# **BLUE SEA VILLAGE MER BLEUE** 2159 MER BLEUE ROAD **OTTAWA, ONTARIO**

### TRANSPORTATION IMPACT ASSESSMENT

Prepared for:

2534189 Ontario Limited

April 6, 2018

117-668 TIA Report\_2.doc

# TABLE OF CONTENTS

|                                                                                                                                                                                                                                                                                                                                   | PAGE     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| STEP 1 - SCREENING                                                                                                                                                                                                                                                                                                                | 1        |
| STEP 2 - SCOPING                                                                                                                                                                                                                                                                                                                  | 1        |
| MODULE 2.1 – Existing and Planned Conditions  MODULE 2.2 – Study Area and Time Periods  MODULE 2.3 – Exemptions Review                                                                                                                                                                                                            | 5        |
| STEP 3 – FORECASTING                                                                                                                                                                                                                                                                                                              | 7        |
| MODULE 3.1 – Development-Generated Travel Demand  MODULE 3.2 – Background Network Travel Demands  MODULE 3.3 – Demand Rationalization                                                                                                                                                                                             | 12       |
| STEP 4 – ANALYSIS                                                                                                                                                                                                                                                                                                                 | 18       |
| MODULE 4.1 – Development Design  MODULE 4.2 – Parking  MODULE 4.3 – Boundary Street Design  MODULE 4.4 – Access Intersection Design  MODULE 4.5 – Transportation Demand Management  MODULE 4.6 – Neighbourhood Traffic Management  MODULE 4.7 – Transit  MODULE 4.8 – Review of Network Concept  MODULE 4.9 – Intersection Design |          |
| APPENDIX                                                                                                                                                                                                                                                                                                                          | 32       |
| LIST OF FIGURES                                                                                                                                                                                                                                                                                                                   |          |
| <ul> <li>2.1 SITE LOCATION PLAN</li> <li>2.2 CONCEPTUAL SITE PLAN</li> <li>2.3 EXISTING 2015 PEAK AM AND PM HOUR TRAFFIC COUNTS</li> <li>3.1 2024 PEAK AM AND PM HOUR SITE GENERATED TRIPS</li> <li>3.2 2029 PEAK AM AND PM HOUR SITE GENERATED TRIPS</li> </ul>                                                                  |          |
| <ul> <li>3.3 2024 PEAK AM AND PM HOUR BACKGROUND TRAFFIC</li></ul>                                                                                                                                                                                                                                                                | 17<br>21 |
| 4.3 RECOMMENDED LANE CONFIGURATION                                                                                                                                                                                                                                                                                                | 31       |

# LIST OF TABLES

| 2.1  | SITE INVENTORY                                                       | 3  |
|------|----------------------------------------------------------------------|----|
| 2.2  | EXEMPTIONS TO THE TIA STUDY REPORT                                   | 8  |
| 3.1  | LAND USE AND DEVELOPMENT AREA                                        | 8  |
| 3.2  | TRIP GENERATION RATES                                                | 9  |
| 3.3  | PEAK HOUR SITE TRIPS GENERATED VEHICLE-TRIPS                         | 10 |
| 3.4  | FUTURE MODE SHARE SUMMARY                                            | 11 |
| 3.5  | FUTURE DEVELOPMENT GENERATED PERSON-TRIPS                            | 11 |
| 4.1  | PEAK AM AND PM HOUR SITE GENERATED AUTO-TRIPS                        | 20 |
| 4.2  | STREET 1 AND MER BLEUE ROAD INTERSECTION – LoS & Control Delay       | 23 |
| 4.3  | STREET 2 AND VANGUARD DRIVE INTERSECTION – LoS & Control Delay       | 23 |
| 4.4  | MER BLEUE AND VANGUARD DRIVE INTERSECTION – LoS & v/c Ratio          | 24 |
| 4.5  | MER BLEUE AND 210m S OF INNES ROAD INTERSECTION – LoS & v/c Ratio    | 25 |
| 4.6  | PEDESTRIAN LEVEL OF SERVICE (PLOS) – Street Segments & Intersections | 26 |
| 4.7  | BICYCLE LEVEL OF SERVICE (BLOS) – Street Segments & Intersections    | 27 |
| 4.8  | TRANSIT LEVEL OF SERVICE (TLOS) – Street Segment                     | 27 |
| 4.9  | TRUCK LEVEL OF SERVICE (TkLOS) – Street Segments & Intersections     | 28 |
| 4.10 | MULTI-MODAL (MMLOS) SUMMARY TABLE                                    | 30 |
|      |                                                                      |    |

## BLUE SEA VILLAGE MER BLEUE 2159 MER BLEUE ROAD OTTAWA, ONTARIO

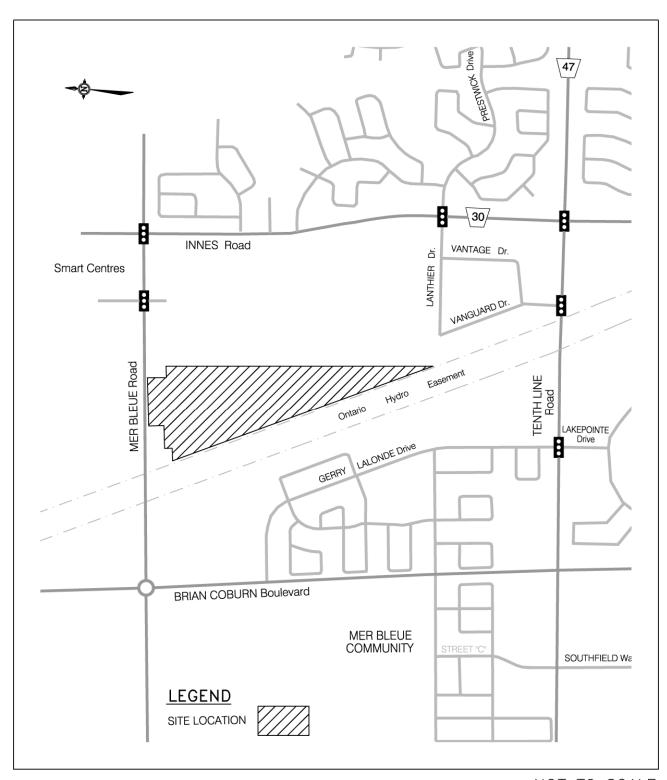
#### TRANSPORTATION IMPACT ASSESSMENT

#### **STEP 1 - SCREENING**

A Screening Form has been prepared which is included as Exhibit 1 in the Appendix. The Trip Generation Trigger and Location Trigger have been triggered in the Screening Form, with the City of Ottawa staff review recommending that the assessment study proceed to the Scoping Document. The following will address the requirements of the Scoping section of the report.

#### **STEP 2 - SCOPING**

#### **MODULE 2.1 – Existing and Planned Conditions**


#### **Element 2.1.1 – Proposed Development**

A Site Plan has been prepared for the Blue Sea Village Mer Bleue development which comprises of seven blocks of property located along the east side of Mer Bleue Road and north of Brian Coburn Boulevard. The Transportation Impact Assessment report is being prepared in support of an Official Plan Amendment, Zoning Bylaw Amendment, and Plan of Subdivision Application for the lands. Subsequent applications for Site Plan Control on the various development blocks will be subject to traffic study updates as more details are known on size and use of lands under the development application. The location of the development is shown in Figure 2.1.

The development is proposed to be located on 4.768 hectares of vacant land with the site constructed in two phases. The land uses of the development would consist of an athletic centre, commercial use, office use, residential apartments, and a senior residential apartment building. The residential apartment use is an apartment style building to house athletes for the sports facilities. The completion date of each phase and blocks which will be included in each phase are not established, however the total development is expected to be completed by the year 2024. The TIA study will therefore examine the site at build-out of the entire site in 2024. Table 2.1 provides an inventory of the land uses for the total development of the site.

Lands to the north and east of the site comprise of commercial/light industrial uses, lands to the south is a hydro corridor adjacent to the site with residential further south, and vacant lands to the west. The Blue Sea Village Mer Bleue site is currently zoned IG7 H(21) "General Industrial Zone". Amendments to the Zoning Bylaw will be required for the development.

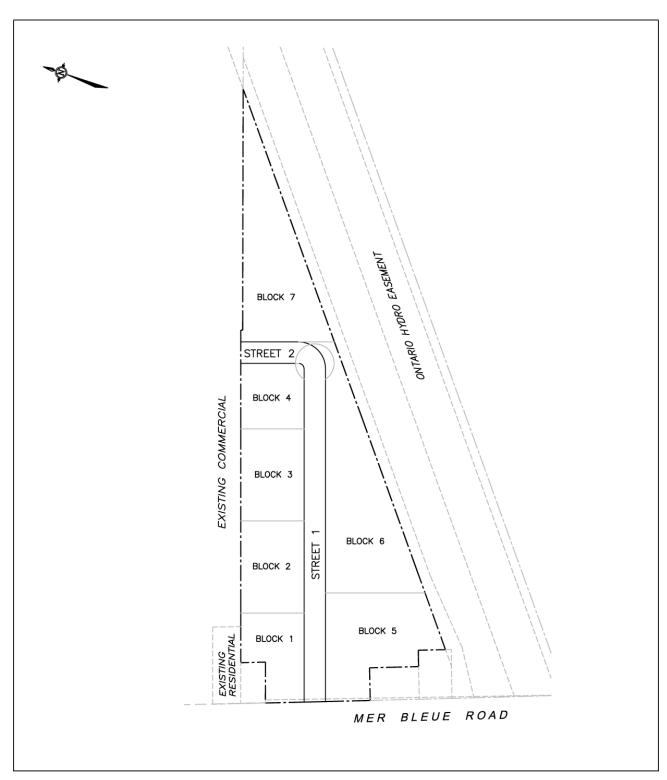
FIGURE 2.1 SITE LOCATION PLAN



#### TABLE 2.1 SITE INVENTORY

| Land Use Blocks | Land Use                              |
|-----------------|---------------------------------------|
| Block 1         | Physio/Commercial Offices             |
| Block 2         | Commercial Offices                    |
| Block 3         | Retirement Residence                  |
| Block 4         | Residential Apartments                |
| Block 5         | Commercial Offices                    |
| Block 6         | Gymnastics Centre with Ancillary Uses |
| Block 7         | Tennis/Athletic Academy               |

The Blue Sea Village Mer Bleue development will comprise of seven blocks which provide a mixture of uses. Each block will have a separate access to the development's road (Street 1). The development will have one access point onto Mer Bleue Road by full build-out of the development. Once the Vanguard Drive Extension is completed through to Mer Bleue Road, the development will connect to it by way of Street 2 which will provide a link between Vanguard Drive and Mer Bleue Road. The Transportation Impact Assessment study will assume the Vanguard Drive Extension has been completed at five years beyond build-out (2029).


Figure 2.2 provides a concept plan of the development showing the blocks which will be developed and the proposed access points onto Mer Bleue Road and future connection to Vanguard Drive.

#### **Element 2.1.2 – Existing Conditions**

The Blue Sea Village Mer Bleue development is located on the east side of Mer Bleue Road approximately 500 m north of Brian Coburn Boulevard. Mer Bleue Road is a north-south arterial road which was widened in 2010 to a four lane divided road from the existing Smart Centres shopping centre and car dealership at Mer Bleue Road and Innes Road, to the hydro easement at the south border of the Blue Sea Village Mer Bleue development. In 2015 the four lane divided cross section was extended further south to a point approximately 450 m south of Brian Coburn Boulevard. Mer Bleue Road has sidewalks along both sides of the road with a 2.0 m cycling lane. The speed limit is posted at 60 km./h. The City of Ottawa *Transportation Master Plan* (TMP) has identified Mer Bleue Road as a "Spine Route" in the Cycling Network - Primary Urban plan.

Brian Coburn Boulevard is a two lane east-west arterial road located approximately 500 m south of the site. Brian Coburn Boulevard connects Mer Bleue Road with Trim Road, and currently terminates approximately 1,000 m west of Mer Bleue Road. A sidewalk exists along the north side of the road. The posted speed limit is 60 km./h.

FIGURE 2.2 **CONCEPTUAL SITE PLAN** 



Vanguard Drive is an east-west collector road which connects to Tenth Line Road and extends approximately 500 m west. The City of Ottawa is currently preparing an Environmental Assessment report which would establish the alignment of Vanguard Drive and extend the road further west of the current point of termination. Vanguard Drive has sidewalks along both sides of the street and has an unposted speed limit of 50 km./h.

The intersection of Mer Bleue Road and Brian Coburn Boulevard is located 500 m south of the site and was reconstructed in 2015 along with the Mer Bleue Road widening. The intersection was constructed as a two lane roundabout with four intersection approaches.

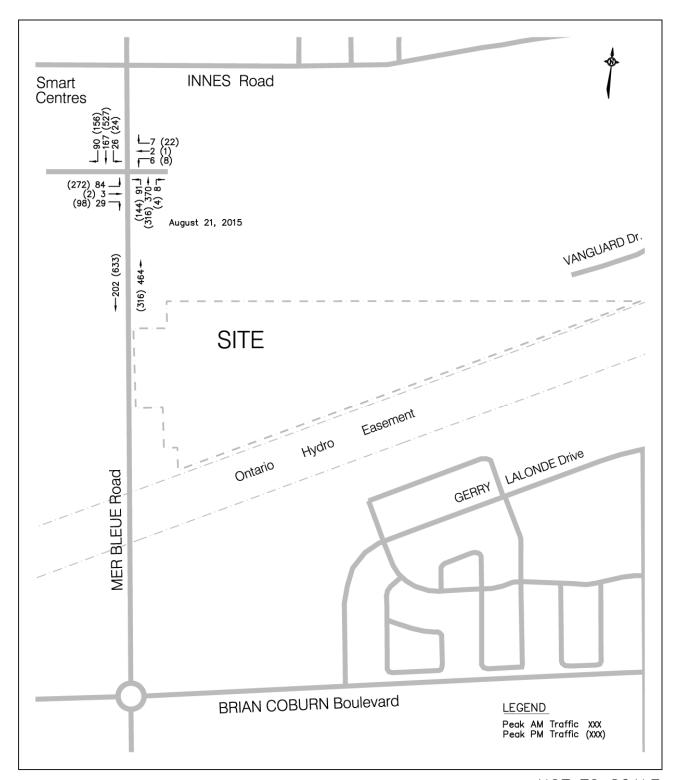
The closest signalized intersection to the north is the intersection at the access to the Smart Centres shopping centre located 500 m north of the site.

Traffic counts obtained from the City of Ottawa at the Smart Centres intersection 500 m north of the site determined the weekday peak AM hour to occur between 8:45 and 9:45 and peak PM hour between 4:15 and 5:15. The time period for the peak volume of traffic was applicable to vehicular, cycling and pedestrian traffic. Figure 2.2 shows the peak AM and PM hour traffic counts for the signalized intersection, with the City of Ottawa data sheets provided in the Appendix as Exhibit 2 for the peak AM hour and Exhibit 3 for the peak PM hour. The traffic signal timing plan is provided as Exhibit 4.

#### **Element 2.1.3 – Planned Conditions**

On the north side of the site is a proposed development at 2025 Mer Bleue Road. The development will contain a mixture of retail/commercial, residential apartments, and accommodations for senior living. A Community Transportation Study (CTS) report was prepared by Stantec Consulting Ltd. The development is expected to have full build-out by the year 2026.

The City of Ottawa has initiated an EA study for the extension of Vanguard Drive from Lanthier Drive to Mer Bleue Road. The study will include traffic volumes based on the 2025 Mer Bleue Road CTS report, which would account for future development south and west of the site.


Further widening of Mer Bleue Road south to Renaud Road and the extension of Brian Coburn Boulevard between Mer Bleue Road and Navan Road are identified in the affordable road network of the Transportation Master Plan 2013.

#### **MODULE 2.2 – Study Area and Time Periods**

#### Element 2.2.1 – Study Area

The study area was determined during a pre-consultation meeting with City staff, and the examination of the impact of site trips from the proposed development on the surrounding roads. It was determined that the traffic analysis should address the operation of the site access onto Mer Bleue Road for the total development of the site. The analysis will also address the operation of the site access onto Mer Bleue Road and the Vanguard/Mer Bleue intersection following the future extension of Vanguard Drive.

FIGURE 2.3 **EXISTING 2015 PEAK AM AND PM HOUR TRAFFIC COUNTS** 



#### **Element 2.2.2 – Time Periods**

The proposed athletic and associated land uses would support a high level of training for professional, semi-professional, and committed athletes. A major component of the physio/commercial and commercial offices will be associated with the athletic facilities and would produce trips during the weekday AM and PM hours as athletes travel to/from the facilities for training. The residential apartments will also house some of the athletes who are training and will be available as a short term residence for people attending athletic tournaments.

The adjacent land uses to the development comprise mainly of industrial along Vanguard Drive and residential and future residential to the south and west of the site. These land uses generate peak hour trips during the weekday AM and PM hours as people are travelling to/from work.

With the operation of the athletic development generating peak hour trips on a weekday, the peak time periods for the analysis would be the weekday peak AM and PM hours of the adjacent roads which would be determined from traffic counts obtained from the City of Ottawa.

#### **Element 2.2.3 – Horizon Years**

The total Blue Sea Village Mer Bleue development is expected to be completed by the year 2024. The TIA study will examine the operation of the roads and intersections at build-out in 2024 and at five years beyond build-out in 2029. The 2024 analysis will assume one access point onto Mer Bleue Road, and the 2029 analysis would assume that Vanguard Drive has been extended and the development at 2025 Mer Bleue Road has been completed. The 2029 analysis will assume two accesses to the development at both Mer Bleue Road and Vanguard Drive.

#### **MODULE 2.3 – Exemptions Review**

The exemptions, which provide possible reductions to the scope of work of the TIA Study, were examined using Table 4: Possible Exemptions which is provided in the City's *Transportation Impact Assessment Guidelines* (2017). Utilizing the table in the TIA Guidelines, the possible exemptions proposed for the Blue Sea Village TIA Study report are shown in Table 2.2.

#### **STEP 3 - FORECASTING**

#### **MODULE 3.1 – Development-Generated Travel Demand**

#### **Element 3.1.1 – Trip Generation and Mode Shares**

The proposed development consists of a mixture of land uses mainly related to the gymnastics and athletic centre with the exception of the senior retirement residence. The land uses comprise of a gymnasium centre, tennis academy, physiotherapy/commercial, commercial offices which are mainly associated with the athletic uses, and a residential apartment building which will house athletes, friends and family members during sport training and athletic events. A block is also designated to a senior retirement residence. Table 3.1 provides an inventory of the proposed land uses and gross floor area or number of rooms for each use.

**TABLE 2.2** EXEMPTIONS TO THE TIA STUDY REPORT

| MODULE                                  | ELEMENT                                              | EXEMPTION CONSIDERATIONS                                                                                                            |  |  |
|-----------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Design Review Component                 |                                                      |                                                                                                                                     |  |  |
| 4.1 Development Design                  | 4.1.2 Circulation and Access                         | No - Access to the development and will be examined.                                                                                |  |  |
|                                         | 4.1.3 New Street Networks                            | Yes - Only required for subdivisions.                                                                                               |  |  |
| 4.2 Parking                             | 4.2.1 Parking Supply                                 | No - the supply of parking will be discussed.                                                                                       |  |  |
|                                         | 4.2.2 Spillover Parking Yes - No spillover expected. |                                                                                                                                     |  |  |
| <b>Network Impact Component</b>         |                                                      |                                                                                                                                     |  |  |
| 4.5 Transportation Demand<br>Management | All Elements                                         | No - TDM measures will be addressed.                                                                                                |  |  |
| 4.6 Neighbourhood Traffic<br>Management | 4.6.1 Adjacent<br>Neighbourhoods                     | Yes – The site will have access onto an arterial road. Trips to the future Vanguard Drive extension would not exceed ATM capacity.  |  |  |
| 4.8 Network Concept                     |                                                      | Yes - The site would not generate more than 200 person-trips per peak hour in excess of the volume permitted by established zoning. |  |  |

**TABLE 3.1** LAND USE AND DEVELOPMENT AREA

| Land Use Blocks | Land Use                              | Development Area        |
|-----------------|---------------------------------------|-------------------------|
| Block 1         | Physio/Commercial Offices             | 10,000 ft <sup>2</sup>  |
| Block 2         | Commercial Offices                    | 15,000 ft <sup>2</sup>  |
| Block 3         | Retirement Residence                  | 100 rooms               |
| Block 4         | Residential Apartments                | 100 units               |
| Block 5         | Commercial Offices                    | $20,000 	 ft^2$         |
| Block 6         | Gymnastics Centre with Ancillary Uses | 100,000 ft <sup>2</sup> |
| Block 7         | Tennis/Athletic Academy               | 90,000 ft <sup>2</sup>  |

The number of expected site generated trips for the "Gymnastic Centre with Ancillary Uses" was determined from existing trips at the Tumblers Facility on Vantage Drive. The number of expected trips for the new gymnastic facility was determined by discussions with staff of the existing facility as to the number of vehicles and participants at the facility during peak hours, and the number of drop-off vehicles during the same time period. The following is the trip rate calculation:

|                                                      | Entering  | Exiting   |
|------------------------------------------------------|-----------|-----------|
| 3 to 4 dozen vehicles = $4 \times 12 =$              | 48        | 48        |
| 2 dozen drop-offs = 2 x 12 x 2 (drop-off & pickup) = | <u>48</u> | <u>48</u> |
|                                                      | 96 Trips  | 96 Trips  |
| Increase of 35% for new facility                     | <u>34</u> | <u>34</u> |
|                                                      | 130 Trips | 130 Trips |

For the 25,000 ft<sup>2</sup> facility, the trip generation rate for both the peak AM and PM hours would be  $(2 \times 130 \text{ T})/25 = 10.40 \text{ T}/1000 \text{ ft}^2$ 

The trips for the remaining uses listed in Table 3.1 excluding the gymnastic centre and ancillary uses were determined from the statistical trip data documented in the Institute of Transportation Engineers (ITE) publication, *Trip Generation Manual*. The analysis used the average trip rate for each ITE Land Use. The trip rates for all uses are shown in Table 3.2.

TABLE 3.2 TRIP GENERATION RATES

| BUILDING USE                            | ITE LAND USE                                 | TRIP GENERATION RATE         |                              |  |
|-----------------------------------------|----------------------------------------------|------------------------------|------------------------------|--|
| BUILDING USE                            | TIE LAND USE                                 | Peak AM Hr.                  | Peak PM Hr.                  |  |
| Physio/Commercial Offices               | Medical-Dental Office<br>Building – ITE 720  | 2.39 T/1000/ft <sup>2</sup>  | 3.57 T/1000/ft <sup>2</sup>  |  |
| Commercial Offices                      | Single Tenant Office<br>Building – ITE 715   | 1.80 T/1000/ft <sup>2</sup>  | 1.74 T/1000/ft <sup>2</sup>  |  |
| Retirement Residence                    | Senior Adult Housing -<br>Attached – ITE 252 | 0.20 T/DU                    | 0.25 T/DU                    |  |
| Residential Apartments                  | All Suites Hotel – ITE 311                   | 0.38 T/room                  | 0.40 T/room                  |  |
| Commercial Offices                      | Single Tenant Office<br>Building – ITE 715   | 1.80 T/1000/ft <sup>2</sup>  | 1.74 T/1000/ft <sup>2</sup>  |  |
| Gymnastic Centre with<br>Ancillary Uses | Trip Rate from Data at the Existing Facility | 10.40 T/1000/ft <sup>2</sup> | 10.40 T/1000/ft <sup>2</sup> |  |
| Tennis/Athletic Academy                 | Health/Fitness Club –<br>ITE 492             | 1.41 T/1000/ft <sup>2</sup>  | 3.53 T/1000/ft <sup>2</sup>  |  |

Transportation impact, tooccoment

The trip generation rates of Table 3.2 were applied to the gross floor area or number of rooms for each building use identified in Table 3.1. The product is the weekday peak AM and PM hour site generated vehicle-trips which are shown in Table 3.3.

TABLE 3.3
PEAK HOUR SITE TRIPS GENERATED VEHICLE-TRIPS

| PEAK HOUR                | WEEKDAY PEAK AM HR. |            | WEEKDAY PEAK PM HR. |             |             |             |
|--------------------------|---------------------|------------|---------------------|-------------|-------------|-------------|
| BUILDING USE             | TOTAL               | ENTER      | EXIT                | TOTAL       | ENTER       | EXIT        |
| Physio/Commercial Office | 24                  | 19 (79%)   | 5 (21%)             | 36          | 10 (.28%)   | 26 (72%)    |
| Commercial Offices       | 27                  | 24 (89%)   | 3 (11%)             | 26          | 4 (15%)     | 22 (85%)    |
| Residential Apartments   | 38                  | 21 (55%)   | 17 (45%)            | 40          | 18 (45%)    | 22 (55%)    |
| Commercial Offices       | 36                  | 32 (89%)   | 4 (11%)             | 35          | 5 (15%)     | 30 (85%)    |
| Gymnastics Centre        | 1040                | 520 (50%)  | 520 (50%)           | 1040        | 520 (57%)   | 520 (43%)   |
| Tennis/Athletic Academy  | 126                 | 63 (50%)   | 63 (50%)            | 318         | 181 (57%)   | 137 (43%)   |
| Shared Trip Reduction *  | <u>-126</u>         | <u>-80</u> | <u>-46</u>          | <u>-362</u> | <u>-196</u> | <u>-166</u> |
| Subtotal Site Trips      | 1165                | 599        | 566                 | 1133        | 542         | 591         |
| Retirement Residence     | <u>20</u>           | 7 (34%)    | 13 (66%)            | <u>25</u>   | 14 (54%)    | 11 (46%)    |
| Total New Trips          | 1185                | 606        | 579                 | 1158        | 556         | 602         |

<sup>\*</sup> A shared trip reduction was applied to account for shared trips between the Gymnastic Centre use and all other uses with the exception of the Retirement Residence. The reduction assumed that 50% of the trips from the athletic related uses (not including trips from the Gymnastic Centre) would be internal and/or related to the Gymnastic Centre

The peak AM and PM hour person-trips were determined using the total new vehicle-trips shown in Table 3.3 and a conversion rate of 1.28 as provided in Element 3.1.1 of the City's TIA Guidelines. The peak AM and PM hour vehicle-trips and person-trips are shown below:

|               | Peak AM Hour | Peak PM Hour |
|---------------|--------------|--------------|
| Vehicle-Trips | 1,185        | 1,158        |
| Person-Trips  | 1,517        | 1,482        |

The future transit mode share was determined from reviewing the *National Capital Region Travel Trends* document prepared by IBI Group which provides the mode share trends to/from Orléans during the 2011 peak AM hour, and the Transit Priority Projects listed in the City's TMP. Table 3.4 presents the modal shared summary which will be used in the TIA Submission.

Transportation impact / oscosiment

TABLE 3.4 FUTURE MODE SHARE SUMMARY

| Future Mode Share Targets for the Development |     |                                                                          |  |
|-----------------------------------------------|-----|--------------------------------------------------------------------------|--|
| Travel Mode Mode Share Target                 |     | Rationale                                                                |  |
| Transit                                       | 24% | Consistent with the TMP Transit Priority Network 2031 Affordable Network |  |
| Walking                                       | 7%  | Due to the close proximity to the surrounding residential areas          |  |
| Cycling                                       | 6%  | Consistent with young patrons of the athletic facilities                 |  |
| Auto Passenger                                | 10% | Consistent with modal share targets and travel                           |  |
| Auto Driver                                   | 53% | trends to athletic related land uses                                     |  |

The peak hour person-trips for the various travel modes were determined by the product of the total peak hour person-trips previously determined (1,517 Peak AM & 1,482 Peak PM Hour) and the future mode share from Table 3.4. The results are shown in Table 3.5.

TABLE 3.5 FUTURE DEVELOPMENT GENERATED PERSON-TRIPS

| TDAVEL MODE        | DEVELOPMENT GENERATED PERSON-TRIPS |                    |  |  |
|--------------------|------------------------------------|--------------------|--|--|
| TRAVEL MODE        | PEAK AM HOUR                       | PEAK PM HOUR       |  |  |
| Transit            | 364 person-trips                   | 356 person-trips   |  |  |
| Walking            | 106 person-trips                   | 104 person-trips   |  |  |
| Cycling            | 91 person-trips                    | 89 person-trips    |  |  |
| Auto Passenger     | 152 person-trips                   | 148 person-trips   |  |  |
| Auto Driver        | 804 person-trips                   | 785 person-trips   |  |  |
| Total Person-Trips | 1,517 person-trips                 | 1,482 person-trips |  |  |

The TIA Guidelines allow for three Trip Reduction Factors that may be applied to the expected development trips. Below discusses the three factors, with the third factor being the only factor which would provide a trip reduction for the development:

- 1. The proposed site is currently vacant with no existing uses or site trips which would be replaced by proposed trips from the Blue Sea Village Mer Bleue development. The reduction for existing development trips would not apply.
- 2. All of the trips to/from the site are assumed to be primary trips with no pass-by vehicle trips. The pass-by trip reduction factor would not apply.
- 3. With the exception of the retirement residence, all of the uses within the Blue Sea Village Mer Bleue development are related to the athletic activities of the individual uses. A shared trip reduction or internalization of trips within the development was applied. The study has applied a 50 percent trip reduction factor which was applied to the athletic, office and residential apartment uses which would be shared with the Gymnastic Centre. Trips generated by the Gymnastic Centre use were not reduced as these trips would be considered primary trips. The trip reduction is illustrated further in Table 3.3.

