4, BH5, and BH6) were advanced on Site using a truck mounted CME 55 power drill rig. Each of the boreholes was instrumented as a monitoring well. GHD retained George Downing Estate Drilling Ltd., a MECP licensed driller of Grenville Sur La Rouge, Quebec to complete the drilling activities. The location of the boreholes and monitoring wells are shown on Figure 4.

Soil cuttings for GHD's investigative activities were containerized in 205-litre drums pending off Site removal. The purge and wash waters were containerized in 205-litre (45 gallon) drums and temporarily stored for off-Site disposal (refer to Section 4.10).

4.3 Soil Sampling

Soil samples were collected from four of the seven investigative locations (BH2, BH3, BH4, and BH5) completed on Site during the field activities. Soil sample collection from each borehole was facilitated through the use of stainless steel split-spoon samplers. Samples were collected based on field screening results. Field screening methods are described in Section 4.5 below.

Prior to use and between each borehole, the drilling and sampling equipment was thoroughly cleaned using Alconox® soap and potable water rinse.

Soil samples obtained from each borehole were qualitatively and quantitatively screened for the presence of impact. Qualitative screening was based on visual and olfactory observations, while quantitative screening was based on the presence of undifferentiated VOCs in the headspace of soil samples collected as measured in the field.

Soil samples were collected in laboratory supplied glass containers which were placed in a cooler containing ice for sample preservation. Undisturbed samples for VOC analysis were placed directly in sample containers provided by the laboratory. All soil samples were collected using the required

sampling techniques in accordance with O Reg. 153/04, including the methanol field preservation method for those soil samples being submitted for analysis of PHC F1 and VOCs. Samples were submitted to the laboratory for analysis under chain-of-custody protocol.

Select soil samples were submitted for laboratory analysis of one or more of the following parameters: VOCs, PHCs, PAHs, metals, and grain size analysis.

4.4 Field Screening Measurements

As discussed in Section 4.3, soil samples were collected from each borehole using stainless steel split spoons. Soil samples of the overburden were taken from the core and placed into a sealable plastic bag for headspace screening. The headspace soil samples were screened for undifferentiated VOC vapour readings using a photo-ionization detector (PID). Prior to screening, the field screening equipment was inspected and calibrated according to the manufacturer's recommendations by GHD personnel.

The results of the field screening are presented in the stratigraphic and instrumentation logs provided in Appendix B.

4.5 Groundwater: Monitoring Well Installation

Groundwater monitoring wells were installed in all seven (7) of the on Site boreholes as part of the geo-environmental investigation. The locations of the monitoring wells are shown on Figure 4.

The monitoring wells at BH2A, BH3, BH4, and BH5 were installed to straddle the water table to investigate the presence of LNAPL and facilitate the collection of groundwater samples for laboratory analysis. The monitoring wells installed at BH1, BH2, BH6 were installed in the deeper bedrock as part of the geotechnical investigation.

The monitoring wells were constructed with a 1.25" (32 mm) diameter, Schedule 40 polyvinyl chloride (PVC) riser and No. 10 slot size well screens varying in length from 1.5 to 3 metres. The well screens were installed to straddle the groundwater table observed during drilling activities in the field and to assess groundwater conditions in the deeper bedrock. The bottom screened depths of the shallow bedrock wells ranged from 3.0 to 6.15 mBGS. The bottom screened depths of the deeper bedrock monitoring wells ranged from 15.65 to 15.80 mBGS.

A silica sand pack was placed in the annular space between the PVC screen/riser pipe and the borehole to a height of at least 0.3 metres above the top of the screen. A bentonite seal was placed directly above the sand pack and extended to within 0.5 metres of the ground surface. To complete the installation, an expandable J-plug was placed on the riser pipe to protect against debris falling and/or surface runoff infiltrating into the well and a protective aboveground casing with a concrete collar was placed around each well to cover the top of the riser pipe.

The groundwater monitoring well construction and installation details are shown on the stratigraphic

and instrumentation logs provided in Appendix B and in the table below.

Table 4.1 Monitoring Well Installation

Well ID	Grade Elevation (mASD)	TOR Elevation (mASD)	Borehole Bottom Elevation (mASD)	Screen Elevation (mASD)	Sand Pack Elevation (mASD)	Bentonite Seal Elevation (mASD)	Well Bottom Depth (mASD)
BH1	100.37	101.13	84.67	87.72 to 84.67	88.10 to 84.67 Deep bedrock	99.46 to 88.10	84.67
BH2	100.81	101.62	85.16	97.15 to 94.71	97.46 to 94.66 Upper bedrock	99.90 to 97.46 And 94.66 to 85.16	94.71
ВН2А	100.93	101.79	97.93	99.46 to 97.93	99.76 to 97.93 Weathered bedrock	100.63 to 99.76	97.93
ВН3	100.18	100.92	96.37	97.59 to 96.37	97.89 to 96.37 Upper bedrock	98.66 to 97.89	96.37
BH4	100.76	101.50	96.95	98.47 to 96.95	98.85 to 96.95 Upper bedrock	99.52 to 98.85	96.95
ВН5	99.47	100.23	83.67	96.42 to 93.37	96.73 to 93.32 Upper bedrock	98.86 to 96.73 And 93.32 to 83.67	93.37
ВН6	99.92	100.61	84.38	87.42 to 84.38	87.73 to 84.38 Deep bedrock	99.31 to 87.73	84.38

Elevations are relative to the top of the spindle of a fire hydrant located on the east side of Cummings Avenue, east of the Site (assigned elevation of 100 mASD).

4.6 Groundwater Field Measurements of Water Quality Parameters

Upon installation the monitoring wells were developed to remove the standing groundwater volume in the well. In order to ensure that samples representative of on-Site groundwater conditions were obtained, each monitoring well was purged prior to groundwater sample collection using dedicated WaterraTM tubing.

The following protocol was generally followed at each monitoring well location during well purging activities:

- Groundwater level measurements were collected prior and subsequent to well development
 activities using a calibrated oil/water interface probe. The depth to water was measured relative
 to a specific reference point in the monitoring well. Groundwater elevations are presented in
 Table 1.
- Where WaterraTM sampling techniques were used, a minimum of three well volumes of water was purged from the monitoring well. In the event that slow groundwater recharge conditions were encountered, the well was purged until dry and then allowed to recover prior to sample collection. Field measurements of temperature, pH, turbidity, and electrical conductivity were taken using a water quality meter after each purged well volume was removed until consistent field measurements were recorded indicating that water in the well was representative of the actual groundwater conditions.
- Groundwater in the monitoring well was allowed to recover and settle prior to sample collection to reduce sediment agitation and mobilization in volatile and semi-volatile samples.

The development/purge water was contained in 205-litre drums and temporarily stored on Site.

4.7 Groundwater Sampling

Groundwater samples were collected from four monitoring wells (BH2A, BH3, BH4, and BH5) on October 16, 2019.

Groundwater samples were collected and placed directly into laboratory-supplied sample containers specific to the analytical parameters. Groundwater samples collected for metals analysis were field filtered using a 0.45 micron filter prior to sample collection. Samples were stored in coolers chilled with ice for sample preservation and submitted to the laboratory for analysis under chain-of-custody protocol.

A quality assurance/quality control (QA/QC) program was implemented to ensure quality data was generated. The QA/QC program included the collection/submission of one field duplicate groundwater sample and one trip blank sample. The field duplicate sample was one of two samples taken from the same media (i.e., groundwater) at the same location and time following the same sampling procedures. The field duplicate samples were used to validate field sampling protocol and laboratory analysis procedures. The trip blank sample consisted of analyte-free media prepared by the laboratory, taken to the Site and returned to the laboratory unopened. The trip blank sample was used to document contamination attributable to shipping and field handling procedures.

Groundwater samples were submitted for laboratory analysis of one or more of the following parameters: O. Reg. 153/04 metals, PHC fractions F₁ to F₄, VOCs, and PAHs.

All samples were submitted to the analytical laboratory following chain-of-custody procedures. The chain-of-custody forms document the condition and handling of the samples throughout the collection, transportation, and final analysis of the samples.

Water generated from the well development activities was containerized and temporarily stored on Site.

4.8 Sediment Sampling

Sediment sampling was not completed during the Phase Two ESA as sediment was not identified as a potentially contaminated media.

4.9 Analytical Testing

Soil and groundwater samples collected during GHD's investigation were submitted to Paracel Laboratories Ltd. (Paracel) in Ottawa, Ontario. Paracel is a member of the Standards Council of Canada (SCC) and Canadian Association of Environmental Analytical Laboratories (CAEAL). Copies of the analytical laboratory reports are provided in Appendix C.

Grain size (hydrometer) analysis was undertaken on representative samples. Copies of the grain size results are provided in Appendix D.

4.10 Residue Management Procedures

Soil cuttings, equipment decontamination wash water and purge/well development water for GHD's investigative activities were containerized in 205-litre drums for off-Site disposal. A representative soil sample was collected for TCLP analysis to characterize the soils for off-site disposal at a MECP approved waste disposal facility. The results of the analysis indicated that the soils would be classified as non-hazardous solid waste in accordance with Schedule 4 of Ontario Regulation 347, as amended.

Soil cuttings and wash water/purge/development waters are temporarily stored on Site.

4.11 Elevation Surveying

Each borehole/monitoring well/test pit was surveyed for vertical control with respect to a local benchmark, which was taken to be the top of the spindle of a fire hydrant located on the east side of Cummings Avenue, east of the Site (assumed elevation of 100 mASL). This hydrant is located approximately in line with the north wall of the residential apartment building located at 1177 Cummings Avenue. The ground surface and top of riser pipe reference elevations for each well are summarized in Table 1. The reported elevations are not geodetic.

4.12 Quality Assurance and Quality Control Measures

A Quality Assurance/Quality Control (QA/QC) program was implemented during the program to ensure quality data was generated. This program involved both field and laboratory QA/QC measures.

Samples were collected in laboratory supplied sampling containers with the appropriate preservative in accordance with O. Reg. 153/04, including the methanol field preservation method for those soil samples being submitted for analysis of PHC F₁ and VOCs.

Samples were submitted under chain-of-custody protocol to an analytical laboratory for chemical analysis. For quality assurance, the following was undertaken:

 Between collection of each soil and groundwater sample, GHD field personnel donned a new pair of disposable nitrile gloves.

- Prior to use and between each borehole location, the drilling and non-dedicated sampling equipment was thoroughly cleaned using Alconox® soap and potable water rinse.
- Stainless steel sampling equipment was used and cleaned using Alconox® soap and potable water rinse between each sample collection event.
- Wherever possible, dedicated sampling equipment (e.g., LDPE tubing, fittings, Ziploc® bags, etc.) was used to reduce the potential for cross contamination.
- The groundwater monitoring wells were equipped with a dedicated Waterra[™] foot valve and polyethylene tubing for well development activities.

To validate the field analysis, one QA/QC field duplicate sample was generally submitted for approximately every ten samples per media type (soil and groundwater) submitted for laboratory analysis. Trip blanks were also submitted (generally one per laboratory submission) for soil and groundwater where analysis of volatile parameters was required QC samples were also analyzed by the laboratory as required by their analytical methods.

5. Review and Evaluation

The results of the Site investigation activities are described in the following sections. The soil and groundwater sampling locations are shown on Figure 4.

5.1 Geology

The Site has various shrub and tree cover with local areas of pavement and brush/tall grasses. The boreholes identified a thin topsoil with an approximate thickness of 50 to 75 millimeter (mm) covering fill soils. At the BH1 location, there was an asphalt surface as part of an abandoned driveway from previous developments on the site.

- Fill A layer of fill was encountered at all borehole locations. The fill material consisted of a silty sand with trace to some gravel. The fill material was found to be compact, and in a damp to moist condition. The thickness of the fill layer varied from approximately 1.0 m to 2.6 m.
- Sandy Clay Underlying the fill layer at the borehole BH1 and BH2 locations, a native sandy clay
 deposit was encountered. In general this deposit was found to be very stiff and was recovered in a
 damp to moist condition.
- Silty Sand Underlying the fill layer at the borehole BH4 and BH6 locations, a native silty sand deposit was encountered. The deposit had varying amounts of clay and gravel. In general this deposit was found to be compact to very dense and was recovered in a damp to moist condition.
- Bedrock Practical refusal to auger advancement was encountered in all boreholes at shallow depths. Bedrock was confirmed by diamond coring methods in all boreholes except BH2A. The depth of bedrock ranged between 1.0 m to 2.7 m. The bedrock was found to be a black and grey sedimentary rock consisting shale of billings formation with limestone interbeds at the borehole locations. The limestone interbeds increased in frequency with depth. The quality of this rock was generally highly weathered and fractured, very poor within the upper approximately 0.2 to 1.5 m of the bedrock. The quality improves becoming what is considered as fair to excellent rock based upon Rock Quality Designation (RQD) values of 52 to 100.

Detailed descriptions of the geologic deposits encountered at each borehole location are presented on the stratigraphic logs provided in Appendix B.

5.2 Groundwater Elevations and Flow Direction

Groundwater level measurements were collected from the on-Site monitoring wells using a calibrated electronic oil/water interface probe (i.e., Solinst) or a Solinst water level tape. The depth to water was measured relative to a specific reference point in the monitoring well (i.e., the top of the monitoring well riser pipe). Based on the survey information of the top of riser pipe elevation, the groundwater elevation was calculated by subtracting the water level measurement from the reference point elevation. Groundwater level measurements for October 16, 2019, and groundwater elevation results are provided in Table 1.

Based on the water level measurements recorded on October 16, 2019, the direction of groundwater flow across the Site in the shallow bedrock was determined to be towards the south-southeast.

It should be noted that the groundwater table is subject to seasonal fluctuations and in response to precipitation and snowmelt events. Also, it would be expected that water may be perched within the fill materials or the very poor bedrock, especially during and following periods of precipitation and in the spring and fall or other wet seasonal periods.

There was no evidence of measurable NAPL during the drilling or groundwater sampling activities.

5.3 Groundwater Hydraulic Gradients

The hydraulic gradient was calculated by dividing the difference in hydraulic head by the lateral distance between monitoring locations. Based on the recorded groundwater elevations in Table 1, the horizontal hydraulic gradient is approximately 0.013 m/m.

5.4 Fine-Medium Soil Texture

Two samples were collected at the Site and submitted for hydrometer and grain size analysis. The results are presented in Appendix D.

Under Section 42 of O. Reg. 153/04, soil is considered medium and fine textured if it contains 50 percent or more by mass particles that are smaller than 75 microns in mean diameter. Based on review of the hydrometer and grain size analysis, the soils are considered to be coarse textured.

5.5 Soil: Field Screening

During the investigation, field screening of collected soil samples was undertaken for organic vapours using a MiniRAE photo-ionization detector (PID). Any visual or olfactory evidence of potential impacts was also documented. The results of the soil field screening and corresponding sample depth intervals are provided on the stratigraphic and instrumentation logs provided in Appendix B.

During the drilling and groundwater sampling activities, there was no field evidence of impact identified nor evidence of light or dense non-aqueous phase liquids on the Site.

5.6 Soil Quality

Soil samples were selected for laboratory analysis from BH2, BH3, BH4, and BH5 as summarized below. For QA/QC purposes, one field duplicate soil sample was also submitted for laboratory analysis.

Table 5.1 Soil Sample Details

Sample Identification	Borehole ID	Sample depth	Parameters	APEC
BH2-SS1	BH2	0.1-0.6 mBGS	PAH, metals, pH	APEC #7 (Fill Quality)
BH7-SS1	BH2	0.1-0.6 mBGS	PAH, metals, pH (duplicate of BH2- SS1)	-
BH2-SS3	BH2	1.5-2.1 mBGS	PHC, VOC	APEC #2 (Service Stations/USTs/Releases)
BH7-SS3	BH2	1.5-2.1 mBGS	PHC, VOC (duplicate of BH2-SS3)	-
BH3-SS1	ВН3	0.1-0.6 mBGS	VOC, PAH, metals, pH	APEC #7 (Fill Quality)
BH3-SS2	BH3	0.76-1.4 mBGS	PHC, BTEX	APEC #5 (Former AST)
BH4-SS1	BH4	0.1-0.6 mBGS	PHC, BTEX, metals, pH	APEC #7 (Fill Quality)
BH5-SS1	BH5	0.1-0.6 mBGS	PHC, BTEX, metals, pH	APEC #7 (Fill Quality)

The analytical results are presented in Table 2. Based on a review of the analytical results, all analyzed parameters had concentrations below the 2011 MOE Table 7 standards with the exception of antimony and molybdenum. Antimony was detected at concentrations marginally above the Table 7 standard at BH2 in soil sample BH2-SS1 (0.1-0.6 mBGS), but below the standard in the field duplicate sample (BH7-SS1). At BH5, molybdenum was detected at a concentration marginally above the 2011 MOE Table 7 standard in soil sample BH5-SS1 (0.1-0.6 mBGS). The impacts to soil were identified in the fill and are considered to be associated with APEC #7 (Fill Quality).

A summary of the soil COCs and the maximum detected concentrations is provided in Table 3.

5.7 Groundwater Quality

Groundwater samples were collected for laboratory analysis from BH2A (APEC #1), BH3 (APEC #2), BH4, and BH5 (APEC #4). Samples were submitted for laboratory analysis of one or more of the following: O. Reg. 153/04 metals, PHC fractions F₁ to F₄, VOCs, and PAHs. The groundwater analytical results were assessed to the applicable 2011 MOE Table 7 Standards for coarse textured soils and are presented in Table 4.

Based on a review of the October 2019 analytical results, all analyzed parameters had concentrations below the MOE Table 7 standards at the locations sampled. A summary of the groundwater COCs and the maximum detected concentrations is provided in Table 5.

5.8 Sediment Quality

Sediment associated with water bodies was not identified as Potentially Contaminated Media on Site; therefore, sediment was not sampled during the Phase Two ESA.

5.9 Phase Two Conceptual Site Model

Introduction

The Site is a vacant property municipally known as 1098 Ogilvie Road and 1178 Cummings Avenue in Ottawa, Ontario (Site or Property). A Site Location Map is presented on Figure 1 and a Site Plan is presented on Figure 2.

The Site is currently owned by 6770967 Canada Inc. The Site is 1.54 hectares in size and is comprised of two separate parcels of land. The West Parcel (1098 Ogilvie Road) is approximately 0.49 hectares (ha), and was identified with property identification number (PIN) 042640152. The East Parcel (1178 Cummings Avenue) is approximately 1.05 ha, and was identified with PIN 042640160. The approximate centre of the Site has Latitude and Longitude coordinates of 45° 25' 30" N, 75° 37' 55" W (540568 mE/5030362 mN, zone 18T, NAD 87). The municipal zoning for the Site is currently R3V V (Residential Third Density Zone).

The Site is legally described as Part of Lots 26 and 27, Concession 2; Part 1 on Registered Plan 5R-11857; Parts 1 to 3 on Registered Plan 5R-8415; Part 12 on Registered Plan 5R-2005; Part 1 on Registered Plan 4R-10638, in City of Ottawa.

The West Parcel was first developed prior to 1958 and was used for agricultural and rural residential land use. The residential dwelling on the West Parcel was demolished in 2017. The East Parcel was first developed prior to 1958 and was also used for agricultural and rural residential land use up until approximately the 1970s. The east parcel was potentially utilized as a gasoline bar in the 1960s. Between the 1970s and 1980s, the East Parcel was reportedly used as a contractor's yard. The buildings on the East Parcel were demolished prior to 1991. The Site is currently vacant and overgrown with brush, grass and trees.

The Site is planned to be redeveloped for residential land use. The Phase Two ESA was undertaken in support of a local municipal planning department requirement associated with the proposed redevelopment of the Site. The objective of the Phase Two ESA was to undertake a preliminary investigation of the general soil and groundwater quality on Site and in the Areas of Potential Environmental Concern (APECs) that were identified to be associated with the Site based on the findings of the Phase One ESA⁵ completed by GHD. Based on the results of the Phase One ESA, the following APECs were identified:

- APEC #1 Surrounding Land Use (Service Stations/USTs/Releases)
- APEC #2 Surrounding Land Use (Drycleaner)
- APEC #3 Potential on-Site Gas Bar
- APEC # 4 Surrounding Land Use (Autobody Shops)

⁵ GHD –Phase One Environmental Site Assessment, Vacant Property, 1098 Ogilvie Road and 1178 Cummings Avenue in Ottawa, Ontario, dated December 5, 2019

- APEC #5 Former Fuel Oil AST
- APEC #6 Former UST
- APEC #7 Fill Quality

The Phase Two ESA included the advancement of boreholes, installation of monitoring wells, field screening, and the collection and laboratory analysis of soil and groundwater samples. The Phase Two ESA was completed in conjunction with a geotechnical investigation, the findings of which are presented under separate cover. The soil and groundwater analytical results were assessed to the 2011 Ministry of the Environment Table 7 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Property use for a shallow soil condition and coarse textured soils (Table 7 Standards).

Potential Contaminant Distribution and Transport Pathways

The Site is currently not serviced. Based on the historical information reviewed, subsurface structures and utilities that may affect contaminant distribution and transport on Site included the following (which date back to the early development of the Site): utility corridors, abandoned utility conduits, and the presence of several former building foundations.

Physical Setting

Geology – During the field activities completed at the Site, a layer of fill varying in thickness from 1.0 to 2.6 metres was found at all of the investigative locations. At select locations, the fill was underlain by thin layers of sandy clay and silty sand. Bedrock was encountered at depths between 1.0 and 2.7 mBGS. The bedrock was found to be a black and grey sedimentary rock consisting shale of billings formation with limestone interbeds at the borehole locations.

Hydrogeology – The water table is present in the bedrock and was found to range between 1.15 to 2.59 mBGS. Based on the water level measurements recorded on October 16, 2019, the direction of groundwater flow across the Site in the shallow bedrock was determined to be towards the south-southeast. Based on the recorded groundwater elevations in October, 2019, the horizontal hydraulic gradient in the shallow bedrock is approximately 0.013 m/m.

It should be noted that the groundwater table is subject to seasonal fluctuations and in response to precipitation and snowmelt events. Also, it would be expected that water may be perched within the fill materials or the very poor bedrock, especially during and following periods of precipitation and in the spring and fall or other wet seasonal periods.

The Site topography is generally on grade with the adjacent properties with a gentle slope towards the south. Regional mapping demonstrates the elevation on the Site ranges between 68 and 71 metres above sea level (mASL). Regionally, the topography in the Phase One Study Area slopes down towards the Rideau River to the west; however the Site gently slopes to the north and east.

There are no water bodies located on or adjacent to the Site. The closest significant surface water body is the Rideau River, located approximately 2.4 km west-southwest of the Site. Based on

⁶ Ontario Ministry of the Environment, "Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act", dated April 15, 2011.

topography and the location of the Rideau River, regional groundwater flow direction is inferred to be to the west or southwest.

Applicable Site Condition Standards

The soil and groundwater analytical results were assessed to the 2011 MOE Table 7 standards for residential/parkland/institutional property use for a non-potable groundwater and shallow soil condition for coarse textured soils.

Nature and Extent of Impact

The preliminary investigation of the soil and groundwater quality included the advancement of boreholes and the instrumentation of the boreholes as groundwater monitoring wells. The investigative locations are shown on Figure 4. A summary of the analytical results is presented below.

Soil Quality – Based on a review of the soil analytical results, all analyzed parameters had concentrations below the 2011 MOE Table 7 standards with the exception of select metals (antimony and molybdenum) which were identified in the surficial (fill) soils on Site at two locations.

Groundwater Quality – Based on a review of the October 2019 groundwater analytical results, all analyzed parameters had concentrations below the 2011 MOE Table 7 standards.

Potential Migration Pathways

As described in the Phase One ESA, seven primary APECs were identified at the Site. The Phase Two ESA results indicate that the impacts to soil quality are likely related to APEC #7 (Fill Quality). Based on the findings of the Phase Two ESA, no preferential migration pathways were identified to be associated with the contaminants identified (metals in soil).

Climatic and Meteorological Conditions

The effect of climatic or meteorological conditions (such as the fluctuation of the groundwater table) on the distribution and migration of the contaminants on Site is not considered to be significant.

Vapour Intrusion

Based on the Phase Two ESA, the soil impacts at the Site include metals. These COCs are not considered to be volatile and, therefore, the soil impacts are not considered to pose a potential risk to receptors. As previously mentioned, further investigative activities are required to investigate soil/groundwater quality in the vicinity of APEC #3/APEC #6 (Potential Gas Bar/UST).

Based on the information obtained in completing this Phase Two ESA, further investigative activities are required to more fully investigate the APECs identified for the Site and to support the filing of a RSC.

6. Conclusions

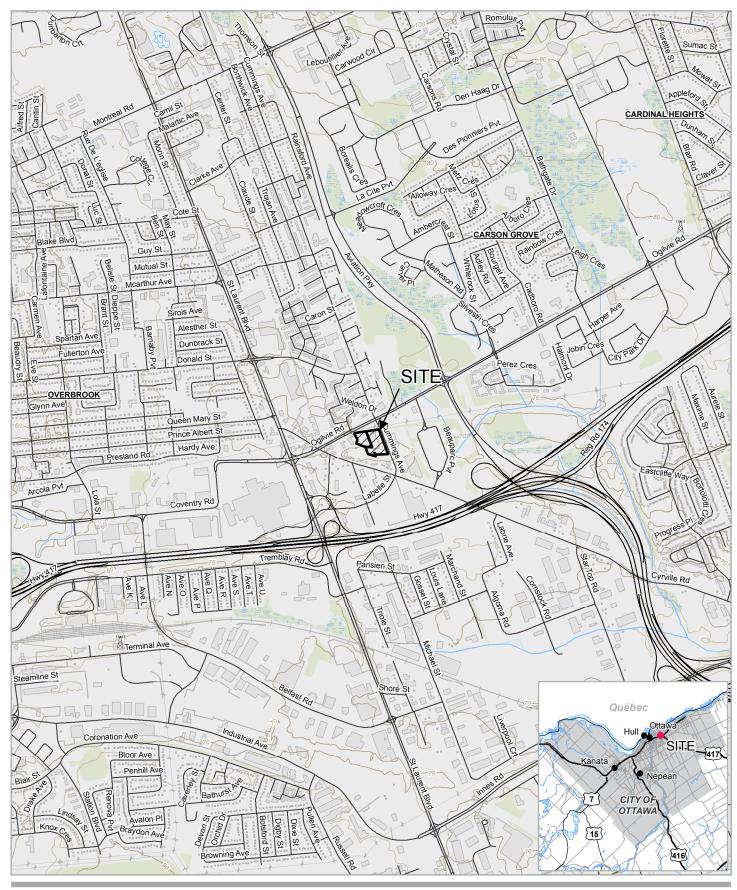
The objective of the Phase Two ESA was to undertake a preliminary investigation of the general soil and groundwater quality on Site and in the Areas of Potential Environmental Concern (APECs) that

were identified to be associated with the Site. The Phase Two ESA included the advancement of boreholes, installation of monitoring wells, field screening, and the collection and laboratory analysis of limited soil and groundwater samples. Based on the findings of the Phase Two ESA, the following conclusions are provided:

- 1. All analyzed parameters in soil had concentrations below the MOE Table 7 standards with the exception of select metals (antimony and molybdenum). The impacts were identified in the surficial fill and are considered to be associated with APEC #7 (Fill Quality).
- Based on the groundwater analytical results, all analyzed parameters had concentrations below the MOE Table 7 standards at the sampled locations, including BH2A (APEC #1 – Service Stations/USTs/Releases), BH3 (APEC #2 – Off-Site Drycleaner). BH4, and BH5 (APEC #4 – Off-Site Autobody Shops).

To meet the regulatory requirements outlined in O. Reg. 153/04 in support of an RSC, further Phase Two ESA investigative activities are required to more fully investigate the on-Site APECs # 1 through #7 and to define the soil impacts identified on the Site.

All of Which is Respectfully Submitted,


GHD

Scott Wallis, B.Sc.

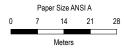
Luke Lopers, P. Eng., Q.P. ${\sf ESA}$

Luke Lopers, P. Eng., Qualified Person for Environmental Site Assessment under O. Reg. 153/04, confirms the carrying out of the Phase Two Environmental Site Assessment and the findings and conclusions of this report.

