May 2015

Addendum 2 to Technical Support Document \#9
TRAFFIC IMPACT STUDY

Table of Contents

1.0 BACKGROUND 1
2.0 ROADS AND INTERSECTIONS 2
3.0 PROPOSED CAPITAL REGION RESOURCE RECOVERY CENTRE 2
4.0 FUTURE TRAFFIC VOLUMES 5
4.1 Traffic Analysis 5
5.0 FINDINGS AND RECOMMENDATIONS 17
TABLES
Table 4.1: Boundary/CRRRC Access - LoS and $95^{\text {th }}$ Percentile Queue 11
Table 4.2: Boundary/Mitch Owens - LoS and $95^{\text {th }}$ Percentile Queue 12
Table 4.3: Boundary/Thunder - Year 2022 LoS and $95^{\text {th }}$ Percentile Queue 14
Table 4.4: Boundary/Thunder - Year 2027 LoS and $95^{\text {th }}$ Percentile Queue 15
Table 4.5: Boundary/Eastbound 417 Ramp - Year 2022 LoS and $95^{\text {th }}$ Percentile Queue 15
Table 4.6: Boundary/Eastbound 417 Ramp - Year 2027 LoS and $95^{\text {th }}$ Percentile Queue 16
Table 4.7: Boundary/Westbound 417 Ramp - Year 2027 LoS and $95^{\text {th }}$ Percentile Queue 16
FIGURES
Figure 2.1: Weekday Peak AM and PM Hour Traffic Counts 3
Figure 3.1: Weekday Peak AM and PM Hour Site Generated Trips 4
Figure 4.1: 2022 Weekday Peak AM and PM Hour Background Traffic 7
Figure 4.2: 2027 Weekday Peak AM and PM Hour Background Traffic 8
Figure 4.3: 2022 Weekday Peak AM and PM Hour Total Traffic 9
Figure 4.4: 2027 Weekday Peak AM and PM Hour Total Traffic 10
Figure 4.5: Proposed Boundary Road/CRRRC Access Geometry. 13

APPENDICES

Appendix

Exhibits 1 to 5 - Traffic Counts
Exhibits 6 to 30 - Operational Analysis, Left Turn Lane Warrants and Traffic Signal Warrants

1.0 BACKGROUND

The Site for the proposed Capital Region Resource Recovery Centre (CRRRC) is to be located on the east side of Boundary Road at the northeast corner of Boundary Road and Devine Road. The facility would provide waste diversion activities and a landfill component. Site access is proposed directly onto Boundary Road located approximately $1,130 \mathrm{~m}$ south of Highway 417 and approximately 600 m south of Thunder Road.

A Traffic Impact Study (TIS) report (TSD \#9) was prepared as a supporting document of the December 2014 Environmental Assessment (EA) report. The TIS examined the operation of the Site access onto Boundary Road and the impact that the trips generated from the Site would have on the operation of the surrounding intersections. The report examined key intersections, namely the intersections of rural arterial roads that would be impacted by additional traffic from the Site. The report did not consider the intersection of Boundary Road and Thunder Road, formally named Ninth Line Road, as the Site was not assigning any expected trips to Thunder Road and Thunder Road is not an arterial road. The study examined the operation of the surrounding intersections at the year 2022, which represents five years beyond the opening of the Site, which is anticipated to be the year 2017. The study acknowledged but did not assess the expected traffic from the proposed East Gateway Properties truck transfer terminal as the traffic study and Site information for that development was not available at the time the CRRRC Traffic Impact Study report was being prepared and build out of the truck transfer terminal was understood to be beyond the original 2022 horizon year of the study.

The Ministry of Transportation reviewed the TIS. Their review is contained in a March 9, 2015 letter from the Corridor Management Section to the Environmental Approvals Branch. A meeting was subsequently held with staff of the Ministry of Transportation and City of Ottawa on April 22, 2015 to discuss the comments. This Addendum addresses the comments of both the Ministry of Transportation and City of Ottawa as discussed at the April 22 meeting.

This Addendum addresses the following comments that were listed in the Ministry of Transportation letter dated March 9, 2015:

1. That the proponent incorporates traffic expected to be generated by the Plan of Subdivision development opposite Thunder Road (East Gateway Properties truck transfer terminal).
2. That the proponent uses a more realistic truck percentage for its traffic analysis.
3. That the proponent provides both a 5 year and 10 year beyond opening date traffic analysis.
4. That the proponent review the need to add traffic generated by maintenance and workers to and from the Site in addition to the truck trips generated.
5. That the proponent assesses the impact of the improvements necessary to Boundary Road to determine whether they can in fact be safely and efficiently implemented and considers MTO's suggestions with respect to the relocation of the main point of access for the Site.
6. That the proponent creates a plan to monitor the traffic and operation of the traffic generated by the Site after the opening and at a reasonable interval after opening to determine if further improvements are required.
7. That the proponent proposes mitigation measures to reduce the visual distraction of the Secondary Digester Flare.

GROUP OF COMPANIES

2.0 ROADS AND INTERSECTIONS

This Addendum further considers the operation of the following intersections in relation to traffic from the proposed CRRRC Site:

1. Proposed Site Access and Boundary Road
2. Boundary Road and Mitch Owens Road
3. Boundary Road and Thunder Road (Ninth Line Road)
4. Boundary Road and Highway 417 Eastbound Ramps
5. Boundary Road and Highway 417 Westbound Ramps

The above intersections all intersect with Boundary Road. Boundary Road is a north-south two lane arterial road under the jurisdiction of the City of Ottawa (Ottawa Road 41). The road has an asphalt surface with a width of approximately 7.5 m plus gravel shoulders. The posted speed limit along the road in the vicinity of the Site is $80 \mathrm{~km} / \mathrm{h}$.

The study utilizes the most recent traffic counts, which differ in some cases from those used in the original TIS.
Figure 2.1 shows the most recent traffic counts taken at the intersections examined in this Addendum. The traffic counts are provided in the Appendix as Exhibit 1 for the Boundary/Mitch Owens intersection, Exhibit 2 for the Boundary/Highway 417 Eastbound Ramp intersection, Exhibit 3 for the Boundary/Highway 417 Westbound Ramp intersection, and Exhibit 4 for the Boundary/Thunder intersection.

3.0 PROPOSED CAPITAL REGION RESOURCE RECOVERY CENTRE

The proposed CRRRC Site is located on approximately 192 hectares of land. The Site will operate six days a week (Monday through Saturday), and will be open for material and waste receipts between 6:00 AM and 6:00 PM.

The Site will have one access onto Boundary Road located approximately $1,130 \mathrm{~m}$ south of Highway $417,850 \mathrm{~m}$ south of the eastbound Highway on/off ramp, 600 m south of Thunder Road and 700 m north of Mitch Owens Road. This access would be mainly used for truck access/egress from the Site. A secondary Site access is located onto Frontier Road, which would be used by vehicles associated with Site operations, maintenance or emergency. The Frontier Road access would be low volume (maintenance and workers entering and exiting the Site) and would mainly occur outside the peak hours of the adjacent roads. It was therefore considered appropriate to not assign worker-related traffic using the Frontier Road access in the peak hour traffic analysis.

The number of expected Site generated trips was determined by the proponent by considering the amount and types of waste expected to be received at the Site, the anticipated diversion, and other Site activities. This Addendum has utilized the same trip generation and distribution as the TIS, namely 43 truck trips entering and 43 exiting the Site during both the weekday peak AM and PM hours. The expected Site generated trips at full development are shown in Figure 3.1.

CAPITAL REGION RESOURCE RECOVERY CENTRE

NOT TO SCALE
Figure 2.1: Weekday Peak AM and PM Hour Traffic Counts

Figure 3.1: Weekday Peak AM and PM Hour Site Generated Trips

4.0 FUTURE TRAFFIC VOLUMES

This Addendum has assumed an annual compounded growth rate of 2 percent as discussed in the TIS. The growth rate was applied to all lane movements shown in the traffic counts presented in Figure 2.1 for the weekday peak AM and PM hour. Figure 4.1 shows the expected 2022 background traffic, which would represent traffic five years beyond build out from growth outside the immediate area.

