Fernbank Pond 4 Stormwater Management Facility Design Brief

Job #160400900/83

Prepared for: 1384341 Ontario Ltd.

Prepared by: Stantec Consulting Ltd.

April 13, 2018

Revision	Description	Pre	Checked By	
0	Fernbank Pond 4 Stormwater Management Facility Design Report	Ana M. Paerez	April 13, 2018	Kris Kilborn

Sign-off Sheet

This document entitled Fernbank Pond 4 Stormwater Management Facility Design Brief was prepared by Stantec Consulting Ltd. ("Stantec") for the account of 1384341Ontario Ltd. (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

(Signature)

Ana M. Paerez, P.Eng.

Table of Contents

1.0	INTRODUCTION AND BACKGROUND	1.1
1.1	OVERVIEW	1.1
1.2	BACKGROUND	
1.3	BACKGROUND RESOURCES	
1.4	PURPOSE	1.4
2.0	PROPOSED DEVELOPMENT STORMWATER MANAGEMENT PLAN	2.1
2.1	PROPOSED DEVELOPMENT CONDITIONS	
2.2	FACILITY DESIGN CRITERIA	2.1
	2.2.1 Water Quality Control	
	2.2.2 Water Quantity Control	
2.3	MODEL SELECTION AND DEVELOPMENT	
	2.3.1 Model Selection	2.2
	2.3.2 Model Structure	
	2.3.3 Model Parameter Selection	
	2.3.4 Subcatchment Storage	
	2.3.5 Inlet Rates	
2.4	RAINFALL DISTRIBUTIONS	2.4
	2.4.1 Design Storms	2.4
	2.4.2 Critical Storms	2.4
	2.4.3 Water Quality Event	2.5
	2.4.4 Climate Change Storms	2.5
	2.4.5 Boundary Conditions	2.5
2.5	MODEL RESULTS	2.5
	2.5.1 Pond Hydraulic Modeling Results	2.5
	2.5.2 Proposed Development Hydraulic Grade Line Analysis	2.6
3.0	DETAILED FACILITY DESIGN COMPONENTS	3.1
3.1	DESIGN APPROACH	
3.2	POND GRADING AND STORAGE DESIGN	
	3.2.1 Water Quality Control	
	3.2.2 Water Quantity Control	
	3.2.3 Stage-Storage Relationship	
	3.2.4 Slope Stability and Erosion Control	3.3
3.3	FOREBAY DESIGN	
3.4	OUTLET DESIGN	
	3.4.1 Extended Detention Control	
	3.4.2 Flow Control Weir	3.5
	3.4.3 Overland Spillway	
	3.4.4 Stage-Discharge Relationship	3.5
3.5	POND PERFORMANCE	
3.6	OTHER CONSIDERATIONS	

4.0	CRITERIA AND CONSTRAINTS FOR FUTURE DEVELOPMENT	4.1
4.1	STORMWATER MANAGEMENT DESIGN CRITERIA	4.1
5.0	OPERATIONS AND MAINTENANCE	5.1
5.1	MAINTENANCE PROGRAM	
	5.1.1 Monitoring	5.1
	5.1.2 Sediment Removal and Storage	5.1
5.2	EROSION AND SEDIMENT CONTROL DURING CONSTRUCTION	5.2
6.0		6.1
LIST C	OF TABLES	
Table	e 1: Existing Condition Peak Flows to the Faulkner Tributary at Fernbank Ro	bad 2.2

Table 1: Existing Condition Peak Flows to the Faulkher Tributary at Fernbank Roda	2.2
Table 2: Exit Loss Coefficients for Bends at Manholes	2.3
Table 3: Fernbank Pond 4 Peak Outflow Rates and Water Levels	2.6
Table 4: Interim KW Pond 5 HGL Results Along Proposed Trunk Sewers	2.6
Table 5: Interim KW Pond 5 MOECC Stormwater Quality Volumetric Requirements	3.2
Table 6: Interim SWM Facility Operational Characteristics	3.6

LIST OF FIGURES

Figure 1: Approximate SWM Pond 4 Catchment Area	. 1.2
Figure 2: Fernbank Pond 4 Stage-Storage Relationship	. 3.3
Figure 3: Stage-Discharge Relationship for Fernbank SWM Pond 4	

LIST OF APPENDICES

APPENDIX A	STORM SEWER DESIGN SHEET	A.1
APPENDIX B	FERNBANK POND 4 DESIGN CALCULATIONS	B.1
C.1 PCSWMM C.2 Input Pare	POST-DEVELOPMENT PCSWMM MODELLING. Layout ameters Input File for 100-year, 3hr Chicago Storm Event	C.2 C.3
	FERNBANK POND 4 INLET AND OUTLET SEWER SIZING AND CALCULATIONS	D.1
APPENDIX E	BACKGROUND REPORT EXCERPTS	E.1
APPENDIX F	CORRESPONDENCE	F.1
APPENDIX G	DRAWINGS	G.1

Introduction and Background April 13, 2018

1.0 INTRODUCTION AND BACKGROUND

1.1 OVERVIEW

Stantec Consulting Ltd. has been retained by 1384341 Ontario Ltd. to complete the design of the Fernbank Stormwater Management Pond 4 (Fernbank SWM Pond 4) in support of their Shea Road development draft plan approval application. The stormwater management facility (SWMF) will provide end-of-pipe treatment for the future development lands on the north-western quadrant of the intersection of Shea Road and Fernbank Road in the City of Ottawa as shown in **Figure 1**.

The future developments are owned by Tartan Homes on the western half and by Cavanagh Construction on the eastern half. The 59.2 ha tributary area is approximately 52% impervious and consists of a portion of Shea Road, a future park/open space area east of Shea Road, overland drainage from the existing recreational fields to the north and a mix of future residential areas, a school block, park areas and a SWM block designated for the proposed Fernbank SWM Pond 4.

The location of the Fernbank SWM Pond 4 is consistent with the information presented in the June 24, 2009 Fernbank Community Design Plan Environmental Management Plan (EMP) by Novatech Engineering Consultants Ltd. (Novatech) which shows the SWMF located immediately north of Fernbank Road and west of realigned Shea Road, partially within an existing Hydro corridor. The proposed Fernbank SWM Pond 4 will discharge into the Fernbank Road side ditch, which directs runoff south to the Faulkner Municipal Drain (MD) through an existing 700 mm diameter corrugated steel pipe (CSP) crossing Fernbank Road and ultimately discharges to the Jock River. Refer to **Drawing OSD-1** for details.

Introduction and Background April 13, 2018

1.2 BACKGROUND

In 2008, the City of Ottawa completed the Fernbank Community Design Plan (FCDP). The FCDP covers approximately 675 ha of land between the established communities of Stittsville, Kanata West and Kanata South. The community extends from Hazeldean Road to the north, the Carp River and Terry Fox Drive to the east, Fernbank Road to the south and the existing Urban Area of Stittsville to the west.

In conjunction with preparation of the Community Design Plan, several Class Environmental Assessment Studies/Master Plans were also prepared. Two of those were the Master Servicing Study (MSS) for water and sanitary and an Environmental Management Plan (EMP) for the natural environment and stormwater management. Those reports identified planning level solutions for on-site storm drainage, wastewater collection and water supply and distribution to the community. The approved EMP and MSS recommended the construction of one stormwater

Introduction and Background April 13, 2018

management facility (referred to as Pond 4) and associated storm sewer systems to provide stormwater management for the Fernbank Community tributary to the Faulkner Drain Tributary. Based on the background documents, Pond 4 was to provide 'Enhanced' water quality and post to pre-development quantity control for approximately 60 ha of proposed development north-west of Fernbank Road and Shea Road, and south of Abbott Street East. Pond 4 was to outlet to the Faulkner Drain Tributary, which starts on the south side of Fernbank Road.

IBI Group prepared a Conceptual Servicing and SWM Report in 2013 to address servicing requirements for the subject lands owned by Tartan and Cavanagh (see **Drawing OSD-1**). IBI's report identified that a hydro corridor extends south on the east side of the subject site, crossing Fernbank Road at Shea Road, partially within the proposed Pond 4 location. The report outlined the stage-storage relationship representing Pond 4 in the EMP and MSS was used in their SWMHYMO hydrologic model. IBI's conceptual design provided a SWM pond footprint to meet MOECC quality control volumetric requirements and to restrict post development peak flows from the overall development to pre-development levels. Report excerpts have been provided in **Appendix E**.

During the pre-consultation meeting for the proposed Shea Road Lands development in 2016 (see attached correspondence in **Appendix F**), the City advised that the allowable release rate from the Fernbank SWM Pond 4 should be coordinated with the work being done to update the Faulkner Municipal Drain Engineer Report by Andy Robinson of Robinson Consultants. Subsequent correspondence with Robinson Consultants confirmed that the existing 700 mm diameter culvert under Fernbank Road has a maximum capacity of 0.9 m³/s with a 0.5 m head and as such, the 100-year outflow from the proposed SWM Pond 4 should be restricted to 0.9 m³/s, instead of the 100-year pre-development condition peak flow of 1.85 m³/s previously identified in the background reports.

Stantec has circulated the conceptual SWM Pond 4 layout to HONI stakeholders and obtained approval on October 25, 2017 for the proposed footprint and measures provided to protect the existing Hydro structures and to provide adequate access for maintenance (correspondence included in **Appendix F**).

1.3 BACKGROUND RESOURCES

The following documents were referenced in the preparation of this report:

- Fernbank Community Design Plan Existing Conditions Report Storm Drainage and Hydrology, Novatech Engineering Consultants Ltd., January 2007
- Fernbank Community Design Plan Environmental Management Plan, Novatech Engineering Consultants Ltd., June 24, 2009
- Fernbank Community Design Plan Master Servicing Study, Novatech Engineering Consultants Ltd., June 24, 2009

Introduction and Background April 13, 2018

- Geotechnical Investigation Proposed Residential Development Shea Road, Ottawa, Ontario, Golder Associates, October 2011
- Conceptual Site Servicing Plan, Stormwater Management Plan and Erosion and Sediment Control Plan Shea Road Lands Fernbank Community, IBI Group, March 2013

Additional documents referenced in designing the SWM Plan for the Fernbank SWM Pond 4 include:

- Stormwater Management Planning and Design Manual, Ministry of the Environment (Ontario), March 2003
- City of Ottawa Sewer Design Guidelines, 2nd Ed., City of Ottawa, October 2012
- Technical Bulletin PIEDTB-2016-01 Revisions to Ottawa Design Guidelines Sewer, City of Ottawa, September 2016

1.4 PURPOSE

This report has been prepared to demonstrate that the proposed design of the Fernbank SWM Pond 4 adheres to all of the established criteria presented in the background documents. The report includes hydrologic and hydraulic analyses for the tributary development lands and detailed design of the SWM Pond.

Proposed Development Stormwater Management Plan April 13, 2018

2.0 PROPOSED DEVELOPMENT STORMWATER MANAGEMENT PLAN

The following sections summarize the stormwater management plan for the development lands tributary to the proposed Fernbank SWM Pond 4.

2.1 PROPOSED DEVELOPMENT CONDITIONS

The proposed SWM facility will receive runoff from approximately 59.2 ha of land from the future developments and from the SWM pond footprint area. The proposed SWM facility will provide quantity and quality control (80% TSS removal) of runoff before discharging to the Faulkner Municipal Drain.

Detailed design of the SWM pond has been done using a lumped hydrologic/hydraulic model of the future development lands to determine the inflow rates to the pond. Hydrologic/hydraulic modelling used the "dual drainage" principle, whereby the minor (pipe) system is designed to convey the peak rate of runoff based on a 2-year return period storm capture rate for local streets and a 5-year return period storm capture rate for collector roads (Shea Road and Cope Drive) as per the City design criteria. Runoff from larger events will be conveyed via engineered channels (roadways, pathways and swales) to the proposed SWM Pond 4. Outlet links have been specified in the model to limit the inlet capture rates to the minor system and thus control the hydraulic grade line during major storms.

Drawing OSD-1 shows the overall major and minor flow paths as well as the proposed SWM Pond layout.

2.2 FACILITY DESIGN CRITERIA

2.2.1 Water Quality Control

The Fernbank SWM Pond 4 is designed to achieve 'enhanced' level of treatment of urban runoff according to Ministry of the Environment and Climate Change (MOECC) criteria – representing an 80% removal of total suspended solids (TSS). Treatment criteria were established based on the Jock River Reach 2 Subwatershed Study by the Rideau Valley Conservation Authority (RVCA).

The facility, as outlined in **Section 3.0**, has been designed with sufficient permanent pool and extended detention storage to provide this required quality control. The end-of-pipe facility has been designed according to the recommendations of the Ministry of the Environment Stormwater Management Planning and Design Manual, as provided in **Section 3.4**, and

Proposed Development Stormwater Management Plan April 13, 2018

therefore no quality control infrastructure is required within the future development lands tributary to the SWM pond.

2.2.2 Water Quantity Control

The proposed Fernbank SWM Pond 4 will discharge upstream of the existing 700 mm dia. CSP crossing Fernbank Road that directs runoff south to the Faulkner Municipal Drain and ultimately to the Jock River. The Fernbank Community EMP outlined post to pre-development quantity control as a requirement for the Fernbank SWM pond 4 and identified the target existing condition peak flows as shown in **Table 1** below (report excerpts have been included in **Appendix E**).

	Peak Flow (m ³ /s)							
Distribution	2-year	5-year	10-year	25-year	50-year	100-year		
12hr AES	0.46	0.74	0.94	1.19	1.37	1.55		
12hr SCS	0.48	0.82	1.05	1.39	1.58	1.83		
24hr SCS	0.51	0.83	1.05	1.32	1.55	1.85		

Table 1: Existing Condition Peak Flows to the Faulkner Tributary at Fernbank Road

The table above shows that the 24 hour SCS Type II is the critical storm distribution for the lands tributary to the Faulkner MD.

As mentioned in **Section 1.2**, recent correspondence with Robinson Consultants confirmed that the culvert under Fernbank Road has a maximum capacity of 0.9 m³/s with a 0.5 m head and as such, post development outflows from the proposed SWM Pond 4 should be restricted to 0.9 m³/s up to the 100-year storm (correspondence has been included in **Appendix F**).

2.3 MODEL SELECTION AND DEVELOPMENT

2.3.1 Model Selection

Hydrologic and hydraulic modeling of the SWM pond design was completed using PCSWMM modeling software which uses the EPA-SWMM 5.1.012 computational engine for analysis. The included models can also be opened and reviewed using the free EPA-SWMM GUI. PCSWMM model layout, input parameters, and example input file are provided in **Appendix C**. Electronic model files are provided on the enclosed CD.

2.3.2 Model Structure

The storm sewer network modeled in PCSWMM includes preliminary storm sewer layout along the proposed roads in the future development as shown on **Drawing OSD-1**, and the detailed

Proposed Development Stormwater Management Plan April 13, 2018

components of the proposed SWM Pond. The storm sewer design sheet has been included in **Appendix A.** Major flows are routed overland via engineered channels such as roadways and pathways and modeled with the appropriate ROW transects.

2.3.3 Model Parameter Selection

Model parameters used in the hydrologic and hydraulic calculations within the PCSWMM model are based on City of Ottawa design criteria and were applied as outlined below. Detailed parameters for subcatchment areas, storage nodes etc. are summarized in **Appendix C.2**.

2.3.3.1 Hydraulic Parameter Selection

Exit losses at manholes were set for all pipe segments based on the flow angle through the structure. Exit losses were assigned as per City guidelines (Appendix 6b), see **Table 2** below.

Degrees	Coefficient
11	0.060
22	0.140
30	0.210
45	0.390
60	0.640
90	1.320
180	0.020

Table 2: Exit Loss Coefficients for Bends at Manholes

Other parameters applied within the model include the following:

- Manning's n for all smooth wall pipes = 0.013 for sewers (Section 6.1.8.1)
- Orifice Discharge Coefficient = 0.61 (circular)
- Weir Discharge Coefficient = 1.7

2.3.4 Subcatchment Storage

A unit storage rate of 40 m³/ha as outlined in IBI's Servicing and SWM report for the Shea Road Lands was assumed for the lumped subcatchments except for the school block (area F108A), which has been assumed to provide sufficient on-site storage for the 100-year storm.

2.3.5 Inlet Rates

Inlet flow rates for each subcatchment were assigned based on the 2-year runoff rate for local streets (drainage areas defined with the prefix L), and the 5-year runoff rate for collector roads

Proposed Development Stormwater Management Plan April 13, 2018

(drainage areas defined with the prefix C). The school block (area F108A) was assigned an inflow rate based on the 5-year runoff rate. Inlet capture rates are specified through outlet links which use a user-specified depth-discharge curve (inlet capture rates for each area are summarized in **Appendix C.2**).

2.4 RAINFALL DISTRIBUTIONS

Design storm events were selected to estimate the worst-case 100-year HGL across the future development and to assess the proposed pond performance. As an additional method of evaluating the performance of the proposed infrastructure, rainfall data from the July 1, 1979 historical rainfall event in the region was modeled, and a climate change scenario storm (20% increase of City IDF curves) was used to stress test the design.

2.4.1 Design Storms

The 3 hour Chicago distribution was selected to estimate the 2-year and 5-year capture rates for the proposed subcatchments, and to assess the 100-year HGL across the proposed development. The Chicago distribution was selected due to its tendency to generate high peak flows in urban catchments, similar to the future development. The SCS distribution was selected due to its tendency to produce a greater total volume of runoff. The following storm events were used to evaluate the minor and major systems performance and assess the worst-case HGL across the development:

- 2-year, 3 hour Chicago storm, 10-minute time step (2yr3hrChicago)
- 5-year, 3 hour Chicago storm, 10-minute time step (5yr3hrChicago)
- 100-year, 3 hour Chicago storm, 10-minute time step (100yr3hrChicago)
- 100-year, 24 hour SCS storm Type II, 12-minute time step from IBI (100yr24hrSCS)

2.4.2 Critical Storms

The 24 hour SCS Type II distribution was selected in the EMP as the critical storm and as such, this storm distribution has been used to compare the proposed SWM pond outflow to the allowable. The following events were run to assess pond operating levels for various storm events:

- 2-year, 24 hour SCS storm Type II, 10 min time step from IBI (2yr24hrSCS)
- 5-year, 24 hour SCS storm Type II, 10 min time step from IBI (5yr24hrSCS)
- 10-year, 24 hour SCS storm Type II, 10 min time step (10yr24hrSCS)
- 25-year, 24 hour SCS storm Type II, 10 min time step (25yr24hrSCS)
- 100-year, 24 hour SCS storm Type II, 12-minute time step from IBI (100yr24hrSCS)

Proposed Development Stormwater Management Plan April 13, 2018

2.4.3 Water Quality Event

The 25mm event with a 4-hour Chicago storm distribution was used to size the pond forebay and the bypass structure.

2.4.4 Climate Change Storms

As per City of Ottawa Sewer Design Guidelines 2012, drainage systems are to be 'stress tested' for climate change scenarios by using a 20% increase in the City's 100-year storm intensities. Therefore, the following climate change storm scenario was modeled:

• 100-year, 24 hour SCS storm Type II + 20%, 12-minute time step (100yr24hrSCS_20%)

All hydrologic and hydraulic modeling files are available on the enclosed compact disc located at the back of the report.

2.4.5 Boundary Conditions

- A free-flowing outfall was used as boundary condition for the 2, 5, 10, 25 and 100-year, 24 hour SCS Type II storms in order to compare the proposed SWM pond outflow hydrographs to the allowable release rates.
- A static backwater elevation of 106.53 m was used for the 100-year and 100-year increased by 20% for both the 3 hour Chicago and the 24 hour SCS Type II distributions in order to assess the worst-case HGL across the site and to set the emergency spillway elevation. The static backwater elevation of 106.53 m corresponds to the elevation of the existing 700 mm diameter CSP crossing Fernbank Road with a 0.5 m head (CSP inv=105.33 m)
- A free-flowing outfall was used for the 25 mm, 4 hour Chicago storm to size the forebay and design the bypass structure.

2.5 MODEL RESULTS

2.5.1 Pond Hydraulic Modeling Results

Each PCSWMM model scenario was analysed for the peak pond inflow and discharge rate as well as for peak pond HGL. **Table 3** below summarizes the peak pond outflow rates for the different storm events. Modelling of the proposed Fernbank SWM Pond 4 for the different storm events indicates that the proposed stage-storage and stage-discharge curves provide sufficient detention of runoff to meet the target release rates which were obtained from the Fernbank Community EMP and from recent correspondence with the City and Robinson Consultants. The Chicago storm scenarios were used to estimate the minor system capture rates and to assess the

Proposed Development Stormwater Management Plan April 13, 2018

worst case 100-year HGL across the site. The climate change scenario was not intended to provide a level of service but was modeled to stress-test the design.