GHD | Phase Two Environmental Site Assessment | 11201061 (3) | Page 22

Map Projection: Transverse Mercator Horizontal Datum: North American 1983 Grid: NAD 1983 UTM Zone 18N

6770967 CANADA INC. 1098 OGILVIE ROAD AND 1178 CUMMINGS AVENUE OTTAWA, ON PHASE TWO ENVIRONMENTAL SITE ASSESSMENT RESIDENTIAL DEVELOPMENT

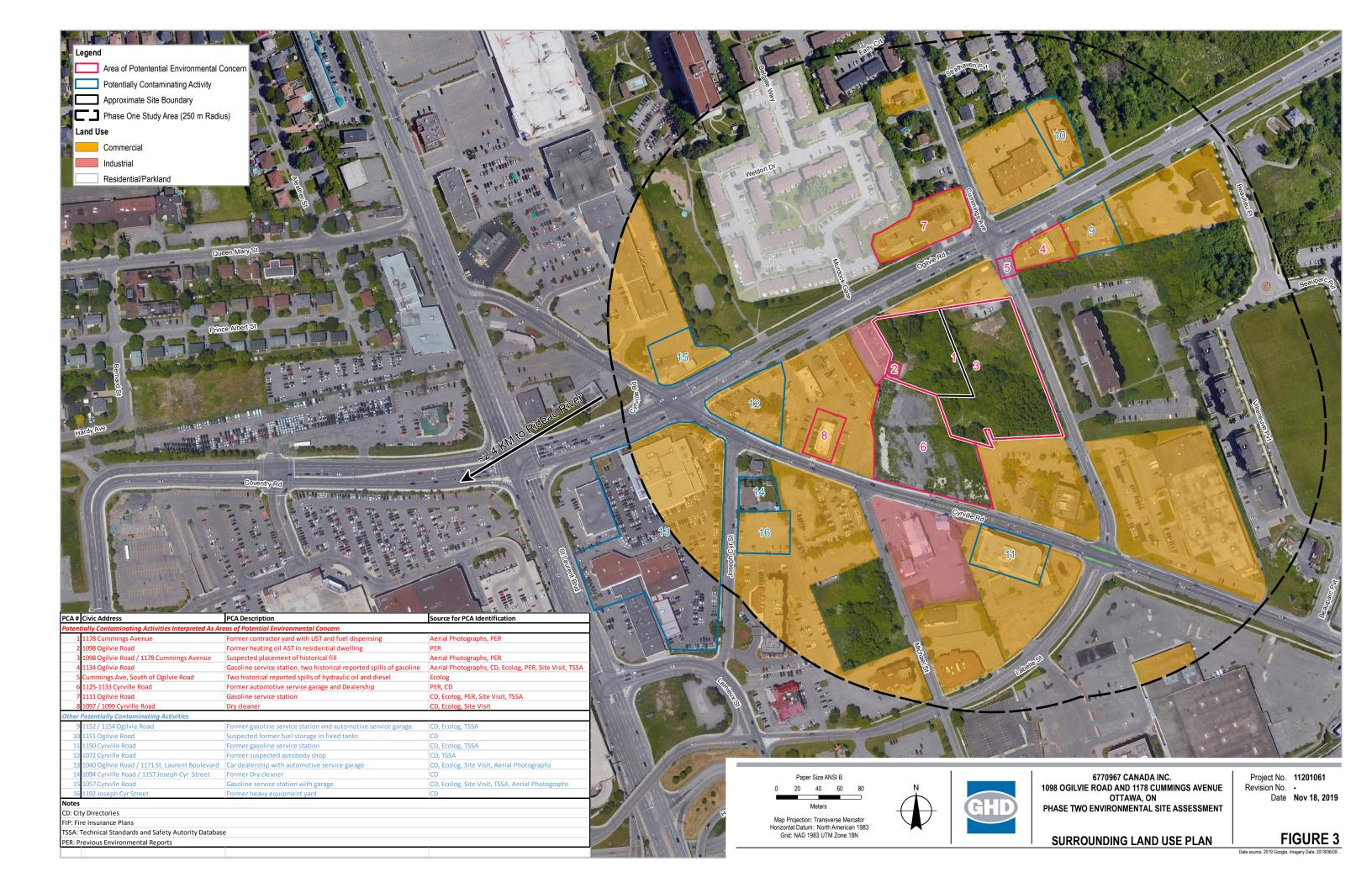

SITE LOCATION MAP

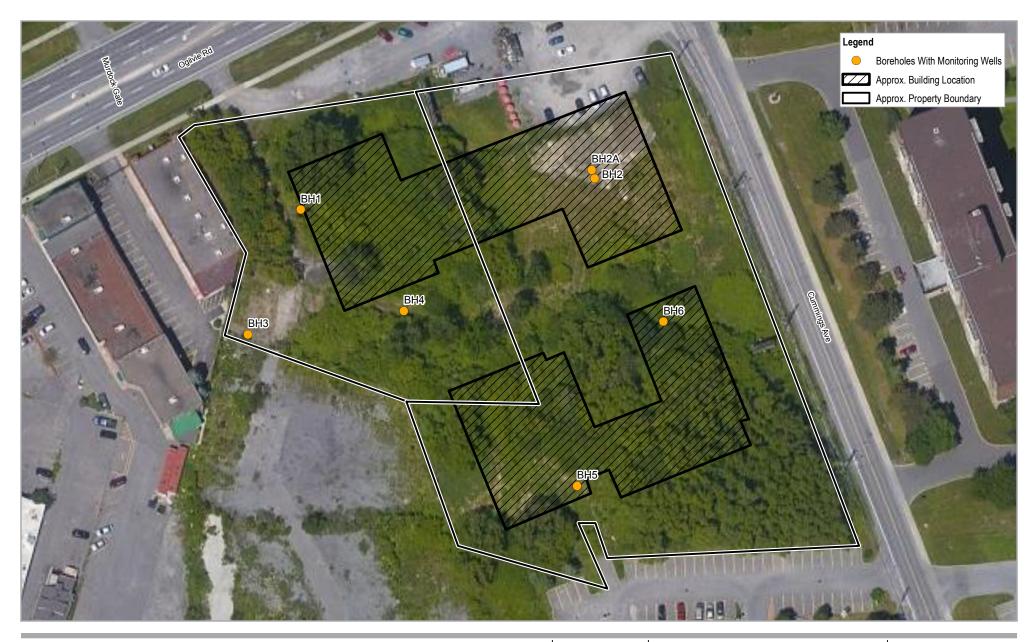
Project No. 11201061-E2 Revision No. -

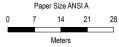
Date Aug 12, 2019

FIGURE 1

Map Projection: Transverse Mercator Horizontal Datum: North American 1983 Grid: NAD 1983 UTM Zone 18N


6770967 CANADA INC. 1098 OGILVIE ROAD AND 1178 CUMMINGS AVENUE OTTAWA, ON PHASE TWO ENVIRONMENTAL SITE ASSESSMENT RESIDENTIAL DEVELOPMENT


SITE LOCATION PLAN


Project No. 11201061-E2 Revision No. -

Date Oct 9, 2019

FIGURE 2

Map Projection: Transverse Mercator Horizontal Datum: North American 1983 Grid: NAD 1983 UTM Zone 18N

6770967 CANADA INC.
1098 OGILVIE ROAD AND 1178 CUMMINGS AVENUE
OTTAWA, ON
PHASE TWO ENVIRONMENTAL SITE ASSESSMENT
RESIDENTIAL DEVELOPMENT

INVESTIGATIVE LOCATIONS PLAN

Project No. 11201061-A1 Revision No. -

Date Oct 9, 2019

FIGURE 4

Table 1Page 1 of 5

Groundwater Elevations Phase Two Environmental Site Assessment 1098 Ogilvie Road and 1178 Cummings Avenue Ottawa, Ontario

WELL ID	Grade Elevation (m)	TOP Elevation (m)	Bottom Depth (mBG)	Bottom Elevation (m)	October 16, 2019 Depth to Watertable (m below grade)	October 16, 2019 Elevation Watertable (m)	Thickness of LNAPL (m)	Thickness of DNAPL (m)
BH1	100.37	101.13	15.70	84.67	2.42	97.95	0.00	na
BH2	100.81	101.62	6.15	94.66	2.44	98.37	0.00	na
BH2A	100.93	101.79	3.00	97.93	2.44	98.49	0.00	na
BH3	100.18	100.92	3.81	96.37	1.72	98.46	0.00	na
BH4	100.76	101.50	3.81	96.95	2.59	98.17	0.00	na
BH5	99.47	100.23	6.15	93.32	2.26	97.21	0.00	na
BH6	99.92	100.61	15.54	84.38	1.15	98.77	0.00	na

Notes:

Elevation relative to Site BM=100.00 m, assigned to Top of Spindle of Hydrant located west of BH6 on Cummings Avenue. na - not applicable

Summary of Soil Analysis Phase Two Environmental Site Assessment 1098 Ogilvie Road and 1178 Cummings Avenue Ottawa, Ontario

			Sample Location	BH2	BH2	BH2	BH2	BH3	BH3	BH4	BH5
			Sample Identification	BH2-SS1	BH7-SS1	BH2-SS3	BH7-SS3	BH3-SS1	BH3-SS2	BH4-SS1	BH5-SS1
			Laboratory Identification	1939472-01	1939472-07	1939472-02	1939472-08	1939472-03	1939472-04	1939472-05	1939472-06
			Sample Date	24-Sep-19	24-Sep-19	24-Sep-19	24-Sep-19	24-Sep-19	24-Sep-19	24-Sep-19	24-Sep-19
			Sample Depth	0.1-0.6mBGS	0.1-0.6mBGS	1.5-2.1mBGS	1.5-2.1mBGS	0.1-0.6mBGS	0.76-1.4 mBGS	0.1-0.6mBGS	0.1-0.61mBGS
			Stratigraphy	fill	fill	fill	fill	fill	fill	fill	fill
	1		1		- 1111	IIII	IIII	IIII	1111	IIII	
Parameter	Units	MDL	2011 MOE Table 7 Standards ¹		(duplicate of BH2-SS1)		(duplicate of BH2-SS3)				
Metals	uala das	1.0	7.E. uala da		ND (1.0)	N/A	NI/A	ND (1.0)	NI/A	ND (1.0)	ND (1.0)
Antimony Arsenic	ug/g dry ug/g dry	1.0 1.0	7.5 ug/g dry 18 ug/g dry	7.8 4.2	ND (1.0) 3.0	N/A N/A	N/A N/A	ND (1.0) 3.0	N/A N/A	ND (1.0) 9.0	ND (1.0) 8.3
Barium	ug/g dry	1.0	390 ug/g dry	139	155	N/A	N/A	121	N/A	108	210
Beryllium Boron	ug/g dry ug/g dry	1.0 1.0	4 ug/g dry 120 ug/g dry	0.8 8.2	0.5 5.9	N/A N/A	N/A N/A	ND (0.5) 6.6	N/A N/A	0.7 7.9	0.7 9.5
Cadmium	ug/g dry	0.5	1.2 ug/g dry	ND (0.5)	ND (0.5)	N/A	N/A	ND (0.5)	N/A	ND (0.5)	0.5
Chromium Cobalt	ug/g dry ug/g dry	1.0 1.0	160 ug/g dry 22 ug/g dry	42.6 10.9	50.0 11.2	N/A N/A	N/A N/A	32.4 7.7	N/A N/A	26.9 12.1	21.2 12.1
Copper	ug/g dry	1.0	140 ug/g dry	29.6	24.9	N/A	N/A	23.4	N/A	33.7	44.8
Lead	ug/g dry	1.0	120 ug/g dry	28.8 3.4	28.0	N/A	N/A	42.4	N/A	38.3	35.0
Molybdenum Nickel	ug/g dry ug/g dry	1.0 1.0	6.9 ug/g dry 100 ug/g dry	35.8	1.2 31.6	N/A N/A	N/A N/A	1.4 21.7	N/A N/A	2.8 38.7	10.9 53.8
Selenium	ug/g dry	1.0	2.4 ug/g dry	ND (1.0)	ND (1.0)	N/A	N/A	ND (1.0)	N/A	ND (1.0)	ND (1.0)
Silver Thallium	ug/g dry ug/g dry	0.5 1.0	20 ug/g dry 1 ug/g dry	ND (0.3) ND (1.0)	ND (0.3) ND (1.0)	N/A N/A	N/A N/A	ND (0.3) ND (1.0)	N/A N/A	ND (0.3) ND (1.0)	ND (0.3) ND (1.0)
Uranium	ug/g dry	1.0	23 ug/g dry	2.1	1.2	N/A	N/A	ND (1.0)	N/A	1.2	3.1
Vanadium Zinc	ug/g dry	1.0 1.0	86 ug/g dry 340 ug/g dry	46.8 86.7	51.2 74.9	N/A N/A	N/A N/A	35.2 78.6	N/A N/A	36.6 66.1	31.9 92.2
Volatiles	ug/g dry		540 ug/g ury								
Acetone	ug/g dry	0.50	16 ug/g dry	N/A	N/A	ND (0.50)	ND (0.50)	ND (0.50) ND (0.02)	N/A	N/A	N/A
Benzene Bromodichloromethane	ug/g dry ug/g dry	0.02 0.05	0.21 ug/g dry 13 ug/g dry	N/A N/A	N/A N/A	ND (0.02) ND (0.05)	ND (0.02) ND (0.05)	ND (0.02) ND (0.05)	ND (0.02) N/A	ND (0.02) N/A	ND (0.02) N/A
Bromoform	ug/g dry	0.05	0.27 ug/g dry	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
Bromomethane Carbon Tetrachloride	ug/g dry ug/g dry	0.05 0.05	0.05 ug/g dry 0.05 ug/g dry	N/A N/A	N/A N/A	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	N/A N/A	N/A N/A	N/A N/A
Chlorobenzene	ug/g dry	0.05	2.4 ug/g dry	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
Chloroform	ug/g dry	0.05	0.05 ug/g dry	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
Dibromochloromethane Dichlorodifluoromethane	ug/g dry ug/g dry	0.05 0.05	9.4 ug/g dry 16 ug/g dry	N/A N/A	N/A N/A	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	N/A N/A	N/A N/A	N/A N/A
1,2-Dichlorobenzene	ug/g dry	0.05	3.4 ug/g dry	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ug/g dry ug/g dry	0.05 0.05	4.8 ug/g dry 0.083 ug/g dry	N/A N/A	N/A N/A	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	N/A N/A	N/A N/A	N/A N/A
1,1-Dichloroethane	ug/g dry	0.05	3.5 ug/g dry	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
1,2-Dichloroethane	ug/g dry	0.05	0.05 ug/g dry	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
1,1-Dichloroethylene cis-1,2-Dichloroethylene	ug/g dry ug/g dry	0.05 0.05	0.05 ug/g dry 3.4 ug/g dry	N/A N/A	N/A N/A	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	N/A N/A	N/A N/A	N/A N/A
trans-1,2-Dichloroethylene	ug/g dry	0.05	0.084 ug/g dry	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
1,2-Dichloropropane cis-1,3-Dichloropropylene	ug/g dry ug/g dry	0.05 0.05	0.05 ug/g dry	N/A N/A	N/A N/A	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	N/A N/A	N/A N/A	N/A N/A
trans-1,3-Dichloropropylene	ug/g dry	0.05		N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
1,3-Dichloropropene, total	ug/g dry	0.05	0.05 ug/g dry	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05) ND (0.05)	N/A	N/A ND (0.05)	N/A ND (0.05)
Ethylbenzene Ethylene dibromide (dibromoethane, 1,2-)	ug/g dry ug/g dry	0.05 0.05	2 ug/g dry 0.05 ug/g dry	N/A N/A	N/A N/A	0.06 ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	0.16 N/A	ND (0.05) N/A	ND (0.05) N/A
Hexane	ug/g dry	0.05	2.8 ug/g dry	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone	ug/g dry ug/g dry	0.50 0.50	16 ug/g dry 1.7 ug/g dry	N/A N/A	N/A N/A	ND (0.50) ND (0.50)	ND (0.50) ND (0.50)	ND (0.50) ND (0.50)	N/A N/A	N/A N/A	N/A N/A
Methyl tert-butyl ether	ug/g dry	0.05	0.75 ug/g dry	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
Methylene Chloride Styrene	ug/g dry	0.05 0.05	0.1 ug/g dry 0.7 ug/g dry	N/A N/A	N/A N/A	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	N/A N/A	N/A N/A	N/A N/A
1,1,1,2-Tetrachloroethane	ug/g dry ug/g dry	0.05	0.7 ug/g dry 0.058 ug/g dry	N/A N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A N/A	N/A N/A
1,1,2,2-Tetrachloroethane	ug/g dry	0.05	0.05 ug/g dry	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
Tetrachloroethylene Toluene	ug/g dry ug/g dry	0.05 0.05	0.28 ug/g dry 2.3 ug/g dry	N/A N/A	N/A N/A	ND (0.05) 0.05	ND (0.05) 0.06	ND (0.05) ND (0.05)	N/A 0.07	N/A ND (0.05)	N/A ND (0.05)
1,1,1-Trichloroethane	ug/g dry	0.05	0.38 ug/g dry	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
1,1,2-Trichloroethane Trichloroethylene	ug/g dry	0.05 0.05	0.05 ug/g dry 0.061 ug/g dry	N/A N/A	N/A N/A	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	N/A N/A	N/A N/A	N/A N/A
Trichlorofluoromethane	ug/g dry ug/g dry	0.05	0.061 ug/g dry 4 ug/g dry	N/A	N/A	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A N/A	N/A
Vinyl Chloride	ug/g dry	0.02	0.02 ug/g dry	N/A	N/A	ND (0.02)	ND (0.02)	ND (0.02)	N/A	N/A	N/A
m/p-Xylene o-Xylene	ug/g dry ug/g dry	0.05 0.05	nv nv	N/A N/A	N/A N/A	0.15 0.08	0.13 ND (0.05)	ND (0.05) ND (0.05)	0.38 0.13	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)
Xylenes, total	ug/g dry	0.05	3.1 ug/g dry	N/A	N/A	0.23	0.13	ND (0.05)	0.50	ND (0.05)	ND (0.05)
Hydrocarbons F1 PHCs (C6-C10)	ug/g dry	7	55 ug/g dry	N/A	N/A	20	28	N/A	9	ND (7)	14
F2 PHCs (C10-C16)	ug/g dry	4	98 ug/g dry	N/A	N/A	8	ND (4)	N/A	32	ND (4)	52
F3 PHCs (C16-C34)	ug/g dry	8	300 ug/g dry	N/A	N/A	43	43	N/A	69 ND (6)	ND (8)	51
F4 PHCs (C34-C50) F4G PHCs (gravimetric)	ug/g dry ug/g dry	6 50	2800 ug/g dry 2800 ug/g dry	N/A N/A	N/A N/A	80 N/A	174 389	N/A N/A	ND (6) N/A	ND (6) N/A	ND (6) N/A
Semi-Volatiles											
Acenaphthene Acenaphthylene	ug/g dry ug/g dry	0.02 0.02	7.9 ug/g dry 0.15 ug/g dry	ND (0.02) ND (0.02)	ND (0.02) 0.03	N/A N/A	N/A N/A	ND (0.02) 0.02	N/A N/A	N/A N/A	N/A N/A
Anthracene	ug/g dry	0.02	0.67 ug/g dry	ND (0.02)	ND (0.02)	N/A	N/A	0.06	N/A	N/A	N/A
Benzo[a]anthracene	ug/g dry	0.02	0.5 ug/g dry	ND (0.02)	0.04	N/A	N/A	0.10	N/A	N/A	N/A
Benzo[a]pyrene Benzo[b]fluoranthene	ug/g dry ug/g dry	0.02 0.02	0.3 ug/g dry 0.78 ug/g dry	ND (0.02) ND (0.02)	0.04 0.07	N/A N/A	N/A N/A	0.14 0.09	N/A N/A	N/A N/A	N/A N/A
Benzo[g,h,i]perylene	ug/g dry	0.02	6.6 ug/g dry	ND (0.02)	0.03	N/A	N/A	0.05	N/A	N/A	N/A
Benzo[k]fluoranthene Chrysene	ug/g dry ug/g dry	0.02 0.02	0.78 ug/g dry 7 ug/g dry	ND (0.02) ND (0.02)	0.02 0.07	N/A N/A	N/A N/A	0.03 0.10	N/A N/A	N/A N/A	N/A N/A
Dibenzo[a,h]anthracene	ug/g dry	0.02	0.1 ug/g dry	ND (0.02) ND (0.02)	ND (0.02)	N/A	N/A	ND (0.02)	N/A	N/A	N/A
Fluoranthene	ug/g dry	0.02	0.69 ug/g dry	0.02	0.09	N/A	N/A	0.20	N/A	N/A	N/A
Fluorene Indeno[1,2,3-cd]pyrene	ug/g dry ug/g dry	0.02 0.02	62 ug/g dry 0.38 ug/g dry	ND (0.02) ND (0.02)	ND (0.02) 0.03	N/A N/A	N/A N/A	ND (0.02) 0.05	N/A N/A	N/A N/A	N/A N/A
1-Methylnaphthalene	ug/g dry	0.02	0.99 ug/g dry	ND (0.02)	ND (0.02)	N/A	N/A	ND (0.02)	N/A	N/A	N/A
2-Methylnaphthalene Methylnaphthalene (1&2)	ug/g dry	0.02 0.04	0.99 ug/g dry 0.99 ug/g dry	0.05 0.05	ND (0.02) ND (0.04)	N/A N/A	N/A N/A	0.02 0.04	N/A N/A	N/A N/A	N/A N/A
Naphthalene	ug/g dry ug/g dry	0.04	0.6 ug/g dry	0.05	ND (0.04) ND (0.01)	N/A N/A	N/A N/A	0.04	N/A N/A	N/A N/A	N/A N/A
Phenanthrene	ug/g dry	0.02	6.2 ug/g dry	0.06	0.05	N/A	N/A	0.16	N/A	N/A	N/A
Pyrene	ug/g dry	0.02	78 ug/g dry	0.02	0.07	N/A	N/A	0.18	N/A	N/A	N/A

Notes 1 BOLD ND N/A nv

MOE, Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, dated April 2011

Concentration above 2011 MOE Table 7 standards for a non-potable groundwater and shallow soil condition for residential land use and coarse-textured soils (April 2011)

Concentration not detected above Method Detection Limit

Parameter not Analyzed by laboratory

No value

Table 3 Page 3 of 5

Summary of Groundwater Analysis Phase Two Environmental Site Assessment 1098 Ogilvie Road and 1178 Cummings Avenue Ottawa, Ontario

Parameter	Units	MDL	2011 MOE	Maximum Soil	Sample Identification	Sample Depth (mBGS)
Metals			Table 7 Standards ¹	Concentration		
Antimony	ug/g dry	1.0	7.5 ug/g dry	7.8	BH2-SS1	0.1-0.6mBG
Arsenic	ug/g dry	1.0	18 ug/g dry	9.0	BH4-SS1	0.1-0.6mBG
Barium		1.0	390 ug/g dry	210	BH5-SS1	0.1-0.61mBG
	ug/g dry		00,			
Beryllium	ug/g dry	1.0	4 ug/g dry	0.8	BH2-SS1	0.1-0.6mBG
Boron	ug/g dry	1.0	120 ug/g dry	9.5	BH5-SS1	0.1-0.61mBG
Cadmium	ug/g dry	0.5	1.2 ug/g dry	0.5	BH5-SS1	0.1-0.61mBG
Chromium	ug/g dry	1.0	160 ug/g dry	50.0	DUP1 (duplicate of BH2-SS1)	0.1-0.6mBG
Cobalt	ug/g dry	1.0	22 ug/g dry	12.1	BH4-SS1/BH5-SS1	0.1-0.6mBG
Copper	ug/g dry	1.0	140 ug/g dry	44.8	BH5-SS1	0.1-0.61mBG
_ead	ug/g dry	1.0	120 ug/g dry	42.4	BH3-SS1	0.1-0.6mBG
Molybdenum	ug/g dry	1.0	6.9 ug/g dry	10.9	BH5-SS1	0.1-0.61mBG
Nickel	ug/g dry	1.0	100 ug/g dry	53.8	BH5-SS1	0.1-0.61mBG
Selenium	ug/g dry	1.0	2.4 ug/g dry	ND	all	
Silver	ug/g dry	0.5	20 ug/g dry	ND	all	
Γhallium	ug/g dry	1.0	1 ug/g dry	ND	all	
Jranium	ug/g dry	1.0	23 ug/g dry	3.1	BH5-SS1	0.1-0.61mBG
/anadium	ug/g dry	1.0	86 ug/g dry	51.2	DUP1 (duplicate of BH2-SS1)	0.1-0.6mBG
Zinc	ug/g dry	1.0	340 ug/g dry	92.2	BH5-SS1	0.1-0.61mBG
/olatiles						
Acetone	ug/g dry	0.50	16 ug/g dry	ND	all	
Benzene	ug/g dry	0.02	0.21 ug/g dry	ND	all	
Bromodichloromethane	ug/g dry	0.05	13 ug/g dry	ND	all	
Bromoform	ug/g dry	0.05	0.27 ug/g dry	ND	all	I
Bromomethane	ug/g dry	0.05	0.05 ug/g dry	ND	all	I
Carbon Tetrachloride	ug/g dry	0.05	0.05 ug/g dry	ND	all	
Chlorobenzene	ug/g dry	0.05	2.4 ug/g dry	ND	all	
Chloroform	ug/g dry	0.05	0.05 ug/g dry	ND	all	
Dibromochloromethane	ug/g dry	0.05	9.4 ug/g dry	ND	all	
Dichlorodifluoromethane	ug/g dry	0.05	16 ug/g dry	ND	all	
,2-Dichlorobenzene	ug/g dry	0.05	3.4 ug/g dry	ND	all	
I,3-Dichlorobenzene	ug/g dry	0.05	4.8 ug/g dry	ND	all	
,4-Dichlorobenzene	ug/g dry	0.05	0.083 ug/g dry	ND	all	
,1-Dichloroethane	ug/g dry	0.05	3.5 ug/g dry	ND	all	
,2-Dichloroethane	ug/g dry	0.05	0.05 ug/g dry	ND	all	
,1-Dichloroethylene	ug/g dry	0.05	0.05 ug/g dry	ND	all	
is-1,2-Dichloroethylene	ug/g dry	0.05	3.4 ug/g dry	ND	all	
rans-1,2-Dichloroethylene	ug/g dry	0.05	0.084 ug/g dry	ND	all	
I,2-Dichloropropane	ug/g dry	0.05	0.05 ug/g dry	ND	all	
cis-1,3-Dichloropropylene	ug/g dry	0.05	0.00 ag/g a.y	ND	all	
rans-1,3-Dichloropropylene	ug/g dry	0.05		ND	all	
1,3-Dichloropropene, total	ug/g dry	0.05	0.05 ug/g dry	ND	all	
Ethylbenzene	ug/g dry	0.05	2 ug/g dry	0.16	BH3-SS2	0.76-1.4 mBG
Ethylene dibromide (dibromoeth	ug/g dry	0.05	0.05 ug/g dry	ND	all	0.70-1.4 IIIBG
trivierie dibrofflide (dibroffideti). Hexane	ug/g dry ug/g dry	0.05	2.8 ug/g dry	ND ND	all	
Methyl Ethyl Ketone (2-Butanon)	ug/g dry	0.50	16 ug/g dry	ND	all	
Methyl Isobutyl Ketone	ug/g dry	0.50	1.7 ug/g dry	ND ND	all	
Methyl tert-butyl ether		0.05		ND ND	all	
Methylene Chloride	ug/g dry	0.05	0.75 ug/g dry 0.1 ug/g dry	ND ND	all	
Styrene	ug/g dry	0.05		ND ND	all	
	ug/g dry	0.05	0.7 ug/g dry	ND ND		
I,1,1,2-Tetrachloroethane	ug/g dry		0.058 ug/g dry	ND ND	all all	
1,1,2,2-Tetrachloroethane	ug/g dry	0.05	0.05 ug/g dry	ND ND		
Tetrachloroethylene	ug/g dry	0.05	0.28 ug/g dry		all BH3-SS2	0.76-1.4 mBG
Foluene	ug/g dry	0.05	2.3 ug/g dry	0.07		U.70-1.4 IIIDG
I,1,1-Trichloroethane	ug/g dry	0.05	0.38 ug/g dry	ND ND	all	I
I,1,2-Trichloroethane	ug/g dry	0.05	0.05 ug/g dry	ND ND	all	
richloroethylene	ug/g dry	0.05	0.061 ug/g dry	ND ND	all	I
Frichlorofluoromethane	ug/g dry	0.05	4 ug/g dry	ND	all	
/inyl Chloride	ug/g dry	0.02	0.02 ug/g dry	ND	all	0.70.4.4. BO
n/p-Xylene	ug/g dry	0.05		0.38	BH3-SS2	0.76-1.4 mBG
o-Xylene	ug/g dry	0.05	0.4 /	0.13	BH3-SS2	0.76-1.4 mBG
(ylenes, total	ug/g dry	0.05	3.1 ug/g dry	0.50	BH3-SS2	0.76-1.4 mBG
Hydrocarbons	, .	_	· ·	00	DUD0 (1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1501 80
F1 PHCs (C6-C10)	ug/g dry	7	55 ug/g dry	28	DUP2 (duplicate of BH2-SS3)	1.5-2.1mBG
F2 PHCs (C10-C16)	ug/g dry	4	98 ug/g dry	52	BH5-SS1	0.1-0.61mBG
F3 PHCs (C16-C34)	ug/g dry	8	300 ug/g dry	69	BH3-SS2	0.76-1.4 mBG
F4 PHCs (C34-C50)	ug/g dry	6	2800 ug/g dry	174	DUP2 (duplicate of BH2-SS3)	1.5-2.1mBG
Semi-Volatiles					1	
Acenaphthene	ug/g dry	0.02	7.9 ug/g dry	ND	all	1
Acenaphthylene	ug/g dry	0.02	0.15 ug/g dry	0.03	DUP1 (duplicate of BH2-SS1)	0.1-0.6mBG
Anthracene	ug/g dry	0.02	0.67 ug/g dry	0.06	BH3-SS1	0.1-0.6mBG
Benzo[a]anthracene	ug/g dry	0.02	0.5 ug/g dry	0.10	BH3-SS1	0.1-0.6mBG
Benzo[a]pyrene	ug/g dry	0.02	0.3 ug/g dry	0.14	BH3-SS1	0.1-0.6mBG
Benzo[b]fluoranthene	ug/g dry	0.02	0.78 ug/g dry	0.09	BH3-SS1	0.1-0.6mBG
Benzo[g,h,i]perylene	ug/g dry	0.02	6.6 ug/g dry	0.05	BH3-SS1	0.1-0.6mBG
Benzo[k]fluoranthene	ug/g dry	0.02	0.78 ug/g dry	0.03	BH3-SS1	0.1-0.6mBG
Chrysene	ug/g dry	0.02	7 ug/g dry	0.10	BH3-SS1	0.1-0.6mBG
Dibenzo[a,h]anthracene	ug/g dry	0.02	0.1 ug/g dry	ND	all	1
luoranthene	ug/g dry	0.02	0.69 ug/g dry	0.20	BH3-SS1	0.1-0.6mBG
luorene	ug/g dry	0.02	62 ug/g dry	ND	all	
ndeno[1,2,3-cd]pyrene	ug/g dry	0.02	0.38 ug/g dry	0.05	BH3-SS1	0.1-0.6mBG
-Methylnaphthalene	ug/g dry	0.02	0.99 ug/g dry	ND	all	
-Methylnaphthalene	ug/g dry ug/g dry	0.02	0.99 ug/g dry	0.02	BH3-SS1	0.1-0.6mBG
-Methylnaphthalene (1&2)		0.02		0.02	BH3-SS1	
	ug/g dry		0.99 ug/g dry			0.1-0.6mBG
Naphthalene Phenanthrene	ug/g dry	0.01	0.6 ug/g dry	0.02	BH3-SS1	0.1-0.6mBG
coecianintene	ug/g dry	0.02	6.2 ug/g dry 78 ug/g dry	0.16 0.18	BH3-SS1 BH3-SS1	0.1-0.6mBG

