

REPORT

Geotechnical Investigation

Proposed Residential Building - Adelaide Tower Extension 333 Preston Street, Ottawa, Ontario

Submitted to:

Sakto Corporation

910 - 333 Preston Street Ottawa, Ontario K1S 5N4

Submitted by:

Golder Associates Ltd.

1931 Robertson Road, Ottawa, Ontario, K2H 5B7, Canada

+1 613 592 9600

1658054-2000 (3000)

May 2019

Distribution List

2 Copies - Sakto Corporation

1 Copy - Golder Associates Ltd.

Table of Contents

1.0	INTRODUCTION1					
2.0	DESCRIPTION OF PROJECT AND SITE1					
3.0	PROC	EDURE	2			
4.0	SUBS	SURFACE CONDITIONS	3			
	4.1	General	3			
	4.2	Portland Cement Concrete and Fill	3			
	4.3	Auger Refusal and Bedrock	4			
	4.4	Groundwater	5			
5.0	DISC	USSION	5			
	5.1	Excavations	5			
	5.2	Foundations	6			
	5.2.1.	Shear Wall Foundation	6			
	5.3	Seismic Site Classification	6			
	5.4	Frost Protection	7			
	5.5	Floor Slab Reinstatement	7			
6.0	ADDI	TIONAL CONSIDERATIONS	7			
7.0	CLOSURE					

FIGURES

Figure 1 – Site Plan Figure 2 – Site Plan

Figure 3 – Section – At North Wall

APPENDICES

APPENDIX A Initial Investigation 2016

APPENDIX B Additional Investigation 2019

APPENDIX C Previous Investigation by Others

APPENDIX D Core Photos

APPENDIX E Unconfined Compressive Strength (UCS) Test Results

APPENDIX F Vertical Seismic Profile (VSP) Test Result

APPENDIX G Structural Drawing No. S102 by IBI Group, dated Nov. 21, 2017

1.0 INTRODUCTION

This report presents the results of a geotechnical investigation carried out for a proposed 30-storey residential building, referred to as the Adelaide Tower, which is an expansion of the existing 8-storey Adelaide apartment building located at 333 Preston Street in Ottawa, Ontario.

The purpose of this geotechnical investigation was to assess the general subsurface conditions in the area of the proposed expansion on the site by means of three boreholes, two horizontal boreholes through the wall of the existing parking garage, laboratory testing, and a review of existing subsurface information available for the site. Based on an interpretation of the factual information obtained, a general description of the subsurface conditions is presented. These interpreted subsurface conditions and available project details were used to prepare engineering guidelines on the geotechnical design aspects of the project, including construction considerations which could influence design decisions.

The reader is referred to the "Important Information and Limitations of This Report" which follows the text but forms an integral part of this document.

2.0 DESCRIPTION OF PROJECT AND SITE

Plans are being prepared for the construction of a 30-storey residential building, referred to as the Adelaide Tower Expansion, which is an addition to the existing 8-storey Adelaide apartment building located at 333 Preston Street in Ottawa, Ontario. The approximate location of the site is shown on the Key Map inset on the attached Site Plan (Figure 1).

The following is understood about the project and site:

- The overall site is a mixed-use commercial and residential development bounded to the north by Highway 417, to the west by Preston Street, to the east by Rochester Street and to the south by Aberdeen Street.
- The site is currently developed with two 11-storey office buildings, a 4-storey mixed-use building, and an 8- storey residential apartment building (The Adelaide).
- An underground parking garage currently exists beneath a large portion of the site, which connects all the existing buildings. The underground parking is 2-storey deep on the south side and 4-storey deep on the north side of the site.
- The proposed Adelaide Tower will be 30-storeys in height and will be located on the north side of the existing Adelaide building, above the existing parking garage (above portions of both the 2-storey and 4-storey underground parking garages). The proposed expansion measures about 16 metres wide by 38 metres long in plan area.
- The foundations for the proposed new building will consist of shallow spread footings bearing on the bedrock surface beneath the existing parking garage. New columns will be built within the parking garages to transfer the building loads to the new footings.

Initial geotechnical investigations have been completed at the site by others. The results of the initial investigations are provided in the following reports:

- Report by Fondex Ontario Ltd. to Sakto Development Corporation titled "Geotechnical Investigation, Proposed Commercial Development, Tower B, 333 Preston Street, Ottawa, Ontario" dated January 2005 (Report Number F2741); and,
- Report by Fondex Ontario Ltd. to Sakto Development Corporation titled "Geotechnical Investigation, Proposed Residential Development, 333 Preston Street, Ottawa, Ontario" dated January 2003 (Report Number F2232).

Based on published geological mapping and records of boreholes previously advanced at the site, the predevelopment subsurface conditions at the site are indicated to consist of fill and a thin deposit of glacial till over shallow limestone bedrock. The depth to bedrock is indicated to be 2 to 5 metres. However, the fill, glacial till, and the upper portions of the bedrock were excavated to construct the existing parking garage. As such, the subsurface conditions within the footprint of the proposed building are expected to consist solely of limestone bedrock beneath the existing parking garage. The geological mapping indicates that the underlying bedrock consists of limestone of the Verulam Formation.

3.0 PROCEDURE

The fieldwork for the initial investigation was carried out on September 22 and 26, 2016. During that time, three boreholes (numbered 16-1, 16-2, and 16-2A) were put down at the approximate locations shown on the attached Site Plan (Figure 1) and Figure 2. Borehole 16-1 is located on the P4 parking level and boreholes 16-2 and 16-2A are located on the P2 parking level, which are the lowest parking levels on the north and south sides of the site, respectively.

The boreholes for the initial investigation were advanced to depths ranging from about 0.7 to 6.8 metres below the finished floor level of the existing parking garage floor slabs (either on the P2 or P4 parking level, as indicated).

Additional geotechnical investigation was carried out for the design of the new concrete shear walls (No. S7 and S8) for the proposed expansion. As part of the new Tower construction, a concrete shear wall at the P2 level (along Gridline 6 on structural drawing No. S102; See Appendix G), will need to be constructed adjacent to the existing concrete wall of the 4-storey underground parking garage of the Tower Block "A". The purpose of the additional investigation was to assess the founding conditions for the new shear wall, which are planned to be placed either at the P2 level (i.e., below about elevation 58.0 metres) on the existing rock ledge; or at P4 level (i.e., about elevation 52.90 metres), as shown in attached Figure 3.

The fieldwork for the additional investigation was carried out between April 8 and 10, 2019. During that time, two horizontal boreholes (numbered 19-S7/P4 and 19-S8/P4) were advanced through the existing concrete wall of the parking garage at the approximate locations shown on the attached Figure 2. Boreholes 19-S7/P4 and 19-S8s/P4 were advanced on the P4 parking level, approximately at the centre lines of the proposed new shear walls, S7 and S8, respectively (See Figures 2 and 3).

All the boreholes of the initial and additional investigations were advanced using portable drilling equipment supplied and operated by CCC Geotechnical and Environmental Drilling of Ottawa, Ontario. Below the concrete floor, standard penetration tests were carried out within the granular base materials and samples of the soils encountered were recovered using split spoon sampling equipment. Upon reaching refusal to split spoon sampler advancement, the boreholes were advanced using rotary diamond drilling techniques while collecting NQ sized core. Borehole 16-2 was terminated at a depth of about 0.7 metres in a buried layer of Portland cement concrete, which was unexpected. Due to the possibility of the unexpected concrete being a buried utility, this borehole was terminated and re-drilled at a new location as borehole 16-2A. Boreholes 16-1 and 16-2A were advanced into the bedrock for drilled lengths of about 3.0 and 4.4 metres, respectively (i.e., to total depths of about 3.5 and 6.8 metres, respectively).

The boreholes for the additional investigation were advanced through the walls and into the bedrock using NQ size coring equipment.

The fieldwork was supervised by personnel from our staff who located the boreholes, directed the drilling and in situ testing operations, logged the boreholes and samples, and took custody of the soil and bedrock samples retrieved.

On completion of the drilling operations, the soil and bedrock samples were transported to our laboratory for further examination by the project engineer and for laboratory testing, which included unconfined compressive strength (UCS) testing on selected samples of the bedrock core.

The borehole locations were selected in the field in consultation with Sakto Corporation. The locations were measured relative to existing site features. The elevations of the boreholes are based on the finished floor elevations provided on the Structural Drawings for the project (i.e., 58.66 metres for P2 and 53.4 metres for P4).

4.0 SUBSURFACE CONDITIONS

4.1 General

Information on the subsurface conditions is provided as follows:

- Record of Borehole and Drillhole Sheets from the initial investigation (November 2016) are provided in Appendix A.
- Record of Borehole and Drillhole Sheets from the additional investigation (April 2019) are provided in Appendix B.
- Borehole and test pit logs from the previous investigations by others are provided in Appendix C.
- Photographs of the bedrock core from the initial and additional investigations are provided in Appendix D.
- Results of the unconfined compressive strength (UCS) testing from the initial investigation are provided in Appendix E.
- Vertical Seismic Profile (VSP) shear wave velocity testing for a nearby site on Preston Street is provided in Appendix F.
- Structural Drawing No. S102 is provided in Appendix G.

In general, the subsurface conditions at the site consist of a Portland cement concrete floor and a thin layer of granular base fill overlying limestone bedrock.

The following sections present a more detailed overview of the subsurface conditions encountered in the boreholes advanced during the additional investigation, as well as relevant information on the bedrock from initial investigations.

4.2 Portland Cement Concrete and Fill

Boreholes 16-1, 16-2, and 16-2A were advanced through the Portland cement concrete floor slabs of the existing parking garage. The thickness of the floor slabs ranges from about 100 to 410 millimetres.

The Portland cement concrete is underlain by a granular base layer consisting of sandy gravel to gravelly sand fill with a thickness that ranges from about 70 to 410 millimetres. Two standard penetration tests carried out within the fill gave SPT 'N' values of greater than 50 blows per 0.3 metres of penetration; however, the high blows counts represent sampler refusal on the bedrock surface or buried Portland cement concrete, rather than the state of packing of the soil matrix.

A buried layer of Portland cement concrete was encountered beneath the fill at boreholes 16-2 and 16-2A. Some grinding noted during drilling may indicate the presence of steel reinforcement within the concrete; however, steel was not recovered from the core samples to confirm its presence. Based on correspondence with a representative of Sakto Corporation, this buried layer of concrete represents a foundation for a tower crane used during previous construction on the site. The location and size of the existing crane base was assessed using Ground Penetration Radar (GPR) scanning technique. The results of the GPR scanning are presented in a separate technical memorandum.

At borehole 16-2, the buried concrete was encountered at a depth of about 0.5 metres and was not fully penetrated, but proven to a depth of about 0.7 metres below the floor slab. At borehole 16-2A, the buried concrete has a thickness of about 1.9 metres and extends to a depth of about 2.3 metres below the existing parking garage floor slab.

The existing concrete walls at P4 level were measured to be about 255 and 355 millimetres in thickness at the locations of boreholes 19-S7/P4 and 19-S8/P8, respectively.

Fill was encountered behind the concrete wall at both borehole locations. The fill consists of coarse gravels with varying amounts of sands, cobbles and boulders. The fill extended to lengths of about 1.9 metres behind the existing concrete wall surfaces.

4.3 Auger Refusal and Bedrock

Bedrock exists beneath the concrete floor and granular base materials at the boreholes advanced during the initial investigations. Bedrock was also encountered beneath the overburden in the boreholes and test pits from the previous investigations by others. However, it should be noted that the surface of the bedrock from the previous investigations was pre-development (i.e., before construction of the parking garage). The bedrock surface depths and elevations encountered in the test holes is summarized in the following table.

Borehole/Test Pit Number	Ground Surface Elevation	Bedrock Depth (metres)	Bedrock Elevation (metres)	Post or Pre- Development
16-1	58.64	0.58	58.06	Post-development
16-2A	53.46	2.34	51.12	Post-development
BH 01-79	60.65	3.65	57.00	Pre-development
TP 03-02	61.50	3.50	58.00	Pre-development
TP 06-02	61.00	4.50	56.50	Pre-development
MW 05-00	60.65	2.38	58.27	Pre-development
16-1	58.64	0.58	58.06	Post-development
16-2A	53.46	2.34	51.12	Post-development
BH 01-79	60.65	3.65	57.00	Pre-development

Bedrock exists behind the fill materials at the boreholes advanced during the additional investigation at the P4 level. The bedrock was cored to a length of about 3.0 metres behind the existing concrete wall surface.

The bedrock encountered during the initial investigation consists of slightly weathered to fresh, thinly to medium bedded, grey, fine grained limestone with black shale interbeds. The Rock Quality Designation (RQD) values measured on pieces of the bedrock core ranged from 0 to 93 percent, but more generally between 38 and 87 percent indicating poor to good quality rock. In general, the bedrock is of poor quality in the upper metre of borehole 16-1; elsewhere, the bedrock is of good quality.

Limestone bedrock was encountered behind the fill material during the additional investigation. The RQD values measured on the bedrock cores retrieved from boreholes 19-S7/P4 and 19-S8/P8 ranged from 0 to 85 percent. In general, the bedrock has a very poor quality in the first half metre, while has a fair to good quality for along the remaining lengths of the retrieved rock samples.

Photographs of the bedrock core of the initial and additional investigations are provided in Appendix D.

The results of two UCS tests carried out on samples of the bedrock core were about 96 and 214 megapascals. The results of the UCS testing are provided in Appendix E.

4.4 Groundwater

As part of the previous investigations by others, monitoring wells were sealed into boreholes MW 05-00 and MW 12-00. The groundwater levels were measured in these wells on January 24, 2002. At that time, the predevelopment groundwater levels were measured to be about 3.0 and 3.2 metres below the ground surface, (i.e., about elevations 57.7 and 57.4 metres), respectively. However, construction of the parking garage (which is a drained structure) would have since lowered the groundwater table to a level that is lower than the present finished floor slab of the lowest parking level (P4), which is at or below an elevation of about 53.5 metres.

Groundwater levels are expected to fluctuate seasonally. Higher groundwater levels are expected during wet periods of the year, such as spring.

5.0 **DISCUSSION**

This section of the report provides engineering guidelines on the geotechnical design aspects of the project based on our interpretation of the available information described herein and project requirements. Reference should be made to the "Important Information and Limitations of this Report" which follows the text of this report but forms an integral part of this document.