#### **Element 3.1.2 – Trip Distribution**

The distribution of site generated trips for the proposed Blue Sea Village Mer Bleue development was determined from the *National Capital Region Travel Trends* (NCR) document. The document showed the population and employment statistics for various districts within the region. With the trips to the site considered as primary trips, the study has examined the population of the surrounding districts and proportioned the trips to the shortest and most convenient routes. The trip distribution utilized in the study for both the weekday peak AM hour and PM hour time periods was as follows:

| To/From the north/east | along Mer Bleue               | 20% |
|------------------------|-------------------------------|-----|
| To/From the south/east | along Mer Bleue               | 15% |
| To/From the east       | along Mer Bleue/Vanguard ext. | 10% |
| To/From the north/west | along Mer Bleue and Innes     | 55% |

#### **Element 3.1.3 – Trip Assignment**

The trip assignment has utilized the above trip distribution and assigned the expected trips for the total development of the Mer Bleue site at the year 2024. The trip assignment has assumed that the Vanguard Drive Extension has not been completed by full development of the site in 2024, but will be completed by 2029 which represents five years beyond completion. Figure 3.1 shows the trip assignment for the total development in 2024, and Figure 3.2 the trip assignment at the year 2029.

#### **MODULE 3.2 – Background Network Travel Demands**

#### **Element 3.2.1 – Transportation Network Plans**

The City of Ottawa has initiated an EA study for the extension of Vanguard Drive from Lanthier Drive to Mer Bleue Road. The study will examine various alignment options for the road extension to Mer Bleue Road. The EA study will include traffic volumes for future development

FIGURE 3.1 2024 PEAK AM AND PM HOUR SITE GENERATED TRIPS

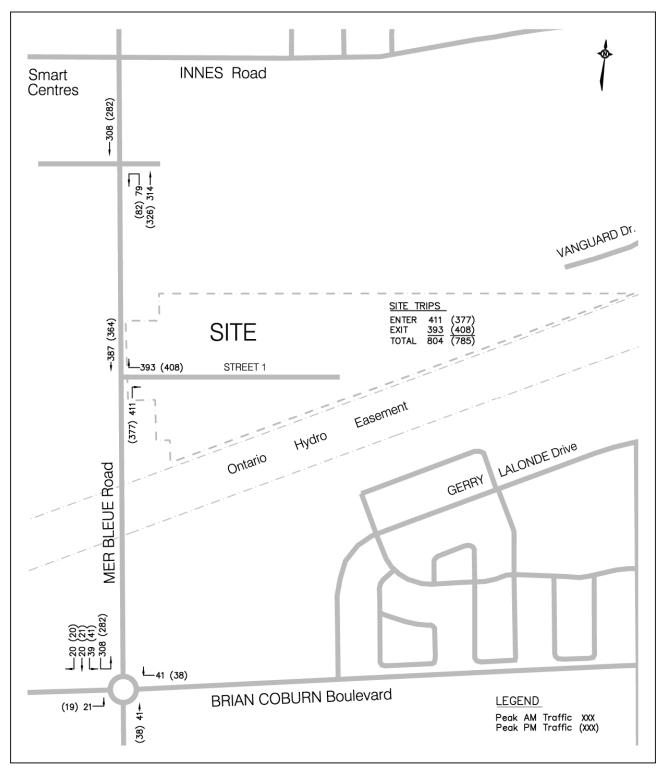
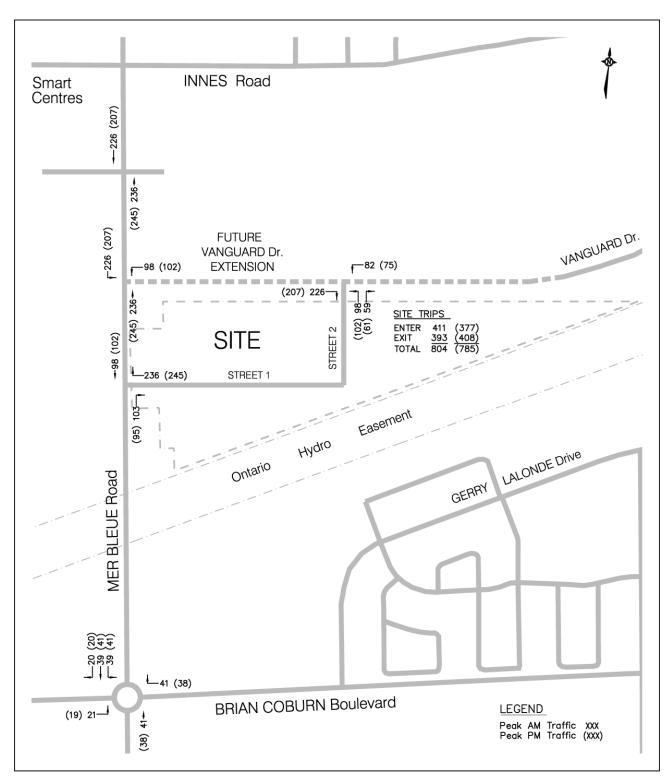




FIGURE 3.2 2029 PEAK AM AND PM HOUR SITE GENERATED TRIPS



which are based on the 2025 Mer Bleue Road CTS report which would account for future development south and west of the site.

Further widening of Mer Bleue Road south to Renaud Road, and the extension of Brian Coburn Boulevard between Mer Bleue Road and Navan Road, are identified in Phase 1: 2014 to 2019 in the affordable road network of the *Transportation Master Plan 2013*.

#### **Element 3.2.2 – Background Growth**

To determine the growth in background traffic, the study has utilized the background traffic information as documented in the 2025 Mer Bleue Road CTS report. The 2026 future traffic without the Vanguard Drive Extension (Figure 9 of the CTS) with adjustments to the northbound and southbound Mer Bleue Road through movements was used to determine the 2024 background traffic for the TIA report. Figure 3.3 shows the expected 2024 background traffic volumes along Mer Bleue Road.

The 2029 background traffic utilized Figure 10 of the CTS report and adjusted the northbound and southbound Mer Bleue Road through movements to determine the 2029 future traffic with the Vanguard Drive Extension. Figure 3.4 shows the 2029 background traffic which was assigned the expected 2025 Mer Bleue Road development trips to Vanguard Drive.

#### **Element 3.2.3 – Other Developments**

Other development which may take place in the surrounding area is the additional development of residential areas south of the site and along the extension of Brian Coburn Boulevard south and west of the site. The 2024 and 2029 background traffic takes into account the future residential development along with the retail/commercial/residential development at 2025 Mer Bleue Road which is located on the north side of the site as previously discussed.

#### **MODULE 3.3 – Demand Rationalization**

The site is located between Mer Bleue Road and Tenth Line Road which are both four lane divided arterial roads. Existing traffic counts and background traffic calculations show that the high volume of traffic during the peak AM and PM hours is attributed to the existing and proposed residential development south of the site. The proposed Blue Sea Village Mer Bleue development would generate a small number of site generated trips when compared to the volume of background traffic resulting is a minor impact on the adjacent roads.

The development contains a number of uses which would share trips and reduce the impact on the surrounding roadway network. The development also includes a residential apartment building which would house participants training for events at the various athletic facilities within the development. The shared trips would reduce trips onto the adjacent roads.

Transit Priority Projects by the City of Ottawa which includes peak period bus lanes along with transit signal priority and queue jump lanes proposed along Brian Coburn Boulevard would encourage the use of transit to the development.

FIGURE 3.3 2024 PEAK AM AND PM HOUR BACKGOUND TRAFFIC

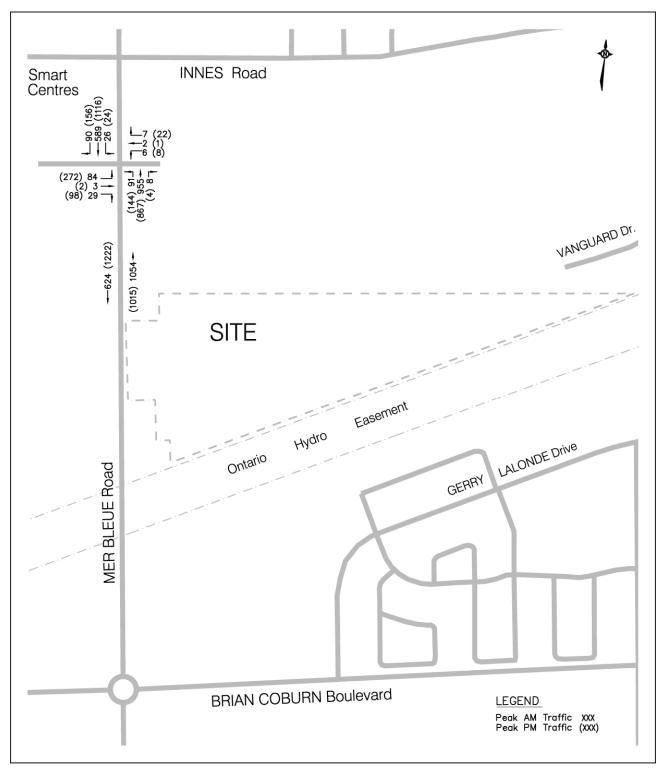
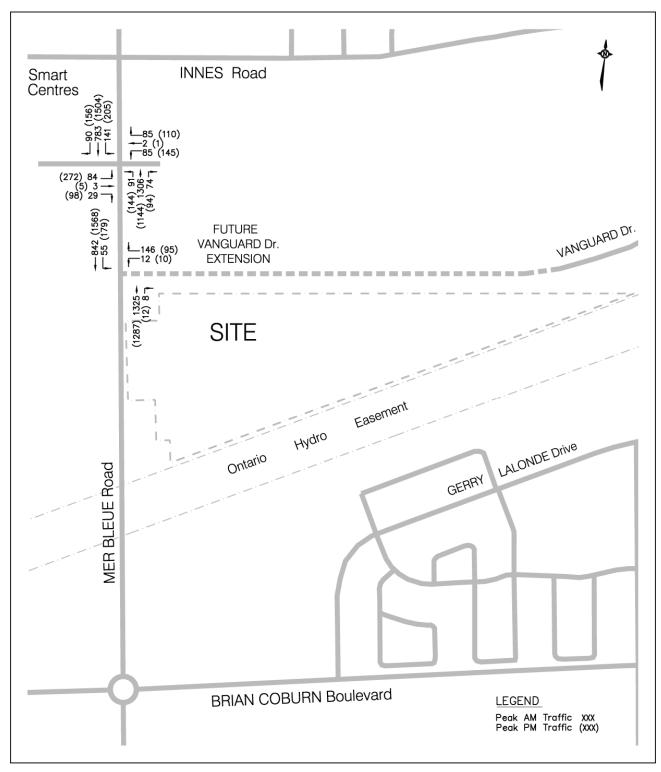




FIGURE 3.4 2029 PEAK AM AND PM HOUR BACKGOUND TRAFFIC



#### **STEP 4 - ANALYSIS**

#### **MODULE 4.1 – Development Design**

#### **Element 4.1.1 – Design for Sustainable Modes**

The site will be designed to provide adequate on-site parking for both vehicles and bicycles. The development would provide sidewalks along both sides of the road which would allow easy and safe movement of pedestrians between various athletic facilities and accommodations. The sidewalks would also provide safe passage to transit stops along Mer Bleue Road, and Tenth Line Road following the extension of Vanguard Drive.

#### **Element 4.1.2 – Circulation and Access**

During the Site Plan Application stage, all developments would be designed to provide easy and safe access to each facility, and an efficient movement of vehicles and service vehicles within the site.

#### **Element 4.1.3 – New Street Networks**

Exempt as determined in the Scoping module.

#### **MODULE 4.2 – Parking**

#### **Element 4.2.1 – Parking Supply**

During the design phase for each building, on-site parking will be examined to ensure the parking supply is adequate and meets the zoning and parking by-laws.

#### **Element 4.2.2 – Spillover Parking**

Exempt as determined in the Scoping module.

#### **MODULE 4.3 – Boundary Street Design**

With the rapid growth in the surrounding area, the City of Ottawa has made substantial improvements to the existing roadway infrastructure. Mer Bleue Road was widened in 2010 to a four lane divided road from the existing shopping centre at Mer Bleue Road and Innes Road, to the hydro easement at the south border of the Blue Sea Village Mer Bleue development. In 2015 the four lane divided cross section was extended further south to a point approximately 450 m south of Brian Coburn Boulevard. As part of the Mer Bleue Road widening, the intersection of Mer Bleue Road and Brian Coburn Boulevard was reconstructed as a two lane roundabout.

The City is in the process of completing an Environmental Assessment study for the extension of Vanguard Drive. As part of the study, the preferred option would be capable of accommodating future traffic from development in the surrounding area. All roadway improvements completed recently would have included trips from the Blue Sea Village Mer Bleue site.

### **MODULE 4.4 – Access Intersection Design**

#### **Element 4.4.1 – Location and Design of Access**

The location and design of the accesses to each development would be completed during the Site Plan Application stage.

#### **Element 4.4.2 – Intersection Control**

Access into the development would be from the intersection of Mer Bleue Road and the proposed road (Street 1) into the development. The intersection would be a "T" intersection with Street 1 forming the westbound approach and Mer Bleue Road the northbound and southbound approaches. The intersection would be controlled by a stop sign at the westbound Street 1 approach. Street 1 would be restricted to right-in/right-out turning movements which would be controlled by a median along Mer Bleue Road.

At the 2029 horizon year, it is assumed that the Vanguard Drive Extension would be completed linking Mer Bleue Road with Tenth Line Road. The site road (Street 2) would connect to Vanguard Drive at a "T" intersection where Vanguard Drive would form the eastbound and westbound approaches and Street 2 the northbound stop controlled approach.

The Vanguard Drive Extension would connect to Mer Bleue Road at a "T" intersection where Vanguard Drive would form the westbound approach and Mer Bleue Road the northbound and southbound approaches. The intersection would be a full movement intersection controlled by traffic signals.

#### **Element 4.4.3 – Intersection Design**

The intersection analysis will use the *Highway Capacity Software*, *Version 7.4*, which utilizes the intersection capacity analysis procedure as documented in the *Highway Capacity Manual 2010* and 6<sup>th</sup> Edition. For unsignalized intersections the level of service of each lane movement and approach is determined as a function of the delay of vehicles at the approach. The following relates the level of service of each lane movement with the expected control delay at the approach.

| LEVEL OF SERVICE   | CONTROL DELAY       |                                          |
|--------------------|---------------------|------------------------------------------|
| Level of Service A | 0-10 sec./vehicle   | Little or No Delay                       |
| Level of Service B | >10-15 sec./vehicle | Short Traffic Delays                     |
| Level of Service C | >15-25 sec./vehicle | Average Traffic Delays                   |
| Level of Service D | >25-35 sec./vehicle | Long Traffic Delays                      |
| Level of Service E | >35-50 sec./vehicle | Very Long Traffic Delays                 |
| Level of Service F | >50 sec./vehicle    | Extreme Delays – Demand Exceeds Capacity |

The expected length of queue at the critical lane movements for an unsignalized intersection was determined by the calculation of the 95<sup>th</sup> percentile queue at the lane approach. The 95<sup>th</sup> percentile queue length is the calculated 95<sup>th</sup> greatest queue length out of 100 occurrences at a movement during a 15-minute peak period. The 95<sup>th</sup> percentile queue length is a function of the

Transportation impact / lococomonic

capacity of a movement and the total expected traffic, with the calculated value determining the magnitude of the queue by representing the queue length as fractions of vehicles.

For a signalized intersection, the operation or level of service of an intersection is determined from the volume to capacity ratio (v/c) for each lane movement as documented by the City of Ottawa in the *Transportation Impact Assessment Guidelines* (2017). The following relates the level of service with the volume to capacity ratio at each lane movement.

| LEVEL OF SERVICE   | VOLUME TO CAPACITY RATIO |
|--------------------|--------------------------|
| Level of Service A | 0 to 0.60                |
| Level of Service B | 0.61 to 0.70             |
| Level of Service C | 0.71 to 0.80             |
| Level of Service D | 0.81 to 0.90             |
| Level of Service E | 0.91 to 1.00             |
| Level of Service F | > 1.00                   |
|                    |                          |

The number of new site generated auto-trips was determined utilizing the Peak Hour Future Development Generated Person-Trips (Table 3.5) which were discussed in Element 3.1.1. One auto-trip was assumed to be the same as one auto driver trip from Table 3.5. The distribution of trips entering the site and trips exiting the site was determined from the distribution for all land uses as shown in Table 3.3. The number of auto-trips generated by the total development is presented in Table 4.1, and shown in Figure 3.1 (2024) and Figure 3.2 (2029).

TABLE 4.1
PEAK AM AND PM HOUR SITE GENERATED AUTO-TRIPS

| LAND             | PEAK AM HOUR |           |           | PEAK PM HOUR |           |           |
|------------------|--------------|-----------|-----------|--------------|-----------|-----------|
| USE              | TOTAL        | ENTER     | EXIT      | TOTAL ENTER  |           | EXIT      |
| Blue Sea Village | 804          | 411 (51%) | 393 (49%) | 785          | 377 (48%) | 408 (52%) |

The total traffic is the sum of the peak hour site generated trips (Figure 3.1 for the year 2024 and Figure 3.2 for the year 2029), and the peak hour background traffic (Figure 3.3 for the year 2024 and Figure 3.4 for the year 2029). Figure 4.1 presents the total 2024 peak hour vehicular traffic and Figure 4.2 the total 2029 peak hour vehicular traffic.

#### **VEHICULAR LEVEL OF SERVICE (LOS) - Intersection Capacity Analysis**

#### Street 1 (Site Access) and Mer Bleue Road Intersection

The intersection is a "T" intersection with Street 1 forming the westbound stop controlled approach. Street 1 is restricted to right-in/right-out turning movements which are controlled by a median along Mer Bleue Road. For the year 2024 analysis, all development within the site is assumed to be completed but without the Vanguard Drive Extension. With only one point of

FIGURE 4.1 2024 PEAK AM AND PM HOUR TOTAL TRAFFIC

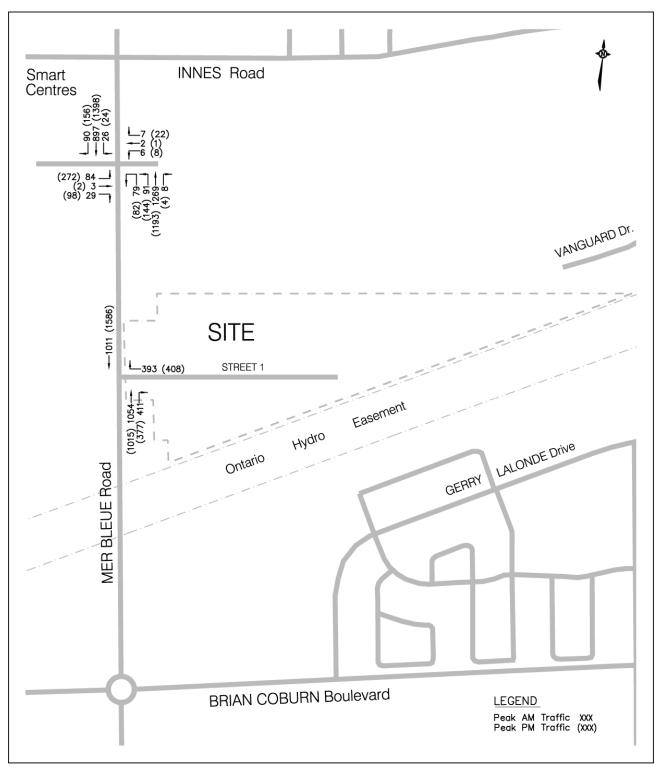
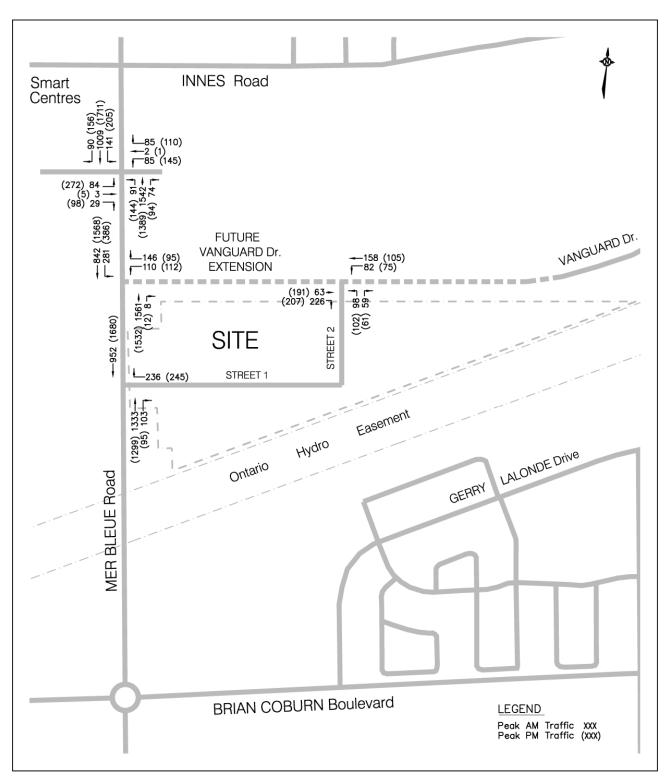




FIGURE 4.2 2029 PEAK AM AND PM HOUR TOTAL TRAFFIC



Transportation impact / tococoment

access/egress, the westbound Street 1 approach would function at a Level of Service (LoS) "F" with an approach delay of approximately three minutes. Table 4.2 summarizes the operation of the intersection with the analysis sheets provided in the Appendix as Exhibit 5 and Exhibit 6.

TABLE 4.2 STREET 1 AND MER BLEUE ROAD INTERSECTION – LoS & Control Delay

| Intersection Approach | WEEKDAY PEAK AM HOUR<br>YEAR 2024 (2029) |                    | WEEKDAY PEAK PM HOUR<br>YEAR 2024 (2029) |                 |  |
|-----------------------|------------------------------------------|--------------------|------------------------------------------|-----------------|--|
|                       | LoS                                      | Delay (sec/veh)    | LoS                                      | Delay (sec/veh) |  |
| WB Right – Street 1   | F (E)                                    | F (E) 185.8 (42.5) |                                          | 172.4 (41.7)    |  |

At the year 2029 the Vanguard Drive Extension is expected to be completed and the site will have access to Mer Bleue Road from Street 1, and access to Mer Bleue Road and Tenth Line Road from Street 2 to Vanguard Drive. For the year 2029 time period, the intersection functioned at an acceptable level of service. The intersection did experience an improved LoS at the year 2029 with the additional access point from Street 2 to Vanguard Drive. The westbound Street 1 approach would function at a LoS "E" and experience a 95<sup>th</sup> percentile queue of 6.1 vehicles during the 2029 peak PM hour. Table 4.2 summarizes the 2029 operation of the intersection the analysis provided as Exhibits 7 and 8. The intersection would require a new private approach with no modifications to Mer Bleue Road.

#### Street 2 (Site Access) and Vanguard Drive Intersection

The intersection of Street 2 and Vanguard Drive Extension is a "T" intersection with Street 2 forming the stop controlled northbound approach. The intersection is a full movement intersection with all approaches comprising of a single lane with shared turning movements. Table 4.3 summarizes the operation of the intersection with the analysis sheets provided as Exhibits 9 for the peak AM hour and Exhibit 10 for the peak PM hour.

TABLE 4.3 STREET 2 AND VANGUARD DRIVE INTERSECTION – LoS & Control Delay

| Intersection Approach      | WEEKDAY PEAK AM HOUR<br>YEAR (2029) |                 | WEEKDAY PEAK PM HOUR<br>YEAR (2029) |                 |
|----------------------------|-------------------------------------|-----------------|-------------------------------------|-----------------|
|                            | LoS                                 | Delay (sec/veh) | LoS                                 | Delay (sec/veh) |
| WB Left/Through – Vanguard | (A)                                 | (8.1)           | (A)                                 | (8.5)           |
| NB Left/Right – Street 2   | (B)                                 | (14.2)          | (C)                                 | (15.9)          |

The westbound Vanguard Drive left/through movement functioned at a LoS "A" during both the 2029 peak AM and PM hours, and the northbound Street 2 left/right turn movement functioned at a LoS "B" during the peak AM hour and LoS "C" during the peak PM hour. The northbound Street 2 approach would experience a 95<sup>th</sup> percentile queue of 1.6 vehicles during the 2029 peak PM hour.

#### Mer Bleue Road and Vanguard Drive Extension Intersection

The intersection of Mer Bleue Road and Vanguard Drive Extension is expected to be constructed by the year 2029 along with the 2025 Mer Bleue Road development on the north side of the road. The intersection would be a full movement "T" intersection which would be controlled by traffic signals. The analysis has assumed the following lane configuration:

Northbound Mer Bleue Road Approach - Two through lanes

One right turn lane

Southbound Mer Bleue Road Approach - Two through lanes

One left turn lane

Westbound Vanguard Drive Approach - One left turn lane

One right turn lane

The operational analysis for the year 2029 determined that the intersection would operate at an acceptable level of service. Table 4.4 summarizes the operation of the intersection with the analysis sheets provided as Exhibit 11 for the peak AM hour and Exhibit 12 for the peak PM hour. The final design would be confirmed during the functional design stage for the Vanguard Drive Extension.

TABLE 4.4
MER BLEUE AND VANGUARD DRIVE INTERSECTION – LoS & v/c Ratio

| Intersection Approach  | WEEKDAY PEAK AM HOUR<br>YEAR (2029) |           | WEEKDAY PEAK PM HOUR<br>YEAR (2029) |           |
|------------------------|-------------------------------------|-----------|-------------------------------------|-----------|
|                        | LoS                                 | v/c Ratio | LoS                                 | v/c Ratio |
| WB Left – Vanguard     | (A)                                 | (0.533)   | (C)                                 | (0.782)   |
| WB Right – Vanguard    | (C)                                 | (0.788)   | (C)                                 | (0.729)   |
| NB Through – Mer Bleue | (D)                                 | (0.860)   | (D)                                 | (0.893)   |
| NB Right – Mer Bleue   | (A)                                 | (0.002)   | (A)                                 | (0.008)   |
| SB Left – Mer Bleue    | (D) (0.835)                         |           | (D)                                 | (0.880)   |
| SB Through – Mer Bleue | (A)                                 | (0.330)   | (A)                                 | (0.587)   |

#### Mer Bleue Road and 210m South of Innes Road Intersection

The closest signalized intersection would be the intersection to the Smart Centres shopping centre located 500 m north of the site and 210 m south of Innes Road. Using the existing traffic counts taken on August 21, 2015 (Exhibit 2 and 3) and the traffic signal timing plan (Exhibit 4) which were both obtained from the City of Ottawa, the intersection operated at an acceptable LoS. Table 4.5 summarizes the operation of the intersection with the analysis sheets provided as Exhibit 13 for the 2015 peak AM hour and Exhibit 14 for the peak PM hour.

TABLE 4.5
MER BLEUE AND 210m S OF INNES ROAD INTERSECTION – LoS & v/c Ratio

| Intersection Approach            | WEEKDAY PEAK AM HOUR<br>YEAR 2015 2024 (2029) |                     | WEEKDAY PEAK PM HOUR<br>YEAR 2015 2024 (2029) |                     |  |
|----------------------------------|-----------------------------------------------|---------------------|-----------------------------------------------|---------------------|--|
|                                  | LoS                                           | v/c Ratio           | LoS                                           | v/c Ratio           |  |
| EB Left – Smart Centres          | <i>A</i> A (A)                                | 0.381 0.397 (0.508) | <i>B</i> C (F)                                | 0.681 0.781 (1.050) |  |
| EB Through/Right – Smart Centres | <i>A</i> A (A)                                | 0.102 0.141 (0.118) | <i>A</i> A (A)                                | 0.206 0.289 (0.301) |  |
| WB Left – Private Road           | <i>A</i> A (A)                                | 0.029 0.030 (0.388) | <i>A</i> A (A)                                | 0.023 0.029 (0.543) |  |
| WB Through/Right – Private Road  | <i>A</i> A (A)                                | 0.035 0.044 (0.418) | <i>A</i> A (A)                                | 0.054 0.067 (0.325) |  |
| NB Left – Mer Bleue              | <i>A</i> B (A)                                | 0.097 0.570 (0.448) | <i>A</i> B (A)                                | 0.282 0.643 (0.592) |  |
| NB Through – Mer Bleue           | <i>A</i> A (C)                                | 0.154 0.590 (0.761) | A B (C)                                       | 0.160 0.663 (0.791) |  |
| NB Right – Mer Bleue             | <i>A</i> A (A)                                | 0.002 0.004 (0.027) | <i>A</i> A (A)                                | 0.000 0.000 (0.056) |  |
| SB Left – Mer Bleue              | <i>A</i> A (A)                                | 0.034 0.327 (0.551) | A A (D)                                       | 0.037 0.312 (0.837) |  |
| SB Through – Mer Bleue           | <i>A</i> A (A)                                | 0.070 0.448 (0.486) | A D (E)                                       | 0.267 0.878 (0.974) |  |
| SB Right – Mer Bleue             | <i>A</i> A (A)                                | 0.063 0.045 (0.043) | <i>A</i> A (A)                                | 0.002 0.150 (0.136) |  |

At full development of the site in 2024 the intersection continued to operate at an acceptable LoS, but with the increasing background traffic the northbound left turn movement into the Smart Centres shopping centre would require a double left turn movement and a protected left turn phase. The additional left turn lane can be accommodated within the existing pavement markings. Table 4.5 summarizes the operation of the intersection with the analysis sheets provided as Exhibit 15 for the 2024 peak AM hour and Exhibit 16 for the peak PM hour.