The East Gateway Properties truck transfer terminal is proposed to be located on the east side of Boundary Road north of the CRRRC Site. The truck transfer terminal will have an access that will form the east access to the intersection of Boundary Road and Thunder Road. It is understood that the terminal facility expects build out by the year 2026. For the expected background traffic at the year 2027, which represents ten years beyond opening of the CRRRC Site, this Addendum has increased the existing traffic (Figure 2.1) at a 2 percent compounded rate to the year 2027, and added the expected traffic from the truck transfer terminal. The volume and distribution of trips from the proposed terminal were determined from the Transportation Impact Study report dated October 2014 for 5341 Boundary Road Transport prepared by Dillon Consulting Limited (Dillon). The Dillon TIS examined both a "Low Building Coverage" and a "High Building Coverage" scenario. As discussed at the meeting of April 22, 2015, this Addendum has utilized the traffic associated with the average of both scenarios and added the expected terminal trips to the 2027 background traffic, which is shown in Figure 4.2.

The expected total traffic volumes at the year 2022, which are shown in Figure 4.3, were determined by the addition of the expected background traffic of Figure 4.1 and the expected Site generated trips of Figure 3.1. For the expected 2027 total traffic shown in Figure 4.4, the 2027 background traffic (Figure 4.2) was added to the Site generated trips (Figure 3.1).

4.1 Traffic Analysis

The following are the results of the intersection analysis at the year 2022 (5 years beyond CRRRC Site opening), and at the year 2027 (10 years beyond opening), including the East Gateway Properties truck transfer terminal trips.

Boundary Road and CRRRC Site Access

A left turn lane warrant analysis was conducted at the Site access using the procedure documented in the MTO publication, Geometric Design Standards for Ontario Highways. The analysis utilized the expected 2027 traffic and a design speed of $90 \mathrm{~km} / \mathrm{h}$. ($80 \mathrm{~km} . / \mathrm{h}$. posted speed) at the access. The warrant analysis, which is presented in the Appendix as Exhibit 5, determined that a southbound left turn lane with 25 m for passenger car storage was required during the both the peak AM and PM hour. Utilizing a passenger car equivalent for heavy vehicles of 2.0 as documented in the MTO publication, the required length of the southbound left turn lane at the CRRRC truck access would therefore be 50 m . The following is the recommended lane configuration:

- Northbound Boundary Road
- Southbound Boundary Road
- Westbound Site Access

One shared through/right lane
One through lane
One exclusive left turn lane

- 50 m vehicular storage
- 60 m parallel lane
- 145 m taper

One shared left and right turn lane (8 m in width)

This required lane configuration at the Site access location is the same as presented in the original TIS. The design and construction of the Site access location would be the responsibility of Taggart Miller.

Figure 4.1: 2022 Weekday Peak AM and PM Hour Background Traffic

CAPITAL REGION RESOURCE RECOVERY CENTRE

Figure 4.2: 2027 Weekday Peak AM and PM Hour Background Traffic

Figure 4.3: 2022 Weekday Peak AM and PM Hour Total Traffic

Figure 4.4: 2027 Weekday Peak AM and PM Hour Total Traffic

In order to reduce gravel spillage onto Boundary Road from turning trucks and help in the deceleration and acceleration of trucks, 75 m tapers are proposed along the east side of Boundary Road at the Site access. Figure 4.5 shows the proposed lane geometry at the CRRRC access. The 600 m separation between the CRRRC access and Thunder Road is sufficient to accommodate the Site's southbound left turn lane and a proposed future northbound Boundary Road left turn lane onto Thunder Road (as described in the Dillon TIS for East Gateway Properties).

The analysis determined that the CRRRC access is predicted to operate at an acceptable level of service with all lane movements functioning at a Level of Service (LoS) "A" to "C" at both years 2022 and 2027. The expected 95th percentile queue at the southbound Boundary Road left turn movement would be 0.29 vehicles during the 2027 peak AM hour, which can be accommodated in the 50 m storage lane provided. Table 4.1 summarizes the operation of the intersection with the analysis sheets provided as Exhibit 6 to Exhibit 9.

Table 4.1: Boundary/CRRRC Access - LoS and 95 ${ }^{\text {th }}$ Percentile Queue

Intersection Approach	Weekday Peak AM Hour 2022 Total (2027 Total)		Weekday Peak PM Hour 2022 Total (2027 Total)	
	LoS	Q $_{95}$ (Veh.)	LoS	Q $_{95}$ (Veh.)
SB Left - Boundary	B (B)	$0.22(0.29)$	A (A)	$0.16(0.17)$
EB Left/Right - Site Access	C (D)	$0.50(0.80)$	C (C)	$0.39(0.43)$

Boundary Road and Mitch Owens Road

The Boundary/Mitch Owens intersection is an unsignalized "T" intersection with Boundary Road forming the northbound and southbound approaches and Mitch Owens Road the eastbound approach. A traffic analysis was completed for the Boundary/Mitch Owens intersection for the expected 2022 traffic. The operational analysis determined that the eastbound Mitch Owens Road left turn movement would function at a LoS "E" during the peak AM hour with an approach delay at the movement of 44.1 sec . The 2022 analysis, which includes the CRRRC Site and growth in background traffic, is provided in Exhibit 10 for the peak AM hour and Exhibit 11 for the peak PM hour and summarized in Table 4.2.

Table 4.2: Boundary/Mitch Owens - LoS and $95^{\text {th }}$ Percentile Queue

Intersection Approach	Weekday Peak AM Hour $\mathbf{2 0 2 2}$ Total (2027 Total)		Weekday Peak PM Hour $\mathbf{2 0 2 2}$ Total (2027 Total)	
	LoS	$\mathbf{Q Q}_{95}$ (Veh.)	LoS	$\mathbf{Q Q}_{95}$ (Veh.)
NB Left/Through - Boundary	A (A)	$0.40(0.48)$	A (B)	$0.11(0.14)$
EB Left - Mitch Owens	E (F)	$3.39(8.05)$	D (E)	$2.72(5.12)$
EB Right - Mitch Owens	A (A)	$0.09(0.10)$	C (C)	$1.53(2.10)$

Figure 4.5: Proposed Boundary Road/CRRRC Access Geometry

At the year 2027, which includes an increase in background traffic plus the expected trips from the truck transfer terminal, all movements function well with the exception of the eastbound Mitch Owens Road left turn movement, which functions at a LoS "F" with an approach delay of 125.8 sec during the peak AM hour. Exhibit 12 and 13 shows the operation of the intersection at the year 2027, which is summarized in Table 4.2. A traffic signal warrant analysis was prepared (Exhibit 14), which determined that the intersection meet the warrants for the installation of traffic control signals for the expected traffic at the year 2027.

There would be no requirement for modifications to the intersection due to the development of the CRRRC Site alone, as the CRRRC adds only a minimal volume of traffic to the intersection. Background traffic at this intersection should however be monitored to determine if traffic signals should be installed in the future, as the analysis determined that they may be warranted by the year 2027 due to the increase in background traffic..

Boundary Road and Thunder Road (Ninth Line Road)

The intersection of Boundary Road and Thunder Road is a " T " intersection with Boundary Road forming the northbound and southbound approaches and Thunder Road the eastbound approach. There would be no requirement for modifications to the intersection due to the development of the CRRRC Site since the CRRRC adds only a minimal volume of traffic to the intersection. The 2022 operation of the intersection is shown in Table 4.3 with the analysis work sheets provided as Exhibits 15 and 16.

Table 4.3: Boundary/Thunder - Year 2022 LoS and $95^{\text {th }}$ Percentile Queue

Intersection Approach\quadWeekday Peak AM Hour 2022 Total	Weekday Peak PM Hour 2022 Total			
	LoS	Q95 (Veh.) 2	LoS	Q $_{95}$ (Veh.)
NB Left/Through - Boundary	A	0.04	A	0.03
EB Left/Right - Thunder	C	1.26	C	1.10

By the year 2027 the truck transfer terminal will be completed. The terminal access would form the westbound approach to the Boundary/Thunder intersection. Utilizing the proposed intersection lane configuration proposed by Dillon Consulting Limited (East Gateway Properties consultant) and an unsignalized intersection with stop signs at the eastbound and westbound Thunder Road approaches, the intersection was determined to operate at a LoS "F" at both the eastbound and westbound approaches during the peak AM and PM hours. Table 4.4 summarizes the operation of the intersection with the analysis sheets provided as Exhibit 17 and Exhibit 18. A traffic signal warrant analysis (Exhibit 19) determined that traffic signals and modifications to the lane configuration would be warranted when the East Gateway Properties truck transfer terminal is developed. The design and construction of these intersection modifications at Boundary/Thunder Road would be the responsibility of East Gateway Properties Limited.

