

Phase Two Environmental Site Assessment 5938 Hazeldean Road, Ottawa, Ontario

Client:

Hazeldean Crossing Inc. 521 Kilspindie Ridge Ottawa, Ontario K2J 5M8

Project Number: OTT-00250806-C0

Prepared By: Mark McCalla, P. Geo.

Reviewed By: Carl Hentschel, P.Eng., PMP

EXP Services Inc. 100-2650 Queensview Drive Ottawa, ON K2B 7H6 Canada

Type of Document: Final

Date Submitted: June 27, 2019

Phase Two Environmental Site Assessment 5938 Hazeldean Road, Ottawa, Ontario

Type of Document:

Final

Client:

Hazeldean Crossing Inc. 521 Kilspindie Ridge Ottawa, Ontario K2J 5M8

Project Number:

OTT-00250806-C0

Prepared By:

EXP Services Inc. 100-2650 Queensview Drive Ottawa, ON K2B 7H6 Canada

T: +1.613-688-1899 F: +1.613-225-7337 www.exp.com

Mark McCalla, P. Geo. Senior Geoscientist Earth and Environment

Date Submitted: June 27, 2019 Carl Hentschel, P.Eng., PMP Environmental Engineer Earth and Environment

EXP Services Inc.

Hazeldean Crossing Inc.
Phase Two Environmental Site Assessment
5938 Hazeldean Road, Ottawa, Ontario
OTT-00250806-A0
June 27, 2019

Legal Notification

This report was prepared by EXP Services Inc. for the account of Hazeldean Crossing Inc.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties unless a reliance letter has been addressed to, or otherwise provides reliance to, such third party. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

Executive Summary

EXP Services Inc. (EXP) was retained by Hazeldean Crossing Inc. to complete a Phase Two Environmental Site Assessment (ESA) of the property referred to as 5938 Hazeldean Road, located in Ottawa, Ontario hereinafter referred to as the "Phase Two property". The objective of the Phase Two ESA is to assess the soil and groundwater quality since the site is a former gasoline retail outlet and automotive service garage. EXP understands that Hazeldean Crossing Inc. plans to re-develop the land as medium density residential and that this report is required as part of the permitting process with the City of Ottawa. Since the site was previously used for commercial purposes, a Record of Site Condition (RSC) is required.

Previously, a Phase One ESA was completed by EXP in order to identify potential environmental impacts. An underground storage tank removal report for the 2015 was also provided for review by EXP. Based on this assessment, the following Areas of Potential Environmental Concern (APEC) were identified:

Media Potentially Area of Potential Location of **Potentially** Location of Impacted **Contaminants** Contaminating PCA (On-Site (Groundwater. **Environmental APEC on Phase** of Concern Concern (APEC) One Property **Activity (PCA)** or Off-Site) Soil and/or Sediment) Petroleum hydrocarbons #28: Gasoline and (PHCs), Associated benzene, 1,Potential **Products** contamination from toluene. Storage in Soil and former on-site retail North / Central On-Site ethylbenzene **Fixed Tanks** groundwater gasoline sales outlet and xylenes #10: Commercial (BTEX), and service garage Autobody volatile organic Shops compounds (VOCs), lead

Table EX.1: Areas of Potential Environmental Concern

Based on these findings, it was recommended that a Phase Two ESA be completed to assess the soil and groundwater quality at the Phase Two property. The Phase Two ESA consisted of advancing eleven boreholes and completing them as groundwater monitoring wells. Soil and groundwater samples were collected and submitted for laboratory analysis of one or more of the following parameters: BTEX, PHC, VOCs, and lead.

For assessment purposes, EXP selected the Site Condition Standards (SCS), provided in Table 7 of *Soil, Groundwater and Sediment Standards for use Under Part XV.1 of the Environmental Protection Act*, Ministry of the Environment, Conservation and Parks (MECP), 2011 for residential/institutional land use at a site with coarse textured soil in accordance with Ontario Regulation 153/04 (as amended).

Based on the Phase Two ESA results, the following summary is provided:

- On February 15, 19 and 20, 2019, a total of 5 boreholes (MW19-1 to MW19-5) were advanced at the Phase Two property and were completed with a monitoring well. On March 13, 2019, six (6) boreholes (BH6 to MW19-11) were advanced at the Phase Two property and a monitoring well was installed in MW19-9 to MW19-11 to facilitate groundwater sampling. The monitoring well at BH11 was installed from 4.3 m to 5.8 m to vertically delineate petroleum impact to groundwater. MW19-9 and MW19-10 were installed to delineate groundwater impact to the west and south of MW19-1.
- Based on the Phase Two ESA, there was approximately 1.5 m of sand fill with some silt and gravel at MW19-3. At MW19-1 and MW19-2, there was sand fill from 1.5 m to 3.6 m which corresponds to the former UST excavations. Slight to moderate petroleum odours were identified in the lower fill material at MW19-1 and MW19-2. At MW19-4 and MW19-5 there was sand and gravel till with a trace silt and clay. The thickness of till ranged from 1.1 m to 1.5 m and was underlain by bedrock. No petroleum odours were identified in the native soil.
- Grey, limestone bedrock was encountered at a depth of 0.8 m to 1.5 m. Groundwater was
 encountered at a depth of 2.49 m bsg in MW19-9 to 3.42 m in MW19-4. No petroleum sheens
 were observed in the monitoring wells during the sampling event. Based on the groundwater
 elevations, the groundwater flow at the Phase Two property is to the north.t
- Based on the results of the investigation, the concentrations of one or more exceedances of PHC F3, cadmium, lead, benzo(a)pyrene and fluoranthene of the MECP Table 7 SCS in soil.
- The concentrations of benzene, PHCs F2 and naphthalene exceeded the MECP Table 7 SCS in groundwater at the Phase Two property in March 2019. The concentrations of BTEX and PHC in the groundwater samples were less than the MECP Table 7 SCS in samples collected in June 2019.
- Approximately 600 m³ of impacted soil was identified east of the existing site building. This soil should be removed and disposed of at a licensed landfill so that the soil concentrations satisfy the MECP Table 7 SCS.
- In March 2019, approximately 900 m² of petroleum impacted groundwater was identified within the limestone bedrock in the former locations of the UST nest and pump island in the north central part of the Phase Two property. Based on the groundwater results from June 2019, no groundwater impact was identified. The initial results could have been due to fine sediment in the groundwater causing false elevated concentrations. Groundwater samples should be collected from the monitoring wells in September 2019 to confirm the June 2019 results.
- If the wells are no longer needed, they should be decommissioned in accordance with Ontario Regulation 903.

Table of Contents

1	Introduction	1
1.1	Site Description	1
1.2	Current and Proposed Future Uses	1
1.3	Applicable Site Condition Standards	2
2	Background Information	3
2.1	Physical Setting	3
2.2	Past Investigations	3
3	Scope of the Investigation	5
3.1	Overview of Site Investigation	5
3.2	Scope of Work	5
3.3	Media Investigated	5
3.4	Phase One ESA Conceptual Site Model	6
	3.4.1 Current and Past Uses	6
	3.4.2 Summary of Potentially Contaminating Activities	6
	3.4.3 Areas of Potential Environmental Concern	
	3.4.4 Topography and Geology	
	3.4.5 Estimated Groundwater Flow Direction	
0.5	3.4.6 Underground Utilities	
3.5	Deviations from Sampling and Analysis Plan	
3.6	Impediments	
4	Investigation Method	8
4.1	General	8
4.2	Borehole Drilling	8
4.3	Soil Sampling	8
4.4	Field Screening Measurements	9
4.5	Soil Sample Submission	9
4.6	Groundwater: Monitoring Well Installation	9
4.7	Groundwater: Field Measurement of Water Quality Parameters	10
4.8	Groundwater: Sampling	10
4.9	Sediment: Sampling	11
4.10	Analytical Testing	11
4.11	Elevation Survey	11
4.12	Residue Management	
4.13	Quality Assurance and Quality Control Measures	11

5	Review and E	valuation	13
5.1	Geology		13
	5.1.1	Fill Material	13
	5.1.2	Native Material	13
	5.1.3	Bedrock	13
5.2	Aquifers		13
5.3	Groundwater: I	Elevations and Flow Direction	14
5.4	Groundwater: I	Hydraulic Gradients	15
5.5		sponse Tests (SWRTs) Analysis	
5.6			
5.7		eening	
5.8			
0.0	5.8.1	Petroleum Hydrocarbons	
	5.8.2	Metals	
	5.8.3	Volatile Organic Compounds	
	5.8.4	Polycyclic Aromatic Hydrocarbons	
	5.8.5	Chemical Transformation and Soil Contaminant Sources	
	5.8.6	Evidence of Non-Aqueous Phase Liquid	16
5.9	Groundwater C	Quality	16
	5.9.1	Petroleum Hydrocarbons	16
	5.9.2	Metals	17
	5.9.3	Volatile Organic Compounds	17
	5.9.4	Polycyclic Aromatic Hydrocarbons	17
	5.9.5	Chemical Transformation and Contaminant Sources	17
	5.9.6	Evidence of Non-Aqueous Phase Liquid	17
5.10	Sediment Qual	lity	17
5.11	Quality Assura	nce and Quality Control Results	17
5.12	Phase Two Co	nceptual Site Model	18
	5.12.1	Site Identification Information	19
	5.12.2	Physical Site Description	19
	5.12.3	Geological and Hydrogeological Setting	20
	5.12.4	Underground Utilities	20
	5.12.5	Potentially Contaminating Activities	20
	5.12.6	Areas of Potential Environmental Concern / Potential Contam	
	5.12.7	Investigation and Remediation	
	5.12.8	Contaminants of Concern (COC)	
	5.12.9	Contaminant Fate and Transport	
	5.12.10	Receptors and Exposure Pathways	

7	General Limitations
8	References
LIST C	of Figures
	I – Site Location Plan 2 – Phase One Study Area and Surrounding Land Use Plan
Figure 3	3: Site Plan
Figure 4	1: Site Plan and APECs
Figure 5	5: Borehole Location Plan with APECs
Figure 6	6: Groundwater Contour Plan
Figure 7	7: PHC Impacts in Soil
Figure 8	3: PAH Impacts in Soil
Figure 9	9: Metals Impacts in Soil
Figure 1	I0A: Cross Section A-A', with PHCs Impacts in Soil
_	I0B: Cross Section A-A', with PAHs Impacts in Soil I0C: Cross Section A-A', with Metals Impacts in Soil
Figure 1	I1A: Cross Section C-C', with PHCs Impacts in Soil
Figure 1	11B: Cross Section C-C', with PAHs Impacts in Soil
Figure 1	11C: Cross Section C-C', with Metals Impacts in Soil
Figure 1	12: Cross Section A-A', with PHCs Impacts in Groundwater
Figure 1	I3A: Cross Section B-B', with PHCs Impacts in Groundwater

Figure 13B: Cross Section B-B', with PAHs Impacts in Groundwater

Conclusions and Recommendations......24

List of Appendices

Tables

6

Appendix A: Sampling and Analysis Plan

Appendix B: Figures

Appendix C: Borehole Logs

Appendix D: Analytical Summary Tables

Appendix E: Laboratory Certificates of Analysis

1 Introduction

EXP Services Inc. (EXP) was retained by Hazeldean Crossing Inc. to complete a Phase Two Environmental Site Assessment (ESA) of the property referred to as 5938 Hazeldean Road in Ottawa, Ontario, hereinafter referred to as the 'Phase Two property'. The objective of the Phase Two ESA is to assess the soil and groundwater quality since the site is a former gasoline retail outlet and automotive service garage. EXP understands that Hazeldean Crossing Inc. plans to re-develop the land as medium density residential and that this report is required as part of the permitting process with the City of Ottawa. Since the site was previously used for commercial purposes, a Record of Site Condition (RSC) is required.

This report has been prepared in accordance with the Phase Two ESA standard as defined by Ontario Regulation 153/04 (as amended), and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 7 of this report.

1.1 Site Description

The Phase Two property is currently occupied by a service garage and retail store and has an area of 0.4 hectares. EXP completed a Phase One and Two ESA at the neighbouring site to the east in February 2019.

The Phase Two property is legally described as *Concession 11 Part of Lot 25 Registered Plan 4R-10078; Parts 1 & 2* and is shown on Figure 1 in Appendix B. The property identification number is 044620475 At the time of the investigation, the Phase Two property was an abandoned retail gasoline sales outlet, improved with one permanent structure, that was partially asphalt covered with gravel and grass covering the remainder. The Phase Two property was developed between 1955 and 1965 (Figure 2 in Appendix B). The Phase Two property and the adjacent properties are expected to be serviced by City of Ottawa water and sewage. At the time of the investigation, the Phase Two property was owned by Hazeldean Crossing Inc.

Owner Contact: Mr. Carmine Zayoun

Hazeldean Crossing Inc. 521 Kilspindie Road Ottawa, Ontario K2J 6A2

Topographically, the Phase Two property is relatively flat. The surrounding area has a noticeable downwards slope towards the east. Regional groundwater flow direction is inferred to be in the easterly direction towards Poole Creek, found 580 m to the east.

The approximate Universal Transverse Mercator (UTM) coordinates for the Phase Two property centroid is NAD83, Zone 18T, 427654.4 m E, 5014040.6 m N. The UTM coordinates were based on an estimate derived using Google Earth™. The accuracy of the centroid is estimated to range from 5 to 50 m.

1.2 Current and Proposed Future Uses

At the time of the Phase Two ESA investigation, the Phase Two property was a former gasoline retail outlet and automotive service garage that is currently vacant. The future land use will be residential. A site plan is included in Appendix B.

1.3 Applicable Site Condition Standards

Analytical results obtained for Site soil and groundwater samples were assessed against Site Condition Standards (SCS) as established under subsection 169.4(1) of the Environmental Protection Act, and presented in the document Ontario Ministry of Environment, Conservation and Parks (MECP) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", ("SGWS" Standards), (MECP, 2011a). Tabulated background SCS (Table 1) applicable to environmentally sensitive Sites and effects based generic SCS (Tables 2 to 9) applicable to non-environmentally sensitive Sites are provided in MECP (2011a). The effects based SCS (Tables 2 to 9) are protective of human health and the environment for different groundwater conditions (potable and non-potable), land use scenarios (residential, parkland, institutional, commercial, industrial, community and agricultural/other), soil texture (coarse or medium/fine) and restoration depth (full or stratified).

Application of the generic or background SCS to a specific site is based on a consideration of site conditions related to soil pH (i.e. surface and subsurface soil), thickness and extent of overburden material, (i.e. shallow soil conditions), and proximity to an area of environmental sensitivity or of natural significance. For some chemical constituents, consideration is also given to soil textural classification with SCS having been derived for both coarse and medium-fine textured soil conditions.

For assessment purposes, EXP selected the MECP (2011) Table 7: Full Depth Generic Site Condition Standards (SCS) in a non-potable groundwater condition for a residential/parkland/institutional property use and coarse textured soil. The selection of this category was based on the following factors:

- The predominant soil type on the Phase Two property was considered to be coarse textured (refer
 to the results of the Grain Size Analysis as provided in the Certificates of Analysis presented in
 Appendix E);
- There was no intention to carry out a stratified restoration at the Phase Two property;
- Less than two-thirds of the Phase Two property has an overburden thickness greater than 2 m;
- The Phase Two property is not located within 30 m of a surface water body or an area of natural significance;
- The soil at the Phase Two property has a pH value between 5 and 9 for surficial soils; and, between 5 and 11 for subsurface soils;
- The property is not within an area of natural significance; does not include, nor is it adjacent to an area of natural significance, nor is it part of such an area; and, it does not include land that is within 30 m of an area of natural significance, nor is it part of such an area;
- The Phase Two property will be serviced by the City of Ottawa's water distribution system and the surrounding properties either are already municipally serviced or will be in the near future; and,
- The Phase Two property is planned for residential use.

2 Background Information

2.1 Physical Setting

At the time of the investigation, the Phase Two property was observed to be vacant former gasoline retail outlet and automotive service garage with an area of 0.4 hectares, approximately 50 m west of the southwest corner of the intersection of Hazeldean Road and Victor Street. The surrounding area to the west and south was developed with residential houses. To the north, across Hazeldean Road the land is commercial and to the east is undeveloped (Figure 2 in Appendix B). The Phase Two property is in a mixed commercial and residential zoned area. The Phase Two property and the neighbouring properties are serviced for water and sewer by the City of Ottawa.

Local Ontario Ministry of Environment, Conservation and Parks (MECP) water wells records show that bedrock was found at 1.5 - 5 m from surface. The overburden consists of sand and sandy clay. Bedrock in the area was found to be limestone.

Topographically, the Phase Two property is relatively flat. The surrounding area has a noticeable downwards slope towards the east. Regional groundwater flow direction is inferred to be in the easterly direction towards Poole Creek, found 500 m to the east.

2.2 Past Investigations

The following previous reports were provided to EXP for review.

• Commercial Property Former Retail Petroleum Outlet 5938 Hazeldean Road, Stittsville, Ontario, Underground Storage Tank Removal Environmental Site Assessment, dated October 8, 2015, prepared by Rubicon Environmental (2008) Inc.

The report details the removal of all existing retail petroleum equipment on the site. Four (4) single wall steel underground storage tanks (UST) were removed in September 2015. Ten (10) confirmatory soil samples were collected from the walls and floor of the two excavations. No exceedances of the Ontario Ministry of Environment, Conservation and Parks (MECP) site condition standards were identified. Only limited groundwater was observed entering the excavation bottoms. No sheens or odours were observed on the groundwater surface. No groundwater samples were collected for laboratory analysis.

Based on this review, the following Areas of Potential Environmental Concern (APEC) are identified:

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off-Site)	Contaminants of Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
1.Potential contamination from former on- site retail gasoline sales outlet and service garage	North Central	#28: Gasoline and Associated Products Storage in Fixed Tanks #10: Commercial Autobody	On-Site	Petroleum hydrocarbons (PHCs), benzene, toluene, ethylbenzene and xylenes	Soil and groundwater

Table 2.1: Areas of Potential Environmental Concern

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off-Site)	Contaminants of Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
				volatile organic compounds (VOCs), lead	

Based on these results, it was recommended that a Phase Two ESA be completed to assess the soil and groundwater quality at the Phase Two property.

3 Scope of the Investigation

3.1 Overview of Site Investigation

The purpose of the Phase Two ESA was to investigate the soil and groundwater quality at the Phase Two property and to obtain soil and groundwater data to further characterize conditions in the surficial fill/shallow overburden soils.

It is understood that the Phase Two property is to be re-developed with medium density residential. As part of the permitting process, the City of Ottawa requires that a Phase Two ESA be completed in accordance with Ontario Regulation 153/04 (as amended).

3.2 Scope of Work

The scope of work for this Phase Two ESA was as follows:

- Request local utility locating companies (e.g., cable, telephone, gas, hydro) to mark any
 underground utilities present at the Phase Two property;
- Retain a private utility locating company to mark any underground utilities present in the vicinity of the borehole locations and to clear the individual borehole locations;
- Advance a total of five (5) boreholes and complete them as groundwater monitoring wells;
- Attempt to collect representative soil samples for chemical analysis of polycyclic aromatic hydrocarbons (PAH), metals, VOC, PHC and BTEX (PAHs were added to assess fill quality);
- Attempt to collect representative groundwater samples for chemical analysis of PAH, metals, VOC, PHC and BTEX;
- Measure groundwater levels in the monitoring wells and piezometer;
- Completion of a survey of the borehole locations relative to a geodetic or other permanent benchmark and in reference with the Universal Transverse Mercator (UTM) coordinate system for vertical and horizontal control; and
- Review the analytical data and prepare a report of the findings.

Maxime Leroux conducted assessment work for this project and was supervised by Mark McCalla, P.Geo., QP_{ESA}. Mark McCalla is a qualified person as defined by O. Reg. 153/04.

3.3 Media Investigated

The Phase Two ESA included the investigation of on-site soil and groundwater. As there are no water bodies on the Phase Two property, no surface water or sediment sampling was required.

The potential contaminants of concern (PCOCs) identified in EXP's (2019) Phase One ESA were identified as target parameters for this Phase Two ESA. The areas of potential environmental concern (APEC) and PCOCs identified in the Phase One ESA are outlined in Table 2.1.

The rationale for the selection of borehole and monitoring well locations during this investigation are to place them on the property to assess the soil and groundwater conditions in the APECs. A copy of the Sampling and Analysis Plan prepared for the Phase Two property is provided in Appendix A.

3.4 Phase One ESA Conceptual Site Model

In order to develop a conceptual model for the Phase Two property and surrounding study area, the following physical characteristics and pathways were considered.

3.4.1 Current and Past Uses

Based on a review chain of title information, air photos, and other records, the Phase Two property was developed into a gasoline retail outlet and automotive service garage since at least 1965.

3.4.2 Summary of Potentially Contaminating Activities

As per Ontario Regulation (O.Reg.) 153/04, a Potential Contaminating Activity (PCA) is defined as one of fifty-nine (59) industrial operations set out in Table 2 of Schedule D that occurs or has occurred in a Phase One study area. The following PCAs were identified:

- PCA 1 5938 Hazeldean Road Former retail gasoline sales outlet and service garage, located adjacent to west of the Phase Two property. (PCA#10 – Commercial Autobody Shops, PCA#28 – Gasoline and Associated Products Stored in Fixed Tanks).
- PCA 2 5943 Hazeldean Road Retail gasoline sales outlet built in 2015, located adjacent to 40 m west of the Phase Two property. (PCA#28 Gasoline and Associated Products Stored in Fixed Tanks). Based on short time frame of existence, this is not considered an APEC.
- PCA 3 5899 Hazeldean Road Retail gasoline sales outlet, located adjacent to 160 m to the east
 of the Phase Two property. (PCA#28 Gasoline and Associated Products Stored in Fixed Tanks).
 Based on intervening distance and being downslope in terms of the assumed direction of
 groundwater flow, this is not considered an APEC.

3.4.3 Areas of Potential Environmental Concern

As a result of the PCAs, the report identified the following APECs at the Phase One Property:

• APEC 1 – (central / north part of the site) Contaminated soil and groundwater. This APEC is associated with PCA 1. The potential contaminants of concern include PHC, BTEX, VOCs, and lead.

It is noted that any significant uncertainty or absence of information has the ability to affect the Phase One Conceptual Site Model. However, based on the information and findings presented within the Phase One ESA, it is EXP's opinion that any uncertainty would be minimal, and it would not alter the validity of the model presented above.

3.4.4 Topography and Geology

Topographically, the Phase Two property is relatively flat. The surrounding area has a downwards slope towards the east. The closest body of water is Poole Creek, located approximately 550 m east of the Site. Regional groundwater flow direction is inferred to be in the eastern direction.

The bedrock in the general area is limestone at a depth of approximately less than 2 m. With respect to surficial geology, beneath any fill, the site is underlain by sand and sandy clay.

3.4.5 Estimated Groundwater Flow Direction

Topographically, the Phase Two property relatively flat with a slight downwards slope towards the east. Regional groundwater flow direction is inferred to be in the eastern direction towards Poole Creek.

3.4.6 Underground Utilities

Currently, there are buried water, sewer, natural gas utilities at the Phase Two property.

3.5 Deviations from Sampling and Analysis Plan

The field investigative and sampling program was carried out following the requirements of the Site Sampling and Analysis Plan (SAAP in Appendix A). No significant deviations from the Sampling and Analysis Plan were reported that affected the sampling and data quality objectives for the Phase Two property.

3.6 Impediments

No physical impediments were encountered during the field investigation. The entire property was accessible at the time of the investigation.

4 Investigation Method

4.1 General

The Phase Two property investigative activities consisted of drilling boreholes to facilitate the collection of soil samples for chemical analysis and the installation of monitoring wells for hydrogeological property characterization and the collection of groundwater samples for chemical analysis.

4.2 Borehole Drilling

Prior to the commencement of drilling, the locations of underground public utilities including telephone, natural gas and electrical lines were marked at the Phase Two property by locating companies. A private utility locating contractor was also retained to clear the individual borehole locations.

On February 15, 19, and 20, 2019, a total of 5 boreholes (MW19-1 to MW19-5) were advanced at the Phase Two property by OGS Drilling, a licensed well contractor, under the full-time supervision of EXP staff concurrently with a geotechnical investigation. A track mounted CME drill rig with split spoon samplers was used to collect the soil samples. A monitoring well was installed in each borehole to facilitate groundwater sampling. The locations of the boreholes and monitoring wells are presented on Figure 3 in Appendix B.

On March 13, 2019, six (6) boreholes (BH6 to MW19-11) were advanced at the Phase Two property by Marathon Drilling, a licensed well contractor, under the full-time supervision of EXP staff. Monitoring wells were installed in MW19-9 to MW19-11 to facilitate groundwater sampling. The monitoring well at BH11 was installed from 4.3 m to 5.8 m to vertically delineate petroleum impact to groundwater. MW19-9 and MW19-10 were installed to delineate groundwater impact to the west and south of MW19-1. The locations of the boreholes and monitoring wells are presented on Figure 3 in Appendix B.

No petroleum-based greases or solvents were used during drilling activities. EXP staff continuously monitored the drilling activities and recorded the depth of soil sample collection and total depth of boring. Field observations are summarized on the borehole logs provided in Appendix C.

The split spoon samplers were decontaminated between sampling intervals by the drilling contractor using a potable water/phosphate-free detergent solution followed by rinses with potable water.

4.3 Soil Sampling

The soil sampling during the completion of this Phase Two ESA was undertaken in general accordance with the SAAP presented in Appendix A.

Soil samples for geologic characterization were collected on a continuous basis in the overburden materials using 5 cm diameter, 61 cm long, split spoon samplers advanced into the subsurface using the drilling rig. The soil cores were removed from the samplers upon retrieval by drilling personnel. Geologic details of the recovered cores were logged by EXP field staff. EXP staff continuously monitored the drilling activities to log the stratigraphy observed from the recovered soil cores, to record the depth of soil sample collection, to record total depths of borings, and to record visual or olfactory observations of potential impacts. Field observations are summarized on the borehole logs provided in Appendix C.

Soil samples identified for possible laboratory analysis were collected from the split spoon sampler and placed directly into pre-cleaned, laboratory-supplied glass sample jars/vials. Samples to be analysed for VOC, PHC fraction F1 and BTEX were collected using a soil core sampler and placed in to vials containing methanol as a preservative. The jars and vials were sealed with Teflon-lined lids to minimize head-space and reduce the potential for induced volatilization during storage/transport prior to analysis. All soil samples were placed in clean coolers containing ice prior to and during transportation to the subcontract laboratory,

Maxxam Analytics Inc. (Maxxam) of Ottawa, Ontario. The samples were transported/submitted within 24 hours of collection to the laboratory following chain of custody protocols for chemical analysis.

No soil samples were collected from MW19-11 since the purpose of this monitoring well was to vertically delineate the groundwater impact found at MW19-1 and soil samples were previously collected from that location. MW19-11 was installed close to MW19-1.

4.4 Field Screening Measurements

The remaining portion of each soil sample was placed in a sealed Ziploc plastic bag and allowed to reach ambient temperature prior to field screening with a combustible vapour meter (RKI Eagle model) calibrated to hexane gas prior to use. The field screening measurements were made by inserting the instrument's probe into the plastic bag while manipulating the sample to ensure volatilization of the soil gases. These 'headspace' readings provide a real-time indication of the relative concentration of combustible vapours encountered in the subsurface during drilling and are used to aid in the assessment of the vertical and horizontal extent of potential impacts and the selection of soil samples for analysis. The field screening measurements, in parts per million (ppm) hexane equivalents, are presented with the borehole logs provided in Appendix C.

4.5 Soil Sample Submission

Soil samples were selected for laboratory analysis based on combustible vapour measurements and visual and olfactory evidence of impacts, where observed. One (1) worst case soil sample from each borehole was submitted for laboratory analysis of PAH, metals, VOC, PHC, and BTEX.

4.6 Groundwater: Monitoring Well Installation

Groundwater monitoring wells were installed in general accordance with the Ontario Water Resources Act - R.R.O. 1990, Regulation 903 (as-amended).

The monitoring wells consisted of a 1.5 m to 3.0 m length of 37 mm diameter Schedule 40 PVC screen and an appropriate length of PVC riser pipe. The annular space around the well was backfilled with sand to an average height of 0.3 m above the top of the screen. A bentonite seal was added from the top of the sand pack to approximately 0.3 m below ground surface. Details of the monitoring well installations are shown on the Borehole Logs provided in Appendix C.

The installation details of the installed monitoring wells are summarized in Table 4.1.

Bottom of Bottom of Top of Top of Ground Depth of **Borehole** Monitoring Sand Screen Screen Elevation Borehole **Elevation** Well/Piezometer **Elevation Elevation** Elevation (MASL) (m bsg) (m) (m) (m) (m) MW19-1 114.92 113.1 112.8 111.3 111.3 3.6 MW19-2 114.88 113.2 112.9 111.4 111.4 3.5 112.7 MW19-3 114.82 112.4 110.0 110.0 4.8 MW19-4 114.97 113.0 112.7 110.3 110.3 4.7

Table 4.1: Monitoring Well Installation Details

Monitoring Well/Piezometer	Ground Elevation (MASL)	Top of Sand Elevation (m)	Top of Screen Elevation (m)	Bottom of Screen Elevation (m)	Bottom of Borehole Elevation (m)	Depth of Borehole (m bsg)
MW19-5	114.56	112.7	112.4	110.0	110.0	4.6
MW19-9	114.62	113.0	112.7	109.6	109.2	5.99
MW19-10	114.76	112.8	112.5	109.4	109.1	6.02
MW19-11	114.92	110.8	110.5	109.0	108.5	6.38

Note: Elevations were collected using a high precision GPS unit and a geodetic datum was established at the Phase Two Property.

m bsg - metres below surface grade

TOC - top of plastic well casing

When these monitoring wells are no longer required, they will be decommissioned in accordance with the procedure outlined in the Ontario Water Resources Act - R.R.O. 1990, Regulation 903 - Amended to O. Reg. 128/03.

Measures taken to minimize the potential for cross contamination or the introduction of contaminants during well construction included:

- The use of well pipe components (e.g. riser pipe and well screens) with factory machined threaded flush coupling joints;
- Construction of wells without the use of glues or adhesives;
- Removing the protective plastic wraps from well components at the time of borehole insertion to prevent contact with the ground and other surfaces;
- Cleaning of augers between sampling locations; and,
- The use of hollow stem augers to prevent loose and potentially contaminated material in overlying layers from sloughing into the boreholes and coming into contact with groundwater.

4.7 Groundwater: Field Measurement of Water Quality Parameters

The static water level was measured, the depth of each well was recorded and the well sampled. EXP used an interface probe to measure the possible presence of light non-aqueous phase liquid (LNAPL) in the monitoring well.

4.8 Groundwater: Sampling

Groundwater samples were collected from the monitoring wells on January 26 and March 18, 2019. The monitoring activities consisted of measuring the depth to groundwater in each monitoring well so that groundwater flow and direction below the Phase Two property could be assessed. The water level measurements were recorded on water level log sheets. The water level meter probe was decontaminated between monitoring well locations with a spray bottle of water and alconox solution, paper towel, then potable water.

Wells were then sampled using a "low flow" technique whereby the well was continuously purged using an electric pump (equipped with dedicated tubing) and parameters within the purged water were monitored

using a groundwater chemistry multi-meter probe (YSI 550) at 3 minute intervals. These parameters include: pH, conductivity, temperature, and salinity. Once these parameters were found to deviate less than 10% over three testing events, equilibrium was deemed to have occurred and a sample of the groundwater was collected.

Additional groundwater samples were collected from BH1 and BH3 on June 3, 2019. The groundwater samples were submitted for laboratory analysis of BTEX and PHC. The sample from BH3 was also submitted for analysis of PAH.

The purge water was also continuously monitored for visual and olfactory evidence of petroleum and solvent impact (sheen and odour).

The groundwater samples were collected in laboratory provided sample bottles and submitted to Maxxam for analysis of PAH, metals, VOC, PHC, and BTEX. There was insufficient groundwater in MW19-2 during both sampling events so a groundwater sample was not collected from this location. The groundwater samples were placed in clean coolers containing ice prior to and during transportation to the subcontractor laboratory.

4.9 Sediment: Sampling

As no water body was present at the Phase Two property, sediment sampling was not part of the Phase Two ESA.

4.10 Analytical Testing

The contracted laboratory selected to perform chemical analysis on all soil and water samples was Maxxam Analytics Incorporated (Maxxam). Maxxam is an accredited laboratory under the Standards Council of Canada/Canadian Association for Laboratory Accreditation in accordance with ISO/IEC 17025:1999-General Requirements for the Competence of Testing and Calibration Laboratories.

4.11 Elevation Survey

An elevation survey was conducted to obtain vertical control of the newly installed monitoring well locations. The top of casing and surface grade elevation of each monitoring well location was surveyed using a high precision GPS unit.

4.12 Residue Management

The minor amount of drill cuttings were spread around the ground surface near the borehole locations.

Due to the low flow sampling method, purged water from groundwater sampling was stored in a pail. Since there were no visual or olfactory evidence of impact, the minimal amount of purge water was disposed of on the grass at the Phase Two property.

4.13 Quality Assurance and Quality Control Measures

A QA/QC program was also implemented to ensure that the analytical results received are accurate and dependable. A QA/QC program is a system of documented checks that validate the reliability of the data collected regarding any given Site. Quality Assurance is a system that ensures that quality control procedures are correctly performed and documented. Quality Control refers to the established procedures observed both in the field and in the laboratory, designed to ensure that the resulting end data meet intended quality objectives. The QA/QC program implemented by EXP incorporated the following components:

- Collection and analysis of blind duplicate soil and groundwater samples to ensure analytical precision;
- Using dedicated and/or disposal sampling equipment;
- Use of a trip blank, for VOC analysis, during each sampling event;
- Following proper decontamination protocols to minimize cross-contamination;
- Maintaining field notes and completing field forms to document on-Site activities; and,
- Using only laboratory supplied sample containers and following prescribed sample protocols, including proper preservation, meeting sample hold times, proper chain of custody documentation, to ensure integrity of the samples.

Maxxam's QA/QC program involved the systematic analysis of control standards for the purpose of optimizing the measuring system as well as establishing system precision and accuracy and included calibration standards, method blanks, reference standards, spiked samples, surrogates and duplicates.

5 Review and Evaluation

5.1 Geology

The detailed soil profiles encountered in the boreholes are provided on the attached borehole logs (Appendix C). Boundaries of soils indicated on the logs are intended to reflect transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change. A brief description of the soil stratigraphy at the Phase Two property, in order of depth, is summarized in the following sections. The interpreted Phase Two property geology is shown on the enclosed cross section (Figure 5, Appendix B).

5.1.1 Fill Material

There was approximately 1.5 m of sand fill with some silt and gravel at MW19-3. At MW19-1 and MW19-2, there was sand fill from 1.5 m to 3.6 m which corresponds to the former UST excavations. Slight to moderate petroleum odours were identified in the lower fill material at MW19-1 and MW19-2.

5.1.2 Native Material

At MW19-4 and MW19-5 there was sand and gravel till with a trace silt and clay. The thickness of till ranged from 1.1 m to 1.5 m and was underlain by bedrock. No petroleum odours were identified in the native soil in any of the boreholes.

The grain size analyses for BH7 and BH10 showed that less than 50% of the soil had a grain size of silt or finer. This indicates that the native soil is coarse grained. The results of the grain size analyses are found in Appendix A.

5.1.3 Bedrock

Limestone bedrock was encountered from 0.8 m to 1.5 m across the Phase Two property. Bedrock was also found at a depth of 3.6 m in MW19-1 and MW19-2, but these boreholes were located within the former UST nest.

5.2 Aquifers

In the Ottawa area, the regional aquifers consist of both bedrock and overburden sources, with the two key aquifers consisting of the highly weathered and fractured portion of the upper bedrock surface and overlying sand and gravel deposits (contact zone aquifer) and deeper bedrock aquifers.

In southeastern Ontario, there are four main bedrock aquifers (Singer et al., 2003):

- Nepean-March-Oxford Aquifer
- Rockcliffe Aquifer
- Ottawa Group Aquifer
- Billing-Carlsbad-Queenston Aquifer

In the vicinity of the Phase One Property, the primary bedrock aquifer is the Ottawa Group. This aquifer is considered to have good water yielding capacity with generally fair to good water quality (RRCA and SNCA, 2008).

The contact zone aquifer, which generally includes the sand and gravel deposits and underlying fractured bedrock, is present across the Ottawa region, with more than 90% of the water extracted in eastern Ontario

is extracted from the Contact Zone Aquifer (RRCA and SNCA, 2008). The contact zone aquifer varies in thickness across the region due to the large variation in the zone of upper bedrock fracturing.

Regional groundwater flow in both the contact zone and bedrock have been interpreted to be to the northeast towards the Ottawa River, generally following bedrock topography.

Recharge of aquifers regionally is limited due to the confining silty clay layer resulting from the former Champlain Sea. It has been estimated that only 10% of precipitation that falls in the Ottawa region infiltrates into the ground to recharge the aquifers, with the remainder of the precipitation being lost to evapotranspiration or runoff to rivers and lakes (City of Ottawa, 2011).

5.3 Groundwater: Elevations and Flow Direction

The monitoring well network advanced as part of this Phase Two ESA consists of two monitoring wells (MW19-1 and MW19-2) that were installed within the backfill material of a former UST nest within the limestone bedrock. Five additional monitoring wells (MW19-3, MW19-4, MW19-5, MW19-9, and MW19-10) and a deeper monitoring well (MW19-11) were screened within the limestone bedrock at the Phase Two property.

Groundwater elevations and water levels were measured at the Phase Two property on January 26, March 18, and April 25, 2019. Groundwater was encountered within the limestone at a depth of 2.49 m bsg in MW19-9 to 3.42 m in MW19-4. No petroleum sheens were observed in the monitoring wells during either sampling event.

A summary of the elevation survey and groundwater levels for each well are shown on Table 5.1.

February 26, 2019 March 18, 2019 April 25, 2019 Monitoring Ground Well Elevation Water Water Water Water Water Water ID (MASL) Level Level Level Level Level Level (MASL) (m bsg) (m bsg) (MASL) (m bsg) (MASL) 111.96 2.54 112.38 MW19-1* 114.92 3.03 111.89 2.96 111.88 2.70 112.18 MW19-2* 114.88 3.10 111.78 3.00 111.43 3.42 111.40 114.82 111.49 MW19-3 3.33 3.39 110.99 111.86 3.11 MW19-4 114.97 3.98 3.60 111.37 111.05 3.30 111.26 MW19-5 114.56 3.93 110.63 3.51 113.10 2.49 112.73 MW19-9 115.22 2.12 NA NA 112.15 111.97 3.11 MW19-10 115.08 NA NA 2.93 111.97 2.69 112.23 MW19-11 114.92 NA NA 2.95

Table 5.1: Groundwater Elevations

Note: Elevations were referenced using a high precision GPS unit and a geodetic datum was established at the Phase Two Property.

mbtoc - metres below top of plastic well casing

mASL - metres above sea level

NA - not applicable

^{* -} well screened in backfill material in former UST nest within the limestone bedrock

Based on the groundwater levels measured on February 26 and March 18, 2019, the groundwater flow direction within the limestone bedrock at the site was to the north as shown on Figure 6 in Appendix B. EXP notes that groundwater flow direction and level can be influenced by utility trenches and other subsurface structures and may migrate in the bedding stone of nearby subsurface utility trenches.

5.4 Groundwater: Hydraulic Gradients

Horizontal hydraulic gradients estimated for the groundwater flow components identified in the shallow bedrock aquifer, based on the April 2019 groundwater elevations, was 0.029 m/m.

5.5 Single Well Response Tests (SWRTs) Analysis

The thin overburden at the site did not have sufficient groundwater to construct a monitoring well. Single well response tests were conducted on BH3 and BH5 which were completed within the shallow bedrock as a part of this Phase Two ESA. The calculated hydraulic conductivity in the limestone bedrock unit at these two monitoring wells was 9.1 x 10-8 m/s.

5.6 Soil Texture

Based on the grain size analysis of two (2) soil samples, the soil texture at the water table at the Phase One Property was assessed to be coarse textured (refer to the two grain-size analyses in Appendix E) consisting of silty sand and gravel. Therefore, the soil texture is coarse grained.

5.7 Soil: Field Screening

Inspection of the soil cores retrieved from the boreholes did not indicate the presence of sheen, the presence of a separate organic phase, or other evidence of a non-aqueous phase liquid (NAPL) either in the surficial fill or overburden soil materials. No petroleum staining or odours were observed in any of the soil samples.

5.8 Soil Quality

In accordance with the scope of work, chemical analyses were performed on selected soil samples recovered from the boreholes. The selection of representative "worst case" soil samples from each borehole was based on field visual or olfactory evidence of impacts and/or presence of potential water bearing zones. Summaries of the soil analytical results are found in Appendix D. Copies of the laboratory Certificates of Analysis for the tested soil samples are provided in Appendix E.

The MECP Table 7 SCS are applicable if soil pH is in the range of 5 to 11 for subsurface soil (less than 1.5 m below soil surface). The Certificates of Analysis include pH measurements taken from the subsurface soils. Two (2) soil samples were submitted for pH analysis with results of 7.70 and 7.90. The pH values were within the acceptable range for the application of MECP Table 7 SCS.

5.8.1 Petroleum Hydrocarbons

Ten (10) soil samples and two (2) blind duplicates were submitted for PHC and BTEX analyses. As shown in Table 1 in Appendix D, the concentrations of PHC and BTEX measured in the analysed soil samples were less than the MECP 2011 Table 7 SCS, with the exception of PHC F3 in the samples taken from BH4, BH6 and BH7. The area of PHC impact to soil is shown on Figure 7 and on cross-sections shown on Figures 10A and 11A.

5.8.2 Metals

Ten (10) soil samples and two (2) blind duplicates were submitted for metals analyses. As shown in Table 2 in Appendix D, the concentrations of metals measured in the analysed soil samples were less than the MECP 2011 Table 7 SCS, with the exception of cadmium in the samples from BH4 and BH6 and lead in BH4, BH6 and BH7. The area of metals impact to soil is shown on Figure 9 and on cross-sections shown on Figures 10C and 11C.

5.8.3 Volatile Organic Compounds

Five (5) soil samples and two blind duplicates were submitted for VOC analyses. The concentrations of VOC measured in the analysed soil samples were generally less than the laboratory detection limits and were less than the MECP 2011 Table 7 SCS, as shown in Table 3 in Appendix D.

5.8.4 Polycyclic Aromatic Hydrocarbons

Ten (10) soil samples and two (2) blind duplicates were submitted for PAH analyses. As shown in Table 4 in Appendix D, the concentrations of PAH measured in the analysed soil samples were less than the MECP 2011 Table 7 SCS, with the exception of benzo(a)pyrene and fluoranthene in the sample from BH4. The area of PAH impact to soil is shown on Figure 8 and on cross-sections shown on Figures 10B and 11B.

5.8.5 Chemical Transformation and Soil Contaminant Sources

There are three soil samples located east of the service garage building that had one or more exceedances of PHC F3, cadmium, lead, benzo(a)pyrene and fluoranthene of the MECP Table 7 SCS. Chemical transformations are a potential concern at the Site. However, based on the obtained results soils are not expected to be acting as a contaminant mass that could impact the Site's groundwater.

5.8.6 Evidence of Non-Aqueous Phase Liquid

Inspection of the soil cores retrieved from the boreholes did not indicate the presence of non-aqueous phase liquid (NAPL), via staining or sheen. Slight to moderate petroleum odours were identified in the lower fill material at MW19-1 and MW19-2. NAPLs are not expected to be present at the Phase Two property.

5.9 Groundwater Quality

Representative groundwater samples were collected from the newly installed monitoring wells to assess groundwater quality at the Phase Two property. Evidence of free phase product (i.e. visible film or sheen), and odour was not noted during well development or purging.

The groundwater analytical results are summarized on Tables 5 to 8 in Appendix D and the Certificates of Analysis are enclosed in Appendix E.

5.9.1 Petroleum Hydrocarbons

Nine (9) groundwater samples and a blind duplicate were submitted for the chemical analysis of PHC and BTEX. As shown in Table 5 in Appendix D, the concentrations of benzene and PHC F2 exceeded the MECP Table 7 SCS in the groundwater sample collected from BH3. The groundwater sample from BH1 also had a benzene concentration that exceeded the MECP Table 7 SCS. The groundwater samples from BH4, BH5, BH9, BH10, and BH11 had non-detectable concentrations of BTEX and PHC. The locations of the PHC groundwater exceedences are presented on the cross-section shown on Figures 12 and 13A. Additional groundwater samples were collected from BH1 and BH3 on June 3, 2019. The results showed

no exceedences of MECP Table 7 SCS and indicates that the groundwater is not impacted. The previous elevated results may have been caused by fine sediment in the groundwater.

5.9.2 Metals

Four (4) groundwater samples were submitted for the chemical analysis of metals. As shown in Table 6 in Appendix D, the concentrations of metals parameters in the groundwater samples were less than the MECP Table 7 SCS.

5.9.3 Volatile Organic Compounds

Four (4) groundwater samples were submitted for the chemical analysis of volatile organic compounds (VOC). As shown in Table 7 in Appendix D, the concentrations of VOC parameters in the groundwater sample were non-detect and below the MECP Table 7 SCS, with the exception of benzene in BH1 and BH3 which exceeded the MECP Table 7 SCS. The locations of the benzene groundwater exceedences are shown on Figure 10 and on cross-sections shown on Figures 12A and 12B

5.9.4 Polycyclic Aromatic Hydrocarbons

Nine (9) groundwater samples and a blind duplicate were submitted for the chemical analysis of PAH. As shown in Table 8 in Appendix D, the concentrations of PAH parameters in the groundwater sample were less than the MECP Table 7 SCS, with the exception of naphthalene in the two groundwater samples collected from BH3. The locations of the PAH groundwater exceedences are shown on the cross-section shown on Figure 13B. Additional groundwater samples were collected from BH3 on June 3, 2019. The results showed no exceedences of MECP Table 7 SCS and indicates that the groundwater is not impacted. The previous elevated results may have been caused by fine sediment in the groundwater.

