

Roadway Traffic Noise Feasibility Assessment

99 Fifth Avenue

Ottawa, Ontario

REPORT: GWE17-148 - Traffic Noise

Prepared For:

Thomas Couper
Land Development Coordinator
Minto Communities – Canada
200-180 Kent Street
Ottawa, ON K1P 0B6

Prepared By:

Omar Daher, B.Eng., EIT, Junior Environmental Scientist Joshua Foster, P.Eng., Principal

May 1, 2018

EXECUTIVE SUMMARY

This document describes a roadway traffic noise feasibility assessment performed for a proposed mixed-use development located at 99 Fifth Avenue, in Ottawa, Ontario. The development comprises a seven-storey building connected by an enclosed atrium to a row of existing heritage buildings oriented along Bank Street. Outdoor amenity space is located at grade on the west side of the building, and terraces on the 4th floor, 6th floor and 7th floor. Balconies and terraces less than 4 m in depth are not considered as outdoor living areas, as per the ENCG. The major sources of transportation noise impacting the development are roadway traffic from Bank Street and Fifth Avenue. Figure 1 illustrates a complete site plan with surrounding context.

The assessment is based on: (i) theoretical noise prediction methods that conform to the Ministry of the Environment and Climate Change (MOECC) and City of Ottawa requirements; (ii) noise level criteria as specified by the City of Ottawa's Environmental Noise Control Guidelines (ENCG); (iii) future vehicular traffic volumes based on the City of Ottawa's Official Plan roadway classifications; and (iv) architectural drawings received from Minto Communities dated May 3rd, 2018.

The results of the current analysis indicate that noise levels will range between 51 and 68 dBA during the daytime period (07:00-23:00) and between 43 and 61 dBA during the nighttime period (23:00-07:00). The highest noise levels (i.e. 68 dBA) occur along the development's west façade, which is nearest and most exposed to Bank Street and Fifth Avenue. Noise levels predicted due to roadway traffic sources exceed the criteria listed in Section 4.2 for building components. Therefore, upgraded building components will be required where noise levels exceed 65 dBA. As per City of Ottawa requirements, detailed Sound Transmission Class (STC) calculations will be required to be completed prior to site plan control.

Results of the calculations also indicate that the development will require central air conditioning, which will allow occupants to keep windows closed and maintain a comfortable living environment. In addition to upgraded building components and ventilation requirements, warning clauses are likely to be required. A detailed roadway traffic noise assessment will be required at the time of site plan approval to determine specific noise control measures for the development.

Noise levels at the ground level terrace were found to approach 51 dBA, during the daytime period, which is below the ENCG criteria; therefore, no mitigation would be required. However, noise levels at the 7th floor terraces were found to range between 57-61 dBA during the daytime period, which is slightly above

the ENCG criteria. Therefore, mitigation measures would be required in the form of an acoustic guard rail. This is expected to reduce noise levels to meet the criteria. The details of the acoustic barrier would be investigated at the time a detailed study is conducted.

With regards to stationary noise impacts from roof top mechanical units on the existing two-storey heritage building on the proposed residential building, along with stationary noise impacts from roof top mechanical units on the proposed building on surrounding noise-sensitive areas, once the mechanical plans for the proposed building become available, a stationary noise study will be performed. This study will include recommendations for any noise control measures that may be necessary to ensure noise levels at the proposed building from the two-storey heritage building and noise levels at the surrounding noise-sensitive buildings due to mechanical equipment on the roof of the proposed building are below the City of Ottawa's Noise Guidelines.

TABLE OF CONTENTS

			PAGE
1.	INTR	RODUCTION	1
2.	TERI	MS OF REFERENCE	1
3.	OBJECTIVES		
4.	METHODOLOGY		2
	4.1	Background	2
	4.2	Roadway Traffic Noise	2
		4.2.1 Criteria for Roadway Traffic Noise	2
		4.2.1 Roadway Traffic Volumes	3
		4.2.2 Theoretical Transportation Noise Predictions	4
5.	RESULTS AND DISCUSSION		5
	5.1	Roadway Traffic Noise Levels	5
6.	CON	CLUSIONS AND RECOMMENDATIONS	5
FIGL	JRES		
APP	ENDIC	ES:	

Appendix A – STAMSON 5.04 Input and Output Data

Minto Communities – Canada

1. INTRODUCTION

Gradient Wind Engineering Inc. (GWE) was retained by Minto Communities – Canada to undertake a roadway traffic noise feasibility assessment of a proposed mixed-use development located at 99 Fifth Avenue in Ottawa, Ontario. This report summarizes the methodology, results and recommendations related to a roadway traffic noise feasibility assessment. GWE's scope of work involved assessing exterior noise levels generated by local roadway traffic. The assessment was performed on the basis of theoretical noise calculation methods conforming to the City of Ottawa¹ and Ministry of the Environment and Climate Change (MOECC)² guidelines. Noise calculations were based on architectural drawings received from Minto Communities dated May 3rd, 2018, with future traffic volumes corresponding to the City of Ottawa's Official Plan (OP) roadway classifications.

2. TERMS OF REFERENCE

The focus of this roadway traffic noise feasibility assessment is a proposed mixed-use development to be located at 99 Fifth Avenue in Ottawa, Ontario. The development is located on a parcel of land bounded by Fifth Avenue to the south, Bank Street to the west, Fourth Avenue to the north, and existing residential developments to the east. The site is surrounded by commercial buildings to the west along Bank Street, and mainly residential areas to the east and south. The major sources of transportation noise impacting the development are roadway traffic from Bank Street and Fifth Avenue. Figure 1 illustrates a complete site plan with surrounding context.

The proposed development comprises a seven-storey building connected by an enclosed atrium to a row of existing heritage buildings oriented along Bank Street. The development includes amenity space in the form of balconies, terraces, and a ground level amenity space west of the building. Terraces are located on the 4th floor, 6th floor and 7th floor. However, balconies and terraces less than 4 m in depth are not considered as Outdoor Living Areas (OLA), as per the ENCG. Therefore, the only OLA assessed in this study are the ground level amenity space west of the building, and the three terraces on the 7th floor.

¹ City of Ottawa Environmental Noise Control Guidelines, January 2016

² Ontario Ministry of the Environment and Climate Change – Environmental Noise Guidelines, Publication NPC-300, Queens Printer for Ontario, Toronto, 2013

3. OBJECTIVES

The principal objectives of this work are to: (i) calculate the future noise levels on the study building produced by local roadway traffic, and (ii) explore potential for noise mitigation where required based on the allowable limits specified by the City of Ottawa's Environmental Noise Control Guidelines as outlined in Section 4 of this report.

4. METHODOLOGY

4.1 Background

Noise can be defined as any obtrusive sound. It is created at a source, transmitted through a medium, such as air, and intercepted by a receiver. Noise may be characterized in terms of the power of the source or the sound pressure at a specific distance. While the power of a source is characteristic of that particular source, the sound pressure depends on the location of the receiver and the path that the noise takes to reach the receiver. Measurement of noise is based on the decibel unit, dBA, which is a logarithmic ratio referenced to a standard noise level (2×10^{-5} Pascals). The 'A' suffix refers to a weighting scale, which better represents how the noise is perceived by the human ear. With this scale, a doubling of power results in a 3 dBA increase in measured noise levels and is just perceptible to most people. An increase of 10 dBA is often perceived to be twice as loud.

4.2 Roadway Traffic Noise

4.2.1 Criteria for Roadway Traffic Noise

For vehicle traffic, the equivalent sound energy level, L_{eq} , provides a measure of the time varying noise levels, which is well correlated with the annoyance of sound. It is defined as the continuous sound level, which has the same energy as a time varying noise level over a period of time. For roadways, the L_{eq} is commonly calculated on the basis of a 16-hour (L_{eq16}) daytime (07:00-23:00) / 8-hour (L_{eq8}) nighttime (23:00-07:00) split to assess its impacts on buildings. Table 1 below describes the applicable indoor noise level limits for roadway sources, as specified in the City of Ottawa's ENCG.

TABLE 1: INDOOR SOUND LEVEL CRITERIA (ROAD) 3

Tumo of Smaco	Time Period	L _{eq} (dBA)
Type of Space	Time Period	Road
General offices, reception areas, retail stores, etc.	07:00 – 23:00	50
Living/dining/den areas of residences, hospitals, schools, nursing/retirement homes, day-care centres, theatres, places of worship, libraries, individual or semi-private offices, conference rooms, etc.	07:00 – 23:00	45
Sleeping quarters of hotels/motels	23:00 – 07:00	45
Sleeping quarters of residences, hospitals, nursing/retirement homes, etc.	23:00 – 07:00	40

Predicted noise levels at the plane of window (POW) dictate the action required to achieve the recommended indoor sound levels. An open window is considered to provide a 10 dBA reduction in noise, while a standard closed window is capable of providing a minimum 20 dBA noise reduction⁴. A closed window due to a ventilation requirement will bring noise levels down to achieve an acceptable indoor environment⁵. Therefore, where noise levels exceed 55 dBA daytime and 50 dBA nighttime, the ventilation for the building should consider the need for having windows and doors closed, which normally triggers the need for central air conditioning. Where noise levels exceed 65 dBA daytime and 60 dBA nighttime, building components will require higher levels of sound attenuation⁶.