The foundation engineering guidelines presented in this section have been developed in a manner consistent with the procedures outlined in Part 4 of the 2012 Ontario Building Code (OBC) for Limit States Design.

5.1 Excavations

Excavations for the proposed new footings will be through the existing concrete floor slabs of the parking garage and into the underlying granular fill. Some limited amount of bedrock removal may also be required. No unusual problems are anticipated in excavating these materials using concrete cutting techniques and small hydraulic excavators equipped with hoe-ramming equipment. If space/clearance prohibits the use of small excavators, jack hammers and manual excavation may be required.

The Occupational Health and Safety Act of Ontario requires that excavations for the soils encountered on this site be provided with side slopes no steeper than 1 horizontal to 1 vertical (1H:1V) from the bottom of the excavation (i.e., Type 3 soil). Excavations in the bedrock, if required, can likely be carried out using near-vertical side slopes. However, the exposed bedrock should be inspected by qualified geotechnical personnel at the time of excavation to confirm this assessment.

It is anticipated that the footings of the proposed Adelaide Tower Expansion will not extend below the founding elevation of the existing footings. However, if this is not the case, additional excavation guidelines will need to be provided to ensure that the integrity of the exiting footings are no compromised. Further details in this regard can be provided if and when required.

It is anticipated that the groundwater level will not be encountered for the relatively shallow excavations required for this project. However, some groundwater inflow into the excavations should still be expected. It should be possible to handle the groundwater inflow by pumping from well filtered sumps established in the floor of the excavations. Under the new regulations, a Permit-To-Take-Water (PTTW) is required from the Ministry of the Environment and Climate Change (MOECC) if a volume of water greater than 400,000 litres per day is pumped from the excavations. If the volume of water to be pumped will be less than 400,000 litres per day, but more than 50,000 litres per day, the water taking will not require a PTTW, but will need to be registered on the Environmental Activity and Sector Registry (EASR) as a prescribed activity. Since the excavations are expected to be above the groundwater level, neither a PTTW nor an EASR are likely to be required.

5.2 Foundations

In general, the subsurface conditions encountered during the initial investigation consist of up to about 0.6 to 2.3 metres of granular fill and Portland cement concrete overlying limestone bedrock. It is considered that the foundations for the proposed Adelaide Tower expansion can be supported on conventional shallow spread footings placed on or within the bedrock.

The factored bearing resistance at Ultimate Limit States (ULS) for spread footing foundations founded on or within the competent bedrock may be taken as:

- 3,500 kilopascals for the P2 parking level; and,
- 5,000 kilopascals for the P4 parking level.

These values are applicable provided that the bedrock surface is acceptably cleaned of soil and loose bedrock (i.e., any bedrock that can easily be removed with a hydraulic excavator). The settlement of footings at the corresponding service (unfactored) load levels will be less than 25 millimetres and therefore Serviceability Limit States (SLS) need not be considered in the foundation design. Accordingly, the post construction settlement of structural elements which derive their support from footings bearing on bedrock should be negligible.

A layer of buried Portland cement concrete was encountered at boreholes 16-2 and 16-2A. In general, the bearing resistance values given above can also be used for footings placed on a mat of mass concrete that extends to the bedrock surface; however, this would need to be confirmed at the time of construction by means of probeholes. Otherwise, the existing concrete may need to be removed to allow for construction of the new footings.

5.2.1. Shear Wall Foundation

Based on the available structural drawing (see Appendix G), the proposed founding elevation of the new strip footings for shear walls S7 and S8 are at about the P2 level (i.e., below about elevation 58.0 metres) as shown on attached Figure 3. Based on the existing subsurface conditions behind the concrete wall at P4 level, the footings of the shear walls would be founded on granular fill and limestone bedrock at the proposed P2 level. the fill material and poor quality rock below the footings would not be able to support the shear wall foundation loading without undergoing excessive settlement which would likely also result in rotation of the shear wall footings. Therefore, to support the shear wall footings, it is recommended to excavate the existing rock ledge as well as the granular fills down to the P4 level (i.e., elevation 52.9 metres). The footings would therefore be founded at the P4 foundation level adjacent to the existing footings of Tower Block "A".

The factored bearing resistance at Ultimate Limit States (ULS) for strip footings for the new shear walls founded on or within the bedrock at P4 level may be considered as 5,000 kilopascals. The post construction settlement of shear wall footings should be negligible under ULS (and SLS) loadings.

5.3 Seismic Site Classification

The seismic design provisions of the 2012 OBC depend, in part, on the shear wave velocity of the upper 30 metres of soil and/or rock below founding level. To support a Site Class designation, reference has been made to a Vertical Seismic Profile (VSP) shear wave velocity test that was carried out at a nearby site on Preston Street. The results of that testing are provided in Appendix F. The previous VSP test was carried out about 470 metres south of the site within the same bedrock formation that underlies 333 Preston Street.

The results of the shear wave velocity testing indicate that that the average shear wave velocity to 30 metres depth is about 1,790 metres per second (interpreted from the top of the bedrock surface). Accordingly, a Site Class A designation is appropriate for footings placed directly on the bedrock surface at this site.

5.4 Frost Protection

The new foundations are expected to be located within the existing heated parking garage. In addition, the bedrock is likely not frost susceptible. As such, frost protection is not required for the proposed footings.

5.5 Floor Slab Reinstatement

The fill required to backfill the excavations should consist of Ontario Provincial Standard Specification (OPSS) Granular A. The underslab fill should be placed in maximum 300 millimetre thick lifts and should be compacted to at least 95 percent of the material's standard Proctor maximum dry density using suitable vibratory compaction equipment.

The existing granular fill beneath the floor slabs may be suitable for re-use as backfill; however, this would need to be confirmed by the geotechnical engineer at the time of construction.

6.0 ADDITIONAL CONSIDERATIONS

All footing and subgrade areas should be inspected by experienced geotechnical personnel prior to filling or concreting to ensure that bedrock having adequate bearing capacity has been reached and that the bearing surfaces have been properly prepared. The placing and compaction of any engineered fill should be inspected to ensure that the materials used conform to the specifications from both a grading and compaction view point.

At the time of the writing of this report, only preliminary details for the proposed building were available. Golder Associates should be retained to review the final drawings and specifications for this project prior to tendering to ensure that the guidelines in this report have been adequately interpreted.

7.0 **CLOSURE**

We trust that this report contains sufficient information for your present purposes. If you have any questions regarding this report, or if we can be of further service to you on this project, please call us.

Bill Cavers, P.Eng.

Associate, Senior Geotechnical Engineer

GOLDER ASSOCIATES LTD.

Geotechnical Engineer

AG/WC/ca

n:\active\2016\3 proj\1658054 sakto permits_approvals adelaide st\3000 - 2 geotech investigation\may 2019 - revised geo report\1658054 rpt-001 adelaide tower geotechnical report may 2019 wc.docx

Golder and the G logo are trademarks of Golder Associates Corporation

IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT

Standard of Care: Golder Associates Ltd. (Golder) has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practicing under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied is made.

Basis and Use of the Report: This report has been prepared for the specific site, design objective, development and purpose described to Golder by the Client, <u>CIMA+</u>. The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. Any change of site conditions, purpose, development plans or if the project is not initiated within eighteen months of the date of the report may alter the validity of the report. Golder cannot be responsible for use of this report, or portions thereof, unless Golder is requested to review and, if necessary, revise the report.

The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without Golder's express written consent. If the report was prepared to be included for a specific permit application process, then the client may authorize the use of this report for such purpose by the regulatory agency as an Approved User for the specific and identified purpose of the applicable permit review process, provided this report is not noted to be a draft or preliminary report, and is specifically relevant to the project for which the application is being made. Any other use of this report by others is prohibited and is without responsibility to Golder. The report, all plans, data, drawings and other documents as well as all electronic media prepared by Golder are considered its professional work product and shall remain the copyright property of Golder, who authorizes only the Client and Approved Users to make copies of the report, but only in such quantities as are reasonably necessary for the use of the report or any portion thereof to any other party without the express written permission of Golder. The Client acknowledges that electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore the Client cannot rely upon the electronic media versions of Golder's report or other work products.

The report is of a summary nature and is not intended to stand alone without reference to the instructions given to Golder by the Client, communications between Golder and the Client, and to any other reports prepared by Golder for the Client relative to the specific site described in the report. In order to properly understand the suggestions, recommendations and opinions expressed in this report, reference must be made to the whole of the report. Golder cannot be responsible for use of portions of the report without reference to the entire report.

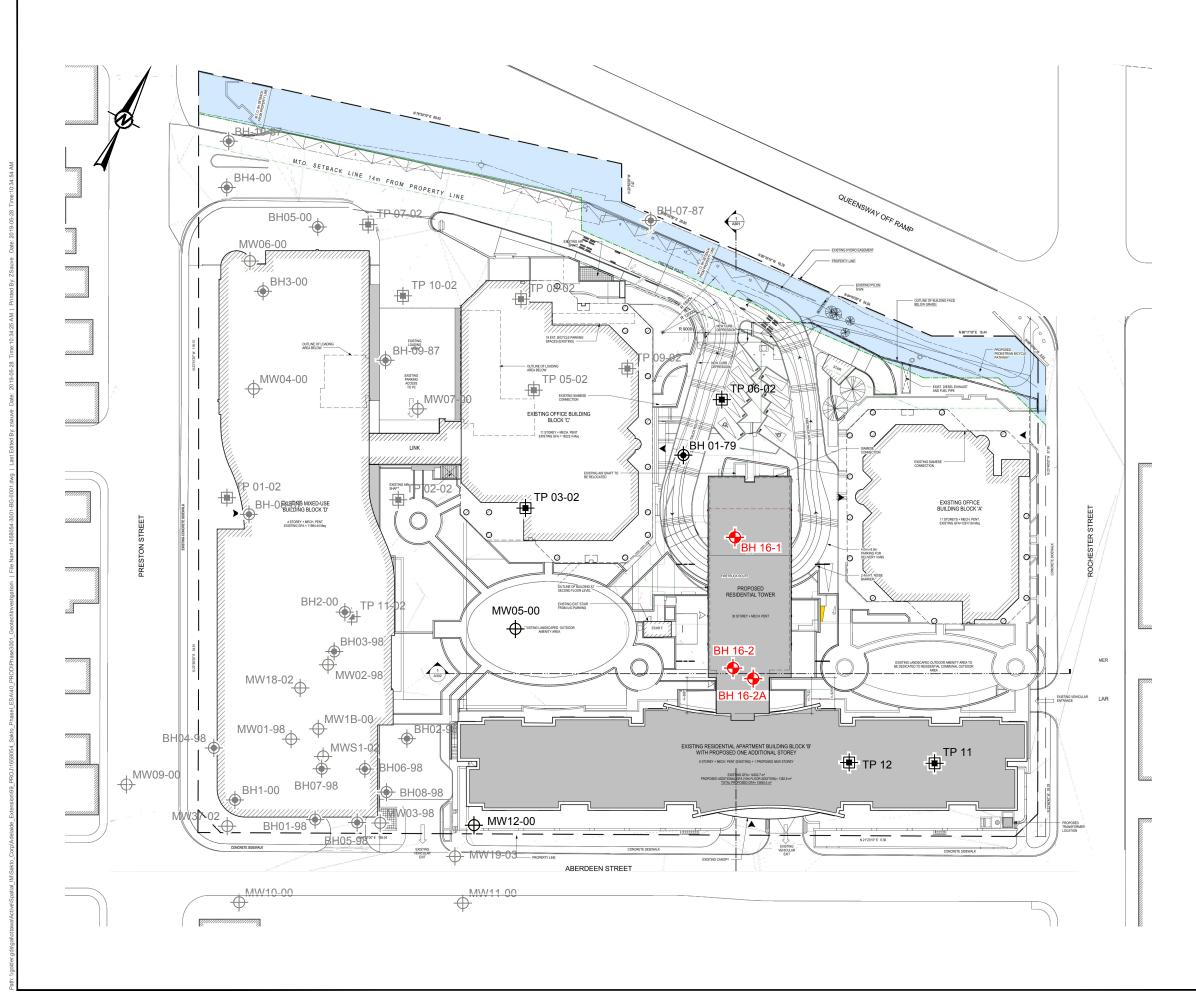
Unless otherwise stated, the suggestions, recommendations and opinions given in this report are intended only for the guidance of the Client in the design of the specific project. The extent and detail of investigations, including the number of test holes, necessary to determine all of the relevant conditions which may affect construction costs would normally be greater than has been carried out for design purposes. Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual data presented in the report, as to how subsurface conditions may affect their work, including but not limited to proposed construction techniques, schedule, safety and equipment capabilities.

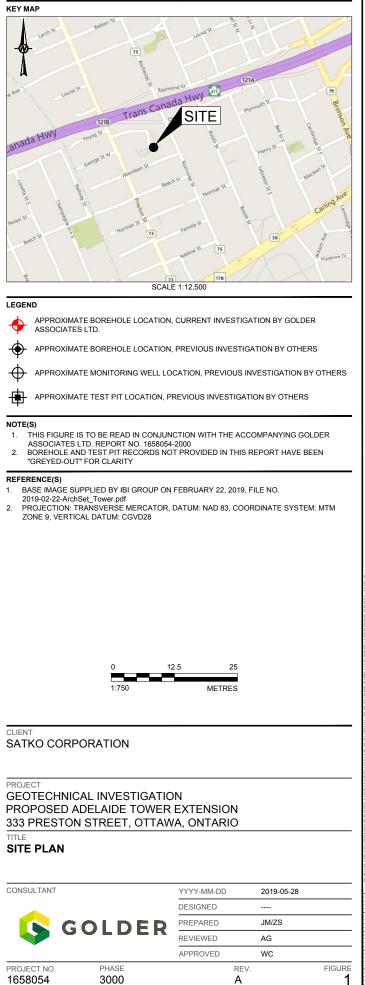
Soil, Rock and Groundwater Conditions: Classification and identification of soils, rocks, and geologic units have been based on commonly accepted methods employed in the practice of geotechnical engineering and related disciplines. Classification and identification of the type and condition of these materials or units involves judgment, and boundaries between different soil, rock or geologic types or units may be transitional rather than abrupt. Accordingly, Golder does not warrant or guarantee the exactness of the descriptions.

IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT (cont'd)

Special risks occur whenever engineering or related disciplines are applied to identify subsurface conditions and even a comprehensive investigation, sampling and testing program may fail to detect all or certain subsurface conditions. The environmental, geologic, geotechnical, geochemical and hydrogeologic conditions that Golder interprets to exist between and beyond sampling points may differ from those that actually exist. In addition to soil variability, fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties. **The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at the site, unless otherwise specifically stated and identified in the report.** The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this project and have not been investigated or addressed.

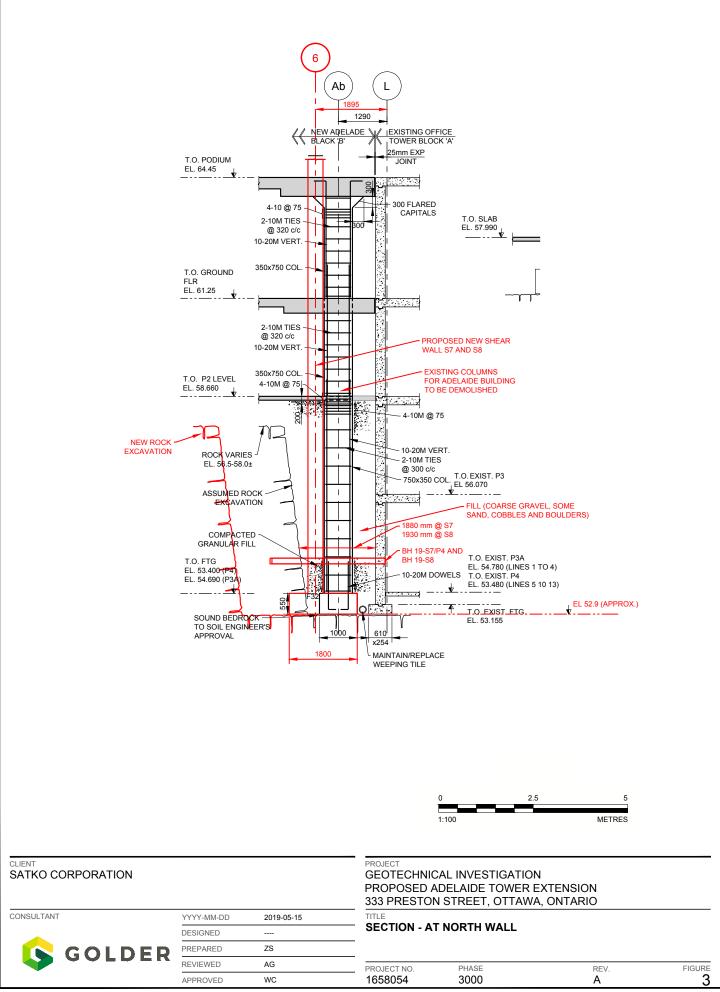
Soil and groundwater conditions shown in the factual data and described in the report are the observed conditions at the time of their determination or measurement. Unless otherwise noted, those conditions form the basis of the recommendations in the report. Groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. The condition of the soil, rock and groundwater may be significantly altered by construction activities (traffic, excavation, groundwater level lowering, pile driving, blasting, etc.) on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying or frost. Unless otherwise indicated the soil must be protected from these changes during construction.


Sample Disposal: Golder will dispose of all uncontaminated soil and/or rock samples 90 days following issue of this report or, upon written request of the Client, will store uncontaminated samples and materials at the Client's expense. In the event that actual contaminated soils, fills or groundwater are encountered or are inferred to be present, all contaminated samples shall remain the property and responsibility of the Client for proper disposal.


Follow-Up and Construction Services: All details of the design were not known at the time of submission of Golder's report. Golder should be retained to review the final design, project plans and documents prior to construction, to confirm that they are consistent with the intent of Golder's report.

During construction, Golder should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those interpreted conditions considered in the preparation of Golder's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in Golder's report. Adequate field review, observation and testing during construction are necessary for Golder to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, Golder's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.

Changed Conditions and Drainage: Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of this report that Golder be notified of any changes and be provided with an opportunity to review or revise the recommendations within this report. Recognition of changed soil and rock conditions requires experience and it is recommended that Golder be employed to visit the site with sufficient frequency to detect if conditions have changed significantly.


Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage or dewatering can have serious consequences. Golder takes no responsibility for the effects of drainage unless specifically involved in the detailed design and construction monitoring of the system.

25 mm IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZ

25 mm IF THIS MEASURE

APPENDIX A

Initial Investigation 2016

LITHOLOGICAL AND GEOTECHNICAL ROCK DESCRIPTION TERMINOLOGY

WEATHERINGS STATE

Fresh: no visible sign of rock material weathering.

Faintly weathered: weathering limited to the surface of major discontinuities.

Slightly weathered: penetrative weathering developed on open discontinuity surfaces but only slight weathering of rock material.

Moderately weathered: weathering extends throughout the rock mass but the rock material is not friable.

Highly weathered: weathering extends throughout rock mass and the rock material is partly friable.

Completely weathered: rock is wholly decomposed and in a friable condition but the rock and structure are preserved.

BEDDING THICKNESS

Description	Bedding Plane Spacing
Very thickly bedded	Greater than 2 m
Thickly bedded	0.6 m to 2 m
Medium bedded	0.2 m to 0.6 m
Thinly bedded	60 mm to 0.2 m
Very thinly bedded	20 mm to 60 mm
Laminated	6 mm to 20 mm
Thinly laminated	Less than 6 mm

JOINT OR FOLIATION SPACING

Spacing
Greater than 3 m
1 m to 3 m
0.3 m to 1 m
50 mm to 300 mm
Less than 50 mm

GRAIN SIZE

Term	<u>Size*</u>
Very Coarse Grained	Greater than 60 mm
Coarse Grained	2 mm to 60 mm
Medium Grained	60 microns to 2 mm
Fine Grained	2 microns to 60 microns
Very Fine Grained	Less than 2 microns

Note: * Grains greater than 60 microns diameter are visible to the naked eye.

CORE CONDITION

Total Core Recovery (TCR)

The percentage of solid drill core recovered regardless of quality or length, measured relative to the length of the total core run.

Solid Core Recovery (SCR)

The percentage of solid drill core, regardless of length, recovered at full diameter, measured relative to the length of the total core run.

Rock Quality Designation (RQD)

The percentage of solid drill core, greater than 100 mm length, as measured along the centerline axis of the core, relative to the length of the total core run. RQD varies from 0% for completely broken core to 100% for core in solid segments.

DISCONTINUITY DATA

Fracture Index

A count of the number of naturally occuring discontinuities (physical separations) in the rock core. Mechanically induced breaks caused by drilling are not included.

Dip with Respect to Core Axis

The angle of the discontinuity relative to the axis (length) of the core. In a vertical borehole a discontinuity with a 90° angle is horizontal.

Description and Notes

An abbreviation description of the discontinuities, whether naturally occurring separations such as fractures, bedding planes and foliation planes and mechanically separated bedding or foliation surfaces. Additional information concerning the nature of fracture surfaces and infillings are also noted.

Abbreviations						
JN Joint	PL	Planar				
FLT Fault	CU	Curved				
SH Shear	UN	Undulating				
VN Vein	IR	Irregular				
FR Fracture	К	Slickensided				
SY Stylolite	PO	Polished				
BD Bedding	SM	Smooth				
FO Foliation	SR	Slightly Rough				
CO Contact	RO	Rough				
AXJ Axial Joint	VR	Very Rough				
KV Karstic Void						

MB Mechanical Break

Organic or Inorganic	Soil Group	Туре	of Soil	Gradation or Plasticity	$Cu = \frac{D_{60}}{D_{10}}$		$Cc = \frac{(D_{30})^2}{D_{10} x D_{60}}$		Organic Content	USCS Group Symbol	Group Name			
		Gravels G with S S ⊂ ≤12%				Poorly Graded		<4		≤1 or 2	≥3		GP	GRAVEL
(ss	5 mm)	/ELS mass action 4.75 r	fines (by mass)	Well Graded		≥4		1 to 3	3		GW	GRAVEL		
by ma	SOILS an 0.07	GRAVELS (>50% by mass of coarse fraction is larger than 4.75 mm)	Gravels with	Below A Line			n/a				GM	SILTY GRAVEL		
sANIC ≤30%	AINED ger tha	arg co (>F	s >12% fines (by mass)	Above A Line		n/a				GC	CLAYEY GRAVEL			
INORG	tE-GR/ ss is lar	of s nm)	Sands with	Poorly Graded		<6		≤1 or 3	≥3	≤30%	SP	SAND		
INORGANIC (Organic Content ≾30% by mass)	DOARS by mas	DS mass action i	≤12% fines (by mass)	Well Graded		≥6 1 to 3				SW	SAND			
O)	COARSE-GRAINED SOILS (>50% by mass is larger than 0.075 mm)	SANDS (≥50% by mass of coarse fraction is smaller than 4.75 mm)	Sands with	Below A Line			n/a				SM	SILTY SAND		
	-	(≥f co smal	>12% fines (by mass)	Above A Line			n/a				SC	CLAYEY SAND		
Organic	Soil	_		Laboratory		F	Field Indica	tors	Toughness	Organic	USCS Group	Primary		
or Inorganic	Group	Гуре	of Soil	Tests	Dilatancy	Dry Strength	Shine Test	Thread Diameter	(of 3 mm thread)	Content	Symbol	Name		
		L plot		Liquid Limit	Rapid	None	None	>6 mm	N/A (can't roll 3 mm thread)	<5%	ML	SILT		
(ss	75 mm	and L	Nun-Plastic or Pl and LL plot below A-Line on Plasticity Chart below)	oc or Pl and LL ow A-Line Plasticity art below)	<50	Slow	None to Low	Dull	3mm to 6 mm	None to low	<5%	ML	CLAYEY SILT	
INORGANIC (Organic Content ≤30% by mass)	OILS an 0.0	SILTS ic or Pla				Slow to very slow	Low to medium	Dull to slight	3mm to 6 mm	Low	5% to 30%	OL	ORGANIC SILT	
SANIC t ≤30%	VED So aller th	n-Plast		5 Liquid Limit	Slow to very slow	Low to medium	Slight	3mm to 6 mm	Low to medium	<5%	MH	CLAYEY SILT		
INORGANIC Content ≤30%	FINE-GRAINED SOILS mass is smaller than 0.	No No		≥50	None	Medium to high	Dull to slight	1 mm to 3 mm	Medium to high	5% to 30%	ОН	ORGANIC SILT		
ganic (FINE oy mas	CLAYS (Pl and LL plot above A-Line on Plasticity Chart below)	olot e on nart	Liquid Limit <30	None	Low to medium	Slight to shiny	~ 3 mm	Low to medium	0%	CL	SILTY CLAY		
Ū.	FINE-GRAINED SOILS FINE-GRAINED SOILS (250% by mass is smaller than 0.075 mm)		e A-Lin icity Ch below)	Liquid Limit 30 to 50	None	Medium to high	Slight to shiny	1 mm to 3 mm	Medium	to 30%	СІ	SILTY CLAY		
	0	(Pl a above Plast		Liquid Limit ≥50	None	High	Shiny	<1 mm	High	(see Note 2)	СН	CLAY		
~	30% \$)		mineral soil tures						•	30% to		SILTY PEAT, SANDY PEAT		
HIGHLY ORGANIC SOILS (Organic	Content >30% by mass)	may cont mineral so	antly peat, tain some il, fibrous or ous peat							75% 75% to 100%	PT	PEAT		
30 - SILTY CLAY			CLAY CH CLAYEY SI ORGANIC S		80	For non-cc the soil h transitiona gravel. For cohess liquid limit of the plass Borderlin separated A borderlin has been transition	bhesive soils, as between il material b ive soils, the and plasticity ticity chart (s e Symbol — by a slash, fine symbol sh identified as between similar ay be used to	the dual sy 5% and etween "c dual symb y index val ee Plastici A borderl or example ould be us s having p lar materia	SW-SC and Cl ymbols must b 12% fines (i.e lean" and "di pol must be us ues plot in the ty Chart at left ine symbol is e, CL/CI, GM/S sed to indicate properties that ls. In addition a range of simi	e used when e. to identify rty" sand or ed when the CL-ML area c). two symbols SM, CL/ML. that the soil t are on the , a borderline				

The Golder Associates Ltd. Soil Classification System is based on the Unified Soil Classification System (USCS)

named SILT. Note 2 – For soils with <5% organic content, include the descriptor "trace organics" for soils with between 5% and 30% organic content include the prefix "organic" before the Primary name.

ら GOLDER

ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES AND TEST PITS

PARTICI E SIZES OF CONSTITUENTS

Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)
BOULDERS	Not Applicable	>300	>12
COBBLES	Not Applicable	75 to 300	3 to 12
GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75
SAND	Coarse Medium Fine	2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)
SILT/CLAY	Classified by plasticity	<0.075	< (200)

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage by Mass	Modifier
>35	Use 'and' to combine major constituents (<i>i.e.</i> , SAND and GRAVEL)
> 12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable
> 5 to 12	some
≤ 5	trace

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.). Values reported are as recorded in the field and are uncorrected.

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (q), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

Dynamic Cone Penetration Resistance (DCPT); Nd: The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

- PH: Sampler advanced by hydraulic pressure
- PM: Sampler advanced by manual pressure
- WH: Sampler advanced by static weight of hammer
- WR: Sampler advanced by weight of sampler and rod

Compactness ²					
Term	SPT 'N' (blows/0.3m) ¹				
Very Loose	0 to 4				
Loose	4 to 10				
Compact	10 to 30				
Dense	30 to 50				
Very Dense	>50				

NON-COHESIVE (COHESIONLESS) SOILS

- 1. SPT 'N' in accordance with ASTM D1586, uncorrected for the effects of overburden pressure.
- Definition of compactness terms are based on SPT 'N' ranges as provided in Terzaghi, Peck and Mesri (1996). Many factors affect the recorded SPT 'N' 2. value, including hammer efficiency (which may be greater than 60% in automatic trip hammers), overburden pressure, groundwater conditions, and grainsize. As such, the recorded SPT 'N' value(s) should be considered only an approximate guide to the soil compactness. These factors need to be considered when evaluating the results, and the stated compactness terms should not be relied upon for design or construction.