5.9.5 Chemical Transformation and Contaminant Sources

There are no contaminants of concern in the groundwater at the Phase Two property.

5.9.6 Evidence of Non-Aqueous Phase Liquid

Inspection of the groundwater monitoring wells did not indicate the presence of non-aqueous phase liquid (NAPL), staining or sheen. Odours were not observed during groundwater sampling activities. NAPLs are not expected to be present at the Phase Two property.

5.10 Sediment Quality

As there were no water bodies on the Phase Two property, surface water and sediment sampling were not required.

5.11 Quality Assurance and Quality Control Results

Quality assurance and quality control measures were taken during the field activities to meet the objectives of the sampling and quality assurance plan to collect unbiased and representative samples to characterize existing conditions in the fill/upper overburden materials and groundwater at the Phase Two property. QA/QC measures, as described in Section 4.13, included:

- Using dedicated and/or disposal sampling equipment;
- Following proper decontamination protocols to minimize cross-contamination;
- Maintaining field notes and completing field forms to document on-site activities; and,

 Using only laboratory supplied sample containers and following prescribed sample protocols, including proper preservation, meeting sample hold times, proper chain of custody documentation, to ensure integrity of the samples.

Review of field activity documentation indicated that recommended sample volumes were collected from groundwater for each analytical test group into appropriate containers and preserved with proper chemical reagents in accordance with the protocols set out in the *Protocol for Analytical Methods used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act* (MOE, 2004). Samples were preserved at the required temperatures in insulated coolers and met applicable holding time requirements, when relinquished to the receiving laboratory.

Duplicate soil sample pairs BH1 SS4 and its duplicate DUPE, and BH10 AS1 and its duplicate Dup 1 were submitted for chemical analysis of PHC, PAH, and metals. Only duplicate pair BH1 SS4 and its duplicate DUPE were also submitted for VOC analyses. For QA/QC purposes, the analytical sample results are quantitatively evaluated by calculating the relative percent difference (RPD) between the samples and their duplicates. The concentrations of VOC, PAH, and PHC were less than the laboratory reported detection limits for both the primary and duplicate samples. The RPD for metals was 21.2% which is well within the 30% RPD threshold and therefore the soil data is acceptable from an RPD perspective.

Duplicate groundwater sample pair BH11 SS4 and its duplicate BH20 were submitted for chemical analysis of PHC and PAH. The concentrations of PHC were less than the laboratory reported detection limits for both the primary and duplicate samples. The RPD for PAH was 8.0% which is well within the 30% RPD threshold and therefore the soil data is acceptable from an RPD perspective.

Certificates of Analysis were received from Maxxam reporting the results of all the chemical analyses performed on the submitted soil and groundwater samples. Copies of the laboratory Certificates of Analysis are provided in Appendix E. A review of the Certificates of Analysis prepared by the laboratory indicates that they were in compliance with the requirements set out under subsection 47(3) of O.Reg. 511/09.

The analytical program conducted by laboratory included analytical test group specific QA/QC measures to evaluate the accuracy and precision of the analytical results and the efficiency of analyte recovery during solute extraction procedures. The laboratory QA/QC program consisted of the preparation and analysis of laboratory duplicate samples to assess precision and sample homogeneity, method blanks to assess analytical bias, spiked blanks and QC standards to evaluate analyte recovery, matrix spikes to evaluate matrix interferences and surrogate compound recoveries (VOCs only) to evaluate extraction efficiency. The laboratory QA/QC results are presented in the Quality Assurance Report provided in the Certificate of Analysis prepared by the laboratory. The QA/QC results are reported as percent recoveries for matrix spikes, spike blanks and QC standards, relative percent difference for laboratory duplicates and analyte concentrations for method blanks.

The laboratory QA/QC results were assessed against test group control limits in the case of spiked blanks, matrix spikes and surrogate recoveries and alert criteria in the case of method blanks and laboratory duplicates. Review of the laboratory QA/QC results reported by the laboratory indicated that they were within acceptable control limits or below applicable alert criteria for the sampled media and analytical test groups. Based on the assessment of the QA/QC, the analytical results reported by the laboratory are of acceptable quality and data qualifications are not required.

5.12 Phase Two Conceptual Site Model

This section presents a Conceptual Site Model (CSM) providing a narrative, graphical and tabulated description integrating information related to the Phase Two property's geologic and hydrogeological conditions, areas of potential environmental concern/potential contaminating activities, the presence and distribution of contaminants of concern, contaminant fate and transport, and potential exposure pathways.

For the purposes of this Phase Two CSM, the information relied upon was taken from all current and previous environmental reports conducted for the Phase One Property. However, the data relied upon was limited to the most recent information to convey the current Phase Two property conditions.

5.12.1 Site Identification Information

At the time of the investigation, the Phase Two property was observed to be vacant former gasoline retail outlet and automotive service garage with an area of 0.4 hectares, approximately 50 m west of the southwest corner of the intersection of Hazeldean Road and Victor Street (Figure 1 in Appendix A). The surrounding area to the west and south was developed with residential houses. To the north, across Hazeldean Road the land is commercial and to the east is undeveloped as shown on Figure 2 in Appendix B. At the time of the investigation, the Phase Two property was snow-covered, but is assumed to have been grass and asphalt covered. The Phase Two property was a gasoline retail outlet and automotive service garage since at least 1965. At the time of the investigation, the Phase Two property was owned by Hazeldean Crossing Incorporated.

The Phase Two property is in a mixed commercial and residentially zoned area. The Phase Two property is legally described as *Concession 11 Part of Lot 25 Registered Plan 4R-10078; Parts 1 & 2.* The property identification number is 044620475. The property and neighbouring properties are serviced for water and sewer by the City of Ottawa.

Local Ontario Ministry of Environment, Conservation and Parks (MECP) water wells records show that bedrock was found at 0.3 - 3 m from surface. The overburden consists of sand and gravel from the ground surface to 0.6 – 1.54 m. Bedrock in the area was found to be limestone.

Topographically, the Phase Two property is relatively flat. The surrounding area has a noticeable downwards slope towards the east. Regional groundwater flow direction is inferred to be in the easterly direction towards Poole Creek, found 580 m to the east.

Refer to the following table for the Phase Two property identification information.

Civic Address	5938 Hazeldean Road, Ottawa, ON			
Current Land Use	Former Gasoline Outlet and Service Garage			
Proposed Land Use	Residential			
Legal Description	Concession 11 Part of Lot 25 Registered Plan 4R-10078; Parts 1 & 2. City of Ottawa			
Property Identification Number	044620475			
UTM Coordinates	427654.4 m E, 5014040.6 m N			
Phase One Property Area	0.4 ha			
Property Owner	Hazeldean Crossing Inc			
Owner Contact	Mr. Carmine Zayoun			
Owner Address	521 Kilspindie Road, Ottawa, ON			

5.12.2 Physical Site Description

The Phase Two CSM provides a narrative and graphical interpretation of the Phase Two property surface features, near surface geologic and hydrogeologic conditions, PCOCs, contaminant fate and transport

mechanisms, and relevant receptors and exposure pathways. These components are discussed in the following sections and summarized in Table 1 in the Tables appendix.

The Phase Two property is located in a residential area of Ottawa where potable water is supplied by the City of Ottawa, however the depth to bedrock is less than 2 m over most of the Phase Two property and therefore the MECP Table 7 Site Condition Standards (SCS) are applied to the Phase Two property. The City of Ottawa obtains its water from the Ottawa River, located approximately 15 km northeast of the Phase Two property.

In accordance with Section 41 of the Ontario Regulation 153/04 (as amended), the Phase Two property is not an environmentally sensitive area. The Phase Two property is not located within an area of natural significance and it does not include land that is within 30 metres of an area of natural significance.

Based on the Phase Two ESA investigation, the Phase Two property is a shallow soil property as defined in Section 43.1 of the regulation. It does not include all or part of a water body, is not adjacent to a water body, and does not include land that is within 30 metres of a water body.

5.12.3 Geological and Hydrogeological Setting

Based on the findings of the Phase Two ESA, there was approximately 1.5 m of sand fill with some silt and gravel at MW19-3. At MW19-1 and MW19-2, there was sand fill from 1.5 m to 3.6 m which corresponds to the former UST excavations. Slight to moderate petroleum odours were identified in the lower fill material at MW19-1 and MW19-2.

At MW19-4 and MW19-5 there was sand and gravel till with a trace silt and clay. The thickness of till ranged from 1.1 m to 1.5 m and was underlain by bedrock. No petroleum odours were identified in the native soil.

Grey, limestone bedrock was encountered at a depth of 0.8 m to 1.5 m. Groundwater was encountered at a depth of 2.49 m bsg in MW19-9 to 3.42 m in MW19-4. No petroleum sheens were observed in the monitoring wells during the sampling event.

The geologic cross-sections prepared from the Phase Two property boreholes is presented on Figures 10 to 13 Appendix B.

Based on the Phase Two ESA, the groundwater flow within the bedrock is to the north.

5.12.4 Underground Utilities

The Phase Two property is municipally serviced by underground utilities such as bell, gas, water and sewer. The groundwater flow pattern in the limestone bedrock could be influenced by buried services.

5.12.5 Potentially Contaminating Activities

As per Ontario Regulation (O.Reg.) 153/04, a Potential Contaminating Activity (PCA) is defined as one of fifty-nine (59) industrial operations set out in Table 2 of Schedule D that occurs or has occurred in a Phase One study area. The following PCAs were previously identified:

- PCA 1 5938 Hazeldean Road Former retail gasoline sales outlet and service garage, located adjacent to west of the Phase Two property. (PCA#10 – Commercial Autobody Shops, PCA#28 – Gasoline and Associated Products Stored in Fixed Tanks).
- PCA 2 5943 Hazeldean Road Retail gasoline sales outlet built in 2015, located adjacent to 40 m west of the Phase Two property. (PCA#28 Gasoline and Associated Products Stored in Fixed Tanks). Based on short time frame of existence, this is not considered an APEC.

PCA 3 – 5899 Hazeldean Road – Retail gasoline sales outlet, located adjacent to 160 m to the east
of the Phase Two property. (PCA#28 – Gasoline and Associated Products Stored in Fixed Tanks).
Based on intervening distance and being downslope in terms of the assumed direction of
groundwater flow, this is not considered an APEC.

No other PCAs that took place within the vicinity of the Phase Two property (approximately 250 m radius) were identified.

5.12.6 Areas of Potential Environmental Concern / Potential Contaminants of Concern

As per Ontario Regulation 153/04 (as amended), Potential Contaminating Activity (PCA) is defined as one of the 59 industrial operations set out in Table 2 of Schedule D that occurs or has occurred on the Phase Two property or within the Phase Two property study area. Based on Phase One ESA, the identified areas of potential environmental concern (APEC) and potential contaminants of concern (PCOC) are summarized in the table below and are shown on Figure 2 in Appendix B.

Media Potentially Area of Potential Location of Potentially Location of Impacted **Contaminants** Environmental **APEC on Phase** Contaminating PCA (On-Site (Groundwater, of Concern Concern (APEC) One Property **Activity (PCA)** or Off-Site) Soil and/or Sediment) Petroleum 1.Potential hydrocarbons #28: Gasoline and contamination (PHCs), Associated benzene, from a former **Products** retail gasoline toluene. Storage in Phase One Soil and sales outlet and On-Site ethylbenzene **Fixed Tanks** property groundwater service garage and xylenes #10: Commercial located at the (BTEX), Autobody Phase One volatile organic Shops compounds property (VOCs), lead

Table 5.2: Areas of Potential Environmental Concern

5.12.7 Investigation and Remediation

The Phase Two ESA was conducted to assess the soil and groundwater quality at the Phase Two property. As indicated in the APEC and PCOC Table (above), the analytical program of the Phase Two ESA included testing of soil for metals, VOC, PHC, and PAH, and groundwater for metals, VOC, PHC, and PAH from the boreholes and monitoring well installed on the Phase Two property. The addition of PAH analyses was made to assess the fill quality at the site. The borehole and monitoring well locations are shown on Figure 5 in Appendix B.

5.12.8 Contaminants of Concern (COC)

Based on the results of the investigation, the concentrations of one or more exceedances of PHC F3, cadmium, lead, benzo(a)pyrene and fluoranthene of the MECP Table 7 SCS in soil. There are no contaminants of concern in the groundwater at the Phase Two property

5.12.9 Contaminant Fate and Transport

Soil COCs

A variety of physical, chemical and biochemical mechanisms affect the fate and transport of the potential COCs in soil, the contribution of which is dependent on the soil conditions and the chemical/physical properties of the COCs. Relevant fate and transport mechanisms are natural attenuation mechanisms, including advection mixing, mechanical dispersion/molecular diffusion, phase partitions (i.e. sorption and volatilization), and possibly abiotic or biotic chemical reactions, which effectively reduce COC concentrations.

Concentrations of the COCs in soil will be reduced by the effects of molecular diffusion and the creation of concentration gradients. As non-volatile chemical constituents PHC F3, cadmium, lead, benzo(a)pyrene and fluoranthene may undergo abiotic or biotic chemical reactions associated with the soil mineral particles and the micro-organisms present in the overburden material.

As a result of the various natural attenuation mechanisms in the soil environment, the concentrations of any COCs in soil will be reduced at the Site. The soil impacts are shown on the geologic cross sections (Figures 12A to 12C and 13A to 13C).

Approximately 600 m³ of impacted soil was identified east of the existing site building.

Groundwater COCs

There are no contaminants of concern in the groundwater at the Phase Two property.

5.12.10 Receptors and Exposure Pathways

Human Health Receptors and Exposure Pathways

The Phase Two property is currently vacant but was used for commercial purposes and is occupied by a vacant service garage and all petroleum related equipment has been removed. The Phase Two property will be redeveloped to residential townhomes in the future. The potential on-Site human receptors currently comprise long-term workers, short-term workers, property visitors (adult, teen, child, toddler and infant), and construction workers. The future potential residential land use on-Site human receptors comprise residents (adult, teen, child, toddler and infant) and short-term visitors (adult, teen, child, toddler and infant).

The potential on-site exposure pathways for the construction workers are inadvertent soil ingestion, soil particulate inhalation, soil dermal contact, incidental groundwater ingestion, groundwater dermal contact and ambient vapour inhalation (sourced from soil due to potential work conducted in a trench scenario).

The potential on-site exposure pathways for the short-term (outdoor) workers are soil particulate inhalation, soil dermal contact, and inadvertent soil ingestion.

The potential on-site exposure pathways for the long-term (indoor) workers, residents and property visitors indoor air inhalation (sourced from soil).

Ecological Receptors and Exposure Pathways

The Phase Two property is comprised of developed commercial lands capable of supporting some terrestrial ecological receptors. Relevant terrestrial receptors are terrestrial vegetation, such as trees, grasses and weeds; soil invertebrates, such as earthworms, millipedes and beetles; terrestrial birds, such as pigeons, sparrows and robins; and small terrestrial mammals, such as moles, voles, and mice.

The potential on-site exposure pathways for terrestrial vegetation are root uptake (soil), and stem and foliar uptake of vapours (sourced from soil).

EXP Services Inc.

Hazeldean Crossing Inc.
Phase Two Environmental Site Assessment
5938 Hazeldean Road, Ottawa, Ontario
OTT-00250806-A0
June 27, 2019

The potential on-site exposure pathways for soil invertebrates are soil particulate inhalation, soil dermal contact, soil ingestion, vapour inhalation (sourced from soil), and dermal contact and ingestion of groundwater.

The potential on-site exposure pathways for mammals and birds are soil particulate inhalation, soil dermal contact, soil ingestion, vapour inhalation (sourced from soil), animal tissue ingestion (as a result of biotransformation of soil), and dermal contact and ingestion of groundwater.

6 Conclusions and Recommendations

Based on the Phase Two ESA results, the following summary is provided:

- On February 15, 19 and 20, 2019, a total of 5 boreholes (MW19-1 to MW19-5) were advanced at the Phase Two property and were completed with a monitoring well. On March 13, 2019, six (6) boreholes (BH6 to MW19-11) were advanced at the Phase Two property and a monitoring well was installed in MW19-9 to MW19-11 to facilitate groundwater sampling. The monitoring well at BH11 was installed from 4.3 m to 5.8 m to vertically delineate petroleum impact to groundwater. MW19-9 and MW19-10 were installed to delineate groundwater impact to the west and south of MW19-1.
- Based on the Phase Two ESA, there was approximately 1.5 m of sand fill with some silt and gravel at MW19-3. At MW19-1 and MW19-2, there was sand fill from 1.5 m to 3.6 m which corresponds to the former UST excavations. Slight to moderate petroleum odours were identified in the lower fill material at MW19-1 and MW19-2. At MW19-4 and MW19-5 there was sand and gravel till with a trace silt and clay. The thickness of till ranged from 1.1 m to 1.5 m and was underlain by bedrock. No petroleum odours were identified in the native soil.
- Grey, limestone bedrock was encountered at a depth of 0.8 m to 1.5 m. Groundwater was encountered at a depth of 2.49 m bsg in MW19-9 to 3.42 m in MW19-4. No petroleum sheens were observed in the monitoring wells during the sampling event. Based on the groundwater elevations, the groundwater flow at the Phase Two property is to the north.t
- The concentrations of benzene, PHCs F2 and naphthalene exceeded the MECP Table 7 SCS in groundwater at the Phase Two property in March 2019. The concentrations of BTEX and PHC in the groundwater samples were less than the MECP Table 7 SCS in samples collected in June 2019.
- Approximately 600 m³ of impacted soil was identified east of the existing site building. This soil should be removed and disposed of at a licensed landfill so that the soil concentrations satisfy the MECP Table 7 SCS.
- In March 2019, approximately 900 m² of petroleum impacted groundwater was identified within the limestone bedrock in the former locations of the UST nest and pump island in the north central part of the Phase Two property. Based on the groundwater results from June 2019, no groundwater impact was identified. The initial results could have been due to fine sediment in the groundwater causing false elevated concentrations. Groundwater samples should be collected from the monitoring wells in September 2019 to confirm the June 2019 results.
- If the wells are no longer needed, they should be decommissioned in accordance with Ontario Regulation 903.

7 General Limitations

The information presented in this report is based on a limited investigation designed to provide information to support an assessment of the current environmental conditions within the Phase Two property. The conclusions and recommendations presented in this report reflect Phase Two property conditions existing at the time of the investigation.

More specific information with respect to the conditions between samples, or the lateral and vertical extent of materials may become apparent during excavation operations. The interpretation of the borehole information must, therefore, be validated during any such excavation operations. Consequently, during the future development of the Phase Two property, conditions not observed during this investigation may become apparent. Should this occur, EXP Services Inc. should be contacted to assess the situation, and the need for additional testing and reporting. EXP has qualified personnel to provide assistance in regards to any future geotechnical and environmental issues related to this property.

The environmental investigation was carried out to address the intent of applicable provincial Regulations, Guidelines, Policies, Standards, Protocols and Objectives administered by the Ministry of Environment. It should also be noted that current environmental Regulations, Guidelines, Policies, Standards, Protocols and Objectives are subject to change, and such changes, when put into effect, could alter the conclusions and recommendations noted throughout this report. Achieving the study objectives stated in this report has required us to arrive at conclusions based upon the best information presently known to us. No investigative method can completely eliminate the possibility of obtaining partially imprecise or incomplete information; it can only reduce the possibility to an acceptable level. Professional judgment was exercised in gathering and analyzing the information obtained and in the formulation of the conclusions. Like all professional persons rendering advice we do not act as absolute insurers of the conclusions we reach, but we commit ourselves to care and competence in reaching those conclusions.

Our undertaking at EXP, therefore, is to perform our work within limits prescribed by our clients, with the usual thoroughness and competence of the engineering profession. It is intended that the outcome of this investigation assist in reducing the client's risk associated with environmental impairment. Our work should not be considered 'risk mitigation'. No other warranty or representation, either expressed or implied, is included or intended in this report.

This report was prepared for the exclusive use of Hazeldean Crossing Inc. and may not be reproduced in whole or in part, without the prior written consent of EXP, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We trust this report satisfies your immediate requirements. If you have any questions regarding the information in this report, please do not hesitate to contact this office.

8 References

This study was conducted in general accordance with the applicable Regulations, Guidelines, Policies, Standards, Protocols and Objectives administered by the Ministry of the Environment. Specific reference is made to the following:

- John D. Patterson and Associates Limited; August 11, 1994; Geotechnical Investigation, Site of Proposed Amber Centre, Victor Street At Hazeldean Road, Township of Goulbourn, Ontario.
- City of Ottawa. 2011. Characterization of Ottawa's Watersheds: An Environmental Foundation Document with Supporting Information Base. March.
- Environmental Protection Act, R.S.O. 1990, Chapter E.19, as amended, September 2004.
- Ministry of the Environment [MOE] (1996) Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario. Ontario Ministry of the Environment. December 1996.
- MOE (2011) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. Ontario Ministry of the Environment, April 15, 2011.
- MOE (2011) Guide for Completing Phase Two Environmental Site Assessments under Ontario Regulation 153/04. Ontario Ministry of the Environment, June 2011.
- MOE (2011) Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1
 of the Environmental Protection Act. Ontario Ministry of the Environment, March 2004, amended
 as of July 1, 2011.
- Ontario Regulation 153/04, made under the Environmental Protection Act, May 2004, last amended to O.Reg.333/13.
- Ontario Water Resources Act R.R.O. 1990, Regulation 903, amended to O.Reg. 128/03, August 2003.
- Groundwater, Freeze and Cherry 1979. Prentice Hall.
- Singer, S.N., C.K. Cheng, M.G. Scafe. 2003. Hydrogeology of Southern Ontario. Hydrogeology of Ontario Series Report 1. Prepared for Ministry of Environment.
- WESA. 2006. Watershed Characterization: Geologic Model and Conceptual Hydrogeological Model, Raisin Region CA and South Nation Conservation, Source Protection Plan Partnership.

EXP Services Inc.

Hazeldean Crossing Inc.
Phase Two Environmental Site Assessment
5938 Hazeldean Road, Ottawa, Ontario
OTT-00250806-A0
June 27, 2019

Tables

Table 1

Characteristic	Description
Minimum Depth to Bedrock	0.76 m
Minimum Depth to Groundwater	2.49 m (April 25, 2019)
Shallow Soil Property	Yes, bedrock less than 2.0 m
Proximity to water body or ANSI	580 m east
Soil pH	7.70 and 7.90
Soil Texture	Coarse
Current Property Use	Former Gasoline Retail Outlet and Service Garage
Future Property Use	Residential
Proposed Future Building	Residential Townhomes Over Entire Site
Areas where soil has been brought to the Phase One Property	None identified

EXP Services Inc.

Hazeldean Crossing Inc.
Phase Two Environmental Site Assessment
5938 Hazeldean Road, Ottawa, Ontario
OTT-00250806-A0
June 27, 2019

Appendix A – Sampling and Analysis Plan

1 Introduction

This appendix presents the Sampling and Analysis Plan (SAAP) that was developed in support of the Phase Two Environmental Site Assessment (ESA) for the property located at 5938 Hazeldean Road in Ottawa, Ontario (hereinafter referred to as the 'site'). The SAAP presents the procedures and measures that will be undertaken during field investigative activities to characterize the site conditions and meet the data quality objectives of the Phase Two ESA.

The SAAP presents the sampling program proposed for the site, the recommended procedures and protocols for sampling and related field activities, the data quality objectives, and the quality assurance/ quality control measures that will be undertaken to provide for the collection of accurate, reproducible and representative data. These components are described in further detail below.

2 Field Sampling Program

The field sampling program was developed to provide for the collection of samples of the soil and groundwater for chemical analysis of petroleum hydrocarbons (PHC), benzene, toluene, ethylbenzene and xylenes (collectively known as 'BTEX'), polycyclic aromatic hydrocarbons (PAH), volatile organic compounds (VOC), and/or metals. The soil sampling media is to consist of the overburden materials (depths up to 3.5 m of overburden beneath site). The soil sampling will be location-specific to assess for the potential presence of PHC, BTEX, PAH, VOC, and/or metals based on the identification of potential areas of potential environmental concern identified in a Phase One ESA completed by EXP in 2019. Vapour readings will also be taken in the field to determine samples to be submitted for laboratory analysis.

Each of the groundwater samples will be submitted for analysis of metals, VOC, PAH, PHC and BTEX. The monitoring well network is to comprise of five monitoring wells.

Vertical control of the boreholes and monitoring wells will be obtained through the completion of an elevation survey with reference to a geodetic benchmark. Groundwater flow and direction in the overburden aquifer will also be determined through groundwater level measurements and the elevations established in the site elevation survey.

3 Field Methods

To meet the requirements of the field sampling program, the following field investigative methods will be undertaken:

- Borehole Drilling;
- Soil Sampling;
- Monitoring Well Installation;
- Groundwater Level Measurements;
- · Elevation Survey; and,
- Groundwater Sampling.

The field investigative methods will be performed following the procedures and protocols set out in EXP's standard operating procedures and are outlined below:

3.1 Borehole Drilling

Boreholes will be advanced at the site to facilitate the collection of soil samples for chemical analysis and geologic characterization; and, for the installation of groundwater monitoring wells. A total of five (5) boreholes are proposed to be advanced at the site, up to a maximum overburden depth of approximately 6 m below grade, to provide for the collection of samples of the surficial and overburden materials beneath the site. The borehole locations will be selected to delineate the extent and magnitude of PCOC related impacts to the soils and the groundwater.

Prior to borehole drilling, utility clearances will be obtained from public and private locators, as required. The borehole drilling program will be conducted by a licensed driller under the oversight of EXP field staff. All drilling equipment will be cleaned prior to the commencement of drilling at each borehole location.

3.2 Soil Sampling

Soil samples will be collected for chemical analysis and geologic property characterization. The soil samples will be collected using 5 cm diameter, 60 cm long, stainless steel split-spoon sampling devices advanced ahead of the direct push drilling equipment at continuous intervals. The split spoon sampling devices will be attached to drill rods and advanced into the soil by means of a standard penetrating hammer. Upon retrieval from the boreholes, the split-spoon samplers will be placed on a flat surface and disassembled by drilling personnel to provide access of the recovered cores. Geologic and sampling details of the recovered cores will be logged and the samples will be assessed for the potential presence of non-aqueous phase liquids. Samples for chemical analysis will be selected on the basis of visual and olfactory evidence of impacts and at specific intervals to define the lateral and vertical extent of known impacts.

Recommended volumes of soil samples selected for chemical analysis will be collected into pre-cleaned, laboratory supplied, analytical test group specific containers. The samples will be placed into clean insulated coolers chilled with ice for storage and transport. Samples intended for analysis of VOC, BTEX and PHC F1-F2 will be collected into 40 ml vials. The samples will be assigned unique identification numbers, and the date, time, location, and requested analyses for each sample will be documented in a bound field note book. The samples will be submitted to the contract laboratory within analytical test group holding times under Chain of Custody (COC) protocols. New disposable chemical resistant gloves will be used for each soil core to prevent sample cross-contamination.

3.3 Monitoring Well Installation

It is proposed that five boreholes will be instrumented as a groundwater monitoring well installed with slotted screens intercepting either the native overburden material or the shallow bedrock, where the water table aquifer is expected, extending to depths of approximately 6 m below grade. The monitoring wells will be constructed using 37 mm diameter, Schedule 40, PVC riser pipe and number 10 slot size (0.25 mm) well screens. The base of the well screens will be sealed with threaded flush PVC end caps. All well pipe connections will be factory machined threaded flush couplings. The annular space around the well screens will be backfilled with silica sand, to an average height of 0.3 m above the top of the screen. Granular bentonite will be placed in the borehole annulus from the top of the sand pack to approximately 0.3 m below grade. The monitoring wells will be completed with either a flush-mounted protective steel casing or above ground protective casings cemented into place.

3.4 Monitoring Well Development

The newly installed monitoring wells will be developed to remove fine sediment particles potentially lodged in the sand pack and well screen to enhance hydraulic communication with the surrounding formation waters.

Standing water volumes will be determined by means of an electronic water level meter. Prior to collecting groundwater samples, the monitoring wells will be developed using low flow sampling techniques to reduce the amount of sediment in the samples. Well development details will be documented on a well development log sheet or in a bound hard cover notebook. All development waters will be collected and stored in labeled, sealed containers.

3.5 Groundwater Level Measurements

Groundwater level measurements will be recorded for the monitoring wells to determine groundwater flow and direction in the water table aquifer beneath the site. Water levels will be measured with respect to the top of the casing by means of an electronic water level meter. The water levels will be recorded on water level log sheets. The water level meter probe will be decontaminated between monitoring well locations.

3.6 Elevation Survey

An elevation survey will be conducted to obtain vertical control of all monitoring well locations. The top of casing and ground surface elevation of each monitoring well location will be surveyed against a known geodetic benchmark, or if unavailable, against a suitable arbitrary benchmark. Elevations measured against using a high precision GPS unit and a benchmark with an assigned elevation will be recorded as meters above mean sea level (m AMSL). The elevation survey will be accurate to within ± 0.5 cm.

3.7 Groundwater Sampling

Groundwater samples will be collected from the monitoring wells for chemical analysis. The wells will be sampled using a "low flow" technique whereby the wells are continuously purged using an electric pump (equipped with dedicated tubing) and parameters within the purged water are monitored using a groundwater chemistry multi-meter at 3 minute intervals. These parameters include: pH, conductivity, temperature, and salinity. Once these parameters are found to deviate less than 10% over three testing events, equilibrium is deemed to have occurred and a sample of the groundwater will be collected. The purge water will also be continuously monitored for visual and olfactory evidence of petroleum and solvent impact (sheen and odour).

Recommended groundwater sample volumes will be collected into pre-clean laboratory-supplied vials or bottles provided with analytical test group specific preservatives, as required. The samples will be placed in an insulated cooler chilled with ice for storage and transport. Each VOC vial will be inverted and inspected for gas bubbles prior to being placed in the cooler to ensure that no head-space is present. All groundwater samples will be assigned unique identification numbers, and the date, time, project number, company name, location and requested analyses for each sample will be documented in a bound hard cover notebook. The samples will be submitted to the contractual laboratory within analytical test group holding times under COC protocols. New disposable chemical resistant gloves will be used for each sampling location to prevent sample cross-contamination.

4 Field Quality Assurance/Quality Control Program

The objective of the field quality assurance/quality control (QA/QC) program is to obtain soil and groundwater samples and other field measurements that provide data of acceptable quality that meets the objectives of the Phase Two ESA. The objectives of the QA/QC program will be achieved through the implementation of procedures for the collection of unbiased (i.e. non-contaminated) samples, sample documentation and the collection of appropriate QC samples to provide a measure of sample reproducibility and accuracy. The field QA/QC measures will comprise:

- Decontamination Protocols;
- Equipment Calibration;
- Sample Preservation;
- · Sample Documentation; and,
- Field Quality Control Samples.

Details on the field QA/QC measures are provided below.

4.1 Decontamination Protocols

Decontamination protocols will be followed during field sampling where non-dedicated sampling equipment is used to prevent sample cross contamination. The split spoon soil sampling device will be cleaned/decontaminated between sampling intervals in according with SOP requirements. For the monitoring well installation, well components are not to come into contact with the ground surface prior to insertion into boreholes. Electronic water level meters will be decontaminated between monitoring well locations during well development, and purging activities. For hydraulic conductivity tests, the electronic water level meters will be decontaminated between sampling locations. All decontamination fluids will be collected and stored in sealed, labeled containers.

4.2 Equipment Calibration

All equipment requiring calibration will be calibrated in the field according to manufacturer's requirements using analytical grade reagents, or by the supplier prior to conducting field activities, and subsequently checked in the field. The calibration of all pre-calibrated instruments will be checked in the field using analytical grade reagents and re-calibrated as required. For multiple day sampling events, equipment calibration will be checked prior to the beginning of sampling activities. All calibration data will be documented in a bound hard cover notebook.

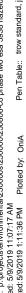
4.3 Sample Preservation

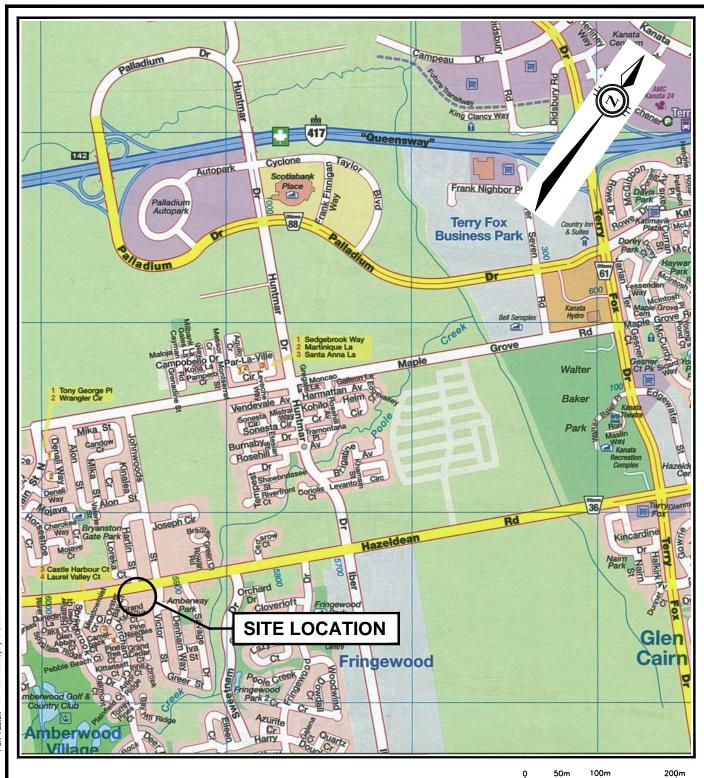
All samples will be preserved using appropriate analytical test group specific reagents, as required, and upon collection placed in pre-chilled insulated coolers packed with ice for storage and transport.

4.4 Sample Documentation

All samples will be assigned a unique identification number, which is to be recorded along with the date, time, project number, company name, location and requested analysis in a bound field notebook. All samples will be handled and transported following COC protocols.

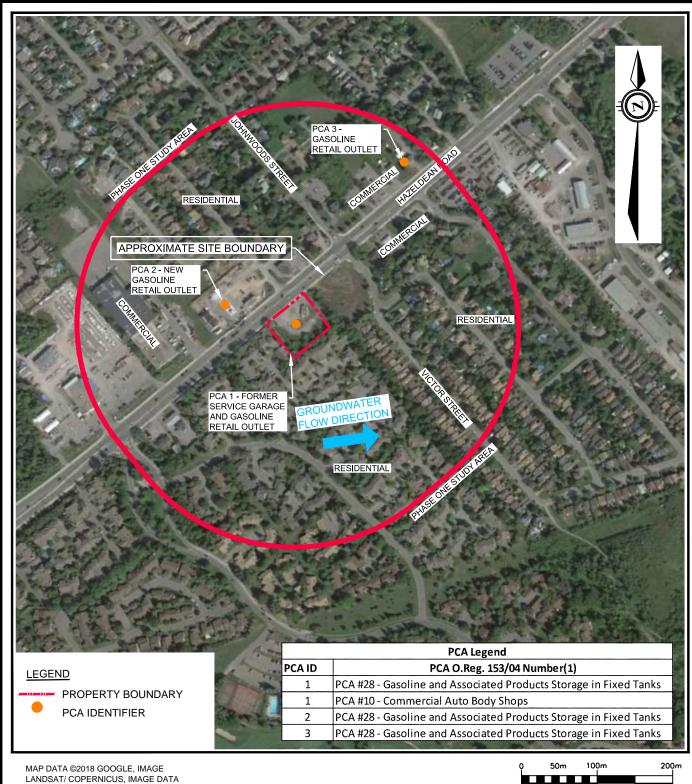
4.5 Field Quality Control

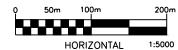

Field quality controls samples will be collected to evaluate the accuracy and reproducibility of the field sampling procedures. For soil and groundwater sampling, one (1) field duplicate is to be collected for every ten (10) samples submitted for chemical analysis. The field duplicate samples will be assessed by calculating the relative percent difference and comparing to the analytical test group specific acceptance criteria.



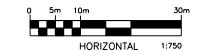
EXP Services Inc.

Hazeldean Crossing Inc.
Phase Two Environmental Site Assessment
5938 Hazeldean Road, Ottawa, Ontario
OTT-00250806-A0
June 27, 2019


Appendix B – Figures



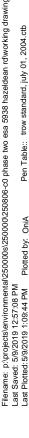
©2018 DIGITALGLOBE

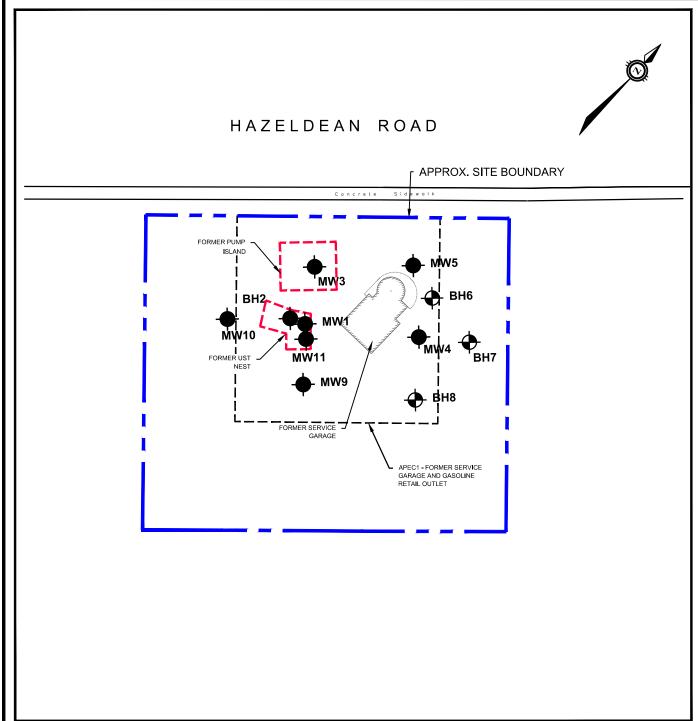


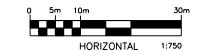
exp Services Inc. www.exp.com

t: +1.613.688.1899 | f: +1.613.225.7337 2650 Queensview Drive, Suite 100

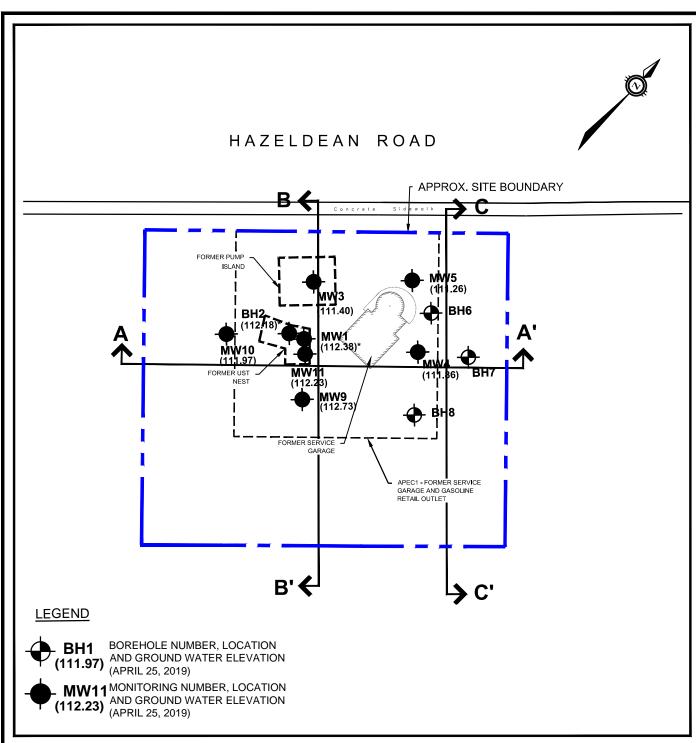
		• Ottawa, ON K2B 8H6, Canada	
APRIL 2019		HAZELDEAN CROSSING INC.	project no. OTT-00250806-C0
DESIGN	CHECKED		scale
M.G.M.	C.E.H.	TITLE: PHASE TWO ESA STUDY AREA	1:5,000
DRAWN BY			
A.O.		5938 HAZELDEAN ROAD, OTTAWA, ON	FIG 2






exp Services Inc. www.exp.com

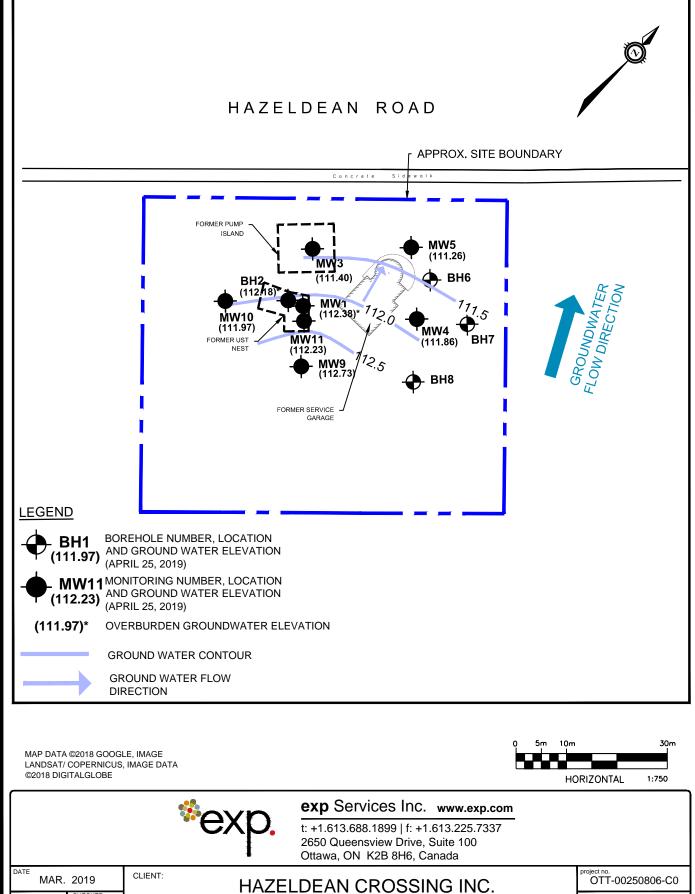
t: +1.613.688.1899 | f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada


		• Ottawa, ON K2B 8H6, Canada	
MAR. 2019		HAZELDEAN CROSSING INC.	project no. OTT-00250806-C0
DESIGN	CHECKED		scale
M.G.M.	C.E.H.	TITLE: SITE PLAN	1:750
DRAWN BY		_	
A.O.		5938 HAZELDEAN ROAD, OTTAWA, ON	FIG 3

MAR. 2019

A.O.

M.G.M.



M.G.M.

A.O.

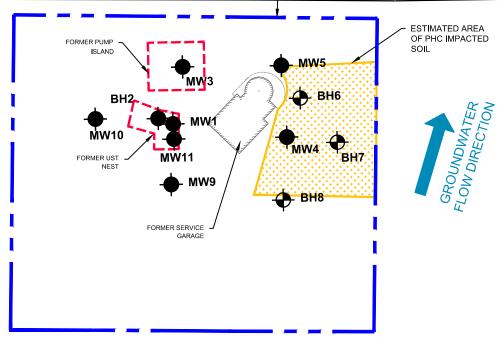
C.E.H.