The sound level criterion for outdoor living areas is 55 dBA, which applies during the daytime period (07:00 to 23:00). When noise levels exceed 55 dBA, mitigation must be provided to reduce noise levels where technically and administratively feasible to acceptable levels at or below the criterion.

4.2.1 Roadway Traffic Volumes

The ENCG dictates that noise calculations should consider future sound levels based on a roadway's classification at the mature state of development. Therefore, traffic volumes are based on the roadway classifications outlined in the City of Ottawa's Official Plan (OP) and Transportation Master Plan⁷ which

Minto Communities – Canada

³ Adapted from ENCG 2016 – Part 1, Table 2.2c

⁴ Burberry, P.B.. (2014). Mitchell's Environment and Services. Routledge, Page 125

⁵ MOECC, Environmental Noise Guidelines, NPC 300 – Part C, Section 7.8

⁶ MOECC, Environmental Noise Guidelines, NPC 300 – Part C, Section 7.1.3

⁷ City of Ottawa Transportation Master Plan, November 2013

provide additional details on future roadway expansions. Average Annual Daily Traffic (AADT) volumes are then based on data in Table B1 of the ENCG for each roadway classification. Table 2 summarizes the AADT values used for each roadway included in this assessment.

TABLE 2: ROADWAY TRAFFIC DATA

Segment	Roadway / Transit Class	Speed Limit (km/h)	Traffic Volumes	
Bank Street	4-UAU	40	30,000	
Fifth Avenue	2-UCU	40	8,000	

4.2.2 Theoretical Transportation Noise Predictions

Noise predictions were performed with the aid of the MOECC computerized noise assessment program, STAMSON 5.04, for road and rail analysis. Roadway traffic noise calculations were performed by treating each roadway segment as separate line sources of noise, and by using on-site existing building locations as noise barriers. In addition to the traffic volumes summarized in Table 2, theoretical noise predictions were based on the following parameters:

- Truck traffic on all roadways was taken to comprise 5% heavy trucks and 7% medium trucks, as
 per ENCG requirements for noise level predictions
- The day/night split was taken to be 92% / 8% respectively for all streets
- Reflective ground surface for pavements and roads from source-to-receiver
- Topography considered to be flat or gently sloping.
- Proposed building included in the analysis as a noise barrier with a height of 19.05 metres for Receptors 5, and 7-10.
- Existing heritage buildings on-site included in the analysis as a noise barrier with a height of approximately 8 metres for Receptors 5, 6, 8 and 10.
- Receptor heights placed at 17.43-metres and 20.70-metres for the 6th and 7th floor Plane of Window; while for the OLA, heights were placed at 1.50-metres above grade for the ground level space, and 20.55-metres (1.5-metres above the 6-storey roof) for the 7th floor terraces. These heights are based on elevation drawings dated May 3, 2018, also attached in Appendix A.
- Receptor distances and exposure angles illustrated in Figures 2-5.

 Noise receptors were strategically identified at ten (10) locations around the study area (see Figure 1)

5. RESULTS AND DISCUSSION

5.1 Roadway Traffic Noise Levels

The results of the roadway traffic noise calculations are summarized in Table 3 below. A complete set of input and output data from all STAMSON 5.04 calculations are available in Appendix A.

TABLE 3: EXTERIOR NOISE LEVELS DUE TO ROADWAY TRAFFIC SOURCES

Receptor	Receptor Height Above Grade (m)	Plane of Window	Noise Level (dBA)	
Number		Receptor Location	Day	Night
1	17.43	6 th Floor – South Façade	67	59
2	17.43	6 th Floor – East Façade	60	53
3	17.43	6 th Floor – North Façade	64	56
4	17.43	6 th Floor – West Façade	68	61
5	1.5	Ground Level OLA	51	43
6	20.70	7 th Floor – West Façade	62	54
7	20.70	7 th Floor – South Façade	53	45
8	20.55 (1.5 m above 6- storey roof)	7 th Floor Terrace – OLA	61	53
9	20.55 (1.5 m above 6- storey roof)	7 th Floor Terrace – OLA	57	50
10	20.55 (1.5 m above 6- storey roof)	7 th Floor Terrace – OLA	61	54

6. CONCLUSIONS AND RECOMMENDATIONS

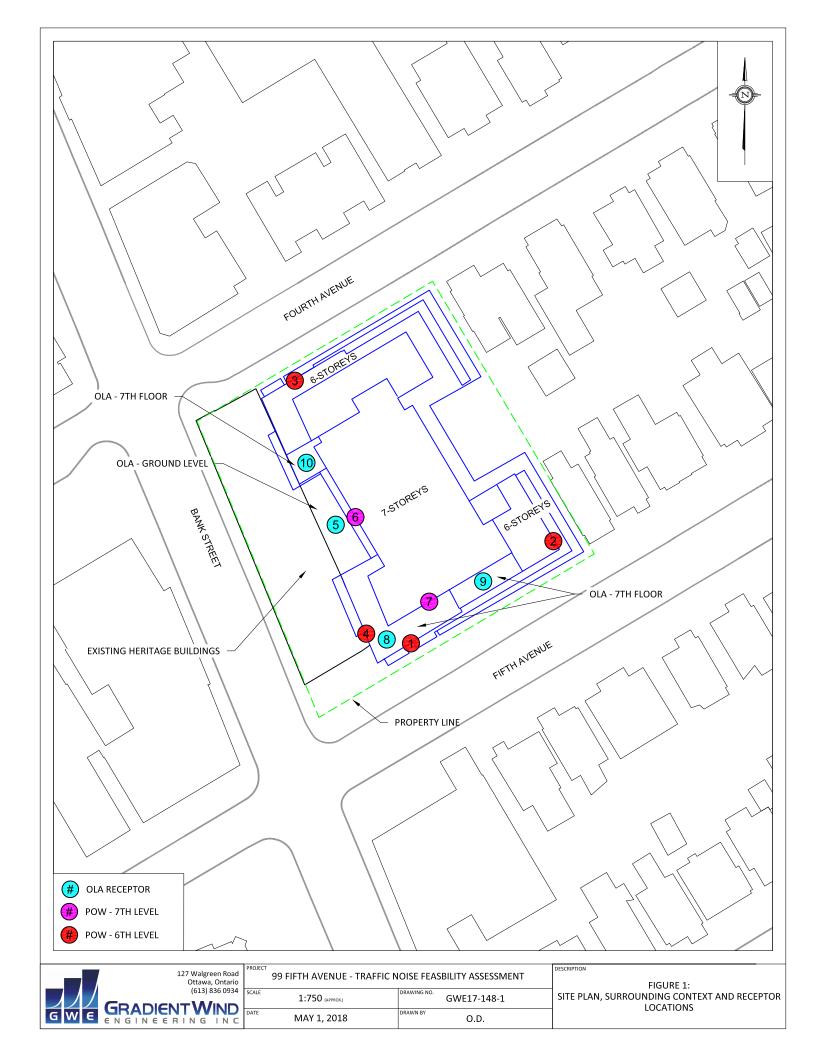
The results of the current analysis indicate that noise levels will range between 51 and 68 dBA during the daytime period (07:00-23:00) and between 43 and 61 dBA during the nighttime period (23:00-07:00). The highest noise levels (i.e. 68 dBA) occur along the development's west façade, which is nearest and most exposed to Bank Street and Fifth Avenue. Noise levels predicted due to roadway traffic sources exceed the criteria listed in Section 4.2 for building components. Therefore, upgraded building components will be required where noise levels exceed 65 dBA. As per City of Ottawa requirements, detailed Sound Transmission Class (STC) calculations will be required to be completed prior to site plan control.

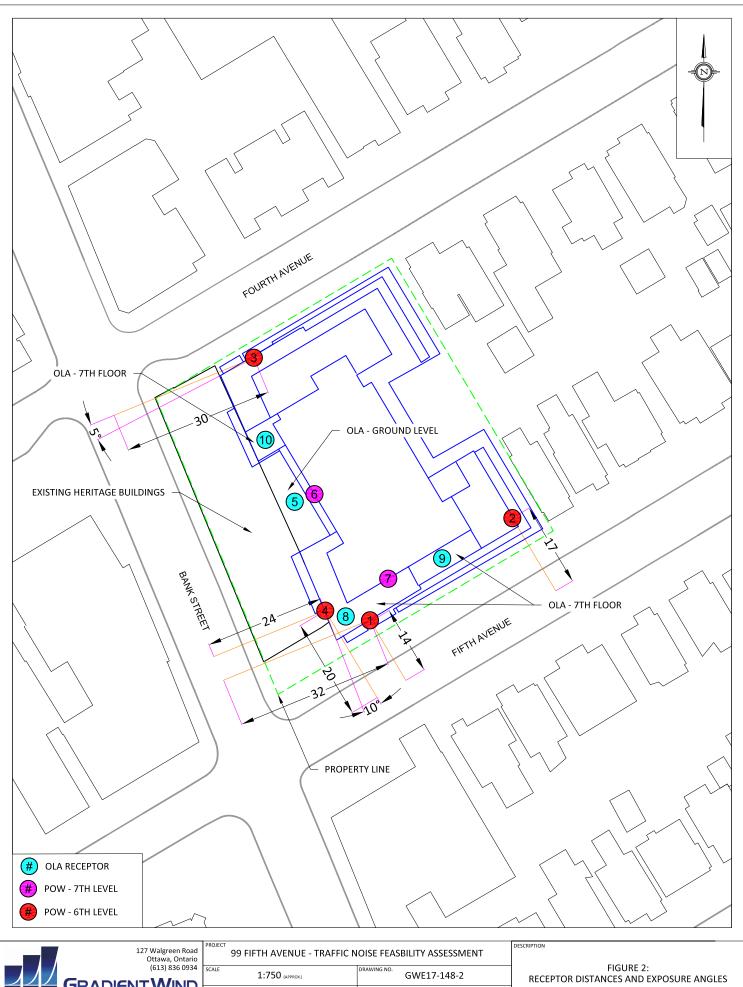
Results of the calculations also indicate that the development will require central air conditioning, which will allow occupants to keep windows closed and maintain a comfortable living environment. In addition to upgraded building components and ventilation requirements, warning clauses are likely to be required. A detailed roadway traffic noise assessment will be required at the time of site plan approval to determine specific noise control measures for the development.

