

Richcraft 879 River Road TIA Forecasting and Strategy Report

Richcraft 879 River Road

TIA Forecasting and Strategy Report

prepared for: Richcraft Homes 2280 St Laurent Boulevard, Suite 201 Ottawa, Ontario K1G 4K1

March 12, 2018

476606-01000

Table of Contents

 SCREENING FORM DESCRIPTION OF PROPOSED DEVELOPMENT 	
2.1. PROPOSED DEVELOPMENT	
3. EXISTING CONDITIONS	
3.1. AREA ROAD NETWORK	
3.2. PEDESTRIAN/CYCLING NETWORK	
3.3. TRANSIT NETWORK3.4. EXISTING STUDY AREA INTERSECTION	
3.5. EXISTING INTERSECTION OPERATIONS	
3.6. EXISTING ROAD SAFETY CONDITIONS	
4. PLANNED CONDITIONS	5
4.1. PLANNED STUDY AREA TRANSPORTATION NETWORK CH	IANGES
4.2. OTHER AREA DEVELOPMENTS	5
4.2.1. Riverside South Cdp	5
· · ·	e South Phase 158
, , , , , , , , , , , , , , , , , , ,	
 STUDY AREA	
5.1. TRANSIT	
5.2. NETWORK CONCEPT	
5.3. INTERSECTION DESIGN	
6. TIME PERIODS	11
 HME FERIODS HORIZON YEARS 	
8. EXEMPTIONS REVIEW	
9. DEVELOPMENT GENERATED TRAVEL DEMAND	
9.1. TRIP GENERATION	
9.1.1. Trip Generation	
9.1.2. Mode Shares	
9.2. TRIP DISTRIBUTION	
9.3. TRIP ASSIGNMENT	
10. BACKGROUND NETWORK TRAVEL DEMANDS	
10.1. TRANSPORTATION NETWORK PLANS	
10.2.1. Projected Background 2020 Operations	
10.2.2. Projected Background 2025 Operations	

10.3	3.	OTHER DEVELOPMENTS	.17
		AND RATIONALIZATION	
12.1 12.2		DESIGN FOR SUSTAINABLE MODES NEW STREET NETWORKS	
		IDARY STREET DESIGN SS INTERSECTION DESIGN	
14.2 14.2 14.3	2.	LOCATION AND DESIGN OF ACCESS INTERSECTION CONTROL INTERSECTION DESIGN	.19
1	4.3.1. 4.3.2.	Projected Total 2025 Conditions	.21
15. 15.2 15.3	L. 2.	SPORTATION DEMAND MANAGEMENT CONTEXT FOR TDM NEED AND OPPORTUNITY TDM PROGRAM	22 22
16.		SIT	
16.1	L.	ROUTE CAPACITY	.22
17.	SUM	MARY OF IMPROVEMENTS INDICATED AND MODIFICATION OPTIONS	.22

List of Figures

Figure 1: Local Context	1
Figure 1: Local Context Figure 2: Site Plan	2
Figure 3: Area Transit Network Figure 4: Existing Peak Hour Traffic Volumes	3
Figure 4: Existing Peak Hour Traffic Volumes	4
Figure 5: Riverside South CDP - Land Use Plan	
Figure 6: Riverside South CDP – Road Hierarchy	7
Figure 7: Claridge Phase 2	8
Figure 8: RSDC Phase 15	9
Figure 8: RSDC Phase 15 Figure 9: Cardel Ironwood	9
Figure 10: Richcraft PUD 240 Poplin Street	10
Figure 11: Claridge 76 Nutting Crescent	10
Figure 12: Shoppers Drug Mart 671 River Road	11
Figure 13: Site Trip Generated Trip Volumes	14
Figure 14: Projected Background 2020 Traffic Volumes	15
Figure 15: Projected Background 2025 Traffic Volumes	16
Figure 16: Claridge Homes Riverside South Phase 2 Traffic Volumes (2021)	17
Figure 17: Riverside South Development Corporation Riverside South Phase 15 Traffic Volumes (2025)	17
Figure 18: Projected Total 2020 Traffic Volumes	20
Figure 19: Projected Total 2025 Traffic Volumes	21

List of Tables

Table 1: Exemptions Review Summary

Table 2: Additional Recommended Exemptions Summary	12
Table 3: 2009 TRANS Trip Generation Rate	12
Table 4: TRANS Vehicle Trip Generation	13
Table 5: Total Site Trip Generation	13
Table 6: Projected Background 2020 Performance at Study Area Intersection	15
Table 7: Projected Background 2025 Performance at Study Area Intersection	16
Table 8: MMLOS Targets for Boundary Streets	18
Table 9: Minimum Required Elements for MMLOS Analysis	18
Table 10: Projected Total 2020 Performance at Study Area Intersection	20
Table 11: Projected Total 2025 Performance at Study Area Intersection	21

LIST OF APPENDICES

APPENDIX A – Screening Form and City Response

APPENDIX B – Traffic Data

APPENDIX C - Collision Data

APPENDIX D - Background 2020 SYNCHRO Analysis

APPENDIX E - Projected 2020 and 2025 SYNCHRO Analysis

APPENDIX F – TDM Checklist

TIA Forecasting and Strategy Report

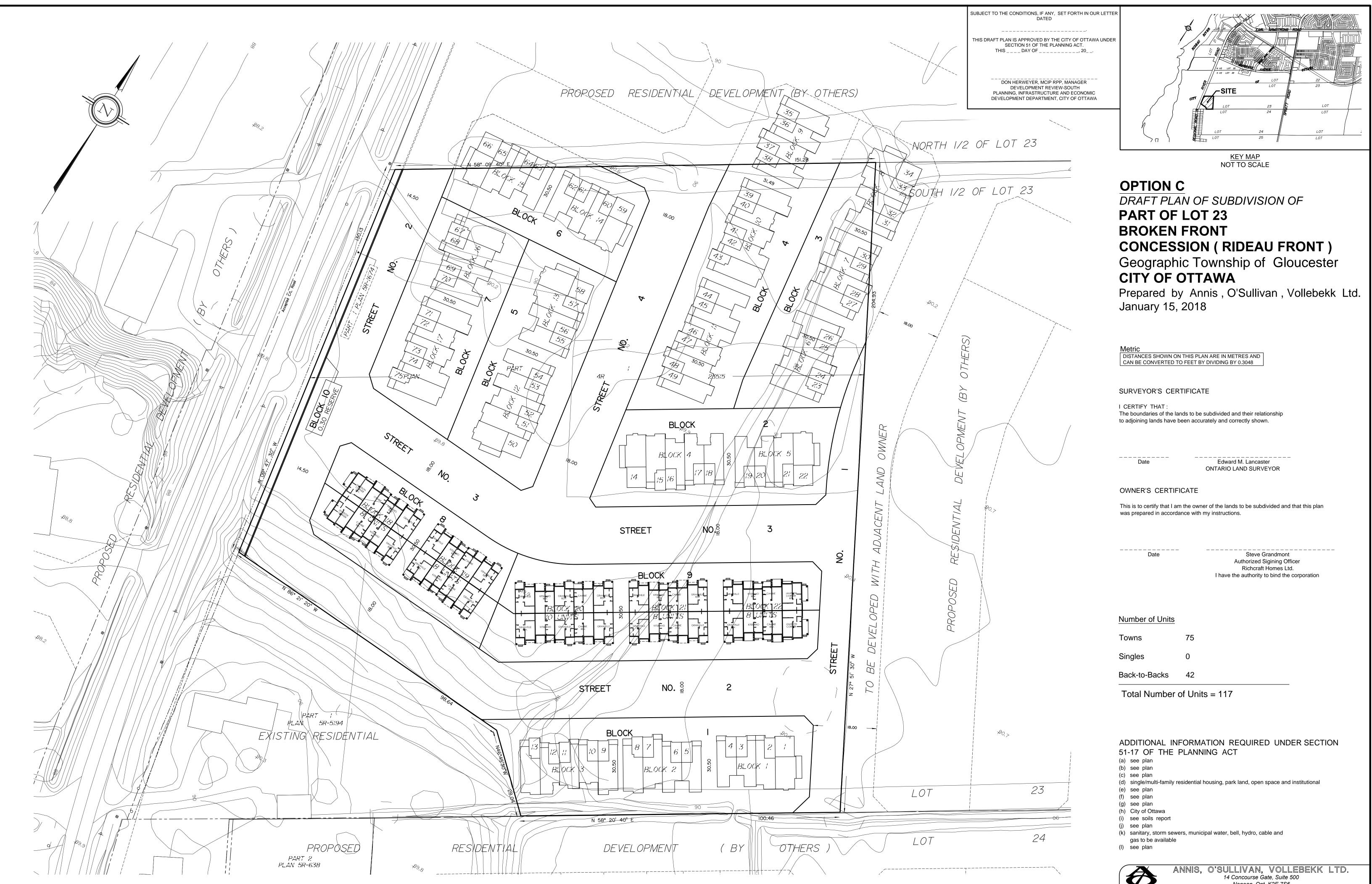
1. SCREENING FORM

The screening form was provided to the City during the pre-consultation meeting on December 20th, 2017 and identified the need for a Transportation Impact Assessment (TIA). The Trip Generation trigger was met based on the unit count of 112 mixed units of single-family homes and townhomes. The unit count has been updated to 117 townhome units to reflect site plan.

The Screening and Scoping Report was submitted on January 24, 2018 to the City of Ottawa Transportation Project Manager (TPM). The report concluded with recommending the exemptions include Module 4.1 Development Design – Element 4.1.3 Circulation and Access, Module 4.2 Parking, Module 4.4 Access Intersections, Module 4.6 Neighbourhood Traffic Management – Element 4.6.1 Adjacent Neighbourhoods, Module 4.7 Transit – Element 4.7.2 Transit Priority, Module 4.8, and Module 4.9 Intersection Design. No response has been received from the TPM at the time of the submission of this report.

The Screening Form and correspondence is provided in Appendix A.

2. DESCRIPTION OF PROPOSED DEVELOPMENT


2.1. PROPOSED DEVELOPMENT

The proposed development at 879 River Road is a greenfield development, forming part of the Riverside South Community. The site's local context is illustrated in Figure 1.

The development will include approximately 117 residential units. The development will ultimately be accessed through the future surrounding development, but potentially can be access by a temporary access on River Road. The site plan is illustrated in Figure 2. The estimated date of occupancy is 2019 with one phase of development.

Figure 1: Local Context

1

Ê Ontario Land Surveyors

1

Nepean, Ont. K2E 7S6 Phone: (613) 727-0850 / Fax: (613) 727-1079 Email: Nepean@aovltd.com

Job No. 18577-17 Richcraft PtLt23 C BF GL DPS D2

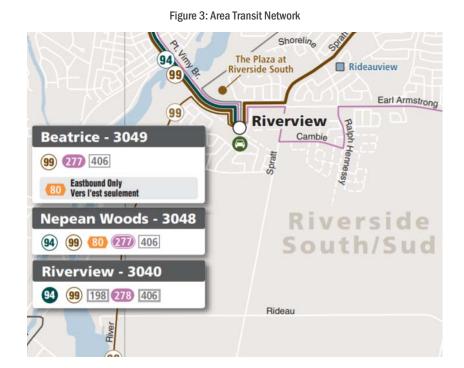
3. EXISTING CONDITIONS

3.1. AREA ROAD NETWORK

River Road is a north-south arterial, which extends from Boundary Road in the south (where it continues as Rideau River Road) to Riverside Drive in the north. Within the study area, River Road has a two-lane undivided rural cross section with auxiliary turn lanes provided at major intersections. The posted speed limit within the study area is 70 km/h, transitioning to 80 km/h north of the proposed site and to 60 km/h at Earl Armstrong Road.

Earl Armstrong Road is an east-west arterial, which extends from River Road in the east to High Road in the west. Within the study area, Riverside Drive has a four-lane divided cross section with auxiliary turn lanes provided at major intersections. The posted speed limit within the study area is 70 km/h.

3.2. PEDESTRIAN/CYCLING NETWORK


Sidewalk facilities are provided along both sides of Earl Armstrong Road and River Road has paved/gravel shoulders. Bicycle facilities are currently provided in the form of bike lanes on Earl Armstrong Road along both sides of the road.

Per the City's Cycling Plan, River Road and Earl Armstrong Road are all classified as "Spine Routes".

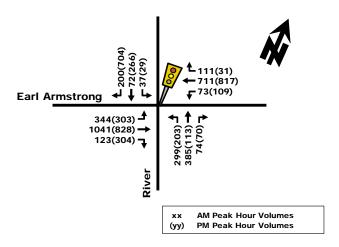
3.3. TRANSIT NETWORK

Transit service within the vicinity of the site is currently provided by OC Transpo Peak Route #99 which provides peak hour service in the morning and afternoon. Bus stops for Route #99 are located along River Road at the River Road/Nicolls Island Road and River Road/Rideau Road intersections, approximately 190m south of the proposed development.

Rapid transit service (in the form of BRT) is also provided via Riverview Station, located approximately 1.5 kilometres north of the proposed development, which provides access to multiple routes along the Transitway.

Retrieved on Jan. 19, 2018, http://www.octranspo.com

3.4. EXISTING STUDY AREA INTERSECTION


River Road and Earl Armstrong Road

River Road at Earl Armstrong Road is a signalized intersection. The cross-section of River Road consists of dual left turn lanes, two through lanes and a right turn lane on all approaches, including transit lanes in the east-west directions.

3.5. EXISTING INTERSECTION OPERATIONS

The existing peak hour traffic volumes (illustrated in Figure 4 below) were collected from City of Ottawa turning movement counts, which were completed in July 2016. The resulting peak hour and full traffic volume counts are included as Appendix B.

3.6. EXISTING ROAD SAFETY CONDITIONS

Collision history for study area roads (2014 to 2016, inclusive) was obtained from the City of Ottawa, and the majority (90%) of collisions involved property damage, and the remaining (10%) collisions involved non-fatal injuries indicating low impact speeds.

Over the three-year period, the types of collisions cited by police include: single vehicle (other) (40% or 4 collisions), rear end and approaching (20% of 2 collisions each), and angle and other (10% or 1 collision each)

A standard unit of measure for assessing collisions at an intersection is based on the number collisions per million entering vehicles (MEV). At intersection and road segment within the study area, reported collisions per MEV is as follows:

- 0.19 collisions/MEV at the River Road and Earl Armstrong Road intersection;
- 0.17 collisions/MEV on River Road between Earl Armstrong Road and Nicolls Island Road; and
- 0.09 collisions/MEV at the River Road and Nicolls Road intersection.

With respect to the subject site, there does not appear to be any prevailing safety issues along the River Road. The source collision data as provided by the City of Ottawa and related analysis is included as Appendix C.

4. PLANNED CONDITIONS

4.1. PLANNED STUDY AREA TRANSPORTATION NETWORK CHANGES

Identified on the 'Affordable Network' map within the TMP is the widening of Earl Armstrong Road from 2-lanes to 4-lanes between Limebank Road and Bowesville Road and on the 'Network Concept', extending Earl Armstrong Road as a 2-lane road between Albion Road to Hawthorne Road. Additionally, on the 'Network Concept' map, Limebank Road is to be widened from 2-lanes to 4-lanes between Mitch Owens Road and Earl Armstrong Road.