TITLE:

GROUNDWATER CONTOUR PLAN

5938 HAZELDEAN ROAD, OTTAWA, ON

1:750


FIG 6

HAZELDEAN ROAD

APPROX. SITE BOUNDARY

LEGEND

BH1

BOREHOLE NUMBER & LOCATION

MONITORING WELL NUMBER & **LOCATION**

ESTIMATED AREA OF PHC IMPACTED SOIL

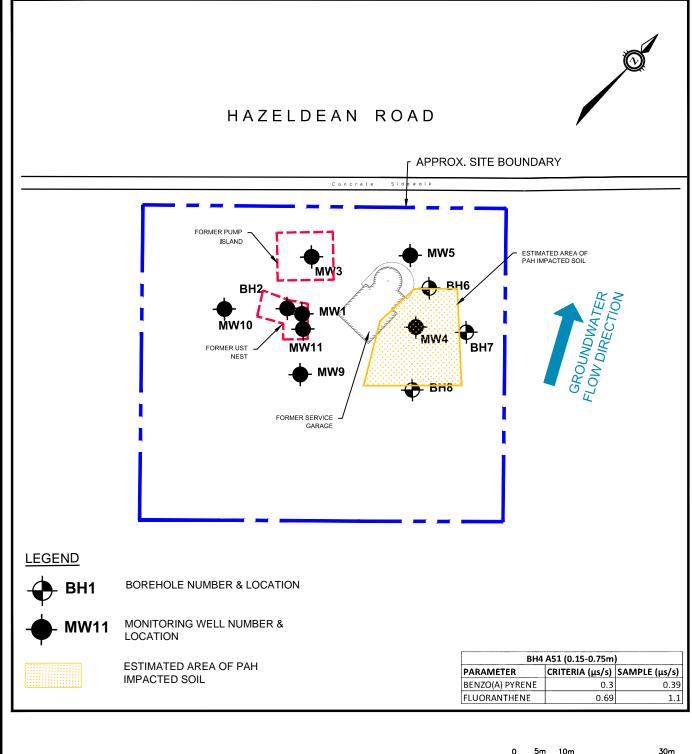
BH4 AS1 (0.1S-0.7Sm)						
PARAMETER	CRITERIA (µs/s)	SAMPLE (µs/s)				
PHC F3	300	900				

BH6 AS2 (0.60-1.20m)					
PARAMETER	CRITERIA (µs/s)	SAMPLE (µs/s)			
PHC F3	300	600			

BH7 AS1 (0.10-0.30m)					
PARAMETER	CRITERIA (μs/s)	SAMPLE (µs/s)			
PHC F3	300	650			

MAP DATA ©2018 GOOGLE, IMAGE LANDSAT/ COPERNICUS, IMAGE DATA ©2018 DIGITALGLOBE




exp Services Inc. www.exp.com

t: +1.613.688.1899 | f: +1.613.225.7337 2650 Queensview Drive, Suite 100

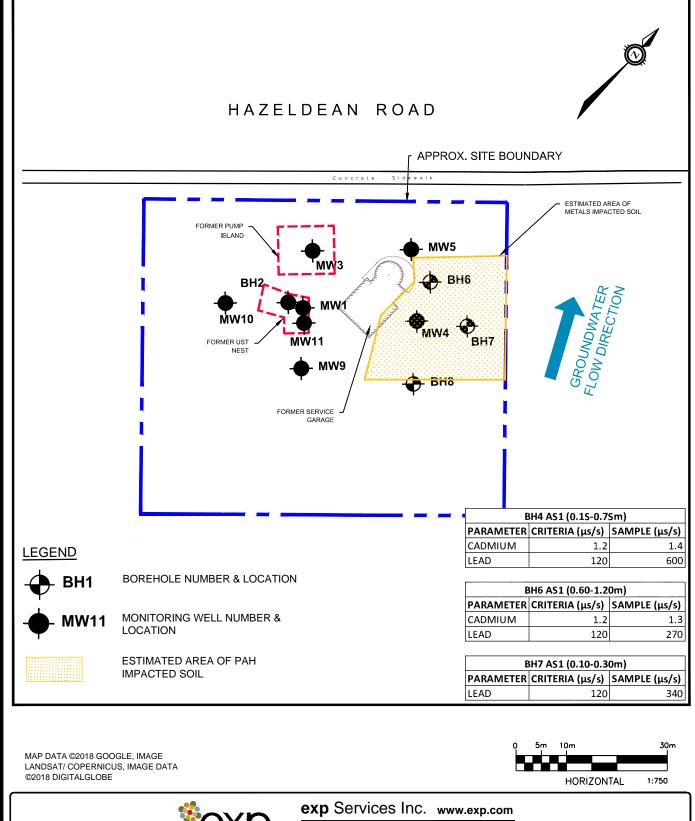
		Ottawa, ON K2B 8H6, Canada	
MAR. 2019		CLIENT: HAZELDEAN CROSSING INC.	project no. OTT-00250806-C0
DESIGN	CHECKED	117 (22252) (17 517 505117 517 517 517 517 517 517 517 517 517	scale
M.G.M.	C.E.H.	TITLE: PHC IMPACT IN SOIL	1:750
DRAWN BY			FIC 7
Α.	O.	5938 HAZELDEAN ROAD, OTTAWA, ON	FIG 7

C.E.H.

MAR. 2019

A.O.

M.G.M.



exp Services Inc. www.exp.com

t: +1.613.688.1899 | f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada

	CLIENT:	HAZELDEAN CROSSING INC.	
\Box			
1.	TITLE:		
	5938 HAZELDEAN ROAD, OTTAWA, ON		FIG 8

t: +1.613.688.1899 | f: +1.613.225.7337 2650 Queensview Drive, Suite 100

		Ottawa, ON K2B 8H6, Canada	
MAR. 2019		HAZELDEAN CROSSING INC.	project no. OTT-00250806-C0
DESIGN	CHECKED		scale
M.G.M.	C.E.H.	TITLE: METALS IMPACT IN SOIL	1:750
DRAWN BY			FIC 0
A.	Ο.	5938 HAZELDEAN ROAD, OTTAWA, ON	FIG 9

EXP Services Inc.

Hazeldean Crossing Inc.
Phase Two Environmental Site Assessment
5938 Hazeldean Road, Ottawa, Ontario
OTT-00250806-A0
June 27, 2019

Appendix C: Borehole Logs

Explanation of Terms Used on Borehole Records

SOIL DESCRIPTION

Terminology describing common soil genesis:

Topsoil: mixture of soil and humus capable of supporting good vegetative growth.

Peat: fibrous fragments of visible and invisible decayed organic matter.

Fill: where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc.; none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional geotechnical site investigation.

Till: the term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

Terminology describing soil structure:

Desiccated: having visible signs of weathering by oxidization of clay minerals, shrinkage cracks, etc.

Stratified: alternating layers of varying material or color with the layers greater than 6 mm thick.

Laminated: alternating layers of varying material or color with the layers less than 6 mm thick.

Fissured: material breaks along plane of fracture.

Varved: composed of regular alternating layers of silt and clay.

Slickensided: fracture planes appear polished or glossy, sometimes striated.

Blocky: cohesive soil that can be broken down into small angular lumps which resist further

breakdown.

Lensed: inclusion of small pockets of different soil, such as small lenses of sand scattered

through a mass of clay; not thickness.

Seam: a thin, confined layer of soil having different particle size, texture, or color from

materials above and below.

Homogeneous: same color and appearance throughout.

Well Graded: having wide range in grain sized and substantial amounts of all predominantly on grain

size.

Uniformly Graded: predominantly on grain size.

All soil sample descriptions included in this report follow the ASTM D2487-11 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). The system divides soils into three major categories: (1) coarse grained, (2) fine-grained, and (3) highly organic. The soil is then subdivided based on either gradation or plasticity characteristics. The system provides a group symbol (e.g. SM) and group name (e.g. silty sand) for identification. The classification excludes particles larger than 76 mm. Please note that, with the exception of those samples where a grain size analysis has been made, all samples are classified visually in accordance with ASTM D2488-09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems. Others may use different classification systems; one such system is the ISSMFE Soil Classification.

ISSMFE SOIL CLASSIFICATION

CLAY		SILT			SAND	<u> </u>		GRAVEL		COBBLES	BOULDERS
	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE		
0.002	0.00	6 0.02	0.06	0.2	0.6	2.0	6.0	20	60	200	

EQUIVALENT GRAIN DIAMETER IN MILLIMETRES

CLAY (PLASTIC) TO	FINE	MEDIUM	CRS.	FINE	COARSE
SILT (NONPLASTIC)		SAND		GF	RAVEL

UNIFIED SOIL CLASSIFICATION

Terminology describing materials outside the USCS, (e.g. particles larger than 76 mm, visible organic matter, construction debris) is based upon the proportion of these materials present and as described below in accordance with Note 16 in ASTM D2488-09a:

Table a: Percent or Proportion of Soil, Pp

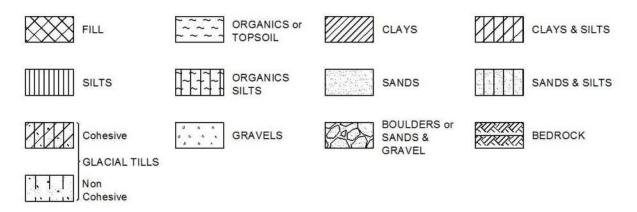
	Criteria
Trace	Particles are present but estimated to be less than 5%
Few	5≤Pp≤10%
Little	15≤Pp≤25%
Some	30≤Pp≤45%
Mostly	50≤Pp≤100%

The standard terminology to describe cohesionless soils includes the compactness as determined by the Standard Penetration Test 'N' value:

Table b: Apparent Density of Cohesionless Soil

'N' Value (blows/0.3 m)
N<5
5≤N<10
10≤N<30
30≤N<50
50≤N

The standard terminology to describe cohesive soils includes consistency, which is based on undrained shear strength as measured by insitu vane tests, penetrometer tests, unconfined compression tests or similar field and laboratory analysis, Standard Penetration Test 'N' values can also be used to provide an approximate indication of the consistency and shear strength of fine grained, cohesive soils:


Table c: Consistency of Cohesive Soil

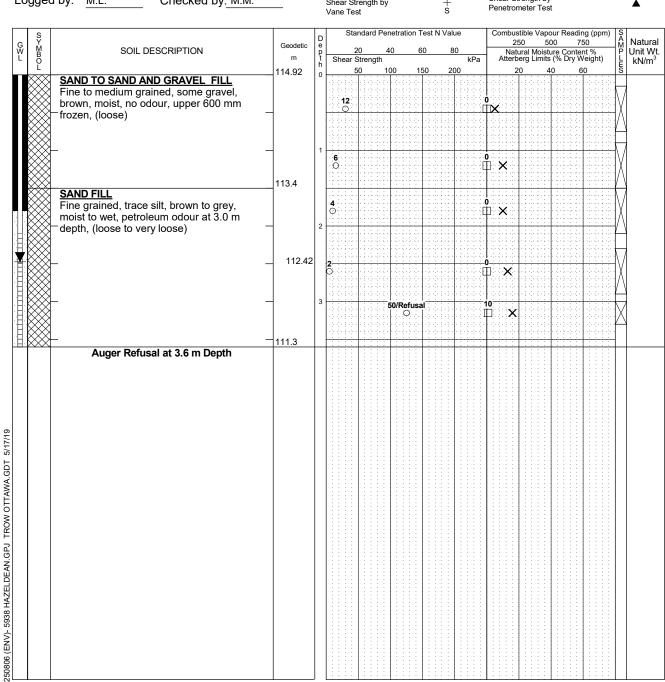
Consistency	Vane Shear Measurement (kPa)	'N' Value
Very Soft	<12.5	<2
Soft	12.5-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

Note: 'N' Value - The Standard Penetration Test records the number of blows of a 140 pound (64kg) hammer falling 30 inches (760mm), required to drive a 2 inch (50.8mm) O.D. split spoon sampler 1 foot (305mm). For split spoon samples where full penetration is not achieved, the number of blows is reported over the sampler penetration in meters (e.g. 50/0.15).

STRATA PLOT

Strata plots symbolize the soil or bedrock description. They are combinations of the following basic symbols:

WATER LEVEL MEASUREMENT

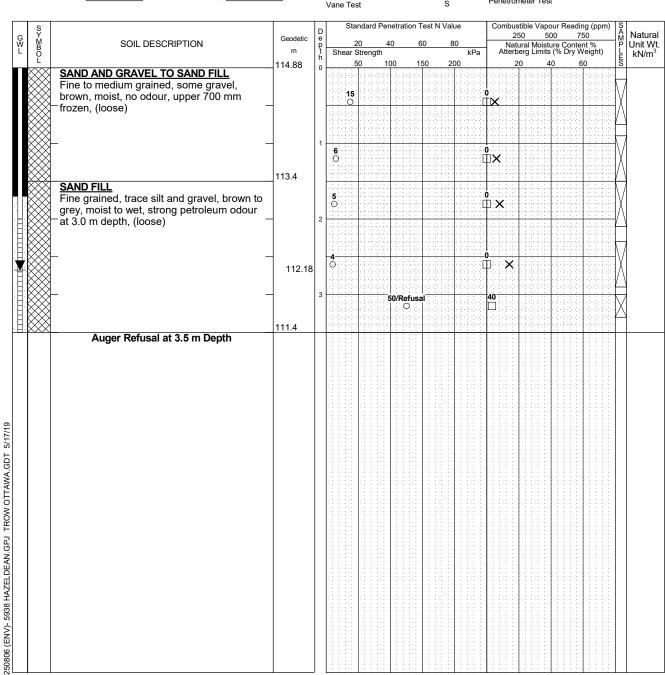

∑

Open Borehole or Test Pit Monitoring Well, Piezometer or Standpipe

Log of Borehole MW19-01

Project No:	OTT-00250806-C0			<u> </u>	CV
Project:	Phase Two Environmental Site Assessment			Figure No9_	
Location:	5938 Hazeldean Road, City of Ottawa, Ontario			Page. <u>1</u> of <u>1</u>	_
Date Drilled:	February 15th, 2019	Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	CME-75 Truckmount	Auger Sample SPT (N) Value	Ⅱ	Natural Moisture Content Atterberg Limits	× ⊖
Datum:	Geodetic	Dynamic Cone Test — Shelby Tube	_	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	M.L. Checked by: M.M.	Shear Strength by	+	Shear Strength by	A

NOTES

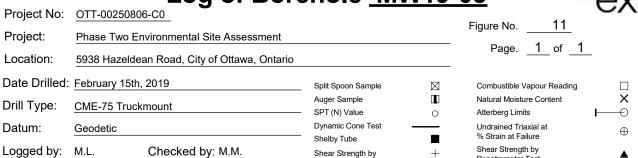

- Borehole data requires interpretation by EXP before use by others
- A 32 mm diameter monitoring well installed upon completion
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-00250806-C0

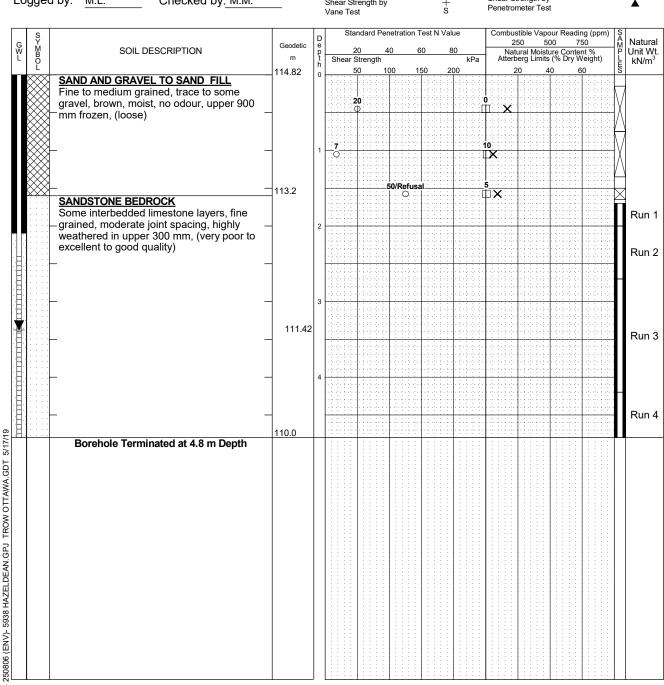
WATER LEVEL RECORDS			
Elapsed	Water	Hole Open	
Time	Level (m)	To (m)	
Completion	2.4	-	
11 days	3.1	-	
26 days	3.0	-	
31 days	3.0	-	
99 days	2.5		

CORE DRILLING RECORD			
Run	Depth	% Rec.	RQD %
No.	(m)		

Log of Borehole MW19-02

		31 311313 <u>11111 13</u>	<u> </u>	$\Box X$
Project No:	OTT-00250806-C0		Figure No. 10	O / (
Project:	Phase Two Environmental Site Assessmen	nt	Figure No10	
Location:	5938 Hazeldean Road, City of Ottawa, Onta	ario	Page1_ of _1_	_
Date Drilled:	February 15th, 2019	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	CME-75 Truckmount	Auger Sample SPT (N) Value	Natural Moisture Content Atterberg Limits	X ——⊙
Datum:	Geodetic	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	M.L. Checked by: M.M.	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	•
1 - 1		Standard Popotration Tost N Value	Combustible Vapour Boading (n	nm) S

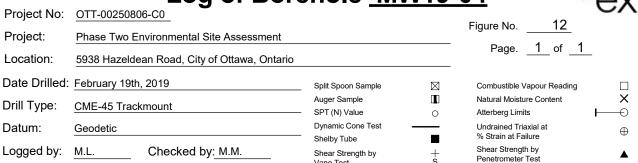

NOTES

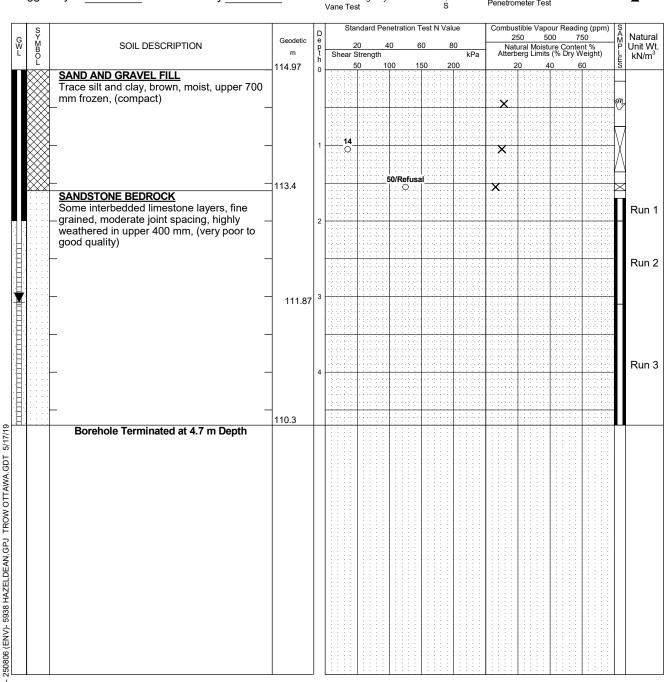

- Borehole data requires interpretation by EXP before use by others
- 2. A 32 mm diameter monitoring well installed upon completion
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5.Log to be read with EXP Report OTT-00250806-C0

WATER LEVEL RECORDS			
Elapsed	Water	Hole Open	
Time	Level (m)	To (m)	
Completion	2.5	-	
11 days	3.1	-	
26 days	3.1	-	
31 days	3.0	-	
95 days	2.7		

CORE DRILLING RECORD			
Run	Depth	% Rec.	RQD %
No.	(m)		

Log of Borehole <u>MW19-03</u>


NOTES

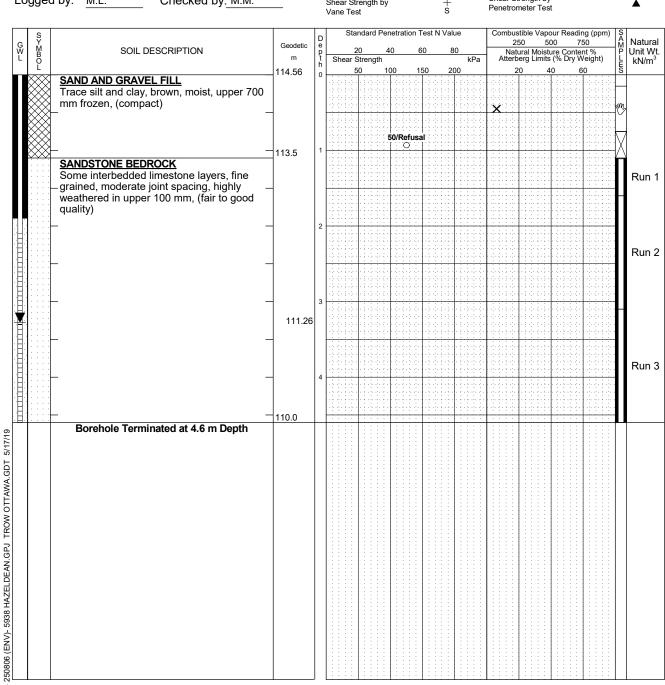

- Borehole data requires interpretation by EXP before use by others
- 2. A 32 mm diameter monitoring well installed upon completion
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-00250806-C0

WATER LEVEL RECORDS			
Elapsed	Water	Hole Open	
Time	Level (m)	To (m)	
Completion	- ' '	-	
11 days	3.4	-	
26 days	3.3	-	
31 days	3.4	-	
95 days	3.4		

CORE DRILLING RECORD				
Run	Depth	% Rec.	RQD %	
No.	(m)			
1	1.7 - 2	60	0	
2	2 - 2.7	100	95	
3	2.7 - 4.2	100	91	
4	4.2 - 4.8	100	80	

Log of Borehole <u>MW19-04</u>

NOTES:


- Borehole data requires interpretation by EXP before use by others
- 2. A 32 mm diameter monitoring well installed upon completion
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-00250806-C0

WATER LEVEL RECORDS			
Elapsed	Water	Hole Open	
Time	Level (m)	To (m)	
Completion	-	-	
8 days	3.8	-	
30 days	3.6	-	
35 days	4.0	-	
95 days	3.1		

CORE DRILLING RECORD				
Run	Depth	% Rec.	RQD %	
No.	(m)			
1	1.7 - 2	33	0	
2	2 - 3.1	82	66	
3	3.1 - 4.7	100	81	

Log of Borehole MW19-05

	Log of E	Borehole <u>MW</u>	V19-	<u>-05</u>	exp
Project No:	OTT-00250806-C0			Figure No. 12	
Project:	Phase Two Environmental Site Assess	ment		Figure No13_ Page. 1 of 1	'
Location:	5938 Hazeldean Road, City of Ottawa,	Ontario		1 age. <u>1</u> or <u>1</u>	-
Date Drilled:	February 20th, 2019	Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	CME-45 Trackmount	Auger Sample		Natural Moisture Content	×
Dilli Type.	CIVIE-45 Trackinount	SPT (N) Value	0	Atterberg Limits	\longmapsto
Datum:	Geodetic	Dynamic Cone Test		Undrained Triaxial at	\oplus
Logged by:	M.L. Checked by: M.M.	Shelby Tube Shear Strength by	+	% Strain at Failure Shear Strength by Penetrometer Test	A

- Borehole data requires interpretation by EXP before use by others
- 2. A 32 mm diameter monitoring well installed upon completion
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-00250806-C0

WATER LEVEL RECORDS						
Elapsed Time	Water Level (m)	Hole Open To (m)				
Completion	-	-				
7 days	3.5	-				
31 days	3.9	-				
36 days	3.5	-				
94 days	3.3					

CORE DRILLING RECORD							
Run	Depth	% Rec.	RQD %				
No.	(m)						
1	1.1 - 1.6	88	55				
2	1.6 - 3.1	90	68				
3	3.1 - 4.6	100	85				

Project No: OTT-00250806 Project: Phase Two Env	Log of		е	ho	le .	Bŀ	<u>119</u>		Figure No		14		\ni	X
Location: 5938 Hazeldea	n Road, City of Ottawa,	Ontario						_	Page	·. <u>1</u>	of			
Date Drilled: March 13th, 20° Drill Type: CME-55 Trackn Datum: Geodetic Logged by: M.L.			-	Split Spo Auger Sa SPT (N) \(^1\) Dynamic Shelby To Shear Sto Vane Tes	ample Value Cone Tel ube rength by	st			Combustib Natural Mo Atterberg L Undrained % Strain at Shear Stre Penetrome	isture C imits Triaxial Failure ngth by	ontent	ing -		□ × ⊕ ⊕
SAND AND GRAVEL	own, moist, upper 700	Geodetic m 114.86	Deppth 0		20 4 Strength	10 6	Fest N Valu 50 80 50 20) kPa	Combustiti 250 Nature Atterben 20 20 65	50 al Moistu	00 7 ire Conte (% Dry V	'50 ent %	SAMPLES	Natura Unit W kN/m ³

113.6 Auger Refusal at 1.3 m Depth 250806 (ENV)- 5938 HAZELDEAN.GPJ TROW OTTAWA.GDT 5/17/19

NOTES:

LOG OF BOREHOLE BH LOGS -

- Borehole data requires interpretation by EXP before use by others
- 2. The borehole was backfilled upon completion
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-00250806-C0

Vater	Hala Onan
vel (m)	Hole Open To (m)
	vei (m)

CORE DRILLING RECORD						
Run	Depth	% Rec.	RQD %			
No.	(m)					

	Log of E	3or	ehole <u>B</u>	H19-0	<u> </u>	***	÷Χ
Project No: Project:	OTT-00250806-C0 Phase Two Environmental Site Assessm	nent			Figure No15		<i></i>
Location:	5938 Hazeldean Road, City of Ottawa, C	Ontario			Page. <u>1</u> of	_1_	
Date Drilled:	March 13th, 2019		Split Spoon Sample	\boxtimes	Combustible Vapour Readi	ng	
Drill Type:	CME-55 Trackmount		Auger Sample SPT (N) Value	II	Natural Moisture Content Atterberg Limits	—	X —⊕
Datum:	Geodetic		Dynamic Cone Test		Undrained Triaxial at % Strain at Failure		\oplus
Logged by:	M.D. Checked by: M.M	_	Shelby Tube Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test		•
S Y M	SOIL DESCRIPTION	Geodetic	D Standard Penetration	on Test N Value	Combustible Vapour Readi 250 500 7 Natural Moisture Conte	ng (ppm) 50 nt %	S A M Natu P Unit \

Geodetic m 114.95 SOIL DESCRIPTION SAND AND GRAVEL FILL Trace silt and clay, brown, moist, upper 700 mm frozen, no odour or staining.	Reading (ppm) S
SAND AND GRAVEL FILL Trace silt and clay, brown, moist, upper 700 mm frozen, no odour or staining. Auger Refusal at 1.2 m Depth	750 I⊞INatu
SAND AND GRAVEL FILL Trace silt and clay, brown, moist, upper 700 mm frozen, no odour or staining. 113.8 Auger Refusal at 1.2 m Depth	Content % P Unit \
SAND AND GRAVEL FILL Trace silt and clay, brown, moist, upper 700 mm frozen, no odour or staining.	60 E KN/h
mm frozen, no odour or staining.	156 5615-1
mm frozen, no odour or staining. 113.8 Auger Refusal at 1.2 m Depth	3 (0 (0) 1 (0 (0) 3 (0) 1
Auger Refusal at 1.2 m Depth	
Auger Refusal at 1.2 m Depth	
Auger Refusal at 1.2 m Depth	
Auger Refusal at 1.2 m Depth	110000000000000000000000000000000000000

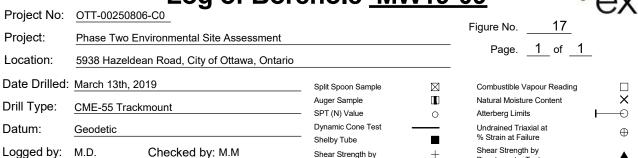
- Borehole data requires interpretation by EXP before use by others
- 2. The borehole was backfilled upon completion
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- NOTES:
 1.8oreh use by
 2. The br
 3. Field v
 4. See N
 5. Log to 5.Log to be read with EXP Report OTT-00250806-C0

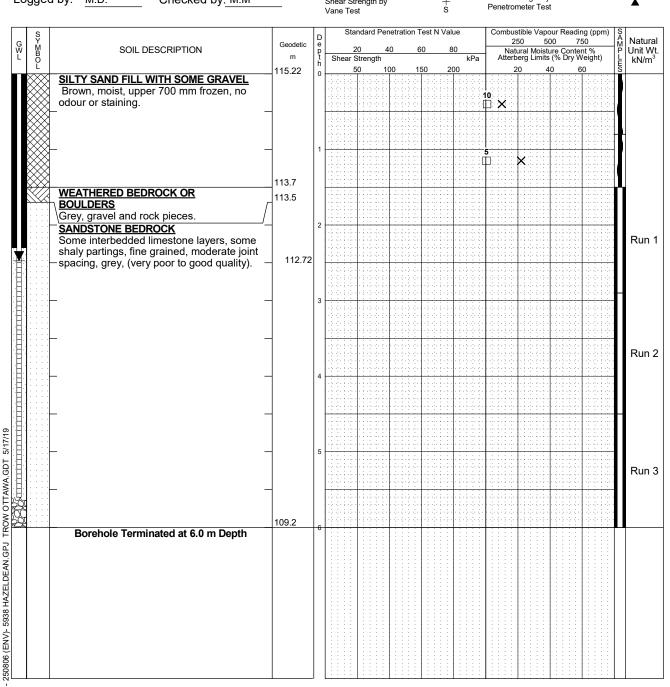
WATER LEVEL RECORDS						
Elapsed	Water	Hole Open				
Time	Level (m)	To (m)				

CORE DRILLING RECORD						
Run	Depth	% Rec.	RQD %			
No.	(m)					

	Log of E	3ore	ehole BH	19-0	8	***	ΔV
Project No:	OTT-00250806-C0						<i>_</i> /\
Project:	Phase Two Environmental Site Assessm	ent			Figure No16_	4	
Location:	5938 Hazeldean Road, City of Ottawa, O	ntario			Page1_ of _	1_	
Date Drilled:	March 13th, 2019		Split Spoon Sample	\boxtimes	Combustible Vapour Reading	g	
Drill Type:	CME-55 Trackmount		Auger Sample SPT (N) Value		Natural Moisture Content Atterberg Limits	_	X —⊖
Datum:	Geodetic		Dynamic Cone Test —		Undrained Triaxial at % Strain at Failure	•	0
Logged by:	M.D. Checked by: M.M	_	Shelby Tube Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test		•
S Y M	SOIL DESCRIPTION	Geodetic	D Standard Penetration Test	N Value	Combustible Vapour Reading 250 500 750	j (ppm)	S A Natu

	S			D Standard Penetration Test N Value Combusti					stible Var	oour Readi 500 7	ng (ppm)	S	Notur			
G W L	SYMBOL	SOIL DESCRIPTION	Geodetic m	D e p t h	Shear	20 4 Strength	10	6	0 8	0 kPa	Nat Atterb	ural Mois era Limit	ture Conte ts (% Dry V	'50 ent % Veight)	∾≪≦₽⊸ш«	Natura Unit W kN/m
	Ľ		115.065	h 0	(00	15	50 20	00				60	E S	KIN/III
		SAND AND GRAVEL FILL Trace silt and clay, brown, moist, upper 700 mm frozen, no odour or staining.			-0.0-0-0				-3-3-3-3-3- -3-3-3-3-3- -3-3-3-3-3-3- -3-3-3-3-3-3-3-	- 8 - 8 - 6 - 8 - - 8 - 8 - 6 - 6 - - 8 - 8 - 6 - 8 - - 8 - 8 - 6 - 8 -	20 □×				.)	İ
	\bowtie		114.3												1	i
		Auger Refusal at 0.8 m Depth														
																1
																1
																1
																1
																1
																1
																1
																1
																1
																1
																1
																1
																1
																1
																1
																1
																1
																1
																1
																1
																1
																1
																ı
																ı
																1
																ı
											l i i i i		1::::	1::::		1


LOG OF BOREHOLE BH LOGS -

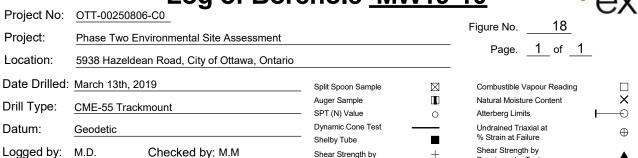

- Borehole data requires interpretation by EXP before use by others
- 2. The borehole was backfilled upon completion
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-00250806-C0

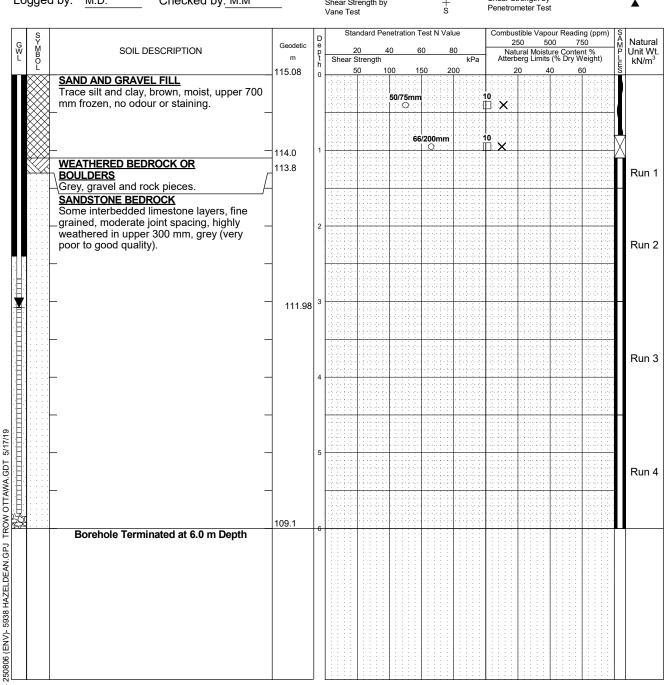
WATER LEVEL RECORDS									
Elapsed	Water	Hole Open							
Time	Level (m)	To (m)							

	CORE DRILLING RECORD										
Run No.	Depth % Rec. RQD % (m)										

Log of Borehole <u>MW19-09</u>

NOTES


BH LOGS


- Borehole data requires interpretation by EXP before use by others
- 2. A 32 mm diameter monitoring well installed upon completion
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- $5. \, \text{Log}$ to be read with EXP Report OTT-00250806-C0

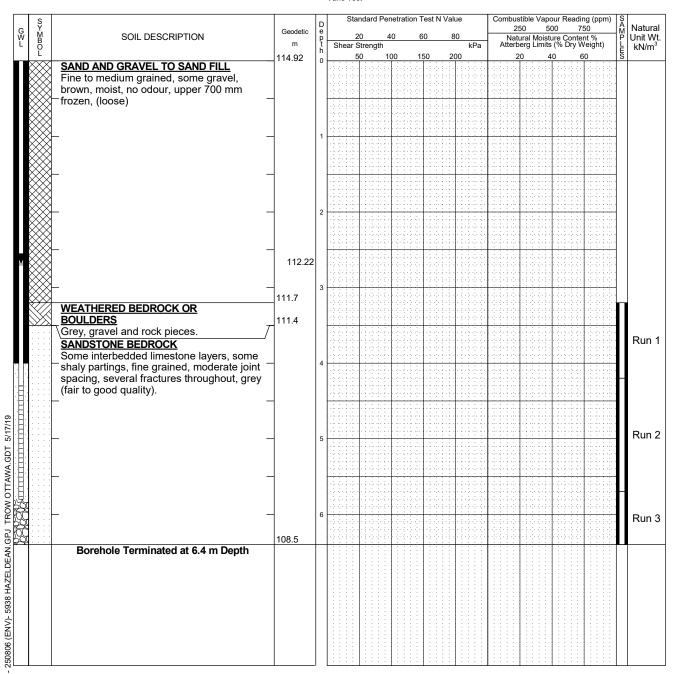
WAT	WATER LEVEL RECORDS								
Elapsed	Hole Open								
Time	Level (m)	To (m)							
5 days	2.1	-							
73 days	2.5								

	CORE DRILLING RECORD									
Run No.	Depth (m)	RQD %								
1	1.5 - 2.9	94	22							
2	2.9 - 4.5	100	44							
3	4.5 - 6	99	80							

Log of Borehole <u>MW19-10</u>

NOTES

BH LOGS


- Borehole data requires interpretation by EXP before use by others
- 2. A 51 mm diameter monitoring well installed upon completion
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5.Log to be read with EXP Report OTT-00250806-C0

WAT	WATER LEVEL RECORDS									
Elapsed Water Hole Ope										
Time	Level (m)	To (m)								
5 days	2.9	-								
73 days	3.1									

CORE DRILLING RECORD Run Depth Rec. RQD %									
Run	Depth	RQD %							
No.	(m)								
1	1.1 - 1.5	100	0						
2	1.5 - 3	98	38						
3	3 - 4.5	100	43						
4	4.5 - 6	100	82						

Log of Borehole MW19-11

Project No:	OTT-00250806-C0						Л
i iojectivo.	011-00230000-00			Figure No. 19	9		
Project:	Phase Two Environmental Site Assessment						
Location:	5938 Hazeldean Road, City of Ottawa, Ontario			Page1_ of	· <u>1</u>	-	
Date Drilled:	March 13th, 2019	Split Spoon Sample		Combustible Vapour Rea	ading		
Drill Type:	CME-55 Trackmount	Auger Sample		Natural Moisture Content	í		×
Dilli Type.	CIME-55 Trackmount	SPT (N) Value	0	Atterberg Limits		-	\ominus
Datum:	Geodetic	Dynamic Cone Test —	_	Undrained Triaxial at			\oplus
		Shelby Tube		% Strain at Failure			Ψ
Logged by:	M.D. Checked by: M.M	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test			•

NOTES:

BH LOGS

- Borehole data requires interpretation by EXP before use by others
- 2. A 51 mm diameter monitoring well installed upon completion
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-00250806-C0

WAT	WATER LEVEL RECORDS								
Elapsed	Water	Hole Open							
Time	Level (m)	To (m)							
5 days	3.0								
73 days	2.7								

	CORE DRILLING RECORD											
Run	Depth	Depth % Rec. RQD %										
No.	(m)											
1	3.2 - 4.2	73	50									
2	4.2 - 5.7	100	66									
3	5.7 - 6.4	100	89									

EXP Services Inc.

Hazeldean Crossing Inc.
Phase Two Environmental Site Assessment
5938 Hazeldean Road, Ottawa, Ontario
OTT-00250806-A0
June 27, 2019

Appendix D - Analytical Summary Tables

TABLE 1 SOIL ANALYTICAL RESULTS (μg/g)
Petroleum Hydrocarbons (PHCs) and BTEX
5938 Hazeldean Road, Ottawa

Parameter	MECP Table 7 ¹	BH1 SS4	DUPE	BH2 SS3	BH3 SS2	BH4 AS1	BH5 SS2	BH6 AS2	BH7 AS1	BH8 AS1	BH9 AS2	BH10 AS1	Dup 1
Sample Date (d/m/y)	Residential	15-Fe	eb-19	15-Feb-19	15-Feb-19	15-Feb-19	15-Feb-19	13-Mar-19	13-Mar-19	13-Mar-19	13-Mar-19	13-M	ar-19
Sample Depth (mbsg)	Residential	2.3	- 2.9	1.5 - 2.1	0.76 - 1.35	0.15 - 0.75	0.75 - 1.1	0.6 - 1.2	0.1 - 0.3	0.2 - 0.7	0.8 - 1.2	0.1 -	0.7
Benzene	0.21	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Ethylbenzene	2.1	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Toluene	2.3	<0.020	<0.020	<0.020	<0.020	0.025	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Total Xylenes	3.1	<0.020	<0.020	<0.020	<0.020	0.024	<0.020	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
F1 (C6-C10)	55	<10	11	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
F2 (C10-C16 Hydrocarbons)	98	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
F3 (C16-C34 Hydrocarbons)	300	<50	<50	<50	<50	900	<50	600	650	<50	<50	<50	<50
F4 (C34-C50 Hydrocarbons)	2800	<50	<50	<50	<50	320	<50	320	300	<50	<50	<50	<50
F4G (C34-C50 Hydrocarbons)	2800	NA	NA	NA	NA	NA	NA	1000	1000	NA	NA	NA	NA

NOTES:

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 7 Non-

Potable Residential SCS, coarse grained soil.

Shaded Concentration exceeds MECP Table 7 Residential SCS.

NA Not analyzed

TABLE 2 SOIL ANALYTICAL RESULTS (μg/g)
METALS
5938 Hazeldean Road, Ottawa

Parameter	MECP Table 7 ¹	BH1 SS4	DUPE	BH2 SS3	BH3 SS2	BH4 AS1	BH5 SS2	BH6 AS2	BH7 AS1	BH8 AS1	BH9 AS2	BH10 AS1	Dup 1
Sample Date (d/m/y)	Residential	15-Fe	eb-19	15-Feb-19	15-Feb-19	15-Feb-19	15-Feb-19	13-Mar-19	13-Mar-19	13-Mar-19	13-Mar-19	13-M	ar-19
Sample Depth (mbsg)	Residential	2.3	- 2.9	1.5 - 2.1	0.76 - 1.35	0.15 - 0.75	0.75 - 1.1	0.6 - 1.2	0.1 - 0.3	0.2 - 0.7	0.8 - 1.2	0.1 -	0.7
Antimony	7.5	<0.20	<0.20	<0.20	<0.20	1.2	<0.20	2.3	0.80	<0.20	<0.20	<0.20	<0.20
Arsenic	18	<1.0	<1.0	<1.0	<1.0	2.1	2.8	3.8	1.9	<1.0	2.1	1.6	1.0
Barium	390	33	28	35	16	130	110	100	96	180	85	66	49
Beryllium	4	<0.20	<0.20	<0.20	<0.20	<0.20	0.77	0.38	0.23	<0.20	0.59	0.33	0.23
Boron (total)	120	<5.0	<5.0	<5.0	<5.0	<5.0	7.0	5.3	5.2	<5.0	5.2	9.5	5.6
Cadmium	1.2	<0.10	<0.10	<0.10	<0.10	1.4	0.38	1.3	0.71	<0.10	0.18	<0.10	<0.10
Chromium (total)	160	9.4	8.2	8.9	8.9	81	32	22	46	45	27	61	52
Cobalt	22	4.0	3.5	3.9	2.9	4.1	8.8	4.6	4.2	3.5	7.9	6.2	4.5
Copper	140	9.9	9.0	10	8.0	86	10	85	29	6.7	14	11	7.2
Lead	120	5.5	5.4	10	2.3	600	9.2	270	340	5.0	18	9.9	6.1
Mercury	0.27	<0.050	<0.050	<0.050	<0.050	<0.050	0.081	NA	NA	NA	NA	NA	NA
Molybdenum	6.9	<0.50	<0.50	<0.50	0.51	4.2	<0.50	0.82	2.0	0.88	0.59	1.5	1.3
Nickel	100	6.7	6.7	6.3	5.3	17	18	11	11	7.7	18	13	9.4
Selenium	2.4	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Silver	20	<0.20	<0.20	<0.20	<0.20	0.45	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Thallium	1	0.052	0.058	0.058	<0.050	0.059	0.21	0.11	0.090	0.066	0.25	0.094	0.063
Uranium	23	0.46	0.36	0.42	0.35	0.36	0.75	0.37	0.45	0.34	0.56	0.34	0.28
Vanadium	86	19	17	21	17	17	37	19	20	14	41	16	13
Zinc	340	19	19	22	12	130	99	200	110	16	42	17	13

NOTES:

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 7 Non-Potable Residential SCS, coarse grained soil.

Shaded Concentration exceeds MECP Table 7 Residential SCS.

SOIL ANALYTICAL RESULTS $(\mu g/g)$ VOLATILE ORGANIC COMPOUNDS TABLE 3 5938 Hazeldean Road, Ottawa

Parameter	MECP Table 7 ¹				BH2 SS3 BH3 SS2		BH5 SS2	
Sample Date (d/m/y)	Residential	15-Fe	eb-19	15-Feb-19	15-Feb-19	15-Feb-19	15-Feb-19	
Sample Depth (mbsg)	Residentiai	2.3 -	- 2.9	1.5 - 2.1	0.76 - 1.35	0.15 - 0.75	0.75 - 1.1	
Acetone	16	<0.50	<0.50	< 0.50	<0.50	<0.50	< 0.50	
Benzene	0.21	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	
Bromodichloromethane	13	<0.050	<0.050	< 0.050	<0.050	<0.050	< 0.050	
Bromoform	0.27	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	
Bromomethane	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	
Carbon Tetrachloride	0.05	< 0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	
Chlorobenzene	2.4	< 0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	
Chloroform	0.05	<0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	
Dibromochloromethane	9.4	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	
1,2-Dichlorobenzene	3.4	<0.050	<0.050	< 0.050	<0.050	<0.050	< 0.050	
1,3-Dichlorobenzene	4.8	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	
1,4-Dichlorobenzene	0.083	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	
Dichlorodifluoromethane	16	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	
1,1-Dichloroethane	3.5	<0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	
1,2-Dichloroethane	0.05	<0.050	< 0.050	< 0.050	<0.050	< 0.050	<0.050	
1,1-Dichloroethylene	0.05	<0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	
Cis-1,2-Dichloroethylene	3.4	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	
Trans-1,2-Dichloroethylene	0.084	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	
1,2-Dichloropropane	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	
Cis-1,3-Dichloropropylene	0.05	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	
Trans-1,3-Dichloropropylene		<0.030	~ 0.030	~ 0.030	70.030	70.030	~ 0.030	
Ethylbenzene	2	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	
Ethylene Dibromide	0.05	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	
Hexane	2.8	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
Methylene Chloride	0.1	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
Methyl Ethyl Ketone	16	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
Methyl Isobutyl Ketone	1.7	<0.50	<0.50	< 0.50	<0.50	<0.50	< 0.50	
Methyl-t-Butyl Ether	0.75	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	
Styrene	0.7	<0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050	
1,1,1,2-Tetrachloroethane	0.058	<0.050	<0.050	< 0.050	< 0.050	< 0.050	<0.050	
1,1,2,2-Tetrachloroethane	0.05	<0.050	<0.050	< 0.050	<0.050	<0.050	<0.050	
Toluene	2.3	<0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	
Tetrachloroethylene	0.28	<0.020	<0.020	<0.020	<0.020	0.025	<0.020	
1,1,1-Trichloroethane	0.38	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	
1,1,2-Trichloroethane	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	
Trichloroethylene	0.061	<0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	
Trichlorofluoromethane	4	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	
Vinyl Chloride	0.02	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	
Total Xylenes	3.1	<0.020	<0.020	<0.020	<0.020	0.024	<0.020	

NOTES:

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 7 Non-Potable Residential SCS, coarse grained soil.

Shaded Concentration exceeds MECP Table 7 Residential SCS.