Noise levels at the ground level terrace were found to approach 51 dBA, during the daytime period, which is below the ENCG criteria; therefore, no mitigation would be required. However, noise levels at the 7th floor terraces were found to range between 57-61 dBA during the daytime period, which is slightly above the ENCG criteria. Therefore, mitigation measures would likely be required in the form of an acoustic guard rail. This is expected to reduce noise levels to meet the criteria. The details of the acoustic barrier would be investigated at the time a detailed study is conducted.

With regards to stationary noise impacts from roof top mechanical units on the existing two-storey heritage building on the proposed residential building, along with stationary noise impacts from roof top mechanical units on the proposed building on surrounding noise-sensitive areas, once the mechanical plans for the proposed building become available, a stationary noise study will be performed. This study will include recommendations for any noise control measures that may be necessary to ensure noise levels at the proposed building from the two-storey heritage building and noise levels at the surrounding noise-sensitive buildings due to mechanical equipment on the roof of the proposed building are below the City of Ottawa's Noise Guidelines.

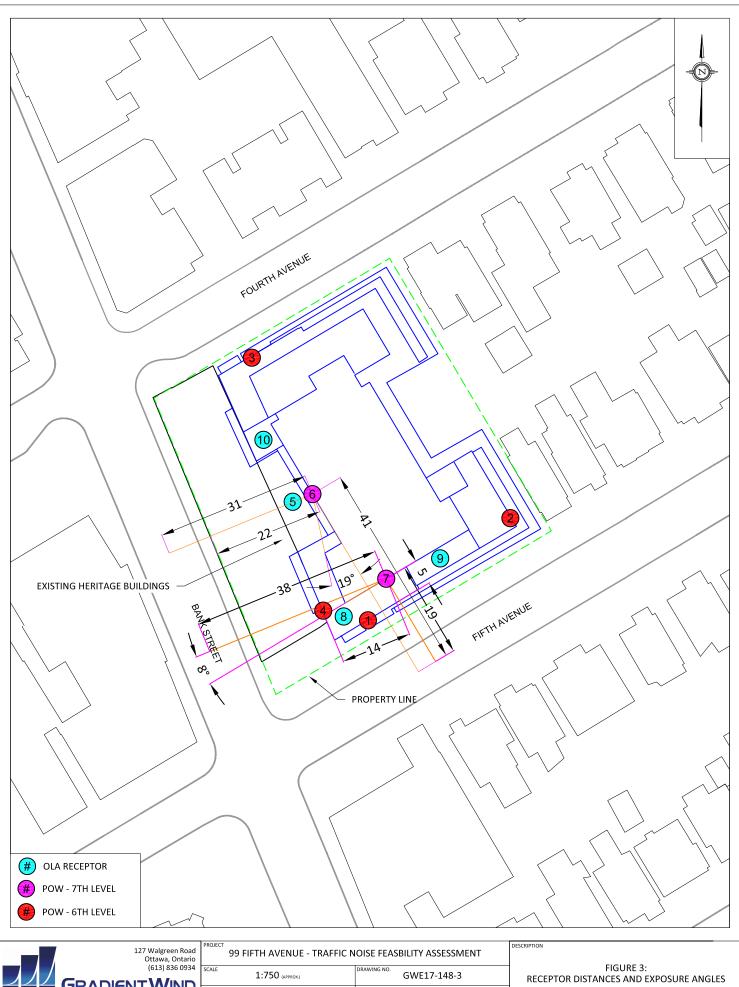
This concludes our assessment and report. If you have any questions or wish to discuss our findings, please advise us. In the interim, we thank you for the opportunity to be of service.

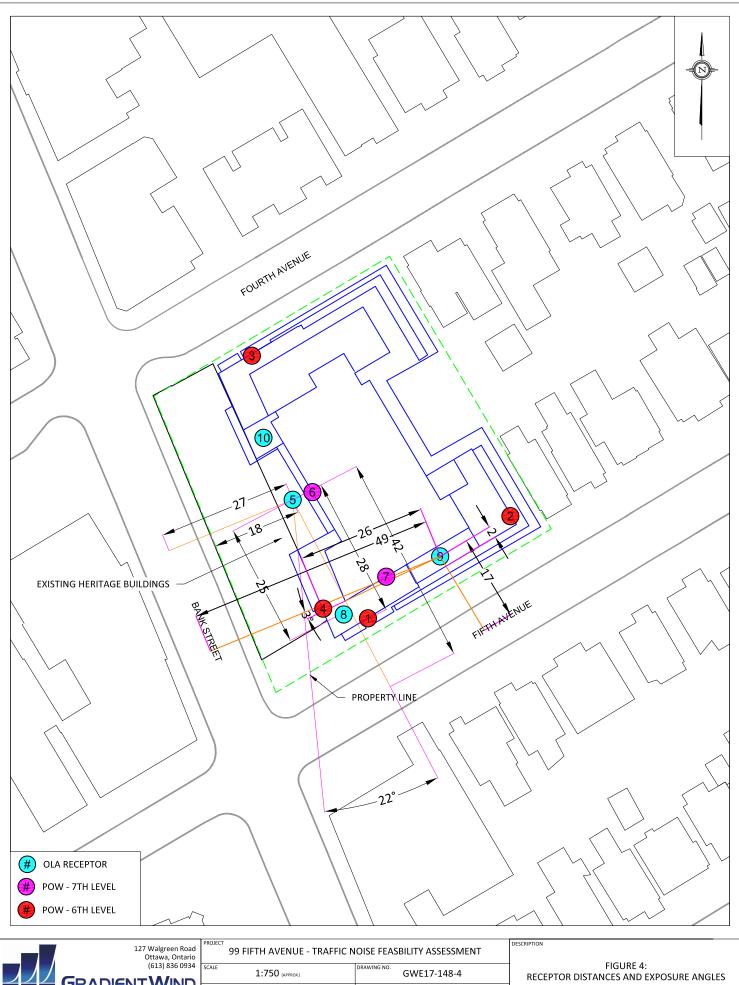

Yours truly,


Gradient Wind Engineering Inc.

Omar Daher

Junior Environmental Scientist GWE17-148 – Traffic Noise J. R. FOSTER 100155655


Joshua Foster, P.Eng. Principal


GRADIENT WIND

MAY 1, 2018 O.D.

GRADIENT WIND

MAY 1, 2018 O.D.

GRADIENT WIND

MAY 1, 2018 O.D.

APPENDIX A

STAMSON 5.04 - INPUT AND OUTPUT DATA AND SUPPORTING INFORMATION

Date: 26-04-2018 10:17:48 STAMSON 5.0 NORMAL REPORT

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: r1.te Time Period: Day/Night 16/8 hours

Description:

Road data, segment # 1: Fifth Avenue (day/night) _____

Car traffic volume : 6477/563 veh/TimePeriod *
Medium truck volume : 515/45 veh/TimePeriod *
Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h Road gradient :

: 0 %
: 1 (Typical asphalt or concrete) Road pavement

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Fifth Avenue (day/night) _____

Anglel Angle2 : -90.00 deg 90.00 deg Wood depth : 0 (No woods (No woods.)

No of house rows : 0 / 0
Surface : 2 (Reflective ground surface)

Receiver source distance : 15.00 / 15.00 m Receiver height : 17.43 / 17.43 m $\,$

Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00

Road data, segment # 2: Bank Street (day/night) _____

Car traffic volume : 24288/2112 veh/TimePeriod * Medium truck volume : 1932/168 veh/TimePeriod *
Heavy truck volume : 1380/120 veh/TimePeriod *

Posted speed limit : 40 km/h Road gradient :

0 % 1 (Typical asphalt or concrete) Road pavement :

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 30000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00
Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 2: Bank Street (day/night) -----

Angle1 Angle2 : -90.00 deg 0.00 deg : 0 Wood depth (No woods.)

