

Terry Fox Drive & Cope Drive Commercial Shopping Development

Transportation Impact Assessment Strategy Report

September 19, 2018

Prepared for:

98365 Ontario Limited c/o Street Properties

Prepared by:

Stantec Consulting Ltd.

Table of Contents

1.0	SCREENING1				
1.1		ARY OF DEVELOPMENT			
1.2		ENERATION TRIGGER			
1.3	_	ION TRIGGERS			
1.4		Y TRIGGERS			
1.5	_	NRY			
1.0	COMMINIA	WVI	2		
2.0	SCOPIN	NG	3		
2.1	EXISTIN	NG AND PLANNED CONDITIONS	3		
	2.1.1	Proposed Development			
	2.1.2	Existing Conditions			
	2.1.3	Planned Conditions			
2.2	STUDY	AREA AND TIME PERIODS	11		
	2.2.1	Study Area			
	2.2.2	Time Periods			
	2.2.3	Horizon Years	12		
2.3	EXEMP	TIONS REVIEW	12		
3.0		ASTING			
3.1		OPMENT-GENERATED TRAVEL DEMAND			
	3.1.1	Trip Generation and Mode Shares			
	3.1.2	Trip Distribution			
	3.1.3	Trip Assignment			
3.2		ROUND NETWORK TRAVEL DEMAND			
	3.2.1	Transportation Network Plans			
	3.2.2	Background Growth			
	3.2.3	Other Developments			
3.3		ID RATIONALIZATION			
	3.3.1	2020 Future Background Traffic			
	3.3.2	2020 Total Future Traffic			
	3.3.3	2025 Ultimate Traffic	22		
4.0	STRATI	EGY	26		
4 .0 4.1	_	OPMENT DESIGN			
r. I		Design for Sustainable Modes			
	4.1.2	Circulation and Access			
	4.1.3	New Street Networks			
4.2	PARKIN				
	4.2.1	Parking Supply			
	4.2.2	Spillover Parking			
4.3		DARY STREET DESIGN			
	4.3.1	Design Concept			
4.4		S INTERSECTIONS DESIGN			
r	4.4.1	Location and Design of Access			

	4.4.2	Intersection Control	
	4.4.3	Intersection Design	
4.5	TRANSF	PORTATION DEMAND MANAGEMENT	
	4.5.1	Context for TDM	
	4.5.2	Need and Opportunity	
	4.5.3	TDM Program	
4.6	NEIGHB	OURHOOD TRAFFIC MANAGEMENT	30
4.7	TRANSI	Т	30
	4.7.1	Route Capacity	30
	4.7.2	Transit Priority	31
4.8	REVIEW	OF NETWORK CONCEPT	31
4.9	INTERS	ECTION DESIGN	31
	4.9.1	Intersection Control	31
	4.9.2	Intersection Design	
5.0	CONCL	USION	56
	OF TABLI		
		ned Land Uses	
		Ottawa Transportation Master Plan Projects	
		round Developments	
		otions Review	
		e Trip Generation Rates	
		n Trips Generated by Land Use	
		Generated by Travel Mode	
		By Percentages	
		By and Internal Capture Trips	
	•	Distribution	
		OS Conditions (Segments)Ultimate Access Intersection Operations (Synchro)	
		Existing Intersection Operations (Synchro)	
		Existing Intersection Operations (Synchro)	
		Existing MMLOS (Terry Fox Drive / Fernbank Road)	
		Existing MMLOS (Terry Fox Drive / Cope Drive)	
		Future Background Intersection Operations (Synchro)	
		Future Background MMLOS (Terry Fox Drive / Fernbank Road)	
		Future Background MMLOS (Terry Fox Drive / Cope Drive)	
		Total Future Intersection Operations (Synchro)	
Table	21 - 2020	Total Future MMLOS (Terry Fox Drive / Fernbank Road)	48
Table	22 - 2020	Total Future MMLOS (Terry Fox Drive / Cope Drive)	49
Table	23 - 2025	Ultimate Intersection Operations (Synchro)	51
		Ultimate MMLOS (Terry Fox Drive / Fernbank Road)	
		Ultimate MMLOS (Terry Fox Drive / Cope Drive)	

LIST OF FIGURES

Figure	e 1 - Site Lo	ocation and Proposed Site Accesses	4
		sed Site Plan	
		ng Lane Configuration and Traffic Control	
Figure	e 4 - Existin	ng Pedestrian and Cycling Network	7
Figure	e 5 - Study	Area Transit Routes and Stops	8
Figure	e 6 - Existin	ng Peak Hour Traffic Volumes	9
Figure	e 7 - Backg	round Developments	11
		Pass-By Volumes	
		raffic Assignment Assumptions	
		Site Generated Volumes	
_		Site Generated Volumes	
•		Future Background Volumes	
		Total Future Volumes	
Figure	e 14 - 2025	Ultimate Volumes	25
	OF APPEN		
APPE	NDIX A	COLLISION REPORTS	A.1
APPE	NDIX B	INTERSECTION PERFORMANCE WORKSHEETS	B.1
в.1		sting	
B.2		sting with Improvements	
B.3		ure Background	
B.4		al Future	
B.5	2025 Ulti	mate	B.0
			_
ΔΡΡΕ	NDIX C	TDM CHECKI ISTS	C 1

Screening September 19, 2018

1.0 SCREENING

1.1 SUMMARY OF DEVELOPMENT

Municipal Address	
Description of Location	South Kanata, east of Terry Fox Drive, south of Cope Drive, north of Fernbank Road, and west of an existing residential development
Land Use Classification	Commercial
Development Size (units)	8 buildings
Development Size (m²)	8,332 m ² GFA (89,700 sq.ft. GFA)
Number of Accesses and Locations	Full Movement Access on Cope Drive Right-in/Right-out accesses on Terry Fox Drive Right-in/Right-out access on Fernbank Road
Phase of Development	1
Buildout Year	Fall 2020

If available, please attach a sketch of the development or site plan to this form.

1.2 TRIP GENERATION TRIGGER

Considering the Development's Land Use type and Size (as filled out in the previous section), please refer to the Trip Generation Trigger checks below.

Land Use Type	Minimum Development Size	Triggered
Single-family homes	40 units	×
Townhomes or apartments	90 units	×
Office	3,500 m²	×
Industrial	5,000 m²	×
Fast-food restaurant or coffee shop	100 m ²	×
Destination retail	1,000 m²	✓
Gas station or convenience market	75 m²	✓

^{*} If the development has a land use type other than what is presented in the table above, estimates of person-trip generation may be made based on average trip generation characteristics represented in the current edition of the Institute of Transportation Engineers (ITE) Trip Generation

If the proposed development size is greater than the sizes identified above, <u>the Trip Generation Trigger is satisfied.</u>

Screening September 19, 2018

1.3 LOCATION TRIGGERS

	Yes	No
Does the development propose a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit or Spine Bicycle Networks?	✓	
Is the development in a Design Priority Area (DPA) or Transit-oriented Development (TOD) zone? *		×

^{*}DPA and TOD are identified in the City of Ottawa Official Plan (DPA in Section 2.5.1 and Schedules A and B; TOD in Annex 6). See Chapter 4 for a list of City of Ottawa Planning and Engineering documents that support the completion of TIA).

1.4 SAFETY TRIGGERS

	Yes	No
Are posted speed limits on a boundary street are 80 km/hr or greater?	✓	
Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway?		×
Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions)?	✓	
Is the proposed driveway within auxiliary lanes of an intersection?	✓	
Does the proposed driveway make use of an existing median break that serves an existing site?		×
Is there is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?		×
Does the development include a drive-thru facility?	✓	

If any of the above questions were answered with 'Yes,' the Safety Trigger is satisfied.

1.5 SUMMARY

	Yes	No
Does the development satisfy the Trip Generation Trigger?	✓	
Does the development satisfy the Location Trigger?	✓	
Does the development satisfy the Safety Trigger?	✓	

If none of the triggers are satisfied, the TIA Study is complete. If one or more of the triggers is satisfied, the TIA Study must continue into the next stage (Screening and Scoping).

If any of the above questions were answered with 'Yes,' the Location Trigger is satisfied.

2.0 SCOPING

2.1 EXISTING AND PLANNED CONDITIONS

2.1.1 Proposed Development

This Transportation Impact Assessment (TIA) is prepared in support of a Zoning By-Law Amendment application for a proposed commercial development located at the southeast corner of Terry Fox Drive and Cope Drive in the Kanata South community of Ottawa, Ontario. The site is bound by Cope Drive to the north, existing residential to the east, Fernbank Road to the south, and Terry Fox Drive to the west.

Figure 1 illustrates the site location. The site is currently zoned as IP [2411]; the purpose of the IP – Business Park Industrial Zone is to:

- Accommodate mixed office, office-type uses and low impact, light industrial uses in a business park setting, in accordance with the Enterprise Area designations of the Official Plan or, the Employment Area or the General Urban Area designation where applicable;
- Allow in certain Enterprise or General Urban Areas, a variety of complementary uses such as recreational, health and fitness uses and service commercial (e.g. convenience store, personal service business, restaurant, automobile service station and gas bar), occupying small sites as individual occupancies or in groupings as part of a small plaza, to serve the employees of the Enterprise, Employment or General Urban Area, the general public in the immediate vicinity, and passing traffic;

The proposed development plan consists of eight commercial shopping buildings with a combined 89,700 sq.ft. of gross-floor-area (GFA).

A full movement access is proposed on Cope Drive. Three other access, two on Terry Fox Drive and one on Fernabnk Road, are proposed as right-in/right-out only access points to the subject site.

A total of 371 vehicle parking spaces are proposed on-site as part of the development.

Buildout and occupancy of the proposed development is anticipated to occur within one development phase in the Fall 2020.

As the proposed development plan is prepared as part of a Zoning By-Law Amendment application, site design details such as the number and location of bicycle parking will be identified and confirmed as part of the Site Plan Control process.

Table 1 lists the Institute of Transportation (ITE) land uses assumed for the analysis.

Figure 2 illustrates the proposed site plan.

Table 1 - Assumed Land Uses

Building	Size (sq.ft. GFA)	LUC	Assumed ITE Land Use
Α	35,000	854	Discount Supermarket
В	2,000	932	High-Turnover (Sit-down) Restaurant
Б	4,100	826	Specialty Retail
С	8,000	826	Specialty Retail
D	12,200	826	Specialty Retail
Е	15,200	826	Specialty Retail
F	2,200	932	High-Turnover (Sit-down) Restaurant
Г	4,000	826	Specialty Retail
G	4,000	912	Drive-in Bank
	750	937	Coffee / Donut Shop with Drive-Thru Window
Н	2,250 8 fueling positions	944	Gasoline / Service Station
Total	89,700 sq.ft		

Figure 1 - Site Location and Proposed Site Accesses

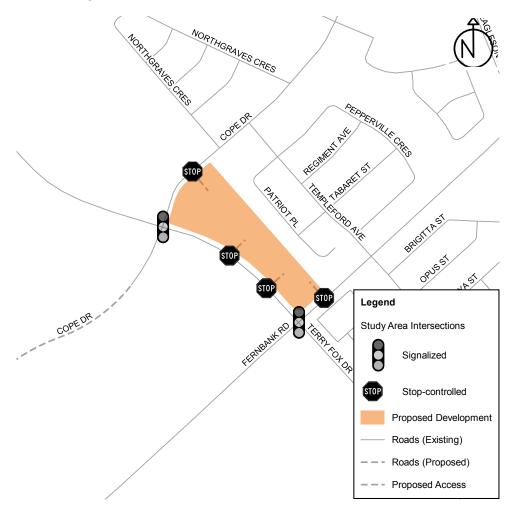
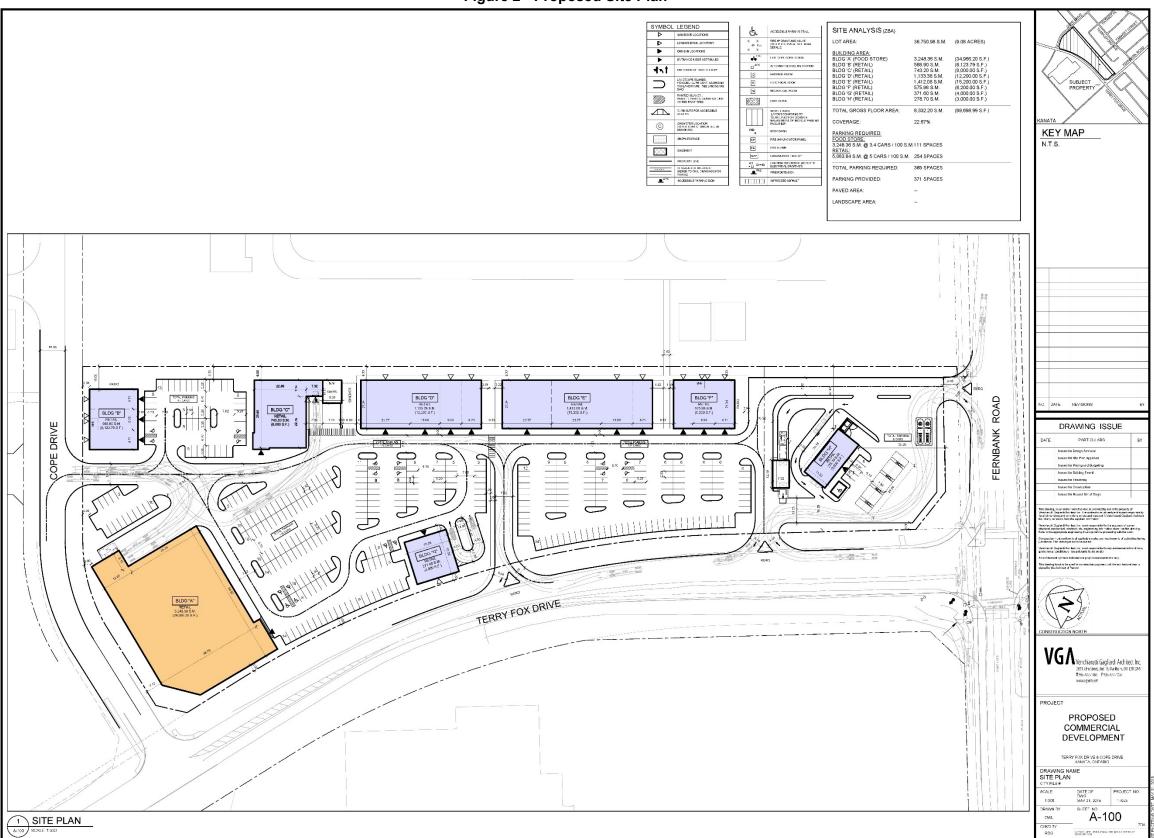



Figure 2 - Proposed Site Plan

Scoping September 19, 2018

2.1.2 Existing Conditions

2.1.2.1 Roads and Traffic Control

The boundary roads are as follows:

Terry Fox Drive Terry Fox Drive is a municipally-owned, two-lane undivided arterial roadway with a posted

speed limit of 80 kph across the frontage of the proposed site.

Fernbank Road Fernbank Road is a municipally-owned, two-lane undivided arterial roadway with a posted

speed limit of 60 kph across the frontage of the proposed site.

Cope Drive Cope Drive is a municipally-owned, two-lane collector roadway with a posted speed limit of

50 kph across the frontage of the proposed site.

The proposed development is adjacent to the signalized intersections of Terry Fox Drive and Cope Drive, as well as Terry Fox Drive and Fernbank Road.

Nearby intersections also include the intersection of Cope Drive and Northgraves Crescent (Stop-Control on minor approach), Cope Drive and Templeford Avenue (All-Way Stop Control), and the intersection of Fernbank Road at Templeford Ave / Romina Street (Two-Way Stop Control on minor approaches).

The nearby Kanata SmartCentre development is also served by nearby right-in/right-out access on Terry Fox Drive.

Figure 3 illustrates the existing lane configuration and traffic control.

Terry Fox Drive

Proposed

Development

Legend

Lane Geometry

Channelized right turn

Stop sign

Traffic control signal

Figure 3 - Existing Lane Configuration and Traffic Control

2.1.2.2 Walking and Cycling

Cycle Track Suggested Route

Figure 4 illustrates the existing pedestrian and cycling facilities.

Pedestrian Network (existing)

Evisting Sidew alks and Paths

Existing Cycling Network

Bike Lane

Path

Paved Shoulder

Figure 4 - Existing Pedestrian and Cycling Network

Source: geoOttawa, accessed March 2018

Scoping September 19, 2018

2.1.2.3 Transit

The proposed development is currently serviced by the following routes:

- Route 161 Route 161 is a local route which operates between Terry Fox station and the Bridlewood community.
- Route 167 Route 167 is a local route which operates between Terry Fox Station and the Blackstone community.
- Route 168 Route 168 is a local route which operates between Terry Fox Station and the Bridlewood community during selected time periods.
- Route 252 Route 252 is an express route which operates between Fernbank Road and Mackenzie King Bridge in the downtown core during the weekday peak hours only.

The entire site is located within 400 metres of three existing on-street transit stops.

Figure 5 illustrates the transit routes and stops.

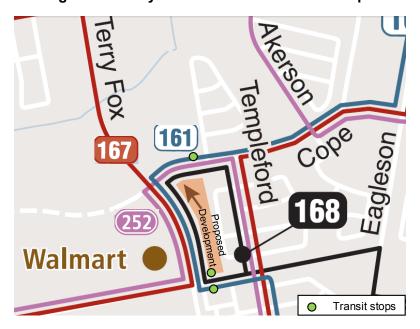


Figure 5 - Study Area Transit Routes and Stops

Source: OC Transpo System Map, accessed March 2018

2.1.2.4 Traffic Management Measures

No traffic management measures are provided near the site.

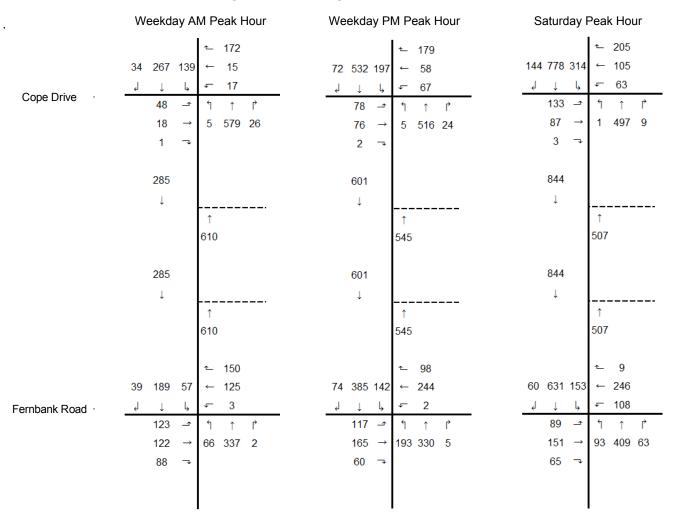

2.1.2.5 Traffic Volumes

Figure 6 illustrates the existing traffic volumes at the study area intersections during the weekday AM, weekday PM, and Saturday peak hour, respectively. Traffic counts were obtained from the Van Gaal Lands Community Transportation Study (CTS)(August 2015); the weekday traffic counts were conducted by the City in 2014 and the Saturday traffic counts were conducted by the consultant in 2015.

Scoping September 19, 2018

Figure 6 - Existing Peak Hour Traffic Volumes

2.1.2.6 Collision History

Terry Fox Drive at Cope Drive experienced 27 collisions over a five-year period between 2013 and 2017. Out of the 27 recorded collisions,11 were classified as rear-end collisions (41%), 9 were classified as turning movement collisions (33%), and 4 were classified as angle collisions (15%). The remaining collisions were classified as sideswipe and single vehicle collisions. None of the recorded collisions involved pedestrians or cyclists.

The recorded collisions involved 22 property damage only (81%) and 5 non-fatal injury (19%) indicating low impact speeds.

Terry Fox Drive and Fernbank Road experienced 26 collisions over a five-year period between 2013 and 2017. Out of the 26 recorded collisions, 8 were classified as angle collisions (31%), 8 were classified as rear-end collisions (31%), 4 were classified as turning movement collisions (15%), and 3 were classified as sideswipe collisions (12%).

Scoping September 19, 2018

The remaining collisions were classified as single vehicle and "other" collisions. One of the recorded collisions involved a cyclist who suffered non-fatal injuries.

The recorded collisions involved 19 property damage only (73%) and seven non-fatal injury (17%) indicating low impact speeds.

Based on the available data, there does not appear to be any prevailing safety issues at study area intersections.

Appendix A contains detailed summary reports.

2.1.3 Planned Conditions

2.1.3.1 Road Network Modifications

Table 2 identifies the City of Ottawa Transportation Master Plan projects located near of the study area.

Table 2 - City of Ottawa Transportation Master Plan Projects

Project	Description	TMP Phase
Terry Fox Drive Widening	Widen Terry Fox Drive from 2 to 4 lanes between Eagleson Road and Winchester Drive	Network Concept (i.e. Beyond 2031 horizon)
Fernbank Road Widening	Widen Fernbank Road from 2 to 4 lanes between Stittsville Main Street and Terry Fox Drive.	Network Concept (i.e. Beyond 2031 horizon)

2.1.3.2 Future Background Developments

Table 3 lists the background developments assumed to occur between 2018 and 2025. **Figure 7** illustrates the location of these background developments.

Table 3 - Background Developments

Development	Size	Assumed Build-Out	
Blackstone Phases 2, 3, and 4	Total: 427 single family homes 285 semis/townhomes Assume 1/3 built-out as of 2018 traffic counts	2020 (2015 originally in TIS)	
Cope Lands	260 high-rise residential condo units	2020	
Blackstone Phases 4-8	423 single family homes 376 townhomes 156 apartment 1 high school (1,916 students) 1 elementary school (650 students)	2025	
Van Gaal Lands (excluding the proposed development)	255 townhomes 600,000 sq.ft. employment/office	2025	

Van Gaal Lands Cope Lands Blackstone Phases 2, 3 **Proposed Development** Blackstone Phases 4-8 Legend Roads (Existing) Major - Roads (Proposed) - Proposed Access

Figure 7 - Background Developments

2.2 STUDY AREA AND TIME PERIODS

2.2.1 Study Area

The study area was limited to the following intersections:

- Terry Fox Drive and Fernbank Road;
- Terry Fox Drive and Cope Drive;
- Cope Drive and Site Access; and,
- Fernbank Road and Site Access (right-in/right-out).

Scoping September 19, 2018

2.2.2 Time Periods

The scope of the transportation assessment includes the following analysis time periods:

- Weekday AM peak hour of roadway;
- Weekday PM peak hour of roadway; and,
- Saturday peak hour of generator.

2.2.3 Horizon Years

The scope of the transportation assessment includes the following horizon years:

- 2018 existing conditions;
- 2020 future background conditions;
- 2020 total future conditions (site build-out); and
- 2025 total future conditions (5 years beyond build-out).

2.3 EXEMPTIONS REVIEW

Table 4 summarizes the Exemptions Review table from the City of Ottawa's 2017 Transportation Impact Assessment Guidelines.

Table 4 - Exemptions Review

Module	Element	Exemption Considerations	Exempted?			
Design Review Component						
4.1 Development	4.1.2 Circulation and Access	Only required for site plans	No			
Design	4.1.3 New Street Networks	Only required for plans of subdivision	Yes			
4.2 Daylein a	4.2.1 Parking Supply	Only required for site plans	No			
4.2 Parking	4.2.2 Spillover Parking	Only required for site plans where parking supply is 15% below unconstrained demand	Yes			
Network Impact Comp	onent					
4.5 Transportation Demand Management	All Elements	Not required for site plans expected to have fewer than 60 employees and/or students on location at any given time	No			
4.6 Neighbourhood Traffic Management	4.6.1 Adjacent Neighbourhoods	Only required when the development relies on local or collector streets for access and total volumes exceed ATM capacity thresholds	Yes			
4.8 Network Concept		Only required when proposed development generates more than 200 person-trips during the peak hour in excess of the equivalent volume permitted by established zoning	Yes			

Forecasting September 19, 2018

3.0 FORECASTING

3.1 DEVELOPMENT-GENERATED TRAVEL DEMAND

3.1.1 Trip Generation and Mode Shares

Table 5 outlines the assumed land uses and the vehicle trip generation rates for each land use.

The ITE *Trip Generation Manual*, 9th edition, were used to forecast auto trip generation for the proposed development. The average trip generation rate, where available, was adopted for each land use.

As the Specialty Retail land use (LUC 826) does not have an adequate Saturday Peak Hour trip generation rate due a limited survey size, the adopted rate of 5.18 was derived by extrapolation using the Saturday Total Trip generation rate (42.04) in conjunction with the Weekday Total Trip generation rate (44.04) and the AM Peak Hour of Generator rate (5.43).

The Fitted Trip Generation equations were adopted for the following rates: the PM Peak Hour rate for Discount Supermarket (LUC 854), and the Saturday Peak Hour rate for Coffee/Donut Shop with Drive-Thru (LUC 937).

As per the City of Ottawa TIA Guidelines, the auto trip generation rates of the proposed development were converted to person trip generation rates using a factor of 1.28 representing auto occupancy and transit modal shares.

Table 6 documents the anticipated development-generated person trips for each land use.

Table 5 - Vehicle Trip Generation Rates

LUC	Land Use	Size Independent Variable	Weekda	Weekday PM Peak Hour			Saturday Peak Hour				
			In	Out	Rate	ln	Out	Rate	In	Out	Rate
826	Specialty retail	43.5 (1000 sq.ft. GFA)	49%	51%	3.37	44%	56%	2.89	50%	50%	5.18
854	Discount supermarket	35.0 (1000 sq.ft. GFA)	58%	42%	2.53	50%	50%	9.28	50%	50%	9.65
912	Drive-in bank	4.0 (1000 sq.ft. GFA)	57%	43%	12.08	50%	50%	24.30	51%	49%	26.31
932	High-Turnover Sit-down Restaurant	4.2 (1000 sq.ft. GFA)	55%	45%	10.81	60%	40%	9.85	53%	47%	14.07
937	Coffee / donut shop with drive-thru window	0.75 (1000 sq.ft. GFA)	51%	49%	100.58	50%	50%	42.8	50%	50%	107.77
946	Service Station with Convenience Market and Car Wash	8 Fueling Positions	51%	49%	11.84	51%	49%	13.86	50%	50%	19.46

Forecasting September 19, 2018

Table 6 - Person Trips Generated by Land Use

LUC	Land Use	Trip Conversion	Wee	Weekday AM Peak Hour			Weekday PM Peak Hour			Saturday Peak Hour		
		Conversion	In	Out	Total	In	Out	Total	In	Out	Total	
		Auto Trips	72	75	147	55	71	126	113	113	226	
826	Specialty retail	Conversion Factor	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.28	
		Person Trips	92	96	188	70	91	161	145	145	290	
		Auto Trips	52	37	89	162	162	324	169	169	338	
854	Discount supermarket	Conversion Factor	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.28	
		Person Trips	66	48	114	207	207	414	216	216	432	
		Auto Trips	27	21	48	49	49	98	54	51	105	
912	Drive-in bank	Conversion Factor	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.28	
		Person Trips	35	26	61	63	63	126	69	66	135	
		Auto Trips	25	20	45	25	16	41	31	28	59	
932	High-Turnover (Sit- down) Restaurant	Conversion Factor	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.28	
		Person Trips	32	26	58	31	21	52	40	35	75	
		Auto Trips	38	37	75	16	16	32	45	45	90	
937	Coffee / donut shop with drive-thru window	Conversion Factor	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.28	
		Person Trips	49	47	96	20	20	40	58	58	116	
	Gasoline / Service	Auto Trips	48	47	95	57	54	111	78	78	156	
946	Station with Convenience Market	Conversion Factor	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.28	1.28	
	and Car Wash	Person Trips	62	60	122	72	70	142	100	100	200	
	Total	Auto Trips	262	237	499	363	369	732	490	484	974	
	IOlai	Person Trips	336	303	639	464	472	936	628	620	1248	

The assumed travel mode shares of the proposed development are consistent with the modal share assumptions adopted in the *Van Gaal Lands Community Transportation Study* report (*August 2015*).

Table 7 outlines the anticipated trip generation potential of the proposed development by travel mode based on assumed mode shares.

Forecasting September 19, 2018

Table 7 - Trips Generated by Travel Mode

LUC	Land Use	Trin Comus	roion	Weekd	ay AM Pea	ak Hour	Weekd	ay PM Pea	ık Hour	Saturday Peak Hour		
LUC	Land Use	Trip Conve	rsion	In	Out	Total	In	Out	Total	In	Out	Total
	Specialty	Auto	55%	51	53	104	39	50	89	80	80	160
826		Passenger	15%	14	14	28	11	14	25	22	22	44
020	Retail	Walk / Bike	10%	9	10	19	7	9	16	15	15	30
		Transit	20%	18	19	37	14	18	32	29	29	58
		Auto	55%	36	26	62	114	114	228	119	119	238
854	Discount	Passenger	15%	10	7	17	31	31	62	32	32	64
004	Supermarket	Walk / Bike	10%	7	5	12	21	21	42	22	22	44
		Transit	20%	13	10	23	42	42	84	43	43	86
		Auto	55%	19	15	34	35	35	70	38	36	74
912	Drive-in	Passenger	15%	5	4	9	9	9	18	10	10	20
912	Bank	Walk / Bike	10%	4	3	7	6	6	12	7	7	14
		Transit	20%	7	5	12	13	13	26	14	13	27
	High Turn- Over Restaurant	Auto	55%	17	14	31	17	12	29	22	19	41
932		Passenger	15%	5	4	9	5	3	8	6	5	11
932		Walk / Bike	10%	3	3	6	3	2	5	4	4	8
		Transit	20%	6	5	11	6	4	10	8	7	15
	Coffee /	Auto	55%	27	26	53	11	11	22	32	32	64
937	Donut Shop with Drive-	Passenger	15%	7	7	14	3	3	6	9	9	18
937	Thru	Walk / Bike	10%	5	5	10	2	2	4	6	6	12
	Window	Transit	20%	10	9	19	4	4	8	12	12	24
	Gasoline /	Auto	75%	47	45	92	54	52	106	75	75	150
	Service	Passenger	15%	9	9	18	11	10	21	15	15	30
946	Station with Convenience	Walk / Bike	5%	3	3	6	4	3	7	5	5	10
	Market and Car Wash	Transit	5%	3	3	6	4	3	7	5	5	10
		Aut	o Trips	197	179	376	270	274	544	366	361	727
	Total	Passenge	er Trips	50	45	95	70	70	140	94	93	187
	าบเลา	Walk / Bik	e Trips	34	32	66	46	47	93	64	64	128
		Trans	it Trips	66	60	126	92	94	186	126	124	250

A portion of the auto trips will be 'pass-by' in nature. Pass-by trips represent intermediate stops between trip origins and destinations that are drawn from existing traffic already on the roadway. While the total number of auto trips generated by a given development remains the same, the turning volumes at site accesses require adjustments to reflect the turning movements of pass-by traffic.

Table 8 summarizes the adopted pass-by percentages that were obtained from the ITE Trip Generation Manual.

Table 8 - Pass-By Percentages

LUC	Pass-By %	Notes
826 - Specialty Retail	30%	Average of AM & PM Peaks
854 - Discount Supermarket	23%	PM Peak
912 - Drive-in Bank	47%	PM Peak
932 - High Turn-Over Restaurant	43%	PM Peak
937 - Coffee / Donut Shop with Drive-Thru Window	50%	LUC 934, Average of AM & PM Peaks
946 - Gasoline / Service Station with Convenience Market and Car Wash	59%	LUC 945, Average of AM & PM Peaks

Forecasting September 19, 2018

Due to the mixed commercial composition of the proposed development, a portion of the trips generated are also anticipated to be captured internally. Internal capture accounts for synergies developed within a mixed-use development, this is particularly prevalent in developments that consist of different commercial retail land uses. An internal capture rate of 15% was assumed for the Specialty Retail (LUC 826), Drive-in Bank (LUC 912), and the Gasoline station (LUC 946) to account for the anticipated synergy developed between these land uses and the assumed anchor, the Discount Supermarket (LUC 854) land use. An internal capture rate of 20% was assumed for the High Turn-Over Restaurant (LUC 932) and Coffee / Donut Shop with Drive-Thru Window (LUC 937) to account for the anticipated synergy developed between these land uses and the assumed anchor, the Discount Supermarket (LUC 854) land use.

Table 9 outlines the pass-by, internal capture, and new auto trips anticipated for the proposed development.

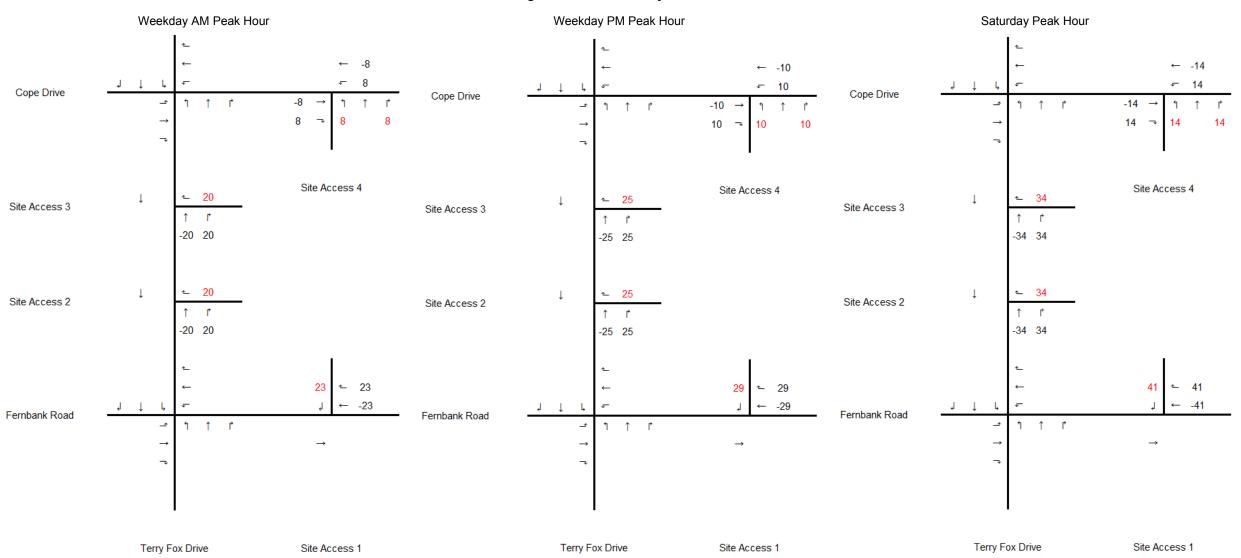

Figure 8 illustrates the pass-by trips the proposed development is anticipated to draw from passing traffic.

Table 9 - Pass-By and Internal Capture Trips

LUC	Land Use	Trip Conversion		Week	day AM Hour	Peak	Weel	kday PN Hour	l Peak	Saturday Peak Hour		
	Zana 000			In	Out	Total	In	Out	Total	In	Out	Total
		Auto Trips		51	53	104	39	50	89	80	80	160
000	Consists Datail	Pass-By	30%	16	16	32	13	13	26	24	24	48
826	Specialty Retail	Internal Capture	15%	8	8	16	6	8	14	12	12	24
		New Auto	Trips	27	29	56	20	29	49	44	44	88
		Auto Trips		36	26	62	114	114	228	119	119	238
854	Discount	Pass-By	23%	7	7	14	26	26	52	27	27	54
004	Supermarket	Internal Capture	0%	0	0	0	0	0	0	0	0	0
		New Auto	Trips	29	19	48	88	88	176	92	92	184
		Auto Trips		19	15	34	35	35	70	38	36	74
912	Drive-in Bank	Pass-By	47%	8	8	16	16	16	32	17	17	34
912	Drive-in bank	Internal Capture	15%	3	2	5	5	5	10	6	5	11
		New Auto	Trips	8	5	13	14	14	28	15	14	29
		Auto Trips		17	14	31	17	12	29	22	19	41
932	High Turn-Over Restaurant	Pass-By	43%	7	7	14	6	6	12	9	9	18
932		Internal Capture	20%	3	3	6	3	2	5	4	4	8
		New Auto	Trips	7	4	11	8	4	12	9	6	15
	0 " 1 " 1	Auto Trips		27	26	53	11	11	22	32	32	64
937	Coffee / Donut Shop with Drive-	Pass-By	50%	13	13	26	6	6	12	16	16	32
931	Thru Window	Internal Capture	20%	5	5	10	2	2	4	6	6	12
		New Auto	Trips	9	8	17	3	3	6	10	10	20
	Gasoline / Service	Auto Trips		47	45	92	54	52	106	75	75	150
946	Station with Convenience	Pass-By	59%	27	27	54	31	31	62	44	44	88
946	Market and Car	Internal Capture	15%	7	7	14	8	8	16	11	11	22
	Wash	New Auto	Trips	13	11	24	15	13	28	20	20	40
		Auto Trips		197	179	376	270	274	544	366	361	727
	Total	Pass-By		78	78	156	98	98	196	137	137	274
	iotai	Internal Capture		26	25	51	24	25	49	39	38	77
		New Auto	Trips	93	76	169	148	151	299	190	186	376

Figure 8 - 2020 Pass-By Volumes

Forecasting September 19, 2018

3.1.2 Trip Distribution

Trip distribution assignments take into consideration the location and proximity of existing and planned residential developments in the area. It is assumed that the proposed commercial development will cater to existing nearby residential communities to the east (i.e. Bridelwood-Meadows) and north-east (i.e. Glen Cairn-Kanata South Business Park), as well as to growing communities to the west in Stittsville including the Blackstone residential development.

