

Engineering

Land / Site Development

Municipal Infrastructure

Environmental / Water Resources

Traffic / Transportation

Structural

Recreational

Planning

Land / Site Development

Planning Application Management

Municipal Planning Documents & Studies

Expert Witness (OMB)

Wireless Industry

Landscape **Architecture**

Urban Design & Streetscapes

Open Space, Parks & Recreation Planning

Community & Residential **Developments**

Commercial & **Institutional Sites**

Environmental Restoration

Adelaide Apartments Tower Expansion

Stormwater Management and Servicing Brief

STORMWATER MANAGEMENT AND SERVICING BRIEF

Adelaide Apartments Tower Expansion

Prepared By:

NOVATECH

Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario K2M 1P6

> January 5th, 2016 September 20th, 2016 **Revised: January 25th, 2019**

> > Novatech File: 116070 Ref No. R-2016-076

January 25th, 2019

City of Ottawa
Planning and Growth Management Department
Development Review (Urban Services)
110 Laurier Avenue West
Ottawa, Ontario
K1P 1J1

Attention: Mark Fraser

Re: Adelaide Apartments Tower Expansion – Stormwater and Servicing Brief

Enclosed is a copy of the revised 'Stormwater Management and Servicing Brief' for the proposed development at Preston Square in the City of Ottawa. This brief is submitted in support of the site plan application and demonstrates how the site will be serviced with sanitary, storm, and water infrastructure.

Should you have any questions, please contact me.

NOVATECH

Greg MacDonald, P.Eng. Director, Land Development and Public Sector Infrastructure

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Purpose	1
2.0	SANITARY SEWER	
2.1 2.2		
3.0	STORMWATER MANAGEMENT	2
	STORMWATER MANAGEMENT DESIGN CRITERIA AND METHODOLOGY	346
4.0	WATERMAIN	7
4.1 4.2 4.3 4.4	WATER SUPPLY FOR FIRE-FIGHTING	8 8
5.0 6.0	CONCLUSIONS	10
D.U	CUNCLUSIUNS	

LIST OF FIGURES

Figure 1 - Key Plan

Figure 2 – Existing Conditions

APPENDICES

Appendix A – Servicing Report Checklist

Appendix B - Sanitary Design Sheet

Appendix C – Stormwater Design Sheets and Roof Drain and ICD Information

Appendix D – Watermain and Fire Demand Information

PLANS

116070-GP - General Plan of Services

116070-GR - Grading Plan

116070-STM - Storm Drainage Area Plan

1.0 INTRODUCTION

The proposed development is located at Preston Square which is a 2.1 hectare (ha) urban mixed-use development located north of Aberdeen Street, between Preston Street and Rochester Street, as shown in **Figure 1 – Key Plan**.

The proposed development will consist of a 30-storey, 228-unit residential tower, located on top of four existing underground parking levels within Preston Square. The proposed tower will connect to the existing 8-storey Adelaide residential building. An additional floor will be added to the existing Adelaide building, which will include 24 units. In addition to the Adelaide building (referred to as Block B), the property also contains three existing commercial towers, referred to as Blocks A, C and D. See **Figure 2 – Existing Conditions** for illustration.

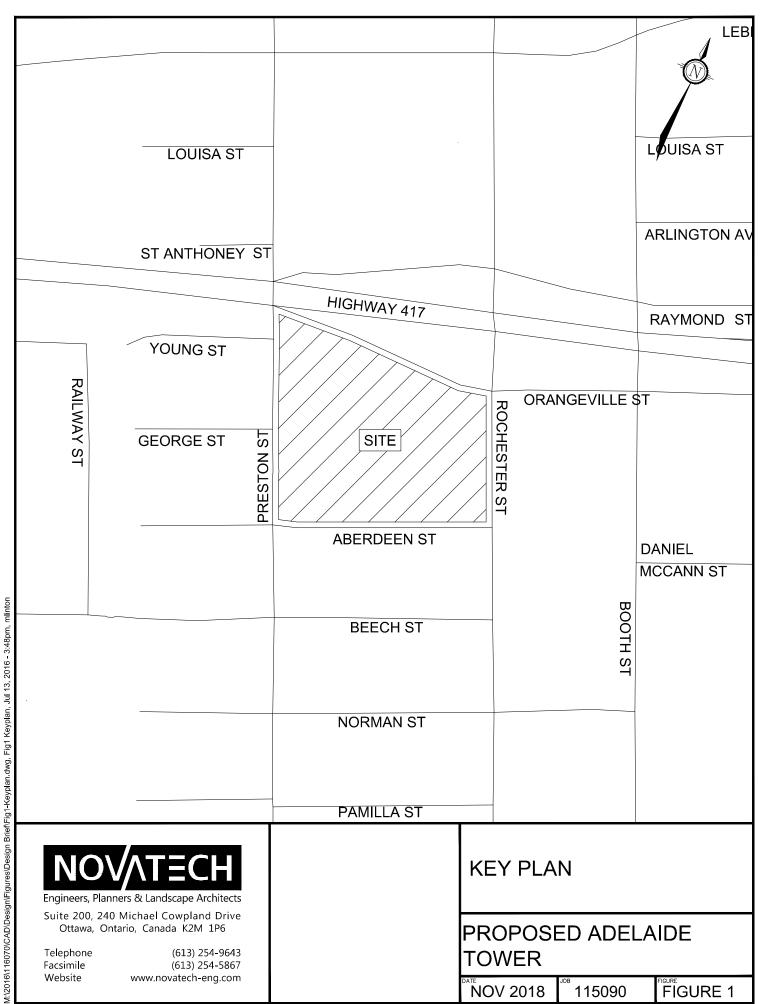
A Stormwater Management and Servicing Brief was previously submitted in support of a Site Plan application for the proposed development in 2016. The concept for the proposed development has since been revised and is presented in this revised report.

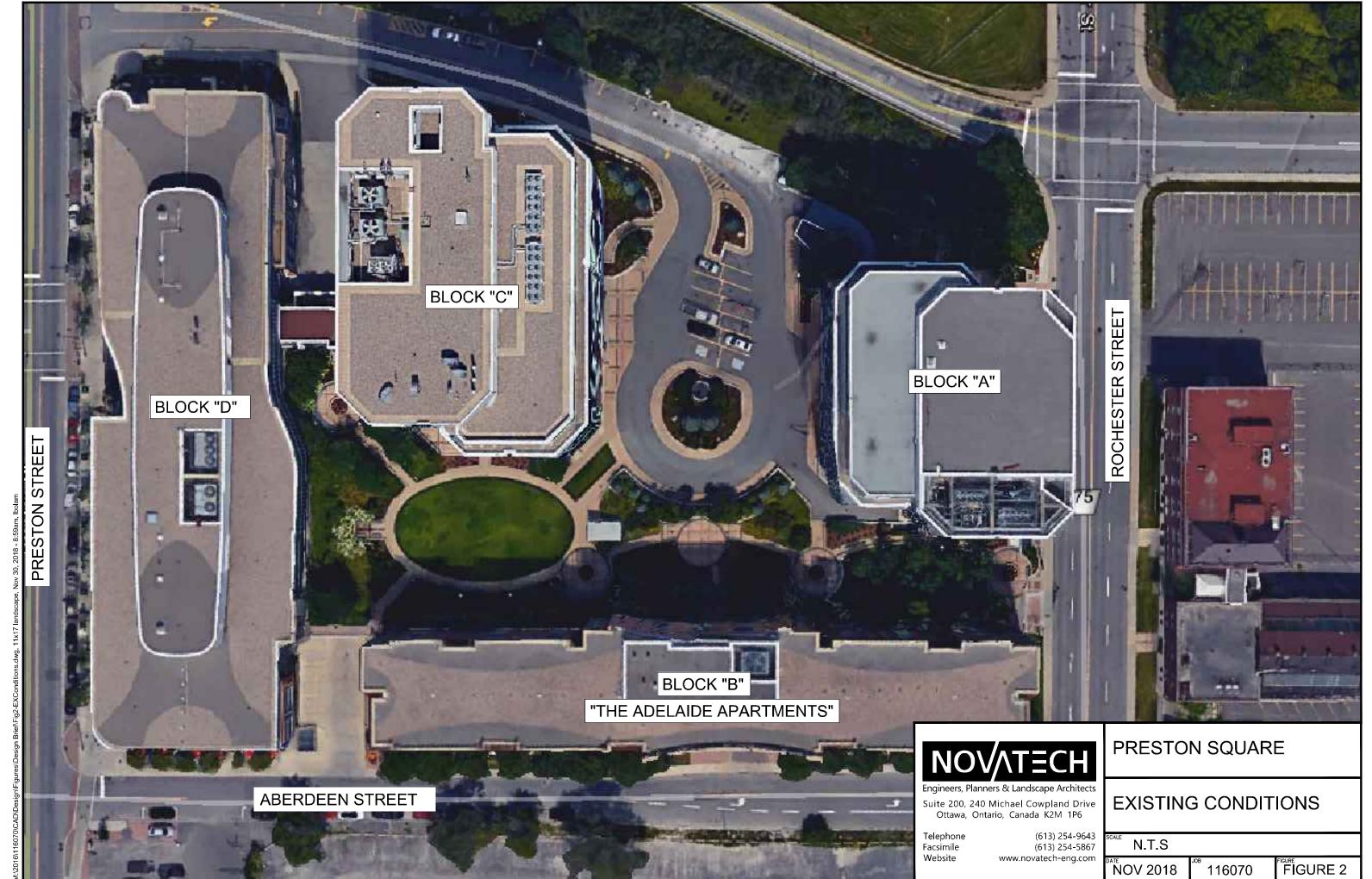
1.1 Purpose

This servicing brief addresses the approach to site servicing and stormwater management for the proposed development and is being submitted in support of a site plan control application.

The objective of the site servicing design is to conform to the requirements of the City of Ottawa, to provide suitable sewage outlets and to ensure that a domestic water supply and appropriate fire protection are provided for the proposed development.

Servicing criteria, expected sewage flows and water demands for the proposed development have been established using the City of Ottawa design guidelines for sewer systems and water distribution.


The City of Ottawa Servicing Study Guidelines for Development Applications requires that a Development Servicing Study Checklist be included to confirm that each applicable item is deemed complete and ready for review by City of Ottawa Infrastructure Approvals. A completed checklist in enclosed in **Appendix A**.


2.0 SANITARY SEWER

The proposed development will be serviced by a new 200mm dia. sanitary service that will outlet to an existing 1200mm dia. municipal sewer on Aberdeen Street. This sewer flows west on Aberdeen Street before discharging into the existing 1650mm dia. combined trunk sewer on Preston Street which flows north.

2.1 Design Criteria

The City of Ottawa design criteria were used to calculate the theoretical proposed sanitary flows. The following design criteria were taken from Section 4 – 'Sanitary Sewer Systems' of the City of Ottawa Sewer Design Guidelines, incorporating the revisions as per Technical Bulletin ISTB-2018-01.

HT11X17 DWG - 279mmX432mn

Residential Population Densities

Residential Units (1-bedroom Apartment):
Residential Units (2-bedroom Apartment):
2.1 people / unit

Residential Flows

Average Daily Residential Sewage Flow: 280 L / person / day
 Residential Peaking Factor: Per Harmon Equation

(Max. 4.0, Correction Factor=0.8)

Extraneous Flows

N/A

The proposed development is located within an existing development as described in Section 1.0 above. The proposed sanitary service is solely dedicated to the new Tower. The proposed development will not increase the extraneous flows currently generated by the site and therefore its value has been omitted from the proposed sanitary flow calculations. Therefore, the following sanitary flow calculations represent the net increase in sanitary flows from the site.

2.2 Proposed Sanitary Flows

Table 2.2 details the sanitary design flows for the proposed development.

Table 2.2: Theoretical Sanitary Design Flows for Proposed Development

Building	Use	Unit Count	Design Population (people)	Average Flow (L/s)	Peak Flow (L/s)
New Tower	Residential	216 x 1-bdrm 12 x 2-bdrm	328	1.06	3.54 ¹
1-storey Addition	Residential	22 x 1-bdrm 2 x 2-bdrm	35	0.11	0.38 ¹
Total		252 Units	363	1.17	3.92

¹ Excluding extraneous flow.

Based on Manning's Equation, a 200mm dia. sanitary gravity service at a minimum slope of 1.0% has a full flow conveyance capacity of approximately 34.2 L/s, which is sufficient to convey the theoretical sanitary design flows calculated above. Refer to the Sanitary Sewer Design Sheet in **Appendix B** for detailed calculations.

3.0 STORMWATER MANAGEMENT

3.1 Existing Site Stormwater Management

Stormwater flows from the Preston Square site are currently split into two drainage areas, as described in the *Stomwater Management Report Tower C and Block D City Gate Corporation*, dated October 2005 (R-2005-116) by Novatech, summarized as follows:

- Drainage Area 1 (northern part of the site): Flows are conveyed to the existing 1650mm dia. combined sewer on Preston Street via an on-site 1200mm diameter super pipe. The on-site super pipe utilizes a 250mm diameter orifice at its outlet to control the flows. Flows from the roofs of Buildings A and C are controlled by roof drains.
- Drainage Area 2 (southern part of the site): Flows are conveyed to the existing 1200mm dia.
 combined sewer on Aberdeen Street. Flows from the roofs of Buildings B (The Adelaide Apartments) and D are controlled by roof drains.

3.2 Stormwater Management Design Criteria and Methodology

The stormwater management criteria and objectives for the site (as per the above referenced 2005 report) are as follows:

- Provide a dual drainage system (i.e. minor and major system flows).
- Control the post-development flows from the site to allowable release rates corresponding to the 5-year and 100-year peak flows using a runoff coefficient of 0.4 and a 20-minute rainfall intensity derived from City of Ottawa IDF curves, as specified by the City of Ottawa. Post-development peak flows will be controlled for storms up to and including the 100-year design event, prior to being released into the municipal combined sewers in Aberdeen Street and Preston Street.
- Provide guidelines to ensure that site preparation and construction is in accordance with the current best management practices for erosion and sediment control.

The stormwater management design for the proposed development is based on the methodology implemented in the above referenced 2005 report.

The Modified Rational Method was used to determine the storage volume(s) required to control the post-development runoff flows to the allowable release rates and to determine the size of the control structure(s).

3.3 Allowable Release Rates

The allowable release rates for the site for the 5-year and the 100-year design events were calculated using the Rational Method and are summarized in **Table 3.3**.

Table 3.3: Allowable Release Rates

Area	Allowable Release Rate (L/s)				
Alea	5-year	100-year			
Area 1 (1.304 ha)	101.5 L/s	174.0 L/s			
Area 2 (0.802 ha)	62.4 L/s	107.0 L/s			
Total (Site)	163.9 L/s	281.0 L/s			

Refer to **Appendix C** for detailed calculations.

3.4 Post-Development Site Conditions

The area of the site to be developed will be split between the two drainage areas as shown on attached drawing **116070-STM**. A brief description of the various sub-catchment areas is as follows:

- Drainage Area 1: Runoff from the street-level areas around the exterior of the new Tower will
 drain uncontrolled via podium drains and catchbasins to the existing 1200mm dia. superpipe.
 Flows from this superpipe to the combined sewer on Preston Street will continue to be controlled
 by an orifice at the outlet of the pipe.
- Drainage Area 2: Runoff from the proposed Tower roof (Area B-2) and the new roof on the proposed 9th floor addition to the Adelaide Apartment building (Area B-1) will be controlled by roof drains. There will be 10 roof drains on the new roof of the Adelaide Apartment building and 12 roof drains on the roof of the new Tower. These roof drains will outlet to the combined sewer in Aberdeen Street.

The rest of the site is unchanged.

3.4.1 Drainage Area 1

Controlled Flow from Block A and C Roofs (Area 1-R)

The flows from the roof areas in Area 1 are attenuated by controlled flow roof drains. There are 14 existing roof drains in Area 1 (6 and 8 roof drains for Blocks A and C respectively). The roof drains on average discharge 1.0 L/s, so flows from the roofs of existing buildings A (Area 1-"A") and C (Area 1-"C") are controlled to approximately 14 L/s for the 5-year and 100-year design events.

Refer to the Stomwater Management Report Tower C And Block D City Gate Corporation, (R-2005-116) dated October 2005 by Novatech for details.

Controlled Surface Flow (Area 1-A)

The flows from surface areas in Area 1 are currently attenuated by a 250mm dia. orifice plug type ICD installed within the 300mm dia. outlet pipe of MH1. Stormwater runoff from this drainage area is temporarily stored in an underground superpipe prior to being discharged into the municipal storm sewer system. Additional storage is available in the existing catchbasins and manholes. **Table 3.4-A** summarizes the existing available storage volumes for Area 1.

Table 3.4-A – Area 1 Available Existing Storage Volumes

Item	Area (m²)	Depth (m)	Length (m)	Approximate Storage Volume (m³)
1200mm dia. superpipe	1.17	N/A	99.80	116.8
CB 3 (600mmx600mm)	0.36	= 60.35 - 59.37 = 0.98	N/A	0.4
CB 1 (600mmx600mm)	0.36	= 60.35 - 58.98 = 1.37	N/A	0.5
MH1 (2440mm dia.)	4.67	= 60.35 - 58.50 = 1.85	N/A	8.6

STM 2 (1200mm dia.)	1.13	= 60.35 - 58.65 = 1.70	N/A	1.9
Total				130.7 m³

The design release rate for flows from the surface areas of Area 1 was set to meet the allowable release rate for Area 1, taking into account the existing controlled flows from the roof areas. The Modified Rational Method was used to determine the storage volume required for this catchment area.

Table 3.4-B summarizes the post-development flows and the required storage volumes for runoff from the surface areas for the 5-year and the 100-year design events for Area 1.

Table 3.4-B: Summary of Area 1 Post-Development Flows and Required Storage Volume

	Roof Areas				
Design Event	Controlled Flow (L/s)	Uncontrolled Flow (L/s)	Design Release Rate (L/s)	Storage Volume Required (m³)	Total Flow for Area 1 (L/s)
5-year	14	135.6	87.5	69 m³	101.5
100-year	14	232.5	160.0	112 m³	174.0

The existing available storage volume is greater than the storage volume required for the 100-year design event, therefore there is adequate existing storage available to meet the required storage volumes for Area 1.

Inlet Control Device (ICD) Sizing

To achieve the design release rate to the combined sewer on Preston Street, a new orifice will need to be installed. This orifice has been sized using the following orifice equation:

```
Q = CA(2gh)^0.5

Where:
Q = Discharge (m³/s) = 100-year design release rate (0.160 m³/s)
C = 0.61 (circular hole)
h = head required (m) = 1.88m (value chosen for no ponding)
g = 9.81 m/s²
A = Area of Orifice (m²)
```

```
0.160 = 0.61*A(2*9.81*1.88)^0.5

\therefore A = 0.0432 \text{ m}^2
```

 $\therefore D = 0.234 \text{ m}$

To achieve the design release rate to the combined sewer, a new Tempest MHF ICD SQ 234mm orifice will be installed at the connection to the 2440mm diameter manhole. Shop drawing has been attached in **Appendix C**.