BOLD ND

MOE, Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, dated April 2011
- concentration meets or exceeds O.Reg. 153/04 Table 7 (non-potable, shallow soil, residential land use, coarse grained soil) criteria
- concentration not detected above Method Detection Limit

Maximum Soil Parameter Concentrations Phase Two Environmental Site Assessment 1098 Ogilvie Road and 1178 Cummings Avenue Ottawa, Ontario

			Sample Location	BH2A	BH2A	BH3	BH4	BH5	QA/QC Sample
			Sample Identification	BH2A	DUP	BH3	BH4	BH5	Trip Blank
			Laboratory Identification Sample Date	1942259-01 16-Oct-19	1942259-05 16-Oct-19	1942259-02 16-Oct-19	1942259-03 16-Oct-19	1942259-04 16-Oct-19	1942259-06 16-Oct-19
			Screened Interval	1.47 - 3.00 mBGS	1.47 - 3.00 mBGS	2.59 - 3.81 mBGS	2.29 - 3.81 mBGS	3.05 - 6.10 mBGS	
Parameter	Units	MDL	2011 MOE Table 7 Standards ¹						
General Inorganics pH	pH Units	0.1		6.9	N/A	N/A	N/A	7.3	N/A
Metals	prionits								
Antimony Arsenic	ug/L ug/L	0.5 1	16000 ug/L 1500 ug/L	ND (0.5) 8	ND (0.5) 7	ND (0.5) ND (1)	N/A N/A	ND (0.5) ND (1)	N/A N/A
Barium	ug/L ug/L	1	23000 ug/L	255	258	192	N/A	186	N/A
Beryllium	ug/L	0.5	53 ug/L	ND (0.5)	ND (0.5)	ND (0.5)	N/A	ND (0.5)	N/A
Boron Cadmium	ug/L ug/L	10 0.1	36000 ug/L 2.1 ug/L	73 ND (0.1)	75 ND (0.1)	261 ND (0.1)	N/A N/A	230 ND (0.1)	N/A N/A
Chromium	ug/L	1	640 ug/L	2	2	ND (1)	N/A	ND (1)	N/A
Cobalt Copper	ug/L ug/L	0.5 0.5	52 ug/L 69 ug/L	0.8 ND (0.5)	0.8 ND (0.5)	ND (0.5) ND (0.5)	N/A N/A	ND (0.5) ND (0.5)	N/A N/A
Lead	ug/L	0.1	20 ug/L	ND (0.1)	ND (0.1)	ND (0.1)	N/A	ND (0.1)	N/A
Molybdenum Nickel	ug/L ug/L	0.5 1	7300 ug/L 390 ug/L	19.0 3	19.4 3	2.1 ND (1)	N/A N/A	1.1 ND (1)	N/A N/A
Selenium	ug/L	1	50 ug/L	ND (1)	ND (1)	ND (1)	N/A	ND (1)	N/A
Silver Sodium	ug/L ug/L	0.1 200	1.2 ug/L 1800000 ug/L	ND (0.1) 48500	ND (0.1) 49200	ND (0.1) 68200	N/A N/A	ND (0.1) 108000	N/A N/A
Thallium	ug/L	0.1	400 ug/L	ND (0.1)	ND (0.1)	ND (0.1)	N/A	ND (0.1)	N/A
Uranium Vanadium	ug/L ug/L	0.1 0.5	330 ug/L 200 ug/L	6.8 3.4	6.8 3.3	2.6 ND (0.5)	N/A N/A	4.0 0.5	N/A N/A
Zinc	ug/L ug/L	5	890 ug/L	7	10	ND (5)	N/A	ND (5)	N/A N/A
Volatiles Acetone	ug/L	5.0	100000 ug/L	ND (5.0)					
Benzene	ug/L ug/L	0.5	0.5 ug/L	ND (0.5)					
Bromodichloromethane Bromoform	ug/L	0.5 0.5	67000 ug/L	ND (0.5)	ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5)	ND (0.5) ND (0.5)
Bromororm Bromomethane	ug/L ug/L	0.5	5 ug/L 0.89 ug/L	ND (0.5) ND (0.5)					
Carbon Tetrachloride	ug/L	0.2	0.2 ug/L	ND (0.2)					
Chlorobenzene Chloroform	ug/L ug/L	0.5 0.5	140 ug/L 2 ug/L	ND (0.5) ND (0.5)					
Dibromochloromethane	ug/L	0.5	65000 ug/L	ND (0.5)					
Dichlorodifluoromethane 1.2-Dichlorobenzene	ug/L ug/L	1.0 0.5	3500 ug/L 150 ug/L	ND (1.0) ND (0.5)					
1,3-Dichlorobenzene	ug/L	0.5	7600 ug/L	ND (0.5)					
1,4-Dichlorobenzene 1,1-Dichloroethane	ug/L ug/L	0.5 0.5	0.5 ug/L 11 ug/L	ND (0.5) ND (0.5)					
1,2-Dichloroethane	ug/L	0.5	0.5 ug/L	ND (0.5)					
1,1-Dichloroethylene cis-1,2-Dichloroethylene	ug/L ug/L	0.5 0.5	0.5 ug/L 1.6 ug/L	ND (0.5) ND (0.5)					
trans-1,2-Dichloroethylene	ug/L	0.5	1.6 ug/L	ND (0.5)					
1,2-Dichloropropane cis-1,3-Dichloropropylene	ug/L ug/L	0.5 0.5	0.58 ug/L	ND (0.5) ND (0.5)					
trans-1,3-Dichloropropylene	ug/L	0.5		ND (0.5)					
1,3-Dichloropropene, total Ethylbenzene	ug/L ug/L	0.5 0.5	0.5 ug/L 54 ug/L	ND (0.5) ND (0.5)					
Ethylene dibromide (dibromo	ug/L	0.2	0.2 ug/L	ND (0.2)					
Hexane Methyl Ethyl Ketone (2-Butan	ug/L ug/L	1.0 5.0	5 ug/L 21000 ug/L	ND (1.0) ND (5.0)					
Methyl Isobutyl Ketone	ug/L	5.0	5200 ug/L	ND (5.0)					
Methyl tert-butyl ether Methylene Chloride	ug/L ug/L	2.0 5.0	15 ug/L 26 ug/L	ND (2.0) ND (5.0)					
Styrene	ug/L	0.5	43 ug/L	ND (0.5)					
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	ug/L ug/L	0.5 0.5	1.1 ug/L 0.5 ug/L	ND (0.5) ND (0.5)					
Tetrachloroethylene	ug/L	0.5	0.5 ug/L 0.5 ug/L	ND (0.5)					
Toluene 1,1,1-Trichloroethane	ug/L	0.5 0.5	320 ug/L 23 ug/L	ND (0.5) ND (0.5)					
1,1,2-Trichloroethane	ug/L ug/L	0.5	0.5 ug/L	ND (0.5)					
Trichloroethylene Trichlorofluoromethane	ug/L ug/L	0.5 1.0	0.5 ug/L 2000 ug/L	ND (0.5) ND (1.0)					
Vinyl Chloride	ug/L ug/L	0.5	0.5 ug/L	ND (1.0) ND (0.5)					
m/p-Xylene	ug/L	0.5		ND (0.5)					
o-Xylene Xylenes, total	ug/L ug/L	0.5 0.5	72 ug/L	ND (0.5) ND (0.5)					
Hydrocarbons		05	400 "		ND (05)	ND (05)	ND (OF)	ND (05)	
F1 PHCs (C6-C10) F2 PHCs (C10-C16)	ug/L ug/L	25 100	420 ug/L 150 ug/L	ND (25) ND (100)	N/A N/A				
F3 PHCs (C16-C34)	ug/L	100	500 ug/L	ND (100)	N/A				
F4 PHCs (C34-C50) Semi-Volatiles	ug/L	100	500 ug/L	ND (100)	N/A				
Acenaphthene	ug/L	0.05	17 ug/L	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
Acenaphthylene Anthracene	ug/L ug/L	0.05 0.01	1 ug/L 1 ug/L	ND (0.05) ND (0.01)	ND (0.05) ND (0.01)	ND (0.05) ND (0.01)	N/A N/A	N/A N/A	N/A N/A
Benzo[a]anthracene	ug/L	0.01	1.8 ug/L	ND (0.01)	ND (0.01)	ND (0.01)	N/A	N/A	N/A
Benzo[a]pyrene Benzo[b]fluoranthene	ug/L ug/L	0.01 0.05	0.81 ug/L 0.75 ug/L	ND (0.01) ND (0.05)	ND (0.01) ND (0.05)	ND (0.01) ND (0.05)	N/A N/A	N/A N/A	N/A N/A
Benzo[g,h,i]perylene	ug/L	0.05	0.2 ug/L	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
Benzo[k]fluoranthene Chrysene	ug/L ug/L	0.05 0.05	0.4 ug/L 0.7 ug/L	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	N/A N/A	N/A N/A	N/A N/A
Dibenzo[a,h]anthracene	ug/L	0.05	0.4 ug/L	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
Fluoranthene Fluorene	ug/L ug/L	0.01 0.05	44 ug/L 290 ug/L	ND (0.01) ND (0.05)	ND (0.01) ND (0.05)	ND (0.01) ND (0.05)	N/A N/A	N/A N/A	N/A N/A
Indeno[1,2,3-cd]pyrene	ug/L	0.05	0.2 ug/L	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
1-Methylnaphthalene 2-Methylnaphthalene	ug/L ug/L	0.05 0.05	1500 ug/L 1500 ug/L	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	N/A N/A	N/A N/A	N/A N/A
Methylnaphthalene (1&2)	ug/L	0.10	1500 ug/L	ND (0.10)	ND (0.10)	ND (0.10)	N/A	N/A	N/A
Naphthalene Phenanthrene	ug/L	0.05 0.05	7 ug/L	ND (0.05)	ND (0.05)	ND (0.05)	N/A	N/A N/A	N/A N/A
rnedalitiele	ug/L ug/L	0.05	380 ug/L 5.7 ug/L	ND (0.05) ND (0.01)	ND (0.05) ND (0.01)	ND (0.05) ND (0.01)	N/A N/A	N/A N/A	N/A N/A

MOE, Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, dated April 2011
- concentration meets or exceeds O.Reg. 153/04 Table 7 (non-potable, shallow soil, anyl land use, coarse grained soil) criteria - concentration not detected above Method Detection Limit
- Parameter not Analysed by laboratory 1 BOLD ND N/A

Maximum Groundwater Parameter Concentrations Phase Two Environmental Site Assessment 1098 Ogilvie Road and 1178 Cummings Avenue Ottawa, Ontario

Parameter	Units	MDL	2011 MOE Table 7 Standards ¹	Maximum Groundwater Concentration	Sample Identification	Location
General Inorganics	-1111: 2			***************************************	DHE	DHE
pH Metals	pH Units	0.1		7.3	BH5	BH5
Antimony	ug/L	0.5	16000 ug/L	ND	All	All
Arsenic	ug/L	1	1500 ug/L	8	BH2A	BH2A
Barium	ug/L	1	23000 ug/L	258	DUP (duplicate of BH2A)	BH2A
Beryllium	ug/L	0.5	53 ug/L	ND	All	All
Boron	ug/L	10	36000 ug/L	261	BH3	BH3
Cadmium	ug/L	0.1	2.1 ug/L	ND	All	All
Chromium	ug/L	1	640 ug/L	2	DUP (duplicate of BH2A)	BH2A
Cobalt	ug/L	0.5	52 ug/L	0.8	BH2A/DUP (duplicate of BH2A)	BH2A
Copper	ug/L	0.5	69 ug/L	ND	All	All
Lead	ug/L	0.1	20 ug/L	ND	All	All
Molybdenum	ug/L	0.5	7300 ug/L	19.4	DUP (duplicate of BH2A)	BH2A
Nickel	ug/L	1	390 ug/L	3	BH2A/DUP (duplicate of BH2A)	BH2A
Selenium	ug/L	1	50 ug/L	ND	All	All
Silver	ug/L	0.1	1.2 ug/L	ND	All	All
Sodium	ug/L	200	1800000 ug/L	108000	BH5	BH5
Thallium	ug/L	0.1	400 ug/L	ND	All	All
Uranium	ug/L	0.1	330 ug/L	6.8	BH2A/DUP (duplicate of BH2A)	BH2A
Vanadium	ug/L	0.5	200 ug/L	3.4	BH2A	BH2A
Zinc	ug/L	5	890 ug/L	10	DUP (duplicate of BH2A)	BH2A
Volatiles					1	
Acetone	ug/L	5.0	100000 ug/L	ND	All	All
Benzene	ug/L	0.5	0.5 ug/L	ND	All	All
Bromodichloromethane	ug/L	0.5	67000 ug/L	ND	All	All
Bromoform	ug/L	0.5	5 ug/L	ND	All	All
Bromomethane	ug/L	0.5	0.89 ug/L	ND	All	All
Carbon Tetrachloride	ug/L	0.2	0.2 ug/L	ND	All	All
Chlorobenzene	ug/L	0.5	140 ug/L	ND	All	All
Chloroform	ug/L	0.5	2 ug/L	ND	All	All
Dibromochloromethane	ug/L	0.5	65000 ug/L	ND	All	All
Dichlorodifluoromethane	ug/L	1.0	3500 ug/L	ND	All	All
1,2-Dichlorobenzene	ug/L	0.5	150 ug/L	ND	All	All
1,3-Dichlorobenzene	ug/L	0.5	7600 ug/L	ND	All	All
1,4-Dichlorobenzene	ug/L	0.5	0.5 ug/L	ND	All	All
1,1-Dichloroethane	ug/L	0.5	11 ug/L	ND	All	All
1,2-Dichloroethane	ug/L	0.5	0.5 ug/L	ND	All	All
1,1-Dichloroethylene	ug/L	0.5	0.5 ug/L	ND	All	All
cis-1,2-Dichloroethylene	ug/L	0.5	1.6 ug/L	ND	All	All
trans-1,2-Dichloroethylene	ug/L	0.5	1.6 ug/L	ND	All	All
1,2-Dichloropropane	ug/L	0.5	0.58 ug/L	ND	All	All
cis-1,3-Dichloropropylene	ug/L	0.5		ND	All	All
trans-1,3-Dichloropropylene	ug/L	0.5		ND	All	All
1,3-Dichloropropene, total	ug/L	0.5	0.5 ug/L	ND	All	All
Ethylbenzene	ug/L	0.5	54 ug/L	ND	All	All
Ethylene dibromide (dibromo Hexane	ug/L	0.2 1.0	0.2 ug/L	ND ND	All All	All
Methyl Ethyl Ketone (2-Butar	ug/L ug/L	5.0	5 ug/L 21000 ug/L	ND ND	All	All
Methyl Isobutyl Ketone	ug/L	5.0	5200 ug/L	ND ND	All	All
Methyl tert-butyl ether	ug/L	2.0	15 ug/L	ND	All	All
Methylene Chloride	ug/L	5.0	26 ug/L	ND ND	All	All
Styrene	ug/L	0.5	43 ug/L	ND	All	All
1,1,1,2-Tetrachloroethane	ug/L	0.5	1.1 ug/L	ND	All	All
1,1,2,2-Tetrachloroethane	ug/L	0.5	0.5 ug/L	ND	All	All
Tetrachloroethylene	ug/L	0.5	0.5 ug/L	ND	All	All
Toluene	ug/L	0.5	320 ug/L	ND	All	All
1,1,1-Trichloroethane	ug/L	0.5	23 ug/L	ND	All	All
1,1,2-Trichloroethane	ug/L	0.5	0.5 ug/L	ND	All	All
Trichloroethylene	ug/L	0.5	0.5 ug/L	ND	All	All
Trichlorofluoromethane	ug/L	1.0	2000 ug/L	ND	All	All
Vinyl Chloride	ug/L	0.5	0.5 ug/L	ND	All	All
m/p-Xylene	ug/L	0.5	_	ND	All	All
o-Xylene	ug/L	0.5		ND	All	All
Xylenes, total	ug/L	0.5	72 ug/L	ND	All	All
Hydrocarbons			-			
F1 PHCs (C6-C10)	ug/L	25	420 ug/L	ND	All	All
F2 PHCs (C10-C16)	ug/L	100	150 ug/L	ND	All	All
F3 PHCs (C16-C34)	ug/L	100	500 ug/L	ND	All	All
F4 PHCs (C34-C50)	ug/L	100	500 ug/L	ND	All	All
Semi-Volatiles					1	
Acenaphthene	ug/L	0.05	17 ug/L	ND	All	All
Acenaphthylene	ug/L	0.05	1 ug/L	ND	All	All
Anthracene	ug/L	0.01	1 ug/L	ND	All	All
Benzo[a]anthracene	ug/L	0.01	1.8 ug/L	ND	All	All
Benzo[a]pyrene	ug/L	0.01	0.81 ug/L	ND	All	All
Benzo[b]fluoranthene	ug/L	0.05	0.75 ug/L	ND	All	All
	ug/L	0.05	0.2 ug/L	ND	All	All
Benzo[g,n,i]perylene	ug/L	0.05	0.4 ug/L	ND	All	All
		0.05	0.7 ug/L	ND	All	All
Benzo[g,h,i]perylene Benzo[k]fluoranthene Chrysene	ug/L		0.4 ug/L	ND	All	All
Benzo[k]fluoranthene	ug/L ug/L	0.05			All	All
Benzo[k]fluoranthene Chrysene		0.05	44 ug/L	ND		
Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene	ug/L ug/L		44 ug/L	ND ND	All	All
Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene Fluorene	ug/L ug/L ug/L	0.01	44 ug/L 290 ug/L		Ali Ali	
Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene	ug/L ug/L ug/L ug/L	0.01 0.05 0.05	44 ug/L 290 ug/L 0.2 ug/L	ND		AII AII
Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene Fluorene ndeno[1,2,3-cd]pyrene 1-Methylnaphthalene	ug/L ug/L ug/L ug/L ug/L	0.01 0.05	44 ug/L 290 ug/L	ND ND	All	All
Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene Fluorene ndeno[1,2,3-cd]pyrene 1-Methylnaphthalene 2-Methylnaphthalene	ug/L ug/L ug/L ug/L ug/L ug/L	0.01 0.05 0.05 0.05 0.05	44 ug/L 290 ug/L 0.2 ug/L 1500 ug/L 1500 ug/L	ND ND ND ND	Ali Ali	AII AII AII
Senzo(kjfluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene ndeno(1,2,3-cd)pyrene I-Methyinaphthalene Wethyinaphthalene Methyinaphthalene (182)	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.01 0.05 0.05 0.05 0.05 0.05	44 ug/L 290 ug/L 0.2 ug/L 1500 ug/L 1500 ug/L 1500 ug/L	ND ND ND ND	AII AII AII AII	AII AII AII AII
Benzo[k]fluoranthene Chrysene Dibenzo[a,h]anthracene Fluoranthene Fluorene ndeno[1,2,3-cd]pyrene 1-Methylnaphthalene 2-Methylnaphthalene	ug/L ug/L ug/L ug/L ug/L ug/L	0.01 0.05 0.05 0.05 0.05	44 ug/L 290 ug/L 0.2 ug/L 1500 ug/L 1500 ug/L	ND ND ND ND	AII AII AII	Ali Ali Ali Ali

Notes 1 BOLD ND

MOE, Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, dated April 2011
- concentration meets or exceeds O.Reg. 153/04 Table 7 (non-potable, shallow soil, anyl land use, coarse grained soil) criteria
- concentration not detected above Method Detection Limit

Appendices

Appendix A Utility Clearances

DATE: Aut 26 /2019

Stan Pediar Locate Technician stanp@usl-1.com cell 613-986-7226 775 Taylor Creek Drive,
Ottawa ON KIC | T |
tel 613-226-8750
fax 613-226-8677
toll- free 877-248-3444

toll- free 8//-

Client Name:	<u>GHD</u>
Job Location:	Cummines Av.
Nature of wor	rk: BH's
	DESCRIPTION OF PUBLIC LOCATES
BELL! BIRCHTEL!	Notes: BELL IS CLEAR SEE PROMORE REPORT
GAS:	Utility in work areu: Yes No-Located - Marked - See attached sketch Notes: Gas 15 Cusar, Set Rommer
Нчоко:	Utility in work area: Yes (No-) Located - Marked - See attached sketch Notes: HYDLD OTTOWN IS CLEAR, SEE PROMINE.
WATER:	Utility in work area: Yes No - Located - Marked - See attached sketch Notes: CTT WOTER IS CUER CTT SEWER IS IN WOLK ZONE, SEE CTTY REPORT. Utility in work area: Yes No - Located - Marked - See attached sketch
Teins	Utility in work area: Yes (No-) Located - Marked - See attached sketch
STREET + TRAFFIC!	Notes: STREET + IRAFFIC ARE CUEAR SEE REPORTS. Utility in work area: Yes / No - Located - Marked - See attached sketch
	Notes:
Notes:	
Locators Nam	IE: STAN PEDLAR SIGNATURE: VILL

*** IF THERE ARE ANY QUESTIONS WITH REGARADS TO THIS OR ANY OTHER CLEARANCE SHEET PLEASE CONTACT US IMMEDIATELY ***

20193222441_BHTI01

Page 1 of 5

LINION GAS EMERGENCY #

Primary Locate Sheet 1-977-989-0999

Fax:

Toll free:

Email:

Request # 20193222441

Location of underground inf	rastructuse	613-	·723-9271	7	1 -8 00-371-86	366		NORMAL		
Utilities Located: Bell Gas ZAYO D Lakefro			□ Hydio On	e)	Revised Exc		Excavation Date 08/16/2019 00:00:1	ממ	Status NEGOTIATEI Homeowner	0 0
Requested by:		Company	<u>'</u>	·	Phone:	:	mm/dd/ggy Fax/email:	···	Contractor	_
TANIA HOLYER		บระ			(613)-226-875	D ext.	(613)-226-8677 N	iA		•
Appt Date:	Recei	ved Date:		Loce	ite Address: C	IMMINGS /	AVÆ		Project	
	08/09/2 mm/dd/			1 sit limb			2nd inters	s: C YR VILLE	RD	
Type of work: BORE HOLES							City OTT	AWA	·	
Caller's Remarks: MACH DIG			"			·				
CORLOT=U EXCAVATIONS THE PROVIDED. -75.691879, 45.425067, NO_S										
		roOttama				,				
Ball Enbridge G Mark Clear Mark Cle 1			BHTI Mark C		Lakefront Mark I Clear N/A	Hydro One Mark Clea N/A		Union Gas Mark I Clear N/A	Videotron Mark I Clea N/A	
LOCATED AREA: EXC	VATOR	SHALL N	OT WOR	K QU	TSIDE THE LO	CATED AR	EA WITHOUT O	BTAINING A	NOTHER LOCA	ATE.
Records Reference:					hird Party Noti		N/A			
_ Map _ LAC Multi\	liewer	● GMo	hile							_
Byers 👤 Datapak:									·····	
- ,		-6 6N1	405.5							
Other: N/A	7.10-100	0 0111	****			<u></u> '	·			
DPT Remerks: N/A							N/A			
						Apply Stic	ker Here if Requi	re d	·	
Excavator shall notify &				Utility	prior to exc	avation for	the following:	N/A	****	
Telecon 🗆	High Pr	iority Cabl	e	□ Ce	ntral Office Vid	inity		14673	****	
Method of Field Marking	j: \varTheta Pa	int 🗆 Stal	tes 🖶 Fla	ព្ទន 🗀 ។	Offset Flags (eT) redtO (lecom=Orange	Gas=Yellow,	Hydro OttF	Red
Caution: Locales are VO	D after 3	O days.Hy	dro One valid	d ion 60	days See Disc	laimer for th	a spacific Facilit	y Owner's Gui	delines.	
Caution: Any changes to accated Area without a ne service/property owner. Fo	w locate	. Privately	owned se	wices	within the loca	ated area ha	must not work o we not been mar	utside the ked - check w	ith	
Ontario One Call at 1-800-	100-2255	OF WW	w.on1call.(comi.	itolika culltact,					
ocator Name; MUSANYA			Start Time		7:30	_ Mark 8	&FaxLeft	on Site	Emailed	<u></u>
ID#:216	1		End Time	: <u>0</u>	9:00	Print:		N/A		
Date08/	22/201	9	Total Hou	rs:_1	.5 HRS	Signature.		N/A		
A copy of this Primary operator during work o	Locate peratio	Sheet au ms. If sko	nd Auxilie	ary Li mark	ocale Sheet lings do not	(s) must b coincide,	e on site and i the Excavator	n the hands must obtain	of the machi a new locate	ne 8.

			20193222	441_BHTI01			Page 2	of_	5	
Promar	k ¹		•	ocate Sheet	1-877-969		!			
telecon	7 7 7427111771111	166	Fax: 613-723-9277	Toll free: 1-800-371-8	866	Email				
Utilities 🗆 Bell Located: 🗆 Blink	□ Gas	● HydroOttawa sel Fibre □	□ Street Lighting	Date Located:		Request #	20193222441			
			uilding/house numbers	7000	U 1,3					-
		• • •	OT WORK OUTSIDE	MA	A SHITTIIC	HT ADTAIL	MNA KNAT	uen i	0.04	TE
		OGILVIE RD	OT MORE OUTSIDE					TEK L	<u>.ULA</u>	YI E
						OGILVIE R	· · · · · · · · · · · · · · · · · · ·		_	
FROM: N. FC OI	r 11/		PARKING LOT	TO: 135.0M N. OF					ING	LOT
Legend	. [l: Hand dig within 1.5M aging the underground				748		Ņ	ı
Building Line —	· BL		ou damage undergr						N af a	À E
Fence Line —	1	•	th varies and MUST	_	l digging		n excavatio	n_	Á	<u> </u>
Face of Curb —	- 1	LOCAT	EO AREA HAS BEEN DUTSIDE LOCAT	ALTEREO AS PER:	SAIN E	N/A	DENCE	ŽNI.	v	, I
Asphalt Edge —, Property Line —		HIDRO	JU I SIDE LUCKI			UN NEFE	RENGE	CITE		
	. [_c	OGILVIE R	ט	c			_	
Driveway — I	DW-		—S. FC	, , , , , ,		—				
Catch Basin	CB	0		0	0		0			
Sidewalk	<u>sw</u>		•							
Demarcation (D	M) [N. FL.								
Railway 📘		1								ш
	_ 1		LOCATED				_	0	,	AVE
Flush to Grade Pedestal			AREA					-		
Padestal C	\mathbf{x}								AE	일
Buried Cable —	- 1	1092 =							2	5
	SW-							lo	, [MMINGS
Service Vire	<u> </u>	w w								딩
	MH		•							
Fibre Optic Cable — i	FO	S. BL√								
			NO BL	IRIED HYDRO OT		IETWORK)	
Gas Main — I	1			IN THE EOCATED	HIVEA					
Gas Service —	GS-		7					1		
Gas Valve			1							
, and	쪾							C	> 	H•-
Transformer 4										l
	Н Х		l							. [
•	SL-			JU	N. FC					
Street Light 🗦	火				_			J	ן נ	
	N.			1173 CYPVII		_			1	1
	\$. =			1173 CYRVIL	re Kl	D PARK	NG LOT	F	W. AE	
	E. N.							1	3	l
	·	THIS FO	ORM VALID ONLY WIT	H Primary Locate Fo	ırm. This	sketch is n	of to scale.			
			services within the local					rty owr	ner.	
			nd the Primary Loca						ine	
ohalstot anung Me	VIR OI	TRUTTE IT SKOK	in and markings do r	iol comcide, the Ex	CHAMIOL	माध्ययः कारताः -	n 11 11 6W 10 C	a(8.		

