


# Phase Two Environmental Site Assessment

770 Somerset Street West and 13 Lebreton Street North

Ottawa, Ontario

Revision No. 1

Prepared For: DCR Phoenix Group

COMMUNITIES
TRANSPORTATION
BUILDINGS
INFRASTRUCTURE





MMM Group Limited 100 Commerce Valley Drive West, Thornhill, Ontario, L3T 0A1 t: 905.882.1100 | f: 905.882.0055

www.mmm.ca

May 11, 2015 14-12815-001-PH2

Mr. Michael Boucher Manager of Planning DCR Phoenix Group 18 Bentley Avenue,

Ottawa, Ontario K2E 6T8

Dear Mr. Boucher,

**Subject:** Phase Two Environmental Site Assessment

770 Somerset Street West and 13 Lebreton Street North,

Ottawa, Ontario.

We are pleased to submit this report for the Phase Two Environmental Site Assessment (ESA) of a 0.16 ha property covering 770 Somerset Street West and 13 Lebreton Street North in Ottawa, Ontario.

The report incorporates the findings of the Phase One ESA and the results of soil and groundwater investigations at the property that were conducted from 2012 to 2014, including a final groundwater sampling event in December 2014. Soil and groundwater impacts have been identified as presented in the report and remediation and/or a risk assessment will be required prior to filing a Record of Site Condition.

If you have any questions or comments, please contact the undersigned.

Yours truly,

**MMM GROUP LIMITED** 

aroly Adams

Carolyn Adams, P.Eng.

Manager

**Environmental Management** 

https://ecollaboration.mmm.ca/livelinkdav/nodes/5791410/SomersetP2ESAcvrltrFinal.docx

#### **EXECUTIVE SUMMARY**

A Phase Two Environmental Site Assessment (ESA) was conducted for a parking lot and residential building located at 770 Somerset Street West and 13 Lebreton Street North in Ottawa, Ontario (the "Subject Property"). It is planned that the Subject Property will be developed for mixed land uses including commercial and residential uses. This Phase Two ESA was requested by the client to assist in site development plan approvals and to support filing a Record of Site Condition (RSC).

The Subject Property is at the southeast corner of Somerset Street West and Lebreton Street North. The Subject Property is comprised of a single parcel of land of approximately 0.16 hectares for which the legal description is: Part of Lots 26 and 31, Plan 4908, as in NS185691; Ottawa/Nepean. Two property information numbers (PINs) apply to the Subject Property: 04109-0235 and 04109-0245.

The north part of the Subject Property has been used as a gasoline and auto service station for over 80 years and this past use has included potentially contaminating activities (PCAs) that have resulted in areas of potential environmental concern (APECs) on the site. The Phase Two ESA was developed and implemented to assess the identified areas of concern through sampling of soil and groundwater for the contaminants of potential concern.

Based on available environmental reports, remediation was conducted at the time of the decommissioning of the gas station. However, when soil quality was compared to standards revised by the Ontario Ministry of the Environment (MOE) in 2011, contaminants are present in the fill material. The contaminants of concern identified in soil through the sampling and analysis program include EC, SAR, lead, mercury, zinc and petroleum hydrocarbon compounds (PHCs) in the F3 and F4 ranges. Although the concentrations of these contaminants exceed the MOE generic standards, they are present at relatively low concentrations. None of these contaminants was measured in groundwater at concentrations that exceed the MOE standard. It is concluded that contaminants in soil do not present a potential for migration from the Subject Property. It is recommended that impacts in the soil be removed as part of the construction for the redevelopment of the Subject Property.

The groundwater across the Subject Property has been impacted by the historical and on-going use of salt for ice control, both onsite and offsite along Somerset Street West and LeBreton Street North. Per section 48(3) of O. Reg. 153/04, the concentrations of sodium and chloride are deemed not to exceed the Table 3 Standard, as the offsite application of road salt has contributed significantly to elevated levels of sodium and chloride on the Subject Property.

Exceedances of silver were present in seven monitoring wells. These exceedances cannot be attributed to any known land uses in the study area. We recommend a risk assessment to consider whether the concentrations of silver present a hazard for the future users of the developed site.

The removal of contaminated soil and a risk assessment to assess the groundwater contamination will be required prior to filing a RSC. These activities can be conducted during the site planning stages and should not delay planning approvals.

Phase Two Environmental Site Assessment 770 Somerset Street West and 13 Lebreton Street North, Ottawa, Ontario MMM Group Limited | May 2015 | 14-12815-001-PH2

# **TABLE OF CONTENTS**

| EXE( | CUTIVE | E SUMMARY                                                   | l  |
|------|--------|-------------------------------------------------------------|----|
| 1.0  | INTR   | ODUCTION                                                    | 1  |
|      | 1.1    | Background                                                  | 1  |
|      | 1.2    | Site Description                                            | 1  |
|      | 1.3    | Property Ownership                                          | 1  |
|      | 1.4    | Current and Proposed Future Uses                            | 1  |
|      | 1.5    | Applicable Site Condition Standard                          | 2  |
| 2.0  | BAC    | KGROUND INFORMATION                                         | 2  |
|      | 2.1    | Physical Setting                                            | 2  |
|      | 2.2    | Past Investigations                                         | 3  |
|      | 2.3    | Potential Contaminants of Concern                           | 4  |
| 3.0  | SCO    | PE OF THE INVESTIGATION                                     | 4  |
|      | 3.1    | Overview of Site Investigation                              | 4  |
|      | 3.2    | Media Investigated                                          | 5  |
|      | 3.3    | Phase One Conceptual Site Model                             | 5  |
|      | 3.4    | Deviations From Sampling And Analysis Plan                  | 6  |
|      | 3.5    | Impediments                                                 | 7  |
| 4.0  | INVE   | STIGATION METHOD                                            | 7  |
|      | 4.1    | General                                                     | 7  |
|      | 4.2    | Drilling and Excavating                                     | 7  |
|      | 4.3    | Soil: Sampling                                              |    |
|      | 4.4    | Field Screening Measurements                                | 8  |
|      | 4.5    | Ground Water: Monitoring Well Installation                  | 10 |
|      | 4.6    | Ground Water: Field Measurement of Water Quality Parameters | 10 |
|      | 4.7    | Ground Water: Sampling                                      | 12 |
|      | 4.8    | Sediment: Sampling                                          | 12 |
|      | 4.9    | Analytical Testing                                          | 12 |
|      | 4.10   | Residue Management Procedures                               | 13 |
|      | 4.11   | Elevation Surveying                                         | 13 |
|      | 4.12   | Quality Assurance and Quality Control Measures              | 13 |

Phase Two Environmental Site Assessment 770 Somerset Street West and 13 Lebreton Street North, Ottawa, Ontario MMM Group Limited | May 2015 | 14-12815-001-PH2

| 5.0                                 | REVIE                       | EW AND EVALUATION                                                                                                                                                                                                                                       | 14   |  |  |  |  |
|-------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|--|
|                                     | 5.1                         | Geology                                                                                                                                                                                                                                                 | .14  |  |  |  |  |
|                                     | 5.2                         | Ground Water: Elevations and Flow Direction                                                                                                                                                                                                             | .15  |  |  |  |  |
|                                     | 5.3                         | Ground Water: Hydraulic Gradients                                                                                                                                                                                                                       | .16  |  |  |  |  |
|                                     | 5.4                         | Soil Texture                                                                                                                                                                                                                                            | .16  |  |  |  |  |
|                                     | 5.5                         | Soil: Field Screening                                                                                                                                                                                                                                   | .16  |  |  |  |  |
|                                     | 5.6                         | Soil Quality                                                                                                                                                                                                                                            | .17  |  |  |  |  |
|                                     | 5.7                         | Ground Water Quality                                                                                                                                                                                                                                    | .18  |  |  |  |  |
|                                     | 5.8                         | Sediment Quality                                                                                                                                                                                                                                        | . 20 |  |  |  |  |
|                                     | 5.9                         | Quality Assurance and Quality Control Results                                                                                                                                                                                                           | .20  |  |  |  |  |
|                                     | 5.10                        | Phase Two Conceptual Site Model                                                                                                                                                                                                                         | .22  |  |  |  |  |
| 6.0                                 | CONC                        | CLUSIONS                                                                                                                                                                                                                                                | 25   |  |  |  |  |
| 7.0                                 | QUALIFICATIONS OF ASSESSORS |                                                                                                                                                                                                                                                         |      |  |  |  |  |
|                                     | 7.1                         | MMM Group Limited                                                                                                                                                                                                                                       | . 27 |  |  |  |  |
|                                     | 7.2                         | Qualified Person and Technical Support                                                                                                                                                                                                                  | . 27 |  |  |  |  |
|                                     | 7.3                         | Signatures                                                                                                                                                                                                                                              | . 27 |  |  |  |  |
| 8.0                                 | STAN                        | DARD LIMITATIONS                                                                                                                                                                                                                                        | 28   |  |  |  |  |
| 9.0                                 | REFE                        | RENCES                                                                                                                                                                                                                                                  | 28   |  |  |  |  |
|                                     |                             | LIST OF FIGURES                                                                                                                                                                                                                                         |      |  |  |  |  |
|                                     |                             | Following Text                                                                                                                                                                                                                                          |      |  |  |  |  |
| Figure 1.<br>Figure 2.<br>Figure 3. |                             | Site Location  Monitoring Locations and Areas of Potential Environmental Concern  A. Hydrogeologic Cross-Section A-A'  B. Hydrogeologic Cross-Section B-B'                                                                                              |      |  |  |  |  |
| Figure<br>Figure                    |                             | C. Hydrogeologic Cross-Section C-C' Site Plan showing Direction of Groundwater Flow A. Site Plan showing Soil Impacts – Metals and Inorganics B. Site Plan showing Soil Impacts – PHCs C. Site Plan showing Groundwater Impacts – Metals and Inorganics |      |  |  |  |  |
| Figure 6.                           |                             | Site Plan showing Surficial Bedrock Elevations                                                                                                                                                                                                          |      |  |  |  |  |

# LIST OF PHOTOGRAPHS

Following Text
Photograph 1. Subject Property looking east, showing retaining wall and grade difference.

### LIST OF TABLES

|           | Un Page or Follo                                                       | owing Lext |
|-----------|------------------------------------------------------------------------|------------|
| Table 1.  | Summary of Field Measurements and Sample Analysis                      | 9          |
| Table 2.  | Well Installation and Monitoring Details                               | 11         |
| Table 3.  | Groundwater Monitoring and Surveying Results                           |            |
| Table 4.  | Summary of Analytical Results for Metals and Inorganics in Soil        |            |
| Table 5.  | Summary of Analytical Results for PAHs in Soil                         |            |
| Table 6.  | Summary of Analytical Results for PHCs in Soil                         |            |
| Table 7.  | Summary of Analytical Results for VOCs in Soil                         |            |
| Table 8.  | Summary of Analytical Results for PCBs in Soil                         |            |
| Table 9.  | Summary of Analytical Results for Metals and Inorganics in Groundwater |            |
| Table 10. | Summary of Analytical Results for PHCs in Groundwater                  |            |
| Table 11. | Summary of Analytical Results for VOCs in Groundwater                  |            |
| Table 12. | Summary of Analytical Results for PCBs in Groundwater                  |            |
| Table 13. | Distribution of Sodium and Chloride in Groundwater                     | 19         |
| Table 14. | Relative Percent Difference Calculations for Soil                      |            |
| Table 15. | Relative Percent Difference Calculations for Groundwater               |            |
| Table 16. | Summary of Areas of Potential Environmental Concern                    | 25         |

#### **APPENDICES**

#### **APPENDIX A - General**

- A-1 Documentation and Sampling and Analysis Plan
- Finalized Field Logs A-2
- A-3
- Certificates of Analysis Survey of Phase Two Property A-4

#### **APPENDIX B – Standard Limitations**





#### 1.0 INTRODUCTION

## 1.1 Background

MMM Group Limited (MMM) was retained by DCR Phoenix Group (DCR) to conduct a Phase Two Environmental Site Assessment (ESA) for a parking lot located at 770 Somerset Street West and a residential building at 13 Lebreton Street North, in Ottawa, Ontario (the "Subject Property"). For the purpose of this report, the Subject Property is the Phase Two Property as defined under Ontario Regulation 153/04, as amended. The Subject Property location is shown in Figure 1.

We understand that DCR Phoenix Group is planning to develop the Subject Property for mixed land uses including commercial and residential uses. This Phase Two ESA was requested by the client to assist in site development plan approvals and to support filing a Record of Site Condition (RSC).

## 1.2 Site Description

The Subject Property is at the southeast corner of Somerset Street West and Lebreton Street North with approximately 75 m of frontage on these two streets. Bell Street North is approximately 50 m to the east and Eccles Street is approximately 65 m to the south. The boundary of the Subject Property is shown on Figure 2.

The Subject Property is comprised of a single parcel of land of approximately 0.16 hectares for which the legal description is: Part of Lots 26 and 31, Plan 4908, as in NS185691; Ottawa/Nepean. The property information numbers (PINs) for the Subject Property are 04109-0235 and 04109-0245. A legal survey is included in Appendix A.

The Subject Property has two municipal addresses: 770 Somerset Street West for the north part and 13 Lebreton Street North for the south part. The NAD 83, Zone 18 UTM coordinates for the Subject Property are 444525 E and 5025740 N.

# 1.3 Property Ownership

The Subject Property is owned by the numbered company: 442915 Ontario Ltd.. Ken Yip of this company is working in partnership for the development of the lands with DCR. Authorization to proceed with the work was granted by Mr. Michael Boucher of DCR on October 17, 2012 in the form of a sign back proposal agreement. This report was updated to incorporate 13 Lebreton Street North, based on a signback agreement from Mr. Boucher dated September 18, 2013. This report replaces any previously submitted Phase Two ESA reports.

Mr. Boucher is located at the Ottawa offices of DCR at 18 Bentley Avenue and can be contacted by email at <a href="mailto:mboucher@phoenixhomes.ca">mboucher@phoenixhomes.ca</a>.

# 1.4 Current and Proposed Future Uses

The Subject Property was first developed in the late 1800s (south part) and early 1900s (north part) and included two residential buildings that appear to have housed multiple tenants. The

Phase Two Environmental Site Assessment 770 Somerset Street West and 13 Lebreton Street North, Ottawa, Ontario MMM Group Limited | May 2015 | 14-12815-001-PH2 north part of the Subject Property has been used as a gas station and garage since the early 1930s. The residential use of the south part of the Subject Property has not changed since first development. Underground storage tanks (USTs) were initially located at the northwest corner of the Subject Property and were moved to the northeast corner sometime after 1956. The USTs and associated gas station buildings were decommissioned and removed from the Subject Property in 2000.

The north part of the Subject Property has been used as a parking lot since the gas station was decommissioned.

The proposed future use of the Subject Property will be for a residential condominium with possible commercial uses at grade. The change in land use from a gas station to residential use results in the mandatory filing of a RSC under Ontario Regulation 153/04 prior to the issuance of a building permit.

# 1.5 Applicable Site Condition Standard

Generic site condition standards established by the Ministry of the Environment (MOE) in their document: Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act (April 2011) (the "Standard") were used to assess soil and groundwater quality at the Subject Property. The Subject Property is not a sensitive site as defined in Ontario Regulation 153/04 and the proposed development will be serviced for water and sewage through the City of Ottawa, which obtains drinking water for this area of the City from the Ottawa River. Standards established for non-potable groundwater conditions for residential, parkland and institutional (RPI) land uses, with coarse-textured soil were considered to apply to the site.

The municipality was advised of the use of non-potable groundwater conditions for the Subject Property by letter dated April 23, 2014, with an acceptance received April 25, 2014 by e-mail (see Appendix A-1). Notification will need to be repeated within six months of filing a RSC.

#### 2.0 BACKGROUND INFORMATION

## 2.1 Physical Setting

A review of topographic mapping for the Subject Property in the Phase One ESA, indicated that the area is in an urban setting and the ground surface elevation is approximately 85 m above mean sea level (amsl). There is a grade difference of approximately 2.5 m between the east and west limits of the north part of the Subject Property, with the west limit being at a lower elevation. There is a retaining wall along the southern boundary of 770 Somerset Street West which is supporting the higher elevation of the north part of the Subject Property as compared to 13 Lebreton Street North (Photograph 1).

