

Phase Two Environmental Site Assessment

811 Gladstone Avenue Complex Ottawa, Ontario

Ottawa Community Housing Corporation

GHD | 179 Colonnade Road Suite 400 South Ottawa Ontario K2E 7J4 Canada 11140575 | E2 | Report No 3 | December 11 2017

Executive Summary

GHD (Consultant) was retained by Ottawa Community Housing Corporation (OCHC or Client) represented by Mr. Barron Meyerhoffer, to complete a Phase Two Environmental Site Assessment (Phase One ESA) in general accordance with the O. Reg. 153/04 Phase Two ESA format for the residential property identified as the 811 Gladstone Avenue Complex in Ottawa, Ontario (Site or Phase Two Property). GHD has previously prepared a Phase One Environmental Site Assessment (Phase One ESA) (Ref No: 11140575-E1-RPT-2, dated August 25, 2017) for OCHC. The Phase One ESA was conducted for environmental due diligence as part of the local municipal planning department requirement associated with redevelopment of the Site.

The Phase One ESA identified one on Site potentially contaminating activity (PCA); the suspected historical placement of fill material during redevelopment of the Site with the present day residential buildings. This PCA was considered to represent an area of potential environmental concern (APEC) for the Site. There were 25 PCAs identified at neighboring properties in the Phase One Study Area as part of this assessment. Of the identified off-Site PCAs, four are considered to represent APECs for the subject Site. The two automotive garages located at 414 and 388 Booth Street, a former paving company located at 394 Booth Street, and a former dry cleaners located at 263 Rochester are considered to represent APECs for the Site. Off-Site PCAs identified as part of the Phase One ESA which were not considered to represent APECs for the Site were located at significant distances and/or down- or cross-gradient orientations to the Site and are not expected to have impacted the subject Property.

GHD was provided historical construction drawings as the drilling program was initiated and there was an additional potentially contaminating activity identified during their review, potential presence of heating oil storage tanks (PCA#27). This PCA#27 also represents an area of potential environmental concern for the Site. As the locations of the Oil Tanks, as depicted on the Client drawings, are shown within the boundary for APEC#1, and the contaminants of concern associated with this PCA#27 were also considered CPCs for the previously identified PCA within APEC#1, no additional APECs were identified for the Site.

The Phase Two Environmental Site Assessment (Phase Two ESA) was recommended based on the APECs identified in the Phase One ESA and the scope of work did not require modification based on PCA#27. The purpose of the Phase Two ESA is to assess the soil and groundwater quality at the Site. The investigation involved the advancement of eight boreholes which were sampled for environmental and/or geotechnical purposes. Three of the boreholes were completed with groundwater monitoring well screens set within the unconfined upper aquifer, in the upper fractured layers of the limestone bedrock. One additional monitoring well, which was present prior to this investigation, was also used for the Phase Two ESA.

Four soil samples were submitted for laboratory analysis of Metals, petroleum hydrocarbons (PHCs), Volatile Organic Compounds (VOCs), Polycyclic Aromatic Hydrocarbons (PAHs) and pH. One duplicate soil sample was submitted for analysis of Metals, PHCs, the fuel additives Benzene, Toluene, Ethylbenzene, and Xylenes (BTEXs), and PAH parameters. One soil sample was also submitted for toxicity characteristic leaching procedure (TCLP) analysis to determine options for

off-Site disposal. Five groundwater samples, including one duplicate sample, were submitted for laboratory analysis of a combination of Metals, PHCs, VOCs, PAHs, and pH. Two trip blank water samples were submitted for analysis of VOCs.

Based on the soil depths, Site setting, and the existing land uses in the vicinity of the Site, the Generic Criteria provided in O. Reg. 153/04 Table 7 (shallow soil, residential/institutional, coarse texture) is be considered to be the applicable comparison. The Site is not: a sensitive Site, a Surface Water Site, or a potable groundwater use Site, but is a shallow soil Site since more than 1/3 of the Site has less than 2 m of overburden soil cover.

Site Compliance

There were O. Reg. 153/04 Table 7 (residential land use, coarse soil texture) criteria exceedances in two of the four submitted soil samples, plus the duplicate QA/QC soil sample.

There were no O. Reg. 153/03 Table 7 exceedances in the analysed groundwater samples.

It should also be noted, given the period of initial development (1880s) and redevelopment (1960s) of the Site, that there is suspected to have been undocumented additional heating oil storage tanks, either ASTs or USTs, present at the Site as part of residential historical heating systems. No documentation or physical evidence of additional aboveground storage tanks (ASTs) or underground storage tanks (USTs) was discovered as part of the Phase One ESA or Phase Two ESA, however, there is the potential that USTs remain at the Site and/or have associated localised pockets of contaminated soil and/or groundwater.

The Site is not considered to be in compliance with the O. Reg. 153/04 criteria for the existing and proposed land use and requires soil remediation/removal or a risk assessment.

Note that a remedial action plan that includes a soil management program may be developed as part of the Site preparation prior to the construction phase of the Site redevelopment in order to manage and dispose of the contaminated soil at the time of redevelopment.

Table of Contents

1.	Introd	Juction	1
	1.1	Site Description	1
	1.2	Property Ownership	1
	1.3	Current and Proposed Future Uses	1
	1.4	Applicable Site Condition Standard	2
2.	Back	ground Information	3
	2.1	Physical Setting	3
	2.2	Past Investigation	3
3.	Scop	e of the Investigation	4
	3.1	Overview of Site Investigation	4
	3.2	Media Investigated	7
	3.3	Phase One Conceptual Site Model	7
	3.4	Deviations from Sampling and Analysis Plan	. 12
	3.5	Impediments	13
4.	Inves	tigation Method	13
	4.1	General	13
	4.2	Drilling and Excavating	13
	4.3	Soil Sampling	14
	4.4	Field Screening Measurements	.15
	4.5	Ground Water: Monitoring Well Installation	.15
	4.6	Ground Water: Field Measurement of Water Quality Parameters	. 16
	4.7	Ground Water: Sampling	16
	4.8	Sediment Sampling	16
	4.9	Analytical Testing	17
	4.10	Residue Management Procedures	17
	4.11	Elevation Surveying	17
	4.12	Quality Assurance and Quality Control Measures	17
5.	Revie	ew and Evaluation	18
	5.1	Geology	18
	5.2	Ground Water - Elevations and Flow Direction	19
	5.3	Ground Water - Hydraulic Gradients	21
	5.4	Fine-Medium or Coarse Soil Texture	21

	5.5	Soil Field Screening	. 21
	5.6	Soil Quality	. 21
	5.7	Ground Water Quality	. 23
	5.8	Sediment Quality	. 24
	5.9	Quality Assurance and Quality Control Results	. 25
	5.10	Phase Two Conceptual Site Model	. 26
6.	Conc	usions	. 33
7.	Refer	ences	. 35

Figure Index

Figure 1	Site Location Map
Figure 2	Borehole Location Plan

Table Index

Table 4.1	Elevations	. 17
Table 5.1	Monitoring Well Installation	. 20
Table 5.2	Water Table Details	. 20
Table 5.3	Soil Sample Details	. 21
Table 1	DNAPL/LNAPL Layers	
Table 2	Summary of Soil Analysis	
Table 3	Summary of Groundwater Analysis	
Table 4	Maximum Soil Parameter Concentrations	
Table 5	Maximum Groundwater Parameter Concentrations	

Appendix Index

Appendix A	Utility Clearances
Appendix B	Sampling Analysis Plan
Appendix C	Borehole Logs
Appendix D	Laboratory Certificates of Analysis

1. Introduction

1.1 Site Description

Location and Identifier

The Property is described as Civic Nos. 811 Gladstone Avenue Complex in Ottawa, Ontario (Site or Property). The Site is legally described as Lots 263 to 265, 271, 272 and Part of Lots 262, 266, 267, 270 and 273, on the North Side of Gladstone Avenue on registered plan 16, in the City of Ottawa in the Province of Ontario. The property identification numbers associated with the Site are 041080285 and 041080289. The center of the Site has Latitude and Longitude coordinates of 45° 24' 21" N, 75° 42' 34" W and UTM coordinates of zone 18T, 444481 m E, 5028279 m N). The location of the Site within the City of Ottawa is shown on Figure 1, Site Location Map, in the Figures Section following the text of this report. In all aspects of this report the Phase Two property is referred to as the Site or Phase Two Property.

Size and Boundaries

The Site is approximately rectangular in shape and covers an area of approximately 4725 m² (0.47 hectares). The Site is located within an urban area, which is developed predominantly for residential use, with some historical commercial and institutional uses. The Site is bordered by Balsam Street followed by residential properties to the north, by Rochester Street followed by residential properties to the west, by Gladstone Avenue followed by residential properties to the south, and by an institutional property followed by Booth Street to the east.

The boundaries of the Site and location of the existing buildings are shown on Figure 2, Borehole Location Plan, in the Figures Section following the text of this report.

1.2 Property Ownership

The Site is currently owned by Ottawa Community Housing Corporation (OCHC), which has a corporate address of 39 Auriga Drive, Ottawa, Ontario, K2E 7Y8. The Client is represented by Mr. Barron Meyerhoffer.

1.3 Current and Proposed Future Uses

The current property use is multi-unit residential. The north, west, and south limits of the Site are developed with three multi-unit residential buildings respectively addressed as 22 through 34 (even) Balsam Avenue on the north portion of the Site; 38, 40 Balsam Avenue and 275 through 285 (odd) Rochester Street on the west portion of the Site; and 289 Rochester Street and 811 through 829 Gladstone Avenue on the south portion of the Site. The central portion of the Site is paved with an asphalt parking area that is accessed from Balsam Avenue to the north. The east limit of the Site is landscaped area for recreation use of the tenants. Under Ottawa Bylaw 2008-250, the Site has a municipal zoning designation of R4A "Residential Fourth Density Zone" for the north portion of the property and TM "Traditional Mainstreet Zone" for the south portion of the Site.

GHD understands that the Client intends to demolish the existing buildings and construct a sixstorey residential building without a basement with associated surface parking areas and access roads. The Property is currently used for residential purposes and will remain residential and therefore does not require a Record of Site Condition (RSC), required for a change in land use to more sensitive land uses. However, it is understood that the Client may file a RSC to document Site conditions prior to redevelopment. This report will also be used to support a submission to the local municipal planning department.

1.4 Applicable Site Condition Standard

The pH of the soil was tested and observed to be within the range of 5-9. There are no Areas of Natural Scientific Interest (ANSI) identified by the Ministry of Natural Resources (MNR) within 250 m. The nearest area designated by the municipality in its current official plan (Bylaw 2008-250-Zoning) as 'EP' (Environmentally Protected zoning) is located approximately 1.4 kilometres (km) south of the Site, on the west of Dows Lake. Under O. Reg. 153/04, a municipal EP zone is classified as an "area of natural significance". As the Site does not contain an area of natural significance, and properties within 30 m of the Site limits do not contain areas of natural significance, the Site is not classified as an environmentally sensitive property (O. Reg. 153/04, s41).

Drilling conducted as part of this investigation revealed that there is less than 2 m of soil in seven of the eight boreholes advanced on the Site. As more than 1/3 of the area consists of soil (excluding any non-soil surface treatment such as asphalt, concrete or aggregate) less than 2 m in depth, the Property would be considered a Shallow Soil site (O. Reg. 153/04, s43.1[3]).

No natural surface water bodies were identified on the Site or within the Phase One Study Area. The nearest natural surface body is the Ottawa River, which is located approximately 1 km to the North of the Site. Dows Lake is located approximately 1 km south of the Site. There is no open surface water bodies within 30 m of the Site limits. As the property does not include all or part of a water body, and the property is not adjacent to a water body, and does not include land that is within 30 m of a water body, the Property is not considered a Surface Water site (O. Reg. 153/04, s43.1[1]).

The existing property use is residential. The proposed property use will remain residential. The Site is considered as being residential/parkland/institutional land use as per Section 3 of the Ontario Regulation 153/04 as amended 2011 (O. Reg. 153/04, s1[3]).

The Property, and all other properties located, in whole or in part, within 250 m of the boundaries of the property, are supplied by a municipal drinking water system. The Site is not in an area designated on the City of Ottawa official plan as an intake protection zone. The Site is not in an area designated on the City of Ottawa official plan as a well-head protection area (WHPA). The Site is not an agricultural property. The Site is considered as being non-potable water use as per Section 35 of the Ontario Regulation 153/04 as amended 2011 (O. Reg. 153/04, s35).

Grain Size analysis of the recovered soil samples was not conducted as part of this investigation; accordingly, the most conservative soil texture criteria will be applied to the Site. The Site is

considered as being coarse grained soil texture as per Section 42 of the Ontario Regulation 153/04 as amended 2011 (O. Reg. 153/04, s42).

Based upon the above described assessments, accordingly, the generic O. Reg 153/04 Table 7 (shallow soil property, residential/institutional land use, non-potable groundwater use, coarse grained soil texture) criteria is considered the applicable Site comparison.

2. Background Information

2.1 Physical Setting

Surface Water

No natural surface water bodies were identified on the Site or within the Phase One Study Area. The nearest natural surface water body is the Ottawa River, which is located approximately 1 km to the North of the Site. Dows Lake, a manmade surface water body, is located approximately 1 km south of the Site.

Topography and Drainage

The Site is relatively flat, grading away from the Site buildings, directing storm water away from the buildings towards the property perimeter, and towards the central storm drain. The Site is generally elevated approximately 0.3 m with respect to the neighbouring streets to the north, west and south. This grading is engineered to. The Site is approximately level with the adjacent property to the east.

The regional topography in the general area of the Site is generally flat, sloping down to the west-southwest.

The Phase Two ESA drilling program identified limestone bedrock between 0.5 and 2.6 meters below grade (mBG), with an upper surface described as ranging from poor to good quality that become good to excellent with depth. This material was overlain with a shallow layer of till, covered with coarse grained fill to provide engineered grading. The shallow nature of the bedrock implies that underground services bedded in coarse grained fill will be placed below the bedrock surface; the bedding and fractured bedrock surrounding the services will provide a preferred hydraulic pathway.

Hard surfaces at the Site includes the paved parking area on the central portion of the Site with a laneway that extends north to Balsam Street, concrete walkways leading from the residential units to the off-Site municipal sidewalks on the north, west, and south margins of the Property, and concrete sidewalks at the rear of the residential units leading to the paved parking area. Precipitation falling on improved paved surfaces will travel by sheet flow to the Site storm drains. Precipitation falling on unimproved landscaped surfaces will infiltrate at the ground surface.

2.2 Past Investigation

The following environmental report was reviewed prior to conducting this Phase Two ESA:

 "Phase One Environmental Site Assessment, 811 Gladstone Avenue, Ottawa, Ontario" Reference No. 11140575-E1-RPT-2, prepared by GHD, dated August 25, 2017 (Phase One ESA).

The Phase One ESA was completed for the entire Site which contains three multi-unit residential buildings, a central paved parking area and laneway, and a landscaped common area.

According to the historical research, the earliest developed use of the site is approximately 1889, based on ownership details from the land title search, listings from the City directories and observations from the aerial photographs. Based on the historical research, the Site has been used for residential purposes since 1989 to the time of report preparation, with portions of the Site being used for institutional purposes between 1918 to 1964. The Site was reportedly redeveloped with the present day residential buildings in the mid-1960s.

At the time of the Phase One ESA, the Site was developed with three multi-unit residential buildings on the north, south and west portions of the Site, while the central portion of the Site consisted of a paved parking area and the east portion of the Site was landscaped. The buildings were two storey slab-on-grade structures with concrete foundations and central basement level mechanical rooms.

Based on the historical research and known information of the general area of the Site, there was one suspected on-Site potentially contaminating activities (PCA); the suspected historical placement of fill material that was done during the construction of pre-existing buildings on the Site. This PCA (identified as PCA#1) is considered to represent an area of potential environmental concern (APEC) for the Site (identified as APEC#1). Since environmental management was not a corn in the 1960s and previous heating oil and other fuels may have been used and mixed with on-Site soil during the 1960s redevelopment, PHCs, PAHs and metals may be CPCs from the fill.

The 25 off-Site PCAs were identified in the Phase One Study Area. Four of the identified off-Site PCAs are considered to represent APECs for the subject Site; 414 Booth Street formerly operated as an automotive garage (PCA#2, APEC#2), 394 Booth Street formerly operated as a paving company (PCA#3, APEC#3), 388 Booth Street formerly operated as an automotive service garage (PCA#4, APEC#4), and 263 Rochester Street formerly operated as a Dry Cleaners (PCA#5, APEC#5). The remaining identified off-Site PCAs were not considered to represent APECs for the subject Site given that they are all located significant distances and/or down or cross gradient with respect to the Site.

A Phase Two ESA was recommended for the Phase One Property to assess the soil and groundwater quality at the Site as a result of the identified APECs.

3. Scope of the Investigation

3.1 Overview of Site Investigation

Underground utilities (both public and private services) were identified by GHD prior to drilling activities. Copies of the underground utility clearances are included in Appendix A.

On August 22 and 25, 2017, four boreholes (BH1-17 through BH4-17) were advanced by means of a truck mounted CME 55 power drill rig equipped for environmental soil sampling under the supervision of GHD field staff. On August 28 and 29, 2017, four boreholes (BH5-17 through BH8-17) were advanced by means of a Beaver portable drill rig equipped for environmental sampling under the supervision of GHD field staff. Samples were recovered using 50 mm diameter split spoon samplers advanced to the sampling depth with a hydraulic hammer. Recovered soil samples were screened in the field for evidence of visual and olfactory evidence of contamination. Boreholes BH1-17, BH2-17, and BH5-17 were outfitted with groundwater monitoring wells respectively identified as MW1-17, MW2-17, and MW3-17 to measure the groundwater levels and collect representative groundwater samples.

- BH1-17 was advanced to a depth of approximately 6.2 metres below grade (mBG), located near the northwest limit of the central paved parking area, approximately 0.5 m southeast of 32 Balsam Street. The borehole was equipped with a groundwater monitoring well identified as MW1-17. The monitoring well was screened in the bedrock to intercept the shallow groundwater table. This borehole/monitoring well was located to assess the environmental soil and groundwater quality associated with the imported fill materials (APEC#1)
- Borehole BH2-17 was advanced to a depth of approximately 6.2 mBG, located on the east side of the laneway accessing the central parking area, approximately 2.5 m southwest of 34 Balsam Street. The borehole was equipped with a groundwater monitoring well identified as MW2-17. The monitoring well was screened in the bedrock to intercept the shallow groundwater table. This borehole/monitoring well was located to assess the environmental soil and groundwater quality associated with the imported fill materials (APEC#1) and potential impacts from the former off-Site drycleaners (APEC#5).
- Borehole BH3-17 was advanced to a depth of approximately 5.9 mBG, near the southeast limit of the central paved parking area, approximately 9 m northwest of 823 Gladstone Avenue. This borehole was located to assess the environmental soil quality of the imported fill materials (APEC#1).
- Borehole BH4-17 was advanced to a depth of approximately 2.7 mBG, located near the centre of the laneway into the central parking area, approximately 14 m northeast of 281 Rochester Street. This borehole was located to assess the environmental soil quality of the imported fill materials (APEC#1).
- Borehole BH5-17 was advanced to a depth of approximately 2.7 mBG, located near the
 northeast limit of the Site, approximately 3.2 m northwest of 24 Balsam Avenue. The borehole
 was equipped with a groundwater monitoring well identified as MW3-17. The monitoring well
 was screened in the bedrock to intercept the shallow groundwater table. This
 borehole/monitoring well was located to assess the environmental soil and groundwater quality
 near the northeast corner of the Site in the vicinity of APEC#2, APEC#3 and APEC#4.
- Borehole BH6-17 was advanced to a depth of approximately 2.9 mBG, located near the northwest limit of the Site, approximately 3 m northwest of 275 Rochester Street. This borehole was located to assess the environmental soil quality near the northwest corner of the Site in APEC#5.

- Borehole BH7-17 was advanced to a depth of approximately 2.9 mBG near the southeast limit of the Site, located approximately 2.2 m southeast of 811 Gladstone Avenue. This borehole was located to assess the environmental soil quality at the southeast corner of the Site in APEC#2.
- Borehole BH8-17 was advanced to a depth of approximately 3.9 mBG near the southwest limit of the Site, located approximately 2.5 m southeast of 289 Rochester Street. This borehole was located to assess the environmental soil quality at the southwest corner of the Site.
- An existing monitoring well (installed by others) was identified near the northwest limit of the Site, in close proximity to BH6-17. While well construction details are not known, this well (identified in this report as MW4) was included in the groundwater sampling program to assess if groundwater contamination was present originating from the off-Site former drycleaners (APEC#5).

The following soil samples were submitted to the laboratory: BH2/MW2(SS1), DUP (a blind duplicate sample of BH2/MW2[SS1]), BH5/MW3(SS1), BH6(SS1), and BH7(SS1). The samples were submitted to Paracel Laboratories Ltd. in Ottawa, Ontario under Chain of Custody (CoC) 113609 and 38489 on August 25 and 29, and October 31, 2017.

- Soil samples BH2/MW2, BH5/MW3, BH6, BH7 were analysed according to O. Reg. 153/04 requirements. The samples were tested for a combination of Petroleum Hydrocarbons (PHCs), Volatile Organic Compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), metals and pH.
- Soil sample DUP was analysed according to O. Reg. 153/04 requirements. The sample was tested for PHCs, BTEXs, PAHs, and metals.
- Soil sample BH2/MW2 was also analysed for flashpoint and Toxicity Characteristic Leaching Procedure (TCLP) analysis for metals and inorganics on leachate, VOCs on leachate, PAHs on leachate, and PCBs on leachate, for comparison to Ontario Regulation 558/00 to provide a waste classification of the soil.

On September 8, 2017, GHD returned to the Site to measure the static groundwater levels in monitoring wells BH1-17/MW1-17, BH2-17/MW2-17, BH5-17/MW3-17, and MW4. The monitoring wells were then developed, with GHD purging the wells dry at least twice. Groundwater samples were then collected from BH1-17/MW1-17, BH2-17/MW2-17, and BH5-17/MW3-17. A duplicate groundwater sample was collected from BH5-17/MW3-17. The groundwater samples to be analysed for metals were filtered using dedicated 45um filters, the remainder of the samples were unfiltered. The following groundwater samples were submitted to the laboratory on September 8, 2017: BH1/MW1, BH2/MW2, BH5/MW3, DUP, a trip blank provided by the laboratory on September 7, 2017.

On September 12, 2017, GHD returned to the Site to collect a sample from MW4. On September 12, 2017 the groundwater sample MW4 and a trip blank prepared by the laboratory on September 11, 2017 were submitted to the laboratory.

The groundwater samples were submitted to Paracel Laboratories Ltd. in Ottawa, Ontario under Chain of Custody (CoC) 112293 and 38677 on September 8 and 12, 2017, respectively. The samples were analysed according to O. Reg. 153/04 requirements.

- Groundwater samples BH1/MW1, BH2/MW2, BH5/MW3, and sample DUP were analysed for PHC, VOCs, PAHs, metals, and pH.
- Groundwater sample MW4 was analysed for VOCs.
- Trip Blank (prepared by the laboratory on September 7, 2017), and Trip Blank (prepared by the laboratory on September 11, 2017) were analysed for VOCs.

On September 12, 2017 GHD surveyed the relative elevations of the advanced boreholes and monitoring wells, relative to an assigned elevation of 100.00 m of the fire hydrant on the southwest corner of Rochester Street and Balsam Street (City of Ottawa Hydrant No.FM175067M).

3.2 Media Investigated

Rationale for Inclusion of Various Media

Based on known historic potentially contaminating activities (PCAs) in the Phase One Study Area of the Site, it was suspected that overburden soil and groundwater have the potential to have been impacted by the PCAs. A Phase One Study Area is defined in O. Reg. 153/04 as 250 m from the Site's property limits, or any other property beyond this limit that the qualified person considers should be included.

PCAs in the Phase One Study area, which are considered to represent areas of potential environmental concern (APECs) for the Site, consisted of on-Site imported fill material of unknown quality (PCA/APEC#1), a former automotive service garage to the southeast of the Site (PCA/APEC#2), a former asphalt manufacturer to the northeast (PCA/APEC#3), a former retail fuel outlet and automotive service garage to the northeast (PCA/APEC#3), a former dry cleaner to the north (PCA/APEC#5). Accordingly, boreholes were placed across the Site to allow for collection of soil samples from the Site for an assessment of their environmental quality.

To assess the environmental quality of the groundwater, three of the boreholes advanced at the Site were outfitted with groundwater monitoring wells, which was screened in the shallow bedrock to intercept the groundwater table. A seal was installed above the sand pack to the ground surface. The groundwater was sampled from the aforementioned monitoring wells using a peristaltic pump following a period of stabilization, well development, and purging the day of sampling. There were no natural surface water bodies observed at the Site during the Phase Two ESA, and therefore no sampling of surface water or sediment was conducted at the time of this investigation.

3.3 Phase One Conceptual Site Model

The Site is immediately surrounded by residential, commercial and institutional properties.

The Property is commonly referred to as Civic No. 811 Gladstone Avenue in Ottawa, Ontario (Site or Property) and is approximately 4725 m² (0.47 hectares) in area. The Property is currently occupied by three multi-unit residential buildings, the individual units in these three buildings are civically addressed as 811-829 Gladstone Avenue, 275-289 Rochester Street, and 22-38 Balsam Street. The Site has been used for residential and institutional purposes since the first developed use of the Property in approximately 1889.

No water bodies, areas of natural significance or drinking water wells are present at the Site. The nearest surface water body indicated on the mapping is the Ottawa River, located approximately 1 km north of the Site, while Dow's Lake was observed approximately 1 km south of the Site; the location of these water bodies are indicated in the Conceptual Site Model. The topography of the Site is generally flat and level with respect to adjacent properties. The soil conditions in the vicinity of the Site are expected to consist of glacial till type soil over limestone bedrock at 1 to 2 meters below grade (mBG) and a water table, if present to be near 2 to 3 m below grade.

The historical records and use and present operations of properties located within 250 m of the subject land were considered from an environmental perspective for the purposes of this report. Properties located outside of the Phase One Study Area (250 m radius) were not considered to have had the potential to have impacted the subject land. Based on the historical research and known information of the general area of the Site, there was one suspected on Site potentially contaminating activity (PCA): the suspected historical placement of fill material placed in the central portion of the Property during redevelopment of the Site with the present day residential buildings. This PCA is considered to represent an area of potential environmental concern (APEC) for the Site.

There were 25 PCAs identified at surrounding properties in the Phase One Study Area as part of this assessment. Four of the identified off Site PCAs are considered to represent APECs for the subject Site. The two automotive garages located at 414 and 388 Booth Street, a former paving company located at 394 Booth Street, and a former dry cleaners located at 263 Rochester are considered to represent APECs for the Site.

The Phase One Study area is serviced by municipal water and sewer services and is in a non-potable area within the City of Ottawa. Electrical and natural gas services are available from private utility companies. Given the location of underground services on the Site and the locations of the PCAs at the Site and neighbouring properties, the presence of underground services are considered to have the potential to have contributed to contaminant distribution on the subject land.

Subsurface Conditions

Municipal water and sewer services are supplied by underground service trenches on the east portion of the Site leading to Booth Street. Natural gas is supplied to the Site buildings from underground service trenches leading from Gladstone Avenue to the south of the Site, and Balsam Street to the north of the Site. These service trenches are considered to have the potential to act as conduits for contaminant migration.

According to the information obtained from the Geological Survey of Canada map 1425A titled Surficial Materials and Terrain features Ottawa Hull the natural soil conditions in the region appear to consist of "pre-Champlain Sea deposits consisting of glacial deposits of till; heterogeneous mixture of material ranging from clay to large boulders, generally sandy, grades downwards into unmodified till; surface is generally modified by wave or river action and the topography is flat to hummocky". The thickness of overburden is expected to be approximately 1 m and the bedrock in the general area of the Site is expected to be limestone. According to records from the water well information system and borehole databases, as presented in the results of the subcontracted Ecolog Environmental ERIS search, the overburden soil in the vicinity of the Site consist of a

mixture of sand and gravel type soils. The overburden soil was reportedly underlain by limestone bedrock at an approximate depth of 1.0 m below ground surface.

Regional groundwater flow direction in the overburden within the Study Area was expected to be towards the west, following regional topography.

Potentially Contaminating Activities (PCAs)

Based on the known information of the general area of the Site, there was one on-Site PCA, and 25 off-Site PCAs identified in the Study Area.

- PCA#1 (Item 30: Importation of Fill Material of Unknown Quality) | On-Site, importation of Fill
 materials and possible underground storage tanks (USTs) and related petroleum hydrocarbon
 contamination within the fill from pre-1960 uses at the Property.
- PCA#2 (Item 28: Gasoline and Associated Products Storage in Fixed Tanks, Item 27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles) | Off-Site, a former automotive service garage and service station with USTs historically operated at 414 Booth Street, approximately 6 m east of the Site.
- PCA#3 (Item 28: Gasoline and Associated Products Storage in Fixed Tanks) | Off-Site, a former paving company historically operated at 394 Booth Street, approximately 25 m northeast of the Site.
- PCA#4 (Item 27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles) | Off-Site, a former automotive service garage historically operated at 388 Booth Street, approximately 40 m northeast of the Site.
- PCA#5 (Item 37: Operation of Dry Cleaning Equipment [where chemicals are used]) | Off-Site, a
 former dry cleaners historically operated at 263 Rochester Street, approximately 20 m north of
 the Site.
- PCA#6 (Item 37: Operation of Dry Cleaning Equipment [where chemicals are used]) | Off-Site, a
 former dry cleaners historically operated at 204 Rochester Street, approximately 180 m
 northwest of the Site.
- PCA#7 (Item 37: Operation of Dry Cleaning Equipment [where chemicals are used]) | Off-Site, a
 former dry cleaners historically operated at 201 Rochester Street, approximately 180 m north of
 the Site.
- PCA#8 (Item 28: Gasoline and Associated Products Storage in Fixed Tanks, Item 27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles) | Off-Site, a former gasoline service station with USTs, and currently an automotive service garage operates at 779 Gladstone Avenue, approximately 200 m east of the Site.
- PCA#9 (Item 10: Commercial Autobody Shops) | Off-Site, a former commercial autobody shop historically operated at 773 Gladstone Avenue, approximately 215 m east of the Site.
- PCA#10 (Item 28: Gasoline and Associated Products Storage in Fixed Tanks, Item 27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles) | Off-Site, a former gasoline service station with USTs, and currently an automotive service garage operates at 241 Preston Street, approximately 165 m east of the Site.

- PCA#11 (Item 28: Gasoline and Associated Products Storage in Fixed Tanks) | Off-Site, a former gasoline service station with USTs, and a former heating oil supplier historically operated at 215 Preston Street, approximately 180 m west of the Site.
- PCA#12 (Item 27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles) | Off-Site, a former automotive service garage historically operated at 225 Preston Street, approximately 175 m west of the Site.
- PCA#13 (Item 27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles) | Off-Site, an automotive service garage currently operates at 54 Louisa Street, approximately 145 m southeast of the Site.
- PCA#14 (Item 27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles) | Off-Site, an automotive service garage currently operates at 66 Lebreton Street, approximately 245 m northeast of the Site.
- PCA#15 (Item 27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles) | Off-Site, a former transportation company with automotive service historically operated at 93 Lebreton Street, approximately 230 m northeast of the Site.
- PCA#16 (Item 27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles) | Off-Site, a former Ambulance Service garage historically operated at 71 Lebreton Street, approximately 250 m northeast of the Site.
- PCA#17 (Item 10: Commercial Autobody Shops) | Off-Site, a commercial autobody shop currently operates at 167 Lebreton Street, approximately 110 m east of the Site.
- PCA#18 (Item 28: Gasoline and Associated Products Storage in Fixed Tanks) | Off-Site, a former heating oil supplier historically operated at 174 Lebreton Street, approximately 160 m east of the Site.
- PCA#19 (Item 27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles) | Off-Site, a former automotive service garage historically operated at 436 Arlington Avenue, approximately 180 m southeast of the Site.
- PCA#20 (Item 27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles) | Off-Site, a former automotive service garage and former commercial autobody shop historically operated at 347 Booth Street, approximately 200 m northeast of the Site.
- PCA#21 (Item 28: Gasoline and Associated Products Storage in Fixed Tanks) | Off-Site, a heating oil spill (suggesting petroleum storage in fixed tanks) was reported at 20 Willow Street, approximately 200 m northeast of the Site.
- PCA#22 (Item 28: Gasoline and Associated Products Storage in Fixed Tanks) | Off-Site, a heating oil spill (suggesting petroleum storage in fixed tanks) was reported at 457 Booth Street, approximately 135 m southeast of the Site.
- PCA#23 (Item 8: Chemical Manufacturing, Processing and Bulk Storage) | Off-Site, chemical manufacturing, processing, and bulk storage was reported at 300 Rochester Street, approximately 45 m southwest of the Site.

- PCA#24 (Item 27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles) | Off-Site, a former vehicle repair historically operated at 23 Poplar Street, approximately 185 m north of the Site
- PCA#25 (Item 28: Gasoline and Associated Products Storage in Fixed Tanks) | Off-Site, a heating oil spill (suggesting petroleum storage in fixed tanks) was reported at 112 Lebreton Street, approximately 160 m northeast of the Site.
- PCA#26 (Item 53: Tannery) | Off-Site, a former tannery historically operated at 187 Preston Street, approximately 235 m northwest of the Site.

Areas of Potential Environmental Concern (APECs)

The potentially contaminating activities considered to represent areas of potential environmental concern for the Site are:

- APEC#1 | On-Site, importation of Fill materials with potential petroleum within the fill and on-Site fuel storage tanks.
- APEC#2 | Off-Site, a former automotive service garage and service station with USTs historically operated at 414 Booth Street, approximately 6 m east of the Site. This historical activity has the potential to have impacted soil and groundwater at the Site.
- APEC#3 | Off-Site, a former paving company historically operated at 394 Booth Street, approximately 25 m northeast of the Site. This historical activity has the potential to have impacted soil and groundwater at the Site.
- APEC#4 | Off-Site, a former automotive service garage historically operated at 388 Booth Street, approximately 40 m northeast of the Site. This historical activity has the potential to have impacted soil and groundwater at the Site.
- APEC#5 | Off-Site, a former dry cleaners historically operated at 263 Rochester Street, approximately 20 m north of the Site. This historical activity has the potential to have impacted soil and groundwater at the Site.

Contaminants of Potential Concern (CPCs)

The contaminants of potential concern (CPCs) in soil and groundwater for the Site were based on the APECs identified at the Site during Phase One ESA and observations at the time of the drilling program. The following CPCs for the Site were suspected to be associated with fill material at the Site, off-Site automotive service garages and retail fuel outlets, an off-Site paving company and an off-Site dry cleaner:

- 1. Petroleum Hydrocarbons ranges F1-F4 (PHCs) and Benzene, Toluene, Ethylbenzene, and Xylenes (BTEXs)
- 2. Volatile Organic Compounds (VOCs)
- 3. Metals
- 4. Polycyclic Aromatic Hydrocarbons (PAHs)

Additional Considerations for Conceptual Site Model on the date of the drilling program component of the fieldwork for this Phase Two ESA, the Client provided construction drawings for the Site. One of the drawings shows the presence of two "Oil Tanks", one to the north of the Gladstone Avenue building and one to the south of the Balsam Street building. The construction drawings are presented as part of the Utility Clearances in Appendix A. Despite their indicated presence on the drawings, the Client was not aware of the presence of any oil storage tanks at the Site and stated that the buildings and auxiliary features may not have been constructed as indicated on the drawings.

The heating oil storage tanks, if present, at the Site would a potentially contaminating activity (PCA#27). As the locations of the Oil Tanks, as depicted on the Client drawings, are shown within the boundary for APEC#1, and the contaminants of concern associated with this PCA were also considered CPCs for the previously identified PCA within APEC#1, no additional APECs were identified for the Site.

It should also be noted, given the period of initial development (1880s) and redevelopment (1960s) of the Site, that there may have been additional heating oil storage tanks, either aboveground storage tanks (ASTs) or USTs, present at the Site as part of historical heating systems. No documentation or physical evidence of additional ASTs or USTs was discovered as part of the Phase One ESA or Phase Two ESA, however, there is the potential that USTs remain at the Site and have associated isolated pockets of contaminated soil and/or groundwater. It is expected that this unknown will be further addressed at the time of construction for subsequent redevelopment of the Site.

3.4 Deviations from Sampling and Analysis Plan

The Sampling and Analysis Plan (SAP) proposed

- Seven boreholes were proposed to be completed to a depth of at least 1.5 m below ground surface. GHD advanced an additional borehole to provide additional Site coverage. This modification is not expected to adversely affect the results of this assessment.
- Five boreholes were proposed to be equipped with groundwater monitoring wells, to a maximum depth between 3 to 6 mBG. GHD installed three groundwater monitoring wells at the Site. There was one monitoring well (identified as MW4 in this report) that was installed by others which was incorporated into the groundwater sampling program. The monitoring well installations were considered sufficient to assess the APECs identified.
- Screens in each groundwater monitoring well should have a maximum wetted length of 3.0 m and a minimum total length of 1.5 m. The base of monitoring well screens used to assess PHCs should extend approximately 1.0 m below the expected groundwater table based on field observations. GHD installed screens up to 4.57 m in length based on uncertainty of the elevation of the static groundwater table in the weathered bedrock aquifer. The water table was higher than anticipated, resulting in a wetted screen length greater than 3 m. This modification to the SAP did not adversely affect this assessment.
- All soil samples were to be screened for organic vapours in the field using a RKI Eagle Combustible Gas Detector (Gastech) in the field. Samples were screened in the field using

visual and olfactory observations and then were screened for organic vapours upon return to GHD's laboratory. This modification is not expected to t affect the results of the investigation.

No other deviations were made to the Sampling and Analysis Plan (SAP). A copy of the SAP is presented in Appendix B.

3.5 Impediments

There were no impediments that prevented completion of the work plan.

4. Investigation Method

4.1 General

The investigation method took into account the surficial features of the Site, the location and observations on the Site and the PCA and APEC identified for the Site. Based upon these conditions, GHD determined that boreholes with split spoon soil sampling, installation and sampling of three new groundwater monitoring wells and sampling one existing monitoring well were considered adequate to assess if contaminants of potential concern (CPCs) would be detected within the soil and groundwater.

The fieldwork as part of the Phase Two ESA included advancement of boreholes, and selection of soil samples for testing based upon visual and olfactory observations and combustible vapour screening. Three of the boreholes were then equipped with groundwater monitoring wells to allow collection of water level data, and sample collection for testing of CPC in the groundwater. The boreholes were surveyed relative to a readily identified benchmark (top of spindle of fire hydrant #FM175067M, located on the southwest corner of the intersection of Rochester Street and Balsam Street.

Samples were kept in ice chilled coolers and then submitted to an accredited laboratory under Chain of Custody control for chemical analysis of CPCs. Quality control procedures, including analysis of trip blanks, were followed.

The following sections present more detailed descriptions of each activity of the investigation.

4.2 Drilling and Excavating

Advancement of BH1-17 through BH4-17 was conducted on August 22 and 25, 2017 by George Downing Estate Drilling Ltd. of Grenville Sur La Rouge, Quebec, using a truck mounted CME 55 power drill rig, and on August 28 and 29, 2017 using a Beaver portable drill rig. Drilling was conducted under full-time supervision and direction by GHD personnel. Soil samples were recovered using 50 mm diameter split spoon samplers advanced to the sampling depth with a hydraulic hammer, and washed with soapy water between uses to avoid cross contamination. Soil samples were collected a pre-defined intervals to the maximum proposed depth of drilling.

4.3 Soil Sampling

Equipment

Split spoon soil samples were recovered from BH1-17 through BH8-17 on August 22, 25, 28, and 29, 2017 using 50 mm diameter continually advanced stainless steel split spoon samplers advanced with a hydraulic hammer, and washed between uses, as stated in the SAP. Samples of soil intended for PHCs F1 range and VOCs analysis were collected using 2 cc syringes and placed in methanol vials supplied by the laboratory. Additional soil samples were collected in laboratory supplied jars. Laboratory samples were held in coolers with ice packs prior to delivery to the laboratory.

Description

The findings reflect that there are generally five main materials above the limestone bedrock:

- Asphalt
- Grass vegetation and Topsoil
- Fill (Gravelly Sand) or (Sand and Gravel) or (Silty Sand)
- Native Till (Silty Sand) or (Sand and Gravel)
- Concrete

The subsurface soil encountered in the eight borehole locations is described in the following sections, and is presented graphically on the borehole logs, in Appendix C.

Asphalt

A surface layer of asphalt was encountered in boreholes BH1-17, BH2-17, BH3-17, and BH4-17. This layer was found at the ground surface extending down approximately 0.1 mBG.

Topsoil

A surface layer of topsoil and grass was encountered in boreholes BH5-17, BH6-17, BH7-17, and BH8-17. This material was described as silty sand with organics, loose, dark brown, moist to damp, with grass and roots. This layer was found at the ground surface extending down approximately 0.1 to 0.2 mBG.

No petroleum odours or visible evidence of staining were noted within any of the topsoil materials.

Fill

A layer fill material was found in all boreholes advanced at the Site.

Gravelly Sand was encountered underlying the asphalt pavement in BH1-17, BH2-17, BH3-17, BH4-17. This material was described as grey, dense to loose, and damp. This material was found to be 0.3 meters in thickness.

Sand and gravel fill, or sand with some gravel, was identified in BH5-17, BH7-17, and BH8-17. This material was described as brown, loose, and damp to moist. This layer was generally found to be 0.6 meters in thickness. This same type of fill was encountered with an approximate thickness of

2.1 m in BH8-17; it was suspected that fill was used to backfill a former foundation in this area of the Site.

Silty sand fill was encountered in BH6-17. The material was described as containing trace organics, dark brown, loose, and moist. This material was found to be 0.9 m thickness.

No petroleum odours or visible evidence of staining were noted within any of the fill materials encountered as part of this assessment.

Native Silty Sand or Sand and Gravel (Till)

A layer of sand and gravel was encountered resting on the limestone bedrock in BH1-17. It was described as loose, brown, and damp. This layer was approximately 0.1 meters in thickness.

A layer of silty sand was encountered resting on the limestone bedrock in BH2-17, BH3-17, and BH4-17. It was described as compact, grey (occasionally with red-brown staining), and damp to moist. This layer was found to be between approximately 0.1 and 0.4 meters in thickness.

No petroleum odors were noted within these materials.

Concrete

A layer of concrete was encountered resting directly on the bedrock in BH8-17; it is suspected that the concrete was part of a foundation system for a historical structure at the Site.

4.4 Field Screening Measurements

The limited depth of overburden materials at the Site restricted the selection of soil samples for laboratory analysis. The soil samples were field screened for the olfactory and visible presence of CPCs.

4.5 Ground Water: Monitoring Well Installation

Advancement of BH1-17, BH2-17, and BH5-17 was conducted on August 22, 25, and 28, 2017 by George Downing Estate Drilling Ltd. of Grenville Sur La Rouge, Quebec.

All three of the aforementioned boreholes were equipped with 51 mm diameter temporary groundwater monitoring wells respectively identified as MW1-17, MW2-17, and MW3-17. The well screens consisted of slotted No. 10, 4.57 m long, 51 mm diameter PVC, installed at the finished depth of the borehole. The 51 mm PVC risers extended from the top of the screen to finish height, approximately 0.05 mBG. The risers were encased in flush mount well protectors. A PVC slip cap was installed at the base of the screen to prevent sediment infiltration. A J-plug was used in the installations at the top of the riser to prevent surface water or precipitation influence.

Each well was backfilled with clean sand to 0.3 m above the top of the screen. Between 0.3 m and 0.7 m of the remaining annular space (directly above the sand pack) was backfilled with bentonite hole plug to within approximately 0.5 m of the ground surface, then backfilled with sand and equipped with a well protector.

Each well was equipped with dedicated 12 mm LDPE Waterra[™] tubing and a dedicated Waterra[™] footvalve. The Waterra[™] tubing/footvalve was then used to develop the well. All three monitoring wells were observed to go dry during development, each well was left for a period of at least 30 minutes and was subsequently purged dry two times. A period of stabilization of approximately one to two weeks was allowed to pass prior to sampling. Wells were purged dry or up to three additional well volumes were removed prior to sampling to allow the collection of fresh groundwater and stabilization of field parameters.

4.6 Ground Water: Field Measurement of Water Quality Parameters

Field measurements of groundwater quality were measured in the field using a Hanna Water Quality Meter prior to sampling. Measurements of pH, turbidity, electrical conductivity (EC), and temperature were collected during purging prior to sampling. Measurements were collected following the removal of 1 L, one well volume and each subsequent well volume until the water quality parameters stabilized (subsequent readings within 10 percent difference).

4.7 Ground Water: Sampling

Stabilized groundwater levels were recorded in each monitoring well prior to disturbance of the water column.

All wells were developed then purged dry two times prior to sampling using a footvalve with dedicated 12 mm LDPE tubing in each monitoring well. Field measurements of water quality parameters were collected, as described above, to ensure stabilization of these parameters.

Following the repeated purging of the well, a groundwater sample was collected from MW1-17, MW2-17, and MW3-17 using a peristaltic pump with dedicated 6 mm LDPE tubing. The pump was set to low-flow during sampling to minimize volatilization. An existing well on-Site that was installed by others (identified in this report as MW4) was sampled with the dedicated 12 mm LDPE tubing and a Waterra© footvalve; this well could not be sampled with the peristaltic pump as the water column was lower than the maximum hydraulic head differential capability of the pump.

All groundwater samples were collected in dedicated amber glass bottles and vials prepared by the laboratory. The groundwater samples for metal analysis was field filtered; the samples for PHC, VOC, PAH, and pH analysis were not field filtered.

Following sampling, the groundwater samples were stored in an ice pack chilled cooler and were taken directly to the laboratory following the sampling event.

4.8 Sediment Sampling

Sediment was not sampled as part of this assessment, as no natural surface water bodies were present at the Site.

4.9 Analytical Testing

All soil and groundwater analytical testing as part of this assessment was conducted by Paracel Laboratories Ltd. (Paracel). Paracel is a member of the Standards Council of Canada (SCC) and Canadian Association of Environmental Analytical Laboratories (CAEAL).

4.10 Residue Management Procedures

Soil cuttings from drilling activities were containerized in metal drums and placed in designated areas of the Site. The analytical results indicated there are exceedances of the O. Reg. 153/04 Table 7 criteria, which was determined to be applicable for the Site. The cuttings should be disposed of off-Site at a facility licenced to accept contaminated, non-hazardous waste soil.

Purge water was containerized in the field and was retained on-Site in one metal drum. Upon receipt of laboratory analytical results, the purge water was disposed of in the municipal sanitary sewer system.

4.11 Elevation Surveying

Survey data of the ground surface elevation of all boreholes and elevation of the top of pipe (riser) of all groundwater monitoring wells was collected as part of this assessment. Survey elevations were based on an assumed elevation of a temporary benchmark (TBM) of 100 m for the top of spindle of a fire hydrant on the top of spindle of fire hydrant #FM175067M, located on the southwest corner of the intersection of Rochester Street and Balsam Street. The assumed elevations were as follows:

Location	Relative Grade Elevation (m)	Relative Top Of Piezometer (TOP) Elevation (m)	Remarks
TBM Hydrant FM175 Spindle	100.00		Assumed elevation 100 m
BH1-17/MW1-17	101.28	101.23	
BH2-17/MW2-17	101.50	101.45	
BH5-17/MW3-17	102.39	102.34	
MW4	101.49	101.44	Pre-existing well

Table 4.1 Elevations

4.12 Quality Assurance and Quality Control Measures

All soil sample jars were provided by Paracel. All PHC F1 range and BTEX soil samples were collected with laboratory provided single use 2 cc soil syringes. Each sample was given a unique identification.

Stainless steel split spoons were used to recover soil samples from the boreholes; the spoons were washed in soapy water between uses. A metal spatula was used to transfer samples from the split spoons to the sample jars; this spatula was cleaned between uses. While transferring samples from

split spoons into the sample jars, GHD field staff wore nitrile gloves, which were changed prior to jarring each sample to prevent cross contamination.

To ensure laboratory quality control, a blind duplicate sample of soil was submitted for laboratory analysis of one of the four submitted soil samples. Duplicate sample DUP was submitted for laboratory analysis of pH, PHCs, and BTEXs. This duplicate sample provides quality assurance and quality control of soil samples submitted as part of this assessment.

All groundwater sample jars were provided by Paracel. Each sample was given a unique identification. All groundwater samples were transferred directly from the dedicated LDPE tubing directly to the sampling containers. The bottles and vials for PHCs, BTEXs, VOC, PAH, and general chemistry (pH) were not field filtered.

To ensure laboratory quality control, a field duplicate was submitted for laboratory analysis of one of the four collected groundwater samples. One field duplicate (DUP) was submitted for laboratory analysis of PHCs, BTEXs, and pH in groundwater for BH3-GW1. A trip blank groundwater sample was submitted for laboratory analysis of VOCs for each day that sampling was completed. These duplicate and blank samples provide quality assurance and quality control of all parameter sets analysed for groundwater samples submitted as part of this assessment.

There were no deviations from the original sampling plan as discussed in Section 4.4 of this report.

5. Review and Evaluation

5.1 Geology

Asphalt

A surface layer of asphalt was encountered in boreholes BH1-17, BH2-17, BH3-17, and BH4-17. This layer was found at the ground surface extending down approximately 0.1 mBG.

No soil samples from this layer were submitted for chemical analysis of CPCs, as asphalt is not considered to be a soil.

Topsoil

A surface layer of topsoil and grass was encountered in boreholes BH5-17, BH6-17, BH7-17, and BH8-17. This material was described as silty sand with organics, loose, dark brown, moist to damp, with grass and roots. This layer was found at the ground surface extending down approximately 0.1 to 0.2 mBG.

No petroleum odours or visible evidence of staining were noted within any of the topsoil materials.

No soil samples from this layer were submitted for chemical analysis of CPCs, as it was at a higher elevation than the APECs identified for the property.

Fill

A layer fill material was found in all boreholes advanced at the Site.

Gravelly Sand was encountered underlying the asphalt pavement in BH1-17, BH2-17, BH3-17, and BH4-17. This material was described as grey, dense to loose, and damp. This material was found to be 0.3 meters in thickness.

Sand and gravel fill, or sand with some gravel, was identified in BH5-17, BH7-17, and BH8-17. This material was described as brown, loose, and damp to moist. This layer was generally found to be 0.6 meters in thickness. This same type of fill was encountered with an approximate thickness of 2.1 m in BH8-17; it was suspected that fill was used to backfill a former foundation in this area of the Site. Soil samples of this layer were submitted from BH5-17 (SS1) and BH7-17 (SS1) for chemical analysis of CPCs.

Silty sand fill was encountered in BH6-17. The material was described as containing trace organics, dark brown, loose, and moist. This material was found to be 0.9 m thickness. Soil samples of this layer were submitted from BH6-17 (SS1) for chemical analysis of CPCs.

No petroleum odours or visible evidence of staining were noted within any of the fill materials encountered as part of this assessment.

Native Silty Sand or Sand and Gravel (Till)

A layer of sand and gravel was encountered resting on the limestone bedrock in BH1-17. It was described as loose, brown, and damp. This layer was approximately 0.1 meters in thickness.

A layer of silty sand was encountered resting on the limestone bedrock in BH2-17, BH3-17, and BH4-17. It was described as compact, grey (occasionally with red-brown staining), and damp to moist. This layer was found to be between approximately 0.1 and 0.4 meters in thickness. Soil samples of this layer were submitted from BH2-17 (SS1) for chemical analysis of CPCs.

