patersongroup

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Studies

Geotechnical Investigation

Proposed Multi-Storey Building 2070 Scott Street Ottawa, Ontario

Prepared For

Westboro Point Developments Ltd.

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca July 26, 2019

Report PG4935-1

Table of Contents

Page

1.0	Introduction1	
2.0	Proposed Project 1	
3.0	Method of Investigation3.1Field Investigation3.2Field Survey3.3Laboratory Testing3.4Analytical Testing	;
4.0	Observations4.1Surface Conditions54.2Subsurface Profile54.3Groundwater6)
5.0	Discussion5.1Geotechnical Assessment.75.2Site Grading and Preparation75.3Foundation Design105.4Design for Earthquakes.105.5Basement Slab125.6Basement Wall125.7Rock Anchor Design145.8Pavement Structure.17	
6.0	Design and Construction Precautions6.1Foundation Drainage and Backfill196.2Protection of Footings Against Frost Action206.3Excavation Side Slopes and Temporary Shoring216.4Pipe Bedding and Backfill236.5Groundwater Control236.6Winter Construction256.7Corrosion Potential and Sulphate25	
7.0	Recommendations)
8.0	Statement of Limitations	,

Appendices

Appendix 1	Soil Profile and Test Data Sheets Symbols and Terms Soil Profile and Test Data Sheets by Others Uniaxial Compressive Strength Testing Results Analytical Testing Results
Appendix 2	Figure 1 - Key Plan Figure 2 and 3 - Seismic Shear Wave Velocity Profiles Figure 4 - Groundwater Suppression System

Drawing PG4935-1 - Test Hole Location Plan

1.0 Introduction

Paterson Group (Paterson) was commissioned by Westboro Point Developments Ltd. to conduct a geotechnical investigation for the proposed multi-storey building to be located at 2070 Scott Street in the City of Ottawa, Ontario (refer to Figure 1 - Key Plan in Appendix 2).

The objectives of the current investigation were to:

- determine the subsurface soil and groundwater conditions at this site based on available subsoil information from current and previous investigations.
- □ provide geotechnical recommendations for the design of the proposed development including construction considerations which may affect the design.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. This report contains our findings and includes geotechnical recommendations pertaining to the design and construction of the commercial development as understood at the time of writing this report.

2.0 Proposed Project

Based on the preliminary concept drawings, it is our understanding that the proposed project is to consist of a multi-storey building with 2 to 3 levels of underground parking. Associated access lanes, parking areas and landscaped margins are also anticipated as part of the proposed development.

It is further understood that the proposed building will be serviced with municipal water and sewer.

3.0 Method of Investigation

3.1 Field Investigation

Field Program

The field program for the current geotechnical investigation was carried out on May 15, 2019. At that time, a total of three (3) boreholes (BH 4-19 through BH 6-19) were advanced to a maximum depth of 8.3 m below the existing ground surface. The boreholes were distributed in a manner to provide general coverage of the proposed development taking into consideration existing site features and underground utilities.

Previous geotechnical investigations conducted at the subject site by Paterson included three (3) boreholes (BH 1 through BH 3) completed on April 2, 2013, one (1) test pit (TP 1) completed on April 3, 2013, five (5) test pits (TP 1 through TP 5) completed on October 21, 2002, five (5) boreholes (BH 1 through BH 5) completed on October 15, 2001, and four (4) boreholes (BH 1-1 through BH 4-1) completed on November 18, 1996. The locations of the test holes are shown on Drawing PG4935-1 - Test Hole Location Plan included in Appendix 2.

The boreholes were drilled using a track-mounted auger drill rig operated by a two person crew. The drilling procedure consisted of augering to the required depths at the selected locations and sampling the overburden. The test pit procedure consisted of excavating to the required depths at the selected locations and sampling the overburden. The test pits were backfilled with the excavated soil upon completion. All fieldwork was conducted under the full-time supervision of Paterson personnel under the direction of a senior engineer.

A field investigation program was also completed at the subject site by others during the period of April 2 through 5, 2013, consisting of a total of 12 boreholes (BH/MW 1 through BH 12) advanced to a maximum depth of 13.5 m below the existing ground surface. The borehole logs prepared by others are provided in Appendix 1.

Sampling and In Situ Testing

Soil samples were recovered from a 50 mm diameter split-spoon, the auger flights or grab samples. The split-spoon, auger and grab samples were classified on site and placed in sealed plastic bags. All samples were transported to our laboratory. The depths at which the split-spoon, auger and grab samples were recovered from the boreholes are presented as SS, AU and G, respectively, on the Soil Profile and Test Data sheets.

Standard Penetration Tests (SPT) were conducted in conjunction with the recovery of the split-spoon samples. The SPT results are recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split-spoon sample 300 mm into the soil after the initial penetration of 150 mm using a 63.5 kg hammer falling from a height of 760 mm.

Diamond drilling was completed at select locations to confirm the bedrock quality. A recovery value and a Rock Quality Designation (RQD) value were calculated for each drilled section of bedrock and are presented as RC on the Soil Profile and Test Data sheets in Appendix 1. The recovery value is the ratio of the bedrock sample length recovered over the drilled section length, in percentage. The RQD value is the total length ratio of intact rock core length more than 100 mm in one drilled section over the length of the drilled section, in percentage. These values are indicative of the quality of the bedrock.

The subsurface conditions observed in the boreholes were recorded in detail in the field. The soil and bedrock profiles are presented on the Soil Profile and Test Data sheets in Appendix 1.

Groundwater

Monitoring wells were installed in boreholes BH 1, BH 3, BH 4-19, BH 5-19 and BH 6-19 to permit the monitoring of water levels subsequent to the completion of the sampling program.

Sample Storage

All samples will be stored in the laboratory for a period of one month after issuance of this report. They will then be discarded unless we are otherwise directed.

3.2 Field Survey

The test holes completed during the most recent geotechnical investigations on May 15, 2019 and April 2 and 3, 2013 were selected and determined in the field by Paterson personnel to provide general coverage of the subject site. The location and ground surface elevation at these borehole locations were surveyed by Paterson personnel. The test holes were surveyed with respect to a temporary benchmark (TBM), consisting of the top spindle of a fire hydrant located along the west property boundary near Churchill Avenue. A geodetic elevation of 66.18 m was provided for the TBM.

The location and ground surface elevation at each test hole location is presented on Drawing PG4935-1 - Test Hole Location Plan in Appendix 2.

3.3 Laboratory Testing

Soil and bedrock samples recovered from the subject site were visually examined in our laboratory to review the field logs. Two bedrock samples were submitted for uniaxial compressive strength, the results of which are provided in Appendix 1.

3.4 Analytical Testing

One soil sample was submitted for analytical testing to assess the potential for exposed ferrous metals and the sulphate potential against subsurface concrete structures. The sample was submitted to determine the concentration of sulphate and chloride, the resistivity and the pH of the soil. The results are provided in Appendix 1, and are discussed further in Section 6.7.

4.0 Observations

4.1 Surface Conditions

The subject site is currently vacant, with a mixture of asphaltic pavement structure, granular crushed stone and some concrete and construction debris located at the existing ground surface. The site is bordered by Scott Street to the north, Winona Avenue to the east, residential properties to the south, and Churchill Avenue to the west. The existing ground surface across the site slopes downward gradually from west to east, from approximate geodetic elevation 65.5 m at the west property line to approximate geodetic elevation 63 m at the east property line.

It is understood that the site was formerly occupied by two commercial buildings, a 3 storey building with a basement on the west portion of the site and a single storey, slab on grade building on the east portion of the site.

4.2 Subsurface Profile

Overburden

Generally, the subsurface profile at the borehole locations consists of fill underlying the existing crushed stone surface or 80 to 150 mm thick asphalt surface. The fill material extended to approximate depths of 1.4 to 3.8 m below the existing ground surface and generally consisted of loose to dense, brown silty sand to silty clay with trace to some gravel, cobbles, boulders, and construction debris such as glass, wood chips, brick, and concrete.

Bedrock

Practical refusal to augering or excavation was encountered at the test holes at depths of 1.4 to 3.8 m below the existing ground surface. Bedrock was cored at boreholes BH 1, BH 3, BH 4-19, BH 5-19, and BH 6-19 to depths of 7.7 to 13.5 m, and consisted of a poor to excellent quality limestone to limestone with interbedded dolostone and shale.

Based on available geological mapping, bedrock in the area of the subject site consists of interbedded limestone and dolostone of the Gull River Formation with drift thicknesses of 1 to 2 m.

4.3 Groundwater

Groundwater levels were measured in the groundwater monitoring wells BH 1 and BH 3 on April 4, 2013, and in the groundwater monitoring wells BH 4-19 through BH 6-19 on May 15, 2019. The measured groundwater level (GWL) readings are presented in Table 1 below and on the Soil Profile and Test Data sheets in Appendix 1.

However, it should be noted that groundwater levels are subject to seasonal fluctuations. Therefore, the groundwater level could vary at the time of construction.

Test Hole	Ground	Ground	water Level	.		
Location	Surface Elevation (m)	Depth (m)	Elevation (m)	Date		
BH 1	65.09	6.93	58.16	April 4, 2013		
BH 3	63.07	5.27	57.80	April 4, 2013		
BH 4-19	63.71	7.10	7.10	56.61	May 22, 2019	
BH 5-19	63.34	6.14	57.20	May 22, 2019		
BH 6-19	62.99	5.82	57.17	May 22, 2019		
top spindle of			temporary benchmark (⁻ erty boundary near Churd			

5.0 Discussion

5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is adequate for the proposed multistorey building. The proposed building is expected to be founded on footings placed on clean, surface sounded bedrock.

Bedrock removal will be required to complete the underground parking levels. Line drilling and controlled blasting where large quantities of bedrock need to be removed is recommended. The blasting operations should be planned and completed under the guidance of a professional engineer with experience in blasting operations.

The above and other considerations are discussed in the following sections.

5.2 Site Grading and Preparation

Stripping Depth

Due to the relatively shallow depth of the bedrock at the subject site and the anticipated founding level for the proposed building, all existing overburden material should be excavated from within the proposed building footprint. Bedrock removal will be required for the construction of the underground levels.

Existing foundation walls and other construction debris should be entirely removed from within the building perimeter. Under paved areas, existing construction remnants, such as foundation walls, should be excavated to a minimum of 1 m below final grade.

Bedrock Removal

Based on the volume of the bedrock encountered in the area, it is expected that linedrilling in conjunction with hoe-ramming or controlled blasting will be required to remove the bedrock. In areas of weathered bedrock and where only a small quantity of bedrock is to be removed, bedrock removal may be possible by hoe-ramming. Prior to considering blasting operations, the blasting effects on the existing services, buildings and other structures should be addressed. A pre-blast or pre-construction survey of the existing structures located in proximity to the blasting operations should be conducted prior to commencing construction. The extent of the survey should be determined by the blasting consultant and sufficient to respond to any inquiries/claims related to the blasting operations.

As a general guideline, peak particle velocity (measured at the structures) should not exceed 25 mm/s during the blasting program to reduce the risks of damage to the existing structures.

The blasting operations should be planned and conducted under the supervision of a licensed professional engineer who is an experienced blasting consultant.

Excavation side slopes in sound bedrock can be completed with almost vertical side walls. A minimum of 1 m horizontal bench, should remain between the bottom of the overburden and the top of the bedrock surface to provide an area for potential sloughing or to provide a stable base for the overburden shoring system.

Vibration Considerations

Construction operations could be the cause of vibrations, and possibly, sources of nuisance to the community. Therefore, means to reduce the vibration levels as much as possible should be incorporated in the construction operations to maintain a cooperative environment with the residents.

The following construction equipment could be the source of vibrations: piling equipment, hoe ram, compactor, dozer, crane, truck traffic, etc. The construction of the shoring system with soldier piles would utilize such equipment. Vibrations, whether it is caused by blasting operations or by construction operations, could be the cause of the source of detrimental vibrations on the adjoining buildings and structures. Therefore, it is recommended that all vibrations be limited.

Two parameters determine the permissible vibrations: the maximum peak particle velocity and the frequency. For low frequency vibrations, the maximum allowable peak particle velocity is less than that for high frequency vibrations. As a guideline, the peak particle velocity should be less than 15 mm/s between frequencies of 4 to 12 Hz, and 50 mm/s above a frequency of 40 Hz (interpolate between 12 and 40 Hz). These guidelines are for current construction standards. Considering there are several sensitive buildings in close proximity to the subject site, consideration to lowering these guidelines is recommended.

These guidelines are above perceptible human level and, in some cases, could be very disturbing to some people. Therefore, a pre-construction survey is recommended to minimize the risks of claims during or following the construction of the proposed building.

Horizontal Rock Anchors

Horizontal rock anchors may be required at specific locations to prevent pop-outs of the bedrock, especially in areas where bedrock fractures are conducive to the failure of the bedrock surface.

The requirement for horizontal rock anchors will be evaluated during the excavation operations and should be discussed with the structural engineer during the design stage.

Fill Placement

Fill placed for grading beneath the building areas should consist, unless otherwise specified, of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II. The imported fill material should be tested and approved prior to delivery to the site. The fill should be placed in maximum of 300 mm thick loose lifts and compacted using suitable compaction equipment. Fill placed beneath the buildings should be compacted to a minimum of 98% of the standard Proctor maximum dry density (SPMDD).

