

APPENDIX K

Technical Memorandum – Results of VSP Testing

TECHNICAL MEMORANDUM

DATE March 2013

PROJECT No. 12-1125-0045

VSP TEST RESULTS – CRRRC SITE, OTTAWA, ONTARIO

This memorandum presents the results of the vertical seismic profile (VSP) testing performed at the Capital Region Resource Recovery Centre (CRRRC) Site (Site) located in the eastern portion of the City of Ottawa. VSP testing was completed in BH-12-2-3 and BH-12-3-3 on February 20 and 21, 2013. Both boreholes were cased with a PVC pipe grouted in place, which extended above ground surface. Borehole BH-12-2-3 consists of about 36.7 metres of overburden overlying limestone bedrock. The overburden consists of approximately 34.6 metres of clay to silty clay overlying about 2.2 metres of sand and silt. Borehole BH-12-3-3 consists of approximately 39.8 metres of overburden overlying shale bedrock. The overburden consists of about 34.1 metres of clay to silty clay overlying about 5.7 metres of sand to sandy silt.

Methodology

For the VSP method, seismic energy is generated at the ground surface by an active seismic source and recorded by a geophone located in a nearby borehole at a known depth (Figure 1). The methodology can be applied using an active seismic source that produces either compression or shear waves. The time required for the energy to travel from the source to the receiver (geophone) provides a measurement of the average compression or shear wave seismic velocity of the medium between the source and the receiver. Data obtained from different geophone depths are used to calculate a detailed vertical seismic velocity profile of the subsurface in the immediate vicinity of the test borehole.

The high resolution results of a VSP survey are often used for earthquake engineering site classification, as per the National Building Code of Canada, 2010.

Field Work

The field work was completed on February 20th and 21st, 2013, by personnel from the Golder Ottawa offices.

Both compression and shear wave seismic sources were measured using a source located in close vicinity to the borehole. The seismic source for the compression wave test consisted of a 9.9 kilogram sledge hammer vertically impacted on a metal plate, located 2 metres from the borehole. The seismic source for the shear wave test consisted of a 3.0 metres long, 150 millimetres by 150 millimetres wooden beam, weighted down by a vehicle and horizontally struck with a 9.9 kilogram sledge hammer on alternate ends of the beam to induce polarized shear waves. The shear sources were located 2 metres from the borehole. Test measurements started at ground surface and were recorded in the borehole with a 3-component receiver spaced at 1-metre intervals below the ground surface, to a maximum depth of the borehole (40.2 metres in borehole BH-12-2-3 and 44.3 metres in borehole BH-12-3-3).

The seismic records collected for each source location were stacked a minimum of ten times to minimize the effects of ambient background seismic noise on the collected data. The data was sampled at 0.020833 millisecond intervals and a total time window of 0.341 seconds was collected for each seismic shot.

Figure 1: Example of Layout and resulting time traces from a VSP survey

Data Processing

Processing of the VSP test results consisted of the following main steps:

- 1) Combination of seismic records to present seismic traces for all depth intervals on a single plot for each seismic source and for each component;
- 2) Low Pass Filtering of data to remove spurious high frequency noise;
- 3) First break picking of the compression and shear wave arrivals; and,
- 4) Calculation of the average compression and shear wave velocity to each tested depth interval.

Processing of the VSP data was completed using the SeisImager/SW software package (Geometrics Inc.). The seismic records are presented on the following four plots and show the first break picks of the compression wave and shear wave arrivals for both boreholes overlaid on the seismic waveform traces recorded at the different geophone depths (Figures 2 to 5). The arrivals were picked on the vertical component for the compression source and on the two horizontal components for the shear source.

Figure 2: BH-12-2-3, first break picking of compression wave arrivals (red) along the seismic traces recorded at each receiver depth

Figure 3: BH-12-3-3, first break picking of compression wave arrivals (red) along the seismic traces recorded at each receiver depth

Figure 4: BH-12-2-3, first break picking of shear wave arrivals (red) along the seismic traces recorded at each receiver depth

Figure 5: BH-12-3-3, first break picking of shear wave arrivals (red) along the seismic traces recorded at each receiver depth

Results

The VSP results are summarized in Table 1 for BH-12-2-3 and Table 2 for BH-12-3-3. The shear wave and compression wave layer velocities, at the field collected one-metre intervals, were calculated by best fitting a theoretical travel time model to the field data collected at either half or one metre intervals. The depths presented on the tables are relative to ground surface.