TABLE 4 SOIL ANALYTICAL RESULTS (µg/g)
POLYCYCLIC AROMATIC HYDROCARBONS
5938 Hazeldean Road, Ottawa

Parameter	MECP Table 7 ¹	BH1 SS4	DUPE	BH2 SS3	BH3 SS2	BH4 AS1	BH5 SS2	BH6 AS2	BH7 AS1	BH8 AS1	BH9 AS2	BH10 AS1	Dup 1
Sample Date (d/m/y)	Residential	15-F	eb-19	15-Feb-19	15-Feb-19	15-Feb-19	15-Feb-19	13-Mar-19	13-Mar-19	13-Mar-19	13-Mar-19	13-M	ar-19
Sample Depth (mbsg)	Residential	2.3	- 2.9	1.5 - 2.1	0.76 - 1.35	0.15 - 0.75	0.75 - 1.1	0.6 - 1.2	0.1 - 0.3	0.2 - 0.7	0.8 - 1.2	0.1 -	- 0.7
Acenaphthene	7.9	<0.0050	<0.0050	< 0.0050	< 0.0050	0.12	<0.0050	<0.0050	0.023	0.0054	<0.0050	<0.0050	<0.0050
Acenaphthylene	0.15	<0.0050	<0.0050	< 0.0050	< 0.0050	< 0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Anthracene	0.67	<0.0050	<0.0050	< 0.0050	< 0.0050	0.20	0.0083	<0.0050	0.043	0.011	<0.0050	< 0.0050	<0.0050
Benzo[a]anthracene	0.5	<0.0050	<0.0050	<0.0050	< 0.0050	0.46	0.035	0.036	0.13	0.035	<0.0050	<0.0050	<0.0050
Benzo[a]pyrene	0.3	<0.0050	<0.0050	< 0.0050	< 0.0050	0.39	0.031	0.035	0.11	0.032	<0.0050	<0.0050	<0.0050
Benzo[b]fluoranthene	0.78	<0.0050	<0.0050	< 0.0050	< 0.0050	0.50	0.039	0.047	0.13	0.044	<0.0050	<0.0050	<0.0050
Benzo[g,h,i]perylene	6.6	<0.0050	0.010	<0.0050	<0.0050	0.32	0.018	0.031	0.073	0.019	<0.0050	<0.0050	<0.0050
Benzo[k]fluoranthene	0.78	<0.0050	<0.0050	<0.0050	<0.0050	0.17	0.015	0.014	0.039	0.012	<0.0050	<0.0050	<0.0050
Chrysene	7	<0.0050	<0.0050	<0.0050	<0.0050	0.38	0.028	0.029	0.10	0.031	<0.0050	<0.0050	<0.0050
Dibenz[a,h]anthracene	0.1	<0.0050	<0.0050	<0.0050	<0.0050	0.058	<0.0050	<0.0050	0.012	<0.0050	<0.0050	<0.0050	<0.0050
Fluoranthene	0.69	<0.0050	<0.0050	<0.0050	<0.0050	1.1	0.069	0.067	0.27	0.086	0.0053	<0.0050	<0.0050
Fluorene	62	<0.0050	<0.0050	<0.0050	<0.0050	0.11	<0.0050	<0.0050	0.024	0.0054	<0.0050	<0.0050	<0.0050
Indeno[1,2,3-cd]pyrene	0.38	<0.0050	<0.0050	<0.0050	<0.0050	0.25	0.019	0.021	0.060	0.019	<0.0050	<0.0050	<0.0050
Methylnaphthalene, 1-	0.99	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.0050	<0.0050	0.0068	<0.0050	<0.0050	<0.0050	<0.0050
Methylnaphthalene, 1-	0.99	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.0050	<0.0050	0.0088	<0.0050	<0.0050	<0.0050	<0.0050
Naphthalene	0.6	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.0050	<0.0050	0.011	<0.0050	<0.0050	<0.0050	<0.0050
Phenanthrene	6.2	<0.0050	<0.0050	<0.0050	<0.0050	0.97	0.021	0.020	0.20	0.055	<0.0050	<0.0050	<0.0050
Pyrene	78	<0.0050	<0.0050	0.0051	<0.0050	0.87	0.062	0.066	0.24	0.074	<0.0050	<0.0050	<0.0050

NOTES:

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 7 non-potable residential standards, coarse grained soil.

Shaded/ Bold Concentration exceeds MECP Table 7 non-potable, coarse grained, soil quality standard.

TABLE 5 GROUNDWATER ANALYTICAL RESULTS (μg/L)
PETROLEUM HYDROCARBONS and BTEX
5938 Hazeldean Road, Ottawa

Parameter	MECP Table 7 ¹		BH1			ВН3		BH4	BH5	ВН9	BH10	BH11	BH20
Sample Date (d/m/y)		26-Feb-19	18-Mar-19	3-Jun-19	26-Feb-19	18-Mar-19	3-Jun-19	26-Feb-19	26-Feb-19	18-Mar-19	18-Mar-19	18-Ma	ir-19
Screened Interval		2.1 -	- 3.6		2.4	- 4.8		2.3 - 4.7	2.0 - 4.6	2.6 - 5.6	2.8 - 5.8	4.3 -	5.8
Benzene	0.5	1.0	1.2	<0.20	5.1	5.4	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene	320	0.92	1.2	<0.20	0.53	0.96	<0.20	<0.20	<0.20	0.40	0.41	<0.20	<0.20
Ethylbenzene	54	<0.20	<0.20	<0.20	5.0	14	0.51	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Total Xylenes	72	1.4	1.1	<0.40	8.9	8.4	<0.40	<0.20	<0.20	<0.40	<0.40	<0.40	<0.40
PHC F1	420	<25	<25	<25	49	61	<25	<25	<25	<25	<25	<25	<25
PHC F2	150	<100	120	<100	1400	850	<100	<100	<100	<100	<100	<100	<100
PHC F3	500	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200
PHC F4	500	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200

NOTES:

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 7, for a non-potable groundwater, coarse grained soil.

Shaded Concentration exceeds MECP Table 7 residential groundwater quality standard.

NA Not Analyzed NV No Value

TABLE 6 GROUNDWATER ANALYTICAL RESULTS (μg/L)
PETROLEUM HYDROCARBONS and BTEX
5938 Hazeldean Road, Ottawa

Parameter	MECP Table 7 ¹	BH1	ВН3	BH4	BH5
Sample Date (d/m/y)		26-Feb-19	26-Feb-19	26-Feb-19	26-Feb-19
Screened Interval		2.1 - 3.6	2.4 - 4.8	2.3 - 4.7	2.0 - 4.6
Antimony	16000	< 0.50	< 0.50	< 0.50	< 0.50
Arsenic	1500	<1.0	<1.0	<1.0	<1.0
Barium	23000	150	760	140	120
Beryllium	53	<0.50	<0.50	<0.50	<0.50
Boron	36000	150	54	57	72
Cadmium	2.1	<0.10	<0.10	<0.10	<0.10
Chromium	640	<5.0	<5.0	<5.0	<5.0
Cobalt	52	2.3	0.88	0.67	0.54
Copper	69	1.2	1.3	<1.0	6.7
Lead	20	< 0.50	<0.50	< 0.50	< 0.50
Molybdenum	7300	44	2.2	0.97	5.4
Nickel	390	5.1	5.1	2.4	4.6
Selenium	50	<2.0	<2.0	<2.0	<2.0
Silver	1.2	<0.10	<0.10	<0.10	<0.10
Thallium	400	< 0.050	< 0.050	0.076	<0.050
Uranium	330	1.5	0.96	0.71	4.5
Vanadium	200	<0.50	<0.50	<0.50	<0.50
Zinc	890	<5.0	6.1	5.4	6.3

NOTES:

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 7, for a non-potable groundwater, coarse grained soil.

Shaded Concentration exceeds MECP Table 7 residential groundwater quality standard.

NA Not Analyzed NV No Value

TABLE 7 GROUNDWATER ANALYTICAL RESULTS (μg/L)
VOLATILE ORGANIC COMPOUNDS
5938 Hazeldean Road, Ottawa

	MECP								
Parameter	Table 7 ¹		BH1			ВН3		BH4	BH5
Sample Date (d/m/y)		26-Feb-19	18-Mar-19	3-Jun-19	26-Feb-19	18-Mar-19	3-Jun-19	26-Feb-19	26-Feb-19
Screened Interval			2.1 - 3.6			2.4 - 4.8		2.3 - 4.7	2.0 - 4.6
Acetone	100000	110	NA	NA	<10	NA	NA	<10	<10
Benzene	0.5	1.0	1.2	<0.20	5.1	5.4	<0.20	<0.20	<0.20
Bromodichloromethane	67000	<0.50	NA	NA	<0.50	NA	NA	<0.50	<0.50
Bromoform	5	<1.0	NA	NA	<1.0	NA	NA	<1.0	<1.0
Bromomethane	0.89	<0.50	NA	NA	<0.50	NA	NA	<0.50	<0.50
Carbon Tetrachloride	0.2	<0.20	NA	NA	<0.20	NA	NA	<0.20	<0.20
Chlorobenzene	140	<0.20	NA	NA	<0.20	NA	NA	<0.20	<0.20
Chloroform	2	<0.20	NA	NA	0.40	NA	NA	0.30	0.38
Dibromochloromethane	65000	<0.50	NA	NA	<0.50	NA	NA	<0.50	<0.50
1,2-Dichlorobenzene	150	<0.50	NA	NA	<0.50	NA	NA	<0.50	<0.50
1,3-Dichlorobenzene	7600	<0.50	NA	NA	<0.50	NA	NA	<0.50	<0.50
1,4-Dichlorobenzene	0.5	< 0.50	NA	NA	< 0.50	NA	NA	< 0.50	< 0.50
Dichlorodifluoromethane	3500	<1.0	NA	NA	<1.0	NA	NA	<1.0	<1.0
1,1-Dichloroethane	11	<0.20	NA	NA	<0.20	NA	NA	<0.20	<0.20
1,2-Dichloroethane	0.5	<0.50	NA	NA	<0.50	NA	NA	<0.50	<0.50
1,1-Dichloroethylene	0.5	<0.20	NA	NA	<0.20	NA	NA	<0.20	<0.20
Cis-1,2-Dichloroethylene	1.6	<0.50	NA	NA	<0.50	NA	NA	<0.50	<0.50
Trans-1,2-Dichloroethylene	1.6	<0.50	NA	NA	<0.50	NA	NA	<0.50	<0.50
1,2-Dichloropropane	0.58	<0.20	NA	NA	<0.20	NA	NA	<0.20	<0.20
Cis-1,3-Dichloropropylene	0.5	< 0.30	NA	NA	< 0.30	NA	NA	< 0.30	<0.30
Trans-1,3-Dichloropropylene	0.5	<0.40	NA	NA	<0.40	NA	NA	< 0.40	< 0.40
Ethylbenzene	54	<0.20	<0.20	<0.20	5.0	14	0.51	<0.20	<0.20
Ethylene Dibromide	0.2	<0.20	NA	NA	<0.20	NA	NA	<0.20	<0.20
Hexane	5	<1.0	NA	NA	<1.0	NA	NA	<1.0	<1.0
Methylene Chloride	26	<2.0	NA	NA	<2.0	NA	NA	<2.0	<2.0
Methyl Ethyl Ketone	21000	<10	NA	NA	<10	NA	NA	<10	<10
Methyl Isobutyl Ketone	5200	<5.0	NA	NA	<5.0	NA	NA	<5.0	<5.0
Methyl-t-Butyl Ether	15	<0.50	NA	NA	0.55	NA	NA	<0.50	<0.50
Styrene	43	< 0.50	NA	NA	<0.50	NA	NA	<0.50	<0.50
1,1,1,2-Tetrachloroethane	1.1	<0.50	NA	NA	<0.50	NA	NA	<0.50	<0.50
1,1,2,2-Tetrachloroethane	0.5	<0.50	NA	NA	<0.50	NA	NA	<0.50	<0.50
Tetrachloroethylene	0.5	<0.20	NA	NA	<0.20	NA	NA	<0.20	<0.20
Toluene	320	0.90	1.2	<0.20	0.53	0.96	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	23	<0.20	NA	NA	<0.20	NA	NA	<0.20	<0.20
1,1,2-Trichloroethane	0.5	<0.50	NA	NA	<0.50	NA	NA	<0.50	<0.50
Trichloroethylene	0.5	<0.20	NA	NA	<0.20	NA	NA	<0.20	<0.20
Trichlorofluoromethane	2000	<0.50	NA	NA	<0.50	NA	NA	<0.50	<0.50
Vinyl Chloride	0.5	<0.20	NA	NA	<0.20	NA	NA	<0.20	<0.20
Total Xylenes	72	1.4	1.1	<0.40	8.9	8.4	<0.40	<0.20	<0.20

NOTES:

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 7, for a non-potable groundwater, coarse grained soil.

Shaded Concentration exceeds MOE Table 7 groundwater quality criterion.

TABLE 8 GROUNDWATER ANALYTICAL RESULTS (μg/L)
POLYCYCLIC AROMATIC HYDROCARBONS
5938 Hazeldean Road, Ottawa

Parameter	MECP Table 7 ¹	ВІ	- 11		ВН3		BH4	BH5	ВН9	BH10	BH11	BH20
Sample Date (d/m/y)		26-Feb-19	18-Mar-19	26-Feb-19	18-Mar-19	3-Jun-19	26-Feb-19	26-Feb-19	18-Mar-19	18-Mar-19	18-Mar-19	Duplicate of
Screened Interval		2.1 -	3.6		2.4 - 4.8		2.3 - 4.7	2.0 - 4.6	2.6 - 5.6	2.8 - 5.8	4.3 - 5.8	BH11
Acenaphthene	17	1.4	0.52	4.9	3.0	0.34	0.29	1.2	<0.050	< 0.050	0.21	0.24
Acenaphthylene	1	< 0.050	<0.050	<1.0	< 0.50	<0.50	< 0.050	< 0.050	<0.050	< 0.050	<0.050	< 0.050
Anthracene	1	0.098	<0.050	0.19	0.080	<0.050	0.076	0.098	<0.050	< 0.050	0.054	0.053
Benzo[a]anthracene	1.8	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050
Benzo[a]pyrene	0.81	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Benzo[b]fluoranthene	0.75	< 0.050	<0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050
Benzo[g,h,i]perylene	0.2	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050
Benzo[k]fluoranthene	0.4	< 0.050	<0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050
Chrysene	0.7	< 0.050	<0.050	<0.050	<0.050	<0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050
Dibenzo[a,h]anthracene	0.4	< 0.050	<0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050
Fluoranthene	44	< 0.050	<0.050	0.073	<0.050	<0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050
Fluorene	290	1.4	0.60	6.4	3.5	0.31	0.27	1.6	<0.050	< 0.050	0.23	0.21
Indeno[1,2,3-cd]pyrene	0.2	< 0.050	<0.050	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050
Methylnaphthalene -1	1500	0.74	0.15	120	52	2.6	< 0.050	0.079	<0.050	< 0.050	< 0.050	< 0.050
Methylnaphthalene -2	1300	0.57	0.12	66	11	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	< 0.050
Naphthalene	7	0.61	0.22	49	18	2.6	0.080	<0.20	<0.050	<0.050	0.086	0.082
Phenanthrene	380	0.14	0.064	4.3	1.5	0.1	0.24	0.28	<0.030	<0.030	0.039	0.035
Pyrene	5.7	<0.050	<0.050	0.074	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050

NOTES:

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 7, for a non-potable groundwater, coarse grained soil.

NV no value in standards

Shaded Concentration exceeds MECP Table 7 groundwater quality standard.

EXP Services Inc.

Hazeldean Crossing Inc.
Phase Two Environmental Site Assessment
5938 Hazeldean Road, Ottawa, Ontario
OTT-00250806-A0
June 27, 2019

Appendix E – Laboratory Certificates of Analysis

Your Project #: OTT-00250806-CO

Your C.O.C. #: 483691

Attention: Mark McCalla

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2019/03/01

Report #: R5612277 Version: 2 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B951492 Received: 2019/02/27, 10:30

Sample Matrix: Soil # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum (1)	6	N/A	2019/03/01	CAM SOP-00301	EPA 8270D m
1,3-Dichloropropene Sum	6	N/A	2019/03/01	OTT SOP-00002	EPA 8260C m
Petroleum Hydrocarbons F2-F4 in Soil (2)	6	2019/02/27	2019/02/28	OTT SOP-00001	CCME CWS
Strong Acid Leachable Metals by ICPMS (1)	6	2019/03/01	2019/03/01	CAM SOP-00447	EPA 6020B m
Moisture	6	N/A	2019/03/01	CAM SOP-00445	McKeague 2nd ed 1978
PAH Compounds in Soil by GC/MS (SIM) (1)	1	2019/02/28	2019/02/28	CAM SOP-00318	EPA 8270D m
PAH Compounds in Soil by GC/MS (SIM) (1)	5	2019/02/28	2019/03/01	CAM SOP-00318	EPA 8270D m
Volatile Organic Compounds and F1 PHCs	5	N/A	2019/02/28	OTT SOP-00002	EPA 8260C m
Volatile Organic Compounds and F1 PHCs	1	N/A	2019/03/01	OTT SOP-00002	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Analytics Mississauga
- (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the

Your Project #: OTT-00250806-CO

Your C.O.C. #: 483691

Attention: Mark McCalla

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2019/03/01

Report #: R5612277 Version: 2 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B951492 Received: 2019/02/27, 10:30

reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

exp Services Inc

Client Project #: OTT-00250806-CO

Sampler Initials: ML

RESULTS OF ANALYSES OF SOIL

Maxxam ID		JBQ769	JBQ769	JBQ770	JBQ771	JBQ772	JBQ773	JBQ774		
Sampling Date		2019/02/15 09:00	2019/02/15 09:00	2019/02/15 09:00	2019/02/15 11:00	2019/02/15 12:00	2019/02/19 09:00	2019/02/20 14:00		
COC Number		483691	483691	483691	483691	483691	483691	483691		
	UNITS	BH1 SS4	BH1 SS4 Lab-Dup	DUPU	BH2 SS3	BH3 SS2	BH4 AS1	BH5 SS2	RDL	QC Batch
Inorganics										
Moisture	%	12	12	12	6.9	5.1	13	15	0.2	5995672

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

exp Services Inc

Client Project #: OTT-00250806-CO

Sampler Initials: ML

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		JBQ769	JBQ770	JBQ771	JBQ772	JBQ773	JBQ774		
Sampling Date		2019/02/15	2019/02/15	2019/02/15	2019/02/15	2019/02/19	2019/02/20		
Sampling Date		09:00	09:00	11:00	12:00	09:00	14:00		
COC Number		483691	483691	483691	483691	483691	483691		
	UNITS	BH1 SS4	DUPU	BH2 SS3	BH3 SS2	BH4 AS1	BH5 SS2	RDL	QC Batch
Metals									
Acid Extractable Aluminum (AI)	ug/g	3300	2900	3300	3400	4400	19000	50	5997511
Acid Extractable Antimony (Sb)	ug/g	<0.20	<0.20	<0.20	<0.20	1.2	<0.20	0.20	5997511
Acid Extractable Arsenic (As)	ug/g	<1.0	<1.0	<1.0	<1.0	2.1	2.8	1.0	5997511
Acid Extractable Barium (Ba)	ug/g	33	28	35	16	130	110	0.50	5997511
Acid Extractable Beryllium (Be)	ug/g	<0.20	<0.20	<0.20	<0.20	<0.20	0.77	0.20	5997511
Acid Extractable Bismuth (Bi)	ug/g	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5997511
Acid Extractable Boron (B)	ug/g	<5.0	<5.0	<5.0	<5.0	<5.0	7.0	5.0	5997511
Acid Extractable Cadmium (Cd)	ug/g	<0.10	<0.10	<0.10	<0.10	1.4	0.38	0.10	5997511
Acid Extractable Calcium (Ca)	ug/g	37000	32000	33000	62000	90000	14000	50	5997511
Acid Extractable Chromium (Cr)	ug/g	9.4	8.2	8.9	8.9	81	32	1.0	5997511
Acid Extractable Cobalt (Co)	ug/g	4.0	3.5	3.9	2.9	4.1	8.8	0.10	5997511
Acid Extractable Copper (Cu)	ug/g	9.9	9.0	10	8.0	86	10	0.50	5997511
Acid Extractable Iron (Fe)	ug/g	9800	8600	9900	7900	13000	25000	50	5997511
Acid Extractable Lead (Pb)	ug/g	5.5	5.4	10	2.3	600	9.2	1.0	5997511
Acid Extractable Magnesium (Mg)	ug/g	7600	6700	7700	17000	11000	4400	50	5997511
Acid Extractable Manganese (Mn)	ug/g	220	190	230	310	350	1100	1.0	5997511
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	<0.50	<0.50	0.51	4.2	<0.50	0.50	5997511
Acid Extractable Nickel (Ni)	ug/g	6.7	6.7	6.3	5.3	17	18	0.50	5997511
Acid Extractable Phosphorus (P)	ug/g	820	710	890	590	730	1100	50	5997511
Acid Extractable Potassium (K)	ug/g	560	470	570	640	710	1100	200	5997511
Acid Extractable Selenium (Se)	ug/g	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5997511
Acid Extractable Silver (Ag)	ug/g	<0.20	<0.20	<0.20	<0.20	0.45	<0.20	0.20	5997511
Acid Extractable Sodium (Na)	ug/g	160	130	160	160	210	180	50	5997511
Acid Extractable Strontium (Sr)	ug/g	54	51	51	66	130	32	1.0	5997511
Acid Extractable Thallium (Tl)	ug/g	0.052	0.058	0.058	<0.050	0.059	0.21	0.050	5997511
Acid Extractable Tin (Sn)	ug/g	<1.0	<1.0	<1.0	<1.0	7.6	<1.0	1.0	5997511
Acid Extractable Uranium (U)	ug/g	0.46	0.36	0.42	0.35	0.36	0.75	0.050	5997511
Acid Extractable Vanadium (V)	ug/g	19	17	21	17	17	37	5.0	5997511
Acid Extractable Zinc (Zn)	ug/g	19	19	22	12	130	99	5.0	5997511
Acid Extractable Mercury (Hg)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	0.081	0.050	5997511
RDL = Reportable Detection Limit				. —					·
OC Batch = Quality Control Batch									

QC Batch = Quality Control Batch

exp Services Inc

Client Project #: OTT-00250806-CO

Sampler Initials: ML

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Maxxam ID		JBQ769	JBQ770	JBQ771			JBQ771		
Sampling Date		2019/02/15	2019/02/15	2019/02/15			2019/02/15		
Sampling Date		09:00	09:00	11:00			11:00		
COC Number		483691	483691	483691			483691		
	UNITS	BH1 SS4	DUPU	BH2 SS3	RDL	QC Batch	BH2 SS3 Lab-Dup	RDL	QC Batch
Calculated Parameters									
Methylnaphthalene, 2-(1-)	ug/g	< 0.0071	<0.0071	<0.0071	0.0071	5993183			
Polyaromatic Hydrocarbons					•				
Acenaphthene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	5996362	<0.0050	0.0050	5996362
Acenaphthylene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	5996362	<0.0050	0.0050	5996362
Anthracene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	5996362	<0.0050	0.0050	5996362
Benzo(a)anthracene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	5996362	<0.0050	0.0050	5996362
Benzo(a)pyrene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	5996362	<0.0050	0.0050	5996362
Benzo(b/j)fluoranthene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	5996362	0.0059	0.0050	5996362
Benzo(g,h,i)perylene	ug/g	<0.0050	0.010	<0.0050	0.0050	5996362	<0.0050	0.0050	5996362
Benzo(k)fluoranthene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	5996362	<0.0050	0.0050	5996362
Chrysene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	5996362	<0.0050	0.0050	5996362
Dibenz(a,h)anthracene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	5996362	<0.0050	0.0050	5996362
Fluoranthene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	5996362	0.0067	0.0050	5996362
Fluorene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	5996362	<0.0050	0.0050	5996362
Indeno(1,2,3-cd)pyrene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	5996362	<0.0050	0.0050	5996362
1-Methylnaphthalene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	5996362	<0.0050	0.0050	5996362
2-Methylnaphthalene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	5996362	<0.0050	0.0050	5996362
Naphthalene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	5996362	<0.0050	0.0050	5996362
Phenanthrene	ug/g	<0.0050	<0.0050	<0.0050	0.0050	5996362	<0.0050	0.0050	5996362
Pyrene	ug/g	<0.0050	<0.0050	0.0051	0.0050	5996362	0.0074	0.0050	5996362
Surrogate Recovery (%)								·	
D10-Anthracene	%	102	95	97		5996362	91		5996362
D14-Terphenyl (FS)	%	93	87	90		5996362	86		5996362
D8-Acenaphthylene	%	93	88	89		5996362	86		5996362
	•		•	•					

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

exp Services Inc

Client Project #: OTT-00250806-CO

Sampler Initials: ML

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Calculated Parameters	Maxxam ID		JBQ772		JBQ773		JBQ774		
12:00	Sampling Date		2019/02/15		2019/02/19		2019/02/20		
Calculated Parameters			12:00		09:00		14:00		
Calculated Parameters Methylnaphthalene, 2-(1-) ug/g <0.0071 0.0071 <0.0071 0.0071 5993183 Polyaromatic Hydrocarbons Accenaphthene ug/g <0.0050 0.0050 <0.0050 <0.0050 0.0050 5996362 Accenaphthylene ug/g <0.0050 0.0050 <0.0050 <0.0050 0.0050 5996362 Anthracene ug/g <0.0050 0.0050 0.050 <0.0050 0.0050 5996362 Benzo(a)anthracene ug/g <0.0050 0.0050 0.046 0.050 0.033 0.0050 5996362 Benzo(a)pyrene ug/g <0.0050 0.0050 0.39 0.050 0.031 0.0050 5996362 Benzo(a)pyrene ug/g <0.0050 0.0050 0.39 0.050 0.031 0.0050 5996362 Benzo(a)pyrene ug/g <0.0050 0.0050 0.39 0.050 0.031 0.0050 5996362 Benzo(a)pyrene ug/g <0.0050 0.0050	COC Number		483691		483691		483691		
Methylnaphthalene, 2-(1-) ug/g <0.0071 0.0071 <0.0071 0.0071 5993183 Polyaromatic Hydrocarbons		UNITS	BH3 SS2	RDL	BH4 AS1	RDL	BH5 SS2	RDL	QC Batch
Polyaromatic Hydrocarbons	Calculated Parameters	•		•				•	
Acenaphthene	Methylnaphthalene, 2-(1-)	ug/g	<0.0071	0.0071	<0.071	0.071	<0.0071	0.0071	5993183
Acenaphthylene	Polyaromatic Hydrocarbons								
Anthracene	Acenaphthene	ug/g	<0.0050	0.0050	0.12	0.050	<0.0050	0.0050	5996362
Benzo(a)anthracene ug/g <0.0050 0.0050 0.46 0.050 0.035 0.0050 5996362	Acenaphthylene	ug/g	<0.0050	0.0050	<0.050	0.050	<0.0050	0.0050	5996362
Benzo(a)pyrene	Anthracene	ug/g	<0.0050	0.0050	0.20	0.050	0.0083	0.0050	5996362
Benzo(b/j)fluoranthene ug/g <0.0050 0.050 0.050 0.039 0.0050 5996362 Benzo(g,h,i)perylene ug/g <0.0050	Benzo(a)anthracene	ug/g	<0.0050	0.0050	0.46	0.050	0.035	0.0050	5996362
Benzo(g,h,i)perylene ug/g <0.0050 0.032 0.050 0.018 0.0050 5996362 Benzo(k)fluoranthene ug/g <0.0050	Benzo(a)pyrene	ug/g	<0.0050	0.0050	0.39	0.050	0.031	0.0050	5996362
Benzo(k)fluoranthene ug/g <0.0050 0.0050 0.17 0.050 0.015 0.0050 5996362 Chrysene ug/g <0.0050	Benzo(b/j)fluoranthene	ug/g	<0.0050	0.0050	0.50	0.050	0.039	0.0050	5996362
Chrysene ug/g <0.0050 0.0050 0.38 0.050 0.028 0.0050 5996362 Dibenz(a,h)anthracene ug/g <0.0050	Benzo(g,h,i)perylene	ug/g	<0.0050	0.0050	0.32	0.050	0.018	0.0050	5996362
Dibenz(a,h)anthracene ug/g <0.0050 0.0050 0.058 0.050 <0.0050 0.0050 5996362	Benzo(k)fluoranthene	ug/g	<0.0050	0.0050	0.17	0.050	0.015	0.0050	5996362
Fluoranthene	Chrysene	ug/g	<0.0050	0.0050	0.38	0.050	0.028	0.0050	5996362
Fluorene	Dibenz(a,h)anthracene	ug/g	<0.0050	0.0050	0.058	0.050	<0.0050	0.0050	5996362
Indeno(1,2,3-cd)pyrene	Fluoranthene	ug/g	<0.0050	0.0050	1.1	0.050	0.069	0.0050	5996362
1-Methylnaphthalene ug/g <0.0050 0.0050 <0.050 0.0050 0.0050 5996362 2-Methylnaphthalene ug/g <0.0050 0.0050 <0.050 0.050 0.0050 0.0050 5996362 Naphthalene ug/g <0.0050 0.0050 0.0050 0.050 0.0050 0.0050 5996362 Phenanthrene ug/g <0.0050 0.0050 0.0050 0.050 0.0050 0.0050 5996362 Pyrene ug/g <0.0050 0.0050 0.07 0.050 0.021 0.0050 5996362 Pyrene ug/g <0.0050 0.0050 0.87 0.050 0.062 0.0050 5996362 Surrogate Recovery (%) D10-Anthracene % 96 116 98 5996362 D14-Terphenyl (FS) % 89 83 92 5996362 D8-Acenaphthylene % 90 96 93 5996362 RDL = Reportable Detection Limit	Fluorene	ug/g	<0.0050	0.0050	0.11	0.050	<0.0050	0.0050	5996362
2-Methylnaphthalene ug/g <0.0050 0.0050 <0.0050 <0.0050 0.0050 5996362 Naphthalene ug/g <0.0050	Indeno(1,2,3-cd)pyrene	ug/g	<0.0050	0.0050	0.25	0.050	0.019	0.0050	5996362
Naphthalene ug/g <0.0050 0.0050 <0.0050 <0.0050 0.0050 5996362 Phenanthrene ug/g <0.0050	1-Methylnaphthalene	ug/g	<0.0050	0.0050	<0.050	0.050	<0.0050	0.0050	5996362
Phenanthrene ug/g <0.0050 0.050 0.050 0.021 0.0050 5996362 Pyrene ug/g <0.0050	2-Methylnaphthalene	ug/g	<0.0050	0.0050	<0.050	0.050	<0.0050	0.0050	5996362
Pyrene ug/g <0.0050 0.0050 0.87 0.050 0.062 0.0050 5996362 Surrogate Recovery (%) D10-Anthracene % 96 116 98 5996362 D14-Terphenyl (FS) % 89 83 92 5996362 D8-Acenaphthylene % 90 96 93 5996362 RDL = Reportable Detection Limit	Naphthalene	ug/g	<0.0050	0.0050	<0.050	0.050	<0.0050	0.0050	5996362
Surrogate Recovery (%) D10-Anthracene % 96 116 98 5996362 D14-Terphenyl (FS) % 89 83 92 5996362 D8-Acenaphthylene % 90 96 93 5996362 RDL = Reportable Detection Limit	Phenanthrene	ug/g	<0.0050	0.0050	0.97	0.050	0.021	0.0050	5996362
D10-Anthracene % 96 116 98 5996362 D14-Terphenyl (FS) % 89 83 92 5996362 D8-Acenaphthylene % 90 96 93 5996362 RDL = Reportable Detection Limit	Pyrene	ug/g	<0.0050	0.0050	0.87	0.050	0.062	0.0050	5996362
D14-Terphenyl (FS)	Surrogate Recovery (%)								
D8-Acenaphthylene % 90 96 93 5996362 RDL = Reportable Detection Limit	D10-Anthracene	%	96		116		98		5996362
RDL = Reportable Detection Limit	D14-Terphenyl (FS)	%	89		83		92		5996362
·	D8-Acenaphthylene	%	90		96		93		5996362
QC Batch = Quality Control Batch	RDL = Reportable Detection L	imit							
	QC Batch = Quality Control Ba	atch							

exp Services Inc

Client Project #: OTT-00250806-CO

Sampler Initials: ML

VOLATILE ORGANICS BY GC/MS (SOIL)

Maxxam ID		JBQ769	JBQ770	JBQ771	JBQ772	JBQ773	JBQ774		
Sampling Date		2019/02/15	2019/02/15	2019/02/15	2019/02/15	2019/02/19	2019/02/20		
Sampling Date		09:00	09:00	11:00	12:00	09:00	14:00		
COC Number		483691	483691	483691	483691	483691	483691		
	UNITS	BH1 SS4	DUPU	BH2 SS3	BH3 SS2	BH4 AS1	BH5 SS2	RDL	QC Batch
Calculated Parameters									
1,3-Dichloropropene (cis+trans)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993650
Volatile Organics		•	•	•	•	•	•		
Acetone (2-Propanone)	ug/g	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5993774
Benzene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	5993774
Bromodichloromethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
Bromoform	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
Bromomethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
Carbon Tetrachloride	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
Chlorobenzene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
Chloroform	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
Dibromochloromethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
1,2-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
1,3-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
1,4-Dichlorobenzene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
Dichlorodifluoromethane (FREON 12)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
1,1-Dichloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
1,2-Dichloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
1,1-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
cis-1,2-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
trans-1,2-Dichloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
1,2-Dichloropropane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
cis-1,3-Dichloropropene	ug/g	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030	0.030	5993774
trans-1,3-Dichloropropene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	5993774
Ethylbenzene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	5993774
Ethylene Dibromide	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
Hexane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
Methylene Chloride(Dichloromethane)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
Methyl Ethyl Ketone (2-Butanone)	ug/g	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5993774
Methyl Isobutyl Ketone	ug/g	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5993774
Methyl t-butyl ether (MTBE)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
Styrene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
1,1,1,2-Tetrachloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
1,1,2,2-Tetrachloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
Tetrachloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
Toluene	ug/g	<0.020	<0.020	<0.020	<0.020	0.025	<0.020	0.020	5993774
RDL = Reportable Detection Limit									
I									

QC Batch = Quality Control Batch

exp Services Inc

Client Project #: OTT-00250806-CO

Sampler Initials: ML

VOLATILE ORGANICS BY GC/MS (SOIL)

Maxxam ID		JBQ769	JBQ770	JBQ771	JBQ772	JBQ773	JBQ774		
Sampling Date		2019/02/15	2019/02/15	2019/02/15	2019/02/15	2019/02/19	2019/02/20		
Sampling Date		09:00	09:00	11:00	12:00	09:00	14:00		
COC Number		483691	483691	483691	483691	483691	483691		
	UNITS	BH1 SS4	DUPU	BH2 SS3	BH3 SS2	BH4 AS1	BH5 SS2	RDL	QC Batch
1,1,1-Trichloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
1,1,2-Trichloroethane	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
Trichloroethylene	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
Trichlorofluoromethane (FREON 11)	ug/g	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	5993774
Vinyl Chloride	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	5993774
p+m-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	0.024	<0.020	0.020	5993774
o-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	5993774
Total Xylenes	ug/g	<0.020	<0.020	<0.020	<0.020	0.024	<0.020	0.020	5993774
F1 (C6-C10)	ug/g	<10	11	<10	<10	<10	<10	10	5993774
F1 (C6-C10) - BTEX	ug/g	<10	11	<10	<10	<10	<10	10	5993774
Surrogate Recovery (%)	•	•	-	•	•		-		
4-Bromofluorobenzene	%	97	122	92	102	96	93		5993774
D10-o-Xylene	%	95	161 (1)	177 (1)	99	89	187 (1)		5993774
D4-1,2-Dichloroethane	%	120	101	112	95	106	93		5993774
D8-Toluene	%	106	109	112	77	107	81		5993774

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

exp Services Inc

Client Project #: OTT-00250806-CO

Sampler Initials: ML

PETROLEUM HYDROCARBONS (CCME)

_	_											
Maxxam ID		JBQ769	JBQ770	JBQ771	JBQ772	JBQ773	JBQ774					
Campling Data		2019/02/15	2019/02/15	2019/02/15	2019/02/15	2019/02/19	2019/02/20					
Sampling Date		09:00	09:00	11:00	12:00	09:00	14:00					
COC Number		483691	483691	483691	483691	483691	483691					
	UNITS	BH1 SS4	DUPU	BH2 SS3	BH3 SS2	BH4 AS1	BH5 SS2	RDL	QC Batch			
F2-F4 Hydrocarbons	F2-F4 Hydrocarbons											
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	<10	<10	<10	<10	10	5994449			
F3 (C16-C34 Hydrocarbons)	ug/g	<50	<50	<50	<50	900	<50	50	5994449			
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	<50	<50	320	<50	50	5994449			
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes	Yes	Yes		5994449			
Surrogate Recovery (%)												
o-Terphenyl	%	83	84	84	83	89	88		5994449			
RDL = Reportable Detection L	imit	•	•		•							
QC Batch = Quality Control B	atch											

QC Batch = Quality Control Batch

exp Services Inc

Client Project #: OTT-00250806-CO

Sampler Initials: ML

TEST SUMMARY

Maxxam ID: JBQ769 Sample ID: BH1 SS4

Matrix: Soil

Collected:

2019/02/15

Shipped:

Received: 2019/02/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5993183	N/A	2019/03/01	Automated Statchk
1,3-Dichloropropene Sum	CALC	5993650	N/A	2019/03/01	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5994449	2019/02/27	2019/02/28	Mariana Vascan
Strong Acid Leachable Metals by ICPMS	ICP/MS	5997511	2019/03/01	2019/03/01	Matthew Ritenburg
Moisture	BAL	5995672	N/A	2019/03/01	Mariana Vascan
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5996362	2019/02/28	2019/03/01	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5993774	N/A	2019/02/28	Liliana Gaburici

Maxxam ID: JBQ769 Dup

Sample ID: BH1 SS4

Matrix: Soil

Collected: 2019/02/15

Shipped: Received: 2019/02/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Moisture	BAL	5995672	N/A	2019/03/01	Mariana Vascan

Maxxam ID: JBQ770 Sample ID:

DUPU Matrix: Soil

Collected: 2019/02/15

Shipped:

Received: 2019/02/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5993183	N/A	2019/03/01	Automated Statchk
1,3-Dichloropropene Sum	CALC	5993650	N/A	2019/03/01	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5994449	2019/02/27	2019/02/28	Mariana Vascan
Strong Acid Leachable Metals by ICPMS	ICP/MS	5997511	2019/03/01	2019/03/01	Matthew Ritenburg
Moisture	BAL	5995672	N/A	2019/03/01	Mariana Vascan
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5996362	2019/02/28	2019/03/01	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5993774	N/A	2019/02/28	Liliana Gaburici

Maxxam ID: JBQ771

Sample ID: BH2 SS3

Matrix: Soil Collected: 2019/02/15

Shipped:

Received: 2019/02/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5993183	N/A	2019/03/01	Automated Statchk
1,3-Dichloropropene Sum	CALC	5993650	N/A	2019/03/01	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5994449	2019/02/27	2019/02/28	Mariana Vascan
Strong Acid Leachable Metals by ICPMS	ICP/MS	5997511	2019/03/01	2019/03/01	Matthew Ritenburg
Moisture	BAL	5995672	N/A	2019/03/01	Mariana Vascan
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5996362	2019/02/28	2019/02/28	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5993774	N/A	2019/02/28	Liliana Gaburici

Maxxam ID: JBQ771 Dup Sample ID: BH2 SS3

Matrix: Soil

Collected: 2019/02/15 Shipped:

Received: 2019/02/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5996362	2019/02/28	2019/03/01	Mitesh Raj

exp Services Inc

Client Project #: OTT-00250806-CO

Sampler Initials: ML

TEST SUMMARY

Maxxam ID: JBQ772

Shipped:

Collected: 2019/02/15

Sample ID: BH3 SS2 Matrix: Soil

Received: 2019/02/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5993183	N/A	2019/03/01	Automated Statchk
1,3-Dichloropropene Sum	CALC	5993650	N/A	2019/03/01	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5994449	2019/02/27	2019/02/28	Mariana Vascan
Strong Acid Leachable Metals by ICPMS	ICP/MS	5997511	2019/03/01	2019/03/01	Matthew Ritenburg
Moisture	BAL	5995672	N/A	2019/03/01	Mariana Vascan
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5996362	2019/02/28	2019/03/01	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5993774	N/A	2019/02/28	Liliana Gaburici

Maxxam ID: JBQ773 **Collected:** 2019/02/19 Sample ID: BH4 AS1

Shipped:

Matrix: Soil **Received:** 2019/02/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5993183	N/A	2019/03/01	Automated Statchk
1,3-Dichloropropene Sum	CALC	5993650	N/A	2019/03/01	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5994449	2019/02/27	2019/02/28	Mariana Vascan
Strong Acid Leachable Metals by ICPMS	ICP/MS	5997511	2019/03/01	2019/03/01	Matthew Ritenburg
Moisture	BAL	5995672	N/A	2019/03/01	Mariana Vascan
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5996362	2019/02/28	2019/03/01	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5993774	N/A	2019/03/01	Liliana Gaburici

Maxxam ID: JBQ774 Collected: 2019/02/20 Sample ID: BH5 SS2 Shipped:

Matrix: Soil **Received:** 2019/02/27

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5993183	N/A	2019/03/01	Automated Statchk
1,3-Dichloropropene Sum	CALC	5993650	N/A	2019/03/01	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5994449	2019/02/27	2019/02/28	Mariana Vascan
Strong Acid Leachable Metals by ICPMS	ICP/MS	5997511	2019/03/01	2019/03/01	Matthew Ritenburg
Moisture	BAL	5995672	N/A	2019/03/01	Mariana Vascan
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	5996362	2019/02/28	2019/03/01	Mitesh Raj
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5993774	N/A	2019/02/28	Liliana Gaburici

exp Services Inc Client Project #: OTT-00250806-CO

Sampler Initials: ML

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 10.0°C

VOCF1 Analysis: Extraction surrogates (D10- Xylene) is above the limit for some samples due to the low level of methanol in the sample.