At the year 2029 the Vanguard Drive Extension is expected to be completed, and background traffic will further increase due to the additional residential development south of the site and the completion of the development at 2025 Mer Bleue Road. The operational analysis determined that the intersection functioned at an acceptable LoS with the exception of the eastbound left turn movement which would experience a moderate delay during the peak PM hour. Both the

northbound and southbound Mer Bleue Road approaches would be modified to include double left turn lanes (the intersection can accommodate double left turn lanes with one left turn lane currently hatched out in each direction). The current two phase traffic signals would be modified to include a protected left turn phase at the northbound and southbound approaches. These modifications would improve the operation of the intersection which can be further evaluated at a future date. Table 4.5 summarizes the operation of the intersection with the analysis sheets provided as Exhibit 17 for the 2029 peak AM hour and Exhibit 18 for the peak PM hour.

#### PEDESTRIAN LEVEL OF SERVICE (PLOS)

The pedestrian level of service (PLOS) was determined utilizing the City of Ottawa publication, *Multi-Modal Level of Service (MMLOS) Guidelines*. Table 4.6 presents the level of service for street segments and signalized intersections within the study area, with the analysis for the 2029 PLOS street segment evaluation provided in the Appendix as Exhibit 19 and Exhibit 20.

The level of service for the two signalized intersections is provided as Exhibit 21 for the Mer Bleue/Vanguard intersection and Exhibit 22 for the Mer Bleue/Smart Centres access.

TABLE 4.6
PEDESTRIAN LEVEL OF SERVICE (PLOS) – Street Segments & Intersections

| Street                                  | Segment                         | Level of Service | Analysis   |
|-----------------------------------------|---------------------------------|------------------|------------|
| Street 1 and 2                          | Mer Bleue to Vanguard           | C                | Exhibit 19 |
| Mer Bleue Road                          | 210m S of Innes to Brian Coburn | E                | Exhibit 20 |
| Intersection                            |                                 | Level of Service | Analysis   |
| Mer Bleue Road and Vanguard Drive       |                                 | D                | Exhibit 21 |
| Mer Bleue Road and Smart Centres Access |                                 | D                | Exhibit 22 |

#### **BICYCLE LEVEL OF SERVICE (BLOS) - Street Segments & Intersections**

The bicycle level of service (BLOS) was determined utilizing the City of Ottawa publication, *Multi-Modal Level of Service (MMLOS) Guidelines*. Streets 1 and 2 are classified as local streets with no cycling facilities, and Mer Bleue Road is an arterial road which is identified as a "Spine Route" in the Cycling Network - Primary Urban plan. Mer Bleue Road does contain cycling lanes along both sides of the road. Table 4.7 presents the level of service for street segments within the study area, with the analysis for the 2029 traffic provided as Exhibit 23 and 24.

The BLOS was examined for the proposed signalized intersection of Mer Bleue Road and Vanguard Drive which assumed exclusive left and right turn lanes and cycling pockets, and the existing intersection of Mer Bleue Road and the Smart Centres Access. Table 4.7 presents the level of service for intersections, with the analysis for the 2029 traffic provided as Exhibit 25 and Exhibit 26.

TABLE 4.7
BICYCLE LEVEL OF SERVICE (BLOS) – Street Segments & Intersections

| Street                                  | reet Segment                    |                  | Analysis   |
|-----------------------------------------|---------------------------------|------------------|------------|
| Street 1 and 2                          | Mer Bleue to Vanguard           | В                | Exhibit 23 |
| Mer Bleue Road                          | 210m S of Innes to Brian Coburn | F                | Exhibit 24 |
| Intersection                            |                                 | Level of Service | Analysis   |
| Mer Bleue Road and Vanguard Drive       |                                 | Е                | Exhibit 25 |
| Mer Bleue Road and Smart Centres Access |                                 | Е                | Exhibit 26 |

#### TRANSIT LEVEL OF SERVICE (TLOS) - Street Segment

OC Transpo Regular Route 302 travels along Mer Bleue Road providing access to the St. Laurent Transit Station and Place d'Orléans shopping centre. A transitway corridor exists along the south side of the hydro easement south of the site. The corridor will be eventually used for a bus rapid transit route or possible light rail in the future. Bus service is not expected within the Blue Sea Village Mer Bleue site or along Vanguard Drive.

The transit level of service (TLOS) evaluation methodology and table in the MMLOS Guidelines are intended primarily to be applied along corridors with existing or planned rapid transit or transit priority measures, or along mixed traffic areas which experience parked vehicles, congestion and private driveways. A TLOS road segment evaluation was conducted for Mer Bleue Road between the Smart Centres intersection and Brian Coburn intersection. The evaluation determined that the Mer Bleue Road segment operated at a LoS "D". The evaluation form is provided as Exhibit 27.

TABLE 4.8
TRANSIT LEVEL OF SERVICE (TLOS) – Street Segment

| Street         | Segment                         | Level of Service | Analysis   |
|----------------|---------------------------------|------------------|------------|
| Mer Bleue Road | 210m S of Innes to Brian Coburn | D                | Exhibit 27 |

#### TRUCK LEVEL OF SERVICE (TkLOS) - Street Segments & Intersections

The truck level of service (TkLOS) was determined utilizing the City of Ottawa publication, *Multi-Modal Level of Service (MMLOS) Guidelines*. The truck LoS was determined for the street segment between the Smart Centre access intersection (210 m S of Innes Road) to Brian Coburn Boulevard, and the intersections along Mer Bleue Road which comprises of the Mer Bleue/Vanguard and Mer Bleue/Smart Centres Access. Table 4.8 presents the truck level of

service for street segments and intersections within the study area, with the analysis for the 2029 traffic provided as Exhibit 28.

TABLE 4.9
TRUCK LEVEL OF SERVICE (TkLOS) – Street Segments & Intersections

| Street         | Segment & Intersection          | Level of Service  | Analysis   |
|----------------|---------------------------------|-------------------|------------|
| Mer Bleue Road | Mer Bleue Road Intersections    | d Intersections A |            |
| Mer Bleue Road | 210m S of Innes to Brian Coburn | A                 | Exhibit 28 |

#### **MODULE 4.5 – Transportation Demand Management**

#### **Element 4.5.1 – Context for TDM**

The proposed Blue Sea Village Mer Bleue site is not in a Transit Oriented Development area or Design Priority Area. The area has transit service along Mer Bleue Road with more service expected in the future as residential development south of the site is completed.

The trips generated by the athletic facilities may be reduced by the implementation of carpooling or ride sharing between participants of gymnastic and athletic facilities.

#### **Element 4.5.2 – Need and Opportunity**

If the mode share targets assumed for the site were not met, the result would be only a minor impact on other land uses in the study area.

#### **Element 4.5.3 – TDM Program**

In order to reduce auto-trips, the athletic related facilities can promote a ride sharing program between participants and team members.

### **MODULE 4.6 – Neighbourhood Traffic Management**

#### **Element 4.6.1 – Adjacent Neighbourhoods**

Exempt as determined in the Scoping module.

#### **MODULE 4.7 – Transit**

#### **Element 4.7.1 – Route Capacity**

OC Transpo routes exist along Mer Bleue Road, Brian Coburn Boulevard and Innes Road. The City's TMP identifies future improvements to Brian Coburn Boulevard by the implementation of

Transit Priority Projects comprising of bus lanes, transit signal priority and queue jump lanes. Any transit demand by the development would not exceed the capacity of the surrounding transit network.

#### **Element 4.7.2 – Transit Priority**

There would be no impact on the travel time of transit due to the accesses to the development and addition of trips by participants of the athletic facilities.

#### **MODULE 4.8 – Review of Network Concept**

Exempt as determined in the Scoping module.

#### **MODULE 4.9 – Intersection Design**

#### **Element 4.9.1 – Intersection Control**

The proposed development would have two new access points and intersections. The first would be the intersection of Street 1 and Mer Bleue Road. This intersection would be a "T" intersection controlled by a stop sign at the westbound Street 1 approach. The second access would be the intersection of Street 2 and the Vanguard Drive Extension. The intersection would be controlled by a stop sign at the northbound Street 2 approach.

#### **Element 4.9.2 – Intersection Design**

The intersections and road segments within the study area were analyzed to determine the level of service and operation at the horizon years of the study. The intersection of Mer Bleue Road and the Smart Centres access was examined utilizing the existing 2015 traffic counts, and for the expected traffic at the years of 2024 and 2029. The proposed intersection of Street 1 and Mer Bleue Road was analyzed for the expected traffic at the years of 2024 following the completion of the development, and at the year 2029. The Street 2/Vanguard and Mer Bleue/Vanguard intersections were analyzed at the year 2029 following the extension of Vanguard Drive to Mer Bleue Road. A summary of the level of service for the various modes of transportation are summarized in Table 4.10, with the results detailed in the analysis sheets provided as Exhibits in the Appendix. The proposed Street 1 and 2 within the development would meet the minimum desirable MMLOS targets by the Official Plan Policy/Designation & Road Class.

The analysis determined that the Street 1 and Street 2 within the proposed Blue Sea Village Mer Bleue development would conform to the minimum desirable MMLOS Targets as set out in the Official Plan Policy/Designation & Road Class.

#### TIA STRATEGY REPORT

The study determined that the full development of the site would not trigger the requirement for roadway modifications to Mer Bleue Road. The Street 1/Mer Bleue Road intersection would be restricted to right-in/right-out turning movements which would be controlled by a median along

Transportation impact / 63655ment

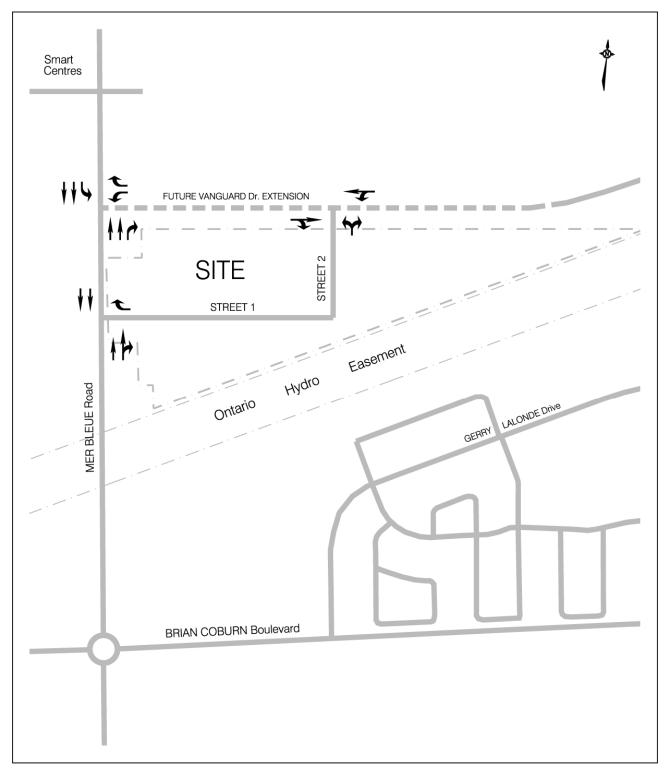
Mer Bleue Road. If full development of the site is achieved before the Vanguard Drive Extension to Mer Bleue Road is completed, the westbound right turn movement on Street 1 may function at a LoS "F" during both the peak AM ad PM hours with an approach delay of approximately three minutes.

TABLE 4.10 MULTI-MODAL (MMLOS) SUMMARY TABLE

| INTERSECTIONS         | Level of Service (LoS) – 2015 2024 (2029) |                |                 |               |       |
|-----------------------|-------------------------------------------|----------------|-----------------|---------------|-------|
| INTERSECTIONS         | Pedestrian                                | Cyclist        | Transit         | Auto          | Truck |
| Street 1/Mer Bleue    | -                                         | -              | -               | F (E)         | -     |
| Street 2/Vanguard     | -                                         | -              | -               | (B)           | -     |
| Mer Bleue/Vanguard    | (D)                                       | (E)            | -               | (B)           | (A)   |
| Mer Bleue/Smart Ctr.  | (D)                                       | (E)            | -               | A A (A)       | (A)   |
| GEOMENIEG             |                                           | Level of Servi | ice (LoS) – 201 | 5 2024 (2029) |       |
| SEGMENTS              | Pedestrian                                | Cyclist        | Transit         | Auto          | Truck |
| Street 1 and Street 2 | (C)                                       | (B)            | -               | -             | -     |
| Mer Bleue Road        | (E)                                       | (F)            | (D)             | -             | (A)   |

Both Street 1 and Street 2 would be designated as local streets with a pavement width of 11 metres. Sidewalks would be provided on both sides of the roadway.

Figure 4.3 shows the recommended lane configuration for the intersection of Street 1/Mer Bleue which would constructed by 2024. The operation of the intersections would be further evaluated as detailed TIA studies would be completed at the Site Plan Application stage. The Mer Bleue/Vanguard and Street 2/Vanguard intersections would be designed and constructed as part of the Vanguard Drive Extension. The Vanguard Drive Extension is expected to be completed by the year 2029.


Prepared by:

David J. Halpenny, M. Eng., P. Eng.

David & Hola



FIGURE 4.3 RECOMMENDED LANE CONFIGURATION



# **APPENDIX**

# **SCREENING FORM**

# **TRAFFIC COUNTS**

# TRAFFIC SIGNAL TIMING PLAN

# **VEHICULAR TRAFFIC ANALYSIS**

PLOS, BLOS, TLOS and TkLOS SEGMENT EVALUATIONS

# EXHIBIT 1 SCREENING FORM

# TIA SCREENING FORM

| 1. Description of Proposed Development |                                                                                                                            |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| Municipal Address                      | 2159 Mer Bleue Road, Ottawa                                                                                                |  |
| Description of Location                | Blue Sea Village Mer Bleue Development. East side of Mer Bleue<br>Road approximately 500m north of Brian Coburn Boulevard. |  |
| Land Use Classification                | IG7 H(21) "General Industrial Zone"                                                                                        |  |
| Development Size (units)               |                                                                                                                            |  |
| Development Size (m²)                  | Total Land = 47,675.4m <sup>2</sup> (4.768 ha)                                                                             |  |
| Number of Accesses and Locations       | One access onto Mer Bleue Road approximately 500m north of Brian Coburn Boulevard.                                         |  |
| Phase of Development                   | Two Phases                                                                                                                 |  |
| Build out Year                         | 2024                                                                                                                       |  |

| 2. Trip Generation Trigger         |                                                             |  |
|------------------------------------|-------------------------------------------------------------|--|
| Land Use Type                      | Athletic centre, commercial, office and senior residential. |  |
| Development Size                   | Gross Floor Area = 45,500m <sup>2</sup>                     |  |
| Trip Generation Trigger Satisfied? | Yes                                                         |  |

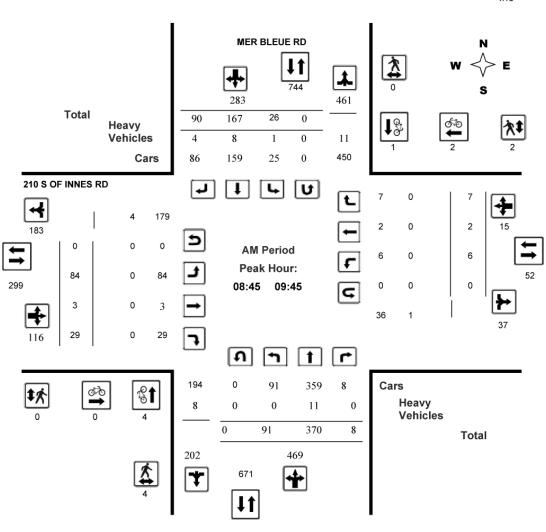
| 3. Location Triggers                                                                                                                                                 |        |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|
|                                                                                                                                                                      | Yes/No |  |
| Does the development propose a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit or Spine Bicycle Networks? | Yes    |  |
| Is the development in a Design Priority Area (DPA) or Transit-oriented Development (TOD) zone?                                                                       | No     |  |
| Location Trigger Satisfied?                                                                                                                                          | Yes    |  |

| 4. Safety Triggers                                             |        |  |
|----------------------------------------------------------------|--------|--|
|                                                                | Yes/No |  |
| Are posted speed limits on a boundary road 80 km/h or greater? | No     |  |

Are there any horizontal/vertical curvatures on a boundary street which limits No sight lines at a proposed driveway? Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (300 m rural conditions or 150 m urban/suburban No conditions)? 100 m (centreline of driveway to centreline of Merivale Road) Is the proposed driveway within the auxiliary lanes of an intersection? No Within the westbound left turn taper to Merivale Road Does the proposed driveway make use of an existing median break that serves No an existing site? Is there a documented history of traffic operations or safety concerns on the No boundary streets within 500 m of the development? Does the development include a drive-thru facility? No Safety Trigger Satisfied? No

| 5. Summary                                                |        |
|-----------------------------------------------------------|--------|
|                                                           | Yes/No |
| Does the development satisfy the Trip Generation Trigger? | Yes    |
| Does the development satisfy the Location Trigger?        | Yes    |
| Does the development satisfy the Safety Trigger?          | No     |

#### EXHIBIT 2 2015 PEAK AM HOUR TRAFFIC COUNTS – Mer Bleue/210 S of Innes


# Transportation Services - Traffic Services

Turning Movement Count - Full Study Peak Hour Diagram

#### MER BLEUE RD @ 210 S OF INNES RD

Survey Date: Friday, August 21, 2015 WO No: 35282
Start Time: 07:00 Device: Jamar

Technologies, Inc



Comments

2017-Dec-11 Page 1 of 4

#### EXHIBIT 3 2015 PEAK PM HOUR TRAFFIC COUNTS – Mer Bleue/210 S of Innes

# **Ottawa**

# **Transportation Services - Traffic Services**

**Turning Movement Count - Full Study Peak Hour Diagram** 

#### MER BLEUE RD @ 210 S OF INNES RD

Comments

2017-Dec-11 Page 4 of 4

#### EXHIBIT 4 2015 PEAK AM HOUR TRAFFIC COUNTS – Mer Bleue/210 S of Innes

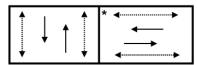
#### **Traffic Signal Timing**

City of Ottawa, Transportation Services Department

#### **Traffic Signal Operations Unit**

 Intersection:
 Main:
 Mer Bleue
 side:
 210m S of Innes

 Controller:
 MS-3200
 TSD:
 6698


 Author:
 Spencer Willows
 Date:
 16-Feb-2018

#### **Existing Timing Plans<sup>†</sup>**

|         | Plan    |          |         |       |         | Ped Min | imum Ti | ime     |
|---------|---------|----------|---------|-------|---------|---------|---------|---------|
|         | AM Peak | Off Peak | PM Peak | Night | Weekend | Walk    | DW      | A+R     |
|         | 1       | 2        | 3       | 4     | 5       |         |         |         |
| Cycle   | 90      | 80       | 90      | 75    | 80      |         |         |         |
| Offset  | Х       | Х        | Х       | Х     | Х       |         |         |         |
| NB Thru | 49      | 39       | 49      | 34    | 39      | 7       | 18      | 3.7+2.7 |
| SB Thru | 49      | 39       | 49      | 34    | 39      | 7       | 18      | 3.7+2.7 |
| EB Thru | 41      | 41       | 41      | 41    | 41      | 7       | 27      | 3.3+3.5 |
| WB Thru | 41      | 41       | 41      | 41    | 41      | 7       | 27      | 3.3+3.5 |

#### Phasing Sequence<sup>‡</sup>

Plan: All



#### **Schedule**

| Weekday |      |
|---------|------|
| Time    | Plan |
| 0:10    | 4    |
| 6:00    | 1    |
| 9:30    | 2    |
| 15:00   | 3    |
| 18:30   | 2    |
| 22:00   | 4    |
|         |      |

| У    |
|------|
| Plan |
| 4    |
| 2    |
| 5    |
| 2    |
| 4    |
|      |

| Sunday |      |
|--------|------|
| Time   | Plan |
| 0:10   | 4    |
| 7:00   | 2    |
| 10:00  | 5    |
| 19:00  | 2    |
| 22.00  | 4    |

#### **Notes**

- †: Time for each direction includes amber and all red intervals
- ‡: Start of first phase should be used as reference point for offset

Asterisk (\*) Indicates actuated phase (fp): Fully Protected Left Turn



Pedestrian signal

#### **EXHIBIT 5** 2024 PEAK AM HOUR TRAFFIC ANALYSIS – Street 1/Mer Bleue

|                                         |        | Н       | CS7     | Two-  | -Way  | Sto                         | р-Со  | ntrol                                 | Rep      | ort   |        |          |           |          |       |              |
|-----------------------------------------|--------|---------|---------|-------|-------|-----------------------------|-------|---------------------------------------|----------|-------|--------|----------|-----------|----------|-------|--------------|
| General Information                     |        |         |         |       |       |                             | Site  | Inforn                                | natio    | n     |        |          |           |          |       |              |
| Analyst                                 | Т      |         |         |       |       |                             |       | ection                                |          |       | Site A | ccess/N  | ler Bleue | <u> </u> |       |              |
| Agency/Co.                              |        |         |         |       |       |                             | _     | liction                               |          |       | Ottav  |          |           |          |       |              |
| Date Performed                          | 4/9/2  | 018     |         |       |       |                             | _     | West Stre                             | eet      |       |        |          | ge Acces  | SS       |       |              |
| Analysis Year                           | 2024   |         |         |       |       |                             |       | n/South S                             |          |       | _      | Bleue Ro |           |          |       |              |
| Time Analyzed                           | -      | AM Hou  | r       |       |       |                             |       | Hour Fac                              |          |       | 0.92   |          |           |          |       |              |
| Intersection Orientation                | -      | -South  |         |       |       |                             |       | sis Time                              |          | hrs)  | 0.25   |          |           |          |       |              |
| Project Description                     | 2159   | Mer Ble | ue Road |       |       |                             |       |                                       |          |       |        |          |           |          |       |              |
| Lanes                                   |        |         |         |       |       |                             |       |                                       |          |       |        |          |           |          |       |              |
|                                         |        |         |         | 74471 |       | ስ ት<br>የ ቀ ፕፖ<br>Street: No |       | * * * * * * * * * * * * * * * * * * * |          |       |        |          |           |          |       |              |
| Vehicle Volumes and Adj                 | ustme  | nts     |         |       |       |                             |       |                                       |          |       |        |          |           |          |       |              |
| Approach                                |        | Eastb   | ound    |       |       | West                        | bound |                                       |          | North | bound  |          |           | South    | bound |              |
| Movement                                | U      | L       | Т       | R     | U     | L                           | Т     | R                                     | U        | L     | Т      | R        | U         | L        | Т     | R            |
| Priority                                |        | 10      | 11      | 12    |       | 7                           | 8     | 9                                     | 1U       | 1     | 2      | 3        | 4U        | 4        | 5     | 6            |
| Number of Lanes                         |        | 0       | 0       | 0     |       | 0                           | 0     | 1                                     | 0        | 0     | 2      | 0        | 0         | 0        | 2     | 0            |
| Configuration                           |        |         |         |       |       |                             |       | R                                     |          |       | Т      | TR       |           |          | Т     | $oxed{oxed}$ |
| Volume, V (veh/h)                       |        |         |         |       |       |                             |       | 393                                   |          |       | 1054   | 411      |           |          | 1011  |              |
| Percent Heavy Vehicles (%)              |        |         |         |       |       |                             |       | 2                                     |          |       |        |          |           |          |       |              |
| Proportion Time Blocked                 |        |         |         |       |       |                             |       |                                       |          |       |        |          |           |          |       |              |
| Percent Grade (%)                       |        |         |         |       |       |                             | 0     |                                       |          |       |        |          |           |          |       |              |
| Right Turn Channelized                  |        | Ν       | 10      |       |       | ٨                           | 10    |                                       |          | ١     | 10     |          |           | 1        | No    |              |
| Median Type/Storage                     |        |         |         | Undi  | vided |                             |       |                                       | <u> </u> |       |        |          |           |          |       |              |
| Critical and Follow-up He               | eadwa  | ys      |         |       |       |                             |       |                                       |          |       |        |          |           |          |       |              |
| Base Critical Headway (sec)             |        |         |         |       |       |                             |       | 6.9                                   |          |       |        |          |           |          |       |              |
| Critical Headway (sec)                  |        |         |         |       |       |                             |       | 6.94                                  |          |       |        |          |           |          |       |              |
| Base Follow-Up Headway (sec)            |        |         |         |       |       |                             |       | 3.3                                   |          |       |        |          |           |          |       |              |
| Follow-Up Headway (sec)                 |        |         |         |       |       |                             |       | 3.32                                  |          |       |        |          |           |          |       |              |
| Delay, Queue Length, an                 | d Leve | l of S  | ervice  | ,     |       |                             |       |                                       |          |       |        |          |           |          |       |              |
| Flow Rate, v (veh/h)                    |        |         |         |       |       |                             |       | 427                                   |          |       |        |          |           |          |       |              |
| Capacity, c (veh/h)                     |        |         |         |       |       |                             |       | 330                                   |          |       |        |          |           |          |       |              |
| v/c Ratio                               |        |         |         |       |       |                             |       | 1.29                                  |          |       |        |          |           |          |       |              |
| 95% Queue Length, Q <sub>95</sub> (veh) |        |         |         |       |       |                             |       | 20.1                                  |          |       |        |          |           |          |       |              |
| Control Delay (s/veh)                   |        |         |         |       |       |                             |       | 185.8                                 |          |       |        |          |           |          |       |              |
| Level of Service, LOS                   |        |         |         |       |       |                             |       | F                                     |          |       |        |          |           |          |       |              |
|                                         |        |         |         |       |       | 10                          |       |                                       |          |       |        |          |           |          |       |              |
| Approach Delay (s/veh)                  | 1      |         |         |       | 1     | 18                          | 5.8   |                                       | ı        |       |        |          |           |          |       |              |

#### **EXHIBIT 6** 2024 PEAK PM HOUR TRAFFIC ANALYSIS - Street 1/Mer Bleue

|                                             |       | Н       | CS7     | Two-  | -Way  | Sto                      | p-Co    | ntrol     | Rep      | ort   |        |           |           |       |       |   |
|---------------------------------------------|-------|---------|---------|-------|-------|--------------------------|---------|-----------|----------|-------|--------|-----------|-----------|-------|-------|---|
| General Information                         |       |         |         |       |       |                          | Site    | Inforr    | natio    | n     |        |           |           |       |       |   |
| Analyst                                     |       |         |         |       |       |                          | Inters  | ection    |          |       | Site A | ccess/N   | 1er Bleue |       |       |   |
| Agency/Co.                                  |       |         |         |       |       |                          | Jurisc  | liction   |          |       | Ottav  | va        |           |       |       |   |
| Date Performed                              | 4/9/2 | 018     |         |       |       |                          | East/   | West Str  | eet      |       | Blue S | Sea Villa | ge Acce   | ss    |       |   |
| Analysis Year                               | 2024  |         |         |       |       |                          | North   | n/South S | Street   |       | Mer E  | Bleue Ro  | ad        |       |       |   |
| Time Analyzed                               | Peak  | PM Hou  | r       |       |       |                          | Peak    | Hour Fac  | ctor     |       | 0.92   |           |           |       |       |   |
| Intersection Orientation                    | North | -South  |         |       |       |                          | Analy   | sis Time  | Period ( | hrs)  | 0.25   |           |           |       |       |   |
| Project Description                         | 2159  | Mer Ble | ue Road |       |       |                          |         |           |          |       |        |           |           |       |       |   |
| Lanes                                       |       |         |         |       |       |                          |         |           |          |       |        |           |           |       |       |   |
|                                             |       |         |         | 74474 |       | ስ ት<br>ተቀጥ<br>Street: No | 1 1     |           | -        |       |        |           |           |       |       |   |
| Vehicle Volumes and Adj                     | ustme | nts     |         |       |       |                          |         |           |          |       |        |           |           |       |       |   |
| Approach                                    |       | Eastb   | ound    |       |       | Westl                    | bound   |           |          | North | bound  |           |           | South | bound |   |
| Movement                                    | U     | L       | Т       | R     | U     | L                        | Т       | R         | U        | L     | Т      | R         | U         | L     | Т     | R |
| Priority                                    |       | 10      | 11      | 12    |       | 7                        | 8       | 9         | 10       | 1     | 2      | 3         | 4U        | 4     | 5     | 6 |
| Number of Lanes                             |       | 0       | 0       | 0     |       | 0                        | 0       | 1         | 0        | 0     | 2      | 0         | 0         | 0     | 2     | 0 |
| Configuration                               |       |         |         |       |       |                          |         | R         |          |       | Т      | TR        |           |       | T     |   |
| Volume, V (veh/h)                           |       |         |         |       |       |                          |         | 408       |          |       | 1015   | 377       |           |       | 1586  |   |
| Percent Heavy Vehicles (%)                  |       |         |         |       |       |                          |         | 2         |          |       |        |           |           |       |       |   |
| Proportion Time Blocked                     |       |         |         |       |       |                          |         |           |          |       |        |           |           |       |       |   |
| Percent Grade (%)                           |       |         | 1.      |       |       |                          | 0<br>10 |           |          |       | 1.     |           |           |       |       |   |
| Right Turn Channelized  Median Type/Storage |       | IN.     | lo      | Undi  | vided | N                        | 10      |           |          | ľ     | 10     |           |           |       | Vo    |   |
| Critical and Follow-up He                   | adwa  | ve      |         | Ond   | vided |                          |         |           |          |       |        |           |           |       |       |   |
| Base Critical Headway (sec)                 | l l   | ,       |         | Г     | Г     |                          | Г       | 6.9       |          |       | Г      | Г         | Г         | Т     | Т     |   |
| Critical Headway (sec)                      |       |         |         |       |       |                          |         | 6.94      |          |       |        |           |           |       |       |   |
| Base Follow-Up Headway (sec)                |       |         |         |       |       |                          |         | 3.3       |          |       |        |           |           |       |       |   |
| Follow-Up Headway (sec)                     |       |         |         |       |       |                          |         | 3.32      |          |       |        |           |           |       |       |   |
| Delay, Queue Length, and                    | Leve  | l of S  | ervice  |       |       |                          |         |           |          |       |        |           |           |       |       | _ |
| Flow Rate, v (veh/h)                        |       |         |         | Г     | Π     |                          | Г       | 443       |          | Г     | Π      | Г         | I         |       | Т     | Г |
| Capacity, c (veh/h)                         |       |         |         |       |       |                          |         | 350       |          |       |        |           |           |       |       |   |
| v/c Ratio                                   |       |         |         |       |       |                          |         | 1.27      |          |       |        |           |           |       |       |   |
| 95% Queue Length, Q <sub>95</sub> (veh)     |       |         |         |       |       |                          |         | 20.0      |          |       |        |           |           |       |       |   |
| Control Delay (s/veh)                       |       |         |         |       |       |                          |         | 172.4     |          |       |        |           |           |       |       |   |
| Level of Service, LOS                       |       |         |         |       |       |                          |         | F         |          |       |        |           |           |       |       |   |
| Approach Delay (s/veh)                      |       |         |         |       |       | 17                       | 2.4     |           |          |       |        |           |           |       |       |   |
| Approach LOS                                |       |         |         |       |       |                          | F       |           |          |       |        |           |           |       |       |   |