Non-specified existing fill along with site-excavated soil could be placed as general landscaping fill where settlement of the ground surface is of minor concern. These materials should be spread in lifts with a maximum thickness of 300 mm and compacted by the tracks of the spreading equipment to minimize voids. Non-specified existing fill and site-excavated soils are not suitable for placement as backfill against foundation walls, unless used in conjunction with a geocomposite drainage membrane, such as Delta Drain 6000.

5.3 Foundation Design

Footings placed on a clean, surface sounded limestone bedrock surface can be designed using a factored bearing resistance value at ultimate limit states (ULS) of **1,500 kPa**, incorporating a geotechnical resistance factor of 0.5.

A clean, surface-sounded bedrock bearing surface should be free of loose materials, and have no near surface seams, voids, fissures or open joints which can be detected from surface sounding with a rock hammer.

A factored bearing resistance value at ULS of **4,500 kPa**, incorporating a geotechnical resistance factor of 0.5, could be provided if founded on limestone bedrock which is free of seams, fractures and voids within 1.5 m below the founding level. This should be verified by completing and probing 50 mm diameter drill holes to a depth of 1.5 m below the founding level within the all the footing footprints. A minimum of one probe hole should be completed per footing. The drill hole inspection should be completed by the geotechnical consultant.

Settlement

Footings bearing on an acceptable bedrock bearing surface and designed using the bearing resistance values provided herein will be subjected to negligible potential post-construction total and differential settlements.

5.4 Design for Earthquakes

A site specific shear wave velocity test was completed to accurately determine the applicable seismic site classification for foundation design of the proposed building as presented in Table 4.1.8.4.A of the Ontario Building Code 2012. A seismic shear wave velocity test was completed by Paterson at the subject site. Two shear wave velocity profiles are presented in Appendix 2.

Field Program

The shear wave test location is presented in Drawing PG4935-1 - Test Hole Location Plan in Appendix 2. Paterson field personnel installed 24 horizontal geophones in a straight line oriented roughly in a north-south direction along the eastern site boundary. The 4.5 Hz horizontal geophones were mounted to the surface by means of two 75 mm ground spikes attached to the geophone land case. The geophones were spaced at 1 m intervals and connected by a geophone spread cable to a Geode 24 Channel seismograph.

The seismograph was connected to a computer and a trigger switch attached to a 12 pound dead blow hammer. The hammer trigger sends a signal to the seismograph to commence recording. The hammer strikes an I-Beam seated into the ground surface, which produces a polarized shear wave. The shots are repeated between four to eight times at each shot location to provide an accurate signal and reduce noise. The shot locations are completed in forward and reverse directions (i.e. striking both sides of the I-Beam seated parallel to the geophone array). The shot locations were distributed at the centre of the geophone array and 1, 2 and 5 m away from the first and last geophone.

Data Processing and Interpretation

Interpretation for the shear wave velocity results were completed by Paterson. The shear wave velocity measurement was calculated by the reflection/refraction methods. The interpretation is performed by recovering arrival times from direct and refracted waves. The interpretation is repeated at each shot location to provide an average shear wave velocity, V_{s30} , immediately below the proposed building foundation of the upper 30 m profile. To compute the bedrock depth at each location, the layer intercept times, velocities from different layers and critical distances are interpreted from the shear wave graphs. The bedrock velocity was interpreted by the main refractor wave velocity, which is considered a conservative estimate of the bedrock velocity due to the increasing quality of the bedrock with depth. As bedrock quality increases, the bedrock shear wave velocity increases.

The V_{s30} was calculated using the standard equation for average shear wave velocity from the Ontario Building Code (OBC) 2012, as presented below;

$$V_{s30} = \frac{Depth_{OfInterest}(m)}{\left(\frac{(Depth_{Layer1}(m)}{Vs_{Layer1}(m/s)} + \frac{Depth_{Layer2}(m)}{Vs_{Layer2}(m/s)}\right)}$$
$$V_{s30} = \frac{30m}{\left(\frac{0m}{233m/s} + \frac{30m}{1,805m/s}\right)}$$
$$V_{s30} = 1,805m/s$$

Based on the seismic results, the average shear wave velocity, V_{s30} , for shallow foundations located at the subject site is 1,805 m/s. Therefore, a **Site Class A** is applicable for design of the proposed building at the subject site, as per Table 4.1.8.4.A of the OBC 2012. The soils underlying the subject site are not susceptible to liquefaction.

5.5 Basement Slab

For the subject site development, all overburden soil should be removed from the subject site and the basement floor slab will be founded on a bedrock medium. OPSS Granular A or Granular B Type II, with a maximum particle size of 50 mm, are recommended for backfilling below the floor slab. It is recommended that the upper 150 to 200 mm of sub-slab fill consists of a 19 mm clear crushed stone.

In consideration of the groundwater conditions encountered at the time of the field investigation, an underfloor drainage system, consisting of lines of perforated drainage pipe subdrains connected to a positive outlet, should be provided in the clear stone backfill under the lower basement floor.

5.6 Basement Wall

There are several combinations of backfill materials and retained soils that could be applicable for the basement walls of the subject structure. However, the conditions can be well-represented by assuming the retained soil consists of a material with an angle of internal friction of 30 degrees and a bulk (drained) unit weight of 20 kN/m³.

It is expected that a portion of the basement walls are to be poured against a composite drainage blanket, which will be placed against the exposed bedrock face. A nominal coefficient of at-rest earth pressure of 0.05 is recommended in conjunction with a bulk unit weight of 23.5 kN/m³ (effective 15.5 kN/m³) where this condition occurs. Further, a seismic earth pressure component will not be applicable for the foundation wall which is poured against the bedrock face. It is expected that the seismic earth pressure will be transferred to the underground floor slabs, which should be designed to accommodate these pressures. A hydrostatic groundwater pressure should be added for the portion below the groundwater level.

Undrained conditions are anticipated (i.e. below the groundwater level). Therefore, the applicable effective (undrained) unit weight of the retained soil can be taken as 13 kN/m^3 , where applicable. A hydrostatic pressure should be added to the total static earth pressure when using the effective unit weight.

Two (2) distinct conditions, static and seismic, must be reviewed for design calculations. The parameters for design calculations for the two (2) conditions are presented below.

Static Conditions

The static horizontal earth pressure (p_o) can be calculated using a triangular earth pressure distribution equal to $K_o \cdot \gamma \cdot H$ where:

- K_{o} = at-rest earth pressure coefficient of the applicable retained soil or bedrock
- γ = unit weight of fill of the applicable retained soil or bedrock (kN/m³)
- H = height of the wall (m)

An additional pressure having a magnitude equal to $K_o \cdot q$ and acting on the entire height of the wall should be added to the above diagram for any surcharge loading, q (kPa), that may be placed at ground surface adjacent to the wall. The surcharge pressure will only be applicable for static analyses and should not be used in conjunction with the seismic loading case.

Actual earth pressures could be higher than the "at-rest" case if care is not exercised during the compaction of the backfill materials to maintain a minimum separation of 0.3 m from the walls with the compaction equipment.

Seismic Conditions

The total seismic force (P_{AE}) includes both the earth force component (P_o) and the seismic component (ΔP_{AE}) .

The seismic earth force (ΔP_{AE}) can be calculated using $0.375 \cdot a_c \cdot \gamma \cdot H^2/g$ where:

 $a_c = (1.45 - a_{max}/g)a_{max}$ $\gamma =$ unit weight of fill of the applicable retained soil (kN/m³) H = height of the wall (m) g = gravity, 9.81 m/s²

The peak ground acceleration, (a_{max}) , for the Ottawa area is 0.32g according to the OBC 2012. Note that the vertical seismic coefficient is assumed to be zero.

The earth force component (P_o) under seismic conditions can be calculated using P_o = 0.5 K_o γ H², where K_o = 0.5 for the soil conditions noted above.

The total earth force (P_{AE}) is considered to act at a height, h (m), from the base of the wall, where:

 $h = \{P_{o} \cdot (H/3) + \Delta P_{AE} \cdot (0.6 \cdot H)\} / P_{AE}$

The earth forces calculated are unfactored. For the ULS case, the earth loads should be factored as live loads, as per the OBC 2012.

5.7 Rock Anchor Design

The geotechnical design of grouted rock anchors in limestone bedrock is based upon two possible failure modes. The rock anchor can fail by shear failure along the grout/rock interface or by pullout at 60 to 90 degree cone of rock with the apex of the cone near the middle of the bonded length of the anchor. Interaction may develop between the failure cones of anchors that are relatively close to one another resulting in a total group capacity smaller than the sum of the individual anchor load capacity.

A third failure mode of shear failure along the grout/steel interface should be reviewed by a qualified structural engineer to ensure all typical failure modes have been reviewed. Typical rock anchor suppliers, such as Dywidag Systems International (DSI Canada) or Williams Form Engineering, have qualified personnel on staff to recommend appropriate rock anchor size and materials.

The centre to centre spacing between bond lengths should be a minimum of 1.2 m or four times the anchor hole diameter to ensure the group influence effects are minimized. Anchors in close proximity to each other are recommended to be grouted at the same time to ensure any fractures or voids are completely in-filled and grout fluid does not flow from one hole to an adjacent empty one.

Anchors can be of the "passive" or the "post-tensioned" type, depending on whether the anchor tendon is provided with post-tensioned load or not, prior to servicing.

Regardless of whether an anchor is a passive or the post tensioned type, it is recommended that the anchor is provided with a fixed anchor length at the base, which will provide the capacity, and an free anchor length between the rock surface and the top of the bonded length. As the depth at which the apex of the shear failure cone develops midway along the bonded length, a fully bonded anchor would tend to have a much shallower cone, and therefore less geotechnical resistance, than one where the bonded length is limited to the bottom part of the overall anchor.

Permanent anchors should be provided with corrosion protection. As a minimum, this requires that the entire drill hole be filled with cementitious grout. The free anchor length is provided by installing a sleeve to act as a bond break, with the sleeve filled with grout. Double corrosion protection can be provided with factory assembled systems, such as those available from Dywidag Systems International or Williams Form Engineering Corp.

Grout to Rock Bond

The unconfined compressive strength of limestone at the subject site ranges between 65 and 125 MPa, which is stronger than most routine grouts. A factored tensile grout to rock bond resistance value at ULS of **1.0 MPa**, incorporating a resistance factor of 0.3, should be provided. A minimum grout strength of 40 MPa is recommended.

Rock Cone Uplift

The rock anchor capacity depends on the dimensions of the rock anchors and the anchorage system configuration. Based on existing bedrock information, a **Rock Mass Rating (RMR) of 69** was assigned to the bedrock, and Hoek and Brown parameters (**m and s**) were taken as **0.575 and 0.00293**, respectively.

Recommended Grouted Rock Anchor Lengths

Parameters used to calculate grouted rock anchor lengths are provided in Table 1.

Table 2 - Parameters used in Rock Anchor Revie	ew
Grout to Rock Bond Strength - Factored at ULS	1.0 MPa
Compressive Strength - Grout	40 MPa
Rock Mass Rating (RMR) - Good quality Limestone Hoek and Brown parameters	69 m=0.575 and s=0.00293
Unconfined compressive strength - Limestone	65 MPa
Effective unit weight - Bedrock	15 kN/m ³
Apex angle of failure cone	60°
Apex of failure cone	mid-point of fixed anchor length

The fixed anchor length will depend on the diameter of the drill holes. Recommended anchor lengths are provided in Table 3. The factored tensile resistance values provided are based on a single anchor with no group influence effects.

Table 3 - Recor	Table 3 - Recommended Rock Anchor Lengths - Grouted Rock Anchor									
Diameter of	A	Factored Tensile								
Drill Hole (mm)	Bonded Length	Unbonded Length								
	2.0	0.8	2.8	450						
75	2.6	1	3.6	600						
75	3.2	1.2	4.4	750						
	4.5	2	6.5	1500						
	1.6	0.6	2.2	600						
105	2	1	3	750						
125	2.6	1.4	4.0	1000						
	3.2	1.8	5.0	1250						

Other Considerations

It is recommended that the anchor drill hole diameter be within 1.5 to 2 times the rock anchor tendon diameter. The anchor drill holes should be inspected by geotechnical personnel and should be flushed clean prior to grouting. A tremie pipe is recommended to place grout from the bottom to top of the anchor holes.

The geotechnical capacity of each rock anchor should be proof tested at the time of construction. More information on test procedures can be provided upon request. Compressive strength testing is recommended to be completed for the rock anchor grout. A set of grout cubes should be tested for each day grout is prepared.

5.8 Pavement Structure

Where paved areas are considered for the project, the recommended pavement structures shown in Tables 4 through 6 would be applicable.