Table 10 summarizes the assumed trip distribution for the proposed development. The distribution of traffic to / from the proposed is derived from the *TRANS Committee's 2011 Origin-Destination (O-D) Summary* for the Kanata-Stittsville District, in combination with other sources and engineering judgement.

Via (to/from) **Terry Fox Terry Fox Fernbank** Fernbank Drive Drive Road Road North 15% 20%1 35% **East** 35% 15% 5% 15% South 15% 10% West 15% 15% 30% Total 100% 15% 25% 15% 15%

Table 10 - Trip Distribution

3.1.3 Trip Assignment

Site generated trips were assigned to the study area road network based on the trip distribution assumptions outlined in **Table 10**. New site trips are assigned to the road network, pass-by trips (as outlined in **Figure 8**), were then added to develop the net site trips generated by the proposed development.

Figure 9 outlines site assignment assumptions.

Figure 10 illustrates new site generated trips, prior to accounting for pass-by, during the AM, PM and Saturday peak hours.

Figure 11 illustrates the net site generated trips for the proposed development after accounting for pass-by trips, during the AM, PM and Saturday peak hours.

^{1.} Trips made via Eagleson Drive

Figure 9 - Site Traffic Assignment Assumptions

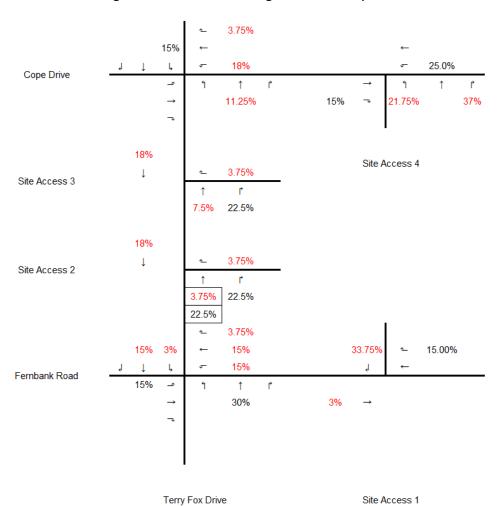


Figure 10 - New Site Generated Volumes

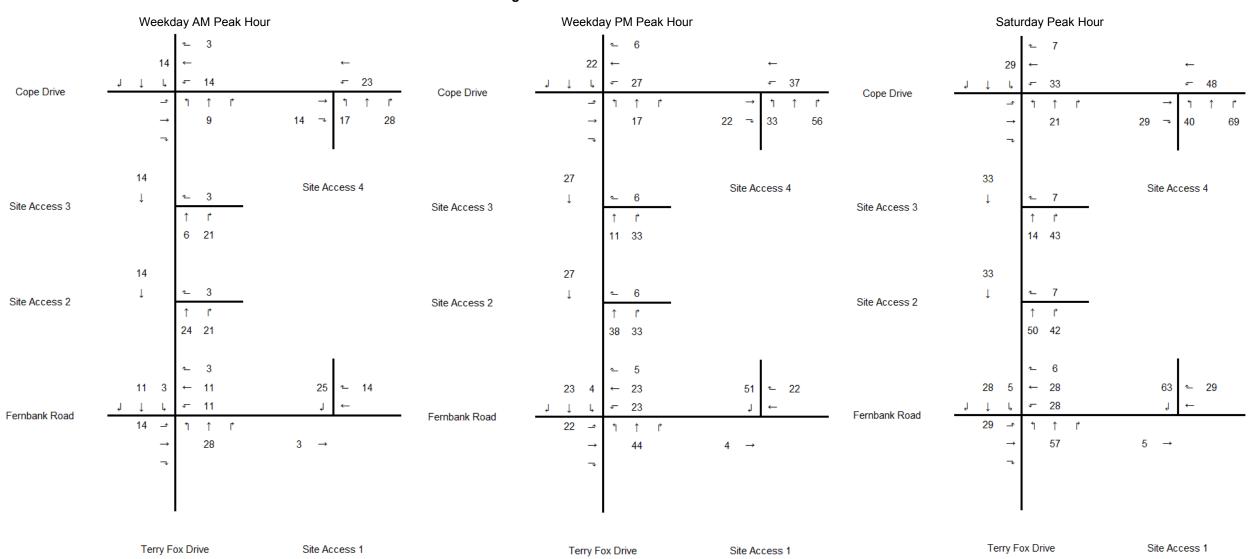
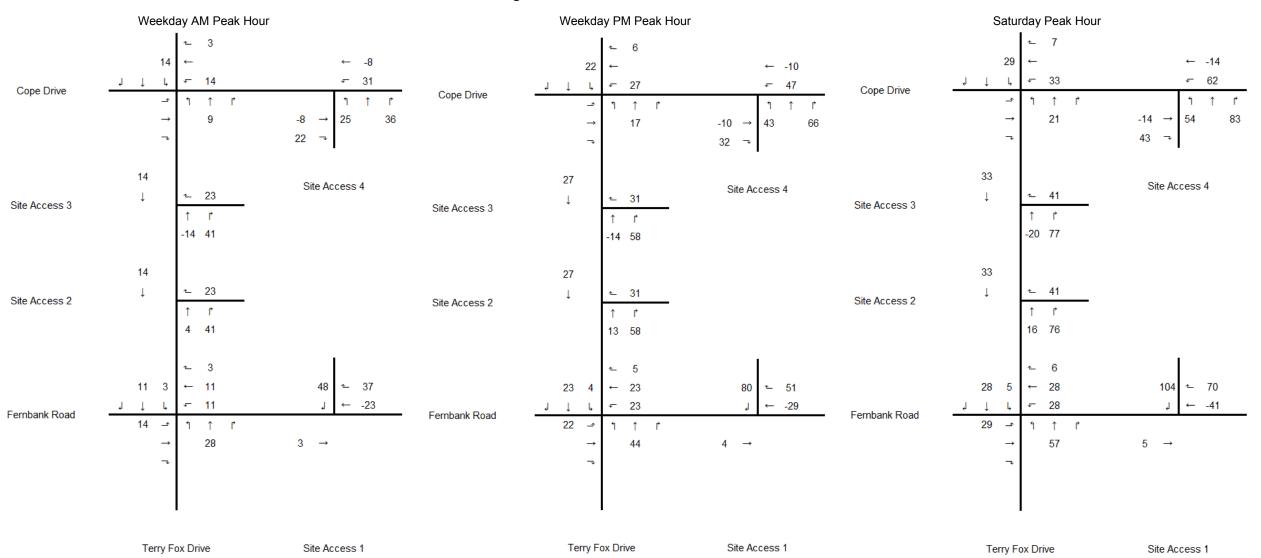



Figure 11 - Net Site Generated Volumes

Forecasting September 19, 2018

3.2 BACKGROUND NETWORK TRAVEL DEMAND

3.2.1 Transportation Network Plans

As outlined in **Table 2** in **section 2.1.3.1**, a number of road network projects are expected to occur near the proposed development.

Under the TMP Network Concept, Terry Fox Drive is planned to be widened from 2 to 4 lanes between Eagleson Road and Winchester Drive. Under the same Network Concept, Fernbank Road is planned to be widened from 2 to 4 lanes between Stittsville Main Street and Terry Fox Drive. These improvements are currently proposed to be implemented beyond 2031 and were, therefore, not considered in this study.

3.2.2 Background Growth

The existing traffic counts were grown at a rate of 1% annually, non-compounding, to represent 2020 background traffic volumes. Through movements at

3.2.3 Other Developments

As outlined in **Table 3** in **section 2.1.3.2**, a number of background developments are assumed to occur between 2018 and 2025. The site trips of these background developments were explicitly accounted for in this study.

3.3 DEMAND RATIONALIZATION

3.3.1 2020 Future Background Traffic

Figure 12 illustrates the 2020 future background weekday AM, weekday PM, and Saturday peak hour traffic volumes. The background traffic includes traffic from the developments listed in **Table 3**.

The 2020 future background traffic demands are not expected to exceed capacity and therefore demand rationalization was not required.

3.3.2 2020 Total Future Traffic

Figure 13 illustrates the 2020 total future weekday AM, weekday PM, and Saturday peak hour traffic volumes.

The 2020 total future traffic demands are not expected to exceed capacity and therefore demand rationalization was not required.

3.3.3 2025 Ultimate Traffic

Figure 14 illustrates the 2025 ultimate weekday AM, weekday PM, and Saturday peak hour traffic volumes.

The 2025 ultimate traffic demands are not expected to exceed capacity and therefore demand rationalization was not required.

Figure 12 - 2020 Future Background Volumes

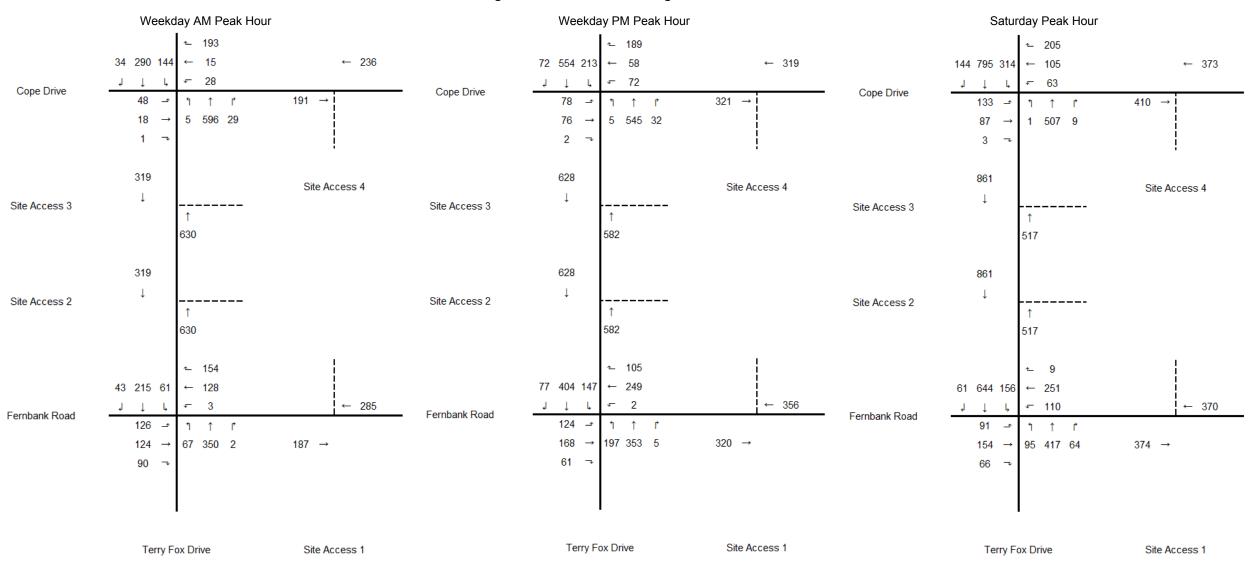


Figure 13 - 2020 Total Future Volumes

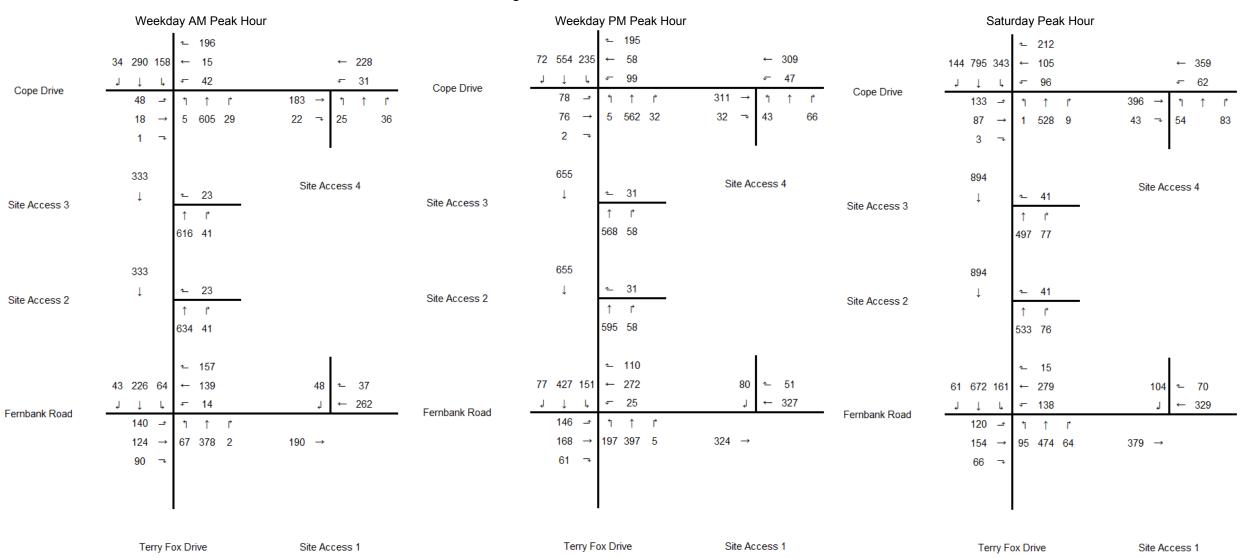
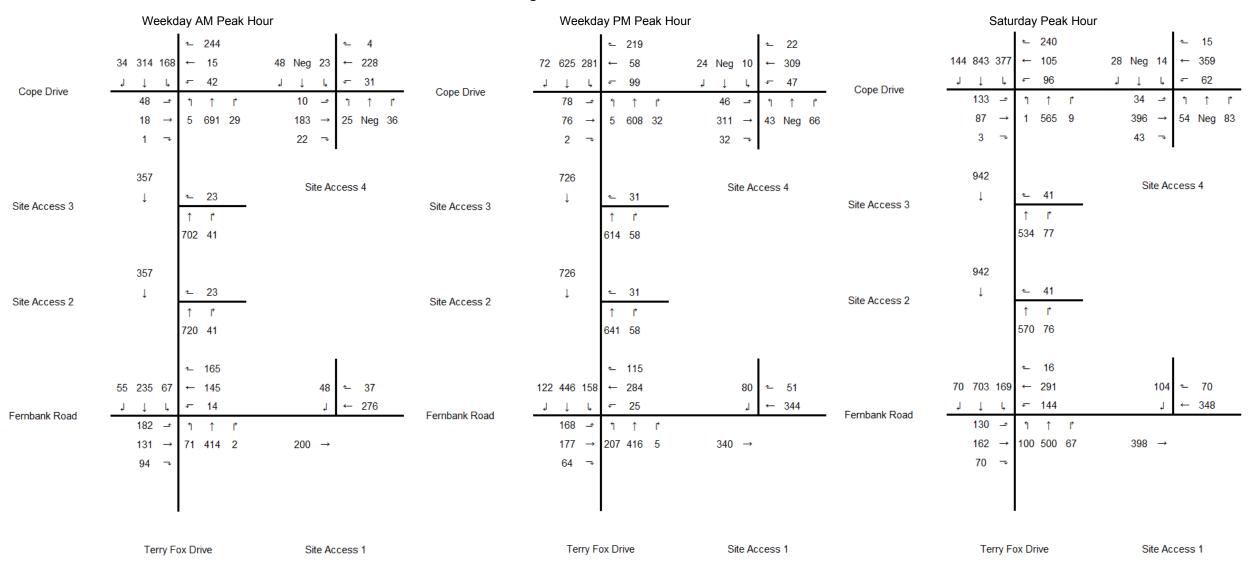



Figure 14 - 2025 Ultimate Volumes

Strategy September 19, 2018

4.0 STRATEGY

4.1 DEVELOPMENT DESIGN

4.1.1 Design for Sustainable Modes

Bicycle facilities: The proposed plan is currently being submitted as part of a Zoning By-Law amendment and does identify the number and location of bicycle parking spaces provided on site. It is anticipated that bicycle parking information will be provided in sufficient detail as part of the Site Plan Control process.

The provision of bicycle facilities will need to conform to Section 111 of the City of Ottawa Parking By-Law.

Parking areas: A total of 371 parking spaces are provided. Accessible parking spaces are provided adjacent to each building entrance.

Transit facilities: Transit stops for OC Transpo Routes 161, 168, and 681 are currently provided at the intersection of Terry Fox Drive and Fernbank Road, and a transit stop for OC Transpo Routes 161, 252, and 681 is provided along Cope Drive north of the proposed development. Pedestrian sidewalks and intersection crossings in the direct vicinity of the proposed development provide convenient access to transit stops.

4.1.2 Circulation and Access

A full movement access is proposed at the Cope Drive access to the site. The other two accesses on Terry Fox Drive, and access on Fernbank Road are proposed as right-in/right-out only intersections.

Pedestrian access to the proposed development is facilitated through the existing sidewalks north and south of the proposed development. It is anticipated that the requirements for a new sidewalk facility along the east side of Terry Fox Drive will be determined as part of the Site Plan Control process.

4.1.3 New Street Networks

Not applicable; exempted during screening and scoping.

4.2 PARKING

4.2.1 Parking Supply

Auto Parking - As per City of Ottawa Zoning By-law 2016-249 (Sections 101 and 102), the minimum parking space rate requirements is 3.4 spaces per 100 m² of gross floor area for general retail and 10 spaces per 100 m² of gross floor applies for restaurants. Based on the proposed land uses, a minimum of 305 parking spaces are required. The proposed plan, which is submitted as part of Zoning By-Law Amendment, identifies a total of 371 parking spaces.

Bicycle Parking – As per City of Ottawa Zoning By-law 2016-249 (Section 111), the minimum bicycle parking rate of 1 bicycle parking spaces per 250 m² of gross floor area applies. A total of 36 bicycle parking spaces are required.

Strategy September 19, 2018

4.2.2 Spillover Parking

Not applicable; exempted during screening and scoping.

4.3 BOUNDARY STREET DESIGN

4.3.1 Design Concept

The roadway segment multi-modal level of service (MMLOS) was evaluated for Terry Fox Drive, Fernbank Road, and Cope Drive to assist with developing a design concept that maximizes the achievement of the MMLOS objectives. The MMLOS targets for the "General Urban Area" policy area was adopted for the study area roadways.

Terry Fox Drive, Fernbank Road, and Cope Drive are subject to a Pedestrian LOS (PLOS) target of C.

The Ultimate Cycling Network from the City of Ottawa *Transportation Master Plan* (2013) designates Terry Fox Drive and Fernbank Road as Spine Cycling Routes and Cope Drive as a Local Cycling Route. These roads are therefore subject to Bicycle Level of Service (BLOS) targets of C and B, respectively.

Within the study area limits, Terry Fox Drive, Fernbank Road, and Cope Drive do not currently feature any rapid transit or continuous transit priority measures and are therefore subject to a Transit LOS (TLOS) target of D.

Terry Fox Drive is designated as a truck route and is therefore subject to Truck LOS (TrLOS) target of D. None of the other boundary roads are truck routes and are therefore not subject to TrLOS targets.

Table 10 presents the MMLOS conditions for roadway segments.

Terry Fox Drive and Fernbank road currently exhibit pedestrian levels of service (PLOS) below the PLOS target of C identified for developments in a General Urban Area. Based on the MMLOS guidelines, roadway segment PLOS is largely influenced by motor vehicle traffic volumes (AADT) and operating speeds. Terry Fox Drive and Fernbank Road currently operate with traffic volumes above 3,000 AADT and operating speeds above 30 km/hr, which results in a poor PLOS. Reducing the speeds on Terry Fox Drive and Fernbank Road to 60 km/hr and 50 km/hr, respectively, is expected to result a PLOS that meets the target. Cope Drive currently operates with a PLOS that satisfies the PLOS target.

Terry Fox Drive currently operates with a Bicycle LOS (BLOS) below its respective target. Based on the MMLOS guidelines, road segment BLOS is influenced by the number of travel lanes, operating speeds, the availability and width of dedicated cycling facilities, and roadway operating speeds. Reducing the speed on Terry Fox Drive to 60 km/hr would yield a BLOS that meets the target. Fernbank Road and Cope Drive currently operate with a BLOS that satisfies their respective BLOS targets.

Strategy September 19, 2018

Table 11 - MMLOS Conditions (Segments)

Segment		Terry Fox Drive (arterial, spine cycling route)		Fernban (arterial, spi rou	ine cycling	Cop (Collec cyclir	Target		
		Existing	Build-out	Existing	Build-out	Existing	Build-out		
	Sidewalk width (m)	2	**	2	**	2	**		
_	Boulevard width (m)	~ 6.5	**	None	**	2	**		
stria	AADT > 3000?	Yes	**	Yes	**	Yes	**		
Pedestrian	On-Street parking	No	**	No	**	No	**	С	
ď	Operating speed (kph)	80	**	60	**	50	**		
	Level of Service	D	**	E	**	С	**		
	Type of facility	Bike Lane	**	Bike Lane	**	Mixed	**		
	Number of travel lanes	2	**	2	**	2	**		
υ	Bike lane width (m)	2	**	2	**	N/A	**		
Bicycle	Operating speed (kph)	80	**	60	**	50	**	C/C/B	
ā	Centreline (yes/no)	Yes	**	Yes	**	No	**		
	Bike lane blockage freq.	Rare	**	Rare	**	N/A	**		
	Level of Service	E	**	С	**	В	**		
:=	Type of facility	Mixed	**	Mixed	**	Mixed	**		
Transit	Parking/driveway friction	Low	**	Low	**	Low	**	D/D/D	
F	Level of Service	D	**	D	**	D	**		
_	Curb lane width (m)	3.5m	**						
Truck	Number of travel lanes	2	**	Not app	licable	Not applicable		D	
_	Level of Service	С	**						

Strategy September 19, 2018

4.4 ACCESS INTERSECTIONS DESIGN

4.4.1 Location and Design of Access

A full movement site access is proposed on Cope Drive approximately 125 m east of the intersection of Terry Fox Drive at Cope Drive. This exceeds the City's minimum separation distance requirement of 18 m between the private approach and the nearest intersecting street line, as outlined in the Private Approach By-law (No. 2003-447, S.25, L.) It is anticipated that the location of the Cope Drive site access will be aligned with the site access of the proposed development on the north side.

The two site accesses on Terry Fox Drive are proposed to feature right-in right-out channels similar to those currently provided at the nearby commercial site on the west side of Terry Fox Drive.

The proposed access on Fernbank Road is also proposed to feature a right-in right-out channel. It is recommended that the restricted right-in/right-out operation at this site access location be enforced through the extension of the existing median treatment on the east leg of the Terry Fox Drive and Fernbank Road intersection as opposed to channelization at the site access. The extension of the existing intersection median at the east leg of the intersection is expected to better reinforce the intended right-in/right-out operation at Fernbank Road site access, it is also expected to better accommodate pedestrian crossing at this location.

The location and design treatments of proposed site accesses will be confirmed through the Site Plan Control process.

4.4.2 Intersection Control

The site access is a low-volume driveway located on a collector roadway and therefore a stop control on the minor site access approach is appropriate.

4.4.3 Intersection Design

Table 12 summarizes the Synchro intersection analysis results for the site access intersection under 2025 Ultimate Traffic conditions. The analysis indicates that the intersections will operate acceptably with a stop-control on the minor approach.

Appendix B contains the intersection performance worksheets.

Table 12 - 2025 Ultimate Access Intersection Operations (Synchro)

Intersection	Intersection Control	Approach / Movement		Approach / Movement LOS		Delay (s)	Queue 95 th (veh)
	Minor Approach Stop-Control	EB	Left / Through / Right	A (A) [A]	0.01 (0.04) [0.03]	0.4 (1.0) [0.6]	0 (0.1) [0.1]
Cope Drive		WB	Left / Through / Right	A (A) [A]	0.02 (0.04) [0.06]	0.9 (1.0) [1.2]	0.1 (0.1) [0.2]
at Site		NB	Left / Through / Right	B (B) [C]	0.11 (0.28) [0.43]	12.0 (14.8) [24.0]	0.4 (1.2) [2.1]
Access 4		SB	Left / Through / Right	B (C) [C]	0.12 (0.10) [0.15]	11.7 (17.5) [18.2]	0.4 (0.3) [0.5]
			Overall Intersection	A (A) [A]	-	3.2 (3.6) [4.6]	-

Strategy September 19, 2018

4.5 TRANSPORTATION DEMAND MANAGEMENT

4.5.1 Context for TDM

The proposed development is owned by 98365 Ontario Limited c/o Street Properties. Property management arrangements and tenants are not known at this time. Tenants will comprise of different retailers and restaurant chains and it is anticipated that trips destined to the proposed development will be primarily made by the auto mode, particularly during the AM peak, PM peak, and Saturday peak periods.

4.5.2 Need and Opportunity

In order to support the transit and active modal share targets outline in **Table 7**, cycling and transit modes will need to be supported. This includes the provision of bicycle parking, transit service coverage as well as ensuring convenient pedestrian connections are provided to sidewalk facilities leading to bus stop locations.

4.5.3 TDM Program

The City of Ottawa TDM Checklists were used to determine what TDM measures could be implemented based on the available information. TDM measures and requirements will be verified as part of the Site Plan Control process.

The TDM checklists are contained in **Appendix C**.

4.6 NEIGHBOURHOOD TRAFFIC MANAGEMENT

Not applicable; exempted during screening and scoping.

4.7 TRANSIT

4.7.1 Route Capacity

Assumed transit modal shares of 20% and 5% were adopted for the retail/restaurant and gas station land use components of the development, respectively. The forecasted transit trips generation for the proposed development are 108 trips (AM Peak), 165 trips (PM Peak), and 220 trips (Saturday Peak).

In the short term, transit service headways for OC Transpo Local Routes 161, 167, and 168 are anticipated to remain at 30-minutes during the weekday morning and afternoon peak periods. Standard and Articulated buses have seated capacities of 40 and 60 people; respectively, and therefore the combined hourly transit capacity is estimated at 240 - 360 people per hour during the weekday AM and PM peak periods. Transit service headways for OC Transpo Express Route 252 are anticipated to remain at 15-minutes during the weekday morning and afternoon peak periods. Articulated and Double-Decker buses have seated capacities of 60 and 80 people; respectively, and therefore the combined hourly transit capacity will be 240 - 360 people per hour. OC Transpo Route 252 does not currently provided service on Saturdays. During the Saturday peak period, only OC Transpo Route 168 provides service with a headway of 30-minutes and an hourly transit capacity of 80-120 people per hour. In order to meet anticipated transit demands for the subject site and other background developments, additional transit service coverage may be required for the Saturday peak period.

Strategy September 19, 2018

4.7.2 Transit Priority

The proposed development will be utilizing existing transit stops abutting the subject site and is therefore not expected to impact the transit travel times or trigger the need for transit priority measures.

4.8 REVIEW OF NETWORK CONCEPT

Not applicable; exempted during screening and scoping.

4.9 INTERSECTION DESIGN

4.9.1 Intersection Control

The existing intersection control will be maintained as the default control for the Terry Fox at the Fernbank Road and Terry Fox Drive at Cope Drive. Any intersection improvements triggered through the intersection level of service analysis will be highlighted and adopted accordingly.

4.9.2 Intersection Design

An assessment of the study area intersections was undertaken to determine the operational characteristics of the study area intersections under the different horizons identified in the Screening and Scoping report. Intersection operational analysis was facilitated by Synchro 9.0™ software package and the MMLOS analysis was completed for all modes and compared against the City of Ottawa's MMLOS targets.

4.9.2.1 2018 Existing Conditions

Figure 6 illustrates 2018 Existing AM peak, PM peak, and Saturday peak hour traffic volumes at the study area intersections.

Table 13 summarizes the results of the Synchro analysis under 2018 existing conditions.

The southbound through movement at the Terry Fox Drive at Fernbank Road is currently operating at or above theoretical capacity during the Saturday peak hour (i.e. V/C = 0.99). The eastbound left-turning movement at the Terry Fox Drive at Cope Drive intersection is currently operating at or above theoretical capacity during the PM peak and Saturday peak hours (i.e. V/C = 1.05 & 1.03, respectively). The PM peak and Saturday peak signal timing plans at both intersections were optimized using the Synchro software package to improve operations during these two peak hours. Additionally, a protected/permissive phase was introduced for the eastbound left-turning movement during the PM peak and Saturday peak hours. Protected/permissive phasing and was also adopted for the eastbound left-turning movement at the Terry Fox Drive at Cope Drive intersection under the Saturday peak hour scenario.

Both signalized intersections are expected to operate acceptably under these proposed improvements.

Table 14 summarizes the results of the Synchro analysis under 2018 conditions with improvements.

Appendix B contains detailed intersection performance worksheets.

Strategy September 19, 2018

Table 13 - 2018 Existing Intersection Operations (Synchro)

Scenario	Intersection Control	Approach /	Movement	LOS	V/C	Delay (s)	Queue 95 th (m)
			Left	A (A) [A]	0.38 (0.54) [0.34]	24.8 (32.7) [26.3]	27.9 (28.2) [25.5]
		EB	Through	A (A) [A]	0.24 (0.31) [0.28]	22.6 (26.0) [25.5]	27.6 (38.2) [40.2]
			Right	A (A) [A]	0.18 (0.12) [0.13]	5.1 (1.6) [3.6]	9.2 (2.9) [6.3]
			Left	A (A) [A]	0.02 (0.01) [0.51]	31.3 (28.0) [46.8]	2.7 (2.0) [41.6]
		WB	Through	A (C) [C]	0.56 (0.74) [0.76]	44.8 (49.2) [54.4]	37.5 (68.5) [84.9]
Terry Fox Drive at Fernbank	Troffic Cianala		Right	A (A) [A]	0.47 (0.24) [0.02]	10.3 (2.0) [0.1]	15.7 (2.3) [0]
Road	Traffic Signals	ND	Left	A (A) [A]	0.12 (0.51) [0.44]	12.1 (17.7) [22.0]	14.1 (38.2) [24.7]
rtouu		NB	Through / Right	A (A) [A]	0.38 (0.37) [0.53]	14.1 (14.9) [19.7]	61.1 (66.7) [117.2]
		SB	Left	A (A) [A]	0.13 (0.41) [0.51]	12.6 (28.9) [35.4]	13.0 (43.1) [57.7]
			Through	A (A) [E]	0.21 (0.61) [0.99]	12.2 (31.0) [67.5]	33.2 (104.9) [#265.4]
			Right	A (A) [A]	0.05 (0.12) [0.10]	0.1 (0.3) [0.3]	0 (0) [0]
		Overall In	tersection	A (C) [E]	0.56 (0.74) [<mark>0.99</mark>]	17.0 (24.8) [40.6]	-
		SB	Left	A (A) [D]	0.30 (0.44) [0.82]	6.2 (8.5) [35.2]	18.2 (25.7) [#105.7]
			Through	A (A) [C]	0.22 (0.45) [0.78]	4.3 (8.2) [21.5]	24.9 (80.5) [#199.7]
			Right	A (A) [A]	0.03 (0.07) [0.16]	1.4 (1.7) [2.3]	2.4 (4.8) [8.4]
		NB	Left	A (A) [A]	0.01 (0.01) [0]	3.8 (12.8) [10.0]	1.2 (2.4) [0.9]
Terry Fox Drive	Troffic Cianala	IND	Through / Right	A (A) [A]	0.49 (0.58) [0.51]	6.5 (18.7) [13.1]	70.5 (122.1) [90.5]
at Cope Drive	Traffic Signals	EB	Left	B (F) [F]	0.67 (1.05) [1.03]	74.3 (155.8) [114.6]	19.8 (#38.7) [#50.8]
		LD	Through / Right	A (A) [A]	0.11 (0.31) 0.23]	33.9 (37.6) [24.0]	9.2 (25.5) [21.5]
		WB	Left	A (A) [A]	0.12 (0.38) [0.23]	35.8 (41.1) [24.7]	8.6 (23.5) [16.7]
	-		Through / Right	A (B) [B]	0.60 (0.69) [0.69]	15.1 (25.5) [24.7]	20.8 (40.8) [51.6]
		Overall In	tersection	B (F) [F]	0.67 (1.05) [1.03]	10.3 (22.3) [26.2]	-

Notes:

- 1. Table format: AM (PM)
- v/c represents the anticipated volume divided by the predicted capacity
 # 95th percentile volume exceeds capacity, queue may be longer
- 4. * Queue lengths for these movements are in vehicles
- 5. m Volume for 95th percentile queue is metered by upstream signal

Strategy September 19, 2018

Table 14 - 2018 Existing Intersection Operations with Improvements (Synchro)

Scenario	Intersection Control		Approach / Movement	LOS	V/C	Delay (s)	Queue 95 th (m)
			Left	A (A) [A]	0.38 (0.58) [0.44]	24.8 (35.9) [28.3]	27.9 (28.8) [23.0]
		EB	Through	A (A) [A]	0.24 (0.32) [0.31]	22.6 (26.8) [24.5]	27.6 (39.2) [36.1]
			Right	A (A) [A]	0.18 (0.12) [0.13]	5.1 (1.7) [2.2]	9.2 (3.0) [4.0]
			Left	A (A) [A]	0.02 (0.01) [0.49]	31.3 (28.5) [38.9]	2.7 (2.0) [34.6]
Terry Fox		WB	Through	A (C) [C]	0.56 (0.74) [0.73]	44.8 (49.7) [45.3]	37.5 (69.0) [69.5]
Drive at	Traffic Signals		Right	A (A) [A]	0.47 (0.24) [0.02]	10.3 (2.1) [0.1]	15.7 (2.3) [0]
Fernbank	Trailic Signais	NB	Left	A (A) [A]	0.12 (0.49) [0.47]	12.1 (16.6) [19.4]	14.1 (37.2) [19.1]
Road		IND	Through / Right	A (A) [A]	0.38 (0.36) [0.52]	14.1 (14.3) [16.4]	61.1 (64.8) [98.6]
		SB	Left	A (A) [A]	0.13 (0.40) [0.43]	12.6 (28.1) [25.1]	13.0 (42.6) [45.4]
			Through	A (A) [D]	0.21 (0.60) [0.84]	12.2 (30.1) [36.4]	33.2 (104.0) [#207.7]
			Right	A (A) [A]	0.05 (0.11) [0.08]	0.1 (0.3) [0.2]	0 (0) [0]
		Overall Intersection		A (C) [C]	0.56 (0.74) [0.84]	17.0 (24.6) [28.0]	-
			Left	A (A) [D]	0.30 (0.50) [0.82]	6.2 (12.4) [37.6]	18.2 (32.1) [#96.8]
		SB	Through	A (A) [D]	0.22 (0.49) [0.83]	4.3 (11.9) [27.6]	24.9 (101.0) [#226.3]
			Right	A (A) [A]	0.03 (0.08) [0.17]	1.4 (2.2) [2.5]	2.4 (5.5) [9.1]
		NB	Left	A (A) [A]	0.01 (0.01) [0.01]	3.8 (20.0) [24.0]	1.2 (3.1) [1.4]
Terry Fox	Troffic Signals	IND	Through / Right	A (B) [D]	0.49 (0.70) [0.90]	6.5 (29.5) [52.2]	70.5 (#175.0) [#174.3]
Drive at Cope Drive	Traffic Signals	EB	Left	B (A) [D]	0.67 (0.54) [0.83]	74.3 (41.4) [63.5]	19.8 (22.3) [#43.2]
		ED	Through / Right	A (A) [A]	0.11 (0.23) 0.18]	33.9 (30.5) [24.6]	9.2 (22.7) [23.8]
		WB	Left	A (A) [A]	0.12 (0.44) [0.27]	35.8 (45.9) [34.2]	8.6 (24.1) [21.6]
		VVD	Through / Right	A (C) [D]	0.60 (0.75) [0.84]	15.1 (30.9) [44.7]	20.8 (42.1) [73.4]
			Overall Intersection	B (C) [D]	0.67 (0.75) [0.90]	10.3 (22.7) [37.1]	-

Notes:

- Table format: AM (PM)

 v/c represents the anticipated volume divided by the predicted capacity

 # 95th percentile volume exceeds capacity, queue may be longer

 Queue lengths for these movements are in vehicles

- 5. m Volume for 95th percentile queue is metered by upstream signal

Strategy September 19, 2018

The signalized intersection MMLOS assessment was undertaken for the intersections of Terry Fox Drive at Fernbank Road, and the Terry Fox Drive at Cope Drive. Intersection operations under the AM peak, PM peak, and Saturday peak hours were considered in the assessment. MMLOS targets for areas "General Urban Area" were applied.

MMLOS - Terry Fox Drive at Fernbank Road Intersection (2018 Existing):

Under the current intersection configuration, pedestrian crossings are provided on each leg of the intersection. A PLOS target of C was selected for the intersection.

The Ultimate Cycling Network from the City of Ottawa *Transportation Master Plan* (2013) designates Terry Fox Drive and Fernbank Road as Spine Cycling Routes. These roads are therefore subject to Bicycle Level of Service (BLOS) targets of C.

Transit service travelling on Terry Fox Drive and Fernbank Road currently operate within mixed traffic. Based on the MMLOS targets, a TLOS target of D was selected for the intersection.

Terry Fox Drive is designated as a truck route, therefore the intersection is subject to TrLOS target of D.

Table 14 presents the MMLOS conditions for the signalized intersection of Terry Fox Drive at Fernbank Road.

As outlined in the summary analysis, the pedestrian level of service at the intersection of Terry Fox Drive at Fernbank Road is currently operating with a PLOS of E. Based on the MMLOS guidelines, intersection PLOS is largely influenced by the number of lanes pedestrians cross, the intersection cycle length and subsequent delay to pedestrians, pedestrian crossing time, and the treatment of right-turn movements at intersections.