The area is gently sloped down to the northwest towards the Ottawa River, approximately 1.1 km northwest and Dow's Lake is approximately 1.4 km south. The Rideau Canal links Dow's Lake to the Ottawa River in a meandering path to the south and east of the Subject Property at distances exceeding 2 km.



Regional groundwater is generally expected to flow north towards the Ottawa River. It should be noted that local groundwater flow may be influenced by underground utilities (i.e., service trenches), structures and bedrock topography. For example, the gravel pack used around utilities, such as storm sewers, can act as interceptors and redirect groundwater flow along the direction of the pipe.

The area is fully serviced for water and sewage, with potable water obtained municipally from the Ottawa River. No surface water is located on the Subject Property.

The Subject Property is within the Ottawa Valley Clay Plains physiographic region of Southern Ontario. This region primarily consists of clay plains interrupted with ridges of rock or sand (Chapman, L.J. and Putman, D.F. 2007). The native surficial geology is indicated to be sandy silt to silty sand overlying paleozoic bedrock, which is not far below ground surface at the Subject Property (Ontario Geological Survey, 2010). Given the urban setting of the area, much of the near surface overburden is interpreted to have been modified as part of urbanization. While the overall permeability (hydraulic conductivity) of the native overburden deposits are interpreted to be low to moderate, higher permeability overburden sediments are interpreted to be present at the Subject Property where granular backfill has been placed, particularly in former UST locations and in utility corridors and this may have an influence on groundwater flow. Bedrock in the area including the Subject Property consists of nodular to black laminated limestone of the Collingwood formation (Armstong, D.K. and Dodge, J.E.P. 2007). The thickness of overburden deposits in the area is generally indicated to range from 0 to 10 m.

## 2.2 Past Investigations

The following environmental reports were available for the north part of the Subject Property and were reviewed as part of the Phase One ESA:

- Phase I and Phase II Environmental Site Assessment, 770 Somerset Street West, Ottawa, Ontario. Jacques Whitford Environment Limited. June 13, 2000.
- Petroleum Hydrocarbon Impacted Soil Removal, 770 Somerset Street West, Ottawa, Ontario. Jacques Whitford Environment Limited. April 9, 2001

A summary of the reports is provided below:

- The north part of the Subject Property has historically been used as an automotive repair shop and gasoline retail outlet. Seven underground storage tanks (USTs) were identified through historical records including a 1956 FIP along with a hydraulic hoist and an oil/water separator. Five of the USTs were removed from the Subject Property in 1997 under the supervision of Jacques Whitford Environmental Limited and the 2000 ESA report indicates that 203 tonnes of petroleum hydrocarbon impacted soil was excavated from the pump island area and was disposed of under the supervision of the previous owner (Triangle Pump Service).
- The Phase II ESA consisted of nine boreholes (three equipped with monitoring wells) and was completed in 2000 to investigate potentially contaminating activities (PCAs) identified in the Phase I ESA. Soil and groundwater samples were submitted for analysis of benzene, toluene, ethylbenzene and xylene (BTEX) and total petroleum hydrocarbon (TPH) analysis.
- The results of analysis of selected soil and groundwater samples were compared to the MOE Table B criteria for a commercial/industrial land use from the Guideline for Use at



Contaminated Sites in Ontario, revised 1997. The report indicated that the concentration of all analysed parameters were either below detection limits, or present at concentrations that satisfy the Table B criteria with the exception of the xylenes concentration in the soil sample submitted from MW00-3. Elevated levels of TPH (gas/diesel) were measured in the groundwater sample from MW00-3; however, at the time this Phase II ESA was completed there were no standards established in the MOE Guideline for comparison.

- It was recommended that soil containing concentrations of xylenes greater than the applicable site condition standard be removed from the Subject Property. In addition, it was recommended that heavily stained surface gravel located throughout the parking lot be removed.
- ◆ In April 2001, an area of approximately 25 m² was excavated to a depth of approximately 4 m below ground surface (bgs) to remove petroleum impacted soil in the vicinity of MW00-3. Approximately 84 tonnes of petroleum impacted soil (i.e., less than half the excavated soil) was removed from the Subject Property and disposed of at a local licensed landfill facility. Verification samples collected from the walls of the excavation had concentrations of contaminants that were less than the applicable site condition standards. The remaining excavated soil was deemed to be clean, based on field screening measurements and was used as backfill material.

In addition, as part of the development planning and design, a geotechnical engineering report (*Phoenix Homes Geotechnical Investigation Final*, prepared by exp Services Inc. and dated January 29, 2013) was prepared for the Subject Property. The geotechnical investigation was conducted to establish a geotechnical and groundwater profile of the Subject Property. The information from the report was used to assess physical groundwater conditions used by MMM in the interpretation of the environmental condition of the Subject Property.

#### 2.3 Potential Contaminants of Concern

Past soil sampling identified impacts from petroleum hydrocarbon compounds (PHCs) in soil. Based on the known history of the Subject Property, additional potential contaminants of concern related to the PCAs include metals, inorganics (chloride), volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). The Phase Two ESA was designed to assess the validity of past soil and groundwater data as well as to confirm the presence of the additional contaminants of potential concern.

#### 3.0 SCOPE OF THE INVESTIGATION

#### 3.1 Overview of Site Investigation

The scope of work for the 2012 Phase Two ESA was based on a proposal submitted by MMM dated to DCR on September 26, 2012. Additional site data was obtained for 13 Lebreton Street North in a supplemental work program that was described in a proposal dated September 18, 2013 and investigation of the deeper bedrock was based on a proposal dated September 12, 2014. Previous investigations provided an initial information base for the Phase Two ESA property; however, current data were required to meet the requirements of Ontario Regulation 153/04. The tasks completed for the Phase Two ESA included:

- Preparation of sampling and analysis plans for the investigations.
- Drilling and sampling of eight investigation boreholes under the supervision of Strata Soil Sampling, a qualified environmental driller, each completed as a monitoring well. Soil sampling was conducted on November 8 and 9, 2012 and groundwater monitoring and sampling was conducted November 15 and 16, 2012.
- ◆ Additional drilling was conducted from October 23 through 25, 2013 with additional groundwater sampling conducted on October 28 and 29, 2013 and November 6, 2013.
- Groundwater sampling was conducted at all wells on August 7 and 8, 2014.
- Additional drilling was required based on these sampling results. Drilling and sampling of one additional well was carried out on October 8 and 9, 2014, and December 3, 2014.
- Submitting soil and groundwater samples for the analysis of contaminants of potential concern, including quality control duplicates and trip blanks.
- Comparing results of analysis to generic soil and groundwater standards.

## 3.2 Media Investigated

Both soil and groundwater quality at the Subject Property was investigated as part of this Phase Two ESA. No sediment is present on the Subject Property.

The soil quality was assessed through the recovery of soil samples during the drilling of 11 boreholes on the Subject Property. Soil samples were recovered at regular depth intervals, to allow the characterization of physical soil properties, as documented in the field logs. Soil characteristics were not logged during the drilling of the deep bedrock wells, as these were considered to be in the same stratigraphy as the adjacent shallow wells.

The groundwater quality was assessed in seven groundwater monitoring wells. Four wells were observed to be dry at the time of sampling. Groundwater from MW-5C was recovered using a bailer, while groundwater from the remaining wells was recovered using a low-flow sampling protocol, due to the anticipated slow recovery of the wells. Water samples were collected in laboratory prepared bottles and were submitted to an accredited laboratory for analysis of the contaminants of potential concern.

## 3.3 Phase One Conceptual Site Model

The Subject Property was used as an automotive repair centre and gasoline retail outlet from the 1930s to 1997. The Phase One Conceptual Site Model is summarized as follows:

- A single residential structure and small parking lot kiosk are on the Subject Property;
- No water bodies are within the study area;
- No areas of natural significance are in the study area;
- ◆ The extent of the removal of former underground utilities was not recorded in previous reports. It is possible that abandoned conduits remain on the Subject Property.
- No drinking water wells are in the study area;



- Surrounding land uses (Figure 2) include residential uses to the north, east, south and west.
   Immediately adjacent to the Subject Property are Somerset Street West (to the north) and Lebreton Street North (to the west).
- Site soil conditions (silty sand to sand and gravel) provide moderate to high permeability for contaminant migration;
- Groundwater is approximately 3.3 to 3.7 m below ground surface, based on field measurements during previous investigations;
- ◆ The local topography is gently sloped down to the northwest towards the Ottawa River approximately 1.1 km from the Subject Property.
- Regional groundwater is generally expected to flow north towards the Ottawa River. It should be noted that local groundwater flow may be influenced by underground utilities (i.e., service trenches) and building structures.
- Bedrock within the phase one study area consists of nodular to black laminated limestone of the Collingwood formation with a drift thickness estimated to be between 0 and 10 m deep. The surficial geology within the phase one study area is comprised of sandy silt to silty sand rising to paleozoic bedrock near the surface. Based on site investigations however, site geology consists of silty sand and gravel, which would have a moderate to high permeability.

# 3.4 Deviations From Sampling And Analysis Plan

The sampling and analysis plans prepared in advance of the soil and groundwater investigations are included in Appendix A-1. The intent of the plans was followed during the investigations to ensure that soil and groundwater quality was assessed in the areas of potential environmental concern (APECs) on the Subject Property. Minor deviations to the plan were required based on field conditions, as identified in the following:

- Boreholes at four locations were advanced approximately 0.5 m into the surface bedrock, to improve the groundwater recovery potential of the wells. The well screens were located to straddle the overburden and weathered bedrock interface.
- The field screening results did not indicate any gross contamination in soil samples and the anticipated sampling program was not completely required. A sample for analysis of metals and inorganics was not submitted from MW6 and only one sample was submitted for PHCs or VOCs instead of the two planned samples at MW1, MW4, MW5, MW7 and MW8. Based on the consistency of results from the actual sampling program, the reduction is not considered to adversely affect the interpretation of soil and groundwater quality at the Subject Property.
- The soil sample volume submitted for analysis of VOCs in 2012 was smaller than required by the laboratory. This resulted in elevated detection limits for some VOC parameters. The effect of this is discussed in more detail in Section 4. Subsequent sampling in 2013 provided sufficient sample.
- A field duplicate was not submitted for analysis of PAHs.
- The initial sample from MW-7 SS1 was not submitted for analysis of metals and inorganics, however DUP1 was submitted for this analysis. For the purpose of this report, the sample identified by the laboratory as DUP1 is referred to as MW-7 SS1.



• The number of duplicate samples submitted was consistent with at least one for every 10% although for metals and inorganics, a duplicate was not submitted for each sampling day.

### 3.5 Impediments

There were no impediments that prevented completion of the original defined scope of investigation.

#### 4.0 INVESTIGATION METHOD

#### 4.1 General

The soil and groundwater quality at the Subject Property was investigated at the locations shown on Figure 2 through the advancement of boreholes and the installation of groundwater monitoring wells. Investigation methods followed Standard Operating Procedures prepared by MMM for the conduct of environmental investigations. The investigation methods are described in the following sections.

The boreholes were located to intersect the identified APECs and to provide spatial distribution across the Subject Property. This judgemental approach to sampling location is considered sufficient for the identification of areas of contamination on the Subject Property and identification of maximum concentrations of contaminants in the media investigated.

## 4.2 Drilling and Excavating

The drilling was conducted by Strata Soil Sampling Inc., under the direction of MMM on November 8 and 9, 2012, October 23 to 25, 2013, and October 8, 2014. The investigation program in 2012 focused on overburden geology within 4.0 m of the ground surface. In 2013 and 2014, the groundwater conditions in bedrock were assessed through deeper wells. The boreholes were advanced using direct push methods with modified Geoprobe® tooling and air rotary bedrock drilling capabilities. Of the boreholes that were drilled, two were stopped at refusal on top of the inferred bedrock surface and nine of the boreholes were further advanced into weathered bedrock from 0.15 m to 0.46 m using the air rotary capabilities. Three wells were installed deep into the bedrock, to assess hydrogeological conditions that may be associated with construction dewatering and to further assess the environmental quality of groundwater. Continuous soil samples were collected from the ground surface to bedrock using plastic dual tube liner inserted into an outer rod to prevent cross-contamination of the recovered soil samples. A groundwater monitoring well was completed at each location.

Two test pits were advanced to assess geotechnical conditions of the soil at the southeast property boundary. Although MMM was present for the test pit excavations, no samples were recovered nor was soil logged.

# 4.3 Soil: Sampling

Soil samples were collected from the continuous cores that were retrieved during drilling. Each core sample was approximately 1.2 m long and three cores were collected from each borehole, as follows:

- SS-1 from 0 to 1.2 m bgs
- SS-2 from 1.2 to 2.4 m bgs
- SS-3 from 2.4 to 3.6 m bgs or bedrock refusal.

Site geological conditions were observed in the soil samples and recorded to a field log (Appendix A-2) by a MMM technician indicating the colour, odour, texture, soil type and moisture. Based on a review of the finalized field logs, the soil generally consisted of sand, gravely sand or sand and gravel over limestone bedrock. The sand generally appeared to be reworked fill; however, deeper portions of the overburden in MW-1, MW-2 and MW-9B are interpreted to be native soil.

Soil samples were recovered from the cut-open cores and placed in labeled polyethylene bags for screening. The samples were screened within 30 minutes of sampling and then any sample remaining after jarring was placed in a cooler. For screening, a portion of each sample was maintained in an undisturbed condition and the balance of the sample was broken up to release soil vapours. The vapour readings were measured as described in Section 4.4 and selected samples were jarred in laboratory prepared bottles for submission for chemical analysis (Table 1). For samples considered for VOC or BTEX-F1 analysis, a core was recovered from the undisturbed portion of the bag and placed in a laboratory prepared vial containing a measured amount of methanol. Efforts were made to avoid splashing the methanol during sample placement.

## 4.4 Field Screening Measurements

Subsets of the 1.2 m long core were recovered for screening using a (Mini-Rae 3000 photoionization detector (PID) and RKI Eagle combustible gas indicator (CGI). Results of field screening are included in the field logs and for those samples submitted to the laboratory, data are included Table 1.

The PID detects total organic vapours that emit below an ionization potential of 10.7 eV and includes a range of VOCs such as solvents and fuels. The PID will not detect contaminants with higher ionization potentials, such as dichloromethane and tetrachloroethylene. The PID provides an indication of organic contamination in soil but does not measure concentrations of individual contaminants.

The CGI detects combustible vapours such as those associated with fuels. This instrument measures a concentration of total combustible gas, calibrated to hexane. As with the PID, it provides an indication of contamination but not chemical specific concentrations. The instrument provides measurement at low concentrations in the parts per million range and for higher concentrations, the units are presented as a percentage of the lower explosive limit.

The accuracy and precision of both instruments will depend on soil characteristics, site conditions and weather, which can be difficult to quantify. The instruments are considered to be accurate and precise indicators of gross contamination in soil vapour. Both instruments were obtained from Pine Environmental for this project. The instruments are calibrated by Pine on a regular basis, including prior to the use on this project, to ensure consistent results. Site calibration was conducted using a test gas and this was conducted at the beginning of each day.

