

Engineers, Planners & Landscape Architects

Engineering

Land / Site Development

Municipal Infrastructure

Environmental / Water Resources

Traffic / Transportation

Structural

Recreational

Planning

Land / Site Development

Planning Application Management

Municipal Planning Documents & Studies

Expert Witness (OMB)

Wireless Industry

Landscape Architecture

Urban Design & Streetscapes

Open Space, Parks & Recreation Planning

Community & Residential Developments

Commercial & Institutional Sites

Environmental Restoration

Adelaide Apartments Tower Expansion

Stormwater Management and Servicing Brief

STORMWATER MANAGEMENT AND SERVICING BRIEF

Adelaide Apartments Tower Expansion

Prepared By:

NOVATECH Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario K2M 1P6

> January 5th, 2016 September 20th, 2016 January 25th, 2019 **Revised: May 31st, 2019**

Novatech File: 116070 Ref No. R-2016-076

May 31st, 2019

City of Ottawa Planning and Growth Management Department Development Review (Urban Services) 110 Laurier Avenue West Ottawa, Ontario K1P 1J1

Attention: Abdul Mottalib

Re: Adelaide Apartments Tower Expansion – Stormwater and Servicing Brief

Enclosed is a copy of the revised 'Stormwater Management and Servicing Brief' for the proposed development at Preston Square in the City of Ottawa. This brief is submitted in support of the site plan application and demonstrates how the site will be serviced with sanitary, storm, and water infrastructure.

Should you have any questions, please contact me.

NOVATECH

Greg MacDonald, P.Eng. Director, Land Development and Public Sector Infrastructure

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	PURPOSE	1
2.0	SANITARY SEWER	1
2.1 2.2	DESIGN CRITERIA PROPOSED SANITARY FLOWS	
3.0	STORMWATER MANAGEMENT	2
	EXISTING SITE STORMWATER MANAGEMENT	3 4 4 6 7
4.0	WATERMAIN	7
4.1 4.2 4.3 4.4	DESIGN CRITERIA AVERAGE, MAXIMUM DAY AND PEAK HOUR DEMANDS WATER SUPPLY FOR FIRE-FIGHTING BOUNDARY CONDITIONS AND SUMMARY OF WATERMAIN ANALYSIS RESULTS	7 8
5.0	EROSION & SEDIMENT CONTROL	9
6.0	CONCLUSIONS1	0

LIST OF FIGURES

Figure 1 – Key Plan Figure 2 – Existing Conditions

APPENDICES

Appendix A – Servicing Report Checklist

Appendix B – Sanitary Design Sheet

Appendix C – Stormwater Design Sheets and Roof Drain and ICD Information

Appendix D – Watermain and Fire Demand Information

PLANS

116070-GP – General Plan of Services

116070-GR – Grading Plan

116070-STM – Storm Drainage Area Plan

1.0 INTRODUCTION

The proposed development is located at Preston Square which is a 2.1 hectare (ha) urban mixeduse development located north of Aberdeen Street, between Preston Street and Rochester Street, as shown in **Figure 1 – Key Plan**.

The proposed development will consist of a 30-storey, 228-unit residential tower, located on top of the existing four-storey common underground parking structure on the Preston Square site. The proposed tower will connect to the existing 8-storey Adelaide residential building. An additional floor will be added to the existing Adelaide building, which will include 24 units. In addition to the Adelaide building (referred to as Block B), the property also contains three existing commercial towers, referred to as Blocks A, C and D. See **Figure 2 – Existing Conditions** for illustration.

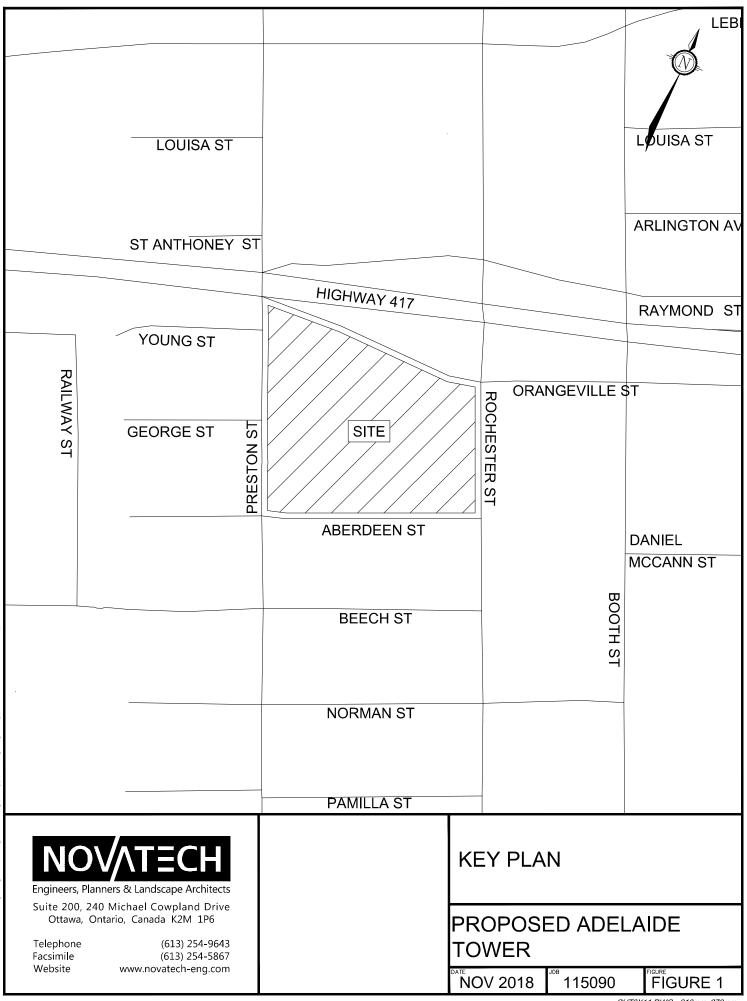
A Stormwater Management and Servicing Brief was previously submitted in support of a Site Plan application for the proposed development in 2016. The concept for the proposed development has since been revised and is presented in this revised report.

1.1 Purpose

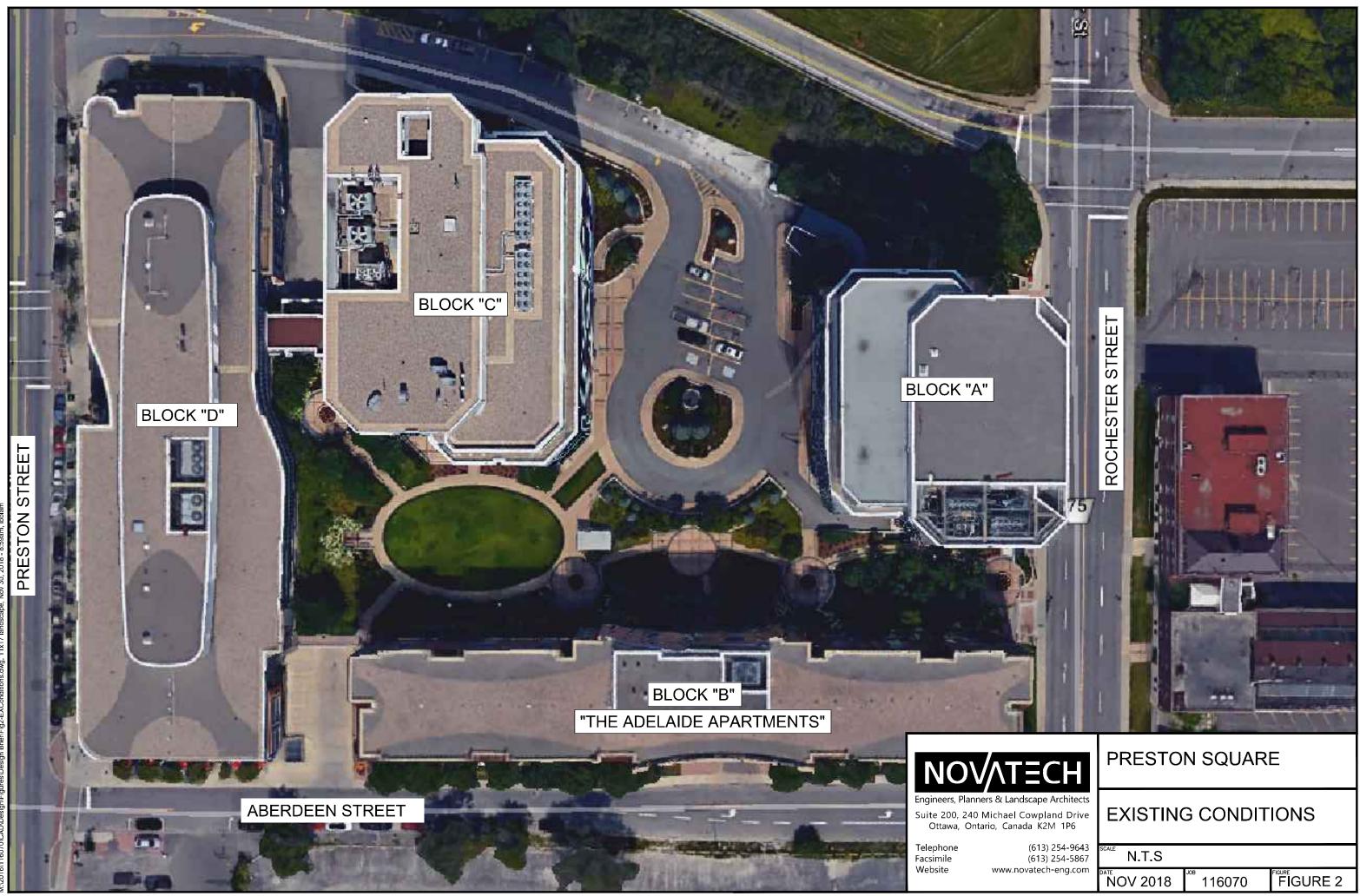
This servicing brief addresses the approach to site servicing and stormwater management for the proposed development and is being submitted in support of a site plan control application.

The objective of the site servicing design is to conform to the requirements of the City of Ottawa, to provide suitable sewage outlets and to ensure that a domestic water supply and appropriate fire protection are provided for the proposed development.

Servicing criteria, expected sewage flows and water demands for the proposed development have been established using the City of Ottawa design guidelines for sewer systems and water distribution.


The City of Ottawa Servicing Study Guidelines for Development Applications requires that a Development Servicing Study Checklist be included to confirm that each applicable item is deemed complete and ready for review by City of Ottawa Infrastructure Approvals. A completed checklist in enclosed in **Appendix A**.

2.0 SANITARY SEWER


The proposed development will be serviced by a new 200mm dia. sanitary service that will outlet to an existing 1200mm dia. municipal sewer on Aberdeen Street. This sewer flows west on Aberdeen Street before discharging into the existing 1650mm dia. combined trunk sewer on Preston Street which flows north.

2.1 Design Criteria

The City of Ottawa design criteria were used to calculate the theoretical proposed sanitary flows. The following design criteria were taken from Section 4 – 'Sanitary Sewer Systems' of the City of Ottawa Sewer Design Guidelines, incorporating the revisions as per Technical Bulletin ISTB-2018-01.

SHT8X11.DWG - 216mmx279mm

SHT11X17.DWG - 279mmX432mm

Residential Population Densities

- Residential Units (1-bedroom Apartment):
- Residential Units (2-bedroom Apartment):

Residential Flows

- Average Daily Residential Sewage Flow:
- Residential Peaking Factor:

1.4 people / unit 2.1 people / unit

280 L / person / day Per Harmon Equation (Max. 4.0, Correction Factor=0.8)

<u>Extraneous Flows</u> N/A

The proposed development is located within an existing development as described in Section **1.0** above. The proposed sanitary service is solely dedicated to the new Tower. The proposed development will not increase the extraneous flows currently generated by the site and therefore its value has been omitted from the proposed sanitary flow calculations. Therefore, the following sanitary flow calculations represent the net increase in sanitary flows from the site.

2.2 **Proposed Sanitary Flows**

Table 2.2 details the sanitary design flows for the proposed development.

Building	Use	Unit Count	Design Population (people)	Average Flow (L/s)	Peak Flow (L/s)
New Tower	Residential	216 x 1-bdrm 12 x 2-bdrm	328	1.06	3.54 ¹
1-storey Addition		22 x 1-bdrm 2 x 2-bdrm	35	0.11	0.38 ¹
Total		252 Units	363	1.17	3.92

 Table 2.2: Theoretical Sanitary Design Flows for Proposed Development

¹ Excluding extraneous flow.

Based on Manning's Equation, a 200mm dia. sanitary gravity service at a minimum slope of 1.0% has a full flow conveyance capacity of approximately 34.2 L/s, which is sufficient to convey the theoretical sanitary design flows calculated above. Refer to the Sanitary Sewer Design Sheet in **Appendix B** for detailed calculations.

3.0 STORMWATER MANAGEMENT

3.1 Existing Site Stormwater Management

Stormwater flows from the Preston Square site are currently split into two drainage areas, as described in the *Stomwater Management Report Tower C and Block D City Gate Corporation*, dated October 2005 (R-2005-116) by Novatech, summarized as follows:

- Drainage Area 1 (northern part of the site): Flows are conveyed to the existing 1650mm dia. combined sewer on Preston Street via an on-site 1200mm diameter super pipe. The on-site super pipe utilizes a 250mm diameter orifice at its outlet to control the flows. Flows from the roofs of Buildings A and C are controlled by roof drains.
- Drainage Area 2 (southern part of the site): Flows are conveyed to the existing 1200mm dia. combined sewer on Aberdeen Street. Flows from the roofs of Buildings B (The Adelaide Apartments) and D are controlled by roof drains.

3.2 Stormwater Management Design Criteria and Methodology

The stormwater management criteria and objectives for the site (as per the above referenced 2005 report) are as follows:

- Provide a dual drainage system (i.e. minor and major system flows).
- Control the post-development flows from the site to allowable release rates corresponding to the 5-year and 100-year peak flows using a runoff coefficient of 0.4 and a 20-minute rainfall intensity derived from City of Ottawa IDF curves, as specified by the City of Ottawa. Post-development peak flows will be controlled for storms up to and including the 100-year design event, prior to being released into the municipal combined sewers in Aberdeen Street and Preston Street.
- Provide guidelines to ensure that site preparation and construction is in accordance with the current best management practices for erosion and sediment control.

The stormwater management design for the proposed development is based on the methodology implemented in the above referenced 2005 report.

The Modified Rational Method was used to determine the storage volume(s) required to control the post-development runoff flows to the allowable release rates and to determine the size of the control structure(s).

3.3 Allowable Release Rates

The allowable release rates for the site for the 5-year and the 100-year design events were calculated using the Rational Method and are summarized in **Table 3.3**.

Table 3.3: Allowable Release Rates

Area	Allowable Release Rate (L/s)			
Alea	5-year	100-year		
Area 1 (1.304 ha)	101.5 L/s	174.0 L/s		
Area 2 (0.802 ha)	62.4 L/s	107.0 L/s		
Total (Site)	163.9 L/s	281.0 L/s		

Refer to **Appendix C** for detailed calculations.

3.4 Post-Development Site Conditions

The area of the site to be developed will be split between the two drainage areas as shown on attached drawing **116070-STM**. A brief description of the various sub-catchment areas is as follows:

- Drainage Area 1: Runoff from the street-level areas around the exterior of the new Tower will drain uncontrolled via podium drains and catchbasins to the existing 1200mm dia. superpipe. Flows from this superpipe to the combined sewer on Preston Street will continue to be controlled by an orifice at the outlet of the pipe.
- Drainage Area 2: Runoff from the proposed Tower roof (Area B-2) and the new roof on the proposed 9th floor addition to the Adelaide Apartment building (Area B-1) will be controlled by roof drains. There will be 10 roof drains on the new roof of the Adelaide Apartment building and 12 roof drains on the roof of the new Tower. These roof drains will outlet to the combined sewer in Aberdeen Street.

The rest of the site is unchanged.

3.4.1 Drainage Area 1

Controlled Flow from Block A and C Roofs (Area 1-R)

The flows from the roof areas in Area 1 are attenuated by controlled flow roof drains. There are 14 existing roof drains in Area 1 (6 and 8 roof drains for Blocks A and C respectively). The roof drains on average discharge 1.0 L/s, so flows from the roofs of existing buildings A (Area 1-"A") and C (Area 1-"C") are controlled to approximately 14 L/s for the 5-year and 100-year design events.

Refer to the *Stomwater Management Report Tower C And Block D City Gate Corporation*, (R-2005-116) dated October 2005 by Novatech for details.

Controlled Surface Flow (Area 1-A)

The flows from surface areas in Area 1 are currently attenuated by a 250mm dia. orifice plug type ICD installed within the 300mm dia. outlet pipe of MH1. Stormwater runoff from this drainage area is temporarily stored in an underground superpipe prior to being discharged into the municipal storm sewer system. Additional storage is available in the existing catchbasins and manholes. **Table 3.4**-A summarizes the existing available storage volumes for Area 1.