No petroleum odors were noted within these materials.

Concrete

A layer of concrete was encountered resting directly on the bedrock in BH8-17; it is suspected that the concrete was part of a foundation system or floor slab for a historical structure at the Site.

5.2 Ground Water - Elevations and Flow Direction

Overburden Aquifer

In order to assess the environmental quality of the groundwater at the Site, three groundwater monitoring wells (MW1-17, MW2-17, MW3-17) were installed on the subject Property as part of this assessment. All wells were screened in the upper surface of the bedrock aquifer (the aquifer of interest). A bentonite seal above the monitoring well screen/sandpack was formed during all monitoring well installations. In addition, an existing groundwater monitoring well identified as MW4 in this report was included in the groundwater sampling program; this well was installed by others and well construction details are unknown. Monitoring well construction details are presented in Table 5.1.

Well ID	Grade Elevation (m)	TOP Elevation (m)	Borehole Bottom Elevation (m)	Screen Elevation (m)	Sand Pack Elevation (m)	Bentonite Seal Elevation (m)	Well Bottom Depth (mBG)
BH1-17/ MW1-17	101.28	101.23	95.13	99.80 to 95.23	100.01 to 95.13	100.62 to 100.01	6.05
BH2-17/ MW2-17	101.50	101.45	95.37	99.95 to 95.28	100.15 to 95.37	100.89 to 100.15	6.22
BH5-17/ MW3-17	102.39	102.34	96.52	101.09 to 96.52	101.30 to 96.52	101.78 to 101.30	5.87
MW4	101.49	101.44	unknown	86.01 to unknown	Unknown	Unknown	15.48

Table 5.1 Monitoring Well Installation

Following a period of stabilization of the groundwater in the overburden wells, water levels were collected on September 8, 2017. Groundwater elevations were determined based on the assumed elevation of the surveyed benchmark (fire hydrant FM175067M, located on the southwest corner of the intersection of Rochester Street and Balsam Street), the monitoring well survey and the measured groundwater level within each monitoring well. Water table elevation details are presented in Table 5.2.

Well ID	Grade Elevation (m)	TOP Elevation (m)	Depth to groundwater (m below grade)	Depth to Groundwater (m below TOP)	Water Table Elevation (m) (Sept 8, 2017)
BH1-17/MW1-17	101.28	101.23	1.84	1.79	99.44
BH2-17/MW2-17	101.50	101.45	2.74	2.69	98.76
BH5-17/MW3-17	102.39	102.34	2.17	2.12	100.22
MW4	101.49	101.44	14.49	14.44	86.99

Table 5.2 Water Table Details

Free product was not identified during any monitoring. The results of the LNAPL/DNAPL investigation are presented in Table 1, following the body of this report.

Three groundwater monitoring wells are required to triangulate groundwater elevations and provide a direction of groundwater flow. Three wells were installed in the upper surface of the bedrock as part of this investigation; MW1-17, MW2-17, and MW3-17. The three wells were used to determine a direction of groundwater flow and hydraulic gradient. Based on the water table elevations recorded in these three monitoring wells installed as part of this investigation on the Site, the direction of groundwater flow in the vicinity of the boreholes was determined to be towards the west (project west-northwest). This direction of groundwater flow is logical based on the surficial topography observed at the Site and neighbouring properties and the location of the nearest significant surface water body.

Municipal water and sewer services are supplied by underground service trenches on the east portion of the Site leading to Booth Street. Natural gas is supplied to the Site buildings from underground service trenches leading from Gladstone Avenue to the south of the Site, and Balsam

Street to the north of the Site. The presence of buried utilities is not expected to impact measurements of the groundwater table.

5.3 Ground Water - Hydraulic Gradients

The hydraulic gradient was calculated by dividing the difference in hydraulic head by the lateral distance between monitoring locations. Based on the recorded groundwater elevations in Table 5.2 above, the horizontal hydraulic gradient is approximately 0.04 m/m.

5.4 Fine-Medium or Coarse Soil Texture

Borehole advancement has identified a layer of silty sand or sand and gravel till, and field observations indicate the native soils are not fine textured soils as defined in O. Reg. 153/04. Accordingly, the Site soil is considered to be coarse grain size; which was used for comparison to the O. Reg. 153/04 criteria. It should be noted that coarse grain soil considerations are a more conservative comparison for analytical results.

5.5 Soil Field Screening

The limited depth of overburden materials at the Site restricted the selection of soil samples for laboratory analysis. The soil samples were field screened for the olfactory and visible presence of CPCs. A combustible vapour survey completed at GHD's laboratory indicated that the combustible vapour readings for the soil samples collected as part of this assessment were negligible.

5.6 Soil Quality

Location and Depth of Sampling

The locations of the boreholes and sampling locations are indicated on Figure 2: Borehole Location Plan, in the Figures section of this report. During the investigation, soil layers were sampled for metals, VOCs, PAHs, PHCs, and pH as follows:

Sample ID	Submitted Sample	Sample depth	Parameters
BH2/MW2	BH2-17, SS1	0.4-0.6	metals, VOCs, PAHs, PHCs
DUP	BH2-17, SS1	0.4-0.6	metals, BTEX, PAHs, PHCs
BH5/MW3	BH5-17, SS1	0.09-0.69	metals, VOCs, PAHs, PHCs, pH
BH6	BH6-17, SS1	0.3-0.6	metals, VOCs, PAHs, PHCs, pH
BH7	BH7-17, SS1	0.06-0.66	metals, VOCs, PAHs, PHCs

Table 5.3 Soil Sample Details

Comparison of Analytical Results to O. Reg. 153/04 Criteria

As determined in Section 1.4 (Applicable Site Class), generic O. Reg. 153/04 Table 7 (residential/institutional land use, non-potable groundwater use, coarse soil texture) criteria is considered the applicable Site comparison.

Analytical testing of the aforementioned soil samples indicated the following parameters exceed the O. Reg. 153/04 Table 7 criteria (residential/institutional, coarse texture):

- BH2/MW2
 - Lead and various PAH parameters (Acenaphthylene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene)
- DUP (a duplicate sample of BH2-MW2)
 - Lead and various PAH parameters (Acenaphthylene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene)
- BH6
 - Various PAH parameters (Anthracene, Benzo(a)anthracene, Benzo(a)pyrene,
 Benzo(b)fluoranthene, Benzo(k)fluoranthene, Chrysene, Dibenzo(a,h)anthracene,
 Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene)

A complete summary of the analytical soil testing conducted as part of this Phase Two ESA and comparison to O. Reg. 153/04 criteria are present in Table 2, following the text of this report. The maximum soil concentrations detected as part of this investigation are presented in Table 4, following the text of this report. A copy of the laboratory certificates of analysis for the soil samples are presented in Appendix D.

Contaminants of Concern

The contaminants of potential concern (CPC) in soil for the Site were based on the APECs identified at the Site during the Phase One ESA:

- PCA#1 (on-Site, fill of an unknown origin)/APEC #1 (various locations) | metals, PHCs, BTEXs, and PAHs
- PCA#2 (off-Site, a former automotive service garage and service station with fuel in underground storage tanks)/APEC #2 (southeast portion of Site) | PHCs, metals, and VOCs
- PCA#3 (off-Site, a former asphalt and bitumen manufacturing site)/APEC #3 (northeast portion of Site) | metals, PHCs, and PAHs
- PCA#4 (off-Site, a former automotive service garage)/APEC #4 (northeast portion of Site) | PHCs, metals, and VOCs
- PCA#5 (off-Site, a former drycleaner)/APEC #5 (northwest portion of Site) | VOCs
- PCA#27 (on-Site, suspected heating oil storage tanks)/APEC#1 (central portion of Site) | PHCs and BTEXs

Comparison of TCLP Analytical Results to O. Reg. 558/00 Schedule IV Criteria

A soil sample was collected for leachate testing and was analyzed using the toxicity characteristic leaching procedure (TCLP). The results of the submitted TCLP sample are shown on the laboratory Certificate of Analysis – Paracel #1735029 in Appendix D. The results of the TCLP testing were

compared to O. Reg. 558/00 criteria. The TCLP results are in compliance with the O. Reg. 558/00 criteria. In the event that the Site soil cannot be handled as clean fill, the Site soil can be considered solid non-hazardous waste.

Chemical or Biological Transformations

Parameters related to chemical or biological transformations of CPCs were not suspected to be present and were not detected in the analytical results as part of this investigation.

Soil Acting as a Contaminant Mass Contributing to Other Media

Based on the laboratory results of the analysed soil samples, there is no soil on the Site which is acting as a contaminant mass contributing to other media.

LNAPL/DNAPL

Light Non Aqueous Phase Liquids (LNAPL) were considered to have the potential to be present in the groundwater at the Site as a result of PCA/APEC #s 1 to 4. Low concentrations of PHCs were detected only in the sample from BH2-17(SS1) near the unknown fill placement at concentrations which were in compliance with the Site criteria (O. Reg. 153/04 Table 7 residential land use). Dense Non Aqueous Phase Liquids (DNAPL) were considered to have the potential to be present in the groundwater at the Site as a result of PCA/APEC#5. Free product was not detected in the groundwater at the Site.

5.7 Ground Water Quality

Location and Depth of Sampling

The depths of the screens are indicated in Table 5.1 in Section 5.2 of this report; the screened intervals were situated in the upper (weathered) portion of the limestone bedrock, straddling the shallow static groundwater table.

Field Filtering

Field filtering is not conducted under standard field protocols for groundwater sampling of PHCs, VOCs, BTEXs, PAHs, or pH.

Samples intended for metal analysis were field filtered using a 45 um filter.

Contaminants of Concern

The contaminants of potential concern (CPC) in groundwater for the Site were based on the APECs identified at the Site during the Phase One ESA:

- PCA#1 (on-Site, fill of an unknown origin)/APEC #1 (various locations) | metals, PHCs, BTEXs, and PAHs
- PCA#2 (off-Site, a former automotive service garage and service station with fuel in underground storage tanks)/APEC #2 (southeast portion of Site) | PHCs, metals, and VOCs
- PCA#3 (off-Site, a former asphalt and bitumen manufacturing site)/APEC #3 (northeast portion of Site) | metals, PHCs, and PAHs

- PCA#4 (off-Site, a former automotive service garage)/APEC #4 (northeast portion of Site) | PHCs, metals, and VOCs
- PCA#5 (off-Site, a former drycleaner)/APEC #5 (northwest portion of Site) | VOCs
- PCA#27 (on-Site, suspected heating oil storage tanks)/APEC#1 (central portion of Site) | PHCs and BTEXs

Comparison of Analytical Results to O. Reg. 153/04 Criteria

As discussed in Section 1.4 (Applicable Site Class), generic O. Reg. 153/04 Table 7 (shallow soil, non-potable groundwater use, coarse soil texture) criteria is considered the applicable Site comparison.

Analytical testing of the groundwater samples indicated that all analysed groundwater sample results were in compliance with the O. Reg. 153/04 Table 7 criteria (shallow soil, non-potable water use, coarse texture).

A complete summary of the analytical groundwater testing conducted as part of this Phase Two ESA and comparison to O. Reg. 153/04 criteria are present in Table 3, following the text of this report. The maximum groundwater concentrations detected as part of this investigation are presented in Table 5, following the text of this report. A copy of the laboratory certificates of analysis for the groundwater samples are presented in Appendix D.

Chemical or Biological Transformations

Parameters related to chemical or biological transformations of the CPCs were not suspected to be present and were not detected in the analytical results as part of this investigation.

LNAPL/DNAPL

There were detections of PHCs (F3 range) in the analyzed groundwater sample collected from BH5-17/MW3-17, which was reported at concentrations in compliance with the O. Reg. 153/04 Table 7 Site criteria. BTEX (ethylbenzene and xylenes) were detected in the duplicate sample "DUP" from BH5-17/MW3-17, at concentrations which were in compliance with the O. Reg. 153/04 Table 7 Site criteria.

The presence of VOC parameters, which would be indicative of the presence of DNAPL at the Site, were not detected in any of the groundwater samples.

The presence of LNAPL/DNAPL was not identified in any of the monitoring wells.

Therefore, the presence of Light (LNAPL) or Dense Non Aqueous Phase Liquids (DNAPL) are not suspected at the Site.

5.8 Sediment Quality

Natural Surface Water Bodies were not present on the Site; as such sediment sampling was not conducted at the Site as part of the Phase Two ESA.

5.9 Quality Assurance and Quality Control Results

Quality Control

One field duplicate soil sample (sample DUP, a duplicate of sample BH2-17/MW2-17[SS1]) was submitted for laboratory analysis of metals, BTEX, PHCs, and PAHs. This duplicate analysis provides quality assurance and quality control of parameter sets analysed in the four soil samples submitted as part of this assessment. In general the relative percent differences (RPDs) were less than 40 percent for the duplicate soil samples. This range of RPDs is typically greater than that which would indicate consistency in laboratory results, however, given the low level concentrations of parameters which were generally detected in the analysed soil sample duplicates, the level of variability among results is considered acceptable to indicate that the duplicate soil results do indicate general consistency in the laboratory data.

One blind field duplicate groundwater sample (DUP, a duplicate of MW3-17) was submitted for laboratory analysis of pH, metals, VOCs, PHCs, and PAHs. This duplicate provides quality assurance and quality control of parameter sets analysed in the four groundwater samples submitted as part of this assessment. The relative percent differences (RPDs) were less than 100 percent for the duplicate groundwater samples. This range of RPDs is typically greater than that which would indicate consistency in laboratory results, however, given the low level concentrations of parameters which were generally detected in the analysed soil sample duplicates, the level of variability among results is considered acceptable to indicate that the duplicate soil results do indicate general consistency in the laboratory data.

Two trip blank samples (one for each day of groundwater sampling) were submitted for laboratory analysis of VOCs in groundwater. This trip blanks provides quality assurance and quality control of volatile parameter sets analysed for groundwater samples submitted as part of this assessment. No contaminants concentrations were detected in the analyzed trip blank sample.

Handling and Transport

All samples were delivered to the laboratory in laboratory supplied containers. Samples were hand delivered to the laboratory in coolers, equipped with ice packs and trip blanks. All samples were delivered to the Laboratory within the mandated holding time and temperature requirements.

Analytical Documentation

The documentation provided from the laboratory meets the requirements of O. Reg. 153/04 Section 47(3). Documentation for each laboratory submitted sample has been included as an appendix to this report. Full documentation, including the laboratory certificates of analysis, is provided in Appendix D.

Analytical Qualifiers

Laboratory report 1735029 (soil sample BH2/MW2) and 1735030 (soil sample DUP, the duplicate sample of BH2/MW2) identified that 'Duplicate results exceeds RPD limits due to non-homogeneous matrix' for a number of the PAH compounds. Generally, fill material is highly heterogeneous; based on GHD's review of the samples BH2/MW2 and DUP, there is acceptable consistency between these analytical results.

Laboratory report 1735234 (soil sample BH6) identified 'Elevated detection limit due to dilution required because of high target analyte concentration' for the parameters Acenaphthylene and Methylnaphthalene. Given that the analytical results for this sample exceed the O. Reg. Table 7 criteria for various PAH parameters, this qualifiers for Acenaphthylene and Methylnaphthalene are not considered to represent uncertainty in the laboratory results.

Laboratory report 1737017 (groundwater sample BH2/MW2) identified 'Elevated Reporting Limits due to limited sample volume' for the PAH compounds. Given that the analytical results for this sample were in compliance with the O. Reg. Table 7 criteria, this qualifier is not considered to represent uncertainty in the laboratory results.

Laboratory report 1744078 (soil samples BH5 and BH6) identified that samples were received past their holding times for pH. Given that it is not suspected that holding time would have significantly impacted the soil pH, which were both reported at relatively neutral pH, this qualifier is not considered to represent uncertainty in the laboratory results.

No analytical qualifiers were reported on laboratory report 1737231 (groundwater samples) with respect to submissions as part of this assessment.

General Comments on Field Data

For the purposes of this investigation, the quality of the field data:

- Meets the objectives of the investigation.
- Did not affect the decision making process.

5.10 Phase Two Conceptual Site Model

Potentially Contaminating Activities (PCAs)

Based on the known information of the general area of the Site, there was one on-Site PCA, and 25 off-Site PCAs identified in the Study Area.

- PCA#1 (Item 30: Importation of Fill Material of Unknown Quality) | On-Site, importation of Fill materials was identified at various locations on the Property interior.
- PCA#2 (Item 28: Gasoline and Associated Products Storage in Fixed Tanks, Item 27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles) | Off-Site, a former automotive service garage and service station with USTs historically operated at 414 Booth Street, approximately 6 m east of the Site.
- PCA#3 (Item 28: Gasoline and Associated Products Storage in Fixed Tanks) | Off-Site, a former paving company historically operated at 394 Booth Street, approximately 25 m northeast of the Site.
- PCA#4 (Item 27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles) | Off-Site, a former automotive service garage historically operated at 388 Booth Street, approximately 40 m northeast of the Site.

- PCA#5 (Item 37: Operation of Dry Cleaning Equipment [where chemicals are used]) | Off-Site, a
 former dry cleaners historically operated at 263 Rochester Street, approximately 20 m north of
 the Site.
- PCA#6 (Item 37: Operation of Dry Cleaning Equipment [where chemicals are used]) | Off-Site, a
 former dry cleaners historically operated at 204 Rochester Street, approximately 180 m
 northwest of the Site.
- PCA#7 (Item 37: Operation of Dry Cleaning Equipment [where chemicals are used]) | Off-Site, a
 former dry cleaners historically operated at 201 Rochester Street, approximately 180 m north of
 the Site.
- PCA#8 (Item 28: Gasoline and Associated Products Storage in Fixed Tanks, Item 27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles) | Off-Site, a former gasoline service station with USTs, and currently an automotive service garage operates at 779 Gladstone Avenue, approximately 200 m east of the Site.
- PCA#9 (Item 10: Commercial Autobody Shops) | Off-Site, a former commercial autobody shop historically operated at 773 Gladstone Avenue, approximately 215 m east of the Site.
- PCA#10 (Item 28: Gasoline and Associated Products Storage in Fixed Tanks, Item 27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles) | Off-Site, a former gasoline service station with USTs, and currently an automotive service garage operates at 241 Preston Street, approximately 165 m east of the Site.
- PCA#11 (Item 28: Gasoline and Associated Products Storage in Fixed Tanks) | Off-Site, a former gasoline service station with USTs, and a former heating oil supplier historically operated at 215 Preston Street, approximately 180 m west of the Site.
- PCA#12 (Item 27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles) | Off-Site, a former automotive service garage historically operated at 225 Preston Street, approximately 175 m west of the Site.
- PCA#13 (Item 27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles) | Off-Site, an automotive service garage currently operates at 54 Louisa Street, approximately 145 m southeast of the Site.
- PCA#14 (Item 27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles) | Off-Site, an automotive service garage currently operates at 66 Lebreton Street, approximately 245 m northeast of the Site.
- PCA#15 (Item 27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles) | Off-Site, a former transportation company with automotive service historically operated at 93 Lebreton Street, approximately 230 m northeast of the Site.
- PCA#16 (Item 27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles) | Off-Site, a former Ambulance Service garage historically operated at 71 Lebreton Street, approximately 250 m northeast of the Site.
- PCA#17 (Item 10: Commercial Autobody Shops) | Off-Site, a commercial autobody shop currently operates at 167 Lebreton Street, approximately 110 m east of the Site.

- PCA#18 (Item 28: Gasoline and Associated Products Storage in Fixed Tanks) | Off-Site, a former heating oil supplier historically operated at 174 Lebreton Street, approximately 160 m east of the Site.
- PCA#19 (Item 27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles) | Off-Site, a former automotive service garage historically operated at 436 Arlington Avenue, approximately 180 m southeast of the Site.
- PCA#20 (Item 27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles) | Off-Site, a former automotive service garage and former commercial autobody shop historically operated at 347 Booth Street, approximately 200 m northeast of the Site.
- PCA#21 (Item 28: Gasoline and Associated Products Storage in Fixed Tanks) | Off-Site, a heating oil spill (suggesting petroleum storage in fixed tanks) was reported at 20 Willow Street, approximately 200 m northeast of the Site.
- PCA#22 (Item 28: Gasoline and Associated Products Storage in Fixed Tanks) | Off-Site, a heating oil spill (suggesting petroleum storage in fixed tanks) was reported at 457 Booth Street, approximately 135 m southeast of the Site.
- PCA#23 (Item 8: Chemical Manufacturing, Processing and Bulk Storage) | Off-Site, chemical manufacturing, processing, and bulk storage was reported at 300 Rochester Street, approximately 45 m southwest of the Site.
- PCA#24 (Item 27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles) | Off-Site, a former vehicle repair historically operated at 23 Poplar Street, approximately 185 m north of the Site
- PCA#25 (Item 28: Gasoline and Associated Products Storage in Fixed Tanks) | Off-Site, a heating oil spill (suggesting petroleum storage in fixed tanks) was reported at 112 Lebreton Street, approximately 160 m northeast of the Site.
- PCA#26 (Item 53: Tannery) | Off-Site, a former tannery historically operated at 187 Preston Street, approximately 235 m northwest of the Site.
- PCA#27 (on-Site, suspected heating oil storage tanks)/APEC#1 (central portion of Site) | PHCs and BTEXs

Areas of Potential Environmental Concern (APECs)

The potentially contaminating activities considered to represent areas of potential environmental concern for the Site are:

- APEC#1 | On-Site, importation of Fill materials was identified at various locations at the Site and suspected presence of heating oil storage tanks at the Site.
- APEC#2 | Off-Site, a former automotive service garage and service station with USTs historically operated at 414 Booth Street, approximately 6 m east of the Site. This historical activity has the potential to have impacted soil and groundwater at the Site.

- APEC#3 | Off-Site, a former paving company historically operated at 394 Booth Street, approximately 25 m northeast of the Site. This historical activity has the potential to have impacted soil and groundwater at the Site.
- APEC#4 | Off-Site, a former automotive service garage historically operated at 388 Booth Street, approximately 40 m northeast of the Site. This historical activity has the potential to have impacted soil and groundwater at the Site.
- APEC#5 | Off-Site, a former dry cleaners historically operated at 263 Rochester Street, approximately 20 m north of the Site. This historical activity has the potential to have impacted soil and groundwater at the Site.

Contaminants of Potential Concern (CPCs)

The contaminants of potential concern (CPCs) in soil and groundwater for the Site were based on the APECs identified at the Site during Phase One ESA and observations at the time of the drilling program. The following CPCs for the Site were suspected to be associated with fill material at the Site, off-Site automotive service garages and retail fuel outlets, an off-Site paving company and an off-Site dry cleaner:

- 1. Petroleum Hydrocarbons ranges F1-F4 (PHCs) and Benzene, Toluene, Ethylbenzene, and Xylenes (BTEXs)
- 2. Volatile Organic Compounds (VOCs)
- 3. Metals
- 4. Polycyclic Aromatic Hydrocarbons (PAHs)

An assessment of the CPCs for the Site was completed as part of the Phase Two ESA analytical submission program. Soil and groundwater samples were submitted for a combination of the CPCs dependent on borehole/monitoring well locations with respect to the APECs.

Subsurface Conditions

Municipal water and sewer services are supplied by underground service trenches on the east portion of the Site leading to Booth Street. Natural gas is supplied to the Site buildings from underground service trenches leading from Gladstone Avenue to the south of the Site, and Balsam Street to the north of the Site. These service trenches are considered to have the potential to act as conduits for contaminant migration.

Based on geological mapping of the region and the Ontario Water Well Information System, the natural soil conditions in the region appear to consist of "pre-Champlain Sea deposits consisting of glacial deposits of till; heterogeneous mixture of material ranging from clay to large boulders, generally sandy, grades downwards into unmodified till; surface is generally modified by wave or river action and the topography is flat to hummocky". The thickness of overburden is expected to be approximately 1 m and the bedrock in the general area of the Site is expected to be limestone.

Physical Setting - Stratigraphy

As presented in the Borehole Logs in Appendix C, the investigation identified six materials within the depth investigated, namely:

- Asphalt
- Grass vegetation and Topsoil
- Fill (Gravelly Sand) or (Sand and Gravel) or (Silty Sand)
- Native Till (Silty Sand) or (Sand and Gravel)
- Concrete
- Limestone bedrock

Physical Setting – Hydrogeological

The interpretation of groundwater flow was based upon the generally known geology, the location and flow direction of surface water bodies and the static water levels collected from monitoring wells completed on the Site as part of this assessment. The overburden/weathered upper bedrock groundwater flows to the west-northwest. Based on the recorded groundwater elevations in Table 5.2, and a lateral separation distance between monitoring well locations, the horizontal hydraulic gradient is approximately 0.04 m/m. The hydraulic gradient is expected to vary with seasonal and weather conditions.

Based on the geology observed at the Site, the overburden/weathered upper bedrock aquifer is considered as unconfined.

Physical Setting – Bedrock

Limestone bedrock was encountered in all advanced boreholes at the Site, generally at depths ranging between 0.5 and 1.1 mBG. Bedrock was observed at approximately 2.6 mBG, below a layer of concrete in the southwest portion of the Site; it is suspected that deeper bedrock in this area of the Site is part of a former foundation system. In general, the upper surface (top 0.5-1.5 m) of the bedrock was revealed to be poor to fair quality, improving to good to excellent rock quality with increasing depth.

Physical Setting – Groundwater Table

The static groundwater table in the shallow bedrock wells installed by GHD, considered to be representative of the unconfined (upper) aquifer, was measured at depths ranging from approximately 1.8 to 2.7 mBG on September 8, 2017. Groundwater flow direction was interpreted to be towards the west-northwest with a calculated hydraulic gradient of 0.04 m/m, based on measured relative groundwater elevations.

The existing deeper bedrock well installed by others at the northwest corner of the Site (identified as MW4 in this report) was measured a the same time at a depth of approximately 14.5 mBG; this water level suggests that the screen for MW4 is located within a (semi) confined aquifer.

The water table details are summarized in Table 5.2 (Water Table Elevations). It should be noted that the water table elevation is expected to vary with seasonal and weather conditions.

Physical Setting – Sensitive or Shallow or Surface Water

The pH of the soil was tested and observed to be within the range of 5-9. There are no Areas of Natural Scientific Interest (ANSI) identified by the Ministry of Natural Resources (MNR) within 250 m. The nearest area designated by the municipality in its current official plan (Bylaw 2008-250 – Zoning) as 'EP' (Environmentally Protected zoning) is located approximately 1.4 kilometres (km) south of the Site, on the west of Dows Lake. Under O. Reg. 153/04, a municipal EP zone is classified as an "area of natural significance". As the Site does not contain an area of natural significance, and properties within 30 m of the Site limits do not contain areas of natural significance, the Site is not classified as an environmentally sensitive property (O. Reg. 153/04, s41) hence the generic criteria of Table 1 of O. Reg. 153 (Sensitive Site) would not be considered applicable.

No natural surface water bodies were identified on the Site or within the Phase One Study Area. The nearest natural surface body is the Ottawa River, which is located approximately 1 km to the North of the Site. The manmade Dows Lake is located approximately 1 km south of the Site. There is no open surface water bodies within 30 m of the Site limits. As the property does not include all or part of a water body, and the property is not adjacent to a water body, and does not includes land that is within 30 m of a water body, the Property is not considered a Surface Water site (O. Reg. 153/04, s43.1[1]). The generic criteria of Tables 8 and 9 of O. Reg. 153/04 (Surface Water) would not be considered applicable.

Drilling conducted as part of this investigation revealed that there is less than 2 m of overburden soil in seven of the eight boreholes advanced on the Site. As less than 2/3 of the Site consists of soil (excluding any non-soil surface treatment such as asphalt, concrete or aggregate) less than 2 m in depth, the Property is considered a Shallow Soil site (O. Reg. 153/04, s43.1[3]). The generic criteria of Tables 6 and 7 of O. Reg. 153/04 (Shallow Soil) are considered applicable.

The Property, and all other properties located, in whole or in part, within 250 m of the boundaries of the property, are supplied by a municipal drinking water system. The Site is not in an area designated on the City of Ottawa official plan as an intake protection zone (IPZ). The Site is not in an area designated on the City of Ottawa official plan as a well-head protection area (WHPA). The Site is not an agricultural property. The Site is considered as being non-potable water use as per Section 35 of the Ontario Regulation 153/04 as amended 2011 (O. Reg. 153/04, s35).

The existing property use is residential. The proposed property use will remain residential. The Site is considered as being residential/parkland/institutional land use as per Section 3 of the Ontario Regulation 153/04 as amended 2011 (O. Reg. 153/04, s1[3]).

Accordingly, the appropriate Site classification under O. Reg. 153/04 will be generic non-potable shallow soil residential land use (O. Reg. 153/04, Table 7).

Physical Setting – Fill

A layer fill material was found in all boreholes advanced at the Site. No petroleum odours or visible evidence of staining were noted within any of the fill materials.

- Gravelly Sand was encountered underlying the asphalt pavement in BH1-17, BH2-17, BH3-17, BH4-17. This material was described as grey, dense to loose, and damp. This material was found to be 0.3 meters in thickness.
- Sand and gravel fill, or sand with some gravel, was identified in BH5-17, BH7-17, and BH8-17. This material was described as brown, loose, and damp to moist. This layer was generally found to be 0.6 meters in thickness. This same type of fill was encountered with an approximate thickness of 2.1 m in BH8-17; it was suspected that fill was used to backfill a former foundation in this area of the Site. Silty sand fill was encountered in BH6-17. The material was described as containing trace organics, dark brown, loose, and moist. This material was found to be 0.9 m thickness. A layer of concrete 0.3 m thick was encountered resting directly on the bedrock in BH8-17 extending from 2.3 to 2.6 mBG, near the southwest corner of the Property. It is suspected that this concrete is the remnants of a former building foundation.

In addition to the fill material identified in the Phase Two ESA drilling program, it is expected that underground services on the property are bedded in imported granular material. It is expected that the construction and demolition of the foundations and/or basements of both the existing and previously demolished on-Site buildings included backfill, and material from off-Site. Backfill around the existing structures and services was not investigated as part of the Phase Two ESA.

Physical Setting – Existing and Proposed Structures

At the time of report preparation:

- The current property use is multi-unit residential.
- The north, west, and south portions of the Site are developed with three multi-unit residential buildings, respectively addressed as:
 - 22 through 34 (even) Balsam Avenue on the north portion of the Site
 - 38, 40 Balsam Avenue and 275 through 285 (odd) Rochester Street on the west portion of the Site
 - 289 Rochester Street and 811 through 829 Gladstone Avenue on the south portion of the Site
- The central portion of the Site is surfaced with an asphalt paved parking area that is accessed from Balsam Avenue to the north.
- The east portion of the Site, extending to east limit of the Site, is landscaped and contains a children's play-structure for the tenants.

GHD understands that the Client intends to demolish the existing buildings at the Site and construct a single six-storey residential building without a basement and with associated parking areas and access roads. The Property is currently used for residential purposes and therefore will not require a Record of Site Condition (RSC), required for a change in land use to more sensitive land uses.

Contamination

Soil samples were collected from the boreholes advanced on August 25 and August 29, 2017 and were analysed for a combination of PHCs, BTEXs, VOCs, PAHs, metals and pH.

Three soil samples BH2/MW2 and DUP (a duplicate sample of BH2-MW2) (0.4-0.6 mBG) and BH6 (0.3-0.6 mBG) presented O. Reg. 153/04 Table 7 exceedances of the lead and various Polycyclic Aromatic Hydrocarbons (PAHs) (specifically Acenaphthylene, Anthracene, Benzo[a]anthracene, Benzo[a]pyrene, Benzo[b]fluoranthene, Benzo[k]fluoranthene, Chrysene, Dibenzo[a,h]anthracene, Fluoranthene, Indeno[1,2,3-cd]pyrene, and Phenanthrene). The samples were collected from fill material on the north portion of the Site. It is suspected that areas of contaminated soil are present across the Site and in localized areas where poor quality fill material was used for grading. Based on the period for first development (late 1800s) and redevelopment (1960s) of the Site, it is suspected that there may be additional contaminated soil present in other localised areas of the Site.

A remedial action plan and soil management program will be developed for the Client in order to manage and dispose of the contaminated soil at the time of redevelopment.

Groundwater was sampled and analysed for PHCs, VOCs (including BTEXs), PAHs, metals and pH on September 8 and September 12, 2017. All of analysed groundwater sample results were in compliance with the O. Reg. 153/04 Table 7 criteria.

6. Conclusions

Soil samples were collected from the boreholes advanced on August 25 and August 29, 2017 and were analysed for a combination of PHCs, BTEXs, VOCs, PAHs, metals and pH.

Three soil samples BH2/MW2 and DUP (a duplicate sample of BH2-MW2) (0.4-0.6 mBG) and BH6 (0.3-0.6 mBG) presented O. Reg. 153/04 Table 7 exceedances of the lead and various Polycyclic Aromatic Hydrocarbons (PAHs) (specifically Acenaphthylene, Anthracene, Benzo[a]anthracene, Benzo[a]pyrene, Benzo[b]fluoranthene, Benzo[k]fluoranthene, Chrysene, Dibenzo[a,h]anthracene, Fluoranthene, Indeno[1,2,3-cd]pyrene, and Phenanthrene). The samples were collected from fill material on the north portion of the Site. It is suspected that areas of contaminated soil are present across the Site and in localized areas where poor quality fill material was used for grading. Based on the period for first development (late 1800s) and redevelopment (1960s) of the Site, it is suspected that there may be additional contaminated soil present in other localised areas of the Site.

A remedial action plan and soil management program will be developed for the Client in order to manage and dispose of the contaminated soil at the time of redevelopment.

Groundwater was sampled and analysed for PHCs, VOCs (including BTEXs), PAHs, metals and pH on September 8 and September 12, 2017. All of analysed groundwater sample results were in compliance with the O. Reg. 153/04 Table 7 criteria.

Site Compliance

There were O. Reg. 153/04 Table 7 (residential land use, coarse soil texture) criteria exceedances in two of the four submitted soil samples, plus the duplicate QA/QC soil sample.

There were no O. Reg. 153/03 Table 7 exceedances in the analysed groundwater samples.

It should also be noted, given the period of initial development (1880s) and redevelopment (1960s) of the Site, that there may have been additional heating oil storage tanks, either ASTs or USTs, present at the Site as part of historical heating systems. No documentation or physical evidence of additional ASTs or USTs was discovered as part of the Phase One ESA or Phase Two ESA, however, there is the potential that USTs remain at the Site and/or have associated isolated pockets of contaminated soil and/or groundwater. It is expected that this unknown will be further addressed at the time of construction for subsequent redevelopment of the Site.

The Site is not considered to be in compliance with the O. Reg. 153/04 criteria for the existing and proposed land use and requires soil remediation/removal or a risk assessment.

7. References

Ontario Regulation 153/04

Phase One Environmental Site Assessment, 811 Gladstone Avenue, Ottawa, Ontario. Reference No. 11140575-E1 (2), prepared by GHD Ltd., dated August 25, 2017

Certificate of Analysis - Paracel #1735029 - Soil and TCLP- September 1, 2017

Certificate of Analysis - Paracel #1735030 - Soil - August 31, 2017

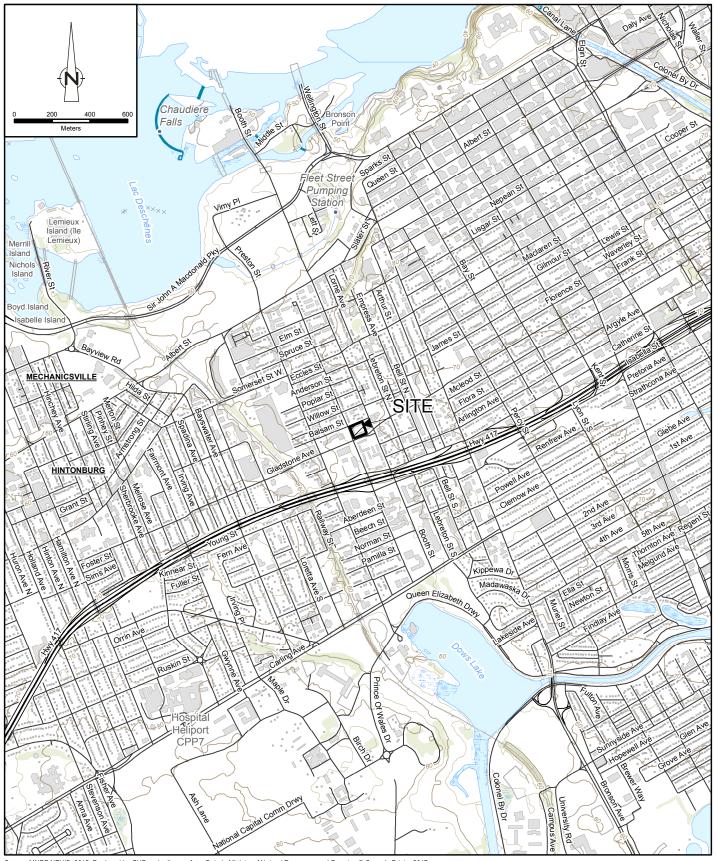
Certificate of Analysis - Paracel #1735234 - Soil - August 29, 2017

Certificate of Analysis - Paracel #1737017 - Groundwater - September 14, 2017

Certificate of Analysis - Paracel #1737231 - Groundwater - September 18, 2017

All of Which is Respectfully Submitted,

GHD


Juli 2

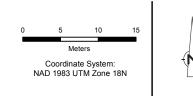
Luke Lopers, P. Eng.

Joseph B. Bennett, P. Eng.

Luke Lopers, P. Eng., Qualified Person for Environmental Site Assessment under O. Reg. 153/04, confirms the carrying out of the Phase Two Environmental Site Assessment and the findings and conclusions of this report.

-Source: MNRF NRVIS, 2015. Produced by GHD under licence from Ontario Ministry of Natural Resources and Forestry, © Queen's Printer 2017 Coordinate System: NAD 1983 UTM Zone 18N

OTTAWA COMMUNITY HOUSING 811 GLADSTONE AVENUE COMPLEX, OTTAWA, ON PHASE TWO ENVIRONMENTAL SITE ASSESSMENT


11140575-E2 Oct 25, 2017

SITE LOCATION MAP

FIGURE 1

osoft Corporation, July 2013

OTTAWA COMMUNITY HOUSING 811 GLADSTONE AVENUE COMPLEX, OTTAWA, ON PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

BOREHOLE LOCATION PLAN

FIGURE 2

11140575-E2 Oct 25, 2017

DNAPL / LNAPL Layers Phase Two Environmental Site Assessment 811 Gladstone Avenue Complex Ottawa Ontario

WELL ID	Grade Elevation (m)	Elevation		Elevation	Depth to Watertable	September 8, 2017 Elevation Watertable (m)	LNAPL	Thickness of DNAPL (m)
BH1-17 / MW1-17	101.28	101.23	6.05	95.23	1.84	99.44	0.00	0.00
BH2-17 / MW2-17	101.50	101.45	6.13	95.38	2.74	98.76	0.00	0.00
BH5-17 / MW3-17	102.39	102.34	5.88	96.52	2.17	100.22	0.00	0.00
MW4	101.49	101.44	15.48	86.01	14.49	87.00	0.00	0.00

Elevation relative to Site BM=100.00 m, assigned to Top of Spindle of Hydrant FM175067M

Summary of Soil Analysis Phase Two Environmental Site Assessment 811 Gladstone Avenue Complex Ottawa, Ontario

			O.Reg.153/04 Table 1	O.Reg.153/04 Table 7	BH2 / MW2	DUP (BH2/MW2)	BH5 / MW3	BH6	BH7
			Background	non-potable, shallow soil (coarse texture)	0.4-0.6mBG	0.4-0.4mBG	0.1-0.7mBG	0.3-0.6 mBG	0.1-0.7mBG
larameter	Units	MDL	non-agricultural	residential/ parkland/ institutional	native clayey sand (till)	native clayey sand (till)	fill	fill	fill
<i>letals</i> .ntimony	ug/g dry	1.0	1.3 ug/g dry	7.5 ug/g dry	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
rsenic	ug/g dry	1.0	18 ug/g dry	18 ug/g dry	8.0	7.5	ND (1.0)	ND (1.0)	ND (1.0)
Barium	ug/g dry	1.0	220 ug/g dry	390 ug/g dry		235 ND (1.0)	94.9	85.2	31.9
Beryllium Boron	ug/g dry ug/g dry	1.0 1.0	2.5 ug/g dry 36 ug/g dry	4 ug/g dry 120 ug/g dry	ND (1.0) 8.3	ND (1.0) 7.5	ND (1.0) 6.3	ND (1.0) 6.0	ND (1.0) 2.8
Cadmium	ug/g dry	0.5	1.2 ug/g dry	1.2 ug/g dry	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Chromium	ug/g dry	1.0	70 ug/g dry	160 ug/g dry	32.7	24.7	21.1	14.4	13.1
Cobalt Copper	ug/g dry ug/g dry	1.0 1.0	21 ug/g dry 92 ug/g dry	22 ug/g dry 140 ug/g dry	8.5 54.1	7.7 39.8	6.0 15.4	3.4 25.4	2.4 6.5
ead	ug/g dry ug/g dry	1.0	120 ug/g dry	120 ug/g dry	486	363	42.9	58.2	42.4
lolybdenum	ug/g dry	1.0	2 ug/g dry	6.9 ug/g dry	1.2	1.6	ND (1.0)	ND (1.0)	ND (1.0)
lickel Selenium	ug/g dry ug/g dry	1.0 1.0	82 ug/g dry	100 ug/g dry 2.4 ug/g dry	17.5 ND (1.0)	15.7 ND (1.0)	13.4 ND (1.0)	9.0 ND (1.0)	6.0 ND (1.0)
Silver	ug/g dry ug/g dry	0.5	1.5 ug/g dry 0.5 ug/g dry	20 ug/g dry	ND (0.5)	ND (1.0) ND (0.5)	ND (0.5)	ND (1.0) ND (0.5)	ND (1.0) ND (0.5)
hallium	ug/g dry	1.0	1 ug/g dry	1 ug/g dry	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Iranium	ug/g dry	1.0	2.5 ug/g dry	23 ug/g dry	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
'anadium	ug/g dry	1.0	86 ug/g dry	86 ug/g dry	32.3	29.3	28.0	20.0	18.4 32.3
inc /olatiles	ug/g dry	1.0	290 ug/g dry	340 ug/g dry	216	152	59.0	265	32.3
cetone	ug/g dry	0.50	0.5 ug/g dry	16 ug/g dry	ND (0.50)	N/A	ND (0.50)	ND (0.50)	ND (0.50)
enzene	ug/g dry	0.02	0.02 ug/g dry	0.21 ug/g dry	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)	ND (0.02)
romodichloromethane	ug/g dry	0.05	0.05 ug/g dry	13 ug/g dry	ND (0.05)	N/A	ND (0.05)	ND (0.05)	ND (0.05)
Bromoform Bromomethane	ug/g dry ug/g dry	0.05 0.05	0.05 ug/g dry 0.05 ug/g dry	0.27 ug/g dry 0.05 ug/g dry	ND (0.05) ND (0.05)	N/A N/A	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)
Carbon Tetrachloride	ug/g dry ug/g dry	0.05	0.05 ug/g dry 0.05 ug/g dry	0.05 ug/g dry 0.05 ug/g dry		N/A N/A	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)
Chlorobenzene	ug/g dry	0.05	0.05 ug/g dry	2.4 ug/g dry	ND (0.05)	N/A	ND (0.05)	ND (0.05)	ND (0.05)
Chloroform	ug/g dry	0.05	0.05 ug/g dry	0.05 ug/g dry	· · ·	N/A	ND (0.05)	ND (0.05)	ND (0.05)
Dibromochloromethane Dichlorodifluoromethane	ug/g dry ug/g dry	0.05 0.05	0.05 ug/g dry 0.05 ug/g dry	9.4 ug/g dry 16 ug/g dry	ND (0.05) ND (0.05)	N/A N/A	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)
,2-Dichlorobenzene	ug/g dry ug/g dry	0.05	0.05 ug/g dry 0.05 ug/g dry	3.4 ug/g dry	ND (0.05) ND (0.05)	N/A	ND (0.05)	ND (0.05) ND (0.05)	ND (0.05)
,3-Dichlorobenzene	ug/g dry	0.05	0.05 ug/g dry	4.8 ug/g dry	ND (0.05)	N/A	ND (0.05)	ND (0.05)	ND (0.05)
,4-Dichlorobenzene	ug/g dry	0.05	0.05 ug/g dry	0.083 ug/g dry		N/A	ND (0.05)	ND (0.05)	ND (0.05)
,1-Dichloroethane ,2-Dichloroethane	ug/g dry ug/g dry	0.05 0.05	0.05 ug/g dry 0.05 ug/g dry	3.5 ug/g dry 0.05 ug/g dry	ND (0.05) ND (0.05)	N/A N/A	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)
,1-Dichloroethylene	ug/g dry ug/g dry	0.05	0.05 ug/g dry	0.05 ug/g dry		N/A	ND (0.05)	ND (0.05)	ND (0.05)
is-1,2-Dichloroethylene	ug/g dry	0.05	0.05 ug/g dry	3.4 ug/g dry		N/A	ND (0.05)	ND (0.05)	ND (0.05)
ans-1,2-Dichloroethylene	ug/g dry	0.05	0.05 ug/g dry	0.084 ug/g dry	ND (0.05)	N/A	ND (0.05)	ND (0.05)	ND (0.05)
,2-Dichloropropane is-1,3-Dichloropropylene	ug/g dry ug/g dry	0.05 0.05	0.05 ug/g dry	0.05 ug/g dry	ND (0.05) ND (0.05)	N/A N/A	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)
ans-1,3-Dichloropropylene	ug/g dry ug/g dry	0.05			ND (0.05)	N/A	ND (0.05)	ND (0.05)	ND (0.05)
,3-Dichloropropene, total	ug/g dry	0.05	0.05 ug/g dry	0.05 ug/g dry		N/A	ND (0.05)	ND (0.05)	ND (0.05)
thylbenzene	ug/g dry	0.05	0.05 ug/g dry	2 ug/g dry	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
thylene dibromide (dibromoetha		0.05 0.05	0.05 ug/g dry	0.05 ug/g dry 2.8 ug/g dry	ND (0.05) ND (0.05)	N/A N/A	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)
lexane lethyl Ethyl Ketone (2-Butanone	ug/g dry ua/a dry	0.05	0.05 ug/g dry 0.5 ug/g dry	16 ug/g dry	ND (0.03) ND (0.50)	N/A N/A	ND (0.50)	ND (0.03) ND (0.50)	ND (0.03) ND (0.50)
lethyl Isobutyl Ketone	ug/g dry	0.50	0.5 ug/g dry	1.7 ug/g dry		N/A	ND (0.50)	ND (0.50)	ND (0.50)
lethyl tert-butyl ether	ug/g dry	0.05	0.05 ug/g dry	0.75 ug/g dry	ND (0.05)	N/A	ND (0.05)	ND (0.05)	ND (0.05)
Aethylene Chloride	ug/g dry	0.05	0.05 ug/g dry	0.1 ug/g dry	ND (0.05)	N/A	ND (0.05)	ND (0.05)	ND (0.05)
tyrene ,1,1,2-Tetrachloroethane	ug/g dry ug/g dry	0.05 0.05	0.05 ug/g dry 0.05 ug/g dry	0.7 ug/g dry 0.058 ug/g dry		N/A N/A	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)
,1,2,2-Tetrachloroethane	ug/g dry ug/g dry	0.05	0.05 ug/g dry	0.05 ug/g dry	ND (0.05)	N/A	ND (0.05)	ND (0.05)	ND (0.05)
etrachloroethylene	ug/g dry	0.05	0.05 ug/g dry	0.28 ug/g dry	()	N/A	ND (0.05)	ND (0.05)	ND (0.05)
oluene	ug/g dry	0.05	0.2 ug/g dry	2.3 ug/g dry	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)
,1,1-Trichloroethane ,1,2-Trichloroethane	ug/g dry ug/g dry	0.05 0.05	0.05 ug/g dry 0.05 ug/g dry	0.38 ug/g dry 0.05 ug/g dry	ND (0.05) ND (0.05)	N/A N/A	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)
richloroethylene	ug/g dry ug/g dry	0.05	0.05 ug/g dry	0.061 ug/g dry	ND (0.05)	N/A	ND (0.05)	ND (0.05)	ND (0.05)
richlorofluoromethane	ug/g dry	0.05	0.25 ug/g dry	4 ug/g dry	ND (0.05)	N/A	ND (0.05)	ND (0.05)	ND (0.05)
'inyl Chloride	ug/g dry	0.02	0.02 ug/g dry	0.02 ug/g dry	ND (0.02)	N/A ND (0.05)	ND (0.02)	ND (0.02)	ND (0.02)
n/p-Xylene -Xylene	ug/g dry ug/g dry	0.05 0.05			ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)
ylenes, total	ug/g dry ug/g dry	0.05	0.05 ug/g dry	3.1 ug/g dry	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	ND (0.05)	ND (0.05) ND (0.05)	ND (0.05)
lydrocarbons		1						· · ·	
1 PHCs (C6-C10)	ug/g dry	7	25 ug/g dry	55 ug/g dry	ND (7)	ND (7)	ND (7)	ND (7)	ND (7) ND (4)
2 PHCs (C10-C16) 3 PHCs (C16-C34)	ug/g dry ug/g dry	4 8	10 ug/g dry 240 ug/g dry	98 ug/g dry 300 ug/g dry	ND (4) 109	ND (4) 56	ND (4) ND (8)	ND (4) ND (8)	ND (4) ND (8)
4 PHCs (C34-C50)	ug/g dry ug/g dry	6	120 ug/g dry	2800 ug/g dry	148	174	ND (6)	ND (6)	ND (6)
4G PHCs (gravimetric)	ug/g dry	50	120 ug/g dry	2800 ug/g dry	NA	882			1
Semi-Volatiles	ua/a dar	0.02	0.072 ug/g dry	7.9 ug/g dry	0.17	0.17	0.03	2.83	ND (0.02)
cenaphthylene	ug/g dry ug/g dry	0.02 0.02	0.072 ug/g dry 0.093 ug/g dry	0.15 ug/g dry	0.17	0.17	0.03 ND (0.02)	2.83 ND (0.40)	ND (0.02) ND (0.02)
nthracene	ug/g dry	0.02	0.16 ug/g dry	0.67 ug/g dry	0.55	0.64	0.06	5.61	0.04
Senzo[a]anthracene	ug/g dry	0.02	0.36 ug/g dry	0.5 ug/g dry	1.12	1.31	0.18	6.34	0.11
Senzo[a]pyrene Senzo[b]fluoranthene	ug/g dry	0.02 0.02	0.3 ug/g dry 0.47 ug/g dry	0.3 ug/g dry 0.78 ug/g dry	1.19 1.28	1.43 1.40	0.22 0.25	4.91 5.30	0.15 0.16
enzo[g,h,i]perylene	ug/g dry ug/g dry	0.02	0.68 ug/g dry	6.6 ug/g dry		0.89	0.25 0.17	2.85	0.16
enzo[k]fluoranthene	ug/g dry	0.02	0.48 ug/g dry	0.78 ug/g dry	0.74	0.83	0.14	3.06	0.09
hrysene	ug/g dry	0.02	2.8 ug/g dry	7 ug/g dry	1.13	1.32	0.23	7.03	0.13
ibenzo[a,h]anthracene luoranthene	ug/g dry ug/g dry	0.02 0.02	0.1 ug/g dry 0.56 ug/g dry	0.1 ug/g dry 0.69 ug/g dry	0.20 2.72	0.26 2.83	0.04 0.50	0.93 17.4	0.03 0.28
	ug/g dry ug/g dry	0.02	0.12 ug/g dry	62 ug/g dry		0.20		3.04	0.28 ND (0.02)
ndeno[1,2,3-cd]pyrene	ug/g dry	0.02	0.23 ug/g dry	0.38 ug/g dry	0.67	0.84	0.15	2.92	0.10 ′
-Methylnaphthalene	ug/g dry	0.02	0.59 ug/g dry	0.99 ug/g dry	0.06	0.04	ND (0.02)	ND (0.40)	ND (0.02)
-Methylnaphthalene lethylnaphthalene (1&2)	ug/g dry ug/g dry	0.02 0.04	0.59 ug/g dry 0.59 ug/g dry	0.99 ug/g dry 0.99 ug/g dry		0.05 0.10	ND (0.02) ND (0.04)	ND (0.40) ND (0.80)	ND (0.02) ND (0.04)
laphthalene	ug/g dry ug/g dry	0.04 0.01	0.09 ug/g dry 0.09 ug/g dry	0.99 ug/g dry 0.6 ug/g dry		0.10 0.13	ND (0.04) ND (0.01)	0.80) 0.57	ND (0.04) ND (0.01)
henanthrene	ug/g dry	0.02	0.69 ug/g dry	6.2 ug/g dry	2.02	1.94	0.28	23.2	0.16
yrene	ug/g dry	0.02	1 ug/g dry	78 ug/g dry	2.30	2.49	0.41	13.7	0.24
ab ID ample Date					1735029-01 25-Aug-17	1735030-01 25-Aug-17	1735234-01 29-Aug-17	1735234-02 29-Aug-17	1735234-03 29-Aug
ample Date					20-Aug-17	20-Aug-17	29-Aug-17	∠ə-Aug-17	∠9-Aug
otes									

