TOSCANO LAND CORPORTION

 966-974 Fisher Avenue Transportation Brief

966-974 Fisher Avenue

Transportation Brief

prepared for:
Toscano Land Corporation
6066 Perth Street
Richmond, ON
KOA 2ZO

prepared by:
PARSONS
1223 Michael Street North
Suite 100
Ottawa, ON K1J 7T2

February 2, 2018

476234-01000

Table of Contents

1. INTRODUCTION 1
2. EXISTING CONDITIONS 3
2.1. AREA ROAD NETWORK 3
2.2. PEDESTRIAN/CYCLING NETWORK 3
2.3. TRANSIT NETWORK 3
2.4. EXISTING INTERSECTION OPERATIONS 4
3. DEMAND FORECASTING6
3.1. SITE TRIP GENERATION 6
3.2. VEHICLE TRAFFIC DISTRIBUTION AND ASSIGNMENT 7
4. SITE PLAN REVIEW 8
5. FINDINGS AND RECOMMENDATIONS 9

List of Figures

Figure 1: Local Context 1
Figure 2: Proposed Site Plan 2
Figure 3: Existing Area Transit Network 4
Figure 4: Existing Peak Hour Traffic Volumes (2017) 5
Figure 5: ‘New’ Site-Generated Traffic Volumes. 8
List of Tables
Table 1: Existing Performance at Study Area Intersections 5
Table 2: ITE Trip Generation Rates 6
Table 3: Modified Person Trip Generation 6
Table 4: Residential Modal Site Trip Generation 7
List of Appendices

Transportation Brief

1. INTRODUCTION

Toscano is proposing a residential development consisting of 38 residential units at the site municipally known as 966, 968 and 974 Fisher Avenue. The subject site is located on the west side of Fisher Avenue, approximately 30m north of Shillington Avenue. Access to the site is proposed via two full movement driveway connections to Fisher Avenue, located approximately 35 m and 65 m north of Shillington Avenue. The site's local context is shown in Figure 1 and the proposed Site Plan is provided as Figure 2.

Figure 1: Local Context

Based on the ensuing trip generation and our review of the City's Transportation Impact Assessment Guidelines (TIA), the proposed development is projected to generate less than the City's 75 veh/h TIA threshold for requiring any traffic assessment. As such, no further traffic analysis is required. However, to assist in the application/review process, we have prepared this report that captures only the relevant transportation issues, which are as follows:

- Existing operational conditions at key adjacent intersections;
- Peak hour site traffic generation and assignment; and
- Site Plan issues including proposed parking supply and garage access/egress.

KEY PLAN

STIE AREA
$2113.28 \mathrm{~m}^{2}$
$(0.52$
acre
BUILDING AREA:

 OT COVERAGE $=51.6 \%$
BUILDING HEIGHT $=11.00 \mathrm{~m}$
FRONT YARD SETBACK $=5.30 \mathrm{~m}$

NTERIOR SIDE YARD SETBACK $=1.31 \mathrm{~m}$
STIOREY APARTMENT BUILDINGS
No. UNITS
Nort Bul
$\begin{aligned} & \text { SRTH BUILDING }=19 \\ & \text { SOUTH BULILING }=19 \\ & \text { TOTAL }=38\end{aligned}$
PARKING SPACES PROVIDED
GROUND FLOOR GARAGE $=26$ SPACE
ICYCLE PARING PROVIDED
$\begin{aligned} & \text { GRND. FLR. GARAGE }=26 \text { SPACES } \\ &=14 \text { SPACES } \\ & \text { OTIRROR }\end{aligned}$
$\begin{array}{ll}\text { XIERIOR } & =14 \text { SPACES } \\ \text { TOTAL } & =40 \text { SPACES }\end{array}$
LANDSCAPED AREA $=1021.82 \mathrm{~m}^{2}(48.35 \%$
AMENIT AREA REQUREE Q @ AMENTY AREA REQURED © $6 \mathrm{~m}^{2} 2 \mathrm{daU}=550 \times 6=300 \mathrm{~m}^{2}$
MMENTY AREA PROVIDED (COMMUNLL) $=425.6 \mathrm{~m}^{2}$ ffer to landscape plan prepared by thakar SSOCIATES DESIGN CONSULTANTS
LANDSCAPING SHOWN ON STE PLAN IS FO
RCHIECTURALINTENT
SIEE PLAN
$\boldsymbol{\varphi}_{1}$ - Wall mounted flood light fixture with full cut-of
\boldsymbol{Q}_{2} - ARChitectural wall sconce fixtures (see elevations)
STE BOUNRDIES DERIVED FROM
OPOGRAPHIC PLAN OF FURV