Item	Area (m²)	Depth (m)	Length (m)	Approximate Storage Volume (m³)
1200mm dia. superpipe	1.17	N/A	99.80	116.8
CB 3 (600mmx600mm)	0.36	= 60.35 - 59.37 = 0.98	N/A	0.4
CB 1 (600mmx600mm)	0.36	= 60.35 - 58.98 = 1.37	N/A	0.5
MH1 (2440mm dia.)	4.67	= 60.35 - 58.50 = 1.85	N/A	8.6

Total				130.7 m³
STM 2 (1200mm dia.)	1.13	= 60.35 - 58.65 = 1.70	N/A	1.9
STM 1 (1300mm dia.)	1.32	= 60.35 - 58.46 = 1.89	N/A	2.5

The design release rate for flows from the surface areas of Area 1 was set to meet the allowable release rate for Area 1, taking into account the existing controlled flows from the roof areas. The Modified Rational Method was used to determine the storage volume required for this catchment area.

Table 3.4-B summarizes the post-development flows and the required storage volumes for runoff from the surface areas for the 5-year and the 100-year design events for Area 1.

	Roof Areas				
Design Event	Controlled Flow (L/s)	Uncontrolled Flow (L/s)	Design Release Rate (L/s)	Storage Volume Required (m³)	Total Flow for Area 1 (L/s)
5-year	14	135.6	87.5	69 m³	101.5
100-year	14	232.5	160.0	112 m³	174.0

Table 3.4-B: Summary of Area 1 Post-Development Flows and Required Storage Volume

The existing available storage volume is greater than the storage volume required for the 100-year design event, therefore there is adequate existing storage available to meet the required storage volumes for Area 1.

Inlet Control Device (ICD) Sizing

To achieve the design release rate to the combined sewer on Preston Street, a new orifice will need to be installed. This orifice has been sized using the following orifice equation:

Q = CA(2gh)	^0.5	
Where:	Q C h g A	 Discharge (m³/s) = 100-year design release rate (0.160 m³/s) 0.61 (circular hole) head required (m) = 1.88m (value chosen for no ponding) 9.81 m/s² Area of Orifice (m²)
∴ A =) = 0.61* 0.0432 0.234 r	

To achieve the design release rate to the combined sewer, a new Tempest MHF ICD SQ 234mm orifice will be installed at the outlet to existing MH1 (2440mm diameter). A shop drawing of the proposed ICD has been attached in **Appendix C.** Refer to the **General Plan of Services** for the location of existing manhole MH1.

3.4.2 Drainage Area 2

Controlled Flow from Block D (Area 2-"D")

Runoff from the roof of Building D is currently controlled by roof drains. There are 8 existing roof drains on Building D, which will remain. These existing controlled flow roof drains discharge on average 1.0 L/s. Therefore, there is a total controlled flow of approximately 8 L/s for the 5-year and 100-year design events from the roof of Building D.

<u>Controlled Flow from Building B and New Tower (Areas 2-"B1" and 2-"B2")</u>

The post-development flows from roof areas 2-"B1" (the Adelaide) and 2-"B2" (the new Tower) will be attenuated by the use of controlled flow roof drains. Watts Adjustable Flow Control Roof Drains set at ¹/₄ weir opening exposed are proposed.

A total of ten (10) roof drains are proposed on the Adelaide building and fourteen (14) roof drains are proposed on the new Tower. The controlled release rate, ponding depth, required and maximum storage volumes for both the 5-year and 100-year design events are summarized in the **Table 3.4**-**C** below.

Roof Drain ID		trolled v (L/s)	Ponding Depth (m)		Storage Vol. Required (m³)		Max. Storage	
	5-year	100-year	5-year	100-year	5-year	100-year	Available (m ³)	
2-"B1" (RD1 – RD10)	7.9	8.7	0.07-0.11	0.13-0.14	31.7	64.6	74.8	
2-"B2" (RD11-RD24)	9.8	11.1	0.05-0.08	0.10-0.14	2.5	7.4	8.9	

Table 3.4-C: Areas 2-"B1" and 2-"B2" Controlled Flow Building Roof Drains

Refer to **Appendix C** for Modified Rational Method calculations and Watts adjustable flow control roof drain information.

Uncontrolled Surface Flow (Area 2-A)

The post-development flows from the surface areas of Area 2 will remain uncontrolled. **Table 3.4-D** summarizes the post-development flows for Area 2.

Table 3.4-D: Summary of Area 2 Post-Development Flows

Design Event	Roof Areas Controlled Flow (L/s)	Surface Areas Uncontrolled Flow (L/s)	Total Flow for Area 2 (L/s)	
5-year	25.7 L/s	33.9 L/s	59.6 L/s	< Allowable Rate of 62.4 L/s
100-year	27.8 L/s	58.1 L/s	85.9	< Allowable Rate of 107.0 L/s

3.5 Summary of Site Post-Development Flows

Table 3.5 summarizes the total post-development flows from the site.

Area	Post-Development Flows (L/s)				
Alea	5-year	100-year			
1	101.5	174.0			
2	59.6	85.9			
Total Site	161.1 L/s	259.9 L/s			
	< 163.9 L/s Site Allowable Release Rate	< 281.0 L/s Site Allowable Release Rate			

As the 100-year total site post-development stormwater flow is less than the 100-year site allowable release rate to the municipal combined sewer system, there is remaining capacity for the net increase of approximately 3.9 L/s in peak sanitary flow from the proposed development.

3.6 Major Overland Drainage

The site was originally designed to direct major overland drainage flows in excess of the 100-year event flow overland towards Preston and Aberdeen Street. The proposed development will maintain the existing overland flow patterns.

4.0 WATERMAIN

The proposed development will be serviced with twin 150 mm dia. PVC DR 18 services that will connect to the existing 200mm dia. watermain on Aberdeen Street.

4.1 Design Criteria

The City of Ottawa design criteria were used to calculate the theoretical water demands for the proposed development. The following design criteria were taken from Section 4 of the Ottawa Design Guidelines – Water Distribution:

Residential

	Residential Units (1-bedroom apartment): Residential Units (2-bedroom apartment):	1.4 people / unit 2.1 people / unit
•	Average Day Demand Residential:	350 L / person / day
	Residential Maximum Day Demand: Residential Peak Hour Demand:	2.5 x Avg. Day Demand 2.2 x Max Day Demand

4.2 Average, Maximum Day and Peak Hour Demands

The theoretical water demands for the proposed development are given in **Table 4.2**, based on the design criteria above.

Building	Use	Average Water Demand (L/s)	Maximum Day Demand (L/s)	Peak Hour Demand (L/s)
New Tower	Residential	1.33	3.32	7.31
1-storey Addition	Residential	0.14	0.35	0.78
Total		1.47 L/s	3.68 L/s	8.09 L/s

Refer to **Appendix D** for detailed calculations.

4.3 Water Supply for Fire-Fighting

The Fire Underwriters Survey (FUS) was used to estimate fire flow requirements for the proposed Tower. In the absence of detailed architectural information, some assumptions were made regarding the building construction. A fire-resistive construction was assumed due to the large size and type of occupancy for the proposed building. Also, the proposed Tower will be fully sprinklered and supplied with a fire department siamese connection(s), located within 45m of the existing on-site fire hydrant adjacent to Tower A.

The fire flow requirements include both sprinkler system and hose allowances in accordance with the OBC and NFPA 13. The sprinkler system will be designed by the fire protection (sprinkler) contractor at the detailed design stage as this process involves detailed hydraulic calculations based on building layout, pipe runs, head losses, fire pump requirements, etc. Booster pumps will be required to provide adequate service pressure on the upper floors.

It should be noted that fire flow requirements calculated using the FUS method tend to generate higher values when compared to flows being calculated using the OBC and NFPA. In the previous 2016 version of this report, the fire flow required for the proposed Tower was calculated using OBC to be 550 US gpm, or 35 L/s. Since then the building design has been updated.

The calculated fire flow demand for the updated proposed Tower using FUS is 67 L/s (4,000 L/min). Refer to **Appendix D** for detailed FUS calculations.

4.4 Boundary Conditions and Summary of Watermain Analysis Results

Water demands and fire flow requirements for the proposed development were provided to the City of Ottawa. These values were used to generate the municipal watermain network boundary conditions. **Table 4.4-A** summarizes the boundary conditions provided by the City of Ottawa for the existing municipal watermain network.

Municipal Watermain Boundary Condition	Aberdeen St Watermain
Minimum HGL	107.0 m
Maximum HGL	115.0 m
Max Day + Fire Flow	107.5 m

Table 4.4-A: Hydraulic Boundary Condition Provided by the City

Refer to **Appendix D** for a copy of the correspondence from the City of Ottawa.

Table 4.4-B summarizes the theoretical water demands for the Tower under the various operating conditions and compares the anticipated operating pressures at the watermains to the normal operating pressures outlined in the City of Ottawa Design Guidelines. It is assumed that hydraulic losses in the 150mm water services are negligible. Furthermore, the proposed Tower will be equipped with booster pumps to increase pressure for the upper floors.

Condition	Water Service Connection Location	Total Water Demand (L/s)	Approximate Design Operating Pressures (psi) / Relative Head (m) ¹	Normal Municipal Operating Pressures (psi)
Average Demand		1.33	72 psi (50.55 m)	50-70 psi
Max Day + Fire Flow Demand	Aberdeen Street	70.33	61 psi (43.05 m)	20 psi (Min.)
Peak Hour Demand		7.33	61 psi (42.55 m)	40-70 psi

Table 4.4-B: Water Analysis Results Summary

1 – The building finished floor elevation is approximately 64.45 m.

As the approximate design operating pressure for the Average Demand condition is higher than the normal municipal operating pressure range, a pressure check will be completed at completion of construction to determine if pressure control is required.

As indicated in the summary table above, the existing watermain in Aberdeen Street should have sufficient water supply for the proposed Tower.

5.0 Erosion & Sediment Control

To mitigate erosion and to prevent sediment from entering the storm sewer system, temporary erosion and sediment control measures will be implemented on-site during construction in accordance with the Best Management Practices for Erosion and Sediment Control. This includes the following temporary measures:

- Filter bags will be placed under the grates of nearby catchbasins, manholes and will remain in place until construction is completed.
- Silt fencing will be placed per OPSS 577 and OPSD 219.110 along the surrounding construction limits, where applicable.
- Mud mats will be installed at the site entrances.
- Street sweeping and cleaning will be performed, as required, to suppress dust and to provide safe and clean roadways adjacent to the construction site.
- On-site dewatering is to be directed to a sediment trap and/or gravel splash pad and discharged safely to an approved outlet as directed by the engineer.

The temporary erosion and sediment control measures will be implemented prior to construction and will remain in place during all phases of construction. Regular inspection and maintenance of the erosion control measures will be undertaken.

6.0 CONCLUSIONS

This report has been prepared in support of a site plan control application for the proposed development at Preston Square. The proposed development will consist of a new 30-storey residential Tower and the addition of a single storey to the existing 8-storey Adelaide Apartments residential building.

The conclusions are as follows:

- The proposed development will include a total of ±252 residential units.
- The new residential Tower will be serviced by extending new services to the municipal watermain and combined sewer in Aberdeen Street.
- On-site stormwater quantity control will be provided by using controlled roof drains and the existing stormwater management infrastructure, which includes controlled outlets. The existing inlet control device will be adapted. A new 234mm dia. orifice plug type ICD will be installed at the Preston Street stormwater outlet to the combined municipal sewer.
- As total combined stormwater and sanitary flows to the municipal combined sewer system will meet the allowable site flows, the municipal combined sewers in the adjacent streets are estimated to have adequate capacity to accommodate the proposed development.
- The proposed Tower will be sprinklered and supplied with a fire department Siamese connection. The Siamese connection will be located within 45m of an existing private fire hydrant in Preston Square. Based on hydraulic boundary conditions provided by the City of Ottawa, the existing municipal water system has adequate capacity to accommodate the proposed development.
- On-site stormwater quality control is not required, nor being provided.
- Temporary erosion and sediment controls will be provided during construction.

It is recommended that this Stormwater Management and Servicing Brief be approved for implementation.

NOVATECH

Prepared by:

Bolam

Lydia Bolam, P.Eng. Project Engineer

Reviewed By:

Greg MacDonald, P.Eng. Director, Land Development and Public Sector Infrastructure

APPENDIX A

4.1 General Content	Addressed (Y/N/NA)	Section	Comments
Executive Summary (for larger reports only).	NA		
Date and revision number of the report.	Y	Cover	
Location map and plan showing municipal address,	Y		Figure 1 & Dwgs.
boundary, and layout of proposed development.	T		Figure 1 & Dwgs.
Plan showing the site and location of all existing services.	Y		Dwg. 116070-GP
Development statistics, land use, density, adherence to			
zoning and official plan, and reference to applicable	Y	1.0	
subwatershed and watershed plans that provide context	T	1.0	
to which individual developments must adhere.			
Summary of Pre-consultation Meetings with City and	N/A		
other approval agencies.	N/A		
Reference and confirm conformance to higher level			
studies and reports (Master Servicing Studies,			
Environmental Assessments, Community Design Plans),	Y	1.1	
or in the case where it is not in conformance, the	T		
proponent must provide justification and develop a			
defendable design criteria.			
Statement of objectives and servicing criteria.	Y	1.1	
Identification of existing and proposed infrastructure	Y	2.0 - 4.0	Dwg. 116070-GP
available in the immediate area.	-	2.0 - 4.0	Dwg. 110070-07
Identification of Environmentally Significant Areas,			
watercourses and Municipal Drains potentially impacted	N/A		
by the proposed development (Reference can be made	N/A		
to the Natural Heritage Studies, if available).			
Concept level master grading plan to confirm existing and			
proposed grades in the development. This is required to			
confirm the feasibility of proposed stormwater			
management and drainage, soil removal and fill	Y		Dwg. 116070-GR
constraints, and potential impacts to neighboring			Dwg. 1100/0-GK
properties. This is also required to confirm that the			
proposed grading will not impede existing major system			
flow paths.			

4.1 General Content	Addressed (Y/N/NA)	Section	Comments
Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to	N/A		
address potential impacts. Proposed phasing of the development, if applicable.	N/A		
Reference to geotechnical studies and recommendations concerning servicing.	N/A		
All preliminary and formal site plan submissions should have the following information:	Y		
Metric scale	Y		
North arrow (including construction North)	Y		
Key plan	Y		
Name and contact information of applicant and property owner	Y		
Property limits including bearings and dimensions	Y		
Existing and proposed structures and parking areas	Y		
Easements, road widening and rights-of-way	Y		
Adjacent street names	Y		

4.2 Water	Addressed (Y/N/NA)	Section	Comments
Confirm consistency with Master Servicing Study, if	NI / A		
available.	N/A		
Availability of public infrastructure to service proposed	v		
development.	Y		
Identification of system constraints.	Y	4.0	
Identify boundary conditions.	Y	4.0	
Confirmation of adequate domestic supply and pressure.	Y	4.0	
Confirmation of adequate fire flow protection and			
confirmation that fire flow is calculated as per the Fire	V	4.0	
Underwriter's Survey. Output should show available fire	Y	4.0	
flow at locations throughout the development.			
Provide a check of high pressures. If pressure is found to			
be high, an assessment is required to confirm the	Y	4.0	
application of pressure reducing valves.			
Definition of phasing constraints. Hydraulic modeling is			
required to confirm servicing for all defined phases of the	N/A		
project including the ultimate design.			
Address reliability requirements such as appropriate			
location of shut-off valves.	N		Detailed Design Requirement
Check on the necessity of a pressure zone boundary			
modification.	N/A		
Reference to water supply analysis to show that major			
infrastructure is capable of delivering sufficient water for			
the proposed land use. This includes data that shows that			
the expected demands under average day, peak hour and	N		Fire Demand Checked Only
fire flow conditions provide water within the required			
pressure range.			
Description of the proposed water distribution network,			
including locations of proposed connections to the			
existing system, provisions for necessary looping, and	V	4.0	
appurtenances (valves, pressure reducing valves, valve	Y	4.0	
chambers, and fire hydrants) including special metering			
provisions.			
Description of off-site required feedermains, booster			
pumping stations, and other water infrastructure that			
will be ultimately required to service proposed	N/A		
development, including financing, interim facilities, and			
timing of implementation.			
Confirmation that water demands are calculated based	V	4.0	
on the City of Ottawa Design Guidelines.	Y	4.0	
Provision of a model schematic showing the boundary			
conditions locations, streets, parcels, and building	Ν		
locations for reference.			

