

TECHNICAL SUPPORT DOCUMENT \#9 TRAFFIC IMPACT STUDY

Table of Contents

1.0 INTRODUCTION 1
1.1 Scope of Work 1
2.0 EXISTING ROADS AND INTERSECTIONS 1
3.0 PROPOSED CAPITAL REGION RESOURCE RECOVERY CENTRE 4
3.1 Trip Generation6
3.2 Trip Distribution 7
4.0 FUTURE TRAFFIC VOLUMES 9
4.1 Background Traffic Volumes 9
4.2 Total Traffic Volumes 9
5.0 FUTURE TRAFFIC VOLUMES. 9
5.1 Traffic Analysis 12
6.0 FINDINGS AND RECOMMENDATIONS 18
REFERENCES 20
TABLES
Table 3.1: Peak Hour Site Trips Generated 7
Table 5.1: Boundary/Mitch Owens - LoS and $95^{\text {th }}$ Percentile Queue 13
Table 5.2: Boundary/Devine - LoS and $95^{\text {th }}$ Percentile Queue 14
Table 5.3: Boundary/Eastbound 417 Ramps - LoS and $95^{\text {th }}$ Percentile Queue 14
Table 5.4: Boundary/Westbound 417 Ramps - LoS and $95^{\text {th }}$ Percentile Queue 15
Table 5.5: Boundary/Site Access - LoS and $95^{\text {th }}$ Percentile Queue 16
FIGURES
Figure 1.1: Site Location Plan 2
Figure 2.1: Weekday Peak AM and PM Hour Traffic Counts 5
Figure 3.1: Weekday Peak AM and PM Hour Site Generated Trips 8
Figure 4.1: 2022 Weekday Peak AM and PM Hour Background Traffic 10
Figure 4.2: 2022 Weekday Peak AM and PM Hour Total Traffic 11
Figure 5.1: Proposed Boundary Road/Site Access Geometry 17

APPENDICES

APPENDIX A

Exhibits 1 to 3 - Traffic Counts
Exhibits 4 to 19, 21 and 22 - Operational Analyses
Exhibit 20 - Left Turn Lane Warrants

1.0 INTRODUCTION

The site of the proposed Capital Region Resource Recovery Centre (CRRRC) is located near the east central boundary of the City of Ottawa. The Site fronts onto Boundary Road to the west and Devine Road to the south. The location of the Site is shown in Figure 1.1.

The CRRRC is proposed as a waste management facility consisting of various waste diversion facilities and a landfill component for the disposal of residual waste materials. The Site is approximately 192 hectares in size. The Site's main access would be directly onto Boundary Road would be used as the primary access for trucks entering and exiting the waste management facility. A secondary access would be provided onto Frontier Road that could be mainly used by Site operations and maintenance vehicles and staff.
D.J. Halpenny \& Associates were retained to prepare the traffic component of the impact assessment.

1.1 Scope of Work

The traffic study area included the roadways and intersections in the area of the Site. The intersections examined consist of the main Site access location off Boundary Road, and the Boundary/Mitch Owens, Boundary/Devine, Boundary/eastbound (EB) 417 Ramp, and Boundary/westbound (WB) 417 Ramp intersections.

The traffic impact analysis examined the intersections for the peak hour of traffic on the adjacent roads which would occur during the weekday peak AM and PM hours. The horizon year of the analysis is the year 2022, which represents five years beyond the 2017 date when the facility is assumed to be open and operational. The facility will operate six days a week year round.

2.0 EXISTING ROADS AND INTERSECTIONS

The road network in the area of the CRRRC is shown on Figure 1.1.
The CRRRC facility will have one access directly onto Boundary Road (refer to Figure 1.1), which would be used mainly by trucks entering and exiting the Site. Boundary Road is a north-south two lane arterial road under the jurisdiction of the City of Ottawa (Ottawa Road 41). The road has an asphalt surface with a width of approximately 7.5 metres plus gravel shoulders. The posted speed limit along the road in the vicinity of the Site is $80 \mathrm{~km} / \mathrm{h}$.

The Site will have a secondary access from Frontier Road, which borders the east limit of the Site. North of Devine Road, Frontier Road is a two lane local road with a gravel surface and "No Exit" signs posted (terminates at Highway 417). South of Devine Road, Frontier Road is a two lane rural collector road under the jurisdiction of the City of Ottawa with a posted speed limit of $80 \mathrm{~km} / \mathrm{h}$.

The south property limit of the facility borders onto Devine Road. Devine Road (Ottawa Road 8) is a City of Ottawa two lane rural arterial road with the west limit connecting to Boundary Road (Ottawa Road 41) and the east limit terminating at the east side of Vars. The road has an asphalt surface with gravel shoulders. Devine Road has an unposted speed limit of $80 \mathrm{~km} / \mathrm{h}$.

Mitch Owens Road (Ottawa Road 8) is an east-west two lane arterial road located approximately 770 metres north of Devine Road. Mitch Owens Road (Ottawa Road 8) has an asphalt surface and gravel shoulders, with a posted speed limit of $80 \mathrm{~km} / \mathrm{h}$.

Figure 1.1: Site Location Plan

TECHNICAL SUPPORT DOCUMENT \#9 TRAFFIC IMPACT STUDY

Bordering a portion of the north limit of the Site is Highway 417. Highway 417 is a four lane divided road under the jurisdiction of the Ministry of Transportation Ontario (MTO). The highway has two interchanges with Boundary Road (Exit 96) for the both the eastbound and westbound on/off ramps.

The intersection of Boundary Road and Mitch Owens Road is a "T" intersection located approximately 770 metres north of Devine Road. Boundary Road forms the northbound and southbound approaches, and Mitch Owens Road the eastbound approach. The intersection is controlled by a stop sign at the eastbound Mitch Owens Road approach. The 2012 City of Ottawa peak hour traffic counts are provided in Appendix A as Exhibit 1. The intersection has the following lane configuration:

- Northbound Boundary Road One shared left/through lane
- Southbound Boundary Road One through lane

One exclusive right turn lane (20 m parallel lane)

- Eastbound Mitch Owens Road One exclusive left turn lane (40 m storage)

One exclusive right turn lane
The intersection of Devine Road and Boundary Road is located approximately 1.4 kilometres west of Frontier Road. The intersection is a "T" intersection with Devine Road forming the westbound approach and Boundary Road the northbound and southbound approaches. The intersection is controlled by a stop sign at the westbound Devine Road approach. The intersection has the following lane configuration:

- Northbound Boundary Road One shared through/right lane
- Southbound Boundary Road
- Westbound Devine Road

One exclusive left turn lane (20 m storage)
One through lane
One exclusive left turn lane (40 m storage)
One exclusive right turn lane

The intersection of Boundary Road and the Highway 417 eastbound on/off ramp is located on the south side of Highway 417 approximately 1,550 metres north of Mitch Owens Road. The intersection is a " T " intersection with Boundary Road forming the northbound and southbound approaches, and the Highway 417 on/off ramp the eastbound divided approach. The 2011 MTO traffic counts are provided as Exhibit 2. The intersection has the following lane configuration:

```
| Northbound Boundary Road One shared left/through lane
- Southbound Boundary Road
■ Eastbound 417 On/Off Ramp
```

One shared left/through lane
One shared through/right lane
One shared left/right turn lane (flared approach) TRAFFIC IMPACT STUDY

The intersection of Boundary Road and the Highway 417 westbound on/off ramp is located on the north side of Highway 417 approximately 2,100 metres north of Mitch Owens Road. The intersection is a " T " intersection with Boundary Road forming the northbound and southbound approaches, and the Highway 417 on/off ramp the westbound divided approach. The 2011 MTO traffic counts are provided as Exhibit 3. The intersection has the following lane configuration:

- Northbound Boundary Road
- Southbound Boundary Road
- Westbound 417 On/Off Ramp

One shared through/right lane
One shared left/through lane
One shared left/right turn lane (flared approach)

Figure 2.1 shows the weekday peak AM and PM hour traffic counts taken at the intersections that are examined in the study. The Annual Average Daily Traffic (AADT) is shown along Boundary Road both north and south of Highway 417. The AADT is the total annual traffic volumes divided by the number of days in the year. The figure also shows the date the counts were taken and the peak hour of the counts. The intersection counts at Boundary/Mitch Owens were obtained from the City of Ottawa, the Highway 417 on/off ramps from the MTO, and the Boundary/Devine counts were taken for this study by the consultant. The traffic counts determined that over an 8 hour period, trucks represent approximately 9.5 percent of the traffic along Boundary Road between Mitch Owens Road and the eastbound Highway 417 on/off ramps.