Table 4.4: Boundary/Thunder - Year 2027 LoS and $95^{\text {th }}$ Percentile Queue

Intersection Approach	Weekday Peak AM Hour (2027 Total)		Weekday Peak PM Hour (2027 Total)	
	LoS	Q $_{95}$ (Veh.)	LoS	Q $_{95}$ (Veh.)
NB Left - Boundary	(A)	(0.04)	(A)	(0.04)
SB Left - Boundary	(B)	(1.89)	(A)	(0.86)
WB Left/Through - Access	(F)	(5.50)	(F)	(11.16)
WB Right - Terminal Access	(C)	(4.34)	(B)	(2.42)
EB Left/Through/Right - Thunder	(F)	(13.64)	(F)	(9.21)

Boundary Road and Highway 417 Eastbound on/off Ramps

The Boundary/EB Highway 417 Ramp is an unsignalized " T " intersection with Boundary Road forming the northbound and southbound approaches and Highway 417 on/off ramps the eastbound approach. Using the expected 2022 traffic (including the CRRRC Site trips) and the existing lane geometry, the intersection would function at an acceptable level of service (LoS "A" to "C"). The analysis assumes an eastbound flared approach allowing the storage for 8 right turning vehicles. The approach has sufficient width for the flared intersection and an observation during peak hour confirms the lane usage. Table 4.5 summarizes the operation of the intersection with the analysis sheets provided as Exhibit 20 and Exhibit 21.

Table 4.5: Boundary/Eastbound 417 Ramp - Year 2022 LoS and $95^{\text {th }}$ Percentile Queue

Intersection Approach	Weekday Peak AM Hour 2022 Total		Weekday Peak PM Hour 2022 Total	
	LoS	Q $_{95}$ (Veh.)	LoS	Q $_{95}$ (Veh.)
NB Left/Through - Boundary	A	0.14	A	0.25
EB Left/Right - 417 off ramp	B	0.56	C	5.40

For the year 2027 analysis, the study has used the expected background traffic, which includes the truck transfer terminal, and the proposed intersection lane configuration proposed by Dillon Consulting Limited (East Gateway Properties consultant) and an unsignalized intersection with stop signs at the eastbound 417 off ramp approach. The intersection modifications would include an exclusive northbound Boundary Road left turn lane and exclusive eastbound left and right turn lanes. The intersection was determined to operate at an acceptable level of service during the peak AM hour, but during the 2027 peak PM hour the eastbound 417 left turn lane would function at a LoS "E" and right turn lane at a LoS "F". Table 4.6 summarizes the operation of the intersection with the analysis sheets provided as Exhibits 22 and 23.

Table 4.6: Boundary/Eastbound 417 Ramp - Year 2027 LoS and $95^{\text {th }}$ Percentile Queue

Intersection Approach	Weekday Peak AM Hour (2027 Total)		Weekday Peak PM Hour (2027 Total)	
	LoS	Q95 (Veh.)	LoS	Q95 (Veh.)
NB Left - Boundary	(A)	(0.24)	(A)	(0.45)
EB Left - 417 off ramp	(D)	(0.45)	(E)	(2.62)
EB Right - 417 off ramp	(B)	(2.85)	(F)	(16.58)

A traffic signal warrant analysis, which is provided as Exhibit 24, determined that the intersection did meet the warrants for the installation of traffic control signals. With the installation of traffic signals, the operational analysis shown in Exhibit 25 determined that the intersection would function at a volume to capacity ratio relating to a LoS " C " $(\mathrm{v} / \mathrm{c}=0.76)$ during the peak AM hour with a signal cycle of 100 seconds. During the peak PM hour the intersection was determined to function at a LoS " D " $(\mathrm{v} / \mathrm{c}=0.84)$ as shown in Exhibit 26.

The analysis indicates that the intersection of Boundary Road and eastbound Highway 417 Ramp needs to be modified in the future with additional turning lanes and traffic control signals that would increase the capacity of the intersection to handle the anticipated traffic. The intersection modifications would be comprised of the lane configuration and traffic signals as proposed by Dillon Consulting Limited on behalf of East Gateway Properties. The apportionment of costs for modifications at this intersection will be determined through the City approvals process for the East Gateway Properties development.

Boundary Road and Highway 417 Westbound on/off Ramps

The Boundary/WB Highway 417 Ramp is an unsignalized " T " intersection with Boundary Road forming the northbound and southbound approaches and the Highway 417 Ramp the westbound approach. The operational analysis using the existing lane configuration and stop sign at the westbound approach determined that the intersection operated at an acceptable level of service (LoS "A" to "C") during the peak hours for the expected traffic at 2022 and 2027. Table 4.7 summarizes the operation of the intersection with the analysis sheets provided as Exhibits 27 to 30 . There would be no requirement to modify the intersection within the time line of this study.

Table 4.7: Boundary/Westbound 417 Ramp - Year 2027 LoS and $95{ }^{\text {th }}$ Percentile Queue

Intersection Approach	Weekday Peak AM Hour 2022 Total (2027 Total)		Weekday Peak PM Hour 2022 Total (2027 Total)	
	LoS	Q $_{95}$ (Veh.)	LoS	Q $_{95}$ (Veh.)
SB Left/Through - Boundary	A (B)	$0.14(0.19)$	$\mathrm{A}(\mathrm{A})$	$0.06(0.09)$
WB Left/Right - 417 off ramp	C (C)	$0.84(2.61)$	$\mathrm{B}(\mathrm{C})$	$0.30(0.67)$

5.0 FINDINGS AND RECOMMENDATIONS

This Addendum has addressed the comments of Ministry of Transportation (MTO) staff in their letter dated March 9, 2015, as further discussed on April 22. The study has re-evaluated the intersections within the scope of work of the original Traffic Impact Study (TIS) report. The following is a summary of the responses to MTO comments:

1. The analysis has examined the operation of the intersections for the expected traffic at the year 2022, which represents five years beyond opening of the CRRRC Site. The study has also examined the intersections at a time period of ten years beyond opening, which includes the expected trips from the Plan of Subdivision development (proposed East Gateway Properties truck transfer terminal) that will be completed by the year 2026. The Addendum has used more recent traffic counts provided by the City of Ottawa and Ministry of Transportation.
2. The analysis has utilized the truck percentage at the intersections as documented in the City of Ottawa and MTO traffic counts, as well as the percentage of trucks determined in the Dillon Transportation Impact Study for the proposed truck transfer terminal.
3. The traffic analysis has examined the impact of the CRRRC Site at both 5 and 10 years beyond the 2017 opening date.
4. The hours of the facility for material and waste receipt at the CRRRC Site are from 6:00 AM to 6:00 PM. Because the workers would arrive and leave outside the peak hours of the adjacent roads, their trips were not considered in the peak AM and PM hour traffic analysis.
5. The proposed CRRRC access is located approximately 600 m south of Thunder Road. As discussed with MTO, this distance would be sufficient to provide a southbound Boundary Road left turn lane into the CRRRC Site and a northbound Boundary Road left turn lane onto Thunder Road.
6. The number of truck trips will be recorded as part of the operation of the facility and the average number of peak hour trucks will be compared to that assumed in the traffic study, and can be reported annually in the Site monitoring report.
7. The viewpoint projection from Highway 417 of the proposed flare and power generation units (there is no Secondary Digester Flare) is shown on Figure 11.6.3-2 of Volume I of the EA submission package. The proposed berm and tree screen for the flare and power generation units will be slightly higher than the units themselves, and will therefore provide an effective screen of the units from Highway 417.

APPENDIX

Exhibits 1 to 5 - Traffic Counts
Exhibits 6 to 30 - Operational Analysis, Left Turn Lane Warrants and Traffic Signal Warrants

Exhibit 1: Year 2013 Peak AM and PM Hour Traffic Counts - Boundary/Mitch Owens

Exhibit 2: Year 2013 Peak AM and PM Hour Traffic Counts - Boundary/Eastbound 417 Ramps

HWY 417 @ BOUNDARY RD IC-96
Eastern

Count Day: Wednesday
Count Date: 25-Sep-2013

Exhibit 3: Year 2013 Peak AM and PM Hour Traffic Counts - Boundary/Westbound 417 Ramps

Intersection ID:493400000(--N--)
Count Day: Wednesday
Count Date
25-Sep-2013

Exhibit 4: Year 2010 Peak AM and PM Hour Traffic Counts - Boundary/Thunder

Public Works - Traffic Services Turning Movements Count - Peak Period Diagram

BOUNDARY RD @ NINTH LINE RD

Validation Note: Results generated Apr 26, 2014. All records still in violation were set to Edited.