4.3 Wastewater	Addressed (Y/N/NA)	Section	Comments
Summary of proposed design criteria (Note: Wet-			
weather flow criteria should not deviate from the City of			
Ottawa Sewer Design Guidelines. Monitored flow data	Y	2.0	
from relatively new infrastructure cannot be used to			
justify capacity requirements for proposed			
Confirm consistency with Master Servicing Study and/or	NI / A		
justifications for deviations.	N/A		
Consideration of local conditions that may contribute to			
extraneous flows that are higher than the recommended	N/A		
flows in the guidelines. This includes groundwater and	N/A		
soil conditions, and age and condition of sewers.			
Description of existing sanitary sewer available for	V	2.0	
discharge of wastewater from proposed development.	Y	2.0	
Verify available capacity in downstream sanitary sewer			
and/or identification of upgrades necessary to service the			
proposed development. (Reference can be made to	Y	2.0	
previously completed Master Servicing Study if			
applicable)			
Calculations related to dry-weather and wet-weather			
flow rates from the development in standard MOE	N/A		
sanitary sewer design table (Appendix 'C') format.			
Description of proposed sewer network including sewers,	Y	2.0	Dwg. 116070-GP
pumping stations, and forcemains.	I	2.0	Dwg. 110070-GF
Discussion of previously identified environmental			
constraints and impact on servicing (environmental			
constraints are related to limitations imposed on the	N/A		
development in order to preserve the physical condition	N/A		
of watercourses, vegetation, soil cover, as well as			
protecting against water quantity and quality).			
Pumping stations: impacts of proposed development on			
existing pumping stations or requirements for new	N/A		
pumping station to service development.			
Forcemain capacity in terms of operational redundancy,	N/A		
surge pressure and maximum flow velocity.	N/A		
Identification and implementation of the emergency			
overflow from sanitary pumping stations in relation to	N/A		
the hydraulic grade line to protect against basement	N/A		
flooding.			
Special considerations such as contamination, corrosive	N/A		
environment etc.	N/A		

4.4 Stormwater	Addressed (Y/N/NA)	Section	Comments
Description of drainage outlets and downstream			
constraints including legality of outlet (i.e. municipal	Y	3.0	
drain, right-of-way, watercourse, or private property).			
Analysis of the available capacity in existing public	Y	3.0	
infrastructure.	Ŷ	5.0	
A drawing showing the subject lands, its surroundings,			
the receiving watercourse, existing drainage patterns and	Y		116070-STM
proposed drainage patterns.			
Water quantity control objective (e.g. controlling post-			
development peak flows to pre-development level for			
storm events ranging from the 2 or 5 year event			
(dependent on the receiving sewer design) to 100 year	Y	3.0	
return period); if other objectives are being applied, a	Ŷ	5.0	
rationale must be included with reference to hydrologic			
analyses of the potentially affected subwatersheds,			
taking into account long-term cumulative effects.			
Water Quality control objective (basic, normal or			
enhanced level of protection based on the sensitivities of	Y	3.0	
the receiving watercourse) and storage requirements.			
Description of stormwater management concept with			
facility locations and descriptions with references and	Y	3.0	
supporting information.			
Set-back from private sewage disposal systems.	N/A		
Watercourse and hazard lands setbacks.	N/A		
Record of pre-consultation with the Ontario Ministry of			
Environment and the Conservation Authority that has	N/A		
jurisdiction on the affected watershed.			
Confirm consistency with sub-watershed and Master	N/A		
Servicing Study, if applicable study exists.	11/7		
Storage requirements (complete with calcs) and			
conveyance capacity for minor (5 yr) and major (100 yr)	Y	3.0	
events.			
Identification of watercourse within the proposed			
development and how watercourses will be protected,	N/A		
or, if necessary, altered by the proposed development	,		
with applicable approvals.			
Calculate pre and post development peak flow rates			
including a description of existing site conditions and	Y	3.0	
proposed impervious areas and drainage catchments in			
comparison to existing conditions.			
Any proposed diversion of drainage catchment areas	N/A		
from one outlet to another.	,		

Project Name: Adelaide Tower Expansion Project Number: 116070 Date: January 2019

4.4 Stormwater	Addressed (Y/N/NA)	Section	Comments
Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and SWM	Y	3.0	Dwgs. 116070-GP, -GR and - STM
If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post- development flows up to and including the 100-year return period storm event.	Y	3.0	
Identification of potential impacts to receiving watercourses.	N/A		
Identification of municipal drains and related approval requirements.	N/A		
Description of how the conveyance and storage capacity will be achieved for the development.	Y	3.0	
100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.	Y	3.0	100 Year HGL not available
Inclusion of hydraulic analysis including HGL elevations.	N		
Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.	Y	5.0	
Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.	N/A		
Identification of fill constrains related to floodplain and geotechnical investigation.	N/A		

Addressed (Y/N/NA)	Section	Comments
Ν		
N		
N/A		
	(Y/N/NA) N/A	(Y/N/NA) Section N/A N/A N N N N N N

4.6 Conclusion	Addressed (Y/N/NA)	Section	Comments
Clearly stated conclusions and recommendations.	Y	6.0	
Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.	N/A		
All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario.	Y		

APPENDIX B

Sanitary Design Sheet

SANITARY SEWER DESIGN SHEET

	LOCATION				RESIDENTI	AL FLOW			EXTRA	NEOUS FLOW	TOTAL FLOWS		
			_							ion Allowance	Average Dry	Peak Dry	Peak Wet
Area ID	Use	Total		of Units	Design	Avg	Peak	Res. Peak	Dry Weather	Wet Weather	Weather	Weather	Weather
/ lica ib	030	Area	1-bdrm	2-bdrm	Population	Flow	Factor	Flow	(l/l dry)	(I/I wet)			Flow (PWWW)
		(ha)	-	-	(persons)	(l/s)	-	(l/s)	(l/s)	(l/s)	(l/s)	(l/s)	(l/s)
THEORETICAL POST-	DEVELOPMENT												
Existing Building	Residential	N/A	79	79	277	0.90	3.33	2.99			0.90	2.99	2.99
New 1-storey addition	Residential	N/A	22	2	35	0.11	3.33	0.38			0.11	0.38	0.38
Subtotal			101	81	312	1.01	3.33	3.37			1.01	3.37	3.37
New Tower	Residential	N/A	216	12	328	1.06	3.33	3.54			1.06	3.54	3.54
Total			317	93	640	2.07	3.33	6.91			2.07	6.91	6.91
Residential Population 1-bedroom Apartment 2-bedroom Apartment Average Sanitary Flow Residential	vs	1.40 2.10 280	people / unit people / unit L/c/d										
Peak Extraneous Flow N/A - Refer to SWM and										LGB GJM			
Peaking Factors Residential		Harmon I	Equation, K=0.8	5					Date:	January 16, 2019			

APPENDIX C

Stormwater Design Sheets and Roof Drain and ICD Information

2-R

2-R

2-A

Surface runoff

Allowable Site Flows												
		A (ha)	A imp (ha)	A grav (ha)	A perv (ha)	C ₅	C ₁₀₀	Uncontrolled Flows (L/s)		(L/s) C = 0.4		
	Description	A (IIa)	C=0.9	C=0.6	C=0.2	55	0100	5 year	100 year	5-Yr (L/s)	100-Yr (L/s)	
	1 - BUILDINGS A AND C	1.304						N/A	N/A	101.5	174.0	
2 - BUILDI	NGS B AND D (ADELAIDE), TOWER EXPANSION	0.802						N/A	N/A	62.4	107.0	
-		2.11							TOTAL	163.9	281.0	
										t _c =20mins	t _c =20mins	
										i=70mm/hr	i=120mm/hr	
		Post -	Development : U	ncontrolled Site	Flows							
A	Description	A (ha)	A imp (ha)	A grav (ha)	A perv (ha)	C ₅	C ₁₀₀	Uncontroll	ed Flow (L/s)			
Area	Description	A (ha)	C=0.9	C=0.6	C=0.2	05	C ₁₀₀	5 year	100 year			
1-R	Controlled roof drains - Buildings C and A	0.240	0.240	0	0	0.90	0.90	42.0	72.1			
1-A	1-A Surface runoff		0.692	0	0.3724	0.66	0.66	135.6	232.5			
	Sub-Total 1.304 0.932 0.00 0.37 0.70 0.70 177.7 304.6]		
2-D	Controlled roof drains - Building D	0.322	0.322	0	0	0.90	0.90	56.4	96.7]		
2-B1	Controlled roof drains - Adelaide Building (B1)	0.198	0.198	0	0	0.90	0.90	34.6	59.3]		
2-B2	Controlled roof drains - New Tower (B2)	0.072	0.072	0	0	0.90	0.90	12.5	21.5]		

0

34.3

-

34.3

0

71.9

-

71.9

0.90

83.7

-

83.7

0.90

103.5

33.9

137.4

t_c=20mins

i=70mm/hr

177.4

58.1

235.5

 t_c =20mins

i=120mm/hr

2-A Surf	ace runoff	0.211	0.189	0	0.0225	0.83
	Sub-Total	0.802	1.371	0.00	0.02	1.54
		2.11				
	Post - Development	: Total Flows	s for Controlled	Site		
	Description	Flo	w (L/s)	Storage Rec	Provided	
rea	Description	5 year	100 year	5 year	100 year	(m ³)
Con	trolled roof drains - Buildings C and A	14.0	14.0	33.9	74.7	Assume >75
Surf	ace runoff	87.5	160.0	68.6	111.6	111.6
	Sub-Total (Area 1)	101.5	174.0	102.5	186.3	186.6
D Con	trolled roof drains - Building D	8.0	8.0	Refer to 'Tower	C and Block D'	SWM Report
1 Con	trolled roof drains - Adelaide Building (B1)	7.9	8.7	31.7	64.6	74.8
B2 Con	trolled roof drains - New Tower (B2)	9.8	11.1	2.5	7.4	8.9

0.591

25.7

33.9

59.6

161.1

0.591

27.8

58.1

85.9

259.9

Sub-total: (Area 2 roof areas)

Sub-Total (Area 2 roof areas)

TOTAL (SITE - AREA 1 + AREA 2)

Sub-Total (Area 2)

ADELAIDE TOWER EXPANSION												
PROJECT NO: 116070												
REQUIRED STORAGE - 1:5 YEAR EVENT												
AREA 1-A Controlled Flow-Surface Area												
OTTAWA IDF 0	CURVE				_							
Area =	1.064	ha	Qallow =	87.5	L/s							
C =	0.66		Vol(max) =	68.6	m3							
Time	Intensity	Q	Qnet	Vol								
(min)	(mm/hr)	(L/s)	(L/s)	(m3)								
5	141.18	273.52	186.02	55.81								
10	104.19	201.87	114.37	68.62								
15	83.56	161.89	74.39	66.95								
20	70.25	136.11	48.61	58.33								
25	60.90	117.98	30.48	45.72								
30	53.93	104.48	16.98	30.57								
35	48.52	94.00	6.50	13.65								
40	44.18	85.60	-1.90	-4.55								
45	40.63	78.72	-8.78	-23.72								
50	37.65	72.95	-14.55	-43.65								
55	35.12	68.05	-19.45	-64.19								
60	32.94	63.83	-23.67	-85.23								
65	31.04	60.15	-27.35	-106.68								
70	29.37	56.91	-30.59	-128.49								
75	27.89	54.03	-33.47	-150.61								
90	24.29	47.06	-40.44	-218.39								
105	21.58	41.81	-45.69	-287.82								
120	19.47	37.72	-49.78	-358.44								
135	17.76	34.42	-53.08	-429.96								
150	16.36	31.70	-55.80	-502.20								

Structures	Size (mm)	Area (m²)	T/G	Inv IN	Inv OUT
STM MH2	1200	1.13	60.50	58.65	58.65
STM MH1	1300	1.33	60.50	58.46	58.46
MH1	2440	4.68	60.65	58.55	58.50
CB 1	600 x 600	0.36	60.50	58.98	58.98
CB 3	600 x 600	0.36	60.50	59.37	59.37

PI =	3.14159265	
pipe I.D.=	1220	(1200 nomir
U	/G Pipe Volu	
End Area	1.169	(m²)
Total Length	99.8	(m)
Pipe Volume	116.7	(m ³)

U/G Pipe Size	1200MM
Pipe Segment	
Centre-Centre Length	
Inside Structure	1.2
U/G Storage Length	99.8

	Area A-1: Storage Table										
-				Un	derground Stor	age			Surface Storage	Total Storage	
Elevation (m)	System Head (m)	STM MH2 Volume (m°)	STM MH1 Volume (m°)	MH1 Volume (m°)	CB 1 Volume (m°)	CB 3 Volume (m°)	1200mm dia. Pipe Storage (m [°])	Total U/G Volume (m°)		Volume (m°)	
58.46 58.50 58.65 58.98 59.00 59.37 59.50 59.75 60.00 60.25 60.50	-0.15 0.00 0.33 0.72 0.85 1.10 1.35 1.60 1.85	0.37 0.40 0.81 0.96 1.24 1.53 1.81 2.09	0.00 0.25 0.69 0.72 1.21 1.38 1.71 2.04 2.38 2.71	0.70 2.24 2.34 4.07 4.68 5.84 7.01 8.18 9.35	0.00 0.01 0.14 0.19 0.28 0.37 0.46 0.55	0.00 0.05 0.14 0.23 0.32 0.41	0.00 26.95 45.91 51.90 59.88 116.66 116.66 116.66 116.66	0.00 27.52 49.08 55.22 66.11 123.92 125.88 127.84 129.81 131.77		0.0 0.0 27.5 49.1 55.2 66.1 123.9 125.9 125.9 125.9 125.8 131.8	

ELAIDE TOV	VER EXPA	NSION			
OJECT NO:					
QUIRED STO					
EA 1-A Cont		v-Surface A	rea		
TAWA IDF C					
Area =	1.064	ha	Qallow =	160.0	L/s
C =	0.66		Vol(max) =	111.6	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	242.70	470.22	310.23	93.07	
10	178.56	345.95	185.96	111.57	
15	142.89	276.85	116.86	105.17	
20	119.95	232.40	72.41	86.89	
25	103.85	201.20	41.21	61.81	
30	91.87	177.99	18.00	32.40	
35	82.58	159.99	0.00	0.00	
40	75.15	145.59	-14.40	-34.56	
45	69.05	133.78	-26.21	-70.76	
50	63.95	123.91	-36.08	-108.25	
55	59.62	115.52	-44.47	-146.76	
60	55.89	108.29	-51.70	-186.11	
65	52.65	102.00	-57.99	-226.16	
70	49.79	96.46	-63.53	-266.81	
75	47.26	91.55	-68.44	-307.96	
90	41.11	79.65	-80.34	-433.84	
105	36.50	70.71	-89.28	-562.45	
120	32.89	63.73	-96.26	-693.06	
135	30.00	58.12	-101.87	-825.17	
150	27.61	53.49	-106.50	-958.46	

Inlet Control Device - Circular Plug
1:100 Yr
Flow (L/s) = 160.0
Head (m) = 1.85
Elevation (m) = 60.35
Outlet Pipe Dia.(mm) = 300
Volume (m3) = 111.6
1:5 Yr
Flow (L/s) = 87.5
Head (m) = 0.55
Elevation (m) = 59.05
Outlet Pipe Dia.(mm) = 300
Volume (m3) = 68.6
Maximum Ponding Depth (cm)

aximum onding beptin (cm)						
1:100 Yr	0					
1:5 Yr	0					
Orifice Size - 1:100 vr Flow Check						

2=0.62xAx(2gh	<u>)^0.5</u>	
	<u>1:100 yr</u>	Flow Check
Q (m ³ /s) =	0.1600	0.1606
(m/s ²) =	9.81	9.81
(m) =	1.85	1.85
(m ²) =	0.042831746	0.04301
0 (m) =	0.233527457	0.23400
0 (mm) =	234	234.0

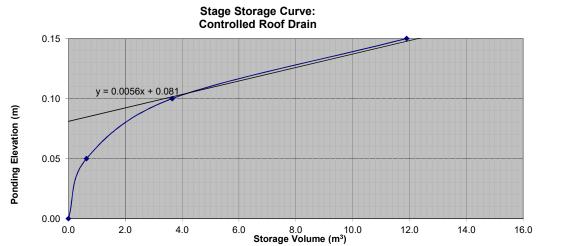
1:5 yr Flow Check	
	<u>1:5 yr</u>
Q (m ³ /s) =	0.0876
g (m/s ²) =	9.81
h (m) =	0.55
A (m ²) =	0.04301
D (m) =	0.234
D (mm) =	234

ADELAIDE	ADELAIDE TOWER EXPANSION						
116070							
REQUIRED	REQUIRED STORAGE - 1:5 YEAR EVENT						
AREA 1-R		Controll	ed Roof Drain	ns			
OTTAWA ID	F CURVE						
Area =	0.240	ha	Qallow =	14.00	L/s		
C =	0.90		Vol(max) =	33.9	m3		
Time	Intensity	Q	Qnet	Vol			
(min)	(mm/hr)	(L/s)	(L/s)	(m3)			
5	141.18	84.77	70.77	21.23			
10	104.19	62.57	48.57	29.14]		
15	83.56	50.17	36.17	32.56			
20	70.25	42.18	28.18	33.82			
25	60.90	36.57	22.57	33.85			
30	53.93	32.38	18.38	33.09			
35	48.52	29.13	15.13	31.78			
40	44.18	26.53	12.53	30.08			
45	40.63	24.40	10.40	28.07			
50	37.65	22.61	8.61	25.83			
55	35.12	21.09	7.09	23.40			
60	32.94	19.78	5.78	20.81			
65	31.04	18.64	4.64	18.10			
70	29.37	17.64	3.64	15.28			
75	27.89	16.75	2.75	12.36			
90	24.29	14.58	0.58	3.16			
105	21.58	12.96	-1.04	-6.55			
120	19.47	11.69	-2.31	-16.63			

ADELAIDE TOWER EXPANSION 116070					
	STODACE	4.400	YEAR EVENT	-	
AREA 1-R	STURAGE		ed Roof Dra		
		Control	eu Rooi Dia	1115	
			0 1	44.00	
Area =	0.240	ha	Qallow =	14.00	L/s
C =	0.90		Vol(max) =	74.7	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	242.70	145.74	131.74	39.52	
10	178.56	107.22	93.22	55.93	
15	142.89	85.81	71.81	64.62	
20	119.95	72.03	58.03	69.63	
25	103.85	62.36	48.36	72.54	
30	91.87	55.17	41.17	74.10	
35	82.58	49.59	35.59	74.73	
40	75.15	45.12	31.12	74.70	
45	69.05	41.46	27.46	74.15	
50	63.95	38.40	24.40	73.21	
55	59.62	35.80	21.80	71.95	
60	55.89	33.56	19.56	70.43	
65	52.65	31.61	17.61	68.69	
70	49.79	29.90	15.90	66.77	
75	47.26	28.38	14.38	64.69	
90	41.11	24.69	10.69	57.71	
105	36.50	21.92	7.92	49.87	
120	32.89	19.75	5.75	41.42	
		-	-		