3.4.2 Drainage Area 2

Controlled Flow from Block D (Area 2-"D")

Runoff from the roof of Building D is currently controlled by roof drains. There are 8 existing roof drains on Building D, which will remain. These existing controlled flow roof drains discharge on average 1.0 L/s. Therefore, there is a total controlled flow of approximately 8 L/s for the 5-year and 100-year design events from the roof of Building D.

Controlled Flow from Building B and New Tower (Areas 2-"B1" and 2-"B2")

The post-development flows from roof areas 2-"B1" (the Adelaide) and 2-"B2" (the new Tower) will be attenuated by the use of controlled flow roof drains. Watts Adjustable Flow Control Roof Drains set at ¼ weir opening exposed are proposed.

A total of ten (10) roof drains are proposed on the Adelaide building and fourteen (14) roof drains are proposed on the new Tower. The controlled release rate, ponding depth, required and maximum storage volumes for both the 5-year and 100-year design events are summarized in the **Table 3.4-C** below.

Table 3.4-C: Areas 2-"B1" and 2-"B2" Controlled Flow Building Roof Drains

Roof Drain ID	_	trolled v (L/s)	Ponding Depth (m)				Max. Storage
	5-year	100-year	5-year	100-year	5-year	100-year	Available (m³)
2-"B1" (RD1 – RD10)	7.9	8.7	0.07-0.11	0.13-0.14	31.7	64.6	74.8
2-"B2" (RD11-RD24)	9.8	11.1	0.05-0.08	0.10-0.14	2.5	7.4	8.9

Refer to **Appendix C** for Modified Rational Method calculations and Watts adjustable flow control roof drain information.

<u>Uncontrolled Surface Flow (Area 2-A)</u>

The post-development flows from the surface areas of Area 2 will remain uncontrolled. **Table 3.4-D** summarizes the post-development flows for Area 2.

Table 3.4-D: Summary of Area 2 Post-Development Flows

Design Event	Roof Areas Controlled Flow (L/s)	Surface Areas Uncontrolled Flow (L/s)	Tot	al Flow for Area 2 (L/s)
5-year	25.7 L/s	33.9 L/s	59.6 L/s	< Allowable Rate of 62.4 L/s
100-year	27.8 L/s	58.1 L/s	85.9	< Allowable Rate of 107.0 L/s

3.5 Summary of Site Post-Development Flows

Table 3.5 summarizes the total post-development flows from the site.

Table 3.5: Site Post-Development Stormwater Flows

Aroo	Post-Developm	nent Flows (L/s)
Area	5-year	100-year
1	101.5	174.0
2	59.6	85.9
Total Site	161.1 L/s	259.9 L/s
	< 163.9 L/s Site Allowable Release Rate	< 281.0 L/s Site Allowable Release Rate

As the 100-year total site post-development stormwater flow is less than the 100-year site allowable release rate to the municipal combined sewer system, there is remaining capacity for the net increase of approximately 3.9 L/s in peak sanitary flow from the proposed development.

3.6 Major Overland Drainage

The site was originally designed to direct major overland drainage flows in excess of the 100-year event flow overland towards Preston and Aberdeen Street. The proposed development will maintain the existing overland flow patterns.

4.0 WATERMAIN

The proposed development will be serviced with twin 150 mm dia. PVC DR 18 services that will connect to the existing 200mm dia. watermain on Aberdeen Street.

4.1 Design Criteria

The City of Ottawa design criteria were used to calculate the theoretical water demands for the proposed development. The following design criteria were taken from Section 4 of the Ottawa Design Guidelines – Water Distribution:

Residential

Residential Units (1-bedroom apartment): 1.4 people / unit
 Residential Units (2-bedroom apartment): 2.1 people / unit
 Average Day Demand Residential: 350 L / person / day

Residential Maximum Day Demand:
 Residential Peak Hour Demand:
 2.5 x Avg. Day Demand
 2.2 x Max Day Demand

4.2 Average, Maximum Day and Peak Hour Demands

The theoretical water demands for the proposed development are given in **Table 4.2**, based on the design criteria above.

Building	Use	Average Water Demand (L/s)	Maximum Day Demand (L/s)	Peak Hour Demand (L/s)
New Tower	Desidential	1.33	3.32	7.31
1-storey Addition	Residential	0.14	0.35	0.78
Total		1.47 L/s	3.68 L/s	8.09 L/s

Table 4.2: Theoretical Design Water Demands for Proposed Development

Refer to **Appendix D** for detailed calculations.

4.3 Water Supply for Fire-Fighting

The Fire Underwriters Survey (FUS) was used to estimate fire flow requirements for the proposed Tower. In the absence of detailed architectural information, some assumptions were made regarding the building construction. A fire-resistive construction was assumed due to the large size and type of occupancy for the proposed building. Also, the proposed Tower will be fully sprinklered and supplied with a fire department siamese connection(s), located within 45m of the existing on-site fire hydrant adjacent to Tower A.

The fire flow requirements include both sprinkler system and hose allowances in accordance with the OBC and NFPA 13. The sprinkler system will be designed by the fire protection (sprinkler) contractor at the detailed design stage as this process involves detailed hydraulic calculations based on building layout, pipe runs, head losses, fire pump requirements, etc. Booster pumps will be required to provide adequate service pressure on the upper floors.

It should be noted that fire flow requirements calculated using the FUS method tend to generate higher values when compared to flows being calculated using the OBC and NFPA. In the previous 2016 version of this report, the fire flow required for the proposed Tower was calculated using OBC to be 550 US gpm, or 35 L/s. Since then the building design has been updated.

The calculated fire flow demand for the updated proposed Tower using FUS is 67 L/s (4,000 L/min). Refer to **Appendix D** for detailed FUS calculations.

4.4 Boundary Conditions and Summary of Watermain Analysis Results

Preliminary water demands and fire flow requirements for the proposed development were provided to the City of Ottawa in 2016. These values were used to generate the municipal watermain network boundary conditions. **Table 4.4-A** summarizes the boundary conditions provided by the City of Ottawa for the existing municipal watermain network.

Table 4.4-A: Hydraulic Boundary Condition Provided by the City

Municipal Watermain Boundary Condition	Aberdeen St Watermain
Minimum HGL	106.1 m
Maximum HGL	117.5 m
Max Day + Fire Flow	104.2 m

Refer to **Appendix D** for a copy of the previous correspondence from the City of Ottawa.

Table 4.4-B summarizes the theoretical water demands for the Tower under the various operating conditions and compares the anticipated operating pressures at the watermains to the normal operating pressures outlined in the City of Ottawa Design Guidelines. It is assumed that hydraulic losses in the 150mm water services are negligible. Furthermore, the proposed Tower will be equipped with booster pumps to increase pressure for the upper floors.

Table 4.4-B: Water Anal	ysis Results Summary
-------------------------	----------------------

Condition	Water Service Connection Location	Total Water Demand (L/s)	Approximate Design Operating Pressures (psi) / Relative Head (m) 1	Normal Municipal Operating Pressures (psi)		
Average Demand		1.33	85 psi (60.05 m)	50-70 psi		
Max Day + Fire Flow Demand	Aberdeen Street	70.33	66 psi (46.75 m)	20 psi (Min.)		
Peak Hour Demand		7.33	69 psi (48.65 m)	40-70 psi		

^{1 -} Assuming top of watermain elevation to be 57.45 m

As the approximate design operating pressure for the Average Demand condition is higher than the normal municipal operating pressure range, a pressure check will be completed at completion of construction to determine if pressure control is required.

As indicated in the summary table above, the existing watermain in Aberdeen Street should have sufficient water supply for the proposed Tower.

5.0 Erosion & Sediment Control

To mitigate erosion and to prevent sediment from entering the storm sewer system, temporary erosion and sediment control measures will be implemented on-site during construction in accordance with the Best Management Practices for Erosion and Sediment Control. This includes the following temporary measures:

- Filter bags will be placed under the grates of nearby catchbasins, manholes and will remain in place until construction is completed.
- Silt fencing will be placed per OPSS 577 and OPSD 219.110 along the surrounding construction limits, where applicable.
- Mud mats will be installed at the site entrances.
- Street sweeping and cleaning will be performed, as required, to suppress dust and to provide safe and clean roadways adjacent to the construction site.
- On-site dewatering is to be directed to a sediment trap and/or gravel splash pad and discharged safely to an approved outlet as directed by the engineer.

The temporary erosion and sediment control measures will be implemented prior to construction and will remain in place during all phases of construction. Regular inspection and maintenance of the erosion control measures will be undertaken.

6.0 CONCLUSIONS

This report has been prepared in support of a site plan control application for the proposed development at Preston Square. The proposed development will consist of a new 30-storey residential Tower and the addition of a single storey to the existing 8-storey Adelaide Apartments residential building.

The conclusions are as follows:

- The proposed development will include a total of ±252 residential units.
- The new residential Tower will be serviced by extending new services to the municipal watermain and combined sewer in Aberdeen Street.
- On-site stormwater quantity control will be provided by using controlled roof drains and the
 existing stormwater management infrastructure, which includes controlled outlets. The existing
 inlet control device will be adapted. A new 234mm dia. orifice plug type ICD will be installed at
 the Preston Street stormwater outlet to the combined municipal sewer.
- As total combined stormwater and sanitary flows to the municipal combined sewer system will
 meet the allowable site flows, the municipal combined sewers in the adjacent streets are
 estimated to have adequate capacity to accommodate the proposed development.
- The proposed Tower will be sprinklered and supplied with a fire department Siamese connection. The Siamese connection will be located within 45m of an existing private fire hydrant in Preston Square. Based on hydraulic boundary conditions provided by the City of Ottawa, the existing municipal water system has adequate capacity to accommodate the proposed development.
- On-site stormwater quality control is not required, nor being provided.
- Temporary erosion and sediment controls will be provided during construction.

It is recommended that this Stormwater Management and Servicing Brief be approved for implementation.

NOVATECH

Prepared by:

Lydia Bolam, B.Eng. E.I.T.

Reviewed By:

Greg MacDonald, P.Eng.
Director, Land Development and Public
Sector Infrastructure

Stormwater Management and Servicing Brief	Adelaide Apartments Tower Expansion
APPENDIX A	
Development Servicing Study	Chacklist
Development der vieling dtudy	Oncomist
Noveteele	

Project Number: 116070 Date: January 2019

4.1 General Content	Addressed	Section	Comments
4.1 General Content	(Y/N/NA)	Section	Comments
Executive Summary (for larger reports only).	NA		
Date and revision number of the report.	Υ	Cover	
Location map and plan showing municipal address,	Υ		Figure 1 & Dwgs.
boundary, and layout of proposed development.	ĭ		rigure 1 & Dwgs.
Plan showing the site and location of all existing services.	Υ		Dwg. 116070-GP
Development statistics, land use, density, adherence to			
zoning and official plan, and reference to applicable	Υ	1.0	
subwatershed and watershed plans that provide context	ĭ	1.0	
to which individual developments must adhere.			
Summary of Pre-consultation Meetings with City and	NI /A		
other approval agencies.	N/A		
Reference and confirm conformance to higher level			
studies and reports (Master Servicing Studies,			
Environmental Assessments, Community Design Plans),	Υ	1.1	
or in the case where it is not in conformance, the	ĭ	1.1	
proponent must provide justification and develop a			
defendable design criteria.			
Statement of objectives and servicing criteria.	Υ	1.1	
Identification of existing and proposed infrastructure	Υ	2.0 - 4.0	Dwg. 116070-GP
available in the immediate area.	'	2.0 - 4.0	Dwg. 1100/0-dr
Identification of Environmentally Significant Areas,			
watercourses and Municipal Drains potentially impacted	N/A		
by the proposed development (Reference can be made	IN/A		
to the Natural Heritage Studies, if available).			
Concept level master grading plan to confirm existing and			
proposed grades in the development. This is required to			
confirm the feasibility of proposed stormwater			
management and drainage, soil removal and fill	Υ		Dwg. 116070-GR
constraints, and potential impacts to neighboring	ĭ		Dwg. 1100/0-0h
properties. This is also required to confirm that the			
proposed grading will not impede existing major system			
flow paths.			

Project Number: 116070

Date: January 2019

4.1 General Content	Addressed (Y/N/NA)	Section	Comments
Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.	N/A		
Proposed phasing of the development, if applicable.	N/A		
Reference to geotechnical studies and recommendations concerning servicing.	N/A		
All preliminary and formal site plan submissions should have the following information:	Υ		
Metric scale	Υ		
North arrow (including construction North)	Υ		
Key plan	Υ		
Name and contact information of applicant and property owner	Υ		
Property limits including bearings and dimensions	Υ		
Existing and proposed structures and parking areas	Υ		
Easements, road widening and rights-of-way	Υ		
Adjacent street names	Υ		

Project Number: 116070 Date: January 2019

4.2 Water	Addressed (Y/N/NA)	Section	Comments
Confirm consistency with Master Servicing Study, if	NI/A		
available.	N/A		
Availability of public infrastructure to service proposed	V		
development.	Y		
Identification of system constraints.	Υ	4.0	
Identify boundary conditions.	Υ	4.0	
Confirmation of adequate domestic supply and pressure.	Υ	4.0	
Confirmation of adequate fire flow protection and			
confirmation that fire flow is calculated as per the Fire	v	4.0	
Underwriter's Survey. Output should show available fire	Y	4.0	
flow at locations throughout the development.			
Provide a check of high pressures. If pressure is found to			
be high, an assessment is required to confirm the	Υ	4.0	
application of pressure reducing valves.			
Definition of phasing constraints. Hydraulic modeling is			
required to confirm servicing for all defined phases of the	N/A		
project including the ultimate design.			
Address reliability requirements such as appropriate			
location of shut-off valves.	N		Detailed Design Requirement
Check on the necessity of a pressure zone boundary	21/2		
modification.	N/A		
Reference to water supply analysis to show that major			
infrastructure is capable of delivering sufficient water for			
the proposed land use. This includes data that shows that			5' 2 10 1 10 1
the expected demands under average day, peak hour and	N		Fire Demand Checked Only
fire flow conditions provide water within the required			
pressure range.			
Description of the proposed water distribution network,			
including locations of proposed connections to the			
existing system, provisions for necessary looping, and	.,	4.0	
appurtenances (valves, pressure reducing valves, valve	Υ	4.0	
chambers, and fire hydrants) including special metering			
provisions.			
Description of off-site required feedermains, booster			
pumping stations, and other water infrastructure that			
will be ultimately required to service proposed	N/A		
development, including financing, interim facilities, and	•		
timing of implementation.			
Confirmation that water demands are calculated based	.,		
on the City of Ottawa Design Guidelines.	Υ	4.0	
Provision of a model schematic showing the boundary			
conditions locations, streets, parcels, and building	N		
locations for reference.			

Project Number: 116070 Date: January 2019

4.3 Wastewater	Addressed (Y/N/NA)	Section	Comments
Summary of proposed design criteria (Note: Wet-			
weather flow criteria should not deviate from the City of			
Ottawa Sewer Design Guidelines. Monitored flow data	Υ	2.0	
from relatively new infrastructure cannot be used to			
justify capacity requirements for proposed			
Confirm consistency with Master Servicing Study and/or justifications for deviations.	N/A		
Consideration of local conditions that may contribute to			
extraneous flows that are higher than the recommended	N/A		
flows in the guidelines. This includes groundwater and	N/A		
soil conditions, and age and condition of sewers.			
Description of existing sanitary sewer available for	Υ	2.0	
discharge of wastewater from proposed development.	Ţ	2.0	
Verify available capacity in downstream sanitary sewer			
and/or identification of upgrades necessary to service the			
proposed development. (Reference can be made to	Υ	2.0	
previously completed Master Servicing Study if			
applicable)			
Calculations related to dry-weather and wet-weather			
flow rates from the development in standard MOE	N/A		
sanitary sewer design table (Appendix 'C') format.			
Description of proposed sewer network including sewers,	Υ	2.0	Dwg. 116070-GP
pumping stations, and forcemains.			5 mg. 110070 G.
Discussion of previously identified environmental			
constraints and impact on servicing (environmental			
constraints are related to limitations imposed on the	N/A		
development in order to preserve the physical condition	IN/A		
of watercourses, vegetation, soil cover, as well as			
protecting against water quantity and quality).			
Pumping stations: impacts of proposed development on			
existing pumping stations or requirements for new	N/A		
pumping station to service development.			
Forcemain capacity in terms of operational redundancy,	N/A		
surge pressure and maximum flow velocity.	11/7		
Identification and implementation of the emergency			
overflow from sanitary pumping stations in relation to	N/A		
the hydraulic grade line to protect against basement	1,,,		
flooding.			
Special considerations such as contamination, corrosive	N/A		
environment etc.	11/7		

Project Number: 116070 Date: January 2019

	Addressed		
4.4 Stormwater	(Y/N/NA)	Section	Comments
Description of drainage outlets and downstream	(-)		
constraints including legality of outlet (i.e. municipal	Υ	3.0	
drain, right-of-way, watercourse, or private property).			
Analysis of the available capacity in existing public			
infrastructure.	Y	3.0	
A drawing showing the subject lands, its surroundings,			
the receiving watercourse, existing drainage patterns and	Υ		116070-STM
proposed drainage patterns.			
Water quantity control objective (e.g. controlling post-			
development peak flows to pre-development level for			
storm events ranging from the 2 or 5 year event			
(dependent on the receiving sewer design) to 100 year	.,	2.0	
return period); if other objectives are being applied, a	Υ	3.0	
rationale must be included with reference to hydrologic			
analyses of the potentially affected subwatersheds,			
taking into account long-term cumulative effects.			
Water Quality control objective (basic, normal or			
enhanced level of protection based on the sensitivities of	Υ	3.0	
the receiving watercourse) and storage requirements.			
Description of stormwater management concept with			
facility locations and descriptions with references and	Υ	3.0	
supporting information.			
Set-back from private sewage disposal systems.	N/A		
Watercourse and hazard lands setbacks.	N/A		
Record of pre-consultation with the Ontario Ministry of			
Environment and the Conservation Authority that has	N/A		
jurisdiction on the affected watershed.			
Confirm consistency with sub-watershed and Master	21.75		
Servicing Study, if applicable study exists.	N/A		
Storage requirements (complete with calcs) and			
conveyance capacity for minor (5 yr) and major (100 yr)	Υ	3.0	
events.			
Identification of watercourse within the proposed			
development and how watercourses will be protected,	NI/A		
or, if necessary, altered by the proposed development	N/A		
with applicable approvals.			
Calculate pre and post development peak flow rates			
including a description of existing site conditions and	v	3.0	
proposed impervious areas and drainage catchments in	Y	3.0	
comparison to existing conditions.			
Any proposed diversion of drainage catchment areas	NI /A		
from one outlet to another.	N/A		