3.0 PROPOSED CAPITAL REGION RESOURCE RECOVERY CENTRE

The proposed CRRRC Site will be located on lands on the north side of Devine Road and east of Boundary Road in the City of Ottawa. The lands are described as part of Lots 23,24 and 25, Concession XI, Township of Cumberland, and are zoned General Rural and Rural Heavy Industrial.

The land uses along Boundary Road in the vicinity of the Site are mainly commercial/industrial with eight residential houses largely along the west side of the road between Devine Road and Highway 417. Along Devine Road the land use is rural or agricultural with no houses between Boundary Road and Frontier Road. To the east of Frontier Road and north of Devine Road, the land use is agricultural with no houses. Land use in the area surrounding the Site is primarily industrial to the west and northwest and rural / agricultural in other directions.

The proposed use of the Site is a waste management facility consisting of various waste diversion facilities and a landfill component for disposal of residual waste materials. The Site will have one access onto Boundary Road located approximately 850 metres south of the eastbound Highway on/off ramp and 700 metres north of Mitch Owens Road. This access would be mainly used for truck access/egress from the Site. A secondary Site access is located onto the north end of Frontier Road; this access would be used infrequently by vehicles associated with Site operations, maintenance or emergency, resulting in a low volume of traffic entering and exiting the Site at that location, often at off-peak hours. Frontier Road forms the north approach (southbound approach) to the Devine/Frontier intersection.

Figure 2.1: Weekday Peak AM and PM Hour Traffic Counts

TECHNICAL SUPPORT DOCUMENT \#9 TRAFFIC IMPACT STUDY

The Site will operate six days a week (Monday through Saturday), and will be open between 7:00 AM and 6:00 PM.

There are no material agricultural land uses along Boundary Road between Highway 417 and the Site access location. As such, the CRRRC Site-related traffic along this section of Boundary Road will not affect the use of agricultural Site entrances or farm vehicle movements. The low usage of Frontier Road associated with the proposed secondary Site access onto the north end of Frontier Road is unlikely to adversely affect the usage of this road or Devine Road by agricultural traffic.

3.1 Trip Generation

The number of expected Site generated trips was determined by considering the amount and types of recyclable material/waste expected to be received at the Site, the anticipated diversion, and other Site activities. The Site generated trips would consist of loaded trucks entering the Site hauling waste material and surplus and impacted soils, and loaded trucks exiting the Site hauling pre-processed and composted organics and other diverted materials. The analysis examined the impact of the Site trips during the peak AM and PM hours of traffic along the adjacent roads. The calculations have assumed that the facility is operating at a maximum annual capacity of 450,000 tonnes per year of incoming material/waste. Assuming the Site operates about 300 days per year, on a typical day the Site would receive an average of 1,500 tonnes per day of various materials/waste.

It was however recognized that on some days there could be receipt of surplus or contaminated soil from excavation and/or remediation projects in addition to typical IC\&I and C\&D materials/waste received, as such projects are by definition episodic and event-driven. In order to account for this event-related soil traffic, for purposes of traffic analysis it was assumed that the Site might on a peak day receive 1,300 tonnes of IC\&I and C\&D wastes, and in addition 1,700 tonnes of soil. Therefore, to ensure potential traffic impacts were fully considered, the traffic analysis assumed a maximum 3,000 tonnes per day of materials at the CRRRC (but within the overall assumed maximum of 450,000 tonnes per year of incoming material). The analysis has assumed that employees of the facility arrive and depart outside the peak hours of the adjacent roads. The facility may operate about 300 days per year with estimated daily truck trips as follows:

- Waste Trips (IC\&l and Organics) - 290,000 t per year/300 days per year @ 10 t per truck = 97 Trucks

■ Waste C\&D Trips - 100,000 t per year/300 days per year @ 3 t per truck = 111 Trucks
■ Soil Trips - 60,000 t per year. Assume event-related 1,700 t per day @ 34 t per truck $=50$ Trucks
■ Diversion - Organics Diversion - 10,000 t per year/300 days @ 30 t per truck = 1 Trucks

- C\&D Wood - 30,000 t per year/300 days @ 20 t per truck = 5 Trucks
- C\&D Other - 5,000 t per year/300 days @ 30 t per truck = 1 Trucks
- IC\&I Diversion - 35,000 t per year/300 days @ 21 t per truck = 6 Trucks

The total assumed maximum daily number of trucks per day is 271 trucks entering and exiting the Site. Assuming a 10 hour day, and applying a 1.45 peaking factor to all trips entering and exiting the Site to account for random arrivals, the total assumed number of peak hour trips are:

271 trips per day/10 hours per day x 1.45 Peaking Factor $=40$ Trips per hour entering and exiting

In addition, the Site will generate landfill leachate that will require treatment, with the preferred option being off-Site treatment at the City of Ottawa Robert O Pickard Environmental Centre (ROPEC). The quantity of leachate would be small during the first few years of operation of the facility, but will increase to a maximum of approximately $230,000 \mathrm{~m}^{3} /$ year when the Site is fully developed. The estimated maximum material for treatment would be $230,000 \mathrm{~m}^{3} /$ year of landfill leachate and $35,000 \mathrm{~m}^{3} /$ year of digested organics processing liquor, for a total of $265,000 \mathrm{~m}^{3} /$ year. It is assumed this would be transported 250 days per year and would enter and leave the Site at regular intervals. For this reason a random arrival peaking factor was not applied. The trips related to the leachate treatment are:

- ROPEC Trips $-265,000 \mathrm{~m}^{3}$ per year/250 days per year @ $40 \mathrm{~m}^{3}$ per truck $=26$ Trips per day

For a 10 hour day the expected trips relating to leachate treatment are:

- 26 Trips per day/10 hours per day = 3 Trips per hour entering and exiting

The total peak hour trips would be 43 Truck Trips per hour entering and exiting the Site.
Table 3.1 shows the corresponding peak hour number of truck trips entering and exiting the Site, which was used in the traffic analysis for both the peak AM and PM hours.

Table 3.1: Peak Hour Site Trips Generated

TRIPS	WEEKDAY PEAK AM HOUR		WEEKDAY PEAK PM HOUR			
	Total	Enter	Exit	Total	Enter	Exit
Truck Trips	86	43	43	86	43	43

3.2 Trip Distribution

The distribution of Site generated trips was assigned to the adjacent roads by examination of the most convenient and efficient route(s) to and from major developed and populated areas. The vast majority of the trips will utilize the Highway 417 interchange and Boundary Road, which is the direct route to/from Highway 417. The study has allocated the trips as per the following distribution:

- To/From the North (along Boundary Road) 2 percent
- To/From the West (along Highway 417)
- To/From the East (along Highway 417)
- To/From the West (along Mitch Owens Road)
- To/From the South (along Boundary Road)

83 percent
5 percent
7 percent
3 percent

The Site generated trips shown in Table 3.1 were distributed to the adjacent roads at the above proportions. Figure 3.1 shows the expected weekday peak AM and PM hour Site generated trips.

NOT TO SCALE
Figure 3.1: Weekday Peak AM and PM Hour Site Generated Trips TRAFFIC IMPACT STUDY

Highway 417 is a major provincial highway and Boundary Road is an arterial road, both of which have pavement structures designed to carry large volumes of traffic and heavy vehicles. Because of their function, their pavement structures are expected to be appropriate to carry CRRRC Site-related traffic. As described previously, Frontier Road will only provide a secondary access to the Site, and Devine Road will also only receive limited Site-related traffic (and not heavy vehicles on a routine basis). As such, a determination and evaluation of the expected performance of the pavement structures on Frontier and Devine Roads was not deemed necessary as part of this traffic assessment.