Watts Accutrol Flow Control Roof Drains:			RD-100-A-ADJ	set to 1/4 Exposed	
Design Flow/Drain (L/s) Total Flow (L/s)			Ponding	Storage	e (m ³)
Event Flow/Drain (L/S) To		10tal 110w (L/3)	(cm)	Required	Provided
1:5 Year	1.00	14.00	10	33.9	39.0
1:100 Year	1.00	14.00	15	74.7	126.0

Roof Drain Storage Table for AVERAGE RD					
Elevation	Area RD 1	Total Volume			
m	m²	m³			
0.00	0	0			
0.05	17	0.4			
0.10	77	2.8			
0.15	171	9.0			

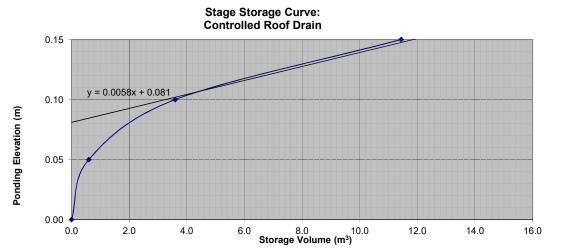

APPROXIMATE ONLY

ADELAIDE	ADELAIDE TOWER EXPANSION					
116070						
REQUIRED	STORAGE	E - 1:5 YE	AR EVENT			
AREA 2-R Controlled Roof Drain					#1	
OTTAWA ID	F CURVE					
Area =	0.023	ha	Qallow =	0.80	L/s	
C =	0.90		Vol(max) =	4.3	m3	
Time	Intensity	Q	Qnet	Vol		
(min)	(mm/hr)	(L/s)	(L/s)	(m3)		
5	141.18	8.29	7.49	2.25		
10	104.19	6.12	5.32	3.19		
15	83.56	4.91	4.11	3.70		
20	70.25	4.13	3.33	3.99		
25	60.90	3.58	2.78	4.16		
30	53.93	3.17	2.37	4.26		
35	48.52	2.85	2.05	4.30		
40	44.18	2.59	1.79	4.31		
45	40.63	2.39	1.59	4.28		
50	37.65	2.21	1.41	4.23		
55	35.12	2.06	1.26	4.17		
60	32.94	1.93	1.13	4.08		
65	31.04	1.82	1.02	3.99		
70	29.37	1.72	0.92	3.88		
75	27.89	1.64	0.84	3.77		
90	24.29	1.43	0.63	3.38		
105	21.58	1.27	0.47	2.94		
120	19.47	1.14	0.34	2.47		

ADELAIDE		ΕΧΡΔΝ	SION		
116070					
	STORAGE	- 1.100	YEAR EVENT		
AREA 2-R	01010101		ntrolled Roof		#1
OTTAWA II	DE CURVE				
Area =	0.023	ha	Qallow =	0.87	L/s
C =	0.90		Vol(max) =	8.7	m3
Ũ	0.00		t or(mun)	0.1	
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	242.70	14.25	13.38	4.01	
10	178.56	10.49	9.62	5.77	
15	142.89	8.39	7.52	6.77	
20	119.95	7.04	6.17	7.41	
25	103.85	6.10	5.23	7.84	
30	91.87	5.39	4.52	8.14	
35	82.58	4.85	3.98	8.36	
40	75.15	4.41	3.54	8.50	
45	69.05	4.05	3.18	8.60	
50	63.95	3.76	2.89	8.66	
55	59.62	3.50	2.63	8.68	
60	55.89	3.28	2.41	8.68	
65	52.65	3.09	2.22	8.66	
70	49.79	2.92	2.05	8.63	
75	47.26	2.77	1.90	8.57	
90	41.11	2.41	1.54	8.34	
105	36.50	2.14	1.27	8.02	
120	32.89	1.93	1.06	7.64	

Watts Accutrol Flow	Control Roof Drain	ns:	RD-100-A-ADJ	set to 1/4 Exposed	
Design Event	Flow (L/s)	Total Flow (L/s)	Ponding	Storage (m ³)	
Design Event	FIOW (L/S)	TOTAL FIOW (L/S)	(cm)	Required	Provided
1:5 Year	0.80	0.80	10.6	4.3	4.5
1:100 Year	0.87	0.87	13.0	8.7	8.8

Roof Drain Storage Table for RD #1					
Elevation	Area	Total Volume			
m	m ²	m ³			
0.00	0	0			
0.05	25.5	0.6			
0.10	95.1	3.7			
0.15	234.7	11.9			

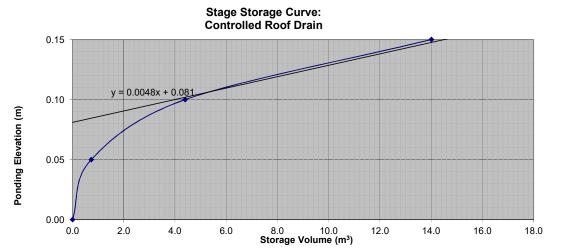


ADELAIDE	TOWER	EXPANS	SION		
116070					
REQUIRED	STORAGE				
AREA 2-R		Co	ntrolled Roof I	Drain #	2
OTTAWA ID	F CURVE				
Area =	0.022	ha	Qallow =	0.80	L/s
C =	0.90		Vol(max) =	3.9	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	7.69	6.89	2.07	
10	104.19	5.68	4.88	2.93	
15	83.56	4.55	3.75	3.38	
20	70.25	3.83	3.03	3.63	
25	60.90	3.32	2.52	3.78	
30	53.93	2.94	2.14	3.85	
35	48.52	2.64	1.84	3.87	
40	44.18	2.41	1.61	3.86	
45	40.63	2.21	1.41	3.82	
50	37.65	2.05	1.25	3.75	
55	35.12	1.91	1.11	3.67	
60	32.94	1.79	0.99	3.58	
65	31.04	1.69	0.89	3.47	
70	29.37	1.60	0.80	3.36	
75	27.89	1.52	0.72	3.24	
90	24.29	1.32	0.52	2.82	
105	21.58	1.18	0.38	2.37	
120	19.47	1.06	0.26	1.87	

-					
ADELAIDE	E TOWER	EXPAN	SION		
116070					
	STORAGE		YEAR EVENT		
AREA 2-R		Co	ntrolled Roof	FDrain #	2
OTTAWA IE	OF CURVE				
Area =	0.022	ha	Qallow =	0.87	L/s
C =	0.90		Vol(max) =	7.8	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	242.70	13.22	12.35	3.70	
10	178.56	9.73	8.86	5.31	
15	142.89	7.78	6.91	6.22	
20	119.95	6.53	5.66	6.80	
25	103.85	5.66	4.79	7.18	
30	91.87	5.00	4.13	7.44	
35	82.58	4.50	3.63	7.62	
40	75.15	4.09	3.22	7.74	
45	69.05	3.76	2.89	7.81	
50	63.95	3.48	2.61	7.84	
55	59.62	3.25	2.38	7.85	
60	55.89	3.04	2.17	7.83	
65	52.65	2.87	2.00	7.79	
70	49.79	2.71	1.84	7.74	
75	47.26	2.57	1.70	7.67	
90	41.11	2.24	1.37	7.39	
105	36.50	1.99	1.12	7.04	
120	32.89	1.79	0.92	6.64	

Natts Accutrol Flow Control Roof Drains:		RD-100-A-ADJ set to 1/4 Exposed			
Design Event Flow (L/s)		Total Flow (L/s)	Ponding		• (m³)
Design Event	FIOW (L/S)	Total Flow (L/S)	(cm)	Required	Provided
1:5 Year	0.80	0.80	10.6	3.9	4.3
1:100 Year	0.87	0.87	13.0	7.8	8.4

Roof Drain Stor	age Table for RD #	2
Elevation	Area	Total Volume
m	m ²	m ³
0.00	0	0
0.05	24	0.6
0.10	95.9	3.6
0.15	217.7	11.4

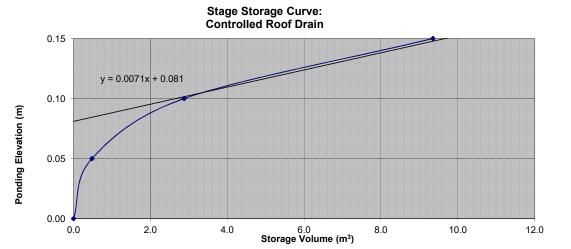


ADELAIDE TOWER EXPANSION					
116070					
REQUIRED	STORAGE				
AREA 2-R Controlled Roof Drain #					
OTTAWA ID	F CURVE				
Area =	0.027	ha	Qallow =	0.80	L/s
C =	0.90		Vol(max) =	5.2	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	9.43	8.63	2.59	
10	104.19	6.96	6.16	3.70	
15	83.56	5.58	4.78	4.30	
20	70.25	4.69	3.89	4.67	
25	60.90	4.07	3.27	4.90	
30	53.93	3.60	2.80	5.04	
35	48.52	3.24	2.44	5.13	
40	44.18	2.95	2.15	5.16	
45	40.63	2.71	1.91	5.17	
50	37.65	2.52	1.72	5.15	
55	35.12	2.35	1.55	5.10	
60	32.94	2.20	1.40	5.04	
65	31.04	2.07	1.27	4.97	
70	29.37	1.96	1.16	4.88	
75	27.89	1.86	1.06	4.78	
90	24.29	1.62	0.82	4.44	
105	21.58	1.44	0.64	4.04	
120	19.47	1.30	0.50	3.60	

ADELAIDE TOWER EXPANSION						
116070						
REQUIRED	STORAGE	E - 1:100	YEAR EVENT	-		
AREA 2-R			ntrolled Roof		3	
OTTAWA II	OTTAWA IDF CURVE					
Area =	0.027	ha	Qallow =	0.88	L/s	
C =	0.90		Vol(max) =	10.3	m3	
-						
Time	Intensity	Q	Qnet	Vol		
(min)	(mm/hr)	(L/s)	(L/s)	(m3)		
5	242.70	16.21	15.33	4.60		
10	178.56	11.93	11.05	6.63		
15	142.89	9.55	8.67	7.80		
20	119.95	8.01	7.13	8.56		
25	103.85	6.94	6.06	9.09		
30	91.87	6.14	5.26	9.46		
35	82.58	5.52	4.64	9.74		
40	75.15	5.02	4.14	9.94		
45	69.05	4.61	3.73	10.08		
50	63.95	4.27	3.39	10.18		
55	59.62	3.98	3.10	10.24		
60	55.89	3.73	2.85	10.27		
65	52.65	3.52	2.64	10.28		
70	49.79	3.33	2.45	10.27		
75	47.26	3.16	2.28	10.25		
90	41.11	2.75	1.87	10.08		
105	36.50	2.44	1.56	9.82		
120	32.89	2.20	1.32	9.49		

Watts Accutrol Flow Control Roof Drains:			RD-100-A-ADJ	set to 1/4 Exposed	
Design Event Flow (L/s)		Total Flow (L/s)	Ponding	Storage (m ³)	
Design Event	Flow (L/S)	Total Flow (L/S)	(cm)	Required	Provided
1:5 Year	0.80	0.80	10.6	5.2	5.2
1:100 Year	0.88	0.88	13.1	10.3	10.4

Roof Drain Stor	rage Table for RD #	3
Elevation	Area	Total Volume
m	m ²	m ³
0.00	0	0
0.05	29.3	0.7
0.10	117.4	4.4
0.15	267	14.0

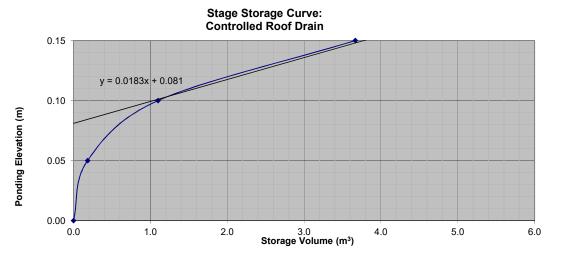


ADELAIDE TOWER EXPANSION					
116070					
REQUIRED	STORAGE	E - 1:5 YE	AR EVENT		
AREA 2-R Controlled Roof Drain #					
OTTAWA ID	F CURVE				
Area =	0.018	ha	Qallow =	0.79	L/s
C =	0.90		Vol(max) =	3.0	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	6.44	5.65	1.70	
10	104.19	4.76	3.97	2.38	
15	83.56	3.81	3.02	2.72	
20	70.25	3.21	2.42	2.90	
25	60.90	2.78	1.99	2.98	
30	53.93	2.46	1.67	3.01	
35	48.52	2.21	1.42	2.99	
40	44.18	2.02	1.23	2.94	
45	40.63	1.85	1.06	2.87	
50	37.65	1.72	0.93	2.79	
55	35.12	1.60	0.81	2.68	
60	32.94	1.50	0.71	2.57	
65	31.04	1.42	0.63	2.44	
70	29.37	1.34	0.55	2.31	
75	27.89	1.27	0.48	2.17	
90	24.29	1.11	0.32	1.72	
105	21.58	0.98	0.19	1.23	
120	19.47	0.89	0.10	0.71	

ADELAIDE TOWER EXPANSION					
116070					
REQUIRED	STORAGE	E - 1:100	YEAR EVENT		
AREA 2-R		Co	ntrolled Roof	Drain #	4
OTTAWA II	OF CURVE				
Area =	0.018	ha	Qallow =	0.87	L/s
C =	0.90		Vol(max) =	6.2	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	242.70	11.08	10.21	3.06	
10	178.56	8.15	7.28	4.37	
15	142.89	6.52	5.65	5.09	
20	119.95	5.47	4.60	5.52	
25	103.85	4.74	3.87	5.80	
30	91.87	4.19	3.32	5.98	
35	82.58	3.77	2.90	6.09	
40	75.15	3.43	2.56	6.14	
45	69.05	3.15	2.28	6.16	
50	63.95	2.92	2.05	6.15	
55	59.62	2.72	1.85	6.11	
60	55.89	2.55	1.68	6.05	
65	52.65	2.40	1.53	5.98	
70	49.79	2.27	1.40	5.89	
75	47.26	2.16	1.29	5.79	
90	41.11	1.88	1.01	5.43	
105	36.50	1.67	0.80	5.01	
120	32.89	1.50	0.63	4.54	

Watts Accutrol Flow Control Roof Drains:			RD-100-A-ADJ	set to 1/4 Exposed	
Design Event Flow (L/s)		Total Flow (L/s)	Ponding	Storage (m ³)	
Design Event	FIOW (L/S)	TOTAL FIOW (L/S)	(cm)	Required	Provided
1:5 Year	0.79	0.79	10.2	3.0	3.0
1:100 Year	0.87	0.87	13.8	6.2	8.0

Roof Drain Stor	rage Table for RD #	4
Elevation	Area	Total Volume
m	m ²	m ³
0.00	0	0
0.05	19.2	0.5
0.10	76.7	2.9
0.15	182.4	9.4

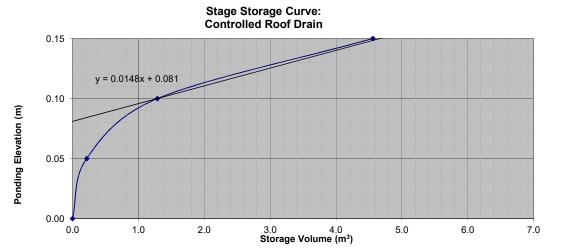


ADELAIDE TOWER EXPANSION					
116070					
REQUIRED	STORAGE				5
AREA 2-R Controlled Roof Drain #					
OTTAWA ID	F CURVE				
Area =	0.007	ha	Qallow =	0.79	L/s
C =	0.90		Vol(max) =	0.7	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	2.59	1.80	0.54	
10	104.19	1.91	1.12	0.67	
15	83.56	1.53	0.74	0.67	
20	70.25	1.29	0.50	0.60	
25	60.90	1.12	0.33	0.49	
30	53.93	0.99	0.20	0.36	
35	48.52	0.89	0.10	0.21	
40	44.18	0.81	0.02	0.05	
45	40.63	0.75	-0.04	-0.12	
50	37.65	0.69	-0.10	-0.30	
55	35.12	0.64	-0.15	-0.48	
60	32.94	0.60	-0.19	-0.67	
65	31.04	0.57	-0.22	-0.86	
70	29.37	0.54	-0.25	-1.06	
75	27.89	0.51	-0.28	-1.25	
90	24.29	0.45	-0.34	-1.86	
105	21.58	0.40	-0.39	-2.48	
120	19.47	0.36	-0.43	-3.12	

ADELAIDE	TOWER	EXPAN	SION		
116070					
REQUIRED STORAGE - 1:100 YEAR EVENT					
AREA 2-R Controlled Roof Drain #					
OTTAWA ID					
Area =	0.007	ha	Qallow =	0.87	L/s
C =	0.90		Vol(max) =	1.6	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	242.70	4.45	3.58	1.07	
10	178.56	3.27	2.40	1.44	
15	142.89	2.62	1.75	1.58	
20	119.95	2.20	1.33	1.60	
25	103.85	1.90	1.03	1.55	
30	91.87	1.68	0.81	1.47	
35	82.58	1.51	0.64	1.35	
40	75.15	1.38	0.51	1.22	
45	69.05	1.27	0.40	1.07	
50	63.95	1.17	0.30	0.91	
55	59.62	1.09	0.22	0.74	
60	55.89	1.03	0.16	0.56	
65	52.65	0.97	0.10	0.37	
70	49.79	0.91	0.04	0.18	
75	47.26	0.87	0.00	-0.02	
90	41.11	0.75	-0.12	-0.63	
105	36.50	0.67	-0.20	-1.26	
120	32.89	0.60	-0.27	-1.92	

