Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Studies

patersongroup

Phase II Environmental Site Assessment

Commercial Property 325 Dalhousie Street, 110 York Street and 137-141 George Street Ottawa, Ontario

Prepared For

Claridge Homes

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca July 27, 2012

Report: PE2709-1

patersongroup

Consulting Engineers

154 Colonnade Road South Ottawa, Ontario Canada, K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344

> Geotechnical Engineering Environmental Engineering Hydrogeology Geological Engineering Materials Testing Building Science Archaeological Studies

www.patersongroup.ca

July 27, 2012 File: PE2709-LET.01

Claridge Homes 2001 - 210 Gladstone Avenue Ottawa, Ontario K2P 0Y6

Attention: Mr. Neil Malhotra

Subject: Phase II Environmental Site Assessment 110 York Street, 325 Dalhousie Street, 137 and 141 George Street - Ottawa

Dear Sir,

Further to your request and authorization, Paterson Group (Paterson) supervised a Phase II - Environmental Site Assessment (ESA) at the aforementioned properties. The results of the Phase II-ESA are summarized in the following report.

1.0 Background Information

The subject site consists of four parcels of land located south of York Street, north of George Street, and west of Dalhousie Street, in the City of Ottawa, Ontario. The property addressed as 137 George Street is currently occupied by paved asphalt parking lots. The property addressed as 141 George Street is currently occupied by the Honest Lawyer bar and restaurant, 110 York Street is occupied by a paved asphalt parking area and The Whiskey Bar and 325 Dalhousie Street is occupied by an 11-storey office building and a paved parking area. Adjacent properties to the west are occupied by low-rise multi-unit commercial buildings (343 and 353 Dalhousie Street).

2.0 **Previous Engineering Reports**

The following reports were reviewed as a component of this study:

'Phase I and Limited Phase II-Environmental Site Assessment, Commercial Property, 141 George Street, Ottawa, Ontario', prepared by Paterson, dated September 2011.

The above noted reports identified the following environmental concerns with the potential to have impacted the subject site:

- A former service station was present on the subject property, immediately south of the building addressed 325 Dalhousie Street (formerly 337 Dalhousie Street);
- □ A former service station was present at 351 Dalhousie Street (currently addressed as 353 Dalhousie Street), immediately to the west of 137 George Street;
- A printing business was present at 125-127 George Street (currently the parking lot addressed as 137 George Street);
- A dry cleaning business was present at 343 Dalhousie Street, immediately to the west of 137 George Street.

As a component of the 2011 Phase I and Limited Phase II-ESA, Paterson supervised the drilling of a borehole and the installation of a monitoring well in the southeast corner of 141 George Street (The Honest Lawyer). All soil and groundwater samples were in compliance with the 2011 MOE Table 3 standards for residential properties. The location of this borehole is shown on Drawing PE2709-1 - Test Hole Location Plan.

3.0 Subsurface Investigation

The subsurface investigation was conducted on July 17 and 18, 2012, and consisted of placing four (4) boreholes on the subject property (BH1 to BH4). The boreholes were placed to provide general coverage of the former service stations, dry cleaner, and print shop identified in previous reports. The borehole locations are illustrated on Drawing PE2709-1 - Test Hole Location Plan, appended to this report. The boreholes were advanced using a truck-mounted power auger drill rig.

The boreholes were completed to depths ranging from 4.2 to 21.1 m below the existing grade. A total of 29 soil samples were recovered from the boreholes by means of split spoon sampling. Upon recovery, all samples were immediately sealed in appropriate containers to facilitate the preliminary screening procedure. Additionally, 16 rock core samples were collected from BH1, BH2, and BH4, where monitoring wells were installed. BH4 was completed to a depth of 21.1 m for geotechnical purposes and to characterize groundwater conditions at depth, as opposed to BH1 and BH2, which were cored to depths of 7.6 to 8.8 m to characterize shallow groundwater conditions. The depths at which the split spoon and rock core samples were obtained from the boreholes are shown as "**SS**" and "**RC**" respectively on the Soil Profile and Test Data Sheets appended to this report.

All samples recovered as part of this investigation will be stored in the laboratory for a period of one (1) month after the issuance of this report. All samples will be discarded unless this firm is directed otherwise.

Monitoring Well Installation

Groundwater monitoring wells were installed in BH1, BH2, and BH4. The locations of these monitoring wells are shown on the attached Test Hole Location Plan. Typical monitoring well construction details are described below. Reference to the Soil Profile and Test Data Sheets should be made for specific well construction details.

- Slotted 32 mm diameter PVC screen at base of borehole.
- **32** mm diameter PVC riser pipe from the top of the screen to ground surface.
- □ No.3 silica sand backfill within annular space around screen.
- **300** mm thick bentonite hole plug directly above PVC slotted screen.
- Clean backfill from top of bentonite plug to the ground surface.

It is noted that BH4 was cored using a HQ-diameter wireline coring system as opposed to the usual NQ diameter, to facilitate the installation of 51 mm, as opposed to a 32 mm, screen and risers. The monitoring well installed in BH4 was screened at a much greater depth than the monitoring wells installed in BH1 and BH2.

Mr. Neil Malhotra Page 4 File: PE2709-LET.01

Sampling Protocol

Soil and groundwater sampling protocols were followed using the MOE document entitled "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated May 1996.

Soil samples were recovered by hand from a stainless steel split spoon sampler, using protective gloves (changed after each sample). The samples were placed into plastic bags. If significant contamination was encountered, samples were immediately placed in glass jars and laboratory-provided methanol preservation vials. Sampling equipment was washed in soapy water after each split spoon sample to prevent cross-contamination of samples. Samples were stored in coolers to reduce analyte volatilization during transportation.

Groundwater samples were recovered from the monitoring wells installed in BH1, BH2, and BH4. The wells were purged prior to sampling by removing three times the volume of water contained within the wells where possible, or until the wells were dry. The groundwater samples were taken using a peristaltic pump set to low flow using dedicated polyethylene tubing. The samples were stored in laboratory-provided bottles and stored in a cooler to reduce analyte volatilization during transportation.

Analytical Testing

Paracel Laboratories (Paracel), of Ottawa, performed the laboratory analysis of the soil and groundwater samples submitted for analytical testing. Paracel is a member of the Standards Council of Canada/Canadian Association for Environmental Analytical Laboratories (SCC/CAEAL). Paracel is accredited and certified by SCC/CAEAL for specific tests registered with the association.

Subsurface Profile

The soil profile encountered consisted of a layer of asphaltic concrete underlain by a layer of silty sand fill with trace clay, brick, concrete, crushed stone, gravel, and cobbles. The fill layer ranges in thickness from 1.2 m at BH2 to 3 m at BH1, and demolition debris (brick, concrete, etc.) was observed in the fill at depths of up to 2.2 m below existing grade. The fill layer is underlain by glacial till, consisting of a grey silty clay to silty sand matrix with gravel, and cobbles. Practical auger refusal was encountered in all boreholes at depths ranging from 4.2 m to 5 m below existing grade. Based on the rock core samples obtained at BH1, BH2, and BH4, the glacial till layer is underlain by limestone bedrock. The specific details of the soil profile at each test hole location are presented on the attached Soil Profile and Test Data sheets.

Mr. Neil Malhotra Page 5 File: PE2709-LET.01

Groundwater

Groundwater levels at the subject site were measured on July 20, 2012. Groundwater was encountered at depths of 3.7m and 4.5m below ground surface in BH1 and BH2. The groundwater in BH1-11 was encountered at 5.2 m below ground surface. Based on this data, the groundwater flow direction is considered to be in a northerly direction. The groundwater level identified in BH4 was not included in the groundwater flow direction analysis due to the fact that the monitoring well in BH 4 was screened at a much deeper interval than those in BH1, BH2 and BH1-11. Previous groundwater studies conducted in the vicinity of the subject property by Paterson, confirm that the groundwater flow direction in the general area of the subject site is to the north, towards the Ottawa River. It should be noted that groundwater levels fluctuate throughout the year with seasonal variations.

Soil Sample Headspace Analysis

A MiniRae photoionization detector (PID) was used to measure the vapour concentrations in the headspace of the soil samples recovered from the boreholes. The technical protocol was obtained from Appendix C of the MOE document entitled "Interim Guidelines for the Remediation of Petroleum Contamination at Operating Retail and Private Fuel Outlets in Ontario", dated March 1992.

Soil samples recovered at the time of sampling were placed immediately into airtight plastic bags with nominal headspace. All lumps of soil inside the bags were broken by hand, and the soil was allowed to come to room temperature prior to conducting the vapour survey. Allowing the samples to stabilize to room temperature ensures consistency of readings between samples.

To measure the soil vapours, the analyser probe is inserted into the nominal headspace above the soil sample. The samples were agitated/manipulated gently as the measurements were taken. The peak reading registered within the first 15 seconds was recorded as the vapour measurement.

The vapour readings were found to range from 1.3 to 401 parts per million (ppm) in the soil samples obtained. These readings are considered to be potentially indicative of the presence of volatile organic compound (VOC) or petroleum hydrocarbon (PHC) contamination in samples with higher readings. It should be noted that the vapour results can not be used to identify the presence of heavier petroleum hydrocarbons such as heavy oil. Please refer to the Soil Profile and Test Data sheets attached for soil sample headspace results.

4.0 Analytical Test Results

Soil and Groundwater Standards

The soil and groundwater standards for the subject property were obtained from Table 3 of the document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", prepared by the Ontario Ministry of Environment (MOE), April 15, 2011. The MOE Table 3 Standards are based on the following considerations:

- Coarse grained soil conditions.
- □ Non-potable groundwater situation.
- Residential land use.

Soil analytical results were also compared to the MOE Table 1 standards for the consideration of potential off-site disposal of soil, in the event that the site is redeveloped.

Soil

A total of five (5) soil samples were submitted to Paracel Laboratories. Three (3) samples were analyzed for petroleum hydrocarbons, fractions 1 through 4 (PHCs F1-F4) and volatile organic compounds (VOCs), two (2) samples were analyzed for metals, and sample BH1-AU1 was also analyzed for PAHs. The results of the analytical testing and the selected soil standards are presented in the following tables. Copies of the analytical test results are appended to this report.

Table 1 Analytical Test Results - Soil BTEX and PHCs (Fractions 1 to 4)								
Parameter	MDL		Soil Sample (µg/g) July 17, 201	s 2	Table 3 Standards Residential	Table 1 Standards Residential		
	(µg/g)	BH1-SS7	357 BH2-SS8 BH3-SS6		Land Use (µg/g)	Land Use (µg/g)		
F ₁ PHCs (C ₆ -C ₁₀)	7	<u>182</u>	20	nd	55	25		
F_2 PHCs (C_{10} - C_{16})	4	<u>118</u>	18	nd	98	10		
F ₃ PHCs (C ₁₆ -C ₃₄)	8	nd	nd	nd	300	240		
F ₄ PHCs (C ₃₄ -C ₅₀)	6	nd	nd	nd	2800	120		
Notes:	L - Method · Not Detec <u>d</u> - value e d - value e	I Detection L sted (< MDL) xceeds MOI	imit) E Table 3 sta E Table 1 ba	andards .ckground sta	ndards			

The concentrations of PHCs F1 and F2 in sample BH1-SS7 exceeded the MOE Table 3 standards for residential property use. All other soil results are in compliance with the applicable MOE Table 3 standards for PHCs. The concentrations of PHCs F1 and F2 in BH1-SS7 and the concentration of PHCs F2 in BH2-SS8 exceed the MOE Table 1 background standards.

Table 2 Analytical Test Results - Soil Volatile Organic Compounds (VOCs)

Parameter	MDL (µg/g)	Soil	Samples (µ July 17, 201:	ıg/g) 2	Table 3 Standards Residential Land Use					
		BH1-SS7	BH2-SS8	BH3-SS6	(µg/g)					
Acetone	0.50	nd	nd	nd	16					
Benzene	0.02	nd	nd	nd	0.21					
Bromodichloromethane	0.05	nd	nd	nd	13					
Bromoform	0.05	nd	nd	nd	0.27					
Bromomethane	0.05	nd	nd	nd	0.05					
Carbon Tetrachloride	0.05	nd	nd	nd	0.05					
Chlorobenzene	0.05	nd	nd	nd	2.4					
Chloroethane	0.05	nd	nd	nd	0.05					
Chloroform	0.05	nd	nd	nd	0.05					
Chloromethane	0.20	nd	nd	nd	NV					
Dibromochloromethane	0.05	nd	nd	nd	9.4					
Dichlorodifluoromethane	0.05	nd	nd	nd	16					
1,2-Dibromoethane	0.05	nd	nd	nd	NV					
1,2-Dichlorobenzene	0.05	nd	nd	nd	3.4					
1,3-Dichlorobenzene	0.05	nd	nd	nd	4.8					
1,4-Dichlorobenzene	0.05	nd	nd	nd	0.083					
1,1-Dichloroethane	0.05	nd	nd	nd	3.5					
1,2-Dichloroethane	0.05	nd	nd	nd	0.05					
1,1-Dichloroethylene	0.05	nd	nd	nd	0.05					
cis-1,2-Dichloroethylene	0.05	nd	nd	nd	3.4					
trans-1,2-Dichloroethylene	0.05	nd	nd	nd	0.084					
1,2-Dichloropropane	0.05	nd	nd	nd	0.05					
1,3-Dichloropropene	0.05	nd	nd	nd	0.05					
Notes:				<u>.</u>						

MDL - Method Detection Limit

nd - not detected above the MDL

Bold - Value exceeds applicable MOE Standard

patersongroup

Table 2 (continued) Analytical Test Results - Soil Volatile Organic Compounds (VOCs)

Parameter	MDL (µg/g)	Soi	l Samples (µ July 17, 201	µg/g) 2	Table 3 Standards Residential Land Use				
		BH1-SS7	BH2-SS8	BH3-SS6	(hð\d)				
Ethylbenzene	0.05	nd	nd	nd	2				
Hexane (n)	0.05	nd	nd	nd	2.8				
Methyl Ethyl Ketone	0.50	nd	nd	nd	16				
Methyl Butyl Ketone	2.00	nd	nd	nd	NV				
Methyl Isobutyl Ketone	0.50	nd	nd	nd	1.7				
Methyl tert-Butyl Ether (MTBE)	0.05	nd	nd	nd	0.75				
Methylene Chloride	0.05	nd	nd	nd	0.1				
Styrene	0.05	nd	nd	nd	0.7				
1,1,1,2-Tetrachloroethane	0.05	nd	nd	nd	0.058				
1,1,2,2-Tetrachlorethane	0.05	nd	nd	nd	0.05				
Tetrachloroethylene	0.05	nd	nd	nd	0.28				
Toluene	0.05	nd	nd	nd	2.3				
1,1,1-Trichloroethane	0.05	nd	nd	nd	0.38				
1,1,2-Trichloroethane	0.05	nd	nd	nd	0.05				
Trichloroethylene	0.05	nd	nd	nd	0.061				
Trichlorofluoromethane	0.05	nd	nd	nd	4				
1,3,5-Trimethylbenzene	0.05	nd	nd	nd	NV				
Vinyl Chloride	0.02	nd	nd	nd	0.02				
Xylenes	0.05	nd	nd	nd	3.1				
Notes: □ MDL - Method □ nd - not detect □ Bold - Value €	Notes: Image: MDL - Method Detection Limit Image:								

There were no VOC concentrations detected in the analyzed soil samples. All of the analyzed VOC concentrations are in compliance with the applicable MOE Table 3 residential standards and the Table 1 background standards.