Rapid transit measures within the study area include at-grade bus rapid transit (BRT) between Southwest Transitway and Riverside South Town Center on the 'Transit Network Concept' map along Earl Armstrong Road and the extension of existing O-train to Bowesville/Riverside South Station identified on the 'Transit Affordable Network' map.

Although not identified in the TMP, Spratt Road is planned to be extended south of Earl Armstrong Road to Boundary Road. It will be expanded to a 4-lane cross section with sidewalks and stop controls where warranted.

4.2. OTHER AREA DEVELOPMENTS

4.2.1. RIVERSIDE SOUTH CDP

In 2005, Council approved the Riverside South CDP to direct the long-term development of the community and provide guidelines for City staff for decision-making regarding land use planning that would be consistent with the community's priorities for the future. The Plan was amended in 2010, and again in June 2016.

The most recent Land Use Plan for Riverside South is provided as Figure 5, and the development forecast at full build-out is as follows:

- Population 54,788 people (compared to 13,779 existing)
- Dwelling units 20,469 homes
- Employment 17,703 jobs within the designated employment areas, plus 9,960 more jobs within the Combined mixed-use, commercial, institutional areas.

According to the CDP, the road network for the Riverside South Community is based on a grid of east-west and north-south collector roads, while two arterial roads, namely Earl Armstrong Road and Limebank Road, serve as the axis for the network. The road hierarchy is shown as Figure 6. The following modifications to the road network are suggested:

- Riverside Drive will be widened to six lanes from Limebank Road north to Hunt Club Road in the medium term, and in conjunction with River Road, which will remain a two-lane scenic road, will act as a north-south corridor that will connect Riverside South to the Vimy Memorial Bridge.
- Earl Armstrong Road has been upgraded to accommodate four lanes of traffic, and will be extended east to Bank Street. It is connected to Strandherd Drive, west of the Rideau River, via the Vimy Memorial Bridge.

- Limebank Road has been widened in part to four lanes from south of Earl Armstrong Road to its intersection with Riverside Drive/River Road north of the community and is to become the main north-south arterial linking Riverside South to the greater Ottawa area.
- Spratt Road acts as a community collector linking the existing neighbourhoods in the northwest quadrant to the future development areas to the south and east.
- Other future major and minor collectors within the new community will extend into other neighbourhoods to provide links to the arterial system.

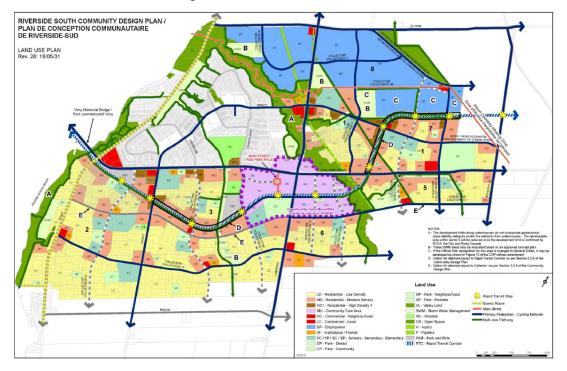
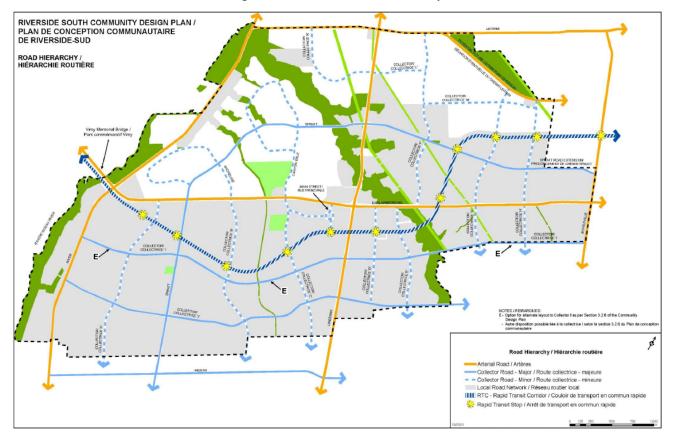
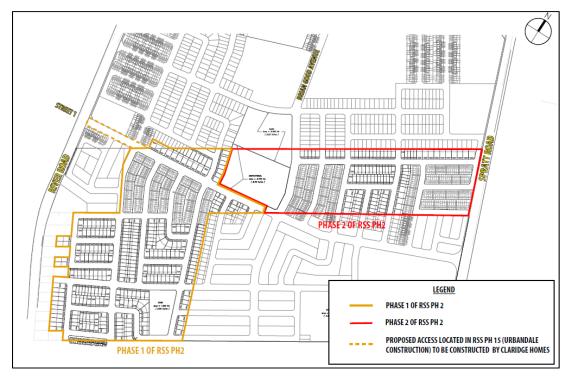
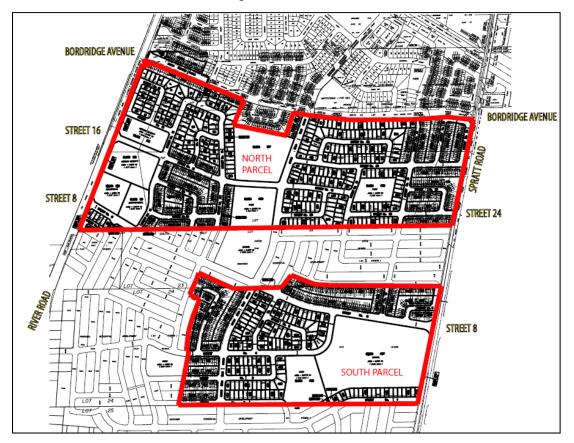



Figure 5: Riverside South CDP - Land Use Plan


Figure 6: Riverside South CDP – Road Hierarchy

4.2.2. CLARIDGE HOMES RIVERSIDE SOUTH PHASE 2

Claridge Phase 2 is located 4720 Spratt Road and 807 River Road, and is proposed to include a total of 755 residential units consisting of 505 single family homes and 250 townhomes. The proposed development borders the proposed 879 River Road lands on the east and south sides, sharing two internal roadways for access. It is estimated that west phase of the development will be completed by 2021 and east phase will be completed by 2026. Figure 7 illustrates the proposed development.


Figure 7: Claridge Phase 2

4.2.3. RIVERSIDE SOUTH DEVELOPMENT CORPORATION RIVERSIDE SOUTH PHASE 15

The Phase 15 lands are divided into two parcels at 4650 and 4800 Spratt Road. The north parcel is directly north of the proposed 879 River Road lands, and the south parcel is located to the southeast. The proposed development will include approximately 1,446 residential units, comprised of 647 single family homes, 639 townhomes and 160 apartment units. Estimated to be complete by 2018, the development has not been initiated. Figure 8 illustrates the Phase 15 lands.

Figure 8: RSDC Phase 15

4.2.4. CARDEL IRONWOOD (673 RIDEAU ROAD)

The Ironwood development is located at 673 Rideau Road, 200m north of Rideau Road between Spratt Road and the existing homes along River Road. The development is planned for 494 residential units, consisting of 234 single family homes and 260 townhomes. It is estimated that the development will begin in 2019 and slowly build out until 2029. Figure 9

4.2.5. RICHCRAFT PUD (240 POPLIN STREET)

Richcraft's planned unit development (PUD) is located on the south side of Poplin Street, west of Spratt Road. The development will include 94 residential condominium units. The development is currently being constructed and is illustrated in Figure 10.

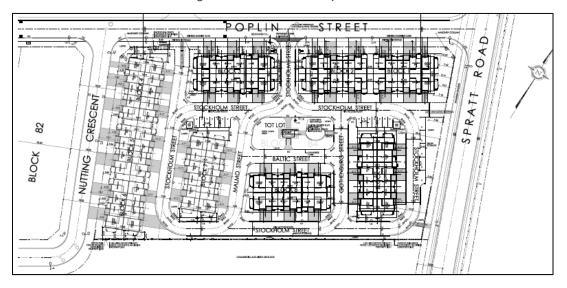
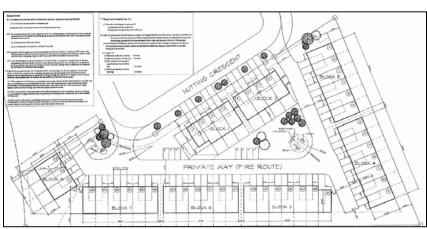
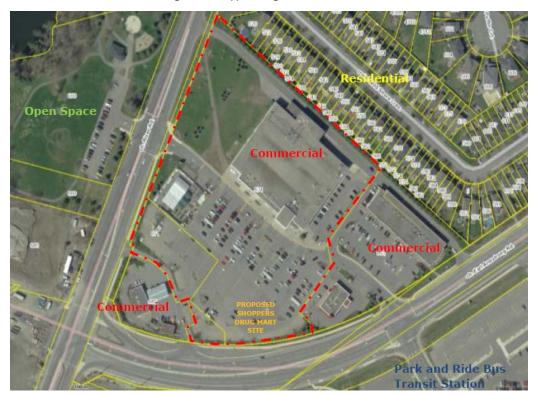



Figure 10: Richcraft PUD 240 Poplin Street

4.2.6. CLARIDGE HOMES (76 NUTTING CRESCENT)

The proposed development will include 43 townhomes with an empty parcel between Brian Good Avenue and Spratt Road. Figure 11 illustrates the site plan. Prepared in 2014, the development has not been initiated.



4.2.7. SHOPPERS DRUG MART (671 RIVER ROAD)

A Shoppers Drug Mart is proposed on the northeast quadrant of the River Road and Earl Armstrong Road intersection, and would include approximately 1,448 m² of GFA. No traffic study has been prepared for the development. Figure 12 illustrates the location of the new building within the existing development.

Figure 12: Shoppers Drug Mart 671 River Road

5. STUDY AREA

5.1. TRANSIT

As mentioned previously, transit is served within the area with bus stops for Route #99 located approximately 190m from the site.

5.2. NETWORK CONCEPT

The Rideau River screenline, SL-42, is in close proximity to the proposed development, capturing east-west traffic on earl Armstrong Road and Bridge Street. It is not anticipated that this development will have significant impacts on this screenline.

5.3. INTERSECTION DESIGN

The proposed site will access the adjacent road network through the surrounding developments. A temporary access may be required until the surrounding development proceeds. The Strategy Report will review and document the access requirements if it is required.

6. TIME PERIODS

The weekday morning and afternoon peak hours are considered the appropriate time periods for operational analysis for this residential and retail development.

7. HORIZON YEARS

For the purposes of the operational analysis it is assumed that the subject development will be fully built and occupied by 2020. This will necessitate the analysis of 2020 and 2025 horizons.

8. EXEMPTIONS REVIEW

Based on the foregoing analysis and review of the existing conditions in Step 2, the Scoping Report, it is recommended that, if required, any future work within the context of this TIA excludes the following modules and elements summarized in Table 1.

Table 1: Exemptions Review Summary

Module	Element	Exemption Consideration
4.1 Development Design	4.1.3 Circulation and Access	Not required for plans of subdivision
4.2 Parking	All Elements	Not required for plans of subdivision
4.6 Neighbourhood Traffic Management	4.6.1 Adjacent Neighbourhoods	Will utilize adjacent developments for access to River Road. Not anticipated to exceed ATM thresholds.
4.8 Review of Network Concept	-	Will not generate 200 persons trips

In addition to the above recommendations of the Exemptions Review, the following exemptions are also proposed and summarized in Table 2.

Module	Element	Exemption Consideration				
4.4 Access Intersections	All Elements	Extension of surrounding planned community and no specific access intersection is proposed as part of the development.				
		No development driveways included within proposed lands, and will access transit services from adjacent development collector roads and River Road.				
4.9 Intersection Design	-	No specific access intersection is proposed as part of the development.				

9. DEVELOPMENT GENERATED TRAVEL DEMAND

9.1. TRIP GENERATION

9.1.1. TRIP GENERATION

Appropriate trip generation rate for the proposed development consisting of 124 townhome units was obtained from the City's 2009 TRANS Trip Generation – Residential Trip Rates. These rates are summarized in Table 3.

Land Use		Trip Rates					
		AM Peak	PM Peak				
Townhomes		T = 0.50(du)	T = 0.51(du)				
Notes: T = Average Vehicle Trip Ends du = Dwelling units							

Table 3: 2009	TRANS Trip	Generation	Rate
---------------	-------------------	------------	------

Using the TRANS Trip Generation rate, the total amount of vehicle trips generated by the proposed townhome units were projected and the results are summarized in Table 4.

Law dillar	Data Gauna		AM	Peak (ve	h/h)	PM Peak (veh/h)		
Land Use	Data Source	Units	In Out		Total	In	Out	Total
			22%	78%		62%	38%	
Townhomes	TRANS	124 du	13	49	62	39	24	63
		Total	13	49	62	39	24	63

Table 4: TRANS Vehicle Trip Generation

As shown in Table 4, a total of 62 and 63 veh/h are projected to travel to/from the proposed development during the weekday morning and afternoon peak hours.

9.1.2. MODE SHARES

Using the TRANS Auto Trips projected in Table 4 and the modal share percentages from the 2011 NCR Household Origin – Destination Survey and Table 3.13 of the TRANS Trip Generation Study, the modal share for the proposed development are summarized in Table 5.

Travel Mode	AM Mode Share	AM Peak (persons/h)			PM Mode Share	PM Peak (persons/h)		
		In	Out	Total	Pivi woue Share	In	Out	Total
Auto Driver	60%	13	49	62	65%	39	24	63
Auto Passenger	15%	4	11	15	15%	10	5	15
Transit	10%	2	8	10	10%	6	4	10
Non-motorized	15%	3	12	15	10%	6	4	10
Total People Trips	100%	22	80	103	100%	61	37	97
Total 'New' Auto Trips		13	49	62		39	24	63

Table	5.	Total	Site	Trin	Generation
Table	υ.	TULAI	SILE	IIIP	Generation

As shown in Table 5, based on the TRANS Trip Generation method, the proposed site is projected to generate approximately 97 to 103 two-way person-trips per hour during the weekday peak hours. The increase in two-way transit trips is estimated to be 10 persons per hour, and the increase in bike/walk trips is approximately 10 to 15 persons per hour.

9.2. TRIP DISTRIBUTION

Traffic distribution was based on the 2011 NCR Household Origin – Destination Survey, existing volume splits at study area intersections and our knowledge of the surrounding area. The resultant distribution is outlined as follows.

- 40% to/from the north via River Road
- 40% to/from the east via River Road and Earl Armstrong
- 10% to/from the west via River Road and Earl Armstrong
- <u>10%</u> to/from the south via River Road
- 100%

9.3. TRIP ASSIGNMENT

New site generated trips were assigned to the Study Area intersections using the above distribution. Figure 13 shows the resulting volume assignment of the new site generated trip used in this analysis.