Watts Accutrol Flow Control Roof Drains:			RD-100-A-ADJ	set to 1/4 Exposed	
Design Event	Flow (L/s)	Total Flow (L/s)	Ponding Storage (m ³		e (m ³)
Design Event	FIOW (L/S)	TOLAI FIOW (L/S)	(cm) Required	Provided	
1:5 Year	0.79	0.79	10.2	0.7	1.1
1:100 Year	0.87	0.87	12.7	1.6	2.5

Roof Drain Storage Table for RD # 5				
Elevation	Area	Total Volume		
m	m ²	m ³		
0.00	0	0		
0.05	7.3	0.2		
0.10	29.4	1.1		
0.15	73.3	3.7		



ADELAIDE TOWER EXPANSION					
116070					
REQUIRED	STORAGE	E - 1:5 YE	AR EVENT		
AREA 2-R		Co	ntrolled Roof	Drain #	6
OTTAWA ID	F CURVE				
Area =	0.010	ha	Qallow =	0.79	L/s
C =	0.90		Vol(max) =	1.1	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	3.41	2.62	0.79	
10	104.19	2.52	1.73	1.04	
15	83.56	2.02	1.23	1.11	
20	70.25	1.70	0.91	1.09	
25	60.90	1.47	0.68	1.02	
30	53.93	1.30	0.51	0.92	
35	48.52	1.17	0.38	0.80	
40	44.18	1.07	0.28	0.67	
45	40.63	0.98	0.19	0.52	
50	37.65	0.91	0.12	0.36	
55	35.12	0.85	0.06	0.19	
60	32.94	0.80	0.01	0.02	
65	31.04	0.75	-0.04	-0.15	
70	29.37	0.71	-0.08	-0.34	
75	27.89	0.67	-0.12	-0.52	
90	24.29	0.59	-0.20	-1.10	
105	21.58	0.52	-0.27	-1.69	
120	19.47	0.47	-0.32	-2.30	

ADELAID			SION		
116070		EAFAN	3101		
	STORAGE	- 1.100	YEAR EVENT	-	
AREA 2-R	STORAGE		ntrolled Roof		6
				Druin #	0
Area =	0.010	ha	Qallow =	0.87	L/s
C =	0.90	Па	Vol(max) =	2.5	m3
U -	0.90		voi(max) –	2.0	1113
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	242.70	5.87	5.00	1.50	
10	178.56	4.32	3.45	2.07	
15	142.89	3.45	2.58	2.33	
20	119.95	2.90	2.03	2.43	
25	103.85	2.51	1.64	2.46	
30	91.87	2.22	1.35	2.43	
35	82.58	2.00	1.13	2.36	
40	75.15	1.82	0.95	2.27	
45	69.05	1.67	0.80	2.16	
50	63.95	1.55	0.68	2.03	
55	59.62	1.44	0.57	1.88	
60	55.89	1.35	0.48	1.73	
65	52.65	1.27	0.40	1.57	
70	49.79	1.20	0.33	1.40	
75	47.26	1.14	0.27	1.22	
90	41.11	0.99	0.12	0.67	
105	36.50	0.88	0.01	0.08	
120	32.89	0.80	-0.07	-0.54	

Watts Accutrol Flow Control Roof Drains:			RD-100-A-ADJ	set to 1/4 Exposed		
Design Event Flow (L/s)		Total Flow (L/s) Ponding Storag			ige (m³)	
Design Event		Total Flow (L/S)	^{7/} (cm) Requir	Required	Provided	
1:5 Year	0.79	0.79	10.2	1.1	1.4	
1:100 Year	0.87	0.87	12.7	2.5	3.1	

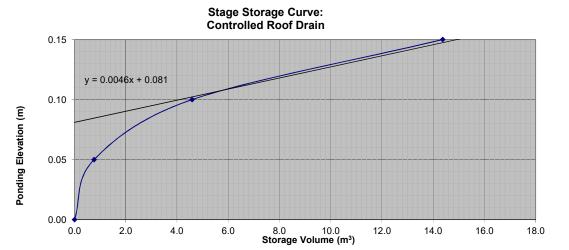
Roof Drain Stor	6	
Elevation	Area	Total Volume
m	m²	m ³
0.00	0	0
0.05	8.6	0.2
0.10	34.3	1.3
0.15	96.6	4.6

ADELAIDE TOWER EXPANSION					
116070					
REQUIRED	STORAGE				
AREA 2-R		Co	ntrolled Roof I	Drain #	7
OTTAWA ID	F CURVE				
Area =	0.005	ha	Qallow =	0.71	L/s
C =	0.90		Vol(max) =	0.3	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	1.72	1.01	0.30	
10	104.19	1.27	0.56	0.34	
15	83.56	1.02	0.31	0.28	
20	70.25	0.86	0.15	0.18	
25	60.90	0.74	0.03	0.05	
30	53.93	0.66	-0.05	-0.10	
35	48.52	0.59	-0.12	-0.25	
40	44.18	0.54	-0.17	-0.41	
45	40.63	0.50	-0.21	-0.58	
50	37.65	0.46	-0.25	-0.75	
55	35.12	0.43	-0.28	-0.93	
60	32.94	0.40	-0.31	-1.11	
65	31.04	0.38	-0.33	-1.29	
70	29.37	0.36	-0.35	-1.48	
75	27.89	0.34	-0.37	-1.67	
90	24.29	0.30	-0.41	-2.24	
105	21.58	0.26	-0.45	-2.82	
120	19.47	0.24	-0.47	-3.40	

ADELAIDE			SION		
ADELAIDE 116070	TOWER	LAFAN			
	STORACE	1.100	YEAR EVENT	-	
AREA 2-R	STORAGE		ntrolled Roof		7
OTTAWA IE		00	introlled Rool	Dialii #	'
	0.005	h -	Qallow =	0.87	1./-
Area =		ha			L/s
C =	0.90		Vol(max) =	0.8	m3
T :		~	0 1		
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	242.70	2.96	2.09	0.63	
10	178.56	2.18	1.31	0.78	
15	142.89	1.74	0.87	0.78	
20	119.95	1.46	0.59	0.71	
25	103.85	1.27	0.40	0.59	
30	91.87	1.12	0.25	0.45	
35	82.58	1.01	0.14	0.29	
40	75.15	0.92	0.05	0.11	
45	69.05	0.84	-0.03	-0.08	
50	63.95	0.78	-0.09	-0.27	
55	59.62	0.73	-0.14	-0.47	
60	55.89	0.68	-0.19	-0.68	
65	52.65	0.64	-0.23	-0.89	
70	49.79	0.61	-0.26	-1.11	
75	47.26	0.58	-0.29	-1.32	
90	41.11	0.50	-0.37	-1.99	
105	36.50	0.44	-0.43	-2.68	
120	32.89	0.40	-0.47	-3.38	

Watts Accutrol Flow Control Roof Drains:			RD-100-A-ADJ	set to 1/4 Exposed	
Design Event	Flow (L/s)	Flow (L/s) Total Flow (L/s)		Storage	• (m ³)
Design Event	Flow (L/S) Total Flow (L/S)	10tal 110w (L/S)	(cm)	Required	Provided
1:5 Year	0.71	0.71	7.6	0.3	0.4
1:100 Year	0.87	0.87	12.7	0.8	1.8

Roof Drain Storage Table for RD # 7					
Elevation	Area	Total Volume			
m	m ²	m³			
0.00	0	0			
0.05	5.4	0.1			
0.10	21.7	0.8			
0.15	48.7	2.6			

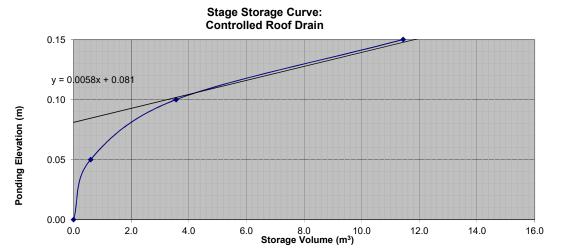


ADELAIDE TOWER EXPANSION					
116070					
REQUIRED	STORAGE				
AREA 2-R		Co	ntrolled Roof I	Drain #	8
OTTAWA ID	F CURVE				
Area =	0.027	ha	Qallow =	0.82	L/s
C =	0.90		Vol(max) =	5.2	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	9.49	8.67	2.60	
10	104.19	7.01	6.19	3.71	
15	83.56	5.62	4.80	4.32	
20	70.25	4.72	3.90	4.69	
25	60.90	4.10	3.28	4.91	
30	53.93	3.63	2.81	5.05	
35	48.52	3.26	2.44	5.13	
40	44.18	2.97	2.15	5.16	
45	40.63	2.73	1.91	5.16	
50	37.65	2.53	1.71	5.14	
55	35.12	2.36	1.54	5.09	
60	32.94	2.22	1.40	5.02	
65	31.04	2.09	1.27	4.94	
70	29.37	1.98	1.16	4.85	
75	27.89	1.88	1.06	4.75	
90	24.29	1.63	0.81	4.39	
105	21.58	1.45	0.63	3.98	
120	19.47	1.31	0.49	3.52	

	-				
ADELAIDE	TOWER	EXPANS	SION		
116070		- 4 4 9 9 9			
	STORAGE		YEAR EVENT		•
AREA 2-R		L0	ntrolled Roof	Drain #	8
OTTAWA IE					
Area =	0.027	ha	Qallow =	0.87	L/s
C =	0.90		Vol(max) =	10.4	m3
		~	. .		
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	242.70	16.32	15.45	4.64	
10	178.56	12.01	11.14	6.68	
15	142.89	9.61	8.74	7.87	
20	119.95	8.07	7.20	8.64	
25	103.85	6.98	6.11	9.17	
30	91.87	6.18	5.31	9.56	
35	82.58	5.55	4.68	9.84	
40	75.15	5.05	4.18	10.04	
45	69.05	4.64	3.77	10.19	
50	63.95	4.30	3.43	10.29	
55	59.62	4.01	3.14	10.36	
60	55.89	3.76	2.89	10.40	
65	52.65	3.54	2.67	10.42	
70	49.79	3.35	2.48	10.41	
75	47.26	3.18	2.31	10.39	
90	41.11	2.76	1.89	10.23	
105	36.50	2.45	1.58	9.98	
120	32.89	2.21	1.34	9.66	

Watts Accutrol Flow Control Roof Drains:			RD-100-A-ADJ	set to 1/4 Exposed	
Design Event	Flow (L/s)	Total Flow (L/s)	Ponding	Storage	• (m³)
Design Event		TOTAL FIOW (L/S)	(cm)	Required	Provided
1:5 Year	0.82	0.82	11.0	5.2	6.3
1:100 Year	0.87	0.87	13.8	10.4	12.3

Roof Drain Storage Table for RD # 8					
Elevation	Area	Total Volume			
m	m ²	m ³			
0.00	0	0			
0.05	30.6	0.8			
0.10	122.5	4.6			
0.15	268.8	14.4			

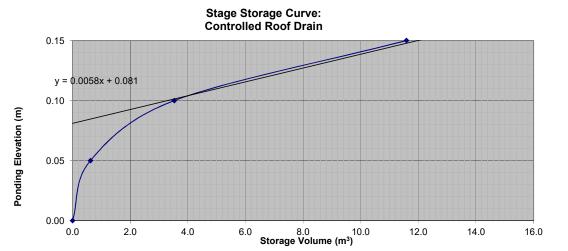


ADELAIDE TOWER EXPANSION					
116070					
REQUIRED	STORAGE				
AREA 2-R		Co	ntrolled Roof I	Drain #	9
OTTAWA ID	F CURVE				
Area =	0.022	ha	Qallow =	0.80	L/s
C =	0.90		Vol(max) =	3.9	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	7.77	6.97	2.09	
10	104.19	5.74	4.94	2.96	
15	83.56	4.60	3.80	3.42	
20	70.25	3.87	3.07	3.68	
25	60.90	3.35	2.55	3.83	
30	53.93	2.97	2.17	3.91	
35	48.52	2.67	1.87	3.93	
40	44.18	2.43	1.63	3.92	
45	40.63	2.24	1.44	3.88	
50	37.65	2.07	1.27	3.82	
55	35.12	1.93	1.13	3.74	
60	32.94	1.81	1.01	3.65	
65	31.04	1.71	0.91	3.55	
70	29.37	1.62	0.82	3.43	
75	27.89	1.54	0.74	3.31	
90	24.29	1.34	0.54	2.90	
105	21.58	1.19	0.39	2.45	
120	19.47	1.07	0.27	1.96	

	TOWER				
ADELAIDE 116070	TOWER	EXPAN	SION		
		4.400		-	
REQUIRED STORAGE - 1:100 YEAR EVENT AREA 2-R Controlled Roof Drain # 9					
OTTAWA IE			Introlled Rool	Dialii #	9
		h -	Qallow =	0.87	1./-
Area =	0.022	ha			L/s
C =	0.90		Vol(max) =	8.0	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	242.70	13.37	12.50	3.75	
10	178.56	9.83	8.96	5.38	
15	142.89	7.87	7.00	6.30	
20	119.95	6.61	5.74	6.88	
25	103.85	5.72	4.85	7.27	
30	91.87	5.06	4.19	7.54	
35	82.58	4.55	3.68	7.72	
40	75.15	4.14	3.27	7.84	
45	69.05	3.80	2.93	7.92	
50	63.95	3.52	2.65	7.96	
55	59.62	3.28	2.41	7.96	
60	55.89	3.08	2.21	7.95	
65	52.65	2.90	2.03	7.91	
70	49.79	2.74	1.87	7.86	
75	47.26	2.60	1.73	7.80	
90	41.11	2.26	1.39	7.53	
105	36.50	2.01	1.14	7.18	
120	32.89	1.81	0.94	6.78	

Natts Accutrol Flow Control Roof Drains:			RD-100-A-ADJ	set to 1/4 Exposed	
Design Event	Flow (L/s)	Total Flow (L/s) Ponding Sto		Storage	(m ³)
Design Event	Sign Event Flow (L/S) Total Flow (L/S)	TOTAL FIOW (L/S)	(cm)	Required	Provided
1:5 Year	0.80	0.80	10.5	3.9	3.9
1:100 Year	0.87	0.87	13.8	8.0	9.7

Roof Drain Stor	age Table for RD #	9
Elevation	Area	Total Volume
m	m ²	m ³
0.00	0	0
0.05	23.7	0.6
0.10	95	3.6
0.15	220.1	11.4

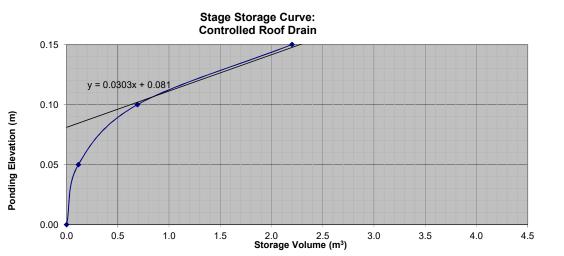


ADELAIDE TOWER EXPANSION					
116070					
REQUIRED	STORAGE	E - 1:5 YE	AR EVENT		
AREA 2-R		Co	ntrolled Roof I	Drain #	10
OTTAWA ID	F CURVE				
Area =	0.023	ha	Qallow =	0.81	L/s
C =	0.90		Vol(max) =	4.2	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	8.15	7.34	2.20	
10	104.19	6.01	5.20	3.12	
15	83.56	4.82	4.01	3.61	
20	70.25	4.05	3.24	3.89	
25	60.90	3.51	2.70	4.06	
30	53.93	3.11	2.30	4.14	
35	48.52	2.80	1.99	4.18	
40	44.18	2.55	1.74	4.18	
45	40.63	2.35	1.54	4.14	
50	37.65	2.17	1.36	4.09	
55	35.12	2.03	1.22	4.02	
60	32.94	1.90	1.09	3.93	
65	31.04	1.79	0.98	3.83	
70	29.37	1.70	0.89	3.72	
75	27.89	1.61	0.80	3.60	
90	24.29	1.40	0.59	3.20	
105	21.58	1.25	0.44	2.75	
120	19.47	1.12	0.31	2.26	

ADELAIDE	TOWER	FXPAN	SION			
116070						
REQUIRED	STORAGE	E - 1:100	YEAR EVENT			
AREA 2-R		Co	ntrolled Roof	Drain #	10	
OTTAWA IE	F CURVE					
Area =	0.023	ha	Qallow =	0.90	L/s	
C =	0.90		Vol(max) =	8.4	m3	
Time	Intensity	Q	Qnet	Vol		
(min)	(mm/hr)	(L/s)	(L/s)	(m3)		
5	242.70	14.01	13.11	3.93		
10	178.56	10.31	9.41	5.64		
15	142.89	8.25	7.35	6.61		
20	119.95	6.92	6.02	7.23		
25	103.85	5.99	5.09	7.64		
30	91.87	5.30	4.40	7.92		
35	82.58	4.77	3.87	8.12		
40	75.15	4.34	3.44	8.25		
45	69.05	3.99	3.09	8.33		
50	63.95	3.69	2.79	8.37		
55	59.62	3.44	2.54	8.39		
60	55.89	3.23	2.33	8.37		
65	52.65	3.04	2.14	8.34		
70	49.79	2.87	1.97	8.29		
75	47.26	2.73	1.83	8.22		
90	41.11	2.37	1.47	7.95		
105	36.50	2.11	1.21	7.60		
120	32.89	1.90	1.00	7.19		