Boundary Condition	Storm Event	Peak Pond Inflow (m ³ /s)	Peak Pond Discharge (m³/s)	Pond Water Level (m)	Target Peak outflow (m³/s)
Free Outfall	25mm 4hr Chicago	3.68	0.077	106.20	N/A
Free Outfall	2yr3hrChicago	4.96	0.120	106.33	N/A
Free Outfall	5yr3hrChicago	6.02	0.223	106.55	N/A
Free Outfall	100yr3hrChicago	16.95	0.680	107.21	0.90
Fixed = 106.53 m	100yr3hrChicago	16.95	0.941	107.27	0.90
Free Outfall	2yr24hrSCS	4.04	0.166	106.43	0.51
Free Outfall	tfall 5yr24hrSCS		0.296	106.67	0.83
Free Outfall	10yr24hrSCS	5.93	0.321	106.71	0.90
Free Outfall	25yr24hrSCS	6.94	0.430	106.88	0.90
Free Outfall	100yr24hrSCS	13.76	0.785	107.34	0.90
Fixed = 106.53 m 100yr24hrSCS		13.76	0.941	107.64	0.90
Fixed = 106.53 m	100yr24hrSCS_20%	17.12	2.454	107.84	N/A

Table 3: Fernbank Pond 4 Peak Outflow Rates and Water Levels

2.5.2 Proposed Development Hydraulic Grade Line Analysis

The worst case 100-year hydraulic grade line (HGL) elevation across the future development areas was estimated using the Fernbank Pond 4 PCSWMM model for the 100-year, 3 hour Chicago and the 100-year, 24 hour SCS Type II storms with a static backwater elevation of 106.53 m. **Table 4** below presents the clearance between the trunk sewer worst case HGL and the proposed road grade along the trunk sewer. The storm sewer design sheet is included in **Appendix A**. The climate change scenario was also run to stress-test the system.

Table 4: Fernbank Pond 4 HGL Results along Future Trunk Sewers

		100-year Storms				100-year Increased by 20%	
STM MH	Prop. Grade (m)	3 HR Chicago HGL (m)	24 HR SCS HGL (m)	Worst- Case HGL (m)	Prop. Grade-HGL Clearance (m)	24 HR SCS HGL (m)	Prop. Grade-HGL Clearance (m)
100B	108.15	107.27	107.64	107.64	0.51	107.84	0.31

Proposed Development Stormwater Management Plan April 13, 2018

			100-yea	r Storms		100-year Incre	ased by 20%
STM MH	Prop. Grade (m)	3 HR Chicago HGL (m)	24 HR SCS HGL (m)	Worst- Case HGL (m)	Prop. Grade-HGL Clearance (m)	24 HR SCS HGL (m)	Prop. Grade-HGL Clearance (m)
101	108.48	107.27	107.64	107.64	0.84	107.85	0.63
102	108.81	107.27	107.64	107.64	1.17	107.87	0.94
103	110.43	107.70	107.83	107.83	2.60	108.09	2.34
104	110.37	107.86	107.95	107.95	2.42	108.22	2.15
105	110.14	107.87	107.96	107.96	2.18	108.23	1.91
106	110.16	107.98	108.05	108.05	2.11	108.35	1.81
107	111.95	108.17	108.21	108.21	3.74	108.56	3.39
108	111.11	108.05	108.10	108.10	3.01	108.41	2.70
109	111.00	108.37	108.37	108.37	2.63	108.42	2.58
110	111.15	108.21	108.24	108.24	2.91	108.53	2.62
111	111.24	108.87	108.87	108.87	2.37	108.89	2.35
112	110.81	108.17	108.27	108.27	2.54	108.54	2.27
113	110.95	108.43	108.53	108.53	2.42	108.80	2.15
114	111.02	108.27	108.36	108.36	2.66	108.64	2.38
115	112.02	108.37	108.46	108.46	3.56	108.75	3.27
116	111.48	108.56	108.63	108.63	2.85	108.98	2.50
117	112.00	108.64	108.69	108.69	3.31	109.07	2.93
118	110.82	108.70	108.74	108.74	2.08	109.78	1.04
119	112.54	108.77	108.84	108.84	3.70	109.10	3.44
120	113.00	108.85	108.92	108.92	4.08	109.16	3.84
121	112.59	109.21	109.21	109.21	3.38	109.31	3.28
200	113.32	108.69	108.76	108.76	4.56	109.12	4.20
201	115.71	108.82	108.88	108.88	6.83	109.30	6.41
202	115.86	108.86	108.91	108.91	6.95	109.34	6.52
203	116.79	109.01	109.05	109.05	7.74	109.50	7.29
204	113.43	108.73	108.78	108.78	4.65	109.20	4.22
205	116.54	108.85	108.88	108.88	7.66	109.36	7.18
206	116.50	109.04	109.06	109.06	7.44	109.54	6.96
207	112.93	108.42	108.50	108.50	4.43	108.81	4.12
208	113.70	108.47	108.55	108.55	5.15	108.86	4.84
209	114.17	108.61	108.69	108.69	5.48	109.06	5.11

Proposed Development Stormwater Management Plan April 13, 2018

			100-yea	r Storms	-	100-year Increased by 20%	
STM MH	Prop. Grade (m)	3 HR Chicago HGL (m)	24 HR SCS HGL (m)	Worst- Case HGL (m)	Prop. Grade-HGL Clearance (m)	24 HR SCS HGL (m)	Prop. Grade-HGL Clearance (m)
210	114.12	108.64	108.71	108.71	5.41	109.09	5.03
211	114.11	108.73	108.79	108.79	5.32	109.16	4.95
212	113.31	108.97	109.03	109.03	4.28	109.26	4.05
213	113.94	109.10	109.15	109.15	4.79	109.36	4.58
214	113.75	109.13	109.17	109.17	4.58	109.38	4.37
215	113.69	109.20	109.23	109.23	4.46	109.42	4.27
216	113.16	109.29	109.31	109.31	3.85	109.48	3.68
217	114.15	109.34	109.36	109.36	4.79	109.51	4.64
218	114.20	109.59	109.59	109.59	4.61	109.68	4.52

The model results indicate that there is sufficient clearance between the worst case 100-year HGL and the proposed road grades. Detailed grading of the future developments should be based on the above results to ensure that a minimum clearance of 0.3 m is provided between all under side of footings (USFs) and the 100-year HGL, and that no basement flooding occurs in the climate change scenario.

Detailed Facility Design Components April 13, 2018

3.0 DETAILED FACILITY DESIGN COMPONENTS

The following sections describe the stormwater management design approach and hydraulic results for the proposed stormwater management facility. **Drawings POND-1**, **POND-2**, **POND-3** and **POND-4** show a plan view and cross sections of the proposed SWM pond.

3.1 DESIGN APPROACH

The proposed Fernbank SWM Pond 4 is designed to meet the quality control requirements outlined above and to achieve all physical design criteria established for wet pond facilities by the Ministry of the Environment and Climate Change. These physical design criteria are provided in the MOECC's Stormwater Management Design and Planning Manual (March 2003).

From the preceding sections, the general design approach for the SWMF is as follows:

- 1. Provide MOECC Enhanced water quality treatment, thereby establishing the permanent pool and extended detention volumes
- 2. Size inlet structure and forebay based on generated inflow and MOECC guidelines
- 3. Restrict post development peak flows to pre-development levels with a maximum release rate of 0.9 m³/s
- 4. Consider environmental and operations and maintenance concerns in orientation and design of all pond components

See **Section 5.0** for details of the operations, maintenance, and monitoring component of the design. Detailed forebay calculations are provided in **Appendix B**.

3.2 POND GRADING AND STORAGE DESIGN

Side slopes for safety (max 3:1) have been provided throughout the facility and along the forebay berm. These slopes are varied throughout to promote a less-engineered, more aesthetically pleasing design, where sufficient room is available.

3.2.1 Water Quality Control

The maximum permanent water depth within the forebay and main cell of the facility is 1.5 m. As stated in **Section 2.2.1** above, the required level of treatment for the proposed SWM Pond is 'enhanced' or 80% as per the Jock River Reach 2 Subwatershed Study. **Table 5** illustrates how the proposed end-of-pipe SWMF design provides this level of treatment. Detailed pond design calculations have been provided in **Appendix B**.

Detailed Facility Design Components April 13, 2018

_		Wate	r Quality Unit ' Requirement		Water Qual Require		Water Quality Provid	
Drainage Area (ha)	Actual % Imp.	Total Unit Volume (m³/ha)	Permanent Pool (m³/ha)	Extended Detention (m³/ha)	Permanent Pool (m ³)	Extended Detention (m ³)	Permanent Pool (m³)	Extended Detention (m ³)
59.2	55	190	150.0	40	8,880	2,368	9,569	5,442

Table 5: Fernbank Pond 4 MOECC Stormwater Quality Volumetric Requirements

The normal water level in the SWM pond has been set at 105.75 m as per the Fernbank Community EMP.

3.2.2 Water Quantity Control

On-site water quantity control is provided for the future residential site at a unit rate of 40 m³/ha with the exception of the school block that has been assumed to provide on-site storage for the 100-year storm. Overland flow from the future development lands will be directed to the SWM Pond through the proposed roads. Preliminary design of the storm sewers across the future development was based on available proposed road profiles as shown in the storm sewer design sheet included in **Appendix A**.

The SWM facility is required to restrict post development peak flows to pre-development levels with a maximum release rate of 0.9 m³/s. The first 0.4 m of active storage is controlled by a 250 mm orifice (invert at 105.75 m). The secondary pond outlet occurs via a 300 mm-wide by 1,150 mm-high weir with a weir crest invert at 106.15 m. A 10.0 m-wide rip-rap lined spillway at invert 107.65 m is also provided as an emergency overflow path. The pond flow regulators are located within a common outlet chamber which subsequently discharges to the Fernbank Road side ditch via a 1050 mm diameter storm sewer. The spillway discharges directly to the Fernbank Road side ditch. Outlet details are provided on **Drawing DS-2** and **Drawing POND-2**

3.2.3 Stage-Storage Relationship

The stage-storage relationship for the entire facility was established using the average end area method as presented in **Appendix B**.

Detailed Facility Design Components April 13, 2018

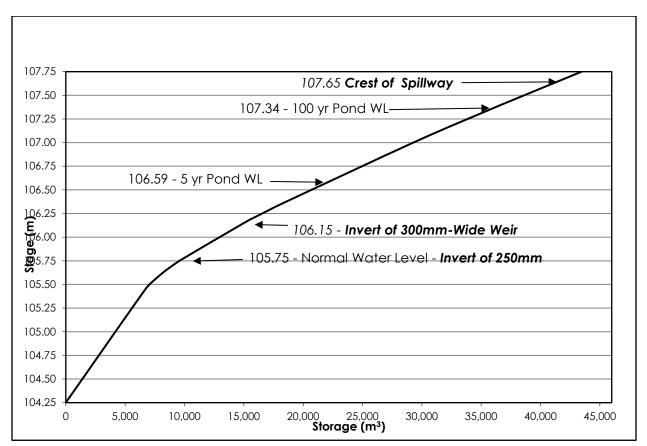


Figure 2: Fernbank Pond 4 Stage-Storage Relationship

3.2.4 Slope Stability and Erosion Control

Due to the high inlet flow rates to the pond, erosion control and flow dampening measures are proposed to maintain slope stability and prevent sediment re-suspension. For stability of the pond side slopes a maximum slope of 3:1 is proposed for the facility. Exposed slopes should be lined with biodegradable erosion control blankets and seeded with grass seed mulch once weather conditions are suitable for growth. The emergency overflow spillway is to be lined with 400 mm rip-rap underlain by woven geotextile and seeded with standard roadside mix grass seed. Refer to **Drawing POND-4**, **DrawingPOND-5** and **Drawing EC-1** for details.

3.3 FOREBAY DESIGN

The purpose of the forebay is to act as the primary settling zone in the pond for the initial influx of coarse sediment and associated pollutants flushing off the sewershed. The forebay is designed to provide sufficient cross-section and length to reduce velocities and promote settling, minimize resuspension of settled solids, minimize percentage of overall permanent pool, provide sufficient sediment storage for infrequent clean out (>5 years), and have adequate accessibility and bottom-treatment for maintenance operations.

Detailed Facility Design Components April 13, 2018

The required forebay characteristics dictate a required forebay settling length of 27.8 m. Similarly, the required forebay dispersion length is equal to 58.8 m. The provided length is approximately 68.0 m. The resulting length to width ratio of the proposed configuration is approximately 2.8:1, also meeting MOECC design recommendations. The provision of 1.5 m depth within the forebay provides for 0.5 m sediment accumulation prior to recommended cleanout while maintaining 1.0 m permanent pool depth, thereby minimizing the risk of scour and re-suspension. The designed sediment storage volume provided in the bottom 0.5 m corresponds to an estimated sediment removal frequency of approximately 7 years for the forebay.

The permeable forebay berm to the main cell will be set 0.3 m below the permanent pool (elevation 105.75 m) and will be approximately a 3.0 m wide earth berm as shown on **Drawing POND-2**.

3.4 OUTLET DESIGN

The following subsections describe the pond outlet design. **Drawing DS-2** illustrates the outlet structure in plan and sectional view, while a profile view is shown on **Drawing POND-2**.

The outlet will be located opposite the inlet and will drain to the Fernbank Road side ditch and ultimately to the Faulkner Municipal Drain. A concrete outlet structure will house the required extended detention orifice, quantity control weir, and outlet pipes, including the associated maintenance infrastructure (i.e. sluice gates, etc.).

3.4.1 Extended Detention Control

The design of the required outlet structure incorporates a dual control configuration. Firstly, a 250 mm orifice provides an approximate 40-hour extended detention for quality control. The entire extended detention volume is stored between 105.75 m and 106.15 m, as calculated below.

<u>Required Storage:</u> Tributary Area = 59.20 ha Extended Detention Storage = 40 m³/ha Storage = 59.20 x 40 = 2,368 m³

<u>Provided Storage</u>: Pond area at NWL = 12,138 m² Pond area at 106.15 = 15,072 m² Provided Depth = 106.15 - 105.75 = 0.4 m Provided Extended Detention Active Volume = 5,442 m³

Detailed Facility Design Components April 13, 2018

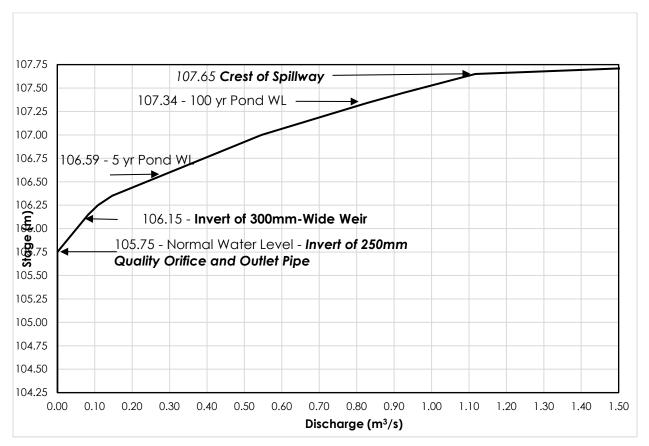
3.4.2 Flow Control Weir

Quantity control of the pond discharge above the extended detention elevation is provided by a flow control weir within the outlet structure. This weir has been incorporated into the outlet to meet the quantity control target peak flows which correspond to post to pre-development levels to a maximum of 0.9 m³/s dictated by the capacity of the existing 700 mm diameter CSP crossing Fernbank Road. A 300 mm-wide weir with invert at 106.15 m is proposed to meet quantity control requirements.

3.4.3 Overland Spillway

The emergency spillway location is separate from the outlet control structure. The emergency spillway elevation is set to 107.65 m and acts as a broad-crested weir, approximately 10.0 m wide. Should the stormwater management facility outlet structure clog or be subject to rare rainfall events (beyond the 100-year event), the spillway is designed to safely convey runoff to the Fernbank Road side ditch.

3.4.4 Outlet Channel


The proposed concrete outlet structure will discharge into a 1050 mm diameter storm sewer, which will outlet into a proposed channel sized to service the SWM pond requirements with a maximum conveyance capacity of 3.5 m³/s including a 0.3 m freeboard (Inlet and outlet pipe calculations, and outlet channel calculations are provided in **Appendix D**).

3.4.5 Stage-Discharge Relationship

A stage-discharge relationship was estimated using standard orifice and weir equations as outlined in **Appendix B**. The resulting stage-discharge relationship is presented in **Figure 3** below.

Detailed Facility Design Components April 13, 2018

3.5 POND PERFORMANCE

As **Table 6** indicates, the water quality objectives of the SWM facility are met by providing extended detention of 24-48 hours and exceeding the MOECC recommended water quality volumes.

SWM Basin Parameters	Basin Value
Total Contributing Area	59.20 ha
Imperviousness of Contributing Area [of Sewershed Area]	55.0 %
Unit Area Storage Volume Requirements as per SWMPD Manual	190 m³/ha
Required Total Water Quality Volume	11,248 m ³
Wet Pond Bottom Elevation	104.25 m
Required Permanent Pool Volume	8,880 m ³
Permanent Pool Volume Provided (excluding sediment storage)	9,569 m ³

Table 6: Interim SWM Facility Operational Characteristics

Detailed Facility Design Components April 13, 2018

Permanent Pool Elevation	105.75 m
Permanent Pool Surface Area	12,138 m ²
Required Extended Detention Volume	2,368 m ³
Extended Detention Volume Provided	5,442 m ³
Peak Release Rate for Extended Detention	0.083 m ³ /s
Extended Detention Drawdown Time	40 hours
Extended Detention Elevation (Weir 1Crest)	106.15 m
5 Year Storm Maximum Ponding Level (24hr SCS)	106.59 m
5 Year Storm Peak Pond Release (24hr SCS)	0.246 m ³ /s
100 Year Storm Maximum Ponding Level (24hr SCS)	107.34 m
100 Year Storm Peak Pond Release (24hr SCS)	0.785 m ³ /s
100 Year Storm Active Volume Required (24hr SCS)	25,952 m ³
Top of Berm (minimum grade of surrounding properties)	107.80 m
Forebay Parameters	
Forebay Bottom Elevation	104.25 m
Sediment Accumulation Depth	0.50 m
Forebay Depth from Permanent Pool	1.50 m
Required Forebay Length	58.8 m
Actual Forebay Length	68.0 m
Clean Out Frequency	~7 years
Outlet Parameters	
Quality Orifice Size (Orifice #1)	250 mm
Quality Orifice Invert (Orifice #1)	105.75 m
Quantity Weir Size (Weir #1)	300mm-W x 1150mm-H
Quantity Weir Cres Invert	106.15 m
Emergency Spillway Weir Crest Length	10.00 m
Emergency Spillway Weir Crest Elevation	107.65 m

3.6 OTHER CONSIDERATIONS

Additional key design notes include the following:

 A 4-m wide access road which consists of 3-m wide pavement and 0.5-m wide gravel shoulders has been provided for ease of inspection and maintenance of the inlet, forebay and main cell. The access road will have an engineered base consisting of granular 'A' and granular 'B' for durability and strength, while the surface will be asphaltic concrete for erosion protection. The route has been designed with a minimum slope to facilitate maintenance equipment maneuverability

Criteria and Constraints for Future Development April 13, 2018

4.0 CRITERIA AND CONSTRAINTS FOR FUTURE DEVELOPMENT

The following section discusses the criteria and constraints to be used during detailed design of the developments within the 59.20 ha tributary area to the proposed Fernbank SWM Pond 4.

4.1 STORMWATER MANAGEMENT DESIGN CRITERIA

The following design guidelines were established through review of the background documentation, supplemented with current design practices outlined by the City of Ottawa Sewer Design Guidelines (2012) and Ministry of the Environment Stormwater Management and Planning and Design Manual (2003) guidelines:

- Design using the dual drainage principle.
- Maximum 100-year water depth of 0.35 m in road sags, including overflow spill depth.
- Average sag storage of 40 m³/ha to be provided in future residential areas.
- Future school block to provide on-site storage for the 100-year design storm.
- Rear-yard storage is not to be included in calculations.
- Parks and open spaces are to have no surface ponding storage.
- 100-year hydraulic grade line (HGL) to be a minimum 0.30 m below lowest building underside of footing elevation.
- Design inlets along local roadways to capture the 2-year peak flow.
- Design inlets within the school block and along collector roadways to capture the 5-year peak flow.
- Design storm sewers along local and collector roadways to convey the 2-year and 5-year peak flow respectively under free-flow conditions using 2004 City of Ottawa I-D-F parameters and an inlet time of 10 minutes.
- Provide adequate emergency overflow conveyance to SWM Pond 4 as shown on **Drawing OSD-1**.
- Design and submit a detailed Erosion Control Plan, as outlined in Section 5.2.

Operations and Maintenance April 13, 2018

5.0 OPERATIONS AND MAINTENANCE

As with any SWM facility, maintenance will be required to ensure the operational efficiency and functionality of the facility. It is noted that until such a time as the ownership is transferred to the City of Ottawa, the developer will be responsible for any maintenance/operation/monitoring works. The preparation of an Operations, Maintenance and Monitoring Manual for the Fernbank SWM Pond 4 will be required at a later date and prepared under separate cover.

5.1 MAINTENANCE PROGRAM

The following summarizes the key components to be considered for the maintenance program:

- Inventory of Stormwater System Components (e.g. conveyance locations, elevations, outfalls, contributing drainage area, receiving watercourse, control structure components and specifications, material types, vegetative species and other pertinent information)
- **Periodic and Scheduled Inspections** (performed on a regular basis as determined in consultation with the city, and MOECC)
- Maintenance Scheduling and Performance (e.g. vegetation/landscaping maintenance, trash and debris removal, dewatering, sediment removal and disposal, pond and stream bank stabilization, inlet/outlet structure repairs, equipment testing/troubleshooting etc.)
- **Documentation and Reporting** (e.g. frequent inspection reports to the municipality and conservation authority during construction).

5.1.1 Monitoring

Monitoring of the proposed SWM pond will be conducted to ensure proper hydraulic and water quality performance of the facility as designed. A detailed monitoring plan will be prepared following the receipt of MOECC Environmental Compliance Approval (ECA). Monitoring criteria outlined in the MOECC ECA, Rideau Valley Conservation Authority (RVCA) permits, and as required by the City of Ottawa, will be used to prepare a monitoring plan for the SWM facility.