\_\_\_\_\_\_

# EXHIBIT 7 2029 PEAK AM HOUR TRAFFIC ANALYSIS – Street 1/Mer Bleue

|                                         |        | Н       | CS7     | Two          | -Way  | Sto                         | o-Co  | ntrol     | Rep      | ort   |        |           |           |          |       |   |
|-----------------------------------------|--------|---------|---------|--------------|-------|-----------------------------|-------|-----------|----------|-------|--------|-----------|-----------|----------|-------|---|
| General Information                     |        |         |         |              |       |                             | Site  | Inforr    | natio    | n     |        |           |           |          |       |   |
| Analyst                                 |        |         |         |              |       |                             |       | ection    |          |       | Site A | ccess/N   | ler Bleue | <u> </u> |       |   |
| Agency/Co.                              |        |         |         |              |       |                             |       | liction   |          |       | Ottav  |           |           |          |       |   |
| Date Performed                          | 4/9/2  | 018     |         |              |       |                             | East/ | West Str  | eet      |       | Blue S | Sea Villa | ge Acces  | ss       |       |   |
| Analysis Year                           | 2029   |         |         |              |       |                             | North | n/South : | Street   |       | _      | Bleue Ro  |           |          |       |   |
| Time Analyzed                           | Peak   | AM Hou  | r       |              |       |                             | Peak  | Hour Fa   | ctor     |       | 0.92   |           |           |          |       |   |
| Intersection Orientation                | North  | -South  |         |              |       |                             | Analy | sis Time  | Period ( | hrs)  | 0.25   |           |           |          |       |   |
| Project Description                     | 2159   | Mer Ble | ue Road |              |       |                             |       |           |          |       |        |           |           |          |       |   |
| Lanes                                   |        |         |         |              |       |                             |       |           |          |       |        |           |           |          |       |   |
|                                         |        |         |         | 14 + Y + F C |       | <b>ስ ት</b><br><b>የ ቀ </b> ፕ |       |           | -        |       |        |           |           |          |       |   |
| Vehicle Volumes and Adj                 | ustme  | nts     |         |              |       |                             |       |           |          |       |        |           |           |          |       |   |
| Approach                                |        | Eastb   | ound    |              |       | Westl                       | bound |           |          | North | bound  |           |           | South    | bound |   |
| Movement                                | U      | L       | Т       | R            | U     | L                           | Т     | R         | U        | L     | Т      | R         | U         | L        | Т     | R |
| Priority                                |        | 10      | 11      | 12           |       | 7                           | 8     | 9         | 1U       | 1     | 2      | 3         | 4U        | 4        | 5     | 6 |
| Number of Lanes                         |        | 0       | 0       | 0            |       | 0                           | 0     | 1         | 0        | 0     | 2      | 0         | 0         | 0        | 2     | 0 |
| Configuration                           |        |         |         |              |       |                             |       | R         |          |       | Т      | TR        |           |          | Т     |   |
| Volume, V (veh/h)                       |        |         |         |              |       |                             |       | 236       |          |       | 1333   | 103       |           |          | 952   |   |
| Percent Heavy Vehicles (%)              |        |         |         |              |       |                             |       | 2         |          |       |        |           |           |          |       |   |
| Proportion Time Blocked                 |        |         |         |              |       |                             |       |           |          |       |        |           |           |          |       |   |
| Percent Grade (%)                       |        |         |         |              |       |                             | 0     |           |          |       |        |           |           |          |       |   |
| Right Turn Channelized                  |        | ١       | 10      |              |       | ١                           | lo    |           |          | 1     | No     |           |           | 1        | No    |   |
| Median Type/Storage                     |        |         |         | Undi         | vided |                             |       |           |          |       |        |           |           |          |       |   |
| Critical and Follow-up He               | eadwa  | ys      |         |              |       |                             |       |           |          |       |        |           |           |          |       |   |
| Base Critical Headway (sec)             |        |         |         |              |       |                             |       | 6.9       |          |       |        |           |           |          |       |   |
| Critical Headway (sec)                  |        |         |         |              |       |                             |       | 6.94      |          |       |        |           |           |          |       |   |
| Base Follow-Up Headway (sec)            |        |         |         |              |       |                             |       | 3.3       |          |       |        |           |           |          |       |   |
| Follow-Up Headway (sec)                 |        |         |         |              |       |                             |       | 3.32      |          |       |        |           |           |          |       |   |
| Delay, Queue Length, and                | d Leve | l of S  | ervice  |              |       |                             |       |           |          |       |        |           |           |          |       |   |
| Flow Rate, v (veh/h)                    |        |         |         |              |       |                             |       | 257       |          |       |        |           |           |          |       |   |
| Capacity, c (veh/h)                     |        |         |         |              |       |                             |       | 338       |          |       |        |           |           |          |       |   |
| v/c Ratio                               |        |         |         |              |       |                             |       | 0.76      |          |       |        |           |           |          |       |   |
| 95% Queue Length, Q <sub>95</sub> (veh) |        |         |         |              |       |                             |       | 6.0       |          |       |        |           |           |          |       |   |
| Control Delay (s/veh)                   |        |         |         |              |       |                             |       | 42.5      |          |       |        |           |           |          |       |   |
| Level of Service, LOS                   |        |         |         |              |       |                             |       | E         |          |       |        |           |           |          |       |   |
| Approach Delay (s/veh)                  |        |         |         |              |       | 42                          | 2.5   |           |          |       |        |           |           |          |       |   |
| Approach LOS                            |        |         |         |              |       |                             | E     |           |          |       |        |           |           |          |       |   |

#### EXHIBIT 8 2029 PEAK PM HOUR TRAFFIC ANALYSIS – Street 1/Mer Bleue

|                                         |        | Н       | CS7     | Two          | -Way  | Sto                         | р-Со  | ntrol     | Rep      | ort   |        |           |           |       |       |   |
|-----------------------------------------|--------|---------|---------|--------------|-------|-----------------------------|-------|-----------|----------|-------|--------|-----------|-----------|-------|-------|---|
| General Information                     |        |         |         |              |       |                             | Site  | Inforr    | natio    | n     |        |           |           |       |       |   |
| Analyst                                 | Т      |         |         |              |       |                             |       | ection    |          |       | Site A | ccess/N   | 1er Bleue | ·     |       |   |
| Agency/Co.                              |        |         |         |              |       |                             | _     | liction   |          |       | Ottav  |           |           |       |       |   |
| Date Performed                          | 4/9/2  | 018     |         |              |       |                             | East/ | West Str  | eet      |       | Blue S | Sea Villa | ge Acces  | ss    |       |   |
| Analysis Year                           | 2029   |         |         |              |       |                             | North | n/South : | Street   |       | _      | Bleue Ro  |           |       |       |   |
| Time Analyzed                           | Peak   | PM Hou  | r       |              |       |                             | Peak  | Hour Fa   | ctor     |       | 0.92   |           |           |       |       |   |
| Intersection Orientation                | North  | -South  |         |              |       |                             | Analy | sis Time  | Period ( | hrs)  | 0.25   |           |           |       |       |   |
| Project Description                     | 2159   | Mer Ble | ue Road |              |       |                             |       |           |          |       |        |           |           |       |       |   |
| Lanes                                   |        |         |         |              |       |                             |       |           |          |       |        |           |           |       |       |   |
|                                         |        |         |         | 14 + Y + F C |       | <b>ስ ት</b><br><b>የ ቀ </b> ፕ |       |           | -        |       |        |           |           |       |       |   |
| Vehicle Volumes and Adj                 | ustme  | nts     |         |              |       |                             |       |           |          |       |        |           |           |       |       |   |
| Approach                                |        | Eastb   | ound    |              |       | Westl                       | bound |           |          | North | bound  |           |           | South | bound |   |
| Movement                                | U      | L       | Т       | R            | U     | L                           | Т     | R         | U        | L     | Т      | R         | U         | L     | Т     | R |
| Priority                                |        | 10      | 11      | 12           |       | 7                           | 8     | 9         | 1U       | 1     | 2      | 3         | 4U        | 4     | 5     | 6 |
| Number of Lanes                         |        | 0       | 0       | 0            |       | 0                           | 0     | 1         | 0        | 0     | 2      | 0         | 0         | 0     | 2     | 0 |
| Configuration                           |        |         |         |              |       |                             |       | R         |          |       | Т      | TR        |           |       | Т     |   |
| Volume, V (veh/h)                       |        |         |         |              |       |                             |       | 245       |          |       | 1299   | 95        |           |       | 1680  |   |
| Percent Heavy Vehicles (%)              |        |         |         |              |       |                             |       | 2         |          |       |        |           |           |       |       |   |
| Proportion Time Blocked                 |        |         |         |              |       |                             |       |           |          |       |        |           |           |       |       |   |
| Percent Grade (%)                       |        |         |         |              |       |                             | 0     |           |          |       |        |           |           |       |       |   |
| Right Turn Channelized                  |        | ١       | 10      |              |       | ١                           | 10    |           |          | ١     | 10     |           |           | - 1   | Vo    |   |
| Median Type/Storage                     |        |         |         | Und          | vided |                             |       |           |          |       |        |           |           |       |       |   |
| Critical and Follow-up He               | eadwa  | ys      |         |              |       |                             |       |           |          |       |        |           |           |       |       |   |
| Base Critical Headway (sec)             |        |         |         |              |       |                             |       | 6.9       |          |       |        |           |           |       |       |   |
| Critical Headway (sec)                  |        |         |         |              |       |                             |       | 6.94      |          |       |        |           |           |       |       |   |
| Base Follow-Up Headway (sec)            |        |         |         |              |       |                             |       | 3.3       |          |       |        |           |           |       |       |   |
| Follow-Up Headway (sec)                 |        |         |         |              |       |                             |       | 3.32      |          |       |        |           |           |       |       |   |
| Delay, Queue Length, an                 | d Leve | l of S  | ervice  |              |       |                             |       |           |          |       |        |           |           |       |       |   |
| Flow Rate, v (veh/h)                    |        |         |         |              |       |                             |       | 266       |          |       |        |           |           |       |       |   |
| Capacity, c (veh/h)                     |        |         |         |              |       |                             |       | 350       |          |       |        |           |           |       |       |   |
| v/c Ratio                               |        |         |         |              |       |                             |       | 0.76      |          |       |        |           |           |       |       |   |
| 95% Queue Length, Q <sub>95</sub> (veh) | ĺ      |         |         |              |       |                             |       | 6.1       |          |       |        |           |           |       |       |   |
| Control Delay (s/veh)                   |        |         |         |              |       |                             |       | 41.7      |          |       |        |           |           |       |       |   |
| Level of Service, LOS                   |        |         |         |              |       |                             |       | E         |          |       |        |           |           |       |       |   |
| Approach Delay (s/veh)                  |        |         |         |              |       | 4:                          | 1.7   |           |          |       |        |           |           |       |       |   |
| Approach LOS                            |        |         |         |              |       |                             | E     |           |          |       |        |           |           |       |       |   |

EXHIBIT 9

2029 PEAK AM HOUR TRAFFIC ANALYSIS – Street 2/Vanguard

| Analysis Year 202 Time Analyzed Pea Intersection Orientation East                                                                                                                                                                                                                                                                                                                                                                                                                                                              | k AM Ho<br>t-West<br>9 Mer B | etbound  T 2      | R 3 0           | ነተ        | Westl L 4         | Inters Jurisd East/N North Peak Analy                            | ection<br>liction<br>West Stro<br>n/South S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Street ctor Period ( | North      | Ottaw Vangi Blue S 0.92 0.25    | va<br>uard Driv<br>Sea Villag | /e       | South | bound T 11 | R        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------|-----------------|-----------|-------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|---------------------------------|-------------------------------|----------|-------|------------|----------|
| Agency/Co.  Date Performed 4/9/ Analysis Year 202 Time Analyzed Pea Intersection Orientation East Project Description 215  Lanes  Vehicle Volumes and Adjustm Approach UPriority 1U Number of Lanes 0 Configuration Volume, V (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type/Storage  Critical and Follow-up Headway (sec) Critical Headway (sec) Ease Follow-Up Headway (sec) Follow-Up Headway (sec) Follow-Up Headway (sec)  Delay, Queue Length, and Leve | k AM Hot-West 9 Mer B        | stbound           | 1) 14 ★ Y ↑ Y ſ | Majc U 4U | Y  Y  Y  Y  Westl | Jurisd East/\ North Peak Analy                                   | West Stron/South S<br>Hour Facilities Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ctor Period (        | North<br>L | Ottaw Vangi Blue S 0.92 0.25    | va<br>uard Driv<br>Sea Villa  | /e       | South | Т          | _        |
| Date Performed 4/9, Analysis Year 202 Time Analyzed Pea Intersection Orientation East Project Description 215  Lanes  Vehicle Volumes and Adjustm Approach UPriority 1U Number of Lanes 0 Configuration 0 Volume, V (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type/Storage  Critical and Follow-up Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Follow-Up Headway (sec)  Delay, Queue Length, and Lev            | k AM Hot-West 9 Mer B        | stbound           | 1) 14 ★ Y ↑ Y ſ | Majc U 4U | Y  Y  Y  Y  Westl | East/N North Peak Analy                                          | West Strong/South Strong Stron | ctor Period (        | North<br>L | Vangi<br>Blue S<br>0.92<br>0.25 | uard Driv                     | ge Acces | South | Т          | _        |
| Date Performed 4/9, Analysis Year 202 Time Analyzed Pea Intersection Orientation East Project Description 215  Lanes  Vehicle Volumes and Adjustm Approach UPriority 1U Number of Lanes 0 Configuration 0 Volume, V (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type/Storage  Critical and Follow-up Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Follow-Up Headway (sec)  Delay, Queue Length, and Lev            | k AM Hot-West 9 Mer B        | stbound           | 1) 14 ★ Y ↑ Y ſ | Majc U 4U | Y  Y  Y  Y  Westl | North Peak Analy  Language Analy  Language Analy  Language Analy | N/South S<br>Hour Factories Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ctor Period (        | North<br>L | Blue 9   0.92   0.25            | Sea Villag                    | ge Acces | South | Т          | _        |
| Time Analyzed Pea Intersection Orientation East Project Description 215  Lanes  Vehicle Volumes and Adjustm Approach UPriority 1U Number of Lanes 0 Configuration Volume, V (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type/Storage Critical and Follow-up Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Follow-Up Headway (sec) Follow-Up Headway (sec)  Delay, Queue Length, and Lev                                                    | k AM Hot-West 9 Mer B        | stbound           | 1) 14 ★ Y ↑ Y ſ | Majc U 4U | Y  Y  Y  Y  Westl | Peak Analy  Analy  Analy  Analy                                  | Hour Face siss Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Period (             | North<br>L | 0.92<br>0.25                    |                               |          | South | Т          | _        |
| Intersection Orientation 215  Project Description 215  Lanes  Vehicle Volumes and Adjustm Approach Upriority 1U Number of Lanes 0  Configuration Volume, V (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type/Storage  Critical and Follow-up Headway (sec) Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)  Delay, Queue Length, and Lev                                                                 | eents Eas                    | stbound           | 1) 14 ★ Y ↑ Y ſ | Majc U 4U | Y  Y  Y  Y  Westl | Analy  Analy  Analy  Analy                                       | sis Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Period (             | North<br>L | 0.92<br>0.25                    |                               |          | South | Т          | _        |
| Project Description 215  Lanes  Vehicle Volumes and Adjustm Approach Movement U Priority 1U Number of Lanes 0 Configuration Volume, V (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type/Storage  Critical and Follow-up Headway Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)  Delay, Queue Length, and Lev                                                                                            | 9 Mer B                      | stbound<br>T<br>2 | 1) 14 ★ Y ↑ Y ſ | Majc U 4U | Y  Y  Y  Y  Westl | I T                                                              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                    | North<br>L | bound                           | R                             | U        | L     | Т          | _        |
| Vehicle Volumes and Adjustm  Approach  Movement  U  Priority  1U  Number of Lanes  Configuration  Volume, V (veh/h)  Percent Heavy Vehicles (%)  Proportion Time Blocked  Percent Grade (%)  Right Turn Channelized  Median Type/Storage  Critical and Follow-up Headwa  Base Critical Headway (sec)  Critical Headway (sec)  Base Follow-Up Headway (sec)  Follow-Up Headway (sec)  Follow-Up Headway (sec)                                                                                                                   | ents<br>Eas                  | stbound<br>T<br>2 | 1) 14 ★ Y ↑ Y ſ | Majc U 4U | Y  Y  Y  Y  Westl | I T                                                              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                    | North<br>L | Т                               | R                             | U        | L     | Т          | _        |
| Vehicle Volumes and Adjustm  Approach  Movement  U  Priority  1U  Number of Lanes  Configuration  Volume, V (veh/h)  Percent Heavy Vehicles (%)  Proportion Time Blocked  Percent Grade (%)  Right Turn Channelized  Median Type/Storage  Critical and Follow-up Headwa  Base Critical Headway (sec)  Critical Headway (sec)  Base Follow-Up Headway (sec)  Follow-Up Headway (sec)  Follow-Up Headway (sec)                                                                                                                   | Eas                          | T 2               | R 3             | Majc U 4U | Y  Y  Y  Y  Westl | pound                                                            | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •<br>—               | L          | Т                               | R                             | U        | L     | Т          | -        |
| Vehicle Volumes and Adjustm  Approach  Movement  U  Priority  Number of Lanes  Configuration  Volume, V (veh/h)  Percent Heavy Vehicles (%)  Proportion Time Blocked  Percent Grade (%)  Right Turn Channelized  Median Type/Storage  Critical and Follow-up Headway  Base Critical Headway (sec)  Critical Headway (sec)  Base Follow-Up Headway (sec)  Follow-Up Headway (sec)  Delay, Queue Length, and Lev                                                                                                                 | Eas                          | T 2               | R 3             | Majc U 4U | Y  Y  Y  Y  Westl | pound                                                            | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •<br>—               | L          | Т                               | R                             | U        | L     | Т          | _        |
| Approach  Movement  U Priority  1U Number of Lanes  Configuration  Volume, V (veh/h)  Percent Heavy Vehicles (%)  Proportion Time Blocked  Percent Grade (%)  Right Turn Channelized  Median Type/Storage  Critical and Follow-up Headwa  Base Critical Headway (sec)  Critical Headway (sec)  Base Follow-Up Headway (sec)  Follow-Up Headway (sec)  Delay, Queue Length, and Lev                                                                                                                                             | Eas                          | T 2               | 3               | 4U        | L<br>4            | Т                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                    | L          | Т                               | R                             | U        | L     | Т          | _        |
| Movement U Priority 1U Number of Lanes 0 Configuration Volume, V (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type/Storage  Critical and Follow-up Headway Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)  Delay, Queue Length, and Lev                                                                                                                                                                 | L                            | T 2               | 3               | 4U        | L<br>4            | Т                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                    | L          | Т                               | R                             | U        | L     | Т          | _        |
| Movement U Priority 1U Number of Lanes 0 Configuration Volume, V (veh/h) Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type/Storage Critical and Follow-up Headway Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, and Lev                                                                                                                                                                   | _                            | 2                 | 3               | 4U        | 4                 |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                    |            |                                 | R                             | U        | -     | _          | _        |
| Number of Lanes  Configuration  Volume, V (veh/h)  Percent Heavy Vehicles (%)  Proportion Time Blocked  Percent Grade (%)  Right Turn Channelized  Median Type/Storage  Critical and Follow-up Headway  Base Critical Headway (sec)  Critical Headway (sec)  Base Follow-Up Headway (sec)  Follow-Up Headway (sec)  Delay, Queue Length, and Lev                                                                                                                                                                               | 1                            | 2                 | +               | -         | -                 | 5                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |                                 |                               |          |       | 11         | _        |
| Configuration  Volume, V (veh/h)  Percent Heavy Vehicles (%)  Proportion Time Blocked  Percent Grade (%)  Right Turn Channelized  Median Type/Storage  Critical and Follow-up Headwa  Base Critical Headway (sec)  Critical Headway (sec)  Base Follow-Up Headway (sec)  Follow-Up Headway (sec)  Delay, Queue Length, and Lev                                                                                                                                                                                                 | 1                            | 1                 | 0               | 0         | 0                 |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 7          | 8                               | 9                             |          | 10    | 111        | 12       |
| Volume, V (veh/h)  Percent Heavy Vehicles (%)  Proportion Time Blocked  Percent Grade (%)  Right Turn Channelized  Median Type/Storage  Critical and Follow-up Headwa  Base Critical Headway (sec)  Critical Headway (sec)  Base Follow-Up Headway (sec)  Follow-Up Headway (sec)  Delay, Queue Length, and Lev                                                                                                                                                                                                                | 0                            |                   |                 |           | 0                 | 1                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | 0          | 1                               | 0                             |          | 0     | 0          | 0        |
| Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type/Storage  Critical and Follow-up Headwa Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)  Delay, Queue Length, and Lev                                                                                                                                                                                                                                           | $\top$                       | _                 | TR              |           | LT                |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            | LR                              |                               |          |       |            | -        |
| Percent Heavy Vehicles (%) Proportion Time Blocked Percent Grade (%) Right Turn Channelized Median Type/Storage  Critical and Follow-up Headwa Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)  Delay, Queue Length, and Lev                                                                                                                                                                                                                                           |                              | 63                | 226             |           | 82                | 158                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 98         |                                 | 59                            |          |       |            |          |
| Proportion Time Blocked  Percent Grade (%)  Right Turn Channelized  Median Type/Storage  Critical and Follow-up Headwa Base Critical Headway (sec)  Critical Headway (sec)  Base Follow-Up Headway (sec)  Follow-Up Headway (sec)  Delay, Queue Length, and Lev                                                                                                                                                                                                                                                                | $\overline{}$                |                   |                 |           | 3                 |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 3          |                                 | 3                             |          |       |            | -        |
| Percent Grade (%)  Right Turn Channelized  Median Type/Storage  Critical and Follow-up Headwa  Base Critical Headway (sec)  Critical Headway (sec)  Base Follow-Up Headway (sec)  Follow-Up Headway (sec)  Delay, Queue Length, and Lev                                                                                                                                                                                                                                                                                        |                              |                   |                 |           |                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |                                 |                               |          |       |            |          |
| Median Type/Storage  Critical and Follow-up Headway  Base Critical Headway (sec)  Critical Headway (sec)  Base Follow-Up Headway (sec)  Follow-Up Headway (sec)  Delay, Queue Length, and Lev                                                                                                                                                                                                                                                                                                                                  |                              |                   |                 |           |                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            | 0                               |                               |          |       |            |          |
| Median Type/Storage  Critical and Follow-up Headway  Base Critical Headway (sec)  Critical Headway (sec)  Base Follow-Up Headway (sec)  Follow-Up Headway (sec)  Delay, Queue Length, and Lev                                                                                                                                                                                                                                                                                                                                  |                              | No                |                 |           | N                 | lo                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | N          | 1o                              |                               |          | N     | No         |          |
| Critical and Follow-up Headway  Base Critical Headway (sec)  Critical Headway (sec)  Base Follow-Up Headway (sec)  Follow-Up Headway (sec)  Delay, Queue Length, and Lev                                                                                                                                                                                                                                                                                                                                                       |                              |                   | Und             | ivided    |                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |                                 |                               |          |       |            |          |
| Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)  Delay, Queue Length, and Lev                                                                                                                                                                                                                                                                                                                                                                                          | avs                          |                   |                 |           |                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |                                 |                               |          |       |            |          |
| Critical Headway (sec)  Base Follow-Up Headway (sec)  Follow-Up Headway (sec)  Delay, Queue Length, and Lev                                                                                                                                                                                                                                                                                                                                                                                                                    | T                            | $\overline{}$     | Т               | Т         | 4.1               |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 7.1        | Г                               | 6.2                           |          |       |            | Т        |
| Base Follow-Up Headway (sec) Follow-Up Headway (sec)  Delay, Queue Length, and Lev                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                   |                 |           | 4.13              |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 6.43       |                                 | 6.23                          |          |       |            |          |
| Follow-Up Headway (sec)  Delay, Queue Length, and Lev                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +                            |                   |                 |           | 2.2               |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 3.5        |                                 | 3.3                           |          |       |            |          |
| Delay, Queue Length, and Lev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |                   |                 |           | 2.23              |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 3.53       |                                 | 3.33                          |          |       |            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | el of                        | Sarvic            |                 |           | 2.23              |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 3.33       |                                 | 3.33                          |          |       |            | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                            | T                 | T               |           | 00                |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            | 171                             | Ι                             |          |       |            | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                            |                   |                 |           | 1220              |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            | 171                             |                               |          |       |            |          |
| Capacity, c (veh/h)  v/c Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +                            |                   |                 |           | 0.07              |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            | 559                             |                               |          |       |            | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                   |                 |           |                   |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            | 0.31                            |                               |          |       |            |          |
| 95% Queue Length, Q <sub>95</sub> (veh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                   |                 |           | 0.2               |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            | 1.3                             |                               |          |       |            | -        |
| Control Delay (s/veh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              | 1                 |                 |           | 8.1               |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            | 14.2                            |                               |          |       |            | $\vdash$ |
| Level of Service, LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                   |                 |           | A                 |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            | В                               |                               |          |       |            |          |
| Approach Delay (s/veh)  Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                   |                 |           | ~                 | .2                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            | 4.2                             |                               |          |       |            |          |