Sample JBQ773 [BH4 AS1]: PAH analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

VOLATILE ORGANICS BY GC/MS (SOIL)

Volatile Organic Compounds and F1 PHCs: VOCF1 Analysis: Some parameters for matrix spike were not calclulated (NC) due to high concentration of target analyte in the parent sample.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

exp Services Inc

Client Project #: OTT-00250806-CO

Sampler Initials: ML

			Matrix	Spike	SPIKED	BLANK	Method Blank		RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5993774	4-Bromofluorobenzene	2019/02/28	101	60 - 140	75	60 - 140	108	%		
5993774	D10-o-Xylene	2019/02/28	82	60 - 130	77	60 - 130	114	%		
5993774	D4-1,2-Dichloroethane	2019/02/28	114	60 - 140	107	60 - 140	100	%		
5993774	D8-Toluene	2019/02/28	103	60 - 140	102	60 - 140	99	%		
5994449	o-Terphenyl	2019/02/28	97	30 - 130	92	30 - 130	94	%		
5996362	D10-Anthracene	2019/02/28	98	50 - 130	97	50 - 130	99	%		
5996362	D14-Terphenyl (FS)	2019/02/28	91	50 - 130	92	50 - 130	93	%		
5996362	D8-Acenaphthylene	2019/02/28	95	50 - 130	93	50 - 130	92	%		
5993774	1,1,1,2-Tetrachloroethane	2019/02/28	110	60 - 140	104	60 - 130	<0.050	ug/g	NC	50
5993774	1,1,1-Trichloroethane	2019/02/28	108	60 - 140	117	60 - 130	<0.050	ug/g	NC	50
5993774	1,1,2,2-Tetrachloroethane	2019/02/28	103	60 - 140	78	60 - 130	<0.050	ug/g	NC	50
5993774	1,1,2-Trichloroethane	2019/02/28	109	60 - 140	101	60 - 130	<0.050	ug/g	NC	50
5993774	1,1-Dichloroethane	2019/02/28	100	60 - 140	101	60 - 130	<0.050	ug/g	NC	50
5993774	1,1-Dichloroethylene	2019/02/28	98	60 - 140	119	60 - 130	<0.050	ug/g	NC	50
5993774	1,2-Dichlorobenzene	2019/02/28	106	60 - 140	103	60 - 130	<0.050	ug/g	NC	50
5993774	1,2-Dichloroethane	2019/02/28	105	60 - 140	106	60 - 130	<0.050	ug/g	NC	50
5993774	1,2-Dichloropropane	2019/02/28	101	60 - 140	91	60 - 130	<0.050	ug/g	NC	50
5993774	1,3-Dichlorobenzene	2019/02/28	109	60 - 140	105	60 - 130	<0.050	ug/g	NC	50
5993774	1,4-Dichlorobenzene	2019/02/28	112	60 - 140	110	60 - 130	<0.050	ug/g	NC	50
5993774	Acetone (2-Propanone)	2019/02/28	101	60 - 140	116	60 - 140	<0.50	ug/g	26	50
5993774	Benzene	2019/02/28	98	60 - 140	94	60 - 130	<0.020	ug/g	2.8	50
5993774	Bromodichloromethane	2019/02/28	109	60 - 140	106	60 - 130	<0.050	ug/g	NC	50
5993774	Bromoform	2019/02/28	99	60 - 140	79	60 - 130	<0.050	ug/g	NC	50
5993774	Bromomethane	2019/02/28	106	60 - 140	130	60 - 140	<0.050	ug/g	NC	50
5993774	Carbon Tetrachloride	2019/02/28	113	60 - 140	119	60 - 130	<0.050	ug/g	NC	50
5993774	Chlorobenzene	2019/02/28	103	60 - 140	96	60 - 130	<0.050	ug/g	NC	50
5993774	Chloroform	2019/02/28	112	60 - 140	106	60 - 130	<0.050	ug/g	NC	50
5993774	cis-1,2-Dichloroethylene	2019/02/28	100	60 - 140	119	60 - 130	<0.050	ug/g	NC	50
5993774	cis-1,3-Dichloropropene	2019/02/28	105	60 - 140	107	60 - 130	<0.030	ug/g	NC	50
5993774	Dibromochloromethane	2019/02/28	105	60 - 140	107	60 - 130	<0.050	ug/g	NC	50
5993774	Dichlorodifluoromethane (FREON 12)	2019/02/28	103	60 - 140	109	60 - 140	<0.050	ug/g	NC	50
5993774	Ethylbenzene	2019/02/28	75	60 - 140	108	60 - 130	<0.020	ug/g	5.0	50

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: OTT-00250806-CO

Sampler Initials: ML

			Matrix	Spike	SPIKED	BLANK	Method Blank		RPD		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	
5993774	Ethylene Dibromide	2019/02/28	103	60 - 140	93	60 - 130	<0.050	ug/g	NC	50	
5993774	F1 (C6-C10) - BTEX	2019/02/28					<10	ug/g	9.5	30	
5993774	F1 (C6-C10)	2019/02/28	NC	60 - 140	100	80 - 120	<10	ug/g	4.8	30	
5993774	Hexane	2019/02/28	90	60 - 140	103	60 - 130	<0.050	ug/g	8.1	50	
5993774	Methyl Ethyl Ketone (2-Butanone)	2019/02/28	110	60 - 140	118	60 - 140	<0.50	ug/g	34	50	
5993774	Methyl Isobutyl Ketone	2019/02/28	110	60 - 140	112	60 - 130	<0.50	ug/g	5.7	50	
5993774	Methyl t-butyl ether (MTBE)	2019/02/28	109	60 - 140	98	60 - 130	<0.050	ug/g	NC	50	
5993774	Methylene Chloride(Dichloromethane)	2019/02/28	99	60 - 140	117	60 - 130	<0.050	ug/g	NC	50	
5993774	o-Xylene	2019/02/28	60	60 - 140	85	60 - 130	<0.020	ug/g	5.9	50	
5993774	p+m-Xylene	2019/02/28	NC	60 - 140	93	60 - 130	<0.020	ug/g	6.2	50	
5993774	Styrene	2019/02/28	112	60 - 140	72	60 - 130	<0.050	ug/g	NC	50	
5993774	Tetrachloroethylene	2019/02/28	100	60 - 140	96	60 - 130	<0.050	ug/g	NC	50	
5993774	Toluene	2019/02/28	NC	60 - 140	101	60 - 130	<0.020	ug/g	19	50	
5993774	Total Xylenes	2019/02/28					<0.020	ug/g	2.4	50	
5993774	trans-1,2-Dichloroethylene	2019/02/28	98	60 - 140	86	60 - 130	<0.050	ug/g	NC	50	
5993774	trans-1,3-Dichloropropene	2019/02/28	107	60 - 140	120	60 - 130	<0.040	ug/g	NC	50	
5993774	Trichloroethylene	2019/02/28	97	60 - 140	118	60 - 130	<0.050	ug/g	NC	50	
5993774	Trichlorofluoromethane (FREON 11)	2019/02/28	116	60 - 140	115	60 - 130	<0.050	ug/g	NC	50	
5993774	Vinyl Chloride	2019/02/28	101	60 - 140	121	60 - 130	<0.020	ug/g	NC	50	
5994449	F2 (C10-C16 Hydrocarbons)	2019/03/01	94	50 - 130	92	80 - 120	<10	ug/g	NC	50	
5994449	F3 (C16-C34 Hydrocarbons)	2019/03/01	94	50 - 130	92	80 - 120	<50	ug/g	4.5	50	
5994449	F4 (C34-C50 Hydrocarbons)	2019/03/01	94	50 - 130	92	80 - 120	<50	ug/g	8.0	50	
5995672	Moisture	2019/03/01							4.2	50	
5996362	1-Methylnaphthalene	2019/03/01	104	50 - 130	109	50 - 130	<0.0050	ug/g	NC	40	
5996362	2-Methylnaphthalene	2019/03/01	94	50 - 130	99	50 - 130	<0.0050	ug/g	NC	40	
5996362	Acenaphthene	2019/03/01	88	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40	
5996362	Acenaphthylene	2019/03/01	90	50 - 130	93	50 - 130	<0.0050	ug/g	NC	40	
5996362	Anthracene	2019/03/01	85	50 - 130	86	50 - 130	<0.0050	ug/g	NC	40	
5996362	Benzo(a)anthracene	2019/03/01	95	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40	
5996362	Benzo(a)pyrene	2019/03/01	91	50 - 130	90	50 - 130	<0.0050	ug/g	NC	40	
5996362	Benzo(b/j)fluoranthene	2019/03/01	88	50 - 130	91	50 - 130	<0.0050	ug/g	17	40	
5996362	Benzo(g,h,i)perylene	2019/03/01	88	50 - 130	90	50 - 130	<0.0050	ug/g	NC	40	

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: OTT-00250806-CO

Sampler Initials: ML

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPD		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	
5996362	Benzo(k)fluoranthene	2019/03/01	84	50 - 130	88	50 - 130	<0.0050	ug/g	NC	40	
5996362	Chrysene	2019/03/01	93	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40	
5996362	Dibenz(a,h)anthracene	2019/03/01	83	50 - 130	84	50 - 130	<0.0050	ug/g	NC	40	
5996362	Fluoranthene	2019/03/01	97	50 - 130	94	50 - 130	<0.0050	ug/g	29	40	
5996362	Fluorene	2019/03/01	88	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40	
5996362	Indeno(1,2,3-cd)pyrene	2019/03/01	93	50 - 130	96	50 - 130	< 0.0050	ug/g	NC	40	
5996362	Naphthalene	2019/03/01	86	50 - 130	90	50 - 130	<0.0050	ug/g	NC	40	
5996362	Phenanthrene	2019/03/01	90	50 - 130	91	50 - 130	<0.0050	ug/g	NC	40	
5996362	Pyrene	2019/03/01	96	50 - 130	94	50 - 130	<0.0050	ug/g	37	40	
5997511	Acid Extractable Aluminum (AI)	2019/03/01	NC	75 - 125	102	80 - 120	<50	ug/g			
5997511	Acid Extractable Antimony (Sb)	2019/03/01	104	75 - 125	104	80 - 120	<0.20	ug/g	NC	30	
5997511	Acid Extractable Arsenic (As)	2019/03/01	103	75 - 125	96	80 - 120	<1.0	ug/g	NC	30	
5997511	Acid Extractable Barium (Ba)	2019/03/01	NC	75 - 125	97	80 - 120	<0.50	ug/g	4.7	30	
5997511	Acid Extractable Beryllium (Be)	2019/03/01	109	75 - 125	101	80 - 120	<0.20	ug/g	5.7	30	
5997511	Acid Extractable Bismuth (Bi)	2019/03/01	103	75 - 125	97	80 - 120	<1.0	ug/g			
5997511	Acid Extractable Boron (B)	2019/03/01	106	75 - 125	100	80 - 120	<5.0	ug/g	NC	30	
5997511	Acid Extractable Cadmium (Cd)	2019/03/01	104	75 - 125	102	80 - 120	<0.10	ug/g	NC	30	
5997511	Acid Extractable Calcium (Ca)	2019/03/01	NC	75 - 125	103	80 - 120	<50	ug/g			
5997511	Acid Extractable Chromium (Cr)	2019/03/01	109	75 - 125	102	80 - 120	<1.0	ug/g	1.5	30	
5997511	Acid Extractable Cobalt (Co)	2019/03/01	103	75 - 125	98	80 - 120	<0.10	ug/g	5.0	30	
5997511	Acid Extractable Copper (Cu)	2019/03/01	101	75 - 125	99	80 - 120	<0.50	ug/g	3.4	30	
5997511	Acid Extractable Iron (Fe)	2019/03/01	NC	75 - 125	96	80 - 120	<50	ug/g			
5997511	Acid Extractable Lead (Pb)	2019/03/01	103	75 - 125	98	80 - 120	<1.0	ug/g	5.9	30	
5997511	Acid Extractable Magnesium (Mg)	2019/03/01	NC	75 - 125	103	80 - 120	<50	ug/g			
5997511	Acid Extractable Manganese (Mn)	2019/03/01	NC	75 - 125	101	80 - 120	<1.0	ug/g			
5997511	Acid Extractable Mercury (Hg)	2019/03/01	95	75 - 125	92	80 - 120	< 0.050	ug/g	NC	30	
5997511	Acid Extractable Molybdenum (Mo)	2019/03/01	105	75 - 125	100	80 - 120	<0.50	ug/g	NC	30	
5997511	Acid Extractable Nickel (Ni)	2019/03/01	103	75 - 125	101	80 - 120	<0.50	ug/g	1.6	30	
5997511	Acid Extractable Phosphorus (P)	2019/03/01	NC	75 - 125	101	80 - 120	<50	ug/g			
5997511	Acid Extractable Potassium (K)	2019/03/01	NC	75 - 125	94	80 - 120	<200	ug/g			
5997511	Acid Extractable Selenium (Se)	2019/03/01	111	75 - 125	105	80 - 120	<0.50	ug/g	NC	30	
5997511	Acid Extractable Silver (Ag)	2019/03/01	103	75 - 125	99	80 - 120	<0.20	ug/g	NC	30	

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: OTT-00250806-CO

Sampler Initials: ML

			Matrix	Matrix Spike		SPIKED BLANK		Method Blank		D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5997511	Acid Extractable Sodium (Na)	2019/03/01	NC	75 - 125	102	80 - 120	<50	ug/g		
5997511	Acid Extractable Strontium (Sr)	2019/03/01	NC	75 - 125	104	80 - 120	<1.0	ug/g		
5997511	Acid Extractable Thallium (TI)	2019/03/01	104	75 - 125	98	80 - 120	<0.050	ug/g	7.9	30
5997511	Acid Extractable Tin (Sn)	2019/03/01	102	75 - 125	100	80 - 120	<1.0	ug/g		
5997511	Acid Extractable Uranium (U)	2019/03/01	103	75 - 125	97	80 - 120	<0.050	ug/g	3.0	30
5997511	Acid Extractable Vanadium (V)	2019/03/01	111	75 - 125	102	80 - 120	<5.0	ug/g	5.0	30
5997511	Acid Extractable Zinc (Zn)	2019/03/01	107	75 - 125	102	80 - 120	<5.0	ug/g	3.9	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

exp Services Inc

Client Project #: OTT-00250806-CO

Sampler Initials: ML

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

ansens	
Anastassia Hamanov, Scientific Specialist	
Grouf	
Liliana Gaburici, VOC Lab	

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

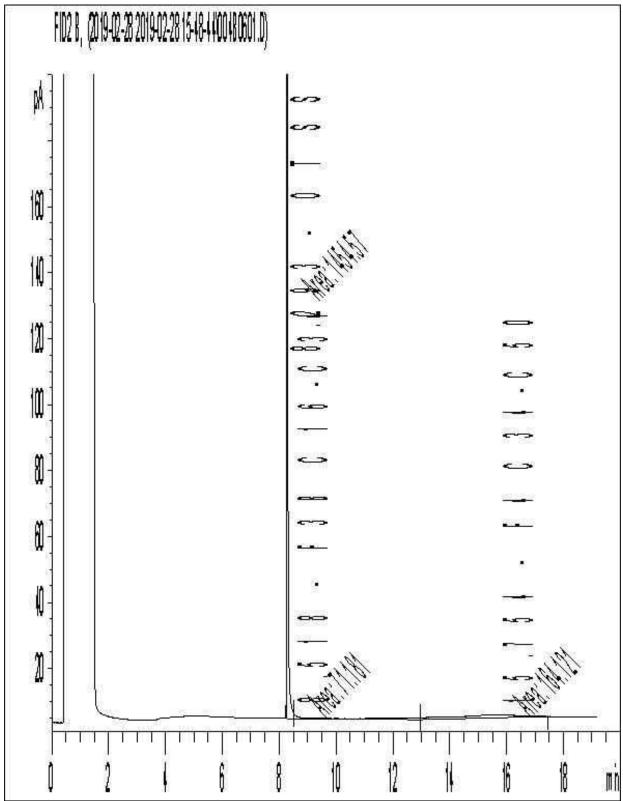
CHAIN OF CUSTODY RECORD

INVOICE INFORMATION REPORT IN					RMAT	LION	(if d	iffers	from invoice)			PROJE	MAXXAM JOB NUMBE			
Company Name: EXP Services Inc . Company Name:											otation	ic see	am 3 ,	CHAIN OF CUSTODY		
Address: 2650 QUEENSVEW Dr. Address: O Hawa Phone: 610 688-1899 Fax: Email: Mark. McCalla @ Oxf. com Email: Email:										P	Project #: 017-00250 806-00 Project Name:					
							ax: _				ocation: ampled	Ву:	00 48369			
	REGULATOR	Y CRITERIA	Sales Library		ANA	LYS	IS RI	EQU	ESTED (Please b	e specif	ic)		TURNARO	UND TIME (T	AT) REQUIRED	
Note: For regula Custody Form.	ted drinking water samples	- please use the L	rinking Water Chain of									P	LEASE PROVID	PROJECT	NOTICE FOR RUSH	
MISA PWQO Reg. 558 SAMPLES IN SAMPLING LING	MUST BE KEPT CO	Report Cri	Other specify teria on C of A?	lated Drinking Water? (Y / N)	Is Field Filtered? (Y / N)	701	Motole	DA H				Rush T	ATE Required:	g Days irmation #: 2 days Frid NOC	(call Lab for #) 3 days oy Mirch //9 ON Do and Dioxins/Furans are > 5 day	
SAMPLING UNTIL DELIVERY TO MAXXAM. Sample Identification Date Sampled Sampled (Gw, sw, soil, etc.) (Gw, sw, soil, etc.)				Metals F									# of		TAT COMMENTS	
1 BH	1 554	Feb 15	Soll			X	Ay	4				4				
12.1	PE.	teb 15/19	1.1			4	Ky	4				4	THELT	100	The second second	
	2 553 .	Feb 15	11			1	XX	4	1 124 11 14	1 1		4	HOLE			
- Balling Control	13 552	Febis	- 1,			4	44	4		10	- 1	4	W. Dr.		7-Feb-19 10:30	
	14 # ASI	Fe6 19	1.1			47	44	14				4	EU SU		Williamson	
6 BH		Feb 20	1. 18			X	44	CK				4	Mighty.			
7	TO BUILDING	100												Dy	31492	
8		THE WAS THE	7 7 7 7 7 7 7 7			-			19 5 1		101			VIV	OTT 001	
9			TO ST. LIE							1			HE PLAN	- more	VED IN OTTAWA	
10	OCCUPATION AND ADDRESS OF THE PARTY OF THE P												MO THE A	MEGE		
11			Maria Walanti										No of the last	752	n Te	
12			SEL SE SELLY													
	ISHED BY (Signature/Prin	nt) F	ECEIVED BY (Signatu	ire/Pr	rint)				Date	Time	е			aboratory Us	e Only	
Mal-	Milall-	43	Juze legy			P		Fe	627/19/	10:3	50		rature (°C) on Receipt	Conditio	n of Sample on Receipt	
		. /										10	10,10		OK SIF	

*MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS.

ENVCOC-ONT-05/06

White: Maxxam

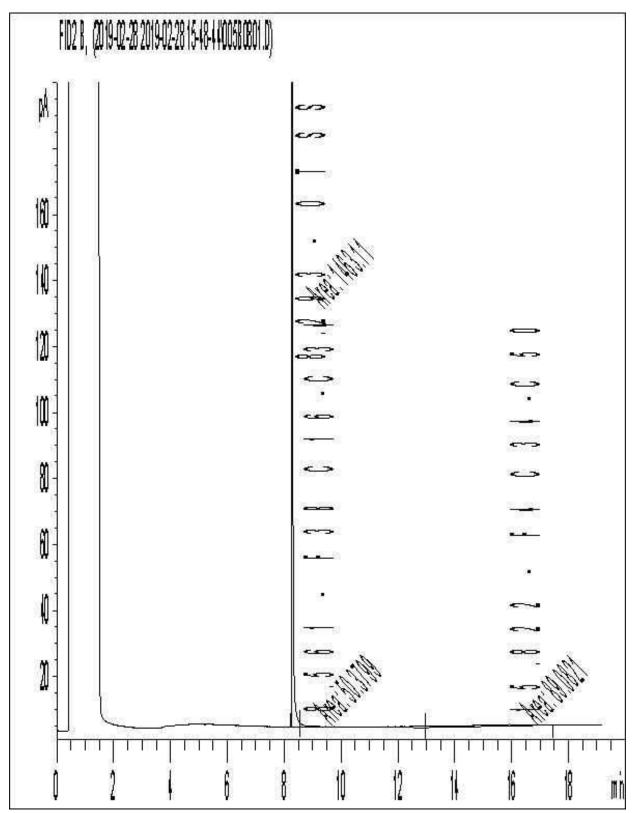

Pink: Client

exp Services Inc

Client Project #: OTT-00250806-CO

Client ID: BH1 SS4

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

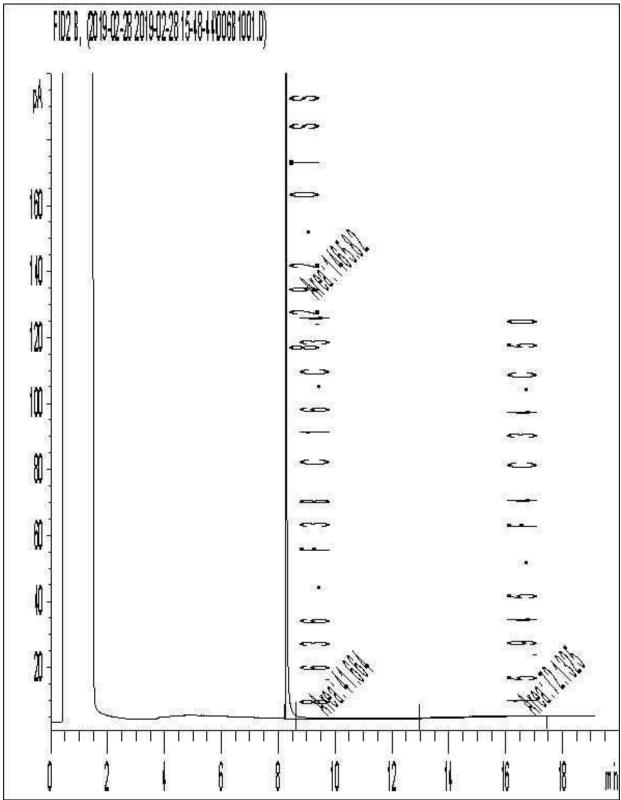


exp Services Inc

Client Project #: OTT-00250806-CO

Client ID: DUPU

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

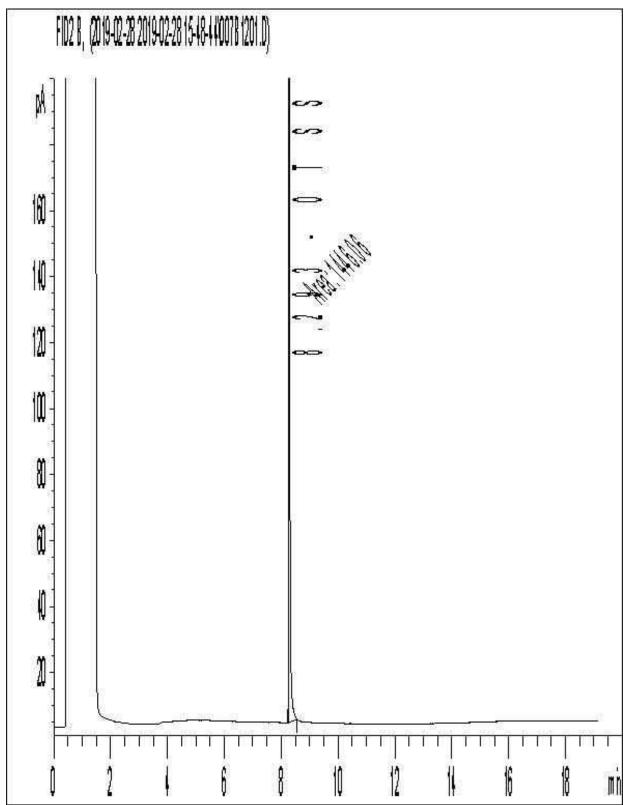


exp Services Inc

Client Project #: OTT-00250806-CO

Client ID: BH2 SS3

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

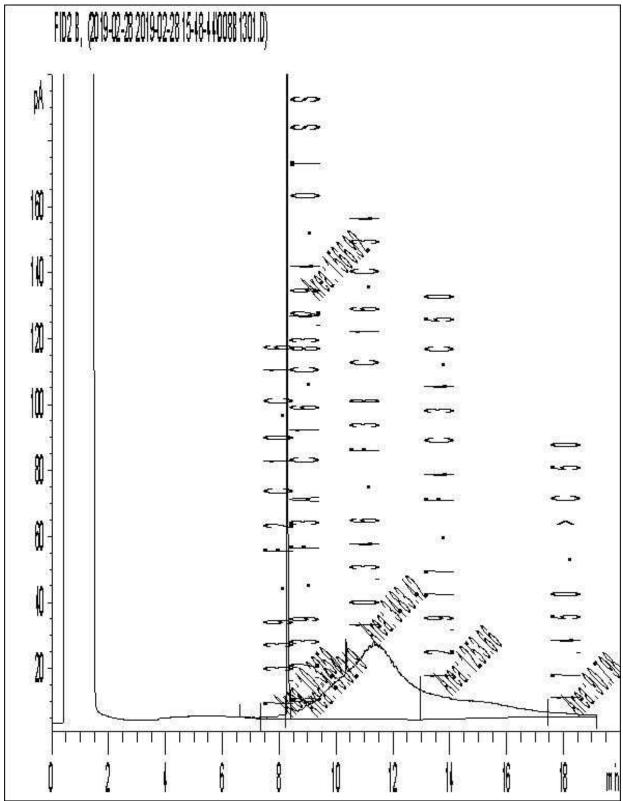


exp Services Inc

Client Project #: OTT-00250806-CO

Client ID: BH3 SS2

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

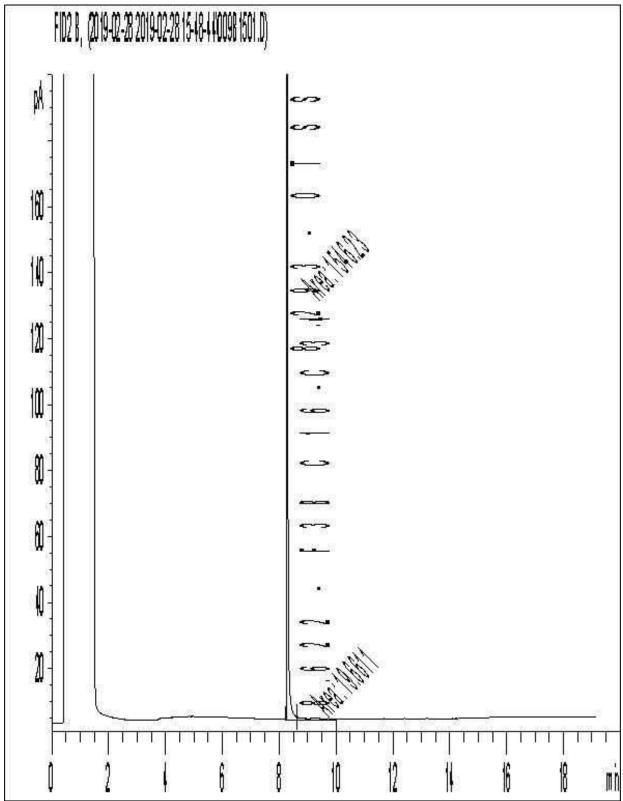


Maxxam Job #: B951492 Report Date: 2019/03/01 Maxxam Sample: JBQ773 exp Services Inc

Client Project #: OTT-00250806-CO

Client ID: BH4 AS1

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram



Maxxam Job #: B951492 Report Date: 2019/03/01 Maxxam Sample: JBQ774 exp Services Inc

Client Project #: OTT-00250806-CO

Client ID: BH5 SS2

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

Your Project #: OTT-00250806-C0 Site Location: 5938 Hazeldean Road

Your C.O.C. #: 706994-01-01

Attention: Mark McCalla

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2019/04/15

Report #: R5670931 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B967561 Received: 2019/03/14, 08:04

Sample Matrix: Soil # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum (1)	6	N/A	2019/03/19	CAM SOP-00301	EPA 8270D m
Petroleum Hydro. CCME F1 & BTEX in Soil (1, 2)	6	N/A	2019/03/18	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (1, 3)	6	2019/03/18	2019/03/19	CAM SOP-00316	CCME CWS m
F4G (CCME Hydrocarbons Gravimetric) (1)	2	2019/03/20	2019/03/20	CAM SOP-00316	CCME PHC-CWS m
Strong Acid Leachable Metals by ICPMS (1)	6	2019/03/16	2019/03/18	CAM SOP-00447	EPA 6020B m
Moisture (1)	6	N/A	2019/03/16	CAM SOP-00445	Carter 2nd ed 51.2 m
PAH Compounds in Soil by GC/MS (SIM) (1)	6	2019/03/18	2019/03/18	CAM SOP-00318	EPA 8270D m
pH CaCl2 EXTRACT (1)	2	2019/04/11	2019/04/11	CAM SOP-00413	EPA 9045 D m
Sieve, 75um (1)	2	N/A	2019/04/12	CAM SOP-00467	Carter 2nd ed m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Analytics Mississauga
- (2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated.

Your Project #: OTT-00250806-C0 Site Location: 5938 Hazeldean Road

Your C.O.C. #: 706994-01-01

Attention: Mark McCalla

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2019/04/15

Report #: R5670931 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

MAXXAM JOB #: B967561 Received: 2019/03/14, 08:04

(3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

exp Services Inc

Client Project #: OTT-00250806-C0 Site Location: 5938 Hazeldean Road

Sampler Initials: MAD

O.REG 153 ICPMS METALS (SOIL)

Maxxam ID		JEZ013	JEZ014	JEZ015	JEZ016	JEZ017		
Complian Data		2019/03/13	2019/03/13	2019/03/13	2019/03/13	2019/03/13		
Sampling Date		15:00	16:00	14:00	13:00	11:00		
COC Number		706994-01-01	706994-01-01	706994-01-01	706994-01-01	706994-01-01		
	UNITS	BH6-AUG2	BH7-AUG1	BH8-AUG1	BH9-AUG2	BH10-AUG1	RDL	QC Batch
Metals								
Acid Extractable Antimony (Sb)	ug/g	2.3	0.80	<0.20	<0.20	<0.20	0.20	6022531
Acid Extractable Arsenic (As)	ug/g	3.8	1.9	<1.0	2.1	1.6	1.0	6022531
Acid Extractable Barium (Ba)	ug/g	100	96	180	85	66	0.50	6022531
Acid Extractable Beryllium (Be)	ug/g	0.38	0.23	<0.20	0.59	0.33	0.20	6022531
Acid Extractable Boron (B)	ug/g	5.3	5.2	<5.0	5.2	9.5	5.0	6022531
Acid Extractable Cadmium (Cd)	ug/g	1.3	0.71	<0.10	0.18	<0.10	0.10	6022531
Acid Extractable Chromium (Cr)	ug/g	22	46	45	27	61	1.0	6022531
Acid Extractable Cobalt (Co)	ug/g	4.6	4.2	3.5	7.9	6.2	0.10	6022531
Acid Extractable Copper (Cu)	ug/g	85	29	6.7	14	11	0.50	6022531
Acid Extractable Lead (Pb)	ug/g	270	340	5.0	18	9.9	1.0	6022531
Acid Extractable Molybdenum (Mo)	ug/g	0.82	2.0	0.88	0.59	1.5	0.50	6022531
Acid Extractable Nickel (Ni)	ug/g	11	11	7.7	18	13	0.50	6022531
Acid Extractable Selenium (Se)	ug/g	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	6022531
Acid Extractable Silver (Ag)	ug/g	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	6022531
Acid Extractable Thallium (Tl)	ug/g	0.11	0.090	0.066	0.25	0.094	0.050	6022531
Acid Extractable Uranium (U)	ug/g	0.37	0.45	0.34	0.56	0.34	0.050	6022531
Acid Extractable Vanadium (V)	ug/g	19	20	14	41	16	5.0	6022531
Acid Extractable Zinc (Zn)	ug/g	200	110	16	42	17	5.0	6022531
RDL = Reportable Detection Limit								

QC Batch = Quality Control Batch

exp Services Inc

Client Project #: OTT-00250806-C0 Site Location: 5938 Hazeldean Road

Sampler Initials: MAD

O.REG 153 ICPMS METALS (SOIL)

Maxxam ID		JEZ018		
Sampling Date		2019/03/13		
Sampling Date		17:00		
COC Number		706994-01-01		
	UNITS	DUP 1	RDL	QC Batch
Metals				
Acid Extractable Antimony (Sb)	ug/g	<0.20	0.20	6022531
Acid Extractable Arsenic (As)	ug/g	1.0	1.0	6022531
Acid Extractable Barium (Ba)	ug/g	49	0.50	6022531
Acid Extractable Beryllium (Be)	ug/g	0.23	0.20	6022531
Acid Extractable Boron (B)	ug/g	5.6	5.0	6022531
Acid Extractable Cadmium (Cd)	ug/g	<0.10	0.10	6022531
Acid Extractable Chromium (Cr)	ug/g	52	1.0	6022531
Acid Extractable Cobalt (Co)	ug/g	4.5	0.10	6022531
Acid Extractable Copper (Cu)	ug/g	7.2	0.50	6022531
Acid Extractable Lead (Pb)	ug/g	6.1	1.0	6022531
Acid Extractable Molybdenum (Mo)	ug/g	1.3	0.50	6022531
Acid Extractable Nickel (Ni)	ug/g	9.4	0.50	6022531
Acid Extractable Selenium (Se)	ug/g	<0.50	0.50	6022531
Acid Extractable Silver (Ag)	ug/g	<0.20	0.20	6022531
Acid Extractable Thallium (Tl)	ug/g	0.063	0.050	6022531
Acid Extractable Uranium (U)	ug/g	0.28	0.050	6022531
Acid Extractable Vanadium (V)	ug/g	13	5.0	6022531
Acid Extractable Zinc (Zn)	ug/g	13	5.0	6022531
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				

exp Services Inc

Client Project #: OTT-00250806-C0 Site Location: 5938 Hazeldean Road

Sampler Initials: MAD

O.REG 153 PAHS (SOIL)

Maxxam ID		JEZ013			JEZ013			JEZ014		
Campling Data		2019/03/13			2019/03/13			2019/03/13		
Sampling Date		15:00			15:00			16:00		
COC Number		706994-01-01			706994-01-01			706994-01-01		
	UNITS	BH6-AUG2	RDL	QC Batch	BH6-AUG2 Lab-Dup	RDL	QC Batch	BH7-AUG1	RDL	QC Batch
Calculated Parameters										
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	0.0071	6020381				0.016	0.0071	6020381
Polyaromatic Hydrocarbons										
Acenaphthene	ug/g	<0.0050	0.0050	6024306	<0.0050	0.0050	6024306	0.023	0.0050	6024306
Acenaphthylene	ug/g	<0.0050	0.0050	6024306	<0.0050	0.0050	6024306	<0.0050	0.0050	6024306
Anthracene	ug/g	<0.0050	0.0050	6024306	0.0051	0.0050	6024306	0.043	0.0050	6024306
Benzo(a)anthracene	ug/g	0.036	0.0050	6024306	0.034	0.0050	6024306	0.13	0.0050	6024306
Benzo(a)pyrene	ug/g	0.035	0.0050	6024306	0.032	0.0050	6024306	0.11	0.0050	6024306
Benzo(b/j)fluoranthene	ug/g	0.047	0.0050	6024306	0.040	0.0050	6024306	0.13	0.0050	6024306
Benzo(g,h,i)perylene	ug/g	0.031	0.0050	6024306	0.028	0.0050	6024306	0.073	0.0050	6024306
Benzo(k)fluoranthene	ug/g	0.014	0.0050	6024306	0.012	0.0050	6024306	0.039	0.0050	6024306
Chrysene	ug/g	0.029	0.0050	6024306	0.026	0.0050	6024306	0.10	0.0050	6024306
Dibenz(a,h)anthracene	ug/g	<0.0050	0.0050	6024306	<0.0050	0.0050	6024306	0.012	0.0050	6024306
Fluoranthene	ug/g	0.067	0.0050	6024306	0.062	0.0050	6024306	0.27	0.0050	6024306
Fluorene	ug/g	<0.0050	0.0050	6024306	<0.0050	0.0050	6024306	0.024	0.0050	6024306
Indeno(1,2,3-cd)pyrene	ug/g	0.021	0.0050	6024306	0.019	0.0050	6024306	0.060	0.0050	6024306
1-Methylnaphthalene	ug/g	<0.0050	0.0050	6024306	<0.0050	0.0050	6024306	0.0068	0.0050	6024306
2-Methylnaphthalene	ug/g	<0.0050	0.0050	6024306	<0.0050	0.0050	6024306	0.0088	0.0050	6024306
Naphthalene	ug/g	<0.0050	0.0050	6024306	<0.0050	0.0050	6024306	0.011	0.0050	6024306
Phenanthrene	ug/g	0.020	0.0050	6024306	0.017	0.0050	6024306	0.20	0.0050	6024306
Pyrene	ug/g	0.066	0.0050	6024306	0.060	0.0050	6024306	0.24	0.0050	6024306
Surrogate Recovery (%)										
D10-Anthracene	%	97		6024306	98		6024306	98		6024306
D14-Terphenyl (FS)	%	109		6024306	111		6024306	107		6024306
D8-Acenaphthylene	%	96		6024306	101		6024306	102		6024306
1										

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

exp Services Inc

Client Project #: OTT-00250806-C0 Site Location: 5938 Hazeldean Road

Sampler Initials: MAD

O.REG 153 PAHS (SOIL)

Maxxam ID		JEZ015	JEZ016	JEZ017	JEZ018		
		2019/03/13	2019/03/13	2019/03/13	2019/03/13		
Sampling Date		14:00	13:00	11:00	17:00		
COC Number		706994-01-01	706994-01-01	706994-01-01	706994-01-01		
	UNITS	BH8-AUG1	BH9-AUG2	BH10-AUG1	DUP 1	RDL	QC Batch
Calculated Parameters							
Methylnaphthalene, 2-(1-)	ug/g	<0.0071	<0.0071	< 0.0071	<0.0071	0.0071	6020381
Polyaromatic Hydrocarbons							
Acenaphthene	ug/g	0.0054	<0.0050	<0.0050	<0.0050	0.0050	6024306
Acenaphthylene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6024306
Anthracene	ug/g	0.011	<0.0050	<0.0050	<0.0050	0.0050	6024306
Benzo(a)anthracene	ug/g	0.035	<0.0050	<0.0050	<0.0050	0.0050	6024306
Benzo(a)pyrene	ug/g	0.032	<0.0050	<0.0050	<0.0050	0.0050	6024306
Benzo(b/j)fluoranthene	ug/g	0.044	<0.0050	<0.0050	<0.0050	0.0050	6024306
Benzo(g,h,i)perylene	ug/g	0.019	<0.0050	<0.0050	<0.0050	0.0050	6024306
Benzo(k)fluoranthene	ug/g	0.012	<0.0050	<0.0050	<0.0050	0.0050	6024306
Chrysene	ug/g	0.031	<0.0050	<0.0050	<0.0050	0.0050	6024306
Dibenz(a,h)anthracene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6024306
Fluoranthene	ug/g	0.086	0.0053	<0.0050	<0.0050	0.0050	6024306
Fluorene	ug/g	0.0054	<0.0050	<0.0050	<0.0050	0.0050	6024306
Indeno(1,2,3-cd)pyrene	ug/g	0.019	<0.0050	<0.0050	<0.0050	0.0050	6024306
1-Methylnaphthalene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6024306
2-Methylnaphthalene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6024306
Naphthalene	ug/g	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	6024306
Phenanthrene	ug/g	0.055	<0.0050	<0.0050	<0.0050	0.0050	6024306
Pyrene	ug/g	0.074	<0.0050	<0.0050	<0.0050	0.0050	6024306
Surrogate Recovery (%)						•	
D10-Anthracene	%	102	101	90	108		6024306
D14-Terphenyl (FS)	%	108	107	98	112		6024306
D8-Acenaphthylene	%	99	101	92	102		6024306
RDL = Reportable Detection L QC Batch = Quality Control Ba							

exp Services Inc

Client Project #: OTT-00250806-C0 Site Location: 5938 Hazeldean Road

Sampler Initials: MAD

O.REG 153 PETROLEUM HYDROCARBONS (SOIL)

Maxxam ID		JEZ013			JEZ013			JEZ014	JEZ015		
Sampling Date		2019/03/13			2019/03/13			2019/03/13	2019/03/13		
Sampling Date		15:00			15:00			16:00	14:00		
COC Number		706994-01-01			706994-01-01			706994-01-01	706994-01-01		
	UNITS	BH6-AUG2	RDL	QC Batch	BH6-AUG2 Lab-Dup	RDL	QC Batch	BH7-AUG1	BH8-AUG1	RDL	QC Batch
Inorganics											
Moisture	%	13	1.0	6022205				5.9	10	1.0	6022205
BTEX & F1 Hydrocarbons	*	•	•	•		•	•				
Benzene	ug/g	<0.020	0.020	6022457				<0.020	<0.020	0.020	6022457
Toluene	ug/g	<0.020	0.020	6022457				<0.020	<0.020	0.020	6022457
Ethylbenzene	ug/g	<0.020	0.020	6022457				<0.020	<0.020	0.020	6022457
o-Xylene	ug/g	<0.020	0.020	6022457				<0.020	<0.020	0.020	6022457
p+m-Xylene	ug/g	<0.040	0.040	6022457				<0.040	<0.040	0.040	6022457
Total Xylenes	ug/g	<0.040	0.040	6022457				<0.040	<0.040	0.040	6022457
F1 (C6-C10)	ug/g	<10	10	6022457				<10	<10	10	6022457
F1 (C6-C10) - BTEX	ug/g	<10	10	6022457				<10	<10	10	6022457
F2-F4 Hydrocarbons				•			•			•	
F2 (C10-C16 Hydrocarbons)	ug/g	<10	10	6024297	<10	10	6024297	<10	<10	10	6024297
F3 (C16-C34 Hydrocarbons)	ug/g	600	50	6024297	600	50	6024297	650	<50	50	6024297
F4 (C34-C50 Hydrocarbons)	ug/g	320	50	6024297	340	50	6024297	300	<50	50	6024297
Reached Baseline at C50	ug/g	No		6024297	No		6024297	No	Yes		6024297
Surrogate Recovery (%)	•		•	•		•	•				
1,4-Difluorobenzene	%	100		6022457				101	100		6022457
4-Bromofluorobenzene	%	102		6022457				100	101		6022457
D10-Ethylbenzene	%	96		6022457				99	98		6022457
D4-1,2-Dichloroethane	%	105		6022457				108	105		6022457
o-Terphenyl	%	109		6024297	110		6024297	107	102		6024297
DDI Dementable Detection I	.		•			•				•	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

exp Services Inc

Client Project #: OTT-00250806-C0 Site Location: 5938 Hazeldean Road

Sampler Initials: MAD

O.REG 153 PETROLEUM HYDROCARBONS (SOIL)

Maxxam ID		JEZ016	JEZ017	JEZ018		
Sampling Date		2019/03/13	2019/03/13	2019/03/13		
		13:00	11:00	17:00		
COC Number		706994-01-01	706994-01-01	706994-01-01		
	UNITS	BH9-AUG2	BH10-AUG1	DUP 1	RDL	QC Batch
Inorganics						
Moisture	%	18	10	11	1.0	6022205
BTEX & F1 Hydrocarbons	•					
Benzene	ug/g	<0.020	<0.020	<0.020	0.020	6022457
Toluene	ug/g	<0.020	<0.020	<0.020	0.020	6022457
Ethylbenzene	ug/g	<0.020	<0.020	<0.020	0.020	6022457
o-Xylene	ug/g	<0.020	<0.020	<0.020	0.020	6022457
p+m-Xylene	ug/g	<0.040	<0.040	<0.040	0.040	6022457
Total Xylenes	ug/g	<0.040	<0.040	<0.040	0.040	6022457
F1 (C6-C10)	ug/g	<10	<10	<10	10	6022457
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	10	6022457
F2-F4 Hydrocarbons						
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	<10	10	6024297
F3 (C16-C34 Hydrocarbons)	ug/g	<50	<50	<50	50	6024297
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	<50	50	6024297
Reached Baseline at C50	ug/g	Yes	Yes	Yes		6024297
Surrogate Recovery (%)	•	•	•	•	3	•
1,4-Difluorobenzene	%	99	100	101		6022457
4-Bromofluorobenzene	%	102	103	103		6022457
D10-Ethylbenzene	%	102	101	103		6022457
D4-1,2-Dichloroethane	%	104	105	107		6022457
o-Terphenyl	%	108	104	118		6024297
RDL = Reportable Detection I	imit					
QC Batch = Quality Control B	atch					

exp Services Inc

Client Project #: OTT-00250806-C0 Site Location: 5938 Hazeldean Road

Sampler Initials: MAD

RESULTS OF ANALYSES OF SOIL

Maxxam ID		JEZ014	JEZ017		
Campling Data		2019/03/13	2019/03/13		
Sampling Date		16:00	11:00		
COC Number		706994-01-01	706994-01-01		
	UNITS	BH7-AUG1	BH10-AUG1	RDL	QC Batch
Inorganics					
Available (CaCl2) pH	рН	7.90	7.70		6064760
Miscellaneous Parameters					
Grain Size	%	COARSE	COARSE	N/A	6067035
Sieve - #200 (<0.075mm)	%	35	43	1	6067035
Sieve - #200 (>0.075mm)	%	65	57	1	6067035
RDL = Reportable Detection I	imit				
QC Batch = Quality Control B	atch				
N/A = Not Applicable					

exp Services Inc

Client Project #: OTT-00250806-C0 Site Location: 5938 Hazeldean Road

Sampler Initials: MAD

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		JEZ013	JEZ014		
Sampling Date		2019/03/13 15:00	2019/03/13 16:00		
COC Number		706994-01-01	706994-01-01		
	UNITS	BH6-AUG2	BH7-AUG1	RDL	QC Batch
F2-F4 Hydrocarbons					
F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	1000	1000	100	6027507

exp Services Inc

Client Project #: OTT-00250806-C0 Site Location: 5938 Hazeldean Road

Sampler Initials: MAD

TEST SUMMARY

Maxxam ID: JEZ013 Sample ID: BH6-AUG2

Soil

Matrix:

Collected: 2019/03/13

Shipped:

Received: 2019/03/14

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6020381	N/A	2019/03/19	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6022457	N/A	2019/03/18	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6024297	2019/03/18	2019/03/19	Jeevaraj Jeevaratrnam
F4G (CCME Hydrocarbons Gravimetric)	BAL	6027507	2019/03/20	2019/03/20	Debra Deslandes
Strong Acid Leachable Metals by ICPMS	ICP/MS	6022531	2019/03/16	2019/03/18	Daniel Teclu
Moisture	BAL	6022205	N/A	2019/03/16	Min Yang
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6024306	2019/03/18	2019/03/18	Mitesh Raj

Maxxam ID: JEZ013 Dup Sample ID: BH6-AUG2

Collected: 2019/03/13

Shipped:

Received: 2019/03/14

Matrix: Soil

Matrix:

Matrix:

Soil

Soil

Test Description Instrumentation Batch Extracted Date Analyzed Analyst 6024297 Petroleum Hydrocarbons F2-F4 in Soil GC/FID 2019/03/18 2019/03/19 Jeevaraj Jeevaratrnam GC/MS 6024306 2019/03/18 2019/03/18 PAH Compounds in Soil by GC/MS (SIM) Mitesh Raj

Maxxam ID: JEZ014 Collected: 2019/03/13 Sample ID: BH7-AUG1

Shipped:

Received: 2019/03/14

Test Description Instrumentation **Extracted Date Analyzed** Batch Analyst Methylnaphthalene Sum CALC 6020381 N/A 2019/03/19 Automated Statchk Petroleum Hydro. CCME F1 & BTEX in Soil HSGC/MSFD 6022457 N/A 2019/03/18 Abdikarim Ali Petroleum Hydrocarbons F2-F4 in Soil GC/FID 6024297 2019/03/18 2019/03/19 Jeevaraj Jeevaratrnam 2019/03/20 F4G (CCME Hydrocarbons Gravimetric) BAL 6027507 2019/03/20 Debra Deslandes Strong Acid Leachable Metals by ICPMS 2019/03/16 ICP/MS 6022531 2019/03/18 Daniel Teclu BAL 6022205 2019/03/16 Moisture N/A Min Yang PAH Compounds in Soil by GC/MS (SIM) GC/MS 6024306 2019/03/18 2019/03/18 Mitesh Raj pH CaCl2 EXTRACT ΑТ 6064760 2019/04/11 2019/04/11 **Gnana Thomas** Sieve, 75um SIEV 6067035 N/A 2019/04/12 Chun Yan

Maxxam ID: JEZ015 Collected: 2019/03/13

BH8-AUG1 Shipped: Sample ID:

> Received: 2019/03/14

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6020381	N/A	2019/03/19	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6022457	N/A	2019/03/18	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6024297	2019/03/18	2019/03/19	Jeevaraj Jeevaratrnam
Strong Acid Leachable Metals by ICPMS	ICP/MS	6022531	2019/03/16	2019/03/18	Daniel Teclu
Moisture	BAL	6022205	N/A	2019/03/16	Min Yang
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6024306	2019/03/18	2019/03/18	Mitesh Raj

exp Services Inc

Client Project #: OTT-00250806-C0 Site Location: 5938 Hazeldean Road

Sampler Initials: MAD

TEST SUMMARY

Maxxam ID: JEZ016 Sample ID: BH9-AUG2 Collected: 2019/03/13

Shipped:

Analyst

Received: 2019/03/14

Matrix: Soil Tost Description Instrumentation Datch Extracted Date Analyzed

rest Description	instrumentation	Daten	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6020381	N/A	2019/03/19	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6022457	N/A	2019/03/18	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6024297	2019/03/18	2019/03/19	Jeevaraj Jeevaratrnam
Strong Acid Leachable Metals by ICPMS	ICP/MS	6022531	2019/03/16	2019/03/18	Daniel Teclu
Moisture	BAL	6022205	N/A	2019/03/16	Min Yang
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6024306	2019/03/18	2019/03/18	Mitesh Raj

Maxxam ID: JEZ017 Sample ID: BH10-AUG1

Matrix: Soil

Collected: 2019/03/13

Shipped:

Received: 2019/03/14

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6020381	N/A	2019/03/19	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6022457	N/A	2019/03/18	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6024297	2019/03/18	2019/03/19	Jeevaraj Jeevaratrnam
Strong Acid Leachable Metals by ICPMS	ICP/MS	6022531	2019/03/16	2019/03/18	Daniel Teclu
Moisture	BAL	6022205	N/A	2019/03/16	Min Yang
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6024306	2019/03/18	2019/03/18	Mitesh Raj
pH CaCl2 EXTRACT	AT	6064760	2019/04/11	2019/04/11	Gnana Thomas
Sieve, 75um	SIEV	6067035	N/A	2019/04/12	Chun Yan

Maxxam ID: JEZ018 **Collected:** 2019/03/13 Sample ID: DUP 1

Shipped:

Matrix: Soil Received: 2019/03/14

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6020381	N/A	2019/03/19	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6022457	N/A	2019/03/18	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6024297	2019/03/18	2019/03/19	Jeevaraj Jeevaratrnam
Strong Acid Leachable Metals by ICPMS	ICP/MS	6022531	2019/03/16	2019/03/18	Daniel Teclu
Moisture	BAL	6022205	N/A	2019/03/16	Min Yang
PAH Compounds in Soil by GC/MS (SIM)	GC/MS	6024306	2019/03/18	2019/03/18	Mitesh Raj

exp Services Inc

Client Project #: OTT-00250806-C0 Site Location: 5938 Hazeldean Road

Sampler Initials: MAD

GENERAL COMMENTS

Each to	emperature is the	average of up to	three cooler temperatures taken at receipt
	Package 1	1.7°C	
Revised	d Report[2019/04	/15]: pH & Grain	Size analysis has been included on samples BH7 & BH10 as per client request.
Result	s relate only to th	e items tested.	