The cycling level of service at the intersection is currently operating with a BLOS of F. Based on the MMLOS guidelines, intersection BLOS is influenced by the availability of dedicated cycling amenities, number of lanes cyclists must cross to negotiate a turn at intersections, and roadway operating speeds.

As the intersection of Terry Fox Drive at Fernbank Road is an arterial-arterial intersection, significant capacity is allocated to vehicular demands. Based on a review of the signal timing plans, vehicular demands, and intersection geometry, no short-term improvements were identified to improve the pedestrian LOS at this intersection to meet the PLOS target. The cycling LOS could be improved to meet the BLOS target by reducing the operating speeds along Terry Fox Drive and Fernbank Road.

MMLOS – Terry Fox Drive at Cope Drive intersection (2018 Existing):

Under the current intersection configuration, pedestrian crossings are provided on each leg of the intersection. A PLOS target of C was selected for the intersection.

The Ultimate Cycling Network from the City of Ottawa *Cycling Plan* (2013) designates Terry Fox Drive as a spine cycling route and Cope Drive as a local cycling route. These roads are therefore subject to a BLOS target of C and B, respectively. A BLOS target of B was selected for the intersection.

Transit service at the intersection of Terry Fox Drive at Cope Drive currently operates within mixed traffic. Based on the MMLOS targets, a TLOS target of D was selected for the intersection.

Strategy September 19, 2018

Terry Fox Drive is designated as a truck route, therefore the intersection is subject to TrLOS target of D.

Table 15 presents the MMLOS conditions for the signalized intersection of Terry Fox Drive at Cope Drive.

As outlined in the summary analysis, the pedestrian level of service at the intersection of Terry Fox Drive at Cope Drive is currently operating with a PLOS of D. Based on the MMLOS guidelines, intersection PLOS is largely influenced by the number of lanes pedestrians cross, the intersection cycle length and subsequent delay to pedestrians, pedestrian crossing time, and the treatment of right-turn movements at intersections.

The cycling level of service at the intersection is currently operating with a BLOS of F. Based on the MMLOS guidelines, intersection BLOS is influenced by the availability of dedicated cycling amenities, number of lanes cyclists must cross to negotiate a turn at intersections, and roadway operating speeds.

The transit level of service at the intersection is currently operating with a TLOS of E. Based on the MMLOS guidelines, intersection TLOS is influenced by the average intersection delay.

As the intersection of Terry Fox Drive at Cope Drive is an arterial-collector intersection, significant capacity is allocated to vehicular demands. Based on a review of the signal timing plans, vehicular demands, and intersection geometry, no short-term improvements were identified to improve the pedestrian and transit LOS at this intersection to meet the PLOS and TLOS targets. The cycling LOS could be improved to meet the BLOS target by reducing the operating speeds along Terry Fox Drive.

Table 15 - 2018 Existing MMLOS (Terry Fox Drive / Fernbank Road)

			2018 Exist	ing Traffic		
	Segment	EB	WB	NB	SB	Target
	Lanes crossed	3	5	4	4	
	Median >=2.4m (yes/no)	No	No	No	No	
	Island refuge (yes/no)	No	No	No	No	
	Left turn phasing	Protected / Permissive	Permissive	Protected / Permissive	Permissive	
	Right turn conflict	Yield Control	Yield Control	Yield Control	Yield Control	
	RTOR (yes/no)	Yes	Yes	Yes	NA	
	Leading ped interval (yes/no)	No	No	No	No	
PLOS	Right turn corner radius (m)	>15m to 25m	Right-turn Channel	>15m to 25m	>15m to 25m	С
굽	Crosswalk treatment	Standard	Standard	Standard	Standard	
	Cycle length (s)	100	100	100	100	
	Effective walk time (s)	38	27	50	38	
	PETSI Points	68	44	51	51	
	PETSI Points LOS	С	Е	D	D	
	Average Pedestrian Delay (s)	19.2	26.6	12.5	19.2	
	Ped Delay LOS	В	С	В	В	
	Level of Service	С	Е	D	D	
	Level of Service		E			
	Type of bike lane	Pocket Bike Lane	Pocket Bike Lane	Mixed	Pocket Bike Lane	
	Left-turn - lanes crossed	1	1	1	1	
	Left-turn - vehicle operating speed (km/hr)	60	60	80	80	
w	Right-turn - number of turn lanes	1	1	0	1	
BLOS	Right-turn - turn lane length (m)	100	125	NA (Shared)	150	С
В	Right-turn - turning speed (km/hr)	15	15	15	15	
	Right-turn - location of bike lane	Left of Right- turn Lane	Left of Right- turn Lane	NA	Left of Right- turn Lane	
	Level of Service	Е	Е	F	E	
	Level of Service		F			
TLOS	Intersection Average Delay (s)		28	.0		D
Ĭ	Level of Service)		U
	Effective corner radius (m)	NA	NA	> 15m	> 15m	
08	Number of receiving lanes	NA	NA	1	1	D
TKLOS	Level of Service	NA	NA	D	D	U
	Level of Service)		
(0	Maximum Volume-to-capacity (v/c)	0.58	0.74	0.52	0.84	
VLOS	Level of Service	Α	С	Α	D	D
>	Level of Service		(;		

Table 16 - 2018 Existing MMLOS (Terry Fox Drive / Cope Drive)

	2		2018 Exist	ing Traffic		—
	Segment	SB	NB	EB	WB	Target
	Lanes crossed	3	3	3	4	
	Median >=2.4m (yes/no)	No	No	No	No	
	Island refuge (yes/no)	No	No	No	No	
	Left turn phasing	Protected / Permissive	Permissive	Protected / Permissive	Permissive	
	Right turn conflict	Yield Control	Yield Control	Yield Control	Yield Control	
	RTOR (yes/no)	Yes	Yes	Yes	NA	
	Leading ped interval (yes/no)	No	No	No	No	
S	Right turn corner radius (m)	>15m to 25m	>15m to 25m	>15m to 25m	>15m to 25m	_
PLOS	Crosswalk treatment	Standard	Standard	Standard	Standard	С
	Cycle length (s)	100	100	100	100	
	Effective walk time (s)	52	31	36	26	
	PETSI Points	68	68	68	51	
	PETSI Points LOS	С	С	С	D	
	Average Pedestrian Delay (s)	11.5	23.8	20.5	27.4	
	Ped Delay LOS	В	С	С	С	
	Level of Service	С	С	С	D	
	Level of Service		Г)		
	Type of bike lane	Pocket Bike Lane	Mixed	Mixed	Mixed	
	Left-turn - lanes crossed	1	1	1	1	
	Left-turn - vehicle operating speed (km/hr)	80	80	50	50	
m	Right-turn - number of turn lanes	1	0	0	0	
BLOS	Right-turn - turn lane length (m)	125	NA (Shared)	NA (Shared)	NA (Shared)	В
В	Right-turn - turning speed (km/hr)	15	15	15	15	
	Right-turn - location of bike lane	Left of Right- turn Lane	NA	NA	NA	
	Level of Service	D	F	D	D	
	Level of Service		F			
TLOS	Intersection Average Delay (s)		37	'.1		D
Ĭ	Level of Service		E			U
	Effective corner radius (m)	> 15m	> 15m	NA	NA	
OS	Number of receiving lanes	1	1	NA	NA	_
TKLOS	Level of Service	D	D	NA	NA	D
	Level of Service	D				
(0	Maximum Volume-to-capacity (v/c)	0.83	0.90	0.83	0.84	
VLOS	Level of Service	D	D	D	D	D
>	Level of Service		Г)		

Strategy September 19, 2018

4.9.2.2 2020 Future Background Conditions

Figure 12 illustrates 2020 Future Background AM peak, PM peak, and Saturday peak hour traffic volumes at the study area intersections.

The improvements identified in the 2018 Existing conditions were carried forward and assumed to be implemented by the 2020 future background condition horizon.

All study area intersections are anticipated to operate satisfactorily.

Table 17 summarizes the results of the Synchro analysis for 2020 Future Background conditions.

Appendix B contains detailed intersection performance worksheets.

Strategy September 19, 2018

Table 17 - 2020 Future Background Intersection Operations (Synchro)

Scenario	Intersection Control	1	Approach / Movement	LOS	V/C	Delay (s)	Queue 95 th (m)
			Left	A (A) [A]	0.41 (0.53) [0.40]	28.1 (32.8) [27.3]	28.4 (28.3) [21.8]
		EB	Through	A (A) [A]	0.24 (0.30) [0.29]	25.0 (26.4) [24.5]	27.9 (36.7) [34.1]
			Right	A (A) [A]	0.18 (0.11) [0.13]	5.9 (1.4) [1.9]	9.6 (2.1) [3.0]
			Left	A (A) [A]	0.02 (0.01) [0.47]	31.7 (29.0) [38.7]	2.8 (2.0) [32.7]
		WB	Through	A (C) [C]	0.55 (0.73) [0.71]	44.8 (49.6) [44.7]	36.0 (65.6) [65.4]
Terry Fox Drive at Fernbank	Troffic Cianala		Right	A (A) [A]	0.46 (0.24) [0.02]	10.6 (2.0) [0.1]	15.5 (1.9) [0]
Road	Traffic Signals	ND	Left	A (A) [A]	0.10 (0.45) [0.38]	10.3 (15.7) [16.1]	12.2 (35.1) [17.9]
		NB	Through / Right	A (A) [A]	0.34 (0.36) [0.49]	11.9 (14.2) [15.4]	52.8 (63.9) [89.1]
		SB	Left	A (A) [A]	0.11 (0.38) [0.39]	10.6 (27.6) [23.6]	11.6 (41.3) [41.5]
			Through	A (A) [C]	0.21 (0.57) [0.78]	10.6 (29.4) [32.2]	31.6 (101.0) [#187.4]
			Right	A (A) [A]	0.05 (0.11) [0.08]	0.1 (0.3) [0.2]	0 (0) [0]
		Overall Intersection		A (C) [C]	0.55 (0.73) [0.78]	16.5 (24.0) [26.0]	-
			Left	A (A) [C]	0.27 (0.48) [0.71]	5.7 (11.4) [21.1]	16.4 (30.9) [#62.8]
		SB	Through	A (A) [C]	0.22 (0.46) [0.76]	4.2 (10.9) [22.9]	24.3 (91.3) [#204.0]
			Right	A (A) [A]	0.03 (0.07) [0.15]	1.3 (1.8) [2.5]	2.2 (4.5) [8.7]
		NB	Left	A (A) [A]	0.01 (0.01) [0]	3.8 (19.6) [23.0]	1.1 (3.1) [1.3]
Terry Fox Drive	Troffic Cianala	IND	Through / Right	A (B) [C]	0.47 (0.67) [0.75]	6.1 (27.8) [37.5]	64.0 (#172.1) [#155.9]
at Cope Drive	Traffic Signals	EB	Left	B (A) [C]	0.61 (0.50) [0.75]	68.3 (39.9) [52.5]	18.6 (21.4) [#34.8]
		EB	Through / Right	A (A) [A]	0.10 (0.22) 0.18]	33.9 (31.1) [25.3]	8.7 (21.7) [22.3]
		\A/D	Left	A (A) [A]	0.20 (0.46) [0.27]	38.0 (48.2) [35.1]	11.7 (24.4) [20.3]
		WB	Through / Right	B (C) [D]	0.62 (0.74) [0.81]	15.4 (28.5) [42.9]	20.9 (38.2) [65.6]
			Overall Intersection	B (C) [D]	0.62 (0.74) [0.81]	10.1 (21.5) [29.3]	-

Notes:

- 1. Table format: AM (PM)
- v/c represents the anticipated volume divided by the predicted capacity
 # 95th percentile volume exceeds capacity, queue may be longer
- 4. * Queue lengths for these movements are in vehicles
- 5. m Volume for 95th percentile queue is metered by upstream signal

Strategy September 19, 2018

The signalized intersection MMLOS assessment was undertaken for the intersections of Terry Fox Drive at Fernbank Road, and the Terry Fox Drive at Cope Drive. Intersection operations under the AM peak, PM peak, and Saturday peak hours were considered in the assessment. MMLOS targets for areas "General Urban Area" were applied.

MMLOS - Terry Fox Drive at Fernbank Road Intersection (2020 Future Background):

Under the current intersection configuration, pedestrian crossings are provided on each leg of the intersection. A PLOS target of C was selected for the intersection.

The Ultimate Cycling Network from the City of Ottawa *Transportation Master Plan* (2013) designates Terry Fox Drive and Fernbank Road as Spine Cycling Routes. These roads are therefore subject to Bicycle Level of Service (BLOS) targets of C.

Transit service travelling on Terry Fox Drive and Fernbank Road are expected to continue to operate within mixed traffic. Based on the MMLOS targets, a TLOS target of D was selected for the intersection.

Terry Fox Drive is designated as a truck route, therefore the intersection is subject to TrLOS target of D.

Table 18 presents the MMLOS conditions for the signalized intersection of Terry Fox Drive at Fernbank Road.

As outlined in the summary analysis, the pedestrian level of service at the intersection of Terry Fox Drive at Fernbank Road is expected to operate with a PLOS of E. Based on the MMLOS guidelines, intersection PLOS is largely influenced by the number of lanes pedestrians cross, the intersection cycle length and subsequent delay to pedestrians, pedestrian crossing time, and the treatment of right-turn movements at intersections.

The cycling level of service at the intersection is expected to operate with a BLOS of F. Based on the MMLOS guidelines, intersection BLOS is influenced by the availability of dedicated cycling amenities, number of lanes cyclists must cross to negotiate a turn at intersections, and roadway operating speeds.

As the intersection of Terry Fox Drive at Fernbank Road is an arterial-arterial intersection, significant capacity is allocated to vehicular demands. Based on a review of the signal timing plans, vehicular demands, and intersection geometry, no short-term improvements were identified to improve the pedestrian LOS at this intersection to meet the PLOS target. The cycling LOS could be improved to meet the BLOS target by reducing the operating speeds along Terry Fox Drive and Fernbank Road.

MMLOS - Terry Fox Drive at Cope Drive intersection (2020 Future Background):

Under the current intersection configuration, pedestrian crossings are provided on each leg of the intersection. A PLOS target of C was selected for the intersection.

The Ultimate Cycling Network from the City of Ottawa Cycling Plan (2013) designates Terry Fox Drive as a spine cycling route and Cope Drive as a local cycling route. These roads are therefore subject to a BLOS target of C and B, respectively. A BLOS target of B was selected for the intersection.

Transit service at the intersection of Terry Fox Drive at Cope Drive are expected to continue to operate within mixed traffic. Based on the MMLOS targets, a TLOS target of D was selected for the intersection.

Strategy September 19, 2018

Terry Fox Drive is designated as a truck route, therefore the intersection is subject to TrLOS target of D.

Table 19 presents the MMLOS conditions for the signalized intersection of Terry Fox Drive at Cope Drive .

As outlined in the summary analysis, the pedestrian level of service at the intersection of Terry Fox Drive at Cope Drive is expected to operate with a PLOS of D. Based on the MMLOS guidelines, intersection PLOS is largely influenced by the number of lanes pedestrians cross, the intersection cycle length and subsequent delay to pedestrians, pedestrian crossing time, and the treatment of right-turn movements at intersections.

The cycling level of service at the intersection is expected to operate with a BLOS of F. Based on the MMLOS guidelines, intersection BLOS is influenced by the availability of dedicated cycling amenities, number of lanes cyclists must cross to negotiate a turn at intersections, and roadway operating speeds.

As the intersection of Terry Fox Drive at Cope Drive is an arterial-collector intersection, significant capacity is allocated to vehicular demands. Based on a review of the signal timing plans, vehicular demands, and intersection geometry, no short-term improvements were identified to improve the pedestrian and transit LOS at this intersection to meet the PLOS and TLOS targets. The cycling LOS could be improved to meet the BLOS target by reducing the operating speeds along Terry Fox Drive.

Table 18 - 2020 Future Background MMLOS (Terry Fox Drive / Fernbank Road)

			2018 Exist	ing Traffic		
	Segment	EB	WB	NB	SB	Target
	Lanes crossed	3	5	4	4	
	Median >=2.4m (yes/no)	No	No	No	No	
	Island refuge (yes/no)	No	No	No	No	
	Left turn phasing	Protected / Permissive	Permissive	Protected / Permissive	Permissive	
	Right turn conflict	Yield Control	Yield Control	Yield Control	Yield Control	
	RTOR (yes/no)	Yes	Yes	Yes	NA	
	Leading ped interval (yes/no)	No	No	No	No	
PLOS	Right turn corner radius (m)	>15m to 25m	Right-turn Channel	>15m to 25m	>15m to 25m	С
립	Crosswalk treatment	Standard	Standard	Standard	Standard	
	Cycle length (s)	100	100	100	100	
	Effective walk time (s)	38	27	50	38	
	PETSI Points	68	44	51	51	
	PETSI Points LOS	С	E	D	D	
	Average Pedestrian Delay (s)	19.2	26.6	12.5	19.2	
	Ped Delay LOS	В	С	В	В	
	Level of Service	С	Е	D	D	
	Level of Service		E			
	Type of bike lane	Pocket Bike Lane	Pocket Bike Lane	Mixed	Pocket Bike Lane	
	Left-turn - lanes crossed	1	1	1	1	
	Left-turn - vehicle operating speed (km/hr)	60	60	80	80	
w	Right-turn - number of turn lanes	1	1	0	1	
BLOS	Right-turn - turn lane length (m)	100	125	NA (Shared)	150	С
ш	Right-turn - turning speed (km/hr)	15	15	15	15	
	Right-turn - location of bike lane	Left of Right- turn Lane	Left of Right- turn Lane	NA	Left of Right- turn Lane	
	Level of Service	Е	Е	F	Е	
	Level of Service		F	•		
TLOS	Intersection Average Delay (s)		26	i.0		D
ļ	Level of Service)		
	Effective corner radius (m)	NA	NA	> 15m	> 15m	
OS	Number of receiving lanes	NA	NA	1	1	D
TKLOS	Level of Service	NA	NA	D	D	U
	Level of Service	D				
(0	Maximum Volume-to-capacity (v/c)	0.53	0.73	0.49	0.78	
VLOS	Level of Service	Α	С	Α	С	D
>	Level of Service		C	;		

Table 19 - 2020 Future Background MMLOS (Terry Fox Drive / Cope Drive)

	2		2018 Exist	ing Traffic		—
	Segment	SB	NB	EB	WB	Target
	Lanes crossed	3	3	3	4	
	Median >=2.4m (yes/no)	No	No	No	No	
	Island refuge (yes/no)	No	No	No	No	
	Left turn phasing	Protected / Permissive	Permissive	Protected / Permissive	Permissive	
	Right turn conflict	Yield Control	Yield Control	Yield Control	Yield Control	
	RTOR (yes/no)	Yes	Yes	Yes	NA	
	Leading ped interval (yes/no)	No	No	No	No	
S	Right turn corner radius (m)	>15m to 25m	>15m to 25m	>15m to 25m	>15m to 25m	_
PLOS	Crosswalk treatment	Standard	Standard	Standard	Standard	С
	Cycle length (s)	100	100	100	100	
	Effective walk time (s)	52	31	36	26	
	PETSI Points	68	68	68	51	
	PETSI Points LOS	С	С	С	D	
	Average Pedestrian Delay (s)	11.5	23.8	20.5	27.4	
	Ped Delay LOS	В	С	С	С	
	Level of Service	С	С	С	D	
	Level of Service)		
	Type of bike lane	Pocket Bike Lane	Mixed	Mixed	Mixed	
	Left-turn - lanes crossed	1	1	1	1	
	Left-turn - vehicle operating speed (km/hr)	80	80	50	50	
m	Right-turn - number of turn lanes	1	0	0	0	
BLOS	Right-turn - turn lane length (m)	125	NA (Shared)	NA (Shared)	NA (Shared)	В
В	Right-turn - turning speed (km/hr)	15	15	15	15	
	Right-turn - location of bike lane	Left of Right- turn Lane	NA	NA	NA	
	Level of Service	D	F	D	D	
	Level of Service		F			
TLOS	Intersection Average Delay (s)		29	.3		D
Ĭ	Level of Service)		U
	Effective corner radius (m)	> 15m	> 15m	NA	NA	
TKLOS	Number of receiving lanes	1	1	NA	NA	D
본	Level of Service	D	D	NA	NA	ט
	Level of Service)		
(0	Maximum Volume-to-capacity (v/c)	0.76	0.75	0.75	0.81	
VLOS	Level of Service	С	С	С	D	D
>	Level of Service)		

Strategy September 19, 2018

4.9.2.3 2020 Total Future Conditions

Figure 13 illustrate 2020 Total Future AM peak, PM peak, and Saturday peak hour traffic volumes at the study area intersections.

All study area intersections are anticipated to operate satisfactorily.

Table 20 summarizes the results of the Synchro analysis for 2020 Total Future conditions.

Appendix B contains detailed intersection performance worksheets.

Strategy September 19, 2018

Table 20 - 2020 Total Future Intersection Operations (Synchro)

Scenario	Intersection Control	A	oproach / Movement	LOS	V/C	Delay (s)	Queue 95 th (m)
			Left	A (A) [B]	0.45 (0.66) [0.61]	28.3 (40.2) [44.9]	30.2 (32.6) [34.8]
		EB	Through	A (A) [A]	0.24 (0.30) [0.29]	24.2 (26.0) [32.9]	27.0 (36.7) [43.1]
			Right	A (A) [A]	0.18 (0.11) [0.13]	5.6 (1.3) [3.5]	9.3 (2.1) [5.9]
			Left	A (A) [B]	0.08 (0.11) [0.62]	32.4 (30.9) [56.0]	7.0 (10.1) [49.7]
Terry Fox		WB	Through	A (C) [D]	0.56 (0.75) [0.82]	44.2 (50.0) [65.4]	37.9 (71.1) [90.5]
Drive at	Troffic Cianala		Right	A (A) [A]	0.45 (0.25) [0.04]	10.1 (2.3) [0.2]	15.1 (3.0) [0]
Fernbank	Traffic Signals	NB	Left	A (A) [A]	0.11 (0.48) [0.36]	10.8 (16.6) [15.4]	12.7 (35.1) [18.0]
Road		IND	Through / Right	A (A) [A]	0.38 (0.40) [0.51]	12.8 (15.1) [16.7]	60.4 (73.2) [105.2]
			Left	A (A) [A]	0.13 (0.41) [0.41]	8.9 (21.4) [10.9]	7.0 (41.2) [m18.5]
		SB	Through	B (A) [C]	0.22 (0.61) [0.77]	9.11 (24.2) [18.7]	22.3 (110.0) [141.0]
			Right	A (A) [A]	0.05 (0.11) [0.07]	0.3 (0.9) [0.2]	0 (1.6) [m0.0]
		(Overall Intersection	A (C) [D]	0.56 (0.75) [0.82]	16.5 (23.5) [26.7]	-
			Left	A (A) [C]	0.30 (0.54) [0.76]	6.1 (13.0) [24.4]	18.6 (34.2) [64.2]
		SB	Through	A (A) [C]	0.22 (0.47) [0.73]	4.2 (11.5) [22.7]	24.5 (91.7) [189.0]
			Right	A (A) [A]	0.03 (0.07) [0.15]	1.3 (1.8) [2.2]	2.2 (4.6) [8.3]
			Left	A (A) [A]	0.01 (0.01) [0]	2.8 (17.4) [24.0]	m0.5 (m1.4) [m0.2]
Terry Fox Drive at Cope	Traffic Signals	NB	Through / Right	A (C) [C]	0.48 (0.74) [0.72]	4.5 (27.4) [30.1]	33.4 (#176.9) [#169.1]
Drive	-	EB	Left	B (A) [C]	0.62 (0.50) [0.76]	68.5 (39.3) [59.1]	18.6 (21.3) [#39.7]
		LD	Through / Right	A (A) [A]	0.10 (0.21) [0.18]	33.8 (30.3) [31.1]	8.7 (21.7) [27.5]
		WB	Left	A (A) [A]	0.29 (0.58) [0.41]	40.6 (53.1) [47.5]	15.5 (31.8) [35.6]
		VVD	Through / Right	B (C) [D]	0.62 (0.71) [0.87]	15.3 (26.2) [59.6]	21.1 (38.7) [#95.1]
		(Overall Intersection	B (C) [D]	0.62 (0.74) [0.87]	9.7 (22.0) [31.4]	-
		EB	Through / Right	A (A) [A]	0 (0) [0]	0 (0) [0]	0 (0) [0]
Cope Drive at	Minor Stop	WB	Left / Through	A (A) [A]	0.02 (0.04) [0.06]	0.9 (1.1) [8.4]	0.1* (0.1*) [0.2*]
Site Access 4	Control	NB	Left / Right	B (B) [C]	0.09 (0.21) [0.32]	10.8 (13.7) [17.2]	0.3* (0.8*) [1.3*]
		(Overall Intersection	A (A) [A]	-	1.7 (2.3) [2.9]	-

Notes:

- 1. Table format: AM (PM)
- v/c represents the anticipated volume divided by the predicted capacity
 # 95th percentile volume exceeds capacity, queue may be longer

- * Queue lengths for these movements are in vehicles m Volume for 95th percentile queue is metered by upstream signal

Strategy September 19, 2018

The signalized intersection MMLOS assessment was undertaken for the intersections of Terry Fox Drive at Fernbank Road, and the Terry Fox Drive at Cope Drive. Intersection operations under the AM peak, PM peak, and Saturday peak hours were considered in the assessment. MMLOS targets for areas "General Urban Area" were applied.

MMLOS - Terry Fox Drive at Fernbank Road Intersection (2020 Total Future):

Under the current intersection configuration, pedestrian crossings are provided on each leg of the intersection. A PLOS target of C was selected for the intersection.

The Ultimate Cycling Network from the City of Ottawa *Transportation Master Plan* (2013) designates Terry Fox Drive and Fernbank Road as Spine Cycling Routes. These roads are therefore subject to Bicycle Level of Service (BLOS) targets of C.

Transit service travelling on Terry Fox Drive and Fernbank Road are expected to continue to operate within mixed traffic. Based on the MMLOS targets, a TLOS target of D was selected for the intersection.

Terry Fox Drive is designated as a truck route, therefore the intersection is subject to TrLOS target of D.

Table 21 presents the MMLOS conditions for the signalized intersection of Terry Fox Drive at Fernbank Road.

As outlined in the summary analysis, the pedestrian level of service at the intersection of Terry Fox Drive at Fernbank Road is expected to operate with a PLOS of E. Based on the MMLOS guidelines, intersection PLOS is largely influenced by the number of lanes pedestrians cross, the intersection cycle length and subsequent delay to pedestrians, pedestrian crossing time, and the treatment of right-turn movements at intersections.

The cycling level of service at the intersection is expected to operate with a BLOS of F. Based on the MMLOS guidelines, intersection BLOS is influenced by the availability of dedicated cycling amenities, number of lanes cyclists must cross to negotiate a turn at intersections, and roadway operating speeds.

As the intersection of Terry Fox Drive at Fernbank Road is an arterial-arterial intersection, significant capacity is allocated to vehicular demands. Based on a review of the signal timing plans, vehicular demands, and intersection geometry, no short-term improvements were identified to improve the pedestrian LOS at this intersection to meet the PLOS target. The cycling LOS could be improved to meet the BLOS target by reducing the operating speeds along Terry Fox Drive and Fernbank Road.

MMLOS – Terry Fox Drive at Cope Drive intersection (2020 Total Future):

Under the current intersection configuration, pedestrian crossings are provided on each leg of the intersection. A PLOS target of C was selected for the intersection.

The Ultimate Cycling Network from the City of Ottawa *Cycling Plan* (2013) designates Terry Fox Drive as a spine cycling route and Cope Drive as a local cycling route. These roads are therefore subject to a BLOS target of C and B, respectively. A BLOS target of B was selected for the intersection.

Transit service at the intersection of Terry Fox Drive at Cope Drive are expected to continue to operate within mixed traffic. Based on the MMLOS targets, a TLOS target of D was selected for the intersection.

Strategy September 19, 2018

Terry Fox Drive is designated as a truck route, therefore the intersection is subject to TrLOS target of D.

Table 22 presents the MMLOS conditions for the signalized intersection of Terry Fox Drive at Cope Drive.

As outlined in the summary analysis, the pedestrian level of service at the intersection of Terry Fox Drive at Cope Drive is expected to operate with a PLOS of D. Based on the MMLOS guidelines, intersection PLOS is largely influenced by the number of lanes pedestrians cross, the intersection cycle length and subsequent delay to pedestrians, pedestrian crossing time, and the treatment of right-turn movements at intersections.

The cycling level of service at the intersection is expected to operate with a BLOS of F. Based on the MMLOS guidelines, intersection BLOS is influenced by the availability of dedicated cycling amenities, number of lanes cyclists must cross to negotiate a turn at intersections, and roadway operating speeds.

The transit level of service at the intersection is expected to operate with a TLOS of E. Based on the MMLOS guidelines, intersection TLOS is influenced by the average intersection delay.

As the intersection of Terry Fox Drive at Cope Drive is an arterial-collector intersection, significant capacity is allocated to vehicular demands. Based on a review of the signal timing plans, vehicular demands, and intersection geometry, no short-term improvements were identified to improve the pedestrian and transit LOS at this intersection to meet the PLOS and TLOS targets. The cycling LOS could be improved to meet the BLOS target by reducing the operating speeds along Terry Fox Drive.

Table 21 - 2020 Total Future MMLOS (Terry Fox Drive / Fernbank Road)

	2		2018 Exist	ing Traffic		- 4
	Segment	EB	WB	NB	SB	Target
	Lanes crossed	3	5	4	4	
	Median >=2.4m (yes/no)	No	No	No	No	
	Island refuge (yes/no)	No	No	No	No	
	Left turn phasing	Protected / Permissive	Permissive	Protected / Permissive	Permissive	
	Right turn conflict	Yield Control	Yield Control	Yield Control	Yield Control	
	RTOR (yes/no)	Yes	Yes	Yes	NA	
	Leading ped interval (yes/no)	No	No	No	No	
PLOS	Right turn corner radius (m)	>15m to 25m	Right-turn Channel	>15m to 25m	>15m to 25m	С
귑	Crosswalk treatment	Standard	Standard	Standard	Standard	_
	Cycle length (s)	120	120	120	120	
	Effective walk time (s)	40	27	67.6	55.6	
	PETSI Points	68	44	51	51	
	PETSI Points LOS	С	Е	D	D	
	Average Pedestrian Delay (s)	26.6	36.0	11.4	17.3	
	Ped Delay LOS	С	D	В	В	
	Level of Service	С	Е	D	D	
	Level of Service		E			
	Type of bike lane	Pocket Bike Lane	Pocket Bike Lane	Mixed	Pocket Bike Lane	
	Left-turn - lanes crossed	1	1	1	1	
	Left-turn - vehicle operating speed (km/hr)	60	60	80	80	
w	Right-turn - number of turn lanes	1	1	0	1	
BLOS	Right-turn - turn lane length (m)	100	125	NA (Shared)	150	С
ш	Right-turn - turning speed (km/hr)	15	15	15	15	
	Right-turn - location of bike lane	Left of Right- turn Lane	Left of Right- turn Lane	NA	Left of Right- turn Lane	
	Level of Service	Е	Е	F	Е	
	Level of Service		F			
TLOS	Intersection Average Delay (s)		26	.7		D
ļ	Level of Service)		U
	Effective corner radius (m)	NA	NA	> 15m	> 15m	
OS	Number of receiving lanes	NA	NA	1	1	D
TKLOS	Level of Service	NA	NA	D	D	U
	Level of Service		[)		
(0	Maximum Volume-to-capacity (v/c)	0.66	0.82	0.51	0.77	
VLOS	Level of Service	В	D	Α	С	D
>	Level of Service		[)		

Table 22 - 2020 Total Future MMLOS (Terry Fox Drive / Cope Drive)

	2		2018 Exist	ing Traffic		T 4
	Segment	SB	NB	EB	WB	Target
	Lanes crossed	3	3	3	4	
	Median >=2.4m (yes/no)	No	No	No	No	
	Island refuge (yes/no)	No	No	No	No	
	Left turn phasing	Protected / Permissive	Permissive	Protected / Permissive	Permissive	
	Right turn conflict	Yield Control	Yield Control	Yield Control	Yield Control	
	RTOR (yes/no)	Yes	Yes	Yes	NA	
	Leading ped interval (yes/no)	No	No	No	No	
တ္ထ	Right turn corner radius (m)	>15m to 25m	>15m to 25m	>15m to 25m	>15m to 25m	
PLOS	Crosswalk treatment	Standard	Standard	Standard	Standard	С
_	Cycle length (s)	120	120	120	120	
	Effective walk time (s)	70.7	40.7	36.7	26	
	PETSI Points	68	68	68	51	
	PETSI Points LOS	С	С	С	D	
	Average Pedestrian Delay (s)	10.1	26.2	28.9	36.8	
	Ped Delay LOS	В	С	С	D	
	Level of Service	С	С	С	D	
	Level of Service)		
	Type of bike lane	Pocket Bike Lane	Mixed	Mixed	Mixed	
	Left-turn - lanes crossed	1	1	1	1	
	Left-turn - vehicle operating speed (km/hr)	80	80	50	50	
m	Right-turn - number of turn lanes	1	0	0	0	
BLOS	Right-turn - turn lane length (m)	125	NA (Shared)	NA (Shared)	NA (Shared)	В
В	Right-turn - turning speed (km/hr)	15	15	15	15	
	Right-turn - location of bike lane	Left of Right- turn Lane	NA	NA	NA	
	Level of Service	D	F	D	D	
	Level of Service		F			
TLOS	Intersection Average Delay (s)		33	.1		D
	Level of Service		E	≣		U
	Effective corner radius (m)	> 15m	> 15m	NA	NA	
TKLOS	Number of receiving lanes	1	1	NA	NA	D
본	Level of Service	D	D	NA	NA	ט
	Level of Service)		
(0	Maximum Volume-to-capacity (v/c)	0.76	0.74	0.76	0.87	
VLOS	Level of Service	С	С	С	D	D
>	Level of Service		Γ)		

Strategy September 19, 2018

4.9.2.4 2025 Ultimate Conditions

Figure 14 illustrates 2025 Ultimate AM peak, PM peak, and Saturday peak hour traffic volumes at the study area intersections.

Under the 2025 Ultimate horizon, the intersection of Terry Fox Drive and Fernbank Road is projected to operate acceptably with minimal delays and no movements operating above capacity (i.e. v/c > 1.00).

The intersection of Terry Fox Drive at Cope Drive is anticipated to operate near the capacity threshold of v/c 0.90 during the Saturday peak period. In addition, projected 95th percentile vehicle queues for the southbound left turn movement are anticipated to exceed the currently available storage length of 75 m. The projected operational deficiencies are attributed to background development growth anticipated by the 2025 time horizon.

The City of Ottawa Transportation Master Plan (TMP) identifies the widening of Terry Fox Drive from 2 lanes to 4 lanes between Eagleson Road to Winchester Drive under the Network Concept (i.e. Beyond 2031). It is anticipated that the widening of Terry Fox Drive from 2 lanes to 4 lanes will address the anticipated operational issues at the intersection of Terry Fox Drive and Cope Drive under projected 2025 conditions.

In the interim, and as the anticipated operational deficiencies are attributed to background development growth anticipated by the year 2025, it is recommended that the City of Ottawa extend the southbound left-turn lane at the intersection of Terry Fox Drive and Cope Drive by the year 2025.

Table 23 summarizes the results of the Synchro analysis for 2025 Ultimate conditions.

Appendix B contains detailed intersection performance worksheets.