Exhibit 5: Year 2027 Peak AM and PM Hour Left Turn Lane Warrants - BoundaryICRRRC Access

PEAK PM HOUR

CAPITAL REGION RESOURCE RECOVERY CENTRE TRAFFIC IMPACT STUDY- ADDENDUM 2

Exhibit 6: Year 2022 Peak AM Hour Traffic Analysis - BoundaryICRRRC Access

HCS+: Unsignalized Intersections Release 5.6

TWO-WAY STOP CONTROL SUMMARY \qquad

Analysis Time Period: Peak AM Hour		
Intersection:	Boundary/Site Access	
Analysis Year: \quad Year 2022		
Project ID: CRRRC Site		
East/West Street: \quad Site Access		
North/South Street: Boundary Road		
Intersection Orientation: NS	Study period (hrs): 0.25	

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Northbound				Southbound		
	1	12		3	4	5	6
	L	- T		R	L	T	R
Volume		580		4	39	18	
Peak-Hour Factor, PHF		0.92		0.92	0.92		
Hourly Flow Rate, HFR		630		4	42	20	
Percent Heavy Vehicles		--		--	100	-	--
Median Type/Storage		Undivided			/		
RT Channelized?							
Lanes		1	0		1	1	
Configuration			TR			T	
Upstream Signal?		No				No	

Approach	Delay, NB 1	Queue Length, and Level of Service						
Movement		4	7	8	9	10	11	12
Lane Config		L \|		LR				
v (vph)		42		46				
C (m) (vph)		614		320				
v/c		0.07		0.14				
95\% queue length		0.22		0.50				
Control Delay		11.3		18.1				
LOS		B		C				
Approach Delay				18.1				
Approach LOS				C				

CAPITAL REGION RESOURCE RECOVERY CENTRE TRAFFIC IMPACT STUDY- ADDENDUM 2

Exhibit 7: Year 2022 Peak PM Hour Traffic Analysis - Boundary/CRRRC Access

HCS+: Unsignalized Intersections Release 5.6

TWO-WAY STOP CONTROL SUMMARY \qquad

Analysis Time Period: Peak PM Hour		
Intersection:	Boundary/Site Access	
Analysis Year: \quad Year 2022		
Project ID: CRRRC Site		
East/West Street: \quad Site Access		
North/South Street: Boundary Road		
Intersection Orientation: NS	Study period (hrs): 0.25	

Major Street: Approach	Northbound			Southbound		
				4	5	6
	L	T	R	L	T	R
Volume		331	4	39	72	
Peak-Hour Factor, PHF		0.92	0.92	0.92	0.	
Hourly Flow Rate, HFR		359	4	42	78	
Percent Heavy Vehicles		--	--	100	--	--
Median Type/Storage						
RT Channelized?						
Lanes		1		1	1	
Configuration		TR			T	
Upstream Signal?	No				No	

Approach	Delay, NB 1	Queue Length, and Level of Service						
Movement		4	7	8	9	10	11	12
Lane Config		L		LR				
v (vph)		42		46				
$\mathrm{C}(\mathrm{m})$ (vph)		809		398				
v/c		0.05		0.12				
95\% queue length		0.16		0.39				
Control Delay		9.7		15.2				
LOS		A		C				
Approach Delay				15.2				
Approach LOS				C				

CAPITAL REGION RESOURCE RECOVERY CENTRE TRAFFIC IMPACT STUDY- ADDENDUM 2

Exhibit 8: Year 2027 Peak AM Hour Traffic Analysis - Boundary/CRRRC Access

HCS+: Unsignalized Intersections Release 5.6

TWO-WAY STOP CONTROL SUMMARY \qquad

Analysis Time Period: Peak AM Hour		
Intersection:	Boundary/Site Access	
Analysis Year: \quad Year 2027		
Project ID: CRRRC Site		
East/West Street: \quad Site Access		
North/South Street: Boundary Road		
Intersection Orientation: NS	Study period (hrs): 0.25	

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Northbound				Southbound		
	1	12		3	4	5	6
	L	- T		R	L	T	R
Volume		824		4	39	24	
Peak-Hour Factor, PHF		0.92		0.92	0.92		
Hourly Flow Rate, HFR		895		4	42	26	
Percent Heavy Vehicles		--		--	100	- -	--
Median Type/Storage		Undivided			/		
RT Channelized?							
Lanes		1	0		1	1	
Configuration			TR			T	
Upstream Signal?		No				No	

	Delay, NB	Queue L	Length, and Level of Service					
Approach		SB		tbound			bou	
Movement	1	4	7	8	9	10	11	12
Lane Config		L		LR				
v (vph)		42		46				
$\mathrm{C}(\mathrm{m})$ (vph)		467		211				
v/c		0.09		0.22				
95\% queue length		0.29		0.80				
Control Delay		13.5		26.8				
LOS		B		D				
Approach Delay				26.8				
Approach LOS				D				

CAPITAL REGION RESOURCE RECOVERY CENTRE TRAFFIC IMPACT STUDY- ADDENDUM 2

Exhibit 9: Year 2027 Peak PM Hour Traffic Analysis - BoundaryICRRRC Access

HCS+: Unsignalized Intersections Release 5.6
TWO-WAY STOP CONTROL SUMMARY \qquad

Analysis Time Period: Peak PM Hour		
Intersection:	Boundary/Site Access	
Analysis Year: \quad Year 2027		
Project ID: CRRRC Site		
East/West Street: \quad Site Access		
North/South Street: Boundary Road		
Intersection Orientation: NS	Study period (hrs): 0.25	

Major Street: Appr	$1{ }^{\text {Northbound }}$		Southbound		
			4	5	6
	L T	R	L	T	R
Volume	347	4	39	83	
Peak-Hour Factor, PHF	0.92	0.92	0.92		
Hourly Flow Rate, HFR	377	4	42	91	
Percent Heavy Vehicles	--	--	100	- -	--
Median Type/Storage	Undivided		/		
RT Channelized?					
Lanes	1		1	1	
Configuration				T	
Upstream Signal?	No			No	

Approach	Delay, NB 1	Queue Length, and Level of Service						
Movement		4	7	8	9	10	11	12
Lane Config		L \|		LR				
v (vph)		42		46				
C(m) (vph)		794		363				
v/c		0.05		0.13				
95\% queue length		0.17		0.43				
Control Delay		9.8		16.4				
LOS		A		C				
Approach Delay				16.4				
Approach LOS				C				

CAPITAL REGION RESOURCE RECOVERY CENTRE TRAFFIC IMPACT STUDY- ADDENDUM 2

Exhibit 10: Year 2022 Peak AM Hour Traffic Analysis - Boundary/Mitch Owens

HCS+: Unsignalized Intersections Release 5.6

TWO-WAY STOP CONTROL SUMMARY \qquad

Analysis Time Period: Peak AM Hour		
Intersection:	Boundary/Mitch Owens	
Analysis Year: \quad Year 2022		
Project ID: CRRRC Site		
East/West Street: \quad Mitch Owens Road		
North/South Street: Boundary Road		
Intersection Orientation: NS	Study period (hrs): 0.25	

CAPITAL REGION RESOURCE RECOVERY CENTRE TRAFFIC IMPACT STUDY- ADDENDUM 2

Exhibit 11: Year 2022 Peak PM Hour Traffic Analysis - Boundary/Mitch Owens

HCS+: Unsignalized Intersections Release 5.6

TWO-WAY STOP CONTROL SUMMARY \qquad

Analysis Time Period: Peak PM Hour		
Intersection:	Boundary/Mitch Owens	
Analysis Year: \quad Year 2022		
Project ID: CRRRC Site		
East/West Street: \quad Mitch Owens Road		
North/South Street: Boundary Road		
Intersection Orientation: NS	Study period (hrs): 0.25	