Wood depun No of house rows

: 0 / 0 : 2 (Reflective ground surface) Surface

Receiver source distance : 32.00 / 32.00 m

Receiver height : 17.43 / 17.43 m

Topography : 1 (Flat/gentle slope; no barrier)

Reference angle : 0.00

Results segment # 1: Fifth Avenue (day)

Source height = 1.50 m

ROAD (0.00 + 63.96 + 0.00) = 63.96 dBA

Segment Leq: 63.96 dBA

Results segment # 2: Bank Street (day)

Source height = 1.50 m

ROAD (0.00 + 63.40 + 0.00) = 63.40 dBA

Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
------90 0 0.00 69.70 0.00 -3.29 -3.01 0.00 0.00 0.00 63.40

Segment Leq: 63.40 dBA

Total Leq All Segments: 66.70 dBA

Results segment # 1: Fifth Avenue (night)

Source height = 1.50 m

ROAD (0.00 + 56.36 + 0.00) = 56.36 dBA

Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-90 90 0.00 56.36 0.00 0.00 0.00 0.00 0.00 56.36

Segment Leq: 56.36 dBA

Results segment # 2: Bank Street (night)

Source height = 1.50 m

ROAD (0.00 + 55.80 + 0.00) = 55.80 dBA

Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-90 0 0.00 62.10 0.00 -3.29 -3.01 0.00 0.00 0.00 55.80

Segment Leq: 55.80 dBA

Total Leq All Segments: 59.10 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 66.70 (NIGHT): 59.10

Date: 26-04-2018 10:17:55 STAMSON 5.0 NORMAL REPORT

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: r2.te Time Period: Day/Night 16/8 hours

Description:

Road data, segment # 1: Fifth Avenue (day/night) _____

Car traffic volume : 6477/563 veh/TimePeriod *
Medium truck volume : 515/45 veh/TimePeriod *
Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h Road gradient :

: 0 %
: 1 (Typical asphalt or concrete) Road pavement

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Fifth Avenue (day/night) _____

Anglel Angle2 : -90.00 deg 0.00 deg Wood depth : 0 (No woods

(No woods.)

No of house rows : 0 / 0
Surface : 2 (Reflective ground surface)

Receiver source distance : 17.00 / 17.00 m Receiver height : 17.43 / 17.43 m $\,$

Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00

Results segment # 1: Fifth Avenue (day)

Source height = 1.50 m

ROAD (0.00 + 60.40 + 0.00) = 60.40 dBA

Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-90 0 0.00 63.96 0.00 -0.54 -3.01 0.00 0.00 0.00 60.40

Segment Leq: 60.40 dBA

Total Leq All Segments: 60.40 dBA

Results segment # 1: Fifth Avenue (night)

Source height = 1.50 m

ROAD (0.00 + 52.81 + 0.00) = 52.81 dBA

Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-90 0 0.00 56.36 0.00 -0.54 -3.01 0.00 0.00 0.00 52.81

Segment Leq: 52.81 dBA

Total Leq All Segments: 52.81 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 60.40 (NIGHT): 52.81

Date: 26-04-2018 10:18:07 STAMSON 5.0 NORMAL REPORT

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: r3.te Time Period: Day/Night 16/8 hours

Description:

Road data, segment # 1: Bank Street (day/night) _____

Car traffic volume : 24288/2112 veh/TimePeriod * Medium truck volume : 1932/168 veh/TimePeriod * Heavy truck volume : 1380/120 veh/TimePeriod *

Posted speed limit : 40 km/h Road gradient :

: 0 %
: 1 (Typical asphalt or concrete) Road pavement

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 30000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Bank Street (day/night)

Anglel Angle2 : -5.00 deg 90.00 deg Wood depth : 0 (No woods Wood depth : 0 (No woods.) No of house rows : $0 \neq 0$ Surface : 2 (Reflective ground surface)

Receiver source distance : 30.00 / 30.00 m Receiver height : 17.43 / 17.43 m $\,$

Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00

Results segment # 1: Bank Street (day)

Source height = 1.50 m

ROAD (0.00 + 63.91 + 0.00) = 63.91 dBA

Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-5 90 0.00 69.70 0.00 -3.01 -2.78 0.00 0.00 0.00 63.91

Segment Leq: 63.91 dBA

Total Leg All Segments: 63.91 dBA

Results segment # 1: Bank Street (night)

Source height = 1.50 m

ROAD (0.00 + 56.31 + 0.00) = 56.31 dBA

Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-5 90 0.00 62.10 0.00 -3.01 -2.78 0.00 0.00 0.00 56.31

Segment Leq: 56.31 dBA

Total Leq All Segments: 56.31 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 63.91 (NIGHT): 56.31

Date: 26-04-2018 10:18:14 STAMSON 5.0 NORMAL REPORT

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: r4.te Time Period: Day/Night 16/8 hours

Description:

Road data, segment # 1: Fifth Avenue (day/night) _____

Car traffic volume : 6477/563 veh/TimePeriod *
Medium truck volume : 515/45 veh/TimePeriod *
Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h Road gradient :

0 %1 (Typical asphalt or concrete) Road pavement

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Fifth Avenue (day/night) _____

Anglel Angle2 : 10.00 deg 90.00 deg Wood depth : 0 (No woods Wood depth (No woods.)

No of house rows : 0 / 0
Surface : 2 (Reflective ground surface)

Receiver source distance : 20.00 / 20.00 m Receiver height : 17.43 / 17.43 m

Topography : 1 (Flat/gentle slope; no barrier) Reference angle : 0.00

Road data, segment # 2: Bank Street (day/night) _____

Car traffic volume : 24288/2112 veh/TimePeriod * Medium truck volume : 1932/168 veh/TimePeriod *
Heavy truck volume : 1380/120 veh/TimePeriod *

Posted speed limit : 40 km/h Road gradient :

0 % 1 (Typical asphalt or concrete) Road pavement :

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 30000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00
Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 2: Bank Street (day/night) -----

Angle1 Angle2 : -90.00 deg 90.00 deg : 0 Wood depth (No woods.)

Wood depun No of house rows

: 0 / 0 : 2 (Reflective ground surface) Surface

Receiver source distance : 24.00 / 24.00 m

Receiver height : 17.43 / 17.43 m

Topography : 1 (Flat/gentle slope; no barrier)

Reference angle : 0.00

Results segment # 1: Fifth Avenue (day)

Source height = 1.50 m

ROAD (0.00 + 59.18 + 0.00) = 59.18 dBA

Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ 10 90 0.00 63.96 0.00 -1.25 -3.52 0.00 0.00 0.00 59.18

Segment Leq: 59.18 dBA

Results segment # 2: Bank Street (day)

Source height = 1.50 m

ROAD (0.00 + 67.65 + 0.00) = 67.65 dBA

Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -90 90 0.00 69.70 0.00 -2.04 0.00 0.00 0.00 0.00 67.65

Segment Leq: 67.65 dBA

Total Leq All Segments: 68.23 dBA

Results segment # 1: Fifth Avenue (night)

Source height = 1.50 m

ROAD (0.00 + 51.59 + 0.00) = 51.59 dBA

Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

10 90 0.00 56.36 0.00 -1.25 -3.52 0.00 0.00 0.00 51.59

Segment Leq: 51.59 dBA

Results segment # 2: Bank Street (night)

Source height = 1.50 m

ROAD (0.00 + 60.06 + 0.00) = 60.06 dBA

Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq

-90 90 0.00 62.10 0.00 -2.04 0.00 0.00 0.00 0.00 60.06

Segment Leq: 60.06 dBA

Total Leq All Segments: 60.64 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 68.23 (NIGHT): 60.64

Date: 26-04-2018 10:18:34 STAMSON 5.0 NORMAL REPORT

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: r5.te Time Period: Day/Night 16/8 hours

Description:

Road data, segment # 1: Bank Street (day/night) _____

Car traffic volume : 24288/2112 veh/TimePeriod * Medium truck volume : 1932/168 veh/TimePeriod * Heavy truck volume : 1380/120 veh/TimePeriod *

Posted speed limit : 40 km/h Road gradient :

0 %1 (Typical asphalt or concrete) Road pavement

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 30000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Bank Street (day/night)

Anglel Angle2 : -90.00 deg 90.00 deg Wood depth : 0 (No woods (No woods.)