Table 4 - Recommended Pavement Structure - Car Only Parking Areas							
Thickness (mm)	Material Description						
50	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete						
150	BASE - OPSS Granular A Crushed Stone						
300	SUBBASE - OPSS Granular B Type II						
	SUBGRADE - In situ soil, or OPSS Granular B Type I or II material placed over in situ soil						

Table 5 - Recommended Pavement Structure Access Lanes and Heavy Truck Parking Areas							
Thickness (mm)	Material Description						
40	Wear Course - HL-3 or Superpave 12.5 Asphaltic Concrete						
50	Binder Course - HL-8 or Superpave 19.0 Asphaltic Concrete						
150	BASE - OPSS Granular A Crushed Stone						
400	SUBBASE - OPSS Granular B Type II						
	SUBGRADE - In situ soil, or OPSS Granular B Type I or II material placed over in situ soil						

Table 6 - Recommended Rigid Pavement Structure - Lowest Parking Level								
Thickness (mm)	Material Description							
150	32 MPa - C4 - Concrete							
300	BASE - OPSS Granular A Crushed Stone							
SUBGRADE - Exis bedrock.	Thickness (mm) Material Description 150 32 MPa - C4 - Concrete 300 BASE - OPSS Granular A Crushed Stone SUBGRADE - Existing imported fill, or OPSS Granular B Type I or II material placed over							

Minimum Performance Graded (PG) 58-34 asphalt cement should be used for this project.

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be sub-excavated and replaced with OPSS Granular B Type II material.

The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 100% of the SPMDD with suitable vibratory equipment, noting that excessive vibration could lead to subgrade softening.

Ōttawa

Design and Construction Precautions 6.0

6.1 Foundation Drainage and Backfill

Water Suppression System

Where the proposed building is to have more than 2 underground parking levels, the following water suppression system is recommended to manage and control groundwater water infiltration over the long term. The water suppression system would be installed for the exterior foundation walls and underfloor drainage and would consist of the following (refer to Figure 4 - Water Suppression System in Appendix 2 for an illustration of this system cross-section):

- A concrete mud slab creating a horizontal hydraulic barrier to lessen the water infiltration at the base of the excavation. The thickness of the concrete mud slab will be determined during the excavation program when realistic groundwater infiltration can be properly assessed. However for preliminary design purposes, it is recommended that the concrete mud slab be designed at a minimum thickness of 150 mm.
- A waterproofing membrane to lessen the effect of water infiltration for the lower underground parking level(s) starting at 6 m below finished grade. The waterproofing membrane will consist of a bentonite waterproofing such as Tremco Paraseal or equivalent securely fastened to the temporary shoring system or the vertical bedrock surface. The membrane should extend to the bottom of the excavation at the founding level and extend horizontally over the concrete mud slab a minimum of 300 mm prior to the placement of the footings. Consideration can be given to doubling the bentonite waterproofing panels within the lower portion of the underground parking levels where hydrostatic pressure will be greater.

Water infiltration will result from two sources. The first will be water infiltration from the upper 6 m which is above the vertical waterproofed area. The second source will be water breaching the waterproofing membrane.

Foundation Drainage

A composite drainage layer should be placed from finished grade to the bottom of the foundation wall. Where the proposed building is to have more than 2 underground parking levels and the water suppression system is employed, the composite drainage layer should be placed between the waterproofing membrane and the foundation wall.

It is recommended that the composite drainage system consist of DeltaDrain 6000, MiraDrain G100N or an approved equivalent. It is expected that 150 mm diameter sleeves placed at 3 m centres be cast in the foundation wall at the footing interface to allow the infiltration of water to flow to an interior perimeter drainage pipe. The perimeter drainage pipe should direct water to the sump pit(s) within the lower basement area.

Underfloor Drainage

Underfloor drainage will be required to control water infiltration below the lowest underground parking level slab. For design purposes, it's recommended that 150 mm diameter perforated pipes be placed at approximate 6 m spacing underlying the lowest level floor slab. The final spacing of the underfloor drainage system should be confirmed at the time of completing the excavation when water infiltration can be better assessed.

Foundation Backfill

Above the bedrock surface, backfill against the exterior sides of the foundation walls should consist of free-draining non frost susceptible granular materials. The greater part of the site excavated materials will be frost susceptible and, as such, are not recommended for re-use as backfill against the foundation walls, unless used in conjunction with a drainage geocomposite, as recommended above, connected to the perimeter foundation drainage system. Imported granular materials, such as clean sand or OPSS Granular B Type I granular material, should otherwise be used for this purpose.

6.2 **Protection of Footings Against Frost Action**

Perimeter footings of heated structures are recommended to be protected against the deleterious effects of frost action. A minimum of 1.5 m of soil cover alone, or a combination of soil cover and foundation insulation should be provided.

Exterior unheated footings, such as those for isolated exterior piers, are more prone to deleterious movement associated with frost action than the exterior walls of the structure proper and require additional protection, such as soil cover of 2.1 m or a combination of soil cover and foundation insulation.

It is expected that the parking garage will not require protection against frost action due to the founding depth. Unheated structures such as the access ramp may required to be insulated against the deleterious effect of frost action. A minimum of 2.1 m of soil cover alone, or a minimum of 0.6 m of soil cover, in conjunction with foundation insulation, should be provided.

6.3 Excavation Side Slopes and Temporary Shoring

Side Slopes

The excavation side slopes in the overburden, above the groundwater level, extending to a maximum depth of 3 m should be excavated at 1H:1V or shallower. The shallower slope is required for excavation below groundwater level. The subsurface soils are considered to be a Type 2 and 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

As noted above, excavation side slopes in sound bedrock can be carried out using almost vertical side walls. A minimum 1 m horizontal ledge should be left between the bottom of the overburden excavation and the top of the bedrock surface to provide an area to allow for potential sloughing or to provide a stable base for the overburden shoring system.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should be kept away from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

A trench box is recommended to protect personnel working in trenches with steep or vertical sides. Services are expected to be installed by "cut and cover" methods and excavations should not remain open for extended periods of time.

Temporary Shoring

Temporary shoring may be required for the overburden soil to complete the required excavations where insufficient room is available for open cut methods. The shoring requirements will depend on the depth of the excavation, the proximity of the adjacent buildings and underground structures and the elevation of the adjacent building foundations and underground services.

The temporary shoring system could consist of soldier pile and lagging system. Any additional loading due to street traffic, construction equipment, adjacent structures and facilities, etc., should be included to the earth pressures described below. These systems can be cantilevered, anchored or braced. Generally, it is expected that the shoring systems will be provided with tie-back rock anchors to ensure the stability. It is further recommended that the toe of the shoring be adequately supported to resist toe failure, if required, by means of rock bolts or extending the piles into the bedrock through pre-augered holes if a soldier pile and lagging system is the preferred method.

Table 7 - Soil Parameters	
Parameters	Values
Active Earth Pressure Coefficient (K _a)	0.33
Passive Earth Pressure Coefficient (K _p)	3
At-Rest Earth Pressure Coefficient (K _o)	0.5
Dry Unit Weight (γ), kN/m³	20
Effective Unit Weight (γ), kN/m ³	13

The earth pressures acting on the shoring system may be calculated with the following parameters.

The active earth pressure should be calculated where wall movements are permissible while the at-rest pressure should be calculated if no movement is permissible.

The dry unit weight should be calculated above the groundwater level while the effective unit weight should be calculated below the groundwater level.

The hydrostatic groundwater pressure should be included to the earth pressure distribution wherever the effective unit weight are calculated for earth pressures. If the groundwater level is lowered, the dry unit weight for the soil/bedrock should be used full weight, with no hydrostatic groundwater pressure component.

For design purposes, the minimum factor of safety of 1.5 should be calculated.

Underpinning of Adjacent Structures

Based on the test pit completed at one of the adjacent building foundations and the relatively shallow depth of the bedrock at the subject site, it is expected that the buildings along the southern boundary of the site are most likely founded on the bedrock surface. Therefore, underpinning is not expected to be required for this project.

However, Paterson should review the condition of the bedrock underlying the adjacent building foundations at the time of construction to evaluate if bedrock stabilization is required.

6.4 Pipe Bedding and Backfill

A minimum of 150 mm of OPSS Granular A should be placed for bedding for sewer or water pipes when placed on soil/bedrock subgrade. The bedding should extend to the spring line of the pipe. Cover material, from the spring line to at least 300 mm above the obvert of the pipe should consist of OPSS Granular A (concrete or PSM PVC pipes) or sand (concrete pipe). The bedding and cover materials should be placed in maximum 225 mm thick lifts compacted to a minimum of 95% of the SPMDD.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to reduce the potential differential frost heaving. The trench backfill should be placed in maximum 300 mm thick loose lifts and compacted to a minimum of 95% of the SPMDD.

6.5 Groundwater Control

It is anticipated that groundwater infiltration into the excavations should be controllable using open sumps. Pumping from open sumps should be sufficient to control the groundwater influx through the sides of shallow excavations. The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

Groundwater Control for Building Construction

A temporary Ministry of Environment, Conservation and Parks (MECP) permit to take water (PTTW) may be required if more than 400,000 L/day of ground and/or surface water are to be pumped during the construction phase. At least 4 to 5 months should be allowed for completion of the application and issuance of the permit by the MECP.

For typical ground or surface water volumes being pumped during the construction phase, typically between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16. If a project qualifies for a PTTW based upon anticipated conditions, an EASR will not be allowed as a temporary dewatering measure while awaiting the MECP review of the PTTW application.

Long-term Groundwater Control

Our recommendations for the proposed building's long-term groundwater control are presented in Section 6.1. Any groundwater encountered along the building's perimeter or sub-slab drainage system will be directed to the proposed building's cistern/sump pit. Due to the limited capacity of the existing sewers, it is anticipated that pumped groundwater can be temporarily contained within a cistern/holding tank to permit reduced discharge volumes, if required. Provided the proposed groundwater infiltration control system is properly implemented where more than 3 underground parking levels are built, it is expected that groundwater flow will be low (i.e.- less than 3,000 L/day) with peak periods noted after rain events. It is anticipated that the groundwater flow will be controllable using conventional open sumps.

Impacts on Neighbouring Structures

It is understood that where the underground levels extend below the groundwater level (3 or more underground levels), the lower portion of the foundation will have a groundwater infiltration control system in place. Due to the presence of a groundwater infiltration control system in place against the bedrock face in this scenario, long-term groundwater lowering is anticipated to be negligible for the area.

Further, based on our observations, the groundwater level is anticipated at a 5 to 7 m depth and located within the bedrock. Therefore, local groundwater lowering is not anticipated under short-term conditions due to construction of the proposed building.

The neighbouring structures are founded within native glacial till or directly over a bedrock bearing surface based on available soils information within the area. Due to the current groundwater level noted to be within the bedrock, no issues are expected with respect to groundwater lowering that would cause long term damage to adjacent structures surrounding the proposed building.

6.6 Winter Construction

Precautions must be taken if winter construction is considered for this project.

Where excavations are completed in proximity to existing structures, they may be adversely affected due to the freezing conditions. In particular, it should be recognized that where a shoring system is constructed, the soil behind the shoring system will be subjected to freezing conditions and could result in heaving of the structure(s) placed within or above frozen soil. Provisions should be made in the contract document to protect the walls of the excavations from freezing, if applicable.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the installation of straw, propane heaters and tarpaulins or other suitable means. The base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

Trench excavations and pavement construction are difficult activities to complete during freezing conditions without introducing frost in the subgrade or in the excavation walls and bottoms. Precautions should be considered if such activities are to be completed during freezing conditions. Additional information could be provided, if required.

6.7 Corrosion Potential and Sulphate

The results of analytical testing show that the sulphate content is less than 0.1%. This result is indicative that Type 10 Portland cement (normal cement) would be appropriate for this site. The chloride content and the pH of the sample indicate that they are not significant factors in creating a corrosive environment for exposed ferrous metals at this site, whereas the resistivity is indicative of an moderate to aggressive corrosive environment.

7.0 Recommendations

A materials testing and observation services program is a requirement for the provided foundation design data to be applicable. The following aspects of the program should be performed by the geotechnical consultant:

- Review of the geotechnical aspects of the excavating contractor's shoring design, prior to construction.
- **Q** Review the bedrock stabilization and excavation requirements.
- Observation of all bearing surfaces prior to the placement of concrete.
- Sampling and testing of the concrete and fill materials used.
- Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
- Observation of all subgrades prior to backfilling.
- **G** Field density tests to determine the level of compaction achieved.
- Sampling and testing of the bituminous concrete including mix design reviews.

A report confirming that these works have been conducted in general accordance with our recommendations could be issued, upon request, following the completion of a satisfactory materials testing and observation program by the geotechnical consultant.

8.0 Statement of Limitations

The recommendations provided in this report are in accordance with our present understanding of the project. We request permission to review our recommendations when the drawings and specifications are completed.

A geotechnical investigation is a limited sampling of a site. The recommendations are based on information gathered at the specific test locations and can only be extrapolated to an undefined limited area around the test locations. Should any conditions at the site be encountered which differ from those at the test locations, Paterson requests notification immediately in order to permit reassessment of the recommendations.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Westboro Point Developments Ltd. or their agent(s) is not authorized without review by Paterson Group for the applicability of our recommendations to the altered use of the report.

Paterson Group Inc.

Richard Groniger, C. Tech.

Scott S. Dennis, P. Eng.