Table 3				
Analytical	Test	Resul	ts -	Soil
Metals				

Parameter	MDL (µg/g)	Soil Sampl July 17-1	les (μg/g) 8, 2012	Table 3 Standards	Table 1 Standards
		BH1-AU1	BH4-SS3	Residential Land Use (µg/g)	Residential Land Use (µg/g)
Antimony	1	nd	2	7.5	1.3
Arsenic	1	2	2	18	18
Barium	1	20	184	390	220
Beryllium	0.5	nd	nd	4	2.5
Boron	5.0	nd	nd	120	36
Cadmium	0.5	nd	0.5	1.9	1.2
Chromium	5	7	14	160	70
Cobalt	1	3	3	22	21
Copper	5	6	17	140	92
Lead	1	9	<u>524</u>	120	120
Molybdenum	1	2	1	6.9	2
Nickel	5	11	8	100	82
Selenium	1	nd	nd	2.4	1.5
Silver	0.3	1.8	1.5	20	0.5
Thallium	1	nd	nd	1	1
Uranium	1	nd	nd	23	2.5
Vanadium	10	30	20	86	86
Zinc	20	nd	191	340	290
Notes: MDL - nd - nd Bold - Bold -	Method Dep of detected a Value exce Value exce	tection Limit above the MDL eds MOE Table 3 eds MOE Table 1	3 standard I standard		

The concentration of lead in sample BH4-SS3 exceeded the MOE Table 3 standards for residential property use. All other soil results are in compliance with the MOE Table 3 standards. The concentrations of lead and antimony in BH4-SS3 exceed the MOE Table 1 standards. All other soil results meet the selected MOE Table 1 standards.

Table 4 Analytical Test Results - Soil Polycyclic Aromatic Hydrocarbons (PAHs)

Parameter	MDL (µg/g)	Soil Samples (µg/g) July 17, 2012	Table 3 Standards	Table 1 Standards
		BH1-AU1	Residential Land Use (µg/g)	Residential Land Use (µg/g)
Acenaphthene	0.08	nd*	7.9	0.072
Acenaphthylene	0.08	nd	0.15	0.093
Anthracene	0.08	nd	0.67	0.16
Benzo[a]anthracene	0.02	0.09	0.5	0.36
Benzo[a]pyrene	0.08	nd	0.3	0.3
Benzo[b]fluoranthene	0.08	nd	0.78	0.47
Benzo[g,h,i]perylene	0.08	nd	6.6	0.68
Benzo[k]fluoranthene	0.08	nd	0.78	0.48
Biphenyl	0.08	nd*	0.31	0.05
Chrysene	0.02	0.82	7	2.8
Dibenzo[a,h]anthracene	0.08	nd	0.1	0.1
Fluoranthene	0.08	nd	0.69	0.56
Fluorene	0.08	nd	62	0.12
Indeno[1,2,3-cd]pyrene	0.08	nd	0.38	0.23
1-Methylnaphthalene	0.02	0.10	NV	NV
2-Methylnaphthalene	0.02	0.13	NV	NV
Methylnaphthalene (1&2)	0.04	0.23	0.99	0.59
Naphthalene	0.01	0.05	0.6	0.09
Phenanthrene	0.02	0.32	6.2	0.69
Pyrene	0.02	0.22	78	1

MDL - Method Detection Limit

- nd not detected above the MDL
- Bold Value exceeds MOE Table 3 standard
- Bold Value exceeds MOE Table 1 standard
- *Detection limit is higher than Table 1 standard

Mr. Neil Malhotra Page 12 File: PE2709-LET.01

All PAH concentrations detected in the soil sample are in compliance with the selected MOE Table 3 standards. All PAH concentrations also meet Table 1 standards, with the exception of acenapthene and biphenyl, for which the laboratory detection limits were higher than the Table 1 standards.

Groundwater

Groundwater samples were collected from the monitoring wells installed in BH1, BH2, and BH4 on July 20, 2012, with a second sampling event conducted on July 25, 2012. The second sampling event was conducted to address chloroform concentrations detected in all boreholes during the initial sampling event. It is our opinion that these chloroform concentrations are the result of municipally treated water being introduced into the boreholes during rock coring. During the second sampling event, a sample could not be obtained from BH1 due to insufficient volume, and only a limited sample volume could be obtained from BH2, which precluded the analysis of PHCs F2-F4. Sampling tubing not installed by Paterson was observed in these wells, indicating that they were sampled by others between the first and second sampling events.

All water samples were submitted for analysis of PHCs and VOCs, and the water sample from BH2 was submitted for analysis of PAHs. The results of the analytical testing and the selected groundwater standards are presented in the following tables. A copy of the certificate of analysis is attached to this report.

Table 5 Analytical Test Results - Groundwater BTEX and PHCs (Fractions 1 to 4)								
Groundwater Samples (ug/L) July 20 and 25, 2012 Table								
Parameter	(ug/L)	BH1- GW1	BH2- GW1	BH2- GW2	BH4- GW1	BH4- GW2	Use (ug/L)	
F1 PHCs (C ₆ -C ₁₀)	25	45	43	nd	nd	nd	750	
F2 PHCs (C ₁₀ -C ₁₆)	100	<287*	nd	-	nd	nd	150	
F3 PHCs (C ₁₆ -C ₃₄)	100	<287*	nd	-	nd	nd	500	
F4 PHCs (C ₃₄ -C ₅₀)	100	<287*	nd	-	nd	nd	500	
Notes: MDL - Method Detection Limit Image: Image								

All PHC concentrations detected in the groundwater samples are in compliance with the selected MOE Table 3 standards, with the exception of BH1-GW1, where compliance of the F2-F4 parameters could not be assessed due to elevated detection limits.

Table 6Analytical Test Results - GroundwaterVolatile Organic Compounds (VOCs)

Parameter	MDL (µg/L)		Groundw July	Table 3 Standards			
		BH1- GW1	BH2- GW1	BH2- GW2	BH4- GW1	BH4- GW2	Residential Land Use (µg/L)
Acetone	5	82.4	691	1020	40.6	nd	130000
Benzene	0.5	nd	2.4	nd	1.1	nd	44
Bromodichloromethane	0.5	nd	nd	nd	3.8	nd	85000
Bromoform	0.5	nd	nd	nd	nd	nd	380
Bromomethane	0.5	nd	nd	nd	nd	nd	5.6
Carbon Tetrachloride	0.2	nd	nd	nd	nd	nd	0.79
Chlorobenzene	0.5	nd	nd	nd	nd	nd	630
Chloroethane	1	nd	nd	nd	nd	nd	NV
Chloroform	0.5	<u>16.1</u>	<u>14.4</u>	<u>9.9</u>	<u>21.8</u>	<u>3.1</u>	2.4
Chloromethane	3	nd	nd	nd	nd	nd	NV
Dibromochloromethane	0.5	nd	nd	nd	nd	nd	82000
Dichlorodifluoromethane	1	nd	nd	nd	nd	nd	4400
1,2-Dibromoethane	0.2	nd	nd	nd	nd	nd	NV
1,2-Dichlorobenzene	0.5	nd	nd	nd	nd	nd	4600
1,3-Dichlorobenzene	0.5	nd	nd	nd	nd	nd	9600
1,4-Dichlorobenzene	0.5	nd	nd	nd	nd	nd	8
1,1-Dichloroethane	0.5	nd	nd	nd	nd	nd	320
1,2-Dichloroethane	0.5	nd	nd	nd	nd	nd	1.6
1,1-Dichloroethylene	0.5	nd	nd	nd	nd	nd	1.6
cis-1,2-Dichloroethylene	0.5	nd	nd	nd	nd	nd	1.6

Notes:

 MDL - Method Detection Limit

nd - not detected above the MDL

Bold - Value exceeds applicable MOE Standard

Table 6 (continued)Analytical Test Results - GroundwaterVolatile Organic Compounds (VOCs)

Parameter	MDL (µg/L)	(Ground July	Table 3 Standards Residential			
		BH1- GW1	BH2- GW1	BH2- GW2	BH4- GW1	BH4- GW2	Land Use (µg/L)
trans-1,2-Dichloroethylene	0.5	nd	nd	nd	nd	nd	1.6
1,2-Dichloropropane	0.5	nd	nd	nd	nd	nd	1.6
1,3-Dichloropropene	0.5	nd	nd	nd	nd	nd	5.2
Ethylbenzene	0.5	nd	1	nd	nd	nd	2300
Hexane (n)	1	2.1	2.2	nd	nd	nd	51
Methyl Ethyl Ketone	5	10.7	8	26.1	8.4	nd	470000
Methyl Butyl Ketone	10	nd	nd	nd	nd	nd	NV
Methyl Isobutyl Ketone	5	nd	nd	nd	nd	nd	140000
Methyl tert-Butyl Ether (MTBE)	2	nd	nd	nd	nd	nd	190
Methylene Chloride	5	nd	nd	nd	nd	nd	610
Styrene	0.5	nd	nd	nd	nd	nd	1300
1,1,1,2-Tetrachloroethane	0.5	nd	nd	nd	nd	nd	3.3
1,1,2,2-Tetrachlorethane	0.5	nd	nd	nd	nd	nd	3.2
Tetrachloroethylene	0.5	nd	nd	nd	nd	nd	1.6
Toluene	0.5	6.2	5.8	nd	5.6	nd	18000
1,2,4-Trichlorobenzene	0.5	nd	nd	nd	nd	nd	180
1,1,1-Trichloroethane	0.5	nd	nd	nd	nd	nd	640
1,1,2-Trichloroethane	0.5	nd	nd	nd	nd	nd	4.7
Trichloroethylene	0.5	nd	nd	nd	nd	nd	1.6
Trichlorofluoromethane	1.0	nd	nd	nd	nd	nd	2,500
1,3,5-Trimethylbenzene	0.5	nd	nd	nd	nd	nd	NV
Vinyl Chloride	0.5	nd	nd	nd	nd	nd	0.5
Xylenes	0.5	nd	2.8	nd	nd	nd	4,200

Notes:

MDL - Method Detection Limit

nd - not detected above the MDL

Bold - Value exceeds applicable MOE Standard

The concentration of chloroform in all samples exceeded the selected MOE Table 3 standards. All other results are in compliance with the selected MOE Table 3 standards.

It is expected that the chloroform in the water samples is the result of municipally treated water having been introduced into the boreholes during bedrock coring. Chloroform concentrations were observed to have decreased upon re-sampling.

Table 7 Analytical Test Results Polycyclic Aromatic Hyd	- Ground drocarbo	water ns (PAHs)	
Parameter	MDL (µg/L)	Groundwater Samples (µg/L) July 20, 2012	Table 3 Standards Commercial Land Use
		BH2-GW1	(µg/L)
Acenaphthene	0.05	nd	600
Acenaphthylene	0.05	nd	1.8
Anthracene	0.01	nd	2.4
Benzo[a]anthracene	0.01	nd	4.7
Benzo[a]pyrene	0.01	nd	0.81
Benzo[b]fluoranthene	0.05	nd	0.75
Benzo[g,h,i]perylene	0.05	nd	0.2
Benzo[k]fluoranthene	0.05	nd	0.4
Biphenyl	0.05	0.12	1000
Chrysene	0.05	nd	1
Dibenzo[a,h]anthracene	0.05	nd	0.52
Fluoranthene	0.01	nd	130
Fluorene	0.05	0.06	400
Indeno[1,2,3-cd]pyrene	0.05	nd	0.2
Methylnaphthalene (1&2)	0.1	0.73	1800
Naphthalene	0.05	0.82	1400
Phenanthrene	0.05	nd	580
Pyrene	0.01	nd	68
Notes: MDL - Meth nd - not det Bold - Valu	od Detecti ected abov e exceeds	on Limit /e the MDL applicable MOE Standard	

patersongroup

Mr. Neil Malhotra Page 16 File: PE2709-LET.01

All PAH concentrations detected in the groundwater samples are in compliance with the selected MOE Table 3 standards.

5.0 Assessment and Recommendations

Assessment

A Phase II Environmental Site Assessment was carried out at the subject site to assess the potential for any soil and groundwater contamination based on the historical presence of two gas stations, a printing business, and a dry cleaning business which were historically present on-site or immediately adjacent to the site.

Soil

Four (4) boreholes were advanced on the subject property on July 17 and 18, 2012. The borehole locations were selected to provide general coverage of the potentially contaminating past property uses. Three (3) of the boreholes were cored into bedrock and instrumented with groundwater monitoring wells.

Soil samples were obtained from all boreholes. A total of five (5) soil samples were submitted to Paracel Laboratories for analysis of PHCs, VOCs, metals, and PAHs. The concentration of PHCs F1 and F2 in sample BH1-SS7 exceeded the selected MOE Table 3 standards, and the concentration of lead in BH4-SS3 exceeded the Table 3 standard. All other analyzed parameters were in compliance with Table 3 standards.