Field Moisture Condition

Term	Description					
Dry	Soil flows freely through fingers.					
Moist	Soils are darker than in the dry condition and may feel cool.					
Wet	As moist, but with free water forming on hands when handled.					
	Dry Moist					

SAMPLES	
AS	Auger sample
BS	Block sample
CS	Chunk sample
DD	Diamond Drilling
DO or DP	Seamless open ended, driven or pushed tube sampler – note size
DS	Denison type sample
GS	Grab Sample
MC	Modified California Samples
MS	Modified Shelby (for frozen soil)
RC	Rock core
SC	Soil core
SS	Split spoon sampler – note size
ST	Slotted tube
ТО	Thin-walled, open - note size (Shelby tube)
TP	Thin-walled, piston – note size (Shelby tube)
WS	Wash sample

SOIL TESTS

-
water content
plastic limit
liquid limit
consolidation (oedometer) test
chemical analysis (refer to text)
consolidated isotropically drained triaxial test1
consolidated isotropically undrained triaxial test with porewater pressure measurement ¹
relative density (specific gravity, Gs)
direct shear test
specific gravity
sieve analysis for particle size
combined sieve and hydrometer (H) analysis
Modified Proctor compaction test
Standard Proctor compaction test
organic content test
concentration of water-soluble sulphates
unconfined compression test
unconsolidated undrained triaxial test
field vane (LV-laboratory vane test)
unit weight

Tests anisotropically consolidated prior to shear are shown as CAD, CAU. 1.

COHESIVE SOILS										
	Consistency									
Term	Undrained Shear Strength (kPa)	SPT 'N' ^{1,2} (blows/0.3m)								
Very Soft	<12	0 to 2								
Soft	12 to 25	2 to 4								
Firm	25 to 50	4 to 8								
Stiff	50 to 100	8 to 15								
Very Stiff	100 to 200	15 to 30								
Hard	>200	>30								

1. SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure effects; approximate only.

SPT 'N' values should be considered ONLY an approximate guide to consistency; for sensitive clays (e.g., Champlain Sea clays), the N-value approximation for consistency terms does NOT apply. Rely on direct 2 measurement of undrained shear strength or other manual observations.

	Water Content
Term	Description
w < PL	Material is estimated to be drier than the Plastic Limit.
w ~ PL	Material is estimated to be close to the Plastic Limit.
w > PL	Material is estimated to be wetter than the Plastic Limit.

Unless otherwise stated, the symbols employed in the report are as follows:

I.	GENERAL	(a) w	Index Properties (continued) water content
π	3.1416	w _l or LL	liquid limit
ln x	natural logarithm of x	w _p or PL	plastic limit
log ₁₀	x or log x, logarithm of x to base 10 acceleration due to gravity	l₀ or PI NP	plasticity index = (w _l – w _p) non-plastic
g t	time	Ws	shrinkage limit
		IL	liquidity index = $(w - w_p) / I_p$
		lc	consistency index = $(w_l - w) / I_p$
		emax	void ratio in loosest state
		emin	void ratio in densest state
П.	STRESS AND STRAIN	ID	density index = $(e_{max} - e) / (e_{max} - e_{min})$ (formerly relative density)
	shear strain	(b)	Hydraulic Properties
$\gamma \Delta$	change in, e.g. in stress: $\Delta \sigma$	(b) h	hydraulic head or potential
2 8	linear strain	q	rate of flow
εv	volumetric strain	V	velocity of flow
η	coefficient of viscosity	i	hydraulic gradient
υ	Poisson's ratio	k	hydraulic conductivity
σ	total stress		(coefficient of permeability)
σ	effective stress ($\sigma' = \sigma - u$)	j	seepage force per unit volume
σ'_{vo}	initial effective overburden stress		
σ1, σ2, σ3	principal stress (major, intermediate, minor)	(c)	Consolidation (one-dimensional)
		C _c	compression index
σoct	mean stress or octahedral stress		(normally consolidated range)
	$= (\sigma_1 + \sigma_2 + \sigma_3)/3$	Cr	recompression index
τ	shear stress		(over-consolidated range)
u	porewater pressure	Cs	swelling index
E	modulus of deformation	Cα	secondary compression index
G K	shear modulus of deformation bulk modulus of compressibility	mv Cv	coefficient of volume change coefficient of consolidation (vertical
IX .			direction)
		Ch	coefficient of consolidation (horizontal direction)
		Tv	time factor (vertical direction)
III.	SOIL PROPERTIES	U	degree of consolidation
(2)	Index Properties	σ′ _P OCR	pre-consolidation stress
(a) ρ(γ)	Index Properties bulk density (bulk unit weight)*	OCK	over-consolidation ratio = σ'_p / σ'_{vo}
ρ(γ) ρ _d (γ _d)	dry density (dry unit weight)	(d)	Shear Strength
ρω(γω)	density (unit weight) of water	τρ, τr	peak and residual shear strength
ρs(γs)	density (unit weight) of solid particles	φ' δ	effective angle of internal friction
γ'	unit weight of submerged soil	δ	angle of interface friction
	$(\gamma' = \gamma - \gamma_w)$	μ	coefficient of friction = tan δ
D _R	relative density (specific gravity) of solid	C'	effective cohesion
-	particles ($D_R = \rho_s / \rho_w$) (formerly G_s)	Cu, Su	undrained shear strength ($\phi = 0$ analysis)
e	void ratio porosity	p n'	mean total stress $(\sigma_1 + \sigma_3)/2$
n S	degree of saturation	p' q	mean effective stress $(\sigma'_1 + \sigma'_3)/2$ $(\sigma_1 - \sigma_3)/2$ or $(\sigma'_1 - \sigma'_3)/2$
0		Ч Qu	compressive strength ($\sigma_1 - \sigma_3$)
		St	sensitivity
* Danai	ty oumbol is a Unit weight symbol is	Notes: 1	
	ty symbol is ρ . Unit weight symbol is γ e $\gamma = \rho g$ (i.e. mass density multiplied by	Notes: 1	$\tau = c' + \sigma' \tan \phi'$ shear strength = (compressive strength)/2
	eration due to gravity)	-	

PROJECT:	1658054

RECORD OF BOREHOLE: 16-1

SHEET 1 OF 2 DATUM: N/A

LOCATION: See Site Plan

SAMPLER HAMMER, 20kg; DROP, 760mm

BORING DATE: September 22, 2016

PENETRATION TEST HAMMER, 20kg; DROP, 760mm

L.		8	SOIL PROFILE		SA	AMPL	ES			2N /0.2~~	>	HYDR		ONDUCT	IVITY,			
	DEPTH SCALE METRES	BORING METHOD		10	 ~		m0%	20 20	20 40 60 80 10 ⁻⁶ 1							D-3	ADDITIONAL LAB. TESTING	PIEZOMETER OR
	METR	NG N	DESCRIPTION	STRATA PLOT (m) (m)		TYPE	BLOWS/0.30m	SHEAR STRI Cu, kPa	1	1	1	w	L ATER C	I ONTENT	PERCE	NT	3. TE	STANDPIPE INSTALLATION
	<u> </u>	BORI		(m)	Ĩ	-	BLOW					VVP					LAE	
			FINISHED FLOOR OF P4	53.48	3			20	40 6	50 8 	0		0 4	06	8 0	0		
Ē	0	Drill	PORTLAND CEMENT CONCRETE; contains wire mesh	P 4. 0.00)													
E		Portable Drill Open Hole	FILL - (GW) GRAVEL, some sand; grey, crushed; non-cohesive			GRAE												-
F	ŀ	80	FILL - (SP) gravelly SAND; dark brown,	52.90 0.58) 2	SS	>50											-
E			crushed; non-cohesive															-
-	1		DRILLHOLE 16-1															-
Ē																		-
Ē																		:
Ē																		-
_	2																	-
Ē																		-
F																		-
Ē																		-
F	3																	-
Ē																		-
F																		-
-																		-
-	4																	-
Ē																		-
F																		-
Ē																		-
F	5																	-
Ē												-						
F																		-
Ē																		-
-	6																	-
Ē																		-
F																		-
Ē																		-
-	7																	-
Ē																		-
F																		:
Ē																		-
-	8																	-
6 ZS																		-
9-5-1																		:
DT 1																		-
IIS.G	9																	-
AL-N																		-
5 L4:																		-
054.G						1												-
1658	10					1												-
MIS-BHS 001 1658054.GPJ GAL-MIS.GDT 19-5-16 ZS					1					I		L		I		I		
S-BHS			SCALE				C	GC) L [DΕ	R							OGGED: KM
MIS	1:5	50	SCALE LOGGED: KM CHECKED: SD															

			Г: 1658054 N: See Site Plan		RE	С	OF	RD	0								E: 16											eet 2 of 2 Tum: N/A
INC	CLI	NAT	ION: -90° AZIMUTH:							DF	RILL	RIG	3: F	Porta	ble	Drill												
DEPTH SCALE METRES		DRILLING RECORD	DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	FLUSH COLOUR <u> <u> <u> <u> </u> </u></u></u>	S V C	5 % C	Shear Vein Conju	r ugate		CO OR CL FR INI P 0.2	- Bedo - Folia - Cont - Ortho - Clea ACT. DEX - Clea 25 m 25 m	act ogon	r.t. RE	PL - Planar CU- Curved UN- Undulati ST - Stepped IR - Irregular DISCONTINI	UITY E	Slicker Smoot Rough	nside h anical	Brea H COI	N at of ak s) YDR NDU K, cn	ote: brevia abbre mbols	For ar ations eviatio s. C D ITYP	ien R dditior refer ms & Diame oint L Inde (MPa	to list to list oacri x -(a) A	MC Q' VG.	
	Rotary Drill		BEDROCK SURFACE Slightly weathered to fresh, thinly to medium bedded, grey, fine grained LIMESTONE, with shale interbeds - Silty clay seam from 3.47 m to 3.53 m depth		52.90 0.58	1 2 3 4 5	5 5 10 5 5																					JCS = 95.6 MPa
			End of Drillhole		<u>49.95</u> 3.53																							
			CALE							(3	0) 	_ [) 	E	R											GGED: KM :CKED: SD

PROJECT: 1658054

RECORD OF BOREHOLE: 16-2

LOCATION: See Site Plan

SAMPLER HAMMER, 20kg; DROP, 760mm

BORING DATE: September 22, 2016

SHEET 1 OF 1

DATUM: N/A

PENETRATION TEST HAMMER, 20kg; DROP, 760mm

Image: construction of the state o	IEZOMETER OR
Image: construction of the state o	STANDPIPE ISTALLATION
Image: construction of the state o	
2 Contraction Concreteive 2 2 3 3 2 Contraction Concreteive 2 3 3 3 Contraction Concreteive 0.00 0.00 2 Contraction Concreteive 0.00 0.00 2 Contraction Concreteive 0.00 0.00 2 Contraction Concreteive 0.00 0.00 3 Contraction Concreteive 0.00 4 0.00 0.00 5 Contraction Concreteive 0.00	
PORTLAND CEMENT CONCRETE 0.69 1 End of Borehole 1 Note(s): 1. Ginding on possible steel at 0.7 m deph. 2 Dorehole terminated due to the presence of unexpected portland cement concrete at deph. 2 Borehole terminated due to the presence of unexpected portland cement concrete at deph. 3 Borehole terminated due to the presence of unexpected portland cement concrete at deph. 4 Borehole terminated due to the presence of unexpected portland cement concrete at deph. 5 Borehole terminated due to the presence of unexpected portland cement concrete at deph. 6 Borehole terminated due to the presence of unexpected portland cement concrete at deph. 6 Borehole terminated due to the presence of unexpected portland cement concrete at deph. 7 Borehole terminated due to the presence of unexpected portland cement concrete at dept. 8 Borehole terminated due to the presence of unexpected portland cement concrete at dept. 8 Borehole terminated due to the presence of unexpected portland cement concrete at dept. 8 Borehole terminated due to the presence of unexpected portland cement concrete at dept. 9 Borehole terminated due to the presence of unexpected portland cement concrete at dept. 9 Borehole terminated due to the presence of unexpected portland cement concrete at dept.	
PORTLAND CEMENT CONCRETE 0.69 1 End of Borehole 1 Note(s): 1. Ginding on possible steel at 0.7 m deph. 2 Dorehole terminated due to the presence of unexpected portland cement concrete at deph. 2 Borehole terminated due to the presence of unexpected portland cement concrete at deph. 3 Borehole terminated due to the presence of unexpected portland cement concrete at deph. 4 Borehole terminated due to the presence of unexpected portland cement concrete at deph. 5 Borehole terminated due to the presence of unexpected portland cement concrete at deph. 6 Borehole terminated due to the presence of unexpected portland cement concrete at deph. 6 Borehole terminated due to the presence of unexpected portland cement concrete at deph. 7 Borehole terminated due to the presence of unexpected portland cement concrete at dept. 8 Borehole terminated due to the presence of unexpected portland cement concrete at dept. 8 Borehole terminated due to the presence of unexpected portland cement concrete at dept. 8 Borehole terminated due to the presence of unexpected portland cement concrete at dept. 9 Borehole terminated due to the presence of unexpected portland cement concrete at dept. 9 Borehole terminated due to the presence of unexpected portland cement concrete at dept.	
PORTLAND CEMENT CONCRETE 0.69 1 End of Borehole 1 Note(s): 1. Ginding on possible steel at 0.7 m deph. 2 Dorehole terminated due to the presence of unexpected portland cement concrete at deph. 2 Borehole terminated due to the presence of unexpected portland cement concrete at deph. 3 Borehole terminated due to the presence of unexpected portland cement concrete at deph. 4 Borehole terminated due to the presence of unexpected portland cement concrete at deph. 5 Borehole terminated due to the presence of unexpected portland cement concrete at deph. 6 Borehole terminated due to the presence of unexpected portland cement concrete at deph. 6 Borehole terminated due to the presence of unexpected portland cement concrete at deph. 7 Borehole terminated due to the presence of unexpected portland cement concrete at dept. 8 Borehole terminated due to the presence of unexpected portland cement concrete at dept. 8 Borehole terminated due to the presence of unexpected portland cement concrete at dept. 8 Borehole terminated due to the presence of unexpected portland cement concrete at dept. 9 Borehole terminated due to the presence of unexpected portland cement concrete at dept. 9 Borehole terminated due to the presence of unexpected portland cement concrete at dept.	
1 Note(s): 1. Grinding on possible steel at 0.7 m depth. 2 2 2 Borehole terminated due to the presence of unexpected portland cement Borehole 16-2A.	
1. Grinding on possible steel at 0.7 m depth. 2. Borehole terminated due to the presence of unexpected portional cement concrete at depth. Refer to Record of Borehole 16-20. 3 4 6	-
depth. 2. Borehole terminated due to the presence of unexpected portiand cerrent concrete at depth. Refer to Record of Borehole 16-2A.	
presence of unexpected portland cement concrete at depth. Refer to Record of Borehole 16-2A.	
concrete at depth. Refer to Record of Borehole 16-2A.	
	-
	-
	_
	-
	-
	-
\mathbf{E}	
	-
	-
	-
S2 9 10 10 DEPTH SCALE Image: Comparison of the scale of	
DEPTH SCALE LOGGER	KM