Report Distribution:

- U Westboro Point Developments Ltd. (3 copies)
- Paterson Group (1 copy)

APPENDIX 1

SOIL PROFILE AND TEST DATA SHEETS

SOIL PROFILE AND TEST DATA SHEETS BY OTHERS

SYMBOLS AND TERMS

UNIAXIAL COMPRESSIVE STRENGTH TESTING RESULTS

ANALYTICAL RESULTS

SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Investigation** Prop. Multi-Storey Building - 2070 and 2090 Scott St. 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario TBM - Top spindle of fire hydrant located on the west side of Churchill Avenue, FILE NO. DATUM along the west property line. Geodetic elevation = 66.18m. PG2936 REMARKS HOLE NO. BH 1 BORINGS BY CME 55 Power Auger DATE April 2, 2013 SAMPLE Pen. Resist. Blows/0.3m PLOT Monitoring Well Construction DEPTH ELEV. 50 mm Dia. Cone SOIL DESCRIPTION • (m) (m) STRATA RECOVERY VALUE r RQD NUMBER TYPE _\c \cap Water Content % N OF **GROUND SURFACE** 80 20 40 60 0+65.09100mm Asphaltic concrete over 0.25 XXX AU 1 crushed stone 1+64.092 FILL: Brown silty sand with gravel SS 8 4 1.37 Fractured **BEDROCK**: 1.65 2 + 63.09RC 75 1 100 **BEDROCK:** Grey limestone 3+62.09 RC 2 100 72 4+61.09 4.40 5+60.09**BEDROCK:** Grey limestone RC 3 100 100 interbedded with dolostone 6.02 6+59.09RC 4 100 96 T 7+58.09 8+57.09 RC 5 100 84 9+56.09**BEDROCK:** Grey limetone with RC 6 100 71 intermittent dolostone and shale 10+55.0911 + 54.09RC 7 100 85 12 + 53.09RC 8 100 100 13+52.09 <u>13.51</u> End of Borehole (GWL @ 6.93m-April 4, 2013) 40 60 80 100 20 Shear Strength (kPa) Undisturbed △ Remoulded

patersongroup Consulting SOIL PROFILE Geotechnical Investigation

SOIL PROFILE AND TEST DATA

Shear Strength (kPa)

△ Remoulded

▲ Undisturbed

DATUMTBM - Top spindle of fire h along the west property lin	nydra	nt loca	ated o	n the stion :	Vest s	ttawa, Or side of Ch	ntario		FILE NO	d 2090 Scott S	
REMARKS									HOLE		
BORINGS BY CME 55 Power Auger					ATE	April 2, 20	013				
SOIL DESCRIPTION	A PLOT			/IPLE	Чо	DEPTH (m)	ELEV. (m)			Blows/0.3m ia. Cone	ng Well ction
	STRATA	ТҮРЕ	NUMBER	* RECOVERY	N VALUE or RQD					ontent %	Monitoring Well Construction
GROUND SURFACE				<u>д</u>	-	- 0-	63.77	20	40	60 80	20
Crushed stone 0.46		S AU	1								-
FILL: Brown silty clay with sand, gravel, trace glass		ss	2	21	7	1-	-62.77				-
FILL: Brown silty sand iwth gravel,		ss	3	4	48						-
cobbles, trace boulders 2.29						2-	-61.77				-
FILL: Topsoil, trace wood chips 2.59 GLACIAL TILL: Brown silty sand	$\int x \sqrt{x} \sqrt{x}$	ss SS	4	42	12	3-	-60.77				•
with gravel, trace cobbles and 3.18	<u> ^^^^</u>	⊊ SS	5	33	50+	5	00.77				
End of Borehole	+'										
Practical refusal to augering at 3.18m											
depth											
(BH dry upon completion)											
								20	40	60 80 1	00

Soll PROFILE AND TEST DATA Soll PROFILE AND TEST DATA Geotechnical Investigation Prop. Multi-Storey Building - 2070 and 2090 Scott St. Ottawa, Ontario

DATUM TBM - Top spindle of fire hydrant located on the west side of Churchill Avenue, along the west property line. Geodetic elevation = 66.18m.

REMARKS

FILE NO. PG2936

BORINGS BY CME 55 Power Auger DATE April 2, 2013									HOLI	e no.	3H 3	
SOIL DESCRIPTION	РГОТ		SAN	IPLE		DEPTH	DEPTH ELEV. (m) (m)		Pen. Resist. Blows/0. • 50 mm Dia. Con			Well
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r ROD		(11)	• V	Vater	Conter	nt %	Monitoring Well Construction
GROUND SURFACE	-			RE	N V? OF	0-	63.07	20	40	60	80	žΰ
25mm Asphaltic concrete over crushed stone0.60	N/N/N/1	⊠ AU -	1			0	03.07					
FILL: Red-brown silty sand		ss	2	46	11	1-	-62.07					ու ո
FILL: Topsoil 1.70		ss	3	71	6							
FILL: Brown silty sand with gravel, cobbles, trace boulders 2.46		∆ ≊ SS	4	100	50+	2-	-61.07			·····		
BEDROCK: Grye limestone		_RC	1	100	75	3-	60.07					
3.91		RC	2	100	67					·····		
0.0.		-				4-	-59.07					
BEDROCK: Grey to black dolostone interbedded with limestone		RC	3	71	29	5-	-58.07					
5.74						6-	-57.07					
BEDROCK: Grey limestone interbedded with dolostone		RC	4	100	83							
7.21		_				7-	-56.07					
		RC	5	90	60	8-	-55.07					
BEDROCK: Black dolostone		-				9-	-54.07					
interbedded with limestone		RC	6	86	57	10-	-53.07					
		_					00.07					
		RC	7	100	83	11-	-52.07					
		_				10	-51.07					
		RC	8	100	80	12	51.07					
13.26						13-	-50.07					
End of Borehole												
(GWL @ 5.27m-April 4, 2013)												
								20 Shea ▲ Undist		60 ength (△ Re	80 (kPa) moulded	 100

natersona	M	ır	Con	sulting	1	SOIL	PRO	FILE AN	ND TE	EST I	DATA	1							
	Datersongroup Consultin 54 Colonnade Road South, Ottawa, Ontario K2E 7J5									Geotechnical Investigation 2070 Scott Street Ottawa, Ontario									
TBM - Top spindle of fire along the west property l	hydrar ine. Ge	nt loca odetic	ted o elev	n the v ation =	vest s 66.1	side of Chu 8m.	urchill A	venue,	FILE N		G4935	5							
BORINGS BY CME 55 Power Auger				D	ATE	2019 May	15		HOLE	NO. BI	H 4-19								
Ť	ЪТ		SAN	IPLE				Pen. R	esist. I	Blows/	0.3m	ell							
SOIL DESCRIPTION	A PLOT		, X		۲ ۲	DEPTH (m)	ELEV. (m)	• 5	0 mm E	Dia. Co	ne	_ng √							
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r ROD			0 v	Vater C	ontent	%	Monitoring Well							
GROUND SURFACE	s N	~	N	RE	N O L O	0+	63.71	20	40	60	80	Σ.							
		au	1																
ILL: Brown silty sand and gravel		≊ ∏																	
		ss	2	21	6	1+	62.71												
		∇																	
2.1	13	ss	3	54	53	2-	61.71												
ILL: Brown silty sand with crushed		ss	4	56	50+														
tone 	34		-	50	50+														
						3-	60.71												
		RC	1	88	45														
						4+	59.71												
EDROCK: Grey limestone		RC	2	100	75	5+	58.71												
,																			
						6-	57.71												
			3	100	00														
		RC	3	100	26	7	56.71												
							JO./ I												
			4	100	50														
•		RC	4	100	58	8-	55.71												
ind of Borehole	<u>5 <u></u></u>																		
GWL @ 7.10m - May 22, 2019)																			
								20 Shea	40 ar Stren	60 hath (k		100							
								▲ Undist											

patersongroup ^{Consulting} 154 Colonnade Road South, Ottawa, Ontario K2E 7J5						SOIL PROFILE AND TEST DATA						
						Geotechnical Investigation 2070 Scott Street Ottawa, Ontario						
TBM - Top spindle of fire h along the west property lir	 Top spindle of fire hydrant located on the w the west property line. Geodetic elevation = 					est side of Churchill Avenue, 66.18m.				FILE NO. PG4935		
-					TE 2	re 2019 May 15			HOLE NO. BH 5-19			
	H	SAMPLE						Pen. Resist. Blows/0.3m				
SOIL DESCRIPTION	STRATA PLOT				년 o	DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone ○ Water Content % 20 40 60 80				
		ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	DE ROI		• •	Vater Cor	ntent %	onitori	
GROUND SURFACE			4	R	z ^o	0-	-63.34	20	40 6	i0 80	Ž	
		AU	1									
ILL: Brown silty sand	, 💥	ss	2	46	11	1-	-62.34					
FILL: Brown silty sand, some clay, trace brick 2.21		ss	3	24	3	_						
		RC	1	100	39	2-	-61.34					
		_				3-	-60.34					
		RC	2	100	52							
		_				4-	-59.34					
		RC	3	100	56	5-	-58.34			· · · · · · · · · · · · · · · · · · ·		
		_										
						6-	-57.34					
		RC	4	100	73							
		- RC	5	100	38	7-	-56.34					
7.67 nd of Borehole		-							······			
GWL @ 6.14m - May 22, 2019)												
								20 Shor	40 (ar Streng		100	

patersong	101	In	Con	sulting	g 📃	SOIL PRO	FILE A	ND TE	ST DA	TA
154 Colonnade Road South, Ottawa, O		_		ineers	20	eotechnical Inves 070 Scott Street ttawa, Ontario	tigation			
DATUM TBM - Top spindle of fire along the west property I REMARKS	hydrar ine. Ge	nt loca odetic	ted o elev	n the v ation =	vest	side of Churchill A	venue,	FILE NO	D. PG49	935
BORINGS BY CME 55 Power Auger				D	ATE	2019 May 15		HOLE N	^{ю.} BH 6-	·19
	PLOT		SAN	IPLE		DEPTH ELEV.	-		lows/0.3n	n 🗐
SOIL DESCRIPTION			В	RY	Ħ۵	(m) (m)	• 5	i0 mm Di	a. Cone	Ng V
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD		• V	Vater Co	ntent %	Monitoring Well
GROUND SURFACE		×	N	RE	N O	0+62.99	20	40	60 80	ž
		AU	1							
ILL: Brown silty sand and crushed		82 ∏								
ock, some concrete		ss	2	25	13	1+61.99				
		<u>Ц</u> П								
0.1		∦ss	3	64	50+	2+60.99				
2.1		– RC	1	100	20	2 00.00				
		_		100	20					
						3-59.99				
		RC	2	100	64					
		_				4-58.99			·····	
									••••••••••••••••	
EDROCK: Grey limestone		RC	3	98	60	5+57.99				
		_								
						6+56.99				
		RC	4	100	85					
						7+55.99				
		-	-	100	- 4					
7.7	75	RC _	5	100	74					
nd of Borehole										
GWL @ 5.82m - May 22, 2019)										
							20 Show	40 Strop	60 80	100
							Snea ▲ Undist		gth (kPa) △ Remoulde	ed

Date Soll PROFILE AND TEST DATA 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Geotechnical Investigation Prop. Multi-Storey Building - 2070 and 2090 Scott St. Ottawa, Ontario DATUM TBM - Top spindle of fire hydrant located on the west side of Churchill Avenue, along the west property line. Geodetic elevation = 66.18m. FILE NO. REMARKS PG2936

BORINGS BY Hydraulic Shovel				D	ATE /	April 3, 20	013		H). TP	1	
SOIL DESCRIPTION	PLOT			IPLE		DEPTH (m)	ELEV. (m)	Per •		st. Ble nm Dia			g Well tion
	STRATA	ЭДХТ	NUMBER	% RECOVERY	N VALUE or RQD			С		er Cor			Monitoring Well Construction
GROUND SURFACE				а н	-	0-	-65.19	2	0 4	0 6	8 0	80	20
Asphaltic concrete0.08 FILL: Crushed stone0.76		-				0	05.19	• • • • • • • • •					
FILL: Brown silty sand with gravel, cobbles, trace boulders and topsoil 1.62 End of Test Pit		= G -	1			1-	-64.19						
Practical refusal to excavation at 1.62m depth													
Concrete foundation wall founded directly over bedrock surface at 1.62m depth. No footing encountered.													
(TP dry upon completion)								225			io a th (kPa		00
								S		Streng		a)	 00

Consulting I	JOHN D. PATERSON & ASSOCIATES LT Consulting Engineers 28 Concourse Gate, Unit 1, Nepean, Ont. K2E 7											DA	TA	L
DATUM					I				FIL	E NO).	E2	228	3
REMARKS									но	DLE N	10.	ТР	1	
BORINGS BY Backhoe					ATE	21 OCT	02	T						1
SOIL DESCRIPTION	PLOT				111 -	DEPTH (m)	ELEV. (m)	Pen. Re						PIEZOMETER
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or ROD			O Lowe	r Ex	cplo	sive	Lim	it %	TEZO
GROUND SURFACE	ω Δ		Z	毘	z°	0-	-	20	40)	60	80	•	
FILL: Brown sand		G	1			1-	-							
2.44 Brown SANDY SILT		G	3			3-		A						
3.05 Grey SAND 3.20	· • • • •	G	4					4						
End of Test Pit (Soil saturated below 2.9m depth)								100 Gastech	200		300 Bda	400		00

JOHN D. PATERSON 8 Consulting 28 Concourse Gate, Unit 1	Engir	eers				Phase II 2074 S Ottawa	cott Stre		ite As	sess	ment	
ATUM		_							FILE	NO.	E228	33
EMARKS									ноц	E NO.	TP 2	
ORINGS BY Backhoe					ATE	21 OCT	02	I				
SOIL DESCRIPTION	PLOT				1.1	DEPTH (m)	ELEV. (m)				vs/0.3m . Cone	PTEZOMETER
	STRATA	ТҮРЕ	NUMBER	* RECOVERY	N VALUE			O Lowe	er Exp	losiv	e Limit %	TEZO
ROUND SURFACE	ν.		Ž	RE	zō	0-	_	20	40	60	80	
	\bigotimes											
	\bigotimes											
	\bigotimes											
	\bigotimes											
ILL: Brown sand and	\bigotimes											
ravel, some cobbles and lastic pieces	\bigotimes											
	\bigotimes					1-	ł					
		G	1					<u>م</u>				
×	\bigotimes											
	\bigotimes											
	\bigotimes	_										
1.83	XX	G	2									-
ind of Test Pit					Į							
P terminated on bedrock urface @ 1.83m depth												
TP dry upon completion)												
							}					

• •

× c

JOHN D. PATERSON & ASSOCIATES LTD.