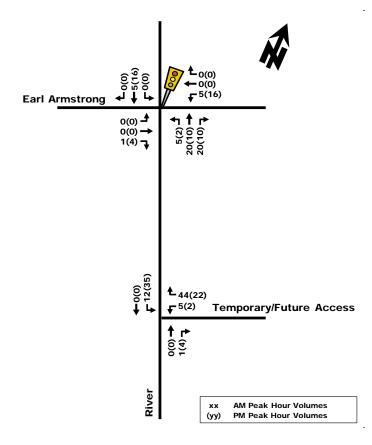


Figure 13: Site Trip Generated Trip Volumes

10.BACKGROUND NETWORK TRAVEL DEMANDS

10.1. TRANSPORTATION NETWORK PLANS

The transportation network changes have been discussed within Section 4.1 and none are anticipated to impact the transportation analysis for this development.

10.2. BACKGROUND GROWTH

The background traffic along River Road and Earl Armstrong Road is expected to increase at a constant rate. The anticipated development of the Riverside South community will be captured by subsequent transportation impact assessments to determine when various improvements are triggered. Given the spike in vehicle demand along Earl Armstrong Road due to the opening of the Vimy Memorial Bridge, a 1% traffic growth rate per annum was assumed for the 2020 and 2025 horizon years. River Road was assumed to have 0% growth at the urban boundary and any future traffic growth along the road corridor will be generated by the development of the adjacent community.

Figure 14 and Figure 15 illustrate the future background traffic volumes for the 2020 and 2025 future background traffic volumes, respectively. Table 6 and Table 7 summarize the future background operations for the 2020 and 2025 future background traffic volumes, respectively.

10.2.1. PROJECTED BACKGROUND 2020 OPERATIONS

The projected background 2020 traffic volumes were derived by superimposing the other study area developments and the background growth rate on the existing traffic volumes. The resulting projected background 2020 traffic volumes are illustrated in Figure 14. Table 6 provides a summary of the projected background 2020 operations at the study area intersections. The SYNCHRO model output of projected background 2020 conditions is provided within Appendix D.

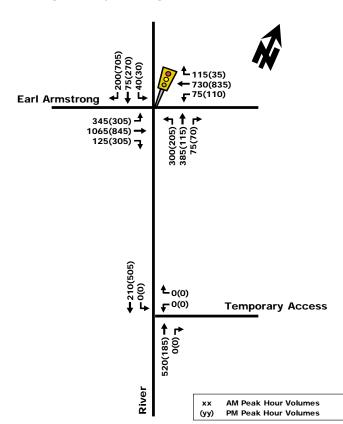


Figure 14: Projected Background 2020 Traffic Volumes

Table 6: Projected Background 2020 Performance at Study Area Intersection

	Weekday AM Peak (PM Peak)										
Intersection	Critical Movement			Intersection 'as a whole'							
	LoS	max. v/c or avg. delay (s)	Movement	Delay (s)	LoS	v/c					
Signalized											
River/Earl Armstrong	F(F)	1.26(1.12)	EBL(EBL)	44.4(55.5)	B(D)	0.64(0.90)					
Note: Analysis of signalized intersec	ctions assur	nes a PHF of 1.0 and a	saturation flow rate of	f 1800 veh/h/lane.		Note: Analysis of signalized intersections assumes a PHF of 1.0 and a saturation flow rate of 1800 veh/h/lane.					

As shown in Table 6, the River/Earl Armstrong intersection, 'as a whole', is projected to operate at acceptable levels of service LoS 'D' or better during both peak hours. The critical movement during both peak hours is the eastbound left-turn and will have a LoS 'F'.

No improvements are required to support the development during the 2020 horizon.

10.2.2. PROJECTED BACKGROUND 2025 OPERATIONS

The projected background 2025 traffic volumes were derived by superimposing the other study area developments and the background growth rate on the existing traffic volumes. The resulting projected background 2025 traffic volumes are illustrated in Figure 15. Table 7 provides a summary of the projected background 2025 operations at the study area intersections. The SYNCHRO model output of projected background 2025 conditions is provided within Appendix D.

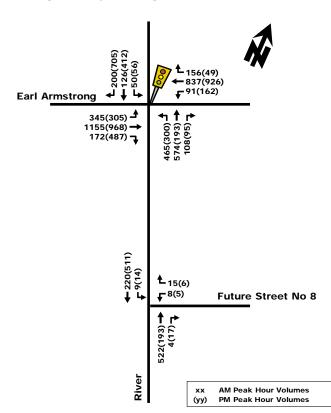


Figure 15: Projected Background 2025 Traffic Volumes

Table 7: Projected Background 2025 Performance at Study Area Intersection

	Weekday AM Peak (PM Peak)						
Intersection	Critical Movement			Intersection 'as a whole'			
	LoS	max. v/c or avg. delay (s)	Movement	Delay (s)	LoS	v/c	
Signalized						·	
River/Earl Armstrong	F(F)	1.26(1.16)	EBL(SBR)	56.5(57.8)	C(E)	0.78(0.94)	
Stop-Controlled							
River/Street No. 8	B(B)	13.0(10.4)	WB(WB)	0.5(0.4)	A(A)	-	
Note: Analysis of signalized interse	ctions assur	nes a PHF of 1.0 and a	saturation flow rate of	f 1800 veh/h/lane.			

As shown in Table 7, the River/Earl Armstrong intersection, 'as a whole', is projected to operate at acceptable levels of service LoS 'E' or better during both peak hours. The critical movement during both peak hours is the eastbound left-turn and will have a LoS 'F'.

The River/Street No. 8 intersection, 'as-a-whole', is projected to operate at acceptable levels of service LoS 'A' during both peak hours. The critical movement during both peaks is noted as the westbound approach and is projected to operate at a LoS 'B'.

No improvements are required to support the development during the 2020 horizon.

10.3. OTHER DEVELOPMENTS

The City of Ottawa's Development Applications webtool has been used to determine if there are proposed developments within the area of influence of the proposed development. These developments have been discussed in greater detail in Section 4.2 and only 3 will have an impact on the study area intersections. Figure 16 and Figure 17 document the traffic impact of the developments on the study area intersections. These have been included in the above background analysis.

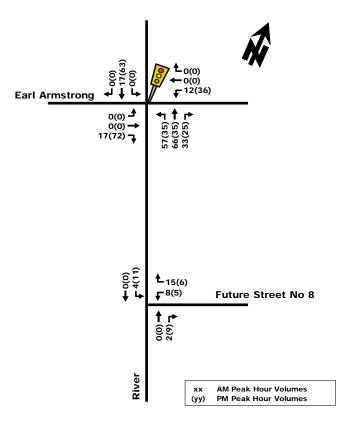


Figure 16: Claridge Homes Riverside South Phase 2 Traffic Volumes (2021)

Figure 17: Riverside South Development Corporation Riverside South Phase 15 Traffic Volumes (2025)

11. DEMAND RATIONALIZATION

The forecasted background volumes do not identify any lane constraints due to capacity and no changes to the trip generation or distribution analysis is required.

12.DEVELOPMENT DESIGN

12.1. DESIGN FOR SUSTAINABLE MODES

Within the proposed site, the 18.0m right-of-ways (local roads) will require sidewalks along a single side of the roadway, and the 14.5m right-of-way window street will require a sidewalk on one side, either within the 14.5m right-of-way or on the adjacent section of River Road. If the pedestrian facility is provided along River Road, connections into the development will be required.

The local road network within the proposed site does not require specific cycling facilities and cyclists are anticipated to operate within the shared vehicle lanes.

No transit stops are located along the frontage of River Street, and existing paved shoulders will serve as connections from the proposed site to nearby transit stops.

12.2. NEW STREET NETWORKS

The street network within the proposed site consists of local roadways. The block lengths are short and traffic calming measures will not likely be required. The potential for narrowed intersections/bulb-outs to located at pedestrian crossings would be a recommended feature to reduce crossing distances.

13.BOUNDARY STREET DESIGN

Given the existing facilities and designations of River Road, the Multi-Modal Level of Service (MMLOS) targets are provided below in Table 8 and the minimum requirements to reach ear target are identified in Table 9.

OP Designation / Policy Area	Road Class	Pedestrian LOS	Bicycle LOS	Transit LOS	Truck LOS	Auto LOS
General Rural Area	River Road (Arterial)	No Target	D	N/A	С	D

Table 9: Minimum Required Elements for MMLOS Analysis

Table 8: MMLOS	Targets for	Boundary Streets
----------------	-------------	------------------

Mode	Required Elements			
	BLOS "C" – segment evaluation			
	Bike lane/shoulder not adjacent to parking:			
Bicycle	 More than 2 travel lanes in each direction without a separating median; 			
	 ≥1.2 m to <1.5 m wide bike lane/shoulder (includes marked buffer and paved gutter width); and 			
	 <70 km/h operating speed. 			
	TkLOS "C" – segment evaluation			
Truck	• With two-lane cross section: curb lane width \leq 3.3 m			

Mode	Required Elements		
Auto	LOS "D" – intersection evaluation		
Auto	• v/c = 0.81 to 0.90		

The existing conditions satisfy all MMLOS requirements with the exception of the operating speed for the BLOS; the posted speed limit is 70 km/h and transitions to 80km/h north of the proposed site. It is recommended that the City review the posted speed limit from Rideau Road to Earl Armstrong Road to exploring options to meet the BLOS for River Road.

14.ACCESS INTERSECTION DESIGN

14.1. LOCATION AND DESIGN OF ACCESS

The proposed site will ultimately access River Road via Street No. 8 within the RSDC Phase 15 lands, which was proposed to be signalized in the IBI's 2015 Transportation Impact Study. If the development proceeds prior to the RSDC lands, a temporary access will be required for the site. It is recommended that the access be located along Street No. 3 within the proposed site plan, at the existing field access and across from driveway to the 782 River Road residence.

14.2. INTERSECTION CONTROL

The ultimate intersection at Street No. 8 (RSDC Phase 15 lands) and River Road has previously been proposed as a minor side street stop-controlled intersection. Similarly, the temporary access for the subject site, as discussed above, is recommended to be a minor side street stop-control.

14.3. INTERSECTION DESIGN

14.3.1. PROJECTED TOTAL 2020 CONDITIONS

The projected total 2020 traffic volumes were derived by superimposing the 2020 site-generated traffic volumes on background 2020 traffic volumes. The resulting total projected 2020 traffic volumes are illustrated in Figure 18. Table 10 provides a summary of the total projected 2020 operations at the study area intersections. The SYNCHRO model output of total projected 2020 conditions is provided within Appendix E.

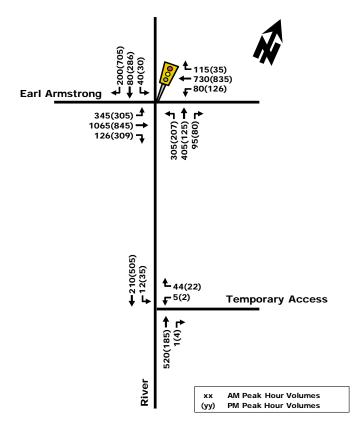


Figure 18: Projected Total 2020 Traffic Volumes

Table 10: Projected Total 2020 Performance at Study Area Intersection

	Weekday AM Peak (PM Peak)						
Intersection	Critical Movement			Intersection 'as a whole'			
	LoS	max. v/c or avg. delay (s)	Movement	Delay (s)	LoS	v/c	
Signalized							
River/Earl Armstrong	F(F)	1.26(1.12)	EBL(EBL)	44.5(55.4)	B(D)	0.65(0.90)	
Stop-Controlled							
River/Temporary Access	B (A)	12.5 (9.7)	WB (WB)	0.9 (0.7)	A (A)	-	
Note: Analysis of signalized intersed	ctions assur	nes a PHF of 1.0 and a	saturation flow rate o	f 1800 veh/h/lane.	•		

As shown in Table 10, the River/Earl Armstrong intersection, 'as a whole', is projected to operate at acceptable levels of service LoS 'D' or better during both peak hours. The critical movement during both peak hours is the eastbound left-turn and will have a LoS 'F' similar to the forecasted background 2020 conditions.

The River/Temporary Access intersection, 'as-a-whole', is projected to operate at acceptable levels of service LoS 'A' during both peak hours. The westbound approach is the critical movement during both peak hours, and is projected to operate at a LoS 'B' or better.

No improvements are required to support the development during the 2020 horizon.

14.3.2. PROJECTED TOTAL 2025 CONDITIONS

The projected total 2025 traffic volumes were derived by superimposing the 2020 site-generated traffic volumes on background 2025 traffic volumes. The resulting total projected 2025 traffic volumes are illustrated in Figure 19. Table 11 provides a summary of the total projected 2025 operations at the study area intersections. The SYNCHRO model output of total projected 2025 conditions is provided within Appendix E.

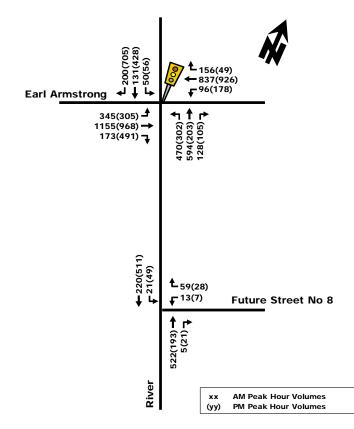


Figure 19: Projected Total 2025 Traffic Volumes

Table 11: Projected Total 2025 Performance at Study Area Intersection

	Weekday AM Peak (PM Peak)						
Intersection	Critical Movement			Intersection 'as a whole'			
	LoS	max. v/c or avg. delay (s)	Movement	Delay (s)	LoS	v/c	
Signalized						·	
River/Earl Armstrong	F(F)	1.26(1.16)	EBL(SBR)	57.1(57.9)	C(E)	0.79(0.94)	
Stop-Controlled							
River/Street No. 8	B(B)	13.4(10.9)	WB(WB)	1.3(1.0)	A(A)	-	
Note: Analysis of signalized intersed	ctions assur	nes a PHF of 1.0 and a	saturation flow rate o	f 1800 veh/h/lane.	•	•	

As shown in Table 11, the River/Earl Armstrong intersection, 'as a whole', is projected to operate at acceptable levels of service LoS 'E' or better during both peak hours. During the AM peak hour, the critical movement is noted as the eastbound left-turn and during the PM peak hour, the critical movement is the southbound right-turn. These movements are projected to operate at a LoS 'F', similar to the 2025 projected background operations.

The River/Street No. 8 intersection, 'as-a-whole', is projected to operate at acceptable levels of service LoS 'A' during both peak hours. The critical movement during both peak hours is noted as the westbound approach and are projected to operate at a LoS 'B'.

No improvements are required to support the development during the 2025 horizon.

15.TRANSPORTATION DEMAND MANAGEMENT

15.1. CONTEXT FOR TDM

As the proposed site is anticipated to access the adjacent road network through future development, notwithstanding a temporary access to River Road during the interim, TDM measures are required to be explored. The notable impact of auto trips from this site are along the internal road network of future development and at the proposed access for Street No. 8 at River Road. Additionally, the low transit modal share in the Riverside South community is an avenue worth exploring to reduce the development demand, and maximize the use of the existing an future transit infrastructure.