QUALITY ASSURANCE REPORT

exp Services Inc

Client Project #: OTT-00250806-C0

Site Location: 5938 Hazeldean Road

Sampler Initials: MAD

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
6022457	1,4-Difluorobenzene	2019/03/18	100	60 - 140	99	60 - 140	100	%				
6022457	4-Bromofluorobenzene	2019/03/18	101	60 - 140	103	60 - 140	101	%				
6022457	D10-Ethylbenzene	2019/03/18	95	60 - 140	93	60 - 140	92	%				
6022457	D4-1,2-Dichloroethane	2019/03/18	104	60 - 140	103	60 - 140	104	%				
6024297	o-Terphenyl	2019/03/18	92	60 - 130	100	60 - 130	109	%				
6024306	D10-Anthracene	2019/03/18	105	50 - 130	97	50 - 130	101	%				
6024306	D14-Terphenyl (FS)	2019/03/18	116	50 - 130	104	50 - 130	107	%				
6024306	D8-Acenaphthylene	2019/03/18	101	50 - 130	83	50 - 130	86	%				
6022205	Moisture	2019/03/16							2.5	20		
6022457	Benzene	2019/03/18	88	60 - 140	89	60 - 140	<0.020	ug/g	NC	50		
6022457	Ethylbenzene	2019/03/18	96	60 - 140	98	60 - 140	<0.020	ug/g	NC	50		
6022457	F1 (C6-C10) - BTEX	2019/03/18					<10	ug/g	NC	30		
6022457	F1 (C6-C10)	2019/03/18	93	60 - 140	89	80 - 120	<10	ug/g	NC	30		
6022457	o-Xylene	2019/03/18	99	60 - 140	100	60 - 140	<0.020	ug/g	NC	50		
6022457	p+m-Xylene	2019/03/18	99	60 - 140	99	60 - 140	<0.040	ug/g	NC	50		
6022457	Toluene	2019/03/18	98	60 - 140	101	60 - 140	<0.020	ug/g	NC	50		
6022457	Total Xylenes	2019/03/18					<0.040	ug/g	NC	50		
6022531	Acid Extractable Antimony (Sb)	2019/03/19	92	75 - 125	95	80 - 120	<0.20	ug/g	24	30		
6022531	Acid Extractable Arsenic (As)	2019/03/19	98	75 - 125	102	80 - 120	<1.0	ug/g	3.6	30		
6022531	Acid Extractable Barium (Ba)	2019/03/19	92	75 - 125	96	80 - 120	<0.50	ug/g	3.3	30		
6022531	Acid Extractable Beryllium (Be)	2019/03/19	97	75 - 125	98	80 - 120	<0.20	ug/g	NC	30		
6022531	Acid Extractable Boron (B)	2019/03/19	96	75 - 125	101	80 - 120	<5.0	ug/g	NC	30		
6022531	Acid Extractable Cadmium (Cd)	2019/03/19	96	75 - 125	96	80 - 120	<0.10	ug/g	NC	30		
6022531	Acid Extractable Chromium (Cr)	2019/03/19	100	75 - 125	100	80 - 120	<1.0	ug/g	6.1	30		
6022531	Acid Extractable Cobalt (Co)	2019/03/19	98	75 - 125	99	80 - 120	<0.10	ug/g	4.4	30		
6022531	Acid Extractable Copper (Cu)	2019/03/19	104	75 - 125	99	80 - 120	<0.50	ug/g	2.6	30		
6022531	Acid Extractable Lead (Pb)	2019/03/19	NC	75 - 125	103	80 - 120	<1.0	ug/g	22	30		
6022531	Acid Extractable Molybdenum (Mo)	2019/03/19	98	75 - 125	98	80 - 120	<0.50	ug/g	NC	30		
6022531	Acid Extractable Nickel (Ni)	2019/03/19	97	75 - 125	97	80 - 120	<0.50	ug/g	7.7	30		
6022531	Acid Extractable Selenium (Se)	2019/03/19	100	75 - 125	103	80 - 120	<0.50	ug/g	NC	30		
6022531	Acid Extractable Silver (Ag)	2019/03/19	95	75 - 125	98	80 - 120	<0.20	ug/g	NC	30		
6022531	Acid Extractable Thallium (TI)	2019/03/19	94	75 - 125	102	80 - 120	<0.050	ug/g	NC	30		1

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: OTT-00250806-C0

Site Location: 5938 Hazeldean Road

Sampler Initials: MAD

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
6022531	Acid Extractable Uranium (U)	2019/03/19	96	75 - 125	99	80 - 120	<0.050	ug/g	10	30		
6022531	Acid Extractable Vanadium (V)	2019/03/19	102	75 - 125	101	80 - 120	<5.0	ug/g	18	30		
6022531	Acid Extractable Zinc (Zn)	2019/03/19	101	75 - 125	100	80 - 120	<5.0	ug/g	5.3	30		
6024297	F2 (C10-C16 Hydrocarbons)	2019/03/19	89	50 - 130	95	80 - 120	<10	ug/g	NC	30		
6024297	F3 (C16-C34 Hydrocarbons)	2019/03/19	NC	50 - 130	96	80 - 120	<50	ug/g	1.5	30		
6024297	F4 (C34-C50 Hydrocarbons)	2019/03/19	90	50 - 130	99	80 - 120	<50	ug/g	4.8	30		
6024306	1-Methylnaphthalene	2019/03/18	102	50 - 130	104	50 - 130	<0.0050	ug/g	NC	40		
6024306	2-Methylnaphthalene	2019/03/18	91	50 - 130	92	50 - 130	<0.0050	ug/g	NC	40		
6024306	Acenaphthene	2019/03/18	92	50 - 130	93	50 - 130	<0.0050	ug/g	NC	40		
6024306	Acenaphthylene	2019/03/18	101	50 - 130	93	50 - 130	<0.0050	ug/g	NC	40		
6024306	Anthracene	2019/03/18	88	50 - 130	82	50 - 130	<0.0050	ug/g	1.2	40		
6024306	Benzo(a)anthracene	2019/03/18	97	50 - 130	97	50 - 130	<0.0050	ug/g	6.2	40		
6024306	Benzo(a)pyrene	2019/03/18	87	50 - 130	95	50 - 130	<0.0050	ug/g	8.2	40		
6024306	Benzo(b/j)fluoranthene	2019/03/18	75	50 - 130	102	50 - 130	<0.0050	ug/g	15	40		
6024306	Benzo(g,h,i)perylene	2019/03/18	63	50 - 130	89	50 - 130	<0.0050	ug/g	8.4	40		
6024306	Benzo(k)fluoranthene	2019/03/18	71	50 - 130	89	50 - 130	<0.0050	ug/g	9.7	40		
6024306	Chrysene	2019/03/18	92	50 - 130	97	50 - 130	<0.0050	ug/g	12	40		
6024306	Dibenz(a,h)anthracene	2019/03/18	70	50 - 130	82	50 - 130	<0.0050	ug/g	NC	40		
6024306	Fluoranthene	2019/03/18	101	50 - 130	99	50 - 130	<0.0050	ug/g	8.4	40		
6024306	Fluorene	2019/03/18	97	50 - 130	94	50 - 130	<0.0050	ug/g	NC	40		
6024306	Indeno(1,2,3-cd)pyrene	2019/03/18	73	50 - 130	94	50 - 130	<0.0050	ug/g	6.5	40		
6024306	Naphthalene	2019/03/18	84	50 - 130	86	50 - 130	<0.0050	ug/g	NC	40		
6024306	Phenanthrene	2019/03/18	90	50 - 130	94	50 - 130	<0.0050	ug/g	13	40		
6024306	Pyrene	2019/03/18	101	50 - 130	103	50 - 130	<0.0050	ug/g	9.8	40		
6027507	F4G-sg (Grav. Heavy Hydrocarbons)	2019/03/20	103	65 - 135	101	65 - 135	<100	ug/g	29	50		
6064760	Available (CaCl2) pH	2019/04/11			100	97 - 103			0.52	N/A		
6067035	Sieve - #200 (<0.075mm)	2019/04/12							0.26	20	55	53 - 58

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: OTT-00250806-C0

Site Location: 5938 Hazeldean Road

Sampler Initials: MAD

			Matrix Spike		SPIKED	BLANK	Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	Recovery QC Limits		QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
6067035	Sieve - #200 (>0.075mm)	2019/04/12							0.71	20	45	42 - 47

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

exp Services Inc

Client Project #: OTT-00250806-C0 Site Location: 5938 Hazeldean Road

Sampler Initials: MAD

VALIDATION SIGNATURE PAGE

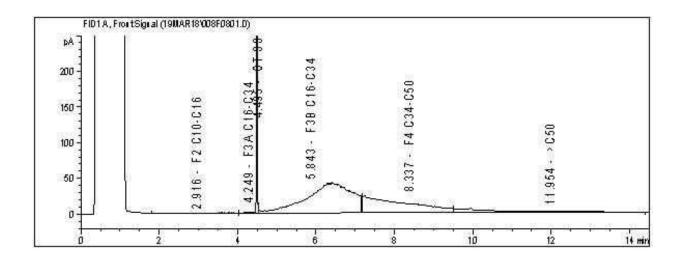
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

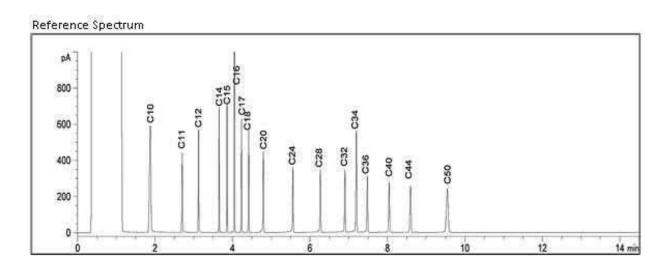
Anastassia Hamanov, Scientific Specialist

Rue Prairie Specialist

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.


	, INV	6740 Campobello Road, Mississaug			REPOR						P	ROJECT IN	FORMATION:		- 10		Villiamson	
any Name:	#17498 exp Serv		Compi	iny Name:						Quotation #:		345998	Stre	elm	3			te Order#:
n:	Accounts Payable		Attenti	on Mark M	cCalla/ M	ik De	ulin			P.O.#:						D 90	7301	
8.	100-2650 Queens		Addre	is:	-					Project:		OTT-002	50806-C0		— I	L F	ENV-807	706994
	Ottawa ON K2B 8		007	-						Project Name				_			T. 100 / A - 1 / 20 / 10 / 10 / 10 / 10 / 10 / 10 /	ct Manager:
	(613) 688-1899	Fax: (613) 225-7 @exp.com; Karen.Burke@e		mort m	ccalla@exp.co	Fax.	f	h 6		Site #:	-		MAR			1111111		Airsha Williamson
OF DEC			COTATA	Sertitude		Jan Janes	k.de	JUNE		Sampled By.	ESTED (DI	ASE BE S	-			01 (2)	C#706994-01-01 Tumaround Time (TAT) R	equired
OE REG	SUBMITTED O	WATER OR WATER INTEND N THE MAXXAM DRINKING V	VATER CHAIN OF	CUSTODY	MUST BE				1	LIGITALIA	201120112	Prote be o	250			Maria de la compansión	Please provide advance notice for	
Requiation	on 153 (2011)	Other Regul		Special In	structions	cle)			poor				27			Regular (Sta		П
	Res/Park Medium	170100000000	A Library	Special III	structions	S S	Soll		8				· V.				if Rush TAT is not specified): 5-7 Working days for most tests	×
le 2	Ind/Comm Coarse	Reg 558. Storm Ser				d Filtered (pleas Metals / Hg / Cr	as as	6	Ť			17				Please note: St	andard TAT for certain tests such as 8	OD and Dioxins/Furans are > :
	Agri/Other For RSC					\$ P	AS Ne	Soll	me				1.0			days - contact y	our Project Manager for details.	1
· 7		PWQO				Itere als	CPM	AHs	Petro			-1				Job Specific I Date Required:	Rush TAY (if applies to entire subn	nission) - ne Required:
		Other		-		id Filte Meta	133	153	53					200	4	Rush Confirmat	ion Number:	
		on Certificate of Analysis (Y/N)	-	7-0	5.6m2	E .	Reg	Reg	Reg Soll)		*					# of Buttles	Comm	aff lab for #)
Sample	Barcode Label	Sample (Location) Identification	Date Sampled		Matrix		0	0	0.0		-						Comm	
		BHG-Auga	March 15	3:00pm	Soil		X	X	X			1	*			4.		
	•	Sile Augal	Musch 13		501		-		-		-	-	_					
		BH7-Augl	2019	4:000										7.1		1 1		
		0	241	1.00														
		BH8-Aug 1		2:000										-6				
		000		1,-														
		BHY - Aug 2		1:00														
		billo 1 1		11:-	-													
		BHIO- Augl		11.00am										_				
		Ducl	V	5:00	1//		V	V	7							V		
-		oup 1		-			-			-	-	-	_		-	-	NEGETYBD II	VOI INNO
									1.							_ 1		
			_	_					0.	_	_	_	_					
									1								ONI	CE
-																		
																		9 N
																	-1121-12-12	
1	ELINQUISHED BY: (Sig	nature/Print) Date:	range for	Time	RECEIVED BY			- 1	Date: (YY/I		Time	_	# jars used and not submitted		arestine.	1	ry Use Only Custody S	eal Yes No
110	worde	7. 17/	167/14 8	OZOM AI	ishawi	Mans	on.	-	-	7	8 .0	7		Time s	ensave		Present	14
		W/			US STANDARD TO	ME IND COM	DITIONS O	1		-	N BOOLINE	UT 16	NAME OF TAXABLE PARTY.	-	-	11.	A STATE OF THE PARTY OF THE PAR	No. Marries V. II. OII.
ESS OTHER	NOW IS DE	ING, WORK SUBMITTED ON THIS CH COUR TERMS WHICH ARE AVAILABLE	AIN OF CUSTODY IS	OZONA AI	IS HA WI	lliams	on.	1	9/03	114	8:00	t			ensitive	1, 2	2 Intact	nite: Maxxa Y


exp Services Inc

Client Project #: OTT-00250806-C0 Project name: 5938 Hazeldean Road

Client ID: BH6-AUG2

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

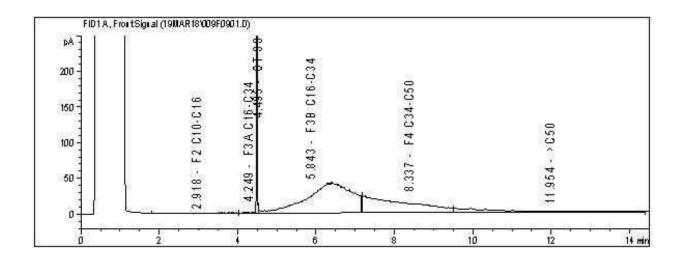
TYPICAL PRODUCT CARBON NUMBER RANGES

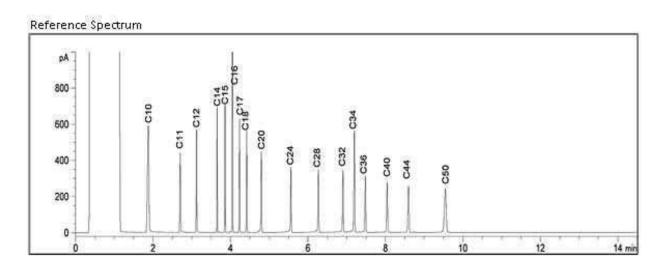
 Gasoline: C6 - C12
 Diesel: C10 - C24
 Jet Fuels: C6 - C16

 Varsol: C8 - C12
 Fuel Oils: C6 - C32
 Creosote: C10 - C26

 Kerosene: C8 - C16
 Motor Oils: C16 - C50
 Asphalt: C18 - C50+

Report Date: 2019/04/15


Maxxam Sample: JEZ013 Lab-Dup


exp Services Inc

Client Project #: OTT-00250806-C0 Project name: 5938 Hazeldean Road

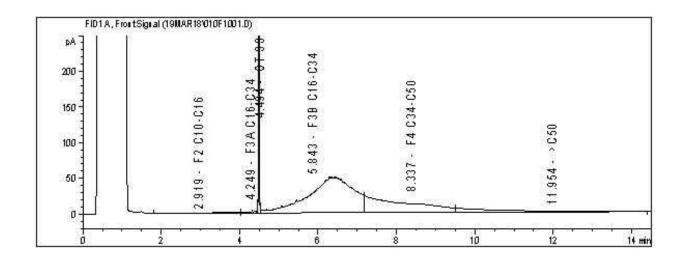
Client ID: BH6-AUG2

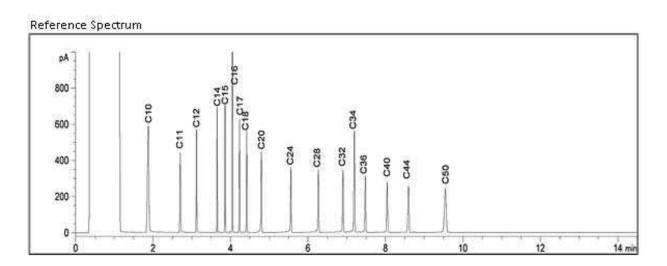
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

TYPICAL PRODUCT CARBON NUMBER RANGES

 Gasoline: C6 - C12
 Diesel: C10 - C24
 Jet Fuels: C6 - C16

 Varsol: C8 - C12
 Fuel Oils: C6 - C32
 Creosote: C10 - C26


 Kerosene: C8 - C16
 Motor Oils: C16 - C50
 Asphalt: C18 - C50+


exp Services Inc

Client Project #: OTT-00250806-C0 Project name: 5938 Hazeldean Road

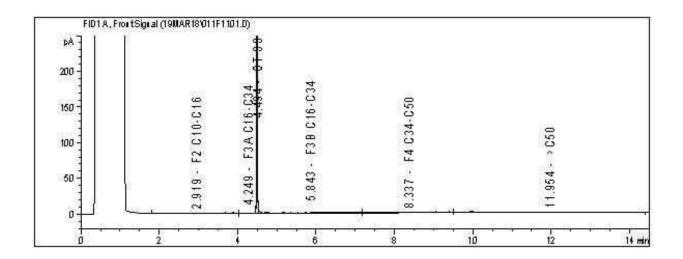
Client ID: BH7-AUG1

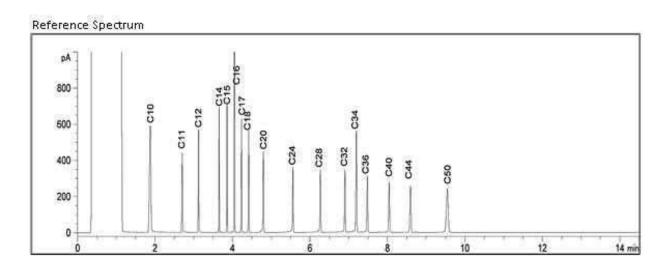
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

TYPICAL PRODUCT CARBON NUMBER RANGES

 Gasoline: C6 - C12
 Diesel: C10 - C24
 Jet Fuels: C6 - C16

 Varsol: C8 - C12
 Fuel Oils: C6 - C32
 Creosote: C10 - C26


 Kerosene: C8 - C16
 Motor Oils: C16 - C50
 Asphalt: C18 - C50+


exp Services Inc

Client Project #: OTT-00250806-C0 Project name: 5938 Hazeldean Road

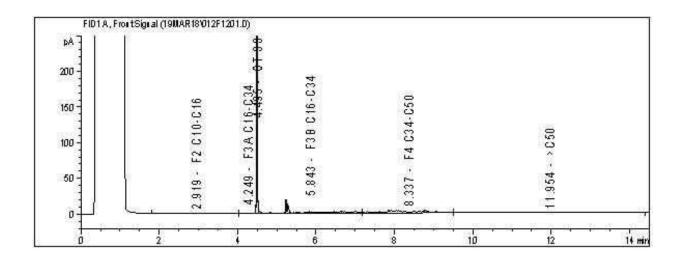
Client ID: BH8-AUG1

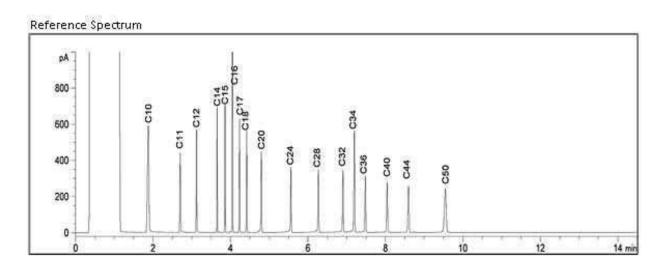
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

TYPICAL PRODUCT CARBON NUMBER RANGES

 Gasoline: C6 - C12
 Diesel: C10 - C24
 Jet Fuels: C6 - C16

 Varsol: C8 - C12
 Fuel Oils: C6 - C32
 Creosote: C10 - C26


 Kerosene: C8 - C16
 Motor Oils: C16 - C50
 Asphalt: C18 - C50+


exp Services Inc

Client Project #: OTT-00250806-C0 Project name: 5938 Hazeldean Road

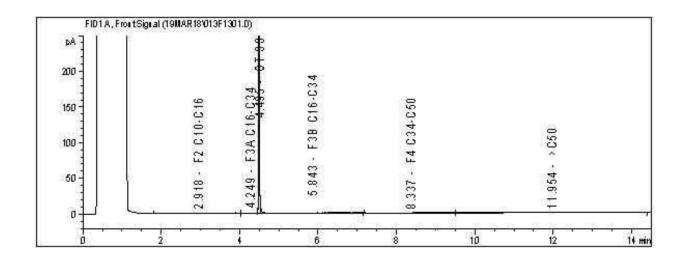
Client ID: BH9-AUG2

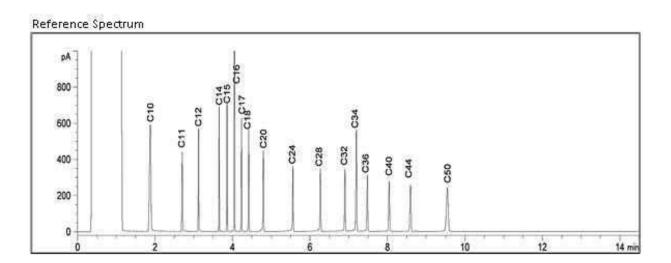
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

TYPICAL PRODUCT CARBON NUMBER RANGES

 Gasoline: C6 - C12
 Diesel: C10 - C24
 Jet Fuels: C6 - C16

 Varsol: C8 - C12
 Fuel Oils: C6 - C32
 Creosote: C10 - C26


 Kerosene: C8 - C16
 Motor Oils: C16 - C50
 Asphalt: C18 - C50+


exp Services Inc

Client Project #: OTT-00250806-C0 Project name: 5938 Hazeldean Road

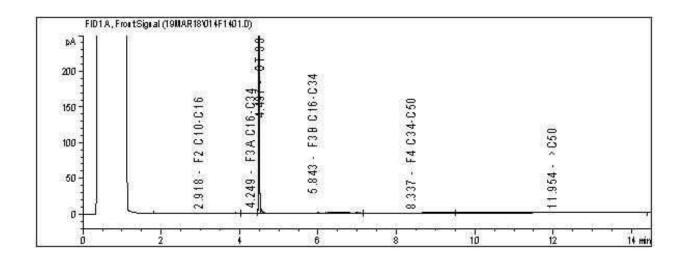
Client ID: BH10-AUG1

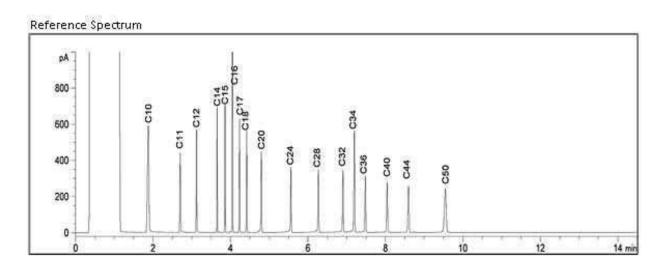
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

TYPICAL PRODUCT CARBON NUMBER RANGES

 Gasoline: C6 - C12
 Diesel: C10 - C24
 Jet Fuels: C6 - C16

 Varsol: C8 - C12
 Fuel Oils: C6 - C32
 Creosote: C10 - C26


 Kerosene: C8 - C16
 Motor Oils: C16 - C50
 Asphalt: C18 - C50+


exp Services Inc

Client Project #: OTT-00250806-C0 Project name: 5938 Hazeldean Road

Client ID: DUP 1

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

TYPICAL PRODUCT CARBON NUMBER RANGES

 Gasoline: C6 - C12
 Diesel: C10 - C24
 Jet Fuels: C6 - C16

 Varsol: C8 - C12
 Fuel Oils: C6 - C32
 Creosote: C10 - C26

 Kerosene: C8 - C16
 Motor Oils: C16 - C50
 Asphalt: C18 - C50+

Your Project #: OTT-00250806-CO Your C.O.C. #: 705696-01-01

Attention: Mark McCalla

exp Services Inc 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2019/02/28

Report #: R5611345 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B950643 Received: 2019/02/26, 15:00

Sample Matrix: Water # Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum (1)	4	N/A	2019/02/28	CAM SOP-00301	EPA 8270D m
1,3-Dichloropropene Sum	4	N/A	2019/02/28	OTT SOP-00002	EPA 8260C m
Petroleum Hydrocarbons F2-F4 in Water (2)	4	2019/02/26	2019/02/28	OTT SOP-00001	CCME Hydrocarbons
Dissolved Metals by ICPMS (1)	4	N/A	2019/02/28	CAM SOP-00447	EPA 6020B m
PAH Compounds in Water by GC/MS (SIM) (1)	4	2019/02/28	2019/02/28	CAM SOP-00318	EPA 8270D m
Volatile Organic Compounds and F1 PHCs	4	N/A	2019/02/27	OTT SOP-00002	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

 $Reference\ Method\ suffix\ "m"\ indicates\ test\ methods\ incorporate\ validated\ modifications\ from\ specific\ reference\ methods\ to\ improve\ performance.$

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Analytics Mississauga
- (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: OTT-00250806-CO Your C.O.C. #: 705696-01-01

Attention: Mark McCalla

exp Services Inc 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2019/02/28

Report #: R5611345 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B950643 Received: 2019/02/26, 15:00

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Alisha Williamson, Project Manager Email: AWilliamson@maxxam.ca Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

exp Services Inc Client Project #: OTT-00250806-CO

Sampler Initials: SL

O.REG 153 DISSOLVED ICPMS METALS (WATER)

	_						_	_
Maxxam ID		JBM080	JBM081	JBM082	JBM082	JBM083		
Sampling Date		2019/02/26	2019/02/26	2019/02/26	2019/02/26	2019/02/26		
Sampling Date		13:30	10:30	09:45	09:45	08:45		
COC Number		705696-01-01	705696-01-01	705696-01-01	705696-01-01	705696-01-01		
	UNITS	MW19-1	MW19-3	MW19-4	MW19-4 Lab-Dup	MW19-5	RDL	QC Batch
Metals								
Dissolved Antimony (Sb)	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5993287
Dissolved Arsenic (As)	ug/L	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	5993287
Dissolved Barium (Ba)	ug/L	150	760	140	140	120	2.0	5993287
Dissolved Beryllium (Be)	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5993287
Dissolved Boron (B)	ug/L	150	54	57	57	72	10	5993287
Dissolved Cadmium (Cd)	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	5993287
Dissolved Chromium (Cr)	ug/L	<5.0	<5.0	<5.0	<5.0	<5.0	5.0	5993287
Dissolved Cobalt (Co)	ug/L	2.3	0.88	0.67	0.69	0.54	0.50	5993287
Dissolved Copper (Cu)	ug/L	1.2	1.3	<1.0	<1.0	6.7	1.0	5993287
Dissolved Lead (Pb)	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5993287
Dissolved Molybdenum (Mo)	ug/L	44	2.2	0.97	1.0	5.4	0.50	5993287
Dissolved Nickel (Ni)	ug/L	5.1	5.1	2.4	2.4	4.6	1.0	5993287
Dissolved Selenium (Se)	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	5993287
Dissolved Silver (Ag)	ug/L	<0.10	<0.10	<0.10	<0.10	<0.10	0.10	5993287
Dissolved Thallium (TI)	ug/L	<0.050	<0.050	0.076	0.071	<0.050	0.050	5993287
Dissolved Uranium (U)	ug/L	1.5	0.96	0.71	0.68	4.5	0.10	5993287
Dissolved Vanadium (V)	ug/L	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	5993287
Dissolved Zinc (Zn)	ug/L	<5.0	6.1	5.4	<5.0	6.3	5.0	5993287

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

exp Services Inc Client Project #: OTT-00250806-CO

Sampler Initials: SL

O.REG 153 PAHS (WATER)

Maxxam ID		JBM080		JBM081		JBM082		JBM083		
Sampling Date		2019/02/26		2019/02/26		2019/02/26		2019/02/26		
Sampling Date		13:30		10:30		09:45		08:45		
COC Number		705696-01-01		705696-01-01		705696-01-01		705696-01-01		
	UNITS	MW19-1	RDL	MW19-3	RDL	MW19-4	RDL	MW19-5	RDL	QC Batch
Calculated Parameters										
Methylnaphthalene, 2-(1-)	ug/L	1.3	0.071	190	0.071	<0.071	0.071	0.079	0.071	5991980
Polyaromatic Hydrocarbons	*		•	•	•				•	
Acenaphthene	ug/L	1.4	0.050	4.9	0.050	0.29	0.050	1.2	0.050	5995181
Acenaphthylene	ug/L	<0.050	0.050	<1.0 (1)	1.0	<0.050	0.050	<0.050	0.050	5995181
Anthracene	ug/L	0.098	0.050	0.19	0.050	0.076	0.050	0.098	0.050	5995181
Benzo(a)anthracene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	5995181
Benzo(a)pyrene	ug/L	<0.010	0.010	<0.010	0.010	<0.010	0.010	<0.010	0.010	5995181
Benzo(b/j)fluoranthene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	5995181
Benzo(g,h,i)perylene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	5995181
Benzo(k)fluoranthene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	5995181
Chrysene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	5995181
Dibenz(a,h)anthracene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	5995181
Fluoranthene	ug/L	<0.050	0.050	0.073	0.050	<0.050	0.050	<0.050	0.050	5995181
Fluorene	ug/L	1.4	0.050	6.4	0.050	0.27	0.050	1.6	0.050	5995181
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	5995181
1-Methylnaphthalene	ug/L	0.74	0.050	120	0.050	<0.050	0.050	0.079	0.050	5995181
2-Methylnaphthalene	ug/L	0.57	0.050	66	0.050	<0.050	0.050	<0.050	0.050	5995181
Naphthalene	ug/L	0.61	0.050	49	0.050	0.080	0.050	<0.20 (1)	0.20	5995181
Phenanthrene	ug/L	0.14	0.030	4.3	0.030	0.24	0.030	0.28	0.030	5995181
Pyrene	ug/L	<0.050	0.050	0.074	0.050	<0.050	0.050	<0.050	0.050	5995181
Surrogate Recovery (%)										
D10-Anthracene	%	103		95		107		100		5995181
D14-Terphenyl (FS)	%	87		83		94		75		5995181
D8-Acenaphthylene	%	105		100		104		98		5995181
		-								

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) DL was raised due to matrix interference.

exp Services Inc Client Project #: OTT-00250806-CO

Sampler Initials: SL

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Maxxam ID	1	JBM080	1		JBM080			JBM081		
		2019/02/26			2019/02/26			2019/02/26		
Sampling Date		13:30			13:30			10:30		
COC Number		705696-01-01			705696-01-01			705696-01-01		
	UNITS	MW19-1	RDL	QC Batch	MW19-1 Lab-Dup	RDL	QC Batch	MW19-3	RDL	QC Batch
Calculated Parameters										
1,3-Dichloropropene (cis+trans)	ug/L	<0.50	0.50	5991981				<0.50	0.50	5991981
Volatile Organics										
Acetone (2-Propanone)	ug/L	110	10	5993775	130	10	5993775	<10	10	5993775
Benzene	ug/L	1.0	0.20	5993775	0.99	0.20	5993775	5.1	0.20	5993775
Bromodichloromethane	ug/L	<0.50	0.50	5993775	<0.50	0.50	5993775	<0.50	0.50	5993775
Bromoform	ug/L	<1.0	1.0	5993775	<1.0	1.0	5993775	<1.0	1.0	5993775
Bromomethane	ug/L	<0.50	0.50	5993775	<0.50	0.50	5993775	<0.50	0.50	5993775
Carbon Tetrachloride	ug/L	<0.20	0.20	5993775	<0.20	0.20	5993775	<0.20	0.20	5993775
Chlorobenzene	ug/L	<0.20	0.20	5993775	<0.20	0.20	5993775	<0.20	0.20	5993775
Chloroform	ug/L	<0.20	0.20	5993775	<0.20	0.20	5993775	0.40	0.20	5993775
Dibromochloromethane	ug/L	<0.50	0.50	5993775	<0.50	0.50	5993775	<0.50	0.50	5993775
1,2-Dichlorobenzene	ug/L	<0.50	0.50	5993775	<0.50	0.50	5993775	<0.50	0.50	5993775
1,3-Dichlorobenzene	ug/L	<0.50	0.50	5993775	<0.50	0.50	5993775	<0.50	0.50	5993775
1,4-Dichlorobenzene	ug/L	<0.50	0.50	5993775	<0.50	0.50	5993775	<0.50	0.50	5993775
Dichlorodifluoromethane (FREON 12)	ug/L	<1.0	1.0	5993775	<1.0	1.0	5993775	<1.0	1.0	5993775
1,1-Dichloroethane	ug/L	<0.20	0.20	5993775	<0.20	0.20	5993775	<0.20	0.20	5993775
1,2-Dichloroethane	ug/L	<0.50	0.50	5993775	<0.50	0.50	5993775	<0.50	0.50	5993775
1,1-Dichloroethylene	ug/L	<0.20	0.20	5993775	<0.20	0.20	5993775	<0.20	0.20	5993775
cis-1,2-Dichloroethylene	ug/L	<0.50	0.50	5993775	<0.50	0.50	5993775	<0.50	0.50	5993775
trans-1,2-Dichloroethylene	ug/L	<0.50	0.50	5993775	<0.50	0.50	5993775	<0.50	0.50	5993775
1,2-Dichloropropane	ug/L	<0.20	0.20	5993775	<0.20	0.20	5993775	<0.20	0.20	5993775
cis-1,3-Dichloropropene	ug/L	<0.30	0.30	5993775	<0.30	0.30	5993775	<0.30	0.30	5993775
trans-1,3-Dichloropropene	ug/L	<0.40	0.40	5993775	<0.40	0.40	5993775	<0.40	0.40	5993775
Ethylbenzene	ug/L	<0.20	0.20	5993775	<0.20	0.20	5993775	5.0	0.20	5993775
Ethylene Dibromide	ug/L	<0.20	0.20	5993775	<0.20	0.20	5993775	<0.20	0.20	5993775
Hexane	ug/L	<1.0	1.0	5993775	<1.0	1.0	5993775	<1.0	1.0	5993775
Methylene Chloride(Dichloromethane)	ug/L	<2.0	2.0	5993775	<2.0	2.0	5993775	<2.0	2.0	5993775
Methyl Ethyl Ketone (2-Butanone)	ug/L	<10	10	5993775	<10	10	5993775	<10	10	5993775
Methyl Isobutyl Ketone	ug/L	<5.0	5.0	5993775	<5.0	5.0	5993775	<5.0	5.0	5993775
Methyl t-butyl ether (MTBE)	ug/L	<0.50	0.50	5993775	<0.50	0.50	5993775	0.55	0.50	5993775
Styrene	ug/L	<0.50	0.50	5993775	<0.50	0.50	5993775	<0.50	0.50	5993775
1,1,1,2-Tetrachloroethane	ug/L	<0.50	0.50	5993775	<0.50	0.50	5993775	<0.50	0.50	5993775
1,1,2,2-Tetrachloroethane	ug/L	<0.50	0.50	5993775	<0.50	0.50	5993775	<0.50	0.50	5993775
Tetrachloroethylene	ug/L	<0.20	0.20	5993775	<0.20	0.20	5993775	<0.20	0.20	5993775

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

exp Services Inc Client Project #: OTT-00250806-CO Sampler Initials: SL

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Maxxam ID		JBM080			JBM080			JBM081		
Sampling Date		2019/02/26 13:30			2019/02/26 13:30			2019/02/26 10:30		
COC Number		705696-01-01			705696-01-01			705696-01-01		
	UNITS	MW19-1	RDL	QC Batch	MW19-1 Lab-Dup	RDL	QC Batch	MW19-3	RDL	QC Batch
Toluene	ug/L	0.90	0.20	5993775	0.92	0.20	5993775	0.53	0.20	5993775
1,1,1-Trichloroethane	ug/L	<0.20	0.20	5993775	<0.20	0.20	5993775	<0.20	0.20	5993775
1,1,2-Trichloroethane	ug/L	<0.50	0.50	5993775	<0.50	0.50	5993775	<0.50	0.50	5993775
Trichloroethylene	ug/L	<0.20	0.20	5993775	<0.20	0.20	5993775	<0.20	0.20	5993775
Trichlorofluoromethane (FREON 11)	ug/L	<0.50	0.50	5993775	<0.50	0.50	5993775	<0.50	0.50	5993775
Vinyl Chloride	ug/L	<0.20	0.20	5993775	<0.20	0.20	5993775	<0.20	0.20	5993775
p+m-Xylene	ug/L	0.37	0.20	5993775	0.41	0.20	5993775	2.6	0.20	5993775
o-Xylene	ug/L	0.98	0.20	5993775	0.95	0.20	5993775	6.3	0.20	5993775
Total Xylenes	ug/L	1.4	0.20	5993775	1.4	0.20	5993775	8.9	0.20	5993775
F1 (C6-C10)	ug/L	<25	25	5993775	<25	25	5993775	69	25	5993775
F1 (C6-C10) - BTEX	ug/L	<25	25	5993775	<25	25	5993775	49	25	5993775
F2-F4 Hydrocarbons	•	•	•	•	•		•		•	
F2 (C10-C16 Hydrocarbons)	ug/L	<100	100	5991331				1400	100	5991331
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	5991331				<200	200	5991331
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	5991331				<200	200	5991331
Reached Baseline at C50	ug/L	Yes		5991331				Yes		5991331
Surrogate Recovery (%)										
o-Terphenyl	%	106		5991331				109		5991331
4-Bromofluorobenzene	%	102		5993775	97		5993775	95		5993775
D4-1,2-Dichloroethane	%	99		5993775	109		5993775	102		5993775
D8-Toluene	%	100		5993775	97		5993775	96		5993775
		•								

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

exp Services Inc Client Project #: OTT-00250806-CO

Sampler Initials: SL

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Maxxam ID		JBM081			JBM082	JBM083				
		2019/02/26			2019/02/26	2019/02/26				
Sampling Date		10:30			09:45	08:45				
COC Number		705696-01-01			705696-01-01	705696-01-01				
	UNITS	MW19-3 Lab-Dup	RDL	QC Batch	MW19-4	MW19-5	RDL	QC Batch		
Calculated Parameters	<u> </u>	•	•			•				
1,3-Dichloropropene (cis+trans)	ug/L				<0.50	<0.50	0.50	5991981		
Volatile Organics	, , , , , , , , , , , , , , , , , , , ,									
Acetone (2-Propanone)	ug/L				<10	<10	10	5993775		
Benzene	ug/L				<0.20	<0.20	0.20	5993775		
Bromodichloromethane	ug/L				<0.50	<0.50	0.50	5993775		
Bromoform	ug/L				<1.0	<1.0	1.0	5993775		
Bromomethane	ug/L				<0.50	<0.50	0.50	5993775		
Carbon Tetrachloride	ug/L				<0.20	<0.20	0.20	5993775		
Chlorobenzene	ug/L				<0.20	<0.20	0.20	5993775		
Chloroform	ug/L				0.30	0.38	0.20	5993775		
Dibromochloromethane	ug/L				<0.50	<0.50	0.50	5993775		
1,2-Dichlorobenzene	ug/L				<0.50	<0.50	0.50	5993775		
1,3-Dichlorobenzene	ug/L				<0.50	<0.50	0.50	5993775		
1,4-Dichlorobenzene	ug/L				<0.50	<0.50	0.50	5993775		
Dichlorodifluoromethane (FREON 12)	ug/L				<1.0	<1.0	1.0	5993775		
1,1-Dichloroethane	ug/L				<0.20	<0.20	0.20	5993775		
1,2-Dichloroethane	ug/L				<0.50	<0.50	0.50	5993775		
1,1-Dichloroethylene	ug/L				<0.20	<0.20	0.20	5993775		
cis-1,2-Dichloroethylene	ug/L				<0.50	<0.50	0.50	5993775		
trans-1,2-Dichloroethylene	ug/L				<0.50	<0.50	0.50	5993775		
1,2-Dichloropropane	ug/L				<0.20	<0.20	0.20	5993775		
cis-1,3-Dichloropropene	ug/L				<0.30	<0.30	0.30	5993775		
trans-1,3-Dichloropropene	ug/L				<0.40	<0.40	0.40	5993775		
Ethylbenzene	ug/L				<0.20	<0.20	0.20	5993775		
Ethylene Dibromide	ug/L				<0.20	<0.20	0.20	5993775		
Hexane	ug/L				<1.0	<1.0	1.0	5993775		
Methylene Chloride(Dichloromethane)	ug/L				<2.0	<2.0	2.0	5993775		
Methyl Ethyl Ketone (2-Butanone)	ug/L				<10	<10	10	5993775		
Methyl Isobutyl Ketone	ug/L				<5.0	<5.0	5.0	5993775		
Methyl t-butyl ether (MTBE)	ug/L				<0.50	<0.50	0.50			
Styrene	ug/L				<0.50	<0.50	0.50	5993775		
1,1,1,2-Tetrachloroethane	ug/L				<0.50	<0.50	0.50	5993775		
1,1,2,2-Tetrachloroethane	ug/L				<0.50	<0.50	0.50	5993775		
Tetrachloroethylene	ug/L				<0.20	<0.20	0.20	5993775		
RDI - Reportable Detection Limit	•									

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

exp Services Inc Client Project #: OTT-00250806-CO

Sampler Initials: SL

O.REG 153 VOCS BY HS & F1-F4 (WATER)

Maxxam ID		JBM081			JBM082	JBM083		
Sampling Date		2019/02/26			2019/02/26	2019/02/26		
Sampling Date		10:30			09:45	08:45		
COC Number		705696-01-01			705696-01-01	705696-01-01		
	UNITS	MW19-3 Lab-Dup	RDL	QC Batch	MW19-4	MW19-5	RDL	QC Batch
Toluene	ug/L				<0.20	<0.20	0.20	5993775
1,1,1-Trichloroethane	ug/L				<0.20	<0.20	0.20	5993775
1,1,2-Trichloroethane	ug/L				<0.50	<0.50	0.50	5993775
Trichloroethylene	ug/L				<0.20	<0.20	0.20	5993775
Trichlorofluoromethane (FREON 11)	ug/L				<0.50	<0.50	0.50	5993775
Vinyl Chloride	ug/L				<0.20	<0.20	0.20	5993775
p+m-Xylene	ug/L				<0.20	<0.20	0.20	5993775
o-Xylene	ug/L				<0.20	<0.20	0.20	5993775
Total Xylenes	ug/L				<0.20	<0.20	0.20	5993775
F1 (C6-C10)	ug/L				<25	<25	25	5993775
F1 (C6-C10) - BTEX	ug/L				<25	<25	25	5993775
F2-F4 Hydrocarbons	•	•	•					
F2 (C10-C16 Hydrocarbons)	ug/L	1400	100	5991331	<100	<100	100	5991331
F3 (C16-C34 Hydrocarbons)	ug/L	<200	200	5991331	<200	<200	200	5991331
F4 (C34-C50 Hydrocarbons)	ug/L	<200	200	5991331	<200	<200	200	5991331
Reached Baseline at C50	ug/L	Yes		5991331	Yes	Yes		5991331
Surrogate Recovery (%)	•							
o-Terphenyl	%	110		5991331	99	103		5991331
4-Bromofluorobenzene	%				98	93		5993775
D4-1,2-Dichloroethane	%				106	105		5993775
D8-Toluene	%				97	97		5993775

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

exp Services Inc

Client Project #: OTT-00250806-CO

Sampler Initials: SL

TEST SUMMARY

Maxxam ID: JBM080 Sample ID: MW19-1 Collected: Shipped:

2019/02/26

Matrix: Water

Received: 2019/02/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5991980	N/A	2019/02/28	Anastassia Hamanov
1,3-Dichloropropene Sum	CALC	5991981	N/A	2019/02/28	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5991331	2019/02/26	2019/02/28	Mariana Vascan
Dissolved Metals by ICPMS	ICP/MS	5993287	N/A	2019/02/28	Arefa Dabhad
PAH Compounds in Water by GC/MS (SIM)	GC/MS	5995181	2019/02/28	2019/02/28	Bibin Alias Paul
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5993775	N/A	2019/02/27	Liliana Gaburici

JBM080 Dup Maxxam ID: Sample ID: MW19-1

Water

Matrix:

2019/02/26 Collected:

Shipped:

Received: 2019/02/26

Test Description Instrumentation **Batch** Extracted **Date Analyzed** Analyst Volatile Organic Compounds and F1 PHCs GC/MSFD 5993775 2019/02/27 Liliana Gaburici N/A

Maxxam ID: JBM081 Sample ID: MW19-3

Matrix: Water

Collected: 2019/02/26

Shipped:

Received: 2019/02/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5991980	N/A	2019/02/28	Anastassia Hamanov
1,3-Dichloropropene Sum	CALC	5991981	N/A	2019/02/28	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5991331	2019/02/26	2019/02/28	Mariana Vascan
Dissolved Metals by ICPMS	ICP/MS	5993287	N/A	2019/02/28	Arefa Dabhad
PAH Compounds in Water by GC/MS (SIM)	GC/MS	5995181	2019/02/28	2019/02/28	Bibin Alias Paul
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5993775	N/A	2019/02/27	Liliana Gaburici

Maxxam ID: JBM081 Dup Sample ID: MW19-3 Matrix: Water

Collected: 2019/02/26

Shipped:

Received: 2019/02/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5991331	2019/02/27	2019/02/28	Mariana Vascan

Maxxam ID: JBM082 Collected: 2019/02/26

Shipped:

2019/02/26 Received:

Sample ID: MW19-4 Matrix: Water

instrumentation	Batcn	Extracted	Date Analyzed	Anaiyst
CALC	5991980	N/A	2019/02/28	Anastassia Hamanov
CALC	5991981	N/A	2019/02/28	Automated Statchk
GC/FID	5991331	2019/02/26	2019/02/28	Mariana Vascan
ICP/MS	5993287	N/A	2019/02/28	Arefa Dabhad
GC/MS	5995181	2019/02/28	2019/02/28	Bibin Alias Paul
GC/MSFD	5993775	N/A	2019/02/27	Liliana Gaburici
	CALC CALC GC/FID ICP/MS GC/MS	CALC 5991980 CALC 5991981 GC/FID 5991331 ICP/MS 5993287 GC/MS 5995181	CALC 5991980 N/A CALC 5991981 N/A GC/FID 5991331 2019/02/26 ICP/MS 5993287 N/A GC/MS 5995181 2019/02/28	CALC 5991981 N/A 2019/02/28 GC/FID 5991331 2019/02/26 2019/02/28 ICP/MS 5993287 N/A 2019/02/28 GC/MS 5995181 2019/02/28 2019/02/28

exp Services Inc

Client Project #: OTT-00250806-CO

Sampler Initials: SL

TEST SUMMARY

Maxxam ID: JBM082 Dup **Collected**: 2019/02/26

Sample ID: MW19-4 Shipped:

Matrix: Water Received: 2019/02/26

Test DescriptionInstrumentationBatchExtractedDate AnalyzedAnalystDissolved Metals by ICPMSICP/MS5993287N/A2019/02/28Arefa Dabhad

Maxxam ID: JBM083 **Collected:** 2019/02/26

Sample ID: MW19-5 Shipped:

Matrix: Water Received: 2019/02/26

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	5991980	N/A	2019/02/28	Anastassia Hamanov
1,3-Dichloropropene Sum	CALC	5991981	N/A	2019/02/28	Automated Statchk
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	5991331	2019/02/26	2019/02/28	Mariana Vascan
Dissolved Metals by ICPMS	ICP/MS	5993287	N/A	2019/02/28	Arefa Dabhad
PAH Compounds in Water by GC/MS (SIM)	GC/MS	5995181	2019/02/28	2019/02/28	Bibin Alias Paul
Volatile Organic Compounds and F1 PHCs	GC/MSFD	5993775	N/A	2019/02/27	Liliana Gaburici

exp Services Inc Client Project #: OTT-00250806-CO Sampler Initials: SL

GENERAL COMMENTS

Each te	emperature is the	average of up to	three cooler temperatures taken at receipt					
	Package 1	6.3°C						
		<u> </u>	_					
Result	Results relate only to the items tested.							