4.0 FUTURE TRAFFIC VOLUMES

4.1 Background Traffic Volumes

The background traffic volumes consist of the expected increase in traffic that does not include traffic associated with the development of the CRRRC facility. The increase in background traffic would be the result of new traffic generated by future development within and outside the study area.

To determine the expected increase in traffic volumes, historical and current traffic counts at the intersection of Boundary Road and Mitch Owens Road were examined. Counts taken by the City of Ottawa for the years 2010 and 2011, and counts taken by the consultant at the south approach to the intersection in 2012 showed that the traffic volumes remained essentially constant with slight increases and decreases in traffic when comparing the approaches at various years. Typically in rural areas the annual growth rate in traffic is approximately 1 to 2 percent. The study therefore conservatively assumed an annual compounded growth rate of 2 percent, which was applied to all lane movements shown in the traffic counts presented in Figure 2.1 for the weekday peak AM and PM hour. This would be represented by the following growth factor to project the 2011 and 2012 existing traffic counts at a 2 percent annual growth to the expected year 2022 background traffic volumes:

- Existing 2011 counts to 2022 background traffic volumes $=1.243$
- Existing 2012 counts to 2022 background traffic volumes $=1.219$

The above growth factors were applied to the existing traffic volume counts shown in Figure 2.1 to produce the expected 2022 background traffic volumes shown in Figure 4.1 for the weekday peak AM and PM hours.

4.2 Total Traffic Volumes

The expected total traffic volumes at the year 2022 were determined by the addition of the expected background traffic of Figure 4.1 and the expected Site generated trips of Figure 3.1. Figure 4.2 shows the expected 2022 weekday total peak AM and PM hour traffic volumes. Given the total volume of traffic along Boundary Road adjacent to the CRRRC, the truck traffic from the CRRRC at maximum daily receipts would represent approximately 8 percent of the peak hour traffic along Boundary Road.

5.0 FUTURE TRAFFIC VOLUMES

The assessment examined the operation of the Site access point onto Boundary Road, and the intersections of Devine/Boundary, Boundary/Mitch Owens, the eastbound Highway 417 on/off ramps, and the westbound Highway 417 on/off ramps. The analysis used the Highway Capacity Software (University of Florida, N.D.), which utilizes the intersection capacity analysis procedure as documented in the Highway Capacity Manual (Transportation Research Board, 2010).

NOT TO SCALE
Figure 4.1: 2022 Weekday Peak AM and PM Hour Background Traffic

Figure 4.2: 2022 Weekday Peak AM and PM Hour Total Traffic

For unsignalized intersections, the level of service of each lane movement is determined as a function of the delay of vehicles at the approach. The following relates the level of service of each lane movement with the expected delay at the approach, which was utilized in the analysis of the operation of the Site access point and intersections within the study area:

- LEVEL OF SERVICE	DELAY	
- Level of Service A	$0-10 \mathrm{sec}$./vehicle	Little or No Delay
- Level of Service B	$>10-15 \mathrm{sec}$./vehicle	Short Traffic Delays
- Level of Service C	$>15-25 \mathrm{sec}$./vehicle	Average Traffic Delays
- Level of Service E	$>25-35 \mathrm{sec}$./vehicle	Long Traffic Delays
- Level of Service F	>50 sec./vehicle	Extreme Delays - Demand exceeds Capacity

The expected length of queue at the critical lane movements for an unsignalized intersection was determined by the calculation of the $95^{\text {th }}$ percentile queue at the lane approach. The $95^{\text {th }}$ percentile queue length is the calculated $95^{\text {th }}$ greatest queue length out of 100 occurrences at a movement during a 15 -minute peak period. The $95^{\text {th }}$ percentile queue length is a function of the capacity of a movement and the total expected traffic, with the calculated value determining the magnitude of the queue by representing the queue length as fractions of vehicle lengths (where a vehicle length is taken as 7 metres).

5.1 Traffic Analysis

The study has conducted an operational analysis for the existing intersections within the area studied to establish the current operation of the intersections. The analysis utilized the traffic counts taken in 2011 and 2012 and the existing lane geometry and traffic controls at the intersection approaches.

To determine the expected operation of the Site access and intersections within the area studied, the study has established horizon years for the analysis which would examine the intersection for future traffic volumes including the traffic generated by the CRRRC. The facility has been assumed to be substantially completed and operational by the year 2017. Although completed, the facility would not be expected to be operating at maximum annual capacity for several years following completion. For this reason the study has examined the Site access point and surrounding intersections within the study area for the year 2022, which represents five years beyond completion of the facility. The analysis at the year 2022 assumes that the facility would be operating at capacity. The following discusses the operation of the intersections.

Boundary Road and Mitch Owens Road Intersection

The intersection of Boundary Road and Mitch Owens Road is located approximately 700 metres south of the proposed Boundary Road Site access. The "T" intersection is controlled by a stop sign at the eastbound Mitch Owens Road approach. The 2012 traffic counts determined that during the peak AM hour the northbound Boundary shared left/through movement functioned at a Level of Service (LoS) "A", the eastbound Mitch Owens left turn movement at a LoS " C " and right turn movement at a LoS "A". During the peak PM hour the northbound shared left/through movement functioned at a Level of Service (LoS) "A", the eastbound left turn movement at a

TECHNICAL SUPPORT DOCUMENT \#9 TRAFFIC IMPACT STUDY

LoS " C " and right turn movement at a LoS " B ". The $95^{\text {th }}$ percentile queue at the eastbound Mitch Owens left turn lane was 1.64 vehicles during the peak PM hour. Table 5.1 summarizes the operation of the intersection with the analysis sheets provided in Appendix A as Exhibit 4 for the peak AM hour and Exhibit 5 for the peak PM hour.

Table 5.1: Boundary/Mitch Owens - LoS and $95^{\text {th }}$ Percentile Queue

Intersection Approach	Weekday Peak AM Hour 2012 Existing (2022 Total)		Weekday Peak PM Hour 2012 Existing (2022 Total)	
	LoS	Q $_{95}$ (Veh.)	LoS	Q $_{95}$ (Veh.)
Northbound (NB) Left/Through - Boundary	$A(A)$	$0.19(0.25)$	$A(A)$	$0.14(0.19)$
EB Left - Mitch Owens	$C(C)$	$0.82(1.50)$	$C(E)$	$1.64(3.48)$
EB Right - Mitch Owens	$A(A)$	$0.03(0.05)$	$B(C)$	$0.99(1.64)$

At the year 2022, which represents five years beyond start of operations of the CRRRC facility, the facility was assumed to be operating at capacity. The analysis at the Boundary/Mitch Owens intersection using the expected 2022 traffic volumes, which includes the Site generated trips, determined that during the peak AM hour the intersection operated at the same level of service as the 2012 traffic counts. The northbound Boundary shared left/through movement functioned at a LoS " A ", the eastbound Mitch Owens left turn movement at a LoS "C" and right turn movement at a LoS "C". During the peak PM hour the northbound shared left/through movement functioned at a Level of Service (LoS) "A", the eastbound left turn movement at a LoS "E" and right turn movement at a LoS "C". The eastbound Mitch Owens left turn movement (LoS "E") would experience an approach delay of 37.7 seconds, with a $95^{\text {th }}$ percentile queue of 3.48 vehicles (28 metres) with 40 metres provided in the exclusive left turn lane. Table 5.1 summarizes the operation of the intersection with the analysis sheets provided as Exhibit 6 for the 2022 peak AM hour and Exhibit 7 for the 2022 peak PM hour.

The level of service at the eastbound Boundary left turn movement shifted from a LoS "C" using the 2012 peak PM hour traffic counts to a LoS " E " for the expected 2022 peak PM hour traffic. The reduction in level of service was due to the increase in background traffic, with the CRRRC contributing only 3 trucks to the movement during the peak PM hour. There would be no requirement for modifications to the Boundary/Mitch Owens intersection due to the truck traffic from the proposed CRRRC facility.