OTAAFA PRREPARED BY STANTEC GEOMATCS
ITD. DATED:

\pm
 M. David Blakely
 Architect Inc.

(AC)

PARSONS

2. EXISTING CONDITIONS

2.1. AREA ROAD NETWORK

Fisher Avenue is a north-south arterial roadway and is a designated truck route. It extends from Carling Avenue in the north to Prince of Wales Drive in the south. Along the site's frontage, Fisher Avenue has a 20 m right-of-way (ROW), consisting of a single vehicle travel lane in each direction. The east side of the road is a rural cross-section with a paved shoulder, and the taper for a southbound right turn lane at Shillington Avenue begins across the frontage of the subject site. An on-street parking lane is provided north of Shillington Avenue The speed limit within the study area is $50 \mathrm{~km} / \mathrm{h}$.

Shillington Avenue is an east-west collector roadway that extends from Merivale Road to Fisher Avenue. The cross-section has a ROW of 18.5 m and consists of a single travel lane in each direction, with an auxiliary left-turn lane at Fisher Avenue. Residential driveways access directly onto the roadway and on-street parking is permitted along the north side of the roadway, approximately 40 m west of Fisher Avenue. The speed limit within the study area is $50 \mathrm{~km} / \mathrm{h}$.

Tunis Avenue is an east-west local roadway that extends from Anna Avenue to the National Capital Commission Driveway. Its cross-section consists of a 20 m ROW and single travel lanes in each direction. On-street parking is permitted along both sides of the roadway. The unposted speed limit is understood to be $50 \mathrm{~km} / \mathrm{h}$.

2.2. PEDESTRIAN/CYCLING NETWORK

Sidewalk facilities within the vicinity of the site are provided along the west side of Fisher Avenue, south side of Shillington Avenue and both sides of Tunis Avenue, connecting pedestrians to nearby transit stops, other adjacent development and recreational opportunities. With respect to cycling, bike facilities are currently limited to shared-use lanes along Fisher Avenue, Shillington Avenue, and Tunis Avenue. The northbound paved shoulder along Fisher Avenue provides additional room for cyclists and the pathway system within the Experimental Farm provides an off road alternative. The City's Cycling Plan indicates Fisher Avenue Rideau as a Spine Route and both Shillington Avenue and Tunis Avenue as Local Routes.

2.3. TRANSIT NETWORK

Transit service within the vicinity of the site is currently provided by OC Transpo Regular Routes \#14 and 86, which provide frequent all-day service. Bus stops for these routes are located at the Fisher/Shillington, Fisher/Tunis and Fisher/Crerar intersections, adjacent to the proposed development. Given the prominent role of route \#86, and it feeds directly to the future LRT and downtown core, the number of peak period buses stopping at the bus stops adjacent to the subject site are significant. The current route is estimated to take 12 minutes to travel from Shillington to Bayview.

Figure 3 illustrates the existing transit network within the vicinity of the subject site.

PARSONS

Figure 3: Existing Area Transit Network

2.4. EXISTING INTERSECTION OPERATIONS

Illustrated as Figure 4, are the most recent weekday morning and afternoon peak hour traffic volumes obtained from the City of Ottawa for the Fisher/Shillington and Fisher/Tunis intersections. Peak hour traffic volumes are included as Appendix A.