QUALITY ASSURANCE REPORT

exp Services Inc

Client Project #: OTT-00250806-CO

Sampler Initials: SL

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5991331	o-Terphenyl	2019/02/27	108	30 - 130	107	30 - 130	106	%		
5993775	4-Bromofluorobenzene	2019/02/27	102	70 - 130	101	70 - 130	93	%		
5993775	D4-1,2-Dichloroethane	2019/02/27	114	70 - 130	99	70 - 130	92	%		
5993775	D8-Toluene	2019/02/27	101	70 - 130	105	70 - 130	101	%		
5995181	D10-Anthracene	2019/02/28	104	50 - 130	107	50 - 130	106	%		
5995181	D14-Terphenyl (FS)	2019/02/28	90	50 - 130	92	50 - 130	91	%		
5995181	D8-Acenaphthylene	2019/02/28	100	50 - 130	102	50 - 130	100	%		
5991331	F2 (C10-C16 Hydrocarbons)	2019/02/28	106	50 - 130	105	80 - 120	<100	ug/L	1.4	50
5991331	F3 (C16-C34 Hydrocarbons)	2019/02/28	106	50 - 130	105	80 - 120	<200	ug/L	NC	50
5991331	F4 (C34-C50 Hydrocarbons)	2019/02/28	106	50 - 130	105	80 - 120	<200	ug/L	NC	50
5993287	Dissolved Antimony (Sb)	2019/02/28	103	80 - 120	100	80 - 120	<0.50	ug/L	NC	20
5993287	Dissolved Arsenic (As)	2019/02/28	100	80 - 120	100	80 - 120	<1.0	ug/L	NC	20
5993287	Dissolved Barium (Ba)	2019/02/28	97	80 - 120	98	80 - 120	<2.0	ug/L	1.8	20
5993287	Dissolved Beryllium (Be)	2019/02/28	101	80 - 120	99	80 - 120	<0.50	ug/L	NC	20
5993287	Dissolved Boron (B)	2019/02/28	96	80 - 120	95	80 - 120	<10	ug/L	0.23	20
5993287	Dissolved Cadmium (Cd)	2019/02/28	101	80 - 120	99	80 - 120	<0.10	ug/L	NC	20
5993287	Dissolved Chromium (Cr)	2019/02/28	97	80 - 120	97	80 - 120	<5.0	ug/L	NC	20
5993287	Dissolved Cobalt (Co)	2019/02/28	98	80 - 120	102	80 - 120	<0.50	ug/L	2.2	20
5993287	Dissolved Copper (Cu)	2019/02/28	101	80 - 120	103	80 - 120	<1.0	ug/L	NC	20
5993287	Dissolved Lead (Pb)	2019/02/28	95	80 - 120	97	80 - 120	<0.50	ug/L	NC	20
5993287	Dissolved Molybdenum (Mo)	2019/02/28	102	80 - 120	98	80 - 120	<0.50	ug/L	4.0	20
5993287	Dissolved Nickel (Ni)	2019/02/28	96	80 - 120	97	80 - 120	<1.0	ug/L	0.89	20
5993287	Dissolved Selenium (Se)	2019/02/28	100	80 - 120	101	80 - 120	<2.0	ug/L	NC	20
5993287	Dissolved Silver (Ag)	2019/02/28	89	80 - 120	97	80 - 120	<0.10	ug/L	NC	20
5993287	Dissolved Thallium (TI)	2019/02/28	98	80 - 120	98	80 - 120	<0.050	ug/L	6.8	20
5993287	Dissolved Uranium (U)	2019/02/28	103	80 - 120	99	80 - 120	<0.10	ug/L	4.9	20
5993287	Dissolved Vanadium (V)	2019/02/28	99	80 - 120	98	80 - 120	<0.50	ug/L	NC	20
5993287	Dissolved Zinc (Zn)	2019/02/28	99	80 - 120	99	80 - 120	<5.0	ug/L	6.9	20
5993775	1,1,1,2-Tetrachloroethane	2019/02/27	100	70 - 130	114	70 - 130	<0.50	ug/L	NC	30
5993775	1,1,1-Trichloroethane	2019/02/27	91	70 - 130	111	70 - 130	<0.20	ug/L	NC	30
5993775	1,1,2,2-Tetrachloroethane	2019/02/27	107	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
5993775	1,1,2-Trichloroethane	2019/02/27	101	70 - 130	96	70 - 130	<0.50	ug/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: OTT-00250806-CO

Sampler Initials: SL

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5993775	1,1-Dichloroethane	2019/02/27	87	70 - 130	100	70 - 130	<0.20	ug/L	NC	30
5993775	1,1-Dichloroethylene	2019/02/27	80	70 - 130	98	70 - 130	<0.20	ug/L	NC	30
5993775	1,2-Dichlorobenzene	2019/02/27	98	70 - 130	109	70 - 130	<0.50	ug/L	NC	30
5993775	1,2-Dichloroethane	2019/02/27	99	70 - 130	95	70 - 130	<0.50	ug/L	NC	30
5993775	1,2-Dichloropropane	2019/02/27	92	70 - 130	99	70 - 130	<0.20	ug/L	NC	30
5993775	1,3-Dichlorobenzene	2019/02/27	95	70 - 130	115	70 - 130	<0.50	ug/L	NC	30
5993775	1,4-Dichlorobenzene	2019/02/27	100	70 - 130	119	70 - 130	<0.50	ug/L	NC	30
5993775	Acetone (2-Propanone)	2019/02/27	109	60 - 140	86	60 - 140	<10	ug/L	23	30
5993775	Benzene	2019/02/27	90	70 - 130	103	70 - 130	<0.20	ug/L	4.3	30
5993775	Bromodichloromethane	2019/02/27	100	70 - 130	105	70 - 130	<0.50	ug/L	NC	30
5993775	Bromoform	2019/02/27	100	70 - 130	94	70 - 130	<1.0	ug/L	NC	30
5993775	Bromomethane	2019/02/27	92	60 - 140	105	60 - 140	<0.50	ug/L	NC	30
5993775	Carbon Tetrachloride	2019/02/27	93	70 - 130	116	70 - 130	<0.20	ug/L	NC	30
5993775	Chlorobenzene	2019/02/27	93	70 - 130	109	70 - 130	<0.20	ug/L	NC	30
5993775	Chloroform	2019/02/27	97	70 - 130	102	70 - 130	<0.20	ug/L	NC	30
5993775	cis-1,2-Dichloroethylene	2019/02/27	89	70 - 130	99	70 - 130	<0.50	ug/L	NC	30
5993775	cis-1,3-Dichloropropene	2019/02/27	100	70 - 130	102	70 - 130	<0.30	ug/L	NC	30
5993775	Dibromochloromethane	2019/02/27	102	70 - 130	106	70 - 130	<0.50	ug/L	NC	30
5993775	Dichlorodifluoromethane (FREON 12)	2019/02/27	83	60 - 140	108	60 - 140	<1.0	ug/L	NC	30
5993775	Ethylbenzene	2019/02/27	93	70 - 130	123	70 - 130	<0.20	ug/L	NC	30
5993775	Ethylene Dibromide	2019/02/27	102	70 - 130	94	70 - 130	<0.20	ug/L	NC	30
5993775	F1 (C6-C10) - BTEX	2019/02/27					<25	ug/L	NC	30
5993775	F1 (C6-C10)	2019/02/27	99	60 - 140	99	60 - 140	<25	ug/L	NC	30
5993775	Hexane	2019/02/27	82	70 - 130	105	70 - 130	<1.0	ug/L	NC	30
5993775	Methyl Ethyl Ketone (2-Butanone)	2019/02/27	112	60 - 140	86	60 - 140	<10	ug/L	NC	30
5993775	Methyl Isobutyl Ketone	2019/02/27	118	70 - 130	91	70 - 130	<5.0	ug/L	NC	30
5993775	Methyl t-butyl ether (MTBE)	2019/02/27	99	70 - 130	102	70 - 130	<0.50	ug/L	NC	30
5993775	Methylene Chloride(Dichloromethane)	2019/02/27	89	70 - 130	91	70 - 130	<2.0	ug/L	NC	30
5993775	o-Xylene	2019/02/27	99	70 - 130	122	70 - 130	<0.20	ug/L	3.3	30
5993775	p+m-Xylene	2019/02/27	89	70 - 130	118	70 - 130	<0.20	ug/L	10	30
5993775	Styrene	2019/02/27	100	70 - 130	117	70 - 130	<0.50	ug/L	NC	30
5993775	Tetrachloroethylene	2019/02/27	89	70 - 130	115	70 - 130	<0.20	ug/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: OTT-00250806-CO

Sampler Initials: SL

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5993775	Toluene	2019/02/27	90	70 - 130	111	70 - 130	<0.20	ug/L	2.6	30
5993775	Total Xylenes	2019/02/27					<0.20	ug/L	0.66	30
5993775	trans-1,2-Dichloroethylene	2019/02/27	82	70 - 130	99	70 - 130	<0.50	ug/L	NC	30
5993775	trans-1,3-Dichloropropene	2019/02/27	103	70 - 130	99	70 - 130	<0.40	ug/L	NC	30
5993775	Trichloroethylene	2019/02/27	86	70 - 130	105	70 - 130	<0.20	ug/L	NC	30
5993775	Trichlorofluoromethane (FREON 11)	2019/02/27	93	70 - 130	115	70 - 130	<0.50	ug/L	NC	30
5993775	Vinyl Chloride	2019/02/27	83	70 - 130	103	70 - 130	<0.20	ug/L	NC	30
5995181	1-Methylnaphthalene	2019/02/28	111	50 - 130	100	50 - 130	<0.050	ug/L	NC	30
5995181	2-Methylnaphthalene	2019/02/28	99	50 - 130	88	50 - 130	<0.050	ug/L	NC	30
5995181	Acenaphthene	2019/02/28	95	50 - 130	91	50 - 130	<0.050	ug/L	NC	30
5995181	Acenaphthylene	2019/02/28	97	50 - 130	93	50 - 130	<0.050	ug/L	NC	30
5995181	Anthracene	2019/02/28	93	50 - 130	91	50 - 130	< 0.050	ug/L	NC	30
5995181	Benzo(a)anthracene	2019/02/28	100	50 - 130	96	50 - 130	< 0.050	ug/L	NC	30
5995181	Benzo(a)pyrene	2019/02/28	96	50 - 130	93	50 - 130	<0.010	ug/L	NC	30
5995181	Benzo(b/j)fluoranthene	2019/02/28	99	50 - 130	97	50 - 130	<0.050	ug/L	NC	30
5995181	Benzo(g,h,i)perylene	2019/02/28	98	50 - 130	95	50 - 130	< 0.050	ug/L	NC	30
5995181	Benzo(k)fluoranthene	2019/02/28	94	50 - 130	91	50 - 130	<0.050	ug/L	NC	30
5995181	Chrysene	2019/02/28	100	50 - 130	97	50 - 130	<0.050	ug/L	NC	30
5995181	Dibenz(a,h)anthracene	2019/02/28	84	50 - 130	81	50 - 130	< 0.050	ug/L	NC	30
5995181	Fluoranthene	2019/02/28	98	50 - 130	96	50 - 130	< 0.050	ug/L	NC	30
5995181	Fluorene	2019/02/28	94	50 - 130	91	50 - 130	<0.050	ug/L	NC	30
5995181	Indeno(1,2,3-cd)pyrene	2019/02/28	101	50 - 130	97	50 - 130	< 0.050	ug/L	NC	30
5995181	Naphthalene	2019/02/28	92	50 - 130	81	50 - 130	<0.050	ug/L	NC	30
5995181	Phenanthrene	2019/02/28	97	50 - 130	96	50 - 130	<0.030	ug/L	NC	30
5995181	Pyrene	2019/02/28	99	50 - 130	97	50 - 130	<0.050	ug/L	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

exp Services Inc Client Project #: OTT-00250806-CO

Sampler Initials: SL

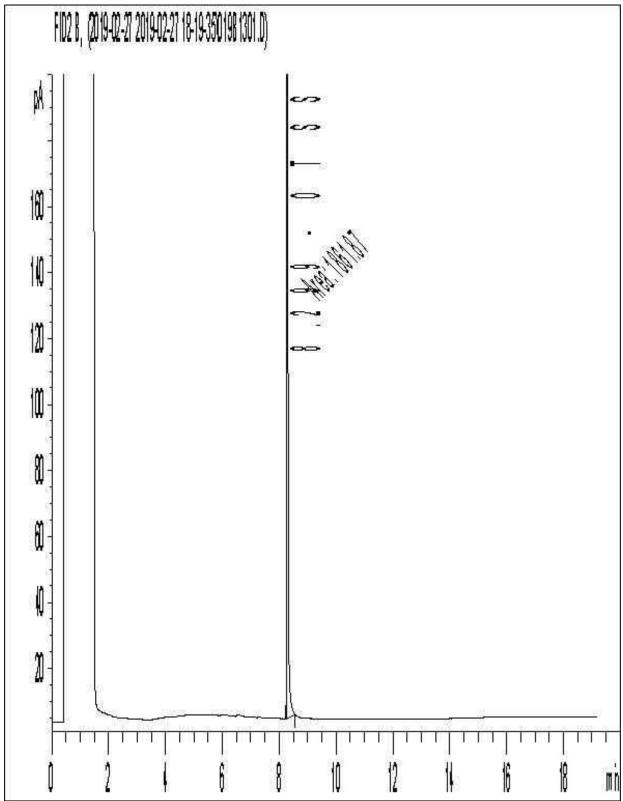
VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

aleele
Anastassia Hamanov, Scientific Specialist
Grouf
Liliana Gaburici, VOC Lab

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

pany Name: #17497 ex Accounts P 100-2650 C Ottawa ON	p Services Inc																	
ess: 100-2650 C	avahle	-	Compan	y Name: EX						Quotation #	6	B4606	6				Laboratory Use Maxxam Job #:	Bottle Order#:
		- 40	Attention	113001111	VcCalla					P.O. #:								1,000,000,000
			Address:							Project:		017	00	250	806-00			705696
(613) 688-1	899 Fax: (613)) 225-7337	Tel:	(613) 2	225-9940 Ext:	243 Fax:		-43.00		Project Nan Site #:	ne:	-					COC#:	Project Manager
accounting.	ottawa@exp.com; Karen.Bu			mark.n	nccalla@exp.	The state of the s	Did			Sampled By	r.	SIL				1 1111111	C#705696-01-01	Alisha Williamson
MOE REGULATED DRI	NKING WATER OR WATER II TED ON THE MAXXAM DRIN	NTENDED I	FOR HUMAN C	ONSUMPTION	MUST BE				AN	ALYSIS REQ	UESTED (P	LEASE BE	SPECIFI	C)			Turnaround Time (TAT)	
Regulation 153 (2011)		-		Salestatines/A	1.72	(e)		sie								Regular (S	Please provide advance notice tandard) TAT:	for rush projects
ble 1 Res/Park		Sanitary Sewe		Special Ir	nstructions	N circ	1-1-1-4	IS Met									d if Rush TAT is not specified):	
ble 2 Ind/Comm	Coarse Reg 558.	Storm Sewer B		N. I. S. W.		d (please	\$5 80 80	CPM									= 5-7 Working days for most tests	
ble 3 Agri/Other D		nicipality				/ BH /	à	(pex	1000							days - contact	Standard TAT for certain (esta such as a your Project Manager for details.	BOD and Dioxins/Furans are
	PWQO Other			TEWN HA			VOCs	Disso	PAHs							Job Specific Date Required	Rush TAT (if applies to entire sub	
Include C	riteria on Certificate of Analys	is (Y/N)?				Field Filte	153	153	53	4-1						Rush Confirm	ation Number:	
Sample Barcode Label	Sample (Location) Identi	ification	Date Sampled	Time Sampled	Matrix	E -	O.Reg	O.Reg 153 Dis (Water)	O.Reg							# of Bottles	Comm	cell (ab for #) nents
MW19-1			to 12 10	152 -	CW		7	1	1							8		
1-140111		-	02.26.19	1300	CW	V		V	-		-			_				-
MW19 2		-								-						8		
MW19-3			02-26-19	10:300	CW	1	/	-	_							8		
MW19-4			1	9:450	1	1										0		
				1-100		/					-		-	-	_	0		
MW19-5		1.4	V	845 a	-		~	_	1									
						Edional												
						Est Est				-					19 15:00	-		
												A1	isha V	Villian	nson			
	2.00											111111	DOS	0643				
													B93	004.	,	_		
		1 12										KIN		OTT	.001		an:	P
						TEN												
* RELINQUISHED 8	Y: (Signature/Print)	Date: (YY/M	IM/DD) Tin	ne	RECEIVED B	Y: (Signature/P	rint)	1	Date: (YY/N	AM/DD)	Time	\dashv	# jars us	ed and		Laborato	ory Use Only	
of Less-rd	Cal	19,02	-26 3:0	Dp ku	m. Je	nju	20	2	10/02	126	15-0		not sub	mitted	Time Sensitive	Temperatur	e (°C) on Recei Custody S	sal Yes N
SS OTHERWISE AGREED TO	IN WRITING, WORK SUBMITTED ON	THIS CHAIR O	F CUSTODY IS SUE	IECT TO HAVVIII	S STANDARD TO	OME AND COUR	ITIONS C	DMING OF	Time out	N OF SUIT						766	o 6 Intact	nite: Maxxa Yellow: C

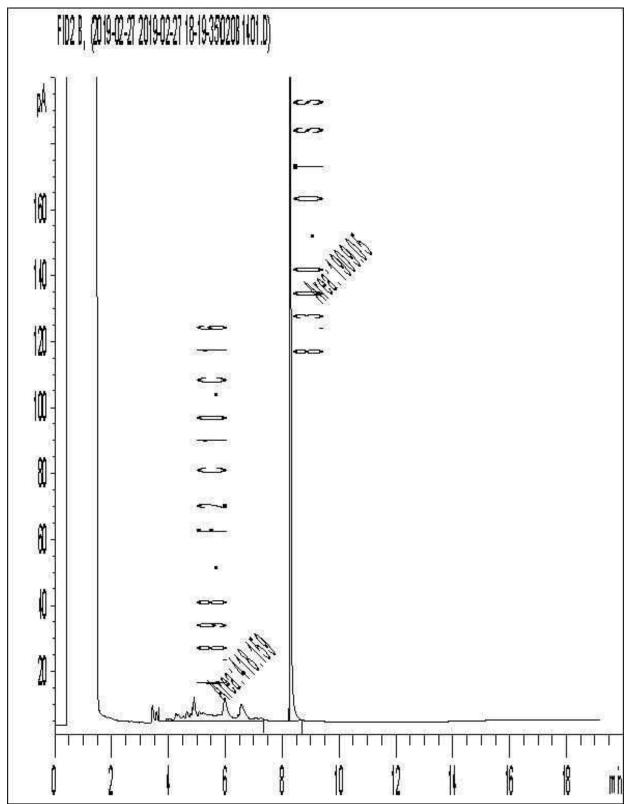

Maxxam Analytics International Corporation o/a Maxxam Analytic

Maxxam Job #: B950643 Report Date: 2019/02/28 Maxxam Sample: JBM080 exp Services Inc

Client Project #: OTT-00250806-CO

Client ID: MW19-1

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

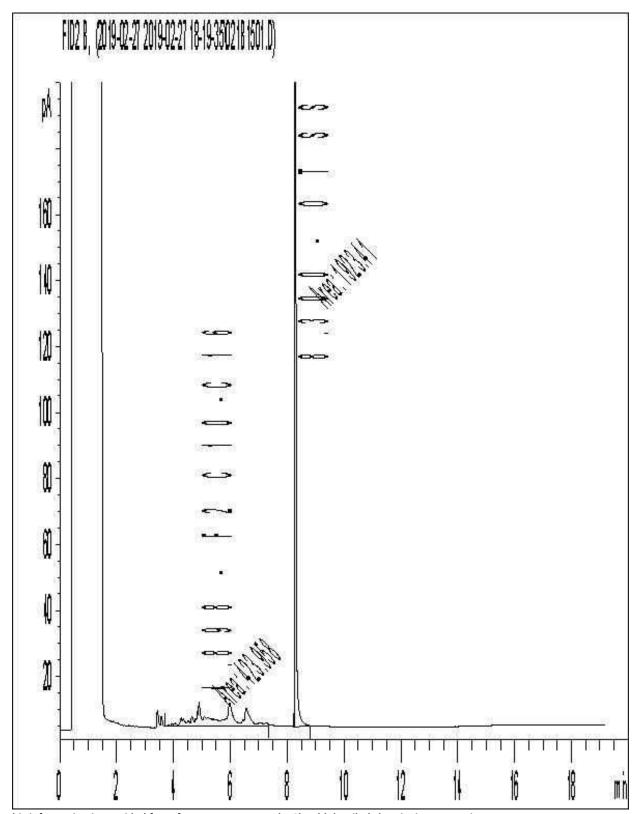


Maxxam Job #: B950643 Report Date: 2019/02/28 Maxxam Sample: JBM081 exp Services Inc

Client Project #: OTT-00250806-CO

Client ID: MW19-3

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

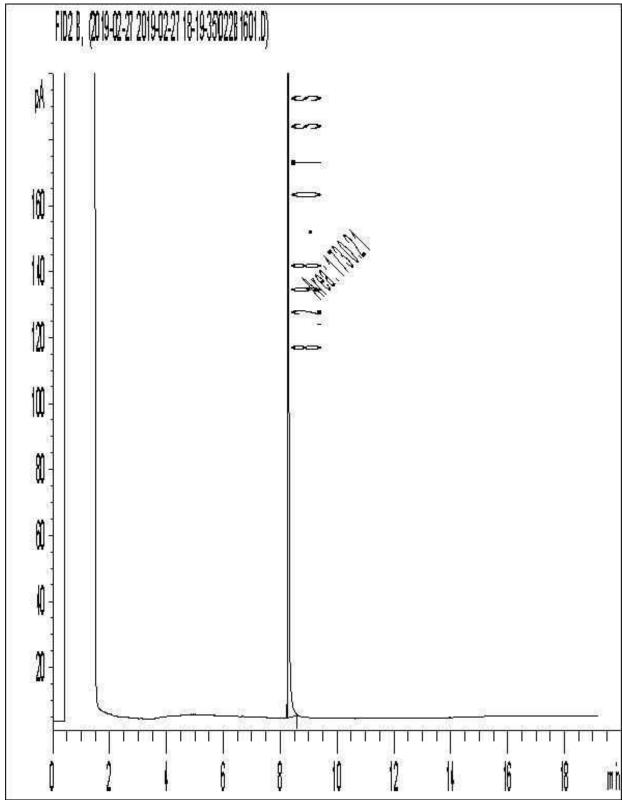


Maxxam Job #: B950643 Report Date: 2019/02/28 Maxxam Sample: JBM081 Lab-Dup exp Services Inc

Client Project #: OTT-00250806-CO

Client ID: MW19-3

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

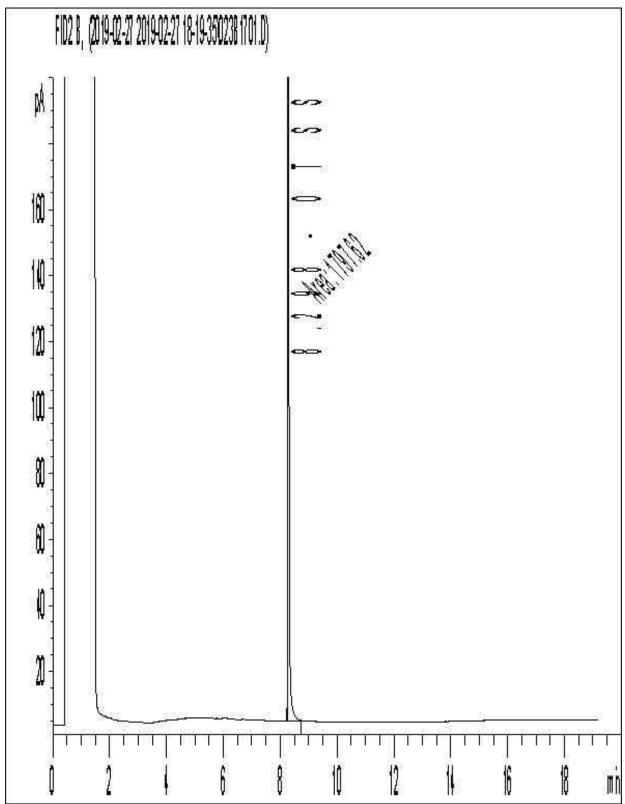


Maxxam Job #: B950643 Report Date: 2019/02/28 Maxxam Sample: JBM082 exp Services Inc

Client Project #: OTT-00250806-CO

Client ID: MW19-4

Petroleum Hydrocarbons F2-F4 in Water Chromatogram



Maxxam Job #: B950643 Report Date: 2019/02/28 Maxxam Sample: JBM083 exp Services Inc

Client Project #: OTT-00250806-CO

Client ID: MW19-5

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Your Project #: 250806-C0 Site Location: HAZELDEAN

Attention: Mark McCalla

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2019/03/20

Report #: R5636622 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B969684 Received: 2019/03/18, 14:55

Sample Matrix: Water # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum (1)	6	N/A	2019/03/20	CAM SOP-00301	EPA 8270D m
Petroleum Hydro. CCME F1 & BTEX in Water	6	N/A	2019/03/19	OTT SOP-00002	CCME CWS
Petroleum Hydrocarbons F2-F4 in Water (2)	6	2019/03/19	2019/03/19	OTT SOP-00001	CCME Hydrocarbons
PAH Compounds in Water by GC/MS (SIM) (1)	3	2019/03/19	2019/03/19	CAM SOP-00318	EPA 8270D m
PAH Compounds in Water by GC/MS (SIM) (1)	3	2019/03/19	2019/03/20	CAM SOP-00318	EPA 8270D m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- st RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Analytics Mississauga
- (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: 250806-C0 Site Location: HAZELDEAN

Attention: Mark McCalla

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2019/03/20

Report #: R5636622 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B969684 Received: 2019/03/18, 14:55

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Alisha Williamson, Project Manager

Email: AWilliamson@maxxam.ca Phone# (613) 274-0573

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

exp Services Inc

Client Project #: 250806-C0 Site Location: HAZELDEAN

Sampler Initials: MD

O.REG 153 PAHS (WATER)

Calculated Parameters Methylnaphthalene, 2-(1-) ug/L 0.26 0.071 62 0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.071 <0.0	Maxxam ID		JFL038		JFL039		JFL040	JFL041	JFL042	JFL043		
13:00	Sampling Date		2019/03/18		2019/03/18		2019/03/18	2019/03/18	2019/03/18	2019/03/18		
Calculated Parameters Methylnaphthalene, 2-(1-)	Sampling Date		13:00		14:00		10:00	11:00	12:30	12:00		
Methylnaphthalene, 2-{1-} ug/L 0.26 0.071 62 0.071 <0.071		UNITS	BH1	RDL	вн3	RDL	ВН9	BH10	BH11	BH20	RDL	QC Batch
Polyaromatic Hydrocarbons Acenaphthene ug/L 0.52 0.050 3.0 0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.	Calculated Parameters											
Acenaphthene ug/L 0.52 0.050 3.0 0.050 <0.050 <0.050 0.21 0.24 0.050 6025393 Acenaphthylene ug/L <0.050	Methylnaphthalene, 2-(1-)	ug/L	0.26	0.071	62	0.071	<0.071	<0.071	<0.071	<0.071	0.071	6023116
Acenaphthylene	Polyaromatic Hydrocarbons											
Anthracene ug/L <0.050 0.050 0.080 0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 </td <td>Acenaphthene</td> <td>ug/L</td> <td>0.52</td> <td>0.050</td> <td>3.0</td> <td>0.050</td> <td><0.050</td> <td><0.050</td> <td>0.21</td> <td>0.24</td> <td>0.050</td> <td>6025392</td>	Acenaphthene	ug/L	0.52	0.050	3.0	0.050	<0.050	<0.050	0.21	0.24	0.050	6025392
Benzo(a)anthracene	Acenaphthylene	ug/L	<0.050	0.050	<0.50 (1)	0.50	<0.050	<0.050	<0.050	<0.050	0.050	6025392
Benzo(a)pyrene	Anthracene	ug/L	<0.050	0.050	0.080	0.050	<0.050	<0.050	0.054	0.053	0.050	6025392
Benzo(b/j)fluoranthene	Benzo(a)anthracene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	<0.050	<0.050	<0.050	0.050	6025392
Benzo(g,h,i)perylene	Benzo(a)pyrene	ug/L	<0.010	0.010	<0.010	0.010	<0.010	<0.010	<0.010	<0.010	0.010	6025392
Benzo(k)fluoranthene	Benzo(b/j)fluoranthene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	<0.050	<0.050	<0.050	0.050	6025392
Chrysene ug/L <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050<	Benzo(g,h,i)perylene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	<0.050	<0.050	<0.050	0.050	6025392
Dibenz(a,h)anthracene ug/L <0.050 0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	Benzo(k)fluoranthene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	<0.050	<0.050	<0.050	0.050	6025392
Fluoranthene	Chrysene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	<0.050	<0.050	<0.050	0.050	6025392
Fluorene ug/L 0.60 0.050 3.5 0.050 <0.050 <0.050 0.23 0.21 0.050 6025393 Indeno(1,2,3-cd)pyrene ug/L <0.050 0.050 52 0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 0.050 0.050 Indeno(1,2,3-cd)pyrene ug/L 0.15 0.050 52 0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 0.050 0.050 Indeno(1,2,3-cd)pyrene ug/L 0.15 0.050 52 0.050 <0.050 <0.050 <0.050 <0.050 <0.050 0.050 0.050 Indeno(1,2,3-cd)pyrene ug/L 0.15 0.050 52 0.050 Indeno(1,2,3-cd)pyrene ug/L 0.15 0.050 Indeno(1,2,3-cd)pyrene ug/L 0.15 0.050 Indeno(1,2,3-cd)pyrene ug/L 0.050 0.050 Indeno(1,2,23-cd)pyrene ug/L 0.050 Indeno(1,2,3-cd)pyrene ug/L 0.050	Dibenz(a,h)anthracene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	<0.050	<0.050	<0.050	0.050	6025392
Indeno(1,2,3-cd)pyrene ug/L <0.050 0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050	Fluoranthene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	<0.050	<0.050	<0.050	0.050	6025392
1-Methylnaphthalene ug/L 0.15 0.050 52 0.050 <0.050 <0.050 <0.050 <0.050 0.050 0.050 0.050 6025393 2-Methylnaphthalene ug/L 0.12 0.050 11 0.050 <0.050 <0.050 <0.050 <0.050 <0.050 0.050 0.050 0.050 6025393 Naphthalene ug/L 0.22 0.050 18 0.050 <0.050 <0.050 0.086 0.082 0.050 6025393 Phenanthrene ug/L 0.064 0.030 1.5 0.030 <0.030 <0.030 0.039 0.035 0.030 6025393 Pyrene ug/L <0.050 0.050 <0.050 0.050 <0.050 <0.050 <0.050 <0.050 <0.050 0.039 0.035 0.030 6025393 Surrogate Recovery (%) D10-Anthracene % 107 100 103 97 100 95 6025393 D14-Terphenyl (FS) % 105 97 107 94 103 97 6025393	Fluorene	ug/L	0.60	0.050	3.5	0.050	<0.050	<0.050	0.23	0.21	0.050	6025392
2-Methylnaphthalene ug/L 0.12 0.050 11 0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.030 <0.030 <0.030 <0.030 <0.030 <0.030 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.0	Indeno(1,2,3-cd)pyrene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	<0.050	<0.050	<0.050	0.050	6025392
Naphthalene ug/L 0.22 0.050 18 0.050 <0.050 <0.050 0.086 0.082 0.050 6025393 Phenanthrene ug/L 0.064 0.030 1.5 0.030 <0.030	1-Methylnaphthalene	ug/L	0.15	0.050	52	0.050	<0.050	<0.050	<0.050	<0.050	0.050	6025392
Phenanthrene ug/L 0.064 0.030 1.5 0.030 <0.030 <0.030 0.039 0.035 0.030 6025393 Pyrene ug/L <0.050	2-Methylnaphthalene	ug/L	0.12	0.050	11	0.050	<0.050	<0.050	<0.050	<0.050	0.050	6025392
Pyrene ug/L <0.050 0.050 <0.050 0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 0.050 0.050 6025393	Naphthalene	ug/L	0.22	0.050	18	0.050	<0.050	<0.050	0.086	0.082	0.050	6025392
Surrogate Recovery (%) D10-Anthracene % 107 100 103 97 100 95 6025393 D14-Terphenyl (FS) % 105 97 107 94 103 97 6025393	Phenanthrene	ug/L	0.064	0.030	1.5	0.030	<0.030	<0.030	0.039	0.035	0.030	6025392
D10-Anthracene % 107 100 103 97 100 95 6025393 D14-Terphenyl (FS) % 105 97 107 94 103 97 6025393	Pyrene	ug/L	<0.050	0.050	<0.050	0.050	<0.050	<0.050	<0.050	<0.050	0.050	6025392
D14-Terphenyl (FS)	Surrogate Recovery (%)											
	D10-Anthracene	%	107		100		103	97	100	95		6025392
D8-Acenaphthylene % 114 109 104 96 101 96 6025393	D14-Terphenyl (FS)	%	105		97		107	94	103	97		6025392
	D8-Acenaphthylene	%	114		109		104	96	101	96		6025392

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) DL was raised due to matrix interference.

exp Services Inc

Client Project #: 250806-C0 Site Location: HAZELDEAN

Sampler Initials: MD

O.REG 153 PHCS, BTEX/F1-F4 (WATER)

Maxxam ID		JFL038	JFL039	JFL039	JFL040	JFL041	JFL042	JFL043		
Sampling Date		2019/03/18	2019/03/18	2019/03/18	2019/03/18	2019/03/18	2019/03/18	2019/03/18		
Sampling Date		13:00	14:00	14:00	10:00	11:00	12:30	12:00		
	UNITS	BH1	вн3	BH3 Lab-Dup	вн9	BH10	BH11	BH20	RDL	QC Batch
BTEX & F1 Hydrocarbons										
Benzene	ug/L	1.2	5.4	5.5	<0.20	<0.20	<0.20	<0.20	0.20	6024946
Toluene	ug/L	1.2	0.96	0.94	0.40	0.41	<0.20	<0.20	0.20	6024946
Ethylbenzene	ug/L	<0.20	14	14	<0.20	<0.20	<0.20	<0.20	0.20	6024946
o-Xylene	ug/L	0.33	5.0	5.0	<0.20	<0.20	<0.20	<0.20	0.20	6024946
p+m-Xylene	ug/L	0.73	3.3	3.3	<0.40	<0.40	<0.40	<0.40	0.40	6024946
Total Xylenes	ug/L	1.1	8.4	8.4	<0.40	<0.40	<0.40	<0.40	0.40	6024946
F1 (C6-C10)	ug/L	<25	89	94	<25	<25	<25	<25	25	6024946
F1 (C6-C10) - BTEX	ug/L	<25	61	65	<25	<25	<25	<25	25	6024946
F2-F4 Hydrocarbons										
F2 (C10-C16 Hydrocarbons)	ug/L	120	850	930	<100	<100	<100	<100	100	6024982
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	<200	<200	<200	<200	<200	200	6024982
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	<200	<200	<200	<200	<200	200	6024982
Reached Baseline at C50	ug/L	Yes	Yes	Yes	Yes	Yes	Yes	Yes		6024982
Surrogate Recovery (%)	•	•	•	•	•	•		•	•	
1,4-Difluorobenzene	%	103	110	110	110	112	108	113		6024946
4-Bromofluorobenzene	%	105	103	104	83	103	92	82		6024946
D10-Ethylbenzene	%	86	109	104	99	93	101	107		6024946
D4-1,2-Dichloroethane	%	101	105	105	106	108	105	107		6024946
o-Terphenyl	%	109	107	107	108	104	105	104		6024982

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

exp Services Inc

Client Project #: 250806-C0 Site Location: HAZELDEAN

Sampler Initials: MD

TEST SUMMARY

Maxxam ID: JFL038 Sample ID: BH1

Matrix: Water

Collected: 2019/03/18

Shipped:

2019/03/18 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6023116	N/A	2019/03/20	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	6024946	N/A	2019/03/19	Fatemeh Habibagahi
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6024982	2019/03/19	2019/03/19	Mariana Vascan
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6025392	2019/03/19	2019/03/19	Mitesh Rai

Maxxam ID: JFL039 Sample ID: BH3

Water

Matrix:

Collected: 2019/03/18

Shipped:

Received: 2019/03/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6023116	N/A	2019/03/20	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	6024946	N/A	2019/03/19	Fatemeh Habibagahi
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6024982	2019/03/19	2019/03/19	Mariana Vascan
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6025392	2019/03/19	2019/03/19	Mitesh Raj

Maxxam ID: JFL039 Dup Sample ID: BH3

Water

Water

Water

Matrix:

Collected: 2019/03/18

Shipped:

Received: 2019/03/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	6024946	N/A	2019/03/19	Fatemeh Habibagahi
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6024982	2019/03/19	2019/03/19	Mariana Vascan

Maxxam ID: JFL040 Sample ID: BH9

Matrix:

. Matrix:

Collected: 2019/03/18

Shipped:

Received: 2019/03/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6023116	N/A	2019/03/20	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	6024946	N/A	2019/03/19	Fatemeh Habibagahi
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6024982	2019/03/19	2019/03/19	Mariana Vascan
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6025392	2019/03/19	2019/03/19	Mitesh Rai

Maxxam ID: JFL041 Collected: 2019/03/18 Sample ID: BH10

Shipped:

Received: 2019/03/18

Test Description Instrumentation **Extracted Date Analyzed** Batch Analyst Methylnaphthalene Sum CALC 6023116 N/A 2019/03/20 **Automated Statchk** Petroleum Hydro. CCME F1 & BTEX in Water HSGC/MSFD 6024946 Fatemeh Habibagahi N/A 2019/03/19 Petroleum Hydrocarbons F2-F4 in Water GC/FID 6024982 2019/03/19 2019/03/19 Mariana Vascan GC/MS PAH Compounds in Water by GC/MS (SIM) 6025392 2019/03/19 2019/03/20 Mitesh Raj

exp Services Inc

Client Project #: 250806-C0 Site Location: HAZELDEAN

Sampler Initials: MD

TEST SUMMARY

Maxxam ID: JFL042 Sample ID: BH11 Matrix: Water

Collected: 2019/03/18

Shipped:

Received: 2019/03/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6023116	N/A	2019/03/20	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	6024946	N/A	2019/03/19	Fatemeh Habibagahi
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6024982	2019/03/19	2019/03/19	Mariana Vascan
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6025392	2019/03/19	2019/03/20	Mitesh Rai

Maxxam ID: JFL043 Sample ID: BH20 Matrix: Water

Collected: 2019/03/18

Shipped:

Received: 2019/03/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6023116	N/A	2019/03/20	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	6024946	N/A	2019/03/19	Fatemeh Habibagahi
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6024982	2019/03/19	2019/03/19	Mariana Vascan
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6025392	2019/03/19	2019/03/20	Mitesh Raj

exp Services Inc

Client Project #: 250806-C0 Site Location: HAZELDEAN

Sampler Initials: MD

GENERAL COMMENTS

Each to	emperature is the	average of up to t	three cooler temperatures taken at receipt
	Package 1	1.7°C	
Result	s relate only to th	e items tested.	