# EXHIBIT 10 2029 PEAK PM HOUR TRAFFIC ANALYSIS – Street 2/Vanguard

|                                                                                                                                                                                                                               |          |         |         |           |       |                                                      |        |                                       | Rep                   |       |                            |           |          |       |       |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|---------|-----------|-------|------------------------------------------------------|--------|---------------------------------------|-----------------------|-------|----------------------------|-----------|----------|-------|-------|----|
| General Information                                                                                                                                                                                                           |          |         |         |           |       |                                                      | Site   | Inforr                                | natio                 | n     |                            |           |          |       |       |    |
| Analyst                                                                                                                                                                                                                       | Т        |         |         |           |       |                                                      | Inters | ection                                |                       |       | Site A                     | ccess/V   | anguard  |       |       |    |
| Agency/Co.                                                                                                                                                                                                                    |          |         |         |           |       |                                                      | Jurisd | liction                               |                       |       | Ottav                      | va        |          |       |       |    |
| Date Performed                                                                                                                                                                                                                | 4/9/2    | 018     |         |           |       |                                                      | East/\ | West Str                              | eet                   |       | Vang                       | uard Dri  | ve       |       |       |    |
| Analysis Year                                                                                                                                                                                                                 | 2029     |         |         |           |       |                                                      | North  | /South S                              | Street                |       | Blue S                     | Sea Villa | ge Acces | ss    |       |    |
| Time Analyzed                                                                                                                                                                                                                 | Peak     | PM Hou  | r       |           |       |                                                      | Peak   | Hour Fac                              | ctor                  |       | 0.92                       |           |          |       |       |    |
| Intersection Orientation                                                                                                                                                                                                      | East-\   | Vest    |         |           |       |                                                      | Analy  | sis Time                              | Period (              | hrs)  | 0.25                       |           |          |       |       |    |
| Project Description                                                                                                                                                                                                           | 2159     | Mer Ble | ue Road |           |       |                                                      |        |                                       |                       |       |                            |           |          |       |       |    |
| Lanes                                                                                                                                                                                                                         |          |         |         |           |       |                                                      |        |                                       |                       |       |                            |           |          |       |       |    |
|                                                                                                                                                                                                                               |          |         |         | 1         |       | ዣ<br>ቀዣ                                              |        | * * * * * * * * * * * * * * * * * * * | -<br>-<br>-<br>-<br>- |       |                            |           |          |       |       |    |
| Vehicle Volumes and Adj                                                                                                                                                                                                       | ustme    | nts     |         |           |       |                                                      |        |                                       |                       |       |                            |           |          |       |       |    |
| Approach                                                                                                                                                                                                                      |          | Eastk   | ound    |           |       | Westl                                                | bound  |                                       |                       | North | bound                      |           |          | South | bound |    |
| Movement                                                                                                                                                                                                                      | U        | L       | Т       | R         | U     | L                                                    | Т      | R                                     | U                     | L     | Т                          | R         | U        | L     | Т     | R  |
| Priority                                                                                                                                                                                                                      | 10       | 1       | 2       | 3         | 4U    | 4                                                    | 5      | 6                                     |                       | 7     | 8                          | 9         |          | 10    | 11    | 12 |
| Number of Lanes                                                                                                                                                                                                               | 0        | 0       | 1       | 0         | 0     | 0                                                    | 1      | 0                                     |                       | 0     | 1                          | 0         |          | 0     | 0     | 0  |
| Configuration                                                                                                                                                                                                                 | $\vdash$ |         |         | TR        |       | LT                                                   |        |                                       |                       |       | LR                         |           |          |       |       |    |
| Volume, V (veh/h)                                                                                                                                                                                                             |          |         | 191     | 207       |       | 75                                                   | 105    |                                       |                       | 102   |                            | 61        |          |       |       | _  |
| Percent Heavy Vehicles (%)                                                                                                                                                                                                    |          |         | _       |           |       | 3                                                    |        |                                       |                       | 3     |                            | 3         |          |       |       | ₩  |
| Proportion Time Blocked                                                                                                                                                                                                       |          |         |         |           |       |                                                      |        |                                       |                       |       |                            |           |          |       |       |    |
| Percent Grade (%)                                                                                                                                                                                                             |          |         |         |           |       |                                                      |        |                                       |                       |       | 0                          |           |          |       |       |    |
| Right Turn Channelized                                                                                                                                                                                                        |          | l.      | 10      | l las all | vided | N                                                    | 10     |                                       |                       | N     | 10                         |           |          | r     | 10    |    |
| Median Type/Storage                                                                                                                                                                                                           | <u> </u> |         |         | Undi      | viaea |                                                      |        |                                       |                       |       |                            |           |          |       |       |    |
| Critical and Follow-up He                                                                                                                                                                                                     | eadwa    | ys      |         |           |       |                                                      |        |                                       |                       |       |                            |           |          |       |       |    |
| Base Critical Headway (sec)                                                                                                                                                                                                   |          | l .     | 1       |           |       | 4.1                                                  |        |                                       |                       | 7.1   |                            | 6.2       |          |       |       | ₩  |
| * * * *                                                                                                                                                                                                                       |          |         |         |           |       |                                                      |        |                                       |                       |       |                            |           |          |       |       |    |
| Critical Headway (sec)                                                                                                                                                                                                        |          |         |         |           |       | 4.13                                                 |        |                                       |                       | 6.43  |                            | 6.23      |          |       |       | -  |
| Critical Headway (sec) Base Follow-Up Headway (sec)                                                                                                                                                                           |          |         |         |           |       | 2.2                                                  |        |                                       |                       | 3.5   |                            | 3.3       |          |       |       |    |
| Critical Headway (sec)  Base Follow-Up Headway (sec)  Follow-Up Headway (sec)                                                                                                                                                 |          |         |         |           |       |                                                      |        |                                       |                       |       |                            | _         |          |       |       |    |
| Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)  Delay, Queue Length, and                                                                                                                         | d Leve   | l of S  | ervice  |           |       | 2.2                                                  |        |                                       |                       | 3.5   |                            | 3.3       |          |       |       |    |
| Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)  Delay, Queue Length, and Flow Rate, v (veh/h)                                                                                                    | d Leve   | l of S  | ervice  |           |       | 2.2 2.23                                             |        |                                       |                       | 3.5   | 177                        | 3.3       |          |       |       |    |
| Critical Headway (sec)  Base Follow-Up Headway (sec)  Follow-Up Headway (sec)  Delay, Queue Length, and  Flow Rate, v (veh/h)  Capacity, c (veh/h)                                                                            | d Leve   | l of S  | ervice  |           |       | 2.2<br>2.23<br>82<br>1120                            |        |                                       |                       | 3.5   | 506                        | 3.3       |          |       |       |    |
| Critical Headway (sec)  Base Follow-Up Headway (sec)  Follow-Up Headway (sec)  Delay, Queue Length, and  Flow Rate, v (veh/h)  Capacity, c (veh/h)  v/c Ratio                                                                 | d Leve   | l of S  | ervice  |           |       | 2.2<br>2.23<br>82<br>1120<br>0.07                    |        |                                       |                       | 3.5   | 506<br>0.35                | 3.3       |          |       |       |    |
| Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)  Pelay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q <sub>95</sub> (veh)                              | d Leve   | l of S  | ervice  |           |       | 2.2<br>2.23<br>82<br>1120<br>0.07<br>0.2             |        |                                       |                       | 3.5   | 506<br>0.35<br>1.6         | 3.3       |          |       |       |    |
| Critical Headway (sec)  Base Follow-Up Headway (sec)  Follow-Up Headway (sec)  Pelay, Queue Length, and  Flow Rate, v (veh/h)  Capacity, c (veh/h)  v/c Ratio  95% Queue Length, Q <sub>95</sub> (veh)  Control Delay (s/veh) | d Leve   | l of S  | ervice  |           |       | 2.2<br>2.23<br>82<br>1120<br>0.07<br>0.2<br>8.5      |        |                                       |                       | 3.5   | 506<br>0.35<br>1.6<br>15.9 | 3.3       |          |       |       |    |
| Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)  Pelay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q <sub>95</sub> (veh)                              | d Leve   | l of S  | ervice  |           |       | 2.2<br>2.23<br>82<br>1120<br>0.07<br>0.2<br>8.5<br>A | .9     |                                       |                       | 3.5   | 506<br>0.35<br>1.6         | 3.3       |          |       |       |    |

EXHIBIT 11 2029 PEAK AM HOUR TRAFFIC ANALYSIS – Mer Bleue/Vanguard

|                   |           | HCS                    | 7 Sig   | nalize        | d Inte  | ersec    | tion R  | es       | ults S          | Sum    | ımary       | ,       |          |            |               |             |
|-------------------|-----------|------------------------|---------|---------------|---------|----------|---------|----------|-----------------|--------|-------------|---------|----------|------------|---------------|-------------|
| General Inform    | nation    |                        |         |               |         |          |         |          | Intor           | eocti  | on Info     | ormatic | n.       |            | 4741          | F L         |
| _                 | lation    |                        |         |               |         |          |         |          | Durat           |        |             | 0.25    | ,,,      |            | 111           |             |
| Agency<br>Analyst |           |                        |         | Analys        | is Date | 3/8/20   | 110     |          | Area            |        |             | Other   |          | 4          |               |             |
|                   |           | Ottawa                 |         | Time F        |         | _        | AM Hou  |          | PHF             | туре   |             | 0.92    |          |            |               | ·_          |
| Jurisdiction      |           |                        | a d     |               |         | -        |         | ıı       |                 | raia F | ) a mi a al | -       | 20       | - <u>Ē</u> |               |             |
| Urban Street      |           | 2159 Mer Bleue Ro      |         | <u> </u>      | is Year | Year 2   |         |          | Anaiy           | ysis F | Period      | 1> 7:0  | JO       | _B         |               |             |
| Intersection      | 41        | Mer Blueue/Vangua      |         | File Na       | ame     | 2029_    | tot_am. | xus      |                 |        |             |         |          | - 4        | 111           | t (*)       |
| Project Descrip   | lion      | Blue Sea Village Mo    | er bieu | ə             |         |          | _       |          | -               | -      | -           | -       | -        |            | .,.,.,.,.,.,  |             |
| Demand Inform     | nation    |                        |         |               | EB      |          |         | V        | VΒ              |        |             | NB      |          |            | SB            |             |
| Approach Move     |           |                        |         |               | T       | R        | 1       | _        | T               | R      | L           | T       | T R      | L          | T             | R           |
| Demand (v), v     |           |                        |         | <u> </u>      | _       | <u> </u> | 110     |          | _               | 146    | H           | 1561    | 8        | 281        | 842           | <u> </u>    |
| Domaila ( v ); v  | 011111    |                        |         |               |         |          | 110     |          |                 | 110    |             | 1001    |          | 201        | 0.12          |             |
| Signal Informa    | tion      |                        |         |               | I JL    | II.      | - K     |          | $\neg$          |        | $\top$      |         |          |            |               |             |
| Cycle, s          | 100.0     | Reference Phase        | 2       | 1             | 1       |          | ی ا     | $\dashv$ |                 |        |             |         | <b>-</b> | Þ          |               |             |
| Offset, s         | 0         | Reference Point        | End     | Green         | 12 2    | 56.9     | 11.2    | 1        | .0              | 0.0    | 0.0         |         | 1        | 2          | 3             | _           |
| Uncoordinated     | No        | Simult. Gap E/W        | On      | Yellow        | -       | 3.7      | 3.3     | _        |                 | 0.0    | 0.0         |         |          |            |               | <b>&gt;</b> |
| Force Mode        | Float     | Simult. Gap N/S        | On      | Red           | 2.7     | 2.7      | 3.5     |          | _               | 0.0    | 0.0         |         | 5        | 6          | 7             |             |
|                   |           |                        |         |               |         |          |         |          |                 |        |             |         |          |            |               |             |
| Timer Results     |           |                        |         | EBL           | .       | EBT      | WBI     |          | WB <sup>-</sup> | T      | NBL         | $\Box$  | NBT      | SBI        | -             | SBT         |
| Assigned Phase    | <u>е</u>  |                        |         |               | $\neg$  |          |         | $\neg$   | 8               | $\neg$ |             |         | 2        | 1          | $\neg \vdash$ | 6           |
| Case Number       |           |                        |         |               |         |          |         |          | 9.0             |        |             |         | 7.3      | 1.0        |               | 4.0         |
| Phase Duration    | 1, S      |                        |         |               | $\neg$  |          |         | $\neg$   | 18.0            | , T    |             | 7       | 63.3     | 18.7       | 7             | 82.0        |
| Change Period,    | , ( Y+R   | c), s                  |         |               |         |          |         |          | 6.8             |        |             |         | 6.4      | 6.4        |               | 6.4         |
| Max Allow Head    |           |                        |         |               | $\neg$  |          |         | $\neg$   | 3.3             | $\neg$ |             | $\neg$  | 0.0      | 3.1        | $\neg$        | 0.0         |
| Queue Clearan     |           |                        |         |               |         |          |         |          | 12.1            |        |             |         |          | 12.0       |               |             |
| Green Extensio    |           |                        |         | _             | $\neg$  |          |         | $\neg$   | 0.0             | $\neg$ |             | $\neg$  | 0.0      | 0.3        | $\neg$        | 0.0         |
| Phase Call Prol   |           | <del>(0 )</del> ,      |         |               |         |          |         |          | 1.00            |        |             |         |          | 1.00       |               |             |
| Max Out Proba     | bility    |                        |         |               |         |          |         |          | 1.00            |        |             |         |          | 0.28       | 3             |             |
| Movement Gro      | oup Res   | sults                  |         |               | EB      |          |         | V        | /B              | Т      |             | NB      |          |            | SB            |             |
| Approach Move     | ement     |                        |         | L             | Т       | R        | L       | Т        | ·   F           | ₹      | L           | Т       | R        | L          | Т             | R           |
| Assigned Move     | ment      |                        |         |               |         |          | 3       |          | 1               | 8      |             | 2       | 12       | 1          | 6             |             |
| Adjusted Flow F   | Rate ( v  | ), veh/h               |         |               |         |          | 120     |          | 15              | 55     |             | 1697    | 2        | 305        | 915           |             |
| Adjusted Satura   | ation Flo | ow Rate ( s ), veh/h/l | n       |               |         |          | 1699    |          | 14              | 95     |             | 1674    | 1478     | 1714       | 1660          |             |
| Queue Service     |           |                        |         | $\overline{}$ |         |          | 6.6     |          | 10              | 0.1    | $\neg \neg$ | 42.2    | 0.1      | 10.0       | 6.3           |             |
| Cycle Queue C     | learanc   | e Time ( g c ), s      |         |               |         |          | 6.6     |          | 10              | ).1    |             | 42.2    | 0.1      | 10.0       | 6.3           |             |
| Green Ratio ( g   | /C )      |                        |         |               |         |          | 0.13    |          | 0.              | 13     |             | 0.59    | 0.59     | 0.75       | 0.84          |             |
| Capacity (c), v   | /eh/h     |                        |         |               |         |          | 224     |          | 19              | 97     |             | 1973    | 871      | 366        | 2772          |             |
| Volume-to-Capa    |           | atio (X)               |         | $\overline{}$ |         |          | 0.533   |          | 0.7             | 788    | $\neg$      | 0.860   | 0.002    | 0.835      | 0.330         |             |
| Back of Queue     | (Q), ft   | /In (50 th percentile) | )       |               |         |          | 68.7    |          | $\rightarrow$   | 3.9    |             | 392.3   | 0.5      | 196.8      | 23.5          |             |
|                   |           | eh/ln (50 th percenti  |         |               |         |          | 2.7     |          | -               | .6     |             | 15.3    | 0.0      | 7.9        | 0.9           |             |
|                   | , ,       | RQ) (50 th percent     |         |               |         |          | 0.42    |          | $\overline{}$   | 57     |             | 0.28    | 0.00     | 0.86       | 0.04          |             |
| Uniform Delay (   |           | - / \                  | ,       |               |         |          | 40.5    |          | -               | 2.0    |             | 17.1    | 8.4      | 27.9       | 2.6           |             |
| Incremental De    |           |                        |         |               |         |          | 1.3     |          | -               | 7.4    |             | 5.2     | 0.0      | 9.7        | 0.3           |             |
| Initial Queue De  |           | ,                      |         |               |         |          | 0.0     |          | $\overline{}$   | .0     |             | 0.0     | 0.0      | 0.0        | 0.0           |             |
| Control Delay (   |           | ,                      |         |               |         |          | 41.8    |          | $\overline{}$   | 9.5    |             | 22.3    | 8.4      | 37.6       | 2.9           |             |
| Level of Service  |           |                        |         |               |         |          | D       |          | -               |        |             | С       | Α        | D          | Α             |             |
| Approach Delay    |           |                        |         | 0.0           |         |          | 51.8    |          | D               |        | 22.3        | _       | С        | 11.6       |               | В           |
| Intersection De   | , .       |                        |         |               |         | 20       | ).7     |          |                 | $\neg$ |             |         |          | С          |               |             |
|                   |           |                        |         |               |         |          |         |          |                 | أبر    |             |         |          |            |               |             |
| Multimodal Re     | sults     |                        |         |               | EB      |          |         | W        | /B              |        |             | NB      |          |            | SB            |             |
| Pedestrian LOS    | Score     | /LOS                   |         | 2.33          |         | В        | 2.35    | 5        | В               |        | 1.89        |         | В        | 0.66       | 3             | Α           |
| Bicycle LOS Sc    | ore / L0  | os                     |         |               |         | Α        |         |          | F               |        | 1.89        |         | В        | 1.47       | 7             | Α           |

# EXHIBIT 12 2029 PEAK PM HOUR TRAFFIC ANALYSIS – Mer Bleue/Vanguard

|                   |           | HCS                     | 7 Sig    | nalize        | d Inte     | ersect   | tion R  | esı  | ılts Suı      | nmar      | y       |       |       |       |          |
|-------------------|-----------|-------------------------|----------|---------------|------------|----------|---------|------|---------------|-----------|---------|-------|-------|-------|----------|
|                   |           |                         |          |               |            |          |         |      |               |           |         |       |       |       |          |
| General Inform    | ation     |                         |          |               |            |          |         |      | Intersec      | tion Infe | ormatio | on    | 2     | 4741  | k L      |
| Agency            |           |                         |          |               |            |          |         |      | Duration      | , h       | 0.25    |       |       | ttr   |          |
| Analyst           |           |                         |          | Analys        | is Date    | 3/8/20   | 18      |      | Area Typ      | е         | Other   |       | Δ     |       |          |
| Jurisdiction      |           | Ottawa                  |          | Time F        | eriod      | :Peak    | PM Hou  | ır   | PHF           |           | 0.92    |       | 4     |       |          |
| Urban Street      |           | 2159 Mer Bleue Ro       | ad       | Analys        | is Year    | Year 2   | 029     |      | Analysis      | Period    | 1> 7:0  | 00    |       |       |          |
| Intersection      |           | Mer Blueue/Vangua       | ard E    | File Na       | me         | 2029     | tot pm. | xus  |               |           |         |       |       | 110   |          |
| Project Descrip   | tion      | Blue Sea Village Me     | er Bleue |               |            |          |         |      |               |           |         |       | - B   | 4144  |          |
|                   |           |                         |          |               |            |          |         |      |               |           |         |       |       |       |          |
| Demand Inform     |           |                         |          |               | EB         |          | -       | _ V  | _             | -         | NB      |       |       | SB    |          |
| Approach Move     | ment      |                         |          | L             | T          | R        | L       |      | $\overline{}$ | L         | T       | R     | L     | T     | R        |
| Demand ( v ), v   | eh/h      |                         | _        |               |            |          | 112     | ш    | 95            | _         | 1532    | 12    | 386   | 1568  |          |
| Signal Informa    | tion      |                         |          |               | a II       | h Ii     |         |      |               |           |         |       |       |       |          |
| Cycle, s          | 100.0     | Reference Phase         | 2        | 1             | 1/2        | +24      |         | 7    |               |           | ļ       |       | 1>    |       |          |
| Offset, s         | 0         | Reference Point         | End      |               |            | <b>1</b> | ¹`      |      |               |           |         | 1     | 2     | 3     | 4        |
| Uncoordinated     | No        | Simult. Gap E/W         | On       | Green         |            | 53.7     | 7.2     | 0.0  |               | 0.0       |         |       |       |       | <b>~</b> |
| Force Mode        | Float     | Simult. Gap E/VV        | On       | Yellow<br>Red | 3.7<br>2.7 | 3.7      | 3.3     | 0.0  | _             | 0.0       |         |       |       | 7     | ~        |
| Force Wode        | rioat     | Simuit. Gap N/S         | On       | Reu           | 2.1        | 2.1      | 3.5     | 10.0 | 0.0           | 0.0       |         | 6     | 6     | 7     | 0        |
| Timer Results     |           |                         |          | EBL           |            | EBT      | WBI     |      | WBT           | NBI       |         | NBT   | SBI   |       | SBT      |
| Assigned Phase    |           |                         |          |               |            |          |         | 7    | 8             |           |         | 2     | 1     |       | 6        |
| Case Number       |           |                         |          |               |            |          |         | _    | 9.0           |           |         | 7.3   | 1.0   |       | 4.0      |
| Phase Duration    | s .       |                         |          | _             |            |          | _       | 7    | 14.0          | _         |         | 60.1  | 25.9  | -     | 86.0     |
| Change Period,    |           | c) s                    |          |               |            |          | _       | _    | 6.8           |           |         | 6.4   | 6.4   | -     | 6.4      |
| Max Allow Head    |           |                         |          | _             | _          |          | _       | -    | 3.2           | _         | _       | 0.0   | 3.1   | _     | 0.0      |
| Queue Clearan     |           |                         |          | _             |            |          | _       | -    | 9.0           | _         |         | 0.0   | 19.1  |       | 0.0      |
| Green Extensio    |           |                         |          | _             | _          |          | _       | -    | 0.0           | _         |         | 0.0   | 0.4   | -     | 0.0      |
| Phase Call Prol   |           | ( <i>g e )</i> , s      |          | -             |            |          | -       | -    | 1.00          | -         |         | 0.0   | 1.00  | -     | 0.0      |
| Max Out Proba     |           |                         |          | _             | _          |          |         | -    | 1.00          | _         | _       |       | 0.38  | _     |          |
| max satt tosa.    | <u>-</u>  |                         |          |               |            |          |         |      |               |           |         |       | 0.00  |       |          |
| Movement Gro      | up Res    | sults                   |          |               | EB         |          |         | WE   | 3             |           | NB      |       |       | SB    |          |
| Approach Move     | ment      |                         |          | L             | Т          | R        | L       | Т    | R             | L         | Т       | R     | L     | Т     | R        |
| Assigned Move     | ment      |                         |          |               |            |          | 3       |      | 18            |           | 2       | 12    | 1     | 6     |          |
| Adjusted Flow F   | Rate ( v  | ), veh/h                |          |               |            |          | 122     |      | 100           |           | 1665    | 7     | 420   | 1704  |          |
| Adjusted Satura   | ation Flo | ow Rate ( s ), veh/h/l  | n        |               |            |          | 1692    |      | 1490          |           | 1674    | 1477  | 1714  | 1660  |          |
| Queue Service     | Time ( g  | g s ), s                |          |               |            |          | 7.0     |      | 6.5           |           | 43.9    | 0.2   | 17.1  | 13.2  |          |
| Cycle Queue C     | learanc   | e Time ( $g\ _{c}$ ), s |          |               |            |          | 7.0     |      | 6.5           |           | 43.9    | 0.2   | 17.1  | 13.2  |          |
| Green Ratio ( g   | /C)       |                         |          |               |            |          | 0.09    |      | 0.09          |           | 0.56    | 0.56  | 0.79  | 0.88  |          |
| Capacity ( c ), v | eh/h      |                         |          |               |            |          | 156     |      | 137           |           | 1864    | 823   | 477   | 2905  |          |
| Volume-to-Capa    | acity Ra  | atio (X)                |          |               |            |          | 0.782   |      | 0.729         |           | 0.893   | 0.008 | 0.880 | 0.587 |          |
| Back of Queue     | (Q), ft   | /In ( 50 th percentile) | )        |               |            |          | 94      |      | 73.5          |           | 427.4   | 1.6   | 274.4 | 14.6  |          |
| Back of Queue     | (Q), ve   | eh/ln ( 50 th percenti  | ile)     |               |            |          | 3.8     |      | 2.9           |           | 16.7    | 0.1   | 11.0  | 0.6   |          |
| Queue Storage     | Ratio (   | RQ) (50 th percent      | tile)    |               |            |          | 0.57    |      | 0.37          |           | 0.31    | 0.01  | 1.19  | 0.03  |          |
| Uniform Delay (   | d 1), s   | /veh                    |          |               |            |          | 44.4    |      | 44.2          |           | 19.5    | 9.9   | 29.5  | 2.2   |          |
| Incremental De    | lay ( d 2 | ), s/veh                |          |               |            |          | 20.6    |      | 15.7          |           | 7.1     | 0.0   | 12.8  | 0.9   |          |
| Initial Queue De  | elay ( d  | з ), s/veh              |          |               |            |          | 0.0     |      | 0.0           |           | 0.0     | 0.0   | 0.0   | 0.0   |          |
| Control Delay (   | d), s/ve  | eh                      |          |               |            |          | 65.0    |      | 59.9          |           | 26.6    | 9.9   | 42.3  | 3.1   |          |
| Level of Service  |           |                         |          |               |            |          | E       |      | E             |           | С       | Α     | D     | Α     |          |
| Approach Delay    | ` /       |                         |          | 0.0           |            |          | 62.7    |      | E             | 26.5      | 5       | С     | 10.8  | 3     | В        |
| Intersection De   |           |                         |          |               |            | 20       |         |      |               |           |         |       | С     |       |          |
|                   |           |                         |          |               |            |          |         |      |               |           |         |       |       |       |          |
| Multimodal Re     | sults     |                         |          |               | EB         |          |         | WE   | 3             |           | NB      |       |       | SB    |          |
| Pedestrian LOS    |           |                         |          | 2.33          |            | В        | 2.35    |      | В             | 1.90      |         | В     | 0.65  | -     | Α        |
| Bicycle LOS Sc    | ore / LC  | os                      |          |               |            | Α        |         |      | F             | 1.87      |         | В     | 2.22  | 2     | В        |