Boundary Road and Devine Road Intersection

The intersection of Boundary Road and Devine Road is located approximately 1,460 metres south of the proposed Site access onto Boundary Road. Devine Road forms the westbound approach (stop controlled) to the " T " intersection, and Boundary Road the northbound and southbound approaches. Using the 2012 peak AM hour traffic counts, the southbound Boundary left turn movement functioned at a LoS " A ", the westbound Devine left turn movement at a LoS " B " and right turn movement at a LoS " C ". During the peak $P M$ hour the southbound left turn movement functioned at a Level of Service (LoS) "A", the westbound left turn movement at a LoS "C" and right turn movement at a LoS " A ". Table 5.2 summarizes the operation of the intersection with the analysis sheets provided as Exhibit 8 for the 2022 peak AM hour and Exhibit 9 for the 2022 peak PM hour.

Table 5.2: Boundary/Devine - LoS and $95^{\text {th }}$ Percentile Queue

Intersection Approach	Weekday Peak AM Hour 2012 Existing (2022 Total)		Weekday Peak PM Hour 2012 Existing (2022 Total)	
	LoS	Q_{95} (Veh.)	LoS	Q_{95} (Veh.)
Southbound (SB) Left - Boundary	A (A)	0.09 (0.12)	A (A)	0.55 (0.73)
WB Left - Devine	B (C)	0.11 (0.17)	C (D)	0.21 (0.38)
WB Right - Devine	C (C)	2.10 (3.90)	A (A)	0.23 (0.29)

At the year 2022 the southbound Boundary left turn movement would function at a LoS "A" during the peak AM hour, the westbound Devine left turn movement at a LoS "C" and right turn movement at a LoS "C". During the peak PM hour the southbound left turn movement would function at a Level of Service (LoS) "A" during the peak AM hour, the westbound Devine left turn movement at a LoS "D" and right turn movement at a LoS "A". Truck trips from the CRRRC would not be using Devine Road to link with locations to the east or south. Any trips to the south would be assigned to Boundary Road. Table 5.2 summarizes the operation of the intersection for the expected 2022 traffic volumes, with the analysis sheets provided as Exhibits 10 and 11.

There would be no requirement for modifications to the Boundary/Devine intersection due to the truck traffic from the proposed CRRRC facility.

Intersection of Boundary Road and Highway 417 Eastbound on/off Ramps

The Boundary/417 eastbound on/off ramps intersection is located approximately 850 metres north of the proposed Boundary Road access to the CRRRC Site. The intersection is a "T" intersection with Boundary Road forming the northbound and southbound approaches, and the Highway 417 on/off ramps the eastbound approach. The intersection is controlled by a stop sign at the eastbound 417 off ramp approach.

The 2011 traffic counts at the intersection were obtained from the MTO. The peak AM hour counts determined that the northbound Boundary shared left/through movement would function at a LoS "A" during the peak AM hour and the eastbound Highway 417 off ramp approach at a LoS "B". During the peak PM hour the northbound Boundary shared left/through movement would function at a LoS "A" and the eastbound Highway 417 off ramp approach at a LoS " C ". Table 5.3 summarizes the operation of the intersection for the 2011 traffic volumes with the analysis sheets provided as Exhibit 12 and Exhibit 13.

Table 5.3: BoundarylEastbound 417 Ramps - LoS and $95^{\text {th }}$ Percentile Queue

Intersection Approach	Weekday Peak AM Hour 2011 Existing (2022 Total)		Weekday Peak PM Hour 2011 Existing (2022 Total)	
	LoS	Q $_{95}$ (Veh.)	LoS	Q $_{95}$ (Veh.)
NB Left/Through - Boundary	A (A)	$0.11(0.15)$	A (A)	$0.22(0.29)$
EB Left/Right - 417 Ramp	B (B)	$0.36(0.75)$	C (E)	$5.35(16.59)$

The analysis for the year 2022 traffic volumes determined that during the peak AM hour of the adjacent roads the northbound Boundary left/through movement functioned at a LoS "A" and eastbound 417 off ramp shared left/right movement at a LoS "B". For the expected peak PM hour traffic volumes the northbound Boundary shared left/through movement would function at a LoS A", and eastbound 417 off ramp shared left/right movement at a LoS " E " with an approach delay of 43.3 seconds and $95{ }^{\text {th }}$ percentile queue of 16.59 vehicles (119 metres). Table 5.3 summarizes the operation of the intersection for the 2022 traffic volumes with the analysis sheets provided as Exhibit 14 and Exhibit 15.

The eastbound 417 right turn movement was determined to function at a LoS " E " with an approach delay of 43.3 seconds during the 2012 peak PM hour. The shift from the current LoS "C" to a LoS "E" at the year 2022 was mainly due to an increase in background traffic with the CRRRC contributing approximately 5 percent of the traffic to the movement. There would be no requirement for modifications to the Boundary/Eastbound 417 Ramps intersection due to the truck traffic from the proposed CRRRC facility.

Intersection of Boundary Road and Highway 417 Westbound on/off Ramps

The intersection of Boundary Road and the Highway 417 westbound on/off ramps is located on the north side of Highway 417 approximately 1,400 metres north of the proposed CRRRC access onto Boundary Road. For the 2011 peak AM hour and peak PM hour the southbound Boundary shared left/through movement would function at a LoS "A" and the westbound 417 off ramp shared left/right turn movement at a LoS "B". Table 5.4 summarizes the operation of the intersection for the 2011 traffic volumes with the analysis sheets provided as Exhibit 16 for the peak AM hour and Exhibit 17 for the peak PM hour.

For the expected 2022 traffic volumes, the southbound Boundary shared left/through movement is expected to operate at a LoS "B" and westbound off ramp shared left/right turn movement at a LoS "C" during the peak AM hour. During the peak PM hour the southbound shared left/through movement is expected to operate at a LoS "A" and westbound shared left/right turn movement at a LoS " B ". The $95^{\text {th }}$ percentile queue at the westbound Highway 417 off ramp is expected to be 0.84 vehicles (7 metres) during the peak AM hour. Table 5.4 summarizes the operation of the intersection for the 2022 traffic volumes with the analysis sheets provided as Exhibit 18 and Exhibit 19.

Table 5.4: Boundary/Westbound 417 Ramps - LoS and $95^{\text {th }}$ Percentile Queue

Intersection Approach	Weekday Peak AM Hour 2011 Existing (2022 Total)		Weekday Peak PM Hour 2011 Existing (2022 Total)	
	LoS	Q $_{95}$ (Veh.)	LoS	Q $_{95}$ (Veh.)
SB Left/Through - Boundary	A (B)	$0.38(0.60)$	$A(A)$	$0.05(0.06)$
WB Left/Right - 417 Ramp	B (C)	$0.42(0.84)$	$B(B)$	$0.31(0.51)$

There would be no requirement for modifications to the Boundary/Westbound 417 Ramps intersection due to the truck traffic from the proposed CRRRC facility.

TECHNICAL SUPPORT DOCUMENT \#9 TRAFFIC IMPACT STUDY

Boundary Road and Site Access Intersection

The proposed Site access to the CRRRC is located on Boundary Road towards the north end of the Site, closest to Highway 417. The access is situated along a stretch of Boundary Road which is approximately midway between the main intersections of Mitch Owens Road and the Highway 417 eastbound on/off ramps.