**Table 1: Summary of Field Measurements and Sample Analysis** 

| Sample ID | Sample<br>Depth<br>(m bgs) | Field<br>Vapour<br>Readings¹ | Metals and<br>Inorganics | PHCs and<br>VOCs | PAHs           | PCBs           |
|-----------|----------------------------|------------------------------|--------------------------|------------------|----------------|----------------|
| MW-1-SS1  | 0 to 1.2                   | 6.5/350                      | Х                        |                  |                |                |
| MW-1-SS2  | 1.2 to 2.7                 | 0.5/360                      | Х                        |                  |                |                |
| MW-1-SS3  | 2.7 to 3.8                 | 0.4/360                      |                          | Х                |                |                |
| MW-2-SS1  | 0 to 1.2                   | 13/330                       |                          |                  | Х              |                |
| MW-2-SS2  | 1.2 to 2.7                 | 226.8/330                    | Х                        | X <sup>2</sup>   |                |                |
| MW-2-SS3  | 2.7 to 3.9                 | 31.7/330                     |                          | Х                |                |                |
| MW-3-SS1  | 0 to 1.2                   | 11.8/300                     | Х                        |                  |                |                |
| MW-3-SS2  | 1.2 to 2.7                 | 5/300                        | Х                        |                  |                |                |
| MW-3-SS3  | 2.7 to 3.8                 | 6.1/300                      |                          | Х                |                |                |
| MW-4-SS2  | 1.2 to 2.7                 | 11.8/250                     | Х                        | Х                |                |                |
| MW-5-SS1  | 0 to 1.2                   | 8/280                        | X <sup>2</sup>           |                  |                |                |
| MW-5-SS2  | 1.2 to 2.7                 | 12.1/280                     |                          |                  | Х              |                |
| MW-5-SS3  | 2.7 to 4.1                 | 9.5/280                      |                          | X <sup>4</sup>   |                |                |
| MW-6-SS2  | 1.2 to 2.7                 | 18.7/340                     |                          | Х                |                |                |
| MW-6-SS3  | 2.7 to 4.1                 | 31.0/330                     |                          | X <sup>2</sup>   |                |                |
| MW-7-SS1  | 0 to 1.2                   | 1/240                        | X <sup>3</sup>           |                  |                |                |
| MW-7-SS2  | 1.2 to 2.7                 | 0.6/240                      | Х                        |                  |                |                |
| MW-7-SS3  | 2.7 to 4.0                 | 2.5/240                      | Х                        | X <sup>4</sup>   |                | Х              |
| MW-8-SS2  | 1.2 to 2.7                 | 58.3/250                     |                          | Х                |                |                |
| MW-8-SS3  | 2.7 to 4.1                 | 37.7/250                     |                          | Х                |                | X <sup>2</sup> |
| MW-9B-SS2 | 1.2 to 2.7                 | 26.2/100                     | X <sup>2</sup>           | $\chi^2$         | Х              |                |
| MW-9B-SS3 | 2.7 to 4.1                 | 3.3/110                      |                          | Х                |                |                |
| MW-10-SS2 | 1.2 to 2.7                 | 0/0                          | Х                        | Х                | Х              |                |
| MW-11-SS2 | 1.2 to 2.7                 | 0.3/130                      | Х                        | Х                | X <sup>5</sup> |                |

#### Notes:

- 1. Field vapour readings are reported in parts per million (ppm) for total organic vapours using a PID and total combustible vapours using a CGI. CGI background in ambient air ranged from 240 to 350 ppm.
- 2. Duplicate sample, identified to the laboratory as DUP1 or DUP2 was submitted for this analysis.
- 3. Sample identified as DUP1 was submitted for this analysis; however, the original sample was not submitted. For the report, the sample identification is considered MW-7 SS1.
- 4. Sample submitted for PHCs in the F1 to F4 fraction and BTEX. Other VOCs not included in this analysis.
- 5. Sample for PAH analysis from MW-11 was labelled MW11A-2.

A total of 24 soil samples were collected in bags for screening, which was conducted within 30 minutes of collection. The vapours in recovered soil were generally at the background levels for the instruments, however, the samples with the higher vapour readings, particularly if these coincided with the water table, were selected for analysis of PHCs or VOCs.

# 4.5 Ground Water: Monitoring Well Installation

As indicated in Section 4.2, each borehole was completed as a monitoring well, constructed as follows:

- 0.051 m diameter well screens and PVC riser pipe.
- The screened interval was 1.52 m long with a No. 10 slot size screen.
- ♦ Sand pack, consisting of No. 2 silica sand, was placed around the well screen to the outer diameter of 0.1 m and the sand pack was extended to 0.3 m above the top of the screen.
- A bentonite seal was then placed around the PVC riser pipe up to within 0.6 m of the ground surface.
- The monitoring wells were completed with flush-mount covers grouted into place.

The monitoring wells were completed in accordance with Ontario Regulation 903, as amended. Groundwater levels were observed in the monitoring wells upon completion and were measured upon return site visits.

# 4.6 Ground Water: Field Measurement of Water Quality Parameters

Manual groundwater levels were collected for the initial and supplemental programs as follows: November 9, 2012 immediately after completion of drilling; November 16, 2012 prior to groundwater sampling (Table 2); October 25, 2013 after completion of the supplemental drilling; October 29, 2013 during sampling; August 7 and 8, 2014, during sampling; and November 11, 20, and 26, 2014, during sampling. At the initial monitoring event, MW-3, MW-4, MW-6, MW-7, and MW-8 were observed to be dry. Groundwater was observed to have infiltrated well MW4 but the other four wells remained dry during the November 16, 2013 monitoring event. Groundwater was present in the wells installed in 2013 and 2014.

The groundwater quality was evaluated for pH, temperature and electrical conductivity from purged water collected in a clean bucket or flow cell at the time of sampling. During the 2012 and 2013 sampling events, measurements were taken using a Hanna Instruments portable pH, temperature, total dissolved solids and electrical conductivity meter (Model HI99300) capable of measuring the three parameters. During the 2014 sampling events, measurements were taken using a Horiba U-50 Multi-parameter Water Quality Meter. Based on the lack of impacts in soil, field measurement for parameters more typically associated with petroleum and organic contamination were not considered necessary.

**Table 2: Well Installation and Monitoring Details** 

| Monitoring | Ground               | Screened          | Water | Level               | Volume | Fiel | d Chemistry (aft | er purging) <sup>4</sup> |                                       |                     |
|------------|----------------------|-------------------|-------|---------------------|--------|------|------------------|--------------------------|---------------------------------------|---------------------|
| Well       | Elevation<br>(m asl) |                   |       | Interval<br>(m asl) | Α      | В    | Purged<br>(L)    | рН                       | Electrical<br>Conductivity<br>(mS/cm) | Temperature<br>(°C) |
| MW-1       | 74.63                | 72.30 to<br>70.78 |       | 71.32               | 2.0    | 8.16 | 19.4             | 22.2                     |                                       |                     |
| MW-2       | 75.33                | 72.95 to<br>71.43 | 71.83 | 71.75               | 1.0    | 7.58 | 22.5             | 19.70                    |                                       |                     |
| MW-3       | 74.96                | 72.67 to<br>71.15 | Dry   | Dry                 | Dry    |      |                  |                          |                                       |                     |
| MW-4       | 73.54                | 72.17 to<br>70.65 | 70.81 | 70.70               | 0.5    |      |                  |                          |                                       |                     |
| MW-5A      | 74.60                | 65.57 to<br>62.52 | 70.93 | 70.92               | 51     | 7.47 | 0.009            | 24.50                    |                                       |                     |
| MW-5B      | 74.66                | 72.07 to<br>70.55 | 70.97 | 70.89               | 0.5    | 6.96 | 7.5              | 22.59                    |                                       |                     |
| MW-5C      | 74.63 <sup>3</sup>   | 56.34 to 54.82    |       |                     |        |      |                  |                          |                                       |                     |
| MW-6       | 75.55                | 72.96 to<br>71.44 |       | Dry                 | Dry    |      |                  |                          |                                       |                     |
| MW-7       | 75.97                | 73.53 to<br>72.01 | Dry   | Dry                 | Dry    |      |                  |                          |                                       |                     |
| MW-8       | 75.98                | 73.39 to<br>71.87 | 72.10 | 72.09               | Dry    |      |                  |                          |                                       |                     |
| MW-9A      | 75.84                | 66.39 to<br>63.34 | 70.70 | 70.57               | 43     | 7.31 | 5.44             | 17.14                    |                                       |                     |
| MW-9B      | 73.67                | 71.84 to<br>70.31 | 71.00 | 70.92               | 2.0    |      |                  |                          |                                       |                     |
| MW-10      | 72.58                | 69.53 to<br>66.48 | 70.11 | 70.07               | 6      | 7.60 | 4.58             | 18.94                    |                                       |                     |
| MW-11      | 73.77                | 70.72 to 67.67    | 71.07 | 71.07               | 8      |      |                  |                          |                                       |                     |

# Notes:

- 1. Groundwater elevation measured as October 2013 (A) and August 2014 (B). Water levels measured on these days are considered representative of the groundwater conditions on the site.
- 2. '--' indicates well could not be accessed or dry condition didn't allow monitoring.
- 3. MW-5C was not surveyed, however it is located within 1 m of MW-5A and MW-5B; therefore, the ground elevation at MW-5C has been approximated using the geometric mean of the ground elevation at MW-5A and MW-5B.
- 4. Field chemistry recorded during August 2014 monitoring.

# 4.7 Ground Water: Sampling

The drilling method used for the installation of the wells did not introduce drilling fluids into the subsurface. Municipal water was used for the drilling of one of the deeper bedrock wells, identified as MW-9A. Therefore, well development consisted of purging groundwater to remove standing water and fine-grained material from the well and associated sand pack. For this project, wells were purged to remove three times the volume of water in the well, or to dryness.

Groundwater samples were collected from the monitoring locations which contained water on November 16 and 17, 2012, October 28, 2013, and August 7 and 8, 2014. As MW-5C was installed after the previous ten wells, it was purged and sampled on October 9, 2014 and December 3, 2014. Purging was generally conducted the day prior to sampling to allow groundwater to recover sufficiently. Based on most recent monitoring, depth to groundwater ranged from 2.5 m bgs to 19.8 m bgs. After purging the wells, groundwater was allowed to recover into the well prior to sampling using a low-flow peristaltic pump.

Groundwater samples were collected in laboratory prepared jars and submitted for analysis of contaminants of concern, as identified in Section 4.9.

# 4.8 Sediment: Sampling

No sediment sampling was conducted as part of the investigation.

# 4.9 Analytical Testing

Soil samples were submitted for analysis for the contaminants of concern at the Subject Property, including:

- Metals and inorganic parameters (13 samples from ten boreholes plus two duplicates);
- PHC fractions F1 to F4 including BTEX (15 samples from 11 boreholes plus two duplicates) and gravimetric analysis was conducted for two samples where the baseline was not reached;
- VOCs (13 samples from nine boreholes plus three duplicates);
- PAHs (five samples);
- PCBs (two samples plus one duplicate); and
- Grain size through sieve analysis (three samples).

Groundwater samples were submitted for analysis of:

- Metals and inorganics, although sufficient sample volumes for mercury and chromium VI were not obtained from MW-1 and MW-5B during the 2012 sampling, and from MW-5C during the 2014 sampling (9 samples plus 3 duplicates during the 2012/2013 sampling, 9 samples plus 1 duplicate during the August 2014 sampling, and 1 sample with duplicate during the December 2014 sampling);
- VOCs (10 samples plus 3 duplicates and 3 trip blanks);
- PHC fractions F1 to F4 including BTEX (12 samples plus 5 duplicates); and
- PCBs at MW-5A and MW-5B only.



In 2012 and 2014, samples were submitted to Maxxam Analytics (Maxxam), in Mississauga, Ontario for chemical analysis. Maxxam has been accredited by the Standards Council of Canada (SCC) for the requested soil and groundwater analyses. In 2013, samples were submitted to Exova Group Limited (Exova) in Mississauga, Ontario for chemical analysis. Exova is accredited by Canadian Association for Laboratory Accreditation (CALA) for the required soil and groundwater analyses. Samples for analysis of grain size were submitted to Peto McCallum Limited (PML).

Analytical results were compared to MOE Table 3 of the Standard for coarse grained soils, noting that soils at the site consisted primarily of sand to gravely sand fill, as well as silty gravely sand. The assumed size distribution was supported by grain size analysis reported by PML of three samples (MW-2 SS2, MW-3 SS2 and SS3), as indicated in Section 5.4. Based on the City of Ottawa obtaining drinking water from the Ottawa River, non-potable groundwater conditions were assumed to apply (Appendix A-1).

# 4.10 Residue Management Procedures

Soil cuttings from drilling operations were collected and contained in drums for removal offsite in association with the development excavation. Minimal volumes of purge water were generated (less than 10 L total at each event) and this water did not show evidence (visual or odour) of impacts and was disposed on the ground at the Subject Property.

Equipment wash fluids were contained and removed by the driller as part of their scope of work.

As the management of residues did not require any permits or approvals, an appendix with this information is not included in this report.

# 4.11 Elevation Surveying

The elevation of the monitoring wells (ground elevation and top of pipe elevation) was surveyed on November 9, 2012 and on October 25, 2013. This survey data is provided in Table 2.

# 4.12 Quality Assurance and Quality Control Measures

Quality assurance and quality control of the soil and groundwater samples was monitored and maintained in a number of ways:

- This field investigation was completed under MMM standard operating procedures (SOPs) for soil and groundwater sampling. Deviations from the SOPs are documented and referenced in this report.
- Samples were given unique identifications as they were collected, identifying the project number, date, sample location and depth. The sample numbers were recorded in field notes for each location.
- Sample containers provided by the laboratory were used and laboratory requirements for sample size, container type, preservatives and filtering were followed.
- Non-disposable sampling equipment was cleaned using Alconox and distilled water following each use.



- A chain-of-custody form was filled out for the samples prior to submitting the samples to the laboratory. The chain-of-custody documented sample movement from collection to receipt at the laboratory and provided sample identification, requested analysis and conditions of samples upon arrival at the laboratory (e.g., temperature, container status, etc.).
- Soil samples were randomly selected by the MMM field staff for duplicate testing. For most of the requested analyses, one or two duplicate samples were submitted for analysis, representing either one sample for every ten samples submitted or in the case of VOC analysis, one soil sample duplicate was submitted for each sampling day. A duplicate was not submitted for PAH analysis.
- For analysis of groundwater for VOCs, a trip blank was submitted for analysis for the one sampling event.
- Field monitoring equipment was calibrated according to industry requirements prior to the site visit including onsite calibration.
- Samples were randomly selected by the laboratory for Quality Assurance checks. Generally, one sample for every ten samples submitted is checked. For each parameter, there is an acceptable upper and lower limit for the measured concentration of the parameter. Measured concentrations of analysed samples must fall within the upper and lower acceptable limits in order for the sample to be valid. If a result exceeds the upper or lower acceptable limits, the sample must be re-analysed.

### 5.0 REVIEW AND EVALUATION

# 5.1 Geology

As noted in Section 2.1, the native surficial geology near the Subject Property is indicated to be sandy silt to silty sand overlying paleozoic bedrock, which is not far below ground surface (Ontario Geological Survey, 2010). It is interpreted that the near-surface overburden geology in the area has been greatly modified through urbanization, including construction of roads, buildings, and underground utilities, all of which has involved excavation of native soils and replacement with backfilled materials. At the Subject Property, evidence of backfill was encountered in each borehole, with interpreted native soil observed at depth in only three boreholes. This is shown in the cross-section of the Subject Property included as Figures 3A, 3B and 3C.

The overburden and bedrock groundwater bearing units were investigated in this ESA. The overburden unit was considered to be an unconfined aquifer and to be present in the overburden soils and the upper weathered layer of bedrock, consisting of approximately 0.4 m. The thickness of the overburden unit ranged from approximately 2.5 to 4.0 m.

Bedrock in the area including the Subject Property consists of nodular to black laminated limestone of the Collingwood formation (Armstong, D.K. and Dodge, J.E.P. 2007), which is also interpreted to have moderate hydraulic conductivity, and higher hydraulic conductivity near the bedrock-overburden interface where it is fractured and weathered. The hydraulic properties of the bedrock were investigated within the upper 7 m of the layer.

As noted in Section 4.3, geological conditions at the Subject Property consisted of well graded sand, gravely sand or sand and gravel over limestone bedrock. The sand generally appeared to



be reworked fill, with loose to firm density, however deeper portions of the overburden at MW-1, MW-2 and MW-9B (below 1.52 m bgs) are interpreted as native deposits. Within the overburden, particularly the upper 2 m, asphalt and concrete fragments were occasionally observed within the sand/sand and gravel fill. Although not well captured in the soil cores, the uppermost 0.30 m of the overburden profile is interpreted to consist of asphalt and subgrade pavement structure. Only one interval of finer grained materials (MW-1, 2.43 to 3.04 m bgs) was observed in this investigation.

The topography of the Subject Property (Figures 3A, 3B and 3C) is sloping from east to west and the residential property, south of the retaining wall is approximately 2 m lower. It is noted that most of the slope is west of MW-6, and east of MW-6 the ground is higher but relatively flat. The southwest corner at MW-4 is at the lowest elevation is approximately 2.5 m lower than MW-8, at the south-east corner of the Subject Property, where the highest ground was observed.

The depth to bedrock observed in this investigation ranged from m to x m below ground surface. The surface of the top of bedrock, as determined in this investigation, slopes down to the west-southwest, whereby the top of bedrock at the lowest measured point at MW-4 is 1.81 m lower than the top of bedrock at the highest measured point at MW-3. The topography of the bedrock surface generally reflects that of the ground surface, however the bedrock slope is interpreted to be more uniform based on the measurements made during this investigation.