Consulting Engineers

.

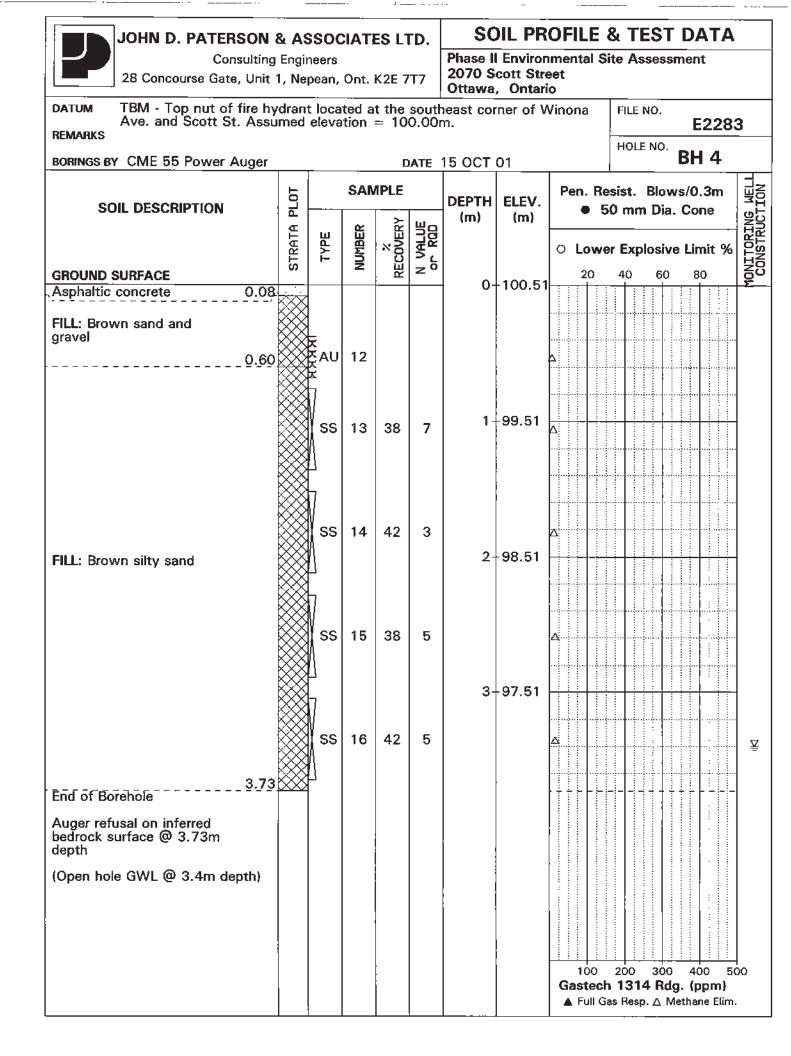
28 Concourse Gate, Unit 1, Nepean, Ont. K2E 7T7

SOIL PROFILE & TEST DATA

Phase II Environmental Site Assessment 2074 Scott Street Ottawa, Ontario

DATUM									FILE N	io. E228	3
REMARKS									HOLE		-
BORINGS BY Backhoe		r			ATE	21 OCT	02				
SOIL DESCRIPTION	PLOT			MPLE		DEPTH (m)	ELEV. (m)			Blows/0.3m Dia. Cone	IETER ICTION
	STRATA	ТҮРЕ	NUMBER	× RECOVERY	N VALUE or ROD				er Expl	osive Limit %	PIEZOMETER CONSTRUCTION
GROUND SURFACE					2 -	0-	-	20	40	60 80	
FILL: Dark brown sand and gravel with plastic, asphalt and steel pieces		G	1			1-	n				· · · · · · · · · · · · · · · · · · ·
		G	2			2-					
End of Test Pit (Soil saturated below 2.9m depth)	5	G	3			3-					 ₩ ₩
										<u>: .: : : : :</u> 300 400 Rdg. (ppm) . △ Methane Elin	 500

JOHN D. PATERSON	JOHN D. PATERSON & ASSOCIATES LTI)IL PR	OFILE	& T	'ES'	T D	ΑΤΑ	
Consultin 28 Concourse Gate, Unit			Ont.	K2E 7	'T7	2074 S	l Enviror cott Stro , Ontari		ite A	sses	sme	nt	
DATUM									FILE	NO.		E228:	3
REMARKS									HOL	E NO			
BORINGS BY Backhoe		1		Ľ	DATE	21 OCT	02					9 4	
SOIL DESCRIPTION	PLOT			/IPLE		DEPTH (m)	ELEV. (m)	Pen. Re	esist. 50 mi				PIEZOMETER CONSTRUCTION
	STRATA	ТҮРЕ	NUMBER	* Recovery	N VALUE			O Lowe	er Ex	plosi			PIEZOP
GROUND SURFACE				22	zv	0-	-	20	40	6	D	80	-0
				}									
											-		
		G	1					4					
FILL: Gravel with												-	
miscellaneous debris				Ì		1-	l t						
							ĺ						
) }											
		G	2					▲					
						2-	-						
2.1	3	G	3										
GLACIAL TILL: Dense,													
GLACIAL TILL: Dense, brown silty sand and gravel													
		G	4										
End of Test Pit	4												
(TP dry upon completion)													
		£1											
		[
ж.													
								100 Gastecl		14 R	dg. (ppm)	00
								🔺 Full G	as Res	sp.∆	Meth	ane Elim	•


JOHN D. PATERSON Consulting 28 Concourse Gate, Unit	Engir	neers					Enviror	nmental S eet		ST DATA	L
DATUM									FILE NO	D. E228	3
BORINGS BY Backhoe				ſ	ATE	21 ОСТ	02		HOLE N	^{10.} TP 5	
			CV8	/PLE				Dep Dr		lows/0.3m	T
SOIL DESCRIPTION	A PLOT	түре	NUMBER	x RECOVERY	VALUE ROD	DEPTH (m)	ELEV. (m)	1		Dia. Cone	
	SURFACE									sive Limit %	
GROUND SURFACE	\times			2		0-	-	20	40	60 80	╞
		– G	1								
FILL: Mixture of sand, gravel, boulders, brick and wood pieces		-						[
wood pieces						1-	-				
			ļ								
		G	2								
2.13		-				2-	-				1
GLACIAL TILL: Dense silty											
sand and gravel											
2.59			:								
End of Test Pit											
(TP dry upon completion)											
								100 Gastect	200 : 1314	300 400 5 Rdg. (ppm)	500
										∆ Methane Elim).

JOHN D. PATERSON	& A\$	ssoc		ES LI	۲D.	so	DIL PR	OFILE	& TEST DATA	
Consulting 28 Concourse Gate, Unit			Ont.	K2E 7	'T7	2070 S	l Enviror cott Str , Ontar	eet	ite Assessment	
DATUM TBM - Top nut of fire hy Ave. and Scott St. Assu REMARKS	dran med	t loca eleva	ted a	t the = 10	sout 0.00	neast coi m.	rner of V	Vinona	FILE NO.	3
BORINGS BY CME 55 Power Auger				۵	ATE	15 OCT	01		HOLE NO. BH 1	
	PLOT		SAN	/IPLE		DEPTH	ELEV.	Pen. Re	esist. Blows/0.3m	MELL
SOIL DESCRIPTION			Ř	RY	빙요	(m)	(m)	• 5	i0 mm Dia. Cone	SUCTI
	STRATA	ТҮРЕ	NUMBER	× Recovery	N VALUE			O Lowe	er Explosive Limit %	TONITORING WELL
GROUND SURFACE				22	20	0-	98.71	20	40 60 80	Ξū
FILL: Crushed stone 0.25 FILL: Black silty sand with	KXX	_								
gravel - light brown by 0.45m		K AU	1					Δ		
depth		×								
							07.71			
		SS	2	33	6	1-	-97.71	Δ		
		1								
	\bigotimes	7								
		ss	3	21	4			Δ		
	\bigotimes	A I				2-	-96.71			
End of Borehole 2.29										
Auger refusal on inferred bedrock surface @ 2.29m depth										
(BH dry upon completion)										
				İ						
									n 1314 Rdg. (ppm)	00
								🔺 Full Ga	as Resp. $ riangle$ Methane Elim.	,

JOHN D. PATERSON	& A	ssoc		ES LI	ΓD.	sc	DIL PR	OFILE	& TESI	DATA	
Consulting 28 Concourse Gate, Unit	-		Ont.	K2E 7	T7	2070 S	l Environ cott Stre , Ontari	et	ite Assess	sment	
DATUM TBM - Top nut of fire hy Ave. and Scott St. Assu REMARKS	dran med	t loca eleva	ted a tion	t the = 10	soutl 0.00	neast coi m.	rner of V	Vinona	FILE NO.	E2283	3
BORINGS BY CME 55 Power Auger				D	DATE	15 OCT	01		HOLE NO.	BH 2	
	Е		SAN	/IPLE				Pen. Re	esist. Blov	ws/0.3m	MELL
SOIL DESCRIPTION	PLOT			<u> </u>	Шn	DEPTH (m)	ELEV. (m)		i0 mm Dia		UCTIC U
	STRATA	ТҮРЕ	NUMBER	× RECOVERY	N VALUE			O Lowe	er Explosiv	e Limit %	MONITORING CONSTRUCT
GROUND SURFACE			Z	RE	z º	0-	-98.54	20	40 60	80	<u>Бо</u>
Asphaltic concrete 0.08 FILL: Crushed stone 0.23	$\sim \sim \sim$										
		F									
		KAU K	4					4			
	\bigotimes	Ξ.									
FILL: Brown silty sand and gravel	\bigotimes										
		ss	5	33	12	1-	97.54	Δ			
	\bigotimes		-					T			
	\bigotimes										
1.00		⊽ss	6	100	25						
End of Borehole 1.68			Ŭ		20		'				
Auger refusal on inferred											
Auger refusal on inferred bedrock surface @ 1.68m depth											
(BH dry upon completion)									-		
				:							
					1						
								100 Gasteci	200 300 1 314 Rd		00
										Nethane Elim.	

JOHN D. PATERSO Consult 28 Concourse Gate, U	ting Engi	neers				Phase I		OFILE Imental S			_	TA	
DATUM TBM - Top nut of fire Ave. and Scott St. As REMARKS					_	I	, Ontar mer of V		FILE	NO.	E2	28	3
BORINGS BY CME 55 Power Aug	or				ATE	15 OCT	01		HOL	E NO	BH	3	
Bolindo BT CINE OO TOWEL Adg			<u> </u>	/IPLE				Der De					
SOIL DESCRIPTION	PLOT		<u> </u>		III –	DEPTH (m)	ELEV. (m)	Pen. Re			a. Con		NG WEL
	STRATA	ТҮРЕ	NUMBER	× RECOVERY	N VALUE			• Lowe	ər Exp	plosi	ve Limi	t %	10NITORING
GROUND SURFACE Asphaltic concrete 0.	08		z	l R	zo	0-	-100.37	20	40	60 	80		Nor
			7					A					
		ss	8	42	17	1-	-99.37	Δ					
FILL: Brown silty sand and gravel, some cobbles and brick pieces		ss	9	25	10	2-	-98.37	<u>Д</u>					
		ŝs	10	17	7			Δ					
		ss	11	17	22	3-	-97.37	<u>A</u>					
End of Borehole 3.	<u>81</u> 🔀						i				<u> </u>		
Auger refusal on inferred bedrock surface @ 3.81m													
depth (BH dry upon completion)													
								100	200	30			00
								Gastech					

ł

JOHN D. PATERSON	& AS	soc		ES LI	ΓD.	sc	DIL PR	OFILE	& TEST DA	ТА
Consulting 28 Concourse Gate, Unit	-		Ont.	K2E 7	77	2070 S	l Enviror cott Stre , Ontari	et	te Assessment	
DATUM TBM - Top nut of fire hy Ave. and Scott St. Assu	drant med	t loca eleva	ted a ition	t the = 10	souti 0.00	neast coi m.	rner of V	Vinona	FILE NO.	2283
REMARKS BORINGS BY CME 55 Power Auger				D	ATE	15 OCT	01		HOLE NO. BH	5
	PLOT		SAN	APLE		DEPTH	ELEV.		sist. Blows/0.3	in Luis
SOIL DESCRIPTION		щ	ЦЦ	ERY	VALUE ROD	1 ()	(m)	• 5	0 mm Dia. Con	
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	* RECOVERY	N N N N N N N N N N N N N N N N N N N			C Lowe 20	r Explosive Limi	145
Asphaltic concrete 0.08				· · ·		0-	100.74			<u> </u>
FILL: Brown silty sand and gravel		ss	17	42	29	1-	-99.74	Δ		
		ss	18	71	17	2-	-98.74	Δ		
End of Borehole Auger refusal on inferred bedrock surface @ 2.29m depth (BH dry upon completion)								100 Gestach	200 300 400	
									a 1314 Rdg. (pp as Resp. ∆ Methane	

.