An operational analysis was conducted at the proposed location of the Site access using the 2022 traffic volumes and expected Site generated trips at full capacity of the Site and maximum daily traffic (Figure 4.2). To determine the lane configuration at the access, a left turn lane warrant analysis as documented in the MTO publication, Geometric Design Standards for Ontario Highways (MTO, 1985), was conducted to determine if a southbound Boundary Road left turn lane was required at the access. The warrant analysis, which is presented in Appendix A as Exhibit 20, determined that a southbound left turn lane into the Site is warranted. The proposed lane configuration at the Site access is as follows:

- Northbound Boundary Road
- Southbound Boundary Road

Westbound Site Access

One shared through/right lane
One through lane
One exclusive left turn lane
One shared left and right turn lane

The warrant graph determined the length of the left turn lane to be 25 metres for passenger cars during the peak PM hour. Utilizing a passenger car equivalent for heavy vehicles of 2.0 as documented in the MTO publication, Geometric Design Standards for Ontario Highways (MTO, 1985), the required length of the southbound left turn lane at the truck access would be 50 metres. The left turn lane would also require a 60 metre parallel lane and 145 metre taper for a 90 kilometre design speed. In order to reduce gravel spillage onto Boundary Road from turning trucks and help in the deceleration and acceleration of trucks, 75 metre tapers are proposed along the east side of Boundary Road at the Site access. Figure 5.1 shows the proposed lane geometry at the CRRRC access.

The operational analysis for the 2022 traffic volumes for the peak AM hour traffic counts determined that the southbound Boundary left turn movement would function at a LoS "B", the westbound Site access left/right turn movement at a LoS "C". During the peak PM hour the southbound left turn movement would function at a LoS " A ", the westbound left/right turn movement at a LoS " C ". Table 5.5 summarizes the operation of the intersection with the analysis sheets provided as Exhibit 21 for the peak AM hour and Exhibit 22 for the peak PM hour total traffic.

Table 5.5: Boundary/Site Access - LoS and $95^{\text {th }}$ Percentile Queue

Intersection Approach	Weekday Peak AM Hour 2022 Total		Weekday Peak PM Hour 2022 Total	
	LoS	Q $_{95}$ (Veh.)	LoS	Q $_{95}$ (Veh.)
SB Left - Boundary	B	0.22	A	0.16
WB Left/Right - Access	C	0.50	C	0.39

NOT TO SCALE
Figure 5.1: Proposed Boundary Road/Site Access Geometry

6.0 FINDINGS AND RECOMMENDATIONS

The Site of the proposed CRRRC is located on lands at the northeast corner of the intersection of Boundary Road and Devine Road in the City of Ottawa. The Site would be approximately 192 hectares in size and would operate as a waste management facility consisting of various waste diversion facilities and a landfill component for disposal of residual waste materials. The Site will have one access onto Boundary Road, which would be mainly used for trucks entering and exiting the Site. A secondary access would be located on Frontier Road north of Devine Road, and would be used primarily for vehicles associated with Site operations and maintenance, and for emergency purposes.

The Traffic Impact Study examined the operation of the Boundary Road Site access during the weekday peak hours of the adjacent roads, using traffic counts provided by the City of Ottawa and the MTO, supplemented by counts obtained specifically for this study. The Frontier Road access would generate a low number of service and employee trips that would generally occur outside the peak hours of the adjacent roads and the analysis period of the traffic study.

The main operations of the CRRRC would be between 7:00 AM and 6:00 PM Monday to Saturday. The facility was assumed to be completed and operational by the year 2017. The Traffic Impact Study has examined the proposed Boundary Road Site access and intersections within the area studied for the expected traffic volumes at the year 2022. The year 2022 represents five years beyond the completion of the construction of the CRRRC and would account for trips associated with the full operation of the facility.

The CRRRC is expected to generate a combination of waste trips, soil trips, and diversion trips. During the operation of the Site for a 10 hour day and at a maximum daily waste and soil receipt of 3,000 tonnes per day, the Site would generate a maximum of approximately 40 truck trips entering and 40 trips exiting the Site per peak hour (assuming a 1.45 peaking factor). Including the expected 3 trucks per hour that would transport leachate to ROPEC for treatment, the total maximum number of trucks would be 43 trucks entering and 43 exiting the Site during the peak AM and PM hours of the adjacent roads. The analysis has examined the impact of truck trips during the weekday peak AM and PM hours. The findings and recommendations of the study are summarized in the following:

1. The following is the proportion of truck trips used in the analysis:
```
■ To/From the North (along Boundary Road) 2 percent
■ To/From the West (along Highway 417) }83\mathrm{ percent
■ To/From the East (along Highway 417) 5 percent
- To/From the West (along Mitch Owens Road)
7 percent
3 percent
```

The truck traffic from the CRRRC at maximum daily waste and soil receipts would represent approximately 8 percent of the total volume of traffic along Boundary Road between the Site access and Highway 417.
2. The operational analysis using the expected 2022 traffic volumes determined that all of the existing intersections within the study area operate at an acceptable Level of Service (LoS) during the weekday peak AM and PM hours, with no intersections requiring modifications due to the truck trips from the CRRRC. The intersections comprise the following:

- Boundary Road and Mitch Owens Road
- Boundary Road and Devine Road
- Boundary Road and the eastbound Highway 417 on/off ramps
- Boundary Road and the westbound Highway 417 on/off ramps

3. The CRRRC proposes that the main Site access onto Boundary Road be located approximately 700 metres north of Mitch Owens Road and 850 metres south of the eastbound Highway 417 on/off ramps. This access was examined for operations at maximum daily waste and soil receipts, which would correspond to 1,300 tonnes per day of IC\& and C\&D waste materials and 1,700 tonnes per day of soils, plus trucks associated with leachate under normal operations. The southbound Boundary Road left turn movement would function at a LoS "B" and westbound Site exit shared left/right movement at a LoS "C" during the peak AM hour. During the peak PM hour the southbound Boundary Road left turn movement would function at a LoS "A" and westbound Site exit shared left/right movement at a LoS "C". A left turn lane warrant analysis was conducted for the southbound Boundary Road movement, which determined that a left turn lane was warranted using the 2022 maximum Site related traffic volumes. Following is the proposed intersection geometry at the Boundary Road Site access, as shown in Figure 5.1:

- Northbound Boundary Road One shared through/right lane
- Southbound Boundary Road One through lane

One exclusive left turn lane

- 50 m vehicular storage
- 60 m parallel lane
- 145 m taper
- Westbound Site Access

One shared left and right turn lane (8 m in width)
The proposed intersection geometry would also include a northbound Boundary Road deceleration taper of 75 metres and northbound Boundary Road acceleration taper of 75 metres. The tapers would also reduce gravel spillage onto the roadway from turning vehicles.
4. The access into the Site would have a pavement width of 8.0 metres. The access road itself would provide a driveway length of approximately 450 metres between Boundary Road and the gate to the CRRRC facility. In addition to the proposed separate truck queuing lane area, the clear throat length of the access road would provide adequate space for trucks to park prior to the opening of the facility so that traffic would not back up onto Boundary Road.

REFERENCES

Ministry of Transportation Ontario (MTO). (1985). Geometric Design Standards for Ontario Highways Manual.
Transportation Research Board. (2010). Highway Capacity Manual 2010. National Research Council, Washington, D.C.

University of Florida. (N.D.). Highway Capacity Software. McTrans Center, Gainesville, Florida.

TECHNICAL SUPPORT DOCUMENT \#9
TRAFFIC IMPACT STUDY

APPENDIX A

Exhibits 1 to 3 - Traffic Counts
 Exhibits 4 to 19, 21 and 22 - Operational Analyses Exhibit 20 - Left Turn Lane Warrants

Exhibit 1: Year 2012 Peak AM and PM Hour Traffic Counts - Boundary/Mitch Owens

Exhibit 2: Year 2011 Peak AM and PM Hour Traffic Counts - Boundary/Eastbound 417 Ramps

Intersection ID:493400000(--S--)
Count Day: Tuesday
Count Date: 30-Aug-2011

Exhibit 3: Year 2011 Peak AM and PM Hour Traffic Counts - Boundary/Westbound 417 Ramps
f? Ontario

Intersection ID:493400000(--N--)
Count Day: Tuesday
Count Date: 30-Aug-2011

Exhibit 4: Year 2012 Peak AM Hour Traffic Count Analysis - Boundary/Mitch Owens

HCS+: Unsignalized Intersections Release 5.6
TWO-WAY STOP CONTROL SUMMARY \qquad

Analysis Time Period: Peak AM Hour		
Intersection:	Boundary/Mitch Owens Analysis Year: July 9, 2012	
Project ID: CRRRC Site		
East/West Street: \quad Mitch Owens Road		
North/South Street: Boundary Road		
Intersection Orientation: NS	Study period (hrs): 0.25	