# EXHIBIT 13 EXISTING 2015 PEAK AM HOUR TRAFFIC ANALYSIS – Mer Bleue/210 S of Innes

|                                     | HCS                 | 7 Sig    | nalize  | d Int    | ersec    | tion F  | Resu          | Its Su   | mmar     | у       |       |       |        |          |
|-------------------------------------|---------------------|----------|---------|----------|----------|---------|---------------|----------|----------|---------|-------|-------|--------|----------|
|                                     |                     |          |         |          |          |         |               |          |          |         |       |       |        |          |
| General Information                 |                     |          |         |          |          |         | $\rightarrow$ | Intersec | tion Inf | ormatio | on    | _ #   | 1111   |          |
| Agency                              |                     |          |         |          |          |         |               | Duration | , h      | 0.25    |       |       |        |          |
| Analyst                             |                     |          | Analys  | is Date  | e 3/8/20 | 018     |               | Area Typ | ре       | Other   | -     | .5.   |        | A 2-     |
| Jurisdiction                        | Ottawa              |          | Time F  | Period   | :Peak    | AM Ho   | ur            | PHF      |          | 0.92    |       | *     |        | -        |
| Urban Street                        | 2159 Mer Bleue Ro   | ad       | Analys  | is Year  | r Existi | ng 2015 |               | Analysis | Period   | 1> 7:0  | 00    | 7     |        | *        |
| Intersection                        | Mer Blueue/210m S   | 3        | File Na | ame      | 2015_    | _ex_am. | xus           |          |          |         |       |       | httr   |          |
| Project Description                 | Blue Sea Village Me | er Bleue | )       |          |          |         |               |          |          |         |       | 1     | ৰ কিপ  | tr in    |
| Demand Information                  |                     |          |         | EB       |          |         | W             | 3        |          | NB      |       |       | SB     |          |
| Approach Movement                   |                     |          | L       | Т        | T R      |         | T             | R        | L        | T       | R     |       | Т      | R        |
| Demand ( v ), veh/h                 |                     |          | 84      | 3        | 29       | 6       | 2             | _        | 91       | 370     | _     | 26    | 167    | 90       |
|                                     |                     |          |         |          |          |         |               |          |          |         |       |       |        |          |
| Signal Information                  | I                   |          |         | ΝŢ       | 3 5      |         |               |          |          |         |       | rt»   |        |          |
| Cycle, s 90.0                       | Reference Phase     | 2        |         | i st     | n#R '    | ·       |               |          |          |         | 1     | $Y_2$ | 3      | ❤ ₄      |
| Offset, s 0                         | Reference Point     | End      | Green   | 68.3     | 8.5      | 0.0     | 0.0           | 0.0      | 0.0      |         |       |       |        | <u>-</u> |
| Uncoordinated No                    | Simult. Gap E/W     | On       | Yellow  |          | 3.3      | 0.0     | 0.0           |          | 0.0      |         |       |       |        | 7        |
| Force Mode Float                    | Simult. Gap N/S     | On       | Red     | 2.7      | 3.5      | 0.0     | 0.0           | 0.0      | 0.0      |         | 5     | 6     | 7      | 8        |
| Timer Results                       |                     |          | EBL     |          | EBT      | WB      |               | WBT      | NB       |         | NBT   | SBI   |        | SBT      |
| Assigned Phase                      |                     |          | LDI     |          | 4        | VVD     | -             | 8        | IND      | -       | 2     | 361   |        | 6        |
| Case Number                         |                     |          |         | _        | 6.0      |         | _             | 6.0      |          |         | 5.0   |       |        | 5.0      |
| Phase Duration, s                   |                     |          | _       | _        | 15.3     |         | _             | 15.3     |          | _       | 74.7  | _     |        | 74.7     |
| Change Period, (Y+R                 | ~) s                |          |         | _        | 6.8      |         | _             | 6.8      |          |         | 6.4   |       |        | 6.4      |
| Max Allow Headway (                 |                     |          | _       | _        | 3.1      |         | _             | 3.1      | _        | _       | 0.0   |       |        | 0.0      |
| Queue Clearance Time                | ,·                  |          |         | _        | 7.8      |         | _             | 3.4      |          |         | 0.0   | _     |        | 0.0      |
| Green Extension Time                |                     |          | _       | _        | 0.2      |         | _             | 0.2      | _        | _       | 0.0   | _     |        | 0.0      |
| Phase Call Probability              | (90),0              |          |         |          | 0.95     |         |               | 0.95     |          |         | 0.0   |       |        | 0.0      |
| Max Out Probability                 |                     |          |         | _        | 0.00     |         | $\neg$        | 0.00     |          | $\neg$  |       |       | $\neg$ |          |
| Movement Group Por                  | aulto.              |          |         | EB       |          |         | WB            |          |          | NB      |       |       | SB     |          |
| Movement Group Res                  | SuitS               |          | L       | T        | R        | L       | T             | R        | L        | T       | R     | L     | T      | R        |
| Approach Movement Assigned Movement |                     |          | 7       | 4        | 14       | 3       | 8             | 18       | 5        | 2       | 12    | 1     | 6      | 16       |
| Adjusted Flow Rate ( v              | ( ) voh/h           |          | 91      | 18       | 14       | 7       | 7             | 10       | 99       | 402     | 2     | 28    | 182    | 72       |
| Adjusted Saturation Flo             | ,.                  | n        | 1424    | 1554     |          | 1403    | 1583          |          | 1220     | 1674    | 1492  | 998   | 1660   | 1457     |
| Queue Service Time (                | , ,,                | "        | 5.5     | 1.0      |          | 0.4     | 0.3           |          | 1.8      | 2.7     | 0.0   | 0.7   | 1.1    | 1.0      |
| Cycle Queue Clearance               | - ,                 |          | 5.8     | 1.0      |          | 1.4     | 0.3           |          | 2.9      | 2.7     | 0.0   | 3.3   | 1.1    | 1.0      |
| Green Ratio ( g/C )                 | e Time ( g v ), s   |          | 0.12    | 0.12     | _        | 0.12    | 0.12          | +        | 0.78     | 0.78    | 0.78  | 0.78  | 0.78   | 0.78     |
| Capacity ( c ), veh/h               |                     |          | 240     | 181      | -        | 228     | 184           | _        | 1019     | 2615    | 1166  | 831   | 2595   | 1139     |
| Volume-to-Capacity Ra               | atio (X)            |          | 0.381   | 0.102    |          | 0.029   | 0.035         | 5        | 0.097    | 0.154   |       | 0.034 | 0.070  | 0.063    |
| Back of Queue (Q), ft               |                     |          | 46.6    | 8.9      |          | 3.1     | 3.1           |          | 7.8      | 13.6    | 0.002 | 2.5   | 5.7    | 4.9      |
| Back of Queue (Q), N                |                     |          | 1.9     | 0.4      |          | 0.1     | 0.1           | 1        | 0.3      | 0.5     | 0.0   | 0.1   | 0.2    | 0.2      |
| Queue Storage Ratio (               | <u> </u>            |          | 0.23    | 0.04     |          | 0.02    | 0.02          |          | 0.03     | 0.01    | 0.00  | 0.01  | 0.2    | 0.02     |
| Uniform Delay ( d 1 ), s            | , (                 |          | 37.9    | 35.6     |          | 36.2    | 35.3          |          | 2.6      | 2.4     | 2.2   | 2.8   | 2.3    | 2.3      |
| Incremental Delay ( d z             |                     |          | 0.4     | 0.1      |          | 0.0     | 0.0           |          | 0.2      | 0.1     | 0.0   | 0.1   | 0.1    | 0.1      |
| Initial Queue Delay ( d             |                     |          | 0.0     | 0.0      |          | 0.0     | 0.0           |          | 0.0      | 0.0     | 0.0   | 0.0   | 0.0    | 0.0      |
| Control Delay ( d ), s/v            |                     |          | 38.3    | 35.7     |          | 36.2    | 35.3          |          | 2.8      | 2.6     | 2.2   | 2.9   | 2.3    | 2.4      |
| Level of Service (LOS)              |                     |          | D       | D        |          | D       | D             |          | A        | A       | A     | A     | A      | A A      |
| Approach Delay, s/veh               |                     |          | 37.8    | _        | D        | 35.8    |               | D        | 2.6      |         | Α     | 2.4   |        | Α        |
| Intersection Delay, s/ven           |                     |          | 57.0    |          |          | 7.3     |               |          |          |         |       | A 2.4 |        |          |
| ,                                   |                     |          |         |          |          |         |               |          |          |         |       |       |        |          |
| Multimodal Results                  |                     |          |         | EB       |          |         | WB            |          |          | NB      |       |       | SB     |          |
| Pedestrian LOS Score                | /LOS                |          | 2.46    | <u> </u> | В        | 2.49    | 9             | В        | 1.84     | 4       | В     | 1.86  | 3      | В        |
| Bicycle LOS Score / Lo              | OS                  |          | 0.67    |          | Α        | 0.51    | 1             | Α        | 0.90     | 0       | Α     | 0.72  | 2      | Α        |

Generated: 4/9/2018 1:53:27 PM

# EXHIBIT 14 EXISTING 2015 PEAK PM HOUR TRAFFIC ANALYSIS – Mer Bleue/210 S of Innes

|                                     | HCS                | 7 Sig    | nalize  | d Int      | ersec    | tion F  | Resu   | Its Su   | mmar     | у       |       |                 |               |            |
|-------------------------------------|--------------------|----------|---------|------------|----------|---------|--------|----------|----------|---------|-------|-----------------|---------------|------------|
|                                     |                    |          |         |            |          |         |        |          |          |         |       |                 |               |            |
| General Information                 |                    |          |         |            |          |         |        | Intersec | tion Inf | ormatio | on    |                 | 1111          |            |
| Agency                              |                    |          |         |            |          |         |        | Duration | , h      | 0.25    |       |                 | 2 4 4 4       | N.         |
| Analyst                             |                    |          | Analys  | sis Date   | e 3/8/20 | 018     |        | Area Ty  | ре       | Other   | •     | .5<br>→         |               | , <u>A</u> |
| Jurisdiction                        | Ottawa             |          | Time F  | Period     | :Peak    | PM Ho   | ur     | PHF      |          | 0.92    |       | \$ \frac{1}{4}  |               | -          |
| Urban Street                        | 2159 Mer Bleue Ro  | oad      | Analys  | sis Yea    | r Existi | ng 2015 |        | Analysis | Period   | 1> 7:0  | 00    | 4               |               | t c        |
| Intersection                        | Mer Blueue/210m S  | S        | File Na | ame        | 2015_    | _ex_pm. | xus    |          |          |         |       |                 | httr          |            |
| Project Description                 | Blue Sea Village M | er Bleue | )       |            |          |         |        |          |          |         |       | T               | 4144          | r r        |
| Demand Information                  |                    |          |         | EB         |          |         | W      | 3        |          | NB      |       |                 | SB            |            |
| Approach Movement                   |                    |          | L       | T          | T R      | L       | T      |          | L        | T       | R     | 1               | T             | R          |
| Demand ( v ), veh/h                 |                    |          | 272     | 2          | 98       | 8       | 1      | 22       | 144      | _       | _     | 24              | 527           | 24         |
|                                     |                    |          |         |            |          |         |        |          |          |         |       |                 |               |            |
| Signal Information                  | l                  |          |         | M          | 3 5      |         |        |          |          |         |       | rt»             |               |            |
| Cycle, s 90.0                       | Reference Phase    | 2        | -       | i st       | n⊟_"     | 1       |        |          |          |         | 1     | 2               | 3             | <b>→</b> ₄ |
| Offset, s 0                         | Reference Point    | End      | Green   | 55.2       | 21.6     | 0.0     | 0.0    | 0.0      | 0.0      |         |       |                 |               | <u></u>    |
| Uncoordinated No                    | Simult. Gap E/W    | On       | Yellow  |            | 3.3      | 0.0     | 0.0    |          | 0.0      |         |       |                 |               | 7          |
| Force Mode Float                    | Simult. Gap N/S    | On       | Red     | 2.7        | 3.5      | 0.0     | 0.0    | 0.0      | 0.0      |         | 5     | 6               | 7             | 8          |
| Timer Results                       |                    |          | EBL     | _          | EBT      | WB      |        | WBT      | NB       |         | NBT   | SBI             |               | SBT        |
| Assigned Phase                      |                    |          | EBL     |            | 4        | VVD     | -      | 8        | IND      | -       | 2     | 36              |               | 6          |
| Case Number                         |                    |          |         |            | 6.0      |         | _      | 6.0      |          |         | 5.0   |                 | $\rightarrow$ | 5.0        |
| Phase Duration, s                   |                    |          | _       |            | 28.4     |         | _      | 28.4     |          | _       | 61.6  |                 | -             | 61.6       |
| Change Period, (Y+R                 | a) e               |          |         |            | 6.8      |         | _      | 6.8      |          |         | 6.4   |                 | $\rightarrow$ | 6.4        |
| Max Allow Headway (                 |                    |          | _       |            | 3.1      |         | _      | 3.1      | _        | _       | 0.0   |                 | -             | 0.0        |
| Queue Clearance Time                |                    |          | _       |            | 20.9     |         | _      | 6.2      |          |         | 0.0   |                 |               | 0.0        |
| Green Extension Time                |                    |          | _       |            | 0.7      | _       | _      | 0.8      | _        | _       | 0.0   | _               | -             | 0.0        |
| Phase Call Probability              | (90),0             |          |         |            | 1.00     |         |        | 1.00     |          |         | 0.0   |                 | $\rightarrow$ | 0.0        |
| Max Out Probability                 |                    |          |         | $\top$     | 0.00     |         | $\neg$ | 0.00     |          | $\neg$  |       |                 | $\neg$        |            |
| Movement Group Por                  | aulto.             |          |         | EB         |          |         | WB     |          |          | NB      |       |                 | SB            |            |
| Movement Group Res                  | suits              |          | L       | T          | R        | L       | T      | R        | L        | T       | R     | L               | T             | R          |
| Approach Movement Assigned Movement |                    |          | 7       | 4          | 14       | 3       | 8      | 18       | 5        | 2       | 12    | 1               | 6             | 16         |
| Adjusted Flow Rate ( v              | ( ) voh/h          |          | 296     | 82         | 14       | 9       | 22     | 10       | 157      | 343     | 0     | 26              | 573           | 2          |
| Adjusted Saturation Flo             | ,.                 | In       | 1406    | 1509       |          | 1335    | 1530   |          | 846      | 1687    | 1525  | 1053            | 1687          | 1491       |
| Queue Service Time (                | , ,,               |          | 17.9    | 3.8        |          | 0.5     | 1.0    | 1        | 9.0      | 3.7     | 0.0   | 0.9             | 6.7           | 0.0        |
| Cycle Queue Clearance               | - /-               |          | 18.9    | 3.8        |          | 4.2     | 1.0    | +        | 15.7     | 3.7     | 0.0   | 4.7             | 6.7           | 0.0        |
| Green Ratio ( g/C )                 | o Time ( y c ), s  |          | 0.26    | 0.26       |          | 0.26    | 0.26   |          | 0.64     | 0.64    | 0.64  | 0.64            | 0.64          | 0.64       |
| Capacity ( c ), veh/h               |                    |          | 434     | 395        |          | 374     | 401    |          | 554      | 2145    | 970   | 705             | 2145          | 948        |
| Volume-to-Capacity Ra               | atio (X)           |          | 0.681   | 0.206      |          | 0.023   | 0.054  | 1        | 0.282    | 0.160   | 0.000 | 0.037           | 0.267         | 0.002      |
| Back of Queue (Q), ft               | · ,                | )        | 146.1   | 32.9       |          | 3.6     | 8.4    | 7        | 42       | 29.1    | 0.000 | 5               | 52.6          | 0.002      |
| Back of Queue (Q), N                |                    |          | 5.8     | 1.3        |          | 0.1     | 0.4    |          | 1.7      | 1.1     | 0.0   | 0.2             | 2.1           | 0.0        |
| Queue Storage Ratio (               | <u> </u>           |          | 0.73    | 0.16       |          | 0.02    | 0.04   |          | 0.18     | 0.02    | 0.00  | 0.02            | 0.09          | 0.00       |
| Uniform Delay ( d 1 ), s            |                    |          | 31.9    | 25.9       |          | 27.5    | 24.9   |          | 10.6     | 6.6     | 0.00  | 7.6             | 7.2           | 6.0        |
| Incremental Delay ( d a             |                    |          | 0.7     | 0.1        |          | 0.0     | 0.0    |          | 1.3      | 0.0     | 0.0   | 0.1             | 0.3           | 0.0        |
| Initial Queue Delay ( d             |                    |          | 0.0     | 0.0        |          | 0.0     | 0.0    |          | 0.0      | 0.2     | 0.0   | 0.0             | 0.0           | 0.0        |
| Control Delay ( d ), s/v            |                    |          | 32.6    | 26.0       |          | 27.6    | 24.9   |          | 11.9     | 6.8     | 0.0   | 7.7             | 7.5           | 6.0        |
| Level of Service (LOS)              |                    |          | C       | C C        |          | C C     | C C    |          | В        | A       | 0.0   | Α               | 7.5<br>A      | A          |
| Approach Delay, s/veh               |                    |          | 31.2    | _          | С        | 25.6    |        | C        | 8.4      |         | Α     | 7.5             |               | A          |
| Intersection Delay, s/ven           |                    |          | 01.2    |            |          | 4.1     |        |          | 0.4      |         |       | <u>г.э</u><br>В |               | , ,        |
| Sicocacii Dolay, arve               | 200                |          |         |            |          |         |        |          |          |         |       |                 |               |            |
| Multimodal Results                  |                    |          |         | EB         |          |         | WB     |          |          | NB      |       |                 | SB            |            |
|                                     |                    |          | 2.45    | <u>. T</u> | В        | 2.47    | 7      | В        | 1.88     | R I     | В     | 1.91            | $\overline{}$ | В          |
| Pedestrian LOS Score                | / LOS              |          | 2.40    |            |          | 2.47    |        |          | 1.00     | ,       |       | 1.9             | <u>'</u>      |            |

Generated: 4/9/2018 1:56:15 PM

\_\_\_\_\_

# EXHIBIT 15 2024 PEAK AM HOUR TRAFFIC ANALYSIS – Mer Bleue/210 S of Innes

|                  |           | HCS                    | 7 Sig    | nalize  | d Inte   | ersec  | tion F      | Resul | ts Su     | nmar     | у             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |
|------------------|-----------|------------------------|----------|---------|----------|--------|-------------|-------|-----------|----------|---------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|
|                  |           |                        |          |         |          |        |             |       |           |          |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |
| General Inforn   | nation    |                        |          |         |          |        |             |       | ntersec   | tion Inf | ormatic       | on       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 세시하다.      | ta (L    |
| Agency           |           |                        |          |         |          |        |             |       | Duration  | , h      | 0.25          |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |          |
| Analyst          |           |                        |          | Analys  | sis Date | 3/8/20 | 018         |       | Area Typ  | е        | Other         |          | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |          |
| Jurisdiction     |           | Ottawa                 |          | Time F  | Period   | :Peak  | AM Ho       | ur    | PHF       |          | 0.92          |          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |          |
| Urban Street     |           | 2159 Mer Bleue Ro      | ad       | Analys  | sis Year | Year   | 2024        | 1     | Analysis  | Period   | 1> 7:0        | 00       | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |          |
| Intersection     |           | Mer Blueue/210m S      | ;        | File Na | ame      | 2024   | tot_am      | Mod.> | cus       |          |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a. a. A.A. |          |
| Project Descrip  | tion      | Blue Sea Village Me    | er Bleue | •       |          |        |             |       |           |          |               |          | The state of the s | 4 1 4 4    | 7        |
|                  |           | , and the second       |          |         |          |        |             |       |           |          |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |
| Demand Inform    | nation    |                        |          |         | EB       |        |             | WE    | 3         |          | NB            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SB         |          |
| Approach Move    | ement     |                        |          | L       | T        | R      | L           | Т     | R         | L        | Т             | R        | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Т          | R        |
| Demand (v), v    | /eh/h     |                        |          | 84      | 3        | 29     | 6           | 2     | 7         | 170      | 1269          | 8        | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 897        | 90       |
|                  |           |                        |          |         |          |        |             |       |           |          |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |
| Signal Informa   | ation     |                        |          |         | 7        |        | a 1<br>11   | ] ,"  | $\succeq$ |          |               |          | <b>A</b> _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | _        |
| Cycle, s         | 90.0      | Reference Phase        | 2        |         | 5        | 51     | 2∎ <b>+</b> | ≽⊯ح   | E         |          |               | <b>Y</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          | <b>↔</b> |
| Offset, s        | 0         | Reference Point        | End      | Green   | 2.5      | 4.3    | 56.0        | 7.9   | 0.0       | 0.0      |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          | K        |
| Uncoordinated    | No        | Simult. Gap E/W        | On       | Yellow  |          | 0.0    | 3.7         | 3.3   | 0.0       | 0.0      |               | \ \      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | <b>→</b> |
| Force Mode       | Float     | Simult. Gap N/S        | On       | Red     | 2.7      | 0.0    | 2.7         | 3.5   | 0.0       | 0.0      |               | 5        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7          | 8        |
|                  |           |                        |          |         |          |        |             |       |           |          |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |
| Timer Results    |           |                        |          | EBI     | -        | EBT    | WB          | L     | WBT       | NB       | L             | NBT      | SBI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -          | SBT      |
| Assigned Phas    | e         |                        |          | _       |          | 4      |             |       | 8         | 5        |               | 2        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 6        |
| Case Number      |           |                        |          |         |          | 6.0    | _           | _     | 6.0       | 2.0      |               | 3.0      | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 3.0      |
| Phase Duration   | ·         |                        |          |         |          | 14.7   |             |       | 14.7      | 12.8     | 3             | 66.7     | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 62.4     |
| Change Period    | , ( Y+R   | c), S                  |          |         |          | 6.8    |             |       | 6.8       | 6.0      |               | 6.4      | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 6.4      |
| Max Allow Hea    | dway ( /  | <i>MAH</i> ), s        |          |         |          | 3.1    |             |       | 3.1       | 3.1      |               | 0.0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 0.0      |
| Queue Clearan    | ice Time  | e ( g s ), s           |          |         |          | 8.0    |             |       | 3.7       | 6.8      |               |          | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |          |
| Green Extension  | n Time    | (g ⊕), s               |          |         |          | 0.1    |             |       | 0.2       | 0.1      |               | 0.0      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 0.0      |
| Phase Call Pro   | bability  |                        |          |         |          | 0.94   |             |       | 0.96      | 0.99     | 9             |          | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |          |
| Max Out Proba    | bility    |                        |          |         |          | 0.00   |             |       | 0.00      | 1.00     | )             |          | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |          |
| Movement Gro     | un Res    | eulte                  |          |         | EB       |        |             | WB    |           |          | NB            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SB         |          |
| Approach Move    | _         | Suits                  |          | L       | T        | R      | L           | T     | R         | L        | T             | R        | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T          | R        |
|                  |           |                        |          | 7       | 4        | 14     | 3           | 8     | 18        | 5        | 2             | 12       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6          | 16       |
| Assigned Move    |           | ·                      |          | 91      | 24       | 14     | 7           | 8     | 10        | _        |               | 4        | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 975        |          |
| Adjusted Flow    |           | ,                      |          | _       |          |        | _           | _     | -         | 185      | 1379          |          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 43       |
|                  |           | ow Rate (s), veh/h/l   | П        | 1415    | 1531     |        | 1402        | 1582  |           | 1652     | 1687          | 1485     | 1714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1687       | 1500     |
| Queue Service    |           | - ,                    |          | 5.6     | 1.3      |        | 0.4         | 0.4   |           | 4.8      | 19.1          | 0.1      | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.0       | 1.0      |
|                  |           | ce Time ( g c ), s     |          | 6.0     | 1.3      |        | 1.7         | 0.4   |           | 4.8      | 19.1          | 0.1      | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.0       | 1.0      |
| Green Ratio (g   |           |                        |          | 0.11    | 0.11     |        | 0.11        | 0.11  |           | 0.10     | 0.69          | 0.69     | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.64       | 0.64     |
| Capacity (c), v  |           |                        |          | 230     | 169      |        | 215         | 175   |           | 324      | 2337          | 1028     | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2176       | 968      |
| Volume-to-Cap    |           |                        |          | 0.397   | 0.141    |        | 0.030       | _     |           | 0.570    | _             | 0.004    | 0.327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.448      | 0.045    |
|                  |           | /In (50 th percentile) |          | 47.1    | 11.6     |        | 3.2         | 3.7   |           | 48       | 137.6         | 0.5      | 15.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 101.8      | 6.8      |
|                  | , ,       | eh/ln ( 50 th percenti |          | 1.9     | 0.5      |        | 0.1         | 0.1   |           | 1.9      | 5.4           | 0.0      | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.0        | 0.3      |
|                  |           | (RQ) (50 th percent    | ile)     | 0.24    | 0.06     |        | 0.02        | 0.02  |           | 0.21     | 0.10          | 0.00     | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.18       | 0.03     |
| Uniform Delay    | ` ,.      |                        |          | 38.5    | 36.2     |        | 36.9        | 35.8  |           | 38.8     | 7.6           | 4.3      | 41.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.4        | 5.8      |
| Incremental De   |           | ,                      |          | 0.4     | 0.1      |        | 0.0         | 0.0   |           | 0.6      | 1.1           | 0.0      | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.7        | 0.1      |
| Initial Queue D  | - ,       |                        |          | 0.0     | 0.0      |        | 0.0         | 0.0   | -         | 0.0      | 0.0           | 0.0      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0        | 0.0      |
| Control Delay (  |           |                        |          | 38.9    | 36.3     |        | 37.0        | 35.8  |           | 39.4     | 8.7           | 4.3      | 42.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.0        | 5.9      |
| Level of Service |           |                        |          | D       | D        |        | D           | D     |           | D        | A             | A        | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A          | A        |
| Approach Dela    | •         |                        |          | 38.3    | 3        | D      | 36.3        | 3     | D         | 12.3     | 3             | В        | 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | Α        |
| Intersection De  | lay, s/ve | eh / LOS               |          |         |          | 1:     | 2.6         |       |           |          |               |          | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |          |
| Multimadal Da    | ault-     |                        |          |         | ED       |        |             | \A/D  |           |          | NID           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CD         |          |
| Multimodal Re    |           | /1.00                  |          | 0.00    | EB       |        | 0.54        | WB    | <u> </u>  | 4.04     | NB            | D        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SB         | D        |
| Pedestrian LOS   |           |                        |          | 2.60    | -        | C      | 2.53        | -     | C         | 1.86     | $\rightarrow$ | В        | 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _          | В        |
| Bicycle LOS So   | core / L( | J5                     |          | 0.68    | 5        | Α      | 0.5         |       | Α         | 1.78     | 5             | В        | 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | Α        |

Generated: 4/9/2018 1:58:17 PM

\_\_\_\_\_\_

#### EXHIBIT 16 2024 PEAK PM HOUR TRAFFIC ANALYSIS – Mer Bleue/210 S of Innes

| General Information Agency                |                                   |         |                 |               |        |               |               |         |           |               |             |            |            |            |
|-------------------------------------------|-----------------------------------|---------|-----------------|---------------|--------|---------------|---------------|---------|-----------|---------------|-------------|------------|------------|------------|
| Agency                                    |                                   |         |                 |               |        |               |               |         |           |               |             |            |            |            |
|                                           |                                   |         |                 |               |        |               |               | Interse | ction Inf | ormatic       | on          | _          | 4 74 1     | h (r)      |
| A L 4                                     |                                   |         |                 |               |        |               |               | Duratio | n, h      | 0.25          |             | -          |            |            |
| Analyst                                   |                                   |         | Analys          | is Date       | 3/8/20 | )18           |               | Area T  | /ре       | Other         |             | <i>∆</i> . |            |            |
| Jurisdiction                              | Ottawa                            |         | Time F          | Period        | :Peak  | PM Ho         | ur            | PHF     |           | 0.92          |             | *          |            |            |
| Urban Street 2                            | 2159 Mer Bleue Ro                 | ad      | Analys          | is Year       | Year 2 | 2024          |               | Analys  | s Period  | 1> 7:0        | 00          | *          |            |            |
| Intersection                              | Mer Blueue/210m S                 |         | File Na         | ame           | 2024   | tot_pm        | _Mod.         | xus     |           |               |             |            | a. a. A. A |            |
| Project Description E                     | Blue Sea Village Me               | r Bleue |                 |               |        |               |               |         |           |               |             | Ī          | 4 1 4 Y    | 1- [1]     |
| Damand Information                        |                                   |         |                 | - ED          |        |               | 10/           | ,       |           | ND            |             |            | CD         |            |
| Demand Information                        |                                   |         |                 | EB            | Т Б    |               | W             | _       | -         | NB            | Τ.          |            | SB         | T 5        |
| Approach Movement                         |                                   |         | L 070           | T             | R      | L             | T             | _       | _         | T             | R           | L          | T          | R          |
| Demand ( v ), veh/h                       | _                                 |         | 272             | 2             | 98     | 8             | 1             | 22      | 2 226     | 1193          | 3 4         | 24         | 1398       | 156        |
| Signal Information                        |                                   |         |                 | ΙŢ            | $\top$ | 2 <b>†</b>    | Τ,            | <u></u> |           |               |             |            |            |            |
| Cycle, s 90.0                             | Reference Phase                   | 2       | 1               | 18            | 150    | 2 <b>#</b> →  | إنظام         | Ş       |           |               | <b>&gt;</b> | <b>₽</b>   |            | <b>-</b>   |
| Offset, s 0                               | Reference Point                   | End     | Croon           | 24            |        |               | 1             | 2 0     | 0.0       |               | 1           | 2          | 3          | <u>¥</u> 4 |
| Uncoordinated No                          | Simult. Gap E/W                   | On      | Green<br>Yellow |               | 3.3    | 3.7           | 3.3           |         |           | _             |             |            |            | →          |
|                                           | Simult. Gap N/S                   | On      | Red             | 2.7           | 2.7    | 2.7           | 3.5           |         |           | _             | 5           | 6          | 7          | 8          |
| r oroc mode                               | omail: cap 11/0                   | 0       | 1100            |               |        |               | 10.0          | , ,     | 7 10.0    |               |             |            |            |            |
| Timer Results                             |                                   |         | EBL             | -             | EBT    | WB            | L             | WBT     | NB        | L             | NBT         | SBI        | -          | SBT        |
| Assigned Phase                            |                                   |         |                 |               | 4      |               |               | 8       | 5         |               | 2           | 1          |            | 6          |
| Case Number                               |                                   |         |                 |               | 6.0    |               |               | 6.0     | 2.0       |               | 3.0         | 2.0        |            | 3.0        |
| Phase Duration, s                         |                                   |         |                 | $\neg \vdash$ | 25.0   |               |               | 25.0    | 14.4      | 1             | 56.6        | 8.4        |            | 50.6       |
| Change Period, (Y+Rc                      | ), s                              |         |                 |               | 6.8    |               |               | 6.8     | 6.0       |               | 6.4         | 6.0        |            | 6.4        |
| Max Allow Headway ( M                     |                                   |         |                 | $\neg$        | 3.1    | $\overline{}$ | $\neg$        | 3.1     | 3.1       | $\neg$        | 0.0         | 3.1        | $\neg$     | 0.0        |
| Queue Clearance Time                      |                                   |         |                 |               | 22.0   |               |               | 7.3     | 8.4       | $\overline{}$ | 3           |            | -          |            |
| Green Extension Time (                    |                                   |         |                 | $\overline{}$ | 0.0    |               | $\overline{}$ | 0.7     | 0.0       | _             | 0.0         | 0.0        | _          | 0.0        |
| Phase Call Probability                    | g v ), u                          |         |                 |               | 1.00   |               |               | 1.00    | 1.0       | $\overline{}$ | 0.0         | 0.48       |            | 0.0        |
| Max Out Probability                       |                                   |         | -               | $\overline{}$ | 1.00   |               | $\neg$        | 0.01    | 1.0       | _             |             | 0.01       | _          |            |
|                                           |                                   |         |                 | ED            |        |               | 14/5          |         |           | NID           |             |            | 0.0        |            |
| Movement Group Resu                       | uits                              |         |                 | EB            |        |               | WB            | _       | + -       | NB            |             |            | SB         |            |
| Approach Movement                         |                                   |         | ㄴ               | Т             | R      | L             | Т             | R       | 느         | Т             | R           | L          | Т          | R          |
| Assigned Movement                         |                                   |         | 7               | 4             | 14     | 3             | 8             | 18      | 5         | 2             | 12          | 1          | 6          | 16         |
| Adjusted Flow Rate (v)                    | , veh/h                           |         | 296             | 98            |        | 9             | 23            | $\perp$ | 246       | 1297          | 0           | 26         | 1520       | 115        |
| Adjusted Saturation Flov                  | w Rate ( s ), veh/h/li            | า       | 1404            | 1507          |        | 1315          | 1529          | 9       | 1652      | 1687          | 1525        | 1714       | 1687       | 1499       |
| Queue Service Time ( g                    |                                   |         | 18.9            | 4.8           |        | 0.5           | 1.1           |         | 6.4       | 23.6          | 0.0         | 1.3        | 35.9       | 3.6        |
| Cycle Queue Clearance                     | Time ( <i>g</i> <sub>c</sub> ), s |         | 20.0            | 4.8           |        | 5.3           | 1.1           |         | 6.4       | 23.6          | 0.0         | 1.3        | 35.9       | 3.6        |
| Green Ratio ( g/C )                       |                                   |         | 0.22            | 0.22          |        | 0.22          | 0.22          |         | 0.12      | 0.58          | 0.58        | 0.05       | 0.51       | 0.51       |
| Capacity ( c ), veh/h                     |                                   |         | 379             | 338           |        | 304           | 343           |         | 382       | 1957          | 885         | 84         | 1731       | 769        |
| Volume-to-Capacity Rati                   |                                   |         | 0.781           | 0.289         |        | 0.029         | 0.06          | 7       | 0.643     | 0.663         | 0.000       | 0.312      | 0.878      | 0.150      |
| Back of Queue (Q), ft/li                  | n ( 50 th percentile)             |         | 177.5           | 42.4          |        | 3.8           | 9.3           |         | 65.8      | 203.5         | 0           | 14         | 351.6      | 29.7       |
| Back of Queue (Q), vel                    |                                   | e)      | 7.1             | 1.7           |        | 0.2           | 0.4           |         | 2.6       | 8.0           | 0.0         | 0.6        | 13.8       | 1.2        |
| Queue Storage Ratio ( F                   | RQ) (50 th percent                | ile)    | 0.89            | 0.21          |        | 0.02          | 0.05          |         | 0.29      | 0.15          | 0.00        | 0.06       | 0.61       | 0.13       |
| Uniform Delay ( d 1 ), s/v                | veh                               |         | 35.3            | 28.9          |        | 31.2          | 27.5          |         | 38.0      | 13.4          | 0.0         | 41.3       | 20.2       | 11.6       |
| Incremental Delay ( d 2 )                 |                                   |         | 9.3             | 0.2           |        | 0.0           | 0.0           |         | 2.3       | 1.8           | 0.0         | 0.8        | 6.7        | 0.4        |
| Initial Queue Delay ( d 3                 |                                   |         | 0.0             | 0.0           |        | 0.0           | 0.0           |         | 0.0       | 0.0           | 0.0         | 0.0        | 0.0        | 0.0        |
| Control Delay ( d ), s/vel                |                                   |         | 44.6            | 29.1          |        | 31.2          | 27.5          | -       | 40.4      | 15.2          | 0.0         | 42.1       | 26.9       | 12.0       |
| Level of Service (LOS)                    |                                   |         | D               | C             |        | C             | C             |         | D         | B             |             | D          | C          | В          |
| Approach Delay, s/veh /                   | LOS                               |         | 40.8            | _             | D      | 28.5          |               | C       | 19.3      |               | В           | 26.1       |            | С          |
| Intersection Delay, s/ver                 |                                   |         | 70.0            |               |        | 4.8           |               |         | 13.       |               |             | C 20.1     |            |            |
| microcollon Delay, 3/Vel                  | ., 200                            |         |                 |               | 2.     |               |               |         |           |               |             |            |            |            |
|                                           |                                   |         |                 |               |        |               | 14/5          |         |           | NID           |             |            | OD         |            |
| Multimodal Results                        |                                   |         |                 | EB            |        |               | WB            |         |           | NB            |             |            | SB         |            |
| Multimodal Results Pedestrian LOS Score / | LOS                               |         | 2.59            |               | С      | 2.52          | _             | С       | 1.89      |               | В           | 2.10       |            | В          |