The following Table 1 provides a summary of existing traffic operations at the signalized study area intersection based on the SYNCHRO (V9) traffic analysis software. The subject Fisher/Shillington and Fisher/Tunis intersections were assessed in terms of the volume-to-capacity (v / c) ratio, delay (s), and the corresponding Level of Service (LoS) for the critical movement(s). The subject intersection 'as a whole' was assessed based on a weighted v/c ratio/delay, and the SYNCHRO model output of existing conditions is provided within Appendix B.

Figure 4: Existing Peak Hour Traffic Volumes (2017)

Table 1: Existing Performance at Study Area Intersections

Intersection	Weekday AM Peak (PM Peak)					
	'Critical Movement'			'Intersection as a Whole'		
	LoS	max. v/c or avg. delay (s)	Movement	Delay (s)	LoS	v/c
Fisher/Shillington	A(B)	0.60(0.62)	NBT(SBT)	7.2(6.5)	A(B)	0.60(0.62)
Fisher/Tunis	$\mathrm{E}(\mathrm{F})$	43.7(161.9)	WB(WB)	1.9(15.4)	A(B)	-(-)

As shown in Table 1, the Fisher/Shillington intersection, 'as a whole', is currently operating at an acceptable LoS ' A ' during the morning peak and LoS ' B ' during the afternoon peak, with respect to the City of Ottawa operating standards. During the morning peak hour, the critical movement is the northbound through movement with a v/c of 0.60 and a 95\%ile queue of approximately 88 m . Similarly, the afternoon peak critical movement is the southbound through and operates with a v/c of 0.62 and a 95% ile queue of approximately 88 m .

The Fisher/Tunis intersection, 'as a whole' is currently operating at an acceptable LoS B or better. During the morning and afternoon peak, the critical movement is the westbound shared left-through-right movement, which is currently operating

PARSONS

at a LoS of ' E ' and ' F ', respectively. According to the SYNCHRO analysis, the delays experienced during the morning peak are approximately 44 seconds and during the afternoon peak, the delays exceed 160 seconds.

Field observations were conducted to determine if the modelled PM peak delays of 160 seconds and greater were an accurate representation of the operations at the Tunis Avenue intersection, specifically the westbound movement from the Experimental Farm. A 15-minute observation of the turning movements and delays for the westbound movement were completed on March 22, 2017 during the peak hour between 4 pm and 5 pm . A total of 34 vehicles were counted during the 15-minute period, including 7 right-turns, 14 throughs and 13 left-turns. The longest delay noted was 130 seconds and the average delay was 33 seconds. Breaking the delays down per movement, the average delay for left-turn movement was 28 seconds, the through movement was 39 seconds, and the right-turn movement was 32 seconds. Based on the field observations, it is evident that the Synchro analysis overestimates the existing delay experienced at the Fisher Avenue and Tunis Avenue intersection and a LoS "C" would be considered a more appropriate gauge of performance.

3. DEMAND FORECASTING

3.1. SITE TRIP GENERATION

Appropriate trip generation rates for the proposed development consisting of 50 residential units was obtained from the $9^{\text {th }}$ Edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual, which are summarized in Table 2.

Table 2: ITE Trip Generation Rates

Land Use	Data Source	Trip Rates	
		AM Peak	PM Peak
Mid-Rise Apartments	ITE 223	$\begin{gathered} \mathrm{T}=0.30(\mathrm{du}) ; \\ \mathrm{T}=0.41(\mathrm{du})-13.06 \end{gathered}$	$\begin{gathered} \mathrm{T}=0.39(\mathrm{du}) ; \\ \mathrm{T}=0.48(\mathrm{du})-11.07 \end{gathered}$
Notes: $\begin{aligned} & T=A v e r a g e ~ V e h i c l e ~ T r i p ~ E n d s ~ \\ & d u=d w e l l i n g ~ u n i t s ~\end{aligned}$			

As ITE trip generation surveys only record vehicle trips and typically reflect highly suburban locations (with little to no access by travel modes other than private automobiles), adjustment factors appropriate to the more urban study area context were applied to attain estimates of person trips for the proposed development. This approach is considered appropriate within the industry for urban infill developments.