No of house rows : 0 / 0
Surface : 2 (Reflective ground surface)

Receiver source distance : 27.00 / 27.00 m Receiver height : 1.50 / 1.50 m $\,$

Topography : 2 (Flat/gentle slope; with barrier)
Barrier angle1 : -90.00 deg Angle2 : 90.00 deg
Barrier height : 8.00 m

Barrier receiver distance : 18.00 / 18.00 m

Source elevation : 0.00 m
Receiver elevation : 0.00 m
Barrier elevation : 0.00 m
Reference angle : 0.00 : 0.00 Reference angle

Road data, segment # 2: Fifth Avenue (day/night) _____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod *
Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 40 km/h 0 % 1 (Typical asphalt or concrete) Road gradient : Road pavement : * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 2: Fifth Avenue (day/night) _____ Angle1 Angle2 : -90.00 deg 22.00 deg : 0 Wood depth No of house rows Wood depth (No woods.) : 0 / 0 : 2 (Reflective ground surface) Surface Receiver source distance : 42.00 / 42.00 m Receiver height : 1.50 / 1.50 : Topography 2 (Flat/gentle slope; with barrier) : -90.00 deg Angle2 : 22.00 deg : 19.05 m Barrier angle1 Barrier height Barrier receiver distance : 28.00 / 28.00 m Source elevation : 0.00 m

Peceiver elevation : 0.00 m Receiver elevation : 0.00
Barrier elevation : 0.00
Reference angle : 0.00

: 0.00 m

Road data, segment # 3: Fifth Avenu2 (day/night) _____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod *
Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 40 km/h 0 % 1 (Typical asphalt or concrete) Road gradient : Road pavement * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00
Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 3: Fifth Avenu2 (day/night) _____ Angle1 Angle2 : 22.00 deg 90.00 deg Wood depth No of house rows Wood depth : 0 (No woods.) : 0 / 0 : 2 (Reflective ground surface) Receiver source distance : 42.00 / 42.00 m Receiver height : 1.50 / 1.50

2 (Flat/gentle slope; with barrier)

Barrier angle1 : 22.00 deg Angle2 : 90.00 deg Barrier height : 8.00 m

Barrier receiver distance : 25.00 / 25.00 m

:

Source elevation : 0.00 m Receiver elevation : 0.00 m Barrier elevation : 0.00 m Reference angle : 0.00

#

Topography


```
Results segment # 1: Bank Street (day)
Source height = 1.50 m
Barrier height for grazing incidence
_____
Source ! Receiver ! Barrier
                         ! Elevation of
Height (m) ! Height (m) ! Height (m) ! Barrier Top (m)
-----
   1.50 ! 1.50 ! 1.50 !
ROAD (0.00 + 50.11 + 0.00) = 50.11 dBA
Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
 -90 90 0.00 69.70 0.00 -2.55 0.00 0.00 0.00 -17.03 50.11
_____
Segment Leq: 50.11 dBA
Results segment # 2: Fifth Avenue (day)
______
Source height = 1.50 m
Barrier height for grazing incidence
_____
Source ! Receiver ! Barrier ! Elevation of
Height (m) ! Height (m) ! Height (m) ! Barrier Top (m)
-----
    1.50 !
          1.50 !
                     1.50 !
                                1.50
ROAD (0.00 + 38.17 + 0.00) = 38.17 dBA
Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
 -90
      22 0.00 63.96 0.00 -4.47 -2.06 0.00 0.00 -19.25 38.17
______
Segment Leq: 38.17 dBA
#
```

Minto Communities - Canada


```
Results segment # 3: Fifth Avenu2 (day)
Source height = 1.50 m
Barrier height for grazing incidence
_____
Source ! Receiver ! Barrier
                            ! Elevation of
Height (m) ! Height (m) ! Height (m) ! Barrier Top (m)
-----
    1.50 ! 1.50 ! 1.50 !
ROAD (0.00 + 40.17 + 0.00) = 40.17 dBA
Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
  22 90 0.00 63.96 0.00 -4.47 -4.23 0.00 0.00 -15.08 40.17
_____
Segment Leq: 40.17 dBA
Total Leq All Segments: 50.77 dBA
Results segment # 1: Bank Street (night)
Source height = 1.50 m
Barrier height for grazing incidence
Source ! Receiver ! Barrier ! Elevation of
\label{eq:height} \mbox{Height (m) ! Height (m) ! Barrier Top (m)}
_____
              1.50 !
    1.50 !
                        1.50 !
ROAD (0.00 + 42.51 + 0.00) = 42.51 dBA
Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
 -90 90 0.00 62.10 0.00 -2.55 0.00 0.00 0.00 -17.03 42.51
Segment Leq: 42.51 dBA
#
```


Results segment # 2: Fifth Avenue (night) Source height = 1.50 m Barrier height for grazing incidence _____ Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Height (m) ! Barrier Top (m) -----1.50 ! 1.50 ! 1.50 ! ROAD (0.00 + 30.58 + 0.00) = 30.58 dBAAnglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -90 22 0.00 56.36 0.00 -4.47 -2.06 0.00 0.00 -19.25 30.58 _____ Segment Leq: 30.58 dBA Results segment # 3: Fifth Avenu2 (night) ______ Source height = 1.50 m Barrier height for grazing incidence _____ Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Height (m) ! Barrier Top (m) -----1.50 ! 1.50 ! 1.50 ! 1.50 ROAD (0.00 + 32.58 + 0.00) = 32.58 dBAAnglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ 90 0.00 56.36 0.00 -4.47 -4.23 0.00 0.00 -15.08 32.58 ______ Segment Leq: 32.58 dBA Total Leq All Segments: 43.18 dBA TOTAL Leg FROM ALL SOURCES (DAY): 50.77 (NIGHT): 43.18 #

Date: 26-04-2018 10:37:37 STAMSON 5.0 NORMAL REPORT

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: r6.te Time Period: Day/Night 16/8 hours

Description:

Road data, segment # 1: Bank Street (day/night) _____

Car traffic volume : 24288/2112 veh/TimePeriod * Medium truck volume : 1932/168 veh/TimePeriod * Heavy truck volume : 1380/120 veh/TimePeriod *

Posted speed limit : 40 km/h Road gradient :

0 %1 (Typical asphalt or concrete) Road pavement

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 30000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Bank Street (day/night)

Anglel Angle2 : -90.00 deg 90.00 deg Wood depth : 0 (No woods (No woods.)

No of house rows : 0 / 0
Surface : 2 (Reflective ground surface)

Receiver source distance : 31.00 / 31.00 m Receiver height : 20.70 / 20.70 m $\,$

Topography : 2 (Flat/gentle slope; with barrier)
Barrier angle1 : -90.00 deg Angle2 : 90.00 deg
Barrier height : 8.00 m

Barrier receiver distance : 22.00 / 22.00 m

Source elevation : 0.00 m Receiver elevation : 0.00 m Barrier elevation : 0.00 m Reference angle : 0.00 : 0.00 Reference angle


```
Road data, segment # 2: Fifth (day/night)
_____
Car traffic volume : 6477/563 veh/TimePeriod *
Medium truck volume : 515/45 veh/TimePeriod *
Heavy truck volume : 368/32 veh/TimePeriod *
Posted speed limit : 40 km/h
                    0 %
1 (Typical asphalt or concrete)
Road gradient :
Road pavement
               :
* Refers to calculated road volumes based on the following input:
   24 hr Traffic Volume (AADT or SADT):
                                   8000
   Percentage of Annual Growth : 0.00
   Number of Years of Growth
   Medium Truck % of Total Volume : 7.00

Heavy Truck % of Total Volume : 5.00

Day (16 hrs) % of Total Volume : 92.00
Data for Segment # 2: Fifth (day/night)
_____
Angle1 Angle2 : 19.00 deg 90.00 deg
                    : 0
: 0 / 0
: 2
Wood depth
                                 (No woods.)
No of house rows
Surface
                                  (Reflective ground surface)
Receiver source distance : 41.00 / 41.00 m
Receiver height : 20.70 / 20.70 m
Topography
                    : 1 (Flat/gentle slope; no barrier)
                 : 0.00
Reference angle
Results segment # 1: Bank Street (day)
_____
Source height = 1.50 m
Barrier height for grazing incidence
_____
Source ! Receiver ! Barrier ! Elevation of
Height (m) ! Height (m) ! Height (m) ! Barrier Top (m)
_____
    1.50 ! 20.70 ! 7.07 ! 7.07
ROAD (0.00 + 60.37 + 0.00) = 60.37 dBA
Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
  -90 90 0.00 69.70 0.00 -3.15 0.00 0.00 0.00 -6.17 60.37
Segment Leq: 60.37 dBA
#
```


Results segment # 2: Fifth (day) Source height = 1.50 m ROAD (0.00 + 55.55 + 0.00) = 55.55 dBAAngle1 Angle2 Alpha RefLeg P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeg ______ 19 90 0.00 63.96 0.00 -4.37 -4.04 0.00 0.00 0.00 55.55 ______ Segment Leq: 55.55 dBA Total Leg All Segments: 61.61 dBA Results segment # 1: Bank Street (night) Source height = 1.50 m Barrier height for grazing incidence ______ Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Height (m) ! Barrier Top (m) _____ 1.50 ! 20.70 ! 7.07 ! ROAD (0.00 + 52.78 + 0.00) = 52.78 dBAAnglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq _____ ______ 90 0.00 62.10 0.00 -3.15 0.00 0.00 0.00 -6.17 52.78 Segment Leg: 52.78 dBA Results segment # 2: Fifth (night) Source height = 1.50 m ROAD (0.00 + 47.96 + 0.00) = 47.96 dBAAnglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -----90 0.00 56.36 0.00 -4.37 -4.04 0.00 0.00 0.00 47.96 Segment Leq: 47.96 dBA Total Leq All Segments: 54.02 dBA TOTAL Leq FROM ALL SOURCES (DAY): 61.61 (NIGHT): 54.02

Date: 26-04-2018 10:19:14 STAMSON 5.0 NORMAL REPORT

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Time Period: Day/Night 16/8 hours Filename: r7.te

Description:

Road data, segment # 1: Fifth Avenue (day/night) _____

Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod *
Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h Road gradient :

0 %1 (Typical asphalt or concrete) Road pavement

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Fifth Avenue (day/night) _____

Anglel Angle2 : -90.00 deg 90.00 deg Wood depth : 0 (No woods (No woods.)