15.2. NEED AND OPPORTUNITY

The auto trip focus of the current Riverside South community provides an opportunity for a modal shift towards transit, given the Riverview Park & Ride and the extension of the BRT through the community and to the north. The TDM planning can focus on this modal shift within the proposed community, with incentives to take transit.

It is noted that while the proposed site is located near the urban boundary and would typically generate auto trips to the nearest park & ride, the proximity of Route #99 to the site on River Road provides the opportunity to shift the auto trips to transit trips without the auto trip in-between.

15.3. TDM PROGRAM

The TDM program for the subject site is limited to PRESTO passes and a transit information package to initial residents, subject to developer sales initiatives and programs. The TDM form has been provided in Appendix F.

16.TRANSIT

16.1. ROUTE CAPACITY

Total "new" two-way transit trips are approximately 10 (2 in, 8 out) and 10 (6 in, 4 out) persons/h in the AM and PM peaks, respectively. During the AM peak, the outbound transit trips represent approximately 15% of a single bus (55 passengers), approximately 8% of an articulated bus (75 passengers), and approximately 7% of a double decker bus (90 passengers).

17.SUMMARY OF IMPROVEMENTS INDICATED AND MODIFICATION OPTIONS

Based on the results summarized herein the following conclusions are offered:

Proposed Site

- The proposed development is located at 879 River Road and is a greenfield development, forming part of the Riverside South Community;
- In total, the development will include 117 residential units. The development will ultimately be accessed through the future surrounding development; and

• A temporary access may be provided during the interim along River Road if the development proceeds prior to the development to the north.

Background Conditions

- Overall, the intersection of River/Earl Armstrong will operate acceptable during the projected horizons of 2020 and 2025;
- The critical movement during the background 2020 horizon is the eastbound left-turn and will be over capacity with a LoS 'F'; and
- The critical movements during the background 2025 horizon is the eastbound left-turn during the AM peak and the southbound right-turn during the PM peak. Both movements will be over capacity with a LoS 'F'.

Projected Conditions

- The intersection of River/Earl Armstrong will continue to operate similar to the background conditions during the 2020 and 2025 horizons;
- The interim River/Temporary Access intersection in the 2020 horizon, is projected to operate well as a minor street stop-controlled intersection during both peak periods with a LoS 'A';
- The River/Future Street No. 8 intersection is expected to operate well as a minor street stop-controlled intersection in the 2025 horizon, with a LoS 'A' during both peak periods; and
- No improvements are required to support the development during either the 2020 or 2025 horizons.

Site Plan

• The internal site road network is compromised of local streets. A sidewalk is recommended on one side of the roadway and cycling facilities will be accommodated in shared lanes.

Boundary Streets

• It is recommended that the City review the posted speed limit from Rideau Road to Earl Armstrong Road to exploring options to meet the BLOS for River Road.

Based on the foregoing conclusions, the proposed development is recommended to proceed form a transportation perspective.

Screening Form

City of Ottawa 2017 TIA Guidelines	Date	1/15/2018
TIA Screening Form	Project	Richcraft - 879 River Rd
	Project Number	-
Results of Screening	Yes/No	
Development Satisfies the Trip Generation Trigger	Yes	
Development Satisfies the Location Trigger	No	
Development Satisfies the Safety Trigger	No	

Module 1.1 - Description of Proposed Development					
Municipal Address	879 River Road				
Description of location	BF CON PT LOT 23 RP 5R-1674;PT PART 2				
Land Use	Residential				
Development Size	117 units				
Number of Accesses and Locations	Use of adjacent subdivisions				
Development Phasing	Single Phase				
Buildout Year	2019				
Sketch Plan / Site Plan	See attached				

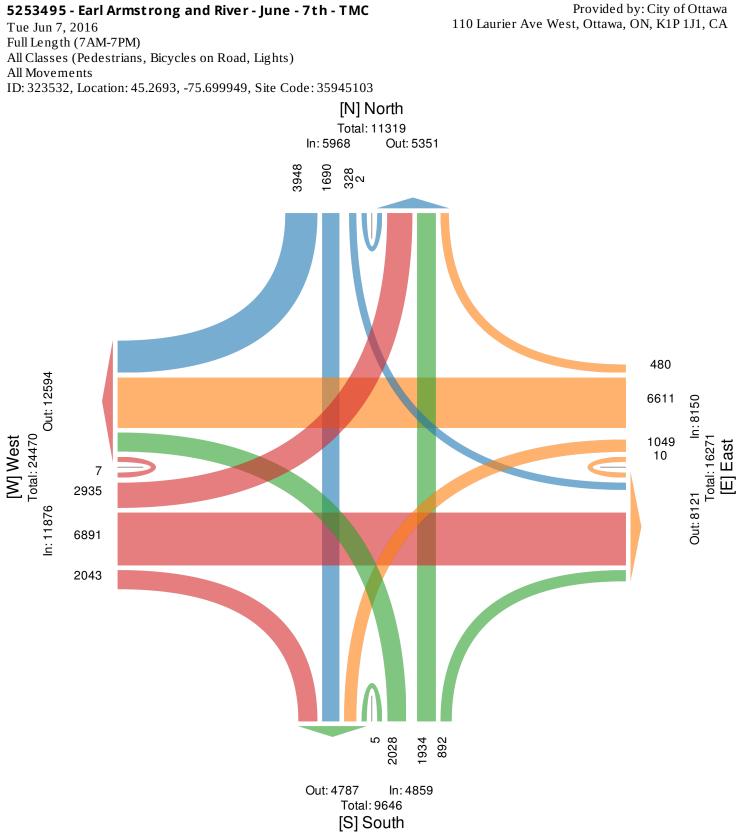
Module 1.2 - Trip Generation Trigger		
Land Use Type	Townhomes or Apartments	
Development Size	117	Units
Trip Generation Trigger Met?	Yes	

Module 1.3 - Location Triggers		
Development Proposes a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit, or Spine Bicycle Networks (See Sheet 3)	No	
Development is in a Design Priority Area (DPA) or Transit- oriented Development (TOD) zone. (See Sheet 3)	No	
Location Trigger Met?	No	

Module 1.4 - Safety Triggers			
Posted Speed Limit on any boundary road	<80	km/h	
Horizontal / Vertical Curvature on a boundary street limits	No		
sight lines at a proposed driveway	NO		
A proposed driveway is within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions) or within auxiliary lanes of an intersection;	No		
A proposed driveway makes use of an existing median break that serves an existing site	No		
There is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development	No		
The development includes a drive-thru facility	No		
Safety Trigger Met?	No		

Parsons PLUS envision more

Traffic Count Data


5253495 - Earl Armstrong and River - June - 7th - TMC

Tue Jun 7, 2016 Full Length (7AM-7PM) All Classes (Pedestrians, Bicycles on Road, Lights) All Movements

ID: 323532, Location: 45.2693, -75.699949, Site Code: 35945103

Leg	North						East						South						West						
Direction	Southb	ound					Westb	ound					Northb	ound					Eastbou	und					
Time	R	Т	L	U	App 1	Ped*	R	Т	L	U	Арр	Ped*	R	Т	L	U	App I	Ped*	R	Т	L	U	App I	₽ed*	Int
2016-06-07																									
7:00AM	171	57	39	0		3	90	653	71	0	814	1	64	399	311	0	774	0	117	1048	333		1499	2	3354
8:00AM	211	86	32	1		2	81	669	86	1	837	6	102	302	248	0	652	2	126	769	387	0	1282	0	3101
9:00AM	205	67	8	0		0	40	441	84	2		0	66	173	176	0	4 15	3	107	424	261	1	793	0	2055
10:00AM	130	84	28	0		4	29	347	70	0	446	4	70	129	129	0	328	4	103	306	199	1	609	3	1625
11:00AM	151	98	25	0		2	25	342	66	0	433	2	70	94	140	0	304	4	117	369	153	0	639	0	1650
12:00PM	223	131	0	1		6	32	370	80	4	486	0	69	142	106	2	319	2	139	405	177	1	722	0	1882
1:00PM	184	102	40	0	326	0	26	325	85	0	436	1	71	133	122	0	326	0	152	358	167	2	679	2	1767
2:00PM	258	142	39	0	439	0	34	436	68	1	539	1	77	89	118	1	285	0	153	424	197	0	774	0	2037
3:00PM	543	225	27	0	795	5	34	716	107	1	858	0	87	107	104	1	299	2	216	673	259	0	1148	0	3100
4:00PM	631	258	29	0	918	3	31	785	104	1	921	0	78	133	206	1	4 18	1	323	867	262	0	1452	3	3709
5:00PM	734	239	34	0	1007	0	33	851	106	0	990	0	61	127	205	0	393	1	286	724	335	0	1345	0	3735
6:00PM	507	201	27	0	735	0	25	676	122	0	823	1	77	106	163	0	346	3	204	524	205	1	934	0	2838
Total	3948	1690	328	2	5968	25	480	6611	1049	10	8150	16	892	1934	2028	5	4859	22	2043	6891	2935	7	11876	10	30853
% Approach	66.2%	28.3%	5.5%	0%	-	-	5.9%	81.1%	12.9%	0.1%	-	-	18.4%	39.8%	41.7%	0.1%	-	-	17.2%	58.0%	24.7%	0.1%	-	-	-
% Total	12.8%	5.5%	1.1%	0%	19.3%	-	1.6%	21.4%	3.4%	0%	26.4%	-	2.9%	6.3%	6.6%	0%	15.7%	-	6.6%	22.3%	9.5%	0% 3	38.5%	-	-
Lights	3948	1690	328	2	5968	-	480	6605	1049	10	8144	-	892	1933	2028	5	4858	-	2043	6864	2933	7	11847	-	30817
% Lights	100%	100%	100%	100%	100%	-	100%	99.9%	100%	100%	99.9%	-	100%	99.9%	100%	100% 1	100.0%	-	100%	99.6%	99.9%	100%	99.8%	-	99.9%
Bicycles on																									
Road	0	0	0	0	0	-	0	6	0	0	6	-	0	1	0	0	1	-	0	27	2	0	29	-	36
% Bicycles			/														/								
on Road	0%	0%	0%	0%	0%	-	0%	0.1%	0%	0%	0.1%	-	0%	0.1%	0%	0%	0%	-	0%	0.4%	0.1%	0%	0.2%	-	0.1%
Pedestrians	-	-	-	-		25	-	-	-	-		16	-	-	-	-		22	-	-	-	-		10	I
% Pedestrians	-	-	-	-	10	00%	-	-	-	-	1	00%	-	-	-	-	10	00%	-	-	-	-	10	00%	

*Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

5253495 - Earl Armstrong and River - June - 7th - TMC

Tue Jun 7, 2016 AM Peak (7:15AM - 8:15AM) All Classes (Pedestrians, Bicycles on Road, Lights) All Movements ID: 323532, Location: 45.2693, -75.699949, Site Code: 35945103

% Pedestrians

100%

--

-

0 3101

2 3472

100%

-

0

0

0

0.995

3467 99.9%

5

0.1%

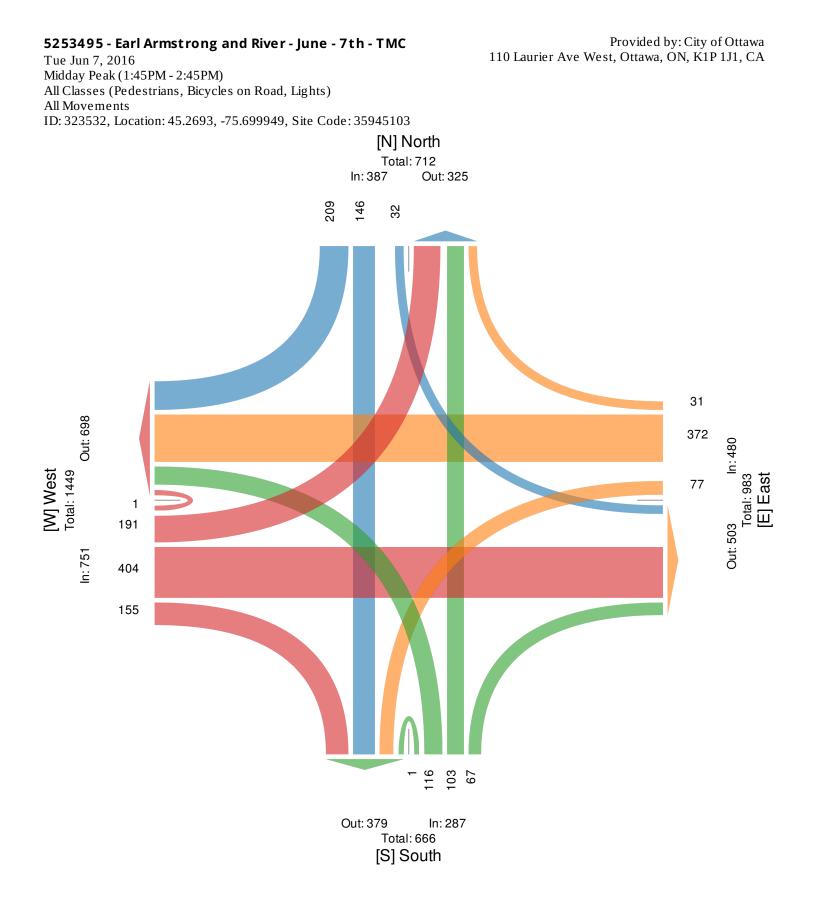
Leg	North						East						South						West						
Dire ction	Southb	ound					Westbo	und					Northb	ound					Eastbo	und					
Time	R	Т	L	U	Арр	Ped*	R	Т	L	U	App P	e d*	R	Т	L	U	App P	ed*	R	Т	L	U	App P	ed*	Int
2016-06-07																									
7:15AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
7:30AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
7:45AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
8:00AM	211	86	32	1	330	2	81	669	86	1	837	6	102	302	248	0	652	2	126	769	387	0	1282	0	310
Total	200	72	37	1	310	3	111	711	73	0	895	2	74	385	299	0	758	1	123	1041	344	1	1509	2	347
% Approach	64.5%	23.2%	11.9%	0.3%	-	-	12.4%	79.4%	8.2% (0%	-	-	9.8%	50.8%	39.4%	0%	-	-	8.2%	69.0%	22.8%	0.1%	-	-	
% Total	5.8%	2.1%	1.1%	0%	8.9%	-	3.2%	20.5%	2.1% (0%	25.8%	-	2.1%	11.1%	8.6%	0%	21.8%	-	3.5% 3	30.0%	9.9%	0%	43.5%	-	
PHF	0.735	0.720	0.771	0.250	0.752	-	0.867	0.936	0.760	-	0.944	-	0.881	0.859	0.813	-	0.857	-	0.809	0.870	0.896	0.250	0.925	-	0.99
Lights	200	72	37	1	310	-	111	710	73	0	894	-	74	385	299	0	758	-	123	1037	344	1	1505	-	346
% Lights	100%	100%	100%	100%	100%	-	100% 9	99.9%	100% (0%	99.9%	-	100%	100%	100%	0%	100%	-	100% 9	99.6%	100%	100%	99.7%	-	99.99
Bicycles on																									
Road	0	0	0	0	0	-	0	1	0	0	1	-	0	0	0	0	0	-	0	4	0	0	4	-	
% Bicycles on Road	0%	0%	0%	0%	0%	-	0%	0.1%	0% (0%	0.1%	-	0%	0%	0%	0%	0%	-	0%	0.4%	0%	0%	0.3%	-	0.19
Pedestrians	-	-	-	-		3	-	-	-	-		2	-	-	-	-		1	-	-	-	-		2	