Soil samples were also compared to MOE Table 1 standards. The concentration of PHCs F1 and F2 in sample BH1-SS7 and the concentrations of antimony and lead in BH4-SS3 exceeded the MOE Table 1 standards. It is noted that demolition debris (brick, concrete) was observed in fill material on-site to a depth of up to 2.2 m below existing grade.

Groundwater

Two (2) groundwater sampling events were conducted as a part of this assessment. The first groundwater sampling event was conducted on July 20, 2012. Samples were obtained from the monitoring wells installed in BH1, BH2, and BH4. All samples were submitted for analysis of PHCs and VOCs, and the sample from BH2 was submitted for analysis of PAHs. The concentrations of chloroform in all samples exceeded the Table 3 standards. All other analyzed parameters were in compliance with Table 3 standards. It is our opinion that the chloroform concentrations observed in the samples are the result of municipally treated water introduced into the boreholes during the coring process, and are not indicative of a contamination problem.

Mr. Neil Malhotra Page 17 File: PE2709-LET.01

A second groundwater sampling event was conducted on July 25, 2012. Chloroform concentrations in the analyzed samples were considerably lower. All other analyzed parameters were in compliance with Table 3 standards. It is recommended that the monitoring wells be sampled again, prior to redevelopment, to confirm our opinion.

Recommendations

Soil

Based on the results of the Phase II-ESA, petroleum hydrocarbon impacted soil exceeding Table 3 standards is present on-site in the vicinity of BH1. This contaminated soil appears to have resulted from the presence of the former gas station at #353 Dalhousie Street. Given the test results meeting Table 3 standards at nearby boreholes, the contaminated soil is considered to be limited in extent.

Lead-contaminated soil was observed in the upper fill layer underlying the asphalt pavement on-site. The fill layer varies in thickness from approximately 1.2 to 3 m. Given the nature of the petroleum hydrocarbon and lead impacts observed during the Phase II ESA, it is our opinion that these exceedences do not impact the subject site's current use as a parking lot. Impacted soil may be remediated at the time of site redevelopment. All remedial work should be supervised by a representative from Paterson to ensure the effectiveness of the program.

It should be noted that analyzed soil samples from the fill layer contain contaminant concentrations in excess of the MOE Table 1 (background) standards, which are used to characterize soil for off-site disposal. If this soil is required to be removed from the site during future redevelopment, it would have to be taken to an approved waste disposal facility. Demolition debris (concrete, brick, etc.) was encountered in the fill layer at depths of up to 2.2 m below grade. If, during redevelopment, a large percentage of this fill is observed to contain demolition debris, it will have to be disposed of as construction/ demolition debris.

Remedial Action Plan

The proposed redevelopment of the subject site will require the excavation and removal of all soil (non-impacted and impacted) from the property. A remediation program using a full depth approach is recommended. This will involve the excavation of all petroleum hydrocarbon and heavy metal impacted soil and bedrock from within the boundaries of the subject site, at the time of redevelopment.

Mr. Neil Malhotra Page 18 File: PE2709-LET.01

Non-impacted soil and bedrock will be transported off-site to a clean material disposal site, while impacted soil and bedrock would be placed in trucks and hauled to an approved waste disposal facility. Impacted groundwater is not expected to be encountered within the excavation.

A confirmatory sampling program will be carried out to ensure that the site meets 2011 MOE Table 3 standards and a final summary report will be prepared.

Monitoring Wells

If the monitoring wells installed at the subject site are not going to be used in the future, they should be decommissioned according to Ontario Regulation 903. The monitoring wells will be registered with the MOE under this regulation. It is recommended that the monitoring wells not be immediately decommissioned so that future groundwater analytical testing can be conducted.

6.0 Statement of Limitations

The client should be aware that any information pertaining to soils and all test hole logs are furnished as a matter of general information only and test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those described by the test holes themselves.

This report was prepared for the use of Claridge Homes. Permission from Paterson and Claridge will be required to release this report to any other party.

Mr. Neil Malhotra Page 19 File: PE2709-LET.01

We trust that this submission will satisfy your present requirements. If you have any questions regarding this report, please contact our office.

Paterson Group Inc.

Daniel J. Arnott, EIT

Carlos P. Da Silva, P.Eng

Report Distribution

- □ City of Ottawa (3 copies)
- Claridge Homes (1 copy)
- Image: Paterson Group (1 copy)

Attachments

- Soil Profile and Test Data Sheets
- Symbols and Terms
- Analytical Test Results
- Test Hole Location Plan

natersonaroun Consulting	SOIL PROFILE AND TEST DATA
154 Colonnade Road South, Ottawa, Ontario K2E 7J5	Phase II - Environmental Site Assessment 110 York St., 321 Dalhousie St. & 167-141 George St. Ottawa, Ontario
DATUM TBM - Top spindle of fire hydrant. Assumed elevation	r = 100.00m. FILE NO.

										PE2709)
REMARKS BORINGS BY CME 55 Power Auger				D	DATE .	Julv 17. 2(012		HOLE NO.	BH 1	
	Б		SAN	IPLE		DEPTH	FLEV	Photo le	onization C)etector	Vell
SOIL DESCRIPTION	A PL		Ř	RY	H H G	(m)	(m)	Vola	tile Organic Ro	lg. (ppm)	ring V tructic
	STRAT	ТУРЕ	NUMBE	ECOVE	I VALI or RQ			○ Lowe	r Explosive	e Limit %	Aonito Cons
GROUND SURFACE				<u></u> щ	4	0-	-99 71	20	40 60	80	
50 mm Asphaltic concrete over 0.25 crushed stone		餐 AU 發 AU	1 2				00.71				
		ss	3	42	9	1-	-98.71	•			
FILL: Brown silty sand, trace clay, brick, gravel, cobbles								· · · · · · · · · · · · · · · ·			
<u>2.2</u> 1		ss	4	50	26	2-	-97.71			······	
FILL: Brown silty clay with sand and gravel		ss	5	33	9						
2. <u>9</u> /		ss	6	100	50+	3-	-96.71				
GLACIAL TILL: Grey silty clay with											<u>lilili</u> ∎
sand, gravel, cobbles		ss	7	50	12	4-	-95.71		· · · · · · · · · · · · · · · · · · ·	4(
5.00		SS	8	67	50+						
						5-	-94.71		······		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	RC	1	92	67						
BEDROCK: Grey limestone	$ \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \frac{2}{2} + \frac{2}{2} + \frac{2}{2} \frac{2}{2} + 2$					6-	-93.71				
	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	<u> </u>				7	00.71				
7 62	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RC	2	100	100		-92.71				
End of Borehole	· <u></u>	1							·····		
(GWL @ 3.71m-July 20, 2012)											

•••••••••••••••••••••

500

.

natercondroun Consu						SOIL PROFILE AND TEST DATA							
154 Colonnade Road South, Ottawa, Or	ntario	Г Р К2Е 7	Eng J5	ineers	PI 11	nase II - E 0 York Si	nvironm t., 321 Da	ental Site Assessment alhousie St. & 167-141 George St.					
DATUM TBM - Top spindle of fire hydrant. Assumed elevation = 100.00m. FILE NO.													
REMARKS													
BORINGS BY CME 55 Power Auger				DA	ATE	July 17, 20	012	HOLE NO. BH 2					
	Ĕ	SAMPLE				DEDTU		Photo Ionization Detector					
SOIL DESCRIPTION	PLC		. н		M	(m)	ELEV. (m)	● Volatile Organic Rdg. (ppm) ろう					
	STRATA	ТҮРЕ	NUMBER	COVER	NALUI			C Lower Explosive Limit %					
	. <u></u>	₽	-	8	zř	0-	-100.04	20 40 60 80 2					
		È AU S AU	1										
FILL: Brown silty sand with gravel		∇			_	4	00.04						
<u>1.22</u>		ss	3	29	6		-99.04						
		ss	4	21	23								
GLACIAL TILL: Brown silty clay with		Δ				2-	-98.04						
sand, gravel, cobbles, boulders		ss	5	42	13								
3 30		u Vissi	6	36	50+	3-	-97.04						
		₫ 00	Ū		001								
GLACIAL TILL: Brown silty sand		⊠ SS	7	80	50+	4-	-96.04						
with gravel, cobbles, boulders													
4.90		∬ss	8			5-	- 95 04						
		RC	1	100	47		00.04						
		_											
						6-	-94.04						
BEDROCK: Grey limestone		RC	2	100	100								
						7-	-93.04						
		RC	3	100	100	8-	-92.04						
8.76		_											
(GWL @ 4.50m-July 20, 2012)													
	100 200 300 RKI Eagle Rdg						100 200 300 400 500 RKI Eagle Rdg. (ppm)						
								▲ Full Gas Resp. △ Methane Elim.					

natorsonard	natorsonaroun Consulting						SOIL PROFILE AND TEST DATA						
pater songit	P	Phase II - Environmental Site Assessment											
154 Colonnade Road South, Ottawa, On	10 York S ttawa, Or	t., 321 Da ntario	alhousie S	t. & 167-14 ⁻	I George S	št.							
DATUM TBM - Top spindle of fire hydrant. Assumed elevation = 100.00m. FILE NO. PE2709							•						
REMARKS HOLE NO.													
BORINGS BY CME 55 Power Auger DATE July 17, 2012 BH 3													
SOIL DESCRIPTION	SAMPLE					DEPTH	ELEV.	Photo Ionization Detector Volatile Organic Rdg. (ppm)					
	A B		<u>ж</u>	°% COVERY	Що	(m)	(m)				truc		
	TRAT	ТҮРЕ	UMBE		VAL(O Lowe	r Explosive	e Limit %	Const		
GROUND SURFACE	N N		z	RE	z ^o		00.55	20	40 60	80	Σĭ		
Asphaltic concrete0.05		🗟 AU	1			1 0-	+99.55						
FILL: Brown silty sand with gravel,		₿ AU	2										
crushed stone	KXX	Neel	3	77	50.	· ·							

Asphaltic concrete 0	.05	🔀 AU	1			U	33.33					
		₿ AU	2									
FILL: Brown silty sand with gravel,												
crushed stone		∦X SS	3	77	50+	1-	-98.55		!÷÷∔-	÷÷÷+		
1	.40	<u>X</u>										
		17										
		∭ SS	4	0	15	0	07 55		••••••			
	\ <u>^</u> ^^^	μ				2-	-97.55			····	·····	· · · · · · · · · · · · · · · · · · ·
		17										
GLACIAL TILL: Brown silty sand		∬ SS	5	50	17				••••••••••••••••••••••••••••••••••••••	····		
with gravel, cobbles, boulders	\ <u>^</u> ^^^	台				3-	-96.55			· · · · · ·	· · · · ·	
-		1000	6	50	34							
		100		50	54							
	\ <u>^</u> ^^^	∕ − SS	7	0	50+							
4	.24	1				4-	-95.55					
End of Borehole		Ť										
Practical refusal to augering at 4.24m	1											
depth												
									<u> </u>	<u>: : : </u>	<u>: : : </u>	
								100	_ 200	300) 40	0 500
								RK	i Eagle	e Rdg.	(ppm	I)
		1	I	1	1			🔺 🔺 Eulle	Gas Re	sn ∧ I	Methan	e Elim

natersonaroun				sulting	SOIL PROFILE AND TEST DATA							
154 Colonnade Boad South, Ottawa, Or	ntario	۲ ۲ K2E 7	 Engineers Phase II - Environmental Site Assessment 110 York St., 321 Dalhousie St. & 167-141 George St. 								e St.	
DATUM TBM - Top spindle of fire hy	drant.	Assur	ned e	levation	Ot 1 = 10	tawa, Or)0.00m.	itario		FILE NO			
REMARKS										PE27	09	
BORINGS BY CME 55 Power Auger				DA	TE .	July 18, 20	012		HOLE NO	^{D.} BH 4		
	TO		SAMPLE			DEPTH	ELEV.	Photo I	onizatio	onization Detector		
SOIL DESCRIPTION	A PI	A PI		RY R		(m)	(m)	Vola	tile Organio	c Rdg. (ppm)	ring \ tructi	
	STRAT	Ξ₫ХТ	NUMBE	ECOVE	I VALI or RQ			Contract	r Explos	sive Limit %	Aonito Cons	
GROUND SURFACE		× 11	- 1	Ř	4	0-	-99.93	20	40	60 80		
Crushed stone	×	8 AU 8 AU	2									
FILL: Brown silty sand with gravel,		ss	3	25	3	1-	-98.93					
2 21		ss	4	42	27	2-	-97.93	•				
<u>_</u> <u>_</u> <u>_</u>		ss	5	33	24				• • • • • • • • • • • • •			
		\square				3-	-96.93		· · · · · · · · · · · · · · · · · · ·			
GLACIAL TILL: Brown silty sand with gravel, cobbles, boulders		ss	6	50	33							
		⊠ SS	7	40	50+	4-	-95.93	•				
4.70												
		RC	C 1 100	72	·2	-94.93						
		_										
						6-	-93.93		· · · · · · · · · · · · · ·			
		RC	2	100	100		- 02 02					
		_				,	92.90					
						8-	-91.93					
BEDROCK: Grey limestone		RC	3	100	100							
		_				9-	-90.93					
					400							
		RC	4	100	100	10-	-89.93		······································			
		_										
		RC	5	100	87	11-	-88.93					
					01							
		_				12-	-87.93	100 RKI E	200 3 Eagle Rd	900 400 g. (ppm)	·]퀵 (문 500	
								▲ Full Ga	as Resp. Z	Methane Elin	n.	

natersonard	3	SOIL PROFILE AND TEST DATA									
154 Colonnade Road South, Ottawa, Or	ntario	К2Е 7	Eng J5	ineers	PI 11	nase II - E I0 York S Itawa Or	nvironm t., 321 Da	ental Site alhousie S	Assessmen it. & 167-141	t George S	St.
DATUM TBM - Top spindle of fire hy	drant.	Assur	ned e	levatio	n = 1	00.00m.	itario		FILE NO.	DE0700	
REMARKS										PE2/08	,
BORINGS BY CME 55 Power Auger	1			D	ATE	July 18, 20	012	1	HOLE NO.	BH 4	
	5		SAN	IPLE		DEDTU		Photo I	o Ionization Detector		
SOIL DESCRIPTION	A PL		~	ХХ	що	(m)	(m)	Vola	tile Organic Rd	g. (ppm)	ing V ructic
	RAT	TPE	MBEI	OVEI	VALU RQI			O Lowe	er Explosive	Limit %	onsti
	L S		DN N	REC	N O	10	07.00	20	40 60	80	₹O
						12-	-87.93				
		RC	6	100	100						
						13-	-86.93			······································	
		-									
			7	100	100	14-	85.93			· · · · · · · · · · · · · · · · · · ·	
		нС		100	100						
		_				15-	84.93				
		RC 8 100									
			8	100	98	16-	-83.93		· · · · · · · · · · · · · · · · · · ·		
BEDROCK: Grey limestone											
		_	C 9 100		100	47	00.00				
		RC		100		18-	-82.93				
										· · · · · · · · · · · · · · · · · · ·	
		_					-81.93		······································	······································	
		RC	10	100	100		-80.93				
		_									
						20-	79.93			· · · · · · · · · · · · · · · · · · ·	
		RC	11	100	100						
21.13						21-	-78 93				
End of Borehole	' <u></u>	-					10.00				
(GWL @ 4.43m-July 20, 2012)											
								100	200 200	400 50	
								RKI	Eagle Rdg. (ppm)	
								🔺 Full Ga	as Resp. 🛆 Me	ethane Elim.	