5.1.2 Sediment Removal and Storage

An access road has been provided along the north and east sides of the proposed SWM pond. The access road will permit access to all proposed structures within the facility. The pond forebay area is located such that sediment removal activities can be conducted with access from the north end of the forebay. Stop log access hatches and guides are provided in the outlet and drawdown structures to facilitate sediment removal and maintenance activities.

Sediment removal is estimated to be required at 7-year intervals or at a sediment accumulation depth of 0.50 m. Sediment accumulation within the forebay is variable and dependent on many factors including the condition of the tributary lands and the frequency of rainfall events.

Operations and Maintenance April 13, 2018

Any sediment removed from the site to be disposed of off-site must be analyzed for Ontario Regulation 347 criteria. Analytical results must meet inert fill requirements if the sediment is to be used for land application, and meet non-hazardous requirements as per the TCLP leachate test in O.Reg. 347 if it is to be disposed of in a municipal landfill. Monitoring of sediment depth should be conducted regularly and a hydrometric survey should be completed at regular intervals to confirm sediment accumulation rates. Sediment accumulation within the main cell will occur at lower rates and therefore require less frequent clean-outs than the forebay cell.

5.2 EROSION AND SEDIMENT CONTROL DURING CONSTRUCTION

In order to control erosion and migration of sediment-laden runoff off site during construction, an erosion and sediment control plan will be required for the Fernbank SWM Pond 4, following the general principles outlined in **Drawing EC-1**. Therefore, an appropriate inspection and maintenance program is necessary that will be prepared by the contractor, and will consider phasing of construction and the following goals:

- Protection from migration of sediment-laden runoff entering the Faulkner Municipal Drain;
- Immediate stabilization of exposed soil and/or stockpiles;
- Frequent inspection of all controls during construction of the pond and after significant rainfall events (greater than 13 mm) for sediment accumulation and erosion;
- Immediate repair of all noticeable erosion, with investigation into the cause so implementation of mitigation measures to prevent recurrence will be more successful;
- Maintenance of the erosion control measures in good repair during pond construction;
- Preparation of weekly inspection reports during active pond construction outlining the condition of erosion control works, their overall performance, and any actions such as repairs, replacement or modification.

There is increased potential for high TSS inflow during subdivision construction therefore an increased clean-out frequency during build-out is likely. Individual developments will be responsible for their own sediment and erosion controls during construction, as to not impact the trunk infrastructure.

Conclusions and Recommendations April 13, 2018

6.0 CONCLUSIONS AND RECOMMENDATIONS

Based on this report, the following conclusions can be drawn:

- Water quality control will be provided by the Fernbank SWM Pond 4 for an enhanced level of protection;
- Water quantity control will be provided by the SWM facility along with a combination of inlet control devices and sag storage within the development to restrict post development peak flows up to the 100-year storm to pre-development levels with a maximum allowable release rate of 0.9 m³/s;

Based on the findings of this report, the following recommendations are advised:

- Future developments will ensure that a clearance of at least 0.30 m is achieved between building footings and the 100-year hydraulic grade line;
- 100-year ponding depths will be maintained at a maximum 0.35 m in road sags;
- Future developments shall follow those criteria provided in Section 4.0 above;
- Future design is to be completed in accordance with this report and the City of Ottawa Design Guidelines;
- This report is to be used for submission to regulatory agencies in support of approvals applications.

Appendix A Storm Sewer Design Sheet April 13, 2018

Appendix A STORM SEWER DESIGN SHEET

pa w:\active\160400900_cavanagh_stittsville\design\report\pond design\rpt_2018-04-11_pond.docx

Stantec		JOB	NAME				STORM	I SHEE	т		DESIGN I = a / (t+	<i>.</i>				wa Guide	lines, 201	2)																					
	DATE: REVISION DESIGNE CHECKEI	D BY:	2017- 1 W/ AN	I AJ	FILE NUN	IBER:	(City of 16040090	Ottawa)			a = b = c =	1:2 yr 732.951 6.199 0.810	1:5 yr 998.071 6.053 0.814	1174.184 6.014	1735.688 6.014		G'S n = COVER: ENTRY			BEDDING	CLASS =	В																	
LOCATION									_						AINAGE AR																		PIPE SELE						
AREA ID NUMBER	FROM M.H.	TO M.H.	AREA (2-YEAR) (ha)		AREA (10-YEAR) (ha)	AREA (100-YEAR) (ha)	AREA) (ROOF) (ha)	C (2-YEAR) (-)	C (5-YEAR) (-)	C (10-YEAR) (-)	C (100-YEAR (-)		ACCUM AxC (2YR) (ha)				ACCUM. AxC (10YR) (ha)			T of C) (min)	I _{2-YEAR} (mm/h)	I _{5-YEAR} (mm/h)	I _{10-YEAR} (mm/h)	I _{100-YEAR} (mm/h)		ACCUM. Q _{CONTROL} (L/s)	Q _{ACT} (CIA/360) (L/s)	LENGTH P OF (m)	IPE WIDTH R DIAMETEI (mm)		PIPE SHAPE (-)	MATERIAL	CLASS (-)	SLOPE	Q _{CAP} (FULL) (L/s)	% FULL (-)	VEL. (FULL) (m/s)		TIME OF FLOW (min)
L113A	113	112	3.34	0.00	0.00	0.00	0.00	0.61	0.00	0.00	0.00	2.035	2.035	0.000	0.000	0.000	0.000	0.000	0.000	10.00 10.79	76.81	104.19	122.14	178.56	0.0	0.0	434.1	66.4	675	675	CIRCULAR	CONCRETE		0.35	518.8	83.67%	1.40	1.40	0.79
L121B, C121A	121	120	2.39	1.29	0.00	0.00	0.00	0.20	0.61	0.00	0.00	0.477	0.477	0.789	0.789	0.000	0.000	0.000	0.000	10.00 10.61	76.81	104.19	122.14	178.56	0.0	0.0	330.3	65.2	525	525	CIRCULAR	CONCRETE		0.80	401.3	82.30%	1.80	1.78	0.61
L218A	214	217 216 215 214 213 212 120	6.70 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.59 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	3.954 0.000 0.000 0.000 0.000 0.000 0.000	3.954 3.954 3.954 3.954 3.954 3.954 3.954	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000	10.00 12.61 12.90 13.70 14.01 14.38 15.45 16.78	64.21 63.28	104.19 92.15 91.02 88.00 86.90 85.62 82.12	122.14 107.96 106.63 103.08 101.78 100.28 96.17	178.56 157.73 155.78 150.57 148.66 146.46 140.42	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	843.7 747.4 738.3 714.1 705.3 695.0 667.0	188.6 19.8 55.6 21.2 25.1 72.8 89.3	1050 1050 1050 1050 1050 1050 1050	1050 1050 1050 1050 1050 1050 1050	CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR	CONCRETE CONCRETE CONCRETE CONCRETE CONCRETE CONCRETE	- - - - -	0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	1103.3 1103.3 1103.3 1103.3 1103.3 1103.3 1103.3	76.46% 67.74% 66.92% 64.73% 63.92% 62.99% 60.45%		1.20 1.16 1.16 1.14 1.14 1.13 1.12	2.61 0.29 0.80 0.31 0.37 1.07 1.33
C119A	120 119	119 115		0.00 2.52	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.61	0.00 0.00	0.00 0.00	0.000 0.000	4.432 4.432				0.000 0.000		0.000 0.000	16.78 17.36 20.86		78.22 76.64			0.0 0.0		883.8 1193.9	53.8 274.5		1050 1200	CIRCULAR CIRCULAR	CONCRETE CONCRETE			1560.3 1575.3	56.64% 75.79%	1.75 1.35	1.55 1.31	0.58 3.50
C118A	118	117	0.00	1.04	0.00	0.00	0.00	0.00	0.61	0.00	0.00	0.000	0.000	0.635	0.635	0.000	0.000	0.000	0.000	10.00 11.73	76.81	104.19	122.14	178.56	0.0	0.0	183.6	85.1	600	600	CIRCULAR	PVC		0.15	248.1	74.02%	0.85	0.82	1.73
L206A	206 205 204	205 204 117			0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.61 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	1.636 0.000 0.000	1.636 1.636 1.636	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	10.00 12.86 14.34 15.72				156.05	0.0 0.0 0.0	0.0 0.0 0.0	348.9 305.9 287.9	82.2	750 750 750	750 750 750	CIRCULAR CIRCULAR CIRCULAR	CONCRETE CONCRETE CONCRETE		0.15 0.15 0.15	449.8	77.57% 68.00% 64.00%	0.99 0.99 0.99	0.96 0.92 0.91	2.86 1.48 1.37
	117	116	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	1.636	0.000	0.635	0.000	0.000	0.000	0.000	15.72 17.14	60.13	81.31	95.21	139.02	0.0	0.0	416.5	85.9	825	825	CIRCULAR	CONCRETE		0.15	580.0	71.81%	1.05	1.00	1.43
L203A	203 202 201 200	202 201 200 116	6.66 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.61 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	4.061 0.000 0.000 0.000	4.061 4.061 4.061 4.061	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000	0.000 0.000	10.00 12.05 12.34 14.59 15.73	69.75 68.87	94.50 93.29	110.73 109.30	178.56 161.79 159.70 145.21	0.0 0.0	0.0 0.0 0.0 0.0	776.9	148.5 20.3 158.6 77.8	1050 1050 1050 1050	1050 1050 1050 1050	CIRCULAR	CONCRETE CONCRETE CONCRETE CONCRETE	- - -	0.15 0.15	1103.3 1103.4 1103.3 1103.3	71.31% 70.41%		1.21 1.17 1.17 1.14	2.05 0.29 2.26 1.14
C116A	116	115	0.00	1.66	0.00	0.00	0.00	0.00	0.61	0.00	0.00	0.000	5.697	1.014	1.649	0.000	0.000	0.000	0.000		57.13	77.22	90.40	131.96	0.0	0.0	1257.8	227.9	1350	1350	CIRCULAR	CONCRETE		0.10	1760.8	71.43%	1.19	1.13	3.36
L211A	210 209 208	210 209 208 207 115	9.08 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.55 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	4.997 0.000 0.000 0.000 0.000	4.997 4.997 4.997 4.997 4.997	0.000 0.000 0.000 0.000 0.000	0.000	0.000	0.000 0.000 0.000 0.000 0.000	0.000	0.000	10.00 11.26 11.50 15.60 16.89 18.21	60.38	97.97 96.88 81.66	113.53 95.62	167.80	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	1066.0 1003.2 992.2 838.1 800.0	15.6	1200 1200 1200 1200 1200	1200 1200 1200 1200 1200	CIRCULAR CIRCULAR CIRCULAR CIRCULAR CIRCULAR	CONCRETE CONCRETE CONCRETE CONCRETE CONCRETE	•	0.10 0.10 0.10 0.10 0.10 0.10	1286.2		1.10 1.10 1.10 1.10 1.10 1.10	1.10 1.08 1.07 1.02 1.01	1.26 0.24 4.10 1.29 1.32
	115 114	114 112		0.00 0.00		0.00 0.00		0.00 0.00		0.00 0.00														116.79 113.20		0.0 0.0						CONCRETE				76.09% 73.79%			1.04 0.93
L112A	112	103	1.73	0.00	0.00	0.00	0.00	0.61	0.00	0.00	0.00	1.054	18.213	0.000	3.978	0.000	0.000	0.000	0.000	22.83 24.65	47.88	64.59	75.56	110.20	0.0	0.0	3135.8	156.7	1800	1800	CIRCULAR	CONCRETE		0.10	3792.1	82.69%	1.44	1.44	1.82
L111A	111 110	110 104																						178.56 157.86				203.9 140.2				CONCRETE				86.03% 76.26%			
L109B, L109C, C109A F108A	109 108	108 106																														CONCRETE				87.97% 75.73%			
L107A	107	106	4.00	0.00	0.00	0.00	0.00	0.61	0.00	0.00	0.00	2.437	2.437	0.000	0.000	0.000	0.000	0.000	0.000	10.00 12.46	76.81	104.19	122.14	178.56	0.0	0.0	520.0	135.6	900	900	CIRCULAR	CONCRETE		0.10	597.2	87.07%	0.91	0.92	2.46
C106A, C106B	106 105																															CONCRETE							
	104	103	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	4.883	0.000	1.227	0.000	0.000	0.000	1.711	18.80 19.45	54.05	73.00	85.44	124.69	0.0	0.0	1574.6	47.5	1350	1350	CIRCULAR	CONCRETE	•	0.10	1760.9	89.42%	1.19	1.21	0.65
		101 Forebay																						178.56 178.56								CONCRETE							
L102A	102	100B	2.52	0.00	0.00	0.00	0.00	0.61	0.00	0.00	0.00	1.537	24.633	0.000	5.205	0.000	0.000	0.000	1.711	25.12	45.03 44.38	60.71	71.01	103.53	0.0	0.0	4451.3	72.8 22.0	2400	1200 1200	RECTANGULAF	CONCRETE CONCRETE CONCRETE		0.30	6587.4	67.57%	2.29	2.14	0.57

Appendix B Fernbank Pond 4 Design Calculations April 13, 2018

Appendix B FERNBANK POND 4 DESIGN CALCULATIONS

pa w:\active\160400900_cavanagh_stittsville\design\report\pond design\rpt_2018-04-11_pond.docx

160400900 Shea Road Development Pond Design Brief - Fernbank Pond 4

Stormwater Quality Volumetric Requirements

				Water Qua	ality Unit Volume R	equirments	Water Qua	ality Volume Rec	uirements	Water	Quality Volumes	Provided	
Pond	Drainage Area (ha)	Actual % Imp.	MOE Control Level	Total Unit Volume (m ³ /ha)	Permanent Pool (m ³ /ha)	Extended Detention (m ³ /ha)	Permanent Pool (m ³)	Extended Detention (m ³)	Total MOE Volume	Permanent Pool (m ³)	Extended Detention (m ³)	Total MOE Volume	Provided Unit Volume (m ³ /ha)
Fernbank Pond 4	59.20	55	Enhanced - 80% TSS Removal	190	150.0	40	8,880	2,368	11,248	9,569	5,442	15,011	254

*Enhanced Water Level protection as specified by Fernbank Community Master Servicing Study

For use in I	nterpolation o	f above formula	e						
			Wetpond				We	tland	
%	0	35	55	70	85	35	55	70	85
Enhanced - 80% TSS Removal	0	140	190	225	250	80	105	120	140
Normal - 70% TSS Removal	0	90	110	130	150	60	70	80	90
Basic - 60% TSS Removal	0	60	75	85	95	60	60	60	60

160400900 Shea Road Development Pond Design Brief - Fernbank Pond 4 Stage-Storage-Discharge Summary

		Stor	rage			Forebay			Main Cell		1
Stage	Discharge	Active	Total*	Depth	Area	Incremental Volume	Accumulated Volume	Area	Incremental Volume	Accumulated Volume	
(m)	(m³/s)	(m ³)	(m ³)	(m)	(m²)	(m ³)	(m ³)	(m²)	(m ³)	(m ³)	
104.25		0	0	0.00	752	0	0	4,243	0	0	
105.45		0	6,711	1.20	1,348	1,260	1,260	5,571	5,889	5,889	
105.55		0	7,490	1.30	1,567	146	1,406	7,092	633	6,522	
105.65		0	8,443	1.40	1,785	168	1,574	8,614	785	7,307	
105.75		0	9,569	1.50	2,003	189	1,763	10,135	937	8,245	Permanent Pool
105.75		0	9,569	1.50	0	0	1,763	12,138	0	8,245	Permanent Pool
106.15		5,442	15,011	0.40	0	0	1,763	15,072	5,442	13,686	
106.25		6,979	16,548	0.50	0	0	1,763	15,665	1,537	15,223	
106.35		8,575	18,144	0.60	0	0	1,763	16,258	1,596	16,819	
107.00		19,712	29,281	1.25	0	0	1,763	18,009	11,137	27,956	
107.34		25,991	35,560	1.59	0	0	1,763	18,925	6,279	34,235	
107.45		28,088	37,657	1.70	0	0	1,763	19,204	2,097	36,332	
107.75		33,893	43,463	2.00	0	0	1,763	19,500	5,806	42,138	

* Total pond including forebay, excluding sediment storage (see forebay calculations)

160400900 Shea Road Development Pond Design Brief - Fernbank Pon

Conceptual Outlet Structure Discharge Calculations

levation				Discharge (m ³ /s)					Parameters	
levation	Overflow Outle	t		Piped Outlet			Total		(Drifice 1
(m)	Spillway	Total	Orifice 1	Orifice 2	Control	Weir 1	Discharge		Orifice Centre	Perimeter
104.25							0.000		105.875 m	0.785 m
105.55							0.000		Orifice Invert	Area
105.65							0.000		105.75 m	0.0491 m ²
105.75							0.000		Orifice Diameter	Orifice Coeff.
105.75	0.000	0.000	0.000	0.000	0.000	0.000	0.000		250 mm	0.61
106.15	0.000	0.000	0.083	0.000	0.000	0.000	0.083		Orientation	Permanent Pool
106.25	0.000	0.000	0.092	0.000	0.000	0.016	0.108	Spillway Weir	Vertical	105.75 m
106.35	0.000	0.000	0.101	0.000	0.000	0.046	0.147	Crest Elevation	0	Drifice 2
107.00	0.000	0.000	0.146	0.000	0.000	0.400	0.546	107.65 m	Orifice Centre	Perimeter
107.34	0.000	0.000	0.165	0.000	0.000	0.662	0.827	Crest Width	108.23 m	1.445 m
107.45	0.000	0.000	0.170	0.000	0.000	0.756	0.926	10 m*	Orifice Invert	Area
107.65	0.000	0.000	0.180	0.000	0.000	0.937	1.117		108.00 m	0.1662 m ²
107.75	0.550	0.550	0.184	0.000	0.000	1.032	1.767	Weir Coeff. 1.740	Orifice Diameter	Orifice Coeff.
									460 mm	0.61
									0	rientation
									Vertical	
										Weir 1
									Top of Weir Structure	Max Perimeter
									107.30 m	0.300 m
									Weir Crest Invert	Max Open Area
									106.15 m	0.345 m ²
									Weir Dimensio	ons (Height x Length)
									1.15 m Height	0.30 m Len
									Side Walls	Weir Coeff.
									Vertical	1.700

1. Outlet structure consists of reverse-sloped lowflow pipe connected to orifice #1 (created by equivalent sluice gate orientation)

2. Secondary outlet is Weir#1 in weir wall inside structure

Water Quality Extended Detention Summary

Mater Quality Externated Dete	nuon ounn	nai y							
Required Extended Detention Time		24-48	hrs for water quali	ty drawdown				$Q = C4 \left[2g\left(h_2 - h_1 + \frac{D}{D}\right) \right]$	$Q = Q (h_2 - h_1)^{1.5}$
Actual Extended Detention Time		40	hrs	Q _{peak}	0.083	3 m ³ /s	Where,	$\sum_{n=1}^{\infty} \sqrt{-3} \left(\frac{n_2}{2} + \frac{n_1}{2} + \frac{2000}{2} \right)$	
Extended Detention Elevation		106.15	m	Q _{avg}	0.041	1 m³/s		h2 = elevation at stage 2 (m)	h2 = elevation at stage 2 (m)
								h1 = elevation at stage 1 (m)	h1 = elevation at stage 1 (m)
Watershed Area (ha)	59.20			Discharg	e Rates from PCSW	MM (m³/s)		D = orifice diameter (mm)	L = weir crest length (m)
Percent Impervious	55.0%	Storm	Pond Inflow	Allowable	Pond Outflow	Storage (ha-m)	Water Level	C = orifice coefficient	C = weir coefficient
Water Quality Criteria Enhanced - 80	% TSS Removal	25mm, 4hr Chi	3.677	N/A	0.077	6235	106.20	A = orifice open area (m ²)	
Req'd Ext. Det. Volume (m ³ /ha)	40	2-yr, 24hr SCS	4.037	0.480	0.149	9379	106.40		
Req'd Ext. Det. Volume (m ³)	2,368	5-yr, 24hr SCS	5.408	0.760	0.246	12603	106.59	Weir flow calculation for orifice below centreline	<u>:</u>
Provided Ext. Det. (m ³)	5,442	10-yr, 24hr SCS	5.928	0.900	0.319	14745	106.71	2h $2h$ $2h$	
Req'd Perm. Pool Volume (m ³ /ha)	150.0	25-yr, 24hr SCS	6.943	0.900	0.429	17575	106.88	$\theta = 2\cos^{-}(1 - \frac{2\pi}{D}) = 2\cos(1 - \frac{2\pi}{D})$	h = water level stage (m)
Req'd Perm. Pool Volume (m ³)	8,880	100-yr, 24hr SCS	13.762	0.900	0.785	25952	107.34		D = orifice diameter (m)
Provided Perm. Pool Volume (m ³)	9,569	100-yr+20, 24hr SCS	17.124	N/A	2.454	35615	107.84	$P_{W} = \frac{D\theta}{2}$	θ = angle based on water level (radians)
		100-yr, 3hr Chi	16.946	N/A	0.680	23586	107.21	~ 2	P _w = Wetted Perimeter = Crest Length
		July 1, 1979	12.415	N/A	0.917	31263	107.61		

0.3 m long weir at inv. = 106.15 250 mm lowflow outlet at inv. = 105.75 m 460 mm outlet at inv. = 108 m

- vel (radians)
- est Length (m)

160400900 Shea Road Development Pond Design Brief - Fernbank Pond 4

Sediment Forebay Sizing Calculations Using MOE - Stormwater Management Planning and Design Manual (2003)