Project Number: 116070

Date: January 2019

4.4 Stormwater	Addressed (Y/N/NA)	Section	Comments
Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and SWM	Υ	3.0	Dwgs. 116070-GP, -GR and - STM
If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100-year return period storm event.	Υ	3.0	
Identification of potential impacts to receiving watercourses.	N/A		
Identification of municipal drains and related approval requirements.	N/A		
Description of how the conveyance and storage capacity will be achieved for the development.	Υ	3.0	
100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.	Υ	3.0	100 Year HGL not available
Inclusion of hydraulic analysis including HGL elevations.	N		
Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.	Y	5.0	
Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.	N/A		
Identification of fill constrains related to floodplain and geotechnical investigation.	N/A		

Project Number: 116070 Date: January 2019

4.5 Approval and Permit Requirements	Addressed (Y/N/NA)	Section	Comments
Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act.			
Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.	N		
Changes to Municipal Drains.	N		
Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.)	N/A		

4.6 Conclusion	Addressed (Y/N/NA)	Section	Comments
Clearly stated conclusions and recommendations.	Υ	6.0	
Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.	N/A		
All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario.	Υ		

Stormwater Management and Servicing Brief	Adelaide Apartments Tower Expansion
APPENDIX B	
Sanitary Design She	nat
Sanitary Design Sne	eet
Novatech	

PROJECT #: 116070

PROJECT NAME: ADELAIDE APARTMENTS TOWER EXPANSION

SANITARY SEWER DESIGN SHEET

	LOCATION			RESIDENTIAL FLOW						EXTRANEOUS FLOW		TOTAL FLOWS		
									Infiltrat	ion Allowance	Average Dry	Peak Dry	Peak Wet	
Area ID	Use	Total		of Units	Design	Avg	Peak	Res. Peak	Dry Weather	Wet Weather	Weather	Weather	Weather	
Alea ID	Use	Area	1-bdrm	2-bdrm	Population	Flow	Factor	Flow	(I/I dry)	(I/I wet)	Flow (ADWF)	Flow (PDWF)	Flow (PWWW)	
		(ha)	-	-	(persons)	(l/s)	-	(I/s)	(l/s)	(l/s)	(l/s)	(l/s)	(l/s)	
THEORETICAL POST	-DEVELOPMENT													
Existing Building	Residential	N/A	79	79	277	0.90	3.33	2.99			0.90	2.99	2.99	
New 1-storey addition	Residential	N/A	22	2	35	0.11	3.33	0.38			0.11	0.38	0.38	
Subtotal			101	81	312	1.01	3.33	3.37			1.01	3.37	3.37	
New Tower	Residential	N/A	216	12	328	1.06	3.33	3.54			1.06	3.54	3.54	
Total			317	93	640	2.07	3.33	6.91			2.07	6.91	6.91	
1-bedroom Apartment 2-bedroom Apartment Average Sanitary Flow Residential Peak Extraneous Flow N/A - Refer to SWM an	vs	1.40 2.10 280	people / unit people / unit L/c/d							LGB				
Peaking Factors Residential		Harmon E	Equation, K=0.8	3						GJM January 16, 2019				

Stormwater Management and Servicing Brief	Adelaide Apartments Tower Expansion
ABBELIDIVA	
APPENDIX C	
Stormwater Design Sheets and Roof Drain an	id ICD Information
Novatech	

STORMWATER MANAGEMENT DESIGN SHEET

PROJECT #: 116070

PROJECT NAME: ADELAIDE TOWER EXPANSION

LOCATION: CITY OF OTTAWA

Allowable Site Flows							Target Allov	wable Flows		
Description	A (ha)	A imp (ha)	A grav (ha)	A perv (ha)	C ₅	C	Uncontrolled Flows (L/s)		(L/s) C = 0.4	
Description	A (ha)	C=0.9	C=0.6	C=0.2	O ₅	C ₁₀₀	5 year	100 year	5-Yr (L/s)	100-Yr (L/s)
1 - BUILDINGS A AND C	1.304						N/A	N/A	101.5	174.0
2 - BUILDINGS B AND D (ADELAIDE), TOWER EXPANSION	0.802						N/A	N/A	62.4	107.0
	2.11							TOTAL	163.9	281.0

t_c=20111115 t_c=20111

i=70mm/hr i=120mm/hr

	Post - Development : Uncontrolled Site Flows								
Area	Description	A (ha)	A imp (ha) C=0.9	A grav (ha) C=0.6	A perv (ha) C=0.2	C ₅	C ₁₀₀	Uncontrolled Flow (Laboration 5 year 100 year	
1-R	Controlled roof drains - Buildings C and A	0.240	0.240	0	0	0.90	0.90	42.0	72.1
1-A	Surface runoff	1.064	0.692	0	0.3724	0.66	0.66	135.6	232.5
	Sub-Total	1.304	0.932	0.00	0.37	0.70	0.70	177.7	304.6
2-D	Controlled roof drains - Building D	0.322	0.322	0	0	0.90	0.90	56.4	96.7
2-B1	Controlled roof drains - Adelaide Building (B1)	0.198	0.198	0	0	0.90	0.90	34.6	59.3
2-B2	Controlled roof drains - New Tower (B2)	0.072	0.072	0	0	0.90	0.90	12.5	21.5
2-R	Sub-total: (Area 2 roof areas)	0.591	0.591	0	0	0.90	0.90	103.5	177.4
2-A	Surface runoff	0.211	0.189	0	0.0225	0.83	0.83	33.9	58.1
	Sub-Total	0.802	1.371	0.00	0.02	1.54	1.54	137.4	235.5

=20mins t_c=20mins

	Post - Development	: Total Flows	s for Controlled	Site		
A	Description	Flo	w (L/s)	Storage Red	Provided	
Area	Description	5 year	100 year	5 year	100 year	(m ³)
1-R	Controlled roof drains - Buildings C and A	14.0	14.0	33.9	74.7	Assume >75
1-A	Surface runoff	87.5	160.0	68.6	111.6	111.6
	Sub-Total (Area 1)	101.5	174.0	102.5	186.3	186.6
2-D	Controlled roof drains - Building D	8.0	8.0	Refer to 'Tower	C and Block D'	SWM Report
2-B1	Controlled roof drains - Adelaide Building (B1)	7.9	8.7	31.7	64.6	74.8
2-B2	Controlled roof drains - New Tower (B2)	9.8	11.1	2.5	7.4	8.9
2-R	Sub-Total (Area 2 roof areas)	25.7	27.8	34.3	71.9	83.7
2-A	Surface runoff	33.9	58.1	-	-	-
	Sub-Total (Area 2)	59.6	85.9	34.3	71.9	83.7
	TOTAL (SITE - AREA 1 + AREA 2)	161.1	259.9			

2.11

ADELAIDE TO	WER EXPA	NSION							
PROJECT NO: 116070									
REQUIRED STORAGE - 1:5 YEAR EVENT									
AREA 1-A Controlled Flow-Surface Area									
OTTAWA IDF	CURVE								
Area	= 1.064	ha	Qallow =	87.5	L/s				
C	= 0.66		Vol(max) =	68.6	m3				
Time	Intensity	Q	Qnet	Vol					
(min)	(mm/hr)	(L/s)	(L/s)	(m3)					
5	141.18	273.52	186.02	55.81					
10	104.19	201.87	114.37	68.62					
15	83.56	161.89	74.39	66.95					
20	70.25	136.11	48.61	58.33					
25	60.90	117.98	30.48	45.72					
30	53.93	104.48	16.98	30.57					
35	48.52	94.00	6.50	13.65					
40	44.18	85.60	-1.90	-4.55					
45	40.63	78.72	-8.78	-23.72					
50	37.65	72.95	-14.55	-43.65					
55	35.12	68.05	-19.45	-64.19					
60	32.94	63.83	-23.67	-85.23					
65	31.04	60.15	-27.35	-106.68					
70	29.37	56.91	-30.59	-128.49					
75	27.89	54.03	-33.47	-150.61					
90	24.29	47.06	-40.44	-218.39					
105	21.58	41.81	-45.69	-287.82					
120	19.47	37.72	-49.78	-358.44					
135	17.76	34.42	-53.08	-429.96					
150	16.36	31.70	-55.80	-502.20					

REQUIRED AREA 1-A		- 4.400									
				NT							
OTTAWA I	REA 1-A Controlled Flow-Surface Area										
Ar)64 ha		Qallow =	160.0	L/s					
	C = 0.	66	Vo	ol(max) =	111.6	m3					
Time	Inte	nsity	Q	Qnet	Vol						
(min)	(mn	n/hr) (l	/s)	(L/s)	(m3)						
5	242	2.70 47	0.22 3	310.23	93.07						
10	178	3.56 34	5.95 1	185.96	111.57						
15	142	2.89 27	6.85 1	116.86	105.17						
20	119	9.95 23	2.40	72.41	86.89						
25	103	3.85 20	1.20	41.21	61.81						
30	91	.87 17	7.99	18.00	32.40						
35	82	.58 15	9.99	0.00	0.00						
40	75	.15 14	5.59 -	-14.40	-34.56						
45	69	.05 13	3.78 -	-26.21	-70.76						
50	63	.95 12	3.91 -	-36.08	-108.25						
55	59	.62 11	5.52 -	44.47	-146.76						
60	55	.89 10	8.29 -	-51.70	-186.11						
65	52	.65 10	2.00 -	-57.99	-226.16						
70	49	.79 96	6.46 -	-63.53	-266.81						
75	47	.26 91	.55 -	-68.44	-307.96						
90	41	.11 79	.65 -	-80.34	-433.84						
105	36	.50 70).71 -	-89.28	-562.45						
120	32	.89 63	3.73 -	-96.26	-693.06						
135	30	.00 58	3.12 -	101.87	-825.17						
150	27	.61 53	3.49 -	106.50	-958.46						

Structures	Size (mm)	Area (m²)	T/G	Inv IN	Inv OUT
STM MH2	1200	1.13	60.50	58.65	58.65
STM MH1	1300	1.33	60.50	58.46	58.46
MH1	2440	4.68	60.65	58.55	58.50
CB 1	600 x 600	0.36	60.50	58.98	58.98
CB 3	600 x 600	0.36	60.50	59.37	59.37

3 1/150265	
	(1200 nomina
1.169	(m ²)
99.8	(m)
116.7	(m ³)
	99.8

U/G Pipe Size	1200MM
Pipe Segment	
Centre-Centre Length	
Inside Structure	1.2
U/G Storage Length	99.8

	Area A-1: Storage									
					derground Stor				Surface Storage	Total Storage
		STM MH2	STM MH1	MH1	CB 1	CB 3	1200mm dia.	Total U/G		
	System Head	Volume	Volume	Volume	Volume	Volume	Pipe Storage	Volume		Volume
(m)	(m)	(m³)	(m³)	(m³)	(m³)	(m²)	(m³)	(m³)		(m³)
58.46										0.0
58.50	-0.15		0.00				0.00	0.00		0.0
58.65	0.00		0.25	0.70			26.95	27.52		27.5
58.98	0.33	0.37	0.69	2.24	0.00		45.91	49.08		49.1
59.00	0.35	0.40	0.72	2.34	0.01		51.90	55.22		55.2
59.37	0.72	0.81	1.21	4.07	0.14	0.00	59.88	66.11		66.1
59.50	0.85	0.96	1.38	4.68	0.19	0.05	116.66	123.92		123.9
59.75	1.10	1.24	1.71	5.84	0.28	0.14	116.66	125.88		125.9
60.00	1.35	1.53	2.04	7.01	0.37	0.23	116.66	127.84		127.8
60.25	1.60	1.81	2.38	8.18	0.46	0.32	116.66	129.81		129.8
60.50	1.85	2.09	2.71	9.35	0.55	0.41	116.66	131.77		131.8

Inlet Control Device - Circ	cular Plug
1:100 Yr	
Flow (L/s) =	160.0
Head (m) =	1.85
Elevation (m) =	60.35
Outlet Pipe Dia.(mm) =	300
Volume (m3) =	111.6
1:5 Yr	
Flow (L/s) =	
Head (m) =	0.55
Elevation (m) =	59.05
Outlet Pipe Dia.(mm) =	300
Outlet Pipe Dia.(mm) = Volume (m3) =	

Maximum Ponding Depth (cm)						
1:100 Yr	0					
1:5 Yr	0					

Orifice S	ize - 1:100 yr Flo	w Check
Q=0.62xAx(2g	h)^0.5	
	1:100 yr	Flow Check
$Q (m^3/s) =$	0.1600	0.1606
$g(m/s^2) =$	9.81	9.81
h (m) =	1.85	1.85
A (m ²) =	0.042831746	0.04301
D (m) =	0.233527457	0.23400
D (mm) =	234	234.0

1:5 yr
0.0876
9.81
0.55
0.04301
0.234
234

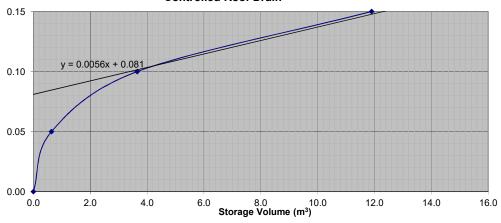
ADELAIDE	TOWER	EXPANS	SION			
116070						
	REQUIRED STORAGE - 1:5 YEAR EVENT					
AREA 1-R	AREA 1-R Controlled Roof Drains					
OTTAWA IDF	CURVE					
Area =	0.240	ha	Qallow =	14.00	L/s	
C =	0.90		Vol(max) =	33.9	m3	
Time	Intensity	Q	Qnet	Vol		
(min)	(mm/hr)	(L/s)	(L/s)	(m3)		
5	141.18	84.77	70.77	21.23		
10	104.19	62.57	48.57	29.14		
15	83.56	50.17	36.17	32.56		
20	70.25	42.18	28.18	33.82		
25	60.90	36.57	22.57	33.85		
30	53.93	32.38	18.38	33.09		
35	48.52	29.13	15.13	31.78		
40	44.18	26.53	12.53	30.08		
45	40.63	24.40	10.40	28.07		
50	37.65	22.61	8.61	25.83		
55	35.12	21.09	7.09	23.40		
60	32.94	19.78	5.78	20.81		
65	31.04	18.64	4.64	18.10		
70	29.37	17.64	3.64	15.28		
75	27.89	16.75	2.75	12.36		
90	24.29	14.58	0.58	3.16		
105	21.58	12.96	-1.04	-6.55		
120	19.47	11.69	-2.31	-16.63		

ADELAIDE	TOWER	EXPANS	SION			
116070						
REQUIRED	STORAGE	- 1:100 `	YEAR EVENT			
AREA 1-R	AREA 1-R Controlled Roof Drains					
OTTAWA IE	F CURVE					
Area =	0.240	ha	Qallow =	14.00	L/s	
C =	0.90		Vol(max) =	74.7	m3	
Time	Intensity	Q	Qnet	Vol		
(min)	(mm/hr)	(L/s)	(L/s)	(m3)		
5	242.70	145.74	131.74	39.52		
10	178.56	107.22	93.22	55.93		
15	142.89	85.81	71.81	64.62		
20	119.95	72.03	58.03	69.63		
25	103.85	62.36	48.36	72.54		
30	91.87	55.17	41.17	74.10		
35	82.58	49.59	35.59	74.73		
40	75.15	45.12	31.12	74.70		
45	69.05	41.46	27.46	74.15		
50	63.95	38.40	24.40	73.21		
55	59.62	35.80	21.80	71.95		
60	55.89	33.56	19.56	70.43		
65	52.65	31.61	17.61	68.69		
70	49.79	29.90	15.90	66.77		
75	47.26	28.38	14.38	64.69		
90	41.11	24.69	10.69	57.71		
105	36.50	21.92	7.92	49.87		
120	32.89	19.75	5.75	41.42		

Watts Accutrol Flow Control Roof Drains:			RD-100-A-ADJ	set to 1/4 Exposed	
Design Flow/Drain (L/s) Total Flow (L/s)			Ponding	Storage	e (m³)
Event	i low/Dialii (L/3)	Total Flow (L/3)	(cm)	Required	Provided
1:5 Year	1.00	14.00	10	33.9	39.0
1:100 Year	1.00	14.00	15	74.7	126.0

Roof Drain	Roof Drain Storage Table for AVERAGE RD					
Elevation	Area RD 1	Total Volume				
m	m ²	m ³				
0.00	0	0				
0.05	17	0.4				
0.10	77	2.8				
0.15	171	9.0				

APPROXIMATE ONLY

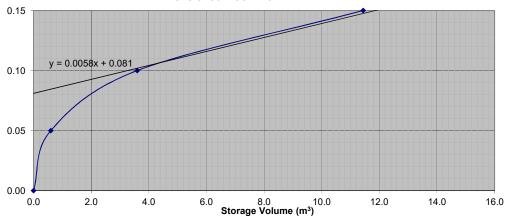

ADELAIDE	TOWER	EXPANS	SION		
116070					
REQUIRED	STORAGE				
AREA 2-R Controlled Roof Drain #1					#1
OTTAWA ID	F CURVE				
Area =	0.023	ha	Qallow =	0.80	L/s
C =	0.90		Vol(max) =	4.3	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	8.29	7.49	2.25	
10	104.19	6.12	5.32	3.19	
15	83.56	4.91	4.11	3.70	
20	70.25	4.13	3.33	3.99	
25	60.90	3.58	2.78	4.16	
30	53.93	3.17	2.37	4.26	
35	48.52	2.85	2.05	4.30	
40	44.18	2.59	1.79	4.31	
45	40.63	2.39	1.59	4.28	
50	37.65	2.21	1.41	4.23	
55	35.12	2.06	1.26	4.17	
60	32.94	1.93	1.13	4.08	
65	31.04	1.82	1.02	3.99	
70	29.37	1.72	0.92	3.88	
75	27.89	1.64	0.84	3.77	
90	24.29	1.43	0.63	3.38	
105	21.58	1.27	0.47	2.94	
120	19.47	1.14	0.34	2.47	