Summary of Groundwater Analysis Phase Two Environmental Site Assessment 811 Gladstone Avenue Complex Ottawa, Ontario

			O.Reg.153/04	O.Reg.153/04							
			Table 1 background	Table 7 shallow soil, nonpotable	BH1 / MW1	BH2 / MW2	BH5 / MW3	DUP	TRIP BLANK	MW4	TRIP BLANK
Parameter	Jnits	MDL	any	any							
General Inorganics											
pH p <i>Metals</i>	H Units	0.1			8.0	8.3	7.3	7.3	N/A	N/A	N/A
Antimony u	ıg/L	0.5	1.5 ug/L	16000 ug/L	ND (0.5)	ND (0.5)	0.7	0.7	N/A	N/A	N/A
	ıg/L ıg/L	1	13 ug/L 610 ug/L	1500 ug/L 23000 ug/L	ND (1) 65	2 43	ND (1) 75	ND (1) 71	N/A N/A	N/A N/A	N/A N/A
	ig/L ig/L	0.5	0.5 ug/L	53 ug/L	ND (0.5)	43 ND (0.5)	ND (0.5)	ND (0.5)	N/A	N/A	N/A N/A
Boron u	ıg/L	10	1700 ug/L	36000 ug/L	394	454	117	97	N/A	N/A	N/A
	ıg/L ıg/L	0.1 1	0.5 ug/L 11 ug/L	2.1 ug/L 640 ug/L	ND (0.1) ND (1)	ND (0.1) ND (1)	ND (0.1) ND (1)	ND (0.1) ND (1)	N/A N/A	N/A N/A	N/A N/A
Cobalt u	ıg/L	0.5	3.8 ug/L	52 ug/L	ND (0.5)	ND (0.5)	0.6	ND (0.5)	N/A	N/A	N/A
	ıg/L	0.5	5 ug/L	69 ug/L	1.5	2.7	2.3 ND (0.1)	5.8	N/A	N/A	N/A
	ıg/L ıg/L	0.1 0.5	1.9 ug/L 23 ug/L	20 ug/L 7300 ug/L	0.3 4.9	0.1 39.9	ND (0.1) 3.9	ND (0.1) 1.5	N/A N/A	N/A N/A	N/A N/A
Nickel u	ıg/L	1	14 ug/L	390 ug/L	ND (1)	2	2	2	N/A	N/A	N/A
Selenium u Silver u	ıg/L ıg/L	1 0.1	5 ug/L 0.3 ug/L	50 ug/L 1.2 ug/L	ND (1) ND (0.1)	ND (1) ND (0.1)	ND (1) ND (0.1)	ND (1) ND (0.1)	N/A N/A	N/A N/A	N/A N/A
Sodium u	ig/L	200	490000 ug/L	1800000 ug/L	329000	257000	87200	50000	N/A	N/A	N/A
	ıg/L	0.1	0.5 ug/L	400 ug/L	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	N/A N/A	N/A N/A	N/A N/A
	ıg/L ıg/L	0.1 0.5	8.9 ug/L 3.9 ug/L	330 ug/L 200 ug/L	1.8 ND (0.5)	1.9 0.6	1.0 ND (0.5)	0.7 ND (0.5)	N/A N/A	N/A N/A	N/A N/A
Zinc u	ığ/L	5	160 ug/L	890 ug/L	ND (5)	ND (5)	16	6	N/A	N/A	N/A
Volatiles Acetone u	ıg/L	5.0	2700 ug/L	100000 ug/L	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)
Benzene u	ıg/L	0.5	0.5 ug/Ľ	0.5 ug/L	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
Bromodichloromethane u	ıg/L	0.5	2 ug/L	67000 ug/L	ND (0.5)	ND (0.5)	2.9	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
	ıg/L ıg/L	0.5 0.5	5 ug/L 0.89 ug/L	5 ug/L 0.89 ug/L	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
Carbon Tetrachloride u	ıg/L	0.2	0.2 ug/L	0.2 ug/L	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)
	ıg/L	0.5 0.5	0.5 ug/L 2 ug/L	140 ug/L 2 ug/l	ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
	ıg/L ıg/L	0.5 0.5	2 ug/L 2 ug/L	2 ug/L 65000 ug/L	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
Dichlorodifluoromethane u	ıg/L	1.0	590 ug/L	3500 ug/L	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
	ıg/L ıg/L	0.5 0.5	0.5 ug/L 0.5 ug/L	150 ug/L 7600 ug/L	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
	ig/L	0.5	0.5 ug/L	0.5 ug/L	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
	ıg/L	0.5	0.5 ug/L	11 ug/L	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
	ıg/L ıg/L	0.5 0.5	0.5 ug/L 0.5 ug/L	0.5 ug/L 0.5 ug/L	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
cis-1,2-Dichloroethylene u	ıg/L	0.5	1.6 ug/L	1.6 ug/L	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
	ıg/L ıg/L	0.5 0.5	1.6 ug/L	1.6 ug/L 0.58 ug/L	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
	ig/L ig/L	0.5	0.5 ug/L	0.58 ug/L	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
trans-1,3-Dichloropropylene u	ıg/L	0.5			ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
	ıg/L ıg/L	0.5 0.5	0.5 ug/L 0.5 ug/L	0.5 ug/L 54 ug/L	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) 3.5	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
Ethylene dibromide (dibromo u		0.2	0.2 ug/L	0.2 ug/L	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)
	ig/L	1.0	5 ug/L	5 ug/L	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Methyl Ethyl Ketone (2-Butan u Methyl Isobutyl Ketone u	ig/L ig/L	5.0 5.0	400 ug/L 640 ug/L	21000 ug/L 5200 ug/L	ND (5.0) ND (5.0)	ND (5.0) ND (5.0)	ND (5.0) ND (5.0)	ND (5.0) ND (5.0)	ND (5.0) ND (5.0)	ND (5.0) ND (5.0)	ND (5.0) ND (5.0)
Methyl tert-butyl ether u	ıg/L	2.0	15 ug/L	15 ug/L	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
	ıg/L ıg/L	5.0 0.5	5 ug/L 0.5 ug/L	26 ug/L 43 ug/L	ND (5.0) ND (0.5)	ND (5.0) ND (0.5)	ND (5.0) ND (0.5)	ND (5.0) ND (0.5)	ND (5.0) ND (0.5)	ND (5.0) ND (0.5)	ND (5.0) ND (0.5)
	ıg/L	0.5	1.1 ug/L	1.1 ug/L	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
		0.5	0.5 ug/L	0.5 ug/L	ND (0.5)	ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5)	ND (0.5)
	ıg/L ıg/L	0.5 0.5	0.5 ug/L 0.8 ug/L	0.5 ug/L 320 ug/L	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
1,1,1-Trichloroethane u	ıg/L	0.5	0.5 ug/L	23 ug/L	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)
	ıg/L ıg/L	0.5 0.5	0.5 ug/L 0.5 ug/L	0.5 ug/L 0.5 ug/L	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
Trichlorofluoromethane u	ig/L	1.0	150 ug/L	2000 ug/L	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
	ıg/L	0.5	0.5 ug/L	0.5 ug/L	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5) ND (0.5)	ND (0.5)	ND (0.5)
	ıg/L ıg/L	0.5 0.5			ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	13.6 3.5	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)	ND (0.5) ND (0.5)
Xylenes, total u	ığ/L	0.5	72 ug/L	72 ug/L	ND (0.5)	ND (0.5)	ND (0.5)	17.1	ND (0.5)	ND (0.5)	ND (0.5)
Hydrocarbons F1 PHCs (C6-C10) u	ıg/L	25	420 ug/L	420 ug/L	ND (25)	ND (25)	ND (25)	ND (25)	N/A	N/A	N/A
F2 PHCs (C10-C16) u	ıg/L	100	150 ug/L	150 ug/L	ND (100)	ND (100)	ND (100)	ND (100)	N/A	N/A	N/A
	ig/L	100	500 ug/L	500 ug/L	ND (100)	ND (100)	203 ND (100)	ND (100)	N/A	N/A N/A	N/A
F4 PHCs (C34-C50) u Semi-Volatiles	ıg/L	100	500 ug/L	500 ug/L	ND (100)	ND (100)	ND (100)	ND (100)	N/A	IN/A	N/A
Acenaphthene u	ıg/L	0.05	4.1 ug/L	17 ug/L	ND (0.05)	ND (0.10)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
	ıg/L ıg/L	0.05 0.01	1 ug/L 0.1 ug/L	1 ug/L 1 ug/L	ND (0.05) ND (0.01)	ND (0.10) ND (0.02)	ND (0.05) ND (0.01)	ND (0.05) ND (0.01)	N/A N/A	N/A N/A	N/A N/A
Benzo[a]anthracene u	ıg/L	0.01	0.2 ug/L	1.8 ug/L	ND (0.01)	ND (0.02)	ND (0.01)	ND (0.01)	N/A	N/A	N/A
Benzo[a]pyrene u	ig/L	0.01	0.01 ug/L	0.81 ug/L	ND (0.01)	ND (0.02)	ND (0.01)	ND (0.01)	N/A	N/A	N/A
		0.05 0.05	0.1 ug/L 0.2 ug/L	0.75 ug/L 0.2 ug/L	ND (0.05) ND (0.05)	ND (0.10) ND (0.10)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	N/A N/A	N/A N/A	N/A N/A
Benzo[k]fluoranthene u	ig/L	0.05	0.1 ug/L	0.4 ug/L	ND (0.05)	ND (0.10)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
		0.05 0.05	0.1 ug/L	0.7 ug/L	ND (0.05)	ND (0.10) ND (0.10)	ND (0.05)	ND (0.05)	N/A	N/A N/A	N/A N/A
	ıg/L ıg/L	0.05	0.2 ug/L 0.4 ug/L	0.4 ug/L 44 ug/L	ND (0.05) ND (0.01)	ND (0.10) 0.12	ND (0.05) ND (0.01)	ND (0.05) ND (0.01)	N/A N/A	N/A N/A	N/A N/A
Fluorene u	ıg/L	0.05	120 ug/L	290 ug/L	ND (0.05)	ND (0.10)	ND (0.05)	ND (0.05)	N/A	N/A	N/A
	ig/L	0.05 0.05	0.2 ug/L 2 ug/L	0.2 ug/L 1500 ug/L	ND (0.05) ND (0.05)	ND (0.10) ND (0.10)	ND (0.05) ND (0.05)	ND (0.05) ND (0.05)	N/A N/A	N/A N/A	N/A N/A
	ıg/L ıg/L	0.05	2 ug/L 2 ug/L	1500 ug/L 1500 ug/L	ND (0.05) ND (0.05)	ND (0.10) ND (0.10)	ND (0.05)	ND (0.05)	N/A N/A	N/A	N/A N/A
	ıg/L	0.10	2 ug/L	1500 ug/L	ND (0.10)	ND (0.20)	ND (0.10)	ND (0.10)	N/A	N/A	N/A
Methylnaphthalene (1&2) u			17	7 ug/L	ND (0.05)	0.16	ND (0.05)	ND (0.05)	N/A	N/A	N/A
Methylnaphthalene (1&2) u Naphthalene u	ıg/L	0.05	7 ug/L								
Methylnaphthalene (1&2) u Naphthalene u Phenanthrene u	ıg/L ıg/L ıg/L	0.05 0.05 0.01	0.1 ug/L 0.2 ug/L	380 ug/L 5.7 ug/L	ND (0.05) ND (0.01)	ND (0.10) 0.10	ND (0.05) ND (0.01)	ND (0.05) ND (0.01)	N/A N/A	N/A N/A	N/A N/A

Sample Notes BOLD BOLD ND N/A

- concentration meets or exceeds O.Reg. 153/04 Table 1 (non-agricultural) criteria
 - concentration meets or exceeds O.Reg. 153/04 Table 7 (non-potable, shallow soil, anyl land use, coarse grained soil) criteria
 - concentration not detected above Method Detection Limit
 - Parameter not Analysed by laboratory

Maximum Soil Parameter Concentrations Phase Two Environmental Site Assessment 811 Gladstone Avenue Complex Ottawa, Ontario

			O.Reg.153/04 Table	O.Reg.153/04 Table			
			Background	non-potable, shallow soil (coarse texture)	Maximum Soil Concentration	sample location	sample depth
Parameter	Units	MDL	non-agricultural	residential/ parkland/ institutional			(mBG)
Metals							
Antimony	ug/g dry	1.0	1.3 ug/g dry	7.5 ug/g dry	ND	all	
Arsenic	ug/g dry	1.0	18 ug/g dry	18 ug/g dry	8.0	BH2 / MW2(SS1)	0.4-0.6 mBG
Barium	ug/g dry	1.0	220 ug/g dry	390 ug/g dry	296	BH2 / MW2(SS1)	0.4-0.6 mBG
Beryllium Boron	ug/g dry ug/g dry	1.0 1.0	2.5 ug/g dry 36 ug/g dry	4 ug/g dry 120 ug/g dry	ND 8.3	all BH2 / MW2(SS1)	0.4-0.6 mBG
Cadmium	ug/g dry ug/g dry	0.5	1.2 ug/g dry	1.2 ug/g dry	ND	all	0.4-0.0 IIIBG
Chromium	ug/g dry	1.0	70 ug/g dry	160 ug/g dry	32.7	BH2 / MW2(SS1)	0.4-0.6 mBG
Cobalt	ug/g dry	1.0	21 ug/g dry	22 ug/g dry	8.5	BH2 / MW2(SS1)	0.4-0.6 mBG
Copper	ug/g dry	1.0	92 ug/g dry	140 ug/g dry	54.1	BH2 / MW2(SS1)	0.4-0.6 mBG
Lead Molybdenum	ug/g dry	1.0 1.0	120 ug/g dry 2 ug/g dry	120 ug/g dry	486 1.6	BH2 / MW2(SS1) DUP (duplicate of BH2/MW2(SS1))	0.4-0.6 mBG 0.4-0.6 mBG
Nickel	ug/g dry ug/g dry	1.0	82 ug/g dry	6.9 ug/g dry 100 ug/g dry	17.5	BH2 / MW2(SS1)	0.4-0.6 mBG
Selenium	ug/g dry	1.0	1.5 ug/g dry	2.4 ug/g dry	ND	all	
Silver	ug/g dry	0.5	0.5 ug/g dry	20 ug/g dry	ND	all	
Thallium	ug/g dry	1.0	1 ug/g dry	1 ug/g dry	ND	all	
Uranium Vanadium	ug/g dry	1.0 1.0	2.5 ug/g dry	23 ug/g dry	ND 32.3	all BH2 / MW2(SS1)	0.4-0.6 mBG
Zinc	ug/g dry ug/g dry	1.0	86 ug/g dry 290 ug/g dry	86 ug/g dry 340 ug/g dry	32.3 265	BH2 / MW2(SS1) BH6	0.4-0.0 IIIDG
Volatiles	0.001	1					
Acetone	ug/g dry	0.50	0.5 ug/g dry	16 ug/g dry	ND	all	
Benzene	ug/g dry	0.02	0.02 ug/g dry	0.21 ug/g dry	ND	all	
Bromodichloromethane	ug/g dry	0.05	0.05 ug/g dry	13 ug/g dry	ND	all	
Bromoform Bromomethane	ug/g dry	0.05 0.05	0.05 ug/g dry	0.27 ug/g dry	ND ND	all all	
Bromomethane Carbon Tetrachloride	ug/g dry ug/g dry	0.05	0.05 ug/g dry 0.05 ug/g dry	0.05 ug/g dry 0.05 ug/g dry	ND ND	all	
Chlorobenzene	ug/g dry	0.05	0.05 ug/g dry	2.4 ug/g dry	ND	all	
Chloroform	ug/g dry	0.05	0.05 ug/g dry	0.05 ug/g dry	ND	all	
Dibromochloromethane	ug/g dry	0.05	0.05 ug/g dry	9.4 ug/g dry	ND	all	
Dichlorodifluoromethane	ug/g dry	0.05	0.05 ug/g dry	16 ug/g dry	ND	all	
1,2-Dichlorobenzene 1,3-Dichlorobenzene	ug/g dry ug/g dry	0.05 0.05	0.05 ug/g dry 0.05 ug/g dry	3.4 ug/g dry 4.8 ug/g dry	ND ND	all all	
1,4-Dichlorobenzene	ug/g dry	0.05	0.05 ug/g dry	0.083 ug/g dry	ND	all	
1,1-Dichloroethane	ug/g dry	0.05	0.05 ug/g dry	3.5 ug/g dry	ND	all	
1,2-Dichloroethane	ug/g dry	0.05	0.05 ug/g dry	0.05 ug/g dry	ND	all	
1,1-Dichloroethylene	ug/g dry	0.05	0.05 ug/g dry	0.05 ug/g dry	ND	all	
cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene	ug/g dry ug/g dry	0.05 0.05	0.05 ug/g dry 0.05 ug/g dry	3.4 ug/g dry 0.084 ug/g dry	ND ND	all all	
1,2-Dichloropropane	ug/g dry ug/g dry	0.05	0.05 ug/g dry 0.05 ug/g dry	0.05 ug/g dry	ND	all	
cis-1,3-Dichloropropylene	ug/g dry	0.05			ND	all	
trans-1,3-Dichloropropylene	ug/g dry	0.05			ND	all	
1,3-Dichloropropene, total	ug/g dry	0.05	0.05 ug/g dry	0.05 ug/g dry	ND	all	
Ethylbenzene	ug/g dry	0.05	0.05 ug/g dry	2 ug/g dry	ND	all	
Ethylene dibromide (dibromoethane Hexane	ug/g dry ug/g dry	0.05 0.05	0.05 ug/g dry 0.05 ug/g dry	0.05 ug/g dry 2.8 ug/g dry	ND ND	all all	
Methyl Ethyl Ketone (2-Butanone)	ug/g dry	0.50	0.5 ug/g dry	16 ug/g dry	ND	all	
Methyl Isobutyl Ketone	ug/g dry	0.50	0.5 ug/g dry	1.7 ug/g dry	ND	all	
Methyl tert-butyl ether	ug/g dry	0.05	0.05 ug/g dry	0.75 ug/g dry	ND	all	
Methylene Chloride	ug/g dry	0.05	0.05 ug/g dry	0.1 ug/g dry	ND	all	
Styrene 1,1,1,2-Tetrachloroethane	ug/g dry ug/g dry	0.05 0.05	0.05 ug/g dry 0.05 ug/g dry	0.7 ug/g dry 0.058 ug/g dry	ND ND	all all	
1,1,2,2-Tetrachloroethane	ug/g dry ug/g dry	0.05	0.05 ug/g dry 0.05 ug/g dry	0.05 ug/g dry	ND	all	
Tetrachloroethylene	ug/g dry	0.05	0.05 ug/g dry	0.28 ug/g dry	ND	all	
Toluene	ug/g dry	0.05	0.2 ug/g dry	2.3 ug/g dry	ND	all	
1,1,1-Trichloroethane	ug/g dry	0.05	0.05 ug/g dry	0.38 ug/g dry	ND	all	
1,1,2-Trichloroethane	ug/g dry	0.05 0.05	0.05 ug/g dry 0.05 ug/g dry	0.05 ug/g dry	ND ND	all all	
Trichloroethylene Trichlorofluoromethane	ug/g dry ug/g dry	0.05	0.05 ug/g dry 0.25 ug/g dry	0.061 ug/g dry 4 ug/g dry	ND ND	all	
Vinyl Chloride	ug/g dry	0.02	0.02 ug/g dry	0.02 ug/g dry	ND	all	
m/p-Xylene	ug/g dry	0.05			ND	all	
o-Xylene	ug/g dry	0.05	0.05		ND	all	
Xylenes, total Hydrocarbons	ug/g dry	0.05	0.05 ug/g dry	3.1 ug/g dry	ND	all	
F1 PHCs (C6-C10)	ug/g dry	7	25 ug/g dry	55 ug/g dry	ND	all	
F2 PHCs (C10-C16)	ug/g dry	4	10 ug/g dry	98 ug/g dry	ND	all	
F3 PHCs (C16-C34)	ug/g dry	8	240 ug/g dry	300 ug/g dry	109	BH2 / MW2(SS1)	0.4-0.6 mBG
F4 PHCs (C34-C50)	ug/g dry	6	120 ug/g dry	2800 ug/g dry	174	DUP	0.4-0.6 mBG
Semi-Volatiles	uala de :	0.02	0.072 us/s ds	7 Quala das	2 92	PHG	
Acenaphthene Acenaphthylene	ug/g dry ug/g dry	0.02 0.02	0.072 ug/g dry 0.093 ug/g dry	7.9 ug/g dry 0.15 ug/g dry	2.83 0.35	BH6 DUP (duplicate of BH2/MW2(SS1))	0.4-0.6 mBG
Anthracene	ug/g dry ug/g dry	0.02	0.16 ug/g dry	0.67 ug/g dry	5.61	BH6	
Benzo[a]anthracene	ug/g dry	0.02	0.36 ug/g dry	0.5 ug/g dry	6.34	BH6	
Benzo[a]pyrene	ug/g dry	0.02	0.3 ug/g dry	0.3 ug/g dry	4.91	BH6	
Benzo[b]fluoranthene	ug/g dry	0.02	0.47 ug/g dry	0.78 ug/g dry	5.30	BH6	
Benzo[g,h,i]perylene	ug/g dry	0.02		6.6 ug/g dry	2.85	BH6	
Benzo[k]fluoranthene Chrysene	ug/g dry ug/g dry	0.02 0.02	0.48 ug/g dry 2.8 ug/g dry	0.78 ug/g dry 7 ug/g dry	3.06 7.03	BH6 BH6	
Dibenzo[a,h]anthracene	ug/g dry ug/g dry	0.02	0.1 ug/g dry	0.1 ug/g dry	0.93	BH6	
Fluoranthene	ug/g dry	0.02	0.56 ug/g dry	0.69 ug/g dry	17.4	BH6	
Fluorene	ug/g dry	0.02	0.12 ug/g dry	62 ug/g dry	3.04	BH6	
Indeno[1,2,3-cd]pyrene	ug/g dry	0.02	0.23 ug/g dry	0.38 ug/g dry	2.92	BH6	0.4.0.0
1-Methylnaphthalene	ug/g dry	0.02 0.02	0.59 ug/g dry	0.99 ug/g dry	0.06 0.07	BH2 / MW2(SS1)	0.4-0.6 mBG 0.4-0.6 mBG
2-Methylnaphthalene Methylnaphthalene (1&2)	ug/g dry ug/g dry	0.02	0.59 ug/g dry 0.59 ug/g dry	0.99 ug/g dry 0.99 ug/g dry	0.07 0.13	BH2 / MW2(SS1) BH2 / MW2(SS1)	0.4-0.6 mBG 0.4-0.6 mBG
Naphthalene	ug/g dry ug/g dry	0.04	0.09 ug/g dry	0.6 ug/g dry	0.13	BH2 / WW2(331) BH6	0.70.01100
Phenanthrene	ug/g dry	0.02	0.69 ug/g dry	6.2 ug/g dry	23.2	BH6	
Pyrene	ug/g dry	0.02	1 ug/g dry	78 ug/g dry	13.7	BH6	
Notes BOLD			or exceeds O Reg. 15				

Notes BOLD BOLD ND

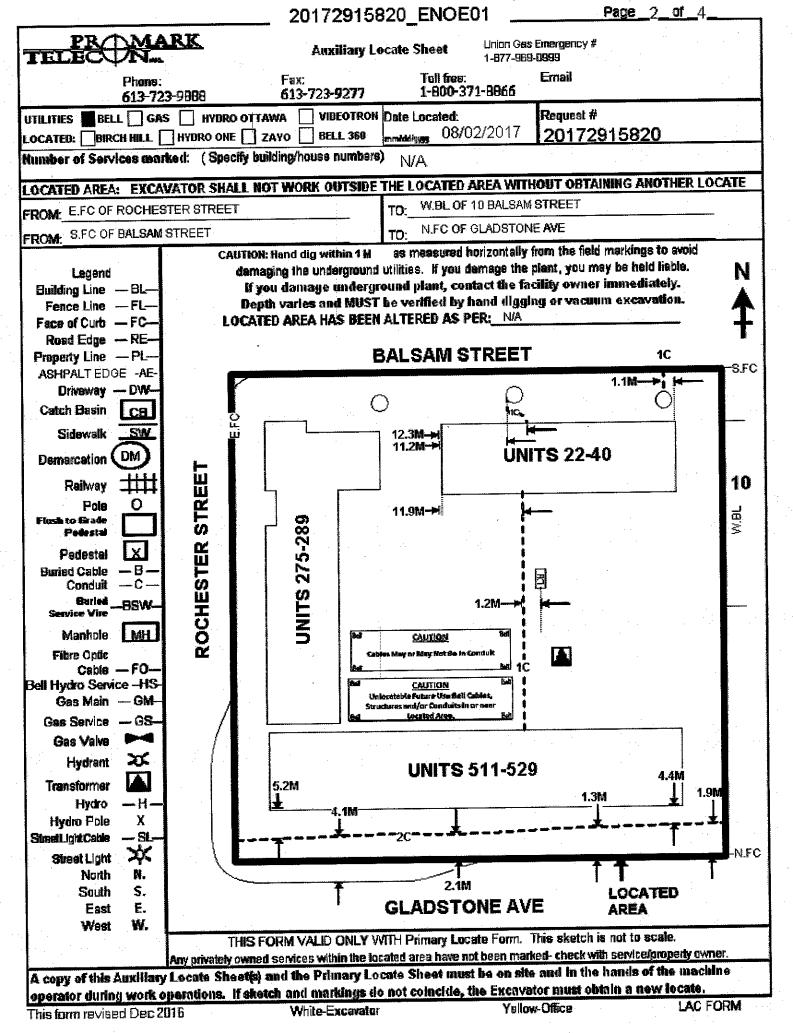
concentration meets or exceeds O.Reg. 153/04 Table 1 (non-agricultural) criteria
 concentration meets or exceeds O.Reg. 153/04 Table 7 (non-potable, shallow soil, residential land use, coarse grained soil) criteria
 concentration not detected above Method Detection Limit

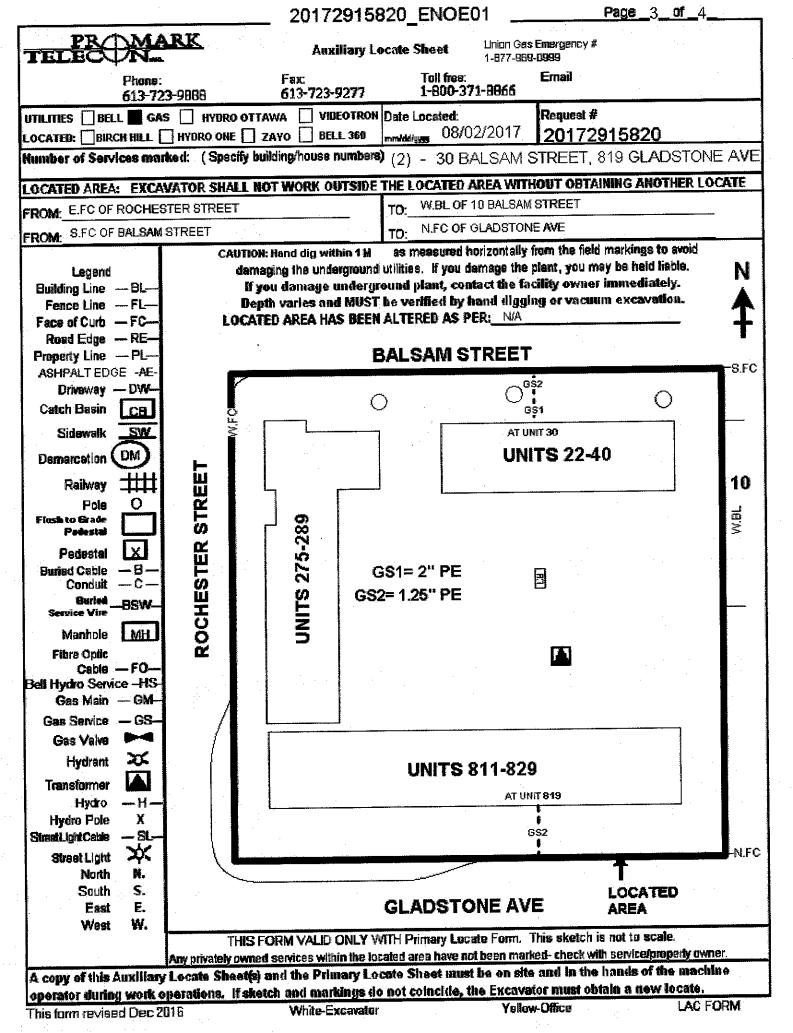
Maximun Groundwater Parameter Concentrations Phase Two Environmental Site Assessment 811 Gladstone Avenue Complex Ottawa, Ontario

			O.Reg.153/04 Table	O.Reg.153/04			
			1 background	Table 7 shallow soil,			
			background	nonpotable	Maximum		
Parameter	Units	MDL	any	any	groundwater concentration	Sample ID	Location
General Inorganics							
pH Metals	pH Units	0.1			8.3 ND	BH2/MW2	BH2-17 / MW2-17 all
Antimony	ug/L	0.5	1.5 ug/L	16000 ug/L	0.7	BH5 / MW3	BH5-17 / MW3-17
Arsenic	ug/L	1	13 ug/L	1500 ug/L	2 75	BH2 / MW2	BH2-17 / MW2-17
Barium Beryllium	ug/L ug/L	1 0.5	610 ug/L 0.5 ug/L	23000 ug/L 53 ug/L	75 ND	BH5 / MW3	BH5-17 / MW3-17 all
Boron	ug/L	10	1700 ug/L	36000 ug/L	454	BH2 / MW2	BH2-17 / MW2-17
Cadmium Chromium	ug/L ug/L	0.1 1	0.5 ug/L 11 ug/L	2.1 ug/L 640 ug/L	ND ND		all all
Cobalt	ug/L ug/L	0.5	3.8 ug/L	52 ug/L	0.6	BH5 / MW3	aii BH5-17 / MW3-17
Copper	ug/L	0.5	5 ug/L		5.8	DUP	duplicate sample of BH5-17 / MW3-17
Lead Molybdenum	ug/L ug/L	0.1 0.5	1.9 ug/L 23 ug/L	20 ug/L 7300 ug/L	0.3 39.9	BH1 / MW1 BH2 / MW2	BH1-17 / MW1-17 BH2-17 / MW2-17
Nickel	ug/L	1	14 ug/L	390 ug/L	2	BH2 / MW2 and BH5 / MW3	BH2-17 / MW2-17 and BH5-17 / MW3-17
Selenium Silver	ug/L	1 0.1	5 ug/L 0.3 ug/L	50 ug/L	ND		all - "
Sodium	ug/L ug/L	200	490000 ug/L	1.2 ug/L 1800000 ug/L	ND 329000	BH1/MW1	all BH1-17 / MW1-17
Thallium	ug/L	0.1	0.5 ug/L	400 ug/L	ND		all
Uranium Vanadium	ug/L	0.1 0.5	8.9 ug/L 3.9 ug/L	330 ug/L 200 ug/L	1.9 0.6	BH2 / MW2 BH2 / MW2	BH2-17 / MW2-17 BH2-17 / MW2-17
Zinc	ug/L ug/L	5	160 ug/L	890 ug/L	16	BH5 / MW3	BH5-17 / MW3-17
Volatiles			-	-			
Acetone Benzene	ug/L ug/L	5.0 0.5	2700 ug/L 0.5 ug/L	100000 ug/L 0.5 ug/L	ND ND		all all
Bromodichloromethane	ug/L ug/L	0.5	2 ug/L		2.9	BH5 / MW3	aii BH5-17 / MW3-17
Bromoform	ug/L	0.5	5 ug/L	5 ug/L	ND		all
Bromomethane Carbon Tetrachloride	ug/L ug/L	0.5 0.2	0.89 ug/L 0.2 ug/L	0.89 ug/L 0.2 ug/L	ND ND		all all
Chlorobenzene	ug/L	0.5	0.5 ug/L	140 ug/L	ND		all
Chloroform Dibromochloromethane	ug/L	0.5 0.5	2 ug/L	2 ug/L	ND		all
Dichlorodifluoromethane	ug/L ug/L	1.0	2 ug/L 590 ug/L	65000 ug/L 3500 ug/L	ND ND		all all
1,2-Dichlorobenzene	ug/L	0.5	0.5 ug/L	150 ug/L	ND		all
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ug/L	0.5 0.5	0.5 ug/L 0.5 ug/L	7600 ug/L 0.5 ug/L	ND		all
1,1-Dichloroethane	ug/L ug/L	0.5	0.5 ug/L 0.5 ug/L	0.5 ug/L 11 ug/L	ND ND		all all
1,2-Dichloroethane	ug/L	0.5	0.5 ug/L	0.5 ug/L	ND		all
1,1-Dichloroethylene cis-1,2-Dichloroethylene	ug/L ug/L	0.5 0.5	0.5 ug/L 1.6 ug/L	0.5 ug/L 1.6 ug/L	ND ND		all all
trans-1,2-Dichloroethylene	ug/L ug/L	0.5	1.6 ug/L	1.6 ug/L	ND		all
1,2-Dichloropropane	ug/L	0.5	0.5 ug/L	0.58 ug/L	ND		all
cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene	ug/L ug/L	0.5 0.5			ND ND		all all
1,3-Dichloropropene, total	ug/L	0.5	0.5 ug/L	0.5 ug/L	ND		all
Ethylbenzene	ug/L		0.5 ug/L	54 ug/L	3.5	DUP	duplicate sample of BH5-17 / MW3-17
Ethylene dibromide (dibromoeth Hexane	ug/L ug/L	0.2 1.0	0.2 ug/L 5 ug/L	0.2 ug/L 5 ug/L	ND ND		all all
Methyl Ethyl Ketone (2-Butanon	ug/L	5.0	400 ug/L	21000 ug/L	ND		all
Methyl Isobutyl Ketone Methyl tert-butyl ether	ug/L ug/L	5.0 2.0	640 ug/L 15 ug/L	5200 ug/L 15 ug/L	ND ND		all all
Methylene Chloride	ug/L ug/L	5.0	15 ug/L	26 ug/L	ND		all
Styrene	ug/L	0.5	0.5 ug/L	43 ug/L	ND		all
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	ug/L ug/L	0.5 0.5	1.1 ug/L 0.5 ug/L	1.1 ug/L 0.5 ug/L	ND ND		all all
Tetrachloroethylene	ug/L	0.5	0.5 ug/L	0.5 ug/L	ND		all
Toluene	ug/L	0.5	0.8 ug/L	320 ug/L	ND		all
1,1,1-Trichloroethane 1,1,2-Trichloroethane	ug/L ug/L	0.5 0.5	0.5 ug/L 0.5 ug/L	23 ug/L 0.5 ug/L	ND ND		all all
Trichloroethylene	ug/L	0.5	0.5 ug/L	0.5 ug/L	ND		all
Trichlorofluoromethane	ug/L	1.0	150 ug/L	2000 ug/L	ND		all
Vinyl Chloride m/p-Xylene	ug/L ug/L	0.5 0.5	0.5 ug/L	0.5 ug/L	ND 13.6	DUP	all duplicate sample of BH5-17 / MW3-17
o-Xylene	ug/L	0.5			3.5	DUP	duplicate sample of BH5-17 / MW3-17
Xylenes, total Hydrocarbons	ug/L	0.5	72 ug/L	72 ug/L	17.1	DUP	duplicate sample of BH5-17 / MW3-17
F1 PHCs (C6-C10)	ug/L	25	420 ug/L	420 ug/L	ND		all
F2 PHCs (C10-C16)	ug/L	100	150 ug/L	150 ug/L	ND		all
F3 PHCs (C16-C34) F4 PHCs (C34-C50)	ug/L ug/L	100 100	500 ug/L 500 ug/L	500 ug/L 500 ug/L	203 ND	BH5 / MW3	BH5-17 / MW3-17 all
Semi-Volatiles	08/2	100	500 05/2	500 46/2			CAIT
Acenaphthene	ug/L	0.05	4.1 ug/L	17 ug/L	ND		all
Acenaphthylene Anthracene	ug/L ug/L	0.05	1 ug/L 0.1 ug/L	1 ug/L 1 ug/L	ND ND		all all
Benzo[a]anthracene	ug/L	0.01	0.2 ug/L	1.8 ug/L	ND		all
Benzo[a]pyrene	ug/L	0.01	0.01 ug/L	0.81 ug/L	ND		all
Benzo[b]fluoranthene Benzo[g,h,i]perylene	ug/L ug/L	0.05 0.05	0.1 ug/L 0.2 ug/L	0.75 ug/L 0.2 ug/L	ND ND		all all
Benzo[k]fluoranthene	ug/L	0.05	0.1 ug/L	0.4 ug/L	ND		all
Chrysene Dibenzo[a,h]anthracene	ug/L	0.05	0.1 ug/L 0.2 ug/L	0.7 ug/L 0.4 ug/L	ND		all
Fluoranthene	ug/L ug/L	0.05	0.2 ug/L 0.4 ug/L	0.4 ug/L 44 ug/L	ND 0.12	BH2/MW2	all BH2-17 / MW2-17
Fluorene	ug/L	0.05	120 ug/L	290 ug/L	ND		all
Indeno[1,2,3-cd]pyrene 1-Methylnaphthalene	ug/L ug/L	0.05	0.2 ug/L 2 ug/L	0.2 ug/L 1500 ug/L	ND ND		all all
2-Methylnaphthalene	ug/L ug/L	0.05	2 ug/L 2 ug/L	1500 ug/L	ND		all
Methylnaphthalene (1&2)	ug/L	0.10	2 ug/L	1500 ug/L	ND		all
Naphthalene Phenanthrene	ug/L ug/L	0.05 0.05	7 ug/L 0.1 ug/L	7 ug/L 380 ug/L	0.16 ND	BH2/MW2	BH2-17 / MW2-17 all
Pyrene	ug/L ug/L	0.01	0.2 ug/L	5.7 ug/L	ND 0.10	BH2/MW2	an BH2-17 / MW2-17
Notes BOLD				/04 Table 1 (non-agric)			

concentration meets or exceeds O.Reg. 153/04 Table 1 (non-agricultural) criteria
 concentration meets or exceeds O.Reg. 153/04 Table 7 (non-potable, shallow soil, anyl land use, coarse grained soil) criteria
 concentration not detected above Method Detection Limit

Notes BOLD BOLD ND


GHD 11140575 (3)


Appendices

Appendix A Utility Clearances

	UNDERGROU	UND SERVICE LOCATORS INC. DATE: Aug 14 2017
	Stan Pediar Locate Techni	cian tel 613-226-8750
	stanp@usi-1.c celi 613-986-7	7226 toll-free 877-248-3444 www.usi-1.com
	Client Name:	
	Job Location:	0
	Nature of wor	
	TELEPHONE:	DESCRIPTION OF PUBLIC LOCATES Utility in work area (Yes)/No - Located I - Marked I - See attached sketch I Notes: BELL IS IN WORK ZONE SEE ROMAN REPORT.
	GAS:	Utility in work area (Yes) No - Located I - Marked - See attached sketch I Notes: GAS IS W WORL ZOUS, SEE ROMANN REPORT.
	HYDRO: ሆፖጥሥት	Utility in work area: Yes No - Located - Marked - See attached sketch - Notes: HUDED OTTAVA IS IN WORK 2005, SEG PORTARE REPORT -
	WATER:	Utility in work area: Yes No- Located - Marked - See attached sketch - Notes: CUTM WATER + SEWER ARE CLEAR ON PRIVATE PREPERTY SEO CUTH REPORT.
·	CABLE:	Utility in work area: Yes/No - Located I - Marked I - See attached sketch I Notes: Robers 15 W Work Zowe, SEE Conversion Locaters Report
	TRAFFIC + STREET LI BUTS !	Utility in work area: Yes No) Located - Marked - See attached sketch . Notes: TRAFIC + STUST LILUTS ARE CLEAR, SEE REPORTS
		Utility in work area: Yes / No - Located 🗍 - Marked 🗍 - See attached sketch 🗍 Notes:
	Notes:	San TTARY SERVICES NOT LOCATED - GASAT 275-285? Not how
	Locators Nar	ne: <u>Jiputoblas</u> Signature: <u>E</u> EE

	<u> </u>	Primary	Locate Sh		gas Emerg 369-0999	ENCY #		-
Phone: 613-723-9066	Fax: 613-723-9		free: 00-371-886		mail:	,	Request 201729 NORMAL	
DTILITIES BELL GAS	HYDRO OTTAWA	ZAYO	evised Exca v N/A		Excavation 07/28/2017			Status NEGOTIATED Homeowner
BELL 360 VIBEOTRON equested by: KONCLE LAROCQUE	Company: USL	P	m/ddyyyy hane: 113)-226-8750		mm/ddl <u>ygy</u> Fax/email (613)-226-£			Contractor
	eived Date:	Locate	Address:811	, GLADST				
ami'ddiyyyy	ddiyyn	1 st inters.	BOOTH ST	[26	d Inters City:	ROCHEST	RSI
ype af work: BORE HOLES						OTTA	V#A	
NACH. DIG CORLOT-U DRILLING EOREHOLES T ROCHESTER ST, AND FROM SIDE//4 .75.769239, 45.405567, NB_SEGME	LK ON BALSAM ST T ITS::1, NO_PLAN: 613	D SIDEWALK OF	N GLADSTONE	AYC.	TWATSON, O			-
Bell Enbridge Gas Mark Clear Mark Clear 1 1		RCH HILL k Clear M N/A		Mark Clea N/A	ar Mark	i Clear MA	Mark [Clean N/A	
OCATED AREA: EXCAVAT	OR SHALL NOT	NORK OUTS	IDE THE LO	CATED AF	REA WITH	OUT O	BTAINING A	NOTHER LOCATE.
Records Reference: G MOBI			d Party Notil					····
Map Network X # PN	10TT01738							· · · · · · · · · · · · · · · · · · ·
Byers 📕 Datapak: 📕 🗸	VC Multiviewer		***	DANGER		T PR	DCEED***	
	252, 6N86-2		Buried	high volt	age cable	es with	in 1.5M of	
Other FN-3056-3			the lo	cated are	a. You M	USTs	end locate	
DPT Remarks:							ttawa.co	
	· · · · ·		or con		o Ottawa rther info		3-738-641	
			AFT				NUMBER #	5
					13-738-6			
			L	Anniv Sti	cker Here	if Requ	red	
Excavator shall notify & rec	eive a clearance	from Utility	prior to ext					
Telecon Hig	h Priority Cable	Cen	nal Office Vi	cinity				<u></u>
Method of Field Marking:	Paint_Stakes	Flags 0	fiset Flays	T) redsO	elecom=	Orange	,Gas-Yello	w, Hydro OttRed
Caution: Locates are VOID at	ter 30 days.Hwiro 0	ina valid for 50 c	days See Dis	claimer for 1	tha spacifi	c Facilit	y Owner's G	uidelines.
Caution: Any changes to loca Located Area without a new lo service/property owner. For a	cate. Privately own	ned services v	within the loc	ated area i	or must no have not b	een mai	ked - check	with
ontario One Call at 1-800-400-	2255 or www.o	nicall.cons.		ALL MEA	SUREMEN	TS ARE	TAKEN WITH	MEASURING WHEEL
Locator Name: DENNY EMMA-			1:00		(& Fax		t on Site	Emailed
ID # : <mark>1690</mark>	En	d Time : <u>1</u> 4	4:00	_ Print:		1	<u>NA</u>	
Date 08/02/20 A copy of this Primary Lo		al Hours: 3.0					in the hear	to of the marhine
	Oh-mat as d	م المصحة التحديث	sente Shot	angi mangi	DR OR ŠI	TR 800	기가 비용 위전에	as the new markings

	_ 20172915820_ENOE01 _	
A DESCRIPTION AND ADDRESS OF ADDRES		Gas Emergency # 1-969-0999
Phone: 613-723-9888	Fex: Toll free: 613-723-9277 1-800-371-8866	Email
	AWA VIDEOTRON Date Located	Request # 20172915820
imber of Services marked: (Specify b		
	OT WORK OUTSIDE THE LOCATED AREA WI	
OM: E.FC OF ROCHESTER STREET	TO: W.BL OF 10 BALSA	······
ROM: S.FC OF BALSAM STREET	TO: N.FC OF GLADSTO	INE AVE
CAUTIO	it: Hand dig within 1.5M as measured horizontally	y from the field markings to avoid
	aging the underground utilities. If you damage the	e plant, you may be held liable.
Building Line — BL— If y	you damage underground plant, contact the f wh varies and MUST be verified by hand digg	acility owner immediately.
1	NO VARIES AND MUST DE VENNEU DY HANG (199 TED AREA HAS BEEN ALTERED AS PER:	Burg of Auchania excurringar.
Face of Curb — FC— LOCAT Road Edge — RE—		
Property Line	BALSAM STREE	The second second second second
ASHPALTEDGE -AE-		
Driveway - DW-		
Catch Basin CB	¥	\checkmark
Sidewalk SW		
Demarcation DM		NITS 22-40
	10.9M	
Railway 1111 Ш	L, 2.0M → L	10
Railway 🗰 🗒		W.BL
	575-289	× ×
Pedestal X H Buried Cable - B - H Conduit - C - V		7.8M
Buried Cable — B — 📕	N NT	
	0 7.2M-+	
Manhole MHL O	Concrete encased H	•
Fibre Optic		· _ [1]
Cable — FO—		
Gas Main — GM—	Donavatti y owned electrical cable	es in or mear the Located Area not marked
Gas Service — GS	HYDRO SHOWN as reference only,	please contact site developer
Gas Valve	EMPTY CONDUCTS shown as refere	ace only, unable to locate
		DANGER DO NOT PROCEED
	UNITS 811-829	Buried high voltage cables within 1.5M of the located area. You MUST sendlocate to
Transformer		HOLauperrisions@inveroottawa.com or contact Hydro Ottawa.at 613-788-6418
Hydro Ottawa — H — Hydro Pole X		for further information.
Hydro Pole X SmestLightCable — SL—		613-738-6422
Street Light 🔆		N.
North N.		Ť
South S.	<u> </u>	LOCATED
East E.	GLADSTONE A	VE AREA
West W.	FORM VALID ONLY WITH Primary Locate Form.	This sketch is not to scale.
	PURAN VALID UNKLY WITH PHILIPPURAN LUCARE FUILL.	The one of the restored a line of the second states and the second
THIS I Anu privataki aumo	d centices within the Jocaled area nave not been me	TREA- CHECK WIRL DELARCEMUNCH CALLER
Any privately owne	d services within the located area have not been ma and the Primary Locate Sheet must be on sl atch and markings do not coincide, the Excav	ite and in the hands of the machine

February 9 2015

To all Excavators:

Bell locates are now valid for the life of the excavation project and will not automatically be relocated every 60 days.

Please note the following for the above to apply:

- a) Construction within the located area begins within 60 days of the "locate completed" date on the original ticket.
- b) The construction company named on the locate remains active on the site.

Bell expects excavators will protect and preserve the paint marks put down on the original locate ticket. If markings are removed due to weather or excavation work the excavator is expected to recreate the markings based on the tie-in measurements provided on the original locate ticket.

If an excavator would like their markings freshened up they can contact Promark (the Bell Canada Locate Service Provider in this area) directly to arrange for them to place fresh markings on the ground however this will be at the excavators expense. Promark can be reached at 613-723-9888.

The locate will be considered officially expired one day after the final day of construction.

Thank you,

Bell Canada

DISCLAIMER

Warning!

The Excavator must have a copy of this locate on the job site during excavation.

Located Area: The Excavator must not work outside the area indicated by the Located Area in the Diagram without a further locate by the Company

Locate the plant: The plant location information provided is the best we have available but constitutes only an estimate. Depth of underground plant varies and the exact location must be determined by hand digging prior to excavation with mechanical equipment.

Mechanical equipment must not be used within one metre of the estimated location of the plant.

Hydro Ottawa must be notified prior to excavation and inspector on site

Expose the plant: Once the plant has been located by hand digging, it must be exposed along its length adjacent to or in the immediate vicinity of the proposed excavation. For this purpose, mechanical equipment must not be used within 0.5 metres of the plant.

Digging around the exposed plant: When the plant has been exposed, any further excavation within 0.3 metres, must only be done by hand digging and not with mechanical equipment.

Support Requirements: If the underground plant is exposed over a distance of more than 1.25 metres, the Facility Owner must be notified. Underground plant must be supported at all times.

O. Reg. 210/01 Oil and Gas Pipeline systems EXCERPTS

9. (1) No person shall dig, bore, trench, grade, excavate or break ground with mechanical equipment or explosives without first ascertaining the location of any pipeline that may be interfered with.