		-			
Settling Length	@ Perm. Pool				
Dist = $sqrt(r^*Q_p/v_s)$		r: 1 = L to W ratio	r =	2.8	Average
= 27.8	m	Q _p = peak SWM outflow during quality storm	Q _p =	0.083	Note 1.
		v_s = settling velocity for 0.15 mm particles (m/s)	v _s =	0.0003	
Dispersion Length	@ Perm. Pool	y _d = total depth of sediment in forebay (m)	y _d =	0.5	_
Dist = 8Q/dv		Q = 25mm max inlet flow (m ³ /s)	Q =	3.677	Note 2.
= 58.8	m	d = depth of perm pool in forebay (m)	d =	1.0	
		v _f = desired vel in forebay (m/s)	v _f =	0.5	
Provided = 68.0	m Length	Criteria Satisfied	Provided L:W =	2.2	
/elocity	@ Forebay Berm	y = total depth of forebay from perm. pool (m)	y =	1.0	Assume max. sediment dep
v = Q/A	c ,	b = bottom width of forebay (m)	b =	20	at forebay end
= 0.15	m/s	Q = 25mm inlet flow (m ³ /s)	Q =	3.677	,
0.10		A = cross-sectional area (m ²)	A =	23.78	Note 3.
/elocity Target Satisfied		A = cross-sectional area (m ⁻) Target velocity = 0.15	A = V _{targ} =	23.78 0.15	Note 3.
Velocity Target Satisfied		Target velocity = 0.15	V _{targ} =	0.15	_
Velocity Target Satisfied	1	Target velocity = 0.15 Water Quality Level	V _{targ} =	0.15 ed - 80% TSS	_
Velocity Target Satisfied Cleanout Frequency Fable 6.3 MOE SWMPD Manua		Target velocity = 0.15 Water Quality Level A _{sew} = Contributing Sewer Area (ha)	V _{targ} = Enhance A _{sev} =	0.15 ed - 80% TSS 59.20	_
Velocity Target Satisfied Cleanout Frequency Table 6.3 MOE SWMPD Manua cleanout = Vol/(load*A _{sew} *	effic)	Target velocity = 0.15 Water Quality Level A _{sew} = Contributing Sewer Area (ha) Imp = Percent Impervious (%)	V _{targ} = Enhance A _{sev} = Imp =	0.15 ed - 80% TSS 59.20 55.0%	
Velocity Target Satisfied Cleanout Frequency Table 6.3 MOE SWMPD Manua		Target velocity = 0.15 Water Quality Level A _{sew} = Contributing Sewer Area (ha) Imp = Percent Impervious (%) Ioad = Sediment Loading (m ³ /ha)	V _{targ} = Enhance A _{sew} = Imp = Ioad =	0.15 ed - 80% TSS 59.20 55.0% 1.3	Removal Assume same as overall
Velocity Target Satisfied Cleanout Frequency Table 6.3 MOE SWMPD Manua cleanout = Vol/(load*A _{sew} *	effic)	Target velocity = 0.15 Water Quality Level A _{sew} = Contributing Sewer Area (ha) Imp = Percent Impervious (%) Ioad = Sediment Loading (m ³ /ha) effic = Removal Efficiency (%) - Enhanced - 80% TSS Removal Level	V _{targ} = Enhance A _{sev} = Imp =	0.15 ed - 80% TSS 59.20 55.0% 1.3 80%	
Velocity Target Satisfied Cleanout Frequency Table 6.3 MOE SWMPD Manua cleanout = Vol/(load*A _{sew} *	effic)	Target velocity = 0.15 Water Quality Level A _{sew} = Contributing Sewer Area (ha) Imp = Percent Impervious (%) Ioad = Sediment Loading (m ³ /ha) effic = Removal Efficiency (%) - Enhanced - 80% TSS Removal Level Targ = Cleanout Frequency Target (years)	V _{targ} = Enhance A _{sew} = Imp = Ioad = effic = Targ =	0.15 ed - 80% TSS 59.20 55.0% 1.3 80% 6	Removal Assume same as overall
Velocity Target Satisfied Cleanout Frequency Table 6.3 MOE SWMPD Manua cleanout = Vol/(load*A _{sew} *	effic)	Target velocity = 0.15 Water Quality Level A _{sew} = Contributing Sewer Area (ha) Imp = Percent Impervious (%) Ioad = Sediment Loading (m ³ /ha) effic = Removal Efficiency (%) - Enhanced - 80% TSS Removal Level	V _{targ} = Enhance A _{sev} = Imp = Ioad = effic =	0.15 ed - 80% TSS 59.20 55.0% 1.3 80%	Removal Assume same as overall
Velocity Target Satisfied Cleanout Frequency Table 6.3 MOE SWMPD Manua cleanout = Vol/(load*A _{sew} * = 7.1	effic)	Target velocity = 0.15 Water Quality Level A _{sew} = Contributing Sewer Area (ha) Imp = Percent Impervious (%) Ioad = Sediment Loading (m ³ /ha) effic = Removal Efficiency (%) - Enhanced - 80% TSS Removal Level Targ = Cleanout Frequency Target (years)	V _{targ} = Enhance A _{sew} = Imp = Ioad = effic = Targ =	0.15 ed - 80% TSS 59.20 55.0% 1.3 80% 6	Removal Assume same as overall Note 4.
Velocity Target Satisfied Cleanout Frequency Table 6.3 MOE SWMPD Manual cleanout = Vol/(load*A _{sew} * = 7.1 Surface Area Check	effic)	Target velocity = 0.15 Water Quality Level A _{sew} = Contributing Sewer Area (ha) Imp = Percent Impervious (%) Ioad = Sediment Loading (m ³ /ha) effic = Removal Efficiency (%) - Enhanced - 80% TSS Removal Level Targ = Cleanout Frequency Target (years)	V _{targ} = Enhance A _{sew} = Imp = Ioad = effic = Targ =	0.15 ed - 80% TSS 59.20 55.0% 1.3 80% 6	Removal Assume same as overall Note 4.
Velocity Target Satisfied Cleanout Frequency Table 6.3 MOE SWMPD Manual cleanout = Vol/(load*A _{sew} * = 7.1 Surface Area Check	effic)	Target velocity = 0.15 Water Quality Level A _{sew} = Contributing Sewer Area (ha) Imp = Percent Impervious (%) Ioad = Sediment Loading (m ³ /ha) effic = Removal Efficiency (%) - Enhanced - 80% TSS Removal Level Targ = Cleanout Frequency Target (years) Vol = Sediment volume (m ³) SA _t = Forebay Surface Area (m ²)	V _{targ} = Enhance A _{sew} = Imp = Ioad = effic = Targ = Vol = SA _f =	0.15 d - 80% TSS 59.20 55.0% 1.3 80% 6 438	Removal Assume same as overall Note 4.
Velocity Target Satisfied Cleanout Frequency Table 6.3 MOE SWMPD Manua cleanout = Vol/(load*A _{sew} * = 7.1 Surface Area Check	effic)	Target velocity = 0.15 Water Quality Level A _{sew} = Contributing Sewer Area (ha) Imp = Percent Impervious (%) Ioad = Sediment Loading (m ³ /ha) effic = Removal Efficiency (%) - Enhanced - 80% TSS Removal Level Targ = Cleanout Frequency Target (years) Vol = Sediment volume (m ³)	V _{targ} = Enhance A _{sew} = Imp = Ioad = effic = Targ = Vol =	0.15 d - 80% TSS 59.20 55.0% 1.3 80% 6 438 2,003	Removal Assume same as overall Note 4.

Notes

1. Peak pond outflow at extended detention elevation

2. Inlet flow is 25mm inflow from PCSWMM model

3. Cross-sectional area based on depth above maximum sedimentation depth (0.5 m)

4. Interpolated based on percent impervious

5. Volume of bottom 0.5 m depth, the maximum sediment accumulation depth

160400900 Shea Road Development Pond Design Brief - Fernbank Pond 4

Flow Augmentation Calculation

Falling Head Orifice Equation (used for approximating detention time).

(as per Equation 4.10 in MOE SW	MPDM)
---------------------------------	-------

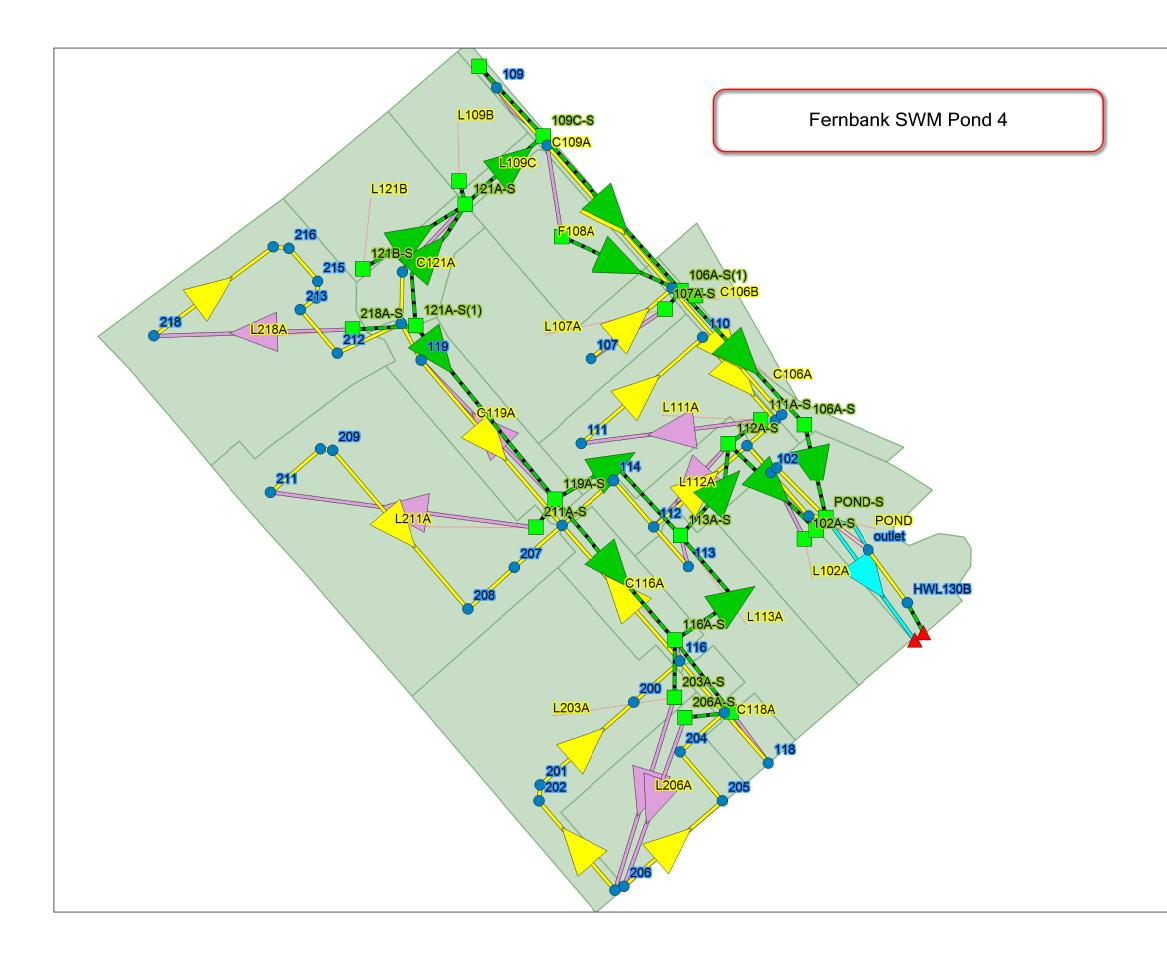
a) $t= 2^*A_p (h_1^{0.5} - h_2^{0.5})$	Ар	15071.8 m ²	Approximate pond area
$CA_{0}(2g)^{0.5}$	С	0.6	
	orifice dia.	0.25 m	
where:	h1	0.40 m	
t= drawdown time (seconds)	h2	0.00 m	
A _p = pond surface area (sq.m),			
C= discharge coefficient	Ao =	0.04909 sq.m	
A_0 = area of orifice (sq.m)	t =	146135.1707 s	
h ₁ = starting water elevation above orifice (m)		1.7 days	
h_2 = ending water elevation above orifice (m)			
		40.6 hours	
Equation 4.11			
	A ₀	0.0491 sq.m	
b) $t = 0.66C_2 h^{1.5} + 2C_3 h^{0.5}$	h	0.40 m	
2.75A ₀	C ₂	2966	
	C ₃	15071.8	
Where:	03	10071.0	
t= drawdown time (seconds)	t=	144897 s	
A_0 = cross sectional area of orifice (sq.m)		1.7 days	
h= maximum water elevation above the orifice (m)		40.2 hours	
C_2 = slope coefficient from the area-depth linear regression			
C_3 = intercept form the area-depth linear regression			

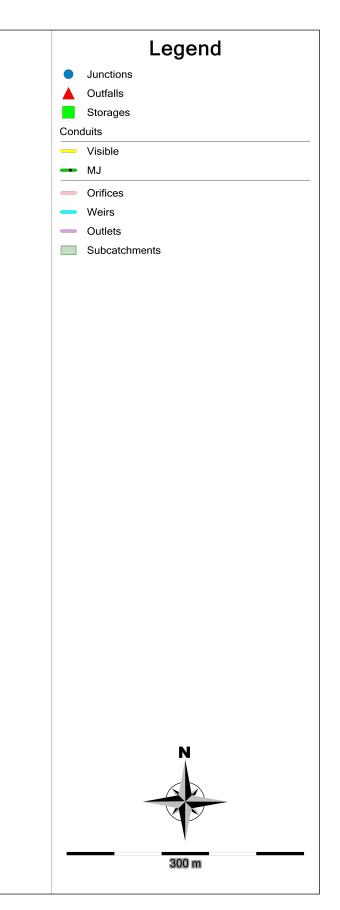
Check for Detention Time

Appendix C Post-development PCSWMM Modelling April 13, 2018

Appendix C POST-DEVELOPMENT PCSWMM MODELLING

- C.1 PCSWMM Layout
- C.2 Input Parameters
- C.3 Example Input File for 100-year, 3hr Chicago Storm Event




FERNBANK POND 4 STORMWATER MANAGEMENT FACILITY DESIGN BRIEF

Appendix C Post-development PCSWMM Modelling April 13, 2018

C.1 PCSWMM LAYOUT

FERNBANK POND 4 STORMWATER MANAGEMENT FACILITY DESIGN BRIEF

Appendix C Post-development PCSWMM Modelling April 13, 2018

C.2 INPUT PARAMETERS

pa w:\active\160400900_cavanagh_stittsville\design\report\pond design\rpt_2018-04-11_pond.docx

Summary of Subcatchment Parameters - Proposed Development Areas

										40
					Runoff	Subarea			Minor System	STORAGE-
Area ID	Area (ha)	Width (m)	Slope (%)	%IMP	Coefficient	Routing	% Routed		Capture (L/s)	(cu.m)
C106A	1.01	292.0	1.0	64.3%	0.65	OUTLET	100		207.0	0
C106B	0.96	241.0	1.0	0.0%	0.20	PERVIOUS	100		18.3	0
C109A	0.58	362.0	1.0	64.3%	0.65	OUTLET	100		128.0	0
C116A	1.66	567.0	1.0	58.6%	0.61	OUTLET	100		319.3	67
C118A	1.04	244.0	1.0	58.6%	0.61	OUTLET	100		193.3	0
C119A	2.52	656.0	1.0	58.6%	0.61	OUTLET	100		473.0	101
C121A	1.29	315.0	1.0	58.6%	0.61	OUTLET	100		241.2	52
F108A	2.44	200.0	2.0	71.4%	0.70	OUTLET	100	100 year storage	518.1	208
L102A	2.52	556.0	1.0	58.6%	0.61	OUTLET	100		315.1	101
L107A	4.00	1864.0	1.0	58.6%	0.61	OUTLET	100		504.0	160
L109B	1.61	116.0	2.0	0.0%	0.20	PERVIOUS	100		-	0
L109C	0.29	118.0	0.5	64.3%	0.65	OUTLET	100		39.6	12
L111A	3.52	536.0	1.0	50.0%	0.55	OUTLET	100		375.4	141
L112A	1.73	353.0	1.0	58.6%	0.61	OUTLET	100		216.2	69
L113A	3.34	816.0	1.0	58.6%	0.61	OUTLET	100		418.4	133
L121B	2.39	167.0	2.0	0.0%	0.20	PERVIOUS	100		-	0
L203A	6.66	1974.0	1.0	58.6%	0.61	OUTLET	100		836.5	266
L206A	2.68	939.0	1.0	58.6%	0.61	OUTLET	100]	337.4	107
L211A	9.08	2655.0	1.0	50.0%	0.55	OUTLET	100]	975.6	363
L218A	6.70	2358.0	1.0	55.7%	0.59	OUTLET	100]	802.5	268
POND	3.13	280.0	2.0	40.0%	0.48	OUTLET	100]	267.1	-

40

Storage Node	Invert Elevation (m)	Rim Elevation (m)	Total Depth (m)	Max Volume (m3)
106A-S(1)	108.56	110.71	2.15	0
106B-S	109.10	111.90	2.80	0
109A-S	110.20	112.35	2.15	0
116A-S	109.23	111.73	2.50	66
118A-S	110.06	112.21	2.15	0
119A-S	109.73	112.23	2.50	101
121A-S	109.72	112.22	2.50	52
108A-S	108.85	111.35	2.50	198
102A-S	108.12	110.77	2.65	100
107A-S	108.24	110.74	2.50	158
109B-S	112.00	112.60	0.60	0
109C-S	109.35	111.85	2.50	12
111A-S	108.44	110.94	2.50	140
112A-S	108.22	110.87	2.65	69
113A-S	108.53	111.03	2.50	132
121B-S	112.25	112.85	0.60	0
203A-S	109.25	111.75	2.50	265
206A-S	109.73	112.23	2.50	107
211A-S	109.75	112.25	2.50	363
218A-S	110.73	113.23	2.50	266
POND-S	104.25	107.75	3.50	34672

Storage Node Parameters

Outlet Results

				Max.
	Inlet	Outlet	Inlet Elev.	Flow
Name	Node	Node	(m)	(L/s)
102A-IC	102A-S	108.12	315.18	315.18
106A-IC	106A-S(1)	108.56	207.00	207.00
106B-IC	106B-S	109.1	18.00	18.00
107A-IC	107A-S	108.24	504.51	504.51
108A-IC	108A-S	108.85	518.00	518.00
109A-IC	109A-S	110.2	128.00	128.00
109C-IC	109C-S	109.35	41.00	41.00
111A-IC	111A-S	108.44	375.00	375.00
112A-IC	112A-S	108.22	216.00	216.00
113A-IC	113A-S	108.53	418.00	418.00
116A-IC	116A-S	109.23	319.58	319.58
118A-IC	118A-S	110.06	193.00	193.00
119A-IC	119A-S	109.73	473.40	473.40
121A-IC	121A-S	109.72	241.40	241.40
203A-IC	203A-S	109.25	837.00	837.00
206A-IC	206A-S	109.73	337.00	337.00
211A-IC	211A-S	109.75	976.00	976.00
218A-IC	218A-S	110.73	802.00	802.00

FERNBANK POND 4 STORMWATER MANAGEMENT FACILITY DESIGN BRIEF

Appendix C Post-development PCSWMM Modelling April 13, 2018

C.3 EXAMPLE INPUT FILE FOR 100-YEAR, 3HR CHICAGO STORM EVENT

[TITLE]

[OPTI ONS] ;; Opti ons	Val ue						
;; FLOW_UNI TS INFI LTRATI ON FLOW_ROUTI NG START_DATE START_TI ME REPORT_START_DATI REPORT_START_DATI END_DATE END_TI ME SWEEP_START SWEEP_END DRY_DAYS REPORT_STEP WET_STEP DRY_STEP ROUTI NG_STEP ALLOW_PONDI NG INERTI AL_DAMPI NG VARI ABLE_STEP LENGTHENI NG_STEP MI N_SURFAREA NORMAL_FLOW_LI MI SKI P_STEADY_STATI FORCE_MAI N_EQUATI LI NK_OFFSETS MI N_SLOPE MAX_TRI ALS HEAD_TOLERANCE SYS_FLOW_TOL LAT_FLOW_TOL MI NI MUM_STEP THREADS	E 00: 00 11/19 00: 00 01/01 12/31 0 00: 01 00: 05 5 NO PARTI 0. 75 0 0 TED BOTH E NO	VE /2017 : 00 /2017 : 00 /2017 : 00 : 00 : 00 AL					
[EVAPORATION] ;;Type I	Parameters						
CONSTANT O. O DRY_ONLY NO							
[RAI NGAGES] ;; ;;Name	Rai n Type	Time Intrvl	Snow Catch	Data Source			
; ; RG1	I NTENSI TY	0: 10	1. 0	TIMESERIE	- S 100yr_3I	hr_Chi cag	o_Ottawa
[SUBCATCHMENTS]					Tatal	David	
;; Curb Snow ;;Name	Rai ngage		Outlet		Total Area	Pcnt. Imperv	Width
Length Pack							
Length Pack ;; C106A			 106A-S		1. 009065		292
;;				(1)		64. 286	

Page 1

Pcnt.