ADELAIDE TOWER EXPANSION						
116070						
	STORAGE		YEAR EVENT			
AREA 2-R		Co	ntrolled Roof	f Drain	#1	
OTTAWA IDF CURVE						
Area =	0.023	ha	Qallow =	0.87	L/s	
C =	0.90		Vol(max) =	8.7	m3	
Time	Intensity	Q	Qnet	Vol		
(min)	(mm/hr)	(L/s)	(L/s)	(m3)		
5	242.70	14.25	13.38	4.01		
10	178.56	10.49	9.62	5.77		
15	142.89	8.39	7.52	6.77		
20	119.95	7.04	6.17	7.41		
25	103.85	6.10	5.23	7.84		
30	91.87	5.39	4.52	8.14		
35	82.58	4.85	3.98	8.36		
40	75.15	4.41	3.54	8.50		
45	69.05	4.05	3.18	8.60		
50	63.95	3.76	2.89	8.66		
55	59.62	3.50	2.63	8.68		
60	55.89	3.28	2.41	8.68		
65	52.65	3.09	2.22	8.66		
70	49.79	2.92	2.05	8.63		
75	47.26	2.77	1.90	8.57		
90	41.11	2.41	1.54	8.34		
105	36.50	2.14	1.27	8.02		
120	32.89	1.93	1.06	7.64		

Watts Accutrol Flow Control Roof Drains: RD-100-A-ADJ set to 1/4 Exposed					
Design Event Flow (L/s)		Total Flow (L/s)	Ponding	Storage (m³)	
		TOTAL FIOW (L/S)	(cm)		Provided
1:5 Year	0.80	0.80	10.6	4.3	4.5
1:100 Year	0.87	0.87	13.0	8.7	8.8

Roof Drain Stor	age Table for RD	#1
Elevation	Area	Total Volume
m	m ²	m ³
0.00	0	0
0.05	25.5	0.6
0.10	95.1	3.7
0.15	234.7	11.9

Stage Storage Curve: Controlled Roof Drain

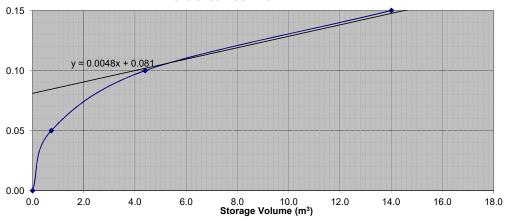

ADELAIDE	TOWER	EYDANG	NON			
116070	IOWER	LAFAIN	JION			
	STODAGE	1.5 VE	AD EVENT			
AREA 2-R	REQUIRED STORAGE - 1:5 YEAR EVENT AREA 2-R Controlled Roof Drain #					
AREA 2-R Controlled Roof Drain # 2 OTTAWA IDF CURVE						
Area =	0.022	ha	Qallow =	0.80	L/s	
C =	0.90	IIa	Vol(max) =	3.9	m3	
	0.50		VOI(IIIax) –	0.5	1110	
Time	Intensity	Q	Onet	Vol		
(min)	(mm/hr)	(L/s)	(L/s)	(m3)		
5	141.18	7.69	6.89	2.07		
10	104.19	5.68	4.88	2.93		
15	83.56	4.55	3.75	3.38		
20	70.25	3.83	3.03	3.63		
25	60.90	3.32	2.52	3.78		
30	53.93	2.94	2 14	3.85		
35	48.52	2.64	1.84	3.87		
40	44.18	2.41	1.61	3.86		
45	40.63	2.21	1.41	3.82		
50	37.65	2.05	1.25	3.75		
55	35.12	1.91	1.11	3.67		
60	32.94	1.79	0.99	3.58		
65	31.04	1.69	0.89	3.47		
70	29.37	1.60	0.80	3.36		
75	27.89	1.52	0.72	3.24		
90	24.29	1.32	0.52	2.82		
105	21.58	1.18	0.38	2.37		
120	19.47	1.06	0.26	1.87		

ADELAIDE 116070	TOWER	EXPAN:	SION		
	STORAGE	- 1.100	YEAR EVENT		
AREA 2-R Controlled Roof Drain #					
OTTAWA IDE CURVE					
Area =	0.022	ha	Qallow =	0.87	L/s
C =	0.90		Vol(max) =	7.8	m3
			,		
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	242.70	13.22	12.35	3.70	
10	178.56	9.73	8.86	5.31	
15	142.89	7.78	6.91	6.22	
20	119.95	6.53	5.66	6.80	
25	103.85	5.66	4.79	7.18	
30	91.87	5.00	4.13	7.44	
35	82.58	4.50	3.63	7.62	
40	75.15	4.09	3.22	7.74	
45	69.05	3.76	2.89	7.81	
50	63.95	3.48	2.61	7.84	
55	59.62	3.25	2.38	7.85	
60	55.89	3.04	2.17	7.83	
65	52.65	2.87	2.00	7.79	
70	49.79	2.71	1.84	7.74	
75	47.26	2.57	1.70	7.67	
90	41.11	2.24	1.37	7.39	
105	36.50	1.99	1.12	7.04	
120	32.89	1.79	0.92	6.64	

Watts Accutrol Flow	Control Roof Drains:	RD-100-A-ADJ set to 1/4 Exposed			
Design Event	Flow (L/s)	Total Flow (L/s)	Ponding	Storage (m ³)	
Design Event	FIOW (L/S)		(cm)	Required	Provided
1:5 Year	0.80	0.80	10.6	3.9	4.3
1:100 Year	0.87	0.87	13.0	7.8	8.4

Roof Drain Storage Table for RD # 2						
Elevation	Area	Total Volume				
m	m ²	m ³				
0.00	0	0				
0.05	24	0.6				
0.10	95.9	3.6				
0.15	217.7	11.4				

Stage Storage Curve: Controlled Roof Drain

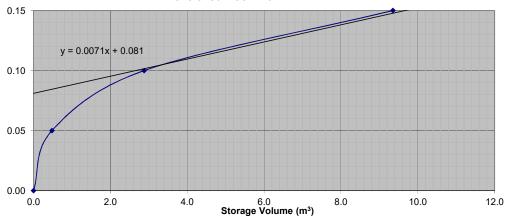

ADELAIDE TOWER EXPANSION									
	116070								
	REQUIRED STORAGE - 1:5 YEAR EVENT								
AREA 2-R									
OTTAWA ID	F CURVE								
Area =	0.027	ha	Qallow =	0.80	L/s				
C =	0.90		Vol(max) =	5.2	m3				
			. ,						
Time	Intensity	Q	Qnet	Vol					
(min)	(mm/hr)	(L/s)	(L/s)	(m3)					
5	141.18	9.43	8.63	2.59					
10	104.19	6.96	6.16	3.70					
15	83.56	5.58	4.78	4.30					
20	70.25	4.69	3.89	4.67					
25	60.90	4.07	3.27	4.90					
30	53.93	3.60	2.80	5.04					
35	48.52	3.24	2.44	5.13					
40	44.18	2.95	2.15	5.16					
45	40.63	2.71	1.91	5.17					
50	37.65	2.52	1.72	5.15					
55	35.12	2.35	1.55	5.10					
60	32.94	2.20	1.40	5.04					
65	31.04	2.07	1.27	4.97					
70	29.37	1.96	1.16	4.88					
75	27.89	1.86	1.06	4.78					
90	24.29	1.62	0.82	4.44					
105	21.58	1.44	0.64	4.04					
120	19.47	1.30	0.50	3.60					

4 D E 1 4 1 D E		=1/5 4 1/			
ADELAIDE	IOWER	EXPAN	SION		
116070				_	
	STORAGE		YEAR EVENT		_
AREA 2-R		Co	ntrolled Roof	Drain #	3
OTTAWA IE					
Area =	0.027	ha	Qallow =	0.88	L/s
C =	0.90		Vol(max) =	10.3	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	242.70	16.21	15.33	4.60	
10	178.56	11.93	11.05	6.63	
15	142.89	9.55	8.67	7.80	
20	119.95	8.01	7.13	8.56	
25	103.85	6.94	6.06	9.09	
30	91.87	6.14	5.26	9.46	
35	82.58	5.52	4.64	9.74	
40	75.15	5.02	4.14	9.94	
45	69.05	4.61	3.73	10.08	
50	63.95	4.27	3.39	10.18	
55	59.62	3.98	3.10	10.24	
60	55.89	3.73	2.85	10.27	
65	52.65	3.52	2.64	10.28	
70	49.79	3.33	2.45	10.27	
75	47.26	3.16	2.28	10.25	
90	41.11	2.75	1.87	10.08	
105	36.50	2.44	1.56	9.82	
120	32.89	2.20	1.32	9.49	

Watts Accutrol Flow	Control Roof Drains:	RD-100-A-ADJ set to 1/4 Exposed			
Design Event	Flow (L/s)	Total Flow (L/s)	Ponding	Storage (m ³)	
Design Event			(cm)	Required	Provided
1:5 Year	0.80	0.80	10.6	5.2	5.2
1:100 Year	0.88	0.88	13.1	10.3	10.4

Roof Drain Storage Table for RD # 3						
Elevation	Area	Total Volume				
m	m ²	m ³				
0.00	0	0				
0.05	29.3	0.7				
0.10	117.4	4.4				
0.15	267	14.0				

Stage Storage Curve: Controlled Roof Drain


ADELAIDE	TOWER	FYΡΔΝ	SION				
116070	· IOWEN	LAI AIN	JIOI4				
	STORAGE	- 1·5 VE	AR EVENT				
REQUIRED STORAGE - 1:5 YEAR EVENT AREA 2-R Controlled Roof Drain #							
OTTAWA ID	F CURVE						
Area =	0.018	ha	Qallow =	0.79	L/s		
C =	0.90		Vol(max) =	3.0	m3		
			()				
Time	Intensity	Q	Qnet	Vol			
(min)	(mm/hr)	(L/s)	(L/s)	(m3)			
5	141.18	6.44	5.65	1.70			
10	104.19	4.76	3.97	2.38			
15	83.56	3.81	3.02	2.72			
20	70.25	3.21	2.42	2.90			
25	60.90	2.78	1.99	2.98			
30	53.93	2.46	1.67	3.01			
35	48.52	2.21	1.42	2.99			
40	44.18	2.02	1.23	2.94			
45	40.63	1.85	1.06	2.87			
50	37.65	1.72	0.93	2.79			
55	35.12	1.60	0.81	2.68			
60	32.94	1.50	0.71	2.57			
65	31.04	1.42	0.63	2.44			
70	29.37	1.34	0.55	2.31			
75	27.89	1.27	0.48	2.17			
90	24.29	1.11	0.32	1.72			
105	21.58	0.98	0.19	1.23			
120	19.47	0.89	0.10	0.71			

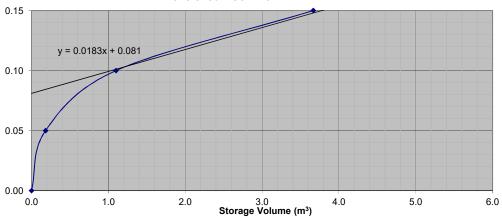
1	ADELAIDE TOWER EXPANSION							
I.	116070	CTODACE	4.400	VEAR EVENT	-			
- 1	REQUIRED AREA 2-R	STURAGE		YEAR EVENT		4		
E	OTTAWA IE	E CLIB/E		introlled Rool	Dialii#			
ľ	Area =	0.018	ha	Qallow =	0.87	L/s		
	C =	0.90	IIa	Vol(max) =	6.2	m3		
	0 -	0.30		VOI(IIIAX) -	0.2	1110		
ı	Time	Intensity	Q	Qnet	Vol			
	(min)	(mm/hr)	(L/s)	(L/s)	(m3)			
	5	242.70	11.08	10.21	3.06	<u> </u>		
	10	178.56	8.15	7.28	4.37			
	15	142.89	6.52	5.65	5.09			
	20	119.95	5.47	4.60	5.52			
I	25	103.85	4.74	3.87	5.80			
	30	91.87	4.19	3.32	5.98			
	35	82.58	3.77	2.90	6.09			
I	40	75.15	3.43	2.56	6.14			
1	45	69.05	3.15	2.28	6.16			
1	50	63.95	2.92	2.05	6.15			
	55	59.62	2.72	1.85	6.11			
1	60	55.89	2.55	1.68	6.05			
1	65	52.65	2.40	1.53	5.98			
	70	49.79	2.27	1.40	5.89			
1	75	47.26	2.16	1.29	5.79			
	90	41.11	1.88	1.01	5.43			
1	105	36.50	1.67	0.80	5.01			
1	120	32.89	1.50	0.63	4.54			
I								

Watts Accutrol Flow Control Roof Drains:		RD-100-A-ADJ set to 1/4 Exposed			
Design Event	sign Event Flow (L/s)	Total Flow (L/s)	Ponding	Storage (m³)	
Design Event			(cm)	Required	Provided
1:5 Year	0.79	0.79	10.2	3.0	3.0
1:100 Year	0.87	0.87	13.8	6.2	8.0

Roof Drain Storage Table for RD # 4						
Elevation	Area	Total Volume				
m	m ²	m ³				
0.00	0	0				
0.05	19.2	0.5				
0.10	76.7	2.9				
0.15	182.4	9.4				

Stage Storage Curve: Controlled Roof Drain

Ponding Elevation (m)

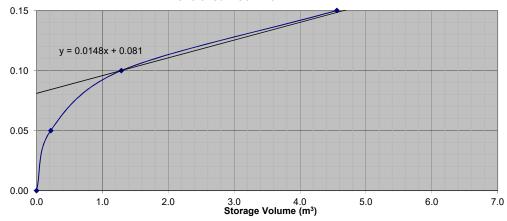

ADELAIDE	TOWER	FXPANS	SION				
116070	····	-/ /).O.1				
	STORAGE	- 1·5 YE	AR EVENT				
REQUIRED STORAGE - 1:5 YEAR EVENT AREA 2-R Controlled Roof Drain #							
OTTAWA ID	F CURVE						
Area =	0.007	ha	Qallow =	0.79	L/s		
C =	0.90		Vol(max) =	0.7	m3		
			,				
Time	Intensity	Q	Qnet	Vol			
(min)	(mm/hr)	(L/s)	(L/s)	(m3)			
5	141.18	2.59	1.80	0.54			
10	104.19	1.91	1.12	0.67			
15	83.56	1.53	0.74	0.67			
20	70.25	1.29	0.50	0.60			
25	60.90	1.12	0.33	0.49			
30	53.93	0.99	0.20	0.36			
35	48.52	0.89	0.10	0.21			
40	44.18	0.81	0.02	0.05			
45	40.63	0.75	-0.04	-0.12			
50	37.65	0.69	-0.10	-0.30			
55	35.12	0.64	-0.15	-0.48			
60	32.94	0.60	-0.19	-0.67			
65	31.04	0.57	-0.22	-0.86			
70	29.37	0.54	-0.25	-1.06			
75	27.89	0.51	-0.28	-1.25			
90	24.29	0.45	-0.34	-1.86			
105	21.58	0.40	-0.39	-2.48			
120	19.47	0.36	-0.43	-3.12			

1	4 B E 1 4 1 B E		=>/= 4 4 1	01011		
	ADELAIDE	OWER	EXPAN	SION		
	116070				_	
		STORAGE		YEAR EVENT		_
	AREA 2-R		Co	ntrolled Roof	Drain #	5
	OTTAWA IE					
	Area =	0.007	ha	Qallow =	0.87	L/s
	C =	0.90		Vol(max) =	1.6	m3
	Time	Intensity	Q	Qnet	Vol	
	(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
	5	242.70	4.45	3.58	1.07	
	10	178.56	3.27	2.40	1.44	
	15	142.89	2.62	1.75	1.58	
	20	119.95	2.20	1.33	1.60	
	25	103.85	1.90	1.03	1.55	
	30	91.87	1.68	0.81	1.47	
	35	82.58	1.51	0.64	1.35	
	40	75.15	1.38	0.51	1.22	
	45	69.05	1.27	0.40	1.07	
	50	63.95	1.17	0.30	0.91	
	55	59.62	1.09	0.22	0.74	
	60	55.89	1.03	0.16	0.56	
	65	52.65	0.97	0.10	0.37	
	70	49.79	0.91	0.04	0.18	
	75	47.26	0.87	0.00	-0.02	
	90	41.11	0.75	-0.12	-0.63	
	105	36.50	0.67	-0.20	-1.26	
	120	32.89	0.60	-0.27	-1.92	

Watts Accutrol Flow Control Roof Drains:		RD-100-A-ADJ set to 1/4 Exposed			
Design Event	Flow (L/s)	Total Flow (L/s)	Ponding	Storage (m³)	
Design Event			(cm)	Required	Provided
1:5 Year	0.79	0.79	10.2	0.7	1.1
1:100 Year	0.87	0.87	12.7	1.6	2.5

Roof Drain Storage Table for RD # 5					
Elevation	Elevation Area				
m	m ²	m ³			
0.00	0	0			
0.05	7.3	0.2			
0.10	29.4	1.1			
0.15	73.3	3.7			

Stage Storage Curve: Controlled Roof Drain

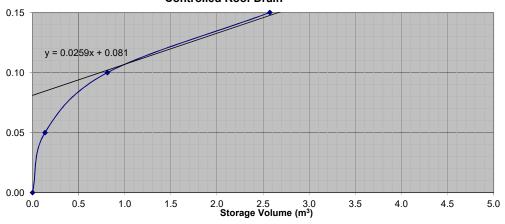

ADELAIDE TOWER EXPANSION						
116070						
REQUIRED STORAGE - 1:5 YEAR EVENT						
AREA 2-R Controlled Roof Drain #						
OTTAWA IDF CURVE						
Area =	0.010	ha	Qallow =	0.79	L/s	
C =	0.90		Vol(max) =	1.1	m3	
Time	Intensity	Q	Qnet	Vol		
(min)	(mm/hr)	(L/s)	(L/s)	(m3)		
5	141.18	3.41	2.62	0.79		
10	104.19	2.52	1.73	1.04		
15	83.56	2.02	1.23	1.11		
20	70.25	1.70	0.91	1.09		
25	60.90	1.47	0.68	1.02		
30	53.93	1.30	0.51	0.92		
35	48.52	1.17	0.38	0.80		
40	44.18	1.07	0.28	0.67		
45	40.63	0.98	0.19	0.52		
50	37.65	0.91	0.12	0.36		
55	35.12	0.85	0.06	0.19		
60	32.94	0.80	0.01	0.02		
65	31.04	0.75	-0.04	-0.15		
70	29.37	0.71	-0.08	-0.34		
75	27.89	0.67	-0.12	-0.52		
90	24.29	0.59	-0.20	-1.10		
105	21.58	0.52	-0.27	-1.69		
120	19.47	0.47	-0.32	-2.30		