Generated: 4/9/2018 2:00:09 PM

\_\_\_\_\_

#### EXHIBIT 17 2029 PEAK AM HOUR TRAFFIC ANALYSIS – Mer Bleue/210 S of Innes

|                  |           | HCS                                   | 7 Sig    | nalize  | d Inte        | ersec      | tion F        | Resul    | ts Sur   | nmar     | y             |             |        |          |              |
|------------------|-----------|---------------------------------------|----------|---------|---------------|------------|---------------|----------|----------|----------|---------------|-------------|--------|----------|--------------|
|                  |           |                                       |          |         |               |            |               |          |          |          |               |             |        |          |              |
| General Inform   | nation    |                                       |          |         |               |            |               |          | ntersec  | tion Inf | ormatio       | on          | _      | 4 74 1   | ja lj        |
| Agency           |           |                                       |          |         |               |            |               | 1        | Duration | , h      | 0.25          |             |        | N V V W  |              |
| Analyst          |           |                                       |          | Analys  | sis Date      | 3/8/20     | 018           | I A      | Area Typ | е        | Other         |             | 4      |          |              |
| Jurisdiction     |           | Ottawa                                |          | Time F  | Period        | :Peak      | AM Ho         | ur F     | PHF      |          | 0.92          |             | *      |          |              |
| Urban Street     |           | 2159 Mer Bleue Ro                     | ad       | Analys  | sis Year      | Year 2     | 2029          | 1        | Analysis | Period   | 1> 7:0        | 00          | 4      |          |              |
| Intersection     |           | Mer Blueue/210m S                     | 3        | File Na | ame           | 2029       | _tot_am       | _Mod.x   | us       |          |               |             |        | and A.A. | T            |
| Project Descrip  | tion      | Blue Sea Village Me                   | er Bleue | 9       |               |            |               |          |          |          |               |             | Th     | 4144     | + 1          |
|                  |           |                                       |          |         |               |            | _             |          |          |          |               |             |        |          |              |
| Demand Infor     |           |                                       |          |         | EB            |            | +             | WB       | _        | -        | NB            |             | -      | SB       |              |
| Approach Move    |           |                                       |          | ㄴ       | T             | R          | <u> </u>      | T        | R        | <u> </u> | T             | R           | ᆜ      | T        | R            |
| Demand (v), v    | /eh/h     |                                       | _        | 84      | 3             | 29         | 85            | 2        | 85       | 91       | 1542          | 74          | 141    | 1009     | 90           |
| Signal Informa   | ation     |                                       |          |         |               | 211        | R. JI         |          | <u> </u> |          |               |             |        |          |              |
| Cycle, s         | 100.0     | Reference Phase                       | 2        | 1       | 1 2           | 1517       | ħ             | -2       | ₽        |          |               | \ \ \       | t      |          |              |
| Offset, s        | 0         | Reference Point                       | End      |         | 1             |            |               |          |          |          |               | 1           | 2      | 3        | $\mathbf{Y}$ |
| Uncoordinated    | No        | Simult. Gap E/W                       | On       | Green   |               | 1.7        | 63.3          | 11.2     | _        | 0.0      |               |             |        |          | 4            |
| Force Mode       | Float     | Simult. Gap N/S                       | On       | Yellow  | 3.3           | 0.0        | 3.7           | 3.3      | 0.0      | 0.0      |               | <b>)</b> [4 | - 6    | 7        | <b>.</b> .   |
| Force Wode       | rioat     | Simult. Gap 14/5                      | Oll      | Reu     | 2.1           | 10.0       | 2.1           | 3.5      | 10.0     | 10.0     |               | 5           | 6      | ,        |              |
| Timer Results    | _         |                                       |          | EBI     |               | EBT        | WB            | L        | WBT      | NB       |               | NBT         | SBI    |          | SBT          |
| Assigned Phas    | <u> </u>  |                                       |          |         |               | 4          |               |          | 8        | 5        |               | 2           | 1      |          | 6            |
| Case Number      |           |                                       |          |         |               | 6.0        |               |          | 6.0      | 2.0      |               | 3.0         | 2.0    |          | 3.0          |
| Phase Duration   | 1. S      |                                       |          | -       | -             | 18.0       | _             |          | 18.0     | 10.7     | _             | 69.7        | 12.3   | -        | 71.3         |
| Change Period    |           | c). s                                 |          |         |               | 6.8        |               |          | 6.8      | 6.0      | $\rightarrow$ | 6.4         | 6.0    | _        | 6.4          |
| Max Allow Hea    | , (       | - ,, -                                |          | _       | -             | 3.2        | _             | -        | 3.2      | 3.1      | _             | 0.0         | 3.1    | _        | 0.0          |
| Queue Clearan    |           | ,.                                    |          |         |               | 13.9       |               |          | 9.6      | 4.9      | -             | 0.0         | 6.4    | -        | 0.0          |
| Green Extension  |           |                                       |          | -       | _             | 0.0        | _             |          | 0.1      | 0.0      | _             | 0.0         |        | _        | 0.0          |
| Phase Call Pro   |           | (9,7),0                               |          |         | $\rightarrow$ | 0.96       |               |          | 1.00     | 0.94     | $\overline{}$ | 0.0         | 0.0    | -        | -            |
| Max Out Proba    |           |                                       |          |         | $\neg$        | 1.00       | $\overline{}$ | $\neg$   | 1.00     | 1.00     | _             |             | 1.00   | -        |              |
|                  |           |                                       |          |         | ED            |            |               | VA/ID    |          |          | ND            |             |        | 0.0      |              |
| Movement Gro     | •         | suits                                 |          |         | EB            | _ <u>_</u> |               | WB       | T 5      | -        | NB<br>T       |             |        | SB       |              |
| Approach Move    |           |                                       |          | L       | T             | R          | L             | T        | R        | L        | 2             | R           | L      | T        | R            |
| Assigned Move    |           | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |          | 7       | 4             | 14         | 3             | 8        | 18       | 5        |               | 12          | 1      | 6        | 16           |
| Adjusted Flow    |           | ,-                                    |          | 91      | 24            |            | 92            | 84       |          | 99       | 1676          | 26          | 153    | 1097     | 43           |
|                  |           | ow Rate (s), veh/h/l                  | n        | 1326    | 1533          |            | 1403          | 1518     |          | 1652     | 1687          | 1501        | 1665   | 1687     | 1501         |
| Queue Service    |           | - /-                                  |          | 6.8     | 1.4           |            | 6.2           | 5.1      |          | 2.9      | 34.3          | 0.6         | 4.4    | 15.9     | 1.0          |
| ,                |           | e Time ( <i>g</i> <sub>c</sub> ), s   |          | 11.9    | 1.4           |            | 7.6           | 5.1      |          | 2.9      | 34.3          | 0.6         | 4.4    | 15.9     | 1.0          |
| Green Ratio ( g  |           |                                       |          | 0.13    | 0.13          |            | 0.13          | 0.13     |          | 0.07     | 0.65          | 0.65        | 0.08   | 0.67     | 0.67         |
| Capacity (c), v  |           | atio ( V )                            |          | 180     | 202           |            | 238           | 200      |          | 221      | 2201          | 979         | 278    | 2258     | 1004         |
| Volume-to-Cap    |           |                                       |          | 0.508   | 0.118         |            | 0.388         | 0.418    |          | 0.448    | 0.761         | 0.027       | 0.551  | 0.486    | 0.043        |
|                  |           | /In ( 50 th percentile)               |          | 55.5    | 12.7          |            | 52.9          | 46.6     |          | 29.5     | 287.6         | 4.5         | 45.2   | 126.7    | 7.1          |
|                  | · //      | eh/ln (50 th percenti                 |          | 2.2     | 0.5           |            | 2.1           | 1.9      |          | 1.2      | 11.3          | 0.2         | 1.8    | 5.0      | 0.3          |
|                  |           | RQ) (50 th percent                    | iie)     | 0.28    | 0.06          |            | 0.32          | 0.23     |          | 0.13     | 0.21          | 0.02        | 0.20   | 0.22     | 0.03         |
| Uniform Delay    | ` /-      |                                       |          | 45.3    | 38.3          |            | 41.6          | 39.9     |          | 44.9     | 12.5          | 6.1         | 44.0   | 8.5      | 5.6          |
| Incremental De   |           | , .                                   |          | 1.0     | 0.1           |            | 0.4           | 0.5      |          | 0.5      | 2.5           | 0.1         | 0.8    | 0.8      | 0.1          |
| Initial Queue D  |           | ,.                                    |          | 0.0     | 0.0           |            | 0.0           | 0.0      |          | 0.0      | 0.0           | 0.0         | 0.0    | 0.0      | 0.0          |
| Control Delay (  |           |                                       |          | 46.3    | 38.4          |            | 42.0          | 40.4     |          | 45.4     | 15.1          | 6.2         | 44.8   | 9.2      | 5.7          |
| Level of Service |           |                                       |          | D 44.6  | D             | _          | D 41.         | D        |          | D        | B             | A           | D 12.0 | A        | A B          |
| Approach Dela    | •         |                                       |          | 44.6    | )             | D 1        | 41.2          | <u> </u> | D        | 16.6     | )             | В           | 13.3   |          | В            |
| Intersection De  | idy, S/VE | SII / LUS                             |          |         |               | 1          | 7.6           |          |          |          |               |             | В      |          |              |
| Multimodal Re    | sults     |                                       |          |         | EB            |            |               | WB       |          |          | NB            |             |        | SB       |              |
| Pedestrian LOS   |           | /LOS                                  |          | 2.67    |               | С          | 2.67          | _        | С        | 2.08     |               | В           | 2.08   |          | В            |
| Bicycle LOS So   |           |                                       |          | 0.68    | -             | A          | 0.78          | -        | A        | 1.97     | _             | В           | 1.55   | _        | В            |
| ,                |           |                                       |          | 3.30    |               |            | -             |          |          |          |               |             |        |          |              |

Generated: 4/9/2018 2:02:19 PM

#### EXHIBIT 18 2029 PEAK PM HOUR TRAFFIC ANALYSIS – Mer Bleue/210 S of Innes

|                                             | HCS                          | 7 Sig    | nalize   | d In   | tersec        | tion F   | Resu          | Its Sı      | ımma     | ry    |          |            |                |          |   |     |
|---------------------------------------------|------------------------------|----------|----------|--------|---------------|----------|---------------|-------------|----------|-------|----------|------------|----------------|----------|---|-----|
| O                                           |                              |          |          |        |               |          |               | 1-4         | -4i I    | £ 4   |          |            | 4 74 1         | K U      |   |     |
| General Information                         |                              |          |          |        |               |          | -             |             | ction In |       | on       | - 1        |                |          |   |     |
| Agency                                      |                              |          | A l      | ·- D-4 | - 0,10,101    | 240      | -             | Duratio     |          | 0.25  | _        | - 2        |                |          |   |     |
| Analyst                                     | 0"                           |          | _        |        | e 3/8/20      |          | -             | Area T      | /pe      | Othe  | <u> </u> |            |                | 2        |   |     |
| Jurisdiction                                | Ottawa                       |          | Time F   |        | _             | PM Ho    | ur            | PHF         |          | 0.92  |          | - 3        |                | -        |   |     |
| Urban Street                                | 2159 Mer Bleue Ro            |          | Analys   |        | $\rightarrow$ |          |               |             | s Period | 1> 7: | 00       | Š          |                | ,        |   |     |
| Intersection                                | Mer Blueue/210m S            |          | File Na  | ame    | 2029_         | _tot_pm_ | _Mod          | xus         |          |       |          |            | 12. 12. 15. 15 |          |   |     |
| Project Description                         | Blue Sea Village Me          | er Bleue | •        |        |               |          |               |             |          |       |          |            | 1 4 1 4 4      | F C      |   |     |
| Demand Information                          |                              |          |          | EB     |               |          | W             | В           |          | NB    |          |            | SB             |          |   |     |
| Approach Movement                           |                              |          | L        | Т      | R             | L        | T             | F           | L        | Т     | R        | L          | Т              | R        |   |     |
| Demand ( v ), veh/h                         |                              |          | 272      | 5      | 98            | 145      | 1             | 11          | 0 144    | 1389  | 94       | 205        | 1711           | 156      |   |     |
|                                             |                              |          |          |        |               |          |               |             |          |       |          |            |                |          |   |     |
| Signal Information                          |                              |          |          | 7      | ΤŢ            | 3 6      |               |             |          | Į     |          | <b>4</b> - |                | _        |   |     |
| Cycle, s 100.0                              | Reference Phase              | 2        |          | 15     | l' t          | aĦS "    |               |             |          |       | <b>Y</b> |            | 3              | ↔        |   |     |
| Offset, s 0                                 | Reference Point              | End      | Green    | 6.0    | 54.6          | 20.2     | 0.0           | 0.0         | 0.0      |       |          |            |                | K        |   |     |
| Uncoordinated No                            | Simult. Gap E/W              | On       | Yellow   | 3.3    | 3.7           | 3.3      | 0.0           | 0.          | 0.0      |       | \  <     | l          |                | 7        |   |     |
| Force Mode Float                            | Simult. Gap N/S              | On       | Red      | 2.7    | 2.7           | 3.5      | 0.0           | 0.          | 0.0      |       | 5        | 6          | 7              | 8        |   |     |
| Times Describe                              |                              |          | EDI      | -      | CDT           | \A/D     |               | WDT         | NIE      | N .   | NDT      | CDI        |                | CDT      |   |     |
| Timer Results                               |                              |          | EBL      | -      | EBT 4         | WB       | -             | WBT<br>8    | NE<br>5  | _     | NBT 2    | SBI<br>1   | -              | SBT<br>6 |   |     |
| Assigned Phase Case Number                  |                              |          | _        | -      | 6.0           | _        | -             | 6.0         | 2.0      | -     | 3.0      | 2.0        |                | 3.0      |   |     |
| Phase Duration, s                           |                              |          | _        | -      | 27.0          | -        | -             | 27.0        | _        | -     | 61.0     | 12.0       | -              | 61.0     |   |     |
| ,                                           | \ 0                          |          | _        | -      |               | _        | -             |             | 12       | _     |          | _          | _              |          |   |     |
| Change Period, (Y+R<br>Max Allow Headway (I |                              |          | -        | -      | 6.8           | -        | -             | 6.8         | 6.0      | _     | 0.0      | 6.0<br>3.1 | _              | 0.0      |   |     |
|                                             |                              |          | _        | -      | 3.3<br>24.2   | -        | -             | 3.3<br>18.9 | 3.<br>6. | -     | 0.0      |            | _              | 0.0      |   |     |
| Queue Clearance Time                        | , ,                          |          | -        | -      |               | -        | -             |             | _        | _     |          |            | 0.0 0.0        |          | _ | 0.0 |
| Green Extension Time                        | ( <i>g</i> <sub>e</sub> ), s |          | _        | -      | 1.00          | _        | -             | 1.00        | 0.9      | _     | 1.00     |            | _              | 0.0      |   |     |
| Phase Call Probability  Max Out Probability |                              |          | _        | -      | 1.00          | _        | -             | 1.00        | 1.0      | _     |          | 1.00       | _              |          |   |     |
| Wax Out Flobability                         |                              |          |          | •      | 1.00          |          | -             | 1.00        | 1.0      | 0     |          | 1.00       |                |          |   |     |
| Movement Group Res                          | sults                        |          |          | EB     |               |          | WE            |             | Т        | NB    |          |            | SB             |          |   |     |
| Approach Movement                           |                              |          | L        | Т      | R             | L        | Т             | R           | L        | Т     | R        | L          | T              | R        |   |     |
| Assigned Movement                           |                              |          | 7        | 4      | 14            | 3        | 8             | 18          | 5        | 2     | 12       | 1          | 6              | 16       |   |     |
| Adjusted Flow Rate ( v                      | ), veh/h                     |          | 296      | 101    |               | 158      | 110           |             | 157      | 1510  | 48       | 223        | 1860           | 115      |   |     |
| Adjusted Saturation Flo                     | ow Rate ( s ), veh/h/l       | n        | 1299     | 1515   |               | 1312     | 152           | )           | 1652     | 1687  | 1500     | 1665       | 1687           | 1500     |   |     |
| Queue Service Time (                        | g ₅ ), <b>s</b>              |          | 16.1     | 5.6    |               | 11.4     | 6.1           |             | 4.6      | 35.2  | 1.4      | 6.6        | 53.3           | 3.6      |   |     |
| Cycle Queue Clearanc                        | e Time ( <i>g c</i> ), s     |          | 22.2     | 5.6    |               | 16.9     | 6.1           |             | 4.6      | 35.2  | 1.4      | 6.6        | 53.3           | 3.6      |   |     |
| Green Ratio ( g/C )                         |                              |          | 0.22     | 0.22   |               | 0.22     | 0.22          | 2           | 0.08     | 0.57  | 0.57     | 0.08       | 0.57           | 0.57     |   |     |
| Capacity ( c ), veh/h                       |                              |          | 282      | 336    |               | 290      | 337           |             | 264      | 1910  | 849      | 266        | 1910           | 849      |   |     |
| Volume-to-Capacity Ra                       | atio (X)                     |          | 1.050    | 0.301  |               | 0.543    | 0.32          | 5           | 0.592    |       |          | 0.837      | 0.974          | 0.136    |   |     |
| Back of Queue (Q), ft                       | /In (50 th percentile)       |          | 303.4    | 49.9   |               | 91.1     | 54.5          | 5           | 48.2     | 325.7 | 11.5     | 84         | 561            | 29.2     |   |     |
| Back of Queue (Q), v                        | eh/ln ( 50 th percenti       | le)      | 12.1     | 2.0    |               | 3.6      | 2.2           |             | 1.9      | 12.8  | 0.5      | 3.4        | 22.1           | 1.2      |   |     |
| Queue Storage Ratio (                       | RQ) (50 th percent           | ile)     | 1.52     | 0.25   |               | 0.55     | 0.27          |             | 0.21     | 0.23  | 0.05     | 0.37       | 0.98           | 0.13     |   |     |
| Uniform Delay ( d 1 ), s                    | /veh                         |          | 44.0     | 32.4   |               | 39.5     | 32.6          | 5           | 44.4     | 17.7  | 9.7      | 45.4       | 21.7           | 10.2     |   |     |
| Incremental Delay ( d a                     | ?), s/veh                    |          | 67.2     | 0.2    |               | 1.2      | 0.2           |             | 2.4      | 3.4   | 0.1      | 19.2       | 15.3           | 0.3      |   |     |
| Initial Queue Delay ( d                     | з ), s/veh                   |          | 0.0      | 0.0    |               | 0.0      | 0.0           |             | 0.0      | 0.0   | 0.0      | 0.0        | 0.0            | 0.0      |   |     |
| Control Delay ( d ), s/v                    | eh                           |          | 111.2    | 32.6   |               | 40.7     | 32.8          |             | 46.9     | 21.1  | 9.9      | 64.6       | 37.0           | 10.5     |   |     |
| Level of Service (LOS)                      |                              |          | F        | С      |               | D        | С             |             | D        | С     | Α        | E          | D              | В        |   |     |
| Approach Delay, s/veh                       | /LOS                         |          | 91.2     |        | F             | 37.4     | 1             | D           | 23       | 2     | С        | 38.4       | 1              | D        |   |     |
| Intersection Delay, s/ve                    | eh / LOS                     |          |          |        | 3             | 7.2      |               |             |          |       |          | D          |                |          |   |     |
|                                             |                              |          |          |        |               |          |               |             |          |       |          |            |                |          |   |     |
| Multimodal Results                          |                              |          | <u> </u> | EB     |               |          | WE            |             | -        | NB    |          |            | SB             |          |   |     |
| Pedestrian LOS Score                        |                              |          | 2.66     | -      | С             | 2.66     | $\rightarrow$ | C           | 2.1      | -     | В        | 2.10       | _              | В        |   |     |
| Bicycle LOS Score / LO                      | JS                           |          | 1.14     |        | Α             | 0.93     | 3             | Α           | 1.9      | 0     | В        | 2.30       | )              | В        |   |     |

Generated: 4/9/2018 2:04:09 PM

### **EXHIBIT 19** STREET 1 AND 2 – PLOS Segment Evaluation

STREET

Street 1 and 2

FROM

Mer Bleue Road

TO

Vanguard Drive

SEGMENT SCORE C

YEAR

2029

DIRECTION

Eastbound-Westbound / Northbound-Southbound

MMLOS MODE

|                       |                     | Matan Valsiala                  |                                   |                | Segme          | nt PLOS        |                |
|-----------------------|---------------------|---------------------------------|-----------------------------------|----------------|----------------|----------------|----------------|
| Sidewalk Width<br>(m) | Boulevard Width (m) | Motor Vehicle<br>Traffic Volume | Presence of On-<br>street Parking |                | Operating S    | Speed (km/h)   |                |
| (11)                  | (11)                | (AADT)                          | Succe r aiking                    | ≤30            | >30 or 50      | >50 or 60      | >60 1          |
|                       |                     | ≤ 3000                          | N/A                               | А              | А              | А              | В              |
|                       | > 2                 | > 2000                          | Yes                               | А              | В              | В              | N/A            |
|                       |                     | > 3000                          | No                                | А              | В              | С              | D              |
|                       |                     | ≤ 3000                          | N/A                               | А              | А              | А              | В              |
| 2.0 or more           | 0.5 to 2            | > 3000                          | Yes                               | А              | В              | С              | N/A            |
|                       |                     | > 3000                          | No                                | А              | С              | D              | Е              |
|                       |                     | ≤ 3000                          | NA                                | А              | В              | С              | D              |
|                       | 0                   | > 3000                          | Yes                               | В              | В              | D              | N/A            |
|                       |                     | > 3000                          | No                                | В              | С              | Е              | F              |
|                       |                     | ≤ 3000                          | N/A                               | А              | А              | А              | В              |
|                       | > 2                 | > 3000                          | Yes                               | А              | В              | С              | N/A            |
|                       |                     | > 3000                          | No                                | А              | С              | D              | Е              |
|                       |                     | ≤ 3000                          | N/A                               | А              | В              | В              | D              |
| 1.8                   | 0.5 to 2            | > 3000                          | Yes                               | А              | С              | С              | N/A            |
|                       |                     | > 3000                          | No                                | В              | С              | Е              | Е              |
|                       |                     | ≤ 3000                          | N/A                               | Α              | В              | С              | D              |
|                       | 0                   | > 3000                          | Yes                               | В              | С              | D              | N/A            |
|                       |                     | > 3000                          | No                                | С              | D              | F              | F              |
|                       |                     | ≤ 3000                          | N/A                               | С              | С              | С              | С              |
|                       | > 2                 | > 3000                          | Yes                               | С              | С              | D              | N/A            |
|                       |                     | > 3000                          | No                                | С              | D              | Е              | Е              |
| 1.5                   |                     | ≤ 3000                          | N/A                               | С              | С              | С              | D              |
|                       | 0.5 to 2            | > 3000                          | Yes                               | С              | С              | D              | N/A            |
|                       |                     | 7 3000                          | No                                | D              | Е              | Е              | Е              |
|                       | 0                   | N                               | /A                                | D              | Е              | F <sup>2</sup> | F <sup>2</sup> |
| <1.5                  |                     | N/A                             |                                   | F <sup>3</sup> | F <sup>3</sup> | F <sup>3</sup> | F <sup>3</sup> |
| No sidewalk           |                     | N/A                             |                                   | C <sup>4</sup> | F <sup>3</sup> | F <sup>3</sup> | F <sup>3</sup> |

### **EXHIBIT 20**

# **MER BLEUE ROAD – PLOS Segment Evaluation**

STREET

Mer Bleue Road

FROM

210m S of Innes Road

TO

Brian Coburn Boulevard

SEGMENT SCORE E

YEAR

2029

DIRECTION

Northbound-Southbound

MMLOS MODE

|                       |                     | Motor Vehicle  |                                   |                | Segme          | nt PLOS        |                |
|-----------------------|---------------------|----------------|-----------------------------------|----------------|----------------|----------------|----------------|
| Sidewalk Width<br>(m) | Boulevard Width (m) | Traffic Volume | Presence of On-<br>street Parking |                | Operating S    | Speed (km/h)   |                |
| ()                    | ()                  | (AADT)         | 3000t running                     | ≤30            | >30 or 50      | >50 or 60      | >60 1          |
|                       |                     | ≤ 3000         | N/A                               | А              | А              | А              | В              |
|                       | > 2                 | > 3000         | Yes                               | А              | В              | В              | N/A            |
|                       |                     | > 3000         | No                                | А              | В              | С              | D              |
|                       |                     | ≤ 3000         | N/A                               | А              | А              | А              | В              |
| 2.0 or more           | 0.5 to 2            | > 3000         | Yes                               | А              | В              | С              | N/A            |
|                       |                     | > 3000         | No                                | A              | С              | D              | Е              |
|                       |                     | ≤ 3000         | NA                                | A              | В              | С              | D              |
|                       | 0                   | > 3000         | Yes                               | В              | В              | D              | N/A            |
|                       |                     | > 3000         | No                                | В              | С              | Е              | F              |
|                       |                     | ≤ 3000         | N/A                               | A              | А              | А              | В              |
|                       | > 2                 | > 3000         | Yes                               | А              | В              | С              | N/A            |
|                       |                     | > 3000         | No                                | А              | С              | D              | Е              |
|                       |                     | ≤ 3000         | N/A                               | А              | В              | В              | D              |
| 1.8                   | 0.5 to 2            | > 3000         | Yes                               | A              | С              | С              | N/A            |
|                       |                     | > 3000         | No                                | В              | С              | Е              | Е              |
|                       |                     | ≤ 3000         | N/A                               | А              | В              | С              | D              |
|                       | 0                   | > 3000         | Yes                               | В              | С              | D              | N/A            |
|                       |                     | > 3000         | No                                | C              | D              | F              | F              |
|                       |                     | ≤ 3000         | N/A                               | С              | С              | С              | С              |
|                       | > 2                 | > 3000         | Yes                               | С              | С              | D              | N/A            |
|                       |                     | > 3000         | No                                | С              | D              | Е              | Е              |
| 1.5                   |                     | ≤ 3000         | N/A                               | С              | С              | С              | D              |
|                       | 0.5 to 2            | > 2000         | Yes                               | С              | С              | D              | N/A            |
|                       |                     | > 3000         | No                                | D              | E              | Е              | Е              |
|                       | 0                   | N              | /A                                | D              | E              | F <sup>2</sup> | F <sup>2</sup> |
| <1.5                  |                     | N/A            |                                   | F <sup>3</sup> | F <sup>3</sup> | F <sup>3</sup> | F <sup>3</sup> |
| No sidewalk           |                     | N/A            |                                   | C <sup>4</sup> | F <sup>3</sup> | F <sup>3</sup> | F <sup>3</sup> |