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %		
Very Loose	<4	<15		
Loose	4-10	15-35		
Compact	10-30	35-65		
Dense	30-50	65-85		
Very Dense	>50	>85		

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard
		Penetration Test (SPT))

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

MC%	-	Natural moisture content or water content of sample, %
LL	-	Liquid Limit, % (water content above which soil behaves as a liquid)
PL	-	Plastic limit, % (water content above which soil behaves plastically)
PI	-	Plasticity index, % (difference between LL and PL)
Dxx	-	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size
D10	-	Grain size at which 10% of the soil is finer (effective grain size)
D60	-	Grain size at which 60% of the soil is finer
Сс	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$
Cu	-	Uniformity coefficient = D60 / D10
Cc and	Cu are	used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Сс	-	Compression index (in effect at pressures above p'c)
OC Ratio		Overconsolidaton ratio = p'c / p'o
Void Ratio	D	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill Δ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

MONITORING WELL AND PIEZOMETER CONSTRUCTION

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA • KINGSTON • NIAGARA • MISSISSAUGA • SARNIA

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Dan Arnott

Phone: (613) 226-7381 Fax: (613) 226-6344

Client PO: 13160	Report Date: 20-Jul-2012
Project: PE2709	Order Date: 18-Jul-2012
Custody: 94851	Order #: 1229139

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Client ID
BH1-SS7
BH2-SS8
BH3-SS6

Dale Robertson, BSc Laboratory Director

Approved By:

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client: Paterson Group Consulting Engineers Client PO: 13160

Project Description: PE2709

Order #: 1229139

Report Date: 20-Jul-2012 Order Date:18-Jul-2012

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
CCME PHC F1	CWS Tier 1 - P&T GC-FID	18-Jul-12 20-Jul-12
CCME PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	19-Jul-12 20-Jul-12
Solids, %	Gravimetric, calculation	19-Jul-12 19-Jul-12
VOCs	EPA 8260 - P&T GC-MS	18-Jul-12 20-Jul-12

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 10

Client: Paterson Group Consulting Engineers

Report Date: 20-Jul-2012 Order Date:18-Jul-2012

Client PO: 13160		Project Description	: PE2709		
	Client ID: Sample Date: Sample ID: MDI /Units	BH1-SS7 17-Jul-12 1229139-01 Soil	BH2-SS8 17-Jul-12 1229139-02 Soil	BH3-SS6 17-Jul-12 1229139-03 Soil	- - - -
Physical Characteristics					
% Solids	0.1 % by Wt.	89.1	91.7	90.4	-
Volatiles					
Acetone	0.50 ug/g dry	<0.50	<0.50	<0.50	-
Benzene	0.02 ug/g dry	<0.02	<0.02	<0.02	-
Bromodichloromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Bromoform	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Bromomethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Chlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Chloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Chloroform	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Chloromethane	0.20 ug/g dry	<0.20	<0.20	<0.20	-
Dibromochloromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,2-Dibromoethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,2-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,2-Dichloroethylene, total	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,2-Dichloropropane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Hexane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	<0.50	<0.50	-
Methyl Butyl Ketone (2-Hexanone	2.00 ug/g dry	<2.00	<2.00	<2.00	-
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	<0.50	<0.50	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 10

PARACEL

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order #: 1229139

Report Date: 20-Jul-2012 Order Date:18-Jul-2012

Client PO: 13160		Project Descriptior	1: PE2709		
	Client ID: Sample Date: Sample ID: MDL/Units	BH1-SS7 17-Jul-12 1229139-01 Soil	BH2-SS8 17-Jul-12 1229139-02 Soil	BH3-SS6 17-Jul-12 1229139-03 Soil	- - - -
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Methylene Chloride	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Styrene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Toluene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,2,4-Trichlorobenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Trichloroethylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Trichlorofluoromethane	0.05 ug/g dry	<0.05	<0.05	<0.05	-
1,3,5-Trimethylbenzene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Vinyl chloride	0.02 ug/g dry	<0.02	<0.02	<0.02	-
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	<0.05	-
o-Xylene	0.05 ug/g dry	<0.05	<0.05	<0.05	-
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	<0.05	-
4-Bromofluorobenzene	Surrogate	102%	109%	115%	-
Dibromofluoromethane	Surrogate	92.6%	92.9%	91.6%	-
Toluene-d8	Surrogate	97.3%	100%	103%	-
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	182	20	<7	-
F2 PHCs (C10-C16)	4 ug/g dry	118	18	<4	-
F3 PHCs (C16-C34)	8 ug/g dry	<8	<8	<8	-
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	<6	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 10

Client: Paterson Group Consulting Engineers

Client PO: 13160

Hydrocarbons F1 PHCs (C6-C10)

F2 PHCs (C10-C16)

F3 PHCs (C16-C34)

F4 PHCs (C34-C50)

Bromodichloromethane

Carbon Tetrachloride

Dibromochloromethane

Dichlorodifluoromethane

1,2-Dibromoethane

1.2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1.1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethylene

1,2-Dichloropropane

Ethylbenzene

Hexane

Stvrene

Toluene

cis-1,2-Dichloroethylene

trans-1,2-Dichloroethylene

1,2-Dichloroethylene, total

cis-1,3-Dichloropropylene

1,3-Dichloropropene, total

Methyl Isobutyl Ketone

Methyl tert-butyl ether

1,1,1,2-Tetrachloroethane

1.1.2.2-Tetrachloroethane

Methylene Chloride

Tetrachloroethylene

1.2.4-Trichlorobenzene

1,1,1-Trichloroethane

1.1.2-Trichloroethane

Trichlorofluoromethane

1,3,5-Trimethylbenzene

Surrogate: Toluene-d8

Surrogate: 4-Bromofluorobenzene

Surrogate: Dibromofluoromethane

Trichloroethylene

Vinyl chloride

Xylenes, total

m,p-Xylenes

o-Xylene

trans-1,3-Dichloropropylene

Methyl Ethyl Ketone (2-Butanone)

Methyl Butyl Ketone (2-Hexanone)

Volatiles

Acetone

Benzene

Bromoform

Bromomethane

Chlorobenzene

Chloromethane

Chloroethane

Chloroform

Analyte

Method Quality Control: Blank

Report Date: 20-Jul-2012 Order Date:18-Jul-2012

Notes

RPD

Limit

Project Description: PE2709

Units

ug/g

Source

Result

%REC

Reporting

Limit

7

4

8

6

0.50

0.02

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.20

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.50

2.00

0.50

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.02

0.05

0.05

0.05

Result

ND

9.36

7.69

8.43

RPD

%REC

Limit

P :	1-800-749-1947
E :	PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

50-140

50-140

50-140

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA

117

96.1

105

123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 10

Client: Paterson Group Consulting Engineers

Method Quality Control: Duplicate

Client PO: 13160

Analyte

m,p-Xylenes

Surrogate: 4-Bromofluorobenzene

Surrogate: Dibromofluoromethane

o-Xylene

Project Description: PE2709

Reporting

. Limit

Result

Order #: 1229139 Report Date: 20-Jul-2012

RPD

Limit

RPD

Order Date:18-Jul-2012

Notes

Units

Source

Result

%REC

%REC

Limit

Hvdrocarbons						
F1 PHCs (C6-C10)	ND	7	ua/a drv	ND		40
F2 PHCs (C10-C16)	ND	4	ua/a drv	ND		30
F3 PHCs (C16-C34)	37	8	ug/a drv	129	110.0	30 QR-01
F4 PHCs (C34-C50)	69	6	ug/g dry	136	65.1	30 QR-01
Physical Characteristics			00,			
% Solids	87.3	0.1	% by Wt.	91.9	5.2	25
Volatilos			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Volatiles	ND	0.50				50
Acetone	ND	0.50	ug/g ary	ND		50
Benzene	ND	0.02	ug/g ary	ND		50
Bromodicniorometnane	ND	0.05	ug/g ary	ND		50
Bromotorm	ND	0.05	ug/g ary	ND		50
Bromomethane	ND	0.05	ug/g dry	ND		50
Carbon Tetrachloride	ND	0.05	ug/g dry	ND		50
Chlorobenzene	ND	0.05	ug/g dry	ND		50
Chloroethane	ND	0.05	ug/g dry	ND		50
Chloroform	ND	0.05	ug/g dry	ND		50
Chloromethane	ND	0.20	ug/g dry	ND		50
Dibromochloromethane	ND	0.05	ug/g dry	ND		50
Dichlorodifluoromethane	ND	0.05	ug/g dry	ND		50
1,2-Dibromoethane	ND	0.05	ug/g dry	ND		50
1,2-Dichlorobenzene	ND	0.05	ug/g dry	ND		50
1,3-Dichlorobenzene	ND	0.05	ug/g dry	ND		50
1,4-Dichlorobenzene	ND	0.05	ug/g dry	ND		50
1,1-Dichloroethane	ND	0.05	ug/g dry	ND		50
1,2-Dichloroethane	ND	0.05	ug/g dry	ND		50
1,1-Dichloroethylene	ND	0.05	ug/g dry	ND		50
cis-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND		50
trans-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND		50
1,2-Dichloropropane	ND	0.05	ug/g dry	ND		50
cis-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND		50
trans-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND		50
Ethylbenzene	ND	0.05	ug/g dry	ND		50
Hexane	ND	0.05	ug/g drv	ND		50
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g drv	ND		50
Methyl Butyl Ketone (2-Hexanone)	ND	2.00	ug/a drv	ND		50
Methyl Isobutyl Ketone	ND	0.50	ug/g drv	ND		50
Methyl tert-butyl ether	ND	0.05	ua/a drv	ND		50
Methylene Chloride	ND	0.05	ua/a drv	ND		50
Styrene	ND	0.05	ua/a drv	ND		50
1.1.1.2-Tetrachloroethane	ND	0.05	ug/a drv	ND		50
1.1.2.2-Tetrachloroethane	ND	0.05	ua/a drv	ND		50
Tetrachloroethylene	ND	0.05	ug/a drv	ND		50
Toluene	ND	0.05	ug/a dry	ND		50
1 2 4-Trichlorobenzene		0.05	ug/g dry	ND		50
1 1 1-Trichloroethane		0.05	ug/g dry	ND		50
1 1 2-Trichloroethane		0.05	ug/g dry	ND		50
Trichloroethylene		0.05	ug/g dry			50
Trichlorofluoromethane		0.05	ug/g dry			50
1 2 5 Trimothylbonzono		0.05	ug/g ury			50
		0.05	ug/g dry			50
	IND	0.07	ua/a arv	INLU		50

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

ND

ND

6.68

5.51

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

ug/g dry

ug/g dry

ug/g dry

ug/g dry

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

113

93.0

WWW.PARACELLABS.COM

0.05

0.05

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA

ND

ND

ND

ND

123 Christina St. N. Sarnia, ON N7T 5T7

50-140

50-140

Page 6 of 10

50

50

Client: Paterson Group Consulting Engineers

Client PO: 13160

Project Description: PE2709

Order #: 1229139

Report Date: 20-Jul-2012 Order Date:18-Jul-2012

Method Quality Control	ol: Duplicate								
Analyte	Report Result Limi	ting t Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes	
Surrogate: Toluene-d8	5.93	ug/g dry	ND	100	50-140				

P: 1-800-749-1947 E: paracel@paracellabs.com WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 7 of 10

Client: Paterson Group Consulting Engineers

Client PO: 131

cis-1,2-Dichloroethylene

1,2-Dichloropropane

Ethylbenzene

Hexane

Styrene

Toluene

trans-1,2-Dichloroethylene

cis-1,3-Dichloropropylene

Methyl Isobutyl Ketone

Methyl tert-butyl ether

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

Methylene Chloride

Tetrachloroethylene

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

1,3,5-Trimethylbenzene

Trichloroethylene

Vinyl chloride

m,p-Xylenes

trans-1,3-Dichloropropylene

Methyl Ethyl Ketone (2-Butanone)

Methyl Butyl Ketone (2-Hexanone)