To convert ITE vehicle trip rates to person trips, an auto occupancy factor and a non-auto trip factor were applied to the ITE vehicle trip rates. Our review of available literature suggests that a combined factor of approximately 1.3 is considered reasonable to account for typical North American auto occupancy values of approximately 1.15 and combined transit and non-motorized modal shares of less than 10%. As such, the person trip generation for the proposed site is summarized in Table 3.

Table 3: Modified Person Trip Generation

Land Use	Area	AM Peak (person trips/h)			PM Peak (person trips/h)		
		In	Out	Total	In	Out	Total
Mid-Rise Apartments	38 du	0	3	3	5	4	9
Total 'New' Person Trips		0	3	3	5	4	9

Note: 1.3 factor to account for typical North American auto occupancy values of approximately 1.15 and combined transit and nonmotorized modal shares of less than 10%

The person trips shown in Table 3 for the proposed site were then allocated using modal share values appropriate for the location and proximity to adjacent communities, employment, other shopping uses and transit availability. Modal share values for the proposed residential development has been summarized in Table 4, with the total site vehicle trip generation.

PARSONS

Table 4: Residential Modal Site Trip Generation

Travel Mode	Mode Share	AM Peak (person trips/h)			PM Peak (person trips/h)		
		Out	Total	In	Out	Total	
Auto Driver	60%	0	2	2	3	3	6
Auto Passenger	15%	0	1	1	1	1	2
Transit	20%	0	0	0	1	0	1
Non-motorized	5%	0	0	0	0	0	0
Total Person Trips	100%	0	3	3	5	4	9
Total ‘New' Auto Trips		0	2	2	3	3	6

As shown in Table 4, the resulting number of potential 'new' two-way vehicle trips for the proposed development is approximately 2 and $6 \mathrm{veh} / \mathrm{h}$ during the weekday morning and afternoon peak hours, respectively. This amount of traffic, which equates to approximately 1 new vehicle every 10 to 30 minutes, which is considered negligible in terms of traffic impact on the study area.

3.2. VEHICLE TRAFFIC DISTRIBUTION AND ASSIGNMENT

Site-generated traffic distribution was based on the site's proximity to the downtown core and our knowledge of the surrounding area. The resultant distribution is outlined as follows:

- 60% to/from the north via Fisher Avenue; and
- 40% to/from the south via Fisher Avenue.

Based on the above-noted distributions, 'new' site-generated trips were assigned to the study area and are illustrated as Figure 5.

Figure 5: 'New’ Site-Generated Traffic Volumes

4. SITE PLAN REVIEW

This section provides an overview of site access, parking requirements, pedestrian circulation and transit accessibility. The proposed Site Plan was previously illustrated as Figure 2.

Parking

A total of 26 parking spaces are proposed to serve the subject site. This amount of parking satisfies the City's minimum By-Law requirement for Area X, identified in Schedule 1A of the City's Zoning By-Law, for 18 residential spaces and 4 visitor spaces. Parking spaces are noted as 5.2 m in length and 2.6 m in width, with the exception of one space in each building with a 2.4 m width, but these all meet the City's minimum By-Law requirements.

Site Circulation

With regard to on-site circulation, the proposed parking garage is laid out effectively, such that two-way traffic can be efficiently accommodated. The proposed drive aisle entrance to the ground level parking for each building is only 6.0 m , and while that below the City's By-Law requirements of 6.7 m , is not expected to cause a major issue for the low volumes anticipated on site.

Access Requirements

The propose accesses meet the City's By-Law requirements for two 2-way accesses along a frontage greater than 35m. The accesses, while in auxiliary southbound right turn lane along Fisher Avenue, are spaced appropriately within the site and are anticipated to serve less than 10 vehicles during the afternoon peak. The southbound queues may block access to the site driveways, based on existing conditions, although this will be similar to the existing conditions for the three current residential driveways.