JOHN D. PATERSON	& A9	ssoc		ES L	ΓD.	S	DIL PR	OFILE & TEST DATA
Consulting Geotechnical an 28 Concourse Gate, Unit						Scott St		te Characterization hurchill Avenue North
DATUM TBM - Top nut of fire hydr Avenue and Scott Street.	ant lo Assur	cated ned e	@ th levatio	e sou on =	theast 100.0	t corner c)0m.	of Winona	E1381
BORINGS BY Power Auger				D	ATE ⁷	18 Noven	nber 199	6 HOLE NO. BH 1-1
	РLОТ		SAN	IPLE		DEPTH	ELEV.	Pen. Resist. Blows/0.3m
SOIL DESCRIPTION	TA PL	ш	ER	ERY	ВG	(m)	(m)	Pen. Resist. Blows/0.3m NOLLOW • 50 mm Dia. Cone WOLLOW • Lower Explosive Limit % 20
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			୦ Lower Explosive Limit % ଅଧିର
GROUND SURFACE 15mm Asphaltic concrete				RI	E	0-	-100.48	
over grey crushed stone 0.19								
						1 -	-99.48	
							00.10	
FILL: Brown, mixture of silt,		7						
sand, gravel, occ. pcs. of asphaltic concrete		V						
		SS	1	62	14			
						2-	-98.48	
				2				
		SS	2	50	6			
						3-	97.48	
		SS	3	54	2			_∆ ₽
End of Borehole 3.61								
Auger refusal on inferred bedrock @ 3.61m depth.								
(Open hole WL @ 3.35m								
depth.)								
								100 200 300 400 500
								Gastech 1314 Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.

Т

DATUM TBM - Top nut of fire h Avenue and Scott Stree	ydrant lo et. Assur	cated ned e	l @ th levat	ne sou ion =	theas 100.0	t corner o 00m.	of Winon	а	FILE	NO.	E138
REMARKS						10 Nevrom			HOLI	E NO.	BH 2
BORINGS BY Power Auger			0.0.0		ATE	18 Nover	nber 199			Play	vs/0.3m
SOIL DESCRIPTION	STRATA PLOT			· · · · · · ·	ш	DEPTH (m)	ELEV. (m)				. Cone
	TRAT	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or ROD			O Lowe	ər Exp	olosiv	e Limit %
GROUND SURFACE		1	Z	REC	zō	0-	- 100.70	20	40	60	80
	05						100.70				
		a					00.70				
						-	-99.70		in .		
FILL: Brown, mixture of silt, sand, gravel, occ. pcs. of asphaltic concrete		Π									
		ss	4	67	6						
		<u> </u>				2-	-98.70				
		ss	5	54	6						
			5	54							
		ss	6	45	25 +	3-	-97.70	·.&			
End of Borehole 3.	33 🔆	Δ									
Auger refusal on inferred bedrock @ 3.33m depth.											
(BH dry upon completion)											
										, , , , , ,	

,

JOHN D. PATERSON	& A	ssoc		ES L	TD.	S	DIL PR	OFILE	& TEST	DATA		
Consulting Geotechnical ar 28 Concourse Gate, Unit	Scott St		te Charact hurchill A	terization venue Nor	th							
DATUM TBM - Top nut of fire hydr Avenue and Scott Street.	theas 100.0	t corner of Winona FILE NO. DOm.				E1381						
BORINGS BY Power Auger	18 Noven	nber 199	6	HOLE NO.	BH 3	-1						
	РГОТ		SAN	1PLE		DEPTH	ELEV.			ist. Blows/0.3m		
SOIL DESCRIPTION	STRATA PI TYPE NUMBER	ш	ER	ERY		(m)	(m)	• 5	0 mm Dia	a. Cone		
GROUND SURFACE		% RECOVERY	N VALUE or RQD	· ·		O Lowe 20	er Explosiv	76 Limit %	PIEZOMETER CONSTRUCTION			
Asphaltic concrete 0.05 Grey crushed stone 0.25							- 100.37					
FILL: Brown, mixture of silt, sand, gravel, some organics, occ. pcs. of asphaltic concrete		ss	7	38	11		-99.37 -98.37					
0.47		ss ss	8	33 100	10	3-	-97.37	·				
End of Borehole Auger refusal on inferred bedrock @ 3.17m depth. (BH dry upon completion)	×××	∆ 33	5						200 300 h 1314 R o as Resp. Д		00	

JOHN D. PATERSON	JOHN D. PATERSON & ASSOCIATES LTD.								SOIL PROFILE & TEST DATA				
Consulting Geotechnical a 28 Concourse Gate, Unit				-		Scott St			terization venue North	l			
DATUM TBM - Top nut of fire hyd Avenue and Scott Street.	FILE NO.	E1381											
REMARKS BORINGS BY Power Auger			ATE	18 Noven	nber 199	6	HOLE NO.	BH 4-	1				
	PLOT		SAN	IPLE		DEPTH	ELEV.		esist. Blow	-	10N		
SOIL DESCRIPTION	TA PL	ш			ED.E	- /	(m)	• 50 mm Dia. Cone			PIEZOMETER CONSTRUCTION		
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD				er Explosive		PIEZ		
GROUND SURFACE				2	_	0-	-98.73	20	40 60	80			
Asphaltic concrete 0.04													
FILL: Dark brown, mixture of silt, sand, gravel, some													
organics, occ. pcs. of brick						1-	-97.73						
		SS	10	58	16		0,1,0						
		ss	11	36	25 +								
		1				2	-96.73						
End of Borehole	3 ~ ~ ~					2	30.75						
Auger refusal on inferred													
bedrock @ 2.08m depth.													
(BH dry upon completion)													
1													
χ.													
6. °									200 300 h 1314 Rdg as Resp. △ M	g. (ppm)	00		

Т

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard
		Penetration Test (SPT))

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

MC% LL PL PI	- - -	Natural moisture content or water content of sample, % Liquid Limit, % (water content above which soil behaves as a liquid) Plastic limit, % (water content above which soil behaves plastically) Plasticity index, % (difference between LL and PL)								
Dxx	-	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size								
D10	-	Grain size at which 10% of the soil is finer (effective grain size)								
D60	-	Grain size at which 60% of the soil is finer								
Сс	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$								
Cu	-	Uniformity coefficient = D60 / D10								
Cc and	Cc and Cu are used to assess the grading of sands and gravels:									

Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Cc	-	Compression index (in effect at pressures above p'_c)
OC Ratio)	Overconsolidaton ratio = p'_c / p'_o
Void Rat	io	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill Δ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

MONITORING WELL AND PIEZOMETER CONSTRUCTION

Project No: 2471-1301

Project: Phase II ESA, 2070-2074 & 2090 Scott Street, Ottawa, ON

Client: EJSpa Corporation

Borehole Location: N5027060 E440905

TOC Elevation: 98.82 m * Water Level: 7.18 m btoc (April 11, 2013) Water Level Elevation: 91.64 m * (April 11, 2013) Bottom of Well Depth: 13.15 m btoc

SUBSURFACE PROFILE							SA	MPLE		
Depth (m)	Symbol	Description	Elevation (m) * / Depth (m bgs)	Sample ID	Sample Type	Sample Recovery	Organic Vapour Measurements (ppm)	Lab Analyses	Well Completion Details	Depth (m)
0-		Ground Surface	98.887 0.000							-0
1- 1- 2-		Asphalt Gravel (FILL) grey, dry Silty Sand and Gravel (FILL) brown, trace organics, dry	97.487 1.400	N/S	N/S	N/S	N/S	N/S		-
3		Bedrock limestone							PVC Riser	-3
5- 										
7- - 8- - -									*	-7 -8 -9
10 11 11 12 13			85.387	ppm m bte m bg N/S *Elev relati blue	split sp = parts oc = me s = me = no en vation d ve to a fire hyd	per m eters be ters be vironm ata ba tempo rant o	illion elow to elow gro nental se sed on prary be n east s	p of casing ound surface oil sampling performed Franz survey conducted nchmark (top of yellow and side of Churchill Avenue a relative elevation of 100.00	PVC Screen	- 10 - 11 - 11 - 12 - 13
14 	-	End of Borehole	13.500	m			Tag No		- 	
Г	Drilled	By: George Downing Estate	e Drillina	Ltd				Well Pipe Diar	neter: 0.03 m	
		lethod: CME 75 (hollow-sten	-		orina)				neter: 0.20 m / 0.08 r	n
		ate: April 2, 2013						Checked by: N		
		ed by: David Kiar							Sheet: 1 of	1

Project No: 2471-1301

Project: Phase II ESA, 2070-2074 & 2090 Scott Street, Ottawa, ON

Client: EJSpa Corporation

Borehole Location: N5027060 E440905

TOC Elevation: 98.73 m * Water Level: 7.07 m btoc (April 11, 2013) Water Level Elevation: 91.67 m * (April 11, 2013) Bottom of Well Depth: 10.07 m btoc

	ę	SUBSURFACE PROFILE					SA	MPLE		
Depth (m)	Symbol	Description	Elevation (m) * / Depth (m bgs)	Sample ID	Sample Type	Sample Recovery	Organic Vapour Measurements (ppm)	Lab Analyses	Well Completion Details	Depth (m)
0-	c aarc	Ground Surface	98.879 0.000							-0
-	: [Sand and Gravel (FILL)		2-1	SS	50	0	PHCs, BTEX, Metals		_
1-	• •	grey/brown, dry to damp		2-2	SS	60	0		Co↓	-1
-	•	some rock/cobble fragments	00.070	2-3	SS	30	0			-
2-		starting at approximately 1.8 m Bedrock	96.679 2.200	2-4	SS	30	0		- PVC Riser	-2
3-		limestone							- Ber	-3
-									*	- - - 1
-										-
5-										-5
-										-
6-										_6
									Sanc	
									PVC Screen	-7
8-										- 8
_										-
9_									-9	
-				Notes SS = :	: split spo	oon sa	mple		-	
10-			88.579 10.300	ppm =	= parts p c = met	ber mil		-10		
-		End of Borehole		m bgs	s = mete	ers bel	ow grou	ind surface	-	- 11
				*Eleva	ation da	ta bas	ed on F	ranz survey conducted	-	
12				blue f	ire hydr	ant on	east si	chmark (top of yellow and de of Churchill Avenue		-12
-				North m) that w	as ass	igned a	relative elevation of 100.00	-	-
13_									-	-13
- - 14-										- 11
										-14
		By: George Downing Estate	-					Well Pipe Dian		
		1ethod: CME 75 (hollow-sten	1/INQ COP	ing)					neter: 0.20 m / 0.08 n	n
		oate: April 4, 2013						Checked by: N		
L	.ogge	ed by: David Kiar							Sheet: 1 of	1

Project No: 2471-1301

Project: Phase II ESA, 2070-2074 & 2090 Scott Street, Ottawa, ON

Client: EJSpa Corporation

Borehole Location: N5027094 E440940

TOC Elevation: 96.85 m * Water Level: 5.20 m btoc (April 11, 2013) Water Level Elevation: 91.65 m * (April 11, 2013) Bottom of Well Depth: 9.65 m btoc

	ę	SUBSURFACE PROFILE								
Depth (m)	Symbol	Description	Elevation (m) * / Depth (m bgs)	Sample ID	Sample Type	Sample Recovery	Organic Vapour Measurements (ppm)	Lab Analyses	Well Completion Details	Depth (m)
0-		Ground Surface	96.904 0.000							-0
1- 2-		Asphalt Silty Sand and Gravel (FILL) brown, trace organics, dry to damp	94.704 2.200	N/S	N/S	N/S	N/S	N/S	PVC Riser	1 1 2
3 4 - 5 - 7 - 7 - - - - - - - - - - - - - -		Bedrock limestone	2.200 83.704 13.200	ppn m b N/S *Ele rela and Ave	= splits m = part btoc = m bgs = m bs = no e ative to ative	ts per r neters eters b nviron data b a temp re hydrorth) th	below the below grant and ased or borary brant on at was	top of casing round surface soil sampling performed n Franz survey conducted enchmark (top of yellow east side of Churchill assigned a relative	★ PVC Screen ★ PVC Screen ★ Cave-In (Native)	
C	Drilled	By: George Downing Estate	e Drillina	Ltd.				Well Pipe Dian	neter: 0.03 m	
		lethod: CME 75 (hollow-sten	-						eter: 0.20 m / 0.08 r	n
C	Drill D	ate: April 4, 2013						Checked by: N	like Grinnell	
L	.ogge	ed by: David Kiar							Sheet: 1 of	1