10. No person shall interfere with or damage any pipeline without authority to do so.

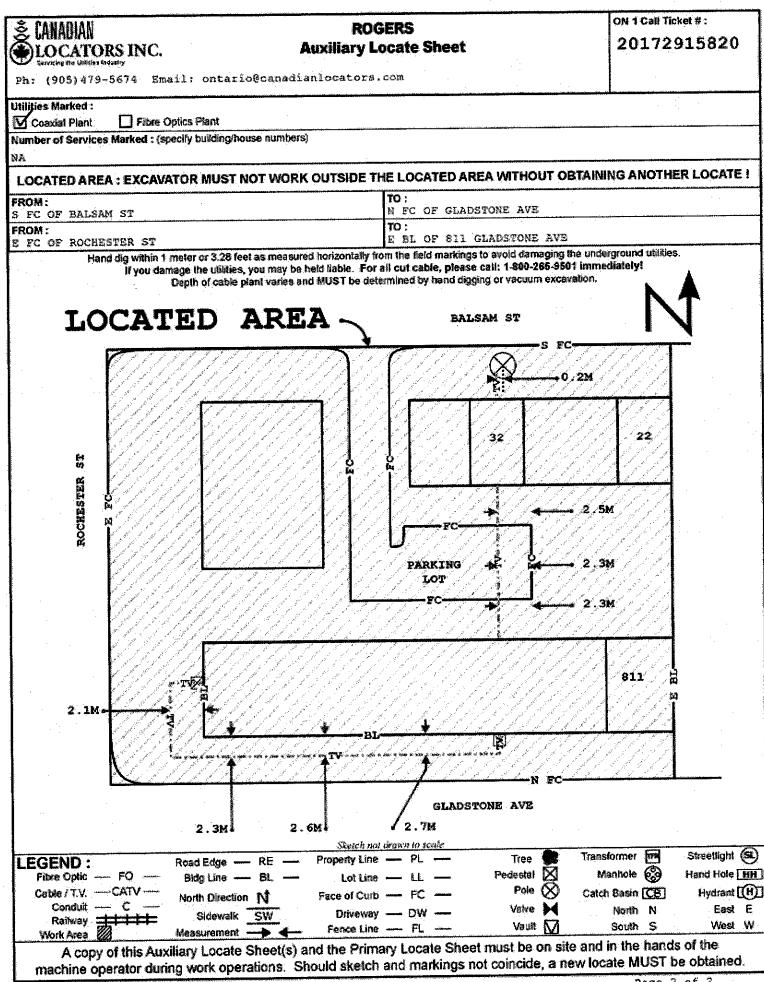
Technical Standards & Safety Act 2000 EXCERPT

37 (1) Every person who contravenes or fails to comply with any provision of this act or the regulations; etc... is guility of an offense and on conviction is liable to a fine of not more than \$50,000 or to imprisonment for a term of not more than one year, or to both.

Caution: The markings may disappear or be misplaced. Should sketch and markings not coincide, Excavator must obtain a new locate. This is based on information given at the time. Any changes to location or nature of work require a new locate. The Excavator must not work outside the indicated Located Area without a further locate. Privately owned services within the located area have not been marked - check with service/property owner.

Locate is VOID after 30 days.

For remarks contact Ontario One Call 1-800-400-2255. or www.on1call.com


Service Request Details

ervice Request	1107213	Lagan Case ID: 20172915	8201					
Source:	Contractor	Created By: Ga Maxpusr						
Priority:		Reported By:						
	RESOLVED	Initiated: 2017-Jul-1	19 4:45 PM					
- antion Information								
ocation Information	811 GLADSTONE AVE	Range:	Unit:					
	BOOTH ST / ROCHESTER	-	Municipality: 00					
	The work area is clea		wer pipes owned by the City of					
	Street Range:811- Street:GLADSTONE AVE Intersect 1:BOOTH ST Intersect 2:ROCHESTER Door Numbers:- Municipality:							
Requestor Information								
	NIQUE LAROCQUE	Phones	Cell:					
	TAYLOR CREEK DR	Res:						
City: ORL		Bus: 6132268750) Ext:					
	Unit:	Fax:	n) - (1/2)///////////////////////////////////					
Postal Code: K4A								
	anments							
Postal Code: K4A Call Back & Other Assig Responsibilities Service Request	gnments	Work Order # Work Or	der					
Call Back & Other Assig Responsibilities Service Request	gnments	Work Order # Work Or	der					
Call Back & Other Assig Responsibilities Service Request			rder rvice: ESD					
Call Back & Other Assig Responsibilities Service Request Request Details	Appoint		rvice: ESD					
Call Back & Other Assig Responsibilities Service Request Request Details Start Date:	Appoint Iul-20	ment Time: Ser	rvice: ESD					
Call Back & Other Assig Responsibilities Service Request Request Details Start Date: Finish Date: 2017-J	Appoint Iul-20	ment Time: Ser Classification: LOCA	rvice: ESD					

1 /

2

ž canadian		ROGE	25	ON 1 Call Ticket # :				
	-	* •	2017291582					
DLOCATORS	INC.	Primary Loca	Primary Locate Sheet					
h: (905)479-56	74 Email: ontario	Beanadianlocators.com	a).					
ntractor / Excavator	• • • •		Contact Name :					
<u>s t</u>	All, Phone :	Email :	MONIQUE LAROCQUE	۰				
: 3-226-8750	AIL, Phone :	moniquel@usl-1.com	R.					
ceived Date :	Excavation Date :	Revised Excevation Date:	Type of Work :					
1 19 2017	Jul 26 2017		BORE HOLES City / Municipality :					
ate Address : 1 Gladstone A	VE		OTTAWA, ONTARIO					
arest Intersection :								
OTH ST & ROCH Thod of Field Markin								
	ng: 🗹 Paint 🗌 Si	lakes 🔲 Flags	·	······				
, TO SIDEWALK	ON ROCHESTER ST,	AND FROM SIDEWALK ON	BALSAM ST TO SIDEWAN	DING LINE OF 404 TO 414 BOC LK ON GLADSTONE AVE.				
illies Marked :	<u></u>							
	Fibre Optics Plant							
ngth :	Length :							
110 m	na							
	. This local	e is for KINFERS pl	ant / inspired marketic	ONTE:				
	·							
$f_{i,j} = f_{i,j} = f_{i,j} + f_{i,j}$		An an an Barran Anna Ana	e atalan di karan ana mangana sa sa sa					
	·	Apply sticket he	and the residences of the					
	cate is VOID after							

Ontario One Call TF

City of Ottawa Street Light Locate

STANDARD Header Code: NOTICE OF INTENT TO EXCAVATE NORMAL Request Type: Ticket No: 20172915820 Original Call Date: 07/19/2017 4:45:13 PM Work To Begin Date: 07/26/2017 USL Company: Pager: MONIQUE LAROCQUE Contact Name: Cell: Contact Phone: (613)-226-8750 ext. Fax: (613)-226-8677 ext. Alt. Phone: Alternate Contact: JEFF FORRESTER ΟΤΤΑΨΑ Place: GLADSTONE AVE 811 Street: Nearest Intersecting Street: BOOTH ST ROCHESTER ST Second Intersecting Street:

Subdivision: OTTAWA

Additional Dig Information:

CORLOT=U DRILLING BOREHOLES THROUGHOUT PROPERTY. CLEAR FROM THE WEST BUILDING LINE OF 404 TO 414 BOOTH ST, TO SIDEWALK ON ROCHESTER ST, AND FROM SIDEWALK ON BALSAM ST TO SIDEWALK ON GLADSTONE AVE. NO PLAN::613 567

vvo/ JOB #: ANYTIME Type Of Work: BORE HOLES

Remarks:

-75.709239 45.405567 NB_SEGMENTS::1 BCOE01 ENVMOE01 OTWASL01 OTWATS01 OTWAWS01 ROGOTT01 ENOE01 HOT1

⊃n1 Gall#	20172915820	City of Ottaw	a Street Light Locate		
Date	07/19/2017 4:45:13 PM		: Lisa Bisaillon		Biack& M ^c Donald
lequested		Phone: 613			
Company	e :		Instructions		
Name		······································	1911, GLADSTONE AVE	io tuoni muni it no	OPERTY CLEAR
Phone	MONIQUE LAROCQUE		CORLOT=U DRILLING BOREHOLE FROM THE WEST BLILDING LINE (OF 404 TO 414 BOOT	H ST, TO SIDEWALK
FAX	613)-226-8750 ext.		ON ROCHESTER ST, AND FROM S	IDEWALK ON BALSA	M ST TO SIDEWALK
ite Contact	(613)-226-8677 ext. JEFF FORRESTER		ON GLADSTONE AVE. NO_PLAN	70C E10;	
Phone					

		LOCATO	R SKETCH		N
					†
				7	i
		Cl	ear		
		Private	Property		
	NA	City of Otto	awa street light		
		assets II	n dig area		
				_	
	na an a	na na sana ana ana ana ana ana ana ana a	มาแหลงการสาราชไปปู่ (1968) (1968) (1975) เราสาราชีว ใจ (1971) (1977) (1977) (1977) (1976) (1977) (1977) (1977)		
-st- Unde	rground Street Light Cable		Overhead/Aerial Wires		Source/Transformer
* *	t Light	×	Globe/Decorative Light	U I	ty dro Pole
ocator Notes	/Comments:				
		Format from installington Stree	stion or native of work channes a	Mais & such at	07/24/2017
	Marine Marine Strategy and Barriel and Andrew State	isisin ilum markings, ioc	anon a name a von bianyco, a Rhar cido of markinge - Donth of		มสระสม ^{เพ} ารัสมอย่าง 1 ส
Locate is valid	for 60 days. If sketch is dif hust be requested. Hand d	ig within 1m (3.28ft) on e	Mici Side of Flatennige. Debuter	- ಇಲ್ಲಿ ಕ	8
Locate is valid new locate n	nust be requested. Hand d	ig within 1m (3.281) on e puried plant varies.	and sac or mannings. Doput of	Time of day	
new locate n	nust be requested. Hand d t st nas valide 60 jours de ci	ig within 1 m (3.28ft) on e puried plant varies. alendrier apres le repera	ge. Si les margues na concordent	Located by	MIKE LESPERANCE
new locate n Cette fiche n'e as avec celles	nust be requested. Hand d t st pas valide 60 jours de c sur le croquis, un nouveau	ig within 1m (3.280) on e puried plant varies. alendrier apres le repera preperage est requis. To	м,	Located by	MIKE LESPERANCE

Disclaimer

Warning!

The Excavator must have a copy of this locate on the job site during excavation.

Located Area: The Excavator must not work outside the area indicated, by the located area in the diagram, without a further locate completed by Black & McDonald Limited.

Black & MCDonald

Locate the Plant: The plant location information provided is the best we have available, but constitutes only an estimate. Depth of underground plant varies and the exact location must be determined by hand digging prior to excavation with mechanical equipment.

Mechanical equipment must not be used within 1.0 meter of the estimated location of the plant.

Valid Documentation: This locate is valid only for the Agency accepting it. Other parties must obtain and accept their respective underground locate from Ontario 1 Call.

Excavator Alterations: Under no circumstance shall an Excavator touch or move an underground power cable. Arrangements must be made to have qualified personnel relocate any such cable.

Expose the plant: Once the plant has been located by hand digging, it must be exposed along its length adjacent to or in the immediate vicinity of the proposed excavation. For this purpose, mechanical equipment must not be used within 0.5 meters of the plant.

Digging around the Exposed Plant: When the plant has been exposed, any further excavation within 0.3 meters, must only be done by hand digging and not with mechanical equipment.

Support Requirements: If the underground plant is exposed over a distance of more than 1.25 meters, the Facility Owner must be notified. Underground plant must be supported at all times.

Private Cables: Please be advised that Black & McDonald Limited is not responsible for and does not locate private cables

New Cables: Be aware that new cables could be installed at any time after the locate has been completed. It is the Excavator's responsibility to call for new locates if any changes are known or suspected.

<u>Caution</u>: The markings may disappear or be misplaced. Should sketch and markings not coincide, the Excavator must obtain a new locate. This is based on the information given at the time. Any changes to location or nature of work require a new locate. The Excavator must not work outside the indicated located area without a further locate. Privately owned services within the located area have not been marked- check with service/property owner.

Liability: Any person or Excavator who interferes with or damages any underground electrical cable without having obtained a valid locate/clearance from Black & McDonald Limited, shall be liable for all cost incurred during the repair of the cable as well as any resulting legal actions.

This locate has been given as accurately as possible, but no locate is guaranteed. Excavators must always dig with extreme caution to prevent the possibility of damaging electrical cables and endangering safety.

Locate is void after 60 days For remarks contact Ontario One Call 1-800-400-2255 or www.on1call.com

Monique Larocque

From: Sent: To: Subject: Sigouin, Francois <Francois.Sigouin@ottawa.ca> Thursday, July 20, 2017 10:12 AM 'moniquel@usl-1.com' 20172915820

Ticket# 20172915820

Clear of Underground Traffic Ducts in Proposed Work Area

Frank Sigouin

Utility Plant Locator: Traffic Signals

Work Cell #(613)229-0580

Traffic Signals Locates # (613)797-8534

Email: francois.sigouin@ottawa.ca <mailto:francois.sigouin@ottawa.ca>

2017.07.19 16:45:31 EST CSM PI service user (SVC_CSM_PI)

ON1Call locate address provided Street Range:811- | Street:GLADSTONE AVE

| Intersect 1:BOOTH ST | Intersect 2:ROCHESTER ST | Door Nu

mbers:- | Municipality:

What type of request, if not original?

If not original, the previous request id.

If there is an address range, what is the ending address number?

Are you a homeowner, contractor or agent? CONTRACTOR

Who are you working for? GHD

1

Monique Larocque

From: Sent: To: Subject: Solutions@on1call.com Wednesday, July 19, 2017 4:45 PM moniquel@usl-1.com Request 20172915820

ONTARIO ONE CALL Locate Request Confirmation

Ticket #:20172915820 Reason Code:STANDARD Work to Begin Date: 07/26/2017 WAP No:

CALLER INFORMATION

MONIQUE LAROCQUE		Tel.:(613)226-8750
Contractor ID: 202		
USL	Cell:	
WORK BEING DONE FO	OR:GHD	Fax:(613)226-8677
moniquel@usl-1.com		
ALT CONTACT: JEFF FO	RRESTER	Tel.:

DIG LOCATION

City: OTT	AWA,	οτταν	/A
Commun	ity:		
Address	:811	To:	Lot/Unit#:
Street : G	ILADST	ONE A	νE
Nearest I	nterse	cting St	reet :
BOOTH S	Т		
Second Ir	ntersec	ting St	reet :
ROCHEST	ER ST		
Nb of Seg	gments	:: 1	

Type of Work: BORE HOLES

Max Depth: 30.00 FT

Machine Dig: XHand Dig:Public Property: XPrivate Property: XMark & Fax:Site Meet Req.:Area is Marked: XDirectional Drilling:

Detailed Description of the work: CORLOT=U DRILLING BOREHOLES THROUGHOUT PROPERTY. CLEAR FROM THE WEST BUILDING LINE OF 404 TO 414 BO OTH ST, TO SIDEWALK ON ROCHESTER ST, AND FROM SIDE WALK ON BALSAM ST TO SIDEWALK ON GLADSTONE AVE.

1

Rei	mar	'ks:
-----	-----	------

The Ontario One Call members who have underground infrastructure in the area of your excavation site have been notified and their status is noted below:

BCOE01PROMARK FOR BELL CANENOE01PROMARK FOR ENBRIDGEENVMOE01PROMARK FOR ENBRIDGEHOT1HYDRO OTTAWA (HOT1)OTWASL01BLACK AND MC DONALDOTWATS01CITY OF OTTAWA TRAFFOTWAWS01CITY OF OTTAWA WATERROGOTT01CLI FOR ROGERS (ROGO

These members have been removed due to the relocate:

Note: -C = Cleared, -S = Supressed, -L = Lookup center cleared, -A = Alternate Locate, -R = Existing locate valid - maintain marks

IMPORTANT INFORMATION:

DEFINING 'NC' - NON-COMPLIANT

- Non-compliant members have not met their obligations under section 5 of the Ontario Underground Infrastructure Notification Act. ON1Call has notified these members to ensure they are aware of your excavation. In this circumstance, should the member not respond, the excavator should contact the member directly to obtain their locates or request a status. ON1Call will not be provided with a locate status from the member regarding this ticket and therefore, cannot provide further information at this time. For locate status contact information please refer to our website.

YOU HAVE A VALID LOCATE WHEN ...

- You have reviewed your locate request information for accuracy. CONTACT Ontario One Call (ON1Call) iMMEDIATELY if changes are needed and obtain a corrected locate request confirmation.
- You have obtained locates or clearances from all ON1Call members listed in this ticket before beginning your dig.

YOU'VE MET YOUR OBLIGATIONS WHEN ...

- In addition to this locate request, you have DIRECTLY contacted all owners of infrastructure who ARE NOT current members of ON1Call (such as owned buried infrastructure on private property), as well as arranged for contract locates for your private lines on your private property - where applicable. For a list of locate status contacts visit www.on1call.com.
- You respect the marks and instructions provided by the locators and dig with care; the marks and locator instructions MUST MATCH.

- You have obtained any necessary permits from the municipality in which you are excavating.

WHAT DOES (-C) MEAN?

- 1. The information that you have provided about your dig will not affect that member's underground infrastructure OR,
- 2. The member has identified that they do not have buried infrastructure in the immediate area and wish to inform the excavator by providing a (-C).

IF THE (-C) IS NOT PRESENT:

- Not all members of ON1Call identify the absence of infrastructure in their registration with ON1Call, in which case the member's name will not appear on your request confirmation. The absence of (-C) indicates the ON1Call system has returned no results for the presence of a particular member's infrastructure in the immediate vicinity. See www.on1call.com for a current list of locate status contacts.

	UND SERVICE LO	CATORS - PRIV	ATE UTILIT	REPORT D	11E: [HU614/2017
	SYSTEMS INC.	Map 10F	. ا ک	ינים	ONE (613) 226-8750
		1 . 141 100		Priv	FAX (613) 226-8677
OTTAWA, OI	N, K4A 0Z9		DEOUEOTE	the second s	IDEN TILLAART.
CUSTOMER:	GHD	Δ			DEN)ICHIME
LOCATION O	FWORK: SI GHA	dstong AV -		VORK: BU'S	STEAM
HYDRO	H G	CABLE T.V T.' SANITARY S.	V AN	ELECTRICAL	E
GAS BELL	B	STORM - S		COMMUNICATION OTHER:	NS COM
	CABLE UC W	FIBER OPTIC - F			
WATER	ATES ONLY APPLIC	CABLE TO INFO	ABOVE - LOC	ATES VOID AFT	TER 30 DAYS!
		-		SK	ETCH NOT TO SCALE
	811	819 821	,		\sim
.*					(N)
		\uparrow \uparrow	1		
				{	REFERENCE NORTH
		rt l		7	
·		Kr l		POSSIBL	E Corran
	0			IN AR	Basint
	KANGROUNE		1-1	CAR	PARKOD
				· · · ·	INTOP. LO
			B		
					-SUZ
,					н _ ч
10 ·····		······································	↓ ¥		
Baisan		- 32			40
		30	A		
 		B	on ur		HP
	B				
		son St.	GAS		
			¥ .		
USL-1 as a P	rivate utility locator, is not perm ENCE ONLY, and under no circ	itted to locate Publicly own umstances shall be used f	ed utilities. In some or excavation purpos	cases, Public utilities may es. It is the contractor's r	y be noted on a sketch, but are esponsibility to verify any
Public utilities	s noted on the USL-1 sketch by	reterring to the Public utility	y locate sheeto lot p	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
- If the propose	nd work area is on Private prop	entvit does NOT mean tha	t all buried utilities a Call (or Info-Excavat	e Private. Regardless of on in Quebec) to obtain I	when you are digging, and what Public utility locates.
the proposed	depth of excavation is, it is the	Lot Locator . N	Jo Accoss To	275 BH'SM	LOT LAID ONT -
	I depth of excavation is, it is the Same they Sources N Gas Stances To	275-285 (40)	Not Locatoo		REFERENCE ONLY. REFER TO
THIS SKETCH	IS NOT A PUBLIC UTILITY IMER - FORM 101. CONTR	LOCATE/DOCUMENT	BLE TO ENSURE	THEY HAVE PUBLIC	REFERENCE ONLY. REFER TO UTILITY LOCATES BEFORE
COMMENCING	WORK.				
LOCATORS	SNAME: STANPEOLA	<u></u>	SIGNATU	H: Y XXX	
				v	
	ECEIVED AND REVI		Print Name		Signature
CA	UTION: HAN	D DIG WITH	<u>IIN 1.5 M</u>	ETERS OF	FORM #103 January 201
f					HURM #103 January 201

UNDERGROUND SERVICE LOC	CATORS - PR	IVATE UTIL	ITY REPORT	DATE: Aub 14 (2017
ONE-CALL SYSTEMS INC.	0.			DUONE (040) 000 0750
775 TAYLOR CREEK DRIVE	map	2073		PHONE (613) 226-8750 FAX (613) 226-8677
OTTAWA, ON, K4A 0Z9				
CUSTOMER: GND				1 VANDEN / ILLART
LOCATION OF WORK: Su GLODE		LIMITS OF		
		- T.V - SAN	STEAM ELECTRICAL	– STEAM E
BFII B	STORM -	- ST	COMMUNICA	TIONS COM
U	FIBER OPTIC -	FOC	OTHER:	
WATER W LOCATES ONLY APPLIC	ABLE TO INFO	DABOVE - LO	OCATES VOID	AFTER 30 DAYS!
		· ·		SKETCH NOT TO SCALE
				5
				REFERENCE NORTH
	~			
25				
Sarsan S	1	MH IN BACK		i i
		YARD NOT LOCATED	*	B B Gabstove S
HD				
				50
	·	285	0 289	B ¢
2.75			× ×	
		- ·	Ţ.	
		WATER - 0		TV
		SHUT		
		Not Locate	D	↓
	ROCHESTOR	<u> </u>		
	KOCHESTER	35		
USL-1 as a Private utility locator, is not permitte	d to locate Publicly o	wned utilities. In som	e cases, Public utilities	s may be noted on a sketch, but are
FOR REFERENCE ONLY, and under no circum Public utilities noted on the USL-1 sketch by ref	ierring to the Public ut	ility locate sheets for	physical LOCATION A	AND ACCURACY. USL-1 DOES NOT
ASSUME LIABILITY FOR PUBLIC LOCATE IN • If the proposed work area is on Private property	/ it does NOT mean fi	hat all buried utilities	are Private. Regardles	ss of when you are digging, and what
the proposed depth of excavation is, it is the law COMMENTS: Gas To 275 -235	v to potify Optazio Op	o Call (or Into-Eveav	ation in Cliebec) to op	tain Public utility locales.
No Acuss To T	275-285 .			
THIS SKETCH IS NOT A PUBLIC UTILITY LOUSL-1 DISCLAIMER - FORM 101. CONTRAC	OCATE/DOCUMEN		IES SHOWN ARE F	FOR REFERENCE ONLY. REFER TO BLIC UTILITY LOCATES BEFORE
COMMENCING WORK.				<u></u>
LOCATORS NAME: STAN REDUR		SIGNATL	IRE: +	×
			U	
LOCATE RECEIVED AND REVIEW	VED BY	Print Nan	ne	Signature
CAUTION: HAND	DIG WIT	HIN 1.5 M	NETERS C	OF MARKINGS
				FORM #103 January 201

1

HYDRO -H CABLE T.V T.V STEAM	- STEAM - AL - E - CATIONS - COM -
OCATION OF WORK: Subset A.J. LIMITS OF WORK: Standing A.J. INITS OF WORK: Standing A.J. STORM SANITARY SANITARY SAN ELECTRIC OMMUNI JNIDENTIFIED CABLE - UC FIBER OPTIC - FOC OTHER: NATER -W SIGN APPLICABLE TO INFO ABOVE - LOCATES VOI Not N N N N N N N N N N N N N N N	

USL-1 DISCLAIMER - FORM 101

- It is our Clients responsibility to fully read and understand this document, prior to any ground disturbance taking place.
 Should any questions or clarifications be required, contact USL-1 before commencing work
- Include any questions of damagations be required, contact USL-1 for remarks and/or new ticket
 Locate is VOID after 30 days from the date the locate was completed. Contact USL-1 for remarks and/or new ticket requests, with a minimum notice of 5 business days
- requests, with a minimum notice of 5 business days
 If the scope of work, locate area, or site information changes, contact USL-1 before continuing work. In certain instances, a new ticket request may be required
- a new ticker request may be required
 Any work within 1.5 metres laterally of a marked utility, must be hand dug or daylighted. Utility depths vary, as does the accuracy of the locate equipment, and therefore depths are typically not provided and should not be used for excavation accuracy of the locate equipment, and therefore depths are typically not provided and should not be used for excavation accuracy of the locate equipment, and therefore depths are typically not provided and should not be used for excavation accuracy of the locate equipment, and therefore depths are typically not provided and should not be used for excavation accuracy of the locate equipment, and therefore depths are typically not provided and should not be used for excavation accuracy of the locate, however the accuracy of field markings can vary with regard to equipment accuracy and external time of the locate.
- If the paint markings or flags on site differ from that of the sketch provided, please contact USL-1 before commencing work. If possible, the issue will be clarified by USL-1 and/or a site meet may be requested with the appropriate parties
- work. If possible, the issue will be defined by odd if any of the locates on site, with the operators and in/on the
 The "Excavator" is responsible for keeping a current copy of the locates on site, with the operators and in/on the excavation equipment AT ALL TIMES
- excavation equipment A1 ALL TIMES
 It is the "Excavator/Contractor's" responsibility to read ALL locate sheets, both public and private, to ensure they understand what potential hazards or buried utilities exist in their work area
- Special purpose locates such as sever sondeing, locate surveys, tunnel identification, conduit identification, ground fault
 Special purpose locates such as sever sondeing, locate surveys, tunnel identification, conduit identification, ground fault detections, ground penetrating radar, well cap location, concrete scanning, or anything else that requires use of more than detections, ground penetrating radar, well cap location, concrete scanning, or anything else that requires use of more than detections, ground penetrating radar, well cap location, concrete scanning, or anything else that requires use of more than Radiodetection equipment, must be identified at the time of the original locate request. Should a USL-1 locator identify any special needs services during a normal Private utility locate, the client will be notified for the appropriate course of any special needs services during a normal Private utility locate, the client will be notified for the appropriate course of any special needs services during a normal Private utility locate.
- Not all buried utilities can be traced. In many instances, water and sewer lines, irrigation systems, grounding cables, fibre optic cables, heating cables, protection cables, and communication cables may not be traceable. Typically, sewer lines will be painted and lined up directionally from manhole to manhole where possible. It may not be possible to detect bends in the sewer lines between manholes. If tracer wires have been buried with the utility, they will be used to locate the buried utility where possible. If a buried utility cannot be traced, it will be noted on the USL-1 report. USL-1 is not liable for damage to untraceable utilities.
- Public utility locators have maps, plans and as-built diagrams for reference to work from. Private utility locators, for the most part, do not. USL-1 will attempt to locate any Private utilities on a site, using as-built plans provided to them. Building access is mandatory and must be arranged by our client. Any conduits or utilities noted entering or exiting a building will be traced if possible, as well as any other visible utilities observed on site. It is the responsibility of the contractor to provide any and all buried utility information and site contacts that they have. There is no guarantee that USL-1 can find all buried utilities if the property owner does not have records or information regarding their own buried
- USL- 1 cannot be held liable for damage to Private water and/or sewer laterals unless building access is granted, and the utility is locatable
- Thick snow and ice, frozen manhole lids, live traffic, parked cars, construction debris and activities etc, are all factors that
 can interfere with USL-1's ability to perform Private utility locates. USL-1 cannot guaranty location of all buried utilities
 when such factors impede the locate process. It is the contractor's responsibility to ensure that the work areas are safe
 and accessible for locates, prior to USL-1's arrival to site
- USL-1 as a Private utility locator, is not permitted to locate Publicly owned utilities. In some cases, Public utilities may be noted on a sketch, but are FOR REFERENCE ONLY, and under no circumstances shall be used for excavation purposes. It is the contractor's responsibility to verify any Public utilities noted on the USL-1 sketch by referring to the Public utility locate sheets for physical LOCATION AND ACCURACY. USL-1 DOES NOT ASSUME LIABILITY FOR PUBLIC LOCATE INNACCURACIES
- If the proposed work area is on Private property, it does NOT mean that all buried utilities are Private. Regardless of where you are digging, and what the proposed depth of excavation is, it is the law to notify Ontario One Call (or Info-Excavation in Quebec) to obtain Public utility locates
- NCC PROPERTY assuming the contractor has been issued a Land Access Permit from the NCC, it is typically indicated within the permit that it is the contractor's responsibility to contact NCC for utility locates of their buried utilities

USL-1 - January 2016

Page 1 of 4_

						UNION GAS EMERGENCY # many Locate Sheet 1-877-969-0999							
TELEC			•		Prima	nry Lo	cate SI	heet ^{1-877.}	-969-09	99	_		
									Request 204720				
	Phone: Fax: 613-723-9888 613-723-9277					Toll free: Email: 1-800-371-8866					201725 NORMAL	20172915820	
	013-723-90	00	015-	123-921	, 1	-000-,	5/1-00	00					
UTILITIES	_	_				Revis	ed Exca	vation Date	Excav	ation Date		Status	
LOCATED:	BELL GA	S	HYDRO OT	rawa 🔄	ZAYO					2017 08:00:0	0	NEGOTIATE	>
BELL 360		м 🗆	BIRCH HIL	і 🗌 нулі			N//	۹.	`			Homeowner	
Requested by:			-						mm/ddl Fax/e				
MONIQUE LARO			Company USL	•	Phone: (613)-226-8750 ext.			226-8677 ext		Contractor			
A A B A							• •			Project			
Appt Date:		Recen 07/19/21	/ed Date: - 017		Locat	Locate Address:811, GLADSTONE AVE							
mm/dd/gyyy		mm idd ly			1 stinte	Inters: BOOTH ST 2nd Inters: ROCHESTER ST							
Type of work: BORE HOLES										City:			
										οττ			
Caller's Remai	rks:												
MACH, DIG													
CORLOT=U DRL									VE OF 4	04 TO 414 EC	DOTH ST, TO SIE	EWALK ON	
ROCHESTER ST.													
-75.709239, 45.4	105567, NB_SEC	MENTS	::1,NO_PLA	N:613 567,	BCOED	1,ENVW	AOE01, O	TWASL01, O	TWATS	01, OTVVAWS	SO1, ROGOTTO1	BNOEDI, HOTI	
Bell	Enbridge Gas	, Hyd	roOttama	BIRCH			4YO	Hydio One		BELL 360	Union Gas	Videotron	
Mark Clear	Mark Clea	r Mar	'k Clear	Mark (Mark Clea	ar M	lark Clear	Mark Clear		ar
-	I			N/A		N/	μ.	N/A		N/A	N/A	N/A	
LOCATED AR	EA: EXCAV	ATOR	SHALL N	IOT WOR	<u>к опт</u>	SIDE	THE LO	OCATED AF	REA W	ATHOUT O	BTAINING A	NOTHER LOCA	ATE.
Records Refer	ence: GMO	BILE,	PROVIE	NER	_ Th	ird Pa	rty Noti	fication					_
Map	Network X #	РМΩ	TT0173	8									
_ Byers													
							***	DANGE	8 DO	NOT PR	OCEED***		
Field Notes: NE185, THP252, 6N86-2							Buried	l high volta	age ca	ables with	in 1.5M of		
Other: FN-3	056-3						the lo	cated area	a. You	i MUST s	end locate t	io I	
DPT Remarks :	;						HOL	upervisi	ions(@hydroo	ottawa.com	m	
						or contact Hydro Ottawa at 613-738-6418							
					for further information.								
						AFTER HOURS *EMERGENCY* NUMBER IS							
								6	13-73	8-6422			
						Apply Sticker Here if Required							
C	-11 416 - 0		. . .l		1144914	!							
Excavator sh						-			runel	onowing:			
			riority Cab				ffice ∀ie						
Method of Fid	old Marking:	Pa	nint_Stal	kes 📕 Fla	nüs 🗌	Offset	Flays[Other (f	elecor	m=Orange	,Gas=Yellow	r, Hydro Ott. =	Red)
Caution: Loca	ites are VOID	after (3D days.Hy	dro One va	lid f or 60	days.S	See Disc	claimer for t	ha spa	cific Facilit	y Owner's Gu	idelines.	
Caution: Any													
Located Area without a new locate. Privately owned services within the located area have not been marked - check with													
service/property owner. For all Locate requests including remarks contact: Ontario One Call at 1-800-400-2255 or www.on1call.com. ALL MEASUREMENTS ARE TAKEN WITH MEASURING WHEEL													
Untand One Ca	1:1 at 1- 80 0-44	10-225	o or www.	nv.on1ca	lcom.				UNEN	ENTS ANE			
Locator Name	B: DENNY EMM	A-LEE		Start Tin	ne:1	1:00)	🗌 Mark	& Fax	C 🗆 Lefi	t on Site	Emailed	
)#: <mark>1000</mark>			End Tim	ne :_1	4:00		Print:		<u> </u>	I/A		
Da	ite 08/02/	2017		Total Ho	_{urs:} 3.	0 НС	URS	Signature	8:				
A copy of th		ocets								site and	in the head	s of the mart	ine
operator du	-				-								

This form revised December 2016

MESSAGE REGARDING REQUESTED LOCATE

Dear Excavator,

Hydro One has completed your locate request based on the information you provided to Ontario One Call. The underground facility locate on our **Distribution system** is valid for **60 days** from the date shown on the Underground Cable Stakeout Report attached. The 60 day validity <u>does not</u> include Transmission locate requests. Please be aware new underground facilities can be installed any time after this locate was completed. It is your responsibility to contact Ontario One Call for a new locate if any changes are known or suspected or for a Relocate if excavation continues beyond 60 days.

Hydro One expects excavators to protect and preserve the paint marks and flags placed at the time of the original locate ticket. If markings are removed due to weather or excavation work, the excavator is expected to recreate the markings based on the tie-in measurements provided on the original locate ticket. However, if an excavator would like Hydro One to refresh their markings, please contact Ontario One Call at 1-800-400-2255 to request a Remark.

WARNINGS AND DISCLAIMERS:

Hand dig cautiously 1 meter around Hydro One's Red Paint Markings as indicated on the Underground Cable Stakeout Report. It is understood that the attached information has been provided from our records, and represents our knowledge of the approximate location of **Hydro One** plant only: the contractor must request stakeouts from other utilities to establish the location of their plant. The company or contractor must exercise extreme caution where mechanical equipment is used in the vicinity of the underground cable plant and where necessary to locate by hand its actual position. Liability for damages rests with the company or contractor.

Thank you, Hydro One

February 9 2015

To all Excavators:

Bell locates are now valid for the life of the excavation project and will not automatically be relocated every 60 days.

Please note the following for the above to apply:

- a) Construction within the located area begins within 60 days of the "locate completed" date on the original ticket.
- b) The construction company named on the locate remains active on the site.

Bell expects excavators will protect and preserve the paint marks put down on the original locate ticket. If markings are removed due to weather or excavation work the excavator is expected to recreate the markings based on the tie-in measurements provided on the original locate ticket.

If an excavator would like their markings freshened up they can contact Promark (the Bell Canada Locate Service Provider in this area) directly to arrange for them to place fresh markings on the ground however this will be at the excavators expense. Promark can be reached at 613-723-9888.

The locate will be considered officially expired one day after the final day of construction.

Thank you,

Bell Canada

DISCLAIMER

Warning!

The Excavator must have a copy of this locate on the job site during excavation.

Located Area: The Excavator must not work outside the area indicated by the Located Area in the Diagram without a further locate by the Company

Locate the plant: The plant location information provided is the best we have available but constitutes only an estimate. Depth of underground plant varies and the exact location must be determined by hand digging prior to excavation with mechanical equipment.

Mechanical equipment must not be used within one metre of the estimated location of the plant.

Hydro Ottawa must be notified prior to excavation and inspector on site

Expose the plant: Once the plant has been located by hand digging, it must be exposed along its length adjacent to or in the immediate vicinity of the proposed excavation. For this purpose, mechanical equipment must not be used within 0.5 metres of the plant.

Digging around the exposed plant: When the plant has been exposed, any further excavation within 0.3 metres, must only be done by hand digging and not with mechanical equipment.

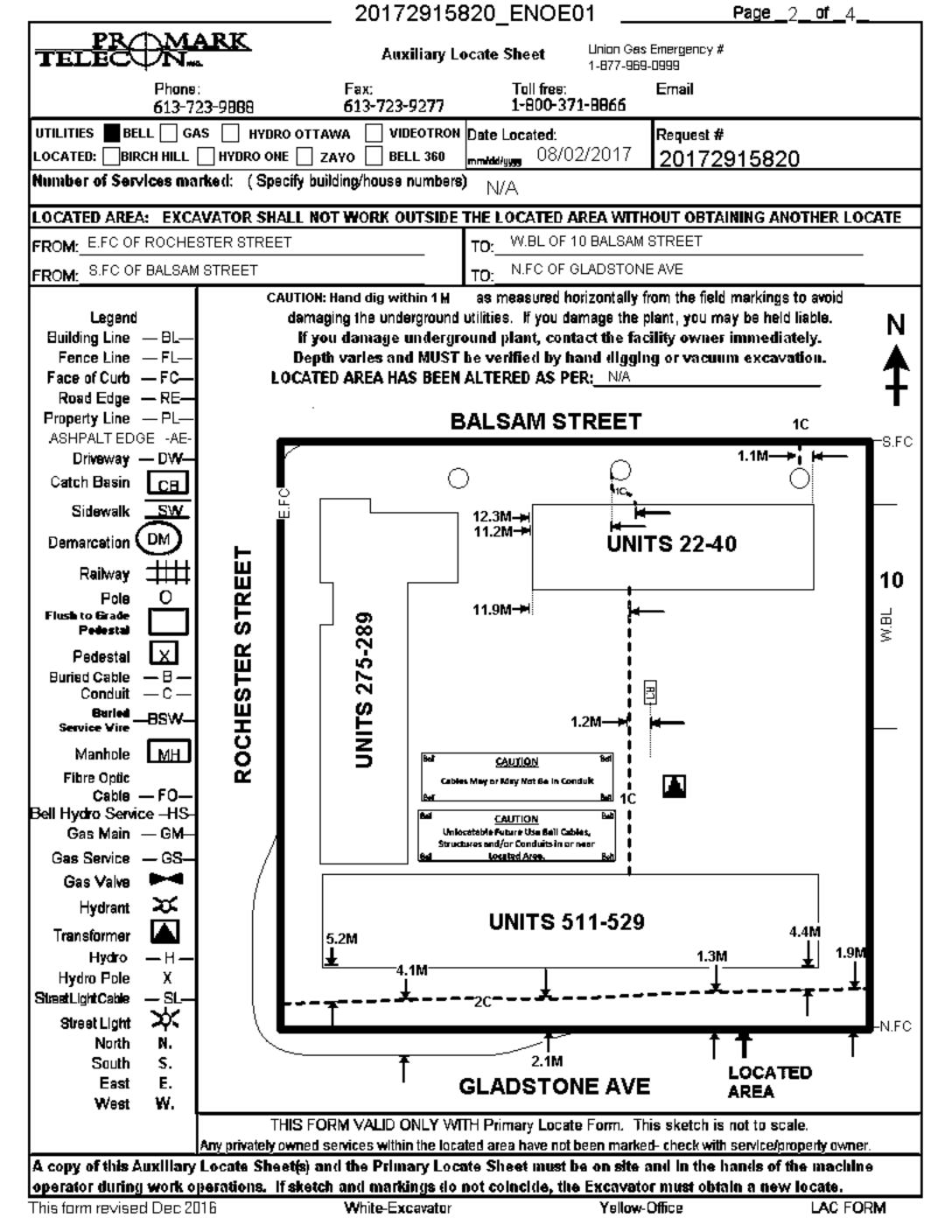
Support Requirements: If the underground plant is exposed over a distance of more than 1.25 metres, the Facility Owner must be notified. Underground plant must be supported at all times.

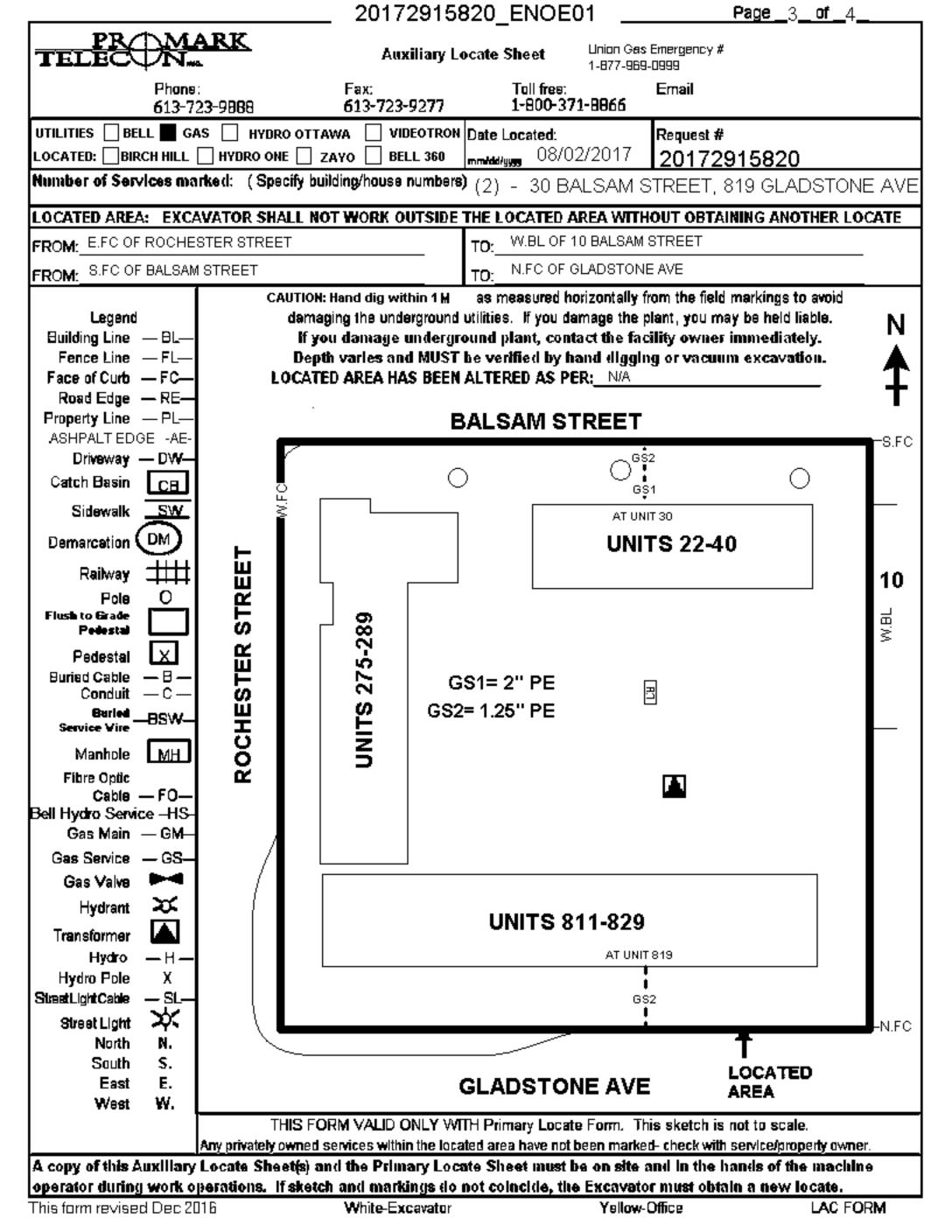
O. Reg. 210/01 Oil and Gas Pipeline systems EXCERPTS

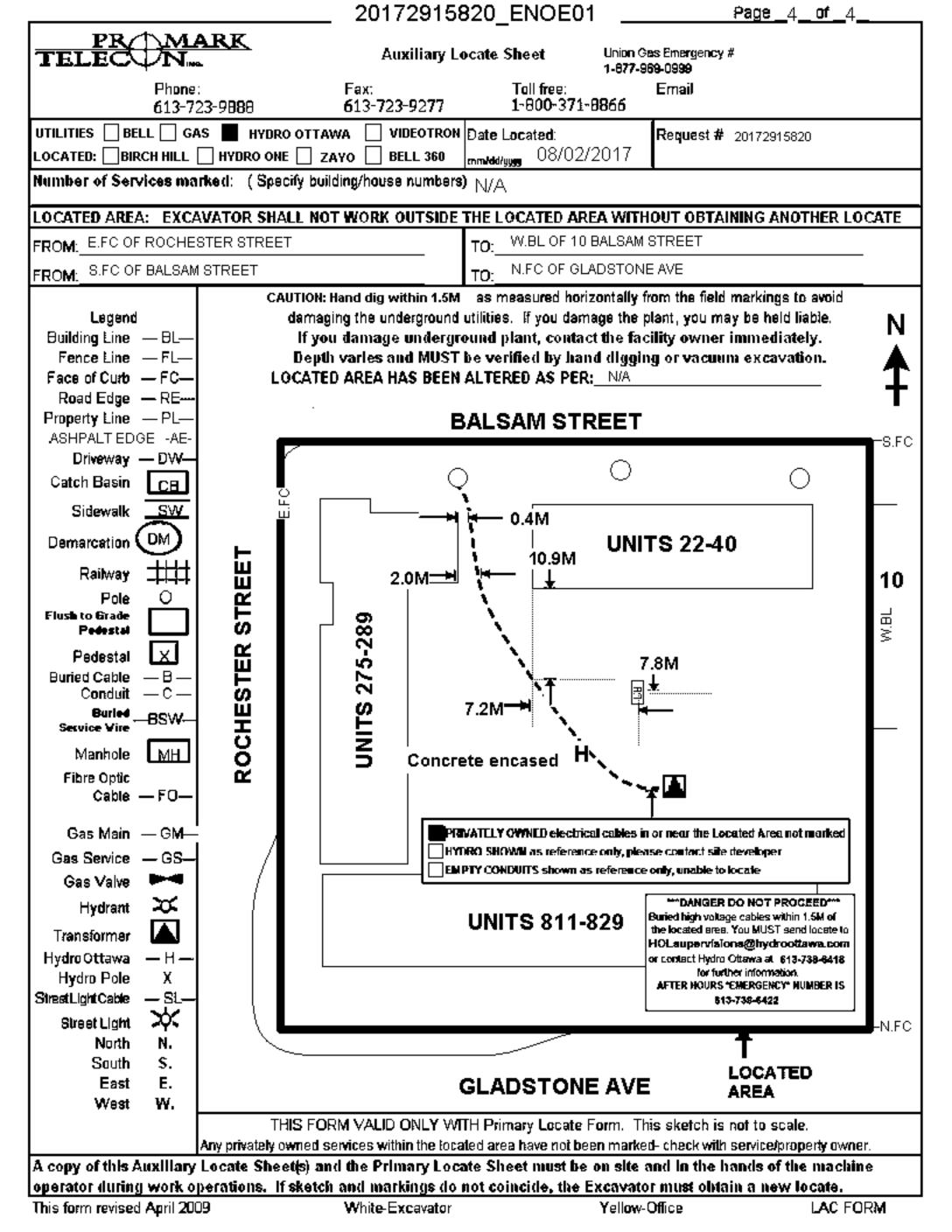
9. (1) No person shall dig, bore, trench, grade, excavate or break ground with mechanical equipment or explosives without first ascertaining the location of any pipeline that may be interfered with.

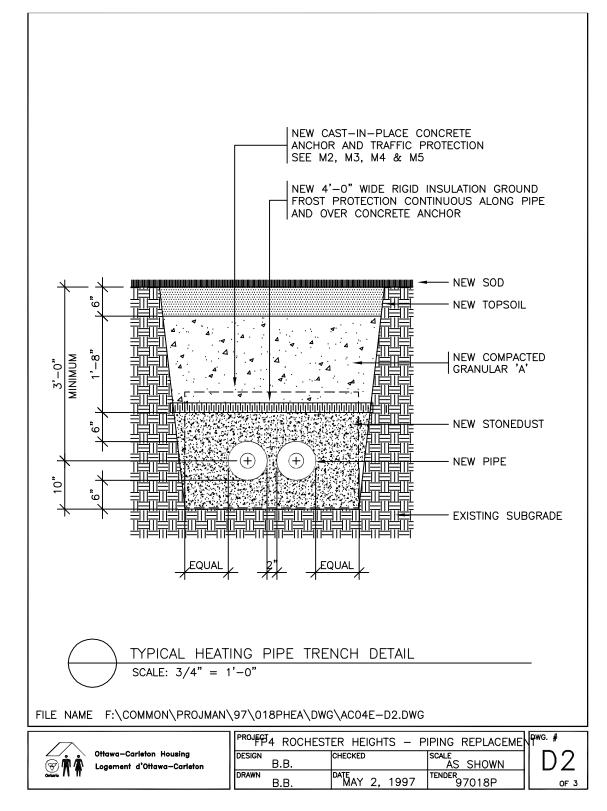
10. No person shall interfere with or damage any pipeline without authority to do so.

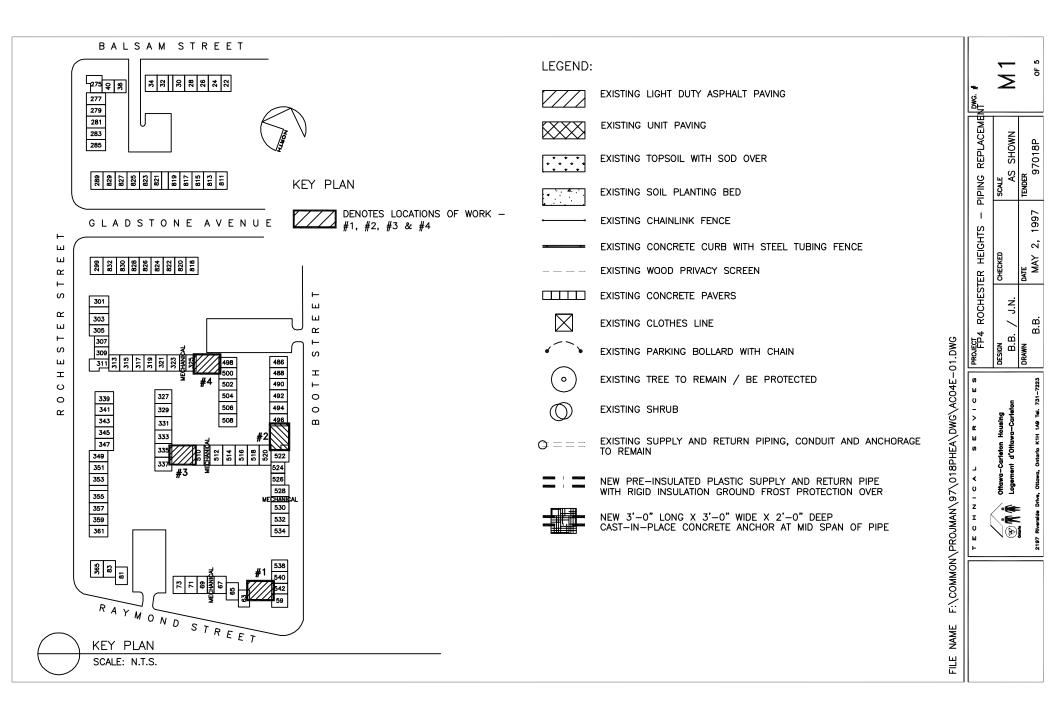
Technical Standards & Safety Act 2000 EXCERPT

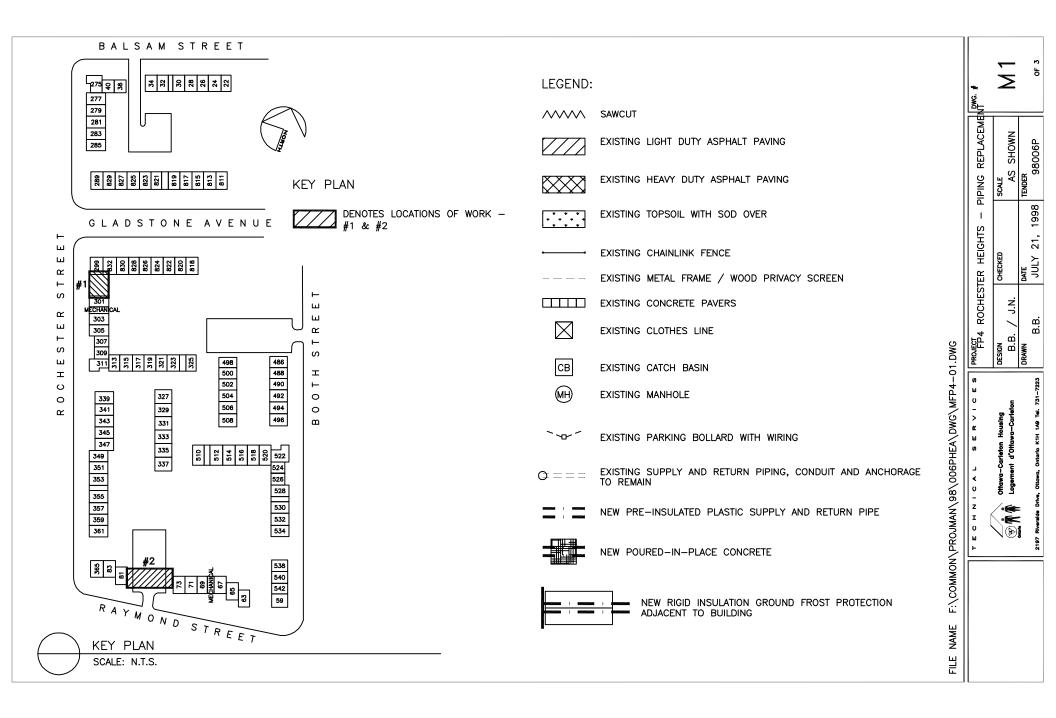

37 (1) Every person who contravenes or fails to comply with any provision of this act or the regulations; etc... is guility of an offense and on conviction is liable to a fine of not more than \$50,000 or to imprisonment for a term of not more than one year, or to both.