1			=>/= 4 4 1	01011			
	ADELAIDE TOWER EXPANSION						
	116070				_		
	REQUIRED STORAGE - 1:100 YEAR EVENT						
	AREA 2-R Controlled Roof Drain # 6						
	OTTAWA IE						
	Area =	0.010	ha	Qallow =	0.87	L/s	
	C =	0.90		Vol(max) =	2.5	m3	
	Time	Intensity	Q	Qnet	Vol		
	(min)	(mm/hr)	(L/s)	(L/s)	(m3)		
	5	242.70	5.87	5.00	1.50		
	10	178.56	4.32	3.45	2.07		
	15	142.89	3.45	2.58	2.33		
	20	119.95	2.90	2.03	2.43		
	25	103.85	2.51	1.64	2.46		
	30	91.87	2.22	1.35	2.43		
	35	82.58	2.00	1.13	2.36		
	40	75.15	1.82	0.95	2.27		
	45	69.05	1.67	0.80	2.16		
	50	63.95	1.55	0.68	2.03		
	55	59.62	1.44	0.57	1.88		
	60	55.89	1.35	0.48	1.73		
	65	52.65	1.27	0.40	1.57		
	70	49.79	1.20	0.33	1.40		
	75	47.26	1.14	0.27	1.22		
	90	41.11	0.99	0.12	0.67		
	105	36.50	0.88	0.01	0.08		
	120	32.89	0.80	-0.07	-0.54		

Watts Accutrol Flow Control Roof Drains:		RD-100-A-ADJ set to 1/4 Exposed			
Design Event	Flow (L/s)	Total Flow (L/s)	Ponding	Storage (m³)	
			(cm)	Required	Provided
1:5 Year	0.79	0.79	10.2	1.1	1.4
1:100 Year	0.87	0.87	12.7	2.5	3.1

Roof Drain Storage Table for RD # 6				
Elevation	Area	Total Volume		
m	m ²	m ³		
0.00	0	0		
0.05	8.6	0.2		
0.10	34.3	1.3		
0.15	96.6	4.6		

Stage Storage Curve: Controlled Roof Drain

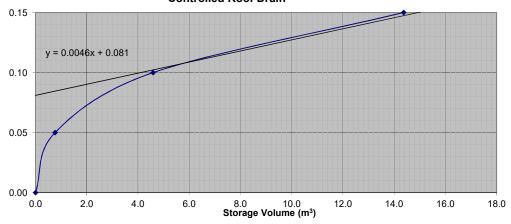

Ponding Elevation (m)

ADELAIDE	TOWER	EXPANS	SION		
116070					
REQUIRED	STORAGE	- 1:5 YE	AR EVENT		
AREA 2-R		Co	ntrolled Roof I	Drain#	7
OTTAWA ID	F CURVE				
Area =	0.005	ha	Qallow =	0.71	L/s
C =	0.90		Vol(max) =	0.3	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	1.72	1.01	0.30	
10	104.19	1.27	0.56	0.34	
15	83.56	1.02	0.31	0.28	
20	70.25	0.86	0.15	0.18	
25	60.90	0.74	0.03	0.05	
30	53.93	0.66	-0.05	-0.10	
35	48.52	0.59	-0.12	-0.25	
40	44.18	0.54	-0.17	-0.41	
45	40.63	0.50	-0.21	-0.58	
50	37.65	0.46	-0.25	-0.75	
55	35.12	0.43	-0.28	-0.93	
60	32.94	0.40	-0.31	-1.11	
65	31.04	0.38	-0.33	-1.29	
70	29.37	0.36	-0.35	-1.48	
75	27.89	0.34	-0.37	-1.67	
90	24.29	0.30	-0.41	-2.24	
105	21.58	0.26	-0.45	-2.82	
120	19.47	0.24	-0.47	-3.40	

ADELAIDE	TOWER	EXPAN	SION		
116070				_	
	STORAGE		YEAR EVENT		_
AREA 2-R		Co	ntrolled Roof	Drain #	7
OTTAWA IE					
Area =	0.005	ha	Qallow =	0.87	L/s
C =	0.90		Vol(max) =	8.0	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	242.70	2.96	2.09	0.63	
10	178.56	2.18	1.31	0.78	
15	142.89	1.74	0.87	0.78	
20	119.95	1.46	0.59	0.71	
25	103.85	1.27	0.40	0.59	
30	91.87	1.12	0.25	0.45	
35	82.58	1.01	0.14	0.29	
40	75.15	0.92	0.05	0.11	
45	69.05	0.84	-0.03	-0.08	
50	63.95	0.78	-0.09	-0.27	
55	59.62	0.73	-0.14	-0.47	
60	55.89	0.68	-0.19	-0.68	
65	52.65	0.64	-0.23	-0.89	
70	49.79	0.61	-0.26	-1.11	
75	47.26	0.58	-0.29	-1.32	
90	41.11	0.50	-0.37	-1.99	
105	36.50	0.44	-0.43	-2.68	
120	32.89	0.40	-0.47	-3.38	

Watts Accutrol Flow Control Roof Drains:		RD-100-A-ADJ set to 1/4 Exposed			
Design Event Flow (L/s)		Total Flow (L/s)	Ponding	Storage (m³)	
Design Event	Event Flow (L/S)	TOTAL FIOW (L/S)	(cm)	Required	Provided
1:5 Year	0.71	0.71	7.6	0.3	0.4
1:100 Year	0.87	0.87	12.7	0.8	1.8

Roof Drain Storage Table for RD # 7					
Elevation	Area	Total Volume			
m	m ²	m ³			
0.00	0	0			
0.05	5.4	0.1			
0.10	21.7	0.8			
0.15	48.7	2.6			

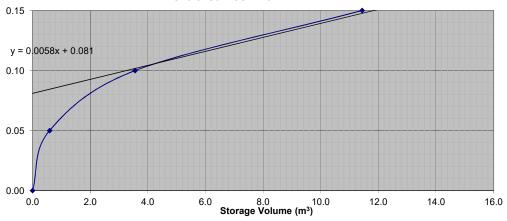


ADELAIDE	TOWER	FYΡΔΝ	SION		
116070	· IOWEN	LAI AIN	JIOIN .		
REQUIRED	STORAGE	- 1·5 VE	AR EVENT		
AREA 2-R	OTOTAGE		ntrolled Roof [Orain #	8
OTTAWA ID	F CURVE				
Area =	0.027	ha	Qallow =	0.82	L/s
C =	0.90		Vol(max) =	5.2	m3
	0.00		v o .(ax,)	0.2	
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	9.49	8.67	2.60	
10	104.19	7.01	6.19	3.71	
15	83.56	5.62	4.80	4.32	
20	70.25	4.72	3.90	4.69	
25	60.90	4.10	3.28	4.91	
30	53.93	3.63	2.81	5.05	
35	48.52	3.26	2.44	5.13	
40	44.18	2.97	2.15	5.16	
45	40.63	2.73	1.91	5.16	
50	37.65	2.53	1.71	5.14	
55	35.12	2.36	1.54	5.09	
60	32.94	2.22	1.40	5.02	
65	31.04	2.09	1.27	4.94	
70	29.37	1.98	1.16	4.85	
75	27.89	1.88	1.06	4.75	
90	24.29	1.63	0.81	4.39	
105	21.58	1.45	0.63	3.98	
120	19.47	1.31	0.49	3.52	

ı	4 B E 1 4 I E E		=>/= 4 : : :	21211			
1	ADELAIDE	OWER	EXPAN:	SION			
ı	116070				_		
ı		STORAGE		YEAR EVENT			
ı	AREA 2-R		Co	ntrolled Roof	Drain #	8	
ı	OTTAWA ID						
	Area =	0.027	ha	Qallow =	0.87	L/s	
ı	C =	0.90		Vol(max) =	10.4	m3	
			_				
	Time	Intensity	Q	Qnet	Vol		
	(min)	(mm/hr)	(L/s)	(L/s)	(m3)		
	5	242.70	16.32	15.45	4.64		
	10	178.56	12.01	11.14	6.68		
	15	142.89	9.61	8.74	7.87		
	20	119.95	8.07	7.20	8.64		
	25	103.85	6.98	6.11	9.17		
	30	91.87	6.18	5.31	9.56		
	35	82.58	5.55	4.68	9.84		
	40	75.15	5.05	4.18	10.04		
	45	69.05	4.64	3.77	10.19		
	50	63.95	4.30	3.43	10.29		
	55	59.62	4.01	3.14	10.36		
	60	55.89	3.76	2.89	10.40		
	65	52.65	3.54	2.67	10.42		
	70	49.79	3.35	2.48	10.41		
	75	47.26	3.18	2.31	10.39		
	90	41.11	2.76	1.89	10.23		
	105	36.50	2.45	1.58	9.98		
	120	32.89	2.21	1.34	9.66		

Watts Accutrol Flow Control Roof Drains:		RD-100-A-ADJ set to 1/4 Exposed			
Design Event	Design Event Flow (L/s)		Ponding	Storage (m³)	
Design Event	iii Flow (L/S)	Total Flow (L/s)	(cm)	Required	Provided
1:5 Year	0.82	0.82	11.0	5.2	6.3
1:100 Year	0.87	0.87	13.8	10.4	12.3

Roof Drain Storage Table for RD # 8					
Elevation	Area	Total Volume			
m	m ²	m ³			
0.00	0	0			
0.05	30.6	0.8			
0.10	122.5	4.6			
0.15	268.8	14.4			

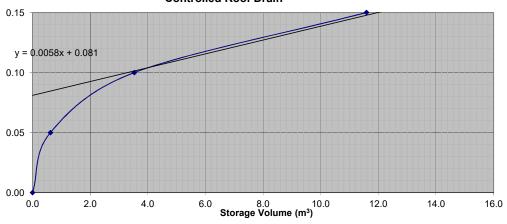


ADELAIDE	TOWER	FXPANS	SION		
116070		-/ / / / /	J.O.14		
REQUIRED	STORAGE	- 1·5 YF	AR EVENT		
AREA 2-R	01010101		ntrolled Roof I	Drain #	9
OTTAWA ID	F CURVE				
Area =	0.022	ha	Qallow =	0.80	L/s
C =	0.90		Vol(max) =	3.9	m3
			, ,		
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	7.77	6.97	2.09	
10	104.19	5.74	4.94	2.96	
15	83.56	4.60	3.80	3.42	
20	70.25	3.87	3.07	3.68	
25	60.90	3.35	2.55	3.83	
30	53.93	2.97	2.17	3.91	
35	48.52	2.67	1.87	3.93	
40	44.18	2.43	1.63	3.92	
45	40.63	2.24	1.44	3.88	
50	37.65	2.07	1.27	3.82	
55	35.12	1.93	1.13	3.74	
60	32.94	1.81	1.01	3.65	
65	31.04	1.71	0.91	3.55	
70	29.37	1.62	0.82	3.43	
75	27.89	1.54	0.74	3.31	
90	24.29	1.34	0.54	2.90	
105	21.58	1.19	0.39	2.45	
120	19.47	1.07	0.27	1.96	

ADELAIDE	TOWER	EXPAN:	SION		
116070				_	
	STORAGE		YEAR EVENT		_
AREA 2-R		Со	ntrolled Roof	Drain #	9
OTTAWA IE					
Area =	0.022	ha	Qallow =	0.87	L/s
C =	0.90		Vol(max) =	8.0	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	242.70	13.37	12.50	3.75	
10	178.56	9.83	8.96	5.38	
15	142.89	7.87	7.00	6.30	
20	119.95	6.61	5.74	6.88	
25	103.85	5.72	4.85	7.27	
30	91.87	5.06	4.19	7.54	
35	82.58	4.55	3.68	7.72	
40	75.15	4.14	3.27	7.84	
45	69.05	3.80	2.93	7.92	
50	63.95	3.52	2.65	7.96	
55	59.62	3.28	2.41	7.96	
60	55.89	3.08	2.21	7.95	
65	52.65	2.90	2.03	7.91	
70	49.79	2.74	1.87	7.86	
75	47.26	2.60	1.73	7.80	
90	41.11	2.26	1.39	7.53	
105	36.50	2.01	1.14	7.18	
120	32.89	1.81	0.94	6.78	

Watts Accutrol Flow Control Roof Drains:		RD-100-A-ADJ set to 1/4 Exposed			
Design Event Flow (L/s)		Total Flow (L/s)	Ponding	Storage (m³)	
Design Event	Design Event Flow (L/S)		(cm)	Required	Provided
1:5 Year	0.80	0.80	10.5	3.9	3.9
1:100 Year	0.87	0.87	13.8	8.0	9.7

Roof Drain Storage Table for RD # 9					
Elevation	Area	Total Volume			
m	m ²	m ³			
0.00	0	0			
0.05	23.7	0.6			
0.10	95	3.6			
0.15	220.1	11.4			

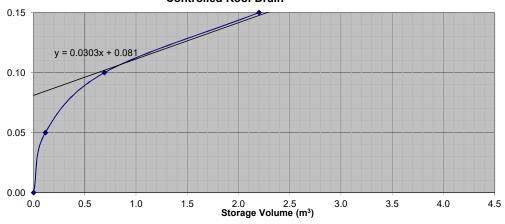


ADELAIDE	TOWER	ΕΥΡΔΝ	SION		
116070	IOWER	LAI AIN	JIO14		
REQUIRED	STODAGE	1.5 VE	AD EVENT		
AREA 2-R Controlled Roof Drain # 10					
OTTAWA ID	F CURVE		iti oliou itooi i	Jium n	
Area =	0.023	ha	Qallow =	0.81	L/s
C =	0.90	iiu	Vol(max) =	4.2	m3
	0.00		vol(max)		
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	8.15	7.34	2.20	
10	104.19	6.01	5.20	3.12	
15	83.56	4.82	4.01	3.61	
20	70.25	4.05	3.24	3.89	
25	60.90	3.51	2.70	4.06	
30	53.93	3.11	2.30	4.14	
35	48.52	2.80	1.99	4.18	
40	44.18	2.55	1.74	4.18	
45	40.63	2.35	1.54	4.14	
50	37.65	2.17	1.36	4.09	
55	35.12	2.03	1.22	4.02	
60	32.94	1.90	1.09	3.93	
65	31.04	1.79	0.98	3.83	
70	29.37	1.70	0.89	3.72	
75	27.89	1.61	0.80	3.60	
90	24.29	1.40	0.59	3.20	
105	21.58	1.25	0.44	2.75	
120	19.47	1.12	0.31	2.26	

ADELAIDE TOWER EXPANSION					
116070	CTODACE	4.400	YEAR EVENT	_	
AREA 2-R	STURAGE		ntrolled Roof		10
OTTAWA I	OF CLIBVE		introlled Root	Diami #	10
Area =	0.023	ha	Qallow =	0.90	L/s
C =	0.90	iiu	Vol(max) =	8.4	m3
	0.50		VOI(IIIdX) =	0.4	1110
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	242.70	14.01	13.11	3.93	
10	178.56	10.31	9.41	5.64	
15	142.89	8.25	7.35	6.61	
20	119.95	6.92	6.02	7.23	
25	103.85	5.99	5.09	7.64	
30	91.87	5.30	4.40	7.92	
35	82.58	4.77	3.87	8.12	
40	75.15	4.34	3.44	8.25	
45	69.05	3.99	3.09	8.33	
50	63.95	3.69	2.79	8.37	
55	59.62	3.44	2.54	8.39	
60	55.89	3.23	2.33	8.37	
65	52.65	3.04	2.14	8.34	
70	49.79	2.87	1.97	8.29	
75	47.26	2.73	1.83	8.22	
90	41.11	2.37	1.47	7.95	
105	36.50	2.11	1.21	7.60	
120	32.89	1.90	1.00	7.19	
1					

Watts Accutrol Flow Control Roof Drains:			RD-100-A-ADJ	set to 1/4 Exposed	
Docian Event	esign Event Flow (L/s) Total Flow (L/s) Ponding (cm)	Flow (L/o) Total Flow (L/o)	Ponding	Storage (m³)	
Design Event		Total Flow (L/S)	(cm)	Required	Provided
1:5 Year	0.81	0.81	11.0	4.2	4.8
1:100 Year	0.90	0.90	13.8	8.4	9.8

Roof Drain Storage Table for RD # 10				
Elevation	Area	Total Volume		
m	m ²	m ³		
0.00	0	0		
0.05	24.9	0.6		
0.10	91.5	3.5		
0.15	230.7	11.6		

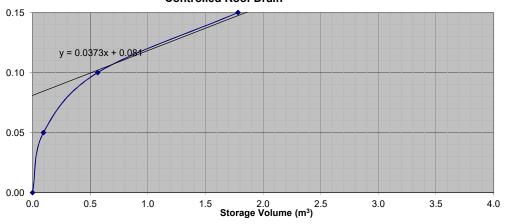

		=>/B 4 1 1	1011		
ADELAIDE	IOWER	EXPAN	SION		
116070					
REQUIRED	STORAGE		— . —		
AREA 2-R		Co	ntrolled Roof I	Drain #	11+12
OTTAWA ID	F CURVE				
Area =	0.004	ha	Qallow =	0.71	L/s
C =	0.90		Vol(max) =	0.2	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	1.48	0.77	0.23	
10	104.19	1.09	0.38	0.23	
15	83.56	0.87	0.16	0.15	
20	70.25	0.73	0.02	0.03	
25	60.90	0.64	-0.07	-0.11	
30	53.93	0.56	-0.15	-0.26	
35	48.52	0.51	-0.20	-0.43	
40	44.18	0.46	-0.25	-0.59	
45	40.63	0.42	-0.29	-0.77	
50	37.65	0.39	-0.32	-0.95	
55	35.12	0.37	-0.34	-1.13	
60	32.94	0.34	-0.37	-1.32	
65	31.04	0.32	-0.39	-1.50	
70	29.37	0.31	-0.40	-1.69	
75	27.89	0.29	-0.42	-1.88	
90	24.29	0.25	-0.46	-2.46	
105	21.58	0.23	-0.48	-3.05	
120	19.47	0.20	-0.51	-3.65	

ADELAIDE TOWER EXPANSION					
116070 REQUIRED STORAGE - 1:100 YEAR EVENT					
	STURAGE				44.40
AREA 2-R		Co	ntrolled Roof	Drain #	11+12
OTTAWA ID			- "		
Area =	0.004	ha	Qallow =	0.79	L/s
C =	0.90		Vol(max) =	0.6	m3
Time	Intonoitu	0	Onet	Val	
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	242.70	2.54	1.75	0.52	
10	178.56	1.87	1.08	0.65	
15	142.89	1.49	0.70	0.63	
20	119.95	1.25	0.46	0.56	
25	103.85	1.09	0.30	0.44	
30	91.87	0.96	0.17	0.31	
35	82.58	0.86	0.07	0.15	
40	75.15	0.79	0.00	-0.01	
45	69.05	0.72	-0.07	-0.18	
50	63.95	0.67	-0.12	-0.36	
55	59.62	0.62	-0.17	-0.55	
60	55.89	0.58	-0.21	-0.74	
65	52.65	0.55	-0.24	-0.93	
70	49.79	0.52	-0.27	-1.13	
75	47.26	0.49	-0.30	-1.33	
90	41.11	0.43	-0.36	-1.94	
105	36.50	0.38	-0.41	-2.57	
120	32.89	0.34	-0.45	-3.21	