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	$1{ }_{1}$ Northbound			Southbound		
				4	5	6
	L	T	R	L	T	R
Volume	79	399			84	71
Peak-Hour Factor, PHF	0.92	0.9			0.92	0.92
Hourly Flow Rate, HFR	85	433			91	77
Percent Heavy Vehicles	5	--			--	--
Median Type/Storage	Undivided			/		
RT Channelized?	01			No		
Lanes					1	1
Configuration	LT			No ${ }^{\text {r }}$		
Upstream Signal?	No					

	Delay,	Queue		b		vice		
Approach	NB	SB		tb			bou	
Movement	1	4	7	8	9	10	11	12
Lane Config	LT					L		R
v (vph)	85					83		11
$\mathrm{C}(\mathrm{m})$ (vph)	1392					379		958
v/c	0.06					0.22		0.01
95\% queue length	0.19					0.82		0.03
Control Delay	7.8					17.1		8.8
LOS	A					C		A
Approach Delay						16.2		
Approach LOS						C		

Exhibit 5: Year 2012 Peak PM Hour Traffic Count Analysis - Boundary/Mitch Owens

HCS+: Unsignalized Intersections Release 5.6
TWO-WAY STOP CONTROL SUMMARY \qquad

Analysis Time Period: Peak PM Hour		
Intersection:	Boundary/Mitch Owens Analysis Year: July 9, 2012	
Project ID: CRRRC Site		
East/West Street: \quad Mitch Owens Road		
North/South Street: Boundary Road		
Intersection Orientation: NS	Study period (hrs): 0.25	

Minor Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Westbound			Eastbound					
	7	8	9		10	11		12	
	L	T	R		L	T		R	
Volume					113			123	
Peak Hour Factor, PHF					0.92			0.92	
Hourly Flow Rate, HFR					122			133	
Percent Heavy Vehicles					5			5	
Percent Grade (\%) 0						0			
Flared Approach: Exists?/Storage				$/$					/
Lanes					1				
Configuration							R		

Exhibit 6: Year 2022 Peak AM Hour Traffic Analysis - Boundary/Mitch Owens

HCS+: Unsignalized Intersections Release 5.6
TWO-WAY STOP CONTROL SUMMARY \qquad

Analysis Time Period: Intersection:	Peak AM Hour Boundary/Mitch Owens		
Analysis Year:	Year 2022		
Project ID: CRRRC Sit			
East/West Street:	Mitch Owens Road		
North/South Street:	Boundary Road		
Intersection Orientatior	ion: NS	Study period (hrs):	0.25

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	$1{ }_{1}$ Northbound			Southbound		
				4	5	6
	L	T	R	L	T	R
Volume	96	487			103	90
Peak-Hour Factor, PHF	0.92	0.9			0.92	0.92
Hourly Flow Rate, HFR	104	529			111	97
Percent Heavy Vehicles	5	--	-		--	--
Median Type/Storage	Undivided			/		
RT Channelized?	01				No	
Lanes					1	
Configuration	LT					
Upstream Signal?	No			No		

Minor Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Westbound			Eastbound					
	7	8	9		10	11		12	
	L	T	R		L	T		R	
Volume					97			13	
Peak Hour Factor, PHF					0.92			0.92	
Hourly Flow Rate, HFR					105			14	
Percent Heavy Vehicles					5			5	
Percent Grade (\%) 0						0			
Flared Approach: Exists?/Storage				/					/
Lanes					1				
Configuration							R		

Approach	NB	SB		bo			bou	
Movement	1	4	7	8	9	10	11	12
Lane Config	LT					L		R
v (vph)	104					105		14
C(m) (vph)	1345					303		934
v/c	0.08					0.35		0.01
95\% queue length	0.25					1.50		0.05
Control Delay	7.9					23.1		8.9
LOS	A					C		A
Approach Delay						21.4		
Approach LOS						C		

Exhibit 7: Year 2022 Peak PM Hour Traffic Analysis - Boundary/Mitch Owens

HCS+: Unsignalized Intersections Release 5.6
TWO-WAY STOP CONTROL SUMMARY \qquad

Analysis Time Period: Peak PM Hour		
Intersection:	Boundary/Mitch Owens	
Analysis Year: \quad Year 2022		
Project ID: CRRRC Site		
East/West Street: \quad Mitch Owens Road		
North/South Street: Boundary Road		
Intersection Orientation: NS	Study period (hrs): 0.25	

Minor Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Westbound			Eastbound					
	7	8	9		10	11		12	
	L	T	R		L	T		R	
Volume					141			150	
Peak Hour Factor, PHF					0.92			0.92	
Hourly Flow Rate, HFR					153			163	
Percent Heavy Vehicles					5			5	
Percent Grade (\%) 0						0			
Flared Approach: Exists?/Storage				$/$					/
Lanes					1				
Configuration							R		

Approach	NB	SB		bo			bou	
Movement	1	4	7	8	9	10	11	12
Lane Config	LT					L		R
v (vph)	49					153		163
C(m) (vph)	819					257		449
v/c	0.06					0.60		0.36
95\% queue length	0.19					3.48		1.64
Control Delay	9.7					37.7		17.5
LOS	A					E		C
Approach Delay						27.3		
Approach LOS						D		

Exhibit 8: Year 2012 Peak AM Hour Traffic Count Analysis - Boundary/Devine

HCS+: Unsignalized Intersections Release 5.6
TWO-WAY STOP CONTROL SUMMARY \qquad

Analysis Time Period:	Peak AM Hour Boundary/Devine
Intersection:	March 21, 2012
Analysis Year:	
Project ID: CRRRC Site	
East/West Street:	Devine Road
North/South Street:	Boundary Road
Intersection Orientation: NS	

Study period (hrs): 0.25
Vehicle Volumes and Adjustments

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	$1{ }^{\text {Northbound }}$			Southbound		
				4	5	6
	L	T	R	L	T	R
Volume		482	11	27	77	
Peak-Hour Factor, PHF		0.92	0.92	0.92		
Hourly Flow Rate, HFR		523	11	29	83	
Percent Heavy Vehicles		--	--	5	--	--
Median Type/Storage	Undivided			/		
RT Channelized?						
Lanes		1		1	1	
Configuration		TR		L	T	
Upstream Signal?		No			No	

Exhibit 9: Year 2012 Peak PM Hour Traffic Count Analysis - Boundary/Devine

HCS+: Unsignalized Intersections Release 5.6
TWO-WAY STOP CONTROL SUMMARY \qquad

Analysis Time Period:	Peak PM Hour Boundary/Devine
Intersection:	March 21, 2012
Analysis Year:	
Project ID: CRRRC Site	
East/West Street:	Devine Road
North/South Street:	Boundary Road
Intersection Orientation: NS	

Study period (hrs): 0.25
Vehicle Volumes and Adjustments

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Northbound			Southbound		
	1	2	3	4	5	6
	L	T	R	L	T	R
Volume		111	15	208	40	
Peak-Hour Factor, PHF		0.92	0.92	0.92		
Hourly Flow Rate, HFR		120	16	226	43	
Percent Heavy Vehicles		--	--	2	--	--
Median Type/Storage	Undivided			/		
RT Channelized?						
Lanes	10			11	1	
Configuration	No TR			L	T	
Upstream Signal?				No		

Exhibit 10: Year 2022 Peak AM Hour Traffic Analysis - Boundary/Devine

HCS+: Unsignalized Intersections Release 5.6
TWO-WAY STOP CONTROL SUMMARY \qquad

```
Analysis Time Period: Peak AM Hour
Intersection: Boundary/Devine
Analysis Year: Year 2022
Project ID: CRRRC Site
East/West Street: Devine Road
North/South Street: Boundary Road
Intersection Orientation: NS Study period (hrs): 0.25
```