Method Q

Client PO: 13160		Project Des	cription: Pl	E2709									
Method Quality Control	PD: 13160 Project Description: PE2709 hod Quality Control: Spike te Result Reporting Limit Units Source Result %REC %REC Limit RPD Limit RPD Limit Notes rocarbons Cs (C6-C10) 218 7 ug/g ND 109 80-120 Cs (C10-C16) 66 4 ug/g ND 82.5 80-120 Cs (C16-C34) 189 8 ug/g ND 83.6 80-120 Cs (C3-C50) 100 6 ug/g ND 83.6 80-120 The set t												
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes				
Hydrocarbons													
F1 PHCs (C6-C10)	218	7	ug/g	ND	109	80-120							
F2 PHCs (C10-C16)	66	4	ug/g	ND	82.5	80-120							
F3 PHCs (C16-C34)	189	8	ug/g	ND	94.5	80-120							
F4 PHCs (C34-C50)	100	6	ug/g	ND	83.6	80-120							
Volatiles													
Acetone	11.7	0.50	ug/g	ND	117	50-140							
Benzene	4.10	0.02	ug/g	ND	102	60-130							
Bromodichloromethane	4.63	0.05	ug/g	ND	116	60-130							
Bromoform	5.17	0.05	ug/g	ND	129	60-130							
Bromomethane	3.46	0.05	ug/g	ND	86.6	50-140							
Carbon Tetrachloride	4.20	0.05	ug/g	ND	105	60-130							
Chlorobenzene	4.53	0.05	ug/g	ND	113	60-130							
Chloroethane	4.37	0.05	ug/g	ND	109	50-140							
Chloroform	4.60	0.05	ug/g	ND	115	60-130							
Chloromethane	2.70	0.20	ug/g	ND	67.4	50-140							
Dibromochloromethane	5.17	0.05	ug/g	ND	129	60-130							
Dichlorodifluoromethane	3.18	0.05	ug/g	ND	79.6	50-140							
1,2-Dibromoethane	4.94	0.05	ug/g	ND	123	60-130							
1,2-Dichlorobenzene	5.09	0.05	ug/g	ND	127	60-130							
1,3-Dichlorobenzene	4.75	0.05	ug/g	ND	119	60-130							
1,4-Dichlorobenzene	4.79	0.05	ug/g	ND	120	60-130							
1,1-Dichloroethane	4.51	0.05	ug/g	ND	113	60-130							
1,2-Dichloroethane	4.37	0.05	ug/g	ND	109	60-130							
1,1-Dichloroethylene	2.92	0.05	ug/g	ND	73.1	60-130							

ug/g

ND

112

86.3

104

122

125

97.4

110

108

128

129

121

92.0

111

117

127

87.7

111

90.3

98.8

129

87.3

107

88.2

79.1

97.0

60-130

60-130

60-130

60-130

60-130

60-130

60-130

50-140

50-140

50-140

50-140

60-130

60-130

60-130

60-130

60-130

60-130

60-130

60-130

60-130

60-130

50-140

60-130

50-140

60-130

4.47

3.45

4.17

4.87

5.01

3.90

4.38

10.8

12.8

12.9

12.1

3.68

4.45

4.66

5.08

3.51

4.44

3.61

3.95

5.15

3.49

4.30

3.53

3.16

7.76

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.50

2.00

0.50

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.02

0.05

WWW.PARACELLABS.COM

P: 1-800-749-1947

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA

123 Christina St. N. Sarnia, ON N7T 5T7

Page 8 of 10

Order #: 1229139

Report Date: 20-Jul-2012

Order Date:18-Jul-2012

Client: Paterson Group Consulting Engineers

Client PO: 13160

Project Description: PE2709

Order #: 1229139 Report Date: 20-Jul-2012

Order Date:18-Jul-2012

Method Quality Control: S	pike								
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
o-Xylene	4.23	0.05	ug/g	ND	106	60-130			
Surrogate: 4-Bromofluorobenzene	7.10		ug/g		88.8	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 9 of 10

Client: Paterson Group Consulting Engineers

Client PO: 13160

Report Date: 20-Jul-2012 Order Date:18-Jul-2012

Qualifier Notes:

QC Qualifiers :

QR-01 : Duplicate RPD is high, however, the sample result is less than 10x the MDL.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 10 of 10

GPA	RACEL	TRUSTED . RESPONSIVE .							Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8					l.	Chain of Custody (Lab Use Only)															
LABOR	ATORIES LTD.	RELIABLE . p: 1-800-749-1947						Nº 94851																						
OTTAWA KINGST	ON ® NIAGARA ® MISSIS	SAUGA	⊛ SA	RNIA						www	para	cella	abs.co	m	5111		Pag	e 0	f (
Client Name: Priters Contact Name: Odw Address: 154 Columnation	n Group Inc. Arnott made Rd.				Project Reference Quote # PO #	PEZ	109			-	1			1		TAT:	Regul	ar [] 3 Day 1 Day											
Telephone: 613, 22	6.7381		5	-	lemail Address:	Paterse	naro	ιp,	Ca							Date R	equired:			+										
Criteria: O. Reg. 153/0	4 Table O. Reg. 153/11 (Current	Table 3	RSC	Filing	O. Reg. 558/00	PWQO	1 CCM	1E	J SU	B (St	orm)	[]	SUB (S	anitary) Muni	cipality:] Other:											
Matrix Type: S (Soil/Sed.) G	W (Ground Water) SW (Surface Water)	SS (Storm/S	Sanitary S	ewer) P	(Paint) A (Air) O (Other)							ŀ	Requir	red Ar	nalyses	5													
Paracel Order Numbe	r: 7139	ix	Volume	Containers	Sample Taken		Sample Taken		Sample Taken		Sample Taken		Sample Taken		Sample Taken		F1-F4+BTEX			s by ICP/MS			VS)							
Sample 1	D/Location Name	Matr	Air	# of	Date	Time	PHCs	VOCs	PAHs	Metal	Hg	CrVI	B (HV																	
1 BHL-SS	7	S		2	17-JJ-12		X	X												1										
2 BH2- 33	8	5					X	X												/										
3 B(+3-55	56	5		V	<u>V</u>		X	X												1										
4																														
5																i, ad														
6																														
7															-															
8																														
9			R		·																									
10																														
Comments:								1	2								Method	of Deliv	ery: V - 1											
Relinquished By Print & Sign		Receive	d by Driv	er/Depo	l:	Receiv	ed at 1	16:	1	2	/	-	7	1	Verified	IBY:	11 11		L	-										
UAN 12-CI	AKNOU	Date/Tit	ne:	.01.90		Date/1	ime:	10	41	4	1	81	16	3	Date/Ti	mę:	July	18	12	2:1										
Date/Time: [2-51p	~ 18-JJ2	Tempera	iture:	0	C	Temp	erature			p°.		12	5	apt	H Veri	fied []	By:		V/A											

Chain of Custody (Env) - Rev 0.2 December 2011

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA • KINGSTON • NIAGARA • MISSISSAUGA • SARNIA

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Dan Arnott

Phone: (613) 226-7381 Fax: (613) 226-6344

Client PO: 13161	Report Date: 24-Jul-2012
Project: PE2709	Order Date: 19-Jul-2012
Custody: 94801	Order #: 1229217

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** BH1-AU1 1229217-01 1229217-02 BH4-SS3

Mark Frate Approved By:

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client PO: 13161

Order #: 1229217

Certificate of Analysis
Client: Paterson Group Consulting Engineers

Project Description: PE2709

Report Date: 24-Jul-2012 Order Date:19-Jul-2012

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
Metals	EPA 6020 - Digestion - ICP-MS	20-Jul-12 21-Jul-1
PAHs by GC-MS, standard scan	EPA 8270 - GC-MS, extraction	20-Jul-12 24-Jul-1
Solids, %	Gravimetric, calculation	20-Jul-12 20-Jul-1

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 8

Client: Paterson Group Consulting Engineers

Report Date: 24-Jul-2012 Order Date:19-Jul-2012

Client PO: 13161		Project Description	n: PE2709		
	Client ID:	BH1-AU1	BH4-SS3	-	-
	Sample Date:	17-Jul-12	18-Jul-12	-	-
	Sample ID:	1229217-01 Soil	1229217-02 Soil	-	-
Physical Characteristics	MDL/Units	301	301	-	-
% Solida	0.1 % by Wt	09.6	90 G		
Metals	0.1. /0 0/ 11.	90.0	09.0	-	-
Antimony	1 ug/g dry	-1	2		_
Arsenic	1 ug/g dry	2	2	-	-
Barium	1 ua/a drv	2	18/	_	
Berullium	0.5 ua/a drv	<0.5	<0.5		
Boron	5.0 ua/a drv	<5.0	<5.0		
Cadmium	0.5 ua/a drv	<0.5	0.5		
Chromium	5 ya/a drv	7	14	_	
Cobalt	1 ua/a drv	3	3		
Copper	5 ug/g dry	6	17		
Lead	1 ug/g dry	9	524		-
Molybdenum	1 ug/g dry	2	1	-	-
Nickel	5 ug/g dry	11	8	-	-
Selenium	1 ug/g dry	<1	<1	-	-
Silver	0.3 ug/g dry	1.8	1.5	_	-
Thallium	1 ug/g dry	<1	<1	-	-
Uranium	1 ug/g dry	<1	<1	-	-
Vanadium	10 ug/g dry	30	20	-	-
Zinc	20 ug/g dry	<20	191	-	-
Semi-Volatiles			1 1		
Acenaphthene	0.02 ug/g dry	<0.08 [1]	-	-	-
Acenaphthylene	0.02 ug/g dry	<0.08 [1]	-	-	-
Anthracene	0.02 ug/g dry	<0.08 [1]	-	-	-
Benzo [a] anthracene	0.02 ug/g dry	0.09	-	-	-
Benzo [a] pyrene	0.02 ug/g dry	<0.08 [1]	-	-	-
Benzo [b] fluoranthene	0.02 ug/g dry	<0.08 [1]	-	-	-
Benzo [g,h,i] perylene	0.02 ug/g dry	<0.08 [1]	-	-	-
Benzo [k] fluoranthene	0.02 ug/g dry	<0.08 [1]	-	-	-
Biphenyl	0.02 ug/g dry	<0.08 [1]	-	-	-
Chrysene	0.02 ug/g dry	0.82	-	-	-
Dibenzo [a,h] anthracene	0.02 ug/g dry	<0.08 [1]	-	-	-
Fluoranthene	0.02 ug/g dry	<0.08 [1]	-	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 8

○ PARACEL

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 13161

Report Date: 24-Jul-2012

Order Date:19-Jul-2012

Client PO: 13161		Project Descriptior	n: PE2709		
	Client ID: Sample Date: Sample ID:	BH1-AU1 17-Jul-12 1229217-01	BH4-SS3 18-Jul-12 1229217-02	- - -	- -
	MDL/Units	Soil	Soil	-	-
Fluorene	0.02 ug/g dry	<0.08 [1]	-	-	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	<0.08 [1]	-	-	-
1-Methylnaphthalene	0.02 ug/g dry	0.10	-	-	-
2-Methylnaphthalene	0.02 ug/g dry	0.13	-	-	-
Methylnaphthalene (1&2)	0.04 ug/g dry	0.23	-	-	-
Naphthalene	0.01 ug/g dry	0.05	-	-	-
Phenanthrene	0.02 ug/g dry	0.32	-	-	-
Pyrene	0.02 ug/g dry	0.22	-	-	-
2-Fluorobiphenyl	Surrogate	113%	-	-	-
Terphenyl-d14	Surrogate	108%	-	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 8

Client: Paterson Group Consulting Engineers

Client PO: 13161

Nickel

Silver

Zinc

Selenium

Thallium

Uranium

Vanadium

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	ND	1	ug/g						
Arsenic	ND	1	ug/g						
Barium	ND	1	ug/g						
Beryllium	ND	0.5	ug/g						
Boron	ND	5.0	ug/g						
Cadmium	ND	0.5	ug/g						
Chromium	ND	5	ug/g						
Cobalt	ND	1	ug/g						
Copper	ND	5	ug/g						
Lead	ND	1	ug/g						
Molybdenum	ND	1	ug/g						
Molybdenum	ND	1	ug/g						

ug/g

ug/g

ug/g

ug/g

ug/g

ug/g

ug/g

ND

ND

ND

ND

ND

ND

ND

5

1

0.3

1

1

10

20

Project Description: PE2709

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 8

Order #: 1229217

Report Date: 24-Jul-2012

Order Date:19-Jul-2012

Client: Paterson Group Consulting Engineers

Client PO: 13161

Project Description: PE2709

Report Date: 24-Jul-2012 Order Date:19-Jul-2012

Order #: 1229217

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Metals									
Antimony	ND	1	ug/g dry	ND			0.0	30	
Arsenic	ND	1	ug/g dry	ND			0.0	30	
Barium	14.2	1	ug/g dry	13.9			2.8	30	
Beryllium	ND	0.5	ug/g dry	ND			0.0	30	
Boron	ND	5.0	ug/g dry	ND			0.0	30	
Cadmium	ND	0.5	ug/g dry	ND			0.0	30	
Chromium	10.2	5	ug/g dry	10.0			2.3	30	
Cobalt	2.4	1	ug/g dry	2.3			2.8	30	
Copper	ND	5	ug/g dry	ND			0.0	30	
Lead	ND	1	ug/g dry	1.8			0.0	30	
Molybdenum	1.2	1	ug/g dry	ND			0.0	30	
Nickel	6.3	5	ug/g dry	6.1			4.0	30	
Selenium	ND	1	ug/g dry	ND			0.0	30	
Silver	ND	0.3	ug/g dry	ND			0.0	30	
Thallium	ND	1	ug/g dry	ND			0.0	30	
Uranium	ND	1	ug/g dry	ND			0.0	30	
Vanadium	14.8	10	ug/g dry	13.8			6.7	30	
Zinc	ND	20	ug/g dry	ND			0.0	30	
Physical Characteristics									
% Solids	84.8	0.1	% by Wt.	88.0			3.6	25	

% by Wt.