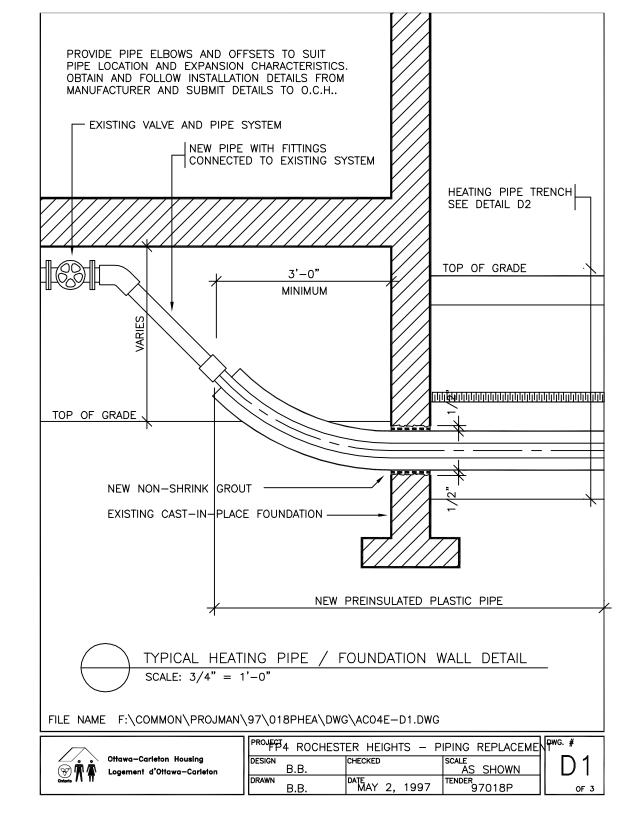

Caution: The markings may disappear or be misplaced. Should sketch and markings not coincide, Excavator must obtain a new locate. This is based on information given at the time. Any changes to location or nature of work require a new locate. The Excavator must not work outside the indicated Located Area without a further locate. Privately owned services within the located area have not been marked - check with service/property owner.

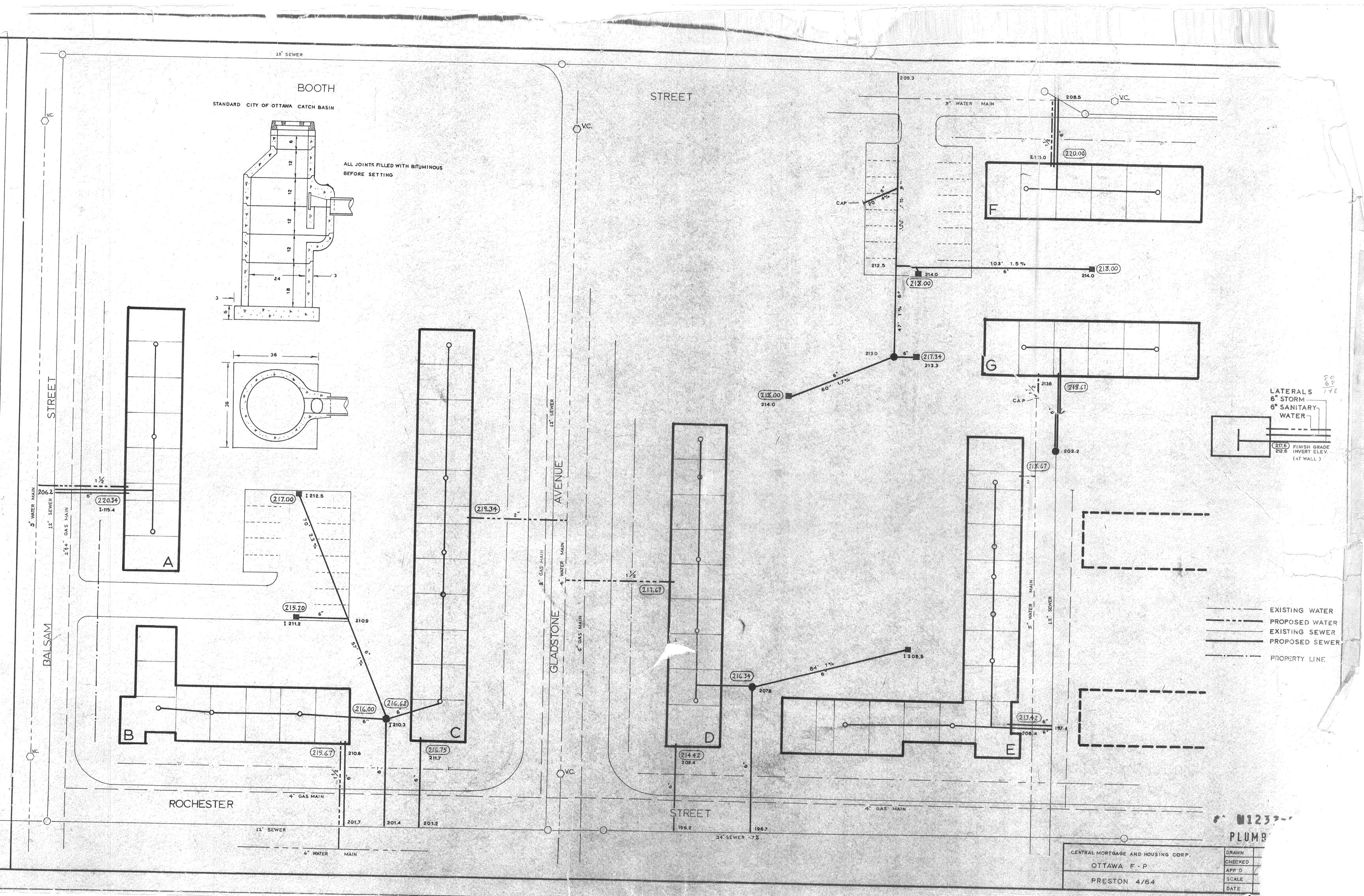

Locate is VOID after 30 days.

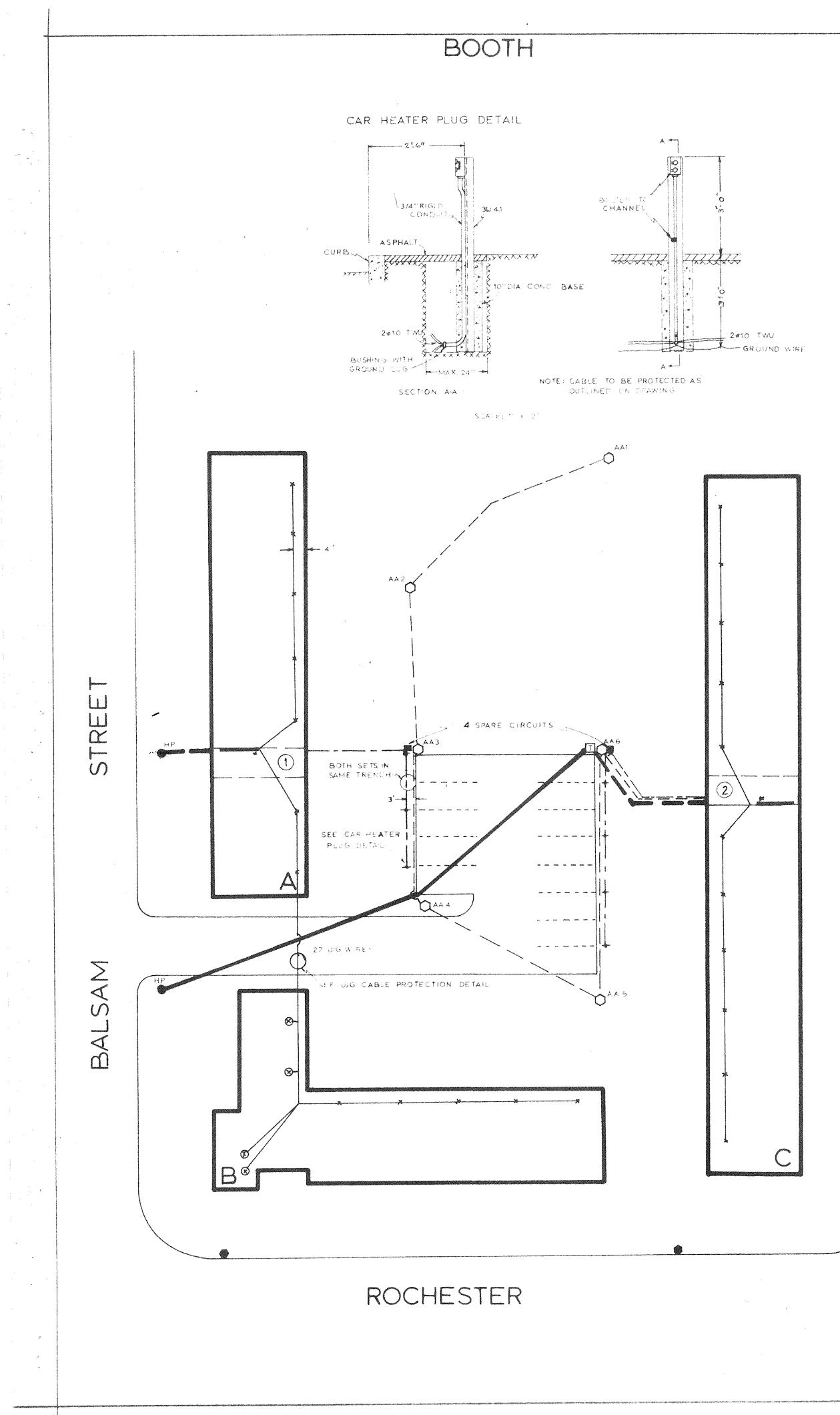

For remarks contact Ontario One Call 1-800-400-2255. or www.on1call.com

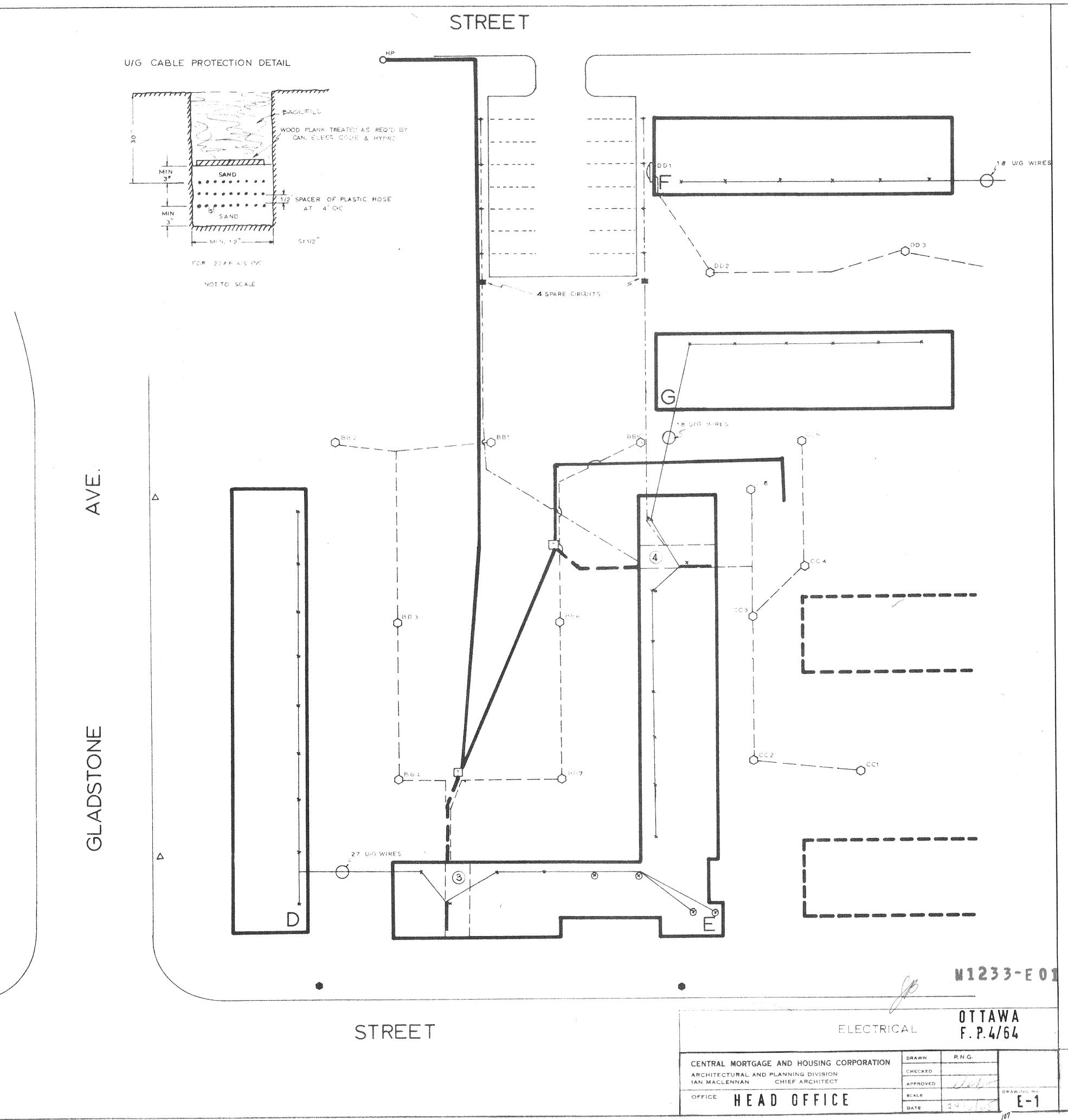


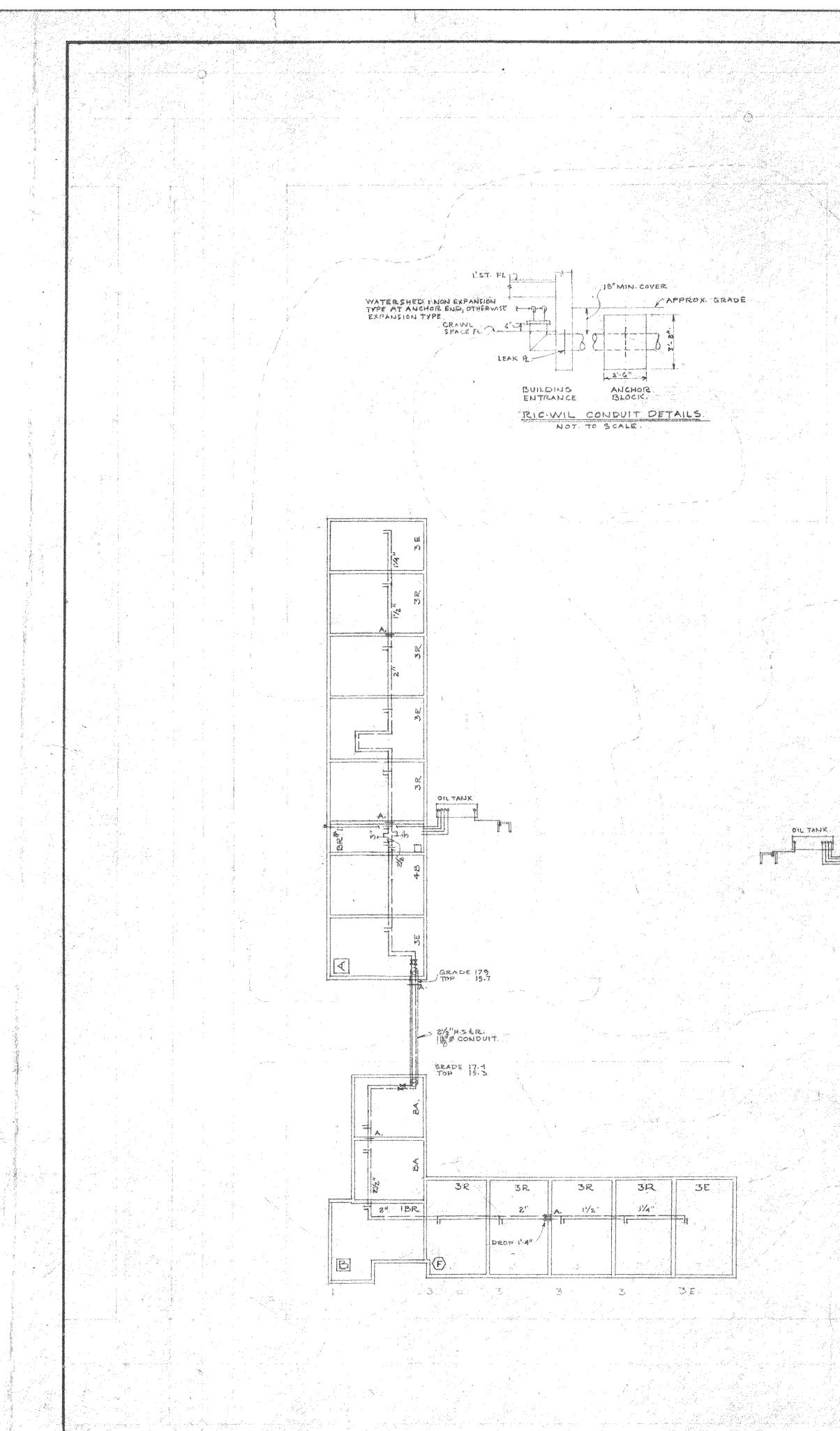


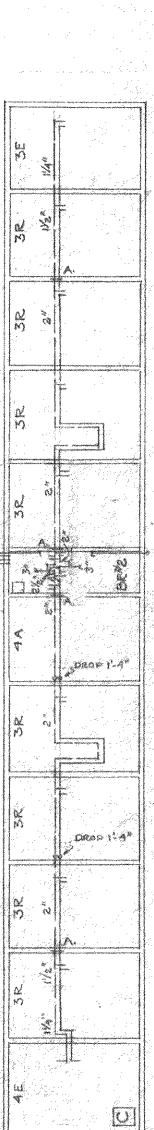


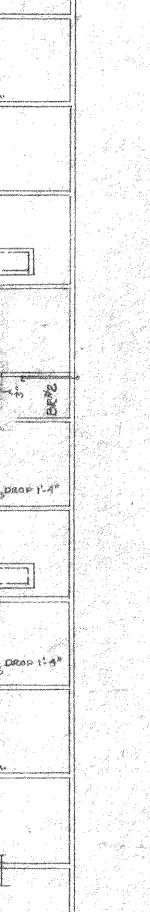


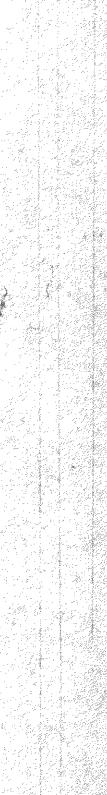


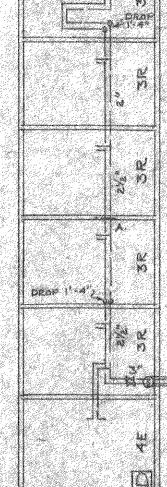


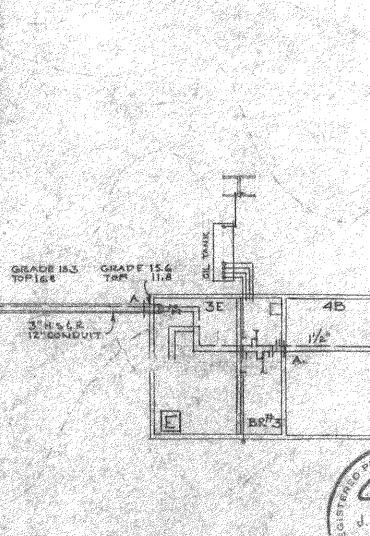


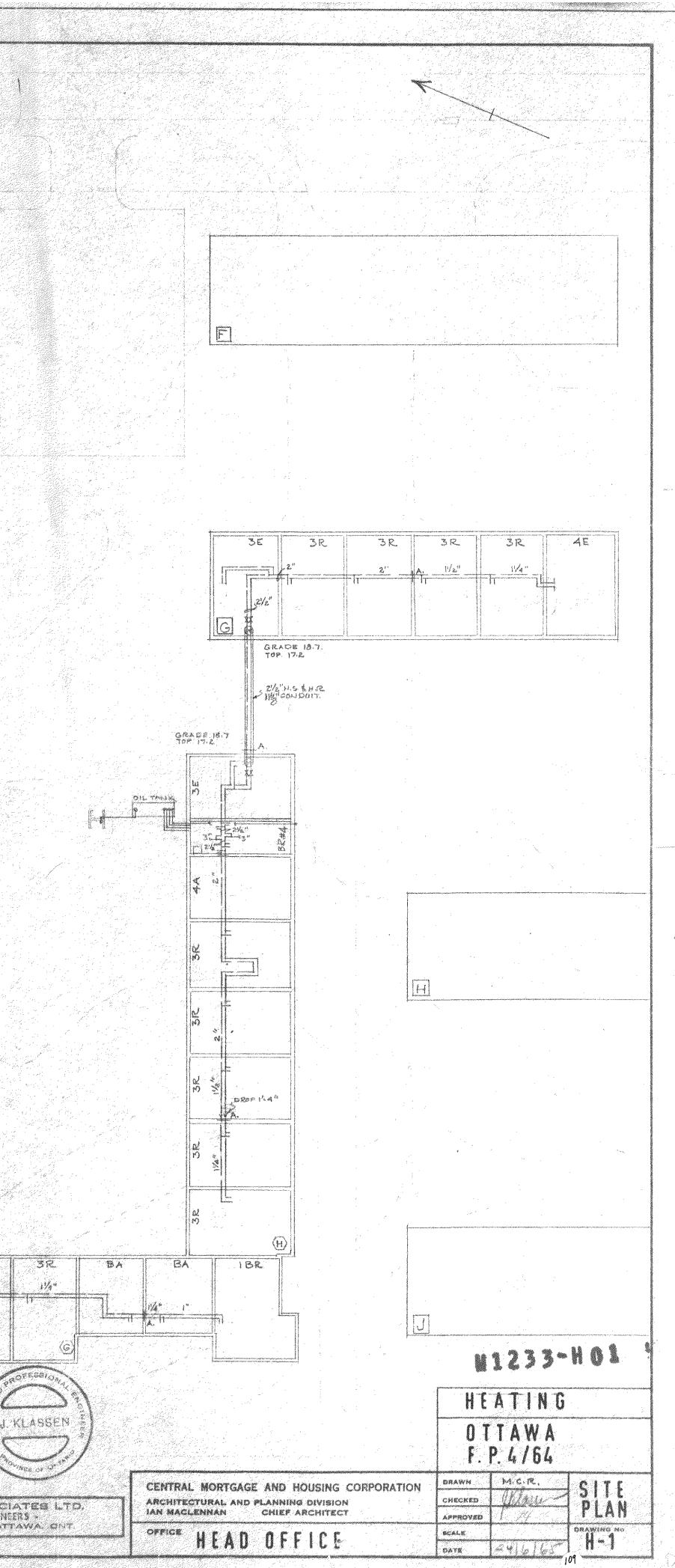





v.







J. KLASSEN & ASSOCIATES LTD. · CONSULTING ENGINEERS · ROS COOPEN BT. - OTTAWA. ONT

Appendix B Sampling Analysis Plan

Table of Contents

1.	Backg	ground	1
2.	Speci	fic Objectives	1
3.	Utility	Service Clearances	2
4.	Speci	fic Requirements	2
	4.1	Media for Investigation	2
	4.2	Locations and Depths for Sampling	2
	4.3	Parameters for Laboratory Analysis	3
5.	Qualit	ty Assurance/Quality Control	5
	5.1	Decontamination of Sampling Equipment	5
	5.2	Field Duplicates	5
	5.3	Trip Blanks	5
	5.4	Soil Vapour Screening	5
6.	Stand	lard Operating Procedures	5
	6.1	Well Development	5
	6.2	Borehole Locating	6
	6.3	Elevation Survey	6
	6.4	Groundwater Elevation Survey	6
	6.5	Groundwater Sampling	6

Table Index

Table 4.1	Soil Sampling	3
-----------	---------------	---

Appendix Index

Appendix A Proposed Borehole/Monitoring Well Locations

1. Background

A Phase Two Environmental Site Assessment is to be completed for the residential property identified as 811 Gladstone Avenue Complex in Ottawa, Ontario ("Site") to investigate the areas of potential environmental concern (APECs) identified by the Phase One ESA.

The Phase One ESA identified

- APEC#1 | Portions of the Site that had evidence of imported fill placement (PCA#1).
- APEC#2 | The southeast portion of the Site is 6 m west of 414 Booth Street (a former automotive service garage and service station with fuel in underground storage tanks (USTs) identified as PCA#2).
- APEC#3 | The northeast portion of the Site is 25 m south of 394 Booth Street (a former asphalt and bitumen manufacturing site, identified as PCA#3).
- APEC#4 | The northeast portion of the Site is 40 m south of 388 Booth Street (a former automotive garage, identified as PCA#4).
- APEC#5 | The northwest portion of the Site is 20 m south of 263 Rochester Street (a former drycleaner, identified as PCA#5).

The contaminants of potential concern (CPCs) to be assessed as part of the Phase Two Environmental Site Assessment in the soil and groundwater are:

- APEC#1 | metals, VOCs, PAHs
- APEC#2 | metals, PHCs, VOCs
- APEC#3 | metals, VOCs, PAHs
- APEC#4 | metals, PHCs, VOCs, PAHs
- APEC#5 | VOCs

Select boreholes/monitoring wells placed in locations of the Site will be sampled to provide an assessment of the Contaminants of Potential Concern (CPCs) in the vicinity of each APEC.

Should additional contaminants be suspected during the course of the drilling program, additional sampling should be discussed with the project manager to determine appropriate analytical testing.

2. Specific Objectives

The following are the specific objectives of the planning of the site investigation component this Phase Two Environmental Site Assessment, as stated in O. Reg. 153/04:

- 1. Plan an investigation that will achieve the general objectives of a Phase Two Environmental Site Assessment:
 - Through the use of appropriate and complete information base concerning the Phase Two property.
 - Through the conduct of an investigation based both on information obtained before the Phase Two Environmental Site Assessment begins and on the incorporation of information obtained during the Phase Two Environmental Site Assessment.
- 2. To develop a sampling and analysis plan that will adequately assess all areas of the Phase Two property where contaminants may be present in land or water on, in or under the property.
- 3. To develop a quality assurance program that is designed to effectively limit errors and bias in sampling and analysis through implementation of assessment and control measures that will ensure data are useful, appropriate and accurate in the determination of whether the Phase Two property, meets applicable site condition criteria.

3. Utility Service Clearances

Public and private utility service clearances will be provided to the field technician prior to commencing the drilling program. The project manager must be contacted immediately should any conflicts arise during the drilling program with the locations of underground services and the proposed borehole locations. Service clearances are included with the field instructions.

4. Specific Requirements

4.1 Media for Investigation

- Overburden soil sampling will be conducted on the day(s) of drilling.
- Groundwater monitoring wells will be installed during the drilling program to facilitate the collection of groundwater samples at a later date.
- No sediment is present on the Site, as such; sediment sampling will not be conducted as part of this investigation.
- No surface water bodies are present on the Site, as such; surface water sampling will not be conducted as part of this investigation.

4.2 Locations and Depths for Sampling

Locations

The proposed seven borehole locations are illustrated on the Proposed Borehole Location Plan sketch attached as Appendix A.

Five boreholes advanced to (refusal + 1.5 m coring)

• Install groundwater monitoring wells in 3 boreholes

Two boreholes advanced to (maximum 6 m)

• Install groundwater monitoring wells in 2 boreholes

The approximate locations and labelling of the boreholes/monitoring wells are indicated on the provided plan.

Should contamination be encountered or suspected in a location which has not been proposed to be equipped with a monitoring well, one of the proposed monitoring well installations should be changed to allow for an assessment of the groundwater in this area. This should be discussed with the project manager.

Depths

Soil samples from the boreholes will be collected in 0.6 m intervals using stainless steel split spoons, with 0.15 m spacing between samples. Soil sampling will be conducted from ground surface down to proposed drilling depth (bedrock refusal) or (maximum 6 m overburden).

Groundwater monitoring well screens will be installed within the shallow bedrock. Screens should be limited to a maximum wetted length of 3.0 m and a minimum total length of 1.5 m. The base of monitoring well screens used to assess PHCs should extend approximately 1.0 m below the expected groundwater table based on field observations. If additional drilling is required to intercept the groundwater table, please contact the project manager. Screens shall have a sand pack that extends a minimum of 0.15 m above the screen and must be sealed with a bentonite hole plug with a thickness of at least 0.6 m. If the depth of the groundwater table interface.

4.3 Parameters for Laboratory Analysis

Soil

A total of four original samples plus one duplicate sample will be selected for lab analysis. The following soil samples from the suggested depths below are suggestions for submittal for laboratory analysis of the specified analytical parameters:

Location	Analytical Parameter	Approximate Depth/Stratigraphy
APEC#1 BH1, BH3, BH4, BH8 and others containing fill	metals, PHCs, VOCs, pH	Sample - fill materials
APEC#2 BH7	metals, PHCs, VOCs, pH	Sample near water table interface, or just above impermeable layer or fill layer, or area of obvious contamination

Table 4.1 Soil Sampling

Location	Analytical Parameter	Approximate Depth/Stratigraphy
APEC#3 BH5 (One Sample)	Metals, PHCs, VOCs, PAHs, pH	Sample near water table interface, or just above impermeable layer or fill layer area of obvious contamination
APEC#5 BH6	VOCs, pH	Sample near water table interface, or just above impermeable layer or fill layer area of obvious contamination
Duplicate Sample	DUP-1	Any material sampled for metals, PHCs, BTEX/VOCs, PAHs
Worst Case	Reg. 558 – laflesche unknown petroleum package	Select 1 sample for leachate (TCLP) testing from borehole with most evident contamination. Bulk sample from the same borehole should be worst case soil followed by TCLP sample.

Table 4.1 Soil Sampling

Should contamination be detected in other locations or evident contamination requiring vertical delineation is suspected in any borehole, this should be discussed with the project manager immediately.

Soil Jarring requirements:

- PHCs, VOCs, PAH, metals, pH one large soil jar and one vial
- Reg. 558 TCLP two large soil jars

Should any visually or olfactory observations be made with respect to the potential presence of contaminants in the soil at a specific depth in a particular borehole location, the soil sample with the suspected contaminants will be submitted for laboratory analysis in lieu of the sample depth referenced in the table above.

Groundwater

The following groundwater samples from the screened intervals will be submitted for laboratory analysis of the specified analytical parameters:

Location	Analytical Parameters	Approximate Depth of Sample
MW1	PHCs, VOCs, PAH, pH	Screened Interval
MW2	PHCs, VOCs, PAH, pH	Screened Interval
MW3	PHCs, VOCs, PAH, pH	Screened Interval
MW4	PHCs, VOCs, PAH, pH	Screened Interval
MW5	PHCs, VOCs, PAH, pH	Screened Interval
Duplicate	DUP-GW1 Duplicate of PHCs/BTEXs	1/10 samples

Location	Analytical Parameters	Approximate Depth of Sample
Trip Blank	VOC	1/cooler

5. Quality Assurance/Quality Control

5.1 Decontamination of Sampling Equipment

All non-dedicated sampling equipment such as stainless steel split spoons will be washed between uses.

Water level monitoring equipment, including water level meters and interface probes will be decontaminated with Alconox and rinsed with deionized water between water level readings to prevent cross contamination.

5.2 Field Duplicates

Field duplicate samples shall be collected in each medium (soil and groundwater) being sampled. At least one field duplicate sample will be submitted for laboratory analysis for every ten samples submitted for laboratory analysis.

Field duplicates will be selected from samples which have the greatest probability of environmental contamination (i.e., where field observations indicate potential contamination is present). A duplicate sample will be selected should the presence of contamination be suspected in any of the soil or groundwater samples.

5.3 Trip Blanks

One laboratory prepared trip blank shall be analyzed for VOC when submitting groundwater samples for analysis.

5.4 Soil Vapour Screening

All soil samples will be screened for organic vapours in the field using a RKI Eagle Combustible Gas Detector (Gastech) in the field. Soil samples with notably elevated combustible gas concentrations should be discussed with the Project Manager and may be selected for laboratory analysis.

6. Standard Operating Procedures

GHD standard operating procedures (SOP) shall be used during borehole drilling and soil sampling. Deviations to the SOP shall be discussed with the project manager.

6.1 Well Development

Groundwater monitoring wells will be developed on the day of drilling. At least three and up to ten well volumes will be removed from the monitoring wells in order to remove all sediment from the

wells. In cases where the monitoring well goes dry prior to purging three well volumes, the well should be purged dry a minimum of three times, waiting approximately 30 minutes between purging events. Waterra tubing should be removed from the monitoring wells following well development.

6.2 Borehole Locating

The locations of all boreholes and monitoring wells must be measured in the field on the day of drilling. Borehole locations should be measured with respect to building corners or known property boundaries and shown on a plan.

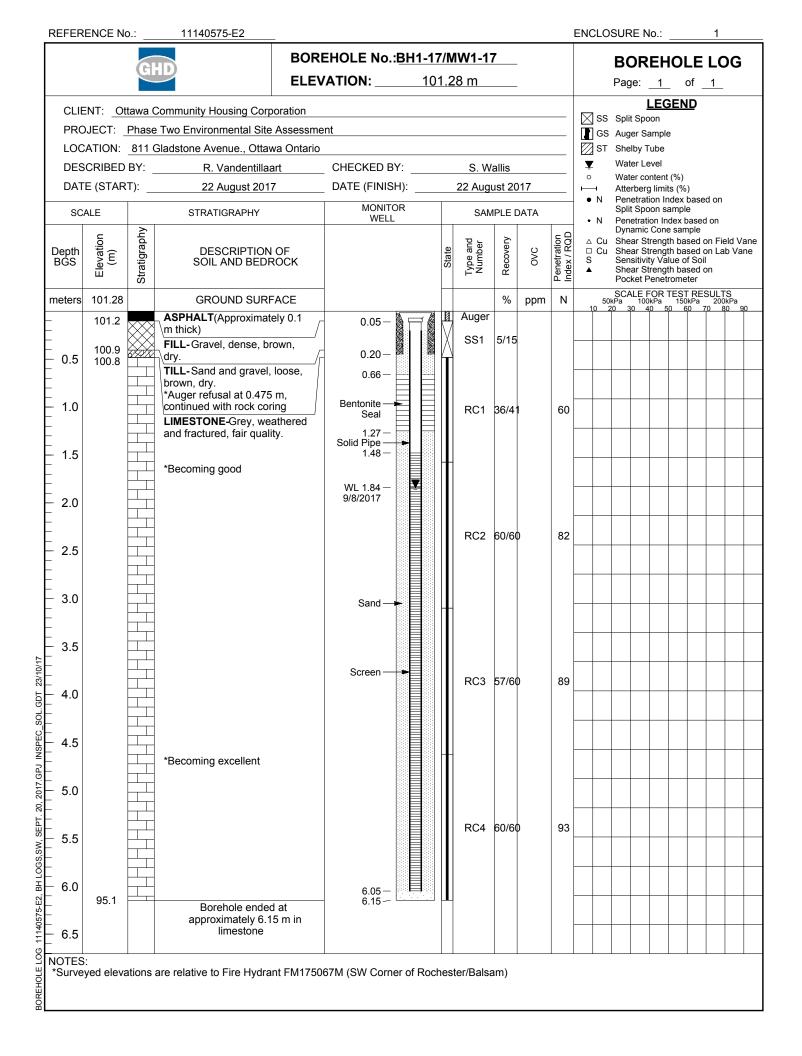
6.3 Elevation Survey

An elevation survey of all boreholes and monitoring wells will be conducted following the completion of the drilling program. A fixed temporary benchmark should be used as a reference elevation; the top of the spindle of a fire hydrant is preferred for this purpose as geodetic elevations can be obtained for these points. The ground surface elevation of all boreholes should be surveyed. The top of riser of each monitoring well should also be surveyed; this will ensure maximum accuracy in the interpretation of groundwater elevations.

6.4 Groundwater Elevation Survey

Following a period of stabilization (one week is recommended) a groundwater elevation survey will be completed for all monitoring wells. The depth to groundwater is recorded prior to disturbance of the water column and is recorded with respect to the top of riser of the monitoring well.

6.5 Groundwater Sampling


Groundwater sampling is conducted following the collection of groundwater elevations. To avoid mixture of sediment into the groundwater column and prevent volatilization during sampling, a peristaltic pump is used for groundwater sampling. The wells are purged of standing water by removing at least one well volume using the peristaltic pump. Sampling is conducted on a low flow setting following the stabilization of groundwater quality parameters. Samples are collected in dedicated bottles prepared by the laboratory. Samples are field filtered in the case of metals sampling.

Appendices

Appendix A Borehole Location Plan

Appendix C Borehole logs

REFER	ENCE N	o.:	11140575-E2	_								ENCL	LOSL	IRE N	lo.: _		2				
				BOR	EHOLE No.:BH	ł2-17	/ MW	2-17	,				B		EH	OLE)G			
		G	HD	ELEV		101	l.50 r	n													
												Page: 1 of 1 LEGEND - ⊠ SS Split Spoon									
			Community Housing Corp											olit Spo	on						
	-		Two Environmental Site		ent									uger Sa							
			Gladstone Avenue., Ottav					C 14/-				×		nelby T ater Le							
			R. Vandentillaa 25 August 201									° H		ater co							
		')· _		1	MONITOR				PLE D			•	N Pe		ion Inc	ex bas	ed on				
SC	ALE		STRATIGRAPHY	Penetration Index / RQD	• 1	N Pe	olit Spo enetrati	on Ind	ex base sample	d on											
Depth BGS	Elevation (m)	Stratigraphy	GROUND SURFACE % ppm											near St near St ensitivit near St ocket P	rength rength ty Valu rength enetro	based based e of Sc based meter	on Fie on La il on	b Van	ie		
meters	101.50		GROUND SURF	ACE					%	ppm	Ν	10	50kPa	CALE F 100	OR TI	EST RE 150kPa <u>60</u>	SULT 200	S kPa n 90	1		
_	101.4	$\times\!\!\times\!\!\times$	ASPHALT(Approximat	ely 0.1	0.05-	T	Ш Л												_		
0.5	101.1 100.9		FILL-Gravel, loose, gre TILL-Clayey sand, son gravel, loose, grey with	ne	8 -26 0.61		s I	S1	12/20		9	•									
			reddish-brown staining *Auger refusal at 0.6 m	,		E	R	C1	23/23		65										
- 1.0			continued with rock cor	ring	Bentonite				20/20		00										
			LIMESTONE-Grey, we and fractured, fair qual	tv.	1.35 -									+							
- 1.5			*Water was whiteish at transitioning to grey.	start,	Solid Pipe									_							
_			*Becoming good		1.00																
- 2.0							R	C2	60/60		88										
2.0													_								
_																					
- 2.5																					
_			*Becoming excellent		WL 2.74 — 9/8/2017	Y															
_ 3.0					Sand —									_							
_																					
- 3.5							R	C3	58/58		98										
11/01/22/01/0																					
					Screen —																
														+							
														+			+	_	_		
							 _R	C4	52/52		100										
5.0							``					T			ΙT			T			
														+	\vdash		+		-		
5.5														_					_		
		H																			
							R	C5	28/28		100										
동 <u>-</u> 6.0	<u></u>				6.13 -									_							
	95.3		Borehole ender		6.22																
6.5			approximately 6.2 limestone	- 111 III																	
									1										-		
*Surve	yed eleva	ations	are relative to Fire Hydra	nt FM1750	67M (SW Corner o	t Roch	ester/E	Balsa	m)												
BORE																					
											_										

REFER	ENCE No	0.:11140575-E2										ENCLO	SUR	E No	.:		3	
				BORI	EHOLE No.:BH	15-17	/M	W3-17	7				BC)RF	ЕНО	IF	0	G
		G	HD	ELEV		102	2.39	9 m							1			•
													-		EGEI			
			Community Housing Corp Two Environmental Site		ent							⊠ ss						
	_		Gladstone Avenue., Ottav									GS ST						
			R. Vandentillaa					S. W	allis			Ţ		er Lev				
			28 August 201									°			ent (%) imits (%			
SC	ALE		STRATIGRAPHY		MONITOR WELL			SAM	IPLE D			• N	Split Pene	Spoo etration	n Index n samp n Index	le based		
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDF				State	Type and Number	Recovery	OVC	Penetration Index / RQD		Shea Shea Sens Shea Pock	ar Stre ar Stre sitivity ar Stre ket Pe	ength ba Value ength ba netrom	ased or ased or of Soil ased or eter	n Lab n	
meters	102.39		GROUND SURFACE % ppm N											LE FC 100kF	R TES 2a 15 50	T RES 0kPa 60 70	ULTS 200kF	⁻ а 90
- 0.5	102.3		TOPSOIL-Silty sand, b loose, damp. (Approxin 0.1 m thick) FILL-Sand and gravel,	nately	0.05-		M	SS1	7/24		15	10						
	101.7		loose, dry. LIMESTONE-Grey, we and fractured, poor qua	athered	0.61 — Bentonite — ► Seal												_	
- 1.0 -					1.09 – Solid Pipe – – 1.30 –			504	00/00		-0							
- 1.5 - -								RC1	60/60		50							
2.0			*Becoming good		WL 2.17 — 9/8/2017	V												
2.5 								RC2	30/30	1	80							
3.0			*Becoming excellent		Sand —													
3.5					Screen			RC3	45/45		92							
4.5								RC4	27/27		100							
649.7107 '02'																		
 55								RC5	47/47		100							
	96.5		Develo 1	1 = 1	5.87 —										_	+	+	+
			Borehole ender approximately 5.8 limestone															
6.5																		
NOTES *Surve		ations	are relative to Fire Hydra	nt FM1750	67M (SW Corner of	f Roch	neste	er/Balsa	am)									

REFERENCE No.: 11140575-E2 EN													J		4			
		G	HD	BOREHOLE No.:							BC	DRI	EHC	LE	LC	G		
				ELEVATION:	101.	08 m					Pag	je: _	1	of _	1			
CLIE	ENT: Ot	tawa (Community Housing Corp	oration									EGE	<u>ND</u>				
			e Two Environmental Site							SS CS								
LOC	ATION:	811	Gladstone Avenue., Ottav	va Ontario														
DES	CRIBED	BY:	R. Vandentillaa	tt CHECKED BY:		S. V	Vallis			Ţ		er Lev						
DAT	E (STAR	T): _	25 August 201	DATE (FINISH):		25 Aug	gust 20	017										
SC	ALE		STR	ATIGRAPHY		SA	MPLE [ΟΑΤΑ		• N	Spli	t Spoo	on Inde on sam on Index	ple				
Depth BGS	Elevation (m)	Stratigraphy	DE SOII	OVC	Penetration Index / RQD	D						o Vane						
meters	101.08		GF	OUND SURFACE			%	ppm	Ν	5 10	SCA 0kPa 20 3	ALE F(100k	OR TES Pa 1	ST RE 50kPa 60 7	SULT 200	S (Pa) 90		
	101.0	$\times\!\!\!\times\!\!\!\times$	ASPHALT(Approximate			1							ľ					
_	100.7		FILL-Gravel, loose, gre		\	691	11/2	5	9					_				
- 0.5		J)	IILL- Sand, some clay,	some gravel, loose, grey, wet	i. /									_				
_	100.3	(#]_X	∖*Auger refusal at 0.76 r	n, continued with rock coring	_/I	П												
- 1.0			LIMESTONE-Grey, we quality.	athered and fractured, fair		RC1	22/22	2	64									
- 1.5			*Becoming excellent															
_																		
- 2.0						RC2	57/5	7	93									
_																		
- 2.5																		
E	98.3		Porobolo ondod ol	approximately 2.7 m in limest	lana	Ц												
- 3.0			Borenole ended a	approximately 2.7 m m imesi	lone													
_ 3.5																		
11/01/62																		
109 - 4.0																		
- 4.5																		
107 07 - 5.0																		
38' M 5.5										\vdash	-	\vdash		-				
											_	\square						
H 6.0																		
6.5																		
ONOTES ≝ *Surve	: yed eleva	ations	are relative to Fire Hvdra	nt FM175067M (SW Corner of	f Roche	ster/Bals	sam)											
ROKEHO			, ,	,	-		,											
2																		

															5		
		GĿ		BOREHOLE No.:							вс	DRE	HOI	LE	LO	G	
				ELEVATION:	101.	08 m					Pag	e: <u>1</u>	_	of _	1		
CLIE	ENT: Ot	tawa Co	ommunity Housing Corp	oration							Quellit	LE Spoon	GEN	<u>ID</u>			
PRC	JECT:	Phase [·]	Two Environmental Site	Assessment								er Samp					
LOC	ATION:	811 G	ladstone Avenue., Ottav	va Ontario						🖾 ѕт		lby Tube					
				art CHECKED BY:						₹ ∘		er Level er conte					
DAT	E (STAR	T):	25 August 201)17		• N	Atte	rberg lin etration	nits (%	5)	1 on						
SC.	ALE	>	STR	1	• N	Split Pene	Spoon etration amic Co	sampl Index I	le based								
Depth BGS	Elevation (m)	Chratigraphy DESCRIPTION OF SOIL AND BEDROCK Stratigraphy Babe Stratigraphy Stratigraphy Covery Stratigraphy Stratigraphy Covery Stratigraphy Stratigraphy Covery Stratigraphy Stratigraphy										 △ Cu Shear Strength based on Field V □ Cu Shear Strength based on Lab Va S Sensitivity Value of Soil ▲ Shear Strength based on Pocket Penetrometer 					
meters	101.08						%	ppm	Ν	50 10	SCA)kPa 20 3(LE FOF 100kPa 0 40	R TES ⁻ 150	T RES 0kPa 60 70	ULTS 200kF	; Pa 90	
_	101.0		ASPHALT(Approximate			/							Ī		Ĩ		
_	100.7		FILL-Gravel, compact,		Х	SS1	10/16	6	19						+		
- 0.5	100.6		brown, dry.	some gravel, loose, greyish	/T	ľ									\rightarrow		
_				, continued with rock coring athered and fractured, good	/	RC1	27/2	7	78								
- 1.0			quality.	allorod and haolarod, good													
					H	-							_		+		
- 1.5																	
_																	
F _						RC1	60/60	h	85						+		
- 2.0							00/01								\rightarrow	_	
- 2.5																	
_	98.4		Borehole ended at	approximately 2.7 m in limes	tone	-									+		
- 3.0															$ \rightarrow$		
_																	
- 3.5															+		
															+		
															+	+	
															\rightarrow		
5.0															\top		
															+	+	
5.5															\square		
															+	+	
5 6.0 3 -											$\left \right $		_		+	+	
6.5																	
NOTES NOTES Surve		ations	ro rolativo to Fire United	nt EN1175067N4 (8)A/ 0	f Doch c	tor/Del-	om)		1			I		11			
Surve	yeu eleva	auons a	re relative to Fire Hydra	nt FM175067M (SW Corner o	N ROCHES	ster/Bais	aili)										

REFERENCE No.: 11140575-E2 ENCLOSURE No.: 6																	
		G		BOREHOLE No.:	BH	6-′	17					ВС	ORE	НО	LE	LO	G
				ELEVATION:	101	.7	0 m					Pag	je: _	1	of _	1	
CLI	=NT· O	ttawa (Community Housing Corp	oration							_			EGEI	ND		
			Two Environmental Site								🔀 ss 🚺 Gs						
	-		Gladstone Avenue., Ottav								I∎ 0.						
DES	CRIBED	BY:	R. Vandentillaa	art CHECKED BY:			S. W	allis			⊻ ∘		er Lev	el ent (%)			
DAT	E (STAR	RT): _	28 August 201	7 DATE (FINISH):			28 Aug	ust 20)17		Γ	Atte	rberg I	imits (%	6)		
SC	ALE		STR	ATIGRAPHY			SAN	IPLE D	ΟΑΤΑ		• N	Split	t Spoo	n Index n samp	le		
	c	hy			ΞQ		Dyn	amic C	n Index one sa	mple		d) (ana					
Depth BGS	Elevation (m)	igrap	DE	SCRIPTION OF AND BEDROCK		State	Type and Number	Recovery	ovc	tratio c / RC		She	ar Stre	ngth b Value	ased o	n Lab	d Vane Vane
BGS	Ele O	Stratigraphy	501	AND BEDRUCK		Ś	Nu Nu	Rec	0	Penetration Index / RQD	<u>ا</u>	She	ar Stre	ngth b	ased o		
meters	101.70		GF	ROUND SURFACE				%	ppm	N	5			R TES Pa 15 50			Pa
_		7 <u>11</u> 2 7	TOPSOIL-Silty sand wi	th organics (grass), very loose	э,	$\langle \rangle$					10	20 3	0 40	50	60 7	<u>) 80</u>	90
-	101.5			proximately 0.18 m thick) organics, loose, dark brown,		X	SS1	7/24		4	•					\rightarrow	
- 0.5			moist.			\wedge											
						\square											
- 1.0						Å	SS2	5/20		22		•				+	
	100.6			, continued with rock coring		\mathbf{H}											
			LIMESTONE-Grey, we quality.	athered and fractured, poor			RC1	25/25	5	30							
- 1.5 -																+	
			*Becoming excellent			-										_	
_ 2.0																	
							RC2	17/1	7	96							
- 2.5							R02	+//4/		90						-	
																_	
- 3.0	98.8		Borehole ended at	approximately 2.9 m in limest	tone	L											
-																	
- 3.5																+	
_																_	
11/01/27																	
. 1																-	
≦																	
5.0																	
														_		+	
5.5																	
																+	
동 <u></u> 6.0														_		-+	
6.5																T	
	S:						(5 ·										
Surve	eyed eleva	ations	are relative to Fire Hydra	nt FM175067M (SW Corner of	r Koch	est	er/Bals	am)									
NO ^R																	