PROJECT: 1658054

LOCATION: See Site Plan

RECORD OF BOREHOLE: 16-2A

BORING DATE: September 26, 2016

SHEET 1 OF 2

DATUM: N/A

SAMPLER HAMMER, 20kg; DROP, 760mm

PENETRATION TEST HAMMER, 20kg; DROP, 760mm

ш		8	SOIL PROFILE			SAM	PLES	DYNAMIC PE RESISTANCE		DN /0.3m	$\sum_{i=1}^{n}$	HYDRA	ULIC CO k, cm/s	IVITY,		.0	
DEPTH SCALE		BORING METHOD		LOT		4	30m		40 6	50 8	io L	10) ⁻⁴ 1	0 ⁻³	ADDITIONAL LAB. TESTING	PIEZOMETER OR
EPTH		SING P	DESCRIPTION	- × -	LEV. EPTH		BLOWS/0.30m	SHEAR STRE Cu, kPa	NGTH r	natV.+ emV.⊕	Q - ● U - O	w	ATER CO			DDITI B. TE	STANDPIPE INSTALLATION
DE		BOF		STR/	(m)	2	BLO	20			0	20 20	→ → 4		WI 80	ΓA	
_	0 -		FINISHED FLOOR OF P2		58.66												
-		Open Hole	PORTLAND CEMENT CONCRETE (0.00 m - 0.41 m)	P 4 4	0.00												:
-		Ope			58.25 0.48	GR	АВ -										
-			Crushed; non-cohesive		0.40												-
Ē	1		- Some grinding may represent the presence of steel reinforcement	4 A 4 A													-
F	1																-
E	Dotory Drill	NQ Core		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		2 R	C DD										-
Ē		2															
F	2																-
Ē				_ 0 ⊿	56.32	3 R											-
È			Borehole continued on RECORD OF DRILLHOLE 16-2A		2.34												
Ē																	
F	3																-
F																	-
Ē																	
F																	
F	4																-
F																	
Ē																	-
Ē																	-
F	5																-
E																	-
-																	-
Ē																	-
F	6																-
Ē																	-
F																	-
E																	-
Ē	7																-
È																	-
Ē																	
F																	-
-	8																
16 Z																	
19-5-																	
GDT																	-
-WIS	9																
GAL																	-
GPJ																	
8054	10																
1 165																	
MIS-BHS 001 1658054.GPJ GAL-MIS.GDT 19-5-16 ZS		тн ч	SCALE						<u> </u>		n			 		10	DGGED: KM
IIS-BI	JEP 1:5							GC		ノヒ	К						ECKED: SD
2																	

LC	CA	DJECT: 1658054 CATION: See Site Plan LINATION: -90° AZIMUTH:		REC	0	RI	D	O	DF DF	RILL RILL	ING RIC	i DA G: F	ATE Port	: Se able	epte Drill	mber 26, 2016 R: CCC	4									HEET 2 OF 2 ATUM: N/A
DEPTH SCALE METRES		DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	5	S l	S V C	HR- N- J- COV	Joint Fault Shea Vein Conju ERY SOLIE	r ugate		BD FO CO OR CL FR IN F	- Be - Fol	dding iation ntact hogor avage DIP v COI AX	v.r.t. RE IS	PL - Planar CU- Curved UN- Undulating ST - Stepped IR - Irregular DISCONTINUITY TYPE AND SURF/ DESCRIPTION		Slicke Smoot Rouah	nside h anical	Breal HY CON	NC abl of ik syr YDRA YDRA NDUC	R - E brevial abbrev mbols. AULIC CTIVIT /sec	For ad tions viation Di TYPC	dition: refer t ns &	al iolist ral bac RMC -Q') AVG	-
- - - - - - - - - - - - -		BEDROCK SURFACE Slightly weathered to fresh, thinly to medium bedded, grey, fine grained LIMESTONE, with shale interbeds		56.32 2.34	1	5	0004			7 8	042															UCS = 213.9 MPa
- - - - - - - - - - - - - - - - - - -	Rotary Drill	Robary Drill NG Core			2	5																				
					3	5																				-
- - - - - - - - - - - - -		End of Drillhole		51.91 6.75																						
- - - - - - - - - - - - - - - - - - -																										
	EP1 : 50	PTH SCALE 50		ıl					(3	0)		D	E	R						1		11		I OGGED: KM IECKED: SD

APPENDIX B

Additional Investigation 2019

LITHOLOGICAL AND GEOTECHNICAL ROCK DESCRIPTION TERMINOLOGY

WEATHERINGS STATE

Fresh: no visible sign of rock material weathering.

Faintly weathered: weathering limited to the surface of major discontinuities.

Slightly weathered: penetrative weathering developed on open discontinuity surfaces but only slight weathering of rock material.

Moderately weathered: weathering extends throughout the rock mass but the rock material is not friable.

Highly weathered: weathering extends throughout rock mass and the rock material is partly friable.

Completely weathered: rock is wholly decomposed and in a friable condition but the rock and structure are preserved.

BEDDING THICKNESS

Description	Bedding Plane Spacing
Very thickly bedded	Greater than 2 m
Thickly bedded	0.6 m to 2 m
Medium bedded	0.2 m to 0.6 m
Thinly bedded	60 mm to 0.2 m
Very thinly bedded	20 mm to 60 mm
Laminated	6 mm to 20 mm
Thinly laminated	Less than 6 mm

JOINT OR FOLIATION SPACING

Spacing
Greater than 3 m
1 m to 3 m
0.3 m to 1 m
50 mm to 300 mm
Less than 50 mm

GRAIN SIZE

Term	<u>Size*</u>
Very Coarse Grained	Greater than 60 mm
Coarse Grained	2 mm to 60 mm
Medium Grained	60 microns to 2 mm
Fine Grained	2 microns to 60 microns
Very Fine Grained	Less than 2 microns

Note: * Grains greater than 60 microns diameter are visible to the naked eye.

CORE CONDITION

Total Core Recovery (TCR)

The percentage of solid drill core recovered regardless of quality or length, measured relative to the length of the total core run.

Solid Core Recovery (SCR)

The percentage of solid drill core, regardless of length, recovered at full diameter, measured relative to the length of the total core run.

Rock Quality Designation (RQD)

The percentage of solid drill core, greater than 100 mm length, as measured along the centerline axis of the core, relative to the length of the total core run. RQD varies from 0% for completely broken core to 100% for core in solid segments.

DISCONTINUITY DATA

Fracture Index

A count of the number of naturally occuring discontinuities (physical separations) in the rock core. Mechanically induced breaks caused by drilling are not included.

Dip with Respect to Core Axis

The angle of the discontinuity relative to the axis (length) of the core. In a vertical borehole a discontinuity with a 90° angle is horizontal.

Description and Notes

An abbreviation description of the discontinuities, whether naturally occurring separations such as fractures, bedding planes and foliation planes and mechanically separated bedding or foliation surfaces. Additional information concerning the nature of fracture surfaces and infillings are also noted.

Abbreviations		
JN Joint	PL	Planar
FLT Fault	CU	Curved
SH Shear	UN	Undulating
VN Vein	IR	Irregular
FR Fracture	К	Slickensided
SY Stylolite	PO	Polished
BD Bedding	SM	Smooth
FO Foliation	SR	Slightly Rough
CO Contact	RO	Rough
AXJ Axial Joint	VR	Very Rough
KV Karstic Void		

MB Mechanical Break

Organic or Inorganic	Soil Group	Туре	of Soil	Gradation or Plasticity	Cu	$=\frac{D_{60}}{D_{10}}$		$Cc = \frac{(D)}{D_{10}}$	$\frac{(30)^2}{xD_{60}}$	Organic Content	USCS Group Symbol	Group Name		
		Gravels (>50% by mass of (>50% by mass of coarse fraction is (py mass of coarse fraction is (py mass of coarse fraction is (py mass of s15% (py mass of coarse fraction is file (py mass of coarse fraction is (py mass of coarse fraction is (p) mass of (p) mass o				Poorly Graded		<4		≤1 or 2	≥3		GP	GRAVEL
(ss	5 mm)			Well Graded		≥4		1 to 3	3		GW	GRAVEL		
by ma	SOILS an 0.07	GRAVELS 50% by mas arse fraction er than 4.75	Gravels with	Below A Line			n/a				GM	SILTY GRAVEL		
sANIC ≤30%	AINED ger tha	arg co (>F	>12% fines (by mass)	Above A Line	n/a				GC	CLAYEY GRAVEL				
INORG	tE-GR/ ss is lar	of s nm)	Sands with	Poorly Graded		<6		≤1 or 3	≥3	≤30%	SP	SAND		
INORGANIC (Organic Content ≾30% by mass)	DOARS by mas	DS mass action i	≤12% fines (by mass)	Well Graded		≥6		1 to :	3		SW	SAND		
O)	COARSE-GRAINED SOILS (>50% by mass is larger than 0.075 mm)	SANDS (≥50% by mass of coarse fraction is smaller than 4.75 mm)	Sands with	Below A Line			n/a				SM	SILTY SAND		
	-	(≥f co smal	>12% fines (by mass)	Above A Line			n/a				SC	CLAYEY SAND		
Organic	Soil	_		Laboratory		F	Field Indica	tors	Toughness	Organic	USCS Group	Primary		
or Inorganic	Group	Гуре	of Soil	Tests	Dilatancy	Dry Strength	Shine Test	Thread Diameter	(of 3 mm thread)	Content	Symbol	Name		
		L plot		Liquid Limit	Rapid	None	None	>6 mm	N/A (can't roll 3 mm thread)	<5%	ML	SILT		
(ss	75 mm	and L	Line city low)	<50	Slow	None to Low	Dull	3mm to 6 mm	None to low	<5%	ML	CLAYEY SILT		
INORGANIC (Organic Content ≤30% by mass)	OILS an 0.0	SILTS ic or Pla	below A-Line on Plasticity Chart below)		Slow to very slow	Low to medium	Dull to slight	3mm to 6 mm	Low	5% to 30%	OL	ORGANIC SILT		
SANIC t ≤30%	VED So aller th	SILTS SILTS (Non-Plastic or PI and LL plot below A-Line on Plasticity Chart below)			Liquid Limit	Slow to very slow	Low to medium	Slight	3mm to 6 mm	Low to medium	<5%	MH	CLAYEY SILT	
INORGANIC Content ≤30%	FINE-GRAINED SOILS mass is smaller than 0.			≥50	None	Medium to high	Dull to slight	1 mm to 3 mm	Medium to high	5% to 30%	ОН	ORGANIC SILT		
ganic (FINE-GRAINED SOILS (250% by mass is smaller than 0.075 mm)	CLAYS (Pl and LL plot above A-Line on Plasticity Chart below)		LLAYS nd LL plot A-Line on icity Chart below)	2LAYS nd LL plot A-Line on icity Chart below)	Liquid Limit <30	None	Low to medium	Slight to shiny	~ 3 mm	Low to medium	0%	CL	SILTY CLAY
Ū.						STAYS	Liquid Limit 30 to 50	None	Medium to high	Slight to shiny	1 mm to 3 mm	Medium	to 30%	СІ
	0			Liquid Limit ≥50	None	High	Shiny	<1 mm	High	(see Note 2)	СН	CLAY		
~	30% \$)		mineral soil tures					30% to 75%			SILTY PEAT, SANDY PEAT			
HIGHLY ORGANIC SOILS (Organic	Content >30% by mass)	Predominantly peat, Predominantly peat, may contain some mineral soil, fibrous or amorphous peat							75% 75% to 100%	PT	PEAT			
Dual Symbol — A dual symbol is two syn a hyphen, for example, GP-GM, SW-SC For non-cohesive soils, the dual symbols the soil has between 5% and 12% fir transitional material between "clean" a gravel. For cohesive soils, the dual symbol muss liquid limit and plasticity index values plo of the plasticity chart (see Plasticity Char Borderline Symbol — A borderline sym separated by a slash, for example, CL/Cl A borderline symbol should be used to in has been identified as having propertie transition between similar materials. In an symbol may be used to indicate a range within a stratum.				ymbols must b 12% fines (i.e lean" and "di bol must be us ues plot in the ty Chart at left ine symbol is e, CL/CI, GM/S sed to indicate properties that Is. In addition	e used when e. to identify rty" sand or ed when the CL-ML area c). two symbols SM, CL/ML. that the soil t are on the , a borderline									

The Golder Associates Ltd. Soil Classification System is based on the Unified Soil Classification System (USCS)

named SILT. Note 2 – For soils with <5% organic content, include the descriptor "trace organics" for soils with between 5% and 30% organic content include the prefix "organic" before the Primary name.

ら GOLDER

ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES AND TEST PITS

PARTICI E SIZES OF CONSTITUENTS

Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)
BOULDERS	Not Applicable	>300	>12
COBBLES	Not Applicable	75 to 300	3 to 12
GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75
SAND	Coarse Medium Fine	2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)
SILT/CLAY	Classified by plasticity	<0.075	< (200)

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage by Mass	Modifier
>35	Use 'and' to combine major constituents (<i>i.e.</i> , SAND and GRAVEL)
> 12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable
> 5 to 12	some
≤ 5	trace

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.). Values reported are as recorded in the field and are uncorrected.