Watts Accutrol Flow Control Roof Drains:			RD-100-A-ADJ	set to 1/4 Exposed	
Design Event	Flow (L/s)	Total Flow (L/s)	Ponding	Storage	(m ³)
Design Event	FIOW (L/S)	10tai 110W (L/S)	(cm)	Required	Provided
1:5 Year	0.81	0.81	11.0	4.2	4.8
1:100 Year	0.90	0.90	13.8	8.4	9.8

Roof Drain Storage Table for RD # 10					
Elevation	Area	Total Volume			
m	m ²	m ³			
0.00	0	0			
0.05	24.9	0.6			
0.10	91.5	3.5			
0.15	230.7	11.6			

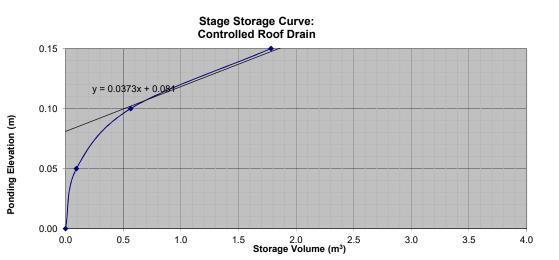


ADELAIDE TOWER EXPANSION					
116070					
REQUIRED	STORAGE	E - 1:5 YE	AR EVENT		
AREA 2-R		Co	ntrolled Roof	Drain #	11+12
OTTAWA ID	F CURVE				
Area =	0.004	ha	Qallow =	0.71	L/s
C =	0.90		Vol(max) =	0.2	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	1.48	0.77	0.23	
10	104.19	1.09	0.38	0.23	
15	83.56	0.87	0.16	0.15	
20	70.25	0.73	0.02	0.03	
25	60.90	0.64	-0.07	-0.11	
30	53.93	0.56	-0.15	-0.26	
35	48.52	0.51	-0.20	-0.43	
40	44.18	0.46	-0.25	-0.59	
45	40.63	0.42	-0.29	-0.77	
50	37.65	0.39	-0.32	-0.95	
55	35.12	0.37	-0.34	-1.13	
60	32.94	0.34	-0.37	-1.32	
65	31.04	0.32	-0.39	-1.50	
70	29.37	0.31	-0.40	-1.69	
75	27.89	0.29	-0.42	-1.88	
90	24.29	0.25	-0.46	-2.46	
105	21.58	0.23	-0.48	-3.05	
120	19.47	0.20	-0.51	-3.65	

ADELAIDE TOWER EXPANSION					
116070					
REQUIRED	STORAGE	E - 1:100	YEAR EVENT	-	
AREA 2-R		Co	ntrolled Roof	Drain #	11+12
OTTAWA IE	OF CURVE				
Area =	0.004	ha	Qallow =	0.79	L/s
C =	0.90		Vol(max) =	0.6	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	242.70	2.54	1.75	0.52	
10	178.56	1.87	1.08	0.65	
15	142.89	1.49	0.70	0.63	
20	119.95	1.25	0.46	0.56	
25	103.85	1.09	0.30	0.44	
30	91.87	0.96	0.17	0.31	
35	82.58	0.86	0.07	0.15	
40	75.15	0.79	0.00	-0.01	
45	69.05	0.72	-0.07	-0.18	
50	63.95	0.67	-0.12	-0.36	
55	59.62	0.62	-0.17	-0.55	
60	55.89	0.58	-0.21	-0.74	
65	52.65	0.55	-0.24	-0.93	
70	49.79	0.52	-0.27	-1.13	
75	47.26	0.49	-0.30	-1.33	
90	41.11	0.43	-0.36	-1.94	
105	36.50	0.38	-0.41	-2.57	
120	32.89	0.34	-0.45	-3.21	

Watts Accutrol Flow Control Roof Drains:			RD-100-A-ADJ	set to 1/4 Exposed	
Design Event	Flow per RD (L/s)	Total Flow (L/s)	Ponding	Storage	• (m ³)
Design Event	Flow per RD (L/S)	Total Flow (L/S)	(cm)	Required	Provided
1:5 Year	0.71	1.42	7.6	0.7	0.9
1:100 Year	0.79	1.58	10.2	1.9	2.1

Roof Drain Stor	11+12	
Elevation	Area	Total Volume
m	m²	m ³
0.00	0	0
0.05	4.6	0.1
0.10	18.5	0.7
0.15	41.8	2.2

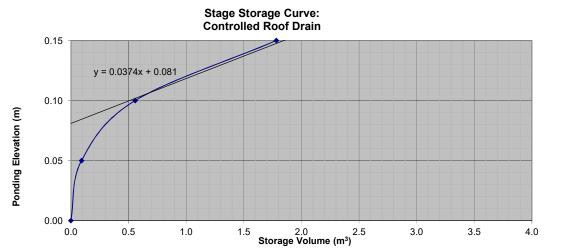


ADELAIDE TOWER EXPANSION					
116070					
REQUIRED	STORAGE	E - 1:5 YE	AR EVENT		
AREA 2-R		Co	ntrolled Roof	Drain #	13,15,17
OTTAWA ID	F CURVE				
Area =	0.003	ha	Qallow =	0.71	L/s
C =	0.90		Vol(max) =	0.1	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	1.19	0.48	0.14	
10	104.19	0.88	0.17	0.10	
15	83.56	0.70	-0.01	0.00	
20	70.25	0.59	-0.12	-0.14	
25	60.90	0.51	-0.20	-0.29	
30	53.93	0.45	-0.26	-0.46	
35	48.52	0.41	-0.30	-0.63	
40	44.18	0.37	-0.34	-0.81	
45	40.63	0.34	-0.37	-0.99	
50	37.65	0.32	-0.39	-1.18	
55	35.12	0.30	-0.41	-1.37	
60	32.94	0.28	-0.43	-1.56	
65	31.04	0.26	-0.45	-1.75	
70	29.37	0.25	-0.46	-1.94	
75	27.89	0.24	-0.47	-2.14	
90	24.29	0.20	-0.51	-2.73	
105	21.58	0.18	-0.53	-3.33	
120	19.47	0.16	-0.55	-3.93	

ADELAIDE TOWER EXPANSION							
116070							
	STORAGE		YEAR EVENT				
AREA 2-R		Co	ntrolled Roof	Drain #	13,15,17		
OTTAWA ID	OF CURVE						
Area =	0.003	ha	Qallow =	0.79	L/s		
C =	0.90		Vol(max) =	0.4	m3		
Time	Intensity	Q	Qnet	Vol			
(min)	(mm/hr)	(L/s)	(L/s)	(m3)			
5	242.70	2.05	1.26	0.38			
10	178.56	1.51	0.72	0.43			
15	142.89	1.20	0.41	0.37			
20	119.95	1.01	0.22	0.27			
25	103.85	0.88	0.09	0.13			
30	91.87	0.77	-0.02	-0.03			
35	82.58	0.70	-0.09	-0.20			
40	75.15	0.63	-0.16	-0.38			
45	69.05	0.58	-0.21	-0.56			
50	63.95	0.54	-0.25	-0.75			
55	59.62	0.50	-0.29	-0.95			
60	55.89	0.47	-0.32	-1.15			
65	52.65	0.44	-0.35	-1.35			
70	49.79	0.42	-0.37	-1.55			
75	47.26	0.40	-0.39	-1.76			
90	41.11	0.35	-0.44	-2.39			
105	36.50	0.31	-0.48	-3.04			
120	32.89	0.28	-0.51	-3.69			

Watts Accutrol Flow Control Roof Drains:			RD-100-A-ADJ	set to 1/4 Exposed	
Design Event Flow (L/s)		Total Flow (L/s)	Ponding	Storage	(m ³)
Design Event	Igh Event Flow (L/S)	Total Flow (L/S)	(cm)	Required	Provided
1:5 Year	0.71	2.13	7.6	0.4	0.8
1:100 Year	0.79	2.37	10.2	1.3	1.7

Roof Drain Stor	13,15,17	
Elevation	Area	Total Volume
m	m²	m ³
0.00	0	0
0.05	3.8	0.1
0.10	15	0.6
0.15	33.7	1.8

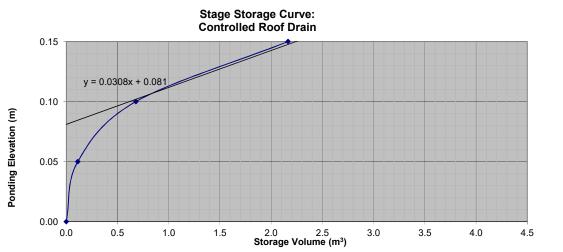


ADELAIDE	TOWER	EXPANS	SION		
116070					
REQUIRED	STORAGE	- 1:5 YE	AR EVENT		
AREA 2-R		Co	ntrolled Roof	Drain #	14,16,18
OTTAWA ID	F CURVE				
Area =	0.003	ha	Qallow =	0.71	L/s
C =	0.90		Vol(max) =	0.1	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	1.20	0.49	0.15	
10	104.19	0.89	0.18	0.11	
15	83.56	0.71	0.00	0.00	
20	70.25	0.60	-0.11	-0.13	
25	60.90	0.52	-0.19	-0.29	
30	53.93	0.46	-0.25	-0.45	
35	48.52	0.41	-0.30	-0.62	
40	44.18	0.38	-0.33	-0.80	
45	40.63	0.35	-0.36	-0.98	
50	37.65	0.32	-0.39	-1.17	
55	35.12	0.30	-0.41	-1.35	
60	32.94	0.28	-0.43	-1.54	
65	31.04	0.26	-0.45	-1.74	
70	29.37	0.25	-0.46	-1.93	
75	27.89	0.24	-0.47	-2.12	
90	24.29	0.21	-0.50	-2.71	
105	21.58	0.18	-0.53	-3.31	
120	19.47	0.17	-0.54	-3.92	

ADELAIDE	TOWER	EXPAN	SION		
116070					
REQUIRED	STORAGE	E - 1:100	YEAR EVENT		
AREA 2-R		Co	ntrolled Roof	Drain #	14,16,18
OTTAWA ID	F CURVE				
Area =	0.003	ha	Qallow =	0.79	L/s
C =	0.90		Vol(max) =	0.4	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	242.70	2.07	1.28	0.38	
10	178.56	1.52	0.73	0.44	
15	142.89	1.22	0.43	0.39	
20	119.95	1.02	0.23	0.28	
25	103.85	0.89	0.10	0.14	
30	91.87	0.78	-0.01	-0.01	
35	82.58	0.70	-0.09	-0.18	
40	75.15	0.64	-0.15	-0.36	
45	69.05	0.59	-0.20	-0.54	
50	63.95	0.55	-0.24	-0.73	
55	59.62	0.51	-0.28	-0.93	
60	55.89	0.48	-0.31	-1.13	
65	52.65	0.45	-0.34	-1.33	
70	49.79	0.42	-0.37	-1.53	
75	47.26	0.40	-0.39	-1.74	
90	41.11	0.35	-0.44	-2.37	
105	36.50	0.31	-0.48	-3.02	
120	32.89	0.28	-0.51	-3.67	

Watts Accutrol Flow Control Roof Drains:			RD-100-A-ADJ	set to 1/4 Exposed	
Design Event	Flow (L/s)	Total Flow (L/s)	Ponding	Storage	e (m³)
Design Event			(cm)	Required	Provided
1:5 Year	0.71	2.13	7.6	0.4	0.8
1:100 Year	0.79	2.37	10.2	1.3	1.7

Roof Drain Stor	14,16,18	
Elevation	Area	Total Volume
m	m²	m ³
0.00	0	0
0.05	3.7	0.1
0.10	14.9	0.6
0.15	34.1	1.8

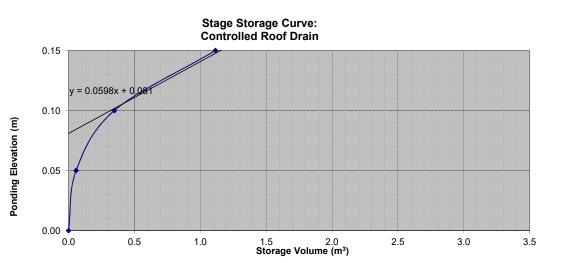


ADELAIDE	TOWER	EXPANS	SION		
116070					
REQUIRED	STORAGE	E - 1:5 YE	AR EVENT		
AREA 2-R		Co	ntrolled Roof	Drain #	19+20
OTTAWA ID	F CURVE				
Area =	0.004	ha	Qallow =	0.71	L/s
C =	0.90		Vol(max) =	0.2	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	1.46	0.75	0.22	
10	104.19	1.07	0.36	0.22	
15	83.56	0.86	0.15	0.14	
20	70.25	0.72	0.01	0.02	
25	60.90	0.63	-0.08	-0.12	
30	53.93	0.56	-0.15	-0.28	
35	48.52	0.50	-0.21	-0.44	
40	44.18	0.46	-0.25	-0.61	
45	40.63	0.42	-0.29	-0.79	
50	37.65	0.39	-0.32	-0.97	
55	35.12	0.36	-0.35	-1.15	
60	32.94	0.34	-0.37	-1.33	
65	31.04	0.32	-0.39	-1.52	
70	29.37	0.30	-0.41	-1.71	
75	27.89	0.29	-0.42	-1.90	
90	24.29	0.25	-0.46	-2.48	
105	21.58	0.22	-0.49	-3.07	
120	19.47	0.20	-0.51	-3.67	

OTTAWA IDF CURVE	19+20 L/s
REQUIRED STORAGE - 1:100 YEAR EVENT AREA 2-R Controlled Roof Drain # OTTAWA IDF CURVE	
AREA 2-R Controlled Roof Drain # OTTAWA IDF CURVE	
OTTAWA IDF CURVE	
	L/s
Area = 0.004 ha $Oallow = 0.79$	L/s
C = 0.90 Vol(max) = 0.6	m3
Time Intensity Q Qnet Vol	
(min) (mm/hr) (L/s) (L/s) (m3)	
5 242.70 2.50 1.71 0.51	
10 178.56 1.84 1.05 0.63	
15 142.89 1.47 0.68 0.61	
20 119.95 1.24 0.45 0.54	
25 103.85 1.07 0.28 0.42	
30 91.87 0.95 0.16 0.28	
35 82.58 0.85 0.06 0.13	
40 75.15 0.77 -0.02 -0.04	
45 69.05 0.71 -0.08 -0.21	
50 63.95 0.66 -0.13 -0.39	
55 59.62 0.61 -0.18 -0.58	
60 55.89 0.58 -0.21 -0.77	
65 52.65 0.54 -0.25 -0.96	
70 49.79 0.51 -0.28 -1.16	
75 47.26 0.49 -0.30 -1.36	
90 41.11 0.42 -0.37 -1.98	
105 36.50 0.38 -0.41 -2.61	
120 32.89 0.34 -0.45 -3.25	

Watts Accutrol Flow Control Roof Drains:			RD-100-A-ADJ	set to 1/4 Exposed	
Design Event	Flow (L/s)	Total Flow (L/s)	Ponding	Storage	e (m³)
Design Event	FIOW (L/S)	TOLAI FIOW (L/S)	(cm)	Required	Provided
1:5 Year	0.71	1.42	7.6	0.4	0.6
1:100 Year	0.79	1.58	10.2	1.3	1.4

Roof Drain Stor	Roof Drain Storage Table for RD # 19+20				
Elevation	Area	Total Volume			
m	m²	m ³			
0.00	0	0			
0.05	4.5	0.1			
0.10	18.2	0.7			
0.15	41.2	2.2			

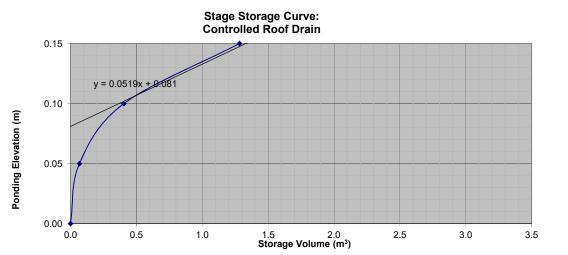


ADELAIDE	TOWER	EXPANS	SION		
116070					
REQUIRED	STORAGE				
AREA 2-R		Co	ntrolled Roof	Drain #	21
OTTAWA ID	F CURVE				
Area =	0.002	ha	Qallow =	0.63	L/s
C =	0.90		Vol(max) =	0.0	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	0.76	0.13	0.04	
10	104.19	0.56	-0.07	-0.04	
15	83.56	0.45	-0.18	-0.16	
20	70.25	0.38	-0.25	-0.30	
25	60.90	0.33	-0.30	-0.46	
30	53.93	0.29	-0.34	-0.61	
35	48.52	0.26	-0.37	-0.78	
40	44.18	0.24	-0.39	-0.94	
45	40.63	0.22	-0.41	-1.11	
50	37.65	0.20	-0.43	-1.29	
55	35.12	0.19	-0.44	-1.46	
60	32.94	0.18	-0.45	-1.63	
65	31.04	0.17	-0.46	-1.81	
70	29.37	0.16	-0.47	-1.99	
75	27.89	0.15	-0.48	-2.16	
90	24.29	0.13	-0.50	-2.70	
105	21.58	0.12	-0.51	-3.24	
120	19.47	0.10	-0.53	-3.79	