REFER		ENCLC	SURE	INO			7								
		GHD	BOREHOLE No.:	BH7	7-17					BO	REF	IOL	E L	.00	6
			ELEVATION:	101	.66 m					Page	_1	C	of _1	<u> </u>	
CLIE	ENT: Ot	tawa Community Housing Corp	oration							0	LEC	GEN	D		
PRO	JECT:	Phase Two Environmental Site	Assessment							Split S Auger		е			
LOC	ATION:	811 Gladstone Avenue., Ottav	a Ontario							Shelby Water	Tube				
		BY: R. Vandentillaa													
DAT	E (STAR	T): 29 August 2017	17		∘ ⊢ ● N	Water Atterbe Penetr	erg limi	ts (%)		on					
SC	ALE	STR		• N	Split S Penetr	poon s ation In	ample dex b	e ased o							
Depth BGS	Elevation (m)	Stratigraphy IOS	Penetration Index / RQD	Dynamic Cone sample △ Cu Shear Strength based on F □ Cu Shear Strength based on Li S Sensitivity Value of Soil ▲ Shear Strength based on Pocket Penetrometer SCALE FOR TEST RESUL 50kPa 100kPa 150kPa 20 10 20 30 40 50 60 70						ane					
meters	101.66		OUND SURFACE			%	ppm	Ν	50 10	SCALE)kPa 1 2 <u>0 30</u>	E FOR 00kPa 40 5	TEST 1504 50 60	RESU kPa 0 70	JLTS 200kPa <u>80</u>	90
_	101.6	TOPSOIL- Silty sand wi	th organics (grass), very loose proximately 0.1 m thick)	∍, _		10/00		10							
			l, loose, light brown, moist.		SS1	12/20)	10							
- 0.5	101.0			4	I						_				
			n, continued with rock coring athered and fractured, poor	/	RC1	14/19	à	29							
_ 1.0		quality.					,	25							
-				ſ	RC2	15/15	5	40							
- 1.5				-							_				
		*Becoming excellent													
- 2.0															
					RC3	57/56	3	93					-		_
						57750	,	55							
- 2.5															
- 3.0	98.7	Borehole ended at	approximately 2.9 m in limest	tone	•						_				_
- 3.5															
													-		
											_				
4.0 - 4.0															
4.5										++		$\left \right $	+		
											_				_
5.0 N-															
													-+	_	
200															
6.0											_		_		_
6.5															
NOTES		tions are relative to Fire Hydra	nt FM175067M (SW Corner of	f Roch	ester/Bals	am)									
		· · · · · · · · · · · · · · · · · · ·	(,									

REFE	RENCE N	o.:	11140575-E2								ENCL	030		10			3	
GHD			HD	BOREHOLE No.: BH8-17			BOREHOLE LOG											
				ELEVATION:	100).6	5 m					Pa	age:	_1	0	f _1		
CLIENT: Ottawa Community Housing Corporation										END	<u>)</u>							
	PROJECT: Phase Two Environmental Site Assessment								olit Spo uger S									
									nelby 1									
DESCRIBED BY: R. Vandentillaart CHECKED BY: S. Wallis							⊻ ∘		ater Le		(%)							
DATE (START): 29 August 2017			29 August 201	DATE (FINISH): 29 August 2017					⊢ ● ►	At	terber	g limit	s (%)	ased o				
S	SCALE STI		ATIGRAPHY SAMPLE DATA				• N	S	olit Spo	oon sa	mple	ased or						
5		phy					ΡL	2		ъđ		D	ynamic	Cone	samp	ole		/ane
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION OF SOIL AND BEDROCK			State	Type and Number	Recovery	OVC	Penetration Index / RQD	\vec{D} \triangle Cu Shear Strength based on Field Vane \vec{L} \Box Cu Shear Strength based on Lab Vane \vec{k} S Sensitivity Value of Soil				ane			
200	Ш Ш	Stra									A	SI	hear S ocket F	trengt	h base	ed on		
meters	s 100.65		GI	ROUND SURFACE				%	ppm	N		S(50kPa	CALE I	FOR T	EST 150kl	RESUI Pa 2 70	LTS 200kPa	
_	400 5	<u>xh iz</u> - x	TOPSOIL-Silty sand w	th organics (grass), loose, dar	ĸ						10	20	30 4	0 50	0 60		80	90
_	100.5		brown, moist. (Approxi	nately 0.18 m thick) loose, dark borwn, moist.		I X I	SS1	10/24	1	4	•	_	_			_	_	
- 0.5		\bigotimes	· · · · · · · · · · · · · · · · · · ·	,,,		\mathbb{N}												
E		\bigotimes				\square												
- 1.0	00.0					X	SS2	6/24		10	-+	_	_			+	+-	+
-	99.6		FILL-Gravel some san greyish brown, dry.	d trace silt and clay, loose,		$\langle \rangle$												
		\bigotimes	greyion brown, ary.			М												
- 1.5		\bigotimes				Ň	SS3	3/24		34			•			+	-	
						(_			+	—	
_ 2.0						M	SS4	3/18										
_	98.4	\bigotimes	CONCRETE			Δ												
- 2.5			CONCRETE				5.0.4									+	_	-
_	98.1		LIMESTONE-Grey, we quality.	athered and fractured, poor			RC1	12/24	ł	25								
- 3.0			*Becoming good															
_ 3.0																-		
_							RC2	39/39	Ð	82			_			+	—	_
3.5																		
23/10/17	96.8																	
<u> </u>	90.0		Borehole ended a	approximately 3.9 m in limest	tone											+		+
																\rightarrow		
ບ– ສ_– 4.5																		
													_			+	+-	+
5.0 100 - 5.0																		
<u>,</u> 5.5															+	+	+	+
065;													_		_	+		+
≝ 6.0																		
75-E2																		
^{V304} 1 - 6.5														$\left \right $		+	+	+
ອ																		
NOTE	*Surveyed elevations are relative to Fire Hydrant FM175067M (SW Corner of Rochester/Balsam)																	
JKEH																		
<u></u>																		

Appendix D Laboratory Certificates of Analysis

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

GHD Limited (Ottawa)

179 Colonnade Road Suite 400 Ottawa, ON K2E7S4 Attn: Luke Lopers

Client PO: 73508783 Project: 11140575-E2 Custody: 113609

Report Date: 31-Aug-2017 Order Date: 25-Aug-2017

Order #: 1735030

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** DUP 1735030-01

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Certificate of Analysis Client: GHD Limited (Ottawa) Client PO: 73508783

Order #: 1735030

Report Date: 31-Aug-2017 Order Date: 25-Aug-2017

Project Description: 11140575-E2

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	30-Aug-17	31-Aug-17
PHC F1	CWS Tier 1 - P&T GC-FID	30-Aug-17	31-Aug-17
PHC F4G (gravimetric)	CWS Tier 1 - Extraction Gravimetric	31-Aug-17	31-Aug-17
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	26-Aug-17	29-Aug-17
REG 153: Metals by ICP/OES, soil	based on MOE E3470, ICP-OES	30-Aug-17	30-Aug-17
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	25-Aug-17	30-Aug-17
Solids, %	Gravimetric, calculation	29-Aug-17	29-Aug-17

Order #: 1735030

Report Date: 31-Aug-2017

Order Date: 25-Aug-2017

	Client ID: Sample Date:	DUP 25-Aug-17	-	-	-
	Sample ID:	1735030-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	88.4	-	-	-
Metals	•				
Antimony	1.0 ug/g dry	<1.0	-	-	-
Arsenic	1.0 ug/g dry	7.5	-	-	-
Barium	1.0 ug/g dry	235	-	-	-
Beryllium	1.0 ug/g dry	<1.0	-	-	-
Boron	1.0 ug/g dry	7.5	-	-	-
Cadmium	0.5 ug/g dry	<0.5	-	-	-
Chromium	1.0 ug/g dry	24.7	-	-	-
Cobalt	1.0 ug/g dry	7.7	-	-	-
Copper	1.0 ug/g dry	39.8	-	-	-
Lead	1.0 ug/g dry	363	-	-	-
Molybdenum	1.0 ug/g dry	1.6	-	-	-
Nickel	1.0 ug/g dry	15.7	-	-	-
Selenium	1.0 ug/g dry	<1.0	-	-	-
Silver	0.5 ug/g dry	<0.5	-	-	-
Thallium	1.0 ug/g dry	<1.0	-	-	-
Uranium	1.0 ug/g dry	<1.0	-	-	-
Vanadium	1.0 ug/g dry	29.3	-	-	-
Zinc	1.0 ug/g dry	152	-	-	-
Volatiles	-				
Benzene	0.02 ug/g dry	<0.02	-	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	-	-	-
Toluene	0.05 ug/g dry	<0.05	-	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	-	-	-
o-Xylene	0.05 ug/g dry	<0.05	-	-	-
Xylenes, total	0.05 ug/g dry	<0.05	-	-	-
Toluene-d8	Surrogate	95.4%	-	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	<7	-	-	-
F2 PHCs (C10-C16)	4 ug/g dry	<4	-	-	-
F3 PHCs (C16-C34)	8 ug/g dry	56	-	-	-
F4 PHCs (C34-C50)	6 ug/g dry	174 [1]	-	-	-
F4G PHCs (gravimetric)	50 ug/g dry	882	-	-	-
Semi-Volatiles					
Acenaphthene	0.02 ug/g dry	0.17	-	-	-

Report Date: 31-Aug-2017

Order Date: 25-Aug-2017

	-		· · · · · · · · · · · · · · · · · · ·		
	Client ID:	DUP	-	-	-
	Sample Date:	25-Aug-17 1735030-01	-	-	-
	Sample ID:	Soil	-	-	-
	MDL/Units		-	-	-
Acenaphthylene	0.02 ug/g dry	0.35	-	-	-
Anthracene	0.02 ug/g dry	0.64	-	-	-
Benzo [a] anthracene	0.02 ug/g dry	1.31	-	-	-
Benzo [a] pyrene	0.02 ug/g dry	1.43	-	-	-
Benzo [b] fluoranthene	0.02 ug/g dry	1.40	-	-	-
Benzo [g,h,i] perylene	0.02 ug/g dry	0.89	-	-	-
Benzo [k] fluoranthene	0.02 ug/g dry	0.83	-	-	-
Chrysene	0.02 ug/g dry	1.32	-	-	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	0.26	-	-	-
Fluoranthene	0.02 ug/g dry	2.83	-	-	-
Fluorene	0.02 ug/g dry	0.20	-	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	0.84	-	-	-
1-Methylnaphthalene	0.02 ug/g dry	0.04	-	-	-
2-Methylnaphthalene	0.02 ug/g dry	0.05	-	-	-
Methylnaphthalene (1&2)	0.04 ug/g dry	0.10	-	-	-
Naphthalene	0.01 ug/g dry	0.13	-	-	-
Phenanthrene	0.02 ug/g dry	1.94	-	-	-
Pyrene	0.02 ug/g dry	2.49	-	-	-
2-Fluorobiphenyl	Surrogate	86.4%	-	-	-
Terphenyl-d14	Surrogate	101%	-	-	-

Order #: 1735030

Report Date: 31-Aug-2017

Order Date: 25-Aug-2017

Project Description: 11140575-E2

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
F4G PHCs (gravimetric)	ND	50	ug/g						
Metals	ne -		49,9						
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	1.0	ug/g						
Boron	ND	1.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	1.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	1.0							
	ND	1.0	ug/g						
Lead Molybdenum	ND	1.0	ug/g						
			ug/g						
Nickel	ND	1.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.5	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	1.0	ug/g						
Zinc	ND	1.0	ug/g						
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g						
Acenaphthylene	ND	0.02	ug/g						
Anthracene	ND	0.02	ug/g						
Benzo [a] anthracene	ND	0.02	ug/g						
Benzo [a] pyrene	ND	0.02	ug/g						
Benzo [b] fluoranthene	ND	0.02	ug/g						
Benzo [g,h,i] perylene	ND	0.02	ug/g						
Benzo [k] fluoranthene	ND	0.02	ug/g						
Chrysene	ND	0.02	ug/g						
Dibenzo [a,h] anthracene	ND	0.02	ug/g						
Fluoranthene	ND	0.02	ug/g						
Fluorene	ND	0.02	ug/g						
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g						
Methylnaphthalene (1&2)	ND	0.04	ug/g						
Naphthalene	ND	0.01	ug/g						
Phenanthrene	ND	0.02	ug/g						
Pyrene	ND	0.02	ug/g						
Surrogate: 2-Fluorobiphenyl	1.15	0.02	ug/g		86.3	50-140			
Surrogate: Terphenyl-d14	1.50		ug/g ug/g		113	50-140			
	1.50		uy/y		113	50-140			
Volatiles									
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: Toluene-d8	8.75		ug/g		54.7	50-140			

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND				40	
F2 PHCs (C10-C16)	ND	4	ug/g dry	ND				30	
F3 PHCs (C16-C34)	ND	8	ug/g dry	ND				30	
F4 PHCs (C34-C50)	ND	6	ug/g dry	ND				30	
Metals									
Antimony	ND	1.0	ug/g dry	ND				30	
Arsenic	ND	1.0	ug/g dry	ND				30	
Barium	120	1.0	ug/g dry	120			0.1	30	
Beryllium	ND	1.0	ug/g dry	ND			0.0	30	
Boron	8.90	1.0	ug/g dry	9.56			7.2	30	
Cadmium	ND	0.5	ug/g dry	ND			0.0	30	
Chromium	18.1	1.0	ug/g dry	18.5			2.4	30	
Cobalt	6.38	1.0	ug/g dry	6.53			2.4	30	
Copper	14.2	1.0	ug/g dry	14.2			0.2	30	
Lead	7.52	1.0	ug/g dry	7.58			0.9	30	
Molybdenum	ND	1.0	ug/g dry	ND			0.0	30	
Nickel	13.6	1.0	ug/g dry	13.0			4.3	30	
Selenium	ND	1.0	ug/g dry	ND			0.0	30	
Silver	ND	0.5	ug/g dry	ND			0.0	30	
Thallium	ND	1.0	ug/g dry	ND			0.0	30	
Uranium	ND	1.0	ug/g dry	ND				30	
Vanadium	27.2	1.0	ug/g dry	27.1			0.2	30	
Zinc	42.6	1.0	ug/g dry	41.8			1.9	30	
Physical Characteristics									
% Solids	82.9	0.1	% by Wt.	83.1			0.3	25	
Semi-Volatiles									
Acenaphthene	0.034	0.02	ug/g dry	0.036			6.3	40	
Acenaphthylene	0.051	0.02	ug/g dry	0.082			45.8	40	QR-04
Anthracene	0.121	0.02	ug/g dry	0.162			28.9	40	
Benzo [a] anthracene	0.231	0.02	ug/g dry	0.500			73.4	40	QR-04
Benzo [a] pyrene	0.253	0.02	ug/g dry	0.502			66.0	40	QR-04
Benzo [b] fluoranthene	0.294	0.02	ug/g dry	0.634			73.3	40	QR-04
Benzo [g,h,i] perylene	0.194	0.02	ug/g dry	0.350			57.6	40	QR-04
Benzo [k] fluoranthene	0.151	0.02	ug/g dry	0.332			75.1	40	QR-04
Chrysene	0.266	0.02	ug/g dry	0.481			57.4	40	QR-04
Dibenzo [a,h] anthracene	0.043	0.02	ug/g dry	0.082			61.5	40	QR-04
Fluoranthene	0.595	0.02	ug/g dry	1.56			89.7	40	QR-04
Fluorene	0.042	0.02	ug/g dry	0.038			10.2	40	00.04
Indeno [1,2,3-cd] pyrene	0.159	0.02	ug/g dry	0.307			63.4	40	QR-04
1-Methylnaphthalene	0.061	0.02	ug/g dry	0.058			5.1	40	
2-Methylnaphthalene	0.079	0.02	ug/g dry	0.073			7.7	40	
Naphthalene	0.088	0.01	ug/g dry	0.081			8.1	40	
Phenanthrene	0.440	0.02	ug/g dry	0.389			12.2	40	QR-04
Pyrene	0.537	0.02	ug/g dry	1.50	70.0	50 4 40	94.3	40	QR-04
Surrogate: 2-Fluorobiphenyl	1.02		ug/g dry		70.9	50-140			
Surrogate: Terphenyl-d14	1.31		ug/g dry		91.4	50-140			
Volatiles Benzene	ND	0.02	ug/g dry	ND				50	
Ethylbenzene	ND	0.02	ug/g dry ug/g dry	ND				50 50	
Toluene	ND	0.05	ug/g dry ug/g dry	ND				50 50	
m,p-Xylenes	ND	0.05	ug/g dry ug/g dry	ND				50 50	
o-Xylene	ND	0.05	ug/g dry	ND				50 50	
Surrogate: Toluene-d8	6.38	0.00	ug/g dry ug/g dry		104	50-140		00	
2									

Order #: 1735030

Report Date: 31-Aug-2017

Order Date: 25-Aug-2017

Method Quality Control: Spike

Report Date: 31-Aug-2017

Order Date: 25-Aug-2017

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	188	7	ug/g		94.2	80-120			
F2 PHCs (C10-C16)	97	4	ug/g	ND	89.9	60-140			
F3 PHCs (C16-C34)	228	8	ug/g	ND	102	60-140			
F4 PHCs (C34-C50)	165	6	ug/g	ND	110	60-140			
F4G PHCs (gravimetric)	820	50	ug/g		82.0	80-120			
Metals									
Antimony	310		ug/L	ND	124	70-130			
Arsenic	322		ug/L	ND	129	70-130			
Barium	2580		ug/L	2390	75.9	70-130			
Beryllium	289		ug/L	2.23	115	70-130			
Boron	459		ug/L	191	107	70-130			
Cadmium	272		ug/L	0.85	108	70-130			
Chromium	605		ug/L	371	93.7	70-130			
Cobalt	367		ug/L	131	94.5	70-130			
Copper	550		ug/L	284	107	70-130			
Lead	399		ug/L	152	99.1	70-130			
Molybdenum	250		ug/L	2.83	98.9	70-130			
Nickel	486		ug/L	260	90.2	70-130			
Selenium	249		ug/L	4.81	97.7	70-130			
Silver	266		ug/L	ND	106	70-130			
Thallium	223		ug/L	13.9	83.8	70-130			
Uranium	317		ug/L	ND	127	70-130			
Vanadium	788		ug/L	542	98.2	70-130			
Zinc	1030		ug/L	836	79.4	70-130			
Semi-Volatiles									
Acenaphthene	0.147	0.02	ug/g		88.4	50-140			
Acenaphthylene	0.132	0.02	ug/g		78.9	50-140			
Anthracene	0.119	0.02	ug/g		71.7	50-140			
Benzo [a] anthracene	0.102	0.02	ug/g		60.9	50-140			
Benzo [a] pyrene	0.108	0.02	ug/g		65.0	50-140			
Benzo [b] fluoranthene	0.139	0.02	ug/g		83.5	50-140			
Benzo [g,h,i] perylene	0.116	0.02	ug/g		69.9	50-140			
Benzo [k] fluoranthene	0.128	0.02	ug/g		76.5	50-140			
Chrysene	0.125	0.02	ug/g		75.0	50-140			
Dibenzo [a,h] anthracene	0.120	0.02	ug/g		72.2	50-140			
Fluoranthene	0.122	0.02	ug/g		73.3	50-140			
Fluorene	0.137	0.02	ug/g		82.2	50-140			
Indeno [1,2,3-cd] pyrene	0.123	0.02	ug/g		73.7	50-140			
1-Methylnaphthalene	0.137	0.02	ug/g		82.0	50-140			
2-Methylnaphthalene	0.145	0.02	ug/g		86.7	50-140			
Naphthalene	0.136	0.01	ug/g		81.6	50-140			
Phenanthrene	0.131	0.02	ug/g		78.6	50-140			
Pyrene	0.124	0.02	ug/g		74.3	50-140			
Surrogate: 2-Fluorobiphenyl	1.14		ug/g		85.3	50-140			
Volatiles									
Benzene	4.73	0.02	ug/g		118	60-130			
Ethylbenzene	4.34	0.05	ug/g		109	60-130			
Toluene	4.06	0.05	ug/g		102	60-130			
m,p-Xylenes	8.79	0.05	ug/g		110	60-130			
o-Xylene	4.74	0.05	ug/g		119	60-130			
			5.0						

Sample Qualifiers :

1: GC-FID signal did not return to baseline by C50

QC Qualifiers :

QR-04 : Duplicate results exceeds RPD limits due to non-homogeneous matrix.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

Order #: 1735030

Project Description: 11140575-E2

Report Date: 31-Aug-2017

Order Date: 25-Aug-2017

OPARACEL	I NE	US SF LIAB	III		el ID: 17	0.011	0.0		e	: parac	Ontar 749-1			and the second se		(L) (L)	ab Use C	509	Y
Client Name: GHO Lind				Project Reference	e: 11146575	-52									7	-		Time	:
Contact Name: Like Lopers				Quote #			_							-	1 Da	ıy		03 I	Day
Address: 179 (cknnulle Road				PO# 73508	783		_	_	_						2 Da	ŧV		dRe	gular
Telephone: C13-288-1723				Email Address:	Luke Lupers	Reh	.(CM									lequir	ed:		
Criteria: # O. Reg. 153/04 (As Amended) Table _ GRSC	Filing \$	O. Reg	, 558/00	D PWQO C	CCME DS	UB (Ste	om)		UB (Sanita	ry) M	unicipa	lity:)ther		
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) 5							quire	186											
Paracel Order Number: 1735029 - FOCR TO 1735030 - Reg 153	Matrix	Air Volume	of Containers	Samp	le Taken	PHCs F1-F4+BTEX	ß	Hs	Metals by bCP		GTVI B (HWS)	1CLP	(Lattake	Package)	Inter.				
Sample ID/Location Name	Ma	Air	鞋	Date	Time		VOCS	PAHs	Ma	11g	B (18V	-	E	10	-	- 0	FC		.11
1 BH2/MW2	S		24		9.00	×	X	X	XX	-	+-	X	+-	+	-			11+1	-
2 DUP			2	Aug 25		X	-	^	<u>^</u>	-	+	-	+	+	-1	20	UM	(+1	Vill.
3	+					+	-	-	-	-	+	-	-	-	-		-	-	-
4	-		-			+	\vdash	-		-	+	-	+	+	-		-		-
5	-	-	-			+	-				+		+	+	-			-	
6	+	-				-	1				+			+	-				
8							T				1				1				
9	1						T												
10																			
Comments:																Method	Jak	Hi	~
Relinquished By (Sign): W VI TU			ver Depoi		1	ivel 4	K	1	イニ		-			ied By: Ro	1000	el	Su	hjei	t
Relinquished By (Print): Ren Virden 1004	Date/T	and sold to do	1940 A.			Time: perature	10	Q8	12	M	1	1.54	Date	Time: erified	DI D	Aur	VI P	2	5/17
Date/Time: Ay 25,2017	Tempe	rature;	*)	-	1 cm	crature	4.6	1	L				pu v	eru(c)	TM: D	7 1 1	HT.		0.4

Chain of Custody (Env) - Rev 0.7 Feb. 2016

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

GHD Limited (Ottawa)

179 Colonnade Road Suite 400 Ottawa, ON K2E7S4 Attn: Luke Lopers

Client PO: 73508783 Project: 11140575-E2 Custody: 113609

Report Date: 1-Sep-2017 Order Date: 25-Aug-2017

Order #: 1735029

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Client ID Paracel ID BH2/MW2 1735029-01

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Report Date: 01-Sep-2017 Order Date: 25-Aug-2017 Project Description: 11140575-E2

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Flashpoint	ASTM D93 - Pensky-Martens Closed Cup	29-Aug-17	29-Aug-17
PHC F1	CWS Tier 1 - P&T GC-FID	30-Aug-17	31-Aug-17
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	26-Aug-17	29-Aug-17
REG 153: Metals by ICP/OES, soil	based on MOE E3470, ICP-OES	30-Aug-17	30-Aug-17
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	25-Aug-17	30-Aug-17
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	30-Aug-17	31-Aug-17
REG 558 - Cyanide	MOE E3015- Auto Colour	30-Aug-17	30-Aug-17
REG 558 - Fluoride	EPA 340.2 - ISE	30-Aug-17	30-Aug-17
REG 558 - Mercury by CVAA	EPA 7470A - Cold Vapour AA	31-Aug-17	31-Aug-17
REG 558 - Metals, ICP-MS	EPA 6020 - Digestion - ICP-MS	30-Aug-17	30-Aug-17
REG 558 - NO3/NO2	EPA 300.1 - IC	30-Aug-17	30-Aug-17
REG 558 - PAHs	EPA 625 - GC-MS	31-Aug-17	31-Aug-17
REG 558 - PCBs	EPA 608 - GC-ECD	31-Aug-17	31-Aug-17
REG 558 - VOCs	EPA 624 - P&T GC-MS	31-Aug-17	1-Sep-17
Solids, %	Gravimetric, calculation	29-Aug-17	29-Aug-17

Report Date: 01-Sep-2017

Order Date: 25-Aug-2017

	Client ID: Sample Date:	BH2/MW2 25-Aug-17	-	-	-
r	Sample ID:	1735029-01 Soil	-	-	-
Physical Characteristics	MDL/Units	3011	-	-	-
% Solids	0.1 % by Wt.	83.9	-	_	-
Flashpoint	°C	>70		-	
EPA 1311 - TCLP Leachate Inorga		210	-	_	-
Arsenic	0.05 mg/L	<0.05	-	-]
Barium	0.05 mg/L	0.87	_	-	-
Boron	0.05 mg/L	<0.05	_		
Cadmium	0.01 mg/L	<0.03	_	-	
Chromium	0.05 mg/L	<0.05	-	-	
Lead	0.05 mg/L	<0.05			
	0.005 mg/L		-	-	
Mercury	0.05 mg/L	<0.005	-	-	-
Selenium	-	<0.05	-	-	-
Silver	0.05 mg/L	<0.05	-	-	-
Uranium	0.05 mg/L	<0.05	-	-	-
Fluoride	0.05 mg/L	0.09	-	-	-
Nitrate as N	1 mg/L	<1	-	-	-
Nitrite as N	1 mg/L	<1	-	-	-
Cyanide, free	0.02 mg/L	<0.02	-	-	-
EPA 1311 - TCLP Leachate Organ					
Benzene	0.005 mg/L	<0.005	-	-	-
Carbon Tetrachloride	0.005 mg/L	<0.005	-	-	-
Chlorobenzene	0.004 mg/L	<0.004	-	-	-
Chloroform	0.006 mg/L	<0.006	-	-	-
1,2-Dichlorobenzene	0.004 mg/L	<0.004	-	-	-
1,4-Dichlorobenzene	0.004 mg/L	<0.004	-	-	-
1,2-Dichloroethane	0.005 mg/L	<0.005	-	-	-
1,1-Dichloroethylene	0.006 mg/L	<0.006	-	-	-
Methyl Ethyl Ketone (2-Butanone)	0.30 mg/L	<0.30	-	-	-
Methylene Chloride	0.04 mg/L	<0.04	-	-	-
Tetrachloroethylene	0.005 mg/L	<0.005	-	-	-
Trichloroethylene	0.004 mg/L	<0.004	-	-	-
Vinyl chloride	0.005 mg/L	<0.005	-	-	-
4-Bromofluorobenzene	Surrogate	97.7%	-	-	-
Dibromofluoromethane	Surrogate	116%	-	-	-
Toluene-d8	Surrogate	83.5%	-	-	-
Benzo [a] pyrene	0.0001 mg/L	<0.0001	-	-	-
Terphenyl-d14	Surrogate	112%	-	-	-

Report Date: 01-Sep-2017

Order Date: 25-Aug-2017

	Client ID:	BH2/MW2	- 1		-
	Sample Date:	25-Aug-17	-	-	-
	Sample ID:	1735029-01	-	-	-
	MDL/Units	Soil	-	-	-
PCBs, total	0.003 mg/L	<0.003	-	-	-
Decachlorobiphenyl	Surrogate	79.6%	-	-	-
Metals	1.0 ug/g dry		т г		
Antimony		<1.0	-	-	-
Arsenic	1.0 ug/g dry	8.0	-	-	-
Barium	1.0 ug/g dry	296	-	-	-
Beryllium	1.0 ug/g dry	<1.0	-	-	-
Boron	1.0 ug/g dry	8.3	-	-	-
Cadmium	0.5 ug/g dry	<0.5	-	-	-
Chromium	1.0 ug/g dry	32.7	-	-	-
Cobalt	1.0 ug/g dry	8.5	-	-	-
Copper	1.0 ug/g dry	54.1	-	-	-
Lead	1.0 ug/g dry	486	-	-	-
Molybdenum	1.0 ug/g dry	1.2	-	-	-
Nickel	1.0 ug/g dry	17.5	-	-	-
Selenium	1.0 ug/g dry	<1.0	-	-	-
Silver	0.5 ug/g dry	<0.5	-	-	-
Thallium	1.0 ug/g dry	<1.0	-	-	-
Uranium	1.0 ug/g dry	<1.0	-	-	-
Vanadium	1.0 ug/g dry	32.3	-	-	-
Zinc	1.0 ug/g dry	216	-	-	-
Volatiles					
Acetone	0.50 ug/g dry	<0.50	-	-	-
Benzene	0.02 ug/g dry	<0.02	-	-	-
Bromodichloromethane	0.05 ug/g dry	<0.05	-	-	-
Bromoform	0.05 ug/g dry	<0.05	-	-	-
Bromomethane	0.05 ug/g dry	<0.05	-	-	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	-	-	-
Chlorobenzene	0.05 ug/g dry	<0.05	-	-	-
Chloroform	0.05 ug/g dry	<0.05	-	-	-
Dibromochloromethane	0.05 ug/g dry	<0.05	-	-	-
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,1-Dichloroethane	0.05 ug/g dry	<0.05	-	-	-

Order #: 1735029

Report Date: 01-Sep-2017

Order Date: 25-Aug-2017

Project Description: 11140575-E2

			1		
	Client ID: Sample Date:	BH2/MW2 25-Aug-17	-	-	-
	Sample ID:	1735029-01	-	-	-
Γ	MDL/Units	Soil	-	-	-
1,2-Dichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichloropropane	0.05 ug/g dry	<0.05	-	-	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	-	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	-	-
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	-	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	-	-	-
Ethylene dibromide (dibromoethan	0.05 ug/g dry	<0.05	-	-	-
Hexane	0.05 ug/g dry	<0.05	-	-	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	-	-	-
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	-	-	-
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	-	-	-
Methylene Chloride	0.05 ug/g dry	<0.05	-	-	-
Styrene	0.05 ug/g dry	<0.05	-	-	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	-	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	-	-	-
Toluene	0.05 ug/g dry	<0.05	-	-	-
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	-	-	-
Trichloroethylene	0.05 ug/g dry	<0.05	-	-	-
Trichlorofluoromethane	0.05 ug/g dry	<0.05	-	-	-
Vinyl chloride	0.02 ug/g dry	<0.02	-	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	-	-	-
o-Xylene	0.05 ug/g dry	<0.05	-	-	-
Xylenes, total	0.05 ug/g dry	<0.05	-	-	-
4-Bromofluorobenzene	Surrogate	109%	-	-	-
Dibromofluoromethane	Surrogate	103%	-	-	-
Toluene-d8	Surrogate	108%	-	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	<7	-	-	-
F2 PHCs (C10-C16)	4 ug/g dry	<4	-	-	-
F3 PHCs (C16-C34)	8 ug/g dry	109	-	-	-
F4 PHCs (C34-C50)	6 ug/g dry	148	-	-	-
Semi-Volatiles					

Semi-Volatiles

Order #: 1735029

Report Date: 01-Sep-2017

Order Date: 25-Aug-2017

	Client ID:	BH2/MW2	-	-	-
	Sample Date:	25-Aug-17 1735029-01	-	-	-
	Sample ID:	Soil	-	-	-
	MDL/Units		-	-	-
Acenaphthene	0.02 ug/g dry	0.17	-	-	-
Acenaphthylene	0.02 ug/g dry	0.24	-	-	-
Anthracene	0.02 ug/g dry	0.55	-	-	-
Benzo [a] anthracene	0.02 ug/g dry	1.12	-	-	-
Benzo [a] pyrene	0.02 ug/g dry	1.19	-	-	-
Benzo [b] fluoranthene	0.02 ug/g dry	1.28	-	-	-
Benzo [g,h,i] perylene	0.02 ug/g dry	0.68	-	-	-
Benzo [k] fluoranthene	0.02 ug/g dry	0.74	-	-	-
Chrysene	0.02 ug/g dry	1.13	-	-	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	0.20	-	-	-
Fluoranthene	0.02 ug/g dry	2.72	-	-	-
Fluorene	0.02 ug/g dry	0.20	-	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	0.67	-	-	-
1-Methylnaphthalene	0.02 ug/g dry	0.06	-	-	-
2-Methylnaphthalene	0.02 ug/g dry	0.07	-	-	-
Methylnaphthalene (1&2)	0.04 ug/g dry	0.13	-	-	-
Naphthalene	0.01 ug/g dry	0.17	-	-	-
Phenanthrene	0.02 ug/g dry	2.02	-	-	-
Pyrene	0.02 ug/g dry	2.30	-	-	-
2-Fluorobiphenyl	Surrogate	98.8%	-	-	-
Terphenyl-d14	Surrogate	97.5%	-	-	-

Order #: 1735029

Report Date: 01-Sep-2017

Order Date: 25-Aug-2017

Project Description: 11140575-E2

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
EPA 1311 - TCLP Leachate Inor	ganics								
Arsenic	ND	0.05	mg/L						
Barium	ND	0.05	mg/L						
Boron	ND	0.05	mg/L						
Cadmium	ND	0.01	mg/L						
Chromium	ND	0.05	mg/L						
Lead	ND	0.05	mg/L						
Mercury	ND	0.005	mg/L						
Selenium	ND	0.05	mg/L						
Silver	ND	0.05	mg/L						
Uranium	ND	0.05	mg/L						
Fluoride	ND	0.05	mg/L						
Nitrate as N	ND	1	mg/L						
Nitrite as N	ND	1	mg/L						
Cyanide, free	ND	0.02	mg/L						
EPA 1311 - TCLP Leachate Orga		0.02	iiig/ E						
Benzene	ND	0.005	mg/L						
Carbon Tetrachloride	ND	0.005	mg/L						
Chlorobenzene	ND	0.004	mg/L						
Chloroform	ND	0.006	mg/L						
1,2-Dichlorobenzene	ND	0.004	mg/L						
1,4-Dichlorobenzene	ND	0.004	mg/L						
1,2-Dichloroethane	ND	0.005	mg/L						
1,1-Dichloroethylene	ND	0.006	mg/L						
Methyl Ethyl Ketone (2-Butanone)	ND	0.30	mg/L						
Methylene Chloride	ND	0.04	mg/L						
Tetrachloroethylene	ND	0.005	mg/L						
Trichloroethylene	ND	0.004	mg/L						
Vinyl chloride	ND	0.005	mg/L						
Surrogate: 4-Bromofluorobenzene	0.657	0.000	mg/L		95.4	83-134			
Surrogate: Dibromofluoromethane	0.686		mg/L		99.6	78-124			
Surrogate: Toluene-d8	0.662		mg/L		96.2	76-118			
		0.0001	•		90.2	70-110			
Benzo [a] pyrene	ND	0.0001	mg/L		110	0744556			
Surrogate: Terphenyl-d14	0.227	0.000	mg/L		113	37.1-155.6			
PCBs, total	ND	0.003	mg/L		75.0	00 400			
Surrogate: Decachlorobiphenyl	0.0152		mg/L		75.9	62-138			
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Metals									
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g						
Barium	ND	1.0	ug/g						
Beryllium	ND	1.0	ug/g						
Boron	ND	1.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	1.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	1.0	ug/g						
Lead	ND	1.0	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	1.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.5	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	1.0	ug/g						

Method Quality Control: Blank

Report Date: 01-Sep-2017

Order Date: 25-Aug-2017

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Zinc	ND	1.0	ug/g						
Semi-Volatiles		-	5.3						
Acenaphthene	ND	0.02	ug/g						
Acenaphthylene	ND	0.02	ug/g						
Anthracene	ND	0.02	ug/g						
Benzo [a] anthracene	ND	0.02	ug/g						
Benzo [a] pyrene	ND	0.02	ug/g						
Benzo [b] fluoranthene	ND	0.02	ug/g						
Benzo [g,h,i] perylene	ND	0.02	ug/g						
Benzo [k] fluoranthene Chrysene	ND ND	0.02 0.02	ug/g ug/g						
Dibenzo [a,h] anthracene	ND	0.02	ug/g ug/g						
Fluoranthene	ND	0.02	ug/g						
Fluorene	ND	0.02	ug/g						
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g						
Methylnaphthalene (1&2)	ND	0.04	ug/g						
Naphthalene Phenanthrene	ND ND	0.01 0.02	ug/g						
Phenanthrene Pyrene	ND ND	0.02	ug/g ug/g						
Surrogate: 2-Fluorobiphenyl	1.15	0.02	ug/g ug/g		86.3	50-140			
Surrogate: Terphenyl-d14	1.50		ug/g ug/g		113	50-140			
Volatiles			0.0		-	-			
Acetone	ND	0.50	ug/g						
Benzene	ND	0.02	ug/g						
Bromodichloromethane	ND	0.05	ug/g						
Bromoform	ND	0.05	ug/g						
Bromomethane	ND	0.05	ug/g						
Carbon Tetrachloride	ND	0.05	ug/g						
Chlorobenzene	ND	0.05	ug/g						
Chloroform Dibromochloromethane	ND ND	0.05 0.05	ug/g						
Dichlorodifluoromethane	ND	0.05	ug/g ug/g						
1,2-Dichlorobenzene	ND	0.05	ug/g ug/g						
1,3-Dichlorobenzene	ND	0.05	ug/g						
1,4-Dichlorobenzene	ND	0.05	ug/g						
1,1-Dichloroethane	ND	0.05	ug/g						
1,2-Dichloroethane	ND	0.05	ug/g						
1,1-Dichloroethylene	ND	0.05	ug/g						
cis-1,2-Dichloroethylene	ND	0.05	ug/g						
trans-1,2-Dichloroethylene 1,2-Dichloropropane	ND ND	0.05 0.05	ug/g ug/g						
cis-1,3-Dichloropropylene	ND	0.05	ug/g ug/g						
trans-1,3-Dichloropropylene	ND	0.05	ug/g						
1,3-Dichloropropene, total	ND	0.05	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Ethylene dibromide (dibromoethane	ND	0.05	ug/g						
Hexane	ND	0.05	ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g						
Methyl Isobutyl Ketone Methyl tert-butyl ether	ND ND	0.50 0.05	ug/g						
Methylene Chloride	ND	0.05	ug/g ug/g						
Styrene	ND	0.05	ug/g						
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g						
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g						
Tetrachloroethylene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
1,1,1-Trichloroethane	ND	0.05	ug/g						
1,1,2-Trichloroethane	ND	0.05	ug/g						
Trichloroethylene	ND	0.05	ug/g						

Order #: 1735029

Report Date: 01-Sep-2017

Order Date: 25-Aug-2017 Project Description: 11140575-E2

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Trichlorofluoromethane	ND	0.05	ug/g						
Vinyl chloride	ND	0.02	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: 4-Bromofluorobenzene	8.21		ug/g		51.3	50-140			
Surrogate: Dibromofluoromethane	8.41		ug/g		52.6	50-140			
Surrogate: Toluene-d8	8.75		ug/g		54.7	50-140			

Order #: 1735029

Report Date: 01-Sep-2017

Order Date: 25-Aug-2017

Project Description: 11140575-E2

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	N /
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
EPA 1311 - TCLP Leachate Ino	rganics								
Arsenic	ND	0.05	mg/L	ND			0.0	29	
Barium	0.174	0.05	mg/L	0.154			12.1	34	
Boron	ND	0.05	mg/L	ND			0.0	33	
Cadmium	ND	0.00	mg/L	ND			0.0	33	
Chromium	ND	0.05	mg/L	ND			0.0	32	
Lead	ND	0.05	mg/L	ND			0.0	32	
Mercury	ND	0.005	mg/L	ND			0.0	30	
Selenium	ND	0.005	mg/L	ND			0.0	28	
Silver	ND	0.05	mg/L	ND			0.0	28	
Uranium	ND	0.05	mg/L	ND			0.0	27	
Fluoride	0.11	0.05	mg/L	0.11			1.7	20	
Nitrate as N	ND	1	mg/L	ND			1.7	20	
Nitrite as N	ND	1	mg/L	ND				20	
Cyanide, free	ND	0.02	mg/L	ND				20	
EPA 1311 - TCLP Leachate Org		0.02	iiig/E	ND				20	
Benzene	ND	0.005	mg/L	ND				25	
Carbon Tetrachloride	ND	0.005	mg/L	ND				25	
Chlorobenzene	ND	0.004	mg/L	ND				25	
Chloroform	ND	0.006	mg/L	ND				25	
1,2-Dichlorobenzene	ND	0.004	mg/L	ND				25	
1,4-Dichlorobenzene	ND	0.004	mg/L	ND				25	
1,2-Dichloroethane	ND	0.005	mg/L	ND				25	
1,1-Dichloroethylene	ND	0.006	mg/L	ND				25	
Methyl Ethyl Ketone (2-Butanone)	ND	0.30	mg/L	ND				25	
Methylene Chloride	ND	0.04	mg/L	ND				25	
Tetrachloroethylene	ND	0.005	mg/L	ND				25	
Trichloroethylene	ND	0.004	mg/L	ND				25	
Vinyl chloride	ND	0.005	mg/L	ND				25	
Surrogate: 4-Bromofluorobenzene	0.649		mg/L		94.3	83-134			
Surrogate: Dibromofluoromethane	0.834		mg/L		121	78-124			
Surrogate: Toluene-d8	0.572		mg/L		83.1	76-118			
Benzo [a] pyrene	ND	0.0001	mg/L	ND				50	
Surrogate: Terphenyl-d14	0.216		mg/L		108	37.1-155.6			
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND				40	
F2 PHCs (C10-C16)	ND	4	ug/g dry	ND				30	
F3 PHCs (C16-C34)	ND	8	ug/g dry	ND				30	
F4 PHCs (C34-C50)	ND	6	ug/g dry	ND				30	
Metals									
Antimony	ND	1.0	ug/g dry	ND				30	
Arsenic	ND	1.0	ug/g dry	ND				30	
Barium	120	1.0	ug/g dry	120			0.1	30	
Beryllium	ND	1.0	ug/g dry	ND			0.0	30	
Boron	8.90	1.0	ug/g dry	9.56			7.2	30	
Cadmium	ND	0.5	ug/g dry	ND			0.0	30	
Chromium	18.1	1.0	ug/g dry	18.5			2.4	30	
Cobalt	6.38	1.0	ug/g dry	6.53			2.4	30	
Copper	14.2	1.0	ug/g dry	14.2			0.2	30	
Lead	7.52	1.0	ug/g dry	7.58			0.9	30	
Molybdenum	ND	1.0	ug/g dry	ND			0.0	30	
Nickel	13.6	1.0	ug/g dry	13.0			4.3	30	
Selenium	ND	1.0	ug/g dry	ND			0.0	30	
Silver	ND	0.5	ug/g dry	ND			0.0	30	
Thallium	ND	1.0	ug/g dry	ND			0.0	30	
Uranium	ND	1.0	ug/g dry	ND			0.0	30	
Vanadium	27.2	1.0	ug/g dry	27.1			0.2	30	
Zinc	42.6	1.0	ug/g dry	41.8			1.9	30	

Method Quality Control: Duplicate

Report Date: 01-Sep-2017

Order Date: 25-Aug-2017

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Physical Characteristics	00.0	0.4	04 100 104	00.4				05	
% Solids	82.9	0.1	% by Wt.	83.1			0.3	25	
Semi-Volatiles									
Acenaphthene	0.034	0.02	ug/g dry	0.036			6.3	40	
Acenaphthylene	0.051	0.02	ug/g dry	0.082			45.8	40	QR-04
Anthracene	0.121	0.02	ug/g dry	0.162			28.9	40	
Benzo [a] anthracene	0.231	0.02	ug/g dry	0.500			73.4	40	QR-04
Benzo [a] pyrene	0.253	0.02	ug/g dry	0.502			66.0	40	QR-04
Benzo [b] fluoranthene	0.294	0.02	ug/g dry	0.634			73.3	40	QR-04
Benzo [g,h,i] perylene	0.194	0.02	ug/g dry	0.350			57.6	40	QR-04
Benzo [k] fluoranthene	0.151	0.02	ug/g dry	0.332			75.1	40	QR-04
Chrysene	0.266	0.02	ug/g dry	0.481			57.4	40	QR-04
Dibenzo [a,h] anthracene	0.043	0.02	ug/g dry	0.082			61.5	40	QR-04
Fluoranthene	0.595	0.02	ug/g dry	1.56			89.7	40	QR-04
Fluorene	0.042	0.02	ug/g dry	0.038			10.2	40	
Indeno [1,2,3-cd] pyrene	0.159	0.02	ug/g dry	0.307			63.4	40	QR-04
1-Methylnaphthalene	0.061	0.02	ug/g dry	0.058			5.1	40	
2-Methylnaphthalene Naphthalene	0.079 0.088	0.02 0.01	ug/g dry	0.073 0.081			7.7 8.1	40 40	
Phenanthrene	0.088	0.01	ug/g dry	0.081			0.1 12.2	40 40	
Pyrene	0.440	0.02	ug/g dry ug/g dry	1.50			94.3	40 40	QR-04
Surrogate: 2-Fluorobiphenyl	1.02	0.02	ug/g dry ug/g dry	1.50	70.9	50-140	94.5	40	
a					70.9 91.4	50-140 50-140			
Surrogate: Terphenyl-d14	1.31		ug/g dry		91.4	50-140			
Volatiles									
Acetone	ND	0.50	ug/g dry	ND				50	
Benzene	ND	0.02	ug/g dry	ND				50	
Bromodichloromethane	ND	0.05	ug/g dry	ND				50	
Bromoform	ND	0.05	ug/g dry	ND				50	
Bromomethane	ND	0.05	ug/g dry	ND				50	
Carbon Tetrachloride	ND	0.05	ug/g dry	ND				50	
Chlorobenzene	ND	0.05	ug/g dry	ND				50	
Chloroform	ND	0.05	ug/g dry	ND				50	
Dibromochloromethane	ND	0.05	ug/g dry	ND				50	
Dichlorodifluoromethane	ND	0.05	ug/g dry	ND				50	
1,2-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,3-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,4-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,1-Dichloroethane	ND ND	0.05 0.05	ug/g dry	ND ND				50 50	
1,2-Dichloroethane 1,1-Dichloroethylene	ND	0.05	ug/g dry	ND				50 50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g dry ug/g dry	ND				50 50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g dry ug/g dry	ND				50 50	
1,2-Dichloropropane	ND	0.05	ug/g dry ug/g dry	ND				50 50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g dry ug/g dry	ND				50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND				50	
Ethylbenzene	ND	0.05	ug/g dry	ND				50	
Ethylene dibromide (dibromoethane	ND	0.05	ug/g dry	ND				50	
Hexane	ND	0.05	ug/g dry	ND				50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g dry	ND				50	
Methyl Isobutyl Ketone	ND	0.50	ug/g dry	ND				50	
Methyl tert-butyl ether	ND	0.05	ug/g dry	ND				50	
Methylene Chloride	ND	0.05	ug/g dry	ND				50	
Styrene	ND	0.05	ug/g dry	ND				50	
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g dry	ND				50	
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g dry	ND				50	
Tetrachloroethylene	ND	0.05	ug/g dry	ND				50	
Toluene	ND	0.05	ug/g dry	ND				50	
1,1,1-Trichloroethane	ND	0.05	ug/g dry	ND				50	

Order #: 1735029

Report Date: 01-Sep-2017 Order Date: 25-Aug-2017

Project Description: 11140575-E2

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Trichloroethylene	ND	0.05	ug/g dry	ND				50	
Trichlorofluoromethane	ND	0.05	ug/g dry	ND				50	
Vinyl chloride	ND	0.02	ug/g dry	ND				50	
m,p-Xylenes	ND	0.05	ug/g dry	ND				50	
o-Xylene	ND	0.05	ug/g dry	ND				50	
Surrogate: 4-Bromofluorobenzene	5.86		ug/g dry		95.0	50-140			
Surrogate: Dibromofluoromethane	5.47		ug/g dry		88.8	50-140			
Surrogate: Toluene-d8	6.38		ug/g dry		104	50-140			

Method Quality Control: Spike

Report Date: 01-Sep-2017

Order Date: 25-Aug-2017

Project Description: 11140575-E2

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
EPA 1311 - TCLP Leachate Inc	organics								
Arsenic	43.7		ug/L	ND	87.3	83-119			
Barium	58.2		ug/L	15.4	85.6	83-116			
Boron	49.1		ug/L	2.78	92.6	71-128			
Cadmium	41.9		ug/L	ND	83.8	78-119			
Chromium	45.5		ug/L	1.07	89.0	80-124			
Lead	48.6		ug/L	3.32	90.7	77-126			
Mercury	0.0282	0.005	mg/L	ND	94.0	70-130			
Selenium	42.3		ug/L	ND	84.6	81-125			
Silver	40.8		ug/L	ND	81.5	70-128			
Uranium	48.8		ug/L	ND	97.7	70-131			
Fluoride	0.60	0.05	mg/L	0.11	97.4	70-130			
Nitrate as N	9	1	mg/L	ND	89.9	81-112			
Nitrite as N	10	1	mg/L	ND	100	76-107			
Cyanide, free	0.031	0.02	mg/L	ND	62.5	60-136			
-		0.02	mg/∟		02.0	00-100			
EPA 1311 - TCLP Leachate Or					a a -				
Benzene	0.033	0.005	mg/L		83.6	55-141			
Carbon Tetrachloride	0.046	0.005	mg/L		114	49-149			
Chlorobenzene	0.035	0.004	mg/L		87.0	64-137			
Chloroform	0.036	0.006	mg/L		90.7	58-138			
1,2-Dichlorobenzene	0.031	0.004	mg/L		78.3	60-150			
1,4-Dichlorobenzene	0.031	0.004	mg/L		77.9	63-132			
1,2-Dichloroethane	0.037	0.005	mg/L		93.4	50-140			
1,1-Dichloroethylene	0.032	0.006	mg/L		80.4	43-153			
Methyl Ethyl Ketone (2-Butanone)	0.072	0.30	mg/L		71.8	26-153			
Methylene Chloride	0.025	0.04	mg/L		62.8	58-149			
Tetrachloroethylene	0.037	0.005	mg/L		92.8	51-145			
Trichloroethylene	0.044	0.004	mg/L		109	52-135			
Vinyl chloride	0.045	0.005	mg/L		114	31-159			
Surrogate: 4-Bromofluorobenzene	0.0742		mg/L		92.7	83-134			
Benzo [a] pyrene	0.0558	0.0001	mg/L		112	39-123			
PCBs, total	0.025	0.003	mg/L		62.6	86-145			
Hydrocarbons	100	_	,						
F1 PHCs (C6-C10)	188	7	ug/g		94.2	80-120			
F2 PHCs (C10-C16)	97	4	ug/g	ND	89.9	60-140			
F3 PHCs (C16-C34)	228	8	ug/g	ND	102	60-140			
F4 PHCs (C34-C50)	165	6	ug/g	ND	110	60-140			
Metals									
Antimony	310		ug/L	ND	124	70-130			
Arsenic	322		ug/L	ND	129	70-130			
Barium	2580		ug/L	2390	75.9	70-130			
Beryllium	289		ug/L	2.23	115	70-130			
Boron	459		ug/L	191	107	70-130			
Cadmium	272		ug/L	0.85	108	70-130			
Chromium	605		ug/L	371	93.7	70-130			
Cobalt	367		ug/L	131	93.7 94.5	70-130			
	550			284	94.5 107	70-130			
Copper			ug/L						
Lead	399 350		ug/L	152	99.1	70-130			
Molybdenum	250		ug/L	2.83	98.9	70-130			
Nickel	486		ug/L	260	90.2	70-130			
Selenium	249		ug/L	4.81	97.7	70-130			
Silver	266		ug/L	ND	106	70-130			