100%

Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

100%

4 of 8

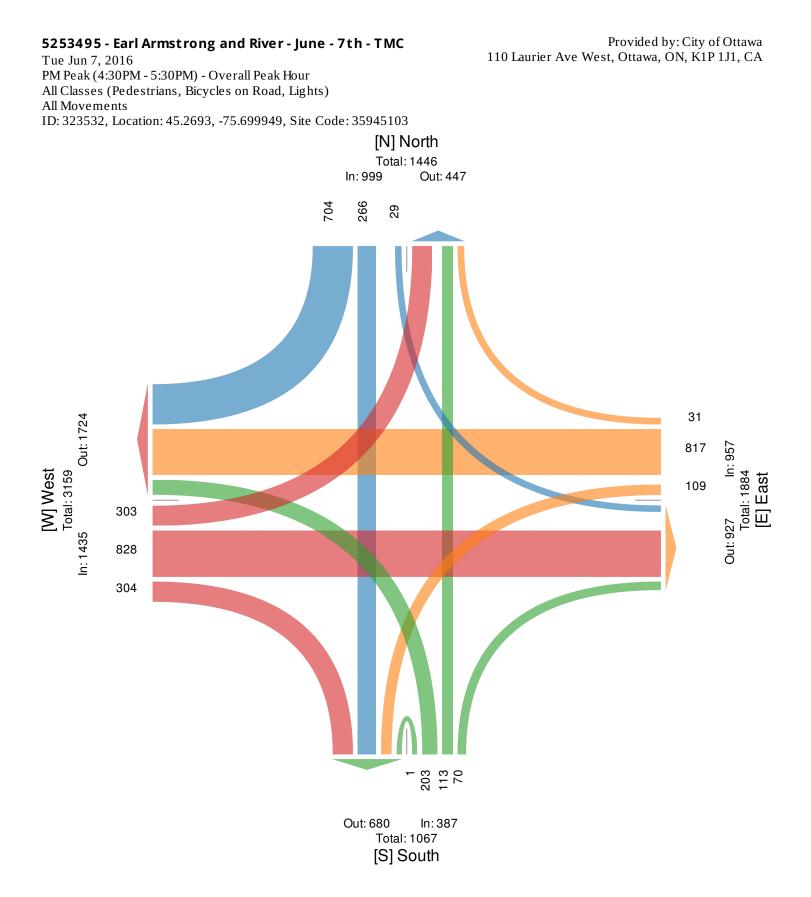

5253495 - Earl Armstrong and River - June - 7th - TMC

Tue Jun 7, 2016 Midday Peak (1:45PM - 2:45PM) All Classes (Pedestrians, Bicycles on Road, Lights) All Movements

ID: 323532, Location: 45.2693, -75.699949, Site Code: 35945103

Leg	North						East						South						West						
Direction	Southb	ound					Westbo	ound					Northb	ound					Eastbou	nd					
Time	R	Т	L	U	App P	e d*	R	Т	L	U	App I	Ped*	R	Т	L	U	App P	ed*	R	Т	L	U	App 1	ed*	Int
2016-06-07																									
1:45PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:00PM	258	142	39	0	439	0	34	436	68	1	539	1	77	89	118	1	285	0	153	424	197	0	774	0	2037
2:15PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:30PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	209	146	32	0	387	0	31	372	77	0	480	1	67	103	116	1	287	0	155	404	191	1	751	0	1905
% Approach	54.0%	37.7%	8.3%	0%	-	-	6.5%	77.5%	16.0% ()%	-	-	23.3%	35.9%	40.4%	0.3%	-	-	20.6%	53.8%	25.4%	0.1%	-	-	-
% Total	11.0%	7.7%	1.7%	0%	20.3%	-	1.6%	19.5%	4.0% 0)%	25.2%	-	3.5%	5.4%	6.1%	0.1%	15.1%	-	8.1%	21.2%	10.0%	0.1%	39.4%	-	-
PHF	0.886	0.793	0.727	-	0.930	-	0.705	0.894	0.740	-	0.923	-	0.761	0.757	0.879	0.250	0.920	-	0.791	0.886	0.936	0.250	0.920	-	0.932
Lights	209	146	32	0	387	-	31	372	77	0	480	-	67	103	116	1	287	-	155	401	190	1	747	-	1901
% Lights	100%	100%	100%	0%	100%	-	100%	100%	100% ()%	100%	-	100%	100%	100%	100%	100%	-	100%	99.3%	99.5%	100%	99.5%	-	99.8%
Bicycles on Road	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	3	1	0	4	-	4
% Bicycles on Road	0%	0%	0%	0%	0%	-	0%	0%	0% ()%	0%	-	0%	0%	0%	0%	0%	-	0%	0.7%	0.5%	0%	0.5%	-	0.2%
Pedestrians	-	-	-	-		0	-	-	-	-		1	-	-	-	-		0	-	-	-	-		0	
% Pedestrians	-	-	-	-		-	-	-	-	-	10	00%	-	-	-	-		-	-	-	-	-		-	

*Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn


5253495 - Earl Armstrong and River - June - 7th - TMC

Tue Jun 7, 2016 PM Peak (4:30PM - 5:30PM) - Overall Peak Hour All Classes (Pedestrians, Bicycles on Road, Lights) All Movements

ID: 323532, Location: 45.2693, -75.699949, Site Code: 35945103

Leg	North						East						South						West						
Dire ction	Southb	ound					Westbo	ound					Northb	ound					Eastboi	ınd					
Time	R	Т	L	U	App	Ped*	R	Т	L	U	App 1	ed*	R	Т	L	U	Арр	Ped*	R	Т	L	U	App 1	Ped*	ĺnt
2016-06-07																									
4:30PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00PM	734	239	34	0	1007	0	33	851	106	0	990	0	61	127	205	0	393	1	286	724	335	0	1345	0	3735
5:15PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	704	266	29	0	999	3	31	817	109	0	957	0	70	113	203	1	387	0	304	828	303	0	1435	3	3778
% Approach	70.5%	26.6%	2.9%	0%	-	-	3.2%	85.4%	11.4%	0%	-	-	18.1%	29.2%	52.5%	0.3%	-	-	21.2%	57.7%	21.1%	0%	-	-	-
% Total	18.6%	7.0%	0.8%	0%	26.4%	-	0.8%	21.6%	2.9%	0%	25.3%	-	1.9%	3.0%	5.4%	0%	10.2%	-	8.0%	21.9%	8.0%	0%	38.0%	-	-
PHF	0.951	0.821	0.806	-	0.942	-	0.861	0.877	0.826	-	0.889	-	0.761	0.657	0.940	0.250	0.888	-	0.864	0.900	0.947	-	0.986	-	0.979
Lights	704	266	29	0	999	-	31	817	109	0	957	-	70	113	203	1	387	-	304	826	303	0	1433	-	3776
% Lights	100%	100%	100%	0%	100%	-	100%	100%	100%	0%	100%	-	100%	100%	100%	100%	100%	-	100%	99.8%	100%	0%	99.9%	- 1	99.9%
Bicycles on Road		0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	2	0	0	2	-	2
% Bicycles on Road		0%	0%	0%	0%	-	0%	0%	0%	0%	0%	-	0%	0%	0%	0%	0%	-	0%	0.2%	0%	0%	0.1%	-	0.1%
Pedestrians	-	-	-	-		3	-	-	-	-		0	-	-	-	-		0	-	-	-	-		3	
% Pedestrians	-	-	-	-	1	00%	-	-	-	-		-	-	-	-	-		-	-	-	-	-	10	00%	

*Pedestrians and Bicycles on Crosswalk. L: Left, R: Right, T: Thru, U: U-Turn

Total Area

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	Single Vehicle (other)	Single vehicle (Unattended vehicle)	Other	Total	
P.D. only	2	0	0	1	1	4	0	1	9	90%
Non-fatal injury	0	0	0	0	1	0	0	0	1	10%
Non reportable	0	0	0	0	0	0	0	0	0	0%
Total	2	0	0	1	2	4	0	1	10	100%
	#2 or 20%	#6 or 0%	#6 or 0%	#4 or 10%	#2 or 20%	#1 or 40%	#6 or 0%	#4 or 10%		=

River, Earl Armstrong to Nicolls Island

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2014-2016	7	33,870	1095	0.19

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	Single Vehicle (other)	Single vehicle (Unattended vehicle)	Other	Total	
P.D. only	1	0	0	0	1	3	0	1	6	86%
Non-fatal injury	0	0	0	0	1	0	0	0	1	14%
Non reportable	0	0	0	0	0	0	0	0	0	0%
Total	1	0	0	0	2	3	0	1	7	100%
	14%	0%	0%	0%	29%	43%	0%	14%		

River/Nicolls Island

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2014-2016	2	10,660	1095	0.17

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	Single Vehicle (other)	Single vehicle (Unattended vehicle)	Other	Total	
P.D. only	1	0	0	1	0	0	0	0	2	100%
Non-fatal injury	0	0	0	0	0	0	0	0	0	0%
Non reportable	0	0	0	0	0	0	0	0	0	0%
Total	1	0	0	1	0	0	0	0	2	100%
	50%	0%	0%	50%	0%	0%	0%	0%		

River, Nicolls Island to Rideau

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2014-2016	1	10,660	1095	0.09

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	Single Vehicle (other)	Single vehicle (Unattended vehicle)	Other	Total	
P.D. only	0	0	0	0	0	1	0	0	1	100%
Non-fatal injury	0	0	0	0	0	0	0	0	0	0%
Non reportable	0	0	0	0	0	0	0	0	0	0%
Total	0	0	0	0	0	1	0	0	1	100%
	0%	0%	0%	0%	0%	100%	0%	0%		_

2020 Projected Background - AM Peak - Lanes, Volumes, Timings 1: River & Earl Armstrong

03/12/2018

-	٦	+	*	4	+	۰.	∢	†	1	*	Ļ	- √
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	†††	1	ካካ	†††	1	ካካ	† †	1	ሻሻ	† †	1
Traffic Volume (vph)	345	1065	125	75	730	115	300	385	75	40	75	200
Future Volume (vph)	345	1065	125	75	730	115	300	385	75	40	75	200
Lane Group Flow (vph)	345	1065	125	75	730	115	300	385	75	40	75	200
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	7	4	1 01111	3	8	1 01111	5	2	1 01111	1	6	1 01111
Permitted Phases	•		4	Ū	Ū	8	Ū	_	2	•		6
Detector Phase	7	4	4	3	8	8	5	2	2	1	6	6
Switch Phase	,	•	•	Ū	Ū	Ū	Ū	-	-	•	U	Ŭ
Minimum Initial (s)	7.0	10.0	10.0	7.0	10.0	10.0	7.0	10.0	10.0	7.0	10.0	10.0
Minimum Split (s)	13.8	34.5	34.5	13.8	34.5	34.5	13.7	43.0	43.0	13.7	43.0	43.0
Total Split (s)	17.0	39.0	39.0	17.0	39.0	39.0	21.0	43.0	43.0	21.0	43.0	43.0
Total Split (%)	14.2%	32.5%	32.5%	14.2%	32.5%	32.5%	17.5%	35.8%	35.8%	17.5%	35.8%	35.8%
Yellow Time (s)	4.2	4.2	4.2	4.2	4.2	4.2	3.7	3.1	3.1	3.7	3.1	3.1
All-Red Time (s)	2.6	2.3	2.3	2.6	2.3	2.3	3.0	2.9	2.9	3.0	2.9	2.9
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.8	6.5	6.5	6.8	6.5	6.5	6.7	6.0	6.0	6.7	6.0	6.0
Lead/Lag	Lag	Lead	Lead	Lag	Lead	Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	Min	Min	None	Min	Min
Act Effct Green (s)	10.2	59.9	59.9	9.6	56.5	56.5	13.9	22.6	22.6	7.4	13.4	13.4
Actuated g/C Ratio	0.08	0.50	0.50	9.0 0.08	0.47	0.47	0.12	0.19	0.19	0.06	0.11	0.11
v/c Ratio	1.26	0.50	0.50	0.08	0.47	0.47	0.12	0.19	0.19	0.00	0.11	0.11
Control Delay	188.9	21.7	2.4	54.8	20.9	1.9	68.8	49.8	1.0	55.7	48.3	13.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	49.0	0.0	0.0	40.3	0.0
Total Delay	188.9	21.7	2.4	54.8	20.9	1.9	68.8	49.8	1.0	55.7	48.3	13.6
LOS	100.9 F	21.7 C	2.4 A	04.0 D	20.9 C	1.9 A	00.0 E	49.0 D	1.0 A	55.7 E	40.3 D	13.0 B
Approach Delay	Г	57.7	A	D	21.3	A	L	52.5	A	L	27.2	В
Approach LOS		57.7 E			21.3 C			52.5 D			27.2 C	
Queue Length 50th (m)	~52.6	59.9	0.0	8.6	37.6	0.0	35.8	45.8	0.0	4.7	8.6	0.0
Queue Length 95th (m)	#81.9	81.2	7.4	16.2	53.0	5.7	#55.1	58.8	0.0	10.2	15.1	20.3
Internal Link Dist (m)	#01.7	432.5	7.4	10.2	418.4	5.7	#JJ.1	245.7	0.0	10.2	237.2	20.3
Turn Bay Length (m)	195.0	452.5	75.0	105.0	410.4	145.0	135.0	243.7	15.0	70.0	231.2	100.0
Base Capacity (vph)	273	2378	815	273	2243	777	383	1022	564	383	1022	595
Starvation Cap Reductn	273	2370	015	0	2243	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductin	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.26	0.45	0.15	0.27	0.33	0.15	0.78	0.38	0.13	0.10	0.07	0.34
Intersection Summary		0,10		0121	0.00							
Cycle Length: 120												
Actuated Cycle Length: 120)											
			nd 0.\//D	C Start of	f Croop							
Offset: 80 (67%), Reference Natural Cycle: 115		5 4.LDT d		, Start U	GIEEII							
Control Type: Actuated-Coc	ordinatod											
Maximum v/c Ratio: 1.26	Jundleu											
Intersection Signal Delay: 4	11			I,	ntorsactio	n LOS: D						
Intersection Capacity Utiliza		<u>i</u>				of Service						
Analysis Period (min) 15		J		I	CO Level							
	ity auque	s theoret	cally infin	ito								
 Volume exceeds capaci 	ity, queue l	s theoret	ically II II II	iid.								

Parsons

Synchro 10 Report

- # 95th percentile volume exceeds capacity, queue may be longer.
- Queue shown is maximum after two cycles.