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

Page 6 of 8

Client: Paterson Group Consulting Engineers

Client PO: 13161

Method Quality Control: Spike

Project Description: PE2709	9

Report Date: 24-Jul-2012

Order #: 1229217

Order Date:19-Jul-2012

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Metals									
Antimony	51.0		ug/L	0.01	102	70-130			
Arsenic	49.5		ug/L	0.1	98.7	70-130			
Barium	55.5		ug/L	5.5	100	70-130			
Beryllium	52.8		ug/L	0.08	105	70-130			
Boron	48.3		ug/L	0.5	95.6	70-130			
Cadmium	47.8		ug/L	0.007	95.5	70-130			
Chromium	55.4		ug/L	4.0	103	70-130			
Cobalt	50.9		ug/L	0.9	99.9	70-130			
Copper	50.9		ug/L	1.5	98.8	70-130			
Lead	51.4		ug/L	0.7	101	70-130			
Molybdenum	48.1		ug/L	0.07	96.1	70-130			
Nickel	52.8		ug/L	2.4	101	70-130			
Selenium	50.2		ug/L	ND	100	70-130			
Silver	41.4		ug/L	0.01	82.7	70-130			
Thallium	56.7		ug/L	ND	114	70-130			
Uranium	51.7		ug/L	0.1	103	70-130			
Vanadium	57.7		ug/L	5.5	104	70-130			
Zinc	53.2		ug/L	4.2	98.0	70-130			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

Page 7 of 8

Client: Paterson Group Consulting Engineers

Order #: 1229217

Report Date: 24-Jul-2012 Order Date: 19-Jul-2012

Client PO: 13161 Qualifier Notes:

Sample Qualifiers :

1: Elevated detection limits due to the nature of the sample matrix.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 Niagara Falls, ON L2J 0A:

123 Christina St. N. Sarnia, ON N7T 5T7

Page 8 of 8

OTTAWA KINGSTON NIAGARA MISSISS KIIGHT Name:	/E .	* 0	3 ¹⁴	0		Hea 300- Otta p: 1- e: pa www	d Of 2319 wa, (800- arace / par	fice) St.) nta 749- el@p acell	Laur rio K 1947 arace abs.c	ent Blv (1G 4J8 ellabs.c	d. 8 com		Chai (L N? Paj	in of C .ab Use (94 ge	ustody ^{Dnly)} 801				
Paterson Group Inc. Contact Name: Dan Arnott Address: 154 Colounade Rel, Ottawa, Telephone: Gl3, 276, 739 Criteria: []O. Reg. 153/04 Table _ NO. Reg. 153/11 (Current	ON) Table 3	K2E 7	T5 Filing	Quote # PO # <u>31</u> Email Address: <i>Jara ot</i> 1 O. Reg. 558/00	61 61 11 pwqo 1	70°, rs0	AE I	TOU	<u>р</u> . JB (Si	Ce lorm)	•	SUB	(Sanitary	y) Mun	TAT:	Regu	lar [y [3 Day 1 Day Other: _	
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water)	SS (Storm/S	Sanitary S	ewer) P	Paint) A (Air) O (Other)								Requi	ired A	nalyse	5			
Paracel Order Number:	rix	Volume	Containers	Sample	e Taken	s F1-F4+BTEX	8	10	Is by ICP/MS			WS)							
Sample ID/Location Name	Mat	Air	fo #	Date	Time	PHC	VOC	PAH	Meta	Hg	CrVI	B (H							
1 BHI- AVI	5		1	17-Jul-12				X	χ					2	250 m	nl			1
2 BHZ-553	5		1	18:JUL12					X						11				/
3					d and a d														
4																			
5					7.5										11				1
6																	:		
7																			
8															-				
9		-																	ĺ
														_					
comments.																Method	Po v	ery:	1
Relinquisted By (Right & Sign) DAN ARNOTT	Received by Driver/Dep			USE 1/12 2:	Receiv SUN 35 Date/1	ed at I EEP ime:	ab: OR TV	N La	.90	19	-	15	15	Verifie Date/T					
Date/Time: 1:23 pm, 19- Jul-12	ne: 1:23 pm, 19 - Jul - 12 Temperature:"0					erature:	18	9	C	14		<u>.</u>		pH Ver	rified []	By:	T	JA	0

Chain of Custody (Env) - Rev 0.2 December 2011

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA • KINGSTON • NIAGARA • MISSISSAUGA • SARNIA

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Fax: (613) 226-6344

Phone: (613) 226-7381

Client PO: 12261	Report Date: 24-Jul-2012
Project: PE2709	Order Date: 20-Jul-2012
Custody: 94393	Order #: 1229249

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Client ID
BH1-GW1
BH2-GW1
BH4-GW1

Approved By:

Mark Fisto

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client: Paterson Group Consulting Engineers Client PO: 12261

Project Description: PE2709

Order #: 1229249

Report Date: 24-Jul-2012 Order Date:20-Jul-2012

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date A	Analysis Date
CCME PHC F1	CWS Tier 1 - P&T GC-FID	20-Jul-12	23-Jul-12
CCME PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	20-Jul-12	21-Jul-12
PAHs by GC-MS, standard scan	EPA 625 - GC-MS, extraction	23-Jul-12	24-Jul-12
VOCs	EPA 624 - P&T GC-MS	20-Jul-12	23-Jul-12

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 11

Client: Paterson Group Consulting Engineers

Order #: 1229249

Report Date: 24-Jul-2012 Order Date: 20-Jul-2012

lient PO: 12261 Project Description: PE2709						
	Client ID: Sample Date: Sample ID:	BH1-GW1 20-Jul-12 1229249-01 Water	BH2-GW1 20-Jul-12 1229249-02 Water	BH4-GW1 20-Jul-12 1229249-03 Water		
Volatiles	WDL/Units	Water	Water	Water		
Acetone	5.0 ug/L	82.4	691	40.6	-	
Benzene	0.5 ug/L	<0.5	2.4	1.1	-	
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	3.8	-	
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	-	
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	-	
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	-	
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-	
Chloroethane	1.0 ug/L	<1.0	<1.0	<1.0	-	
Chloroform	0.5 ug/L	16.1	14.4	21.8	-	
Chloromethane	3.0 ug/L	<3.0	<3.0	<3.0	-	
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	-	
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	-	
1,2-Dibromoethane	0.2 ug/L	<0.2	<0.2	<0.2	-	
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-	
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-	
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-	
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-	
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-	
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-	
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-	
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-	
1,2-Dichloroethylene, total	0.5 ug/L	<0.5	<0.5	<0.5	-	
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	-	
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	-	
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	-	
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	-	
Ethylbenzene	0.5 ug/L	<0.5	1.0	<0.5	-	
Hexane	1.0 ug/L	2.1	2.2	<1.0	-	
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	10.7	8.0	8.4	-	
Methyl Butyl Ketone (2-Hexanone	10.0 ug/L	<10.0	<10.0	<10.0	-	
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	-	
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	-	
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	-	

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 11

PARACEL

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order #: 1229249

Report Date: 24-Jul-2012 Order Date:20-Jul-2012

lient PO: 12261 Project Description: PE2709						
	Client ID: Sample Date: Sample ID:	BH1-GW1 20-Jul-12 1229249-01 Water	BH2-GW1 20-Jul-12 1229249-02 Water	BH4-GW1 20-Jul-12 1229249-03 Water		
Styrepe	0.5 ug/L					
	0.5 ug/l	<0.5	<0.5	<0.5	-	
	0.5 ug/l	<0.5	<0.5	<0.5	-	
	0.5 ug/L	<0.5	<0.5	<0.5	-	
Tetrachioroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-	
Toluene	0.5 ug/L	6.2	5.8	5.6	-	
1,2,4-Trichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	-	
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-	
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	-	
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	-	
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	-	
1,3,5-Trimethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	-	
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	-	
m,p-Xylenes	0.5 ug/L	<0.5	1.2	<0.5	-	
o-Xylene	0.5 ug/L	<0.5	1.6	<0.5	-	
Xylenes, total	0.5 ug/L	<0.5	2.8	<0.5	-	
4-Bromofluorobenzene	Surrogate	110%	117%	109%	-	
Dibromofluoromethane	Surrogate	106%	110%	106%	-	
Toluene-d8	Surrogate	98.4%	94.8%	97.2%	-	
Hydrocarbons	1		i	i	i	
F1 PHCs (C6-C10)	25 ug/L	45	43	<25	-	
F2 PHCs (C10-C16)	100 ug/L	<287	<100	<100	-	
F3 PHCs (C16-C34)	100 ug/L	<287	<100	<100	-	
F4 PHCs (C34-C50)	100 ug/L	<287	<100	<100	-	
Semi-Volatiles						
Acenaphthene	0.05 ug/L	-	<0.05	-	-	
Acenaphthylene	0.05 ug/L	-	<0.05	-	-	
Anthracene	0.01 ug/L	-	<0.01	-	-	
Benzo [a] anthracene	0.01 ug/L	-	<0.01	-	-	
Benzo [a] pyrene	0.01 ug/L	-	<0.01	-	-	
Benzo [b] fluoranthene	0.05 ug/L	-	<0.05	-	-	
Benzo [g,h,i] perylene	0.05 ug/L	-	<0.05	-	-	
Benzo [k] fluoranthene	0.05 ug/L	-	<0.05	-	-	
Biphenyl	0.05 ug/L	-	0.12	-	-	
Chrysene	0.05 ug/L	-	<0.05	-	-	
Dibenzo [a,h] anthracene	0.05 ug/L	-	<0.05	-	-	

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 11

Client: Paterson Group Consulting Engineers

Clie + 00. 13364 Order #: 1229249

Report Date: 24-Jul-2012 Order Date:20-Jul-2012

Client PO: 12261	Project Description: PE2709						
	Client ID: Sample Date: Sample ID:	BH1-GW1 20-Jul-12 1229249-01	BH2-GW1 20-Jul-12 1229249-02	BH4-GW1 20-Jul-12 1229249-03			
	MDL/Units	Water	Water	Water	-		
Fluoranthene	0.01 ug/L	-	<0.01	-	-		
Fluorene	0.05 ug/L	-	0.06	-	-		
Indeno [1,2,3-cd] pyrene	0.05 ug/L	-	<0.05	-	-		
1-Methylnaphthalene	0.05 ug/L	-	0.33	-	-		
2-Methylnaphthalene	0.05 ug/L	-	0.40	-	-		
Methylnaphthalene (1&2)	0.10 ug/L	-	0.73	-	-		
Naphthalene	0.05 ug/L	-	0.82	-	-		
Phenanthrene	0.05 ug/L	-	<0.05	-	-		
Pyrene	0.01 ug/L	-	<0.01	-	-		
2-Fluorobiphenyl	Surrogate	-	73.4%	-	-		
Terphenyl-d14	Surrogate	-	80.8%	-	-		

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 11

Client: Paterson Group Consulting Engineers

Client PO: 12261

Analyte

Method Quality Control: Blank

RPD

%REC

Limit

Report Date: 24-Jul-2012

RPD

Limit

Project Description: PE2709

Units

Source

Result

%REC

Reporting

Limit

Result

Order Date:20-Jul-2012

Notes

Hydrocarbons					
		25	uo/l		
$F_2 PHC_2 (C10_C16)$		∠0 100	ug/L		
F3 PHCs (C16-C34)		100	ug/L		
F4 PHCs (C34-C50)	ND	100	ug/L		
Semi-Volatiles	ND	100	49/2		
Acceptible to the second secon		0.05			
Acenaphthulana	ND	0.05	ug/L		
Acenaphinylene		0.05	ug/L		
Anthracene Benze [e] enthracene	ND	0.01	ug/L		
		0.01	ug/L		
Benzo [b] fluoronthono		0.01	ug/L		
Benzo [a h il nondono		0.05	ug/L		
Benzo [k] fluorenthene		0.05	ug/L		
Denzo [K] huoranmene Bishasud		0.05	ug/L		
Chrysono		0.05	ug/L		
Dibanza [a b] anthracana		0.05	ug/L		
Fluoranthene		0.05	ug/L		
Fluoropo		0.01	ug/L		
Indono [1.2.2.ed] pyropo		0.05	ug/L		
1 Mothylpophthologo		0.05	ug/L		
2 Mothylpophthologo		0.05	ug/L		
Z-weuymaphiliaene Mothylpaphthalong (192)		0.05	ug/L		
Neutyinaphinalene (1&2)		0.10	ug/L		
Naphinalene Desesteres		0.05	ug/L		
Prienanuriene		0.05	ug/L		
Fyield		0.01	ug/L	05.0	50 140
	19.0		ug/L	95.2	50-140
Surrogate: Ierpnenyl-d14	18.0		ug/L	90.0	50-140
Volatiles		_			
Acetone	ND	5.0	ug/L		
Benzene	ND	0.5	ug/L		
Bromodichloromethane	ND	0.5	ug/L		
Bromoform	ND	0.5	ug/L		
Bromomethane	ND	0.5	ug/L		
Carbon Tetrachloride	ND	0.2	ug/L		
Chlorobenzene	ND	0.5	ug/L		
Chloroethane	ND	1.0	ug/L		
Chloroform	ND	0.5	ug/L		
Chloromethane	ND	3.0	ug/L		
Dibromochloromethane	ND	0.5	ug/L		
Dichlorodifluoromethane	ND	1.0	ug/L		
1,2-Dibromoethane	ND	0.2	ug/L		
1,2-Dichlorobenzene	ND	0.5	ug/L		
1,3-Dichlorobenzene	ND	0.5	ug/L		
1,4-Dichlorobenzene	ND	0.5	ug/L		
1,1-Dichloroethane	ND	0.5	ug/L		
1,2-Dichloroethane	ND	0.5	ug/L		
1,1-Dichloroethylene	ND	0.5	ug/L		
cis-1,2-Dichloroethylene	ND	0.5	ug/L		
trans-1,2-Dichloroethylene	ND	0.5	ug/L		
1,2-Dichloroethylene, total	ND	0.5	ug/L		
1,2-Dichloropropane	ND	0.5	ug/L		
cis-1,3-Dichloropropylene	ND	0.5	ug/L		
trans-1,3-Dichloropropylene	ND	0.5	ug/L		
1,3-Dichloropropene, total	ND	0.5	ug/L		
Ethylbenzene	ND	0.5	ug/L		
Hexane	ND	1.0	ua/I		

P: 1-800-749-1947 E: PARACEL@PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