Strategy September 19, 2018

Table 23 - 2025 Ultimate Intersection Operations (Synchro)

Scenario	Intersection Control	А	pproach / Movement	LOS	V/C	Delay (s)	Queue 95 th (m)
			Left	A (B) [B]	0.54 (0.66) [0.67]	29.3 (41.3) [49.4]	37.0 (43.6) [#38.7]
		EB	Through	A (A) [A]	0.23 (0.29) [0.30]	23.0 (29.7) [32.8]	27.3 (45.2) [45.2]
			Right	A (A) [A]	0.17 (0.11) [0.13]	5.2 (2.7) [4.2]	9.2 (5.0) [6.9]
			Left	A (A) [B]	0.08 (0.11) [0.63]	32.1 (38.5) [56.6]	6.9 (12.0) [51.8]
Terry Fox		WB	Through	A (D) [D]	0.57 (0.81) [0.84]	44.2 (63.7) [66.7]	39.0 (90.3) [95.0]
Drive at	Troffic Ciarrole		Right	A (A) [A]	0.46 (0.28) [0.04]	9.8 (4.7) [0.2]	15.5 (8.7) [0]
Fernbank	Traffic Signals	ND	Left	A (A) [A]	0.12 (0.52) [0.43]	11.8 (19.3) [17.3]	14.0 (40.9) [18.8]
Road		NB	Through / Right	A (A) [A]	0.42 (0.42) [0.54]	14.5 (17.8) [17.6]	70.3 (86.5) [113.7]
			Left	A (A) [A]	0.15 (0.42) [0.46]	9.4 (25.6) [11.4]	7.5 (52.1) [m21.9]
		SB	Through	A (B) [D]	0.24 (0.62) [0.81]	9.4 (28.7) [20.3]	19.6 (130.4) [#186.2]
			Right	A (A) [A]	0.06 (0.17) [0.09]	0.3 (4.3) [0.3]	0 (10.2) [m0.0]
			Overall Intersection	A (D) [D]	0.57 (0.81) [0.81]	17.2 (27.8) [27.9]	-
			Left	A (B) [D]	0.38 (0.64) [0.87]	8.1 (16.7) [40.7]	25.3 (48.7) [#103.4]
		SB	Through	A (A) [C]	0.24 (0.51) [0.78]	4.8 (12.4) [24.6]	30.3 (120.2) [207.2]
			Right	A (A) [A]	0.03 (0.07) [0.15]	1.5 (2.3) [2.1]	2.5 (5.7) [8.1]
		NB	Left	A (A) [A]	0.01 (0.01) [0.01]	3.2 (18.6) [27.0]	m0.5 (m1.5) [m0.2]
Terry Fox	Troffic Cianala	IND	Through / Right	A (C) [D]	0.55 (0.72) [0.82]	5.6 (26.8) [36.8]	62.6 (#210.5) [#186.7]
Drive at Cope Drive	Traffic Signals	EB	Left	B (A) [D]	0.61 (0.59) [0.86]	66.9 (53.1) [77.7]	18.1 (25.0) [#47.8]
2		EB	Through / Right	A (A) [A]	0.09 (0.21) [0.18]	32.2 (37.1) [31.8]	8.3 (25.3) [28.0]
		WB	Left	A (A) [A]	0.27 (0.57) [0.40]	38.1 (59.0) [46.4]	14.9 (36.5) [35.6]
		VVD	Through / Right	B (D) [D]	0.68 (0.81) [0.90]	17.1 (40.7) [61.8]	25.8 (56.3) [#107.0]
			Overall Intersection	B (D) [D]	0.68 (0.81) [0.90]	10.4 (25.0) [37.1]	-
		EB	Left / Through / Right	A (A) [A]	0.01 (0.04) [0.03]	0.4 (1.0) [0.6]	0 (0.1*) [0.1*]
Como Drivo st	Minor Ctor	WB	Left / Through / Right	A (A) [A]	0.02 (0.04) [0.06]	0.9 (1.0) [1.2]	0.1* (0.1*) [0.2*]
Cope Drive at Site Access 4	Minor Stop Control	NB	Left / Through / Right	B (B) [C]	0.12 (0.28) [0.43]	11.7 (17.5) [24.0]	0.4* (1.2*) [2.1*]
0.107.00000 4	33.11101	SB	Left / Through / Right	B (B) [C]	0.11 (0.10) [0.15]	12.0 (14.8) [18.2]	0.4* (0.3*) [0.5*]
			Overall Intersection	A (A) [A]	-	3.2 (3.6) [4.6]	-

Notes:

- 1. Table format: AM (PM)
- 2. v/c represents the anticipated volume divided by the predicted capacity

- # 95th percentile volume exceeds capacity, queue may be longer
 * Queue lengths for these movements are in vehicles
 m Volume for 95th percentile queue is metered by upstream signal

Strategy September 19, 2018

The signalized intersection MMLOS assessment was undertaken for the intersections of Terry Fox Drive at Fernbank Road, and the Terry Fox Drive at Cope Drive. Intersection operations under the AM peak, PM peak, and Saturday peak hours were considered in the assessment. MMLOS targets for areas "General Urban Area" were applied.

MMLOS - Terry Fox Drive at Fernbank Road Intersection (2025 Ultimate):

Under the current intersection configuration, pedestrian crossings are provided on each leg of the intersection. A PLOS target of C was selected for the intersection.

The Ultimate Cycling Network from the City of Ottawa *Transportation Master Plan* (2013) designates Terry Fox Drive and Fernbank Road as Spine Cycling Routes. These roads are therefore subject to Bicycle Level of Service (BLOS) targets of C.

Transit service travelling on Terry Fox Drive and Fernbank Road are expected to continue to operate within mixed traffic. Based on the MMLOS targets, a TLOS target of D was selected for the intersection.

Terry Fox Drive is designated as a truck route, therefore the intersection is subject to TrLOS target of D.

Table 24 presents the MMLOS conditions for the signalized intersection of Terry Fox Drive at Fernbank Road.

As outlined in the summary analysis, the pedestrian level of service at the intersection of Terry Fox Drive at Fernbank Road is expected to operate with a PLOS of E. Based on the MMLOS guidelines, intersection PLOS is largely influenced by the number of lanes pedestrians cross, the intersection cycle length and subsequent delay to pedestrians, pedestrian crossing time, and the treatment of right-turn movements at intersections.

The cycling level of service at the intersection is expected to operate with a BLOS of F. Based on the MMLOS guidelines, intersection BLOS is influenced by the availability of dedicated cycling amenities, number of lanes cyclists must cross to negotiate a turn at intersections, and roadway operating speeds.

As the intersection of Terry Fox Drive at Fernbank Road is an arterial-arterial intersection, significant capacity is allocated to vehicular demands. Based on a review of the signal timing plans, vehicular demands, and intersection geometry, no short-term improvements were identified to improve the pedestrian LOS at this intersection to meet the PLOS target. The cycling LOS could be improved to meet the BLOS target by reducing the operating speeds along Terry Fox Drive and Fernbank Road.

MMLOS - Terry Fox Drive at Cope Drive intersection (2025 Ultimate):

Under the current intersection configuration, pedestrian crossings are provided on each leg of the intersection. A PLOS target of C was selected for the intersection.

The Ultimate Cycling Network from the City of Ottawa Cycling Plan (2013) designates Terry Fox Drive as a spine cycling route and Cope Drive as a local cycling route. These roads are therefore subject to a BLOS target of C and B, respectively. A BLOS target of B was selected for the intersection.

Transit service at the intersection of Terry Fox Drive at Cope Drive are expected to continue to operate within mixed traffic. Based on the MMLOS targets, a TLOS target of D was selected for the intersection.

Strategy September 19, 2018

Terry Fox Drive is designated as a truck route, therefore the intersection is subject to TrLOS target of D.

Table 25 presents the MMLOS conditions for the signalized intersection of Terry Fox Drive at Cope Drive.

As outlined in the summary analysis, the pedestrian level of service at the intersection of Terry Fox Drive at Cope Drive is expected to operate with a PLOS of D. Based on the MMLOS guidelines, intersection PLOS is largely influenced by the number of lanes pedestrians cross, the intersection cycle length and subsequent delay to pedestrians, pedestrian crossing time, and the treatment of right-turn movements at intersections.

The cycling level of service at the intersection is expected to operate with a BLOS of F. Based on the MMLOS guidelines, intersection BLOS is influenced by the availability of dedicated cycling amenities, number of lanes cyclists must cross to negotiate a turn at intersections, and roadway operating speeds.

The transit level of service at the intersection is expected to operate with a TLOS of E. Based on the MMLOS guidelines, intersection TLOS is influenced by the average intersection delay.

As the intersection of Terry Fox Drive at Cope Drive is an arterial-collector intersection, significant capacity is allocated to vehicular demands. Based on a review of the signal timing plans, vehicular demands, and intersection geometry, no short-term improvements were identified to improve the pedestrian and transit LOS at this intersection to meet the PLOS and TLOS targets. The cycling LOS could be improved to meet the BLOS target by reducing the operating speeds along Terry Fox Drive.

Table 24 - 2025 Ultimate MMLOS (Terry Fox Drive / Fernbank Road)

			2018 Exist	ing Traffic		
	Segment	EB	WB	NB	SB	Target
	Lanes crossed	3	5	4	4	
	Median >=2.4m (yes/no)	No	No	No	No	
	Island refuge (yes/no)	No	No	No	No	
	Left turn phasing	Protected / Permissive	Permissive	Protected / Permissive	Permissive	
	Right turn conflict	Yield Control	Yield Control	Yield Control	Yield Control	
	RTOR (yes/no)	Yes	Yes	Yes	NA	
	Leading ped interval (yes/no)	No	No	No	No	
PLOS	Right turn corner radius (m)	>15m to 25m	Right-turn Channel	>15m to 25m	>15m to 25m	С
귑	Crosswalk treatment	Standard	Standard	Standard	Standard	
	Cycle length (s)	120	120	120	120	
	Effective walk time (s)	40	27	67.6	55.6	
	PETSI Points	68	44	51	51	
	PETSI Points LOS	С	Е	D	D	
	Average Pedestrian Delay (s)	26.6	36.0	11.4	17.3	
	Ped Delay LOS	С	D	В	В	
	Level of Service	С	E	D	D	
	Level of Service		E			
	Type of bike lane	Pocket Bike Lane	Pocket Bike Lane	Mixed	Pocket Bike Lane	
	Left-turn - lanes crossed	1	1	1	1	
	Left-turn - vehicle operating speed (km/hr)	60	60	80	80	
w	Right-turn - number of turn lanes	1	1	0	1	
BLOS	Right-turn - turn lane length (m)	100	125	NA (Shared)	150	С
Ω	Right-turn - turning speed (km/hr)	15	15	15	15	
	Right-turn - location of bike lane	Left of Right- turn Lane	Left of Right- turn Lane	NA	Left of Right- turn Lane	
	Level of Service	E	E	F	E	
	Level of Service		F			
TLOS	Intersection Average Delay (s)		27	.9		D
Ĭ	Level of Service		С)		U
	Effective corner radius (m)	NA	NA	> 15m	> 15m	
TKLOS	Number of receiving lanes	NA	NA	1	1	_
Ž	Level of Service	NA	NA	D	D	D
	Level of Service		C)		
(0	Maximum Volume-to-capacity (v/c)	0.67	0.84	0.54	0.81	
VLOS	Level of Service	В	D	Α	D	D
>	Level of Service		С)		

Table 25 - 2025 Ultimate MMLOS (Terry Fox Drive / Cope Drive)

			2018 Exist	ing Traffic		
	Segment	EB	WB	NB	SB	Target
	Lanes crossed	3	3	3	4	
	Median >=2.4m (yes/no)	No	No	No	No	
	Island refuge (yes/no)	No	No	No	No	
	Left turn phasing	Protected / Permissive	Permissive	Protected / Permissive	Permissive	
	Right turn conflict	Yield Control	Yield Control	Yield Control	Yield Control	
	RTOR (yes/no)	Yes	Yes	Yes	NA	
	Leading ped interval (yes/no)	No	No	No	No	
တ္ထ	Right turn corner radius (m)	>15m to 25m	>15m to 25m	>15m to 25m	>15m to 25m	
PLOS	Crosswalk treatment	Standard	Standard	Standard	Standard	С
-	Cycle length (s)	120	120	120	120	
	Effective walk time (s)	70.7	40.7	36.7	26	
	PETSI Points	68	68	68	51	
	PETSI Points LOS	С	С	С	D	
	Average Pedestrian Delay (s)	10.1	26.2	28.9	36.8	
	Ped Delay LOS	В	С	С	D	
	Level of Service	С	С	С	D	
	Level of Service)	D	
	Type of bike lane	Pocket Bike Lane	Mixed	Mixed	Mixed	
	Left-turn - lanes crossed	1	1	1	1	
	Left-turn - vehicle operating speed (km/hr)	80	80	50	50	
w	Right-turn - number of turn lanes	1	0	0	0	
BLOS	Right-turn - turn lane length (m)	125	NA (Shared)	NA (Shared)	NA (Shared)	В
В	Right-turn - turning speed (km/hr)	15	15	15	15	
	Right-turn - location of bike lane	Left of Right- turn Lane	NA	NA	NA	
	Level of Service	D	F	D	D	
	Level of Service		F			
TLOS	Intersection Average Delay (s)		37	·.1		D
	Level of Service		E	Ī		ט
	Effective corner radius (m)	> 15m	> 15m	NA	NA	
SO	Number of receiving lanes	1	1	NA	NA	_
TKLOS	Level of Service	D	D	NA	NA	D
	Level of Service		С)		
(0)	Maximum Volume-to-capacity (v/c)	0.87	0.82	0.86	0.90	
NLOS	Level of Service	D	D	D	D	D
>	Level of Service)		

Conclusion September 19, 2018

5.0 CONCLUSION

This Transportation Impact Assessment (TIA) was prepared in support of a Zoning By-Law Amendment application for the proposed commercial development located at the southeast corner of Terry Fox Drive and Cope Drive in the Kanata South community of Ottawa, Ontario. The proposed development features four site accesses: a full movements access on Cope Drive, two restricted right/in-right/out accesses on Terry Fox Drive, and a restricted right-in/right out access on Fernbank Road.

Development generated site trips are not anticipated to adversely impact traffic operations at study area intersections. All study area intersections are projected to operate acceptably under the 2020 site build-out time horizon (Total Future Conditions).

Under the 2025 Ultimate Conditions horizon (i.e. site build-out + 5 years), the intersection of Terry Fox Drive at Cope Drive is anticipated to operate near the capacity threshold of v/c 0.90 during the Saturday peak period. In addition, projected 95th percentile vehicle queues for the southbound left turn movement are anticipated to exceed the currently available storage length of 75 m. The projected operational deficiencies are attributed to background development growth anticipated by the 2025 time horizon.

The City of Ottawa Transportation Master Plan (TMP) identifies the widening of Terry Fox Drive from 2 lanes to 4 lanes between Eagleson Road to Winchester Drive under the Network Concept (i.e. Beyond 2031). It is anticipated that the widening of Terry Fox Drive from 2 lanes to 4 lanes will address the anticipated operational issues at the intersection of Terry Fox Drive and Cope Drive under projected 2025 conditions. In the interim, and as the anticipated operational deficiencies are attributed to background development growth anticipated by the year 2025, it is recommended that the City of Ottawa extend the southbound left-turn lane at the intersection of Terry Fox Drive and Cope Drive by the year 2025.

It is recommended that the restricted right-in/right-out operation at the proposed Fernbank Road site access be enforced through the extension of the existing median on the east leg of the Terry Fox Drive and Fernbank Road. The extension of the existing median is expected to provide better reinforcement of the intended right-in/right-out operation at the Fernbank Road site access. The location and design treatment details of proposed site accesses will be confirmed through the Site Plan Control process.

The Multi-Modal Level of Service (MMLOS) assessment identified poor pedestrian, cycling, and transit levels of service under existing and future conditions. As Terry Fox Drive is an arterial roadway, significant capacity is allocated to vehicular demands. Based on a review of the signal timing plans, vehicular demands, and intersection geometry, no short-term improvements were at study area intersections. Opportunities to improve the pedestrian and cycling levels of service should be addressed as part of the planned widening of Terry Fox Drive from 2 lanes to 4 lanes.

Based on the transportation evaluation presented in this study, the proposed commercial development located at Terry Fox Drive and Cope Drive can be supported and should be permitted to proceed from a transportation impact perspective.

Appendix A Collision Reports September 19, 2018

APPENDIX A COLLISION REPORTS

City Operations - Transportation Services

Collision Details Report - Public Version

From: January 1, 2013 To: December 31, 2017

Location: COPE DR @ TERRY FOX Traffic Control: Traffic signal Total Collisions: 27 Date/Day/Time Environment Impact Type Classification Veh. Dir Vehicle Manoeuver Vehicle type First Event No. Ped Surface Cond'n 2013-Aug-26, Mon, 19:39 Clear P.D. only Rear end Wet South Going ahead Automobile. Other motor station wagon vehicle South Stopped Automobile, Other motor station wagon vehicle 2013-Sep-14, Sat, 18:04 Clear P.D. only Dry Going ahead Pick-up truck North Stopped Automobile. Other motor station wagon vehicle 2013-Nov-29, Fri,15:26 Clear Angle P.D. only Dry Pick-up truck Other motor North Going ahead East Going ahead Automobile, Other motor station wagon vehicle P.D. only 2013-Dec-05, Thu,13:16 Clear Overtaking Sideswipe Wet South Unknown Other motor vehicle Going ahead Pick-up truck Other motor South vehicle 2014-Jun-12, Thu,18:12 Rain Rear end Non-fatal injury Wet North Going ahead Pick-up truck Other motor vehicle Other motor North Automobile Stopped station wagon vehicle North Stopped Automobile, Other motor station wagon vehicle

Tuesday, July 17, 2018 Page 1 of 5

2014-Dec-01, Mon,16:58	Clear	Rear end	P.D. only	Dry	South	Slowing or stopping	Automobile,	Other motor
							station wagon	vehicle
					South	Stopped	Automobile, station wagon	Other motor vehicle
					South	Stopped	Automobile, station wagon	Other motor vehicle
2014-Dec-27, Sat,17:10	Rain	SMV other	P.D. only	Wet	West	Turning left	Automobile, station wagon	Ran off road
2014-Nov-19, Wed,19:33	Clear	Angle	P.D. only	Wet	West	Turning right	Automobile, station wagon	Other motor vehicle
					North	Going ahead	Pick-up truck	Other motor vehicle
2015-Feb-26, Thu,11:48	Clear	Turning movement	P.D. only	Wet	North	Turning left	Automobile, station wagon	Other motor vehicle
					South	Going ahead	Automobile, station wagon	Other motor vehicle
2015-Sep-09, Wed,07:25	Clear	Turning movement	P.D. only	Dry	South	Turning left	Pick-up truck	Other motor vehicle
					North	Going ahead	Pick-up truck	Other motor vehicle
2016-Jan-22, Fri,19:12	Clear	Angle	P.D. only	Dry	East	Turning left	Automobile, station wagon	Other motor vehicle
					South	Going ahead	Pick-up truck	Other motor vehicle
2016-Feb-22, Mon,16:09	Clear	Turning movement	P.D. only	Dry	North	Turning left	Pick-up truck	Other motor vehicle
					South	Going ahead	Automobile, station wagon	Other motor vehicle

Tuesday, July 17, 2018 Page 2 of 5

2016-Apr-06, Wed,17:52	Snow	Rear end	P.D. only	Loose snow	North	Slowing or stopping	g Pick-up truck	Other motor vehicle	
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2016-May-01, Sun,15:35	Clear	Rear end	P.D. only	Wet	North	Going ahead	Automobile, station wagon	Other motor vehicle	
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2016-May-03, Tue,19:43	Clear	Rear end	P.D. only	Dry	West	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	
					West	Stopped	Automobile, station wagon	Other motor vehicle	
2016-Oct-04, Tue,03:47	Clear	SMV other	P.D. only	Dry	West	Going ahead	Automobile, station wagon	Curb	
2016-Oct-17, Mon,08:04	Clear	Angle	Non-fatal injury	Wet	North	Going ahead	Automobile, station wagon	Other motor vehicle	
					West	Going ahead	Pick-up truck	Other motor vehicle	
2016-Oct-18, Tue,19:06	Clear	Rear end	P.D. only	Dry	North	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	
					North	Stopped	Municipal transit bus	Other motor vehicle	
2016-Nov-12, Sat,15:27	Clear	Rear end	Non-fatal injury	Dry	South	Turning left	Pick-up truck	Other motor vehicle	
					South	Turning left	Automobile, station wagon	Other motor vehicle	
2016-Dec-09, Fri,17:51	Snow	Rear end	P.D. only	Ice	South	Going ahead	Pick-up truck	Other motor vehicle	
Tuesday, July 17, 20	18								Page 3 of 5
					South	Stonned	Automobile	Other motor	

					South	Stopped	Automobile, station wagon	Other motor vehicle
2017-Feb-19, Sun,12:15	Clear	Turning movement	Non-fatal injury	Wet	South	Turning left	Automobile, station wagon	Other motor vehicle
					North	Going ahead	Passenger van	Other motor vehicle
2017-Mar-05, Sun,10:33	Clear	Turning movement	Non-fatal injury	Dry	South	Turning left	Automobile, station wagon	Other motor vehicle
					North	Going ahead	Automobile, station wagon	Other motor vehicle
				_				
2017-Jun-30, Fri,20:42	Clear	Turning movement	P.D. only	Dry	South	Turning left	Automobile, station wagon	Other motor vehicle
					North	Going ahead	Pick-up truck	Other motor vehicle
2017-Jul-06, Thu,15:16	Clear	Rear end	P.D. only	Dry	South	Turning left	Passenger van	Other motor vehicle
					South	Turning left	Automobile, station wagon	Other motor vehicle
0047 A 05 Ed 40.00	Olean	T	D.D. sale	D	Occub	Turning 1-8	A. d b. 11 .	Olleganista
2017-Aug-25, Fri,18:36	Clear	Turning movement	P.D. only	Dry	South	Turning left	Automobile, station wagon	Other motor vehicle
					North	Going ahead	Automobile, station wagon	Other motor vehicle
2017-Nov-05, Sun,12:24	Rain	Turning movement	P.D. only	Wet	East	Turning left	Passenger van	Other motor vehicle
					West	Going ahead	Automobile, station wagon	Other motor vehicle
2017-Nov-28, Tue,17:21	Rain	Turning movement	P.D. only	Wet	North	Turning right	Automobile, station wagon	Other motor vehicle

Tuesday, July 17, 2018 Page 4 of 5

Going ahead Automobile, Other motor station wagon vehicle

Tuesday, July 17, 2018 Page 5 of 5

City Operations - Transportation Services Collision Details Report - Public Version

From: January 1, 2013 **To:** December 31, 2017

Location: TERRY	FOX DR @ F	FERNBANK RD							
Traffic Control: Tra	ffic signal						Total Co	ollisions: 26	i
Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuver	r Vehicle type	First Event	No. Ped
2013-Jan-23, Wed,08:15	Clear	Rear end	P.D. only	Dry	East	Turning right	Automobile, station wagon	Other motor vehicle	
					East	Turning right	Automobile, station wagon	Other motor vehicle	
2013-May-30, Thu,17:15	Clear	Rear end	P.D. only	Dry	North	Slowing or stopping	g Automobile, station wagon	Other motor vehicle	
					North	Stopped	Automobile, station wagon	Other motor vehicle	
2013-Jun-02, Sun,12:45	Clear	Turning movement	P.D. only	Dry	South	Turning left	Passenger van	Other motor vehicle	
					North	Going ahead	Passenger van	Other motor vehicle	
2013-Jul-21, Sun,16:40	Clear	Angle	Non-fatal injury	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	
					East	Going ahead	Pick-up truck	Other motor vehicle	
2013-Sep-16, Mon,10:23	Clear	Angle	Non-fatal injury	Dry	South	Going ahead	Pick-up truck	Other motor vehicle	
					East	Going ahead	Automobile, station wagon	Other motor vehicle	
2013-Oct-25, Fri,18:10	Clear	Turning movement	P.D. only	Dry	East	Turning left	Automobile, station wagon	Other motor vehicle	

Tuesday, July 17, 2018 Page 1 of 4

					West	Going ahead	Pick-up truck	Other motor vehicle	
2014-Jan-04, Sat,10:16	Clear	Angle	Non-fatal injury	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2014-Jun-18, Wed,07:09	Clear	Rear end	P.D. only	Dry	South	Slowing or stopping	Automobile, station wagon	Other motor vehicle	
					South	Stopped	Truck - dump	Other motor vehicle	
2014-Oct-28, Tue,10:45	Clear	Angle	P.D. only	Dry	East	Turning right	Automobile, station wagon	Other motor vehicle	
					South	Going ahead	Automobile, station wagon	Other motor vehicle	
2014-Nov-13, Thu,10:30	Clear	Other	P.D. only	Dry	North	Reversing	Truck - closed	Other motor vehicle	
					South	Turning left	Automobile, station wagon	Other motor vehicle	
2014-Dec-18, Thu,13:46	Clear	Rear end	Non-fatal injury	Dry	West	Turning right	Pick-up truck	Other motor vehicle	
					West	Turning right	Pick-up truck	Other motor vehicle	
2015-Mar-03, Tue,18:31	Snow	Rear end	P.D. only	Loose snow	North	Slowing or stopping	Automobile, station wagon	Other motor vehicle	
					North	Slowing or stopping	_	Other motor vehicle	
2015-May-06, Wed,19:38	Clear	Angle	Non-fatal injury	Dry	East	Going ahead	Bicycle	Other motor vehicle	
Tuesday, July 17, 201	18								Page 2 of 4
					North	Going ahead	Automobile, station wagon	Cyclist	
2015-Aug-26, Wed,17:32	Rain	Rear end	P.D. only	Wet	West	Going ahead	Automobile, station wagon	Other motor vehicle	
					West	Stopped	Automobile, station wagon	Other motor vehicle	
2015-Sep-13, Sun,16:48	Clear	Angle	Non-fatal injury	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	
					East	Going ahead	Pick-up truck	Other motor vehicle	
2015-Nov-19, Thu,19:52	Clear	Sideswipe	P.D. only	Dry	South	Changing lanes	Automobile, station wagon	Other motor vehicle	
					South	Overtaking	Automobile, station wagon	Other motor vehicle	
2015-Nov-25, Wed,13:51	Clear	Sideswipe	P.D. only	Dry	East	Turning right	Automobile, station wagon	Other motor vehicle	
					East	Turning right	Truck and trailer	Other motor vehicle	

Tuesday, July 17, 2018 Page 3 of 4

Dry

Wet

Dry

North

South

East

North

South

Non-fatal injury

P.D. only

Turning movement P.D. only

2016-May-23, Mon,18:34 Clear

2016-Jul-14, Thu,11:00 Rain

2016-Jul-28, Thu,19:10 Clear

SMV other

Angle

Pulling onto Automobile, shoulder or toward station wagon curb

Automobile, station wagon

Pick-up truck

Automobile, station wagon

Going ahead Pick-up truck

Turning right

Stopped

Turning left

Curb

Other motor vehicle

Other motor

Other motor vehicle

Other motor vehicle

2016-Aug-07, Sun,20:15	Clear	Rear end	P.D. only	Dry	South	Slowing or stopping	Automobile, station wagon	Other motor vehicle
					South	Stopped	Passenger van	Other motor vehicle
2017-Jan-13, Fri,18:16	Clear	Turning movement	P.D. only	Dry	South	Turning left	Automobile, station wagon	Other motor vehicle
					North	Going ahead	Automobile, station wagon	Other motor vehicle
2017-Jun-17, Sat,07:59	Clear	Angle	P.D. only	Dry	West	Going ahead	Automobile, station wagon	Other motor vehicle
					South	Going ahead	Pick-up truck	Other motor vehicle
2017-Jun-30, Fri,11:34	Rain	Sideswipe	P.D. only	Wet	North	Changing lanes	Automobile, station wagon	Other motor vehicle
					North	Turning left	Pick-up truck	Other motor vehicle
2017-Sep-08, Fri,12:53	Clear	Rear end	P.D. only	Dry	West	Slowing or stopping	Automobile, station wagon	Other motor vehicle
					West	Turning right	Automobile, station wagon	Other motor vehicle
2017-Nov-18, Sat,10:15	Clear	Other	P.D. only	Dry	South	Going ahead	Pick-up truck	Debris falling off vehicle
					South	Going ahead	Unknown	Other

Tuesday, July 17, 2018 Page 4 of 4

Appendix B Intersection Performance Worksheets September 19, 2018

APPENDIX B INTERSECTION PERFORMANCE WORKSHEETS

B.1 2018 EXISTING

Lanes, Volumes, Timings 3: Terry Fox Dr & Fernbank Rd

Lane Group
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Satd. Flow (prot)
FIt Permitted
Set of Flow (norm)

Satd. Flow (perm) Satd. Flow (RTOR)

Detector Phase

Detector Phase
Switch Phase
Minimum Initial (s)
Minimum Split (s)
Total Split (s)
Total Split (%)
Yellow Time (s)
All-Red Time (s)

Lost Time Adjust (s) Total Lost Time (s)

Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio

Lane Group Flow (vph)
Turn Type
Protected Phases
Permitted Phases

EBT A

787

134

0.0 0.0 6.2 0.0 6.2 0.0 6.2 0.0 0.0 6.2 0.0 6.2 0.0 6.2

Control of the contro

0.38 0.24 24.8 22.6

0.0 0.0 24.8 22.6

5331 Fernbank Rd TIA 2018 Existing - AM Peak

ļ

205 NA 6

5.0 29.2 38.0 42.2% 4.6 1.6 5.0 29.2 38.0 42.2% 4.6 1.6

C-Max C-Max C-Max 49.2 49.2 49.2 0.55 0.55 0.55

2 57 189 39 2 57 189 39 0 1695 1784 1517 0.495 0.495 0 883 1784 1517 113

0 62 Perm

29.2 38.0 42.2% 4.6 1.6

0.0 6.2 0.0 6.2 0.0 6.2

0.13 12.6 0.21 0.05

SBR

Queues 3: Terry Fox Dr & Fernbank Rd 5331 Fernbank Rd TIA 2018 Existing - AM Peak

	۶	→	•	•	+	4	4	1	1	Ţ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	134	133	96	3	136	163	72	368	62	205	42	
v/c Ratio	0.38	0.24	0.18	0.02	0.56	0.47	0.12	0.38	0.13	0.21	0.05	
Control Delay	24.8	22.6	5.1	31.3	44.8	10.3	12.1	14.1	12.6	12.2	0.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	24.8	22.6	5.1	31.3	44.8	10.3	12.1	14.1	12.6	12.2	0.1	
Queue Length 50th (m)	16.8	16.6	0.0	0.5	22.3	0.0	5.8	34.9	5.0	17.4	0.0	
Queue Length 95th (m)	27.9	27.6	9.2	2.7	37.5	15.7	14.1	61.1	13.0	33.2	0.0	
Internal Link Dist (m)		304.1			40.1			257.7		88.5		
Turn Bay Length (m)	110.0		110.0	125.0			110.0		125.0		135.0	
Base Capacity (vph)	359	907	819	383	570	596	613	974	482	974	880	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.37	0.15	0.12	0.01	0.24	0.27	0.12	0.38	0.13	0.21	0.05	
Intersection Summary												

v/c Ratio
Control Delay
Queue Delay
Total Delay
LOS
Approach Delay
Approach LOS 0.0 0.0 12.6 12.2 B B 10.7 Intersection Summar Intersection Summary
Cycle Length: 90
Actuated Cycle Length: 90
Offset: 9 (10%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 75
Control Type: Actuated-Coordinated
Maximum vic Ratio: 0.56
Intersection Signal Delay: 17.0
Intersection Intersection Signal Delay: 17.0
Intersection Signal Delay: 17 Intersection LOS: B ICU Level of Service B

4

5.0 5.0 33.2 29.2 35.0 38.0 38.9% 42.2% 3.7 4.6 2.5 1.6

None C-Max C-Max 12.2 49.2 49.2 0.14 0.55 0.55

0.0 0.0 0.0 10.3 12.1 14.1 B B B

0.47 10.3 0.12 12.1 0.38

337 337 1783

5.0 29.2 38.0 42.2% 4.6 1.6

| 122 | 88 | 3 | 125 | 150 | 66 | 337 | 1784 | 1517 | 1695 | 1784 | 1517 | 1695 | 1784 | 1517 | 1695 | 1783 | 1784 | 1517 | 1199 | 1784 | 1517 | 1122 | 1783 |

96 163 133 96 3 136 163 72 NA Perm Perm NA Perm Perm 4 8

5.0 33.2

35.0 38.9% 3.7 2.5

5.0 33.2 35.0 38.9% 3.7 2.5

Lag Yes Lag Lag

Yes None 12.2 0.14 None 12.2 0.14

0.18 0.02 0.56 5.1 31.3 44.8 0.0 0.0 0.0 5.1 31.3 44.8 A C D

5.0 33.2

52.0 57.8% 3 3.7 2.5

Splits and Phases: 3: Terry Fox Dr & Fernbank Rd J Ø7 09/19/2018 Synchro 9 Report

Lanes, Volumes, Timings 6: Terry Fox Dr & Cope Dr 5331 Fernbank Rd TIA 2018 Existing - AM Peak

Page 1

*	٠	•	4	†	~	-	ţ	4
WBL	В	BR	NBL	NBT	NBR	SBL	SBT	SBR
٦	Ī		ሻ	î,		Ť	†	7
17	7	72	5	579	26	139	267	34
17	7	72	5	579	26	139	267	34
1695		0	1695	1774	0	1695	1784	1517
0.744			0.582			0.375		
1328		0	1038	1774	0	669	1784	1517
				4				39
18		0	5	657	0	151	290	37
Perm			Perm	NA		Perm	NA	Perm
				8			4	
6			8			4		4
6			8	8		4	4	4
5.0			5.0	5.0		5.0	5.0	5.0
32.2			33.5	33.5		33.5	33.5	33.5
33.0			57.0	57.0		57.0	57.0	57.0
6.7%			63.3%	63.3%		63.3%	63.3%	63.3%
3.3			4.6	4.6		4.6	4.6	4.6
2.9			1.8	1.8		1.8	1.8	1.8
0.0			0.0	0.0		0.0	0.0	0.0
6.2			6.4	6.4		6.4	6.4	6.4
None		- (C-Max	C-Max		C-Max	C-Max	C-Max
10.0			67.4	67.4		67.4	67.4	67.4
0.11			0.75	0.75		0.75	0.75	0.75
0.12			0.01	0.49		0.30	0.22	0.03
35.8			3.8	6.5		6.2	4.3	1.4
0.0			0.0	0.0		0.0	0.0	0.0
35.8			3.8	6.5		6.2	4.3	1.4
D			Α	Α		Α	Α	Α
				6.5			4.7	
				Α			Α	
	D B 16.8 B	16.8	16.8	16.8	16.8 6.5	16.8 6.5	16.8 6.5	16.8 6.5 4.7

Cycle Length: 90		
Actuated Cycle Length: 90		
Offset: 55 (61%), Referenced to phase 4:SBTL and 8	:NBTL, Start of Green	
Natural Cycle: 75		
Control Type: Actuated-Coordinated		
Maximum v/c Ratio: 0.67		
Intersection Signal Delay: 10.3	Intersection LOS: B	
Intersection Capacity Utilization 79.2%	ICU Level of Service D	
Analysis Period (min) 15		

Splits and Phases: 6: Terry Fo	ox Dr & Cope Dr	
⊸ø ₂	\$ Ø4 (R)	
33 s	57 s	
₹ø6	1 Ø8 (R)	
33 s	57 s	
09/19/2018		Synchro 9 Report

Queues 6: Terry Fox Dr & Cope Dr

09/19/2018

5331 Fernbank Rd TIA 2018 Existing - AM Peak

Synchro 9 Report

	۶	→	•	←	4	†	-	↓	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	52	21	18	203	5	657	151	290	37	
v/c Ratio	0.67	0.11	0.12	0.60	0.01	0.49	0.30	0.22	0.03	
Control Delay	74.3	33.9	35.8	15.1	3.8	6.5	6.2	4.3	1.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	74.3	33.9	35.8	15.1	3.8	6.5	6.2	4.3	1.4	
Queue Length 50th (m)	8.8	3.2	2.9	2.5	0.2	35.8	6.8	12.0	0.0	
Queue Length 95th (m)	19.8	9.2	8.6	20.8	1.2	70.5	18.2	24.9	2.4	
Internal Link Dist (m)		97.2		56.3		119.2		183.3		
Turn Bay Length (m)	40.0		50.0		55.0		75.0		165.0	
Base Capacity (vph)	212	528	395	589	777	1330	501	1336	1146	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.25	0.04	0.05	0.34	0.01	0.49	0.30	0.22	0.03	
Intersection Summary										

<u>~</u>											0	
	۶	→	*	€	←	4	4	†	-	ļ	4	
	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Ī	127	179	65	2	265	107	210	364	154	418	80	
	0.54	0.31	0.12	0.01	0.74	0.24	0.51	0.37	0.41	0.61	0.12	
	32.7	26.0	1.6	28.0	49.2	2.0	17.7	14.9	28.9	31.0	0.3	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	32.7	26.0	1.6	28.0	49.2	2.0	17.7	14.9	28.9	31.0	0.3	
	17.9	26.0	0.0	0.3	48.6	0.0	19.7	37.1	22.0	65.6	0.0	
	28.2	38.2	2.9	2.0	68.5	2.3	38.2	66.7	43.1	104.9	0.0	
		304.1			40.1			257.7		88.5		

Lane Group
Lane Group Flow (vph)
vic Ratio
Control Delay
Queue Delay
Total Delay
Queue Length 50th (m)
Queue Length 95th (m)
Internal Link Dist (m)
Turn Bay Length (vph)
Base Capacity (vph)
Stavration Cap Reducth 110.0 234 110.0 710 667 125.0 319 110.0 545 416 125.0 373 495 686 689 Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio 0.54 0.25 0.10 0.01 0.54 0.20 0.50 0.37 0.41 0.61 0.12

Intersection Summan

4 Ţ Lane Group Lane Configurations Traffic Volume (vph) Future Volume (vph) Satd. Flow (prot) FIT Permitted State Flow (norm) EBT SBR 117 117 1695 0.286 165 60 2 244 98 165 60 2 244 98 1784 1517 1695 1784 1517 0.644 330 330 1781 5 142 5 142 0 1695 0.544 385 74 385 74 1784 1517 193 193 1695 0.300 Satd. Flow (perm) Satd. Flow (RTOR) 1784 1517 1149 1784 1517 535 1781 0 971 1784 1517 510 106 172 179 65 2 265 107 210 NA Perm Perm NA Perm pm+pt 4 8 5 364 NA 2 Lane Group Flow (vph) Turn Type Protected Phases Permitted Phases 418 NA 6 127 154 Perm Detector Phase Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) Total Split (%) Yellow Time (s) All-Red Time (s) 5.0 33.2 34.0 34.0% 5.0 33.2 5.0 33.2 5.0 33.2 5.0 33.2 5.0 5.0 29.2 5.0 29.2 54.0 54.0% 4.6 1.6 29.2 29.2 39.0 39.0% 4.6 1.6 34.0 34.0% 3.7 2.5 34.0 34.0% 3.7 2.5 39.0 39.0% 4.6 1.6 39.0 39.0% 4.6 1.6 3.7 2.4 3.7 2.5 3.7 2.5 Lost Time Adjust (s) Total Lost Time (s) 0.0 0.0 6.2 0.0 6.2 0.0 0.0 0.0 6.2 0.0 6.5 0.0 6.2 0.0 6.2 0.0 6.2 0.0 6.2 Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio 6.1 Lead Yes None 32.3 0.32 6.2 6.2 6.2 Lag Lag Lag Yes Yes Yes C-Max C-Max C-Max 38.5 38.5 38.5 0.38 0.38 Lag Yes None 20.2 0.20 Lag Yes None 20.2 0.20 Lag Yes Lead Yes Yes None 20.2 0.20 None C-Max 55.1 55.4 0.55 0.55 None None 32.2 32.2 0.32 0.32 v/c Ratio Control Delay Queue Delay Total Delay LOS Approach Delay Approach LOS 0.54 32.7 0.31 26.0 0.12 0.01 1.6 28.0 0.74 49.2 0.24 0.51 17.7 0.37 0.41 28.9 0.61 31.0 0.12 1.6 0.0 1.6 A 0.0 0.0 32.7 26.0 C C 0.0 28.0 C 0.0 49.2 D 35.6 0.0 0.0 0.0 0.0 28.9 31.0 Intersection Summary