No of house rows : 0 / 0
Surface : 2 (Reflective ground surface)

Receiver source distance : 19.00 / 19.00 m Receiver height : 20.70 / 20.70 m $\,$

Topography : 2 (Flat/gentle slope; with barrier)
Barrier angle1 : -90.00 deg Angle2 : 90.00 deg
Barrier height : 19.05 m

Barrier receiver distance : 5.00 / 5.00 m

Source elevation : 0.00 m
Receiver elevation : 0.00 m
Barrier elevation : 0.00 m
Reference angle : 0.00 : 0.00 Reference angle


```
Road data, segment # 2: Bank Street (day/night)
_____
Car traffic volume : 24288/2112 veh/TimePeriod *
Medium truck volume : 1932/168 veh/TimePeriod *
Heavy truck volume : 1380/120 veh/TimePeriod *
Posted speed limit : 40 km/h
                        0 %
Road gradient :
Road pavement
                   :
                         1 (Typical asphalt or concrete)
* Refers to calculated road volumes based on the following input:
    24 hr Traffic Volume (AADT or SADT): 30000
    Percentage of Annual Growth : 0.00
   Number of Years of Growth : 0.00
Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
    Day (16 hrs) % of Total Volume : 92.00
Data for Segment # 2: Bank Street (day/night)
_____
Angle1 Angle2 : -90.00 deg -8.00 deg
                         : 0
Wood depth
No of house rows
Wood depth
                                        (No woods.)
                        : 0 / 0
: 2
                                         (Reflective ground surface)
Surface
Receiver source distance : 38.00 / 38.00 m
Receiver height : 20.70 / 20.70 m
                         : 2 (Flat/gentle slope; with barrier)
Topography
                 : -90.00 deg Angle2 : -8.00 deg
: 19.05 m
Barrier angle1
Barrier height
Barrier receiver distance : 14.00 / 14.00 m
Source elevation : 0.00 m

Peceiver elevation : 0.00 m
Receiver elevation : 0.00
Barrier elevation : 0.00
Reference angle : 0.00
                         : 0.00 m
```



```
Results segment # 1: Fifth Avenue (day)
Source height = 1.50 m
Barrier height for grazing incidence
_____
Source ! Receiver ! Barrier
                         ! Elevation of
Height (m) ! Height (m) ! Height (m) ! Barrier Top (m)
-----
   1.50 ! 20.70 ! 15.65 !
ROAD (0.00 + 50.49 + 0.00) = 50.49 dBA
Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
 -90 90 0.00 63.96 0.00 -1.03 0.00 0.00 0.00 -12.44 50.49
_____
Segment Leq: 50.49 dBA
Results segment # 2: Bank Street (day)
______
Source height = 1.50 m
Barrier height for grazing incidence
_____
Source ! Receiver ! Barrier ! Elevation of
Height (m) ! Height (m) ! Height (m) ! Barrier Top (m)
-----
    1.50 !
            20.70 !
                     13.62 !
                                13.62
ROAD (0.00 + 48.20 + 0.00) = 48.20 dBA
Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
 -90 -8 0.00 69.70 0.00 -4.04 -3.41 0.00 0.00 -14.04 48.20
______
Segment Leq: 48.20 dBA
Total Leg All Segments: 52.50 dBA
#
```


Results segment # 1: Fifth Avenue (night) Source height = 1.50 m Barrier height for grazing incidence _____ Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Height (m) ! Barrier Top (m) -----1.50 ! 20.70 ! 15.65 ! ROAD (0.00 + 42.89 + 0.00) = 42.89 dBAAnglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -90 90 0.00 56.36 0.00 -1.03 0.00 0.00 0.00 -12.44 42.89 _____ Segment Leq: 42.89 dBA Results segment # 2: Bank Street (night) _____ Source height = 1.50 m Barrier height for grazing incidence _____ Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Height (m) ! Barrier Top (m) -----1.50 ! 20.70 ! 13.62 ! 13.62 ROAD (0.00 + 40.60 + 0.00) = 40.60 dBAAnglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -90 -8 0.00 62.10 0.00 -4.04 -3.41 0.00 0.00 -14.04 40.60______ Segment Leq: 40.60 dBA Total Leg All Segments: 44.90 dBA TOTAL Leg FROM ALL SOURCES (DAY): 52.50 (NIGHT): 44.90 #

Date: 26-04-2018 10:21:12 STAMSON 5.0 NORMAL REPORT

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: r8.te Time Period: Day/Night 16/8 hours

Description:

Road data, segment # 1: Fifth Avenue (day/night) _____

Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod *
Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h Road gradient :

0 %1 (Typical asphalt or concrete) Road pavement

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Fifth Avenue (day/night) _____

Anglel Angle2 : -90.00 deg 90.00 deg Wood depth : 0 (No woods (No woods.)

No of house rows : 0 / 0
Surface : 2 (Reflective ground surface)

Receiver source distance : 17.00 / 17.00 m Receiver height : 20.55 / 20.55 m $\,$

Topography : 2 (Flat/gentle slope; with barrier)
Barrier angle1 : -90.00 deg Angle2 : 90.00 deg
Barrier height : 19.05 m

Barrier receiver distance : 3.00 / 3.00 m

Source elevation : 0.00 m
Receiver elevation : 0.00 m
Barrier elevation : 0.00 m
Reference angle : 0.00 : 0.00 Reference angle


```
Road data, segment # 2: Bank Street (day/night)
_____
Car traffic volume : 24288/2112 veh/TimePeriod *
Medium truck volume : 1932/168 veh/TimePeriod *
Heavy truck volume : 1380/120 veh/TimePeriod *
Posted speed limit : 40 km/h
                         0 %
Road gradient :
Road pavement
                         1 (Typical asphalt or concrete)
* Refers to calculated road volumes based on the following input:
    24 hr Traffic Volume (AADT or SADT): 30000
    Percentage of Annual Growth : 0.00
    Number of Years of Growth : 0.00
Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
    Day (16 hrs) % of Total Volume : 92.00
Data for Segment # 2: Bank Street (day/night)
_____
Angle1 Angle2 : -90.00 deg 0.00 deg
                        :
: 0 / U
: 2
                         : 0
Wood depth
No of house rows
Wood depth
                                         (No woods.)
                                  0 / 0
Surface
                                         (Reflective ground surface)
Receiver source distance : 27.00 / 27.00 m
Receiver height : 20.55 / 20.55 m
                         : 2 (Flat/gentle slope; with barrier)
Topography
                 : -90.00 deg Angle2 : 0.00 deg
: 19.05 m
Barrier angle1
Barrier height
Barrier receiver distance : 4.00 / 4.00 m
Source elevation : 0.00 m
Receiver elevation : 0.00 m
Barrier elevation : 0.00 m
Reference angle : 0.00
```



```
Road data, segment # 3: Bank Street (day/night)
_____
Car traffic volume : 24288/2112 veh/TimePeriod *
Medium truck volume : 1932/168 veh/TimePeriod *
Heavy truck volume : 1380/120 veh/TimePeriod *
Posted speed limit : 40 km/h
                          0 %
Road gradient :
Road pavement
                          1 (Typical asphalt or concrete)
* Refers to calculated road volumes based on the following input:
    24 hr Traffic Volume (AADT or SADT): 30000
    Percentage of Annual Growth : 0.00
    Number of Years of Growth : 0.00
Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
    Day (16 hrs) % of Total Volume : 92.00
Data for Segment # 3: Bank Street (day/night)
_____
Angle1 Angle2 : 0.00 deg 90.00 deg
Wood depth : 0
No of house rows : 0 / 0
Surface : 2
                                           (No woods.)
                                           (Reflective ground surface)
Receiver source distance : 27.00 / 27.00 m

Receiver height : 20.55 / 20.55 m
                          : 2 (Flat/gentle slope; with barrier)
Topography
Barrier angle1 : 0.00 deg Angle2 : 90.00 deg Barrier height : 8.00 m
Barrier receiver distance : 19.00 / 19.00 m
Source elevation : 0.00 \text{ m} Receiver elevation : 0.00 \text{ m}
Receiver elevation : 0.00
Barrier elevation : 0.00
Reference angle : 0.00
                          : 0.00 m
```



```
Results segment # 1: Fifth Avenue (day)
Source height = 1.50 m
Barrier height for grazing incidence
_____
Source ! Receiver ! Barrier
                        ! Elevation of
Height (m) ! Height (m) ! Height (m) ! Barrier Top (m)
-----
   1.50 ! 20.55 ! 17.19 !
ROAD (0.00 + 53.75 + 0.00) = 53.75 dBA
Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
 -90 90 0.00 63.96 0.00 -0.54 0.00 0.00 0.00 -9.66 53.75
______
Segment Leq: 53.75 dBA
Results segment # 2: Bank Street (day)
______
Source height = 1.50 m
Barrier height for grazing incidence
_____
Source ! Receiver ! Barrier ! Elevation of
Height (m) ! Height (m) ! Height (m) ! Barrier Top (m)
-----
    1.50 ! 20.55 !
                  17.73 !
                               17.73
ROAD (0.00 + 55.78 + 0.00) = 55.78 dBA
Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
 -90 0 0.00 69.70 0.00 -2.55 -3.01 0.00 0.00 -8.36 55.78
______
Segment Leq: 55.78 dBA
#
```