Watts Accutrol Flow Control Roof Drains:			RD-100-A-ADJ	set to 1/4 Exposed	
Design Event	Flow per RD (L/s)	Total Flow (L/s)	Ponding	nding Storage (m³)	
Design Event Flow per KD (L)	Flow per RD (L/s)		(cm)	Required	Provided
1:5 Year	0.71	1.42	7.6	0.7	0.9
1:100 Year	0.79	1.58	10.2	1.9	2.1

Roof Drain Stor	11+12	
Elevation	Area	Total Volume
m	m ²	m ³
0.00	0	0
0.05	4.6	0.1
0.10	18.5	0.7
0.15	41.8	2.2

Stage Storage Curve: Controlled Roof Drain

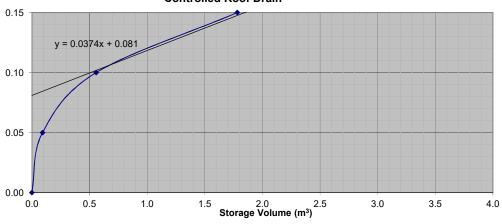

Ponding Elevation (m)

ADELAIDE TOWER EXPANSION					
116070					
REQUIRED	STORAGE				
AREA 2-R		Co	ntrolled Roof I	Drain #	13,15,17
OTTAWA ID	F CURVE				
Area =	0.003	ha	Qallow =	0.71	L/s
C =	0.90		Vol(max) =	0.1	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	1.19	0.48	0.14	
10	104.19	0.88	0.17	0.10	
15	83.56	0.70	-0.01	0.00	
20	70.25	0.59	-0.12	-0.14	
25	60.90	0.51	-0.20	-0.29	
30	53.93	0.45	-0.26	-0.46	
35	48.52	0.41	-0.30	-0.63	
40	44.18	0.37	-0.34	-0.81	
45	40.63	0.34	-0.37	-0.99	
50	37.65	0.32	-0.39	-1.18	
55	35.12	0.30	-0.41	-1.37	
60	32.94	0.28	-0.43	-1.56	
65	31.04	0.26	-0.45	-1.75	
70	29.37	0.25	-0.46	-1.94	
75	27.89	0.24	-0.47	-2.14	
90	24.29	0.20	-0.51	-2.73	
105	21.58	0.18	-0.53	-3.33	
120	19.47	0.16	-0.55	-3.93	

ADELAIDE	ADELAIDE TOWER EXPANSION						
116070	116070						
REQUIRED	REQUIRED STORAGE - 1:100 YEAR EVENT						
AREA 2-R	AREA 2-R Controlled Roof Drain # 13,15,1						
OTTAWA IE	F CURVE						
Area =	0.003	ha	Qallow =	0.79	L/s		
C =	0.90		Vol(max) =	0.4	m3		
Time	Intensity	Q	Qnet	Vol			
(min)	(mm/hr)	(L/s)	(L/s)	(m3)			
5	242.70	2.05	1.26	0.38			
10	178.56	1.51	0.72	0.43			
15	142.89	1.20	0.41	0.37			
20	119.95	1.01	0.22	0.27			
25	103.85	0.88	0.09	0.13			
30	91.87	0.77	-0.02	-0.03			
35	82.58	0.70	-0.09	-0.20			
40	75.15	0.63	-0.16	-0.38			
45	69.05	0.58	-0.21	-0.56			
50	63.95	0.54	-0.25	-0.75			
55	59.62	0.50	-0.29	-0.95			
60	55.89	0.47	-0.32	-1.15			
65	52.65	0.44	-0.35	-1.35			
70	49.79	0.42	-0.37	-1.55			
75	47.26	0.40	-0.39	-1.76			
90	41.11	0.35	-0.44	-2.39			
105	36.50	0.31	-0.48	-3.04			
120	32.89	0.28	-0.51	-3.69			
I							

Watts Accutrol Flow Control Roof Drains:			RD-100-A-ADJ	set to 1/4 Exposed	
Design Event	Flow (L/s)	Total Flow (L/s)	Ponding	Storage	e (m³)
Design Event Flow (L/s)	Total Flow (L/S)	(cm)	Required	Provided	
1:5 Year	0.71	2.13	7.6	0.4	0.8
1:100 Year	0.79	2.37	10.2	1.3	1.7

Roof Drain Storage Table for RD # 13,15,17				
Elevation	Area	Total Volume		
m	m ²	m ³		
0.00	0	0		
0.05	3.8	0.1		
0.10	15	0.6		
0.15	33.7	1.8		

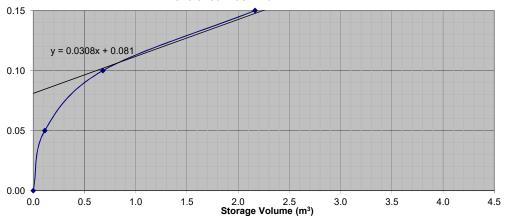


ADELAIDE	TOWER	FXPANS	SION		
116070					
REQUIRED	STORAGE	- 1·5 YF	AR EVENT		
AREA 2-R			ntrolled Roof I	Drain#	14,16,18
OTTAWA ID	F CURVE				, , , -
Area =	0.003	ha	Qallow =	0.71	L/s
C =	0.90		Vol(max) =	0.1	m3
			. ,		
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	1.20	0.49	0.15	
10	104.19	0.89	0.18	0.11	
15	83.56	0.71	0.00	0.00	
20	70.25	0.60	-0.11	-0.13	
25	60.90	0.52	-0.19	-0.29	
30	53.93	0.46	-0.25	-0.45	
35	48.52	0.41	-0.30	-0.62	
40	44.18	0.38	-0.33	-0.80	
45	40.63	0.35	-0.36	-0.98	
50	37.65	0.32	-0.39	-1.17	
55	35.12	0.30	-0.41	-1.35	
60	32.94	0.28	-0.43	-1.54	
65	31.04	0.26	-0.45	-1.74	
70	29.37	0.25	-0.46	-1.93	
75	27.89	0.24	-0.47	-2.12	
90	24.29	0.21	-0.50	-2.71	
105	21.58	0.18	-0.53	-3.31	
120	19.47	0.17	-0.54	-3.92	

ADELAIDE	ADELAIDE TOWER EXPANSION					
116070					ļ	
REQUIRED	STORAGE	E - 1:100	YEAR EVENT	•		
AREA 2-R		Co	ntrolled Roof	Drain #	14,16,18	
OTTAWA ID	F CURVE					
Area =	0.003	ha	Qallow =	0.79	L/s	
C =	0.90		Vol(max) =	0.4	m3	
Time	Intensity	Q	Qnet	Vol		
(min)	(mm/hr)	(L/s)	(L/s)	(m3)		
5	242.70	2.07	1.28	0.38		
10	178.56	1.52	0.73	0.44		
15	142.89	1.22	0.43	0.39		
20	119.95	1.02	0.23	0.28		
25	103.85	0.89	0.10	0.14		
30	91.87	0.78	-0.01	-0.01		
35	82.58	0.70	-0.09	-0.18		
40	75.15	0.64	-0.15	-0.36		
45	69.05	0.59	-0.20	-0.54		
50	63.95	0.55	-0.24	-0.73		
55	59.62	0.51	-0.28	-0.93		
60	55.89	0.48	-0.31	-1.13		
65	52.65	0.45	-0.34	-1.33		
70	49.79	0.42	-0.37	-1.53		
75	47.26	0.40	-0.39	-1.74		
90	41.11	0.35	-0.44	-2.37		
105	36.50	0.31	-0.48	-3.02		
120	32.89	0.28	-0.51	-3.67		

Watts Accutrol Flow Control Roof Drains:		RD-100-A-ADJ set to 1/4 Exposed			
Design Event Flow (L/s)		Total Flow (L/s)	Fotol Flow (L/s) Ponding		e (m³)
Design Event	110W (L/S)	Total Flow (L/S)	(cm)	Required	Provided
1:5 Year	0.71	2.13	7.6	0.4	0.8
1:100 Year	0.79	2.37	10.2	1.3	1.7

Roof Drain Stor	14,16,18	
Elevation	Area	Total Volume
m	m ²	m ³
0.00	0	0
0.05	3.7	0.1
0.10	14.9	0.6
0.15	34.1	1.8

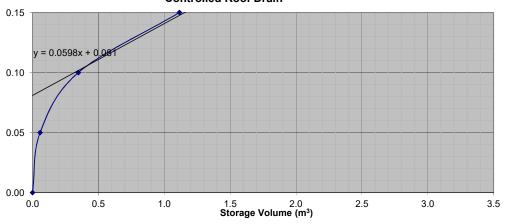

ADELAIDE	TOWER	EXPANS	SION		
116070					
REQUIRED	STORAGE				
AREA 2-R		Co	ntrolled Roof I	Drain #	19+20
OTTAWA ID	F CURVE				
Area =	0.004	ha	Qallow =	0.71	L/s
C =	0.90		Vol(max) =	0.2	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	1.46	0.75	0.22	
10	104.19	1.07	0.36	0.22	
15	83.56	0.86	0.15	0.14	
20	70.25	0.72	0.01	0.02	
25	60.90	0.63	-0.08	-0.12	
30	53.93	0.56	-0.15	-0.28	
35	48.52	0.50	-0.21	-0.44	
40	44.18	0.46	-0.25	-0.61	
45	40.63	0.42	-0.29	-0.79	
50	37.65	0.39	-0.32	-0.97	
55	35.12	0.36	-0.35	-1.15	
60	32.94	0.34	-0.37	-1.33	
65	31.04	0.32	-0.39	-1.52	
70	29.37	0.30	-0.41	-1.71	
75	27.89	0.29	-0.42	-1.90	
90	24.29	0.25	-0.46	-2.48	
105	21.58	0.22	-0.49	-3.07	
120	19.47	0.20	-0.51	-3.67	

ADELAIDE TOWER EXPANSION 116070							
	STODAGE	1.100	VEAD EVENT				
	REQUIRED STORAGE - 1:100 YEAR EVENT AREA 2-R Controlled Roof Drain # 19+20						
OTTAWA II	OF CURVE		01104 11001	_1WIII #	10.20		
Area =	0.004	ha	Qallow =	0.79	L/s		
C =	0.90		Vol(max) =	0.6	m3		
			. ,				
Time	Intensity	Q	Qnet	Vol			
(min)	(mm/hr)	(L/s)	(L/s)	(m3)			
5	242.70	2.50	1.71	0.51			
10	178.56	1.84	1.05	0.63			
15	142.89	1.47	0.68	0.61			
20	119.95	1.24	0.45	0.54			
25	103.85	1.07	0.28	0.42			
30	91.87	0.95	0.16	0.28			
35	82.58	0.85	0.06	0.13			
40	75.15	0.77	-0.02	-0.04			
45	69.05	0.71	-0.08	-0.21			
50	63.95	0.66	-0.13	-0.39			
55	59.62	0.61	-0.18	-0.58			
60	55.89	0.58	-0.21	-0.77			
65	52.65	0.54	-0.25	-0.96			
70	49.79	0.51	-0.28	-1.16			
75	47.26	0.49	-0.30	-1.36			
90	41.11	0.42	-0.37	-1.98			
105	36.50	0.38	-0.41	-2.61			
120	32.89	0.34	-0.45	-3.25			

Watts Accutrol Flow Control Roof Drains:			RD-100-A-ADJ	set to 1/4 Exposed	
Design Event Flow (L/s)		Total Flow (L/s)	Ponding	Storage	e (m³)
Design Event	FIOW (L/S)	Total Flow (L/S)	(cm)	Required	Provided
1:5 Year	0.71	1.42	7.6	0.4	0.6
1:100 Year	0.79	1.58	10.2	1.3	1.4

Roof Drain Stor	19+20	
Elevation	Area	Total Volume
m	m ²	m ³
0.00	0	0
0.05	4.5	0.1
0.10	18.2	0.7
0.15	41.2	2.2

Stage Storage Curve: Controlled Roof Drain

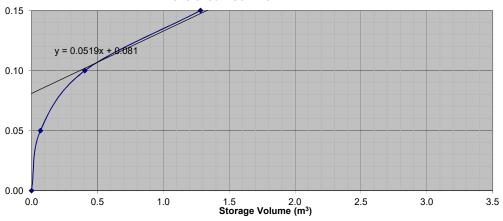

Ponding Elevation (m)

ADELAIDE	TOWER	EXPANS	SION		
116070					
REQUIRED	STORAGE	E - 1:5 YE	AR EVENT		
AREA 2-R		Co	ntrolled Roof	Drain #	21
OTTAWA ID	F CURVE				
Area =	0.002	ha	Qallow =	0.63	L/s
C =	0.90		Vol(max) =	0.0	m3
Time	Intensity	Q	Qnet	Vol	
(min)	(mm/hr)	(L/s)	(L/s)	(m3)	
5	141.18	0.76	0.13	0.04	
10	104.19	0.56	-0.07	-0.04	
15	83.56	0.45	-0.18	-0.16	
20	70.25	0.38	-0.25	-0.30	
25	60.90	0.33	-0.30	-0.46	
30	53.93	0.29	-0.34	-0.61	
35	48.52	0.26	-0.37	-0.78	
40	44.18	0.24	-0.39	-0.94	
45	40.63	0.22	-0.41	-1.11	
50	37.65	0.20	-0.43	-1.29	
55	35.12	0.19	-0.44	-1.46	
60	32.94	0.18	-0.45	-1.63	
65	31.04	0.17	-0.46	-1.81	
70	29.37	0.16	-0.47	-1.99	
75	27.89	0.15	-0.48	-2.16	
90	24.29	0.13	-0.50	-2.70	
105	21.58	0.12	-0.51	-3.24	
120	19.47	0.10	-0.53	-3.79	

ADELAIDE TOWER EXPANSION 116070							
	STORAGE	- 1.100	VEAR EVENT				
REQUIRED STORAGE - 1:100 YEAR EVENT AREA 2-R Controlled Roof Drain # 21							
OTTAWA IE)F CURVE			2.4.1177			
Area =	0.002	ha	Qallow =	0.79	L/s		
C =	0.90		Vol(max) =	0.2	m3		
	2.00		(/)	3.2	0		
Time	Intensity	Q	Qnet	Vol			
(min)	(mm/hr)	(L/s)	(L/s)	(m3)			
5	242.70	1.30	0.51	0.15			
10	178.56	0.96	0.17	0.10			
15	142.89	0.77	-0.02	-0.02			
20	119.95	0.64	-0.15	-0.18			
25	103.85	0.56	-0.23	-0.35			
30	91.87	0.49	-0.30	-0.54			
35	82.58	0.44	-0.35	-0.73			
40	75.15	0.40	-0.39	-0.93			
45	69.05	0.37	-0.42	-1.13			
50	63.95	0.34	-0.45	-1.34			
55	59.62	0.32	-0.47	-1.55			
60	55.89	0.30	-0.49	-1.77			
65	52.65	0.28	-0.51	-1.98			
70	49.79	0.27	-0.52	-2.20			
75	47.26	0.25	-0.54	-2.42			
90	41.11	0.22	-0.57	-3.08			
105	36.50	0.20	-0.59	-3.75			
120	32.89	0.18	-0.61	-4.42			

Watts Accutrol Flow Control Roof Drains:		RD-100-A-ADJ set to 1/4 Exposed			
Design Event	Design Event Flow (L/s)		Total Flow (L/s)		e (m³)
Design Event	110W (L/S)	Total Flow (L/S)	(cm)	Required	Provided
1:5 Year	0.63	0.63	5.1	0.04	0.05
1:100 Year	0.79	0.79	10.2	0.2	0.4

Roof Drain Storage Table for RD # 21				
Elevation	Area	Total Volume		
m	m ²	m ³		
0.00	0	0		
0.05	2.3	0.1		
0.10	9.3	0.3		
0.15	21.4	1.1		

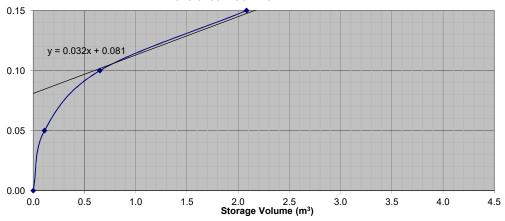


ADELAIDE TOWER EXPANSION						
116070						
REQUIRED	STORAGE	- 1:5 YE	AR EVENT			
AREA 2-R Controlled Roof Drain # 22						
OTTAWA ID	OTTAWA IDF CURVE					
Area =	0.002	ha	Qallow =	0.63	L/s	
C =	0.90		Vol(max) =	0.1	m3	
Time	Intensity	Q	Qnet	Vol		
(min)	(mm/hr)	(L/s)	(L/s)	(m3)		
5	141.18	0.86	0.23	0.07		
10	104.19	0.63	0.00	0.00		
15	83.56	0.51	-0.12	-0.11		
20	70.25	0.43	-0.20	-0.24		
25	60.90	0.37	-0.26	-0.39		
30	53.93	0.33	-0.30	-0.54		
35	48.52	0.29	-0.34	-0.70		
40	44.18	0.27	-0.36	-0.87		
45	40.63	0.25	-0.38	-1.03		
50	37.65	0.23	-0.40	-1.20		
55	35.12	0.21	-0.42	-1.37		
60	32.94	0.20	-0.43	-1.55		
65	31.04	0.19	-0.44	-1.72		
70	29.37	0.18	-0.45	-1.90		
75	27.89	0.17	-0.46	-2.07		
90	24.29	0.15	-0.48	-2.60		
105	21.58	0.13	-0.50	-3.14		
120	19.47	0.12	-0.51	-3.68		

ADELAIDE TOWER EXPANSION						
116070	CTODACE	4.400	VEAD EVENT			
AREA 2-R	STURAGE		YEAR EVENT		22	
	NE OLIDI/E	Co	ntrolled Roof	Drain #	22	
OTTAWA ID			0 "	0.70		
Area =	0.002	ha	Qallow =	0.79	L/s	
C =	0.90		Vol(max) =	0.2	m3	
Times	Intonoitu	0	Onet	Vol		
Time	Intensity	Q	Qnet			
(min)	(mm/hr)	(L/s)	(L/s)	(m3)		
5	242.70	1.48	0.69	0.21		
10	178.56	1.09	0.30	0.18		
15	142.89	0.87	80.0	0.07		
20	119.95	0.73	-0.06	-0.07		
25	103.85	0.63	-0.16	-0.24		
30	91.87	0.56	-0.23	-0.42		
35	82.58	0.50	-0.29	-0.60		
40	75.15	0.46	-0.33	-0.80		
45	69.05	0.42	-0.37	-1.00		
50	63.95	0.39	-0.40	-1.20		
55	59.62	0.36	-0.43	-1.41		
60	55.89	0.34	-0.45	-1.62		
65	52.65	0.32	-0.47	-1.83		
70	49.79	0.30	-0.49	-2.05		
75	47.26	0.29	-0.50	-2.26		
90	41.11	0.25	-0.54	-2.92		
105	36.50	0.22	-0.57	-3.58		
120	32.89	0.20	-0.59	-4.25		