Ø1	ø2	→ Ø4 (R)	√ Ø3
21 s	43 s	39 s	17 s
▲ ø5	∲ Ø6	● ▲ Ø8 (R)	∕ Ø7
21 s	43 s	39 s	17 s

2020 Projected Background - PM Peak - Lanes, Volumes, Timings 1: River & Earl Armstrong

03/12/2018

	٦	-	\mathbf{r}	4	-	×.	•	Ť	1	~	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	<u>†††</u>	1	ካካ	†††	1	ካካ	††	1	ሻሻ	††	1
Traffic Volume (vph)	305	745	305	110	835	35	205	115	70	30	270	705
Future Volume (vph)	305	745	305	110	835	35	205	115	70	30	270	705
Lane Group Flow (vph)	305	745	305	110	835	35	205	115	70	30	270	705
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	7	4	1 Onn	3	8	1 Onn	5	2	1 Onn	1	6	
Permitted Phases	,	•	4	U	Ū	8	Ū	-	2	•	U	6
Detector Phase	7	4	4	3	8	8	5	2	2	1	6	6
Switch Phase	1	•		0	0	0	0	2	2	•	0	U
Minimum Initial (s)	7.0	10.0	10.0	7.0	10.0	10.0	7.0	10.0	10.0	7.0	10.0	10.0
Minimum Split (s)	13.8	34.5	34.5	13.8	34.5	34.5	13.7	43.0	43.0	17.0	43.0	43.0
Total Split (s)	17.0	39.0	39.0	17.0	39.0	39.0	21.0	43.0	43.0	21.0	43.0	43.0
Total Split (%)	14.2%	32.5%	32.5%	14.2%	32.5%	32.5%	17.5%	35.8%	35.8%	17.5%	35.8%	35.8%
Yellow Time (s)	4.2	4.2	4.2	4.2	4.2	4.2	3.7	3.1	3.1	3.7	33.070	3.1
All-Red Time (s)	2.6	2.3	2.3	2.6	2.3	2.3	3.0	2.9	2.9	3.0	2.9	2.9
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	6.8	6.5	6.5	6.8	6.5	6.5	6.7	6.0	6.0	6.7	6.0	6.0
Total Lost Time (s)			Lead			Lead						
Lead/Lag	Lag	Lead	Yes	Lag	Lead	Yes	Lead	Lag	Lag	Lead Yes	Lag	Lag
Lead-Lag Optimize? Recall Mode	Yes	Yes		Yes	Yes		Yes	Yes	Yes		Yes	Yes
	None	C-Max	C-Max	None	C-Max	C-Max	None	Min	Min	None	Min	Min
Act Effct Green (s)	10.2	32.5	32.5	10.2	32.5	32.5	12.4	49.6	49.6	7.2	38.9	38.9
Actuated g/C Ratio	0.08	0.27	0.27	0.08	0.27	0.27	0.10	0.41	0.41	0.06	0.32	0.32
v/c Ratio	1.12	0.58	0.49	0.40	0.65	0.07	0.62	0.08	0.10	0.16	0.25	1.11
Control Delay	139.4	39.9	6.7	56.8	41.5	0.3	59.6	23.5	0.3	55.3	31.1	94.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	139.4	39.9	6.7	56.8	41.5	0.3	59.6	23.5	0.3	55.3	31.1	94.8
LOS	F	D	А	E	D	A	E	С	Α	E	C	F
Approach Delay		54.8			41.7			38.3			76.5	
Approach LOS	40 F	D	0.0	10.0	D	0.0	24.0	D	0.0	2 5	E	150.0
Queue Length 50th (m)	~42.5	55.6	0.0	12.8	63.7	0.0	24.0	9.2	0.0	3.5	24.6	~150.8
Queue Length 95th (m)	#70.5	69.1	21.3	22.0	78.3	0.0	36.0	15.8	0.0	8.4	36.3	#226.1
Internal Link Dist (m)	105.0	432.5	75.0	405.0	418.4	4 4 5 0	405.0	245.7	45.0	70.0	237.2	100.0
Turn Bay Length (m)	195.0		75.0	105.0		145.0	135.0		15.0	70.0		100.0
Base Capacity (vph)	273	1290	624	273	1290	511	383	1370	703	383	1074	638
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.12	0.58	0.49	0.40	0.65	0.07	0.54	0.08	0.10	0.08	0.25	1.11
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120)											
Offset: 80 (67%), Reference	ed to phase	e 4:EBT a	Ind 8:WB	F, Start of	f Green							
Natural Cycle: 120												
Control Type: Actuated-Coc	ordinated											
Maximum v/c Ratio: 1.12												
Intersection Signal Delay: 5	5.5			li	ntersectio	n LOS: E						
Intersection Capacity Utiliza		,)		[(CU Level	of Service	еE					
Analysis Period (min) 15												
~ Volume exceeds capaci	ity, queue i	s theoreti	ically infin	ite.								

- # 95th percentile volume exceeds capacity, queue may be longer.
- Queue shown is maximum after two cycles.

Ø1	Ø2	<mark>∎ →</mark> ⊅Ø4 (R)	√ Ø3
21 s	43 s	39 s	17 s
▲ Ø5	∲ Ø6	● [▲] Ø8 (R)	
21 s	43 s	39 s	17 s

2025 Projected Background - AM Peak - Lanes, Volumes, Timings 1: River & Earl Armstrong

03/12/2018

	٦	-	\mathbf{F}	4	+	•	•	Ť	1	>	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	^	1	ኘካ	<u>^</u>	1	ካካ	† †	1	ካካ	† †	1
Traffic Volume (vph)	345	1155	172	91	837	156	465	574	108	50	126	200
Future Volume (vph)	345	1155	172	91	837	156	465	574	108	50	126	200
Lane Group Flow (vph)	345	1155	172	91	837	156	465	574	108	50	126	200
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	7	4	1 onn	3	8	1 onn	5	2	1 onn	1	6	
Permitted Phases	•	•	4	Ū	Ŭ	8	Ū	-	2		0	6
Detector Phase	7	4	4	3	8	8	5	2	2	1	6	6
Switch Phase	•			Ū	Ŭ			_	_	•		, , , , , , , , , , , , , , , , , , ,
Minimum Initial (s)	7.0	10.0	10.0	7.0	10.0	10.0	7.0	10.0	10.0	7.0	10.0	10.0
Minimum Split (s)	13.8	33.5	33.5	13.8	33.5	33.5	13.7	34.0	34.0	13.7	34.0	34.0
Total Split (s)	17.0	39.0	39.0	17.0	39.0	39.0	21.0	43.0	43.0	21.0	43.0	43.0
Total Split (%)	14.2%	32.5%	32.5%	14.2%	32.5%	32.5%	17.5%	35.8%	35.8%	17.5%	35.8%	35.8%
Yellow Time (s)	4.2	4.2	4.2	4.2	4.2	4.2	3.7	3.1	3.1	3.7	3.1	3.1
All-Red Time (s)	2.6	2.3	2.3	2.6	2.3	2.3	3.0	2.9	2.9	3.0	2.9	2.9
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.8	6.5	6.5	6.8	6.5	6.5	6.7	6.0	6.0	6.7	6.0	6.0
Lead/Lag	Lag	Lead	Lead	Lag	Lead	Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	Min	Min	None	Min	Min
Act Effct Green (s)	10.2	49.5	49.5	10.2	49.5	49.5	14.3	29.4	29.4	7.7	20.0	20.0
Actuated g/C Ratio	0.08	0.41	0.41	0.08	0.41	0.41	0.12	0.24	0.24	0.06	0.17	0.17
v/c Ratio	1.26	0.41	0.41	0.00	0.41	0.41	1.21	0.24	0.24	0.00	0.17	0.17
Control Delay	188.9	30.0	4.9	55.3	27.1	5.0	162.7	46.6	2.6	56.1	42.3	9.3
Queue Delay	0.0	0.0	4.9	0.0	0.0	0.0	0.0	40.0	0.0	0.0	42.3	9.3
Total Delay	188.9	30.0	4.9	55.3	27.1	5.0	162.7	46.6	2.6	56.1	42.3	9.3
LOS	100.9 F	30.0 C	4.9 A	55.5 E	27.1 C	3.0 A	F	40.0 D	2.0 A	E	42.3 D	7.3 A
Approach Delay	I	60.2	A	L	26.3	A	1	89.5	A	L	26.6	A
Approach LOS		00.2 E			20.3 C			69.5 F			20.0 C	
Queue Length 50th (m)	~52.6	76.0	0.0	10.5	50.6	0.0	~69.0	67.1	0.0	5.8	13.6	0.0
Queue Length 95th (m)	#81.9	103.2	14.7	18.9	70.8	14.2	#101.3	80.3	4.6	12.1	20.5	18.0
Internal Link Dist (m)	π01.7	432.5	14.7	10.7	418.4	14.2	#101.5	245.7	4.0	12.1	237.2	10.0
Turn Bay Length (m)	195.0	4JZ.J	75.0	105.0	410.4	145.0	135.0	243.7	15.0	70.0	201.2	100.0
Base Capacity (vph)	273	1964	712	273	1964	703	383	1022	564	383	1022	595
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductin	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.26	0.59	0.24	0.33	0.43	0.22	1.21	0.56	0.19	0.13	0.12	0.34
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120)											
Offset: 52 (43%), Reference		• 4 FBT a	nd 8·WB	Start of	Green							
Natural Cycle: 105					Croon							
Control Type: Actuated-Coc	ordinated											
Maximum v/c Ratio: 1.26	anatou											
Intersection Signal Delay: 5	6.5			Ir	ntersectio	n LOS: E						
Intersection Capacity Utiliza		,)				of Servic						
Analysis Period (min) 15		,										
 Volume exceeds capaci 	ity nueue i	s theoreti	cally infin	ite								
	ity, queue i	5 เกษยาชิเ										

- # 95th percentile volume exceeds capacity, queue may be longer.
- Queue shown is maximum after two cycles.

Ø1	ø2	→ Ø4 (R)	√ Ø3
21 s	43 s	39 s	17 s
▲ ø5	∲ Ø6	● ▲ Ø8 (R)	∕ Ø7
21 s	43 s	39 s	17 s

Int Delay, s/veh	0.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ef 👘			ب
Traffic Vol, veh/h	8	15	522	4	9	220
Future Vol, veh/h	8	15	522	4	9	220
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	8	15	522	4	9	220

Major/Minor	Minor1	Ν	lajor1	Ν	/lajor2	
Conflicting Flow All	762	524	0	0	526	0
Stage 1	524	-	-	-	-	-
Stage 2	238	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	373	553	-	-	1041	-
Stage 1	594	-	-	-	-	-
Stage 2	802	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver		553	-	-	1041	-
Mov Cap-2 Maneuver	369	-	-	-	-	-
Stage 1	588	-	-	-	-	-
Stage 2	802	-	-	-	-	-
•			ND		00	

Approach	WB	NB	SB	
HCM Control Delay, s	13	0	0.3	
HCM LOS	В			

Minor Lane/Major Mvmt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)	-	-	471	1041	-
HCM Lane V/C Ratio	-	-	0.049	0.009	-
HCM Control Delay (s)	-	-	13	8.5	0
HCM Lane LOS	-	-	В	А	А
HCM 95th %tile Q(veh)	-	-	0.2	0	-

2025 Projected Background - PM Peak - Lanes, Volumes, Timings 1: River & Earl Armstrong

03/12/2018

	٦	-	\mathbf{r}	∢	-	×.	1	1	1	×	Ļ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ካካ	^	1	ሻሻ	<u></u>	1	ሻሻ	<u>††</u>	1	ሻሻ	††	7
Traffic Volume (vph)	305	968	487	162	926	49	300	193	95	56	412	705
Future Volume (vph)	305	968	487	162	926	49	300	193	95	56	412	705
Lane Group Flow (vph)	305	968	487	162	926	49	300	193	95	56	412	705
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			4			8			2			6
Detector Phase	7	4	4	3	8	8	5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	7.0	10.0	10.0	7.0	10.0	10.0	7.0	10.0	10.0	7.0	10.0	10.0
Minimum Split (s)	13.8	39.0	39.0	13.8	39.0	39.0	17.0	43.0	43.0	17.0	43.0	43.0
Total Split (s)	17.0	39.0	39.0	17.0	39.0	39.0	21.0	43.0	43.0	21.0	43.0	43.0
Total Split (%)	14.2%	32.5%	32.5%	14.2%	32.5%	32.5%	17.5%	35.8%	35.8%	17.5%	35.8%	35.8%
Yellow Time (s)	4.2	4.2	4.2	4.2	4.2	4.2	3.7	3.1	3.1	3.7	3.1	3.1
All-Red Time (s)	2.6	2.3	2.3	2.6	2.3	2.3	3.0	2.9	2.9	3.0	2.9	2.9
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.8	6.5	6.5	6.8	6.5	6.5	6.7	6.0	6.0	6.7	6.0	6.0
Lead/Lag	Lag	Lead	Lead	Lag	Lead	Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	Min	Min	None	Min	Min
Act Effct Green (s)	10.2	32.5	32.5	10.2	32.5	32.5	13.9	46.2	46.2	7.8	37.4	37.4
Actuated g/C Ratio	0.08	0.27	0.27	0.08	0.27	0.27	0.12	0.38	0.38	0.06	0.31	0.31
v/c Ratio	1.12	0.75	0.72	0.59	0.72	0.10	0.81	0.15	0.14	0.27	0.40	1.16
Control Delay	139.4	44.4	15.5	62.5	43.3	0.4	68.8	25.8	0.9	56.3	34.0	117.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	139.4	44.4	15.5	62.5	43.3	0.4	68.8	25.8	0.9	56.3	34.0	117.8
LOS	F	D	В	E	D	А	E	С	А	E	С	F
Approach Delay		52.9			44.2			43.7			85.5	
Approach LOS		D			D			D			F	
Queue Length 50th (m)	~42.5	76.6	19.8	19.2	72.4	0.0	35.8	16.0	0.0	6.5	40.2	~161.9
Queue Length 95th (m)	#70.5	92.6	61.1	30.5	88.0	0.0	#55.1	25.0	1.5	13.0	54.7	#234.2
Internal Link Dist (m)		432.5			418.4			245.7			237.2	
Turn Bay Length (m)	195.0		75.0	105.0		145.0	135.0		15.0	70.0		100.0
Base Capacity (vph)	273	1290	680	273	1290	511	383	1276	666	383	1033	606
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.12	0.75	0.72	0.59	0.72	0.10	0.78	0.15	0.14	0.15	0.40	1.16
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 31 (26%), Reference	ed to phase	e 4:EBT a	nd 8:WB	r, Start of	f Green							
Natural Cycle: 115	امما محمد ا											
Control Type: Actuated-Coc	ordinated											
Maximum v/c Ratio: 1.16	7.0				atoro - al'-							
Intersection Signal Delay: 5		,			ntersectio		о Г					
Intersection Capacity Utiliza	111011 89.4%)		[(SU Level	of Service	; E					
Analysis Period (min) 15		e theoret	cally infin	ito								
 Volume exceeds capaci 	ity, queue l	s ineored	cally ITIIN	iie.								