#### 5.2 Ground Water: Elevations and Flow Direction

After monitoring well installation on November 9, 2012, only the three monitoring wells furthest west (MW-1, MW-2, and MW-5) contained groundwater. Groundwater was observed in MW-4 on November 16, 2012. The 2013 monitoring events noted that water had also infiltrated into MW-8. The wells installed in 2013 yielded groundwater that was monitored and sampled. Table 3 provides additional monitoring well details, as well as groundwater hydraulic monitoring results at the Subject Property.

Seasonal variations in groundwater elevations are likely to occur, with higher elevations in the spring and lower elevations in the fall. Changes in the groundwater elevation are not expected to affect the distribution of contaminants in the soil and groundwater.

The interpreted groundwater flow direction, based on the most recent monitoring, is to the southwest, with an average horizontal groundwater flow gradient of 0.04. It is noted that the top of weathered bedrock at the eastern portion of the Subject Property is higher than the highest groundwater level observed (MW-3, 97.22 m above datum), indicating that the water table (shallow groundwater piezometric surface) was entirely within the bedrock under the eastern portion of the Subject Property at the time of monitoring. At the western portion of the Subject Property, water level measurements indicate that the saturated portion of overburden is less than 0.5 m above the top of bedrock.

It is, therefore, interpreted that bedrock topography is strongly influencing groundwater flow at the Subject Property. Shallow groundwater likely follows bedrock valleys and/or utility corridors, and ultimately discharges to the Ottawa River, although shallow groundwater may also flow into or out of the bedrock aquifer, depending on where highly weathered bedrock, with preferred groundwater flow pathways, may be present. Based on the available data, the interpreted groundwater flow is shown on Figure 4.

# 5.3 Ground Water: Hydraulic Gradients

The 2013 and 2014 investigation installed monitoring wells into bedrock at locations to form two well nests. This allowed for the measurement of vertical hydraulic gradients. It is interpreted that vertical hydraulic gradients are downward, based on the fact that the Subject Property is in an area of relatively higher ground. The difference in the measured depth to groundwater at the nested wells (MW-5 and MW-9) was between 0.03 and 0.35 m.

Table 3: Groundwater Monitoring and Surveying Results

| Monitoring<br>Well ID | Ground<br>Surface<br>Elevation<br>(m asl) | Top of Riser<br>Elevation<br>(m asl) | Screened<br>Interval<br>(m asl) | Top of<br>Bedrock<br>(m asl) | Depth to<br>Groundwater<br>Oct 2013<br>(m below<br>Top of Riser) | Elevation of<br>Groundwater<br>Oct 2013<br>(m asl) |
|-----------------------|-------------------------------------------|--------------------------------------|---------------------------------|------------------------------|------------------------------------------------------------------|----------------------------------------------------|
| MW1                   | 74.63                                     | 74.53                                | 72.30 to 70.78                  | 70.78                        | No access                                                        | -                                                  |
| MW2                   | 75.33                                     | 75.23                                | 72.95 to 71.43                  | 71.78                        | 3.50                                                             | 71.83                                              |
| MW3                   | 74.96                                     | 74.86                                | 72.67 to 71.15                  | 71.46                        | Dry                                                              | -                                                  |
| MW-4                  | 73.54                                     | 73.44                                | 72.17 to 70.65                  | 70.65                        | 2.73                                                             | 70.81                                              |
| MW-5A                 | 74.60                                     | 74.52                                | 65.57 to 62.52                  | 70.33                        | 3.67                                                             | 70.93                                              |
| MW-5B                 | 74.66                                     | 74.56                                | 72.07 to 70.55                  | 70.70                        | 3.69                                                             | 70.97                                              |
| MW-5C                 | 74.63                                     | 74.54                                | 56.34 to 54.82                  | 70.67                        |                                                                  |                                                    |
| MW-6                  | 75.55                                     | 75.45                                | 72.96 to 71.44                  | 71.64                        | No access                                                        | -                                                  |
| MW-7                  | 75.97                                     | 75.87                                | 73.53 to 72.01                  | 72.47                        | Dry                                                              | -                                                  |
| MW-8                  | 75.98                                     | 75.88                                | 73.39 to 71.87                  | 72.27                        | 3.88                                                             | 72.10                                              |
| MW-9A                 | 75.84                                     | 75.80                                | 66.39 to 63.34                  | 70.04                        | 5.13                                                             | 70.71                                              |
| MW-9B                 | 73.67                                     | 73.60                                | 71.84 to 70.31                  | 70.43                        | 2.67                                                             | 71.00                                              |
| MW-10                 | 72.58                                     | 72.52                                | 69.53 to 66.48                  | 70.14                        | 2.47                                                             | 70.11                                              |
| MW-11                 | 73.77                                     | 73.68                                | 70.72 to 67.67                  | 71.94                        | 2.7                                                              | 71.07                                              |

#### 5.4 Soil Texture

The results of grain size analysis are presented in Appendix A-3. Based on the grain size curves, majority of overburden materials at the Subject Property consist of well graded sand to sand and gravel backfill, with a small area of deeper sediments, also primarily sand, and interpreted as native deposits.

# 5.5 Soil: Field Screening

CGI and PID readings are included for most locations in Table 1 and for all samples on the borehole logs in Appendix A-2. The purpose of the screening was to evaluate whether

combustible (e.g., petroleum) or volatile (e.g., solvents) compounds may be present in the recovered samples. CGI readings for the soil samples were between 240 to 360 ppm. However, it was noted that background concentrations in ambient air were generally between 320 and 360 ppm. PID readings for the soil samples were between 0 to 227 ppm with background concentrations in ambient air being 0 ppm.

The readings obtained during field monitoring indicate that vapour concentrations are relatively low at most locations but did indicate potential contamination at some locations. In general the PID readings do not represent gross organic contamination. This was consistent with visual and olfactory observations. During the 2012 investigation, a sample representing the highest CGI and/or PID readings was submitted for PHC and/or VOC analysis at each monitoring well location.

# 5.6 Soil Quality

The analytical soil results from the Phase Two ESA are provided in Table 4 (metals and inorganic parameters), Table 5 (PAHs), Table 6 (PHCs), Table 7 (VOCs) and Table 8 (PCBs). The distribution of contaminants in soil is shown in Figure 5A (metals and inorganics) and 5B (PHCs).

Comparison of analytical results of this investigation to the MOE 2011 Table 3 RPI Standard for coarse-textured soils identified lead, mercury, zinc, pH, electrical conductivity (EC), sodium adsorption ratio (SAR) and the F3 and F4 fractions of PHC impacts at concentrations exceeding the Standard. Although PAHs and VOCs were detected in some samples, the concentrations were well below the MOE Table 3 standards and were not indicative of impacts. No PCBs were detected in the submitted soil samples.

The pH value of 9.06 in sample SS2 collected from MW-8 exceeded the acceptable upper range of 9.0 identified in the applicable MOE standards. The sample depth was from 1.2 m to 2.4 m, and provided the soil was recovered from below 1.5 m, then the pH is acceptable within MOE standards. Because of the minor exceedance, the depth of the sample and low frequency (i.e., one sample), it is concluded that this exceedance is not indicative of a sensitivity of the Subject Property.

For the metals in soil, the concentration of lead exceeded at MW-1 SS1, MW-5 SS1 and MW-7 SS2. The SS1 samples were recovered from surface to 1.2 m, and the SS2 samples were recovered from 1.2 m to approximately 2.4 m below grade. The concentration of mercury exceeded the MOE standard at two of these locations (MW-5 and MW-7) and the concentration of zinc exceeded the MOE standard at MW-5 only. The concentrations of these contaminants exceed the standards by a relatively small amount; however, because of the concentration of lead in the samples, the material will require management as waste once removed from the site during construction. Based on the history of the Subject Property, it is assumed that the metal contaminants in the fill are associated with the source of the fill. These metals are common in fills from urban areas and are not expected to be indicative of an onsite source. Deeper samples were not submitted for analysis of these metals and therefore it is assumed that contaminants extend vertically to bedrock.

Values of EC and SAR were elevated at six of the ten sampling locations (Table 4) (note samples were not submitted from MW-6 for inorganic parameters). These parameters are associated with the use of salt (sodium chloride) for ice management and elevated values are

expected at a site adjacent to a major urban street and used for a parking lot or residential driveway. Although the values for these two parameters exceed the Standards for residential land use, they are acceptable for commercial or industrial land uses and the values in soil are generally low, compared to the concentrations of sodium and chloride in groundwater (see Section 5.7). It is possible that the remediation of the property in 2000 removed much of the EC and SAR in the soil and the concentrations measured in this investigation are representative of loadings on the site since 2000.

For PHC F3 and F4 fractions, impacts were identified at a single sampling location (MW-8 SS2). MW-8 is located near the former waste oil UST and therefore the measured concentrations may be indicative of residual impacts not removed during remediation. These concentrations represent material that will require management as waste at the time of redevelopment. Results of analysis for MW-8 SS3 indicate that impacts do not extend deeper than 2.7 m bgs.

The concentrations of contaminants in the soil were not measured in the groundwater and do not appear to be a source of contaminant loading. Nor do the concentrations identified through this investigation suggest the presence of non-aqueous phase liquids. The contaminants identified in the soil are unlikely to transform significantly through biological or chemical reactions.

The concentrations of the contaminants of concern (lead, mercury, zinc, EC, SAR and PHCs (F3 to F4)) in the other samples analysed from the Subject Property are significantly less than the applicable MOE standards. Based on available data, the impacts are be limited to the south and west boundaries of the Subject Property. It may be possible to segregate the impacted soil at the time of redevelopment; however, additional sampling would be required to support the segregation.

## 5.7 Ground Water Quality

Groundwater analytical results from the Phase Two ESA investigation are provided in Table 9 (metals), Table 10 (PHCs), Table 11 (VOCs) and Table 12 (PCBs). Ten of the monitoring wells intersected groundwater from the Subject Property. Five of these wells (MW-1, MW-4, MW-9B, MW-10 and MW-11) were installed in the soil overburden and two of the wells (MW-2 and MW-5B) were set 0.15 m to 0.35 m into the limestone bedrock. Three wells (MW-5A, MW-5C, and MW-9A) were cored into the bedrock. The groundwater elevation on the east portion is expected to be deeper than the surface of bedrock and may be influenced by the building drainage system to the east.

Groundwater recovered from the monitoring wells for analysis of metal parameters was filtered using in-line filters, according to MOE and laboratory protocols. As MW-5C was sampled using a bailer, field filtering was not possible. The groundwater recovered from this well was filtered by the lab for the analysis of metal parameters. Although a low flow sampling method was used to reduce suspended solids in the samples, some turbidity was evident in samples.

Comparison of analytical results from the 2012 and 2013 sampling to the MOE 2011 Table 3 non-potable groundwater standard identified the concentration of silver as exceeding the standard at a single location and sodium and chloride concentrations exceeding the standard at four and seven sampled locations, respectively. The analytical results from the 2014 sampling identified exceedances for silver at four locations, sodium at seven locations, and chloride at



nine locations. The distribution of contaminants in groundwater is shown in Figure 5C. Table 13 shows the distribution of sodium and chloride on the Subject Property for sampling events in 2012/2013 and in 2014.

The concentrations of sodium and chloride in groundwater are likely a result of the use of road salt both on Somerset Street West immediately to the north and on the site used for parking. The concentrations of sodium and chloride were elevated on the residential property also, but at generally lower concentrations than those observed on the parking lot site. The highest concentrations of sodium and chloride are located in wells adjacent to Somerset Street West (MW2 and MW4). For the residential property, concentrations were higher in MW10, which is adjacent to Lebreton Street, compared to MW11, which is not directly adjacent to the roadway. Cross-section C (Figure 3C) shows that concentrations of sodium and chloride are decreasing with increasing distance from Somerset Street. The evidence presented above suggests that the use of the Subject Property for parking is not the sole contributor to the elevated sodium and chloride concentrations, and that the use of salt on the adjacent road contributed significantly to contamination onsite. Under Paragraph 48 of O. Reg. 153/04, sodium and chloride have resulted from the use of a substance on a highway for control of ice and the applicable SCS are deemed not to have been exceeded.

Table 13: Distribution of Sodium and Chloride in Groundwater

| Monitoring | Units | Concentration | of Sodium   | Concentration of Chloride |             |  |
|------------|-------|---------------|-------------|---------------------------|-------------|--|
| Well ID    |       | 2012/2013     | 2014        | 2012/2013                 | 2014        |  |
| MW1        | ug/L  | 4,300,000     | 3,700,000   | 7,350,000                 | 5,700,000   |  |
| MW2        | ug/L  | 2,100,000     | 2,600,000   | 2,600,000                 | 9,300,000   |  |
| MW3        | ug/L  | Not sampled   | Not sampled | Not sampled               | Not sampled |  |
| MW4        | ug/L  | 3,200,000     | 5,600,000   | 4,900,000                 | 10,000,000  |  |
| MW5A       | ug/L  | Not sampled   | 3,850,000   | Not sampled               | 6,350,000   |  |
| MW5B       | ug/L  | 3,200,000     | 3,400,000   | 4,600,000                 | 5,900,000   |  |
| MW5C       | ug/L  | Not sampled   | 4,000,000   | Not sampled               | 6,800,000   |  |
| MW6        | ug/L  | Not sampled   | Not sampled | Not sampled               | Not sampled |  |
| MW7        | ug/L  | Not sampled   | Not sampled | Not sampled               | Not sampled |  |
| MW8        | ug/L  | Not sampled   | Not sampled | Not sampled               | Not sampled |  |
| MW9A       | ug/L  | 338,500       | 800,000     | 631,500                   | 1,500,000   |  |
| MW9B       | ug/L  | 3,525,000     | 5,465,000   | 3,400,000                 | 5,800,000   |  |
| MW10       | ug/L  | 2,110,000     | 3,720,000   | 2,300,000                 | 3,900,000   |  |
| MW11       | ug/L  | 1,540,000     | 2,544,000   | 2,100,000                 | 3,400,000   |  |

Based on the relatively low values of EC and SAR in the soil, compared to the elevated concentrations of sodium and chloride in the groundwater, it is unlikely that the groundwater contamination is contributing to soil contamination to any significant degree. The concentrations will vary seasonally, with the use of salt and the infiltration of surface melt into the subsurface.

Neither silver, nor sodium and chloride would be influenced by chemical or biological activity within the subsurface. These contaminants are not associated with non-aqueous phase liquids.

During the 2013 groundwater sampling event, PHCs in the F3 range were measured at MW-9B and chloroform was measured in MW-9A. Because the F3 fraction is associated with heavier oils, it was not considered a likely contaminant in groundwater from a decommissioned gas station. The chloroform was considered to be associated with the use of municipal water that was required for bedrock coring at MW-9A. Both wells were resampled in November 2013. The chloroform concentration was reduced to below detection limits, supporting the conclusion that it was related to the introduction of municipal water during drilling. The results for sampling at MW-9B were inconclusive again during the second sampling event. Additional sampling was conducted on December 13, 2013 to assess the contaminant characteristics. PHCs were sampled in groundwater recovered from MW-9B where previously inconclusive results had measured F3 in one of two duplicate samples and from MW-10 where F3 was measured in a single sample (at a concentration less than the standard). Duplicate samples were recovered from each well. The results of this sampling indicated acceptable reproducibility between duplicate samples and the concentration of F3 and other parameters were less than the standard values.

Silver is considered the only contaminant of concern in the groundwater at the Subject Property.

# 5.8 Sediment Quality

Evaluation of sediment quality was not within the scope of this investigation.

# 5.9 Quality Assurance and Quality Control Results

The soil and groundwater samples were collected according to standard procedures, however smaller than recommended volumes were recovered in the VOC vials during the 2012 investigation. This resulted in elevated reporting limits compared to MOE standards. Most of the chemicals with elevated reporting limits are not contaminants of concern at the Subject Property; however some of the chlorinated solvents may have been used in the former service station operations. Chlorinated solvents used in commercial and industrial applications typically occur in a mixture and for some of these chemicals, the detection limits were equal to or less than the MOE standard values. The sampling conducted in 2013 recovered sufficient sample for undiluted VOC analysis, and no VOCs were detected. It is concluded that the elevated reporting limits from the 2012 investigation are not indicative of the presence of contaminants in the soil at the Subject Property.

Sample preservation, storage and hold times were within requirements of the regulation.