Minto Communities - Canada


```
Results segment # 3: Bank Street (day)
Source height = 1.50 m
Barrier height for grazing incidence
_____
Source ! Receiver ! Barrier
                           ! Elevation of
Height (m) ! Height (m) ! Height (m) ! Barrier Top (m)
-----
    1.50 ! 20.55 ! 7.14 !
ROAD (0.00 + 58.11 + 0.00) = 58.11 dBA
Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
  0 90 0.00 69.70 0.00 -2.55 -3.01 0.00 0.00 -6.03 58.11
______
Segment Leq: 58.11 dBA
Total Leq All Segments: 61.01 dBA
Results segment # 1: Fifth Avenue (night)
Source height = 1.50 m
Barrier height for grazing incidence
Source ! Receiver ! Barrier ! Elevation of
Height (m) ! Height (m) ! Height (m) ! Barrier Top (m)
_____
    1.50 ! 20.55 ! 17.19 !
                                  17.19
ROAD (0.00 + 46.16 + 0.00) = 46.16 dBA
Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
 -90 90 0.00 56.36 0.00 -0.54 0.00 0.00 0.00 -9.66 46.16
Segment Leq: 46.16 dBA
#
```



```
Results segment # 2: Bank Street (night)
Source height = 1.50 m
Barrier height for grazing incidence
_____
Source ! Receiver ! Barrier
                         ! Elevation of
Height (m) ! Height (m) ! Height (m) ! Barrier Top (m)
-----
   1.50 ! 20.55 ! 17.73 !
ROAD (0.00 + 48.18 + 0.00) = 48.18 dBA
Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
 -90 0 0.00 62.10 0.00 -2.55 -3.01 0.00 0.00 -8.36 48.18
______
Segment Leq: 48.18 dBA
Results segment # 3: Bank Street (night)
_____
Source height = 1.50 m
Barrier height for grazing incidence
_____
Source ! Receiver ! Barrier ! Elevation of
Height (m) ! Height (m) ! Height (m) ! Barrier Top (m)
-----
    1.50 ! 20.55 !
                      7.14 !
                                 7.14
ROAD (0.00 + 50.51 + 0.00) = 50.51 dBA
Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
      90 0.00 62.10 0.00 -2.55 -3.01 0.00 0.00 -6.03 50.51
______
Segment Leq: 50.51 dBA
Total Leg All Segments: 53.41 dBA
TOTAL Leg FROM ALL SOURCES (DAY): 61.01
                (NIGHT): 53.41
#
```


Date: 26-04-2018 11:09:34 STAMSON 5.0 NORMAL REPORT

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: r9.te Time Period: Day/Night 16/8 hours

Description:

Road data, segment # 1: Fifth Avenue (day/night) _____

Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod *
Heavy truck volume : 368/32 veh/TimePeriod *

Posted speed limit : 40 km/h Road gradient :

0 %1 (Typical asphalt or concrete) Road pavement

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Fifth Avenue (day/night) _____

Anglel Angle2 : -90.00 deg 90.00 deg Wood depth : 0 (No woods (No woods.)

No of house rows : 0 / 0
Surface : 2 (Reflective ground surface)

Receiver source distance : 17.00 / 17.00 m Receiver height : 20.55 / 20.55 m $\,$

Topography : 2 (Flat/gentle slope; with barrier)
Barrier angle1 : -90.00 deg Angle2 : 90.00 deg
Barrier height : 19.05 m

Barrier receiver distance : 2.00 / 2.00 m

Source elevation : 0.00 mReceiver elevation : 0.00 m

Barrier elevation : 0.00 m

Reference angle : 0.00 : 0.00 Reference angle

#


```
Road data, segment # 2: Bank Street (day/night)
_____
Car traffic volume : 24288/2112 veh/TimePeriod *
Medium truck volume : 1932/168 veh/TimePeriod *
Heavy truck volume : 1380/120 veh/TimePeriod *
Posted speed limit : 40 km/h
                        0 %
Road gradient :
Road pavement
                  :
                        1 (Typical asphalt or concrete)
* Refers to calculated road volumes based on the following input:
    24 hr Traffic Volume (AADT or SADT): 30000
    Percentage of Annual Growth : 0.00
   Number of Years of Growth : 0.00
Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
    Day (16 hrs) % of Total Volume : 92.00
Data for Segment # 2: Bank Street (day/night)
_____
Angle1 Angle2 : -90.00 deg 3.00 deg
                        : 0
Wood depth
                                        (No woods.)
No of house rows
                        : 0 / 0
: 2
                                        (Reflective ground surface)
Surface
Receiver source distance : 49.00 / 49.00 m
Receiver height : 20.55 / 20.55 m
                        : 2 (Flat/gentle slope; with barrier)
Topography
                : -90.00 deg Angle2 : 3.00 deg
: 19.05 m
Barrier angle1
Barrier height
Barrier receiver distance : 26.00 / 26.00 m
Barrier receiver distance : 0.00 m

Source elevation : 0.00 m

Descriver elevation : 0.00 m
Barrier elevation
                        : 0.00 m
Reference angle
                        : 0.00
```

#

Results segment # 1: Fifth Avenue (day) Source height = 1.50 m Barrier height for grazing incidence _____ Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Height (m) ! Barrier Top (m) -----1.50 ! 20.55 ! 18.31 ! ROAD (0.00 + 56.90 + 0.00) = 56.90 dBAAnglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -90 90 0.00 63.96 0.00 -0.54 0.00 0.00 0.00 -6.51 56.90 ______ Segment Leq: 56.90 dBA Results segment # 2: Bank Street (day) ______ Source height = 1.50 m Barrier height for grazing incidence _____ Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Height (m) ! Barrier Top (m) -----1.50 ! 20.55 ! 10.44 ! 10.44 ROAD (0.00 + 45.29 + 0.00) = 45.29 dBAAnglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -90 3 0.00 69.70 0.00 -5.14 -2.87 0.00 0.00 -16.40 45.29 ______ Segment Leq: 45.29 dBA Total Leg All Segments: 57.19 dBA # #

Results segment # 1: Fifth Avenue (night) Source height = 1.50 m Barrier height for grazing incidence _____ Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Height (m) ! Barrier Top (m) -----1.50 ! 20.55 ! 18.31 ! ROAD (0.00 + 49.31 + 0.00) = 49.31 dBAAnglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -90 90 0.00 56.36 0.00 -0.54 0.00 0.00 0.00 -6.51 49.31 _____ Segment Leq: 49.31 dBA Results segment # 2: Bank Street (night) _____ Source height = 1.50 m Barrier height for grazing incidence _____ Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Height (m) ! Barrier Top (m) -----1.50 ! 20.55 ! 10.44 ! 10.44 ROAD (0.00 + 37.69 + 0.00) = 37.69 dBAAnglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -90 3 0.00 62.10 0.00 -5.14 -2.87 0.00 0.00 -16.40 37.69 ______ Segment Leq: 37.69 dBA Total Leq All Segments: 49.60 dBA TOTAL Leg FROM ALL SOURCES (DAY): 57.19 (NIGHT): 49.60 #

NORMAL REPORT Date: 26-04-2018 11:01:33 STAMSON 5.0

MINISTRY OF ENVIRONMENT AND ENERGY / NOISE ASSESSMENT

Filename: r10.te Time Period: Day/Night 16/8 hours

Description:

Road data, segment # 1: Bank Street (day/night) _____ Car traffic volume : 24288/2112 veh/TimePeriod *

Medium truck volume: 1932/168 veh/TimePeriod * Heavy truck volume : 1380/120 veh/TimePeriod *

Posted speed limit : 40 km/h Road gradient 0 %

Road pavement : 1 (Typical asphalt or concrete)

* Refers to calculated road volumes based on the following input:

24 hr Traffic Volume (AADT or SADT): 30000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00
Heavy Truck % of Total Volume : 5.00
Day (16 hrs) % of Total Volume : 92.00

Data for Segment # 1: Bank Street (day/night)

Angle1 Angle2 : -90.00 deg 90.00 deg : 0 Wood depth (No woods.)

No of house rows : 0 / 0

2 (Reflective ground surface) Surface

Receiver source distance : 26.00 / 26.00 m Receiver height : 20.55 / 20.55 m

: (Flat/gentle slope; with barrier) Topography 2

: -90.00 deg Angle2 : 90.00 deg : 19.05 m Barrier angle1

Barrier height

Barrier receiver distance : 3.00 / 3.00 m

Source elevation : 0.00 mReceiver elevation : 0.00 m
Barrier elevation : 0.00 m Reference angle : 0.00

Road data, segment # 2: Fifth Avenue (day/night) _____ Car traffic volume : 6477/563 veh/TimePeriod * Medium truck volume : 515/45 veh/TimePeriod *
Heavy truck volume : 368/32 veh/TimePeriod * Posted speed limit : 40 km/h 0 % 1 (Typical asphalt or concrete) Road gradient : Road pavement : * Refers to calculated road volumes based on the following input: 24 hr Traffic Volume (AADT or SADT): 8000 Percentage of Annual Growth : 0.00 Number of Years of Growth : 0.00 Medium Truck % of Total Volume : 7.00 Heavy Truck % of Total Volume : 5.00 Day (16 hrs) % of Total Volume : 92.00 Data for Segment # 2: Fifth Avenue (day/night) _____ Angle1 Angle2 : -90.00 deg 12.00 deg : 0 Wood depth (No woods.) No of house rows : 0 / 0 : 2 Surface (Reflective ground surface) Receiver source distance : 55.00 / 55.00 m
Receiver height : 20.55 / 20.55 m : 2 (Flat/gentle slope; with barrier) Topography : -90.00 deg Angle2 : 12.00 deg : 19.05 m Barrier angle1 Barrier height Barrier receiver distance : 41.00 / 41.00 m Source elevation : 0.00 m