	20193222	441_BHTI01	Page 3	of 5	·
Promark	-	1-877-96			
telecon	Fax: 613-723-9277	Toll fres: 1-800-371-8866	Email	4	
	s □HydroOttawa □ Hydro One	Date Located:	Request #		
CI AIDENTIFIT CI		mmMdd/9999 08/22/2019	20193222441	,	
uminet or services we	arked: (Specify building/house numbers	(0)			
LOCATED AREA: EXC.	AVATOR SHALL NOT WORK OUTSIDE	THE LOCATED AREA WITI	HOUT OBTAINING ANOTH	ER LÖ	CATE
FROM: E. FL OF 1092	2 OGILVIE RD	TO: E. FL OF 1092	OGILVIE RD		
FROM: N. FC OF 1173	3 CRYVILLE RD PARKING LOT	TO: 135.0M N. OF N. FC	1173 CRYVILLE RD PARK	ING L	OŢ
	CAUTION: Hand dig within 1 M	_	from the field markings to a		и
Legend Building Line — BL		utilities. If you damage the ound plant, contact the fa-			Å
Fence Line FL		be verified by hand diggi			*
Face of Curb — FC—	LOCATED AREA HAS BEEN		N/A	•	Š
Asphalt Edge — AE— Property Line — PL—	·				
mopenty time — FL—		OGILVIE RD			
Driveway — DW-			S. FC		
Catch Basin CB	. 0	0 0	0		
Sidewalk SW					
Demarcation DM	N. FL	·			
Railway ###	LOCATED				Πī
Fole C	N. BL AREA			0	AVE
Pedestal					Si
Pedestal X	ļ				2
Buried Cable — B — Conduit — C —	1092 📅			3	JMMINGS
Buriel _BSW_ Service Vire	Ĩæ			0	2
Manhole MH		ENBRIDGE GAS NETW	ORK		ರ
Files Auda		THE LOCATED AREA			
Cable — FO—	S. BL			0	
Bell Hydro Service –HS– Gas Main — GM–					
Gas Service — GS—					
Gas Valve		•			
Hydrant 💢			·		
Transformer 🔼				٥	•
Hydro — H —					
Hydro Pole X		17/			
Street Light XX	•	N. FC		٥	
North N.		1172 010-		7 " /	
South S.		CIRVILLE F	RD PARKING LOT		
East E. West W.					
Arari 21.	THIS FORM VALID ONLY WIT	H Primary Locate Force Th	is sketch is not to ecolo	0	
	Any privately owned services within the local	ed area have not been marke	d- check with service/property	owner.	
A copy of this Auxiliary	Locate Sheet(s) and the Primary Loca	te Sheet must <mark>be on site</mark> :	and in the hands of the m	aclılnə	,
operator during work of	serations. If sketch and markings do n	ot coincide, the Excavato	r must obtain a new loca	te.	

	20193222	2441_BHTI01		P	age 4	of 5	
Promark **	Auxiliary L	ocate Sheet	Union Gas I 1-877-969-	Emergency # 0999			
telecon Location of inderground infrafacciume	Fax: 613-723-9277	Tall free: 1-800-371:	-8066	Email			
Utilities • Bell 😐 Gas 🗀 Hydro Ottaw		Date Located:		Request #			
Located: Ovideotron OPeel Fibre OB		mm/dd/yygg 08/22/	2019	2019322	2441	···	
Number of Services marked: (Specify	building/house numbers	(0)					
LOCATED AREA: EXCAVATOR SHALL	NOT WORK OUTSIDE	THE LOCATED AR	EA WITH	OUT OBTAINII	NG ANOT	HER LO	CATE
FROM: E. FL OF 1092 OGILVIE RD		TO: E. FL C	DF 1092 C	GILVIE RD			
FROM: N. FC OF 1173 CRYVILLE RD	PARKING LOT	TO: 135.0M N. OF	N. FC 11	173 CRYVILLE	RD PAR	KING L	OT.
CAUT	ON: Hand dig within 1 M	as measured hori					
	maging the underground						N •
	f you damage undergr						Ð₽E
_	epth varies and MUST ATED AREA HAS BEEN			y or vacuum e N/A	excavauc	HL.	Ž
Asphalt Edge — AE—	,		`		** <u></u>		
Property Line — PL—		OGILVIE F	RD.				
Driveway — DVV—	—			s. FC			
Catala Basin	0	0	0		0	·)
Sidewalk SW	O		_				-
Demarcation DM N. FL							
							<u> </u>
Railway The Pole C	LOCATED					_	5
Flush to Grade	AREA					_ 0	4
Pedestal						7	S
Pedestal X Burisd Cable — B — 4000 m				ı			Z
Conduit C 1092 III							MMINGS AVE
Service Vire —BSW—						٥	
Manhole MH							ರ
Fibre Optic							
Cable — FO— 3. BL Bell Hydro Service —HS-	N	O BURIED BELL IN THE LOCATE		RK		0	
Gas Main — GM—		•					
Gas Service — GS—							
Gas Valve							
Hydrant 🔀						٥	
Transformer 📥	1						
Hydro — H —	1						
Hydro Pole X Sitrest Light Cable — SL—	<u> </u>						
Street Light 💢			N. FC				
North N.		1173 CVD	le » =				1
South S.		1173 CYRV	LLE R	D PARKIN	G ^-		Ų.
East E. West W.					- LU	ר ۽	
	FORM VALID ONLY WIT	TH Primary Locate F	orm. This	sketch is not	to scale.	0	
Any privately owns	ed services within the loca	ted area have not be	en marked	- check with ser	vice/prope	rty awner	
A copy of this Auxillary Locate Sheet(s)							9
pperator during work operations. If ske his form revised Dec 2016	White-Excavator		xcavator Yallow-O			ate. AC FOE	31.4

February 9 2015

To all Excavators:

Bell locates are now valid for the life of the excavation project and will not automatically be relocated every 60 days.

Please note the following for the above to apply:

- a) Construction within the located area begins within 60 days of the "locate completed" date on the original ticket.
- b) The construction company named on the locate remains active on the site.

Bell expects excavators will protect and preserve the paint marks put down on the original locate ticket. If markings are removed due to weather or excavation work the excavator is expected to recreate the markings based on the tie-in measurements provided on the original locate ticket.

If an excavator would like their markings freshened up they can contact Promark (the Bell Canada Locate Service Provider in this area) directly to arrange for them to place fresh markings on the ground however this will be at the excavators expense. Promark can be reached at 613-723-9888.

The locate will be considered officially expired one day after the final day of construction.

Thank you,

Bell Canada

DISCLAIMER

Warning!

The Excavator must have a copy of this locate on the job site during excavation.

Located Area: The Excavator must not work outside the area indicated by the Located Area in the Diagram without a further locate by the Company

Locate the plant: The plant location information provided is the best we have available but constitutes only an estimate. Depth of underground plant varies and the exact location must be determined by hand digging prior to excavation with mechanical equipment.

Mechanical equipment must not be used within one metre of the estimated location of the plant.

Hydro Ottawa must be notified prior to excavation and inspector on site

Expose the plant: Once the plant has been located by hand digging, it must be exposed along its length adjacent to or in the immediate vicinity of the proposed excavation. For this purpose, mechanical equipment must not be used within 0.5 metres of the plant.

Digging around the exposed plant: When the plant has been exposed, any further excavation within 0.3 metres, must only be done by hand digging and not with mechanical equipment.

Support Requirements: If the underground plant is exposed over a distance of more than 1.25 metres, the Facility Owner must be notified. Underground plant must be supported at all times.

O. Reg. 210/01 Oil and Gas Pipeline systems EXCERPTS

- 9. (1) No person shall dig, bore, trench, grade, excavate or break ground with mechanical equipment or explosives without first ascertaining the location of any pipeline that may be interfered with.
- No person shall interfere with or damage any pipeline without authority to do so.

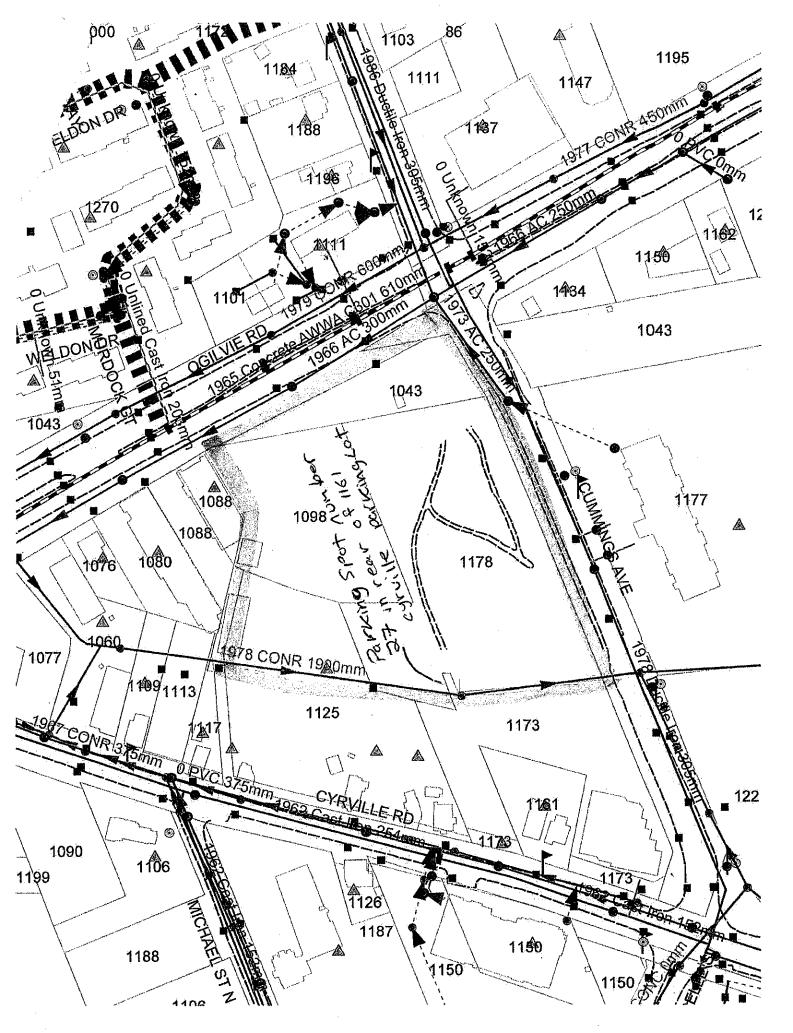
Technical Standards & Safety Act 2000 EXCERPT

37 (1) Every person who contravenes or fails to comply with any provision of this act or the regulations; etc... is guility of an offense and on conviction is liable to a fine of not more than \$50,000 or to imprisonment for a term of not more than one year, or to both.

<u>Caution</u>: The markings may disappear or be misplaced. Should sketch and markings not coincide, Excavator must obtain a new locate. This is based on information given at the time. Any changes to location or nature of work require a new locate. The Excavator must not work outside the indicated Located Area without a further locate. Privately owned services within the located area have not been marked - check with service/property owner.

Locate is VOID after 30 days.

For remarks contact Ontario One Call 1-800-400-2255, or www.on1call.com



City of Ottawa Locate Report - Water and Sewer Utilities Rapport de localisation des conduites d'eau et d'égout d'Ottawa

For more information / Pour de plus amples renseignements : 3-1-1 or/ou (613) 580-2424, ext. (poste) 22336.

Date: Aug. 16/2019	Work Order # / No d'ordre de travail :
Location of Work / Lieu de travail :	ON1CALL # / No d'appel ON1 :
Commings Ave	20193222441
Type of Work / Type de travail :	ArcView attached
Soreholes Contractor / Entrepreneur:	Plan ArcView ci-joint
3 .	Fax / Télécopieur :
locates@usi-1.com	email
Sketch Not To Scale / Le	croquis n'est pas à l'échelle
see Arcuiew f	br work Area
i .	
	·
	A bartuer
Contractor signature Signature de l'entrepreneur	Locator (please print)
	Marqueurs [en lettres moulées]
Method of marking / Méthode de marquage	
☐ Flags / Drapeaux ☐ Paint / Peinture	U Other (specify) / Autre [précisez] :
Remarks / Commentaires :	
Office copy : White Contractor copy: Copie du bureau : Blanc Copie de l'entrepi	

DISCLAIMER

The excavator must have a copy of this locate on the job site during excavation.

Locate area: The excavator must not work outside the area indicated in the location of work or located area in the diagram without an updated locate. Stakes or markings may disappear or be displaced. If any delays occur in acting on the stakeout information, or if markings become unclear, a new locate must be obtained.

Locating the plant: The plant location information provided is only an estimate. Depth of underground plant varies and the exact location must be determined by hand digging prior to excavation with mechanical equipment.

Warning: Do not use mechanical equipment within one (1) metre of the estimated location of the water or sewer plant. If the plant is larger than 406mm, mechanical equipment must not be used within three (3) meters.

Digging around exposed plants: Must do any further excavation within 0.3 metres of an exposed water or sewer plant by hand.

Contractors are to perform all work in accordance with applicable City of Ottawa By-laws and any applicable federal and provincial legislation or regulations, including but not limited to the *Public Utilities Act, R.S.O. 1990, c. P.52, s. 56(1)*; Ontario Regulation 210/01 under the Technical Safety Standards Act, 2000, S.O. 2000 c. 16; Ontario Regulation 213/91 under the Occupational Health and Safety Act, R.S.O. 1990, c. O.1.

AVIS DE NON-RESPONSABILITÉ

L'opérateur de l'excavatrice doit avoir en sa possession ce rapport de localisation pendant l'excavation.

Zone de localisation: l'opérateur de l'excavatrice ne doit pas creuser en dehors de la zone indiquée sur l'ordre de travail ni à l'extérieur de la zone indiquée sur le diagramme, à moins d'avoir en sa possession un rapport de localisation actualisé. Les piquets ou les marques peuvent disparaître ou être déplacés. S'il y a un retard à intervenir sur la base des données de surveillance ou si le marquage devient imprécis, il faut obtenir un nouveau rapport de localisation.

Déterminer l'emplacement des conduites : les renseignements sur l'emplacement des conduites sont approximatifs. Pour déterminer l'emplacement et la profondeur, on doit creuser manuellement avant d'utiliser une excavatrice.

Avertissement: n'utilisez pas d'équipement mécanique [excavatrice] à moins d'un [1] mètre de l'emplacement supposé de la conduite d'eau ou d'égout. Si la conduite compte plus de 406 mm de diamètre, aucun équipement mécanique ne doit être utilisé à moins [3] de trois mètres de celle-ci.

Creuser autour des conduites exposées : toute excavation à moins de 0,3 m d'une conduite d'eau ou d'égout doit se faire manuellement.

Les entrepreneurs doivent exécuter tous les travaux conformément aux règlements de la Ville d'Ottawa et aux lois et règlements fédéraux ou provinciaux applicables, y compris, mais sans s'y limiter, la Loi sur les services publics, L.R.O. 1990, chap. P.52, art. 56[1]; le Règlement 210/01 de l'Ontario en vertu de la Loi de 2000 sur les normes techniques et la sécurité, L.O. 2000, chap. 16; et le Règlement 213/91 de l'Ontario en vertu de la Loi sur la santé et la sécurité au travail L.R.O. 1990, chap. O.1.

Ž CANADIAN		· · · · · · · · · · · · · · · · · · ·	ROGERS	ON 1 Call Ticket #:
LOCATOR	RS INC.	Prima	ry Locate Sheet	2019322244
Ph: (905) 479-	laviry	ario@canadianlocat		
		ai logeanaulanioca		
ontractor/Excaval	tor:		Contact Name: TANIA HOLYER	
Tel: 513-226-8750	Alt. Phone :	Email: locates@usl	*1 com	
Received Date :	Excavation Date		lion Date: Type of Work:	
ocate Address :	Aug 16 2019		BORE HOLES City / Municipality :	:
CUMMINGS AVE	. H		OTTAWA, ONTAR	
GILVIE RD & C	YRVILLE RD		· , , , , , , , , , , , , , , , , , , ,	
lethod of Field Mar	king: Paint	Stakes Flags	•	
aller's Remarks (Ad	dditional Info) :		ac 1170 resonatare houses	e and 1098 Ogilvie. Clear entir
1	per sketch prov:		or FEAS Comminds Washn	e and 1098 Ogilvie. Clear entir
tilities Marked :	 			This locate has multiple work areas
Coaxial Plant	Fibre Optics Plant			which are greater than 100 m apart :
				Yes No
otal Length :	Total Length :	***************************************		
m	m		rannamenseriver amainan — amranamikkunserane are e e enese aminkulare	
				·
		:		
	Field skew	h and Lucated Ar	va shown ou auxillaa	y locute shvet(s)
	This le	ente is for ROUE	RS plant/hajrastruci	ture ONLY!
		2	g her	3
		MADIN MICH	er here if require	
			•	
AUTION : Lo	cate is VOID after	er 60 davs!		der von der
	The second secon		28 feet of markings	The Located Area defined on the
				e. Any changes to excavation
wea or nature	or work require	es a new locate.		

A copy of this Primary Locate Sheet and Auxiliary Locate Sheet(s) must be on site and in the hands of the machine operator during work operations. Should sketch and markings not coincide, a new locate MUST be obtained.

End Time: 5:40 PM ROGERS CABLES CLEAR IN LOCATED AREA

1-800-265-9501

Start Time:

5:30 PM

Locator's Name : (Please Print) David Stoddard

Date:

Aug 23 2019

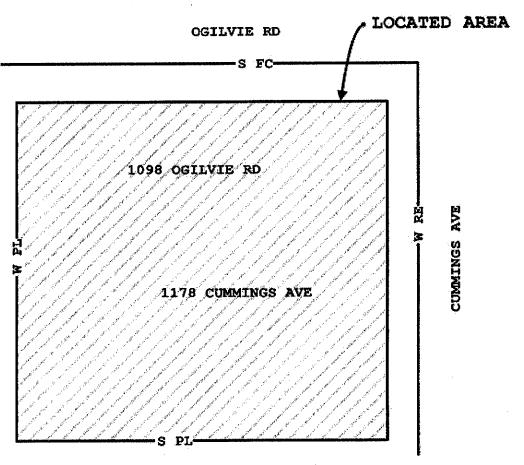
E CANADIAN LOCATORS INC.

ROGERS Auxiliary Locate Sheet

ON 1 Call Ticket # : 20193222441

Ph: (905)479-5674 Email: ontario@canadianlocators.com

±11.1 (3.3.2) 1.3 2				
Utilities Marked :				
Coaxial Plant	m	Fibre Oplics Plant	m	
Number of Services I	darked : (specify b)	uilding/house numbers)		
NA				
	LOCATED /	AREA CONTAINS ALL KN	IOWN ROGERS INFRASTRUCT	URE
FROM: 10M S OF S FC (OF OGILVIE RI		TO: S PL OF 1178 CUMMINGS AVE	
FROM: W PL OF 1098 OF			TO: 6M W OF W RE OF CUMMINGS AVE	
Hand.	din within 1 mater c	r 3 28 feet as measured horizontally fro	m the field markings to avoid damaging the under	round utilities.


Hand dig within 1 meter or 3.28 feet as measured horizontally from the field markings to avoid damaging the underground utilities
If you damage the utilities, you may be held flable. For all cut cable, please call: 1-800-265-9501 immediately!

Depth of cable plant varies and MUST be determined by hand digging or vacuum excavation.

LOCATED AREA ALTERED AS PER:

ROGERS CABLES CLEAR IN LOCATED AREA

Sketch not drawn to scale LEGEND : Transformer rea Streetlight (SL) Property Line --- PL ---Road Edge -- RE -Tree Fibre Oplic --- FO ---Pedestal X Manhole (3) Bldg Line - BL -Hand Hole HH Lot Line --- LL ---Cable / T.V. — CATV — Pole 🚫 Face of Curb - FC -Catch Basin [CB] Hydrant [[H] North Direction N Conduit --- C -Valve M North N East E Driveway - DW -Sidewalk SW Railway Work Area Vault [V] West W Fence Line - FL -South S

A copy of this Auxiliary Locate Sheet(s) and the Primary Locate Sheet must be on site and in the hands of the machine operator during work operations. Should sketch and markings not coincide, a new locate MUST be obtained.

Primary Locate She	et Ontario One-Ca		222441
FACILITIES LOCATED:		CATED BY:	
YES Telephone		FLAG PA	INT STAKE
□ NO IERADIMA		.	
Locatorbase.net Ticket	THIS LOCATE IS V	OID (EXPIRES)	AFTER 30 DAYS
Ontario One Call Telus/Rogers - Ontario	PRINCE PROFESSION		044 (# w an eng !- 448 we *
Frontenac/Ottawa Region	This Primary and all Aux the Operator on the JOE		
Ticket No.: 20193222441 MULTIPLE DIG SITES (STANDARD)	APPROXIMATE only. A HAND DIGGING or app	ny facilities involved	I must be exposed by
Carbunator + 11 C I	excavating with MACHIF		
Contractor : U S L Contact : TANIA HOLYER Phone: (613)226-8750	horizontally from the field	d markings.	,
Alt. Contact: JACQUES DESJARDINS Phone:	CAUTION: any char	ines to incetion :	or nature of work
Caller Email: locates@usl-1.com	requires a new local		
City: OTTANA Prov: ONTARIO	outside of the Locate	ed Area without	a new locate. For
Address: CUMMINGS AVE	all locate requests, i Ontario One Call 1-		
Nearest Intersection: OGILVIE RD & CYRVILLE RD	Official Otto Call 1.	OUTHURESU UI	44 th sales in a realist results
Additional Info: CORLOT=U Excavations throughout the			
properties of 1178 Cummings Avenue and 1098 Ogilvie. Clear entire properties as per sketch provided.			
murrim broberctas us bar svaces broarder.			
Type of Work: BORE HOLES			
Depth: 30.480 m Exc. Size: Type of Property: PUB/PVT			
Premarked Mach. Dig			
Work Being Done For: GHD Station Codes: ROGERS TELUS			
District Codes: ROGOTT01 TELUSON3	Field sketc	dt and Lm	nted Area
	Mown on a	exiliary loc	me sheetisi
Call Date: Aug 09, 19 Time: 3:21 PM Op: 59 Transmit Date: Aug 12, 19 Time: 11:48 AM Op: teldig		•"	* *
	* NOTE * - privately own	ned facilities may be	present in the Locale
	Area. Any privately own with the service / proper		ot been marked; check
			Displace to the
	Part of the court is the contract of the court of the cou	cated by Canadian lestions and/or clari	fication regarding this
	locate, please call 905-		
LEGEND:	Locator's Name: (Ple David Stoddard		
TELUS - Pedestal North N		\rrival :	Departure :
ASOR M	Aug 23 2019	5:30 PM	5:40 PM
Road Edge RE West W	Accepted By : (Pleas	e Print)	
Manhole MH	Company:		
Fence Line — FL —	USL		
Face of Ourb — FC — Pole O Work Area	Locator's Comments TELUS CABLES C		使用的 医数位性
Driveway — DW — Streetlight North Direction N	TELUS CABLES C	DERK IN ECCA	is some of the source of the s
Railway Hand Hole NH	1		
Measurement — Hydrant X	1		
A copy of this Primary Locate Sheet and Auxiliary Locate Sheet(s) must be an eite s	ind in the han-	ds of the
machine operator during work operations. Should sketch and markings	not coincide, a ne	w locate MUS	T be obtained.
trematering afternature married results afternature in mitation artegory sector institutions			

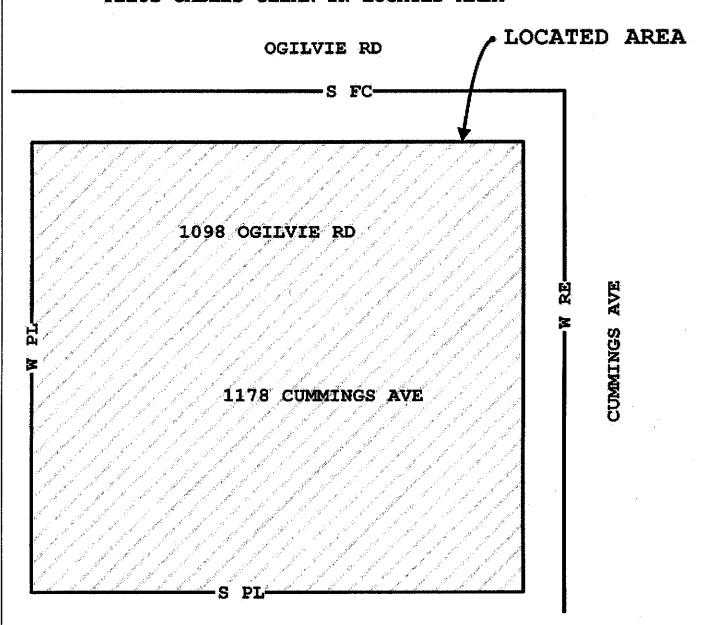
Auxiliary Locate Sheet

Ontario One-Call Ticket#:

20193222441

LOCATED AREA: EXCAVATOR SHALL	NOT WORK OUTSIDE THE	LOCATED AREA W	THOUT OBTAINING	ANOTHER LOCAT	E,
and the second of the second o		<u></u>			
Irana's	T.	L #			

10M S OF S FC OF OGILVIE RD S PL OF 1178 CUMMINGS AVE


W PL OF 1098 OGILVIE RD

To: 6M W OF W RE OF CUMMINGS AVE

Hand dig within 1.0 m as measured horizontally from the Field Markings. Depth varies and must be verified by hand digging. Mechanical equipment MUST NOT be used within the 1.0 m buffer zone! LOCATED AREA ALTERED AS PER :

TELUS CABLES CLEAR IN LOCATED AREA

Sketch not drawn to scale

A copy of this Auxiliary Locate Sheet(s) and the Primary Locate Sheet must be on site and in the hands of the machine operator during work operations. Should sketch and markings not coincide, a new locate MUST be obtained.

CHD

Ontario One Call TF

City of Ottawa Street Light Locate

NOTICE OF INTENT TO EXCAVATE

Header Code:

STANDARD NORMAL

Ticket No:

20193222441

Request Type:

•

Original Call Date:

08/09/2019 3:53:10 PM

Work To Begin Date:

08/16/2019

Company:

USL

Contact Name:

TANIA HOLYER

Pager:

Contact Phone:

(613)-226-8750 ext.

Cell:

Fax:

(613)-226-8677 ext.

Alternate Contact:

JACQUES DESJARDINS

Alt. Phone:

Place: OTTAWA

Street:

CUMMINGS AVE

Nearest Intersecting Street:

OGILVIE RD

Second Intersecting Street:

CYRVILLE RD

Subdivision:

OTTAWA

Additional Dig Information:

CORLOT=U EXCAVATIONS THROUGHOUT THE PROPERTIES OF 1178 CUMMINGS AVENUE AND 1098 OGILVIE. CLEAR ENTIRE PROPERTIES AS PER SKETCH PROVIDED. NO_PLAN::613 748

WO/ JOB #:

ANYTIME

Type Of Work:

BORE HOLES

Remarks:

-75.631879 45.425067 NB_SEGMENTS::1 BCOE01 OTWASL01 OTWATS01 BHTI01 OTWAWS01 ROGOTT01 TELUSON3 ENGE01 HOT1

n1 Call #	20193222441	City of Ottawa Street Light Loca	te E
Date	08/09/2019 3:53:10 PM	Dispatcher: Lisa Bisaillon	Black&McDon
equested		Phone: 613-526-1226	
	<u> </u>		
ompany	USL	instructions CUMMINGS AVE	
Name	TANIA HOLYER	CORLOT=LI EXCAVATIONS THR	OUGHOUT THE PROPERTIES OF 1178
Phone	(613)-226-8750 ext.	CUMMINGS AVENUE AND 1998 PER SKETCH PROVIDED. NO_P	OGILVIE. CLEAR ENTIRE PROPERTIES AS LAN::613 748
FAX te Contact	(613)-226-8677 ext.		
Phone	JACQUES DESJARDINS	·····	
. 110/110			,
		LOCATOR SKETCH	N
			*
	•		4
			·
	•		•
			\neg
		Clear	
		O-H Service	
	·	O-H Service	
	N.	- C'+ C	
	IN	o City of Ottawa Street	
	l L	ight assets in dig area	
	-	.g	
	<u> </u>		 '.
	•		
			
	round Street Light Cable	-OH- Overhead/Aerial Wires	Source/Transform
Street	-	Globe/Decorative Light	O Hydro Pole
ator Notes/(comments:		
		•	
	•	•	•

new locate must be requested. Hand dig within 1m (3.28ft) on either side of markings. Depth of Time of day buried plant varies. Located by KRISTOFER LOBO Cette fiche n'est pas valide 50 jours de calendrier apres le reperage. Si les marques ne concordent pas avec celles sur le croquis, un nouveau reperage est requis. Tout changement a l'emplacement ou Signature a la nature du travail necessite un nouveau reperage. Creuser a la main un metre (3.28 pieds) du repere. La profondeur des installation varie d'un endroit a l'autre. Page 2

of . 2

Disclaimer

Warning!