- # 95th percentile volume exceeds capacity, queue may be longer.
- Queue shown is maximum after two cycles.

Ø1	ø2	→ Ø4 (R)	√ Ø3
21 s	43 s	39 s	17 s
▲ ø5	∲ Ø6	● ▲ Ø8 (R)	∕ Ø7
21 s	43 s	39 s	17 s

Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰Y		4			4
Traffic Vol, veh/h	5	6	19	17	14	511
Future Vol, veh/h	5	6	19	17	14	511
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	5	6	19	17	14	511

Major/Minor	Minor1	Ν	1ajor1	Ν	lajor2		
Conflicting Flow All	567	28	0	0	36	0	
Stage 1	28	-	-	-	-	-	
Stage 2	539	-	-	-	-	-	
Critical Hdwy	6.42	6.22	-	-	4.12	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy	3.518	3.318	-	-	2.218	-	
Pot Cap-1 Maneuver	485	1047	-	-	1575	-	
Stage 1	995	-	-	-	-	-	
Stage 2	585	-	-	-	-	-	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuver	479	1047	-	-	1575	-	
Mov Cap-2 Maneuver	479	-	-	-	-	-	
Stage 1	983	-	-	-	-	-	
Stage 2	585	-	-	-	-	-	

Approach	WB	NB	SB
HCM Control Delay, s	10.4	0	0.2
HCM LOS	В		

Minor Lane/Major Mvmt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)	-	-	680	1575	-
HCM Lane V/C Ratio	-	-	0.016	0.009	-
HCM Control Delay (s)	-	-	10.4	7.3	0
HCM Lane LOS	-	-	В	А	А
HCM 95th %tile Q(veh)	-	-	0	0	-

2020 Projected Total - AM Peak - Lanes, Volumes, Timings

1: River & Earl Arms	trong
----------------------	-------

03/12/2018

	٦	-	7	4	+	•	•	Ť	*	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	<u></u>	1	ካካ	<u></u>	1	ሻሻ	<u>††</u>	1	ሻሻ	††	1
Traffic Volume (vph)	345	1065	126	80	730	115	305	405	95	40	80	200
Future Volume (vph)	345	1065	126	80	730	115	305	405	95	40	80	200
Lane Group Flow (vph)	345	1065	126	80	730	115	305	405	95	40	80	200
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			4			8			2			6
Detector Phase	7	4	4	3	8	8	5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	7.0	10.0	10.0	7.0	10.0	10.0	7.0	10.0	10.0	7.0	10.0	10.0
Minimum Split (s)	13.8	34.5	34.5	13.8	34.5	34.5	13.7	43.0	43.0	13.7	43.0	43.0
Total Split (s)	17.0	39.0	39.0	17.0	39.0	39.0	21.0	43.0	43.0	21.0	43.0	43.0
Total Split (%)	14.2%	32.5%	32.5%	14.2%	32.5%	32.5%	17.5%	35.8%	35.8%	17.5%	35.8%	35.8%
Yellow Time (s)	4.2	4.2	4.2	4.2	4.2	4.2	3.7	3.1	3.1	3.7	3.1	3.1
All-Red Time (s)	2.6	2.3	2.3	2.6	2.3	2.3	3.0	2.9	2.9	3.0	2.9	2.9
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.8	6.5	6.5	6.8	6.5	6.5	6.7	6.0	6.0	6.7	6.0	6.0
Lead/Lag	Lag	Lead	Lead	Lag	Lead	Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	Min	Min	None	Min	Min
Act Effct Green (s)	10.2	59.2	59.2	9.6	55.8	55.8	13.9	23.3	23.3	7.4	14.0	14.0
Actuated g/C Ratio	0.08	0.49	0.49	0.08	0.46	0.46	0.12	0.19	0.19	0.06	0.12	0.12
v/c Ratio	1.26	0.45	0.16	0.31	0.33	0.15	0.82	0.63	0.23	0.20	0.21	0.57
Control Delay	188.9	22.2	2.6	55.2	21.5	1.9	69.7	49.5	1.9	55.7	47.6	13.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	188.9	22.2	2.6	55.2	21.5	1.9	69.7	49.5	1.9	55.7	47.6	13.0
LOS	F	С	А	E	С	А	E	D	А	E	D	В
Approach Delay		58.1			22.0			51.5			27.0	
Approach LOS		E			С			D			С	
Queue Length 50th (m)	~52.6	60.8	0.0	9.2	38.2	0.0	36.5	48.1	0.0	4.7	9.2	0.0
Queue Length 95th (m)	#81.9	83.2	7.8	17.1	54.4	5.8	#56.6	60.7	1.9	10.2	15.6	19.9
Internal Link Dist (m)		432.5			418.4			245.7			237.2	
Turn Bay Length (m)	195.0		75.0	105.0		145.0	135.0		15.0	70.0		100.0
Base Capacity (vph)	273	2351	807	273	2216	769	383	1022	564	383	1022	595
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.26	0.45	0.16	0.29	0.33	0.15	0.80	0.40	0.17	0.10	0.08	0.34
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 80 (67%), Referenced to phase 4:EBT and 8:WBT, Start of Green												
Natural Cycle: 115												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 1.26												
ntersection Signal Delay: 44.5 Intersection LOS: D												
	ntersection Capacity Utilization 61.7% ICU Level of Service B											
Analysis Period (min) 15												
Volume exceeds capacity, queue is theoretically infinite.												

- # 95th percentile volume exceeds capacity, queue may be longer.
- Queue shown is maximum after two cycles.

øı	¶ø₂	• →•Ø4 (R)	√ Ø3
21 s	43 s	39 s	17 s
\$ Ø5	 ✓ Ø6 	●Ø8 (R)	▶ _{Ø7}
21 s	43 s	39 s	17 s

Int Delay, s/veh	0.9						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		4			ب	
Traffic Vol, veh/h	5	44	520	1	12	210	1
Future Vol, veh/h	5	44	520	1	12	210	1
Conflicting Peds, #/hr	0	0	0	0	0	0	1
Sign Control	Stop	Stop	Free	Free	Free	Free	:
RT Channelized	-	None	-	None	-	None	ł
Storage Length	0	-	-	-	-	-	
Veh in Median Storage	,# 0	-	0	-	-	0	1
Grade, %	0	-	0	-	-	0	I
Peak Hour Factor	100	100	100	100	100	100	I
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	5	44	520	1	12	210	1

Major/Minor	Minor1	Ν	lajor1	Ν	/lajor2	
Conflicting Flow All	755	521	0	0	521	0
Stage 1	521	-	-	-	-	-
Stage 2	234	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	376	555	-	-	1045	-
Stage 1	596	-	-	-	-	-
Stage 2	805	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	371	555	-	-	1045	-
Mov Cap-2 Maneuver	371	-	-	-	-	-
Stage 1	588	-	-	-	-	-
Stage 2	805	-	-	-	-	-
			ND		00	

Approach	WB	NB	SB
HCM Control Delay, s	12.5	0	0.5
HCM LOS	В		

Minor Lane/Major Mvmt	NBT	NBRW	/BLn1	SBL	SBT
Capacity (veh/h)	-	-	528	1045	-
HCM Lane V/C Ratio	-	-	0.093	0.011	-
HCM Control Delay (s)	-	-	12.5	8.5	0
HCM Lane LOS	-	-	В	А	А
HCM 95th %tile Q(veh)	-	-	0.3	0	-

2020 Projected Total - PM Peak - Lanes, Volumes, Timings 1: River & Earl Armstrong

03/12/2018

	٦	-	\mathbf{r}	4	+	×	•	t	4	1	Ļ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኘ	^	1	ነካ	^	1	ካካ	^	1	<u>ነ</u> ካ	1 <u>1</u>	1
Traffic Volume (vph)	305	845	309	126	835	35	207	125	80	30	286	705
Future Volume (vph)	305	845	309	126	835	35	207	125	80	30	286	705
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	195.0	1000	75.0	105.0	1000	145.0	135.0	1000	15.0	70.0	1000	100.0
Storage Lanes	2		1	2		143.0	2		10.0	2		100.0
Taper Length (m)	30.0			30.0		•	30.0			30.0		•
Right Turn on Red	00.0		Yes	00.0		Yes	00.0		Yes	00.0		Yes
Link Speed (k/h)		50	100		50	100		50	100		50	100
Link Distance (m)		456.5			442.4			269.7			261.2	
Travel Time (s)		32.9			31.9			19.4			18.8	
Lane Group Flow (vph)	305	845	309	126	835	35	207	125	80	30	286	705
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	7	4	T OIIII	3	8	T OITH	5	2	T OIIII	1	6	T OITI
Permitted Phases	,	•	4	0	U	8	0	2	2	•	0	6
Detector Phase	7	4	4	3	8	8	5	2	2	1	6	6
Switch Phase		•	•	U	Ū	Ū	Ū	-	-	•	U	Ū
Minimum Initial (s)	7.0	10.0	10.0	7.0	10.0	10.0	7.0	10.0	10.0	7.0	10.0	10.0
Minimum Split (s)	13.8	34.5	34.5	13.8	34.5	34.5	13.7	43.0	43.0	13.7	43.0	43.0
Total Split (s)	17.0	39.0	39.0	17.0	39.0	39.0	21.0	43.0	43.0	21.0	43.0	43.0
Total Split (%)	14.2%	32.5%	32.5%	14.2%	32.5%	32.5%	17.5%	35.8%	35.8%	17.5%	35.8%	35.8%
Yellow Time (s)	4.2	4.2	4.2	4.2	4.2	4.2	3.7	3.1	3.1	3.7	3.1	3.1
All-Red Time (s)	2.6	2.3	2.3	2.6	2.3	2.3	3.0	2.9	2.9	3.0	2.9	2.9
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.8	6.5	6.5	6.8	6.5	6.5	6.7	6.0	6.0	6.7	6.0	6.0
Lead/Lag	Lag	Lead	Lead	Lag	Lead	Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	Min	Min	None	Min	Min
Act Effct Green (s)	10.2	32.5	32.5	10.2	32.5	32.5	12.5	49.6	49.6	7.2	38.8	38.8
Actuated g/C Ratio	0.08	0.27	0.27	0.08	0.27	0.27	0.10	0.41	0.41	0.06	0.32	0.32
v/c Ratio	1.12	0.66	0.49	0.46	0.65	0.07	0.62	0.09	0.11	0.16	0.27	1.11
Control Delay	139.4	41.6	6.7	58.2	41.5	0.3	59.6	23.5	0.3	55.3	31.3	95.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	139.4	41.6	6.7	58.2	41.5	0.3	59.6	23.5	0.3	55.3	31.3	95.8
LOS	F	D	А	E	D	А	E	С	А	E	С	F
Approach Delay		54.7			42.1			37.2			76.6	
Approach LOS		D			D			D			E	
Queue Length 50th (m)	~42.5	64.7	0.0	14.7	63.7	0.0	24.3	10.0	0.0	3.5	26.3	~151.4
Queue Length 95th (m)	#70.5	79.3	21.2	24.5	78.3	0.0	36.2	16.9	0.0	8.4	38.2	#226.5
Internal Link Dist (m)		432.5			418.4			245.7			237.2	
Turn Bay Length (m)	195.0		75.0	105.0		145.0	135.0		15.0	70.0		100.0
Base Capacity (vph)	273	1290	626	273	1290	511	383	1370	703	383	1072	636
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.12	0.66	0.49	0.46	0.65	0.07	0.54	0.09	0.11	0.08	0.27	1.11
Intersection Summary												
Area Type:	Other											
Cycle Length: 120												

Parsons

Synchro 10 Report

2020 Projected Total - PM Peak - Lanes, Volumes, Timings 1: River & Earl Armstrong

Actuated Cycle Length: 120		
Offset: 31 (26%), Referenced to phase 4:EBT and 8:WBT,	Start of Green	
Natural Cycle: 115		
Control Type: Actuated-Coordinated		
Maximum v/c Ratio: 1.12		
Intersection Signal Delay: 55.4	Intersection LOS: E	
Intersection Capacity Utilization 85.3%	ICU Level of Service E	
Analysis Period (min) 15		
~ Volume exceeds capacity, queue is theoretically infinite	<u>).</u>	
Queue shown is maximum after two cycles.		
# 95th percentile volume exceeds capacity, queue may b	e longer.	
Queue shown is maximum after two cycles.		
Queue snown is maximum after two cycles.		

Ø1	Ø2		√ Ø3
21 s	43 s	39 s	17 s
▲ Ø5	🔹 ø6	Ø8 (R)	
21 s	43 s	39 s	17 s

Int Delay, s/veh	0.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰Y		ef 👘			ب ا
Traffic Vol, veh/h	2	22	168	4	35	505
Future Vol, veh/h	2	22	168	4	35	505
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	2	22	168	4	35	505

Major/Minor	Minor1	Ν	/lajor1	Ν	/lajor2		
Conflicting Flow All	745	170	0	0	172	0	
Stage 1	170	-	-	-	-	-	
Stage 2	575	-	-	-	-	-	
Critical Hdwy	6.42	6.22	-	-	4.12	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy	3.518	3.318	-	-	2.218	-	
Pot Cap-1 Maneuver	382	874	-	-	1405	-	
Stage 1	860	-	-	-	-	-	
Stage 2	563	-	-	-	-	-	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuver	369	874	-	-	1405	-	
Mov Cap-2 Maneuver	369	-	-	-	-	-	
Stage 1	830	-	-	-	-	-	
Stage 2	563	-	-	-	-	-	

Approach	WB	NB	SB
HCM Control Delay, s	9.7	0	0.5
HCM LOS	А		

Minor Lane/Major Mvmt	NBT	NBRWB	Ln1	SBL	SBT
Capacity (veh/h)	-	-	785	1405	-
HCM Lane V/C Ratio	-	- 0.	031	0.025	-
HCM Control Delay (s)	-	-	9.7	7.6	0
HCM Lane LOS	-	-	Α	А	А
HCM 95th %tile Q(veh)	-	-	0.1	0.1	-