Watts Accutrol Flow	Control Roof Drains:		RD-100-A-ADJ	set to 1/4 Exposed		
Design Event Flow (L/s)		Total Flow (L/s) Ponding Stor			torage (m³)	
Design Event	110W (L/S)	Total Flow (L/S)	(cm) Required	Provided		
1:5 Year	0.63	0.63	5.1	0.07	0.07	
1:100 Year	0.79	0.79	10.2	0.2	0.4	

Roof Drain Storage Table for RD # 22						
Elevation	Area	Total Volume				
m	m ²	m ³				
0.00	0	0				
0.05	2.7	0.1				
0.10	10.8	0.4				
0.15	24.3	1.3				


ADELAIDE	TOWER	FXPAN9	SION					
116070	TOTTLIN		31014					
	REQUIRED STORAGE - 1:5 YEAR EVENT							
AREA 2-R Controlled Roof Drain # 23+24								
OTTAWA ID	F CURVE							
Area =	0.004	ha	Qallow =	0.71	L/s			
C =	0.90	114	Vol(max) =	0.2	m3			
	0.00		Vol(max)	0.2	1110			
Time	Intensity	Q	Qnet	Vol				
(min)	(mm/hr)	(L/s)	(L/s)	(m3)				
5	141.18	1.42	0.71	0.21				
10	104.19	1.05	0.34	0.20				
15	83.56	0.84	0.13	0.12				
20	70.25	0.70	-0.01	-0.01				
25	60.90	0.61	-0.10	-0.15				
30	53.93	0.54	-0.17	-0.30				
35	48.52	0.49	-0.22	-0.47				
40	44.18	0.44	-0.27	-0.64				
45	40.63	0.41	-0.30	-0.82				
50	37.65	0.38	-0.33	-1.00				
55	35.12	0.35	-0.36	-1.18				
60	32.94	0.33	-0.38	-1.37				
65	31.04	0.31	-0.40	-1.55				
70	29.37	0.29	-0.42	-1.74				
75	27.89	0.28	-0.43	-1.94				
90	24.29	0.24	-0.47	-2.52				
105	21.58	0.22	-0.49	-3.11				
120	19.47	0.20	-0.51	-3.71				

ADELAIDE TOWER EXPANSION 116070						
	STODAGE	1.100	YEAR EVENT			
AREA 2-R	STORAGE		ntrolled Roof		23+24	
OTTAWA IE	OF CURVE		51154 11001	_1WIII #		
Area =	0.004	ha	Qallow =	0.79	L/s	
C =	0.90		Vol(max) =	0.6	m3	
			()	,,,	-	
Time	Intensity	Q	Qnet	Vol		
(min)	(mm/hr)	(L/s)	(L/s)	(m3)		
5	242.70	2.44	1.65	0.49		
10	178.56	1.79	1.00	0.60		
15	142.89	1.43	0.64	0.58		
20	119.95	1.20	0.41	0.50		
25	103.85	1.04	0.25	0.38		
30	91.87	0.92	0.13	0.24		
35	82.58	0.83	0.04	0.08		
40	75.15	0.75	-0.04	-0.09		
45	69.05	0.69	-0.10	-0.26		
50	63.95	0.64	-0.15	-0.45		
55	59.62	0.60	-0.19	-0.63		
60	55.89	0.56	-0.23	-0.83		
65	52.65	0.53	-0.26	-1.02		
70	49.79	0.50	-0.29	-1.22		
75	47.26	0.47	-0.32	-1.42		
90	41.11	0.41	-0.38	-2.04		
105	36.50	0.37	-0.42	-2.67		
120	32.89	0.33	-0.46	-3.31		

Watts Accutrol Flow	Control Roof Drains:	RD-100-A-ADJ set to 1/4 Exposed				
Design Event	Flow (L/s)	Total Flow (L/s)	Ponding	Storage (m³)		
Design Event	110W (L/S)	Total Flow (L/S)	(cm)	Required	Provided	
1:5 Year	0.71	1.42	7.6	0.4	0.6	
1:100 Year	0.79	1.58	10.2	1.2	1.3	

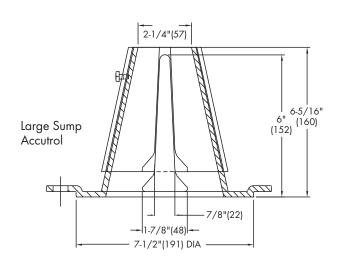
Roof Drain Storage Table for RD # 23+24						
Elevation	Area	Total Volume				
m	m ²	m ³				
0.00	0	0				
0.05	4.4	0.1				
0.10	17.2	0.7				
0.15	40.1	2.1				

Stage Storage Curve: Controlled Roof Drain

Ponding Elevation (m)

Adjustable Accutrol Weir

Adjustable Flow Control for Roof Drains


ADJUSTABLE ACCUTROL (for Large Sump Roof Drains only)

For more flexibility in controlling flow with heads deeper than 2", Watts Drainage offers the Adjustable Accutrol. The Adjustable Accutrol Weir is designed with a single parabolic opening that can be covered to restrict flow above 2" of head to less than 5 gpm per inch, up to 6" of head. To adjust the flow rate for depths over 2" of head, set the slot in the adjustable upper cone according to the flow rate required. Refer to Table 1 below. Note: Flow rates are directly proportional to the amount of weir opening that is exposed.

EXAMPLE:

For example, if the adjustable upper cone is set to cover 1/2 of the weir opening, flow rates above 2"of head will be restricted to 2-1/2 gpm per inch of head.

Therefore, at 3" of head, the flow rate through the Accutrol Weir that has 1/2 the slot exposed will be: [5 gpm (per inch of head) \times 2 inches of head] + 2-1/2 gpm (for the third inch of head) = 12-1/2 gpm.

Upper Cone

Fixed Weir

Adjustable

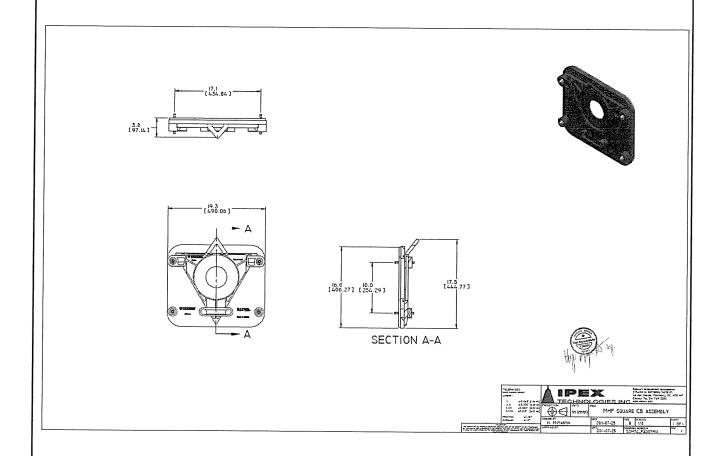
1/2 Weir Opening Exposed Shown Above

TABLE 1. Adjustable Accutrol Flow Rate Settings

Wain Ononing	1"	2"	3"	4"	5"	6"	
Weir Opening Exposed	Flow Rate (gallons per minute)						
Fully Exposed	5	10	15	20	25	30	
3/4	5	10	13.75	17.5	21.25	25	
1/2	5	10	12.5	15	17.5	20	
1/4	5	10	11.25	12.5	13.75	15	
Closed	5	5	5	5	5	5	

Job Name	Contractor
Job Location	Contractor's P.O. No.
Engineer	Representative

Watts product specifications in U.S. customary units and metric are approximate and are provided for reference only. For precise measurements, please contact Watts Technical Service. Watts reserves the right to change or modify product design, construction, specifications, or materials without prior notice and without incurring any obligation to make such changes and modifications on Watts products previously or subsequently sold.


WATTS

A Watts Water Technologies Company

USA: Tel: (800) 338-2581 • Fax: (828) 248-3929 • Watts.com **Canada:** Tel: (905) 332-4090 • Fax: (905) 332-7068 • Watts.ca

Latin America: Tel: (52) 81-1001-8600 • Fax: (52) 81-8000-7091 • Watts.com

Tempest MHF ICD SQ Shop Drawing

Stormwater Management and Servicing Brief	Adelaide Apartments Tower Expansion
ADDENDIVE	
APPENDIX D	
Water Damanda Davidam, Canditiana an	d FUC Coloulation
Water Demands, Boundary Conditions and	d FUS Calculation
Novatech	

Adelaide Apartments Tower PRELIMINARY WATER DEMAND CALCULATIONS

Water Demand (Proposed)									
	R	Residentia	ıl	Commercial	De	emands (L	./s)		
Building	Units		Total Pop'n	Office Employees	Average Max.	Max. Daily	Peak Hour		
	1 Bdrm	2 Bdrm	(pers)	(pers)	Day	Daily	Hour		
New Addition	216 22	12 2	328 35	0 0	1.33 0.14	3.32 0.35	7.31 0.78		
Total	238	14	363	0	1.47	3.68	8.09		

Notes:

Residential Densities (from City of Ottawa data):

- 1 Bedroom Apartment = 1.4 cap/unit - 2 Bedroom Apartment = 2.1 cap/unit

Avg. Day Demand:

- Residential = 350 L/cap/day

Max. Daily Demand:

- Residential = 2.5 x Avg. Day

Peak Hour Demand:

- Residential = 2.2 x Max. Day

Prepared By: NOVATECH

Date: January 21, 2019

Greg MacDonald

From:

Fraser, Mark < Mark.Fraser@ottawa.ca>

Sent:

Friday, August 05, 2016 8:28 AM

To:

Matthew Linton

Cc:

Greg MacDonald

Subject:

RE: Fire Flow Request - Civic Address_333 Preston Street - Closest X-Street_Aberdeen

Street

Attachments:

333 Preston Aug 2016.pdf; Fire Flow Calculations-116070.pdf; 116070-GP-toFraser.pdf

Hi Matthew,

Please find below water distribution network boundary conditions for hydraulic analysis as requested based on the provided anticipated water demands and fire flow requirement.

Proposed Water Demands and Fire Flow Requirement:

Proposed Development Location: 333 Preston Street [Proposed Adelaide Tower]

Average Daily Demand = 1.04 L/s Max Daily Demand = 2.61 L/s Peak Hour Demand = 5.74 L/s Fire Flow = 10,000 L/min

City of Ottawa Boundary Conditions:

Specified Service Connection Point: Aberdeen Street

Minimum HGL = 106.1m

Maximum HGL = 117.5 [Please note that the maximum pressure is estimated to be more than 80 psi. A pressure check at completion of construction is recommended to determine if pressure control is required.]

MXDY+Fire = 104.2m

Please note that these are for current conditions and are based on computer model simulation.

The above boundary conditions, HGL, for hydraulic analysis at 333 Preston [Pressure Zone 1W] assumed to be connected to the 203mm on Aberdeen Street [see attached PDF for connection location].

Please refer to City of Ottawa, *Ottawa Design Guidelines – Water Distribution*, First Edition, July 2010, WDG001 Clause 4.2.2 for watermain pressure and demand objectives. Also, please refer to Guidelines and **Technical bulletin ISDTB-2014-02** concerning basic day demands greater than 0.5 L/s

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

Regards,

Mark Fraser

Junior Infrastructure Engineer, Suburban Services

City of Ottawa | Ville d'Ottawa Planning and Growth Management Department 110 Laurier Avenue West. 4th Floor, Ottawa ON, K1P 1J1 Tel:613.580.2424 ext. 27791

Fax: 613-580-2576 Mail: Code 01-14

Email: Mark.Fraser@ottawa.ca

*Please consider your environmental responsibility before printing this e-mail

From: Matthew Linton [mailto:m.linton@novatech-eng.com]

Sent: August 04, 2016 11:44 AM

To: Fraser, Mark **Cc:** Greg MacDonald

Subject: RE: Fire Flow Request - Civic Address_333 Preston Street - Closest X-Street_Aberdeen Street

Good afternoon Mark,

I am just wondering if there is any update as to when we will receive the boundary conditions.

Thanks,

Matthew Linton, CAD Drafting

NOVATECH Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 | Fax: 613.254.5867 The information contained in this email message is confidential and is for exclusive use of the addressee.

From: Adam Lambros Sent: July-28-16 3:00 PM

To: Fraser, Mark < Mark. Fraser@ottawa.ca>

Cc: Greg MacDonald <<u>g.Macdonald@novatech-eng.com</u>>; Matthew Linton <<u>m.linton@novatech-eng.com</u>> **Subject:** RE: Fire Flow Request - Civic Address_333 Preston Street - Closest X-Street_Aberdeen Street

Hello Mark,

Thanks for the update. My last day at Novatech is tomorrow, please include Greg and Matt (CCed) on your email.

Regards,

Adam Lambros

From: Fraser, Mark [mailto:Mark.Fraser@ottawa.ca]

Sent: July-28-16 2:58 PM

To: Adam Lambros < a.lambros@novatech-eng.com>

Subject: RE: Fire Flow Request - Civic Address_333 Preston Street - Closest X-Street_Aberdeen Street

Hi Adam,

I should have the boundary conditions by tomorrow for you.

Regards,

Mark Fraser

Junior Infrastructure Engineer, Suburban Services

City of Ottawa | Ville d'Ottawa Planning and Growth Management Department 110 Laurier Avenue West. 4th Floor, Ottawa ON, K1P 1J1 Tel:613.580.2424 ext. 27791

Fax: 613-580-2576 Mail: Code 01-14

Email: Mark.Fraser@ottawa.ca

*Please consider your environmental responsibility before printing this e-mail

From: Fraser, Mark

Sent: July 18, 2016 8:46 AM

To: 'Adam Lambros'

Subject: RE: Fire Flow Request - Civic Address_333 Preston Street - Closest X-Street_Aberdeen Street

Hi Adam,

Please accept this email as confirmation that boundary conditions for hydraulic analysis have been requested based on the anticipated water demands for the subject site. Please note that It takes approximately 5 business days to receive boundary conditions.

If you require any additional information I will direct you to a Project Manager in the Development Review Urban Services Unit.

Regards,

Mark Fraser

Junior Infrastructure Engineer, Suburban Services

City of Ottawa | Ville d'Ottawa Planning and Growth Management Department 110 Laurier Avenue West. 4th Floor, Ottawa ON, K1P 1J1 Tel:613.580.2424 ext. 27791

Fax: 613-580-2576 Mail: Code 01-14

Email: Mark.Fraser@ottawa.ca

*Please consider your environmental responsibility before printing this e-mail

From: Adam Lambros [mailto:a.lambros@novatech-eng.com]

Sent: July 15, 2016 3:14 PM

To: Fraser, Mark **Cc:** Matthew Linton

Subject: RE: Fire Flow Request - Civic Address_333 Preston Street - Closest X-Street_Aberdeen Street

Hi Mark.

The service connection will be made to Aberdeen street while the fire flows will come off of the hydrant along 200mm WM on-site. So, can the model please be run accordingly, providing boundary conditions at points "1" and "2" as shown on the attached plan and highlighted in yellow?

Requested info is as follows;

Residential Condominium Tower, 184 units.

Site Address: 17 Aberdeen St. (Extension of existing building)

A plan clearly showing the proposed water service connection location(s): See attached, highlighted in yellow.

Anticipated Water Demands:

Population Calculation = 184 units x 1.4 persons per unit

= 258 people

Proposed Average Residential Flows

= 258 people x 350 L/cap/day

= 90,160 L/day = 1.04 L/sec

Average Day Demand = 90,160 L/day

= 1.04 L/s

Max Daily Demand

= 90,160 L/day x 2.5

= 225,400 L/day

= 2.61 L/s

Max Hourly Demand

= 225,400 L/day x 2.2

= 495,880 L/day

= 5.74 L/s

Fire Flow

= 10,000 L/min (See attached FUS calc)

Please call I you would like to discuss,

Adam Lambros, P.Eng

NOVATECH Engineers, Planners & Landscape Architects

240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 x278 | Tel(Direct): 613.254.9839 x278 | Fax: 613.254.5867

The information contained in this email message is confidential and is for exclusive use of the addressee.

From: Fraser, Mark [mailto:Mark.Fraser@ottawa.ca]

Sent: July-12-16 3:22 PM

To: Adam Lambros <a.lambros@novatech-eng.com>

Subject: RE: Fire Flow Request - Civic Address_333 Preston Street - Closest X-Street_Aberdeen Street

Hi Adam,

To request City of Ottawa water distribution network boundary conditions please provide the City with following information:

- Type of Development
- Site Address
- A plan clearly showing the proposed water service connection location(s)
- Anticipated Water Demands
 - Average Daily Demand (L/s)
 - Maximum Daily Demand (L/s)
 - Peak Hour Demand (L/s)
 - Fire Flow (L/s)

Please provide a PDF copy of the FUS and water demand calculations to support the anticipated demands provided .

- Fire flow demand requirements shall be based on Fire Underwriters Survey (FUS)
 Water Supply for Public Fire Protection 1999 as per the Ottawa Design Guidelines –
 Water Distribution, First Edition, Document WDG001, July 2010, City of Ottawa
 Clause 4.2.11.
- The full 50% reduction for sprinklering is only available for monitored systems.
- Reductions, where applied to the fire requirement demand calculation(s), need to be justified.

Once the required information has been provided it will take approximately five (5) business days to receive boundary condition results for hydraulic analysis.

If you have any questions please let me know.

Regards,

Mark Fraser

Junior Infrastructure Engineer, Suburban Services

City of Ottawa | Ville d'Ottawa Planning and Growth Management Department 110 Laurier Avenue West. 4th Floor, Ottawa ON, K1P 1J1 Tel:613.580.2424 ext. 27791

Fax: 613-580-2576 Mail: Code 01-14

Email: Mark.Fraser@ottawa.ca

*Please consider your environmental responsibility before printing this e-mail

From: Adam Lambros [mailto:a.lambros@novatech-enq.com]

Sent: July 12, 2016 1:19 PM

To: Fraser, Mark

Subject: RE: Fire Flow Request - Civic Address_333 Preston Street - Closest X-Street_Aberdeen Street

Hello Mark,

Can we obtain boundary conditions instead? If so, I'll send over our demands?

Left you a message earlier, please call if you would like to discuss.