QUALITY ASSURANCE REPORT

exp Services Inc

Client Project #: 250806-C0
Site Location: HAZELDEAN

Sampler Initials: MD

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6024946	1,4-Difluorobenzene	2019/03/19	100	70 - 130	102	70 - 130	103	%		
6024946	4-Bromofluorobenzene	2019/03/19	87	70 - 130	81	70 - 130	80	%		
6024946	D10-Ethylbenzene	2019/03/19	96	70 - 130	99	70 - 130	98	%		
6024946	D4-1,2-Dichloroethane	2019/03/19	97	70 - 130	93	70 - 130	98	%		
6024982	o-Terphenyl	2019/03/19	106	30 - 130	108	30 - 130	106	%		
6025392	D10-Anthracene	2019/03/19	99	50 - 130	109	50 - 130	102	%		
6025392	D14-Terphenyl (FS)	2019/03/19	105	50 - 130	109	50 - 130	95	%		
6025392	D8-Acenaphthylene	2019/03/19	101	50 - 130	104	50 - 130	100	%		
6024946	Benzene	2019/03/19	85	70 - 130	100	70 - 130	<0.20	ug/L	1.4	40
6024946	Ethylbenzene	2019/03/19	92	70 - 130	98	70 - 130	<0.20	ug/L	1.0	40
6024946	F1 (C6-C10) - BTEX	2019/03/19					<25	ug/L	7.3	40
6024946	F1 (C6-C10)	2019/03/19	89	70 - 130	96	70 - 130	<25	ug/L	5.2	40
6024946	o-Xylene	2019/03/19	89	70 - 130	97	70 - 130	<0.20	ug/L	0.040	40
6024946	p+m-Xylene	2019/03/19	88	70 - 130	97	70 - 130	<0.40	ug/L	0.54	40
6024946	Toluene	2019/03/19	88	70 - 130	97	70 - 130	<0.20	ug/L	2.3	40
6024946	Total Xylenes	2019/03/19					<0.40	ug/L	0.19	40
6024982	F2 (C10-C16 Hydrocarbons)	2019/03/19	93	50 - 130	94	80 - 120	<100	ug/L	9.0	50
6024982	F3 (C16-C34 Hydrocarbons)	2019/03/19	93	50 - 130	94	80 - 120	<200	ug/L	NC	50
6024982	F4 (C34-C50 Hydrocarbons)	2019/03/19	93	50 - 130	94	80 - 120	<200	ug/L	NC	50
6025392	1-Methylnaphthalene	2019/03/19	107	50 - 130	108	50 - 130	<0.050	ug/L	NC	30
6025392	2-Methylnaphthalene	2019/03/19	100	50 - 130	99	50 - 130	<0.050	ug/L	NC	30
6025392	Acenaphthene	2019/03/19	102	50 - 130	101	50 - 130	<0.050	ug/L	NC	30
6025392	Acenaphthylene	2019/03/19	102	50 - 130	102	50 - 130	<0.050	ug/L	NC	30
6025392	Anthracene	2019/03/19	90	50 - 130	92	50 - 130	<0.050	ug/L	NC	30
6025392	Benzo(a)anthracene	2019/03/19	87	50 - 130	102	50 - 130	<0.050	ug/L		
6025392	Benzo(a)pyrene	2019/03/19	80	50 - 130	100	50 - 130	<0.010	ug/L		
6025392	Benzo(b/j)fluoranthene	2019/03/19	80	50 - 130	104	50 - 130	<0.050	ug/L		
6025392	Benzo(g,h,i)perylene	2019/03/19	81	50 - 130	101	50 - 130	<0.050	ug/L		
6025392	Benzo(k)fluoranthene	2019/03/19	78	50 - 130	97	50 - 130	<0.050	ug/L		
6025392	Chrysene	2019/03/19	82	50 - 130	103	50 - 130	<0.050	ug/L		
6025392	Dibenz(a,h)anthracene	2019/03/19	77	50 - 130	96	50 - 130	<0.050	ug/L		
6025392	Fluoranthene	2019/03/19	107	50 - 130	109	50 - 130	<0.050	ug/L	NC	30

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: 250806-C0

Site Location: HAZELDEAN

Sampler Initials: MD

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPE	כ
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6025392	Fluorene	2019/03/19	103	50 - 130	107	50 - 130	<0.050	ug/L	NC	30
6025392	Indeno(1,2,3-cd)pyrene	2019/03/19	82	50 - 130	106	50 - 130	<0.050	ug/L		
6025392	Naphthalene	2019/03/19	96	50 - 130	99	50 - 130	<0.050	ug/L	NC	30
6025392	Phenanthrene	2019/03/19	98	50 - 130	100	50 - 130	<0.030	ug/L	NC	30
6025392	Pyrene	2019/03/19	107	50 - 130	106	50 - 130	<0.050	ug/L		

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

exp Services Inc

Client Project #: 250806-C0 Site Location: HAZELDEAN

Sampler Initials: MD

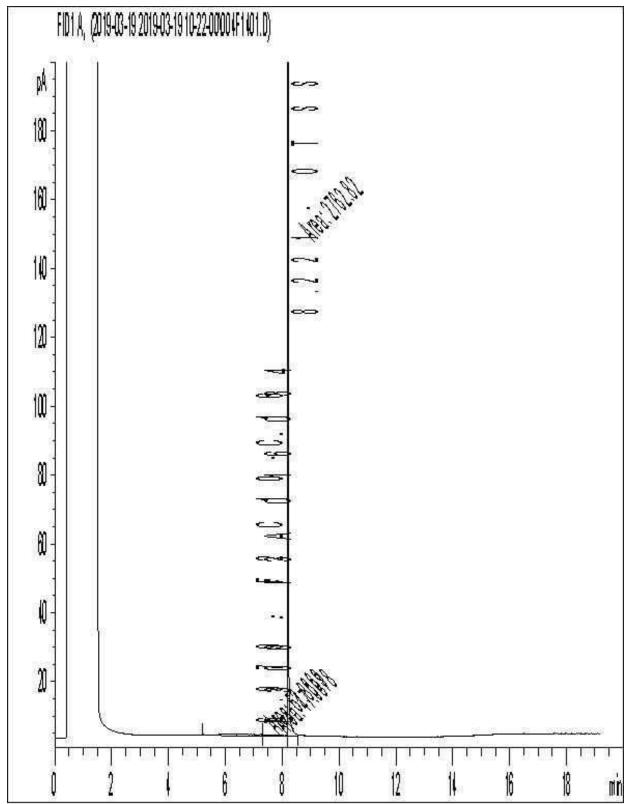
VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Steve Roberts, Ottawa Lab Manager

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

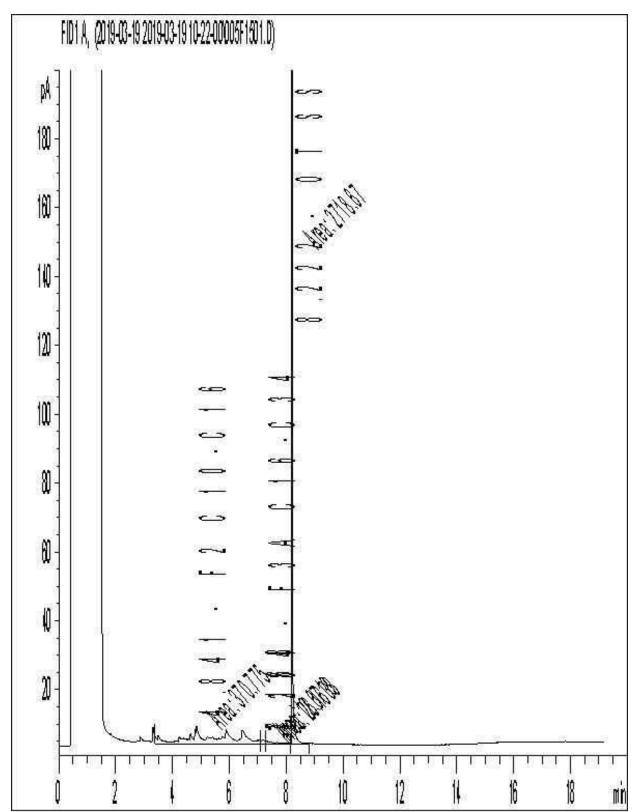

	l l	VOICE TO:					REP	ORT TO:						PROJE	CT INFORMATIO	ON:		Laboratory Us	e Only:
mpany Nan			4-6-		Company	Name:				The same		Quotatio	n#:	B460	66 /	Stream 3	1	Maxxam Job #:	Bottle Order
ention:	Accounts Payab				Attention	Mark M	IcCalla /	ark D	evlin			P.O. #:			200)		
dress:	Ottawa ON K2B			-	Address:	-						Project:		2580	6-C0				708424
	(613) 688-1899		613) 225-733	7	Tel:			Fai				Project N	lame:	-	lazel de	200		COC#:	Project Manag
sil:	accounting.ottav	a@exp.com; Karen		1777	Email:	mark.n	nccalla@exp.	com/n	wked	evisi	2000	Sampled	By:		MAD	547	- 1111111	C#708424-01-01	Alisha Williams
MOE R	EGULATED DRINKIN	G WATER OR WATE ON THE MAXXAM D	R INTENDED	FOR HU	MAN C	ONSUMPTION	MUST BE	1			AJ	NALYSIS R	EQUESTED	(PLEASE	BE SPECIFIC)			Turnaround Time (TAT	
Regul	ation 153 (2011)		Other Regulatio	replications when	IN OF C	MANUFER NA		circle):	1								Regular (S	Please provide advance notic tandard) TAT:	e for rush projects
	Res/Park Mediu		Sanitary Sew	THE PERSON NAMED IN		Special In	structions	00 -		4							(will be applied	f if Rush TAT is not specified):	
able 2	Ind/Comm Coarse	Reg 558.	Storm Sewer					/ Cr		EX/F1							CHANGE STREET,	 5-7 Working days for most leafs. itandard TAT for certain tests such a 	* BOD and Dissons/Eurans
able 3	Agri/Other For R	MISA PWQO	Municipality _		_		1.4	/ BH /		s, BTI							days - contact	your Project Manager for details.	
		Other		1		Territoria de la constantina della constantina d		d Filtere	PAHs	F							Job Specific	Rush TAT (if applies to entire so March 20,2019	ibmission 48, hou
	Include Criteri	on Certificate of An	alysis (Y/N)?					Field	g 153	g 153								ation Number:	(call lab for #)
San	ple Barcode Label	Sample (Location) I	dentification	Date Sa	ampled	Time Sampled	Matrix	ш.	O.Reg	O.Reg							# of Bottles	Con	(car rap for #)
		BHI		Mar		1:00pm	6W		X	X	'						6		1,1
		BH3				2:00	1		1										
		BH9				10;00m													
		BHIC)			11:00													7
		BHII				12:30 m							94	By .					
		BHZ	0	1	,	12:00gan	1		V	V							1		1.1
	10																		
													Ť		18-Mar-	19 14:55			
					-		C I E	1177	-	-	+	-	-		a Willian				
		With the second					W.				_		- 11		969684	11:11 III		04	ice
														ET C.	OTT	00,1			DINOTE
	RELINQUISHED BY: (SI	(nature/Print)	Date: (YY/	MM/DD)	Tim 2-4		RECEIVED	Y: (Signature			Date: (YY	MM/DD)	Ti	me	# jars used :	and and		ory Use Only	
1000	H. Tean	7.	19/0	1/18	of 12	2 m 3	1- Su	e leg	~		19/5	3/1_	14:	55		Time Sensitive	remperatur	e (°C) on Recei Custody Preser	Seal Yes
ESS OTHE	RWISE AGREED TO IN WR	TING, WORK SUBMITTED	ON THIS CHAIN	OF CUSTOE	Y IS SUB	JECT TO MAXXAM	S STANDARD TE	RMS AND COM	DITIONS S	IGNING O	F THIS CHA	IN OF CUS	TODY DOCU	IMENT IS		- 44	2,1	Intaci	
OTTLEDGE	TENT AND AGGET TANGE	OUR TERMS WHICH AP	E AVAILABLE FU	K AIEMING	AI WWW	MAXXAM.CATERN	AS.							IMENT IS		AMDI EE MIJOT DE	7.000		White: Maxxa Yellow:
	ONSIBILITY OF THE RELI	HOLD TIME AND PACKAG									ANALYTIC	AL TAT DE	LAYS.		5	UNT	T COOL (< 10° C IL DELIVERY TO N	FROM TIME OF SAMPLING	

exp Services Inc

Client Project #: 250806-C0 Project name: HAZELDEAN

Client ID: BH1

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

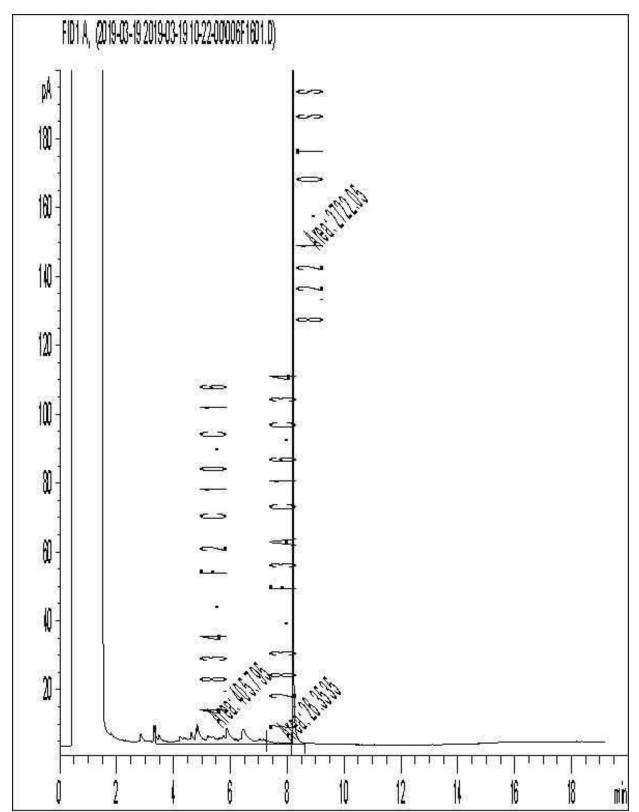


exp Services Inc

Client Project #: 250806-C0 Project name: HAZELDEAN

Client ID: BH3

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

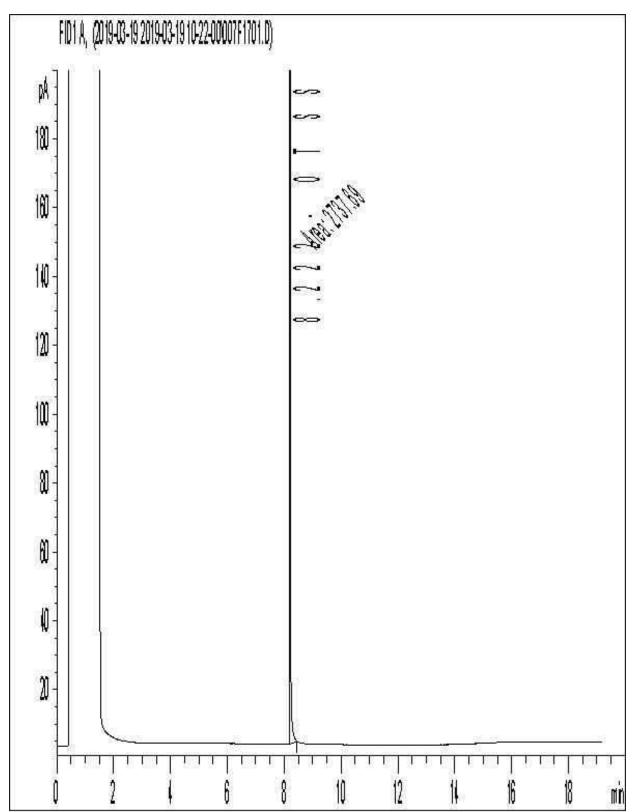


exp Services Inc

Client Project #: 250806-C0 Project name: HAZELDEAN

Client ID: BH3

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

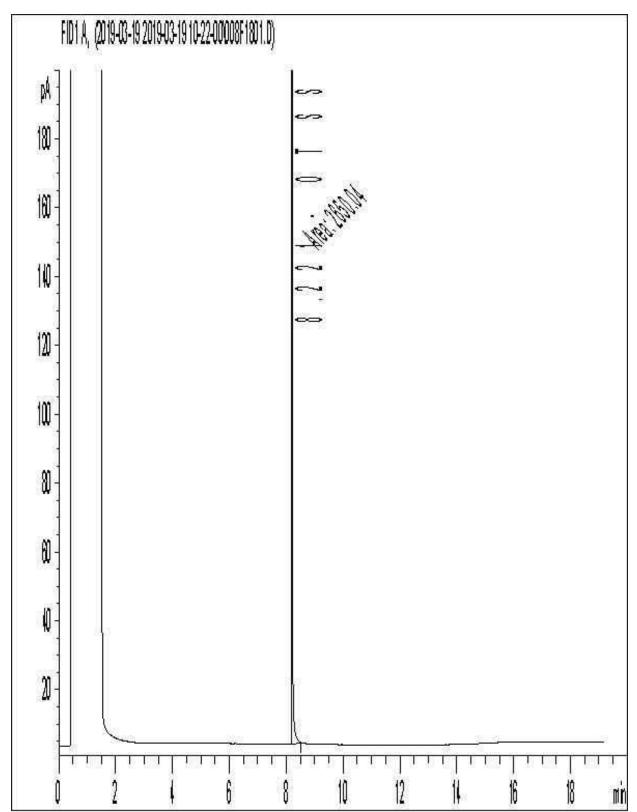


exp Services Inc

Client Project #: 250806-C0 Project name: HAZELDEAN

Client ID: BH9

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

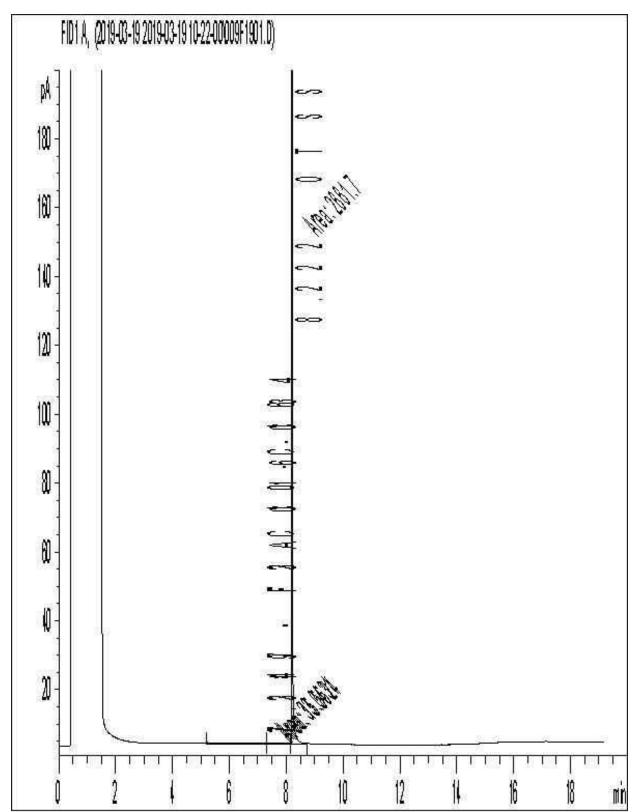


exp Services Inc

Client Project #: 250806-C0 Project name: HAZELDEAN

Client ID: BH10

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

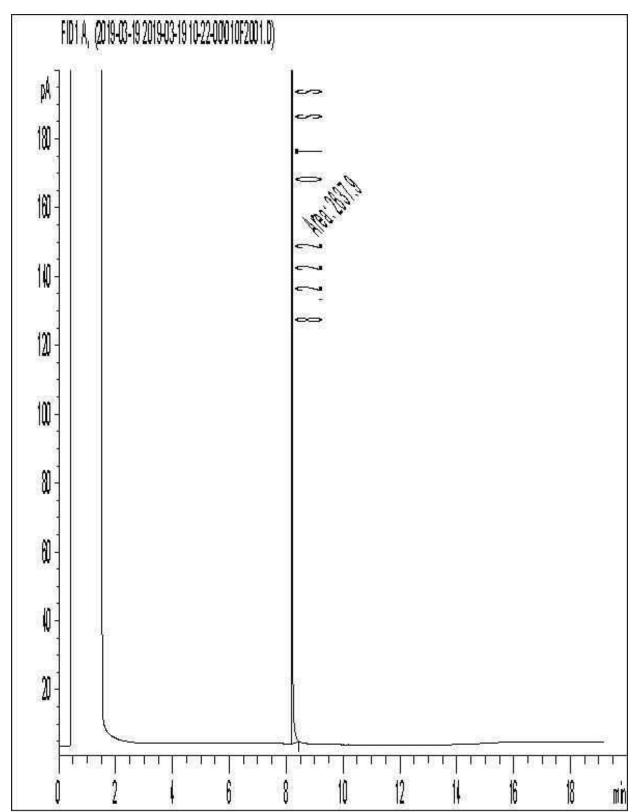


exp Services Inc

Client Project #: 250806-C0 Project name: HAZELDEAN

Client ID: BH11

Petroleum Hydrocarbons F2-F4 in Water Chromatogram



exp Services Inc

Client Project #: 250806-C0 Project name: HAZELDEAN

Client ID: BH20

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

Your Project #: OTT-00250806-CO

Your C.O.C. #: 117556

Attention: Mark McCalla

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2019/06/05

Report #: R5739765 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9E8646 Received: 2019/06/03, 12:45

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Methylnaphthalene Sum (1)	1	N/A	2019/06/04	CAM SOP-00301	EPA 8270D m
Petroleum Hydro. CCME F1 & BTEX in Water	2	N/A	2019/06/03	OTT SOP-00002	CCME CWS
Petroleum Hydrocarbons F2-F4 in Water (2)	2	2019/06/03	2019/06/03	OTT SOP-00001	CCME Hydrocarbons
PAH Compounds in Water by GC/MS (SIM) (1)	1	2019/06/04	2019/06/04	CAM SOP-00318	EPA 8270D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Laboratories Mississauga
- (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Your Project #: OTT-00250806-CO

Your C.O.C. #: 117556

Attention: Mark McCalla

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2019/06/05

Report #: R5739765 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9E8646 Received: 2019/06/03, 12:45

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Alisha Williamson, Project Manager Email: Alisha.Williamson@bvlabs.com Phone# (613)274-0573

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

exp Services Inc

Client Project #: OTT-00250806-CO

Sampler Initials: PO

O.REG 153 PAHS (WATER)

BV Labs ID		JWP650							
Sampling Date		2019/06/03							
Sampling Date		11:00							
COC Number		117556							
	UNITS	вн3	RDL	QC Batch					
Calculated Parameters									
Methylnaphthalene, 2-(1-)	ug/L	2.6	0.071	6154949					
Polyaromatic Hydrocarbons									
Acenaphthene	ug/L	0.34	0.050	6157129					
Acenaphthylene	ug/L	<0.050	0.050	6157129					
Anthracene	ug/L	<0.050	0.050	6157129					
Benzo(a)anthracene	ug/L	<0.050	0.050	6157129					
Benzo(a)pyrene	ug/L	<0.010	0.010	6157129					
Benzo(b/j)fluoranthene	ug/L	<0.050	0.050	6157129					
Benzo(g,h,i)perylene	ug/L	<0.050	0.050	6157129					
Benzo(k)fluoranthene	ug/L	<0.050	0.050	6157129					
Chrysene	ug/L	<0.050	0.050	6157129					
Dibenz(a,h)anthracene	ug/L	<0.050	0.050	6157129					
Fluoranthene	ug/L	<0.050	0.050	6157129					
Fluorene	ug/L	0.31	0.050	6157129					
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	0.050	6157129					
1-Methylnaphthalene	ug/L	2.6	0.050	6157129					
2-Methylnaphthalene	ug/L	<0.050	0.050	6157129					
Naphthalene	ug/L	0.14	0.050	6157129					
Phenanthrene	ug/L	0.10	0.030	6157129					
Pyrene	ug/L	<0.050	0.050	6157129					
Surrogate Recovery (%)	•		-						
D10-Anthracene	%	90		6157129					
D14-Terphenyl (FS)	%	99		6157129					
D8-Acenaphthylene	%	97		6157129					
RDL = Reportable Detection I	RDL = Reportable Detection Limit								
QC Batch = Quality Control B	atch								

exp Services Inc

Client Project #: OTT-00250806-CO

Sampler Initials: PO

O.REG 153 PHCS, BTEX/F1-F4 (WATER)

BV Labs ID		JWP650	JWP651	JWP651		
Sampling Date		2019/06/03	2019/06/03	2019/06/03		
		11:00	11:30	11:30		
COC Number		117556	117556	117556		
	UNITS	вн3	BH1	BH1 Lab-Dup	RDL	QC Batch
BTEX & F1 Hydrocarbons						
Benzene	ug/L	<0.20	<0.20	<0.20	0.20	6155108
Toluene	ug/L	<0.20	<0.20	<0.20	0.20	6155108
Ethylbenzene	ug/L	0.51	<0.20	<0.20	0.20	6155108
o-Xylene	ug/L	0.33	<0.20	<0.20	0.20	6155108
p+m-Xylene	ug/L	<0.40	<0.40	<0.40	0.40	6155108
Total Xylenes	ug/L	<0.40	<0.40	<0.40	0.40	6155108
F1 (C6-C10)	ug/L	<25	<25	<25	25	6155108
F1 (C6-C10) - BTEX	ug/L	<25	<25	<25	25	6155108
F2-F4 Hydrocarbons						
F2 (C10-C16 Hydrocarbons)	ug/L	<100	<100	<100	100	6155242
F3 (C16-C34 Hydrocarbons)	ug/L	<200	<200	<200	200	6155242
F4 (C34-C50 Hydrocarbons)	ug/L	<200	<200	<200	200	6155242
Reached Baseline at C50	ug/L	Yes	Yes	Yes		6155242
Surrogate Recovery (%)	•					•
1,4-Difluorobenzene	%	101	94	103		6155108
4-Bromofluorobenzene	%	86	96	101		6155108
D10-Ethylbenzene	%	71	85	86		6155108
D4-1,2-Dichloroethane	%	94	95	107		6155108
o-Terphenyl	%	104	101	99		6155242
RDL = Reportable Detection I	imit					

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Report Date: 2019/06/05

exp Services Inc

Client Project #: OTT-00250806-CO

Sampler Initials: PO

TEST SUMMARY

BV Labs ID: JWP650 Sample ID: BH3

Collected: 2019/06/03

Matrix: Water

Shipped:

Received: 2019/06/03

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Methylnaphthalene Sum	CALC	6154949	N/A	2019/06/04	Automated Statchk
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	6155108	N/A	2019/06/03	Fatemeh Habibagahi
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6155242	2019/06/03	2019/06/03	Mariana Vascan
PAH Compounds in Water by GC/MS (SIM)	GC/MS	6157129	2019/06/04	2019/06/04	Mitesh Raj

BV Labs ID: JWP651 Sample ID: BH1 Matrix: Water

Collected: 2019/06/03

Shipped:

Received: 2019/06/03

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	6155108	N/A	2019/06/03	Fatemeh Habibagahi
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6155242	2019/06/03	2019/06/03	Mariana Vascan

BV Labs ID: JWP651 Dup

Collected: 2019/06/03

Shipped:

Sample ID: BH1 Matrix: Water

Received: 2019/06/03

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Water	HSGC/MSFD	6155108	N/A	2019/06/03	Fatemeh Habibagahi
Petroleum Hydrocarbons F2-F4 in Water	GC/FID	6155242	2019/06/03	2019/06/03	Mariana Vascan

Report Date: 2019/06/05

exp Services Inc

Client Project #: OTT-00250806-CO

Sampler Initials: PO

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 11.0°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

exp Services Inc

Client Project #: OTT-00250806-CO

Sampler Initials: PO

			Matrix	Spike	SPIKED	BLANK	Method I	RPD		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6155108	1,4-Difluorobenzene	2019/06/03	104	70 - 130	104	70 - 130	102	%		
6155108	4-Bromofluorobenzene	2019/06/03	103	70 - 130	97	70 - 130	94	%		
6155108	D10-Ethylbenzene	2019/06/03	101	70 - 130	89	70 - 130	84	%		
6155108	D4-1,2-Dichloroethane	2019/06/03	103	70 - 130	102	70 - 130	100	%		
6155242	o-Terphenyl	2019/06/03	102	30 - 130	104	30 - 130	100	%		
6157129	D10-Anthracene	2019/06/04			105	50 - 130	113	%		
6157129	D14-Terphenyl (FS)	2019/06/04			100	50 - 130	105	%		
6157129	D8-Acenaphthylene	2019/06/04			95	50 - 130	103	%		
6155108	Benzene	2019/06/03	88	70 - 130	81	70 - 130	<0.20	ug/L	NC	40
6155108	Ethylbenzene	2019/06/03	79	70 - 130	83	70 - 130	<0.20	ug/L	NC	40
6155108	F1 (C6-C10) - BTEX	2019/06/03					<25	ug/L	NC	40
6155108	F1 (C6-C10)	2019/06/03	82	70 - 130	89	70 - 130	<25	ug/L	NC	40
6155108	o-Xylene	2019/06/03	87	70 - 130	92	70 - 130	<0.20	ug/L	NC	40
6155108	p+m-Xylene	2019/06/03	85	70 - 130	84	70 - 130	<0.40	ug/L	NC	40
6155108	Toluene	2019/06/03	88	70 - 130	86	70 - 130	<0.20	ug/L	NC	40
6155108	Total Xylenes	2019/06/03					<0.40	ug/L	NC	40
6155242	F2 (C10-C16 Hydrocarbons)	2019/06/03	103	50 - 130	106	80 - 120	<100	ug/L	NC	50
6155242	F3 (C16-C34 Hydrocarbons)	2019/06/03	103	50 - 130	106	80 - 120	<200	ug/L	NC	50
6155242	F4 (C34-C50 Hydrocarbons)	2019/06/03	103	50 - 130	106	80 - 120	<200	ug/L	NC	50
6157129	1-Methylnaphthalene	2019/06/04			70	50 - 130	<0.050	ug/L	17	30
6157129	2-Methylnaphthalene	2019/06/04			62	50 - 130	<0.050	ug/L	18	30
6157129	Acenaphthene	2019/06/04			79	50 - 130	<0.050	ug/L	9.6	30
6157129	Acenaphthylene	2019/06/04			75	50 - 130	<0.050	ug/L	8.6	30
6157129	Anthracene	2019/06/04			89	50 - 130	<0.050	ug/L	3.2	30
6157129	Benzo(a)anthracene	2019/06/04			94	50 - 130	<0.050	ug/L	2.6	30
6157129	Benzo(a)pyrene	2019/06/04			93	50 - 130	< 0.010	ug/L	2.5	30
6157129	Benzo(b/j)fluoranthene	2019/06/04			94	50 - 130	<0.050	ug/L	2.5	30
6157129	Benzo(g,h,i)perylene	2019/06/04			93	50 - 130	<0.050	ug/L	1.4	30
6157129	Benzo(k)fluoranthene	2019/06/04			97	50 - 130	<0.050	ug/L	0.94	30
6157129	Chrysene	2019/06/04			92	50 - 130	<0.050	ug/L	3.5	30
6157129	Dibenz(a,h)anthracene	2019/06/04			93	50 - 130	<0.050	ug/L	1.3	30
6157129	Fluoranthene	2019/06/04			98	50 - 130	<0.050	ug/L	1.9	30

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: OTT-00250806-CO

Sampler Initials: PO

			Matrix	Spike	SPIKED	BLANK	Method B	nod Blank RPD		
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6157129	Fluorene	2019/06/04			82	50 - 130	<0.050	ug/L	6.1	30
6157129	Indeno(1,2,3-cd)pyrene	2019/06/04			101	50 - 130	<0.050	ug/L	1.3	30
6157129	Naphthalene	2019/06/04			62	50 - 130	<0.050	ug/L	13	30
6157129	Phenanthrene	2019/06/04			91	50 - 130	<0.030	ug/L	2.7	30
6157129	Pyrene	2019/06/04			97	50 - 130	<0.050	ug/L	1.3	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

exp Services Inc

Client Project #: OTT-00250806-CO

Sampler Initials: PO

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Steve Roberts, Ottawa Lab Manager

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	/'
NA	axxam
IVI	
A	Bureau Veritas Group Company

6740 Campobello Road, Mississauga, Ontario LSN 2L8

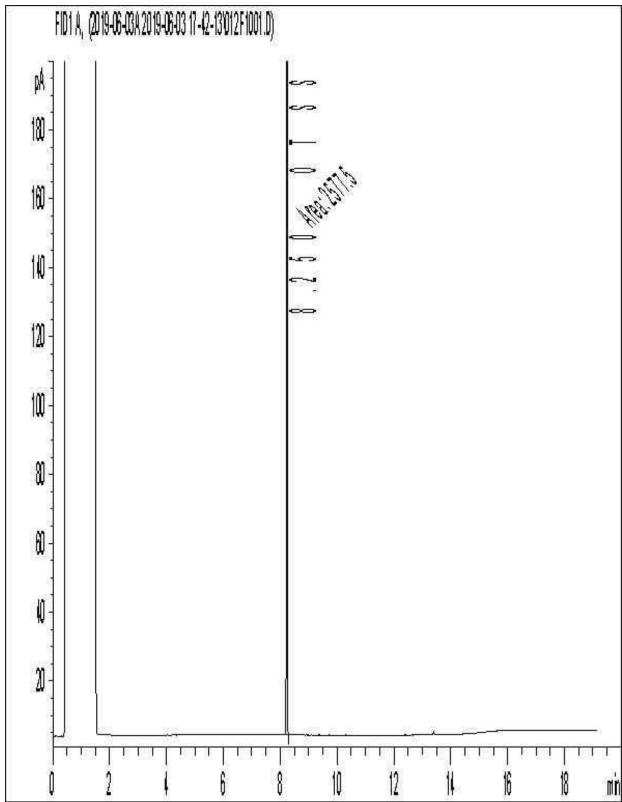
Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266

4 '	**7	p-	print.	-
	1	5	5	-
-	1	U	U	U

A Bureau Verit	as Group Company CAM FCD-011	91/3			0.307063							C	HAIN	OFC	USTO	DY RE	COR	5]	L17556 Pag	ge of
200	Invoice Information	10-11-11	Report	t Information	if diff	fers fro	m invo	oice)			I		Proje	ect Inform	ation (wh	ere applic	able)		Turnaround Tir	me (TAT) Required
Company Name:	EXP Services 1	C Compan	y Name:	1037							Q	uotation	#: _	6	YP	Stre	-	3.	Regular TAT (5-7 day	s) Most analyses
Contact Name:	MARK MEALL	A Contact	Name:								P.C	D. #/ AF	E#:						PLEASE PROVIDE ADVANCE	E NOTICE FOR RUSH PROJECTS
Address: 2	MARK MCALL	Dr - Address:						H			Pr	oject #:		OT	1-00	250	806	CC	Rush TAT (Surcha	arges will be applied)
	PRODUCTION OF THE				Œ.				Bij.		Sit	te Locati	ion:	1676	ola)	Hill.		HT	1 Day 2 D	ays 3-4 Days
Phone: 613 68	8-1899 Fax:	Phone:		47.00		Fax:					Sit	te#:				647				从需要
Email: M	och incalla @ oxp	LOn Email:									Sa	mpled E	Ву: _	f	. 0			21.61	Date Required:	
	MOE REGULATED DRINKING WATER OF	R WATER INTENDED FO	R HUMAN CON	SUMPTION N	AUST B	E SUBI	MITTEE	O ON T	НЕ МА	XXAM	DRINK	ING WAT	TER CHA	IN OF CU	STODY	136	F AU	125	Rush Confirmation #:	THE RESIDENCE OF THE PARTY OF T
	rulation 153	Other Re	gulations									Analysis	Reques	ted					LABORATO	DRY USE ONLY
Table 2		_			TED	Aetals / Hg / CrVI	S THE S			ANICS		1WS - B)	,						CUSTODY SEAL. Y / N Present Intact	COOLER TEMPERATURES
Include Criteria on Certifica	te of Analysis: Y / N				UBINIT	ICLE)				INORG	TALS	etals, i	T		Н			VALYZE		441-1404-1-1-1-1
SAMPLES MUST	T BE KEPT COOL (< 10 $^{\circ}$ C) FROM TIME OF S	AMPLING UNTIL DELIV	ERY TO MAXXA	М	INERS	RED (CIR	15		M	METALS &	MSIME	TALS PIMS M	X		Н			NOT ANA	COOLING MEDIA PRESENT:	η
SAN	MPLE IDENTIFICATION	DATE SAMPLED (YYYY/MM/DD)	TIME SAMPLED (HH:MM)	MATRIX	# OF CONTA	FIELD FILTER	BTEX/ PHC	PHCs F2 - F4	VOCs	REG 153 ME	REG 153 ICPIAS METALS	REG 153 METALS (Hg. Cr VI, ICPMS I			4			HOLD- DO N	B	IMENTS
1 BH	3	2019/04/03	11/100	w	5	-	X	X		1			X						19 19 10	
2 BH		111	11630	W	4	-	X	X											450	1 -2
3					113										1 h				199	
4	注加度 %。	100								9										QF 1
5	A PARK SHARE TO																			
6				n-19 12		5				1	\top		RE(EIVI	ED IN	1000			100	
7	No. of Occasion		sha Willi						1				П			111	AWA		ON	fre.
8			B9E86																	13/4/ 3/8/
9		1 17.757	. 07	7 001									\Box					1940		1 5 9 8 1
10	W/Macany stor	E. Con									0									
RELINQUISHED	D BY: (Signature/Print) DA	TE: (YYYY/MM/DD)	TIME: (HH:N	(M)		RECE	EIVED E	BY: (Sig	nature	/Print			DAT	E: (YYYY/	MM/DD)	TI	ME: (HH:	MM)	MAXX	AM JOB#
Philp	Oliver 201	9-06-03	12443	5 4	ca	11	-	3	ci	7		85	20	90	6/03	1	2-4	5		
Dilla	01 1-21		110 8	46.5						0					17					

Unless otherwise agreed to in writing, work submitted on this Chain of Custody is subject to Maxxam's standard Terms and Conditions. Signing of this Chain of Custody document is acknowledgment and acceptance of our terms which are available for viewing at www.maxxam.ca/terms. Sample container, preservation, hold time and packages information can be viewed at http://maxxam.ca/wp-content/uploads/Ontario-COC.pdf.

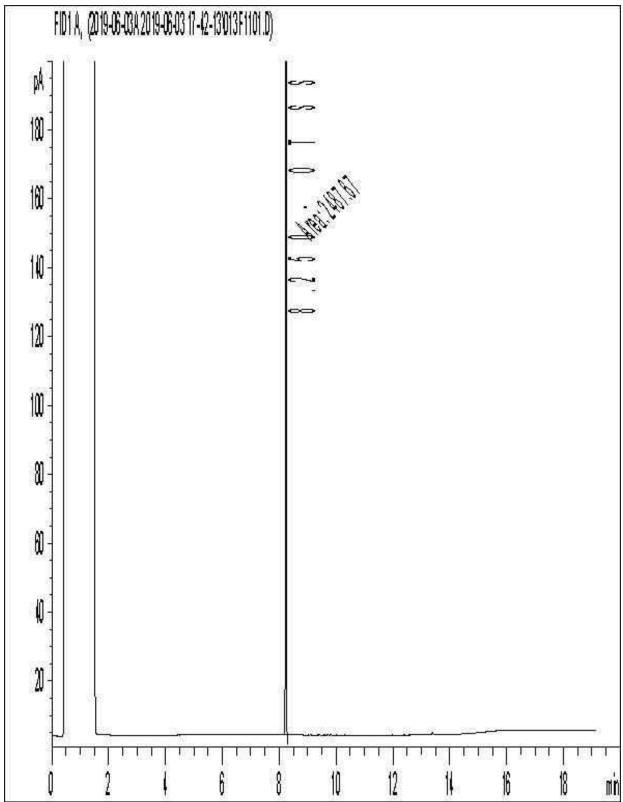
COC-1004 (03/17)


Invoice Information	Report Informa	tion (if differs from invoice)	112-11-11-11-11-11-11-11-11-11-11-11-11-	OF CUSTODY REC	10110	17556 Page of	
Company Name: EXP Services	/IC Company Name:	TATE STEELING	Quotation #:	EXP Stree	-3.	Regular TAT (5-7 days) Most analyses	
Contact Name: MARK MCAZ	COntact Name:		P.O. #/ AFE#:			PLEASE PROVIDE ADVANCE NOTICE FOR BUSH PROJECTS	
Address: 2650 QUEERS U	eUD - Address:		Project #: 6	17-002508	106-60		
tione: 613 688-1899 Fax	Phone	Fax	Site Location:			1 Day 2 Days 3-4 Days	
mail: Mark mccalla@a		Paic	Sampled By:	P.O.		Date Required:	
	TER OR WATER INTENDED FOR HUMAN CONSUMPTION	N MUST BE SUBMITTED ON THE MAXXAM DE		OF CUSTODY	1350	Rush Confirmation #:	
Regulation 153	Other Regulations	1	Analysis Requested			LABORATORY USE ONLY	
Table 1 Res/Park Med/ Eine lable 2 Ind/Comm Coarse	CCME Sanitary Sewer Bylaw MISA Storm Sewer Bylaw	5				COOLER TEMPERATURES	
Table 7 - Agri/ Other *	PWGO Region	H87C	9			Present Intact	
FOR RSC (PLEASE CIRCLE) Y / N	REG 558 (MIN. 3 DAY TAT REQUIRED)	Metals, Metals, Sanics	HWS. 9			10,11,12	
iclude Criteria on Certificate of Analysis: Y / N		S SUBM CHCLI)	A Chi		MALYZE	5/8/6 10/9/9	
SAMPLES MUST BE KEPT COOL (< 10 °C) FROM TIME		TENED (F. F.T.) F.F.T. F.F.T. F.F.T. F.F.T. F.F.T. F.F.T. F.F.F.T. F.F.T. F.F.F.T. F	METALS 1, ICPMS		2 NOT A	COOLING MEDIA PRESENT: 1 N	
SAMPLE IDENTIFICATION	DATE SAMPLED TIME SAMPLED MARTI	RED PC PS PC	EG 153 Ag C: V		00.010	COMMENTS	
1 BH3	2019/0403 //hoo U	5-XX	X		1		
2 BHI	11/1/30 W	4-88					
3						-4	\$1.00 m
4						*	
5	03-Jun-19	12:45					
7	— Alisha Williams	on	V 1508	VED NOTTA	WA	ON siz.	7)
8 -		1111				010 102.	
9	D) E8040						
10	Tritti Stroye AA						1.0
REUNQUISHED BY: (Signature/Print)	DATE: (YYYY/MM/DD) TIME: (HH:MM)	RECEIVED BY: (Signature/Print)	DATE: ()	YYYY/MM/DD) TIME	E (HH:MM)	MAXXAM JOB #	
Philo Olimin	2015-06-03 12/45	Kun Jay	B 2-14	106/03/12	-45		
Pici . Or in		LE EYWHEN E	Hrz 2019		8 40	÷ //	

BV Labs Job #: B9E8646 Report Date: 2019/06/05 BV Labs Sample: JWP650 exp Services Inc

Client Project #: OTT-00250806-CO

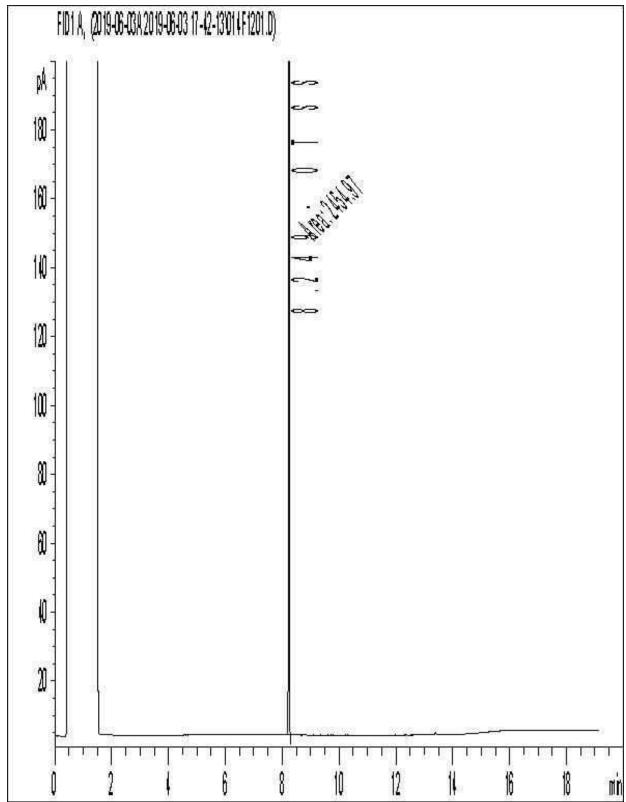
Client ID: BH3


Petroleum Hydrocarbons F2-F4 in Water Chromatogram

BV Labs Job #: B9E8646 Report Date: 2019/06/05 BV Labs Sample: JWP651 exp Services Inc Client Project #: OTT-00250806-CO

Client ID: BH1

Petroleum Hydrocarbons F2-F4 in Water Chromatogram



BV Labs Job #: B9E8646 Report Date: 2019/06/05 BV Labs Sample: JWP651 Lab-Dup

exp Services Inc Client Project #: OTT-00250806-CO

Client ID: BH1

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