BOREHOLE LOG

Project No: 2471-1301

Project: Phase II ESA, 2070-2074 & 2090 Scott Street, Ottawa, ON

Client: EJSpa Corporation

Borehole Location: N/A

	\$	SUBSURFACE PROFILE					SA	MPLE		
Depth (m)	Symbol	Description	Elevation (m) * / Depth (m bgs)	Sample ID	Sample Type	Sample Recovery	Organic Vapour Measurements (ppm)	Lab Analyses	Well Completion Details	Depth (m)
0-		Ground Surface	0.000							-0
-		Asphalt Sand and Gravel (FILL) brown/grey, trace silt, clay and cobble, damp to moist.	0.000	4-1	SS	30	0	PHCs, BTEX, Metals		-
1-				4-2	SS	50	0		No Monitoring Well Installed	1
-				4-3	SS	0			≥ N	_
		Bedrock Limestone End of Borehole	1.400	ppm =	split spo = parts p	ber mil	lion	und surface		- -2 -
	Drillec	By: George Downing Estate	e Drillina	Ltd.				Well Pipe Dian	neter: N/A	
		lethod: CME 75 (hollow-stem	-					Borehole Diam		
	Drill Date: April 4, 2013 Checked by: Mike Grinnell									
L	ogge	ed by: David Kiar							Sheet: 1 o	f 1

BOREHOLE LOG

Project No: 2471-1301

Project: Phase II ESA, 2070-2074 & 2090 Scott Street, Ottawa, ON

Client: EJSpa Corporation

Borehole Location: N/A

	5	SUBSURFACE PROFILE					SA	MPLE		
Depth (m)	Symbol	Description	Elevation (m) * / Depth (m bgs)	Sample ID	Sample Type	Sample Recovery	Organic Vapour Measurements (ppm)	Lab Analyses	Well Completion Details	Depth (m)
0-		Ground Surface								-0
-		Asphalt Silty Sand and Gravel (FILL) brown/grey, some cobble, dry to damp.	0.000	5-1	SS	40	0	PHCs, BTEX, Metals		-
- 1-				5-2	SS	30	0		No Monitoring Well Installed	1
-				5-3	SS	0			N N N N N N N N N N N N N N N N N N N	-
- 2- - - 3-		Bedrock limestone End of Borehole	1.400	ppm =	blit spoc parts pe = meters	r millio	on	ld surface		- 2 -
	Drilled	By: George Downing Estate	e Drillina	Ltd.				Well Pipe Diam	neter: N/A	
		lethod: CME 75 (hollow-sten	-					Borehole Diam		
		ate: April 4, 2013						Checked by: M	like Grinnell	
		d by: David Kiar						·	Sheet: 1 o	f 1

BOREHOLE LOG

Project No: 2471-1301

Project: Phase II ESA, 2070-2074 & 2090 Scott Street, Ottawa, ON

Client: EJSpa Corporation

Borehole Location: N/A

	9	SUBSURFACE PROFILE					SA	MPLE		
Depth (m)	Symbol	Description	Elevation (m) * / Depth (m bgs)	Sample ID	Sample Type	Sample Recovery	Organic Vapour Measurements (ppm)	Lab Analyses	Well Completion Details	Depth (m)
0-		Ground Surface	0.000							-0
-		Asphalt Sand and Gravel (FILL) brown, trace asphalt and brick debris, trace silt and clay, some cobble, damp.	0.000	6-1	SS	60	0	PHCs, BTEX, Metals		-
- 1-				6-2	SS	20	0		No Monitoring Well Installed	- 1
-				6-3	SS	0			noM oN	_
2-				6-4	SS	0				-2
-		Bedrock limestone End of Borehole	2.100							_
3-				ppm =	plit spo parts p	er mill	ion	nd surface		-3
Γ	rillec	By: George Downing Estate	e Drillina	Ltd.				Well Pipe Diam	neter: N/A	
		lethod: CME 75 (hollow-stem	-					Borehole Diam		
		ate: April 4, 2013	-,					Checked by: M		
		ed by: David Kiar							Sheet: 1 of	f 1

BOREHOLE LOG

Project No: 2471-1301

Project: Phase II ESA, 2070-2074 & 2090 Scott Street, Ottawa, ON

Client: EJSpa Corporation

Borehole Location: N/A

	\$	SUBSURFACE PROFILE					SA	MPLE		
Depth (m)	Symbol	Description	Elevation (m) * / Depth (m bgs)	Sample ID	Sample Type	Sample Recovery	Organic Vapour Measurements (ppm)	Lab Analyses	Well Completion Details	Depth (m)
0-		Ground Surface	0.000							-0
-		Asphalt Sand and Gravel (FILL) brown, trace silt and clay, some cobble, dry to damp.	0.000	7-1	CS	90	0			_
1-				7-2	CS	90	0		No Monitoring Well Installed	1
-			4 500	7-3	CS	100	0	PHCs, BTEX, Metals	No Monit	_
-		Bedrock limestone End of Borehole	1.500							_
2-										-2 -
	-			ppm =	jeoprob parts p = metei	er milli	on	e nd surface		_
3-										-3
		By: George Downing Estate	e Drilling	Ltd.				Well Pipe Diam Borehole Diam		
C	Drill D	rill Date: April 5, 2013 Checked by: Mike Grinnell								
L	.ogge	ed by: David Kiar							Sheet: 1 o	f 1

BOREHOLE LOG

Project No: 2471-1301

Project: Phase II ESA, 2070-2074 & 2090 Scott Street, Ottawa, ON

Client: EJSpa Corporation

Borehole Location: N/A

TOC Elevation: N/A (borehole only)
Water Level: N/A (borehole only)
Water Level Elevation: N/A (borehole only)
Bottom of Well Depth: N/A (borehole only)

	ę	SUBSURFACE PROFILE					SA	MPLE		
Depth (m)	Symbol	Description	Elevation (m) * / Depth (m bgs)	Sample ID	Sample Type	Sample Recovery	Organic Vapour Measurements (ppm)	Lab Analyses	Well Completion Details	Depth (m)
0-		Ground Surface	0.000							-0
- - - 1-		Interlock Brick Silty Sand and Gravel (FILL) brown, some cobble, damp.	0.000	8-1	CS	50	0			- - - -1
- - 2-				8-2	CS	50	0	PHCs, BTEX, Metals	No Monitoring Well Installed	- - 2 -
- - 3-	-	Sandy Silt light brown, trace gravel, damp to moist.	2.400	8-3	CS	60	0		No Monita	- - -3
-	-			8-4	CS	50	0			_
- 4- -				8-5	CS	95	0			- 4 -
- 5-	-	Bedrock limestone End of Borehole	4.600	Notes:						-
-	-			CS = g ppm =	jeoprob parts p	er mill	sample ion w groui	e nd surface		_
6-										-6
		d By: George Downing Estate	e Drilling	Ltd.				Well Pipe Dian Borehole Diam		
		Date: April 5, 2013						Checked by: M		
										F 1
L	.ogge	ed by: David Kiar							Sheet: 1 of	

BOREHOLE LOG

Project No: 2471-1301

Project: Phase II ESA, 2070-2074 & 2090 Scott Street, Ottawa, ON

Client: EJSpa Corporation

Borehole Location: N/A

TOC Elevation: N/A (borehole only)
Water Level: N/A (borehole only)
Water Level Elevation: N/A (borehole only)
Bottom of Well Depth: N/A (borehole only)

	9	SUBSURFACE PROFILE					SA	MPLE		
Depth (m)	Symbol	Description	Elevation (m) * / Depth (m bgs)	Sample ID	Sample Type	Sample Recovery	Organic Vapour Measurements (ppm)	Lab Analyses	Well Completion Details	Depth (m)
0-		Ground Surface								-0
-		Grass Topsoil dark brown, organic, damp.	0.000							-
- 1-		Sand and Gravel brown, trace silt and cobble, damp.	0.600	9-1	CS	50	0	PHCs, BTEX, Metals	No Monitoring Well Installed	1
				9-2	CS	100	0		No Monito	- - 2
-	-	Bedrock limestone End of Borehole	2.000							_
-				ppm =	geoprol = parts	ber mil	e samp llion ow groເ	le und surface		-
3-	1									-3
C	Drill N	d By: George Downing Estate lethod: Geoprobe 7822DT Date: April 5, 2013	e Drilling	Ltd.				Well Pipe Dian Borehole Diam Checked by: M	eter: 0.08 m	
		ed by: David Kiar							Sheet: 1 of	f 1

BOREHOLE LOG

Project No: 2471-1301

Project: Phase II ESA, 2070-2074 & 2090 Scott Street, Ottawa, ON

Client: EJSpa Corporation

Borehole Location: N/A

TOC Elevation: N/A (borehole only)
Water Level: N/A (borehole only)
Water Level Elevation: N/A (borehole only)
Bottom of Well Depth: N/A (borehole only)

	SUBSURFACE PROFILE					SA	MPLE		
Depth (m)	Description	Elevation (m) * / Depth (m bgs)	Sample ID	Sample Type	Sample Recovery	Organic Vapour Measurements (ppm)	Lab Analyses	Well Completion Details	Depth (m)
0-	Ground Surface								-0
- - 1-	Grass Topsoil dark brown, organic, damp Silty Sand and Gravel brown, some cobble, trace brick debris, damp to moist.	0.000	10-1	CS	70	0	PHCs, BTEX, Metals	No Monitoring Well Installed	1
	Dearock	2.000	10-2	CS	100	0		No Monito	- - -2
-	Limestone	Notes: CS = geop ppm = par	probe co	ore sam	ple				_
3-		m bgs = n	neters be	elow gro	ound s	urface			- -3
Dril Dril	led By: George Downing Estat I Method: Geoprobe 7822DT I Date: April 5, 2013 Iged by: David Kiar	e Drilling	Ltd.				Well Pipe Diam Borehole Diam Checked by: M	eter: 0.08 m	
LOG	iyeu by. Daviu Mal							Sheet. I O	

BOREHOLE LOG

Project No: 2471-1301

Project: Phase II ESA, 2070-2074 & 2090 Scott Street, Ottawa, ON

Client: EJSpa Corporation

Borehole Location: N/A

TOC Elevation: N/A (borehole only)
Water Level: N/A (borehole only)
Water Level Elevation: N/A (borehole only)
Bottom of Well Depth: N/A (borehole only)

	SUBSURFACE PROFILE					SA	MPLE		
Depth (m) Symbol	Description	Elevation (m) * / Depth (m bgs)	Sample ID	Sample Type	Sample Recovery	Organic Vapour Measurements (ppm)	Lab Analyses	Well Completion Details	Depth (m)
0-	Ground Surface	0.000							-0
	Asphalt Sand and Gravel (FILL) brown, some silt, some cobble, trace debris, damp.	0.000	11-1	CS	50	0	PHCs, BTEX, PAHs, Metals	No Monitoring Well Installed	
2		2.000							-2
-	End of Borehole	2.000	Notos						_
_			ppm =	geoprob parts p	er mill	ion	e nd surface		_
3-									-3
Drill Drill	ed By: George Downing Estate Method: Geoprobe 7822DT Date: April 5, 2013	e Drilling	Ltd.				Well Pipe Diam Borehole Diam Checked by: M	eter: 0.08 m ike Grinnell	6.4
Log	ged by: David Kiar							Sheet: 1 of	r 1

BOREHOLE LOG

Project No: 2471-1301

Project: Phase II ESA, 2070-2074 & 2090 Scott Street, Ottawa, ON

Client: EJSpa Corporation

Borehole Location: N/A

TOC Elevation: N/A (borehole only)
Water Level: N/A (borehole only)
Water Level Elevation: N/A (borehole only)
Bottom of Well Depth: N/A (borehole only)

	9	SUBSURFACE PROFILE					SA	MPLE		
Depth (m)	Symbol	Description	Elevation (m) * / Depth (m bgs)	Sample ID	Sample Type	Sample Recovery	Organic Vapour Measurements (ppm)	Lab Analyses	Well Completion Details	Depth (m)
0-		Ground Surface								-0
- - 1-		Asphalt Sand and Gravel (FILL) brown, some silt and cobble, trace debris, dry to damp.	0.000	12-1	CS	50	150	PHCs, BTEX, PAHs, Metals	No Monitoring Well Installed	
_		Podrock	1.700	12-2	CS	25	0		Z	_
2-		Bedrock limestone End of Borehole	1.700	ppm =	parts pe	er milli		nd surface		-2
	l					<u> </u>	1	· · · · · · · · ·		
		By: George Downing Estate	Drilling	Ltd.				Well Pipe Diam		
		lethod: Geoprobe 7822DT						Borehole Diam		
		ate: April 5, 2013						Checked by: M		
L	ogge	ed by: David Kiar							Sheet: 1 o	f 1