Vehicle Volumes and Adjustments

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Northbound				Southbound		
	1	2		3	4	5	6
	L	T		R	L	T	R
Volume		589		13	33	95	
Peak-Hour Factor, PHF		0.92		0.92	0.92		
Hourly Flow Rate, HFR		640		14	35	10	
Percent Heavy Vehicles		--		--	5	--	--
Median Type/Storage		Undivided			1		
RT Channelized?							
Lanes		1	0		1	1	
Configuration			TR			T	
Upstream Signal?		No				No	

Exhibit 11: Year 2022 Peak PM Hour Traffic Analysis - Boundary/Devine

HCS+: Unsignalized Intersections Release 5.6
TWO-WAY STOP CONTROL SUMMARY \qquad

```
Analysis Time Period: Peak PM Hour
Intersection: Boundary/Devine
Analysis Year: Year 2022
Project ID: CRRRC Site
East/West Street: Devine Road
North/South Street: Boundary Road
Intersection Orientation: NS Study period (hrs): 0.25
```

Vehicle Volumes and Adjustments

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Northbound				Southbound			
	1	2		3	4	5		6
	L	T		R	L	T		R
Volume		136		18	254		93	
Peak-Hour Factor, PHF		0.92		0.92	0.92		. 92	
Hourly Flow Rate, HFR		147		19	276		35	
Percent Heavy Vehicles		--		--	2	-	-	--
Median Type/Storage		Undivided			1			
RT Channelized?								
Lanes		1	0		1	1		
Configuration			TR					
Upstream Signal?		No				N	o	

Exhibit 12: Year 2011 Peak AM Hour Traffic Count Analysis - Boundary/Eastbound 417 Ramps

HCS+: Unsignalized Intersections Release 5.6
TWO-WAY STOP CONTROL SUMMARY \qquad

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	$1{ }^{\text {Northbound }}$			Southbound		
				4	5	6
	L	T	R	L	T	R
Volume	48	643			108	6
Peak-Hour Factor, PHF	0.92	0.9			0.92	0.92
Hourly Flow Rate, HFR	52	698			117	6
Percent Heavy Vehicles	5	--	--		--	--
Median Type/Storage	Undivided			/		
RT Channelized?						
Lanes	01				1	
Configuration	LT			TR		
Upstream Signal?	No			No		

Minor Street: A	Approach Movement	Westbound			Eastbound					
		7	8	9		10		11	12	
		L	T	R		L		T	R	
Volume						29			71	
Peak Hour Factor, PHF									0.	
Hourly Flow Rate, HFR						31			77	
Percent Heavy Vehicles						5			5	
Percent Grade (\%) 0								0		
									Yes	/8
Flared Approach: Exists?/Storage Lanes							0		0	
Configuration								LR		

Approach	Delay, Queue Length, and Level of Service							
Movement	1	4	7	8	9	10	11	12
Lane Config	LT						LR	
v (vph)	52						108	
$\mathrm{C}(\mathrm{m})$ (vph)	1446						993	
v/c	0.04						0.11	
95\% queue length	0.11						0.3	
Control Delay	7.6						12.	
LOS	A						B	
Approach Delay							12.	
Approach LOS							B	

Exhibit 13:Year 2011 Peak PM Hour Traffic Count Analysis - Boundary/Eastbound 417 Ramps

HCS+: Unsignalized Intersections Release 5.6
TWO-WAY STOP CONTROL SUMMARY \qquad

Analysis Time Period: Peak PM Hour	
Intersection:	Boundary/417 EB Ramp
Analysis Year:	August 30, 2011
Project ID: CRRRC Site	
East/West Street:	Highway 417 EB Ramp
North/South Street: Boundary Road	
Intersection Orientation: NS	

Study period (hrs): 0.25

Vehicle Volumes and Adjustments

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	$1{ }_{1}{ }^{\text {Northbound }}$			Southbound		
				4	5	6
	L	T	R	L	T	R
Volume	85	200			163	14
Peak-Hour Factor, PHF	0.92	0.92			0.92	0.92
Hourly Flow Rate, HFR	92	217			177	15
Percent Heavy Vehicles	5	--			--	--
Median Type/Storage	Undivided			1		
RT Channelized?						
Lanes	0	1			1	
Configuration	LT			TR		
Upstream Signal?	No			No		

Minor Street: A	Approach Movement	Westbound			Eastbound					
		7	8	9		10		11	12	
		L	T	R		L		T	R	
Volume							15		523	
Peak Hour Factor, PHF							. 92		0.92	
Hourly Flow Rate, HFR							24		568	
Percent Heavy Vehicles						5			5	
Percent Grade (\%) 0								0		
									Yes	/8
Lanes							0		0	
Configuration								LR		

Exhibit 14: Year 2022 Peak AM Hour Traffic Analysis - Boundary/Eastbound 417 Ramps

HCS+: Unsignalized Intersections Release 5.6
TWO-WAY STOP CONTROL SUMMARY \qquad

Analysis Time Period: Peak AM Hour		
Intersection:	Boundary/417 EB Ramp	
Analysis Year:	Year 2022	
Project ID: CRRRC Site		
East/West Street: \quad Highway 417 EB Ramp		
North/South Street: \quad Boundary Road		
Intersection Orientation: NS	Study period (hrs): 0.25	

Major Street: Approach	$1{ }_{1}{ }^{\text {Northbound }}$			Southbound		
				4		6
	L	T	R	L	T	R
Volume	62	836			137	7
Peak-Hour Factor, PHF	0.92	0.9			0.92	0.92
Hourly Flow Rate, HFR	67	908			148	7
Percent Heavy Vehicles	5	--	--		- -	--
Median Type/Storage	Undivided			/		
RT Channelized?						
Lanes	01				1	
Configuration	LT			TR		
Upstream Signal?	No			No		

Minor Street:	Approach Movement	Westbound			Eastbound					
		7	8	9		10		11	12	
		L	T	R		L		T	R	
Volume						36			124	
Peak Hour Factor, PHF									0.92	
Hourly Flow Rate, HFR						39			134	
Percent Heavy Vehicles						5			5	
Percent Grade (\%) 0								0		
Flared Approach: Exists?/Storage					/				Yes	/8
Lanes							0		0	
Configuration								LR		

Approach	Delay, Queue Length, and Level of Service							
Movement	1	4	7	8	9	10	11	12
Lane Config	LT						LR	
v (vph)	67						173	
$\mathrm{C}(\mathrm{m})$ (vph)	1407						856	
v/c	0.05						0.20	
95\% queue length	0.15						0.75	
Control Delay	7.7						14.0	
LOS	A						B	
Approach Delay							14.0	
Approach LOS							B	

Exhibit 15: Year 2022 Peak PM Hour Traffic Analysis - BoundarylEastbound 417 Ramps

HCS+: Unsignalized Intersections Release 5.6
TWO-WAY STOP CONTROL SUMMARY \qquad

Analysis Time Period: Peak PM Hour		
Intersection:	Boundary/417 EB Ramp	
Analysis Year: \quad Year 2022		
Project ID: CRRRC Site		
East/West Street: \quad Highway 417 EB Ramp		
North/South Street: Boundary Road		
Intersection Orientation: NS	Study period (hrs): 0.25	

Major Street: Approach	Northbound			Southbound			
	1	2	3	4	5	6	
	L	T	R	L	T	R	
Volume	108	286			206	17	
Peak-Hour Factor, PHF	0.92	0.92			0.92	0.92	
Hourly Flow Rate, HFR	117	310			223	18	
Percent Heavy Vehicles	5	--			--	--	
Median Type/Storage	Undivided			/			
RT Channelized?							
Lanes	0	1				1	
Configuration	LT			TR			
Upstream Signal?	No			No			

Approach	Delay, Queue Length, and Level of Service							
Movement	1	4	7	8	9	10	11	12
Lane Config	LT						LR	
v (vph)	117						900	
$\mathrm{C}(\mathrm{m})$ (vph)	1308						930	
v/c	0.09						0.9	
95\% queue length	0.29						16.	
Control Delay	8.0						43.	
LOS	A						E	
Approach Delay							43.	
Approach LOS							E	

Exhibit 16: Year 2011 Peak AM Hour Traffic Analysis - Boundary/Westbound 417 Ramps