	-				
ADELAIDE	TOWER	EXPAN	SION		
116070					
	STORAGE		YEAR EVENT		
AREA 2-R		Co	ntrolled Roof	Drain #	21
OTTAWA IE					
Area =	0.002	ha	Qallow =	0.79	L/s
C =	0.90		Vol(max) =	0.2	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	242.70	1.30	0.51	0.15	
10	178.56	0.96	0.17	0.10	
15	142.89	0.77	-0.02	-0.02	
20	119.95	0.64	-0.15	-0.18	
25	103.85	0.56	-0.23	-0.35	
30	91.87	0.49	-0.30	-0.54	
35	82.58	0.44	-0.35	-0.73	
40	75.15	0.40	-0.39	-0.93	
45	69.05	0.37	-0.42	-1.13	
50	63.95	0.34	-0.45	-1.34	
55	59.62	0.32	-0.47	-1.55	
60	55.89	0.30	-0.49	-1.77	
65	52.65	0.28	-0.51	-1.98	
70	49.79	0.27	-0.52	-2.20	
75	47.26	0.25	-0.54	-2.42	
90	41.11	0.22	-0.57	-3.08	
105	36.50	0.20	-0.59	-3.75	
120	32.89	0.18	-0.61	-4.42	

Watts Accutrol Flow Control Roof Drains:			RD-100-A-ADJ	set to 1/4 Exposed	
Design Event Flow (L/s)		Total Flow (L/s)	Ponding	Storage	e (m ³)
Design Event	FIOW (L/S)	10tai 110w (L/S)	(cm)	Required	Provided
1:5 Year	0.63	0.63	5.1	0.04	0.05
1:100 Year	0.79	0.79	10.2	0.2	0.4

Roof Drain Stor	Roof Drain Storage Table for RD #21				
Elevation	Area	Total Volume			
m	m²	m ³			
0.00	0	0			
0.05	2.3	0.1			
0.10	9.3	0.3			
0.15	21.4	1.1			

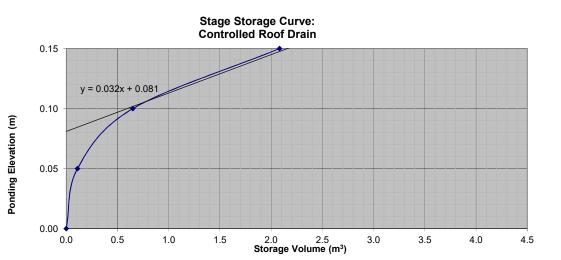


ADELAIDE	ADELAIDE TOWER EXPANSION					
116070						
REQUIRED	STORAGE	E - 1:5 YE	AR EVENT			
AREA 2-R		Co	ntrolled Roof	Drain #	22	
OTTAWA ID	F CURVE					
Area =	0.002	ha	Qallow =	0.63	L/s	
C =	0.90		Vol(max) =	0.1	m3	
Time	Intensity	Q	Qnet	Vol		
(min)	(mm/hr)	(L/s)	(L/s)	(m3)		
5	141.18	0.86	0.23	0.07		
10	104.19	0.63	0.00	0.00		
15	83.56	0.51	-0.12	-0.11		
20	70.25	0.43	-0.20	-0.24		
25	60.90	0.37	-0.26	-0.39		
30	53.93	0.33	-0.30	-0.54		
35	48.52	0.29	-0.34	-0.70		
40	44.18	0.27	-0.36	-0.87		
45	40.63	0.25	-0.38	-1.03		
50	37.65	0.23	-0.40	-1.20		
55	35.12	0.21	-0.42	-1.37		
60	32.94	0.20	-0.43	-1.55		
65	31.04	0.19	-0.44	-1.72		
70	29.37	0.18	-0.45	-1.90		
75	27.89	0.17	-0.46	-2.07		
90	24.29	0.15	-0.48	-2.60		
105	21.58	0.13	-0.50	-3.14		
120	19.47	0.12	-0.51	-3.68		

-	-				
ADELAIDE	TOWER	EXPAN	SION		
116070					
REQUIRED	STORAGE		YEAR EVENT		~~
			ntrolled Roof	Drain #	22
OTTAWA IE			• "	0.70	
Area =	0.002	ha	Qallow =	0.79	L/s
C =	0.90		Vol(max) =	0.2	m3
T :		0	<u> </u>		
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	242.70	1.48	0.69	0.21	
10	178.56	1.09	0.30	0.18	
15	142.89	0.87	0.08	0.07	
20	119.95	0.73	-0.06	-0.07	
25	103.85	0.63	-0.16	-0.24	
30	91.87	0.56	-0.23	-0.42	
35	82.58	0.50	-0.29	-0.60	
40	75.15	0.46	-0.33	-0.80	
45	69.05	0.42	-0.37	-1.00	
50	63.95	0.39	-0.40	-1.20	
55	59.62	0.36	-0.43	-1.41	
60	55.89	0.34	-0.45	-1.62	
65	52.65	0.32	-0.47	-1.83	
70	49.79	0.30	-0.49	-2.05	
75	47.26	0.29	-0.50	-2.26	
90	41.11	0.25	-0.54	-2.92	
105	36.50	0.22	-0.57	-3.58	
120	32.89	0.20	-0.59	-4.25	

Natts Accutrol Flow Control Roof Drains: RD-100-A-ADJ set to 1/4 Exposed							
Design Event Flow (L/s)		Total Flow (L/s)	Ponding	Storage	e (m ³)		
Design Event		Total Flow (L/S)	(cm)	Required	ed Provided		
1:5 Year	0.63	0.63	5.1	0.07	0.07		
1:100 Year	0.79	0.79	10.2	0.2	0.4		

Roof Drain Stor	Roof Drain Storage Table for RD # 22					
Elevation	Area	Total Volume				
m	m ²	m ³				
0.00	0	0				
0.05	2.7	0.1				
0.10	10.8	0.4				
0.15	24.3	1.3				



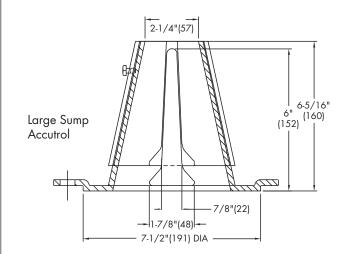
ADELAIDE	ADELAIDE TOWER EXPANSION					
116070						
REQUIRED	STORAGE	E - 1:5 YE	AR EVENT			
AREA 2-R		Co	ntrolled Roof	Drain #	23+24	
OTTAWA ID	F CURVE					
Area =	0.004	ha	Qallow =	0.71	L/s	
C =	0.90		Vol(max) =	0.2	m3	
Time	Intensity	Q	Qnet	Vol		
(min)	(mm/hr)	(L/s)	(L/s)	(m3)		
5	141.18	1.42	0.71	0.21		
10	104.19	1.05	0.34	0.20		
15	83.56	0.84	0.13	0.12		
20	70.25	0.70	-0.01	-0.01		
25	60.90	0.61	-0.10	-0.15		
30	53.93	0.54	-0.17	-0.30		
35	48.52	0.49	-0.22	-0.47		
40	44.18	0.44	-0.27	-0.64		
45	40.63	0.41	-0.30	-0.82		
50	37.65	0.38	-0.33	-1.00		
55	35.12	0.35	-0.36	-1.18		
60	32.94	0.33	-0.38	-1.37		
65	31.04	0.31	-0.40	-1.55		
70	29.37	0.29	-0.42	-1.74		
75	27.89	0.28	-0.43	-1.94		
90	24.29	0.24	-0.47	-2.52		
105	21.58	0.22	-0.49	-3.11		
120	19.47	0.20	-0.51	-3.71		

ADELAIDE	TOWER	EXPAN	SION				
116070				_			
	STORAGE		YEAR EVENT				
AREA 2-R							
OTTAWA IE	OF CURVE						
Area =	0.004	ha	Qallow =	0.79	L/s		
C =	0.90		Vol(max) =	0.6	m3		
Time	Intensity	Q	Qnet	Vol			
(min)	(mm/hr)	(L/s)	(L/s)	(m3)			
5	242.70	2.44	1.65	0.49			
10	178.56	1.79	1.00	0.60			
15	142.89	1.43	0.64	0.58			
20	119.95	1.20	0.41	0.50			
25	103.85	1.04	0.25	0.38			
30	91.87	0.92	0.13	0.24			
35	82.58	0.83	0.04	0.08			
40	75.15	0.75	-0.04	-0.09			
45	69.05	0.69	-0.10	-0.26			
50	63.95	0.64	-0.15	-0.45			
55	59.62	0.60	-0.19	-0.63			
60	55.89	0.56	-0.23	-0.83			
65	52.65	0.53	-0.26	-1.02			
70	49.79	0.50	-0.29	-1.22			
75	47.26	0.47	-0.32	-1.42			
90	41.11	0.41	-0.38	-2.04			
105	36.50	0.37	-0.42	-2.67			
120	32.89	0.33	-0.46	-3.31			

Natts Accutrol Flow	Control Roof Drains:		RD-100-A-ADJ	set to 1/4 Exposed	
Design Event Flow (L/s)		Total Flow (L/s)	Ponding	Storage	e (m ³)
Design Event		Total Flow (L/S)	(cm)	Required	Provided
1:5 Year	0.71	1.42	7.6	0.4	0.6
1:100 Year	0.79	1.58	10.2	1.2	1.3

Roof Drain Stor	Roof Drain Storage Table for RD # 23+24					
Elevation	Area	Total Volume				
m	m²	m ³				
0.00	0	0				
0.05	4.4	0.1				
0.10	17.2	0.7				
0.15	40.1	2.1				

WATTS	Adjustable Accutrol Weir Tag:	Adjustable Flow Control for Roof Drains
-------	----------------------------------	--


ADJUSTABLE ACCUTROL (for Large Sump Roof Drains only)

For more flexibility in controlling flow with heads deeper than 2", Watts Drainage offers the Adjustable Accutrol. The Adjustable Accutrol Weir is designed with a single parabolic opening that can be covered to restrict flow above 2" of head to less than 5 gpm per inch, up to 6" of head. To adjust the flow rate for depths over 2" of head, set the slot in the adjustable upper cone according to the flow rate required. Refer to Table 1 below. Note: Flow rates are directly proportional to the amount of weir opening that is exposed.

EXAMPLE:

For example, if the adjustable upper cone is set to cover 1/2 of the weir opening, flow rates above 2"of head will be restricted to 2-1/2 gpm per inch of head.

Therefore, at 3" of head, the flow rate through the Accutrol Weir that has 1/2 the slot exposed will be: [5 gpm (per inch of head) x 2 inches of head] + 2-1/2 gpm (for the third inch of head) = 12-1/2 gpm.

Wair Opening	1"	2"	3"	4"	5"	6"	
Weir Opening Exposed	Flow Rate (gallons per minute)						
Fully Exposed	5	10	15	20	25	30	
3/4	5	10	13.75	17.5	21.25	25	
1/2	5	10	12.5	15	17.5	20	
1/4	5	10	11.25	12.5	13.75	15	
Closed	5	5	5	5	5	5	

Job Name

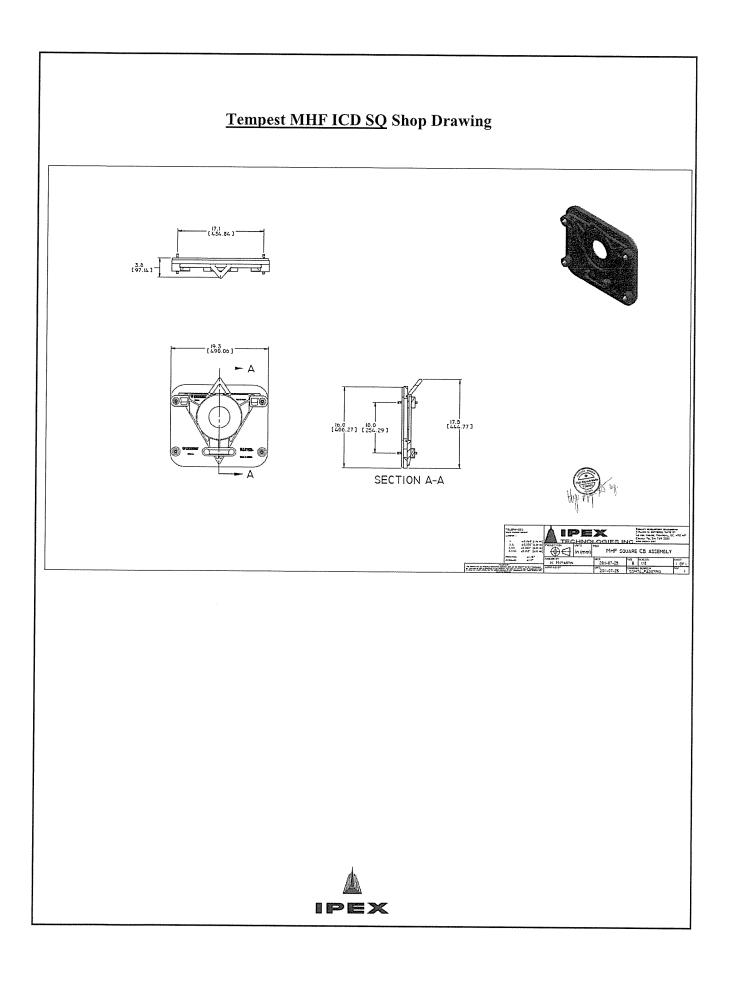
Job Location

Engineer

Adjustable Upper Cone Fixed Weir

Contractor _

Contractor's P.O. No.


Representative ____

Watts product specifications in U.S. customary units and metric are approximate and are provided for reference only. For precise measurements, please contact Watts Technical Service. Watts reserves the right to change or modify product design, construction, specifications, or materials without prior notice and without incurring any obligation to make such changes and modifications on Watts products previously or subsequently sold.

USA: Tel: (800) 338-2581 • Fax: (828) 248-3929 • Watts.com **Canada:** Tel: (905) 332-4090 • Fax: (905) 332-7068 • Watts.ca **Latin America:** Tel: (52) 81-1001-8600 • Fax: (52) 81-8000-7091 • Watts.com

A Watts Water Technologies Company

APPENDIX D

Water Demands, Boundary Conditions and FUS Calculation

Adelaide Apartments Tower PRELIMINARY WATER DEMAND CALCULATIONS

Water Demand (Proposed)								
	R	lesidentia	l	Commercial Demands (L			./s)	
Building	Un	nits	Total Pop'n	Office Employees	Average	Max.	Peak Hour	
	1 Bdrm	2 Bdrm	(pers)	(pers)	Day	Daily	Hour	
N	040	40	000	0	1.00	0.00	7.04	
New	216	12	328	0	1.33	3.32	7.31	
Addition	22	2	35	0	0.14	0.35	0.78	
Total	238	14	363	0	1.47	3.68	8.09	

Notes:

Residential Densities (from	n City	<u>y of Ottawa data):</u>	
- 1 Bedroom Apartment =		1.4	cap/unit
- 2 Bedroom Apartment =		2.1	cap/unit
<u>Avg. Day Demand:</u> - Residential	=	350	L/cap/day
<u>Max. Daily Demand:</u> - Residential	=	2.5	x Avg. Day
<u>Peak Hour Demand:</u> - Residential	=	2.2	x Max. Day

FUS - Fire Flow Calculations

As per 1999 Fire Underwriter's Survey Guidelines

NOVATECH

Engineers, Planners & Landscape Architects

Novatech Project #: 116070 Project Name: Adelaide Apartments - Tower Addition Date: 24/01/19 Input By: LGB Reviewed By: GJM

Legend Input by User

No Information or Input Required

Building Description: New residential Tower (with fire wall between ex. Adelaide building) Fire Resistive Construction

Step			Choose		Value Used	Total Fire Flow (L/min)
		Base Fire Flo	w			
	Construction Material		Multiplier			
Coefficient 1 related to type of construction C	Wood frame Ordinary construction		1.5 1			
	Non-combustible construction Modified Fire resistive construction (2 hrs)	Yes	0.8	0.6		
	Floor Area	Fire resistive construction (> 3 hrs)		0.6		
2	A	Building Footprint (m ²) Number of Floors/Storeys Protected Openings (1 hr) Area of structure considered (m ²)	750 29 Yes		1,125	
F		Base fire flow without reductions F = 220 C (A) ^{0.5}	-			4,000
	8	Reductions or Surc	harges			
	Occupancy haza	rd reduction or surcharge	<u> </u>	Reduction	Surcharge	
3	(1)	Non-combustible Limited combustible Combustible Free burning	Yes	-25% -15% 0% 15% 25%	-15%	3,400
					ction	
4	(2)	Adequately Designed System (NFPA 13) Standard Water Supply Fully Supervised System	Yes Yes No Cum	-30% -10% -10% pulative Total	-30% -10% -40%	-1,360
	Exposure Surch	arge (cumulative %)			Surcharge	
5	(3)	North Side East Side South Side West Side	10.1 - 20 m 10.1 - 20 m 2Hr Fire Wall 10.1 - 20 m Cum	ulative Total	15% 15% 10% 15% 55%	1,870
		Results				
	6 (1) + (2) + (3)	Total Required Fire Flow, rounded to nearest 1000L/min			L/min	4,000
6		(2,000 L/min < Fire Flow < 45,000 L/min) or		L/s USGPM	67 1,057	
7	Storage Volume	Required Duration of Fire Flow (hours) Required Volume of Fire Flow (m ³)			Hours m ³	1.5 360

Lydia Bolam

Mottalib, Abdul <abdul.mottalib@ottawa.ca></abdul.mottalib@ottawa.ca>
Thursday, May 30, 2019 2:53 PM Lydia Bolam
Mottalib, Abdul
FW: Adelaide Tower Expansion - Watermain Boundary Conditions Request (D02-02-19-0023 / D07-12-19-0023)
Adelaide Tower May 2019.pdf
Follow up Flagged

Hi Lydia,

As requested.