Intersection Summary
Cycle Length: 100
Actuated Cycle Length: 100
Gfiset: 91 (1974), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 85
Control Type: Actuated-Coordinated
Maximum Wc Ratio: 0,74 Intersection Signal Delay: 24.8 Intersection Capacity Utilization 73.9% Analysis Period (min) 15 ICU Level of Service D

Splits and Phases: 3: Terry Fox Dr & Fernbank Rd

¶ø2 (R)	•		4 04			
54 s		4	l6 s			
√ ø5	Ø6 (R)		≯ ø7	₩ Ø8		
15 s	39 s	1	.2 s	34 s		
09/19/2018					Synchro	Repor

Lanes, Volumes, Timings

6: Terry Fox Dr & Cope Dr

5331 Fernbank Rd TIA 2018 Existing - PM Peak

	۶	-	•	•	←	4	4	†	~	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ĥ		ሻ	1		Ť	4		Ť	†	7
Traffic Volume (vph)	78	76	2	67	58	179	5	516	24	197	532	72
Future Volume (vph)	78	76	2	67	58	179	5	516	24	197	532	72
Satd. Flow (prot)	1695	1777	0	1695	1583	0	1695	1772	0	1695	1784	1517
Flt Permitted	0.293			0.702			0.447			0.296		
Satd. Flow (perm)	523	1777	0	1253	1583	0	798	1772	0	528	1784	1517
Satd. Flow (RTOR)		1			152			3				78
Lane Group Flow (vph)	85	85	0	73	258	0	5	587	0	214	578	78
Turn Type	Perm	NA		Perm	NA		Perm	NA		pm+pt	NA	Perm
Protected Phases		2			6			8		7	4	
Permitted Phases	2			6			8			4		4
Detector Phase	2	2		6	6		8	8		7	4	4
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	32.2	32.2		32.2	32.2		33.5	33.5		11.4	33.5	33.5
Total Split (s)	33.0	33.0		33.0	33.0		55.0	55.0		12.0	67.0	67.0
Total Split (%)	33.0%	33.0%		33.0%	33.0%		55.0%	55.0%		12.0%	67.0%	67.0%
Yellow Time (s)	3.3	3.3		3.3	3.3		4.6	4.6		4.6	4.6	4.6
All-Red Time (s)	2.9	2.9		2.9	2.9		1.8	1.8		1.8	1.8	1.8
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2		6.2	6.2		6.4	6.4		6.4	6.4	6.4
Lead/Lag							Lag	Lag		Lead		
Lead-Lag Optimize?							Yes	Yes		Yes		
Recall Mode	None	None		None	None		C-Max	C-Max		None	C-Max	C-Max
Act Effct Green (s)	15.5	15.5		15.5	15.5		56.6	56.6		71.9	71.9	71.9
Actuated g/C Ratio	0.16	0.16		0.16	0.16		0.57	0.57		0.72	0.72	0.72
v/c Ratio	1.05	0.31		0.38	0.69		0.01	0.58		0.44	0.45	0.07
Control Delay	155.8	37.6		41.1	25.5		12.8	18.7		8.5	8.2	1.7
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	155.8	37.6		41.1	25.5		12.8	18.7		8.5	8.2	1.7
LOS	F	D		D	С		В	В		Α	Α	Α
Approach Delay		96.7			28.9			18.6			7.7	
Approach LOS		F			С			В			Α	

Approach LOS	F	С	В	A
Intersection Summary				
Cycle Length: 100				
Actuated Cycle Length: 100				
Offset: 69 (69%), Referenced to phase 4	:SBTL and 8:NE	TL, Start of Green		
Natural Cycle: 80				
Control Type: Actuated-Coordinated				
Maximum v/c Ratio: 1.05				
Intersection Signal Delay: 22.3		Intersection LOS: C		
Intersection Capacity Utilization 82.1%		ICU Level of Service E		
Analysis Period (min) 15				

Splits and Phases: 6: Te	erry Fox Dr & Cope Dr	
-\$ø2	↓ Ø4 (R)	
33 s	67 s	
₹ø6	Ø7 Ø8 (R)	
33 e	12 c 55 c	

09/19/2018 Synchro 9 Report

Queues 6: Terry Fox Dr & Cope Dr

09/19/2018

Page 1

5331 Fernbank Rd TIA 2018 Existing - PM Peak

Synchro 9 Report

	•	-	•	←	4	1	-	ļ	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	85	85	73	258	5	587	214	578	78	
v/c Ratio	1.05	0.31	0.38	0.69	0.01	0.58	0.44	0.45	0.07	
Control Delay	155.8	37.6	41.1	25.5	12.8	18.7	8.5	8.2	1.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	155.8	37.6	41.1	25.5	12.8	18.7	8.5	8.2	1.7	
Queue Length 50th (m)	~17.9	14.6	12.8	18.8	0.4	70.3	11.5	40.1	0.0	
Queue Length 95th (m)	#38.7	25.5	23.5	40.8	2.4	122.1	25.7	80.5	4.8	
Internal Link Dist (m)		97.2		56.3		119.2		183.3		
Turn Bay Length (m)	40.0		50.0		55.0		75.0		165.0	
Base Capacity (vph)	140	476	335	535	452	1004	482	1281	1112	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.61	0.18	0.22	0.48	0.01	0.58	0.44	0.45	0.07	
Intersection Summary										

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

09/19/2018

	۶	→	•	•	+	4	4	†	/	Ţ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	97	164	71	117	267	10	101	513	166	686	65	
v/c Ratio	0.34	0.28	0.13	0.51	0.76	0.02	0.44	0.53	0.51	0.99	0.10	
Control Delay	26.3	25.5	3.6	46.8	54.4	0.1	22.0	19.7	35.4	67.5	0.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	26.3	25.5	3.6	46.8	54.4	0.1	22.0	19.7	35.4	67.5	0.3	
Queue Length 50th (m)	13.3	23.4	0.0	21.5	52.0	0.0	10.0	65.9	26.2	~151.5	0.0	
Queue Length 95th (m)	25.5	40.2	6.3	41.6	84.9	0.0	24.7	117.2	57.7	#265.4	0.0	
Internal Link Dist (m)		304.2			40.0			257.8		88.5		
Turn Bay Length (m)	110.0		110.0	125.0			110.0		125.0		135.0	
Base Capacity (vph)	328	869	784	335	513	539	291	1030	327	691	676	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.30	0.19	0.09	0.35	0.52	0.02	0.35	0.50	0.51	0.99	0.10	
Intersection Summary												

+ 4 ļ EBT Lane Group
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Satd. Flow (prot)
FIT Permitted
State Flow (norm) EBR SBT SBR 153 631 60 153 631 60 1695 1784 1517 0.474 89 151 65 108 246 9 93 89 151 65 108 246 9 93 1695 1784 1517 1695 1784 1517 1695 0.270 0.653 0.086 409 409 1749 63 63 0 482 1784 1517 1165 1784 1517 153 1749 0.474 0 846 1784 1517 144 Satd. Flow (perm) Satd. Flow (RTOR) 97 164 71 117 267 10 101
whept NA Perm Perm NA Perm pm+pt
7 4 8 5 513 NA 2 Lane Group Flow (vph)
Turn Type
Protected Phases
Permitted Phases 686 NA 6 0 166 Perm Detector Phase Detector Phase
Switch Phase
Minimum Initial (s)
Minimum Split (s)
Total Split (s)
Total Split (%)
Yellow Time (s)
All-Red Time (s) 5.0 29.2 45.0 37.5% 4.6 1.6 5.0 33.2 35.0 29.2% 5.0 33.2 5.0 33.2 5.0 33.2 5.0 33.2 5.0 29.2 5.0 29.2 45.0 37.5% 4.6 1.6 29.2 45.0 37.5% 4.6 1.6 20.0 16.7% 3.7 2.4 35.0 29.2% 3.7 2.5 Lost Time Adjust (s) Total Lost Time (s) 0.0 0.0 6.2 0.0 6.2 0.0 0.0 0.0 6.2 0.0 6.5 0.0 6.2 0.0 6.2 0.0 6.2 0.0 6.2 Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio 6.1 6.2 6.2 Lead Yes None None None 33.9 33.7 33.7 0.33 0.33 0.33 Ves Max 39.7 0.39 Lag Yes Max 39.7 0.39 Lag Yes Max 39.7 0.39 Lag Lag Yes Lag Yes Lead Yes None 20.3 0.20 None 55.7 0.54 None 20.3 0.20 0.20 0.55 v/c Ratio
Control Delay
Queue Delay
Total Delay
LOS
Approach Delay
Approach LOS 0.34 0.28 26.3 25.5 0.13 0.51 0.76 3.6 46.8 54.4 0.02 0.44 0.53 0.51 35.4 0.99 67.5 0.10 0.0 0.0 26.3 25.5 C C 0.0 3.6 A 0.0 35.4 D 0.0 0.0 0.0 0.0 21.1

Intersection Summary Intersection Summary
Cycle Length: 120
Actuated Cycle Length: 102.5
Natural Cycle: 95
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.99 Intersection Signal Delay: 40.6 Intersection Capacity Utilization 80.2% Analysis Period (min) 15 Intersection LOS: D ICU Level of Service D

Splits and Phases: 3: Terry Fox Dr & Fernbank Rd \$≥ø6 **↑** Ø5

09/19/2018 Synchro 9 Report Page 1

Lanes, Volumes, Timings 5331 Fernbank Rd TIA 2018 Existing - SAT Peak 6: Terry Fox Dr & Cope Dr

	•	\rightarrow	*	1	-	*	4	1	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ĥ		Ť	4		Ť	4		ሻ	†	ř
Traffic Volume (vph)	133	87	3	63	105	205	1	497	9	314	778	144
Future Volume (vph)	133	87	3	63	105	205	1	497	9	314	778	144
Satd. Flow (prot)	1695	1775	0	1695	1608	0	1695	1779	0	1695	1784	1517
Flt Permitted	0.326			0.694			0.192			0.385		
Satd. Flow (perm)	582	1775	0	1238	1608	0	343	1779	0	687	1784	1517
Satd. Flow (RTOR)		2			125			2				157
Lane Group Flow (vph)	145	98	0	68	337	0	1	550	0	341	846	157
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	Perm
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		4
Detector Phase	2	2		6	6		8	8		4	4	4
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	32.2	32.2		32.2	32.2		33.5	33.5		33.5	33.5	33.5
Total Split (s)	35.0	35.0		35.0	35.0		50.0	50.0		50.0	50.0	50.0
Total Split (%)	41.2%	41.2%		41.2%	41.2%		58.8%	58.8%		58.8%	58.8%	58.8%
Yellow Time (s)	3.3	3.3		3.3	3.3		4.6	4.6		4.6	4.6	4.6
All-Red Time (s)	2.9	2.9		2.9	2.9		1.8	1.8		1.8	1.8	1.8
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2		6.2	6.2		6.4	6.4		6.4	6.4	6.4
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	C-Max
Act Effct Green (s)	20.7	20.7		20.7	20.7		51.7	51.7		51.7	51.7	51.7
Actuated g/C Ratio	0.24	0.24		0.24	0.24		0.61	0.61		0.61	0.61	0.61
v/c Ratio	1.03	0.23		0.23	0.69		0.00	0.51		0.82	0.78	0.16
Control Delay	114.6	24.0		24.7	24.7		10.0	13.1		35.2	21.5	2.3
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	114.6	24.0		24.7	24.7		10.0	13.1		35.2	21.5	2.3
LOS	F	С		С	С		Α	В		D	С	A
Approach Delay		78.1			24.7			13.1			22.7	
Approach LOS		Е			С			В			С	

Intersection Summary		
Cycle Length: 85		
Actuated Cycle Length: 85		
Offset: 0 (0%), Referenced to phase 4:SBTL and 8:	NBTL, Start of Green	
Natural Cycle: 90		
Control Type: Actuated-Coordinated		
Maximum v/c Ratio: 1.03		
Intersection Signal Delay: 26.2	Intersection LOS: C	
Intersection Capacity Utilization 95.3%	ICU Level of Service F	
Analysis Period (min) 15		

Splits and Phases: 6: Terry	Fox Dr & Cope Dr	
- 4 g2	₩ Ø4 (R)	
35 s	50 s	
₹ø6	1 Ø8 (R)	
35 s	50 s	
09/19/2018		Synchro 9 Report

Queues 6: Terry Fox Dr & Cope Dr 5331 Fernbank Rd TIA 2018 Existing - SAT Peak

Synchro 9 Report

	٠	-	•	—	4	†	>	↓	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	145	98	68	337	1	550	341	846	157	
v/c Ratio	1.03	0.23	0.23	0.69	0.00	0.51	0.82	0.78	0.16	
Control Delay	114.6	24.0	24.7	24.7	10.0	13.1	35.2	21.5	2.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	114.6	24.0	24.7	24.7	10.0	13.1	35.2	21.5	2.3	
Queue Length 50th (m)	23.4	12.3	8.7	30.5	0.1	47.1	40.3	95.5	0.0	
Queue Length 95th (m)	#50.8	21.5	16.7	51.6	0.9	90.5	#105.7	#199.7	8.4	
Internal Link Dist (m)		97.2		56.3		119.2		183.3		
Turn Bay Length (m)	40.0		50.0		55.0		75.0		165.0	
Base Capacity (vph)	197	602	419	627	208	1083	417	1085	984	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.74	0.16	0.16	0.54	0.00	0.51	0.82	0.78	0.16	
Intersection Summary										

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Appendix B Intersection Performance Worksheets September 19, 2018

B.2 2018 EXISTING WITH IMPROVEMENTS

Lanes, Volumes, Timings 3: Terry Fox Dr & Fernbank Rd

5331 Fernbank Rd TIA 2018 Existing - AM Peak (With Improvements) Queues 3: Terry Fox Dr & Fernbank Rd

5331 Fernbank Rd TIA 2018 Existing - AM Peak (With Improvements)

	٠	→	•	•	+	4	4	†	/	ļ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	134	133	96	3	136	163	72	368	62	205	42	
v/c Ratio	0.38	0.24	0.18	0.02	0.56	0.47	0.12	0.38	0.13	0.21	0.05	
Control Delay	24.8	22.6	5.1	31.3	44.8	10.3	12.1	14.1	12.6	12.2	0.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	24.8	22.6	5.1	31.3	44.8	10.3	12.1	14.1	12.6	12.2	0.1	
Queue Length 50th (m)	16.8	16.6	0.0	0.5	22.3	0.0	5.8	34.9	5.0	17.4	0.0	
Queue Length 95th (m)	27.9	27.6	9.2	2.7	37.5	15.7	14.1	61.1	13.0	33.2	0.0	
Internal Link Dist (m)		304.1			40.1			257.8		88.5		
Turn Bay Length (m)	110.0		110.0	125.0			110.0		125.0		135.0	
Base Capacity (vph)	359	907	819	383	570	596	613	974	482	974	880	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.37	0.15	0.12	0.01	0.24	0.27	0.12	0.38	0.13	0.21	0.05	
Intersection Summary												

+ 4 Ť Lane Group
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Satd. Flow (prot)
FIt Permitted
Set of Flow (norm) EBT EBR SBR | 123 | 122 | 88 | 3 | 125 | 150 | 66 | 337 | 123 | 122 | 88 | 3 | 125 | 150 | 66 | 337 | 123 | 122 | 88 | 3 | 125 | 150 | 66 | 337 | 1695 | 1784 | 1517 | 1695 | 1783 | 1695 | 1784 | 1517 | 1695 | 1783 | 1784 | 1517 | 1122 | 1783 | 1784 | 1517 | 1122 | 1783 | 1784 | 1817 | 1818 | 1 2 57 189 39 2 57 189 39 0 1695 1784 1517 0.495 0.495 0 883 1784 1517 113 Satd. Flow (perm) Satd. Flow (RTOR) 96 163 163 134 133 96 3 136 163 72 368 9mpt NA Perm Perm NA Perm Perm NA Perm Perm NA 7 4 8 2 2 Lane Group Flow (vph)
Turn Type
Protected Phases
Permitted Phases 205 NA 6 0 62 Detector Phase Detector Phase
Switch Phase
Minimum Initial (s)
Minimum Split (s)
Total Split (s)
Total Split (%)
Yellow Time (s)
All-Red Time (s) 5.0 5.0 33.2 29.2 35.0 38.0 38.9% 42.2% 3.7 4.6 2.5 1.6 5.0 29.2 38.0 42.2% 4.6 1.6 5.0 33.2 5.0 33.2 5.0 33.2 5.0 29.2 5.0 29.2 38.0 42.2% 4.6 1.6 29.2 38.0 42.2% 4.6 1.6 52.0 52.0 35.0 57.8% 57.8% 38.9% 3.7 3.7 3.7 2.5 2.5 2.5 35.0 38.9% 3.7 2.5 38.0 42.2% 4.6 1.6 Lost Time Adjust (s) Total Lost Time (s) 0.0 0.0 6.2 0.0 6.2 0.0 6.2 0.0 0.0 6.2 0.0 6.2 0.0 6.2 0.0 6.2 0.0 6.2 0.0 6.2 Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio Lag Yes None 12.2 0.14 None C-Max C-Max 12.2 49.2 49.2 0.14 0.55 0.55 C-Max C-Max C-Max 49.2 49.2 49.2 0.55 0.55 0.55 v/c Ratio
Control Delay
Queue Delay
Total Delay
LOS
Approach Delay
Approach LOS 0.18 0.02 0.56 0.47 0.12 0.38 5.1 31.3 44.8 10.3 12.1 14.1 0.0 0.0 0.0 0.0 0.0 0.0 5.1 31.3 44.8 10.3 12.1 14.1 A C D B B B 0.38 0.24 24.8 22.6 0.13 12.6 0.21 0.05 0.0 0.0 24.8 22.6 0.0 0.0 12.6 12.2 Intersection Summary

Intersection Summary
Cycle Length: 90
Actuated Cycle Length: 90
Offset: 9 (10%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 75
Control Type: Actuated-Coordinated
Maximum vic Ratio: 0.56
Intersection Signal Delay: 17.0
Intersection Intersection Signal Delay: 17.0
Intersection Signal Si Intersection LOS: B ICU Level of Service B

Splits and Phases: 3: Terry Fox Dr & Fernbank Rd

09/19/2018 Synchro 9 Report Page 1

Lanes, Volumes, Timings 6: Terry Fox Dr & Cope Dr

5331 Fernbank Rd TIA 2018 Existing - AM Peak (With Improvements)

	٠	→	*	•	←	4	4	†	~	/		-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ĥ		Ť	4		Ť	4		ሻ	†	7
Traffic Volume (vph)	48	18	1	17	15	172	5	579	26	139	267	34
Future Volume (vph)	48	18	1	17	15	172	5	579	26	139	267	34
Satd. Flow (prot)	1695	1772	0	1695	1538	0	1695	1774	0	1695	1784	1517
Flt Permitted	0.400			0.744			0.582			0.375		
Satd. Flow (perm)	714	1772	0	1328	1538	0	1038	1774	0	669	1784	1517
Satd. Flow (RTOR)		1			187			4				39
Lane Group Flow (vph)	52	21	0	18	203	0	5	657	0	151	290	37
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	Perm
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		4
Detector Phase	2	2		6	6		8	8		4	4	4
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	32.2	32.2		32.2	32.2		33.5	33.5		33.5	33.5	33.5
Total Split (s)	33.0	33.0		33.0	33.0		57.0	57.0		57.0	57.0	57.0
Total Split (%)	36.7%	36.7%		36.7%	36.7%		63.3%	63.3%		63.3%	63.3%	63.3%
Yellow Time (s)	3.3	3.3		3.3	3.3		4.6	4.6		4.6	4.6	4.6
All-Red Time (s)	2.9	2.9		2.9	2.9		1.8	1.8		1.8	1.8	1.8
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2		6.2	6.2		6.4	6.4		6.4	6.4	6.4
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	C-Max
Act Effct Green (s)	10.0	10.0		10.0	10.0		67.4	67.4		67.4	67.4	67.4
Actuated g/C Ratio	0.11	0.11		0.11	0.11		0.75	0.75		0.75	0.75	0.75
v/c Ratio	0.67	0.11		0.12	0.60		0.01	0.49		0.30	0.22	0.03
Control Delay	74.3	33.9		35.8	15.1		3.8	6.5		6.2	4.3	1.4
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	74.3	33.9		35.8	15.1		3.8	6.5		6.2	4.3	1.4
LOS	Е	С		D	В		Α	A		Α	A	A
Approach Delay		62.7			16.8			6.5			4.7	
Approach LOS		Е			В			Α			Α	
Intersection Summary												

Intersection Summary		
Cycle Length: 90		
Actuated Cycle Length: 90		
Offset: 55 (61%), Referenced to phase 4:SBTL and 8:NBTL,	Start of Green	
Natural Cycle: 75		
Control Type: Actuated-Coordinated		
Maximum v/c Ratio: 0.67		
Intersection Signal Delay: 10.3	Intersection LOS: B	
Intersection Capacity Utilization 79.2%	ICU Level of Service D	
Analysis Period (min) 15		

Splits and Phases: 6: Terry Fo	x Dr & Cope Dr	
⊸ø2	\$ Ø4 (R)	
33 s	57 s	
₹ø6	1 Ø8 (R)	
33 s	57 s	
09/19/2018		Synchro 9 Report

09/19/2018 Synchro 9 Report

Queues 5331 Fernbank Rd TIA 2018 Existing - AM Peak (With Improvements) 6: Terry Fox Dr & Cope Dr

Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	52	21	18	203	5	657	151	290	37	
v/c Ratio	0.67	0.11	0.12	0.60	0.01	0.49	0.30	0.22	0.03	
Control Delay	74.3	33.9	35.8	15.1	3.8	6.5	6.2	4.3	1.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	74.3	33.9	35.8	15.1	3.8	6.5	6.2	4.3	1.4	
Queue Length 50th (m)	8.8	3.2	2.9	2.5	0.2	35.8	6.8	12.0	0.0	
Queue Length 95th (m)	19.8	9.2	8.6	20.8	1.2	70.5	18.2	24.9	2.4	
Internal Link Dist (m)		97.1		56.3		119.2		183.2		
Turn Bay Length (m)	40.0		50.0		55.0		75.0		165.0	
Base Capacity (vph)	212	528	395	589	777	1330	501	1336	1146	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.25	0.04	0.05	0.34	0.01	0.49	0.30	0.22	0.03	
Intersection Summary										

5331 Fernbank Rd TIA 2018 Existing - PM Peak (with Improvements) Queues 3: Terry Fox Dr & Fernbank Rd

5331 Fernbank Rd TIA 2018 Existing - PM Peak (with Improvements)

	۶	→	•	•	+	4	4	†	-	↓	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	127	179	65	2	265	107	210	364	154	418	80	
v/c Ratio	0.58	0.32	0.12	0.01	0.74	0.24	0.49	0.36	0.40	0.60	0.11	
Control Delay	35.9	26.8	1.7	28.5	49.7	2.1	16.6	14.3	28.1	30.1	0.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	35.9	26.8	1.7	28.5	49.7	2.1	16.6	14.3	28.1	30.1	0.3	
Queue Length 50th (m)	18.2	26.3	0.0	0.3	48.6	0.0	19.3	36.3	21.6	64.5	0.0	
Queue Length 95th (m)	28.8	39.2	3.0	2.0	69.0	2.3	37.2	64.8	42.6	104.0	0.0	
Internal Link Dist (m)		304.1			40.1			257.8		88.5		
Turn Bay Length (m)	110.0		110.0	125.0			110.0		125.0		135.0	
Base Capacity (vph)	219	681	645	310	481	535	431	1003	381	700	700	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.58	0.26	0.10	0.01	0.55	0.20	0.49	0.36	0.40	0.60	0.11	
Intersection Summary												

+ 4 Lane Group
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Satd. Flow (prot)
FIT Permitted
State Flow (norm) EBT SBR 117 165 60 2 244 98 117 165 60 2 244 98 1695 1784 1517 1695 1784 1517 0.284 0.644 193 193 1695 0.307 330 330 1781 5 142 385 74 5 142 385 74 0 1695 1784 1517 0.544 1784 1517 1149 1784 1517 548 1781 Satd. Flow (perm) Satd. Flow (RTOR) 0 971 1784 1517 507 106 172 179 65 2 265 107 210 NA Perm Perm NA Perm pm+pt 4 8 5 364 NA 2 Lane Group Flow (vph)
Turn Type
Protected Phases
Permitted Phases 418 NA 6 127 0 154 Perm Detector Phase Detector Phase
Switch Phase
Minimum Initial (s)
Minimum Split (s)
Total Split (s)
Total Split (%)
Yellow Time (s)
All-Red Time (s) 5.0 5.0 5.0 33.2 33.2 33.2 44.4 44.4 33.2 44.4% 44.4% 33.2% 3.7 3.7 3.7 2.5 2.5 2.5 5.0 33.2 33.2 33.2% 5.0 33.2 5.0 29.2 5.0 29.2 5.0 29.2 55.6 55.6% 4.6 1.6 33.2 33.2% 3.7 2.5 39.6 39.6% 4.6 1.6 Lost Time Adjust (s) Total Lost Time (s) 0.0 0.0 6.2 0.0 6.2 0.0 6.2 0.0 0.0 6.2 0.0 6.5 0.0 6.2 0.0 6.2 0.0 6.2 0.0 6.2 Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio 6.2 6.2 6.2 Lag Lag Lag Yes Yes Yes C-Max C-Max C-Max 39.3 39.3 0.39 0.39 0.39 Lag Lag Yes Yes Lag Lead Yes Yes Yes None 20.1 0.20 None 20.1 0.20 None 20.1 0.20 None C-Max 56.0 56.3 0.56 0.56 v/c Ratio
Control Delay
Queue Delay
Total Delay
LOS
Approach Delay
Approach LOS 0.58 0.32 35.9 26.8 0.24 0.49 16.6 0.36 0.40 28.1 0.60 30.1 0.11 1.7 0.0 1.7 A 0.0 0.0 35.9 26.8 D C 0.0 28.5 C 0.0 0.0 0.0 0.0 2.1 16.6 14.3 0.0 Intersection Summary

Cycle Length: 100
Aduated Cycle Length: 100
Aduated Cycle Length: 100
Offset 91 (1914). Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 85 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.74 Intersection Signal Delay: 24.6 Intersection Capacity Utilization 73.9% Analysis Period (min) 15 Intersection LOS: C ICU Level of Service D

Lanes, Volumes, Timings 6: Terry Fox Dr & Cope Dr

5331 Fernbank Rd TIA 2018 Existing - PM Peak (with Improvements)

Page 1

	•	\rightarrow	*	1	-	•	4	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	ħ		7	î		7	₽		Ť	†	7
Traffic Volume (vph)	78	76	2	67	58	179	5	516	24	197	532	72
Future Volume (vph)	78	76	2	67	58	179	5	516	24	197	532	72
Satd. Flow (prot)	1695	1777	0	1695	1583	0	1695	1772	0	1695	1784	1517
Flt Permitted	0.225			0.702			0.447			0.228		
Satd. Flow (perm)	401	1777	0	1253	1583	0	798	1772	0	407	1784	1517
Satd. Flow (RTOR)		1			151			3				84
Lane Group Flow (vph)	85	85	0	73	258	0	5	587	0	214	578	78
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		pm+pt	NA	Perm
Protected Phases	5	2			6			8		7	4	
Permitted Phases	2			6			8			4		4
Detector Phase	5	2		6	6		8	8		7	4	4
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	9.5	32.2		32.2	32.2		33.5	33.5		11.4	33.5	33.5
Total Split (s)	9.6	41.8		32.2	32.2		41.6	41.6		16.6	58.2	58.2
Total Split (%)	9.6%	41.8%		32.2%	32.2%		41.6%	41.6%		16.6%	58.2%	58.2%
Yellow Time (s)	3.5	3.3		3.3	3.3		4.6	4.6		4.6	4.6	4.6
All-Red Time (s)	1.0	2.9		2.9	2.9		1.8	1.8		1.8	1.8	1.8
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	4.5	6.2		6.2	6.2		6.4	6.4		6.4	6.4	6.4
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lead		
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes		
Recall Mode	None	None		None	None		C-Max	C-Max		None	C-Max	C-Max
Act Effct Green (s)	22.7	21.0		13.3	13.3		47.6	47.6		66.4	66.4	66.4
Actuated g/C Ratio	0.23	0.21		0.13	0.13		0.48	0.48		0.66	0.66	0.66
v/c Ratio	0.54	0.23		0.44	0.75		0.01	0.70		0.50	0.49	0.08
Control Delay	41.4	30.5		45.9	30.9		20.0	29.5		12.4	11.9	2.2
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	41.4	30.5		45.9	30.9		20.0	29.5		12.4	11.9	2.2
LOS	D	С		D	С		В	С		В	В	Α
Approach Delay		36.0			34.2			29.4			11.2	
Approach LOS		D			С			С			В	

Cycle Length: 100									
Actuated Cycle Length: 100									
Offset: 0 (0%), Referenced to phase 4:SBTL and 8:NBTL, Start of Green									
Natural Cycle: 90									
Control Type: Actuated-Coordinated									
Maximum v/c Ratio: 0.75									
Intersection Signal Delay: 22.7	Intersection LOS: C								
Intersection Capacity Utilization 80.7%	ICU Level of Service D								
Analysis Period (min) 15									

Splits and Phases: 6: Terry Fox Dr & Cope Dr

→ g2		\$ Ø4 (R)	1
41.8 s		58.2 s	
▶ ø5 ♥ø6		9 7	1 Ø8 (R)
9.6 s 32.2 s		16.6 S	41.6 s

09/19/2018 Synchro 9 Report 09/19/2018 Synchro 9 Report

Queues 6: Terry Fox Dr & Cope Dr

5331 Fernbank Rd TIA 2018 Existing - PM Peak (with Improvements)

	٠	→	•	←	4	†	/	ļ	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	85	85	73	258	5	587	214	578	78	
v/c Ratio	0.54	0.23	0.44	0.75	0.01	0.70	0.50	0.49	0.08	
Control Delay	41.4	30.5	45.9	30.9	20.0	29.5	12.4	11.9	2.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	41.4	30.5	45.9	30.9	20.0	29.5	12.4	11.9	2.2	
Queue Length 50th (m)	13.2	13.3	13.3	19.7	0.5	89.4	15.0	52.3	0.0	
Queue Length 95th (m)	22.3	22.7	24.1	42.1	3.1	#175.0	32.1	101.0	5.5	
Internal Link Dist (m)		97.1		56.3		119.2		183.3		
Turn Bay Length (m)	40.0		50.0		55.0		75.0		165.0	
Base Capacity (vph)	156	633	325	523	379	844	435	1184	1035	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.54	0.13	0.22	0.49	0.01	0.70	0.49	0.49	0.08	
Intersection Summary										

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	•	•	←	*	4	†	-	↓	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	97	164	71	117	267	10	101	513	166	686	65	
v/c Ratio	0.44	0.31	0.13	0.49	0.73	0.02	0.47	0.52	0.43	0.84	0.08	
Control Delay	28.3	24.5	2.2	38.9	45.3	0.1	19.4	16.4	25.1	36.4	0.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	28.3	24.5	2.2	38.9	45.3	0.1	19.4	16.4	25.1	36.4	0.2	
Queue Length 50th (m)	12.1	21.3	0.0	18.4	44.5	0.0	8.3	54.1	20.8	112.3	0.0	
Queue Length 95th (m)	23.0	36.1	4.0	34.6	69.5	0.0	19.1	98.6	45.4	#207.7	0.0	
Internal Link Dist (m)		304.1			40.1			257.8		88.4		
Turn Bay Length (m)	110.0		110.0	125.0			110.0		125.0		135.0	
Base Capacity (vph)	221	766	712	354	543	582	216	981	389	821	791	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.44	0.21	0.10	0.33	0.49	0.02	0.47	0.52	0.43	0.84	0.08	
Intersection Summary												

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

+ 4 Lane Group
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Satd. Flow (prot)
FIT Permitted
State Flow (norm) EBT EBR SBR 89 151 65 108 246 9 93 89 151 65 108 246 9 93 1695 1784 1517 1695 1784 1517 1695 0.286 0.653 0.136 409 409 1749 63 153 631 60 63 153 631 60 0 1695 1784 1517 0.474 Satd. Flow (perm) Satd. Flow (RTOR) 510 1784 1517 1165 1784 1517 243 1749 0 846 1784 1517 97 164 71 117 267 10 101

97 NA Perm Perm NA Perm pm+pt
7 4 8 5 Lane Group Flow (vph)
Turn Type
Protected Phases
Permitted Phases 513 NA 2 686 NA 6 0 166 Perm Detector Phase Detector Phase
Switch Phase
Minimum Initial (s)
Minimum Split (s)
Total Split (s)
Total Split (%)
Yellow Time (s)
All-Red Time (s) 5.0 33.2 33.2 33.2% 5.0 33.2 5.0 33.2 5.0 33.2 5.0 5.0 5.0 29.2 5.0 29.2 55.7 55.7% 4.6 1.6 5.0 29.2 44.2 44.2% 4.6 1.6 33.2 29.2 44.2 44.2% 4.6 1.6 33.2 33.2 33.2 44.3 44.3 33.2 33.2 44.3% 44.3% 33.2% 33.2% 3.7 3.7 3.7 3.7 2.5 2.5 2.5 2.5 Lost Time Adjust (s) Total Lost Time (s) 0.0 0.0 6.2 0.0 6.2 0.0 0.0 0.0 6.2 0.0 6.5 0.0 6.2 0.0 6.2 0.0 6.2 0.0 6.2 6.1 Lead Yes None 27.1 0.30 Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio Ves Max 41.3 0.46 Lag Yes Max 41.3 0.46 Lag Yes Max 41.3 Lag Lag Yes Lag Lead Yes Yes None None None 27.0 27.0 18.5 0.30 0.30 0.21 None 18.5 0.21 Max 50.1 0.56 0.21 0.56 0.46 v/c Ratio
Control Delay
Queue Delay
Total Delay
LOS
Approach Delay
Approach LOS 0.44 0.31 28.3 24.5 0.13 0.49 0.73 2.2 38.9 45.3 0.02 0.47 19.4 0.52 0.43 25.1 0.84 36.4 0.08 2.2 0.0 2.2 A 0.0 38.9 D 0.0 36.4 D 31.8 0.0 0.0 28.3 24.5 0.0 0.0 0.0 0.1 19.4 0.0 0.0 Intersection Summary

Intersection Summary
Cycle Length: 100
Actuated Cycle Length: 89.7
Natural Cycle: 95
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.84 Intersection Signal Delay: 28.0 Intersection Capacity Utilization 80.2% Analysis Period (min) 15

Intersection LOS: C ICU Level of Service D

Splits and Phases: 3: Terry Fox Dr & Fernbank Rd ≠₀₇ \$ ø6

09/19/2018 Synchro 9 Report Page 1

Lanes, Volumes, Timings 6: Terry Fox Dr & Cope Dr

5331 Fernbank Rd TIA 2018 Existing - SAT Peak (With Improvements)

	۶	\rightarrow	*	•	—	•	4	†	~	1	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	ĥ		ሻ	1		Ť	î		Ť	†	7
Traffic Volume (vph)	133	87	3	63	105	205	1	497	9	314	778	144
Future Volume (vph)	133	87	3	63	105	205	1	497	9	314	778	144
Satd. Flow (prot)	1695	1775	0	1695	1608	0	1695	1779	0	1695	1784	1517
Flt Permitted	0.185			0.694			0.263			0.141		
Satd. Flow (perm)	330	1775	0	1238	1608	0	469	1779	0	252	1784	1517
Satd. Flow (RTOR)		2			95			1				157
Lane Group Flow (vph)	145	98	0	68	337	0	1	550	0	341	846	157
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		pm+pt	NA	Perm
Protected Phases	5	2			6			8		7	4	
Permitted Phases	2			6			8			4		4
Detector Phase	5	2		6	6		8	8		7	4	4
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	9.5	32.2		32.2	32.2		33.5	33.5		9.5	33.5	33.5
Total Split (s)	9.6	41.8		32.2	32.2		37.4	37.4		20.8	58.2	58.2
Total Split (%)	9.6%	41.8%		32.2%	32.2%		37.4%	37.4%		20.8%	58.2%	58.2%
Yellow Time (s)	3.5	3.3		3.3	3.3		4.6	4.6		3.5	4.6	4.6
All-Red Time (s)	1.0	2.9		2.9	2.9		1.8	1.8		1.0	1.8	1.8
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	4.5	6.2		6.2	6.2		6.4	6.4		4.5	6.4	6.4
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lead		
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes		
Recall Mode	None	None		None	None		C-Max	C-Max		None	C-Max	C-Max
Act Effct Green (s)	31.7	30.0		20.4	20.4		34.4	34.4		59.3	57.4	57.4
Actuated g/C Ratio	0.32	0.30		0.20	0.20		0.34	0.34		0.59	0.57	0.57
v/c Ratio	0.83	0.18		0.27	0.84		0.01	0.90		0.82	0.83	0.17
Control Delay	63.5	24.6		34.2	44.7		24.0	52.2		37.6	27.6	2.5
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	63.5	24.6		34.2	44.7		24.0	52.2		37.6	27.6	2.5
LOS	Е	С		С	D		С	D		D	С	Α
Approach Delay		47.8			42.9			52.2			27.2	
Approach LOS		D			D			D			С	