The Excavator must have a copy of this locate on the job site during excavation.

Located Area: The Excavator must not work outside the area indicated, by the located area in the diagram, without a further locate completed by Black & McDonald Limited.

Locate the Plant: The plant location information provided is the best we have available, but constitutes only an estimate. Depth of underground plant varies and the exact location must be determined by hand digging prior to excavation with mechanical equipment.

Mechanical equipment must not be used within 1.0 meter of the estimated location of the plant.

Valid Documentation: This locate is valid only for the Agency accepting it. Other parties must obtain and accept their respective underground locate from Ontario 1 Call.

Excavator Alterations: Under no circumstance shall an Excavator touch or move an underground power cable. Arrangements must be made to have qualified personnel relocate any such cable.

Expose the plant: Once the plant has been located by hand digging, it must be exposed along its length adjacent to or in the immediate vicinity of the proposed excavation. For this purpose, mechanical equipment must not be used within 0.5 meters of the plant.

Digging around the Exposed Plant: When the plant has been exposed, any further excavation within 0.3 meters, must only be done by hand digging and not with mechanical equipment.

Support Requirements: If the underground plant is exposed over a distance of more than 1.25 meters, the Facility Owner must be notified. Underground plant must be supported at all times.

Private Cables: Please be advised that Black & McDonald Limited is not responsible for and does not locate private cables

New Cables: Be aware that new cables could be installed at any time after the locate has been completed. It is the Excavator's responsibility to call for new locates if any changes are known or suspected.

<u>Caution:</u> The markings may disappear or be misplaced. Should sketch and markings not coincide, the Excavator must obtain a new locate. This is based on the information given at the time. Any changes to location or nature of work require a new locate. The Excavator must not work outside the indicated located area without a further locate. Privately owned services within the located area have not been marked-check with service/property owner.

Liability: Any person or Excavator who interferes with or damages any underground electrical cable without having obtained a valid locate/clearance from Black & McDonald Limited, shall be liable for all cost incurred during the repair of the cable as well as any resulting legal actions.

This locate has been given as accurately as possible, but no locate is guaranteed. Excavators must always dig with extreme caution to prevent the possibility of damaging electrical cables and endangering safety.

Locate is void after 60 days

For remarks contact Ontario One Call 1-800-400-2255 or www.on1call.com

locates

From: Sent: To: Subject:	Sigouin, Francois < Francois. Sigouin@ottawa.ca> Thursday, August 15, 2019 9:58 AM locates 20193222441
20193222441	
This Ontario One Ticket is	s **Clear of Underground Traffic Lights Infrastucture in Proposed Work Area **
"Locates are Valide for 60 I	Days"
Ce billet Ontario One est ** proposée **	* libre de toute infrastructure souterraine de feux de signalisation dans la zone de travai
"Les habitants sont valides	pendant 60 jours"
Frank Sigouin City of Ottawa	
Traffic U/G Utilities Investig Cell: (613)229-0580	gator
Email: francois.sigouin@ott	tawa.ca <mailto:francois.sigouin@ottawa.ca></mailto:francois.sigouin@ottawa.ca>
Mon-Fri 7h30 to 16h00	
ı	

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the

information it contains by other than the intended recipient(s) is unauthorized. Thank you.

locates

From:

Solutions@on1call.com

Sent:

Friday, August 09, 2019 3:53 PM

To: Subject: locates@usl-1.com Request 20193222441

Attachments:

MapSelection_09082019_15505312.png; GHD.Cummings_Avenue.png

https://www.on1call.com/wp-content/themes/ooc/images/ooc-logo-2.png LOCATE REQUEST CONFIRMATION

TICKET #: 20193222441 REQUEST PRIORITY: STANDARD REQUEST TYPE: REGULAR

WORK TO BEGIN DATE:

08/16/2019

Update of Ticket #

Project #

Transmit date: 08/09/2019 03:52:36 PM

REQUESTOR'S CONTACT INFORMATION

Contractor ID#: 202

Company Phone #: (613) 226-8750

Contact Name: TANIA HOLYER Cell #:

Alternate Contact Name: JACQUES DESJARDINS Fax #: (613) 226-8677

Company name: USL Email: locates@usl-1.com

Address: 775 TAYLOR CREEK DR Alternate Contact #:

DIG INFORMATION

Region/County: OTTAWA

Type of work: BORE HOLES

Mark & Fax: NO

Community:

Max Depth: 100.00 FT Area is not marked: NO

City: OTTAWA Machine Dig: YES

Area is marked: YES Hand Dig: NO Site Meet Req.: NO

Address: CUMMINGS AVE

Directional Drilling: NO Work being done for: GHD

Intersecting Street 1: OGILVIE RD

Public Property: YES

Intersecting Street 2: CYRVILLE RD

Private Property: YES

DETAILED DESCRIPTION OF WORK

REMARKS

CORLOT=U Excavations throughout the properties of 1178 Cummings Avenue and 1098 Ogilvie. Clear enti re properties as per sketch provided.

MEMBERS NOTIFIED: The following owners of underground infrastructure in the area of your excavation site have been notified.

Member name Station Code

Initial Status

HYDRO OTTAWA (HOT1)

HOT1 Notification sent

PROMARK FOR ENBRIDGE GAS (ENOE01)

ENOE01

Notification sent

TELUS (TELUSON3)

TELUSON3

Notification sent

CLI FOR ROGERS (ROGOTTO1) ROGOTTO1

Notification sent

CITY OF OTTAWA WATER/SEWER (OTWAWS01) OTWAWS01

Notification sent

PROMARK FOR BIRCH HILL TELECOM (BHTI01) BHTI01 Notification sent

Notification sent

CITY OF OTTAWA TRAFFIC SIGNALS (OTWATS01)

OTWATS01

OTWASL01

Notification sent

BLACK AND MC DONALD FOR CITY OF OTTAWA STREET LIGHTS (OTWASL01) PROMARK FOR BELL CANADA (BCOE01) BCOE01Notification sent

MAP SELECTION: Map Selection provided by the excavator through Ontario One Call's map tool or through agent interpretation by phone

CONTRACTOR'S SKETCH: A file provided directly by the excavator, not generated by Ontario One Call:

IMPORTANT INFORMATION: Please read.

Defining "NC" - Non-Compliant

- Non-compliant members have not met their obligations under section 5 of the Ontario Underground Infrastructure Notification Act.ON1Call has notified these members to ensure they are aware of your excavation. In this circumstance, should the member not respond, the excavator should contact the member directly to obtain their locates or request a status. ON1Call will not be provided with a locate status from the member regarding this ticket and therefore, cannot provide further information at this time. For locate status contact information please refer to our website.

You have a valid locate when...

- You have reviewed your locate request information for accuracy. CONTACT Ontario One Call (ON1Call) IMMEDIATELY if changes are needed and obtain a corrected locate request confirmation.
- You have obtained locates or clearances from all ON1Call members listed in this ticket before beginning your dig.

You've met your obligations when...

- In addition to this locate request, you have DIRECTLY contacted all owners of infrastructure who ARE NOT current members of ON1Call (such as owned buried infrastructure on private property), as well as arranged for contract locates for your private lines on your private property where applicable. For a list of locate status contacts visit www.on1call.com.
- You respect the marks and instructions provided by the locators and dig with care; the marks and locator instructions MUST MATCH.
- You have obtained any necessary permits from the municipality in whichyou are excavating.

What does "Cleared" mean in the "Initial Status" section?

1. The information that you have provided about your dig will not affect that member's underground infrastructure and they have provided you with a clearance, if anything about your excavation changes, please ensure that you update your ticket immediately.

What are the images under "Map Selection":

- 1. A drawing created by an excavator directly within Ontario One Call's web ticket tool, this is expected to be an accurate rendition of the dig site, and it is the excavator's responsibility to ensure the location matches the information they provide under the 'Dig Location' section OR;
- 2. A drawing created by an Ontario One Call agent, this drawing is based on a verbal description by phone of the area by the excavator. Agents may create drawings that are larger than the proposed dig to minimize risk of interpretation. It is the excavator's responsibility to review these map selections for accuracy. Changes can be made by the excavator through the web ticket tool, to learn how visit www.on1call.com/contractors.
- 3. All drawings dictate which members are notified.

INDEPODOUND OFDIOR LOCATORS DET	(ATE UTU ITY DEBORT DATE A			
UNDERGROUND SERVICE LOCATORS - PRIV ONE-CALL SYSTEMS INC.	ATE UTILITY REPORT DATE: () Jul 26 2019			
775 TAYLOR CREEK DRIVE OTTAWA, ON, K4A 0Z9	PHONE (613) 226-8750 FAX (613) 226-8677			
CUSTOMER: 6HD	REQUESTED BY: BAHAREH VAZHBAKHT			
LOCATION OF WORK: Cummiles Av.	LIMITS OF WORK: BH'S			
HYDRO H CABLE T.V T.				
BELL B STORM S' UNIDENTIFIED CABLE UC FIBER OPTIC FO WATER W	OC OTHER:			
	ABOVE - LOCATES VOID AFTER 30 DAYS!			
PARKWE LOT	SKETCH NOT TO SCALE			
J. C. Session of the	ST REFERENCE NORTH			
Loca Loca	AREA			
Cuip Stand	BILLBEARD 1088			
OHLNIE RD	Littlition in come occord. Bublic utilities may be noted on a sketch but are			
ASSUME LIABILITY FOR PUBLIC LOCATE INNACCURACIES. If the proposed work area is on Private property, it does NOT mean that a the proposed depth of excavation is, it is the law to notify Ontario One Ca COMMENTS: PRANCOUS UTILITIES ON SITE NOT LOCATED PRESE FILLIES WITH TREES, BUSHES THIS SKETCH IS NOT A PUBLIC UTILITY LOCATE/DOCUMENT. PUBL-1 DISCLAIMER - FORM 101. CONTRACTOR IS RESPONSIBILITY.	excavation purposes. It is the contractor's responsibility to verify any ocate sheets for physical LOCATION AND ACCURACY. USL-1 DOES NOT			
LOCATORS NAME: STAN PEDLAR 613-986-722	SIGNATURE:			
LOUATOTIO IVAIVIL. SIMA FEDRAL ELS 146 :				
LOCATE RECEIVED AND REVIEWED BY -	Print Name Signature			
CAUTION: HAND DIG WITH	N 1.5 METERS OF MARKINGS			

EVBIT 4400

Innin

USL-1 DISCLAIMER - FORM 101

- It is our Clients responsibility to fully read and understand this document, prior to any ground disturbance taking place.
 Should any questions or clarifications be required, contact USL-1 before commencing work
- Locate is VOID after 30 days from the date the locate was completed. Contact USL-1 for remarks and/or new ticket requests, with a minimum notice of 5 business days
- If the scope of work, locate area, or site information changes, contact USL-1 before continuing work. In certain instances, a new ticket request may be required
- Any work within 1.5 metres laterally of a marked utility, must be hand dug or daylighted. Utility depths vary, as does the
 accuracy of the locate equipment, and therefore depths are typically not provided and should not be used for excavation
 purposes. Depth of utilities should also be verified by hand digging or daylighting. The best information is provided at the
 time of the locate, however the accuracy of field markings can vary with regard to equipment accuracy and external
 interference
- If the paint markings or flags on site differ from that of the sketch provided, please contact USL-1 before commencing
 work. If possible, the issue will be clarified by USL-1 and/or a site meet may be requested with the appropriate parties
- The "Excavator" is responsible for keeping a current copy of the locates on site, with the operators and in/on the excavation equipment AT ALL TIMES
- It is the "Excavator/Contractor's" responsibility to read ALL locate sheets, both public and private, to ensure they
 understand what potential hazards or buried utilities exist in their work area
- Special purpose locates such as sewer sondeing, locate surveys, tunnel identification, conduit identification, ground fault
 detections, ground penetrating radar, well cap location, concrete scanning, or anything else that requires use of more than
 Radiodetection equipment, must be identified at the time of the original locate request. Should a USL-1 locator identify
 any special needs services during a normal Private utility locate, the client will be notified for the appropriate course of
 action
- Not all buried utilities can be traced. In many instances, water and sewer lines, irrigation systems, grounding cables, fibre optic cables, heating cables, protection cables, and communication cables may not be traceable. Typically, sewer lines will be painted and lined up directionally from manhole to manhole where possible. It may not be possible to detect bends in the sewer lines between manholes. If tracer wires have been buried with the utility, they will be used to locate the buried utility where possible. It a buried utility cannot be traced, it will be noted on the USL-1 report. USL-1 is not liable for damage to untraceable utilities
- Public utility locators have maps, plans and as-built diagrams for reference to work from. Private utility locators, for the most part, do not. USL-1 will attempt to locate any Private utilities on a site, using as-built plans provided to them. Building access is mandatory and must be arranged by our client. Any conduits or utilities noted entering or exiting a building will be traced if possible, as well as any other visible utilities observed on site. It is the responsibility of the contractor to provide any and all buried utility information and site contacts that they have. There is no guarantee that USL-1 can find all buried utilities if the property owner does not have records or information regarding their own buried utilities
- USL- 1 cannot be held liable for damage to Private water and/or sewer laterals unless building access is granted, and the
 utility is locatable
- Thick snow and ice, frozen manhole lids, live traffic, parked cars, construction debris and activities etc, are all factors that can interfere with USL-1's ability to perform Private utility locates. USL-1 cannot guaranty location of all buried utilities when such factors impede the locate process. It is the contractor's responsibility to ensure that the work areas are safe and accessible for locates, prior to USL-1's arrival to site
- USL-1 as a Private utility locator, is not permitted to locate Publicly owned utilities. In some cases, Public utilities may be
 noted on a sketch, but are FOR REFERENCE ONLY, and under no circumstances shall be used for excavation purposes.
 It is the contractor's responsibility to verify any Public utilities noted on the USL-1 sketch by referring to the Public utility
 locate sheets for physical LOCATION AND ACCURACY. USL-1 DOES NOT ASSUME LIABILTY FOR PUBLIC LOCATE
 INNACCURACIES
- If the proposed work area is on Private property, it does NOT mean that all buried utilities are Private. Regardless of
 where you are digging, and what the proposed depth of excavation is, it is the law to notify Ontario One Call (or InfoExcavation in Quebec) to obtain Public utility locates
- NCC PROPERTY assuming the contractor has been issued a Land Access Permit from the NCC, it is typically indicated
 within the permit that it is the contractor's responsibility to contact NCC for utility locates of their buried utilities

	Appendix B
Stratigraphic and	Instrumentation Logs

BOREHOLE No.: BH1 **BOREHOLE LOG ELEVATION:** 100.37 m Page: 1 of 1 **LEGEND** CLIENT: 6770967 Canada Inc. SS Split Spoon PROJECT: 1098 Ogilvie Road GS Auger Sample LOCATION: 1098 Ogilvie Road, Ottawa, ON ST Shelby Tube Water Level ₹ DESCRIBED BY: R. Vanden Tillaart CHECKED BY: B.Vazhbakht Water content (%) 0 DATE (FINISH): DATE (START): 23 September 2019 24 September 2019 Atterberg limits (%) N Penetration Index based on MONITOR Split Spoon sample SCALE STRATIGRAPHY SAMPLE DATA WELL Penetration Index based on Dynamic Cone sample Stratigraphy Penetration Index / RQD Elevation (m) Shear Strength based on Field Vane ∧ Cu Recover Depth BGS **DESCRIPTION OF** Shear Strength based on Lab Vane $\quad \square \ \, \mathsf{Cu}$ OVC S Sensitivity Value of Soil SOIL AND BEDROCK Shear Strength based on 101.13-Pocket Penetrometer SCALE FOR TEST RESULTS 50kPa 100kPa 150kPa 200kPa 20 30 40 50 60 70 80 meters 100.37 **GROUND SURFACE** % Ν ppm 100.3 **ASPHALT** SS₁ 67 17 FILL - Gravelly silty sand, some gravel, compact, brown, 0.91 -1.0 SS2 71 42 damp SS3 42 16 2.0 98.1 SS4 89 50+ SANDY CLAY- very stiff, grey, WL 2.42 -97.9 10/16/2019 moist 97.5 3.0 Spoon refusal encountered at Riser 2.5 mbgs RC1 100 52 **WEATHERED BEDROCK -**4.0 SHALE Auger refusal encountered at 2.8 mbgs 5.0 RC2 100 64 **BEDROCK - SHALE** interbedded limestone, highly weathered and fractured 6.0 surface, black and grey, fair quality becoming excellent with RC3 100 88 Bentonite depth Mud seam 7.0 8.0 RC4 100 84 9.0 RC5 100 93 10.0 11.0 RC6 100 84 8/11/19 Thicker limestone bedding 12.0 SOL.GDT 12.27 -RC7 100 92 12.65 13.0 LOGS.GPJ INSPEC_ Sand 14.0 RC8 100 93 Mud seam Screen-11201061-A1-BH 15.0 RC9 100 91 84.7 15.70 Borehole terminated at 15.7 16.0 mbgs mbgs: meters below ground surface

ENCLOSURE No.:

REFERENCE No.:

11201061

BOREHOLE No.: BH2 **BOREHOLE LOG ELEVATION:** 100.81 m Page: 1 of 1 **LEGEND** CLIENT: 6770967 Canada Inc. SS Split Spoon PROJECT: 1098 Ogilvie Road GS Auger Sample LOCATION: 1098 Ogilvie Road, Ottawa, ON ST Shelby Tube Water Level ₹ DESCRIBED BY: R. Vanden Tillaart CHECKED BY: B.Vazhbakht Water content (%) 0 DATE (FINISH): DATE (START): 24 September 2019 24 September 2019 Atterberg limits (%) N Penetration Index based on MONITOR Split Spoon sample SCALE STRATIGRAPHY SAMPLE DATA WELL Penetration Index based on Dynamic Cone sample Stratigraphy Penetration Index / RQD Elevation (m) Shear Strength based on Field Vane ∧ Cu Recovery Depth BGS **DESCRIPTION OF** Shear Strength based on Lab Vane □ Cu OVC S Sensitivity Value of Soil SOIL AND BEDROCK Shear Strength based on Pocket Penetrometer 101.62-SCALE FOR TEST RESULTS 50kPa 100kPa 150kPa 200kPa 20 30 40 50 60 70 80 meters 100.81 **GROUND SURFACE** % Ν ppm 100.7 TOPSOIL SS₁ 83 34 FILL - Sand and Silt, compact, dark grey, damp 0.91 -1.0 SS2 21 18 Riser SS3 38 6 2.0 Bentonite -98.5 SANDY CLAY- trace gravel, WL 2.44 -SS4 33 39 98.2 10/16/2019 very stiff, dark grey, moist 97.8 3.0 **WEATHERED BEDROCK -**3.35 -SHALE RC1 100 19 3.66 -Spoon refusal encountered at 4.0 2.7 mbgs Sand-Auger refusal encountered at 3.0 mbgs Screen -RC2 100 53 5.0 **BEDROCK - SHALE** interbedded limestone, highly weathered and fractured 6.0 surface, black and grey, very 6.10 7 6.15 poor quality becoming excellent RC3 100 93 with depth 7.0 RC4 100 88 8.0 9.0 Mud seam RC5 100 65 Mud seam 10.0 Bentonite -RC6 100 93 11.0 8/11/19 Thicker limestone bedding 12.0 SOL.GDT RC7 100 100 13.0 11201061-A1-BH LOGS.GPJ INSPEC_ RC8 100 92 14.0 15.0 RC9 100 96 15.65 -85.2 Borehole terminated at 15.7 16.0 mbgs mbgs: meters below ground surface

ENCLOSURE No.:

REFERENCE No.:

11201061

BOREHOLE No.: BH2A **BOREHOLE LOG ELEVATION:** 100.93 m Page: _1_ of _1_ **LEGEND** CLIENT: 6770967 Canada Inc. SS Split Spoon PROJECT: 1098 Ogilvie Road GS Auger Sample ST Shelby Tube LOCATION: 1098 Ogilvie Road, Ottawa, ON Water Level ▼ DESCRIBED BY: R. Vanden Tillaart CHECKED BY: B.Vazhbakht 0 Water content (%) DATE (FINISH): ___ DATE (START): 24 September 2019 24 September 2019 Atterberg limits (%) N Penetration Index based on MONITOR Split Spoon sample SCALE STRATIGRAPHY SAMPLE DATA Penetration Index based on Dynamic Cone sample Stratigraphy Penetration Index / RQD Elevation (m) Shear Strength based on Field Vane △ Cu Recovery Depth BGS **DESCRIPTION OF** o VC Shear Strength based on Lab Vane □ Cu S Sensitivity Value of Soil SOIL AND BEDROCK Shear Strength based on Pocket Penetrometer 101.79-SCALE FOR TEST RESULTS 50kPa 100kPa 150kPa 200kPa 20 30 40 50 60 70 80 meters 100.93 **GROUND SURFACE** % ppm Ν 0.30 Riser Bentonite -1.0 1.17 1.47 Sand-2.0 Screen WL 2.44 10/16/2019 3.0 3.00 97.9 Auger to 3.0 mbgs for direct well install 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 BOREHOLE LOG 11201061-A1-BH LOGS.GPJ INSPEC_SOL.GDT 13.0 14.0 16.0 mbgs: meters below ground surface

REFERENCE No.:

11201061

BOREHOLE No.: BH3 **BOREHOLE LOG ELEVATION:** 100.18 m Page: _1_ of _1_ **LEGEND** CLIENT: 6770967 Canada Inc. SS Split Spoon PROJECT: 1098 Ogilvie Road GS Auger Sample LOCATION: 1098 Ogilvie Road, Ottawa, ON ST Shelby Tube Water Level ₹ DESCRIBED BY: R. Vanden Tillaart CHECKED BY: B.Vazhbakht Water content (%) 0 DATE (FINISH): ___ 23 September 2019 DATE (START): 23 September 2019 Atterberg limits (%) N Penetration Index based on MONITOR Split Spoon sample SCALE STRATIGRAPHY SAMPLE DATA Penetration Index based on Dynamic Cone sample Stratigraphy Penetration Index / RQD Elevation (m) Shear Strength based on Field Vane ∧ Cu Recover Depth BGS **DESCRIPTION OF** Shear Strength based on Lab Vane OVC □ Cu S Sensitivity Value of Soil SOIL AND BEDROCK Shear Strength based on 100.92-Pocket Penetrometer SCALE FOR TEST RESULTS 50kPa 100kPa 150kPa 200kPa 20 30 40 50 60 70 80 meters 100.18 **GROUND SURFACE** % Ν ppm 100.1 **TOPSOIL** SS1 50 29 FILL - Sand, trace to some Risergravel, compact, brown, damp 1.0 SS2 50 19 1.52 -SS3 100 50+ 98.6 Spoon refusal encountered at WL 1.72 / =/// 2.0 1.6 mbgs 10/16/2019 97.9 2.29 **WEATHERED BEDROCK -**SHALE Sand 3.0 RC1 100 Auger refusal encountered at 30 Screen 2.3 mbgs **BEDROCK - SHALE** 96.4 3.81 -4.0 interbedded limestone, highly weathered and fractured surface, black and grey, very 5.0 poor to poor quality Borehole terminated at 3.8 mbgs 6.0 7.0 8.0 9.0 10.0 11.0 12.0 SOL.GDT 13.0 11201061-A1-BH LOGS.GPJ INSPEC_ 14.0 _ 15.0 16.0 mbgs: meters below ground surface

REFERENCE No.:

11201061

BOREHOLE No.: BH4 **BOREHOLE LOG ELEVATION:** 100.76 m Page: _1_ of _1_ **LEGEND** CLIENT: 6770967 Canada Inc. SS Split Spoon PROJECT: 1098 Ogilvie Road GS Auger Sample LOCATION: 1098 Ogilvie Road, Ottawa, ON ST Shelby Tube Water Level ₹ DESCRIBED BY: R. Vanden Tillaart CHECKED BY: B.Vazhbakht Water content (%) 0 23 September 2019 DATE (FINISH): 23 September 2019 DATE (START): Atterberg limits (%) N Penetration Index based on MONITOR Split Spoon sample SCALE STRATIGRAPHY SAMPLE DATA Penetration Index based on Dynamic Cone sample Stratigraphy Penetration Index / RQD Elevation (m) Shear Strength based on Field Vane ∧ Cu Recover Depth BGS **DESCRIPTION OF** Shear Strength based on Lab Vane OVC □ Cu S Sensitivity Value of Soil SOIL AND BEDROCK Shear Strength based on 101.50 -Pocket Penetrometer SCALE FOR TEST RESULTS 50kPa 100kPa 150kPa 200kPa 20 30 40 50 60 70 80 meters 100.76 **GROUND SURFACE** % Ν ppm 100.7 TOPSOIL 75 SS₁ 17 FILL - Silty sand, some gravel, 100.2 Riser compact, brown, damp 1.0 99.7 SS2 83 69 SILTY SAND- some gravel, 1.24 -99.3 very dense, brown, damp Bentonite -**WEATHERED BEDROCK -**1.91 -2.0 RC1 100 44 SHALE 2.29 -Auger refusal encountered at WL 2.59 -1.5 mbgs 10/16/2019 3.0 Sand RC2 100 47 **BEDROCK - SHALE** interbedded limestone, highly Screen 97.0 3.81 weathered and fractured 4.0 surface, black and grey, very poor to poor quality Mud seam 5.0 Borehole terminated at 3.8 mbgs 6.0 7.0 8.0 9.0 10.0 11.0 12.0 SOL.GDT 13.0 11201061-A1-BH LOGS.GPJ INSPEC_ 14.0 _ 15.0 16.0 mbgs: meters below ground surface

REFERENCE No.:

11201061

BOREHOLE No.: BH5 **BOREHOLE LOG ELEVATION:** 99.47 m Page: 1 of 1 **LEGEND** CLIENT: 6770967 Canada Inc. SS Split Spoon PROJECT: 1098 Ogilvie Road GS Auger Sample LOCATION: 1098 Ogilvie Road, Ottawa, ON ST Shelby Tube Water Level ₹ DESCRIBED BY: R. Vanden Tillaart CHECKED BY: B.Vazhbakht Water content (%) 0 DATE (FINISH): 25 September 2019 DATE (START): 25 September 2019 Atterberg limits (%) N Penetration Index based on MONITOR Split Spoon sample SCALE STRATIGRAPHY SAMPLE DATA Penetration Index based on Dynamic Cone sample Stratigraphy Penetration Index / RQD Elevation (m) Shear Strength based on Field Vane ∧ Cu Recover Depth BGS **DESCRIPTION OF** Shear Strength based on Lab Vane OVC □ Cu S Sensitivity Value of Soil SOIL AND BEDROCK Shear Strength based on Pocket Penetrometer 100.23-SCALE FOR TEST RESULTS 50kPa 100kPa 150kPa 200kPa 20 30 40 50 60 70 80 meters 99.47 **GROUND SURFACE** % Ν ppm 99.4 TOPSOIL SS₁ 83 25 FILL - Silty sand, some gravel, 0.61 compact, brown, damp SS2 100 50+ Riser-1.0 98.4 Spoon refusal encountered at 98.1 1.0 mbgs Bentonite -**WEATHERED BEDROCK -**2.0 RC1 100 30 SHALE WL 2.26 -Auger refusal encountered at 10/16/2019 2.74~ 1.4 mbgs 3.0 3.05 BEDROCK - SHALE RC2 100 88 interbedded limestone, highly Sandweathered and fractured 4.0 surface, black and grey, very poor quality becoming excellent Screen with depth 5.0 RC3 100 90 Mud seam 6.0 6.10 7 6.15 RC4 100 90 7.0 RC5 100 63 8.0 9.0 RC6 100 100 10.0 11.0 Bentonite -RC7 100 98 8/11/19 Thicker limestone bedding 12.0 SOL.GDT RC8 100 100 13.0 LOGS.GPJ INSPEC_ RC9 100 97 14.0 11201061-A1-BH 15.0 RC10 100 96 83.7 15.80 — Borehole terminated at 15.8 16.0 mbgs mbgs: meters below ground surface

REFERENCE No.:

11201061

BOREHOLE No.: BH6 **BOREHOLE LOG ELEVATION:** 99.92 m Page: 1 of 1 **LEGEND** CLIENT: 6770967 Canada Inc. SS Split Spoon PROJECT: 1098 Ogilvie Road GS Auger Sample LOCATION: 1098 Ogilvie Road, Ottawa, ON ST Shelby Tube Water Level ₹ DESCRIBED BY: R. Vanden Tillaart CHECKED BY: B.Vazhbakht Water content (%) 0 DATE (FINISH): DATE (START): 24 September 2019 25 September 2019 Atterberg limits (%) N Penetration Index based on MONITOR Split Spoon sample SCALE STRATIGRAPHY SAMPLE DATA WELL Penetration Index based on Dynamic Cone sample Stratigraphy Penetration Index / RQD Elevation (m) Shear Strength based on Field Vane ∧ Cu Recover Depth BGS **DESCRIPTION OF** Shear Strength based on Lab Vane OVC □ Cu S Sensitivity Value of Soil SOIL AND BEDROCK Shear Strength based on 100.61 -Pocket Penetrometer SCALE FOR TEST RESULTS 50kPa 100kPa 150kPa 200kPa 20 30 40 50 60 70 80 meters 99.92 **GROUND SURFACE** % Ν ppm 99.8 **TOPSOIL** SS₁ 67 9 FILL - Silty sand, some clay, 0.61 trace gravel, loose, brown, 1.0 98.9 SS2 50 8 WL 1.15 damp 10/16/2019 SILTY SAND- some clay, SS3 80 50+ 98.1 trace gravel, very stiff, dark 2.0 97.9 grey, damp Riser-RC1 100 16 Spoon refusal encountered at 1.8 mbgs 3.0 **WEATHERED BEDROCK -**RC2 72 100 SHALE Auger refusal encountered at 4.0 2.0 mbgs **BEDROCK - SHALE** interbedded limestone, highly RC3 100 92 5.0 weathered and fractured surface, black and grey, very poor quality becoming excellent 6.0 with depth Bentonite -RC4 100 84 7.0 RC5 100 91 8.0 9.0 RC6 100 89 10.0 RC7 100 100 11.0 8/11/19 Thicker limestone bedding 12.0 SOL.GDT 12.19 -Mud seam RC8 100 97 12.50 -13.0 LOGS.GPJ INSPEC_ Sand 14.0 Screen-RC9 100 100 11201061-A1-BH 15.0 Mud seam RC10 100 90 84.4 15.54 Borehole terminated at 15.5 16.0 mbgs mbgs: meters below ground surface

ENCLOSURE No.:

REFERENCE No.:

11201061

Appendix C Laboratory Certificates of Analysis

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

GHD Limited (Ottawa)

179 Colonnade Road Suite 400 Ottawa, ON K2E7S4 Attn: Luke Lopers

Client PO:

Project: 11201061 Report Date: 2-Oct-2019 Custody: 123280 Order Date: 26-Sep-2019

Order #: 1939472

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1939472-01	11201061-BH2-SS1
1939472-02	11201061-BH2-SS3
1939472-03	11201061-BH3-SS1
1939472-04	11201061-BH3-SS2
1939472-05	11201061-BH4-SS1
1939472-06	11201061-BH5-SS1
1939472-07	11201061-BH7-SS1
1939472-08	11201061-BH7-SS3

Approved By:

Dale Robertson, BSc Laboratory Director

Certificate of Analysis

Client PO:

Client: GHD Limited (Ottawa)

Order #: 1939472

Report Date: 02-Oct-2019 Order Date: 26-Sep-2019

Project Description: 11201061

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	1-Oct-19	2-Oct-19
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	28-Sep-19	28-Sep-19
PHC F1	CWS Tier 1 - P&T GC-FID	1-Oct-19	2-Oct-19
PHC F4G (gravimetric)	CWS Tier 1 - Extraction Gravimetric	2-Oct-19	2-Oct-19
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	26-Sep-19	1-Oct-19
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	2-Oct-19	2-Oct-19
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	25-Sep-19	28-Sep-19
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	1-Oct-19	2-Oct-19
Solids %	Gravimetric, calculation	27-Sep-19	27-Sep-19

Order #: 1939472

Report Date: 02-Oct-2019 Order Date: 26-Sep-2019

Client: GHD Limited (Ottawa)

Client PO:

Order Date: 26-Sep-2019

Project Description: 11201061

	Client ID:		11201061-BH2-SS3		
	Sample Date: Sample ID:	24-Sep-19 15:00 1939472-01	24-Sep-19 15:30 1939472-02	24-Sep-19 11:00 1939472-03	24-Sep-19 11:00 1939472-04
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics	INDE/ONITS		2 - 11		1
% Solids	0.1 % by Wt.	84.5	86.5	88.1	94.8
General Inorganics	!				
рН	0.05 pH Units	7.19	-	7.30	-
Metals					
Antimony	1.0 ug/g dry	7.8	-	<1.0	-
Arsenic	1.0 ug/g dry	4.2	-	3.0	-
Barium	1.0 ug/g dry	139	-	121	-
Beryllium	0.5 ug/g dry	0.8	-	<0.5	-
Boron	5.0 ug/g dry	8.2	-	6.6	-
Cadmium	0.5 ug/g dry	<0.5	-	<0.5	-
Chromium	5.0 ug/g dry	42.6	-	32.4	-
Cobalt	1.0 ug/g dry	10.9	-	7.7	-
Copper	5.0 ug/g dry	29.6	-	23.4	-
Lead	1.0 ug/g dry	28.8	-	42.4	-
Molybdenum	1.0 ug/g dry	3.4	-	1.4	-
Nickel	5.0 ug/g dry	35.8	-	21.7	-
Selenium	1.0 ug/g dry	<1.0	-	<1.0	-
Silver	0.3 ug/g dry	<0.3	-	<0.3	-
Thallium	1.0 ug/g dry	<1.0	-	<1.0	-
Uranium	1.0 ug/g dry	2.1	-	<1.0	-
Vanadium	10.0 ug/g dry	46.8	-	35.2	-
Zinc	20.0 ug/g dry	86.7	-	78.6	-
Volatiles					
Acetone	0.50 ug/g dry	-	<0.50	<0.50	-
Benzene	0.02 ug/g dry	-	<0.02	<0.02	-
Bromodichloromethane	0.05 ug/g dry	-	<0.05	<0.05	-
Bromoform	0.05 ug/g dry	-	<0.05	<0.05	-
Bromomethane	0.05 ug/g dry	-	<0.05	<0.05	-
Carbon Tetrachloride	0.05 ug/g dry	-	<0.05	<0.05	-
Chlorobenzene	0.05 ug/g dry	-	<0.05	<0.05	-
Chloroform	0.05 ug/g dry	-	<0.05	<0.05	-
Dibromochloromethane	0.05 ug/g dry	-	<0.05	<0.05	-
Dichlorodifluoromethane	0.05 ug/g dry	-	<0.05	<0.05	-
1,2-Dichlorobenzene	0.05 ug/g dry	-	<0.05	<0.05	-
1,3-Dichlorobenzene	0.05 ug/g dry	-	<0.05	<0.05	-

Client: GHD Limited (Ottawa)

Certificate of Analysis

Order #: 1939472

Report Date: 02-Oct-2019 Order Date: 26-Sep-2019 **Project Description: 11201061**

Client PO: Project

	Client ID:			11201061-BH3-SS1	
	Sample Date: Sample ID:	24-Sep-19 15:00 1939472-01	24-Sep-19 15:30 1939472-02	24-Sep-19 11:00 1939472-03	24-Sep-19 11:00 1939472-04
Г	MDL/Units	Soil	Soil	Soil	Soil
1,4-Dichlorobenzene	0.05 ug/g dry	-	<0.05	<0.05	-
1,1-Dichloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
1,2-Dichloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
1,1-Dichloroethylene	0.05 ug/g dry	_	<0.05	<0.05	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	-	<0.05	<0.05	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	-	<0.05	<0.05	-
1,2-Dichloropropane	0.05 ug/g dry	-	<0.05	<0.05	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	-	<0.05	<0.05	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	-	<0.05	<0.05	-
1,3-Dichloropropene, total	0.05 ug/g dry	-	<0.05	<0.05	-
Ethylbenzene	0.05 ug/g dry	-	0.06	<0.05	-
Ethylene dibromide (dibromoethan	0.05 ug/g dry	-	<0.05	<0.05	-
Hexane	0.05 ug/g dry	-	<0.05	<0.05	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	-	<0.50	<0.50	-
Methyl Isobutyl Ketone	0.50 ug/g dry	-	<0.50	<0.50	-
Methyl tert-butyl ether	0.05 ug/g dry	-	<0.05	<0.05	-
Methylene Chloride	0.05 ug/g dry	-	<0.05	<0.05	-
Styrene	0.05 ug/g dry	-	<0.05	<0.05	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
Tetrachloroethylene	0.05 ug/g dry	-	<0.05	<0.05	-
Toluene	0.05 ug/g dry	-	0.05	<0.05	-
1,1,1-Trichloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
1,1,2-Trichloroethane	0.05 ug/g dry	-	<0.05	<0.05	-
Trichloroethylene	0.05 ug/g dry	-	<0.05	<0.05	-
Trichlorofluoromethane	0.05 ug/g dry	-	<0.05	<0.05	-
Vinyl chloride	0.02 ug/g dry	-	<0.02	<0.02	-
m,p-Xylenes	0.05 ug/g dry	-	0.15	<0.05	-
o-Xylene	0.05 ug/g dry	-	0.08	<0.05	-
Xylenes, total	0.05 ug/g dry	-	0.23	<0.05	-
4-Bromofluorobenzene	Surrogate	-	106%	93.7%	-
Dibromofluoromethane	Surrogate	-	59.7%	111%	-
Toluene-d8	Surrogate	-	98.3%	102%	-
Benzene	0.02 ug/g dry	-	-	-	<0.02
Ethylbenzene	0.05 ug/g dry	-	-	-	0.16
Toluene	0.05 ug/g dry	-	-	-	0.07

Certificate of Analysis Order Date: 26-Sep-2019 Client: GHD Limited (Ottawa) Client PO: Project Description: 11201061

Report Date: 02-Oct-2019

	Client ID: Sample Date: Sample ID: MDL/Units	11201061-BH2-SS1 24-Sep-19 15:00 1939472-01 Soil	11201061-BH2-SS3 24-Sep-19 15:30 1939472-02 Soil	11201061-BH3-SS1 24-Sep-19 11:00 1939472-03 Soil	11201061-BH3-SS2 24-Sep-19 11:00 1939472-04 Soil
m,p-Xylenes	0.05 ug/g dry	-	-	-	0.38
o-Xylene	0.05 ug/g dry	-	-	-	0.13
Xylenes, total	0.05 ug/g dry	-	-	-	0.50
Toluene-d8	Surrogate	-	-	-	103%
Hydrocarbons	•				
F1 PHCs (C6-C10)	7 ug/g dry	-	20	-	9
F2 PHCs (C10-C16)	4 ug/g dry	-	8	-	32
F3 PHCs (C16-C34)	8 ug/g dry	-	43	-	69
F4 PHCs (C34-C50)	6 ug/g dry	-	80	-	<6
Semi-Volatiles					
Acenaphthene	0.02 ug/g dry	<0.02	-	<0.02	-
Acenaphthylene	0.02 ug/g dry	<0.02	-	0.02	-
Anthracene	0.02 ug/g dry	<0.02	-	0.06	-
Benzo [a] anthracene	0.02 ug/g dry	<0.02	-	0.10	-
Benzo [a] pyrene	0.02 ug/g dry	<0.02	-	0.14	-
Benzo [b] fluoranthene	0.02 ug/g dry	<0.02	-	0.09	-
Benzo [g,h,i] perylene	0.02 ug/g dry	<0.02	-	0.05	-
Benzo [k] fluoranthene	0.02 ug/g dry	<0.02	-	0.03	-
Chrysene	0.02 ug/g dry	<0.02	-	0.10	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	<0.02	-	<0.02	-
Fluoranthene	0.02 ug/g dry	0.02	-	0.20	-
Fluorene	0.02 ug/g dry	<0.02	-	<0.02	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	<0.02	-	0.05	-
1-Methylnaphthalene	0.02 ug/g dry	<0.02	-	<0.02	-
2-Methylnaphthalene	0.02 ug/g dry	0.05	-	0.02	-
Methylnaphthalene (1&2)	0.04 ug/g dry	0.05	-	0.04	-
Naphthalene	0.01 ug/g dry	0.05	-	0.02	-
Phenanthrene	0.02 ug/g dry	0.06	-	0.16	-
Pyrene	0.02 ug/g dry	0.02	-	0.18	-
2-Fluorobiphenyl	Surrogate	76.0%	-	87.1%	-
Terphenyl-d14	Surrogate	133%	-	84.5%	-

Order #: 1939472

Report Date: 02-Oct-2019 Order Date: 26-Sep-2019

Client: GHD Limited (Ottawa) Client PO: Project Description: 11201061

		11201061-BH4-SS1		11201061-BH7-SS1	
	Sample Date: Sample ID:	24-Sep-19 10:00 1939472-05	25-Sep-19 09:15 1939472-06	24-Sep-19 15:00 1939472-07	24-Sep-19 15:30 1939472-08
	MDL/Units	Soil	Soil	Soil	Soil
Physical Characteristics	INDE/OTILES				
% Solids	0.1 % by Wt.	90.7	94.9	82.9	87.5
General Inorganics	!		!	!	!
рН	0.05 pH Units	6.21	6.79	7.06	-
Metals					
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Arsenic	1.0 ug/g dry	9.0	8.3	3.0	-
Barium	1.0 ug/g dry	108	210	155	-
Beryllium	0.5 ug/g dry	0.7	0.7	0.5	-
Boron	5.0 ug/g dry	7.9	9.5	5.9	-
Cadmium	0.5 ug/g dry	<0.5	0.5	<0.5	-
Chromium	5.0 ug/g dry	26.9	21.2	50.0	-
Cobalt	1.0 ug/g dry	12.1	12.1	11.2	-
Copper	5.0 ug/g dry	33.7	44.8	24.9	-
Lead	1.0 ug/g dry	38.3	35.0	28.0	-
Molybdenum	1.0 ug/g dry	2.8	10.9	1.2	-
Nickel	5.0 ug/g dry	38.7	53.8	31.6	-
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Silver	0.3 ug/g dry	<0.3	<0.3	<0.3	-
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Uranium	1.0 ug/g dry	1.2	3.1	1.2	-
Vanadium	10.0 ug/g dry	36.6	31.9	51.2	-
Zinc	20.0 ug/g dry	66.1	92.2	74.9	-
Volatiles	.				
Acetone	0.50 ug/g dry	-	-	-	<0.50
Benzene	0.02 ug/g dry	-	-	-	<0.02
Bromodichloromethane	0.05 ug/g dry	-	-	-	<0.05
Bromoform	0.05 ug/g dry	-	-	-	<0.05
Bromomethane	0.05 ug/g dry	-	-	-	<0.05
Carbon Tetrachloride	0.05 ug/g dry	-	-	-	<0.05
Chlorobenzene	0.05 ug/g dry	-	-	-	<0.05
Chloroform	0.05 ug/g dry	-	-	-	<0.05
Dibromochloromethane	0.05 ug/g dry	-	-	-	<0.05
Dichlorodifluoromethane	0.05 ug/g dry	-	-	-	<0.05
1,2-Dichlorobenzene	0.05 ug/g dry	-	-	-	<0.05
1,3-Dichlorobenzene	0.05 ug/g dry	-	-	-	<0.05

Order #: 1939472

Report Date: 02-Oct-2019 Order Date: 26-Sep-2019

Client: GHD Limited (Ottawa) Client PO: Project Description: 11201061

	Client ID: Sample Date: Sample ID:	11201061-BH4-SS1 24-Sep-19 10:00 1939472-05	11201061-BH5-SS1 25-Sep-19 09:15 1939472-06	11201061-BH7-SS1 24-Sep-19 15:00 1939472-07	11201061-BH7-SS3 24-Sep-19 15:30 1939472-08
1	MDL/Units	Soil	Soil	Soil	Soil
1,4-Dichlorobenzene	0.05 ug/g dry	-	-	-	<0.05
1,1-Dichloroethane	0.05 ug/g dry	-	-	-	<0.05
1,2-Dichloroethane	0.05 ug/g dry	-	-	-	<0.05
1,1-Dichloroethylene	0.05 ug/g dry	-	-	-	<0.05
cis-1,2-Dichloroethylene	0.05 ug/g dry	-	-	-	<0.05
trans-1,2-Dichloroethylene	0.05 ug/g dry	-	-	-	<0.05
1,2-Dichloropropane	0.05 ug/g dry	-	-	-	<0.05
cis-1,3-Dichloropropylene	0.05 ug/g dry	-	-	-	<0.05
trans-1,3-Dichloropropylene	0.05 ug/g dry	-	-	-	<0.05
1,3-Dichloropropene, total	0.05 ug/g dry	-	-	-	<0.05
Ethylbenzene	0.05 ug/g dry	-	-	-	<0.05
Ethylene dibromide (dibromoethar	0.05 ug/g dry	-	-	-	<0.05
Hexane	0.05 ug/g dry	-	-	-	<0.05
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	-	-	-	<0.50
Methyl Isobutyl Ketone	0.50 ug/g dry	-	-	-	<0.50
Methyl tert-butyl ether	0.05 ug/g dry	-	-	-	<0.05
Methylene Chloride	0.05 ug/g dry	-	-	-	<0.05
Styrene	0.05 ug/g dry	-	-	-	<0.05
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	-	-	-	<0.05
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	-	-	-	<0.05
Tetrachloroethylene	0.05 ug/g dry	-	-	-	<0.05
Toluene	0.05 ug/g dry	-	-	-	0.06
1,1,1-Trichloroethane	0.05 ug/g dry	-	-	-	<0.05
1,1,2-Trichloroethane	0.05 ug/g dry	-	-	-	<0.05
Trichloroethylene	0.05 ug/g dry	-	-	-	<0.05
Trichlorofluoromethane	0.05 ug/g dry	-	-	-	<0.05
Vinyl chloride	0.02 ug/g dry	-	-	-	<0.02
m,p-Xylenes	0.05 ug/g dry	-	-	-	0.13
o-Xylene	0.05 ug/g dry	-	-	-	<0.05
Xylenes, total	0.05 ug/g dry	-	-	-	0.13
4-Bromofluorobenzene	Surrogate	-	-	-	104%
Dibromofluoromethane	Surrogate	-	-	-	65.2%
Toluene-d8	Surrogate	-	-	-	99.4%
Benzene	0.02 ug/g dry	<0.02	<0.02	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	-	-

Report Date: 02-Oct-2019

Certificate of Analysis Order Date: 26-Sep-2019 Client: GHD Limited (Ottawa) Client PO: Project Description: 11201061

	Client ID: Sample Date: Sample ID: MDL/Units	11201061-BH4-SS1 24-Sep-19 10:00 1939472-05 Soil	11201061-BH5-SS1 25-Sep-19 09:15 1939472-06 Soil	11201061-BH7-SS1 24-Sep-19 15:00 1939472-07 Soil	11201061-BH7-SS3 24-Sep-19 15:30 1939472-08 Soil
Toluene	0.05 ug/g dry	<0.05	<0.05	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g dry	<0.05	<0.05	-	-
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	-	-
Toluene-d8	Surrogate	103%	103%	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	<7	14	-	28
F2 PHCs (C10-C16)	4 ug/g dry	<4	52	-	<4
F3 PHCs (C16-C34)	8 ug/g dry	<8	51	-	43
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	-	174 [1]
F4G PHCs (gravimetric)	50 ug/g dry	-	-	-	389
Semi-Volatiles					
Acenaphthene	0.02 ug/g dry	-	-	<0.02	-
Acenaphthylene	0.02 ug/g dry	-	-	0.03	-
Anthracene	0.02 ug/g dry	-	-	<0.02	-
Benzo [a] anthracene	0.02 ug/g dry	-	-	0.04	-
Benzo [a] pyrene	0.02 ug/g dry	-	-	0.04	-
Benzo [b] fluoranthene	0.02 ug/g dry	-	-	0.07	-
Benzo [g,h,i] perylene	0.02 ug/g dry	-	-	0.03	-
Benzo [k] fluoranthene	0.02 ug/g dry	-	-	0.02	-
Chrysene	0.02 ug/g dry	-	-	0.07	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	-	-	<0.02	-
Fluoranthene	0.02 ug/g dry	-	-	0.09	-
Fluorene	0.02 ug/g dry	-	-	<0.02	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	-	-	0.03	-
1-Methylnaphthalene	0.02 ug/g dry	-	-	<0.02	-
2-Methylnaphthalene	0.02 ug/g dry	-	-	<0.02	-
Methylnaphthalene (1&2)	0.04 ug/g dry	-	-	<0.04	-
Naphthalene	0.01 ug/g dry	-	-	<0.01	-
Phenanthrene	0.02 ug/g dry	-	-	0.05	-
Pyrene	0.02 ug/g dry	-	-	0.07	-
2-Fluorobiphenyl	Surrogate	-	-	76.5%	-
Terphenyl-d14	Surrogate	-	-	117%	-
			I	l .	l .

Client PO:

Client: GHD Limited (Ottawa)

Order #: 1939472

Report Date: 02-Oct-2019 Order Date: 26-Sep-2019

Project Description: 11201061

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
F4G PHCs (gravimetric)	ND	50	ug/g						
Metals			0.0						
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	5.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	5.0	ug/g						
Lead	ND	1.0	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	5.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.3	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	10.0	ug/g						
Zinc	ND	20.0	ug/g						
Semi-Volatiles	ND	20.0	ug/g						
	ND	0.00	/						
Acenaphthene	ND	0.02	ug/g						
Acenaphthylene	ND	0.02	ug/g						
Anthracene	ND	0.02	ug/g						
Benzo [a] anthracene	ND	0.02	ug/g						
Benzo [a] pyrene	ND	0.02	ug/g						
Benzo [b] fluoranthene	ND	0.02	ug/g						
Benzo [g,h,i] perylene	ND	0.02	ug/g						
Benzo [k] fluoranthene	ND	0.02	ug/g						
Chrysene	ND	0.02	ug/g						
Dibenzo [a,h] anthracene	ND	0.02	ug/g						
Fluoranthene	ND	0.02	ug/g						
Fluorene	ND	0.02	ug/g						
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND ND	0.02 0.04	ug/g						
Methylnaphthalene (1&2) Naphthalene	ND	0.04	ug/g						
	ND		ug/g						
Phenanthrene Pyrene	ND	0.02 0.02	ug/g						
	1.17	0.02	ug/g		88.0	50-140			
Surrogate: 2-Fluorobiphenyl Surrogate: Terphenyl-d14	1.17 1.45		ug/g		109	50-140 50-140			
	1.43		ug/g		109	50-1 4 0			
Volatiles	ND	0.50							
Acetone	ND	0.50	ug/g						
Benzene	ND	0.02	ug/g						
Bromodichloromethane	ND	0.05	ug/g						
Bromoform Bromomothana	ND	0.05	ug/g						
Bromomethane	ND	0.05	ug/g						
Carbon Tetrachloride	ND	0.05	ug/g						
Chlorobenzene	ND	0.05	ug/g						
Chloroform	ND	0.05	ug/g						
Dibromochloromethane	ND ND	0.05	ug/g						
	ND								

Report Date: 02-Oct-2019 Order Date: 26-Sep-2019

Project Description: 11201061

Client: GHD Limited (Ottawa) Client PO:

Certificate of Analysis

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,3-Dichlorobenzene	ND	0.05	ug/g						
1,4-Dichlorobenzene	ND	0.05	ug/g						
1,1-Dichloroethane	ND	0.05	ug/g						
1,2-Dichloroethane	ND	0.05	ug/g						
1,1-Dichloroethylene	ND	0.05	ug/g						
cis-1,2-Dichloroethylene	ND	0.05	ug/g						
trans-1,2-Dichloroethylene	ND	0.05	ug/g						
1,2-Dichloropropane	ND	0.05	ug/g						
cis-1,3-Dichloropropylene	ND	0.05	ug/g						
trans-1,3-Dichloropropylene	ND	0.05	ug/g						
1,3-Dichloropropene, total	ND	0.05	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Ethylene dibromide (dibromoethane	ND	0.05	ug/g						
Hexane	ND	0.05	ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g						
Methyl Isobutyl Ketone	ND	0.50	ug/g						
Methyl tert-butyl ether	ND	0.05	ug/g						
Methylene Chloride	ND	0.05	ug/g						
Styrene	ND	0.05	ug/g						
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g						
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g						
Tetrachloroethylene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
1,1,1-Trichloroethane	ND	0.05	ug/g						
1,1,2-Trichloroethane	ND	0.05	ug/g						
Trichloroethylene	ND	0.05	ug/g						
Trichlorofluoromethane	ND	0.05	ug/g						
Vinyl chloride	ND	0.02	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: 4-Bromofluorobenzene	3.16		ug/g		98.7	50-140			
Surrogate: Dibromofluoromethane	2.01		ug/g		62.8	50-140			
Surrogate: Toluene-d8	3.29		ug/g ug/g		103	50-1 4 0 50-140			
Benzene	3.29 ND	0.02	ug/g ug/g		103	30-1 4 0			
Ethylbenzene	ND ND	0.02	ug/g ug/g						
Toluene	ND ND	0.05							
m,p-Xylenes	ND ND	0.05	ug/g						
o-Xylene	ND ND	0.05	ug/g						
,	ND ND		ug/g						
Xylenes, total		0.05	ug/g		400	E0 440			
Surrogate: Toluene-d8	3.29		ug/g		103	50-140			

Order #: 1939472

Report Date: 02-Oct-2019 Order Date: 26-Sep-2019

Client: GHD Limited (Ottawa) Client PO: Project Description: 11201061

Analyto		Reporting		Source		%REC		RPD	Notos
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
General Inorganics									
pH	7.26	0.05	pH Units	7.23			0.4	2.3	
Hydrocarbons			·						
F1 PHCs (C6-C10)	88	7	ua/a dn/	90			2.7	40	
F2 PHCs (C10-C16)	14	4	ug/g dry ug/g dry	50			110.0	30	QR-04
F3 PHCs (C16-C34)	107	8	ug/g dry ug/g dry	150			33.5	30	QR-04
F4 PHCs (C34-C50)	23	6	ug/g dry	44			60.3	30	QR-04
	20	O	ug/g ury	77			00.0	30	QI COI
Metals									
Antimony	8.7	1.0	ug/g dry	7.8			11.3	30	
Arsenic	4.2	1.0	ug/g dry	4.2			1.5	30	
Barium	136	1.0	ug/g dry	139			2.1	30	
Beryllium	0.7	0.5	ug/g dry	8.0			13.4	30	
Boron	9.2	5.0	ug/g dry	8.2			12.0	30	
Cadmium	ND	0.5	ug/g dry	ND 40.6			0.0	30	
Chromium	41.0	5.0	ug/g dry	42.6			3.7	30	
Cobalt	10.4	1.0	ug/g dry	10.9			4.3	30	
Copper	28.2	5.0	ug/g dry	29.6			4.9	30	
Lead	24.9	1.0	ug/g dry	28.8			14.5	30	
Molybdenum	4.4	1.0	ug/g dry	3.4			24.5	30	
Nickel	34.7	5.0	ug/g dry	35.8			3.1	30	
Selenium	ND	1.0	ug/g dry	ND			0.0	30 30	
Silver	ND	0.3	ug/g dry	ND			0.0	30	
Thallium	ND 2.2	1.0	ug/g dry	ND			0.0 3.1	30 30	
Uranium Vanadium	44.6	1.0 10.0	ug/g dry	2.1 46.8			3.1 4.7	30	
Zinc	83.0	20.0	ug/g dry	86.7			4.7	30	
	63.0	20.0	ug/g dry	00.7			4.3	30	
Physical Characteristics	24.2		0/ 1 14/						
% Šolids	81.3	0.1	% by Wt.	80.8			0.6	25	
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g dry	ND				40	
Acenaphthylene	ND	0.02	ug/g dry	ND				40	
Anthracene	ND	0.02	ug/g dry	ND				40	
Benzo [a] anthracene	ND	0.02	ug/g dry	ND			0.0	40	
Benzo [a] pyrene	ND	0.02	ug/g dry	ND				40	
Benzo [b] fluoranthene	ND	0.02	ug/g dry	ND				40	
Benzo [g,h,i] perylene	ND	0.02	ug/g dry	ND			0.0	40	
Benzo [k] fluoranthene	ND	0.02	ug/g dry	ND			0.0	40	
Chrysene	ND	0.02	ug/g dry	ND				40	
Dibenzo [a,h] anthracene	ND	0.02	ug/g dry	ND				40	
Fluoranthene	ND	0.02	ug/g dry	ND			0.0	40	
Fluorene	ND	0.02	ug/g dry	ND				40	
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g dry	ND			0.0	40	
1-Methylnaphthalene	ND	0.02	ug/g dry	ND				40	
2-Methylnaphthalene	ND	0.02	ug/g dry	ND				40	
Naphthalene	ND	0.01	ug/g dry	ND				40	
Phenanthrene	ND	0.02	ug/g dry	ND			0.0	40	
Pyrene	ND	0.02	ug/g dry	ND			0.0	40	
Surrogate: 2-Fluorobiphenyl	1.13		ug/g dry		80.1	50-140			
Surrogate: Terphenyl-d14	1.59		ug/g dry		113	50-140			
/olatiles									
Acetone	ND	0.50	ug/g dry	ND				50	
Benzene	ND	0.02	ug/g dry	ND				50	
Bromodichloromethane	ND	0.02	ug/g dry	ND				50	
Bromoform	ND	0.05	ug/g dry	ND				50	
Bromomethane	ND	0.05	ug/g dry	ND				50	
Carbon Tetrachloride	ND	0.05	ug/g dry	ND				50	