HCS+: Unsignalized Intersections Release 5.6
TWO-WAY STOP CONTROL SUMMARY \qquad

| Analysis Time Period:Peak AM Hour
 Intersection:\quadBoundary/417 WB Ramp | |
| :--- | :--- | :--- |
| Analysis Year: | August 30, 2011 |

Major Street: Approach Movement	${ }_{1}$ Northbound			Southbound		
				4	5	6
	L	T	R	L	T	R
Volume		116	565	90	77	
Peak-Hour Factor, PHF		0.92	0.92	0.92		
Hourly Flow Rate, HFR		126	614	97	83	
Percent Heavy Vehicles		--	- -	2	--	--
Median Type/Storage		Undivided		1		
RT Channelized?						
Lanes		1		0	1	
Configuration						
Upstream Signal?		No			No	

	Delay, NB	Queue Length, and Level of Service						
Approach		SB		bound			bou	
Movement	1	4	7	8	9	10	11	12
Lane Config		LT		LR				
v (vph)		97		82				
$\mathrm{C}(\mathrm{m})$ (vph)		867		665				
v/c		0.11		0.12				
95\% queue length		0.38		0.42				
Control Delay		9.7		14.0				
LOS		A		B				
Approach Delay				14.0				
Approach LOS				B				

Exhibit 17: Year 2011 Peak PM Hour Traffic Analysis - Boundary/Westbound 417 Ramps

HCS+: Unsignalized Intersections Release 5.6
TWO-WAY STOP CONTROL SUMMARY

```
Intersection: Boundary/417 WB Ramp
Analysis Year: August 30, 2011
Project ID: CRRRC Site
East/West Street: Highway 417 WB Ramp
North/South Street: Boundary Road
Intersection Orientation: NS Study period (hrs): 0.25
```

Analysis Time Period: Peak PM Hour

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	1 Northbound 3			Southbound			
				4	5	6	
	L	T	R	L	T	R	
Volume		226	85	18	121		
Peak-Hour Factor, PHF		0.92	0.92	0.92	0.9		
Hourly Flow Rate, HFR		245	92	19	131		
Percent Heavy Vehicles		--	--	2	--	--	
Median Type/Storage Und		ded		1			
RT Channelized?							
Lanes		1		0	1		
Configuration							
Upstream Signal?		No			No		
Minor Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Westbound			Eastbound			
	7		9	10	11	12	
	L	T	R	L	T	R	
Volume	48		14				
Peak Hour Factor, PHF	0.9		0.92				
Hourly Flow Rate, HFR	52		15				
Percent Heavy Vehicles	2		2				
Percent Grade (\%)		0			0		
Flared Approach: Exists?/Stor			Yes	/2			/
Lanes							
Configuration		LR					

Approach	NB	SB		bound		Eastbound		
Movement	1	4	7	8	9	10	11	12
Lane Config		LT		LR				
v (vph)		19		67				
$\mathrm{C}(\mathrm{m})$ (vph)		1222		709				
v/c		0.02		0.09				
95\% queue length		0.05		0.31				
Control Delay		8.0		11.7				
LOS		A		B				
Approach Delay				11.7				
Approach LOS				B				

Exhibit 18: Year 2022 Peak AM Hour Traffic Analysis - Boundary/Westbound 417 Ramps

HCS+: Unsignalized Intersections Release 5.6
TWO-WAY STOP CONTROL SUMMARY \qquad

Major Street: Approach	${ }_{1}$ Northbound			Southbound		
				4	5	6
	L	T	R	L	T	R
Volume		145	738	112	97	
Peak-Hour Factor, PHF		0.92	0.92	0.92		
Hourly Flow Rate, HFR		157	802	121	10	
Percent Heavy Vehicles		--	--	2	--	--
Median Type/Storage		ded		/		
RT Channelized?						
Lanes		1		0	1	
Configuration						
Upstream Signal?		No			No	

Minor Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Westbound			Eastbound			
	7	8	9	10	11	12	
	L	T	R	L	T	R	
Volume	53		44				
Peak Hour Factor, PHF	0.92		0.92				
Hourly Flow Rate, HFR	57		47				
Percent Heavy Vehicles	1		2				
Percent Grade (\%)		0			0		
Flared Approach: Exists?	torage		Yes	/2			/
Lanes	0		0				
Configuration		LR					

Exhibit 19: Year 2022 Peak PM Hour Traffic Analysis - Boundary/Westbound 417 Ramps

HCS+: Unsignalized Intersections Release 5.6
TWO-WAY STOP CONTROL SUMMARY

Intersection:	Boundary/417 WB Ramp		
Analysis Year: \quad Year 2022			
Project ID: CRRRC Site			
East/West Street:	Highway 417 WB Ramp		
North/South Street: Boundary Road			
Intersection Orientation: NS	Study period (hrs): 0.25		

Approach	Delay, NB 1	Queue SB		nd Le		Eastbound		
Movement		4	7	8	9	10	11	12
Lane Config		LT		LR				
v (vph)		23		85				
$\mathrm{C}(\mathrm{m})$ (vph)		1101		581				
v/c		0.02		0.15				
95\% queue length		0.06		0.51				
Control Delay		8.3		13.4				
LOS		A		B				
Approach Delay				13.4				
Approach LOS				B				

Exhibit 20: Year 2022 Southbound Left Turn Lane Warrants - Boundary/Site Access

TRAFFIC

$\mathrm{V}_{0}=584 \mathrm{vph}$
$V_{A}=228 \mathrm{vph}$
$V_{\mathrm{L}}=39 \mathrm{vph}$
$V_{L} / V_{A}=17.1 \%$

POSTED SPEED 80 km/h

WARRANT
15 METRE LEFT
TURN LANE REQUIRED

SOUTHBOUND LEFT
 PEAK AM HOUR

$\mathrm{V}_{0}=335 \mathrm{vph}$
$V_{A}=760 \mathrm{vph}$
$V_{\mathrm{L}}=39 \mathrm{vph}$
$V_{L} / V_{A}=5.1 \%$
POSTED SPEED 80 km/h

WARRANT
25 METRE LEFT
TURN LANE REQUIRED
SOUTHBOUND LEFT
PEAK PM HOUR

Exhibit 21: Year 2022 Peak AM Hour Traffic Analysis - Boundary/Site Access
HCS+: Unsignalized Intersections Release 5.6
TWO-WAY STOP CONTROL SUMMARY

```
Intersection: Boundary/Site Access
Analysis Year: Year 2022
Project ID: CRRRC Site
East/West Street: Site Access
North/South Street: Boundary Road
Intersection Orientation: NS Study period (hrs): 0.25
```

Analysis Time Period: Peak AM Hour

Exhibit 22: Year 2022 Peak PM Hour Traffic Analysis - BoundaryISite Access

HCS+: Unsignalized Intersections Release 5.6
TWO-WAY STOP CONTROL SUMMARY \qquad

```
Analysis Time Period: Peak PM Hour
Intersection: Boundary/Site Access
Analysis Year: Year 2022
Project ID: CRRRC Site
East/West Street: Site Access
North/South Street: Boundary Road
Intersection Orientation: NS Study period (hrs): 0.25
```

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	$1{ }_{1}$ Northbound		Southbound		
			4	5	6
	$\mathrm{L} \quad$ T	R	L	T	R
Volume	331	4	39	72	
Peak-Hour Factor, PHF	0.92	0.92	0.92		
Hourly Flow Rate, HFR	359	4	42	78	
Percent Heavy Vehicles	--	--	100	- -	--
Median Type/Storage	Undivided		/		
RT Channelized?					
Lanes	1		1	1	
Configuration					
Upstream Signal?	No			No	

	Delay, NB 1	Queue L	ength, and Level of Service					
Approach		SB		bound			bou	
Movement		4	7	8	9	10	11	12
Lane Config		L		LR				
v (vph)		42		46				
C(m) (vph)		809		398				
v/c		0.05		0.12				
95\% queue length		0.16		0.39				
Control Delay		9.7		15.2				
LOS		A		C				
Approach Delay				15.2				
Approach LOS				C				