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (q), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

Dynamic Cone Penetration Resistance (DCPT); Nd: The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

- PH: Sampler advanced by hydraulic pressure
- PM: Sampler advanced by manual pressure
- WH: Sampler advanced by static weight of hammer
- WR: Sampler advanced by weight of sampler and rod

Compactness ²				
Term	SPT 'N' (blows/0.3m) ¹			
Very Loose	0 to 4			
Loose	4 to 10			
Compact	10 to 30			
Dense	30 to 50			
Very Dense	>50			

NON-COHESIVE (COHESIONLESS) SOILS

- 1. SPT 'N' in accordance with ASTM D1586, uncorrected for the effects of overburden pressure.
- Definition of compactness terms are based on SPT 'N' ranges as provided in Terzaghi, Peck and Mesri (1996). Many factors affect the recorded SPT 'N' 2. value, including hammer efficiency (which may be greater than 60% in automatic trip hammers), overburden pressure, groundwater conditions, and grainsize. As such, the recorded SPT 'N' value(s) should be considered only an approximate guide to the soil compactness. These factors need to be considered when evaluating the results, and the stated compactness terms should not be relied upon for design or construction.

Field Moisture Condition

Term	Description			
Dry	Soil flows freely through fingers.			
Moist	Soils are darker than in the dry condition and may feel cool.			
Wet	As moist, but with free water forming on hands when handled.			
	Dry Moist			

SAMPLES	
AS	Auger sample
BS	Block sample
CS	Chunk sample
DD	Diamond Drilling
DO or DP	Seamless open ended, driven or pushed tube sampler – note size
DS	Denison type sample
GS	Grab Sample
MC	Modified California Samples
MS	Modified Shelby (for frozen soil)
RC	Rock core
SC	Soil core
SS	Split spoon sampler – note size
ST	Slotted tube
то	Thin-walled, open - note size (Shelby tube)
TP	Thin-walled, piston – note size (Shelby tube)
WS	Wash sample

SOIL TESTS

-
water content
plastic limit
liquid limit
consolidation (oedometer) test
chemical analysis (refer to text)
consolidated isotropically drained triaxial test1
consolidated isotropically undrained triaxial test with porewater pressure measurement ¹
relative density (specific gravity, Gs)
direct shear test
specific gravity
sieve analysis for particle size
combined sieve and hydrometer (H) analysis
Modified Proctor compaction test
Standard Proctor compaction test
organic content test
concentration of water-soluble sulphates
unconfined compression test
unconsolidated undrained triaxial test
field vane (LV-laboratory vane test)
unit weight

Tests anisotropically consolidated prior to shear are shown as CAD, CAU. 1.

COHESIVE SOILS Consistency					
					Term Undrained Shear SPT 'N' ^{1,2} Strength (kPa) (blows/0.3m)
Very Soft	<12	0 to 2			
Soft	12 to 25	2 to 4			
Firm	25 to 50	4 to 8			
Stiff	50 to 100	8 to 15			
Very Stiff	100 to 200	15 to 30			
Hard	>200	>30			

1. SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure effects; approximate only.

SPT 'N' values should be considered ONLY an approximate guide to consistency; for sensitive clays (e.g., Champlain Sea clays), the N-value approximation for consistency terms does NOT apply. Rely on direct 2 measurement of undrained shear strength or other manual observations.

Water Content				
Term	Description			
w < PL	Material is estimated to be drier than the Plastic Limit.			
w ~ PL	Material is estimated to be close to the Plastic Limit.			
w > PL	Material is estimated to be wetter than the Plastic Limit.			

Unless otherwise stated, the symbols employed in the report are as follows:

I.	GENERAL	(a) w	Index Properties (continued) water content
π	3.1416	w _l or LL	liquid limit
ln x	natural logarithm of x	w _p or PL	plastic limit
log ₁₀	x or log x, logarithm of x to base 10 acceleration due to gravity	l₀ or PI NP	plasticity index = (w _l – w _p) non-plastic
g t	time	Ws	shrinkage limit
		IL	liquidity index = $(w - w_p) / I_p$
		lc	consistency index = $(w_l - w) / I_p$
		emax	void ratio in loosest state
		emin	void ratio in densest state
П.	STRESS AND STRAIN	ID	density index = $(e_{max} - e) / (e_{max} - e_{min})$ (formerly relative density)
	shear strain	(b)	Hydraulic Properties
$\gamma \Delta$	change in, e.g. in stress: $\Delta \sigma$	(b) h	hydraulic head or potential
2 8	linear strain	q	rate of flow
εv	volumetric strain	V	velocity of flow
η	coefficient of viscosity	i	hydraulic gradient
υ	Poisson's ratio	k	hydraulic conductivity
σ	total stress		(coefficient of permeability)
σ	effective stress ($\sigma' = \sigma - u$)	j	seepage force per unit volume
σ'_{vo}	initial effective overburden stress		
σ1, σ2, σ3	principal stress (major, intermediate, minor)	(c)	Consolidation (one-dimensional)
		C _c	compression index
σoct	mean stress or octahedral stress		(normally consolidated range)
	$= (\sigma_1 + \sigma_2 + \sigma_3)/3$	Cr	recompression index
τ	shear stress		(over-consolidated range)
u	porewater pressure	Cs	swelling index
E	modulus of deformation	Cα	secondary compression index
G K	shear modulus of deformation bulk modulus of compressibility	mv Cv	coefficient of volume change coefficient of consolidation (vertical
IX .			direction)
		Ch	coefficient of consolidation (horizontal direction)
		Tv	time factor (vertical direction)
III.	SOIL PROPERTIES	U	degree of consolidation
(2)	Index Properties	σ′ _P OCR	pre-consolidation stress
(a) ρ(γ)	Index Properties bulk density (bulk unit weight)*	OCK	over-consolidation ratio = σ'_p / σ'_{vo}
ρ(γ) ρ _d (γ _d)	dry density (dry unit weight)	(d)	Shear Strength
ρω(γω)	density (unit weight) of water	τρ, τr	peak and residual shear strength
ρs(γs)	density (unit weight) of solid particles	φ' δ	effective angle of internal friction
γ'	unit weight of submerged soil	δ	angle of interface friction
	$(\gamma' = \gamma - \gamma_w)$	μ	coefficient of friction = tan δ
D _R	relative density (specific gravity) of solid	C'	effective cohesion
-	particles ($D_R = \rho_s / \rho_w$) (formerly G_s)	Cu, Su	undrained shear strength ($\phi = 0$ analysis)
e	void ratio porosity	p n'	mean total stress $(\sigma_1 + \sigma_3)/2$
n S	degree of saturation	p' q	mean effective stress $(\sigma'_1 + \sigma'_3)/2$ $(\sigma_1 - \sigma_3)/2$ or $(\sigma'_1 - \sigma'_3)/2$
0		Ч Qu	compressive strength ($\sigma_1 - \sigma_3$)
		St	sensitivity
* Danai	ty oumbol is a Unit weight symbol is	Notes: 1	
	ty symbol is ρ . Unit weight symbol is γ e $\gamma = \rho g$ (i.e. mass density multiplied by	Notes: 1	$\tau = c' + \sigma' \tan \phi'$ shear strength = (compressive strength)/2
	eration due to gravity)	-	

PROJECT: 1658054-3000

RECORD OF BOREHOLE: 19-S7/P4

LOCATION: P4 Parking Garage

BORING DATE: April 10, 2019

SHEET 1 OF 2

DATUM: N/A

		0	SOIL PROFILE			SAMP	LES	DYNAM		IETRATI BLOWS	ON	<u>\</u>	HYDR	AULIC C	ONDUC	TIVITY,			
DEPTH SCALE		BORING METHOD		D.		Т		RESIS				80 \	1	k, cm/s 0 ⁻⁶ 1		0 ⁻⁴ 1	0 ⁻³	ADDITIONAL LAB. TESTING	PIEZOMETER OR
TH S	E K	Ш	DESCRIPTION		EV. H	TYPE	BLOWS/0.30m			1		- Q - ● - U - O		ATER C	ONTENT	PERCE	1	DITIC 5. TES	STANDPIPE
DEF	<	BORII		TRAT (PTH ≧ m) Z	۴ ۱	NO						VV	р ——	—0 ^W		WI	AD	
┢	+		GROUND SURFACE	0 0		+		2	0 4	40	60	80	2	20 4	10 E	50 E	30		
-	0		PORTLAND CEMENT CONCRETE	P 4	0.00		+				<u> </u>								
Ē				A A A	1	co	-												-
Ē			FILL - (GP) GRAVEL, coarse, some sand; grey, contains cobbles and		0.36 2	GS	6 -												
E	:	E e	boulders; non-cohesive, moist																
Ē.,	1	Open Hole																	-
E	ſ	20			_	-													
-					3	GS	s -												-
E																			
E	2		Borehole continued on RECORD OF		1.88														
Ē	-		DRILLHOLE 19-S7/P4																-
-																			-
Ē																			
F																			-
E	3																		-
F																			:
-																			
E																			
-	4																		-
Ē																			
E																			-
Ē																			-
E	5																		-
Ē																			
Ē																			-
E																			
<u> </u>	6																		
-																			
E																			-
-																			
Ē	7																		- -
Ę	1																		
F																			
E																			
F																			
"È	8																		-
6 Z												1							
9-5-1																			:
11																			
- G	9																		-
AL-M																			
2 0 1																			
54.GF																			-
3580£	10																		-
31 14																			
MIS-BHS 001 1658054.GPJ GAL-MIS.GDT 19-5-16 ZS	DFF	тн	SCALE			Ĩ			\sim									10	DGGED: AG
IS-BI	1:5								J U		ノヒ	К							ECKED: WC
≥							492											2.1	

	PROJECT: 16 LOCATION: P INCLINATION:	RI	ECO	RD	O	DF DF	RILLING RILL RI	G D. G:	ATE: Porta	Ap able [ril 10, Drill										Sheet 2 of 2 Datum: N/A	
1 Hardy wathered to freek, they have provide the structure of			SYMBOLIC LOG	EPTH (m)		SH VN CJ REC TOTAL CORE S	I - Joint T - Fault IR- Shea I - Vein - Conju COVERY	r ugate R.Q.D	BE FC OF CL D. II	D- Bed D- Foli D- Con R- Orth L - Clea RACT. NDEX PER 0.25 m	ding ation tact ogona avage DIP w. COR AXIS	al .r.t. IE S	PL - Planar CU- Curved UN- Undulating ST - Stepped IR - Irregular DISCONTINUITY D	PO- Po K - Sli SM- Srr Ro - Ro MB- Me ATA	ckens nooth ugh echan	ided	reak HYD COND K, d	NOTE: abbrev of abbr symbol RAUL UCTIV cm/sec	For ac iations reviatio ls. IC D /ITYPC	dditiona refer t ns & Diamet oint Lo Index (MPa	al o list DadRMi (-Q') AVC	- C 3.
	- 2 High - 2 medi	y weathered to fresh, thinly to um bedded, grey to dark grey, fine ed LIMESTONE, with shale		-																		
	- 3 End	of Drillhole																				
DEPTH SCALE LOGGED: AG																						

PROJECT: 1658054-3000

RECORD OF BOREHOLE: 19-S8/P4

LOCATION: P4 Parking Garage

BORING DATE: April 8, 2019

SHEET 1 OF 2

DATUM: N/A

ш	щ Q SOIL PROFILE					SAMPLES DYNAMIC PENETRATION HYDRAULIC CONDUC RESISTANCE, BLOWS/0.3m k, cm/s										FIVITY,	VITY,				
DEPTH SCALE METRES	BORING METHOD					ĸ		30m	20	40		80	10) ⁻⁵ 1	0 ⁻⁴ 1	0 ⁻³	ADDITIONAL LAB. TESTING	PIEZOMETER		
METH		RING N	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	ТҮРЕ	BLOWS/0.30m	SHEAR STR Cu, kPa	ENGTH	nat V. ⊣ rem V. €	- Q- ● 9 U- O	W			PERCE		AB. TE	STANDPIPE INSTALLATION		
B		BOF		STR/	(m)	N		BLO	20	40		80	Wp 2	0 4			WI 80	A LA			
- 0		_	GROUND SURFACE		0.00																
-			PORTLAND CEMENT CONCRETE		0.00	0	сс	-											-		
-			FILL - (SP/GP) SAND and GRAVEL; grey, contains cobbles and boulders; non-cohesive, moist		0.25	2	GS	-											-		
E	Ē	e	non-conesive, moist																-		
- 1	Portable Drill	Open Hole				3	GS	-											-		
Ē	Por	Q																	-		
-						4	GS	-											-		
Ē																			-		
- 2		-	Borehole continued on RECORD OF DRILLHOLE 19-S7/P4		1.93														-		
-			DRILLHOLE 19-31/P4																-		
Ē																			-		
-																			-		
- - 3 -																					
Ē																			-		
-																			-		
- 4																			-		
- 4																			-		
Ē																			-		
E																			-		
- 5																			-		
-																			-		
-																			-		
-																					
- 6																			-		
Ē																			-		
-																			-		
-																			-		
- 7																					
Ē																			-		
Ē																			-		
- 8																					
-																			-		
5-16																			-		
Т 19- 																			-		
S.GD1																			-		
- UI																			-		
2 																			-		
154.G																					
10580																			_		
001																					
4			CALE				\sum	¢	G	C	DE	R							DGGED: AG		
vî ⊻ 1∶	DEPTH SCALE 1:50 GOLDER									CHECKED: WC											

		CT: 1658054-3000	RECORD OF DRILLHOLE: 19-S8/P4	SHEET 2 OF 2									
		DN: P4 Parking Garage TION: -90° AZIMUTH:	DRILLING DATE: April 8, 2019 DATUM: N/A DRILL RIG: Portable Drill DRILLING CONTRACTOR: Marathon Drilling										
	RD		rriz JN - Joint BD-Bedding PL - Planar PO- Po										
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	O UIE SHR-Shear CO-Contact UN-Undulating SM-37 O ELEV. VN - Vein OR-Orthogonal ST - Stepped Ro - Rc O ELEV. O VN - Vein OR-Orthogonal ST - Stepped Ro - Rc	ough of abbreviations & echanical Break symbols.									
DEPTH ME	RILLING		Depth Image: Construction of the second	HYDRAULC Diametral CONDUCTIVITYPoint LoadRMC K, cm/sec Jucon ur Ja v, v, v, v, (MPa) AVG.									
		BEDROCK SURFACE											
- 2 - -		Highly weathered to fresh, thinly to medium bedded, grey to dark grey, fine grained LIMESTONE, with shale											
-	Rotary Drill NQ Core	interbeds											
- 3 - -		End of Drillhole	3.00										
-													
È,													
- 4 - -													
- - - 5													
-													
- - - 6													
- - - 7													
-													
-													
- 8 - -													
-													
- 9 - -													
-													
-													
- 10 - -													
-													
- 11 - -													
Ę													
- - - - - - - - - - - - - - - -													
		SCALE	GOLDER	LOGGED: AG									
1	1:50 CHECKED: WC												