Cycle Length: 100
Actuated Cycle Length: 100
Offset: 0 (0%), Referenced to phase 4:SBTL and 8:NBTL, Start of Green Natural Cycle: 95 Natural Cycle: 95
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.90
Intersection Signal Delay: 37.1
Intersection Capacity Utilization 93.9%
Analysis Period (min) 15 Intersection LOS: D ICU Level of Service F

opino anu mases. U. reny rux bra	cohe pi		
ø2	\$ Ø4 (R)	•	
41.8 s	58.2 s		
→ ø5 ▼ø6	₩ Ø7	√ 1 Ø8 (R)	
9.6 s 32.2 s	20.8 s	37.4 s	
09/19/2018			Synchro 9 Report

09/19/2018 Synchro 9 Report

Queues 6: Terry Fox Dr & Cope Dr

5331 Fernbank Rd TIA 2018 Existing - SAT Peak (With Improvements)

	۶	→	€	←	4	†	-	ţ	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	145	98	68	337	1	550	341	846	157	
v/c Ratio	0.83	0.18	0.27	0.84	0.01	0.90	0.82	0.83	0.17	
Control Delay	63.5	24.6	34.2	44.7	24.0	52.2	37.6	27.6	2.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	63.5	24.6	34.2	44.7	24.0	52.2	37.6	27.6	2.5	
Queue Length 50th (m)	20.6	13.6	11.1	45.6	0.1	105.7	40.8	127.1	0.0	
Queue Length 95th (m)	#43.2	23.8	21.6	73.4	1.4	#174.3	#96.8	#226.3	9.1	
Internal Link Dist (m)		97.1		56.4		119.2		183.3		
Turn Bay Length (m)	40.0		50.0		55.0		75.0		165.0	
Base Capacity (vph)	174	633	321	488	161	613	415	1023	937	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.83	0.15	0.21	0.69	0.01	0.90	0.82	0.83	0.17	
Intersection Summary										

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

Synchro 9 Report

09/19/2018

Appendix B Intersection Performance Worksheets September 19, 2018

B.3 2020 FUTURE BACKGROUND

5331 Fernbank Rd TIA 2020 FBG - AM Peak Queues 3: Terry Fox Dr & Fernbank Rd 5331 Fernbank Rd TIA 2020 FBG - AM Peak

	۶	\rightarrow	•	•	←	*	4	1	-	↓	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	126	124	90	3	128	154	67	352	61	215	43	
v/c Ratio	0.41	0.24	0.18	0.02	0.55	0.46	0.10	0.34	0.11	0.21	0.05	
Control Delay	28.1	25.0	5.9	31.7	44.8	10.6	10.3	11.9	10.6	10.6	0.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	28.1	25.0	5.9	31.7	44.8	10.6	10.3	11.9	10.6	10.6	0.1	
Queue Length 50th (m)	16.7	16.4	0.0	0.5	21.0	0.0	4.9	29.8	4.5	16.6	0.0	
Queue Length 95th (m)	28.4	27.9	9.6	2.8	36.0	15.5	12.2	52.8	11.6	31.6	0.0	
Internal Link Dist (m)		304.2			40.0			257.8		88.4		
Turn Bay Length (m)	110.0		110.0	125.0			110.0		125.0		135.0	
Base Capacity (vph)	306	828	752	373	551	575	642	1029	533	1029	923	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.41	0.15	0.12	0.01	0.23	0.27	0.10	0.34	0.11	0.21	0.05	
Intersection Summary												

ļ EBT Lane Group
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Satd. Flow (prot)
FIt Permitted
Set of Flow (norm) SBR 124 90 3 128 154 67 124 90 3 128 154 67 1784 1517 1695 1784 1517 1695 0.677 0.624 350 350 1783 2 61 215 43 2 61 215 43 0 1695 1784 1517 0.518 1784 1517 1208 1784 1517 1113 1783 0.518 0 924 1784 1517 113 Satd. Flow (perm) Satd. Flow (RTOR) 794 90 154 124 90 3 128 154 67 NA Perm Perm NA Perm Perm 4 8 Lane Group Flow (vph)
Turn Type
Protected Phases
Permitted Phases 0 61 215 Perm NA 6 126 Detector Phase Detector Phase
Switch Phase
Minimum Initial (s)
Minimum Split (s)
Total Split (s)
Total Split (%)
Yellow Time (s)
All-Red Time (s) 5.0 5.0 5.0 33.2 29.2 29.2 34.0 42.0 42.0 37.8% 46.7% 46.7% 3.7 4.6 4.6 2.5 1.6 1.6 5.0 5.0 29.2 29.2 42.0 42.0 46.7% 46.7% 4.6 4.6 1.6 1.6 5.0 33.2 34.0 37.8% 3.7 2.5 5.0 29.2 42.0 46.7% 4.6 1.6 5.0 33.2 5.0 33.2 5.0 33.2 33.2 48.0 53.3% 3.7 2.5 34.0 37.8% 3.7 2.5 Lost Time Adjust (s)
Total Lost Time (s) 0.0 0.0 6.2 0.0 6.2 0.0 6.2 0.0 0.0 6.2 0.0 6.2 0.0 6.2 0.0 6.2 0.0 6.2 0.0 6.2 6.2 Lag Yes None 11.8 0.13 Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio 6.1 6.2 6.2 Lead Yes None None None 25.8 25.7 25.7 0.29 0.29 0.29 Lag Yes Lag None 11.8 0.13 None C-Max C-Max 11.8 51.9 51.9 0.13 0.58 0.58 C-Max C-Max C-Max 51.9 51.9 51.9 0.58 0.58 0.58 Actuated g/C Ratio
v/c Ratio
Control Delay
Queue Delay
Total Delay
LOS
Approach Delay
Approach LOS 0.18 0.02 0.55 0.46 5.9 31.7 44.8 10.6 0.0 0.0 0.0 0.0 5.9 31.7 44.8 10.6 A C D B 0.41 0.24 28.1 25.0 0.10 0.34 0.11 0.21 10.6 0.05 0.0 0.0 28.1 25.0 C C 0.0 0.0 0.0 10.6 10.3 11.9 B B B 0.0 0.0 10.6 10.6 Intersection Summary

4

Intersection Summary
Cycle Length: 90
Actuated Cycle Length: 90
Offset: 9 (10%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 75
Control Type: Actuated-Coordinated
Maximum vic Ratio: 0.55
Intersection Signal Delay: 16.5
Intersection Signal Delay: 16.5
Intersection Gapacity Ultilization 58.8%
Analysis Period (min) 15 Intersection LOS: B ICU Level of Service B

Splits and Phases: 3: Terry Fox Dr & Fernbank Rd **≯**_{Ø7} 09/19/2018 Synchro 9 Report

Lanes, Volumes, Timings

6: Terry Fox Dr & Cope Dr

5331 Fernbank Rd TIA 2020 FBG - AM Peak

Page 1

	۶	-	*	•	←	*	4	†	~	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	ĥ		Ť	4		Ť	4		Ť	†	7
Traffic Volume (vph)	48	18	1	28	15	193	5	596	29	144	289	34
Future Volume (vph)	48	18	1	28	15	193	5	596	29	144	289	34
Satd. Flow (prot)	1695	1770	0	1695	1536	0	1695	1772	0	1695	1784	1517
Flt Permitted	0.412			0.745			0.583			0.393		
Satd. Flow (perm)	735	1770	0	1329	1536	0	1040	1772	0	701	1784	1517
Satd. Flow (RTOR)		1			193			4				39
Lane Group Flow (vph)	48	19	0	28	208	0	5	625	0	144	289	34
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	Perm
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		4
Detector Phase	2	2		6	6		8	8		4	4	4
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	32.2	32.2		32.2	32.2		33.5	33.5		33.5	33.5	33.5
Total Split (s)	33.0	33.0		33.0	33.0		57.0	57.0		57.0	57.0	57.0
Total Split (%)	36.7%	36.7%		36.7%	36.7%		63.3%	63.3%		63.3%	63.3%	63.3%
Yellow Time (s)	3.3	3.3		3.3	3.3		4.6	4.6		4.6	4.6	4.6
All-Red Time (s)	2.9	2.9		2.9	2.9		1.8	1.8		1.8	1.8	1.8
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2		6.2	6.2		6.4	6.4		6.4	6.4	6.4
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	C-Max
Act Effct Green (s)	9.7	9.7		9.7	9.7		67.7	67.7		67.7	67.7	67.7
Actuated g/C Ratio	0.11	0.11		0.11	0.11		0.75	0.75		0.75	0.75	0.75
v/c Ratio	0.61	0.10		0.20	0.62		0.01	0.47		0.27	0.22	0.03
Control Delay	68.3	33.9		38.0	15.4		3.8	6.1		5.7	4.2	1.3
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	68.3	33.9		38.0	15.4		3.8	6.1		5.7	4.2	1.3
LOS	Е	С		D	В		A	A		Α	A	A
Approach Delay		58.6			18.1			6.1			4.4	
Approach LOS		Е			В			Α			Α	
Internaction Cummons												

Intersection Summary	
Cycle Length: 90	
Actuated Cycle Length: 90	
Offset: 55 (61%), Referenced to phase 4:SBTL and 8:NBTL,	Start of Green
Natural Cycle: 70	
Control Type: Actuated-Coordinated	
Maximum v/c Ratio: 0.62	
Intersection Signal Delay: 10.1	Intersection LOS: B
Intersection Capacity Utilization 82.0%	ICU Level of Service D
Analysis Period (min) 15	

Splits and Phases: 6: Terry F	ox Dr & Cope Dr	
-\$ø2	Ø 4 (R)	
33 s	57 s	
₹ø6	↑ øs (R)	
33 s	57 s	
09/19/2018		Synchro 9 Report

09/19/2018 Synchro 9 Report

Queues 6: Terry Fox Dr & Cope Dr 5331 Fernbank Rd TIA 2020 FBG - AM Peak

	۶	\rightarrow	•	←	4	†	-	Ţ	1
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	48	19	28	208	5	625	144	289	34
v/c Ratio	0.61	0.10	0.20	0.62	0.01	0.47	0.27	0.22	0.03
Control Delay	68.3	33.9	38.0	15.4	3.8	6.1	5.7	4.2	1.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	68.3	33.9	38.0	15.4	3.8	6.1	5.7	4.2	1.3
Queue Length 50th (m)	8.1	2.9	4.5	2.4	0.2	32.6	6.2	11.8	0.0
Queue Length 95th (m)	18.6	8.7	11.7	20.9	1.1	64.0	16.4	24.3	2.2
Internal Link Dist (m)		97.2		56.3		119.3		183.3	
Turn Bay Length (m)	40.0		50.0		55.0		75.0		165.0
Base Capacity (vph)	218	527	395	592	782	1333	527	1341	1150
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.22	0.04	0.07	0.35	0.01	0.47	0.27	0.22	0.03
Intersection Summary									

5331 Fernbank Rd TIA 2020 FBG - PM Peak Queues 3: Terry Fox Dr & Fernbank Rd 5331 Fernbank Rd TIA 2020 FBG - PM Peak

O. TOTTY TOX DI GI	CITIDUIT	it i tu										
	۶	→	•	•	←	4	4	†	/	ļ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	124	168	61	2	249	105	197	358	147	404	77	
v/c Ratio	0.53	0.30	0.11	0.01	0.73	0.24	0.45	0.36	0.38	0.57	0.11	
Control Delay	32.8	26.4	1.4	29.0	49.6	2.0	15.7	14.2	27.6	29.4	0.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	32.8	26.4	1.4	29.0	49.6	2.0	15.7	14.2	27.6	29.4	0.3	
Queue Length 50th (m)	17.7	24.6	0.0	0.3	45.7	0.0	17.8	35.5	20.2	61.0	0.0	
Queue Length 95th (m)	28.3	36.7	2.1	2.0	65.6	1.9	35.1	63.9	41.3	101.0	0.0	
Internal Link Dist (m)		304.1			40.1			257.7		88.5		
Turn Bay Length (m)	110.0		110.0	125.0			110.0		125.0		135.0	
Base Capacity (vph)	236	695	656	313	481	535	441	1003	385	704	703	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.53	0.24	0.09	0.01	0.52	0.20	0.45	0.36	0.38	0.57	0.11	

+ 4 ļ Lane Group
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Satd. Flow (prot)
FIt Permitted
Set of Flow (norm) EBT EBR SBR 5 147 404 77 5 147 404 77 0 1695 1784 1517 0 072 124 168 61 2 249 105 124 168 61 2 249 105 1695 1784 1517 1695 1784 1517 0.299 0.651 353 353 1781 197 197 1784 1517 1162 1784 1517 573 1781 Satd. Flow (perm) Satd. Flow (RTOR) 0.547 534 106 172 172 173 172 168 61 2 249 105 197 NA Perm Perm NA Perm pm+pt 4 8 5 172 358 NA 2 Lane Group Flow (vph)
Turn Type
Protected Phases
Permitted Phases 404 NA 6 124 0 147 Perm Detector Phase Detector Phase
Switch Phase
Minimum Initial (s)
Minimum Split (s)
Total Split (s)
Total Split (%)
Yellow Time (s)
All-Red Time (s) 5.0 29.2 38.8 38.8% 5.0 29.2 38.8 38.8% 4.6 1.6 5.0 33.2 33.2 33.2% 3.7 2.5 5.0 33.2 5.0 33.2 5.0 33.2 5.0 33.2 5.0 29.2 54.8 54.8% 45.2 45.2 45.2% 45.2% 3.7 3.7 2.5 2.5 33.2 33.2% 3.7 2.5 4.6 1.6 4.6 1.6 Lost Time Adjust (s)
Total Lost Time (s) 0.0 0.0 6.2 0.0 6.2 0.0 6.2 0.0 0.0 6.2 0.0 6.5 0.0 6.2 0.0 6.2 0.0 6.2 0.0 6.2 Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio 6.1 6.2 6.2 6.2 Lag
Yes Yes
None None None None
31.4 31.3 31.3 19.3
0.31 0.31 0.31 0.19 6.2 6.2 Lag Lag Yes Yes None None 19.3 19.3 0.19 0.19 6.2 6.5 Lag Lead Yes Yes None None 19.3 56.0 0.19 0.56 6.2 6.2 6.2 Lag Lag Lag Yes Yes Yes C-Max C-Max C-Max 39.5 39.5 39.5 0.40 0.40 0.40 None C-Max 56.0 56.3 0.56 0.56 v/c Ratio
Control Delay
Queue Delay
Total Delay
LOS
Approach Delay
Approach LOS 0.53 0.30 32.8 26.4 0.11 0.01 0.73 1.4 29.0 49.6 0.24 2.0 0.45 15.7 0.36 0.38 27.6 0.57 29.4 0.11 0.0 0.0 0.0 1.4 29.0 49.6 A C D 35.4 0.0 0.0 0.0 2.0 15.7 14.2 A B B 0.0 0.0 32.8 26.4 0.0 Intersection Summary

ICU Level of Service D

Intersection Summary
Cycle Length: 100
Actuated Cycle Length: 100
Offset: 91 (91%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 85
Control Type: Actuated-Coordinated
Maximum vic Ratio: 0.73
Intersection Signal Delay: 24.0
Intersection Signal Delay: 24.0
Intersection (Spansible Victoria)

Splits and Phases: 3: Terry Fox Dr & Fernbank Rd

	pina ana i nascs.	5. Telly Lox Di & Lellibalik Na					
	↑ Ø2 (R)	•	-				
	54.8 s		45.2 s				
	↑ ø5	₩ Ø6 (R)	≯ _{Ø7}	∜ ø8			
- {	l6 s	38.8 s	12 s	33.2 s			
	0/40/2040				Cunabra (Dav	

Lanes, Volumes, Timings 6: Terry Fox Dr & Cope Dr 5331 Fernbank Rd TIA 2020 FBG - PM Peak

Page 1

	۶	\rightarrow	*	1	—	•	1	†	~	1	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ĥ		ሻ	î		7	₽		Ť	†	7
Traffic Volume (vph)	78	76	2	72	58	189	5	544	32	213	553	72
Future Volume (vph)	78	76	2	72	58	189	5	544	32	213	553	72
Satd. Flow (prot)	1695	1777	0	1695	1579	0	1695	1770	0	1695	1784	1517
Flt Permitted	0.237			0.706			0.457			0.245		
Satd. Flow (perm)	423	1777	0	1260	1579	0	815	1770	0	437	1784	1517
Satd. Flow (RTOR)		1			159			3				84
Lane Group Flow (vph)	78	78	0	72	247	0	5	576	0	213	553	72
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		pm+pt	NA	Perm
Protected Phases	5	2			6			8		7	4	
Permitted Phases	2			6			8			4		4
Detector Phase	5	2		6	6		8	8		7	4	4
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	9.5	32.2		32.2	32.2		33.5	33.5		11.4	33.5	33.5
Total Split (s)	9.6	41.8		32.2	32.2		41.2	41.2		17.0	58.2	58.2
Total Split (%)	9.6%	41.8%		32.2%	32.2%		41.2%	41.2%		17.0%	58.2%	58.2%
Yellow Time (s)	3.5	3.3		3.3	3.3		4.6	4.6		4.6	4.6	4.6
All-Red Time (s)	1.0	2.9		2.9	2.9		1.8	1.8		1.8	1.8	1.8
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	4.5	6.2		6.2	6.2		6.4	6.4		6.4	6.4	6.4
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lead		
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes		
Recall Mode	None	None		None	None		C-Max	C-Max		None	C-Max	C-Max
Act Effct Green (s)	21.8	20.1		12.4	12.4		48.7	48.7		67.3	67.3	67.3
Actuated g/C Ratio	0.22	0.20		0.12	0.12		0.49	0.49		0.67	0.67	0.67
v/c Ratio	0.50	0.22		0.46	0.74		0.01	0.67		0.48	0.46	0.07
Control Delay	39.9	31.1		48.2	28.5		19.6	27.8		11.4	10.9	1.8
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	39.9	31.1		48.2	28.5		19.6	27.8		11.4	10.9	1.8
LOS	D	С		D	С		В	С		В	В	Α
Approach Delay		35.5			33.0			27.7			10.3	
Approach LOS		D			С			С			В	

Intersection Summary	
Cycle Length: 100	
Actuated Cycle Length: 100	
Offset: 0 (0%), Referenced to phase 4:SBTL and 8:NBTL, Start	of Green
Natural Cycle: 90	
Control Type: Actuated-Coordinated	
Maximum v/c Ratio: 0.74	
Intersection Signal Delay: 21.5	Intersection LOS: C
Intersection Capacity Utilization 84.4%	ICU Level of Service E
Analysis Period (min) 15	

Splits and Phases: 6: Terry Fox Dr & Cope Dr

→ø2	\$ Ø4 (R)	•	
41.8 s	58.2 s		
≯ _{Ø5}	707	√ 1 Ø8 (R)	
9.6 s 32.2 s	17 S	41.2 s	
09/19/2018			Synchro 9 Report

09/19/2018 Synchro 9 Report

Queues 6: Terry Fox Dr & Cope Dr 5331 Fernbank Rd TIA 2020 FBG - PM Peak

	٠	-	•	←	4	†	-	ļ	1	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	78	78	72	247	5	576	213	553	72	
v/c Ratio	0.50	0.22	0.46	0.74	0.01	0.67	0.48	0.46	0.07	
Control Delay	39.9	31.1	48.2	28.5	19.6	27.8	11.4	10.9	1.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	39.9	31.1	48.2	28.5	19.6	27.8	11.4	10.9	1.8	
Queue Length 50th (m)	12.3	12.4	13.3	16.2	0.5	82.7	14.3	46.9	0.0	
Queue Length 95th (m)	21.4	21.7	24.4	38.2	3.1	#172.1	30.9	91.3	4.5	
Internal Link Dist (m)		97.1		56.3		119.2		183.3		
Turn Bay Length (m)	40.0		50.0		55.0		75.0		165.0	
Base Capacity (vph)	157	633	327	528	396	863	455	1200	1048	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.50	0.12	0.22	0.47	0.01	0.67	0.47	0.46	0.07	
Intersection Summary										

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

3. Telly FUX DI & F	CITIDATI	N INU								2020	DO - OA	1 1 Can
	۶	→	•	•	←	4	4	†	/	Ţ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	91	154	66	110	251	9	95	481	156	644	61	
v/c Ratio	0.40	0.29	0.13	0.47	0.71	0.02	0.38	0.49	0.39	0.78	0.08	
Control Delay	27.3	24.5	1.9	38.7	44.7	0.1	16.1	15.4	23.6	32.2	0.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	27.3	24.5	1.9	38.7	44.7	0.1	16.1	15.4	23.6	32.2	0.2	
Queue Length 50th (m)	11.4	19.9	0.0	17.2	41.3	0.0	7.6	48.2	18.8	99.6	0.0	
0 1 11 0511 ()	04.0	044	0.0	00.7	05.4	0.0	47.0	00.4	44.5	11407.4	0.0	

Queue Length 95th (m)
Internal Link Dist (m)
Turn Bay Length (m)
Base Capacity (vph) 32.7 17.9 41.5 #187.4 257.8 304.2 40.0 88.4 110.0 773 717 125.0 361 110.0 548 585 249 125.0 990 405 135.0 828 796 Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio 0.40 0.20 0.09 0.30 0.46 0.02 0.38 0.49 0.39 0.78 0.08

Intersection Summary # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

+ 4 ļ Lane Group
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Satd. Flow (prot) EBT EBR SBR 91 154 66 110 251 9 95 91 154 66 110 251 9 95 1695 1784 1517 1695 1784 1517 1695 0.304 0.659 0.171 417 417 1749 64 64 0 156 644 61 156 644 61 1695 1784 1517 0.489 Flt Permitted Satd. Flow (perm) Satd. Flow (RTOR) 542 1784 1517 1176 1784 1517 305 1749 0 873 1784 1517 91 154 66 110 251 9 95
Pript NA Perm Perm NA Perm pm+pt
7 4 8 5 481 NA 2 Lane Group Flow (vph)
Turn Type
Protected Phases
Permitted Phases 644 NA F 0 156 Perm Detector Phase 6 Detector Phase
Switch Phase
Minimum Initial (s)
Minimum Split (s)
Total Split (s)
Total Split (%)
Yellow Time (s)
All-Red Time (s) 5.0 33.2 33.2 33.2% 5.0 33.2 5.0 33.2 5.0 33.2 5.0 5.0 5.0 29.2 5.0 29.2 55.7 55.7% 4.6 1.6 5.0 29.2 44.2 44.2% 4.6 1.6 33.2 29.2 44.2 44.2% 4.6 1.6 33.2 33.2 33.2 44.3 44.3 33.2 33.2 44.3% 44.3% 33.2% 33.2% 3.7 3.7 3.7 3.7 2.5 2.5 2.5 2.5 Lost Time Adjust (s) Total Lost Time (s) 0.0 0.0 6.2 0.0 6.2 0.0 0.0 0.0 6.2 0.0 6.5 0.0 6.2 0.0 6.2 0.0 6.2 0.0 6.2 Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio 6.1 Lead Yes None 26.4 0.30 Ves Max 41.3 0.46 Lag Yes Max 41.3 0.46 Lag Yes Max 41.3 Lag Lag Yes Lag Lead Yes Yes None None None 26.3 26.3 17.8 0.30 0.30 0.20 None 17.8 0.20 None 17.8 0.20 Max 50.1 0.56 0.56 0.46 v/c Ratio
Control Delay
Queue Delay
Total Delay
LOS
Approach Delay
Approach LOS 0.40 0.29 27.3 24.5 0.13 0.47 0.71 1.9 38.7 44.7 0.02 0.38 0.49 15.4 0.39 0.78 32.2 0.08 38.7 0.0 38.7 D 0.0 1.9 A 0.0 0.0 27.3 24.5 0.0 0.0 0.0 0.1 16.1 0.0 0.0 0.0 Intersection Summary

Intersection Summary
Cycle Length: 100
Actuated Cycle Length: 88.9
Natural Cycle: 95
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.78 Intersection Signal Delay: 26.0 Intersection Capacity Utilization 81.4% Analysis Period (min) 15 Intersection LOS: C ICU Level of Service D

Splits and Phases: 3: Terry Fox Dr & Fernbank Rd ≠₀₇ **↑** Ø5 \$ ø6

09/19/2018 Synchro 9 Report Page 1

Lanes, Volumes, Timings 6: Terry Fox Dr & Cope Dr 5331 Fernbank Rd TIA 2020 FBG - SAT Peak

	٠	\rightarrow	*	•	←	*	4	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	ĥ		ሻ	4		ሻ	4î		ሻ	†	7
Traffic Volume (vph)	133	87	3	63	105	205	1	507	9	314	794	144
Future Volume (vph)	133	87	3	63	105	205	1	507	9	314	794	144
Satd. Flow (prot)	1695	1775	0	1695	1608	0	1695	1779	0	1695	1784	1517
Flt Permitted	0.203			0.699			0.310			0.222		
Satd. Flow (perm)	362	1775	0	1247	1608	0	553	1779	0	396	1784	1517
Satd. Flow (RTOR)		2			95			1				144
Lane Group Flow (vph)	133	90	0	63	310	0	1	516	0	314	794	144
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		pm+pt	NA	Perm
Protected Phases	5	2			6			8		7	4	
Permitted Phases	2			6			8			4		4
Detector Phase	5	2		6	6		8	8		7	4	4
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	9.5	32.2		32.2	32.2		33.5	33.5		9.5	33.5	33.5
Total Split (s)	9.6	41.8		32.2	32.2		38.2	38.2		20.0	58.2	58.2
Total Split (%)	9.6%	41.8%		32.2%	32.2%		38.2%	38.2%		20.0%	58.2%	58.2%
Yellow Time (s)	3.5	3.3		3.3	3.3		4.6	4.6		3.5	4.6	4.6
All-Red Time (s)	1.0	2.9		2.9	2.9		1.8	1.8		1.0	1.8	1.8
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	4.5	6.2		6.2	6.2		6.4	6.4		4.5	6.4	6.4
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lead		
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes		
Recall Mode	None	None		None	None		C-Max	C-Max		None	C-Max	C-Max
Act Effct Green (s)	30.3	28.6		19.0	19.0		38.5	38.5		60.7	58.8	58.8
Actuated g/C Ratio	0.30	0.29		0.19	0.19		0.38	0.38		0.61	0.59	0.59
v/c Ratio	0.75	0.18		0.27	0.81		0.00	0.75		0.71	0.76	0.15
Control Delay	52.5	25.3		35.1	42.9		23.0	37.5		21.1	22.9	2.5
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	52.5	25.3		35.1	42.9		23.0	37.5		21.1	22.9	2.5
LOS	D	С		D	D		С	D		С	С	Α
Approach Delay		41.5			41.6			37.4			20.1	
Annmach I OS		D			D			D			C	

Apploach E03	D	D	U	C
Intersection Summary				
Cycle Length: 100				
Actuated Cycle Length: 100				
Offset: 0 (0%), Referenced to phase	e 4:SBTL and 8:NBTL,	Start of Green		
Natural Cycle: 95				
Control Type: Actuated-Coordinated	i			
Maximum v/c Ratio: 0.81				
Intersection Signal Delay: 29.3		Intersection LOS: C		
Intersection Capacity Utilization 94.	8%	ICU Level of Service F		
Analysis Period (min) 15				

Splits and Phases: 6: Terry Fox Dr & Cope Dr

	\$ Ø4 (R)		
41.8 s	58.2 s		
≯ _{Ø5}	₩ 107	√ 1 Ø8 (R)	
9.6 s 32.2 s	20 s	38.2 s	
09/19/2018			Synchro 9 Report

09/19/2018 Synchro 9 Report

Queues 6: Terry Fox Dr & Cope Dr 5331 Fernbank Rd TIA 2020 FBG - SAT Peak

	۶	→	•	←	4	†	>	↓	4
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR
Lane Group Flow (vph)	133	90	63	310	1	516	314	794	144
v/c Ratio	0.75	0.18	0.27	0.81	0.00	0.75	0.71	0.76	0.15
Control Delay	52.5	25.3	35.1	42.9	23.0	37.5	21.1	22.9	2.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	52.5	25.3	35.1	42.9	23.0	37.5	21.1	22.9	2.5
Queue Length 50th (m)	19.3	12.7	10.5	40.5	0.1	90.6	27.4	107.5	0.0
Queue Length 95th (m)	#34.8	22.3	20.3	65.6	1.3	#155.9	#62.8	#204.0	8.7
Internal Link Dist (m)		97.2		56.3		119.2		183.3	
Turn Bay Length (m)	40.0		50.0		55.0		75.0		165.0
Base Capacity (vph)	177	633	324	488	212	685	458	1049	951
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.75	0.14	0.19	0.64	0.00	0.75	0.69	0.76	0.15
Intersection Summary									

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.

Appendix B Intersection Performance Worksheets September 19, 2018

B.4 2020 TOTAL FUTURE

5331 Fernbank Rd TIA 2020 Total Future - AM Peak Queues 3: Terry Fox Dr & Fernbank Rd 5331 Fernbank Rd TIA 2020 Total Future - AM Peak

ļ 1 Lane Group FBT Lane Group
Lane Group Flow (vph)
wic Ratio
Control Delay
Queue Delay
Total Delay
Queue Length 50th (m)
Queue Length 95th (m)
Internal Link Dist (m)
Turn Bay Length (m)
Base Capacity (vph)
Starvation Cap Reductin 43 0.05 0.3 0.0 0.3 90 0.18 5.6 0.0 226 0.22 9.1 0.0 139 0.56 44.2 0.0 44.2 140 0.45 28.3 0.0 28.3 18.6 0.24 24.2 0.0 24.2 0.08 32.4 0.0 0.11 10.8 0.0 10.8 0.13 8.9 0.0 8.9 10.1 0.0 10.1 0.0 12.8 33.4 16.3 0.0 3.4 7.0 12.2 2.2 7.0 22.8 37.9 0.0 15.1 4.9 12.7 0.2 30.2 27.0 9.3 60.4 0.0 304.2 40.1 257.8 88.4 110.0 311 110.0 828 752 125.0 373 110.0 577 625 125.0 498 551 1012 1013 910 Starvation Cap Reductn Spillback Cap Reductn Storage Cap Reductn Reduced v/c Ratio 0.45 0.15 0.12 0.04 0.25 0.27 0.11 0.38 0.13 0.22 0.05 Intersection Summar

4 ļ Lane Group
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Satd. Flow (prot)
FIT Permitted
State Flow (norm) EBT EBR SBR 140 140 1695 0.439 124 90 14 139 157 67 124 90 14 139 157 67 1784 1517 1695 1784 1517 1695 0.677 0.617 2 64 226 43 2 64 226 43 0 1695 1784 1517 378 378 1783 0.492 Satd. Flow (perm) Satd. Flow (RTOR) 1784 1517 1208 1784 1517 1101 1783 0 878 1784 1517 783 90 157 157 124 90 14 139 157 67 NA Perm Perm NA Perm Perm 4 8 Lane Group Flow (vph)
Turn Type
Protected Phases
Permitted Phases 226 NA 6 0 64 Perm 140 Detector Phase Detector Phase
Switch Phase
Minimum Initial (s)
Minimum Split (s)
Total Split (s)
Total Split (%)
Yellow Time (s)
All-Red Time (s) 5.0 5.0 5.0 33.2 29.2 29.2 34.0 42.0 42.0 37.8% 46.7% 46.7% 3.7 4.6 4.6 2.5 1.6 1.6 5.0 33.2 5.0 33.2 5.0 33.2 5.0 5.0 29.2 33.2 29.2 29.2 29.2 42.0 42.0 46.7% 46.7% 4.6 4.6 1.6 1.6 48.0 53.3% 3.7 2.5 34.0 37.8% 3.7 2.5 Lost Time Adjust (s) Total Lost Time (s) 0.0 0.0 6.2 0.0 6.2 0.0 0.0 0.0 6.2 0.0 6.2 0.0 6.2 0.0 6.2 0.0 6.2 0.0 6.2 Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio 6.1 Lead Yes None 26.6 0.30 Lag Lag Yes Lag None 12.5 0.14 None C-Max C-Max 12.5 51.1 51.1 0.14 0.57 0.57 C-Max C-Max C-Max 51.1 51.1 51.1 0.57 0.57 0.57 None None 26.5 26.5 0.29 0.29 None 12.5 0.14 v/c Ratio
Control Delay
Queue Delay
Total Delay
LOS
Approach Delay
Approach LOS 0.45 0.24 28.3 24.2 0.18 0.08 0.56 5.6 32.4 44.2 0.45 0.11 0.38 0.13 0.22 9.1 0.05 0.0 0.0 0.0 5.6 32.4 44.2 A C D 0.0 0.0 28.3 24.2 0.0 0.0 0.0 10.1 10.8 12.8 0.0 21.1 Intersection Summar

Cycle Length: 90
Aduated Cycle Length: 90
Aduated Cycle Length: 90
Offset 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green, Master Intersection
Natural Cycle: 75 rvatural Cycle: 75 Control Type: Actuated-Coordinated Maximum v/c Ratio: 0.56 Intersection Signal Delay: 16.5 Intersection Capacity Utilization 61.8% Analysis Period (min) 15

Intersection LOS: B ICU Level of Service B

Splits and Phases: 3: Terry Fox Dr & Fernbank Rd **₽**04 <u>▶</u>07 09/19/2018 Synchro 9 Report

Lanes, Volumes, Timings 6: Terry Fox Dr & Cope Dr

5331 Fernbank Rd TIA 2020 Total Future - AM Peak

Page 1

	۶	\rightarrow	*	•	←	*	4	†	~	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	ĥ		ሻ	î		ሻ	1		ሻ	†	7
Traffic Volume (vph)	48	18	1	42	15	196	5	605	29	158	290	34
Future Volume (vph)	48	18	1	42	15	196	5	605	29	158	290	34
Satd. Flow (prot)	1695	1770	0	1695	1536	0	1695	1772	0	1695	1784	1517
Flt Permitted	0.408			0.745			0.582			0.388		
Satd. Flow (perm)	728	1770	0	1329	1536	0	1038	1772	0	692	1784	1517
Satd. Flow (RTOR)		1			196			4				39
Lane Group Flow (vph)	48	19	0	42	211	0	5	634	0	158	290	34
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	Perm
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		4
Detector Phase	2	2		6	6		8	8		4	4	4
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	32.2	32.2		32.2	32.2		33.5	33.5		33.5	33.5	33.5
Total Split (s)	32.2	32.2		32.2	32.2		57.8	57.8		57.8	57.8	57.8
Total Split (%)	35.8%	35.8%		35.8%	35.8%		64.2%	64.2%		64.2%	64.2%	64.2%
Yellow Time (s)	3.3	3.3		3.3	3.3		4.6	4.6		4.6	4.6	4.6
All-Red Time (s)	2.9	2.9		2.9	2.9		1.8	1.8		1.8	1.8	1.8
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2		6.2	6.2		6.4	6.4		6.4	6.4	6.4
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	C-Max
Act Effct Green (s)	9.8	9.8		9.8	9.8		67.6	67.6		67.6	67.6	67.6
Actuated g/C Ratio	0.11	0.11		0.11	0.11		0.75	0.75		0.75	0.75	0.75
v/c Ratio	0.62	0.10		0.29	0.62		0.01	0.48		0.30	0.22	0.03
Control Delay	68.5	33.8		40.6	15.3		2.8	4.5		6.1	4.2	1.3
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	68.5	33.8		40.6	15.3		2.8	4.5		6.1	4.2	1.3
LOS	Е	С		D	В		Α	Α		Α	A	A
Approach Delay		58.7			19.5			4.5			4.6	
Approach LOS		Е			В			Α			Α	

Intersection Summary		
Cycle Length: 90		
Actuated Cycle Length: 90		
Offset: 72 (80%), Referenced to phase 4:SBTL and 8:NBTL	, Start of Green	
Natural Cycle: 70		
Control Type: Actuated-Coordinated		
Maximum v/c Ratio: 0.62		
Intersection Signal Delay: 9.7	Intersection LOS: A	
Intersection Capacity Utilization 83.5%	ICU Level of Service E	
Analysis Period (min) 15		

Splits and Phases: 6:	Terry Fox Dr & Cope Dr		
⊸ø2	\$ \$ 94	(R)	
32.2 s	57.8 s		
₹ø6	√Îøs	(R)	
32.2 s	57.8 s		
09/19/2018		Synchro 9	Report

Synchro 9 Report

09/19/2018 Synchro 9 Report

Queues 6: Terry Fox Dr & Cope Dr 5331 Fernbank Rd TIA 2020 Total Future - AM Peak

	۶	→	•	←	4	†	-	↓	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	48	19	42	211	5	634	158	290	34	
v/c Ratio	0.62	0.10	0.29	0.62	0.01	0.48	0.30	0.22	0.03	
Control Delay	68.5	33.8	40.6	15.3	2.8	4.5	6.1	4.2	1.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	68.5	33.8	40.6	15.3	2.8	4.5	6.1	4.2	1.3	
Queue Length 50th (m)	8.1	2.9	6.8	2.4	0.2	24.2	7.0	11.9	0.0	
Queue Length 95th (m)	18.6	8.7	15.5	21.1	m0.5	33.4	18.6	24.5	2.2	
Internal Link Dist (m)		97.2		56.3		119.2		183.3		
Turn Bay Length (m)	40.0		50.0		55.0		75.0		165.0	
Base Capacity (vph)	210	512	383	583	780	1332	519	1340	1149	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.23	0.04	0.11	0.36	0.01	0.48	0.30	0.22	0.03	
Intersection Summary										

m Volume for 95th percentile queue is metered by upstream signal.