The estimated dynamic engineering moduli, based on the calculated wave velocities, are also presented on Table 1 and 2. The engineering moduli were calculated using an estimated bulk density, based on the borehole log, but a more detailed geotechnical investigation would be necessary to determine a more exact density for each layer. For the topsoil down to a depth of approximately 36 metres in BH-12-2-3 and 38 metres in BH-12-3-3, a bulk density of 1,750 kg/m³ was estimated. Further down, to a depth of the bottom of the hole, the bulk density for the bedrock was estimated at 2,300 kg/m³.

The first layer of both boreholes is likely frozen, which is why a relatively high velocity is measured for both the compressional and shear wave velocity.

The average shear wave velocity from ground surface to a depth of 30 metres was measured to be 117 m/s for BH-12-2-3 and 112 m/s for BH-12-3-3.

Closure

We trust that these results meet your current needs. If you have any questions or require clarification, please contact the undersigned at your convenience.

Yours truly,

GOLDER ASSOCIATES LTD.

Stephane Sol, Ph.D. Geophysics Group

Brian Byerley, M. Sc., P. Eng. Senior Hydrogeologist, Principal

SS/PF/BTB/sg n:\active\2012\1125 - environmental and civil engineering\12-1125-0045 crrrc ea eastern on\phase 4500_final_easr\vol 3 - g h&g\appendices\appendices\appendix k\12-1125-0045 vsp techmemo final.docx

Attachments: Tables 1 and 2

Layer Depth (m)					Dynamic Engineering Properties				
				Estimated		Shear	Deformation		
		Compressional	Shear Wave	Bulk Density	Poissons	Modulus	Modulus	Bulk Modulus	
Тор	Bottom	Wave (m/s)	(m/s)	(kg/m ³)	Ratio	(MPa)	(MPa)	(MPa)	
0.0	0.2	872	138	1750	0.49	33	99	1286	
0.0	1.2	747	110	1750	0.49	21	63	948	
1.2	2.2	820	113	1750	0.49	22	67	1147	
2.2	3.2	985	99	1750	0.49	17	51	1675	
3.2	4.2	1115	104	1750	0.50	19	57	2150	
4.2	5.2	1210	108	1750	0.50	20	61	2535	
5.2	6.2	1260	99	1750	0.50	17	51	2755	
6.2	7.2	1230	102	1750	0.50	18	54	2623	
7.2	8.2	1345	102	1750	0.50	18	55	3142	
8.2	9.2	1350	104	1750	0.50	19	57	3164	
9.2	10.2	1370	103	1750	0.50	19	56	3260	
10.2	11.2	1380	103	1750	0.50	19	56	3308	
11.2	12.2	1390	105	1750	0.50	19	58	3355	
12.2	13.2	1390	122	1750	0.50	26	78	3346	
13.2	14.2	1390	125	1750	0.50	27	82	3345	
14.2	15.2	1400	130	1750	0.50	30	88	3391	
15.2	16.2	1400	128	1750	0.50	29	86	3392	
16.2	17.2	1400	165	1750	0.49	48	142	3366	
17.2	18.2	1400	150	1750	0.49	39	118	3378	
18.2	19.2	1420	152	1750	0.49	40	121	3475	
19.2	20.2	1410	152	1750	0.49	40	121	3425	
20.2	21.2	1405	152	1750	0.49	40	121	3401	
21.2	22.2	1400	152	1750	0.49	40	121	3376	
22.2	23.2	1410	152	1750	0.49	40	121	3425	
23.2	24.2	1490	152	1750	0.49	40	121	3831	
24.2	25.2	1450	150	1750	0.49	39	118	3627	
25.2	26.2	1450	170	1750	0.49	51	151	3612	
26.2	27.2	1430	175	1750	0.49	54	160	3507	
27.2	28.2	1350	180	1750	0.49	57	169	3114	
28.2	29.2	1520	200	1750	0.49	70	209	3950	
29.2	30.2	1520	200	1750	0.49	70	209	3950	
30.2	31.2	1520	200	1750	0.49	70	209	3950	
31.2	32.2	1520	200	1750	0.49	70	209	3950	
32.2	33.2	1520	200	1750	0.49	70	209	3950	
33.2	34.2	1520	340	1750	0.47	202	596	3773	
34.2	35.2	1520	320	1750	0.48	179	529	3804	
35.2	36.2	1900	300	1750	0.49	158	468	6108	
36.2	37.2	3700	1900	2300	0.32	8303	21935	20416	
37.2	38.2	3700	1900	2300	0.32	8303	21935	20416	
38.2	39.2	3700	1900	2300	0.32	8303	21935	20416	
39.2	40.2	3700	1900	2300	0.32	8303	21935	20416	