Peceiver elevation : 0.00 m Receiver elevation : 0.00
Barrier elevation : 0.00
Reference angle : 0.00 : 0.00 m


```
Road data, segment # 3: Fifth Avenue (day/night)
_____
Car traffic volume : 6477/563 veh/TimePeriod *
Medium truck volume : 515/45 veh/TimePeriod * Heavy truck volume : 368/32 veh/TimePeriod *
Posted speed limit : 40 km/h
                    0 %
Road gradient :
                   1 (Typical asphalt or concrete)
Road pavement
               :
* Refers to calculated road volumes based on the following input:
   24 hr Traffic Volume (AADT or SADT):
                                   8000
   Percentage of Annual Growth : 0.00
   Number of Years of Growth
   Medium Truck % of Total Volume
                               : 7.00
   Heavy Truck % of Total Volume
   Day (16 hrs) % of Total Volume : 92.00
Data for Segment # 3: Fifth Avenue (day/night)
_____
               : 12.00 deg 90.00 deg
Angle1 Angle2
                    :
Wood depth
                        0
                                (No woods.)
                    : 0 / 0
: 2
No of house rows
Surface
                                 (Reflective ground surface)
Receiver source distance : 55.00 / 55.00 m
Receiver height : 20.55 / 20.55 m
Topography
                    :
                        2 (Flat/gentle slope; with barrier)
              : 12.00 deg Angle2 : 90.00 deg
: 8.00 m
Barrier angle1
Barrier height
Barrier receiver distance : 38.00 / 38.00 m
Source elevation : 0.00 \text{ m} Receiver elevation : 0.00 \text{ m}
Receiver elevation

Barrier elevation : 0.00 m

Poforonce angle : 0.00
Receiver elevation
Results segment # 1: Bank Street (day)
_____
Source height = 1.50 m
Barrier height for grazing incidence
_____
Source ! Receiver ! Barrier ! Elevation of
Height (m) ! Height (m) ! Height (m) ! Barrier Top (m)
_____
     1.50 ! 20.55 ! 18.35 !
                                        18.35
ROAD (0.00 + 60.83 + 0.00) = 60.83 dBA
Angle1 Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq
______
  -90 90 0.00 69.70 0.00 -2.39 0.00 0.00 0.00 -6.48 60.83
Segment Leq: 60.83 dBA
```


Results segment # 2: Fifth Avenue (day) ______ Source height = 1.50 m Barrier height for grazing incidence _____ Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Height (m) ! Barrier Top (m) 1.50 ! 20.55 ! 6.35 ! 6.35 ROAD (0.00 + 37.69 + 0.00) = 37.69 dBAAnglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -90 12 0.00 63.96 0.00 -5.64 -2.47 0.00 0.00 -18.16 37.69 Segment Leq: 37.69 dBA Results segment # 3: Fifth Avenue (day) _____ Source height = 1.50 m Barrier height for grazing incidence ______ Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Height (m) ! Barrier Top (m) -----1.50 ! 20.55 ! 7.38 ! 7.38 ROAD (0.00 + 49.29 + 0.00) = 49.29 dBAAnglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ 12 90 0.00 63.96 0.00 -5.64 -3.63 0.00 0.00 -5.40 49.29 Segment Leq: 49.29 dBA Total Leq All Segments: 61.14 dBA #

Results segment # 1: Bank Street (night) Source height = 1.50 m Barrier height for grazing incidence _____ Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Height (m) ! Barrier Top (m) -----1.50 ! 20.55 ! 18.35 ! ROAD (0.00 + 53.23 + 0.00) = 53.23 dBAAnglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq -90 90 0.00 62.10 0.00 -2.39 0.00 0.00 0.00 -6.48 53.23 ______ Segment Leq: 53.23 dBA Results segment # 2: Fifth Avenue (night) ______ Source height = 1.50 m Barrier height for grazing incidence Source ! Receiver ! Barrier ! Elevation of Height (m) ! Height (m) ! Height (m) ! Barrier Top (m) -----1.50 ! 20.55 ! 6.35 ! 6.35 ROAD (0.00 + 30.10 + 0.00) = 30.10 dBAAnglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq ______ -90 12 0.00 56.36 0.00 -5.64 -2.47 0.00 0.00 -18.16 30.10 ______ Segment Leq: 30.10 dBA #

Minto Communities - Canada

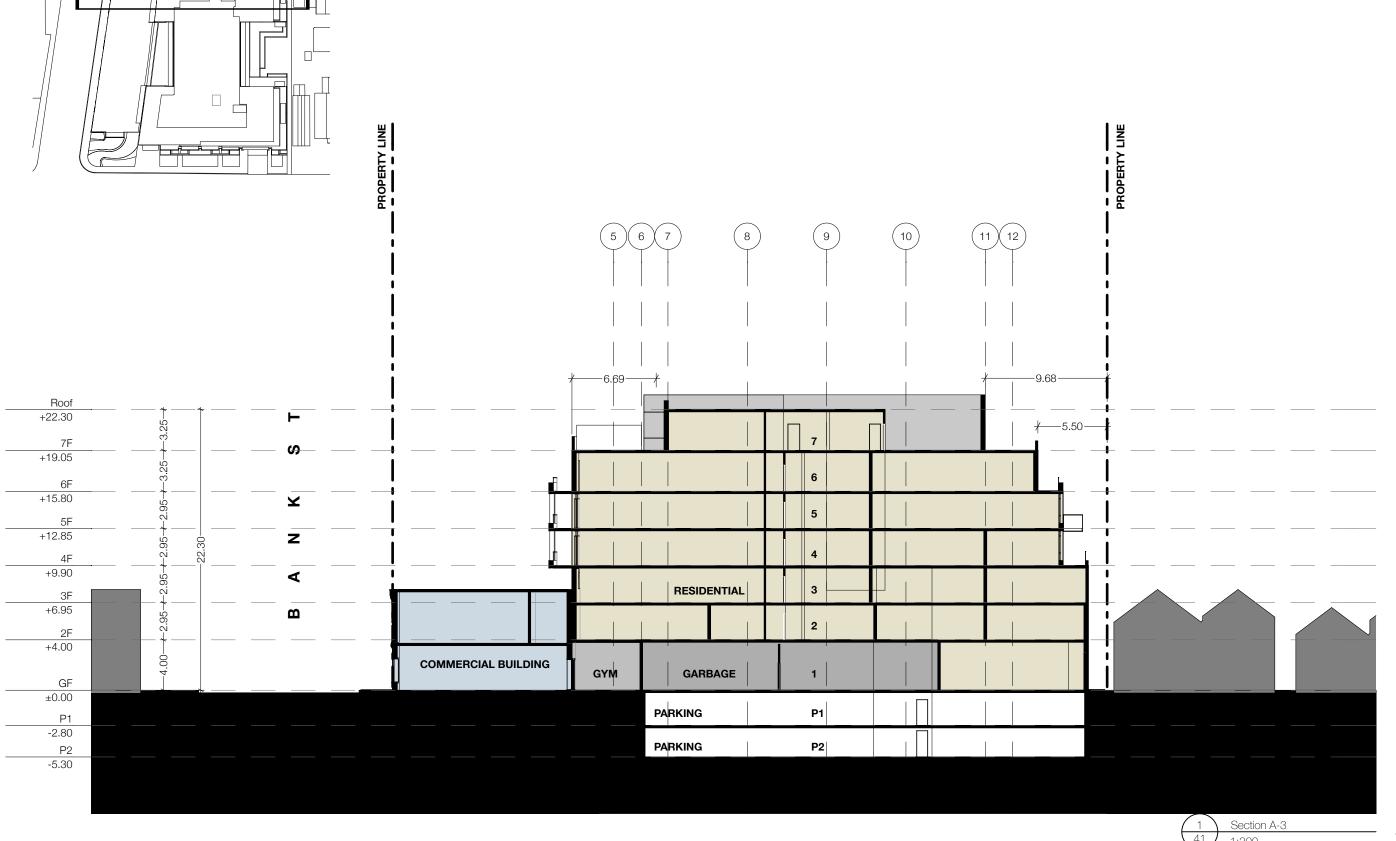
Results segment # 3: Fifth Avenue (night)

Source height = 1.50 m

Barrier height for grazing incidence

ROAD (0.00 + 41.69 + 0.00) = 41.69 dBA

Anglel Angle2 Alpha RefLeq P.Adj D.Adj F.Adj W.Adj H.Adj B.Adj SubLeq


12 90 0.00 56.36 0.00 -5.64 -3.63 0.00 0.00 -5.40 41.69

Segment Leq: 41.69 dBA

Total Leq All Segments: 53.54 dBA

TOTAL Leq FROM ALL SOURCES (DAY): 61.14

(NIGHT): 53.54

660R College St [Rear Lane] Toronto ON M6G 1B8 TACT Architecture Inc. www.tactarchitecture.com

Section A-3

99 Fifth Avenue Ottawa

Thursday, May 3, 2018