The certificates of analysis included in Appendix A-3 are in compliance with the regulation and represent the complete packages received from Maxxam and Exova. Where sample identifications were changed from field recording to this report to facilitate report clarification, a note was made in the appropriate reporting section.

Duplicate soil and groundwater samples were recovered during the investigation, as documented in Section 4.9. The soil and groundwater sample duplicates submitted for analysis of PHCs, PAHs, PCBs and VOCs did not have sufficient measurable concentrations of the



analyzed parameters and therefore accuracy and reproducibility could not be calculated. For the metals analysis, the relative percent difference (RPD) could be calculated for those parameters for which the measured concentration was more than three times the laboratory reporting limit. These are summarized in Table 14 (soil) and Table 15 (groundwater).

For the 2012 investigation, the RPD for two parameters, boron (hot water soluble) and mercury exceeded the laboratory acceptance value. For boron, the RPD was 0.42 compared to an acceptance level of 0.4. The measured concentrations were relatively low and small changes in concentrations can result in a large RPD. The larger than acceptable difference does not change the conclusion that boron is not a contaminant of concern.

For mercury, the calculated RPD was 0.53 compared to an acceptance level of 0.3. The concentration of mercury in the initial sample was less than the standard and that in the duplicate exceeded the standard. Mercury was measured in four other samples, with an exceedance noted at one of these locations (MW-7 SS2). Based on the duplicate analysis, the value of 0.22 ug/g measured at MW-8 SS2 may also be indicative of a concentration exceeding the standard of 0.27 ug/g. The mercury appears to be associated with elevated values of lead and may be a residue from the source site of the fill at the Subject Property. It is therefore concluded the mercury should be considered as exceeding at MW-7 SS2.

For the 2013 investigation, the concentrations of many of the measured parameters in the duplicate samples did not correlate well. However, the maximum concentrations of the duplicate pair were at least one third of the applicable standard and the variability would not affect the conclusion that soil concentrations did not exceed the applicable standards. The data for the other two boreholes also indicated low concentrations, supporting the conclusion that soil concentrations at the site did not exceed the applicable standards.

For groundwater, a field duplicates were submitted for the analysed parameters and a trip blank was submitted for analysis of VOCs for each sampling event. For most metals, PHCs and VOCs, contaminants were not present at measurable concentrations and therefore RPDs could not be calculated. Where metals were present at sufficient concentrations (e.g., three times higher than the reporting limit), the RPDs (Table 15) ranged from 0 to 0.23, showing good reproducibility.

In the 2013 sampling program, the value for F3 measured at MW-9B did not correlate with the duplicate sample. The concentration of the initial sample was higher than the standard and the concentration of the duplicate was lower than the standard. Groundwater was resampled in November 2013, with similar, unacceptable results. Groundwater was resampled again in December 2013 at wells MW-9B and MW-10, two wells where F3 had been measured in previous events. The results were reproducible and confirmed that F3 did not exceed the groundwater standard.

The results of quality assurance checks completed through Maxxam, Exova and MMM indicate that there are minor variances in the results of analysis, however, these variances do not affect the conclusions of the absence or presence of contamination when average values are used for comparison to MOE standards.

Based on the results of the quality assurance checks, the data presented in this Phase Two ESA meet the data quality objectives of interpreting the representative concentrations of contaminants at the Subject Property and are considered to be acceptable for characterization of the environmental quality of the Subject Property.

Phase Two Environmental Site Assessment 770 Somerset Street West and 13 Lebreton Street North, Ottawa, Ontario MMM Group Limited | May 2015 | 14-12815-001-PH2

# 5.10 Phase Two Conceptual Site Model

The Phase One ESA CSM presented in Section 3.3 provides a description and assessment of areas where PCAs have occurred, areas of potential environmental concern and subsurface structures or utilities that may affect contaminant distribution and transport. This Phase Two CSM provides updated information based on the information and activities as documented in this report.

#### Potentially Contaminating Activities and Areas of Potential Environmental Concern

The Phase One ESA completed by MMM identified PCAs on the Subject Property, such as the import and placement of fill material of unknown origin and quality, the former operation of a commercial gas station and vehicle service centre, including underground storage tanks and hoists, and application of de-icing materials during the winter months. An offsite PCA was also identified as the use of salt to control ice and snow on Somerset Street. The Phase Two ESA SAP was developed to investigate the potential environmental concerns identified in the Phase One ESA CSM and included a requirement to sample for contaminants of potential concern that included metals, inorganic parameters, PAHs, PHCs, VOCs and PCBs. Based on the identification of the PCAs, the APECs summarized in Table 16 were identified and investigated on the Subject Property. The location of each APEC is illustrated on Figure 2.

#### **Subsurface Structures and Utilities**

As discussed in Section 3.3, the utilities that were part of the former gasoline station operations were likely removed during decommissioning of the site, however some utilities may have been abandoned in place. The residence at 13 Lebreton Street North is serviced for natural gas heating, electricity, and possibly cable. These utilities are in the shallow soil at the west and north limits of the residential property. It is interpreted that the near-surface overburden geology in the area, both at the Subject Property and on adjacent lands, has been greatly modified through urbanization, including construction of roads, buildings, and underground utilities, all of which has involved excavation of native soils and replacement with backfilled materials.

The presence of former and existing utility trenches is not expected to affect the contaminant distribution, because of the reworked nature of soil on the Subject Property.

#### **Physical Setting**

Data collected during the Phase Two ESA support the following assessment which comprises the Phase Two ESA CSM for the Subject Property:

- Surrounding land uses (Figures 1 and 2) include mixed residential, commercial and institutional uses, including residential to the east, commercial to the north and west and a church to the south. Somerset Street West bounds the site to the north and Lebreton Street North bounds the site to the west.
- No water bodies or drinking water wells are within the study area.
- Sections 43 and 43.1 of Ontario Regulation 153/04 do not apply to the Subject Property, as it is neither an environmentally sensitive area nor a shallow soil property.
- Based on data obtained in this site investigation, limestone bedrock of the Collingwood formation ranged from approximately 1.83 to 3.96 m bgs. Overburden soil (Figures 3A, 3B and 3C) consisted of well graded sand, gravely sand or sand and gravel that generally



appeared to be reworked fill, with loose to firm density. Sand interpreted to be native deposits was observed in three boreholes at approximately 1.5 m bgs.

- Site soil conditions provide moderate to high permeability for contaminant migration.
- Groundwater was encountered between 2.5 and 3.88 m bgs in the overburden aquifer and at 5 m bgs in the bedrock aquifer.
- Groundwater monitored in the bedrock was only slightly lower in elevation than the corresponding overburden groundwater, with a vertical gradient ranging from 003 to 0.35 m. The horizontal gradient was calculated to be 0.04.
- Bedrock topography (Figure 6) is suspected of strongly influencing groundwater flow (Figure 4) at the Subject Property. Shallow groundwater likely follows bedrock valleys and/or utility corridors, and ultimately discharges to the Ottawa River, although shallow groundwater may also flow into or out of the bedrock aquifer, depending on where highly weathered bedrock, with preferred groundwater flow pathways, may be present. Based on available site data, groundwater flow is to the southwest. Hydraulic conductivity was not measured at the Subject Property but based on grain size analysis the calculated hydraulic conductivity by the Hazen approximation ranges from 3.8 x10<sup>-5</sup> m/s to 3.0 x10<sup>-4</sup> m/s (Freeze and Cherry, 1979).
- Groundwater in the Subject Property is non-potable.
- The limestone bedrock is expected to reduce the vertical migration of contaminants.

#### **Buildings and Structures**

The former gas station building on the north part of the Subject Property was removed circa 2000. A parking lot kiosk is present on the site. A residence, with a single basement level is present on the south part of the property.

A retaining wall separates the parking lot from the residence at the Subject Property.

A multi-storey building with an underground parking structure extending into bedrock is planned for the Subject Property. The building footprint will extend to the full property boundaries.

#### **Environmentally Sensitive Areas**

The Subject Property is located more than 1 km from the nearest water body, the Ottawa River. The ground surface is covered with asphalt and slopes sharply down on the west portion of the site.

The Subject Property is located in an urban setting that has been developed for over 100 years. No conditions were identified in the ESA that would apply to Section 41 (environmentally sensitive areas) and Section 43 (shallow soil property or lands within 30 m of a water body) of Ontario Regulation 153/04.

One sample with elevated pH (9.06) was recovered at MW-8 SS2 from deeper than 1.2 m bgs. Although this value exceeds the upper acceptable pH in soil in the top 1.5 m bgs, it is not considered indicative of general site conditions and therefore standards for sensitive land use were not considered to apply to this ESA.

#### Imported Soil

The Phase One ESA identified fill placed on the Subject Property during decommissioning and remediation of the former gas station operation. Details of the removal of soils were not

available. Of this fill, the concentrations of lead, mercury, zinc exceed the MOE standards established in 2011. The values of EC and SAR also exceed acceptable limits for residential property uses. Residual PHCs were also observed at one sampling location. Construction of the proposed building will remove this soil from the Subject Property as part of redevelopment.

#### Distribution and Extent of Soil and Groundwater Impacts

Some contaminants remain in soil and groundwater at the Subject Property. The distribution of contaminants in soil and groundwater is shown on Figure 5A, 5B, and 5C. Although the concentrations of the contaminants (lead, mercury, zinc, EC, SAR and PHCs) in soil exceed the MOE generic standards (Table 4 and Table 6), they are present at relatively low concentrations and do not appear in groundwater. Therefore it is assumed that they do not present a potential for migration from the site.

The groundwater across the Subject Property has been impacted by the historical and on-going use of salt for ice control, both onsite and offsite along Somerset Street West and Lebreton Street North. Per section 48(3) of O. Reg. 153/04, the concentrations of sodium and chloride are deemed not to exceed the Table 3 Standard, as the offsite application of road salt has contributed significantly to elevated levels of sodium and chloride on the Subject Property.

Exceedances of silver were present in four monitoring wells (MW-1, MW-2, MW-4 and MW-5A) at concentrations ranging from 1.6 ug/L (minor exceedance of the SCS of 1.5 ug/L) to 5.0 ug/L. These exceedances were within groundwater located in the northwest quadrant of the Subject Property with delineation confirmed vertically through the sample at ME-5C and laterally in samples from MW-9A and MW-9B and MW-10. The presence of silver in groundwater cannot be attributed to any known land uses in the study area but it appears to have not migrated to the south part of the Subject Property. The silver is dissolved in groundwater and will migrate in the direction of groundwater flow, subject to influences such as diffusion and adherence to soil. The absence of elevated concentrations of silver in soil indicated that this latter behaviour will not result in contamination of soil. The disturbance of site soil through modification to site conditions has resulted in no identifiable preferential pathways present on site. Minor changes in the elevation of groundwater due to climatic effects are also not likely to affect contaminant distribution.

The judgemental approach used to locate boreholes and select soil and groundwater samples is considered sufficient for the identification of areas of contamination on the Subject Property and identification of maximum concentrations of contaminants in the media investigated. We recommend a risk assessment to consider whether the maximum concentration of silver presents a hazard for the future users of the developed site. This CSM would be modified after remediation and the risk assessment and prior to the filling of a RSC.

#### **Human and Ecological Receptors and Exposure Pathways**

Current occupants of the Subject Property include the operator of the parking lot, customers who use the parking lot and pedestrians who may traverse the Subject Property and residents in the building at 13 Lebreton Street North. After redevelopment, the occupants will include residents and visitors to the building and people who may work in the building. Based on the non-volatile properties of the contaminants of concern, exposure pathways would be limited to contact with the soil and groundwater. The occupants and visitors to the Subject Property would not be subject to this exposure pathway.



There are no ecological receptors at the property currently and none are anticipated after development.

#### **Remedial Actions**

Remedial actions will be required to remove contaminants of concern in soil. This is anticipated to be conducted in conjunction with building construction. A risk assessment is recommended to assess the impacts of silver in groundwater. The remedial actions and risk assessment must be conducted prior to filing a RSC.

#### 6.0 CONCLUSIONS

A portion of the Subject Property has been used as a gasoline and auto service station for over 80 years and this past use has included PCAs that have resulted in APECs on the site (Table 16). The Phase Two ESA was developed and implemented to assess the identified areas of concern through sampling of soil and groundwater for the contaminants of potential concern.

Based on available environmental reports, remediation was conducted at the time of the decommissioning of the gas station. However, when soil quality was compared to standards revised by the MOE in 2011, contaminants are present in the fill material. The contaminants of concern identified in soil through the sampling and analysis program include EC, SAR, lead, mercury, zinc and PHCs fractions of F3 and F4. Although the concentrations of these contaminants exceed the MOECC generic standards, they are present at relatively low concentrations and do not appear in groundwater. Therefore it is assumed that they do not present a potential for migration from the site. No evidence of impacts from the former gas station was observed on the residential property at 13 Lebreton Street North.

Table 16: Summary of Areas of Potential Environmental Concern

| Area of Potential Environmental Concern (APEC) | Location of<br>APEC on<br>Phase One<br>Property      | Potential<br>Contaminating<br>Activity (PCA)                         | Location<br>of PCA<br>(onsite or<br>offsite) | Contaminants of<br>Potential<br>Environmental<br>Concern | Media Potentially Impacted (Groundwater, soil and/or sediment) |
|------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|
| APEC-1                                         | Northwest<br>(former UST<br>circa 1956)              | (28) Gasoline and<br>Associated Product<br>Storage in Fixed<br>Tanks | Onsite                                       | PHCs, VOCs<br>(MTBE), Metals<br>(lead)                   | Soil and<br>Groundwater                                        |
| APEC-2                                         | North central<br>(former pump<br>island /<br>piping) | (28) Gasoline and<br>Associated Product<br>Storage in Fixed<br>Tanks | Onsite                                       | PHCs, VOCs<br>(MTBE), Metals<br>(lead)                   | Soil and<br>Groundwater                                        |
| APEC-3                                         | Northeast<br>(former USTs<br>post 1956)              | (28) Gasoline and<br>Associated Product<br>Storage in Fixed<br>Tanks | Onsite                                       | PHCs, VOCs<br>(MTBE), Metals<br>(lead)                   | Soil and<br>Groundwater                                        |

| Area of Potential Environmental Concern (APEC) | Location of<br>APEC on<br>Phase One<br>Property                      | Potential<br>Contaminating<br>Activity (PCA)                                                                | Location<br>of PCA<br>(onsite or<br>offsite) | Contaminants of<br>Potential<br>Environmental<br>Concern | Media Potentially Impacted (Groundwater, soil and/or sediment) |
|------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|
| APEC-4                                         | Southeast<br>(former waste<br>oil UST)                               | (10) Commercial autobody shops                                                                              | Onsite                                       | Metals, PCBs,<br>PHCs, PAHs,<br>VOCs                     | Soil and<br>Groundwater                                        |
| APEC-5                                         | South central<br>(Former<br>underground<br>hoist)                    | (10) Commercial autobody shops                                                                              | Onsite                                       | Metals, PCBs,<br>PHCs, VOCs                              | Soil                                                           |
| APEC-6                                         | Southwest<br>(former fuel<br>oil UST)                                | (28) Gasoline and<br>Associated Product<br>Storage in Fixed<br>Tanks                                        | Onsite                                       | PHCs, Metals                                             | Soil and<br>Groundwater                                        |
| APEC-7                                         | South central<br>(residence<br>adjacent to<br>former gas<br>station) | (28) Gasoline and<br>Associated Product<br>Storage in Fixed<br>Tanks                                        | Onsite                                       | PHCs, Metals                                             | Soil and<br>Groundwater                                        |
| APEC-8 A:                                      | Former UST                                                           | (30) Importation of                                                                                         | Onsite                                       | Metals,                                                  | Soil                                                           |
| APEC-8 B:                                      | Former pump island                                                   | Fill Material of<br>Unknown Quality                                                                         |                                              | Inorganics, PAHs                                         |                                                                |
| APEC-8 C:                                      | Former UST                                                           |                                                                                                             |                                              |                                                          |                                                                |
| APEC-8 D:                                      | Former waste oil UST                                                 |                                                                                                             |                                              |                                                          |                                                                |
| APEC-8 E:                                      | Former fuel oil UST                                                  |                                                                                                             |                                              |                                                          |                                                                |
| APEC-9                                         | Entire site                                                          | (Other) Use of salt<br>for the management<br>of snow and ice in<br>the parking lot and<br>on adjacent roads | Onsite and offsite                           | Inorganic<br>parameters                                  | Soil and<br>Groundwater                                        |

It is recommended that impacts in the soil at the 770 Somerset Street portion of the property be removed as part of the construction for the redevelopment of the Subject Property.