Order #: 1939472

Report Date: 02-Oct-2019 Order Date: 26-Sep-2019

Client: GHD Limited (Ottawa) Client PO: Project Description: 11201061

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
·					7011120	Lillie			
Chlorobenzene	0.109	0.05	ug/g dry	ND			0.0	50	
Chloroform	ND	0.05	ug/g dry	ND				50	
Dibromochloromethane	ND	0.05	ug/g dry	ND				50	
Dichlorodifluoromethane	ND	0.05	ug/g dry	ND				50	
1,2-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,3-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,4-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,1-Dichloroethane	ND	0.05	ug/g dry	ND				50	
1,2-Dichloroethane	ND	0.05	ug/g dry	ND				50	
1,1-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
1,2-Dichloropropane	ND	0.05	ug/g dry	ND				50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND				50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND				50	
Ethylbenzene	ND	0.05	ug/g dry	ND				50	
Ethylene dibromide (dibromoethane	ND	0.05	ug/g dry	ND				50	
Hexane	ND	0.05	ug/g dry	ND				50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g dry	ND				50	
Methyl Isobutyl Ketone	ND	0.50	ug/g dry	ND				50	
Methyl tert-butyl ether	ND	0.05	ug/g dry	ND				50	
Methylene Chloride	ND	0.05	ug/g dry	ND				50	
Styrene	ND	0.05	ug/g dry	ND				50	
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g dry	ND				50	
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g dry	ND				50	
Tetrachloroethylene	ND	0.05	ug/g dry	ND				50	
Toluene	ND	0.05	ug/g dry	ND				50	
1,1,1-Trichloroethane	ND	0.05	ug/g dry	ND				50	
1,1,2-Trichloroethane	ND	0.05	ug/g dry	ND				50	
Trichloroethylene	ND	0.05	ug/g dry	ND				50	
Trichlorofluoromethane	ND	0.05	ug/g dry	ND				50	
Vinyl chloride	ND	0.02	ug/g dry	ND				50	
m,p-Xylenes	ND	0.05	ug/g dry	ND				50	
o-Xylene	0.077	0.05	ug/g dry	0.085			9.1	50	
Surrogate: 4-Bromofluorobenzene	5.49		ug/g dry		120	50-140			
Surrogate: Dibromofluoromethane	3.01		ug/g dry		65.7	50-140			
Surrogate: Toluene-d8	4.70		ug/g dry		103	50-140			
Benzene	ND	0.02	ug/g dry	ND	, 50	00 1 10		50	
Ethylbenzene	ND	0.02	ug/g dry	ND				50	
Toluene	ND	0.05	ug/g dry	ND				50	
m,p-Xylenes	ND	0.05	ug/g dry	ND				50	
o-Xylene	0.077	0.05	ug/g dry ug/g dry	0.085			9.4	50	
Surrogate: Toluene-d8	4.70	0.03		0.003	103	50-140	3.4	50	
Surrogate. Totuerie-do	4.70		ug/g dry		103	50-140			

Client: GHD Limited (Ottawa)

Certificate of Analysis

Client PO:

Order #: 1939472

Report Date: 02-Oct-2019 Order Date: 26-Sep-2019

Project Description: 11201061

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	178	7	ug/g		89.0	80-120			
F2 PHCs (C10-C16)	123	4	ug/g	50	86.1	60-140			
F3 PHCs (C16-C34)	418	8	ug/g	150	128	60-140			
F4 PHCs (C34-C50)	197	6	ug/g	44	116	60-140			
F4G PHCs (gravimetric)	950	50	ug/g		95.0	80-120			
Vietals									
Antimony	115	1.0	ug/g	7.8	85.5	70-130			
Arsenic	144	1.0	ug/g	4.2	112	70-130			
Barium	279	1.0	ug/g	139	112	70-130			
Beryllium	124	0.5	ug/g	0.8	98.4	70-130			
Boron	126	5.0	ug/g	8.2	93.9	70-130			
Cadmium	135	0.5	ug/g	ND	108	70-130			
Chromium	169	5.0	ug/g	42.6	101	70-130			
Cobalt	134	1.0	ug/g ug/g	10.9	98.8	70-130			
Copper	162	5.0	ug/g ug/g	29.6	106	70-130			
Lead	153	1.0		28.8	99.5	70-130			
			ug/g						
Molybdenum Nickel	139 169	1.0	ug/g	3.4	108	70-130 70-130			
		5.0	ug/g	35.8	106				
Selenium	137	1.0	ug/g	ND	110	70-130			
Silver	128	0.3	ug/g	ND	102	70-130			
Thallium	130	1.0	ug/g	ND	104	70-130			
Uranium	139	1.0	ug/g	2.1	110	70-130			
Vanadium	174	10.0	ug/g	46.8	101	70-130			
Zinc	222	20.0	ug/g	86.7	109	70-130			
Semi-Volatiles									
Acenaphthene	0.147	0.02	ug/g	ND	83.4	50-140			
Acenaphthylene	0.136	0.02	ug/g	ND	77.2	50-140			
Anthracene	0.141	0.02	ug/g	ND	80.2	50-140			
Benzo [a] anthracene	0.165	0.02	ug/g	ND	93.6	50-140			
Benzo [a] pyrene	0.132	0.02	ug/g	ND	75.1	50-140			
Benzo [b] fluoranthene	0.217	0.02	ug/g	ND	123	50-140			
Benzo [g,h,i] perylene	0.129	0.02	ug/g	ND	73.5	50-140		Q	M-06
Benzo [k] fluoranthene	0.167	0.02	ug/g	ND	95.0	50-140		Q	M-06
Chrysene	0.181	0.02	ug/g	ND	103	50-140			-
Dibenzo [a,h] anthracene	0.124	0.02	ug/g	ND	70.4	50-140			
Fluoranthene	0.153	0.02	ug/g	ND	86.8	50-140		C	M-06
Fluorene	0.173	0.02	ug/g	ND	98.7	50-140		•	
Indeno [1,2,3-cd] pyrene	0.175	0.02	ug/g ug/g	ND	71.1	50-140			
1-Methylnaphthalene	0.171	0.02	ug/g ug/g	ND	97.3	50-140			
2-Methylnaphthalene	0.171	0.02		ND	98.6	50-140			
			ug/g						
Naphthalene Phononthrone	0.149	0.01	ug/g	ND	84.5	50-140 50-140			
Phenanthrene	0.156	0.02	ug/g	ND	89.0	50-140		^	M 00
Pyrene	0.152	0.02	ug/g	ND	86.6	50-140		C	M-06
Surrogate: 2-Fluorobiphenyl	1.29		ug/g		92.1	50-140			
<i>V</i> olatiles					- 0 -	=0			
Acetone	5.07	0.50	ug/g		50.7	50-140			
Benzene	2.64	0.02	ug/g		66.0	60-130			
Bromodichloromethane	2.81	0.05	ug/g		70.2	60-130			
Bromoform	4.09	0.05	ug/g		102	60-130			
Bromomethane	3.57	0.05	ug/g		89.2	50-140			

Client: GHD Limited (Ottawa)

Certificate of Analysis

Order #: 1939472

Report Date: 02-Oct-2019 Order Date: 26-Sep-2019 **Project Description: 11201061**

Client PO: Project Des

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Carbon Tetrachloride	2.88	0.05	ug/g		71.9	60-130			
Chlorobenzene	4.08	0.05	ug/g		102	60-130			
Chloroform	2.80	0.05	ug/g		69.9	60-130			
Dibromochloromethane	4.34	0.05	ug/g		108	60-130			
Dichlorodifluoromethane	2.52	0.05	ug/g		63.1	50-140			
1,2-Dichlorobenzene	3.61	0.05	ug/g		90.2	60-130			
1,3-Dichlorobenzene	3.59	0.05	ug/g		89.8	60-130			
1,4-Dichlorobenzene	3.74	0.05	ug/g		93.4	60-130			
1,1-Dichloroethane	2.76	0.05	ug/g		69.1	60-130			
1,2-Dichloroethane	2.59	0.05	ug/g		64.7	60-130			
1,1-Dichloroethylene	3.05	0.05	ug/g		76.2	60-130			
cis-1,2-Dichloroethylene	2.55	0.05	ug/g		63.6	60-130			
trans-1,2-Dichloroethylene	2.57	0.05	ug/g		64.2	60-130			
1,2-Dichloropropane	2.42	0.05	ug/g		60.6	60-130			
cis-1,3-Dichloropropylene	2.81	0.05	ug/g		70.3	60-130			
trans-1,3-Dichloropropylene	2.83	0.05	ug/g		70.7	60-130			
Ethylbenzene	4.03	0.05	ug/g		101	60-130			
Ethylene dibromide (dibromoethane	3.46	0.05	ug/g		86.5	60-130			
Hexane	4.08	0.05	ug/g		102	60-130			
Methyl Ethyl Ketone (2-Butanone)	7.47	0.50	ug/g		74.7	50-140			
Methyl Isobutyl Ketone	7.14	0.50	ug/g		71.4	50-140			
Methyl tert-butyl ether	6.17	0.05	ug/g		61.7	50-140			
Methylene Chloride	2.61	0.05	ug/g		65.3	60-130			
Styrene	3.91	0.05	ug/g		97.7	60-130			
1,1,1,2-Tetrachloroethane	4.59	0.05	ug/g		115	60-130			
1,1,2,2-Tetrachloroethane	3.73	0.05	ug/g		93.3	60-130			
Tetrachloroethylene	4.05	0.05	ug/g		101	60-130			
Toluene	4.59	0.05	ug/g		115	60-130			
1,1,1-Trichloroethane	2.81	0.05	ug/g		70.3	60-130			
1,1,2-Trichloroethane	2.47	0.05	ug/g		61.7	60-130			
Trichloroethylene	2.55	0.05	ug/g		63.8	60-130			
Trichlorofluoromethane	3.34	0.05	ug/g		83.4	50-140			
Vinyl chloride	3.03	0.02	ug/g		75.7	50-140			
m,p-Xylenes	8.14	0.05	ug/g		102	60-130			
o-Xylene	4.08	0.05	ug/g		102	60-130			
Benzene	2.64	0.02	ug/g		66.0	60-130			
Ethylbenzene	4.03	0.05	ug/g		101	60-130			
Toluene	4.59	0.05	ug/g		115	60-130			
m,p-Xylenes	8.14	0.05	ug/g		102	60-130			
o-Xylene	4.08	0.05	ug/g		102	60-130			

Certificate of Analysis

Client: GHD Limited (Ottawa)

Client PO:

Report Date: 02-Oct-2019

Order Date: 26-Sep-2019

Project Description: 11201061

Qualifier Notes:

Sample Qualifiers:

1: GC-FID signal did not return to baseline by C50

QC Qualifiers:

QM-06: Due to noted non-homogeneity of the QC sample matrix, the spike recoveries were out side the accepted

range. Batch data accepted based on other QC.

QR-04: Duplicate results exceeds RPD limits due to non-homogeneous matrix.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Paracel ID: 1939472 LABORATORIES LTD. Paracel ID: 1939472

Paracel ID: 1939472

ad Office 0-2319 St. Laurent Blvd. awa, Ontario K1G 4J8 1-800-749-1947 xaracel@paracellabs.com

Chain of Custody (Lab Use Only) Nº 123280

Client Name: GIO Lympey				Project Refere	nor last r			_	_					_	rage of			
Contact Name: Like Legers		_	_	Ouote#	nce: 1120061	_	_								T	urnar	round	Time:
Address:		_		T SAME											□ 1 Day	/		□ 3 Day
179 Collings Road				P() #											1			#100 TOTAL
Telephone: (17 7)7				Email Address:										□ 2 Day	ķ		Regular	
Telephone: 613-727-0510	100 H200 W 100 H200 H200 H200 H200 H200 H200 H200	SALATINE .		Like Lipes Oshd-com										Date Required:				
Criteria: 🗑 O. Reg. 153/04 (As Amended) Table _ 🗆 F	(SC Filing	0. Re	g. 558/0	O EI PWQO	CCME DS	UB (S	torm)	0	SUB	(San	itary)	Municip	ality:			-	her:	
Matrix Type: 8 (Soil/Sed.) GW (Ground Water) SW (Surface Water)	ter) SS (Storm.	Sanitary :	Sewer) P	(Paint) A (Air) (Other)		equi											
Paracel Order Number: BUK 1939472 - BUK 1939475 - TCLP		Air Volume	of Containers		de Taken	FJ-F4+BTEX			by ICP			(8)		x hz				
Sample ID/Location Name	Matrix	Air	# of	Date	Time	PHCs	VOCs	PAHS	Metals	20	CeVI	B (HWS)	THE	LAT.				
1 112010 (1-BHZ-55)	5		2	Sept 24	15:00	-	ŕ	X	X	-	-	X	-	-			-	
2 1170061-BH2-SS3	5		3	5-24	15:30	X	X	^			+		-	+	-	+	-	
3 1826/1-8/+3-551	5		#3		15.00	1	8		X		+	X	+	+	-	-	-	
4 112011-B143-552	5		2	Sel 24	100000000000000000000000000000000000000	V	-	×	^	Н	+	X	+	+	_	_	_	
5 11700(1-8144-55)	5		2	-	11:30	1	X	-		Н	+	-	-	4	_	_		
6 1120061-BHS-551	+		12	Sp. 24	10:00	X	-		X	Н	4	X	-	4				
)	_	4	Sept 25	9.15	X			Χ	Ц	4	X						
11201001-1001	1)		-	SG1-24	14-00	1							X					
150001-011-73)		75	Tall V. I	15:00			×	X			X		T				
11(0)061-0111-323	5		x2	Sept 24	15:30	X	X							T			1	
10														t		+	+	-
Comments;														_	1000000		Sclivery:	
telinquished By (Sign): WVYY	Received	by Drive	er Depot.	Tour	E Roceiv	ed at L	ab;	B	vm				Verifie	d By		Para	21	7
elinquished By (Print): Pya Viele Ma	Date/Tim	Z	6/0	9/19 11	2 5/ Date/T	inc. C					12	10	Date/Ti	1	MA	100	1/	
Jute Time: Set 26, 799, 9,00	Temperat	ture	1	/	AH	en e	11 (0	90		100	100	ONIC 1	III.	4-	16	19	

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

GHD Limited (Ottawa)

179 Colonnade Road Suite 400 Ottawa, ON K2E7S4 Attn: Luke Lopers

Client PO:

Project: 11201061 Report Date: 2-Oct-2019
Custody: 123280 Order Date: 26-Sep-2019

Order #: 1939475

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID1939475-01

Client ID
11201061-TCLP

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Order #: 1939475

Report Date: 02-Oct-2019 Order Date: 26-Sep-2019 **Project Description: 11201061**

Client: GHD Limited (Ottawa)
Client PO:

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Flashpoint	ASTM D93 - Pensky-Martens Closed Cup	1-Oct-19	1-Oct-19
REG 558 - Cyanide	MOE E3015- Auto Colour	1-Oct-19	1-Oct-19
REG 558 - Fluoride	EPA 340.2 - ISE	2-Oct-19	2-Oct-19
REG 558 - Mercury by CVAA	EPA 7470A - Cold Vapour AA	1-Oct-19	1-Oct-19
REG 558 - Metals, ICP-MS	TCLP EPA 6020 - Digestion - ICP-MS	1-Oct-19	1-Oct-19
REG 558 - NO3/NO2	EPA 300.1 - IC	1-Oct-19	1-Oct-19
REG 558 - PAHs	EPA 625 - GC-MS	1-Oct-19	2-Oct-19
REG 558 - PCBs	EPA 608 - GC-ECD	2-Oct-19	2-Oct-19
REG 558 - VOCs	EPA 624 - P&T GC-MS	2-Oct-19	2-Oct-19
Solids, %	Gravimetric, calculation	26-Sep-19	26-Sep-19

Report Date: 02-Oct-2019

Order Date: 26-Sep-2019

Certificate of Analysis Client: GHD Limited (Ottawa)

Client PO:

Project Description: 11201061 11201061-TCLP Client ID: Sample Date: 25-Sep-19 09:00 1939475-01 Sample ID: Soil MDL/Units **Physical Characteristics** 0.1 % by Wt. % Solids 95.4 °C Flashpoint >70 EPA 1311 - TCLP Leachate Inorganics 0.05 mg/L Fluoride 0.13 1 mg/L Nitrate as N <1 Nitrite as N 1 mg/L <1 Cyanide, free 0.02 mg/L < 0.02 EPA 1311 - TCLP Leachate Metals 0.05 mg/L Arsenic < 0.05 0.05 mg/L Barium 1.29 0.05 mg/L Boron < 0.05 0.01 mg/L Cadmium < 0.01 0.05 mg/L Chromium < 0.05 0.05 mg/L Lead < 0.05 0.005 mg/L Mercury < 0.005 0.05 mg/L Selenium < 0.05 _ 0.05 mg/L Silver < 0.05 0.05 mg/L Uranium < 0.05 EPA 1311 - TCLP Leachate Volatiles 0.005 mg/L Benzene < 0.005 0.005 mg/L Carbon Tetrachloride < 0.005 0.004 mg/L Chlorobenzene < 0.004 0.006 mg/L Chloroform < 0.006 0.004 mg/L 1,2-Dichlorobenzene < 0.004 0.004 mg/L 1.4-Dichlorobenzene < 0.004 _ 0.005 mg/L 1,2-Dichloroethane < 0.005 0.006 mg/L 1,1-Dichloroethylene < 0.006 0.30 mg/L Methyl Ethyl Ketone (2-Butanone) < 0.30 0.04 mg/L Methylene Chloride < 0.04 _ 0.005 mg/L Tetrachloroethylene < 0.005 0.004 mg/L Trichloroethylene < 0.004 _ _ _ 0.005 mg/L Vinyl chloride < 0.005 4-Bromofluorobenzene Surrogate 103% Dibromofluoromethane Surrogate 85.9%

EPA 1311 - TCLP Leachate Organics

Surrogate

Toluene-d8

78.0%

-

Certificate of Analysis

Client: GHD Limited (Ottawa)

Client PO:

Report Date: 02-Oct-2019

Order Date: 26-Sep-2019

Project Description: 11201061

Client ID: 11201061-TCLP Sample Date: 25-Sep-19 09:00 1939475-01 Sample ID: Soil MDL/Units 0.0001 mg/L Benzo [a] pyrene <0.0001 Surrogate Terphenyl-d14 117% --0.003 mg/L PCBs, total < 0.003 Surrogate 105% Decachlorobiphenyl -

Client PO:

Order #: 1939475

Report Date: 02-Oct-2019 Certificate of Analysis Order Date: 26-Sep-2019 Client: GHD Limited (Ottawa) Project Description: 11201061

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
EPA 1311 - TCLP Leachate Inorga	anics								
Fluoride	ND	0.05	mg/L						
Nitrate as N	ND	1	mg/L						
Nitrite as N	ND	1	mg/L						
Cyanide, free	ND	0.02	mg/L						
EPA 1311 - TCLP Leachate Metal	S								
Arsenic	ND	0.05	mg/L						
Barium	ND	0.05	mg/L						
Boron	ND	0.05	mg/L						
Cadmium	ND	0.01	mg/L						
Chromium	ND	0.05	mg/L						
Lead	ND	0.05	mg/L						
Mercury	ND	0.005	mg/L						
Selenium	ND	0.05	mg/L						
Silver	ND	0.05	mg/L						
Uranium	ND	0.05	mg/L						
EPA 1311 - TCLP Leachate Organ	nics								
Benzo [a] pyrene	ND	0.0001	mg/L						
Surrogate: Terphenyl-d14	0.19		mg/L		94.7	37.1-155.6			
PCBs, total	ND	0.003	mg/L						
Surrogate: Decachlorobiphenyl	0.0088		mg/L		88.1	62-138			
EPA 1311 - TCLP Leachate Volati	les		-						
Benzene	ND	0.005	mg/L						
Carbon Tetrachloride	ND	0.005	mg/L						
Chlorobenzene	ND	0.004	mg/L						
Chloroform	ND	0.006	mg/L						
1,2-Dichlorobenzene	ND	0.004	mg/L						
1,4-Dichlorobenzene	ND	0.004	mg/L						
1,2-Dichloroethane	ND	0.005	mg/L						
1,1-Dichloroethylene	ND	0.006	mg/L						
Methyl Ethyl Ketone (2-Butanone)	ND	0.30	mg/L						
Methylene Chloride	ND	0.04	mg/L						
Tetrachloroethylene	ND	0.005	mg/L						
Trichloroethylene	ND	0.004	mg/L						
Vinyl chloride	ND	0.005	mg/L						
Surrogate: 4-Bromofluorobenzene	0.237		mg/L		87.3	83-134			
Surrogate: Dibromofluoromethane	0.241		mg/L		88.5	<i>78-124</i>			
Surrogate: Toluene-d8	0.295		mg/L		109	76-118			

Certificate of AnalysisReport Date: 02-Oct-2019Client: GHD Limited (Ottawa)Order Date: 26-Sep-2019Client PO:Project Description: 11201061

Method Quality Control: Duplicate

		Reporting		Source		%REC	•	RPD	•
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
EPA 1311 - TCLP Leachate Ino	rganics								
Fluoride	0.14	0.05	mg/L	0.13			4.0	20	
Nitrate as N	ND	1	mg/L	ND			0.0	20	
Nitrite as N	ND	1	mg/L	ND				20	
Cyanide, free	ND	0.02	mg/L	ND				20	
EPA 1311 - TCLP Leachate Met	als								
Arsenic	ND	0.05	mg/L	ND			0.0	29	
Barium	0.529	0.05	mg/L	0.527			0.5	34	
Boron	0.067	0.05	mg/L	0.064			3.7	33	
Cadmium	ND	0.01	mg/L	ND			0.0	33	
Chromium	ND	0.05	mg/L	ND			0.0	32	
Lead	ND	0.05	mg/L	ND			0.0	32	
Mercury	ND	0.005	mg/L	ND			0.0	30	
Selenium	ND	0.05	mg/L	ND			0.0	28	
Silver	ND	0.05	mg/L	ND			0.0	28	
Uranium	ND	0.05	mg/L	ND			0.0	27	
EPA 1311 - TCLP Leachate Org	anics								
PCBs, total	ND	0.003	mg/L	ND				30	
Surrogate: Decachlorobiphenyl	0.010		mg/L		99.6	62-138			
Physical Characteristics			· ·						
% Solids	88.0	0.1	% by Wt.	88.2			0.2	25	

Client PO:

Client: GHD Limited (Ottawa)

Order #: 1939475

Report Date: 02-Oct-2019 Order Date: 26-Sep-2019

Project Description: 11201061

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
EPA 1311 - TCLP Leachate	norganics								
Fluoride	0.54	0.05	mg/L	0.13	81.7	70-130			
Nitrate as N	11	1	mg/L	ND	106	81-112			
Nitrite as N	10	1	mg/L	ND	95.7	76-107			
Cyanide, free	0.051	0.02	mg/L	ND	103	60-136			
EPA 1311 - TCLP Leachate	Metals								
Arsenic	51.0		ug/L	0.547	101	83-119			
Barium	99.9		ug/L	52.7	94.4	83-116			
Boron	45.4		ug/L	6.42	78.0	71-128			
Cadmium	46.7		ug/L	0.316	92.7	78-119			
Chromium	53.4		ug/L	0.060	107	80-124			
Lead	44.5		ug/L	0.981	87.0	77-126			
Mercury	0.0346	0.005	mg/L	ND	115	70-130			
Selenium	44.7		ug/L	0.352	88.8	81-125			
Silver	41.5		ug/L	ND	83.0	70-128			
Uranium	45.8		ug/L	0.535	90.6	70-131			
EPA 1311 - TCLP Leachate	Organics								
Benzo [a] pyrene	0.0356	0.0001	mg/L		71.3	39-123			
Surrogate: Terphenyl-d14	0.25		mg/L		126	37.1-155.6			
PCBs, total	0.057	0.003	mg/L	ND	141	86-145			
EPA 1311 - TCLP Leachate	Volatiles								
Benzene	0.031	0.005	mg/L		77.5	55-141			
Carbon Tetrachloride	0.029	0.005	mg/L		72.0	49-149			
Chlorobenzene	0.027	0.004	mg/L		67.3	64-137			
Chloroform	0.024	0.006	mg/L		60.0	58-138			
1,2-Dichlorobenzene	0.029	0.004	mg/L		72.9	60-150			
1,4-Dichlorobenzene	0.030	0.004	mg/L		73.9	63-132			
1,2-Dichloroethane	0.025	0.005	mg/L		62.0	50-140			
1,1-Dichloroethylene	0.032	0.006	mg/L		80.5	43-153			
Methyl Ethyl Ketone (2-Butanone)	0.074	0.30	mg/L		73.9	26-153			
Methylene Chloride	0.024	0.04	mg/L		60.0	58-149			
Tetrachloroethylene	0.026	0.005	mg/L		65.0	51-145			
Trichloroethylene	0.022	0.004	mg/L		54.2	52-135			
Vinyl chloride	0.026	0.005	mg/L		63.9	31-159			

Certificate of Analysis

Client: GHD Limited (Ottawa)

Client PO:

Report Date: 02-Oct-2019

Order Date: 26-Sep-2019

Project Description: 11201061

Qualifier Notes:

QC Qualifiers:

QS-02: Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

PARACEL | T | Paracel ID: 1939475

LABORATORIES LTD.

Paracel ID: 1939475

ad Office 0-2319 St. Laurent Blvd. lawa, Ontario K1G 4J8 1-800-749-1947 paracel@paracellabs.com

Chain of Custody (Lab Use Only) Nº 123280

Page ___ of ___

Client N	OTO FIMILE				Project Reference: 1/2006 [Turnaround Time:				
Contact	Name: Like. Lepos				Quote #										□ l Da	ay	□3 D	ay
Address					PO #													
	179 Colonnyle Road				Email Address:	1 , 1	Α	11							□ 2 Da	ıy	₽ Reg	gular
Telepho	ne: 613-727-0310				Luke, Lipes Royal-com								Date Required:					
Criteri	a: 🔁 O. Reg. 153/04 (As Amended) Table _ 🗆 R	SC Filing ,	10. Res	. 558/00	□ PWQ0 □	ICCME D SU	JB (St	orm)	08	UB (Sanitar	y) M	unicipal	ity:		_ D Oth	er:	
Matrix	Type: S (Soil-Sed.) GW (Ground Water) SW (Surface Water	r) SS (Sterm:	Sanitary S	ewer) P	Paint) A (Air) O	(Other)	Re	quir	ed A	naly	ses							
Parac	1939472 - BUK 1939472 - FELP	rrix	Air Volume	of Containers	Sampi	le Taken	S F1-F4+BTEX	м	20	Metals by ICP		WS)	士					
	Sample ID/Location Name	Matrix	>i.	10 #	Date	Time	PHCs	VOCs	PAHS	Meta	Hg C	B (HWS)	· can	43				
1	1120061-81+2-551	ζ.		2	Sept 24	15:00			X	X			X	_				
2	1170061-13 112-553	5		3	8-1-24	15:30	X	X		П								
3	112/161-151+3-551	5		#3	\$ 1-24	Irou		X	X	X			X			\top		
4	1120161-8123-552	5		2	Sex 24	11:30	X	X	ě	П	T							
5	117010(1-8141-))	5		3	Sp. 174	10.00	X			X	T	T	X					
6	1170161-1345-551	5		3	Spat 25	9.15	X			X		T	X					
7	MOUNTAL TOLK	5		4	39-24	14.60					T	T		0		\top		
8	1120161- BH7-351	5		73		15 64	T		×	X		T	X			\top		
9	1120161-1817-533	5		12	Sept 24	1530	×	X		П								
10				/			T			П								
Comn	ents:														N	Method of D	Delivery:	
0	Jknown cetyste	Um (225	lu	160											Para	cel	
Relinqu	ished By (Signi:	Receive	d by Driv	er/Depot	Tou,	Receiv	ved at 1	ab;	8	hm				Verified	A.	16	3/	
	ished By (Print): Pya bala Tillia	Date/Ti	ne: 72	6/0	109/19 10 5/ Date/Time: 09/26/9 /2/0 Date/Ti							Date/Tin	Tim 0-26-19					
Date/Ti	ne: 8,7 26, 70,14) 9 00	Temper	atore:	1		AM. Temps	crature:	11	9	°C				pH Veril	ed[] By			

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

GHD Limited (Ottawa)

179 Colonnade Road Suite 400 Ottawa, ON K2E7S4 Attn: Luke Lopers

Client PO:

Project: 11201061 Report Date: 22-Oct-2019
Custody: 123279 Order Date: 16-Oct-2019

Order #: 1942259

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1942259-01	11201061-BH2A
1942259-02	11201061-BH3
1942259-03	11201061-BH4
1942259-04	11201061-BH5
1942259-05	11201061-BH7
1942259-06	Trip Blank

Approved By:

Mark Froto

Mark Foto, M.Sc. Lab Supervisor

Certificate of Analysis

Client: GHD Limited (Ottawa)

Client PO:

Report Date: 22-Oct-2019

Order Date: 16-Oct-2019

Project Description: 11201061

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Metals, ICP-MS	EPA 200.8 - ICP-MS	18-Oct-19	21-Oct-19
pH	EPA 150.1 - pH probe @25 ℃	17-Oct-19	17-Oct-19
PHC F1	CWS Tier 1 - P&T GC-FID	19-Oct-19	20-Oct-19
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	18-Oct-19	22-Oct-19
REG 153: PAHs by GC-MS	EPA 625 - GC-MS, extraction	21-Oct-19	21-Oct-19
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	19-Oct-19	20-Oct-19

Report Date: 22-Oct-2019

Certificate of Analysis Client: GHD Limited (Ottawa) Order Date: 16-Oct-2019 Client PO: Project Description: 11201061