SI ope

1 1 1

160400900_2018-04-10_100CHI _free. i np

0		400900_2010					
0 C116A 0	RG1	116A	S	1.663001	58. 571	567	1
C118A	RG1	118A	-S	1.040192	58. 571	244	1
0 C119A	RG1	119A	-S	2. 523952	58. 571	656	1
0 C121A	RG1	121A	-S	1. 293885	58. 571	315	1
0 F108A	RG1	108A	-S	2.444837	71. 429	200	2
0 L102A	RG1	102A	-S	2.515228	58. 571	556	1
0 L107A	RG1	107A	-S	3.995616	58. 571	1864	1
0 L109B	RG1	109B	-S	1. 609925	0	116	2
0 L109C 0	RG1	109C	-S	0. 28776	64.286	118	0.5
L111A 0	RG1	111A	-S	3. 521316	50	536	1
L112A 0	RG1	112A	-S	1.727354	58. 571	353	1
L113A 0	RG1	113A	-S	3. 335419	58. 571	816	1
L121B 0	RG1	121B	-S	2.3862	0	167	2
L203A	RG1	203A	-S	6.657405	58. 571	1974	1
L206A	RG1	206A	-S	2.681205	58. 571	939	1
L211A 0	RG1	211A	-S	9.084765	50	2655	1
L218A 0	RG1	218A	-S	6. 702376	55.714	2358	1
POND	RG1	POND	-S	3. 128864	40	280	2
[SUBAREAS] ;;Subcatchment PctRouted	N-Imperv	N-Perv	S-Imperv	S-Perv	PctZero	Route	То
1.1							
C106A	0. 013	0. 25	 1. 57	4. 67	0	OUTLE	
C106B 100	0. 013 0. 013	0. 25	1. 57 1. 57 1. 57	4. 67 4. 67	0 0	PERVI	OUS
C106B	0. 013 0. 013 0. 013	0. 25 0. 25 0. 25	1.57 1.57 1.57		0 0 0	PERVI (OUTLE OUTLE	DUS T T
C106B 100 C109A C116A C118A C119A	0. 013 0. 013 0. 013 0. 013 0. 013	0. 25 0. 25 0. 25 0. 25 0. 25 0. 25	1.57 1.57 1.57 1.57 1.57 1.57	4.67 4.67 4.67 4.67 4.67	0 0 0 0 0	PERVI OUTLE OUTLE OUTLE OUTLE	DUS T T T T
C106B 100 C109A C116A C118A	0. 013 0. 013 0. 013 0. 013 0. 013 0. 013 0. 013 0. 013	0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25 0. 25	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	4.67 4.67 4.67 4.67 4.67 4.67 4.67		PERVI OUTLE OUTLE OUTLE	DUS T T T T T
C106B 100 C109A C116A C118A C119A C121A	0. 013 0. 013 0. 013 0. 013 0. 013 0. 013 0. 013 0. 013 0. 013 0. 013	0. 25 0. 25	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	4.67 4.67 4.67 4.67 4.67 4.67		PERVI OUTLE OUTLE OUTLE OUTLE OUTLE	DUS T T T T T T T
C106B 100 C109A C116A C118A C119A C121A F108A L102A	0. 013 0. 013	0. 25 0. 25	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67		PERVI OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE	DUS T T T T T T T T
C106B 100 C109A C116A C118A C119A C121A F108A L102A L107A L109B	0. 013 0. 013	0. 25 0. 25	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67		PERVIO OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE	DUS T T T T T T T DUS T
C106B 100 C109A C116A C118A C119A C121A F108A L102A L107A L109B 100 L109C L111A L112A L113A	0. 013 0. 013	0. 25 0.	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67		PERVIO OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE	DUS T T T T T T T DUS T T T T
C106B 100 C109A C116A C118A C119A C121A F108A L102A L107A L109B 100 L109C L111A L112A L112A L113A L121B 100	0. 013 0. 013	0. 25 0. 25	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67		PERVIO OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE	DUS T T T T T T DUS T T T T T T T DUS
C106B 100 C109A C116A C118A C119A C121A F108A L102A L107A L109B 100 L109C L111A L112A L112A L113A L121B	0. 013 0. 013	0. 25 0.	1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67		PERVIO OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE OUTLE	DUS T T T T T T DUS T T T T T T T DUS

		400900_2018	8-04-10_1000	CHI_free.inp		
L206A L211A L218A	0. 013 0. 013 0. 013	0.25 0.25 0.25	1. 57 1. 57 1. 57	4.67 4.67 4.67	0 0 0	OUTLET OUTLET OUTLET
POND	0.013	0. 25 0. 25 0. 25	1.57	4.67	0	OUTLET
[INFILTRATION] ;;Subcatchment	MaxRate	MinRate	Decay	DryTime	Maxlnfil	
C106A C106B C109A C116A C118A C119A C121A F108A L102A L107A L109B L109C L111A L112A L113A L121B L203A L206A L211A L218A POND	$\begin{array}{c} 76. \ 2\\ 76. \$	$\begin{array}{c} 13.\ 2\\ 13.\ 2\ 2\\ 13.\ 2\ 2\\ 13.\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\$	$\begin{array}{c} 4. \ 14 \\$	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
[JUNCTIONS] ;; ;;Name	lnvert Elev.	Max. Depth	lnit. Depth	Surcharge Depth	Ponded Area	
100B 101 102	105. 5 105. 477 105. 519	2. 65 3. 003 3. 291	0 0 0	0 0 0	0 0 0	
; 3000mm 103	105.634	4.792	0	0	0	
; 2400mm 104	106. 282	4.089	0	0	0	
; 3000mm 105	106. 296	3.848	0	0	0	
; 2400mm 106	106. 568	3. 592	0	0	0	
; 1800mm 107 : 2400mm	107.154	4.796	0	0	0	
; 2400mm 108 ; 1200mm	106. 958	4. 152	0	0	0	
109	107.704	3. 296	0	0	0	
; 1800mm 110 : 1500mm	107.377	3.775	0	0	0	
; 1500mm 111 : 2000mm	108.049	3. 192	0	0	0	
; 3000mm 112 ; 1500mm	105.941	4.867	0	0	0	
113 114	107. 298 106. 079	3.65 4.943	0 0	0 0	0 0	
; 2400mm 115 ; 2400mm	106. 226	5. 79	0	0	0	

	1	60400900	2018-04-	10_100CHI_fr	ee.inp	
116 ; 1800mm	106. 904	4.58	0	0	0	
, 1000mm 117 ; 1200mm	107. 558	4.44	0	0	0	
118	107.91	2.906	0	0	0	
; 2400mm 119	107. 238	5.3	0	0	0	
; 2400mm 120	107.549	5.454	0	0	0	
; 1200mm 121	108. 596	3. 994	0	0	0	
; 2400mm 200	107.32	6. 004	0	0	0	
; 2400mm						
201 ; 2400mm	107. 563	8. 143	0	0	0	
202 ; 2400mm	107.623	8. 241	0	0	0	
203 ; 1800mm	107.876	8. 91	0	0	0	
204 ; 1800mm	107.745	5.68	0	0	0	
205	107. 928	8.611	0	0	0	
; 1500mm 206	108. 236	8. 264	0	0	0	
; 2400mm 207	106. 906	6. 02	0	0	0	
; 3000mm 208	106. 988	6. 712	0	0	0	
; 2400mm 209	107.312	6.855	0	0	0	
; 2400mm 210	107.358	6. 763	0	0	0	
; 2400mm						
211 ; 2400mm	107.471	6.643	0	0	0	
212 ; 3000mm	107.743	5.566	0	0	0	
213 ; 2400mm	107.912	6. 028	0	0	0	
214 ; 2400mm	108.01	5.742	0	0	0	
215 ; 2400mm	108. 072	5.622	0	0	0	
216	108. 185	4.977	0	0	0	
; 2400mm 217	108. 245	5.905	0	0	0	
; 2400mm 218	108. 557	5.643	0	0	0	
HWL130B outlet	105.7 105.55	2.3 2.2	0 0	0 0	0 0	
[OUTFALLS]						
;; ;; Name	lnvert Elev.	Outfal Type	I S	tage/Table ime Series	Ti de Cate	Route To
;;						
OF1 OF3	107. 65 105. 58	FREE FREE			NO NO	
[STORAGE]						
;; Ponded Evap.	Invert	Max.	Init.	Storage	Curve	
;;Name	El ev.	Depth	Depth	Curve	Params	
			Pag	je 4		

Area F	rac.	1 Infiltr	60400900 ation pa	arameters	0_100CHI_fr	ee.inp			-
102A-S		108. 12	2. 65	0	TABULAR	102A-S			0
0 102A-S(1)		107.5	0. 7	0	FUNCTI ONAL	0	0	0	0
106A-S		108. 27	0.5	0	FUNCTI ONAL	0	0	0	0
0 106A-S(1)		108.56	2.15	0	FUNCTI ONAL	0	0	0	0
106B-S		109. 1	2.8	0	FUNCTI ONAL	0	0	0	0
0 107A-S		108.24	2.5	0	TABULAR	107A-S			0
0 108A-S		108.85	2.5	0	TABULAR	108A-S			0
109A-S		110. 2	2.15	0	FUNCTI ONAL	0	0	0	0
109B-S		112	0.6	0	FUNCTI ONAL	0	0	0	0
0 109C-S		109.35	2.5	0	TABULAR	109C-S			0
0 111A-S		108.44	2.5	0	TABULAR	111A-S			0
0 112A-S		108.22	2.65	0	TABULAR	112A-S			0
0 113A-S		108.53	2.5	0	TABULAR	113A-S			0
0 116A-S		109. 23	2.5	0	TABULAR	116A-S			0
0 118A-S		110.06	2.15	0	FUNCTI ONAL	0	0	0	0
0 119A-S		109. 73	2.5	0	TABULAR	119A-S			0
0 121A-S		109. 72	2.5	0	TABULAR	121A-S			0
0 121A-S(1)		112.87	0.35	0	FUNCTI ONAL	0	0	0	0
121B-S		112.25	0.6	0	FUNCTI ONAL	0	0	0	0
203A-S		109. 25	2.5	0	TABULAR	203A-S			0
0 206A-S		109.73	2.5	0	TABULAR	206A-S			0
0 211A-S		109. 75	2.5	0	TABULAR	211A-S			0
0 218A-S 0		110. 73	2.5	0	TABULAR	218A-S			0
POND-S 0		104. 25	3.5	1.5	TABULAR	POND			0
[CONDUI TS]		Inlet		Outlet			Manni ng	Inlot	
;; Outlet ;;Name Offset		Max Node	ζ.		Len	-	Ū.	Offset	
, , C1		121A-S(1)	121A-S			0. 013		
111.87 C10	0	119A-S	-	113A-S	20		0.013		
110.68	0	0							

)_2018-04-10_100CH	ll_free.inp		
C11 111.38	0	119A-S 0	116A-S	20	0.013	111.88
C12 111.38	0	118A-S 0	116A-S	86	0.013	111.86
C13 111.38	0	203A-S 0	116A-S	4	0.013	111.4
C14 111.86	0	206A-S	118A-S	4	0. 013	111.88
C15		0 HWL130B	0F3	17.5	0.035	105.7
105.58 C16	0	0 116A-S	113A-S	20	0. 013	111.38
110. 68 C17	0	0 113A-S	112A-S	20	0.013	110. 68
110. 37 C18	0	0 111A-S	112A-S	48	0.013	110. 59
110. 37 C19	0	0 107A-S	106A-S(1)	6	0. 013	110. 39
110.36 C2	0	0 102	100B	72.87	0.013	106.5
106. 28 C21	0	0 106A-S	POND-S	20	0.013	108
107.44 C23	0	0 102A-S	102A-S(1)	5	0. 025	110. 27
107.5 C24	0	0 100B	POND-S	22	0.013	105.85
105. 75 C25	0	0 102A-S(1)	POND-S	10	0. 025	107.5
107.35 C26	0	0 112A-S	102A-S(1)	153	0. 025	110. 37
107.5 C27	0	0 121B-S	121A-S	2	0. 025	112.25
112 C28	0	109B-S	121A-S	2	0. 025	112.23
111.87	0	0		2		
C29 110. 36	0	106B-S 0	106A-S(1)		0.025	110.9
C3 111.5	0	121A-S 0	109C-S	20	0.013	111.87
C30 111.5	0	109A-S 0	109C-S	50	0.013	112
C31 105. 7	0	outlet 0	HWL130B	24.7	0. 013	105.75
C4 110. 36	0	109C-S 0	106A-S(1)	20	0.013	111.5
C5 108	0	106A-S(1) 0	106A-S	100	0.013	110. 36
C6 110. 95	0	108A-S 0	106A-S(1)	5	0.013	111
C7 112.87	0	218A-S 0	121A-S(1)	2	0.013	112.88
C8 111.88	0	121A-Š(1) 0	119A-S	20	0.013	112.87
C9 111.88	0	211A-S 0	119A-S	4	0.013	111.9
Pi pe_1		102	101	9.87	0.013	105.66
105.64 Pi pe_22	0	0 112	103	156. 728	0.013	106. 241
106.084 Pi pe_23	0	0 110	104	140. 191	0. 013	107.677
107. 257 Pi pe_24_(0	110	203. 904	0. 013	108.349
107. 737 Pi pe_27	0	0 117	116	85.874	0. 013	107.858

160400900_2018-04-10_100CHI_free.inp

107 700	0		~	160400900_2018-04-10_100CH	l_free.inp		
107. 729 Pi pe_28	0	118	0	117	85.068	0.013	108. 21
108. 083 Pi pe_29_(*	0	116	0	115	227.891	0.013	107. 204
106.976	0		0				
Pi pe_3_(1) 106. 656) 0	106	0	105	212. 193	0. 013	106.868
Pi pe_30_(1)	119		115	274.488	0. 013	107.538
107. 126 Pi pe_31	0	120	0	119	53.76	0.013	107.849
107. 688 Pi pe_32	0	121	0	120	65.24	0.013	108.896
108. 374 Pi pe_35	0	107	0	106	135. 621	0.013	107.454
107. 318 Pi pe_43	0	103	0	102	45.979	0.013	105.77
105. 71 Pi pe_44	0	113	0	112	66.392	0.013	107.598
107.366 Pi pe_47	0	204	0	117	75.004	0. 013	108.045
107.933	0		0				
Pi pe_48 108. 105	0	205	0	204	82. 176	0.013	108. 228
Pi pe_49 108. 288	0	206	0	205	164.822	0. 013	108.536
Pi pe_5		108		106	240	0.013	107. 258
107.018 Pi pe_50	0	200	0	116	77.768	0.013	107.62
107.504 Pi pe_50_(1		201	0	200	158. 607	0.013	107.863
107. 625 Pi pe_51	0	202	0	201	20. 319	0.013	107.923
107. 893 Pi pe_52	0	203	0	202	148.464	0.013	108. 176
107. 953 Pi pe_53	0	207	0	115	79.926	0.013	107.206
107.126 Pi pe_53_(*	0 1)	208	0	207	79.1	0. 013	107. 288
107. 209 ` Pi pe_54	0	209	0	208	264. 023	0. 013	107.612
107. 348 Pi pe_55	0	210	0	209	15.557	0.013	107.658
107. 642 Pi pe_56	0	211	0	210	83. 021	0.013	107.771
107. 688 Pi pe_58	0	218	0	217	188. 555	0. 013	108.857
108.575 Pi pe_59	0	217	0	216	19. 773	0. 013	108.545
108.515 Pi pe_6	0	109	0	108	97. 573	0. 013	108.004
107.858 Pi pe_61	0	212	0	120	89. 327	0. 013	108.043
107. <u>9</u> 09	0	212	0	212	72.822	0. 013	108. 212
Pi pe_62 108. 103 Pi po_63	0	213	0	212	25. 111		
Pi pe_63 108. 272 Di po_62 (1	0		0			0.013	108.31
Pi pe_63_(108.34	0	215	0	214	21. 157	0.013	108.372
Pi pe_63_(108.402	0	216	0	215	55. 562	0.013	108.485
Pi pe_64 106. 301	0	114	0	112	77.623	0.013	106. 379

		0400900	_2018-04-10_100CH	l_free.inp		
Pi pe_65 106. 439 0	115 0		114	87.275	0. 013	106. 526
Pi pe_68 106. 534 0	104 0		103	47.498	0. 013	106. 582
Pi pe_69 106. 585 0	105 0		104	11.063	0. 013	106. 596
Pi pe_7 105.55 0	101 0		POND-S	21.827	0. 013	105.61
[ORI FI CES]	Ũ					
;; Flap Open/Cl	I nl et		Outlet	Ori fi ce	Crest	Di sch.
;;Name Gate Time	Node		Node	Туре	Hei ght	Coeff.
	POND-S		outlet	SI DE	105.75	0. 61
[WEI RS]	Inlet		Outlet	Weir	Crest	Di sch.
Flap End ;;Name Gate Con.	End Node Coeff.	Surchar	Node ge RoadWidth Ro	Type adSurf	Hei ght	
C2O NO O	POND-S 0	YES	OF1	TRANSVERSE	107.65	1.74
W1 NO O	POND-S	YES	outlet	TRANSVERSE	106. 15	1.7
[OUTLETS]	Inlet		Outlet	Outflow	Outlet	
Qcoeff/ ;;Name	Node	Flap	Node	Height		
	Qexpon	Gate			Туре	
102A-IC	102A-S		102	108. 12	TABULAR/HE	٨D
102A-IC 106A-IC	106A-S(1)		106	108.56	TABULAR/HEA	٨D
106A-IC 106B-IC	106B-S	NO	106	109. 1	TABULAR/HEA	٨D
106B-I C 107A-I C	107A-S	NO	107	108.24	TABULAR/HEA	٨D
107A-I C 108A-I C	108A-S	NO	108	108.85	TABULAR/HEA	٨D
108A-IC 109A-IC	109A-S	NO	109	110. 2	TABULAR/HEA	٩D
109A-IC 109C-IC	109C-S	NO	109	109.35	TABULAR/HEA	٨D
109C-IC 111A-IC	111A-S	NO	111	108.44	TABULAR/HEA	٨D
111A-IC 112A-IC	112A-S	NO	112	108. 22	TABULAR/HEA	٨D
112A-IC 113A-IC	113A-S	NO	113	108. 53	TABULAR/HEA	٨D
113A-IC 116A-IC	116A-S	NO	116	109. 23	TABULAR/HE	٨D
116A-IC 118A-IC	118A-S	NO	118	110. 06	TABULAR/HEA	٨D
118A-IC 119A-IC	119A-S	NO	119	109. 73	TABULAR/HEA	٨D

1104 10		0900_2018-04-10_1	00CHI_free.	i np		
119A-IC 121A-IC	121A-S	121	109. 72	TABULA	R/HEAD	
121A-IC 203A-IC	203A-S	203	109. 25	TABULA	R/HEAD	
203A-1C 206A-1C	206A-S	206	109. 73	TABULA	R/HEAD	
206A-IC 211A-IC	211A-S	211	109. 75	TABULA	R/HEAD	
211A-IC 218A-IC	218A-S	218	110. 73	TABULA	R/HEAD	
218A-IC	N	0				
[XSECTIONS] ;;Link Barrels	Shape	Geom1	Geom2	Geom3	Geom4	-
C1	I RREGULAR	24mROW	0	0	0	1
C10	I RREGULAR	18mROW	0	0	0	1
C11	I RREGULAR	24mROW	0	0	0	1
C12	I RREGULAR	24mROW	0	0	0	1
C13	I RREGULAR	18mROW	0	0	0	1
C14	I RREGULAR	18mROW	0	0	0	1
C15	TRAPEZOI DAL	0. 65	1	3	3	1
C16	I RREGULAR	18mROW	0	0	0	1
C17	I RREGULAR	18mROW	0	0	0	1
C18	I RREGULAR	18mROW	0	0	0	1
C19	I RREGULAR	18mROW	0	0	0	1
C2	RECT_CLOSED	1.35	2.1	0	0	1
C21	TRAPEZOI DAL	0.5	2	10	10	1
C23	TRAPEZOI DAL	0.5	1	3	3	1
C24	RECT_CLOSED	1. 35	2.1	0	0	1
C25	TRAPEZOI DAL	0.5	4	3	3	1
C26	TRAPEZOI DAL	0.5	4	3	3	1
C27	TRI ANGULAR	0. 6	3.6	0	0	1
C28	TRI ANGULAR	0.6	3.6	0	0	1
C29	TRI ANGULAR	1	6	0	0	1
C3	I RREGULAR	24mROW	0	0	0	1
C30	I RREGULAR	24mROW	0	0	0	1
C31	CI RCULAR	1.05	0	0	0	1

C4	1604) I RREGULAR	00900_2018-04-10_ 24mROW	100CHI_free. 0	i np 0	0	1
C5	I RREGULAR	24mROW	0	0	0	1
C6	I RREGULAR	16.5mROW	0	0	0	1
C7	I RREGULAR	18mROW	0	0	0	1
C8	I RREGULAR	24mROW	0	0	0	1
С9	I RREGULAR	18mROW	0	0	0	1
Pi pe_1	CI RCULAR	1.5	0	0	0	1
Pi pe_22	CI RCULAR	1.8	0	0	0	1
Pi pe_23	CI RCULAR	0.675	0	0	0	1
Pi pe_24_(1)	CI RCULAR	0. 675	0	0	0	1
Pi pe_27	CI RCULAR	0.825	0	0	0	1
Pi pe_28	CI RCULAR	0.6	0	0	0	1
Pi pe_29_(1)	CI RCULAR	1.35	0	0	0	1
Pi pe_3_(1)	CI RCULAR	1.35	0	0	0	1
Pi pe_30_(1)	CI RCULAR	1.2	0	0	0	1
Pi pe_31	CI RCULAR	1.05	0	0	0	1
Pi pe_32	CI RCULAR	0. 525	0	0	0	1
Pi pe_35	CI RCULAR	0.9	0	0	0	1
Pi pe_43	CI RCULAR	2.1	0	0	0	1
Pi pe_44	CI RCULAR	0. 675	0	0	0	1
Pi pe_47	CI RCULAR	0. 75	0	0	0	1
Pi pe_48	CI RCULAR	0. 75	0	0	0	1
Pi pe_49	CI RCULAR	0. 75	0	0	0	1
Pi pe_5	CI RCULAR	1. 2	0	0	0	1
Pi pe_50	CI RCULAR	1.05	0	0	0	1
Pi pe_50_(1)	CI RCULAR	1.05	0	0	0	1
Pi pe_51	CI RCULAR	1.05	0	0	0	1
Pi pe_52	CI RCULAR	1.05	0	0	0	1
Pi pe_53	CI RCULAR	1.2	0	0	0	1
Pi pe_53_(1)	CI RCULAR	1.2	0	0	0	1
Pi pe_54	CI RCULAR	1.2	0	0	0	1
Pi pe_55	CI RCULAR	1.2	0	0	0	1
		D	`			