Method Quality Control: Spike

Report Date: 01-Sep-2017

Order Date: 25-Aug-2017

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Thallium	223		ug/L	13.9	83.8	70-130			
Uranium	317		ug/L	ND	127	70-130			
Vanadium	788		ug/L	542	98.2	70-130			
Zinc	1030		ug/L	836	79.4	70-130			
Semi-Volatiles									
Acenaphthene	0.147	0.02	ug/g		88.4	50-140			
Acenaphthylene	0.132	0.02	ug/g		78.9	50-140			
Anthracene	0.119	0.02	ug/g		71.7	50-140			
Benzo [a] anthracene	0.102	0.02	ug/g		60.9	50-140			
Benzo [a] pyrene	0.108	0.02	ug/g		65.0	50-140			
Benzo [b] fluoranthene	0.139	0.02	ug/g		83.5	50-140			
Benzo [g,h,i] perylene	0.116	0.02	ug/g		69.9	50-140			
Benzo [k] fluoranthene	0.128	0.02	ug/g		76.5	50-140			
Chrysene	0.125	0.02	ug/g		75.0	50-140			
Dibenzo [a,h] anthracene	0.120	0.02	ug/g		72.2	50-140			
Fluoranthene	0.122	0.02	ug/g		73.3	50-140			
Fluorene	0.137	0.02	ug/g		82.2	50-140			
Indeno [1,2,3-cd] pyrene	0.123	0.02	ug/g		73.7	50-140			
1-Methylnaphthalene	0.137	0.02	ug/g		82.0	50-140			
2-Methylnaphthalene	0.145	0.02	ug/g		86.7	50-140			
Naphthalene	0.136	0.01	ug/g		81.6	50-140			
Phenanthrene	0.130	0.02	ug/g		78.6	50-140 50-140			
Pyrene	0.124	0.02	ug/g		74.3	50-140			
-	0.124	0.02	ug/g		74.5	30-140			
Volatiles Acetone	6.13	0.50	ua/a		61.3	50-140			
			ug/g						
Benzene	4.73	0.02	ug/g		118	60-130			
Bromodichloromethane	4.56	0.05	ug/g		114	60-130			
Bromoform	4.27	0.05	ug/g		107	60-130			
Bromomethane	3.40	0.05	ug/g		84.9	50-140			
Carbon Tetrachloride	3.91	0.05	ug/g		97.8	60-130			
Chlorobenzene	4.19	0.05	ug/g		105	60-130			
Chloroform	4.33	0.05	ug/g		108	60-130			
Dibromochloromethane	3.93	0.05	ug/g		98.3	60-130			
Dichlorodifluoromethane	4.09	0.05	ug/g		102	50-140			
1,2-Dichlorobenzene	3.91	0.05	ug/g		97.7	60-130			
1,3-Dichlorobenzene	4.05	0.05	ug/g		101	60-130			
1,4-Dichlorobenzene	4.11	0.05	ug/g		103	60-130			
1,1-Dichloroethane	4.52	0.05	ug/g		113	60-130			
1,2-Dichloroethane	4.24	0.05	ug/g		106	60-130			
1,1-Dichloroethylene	4.33	0.05	ug/g		108	60-130			
cis-1,2-Dichloroethylene	4.13	0.05	ug/g		103	60-130			
trans-1,2-Dichloroethylene	4.46	0.05	ug/g		112	60-130			
1,2-Dichloropropane	5.15	0.05	ug/g		129	60-130			
cis-1,3-Dichloropropylene	4.62	0.05	ug/g		115	60-130			
trans-1,3-Dichloropropylene	4.86	0.05	ug/g		122	60-130			
Ethylbenzene	4.34	0.05	ug/g		109	60-130			
Ethylene dibromide (dibromoethane	4.32	0.05	ug/g		108	60-130			
Hexane	4.44	0.05	ug/g		111	60-130			
Methyl Ethyl Ketone (2-Butanone)	10.2	0.50	ug/g		102	50-140			
Methyl Isobutyl Ketone	12.4	0.50	ug/g		124	50-140			
Methyl tert-butyl ether	10.8	0.05	ug/g		108	50-140			
Methylene Chloride	4.79	0.05	ug/g		120	60-130			
Styrene	4.31	0.05	ug/g		108	60-130			

Order #: 1735029

Report Date: 01-Sep-2017

Order Date: 25-Aug-2017

Project Description: 11140575-E2

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,1,1,2-Tetrachloroethane	3.97	0.05	ug/g		99.2	60-130			
1,1,2,2-Tetrachloroethane	4.86	0.05	ug/g		122	60-130			
Tetrachloroethylene	3.72	0.05	ug/g		92.9	60-130			
Toluene	4.06	0.05	ug/g		102	60-130			
1,1,1-Trichloroethane	3.97	0.05	ug/g		99.3	60-130			
1,1,2-Trichloroethane	5.10	0.05	ug/g		127	60-130			
Trichloroethylene	4.76	0.05	ug/g		119	60-130			
Trichlorofluoromethane	3.66	0.05	ug/g		91.4	50-140			
Vinyl chloride	4.08	0.02	ug/g		102	50-140			
m,p-Xylenes	8.79	0.05	ug/g		110	60-130			
o-Xylene	4.74	0.05	ug/g		119	60-130			

Qualifier Notes:

QC Qualifiers :

QR-04 : Duplicate results exceeds RPD limits due to non-homogeneous matrix.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

GPARACEL	PI		I) 3LE.	Pa	racel ID:				μ.	1.000	aı • , 49•	Laurent rio K1G 1947 aracella	4J8		Nº	Lab Use	609	
Client Name: GHO Limited Contact Name: Like lopers Address: 179 Glande Road Telephone: C13-258-1723 Criteria: # O. Reg. 153/04 (As Amended) Table _ II R Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Wat				Quote # PO # .73568 Emuil Address: D PWQO C	Luke lopers	eghi JB (St	(mo				у) М	unicipa	lity:	Date	Turr Day Day Requi		d Time □ 3 I ⊄Re	
Paracel Order Number: 1735 029 - #CC&T 1735 030 - Reg 153 Sample ID/Location Name 1 BH2/MW2 2 DCP 3 4 5 6 7 8		Air Volume	No # of Containers		le Taken Time 9 JU	X X PHCs F1-F4+BTEX	× vocs	PAHs	X Metals by ICP	Hg CrVI	B (HWS)	J121 ×	(Lartahe varianterday	a series			D(+1 (+1	and the second data was not a second data was
9 10 Comments: Relinquished By (Sign): WWW PUW Relinquished By (Print): Row Videntillog4 Date/Time: Ary 25, 267	Receive Dato/Tin Temper	nc:	er Depot: °C		Receiv Date/T Tempe	ime:	19.	1	25	-	- 7 4	:59p	Verified Date/Tin pH Veri	Ra	iche A	or Delive Valb 1 Sc 1 A	5	× +20.4

Chain of Custody (Env) - Rev 0.7 Feb. 2016

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

GHD Limited (Ottawa)

179 Colonnade Road Suite 400 Ottawa, ON K2E7S4 Attn: Luke Lopers

Client PO: 73508783 Project: 11140575-E2 Custody: 38489

Report Date: 5-Sep-2017 Order Date: 29-Aug-2017

Order #: 1735234

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1735234-01	BH5/MW3
1735234-02	BH6
1735234-03	BH7

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
PHC F1	CWS Tier 1 - P&T GC-FID	1-Sep-17	4-Sep-17
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	29-Aug-17	31-Aug-17
REG 153: Metals by ICP/OES, soil	based on MOE E3470, ICP-OES	1-Sep-17	1-Sep-17
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	29-Aug-17	31-Aug-17
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	1-Sep-17	4-Sep-17
Solids, %	Gravimetric, calculation	31-Aug-17	31-Aug-17

OTTAWA • CALGARY • MISSISSAUGA • KINGSTON • LONDON • NIAGARA • SARNIA 1-800-749-1947 • www.paracellabs.com Page 2 of 12

Report Date: 05-Sep-2017 Order Date: 29-Aug-2017

Order #: 1735234

Report Date: 05-Sep-2017

Order Date: 29-Aug-2017

	Client ID: Sample Date: Sample ID: MDL/Units	BH5/MW3 29-Aug-17 1735234-01 Soil	BH6 29-Aug-17 1735234-02 Soil	BH7 29-Aug-17 1735234-03 Soil	-
Physical Characteristics	WDL/OTIIts	001	001	0011	
% Solids	0.1 % by Wt.	82.7	70.7	81.5	-
Metals	<u></u>	-			I
Antimony	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Arsenic	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Barium	1.0 ug/g dry	94.9	85.2	31.9	-
Beryllium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Boron	1.0 ug/g dry	6.3	6.0	2.8	-
Cadmium	0.5 ug/g dry	<0.5	<0.5	<0.5	-
Chromium	1.0 ug/g dry	21.1	14.4	13.1	-
Cobalt	1.0 ug/g dry	6.0	3.4	2.4	-
Copper	1.0 ug/g dry	15.4	25.4	6.5	-
Lead	1.0 ug/g dry	42.9	58.2	42.4	-
Molybdenum	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Nickel	1.0 ug/g dry	13.4	9.0	6.0	-
Selenium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Silver	0.5 ug/g dry	<0.5	<0.5	<0.5	-
Thallium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Uranium	1.0 ug/g dry	<1.0	<1.0	<1.0	-
Vanadium	1.0 ug/g dry	28.0	20.0	18.4	-
Zinc	1.0 ug/g dry	59.0	265	32.3	-
Volatiles			-		
Acetone	0.50 ug/g dry	<0.50	<0.50	<0.50	-
Benzene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
Bromodichloromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Bromoform	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Bromomethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Chlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Chloroform	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Dibromochloromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-

Order #: 1735234

Report Date: 05-Sep-2017 Order Date: 29-Aug-2017

Project Description: 11140575-E2

	Client ID:	BH5/MW3	BH6	BH7	
	Sample Date:	29-Aug-17	29-Aug-17	29-Aug-17	-
	Sample ID:	1735234-01	1735234-02	1735234-03	-
	MDL/Units	Soil	Soil	Soil	-
1,2-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,2-Dichloropropane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Ethylene dibromide (dibromoetha	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Hexane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	<0.50	<0.50	-
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	<0.50	<0.50	-
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Methylene Chloride	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Styrene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Toluene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Trichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Trichlorofluoromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Vinyl chloride	0.02 ug/g dry	<0.02	<0.02	<0.02	-
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	<0.05	-
o-Xylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	<0.05	-
4-Bromofluorobenzene	Surrogate	109%	105%	107%	-
Dibromofluoromethane	Surrogate	99.8%	110%	112%	-
Toluene-d8	Surrogate	107%	101%	104%	-
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	<7	-
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	<4	-
F3 PHCs (C16-C34)	8 ug/g dry	<8	<8	<8	-
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	<6	-
Semi-Volatiles					

Order #: 1735234

Report Date: 05-Sep-2017 Order Date: 29-Aug-2017

				_	-
	Client ID: Sample Date: Sample ID:	BH5/MW3 29-Aug-17 1735234-01	BH6 29-Aug-17 1735234-02	BH7 29-Aug-17 1735234-03	
	MDL/Units	Soil	Soil	Soil	-
Acenaphthene	0.02 ug/g dry	0.03	2.83	<0.02	-
Acenaphthylene	0.02 ug/g dry	<0.02	<0.40 [1]	<0.02	-
Anthracene	0.02 ug/g dry	0.06	5.61	0.04	-
Benzo [a] anthracene	0.02 ug/g dry	0.18	6.34	0.11	-
Benzo [a] pyrene	0.02 ug/g dry	0.22	4.91	0.15	-
Benzo [b] fluoranthene	0.02 ug/g dry	0.25	5.30	0.16	-
Benzo [g,h,i] perylene	0.02 ug/g dry	0.17	2.85	0.12	-
Benzo [k] fluoranthene	0.02 ug/g dry	0.14	3.06	0.09	-
Chrysene	0.02 ug/g dry	0.23	7.03	0.13	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	0.04	0.93	0.03	-
Fluoranthene	0.02 ug/g dry	0.50	17.4	0.28	-
Fluorene	0.02 ug/g dry	0.02	3.04	<0.02	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	0.15	2.92	0.10	-
1-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.40 [1]	<0.02	-
2-Methylnaphthalene	0.02 ug/g dry	<0.02	<0.40 [1]	<0.02	-
Methylnaphthalene (1&2)	0.04 ug/g dry	<0.04	<0.80 [1]	<0.04	-
Naphthalene	0.01 ug/g dry	<0.01	0.57	<0.01	-
Phenanthrene	0.02 ug/g dry	0.28	23.2	0.16	-
Pyrene	0.02 ug/g dry	0.41	13.7	0.24	-
2-Fluorobiphenyl	Surrogate	104%	83.9%	92.6%	-
Terphenyl-d14	Surrogate	104%	89.2%	99.4%	-

Order #: 1735234

Report Date: 05-Sep-2017

Order Date: 29-Aug-2017

Project Description: 11140575-E2

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g ug/g						
F3 PHCs (C16-C34)	ND	4 8	ug/g ug/g						
F4 PHCs (C34-C50)	ND	6 6	ug/g ug/g						
Metals		0	49/9						
Antimony	ND	1.0	ug/g						
Arsenic	ND	1.0	ug/g ug/g						
Barium	ND	1.0	ug/g ug/g						
Beryllium	ND	1.0	ug/g ug/g						
Boron	ND	1.0	ug/g ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	1.0	ug/g						
Cobalt	ND	1.0	ug/g						
Copper	ND	1.0	ug/g						
Lead	ND	1.0	ug/g						
Molybdenum	ND	1.0	ug/g						
Nickel	ND	1.0	ug/g						
Selenium	ND	1.0	ug/g						
Silver	ND	0.5	ug/g						
Thallium	ND	1.0	ug/g						
Uranium	ND	1.0	ug/g						
Vanadium	ND	1.0	ug/g						
Zinc	ND	1.0	ug/g						
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g						
Acenaphthylene	ND	0.02	ug/g ug/g						
Anthracene	ND	0.02	ug/g ug/g						
Benzo [a] anthracene	ND	0.02	ug/g ug/g						
Benzo [a] pyrene	ND	0.02	ug/g ug/g						
Benzo [b] fluoranthene	ND	0.02	ug/g ug/g						
Benzo [g,h,i] perylene	ND	0.02	ug/g						
Benzo [k] fluoranthene	ND	0.02	ug/g						
Chrysene	ND	0.02	ug/g						
Dibenzo [a,h] anthracene	ND	0.02	ug/g						
Fluoranthene	ND	0.02	ug/g						
Fluorene	ND	0.02	ug/g						
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g						
Methylnaphthalene (1&2)	ND	0.04	ug/g						
Naphthalene	ND	0.01	ug/g						
Phenanthrene	ND	0.02	ug/g						
Pyrene	ND	0.02	ug/g						
Surrogate: 2-Fluorobiphenyl	1.05		ug/g		79.0	50-140			
Surrogate: Terphenyl-d14	1.12		ug/g		83.8	50-140			
Volatiles									
Acetone	ND	0.50	ug/g						
Benzene	ND	0.02	ug/g						
Bromodichloromethane	ND	0.05	ug/g						
Bromoform	ND	0.05	ug/g						
Bromomethane	ND	0.05	ug/g						
Carbon Tetrachloride	ND	0.05	ug/g						
Chlorobenzene	ND	0.05	ug/g						
Chloroform	ND	0.05	ug/g						
Dibromochloromethane	ND	0.05	ug/g						
Dichlorodifluoromethane	ND	0.05	ug/g						
1,2-Dichlorobenzene	ND	0.05	ug/g						
1,3-Dichlorobenzene	ND	0.05	ug/g						
1,4-Dichlorobenzene	ND	0.05	ug/g						
,			- 3' 3						

Order #: 1735234

Report Date: 05-Sep-2017

Order Date: 29-Aug-2017

Project Description: 11140575-E2

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,1-Dichloroethane	ND	0.05	ug/g						
1,2-Dichloroethane	ND	0.05	ug/g						
1,1-Dichloroethylene	ND	0.05	ug/g						
cis-1,2-Dichloroethylene	ND	0.05	ug/g						
trans-1,2-Dichloroethylene	ND	0.05	ug/g						
1,2-Dichloropropane	ND	0.05	ug/g						
cis-1,3-Dichloropropylene	ND	0.05	ug/g						
trans-1,3-Dichloropropylene	ND	0.05	ug/g						
1,3-Dichloropropene, total	ND	0.05	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Ethylene dibromide (dibromoethane	ND	0.05	ug/g						
Hexane	ND	0.05	ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g						
Methyl Isobutyl Ketone	ND	0.50	ug/g						
Methyl tert-butyl ether	ND	0.05	ug/g						
Methylene Chloride	ND	0.05	ug/g						
Styrene	ND	0.05	ug/g						
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g						
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g						
Tetrachloroethylene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
1,1,1-Trichloroethane	ND	0.05	ug/g						
1,1,2-Trichloroethane	ND	0.05	ug/g						
Trichloroethylene	ND	0.05	ug/g						
Trichlorofluoromethane	ND	0.05	ug/g						
Vinyl chloride	ND	0.02	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: 4-Bromofluorobenzene	3.50		ug/g		110	50-140			
Surrogate: Dibromofluoromethane	2.76		ug/g		86.3	50-140			
Surrogate: Toluene-d8	3.23		ug/g		101	50-140			

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND				40	
	ND							30	
F2 PHCs (C10-C16)		4	ug/g dry	ND					
F3 PHCs (C16-C34)	ND	8	ug/g dry	ND				30	
F4 PHCs (C34-C50)	ND	6	ug/g dry	ND				30	
Metals									
Antimony	ND	1.0	ug/g dry	ND			0.0	30	
Arsenic	4.17	1.0	ug/g dry	4.13			1.1	30	
Barium	45.7	1.0	ug/g dry	51.5			12.0	30	
Beryllium	ND	1.0	ug/g dry	ND			0.0	30	
Boron	10.6	1.0	ug/g dry	10.7			0.9	30	
Cadmium	ND	0.5	ug/g dry	ND			0.0	30	
Chromium	12.4	1.0	ug/g dry	14.3			14.1	30	
Cobalt	6.79	1.0	ug/g dry	7.61			11.4	30	
Copper	23.4	1.0	ug/g dry	26.0			10.7	30	
Lead	7.33	1.0		7.14			2.7	30	
			ug/g dry						
Molybdenum	ND	1.0	ug/g dry	ND			0.0	30	
Nickel	13.9	1.0	ug/g dry	14.7			5.5	30	
Selenium	ND	1.0	ug/g dry	ND			0.0	30	
Silver	ND	0.5	ug/g dry	ND			0.0	30	
Thallium	ND	1.0	ug/g dry	ND			0.0	30	
Uranium	ND	1.0	ug/g dry	ND				30	
Vanadium	20.6	1.0	ug/g dry	24.1			15.5	30	
Zinc	35.3	1.0	ug/g dry	39.0			9.8	30	
Physical Characteristics			00 /						
% Solids	86.4	0.1	% by Wt.	86.4			0.1	25	
Semi-Volatiles									
		0.00						40	
Acenaphthene	ND	0.02	ug/g dry	ND				40	
Acenaphthylene	ND	0.02	ug/g dry	ND				40	
Anthracene	ND	0.02	ug/g dry	ND			0.0	40	
Benzo [a] anthracene	0.049	0.02	ug/g dry	0.045			9.2	40	
Benzo [a] pyrene	0.071	0.02	ug/g dry	0.060			16.5	40	
Benzo [b] fluoranthene	0.092	0.02	ug/g dry	0.077			18.4	40	
Benzo [g,h,i] perylene	0.070	0.02	ug/g dry	0.058			18.2	40	
Benzo [k] fluoranthene	0.036	0.02	ug/g dry	0.032			11.2	40	
Chrysene	0.075	0.02	ug/g dry	0.062			19.1	40	
Dibenzo [a,h] anthracene	ND	0.02	ug/g dry	ND			0.0	40	
Fluoranthene	0.193	0.02	ug/g dry	0.161			17.9	40	
Fluorene	ND	0.02	ug/g dry	ND				40	
Indeno [1,2,3-cd] pyrene	0.053	0.02	ug/g dry	0.042			21.6	40	
1-Methylnaphthalene	ND	0.02	ug/g dry	ND				40	
2-Methylnaphthalene	ND	0.02	ug/g dry	ND			0.0	40	
Naphthalene	ND	0.02	ug/g dry	0.011			0.0	40	
Phenanthrene	0.109	0.01		0.102			6.8	40	
Pyrene	0.156	0.02	ug/g dry	0.102			0.0 15.0	40 40	
		0.02	ug/g dry	0.155	07.4	50 4 40	15.0	40	
Surrogate: 2-Fluorobiphenyl	1.36		ug/g dry		87.4	50-140			
Surrogate: Terphenyl-d14	1.50		ug/g dry		96.3	50-140			
Volatiles									
Acetone	ND	0.50	ug/g dry	ND				50	
Benzene	ND	0.02	ug/g dry	ND				50	
Bromodichloromethane	ND	0.05	ug/g dry	ND				50	
Bromoform	ND	0.05	ug/g dry	ND				50	
Bromomethane	ND	0.05	ug/g dry	ND				50	
Carbon Tetrachloride	ND	0.05	ug/g dry	ND				50	
Chlorobenzene	ND	0.05	ug/g dry	ND				50	
Chloroform	ND	0.05	ug/g dry	ND				50	
Dibromochloromethane	ND	0.05		ND				50 50	
Dichlorodifluoromethane	ND	0.05	ug/g dry ug/g dry	ND				50 50	
	ND	0.05	ug/g dry	ЧU				50	

Order #: 1735234

Report Date: 05-Sep-2017

Order Date: 29-Aug-2017

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
7	. count	_	UTILS	Result	/0INEU		NED		110(63
1,2-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,3-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,4-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,1-Dichloroethane	ND	0.05	ug/g dry	ND				50	
1,2-Dichloroethane	ND	0.05	ug/g dry	ND				50	
1,1-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
1,2-Dichloropropane	ND	0.05	ug/g dry	ND				50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND				50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND				50	
Ethylbenzene	ND	0.05	ug/g dry	ND				50	
Ethylene dibromide (dibromoethane	ND	0.05	ug/g dry	ND				50	
Hexane	ND	0.05	ug/g dry	ND				50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g dry	ND				50	
Methyl Isobutyl Ketone	ND	0.50	ug/g dry	ND				50	
Methyl tert-butyl ether	ND	0.05	ug/g dry	ND				50	
Methylene Chloride	ND	0.05	ug/g dry	ND				50	
Styrene	ND	0.05	ug/g dry	ND				50	
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g dry	ND				50	
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g dry	ND				50	
Tetrachloroethylene	ND	0.05	ug/g dry	ND				50	
Toluene	ND	0.05	ug/g dry	ND				50	
1,1,1-Trichloroethane	ND	0.05	ug/g dry	ND				50	
1,1,2-Trichloroethane	ND	0.05	ug/g dry	ND				50	
Trichloroethylene	ND	0.05	ug/g dry	ND				50	
Trichlorofluoromethane	ND	0.05	ug/g dry	ND				50	
Vinyl chloride	ND	0.02	ug/g dry	ND				50	

		0.00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
1,1,2-Trichloroethane	ND	0.05	ug/g dry	ND		
Trichloroethylene	ND	0.05	ug/g dry	ND		
Trichlorofluoromethane	ND	0.05	ug/g dry	ND		
Vinyl chloride	ND	0.02	ug/g dry	ND		
m,p-Xylenes	ND	0.05	ug/g dry	ND		
o-Xylene	ND	0.05	ug/g dry	ND		
Surrogate: 4-Bromofluorobenzene	2.06		ug/g dry		102	50-140
Surrogate: Dibromofluoromethane	2.27		ug/g dry		112	50-140
Surrogate: Toluene-d8	2.17		ug/g dry		107	50-140

Order #: 1735234

50 50

Report Date: 05-Sep-2017

Order Date: 29-Aug-2017 Project Description: 11140575-E2

Method Quality Control: Spike

Report Date: 05-Sep-2017

Order Date: 29-Aug-2017

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	197	7	ug/g		98.5	80-120			
F2 PHCs (C10-C16)	95	4	ug/g	ND	87.2	60-140			
F3 PHCs (C16-C34)	232	8	ug/g	ND	103	60-140			
F4 PHCs (C34-C50)	168	6	ug/g	ND	112	60-140			
Metals									
Antimony	250		ug/L	ND	100	70-130			
Arsenic	309		ug/L	82.5	90.6	70-130			
Barium	1260		ug/L	1030	91.8	70-130			
Beryllium	223		ug/L	1.48	88.7	70-130			
Boron	356		ug/L	128	91.3	70-130			
Cadmium	219		ug/L	1.13	87.2	70-130			
Chromium	501		ug/L	286	85.9	70-130			
Cobalt	363		ug/L	152	84.4	70-130			
Copper	745		ug/L	520	90.0	70-130			
Lead	356		ug/L	143	85.3	70-130			
Molybdenum	218		ug/L	6.30	84.5	70-130			
Nickel	516		ug/L	293	88.9	70-130			
Selenium	228		ug/L	ND	91.3	70-130			
Silver	234		ug/L	ND	93.3	70-130			
Thallium	205		ug/L	13.6	76.6	70-130			
Uranium	258		ug/L	ND	103	70-130			
Vanadium	710		ug/L	482	91.5	70-130			
Zinc	977		ug/L	779	79.2	70-130			
Semi-Volatiles									
Acenaphthene	0.195	0.02	ug/g	ND	99.8	50-140			
Acenaphthylene	0.166	0.02	ug/g	ND	85.1	50-140			
Anthracene	0.179	0.02	ug/g	ND	91.6	50-140			
Benzo [a] anthracene	0.183	0.02	ug/g	0.045	71.0	50-140			
Benzo [a] pyrene	0.220	0.02	ug/g	0.060	81.8	50-140			
Benzo [b] fluoranthene	0.261	0.02	ug/g	0.077	94.6	50-140			
Benzo [g,h,i] perylene	0.226	0.02	ug/g	0.058	86.2	50-140			
Benzo [k] fluoranthene	0.226	0.02	ug/g	0.032	99.5	50-140			
Chrysene	0.232	0.02	ug/g	0.062	87.4	50-140			
Dibenzo [a,h] anthracene	0.196	0.02	ug/g	ND	101	50-140			
Fluoranthene	0.286	0.02	ug/g	0.161	64.4	50-140			
Fluorene	0.185	0.02	ug/g	ND	94.8	50-140			
Indeno [1,2,3-cd] pyrene	0.222	0.02	ug/g	0.042	92.4	50-140			
1-Methylnaphthalene	0.193	0.02	ug/g	ND	99.1	50-140			
2-Methylnaphthalene	0.210	0.02	ug/g	ND	108	50-140			
Naphthalene	0.191	0.01	ug/g	0.011	92.4	50-140			
Phenanthrene	0.271	0.02	ug/g	0.102	86.8	50-140			
Pyrene	0.292	0.02	ug/g	0.135	80.7	50-140			
Surrogate: 2-Fluorobiphenyl	1.41		ug/g		90.3	50-140			
Volatiles									
Acetone	9.16	0.50	ug/g		91.6	50-140			
Benzene	2.95	0.02	ug/g		73.7	60-130			
Bromodichloromethane	3.41	0.05	ug/g		85.3	60-130			
Bromoform	5.16	0.05	ug/g		129	60-130			
Bromomethane	3.43	0.05	ug/g		85.7	50-140			
Carbon Tetrachloride	3.22	0.05	ug/g		80.4	60-130			
Chlorobenzene	3.70	0.05	ug/g		92.6	60-130			

Method Quality Control: Spike

Report Date: 05-Sep-2017

Order Date: 29-Aug-2017

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Chloroform	2.80	0.05	ug/g		69.9	60-130			
Dibromochloromethane	5.05	0.05	ug/g		126	60-130			
Dichlorodifluoromethane	2.64	0.05	ug/g		66.1	50-140			
1,2-Dichlorobenzene	3.91	0.05	ug/g		97.7	60-130			
1,3-Dichlorobenzene	3.93	0.05	ug/g		98.3	60-130			
1,4-Dichlorobenzene	3.81	0.05	ug/g		95.4	60-130			
1,1-Dichloroethane	2.64	0.05	ug/g		66.1	60-130			
1,2-Dichloroethane	2.75	0.05	ug/g		68.7	60-130			
1,1-Dichloroethylene	2.91	0.05	ug/g		72.8	60-130			
cis-1,2-Dichloroethylene	2.62	0.05	ug/g		65.5	60-130			
trans-1,2-Dichloroethylene	2.62	0.05	ug/g		65.5	60-130			
1,2-Dichloropropane	2.87	0.05	ug/g		71.6	60-130			
cis-1,3-Dichloropropylene	4.31	0.05	ug/g		108	60-130			
trans-1,3-Dichloropropylene	4.97	0.05	ug/g		124	60-130			
Ethylbenzene	4.11	0.05	ug/g		103	60-130			
Ethylene dibromide (dibromoethane	3.80	0.05	ug/g		94.9	60-130			
Hexane	3.20	0.05	ug/g		80.0	60-130			
Methyl Ethyl Ketone (2-Butanone)	6.50	0.50	ug/g		65.0	50-140			
Methyl Isobutyl Ketone	7.65	0.50	ug/g		76.5	50-140			
Methyl tert-butyl ether	7.22	0.05	ug/g		72.2	50-140			
Methylene Chloride	2.70	0.05	ug/g		67.6	60-130			
Styrene	4.17	0.05	ug/g		104	60-130			
1,1,1,2-Tetrachloroethane	4.62	0.05	ug/g		116	60-130			
1,1,2,2-Tetrachloroethane	4.67	0.05	ug/g		117	60-130			
Tetrachloroethylene	3.59	0.05	ug/g		89.9	60-130			
Toluene	3.66	0.05	ug/g		91.4	60-130			
1,1,1-Trichloroethane	3.08	0.05	ug/g		77.1	60-130			
1,1,2-Trichloroethane	2.93	0.05	ug/g		73.3	60-130			
Trichloroethylene	2.76	0.05	ug/g		69.0	60-130			
Trichlorofluoromethane	3.41	0.05	ug/g		85.2	50-140			
Vinyl chloride	2.56	0.02	ug/g		64.0	50-140			
m,p-Xylenes	8.14	0.05	ug/g		102	60-130			
o-Xylene	4.15	0.05	ug/g		104	60-130			

Qualifier Notes:

Sample Qualifiers :

1: Elevated detection limit due to dilution required because of high target analyte concentration.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

			Р	aracel ID:	173523	4										
PARACEL	RE	LIAE						ntario 49-19-	urent Blvd. K1G 4J8 47 ccellabs.com				(Lab U	Custo e Only) 848		
										_		Pa		of _	t	
Client Name: GHO Ling ed Contact Name: Luke Liners Address:			Quote #	Reference: 1146	575-62						ם 1 Da 2 Da	y	narou		3 Day Regu	
Elephone: C12,256,252 3			Email A	ddress: Luke.	Lopers@gld					I	Date R				Regu	
Criteria: OO. Reg. 153/04 (As Amended) Table _ IRS	C Filing	0.1	Reg. 558	/00 PWQO	D CCME D	SUB (Sto	rm) 🗆	SUB (Sa	anitary) Mu	micipa	lity:		_ 0	Other:		
Matrix Type: S (Soil Sed.) GW (Ground Water) SW (Surface Water) SS	(Storm/Sa	mitary Se	wer) P (I	Paint) A (Air) O (Other)				R	equir	ed Ana	alyses		1	1	
Paracel Order Number: 1735234.	Matrix	Air Volume	of Containers		e Taken	PHCs, FI-PI+	VaCs	PAHS	Metals by							
Sample ID/Location Name 1 B H 57 MW 3 2 B H 6	S	Ai	# 2 2	Date Aug 29 Aug 29	Time 9:00 9:30	X	x X	X X	$\frac{1}{\lambda}$		-	250	mlt	1vit	ŀ	
3 BH7	5		2	Aig29	10.00	λ	×	X	У				V			
6																+
8																-
9													Method	of Deliv	ery.	
Comments:													1	au	LK	i
Relinquished By (Sign):		ed by Dri	iver/Depo	DL:		ived at lat	07	L			Verified Dute/Tin	Re	iche	1	sub	199
Relinquished By (Print): Lyon Varden Tulyon Date Time: 1045-29,207 Chain of Custody (Blank) - Rev 0.4 Feb 2016	Date/T Tempe			°C		Time: L	1.55	L	3:46		pH Verif		By: N	IA.	5	1:21

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

GHD Limited (Ottawa)

179 Colonnade Road Suite 400 Ottawa, ON K2E7S4 Attn: Luke Lopers

Client PO: 73508783 Project: 11140575-E2 Custody: 112293

Report Date: 14-Sep-2017 Order Date: 8-Sep-2017

Order #: 1737017

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1737017-01	BH1/MW1
1737017-02	BH2/MW2
1737017-03	BH5/MW3
1737017-04	Dup
1737017-05	Trip Blank

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Metals, ICP-MS	EPA 200.8 - ICP-MS	12-Sep-17	12-Sep-17
рН	EPA 150.1 - pH probe @25 °C	12-Sep-17	12-Sep-17
PHC F1	CWS Tier 1 - P&T GC-FID	12-Sep-17	13-Sep-17
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	12-Sep-17	12-Sep-17
REG 153: PAHs by GC-MS	EPA 625 - GC-MS, extraction	12-Sep-17	12-Sep-17
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	12-Sep-17	13-Sep-17

Order #: 1737017

Report Date: 14-Sep-2017 Order Date: 8-Sep-2017

Order #: 1737017

Report Date: 14-Sep-2017 Order Date: 8-Sep-2017

	Client ID: Sample Date: Sample ID: MDL/Units	BH1/MW1 08-Sep-17 1737017-01 Water	BH2/MW2 08-Sep-17 1737017-02 Water	BH5/MW3 08-Sep-17 1737017-03 Water	Dup 08-Sep-17 1737017-04 Water
General Inorganics					
рН	0.1 pH Units	8.0	8.3	7.3	7.3
Metals					
Antimony	0.5 ug/L	<0.5	<0.5	0.7	0.7
Arsenic	1 ug/L	<1	2	<1	<1
Barium	1 ug/L	65	43	75	71
Beryllium	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Boron	10 ug/L	394	454	117	97
Cadmium	0.1 ug/L	<0.1	<0.1	<0.1	<0.1
Chromium	1 ug/L	<1	<1	<1	<1
Cobalt	0.5 ug/L	<0.5	<0.5	0.6	<0.5
Copper	0.5 ug/L	1.5	2.7	2.3	5.8
Lead	0.1 ug/L	0.3	0.1	<0.1	<0.1
Molybdenum	0.5 ug/L	4.9	39.9	3.9	1.5
Nickel	1 ug/L	<1	2	2	2
Selenium	1 ug/L	<1	<1	<1	<1
Silver	0.1 ug/L	<0.1	<0.1	<0.1	<0.1
Sodium	200 ug/L	329000	257000	87200	50000
Thallium	0.1 ug/L	<0.1	<0.1	<0.1	<0.1
Uranium	0.1 ug/L	1.8	1.9	1.0	0.7
Vanadium	0.5 ug/L	<0.5	0.6	<0.5	<0.5
Zinc	5 ug/L	<5	<5	16	6
Volatiles				•	
Acetone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	2.9	<0.5
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Chloroform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5

Order #: 1737017

Report Date: 14-Sep-2017 Order Date: 8-Sep-2017

[Client ID: Sample Date: Sample ID: MDL/Units	BH1/MW1 08-Sep-17 1737017-01 Water	BH2/MW2 08-Sep-17 1737017-02 Water	BH5/MW3 08-Sep-17 1737017-03 Water	Dup 08-Sep-17 1737017-04 Water
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	3.5
Ethylene dibromide (dibromoetha	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	13.6
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	3.5
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	17.1
4-Bromofluorobenzene	Surrogate	102%	103%	104%	103%
Dibromofluoromethane	Surrogate	79.3%	93.6%	119%	96.2%
Toluene-d8	Surrogate	85.2%	85.4%	85.7%	83.8%
Hydrocarbons	25 110/				
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	<25
F2 PHCs (C10-C16)	100 ug/L	<100	<100	<100	<100
F3 PHCs (C16-C34)	100 ug/L	<100	<100	203	<100
F4 PHCs (C34-C50)	100 ug/L	<100	<100	<100	<100

Order #: 1737017

Report Date: 14-Sep-2017 Order Date: 8-Sep-2017

	Client ID: Sample Date:	BH1/MW1 08-Sep-17	BH2/MW2 08-Sep-17	BH5/MW3 08-Sep-17	Dup 08-Sep-17
	Sample ID:	1737017-01	1737017-02	1737017-03	1737017-04
	MDL/Units	Water	Water	Water	Water
Semi-Volatiles				•	•
Acenaphthene	0.05 ug/L	<0.05	<0.10 [2]	<0.05	<0.05
Acenaphthylene	0.05 ug/L	<0.05	<0.10 [2]	<0.05	<0.05
Anthracene	0.01 ug/L	<0.01	<0.02 [2]	<0.01	<0.01
Benzo [a] anthracene	0.01 ug/L	<0.01	<0.02 [2]	<0.01	<0.01
Benzo [a] pyrene	0.01 ug/L	<0.01	<0.02 [2]	<0.01	<0.01
Benzo [b] fluoranthene	0.05 ug/L	<0.05	<0.10 [2]	<0.05	<0.05
Benzo [g,h,i] perylene	0.05 ug/L	<0.05	<0.10 [2]	<0.05	<0.05
Benzo [k] fluoranthene	0.05 ug/L	<0.05	<0.10 [2]	<0.05	<0.05
Chrysene	0.05 ug/L	<0.05	<0.10 [2]	<0.05	<0.05
Dibenzo [a,h] anthracene	0.05 ug/L	<0.05	<0.10 [2]	<0.05	<0.05
Fluoranthene	0.01 ug/L	<0.01	0.12 [2]	<0.01	<0.01
Fluorene	0.05 ug/L	<0.05	<0.10 [2]	<0.05	<0.05
Indeno [1,2,3-cd] pyrene	0.05 ug/L	<0.05	<0.10 [2]	<0.05	<0.05
1-Methylnaphthalene	0.05 ug/L	<0.05	<0.10 [2]	<0.05	<0.05
2-Methylnaphthalene	0.05 ug/L	<0.05	<0.10 [2]	<0.05	<0.05
Methylnaphthalene (1&2)	0.10 ug/L	<0.10	<0.20 [2]	<0.10	<0.10
Naphthalene	0.05 ug/L	<0.05	0.16 [2]	<0.05	<0.05
Phenanthrene	0.05 ug/L	<0.05	<0.10 [2]	<0.05	<0.05
Pyrene	0.01 ug/L	<0.01	0.10 [2]	<0.01	<0.01
2-Fluorobiphenyl	Surrogate	94.4%	82.3% [2]	106%	99.2%
Terphenyl-d14	Surrogate	111%	112% [2]	107%	119%

Order #: 1737017

Report Date: 14-Sep-2017

Order Date: 8-Sep-2017

	Client ID:	Trip Blank	-	-	- 1
	Sample Date:	07-Sep-17 1737017-05	-	-	-
Г	Sample ID: MDL/Units	Water	-	-	-
Volatiles	WDE/Onits				
Acetone	5.0 ug/L	<5.0	-	-	-
Benzene	0.5 ug/L	<0.5	-	-	-
Bromodichloromethane	0.5 ug/L	<0.5	-	-	-
Bromoform	0.5 ug/L	<0.5	-	-	-
Bromomethane	0.5 ug/L	<0.5	-	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	-	-	-
Chlorobenzene	0.5 ug/L	<0.5	-	-	-
Chloroform	0.5 ug/L	<0.5	-	-	-
Dibromochloromethane	0.5 ug/L	<0.5	-	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	-	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	-	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	-	-	-
Ethylene dibromide (dibromoethar	0.2 ug/L	<0.2	-	-	-
Hexane	1.0 ug/L	<1.0	-	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	-	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	-	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	-	-	-
Methylene Chloride	5.0 ug/L	<5.0	-	-	-
Styrene	0.5 ug/L	<0.5	-	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	-	-	-
Toluene	0.5 ug/L	<0.5	-	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	-	-	-

Order #: 1737017

Report Date: 14-Sep-2017 Order Date: 8-Sep-2017

	Client ID:	Trip Blank	-	-	-
	Sample Date:	07-Sep-17	-	-	-
	Sample ID:	1737017-05	-	-	-
	MDL/Units	Water	-	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	-	-	-
Trichloroethylene	0.5 ug/L	<0.5	-	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	-	-	-
Vinyl chloride	0.5 ug/L	<0.5	-	-	-
m,p-Xylenes	0.5 ug/L	<0.5	-	-	-
o-Xylene	0.5 ug/L	<0.5	-	-	-
Xylenes, total	0.5 ug/L	<0.5	-	-	-
4-Bromofluorobenzene	Surrogate	104%	-	-	-
Dibromofluoromethane	Surrogate	114%	-	-	-
Toluene-d8	Surrogate	84.7%	-	-	-

Order #: 1737017

Report Date: 14-Sep-2017

Order Date: 8-Sep-2017

Project Description: 11140575-E2

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Metals		-	J.						
Antimony	ND	0.5	ug/L						
Arsenic	ND	1	ug/L						
Barium	ND	1	ug/L						
Beryllium	ND	0.5	ug/L						
Boron	ND	10	ug/L						
Cadmium	ND	0.1	ug/L						
Chromium	ND	1	ug/L						
Cobalt	ND	0.5	ug/L						
Copper	ND	0.5	ug/L						
Lead	ND	0.1	ug/L						
Molybdenum	ND	0.5	ug/L						
Nickel	ND	1	ug/L						
Selenium	ND	1	ug/L						
Silver	ND	0.1	ug/L						
Sodium	ND	200	ug/L						
Thallium	ND	0.1	ug/L						
Uranium	ND	0.1	ug/L						
Vanadium	ND	0.5	ug/L						
Zinc	ND	5	ug/L						
Semi-Volatiles			-						
Acenaphthene	ND	0.05	ug/L						
Acenaphthylene	ND	0.05	ug/L						
Anthracene	ND	0.03	ug/L						
Benzo [a] anthracene	ND	0.01	ug/L						
Benzo [a] pyrene	ND	0.01	ug/L						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] perylene	ND	0.05	ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Chrysene	ND	0.05	ug/L						
Dibenzo [a,h] anthracene	ND	0.05	ug/L						
Fluoranthene	ND	0.01	ug/L						
Fluorene	ND	0.05	ug/L						
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
1-Methylnaphthalene	ND	0.05	ug/L						
2-Methylnaphthalene	ND	0.05	ug/L						
Methylnaphthalene (1&2)	ND	0.10	ug/L						
Naphthalene	ND	0.05	ug/L						
Phenanthrene	ND	0.05	ug/L						
Pyrene	ND	0.01	ug/L						
Surrogate: 2-Fluorobiphenyl	17.3		ug/L		86.4	50-140			
Surrogate: Terphenyl-d14	19.6		ug/L		97.8	50-140			
Volatiles									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroform	ND	0.5	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
		-	5						

Order #: 1737017

Report Date: 14-Sep-2017 Order Date: 8-Sep-2017

Project Description: 11140575-E2

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane	ND	0.2	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	85.6		ug/L		107	50-140			
Surrogate: Dibromofluoromethane	80.7		ug/L		101	50-140			
Surrogate: Toluene-d8	72.9		ug/L		91.2	50-140			

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
рН	7.4	0.1	pH Units	7.3			2.5	10	
Hydrocarbons F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Metals	ne.	20	ug/L					00	
Antimony	ND	0.5	ug/l	ND			0.0	20	
Arisenic	ND	0.5	ug/L ug/L	ND			0.0	20 20	
Barium	ND	1	ug/L	ND			0.0	20	
Beryllium	ND	0.5	ug/L	ND			0.0	20	
Boron	ND	10	ug/L	ND			0.0	20	
Cadmium	ND	0.1	ug/L	ND			0.0	20	
Chromium	ND	1	ug/L	ND			0.0	20	
Cobalt	ND	0.5	ug/L	ND			0.0	20	
Copper	ND	0.5	ug/L	ND				20	
Lead	ND	0.1	ug/L	ND			0.0	20	
Molybdenum	ND	0.5	ug/L	ND			0.0	20	
Nickel	ND	1	ug/L	ND			0.0	20	
Selenium Silver	ND ND	1 0.1	ug/L	ND ND			0.0 0.0	20 20	
Sodium	ND	200	ug/L ug/L	ND			0.0	20	
Thallium	ND	0.1	ug/L	ND			0.0	20	
Uranium	ND	0.1	ug/L	ND			0.0	20	
Vanadium	ND	0.5	ug/L	ND			0.0	20	
Zinc	ND	5	ug/L	ND			0.0	20	
Volatiles			0						
Acetone	ND	5.0	ug/L	ND				30	
Benzene	ND	0.5	ug/L	ND				30 30	
Bromodichloromethane	ND	0.5	ug/L	ND				30	
Bromoform	ND	0.5	ug/L	ND				30	
Bromomethane	ND	0.5	ug/L	ND				30	
Carbon Tetrachloride	ND	0.2	ug/L	ND				30	
Chlorobenzene	ND	0.5	ug/L	ND				30	
Chloroform	ND	0.5	ug/L	ND				30	
Dibromochloromethane	ND	0.5	ug/L	ND				30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND				30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,4-Dichlorobenzene 1,1-Dichloroethane	ND ND	0.5 0.5	ug/L ug/L	ND ND				30 30	
1,2-Dichloroethane	ND	0.5	ug/L	ND				30 30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND				30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
1,2-Dichloropropane	ND	0.5	ug/L	ND				30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Ethylene dibromide (dibromoethane	ND	0.2	ug/L	ND				30	
Hexane Methyl Ethyl Ketene (2 Butenene)	ND	1.0	ug/L	ND				30	
Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone	ND ND	5.0 5.0	ug/L ug/L	ND ND				30 30	
Methyl tert-butyl ether	ND	5.0 2.0	ug/L ug/L	ND				30 30	
Methylene Chloride	ND	2.0 5.0	ug/L	ND				30	
Styrene	ND	0.5	ug/L	ND				30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
Tetrachloroethylene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	

Order #: 1737017

Report Date: 14-Sep-2017

Order Date: 8-Sep-2017

Order #: 1737017

Report Date: 14-Sep-2017 Order Date: 8-Sep-2017

Project Description: 11140575-E2

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,1,1-Trichloroethane	ND	0.5	ug/L	ND				30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND				30	
Trichloroethylene	ND	0.5	ug/L	ND				30	
Trichlorofluoromethane	ND	1.0	ug/L	ND				30	
Vinyl chloride	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: 4-Bromofluorobenzene	81.3		ug/L		102	50-140			
Surrogate: Dibromofluoromethane	87.4		ug/L		109	50-140			
Surrogate: Toluene-d8	68.3		ug/L		85.4	50-140			