The groundwater across the Subject Property has been impacted by silver at four wells. We recommend a risk assessment to consider whether the maximum concentration of silver presents a hazard for the future users of the developed site.

The removal of contaminated soil and a risk assessment to assess the groundwater contamination will be required prior to filing a RSC. These activities can be conducted during the site planning stages and should not interfere with the planning schedule.

#### 7.0 QUALIFICATIONS OF ASSESSORS

# 7.1 MMM Group Limited

For six decades, MMM Group Limited has offered comprehensive consulting services in design, planning, project management, contract administration and construction inspection services in the environmental engineering, municipal engineering, urban development and recreational development fields. The firm employs approximately 2,000 professional, technical and administrative staff, in offices across Canada. The Environmental Management Department specializes in conducting Phase One, Two and Three Environmental Site Assessments, hazardous materials assessment, removal of underground storage tanks, groundwater investigations and site remediation.

## 7.2 Qualified Person and Technical Support

The Phase Two ESA was supervised by Carolyn I. Adams, M.A.Sc., P.Eng., Department Manager and an Associate with MMM. She is a chemical engineer with 25 years of experience and has conducted hundreds of Phase One and Phase Two ESAs, including hazardous materials surveys at industrial, commercial and residential properties. Ms. Adams is a registered Qualified Person under Ontario Regulation 153/04, as amended. She is familiar with operating practices and production materials that may have an adverse impact on the environment and had conducted remedial actions at contaminated sites to address these impacts. Her involvement with the Phase Two ESA allows her to arrive at the conclusions presented in this report.

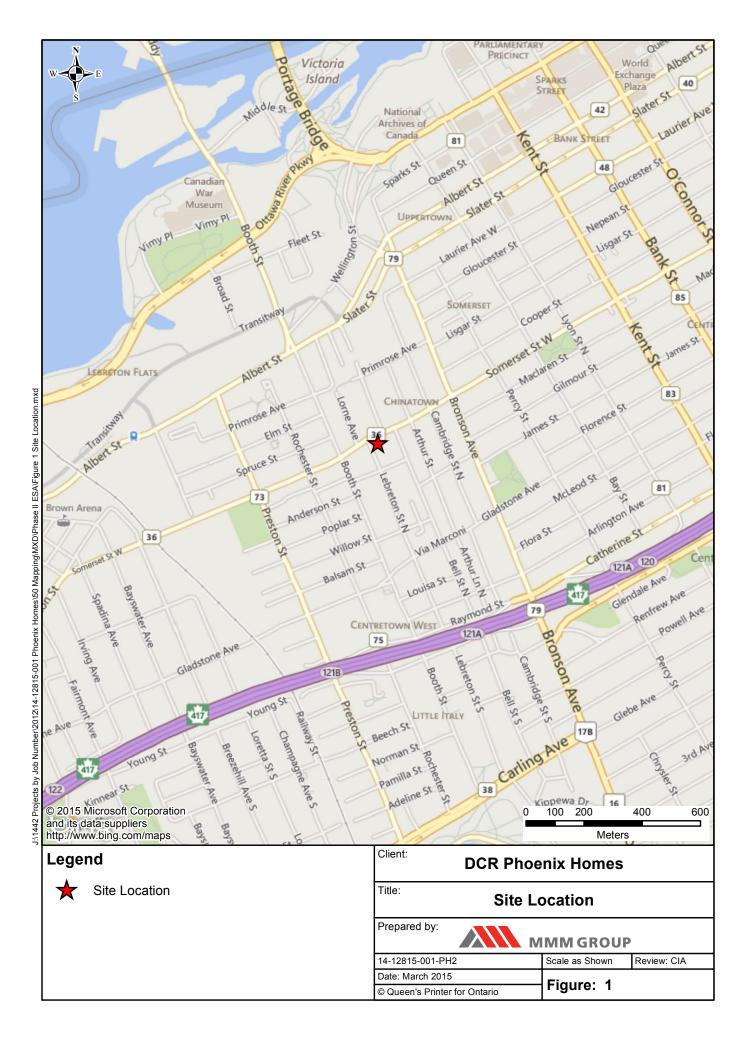
The field work and technical report preparation was completed by Peter van Driel, P.Geo., an Environmental Geoscientist with MMM and Allison Read, a geoscientist in training with MMM. Mr. van Driel graduated from the University of Waterloo with a degree in Earth Sciences, and a Master of Sciences in hydrogeology. Since this time, Mr. van Driel has been actively employed in the hydrogeological consulting industry, specializing in groundwater management, monitoring, and remediation. Ms. Read graduated from Queen's University with a degree in Geology and has contributed to soil and groundwater assessments at MMM for over a year.

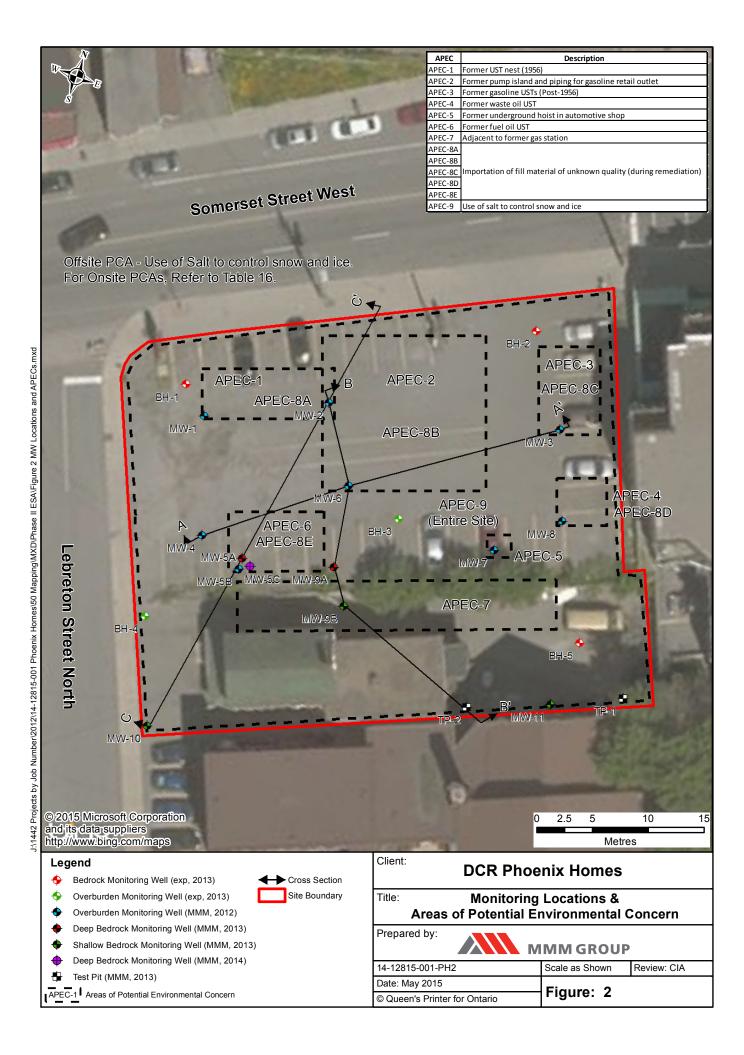
# 7.3 Signatures

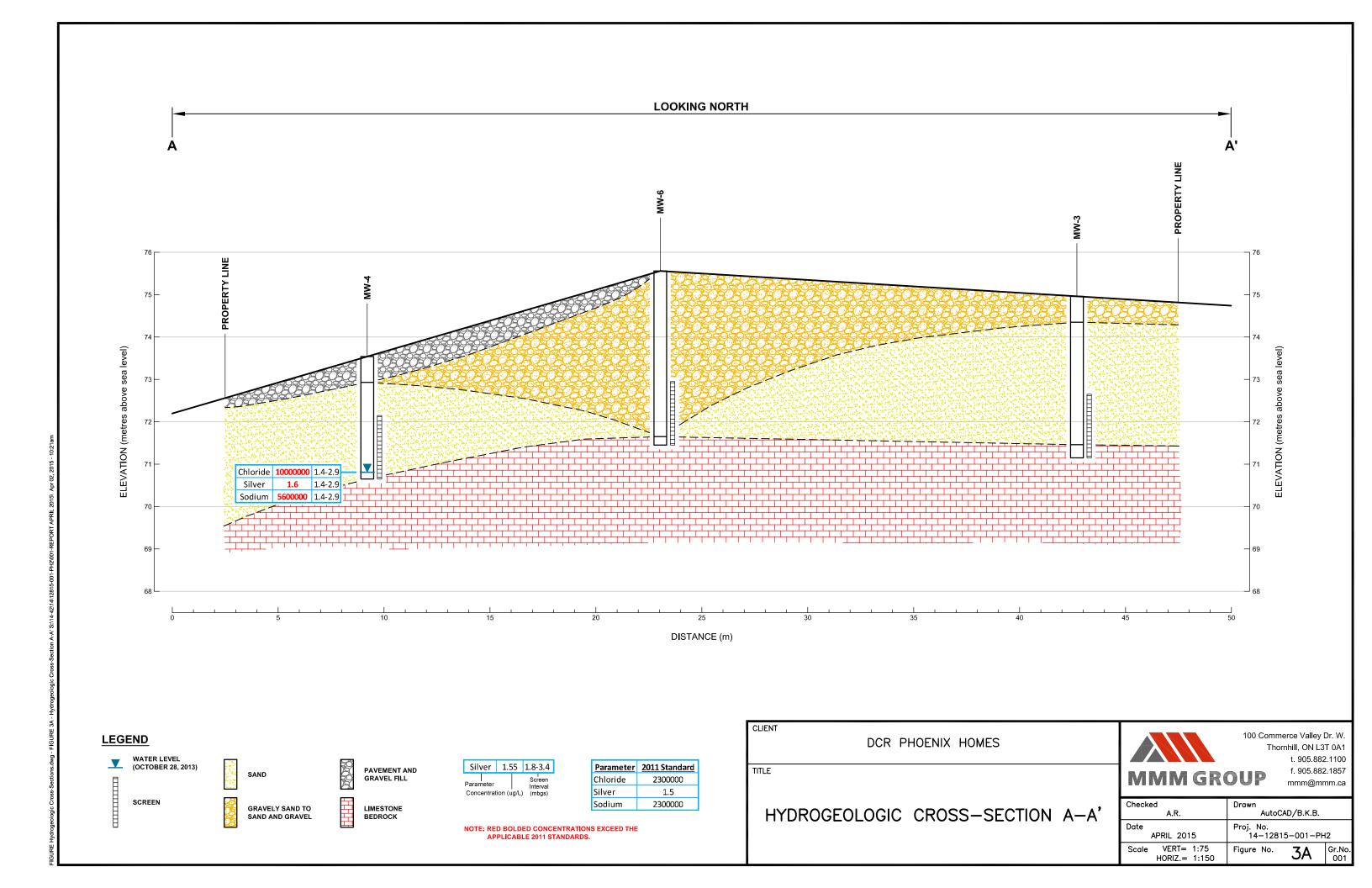
This Phase Two ESA was conducted by the undersigned Qualified Person in accordance with the requirements of Ontario Regulation 153/04, as amended. Remediation of soil and assessment of the risk of groundwater contamination through a modified generic risk assessment will be required prior to the filing of a RSC. She authorizes the issuance of this report on behalf of:

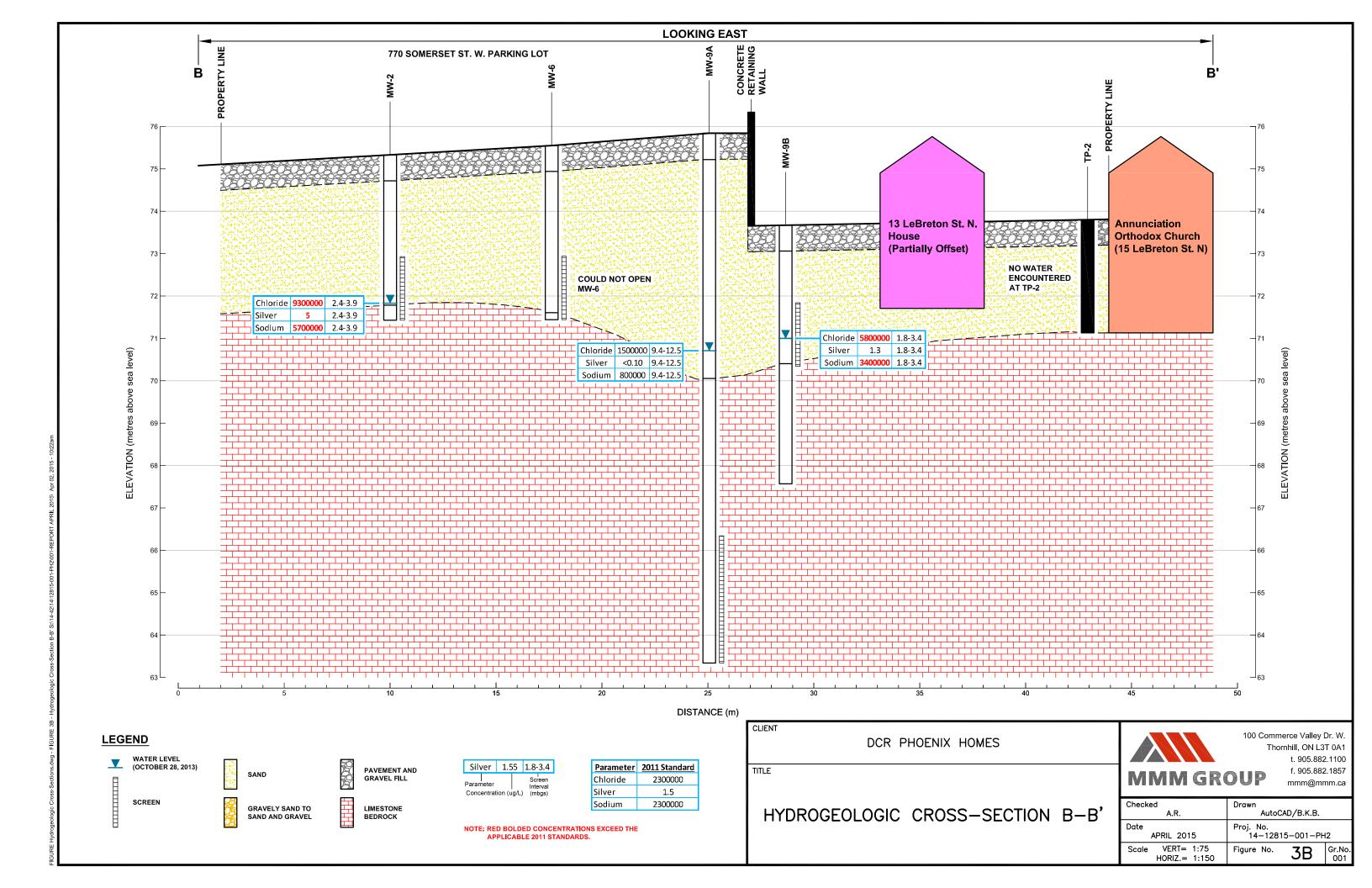
**MMM GROUP LIMITED** 

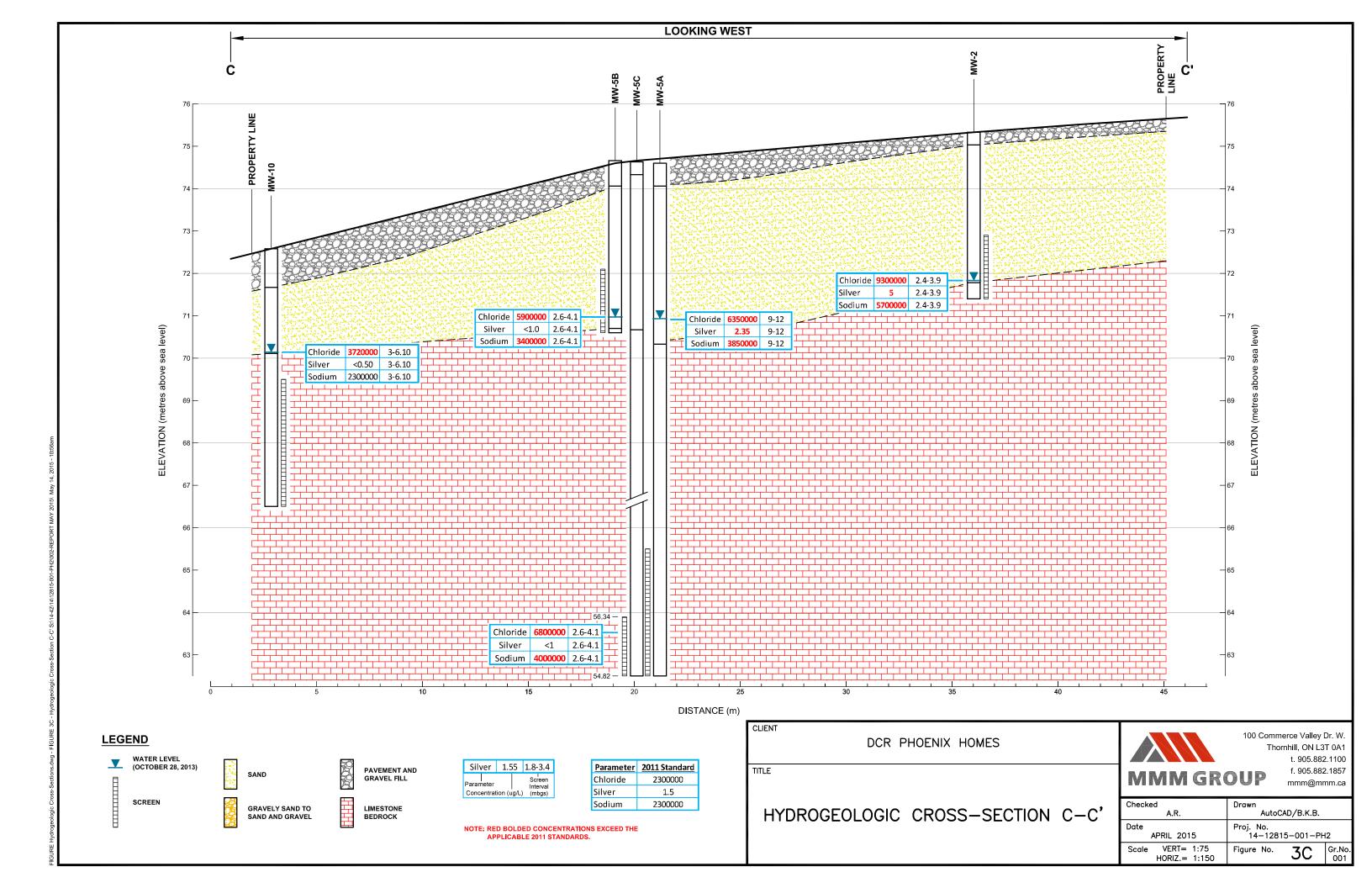
aroly Adams

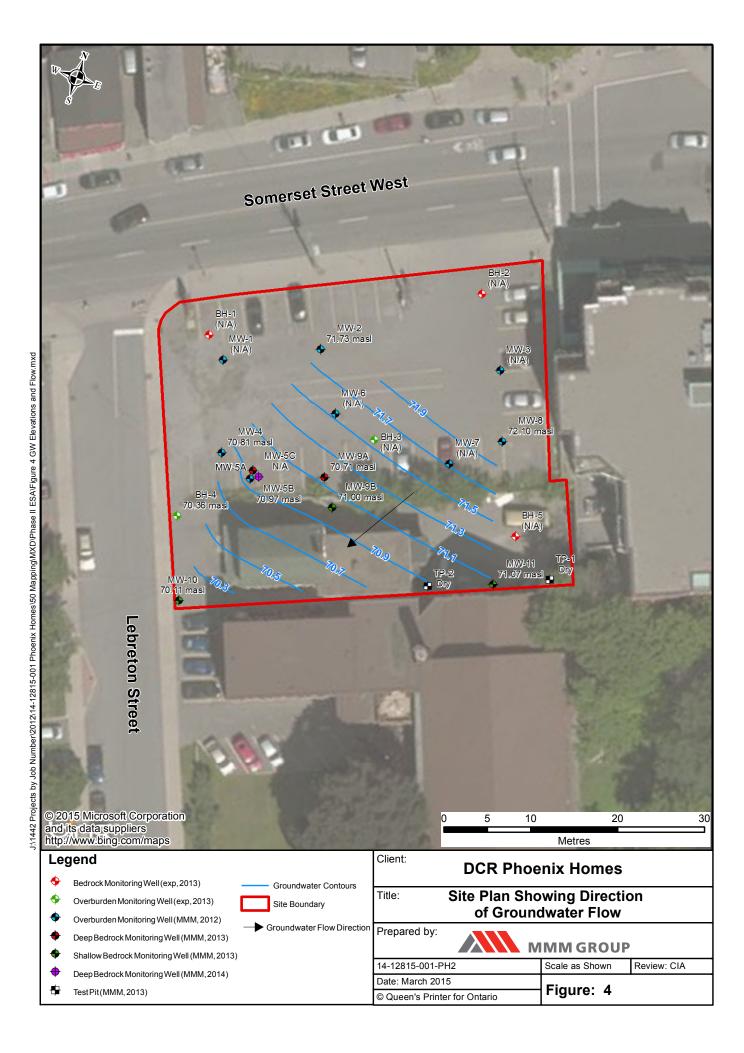

Carolyn Adams, M.A.Sc., P.Eng., QP<sub>ESA</sub>, Manager, Environmental Management

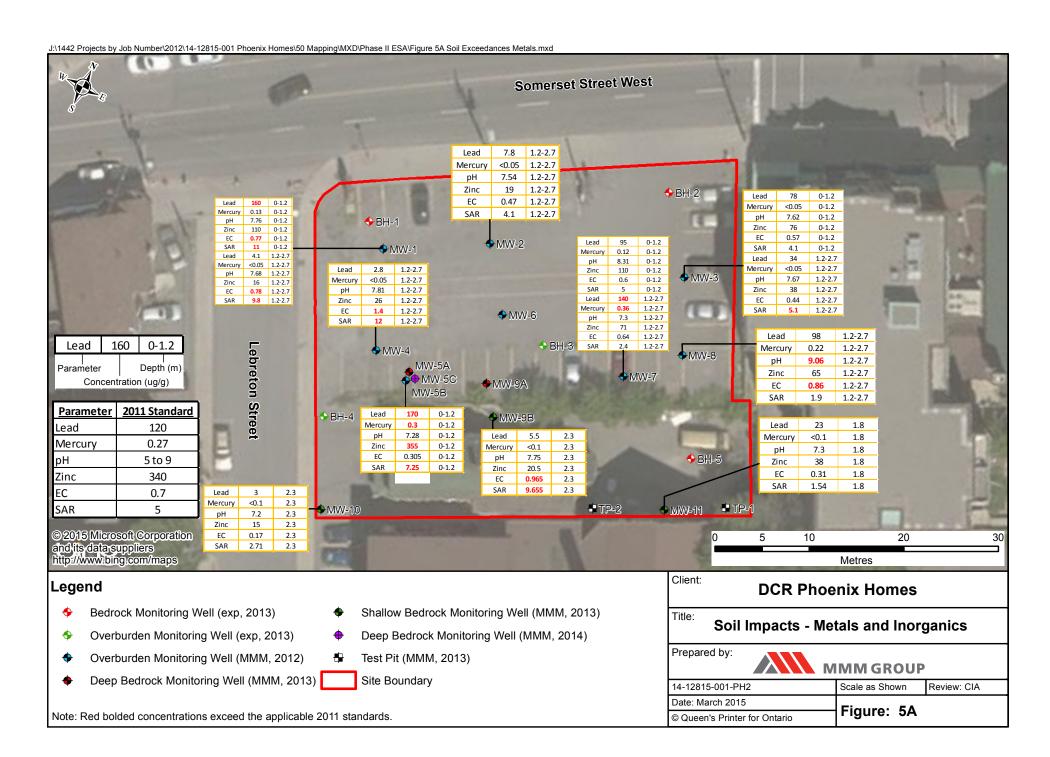

### 8.0 STANDARD LIMITATIONS

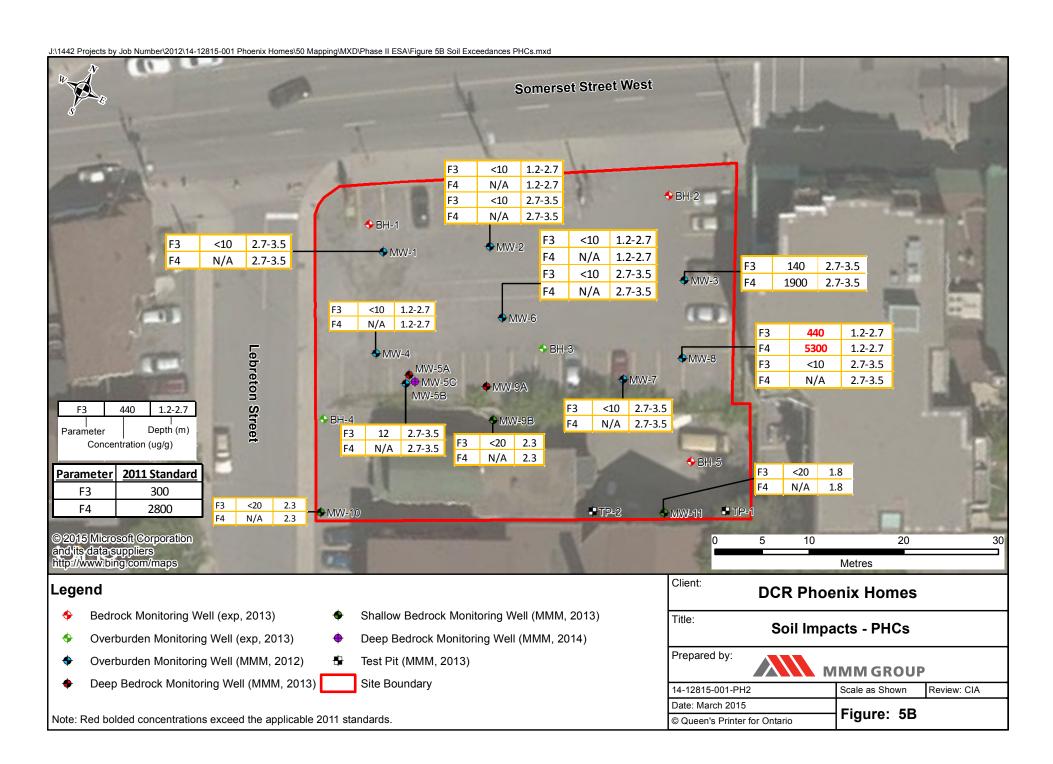

This report has been prepared for use by 442915 Ontario Ltd. and DCR Phoenix Group in accordance with generally accepted environmental investigation practices at the time of the assessment within the scope required by Ontario Regulation 153/04 for the mandatory submission of a Record of Site Condition. Because this report may be used in municipal review for a site plan application, we extend reliance to the City of Ottawa. Standard limitations are presented in Appendix B as they apply to this report and the use of the report by the noted parties.

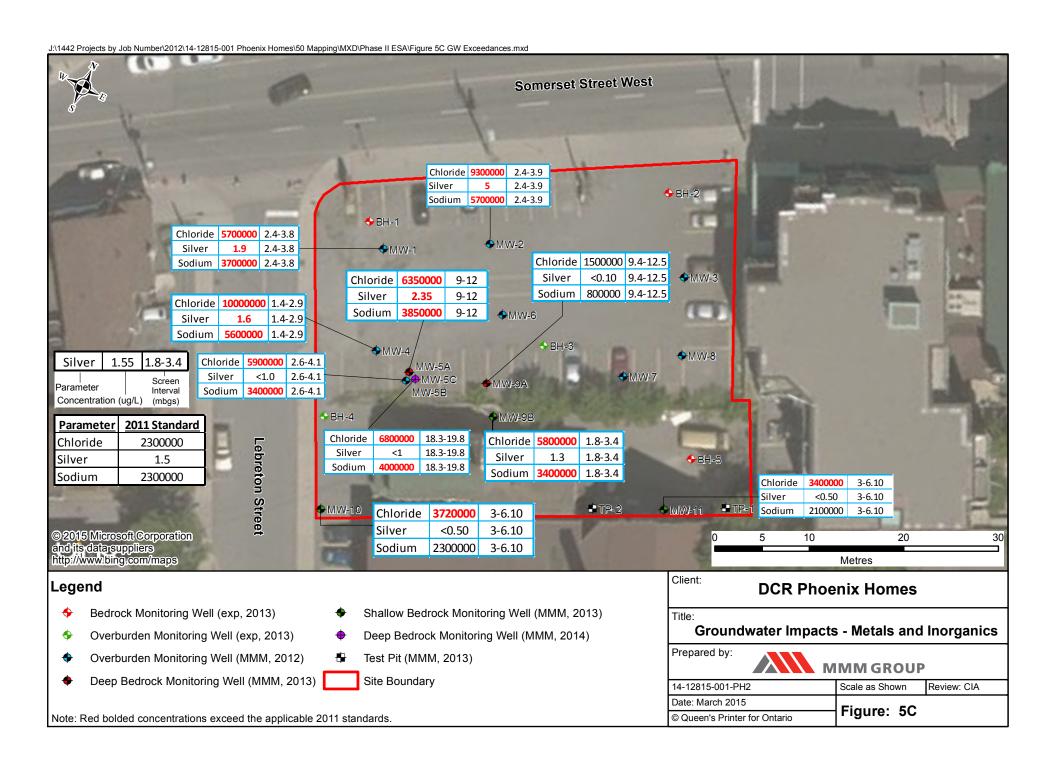

#### 9.0 REFERENCES

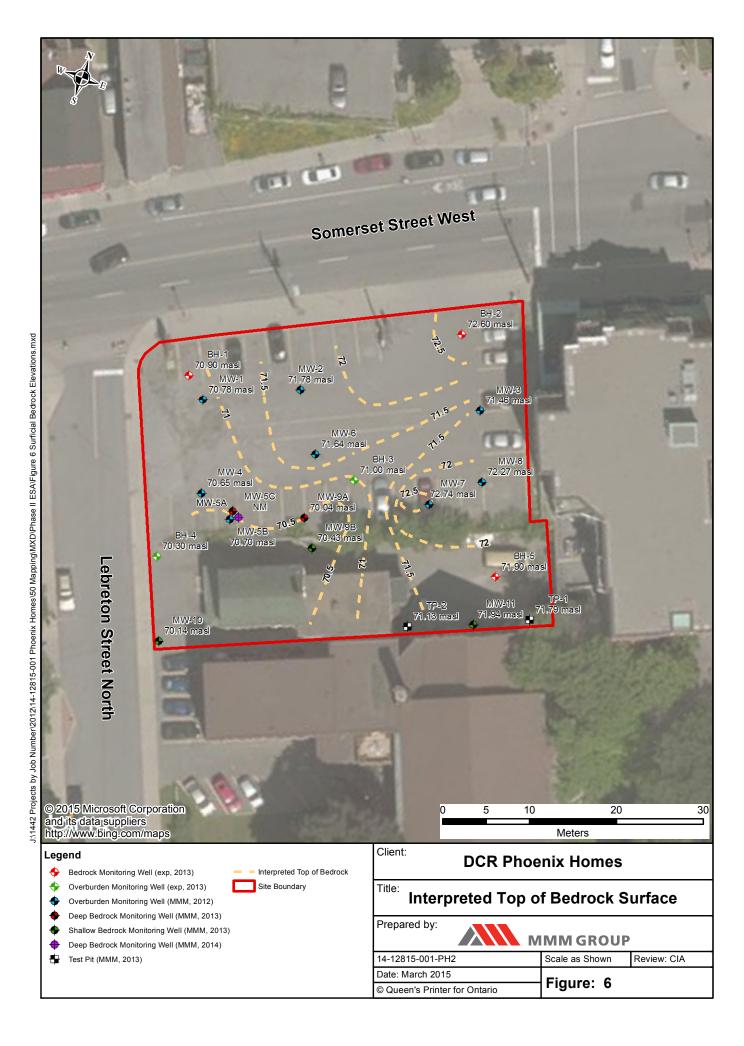

- Armstong, D.K. and Dodge, J.E.P. 2007. *Paleozoic geology of southern Ontario; Ontario Geological Survey, Miscellaneous Release Data 219.*
- Chapman, L.J. and Putman, D.F. 2007. *Physiography of southern Ontario; Ontario Geological Survey, Miscellaneous Release Data 228.*
- Freeze and Cherry, 1979. *Groundwater*. New Jersey: Prentice Hall Inc.
- Ontario Geological Survey. 2010. Surficial geology of southern Ontario; Ontario Geological Survey, Miscellaneous Release Data 128 Revised.
