WWW.PARACELLABS.COM

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 11

Client: Paterson Group Consulting Engineers

Client PO: 12261

Surrogate: Toluene-d8

Method Quality Control: Blank

Report Date: 24-Jul-2012

Order #: 1229249

Order Date:20-Jul-2012

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,2,4-Trichlorobenzene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
1,3,5-Trimethylbenzene	ND	0.5	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	37.9		ug/L		118	50-140			
Surrogate: Dibromofluoromethane	25.4		ug/L		79.4	50-140			

ug/L

34.7

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

108

50-140

Page 7 of 11

Client: Paterson Group Consulting Engineers

Method Quality Control: Duplicate

Client PO: 12261

Project Description: PE2709

Reporting

Report Date: 24-Jul-2012 Order Date:20-Jul-2012

Order #: 1229249

REC	%REC Limit	RPD	RPD Limit	Notes

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ua/l	ND				30	
Volotiloc		20	49/E					00	
Volatiles		5.0						00	
Acetone	ND	5.0	ug/L	ND				30	
Bromodiobloromothono		0.5	ug/L					30	
Bromotorm	ND	0.5	ug/L	ND				30	
Bromomothano		0.5	ug/L					30	
Carbon Totrachlorido		0.5	ug/L					30	
Chlorobonzono		0.2	ug/L					30	
Chloroethane		0.5	ug/L					30	
Chloroform		0.5	ug/L					30	
Chloromothana		0.5	ug/L					30	
Dibromochloromethane		0.5	ug/L					30	
Dichlorodifluoromethane		0.5	ug/L					30	
1 2-Dibromoethane		0.2	ug/L					30	
1,2-Dichlorobenzene		0.2	ug/L					30	
1 3-Dichlorobenzene		0.5	ug/L	ND				30	
1,3 Dichlorobenzene		0.5	ug/L	ND				30	
1 1-Dichloroethane	ND	0.5	ug/L	ND				30	
1 2-Dichloroethane	ND	0.5	ug/L	ND				30	
1 1-Dichloroethylene	ND	0.5	ug/L	ND				30	
cis-1 2-Dichloroethylene	ND	0.5	ug/L	ND				30	
trans-1 2-Dichloroethylene	ND	0.5	ug/L	ND				30	
1 2-Dichloropropane	ND	0.5	ug/L	ND				30	
cis-1.3-Dichloropropylene	ND	0.5	ug/L	ND				30	
trans-1.3-Dichloropropylene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Hexane	ND	1.0	ua/L	ND				30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ua/L	ND				30	
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ua/L	ND				30	
Methyl Isobutyl Ketone	ND	5.0	ua/L	ND				30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND				30	
Methylene Chloride	ND	5.0	ua/L	ND				30	
Styrene	ND	0.5	ug/L	ND				30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
Tetrachloroethylene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
1,2,4-Trichlorobenzene	ND	0.5	ug/L	ND				30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND				30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND				30	
Trichloroethylene	ND	0.5	ug/L	ND				30	
Trichlorofluoromethane	ND	1.0	ug/L	ND				30	
1,3,5-Trimethylbenzene	ND	0.5	ug/L	ND				30	
Vinyl chloride	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: 4-Bromofluorobenzene	38.4		ug/L	ND	120	50-140			
Surrogate: Dibromofluoromethane	35.1		ug/L	ND	110	50-140			
Surrogate: Toluene-d8	35.3		ug/L	ND	110	50-140			

P :	1-800-749-1947
E :	PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 8 of 11

Client: Paterson Group Consulting Engineers

Client PO: 12261

Hydrocarbons F1 PHCs (C6-C10) F2 PHCs (C10-C16) F3 PHCs (C16-C34) F4 PHCs (C34-C50) Semi-Volatiles Acenaphthene Acenaphthylene Anthracene

Benzo [a] anthracene Benzo [a] pyrene Benzo [b] fluoranthene Benzo [g,h,i] perylene Benzo [k] fluoranthene

Dibenzo [a,h] anthracene

Indeno [1,2,3-cd] pyrene

1-Methylnaphthalene

Biphenyl

Chrysene

Fluorene

Fluoranthene

Analyte

Method Qualit

		Project Des	cription: Pl	E2709					
y Control: Spike)								
	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
	1910	25	ug/L	ND	95.7	68-117			
	1230	100	ug/L	ND	76.7	60-140			
	3300	100	ug/L	ND	82.5	60-140			
	2390	100	ug/L	ND	99.6	60-140			
	3.44	0.05	ug/L	ND	68.9	50-140			
	3.49	0.05	ug/L	ND	69.7	50-140			
	3.55	0.01	ug/L	ND	71.0	50-140			
	3.88	0.01	ug/L	ND	77.6	50-140			
	3.44	0.01	ug/L	ND	68.9	50-140			
	4.66	0.05	ug/L	ND	93.2	50-140			
	3.22	0.05	ug/L	ND	64.3	50-140			
	4.86	0.05	ug/L	ND	97.3	50-140			
	3.54	0.05	ug/L	ND	70.8	50-140			

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ND

ND

ND

ND

ND

ND

82.1

78.0

84.1

80.4

60.8

62.6

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140 50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140

50-140 50-140

50-140

50-140

50-140 50-140

50-140

50-140 50-140

50-140

50-140

2-Methylnaphthalene	3.44	0.05	ug/L	ND	68.8
Naphthalene	3.70	0.05	ug/L	ND	74.1
Phenanthrene	3.89	0.05	ug/L	ND	77.8
Pyrene	4.41	0.01	ug/L	ND	88.2
Surrogate: 2-Fluorobiphenyl	17.8		ug/L		89.1
Volatiles					
Acetone	75.4	5.0	ug/L	ND	75.4
Benzene	43.2	0.5	ug/L	ND	108
Bromodichloromethane	42.0	0.5	ug/L	ND	105
Bromoform	38.1	0.5	ug/L	ND	95.2
Bromomethane	30.1	0.5	ug/L	ND	75.3
Carbon Tetrachloride	41.2	0.2	ug/L	ND	103
Chlorobenzene	43.1	0.5	ug/L	ND	108
Chloroethane	42.2	1.0	ug/L	ND	106
Chloroform	43.5	0.5	ug/L	ND	109
Chloromethane	34.1	3.0	ug/L	ND	85.2
Dibromochloromethane	40.1	0.5	ug/L	ND	100
Dichlorodifluoromethane	43.5	1.0	ug/L	ND	109
1,2-Dibromoethane	36.9	0.2	ug/L	ND	92.2
1,2-Dichlorobenzene	32.1	0.5	ug/L	ND	80.3
1,3-Dichlorobenzene	32.4	0.5	ug/L	ND	80.9
1,4-Dichlorobenzene	33.9	0.5	ug/L	ND	84.8
1,1-Dichloroethane	46.0	0.5	ug/L	ND	115
1,2-Dichloroethane	40.8	0.5	ug/L	ND	102
1,1-Dichloroethylene	27.7	0.5	ug/L	ND	69.2
cis-1,2-Dichloroethylene	35.0	0.5	ug/L	ND	87.6
trans-1,2-Dichloroethylene	34.6	0.5	ug/L	ND	86.4
1,2-Dichloropropane	41.1	0.5	ug/L	ND	103

4.10

3.90

4.20

4.02

3.04

3.13

0.05

0.05

0.01

0.05

0.05

0.05

P: 1-800-749-1947 E : PARACEL@PARACELLABS.COM

WWW.PARACELLABS.COM

OTTAWA

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA

123 Christina St. N. Sarnia, ON N7T 5T7

Page 9 of 11

Order #: 1229249

Report Date: 24-Jul-2012 Order Date:20-Jul-2012

300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

Client: Paterson Group Consulting Engineers

Client PO: 12261

Vinyl chloride

m,p-Xylenes

o-Xylene

Method Quality Control: Spike

Project Description: PE2709	

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
cis-1,3-Dichloropropylene	33.9	0.5	ug/L	ND	84.8	50-140			
trans-1,3-Dichloropropylene	44.0	0.5	ug/L	ND	110	50-140			
Ethylbenzene	36.4	0.5	ug/L	ND	91.1	50-140			
Hexane	43.3	1.0	ug/L	ND	108	50-140			
Methyl Ethyl Ketone (2-Butanone)	62.5	5.0	ug/L	ND	62.5	50-140			
Methyl Butyl Ketone (2-Hexanone)	67.9	10.0	ug/L	ND	67.9	50-140			
Methyl Isobutyl Ketone	63.7	5.0	ug/L	ND	63.7	50-140			
Methyl tert-butyl ether	72.8	2.0	ug/L	ND	72.8	50-140			
Methylene Chloride	34.3	5.0	ug/L	ND	85.8	50-140			
Styrene	29.9	0.5	ug/L	ND	74.8	50-140			
1,1,1,2-Tetrachloroethane	42.6	0.5	ug/L	ND	107	50-140			
1,1,2,2-Tetrachloroethane	49.5	0.5	ug/L	ND	124	50-140			
Tetrachloroethylene	43.0	0.5	ug/L	ND	108	50-140			
Toluene	40.0	0.5	ug/L	ND	100	50-140			
1,2,4-Trichlorobenzene	43.2	0.5	ug/L	ND	108	50-140			
1,1,1-Trichloroethane	41.4	0.5	ug/L	ND	104	50-140			
1,1,2-Trichloroethane	37.5	0.5	ug/L	ND	93.8	50-140			
Trichloroethylene	36.9	0.5	ug/L	ND	92.4	50-140			
Trichlorofluoromethane	34.8	1.0	ug/L	ND	87.0	50-140			
1,3,5-Trimethylbenzene	28.6	0.5	ug/L	ND	71.5	50-140			

ug/L

ug/L

ug/L

ND

ND

ND

109

111

98.9

50-140

50-140

50-140

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

43.7

89.0

39.6

0.5

0.5

0.5

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

Order #: 1229249

Report Date: 24-Jul-2012 Order Date:20-Jul-2012

Page 10 of 11

Client: Paterson Group Consulting Engineers

Client PO: 12261

Project Description: PE2709

Order #: 1229249

Report Date: 24-Jul-2012 Order Date:20-Jul-2012

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.

- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

P: 1-800-749-1947 E: paracel@paracellabs.com OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

WWW.PARACELLABS.COM

 GA
 SARNIA

 Unit #27
 123 Christina St. N.

 L5N 6J3
 Sarnia, ON N7T 5T7

Page 11 of 11

COPARACEL TRUSTED. LABORATORIES LTD. RESPONSIVE. RELIABLE. RELIABLE.								Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com					d. 3 com	Chain of Custody (Lab Use Only) Nº 94393				
DTTAWA ® KINGSTON ® NIAGARA ® MISSISS	IA KINGSTON NIAGARA MISSISSAUGA SARNIA www.paracellabs.com							Page	e of	4								
Client Name: NACLAR GLOUP (NU Contact Name: NACLAR DEAD COL				Project Reference Quote #	PE2	70	59		1				_	TAT:	Regula	ar [3 Day	
Address: 154 Celonnade food South				PO # Email Address:	1226	51				_	5			Date Re] 2 Day	9	1 Day	
Telephone: ((13)226-7381			1	MD,	ARCY@1	Kle	2f3	brig	ifo	uf.	Q							
Criteria: [] O. Reg. 153/04 Table _ [XO. Reg. 153/11 (Current) Table 3	RSC	Filing	O. Reg. 558/00	PWQO	I CCM	IE	J SU	B (Sto	orm)	SUB	(Sanitar	y) Muni	cipality:_] Other:	
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water)	SS (Storm/S	anitary S	ewer) P	(Paint) A (Air) O (Other)							Requ	ired Ar	ialyses				
Paracel Order Number:	rix	Volume	Containers	Sample	Taken	s F1-F4+BTEX	S	S	als by ICP/MS		(SW)							
Sample ID/Location Name	Mat	Air	# of	Date	Time	PHC	VOC	PAH	Meta	Hg	B (H							
1 BHI-GWI	GW		2	July 20 2012		X	Х											/
2 B12-GW1	GW		4	July 20,2012		X	X	X			_				-			1
3 BHH-GWA	GW		3	July 29,209	-	X	X	X		_	-	\rightarrow	NO P	AH .	analy	sis	per	1
4	<u>`</u>			0						_	_			-	-	fea	<u>n</u>	
5						_				_	_							
6						_	_			_	_			-	-			
7			-			-	-			_	_	ļ			-			
8	_					-	-	Ц		-	_							
9		-				+	-			-	_							-
10		0	. 1.	8 5 1	0 241-1	6111	W/	164	A.C	-1	h	- Mari	14.	-	Method	of Deliv	ery:	
comments. Unable to recover enough a	rple i	or Li	K Vial	a soont		fur 1	ľ	ia n	Jus .		2	0	- Co		hi	200	1	
Relinquished By (Print & Sign):	Received by Driver Depot: Received at Law Verifi					Verifie	d By	C.	ner									
MAN Pro-						1	10	P	4	_	<u>J</u>	1	Deter	MI	C	2.0	112	12.0
10061419 42 7 90	Date/Ti	me:			Date/1	ime:	-6	44	Щ	16	XO.	p	- Lhater I	inte: ()	JAR	4	11 40	16.1

Chain of Custody (Env) - Rev 0.2 December 2011

RELIABLE.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

Phone: (613) 226-7381 Fax: (613) 226-6344

OTTAWA • KINGSTON • NIAGARA • MISSISSAUGA • SARNIA

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 12263 Report Date: 26-Jul-2012 Project: PE2709 Order Date: 25-Jul-2012 Order #: 1230199 Custody: 94819

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 1230199-01 BH4-GW2 1230199-02 BH2-GW2

Mark Frata

Approved By:

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising shall be limited to the amount paid by you for this work, and that our employees or agents shall not under circumstances be liable to you in connection with this work

Client: Paterson Group Consulting Engineers Client PO: 12263

Project Description: PE2709

Order #: 1230199

Report Date: 26-Jul-2012 Order Date:25-Jul-2012

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
CCME PHC F1	CWS Tier 1 - P&T GC-FID	26-Jul-12 26-Jul-12
CCME PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	26-Jul-12 26-Jul-12
VOCs	EPA 624 - P&T GC-MS	26-Jul-12 26-Jul-12

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

300-2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

OTTAWA

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 2 of 8

Client: Paterson Group Consulting Engineers

Order #: 1230199

Report Date: 26-Jul-2012 Order Date: 25-Jul-2012

Client PO: 12263		Project Description	: PE2709		
	Client ID:	BH4-GW2	BH2-GW2	-	-
	Sample Date:	25-Jul-12	25-Jul-12	-	-
1	Sample ID:	Water	Water	-	-
Volatiles	WIDE/Offices				
Acetone	5.0 ug/L	104	1020	-	-
Benzene	0.5 ug/L	<0.5	<0.5	-	-
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	-	-
Bromoform	0.5 ug/L	<0.5	<0.5	-	-
Bromomethane	0.5 ug/L	<0.5	<0.5	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	-	-
Chlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
Chloroethane	1.0 ug/L	<1.0	<1.0	-	-
Chloroform	0.5 ug/L	3.1	9.9	-	-
Chloromethane	3.0 ug/L	<3.0	<3.0	-	-
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	-	-
1,2-Dibromoethane	0.2 ug/L	<0.2	<0.2	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
1,2-Dichloroethylene, total	0.5 ug/L	<0.5	<0.5	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	-	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	-	-
Hexane	1.0 ug/L	<1.0	<1.0	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	26.1	-	-
Methyl Butyl Ketone (2-Hexanone	10.0 ug/L	<10.0	<10.0	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	-	-
Methylene Chloride	5.0 ug/L	<5.0	<5.0	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 3 of 8