Thanks,

Mohammad Abdul Mottalib, P. Eng. Extension: 27798

From:

Sent: May 30, 2019 9:22 AM To: Mottalib, Abdul <Abdul.Mottalib@ottawa.ca> Subject: RE: Adelaide Tower Expansion - Watermain Boundary Conditions Request (D02-02-19-0023 / D07-12-19-0023)

The following are boundary conditions, HGL, for hydraulic analysis at Adelaide Tower (zone 1W) assumed to be connected to the 203mm on Aberdeen (see attached PDF for location).

Minimum HGL = 107.0m

Maximum HGL = 115.0m

MaxDay + Fireflow (67L/s) = 107.5m

These are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. To: Mottalib, Abdul <<u>Abdul.Mottalib@ottawa.ca</u>>

Cc: Greg MacDonald <g.Macdonald@novatech-eng.com>

Subject: Adelaide Tower Expansion - Watermain Boundary Conditions Request (D02-02-19-0023 / D07-12-19-0023)

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

Good morning Abdul,

I would like to request the municipal watermain boundary conditions near the proposed Adelaide Tower Expansion development, located at Preston Square (300 Preston Street / 17 Aberdeen Street). This is as per your request in the City SPA comments letter received earlier this month. The location of the proposed water service and the existing on site fire hydrant are shown on the attached screenshot.

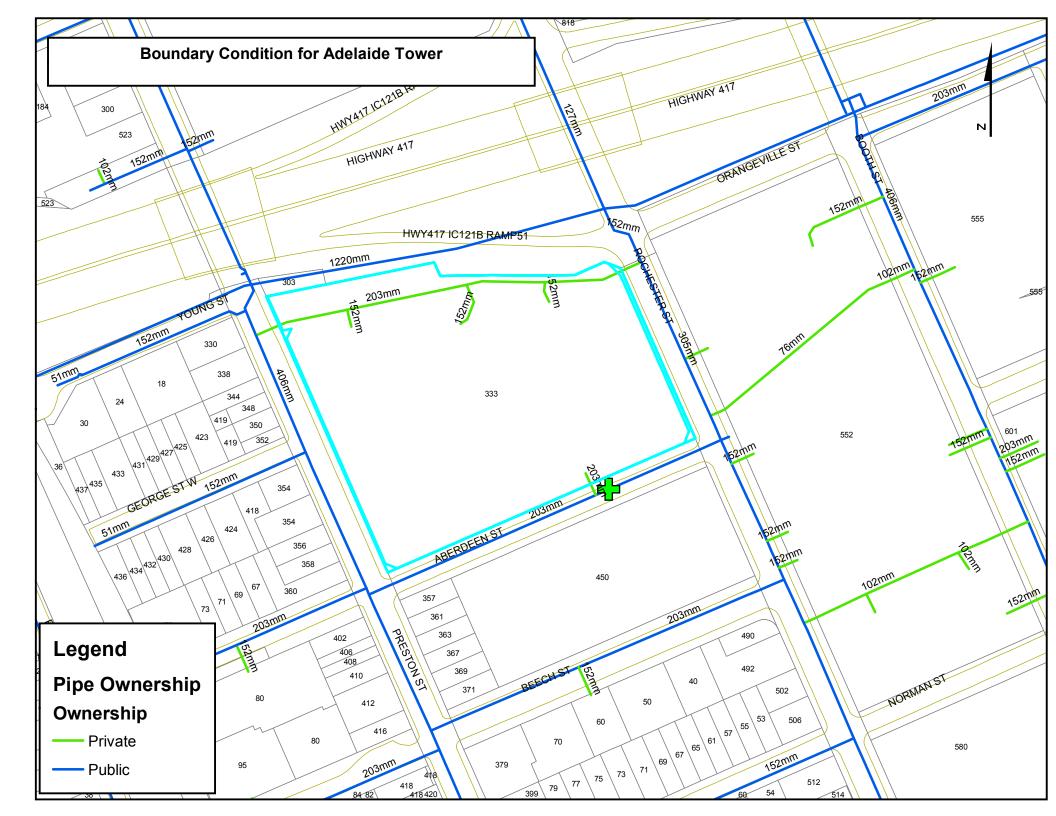
The theoretical water demands for the proposed high-rise residential Tower and the 1-storey addition to the existing Adelaide residential building are as follows:

Building	Use	Average Water Demand (L/s)	Maximum Day Demand (L/s)	Peak Hour Demand (L/s)
New Tower		1.33	3.32	7.31
1-storey Addition	Residential	0.14	0.35	0.78
Total		1.47 L/s	3.68 L/s	8.09 L/s

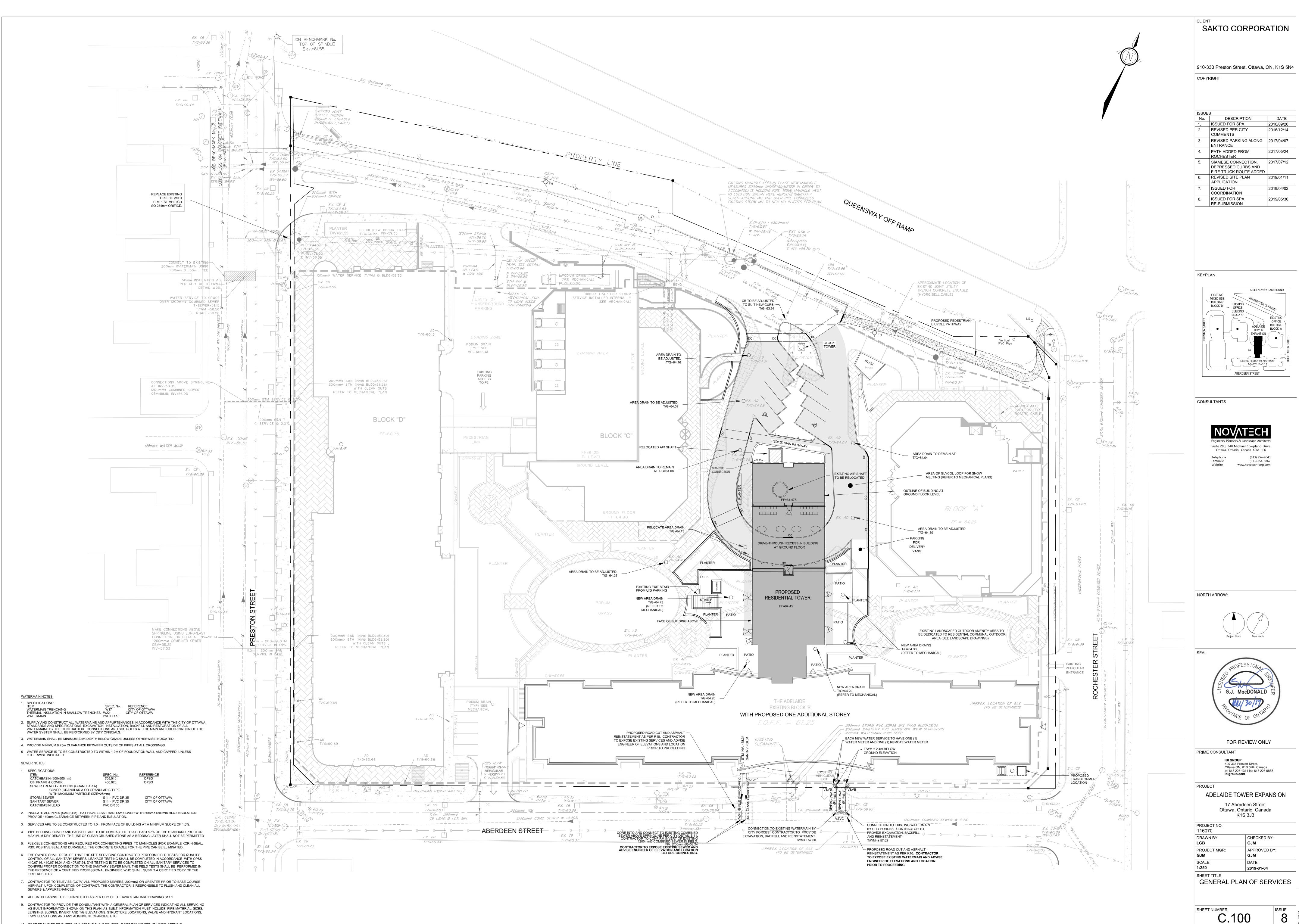
Based on the Fire Underwriters Survey (FUS) Guidelines, the fire flow for the proposed building is approximately 67 L/s (see attached FUS calculations sheet).

Please let me know if you have any questions or would like to discuss anything.

Kind regards,

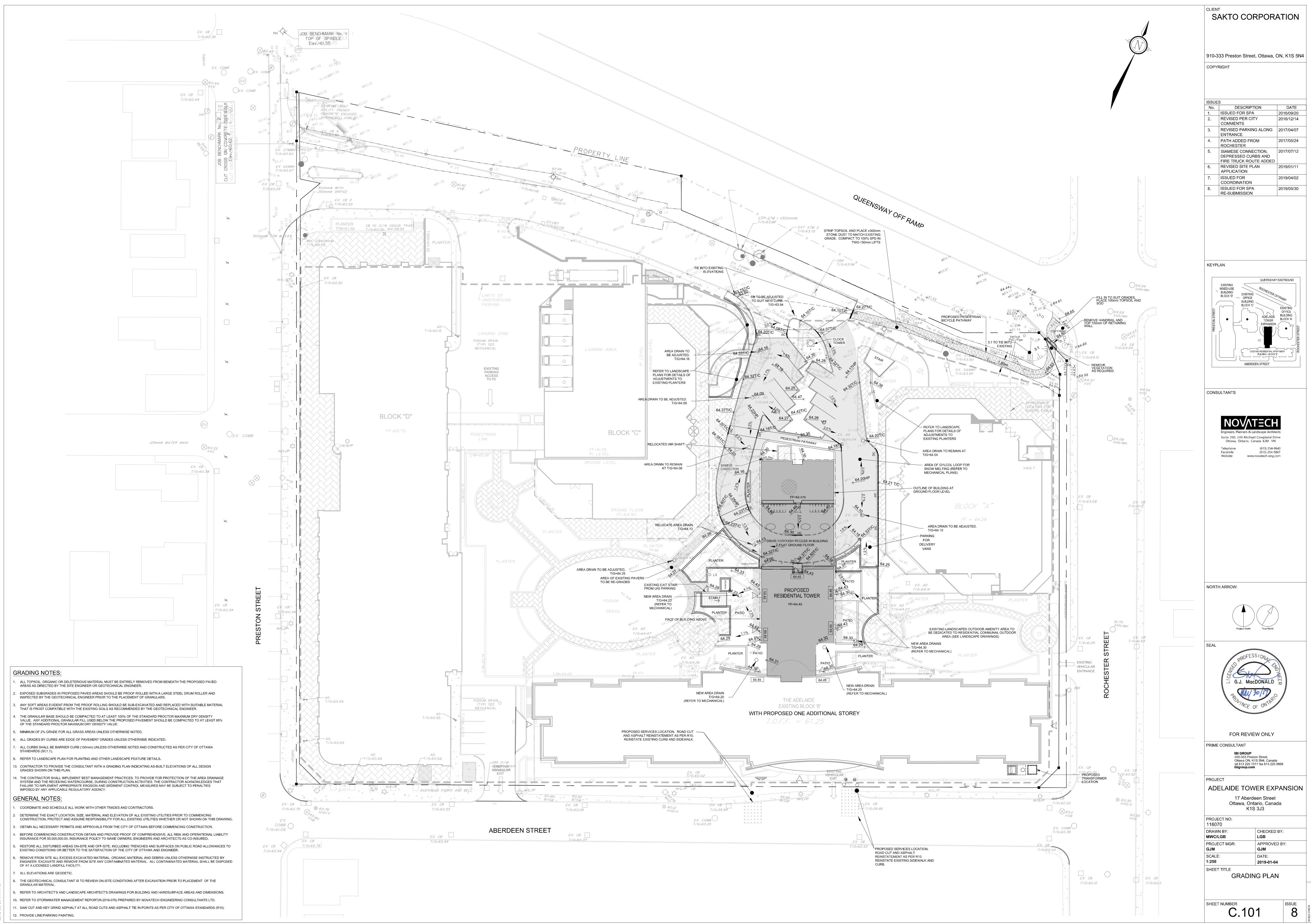

Lydia Bolam, B.Eng., EIT

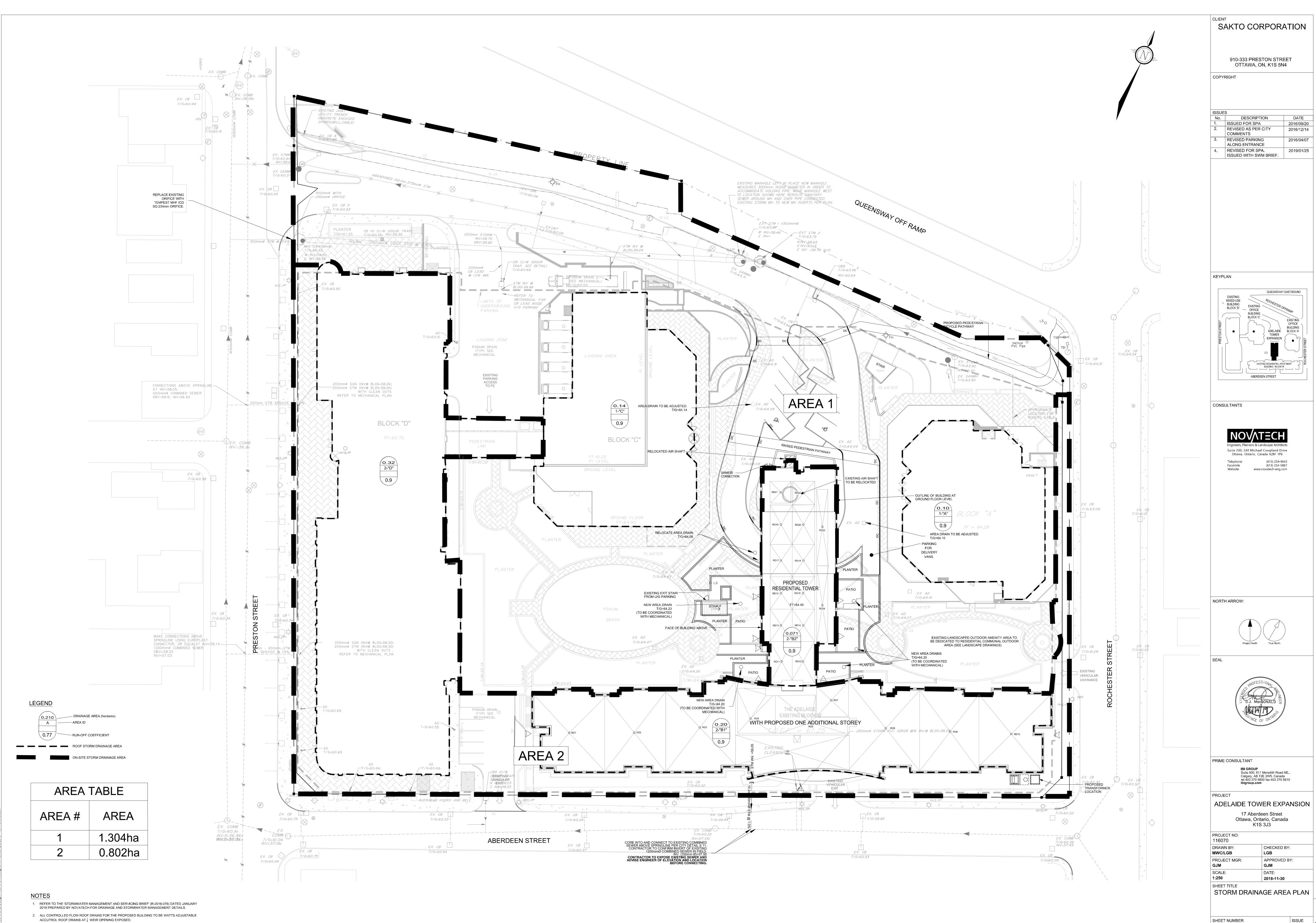
NOVATECH Engineers, Planners & Landscape Architects


240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 Ext:276 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.


DRAWINGS


10. ROOF DRAINS TO BE WATTS ADJUSTABLE FLOW CONTROL ROOF DRAINS SET AT $\frac{1}{4}$ WEIR OPENING.

City of Ottawa Project #: D07-12-19-0023

D07-12-19-0023

City of Ottawa Project #: D07-12-19-0023

4

C.103