Wave Velocity - Field Collected vs. Modelled Data

<u>Notes</u>

1. Depth Presented relative to ground surface.

2. This Table to be analyzed in conjunction with the accompanying report.

Golder Associates

TABLE 2 SHEAR WAVE VELOCITY PROFILE AT BH 12-3-3

Layer Depth (m)					Dynamic Engineering Properties				
				Estimated		Shear	Deformation		
		Compressional	Shear Wave	Bulk Density	Poissons	Modulus	Modulus	Bulk Modulus	
Тор	Bottom	Wave (m/s)	(m/s)	(kg/m ³)	Ratio	(MPa)	(MPa)	(MPa)	
0.0	1.3	2385	165	1750	0.50	48	143	9891	
0.0	2.3	1110	92	1750	0.50	15	44	2136	
2.3	3.3	1020	88	1750	0.50	14	41	1803	
3.3	4.3	1022	90	1750	0.50	14	42	1809	
4.3	5.3	1260	92	1750	0.50	15	44	2759	
5.3	6.3	1480	93	1750	0.50	15	45	3813	
6.3	7.3	1500	93	1750	0.50	15	45	3917	
7.3	8.3	1520	108	1750	0.50	20	61	4016	
8.3	9.3	1530	103	1750	0.50	19	56	4072	
9.3	10.3	1550	103	1750	0.50	19	56	4180	
10.3	11.3	1550	103	1750	0.50	19	56	4180	
11.3	12.3	1560	145	1750	0.50	37	110	4210	
12.3	13.3	1560	125	1750	0.50	27	82	4222	
13.3	14.3	1340	130	1750	0.50	30	88	3103	
14.3	15.3	1550	130	1750	0.50	30	89	4165	
15.3	16.3	1600	128	1750	0.50	29	86	4442	
16.3	17.3	1550	128	1750	0.50	29	86	4166	
17.3	18.3	1600	128	1750	0.50	29	86	4442	
18.3	19.3	1600	130	1750	0.50	30	89	4441	
19.3	20.3	1580	130	1750	0.50	30	89	4329	
20.3	21.3	1580	125	1750	0.50	27	82	4332	
21.3	22.3	1580	165	1750	0.49	48	142	4305	
22.3	23.3	1580	165	1750	0.49	48	142	4305	
23.3	24.3	1400	165	1750	0.49	48	142	3366	
24.3	25.3	1250	165	1750	0.49	48	142	2671	
25.3	26.3	1280	170	1750	0.49	51	151	2800	
26.3	27.3	1250	170	1750	0.49	51	151	2667	
27.3	28.3	1150	185	1750	0.49	60	178	2235	
28.3	29.3	1250	185	1750	0.49	60	178	2655	
29.3	30.3	1200	210	1750	0.48	77	229	2417	
30.3	31.3	1200	215	1750	0.48	81	240	2412	
31.3	32.3	1250	215	1750	0.48	81	240	2627	
32.3	33.3	1200	190	1750	0.49	63	188	2436	
33.3	34.3	1220	185	1750	0.49	60	178	2525	
34.3	35.3	1220	190	1750	0.49	63	188	2520	
35.3	36.3	1220	650	1750	0.30	739	1925	1619	
36.3	37.3	1250	680	1750	0.29	809	2087	1655	
37.3	38.3	1260	680	2300	0.29	1064	2754	2233	
38.3	39.3	1500	800	1750	0.30	1120	2915	2444	
39.3	40.3	3000	1800	2300	0.22	7452	18164	10764	
40.3	41.3	3100	1900	2300	0.20	8303	19913	11032	
41.3	42.3	3200	1800	2300	0.27	7452	18907	13616	
42.3	43.3	3200	1800	2300	0.27	7452	18907	13616	
43.3	44.3	3200	1800	2300	0.27	7452	18907	13616	

Wave Velocity - Field Collected vs. Modelled Data

<u>Notes</u> 1. Depth Presented relative to ground surface.

2. This Table to be analyzed in conjunction with the accompanying report.