CLIENT: Slengora Limite	d c/o Cleland Jardine	Engineering		FILE No.:	PG2936
ADDRESS: 472 Tillbury Aver	iue			REPORT No.:	1
PROJECT: 2070 & 2090 Sco	ott Street			DATE:	03-Apr-13
STRUCTURE TYPE & LOCATIO	N: Rock C	Cores			
CORE DATA AND TESTING RE	SULTS				
Lab. No.	63136M	63136M			
Core No.	1	2			
Location	BH1	BH3			
	RC8	RC8			
Nominal MSA(mm)					
Date Cast					
Date Cored					
Date Tested	03-Apr-13	03-Apr-13			
(D) Ave. Diameter (mm)	46.00	46.00			
(H) Height (mm)	88.0	89.5			
(W) Weight (g)	415.8	417.3			
(A) Area = $\pi D^2/4$ (mm ²)	1661.9	1661.9			
(V) Volume = A X H $/1000 (cm^3)$	146.2	148.7			
Unit Weight = W /V x1000 (kg/r	2843	2806			
Capped Height(mm)	88.0	89.5			
H / D ratio	1.91	1.95			
Correction factor (k)	0.992	0.995			
(L) Load (lbs)	46900	23900			
Mpa = L x 4.448222 / A	125.5	64.0			
MPa (corrected)	124.5	63.7			
Direction of Loading					
Curing Conditions					
REMARKS					
Core No.1 Depth: 39' 8" to 40' 0"					
Core No.2 Depth: 40' 6" to 40' 10	"				
DISTRIBUTION			TECHNICAL PERSONNEL		
			TECHNICIAN:	G. Brown	
			VERIFIED BY:	S. Brown	m
			APPROVED BY:	Stephen J. Wa	alker P Eng

Certificate of Analysis

Report Date: 08-Apr-2013 Order Date:3-Apr-2013

Client: Paterson Group Consulting Engineers 10000

onorman alorson oroup of				Olu	ci Duio.0 / ipi 2010
Client PO: 13998		Project Descripti	on: PG2936		
	Client ID:	BH3-SS2	-	-	-
	Sample Date:	02-Apr-13	-	-	-
	Sample ID:	1314147-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	91.0	-	-	-
General Inorganics					
рН	0.05 pH Units	7.77	-	-	-
Resistivity	0.10 Ohm.m	29.0	-	-	-
Anions					
Chloride	5 ug/g dry	27	-	-	-
Sulphate	5 ug/g dry	106	-	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

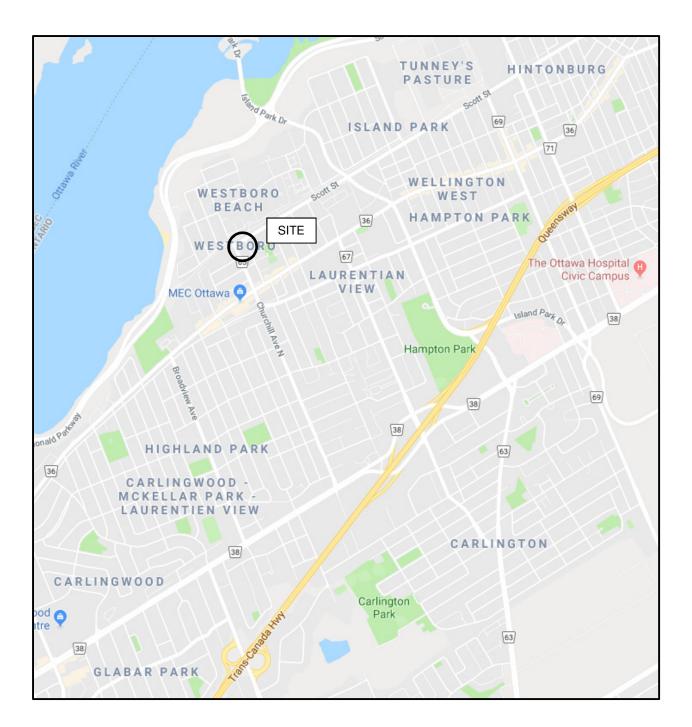
SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 7

APPENDIX 2

FIGURE 1 - KEY PLAN

FIGURES 2 AND 3 - SEISMIC SHEAR WAVE VELOCITY PROFILES


FIGURE 4 - GROUNDWATER SUPPRESSION SYSTEM

DRAWING PG4935-1 - TEST HOLE LOCATION PLAN

patersongroup

KEY PLAN

FIGURE 1

Travel Time (ms)

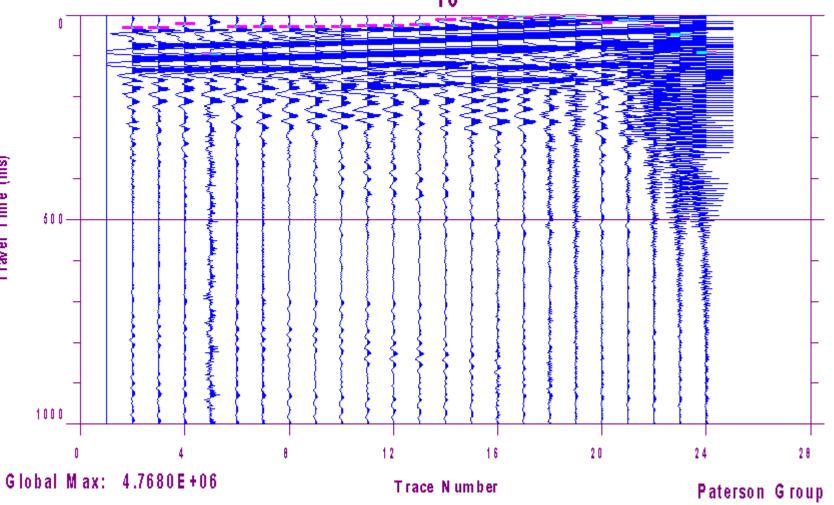
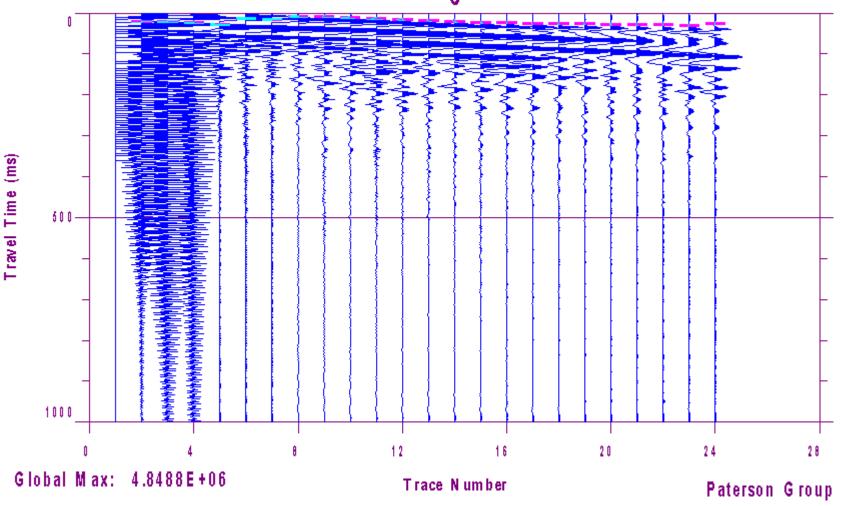
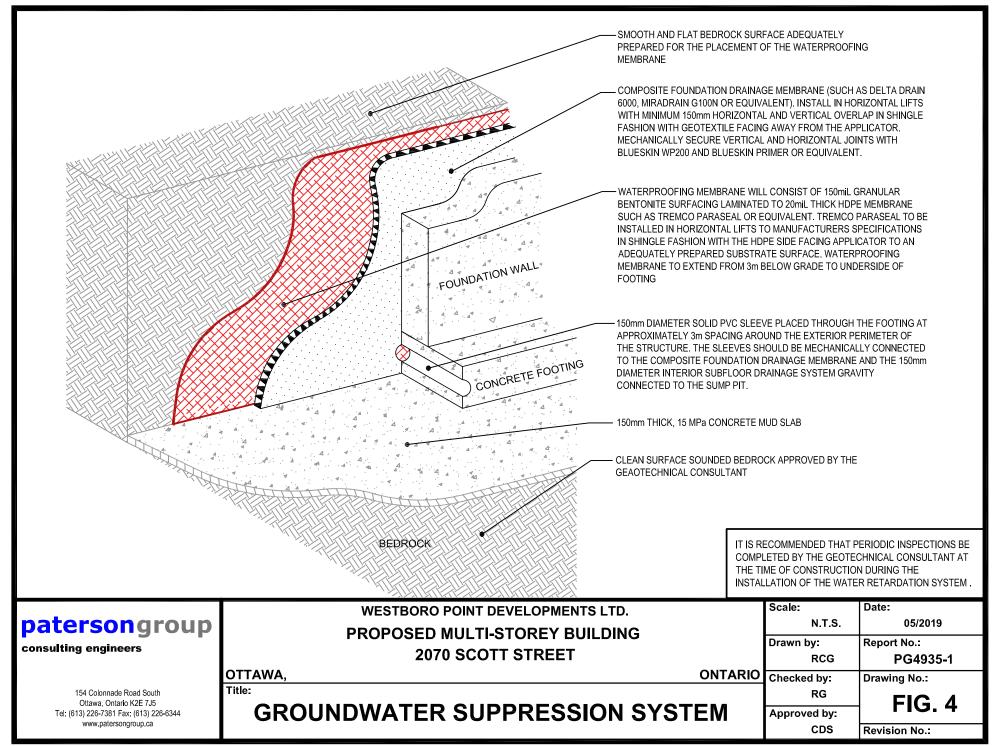
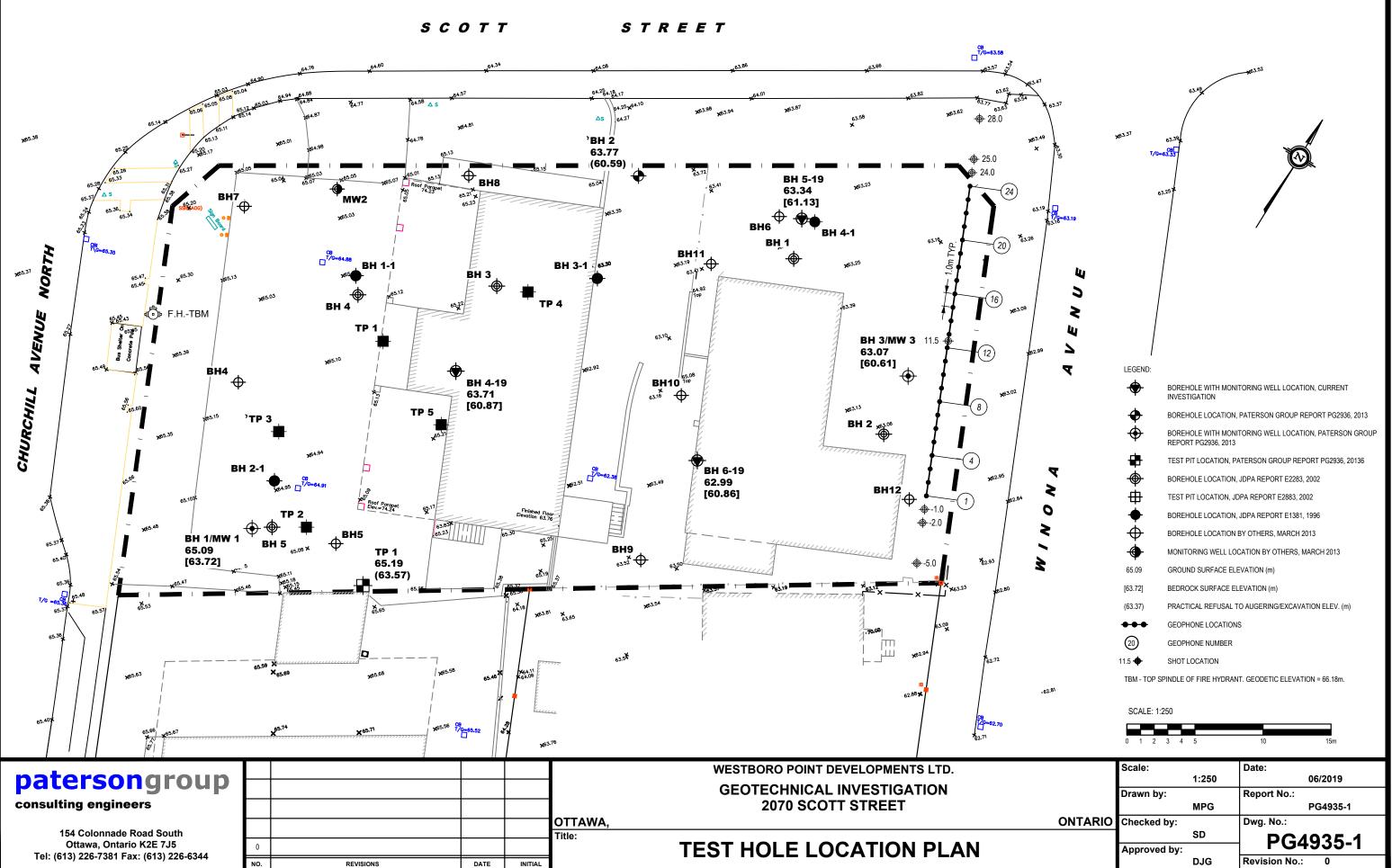


Figure 2 – Shear Wave Velocity Profile at Shot Location 24 m

10


Figure 3 – Shear Wave Velocity Profile at Shot Location -1 m

6

patersongroup

p:\autocad drawings\geotechnical\pg49xx\pg4935 gw suppresion system.dwg

autocad drawings\geotechnical\pg49xx\pg4935-1 thlp.dwg