160400900_2018-04-10_100CHI_free.inp

Pi pe_56		CI RCULAR	1.2		0	0	0	1
Pi pe_58		CI RCULAR	1.05		0	0	0	1
Pi pe_59		CI RCULAR	1.05		0	0	0	1
Pi pe_6		CI RCULAR	0.6		0	0	0	1
Pi pe_61		CI RCULAR	1.05		0	0	0	1
Pi pe_62		CI RCULAR	1.05		0	0	0	1
Pi pe_63		CI RCULAR	1.05		0	0	0	1
Pi pe_63_(1)		CI RCULAR	1.05		0	0	0	1
Pi pe_63_(1)	_(1)	CI RCULAR	1.05		0	0	0	1
Pi pe_64		CI RCULAR	1.8		0	0	0	1
Pi pe_65		CI RCULAR	1.8		0	0	0	1
Pi pe_68		CI RCULAR	1.35		0	0	0	1
Pi pe_69		CI RCULAR	1.35		0	0	0	1
Pi pe_7		CI RCULAR	1.5		0	0	0	1
C22 C20 W1		CI RCULAR RECT_OPEN RECT_OPEN	0. 25 1 1. 15		0 10 0. 3	0 3 0	0 3 0	
[TRANSECTS]								
0.02m/m, ba NC 0.02	nk-he 0.02	ight = 0.23	curb = (m.	D.15m ,	cross-sl ope	= 0.02m/m,	bank-sl	ope =
X1 16.5mROW 0.0		7	4	12.5	0.0	0.0	0.0	0.0
GR 0.23 12.5	0	0. 15	4	0	4	0. 13	8.25	0
GR 0.15	12.5	0. 23	16.5					
;Full stree 0.02m/m, ba NC 0.025		ight = 0.24).15m ,	cross-sl ope	= 0.03m/m,	bank-sl	ope =
X1 18mROW 0.0		7	10	18.5	0.0	0.0	0.0	0.0
GR 0.35 18.5	0	0. 15	10	0	10	0. 13	14.25	0
GR 0.15	18.5	0.35	28					
0.02m/m, ba NC 0.02		ight = 0.27 0.013	m.		cross-sl ope			
X1 20mROW 0.0		7	10	18.5	0.0	0.0	0.0	0.0
GR 0.35 18.5	0	0. 15	10	0	10	0. 13	14. 25	0
GR 0.15	18.5 	0.35	28.5	4 5		0.044		
;Full stree	t, wi	dth = 24m,	curb = 0.	15m , c Page	cross-slope 11	= 0.016m/m,	bank-sl	ope =

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

0.02m/m, ba	nk hoi		60400900_201	8-04-10_1	00CHI_fre	e.inp		
NC 0. 025 X1 24mROW	0. 025	0. 014 7		21	0. 0	0. 0	0.0	0.0
0.0 GR 0.35	0	0. 15	10	0	10	0. 13	15.5	0
21 GR 0.15	21	0.35	31					
[LOSSES] ; ; Li nk	I	Inlet	Outlet	Average	FI ap	Gate See	epageRate	
C2 C24 Pi pe_1 Pi pe_22 Pi pe_23 Pi pe_24_(1) Pi pe_27 Pi pe_28 Pi pe_29_(1) Pi pe_30_(1) Pi pe_30_(1) Pi pe_32 Pi pe_32 Pi pe_35 Pi pe_44 Pi pe_47 Pi pe_48 Pi pe_47 Pi pe_48 Pi pe_49 Pi pe_5 Pi pe_50 Pi pe_50 Pi pe_52 Pi pe_53 Pi pe_53 Pi pe_53 Pi pe_54 Pi pe_55 Pi pe_55 Pi pe_55 Pi pe_56 Pi pe_57 Pi pe_58 Pi pe_58 Pi pe_58 Pi pe_58 Pi pe_58 Pi pe_62 Pi pe_62 Pi pe_63_(1) Pi pe_63_(1) Pi pe_68 Pi pe_69 Pi pe_7 CUPVES1			$\begin{array}{c} 0. \ 39\\ 0. \ 06\\ 0. \ 39\\ 1. \ 32\\ 1. \ 32\\ 1. \ 32\\ 1. \ 32\\ 1. \ 32\\ 1. \ 32\\ 1. \ 32\\ 0. \ 06\\ 0. \ 02\\ 0. \ 02\\ 0. \ 02\\ 0. \ 02\\ 0. \ 02\\ 0. \ 02\\ 0. \ 02\\ 0. \ 02\\ 1. \ 32\\ 1. \ 32\\ 1. \ 32\\ 1. \ 32\\ 1. \ 32\\ 1. \ 32\\ 1. \ 32\\ 1. \ 32\\ 1. \ 32\\ 0. \ 06\\ 0. \ 06\\ 0. \ 39\\ 0. \ 06\\ 0. \ 06\\ 0. \ 39\\ 0. \ 06\\ 1. \ 32\\ 0. \ 06\\ 0. \ 39\\ 0. \ 06\\ 1. \ 32\\ 1. \ 32\\ 0. \ 06\\ 1. \ 32\\ 1. \ 32\\ 0. \ 06\\ 1. \ 32\\ 0. \ 06\\ 1. \ 32\\ 0. \ 06\\ 1. \ 32\\ 0. \ 06\\ 1. \ 32\\ 0. \ 06\\ 1. \ 32\\ 0. \ 06\\ 1. \ 32\\ 0. \ 06\\ 1. \ 32\\ 0. \ 06\\ 1. \ 32\\ 0. \ 06\\ 1. \ 32\\ 0. \ 06\\ 1. \ 32\\ 0. \ 06\\ 1. \ 32\\ 0. \ 06\\ 1. \ 32\\ 0. \ 06\\ 1. \ 32\\ 0. \ 06\\ 1. \ 32\\ 0. \ 06\\ 1. \ 32\\ 0. \ 06\\ 0. \ 64\\ 0. \ 02\\ 0. \ 02\\ 0. \ 02\\ 0. \ 02\\ 0. \ 06\\ 0. \ 64\\ 0. \ 02\\ 0. \ 02\\ 0. \ 06\\ 0. \ 64\\ 0. \ 02\\ 0. \ 06\\ 0. \ 64\\ 0. \ 02\\ 0. \ 06\\ 0. \ 64\\ 0. \ 02\\ 0. \ 06\\ 0. \ 64\\ 0. \ 02\\ 0. \ 06\\ 0. \ 64\\ 0. \ 02\\ 0. \ 06\\ 0. \ 64\\ 0. \ 02\\ 0. \ 06\\ 0. \ 64\\ 0. \ 02\\ 0. \ 06\\ 0. \ 64\\ 0. \ 06\\ 0. \ 64\\ 0. \ 06\\ 0. \ 64\\ 0. \ 06\\ 0. \ 64\\ 0. \ 06\\ 0. \ 64\\ 0. \ 06\\ 0. \ 64\\ 0. \ 06\\ 0. \ 64\\ 0. \ 06\\ 0. \ $		NO NO			
[CURVES] ;;Name		Гуре	X-Value	Y-Value				
102A-1C 102A-1C 102A-1C 102A-1C	I	Rating	0 1. 8 2. 15 2. 65	0 315 315 316				
106A-IC	ſ	Rating	0	0 Dago 12				
				Page 12				

	16		8-04-10_100CHI _free. i np
106A-1C		1.8	207
106A-1C		2.15	207
106B-I C	Rati ng	0	0
106B-I C		1. 8	18
106B-I C		2. 8	18
107A-IC	Rati ng	0	0
107A-IC		1. 8	504
107A-IC		2. 15	504
107A-IC		2. 5	505
108A-I C	Rati ng	0	0
108A-I C		1. 8	518
108A-I C		2. 15	518
108A-I C		2. 5	519
109A-I C	Rati ng	0	0
109A-I C		1. 8	128
109A-I C		2. 15	128
109B-I C	Rating	0	0
109B-I C		1. 8	1
109B-I C		2. 15	1
109C-IC	Rati ng	0	0
109C-IC		1. 8	40
109C-IC		2. 15	41
109C-IC		2. 5	41
111A-IC 111A-IC 111A-IC 111A-IC 111A-IC	Rati ng	0 1.8 2.15 2.5	0 375 375 375 375
112A-IC 112A-IC 112A-IC 112A-IC 112A-IC	Rati ng	0 1. 8 2. 15 2. 65	0 216 216 216
113A-IC 113A-IC 113A-IC 113A-IC 113A-IC	Rati ng	0 1. 8 2. 15 2. 5	0 418 418 418
116A-IC	Rati ng	0	0
116A-IC		1. 8	319
116A-IC		2. 15	319
116A-IC		2. 5	320
118A-IC	Rati ng	0	0
118A-IC		1. 8	193
118A-IC		2. 15	193
119A-IC	Rati ng	0	0
119A-IC		1. 8	473
119A-IC		2. 15	473
119A-IC		2. 5	474
119A-IC(1)	Rati ng	0	0
119A-IC(1)		1. 8	473
119A-IC(1)		2. 15	473

			8-04-10_100CHI_free.i
121A-I C	Rati ng	0	0
121A-I C		1. 8	241
121A-I C		2. 15	241
121A-I C		2. 5	242
121B-I C	Rati ng	0	0
121B-I C		1. 8	1
121B-I C		2. 15	1
203A-1C	Rati ng	0	0
203A-1C		1. 8	837
203A-1C		2. 15	837
203A-1C		2. 5	837
206A-1C	Rati ng	0	0
206A-1C		1. 8	337
206A-1C		2. 15	337
206A-1C		2. 5	337
211A-IC 211A-IC 211A-IC 211A-IC 211A-IC	Rati ng	0 1.8 2.15 2.5	0 976 976 976
218A-IC 218A-IC 218A-IC 218A-IC 218A-IC	Rati ng	0 1. 8 2. 15 2. 5	0 802 802 802
102A-S	Storage	0	0
102A-S		1. 8	0
102A-S		2. 15	380
102A-S		2. 65	380
106A-S	Storage	0	0
106A-S		1. 8	0
106A-S		2. 15	100
107A-S	Storage	0	0
107A-S		1. 8	0
107A-S		2. 15	450
107A-S		2. 5	450
108A-S	Storage	0	0
108A-S		1. 8	0
108A-S		2. 15	1870
108A-S		2. 5	1870
109A-S	Storage	0	0
109A-S		1. 8	0
109A-S		2. 15	100
109C-S	Storage	0	0
109C-S		1. 8	0
109C-S		2. 15	41
109C-S		2. 5	41
111A-S	Storage	0	0
111A-S		1.8	0
111A-S		2.15	305
111A-S		2.5	305
112A-S	Storage	0	0 Page 14

np

	17	0400000 201	0.04.10.10000
112A-S 112A-S 112A-S	16	1.8 2.15 2.65	8-04-10_100CHI _free.inp 0 103 103
113A-S 113A-S 113A-S 113A-S	Storage	0 1.8 2.15 2.5	0 0 265 265
116A-S 116A-S 116A-S 116A-S	Storage	0 1.8 2.15 2.5	0 0 175 175
118A-S 118A-S 118A-S	Storage	0 1. 8 2. 15	0 0 50
119A-S 119A-S 119A-S 119A-S 119A-S	Storage	0 1.8 2.15 2.5	0 0 322 322
121A-S 121A-S 121A-S 121A-S 121A-S	Storage	0 1. 8 2. 15 2. 5	0 0 166 166
203A-S 203A-S 203A-S 203A-S 203A-S	Storage	0 1. 8 2. 15 2. 5	0 0 695 695
206A-S 206A-S 206A-S 206A-S	Storage	0 1.8 2.15 2.5	0 0 328 328
211A-S 211A-S 211A-S 211A-S 211A-S	Storage	0 1. 8 2. 15 2. 5	0 0 906 906
218A-S 218A-S 218A-S 218A-S 218A-S	Storage	0 1.8 2.15 2.5	0 0 695 695
POND POND POND POND POND POND POND POND	Storage	0.00 1.20 1.30 1.40 1.50 1.90 2.00 2.10 2.75 3.09 3.20 3.50	4995 6920 8659 10399 12138 15072 15665 16258 18009 18925 19204 19500

[REPORT]

160400900_2018-04-10_100CHI_free.inp

I NPUT YES CONTROLS NO SUBCATCHMENTS ALL NODES ALL LI NKS ALL

FERNBANK POND 4 STORMWATER MANAGEMENT FACILITY DESIGN BRIEF

Appendix D Fernbank Pond 4 Inlet and Outlet Sewer Sizing and Channel Calculations April 13, 2018

Appendix D FERNBANK POND 4 INLET AND OUTLET SEWER SIZING AND CHANNEL CALCULATIONS

pa w:\active\160400900_cavanagh_stittsville\design\report\pond design\rpt_2018-04-11_pond.docx

Job # 160400900 - Fernbank Pond 4

Date: 30-Nov-17

Channel Conveyance Design Expected Flow Depth w Freeboard т n= 0.025 0.025 ٧ z 3 3 z= ► b= 1 1 b 0.65 0.35 y= $A = (b + z \cdot y)y$ A= 0.7175 1.9175 $P = b + 2 \cdot y \cdot \sqrt{1 + z^2}$ P= 3.213594 5.110961 0.22327 0.375174 R= A 0.0075 T = b + 2zyS= 0.0075 R =Р T= 3.1 4.9 $Q = \frac{A}{A}$ $\underline{\mathcal{Q}}$ $R^{2/3}\sqrt{S}$ V =**0.915** m³/s 3.455 m³/s Q= n A 1.80 m/s V= 1.27 m/s Fr # = 0.846084 0.91969 Fr =

100 Year Flow Generated =	1.000	m³/s
Full Flow Channel Capacity =	3.455	m³/s

Channel OK

Fernbank SWM Pond 4 - Shea Road Development Mannings Flowrate Determination for Circular Pipe Flowing full, Capacity

	<u>Trial 1</u>	Input	
Slope	c	0.06	0/
Slope,		0.26	70
Roughness,		0.013	
Diameter	d	1500	mm
		Calculated	
Area,	A	1.767	m ²
Wetted Perimeter,	Р	4.71	m
Hydraulic Radius,	R	0.375	m
Velocity,	v	2.04	m/s
			2
	Q	3.60	m³/s
	Q _{match}	3.567	m ³ /s
	difference	0.04	m³/s

Fernbank SWM Pond 4 - Shea Road Development Mannings Flowrate Determination for Circular Pipe Flowing full, Capacity

	<u>Trial 1</u>	Input	
Slope,		0.2	%
Roughness,	n	0.013	
Diameter	d	1050	mm
		Calculated	
Area,	A	0.866	m ²
Wetted Perimeter,	Р	3.30	m
Hydraulic Radius,	R	0.263	m
Velocity,	v	1.41	m/s
			2
	Q	1.22	m³/s
	Q _{match}	0.9	m ³ /s
	difference	0.32	m³/s

FERNBANK POND 4 STORMWATER MANAGEMENT FACILITY DESIGN BRIEF

Appendix E Background Report Excerpts April 13, 2018

Appendix E BACKGROUND REPORT EXCERPTS

pa w:\active\160400900_cavanagh_stittsville\design\report\pond design\rpt_2018-04-11_pond.docx

FERNBANK COMMUNITY DESIGN PLAN

ENVIRONMENTAL MANAGEMENT PLAN Volume 1 of 2

As Approved by Council JUNE 24, 2009

Monahan Drain Modeling Results - Summer Event

For the summer event (24-hr SCS distribution), the Fernbank CDP model provides a very close correlation to the RVCA model. The greatest difference in peak flow occurs for the 100-year event: The 100-year peak flow is 41.8 m^3 /s for the Fernbank CDP model vs. 40.0 m^3 /s for the RVCA model, a difference of approximately 4.5%.

Modeled peak flows from both the RVCA (2004) and Novatech (2007) simulations are both slightly higher than the peak flows modeled by J.L. Richards in 1993. The primary reason for the increase in flows is that J.L. Richards used IDF data from the former City of Kanata in their analysis, which generate slightly smaller runoff volumes than the current City of Ottawa IDF parameters.

Monahan Drain Modeling Results - Spring Event

The model results for the J.L. Richards spring event have been included in **Table 4-1** for comparison purposes, but it should be noted that the 1993 analysis only considered a 24-hour rain-on-snow event and not a 10-day event.

There is a good correlation between the RVCA and Novatech 100-year peak flows for the spring event (10-day Rain+Snow). The 100-year peak flow is 20.1 m3/s for the Fernbank CDP model vs. 21.0 m³/s for the RVCA model, a difference of approximately 4.5%. The spring peak flows do not correlate as closely for the more frequent return periods. The primary reason for the difference in peak flows is likely due to the influence of the Monahan Drain Constructed Wetlands: The wetlands are modeled as a discrete element in the Fernbank CDP model, while the RVCA model does not specifically account for storage and routing through the wetlands. The wetlands do significantly attenuate peak flows for smaller storm events, but the attenuation effect is reduced for larger storm events.

It should be noted that the Jock River Flood Risk Mapping - Hydrology Report states "...the calibration/validation effort concentrated on the simulation of high flows for the purpose of flood risk mapping, and that the estimates of more frequent Return Period Flows, such as the 2 year and 5 year, should be used with caution."

The Fernbank CDP SWMHYMO model provides a good correlation of peak flows to the RVCA model for the full range of summer events (24-hr SCS distribution), and good correlation to the RVCA model for the 100-year spring event. Therefore, the Fernbank CDP model of the Monahan Drain will provide a good benchmark for the analysis of impacts resulting from development of the Fernbank CDP on the downstream Monahan and Flewellyn Drains.

Faulkner Drain

The Fernbank CDP lands situated northwest of Shea Road are tributary to the Faulkner Drain, which is in turn tributary to Flowing Creek. The lands within the Fernbank Community represent only 48.5 hectares of the 4945 hectare area comprising the Flowing Creek Watershed (approximately 1%), and any meaningful comparison to the Flowing Creek Subwatershed model used in the Jock River Hydrology Study is not possible for this area.

Existing conditions for the Fernbank CDP lands tributary to the Faulkner Drain have instead been modeled based on the physical characteristics of the watershed. Modeling parameters were derived as follows:

- The soil types (and corresponding CN values) have been verified through test pit data;
- The drainage area has been verified based on detailed topographic mapping;
- The time to peak (t_p) has been calculated based on the average slope, length and land use within the catchment.

		Peak Flow (m ³ /s)					
	Distribution	2yr	5yr	10yr	25yr	50yr	100yr
Carp Subwatershed							
Carp Headwaters +	12hr AES	2.53	3.92	4.86	6.08	6.93	7.79
Carp River West Tributary	12hr SCS	2.76	4.46	5.62	7.27	8.20	9.39
HEC-RAS Station 44751	24hr SCS	2.91	4.45	5.52	6.84	7.92	9.38
Fernbank Lands north of West	12hr AES	0.65	1.05	1.33	1.74	2.04	2.36
Tributary + Westcreek Meadows	12hr SCS	0.84	1.46	1.90	2.53	2.90	3.37
HEC-RAS Station 44548	24hr SCS	0.89	1.46	1.86	2.37	2.76	3.34
Hazeldean Creek @	12hr AES	0.91	1.38	1.72	2.19	2.53	2.94
Carp River	12hr SCS	1.82	2.65	3.28	4.42	4.74	5.45
HEC-RAS Station 43966	24hr SCS	1.49	2.16	2.68	3.40	3.98	4.83
Jock Subwatershed							
Monahan Drain @	12hr AES	1.21	1.99	2.54	3.24	3.74	4.24
Terry Fox Drive	12hr SCS	1.13	1.87	2.39	3.13	3.55	4.10
Terry Pox Drive	24hr SCS	1.21	1.92	2.42	3.05	3.57	4.28
Flewellyn Drain @	12hr AES	1.12	1.83	2.33	2.97	3.42	3.88
Fernbank Road	12hr SCS	1.05	1.76	2.25	2.97	3.37	3.90
	24hr SCS	1.13	1.81	2.28	2.88	3.37	4.05
Foullman Tributary	12hr AES	0.46	0.74	0.94	1.19	1.37	1.55
Faulkner Tributary @ Fernbank Road	12hr SCS	0.48	0.82	1.05	1.39	1.58	1.83
	24hr SCS	0.51	0.83	1.05	1.32	1.55	1.85

Critical Storm Distributions

The 12-hour SCS distribution appears to be the critical storm distribution for lands in the Carp River subwatershed. This is consistent with the 12-hour SCS distribution used in the Carp River XP-SWMM hydrologic modeling (CH2MHill, MVC).

The 12 hour AES distribution generates higher peak flows for the more frequent return periods on both the Monahan Drain and the Flewellyn Drain. However, the 24hr SCS distribution generates the highest 100-year peak flows for all three catchment areas in the Jock River subwatershed. The 24-hour distribution was used in the Jock River Flood Risk Mapping analysis (PSR Group, RVCA).