PARSONS

Pedestrians/Transit

To connect pedestrians to transit service and recreation opportunities, sidewalks are currently provided along the frontage of the site and crossing locations are provided to the east side of Fisher Avenue. Bus stops are currently provided along Fisher Avenue immediately adjacent to the site.

Bicycles

A total of 40 bicycle parking spaces are proposed to serve the subject development. This amount of bicycle parking is sufficient with respect to the City's By-Law requirement. The bicycle parking is provided within the parking garages (26 spaces total) and at the rear of the buildings (14 spaces total) adjacent to the amenity space.

5. FINDINGS AND RECOMMENDATIONS

Based on the foregoing analysis of the proposed development, the following are the transportation-related findings and recommendations of this report.

- The study area intersections adjacent to the site is currently operating 'as a whole' at an acceptable LoS 'B' or better during the weekday morning and afternoon peak hours;
- With regard to westbound 'critical movement' at the unsignalized Fisher/Tunis intersection, it is noted as operating at an LoS ' E ' during the morning peak and an LoS ' F ' during the afternoon peak;
- The proposed development is projected to generate 'new' two-way vehicle volumes of approximately 2 and 6 veh/h during the weekday morning and afternoon peak hours, respectively. This equates to approximately 1 new vehicle every 10 to 30 minutes, and as such, the impact of the site-generated vehicles on the study area network is considered negligible;
- Given the low traffic generated by the proposed development, the location of the south site driveway, close to the Fisher/Shillington intersection, is considered acceptable;
- The site's driveway connections to Fisher Avenue are 0.7 m less than the City's Private Approach By-Law requirements within the ground floor parking garage, but is not anticipated to be an issue with the low vehicular volumes anticipated for the site; and
- The proposed vehicle/bicycle parking supply and dimensioning is noted as being sufficient with respect to the City's By-Law requirements.

Based on the foregoing, the proposed development fits well into the transportation context of the surrounding area, and its location and design serves to promote use of walking, cycling, and transit modes, thus supporting City of Ottawa policies, goals and objectives with respect to redevelopment, intensification and modal share.

Therefore, the proposed 966-974 Fisher Avenue residential development is recommended from a transportation perspective.

Reviewed By:

Christopher Gordon, P.Eng. Senior Project Manager

Appendix A

Current Peak Hour Traffic Volumes

2017-Feb-17

2017-Feb-17
Transportation Services - Traffic Services Turning Movement Count - Full Study Diagram

| FISHER AVE @ SHILLINGTON AVE |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Survey Date: Friday, July 18, 2014 |

2017-Feb-17

(()ttawa
Turning Movement Count - 15 Min U-Turn Total Report

2017-Feb-17

2017-Feb-17

 Transportation Services - Traffic Services w.o.

 $\begin{array}{ll}\text { Westbound: } & 0 \\ \text { NIS AVE }\end{array}$
\qquad

FISHER AVE

 $\begin{array}{llll}\text { 12:00 } & 12: 15 & 1 & 9 \\ \text { 12:15 } & 12: 30 & 1 & 89\end{array}$

$13: 15$	$13: 30$	2	93
			126

 2017-Feb-17

[^0](Ottawa
Turning Movement Count - Pedestrian Volume Report

2017-Feb-17

Appendix B

SYNCHRO Analysis: Existing Conditions

HCM Unsignalized Intersection Capacity Analysis

[^1]

[^2]

[^0]: Note: These volumes consists of bicycles only (no mopeds or motorcycles) and ARE NOT included in the Tuming Movement Count Summary.

 $$
 \begin{array}{ll}
 2017-\mathrm{Feb}-17 & \text { Page } 1 \text { of } 1
 \end{array}
 $$

[^1]: 966-974 Fisher 2/282017 AM 2017 Existing Synchro 9 Report

[^2]: $966-974$ Fisher 2/28/2017 AM 2017 Existing \quad Synctro 9 Report $\begin{array}{r}\text { Page 4 }\end{array}$
 䰠ま