Method Quality Control: Spike

Report Date: 14-Sep-2017

Order Date: 8-Sep-2017

Hydrocarbons - F1 PHCs (CPC-T0) 2010 25 ug/L 100 68-117 F2 PHCs (CPC-T6) 380 100 ug/L 104 60-140 F3 PHCs (CPC-T6) 280 100 ug/L 104 60-140 HCS (CPC-T6) 2400 100 ug/L ND 86.8 60-120 Arsenic 43.3 ug/L ND 86.7 80-120 Barum 47.6 ug/L ND 95.2 80-120 Barum 47.6 ug/L ND 95.2 80-120 Cadmium 47.6 ug/L ND 95.9 80-120 Cadmium 47.6 ug/L ND 93.9 80-120 Cadmium 47.6 ug/L ND 93.9 80-120 Cadmium 47.6 ug/L ND 80.120 100 80-120 Cadmium 47.6 ug/L ND 83.7 80-120 100 100 100	Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
F2 PHCs (C10-C16) 1950 100 ugl. 104 60-140 F3 PHCs (C16-C34) 3600 100 ugl. 96.8 60-140 Metal S ugl. ND 95.2 80-120 Arsenic 43.3 ugl. ND 95.2 80-120 Beryllun 45.5 ugl. ND 95.2 80-120 Cadmiun 47.6 ugl. ND 95.2 80-120 Cadmiun 47.6 ugl. ND 95.2 80-120 Cadmiun 47.0 ugl. ND 93.9 80-120 Cadmiun 40.0 ugl. ND 91.2 80-120 Cobalt 49.0 ugl. ND 91.2 80-120 Cadmiun 46.6 ugl. ND 91.2 80-120 Silver 44.8 ugl. ND 91.2 80-120 Silver 44.8 ugl. ND 91.2 80-120 Silver										
F3 PHCs (C16-C34) 380 100 ug/L 96.8 60-140 HetCs (C34-C50) 2400 100 ug/L 96.8 60-140 Antimony 43.3 ug/L ND 86.6 80-120 Arsenic 49.3 ug/L ND 95.7 80-120 Barium 47.6 ug/L ND 98.8 80-120 Cadmium 47.6 ug/L ND 88.8 80-120 Cadmium 47.0 ug/L ND 88.8 80-120 Cadmium 47.0 ug/L ND 80.120 80-120 Copper 45.6 ug/L ND 91.9 80-120 Cobalt 49.0 ug/L ND 81.8 80-120 Laad 46.6 ug/L ND 83.1 80-120 Stivar 44.8 ug/L ND 83.1 80-120 Stivar 44.8 ug/L ND 83.1 80-120 Storar 49.9 ug/L ND 83.1 80-120 Stodum	F1 PHCs (C6-C10)	2010	25	ug/L		100	68-117			
F4 PHCs (C34-C50) 2400 100 ugl. 96.8 60-140 Metals	· · · · · · · · · · · · · · · · · · ·			ug/L						
Metals ugL ND 86.6 80.120 Antimory 43.3 ugL ND 98.7 80.120 Barium 47.6 ugL ND 98.2 80.120 Barium 47.6 ugL ND 98.2 80.120 Boron 46 ugL ND 88.8 80.120 Cadmium 47.0 ugL ND 80.3 80.120 Cobait 43.0 ugL ND 90.4 80.120 Cobait 43.0 ugL ND 91.2 80.120 Cobait 49.0 ugL ND 91.2 80.120 Cobait 49.0 ugL ND 80.120 80.120 Nickel 46.6 ugL ND 80.120 80.120 Soldum 1040 ugL ND 80.120 80.120 Soldum 1040 ugL ND 91.2 80.120 Soldum 1040 ugL		3880					60-140			
Antimony 43.3 ug/L ND 86.6 80-120 Barium 47.6 ug/L ND 95.2 80-120 Beryllium 48.5 ug/L ND 95.2 80-120 Beryllium 48.5 ug/L ND 98.8 80-120 Cadmium 47.0 ug/L ND 93.9 80-120 Chromium 50.4 ug/L ND 91.0 80-120 Cobalt 49.0 ug/L ND 91.2 80-120 Cobalt 49.0 ug/L ND 91.2 80-120 Lead 46.6 ug/L ND 83.1 80-120 Nickel 46.6 ug/L ND 89.5 80-120 Solum 49.9 ug/L ND 89.5 80-120 Thallium 45.6 ug/L ND 89.5 80-120 Uranium 46.6 ug/L ND 89.5 80-120 Uranium <t< td=""><td>F4 PHCs (C34-C50)</td><td>2400</td><td>100</td><td>ug/L</td><td></td><td>96.8</td><td>60-140</td><td></td><td></td><td></td></t<>	F4 PHCs (C34-C50)	2400	100	ug/L		96.8	60-140			
Arsenio ¹ 49.3 ug/L ND 98.7 80-120 Barium 47.6 ug/L ND 96.3 80-120 Boron 46 ug/L ND 98.8 80-120 Catmium 47.0 ug/L ND 98.8 80-120 Chromium 50.4 ug/L ND 97.9 80-120 Copper 45.6 ug/L ND 97.9 80-120 Copper 45.6 ug/L ND 97.9 80-120 Lead 46.6 ug/L ND 97.9 80-120 Silver 44.8 ug/L ND 99.7 80-120 Solum 49.9 ug/L ND 99.7 80-120 Silver 44.8 ug/L ND 99.7 80-120 Solum 1040 ug/L ND 91.2 80-120 Vanadium 50.6 ug/L ND 91.2 80-120 Vanadium 50.6 ug/L ND 91.2 80-120 Vanadium 50.6	Metals									
Barium 47.6 ug/L ND 95.2 80-120 Beryllium 48.5 ug/L ND 98.9 80-120 Cadmium 47.0 ug/L ND 88.8 80-120 Cadmium 50.4 ug/L ND 100 80-120 Cobalt 49.0 ug/L ND 91.2 80-120 Cobalt 49.0 ug/L ND 91.2 80-120 Cobalt 49.0 ug/L ND 91.2 80-120 Lead 46.0 ug/L ND 92.0 80-120 Nickel 46.6 ug/L ND 93.1 80-120 Selenium 1040 ug/L ND 89.5 80-120 Sodium 1040 ug/L ND 91.2 80-120 Uranium 66.6 ug/L ND 91.2 80-120 Uranium 48.6 ug/L ND 91.2 80-120 Uranium 49.	Antimony	43.3		ug/L	ND	86.6	80-120			
Berolium 48.5 ug/L ND 96.9 80-120 Boron 46 ug/L ND 93.9 80-120 Cadmium 50.4 ug/L ND 93.9 80-120 Chromium 50.4 ug/L ND 97.9 80-120 Copper 45.6 ug/L ND 97.9 80-120 Copper 45.6 ug/L ND 93.1 80-120 Molydenum 44.6 ug/L ND 93.1 80-120 Nickel 46.6 ug/L ND 93.1 80-120 Soleinium 49.9 ug/L ND 93.1 80-120 Sodium 1040 ug/L ND 93.2 80-120 Vanadum 45.6 ug/L ND 93.2 80-120 Vanadum 46.6 ug/L ND 93.2 80-120 Vanadum 46.6 ug/L ND 93.1 80-120 Vanadum 46.6 ug/L ND 93.2 80-120 Vanadum 45.0 </td <td>Arsenic</td> <td>49.3</td> <td></td> <td>ug/L</td> <td>ND</td> <td>98.7</td> <td>80-120</td> <td></td> <td></td> <td></td>	Arsenic	49.3		ug/L	ND	98.7	80-120			
Borion 46 ug/L ND 88.8 80-120 Cadmium 50.4 ug/L ND 100 80-120 Cobalt 49.0 ug/L ND 93.9 80-120 Cobalt 49.0 ug/L ND 97.9 80-120 Cobalt 46.0 ug/L ND 92.0 80-120 Lead 46.0 ug/L ND 93.1 80-120 Nickel 46.6 ug/L ND 93.1 80-120 Nickel 46.6 ug/L ND 93.1 80-120 Solium 1040 ug/L ND 93.2 80-120 Thallium 46.6 ug/L ND 93.2 80-120 Vanadium 50.6 ug/L ND 93.2 80-120 Vanadium 46.6 ug/L ND 93.2 80-120 Vanadium 46.6 ug/L ND 93.2 80-120 Vanadium 46.6	Barium	47.6		ug/L	ND	95.2	80-120			
Cadmium 47.0 ug/L ND 93.9 80-120 Chromium 50.4 ug/L ND 97.9 80-120 Copper 45.6 ug/L ND 97.9 80-120 Copper 45.6 ug/L ND 97.9 80-120 Molydonum 44.6 ug/L ND 93.1 80-120 Molydonum 44.6 ug/L ND 93.7 80-120 Silver 44.8 ug/L ND 93.7 80-120 Sodium 1040 ug/L ND 93.1 80-120 Silver 44.8 ug/L ND 93.2 80-120 Vanadium 45.6 ug/L ND 91.2 80-120 Vanadium 50.6 ug/L ND 91.2 80-120 Zinc ug/L ND 91.2 80-120 Zinc ug/L ND 91.2 80-120 Zonadium 50.6 ug/L ND 91.2 80-120 Zonadium 50.6 ug/L ND <td>Beryllium</td> <td>48.5</td> <td></td> <td>ug/L</td> <td>ND</td> <td>96.9</td> <td>80-120</td> <td></td> <td></td> <td></td>	Beryllium	48.5		ug/L	ND	96.9	80-120			
Chromium 50.4 ug/L ND 97.9 80-120 Cobait 49.0 ug/L ND 97.9 80-120 Copper 45.6 ug/L ND 91.2 80-120 Lead 46.0 ug/L ND 91.2 80-120 Nickel 46.6 ug/L ND 93.1 80-120 Nickel 46.6 ug/L ND 99.7 80-120 Selenium 49.8 ug/L ND 99.7 80-120 Sodium 1040 ug/L ND 91.2 80-120 Vanadium 46.6 ug/L ND 91.2 80-120 Zinc 49 ug/L ND 91.3 80-120 Zinc 49 ug/L ND 91.3 80-120 Accanaphthene 3.03 0.05 ug/L ND 91.4 86.5 Accanaphthylene 3.93 0.05 ug/L 78.5 50-140	Boron	46		ug/L	ND	88.8	80-120			
Cobait 49.0 ug/L ND 97.9 80-120 Copper 45.6 ug/L ND 92.0 80-120 Molydenum 44.6 ug/L ND 93.1 80-120 Molydenum 44.6 ug/L ND 93.1 80-120 Nickel 46.6 ug/L ND 93.7 80-120 Silver 44.8 ug/L ND 93.7 80-120 Sodium 1040 ug/L ND 93.2 80-120 Thailium 45.6 ug/L ND 91.2 80-120 Vanadium 50.6 ug/L ND 97.3 80-120 Zinc 49 ug/L ND 97.3 80-120 Zinc 49 ug/L ND 97.3 80-120 Acenaphthene 4.30 0.05 ug/L ND 97.3 80-120 Acenaphthylene 3.93 0.05 ug/L ND 97.5 50-140 <	Cadmium	47.0		ug/L	ND	93.9	80-120			
Copper 45.6 ug/L ND 91.2 80-120 Lead 46.0 ug/L ND 92.0 80-120 Nickel 46.6 ug/L ND 93.1 80-120 Nickel 49.8 ug/L ND 93.1 80-120 Silver 44.8 ug/L ND 99.5 80-120 Sodium 1040 ug/L ND 91.2 80-120 Sodium 1040 ug/L ND 91.2 80-120 Vanadium 50.6 ug/L ND 91.2 80-120 Zinc 49 ug/L ND 97.3 80-120 Acenaphthene 4.30 0.05 ug/L ND 97.3 80-120 Acenaphthylene 3.93 0.05 ug/L ND 97.3 80-120 Acenaphthylene 3.73 0.01 ug/L 84.2 50-140 Benzo [a] anthracene 4.21 0.01 ug/L 84.2 <	Chromium				ND	100				
Lead 46.0 ug/L ND 92.0 80-120 Molybdenum 44.6 ug/L ND 89.1 80-120 Nickel 46.6 ug/L ND 99.1 80-120 Selenium 49.9 ug/L ND 99.7 80-120 Sodium 1040 ug/L ND 99.7 80-120 Sodium 1040 ug/L ND 91.2 80-120 Uranium 45.6 ug/L ND 91.2 80-120 Vanadium 50.6 ug/L ND 91.2 80-120 Zinc 49 ug/L ND 101 80-120 Acenaphthyle 3.93 0.05 ug/L ND 97.3 80-120 Anthracene 4.13 0.01 ug/L ND 18.5 50-140 Benzo [a] anthracene 3.73 0.01 ug/L 74.6 50-140 Benzo [b] fluoranthene 6.27 0.05 ug/L 121	Cobalt				ND		80-120			
Motyodenum 44.6 ug/L ND 89.1 80-120 Nickel 46.6 ug/L ND 93.1 80-120 Silver 44.8 ug/L ND 89.7 80-120 Silver 44.8 ug/L ND 89.7 80-120 Sodium 1040 ug/L ND 89.12 80-120 Thallum 45.6 ug/L ND 93.2 80-120 Vanadium 50.6 ug/L ND 93.2 80-120 Zinc 49 ug/L ND 93.2 80-120 Accenaphthene 4.30 0.05 ug/L ND 97.3 80-120 Accenaphthylene 3.83 0.05 ug/L ND 97.3 80-120 Accenaphthylene 4.33 0.01 ug/L 86.5 50-140 Benzo [a] anthracene 4.33 0.01 ug/L 86.5 50-140 Benzo [a] anthracene 4.52 0.05 ug/L	Copper				ND					
Nickel 46.6 ug/L ND 9.1 80-120 Selenium 49.9 ug/L ND 99.7 80-120 Sodium 1040 ug/L ND 99.7 80-120 Sodium 1040 ug/L ND 91.2 80-120 Thallium 45.6 ug/L ND 93.2 80-120 Vanadum 50.6 ug/L ND 93.2 80-120 Zinc 49 ug/L ND 97.3 80-120 Semi-Volatiles					ND	92.0	80-120			
Selenium 49.9 ug/L ND 99.7 80-120 Silver 44.8 ug/L ND 89.5 80-120 Sodium 1040 ug/L ND 91.2 80-120 Thallium 45.6 ug/L ND 91.2 80-120 Vanadium 50.6 ug/L ND 91.2 80-120 Zinc 49 ug/L ND 97.3 80-120 Acenaphthene 4.30 0.05 ug/L 78.5 50-140 Acenaphthylene 3.33 0.05 ug/L 78.5 50-140 Benzo [a] pyrene 4.13 0.01 ug/L 74.6 50-140 Benzo [a] pyrene 4.21 0.05 ug/L 74.6 50-140 Benzo [a], hij perylene 4.32 0.05 ug/L 86.5 50-140 Benzo [a], hij perylene 4.32 0.05 ug/L 86.5 50-140 Diberzo [a], hij perylene 4.52 0.5 ug/L <	Molybdenum			ug/L	ND		80-120			
Silver 44.8 ug/L ND 89.5 80-120 Sodium 1040 ug/L ND 10.3 80-120 Thallium 45.6 ug/L ND 91.2 80-120 Vanadium 60.6 ug/L ND 93.2 80-120 Vanadium 50.6 ug/L ND 93.2 80-120 Zinc 49 ug/L ND 97.3 80-120 Semi-Volatiles	Nickel				ND					
Sodium 1040 ug/L ND 103 80-120 Thallum 45.6 ug/L ND 91.2 80-120 Vanadium 50.6 ug/L ND 91.2 80-120 Vanadium 50.6 ug/L ND 91.2 80-120 Zinc 49 ug/L ND 91.2 80-120 Semi-Volatiles ND 101 80-120 80-120 Acenaphthene 4.30 0.05 ug/L ND 97.3 80-120 Acenaphthene 4.30 0.05 ug/L 85.9 50-140 Acenaphthene 4.13 0.01 ug/L 78.5 50-140 Benzo [a] anthracene 6.27 0.05 ug/L 84.2 50-140 Benzo [b] fluoranthene 6.27 0.05 ug/L 85.5 50-140 Benzo [k] hurranthene 6.06 0.05 ug/L 85.5 50-140 Chrysene 4.33 0.05 ug/L 83.5					ND	99.7				
Thallium 45.6 ug/L ND 91.2 80-120 Uranium 46.6 ug/L ND 93.2 80-120 Vanadium 50.6 ug/L ND 91.3 80-120 Zinc 49 ug/L ND 97.3 80-120 Semi-Volatiles Acenaphthene 4.30 0.05 ug/L 78.5 50-140 Anthracene 3.93 0.01 ug/L 82.6 50-140 Benzo [a] anthracene 3.73 0.01 ug/L 74.6 50-140 Benzo [a] pyrene 4.21 0.01 ug/L 74.6 50-140 Benzo [g] huranthene 6.27 0.05 ug/L 86.5 50-140 Benzo [g],h.] perylene 4.32 0.05 ug/L 86.5 50-140 Benzo [g],h.] anthracene 4.32 0.05 ug/L 86.5 50-140 Dibenzo [a,h.] anthracene 4.52 0.05 ug/L 80.9 50-140 Fluoranthene 4.62 0.05 ug/L 80.9 50-140					ND					
Uranium 46.6 ug/L ND 93.2 80-120 Vanadium 50.6 ug/L ND 101 80-120 Zinc 49 ug/L ND 97.3 80-120 Semi-Volatiles 85.9 50-140 Acenaphthylene 3.93 0.05 ug/L 85.9 50-140 Acenaphthylene 3.93 0.01 ug/L 74.6 50-140 Benzo [a] anthracene 3.73 0.01 ug/L 74.6 50-140 Benzo [a] pyrene 4.21 0.01 ug/L 84.2 50-140 Benzo [a] huranthene 6.27 0.05 ug/L 85.5 50-140 Benzo [a],hi] perylene 4.32 0.05 ug/L 86.6 50-140 Benzo [a],hi] partylene 4.33 0.05 ug/L 80.5 50-140 Dibenzo [a,hi] anthracene 4.52 0.05 ug/L 80.9 50-140 Iberao [a,hi] perylene 4.52 0.05 ug/	Sodium				ND	103				
Vanadium 50.6 ug/L ND 101 80-120 Zinc 49 ug/L ND 97.3 80-120 Semi-Volatiles	Thallium			ug/L	ND	91.2	80-120			
Zinc 49 ug/L ND 97.3 80-120 Semi-Volatiles	Uranium			ug/L	ND	93.2				
Semi-Volatiles Acenaphthene 4.30 0.05 ug/L 85.9 50-140 Acenaphthylene 3.93 0.05 ug/L 78.5 50-140 Anthracene 4.13 0.01 ug/L 78.6 50-140 Benzo [a] anthracene 3.73 0.01 ug/L 74.6 50-140 Benzo [a] pyrene 4.21 0.01 ug/L 84.2 50-140 Benzo [a] pyrene 4.21 0.01 ug/L 84.2 50-140 Benzo [b] fluoranthene 6.27 0.05 ug/L 121 50-140 Benzo [g], h.] perylene 4.32 0.05 ug/L 86.5 50-140 Benzo [a], h] anthracene 4.33 0.05 ug/L 90.4 50-140 Chrysene 4.33 0.05 ug/L 90.4 50-140 Fluoranthene 4.52 0.05 ug/L 90.4 50-140 Fluoranthene 4.86 0.05 ug/L 75.5 50-140	Vanadium			ug/L	ND		80-120			
Acenaphthene 4.30 0.05 ug/L 85.9 50-140 Acenaphthylene 3.93 0.05 ug/L 78.5 50-140 Anthracene 4.13 0.01 ug/L 78.6 50-140 Benzo [a] anthracene 3.73 0.01 ug/L 74.6 50-140 Benzo [a] pyrene 4.21 0.01 ug/L 84.2 50-140 Benzo [b] fluoranthene 6.27 0.05 ug/L 125 50-140 Benzo [g,h.i] perylene 4.32 0.05 ug/L 86.5 50-140 Benzo [g,h.i] perylene 4.32 0.05 ug/L 86.6 50-140 Benzo [g,h] anthracene 4.52 0.05 ug/L 86.6 50-140 Dibenzo [a,h] anthracene 4.52 0.05 ug/L 80.9 50-140 Fluoranthene 4.06 0.05 ug/L 80.9 50-140 Indeno [1,2,3-cd] pyrene 4.62 0.05 ug/L 75.5 50-140 1-Methylnaphthalene 3.77 0.05 ug/L 76.7 50-140	Zinc	49		ug/L	ND	97.3	80-120			
Acenaphthene 4.30 0.05 ug/L 85.9 50-140 Acenaphthylene 3.93 0.05 ug/L 78.5 50-140 Anthracene 4.13 0.01 ug/L 78.6 50-140 Benzo [a] anthracene 3.73 0.01 ug/L 74.6 50-140 Benzo [a] pyrene 4.21 0.01 ug/L 84.2 50-140 Benzo [b] fluoranthene 6.27 0.05 ug/L 125 50-140 Benzo [g,h.i] perylene 4.32 0.05 ug/L 86.5 50-140 Benzo [g,h.i] perylene 4.32 0.05 ug/L 86.6 50-140 Benzo [g,h] anthracene 4.52 0.05 ug/L 86.6 50-140 Dibenzo [a,h] anthracene 4.52 0.05 ug/L 80.9 50-140 Fluoranthene 4.06 0.05 ug/L 80.9 50-140 Indeno [1,2,3-cd] pyrene 4.62 0.05 ug/L 75.5 50-140 1-Methylnaphthalene 3.77 0.05 ug/L 76.7 50-140	Semi-Volatiles									
Acenaphthylene 3.93 0.05 ug/L 78.5 50-140 Anthracene 4.13 0.01 ug/L 82.6 50-140 Benzo [a] anthracene 3.73 0.01 ug/L 74.6 50-140 Benzo [a] pyrene 4.21 0.01 ug/L 84.2 50-140 Benzo [g, h,i] perylene 4.32 0.05 ug/L 125 50-140 Benzo [g, h,i] perylene 4.32 0.05 ug/L 121 50-140 Benzo [g, h,i] perylene 4.32 0.05 ug/L 121 50-140 Chrysene 4.33 0.05 ug/L 86.5 50-140 Dibenzo [a, h] anthracene 4.52 0.05 ug/L 90.4 50-140 Fluoranthene 4.18 0.01 ug/L 83.5 50-140 Indeno [1,2,3-cd] pyrene 4.62 0.05 ug/L 75.5 50-140 1-Methylnaphthalene 3.77 0.05 ug/L 75.5 50-140 Pyrene 3.84 0.05 ug/L 76.4 50-140 Pyrene		4.30	0.05	ug/L		85.9	50-140			
Anthracene 4.13 0.01 ug/L 82.6 50-140 Benzo [a] anthracene 3.73 0.01 ug/L 74.6 50-140 Benzo [a] pyrene 4.21 0.01 ug/L 84.2 50-140 Benzo [b] fluoranthene 6.27 0.05 ug/L 125 50-140 Benzo [g,h,i] perylene 4.32 0.05 ug/L 86.5 50-140 Benzo [k] fluoranthene 6.06 0.05 ug/L 86.6 50-140 Chrysene 4.33 0.05 ug/L 86.6 50-140 Dibenzo [a,h] anthracene 4.52 0.05 ug/L 86.6 50-140 Fluoranthene 4.18 0.01 ug/L 83.5 50-140 Indeno [1,2,3-cd] pyrene 4.62 0.05 ug/L 80.9 50-140 Indeno [1,2,3-cd] pyrene 4.62 0.05 ug/L 75.5 50-140 2-Methylnaphthalene 3.77 0.05 ug/L 76.7 50-140 Naphthalene 3.84 0.05 ug/L 76.4 50-140 P	•	3.93				78.5	50-140			
Benzo [a] anthracene 3.73 0.01 ug/L 74.6 50-140 Benzo [a] pyrene 4.21 0.01 ug/L 84.2 50-140 Benzo [b] fluoranthene 6.27 0.05 ug/L 125 50-140 Benzo [g,h,i] perylene 4.32 0.05 ug/L 86.5 50-140 Benzo [k] fluoranthene 6.06 0.05 ug/L 86.6 50-140 Chrysene 4.33 0.05 ug/L 86.6 50-140 Dibenzo [a,h] anthracene 4.52 0.05 ug/L 80.4 50-140 Fluoranthene 4.18 0.01 ug/L 83.5 50-140 Indeno [1,2,3-cd] pyrene 4.05 0.05 ug/L 90.4 50-140 I-Methylnaphthalene 3.77 0.05 ug/L 75.5 50-140 Naphthalene 3.84 0.05 ug/L 76.4 50-140 Pyrene 4.30 0.01 ug/L 79.9 50-140 Surrogate: 2-Fluorobiphenyl <td></td> <td>4.13</td> <td></td> <td>-</td> <td></td> <td>82.6</td> <td>50-140</td> <td></td> <td></td> <td></td>		4.13		-		82.6	50-140			
Benzo [a] pyrene 4.21 0.01 ug/L 84.2 50-140 Benzo [b] fluoranthene 6.27 0.05 ug/L 125 50-140 Benzo [g,h,i] peylene 4.32 0.05 ug/L 121 50-140 Benzo [k] fluoranthene 6.06 0.05 ug/L 121 50-140 Chrysene 4.33 0.05 ug/L 86.6 50-140 Dibenzo [a,h] anthracene 4.52 0.05 ug/L 83.5 50-140 Fluoranthene 4.18 0.01 ug/L 83.5 50-140 Fluorene 4.05 0.05 ug/L 80.9 50-140 Indeno [1,2,3-cd] pyrene 4.62 0.05 ug/L 75.5 50-140 1-Methylnaphthalene 3.77 0.05 ug/L 75.5 50-140 2-Methylnaphthalene 3.84 0.05 ug/L 76.7 50-140 Naphthalene 3.82 0.05 ug/L 76.4 50-140 Pyrene 3.82 0.05 ug/L 76.4 50-140 Surgate: 2-Fluorobiphenyl	Benzo [a] anthracene	3.73				74.6	50-140			
Benzo [b] fluoranthene 6.27 0.05 ug/L 125 50-140 Benzo [g,h,i] perylene 4.32 0.05 ug/L 86.5 50-140 Benzo [k] fluoranthene 6.06 0.05 ug/L 121 50-140 Chrysene 4.33 0.05 ug/L 86.6 50-140 Dibenzo [a,h] anthracene 4.52 0.05 ug/L 86.6 50-140 Fluoranthene 4.52 0.05 ug/L 83.5 50-140 Fluoranthene 4.18 0.01 ug/L 83.5 50-140 Indeno [1,2,3-cd] pyrene 4.62 0.05 ug/L 92.4 50-140 1-Methylnaphthalene 3.77 0.05 ug/L 75.5 50-140 Naphthalene 3.84 0.05 ug/L 76.7 50-140 Naphthalene 3.82 0.05 ug/L 76.4 50-140 Pyrene 4.30 0.1 ug/L 76.9 50-140 Surrogate: 2-Fluorobiphenyl		4.21				84.2	50-140			
Benzo [g,h,i] perylene 4.32 0.05 ug/L 86.5 50-140 Benzo [k] fluoranthene 6.06 0.05 ug/L 121 50-140 Chrysene 4.33 0.05 ug/L 86.6 50-140 Dibenzo [a,h] anthracene 4.52 0.05 ug/L 90.4 50-140 Fluoranthene 4.18 0.01 ug/L 83.5 50-140 Fluorene 4.05 0.05 ug/L 80.9 50-140 Indeno [1,2,3-cd] pyrene 4.62 0.05 ug/L 81.9 50-140 1-Methylnaphthalene 3.77 0.05 ug/L 75.5 50-140 2-Methylnaphthalene 3.84 0.05 ug/L 76.7 50-140 Naphthalene 3.82 0.05 ug/L 76.7 50-140 Pyrene 4.30 0.01 ug/L 76.7 50-140 Surrogate: 2-Fluorobiphenyl 16.0 ug/L 76.7 50-140 Surrogate: 2-Fluorobiphenyl 16.0 ug/L 79.9 50-140 Benzene 62.0 50.	Benzo [b] fluoranthene	6.27	0.05			125	50-140			
Benzo [k] fluoranthene 6.06 0.05 ug/L 121 50-140 Chrysene 4.33 0.05 ug/L 86.6 50-140 Dibenzo [a,h] anthracene 4.52 0.05 ug/L 90.4 50-140 Fluoranthene 4.18 0.01 ug/L 83.5 50-140 Fluorene 4.05 0.05 ug/L 80.9 50-140 Indeno [1,2,3-cd] pyrene 4.62 0.05 ug/L 92.4 50-140 1-Methylnaphthalene 3.77 0.05 ug/L 75.5 50-140 2-Methylnaphthalene 3.84 0.05 ug/L 76.7 50-140 Naphthalene 3.84 0.05 ug/L 76.4 50-140 Pyrene 4.30 0.01 ug/L 76.4 50-140 Surrogate: 2-Fluorobiphenyl 16.0 ug/L 79.9 50-140 Surrogate: 2-Fluorobiphenyl 16.0 ug/L 79.9 50-140 Benzene 36.7 0.5 ug/L<	Benzo [g,h,i] perylene	4.32	0.05	-		86.5	50-140			
Chrysene 4.33 0.05 ug/L 86.6 50-140 Dibenzo [a,h] anthracene 4.52 0.05 ug/L 90.4 50-140 Fluoranthene 4.18 0.01 ug/L 83.5 50-140 Fluorene 4.05 0.05 ug/L 80.9 50-140 Indeno [1,2,3-cd] pyrene 4.62 0.05 ug/L 92.4 50-140 1-Methylnaphthalene 3.77 0.05 ug/L 75.5 50-140 2-Methylnaphthalene 3.84 0.05 ug/L 76.7 50-140 Naphthalene 3.84 0.05 ug/L 76.4 50-140 Pyrene 3.82 0.05 ug/L 76.4 50-140 Surrogate: 2-Fluorobiphenyl 16.0 ug/L 79.9 50-140 Surrogate: 2-Fluorobiphenyl 16.0 ug/L 79.9 50-140 Benzene 36.7 0.5 ug/L 79.9 50-140 Benzene 36.7 0.5 ug/L 91.6 60-130 Bromodichloromethane 49.0 0.5 ug	Benzo [k] fluoranthene	6.06	0.05			121	50-140			
Dibenzo [a,h] anthracene4.520.05ug/L90.450-140Fluoranthene4.180.01ug/L83.550-140Fluorene4.050.05ug/L80.950-140Indeno [1,2,3-cd] pyrene4.620.05ug/L92.450-1401-Methylnaphthalene3.770.05ug/L75.550-1402-Methylnaphthalene4.090.05ug/L81.950-140Naphthalene3.840.05ug/L76.750-140Phenanthrene3.820.05ug/L76.450-140Pyrene4.300.01ug/L85.950-140Surrogate: 2-Fluorobiphenyl16.0ug/L79.950-140VolatilesAcetone62.05.0ug/L62.050-140Benzene36.70.5ug/L91.660-130Bromodichloromethane49.00.5ug/L11260-130Bromoform47.40.5ug/L11960-130	Chrysene	4.33	0.05			86.6	50-140			
Fluoranthene4.180.01ug/L83.550-140Fluorene4.050.05ug/L80.950-140Indeno [1,2,3-cd] pyrene4.620.05ug/L92.450-1401-Methylnaphthalene3.770.05ug/L75.550-1402-Methylnaphthalene3.840.05ug/L81.950-140Naphthalene3.840.05ug/L76.750-140Phenanthrene3.820.05ug/L76.450-140Pyrene4.300.01ug/L85.950-140Surrogate: 2-Fluorobiphenyl16.0ug/L79.950-140VolatilesAcetone62.05.0ug/L62.050-140Benzene36.70.5ug/L91.660-130Bromodichloromethane49.00.5ug/L12260-130Bromoform47.40.5ug/L11960-130		4.52	0.05			90.4	50-140			
Fluorene4.050.05ug/L80.950-140Indeno [1,2,3-cd] pyrene4.620.05ug/L92.450-1401-Methylnaphthalene3.770.05ug/L75.550-1402-Methylnaphthalene4.090.05ug/L81.950-140Naphthalene3.840.05ug/L76.750-140Phenanthrene3.820.05ug/L76.450-140Pyrene4.300.01ug/L85.950-140Surrogate: 2-Fluorobiphenyl16.0ug/L79.950-140VOlatilesAcetone62.05.0ug/L62.050-140Benzene36.70.5ug/L91.660-130Bromodichloromethane49.00.5ug/L12260-130Bromoform47.40.5ug/L11960-130	Fluoranthene	4.18	0.01			83.5	50-140			
Indeno [1,2,3-cd] pyrene 4.62 0.05 ug/L 92.4 50-140 1-Methylnaphthalene 3.77 0.05 ug/L 75.5 50-140 2-Methylnaphthalene 4.09 0.05 ug/L 81.9 50-140 Naphthalene 3.84 0.05 ug/L 76.7 50-140 Phenanthrene 3.82 0.05 ug/L 76.4 50-140 Pyrene 4.30 0.01 ug/L 85.9 50-140 Surrogate: 2-Fluorobiphenyl 16.0 ug/L 79.9 50-140 Volatiles Acetone 62.0 5.0 ug/L 79.9 50-140 Benzene 36.7 0.5 ug/L 91.6 60-130 Bromodichloromethane 49.0 0.5 ug/L 122 60-130 Bromoform 47.4 0.5 ug/L 119 60-130	Fluorene	4.05	0.05			80.9	50-140			
1-Methylnaphthalene 3.77 0.05 ug/L 75.5 50-140 2-Methylnaphthalene 4.09 0.05 ug/L 81.9 50-140 Naphthalene 3.84 0.05 ug/L 76.7 50-140 Phenanthrene 3.82 0.05 ug/L 76.4 50-140 Pyrene 4.30 0.01 ug/L 85.9 50-140 Surrogate: 2-Fluorobiphenyl 16.0 ug/L 79.9 50-140 Volatiles Acetone 62.0 5.0 ug/L 62.0 50-140 Benzene 36.7 0.5 ug/L 91.6 60-130 Bromodichloromethane 49.0 0.5 ug/L 122 60-130 Bromoform 47.4 0.5 ug/L 119 60-130	Indeno [1,2,3-cd] pyrene	4.62	0.05			92.4	50-140			
2-Methylnaphthalene 4.09 0.05 ug/L 81.9 50-140 Naphthalene 3.84 0.05 ug/L 76.7 50-140 Phenanthrene 3.82 0.05 ug/L 76.4 50-140 Pyrene 3.82 0.01 ug/L 85.9 50-140 Surrogate: 2-Fluorobiphenyl 16.0 ug/L 79.9 50-140 Volatiles 4.30 0.01 ug/L 79.9 50-140 Volatiles 79.9 50-140 50-140 Benzene 62.0 5.0 ug/L 62.0 50-140 Bromodichloromethane 49.0 0.5 ug/L 91.6 60-130 Bromoform 47.4 0.5 ug/L 119 60-130		3.77	0.05			75.5	50-140			
Naphthalene 3.84 0.05 ug/L 76.7 50-140 Phenanthrene 3.82 0.05 ug/L 76.4 50-140 Pyrene 4.30 0.01 ug/L 85.9 50-140 Surrogate: 2-Fluorobiphenyl 16.0 ug/L 79.9 50-140 Volatiles Volatiles Surrogate: Solution Solution Acetone 62.0 5.0 ug/L 62.0 50-140 Benzene 36.7 0.5 ug/L 62.0 50-140 Bromodichloromethane 49.0 0.5 ug/L 62.0 50-140 Bromoform 47.4 0.5 ug/L 122 60-130		4.09	0.05			81.9	50-140			
Phenanthrene 3.82 0.05 ug/L 76.4 50-140 Pyrene 4.30 0.01 ug/L 85.9 50-140 Surrogate: 2-Fluorobiphenyl 16.0 ug/L 79.9 50-140 Volatiles Volatiles 50-140 50-140 50-140 Benzene 62.0 5.0 ug/L 62.0 50-140 Bromodichloromethane 49.0 0.5 ug/L 62.0 50-140 Bromoform 47.4 0.5 ug/L 119 60-130	Naphthalene	3.84	0.05			76.7	50-140			
Pyrene 4.30 0.01 ug/L 85.9 50-140 Surrogate: 2-Fluorobiphenyl 16.0 ug/L 79.9 50-140 Volatiles strong 62.0 5.0 ug/L 62.0 50-140 Benzene 36.7 0.5 ug/L 62.0 50-140 Bromodichloromethane 49.0 0.5 ug/L 122 60-130 Bromoform 47.4 0.5 ug/L 119 60-130	Phenanthrene	3.82	0.05	-		76.4	50-140			
Surrogate: 2-Fluorobiphenyl 16.0 ug/L 79.9 50-140 Volatiles	Pyrene	4.30	0.01			85.9	50-140			
Acetone62.05.0ug/L62.050-140Benzene36.70.5ug/L91.660-130Bromodichloromethane49.00.5ug/L12260-130Bromoform47.40.5ug/L11960-130	Surrogate: 2-Fluorobiphenyl	16.0				79.9	50-140			
Acetone62.05.0ug/L62.050-140Benzene36.70.5ug/L91.660-130Bromodichloromethane49.00.5ug/L12260-130Bromoform47.40.5ug/L11960-130	Volatiles									
Benzene36.70.5ug/L91.660-130Bromodichloromethane49.00.5ug/L12260-130Bromoform47.40.5ug/L11960-130		62.0	5.0	ua/l		62.0	50-140			
Bromodichloromethane 49.0 0.5 ug/L 122 60-130 Bromoform 47.4 0.5 ug/L 119 60-130				-						
Bromoform 47.4 0.5 ug/L 119 60-130				-						
0				-						
Carbon Tetrachloride 51.3 0.2 ug/L 128 60-130				-						

Method Quality Control: Spike

Report Date: 14-Sep-2017

Order Date: 8-Sep-2017

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Chlorobenzene	34.4	0.5	ug/L		86.0	60-130			
Chloroform	40.1	0.5	ug/L		100	60-130			
Dibromochloromethane	48.9	0.5	ug/L		122	60-130			
Dichlorodifluoromethane	35.8	1.0	ug/L		89.6	50-140			
1,2-Dichlorobenzene	34.8	0.5	ug/L		87.0	60-130			
1,3-Dichlorobenzene	36.0	0.5	ug/L		90.0	60-130			
1,4-Dichlorobenzene	34.6	0.5	ug/L		86.6	60-130			
1,1-Dichloroethane	38.5	0.5	ug/L		96.2	60-130			
1,2-Dichloroethane	37.9	0.5	ug/L		94.7	60-130			
1,1-Dichloroethylene	38.5	0.5	ug/L		96.2	60-130			
cis-1,2-Dichloroethylene	41.5	0.5	ug/L		104	60-130			
trans-1,2-Dichloroethylene	37.3	0.5	ug/L		93.3	60-130			
1,2-Dichloropropane	42.2	0.5	ug/L		106	60-130			
cis-1,3-Dichloropropylene	51.0	0.5	ug/L		128	60-130			
trans-1,3-Dichloropropylene	50.2	0.5	ug/L		126	60-130			
Ethylbenzene	41.4	0.5	ug/L		104	60-130			
Ethylene dibromide (dibromoethane	35.4	0.2	ug/L		88.4	60-130			
Hexane	31.7	1.0	ug/L		79.2	60-130			
Methyl Ethyl Ketone (2-Butanone)	93.5	5.0	ug/L		93.5	50-140			
Methyl Isobutyl Ketone	116	5.0	ug/L		116	50-140			
Methyl tert-butyl ether	100	2.0	ug/L		100	50-140			
Methylene Chloride	28.6	5.0	ug/L		71.5	60-130			
Styrene	47.6	0.5	ug/L		119	60-130			
1,1,1,2-Tetrachloroethane	48.5	0.5	ug/L		121	60-130			
1,1,2,2-Tetrachloroethane	32.5	0.5	ug/L		81.2	60-130			
Tetrachloroethylene	33.4	0.5	ug/L		83.6	60-130			
Toluene	35.3	0.5	ug/L		88.2	60-130			
1,1,1-Trichloroethane	42.6	0.5	ug/L		106	60-130			
1,1,2-Trichloroethane	42.5	0.5	ug/L		106	60-130			
Trichloroethylene	45.5	0.5	ug/L		114	60-130			
Trichlorofluoromethane	37.0	1.0	ug/L		92.5	60-130			
Vinyl chloride	48.6	0.5	ug/L		122	50-140			
m,p-Xylenes	80.2	0.5	ug/L		100	60-130			
o-Xylene	39.5	0.5	ug/L		98.8	60-130			

Sample Qualifiers :

2: Elevated Reporting Limits due to limited sample volume.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.

- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.

- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

GPARACEL	RELIABI	SIVE .	Parac			aracellabs.com	(L	n of Custody ab Use Ouly) L12293
Client Name: 6H-1) Lingto Contact Name: Like Lopers Address: 179 (clohnode load Telephone: 613-325-204y Criteria: XO. Reg. 153/04 (As Amended) Table Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water)		Quote # PO # 73%/8 Emuil Address: L 58/00 = PWQO = C	Ke lopen (list CME I SUB (S	nf- (0 m	UB (Sanitary) M	lunicipality:	□ 1 Day □ 2 Day Date Require	e of iround Time:
Paracel Order Number: 1737017 Sample ID/Location Name 1 BH1/Aw1 2 BH2/Aw2 3 BH5/Aw3 4 DUP 5 Try Block 6 7 LOW VOLUME received in 8 9	GW D	Sample Sample Date Containers Containe	Taken Xalue+4-1-4 SHal Time Hal 13:30 X 14:00 X 15:00 X 15:00 X 15:00 X	K X X X VOCS	The second secon	X X X		
10 Comments: All netel samples filtered on s Relinquished By (Sign): W Var HUU Relinquished By (Print): Rya-Vada Milan Date/Time: Sept 8,207	GHE ONL Received by Driver Date/Time: Temperature:	Extra both 1 Trip Blo Depot:	le receive wK vial re Reveived at Date/Time: Temperature	ceived Collect		Verifier		r Delivere Waltin 7 9:55an

Chain of Custody (Env) - Rev 0.7 Feb. 2016

RELIABLE.

Certificate of Analysis

GHD Limited (Ottawa)

179 Colonnade Road Suite 400 Ottawa, ON K2E7S4 Attn: Luke Lopers

Client PO: 73508783 Project: 11140575-G2 Custody: 38677

Report Date: 18-Sep-2017 Order Date: 12-Sep-2017

Order #: 1737231

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1737231-01	MW4
1737231-02	Trip Blank

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Order #: 1737231

Report Date: 18-Sep-2017 Order Date: 12-Sep-2017

Project Description: 11140575-G2

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	15-Sep-17	16-Sep-17

Order #: 1737231

Report Date: 18-Sep-2017

Order Date: 12-Sep-2017

	Client ID:	MW4	Trip Blank	-	-
	Sample Date:	12-Sep-17	11-Sep-17	-	-
Г	Sample ID: MDL/Units	1737231-01 Water	1737231-02 Water	-	-
Volatiles	WDL/OTHIS	Water	Water		<u> </u>
Acetone	5.0 ug/L	<5.0	<5.0	-	-
Benzene	0.5 ug/L	<0.5	<0.5	-	-
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	-	-
Bromoform	0.5 ug/L	<0.5	<0.5	-	-
Bromomethane	0.5 ug/L	<0.5	<0.5	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	-	-
Chlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
Chloroform	0.5 ug/L	<0.5	<0.5	-	-
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	-	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	-	-
Ethylene dibromide (dibromoethan	0.2 ug/L	<0.2	<0.2	-	-
Hexane	1.0 ug/L	<1.0	<1.0	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	-	-
Methylene Chloride	5.0 ug/L	<5.0	<5.0	-	-
Styrene	0.5 ug/L	<0.5	<0.5	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	-	-
Toluene	0.5 ug/L	<0.5	<0.5	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	-	-

Order #: 1737231

Report Date: 18-Sep-2017 Order Date: 12-Sep-2017

	Client ID: Sample Date: Sample ID: MDL/Units	MW4 12-Sep-17 1737231-01 Water	Trip Blank 11-Sep-17 1737231-02 Water	- - -	- - -
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	-	-
Trichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	-	-
Vinyl chloride	0.5 ug/L	<0.5	<0.5	-	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	-	-
o-Xylene	0.5 ug/L	<0.5	<0.5	-	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	-	-
4-Bromofluorobenzene	Surrogate	102%	104%	-	-
Dibromofluoromethane	Surrogate	78.7%	98.0%	-	-
Toluene-d8	Surrogate	99.9%	98.7%	-	-

Order #: 1737231

Report Date: 18-Sep-2017

Order Date: 12-Sep-2017

Project Description: 11140575-G2

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Volatiles									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroform	ND	0.5	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane	ND	0.2	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5							
Trichlorofluoromethane	ND	1.0	ug/L ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5 0.5	ug/L ug/L						
o-Xylene	ND	0.5	ug/L						
,	ND	0.5 0.5	ug/L ug/L						
Xylenes, total		0.5			100	E0 1 10			
Surrogate: 4-Bromofluorobenzene	82.2		ug/L		103	50-140			
Surrogate: Dibromofluoromethane	72.3		ug/L		90.3	50-140			
Surrogate: Toluene-d8	81.2		ug/L		102	50-140			

Order #: 1737231

Report Date: 18-Sep-2017

Order Date: 12-Sep-2017

Project Description: 11140575-G2

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Volatiles									
Acetone	ND	5.0	ug/L	ND				30	
Benzene	ND	0.5	ug/L	ND				30	
Bromodichloromethane	1.35	0.5	ug/L	1.26			6.9	30	
Bromoform	ND	0.5	ug/L	ND				30	
Bromomethane	ND	0.5	ug/L	ND				30	
Carbon Tetrachloride	ND	0.2	ug/L	ND				30	
Chlorobenzene	ND	0.5	ug/L	ND				30	
Chloroform	11.3	0.5	ug/L	10.8			4.0	30	
Dibromochloromethane	ND	0.5	ug/L	ND				30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND				30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,1-Dichloroethane	ND	0.5	ug/L	ND				30	
1,2-Dichloroethane	ND	0.5	ug/L	ND				30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND				30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
1,2-Dichloropropane	ND	0.5	ug/L	ND				30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND			0.0	30	
Ethylene dibromide (dibromoethane	ND	0.2	ug/L	ND				30	
Hexane	ND	1.0	ug/L	ND				30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND				30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND				30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND				30	
Methylene Chloride	ND	5.0	ug/L	ND				30	
Styrene	ND	0.5	ug/L	ND				30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
Tetrachloroethylene	4.37	0.5	ug/L	4.79			9.2	30	
Toluene	5.51	0.5	ug/L	5.73			3.9	30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND				30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND				30	
Trichloroethylene	ND	0.5	ug/L	ND				30	
Trichlorofluoromethane	ND	1.0	ug/L	ND				30	
Vinyl chloride	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND	00.0	E0 140		30	
Surrogate: 4-Bromofluorobenzene	71.5		ug/L		89.3	50-140			
Surrogate: Dibromofluoromethane	72.6		ug/L		90.7	50-140			
Surrogate: Toluene-d8	80.4		ug/L		101	50-140			

Method Quality Control: Spike

Order	#:	173723
-------	----	--------

Report Date: 18-Sep-2017

Order Date: 12-Sep-2017

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Volatiles									
Acetone	80.9	5.0	ug/L	ND	80.9	50-140			
Benzene	37.1	0.5	ug/L	ND	92.8	50-140			
Bromodichloromethane	41.9	0.5	ug/L	3.60	95.7	50-140			
Bromoform	33.0	0.5	ug/L	ND	82.5	50-140			
Bromomethane	33.9	0.5	ug/L	ND	84.8	50-140			
Carbon Tetrachloride	34.9	0.2	ug/L	ND	87.3	50-140			
Chlorobenzene	35.5	0.5	ug/L	ND	88.7	50-140			
Chloroform	40.4	0.5	ug/L	7.57	82.1	50-140			
Dibromochloromethane	34.6	0.5	ug/L	2.30	80.7	50-140			
Dichlorodifluoromethane	30.8	1.0	ug/L	ND	76.9	50-140			
1,2-Dichlorobenzene	28.2	0.5	ug/L	ND	70.4	50-140			
1,3-Dichlorobenzene	26.4	0.5	ug/L	ND	66.0	50-140			
1,4-Dichlorobenzene	27.8	0.5	ug/L	ND	69.6	50-140			
1,1-Dichloroethane	38.6	0.5	ug/L	ND	96.5	50-140			
1,2-Dichloroethane	35.7	0.5	ug/L	ND	89.2	50-140			
1,1-Dichloroethylene	34.6	0.5	ug/L	ND	86.4	50-140			
cis-1,2-Dichloroethylene	42.6	0.5	ug/L	ND	106	50-140			
trans-1,2-Dichloroethylene	36.1	0.5	ug/L	ND	90.3	50-140			
1,2-Dichloropropane	41.7	0.5	ug/L	ND	104	50-140			
cis-1,3-Dichloropropylene	38.7	0.5	ug/L	ND	96.8	50-140			
trans-1,3-Dichloropropylene	36.6	0.5	ug/L	ND	91.5	50-140			
Ethylbenzene	36.3	0.5	ug/L	ND	90.8	50-140			
Ethylene dibromide (dibromoethane	35.3	0.2	ug/L	ND	88.2	50-140			
Hexane	39.6	1.0	ug/L	ND	99.0	50-140			
Methyl Ethyl Ketone (2-Butanone)	97.1	5.0	ug/L	ND	97.1	50-140			
Methyl Isobutyl Ketone	89.4	5.0	ug/L	ND	89.4	50-140			
Methyl tert-butyl ether	103	2.0	ug/L	ND	103	50-140			
Methylene Chloride	33.5	5.0	ug/L	ND	83.8	50-140			
Styrene	31.0	0.5	ug/L	ND	77.6	50-140			
1,1,1,2-Tetrachloroethane	32.2	0.5	ug/L	ND	80.6	50-140			
1,1,2,2-Tetrachloroethane	32.5	0.5	ug/L	ND	81.3	50-140			
Tetrachloroethylene	34.4	0.5	ug/L	ND	85.9	50-140			
Toluene	34.0	0.5	ug/L	ND	85.1	50-140			
1,1,1-Trichloroethane	32.6	0.5	ug/L	ND	81.6	50-140			
1,1,2-Trichloroethane	38.2	0.5	ug/L	ND	95.6	50-140			
Trichloroethylene	40.6	0.5	ug/L	ND	102	50-140			
Trichlorofluoromethane	30.8	1.0	ug/L	ND	77.0	50-140			
Vinyl chloride	33.5	0.5	ug/L	ND	83.7	50-140			
m,p-Xylenes	69.2	0.5	ug/L	ND	86.5	50-140			
o-Xylene	33.7	0.5	ug/L	ND	84.2	50-140			
Surrogate: 4-Bromofluorobenzene	85.0		ug/L		106	50-140			

Qualifier Notes:

None

Sample Data Revisions None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

C PARACE	RE		ED. NSIN							(Ln)	of Custor Use Only) 3867	
										Page	of f	no:
nt Name: GHO Limited				and the second se	75-62				1000	Turna		3 Day
tact Name: Like Lope-)			Quote #						🗆 l Day			
tress 179 Ceknydi lad			Email A	73508783 ddress					□ 2 Day			Regular
mhane (12-205-2004)				Luke.L	opers lephd-				Date Req			
Criteria: 100. Reg. 153/04 (As Amended) Table	RSC Filing	0 O.H	Reg. 558	00 PWQO I	CCME D	SUB (Storm)	🗆 SUB (Sanitary)) Munici	pality:		Other:	
trix Type: S (Sull Sed.) GW (Ground Water) SW (Surface								Requ	ired Analy	ses		
Aracel Order Number: 1737231 Sample ID/Location Name	Matrix	Air Volume	# of Containers	Sample Date	Time	< VOCS						
1 MWY	GW	-	2	Set12	13:30	X		-		-		
2 Trip Alunk	GW	-	2	PHT I	_	X	-	-		-		
3		-	-	OPPT 11				-		-		
4		-	-									
5		-	-									
7			1								_	
8											_	
9								_				
10										Me	thod of Delive	ry .
onunents:											nal	Ki
elinquished By (Sign). WWWW	Recen	ed by Dr	iver Dep	012		rved at fab:	oh	1	Venified By	Ex	K.	- TAVA
telinquished By (Print): Ryon Vigon Magan	Date			°C	Date/	Time:	PT J2	15#	Date/Time	1[] By:	MAA	1.0
Date Time: Sept 12, 2017	Temp	rature:		*	Trail		- U.S	ape				1991 Yelle (199

Chain of Custody (Blank) - Rev 0.4 Feb 2016

RELIABLE.

Certificate of Analysis

GHD Limited (Ottawa)

179 Colonnade Road Suite 400 Ottawa, ON K2E7S4 Attn: Luke Lopers

Client PO: 73508783 Project: 11140575-E2 Custody: 37955

Report Date: 31-Oct-2017 Order Date: 30-Oct-2017

Order #: 1744078

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 1744078-01 BH5 1744078-02 BH6

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Order #: 1744078

Report Date: 31-Oct-2017 Order Date: 30-Oct-2017

Project Description: 11140575-E2

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date				
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	31-Oct-17	31-Oct-17			

Sample and QC Qualifiers Notes

1- LG-SMPSample - One or more parameter received past hold time - pH

Sample Data Revisions

None

Work Order Revisions/Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'.

Sample Results

pH Matrix: Sample Date: 29-Au				
Paracel ID	Client ID	Units	MDL	Result
1744078-01	BH5	pH Units	0.05	7.36
1744078-02	BH6	pH Units	0.05	7.38

Laboratory Internal QA/QC

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Matrix Duplicate									
рН	7.92	0.05	pH Units	7.94			0.3	10	

GPARACEL TRUST LABORATORIES LTD. RELIAN									Chain of Custody (Lab Use Only) Nº 37955				
Client Name: Late L GHD			Project	Reference: 11/40	525-m		, 	-		ige o naround			
Contact Name: Luke Loors			Quote	ff.				- MI	Day Day				
Contact Name: Luke Lopurs Address: 179 Colonnade Road, Othewa, W		P0# 73508783 Email Address						□ 2 Day □ Regular					
Telephone 613-288-1723			Inc	ke.lopis	@ GHD				Require				
Criteria: 00. Reg. 153/04 (As Amended) Table	C RSC Filing	0.1	Reg 55	8/00 E PWQO	CCME DS	SUB (Storm)	SUB (Sanitary) Mut	nicipality:		Oth	ar		
Matrix Type: S (Soil Sed.) GW (Ground Water) SW (Surface Wat	er) SS (Storm Sa	nitary Se	wer) P (Paint) A (Air) O (O	ther)		Re	quired A	nalyses				
Paracel Order Number: 1744078	Matrix	Air Volume	of Containers	Sample Taken		(10							
Sample ID/Location Name		Ai	#	Date	Time	X		0	FLA.				
1 BHS	5		1	Aug 29/17		5		- 7	50m	1-			
2 BH6	-	-	-	Aug 29/17		7		-	W	-	++		
4								-		-	+++		
5										-			
6													
7													
8													
9	_							_					
10		_								1.1.1.00			
Comments: Samples received	1 past	hol	d + 2	the for	PH. KN					Motion of D	1		
telinquished By (Sign)	Received	No. Training		Frank		ed at Lab:	N DEKM	Vention	BY	7			
telinquished By (Prop. Luke Lapus	Date/Tir		0/1		successive statements in the second sec		pent of a		A	30	125		
I have cope-					°C 77 Temperature 0 CT 70 Jen 04					pH Verified By:			

www.ghd.com