EBT EBR WBL WBT NBL NBR

183 22 31 228 25 36
183 22 31 228 25 36
0 0 0 0 0 0 0 0

Free Free Free Free Stop Stop
- None - None - None

- 290 -- 6.42 6.22

5.42 -5.42 -3.518 3.318 542 847 839 -759

0.023 7.7 A - 0.1

- 4.12

- 1366

679 0.09 10.8 B

Intersection Int Delay, s/veh

Movement
Lane Configurations
Traffic Vol, veh/h
Future Vol, veh/h
Conflicting Peds, #/hr
Sign Control
RT Channelized

Major/Minor
Conflicting Flow All
Stage 1
Stage 2
Critical Hdwy

Critical Hdwy
Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy
Pot Cap-1 Maneuver
Stage 1
Stage 2
Platoon blocked %

Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2

Approach HCM Control Delay, s HCM LOS

Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh)

Alvi Feak	3. Telly FOX DI &	rembai	K Ku							202	zu rutari	utule - r	IVI F Car
		•	-	•	•	←	•	4	†	-	-	1	4
	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
	Lane Configurations	*1	†	7	ሻ	†	7"	ሻ	4		ሻ	†	7
	Traffic Volume (vph)	146	168	61	25	272	110	197	397	5	151	427	77
	Future Volume (vph)	146	168	61	25	272	110	197	397	5	151	427	77
	Satd. Flow (prot)	1695	1784	1517	1695	1784	1517	1695	1781	0	1695	1784	151
	Flt Permitted	0.278			0.651			0.297			0.526		
	Satd. Flow (perm)	496	1784	1517	1162	1784	1517	530	1781	0	939	1784	151
	Satd. Flow (RTOR)			106			172		1				- 1
	Lane Group Flow (vph)	146	168	61	25	272	110	197	402	0	151	427	
	Turn Type	pm+pt	NA	Perm	Perm	NA	Perm	pm+pt	NA		Perm	NA	Pe
	Protected Phases	7	4			8		5	2			6	
	Permitted Phases	4		4	8		8	2			6		
	Detector Phase	7	4	4	8	8	8	5	2		6	6	
	Switch Phase												
	Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
	Minimum Split (s)	11.1	33.2	33.2	33.2	33.2	33.2	11.5	29.2		29.2	29.2	
	Total Split (s)	11.4	44.6	44.6	33.2	33.2	33.2	16.0	55.4		39.4	39.4	
	Total Split (%)	11.4%	44.6%	44.6%	33.2%	33.2%	33.2%	16.0%	55.4%		39.4%	39.4%	3
	Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	4.6	4.6		4.6	4.6	
	All-Red Time (s)	2.4	2.5	2.5	2.5	2.5	2.5	1.9	1.6		1.6	1.6	
	Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
	Total Lost Time (s)	6.1	6.2	6.2	6.2	6.2	6.2	6.5	6.2		6.2	6.2	
Lead		Lead			Lag	Lag	Lag	Lead			Lag	Lag	
	ag Optimize?	Yes			Yes	Yes	Yes	Yes			Yes	Yes	
Recall Mode	e	None	None	None	None	None	None	None	C-Max		C-Max	C-Max	
Act E	ffct Green (s)	31.9	31.8	31.8	20.4	20.4	20.4	55.5	55.8		39.1	39.1	
Actuated	g/C Ratio	0.32	0.32	0.32	0.20	0.20	0.20	0.56	0.56		0.39	0.39	
v/c Ratio		0.66	0.30	0.11	0.11	0.75	0.25	0.48	0.40		0.41	0.61	
Control Delay	,	40.2	26.0	1.3	30.9	50.0	2.3	16.6	15.1		21.4	24.2	
Queue	Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay		40.2	26.0	1.3	30.9	50.0	2.3	16.6	15.1		21.4	24.2	
	LOS	D	С	Α	С	D	Α	В	В		С	С	
	oproach Delay		27.5			35.9			15.6			20.8	
	Approach LOS		С			D			В			С	
Inter	section Summary												
	Cycle Length: 100												_
	Actuated Cycle Length: 10	n											
	Offset: 0 (0%), Referenced		·NDTI on	A G-CDTI	Start of	Groon M	lactor Inte	reaction					
	Natural Cycle: 85	to phase 2	.IVD I L GII	u 0.0011	, otart or	Orccii, iv	idottor irrit	31300001					
	Control Type: Actuated-Co	ordinated											
	Maximum v/c Ratio: 0.75	or annatoa											
	ntersection Signal Delay:	23.5			Ir	ntersectio	n I OS: C						
	Intersection Capacity Utiliz		,			CU Level							
	Analysis Period (min) 15				- 10	2 20.01	2. 00.710						
	, marjoo , onos (mm) 10												
	Splits and Phases: 3: Te	erry Fox Dr	& Fernba	nk Rd									
		, . 0 01	0111001				T.A.,						
	Ø2 (R)	_					(> Ø4						
							44.6 s		45.				
		Ø6 (R)					≯ ø7		∜ ø8				
	16 s 39.4	S					11.4 s		33.2 s				٦

09/19/2018 Synchro 9 Report

Queues 3: Terry Fox Dr & Fernbank Rd 5331 Fernbank Rd TIA 2020 Total Future - PM Peak

	٠	→	*	€	←	4	4	1	>	ţ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	146	168	61	25	272	110	197	402	151	427	77	
v/c Ratio	0.66	0.30	0.11	0.11	0.75	0.25	0.48	0.40	0.41	0.61	0.11	
Control Delay	40.2	26.0	1.3	30.9	50.0	2.3	16.6	15.1	21.4	24.2	0.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	40.2	26.0	1.3	30.9	50.0	2.3	16.6	15.1	21.4	24.2	0.9	
Queue Length 50th (m)	20.9	24.3	0.0	4.0	49.8	0.0	18.2	41.9	23.2	71.2	0.7	
Queue Length 95th (m)	32.6	36.7	2.1	10.1	71.1	3.0	35.1	73.2	41.2	110.0	1.6	
Internal Link Dist (m)		304.1			40.1			257.8		88.5		
Turn Bay Length (m)	110.0		110.0	125.0			110.0		125.0		135.0	
Base Capacity (vph)	221	685	647	313	481	535	417	994	367	698	698	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.66	0.25	0.09	0.08	0.57	0.21	0.47	0.40	0.41	0.61	0.11	

Lanes, Volumes, Timings 6: Terry Fox Dr & Cope Dr

09/19/2018

5331 Fernbank Rd TIA 2020 Total Future - PM Peak

Synchro 9 Report

	•	\rightarrow	•	1	←	•	4	†	~	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	4		٦	1		7	1		٦	†	ř
Traffic Volume (vph)	78	76	2	99	58	195	5	562	32	235	554	72
Future Volume (vph)	78	76	2	99	58	195	5	562	32	235	554	72
Satd. Flow (prot)	1695	1777	0	1695	1577	0	1695	1770	0	1695	1784	1517
Flt Permitted	0.222			0.706			0.457			0.201		
Satd. Flow (perm)	396	1777	0	1260	1577	0	815	1770	0	359	1784	1517
Satd. Flow (RTOR)		1			164			3				84
Lane Group Flow (vph)	78	78	0	99	253	0	5	594	0	235	554	72
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		pm+pt	NA	Perm
Protected Phases	5	2			6			8		7	4	
Permitted Phases	2			6			8			4		4
Detector Phase	5	2		6	6		8	8		7	4	4
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	9.5	32.2		32.2	32.2		33.5	33.5		11.4	33.5	33.5
Total Split (s)	9.6	41.8		32.2	32.2		40.8	40.8		17.4	58.2	58.2
Total Split (%)	9.6%	41.8%		32.2%	32.2%		40.8%	40.8%		17.4%	58.2%	58.2%
Yellow Time (s)	3.5	3.3		3.3	3.3		4.6	4.6		4.6	4.6	4.6
All-Red Time (s)	1.0	2.9		2.9	2.9		1.8	1.8		1.8	1.8	1.8
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	4.5	6.2		6.2	6.2		6.4	6.4		6.4	6.4	6.4
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lead		
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes		
Recall Mode	None	None		None	None		C-Max	C-Max		None	C-Max	C-Max
Act Effct Green (s)	22.9	21.2		13.5	13.5		45.1	45.1		66.2	66.2	66.2
Actuated g/C Ratio	0.23	0.21		0.14	0.14		0.45	0.45		0.66	0.66	0.66
v/c Ratio	0.50	0.21		0.58	0.71		0.01	0.74		0.54	0.47	0.07
Control Delay	39.3	30.3		53.1	26.2		17.4	27.4		13.0	11.5	1.8
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	39.3	30.3		53.1	26.2		17.4	27.4		13.0	11.5	1.8
LOS	D	С		D	С		В	С		В	В	F
Approach Delay		34.8			33.7			27.3			11.1	
Approach LOS		С			С			С			В	

Intersection Summary
Cycle Length: 100
Actuated Cycle Length: 100
Offset: 39 (393), Referenced to phase 4:SBTL and 8:NBTL, Start of Green
Natural Cycle: 90 Natural Cycle: 90
Control Type: Actuated-Coordinated
Maximum v/R Ratio: 0.74
Intersection Signal Delay: 22.0
Intersection Capacity Utilization 87.0%
Analysis Period (min) 15 Intersection LOS: C ICU Level of Service E

\$ Ø4 (R) 09/19/2018 Synchro 9 Report

b: Terry Fox Dr & C	ope Di								202	O TOTAL PULLIFE - PIN P
	۶	\rightarrow	•	←	4	1	-	Ţ	4	
ane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
ane Group Flow (vph)	78	78	99	253	5	594	235	554	72	
//c Ratio	0.50	0.21	0.58	0.71	0.01	0.74	0.54	0.47	0.07	
Control Delay	39.3	30.3	53.1	26.2	17.4	27.4	13.0	11.5	1.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	39.3	30.3	53.1	26.2	17.4	27.4	13.0	11.5	1.8	
Queue Length 50th (m)	12.0	12.1	18.4	16.1	0.5	64.7	17.0	49.9	0.0	
Queue Length 95th (m)	21.3	21.7	31.8	38.7	m1.4	#176.9	34.2	91.7	4.6	
nternal Link Dist (m)		97.1		56.3		119.2		183.3		
Furn Bay Length (m)	40.0		50.0		55.0		75.0		165.0	
Base Capacity (vph)	156	633	327	531	367	799	436	1181	1032	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.50	0.12	0.30	0.48	0.01	0.74	0.54	0.47	0.07	
ntersection Summary										
# 95th percentile volume e	xceeds cap	oacity, qu	eue may	be longer	:					

Son percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.
 Volume for 95th percentile queue is metered by upstream signal.

Synchro 9 Report Page 4 09/19/2018

Lanes, Volumes, Timings 3: Terry Fox Dr & Fernbank Rd 5331 Fernbank Rd TIA 2020 Total Future - SAT Peak

	٠	→	*	•	←	4	4	†	~	/	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1	7	Ť	†	7	Ť	î,		Ť	†	7
Traffic Volume (vph)	120	154	66	138	279	15	95	474	64	161	672	61
Future Volume (vph)	120	154	66	138	279	15	95	474	64	161	672	61
Satd. Flow (prot)	1695	1784	1517	1695	1784	1517	1695	1752	0	1695	1784	1517
Flt Permitted	0.231			0.659			0.177			0.453		
Satd. Flow (perm)	412	1784	1517	1176	1784	1517	316	1752	0	808	1784	1517
Satd. Flow (RTOR)			88			144		9				144
Lane Group Flow (vph)	120	154	66	138	279	15	95	538	0	161	672	61
Turn Type	pm+pt	NA	Perm	Perm	NA	Perm	pm+pt	NA		Perm	NA	Perm
Protected Phases	7	4			8		5	2			6	
Permitted Phases	4		4	8		8	2			6		6
Detector Phase	7	4	4	8	8	8	5	2		6	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	11.1	33.2	33.2	33.2	33.2	33.2	11.5	29.2		29.2	29.2	29.2
Total Split (s)	13.0	46.2	46.2	33.2	33.2	33.2	12.0	73.8		61.8	61.8	61.8
Total Split (%)	10.8%	38.5%	38.5%	27.7%	27.7%	27.7%	10.0%	61.5%		51.5%	51.5%	51.5%
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	4.6	4.6		4.6	4.6	4.6
All-Red Time (s)	2.4	2.5	2.5	2.5	2.5	2.5	1.9	1.6		1.6	1.6	1.6
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.1	6.2	6.2	6.2	6.2	6.2	6.5	6.2		6.2	6.2	6.2
Lead/Lag	Lead			Lag	Lag	Lag	Lead			Lag	Lag	Lag
Lead-Lag Optimize?	Yes			Yes	Yes	Yes	Yes			Yes	Yes	Yes
Recall Mode	None	None	None	None	None	None	None	C-Max		C-Max	C-Max	C-Max
Act Effct Green (s)	36.1	36.0	36.0	23.0	23.0	23.0	71.3	71.6		58.6	58.6	58.6
Actuated g/C Ratio	0.30	0.30	0.30	0.19	0.19	0.19	0.59	0.60		0.49	0.49	0.49
v/c Ratio	0.61	0.29	0.13	0.62	0.82	0.04	0.36	0.51		0.41	0.77	0.07
Control Delay	44.9	32.9	3.5	56.0	65.4	0.2	15.4	16.7		10.9	18.7	0.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay	44.9	32.9	3.5	56.0	65.4	0.2	15.4	16.7		10.9	18.7	0.2
LOS	D	С	Α	Е	Е	Α	В	В		В	В	Α
Approach Delay		31.4			60.1			16.5			16.0	
Approach LOS		С			Е			В			В	

Approach LOS	С	E	В	В
Intersection Summary				
Cycle Length: 120				
Actuated Cycle Length: 120				
Offset: 0 (0%), Referenced to phase	2:NBTL and 6:SBTL,	Start of Green, Master Inters	section	
Natural Cycle: 95				
Control Type: Actuated-Coordinated	i			
Maximum v/c Ratio: 0.82				
Intersection Signal Delay: 26.7		Intersection LOS: C		
Intersection Capacity Utilization 86.3	2%	ICU Level of Service E		
Analysis Period (min) 15				

Splits and Phases:	Terry Fox Dr & Fernbank Rd

↑ Ø2 (R) ■	4 04	
73.8 s	46.2 s	
√ Ø5	<i>▶</i> _{Ø7}	
12 s 61.8 s	13 s 33.2 s	
09/19/2018		Synchro 9 Report
		Synchro 9 Report Page 1

Intersection						
Int Delay, s/veh	2.3					
**	FDT	500	MO	WOT	NDI	NDD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1			र्स	W	
Traffic Vol, veh/h	311	32	47	309	43	66
Future Vol, veh/h	311	32	47	309	43	66
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	311	32	47	309	43	66
	Major1		Major2		Minor1	
Conflicting Flow All	0	0	343	0	730	327
Stage 1	-	-	-	-	327	-
Stage 2	-	-	-	-	403	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1216	-	389	714
Stage 1		-	-	-	731	-
Stage 2		-		-	675	-
Platoon blocked. %		-			010	
Mov Cap-1 Maneuver		-	1216	-	371	714
Mov Cap-2 Maneuver			1210		371	7.14
Stage 1		- 1			731	- :
		- :	- 1		643	
Stage 2	-	-		-	043	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		1.1		13.7	
HCM LOS					В	
Minor Lane/Major Mvm	ıt l	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		523	-	-	1216	-
HCM Lane V/C Ratio		0.208	-	-	0.039	-
HCM Control Delay (s)		13.7	-	-	8.1	0
HCM Lane LOS		В	-	-	Α	Α
HCM 95th %tile Q(veh))	0.8	-		0.1	

Synchro 9 Report Page 8 09/19/2018

Queues 3: Terry Fox Dr & Fernbank Rd

5331 Fernbank Rd TIA 2020 Total Future - SAT Peak

	٠	-	•	•	—	•	4	Ť	>	ļ	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	120	154	66	138	279	15	95	538	161	672	61	
v/c Ratio	0.61	0.29	0.13	0.62	0.82	0.04	0.36	0.51	0.41	0.77	0.07	
Control Delay	44.9	32.9	3.5	56.0	65.4	0.2	15.4	16.7	10.9	18.7	0.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	44.9	32.9	3.5	56.0	65.4	0.2	15.4	16.7	10.9	18.7	0.2	
Queue Length 50th (m)	21.0	27.4	0.0	29.7	62.9	0.0	9.3	69.7	14.4	138.7	0.0	
Queue Length 95th (m)	34.8	43.1	5.9	49.7	90.5	0.0	18.0	105.2	m18.5	141.0	m0.0	
Internal Link Dist (m)		304.1			40.1			257.8		88.5		
Turn Bay Length (m)	110.0		110.0	125.0			110.0		125.0		135.0	
Base Capacity (vph)	197	594	564	264	401	452	263	1049	394	870	814	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.61	0.26	0.12	0.52	0.70	0.03	0.36	0.51	0.41	0.77	0.07	
Intersection Summary												

m Volume for 95th percentile queue is metered by upstream signal.

Lanes, Volumes, Timings 6: Terry Fox Dr & Cope Dr 5331 Fernbank Rd TIA 2020 Total Future - SAT Peak

	٠	-	•	•	-	*	4	†	-	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ħ		ሻ	7-		٦	1		ሻ	†	7
Traffic Volume (vph)	133	87	3	96	105	212	1	528	9	343	795	144
Future Volume (vph)	133	87	3	96	105	212	1	528	9	343	795	144
Satd. Flow (prot)	1695	1775	0	1695	1606	0	1695	1779	0	1695	1784	1517
FIt Permitted	0.163			0.699			0.308			0.228		
Satd. Flow (perm)	291	1775	0	1247	1606	0	550	1779	0	407	1784	1517
Satd. Flow (RTOR)		2			77			1				144
Lane Group Flow (vph)	133	90	0	96	317	0	1	537	0	343	795	144
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		pm+pt	NA	Perm
Protected Phases	5	2			6			8		7	4	
Permitted Phases	2			6			8			4		4
Detector Phase	5	2		6	6		8	8		7	4	4
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	9.5	32.2		32.2	32.2		33.5	33.5		9.5	33.5	33.5
Total Split (s)	12.0	44.2		32.2	32.2		49.2	49.2		26.6	75.8	75.8
Total Split (%)	10.0%	36.8%		26.8%	26.8%		41.0%	41.0%		22.2%	63.2%	63.2%
Yellow Time (s)	3.5	3.3		3.3	3.3		4.6	4.6		3.5	4.6	4.6
All-Red Time (s)	1.0	2.9		2.9	2.9		1.8	1.8		1.0	1.8	1.8
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	4.5	6.2		6.2	6.2		6.4	6.4		4.5	6.4	6.4
Lead/Lag	Lead			Lag	Lag		Lag	Lag		Lead		
Lead-Lag Optimize?	Yes			Yes	Yes		Yes	Yes		Yes		
Recall Mode	None	None		None	None		C-Max	C-Max		None	C-Max	C-Max
Act Effct Green (s)	36.1	34.4		22.4	22.4		50.0	50.0		74.9	73.0	73.0
Actuated g/C Ratio	0.30	0.29		0.19	0.19		0.42	0.42		0.62	0.61	0.61
v/c Ratio	0.76	0.18		0.41	0.87		0.00	0.72		0.76	0.73	0.15
Control Delay	59.1	31.1		47.5	59.6		24.0	30.1		24.4	22.7	2.2
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	59.1	31.1		47.5	59.6		24.0	30.1		24.4	22.7	2.2
LOS	Е	С		D	Е		С	С		С	С	A
Approach Delay		47.8			56.8			30.1			20.8	
Approach LOS		D			Е			С			С	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120	0											
Offset: 0 (0%), Referenced	to phase 4	:SBTL and	8:NBTL	, Start of	Green							
Natural Cycle: 95												
Control Type: Actuated-Co	ordinated											
Maximum v/c Ratio: 0.87												
Intersection Signal Delay: 3	31.4			li li	ntersection	LOS: C						
Intersection Capacity Utiliza	ation 95.3%	5		10	CU Level	of Service	F					
Analysis Period (min) 15												
Splits and Phases: 6: Te	rry Fox Dr	o Cana De										
	III FOX DI	a Cope Di	- A									_
→Ø2 44.2 s			75.8 9	14 (R)		•						
			\ \			-	4					_
₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩			\				1 ø8 (R)					
12 s 32.2 s			26.6 9	3		49	Z S					
09/19/2018											Synchro 9	
												Page 3

HCM 2010 TWSC 15: Site Access 4 & Cope Dr

5331 Fernbank Rd TIA 2020 Total Future - SAT Peak

Intersection						
Int Delay, s/veh	2.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĵ.			ન	Y	
Traffic Vol. veh/h	396	43	62	359	54	83
Future Vol. veh/h	396	43	62	359	54	83
Conflicting Peds, #/hr	0	0	0.2	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length		-		-	0	-
Veh in Median Storage,				0	0	
Grade. %	0			0	0	
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	396	43	62	359	54	83
	000	70	UZ	003	- 04	00
	lajor1		Major2		Minor1	
Conflicting Flow All	0	0	439	0	901	418
Stage 1	-	-	-	-	418	-
Stage 2	-	-	-	-	483	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-		-	3.518	3.318
Pot Cap-1 Maneuver	-	-	1121	-	309	635
Stage 1	-	-	-	-	664	-
Stage 2	-	-	-	-	620	-
Platoon blocked, %	-	-				
Mov Cap-1 Maneuver	-	-	1121		288	635
Mov Cap-2 Maneuver	-				288	-
Stage 1	-	-		-	664	-
Stage 2					577	
5						
			wo		ND	
Approach	EB		WB		NB	
HCM Control Delay, s	0		1.2		17.2	
HCM LOS					С	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		431			1121	
HCM Lane V/C Ratio		0.318			0.055	
HCM Control Delay (s)		17.2			8.4	0
HCM Lane LOS		C			Α.	A
HCM 95th %tile Q(veh)		1.3	-		0.2	-
riom oour rothe Q(von)		1.0			0.2	

09/19/2018 Synchro 9 Report Page 9

Queues 6: <u>Terry Fox Dr & Cope Dr</u> 5331 Fernbank Rd TIA 2020 Total Future - SAT Peak

	٠	→	•	←	4	†	-	Ţ	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	133	90	96	317	1	537	343	795	144	
v/c Ratio	0.76	0.18	0.41	0.87	0.00	0.72	0.76	0.73	0.15	
Control Delay	59.1	31.1	47.5	59.6	24.0	30.1	24.4	22.7	2.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	59.1	31.1	47.5	59.6	24.0	30.1	24.4	22.7	2.2	
Queue Length 50th (m)	23.1	15.2	19.7	55.2	0.1	92.1	37.4	130.5	0.0	
Queue Length 95th (m)	#39.7	27.5	35.6	#95.1	m0.2	#169.1	64.2	189.0	8.3	
Internal Link Dist (m)		97.1		56.3		119.2		183.3		
Turn Bay Length (m)	40.0		50.0		55.0		75.0		165.0	
Base Capacity (vph)	175	563	270	408	229	742	491	1084	978	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.76	0.16	0.36	0.78	0.00	0.72	0.70	0.73	0.15	
Intersection Summary										
# 95th percentile volume e	exceeds cap	acity, qu	eue may	be longe						
Queue shown is maximu	ım after two	cycles.		_						

m Volume for 95th percentile queue is metered by upstream signal.

Synchro 9 Report Page 4 09/19/2018

Appendix B Intersection Performance Worksheets September 19, 2018

B.5 2025 ULTIMATE

5331 Fernbank Rd TIA 2025 Ultimate - AM Peak Queues 3: Terry Fox Dr & Fernbank Rd 5331 Fernbank Rd TIA 2025 Ultimate - AM Peak

	٠	-	•	•	•	•	4	†	>	↓	4	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	182	131	94	14	145	165	71	416	67	235	55	
v/c Ratio	0.54	0.23	0.17	0.08	0.57	0.46	0.12	0.42	0.15	0.24	0.06	
Control Delay	29.3	23.0	5.2	32.1	44.2	9.8	11.8	14.5	9.4	9.4	0.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	29.3	23.0	5.2	32.1	44.2	9.8	11.8	14.5	9.4	9.4	0.3	
Queue Length 50th (m)	24.1	16.7	0.0	2.1	23.8	0.0	5.5	39.4	3.7	13.1	0.1	
Queue Length 95th (m)	37.0	27.3	9.2	6.9	39.0	15.5	14.0	70.3	7.5	19.6	0.0	
Internal Link Dist (m)		304.1			40.1			257.8		88.4		
Turn Bay Length (m)	110.0		110.0	125.0			110.0		125.0		135.0	
Base Capacity (vph)	336	840	764	360	535	570	599	979	446	979	883	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.54	0.16	0.12	0.04	0.27	0.29	0.12	0.42	0.15	0.24	0.06	
Intersection Summary												

+ 4 ļ Lane Group
Lane Configurations
Traffic Volume (vph)
Future Volume (vph)
Satd. Flow (prot)
FIt Permitted
Set of Flow (norm) EBT EBR SBR 182 182 1695 0.430 131 94 14 145 165 71 131 94 14 145 165 71 1784 1517 1695 1784 1517 1695 0.673 0.612 414 414 1783 2 67 235 55 2 67 235 55 0 1695 1784 1517 0.456 1784 1517 1201 1784 1517 1092 1783 0.456 0 814 1784 1517 113 Satd. Flow (perm) Satd. Flow (RTOR) 767 94 165 71 NA Perm Perm NA Perm Perm 4 8 Lane Group Flow (vph)
Turn Type
Protected Phases
Permitted Phases 416 NA 2 235 NA 6 182 0 67 Perm Detector Phase Detector Phase
Switch Phase
Minimum Initial (s)
Minimum Split (s)
Total Split (s)
Total Split (%)
Yellow Time (s)
All-Red Time (s) 5.0 5.0 5.0 33.2 33.2 33.2 48.6 33.2 33.2 54.0% 36.9% 36.9% 3.7 3.7 3.7 2.5 2.5 2.5 5.0 5.0 5.0 33.2 29.2 29.2 33.2 41.4 41.4 36.9% 46.0% 46.0% 3.7 4.6 4.6 2.5 1.6 1.6 5.0 5.0 29.2 29.2 41.4 41.4 46.0% 46.0% 4.6 4.6 1.6 1.6 5.0 29.2 41.4 46.0% 4.6 1.6 5.0 33.2 Lost Time Adjust (s)
Total Lost Time (s) 0.0 0.0 6.2 0.0 6.2 0.0 6.2 0.0 0.0 6.2 0.0 6.2 0.0 6.2 0.0 6.2 0.0 6.2 0.0 6.2 Lead/Lag Lead-Lag Optimize? Recall Mode Act Effct Green (s) Actuated g/C Ratio 6.1 Lead Yes None 28.3 0.31 Lag Yes Lag Yes Lag Yes None 12.8 0.14 None 12.8 0.14 None C-Max C-Max 12.8 49.4 49.4 0.14 0.55 0.55 C-Max C-Max C-Max 49.4 49.4 49.4 0.55 0.55 0.55 None None 28.2 28.2 0.31 0.31 v/c Ratio
Control Delay
Queue Delay
Total Delay
LOS
Approach Delay
Approach LOS 0.17 0.08 0.57 5.2 32.1 44.2 0.0 0.0 0.0 5.2 32.1 44.2 A C D 0.54 0.23 29.3 23.0 0.12 0.42 0.15 9.4 0.24 9.4 0.06 0.0 0.0 29.3 23.0 C C 0.0 0.0 0.0 9.8 11.8 14.5 A B B 0.0 0.0 0.0 21.7 Intersection Summary

Intersection Summary
Cycle Length; 90
Actuated Cycle Length; 90
Actuated Cycle Length; 90
Actuated Cycle Length; 90
Niset: 0 (1%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green, Master Intersection
Natural Cycle; 75
Control Type: Actuated-Coordinated
Maximum vic Ratico: 0.57
Intersection Signal Delay: 17.2
Intersection Signal Delay: 17.2
Intersection Capacity Utilization 66.6%
ICU Level of Service C
Analysis Period (min) 15

Splits and Phases: 3: Terry Fox Dr & Fernbank Rd

Ø2 (R)	→ Ø4		
41.4 s	48.6 s		
₽ Ø6 (R)	♪ _{Ø7}	₹ø8	
41.4 s	15.4 s	33.2 s	
09/19/2018			Synchro 9 Repor

Lanes, Volumes, Timings

6: Terry Fox Dr & Cope Dr

5331 Fernbank Rd TIA 2025 Ultimate - AM Peak

Page 1

	٠	→	*	•	←	4	4	†	~	7	ţ	- ✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	ĵ.		7	1		Ť	î		*1	†	7
Traffic Volume (vph)	48	18	1	42	15	244	5	691	29	168	314	34
Future Volume (vph)	48	18	1	42	15	244	5	691	29	168	314	34
Satd. Flow (prot)	1695	1770	0	1695	1533	0	1695	1774	0	1695	1784	1517
Flt Permitted	0.374			0.745			0.570			0.338		
Satd. Flow (perm)	667	1770	0	1329	1533	0	1017	1774	0	603	1784	1517
Satd. Flow (RTOR)		1			225			4				39
Lane Group Flow (vph)	48	19	0	42	259	0	5	720	0	168	314	34
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	Perm
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		4
Detector Phase	2	2		6	6		8	8		4	4	4
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	32.2	32.2		32.2	32.2		33.5	33.5		33.5	33.5	33.5
Total Split (s)	32.2	32.2		32.2	32.2		57.8	57.8		57.8	57.8	57.8
Total Split (%)	35.8%	35.8%		35.8%	35.8%		64.2%	64.2%		64.2%	64.2%	64.2%
Yellow Time (s)	3.3	3.3		3.3	3.3		4.6	4.6		4.6	4.6	4.6
All-Red Time (s)	2.9	2.9		2.9	2.9		1.8	1.8		1.8	1.8	1.8
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.2	6.2		6.2	6.2		6.4	6.4		6.4	6.4	6.4
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	C-Max
Act Effct Green (s)	10.7	10.7		10.7	10.7		66.7	66.7		66.7	66.7	66.7
Actuated g/C Ratio	0.12	0.12		0.12	0.12		0.74	0.74		0.74	0.74	0.74
v/c Ratio	0.61	0.09		0.27	0.68		0.01	0.55		0.38	0.24	0.03
Control Delay	66.9	32.2		38.1	17.1		3.2	5.6		8.1	4.8	1.5
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Delay	66.9	32.2		38.1	17.1		3.2	5.6		8.1	4.8	1.5
LOS	Е	С		D	В		Α	Α		Α	Α	Α
Approach Delay		57.0			20.0			5.6			5.7	
Approach LOS		Е			С			Α			Α	
Intersection Summary												

intersection outlinery	
Cycle Length: 90	
Actuated Cycle Length: 90	
Offset: 73 (81%), Referenced to phase 4:SBTL and 8:NBTL, Sta	art of Green
Natural Cycle: 80	
Control Type: Actuated-Coordinated	
Maximum v/c Ratio: 0.68	
Intersection Signal Delay: 10.4	Intersection LOS: B
Intersection Capacity Utilization 92.0%	ICU Level of Service F
Analysis Period (min) 15	

Splits and Phases:	6: Terry Fox Dr & Cope Dr

opilio alla Filases. U. Tell	y r ox br a cope br	
-\$ø2	№ Ø4 (R)	
32.2 s	57.8 s	
▼ Ø6	∮ Ø8 (R)	
32.2 s	57.8 s	
09/19/2018		Synchro 9 Report

09/19/2018 Synchro 9 Report
Page 2

Queues 6: Terry Fox Dr & Cope Dr 5331 Fernbank Rd TIA 2025 Ultimate - AM Peak

	۶	-	•	—	4	†	-	ļ	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	48	19	42	259	5	720	168	314	34	
v/c Ratio	0.61	0.09	0.27	0.68	0.01	0.55	0.38	0.24	0.03	
Control Delay	66.9	32.2	38.1	17.1	3.2	5.6	8.1	4.8	1.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	66.9	32.2	38.1	17.1	3.2	5.6	8.1	4.8	1.5	
Queue Length 50th (m)	8.1	2.9	6.8	5.4	0.2	25.5	8.3	13.6	0.0	
Queue Length 95th (m)	18.1	8.3	14.9	25.8	m0.5	62.6	25.3	30.3	2.5	
Internal Link Dist (m)		97.2		56.4		119.2		183.3		
Turn Bay Length (m)	40.0		50.0		55.0		75.0		165.0	
Base Capacity (vph)	192	512	383	602	753	1315	446	1321	1134	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.25	0.04	0.11	0.43	0.01	0.55	0.38	0.24	0.03	
Intersection Summary										
 Wolume for 95th percent 	tile queue i	s metered	by unstr	eam sign	al.					