CAPITAL REGION RESOURCE RECOVERY CENTRE TRAFFIC IMPACT STUDY- ADDENDUM 2

Exhibit 12: Year 2027 Peak AM Hour Traffic Analysis - Boundary/Mitch Owens

HCS+: Unsignalized Intersections Release 5.6

TWO-WAY STOP CONTROL SUMMARY \qquad

Analysis Time Period: Peak AM Hour		
Intersection:	Boundary/Mitch Owens	
Analysis Year: \quad Year 2027		
Project ID: CRRRC Site		
East/West Street: \quad Mitch Owens Road		
North/South Street: Boundary Road		
Intersection Orientation: NS	Study period (hrs): 0.25	

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	1 Northbound 3			Southbound			
				4	5	6	
	L	T	R	L	T	R	
Volume	162	671			126	124	
Peak-Hour Factor, PHF	0.92	0.9			0.92	0.92	
Hourly Flow Rate, HFR	176	729			136	134	
Percent Heavy Vehicles	5	--	--		- -	- -	
Median Type/Storage	Undiv	ded		1			
RT Channelized?						No	
Lanes	0	1			1	1	
Configuration					T	R	
Upstream Signal?		No			No		
Minor Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Westbound			Eastbound			
	7	8	9	10	11	12	
	L	T	R	L	T	R	
Volume				157		28	
Peak Hour Factor, PHF				0.92		0.92	
Hourly Flow Rate, HFR				170		30	
Percent Heavy Vehicles				6		5	
Percent Grade (\%)		0			0		
Flared Approach: Exists?/Storage				/			1
Lanes Configuration				1	1		
						R	

Approach	NB	SB		bo			bou	
Movement	1	4	7	8	9	10	11	12
Lane Config	LT					L		R
v (vph)	176					170		30
C (m) (vph)	1276					169		905
v/c	0.14					1.01		0.03
95\% queue length	0.48					8.05		0.10
Control Delay	8.3					125.8		9.1
LOS	A					F		A
Approach Delay						108.3		
Approach LOS						F		

CAPITAL REGION RESOURCE RECOVERY CENTRE TRAFFIC IMPACT STUDY- ADDENDUM 2

Exhibit 13: Year 2027 Peak PM Hour Traffic Analysis - Boundary/Mitch Owens

HCS+: Unsignalized Intersections Release 5.6

TWO-WAY STOP CONTROL SUMMARY \qquad

Analysis Time Period: Peak PM Hour		
Intersection:	Boundary/Mitch Owens	
Analysis Year: \quad Year 2027		
Project ID: CRRRC Site		
East/West Street: \quad Mitch Owens Road		
North/South Street: Boundary Road		
Intersection Orientation: NS	Study period (hrs): 0.25	

Exhibit 14: Year 2027 Traffic Signal Warrant Analysis - Boundary/Mitch Owens

MINIMUM WARRANTS FOR INSTALLATION OF TRAFFIC SIGNAL USING PROJECTED VOLUME

Location. . Boundary Road
of . . Mitch Owens Road
(Roadway)
(Intersecting Road)
Municipality _ City of Ottawa
_Projected Volume . Year 2027.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{WARRANT} \& \multirow{3}{*}{DESCRIPTION} \& \multicolumn{2}{|l|}{MINIMUM REQUIREMENT FOR 2 LANE HIGHWAYS} \& \multicolumn{3}{|c|}{COMPLIANCE} \\
\hline \& \& \multirow[t]{2}{*}{\begin{tabular}{l}
\[
2 .
\] \\
FREE \\
FLOW
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
3. \\
RESTRICT. \\
FLOW
\end{tabular}} \& \multicolumn{2}{|l|}{SECTIONAI} \& \multirow[t]{2}{*}{4. ENTIRE \%} \\
\hline \& \& \& \& NUMBER \& \% \& \\
\hline 1. VEHICULAR VOLUME \& \begin{tabular}{l}
1. \\
A. Vehicle volume all approaches (Average hour) \\
B. Vehicle volume, along minor roads, (Average hour)
\end{tabular} \& \begin{tabular}{l}
(480) \\
IEQ
\end{tabular} \& \[
720
\]
\[
170
\] \& \[
665
\]
\[
133
\] \& 100
74 \& 74\% \\
\hline 2. DELAY TO CROSS TRAFFIC \& \begin{tabular}{l}
1. \\
A. Vehicle volume, along artery (Average hour) \\
B. Combined vehicle and pedestrian volume crossing artery from minor roads, (Average hour)
\end{tabular} \& \begin{tabular}{l}
480) \\
(50)
\end{tabular} \& 720
\[
75
\] \& 532

84 \& 100

100 \& 100\%

\hline
\end{tabular}

Projected Average Hour - Use the sum of the AM and PM Peak volumes divided by 4

NOTES:

1. Vehicle volume warrants (1Λ) and (2Λ) for intersections of roadways having two or more moving lanes in one direction, should be 25% higher than the values given above.
2. Warrant values for free flow apply when the 85 percentile speed of artery traffic equals or exceeds $70 \mathrm{Km} / \mathrm{h}$ or when the intersection lies within the built-up area of an isolated community having a population of less than 10,000 .
3. Warrant values for restricted flow apply to large urban communities when the 85 percentile speed of artery traffic does not exceed $70 \mathrm{Km} / \mathrm{h}$.
4. The lowest sectional percentage governs the entire Warrant.
5. For " T " intersections the warrant values for minor road should be increased by 50% (Warrant 1 B only).
6. The crossing volumes are defined as:
(a) Left turns from both minor road approaches
(b) The heavicst through volume from the minor road
(c) 50% of the heavier left turn movement from major road when both of the following are met:
(i) the left turn volume > 120 vph .
(ii) the left turn volume plus the opposing volume $>720 \mathrm{vph}$.
(d) Pedestrians crossing the major road.

CAPITAL REGION RESOURCE RECOVERY CENTRE TRAFFIC IMPACT STUDY- ADDENDUM 2

Exhibit 15: Year 2022 Peak AM Hour Traffic Analysis - Boundary/Thunder

HCS+: Unsignalized Intersections Release 5.6

TWO-WAY STOP CONTROL SUMMARY \qquad

```
Analysis Time Period: Peak AM Hour
Intersection: Boundary/Thunder
Analysis Year: Year 2022
Project ID: CRRRC Site - Total Traffic
East/West Street: Thunder Road
North/South Street: Boundary Road
Intersection Orientation: NS Study period (hrs): 0.25
```

Major Street: Approach	Northbound			Southbound			
	1	2	3	4	5	6	
	L	T	R	L	T	R	
Volume	14	576			254	39	
Peak-Hour Factor, PHF	0.92	0.92			0.92	0.92	
Hourly Flow Rate, HFR	15	626			276	42	
Percent Heavy Vehicles	2	--	-		--	--	
Median Type/Storage	Undivided			/			
RT Channelized?							
Lanes	0	1				1	
Configuration							
Upstream Signal?		No			No		

Minor Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Westbound			Eastbound				
	7	8	9		10	11	12	
	L	T	R		L	T	R	
Volume					75		13	
Peak Hour Factor, PHF					0.92		0.92	
Hourly Flow Rate, HFR					81		14	
Percent Heavy Vehicles					2		2	
Percent Grade (\%)		0				\bigcirc		
Flared Approach: Exists?/Storage							No	/
Lanes					0		0	
Configuration						LR		

CAPITAL REGION RESOURCE RECOVERY CENTRE TRAFFIC IMPACT STUDY- ADDENDUM 2

Exhibit 16: Year 2022 Peak PM Hour Traffic Analysis - Boundary/Thunder

HCS+: Unsignalized Intersections Release 5.6

TWO-WAY STOP CONTROL SUMMARY \qquad

```
Analysis Time Period: Peak PM Hour
Intersection: Boundary/Thunder
Analysis Year: Year 2022
Project ID: CRRRC Site - Total Traffic
East/West Street: Thunder Road
North/South Street: Boundary Road
Intersection Orientation: NS Study period (hrs): 0.25
```

Major Street: Approach	Northbound			Southbound			
	1	2	3	4	5	6	
	L	T	R	L	T	R	
Volume		295			602	85	
Peak-Hour Factor, PHF	0.92	0.92			0.92	0.92	
Hourly Flow Rate, HFR	9	320			654	92	
Percent Heavy Vehicles	2	--	-		--	--	
Median Type/Storage	Undivided			/			
RT Channelized?							
Lanes	0	1				1	
Configuration							
Upstream Signal?		No			No		