11201061-BH3 11201061-BH4 Client ID: 11201061-BH2A 11201061-BH5 Sample Date: 16-Oct-19 10:15 16-Oct-19 12:45 16-Oct-19 14:00 16-Oct-19 15:30 1942259-01 1942259-02 1942259-03 1942259-04 Sample ID: Water Water Water Water MDL/Units **General Inorganics** 0.1 pH Units 6.9 7.3 Metals 0.5 ug/L Antimony < 0.5 < 0.5 < 0.5 1 ug/L Arsenic 8 <1 <1 1 ug/L Barium 255 192 186 0.5 ug/L Beryllium <0.5 <0.5 < 0.5 10 ug/L Boron 73 261 230 0.1 ug/L Cadmium < 0.1 < 0.1 < 0.1 1 ug/L 2 Chromium <1 <1 0.5 ug/L Cobalt < 0.5 0.8 < 0.5 0.5 ug/L Copper < 0.5 < 0.5 < 0.5 0.1 ug/L Lead < 0.1 < 0.1 < 0.1 0.5 ug/L 19.0 2.1 Molybdenum _ 1.1 1 ug/L Nickel 3 <1 _ <1 1 ug/L Selenium <1 <1 <1 0.1 ug/L < 0.1 <0.1 Silver < 0.1 200 ug/L Sodium 48500 68200 108000 0.1 ug/L Thallium < 0.1 < 0.1 < 0.1 0.1 ug/L Uranium 6.8 2.6 4.0 0.5 ug/L Vanadium 3.4 < 0.5 0.5 5 ug/L Zinc 7 <5 <5 Volatiles 5.0 ug/L <5.0 Acetone < 5.0 < 5.0 < 5.0 0.5 ug/L Benzene < 0.5 < 0.5 < 0.5 <0.5 0.5 ug/L Bromodichloromethane < 0.5 < 0.5 < 0.5 < 0.5 Bromoform 0.5 ug/L < 0.5 < 0.5 < 0.5 < 0.5 0.5 ug/L Bromomethane < 0.5 < 0.5 < 0.5 < 0.5 0.2 ug/L Carbon Tetrachloride < 0.2 < 0.2 < 0.2 < 0.2 0.5 ug/L Chlorobenzene < 0.5 < 0.5 < 0.5 < 0.5 0.5 ug/L Chloroform < 0.5 < 0.5 < 0.5 < 0.5 0.5 ug/L < 0.5 Dibromochloromethane < 0.5 < 0.5 < 0.5 1.0 ug/L Dichlorodifluoromethane <1.0 <1.0 <1.0 <1.0 0.5 ug/L 1,2-Dichlorobenzene < 0.5 < 0.5 < 0.5 < 0.5 0.5 ug/L 1.3-Dichlorobenzene < 0.5 < 0.5 < 0.5 < 0.5 0.5 ug/L 1.4-Dichlorobenzene < 0.5 < 0.5 < 0.5 < 0.5

Report Date: 22-Oct-2019

Certificate of Analysis Client: GHD Limited (Ottawa)

Order Date: 16-Oct-2019 Client PO: Project Description: 11201061

Γ	Client ID: Sample Date: Sample ID: MDL/Units	11201061-BH2A 16-Oct-19 10:15 1942259-01 Water	11201061-BH3 16-Oct-19 12:45 1942259-02 Water	11201061-BH4 16-Oct-19 14:00 1942259-03 Water	11201061-BH5 16-Oct-19 15:30 1942259-04 Water
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylene dibromide (dibromoethar	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
4-Bromofluorobenzene	Surrogate	106%	113%	111%	108%
Dibromofluoromethane Toluene-d8	Surrogate Surrogate	98.6%	93.8%	94.4%	98.7%
Hydrocarbons	Surrogate	89.6%	90.3%	91.9%	90.6%
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	<25
F2 PHCs (C10-C16)	100 ug/L	<100	<100	<100	<100
F3 PHCs (C16-C34)	100 ug/L	<100	<100	<100	<100
1011103 (010-004)		<100	<100	\100	<100

Order #: 1942259

Report Date: 22-Oct-2019 Order Date: 16-Oct-2019

Client: GHD Limited (Ottawa) Client PO: Project Description: 11201061

	Client ID: Sample Date: Sample ID: MDL/Units	11201061-BH2A 16-Oct-19 10:15 1942259-01 Water	11201061-BH3 16-Oct-19 12:45 1942259-02 Water	11201061-BH4 16-Oct-19 14:00 1942259-03 Water	11201061-BH5 16-Oct-19 15:30 1942259-04 Water
F4 PHCs (C34-C50)	100 ug/L	<100	<100	<100	<100
Semi-Volatiles					
Acenaphthene	0.05 ug/L	<0.05	<0.05	-	-
Acenaphthylene	0.05 ug/L	< 0.05	<0.05	-	-
Anthracene	0.01 ug/L	<0.01	<0.01	-	-
Benzo [a] anthracene	0.01 ug/L	<0.01	<0.01	-	-
Benzo [a] pyrene	0.01 ug/L	<0.01	<0.01	-	-
Benzo [b] fluoranthene	0.05 ug/L	<0.05	<0.05	-	-
Benzo [g,h,i] perylene	0.05 ug/L	<0.05	<0.05	-	-
Benzo [k] fluoranthene	0.05 ug/L	< 0.05	<0.05	-	-
Chrysene	0.05 ug/L	< 0.05	<0.05	-	-
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	<0.05	-	-
Fluoranthene	0.01 ug/L	<0.01	<0.01	-	-
Fluorene	0.05 ug/L	<0.05	<0.05	-	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	< 0.05	<0.05	-	-
1-Methylnaphthalene	0.05 ug/L	< 0.05	<0.05	-	-
2-Methylnaphthalene	0.05 ug/L	< 0.05	<0.05	-	-
Methylnaphthalene (1&2)	0.10 ug/L	<0.10	<0.10	-	-
Naphthalene	0.05 ug/L	<0.05	<0.05	-	-
Phenanthrene	0.05 ug/L	<0.05	<0.05	-	-
Pyrene	0.01 ug/L	<0.01	<0.01	-	-
2-Fluorobiphenyl	Surrogate	101%	90.5%	-	-
Terphenyl-d14	Surrogate	112%	102%	-	-

Certificate of Analysis Client: GHD Limited (Ottawa) Client PO: Report Date: 22-Oct-2019 Order Date: 16-Oct-2019 **Project Description: 11201061**

	Client ID: Sample Date: Sample ID: MDL/Units	11201061-BH7 16-Oct-19 10:15 1942259-05 Water	Trip Blank 23-Sep-19 09:00 1942259-06 Water	- - - -	- - -
Metals	WDE/OTHES				
Antimony	0.5 ug/L	<0.5	-	-	-
Arsenic	1 ug/L	7	-	-	-
Barium	1 ug/L	258	-	-	-
Beryllium	0.5 ug/L	<0.5	-	-	-
Boron	10 ug/L	75	-	-	-
Cadmium	0.1 ug/L	<0.1	-	-	-
Chromium	1 ug/L	2	-	-	-
Cobalt	0.5 ug/L	0.8	-	-	-
Copper	0.5 ug/L	<0.5	-	-	-
Lead	0.1 ug/L	<0.1	-	-	-
Molybdenum	0.5 ug/L	19.4	-	-	-
Nickel	1 ug/L	3	-	-	-
Selenium	1 ug/L	<1	-	-	-
Silver	0.1 ug/L	<0.1	-	-	-
Sodium	200 ug/L	49200	-	-	-
Thallium	0.1 ug/L	<0.1	-	-	-
Uranium	0.1 ug/L	6.8	-	-	-
Vanadium	0.5 ug/L	3.3	-	-	-
Zinc	5 ug/L	10	-	-	-
Volatiles			1		
Acetone	5.0 ug/L	<5.0	<5.0	-	-
Benzene	0.5 ug/L	<0.5	<0.5	-	-
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	-	-
Bromoform	0.5 ug/L	<0.5	<0.5	-	-
Bromomethane	0.5 ug/L	<0.5	<0.5	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	-	-
Chlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
Chloroform	0.5 ug/L	<0.5	<0.5	-	-
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	-	-

Certificate of Analysis Client: GHD Limited (Ottawa) Client PO: Report Date: 22-Oct-2019 Order Date: 16-Oct-2019

Project Description: 11201061

Γ	Client ID: Sample Date: Sample ID: MDL/Units	11201061-BH7 16-Oct-19 10:15 1942259-05 Water	Trip Blank 23-Sep-19 09:00 1942259-06 Water	- - - -	- - - -
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	-	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	-	-
Ethylene dibromide (dibromoethar	0.2 ug/L	<0.2	<0.2	-	-
Hexane	1.0 ug/L	<1.0	<1.0	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	-	-
Methylene Chloride	5.0 ug/L	<5.0	<5.0	-	-
Styrene	0.5 ug/L	<0.5	<0.5	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	-	-
Toluene	0.5 ug/L	<0.5	<0.5	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	-	-
Trichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	-	-
Vinyl chloride	0.5 ug/L	<0.5	<0.5	-	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	-	-
o-Xylene	0.5 ug/L	<0.5	<0.5	-	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	-	-
4-Bromofluorobenzene	Surrogate	110%	107%	-	-
Dibromofluoromethane	Surrogate	95.3%	96.4%	-	-
Toluene-d8	Surrogate	89.6%	91.0%	-	-
Hydrocarbons	<u>'</u>				
F1 PHCs (C6-C10)	25 ug/L	<25	-	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	-

Certificate of Analysis

Client: GHD Limited (Ottawa)

Client PO:

Report Date: 22-Oct-2019

Order Date: 16-Oct-2019

Project Description: 11201061

Trip Blank Client ID: 11201061-BH7 23-Sep-19 09:00 Sample Date: 16-Oct-19 10:15 1942259-05 1942259-06 Sample ID: Water Water MDL/Units 100 ug/L F4 PHCs (C34-C50) <100 Semi-Volatiles 0.05 ug/L Acenaphthene < 0.05 _ _ _ 0.05 ug/L Acenaphthylene < 0.05 0.01 ug/L Anthracene < 0.01 _ _ _ 0.01 ug/L Benzo [a] anthracene < 0.01 0.01 ug/L < 0.01 Benzo [a] pyrene _ 0.05 ug/L Benzo [b] fluoranthene < 0.05 0.05 ug/L < 0.05 Benzo [g,h,i] perylene 0.05 ug/L Benzo [k] fluoranthene < 0.05 0.05 ug/L Chrysene < 0.05 0.05 ug/L Dibenzo [a,h] anthracene < 0.05 0.01 ug/L Fluoranthene < 0.01 0.05 ug/L Fluorene < 0.05 0.05 ug/L Indeno [1,2,3-cd] pyrene < 0.05 0.05 ug/L 1-Methylnaphthalene < 0.05 0.05 ug/L 2-Methylnaphthalene < 0.05 0.10 ug/L Methylnaphthalene (1&2) < 0.10 0.05 ug/L Naphthalene < 0.05 0.05 ug/L Phenanthrene < 0.05 0.01 ug/L Pyrene < 0.01 Surrogate 2-Fluorobiphenyl 103% Surrogate 107% Terphenyl-d14 _

Report Date: 22-Oct-2019 Order Date: 16-Oct-2019

Project Description: 11201061

Certificate of Analysis Client: GHD Limited (Ottawa) Client PO:

Method Quality Control: Rlank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Metals			· ·						
Antimony	ND	0.5	ug/L						
Arsenic	ND	1	ug/L						
Barium	ND	1	ug/L						
Beryllium	ND	0.5	ug/L						
Boron	ND	10	ug/L						
Cadmium	ND	0.1	ug/L						
Chromium	ND	1_	ug/L						
Cobalt	ND	0.5	ug/L						
Copper	ND	0.5	ug/L						
Lead	ND	0.1	ug/L						
Molybdenum Nickel	ND ND	0.5 1	ug/L ug/L						
Selenium	ND ND	1	ug/L ug/L						
Silver	ND	0.1	ug/L ug/L						
Sodium	ND	200	ug/L						
Thallium	ND	0.1	ug/L						
Uranium	ND	0.1	ug/L						
Vanadium	ND	0.5	ug/L						
Zinc	ND	5	ug/L						
Semi-Volatiles									
Acenaphthene	ND	0.05	ug/L						
Acenaphthylene	ND	0.05	ug/L						
Anthracene	ND	0.01	ug/L						
Benzo [a] anthracene	ND	0.01	ug/L						
Benzo [a] pyrene	ND	0.01	ug/L						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] perylene	ND	0.05	ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Chrysene Dibenzo [a,h] anthracene	ND ND	0.05 0.05	ug/L						
Fluoranthene	ND ND	0.03	ug/L ug/L						
Fluorene	ND	0.05	ug/L						
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
1-Methylnaphthalene	ND	0.05	ug/L						
2-Methylnaphthalene	ND	0.05	ug/L						
Methylnaphthalene (1&2)	ND	0.10	ug/L						
Naphthalene	ND	0.05	ug/L						
Phenanthrene	ND	0.05	ug/L						
Pyrene	ND	0.01	ug/L						
Surrogate: 2-Fluorobiphenyl	16.9		ug/L		84.5	50-140			
Surrogate: Terphenyl-d14	21.2		ug/L		106	50-140			
Volatiles									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND ND	0.5	ug/L						
Carbon Tetrachloride Chlorobenzene	ND ND	0.2 0.5	ug/L						
Chloroform	ND ND	0.5 0.5	ug/L ug/L						
Dibromochloromethane	ND ND	0.5 0.5	ug/L ug/L						
Dichlorodifluoromethane	ND ND	1.0	ug/L ug/L						
District Garingor Grinotti (al 10	ND	0.5	ug/∟						

Client PO:

Client: GHD Limited (Ottawa)

Order #: 1942259

Report Date: 22-Oct-2019 Order Date: 16-Oct-2019

Project Description: 11201061

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane	ND	0.2	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	94.4		ug/L		118	50-140			
Surrogate: Dibromofluoromethane	69.1		ug/L		86.4	50-140			
Surrogate: Toluene-d8	76.5		ug/L		95.6	50-140			

Report Date: 22-Oct-2019 Certificate of Analysis Order Date: 16-Oct-2019 Client: GHD Limited (Ottawa) Client PO: Project Description: 11201061

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
рН	7.8	0.1	pH Units	7.9			0.3	3.3	
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
,	ND	20	ug/L	ND				00	
Metals									
Antimony	0.72	0.5	ug/L	ND			0.0	20	
Arsenic	ND	1	ug/L	ND			0.0	20	
Barium	1.9	1_	ug/L	1.9			2.6	20	
Beryllium	ND	0.5	ug/L	ND			0.0	20	
Boron	ND	10	ug/L	ND			0.0	20	
Cadmium	ND	0.1	ug/L	ND			0.0	20	
Chromium	ND	1	ug/L	ND			0.0	20	
Cobalt	ND	0.5	ug/L	ND			0.0	20	
Copper	0.95	0.5	ug/L	0.86			10.6	20	
Lead	ND	0.1	ug/L	ND			0.0	20	
Molybdenum	ND	0.5	ug/L	ND			0.0	20	
Nickel	ND	1	ug/L	ND			0.0	20	
Selenium	ND	1	ug/L	ND			0.0	20	
Silver	ND	0.1	ug/L	ND			0.0	20	
Sodium	584	200	ug/L	569			2.5	20	
Thallium	ND	0.1	ug/L	ND			0.0	20	
Uranium	ND	0.1	ug/L	ND			0.0	20	
Vanadium	ND	0.5	ug/L	ND			0.0	20	
Zinc	ND	5	ug/L	ND			0.0	20	
Volatiles									
Acetone	ND	5.0	ug/L	ND				30	
Benzene	ND	0.5	ug/L	ND				30	
Bromodichloromethane	1.26	0.5	ug/L	ND			0.0	30	
Bromoform	ND	0.5	ug/L	ND				30	
Bromomethane	ND	0.5	ug/L	ND				30	
Carbon Tetrachloride	ND	0.2	ug/L	ND				30	
Chlorobenzene	ND	0.5	ug/L	ND				30	
Chloroform	3.25	0.5	ug/L	4.79			38.3	30	
Dibromochloromethane	ND	0.5	ug/L	ND				30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND				30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,1-Dichloroethane	ND	0.5	ug/L	ND				30	
1,2-Dichloroethane	ND	0.5	ug/L	ND				30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND				30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
1,2-Dichloropropane	ND	0.5	ug/L	ND				30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Ethylene dibromide (dibromoethane	ND	0.2	ug/L	ND				30	
Hexane	ND	1.0	ug/L	ND				30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND				30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND				30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND				30	
Methylene Chloride	ND	5.0	ug/L	ND				30	
Styrene	ND	0.5	ug/L	ND				30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
Tetrachloroethylene	ND	0.5	ug/L	ND				30	

Order #: 1942259

Report Date: 22-Oct-2019 Order Date: 16-Oct-2019

Client: GHD Limited (Ottawa) Client PO: Project Description: 11201061

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Toluene	ND	0.5	ug/L	ND				30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND				30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND				30	
Trichloroethylene	ND	0.5	ug/L	ND				30	
Trichlorofluoromethane	ND	1.0	ug/L	ND				30	
Vinyl chloride	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: 4-Bromofluorobenzene	<i>87.3</i>		ug/L		109	50-140			
Surrogate: Dibromofluoromethane	73.0		ug/L		91.2	50-140			
Surrogate: Toluene-d8	72.5		ug/L		90.6	50-140			

Report Date: 22-Oct-2019 Certificate of Analysis Order Date: 16-Oct-2019 Client: GHD Limited (Ottawa) Client PO: Project Description: 11201061

Method Quality Control: Snike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1710	25	ug/L		85.5	68-117			
F2 PHCs (C10-C16)	1280	100	ug/L		80.1	60-140			
F3 PHCs (C16-C34)	4140	100	ug/L		106	60-140			
F4 PHCs (C34-C50)	2030	100	ug/L		82.0	60-140			
Metals			Ü						
Antimony	41.4		ug/L	ND	82.3	80-120			
Arsenic	46.7		ug/L	ND	93.0	80-120			
Barium	47.7		ug/L	1.9	91.6	80-120			
Beryllium	46.1		ug/L	ND	92.2	80-120			
Boron	41		ug/L		81.9	80-120			
Cadmium	46.9		ug/L	ND	93.7	80-120			
Chromium	45.9		ug/L	ND	91.8	80-120			
Cobalt	42.8		ug/L	ND	85.6	80-120			
Copper	45.4		ug/L	0.86	89.1	80-120			
Lead	41.7		ug/L	ND	83.4	80-120			
Molybdenum	41.1		ug/L ug/L	ND	82.0	80-120			
Nickel	43.8		ug/L ug/L	ND	87.5	80-120			
Selenium	46.1		ug/L ug/L	ND	92.2	80-120			
Silver	41.4		ug/L ug/L	ND	82.8	80-120			
Sodium	9130		ug/L ug/L	569	85.6	80-120			
Thallium	41.5		-	ND	83.0	80-120			
	40.4		ug/L						
Uranium			ug/L	ND	80.8	80-120			
Vanadium	45.2		ug/L	ND	90.4	80-120			
Zinc	48		ug/L	ND	95.9	80-120			
Semi-Volatiles									
Acenaphthene	4.05	0.05	ug/L		81.0	50-140			
Acenaphthylene	3.75	0.05	ug/L		74.9	50-140			
Anthracene	4.01	0.01	ug/L		80.2	50-140			
Benzo [a] anthracene	4.59	0.01	ug/L		91.7	50-140			
Benzo [a] pyrene	4.11	0.01	ug/L		82.2	50-140			
Benzo [b] fluoranthene	5.85	0.05	ug/L		117	50-140			
Benzo [g,h,i] perylene	3.39	0.05	ug/L		67.8	50-140			
Benzo [k] fluoranthene	5.72	0.05	ug/L		114	50-140			
Chrysene	4.96	0.05	ug/L		99.3	50-140			
Dibenzo [a,h] anthracene	3.72	0.05	ug/L		74.5	50-140			
Fluoranthene	4.59	0.01	ug/L		91.8	50-140			
Fluorene	3.97	0.05	ug/L		79.4	50-140			
Indeno [1,2,3-cd] pyrene	3.78	0.05	ug/L		75.6	50-140			
1-Methylnaphthalene	4.09	0.05	ug/L		81.8	50-140			
2-Methylnaphthalene	4.41	0.05	ug/L		88.2	50-140			
Naphthalene	4.14	0.05	ug/L		82.7	50-140			
Phenanthrene	3.85	0.05	ug/L		76.9	50-140			
Pyrene	4.24	0.01	ug/L		84.7	50-140			
Surrogate: 2-Fluorobiphenyl	17.5		ug/L		87.7	50-140			
Volatiles									
Acetone	53.7	5.0	ug/L		53.7	50-140			
Benzene	39.4	0.5	ug/L		98.6	60-130			
Bromodichloromethane	30.4	0.5	ug/L		76.1	60-130			
Bromoform	27.4	0.5	ug/L		68.4	60-130			
Bromomethane	38.8	0.5	ug/L		96.9	50-140			

Client: GHD Limited (Ottawa)

Certificate of Analysis

Client PO:

Order #: 1942259

Report Date: 22-Oct-2019 Order Date: 16-Oct-2019

Project Description: 11201061

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Carbon Tetrachloride	29.1	0.2	ug/L		72.8	60-130			
Chlorobenzene	34.1	0.5	ug/L		85.3	60-130			
Chloroform	34.7	0.5	ug/L		86.7	60-130			
Dibromochloromethane	26.7	0.5	ug/L		66.8	60-130			
Dichlorodifluoromethane	34.7	1.0	ug/L		86.7	50-140			
1,2-Dichlorobenzene	30.9	0.5	ug/L		77.3	60-130			
1,3-Dichlorobenzene	30.9	0.5	ug/L		77.4	60-130			
1,4-Dichlorobenzene	32.2	0.5	ug/L		80.6	60-130			
1,1-Dichloroethane	37.6	0.5	ug/L		93.9	60-130			
1,2-Dichloroethane	27.3	0.5	ug/L		68.2	60-130			
1,1-Dichloroethylene	39.7	0.5	ug/L		99.3	60-130			
cis-1,2-Dichloroethylene	39.2	0.5	ug/L		97.9	60-130			
trans-1,2-Dichloroethylene	39.1	0.5	ug/L		97.7	60-130			
1,2-Dichloropropane	38.5	0.5	ug/L		96.2	60-130			
cis-1,3-Dichloropropylene	32.1	0.5	ug/L		80.2	60-130			
trans-1,3-Dichloropropylene	32.1	0.5	ug/L		80.2	60-130			
Ethylbenzene	31.5	0.5	ug/L		78.7	60-130			
Ethylene dibromide (dibromoethane	29.7	0.2	ug/L		74.2	60-130			
Hexane	47.4	1.0	ug/L		119	60-130			
Methyl Ethyl Ketone (2-Butanone)	93.1	5.0	ug/L		93.1	50-140			
Methyl Isobutyl Ketone	82.0	5.0	ug/L		82.0	50-140			
Methyl tert-butyl ether	76.4	2.0	ug/L		76.4	50-140			
Methylene Chloride	41.5	5.0	ug/L		104	60-130			
Styrene	31.2	0.5	ug/L		78.0	60-130			
1,1,1,2-Tetrachloroethane	29.5	0.5	ug/L		73.8	60-130			
1,1,2,2-Tetrachloroethane	42.3	0.5	ug/L		106	60-130			
Tetrachloroethylene	31.5	0.5	ug/L		78.7	60-130			
Toluene	33.4	0.5	ug/L		83.5	60-130			
1,1,1-Trichloroethane	29.5	0.5	ug/L		73.8	60-130			
1,1,2-Trichloroethane	39.3	0.5	ug/L		98.2	60-130			
Trichloroethylene	30.1	0.5	ug/L		75.2	60-130			
Trichlorofluoromethane	27.2	1.0	ug/L		68.0	60-130			
Vinyl chloride	27.3	0.5	ug/L		68.2	50-140			
m,p-Xylenes	70.8	0.5	ug/L		88.5	60-130			
o-Xylene	31.6	0.5	ug/L		79.0	60-130			

Certificate of Analysis

Client: GHD Limited (Ottawa)

Client PO:

Report Date: 22-Oct-2019

Order Date: 16-Oct-2019

Project Description: 11201061

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

The Sample Date for lab provided Trip QC samples is based on the date of preparation at the lab.

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Paracel ID: 1942259

LABORATORIES LTD.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com Chain of Custody (Lab Use Only)

.Nº 123279

Chent Name: GHO			100	Project Referen	on Unes	71	-	-	_	-	-	-			p		
Contrat Names 1					ce: 1/2010	,								Turn	aroun	d Time	e:
Address: Like Lopes				Quote #									01	Day		□3 D)av
179 Colonnade Rad				PO#												,	,,,
Telephone: (15-727-0570				Email Address:	Lita L	-0-1	0	-6.1	EMA				02	Day		Reg	gular
(0) 141 -0510					Lukente	spers.	0	ny.	WII	V			Date	Requi	red:		
Criteria: 10 O. Reg. 153/04 (As Amended) Table 7	RSC Filing	J O. Re	g. 558/0	0 DPWQO D	CCME I SU	JB (St	orm) I	SUE	3 (Sar	itary) Mun	icipality:			Other:		
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface							quire								-		-
Paracel Order Number:			T	T		×	T	T	T	,							
		5	nen			3TE											
1942259		Air Volume	of Containers	Sampl	e Taken	F4+BT		I d D									
	Matrix	Vo	CO			E	s	s by			NS)	4					
Sample ID/Location Name	Ma	Air	10 #	Date	Time	PHCs	VOCs	Metals	Hg	CrvI	B (HWS)	t					
1 112010(1-BHZA	Ch		8	07-16/19	10:15	X		7 x	1	Ŭ	-	1	+	-	_		
2 1120141-BH3	6W		7	0:116/19	12,45	X		1	+		-	_	+	-			
3 1120W61 -BIHY	Gh		5	041/19	14:00	V	1	10	+	Н	+	-		_			
1 11201061-1315			7	7	The state of the s	1	*	-	-		-	1					1
5 1129461-13147	G by		7	04 16/19	15'30	X	X	X	_		1	<					
	6 W		1	Oot 16/19		X	x >	(X									
6 Trap Blank	6V			Sep 83, 20	19		X										
				1 '													
8								T								-	-
9								T		1	+	_	+			_	_
10						\forall	+	+		+	+	-	+		_	_	
Comments:										_							
														Method o			
telinquished By (Sign):	Received	by Drivi	er/Depot		Regeive	el at La	,							Mm	UK-1	~	
M West			400		A	A at Lil	V.					Verifie	70				
elinquished By (Print): Lya Vader Work	Date/Time	e;		100	Date/Tir	medic	114	1300	_	1.1	-1 0		170	an	2	21-	
ate/Time: Oct (C, log (C) (O)	Temperati	ure:	°C		Temper					M	01 p	The second second	ified I 1 da	oct	19	159	
		-				THE REAL PROPERTY.						IDIT VCT	THEU ! I CU	F 1.1	10000		1000

Appendix D Grain Size Analysis

CLIENT: G-19-009 9770967 Canada Inc. LAB No.: **PROJECT/SITE:** 1098 Ogilvie Road/1178 Cummings Avenue PROJECT No.: 11201061 **BOREHOLE:** BH2 SAMPLE: SS1 DEPTH: 0.0m - 0.6m SAMPLE DATE: September 23/24, 2019 **SAMPLE % PASSING** SIEVE SIZE (mm) 100.0 26.2 19.0 95.1 90.3 13.2 9.5 85.2 4.75 75.1 1.18 62.1 0.600 55.9 0.300 47.0 0.150 36.9 0.075 28.1 100 90 80 20 70 30 PERCENT RETAINED PERCENT PASSING 60 40 70 30 10 90 100 0 0.01 1000 **REMARKS: DATE:** October 23, 2019 PERFORMED BY: A. Elhaddad **VERIFIED BY: DATE:** October 23, 2019

CLIE	NT:	9770967	Canada Inc.	LAB No.:	G-19-009					
PRO	JECT/SITE:	1098 Ogilvie Road/1	178 Cummings Avenue	PROJECT No.:	11201061					
BORE DEPT	EHOLE: 'H:	BH6 0.8m - 1.	SAMPL SAMPL	E: E DATE:	SS2 September 23/24, 2019	_ _ _				
	SIEVE S	SIZE (mm)	SAMPLE % PASS	SING						
		26.2	100.0							
		19.0	100.0							
		13.2 9.5	97.8 97.0							
		4.75	91.4							
		1.18	77.2							
		0.600	68.0							
		0.300	54.5							
		0.150	39.9							
		0.075	31.3							
PERCENT PASSING	100 90 80 70 60 50 40 30 20 10 0.01	0.1	777.2	100.0	10 10 20 30 40 40 HZ PARILED 60 60 80 90 1000 1000					
REM	ARKS:									
						_				
PERI	FORMED BY:	A. Ell	haddad	DATE:	October 23, 2019					
VERI	IFIED BY:	2/2	2	DATE:	October 23, 2019					

about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

Scott Wallis Scott.Wallis@ghd.com 343.290.0515

Luke Lopers Luke.Lopers@ghd.com 613.288.1723

www.ghd.com