APPENDIX C

Previous Investigation by Others

	F)NC	DBX I	BOREHOLE No.: B	H01	-79						RO	RE	н	DLE	10	ne.
				ELEVATION: 6				-							of		
			····							-					END		
			Development Corporation sed Commercial Developmen									Split	Spo	on			
			Preston Street, Ottawa, Ontari									Shel Rod					
		and the second se	H.Krzywicki/NGC									Wal					
DA	TE (STAR	T):	April 5, 1979	DATE (FINISH):						Ē	-	Wate	rberg	Hmit	\$ (%)		
	CALE	T -	STRATIG		T			DATA			N	Pene	etrati	on In	dex ba	sed or	n
	1	>	516416		_ -	54	I				N	Pane	stratic	on Inc	lex bas sampl	ed on	
Depth BGS	Elevation (m)	Stratigraphy		PTION OF BEDROCK	State	Type and Number	Recovery	Organic Vapour ppm or %LEL	Penetration Index / ROD		Cu	Shea Sent Shea	ar Str sitivity ar Str	v Vali v Vali	h base h base ue of S h base ometer	don L oi don	ield Va ab Val
netres		ŝ	GROUNI	O SURFACE	_ -	1	%	jo≏ ppm	N		-				ST RE		S
	60.58		-ASPHALTIC CONCRETE		1		10	ppm		-1	0 2	0 30	4	5	60	70	00 9
		\bigotimes	FILL, crushed stone at uppe with peat by 0.3m depth	r levels, becoming mixed	-μ	AS1											
- 0.5		\bigotimes	marpearby cloin capar		N	552			22								
		\bigotimes	 becoming predominantly p depth 	eat between 0.6m and 1.2m	Δ												
- 1.0		\bigotimes	deptil		M	SS3			11								
:		\bigotimes	and and amust below		Δ												
- 1.5		\bigotimes	- sand and gravel below														
- 1.5		\bigotimes			∇	SS4			31			L					
		\bigotimes			Ν	334			31			ſ	1				
- 2.0	58.52	\bigotimes			$\neg \nabla$	SS4a			49			-	1	1		+	$\uparrow \uparrow$
-			SILTY SAND TILL, very den sizes, very moist	se, grey, trequent grave)	Λ	0048			49					٦			
- 2.5					M	\$55			100								
					Δ	000			100								
- 3.0											\neg	+	\dashv	┿		+-	\vdash
3.5						RC6	44										
	57.00	and a	SHALEY LIMESTONE BEDI	ROCK, moderately fractured	-11												
4.0			limestone to 4.57m		Щ							_					
						RC7	90										
4.5			- becoming sound bedrock a	t 4.27m depth	Π]	
4.5		+1	- becoming very shaley at 4.	57m depth												1	
		H															
5.0		Ŧ				RC8	90							1		Τ	
		그															
5.5		그님															
	54.85	74	End of borehole							1							
6.0			End of borenoie							+	-	+	+	+		+	\square
6.5															1		
			·														
IOTES 1. Wale	: er level at	2.19п	depth after 24 hours.														
													والم المراجع	-	dist- distance di		

(60 & A	NESTOGA-ROVERS	TEST PIT No.: ELEVATION:								1 PI7			
PRO LOC DES	DJECT:	Propo 333 I BY:		ment					 G: CHEM T	(er 5 Gr (G 1 Ch W/	ab San nvironr ab San eotech nemica ater Le	nental) mple inkcal) I Anatys ivel	Is		
and the second se	ALE			ATIGRAPHY			AMPLE		 °			tent (%) limits (9			
Depth BGS	Elevation (m)	Stratigraphy	DES	CRIPTION OF AND BEDROCK	Type and	Number	Test Type	Organic Vapour ppm or %LEL	⊡ Ca S	She Ser She Poc	ear Stre sitivity ear Stre sket Pe	ength by Value ength by netrom	ased or of Soil ased or ater	n	
metres	61.50		GRC	UND SURFACE	1			ppm	10 5	SCA	LE FO	R TEST	RESU	LTS 200kPa	
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0	61.43 61.20 61.00		SAND AND GRAVEL F		-1										
6.5															

+

REFER	RENCE N	o.:	F2741	-						ENCL	OSURI	E No.:						
6		cc	NESTOGA-ROVERS	TEST PIT No .:							TE	ST	PIT	LOG	;			
C	2	0.7	-SSOCIATES	ELEVATION: _	61.0	0 m		-			Page	e: <u>1</u>	_ 0	ſ <u>1</u>				
CLI	ENT: S	AKTO	Development Corporation	1								-	GENC)				
PRO	OJECT:	Propo	sed Commercial Develop									ironme	ntal)		1			
			Preston Street, Ottawa, C									stechnik	cal)					
			B.Sinclair/E.Farqu							CHEN		mical A er Leve	nalysis					
DAT	TE (STAR	T): _	May 4, 2002	DATE (FIN	ISH):					*								
so	CALE		STF	ATIGRAPHY		s	AMPLE	DATA		Water content (%) Atterberg limits (%)								
	5	Stratigraphy				nd er	be	Vapour			Shee				ib Vane			
Depth BGS	Elevation (m)	aligna		CRIPTION OF AND BEDROCK		Type and Number	Test Type	nic V		5		1	alua of \$					
		Slr				f.e	Ĕ	Organic / ppm or			Pock	at Pene	th base fromele	۲				
metres	61.00		GRO	OUND SURFACE				ppm		10	SCALE	FOR 1 100kPa 40	150NP	ESULT	S DisPa NO RO			
E	60.80	2	GRANULAR 'A'											T				
È	00.00	\bigotimes		medium grained gravel amp, no odour, some co														
- 0.5		\bigotimes	debris															
E		\bigotimes																
- 1.0		\otimes									++		+	+				
-		\otimes																
- 1.5		***																
E		\bigotimes	- some cobbles, and sh	ale, becoming grey to br	own, and													
- 2.0	59.00	\bigotimes	damp to moist									_						
-			coarse sand, grey, mois	ne gravel, dense, mediu at, no odour														
- 2.5	-																	
- 2.5																		
-										1								
- 3.0																		
E																		
- 3.5																		
F																		
E 4.0											++	+						
		46			1													
	56.50		Excavation refusal on li	mations hadroak														
4.5			Excavation relasation in	Hestone Dedrock														
5.0																		
5.5																		
6.0										+				++				
E																		
NOTES																		
NOTES	•																	
<u>نا</u>	and a state of the state of the	and the second second																

ų

REFE	RENCE	No.:	F2741							ENC	CLO	SUR	E No	.:			
() 😋	NESTOGA-ROVERS	BOREHOLE No.:												.OG	;
								_		-	_	ray	And in case of the local division of the loc	GEN		<u> </u>	
	1977 - Frank		Development Corporation osed Commercial Develop									Split	Spoor	1	in the second se		
			Preston Street, Ottawa, O									Shell Rock					
				CHECKED BY:						X		Wate	r Leve				
DA	TE (STAF	RT): _	May 25, 2000	DATE (FINISH):						0	-			ent (%) mits (%			
	CALE	1		ATIGRAPHY				DATA				Pene	tration	Index	base	no t	
	1	Ń				1	1		1.0		N	Pene	tration	Index I	based	on	
Depth BGS	Elevation (m)	Stratigraphy		CRIPTION OF AND BEDROCK		Type and Number	Recovery	Organic Vapour ppm or %LEL	Penetration Index / RQD	4 □ 5 4		Sens Shea Pock	tivity \ r Stren at Pan	/alus c igth ba strome	f Soil sed o ter	n	
metres	60.65		GRC	UND SURFACE			%	ppm	N	10	50	SCAL	FOR	TEST	RESU	JLTS 200%Pr 0 80	2
2		\otimes	SAND AND GRAVEL F	LL, fine sand, fine gravel, little	• 1	1	1	1		-"			10	1		05_0	1
0.5		\bigotimes	- rebar and wood, split s		V	SS1			14		•						
- 1.0]											
		\bigotimes															T
- 1.5 -		\bigotimes	- chemical odour, pieces	of suspended ceiling tiles	T												
- 2.0		\bigotimes				SS2				-	_	+	╉	+		+	╞
- 2.5	58.27		- split spoon refusal, plet concrete and celling tile GREY LIMESTONE, we	ce of concrele, black staining o <u>piece, no odour</u> I, in pieces	/	\$ 553			6	•							
¥3.0]	RC1	7		0			_	_		_	_	
- 3.5	2					RC2	41		0								
- 4.0			- chemical odour		Ī	RC3	100		64								
	56.32		End of borehole														
4.5																	
- 5.0									ŀ		+	+	+				
- 5.5																	
6.0									-	_			+		_	+-	
6.5																	
NOTES: 1. Monii 2. Wate	toring we	li instal easure	lled in borehole. d at 3.00m on January 24	4, 2002.			L F]			1	<u> </u>			

•

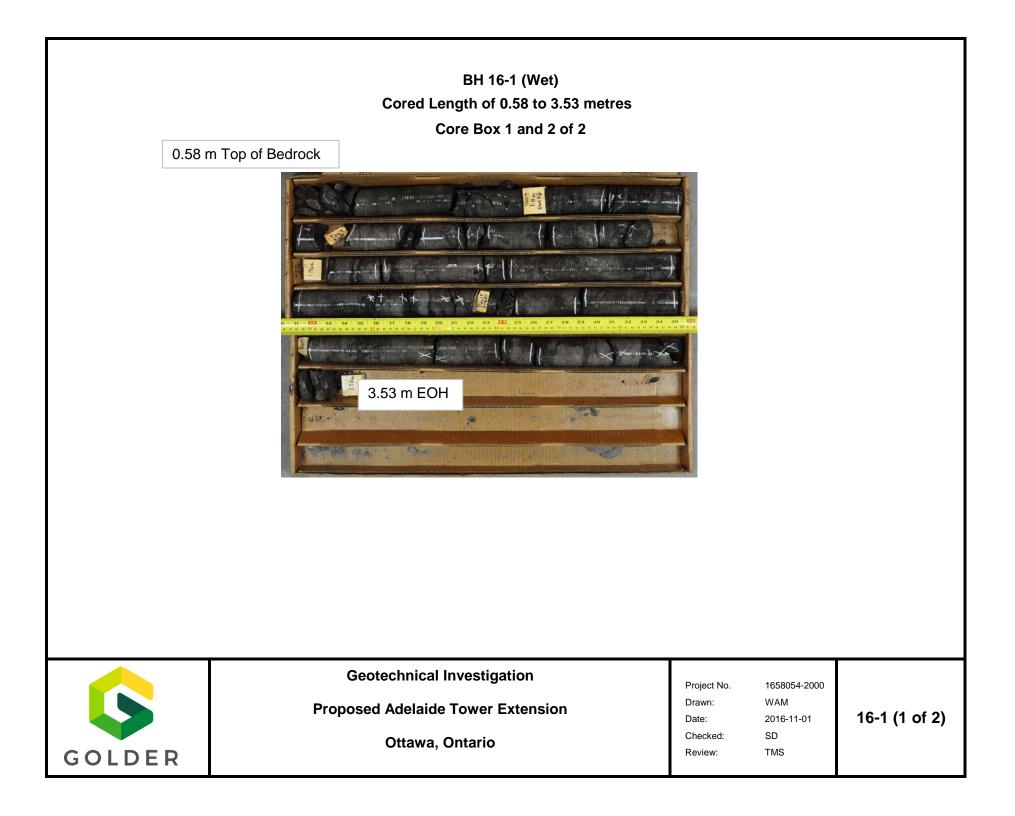
REFERENCE No.: F2741	_						ENCLO	DSU	REN	lo.:			
CONESTOGA-ROVERS & ASSOCIATES	BOREHOLE No.:										DLE of		
									-	· · · ·	END		
CLIENT: SAKTO Development Corporation	1						⊠ ss	S Spl			IND		
PROJECT: Proposed Commercial Develop	oment					-	ST						
LOCATION: 333 Preston Street, Ottawa, O	Intario						R						
DESCRIBED BY: M. Roy	CHECKED BY:						¥		iter Le				
DATE (START): September 27, 20							•			ntent () limits			
	ATIGRAPHY			SAMPLE			• N	Per Spi	netral it Spo netral	ion Ind	lex bas mple ex base	ed on	
	SCRIPTION OF AND BEDROCK		Type and	Recovery	Organic Vapour ppm or %LEL	Penetration Index / RQD		She Ser She Poo	sar St sar St hsitivil sar St cket P	rength rength ly Valu rength enstro	based e of Sc based meter	on Fi on La ol on	eld Vane 5 Vane
metres 60.57 GR	DUND SURFACE		1	%		N	10 54	SCA	LE F(DR TE	ST RE 150%Pa 60	SULTS	5 16 ⁰ 11 0 90
60.42 CONCRETE SLAB			1		1			Î	Î		Ĩ	1 I	
GRAVEL FILL, time gra			ss	1 42		15	6						
1.0 59.50 SAND FILL, medium sa dense, orange, moist	and, poorly graded, medium	n,	ss	2 67		16	•	-			-		
59.22 moist	, some fine sand, grey, moist coarse, dense, grey, moist		ss	3 75		33			•				
2.0 58.51 - little silt and clay	of fossils, light grey							-			╀		
- 2.5			RC	4 100		96							
			-										
			RC	5 98		93							
6 4.5 - fracture			-										
5.0 - fracture			RCI	5 100		100							
End of Borehole			Ľ										
6.0 - fracture 6.5 55.03 End of Borehole 6.5 NOTES: 1. Monitoring well installed in borehole. 2. Water table measured at 3.20m on January	24, 2002.												