2025 Total Projected - AM Peak - Lanes, Volumes, Timings 1: River & Earl Armstrong

	٦	-	•	4	+	×.	•	†	*	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኘ	^	1	ነ ካካ	^	1	ሻሻ	1	1	ኘ	1	7
Traffic Volume (vph)	345	1155	173	96	837	156	470	594	128	50	131	200
Future Volume (vph)	345	1155	173	96	837	156	470	594	120	50	131	200
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	195.0	1000	75.0	105.0	1000	145.0	135.0	1000	15.0	70.0	1000	100.0
Storage Lanes	2		1	2		1	2		13.0	2		100.0
Taper Length (m)	30.0		•	30.0		•	30.0		•	30.0		•
Right Turn on Red	00.0		Yes	00.0		Yes	00.0		Yes	00.0		Yes
Link Speed (k/h)		70			70			60			60	
Link Distance (m)		456.5			442.4			269.7			261.2	
Travel Time (s)		23.5			22.8			16.2			15.7	
Lane Group Flow (vph)	345	1155	173	96	837	156	470	594	128	50	131	200
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	7	4	T OIIII	3	8	T OIIII	5	2	T OIIII	1	6	T OITH
Permitted Phases	,	•	4	0	U	8	0	2	2	•	0	6
Detector Phase	7	4	4	3	8	8	5	2	2	1	6	6
Switch Phase	,	•	•	0	0	0	0	2	2		0	U
Minimum Initial (s)	7.0	10.0	10.0	7.0	10.0	10.0	7.0	10.0	10.0	7.0	10.0	10.0
Minimum Split (s)	13.8	34.5	34.5	13.8	34.5	34.5	13.7	43.0	43.0	13.7	43.0	43.0
Total Split (s)	17.0	39.0	39.0	17.0	39.0	39.0	21.0	43.0	43.0	21.0	43.0	43.0
Total Split (%)	14.2%	32.5%	32.5%	14.2%	32.5%	32.5%	17.5%	35.8%	35.8%	17.5%	35.8%	35.8%
Yellow Time (s)	4.2	4.2	4.2	4.2	4.2	4.2	3.7	3.1	3.1	3.7	3.1	3.1
All-Red Time (s)	2.6	2.3	2.3	2.6	2.3	2.3	3.0	2.9	2.9	3.0	2.9	2.9
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.8	6.5	6.5	6.8	6.5	6.5	6.7	6.0	6.0	6.7	6.0	6.0
Lead/Lag	Lag	Lead	Lead	Lag	Lead	Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	Min	Min	None	Min	Min
Act Effct Green (s)	10.2	48.7	48.7	10.2	48.7	48.7	14.3	30.1	30.1	7.7	20.8	20.8
Actuated g/C Ratio	0.08	0.41	0.41	0.08	0.41	0.41	0.12	0.25	0.25	0.06	0.17	0.17
v/c Ratio	1.26	0.60	0.25	0.35	0.43	0.22	1.23	0.71	0.26	0.24	0.23	0.48
Control Delay	188.9	30.7	5.0	55.7	27.7	5.1	167.4	46.2	4.2	56.1	41.7	9.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	188.9	30.7	5.0	55.7	27.7	5.1	167.4	46.2	4.2	56.1	41.7	9.0
LOS	F	С	А	E	С	А	F	D	А	E	D	A
Approach Delay		60.7			26.9			89.5			26.4	
Approach LOS		E			С			F			С	
Queue Length 50th (m)	~52.6	77.8	0.0	11.1	51.8	0.0	~70.3	68.7	0.0	5.8	14.0	0.0
Queue Length 95th (m)	#81.9	104.3	15.0	19.7	71.6	14.3	#102.8	82.6	9.0	12.1	21.1	17.8
Internal Link Dist (m)		432.5			418.4			245.7			237.2	
Turn Bay Length (m)	195.0		75.0	105.0		145.0	135.0		15.0	70.0		100.0
Base Capacity (vph)	273	1935	705	273	1935	694	383	1022	564	383	1022	595
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.26	0.60	0.25	0.35	0.43	0.22	1.23	0.58	0.23	0.13	0.13	0.34
Intersection Summary												
Area Type:	Other											
Cycle Length: 120												

Parsons

Synchro 10 Report

2025 Total Projected - AM Peak - Lanes, Volumes, Timings 1: River & Earl Armstrong

Actuated Cycle Length: 120		
Offset: 80 (67%), Referenced to phase 4:EBT and 8:WBT, St	art of Green	
Natural Cycle: 115		
Control Type: Actuated-Coordinated		
Maximum v/c Ratio: 1.26		
Intersection Signal Delay: 57.1	Intersection LOS: E	
Intersection Capacity Utilization 74.2%	ICU Level of Service D	
Analysis Period (min) 15		
~ Volume exceeds capacity, queue is theoretically infinite.		
Queue shown is maximum after two cycles.		
# 95th percentile volume exceeds capacity, queue may be	longer.	
Queue shown is maximum after two cycles.		

Ø1	Ø2		√ Ø3
21 s	43 s	39 s	17 s
▲ ø5	🌵 Ø6	● ● Ø8 (R)	<i>▶</i> _{Ø7}
21 s	43 s	39 s	17 s

Intersection Int Delay, s/veh 1.3 Movement WBL WBR NBT NBR SBL SBT Y Þ Lane Configurations Æ Traffic Vol, veh/h 13 59 522 5 21 220 Future Vol, veh/h 13 59 522 5 21 220 Conflicting Peds, #/hr 0 0 0 0 0 0 Sign Control Stop Stop Free Free Free Free **RT** Channelized None -None -None -Storage Length 0 -----Veh in Median Storage, # 0 -0 --0 Grade, % 0 0 0 ---Peak Hour Factor 100 100 100 100 100 100 Heavy Vehicles, % 2 2 2 2 2 2 Mvmt Flow 13 59 522 5 21 220

Major/Minor	Minor1	Ν	lajor1	N	lajor2	
Conflicting Flow All	787	525	0	0	527	0
Stage 1	525	-	-	-	-	-
Stage 2	262	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	- 2	2.218	-
Pot Cap-1 Maneuver	360	552	-	-	1040	-
Stage 1	593	-	-	-	-	-
Stage 2	782	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	352	552	-	-	1040	-
Mov Cap-2 Maneuver	352	-	-	-	-	-
Stage 1	579	-	-	-	-	-
Stage 2	782	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s			0		0.7	
HCM LOS	В		v		0	

Minor Lane/Major Mvmt	NBT	NBRW	/BLn1	SBL	SBT
Capacity (veh/h)	-	-	501	1040	-
HCM Lane V/C Ratio	-	-	0.144	0.02	-
HCM Control Delay (s)	-	-	13.4	8.5	0
HCM Lane LOS	-	-	В	А	А
HCM 95th %tile Q(veh)	-	-	0.5	0.1	-

2025 Total Projected - PM Peak - Lanes, Volumes, Timings 1: River & Earl Armstrong

03/12/2018

	٦	-	\mathbf{r}	4	←	×	•	Ť	*	>	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻሻ	<u>+++</u>	1	ሻሻ	†††	1	ካካ	† †	1	ሻሻ	† †	1
Traffic Volume (vph)	305	968	491	178	926	49	302	203	105	56	428	705
Future Volume (vph)	305	968	491	178	926	49	302	203	105	56	428	705
Lane Group Flow (vph)	305	968	491	178	926	49	302	203	105	56	428	705
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases			4			8			2			6
Detector Phase	7	4	4	3	8	8	5	2	2	1	6	6
Switch Phase												
Minimum Initial (s)	7.0	10.0	10.0	7.0	10.0	10.0	7.0	10.0	10.0	7.0	10.0	10.0
Minimum Split (s)	13.8	34.5	34.5	13.8	34.5	34.5	13.7	43.0	43.0	13.7	43.0	43.0
Total Split (s)	17.0	39.0	39.0	17.0	39.0	39.0	21.0	43.0	43.0	21.0	43.0	43.0
Total Split (%)	14.2%	32.5%	32.5%	14.2%	32.5%	32.5%	17.5%	35.8%	35.8%	17.5%	35.8%	35.8%
Yellow Time (s)	4.2	4.2	4.2	4.2	4.2	4.2	3.7	3.1	3.1	3.7	3.1	3.1
All-Red Time (s)	2.6	2.3	2.3	2.6	2.3	2.3	3.0	2.9	2.9	3.0	2.9	2.9
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	6.8	6.5	6.5	6.8	6.5	6.5	6.7	6.0	6.0	6.7	6.0	6.0
Lead/Lag	Lag	Lead	Lead	Lag	Lead	Lead	Lead	Lag	Lag	Lead	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	Min	Min	None	Min	Min
Act Effct Green (s)	10.2	32.5	32.5	10.2	32.5	32.5	13.9	46.2	46.2	7.8	37.4	37.4
Actuated g/C Ratio	0.08	0.27	0.27	0.08	0.27	0.27	0.12	0.38	0.38	0.06	0.31	0.31
v/c Ratio	1.12	0.75	0.73	0.65	0.72	0.10	0.81	0.16	0.16	0.27	0.41	1.16
Control Delay	139.4	44.4	17.0	65.1	43.3	0.4	69.1	25.8	1.6	56.3	34.3	118.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	139.4	44.4	17.0	65.1	43.3	0.4	69.1	25.8	1.6	56.3	34.3	118.0
LOS	F	D	В	E	D	А	E	С	A	E	С	F
Approach Delay		53.2			44.9			43.1			85.0	
Approach LOS		D			D			D			F	
Queue Length 50th (m)	~42.5	76.6	23.9	21.2	72.4	0.0	36.1	16.8	0.0	6.5	42.0	~161.9
Queue Length 95th (m)	#70.5	92.6	66.4	33.0	88.0	0.0	#55.9	26.2	3.4	13.0	56.7	#234.2
Internal Link Dist (m)		432.5			418.4			245.7			237.2	
Turn Bay Length (m)	195.0		75.0	105.0		145.0	135.0		15.0	70.0		100.0
Base Capacity (vph)	273	1290	672	273	1290	511	383	1276	666	383	1032	606
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.12	0.75	0.73	0.65	0.72	0.10	0.79	0.16	0.16	0.15	0.41	1.16
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: 108 (90%), Reference Natural Cycle: 115	ced to phas	se 4:EBT	and 8:WE	BT, Start	of Green							
Control Type: Actuated-Coo	ordinated											
Maximum v/c Ratio: 1.16												
Intersection Signal Delay: 5	7.9			l	ntersectio	n LOS: E						
Intersection Capacity Utiliza		5				of Service	еE					
Analysis Period (min) 15												
 Volume exceeds capaci 	ty, queue i	s theoreti	ically infin	ite.								

Parsons

Synchro 10 Report

- # 95th percentile volume exceeds capacity, queue may be longer.
- Queue shown is maximum after two cycles.

Ø1	¶ø₂	• →•Ø4 (R)	√ Ø3
21 s	43 s	39 s	17 s
▲ Ø5	 Ø6 	ø8 (R)	▶ _{Ø7}
21 s	43 s	39 s	17 s

Int Delay, s/veh	1						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	İ.
Lane Configurations	Y		ef 👘			ب ا	ſ
Traffic Vol, veh/h	7	28	193	21	49	511	
Future Vol, veh/h	7	28	193	21	49	511	
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Stop	Stop	Free	Free	Free	Free	;
RT Channelized	-	None	-	None	-	None	į
Storage Length	0	-	-	-	-	-	
Veh in Median Storage	,# 0	-	0	-	-	0)
Grade, %	0	-	0	-	-	0)
Peak Hour Factor	100	100	100	100	100	100)
Heavy Vehicles, %	2	2	2	2	2	2)
Mvmt Flow	7	28	193	21	49	511	

Minor1	N	lajor1	Ν	lajor2		
813	204	0	0	214	0	
204	-	-	-	-	-	
609	-	-	-	-	-	
6.42	6.22	-	-	4.12	-	
5.42	-	-	-	-	-	
5.42	-	-	-	-	-	
3.518	3.318	-	-	2.218	-	
348	837	-	-	1356	-	
830	-	-	-	-	-	
543	-	-	-	-	-	
		-	-		-	
331	837	-	-	1356	-	
331	-	-	-	-	-	
789	-	-	-	-	-	
543	-	-	-	-	-	
	204 609 6.42 5.42 3.518 348 830 543 331 331 789	813 204 204 - 609 - 6.42 6.22 5.42 - 3.518 3.318 348 837 830 - 543 - 331 837 331 - 789 -	813 204 0 204 - - 609 - - 6.42 6.22 - 5.42 - - 5.42 - - 3.518 3.318 - 348 837 - 830 - - 543 - - 331 837 - 789 - -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	813 204 0 0 214 204 - - - - 609 - - - - 6.42 6.22 - - 4.12 5.42 - - - - 5.42 - - - - 3.518 3.318 - - 2.218 348 837 - 1356 830 - - - 543 - - - 331 837 - 1356 331 - - 1356 331 - - - 789 - - -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Approach	WB	NB	SB
HCM Control Delay, s	10.9	0	0.7
HCM LOS	В		

Minor Lane/Major Mvmt	NBT	NBRW	/BLn1	SBL	SBT
Capacity (veh/h)	-	-	641	1356	-
HCM Lane V/C Ratio	-	-	0.055	0.036	-
HCM Control Delay (s)	-	-	10.9	7.8	0
HCM Lane LOS	-	-	В	А	А
HCM 95th %tile Q(veh)	-	-	0.2	0.1	-

TDM Measures Checklist:

Residential Developments (multi-family, condominium or subdivision)

Legend

BASIC The measure is generally feasible and effective, and in most cases would benefit the development and its users

BETTER The measure could maximize support for users of sustainable modes, and optimize development performance

The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Residential developments	Check if proposed & add descriptions		
	1.	TDM PROGRAM MANAGEMENT			
	1.1	Program coordinator			
BASIC ★	1.1.1	Designate an internal coordinator, or contract with an external coordinator	□N/A		
	1.2	Travel surveys			
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress			
	2.	WALKING AND CYCLING			
	2.1	Information on walking/cycling routes & des	stinations		
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium)	□N/A		
	2.2	Bicycle skills training			
BETTER	2.2.1	Offer on-site cycling courses for residents, or subsidize off-site courses			

	TDM	measures: Residential developments	Check if proposed & add descriptions		
	3.	TRANSIT			
	3.1	Transit information			
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances (multi-family, condominium)	N/A		
BETTER	3.1.2	Provide real-time arrival information display at entrances (multi-family, condominium)	N /A		
	3.2	Transit fare incentives			
BASIC ★	3.2.1	Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit	Recommended for new purchasers. Subject to developer programs and sales strategy.		
BETTER	3.2.2	Offer at least one year of free monthly transit passes on residence purchase/move-in			
	3.3	Enhanced public transit service			
BETTER ★	3.3.1	Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels (<i>subdivision</i>)			
	3.4	Private transit service			
BETTER	3.4.1	Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)			
	4.	CARSHARING & BIKESHARING			
	4.1	Bikeshare stations & memberships			
BETTER	4.1.1	Contract with provider to install on-site bikeshare station (<i>multi-family</i>)	N/A		
BETTER	4.1.2	Provide residents with bikeshare memberships, either free or subsidized <i>(multi-family)</i>			
	4.2	Carshare vehicles & memberships			
BETTER	4.2.1	Contract with provider to install on-site carshare vehicles and promote their use by residents			
BETTER	4.2.2	Provide residents with carshare memberships, either free or subsidized			
	5.	PARKING			
	5.1	Priced parking			
BASIC ★	5.1.1	Unbundle parking cost from purchase price (condominium)	N/A		
BASIC ★	5.1.2	Unbundle parking cost from monthly rent (multi-family)			

	TDM	measures: Residential developments	Check if proposed & add descriptions		
	6.	TDM MARKETING & COMMUNICATIONS	5		
	6.1	Multimodal travel information		,	
BASIC ★	6.1.1	Provide a multimodal travel option information package to new residents		Information package/links to City of Ottawa pathway and cycling networks.	
	6.2	Personalized trip planning			
BETTER ★	6.2.1	Offer personalized trip planning to new residents			