6.4 SWM Criteria - Jock River Subwatershed

Stormwater management criteria for the Fernbank Community lands tributary to the Jock River subwatershed have been developed based on the recommendations of the Jock River Reach 2 River Subwatershed Study and input from RVCA:

• The proposed stormwater management strategy will need to adhere to all applicable policies and guidelines of the Rideau Valley Conservation Authority; the City of Ottawa, MOE, and other approvals agencies.

Quality Control / Fish Habitat

- Level 1 Enhanced protection for lands tributary to the Jock River (80% long term TSS removal);
- End-of-pipe facilities will be designed to provide extended detention storage for both baseflow enhancement and water quality control.
- The proposed development must have no adverse impacts on downstream fish habitat.
- The Monahan Drain, Flewellyn and Faulkner Drains have been classified as intermittent watercourses that provide indirect habitat supporting tolerant warm/cool water fish communities. Temperature mitigation measures are to be incorporated into all proposed SWM facilities tributary to the Jock River, with the goal of ensuring that the temperature of discharged stormwater does not exceed the following target values:
 - Maximum Discharge Temperature = 25° C
 - Preferred Discharge Temperature = 22° C

Quantity Control

- Ensure the proposed SWM infrastructure will not result in any adverse impacts on flood elevations or increase the extent of flooding in downstream watercourses.
- Ensure the Monahan Drain ponds are designed to have no adverse impacts the function of the Monahan Drain Constructed Wetlands SWM Facility. No additional analysis of the Constructed Wetlands will be required provided that the proposed development conforms to the following:
 - The main branch of the Monahan Drain is retained upstream of Terry Fox Drive;
 - Fernbank lands tributary to the Monahan Drain to be serviced by 3 SWM facilities:
 - One SWM facility at the headwaters of the Monahan Drain;
 - Two SWM facilities on each side of the Monahan Drain upstream of Terry Fox Drive.
 - The design of the Constructed Wetlands assumed a total drainage area tributary to the Monahan Drain upstream of Terry Fox Drive of approximately 296 hectares with an average imperviousness of 46%.
- Post-development peak flows are not to exceed pre-development levels for all storms up to the 100-year event.
 - Pre-Development Peak Flow targets are listed in Table 4-2.

Erosion control / Fluvial Geomorphology

- Continuous hydrologic modeling should be used to demonstrate that the proposed development will not result in an adverse change to the geomorphology of the outlet watercourses. The number of exceedences of the erosion thresholds established by the fluvial geomorphic analysis should not increase under post-development conditions.
 - Critical flow (Erosion) targets for watercourses are listed in Table 3-7.

Section 8.0 Post Development Storm Drainage Conditions

8.1 Hydrology

The post-development hydrologic analysis of the Fernbank community has been completed using the SWMHYMO hydrologic model, and includes both event-based modeling (2-100yr), and continuous modeling using long-term rainfall data for the City of Ottawa. The results of the pre-development analysis were used as a benchmark for the evaluation of post-development conditions.

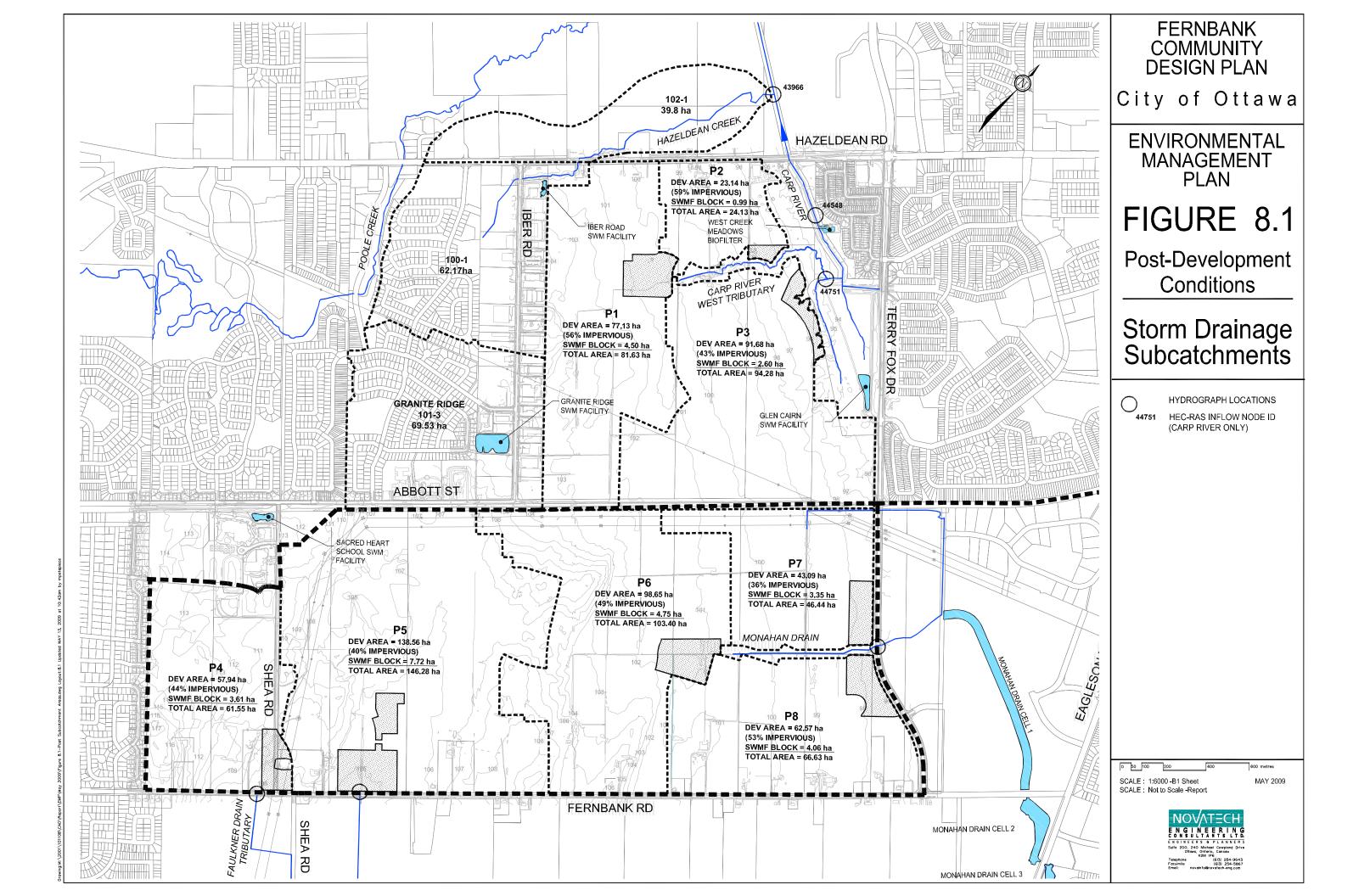
8.1.1 Storm Drainage Areas

The post-development storm drainage areas used in the hydrologic model are based on the storm drainage area plans developed as part of the master servicing study. Minor system capture rates have been approximated at 100 L/s/ha. Major system storage has been approximated at 50 m^3 /ha.

Post-development drainage areas have been established based on the proposed macro grading plan for the road network through the Fernbank Community. The grading plan can be found in the Master Servicing Study. The proposed grading plan results in changes to the drainage areas between the Flewellyn, Faulkner, and Monahan Drains. RVCA has confirmed that the proposed post-development drainage areas are acceptable. Correspondence is provided in **Appendix B**.

8.1.2 Modeling Parameters

The impervious values used in the post-development conditions analysis are based on the proposed land use plan from the Fernbank CDP and correspond to the runoff coefficients used in the storm sewer design sheets from the Master Servicing Study.


- The minor system capture rate was established at 100 L/s/ha.
- Major system storage in roadways was estimated at 50 m³/ha.

Post-development drainage areas are shown on Figure 8.1. Modeling parameters are listed in Table 8-1.

SWM Pond ID	Drainage Area ¹ (ha)	Imperviousness			Major System	Minor System	
		Directly Connected	Total	Soil CN	Storage (m ³)	Capture Rate (m ³ /s)	
Carp River							
P1	77.13	0.45	0.56	80.5	3,857	7.71	
P2	23.14	0.47	0.59	80.5	1,157	2.31	
P3	91.68	0.34	0.43	80.5	4,584	9.17	
Faulkner Drain							
P4	57.94	0.35	0.44	80.5	2,897	5.79	
Flewellyn Drain							
P5	138.56	0.32	0.40	80.5	6,928	13.86	
Monahan Drain							
P6	98.65	0.39	0.49	80.5	4,933	9.87	
P7	43.09	0.29	0.36	80.5	2,155	4.31	
P8	62.57	0.42	0.53	80.5	3,129	6.26	
		I		l	- , ,		

 Table 8-1: Post-Development Storm Drainage Areas to SWM Facilities

1. Drainage area does not include SWMF Block (refer to Figure 8.1)

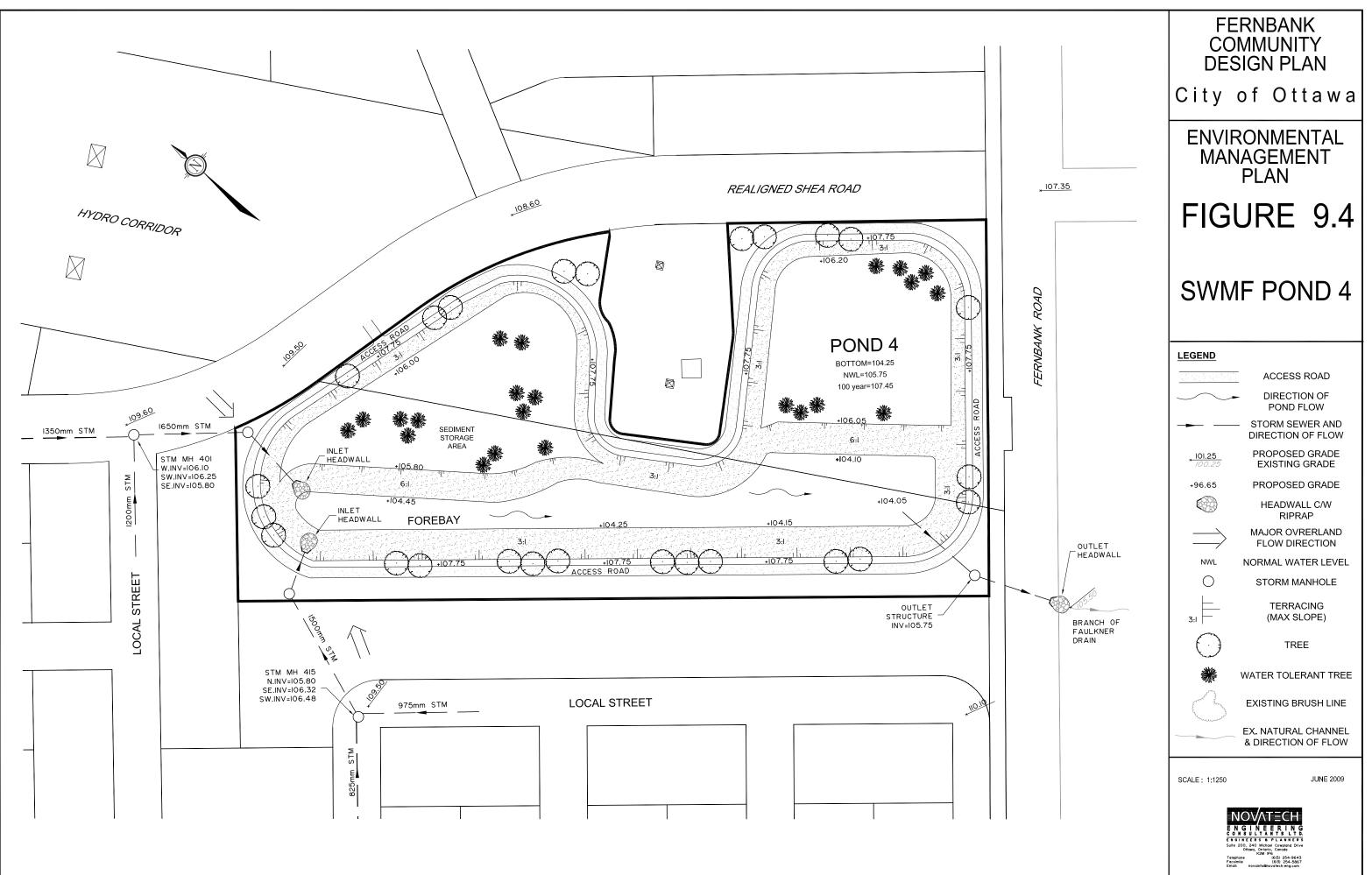
9.2 Faulkner Drain SWM Facility

The recommended SWM strategy for the Fernbank Community lands west of Shea Road includes the construction of a SWM facility at the northwest corner of Shea Road and Fernbank Road to provide water quality, erosion, and peak flow control. This facility will outlet to a tributary of the Faulkner Drain that flows southwards from Fernbank Road.

The location of the Faulkner Drain SWM facility is flexible, and two optional locations for this facility were shown in **Figure 7.3** to accommodate current land ownership in this area. This concept shows the facility located partially in the hydro corridor. The placement of the Faulkner Drain can be re-visited as development plans are brought forward in this area.

Conceptual design details for the proposed Faulkner Drain SWM facility (P4) are provided in **Table 9-4**. A conceptual design drawing for this facility is provided as **Figure 9.4**.

Area of SWM Block	3.61 ha			
Drainage Area to SWMF	57.94 ha	(44% Impervious)		
Quality Control	Enhanced	(80% TSS Removal)		
7,200 m ³		Req. Permanent Pool Volume		
2,400 m ²		Req. Extended Detention Volume		
Quantity Control	100yr	(post-to-pre)		
	$1.75 \text{ m}^{3}/\text{s}$	Target 100yr Release Rate		
Stage	Elevation	Volume	Release Rate	
Stage	(m)	(m3)	(m^{3}/s)	
Bottom	104.25	0	0.00	
Normal Water Level	105.75	8,700*	0.00	
Extended Detention Storage	106.00	2,400	0.04	
1:2yr	106.65	13,400	0.29	
1:5yr	109.85	18,300	0.45	
1:10yr	107.05	21,300	0.67	
1:25yr	107.10	24,200	1.05	
1:50yr	107.25	26,450	1.35	
1:100yr	107.45	29,600	1.75	


Table 9-4: Faulkner Drain SWM Facility (P4)

* Permanent Pool Volume

9.3 Flewellyn Drain SWM Facility

The recommended SWM strategy for the Fernbank Community lands tributary to the Flewellyn Drain includes the construction of a SWM facility to provide water quality, erosion, and peak flow control for the proposed development prior to outletting to the Flewellyn Drain.

Portions of the Flewellyn Drain downstream of the site do not have the capacity to convey the 1:100 year pre-development peak flow, and the increase in runoff associated with development has the potential to increase the extent of flooding in those areas. The facility has been designed to provide reduce post-development peak flows to less than pre-development conditions for larger storm events (>1:10yr event) to reduce the potential for downstream flooding. Storage requirements have been based on providing sufficient storage to control post-development flooding volumes (volume of flow above channel capacity) to pre-development levels.

M:\2001\101108\CAD\design\SWMF\Ponds.dwg, Fig9.4-P4, May 26, 2009 - 4:57pm, kmurphy

TARTAN/CAVANAGH

CONCEPTUAL SITE SERVICING PLAN STORMWATER MANAGEMENT PLAN AND EROSION AND SEDIMENT CONTROL PLAN SHEA ROAD LANDS FERNBANK COMMUNITY

5

Project: 11218-5.2.2

MARCH 2013

4. STORMWATER MANAGEMENT

4.1 Background

The stormwater management strategy for the Fernbank Community has been outlined in the Fernbank EMP and MSS. The approved EMP and MSS recommend the construction of one stormwater management facility (referred to as Pond 4) and associated storm sewer systems to provide stormwater management for the Fernbank Community tributary to the Faulkner Drain Tributary. Pond 4 is to provide water quality and quantity control for approximately 60 ha of proposed development northeast of Fernbank Road and Shea Road, and south of Abbott Street East. The proposed SWM facility will outlet to the Faulkner Drain Tributary, which starts on the south side of Fernbank Road. According to the EMP and MSS, the Faulkner Drain Tributary is classified as an intermittent watercourse providing indirect fish habitat.

Under existing conditions, the subject site is comprised of uncultivated grass lands and wooded areas. The site topography is generally between elevations 114 m and 107 m with most of the site draining towards the Faulkner Drain Tributary, itself tributary to the Jock River. The EMP and MSS identify that a northwest portion of the site drains east and south to the Flewellyn Drain, also tributary to the Jock River. The existing topography and general drainage patterns are presented on Figure 7.

In 2012, the City updated its stormwater management criteria from that previously established for the EMP and MSS. The proposed conceptual design is based on the latest stormwater management criteria.

4.2 Objective

The stormwater management objective is to complete the conceptual storm servicing of the lands tributary to Pond 4, as well as to confirm the pond size that was presented in the EMP and MSS.

4.3 Design Constraints and Regulatory Requirements

4.3.1 WATER QUALITY CONTROL

Water quality control targets were established in the "Jock River Reach One Subwatershed Study," (Stantec 2007), and maintained in the EMP and MSS. With respect to suspended solids, it was concluded in the Subwatershed Study that all stormwater facilities discharging to the Jock River must be designed to provide an Enhanced Level of Protection, which corresponds to 80% TSS removal as per the Ontario Ministry of the Environment (MOE) Stormwater Management Planning and Design Manual (March 2003).

According to the EMP and MSS, temperature mitigation measures are to be incorporated into SWM facilities tributary to the Jock River. Specifically, the goal is for the discharged stormwater to not exceed a temperature of 25°C and the preferred temperature identified is 22°C.

4.3.2 WATER QUANTITY CONTROL

Water quantity control criteria for the Faulkner Drain Tributary were outlined in the EMP and MSS. Post-development peak flows are not to exceed pre-development levels for all storm events up to the 100 year event.

TARTAN/CAVANAGH CONCEPTUAL SITE SERVICING PLAN STORMWATER MANAGEMENT PLAN AND EROSION AND SEDIMENT CONTROL PLAN SHEA ROAD LANDS FERNBANK COMMUNITY

potential network for the subject site. Storm sewer sizes are included only for the larger sewers which are also identified in the MSS report. All minor storm sewer sizes will be reviewed and confirmed at the time of detailed design. Major flow will cascade overland from the northern portion of the site downstream to the southern limits of the site, where it will overflow to Pond 4. Conceptual major flow routing is presented on Figure 6.

4.4.2 END-OF-PIPE SWM FACILITY

The conceptual design of Pond 4 was presented in the EMP and MSS. The facility is proposed to be located north of Fernbank Road at the hydro corridor and is designed to provide water quality and water quantity control of stormwater runoff from the subject site. It is designed as a wet pond with two minor system inlets and an outlet to the Faulkner Drain Tributary. In accordance with the EMP and MSS, there are no proposed changes to the Faulkner Drain Tributary. The location of Pond 4 is indicated on Figure 6.

The stage-storage relationship representing Pond 4 in the EMP and MSS has been maintained in the current SWMHYMO evaluation. It is presented in Table 4.1.

Elevation (m)	Extended Storage (ha-m)
104.25	0
106.00	0.240
106.65	1.340
106.85	1.830
107.05	2.130
107.10	2.420
107.25	2.645
107.45	2.960

Table 4.1 Pond 4 conceptual design data from EMP and MSS

-

As discussed above, the stormwater management facility is designed to provide an Enhanced Level of Protection. According to the MOE Stormwater Management Planning and Design Manual (March 2003), treatment volume is a function of drainage area, the type of pond, the urban imperviousness ratio, and the Level of Protection. The Enhanced Level of Protection corresponds to end-of-pipe storage volumes required for the long-term average removal of 80% of total suspended solids. The storage requirements suggested by the MOE Manual and those provided based on the above conceptual design are summarized in the following table. Supporting calculations are provided in Appendix E.

Table 4.2 Water quality volumes

				ection Leve	I			
Tributary	Imp.%	Storage Volume (cu-m)						
server and the server of the	11	Perma	Permanent		Extended Detention		Total	
		Required	Design	Required	Design	Required	Design	
56.57	57% Wet Pond 195 cu-m/ha	8749	8700	2263	2400	11012	11100	

ē,

TARTAN/CAVANAGH CONCEPTUAL SITE SERVICING PLAN STORMWATER MANAGEMENT PLAN AND EROSION AND SEDIMENT CONTROL PLAN SHEA ROAD LANDS FERNBANK COMMUNITY

According to MOE guidelines, the required total storage for the facility is 11012 cu-m. The total water quality storage provided by the proposed facility is 11100 cu-m, which consists of permanent storage of 8700 cu-m and 2400 cu-m of extended detention storage. Due to the increase in imperviousness within the tributary drainage area, the required permanent volume slightly exceeds the permanent volume provided by the conceptual design (by 49 cu-m). This additional volume requirement will be accommodated at the detailed design stage. In practical terms, the bottom of the pond could be lowered by 20 mm to gain the additional volume. The potential to further oversize the permanent volume will be considered at the detailed design stage, as will the use of a bottom-draw outlet, to mitigate temperature increases of the stormwater discharge.