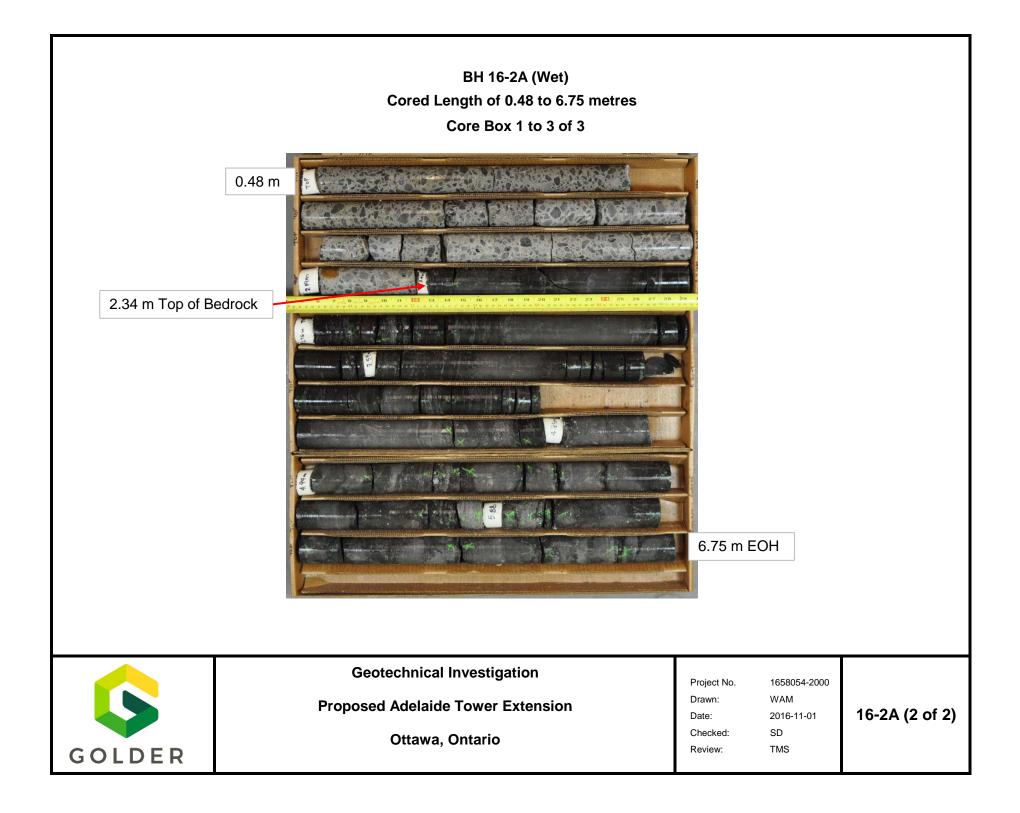
.

								TP 11		
			È	-					-	
		CT PROPOSED RESIDENTIA							DRILLING DATE	12-10-02
L		ON 333 PRESTON STREET, O							REPORT DATE	17-01-03
K	TUM	GEODETIC BOREF	IOLE	_	-		ME	55 CFA Dynamic Cone Penetrometer	COMPILED BY	LRB
-		GEOLOGIC PROFILE	5	SA	MPL			Resistance Plot 🔺	Moisture	Content (%)
Ĵ			aphy			31ous (N) /RGD	2	0 20 40 60 80 100 Shear Strength (kPa)	natural (W)	
9	Elev. Depth	DESCRIPTION	ig.	L		(N)	Recovery	in-situ intact	liquid limit (w j)	0
Scale	(m)		Stratign	Vumber	Type	Smo	Rec	in-situ disturbed %	plastic limit (wp)	I
Š	60.01	50mm ASPHALT over	-0°	NU	Ţ	9	×	0 50 100 150 200	0 20 40	60 80 100
	59.41	SAND AND GRAVEL FILL - COMPACT, BROWN, MOIST - SOME CONSTRUCTION DEBRIS AT LOWER LEVELS	0.0.0.0.0.0							
	0.60	CONSTRUCTION DEBRIS FILL - CONCRETE, BRICK, WOOD IN SAND AND SILT MATRIX, MOIST	1999							
	58.41	•	TO TO TO TO							
	1.60	ORGANIC FILL - LOOSE, DARK BROWN, DECOMPOSED WOOD DEBRIS AND PEAT, MOIST	いたいで							
			ないたいである	-		_				
		-								
3	56.41									
	3.60	REFUSAL TO BACKHOE ON BEDROCK END OF TEST PIT								n

•

							SIO	REPORT DATE		17-01- LRB	03
-	GEOLOGIC PROFILE			MPL			Dynamic Cone Penetrometer Resistance Plot			•	
Elev. Depth (m)	DESCRIPTION	Stratigraphy	Number	Type	Blows (N) /RGD	Recovery	0 20 40 60 80 100 Shear Strength (kPa) in-situ intact in-situ disturbed laboratory 0 50 100 150 200	Moisture natural (W) liquid limit (w j) plastic limit (wp) 0 20 40	Content	 	-0
59.20 1.10	SAND AND GRAVEL FILL - COMPACT, BROWN, MOIST - SOME CONSTRUCTION DEBRIS AT LOWER LEVELS CONSTRUCTION DEBRIS FILL - CONCRETE, BRICK, WOOD IN SAND AND SILT MATRIX, MOIST	5 4 4 5 6 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6	2	<u> </u>	8	*					
58.20 2.10	ORGANIC FILL - LOOSE, DARK BROWN/BLACK, DECOMPOSED WOOD DEBRIS AND PEAT, MOIST	アルアルションシンシンシン									
57.10 3.20	REFUSAL TO BACKHOE ON BEDROCK										


APPENDIX D



APPENDIX E

Unconfined Compressive Strength (UCS) Test Results **Golder Associates Ltd.** 1931 Robertson Road Ottawa, Ontario K2H 5B7

UNCONFINED COMPRESSIVE STRENGTH OF ROCK CORE

Project: Sakto - Adelaide Extension

Project No.: 1658054

Date: October 23, 2016

Location(s): See Table Below

8

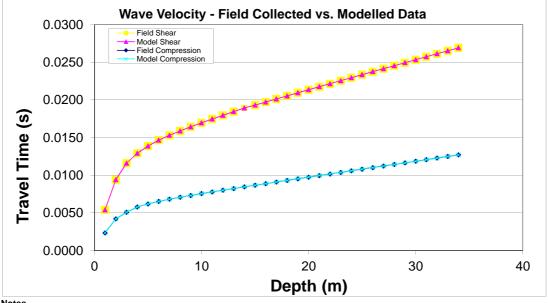
Bore Hole No.	Depth (m)	Date Tested	Core Size	Diameter (mm)	Density (kg/m³)	Compressive Strength (MPa)	Failure Mode
16-1	2.19-2.31	Oct 20/16	NQ	47.6	2704	95.6	
16-2A	3.09-3.21	Oct 20/16	NQ	50.4	2692	213.9	

REMARKS : - Cores tested in vertical direction.

- Cores tested in air-dry condition.
- Specimen ends prepared with high-strength plaster, but un-restrained.

SIGNED:

- L/D ratio's between 2.2:1 and 2.5:1

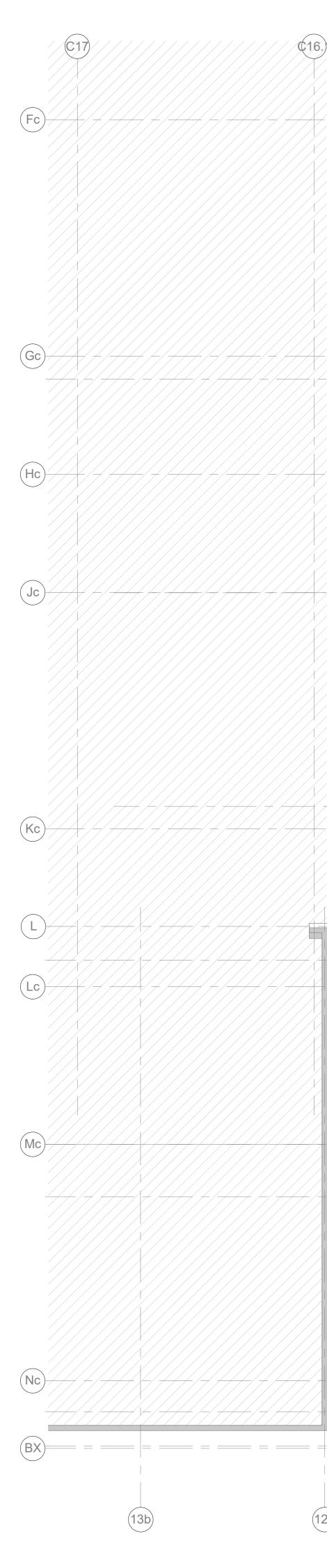

TESTING WAS CARRIED OUT IN GENERAL ACCORDANCE WITH ASTM D7012 - Method C

C.N.Mangione P.Eng.

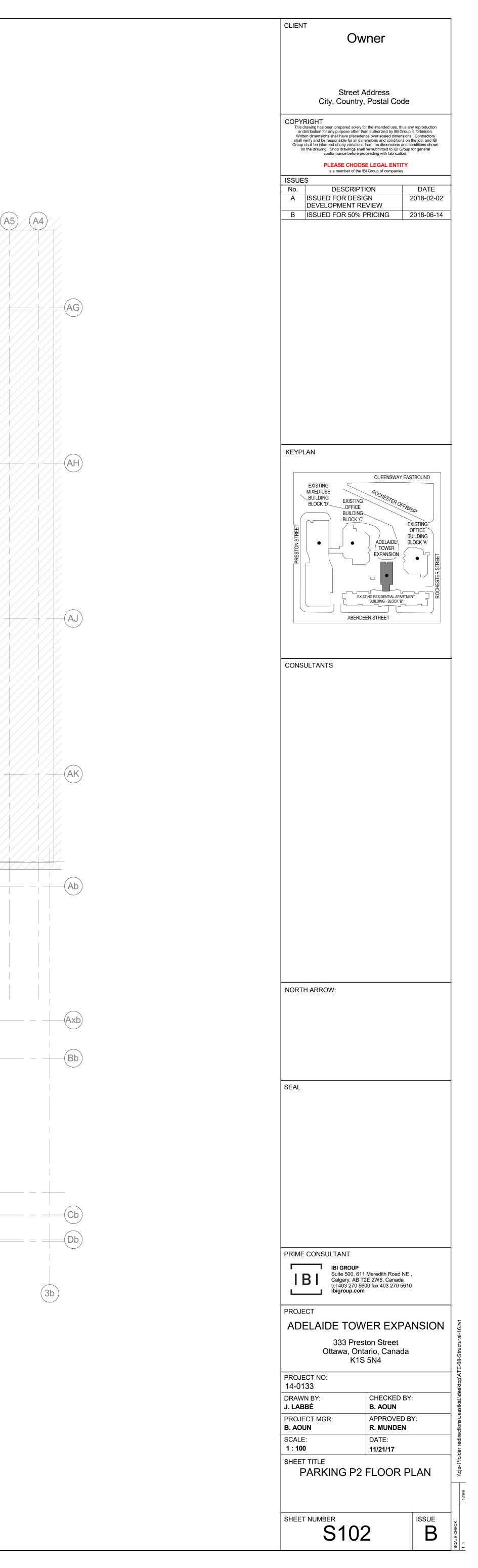
APPENDIX F

Vertical Seismic Profile (VSP) Test Result

		Layer Depth (m)			C	ynamic Engine	eering Propertie	es
Тор	Bottom	Compressional Wave (m/s)	Shear Wave (m/s)	Estimated Bulk Density (kg/m ³)	Poissons Ratio	Shear Modulus (MPa)	Deformation Modulus (MPa)	Bulk Modulus (MPa)
0.0	1	427	185	1750	0.38	60	166	239
1.0	2	535	250	1750	0.36	109	298	355
2.0	3	1150	455	2300	0.41	476	1340	2407
3.0	4	1430	765	2300	0.30	1346	3498	2909
4.0	5	2420	1045	2300	0.39	2512	6959	10121
5.0	6	3000	1270	2300	0.39	3710	10319	15754
6.0	7	3500	1555	2300	0.38	5561	15317	20760
7.0	8	3800	1740	2300	0.37	6963	19043	23927
8.0	9	4100	1800	2300	0.38	7452	20577	28727
9.0	10	4180	1900	2300	0.37	8303	22747	29116
10.0	11	4400	1950	2300	0.38	8746	24100	32867
11.0	12	4400	2050	2300	0.36	9666	26317	31640
12.0	13	4550	2050	2300	0.37	9666	26535	34728
13.0	14	4550	2050	2300	0.37	9666	26535	34728
14.0	15	4550	2600	2300	0.26	15548	39106	26885
15.0	16	4650	2500	2300	0.30	14375	37281	30565
16.0	17	4650	2450	2300	0.31	13806	36112	31324
17.0	18	4650	2450	2300	0.31	13806	36112	31324
18.0	19	4650	2450	2300	0.31	13806	36112	31324
19.0	20	4650	2450	2300	0.31	13806	36112	31324
20.0	21	4750	2500	2300	0.31	14375	37617	32727
21.0	22	4750	2500	2300	0.31	14375	37617	32727
22.0	23	4750	2500	2300	0.31	14375	37617	32727
23.0	24	4750	2500	2300	0.31	14375	37617	32727
24.0	25	4750	2500	2300	0.31	14375	37617	32727
25.0	26	4750	2500	2300	0.31	14375	37617	32727
26.0	27	4750	2550	2300	0.30	14956	38812	31953
27.0	28	4750	2500	2300	0.31	14375	37617	32727
28.0	29	4750	2550	2300	0.30	14956	38812	31953
29.0	30	4750	2500	2300	0.31	14375	37617	32727
30.0	31	4750	2500	2300	0.31	14375	37617	32727
31.0	32	4750	2550	2300	0.30	14956	38812	31953
32.0	33	4750	2550	2300	0.30	14956	38812	31953
33.0	34	4750	2550	2300	0.30	14956	38812	31953



Notes 1. Depth Presented relative to ground surface.


2. This Table to be analyzed in conjunction with the accompanying report.

APPENDIX G

Structural Drawing No. S102 by IBI Group, dated Nov. 21, 2017

golder.com