10 183 22 31 228 10 183 22 31 228 0 0 0 0 0 0 free Free Free Free Free

10 183 22 31 228

- 4.12

- 1366

4.12

1336

581 1336 0.114 0.007

12 7.7 B A

- None

EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR

Stop

25

Stop

Free

- None

Intersection Int Delay, s/veh Movement

Movement
Lane Configurations
Traffic Vol, veh/h
Future Vol, veh/h
Conflicting Peds, #/hr
Sign Control

Storage Length
Veh in Median Storage, #
Grade, %
Peak Hour Factor

RT Channelized

Heavy Vehicles, % Mvmt Flow

Major/Minor
Conflicting Flow All
Stage 1

Stage 2

Critical Hdwy
Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy
Pot Cap-1 Maneuve
Stage 1

Stage 2 Platoon blocked. % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2

Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt

Capacity (veh/h) HCM Lane V/C Ratio

HCM Control Delay (s)
HCM Lane LOS
HCM 95th %tile Q(veh)

Critical Hdwy

2025 Ultimate - AM Peak

Stop

36 36 0

Stop Stop

None

533 508 194 527 517 214 214 - 292 292 319 294 - 235 205

319 294 - 235 225 -7.12 6.52 6.22 7.12 6.52 6.22

7.12 6.52 6.22 7.12 6.52 6.22 6.12 5.52 - 6.12 5.52 -6.12 5.52 - 6.12 5.52 -3.518 4.018 3.318 3.518 4.018 3.318 458 468 847 462 462 809 788 725 - 716 671 -693 670 - 768 718 -

416 452 847 427 446 809 416 452 - 427 446 -

710 654 724 712

719 653

0.124

- 11.7

Lanes, Volumes, Timings	5331 Fernbank Rd TIA
3: Terry Fox Dr & Fernbank Rd	2025 Ultimate - PM Peak

3: Terry Fox Dr &	•				_	•						,
		→	À	•			4	†	1	*	 	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	ነ 100	↑	آ 64	ሻ	↑ 284	**	ሻ	1 → 416	-	150	446	ř
Traffic Volume (vph)	168	177		25		115	207		5	158		122
Future Volume (vph)	168	177	64	25	284	115	207	416	5	158	446	122
Satd. Flow (prot)	1695	1784	1517	1695	1784	1517	1695	1781	0	1695	1784	1517
Flt Permitted	0.231	4704	4547	0.646	4704	4547	0.287	4704	•	0.516	4704	4545
Satd. Flow (perm)	412	1784	1517	1153	1784	1517	512	1781	0	921	1784	1517
Satd. Flow (RTOR)			88			144		1				144
Lane Group Flow (vph)	168	177	64	25	284	115	207	421	0	158	446	122
Turn Type	pm+pt	NA	Perm	Perm	NA	Perm	pm+pt	NA		Perm	NA	Perm
Protected Phases	7	4			8		5	2			6	
Permitted Phases	4		4	8		8	2			6		6
Detector Phase	7	4	4	8	8	8	5	2		6	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	11.1	33.2	33.2	33.2	33.2	33.2	11.5	29.2		29.2	29.2	29.2
Total Split (s)	17.0	52.0	52.0	35.0	35.0	35.0	19.0	68.0		49.0	49.0	49.0
Total Split (%)	14.2%	43.3%	43.3%	29.2%	29.2%	29.2%	15.8%	56.7%		40.8%	40.8%	40.8%
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	4.6	4.6		4.6	4.6	4.6
All-Red Time (s)	2.4	2.5	2.5	2.5	2.5	2.5	1.9	1.6		1.6	1.6	1.6
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.1	6.2	6.2	6.2	6.2	6.2	6.5	6.2		6.2	6.2	6.2
Lead/Lag	Lead			Lag	Lag	Lag	Lead			Lag	Lag	Lag
Lead-Lag Optimize?	Yes			Yes	Yes	Yes	Yes			Yes	Yes	Yes
Recall Mode	None	None	None	None	None	None	None	C-Max		C-Max	C-Max	C-Max
Act Effct Green (s)	40.7	40.6	40.6	23.6	23.6	23.6	66.7	67.0		48.7	48.7	48.7
Actuated g/C Ratio	0.34	0.34	0.34	0.20	0.20	0.20	0.56	0.56		0.41	0.41	0.41
v/c Ratio	0.66	0.29	0.11	0.11	0.81	0.28	0.52	0.42		0.42	0.62	0.17
Control Delay	41.3	29.7	2.7	38.5	63.7	4.7	19.3	17.8		25.6	28.7	4.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay	41.3	29.7	2.7	38.5	63.7	4.7	19.3	17.8		25.6	28.7	4.3
LOS	D	С	Α	D	Е	Α	В	В		С	С	A
Approach Delay		30.2			46.2			18.3			23.9	
Approach LOS		С			D			В			С	
**												
Intersection Summary												
Cycle Length: 120	10											
Actuated Cycle Length: 12												
Offset: 0 (0%), Referenced	to phase 2	::NBTL an	d 6:SBTL	., Start of	Green, N	laster Inte	ersection					
Natural Cycle: 85												
Control Type: Actuated-Co	ordinated											
Maximum v/c Ratio: 0.81												
Intersection Signal Delay:					ntersectio							
Intersection Capacity Utiliz	ation 83.3%	5		10	CU Level	of Service	еE					
Analysis Period (min) 15												
Splits and Phases: 3: Te	erry Fox Dr	2 Earnhai	al Dd									
	SIIY I OX DI I	ox i cilibai	IK INU			14.						
√Îø2 (R) 68 s						(≱2 52 s	14					
						-		- 44				
	Ø6 (R)					- g	37		78			
19 s 49 s						17 s		35 s				
09/19/2018											Synchro 9	Repor

5331 Fernbank Rd TIA

2025 Ultimate - PM Peak

09/19/2018 Synchro 9 Report Page 8

EBT EBR WBL WBT WBR SBLn1

0.023

- 7.7

Queues 5331 Fernbank Rd TIA 3: Terry Fox Dr & Fernbank Rd 2025 Ultimate - PM Peak

	٠	-	*	1	←	4	4	Ť	-	↓	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	168	177	64	25	284	115	207	421	158	446	122	
v/c Ratio	0.66	0.29	0.11	0.11	0.81	0.28	0.52	0.42	0.42	0.62	0.17	
Control Delay	41.3	29.7	2.7	38.5	63.7	4.7	19.3	17.8	25.6	28.7	4.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	41.3	29.7	2.7	38.5	63.7	4.7	19.3	17.8	25.6	28.7	4.3	
Queue Length 50th (m)	28.6	30.2	0.0	4.8	64.0	0.0	23.9	55.4	29.1	89.5	5.5	
Queue Length 95th (m)	43.6	45.2	5.0	12.0	90.3	8.7	40.9	86.5	52.1	130.4	10.2	
Internal Link Dist (m)		304.1			40.1			257.8		88.4		
Turn Bay Length (m)	110.0		110.0	125.0			110.0		125.0		135.0	
Base Capacity (vph)	256	680	633	276	428	473	411	995	374	724	701	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.66	0.26	0.10	0.09	0.66	0.24	0.50	0.42	0.42	0.62	0.17	
Intersection Summary												

٠ 4 `* Lane Group Lane Configurations Traffic Volume (vph) 58 58 608 78 99 219 281 625 72 Traffic Volume (vph)
Future Volume (vph)
Satd. Flow (prot)
Fit Permitted
Satd. Flow (perm)
Satd. Flow (RTOR)
Lane Group Flow (vph)
Turn Type
Protected Phases
Permitted Phases 78 76 1695 1777 2 99 0 1695 58 1572 219 5 608 0 1695 1770 32 281 625 72 0 1695 1784 1517 0.189 337 1777 0.706 0 1260 0.428 764 1572 145 277 NA 1770 1784 1517 72 72 78 99 Perm 640 NA 281 pm+pt 2 6 Protected Phases Permitted Phases Detector Phase Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (s) 5 2 6 5.0 33.5 77.9 64.9% 4.6 5.0 9.5 9.8 5.0 33.5 53.9 5.0 33.5 53.9 5.0 11.4 24.0 5.0 5.0 5.0 32.2 42.1 35.1% 32.2 32.3 32.2 32.3 33.5 77.9 Total Split (%)
Yellow Time (s)
All-Red Time (s)
Lost Time Adjust (s)
Total Lost Time (s)
Lead/Lag
Lead-Lag Optimize? 26.9% 3.3 44.9% 64.9% 4.6 8.2% 3.5 26.9% 44.9% 20.0% 4.6 3.3 4.6 0.0 6.4 Lag 0.0 6.4 Lag Yes Lead Lag Lag Yes Yes Yes C-Max C-Max 59.9 59.9 None C-Max C-Max 82.9 82.9 82.9 Recall Mode None 26.2 None None 16.7 None 16.7 24.5 Act Effct Green (s) 59.9 59.9 0.50 0.50 0.01 0.72 18.6 26.8 0.0 0.0 18.6 26.8 Actuated g/C Ratio v/c Ratio 0.22 0.20 0.14 0.14 0.69 0.69 0.69 V/c Ratio Control Delay Queue Delay Total Delay LOS 53.1 37.1 0.0 0.0 53.1 37.1 59.0 40.7 0.0 0.0 59.0 40.7 16.7 12.4 0.0 0.0 16.7 12.4 2.3 Approach Delay Approach LOS 45.1 26.7 12.9 45.5

Lanes, Volumes, Timings

6: Terry Fox Dr & Cope Dr

Intersection Summary Cycle Length: 120 Actuated Cycle Length: 120 Offset: 103 (86%), Referenced to phase 4:SBTL and 8:NBTL, Start of Green Natural Cycle: 110 Natural Cycle: 110
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.81
Intersection Signal Delay: 25.0
Intersection Capacity Utilization 93.9%
Analysis Period (min) 15 Intersection LOS: C ICU Level of Service F

Splits and Phases: 6: Terry Fox Dr & Cope Dr _____ø₂ 42.1 s ∮_{Ø5} **1** Ø8 (R) 09/19/2018 Synchro 9 Report 2025 Ultimate - PM Peak

ļ Lane Group
Lane Group Flow (vph)
vic Ratio
Control Delay
Queue Delay
Total Delay
Queue Length 50th (m)
Queue Length 95th (m)
Turn Bay Length (m)
Base Capacity (vph)
Starvation Cap Reducth
Spillback Cap Reducth
Spillback Cap Reducth EBT 78
 EBL
 WBL
 WBT
 NBL
 NBT

 78
 78
 99
 27
 5
 640

 0.59
 0.21
 0.57
 0.81
 0.01
 0.72

 53.1
 37.1
 59.0
 40.7
 18.6
 26.8

 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 50.0

 53.1
 37.1
 59.0
 40.7
 18.6
 26.8
 26.8

 44.9
 14.9
 22.2
 30.8
 0.6
 85.2
 25.0
 25.0
 85.0
 85.2
 56.3
 m15
 #210.2
 40.7
 18.6
 26.8
 19.2
 40.7
 18.6
 26.8
 19.2
 40.7
 18.6
 26.8
 19.2
 40.7
 18.6
 26.8
 19.2
 40.7
 18.6
 26.8
 19.2
 26.8
 19.2
 40.7
 18.6
 26.8
 19.2
 40.7
 18.6
 26.8
 19.2
 40.7
 18.6
 26.8
 19.2
 40.7
 18.6
 26.8
 19.2
 625 0.51 12.4 0.0 12.4 66.7 120.2 72 0.07 2.3 0.0 2.3 0.0 5.7 23.4 48.7 183.2 75.0 885 461 40.0 133 50.0 55.0 532 274 455 381 165.0 1232 1069 Storage Cap Reductn Reduced v/c Ratio 0.59 0.15 0.36 0.61 0.01 0.72 0.61 0.51 0.07

Intersection Summary
95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
m Volume for 95th percentile queue is metered by upstream signal.

09/19/2018 Synchro 9 Report

Lanes, Volumes, Timings 3: Terry Fox Dr & Fernbank Rd

5331 Fernbank Rd TIA 2025 Ultimate - SAT Peak

	٠	-	*	•	←	4	4	†	~	1	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	1	7	Ť	†	7	Ť	î		Ť	†	7
Traffic Volume (vph)	130	162	70	144	291	16	100	500	67	169	703	70
Future Volume (vph)	130	162	70	144	291	16	100	500	67	169	703	70
Satd. Flow (prot)	1695	1784	1517	1695	1784	1517	1695	1752	0	1695	1784	1517
Flt Permitted	0.218			0.654			0.152			0.425		
Satd. Flow (perm)	389	1784	1517	1167	1784	1517	271	1752	0	758	1784	1517
Satd. Flow (RTOR)			88			144		9				144
Lane Group Flow (vph)	130	162	70	144	291	16	100	567	0	169	703	70
Turn Type	pm+pt	NA	Perm	Perm	NA	Perm	pm+pt	NA		Perm	NA	Perm
Protected Phases	7	4			8		5	2			6	
Permitted Phases	4		4	8		8	2			6		6
Detector Phase	7	4	4	8	8	8	5	2		6	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	11.1	33.2	33.2	33.2	33.2	33.2	11.5	29.2		29.2	29.2	29.2
Total Split (s)	13.0	46.2	46.2	33.2	33.2	33.2	11.8	73.8		62.0	62.0	62.0
Total Split (%)	10.8%	38.5%	38.5%	27.7%	27.7%	27.7%	9.8%	61.5%		51.7%	51.7%	51.7%
Yellow Time (s)	3.7	3.7	3.7	3.7	3.7	3.7	4.6	4.6		4.6	4.6	4.6
All-Red Time (s)	2.4	2.5	2.5	2.5	2.5	2.5	1.9	1.6		1.6	1.6	1.6
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	6.1	6.2	6.2	6.2	6.2	6.2	6.5	6.2		6.2	6.2	6.2
Lead/Lag	Lead			Lag	Lag	Lag	Lead			Lag	Lag	Lag
Lead-Lag Optimize?	Yes			Yes	Yes	Yes	Yes			Yes	Yes	Yes
Recall Mode	None	None	None	None	None	None	None	C-Max		C-Max	C-Max	C-Max
Act Effct Green (s)	36.6	36.5	36.5	23.5	23.5	23.5	70.8	71.1		58.3	58.3	58.3
Actuated g/C Ratio	0.30	0.30	0.30	0.20	0.20	0.20	0.59	0.59		0.49	0.49	0.49
v/c Ratio	0.67	0.30	0.13	0.63	0.84	0.04	0.43	0.54		0.46	0.81	0.09
Control Delay	49.4	32.8	4.2	56.6	66.7	0.2	17.3	17.6		11.4	20.3	0.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay	49.4	32.8	4.2	56.6	66.7	0.2	17.3	17.6		11.4	20.3	0.3
LOS	D	С	Α	Е	Е	Α	В	В		В	С	A
Approach Delay		33.2			61.1			17.5			17.2	
Approach LOS		С			Е			В			В	

Approach LOS	С	E	В	В
Intersection Summary				
Cycle Length: 120				
Actuated Cycle Length: 120				
Offset: 0 (0%), Referenced to phase	2:NBTL and 6:SBTL,	Start of Green, Master Inters	section	
Natural Cycle: 95				
Control Type: Actuated-Coordinated				
Maximum v/c Ratio: 0.84				
Intersection Signal Delay: 27.9		Intersection LOS: C		
Intersection Capacity Utilization 89.5	5%	ICU Level of Service E		
Analysis Period (min) 15				

Splits and Phases:	3: Terry Fox Dr & Fernbank Rd

¶ Ø2 (R) ■	₽ Ø4	
73.8 s	46.2 s	
√ Ø5		Ø8
11.8 s 62 s	13 s 33.2	S
09/19/2018		Synchro 9 Repo

HCM 2010 TWSC 5331 Fernbank Rd TIA 15: Site Access 4 & Cope Dr 2025 Ultimate - PM Peak

Intersection												
Int Delay, s/veh	3.6											
**												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	46	311	32	47	309	22	43	5	66	10	5	24
Future Vol, veh/h	46	311	32	47	309	22	43	5	66	10	5	24
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	46	311	32	47	309	22	43	5	66	10	5	24
Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	331	0	0	343	0	0	848	844	327	869	849	320
Stage 1	331	U	U	343	-	U	419	419	321	414	414	320
Stage 1		- :			- 1	- :	419	419		455	435	
	4.12			4.12			7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy	4.12		-	4.12			6.12	5.52	0.22	6.12	5.52	0.22
Critical Hdwy Stg 1		-	-	-	-	-				6.12		-
Critical Hdwy Stg 2	- 0.040		-	0.040		-	6.12	5.52	2 240		5.52	2 240
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1228		-	1216		-	281	300	714	272	298	721
Stage 1	-		-	-	-	-	612	590	-	616	593	-
Stage 2	-	-	-	-	-	-	604	586	-	585	580	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1228	-	-	1216	-	-	249	272	714	226	271	721
Mov Cap-2 Maneuver	-	-	-	-	-	-	249	272	-	226	271	-
Stage 1	-	-	-	-	-	-	584	563	-	588	565	-
Stage 2	-	-	-	-	-	-	551	558	-	502	553	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1			1			17.5			14.8		
HCM LOS							С			В		
Minor Lane/Major Mvn	w 1	NBI n1	EBL	EBT	FBR	WBL	WBT	WBR:	CDI n1			
	IL I	402	1228	EDI	LOR	1216	WDI	TYDK:	406			
Capacity (veh/h) HCM Lane V/C Ratio					- 1				0.096			
		0.284	U.U3/	-	-	0.039	-	-				
		47.5	0	0								
HCM Control Delay (s)		17.5	8	0	-	8.1	0	-	14.8			
		17.5 C	8 A 0.1	0 A	-	8.1 A 0.1	0 A	- 1	14.8 B 0.3			

09/19/2018 Synchro 9 Report

Queues 3: Terry Fox Dr & Fernbank Rd

5331 Fernbank Rd TIA 2025 Ultimate - SAT Peak

	٠	-	•	•	—	•	4	Ť	/	↓	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	130	162	70	144	291	16	100	567	169	703	70	
v/c Ratio	0.67	0.30	0.13	0.63	0.84	0.04	0.43	0.54	0.46	0.81	0.09	
Control Delay	49.4	32.8	4.2	56.6	66.7	0.2	17.3	17.6	11.4	20.3	0.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	49.4	32.8	4.2	56.6	66.7	0.2	17.3	17.6	11.4	20.3	0.3	
Queue Length 50th (m)	22.6	28.7	0.0	30.9	65.5	0.0	10.0	76.8	17.5	148.5	0.0	
Queue Length 95th (m)	#38.7	45.2	6.9	51.8	95.0	0.0	18.8	113.7	m21.9	#186.2	m0.0	
Internal Link Dist (m)		304.1			40.1			257.8		88.4		
Turn Bay Length (m)	110.0		110.0	125.0			110.0		125.0		135.0	
Base Capacity (vph)	193	594	564	262	401	452	235	1042	368	866	810	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.67	0.27	0.12	0.55	0.73	0.04	0.43	0.54	0.46	0.81	0.09	
Intersection Summary												

95th percentile volume exceeds capacity, queue may be longer.
 Queue shown is maximum after two cycles.
 M Volume for 95th percentile queue is metered by upstream signal.

Lanes, Volumes, Timings 6: Terry Fox Dr & Cope Dr 5331 Fernbank Rd TIA 2025 Ultimate - SAT Peak

133 133 1695 0.143 255 133 pm+pt 5 2 5 5 1.0 9.5 11.0	EBT \$ 87 87 1775 1775 1 90 NA 2 2 5.0 32.2	3 3 0 0 0 0	WBL 96 96 1695 0.699 1247 96 Perm	WBT 105 105 1599 1599 88 345 NA 6	240 240 0 0	NBL 1 1 1695 0.280 500	NBT 565 565 1781 1781 1 574 NA	9 9 0 0	377 377 1695 0.170 303 377 pm+pt	843 843 1784 1784 843 NA	144 144 1517 1517 144 144 Perm
133 133 1695 0.143 255 133 pm+pt 5 2 5 5 0.0 9.5	87 87 1775 1775 1 90 NA 2 2	0	96 96 1695 0.699 1247 96 Perm	105 105 1599 1599 88 345 NA 6	240 0	1 1 1695 0.280 500	565 565 1781 1781 1 574 NA	9 0	377 377 1695 0.170 303 377 pm+pt	843 843 1784 1784 843 NA	144 144 1517 1517 144 144
133 1695 0.143 255 133 pm+pt 5 2 5 5.0 9.5	87 1775 1775 1 90 NA 2 2	0	96 1695 0.699 1247 96 Perm	105 1599 1599 88 345 NA 6	240 0	1 1695 0.280 500	565 1781 1781 1 574 NA	9 0	377 1695 0.170 303 377 pm+pt	843 1784 1784 843 NA	144 1517 1517 1517 144 144
1695 0.143 255 133 pm+pt 5 2 5 5.0 9.5 11.0	1775 1775 1 90 NA 2 2	0	1695 0.699 1247 96 Perm	1599 1599 88 345 NA 6	0	1695 0.280 500	1781 1781 1 574 NA	0	1695 0.170 303 377 pm+pt	1784 1784 843 NA	1517 1517 144 144
0.143 255 133 pm+pt 5 2 5 5.0 9.5 11.0	1775 1 90 NA 2 2	0	0.699 1247 96 Perm	1599 88 345 NA 6	0	0.280 500	1781 1 574 NA	0	0.170 303 377 pm+pt	1784 843 NA	1517 144 144
255 133 pm+pt 5 2 5 5 5.0 9.5 11.0	1 90 NA 2 2		96 Perm	88 345 NA 6		500	574 NA		303 377 pm+pt	843 NA	144
133 pm+pt 5 2 5 5 5.0 9.5 11.0	1 90 NA 2 2		96 Perm	88 345 NA 6		1	574 NA		377 pm+pt	843 NA	144
pm+pt 5 2 5 5 5.0 9.5 11.0	90 NA 2 2	0	Perm 6	345 NA 6	0		574 NA	0	pm+pt	NA	144
pm+pt 5 2 5 5 5.0 9.5 11.0	NA 2 2 5.0	0	Perm 6	NA 6	0		NA	0	pm+pt	NA	
5 2 5 5.0 9.5 11.0	2 2 5.0		6	6		Perm					Perm
5.0 9.5 11.0	2 5.0						0				
5.0 9.5 11.0	5.0			6			0		7	4	
5.0 9.5 11.0	5.0		6	6		8			4		4
9.5 11.0						8	8		7	4	4
9.5 11.0											
11.0	32.2		5.0	5.0		5.0	5.0		5.0	5.0	5.0
			32.2	32.2		33.5	33.5		9.5	33.5	33.5
9.2%	43.2		32.2	32.2		49.8	49.8		27.0	76.8	76.8
	36.0%		26.8%	26.8%		41.5%	41.5%		22.5%	64.0%	64.0%
3.5	3.3		3.3	3.3		4.6	4.6		3.5	4.6	4.6
1.0	2.9		2.9	2.9		1.8	1.8		1.0	1.8	1.8
0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
4.5	6.2		6.2	6.2		6.4	6.4		4.5	6.4	6.4
Lead			Lag	Lag		Lag	Lag		Lead		
None	None		None	None		C-Max	C-Max		None	C-Max	C-Max
36.1	34.4		23.4	23.4		47.3	47.3		74.9	73.0	73.0
0.30	0.29		0.20	0.20		0.39	0.39		0.62	0.61	0.61
	0.18		0.40	0.90			0.82		0.87	0.78	0.15
	31.8		46.4	61.8			36.8		40.7	24.6	2.1
											0.0
	31.8			61.8			36.8		40.7		2.1
	C			F			D		D		A
d to phas	se 4:SBTL	and 8:NI	BTL, Star	t of Greer							
dinated											
1											
on 101.2	%		IC	U Level	of Service	G					
Fox Dr	& Cope Dr										
		\$ 04	(R)								
		76.8 s	(1.)								
			,		4	(30 (D)					
		27.5	_	_	40	ыв (к)	_		_	_	
,		213	,	,	49.	, -		,		Cunche- 1	Donc
	Lead Yes None 36.1 0.30 0.86 77.7 0.0 77.7 E	Lead Yes None None 36.1 34.4 0.30 0.29 0.86 0.18 0.0 0.0 77.7 31.8 C C 59.1 E d to phase 4:SBTL dinated	Lead Yes None None 36.1 34.4 0.30 0.29 0.86 0.18 0.0 0.29 0.77.7 31.8 0.0 0.0 77.7 31.8 E C C 59.1 E d to phase 4:SBTL and 8:NI finated 101 101.2%	Lead Yes Yes Yes None None None None None Sit. 1 34.4 23.4 23.4 23.4 23.4 23.4 23.4 24.2 24.2	Lead Lag Lag Lag See Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Lead Yes Lag Yes Yes Yes	Lead Yes Lag Yes Yes Yes	Lead Yes Lag Yes Lag Yes	Lead Lag Lag </td <td>Lead Lag Lag Lag Lag Lead Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes</td> <td>Lead Lag Lag<!--</td--></td>	Lead Lag Lag Lag Lag Lead Yes	Lead Lag Lag </td

HCM 2010 TWSC 15: Site Access 4 & Cope Dr

5331 Fernbank Rd TIA 2025 Ultimate - SAT Peak

Synchro 9 Report Page 3

Intersection												
Int Delay, s/veh	4.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LUL	4	LDIN	WDL	4	WDIN	NDL	4	NDIN	ODL	4	JUIN
	34	396	43	62	359	15	54	5	83	14	5	28
Traffic Vol, veh/h Future Vol, veh/h	34	396	43	62	359	15	54	5	83	14	5	28
Conflicting Peds, #/hr	0	390	43	02	339	0	0	0	0.0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	1100	1166	None	1166	1100	None	Otop -	Stop -	None	Olup -	Stop -	None
Storage Length			IVUITE			IVUILE	- 1		NOTIC	- 1		INOLIG
Veh in Median Storage		0	- 1		0		- 1	0			0	
Grade. %	-,#	0	- 1		0		- 1	0	- 1	- 1	0	
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mymt Flow	34	396	43	62	359	15	54	5	83	14	5	28
WWIIICTIOW	34	330	40	02	303	13	J=4	J	00	14	J	20
	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	374	0	0	439	0	0	993	984	418	1021	998	367
Stage 1	-	-	-	-	-	-	486	486	-	491	491	-
Stage 2	-	-	-	-	-	-	507	498	-	530	507	-
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018		3.518	4.018	3.318
Pot Cap-1 Maneuver	1184	-	-	1121	-	-	224	248	635	215	244	678
Stage 1	-	-	-	-	-	-	563	551	-	559	548	-
Stage 2	-	-	-	-	-	-	548	544	-	533	539	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1184	-	-	1121	-	-	194	222	635	169	218	678
Mov Cap-2 Maneuver	-	-	-	-	-	-	194	222	-	169	218	-
Stage 1	-	-	-	-	-	-	542	530	-	538	510	-
Stage 2	-	-	-	-	-	-	484	506	-	442	519	-
Approach	FB			WB			NB			SB		
HCM Control Delay, s	0.6			1.2			24			18.2		
HCM LOS	0.0			1.2			C			C		
Minor Lane/Major Mvm	nt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		329	1184	-	-	1121	-	-	320			
HCM Lane V/C Ratio		0.432	0.029	-	-	0.055	-	-	0.147			
HCM Control Delay (s)		24	8.1	0	-	8.4	0	-	18.2			
HCM Lane LOS		С	Α	Α	-	Α	Α	-	С			
HCM 95th %tile Q(veh)	2.1	0.1	-	-	0.2	-	-	0.5			

Synchro 9 Report Page 8 09/19/2018

Queues 6: Terry Fox Dr & Cope Dr 5331 Fernbank Rd TIA 2025 Ultimate - SAT Peak

6: Terry Fox Dr & C	ope Dr									2025 Ultimate - SAT Pear
	۶	→	•	←	4	†	-	ļ	4	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	SBR	
Lane Group Flow (vph)	133	90	96	345	1	574	377	843	144	
v/c Ratio	0.86	0.18	0.40	0.90	0.01	0.82	0.87	0.78	0.15	
Control Delay	77.7	31.8	46.4	61.8	27.0	36.8	40.7	24.6	2.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	77.7	31.8	46.4	61.8	27.0	36.8	40.7	24.6	2.1	
Queue Length 50th (m)	23.0	15.2	19.3	59.5	0.1	96.3	52.7	147.3	0.0	
Queue Length 95th (m)	#47.8	28.0	35.6	#107.0	m0.2	#186.7	#103.4	207.2	8.1	
Internal Link Dist (m)		97.2		56.3		119.2		183.3		
Turn Bay Length (m)	40.0		50.0		55.0		75.0		165.0	
Base Capacity (vph)	154	547	270	415	196	702	451	1084	979	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.86	0.16	0.36	0.83	0.01	0.82	0.84	0.78	0.15	
Intersection Summary										
# 95th percentile volume	exceeds cap	acity, qu	eue may	be longe	r.					
Queue shown is maximu	m after two	cycles.								
m Volume for 95th percen	itile queue is	s metered	d by uns	tream sign	nal					

Appendix C TDM Checklists September 19, 2018

APPENDIX C TDM CHECKLISTS

TDM-Supportive Development Design and Infrastructure Checklist:

Non-Residential Developments (office, institutional, retail or industrial)

	Legend
REQUIRED	The Official Plan or Zoning By-law provides related guidance that must be followed
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	1.	WALKING & CYCLING: ROUTES	
	1.1	Building location & access points	
BASIC	1.1.1	Locate building close to the street, and do not locate parking areas between the street and building entrances	□ N/A
BASIC	1.1.2	Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations	□ _{N/A}
BASIC	1.1.3	Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort	□ _{N/A}
	1.2	Facilities for walking & cycling	_
REQUIRED	1.2.1	Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)	This item will be confirmed and addressed through the Site Plan Control process.
REQUIRED	1.2.2	Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official Plan policy 4.3.12)	This item will be confirmed and addressed through the Site Plan Control process.

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
REQUIRED	1.2.3	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	This item will be confirmed and addressed through the Site Plan Control process.
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	This item will be confirmed and addressed through the Site Plan Control process.
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and onroad cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	This item will be confirmed and addressed through the Site Plan Control process.
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than 30 km/h, or provide a separated cycling facility	□ No
	1.3	Amenities for walking & cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	□ No
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	□ _{No}

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	2.	WALKING & CYCLING: END-OF-TRIP FACILITY	TIES
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	This item will be confirmed and addressed through the Site Plan Control process.
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or well-used areas (see Zoning By-law Section 111)	This item will be confirmed and addressed through the Site Plan Control process.
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	This item will be confirmed and addressed through the Site Plan Control process.
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met), plus the expected peak number of customer/visitor cyclists	
BETTER	2.1.5	Provide bicycle parking spaces equivalent to the expected number of commuter and customer/visitor cyclists, plus an additional buffer (e.g. 25 percent extra) to encourage other cyclists and ensure adequate capacity in peak cycling season	
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single office building, locate at least 25% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	This item will be confirmed and addressed through the Site Plan Control process.
BETTER	2.2.2	Provide secure bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met)	
	2.3	Shower & change facilities	
BASIC	2.3.1	Provide shower and change facilities for the use of active commuters	□ No
BETTER	2.3.2	In addition to shower and change facilities, provide dedicated lockers, grooming stations, drying racks and laundry facilities for the use of active commuters	□ No
	2.4	Bicycle repair station	
BETTER	2.4.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	□ No

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	3.	TRANSIT	
	3.1	Customer amenities	
BASIC	3.1.1	Provide shelters, lighting and benches at any on-site transit stops	□ No
BASIC	3.1.2	Where the site abuts an off-site transit stop and insufficient space exists for a transit shelter in the public right-of-way, protect land for a shelter and/or install a shelter	□ No
BETTER	3.1.3	Provide a secure and comfortable interior waiting area by integrating any on-site transit stops into the building	□ No
	4.	RIDESHARING	
	4.1	Pick-up & drop-off facilities	
BASIC	4.1.1	Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones	□ _{No}
	4.2	Carpool parking	
BASIC	4.2.1	Provide signed parking spaces for carpools in a priority location close to a major building entrance, sufficient in number to accommodate the mode share target for carpools	□ _{No}
BETTER	4.2.2	At large developments, provide spaces for carpools in a separate, access-controlled parking area to simplify enforcement	□ _{No}
	5.	CARSHARING & BIKESHARING	
	5.1	Carshare parking spaces	
BETTER	5.1.1	Provide carshare parking spaces in permitted non-residential zones, occupying either required or provided parking spaces (see Zoning By-law Section 94)	□ _{No}
	5.2	Bikeshare station location	
BETTER	5.2.1	Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection	□ No

	TDM-s	supportive design & infrastructure measures: Non-residential developments	Check if completed & add descriptions, explanations or plan/drawing references
	6.	PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	This item will be confirmed and addressed through the Site Plan Control process.
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	□ No
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)	□ No
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking (see Zoning By-law Section 111)	□ No
	6.2	Separate long-term & short-term parking areas	
BETTER	6.2.1	Separate short-term and long-term parking areas using signage or physical barriers, to permit access controls and simplify enforcement (i.e. to discourage employees from parking in visitor spaces, and vice versa)	□ _{No}
	7.	OTHER	
	7.1	On-site amenities to minimize off-site trips	
BETTER	7.1.1	Provide on-site amenities to minimize mid-day or mid-commute errands	□ N/A

TDM Measures Checklist:

Non-Residential Developments (office, institutional, retail or industrial)

BASIC The measure is generally feasible and effective, and in most cases would benefit the development and its users The measure could maximize support for users of sustainable modes, and optimize development performance The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC	★ 1.1.1	Designate an internal coordinator, or contract with an external coordinator	□ No
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	□ No
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & destin	ations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances	□ No
	2.2	Bicycle skills training	
		Commuter travel	
BETTER	★ 2.2.1	Offer on-site cycling courses for commuters, or subsidize off-site courses	□ No
	2.3	Valet bike parking	
		Visitor travel	
BETTER	2.3.1	Offer secure valet bike parking during public events when demand exceeds fixed supply (e.g. for festivals, concerts, games)	□ _{N/A}

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances	□ No
BASIC	3.1.2	Provide online links to OC Transpo and STO information	□ No
BETTER	3.1.3	Provide real-time arrival information display at entrances	□ No
	3.2	Transit fare incentives	
		Commuter travel	
BETTER	3.2.1	Offer preloaded PRESTO cards to encourage commuters to use transit	□ No
BETTER ★	3.2.2	Subsidize or reimburse monthly transit pass purchases by employees	□ No
		Visitor travel	
BETTER	3.2.3	Arrange inclusion of same-day transit fare in price of tickets (e.g. for festivals, concerts, games)	□ _{No}
	3.3	Enhanced public transit service	
		Commuter travel	
BETTER	3.3.1	Contract with OC Transpo to provide enhanced transit services (e.g. for shift changes, weekends)	□ No
		Visitor travel	
BETTER	3.3.2	Contract with OC Transpo to provide enhanced transit services (e.g. for festivals, concerts, games)	□ _{N/A}
	3.4	Private transit service	
		Commuter travel	
BETTER	3.4.1	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for shift changes, weekends)	□ _{No}
		Visitor travel	
BETTER	3.4.2	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for festivals, concerts, games)	□ _{N/A}

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	4.	RIDESHARING	
	4.1	Ridematching service	
		Commuter travel	
BASIC *	4.1.1	Provide a dedicated ridematching portal at OttawaRideMatch.com	□ No
	4.2	Carpool parking price incentives	
		Commuter travel	
BETTER	4.2.1	Provide discounts on parking costs for registered carpools	□ No
	4.3	Vanpool service	
		Commuter travel	
BETTER	4.3.1	Provide a vanpooling service for long-distance commuters	□ No
	5.	CARSHARING & BIKESHARING	
	5.1	Bikeshare stations & memberships	
BETTER	5.1.1	Contract with provider to install on-site bikeshare station for use by commuters and visitors	□ _{No}
		Commuter travel	
BETTER	5.1.2	Provide employees with bikeshare memberships for local business travel	□ No
	5.2	Carshare vehicles & memberships	
		Commuter travel	
BETTER	5.2.1	Contract with provider to install on-site carshare vehicles and promote their use by tenants	□ No
BETTER	5.2.2	Provide employees with carshare memberships for local business travel	□ No
	6.	PARKING	
	6.1	Priced parking	
		Commuter travel	
BASIC *	6.1.1	Charge for long-term parking (daily, weekly, monthly)	☐ No
BASIC	6.1.2	Unbundle parking cost from lease rates at multi-tenant sites	□ No
		Visitor travel	
BETTER	6.1.3	Charge for short-term parking (hourly)	☐ No

	TDM	measures: Non-residential developments	Check if proposed & add descriptions
	7.	TDM MARKETING & COMMUNICATIONS	
	7.1	Multimodal travel information	
		Commuter travel	
BASIC *	7.1.1	Provide a multimodal travel option information package to new/relocating employees and students	□ No
	1	Visitor travel	:
BETTER ★	7.1.2	Include multimodal travel option information in invitations or advertising that attract visitors or customers (e.g. for festivals, concerts, games)	N/A
	7.2	Personalized trip planning	
		Commuter travel	
BETTER ★	7.2.1	Offer personalized trip planning to new/relocating employees	□ No
	7.3	Promotions	
		Commuter travel	
BETTER	7.3.1	Deliver promotions and incentives to maintain awareness, build understanding, and encourage trial of sustainable modes	□ No
	8.	OTHER INCENTIVES & AMENITIES	
	8.1	Emergency ride home	
	8.1	Emergency ride home Commuter travel	
BETTER ★	8.1 8.1.1		□ No
BETTER ★	ı	Commuter travel Provide emergency ride home service to non-driving	□ No
BETTER ★	8.1.1	Commuter travel Provide emergency ride home service to non-driving commuters	□ No
	8.1.1	Commuter travel Provide emergency ride home service to non-driving commuters Alternative work arrangements	□ No
	8.1.1 8.2 8.2.1	Commuter travel Provide emergency ride home service to non-driving commuters Alternative work arrangements Commuter travel	
BASIC ★	8.1.1 8.2 8.2.1	Commuter travel Provide emergency ride home service to non-driving commuters Alternative work arrangements Commuter travel Encourage flexible work hours Encourage compressed workweeks	□ No
BASIC ★ BETTER	8.1.1 8.2 8.2.1 8.2.2	Commuter travel Provide emergency ride home service to non-driving commuters Alternative work arrangements Commuter travel Encourage flexible work hours Encourage compressed workweeks	□ No □ No
BASIC ★ BETTER	8.1.1 8.2 8.2.1 8.2.2 8.2.3	Commuter travel Provide emergency ride home service to non-driving commuters Alternative work arrangements Commuter travel Encourage flexible work hours Encourage compressed workweeks Encourage telework	□ No □ No
BASIC ★ BETTER	8.1.1 8.2 8.2.1 8.2.2 8.2.3	Provide emergency ride home service to non-driving commuters Alternative work arrangements Commuter travel Encourage flexible work hours Encourage compressed workweeks Encourage telework Local business travel options	□ No □ No
BASIC ★ BETTER BETTER ★	8.1.1 8.2 8.2.1 8.2.2 8.2.3 8.3	Commuter travel Provide emergency ride home service to non-driving commuters Alternative work arrangements Commuter travel Encourage flexible work hours Encourage compressed workweeks Encourage telework Local business travel options Commuter travel Provide local business travel options that minimize the	□ No□ No□ No
BASIC ★ BETTER BETTER ★	8.1.1 8.2 8.2.1 8.2.2 8.2.3 8.3 8.3.1	Provide emergency ride home service to non-driving commuters Alternative work arrangements Commuter travel Encourage flexible work hours Encourage compressed workweeks Encourage telework Local business travel options Commuter travel Provide local business travel options that minimize the need for employees to bring a personal car to work	□ No□ No□ No
BASIC ★ BETTER BETTER ★	8.1.1 8.2 8.2.1 8.2.2 8.2.3 8.3 8.3.1	Provide emergency ride home service to non-driving commuters Alternative work arrangements Commuter travel Encourage flexible work hours Encourage compressed workweeks Encourage telework Local business travel options Commuter travel Provide local business travel options that minimize the need for employees to bring a personal car to work Commuter incentives	□ No□ No□ No
BASIC ★ BETTER ★ BASIC ★	8.1.1 8.2 8.2.1 8.2.2 8.2.3 8.3 8.3.1	Commuter travel Provide emergency ride home service to non-driving commuters Alternative work arrangements Commuter travel Encourage flexible work hours Encourage compressed workweeks Encourage telework Local business travel options Commuter travel Provide local business travel options that minimize the need for employees to bring a personal car to work Commuter travel Offer employees a taxable, mode-neutral commuting	 No No No No
BASIC ★ BETTER ★ BASIC ★	8.1.1 8.2 8.2.1 8.2.2 8.2.3 8.3 8.3.1 8.4 8.4.1	Provide emergency ride home service to non-driving commuters Alternative work arrangements Commuter travel Encourage flexible work hours Encourage compressed workweeks Encourage telework Local business travel options Commuter travel Provide local business travel options that minimize the need for employees to bring a personal car to work Commuter travel Offer employees a taxable, mode-neutral commuting allowance	 No No No No