Minor Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Westbound			Eastbound				
	7	8	9		10	11	12	
	L	T	R		L	T	R	
Volume					52		23	
Peak Hour Factor, PHF					0.92		0.92	
Hourly Flow Rate, HFR					56		24	
Percent Heavy Vehicles					2		2	
Percent Grade (\%)		0				0		
Flared Approach: Exists?/Storage							No	/
Lanes					0		0	
Configuration						LR		

Approach	Delay, Queue Length, and Level of Service \qquad							
Movement	1	4	7	8	9	10	11	12
Lane Config	LT						LR	
v (vph)	9						80	
$\mathrm{C}(\mathrm{m})$ (vph)	862						290	
v/c	0.01						0.	
95\% queue length	0.03						1.1	
Control Delay	9.2						22.	
LOS	A						C	
Approach Delay							22.	
Approach LOS							C	

CAPITAL REGION RESOURCE RECOVERY CENTRE TRAFFIC IMPACT STUDY- ADDENDUM 2

Exhibit 17: Year 2027 Peak AM Hour Traffic Analysis - Boundary/Thunder

HCS+: Unsignalized Intersections Release 5.6

TWO-WAY STOP CONTROL SUMMARY \qquad

```
Analysis Time Period: Peak AM Hour
Intersection: Boundary/Thunder
Analysis Year: Year 2027
Project ID: CRRRC Site - Total Traffic
East/West Street: Thunder Road
North/South Street: Boundary Road
Intersection Orientation: NS Study period (hrs): 0.25
```

Major Street: Approach	Northbound			Southbound			
	1	2	3	4	5	6	
	L	T	R	L	T	R	
Volume	17	551	129	296	249	43	
Peak-Hour Factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly Flow Rate, HFR	18	598	140	321	270	46	
Percent Heavy Vehicles	2	--	--	14	--	--	
Median Type/Storage	Undiv	ded		,			
RT Channelized?			No				
Lanes	1	1		1	1	0	
Configuration	L	T				TR	
Upstream Signal?		No			No		
Minor Street: Approach Movement	Westbound			Eastbound			
	7	8	9	10	11	12	
	L	T	R	L	T	R	
Volume	61	0	284	83	0	14	
Peak Hour Factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly Flow Rate, HFR	66	0	308	90	0	15	
Percent Heavy Vehicles	9	0	11	2	0	2	
Percent Grade (\%)		0			0		
Flared Approach: Exists	torage					No	/
Lanes	0	1		0	1	0	
Configuration		R			LTR		

CAPITAL REGION RESOURCE RECOVERY CENTRE TRAFFIC IMPACT STUDY- ADDENDUM 2

Exhibit 18: Year 2027 Peak PM Hour Traffic Analysis - Boundary/Thunder

HCS+: Unsignalized Intersections Release 5.6

TWO-WAY STOP CONTROL SUMMARY \qquad

```
Analysis Time Period: Peak PM Hour
Intersection: Boundary/Thunder
Analysis Year: Year 2027
Project ID: CRRRC Site - Total Traffic
East/West Street: Thunder Road
North/South Street: Boundary Road
Intersection Orientation: NS Study period (hrs): 0.25
```

Major Street: Approach	${ }_{1}$ Northbound			Southbound		
				4	5	6
	L	T	R	L	T	R
Volume	11	293	55	235	593	94
Peak-Hour Factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92
Hourly Flow Rate, HFR	11	318	59	255	644	102
Percent Heavy Vehicles	2	-	--	11	--	--
Median Type/Storage	Undivided			1		
RT Channelized?	$11^{\text {No }}$					
Lanes				1	10	
Configuration		T	R	L	TR	
Upstream Signal?		No			No	

Minor Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Westbound			Eastbound			
	7	8	9	10	11	12	
	L	T	R	L	T	R	
Volume	115	0	295	57	0	25	
Peak Hour Factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly Flow Rate, HFR	124	0	320	61	0	27	
Percent Heavy Vehicles	7	0	13	2	0	2	
Percent Grade (\%)		0			0		
Flared Approach: Exists?/Storage				/		No	/
Lanes	0	1	1	0	1	0	
Configuration	L	R			LTR		

	lay,	Queue	ngth,	nd Lev	of	vic		
Approach	NB	SB		bound			bound	
Movement	1	4	7	8	9	10	11	12
Lane Config	L	L	LT		R		LTR	
v (vph)	11	255	124		320		88	
$\mathrm{C}(\mathrm{m})$ (vph)	862	1134	68		698		43	
v/c	0.01	0.22	1.82		0.46		2.05	
95\% queue length	0.04	0.86	11.16		2.42		9.21	
Control Delay	9.2	9.1	522.1		14.4		688.3	
LOS	A	A	F		B		F	
Approach Delay			156.2			688.3		
Approach LOS			F					

Exhibit 19: Year 2027 Traffic Signal Warrant Analysis - Boundary/Thunder

MINIMUM WARRANTS FOR INSTALLATION OF TRAFFIC SIGNAL USING PROJECTED VOLUME

Location_ . Boundary Road
of . . Thunder Road
(Roadway)
(Intersecting Road)
Municipality _ City of Ottawa
_Projected Volume . Year 2027.

WARRANT	DESCRIPTION	MINIMUM REQUIREMENT FOR 2 LANE HIGHWAYS		COMPLIANCE		
		2. FREE FLOW	$\begin{aligned} & \text { 3. } \\ & \text { RESTRICT. } \\ & \text { FLOW } \end{aligned}$	SFCTIONAI		$\begin{aligned} & \text { 4. } \\ & \text { ENTIRE } \\ & \% \end{aligned}$
				NUMBER	\%	
1. VEHICULAR VOLUME	1. A. Vehicle volume all approaches (Average hour) B. Vehicle volume, along minor roads, (Average hour)	(480) (120)	720 170	$\begin{aligned} & 875 \\ & 234 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	100\%
2. DELAY TO CROSS TRAFFIC	1. A. Vehicle volume, along artery (Average hour) B. Combined vehicle and pedestrian volume crossing artery from minor roads, (Average hour)	(480) (50)	720 75	642 79	100 100	100\%

Projected Average Hour - Use the sum of the AM and PM Peak volumes divided by 4

NOTES:

1. Vehicle volume warrants (1Λ) and (2Λ) for intersections of roadways having two or more moving lanes in one direction, should be 25% higher than the values given above.
2. Warrant values for free flow apply when the 85 percentile speed of artery traffic equals or exceeds $70 \mathrm{Km} / \mathrm{h}$ or when the intersection lies within the built-up area of an isolated community having a population of less than 10,000 .
3. Warrant values for restricted flow apply to large urban communities when the 85 percentile speed of artery traffic does not exceed $70 \mathrm{Km} / \mathrm{h}$.
4. The lowest sectional percentage governs the entire Warrant.
5. For "T" intersections the warrant values for minor road should be increased by 50% (Warrant 1B only).
6. The crossing volumes are defined as:
(a) Left turns from both minor road approaches
(b) The heaviest through volume from the minor road
(c) 50% of the heavier left turn movement from major road when both of the following are met:
(i) the left turn volume > 120 vph .
(ii) the left turn volume plus the opposing volume $>720 \mathrm{vph}$.
(d) Pedestrians crossing the major road.