PARACEL

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order #: 1230199

Report Date: 26-Jul-2012 Order Date: 25-Jul-2012

Client PO: 12263		Project Description	n: PE2709		
	Client ID:	BH4-GW2	BH2-GW2	-	-
	Sample Date:	25-Jul-12	25-Jul-12	-	-
	Sample ID:	1230199-01	1230199-02	-	-
L	MDL/Units	vvater	vvater	-	-
Styrene	0.5 ug/L	<0.5	<0.5	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	-	-
Toluene	0.5 ug/L	<0.5	<0.5	-	-
1,2,4-Trichlorobenzene	0.5 ug/L	<0.5	<0.5	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	-	-
Trichloroethylene	0.5 ug/L	<0.5	<0.5	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	-	-
1,3,5-Trimethylbenzene	0.5 ug/L	<0.5	<0.5	-	-
Vinyl chloride	0.5 ug/L	<0.5	<0.5	-	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	-	-
o-Xylene	0.5 ug/L	<0.5	<0.5	-	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	-	-
4-Bromofluorobenzene	Surrogate	110%	108%	-	-
Dibromofluoromethane	Surrogate	110%	109%	-	-
Toluene-d8	Surrogate	112%	106%	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	<25	<25	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	-

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 4 of 8

Client: Paterson Group Consulting Engineers

Client PO: 12263

Project Description: PE2709

Report Date: 26-Jul-2012

Order #: 1230199

Order Date:25-Jul-2012

Method Quality Control: Bla	nk								
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Note
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ua/l						
	NB	20	ug/L						
volatiles									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromomothene		0.5	ug/L						
Carbon Totrachlorida		0.5	ug/L						
Chlorobenzene		0.2	ug/L						
Chloroethane		1.0	ug/L						
Chloroform		0.5	ug/L						
Chloromethane		3.0	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1 2-Dibromoethane	ND	0.2	ug/L						
1.2-Dichlorobenzene	ND	0.5	ug/L						
1.3-Dichlorobenzene	ND	0.5	ug/L						
1 4-Dichlorobenzene	ND	0.5	ug/L						
1 1-Dichloroethane	ND	0.5	ug/L						
1.2-Dichloroethane	ND	0.5	ug/L						
1.1-Dichloroethylene	ND	0.5	ug/L						
cis-1.2-Dichloroethylene	ND	0.5	ug/L						
trans-1.2-Dichloroethylene	ND	0.5	ug/L						
1.2-Dichloroethylene, total	ND	0.5	ug/L						
1.2-Dichloropropane	ND	0.5	ug/L						
cis-1.3-Dichloropropylene	ND	0.5	ug/L						
trans-1.3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,2,4-Trichlorobenzene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
1,3,5-Trimethylbenzene	ND	0.5	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromotluorobenzene	37.1		ug/L		116	50-140			
Surrogate: Dibromofluoromethane	31.8		ug/L		99.5	50-140			
Surrogate: Toluene-d8	38.5		ug/L		120	50-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

OTTAWA

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 5 of 8

Client: Paterson Group Consulting Engineers

Client PO: 12263

Project Description: PE2709

Report Date: 26-Jul-2012

Order #: 1230199

Order Date:25-Jul-2012

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Volatiles									
Acetone	ND	5.0	ua/L	ND				30	
Benzene	ND	0.5	ug/L	ND				30	
Bromodichloromethane	ND	0.5	ug/L	ND				30	
Bromoform	ND	0.5	ug/L	ND				30	
Bromomethane	ND	0.5	ug/L	ND				30	
Carbon Tetrachloride	ND	0.2	ug/L	ND				30	
Chlorobenzene	ND	0.5	ug/L	ND				30	
Chloroethane	ND	1.0	ug/L	ND				30	
Chloroform	ND	0.5	ug/L	ND				30	
Chloromethane	ND	3.0	ug/L	ND				30	
Dibromocniorometnane	ND	0.5	ug/L	ND				30	
		1.0	ug/L					30	
1,2-Diblomoethane		0.2	ug/L					30	
1,2-Dichlorobenzene		0.5	ug/L					30	
1,3-Dichlorobenzene		0.5	ug/L					30	
1 1-Dichloroethane		0.5	ug/L					30	
1 2-Dichloroethane	ND	0.5	ug/L	ND				30	
1.1-Dichloroethylene	ND	0.5	ug/L	ND				30	
cis-1.2-Dichloroethylene	ND	0.5	ua/L	ND				30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
1,2-Dichloropropane	ND	0.5	ug/L	ND				30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Hexane	ND	1.0	ug/L	ND				30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND				30	
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L	ND				30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND				30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND				30	
Methylene Chloride		5.0	ug/L					30	
Stylene		0.5	ug/L					30	
1,1,2,2-Tetrachloroethane		0.5	ug/L					30	
Tetrachloroethylene		0.5	ug/L					30	
Toluene	ND	0.5	ug/L	ND				30	
1.2.4-Trichlorobenzene	ND	0.5	ua/L	ND				30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND				30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND				30	
Trichloroethylene	ND	0.5	ug/L	ND				30	
Trichlorofluoromethane	ND	1.0	ug/L	ND				30	
1,3,5-Trimethylbenzene	ND	0.5	ug/L	ND				30	
Vinyl chloride	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: 4-Bromofluorobenzene	34.9		ug/L	ND	109	50-140			
Surrogate: Dibromotluoromethane	35.1		ug/L	ND	110 116	50-140			
Surroyate. Toluene-do	31.2		ug/L	ND	110	30-140			

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 6 of 8

Client: Paterson Group Consulting Engineers

Client PO: 12263

Vinyl chloride

m,p-Xylenes

Surrogate: 4-Bromofluorobenzene

o-Xylene

- -_ ... _

Order #: 1230199
Report Date: 26-Jul-20

26-Jul-2012 Order Date:25-Jul-2012

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1910	25	ug/L	ND	95.4	68-117			
Volatiles									
Acetone	87.7	5.0	ua/L	ND	87.7	50-140			
Benzene	34.4	0.5	ua/L	ND	86.1	50-140			
Bromodichloromethane	31.0	0.5	ug/L	ND	77.6	50-140			
Bromoform	35.8	0.5	ug/L	ND	89.6	50-140			
Bromomethane	26.3	0.5	ug/L	ND	65.7	50-140			
Carbon Tetrachloride	30.3	0.2	ug/L	ND	75.8	50-140			
Chlorobenzene	42.4	0.5	ug/L	ND	106	50-140			
Chloroethane	37.6	1.0	ug/L	ND	93.9	50-140			
Chloroform	32.3	0.5	ug/L	ND	80.8	50-140			
Chloromethane	30.1	3.0	ug/L	ND	75.2	50-140			
Dibromochloromethane	39.0	0.5	ug/L	ND	97.6	50-140			
Dichlorodifluoromethane	27.9	1.0	ug/L	ND	69.8	50-140			
1,2-Dibromoethane	39.2	0.2	ug/L	ND	98.0	50-140			
1,2-Dichlorobenzene	32.3	0.5	ug/L	ND	80.8	50-140			
1,3-Dichlorobenzene	32.3	0.5	ug/L	ND	80.8	50-140			
1,4-Dichlorobenzene	33.0	0.5	ug/L	ND	82.4	50-140			
1,1-Dichloroethane	43.9	0.5	ug/L	ND	110	50-140			
1,2-Dichloroethane	29.7	0.5	ug/L	ND	74.3	50-140			
1,1-Dichloroethylene	36.2	0.5	ug/L	ND	90.4	50-140			
cis-1,2-Dichloroethylene	29.6	0.5	ug/L	ND	74.1	50-140			
trans-1,2-Dichloroethylene	47.4	0.5	ug/L	ND	119	50-140			
1,2-Dichloropropane	34.1	0.5	ug/L	ND	85.2	50-140			
cis-1,3-Dichloropropylene	49.7	0.5	ug/L	ND	124	50-140			
trans-1,3-Dichloropropylene	46.9	0.5	ug/L	ND	117	50-140			
Ethylbenzene	33.5	0.5	ug/L	ND	83.7	50-140			
Hexane	30.0	1.0	ug/L	ND	75.0	50-140			
Methyl Ethyl Ketone (2-Butanone)	104	5.0	ug/L	ND	104	50-140			
Methyl Butyl Ketone (2-Hexanone)	76.8	10.0	ug/L	ND	76.8	50-140			
Methyl Isobutyl Ketone	74.5	5.0	ug/L	ND	74.5	50-140			
Methyl tert-butyl ether	99.8	2.0	ug/L	ND	99.8	50-140			
Methylene Chloride	37.6	5.0	ug/L	ND	94.1	50-140			
Styrene	29.1	0.5	ug/L	ND	72.7	50-140			
1,1,1,2-Tetrachloroethane	40.3	0.5	ug/L	ND	101	50-140			
1,1,2,2-Tetrachloroethane	51.5	0.5	ug/L	ND	129	50-140			
Tetrachloroethylene	39.5	0.5	ug/L	ND	98.7	50-140			
Toluene	30.0	0.5	ug/L	ND	75.0	50-140			
1,2,4-Trichlorobenzene	27.0	0.5	ug/L	ND	67.6	50-140			
1,1,1-Trichloroethane	30.1	0.5	ug/L	ND	75.2	50-140			
1,1,2-Trichloroethane	30.5	0.5	ug/L	ND	76.2	50-140			
Trichloroethylene	28.5	0.5	ug/L	ND	71.2	50-140			
Trichlorofluoromethane	32.2	1.0	ug/L	ND	80.6	50-140			
1,3,5-Trimethylbenzene	26.0	0.5	ug/L	ND	65.0	50-140			

Project Description: PE2709

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

29.3

68.0

36.6

25.8

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8

0.5

0.5

0.5

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

73.2

85.0

91.5

80.8

50-140

50-140

50-140

50-140

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3

ug/L

ug/L

ug/L

ug/L

ND

ND

ND

SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 7 of 8

Client: Paterson Group Consulting Engineers

Client PO: 12263

Project Description: PE2709

Order #: 1230199

Report Date: 26-Jul-2012 Order Date: 25-Jul-2012

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.

- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

P: 1-800-749-1947 E: paracel@paracellabs.com

WWW.PARACELLABS.COM

OTTAWA 300–2319 St. Laurent Blvd. Ottawa, ON K1G 4J8 NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

MISSISSAUGA 6645 Kitimat Rd. Unit #27 Mississauga, ON L5N 6J3 SARNIA 123 Christina St. N. Sarnia, ON N7T 5T7

Page 8 of 8

OPARACEL LABORATORIES LTD.	TRUSTED . RESPONSIVE . RELIABLE .					Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com						Chain of Custody (Lab Use Only) Nº 94819						
OTTAWA ® KINGSTON ® NIAGARA ® MISSISS	RA MISSISSAUGA SARNIA www.paracellabs.com								Page of									
Client Name: PATERSON GROUP INC.				Project Reference: PE2709 Quote #					_	TAT: Regular [3 Day								
Address: 154 COLONNADE ROAD SOUTH				PO# 1263 Email Address:					Date	☐ 2 Day 🙀 I Day _ Date Required:								
Telephone: (613) 226 - 7381				MDARY	CHATER	X01	Gł	olli	1.0	t								
Criteria: [] O. Reg. 153/04 Table (\scrimedoc). Reg. 153/11 (Current	Table 3	RSC	Filing	O. Reg. 558/00	PWQO	CCM	IE	j su	B (Sto	rm)	[]	SUB (S	anitary) Mu	nicipality	ä] Other:	
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) S	S (Storm/S	anitary S	ewer) P	Paint) A (Air) O (Air) O (Other) Required An					Analyse	es							
Paracel Order Number: 230199	ix .	Volume	Containers	Sample	e Taken	FI-F4+BTEX	8		is by ICP/MS			WS)						
Sample ID/Location Name	Mati	Air	# of	Date	PHCs	VOC	PAHs	Metal	Hg	CrVI	B (H							
1 BHH-GWZ	GW			July 25	12:30 pm	X	X											
2 BH2-GW2	GW			21/25	10 am	X	×											
3				0		4												
4										_								-
5																		
6										_					_			
7							1.								-			
8										_				_	_		_	-
9														_	_	-		1
10					L			_		_	_				N. A			
Comments: PHG FI@ BH2, GW2	-,														Metho	Ma	1K7	n
Relinquished By (Print & Sign):	Receive	d by Driv	ver/Depo	Depot: Received a			.ab:			L			Verif	ified By:				
	Date/Tin	me:		Date/Time Tily 25/12				5:4:	3 Date/	Time:	Jul	y 2	5/12	6:0				

Chain of Custody (Env) - Rev 0.2 December 2011

		Date:	07/2012
JUA		Report No.:	PE2709-REP.01
		PE2	2709-1
		Dwg. No.	
AN PRO	/IDED BY STANTEC.	-	
/	GROUNDWATER ELEVATION CO	ONTOUR	
	GROUNDWATER FLOW DIRECT	ION	
BM	NORTH SIDE OF GEORGE STRE ELEVATION 100.00 m (ASSUMED	ET))	

твм	TEMPORARY BENCHMARK - FIRE HYDRANT OF
	ELEVATION 100,00 m (ASSUMED)

- ELEVATION OF BEDROCK SURFACE (m)
- ELEVATION OF PRACTICAL AUGER REFUSAL
- DENOTES WELL SCREENED AT DEPTH
- GROUNDWATER TABLE ELEVATION (m)
- GROUND SURFACE ELEVATION (m)
- MONITORING WELL LOCATION (PATERSON, 2011)
- MONITORING WELL LOCATION (PATERSON, 2012)
- BOREHOLE LOCATION (PATERSON, 2012)