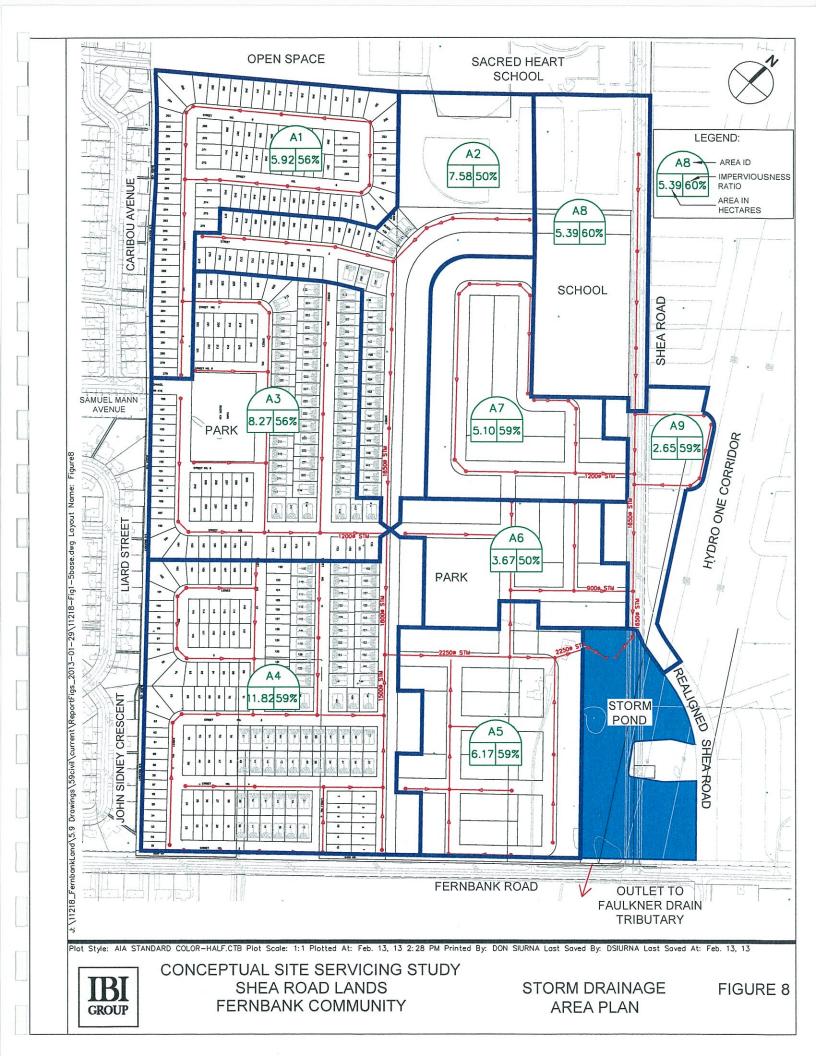
The 25 mm 4 hour Chicago storm simulation indicates that the extended detention drawdown time will be greater than 48 hours. The outflow hydrograph from the facility is presented in Appendix E.

4.5 Hydrological Evaluation

4.5.1 EXISTING CONDITIONS

Existing conditions hydrological analysis was completed in the EMP and MSS. The study area was evaluated using the SWMHYMO computer model. This technique offers single storm event flow generation and routing. The existing conditions model was executed using the 24 hour SCS Type II design storm with 2 through 100 year return periods with a 60 minute time step. Relevant excerpts from the EMP and MSS are enclosed as reference in Appendix D, including a copy of the 100 year existing conditions SWMHYMO input and summary output, as well as Figure 4.1 "Existing Conditions Storm Drainage Subcatchments." A summary of peak flows in the Faulkner Drain Tributary at Fernbank Road are presented in the below table.

Table 4.3 Summary of pre-development flow rates


Peak Flow (cms)	24 hour SCS Type II Design Storm			
	2 Year	5 Year	100 Year	
Faulkner Drain Tributary at	0.48	0.76	1.75	
Fernbank Road				

4.5.2 POST-DEVELOPMENT CONDITIONS

As mentioned in Section 4.4.1, hydrological analysis of the proposed dual drainage system was conducted using SWMHYMO. This technique offers a single storm event flow generation and routing. The overall post-development SWMHYMO model of the Faulkner Drain Tributary used in the EMP and MSS has been updated to reflect the proposed changes to the tributary drainage area. The model has been revised to isolate the study area tributary to Pond 4. Land use, selected modeling routines, and input parameters are discussed in the following sections. A post-development model schematic and model files are included in Appendix E. As previously noted, the design is currently at a conceptual level and will be further refined at the detailed design stage.

Land Use

The site will be developed as a mixture of low and medium density residential areas with two park areas and a school. The existing recreational area located at the northern end of the site that abuts Shea Road to the west also contributes stormwater runoff to the proposed system. The tributary drainage area was divided into semi-lumped drainage areas reflective of the conceptual design of the minor system. The post-development drainage scheme is indicated in Figure 8.

Storms and Drainage Area Parameters

The main hydrology parameters are summarized below and in Table 4.4. Supporting calculations are presented in Appendix E.

- Design storms: The site was evaluated using the following storms:
 - o 25 mm 4 hour Chicago 12 minute time step (for water quality simulation);
 - o 2, 5 and 100 year 24 hour SCS Type II design storm events, 12 minute time step (the EMP and MSS identified the 24 hour SCS Type II as the design storm);
 - o 100 year 24 hour SCS Type II design storm events + 20% increase in intensity, 12 minute time step (stress test per City of Ottawa guidelines);
 - o 100 year 3 hour Chicago storm event with a 10 minute time step (for dual drainage evaluation, specifically major flow conveyance); and,
 - o July 1, 1979, August 4, 1988, and August 8, 1996 storms (historical storms per City of Ottawa guidelines).
- Area: Semi-lumped drainage areas are based on the proposed minor system network of storm sewers. The total drainage area contributing minor and major flow to Pond 4 measures 56.57 ha. This is consistent with the drainage area presented in the EMP and MSS of 57.94 ha. The pond block area of 3.61 ha has been maintained as in the EMP and MSS.
- Imperviousness: Typical total and directly connected impervious ratios for single family and townhouse units based on typical runoff coefficients have been applied across the site. The calculations to support the runoff coefficients are included in Appendix E. The overall weighted average for the Pond 4 drainage area is 57%, which is higher than the EMP and MSS value of 44%.
- Minor system capture: Based on 2012 City guidelines, the minor system capture is based on 5 year rational method flow with a fixed time of concentration of 10 minutes. This results in an overall average unit rate of 170 I/s/ha across the site, which is higher than the EMP and MSS unit flow rate of 100 I/s/ha applied to the Pond 4 drainage area. Supporting calculations are enclosed in Appendix E.
- Surface storage: Available surface storage has been approximated based on the macro grading plan. An average unit value of 40 cu-m/ha was applied to the semi-lumped drainage areas in the SWMHYMO model. This value is slightly lower than EMP and MSS value of 50 cu-m/ha.
- Infiltration: Infiltration losses were selected to be consistent with the City of Ottawa Sewer Design Guidelines. The Horton values are as follows: f_o = 76.2 mm/h, f_c = 13.2 mm/h, k = 0.00115 s⁻¹.
- Length: The impervious length is based on an average of the measured length of the trunk through the catchment and the calculated length based on the SWMHYMO user's manual. The pervious length is based on an average lot depth. This approach is consistent with City of Ottawa Sewer Design Guidelines. Relevant calculations are enclosed in Appendix E.
- Initial Abstraction (Depression Storage): Depression storage depths of 1.57 mm and 4.67 mm were used for impervious and pervious areas, respectively. These values are consistent with those in the City of Ottawa Sewer Design Guidelines.

;

Performance of the Pond

The performance of Pond 4 is summarized in the below table.

 Table 4.8 Summary of Pond 4 stage, storage and discharge during various storm events

 Post-development conditions
 SWMHYMO model file: D008.dat

	Storage (ha-m)	Discharge (cms)	Elevation (m)
Permanent Storage	0.87	N/A	105.75
25 mm 4 hour Chicago	0.66*	0.136	106.05
2 year 24 hour SCS Type II	1.19*	0.256	106.31
5 year 24 hour SCS Type II	1.67*	0.397	106.78
100 year 24 hour SCS Type II (Design Storm)	2.83*	1.579	107.37
100 year 24 hour SCS Type II + 20%	3.40*	2.314	107.73**
100 year 3 hour Chicago	2.56*	1.230	107.19
July 1 1979	3.39*	2.285	107.72**
August 1988	2.82*	1.574	107.36
August 1996	2.64*	1.341	107.25

* Extended storage only

** Extrapolated values

The maximum water level during the 100 year design storm is 107.37 m, which closely corresponds to the Pond 4 100 year water level published in the EMP and MSS of 107.45 m. It is suggested that at the detailed design stage consideration be given to providing an emergency overflow in the pond at elevation 107.37 m. This provision would allow overflow from the pond during the 100 year 24 hour SCS Type II storm with 20% increase in intensity as well as the July 1, 1979 storm.

4.6 Hydraulic Grade Line Analysis

The maximum water level in the pond is proposed to be 107.37 m during the design storm (100 year 24 hour SCS Type II storm). This is below the obvert elevation of the two inlet pipes to the pond (107.55 m). There is therefore no anticipated hydraulic grade line in the upstream storm system. The required 0.3 m minimum clearance between the underside of footing and storm obvert or hydraulic grade line would therefore be governed by the storm obvert.

The emergency overflow at elevation 107.37 m recommended in Section 4.5.3 would allow for overflow during emergency conditions, preventing the water level in the pond from exceeding the maximum 100 year design water level of 107.37 m.

The hydraulic grade line will be confirmed at the detailed design stage.

FERNBANK POND 4 STORMWATER MANAGEMENT FACILITY DESIGN BRIEF

Appendix F Correspondence April 13, 2018

Appendix F CORRESPONDENCE

pa w:\active\160400900_cavanagh_stittsville\design\report\pond design\rpt_2018-04-11_pond.docx

From:	Paerez, Ana
To:	<u>Kilborn, Kris</u>
Subject:	RE: Shea Road Lands Cavanagh
Date:	Thursday, October 06, 2016 3:51:00 PM
Attachments:	image003.png

Hi Kris,

Based on the email below, we will have to restrict post development peak flows from the Tartan/Cavanagh development to approximately 10 year pre-development levels (~0.9 cms). That being said, the SWM pond block will be significantly bigger than what was originally shown in the EMP. I will be flying to Ottawa on Tuesday and will be at the office on Wednesday so we can touch base then. Happy Thanksgiving!! Ana

Ana M. Paerez, P. Eng.

Municipal Engineer Stantec Phone: 506-863-0127 Fax: 506-858-8698 ana.paerez@stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Please consider the environment before printing this email.

From: Kilborn, Kris
Sent: Thursday, October 06, 2016 2:30 PM
To: Paerez, Ana <Ana.Paerez@stantec.com>
Subject: FW: Shea Road Lands Cavanagh

Ana

Please see email below from Andy Robinson on the flow from pond 4. I am out of the office on Friday, but maybe we can touch base next Tuesday or wed when you are in Ottawa Sincerely

Kris Kilborn

Associate, Community Development Business Center Sector Leader (BCSL) Stantec 400 - 1331 Clyde Avenue Ottawa ON K2C 3G4 Phone: (613) 724-4337 Cell: (613) 297-0571 Fax: (613) 722-2799 <u>kris.kilborn@stantec.com</u>

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Please consider the environment before printing this email.

From: Andy Robinson [mailto:ajrobinson@rcii.com] Sent: Thursday, October 06, 2016 11:59 AM To: 'Surprenant, Eric'; Kilborn, Kris **Cc:** Ryan, David W; Gagne, Marc (TUPW) **Subject:** RE: Shea Road Lands Cavanagh

Eric & Kris,

In our initial review of the Hydrotechnical Report prepared by Novatech in support of development in Area 6, we pointed out that the culvert under Fernbank Road had a capacity of 0.75 to 0.9 cms. (the 0.9 is with a 0.5 m head). The community development plan used a release rate of 1.75 cms. from Pond 4. Therefore, our position (from the perspective of the flow reaching the Faulkner Municipal Drain) is that the flow from north of Fernbank Road should be limited to a maximum of 0.9 cms.

The update of the Faulkner Municipal Drain is ongoing, but cannot be advance very far until we have the final agreed upon hydrology (pre and post development) and the final plan of the proposed developments (Cavanagh and Tartan) north of Fernbank Road. This includes any modifications to the watershed boundary.

In order to reduce the duplication of effort we generally rely upon the hydrology report completed by the engineer working for the developer, which in turn will have been reviewed and approved by the City. We do review the reports to make sure that we are in agreement. Where there could be a difference for instant is the release rate from Pond 4. From the perspective of the Municipal Drain we will require that the maximum flow rate at Fernbank Road not exceed the present capacity of the controlling culvert under Fernbank Road, whereas the development approvals may be governed by the higher release rate from Pond 4 in the documents supporting the Community Development plan.

Andy

Andy Robinson, P.Eng. Robinson Consultants Inc. Ph: (613) 592-6060 ext. 104 This e-mail is intended solely for the individual or company to whom it is addressed. The information contained herein is confidential. Any dissemination, distribution or copying of this e-mail, other than by its intended recipient, is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately, and delete this e-mail from your records. Thank you.

From: Surprenant, Eric [mailto:Eric.Surprenant@ottawa.ca]
Sent: October-03-16 12:05 PM
To: 'Kilborn, Kris'
Cc: Ryan, David W; Gagne, Marc (TUPW); Andy Robinson
Subject: RE: Shea Road Lands Cavanagh

Kris,

Sorry for the delay, I started getting back to you but got side tracked. See below my responses in red. Please don't hesitate to contact me if you would like to discuss further.

Thanks *Eric Surprenant, C.E.T.* / 613 580-2424 ext.:27794 *Project Manager, Infrastructure Approvals* Development Review Suburban Services Branch Planning, Infrastructure and Economic Development Dept.

Gestionaire de projets, Approbation de l'infrastructure Examen des demandes d'aménagement (Services Suburbains Ouest) Services de la planification, de l'infrastructure et du développement économique

City of Ottawa | Ville d'Ottawa 613.580.2424 ext./poste 27794 ottawa.ca/planning / ottawa.ca/urbanisme

From: Kilborn, Kris [mailto:kris.kilborn@stantec.com] Sent: October 03, 2016 9:53 AM To: Surprenant, Eric Subject: RE: Shea Road Lands Cavanagh

Good Monday morning Eric

Just thought I would circle back around on my request for information of sept 21. Please get back to me at your earliest convenience Regards

Kris Kilborn

Associate, Community Development Business Center Sector Leader (BCSL) Stantec 400 - 1331 Clyde Avenue Ottawa ON K2C 3G4 Phone: (613) 724-4337 Cell: (613) 297-0571 Fax: (613) 722-2799 <u>kris.kilborn@stantec.com</u>

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

Please consider the environment before printing this email.

From: Kilborn, Kris
Sent: Wednesday, September 21, 2016 3:19 PM
To: 'Eric.Surprenant@ottawa.ca' (Eric.Surprenant@ottawa.ca) (Eric.Surprenant@ottawa.ca)
Subject: Shea Road Lands Cavanagh

Good afternoon Eric hope all is well.

Further to our preconsultation meeting for the Cavanagh Shea Road Development on July 13 2016 and to the comments received on

July 25, we have reviewed all of the background information for the site, including the previous submission by IBI on Behalf of Tartan and Cavanagh and have a few outstanding items that we would like clarification on from the City.

1. Based on meeting notes from the pre-consultation meeting, the design of Pond 4 needs to include an additional 1,200 m³. Need confirmation on the design requirements for the pond (i.e. volume requirements, target release rates, imperviousness).

The release rate and Pond 4 design question is somewhat multi-facet. At present the release rate should be coordinated with the work being done by Andy Robinson of Robinson Consultants since Andy is the Drainage Engineer having been appointed through By-Law to look at the Faulkner MD. Pond 4 and this development fall within the drainage area for the Faulkner MD. As discussed at our pre-consult meeting the Fernbank EMP identified a release rate which may be greater than what the Fernbank road crossing culvert may be able to handle at this time, however as stated it will be important to coordinate with the drainage engineer on your design release rate and any additional storage. The Fernbank EMP can be used for the initial pond design, imperviousness etc...however, the revised Sewer Design Guidelines should be applied where your conceptual design is concerned. (Give me a call if you require further clarifications)

2. Based on the pre-consultation meeting notes, there is an on-going review/update of the Faulkner Drain. Need to review the finalized report. Is this report available?

The update to the Drainage Report is currently ongoing. Please see #1. I have copied our Drainage Superintendent(s) and Andy Robinson on this as they may be able to update you further.

3. Please confirm that this development will be utilizing the latest City bulletin with revisions to the SWM guidelines and will I be implemented for this site.

Please see #1.

4. The pre-consultation meeting notes state "reconcile and review the release rate across Fernbank Road". Need clarification. Is there a document where this information can be obtained?

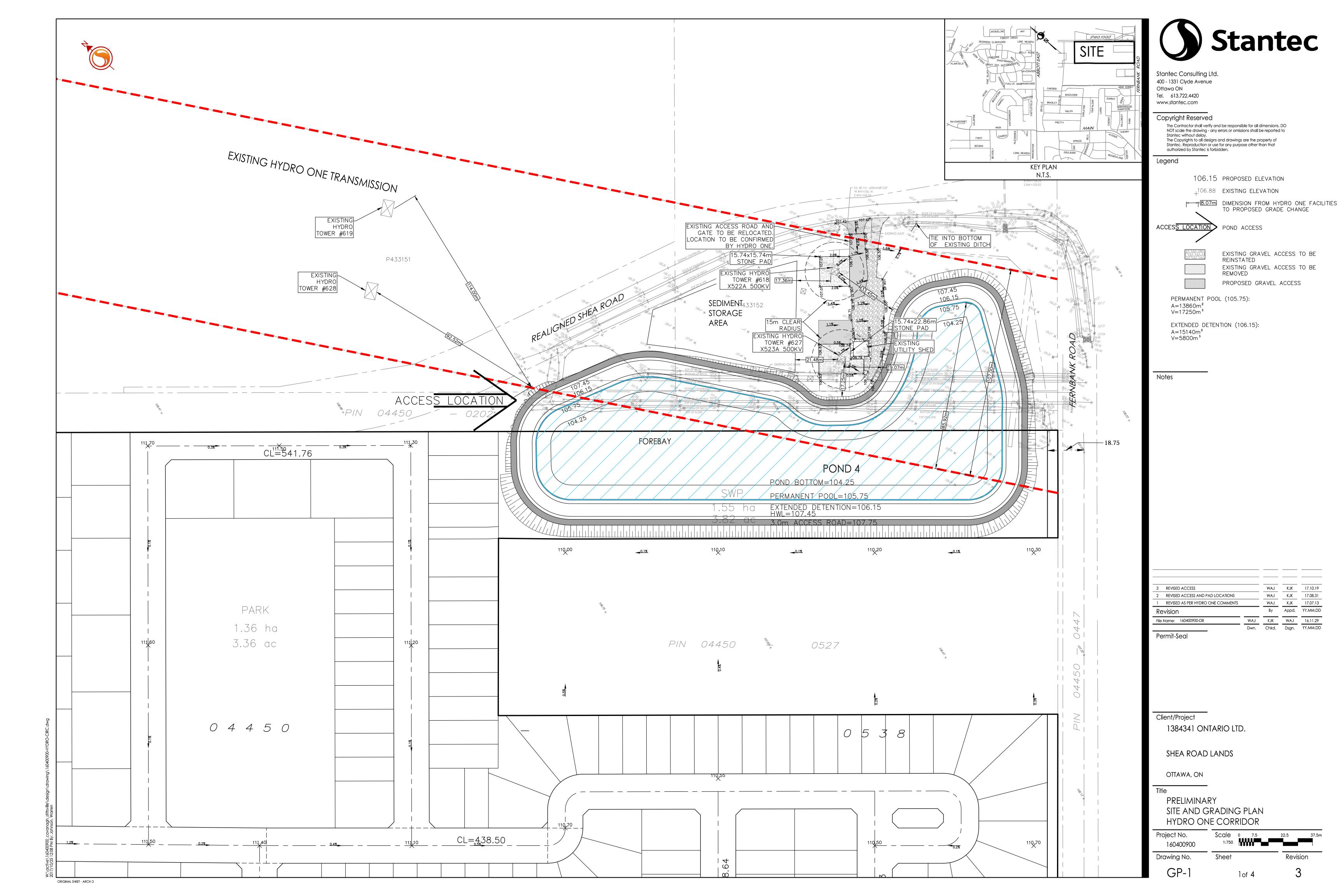
Please see #1.

5. IBi's servicing report for Tartan and Cavanagh's lands state that the urban boundary was extended southerly resulting in extended alignment of the sanitary trunk sewer and an increase in peak flows to be routed through our site. Need additional information on the additional drainage area, land use and location. Is there a master servicing report or Drainage Drawings available for the lands south of Fernbank Road.

Area 6 lands will be draining through the Fernbank Lands. Presently a section of the oversized sanitary sewer is being designed through the CRT lands (in Goldhawk Drive). Coordination of the oversized sanitary sewer to accommodate Area 6 flows should be coordinated with CRT's consultants (IBI) and Novatech who are designing the new Area 6 Pump Station and it's forcemains.

Please get back to me at your earliest convenience

Sincerely


Kris Kilborn

Associate, Community Development Business Center Sector Leader (BCSL) Stantec 400 - 1331 Clyde Avenue Ottawa ON K2C 3G4 Phone: (613) 724-4337 Cell: (613) 297-0571 Fax: (613) 722-2799 <u>kris.kilborn@stantec.com</u>

Please consider the environment before printing this email.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Appendix G Drawings April 13, 2018

Appendix G DRAWINGS