Exhibit 20: Year 2022 Peak AM Hour Traffic Analysis - Boundary/Highway 417 Eastbound Ramps

```
HCS+: Unsignalized Intersections Release 5.6
```

TWO-WAY STOP CONTROL SUMMARY \qquad

Analysis Time Period: Peak AM Hour		
Intersection:	Boundary/417 EB Ramp	
Analysis Year: \quad Year 2022		
Project ID: CRRRC Site		
East/West Street: \quad Highway 417 EB Ramp		
North/South Street: Boundary Road		
Intersection Orientation: NS	Study period (hrs): 0.25	

Minor Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Westbound			Eastbound				
	7	8	9		10	11	12	
	L	T	R		L	T	R	
Volume					16		122	
Peak Hour Factor, PHF					0.92		0.92	
Hourly Flow Rate, HFR					17		132	
Percent Heavy Vehicles					15		10	
Percent Grade (\%)		0				0		
Flared Approach: Exists?/Storage							Yes	/8
Lanes					0		0	
Configuration						LR		

	Delay,	Queue SB	Length, and Level of Service					
Approach				bo			bou	
Movement	1	4	7	8	9	10	11	12
Lane Config	LT						LR	
v (vph)	56						149	
$\mathrm{C}(\mathrm{m})$ (vph)	1229						937	
v/c	0.05						0.1	
95\% queue length	0.14						0.5	
Control Delay	8.1						11.	
LOS	A						B	
Approach Delay							11.	
Approach LOS							B	

Exhibit 21: Year 2022 Peak PM Hour Traffic Analysis - Boundary/Highway 417 Eastbound Ramps

HCS+: Unsignalized Intersections Release 5.6

TWO-WAY STOP CONTROL SUMMARY \qquad

Analysis Time Period: Peak PM Hour		
Intersection:	Boundary/417 EB Ramp	
Analysis Year:	Year 2022	
Project ID: CRRRC Site		
East/West Street: \quad Highway 417 EB Ramp		
North/South Street: Boundary Road		
Intersection Orientation: NS	Study period (hrs): 0.25	

Minor Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Westbound			Eastbound				
	7	8	9		10	11	12	
	L	T	R		L	T	R	
Volume					87		527	
Peak Hour Factor, PHF					0.92		0.92	
Hourly Flow Rate, HFR					94		572	
Percent Heavy Vehicles					5		4	
Percent Grade (\%)		0				0		
Flared Approach: Exists?/Storage							Yes	/8
Lanes					0		0	
Configuration						LR		

	Delay,	Queue SB	Length, and Level of Service					
Approach				bo			bou	
Movement	1	4	7	8	9	10	11	12
Lane Config	LT						LR	
v (vph)	106						666	
C(m) (vph)	1355						993	
v/c	0.08						0.6	
95\% queue length	0.25						5.4	
Control Delay	7.9						17.	
LOS	A						C	
Approach Delay							17.	
Approach LOS							C	

Exhibit 22: Year 2027 Peak AM Hour Traffic Analysis - Boundary/Highway 417 Eastbound Ramps

HCS+: Unsignalized Intersections Release 5.6

TWO-WAY STOP CONTROL SUMMARY \qquad

Analysis Time Period: Peak AM Hour		
Intersection:	Boundary/417 EB Ramp	
Analysis Year: \quad Year 2027		
Project ID: CRRRC Site		
East/West Street: \quad Highway 417 EB Ramp		
North/South Street: Boundary Road		
Intersection Orientation: NS	Study period (hrs): 0.25	

Major Street: Appr	Northbound			Southbound			
	1	2	3	4	5	6	
	L	T	R	L	T	R	
Volume	77	841			249	13	
Peak-Hour Factor, PHF	0.92	0.9			0.92	0.92	
Hourly Flow Rate, HFR	83	914			270	14	
Percent Heavy Vehicles	29	--	--	/	- -	--	
Median Type/Storage	Undivided						
RT Channelized?							
Lanes	1	1				1	
Configuration		T					
Upstream Signal?		No			No		

Exhibit 23: Year 2027 Peak PM Hour Traffic Analysis - Boundary/Highway 417 Eastbound Ramps

HCS+: Unsignalized Intersections Release 5.6

TWO-WAY STOP CONTROL SUMMARY \qquad

Analysis Time Period: Peak PM Hour		
Intersection:	Boundary/417 EB Ramp	
Analysis Year: \quad Year 2027		
Project ID: CRRRC Site		
East/West Street: \quad Highway 417 EB Ramp		
North/South Street: Boundary Road		
Intersection Orientation: NS	Study period (hrs): 0.25	

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Northbound			Southbound			
	1	2	3	4	5	6	
	L	T	R	L	T	R	
Volume	156	489			201	22	
Peak-Hour Factor, PHF	0.92	0.92			0.92	0.92	
Hourly Flow Rate, HFR	169	531			218	23	
Percent Heavy Vehicles	6	--	-		--	--	
Median Type/Storage	Undivided			/			
RT Channelized?							
Lanes	1	1				1	
Configuration		T					
Upstream Signal?		No			No		

Minor Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Westbound			Eastbound					
	7	8	9		10	11		12	
	L	T	R		L	T		R	
Volume					96			721	
Peak Hour Factor, PHF					0.92			0.92	
Hourly Flow Rate, HFR					104			783	
Percent Heavy Vehicles					5			9	
Percent Grade (\%) 0						0			
Flared Approach: Exists?/Storage									/
Lanes					1				
Configuration							R		

MINIMUM WARRANTS FOR INSTALLATION OF TRAFFIC SIGNAL USING PROJECTED VOLUME

Location_ Boundary Road
of . . Highjwway 417 Eastbound Ramps
(Roadway)
(Intersecting Road)
Municipality _ . City of Ottawa \qquad _Projected Volume. Year 2027.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{WARRAN'} \& \multirow{3}{*}{DESCRIPTION} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
MINIMUM \\
REQUIREMENT FOR \\
2 LANE \\
HIGHWAYS
\end{tabular}} \& \multicolumn{3}{|c|}{COMPLIANCE} \\
\hline \& \& \multirow[t]{2}{*}{\begin{tabular}{l}
2. \\
FREE \\
FLOW
\end{tabular}} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 3 . \\
\& \text { RESTRICT. } \\
\& \text { FLOW }
\end{aligned}
\]} \& \multicolumn{2}{|l|}{SECTIONAL} \& \multirow[t]{2}{*}{4. ENTIRE \%} \\
\hline \& \& \& \& NUMBER \& \% \& \\
\hline I. VEHICJLAR VOLUME \& \begin{tabular}{l}
1. \\
A. Vehicle volume all approaches (Average hour) \\
B. Vehicle volume, along minor roads, (Average hour)
\end{tabular} \& \[
\begin{aligned}
\& 480 \\
\& 180 \\
\& 180
\end{aligned}
\] \& \[
720
\]
\[
170
\] \& 806
\[
294
\] \& \[
\begin{aligned}
\& 100 \\
\& 100
\end{aligned}
\] \& 100\% \\
\hline 2. DEIAY TO CROSS TRAFFIC \& \begin{tabular}{l}
1. \\
A. Vehicle volume, along artery (Average hour) \\
B. Combined vehicle and pedestrian volume crossing artery from minor roads, (Average hour)
\end{tabular} \& \begin{tabular}{l}
480) \\
50
\end{tabular} \& 720
\[
75
\] \& \[
512
\]
\[
29
\] \& 100

58 \& 58\%

\hline
\end{tabular}

Projected Average Hour - Use the sum of the AM and PM Peak volumes divided by 4

NOTES:

1. Vehicle volume warrants (IA) and (2A) for intersections of roadways having two or more moving lanes in one direction, should be 25% higher than the values given above.
2. Warrant values for free flow apply when the 85 percentile speed of artery traffic equals or exceeds $70 \mathrm{Km} / \mathrm{h}$ or when the intersection lies within the built-up area of an isolated community having a population of less than 10,000 .
3. Warrant values for restricted flow apply to large urban communities when the 85 percentile speed of artery traffic does not exceed $70 \mathrm{Km} / \mathrm{h}$.
4. The lowest sectional percentage governs the entire Warrant.
5. For " T " intersections the warrant values for minor road should be increased by 50% (Warrant 1B only).
6. The crossing volumes are defined as:
(a) Left turns from both minor road approaches
(b) The heaviest through volume from the minor road
(c) 50% of the heavier left turn movement from major road when both of the following are met:
(i) the left turn volume $>120 \mathrm{vph}$.
(ii) the left turn volume plus the opposing volume $>720 \mathrm{vph}$.
(d) Pedestrians crossing the major road.