Regards,

Adam Lambros

From: Fraser, Mark [mailto:Mark.Fraser@ottawa.ca]

Sent: July-08-16 3:31 PM

To: Adam Lambros <a.lambros@novatech-eng.com>

Cc: Greg MacDonald <g.Macdonald@novatech-eng.com>; Matthew Linton <m.linton@novatech-eng.com> Subject: RE: Fire Flow Request - Civic Address_333 Preston Street - Closest X-Street Aberdeen Street

Hi Adam,

Please note that I have been advised by the Environmental Services Department that the City of Ottawa is no longer in a position to provide fire flow/pressure data. Should you wish to schedule a flow test, please visit the website <u>Water</u>

<u>Bylaw</u> section 62, and contact <u>Sarah.Ramsey@Ottawa.ca</u> or call the Business Services Branch at 613-580-2424 x22268.

Regards,

Mark Fraser

Junior Infrastructure Engineer, Suburban Services

City of Ottawa | Ville d'Ottawa Planning and Growth Management Department 110 Laurier Avenue West. 4th Floor, Ottawa ON, K1P 1J1 Tel:613.580.2424 ext. 27791

Fax: 613-580-2576 Mail: Code 01-14

Email: Mark.Fraser@ottawa.ca

*Please consider your environmental responsibility before printing this e-mail

From: Fraser, Mark

Sent: July 05, 2016 2:29 PM **To:** 'hydrantfireflow@ottawa.ca'

Cc: 'Adam Lambros'; 'Greg MacDonald'; Matthew Linton

Subject: Fire Flow Request - Civic Address_333 Preston Street - Closest X-Street_Aberdeen Street

Hydrant Fire Flow,

Please accept this email as a request to obtain City of Ottawa available Fire Hydrant Flow Data:

A civic address and the closest x-street:

333 Preston Street - Closest x-Street: Aberdeen Street [Adelaide Tower]

Fire hydrant identification no.(s):

Public Fire Hydrant(s): [H312] [H053] [H054] [H212] [H213]

Private Fire Hydrant(s): [HP296] [HP295] if data is available for private fire hydrants

• The nature of the request, **development** or **non-development** (development requests are those in which other City permits will be required regardless of the requestor's scope of work):

Development Request_Proposed Site Servicing Study

General details as to the work being performed (i.e. purpose for request):

Fire hydrant flow data has been requested prior to submission of a Site Plan Control development application for a proposed tower, an extension of the existing Adelaide tower residence, 24 story residential building. Please note that the consultant will be advised to also request boundary conditions to further validate any fire hydrant flow data issued as it is noted that testing remains a point-in-time test, and as such may not reflect the current system conditions and/or hydraulics.

Required Fire Flow (as per Fire Underwriter's Survey Guidelines):

Fire Flow Calculations Attached. The floor area in the attached calculations is that of the existing building + the area of the new extension + 25% of floor above + 25% of floor below.

If obsolete or insufficient fire hydrant flow data is only available at this time please notify.

Through this email the consultant has been notified to allow for **10 business days** to receive a reply to this Fire Hydrant Flow Data Request.

To schedule a new test, please contact the Business Services Branch at 613-580-2424 x22268 and visit the website \underline{Water} \underline{Bylaw} section **62** for more information.

Regards,

Mark Fraser

Junior Infrastructure Engineer, Suburban Services

City of Ottawa | Ville d'Ottawa Planning and Growth Management Department 110 Laurier Avenue West. 4th Floor, Ottawa ON, K1P 1J1 Tel:613.580.2424 ext. 27791

Fax: 613-580-2576 Mail: Code 01-14

Email: Mark.Fraser@ottawa.ca

*Please consider your environmental responsibility before printing this e-mail

This time \$55. Tolluding the decomment of the established as a factor to the property of the property of the established as a factor of the established from the established from

From: Adam Lambros [mailto:a.lambros@novatech-eng.com]

Sent: July 04, 2016 2:06 PM

To: Fraser, Mark

Cc: Greg MacDonald; Matthew Linton

Subject: RE: Adelaide Tower

Sorry Mark,

Can we please have HP296 & HP295 as well?

Regards,

Adam Lambros

From: Adam Lambros Sent: July-04-16 2:03 PM

To: 'Fraser, Mark' < Mark.Fraser@ottawa.ca>

Cc: Greg MacDonald <g.Macdonald@novatech-eng.com>; Matthew Linton <m.linton@novatech-eng.com>

Subject: Adelaide Tower

Hello Mark,

Can you please provide hydrant data for the following hydrants on or near Aberdeen St.

H312

H053

H054

H212

H213

Regards,

Adam Lambros, P.Eng

NOVATECH Engineers, Planners & Landscape Architects

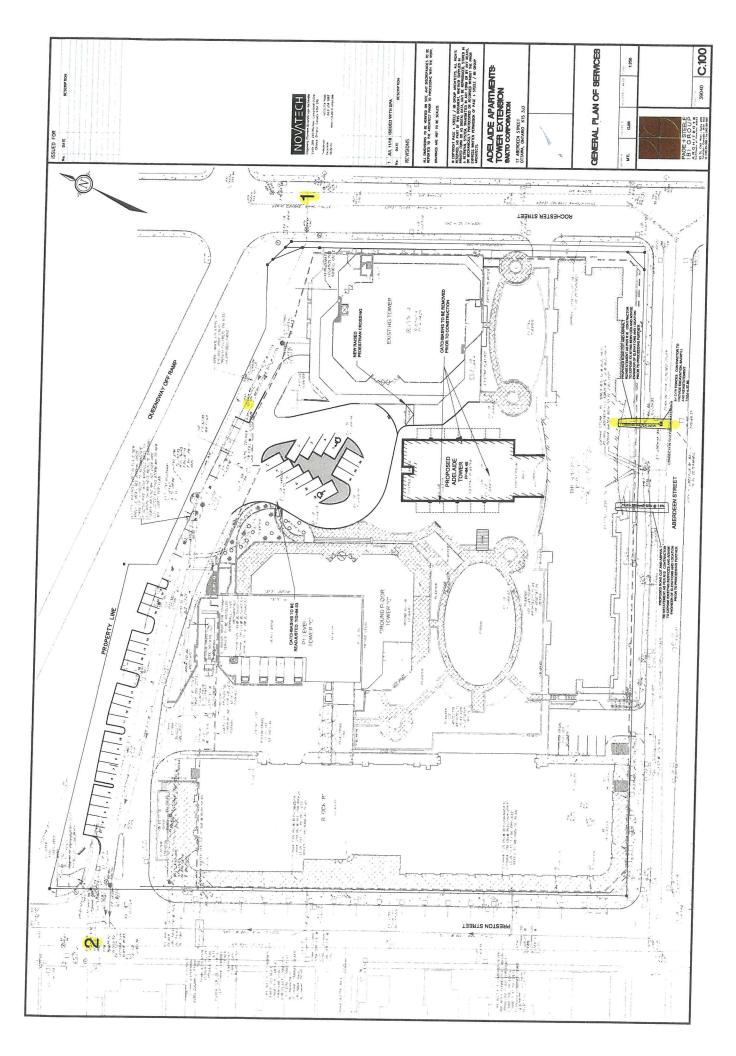
240 Michael Cowpland Drive, Suite 200, Ottawa, ON, K2M 1P6 | Tel: 613.254.9643 x278 | Tel(Direct): 613.254.9839 x278 | Fax: 613.254.5867

The information contained in this email message is confidential and is for exclusive use of the addressee.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

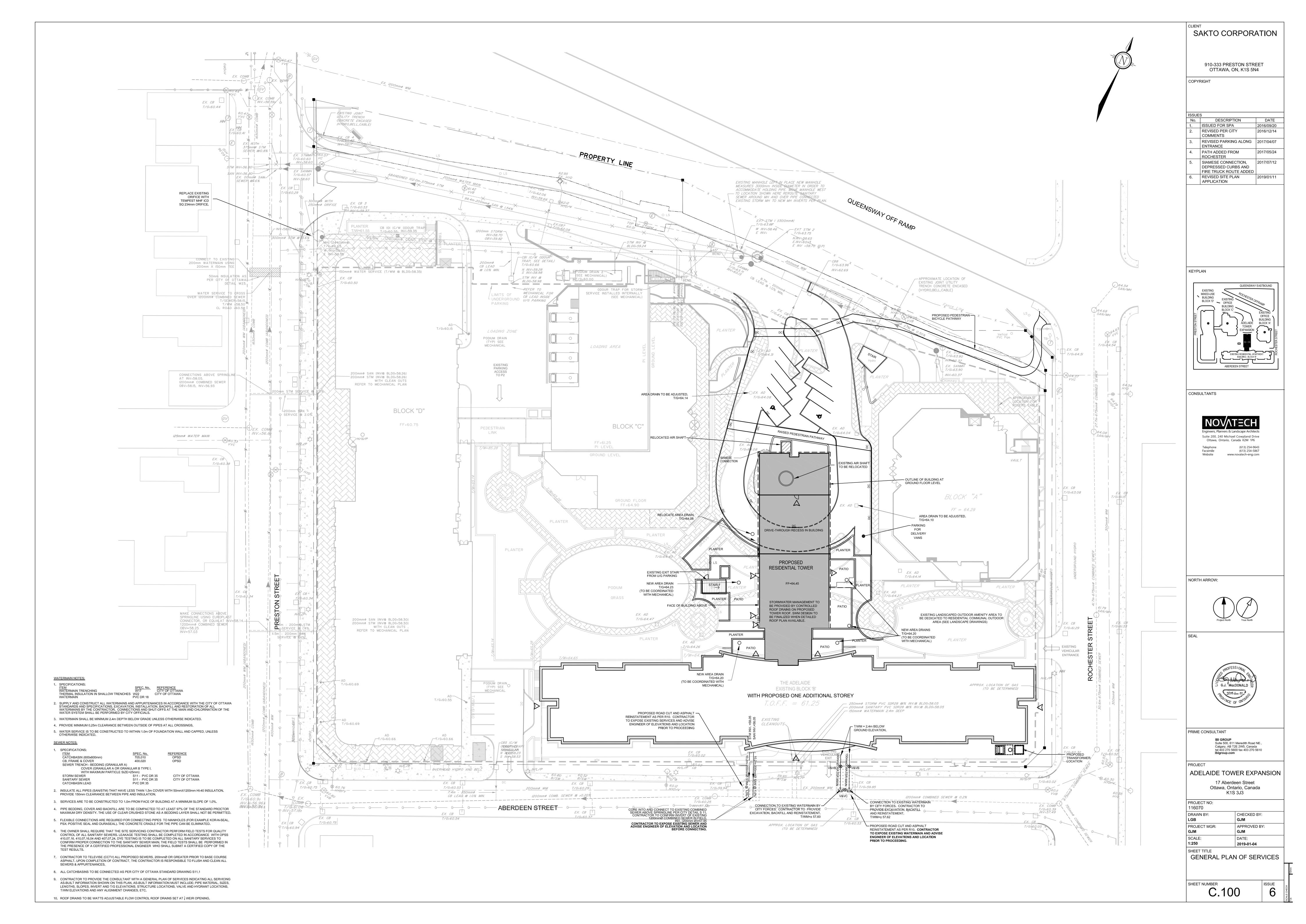
Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

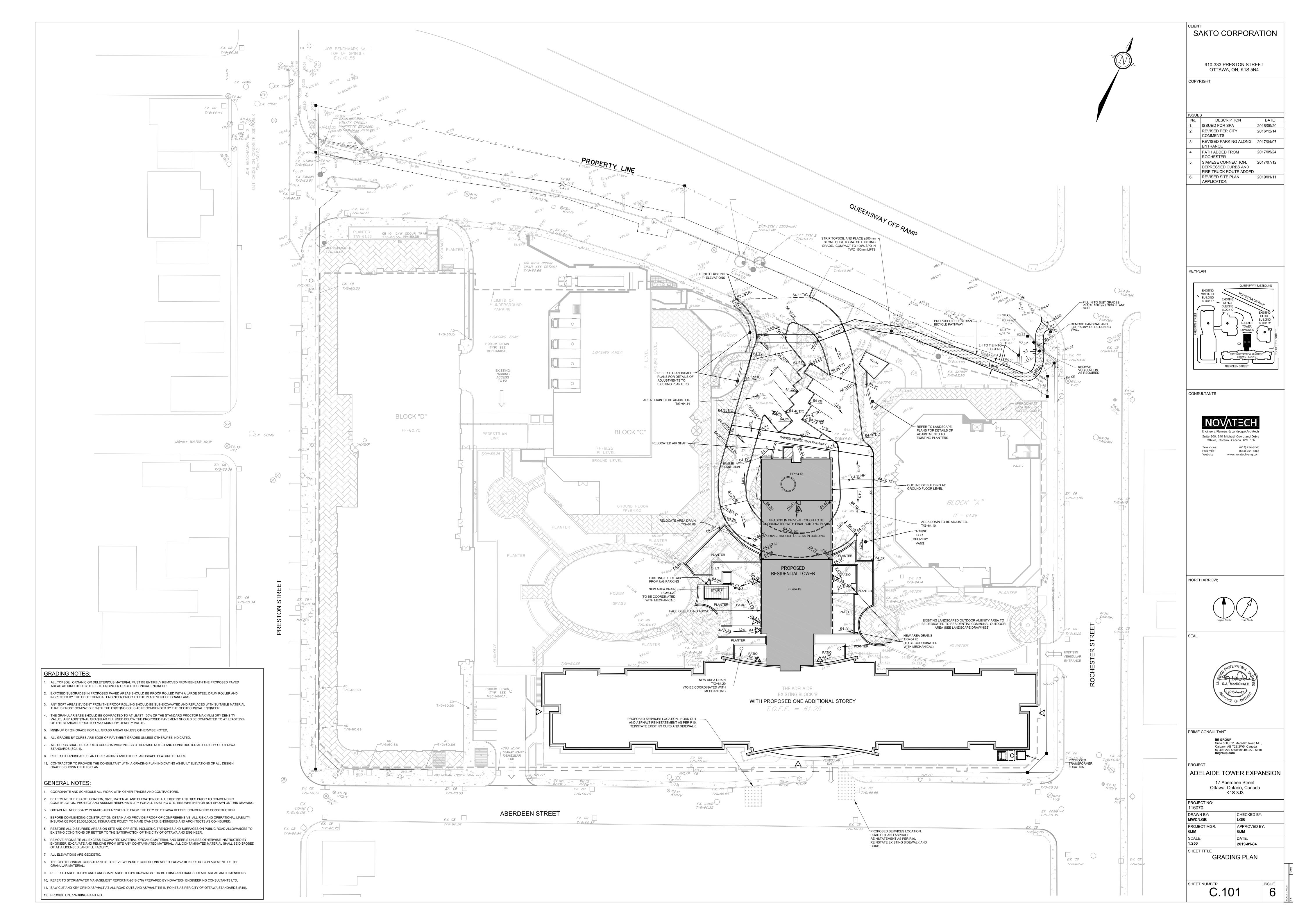
This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

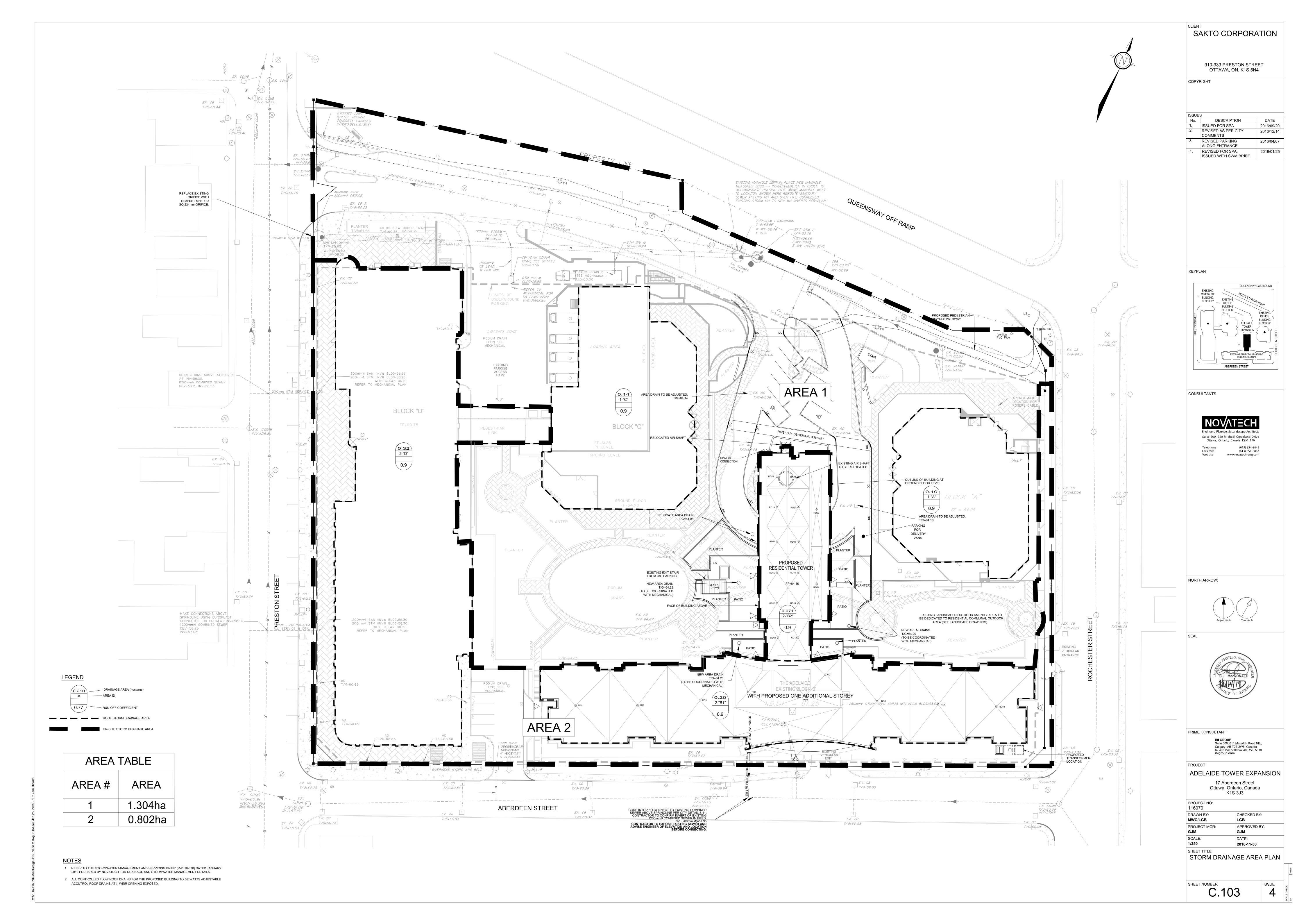

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.


This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.


Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.



Stormwater Management and Servicing Brief	Adelaide Apartments Tower Expansion
DRAWINGS	
DRAWINGS	
Novatech	