### **EXHIBIT 21** MER BLEUE/VANGUARD – PLOS Signalized Intersection Evaluation

MAIN STREET Mer Bleue Road MINOR STREET Vanguard Drive

**APPROACHES** 

ΑII

YEAR

2029

DIRECTION

ΑII

MMLOS MODE

| MMLOS MODE PLOS                      | North<br>Approc                    |        | Souti<br>Approc                    |        | West<br>Approd                     |              |  |
|--------------------------------------|------------------------------------|--------|------------------------------------|--------|------------------------------------|--------------|--|
|                                      | Comment                            | Points | Comment                            | Points | Comment                            | Points       |  |
| 5.1 Crossing Distance & Conditions   |                                    |        |                                    |        |                                    |              |  |
| Median?                              | Yes                                |        | Yes                                |        | No                                 |              |  |
| Total Travel Lanes Crossed           | 5                                  | 75     | 5                                  | 75     | 3                                  | 105          |  |
| Island Refuge                        | No                                 | -4     | No                                 | -4     | No                                 | -4           |  |
| 5.2 Signal Phasing & Timing Features |                                    |        |                                    |        |                                    |              |  |
| Left Turn Conflict                   | No Left Turn                       | 0      | Protected                          | 0      | Permissive                         | -8           |  |
| Right Turn Conflict                  | Permissive<br>or Yield Control     | -5     | No Right Turn                      | 0      | Permissive<br>or Yield Control     | -5           |  |
| Right Turns on Red                   | RTOR<br>Allowed                    | -3     | RTOR<br>No Right Turn              | 0      | RTOR<br>Allowed                    | -3           |  |
| Leading Ped Interval                 | No                                 | -2     | No                                 | -2     | No                                 | -2           |  |
| 5.3 Corner Radius                    |                                    |        |                                    |        |                                    |              |  |
| Radius                               | > 15m to 25m                       | -8     | > 15m to 25m                       | -8     | > 15m to 25m                       | -8           |  |
| Right Turn                           | No<br>Channelization               | 0      | No<br>Channelization               | 0      | No<br>Channelization               | 0            |  |
| 5.4 Crosswalk Treatment              | Standard<br>Transverse<br>Markings | -7     | Standard<br>Transverse<br>Markings | -7     | Standard<br>Transverse<br>Markings | -7           |  |
| TOTAL PETSI SCORE                    |                                    | 46     |                                    | 54     |                                    | 68           |  |
| DELAY SCORE                          | 27                                 |        | 27                                 |        | 18                                 |              |  |
| From Signal Timing Plan              |                                    |        |                                    |        |                                    |              |  |
| Mer Bleue/210m S of Innes            |                                    |        |                                    |        |                                    |              |  |
| PETSI SCORE                          |                                    | D      |                                    | D      |                                    | C            |  |
| DELAY SCORE                          |                                    | C      |                                    | C      |                                    | В            |  |
| OVERALL APPROACH SCORE               |                                    | D      |                                    | D      |                                    | $\mathbf{C}$ |  |

## EXHIBIT 22 MER BLEUE/SMART CENTRES ACCESS – PLOS Signalized Intersection Evaluation

MAIN STREET Mer Bleue Road

MINOR STREET Smart Centre Access (210m S of Innes Road)

APPROACHES

ΑII

YEAR

2029

**DIRECTION** 

ΑII

MMLOS MODE

| MMLOS MODE PLOS                      | Norti<br>Approd                    |        | South<br>Approc                    |        | East<br>Approd                     |        | West<br>Approd                     |                        |
|--------------------------------------|------------------------------------|--------|------------------------------------|--------|------------------------------------|--------|------------------------------------|------------------------|
|                                      | Comment                            | Points | Comment                            | Points | Comment                            | Points | Comment                            | Points                 |
| 5.1 Crossing Distance & Conditions   |                                    |        |                                    |        |                                    |        |                                    |                        |
| Median?                              | Yes                                |        | Yes                                |        | No                                 |        | No                                 |                        |
| Total Travel Lanes Crossed           | 5                                  | 75     | 5                                  | 75     | 3                                  | 105    | 3                                  | 105                    |
| Island Refuge                        | No                                 | -4     | No                                 | -4     | No                                 | -4     | No                                 | -4                     |
| 5.2 Signal Phasing & Timing Features |                                    |        |                                    |        |                                    |        |                                    |                        |
| Left Turn Conflict                   | Protected                          | 0      | Protected                          | 0      | Permissive                         | -8     | Permissive                         | -8                     |
| Right Turn Conflict                  | Permissive/<br>or Yield Control    | -5                     |
| Right Turns on Red                   | RTOR<br>Allowed                    | -3     | RTOR<br>Allowed                    | -3     | RTOR<br>Allowed                    | -3     | RTOR<br>Allowed                    | -3                     |
| Leading Ped Interval                 | No                                 | -2     | No                                 | -2     | No                                 | -2     | No                                 | -2                     |
| 5.3 Corner Radius                    |                                    |        |                                    |        |                                    |        |                                    |                        |
| Radius                               | > 15m to 25m                       | -8                     |
| Right Turn                           | No<br>Channelization               | 0      | No<br>Channelization               | 0      | No<br>Channelization               | 0      | No<br>Channelization               | 0                      |
| 5.4 Crosswalk Treatment              | Standard<br>Transverse<br>Markings | -7     | Standard<br>Transverse<br>Markings | -7     | Standard<br>Transverse<br>Markings | -7     | Standard<br>Transverse<br>Markings | -7                     |
| TOTAL PETSI SCORE                    |                                    | 46     |                                    | 46     |                                    | 68     |                                    | 68                     |
| DELAY SCORE                          | 27                                 |        | 27                                 |        | 18                                 |        | 18                                 |                        |
| From Signal Timing Plan              |                                    |        |                                    |        |                                    |        |                                    |                        |
| Mer Bleue/210m S of Innes            |                                    |        |                                    |        |                                    |        |                                    |                        |
| PETSI SCORE                          |                                    | D      |                                    | D      |                                    | C      |                                    | C                      |
| DELAY SCORE                          |                                    | C      |                                    | C      |                                    | В      |                                    | В                      |
| OVERALL APPROACH SCORE               |                                    | D      |                                    | D      |                                    | C      |                                    | $\mid \mathbf{C} \mid$ |

### EXHIBIT 23 STREET 1 AND 2 – BLOS Segment Evaluation

STREET Street 1 and 2 FROM Mer Bleue Road

TO Vanguard Drive SEGMENT SCORE  ${f B}$ 

YEAR 2029

DIRECTION Eastbound—Westbound / Northbound—Southbound

MMLOS MODE BLOS

| Type of Bikeway                      |                                                                                                                   | LOS |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----|
| Physically Separated Bikeway (cycle  | e tracks, protected bike lanes and multi-use paths). Physical separation refers to, but is not                    | A   |
| imited to, curbs, raised medians, bo | llards and parking lanes (adjacent to the bike lane along the travelled way i.e. not curbside).                   | A   |
| Bike Lanes Not Adjacent Parking La   | ane - Select Worst Scoring Criteria                                                                               |     |
|                                      | 1 travel lane in each direction                                                                                   | Α   |
| No. of Travel Lanes                  | 2 travel lanes in each direction separated by a raised median                                                     | В   |
| NO. Of fraver Laries                 | 2 travel lanes in each direction without a separating median                                                      | С   |
|                                      | More than 2 travel lanes in each direction                                                                        | D   |
|                                      | More than 2 raye Lanes in each direction.<br>≥ 1.8 m wide bok table include in arker butter in paye or to lidir L | Α   |
| Bike Lane Width                      | ≥1.5 m to <1.8 m wide bike lane (includes marked buffer and paved gutter width)                                   | В   |
|                                      | ≥1.2 m to <1.5 m wide bike lane (includes marked buffer and paved gutter width)                                   | С   |
|                                      | ≤ 50 km/h operating speed                                                                                         | Α   |
| Operating Speed                      | 60 km/h operating speed                                                                                           | С   |
|                                      | > 70 km/h operating speed                                                                                         | Е   |
| Bike lane blockage                   | Rare                                                                                                              | Α   |
| commercial areas)                    | Frequent                                                                                                          | С   |
|                                      | rking Lane - Select Worst Scoring Criteria                                                                        |     |
| •                                    | 1 travel lane in each direction                                                                                   | А   |
| No. of Travel Lanes                  | 2 or more travel lanes in each direction                                                                          | C   |
|                                      | 4.5 m wide hike lane plus parking lane (includes marked buffer and paved gutter width)                            | Ā   |
|                                      | 4.25 m wide blike lane plus parking lane (includes marked buffer and paved gutter width)                          | В   |
| Bike Lane and Parking Lane Width     | ≤ 4.0 m wide blike tane plus parking lane (includes marked butter and paved gutter width)                         | С   |
|                                      | < 40 km/h operating speed                                                                                         | Α   |
| Decreting Coaced                     | 50 km/h operating speed                                                                                           | В   |
| Operating Speed                      | 60 km/h operating speed                                                                                           | D   |
|                                      | ≥ 70 km/h operating speed                                                                                         | F   |
| Bike lane blockage                   | Rare                                                                                                              | Α   |
| commercial areas)                    | Frequent                                                                                                          | С   |
| Mixed Traffic                        |                                                                                                                   |     |
|                                      | 2 travel lanes; ≤ 40 km/h; no marked centerline or classified as residential                                      | А   |
|                                      | 2 to 3 travel lanes; ≤ 40 km/h                                                                                    | _R_ |
|                                      | 2 travel lanes; 50 km/h; no marked centerline or classified as residential                                        | В   |
| No. of Travel Lanes and Operating    | 2 to 3 travel lanes; 50 km/h                                                                                      | H   |
| Speed                                | 4 to 5 travel lanes; ≤ 40 km/h                                                                                    | D   |
| 5,000                                | 4 to 5 travel lanes; ≥ 50 km/h                                                                                    | E   |
|                                      | 6 or more travel lanes; ≤ 40 km/h                                                                                 | E   |
|                                      | ≥ 60 km/h                                                                                                         | F   |
| Insignalized Crossing along Route    |                                                                                                                   | -   |
| onsignanzed crossing along Route     | 3 or less lanes being crossed; ≤ 40 km/h                                                                          | А   |
|                                      | 4 to 5 lanes being crossed; ≤ 40 km/h                                                                             | H   |
|                                      | 3 or less lanes being crossed; \$ 40 km/h                                                                         | В   |
|                                      | 4 to 5 lanes being crossed; 50 km/h                                                                               | C   |
| No. of Travel Lanes on Side Street   | 3 or less lanes being crossed; 60 km/h                                                                            | C   |
|                                      | 4 to 5 lanes being crossed; 60 km/h                                                                               | D   |
| and Operating Speed                  | 6 or more lanes being crossed; ≤ 40 km/h                                                                          | E   |
|                                      |                                                                                                                   | E   |
|                                      | 3 or less lanes being crossed; ≥ 65 km/h                                                                          | F   |
|                                      | 6 or more lanes being crossed; ≥ 50 km/h                                                                          | F   |
| Incinculinad Constitution            | 4 to 5 lanes being crossed; ≥ 65 km/h                                                                             | -   |
| insignalized Crossing along Route    | : with median refuge (≥ 1.8 m wide)                                                                               |     |
|                                      | 5 or less lanes being crossed; ≤ 40 km/h                                                                          | A   |
|                                      | 3 or less lanes being crossed; 50 km/h                                                                            | A   |
|                                      | 6 or more lanes being crossed; ≤ 40 km/h                                                                          | В   |
|                                      | 4 to 5 lanes being crossed; 50 km/h<br>3 or less lanes bunder ssed A0 PriPLICABLE                                 | В   |
| No. of Travel Lanes on Side Street   |                                                                                                                   | В   |
| and Operating Speed                  | 6 or more lanes being crossed; 50 km/h                                                                            | С   |
| and openating opena                  | 4 to 5 lanes being crossed; 60 km/h                                                                               | С   |
|                                      | 3 or less lanes being crossed; ≥ 65 km/h                                                                          | D   |
|                                      | 6 or more lanes being crossed; 60 km/h                                                                            | Е   |
|                                      | 4 to 5 lanes being crossed; ≥ 65 km/h                                                                             | Е   |
|                                      | 6 or more lanes being crossed; ≥ 65 km/h                                                                          | F   |

SEGMENT SCORE F

#### **EXHIBIT 24**

# **MER BLEUE ROAD – BLOS Segment Evaluation**

STREET Mer Bleue Road

FROM 210m S of Innes Road

TO Brian Coburn Boulevard

YEAR 2029

DIRECTION Northbound-Southbound

MMLOS MODE BLOS

| Type of Bikeway                                        |                                                                                                                        | LOS |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----|
| Physically Separated Bikeway (cycle                    | e tracks, protected bike lanes and multi-use paths). Physical separation refers to, but is not                         | Α   |
|                                                        | llards and parking lanes (adjacent to the bike lane along the travelled way i.e. not curbside).                        | ^   |
| Bike Lanes Not Adjacent Parking La                     | ane - Select Worst Scoring Criteria                                                                                    |     |
|                                                        | 1 travel lane in each direction                                                                                        | Α   |
| No. of Travel Lanes                                    | 2 travel lanes in each direction separated by a raised median                                                          | В   |
|                                                        | 2 travel lanes in each direction without a separating median                                                           | С   |
|                                                        | More than 2 travel lages in each direction.<br>≥ 1.8 m wide book lake include in arke to titer in payer of the lidth U | D   |
|                                                        | > 1.8 m wide bke lake includes marker by fier in a payes g to right.                                                   | Α   |
| Bike Lane Width                                        | ≥1.5 m to <1.8 m wide bike lane (includes marked buffer and paved gutter width)                                        | В   |
|                                                        | ≥1.2 m to <1.5 m wide bike lane (includes marked buffer and paved gutter width)                                        | С   |
|                                                        | ≤ 50 km/h operating speed                                                                                              | Α   |
| perating Speed                                         | 60 km/h operating speed                                                                                                | С   |
| politing opecu                                         | ≥ 70 km/h operating speed                                                                                              | Ē   |
| like lane blockage                                     | Rare                                                                                                                   | A   |
| commercial areas)                                      | Frequent                                                                                                               | C   |
|                                                        | rking Lane - Select Worst Scoring Criteria                                                                             | -   |
| ike Lanes Adjacent to curbside Pa                      | 1 travel lane in each direction                                                                                        | Α.  |
| o. of Travel Lanes                                     |                                                                                                                        | A   |
|                                                        | 2 or more travel lanes in each direction                                                                               | C   |
|                                                        | 4.5 m wide bike lane plus parking lane (includes marked buffer and paved gutter width)                                 | A   |
| like Lane and Parking Lane Width                       | 4.25 m wide bike lane plus parking lane (includes marked buffer and paved gutter width)                                | В   |
| and and running band multi                             | ≤ 4.0 m wide bike lane plus parking lane (includes marked buffer and paved gutter width)                               | С   |
|                                                        | < 40 km/h operating speed                                                                                              | Α   |
| booming Coord                                          | 50 km/h operating speed                                                                                                | В   |
| perating Speed                                         | 60 km/h operating speed                                                                                                | 4   |
|                                                        | > 70 km/h operating speed                                                                                              | F   |
| ike lane blockage                                      | Rare                                                                                                                   | A   |
| commercial areas)                                      | Frequent                                                                                                               | С   |
| lixed Traffic                                          |                                                                                                                        |     |
| inou irumo                                             | 2 travel lanes; ≤ 40 km/h; no marked centerline or classified as residential                                           | A   |
|                                                        | 2 to 3 travel lanes; ≤ 40 km/h                                                                                         | В   |
| No. of Travel Lanes and Operating                      | 2 travel lanes; 50 km/h; no marked centerline or classified as residential                                             | В   |
|                                                        | 2 to 3 travel lanes; 50 km/h                                                                                           | D   |
| peed                                                   | 4 to 5 travel lanes; ≤ 40 km/h                                                                                         | D   |
| speed                                                  | 4 to 5 travel lanes; ≥ 40 km/h                                                                                         |     |
|                                                        |                                                                                                                        | E   |
|                                                        | 6 or more travel lanes; ≤ 40 km/h                                                                                      | =   |
|                                                        | ≥ 60 km/h                                                                                                              | F   |
| Insignalized Crossing along Route                      |                                                                                                                        |     |
|                                                        | 3 or less lanes being crossed; ≤ 40 km/h                                                                               | Α   |
|                                                        | 4 to 5 lanes being crossed; ≤ 40 km/h                                                                                  | В   |
|                                                        | 3 or less lanes being crossed; 50 km/h                                                                                 | В   |
|                                                        | 4 to 5 lanes being crossed; 50 km/h                                                                                    | С   |
| lo. of Travel Lanes on Side Street                     | 3 or less lanes funder essed to PPLICABLE 4 to 5 lanes being crossed; 60 kmm                                           | С   |
| nd Operating Speed                                     |                                                                                                                        | D   |
|                                                        | 6 or more lanes being crossed; ≤ 40 km/h                                                                               | E   |
|                                                        | 3 or less lanes being crossed; ≥ 65 km/h                                                                               | Е   |
|                                                        | 6 or more lanes being crossed; ≥ 50 km/h                                                                               | F   |
|                                                        | 4 to 5 lanes being crossed; ≥ 65 km/h                                                                                  | F   |
| nsignalized Crossing along Route                       | : with median refuge (> 1.8 m wide)                                                                                    |     |
|                                                        | 5 or less lanes being crossed; ≤ 40 km/h                                                                               | Α   |
|                                                        | 3 or less lanes being crossed; 50 km/h                                                                                 | Α   |
|                                                        | 6 or more lanes being crossed; ≤ 40 km/h                                                                               | В   |
|                                                        |                                                                                                                        | В   |
| No. of Travel Lanes on Side Street and Operating Speed | 4 to 5 lanes being crossed; 50 km/b<br>3 or less lanes of indicrossed 40 m/l PLICABLE                                  | В   |
|                                                        | 6 or more lanes being crossed; 50 km/h                                                                                 | С   |
|                                                        | 4 to 5 lanes being crossed; 60 km/h                                                                                    | C   |
|                                                        | 3 or less lanes being crossed; ≥ 65 km/h                                                                               | D   |
|                                                        | 6 or more lanes being crossed; 60 km/h                                                                                 | E   |
|                                                        | 4 to 5 lanes being crossed; ≥ 65 km/h                                                                                  | E   |
|                                                        | 6 or more lanes being crossed; ≥ 65 km/h                                                                               | F   |
|                                                        |                                                                                                                        | г   |

 $\mathbf{E}$ 

SEGMENT SCORE

#### **EXHIBIT 25** MER BLEUE/VANGUARD – BLOS Signalized Intersection Evaluation

MAIN STREET Mer Bleue Road MINOR STREET Vanguard Drive

**APPROACHES** Northbound/Southbound

YEAR 2029

**DIRECTION** North/South

MMLOS MODE **BLOS** 

| Bikeway and Intersection Type         |                                                                                                                 | 108          |  |  |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------|--|--|
|                                       | a Signalized Intersection Approach                                                                              | LUS          |  |  |
| Right-turn Lane and Turning Speed of  | -                                                                                                               |              |  |  |
| Motorists                             | No impact on LTS (as long as cycling facility remains to the right of any turn lane - otherwise see pocket bike | lanes below) |  |  |
|                                       | Two-stage, left-turn bike box; ≤ 50 km/h                                                                        | A            |  |  |
|                                       | No lane crossed, ≤ 50 km/h                                                                                      | В            |  |  |
|                                       | 1 lane crossed, ≤ 40 km/h                                                                                       | В            |  |  |
| Cyclist Making a Left-turn and        | No lane crossed, ≥ 60 km/h T A DDI T A DI T                                                                     | C            |  |  |
| Operating Speed of Motorists (refer   | No lane crossed, ≥ 60 km/h NOT APPLICABLE                                                                       |              |  |  |
| to figure)                            | 2 or more lanes crossed, ≤ 40 km/h                                                                              |              |  |  |
| ib ligure)                            | 1 lane crossed, ≥ 60 km/h                                                                                       |              |  |  |
|                                       | 2 or more lanes crossed, ≥ 50 km/h                                                                              |              |  |  |
|                                       | All other single left-turn lane configurations                                                                  |              |  |  |
|                                       | Dual left-turn lanes (shared or exclusive)                                                                      |              |  |  |
| Pocket Bike Lanes on a Signalized In  |                                                                                                                 |              |  |  |
|                                       | Right-turn lane introduced to the right of the bike lane and ≤ 50 m long, turning speed ≤ 25 km/h (based on     |              |  |  |
|                                       | curb radii and angle of intersection)                                                                           | В            |  |  |
|                                       | Right-turn lane introduced to the right of the bike lane and > 50 m long, turning speed ≤ 30 km/h (based on     |              |  |  |
| Right-turn Lane and Turning Speed of  | curb radii and angle of intersection)                                                                           | D            |  |  |
| Motorists                             | Bike lane shifts to the left of the right-turn lane, turning speed ≤ 25 km/h (based on curb radii and angle of  |              |  |  |
|                                       | intersection)                                                                                                   | D            |  |  |
|                                       | Right-turn lane with any other configurations                                                                   | F            |  |  |
|                                       | Dual right-turn lanes (shared or exclusive)                                                                     | F            |  |  |
|                                       | Two-stage, left-turn bike box; ≤ 50 km/h                                                                        | A            |  |  |
|                                       | No lane crossed, ≤ 50 km/h                                                                                      | В            |  |  |
|                                       | 1 lane crossed, ≤ 40 km/h                                                                                       | В            |  |  |
|                                       | No lane crossed, ≥ 60 km/h                                                                                      | C            |  |  |
| Cyclist Making a Left-turn and        | 1 lane crossed, 50 km/h                                                                                         | C            |  |  |
| Operating Speed of Motorists (refer   | 2 or more lanes crossed, ≤ 40 km/h                                                                              |              |  |  |
| to figure)                            | 1 lane crossed, ≥ 60 km/h                                                                                       | E            |  |  |
|                                       |                                                                                                                 |              |  |  |
|                                       | 2 or more lanes crossed, ≥ 50 km/h                                                                              |              |  |  |
|                                       | All other single left-turn lane configurations                                                                  | F            |  |  |
| AN                                    | Dual left-turn lanes (shared or exclusive)                                                                      | F            |  |  |
| Mixed Traffic on a Signalized Interse |                                                                                                                 |              |  |  |
| B                                     | Right-turn lane 25 to 50 m long, turning speed ≤ 25 km/h (based on curb radii and angle of intersection)        | D<br>E       |  |  |
|                                       | Right-turn lane 25 to 50 m long, turning speed > 25 km/h (based on curb radii and angle of intersection)        |              |  |  |
| Motorists                             | Right-turn lane longer than 50 m                                                                                |              |  |  |
|                                       | Dual right-turn lanes (shared or exclusive)                                                                     |              |  |  |
|                                       | Two-stage, left-tum bike box; ≤ 50 km/h                                                                         |              |  |  |
|                                       | No lane crossed, ≤ 50 km/h NOT APPLICABLE  1 lane crossed, ≤ 40 km/h                                            | В            |  |  |
|                                       |                                                                                                                 | В            |  |  |
| Cyclist Making a Left-turn and        | No lane crossed, ≥ 60 km/h                                                                                      | D            |  |  |
| Operating Speed of Motorists (refer   | 1 lane crossed, 50 km/h                                                                                         | D            |  |  |
| to figure)                            | 2 or more lanes crossed, ≤ 40 km/h                                                                              | D<br>F       |  |  |
| io iiguie)                            | 1 lane crossed, ≥ 60 km/h                                                                                       |              |  |  |
|                                       | 2 or more lanes crossed, ≥ 50 km/h                                                                              |              |  |  |
|                                       | All other single left-turn lane configurations                                                                  | F            |  |  |
|                                       | Dual left-turn lanes (shared or exclusive)                                                                      | F            |  |  |
| Left-turn Configurations              |                                                                                                                 |              |  |  |
| Two-stage, left-ti                    | Im bike box No lane crossed One lane crossed  One Lane Crossed                                                  |              |  |  |

Notes:

1. Pocket bike lanes are defined as bike lanes that develop near intersections between vehicular right turn lanes on the right side and vehicular through or left lanes on the left side. All other configurations of bike lanes or separated facility that remain against the edge of the curb/parking lane and require right turning vehicles to yield to through cyclists will not impact the level of traffic stress (i.e. are considered to be LOS A).

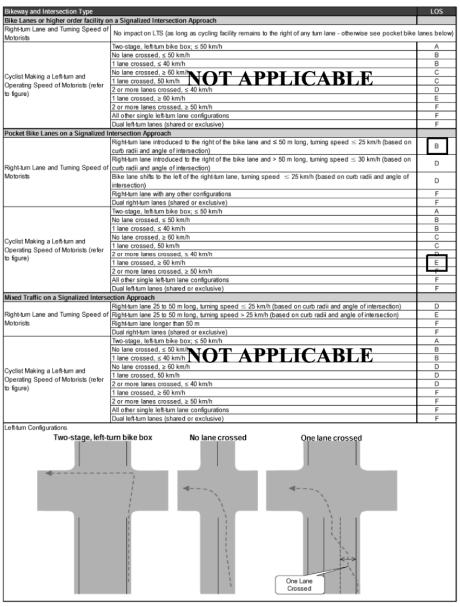
#### **EXHIBIT 26** MER BLEUE/SMART CENTRES ACCESS – BLOS Signalized Intersection Evaluation

MAIN STREET Mer Bleue Road

Smart Centre Access (210m S of Innes Road) MINOR STREET

APPROACHES Northbound/Southbound

SEGMENT SCORE


YEAR

2029

**DIRECTION** 

North/South

MMLOS MODE **BLOS** 



<sup>1.</sup> Pocket bike lanes are defined as bike lanes that develop near intersections between vehicular right turn lanes on the right side and vehicular through or left lanes on the left side. All other configurations of bike lanes or separated facility that remain against the edge of the curb/parking lane and require right turning vehicles to yield to through cyclists will not impact the level of traffic stress (i.e. are considered to be LOS A).

SEGMENT SCORE

#### **EXHIBIT 27**

# **MER BLEUE ROAD – TLOS Segment Evaluation**

STREET

Mer Bleue Road

FROM

210m S of Innes Road Brian Coburn Boulevard

TO YEAR

2029

DIRECTION

Northbound-Southbound

MMLOS MODE

**TLOS** 

| Facility Type  |                                      | Level/exposure to congestion delay, friction and incidents |          |                       | Quantitative    | LOS |
|----------------|--------------------------------------|------------------------------------------------------------|----------|-----------------------|-----------------|-----|
|                |                                      | Congestion                                                 | Friction | Incident<br>Potential | Measurement     | LUS |
| Segregated ROW |                                      | No                                                         | No       | No                    | N/A             | Α   |
| Bus lane       | No/limited parking/driveway friction | No                                                         | Low      | Low                   | $C_f \leq 60$   | В   |
|                | Frequent parking/driveway friction   | No                                                         | Medium   | Medium                | $C_f > 60$      | С   |
| Mixed Traffic  | Limited parking/driveway friction    | Yes                                                        | Low      | Medium                | $Vt/Vp \ge 0.8$ | D   |
|                | Moderate parking/driveway friction   | Yes                                                        | Medium   | Medium                | $Vt/Vp \le 0.6$ | Е   |
|                | Frequent parking/driveway friction   | Yes                                                        | High     | High                  | Vt/Vp < 0.4     | F   |

#### Notes:

Cf, Conflict Factor = = (Number of driveways x crossing volume) / 1 km

Vt/Vp is the ratio of average transit travel speed to posted speed limit

#### **EXHIBIT 28**

#### MER BLEUE ROAD - TkLOS Segment & Intersection Evaluation

STREET Mer Bleue Road

FROM 210m S of Innes Road TO

Brian Coburn Boulevard

YEAR 2029

Northbound-Southbound DIRECTION

MMLOS MODE **TkLOS**  SEGMENT SCORE

INTERSECTION SCORE A

Exhibit 20 - TkLOS Segment Evaluation Table

| Curb Lane Width (m) | Only two travel lanes (one in each direction) | More than two travel lanes |
|---------------------|-----------------------------------------------|----------------------------|
| >3.7                | В                                             | A                          |
| ≤3.5                | С                                             | A                          |
| ≤3.3                | D                                             | С                          |
| ≤3.2                | Е                                             | D                          |
| ≤3                  | F                                             | Е                          |

Exhibit 21 – TkLOS Signalized Intersection Evaluation Table

| Effective Corner Radius | One receiving lane on departure from intersection | More than one receiving lane on departure from intersection |
|-------------------------|---------------------------------------------------|-------------------------------------------------------------|
| < 10m                   | F                                                 | D                                                           |
| 10 to 15m               | E                                                 | В                                                           |
| > 15m                   | С                                                 | A                                                           |