Exhibit 25: Year 2027 Peak AM Hour Signal Analysis - Boundary/Highway 417 Eastbound Ramps

HCS+: Signalized Intersections Release 5.4

Analyst:	Inter.: Boundary/417 EB Ramps
Period: Peak AM Hour	Year: Year 2027
Project ID: CRRRC Site - Total Traffic - Traffic Signals	
E/W St: Highway 417 EB Ramp	N/S St:

CAPACITY AND LOS WORKSHEET								
Capacity Analysis and Lane Group Capacity								
		Adj	Adj Sat		Flow	Green	--Lane Gr	oup--
Appr/	Lane	Flow Rate	Flow Rate		Ratio	Ratio	Capacity	v/c
Mvmt	Group	(v)	(s)		(V / s)	(g / C)	(c)	Ratio
Eastbound								
Prot								
Perm								
Left	L	20	1487		0.01	0.23	342	0.06
Prot								
Perm								
Thru								
Right	R	233	1330	\#	0.18	0.23	306	0.76
Westbound								
Prot								
Perm								
Left								
Prot								
Perm								
Thru								
Right								
Northbound								
Prot		\bigcirc	1326		0.00	0.160	212	0.00
Perm		18	656		0.03	0.570	374	0.05
Left	L	18				0.73	586	0.03
Prot								
Perm								
Thru	T	914	1636	\#	0.56	0.73	1194	0.77
Right								
Southbound								
Prot								
Perm								
Left								
Prot								
Perm								
Thru	TR	271	1525		0.18	0.51	778	0.35
Right								
Sum of flow ratios for critical lane groups, Yc = Sum (v/s) = 0.73								
Total lost time per cycle, $\mathrm{L}=4.00 \mathrm{sec}$								
Critical	flow ra	to capacit	y ratio,		X	(Yc)(C)	$/(C-L)=$	0.76

Exhibit 26: Year 2027 Peak PM Hour Signal Analysis - Boundary/Highway 417 Eastbound Ramps

HCS+: Signalized Intersections Release 5.4

Analyst:	Inter.: Boundary/417 EB Ramps
Period: Peak PM Hour	Year: Year 2027
Project ID: CRRRC Site - Total Traffic - Traffic Signals	
E/W St: Highway 417 EB Ramp	N/S St:

CAPACITY AND LOS WORKSHEET								
Capacity Analysis and Lane Group Capacity								
		Adj	Adj Sat		Flow	Green	--Lane Gro	oup--
Appr/	Lane	Flow Rate	Flow Rate		Ratio	Ratio	Capacity	v/c
Mvmt	Group	(v)	(s)		(V / s)	(g / C)	(c)	Ratio
Eastbound								
Prot								
Perm								
Left	L	104	1629		0.06	0.49	798	0.13
Prot								
Perm								
Thru								
Right	R	648	1404	\#	0.46	0.49	688	0.94
Westbound								
Prot								
Perm								
Left								
Prot								
Perm								
Thru								
Right								
Northbound								
Prot		5	1613		0.00	0.160	258	0.02
Perm		165	532		0.31	0.310	165	1.00
Left	L	170				0.47	423	0.40
Prot								
Perm								
Thru	T	532	1525	\#	0.35	0.47	717	0.74
Right								
Southbound								
Prot								
Perm								
Left								
Prot								
Perm								
Thru	TR	218	1667		0.13	0.25	417	0.52
Right								
Sum of flow ratios for critical lane groups, Yc = Sum (v/s) = 0.81								
Total lost time per cycle, $\mathrm{L}=4.00 \mathrm{sec}$								
Critical	flow r	to capacit	y ratio,		X	(Yc)(C)	$) /(C-L)=$	0.84

CAPITAL REGION RESOURCE RECOVERY CENTRE TRAFFIC IMPACT STUDY- ADDENDUM 2

Exhibit 27: Year 2022 Peak AM Hour Traffic Analysis - Boundary/Highway 417 Westbound Ramps

HCS+: Unsignalized Intersections Release 5.6
TWO-WAY STOP CONTROL SUMMARY \qquad

Analysis Time Period: Peak AM Hour		
Intersection:	Boundary/417 WB Ramp Analysis Year: Year 2022	
Project ID: CRRRC Site		
East/West Street: \quad Highway 417 WB Ramp		
North/South Street: Boundary Road		
Intersection Orientation: NS	Study period (hrs): 0.25	

Approach	NB ${ }_{\text {Nay }}$	Queue		bound		Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Config		LT		LR				
v (vph)		41		105				
$\mathrm{C}(\mathrm{m})$ (vph)		936		475				
v/c		0.04		0.22				
95\% queue length		0.14		0.84				
Control Delay		9.0		15.3				
LOS		A		C				
Approach Delay				15.3				
Approach LOS				C				

CAPITAL REGION RESOURCE RECOVERY CENTRE TRAFFIC IMPACT STUDY- ADDENDUM 2

Exhibit 28: Year 2022 Peak PM Hour Traffic Analysis - Boundary/Highway 417 Westbound Ramps

HCS+: Unsignalized Intersections Release 5.6

TWO-WAY STOP CONTROL SUMMARY \qquad

Analysis Time Period: Peak PM Hour		
Intersection:	Boundary/417 WB Ramp	
Analysis Year: \quad Year 2022		
Project ID: CRRRC Site		
East/West Street: \quad Highway 417 WB Ramp		
North/South Street: Boundary Road		
Intersection Orientation: NS	Study period (hrs): 0.25	

Major Street: Approach	Northbound			Southbound			
	1	2	3	4	5	6	
	L	T	R	L	T	R	
Volume		196	126	23	158		
Peak-Hour Factor, PHF		0.92	0.92	0.92	0.9		
Hourly Flow Rate, HFR		213	136	24	171		
Percent Heavy Vehicles		--	--	11	--	--	
Median Type/Storage Und		ded		1			
RT Channelized?							
Lanes		1		0	1		
Configuration							
Upstream Signal?		No			No		
Minor Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Westbound			Eastbound			
	7	8	9	10	11	12	
	L	T	R	L	T	R	
Volume	43		11				
Peak Hour Factor, PHF	0.9		0.92				
Hourly Flow Rate, HFR	46		11				
Percent Heavy Vehicles	6		1				
Percent Grade (\%)		0			0		
Flared Approach: Exists?/Stor			Yes	/2			1
Lanes							
Configuration		LR					

	Delay, NB	Queue	Length, and Level Westbound			Service		
Approach							bou	
Movement	1	4	7	8	9	10	11	12
Lane Config		LT		LR				
v (vph)		24		57				
C(m) (vph)		1161		634				
v/c		0.02		0.09				
95\% queue length		0.06		0.30				
Control Delay		8.2		12.2				
LOS		A		B				
Approach Delay				12.2				
Approach LOS				B				

Exhibit 29: Year 2027 Peak AM Hour Traffic Analysis - Boundary/Highway 417 Westbound Ramps

HCS+: Unsignalized Intersections Release 5.6

TWO-WAY STOP CONTROL SUMMARY \qquad

Analysis Time Period: Peak AM Hour				
Intersection:	Boundary/417 WB Ramp Analysis Year:\quad Year 2027		\quad	
:---				
Project ID: CRRRC Site				

Approach	NB ${ }_{\text {Nay }}$	Queue		bound		Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Config		LT		LR				
v (vph)		45		176				
$\mathrm{C}(\mathrm{m})$ (vph)		746		357				
v/c		0.06		0.49				
95\% queue length		0.19		2.61				
Control Delay		10.1		24.9				
LOS		B		C				
Approach Delay				24.9				
Approach LOS				C				

Exhibit 30: Year 2027 Peak PM Hour Traffic Analysis - Boundary/Highway 417 Westbound Ramps

HCS+: Unsignalized Intersections Release 5.6

TWO-WAY STOP CONTROL SUMMARY \qquad

Analysis Time Period: Peak PM Hour		
Intersection:	Boundary/417 WB Ramp Analysis Year:\quad Year 2027	

Major Street: Approach	Northbound			Southbound			
	1	2	3	4	5	6	
	L	T	R	L	T	R	
Volume		222	347	25	177		
Peak-Hour Factor, PHF		0.92	0.92	0.92	0.9		
Hourly Flow Rate, HFR		241	377	27	192		
Percent Heavy Vehicles		--	--	11	--	--	
Median Type/Storage Un		ded		1			
RT Channelized?							
Lanes		1		0	1		
Configuration							
Upstream Signal?		No			No		
Minor Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Westbound			Eastbound			
	7	8	9	10	11	12	
	L	T	R	L	T	R	
Volume	69		12				
Peak Hour Factor, PHF	0.9		0.92				
Hourly Flow Rate, HFR	74		13				
Percent Heavy Vehicles	6		1				
Percent Grade (\%)		0			0		
Flared Approach: Exists?/Stor			Yes	/2			1
Lanes							
Configuration		LR					

Approach	Delay, NB 1	Queue SB 4 LT	Length, and Level of Service					
Movement			7	8	9	10	11	12
Lane Config				LR				
v (vph)		27		87				
$\mathrm{C}(\mathrm{m})$ (vph)		920		471				
v/c		0.03		0.18				
95\% queue length		0.09		0.67				
Control Delay		9.0		15.2				
LOS		A		C				
Approach Delay				15.2				
Approach LOS				C				