Photograph 1. Subject Property looking east, showing retaining wall and grade difference.

# Table 4: Summary of Analytical Results for Metals and Inorganics in Soil 770 Somerset Street West and 13 LeBreton Street North, Ottawa, ON

| Sample ID<br>Depth (m)<br>Laboratory work order | MOE Table 3<br>RPI Land Use |            | Units | MW-1 SS1<br>0-1.2<br>B2H6839 | MW-1 SS2<br>1.2-2.7<br>B2H6839 | MW-2 SS2<br>1.2-2.7<br>B2H6839 | MW 3 SS1<br>0-1.2<br>B2H6839 | MW-3 SS2<br>1.2-2.7<br>B2H6839 | MW 4 SS2<br>1.2-2.7<br>B2H6839 | MW-5 SS1<br>0-1.2<br>B2H6839<br>AVERAGE | MW-7 SS1<br>0-1.2<br>B2H6839 | MW-7 SS2<br>1.2-2.7<br>B2H6839 | MW-8 SS2<br>1.2-2.7<br>B2H6839 | MW9B-2<br>2.3<br>1323765<br>AVERAGE | MW10-2<br>2.3<br>1323765 | MW11-2<br>1.8<br>1323765 |
|-------------------------------------------------|-----------------------------|------------|-------|------------------------------|--------------------------------|--------------------------------|------------------------------|--------------------------------|--------------------------------|-----------------------------------------|------------------------------|--------------------------------|--------------------------------|-------------------------------------|--------------------------|--------------------------|
| Sampling Date                                   |                             |            |       | 8-Nov-2012                   | 8-Nov-2012                     | 8-Nov-2012                     | 8-Nov-2012                   | 8-Nov-2012                     | 9-Nov-2012                     | 9-Nov-2012                              | 8-Nov-2012                   | 8-Nov-2012                     | 8-Nov-2012                     | 23-Oct-2013                         | 23-Oct-2013              | 23-Oct-2013              |
| Metals and Inorganics                           |                             |            |       |                              |                                |                                |                              |                                |                                |                                         |                              |                                |                                |                                     |                          |                          |
| Antimony                                        | 7.5                         | 0.2\1      | ug/g  | 1.9                          | <0.2                           | <0.2                           | 0.36                         | <0.2                           | <0.2                           | 1.5                                     | 0.77                         | 1.6                            | 0.77                           | <1                                  | <1                       | <1                       |
| Arsenic                                         | 18                          | 1          | ug/g  | 4.4                          | 1.6                            | 1.4                            | 2                            | 1.6                            | 1.2                            | 7.15                                    | 3.6                          | 4                              | 4.2                            | 1.5                                 | <1                       | 1                        |
| Barium                                          | 390                         | 0.5\1      | ug/g  | 160                          | 63                             | 32                             | 42                           | 29                             | 51                             | 160                                     | 110                          | 96                             | 80                             | 42                                  | 20                       | 57                       |
| Beryllium                                       | 4                           | 0.2\1      | ug/g  | 0.25                         | 0.22                           | <0.2                           | <0.2                         | <0.2                           | <0.2                           | 0.265                                   | 0.24                         | <0.2                           | 0.2                            | <1                                  | <1                       | <1                       |
| Boron (Hot Water Soluble)                       | 1.5                         | 0.05\0.5   | ug/g  | 0.55                         | 0.25                           | 0.52                           | 0.28                         | 0.27                           | 0.11                           | 0.43                                    | 0.51                         | 0.74                           | 0.68                           | <0.5                                | <0.5                     | <0.5                     |
| Cadmium                                         | 1.2                         | 0.1\0.5    | ug/g  | 0.43                         | <0.1                           | 0.1                            | 0.12                         | <0.1                           | <0.1                           | 0.495                                   | 0.3                          | 0.15                           | 0.18                           | <0.5                                | <0.5                     | <0.5                     |
| Chromium                                        | 160                         | 1          | ug/g  | 11                           | 10                             | 8.4                            | 5.6                          | 6.8                            | 8.1                            | 13                                      | 11                           | 9.8                            | 10                             | 16                                  | 10                       | 25                       |
| Chromium VI                                     | 8                           | 0.2\0.5    | ug/g  | <0.2                         | <0.2                           | <0.2                           | <0.2                         | <0.2                           | <0.2                           | <0.2                                    | <0.2                         | <0.2                           | <0.2                           | <0.5                                | <0.5                     | <0.5                     |
| Cobalt                                          | 22                          | 0.1\1      | ug/g  | 3.9                          | 4.5                            | 3.6                            | 3.4                          | 3.6                            | 3.4                            | 4.3                                     | 4.1                          | 2.8                            | 3.5                            | 5.5                                 | 3                        | 6                        |
| Copper                                          | 140                         | 0.5\1      | ug/g  | 63                           | 17                             | 10                             | 15                           | 11                             | 52                             | 87                                      | 29                           | 20                             | 20                             | 20                                  | 8                        | 20                       |
| Lead                                            | 120                         | 1          | ug/g  | 160                          | 4.1                            | 7.8                            | 78                           | 34                             | 2.8                            | 170                                     | 95                           | 140                            | 98                             | 5.5                                 | 3                        | 23                       |
| Mercury                                         | 0.27                        | 0.05\0.1   | ug/g  | 0.13                         | < 0.05                         | < 0.05                         | < 0.05                       | < 0.05                         | <0.05                          | 0.3                                     | 0.12                         | 0.36                           | 0.22                           | <0.1                                | <0.1                     | <0.1                     |
| Molybdenum                                      | 6.9                         | 0.5\1      | ug/g  | 0.78                         | <0.5                           | <0.5                           | 0.59                         | <0.5                           | <0.5                           | 0.87                                    | 0.6                          | 0.6                            | 1                              | 1                                   | <1                       | <1                       |
| Nickel                                          | 100                         | 0.5\1      | ug/g  | 12                           | 8.6                            | 8                              | 8                            | 7.9                            | 6.3                            | 50                                      | 12                           | 7.5                            | 8.9                            | 14                                  | 7                        | 16                       |
| Selenium                                        | 2.4                         | 0.5\1      | ug/g  | <0.5                         | <0.5                           | <0.5                           | <0.5                         | <0.5                           | <0.5                           | <0.5                                    | <0.5                         | <0.5                           | <0.5                           | <1                                  | <1                       | <1                       |
| Silver                                          | 20                          | 0.5\0.2    | ug/g  | <0.5                         | <0.5                           | <0.5                           | <0.5                         | <0.5                           | <0.5                           | <0.5                                    | <0.5                         | <0.5                           | <0.5                           | <0.2                                | <0.2                     | <0.2                     |
| Thallium                                        | 1                           | 0.2\1      | ug/g  | 0.099                        | 0.083                          | 0.054                          | 0.084                        | 0.064                          | 0.059                          | 0.2                                     | 0.09                         | 0.054                          | 0.095                          | <1                                  | <1                       | <1                       |
| Vanadium                                        | 86                          | 5\2        | ug/g  | 17                           | 18                             | 11                             | 9.4                          | 11                             | 15                             | 15                                      | 15                           | 13                             | 14                             | 24                                  | 13                       | 30                       |
| Zinc                                            | 340                         | 5\2        | ug/g  | 110                          | 16                             | 19                             | 76                           | 38                             | 26                             | 355                                     | 110                          | 71                             | 65                             | 20.5                                | 15                       | 38                       |
| pH (pH Units)                                   | 5 to 9                      | 2          | рН    | 7.76                         | 7.68                           | 7.54                           | 7.62                         | 7.67                           | 7.81                           | 7.28                                    | 8.31                         | 7.3                            | 9.06                           | 7.75                                | 7.2                      | 7.3                      |
| Electrical Conductivity (ms/cm)                 | 0.7                         | 0.002\0.05 | mS/cm | 0.77                         | 0.78                           | 0.47                           | 0.57                         | 0.44                           | 1.4                            | 0.305                                   | 0.6                          | 0.64                           | 0.86                           | 0.965                               | 0.17                     | 0.31                     |
| Sodium Absorption Ratio                         | 5                           | 0.01       | none  | 11                           | 9.8                            | 4.1                            | 4.1                          | 5.1                            | 12                             | 7.25                                    | 5                            | 2.4                            | 1.9                            | 9.655                               | 2.71                     | 1.54                     |
| Cyanide, Free                                   | 0.051                       | 0.01\0.03  | ug/g  | <0.01                        | <0.01                          | <0.01                          | <0.01                        | <0.01                          | <0.01                          | <0.01                                   | <0.01                        | <0.01                          | <0.01                          | <0.03                               | <0.03                    | < 0.03                   |
| Boron (Total)                                   | 120                         | 5\10       | ug/g  | <5                           | <5                             | <5                             | <5                           | <5                             | <5                             | <5                                      | <5                           | <5                             | <5                             | 15                                  | <10                      | 10                       |
| Uranium                                         | 23                          | 0.05\0.5   | ug/g  | 0.38                         | 0.4                            | 0.28                           | 0.21                         | 0.32                           | 0.4                            | 0.34                                    | 0.35                         | 0.36                           | 0.32                           | <0.5                                | <0.5                     | <0.5                     |

#### Notes:

MOE Table 3: Ontario Ministry of the Environment, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " April 2011. Generic Site Condition Standards for coarse-textured soils in a Non-Potable Ground Water Condition for Residential, Parkland, Institutional (RPI) land use.

**AVERAGE** indicates the calculated average of the sample and its duplicate for comparison to the standard.

100

# Table 5: Summary of Analytical Results for PAHs in Soil 770 Somerset Street West and 13 LeBreton Street North, Ottawa, ON

| Sample ID                          |                             |                    |       | MW-2 SS2           | MW-5 SS2           | MW9B-2                    | MW10-2         | MW11A-2        |
|------------------------------------|-----------------------------|--------------------|-------|--------------------|--------------------|---------------------------|----------------|----------------|
| Depth (m)<br>Laboratory work order | MOE Table 3<br>RPI Land Use | REPORTING<br>LIMIT | Units | 1.2-2.7<br>B2H6839 | 1.2-2.7<br>B2H6839 | 2.3<br>1323765<br>AVERAGE | 2.3<br>1323765 | 1.8<br>1323765 |
| Sampling Date                      |                             |                    |       | 8-Nov-2012         | 9-Nov-2012         | 23-Oct-2013               | 23-Oct-2013    | 23-Oct-2013    |
| Polycyclic Aromatic Hydrocark      | oons (PAHs)                 |                    |       |                    |                    |                           |                |                |
| Acenaphthene                       | 7.9                         | 0.005\0.05         | ug/g  | <0.005             | 0.0057             | <0.05                     | <0.05          | <0.05          |
| Acenaphthylene                     | 0.15                        | 0.005\0.05         | ug/g  | <0.005             | 0.017              | <0.05                     | <0.05          | <0.05          |
| Anthracene                         | 0.67                        | 0.005\0.05         | ug/g  | <0.005             | 0.016              | <0.05                     | <0.05          | <0.05          |
| Benzo(a)anthracene                 | 0.5                         | 0.005\0.05         | ug/g  | 0.0054             | 0.063              | <0.05                     | <0.05          | <0.05          |
| Benzo(a)pyrene                     | 0.3                         | 0.005\0.05         | ug/g  | 0.0067             | 0.064              | <0.05                     | <0.05          | <0.05          |
| Benzo(b/j)fluoranthene             | 0.78                        | 0.005\0.05         | ug/g  | 0.0083             | 0.081              | <0.05                     | <0.05          | <0.05          |
| Benzo(ghi)perylene                 | 6.6                         | 0.005\0.05         | ug/g  | 0.0052             | 0.043              | <0.05                     | <0.05          | <0.05          |
| Benzo(k)fluoranthene               | 0.78                        | 0.005\0.05         | ug/g  | <0.005             | 0.034              | < 0.05                    | <0.05          | < 0.05         |
| Chrysene                           | 7                           | 0.005\0.05         | ug/g  | <0.005             | 0.055              | < 0.05                    | <0.05          | < 0.05         |
| Dibenzo(a,h)anthracene             | 0.1                         | 0.005\0.05         | ug/g  | <0.005             | 0.012              | < 0.05                    | <0.05          | < 0.05         |
| Fluoranthene                       | 0.69                        | 0.005\0.05         | ug/g  | 0.011              | 0.11               | <0.05                     | <0.05          | <0.05          |
| Fluorene                           | 62                          | 0.005\0.05         | ug/g  | <0.005             | <0.005             | < 0.05                    | <0.05          | < 0.05         |
| Indeno(1,2,3-cd)pyrene             | 0.38                        | 0.005\0.05         | ug/g  | <0.005             | 0.045              | < 0.05                    | <0.05          | < 0.05         |
| 1-Methylnaphthalene                | 0.99                        | 0.005\0.05         | ug/g  | <0.005             | <0.005             | <0.05                     | <0.05          | < 0.05         |
| 2-Methylnaphthalene                | 0.99                        | 0.005\0.05         | ug/g  | <0.005             | <0.005             | <0.05                     | < 0.05         | < 0.05         |
| 2-and 1-Methylnaphthalene          | 0.99                        | 0.0071             | ug/g  | <0.0071            | <0.0071            | -                         | -              | -              |
| Naphthalene                        | 0.6                         | 0.005\0.05         | ug/g  | <0.005             | <0.005             | <0.05                     | <0.05          | <0.05          |
| Phenanthrene                       | 6.2                         | 0.005\0.05         | ug/g  | <0.005             | 0.049              | <0.05                     | <0.05          | <0.05          |
| Pyrene                             | 78                          | 0.005\0.05         | ug/g  | 0.011              | 0.092              | <0.05                     | <0.05          | <0.05          |

#### Notes:

MOE Table 3: Ontario Ministry of the Environment, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act," April 2011. Generic Site Condition Standards for coarse-textured soils in a Non-Potable Ground Water Condition for Residential, Parkland, Institutional (RPI) land use.

**AVERAGE** indicates the calculated average of the sample and its duplicate for comparison to the standard.

100

# Table 6: Summary of Analytical Results for PHCs in Soil

## 770 Somerset Street West and 13 LeBreton Street North, Ottawa, ON

| Sample ID Depth (m)                | MOE<br>Table 3 | REPORTIN  |       | MW-1 SS3   | MW-2 SS2<br>1.2-2.7   | MW-2 SS3<br>2.7-3.5 | MW-3 SS3   | MW-4 SS2   | MW-5 SS3<br>2.7-3.5 | MW-6 SS2   | MW-6 SS3   | MW-7 SS3   | MW-8 SS2   | MW-8 SS3<br>2.7-3.5 | MW9B-2<br>2.3          | MW9B-3<br>2.8 | MW10-2<br>2.3 | MW11-2<br>1.8 |
|------------------------------------|----------------|-----------|-------|------------|-----------------------|---------------------|------------|------------|---------------------|------------|------------|------------|------------|---------------------|------------------------|---------------|---------------|---------------|
| Laboratory work order              | RPI Land       | G LIMIT   | Units | B2H6839    | B2H6839               | B2H6839             | B2H6839    | B2H6839    | B2H6839             | B2H6839    |            | B2H6839    | B2H6839    | B2H6839             | 1323765                | 1323765       | 1323765       | 1323765       |
| Sampling Date                      | Use            |           |       | 8-Nov-2012 | AVERAGE<br>8-Nov-2012 | 8-Nov-2012          | 8-Nov-2012 | 9-Nov-2012 | 9-Nov-2012          | 9-Nov-2012 | 9-Nov-2012 | 8-Nov-2012 | 8-Nov-2012 | 8-Nov-2012          | AVERAGE<br>23-Oct-2013 | 23-Oct-2013   | 23-Oct-2013   | 23-Oct-2013   |
| Petroleum Hydrocarbon Con          | npounds (Pl    | HCs)      |       |            |                       |                     |            |            |                     |            |            |            |            |                     |                        |               |               |               |
| Benzene                            | 0.21           | 0.04\0.02 | ug/g  | <0.04      | <0.04                 | <0.12               | <0.04      | <0.04      | <0.04               | <0.06      | <0.04      | <0.06      | <0.04      | <0.04               | <0.02                  | <0.02         | <0.02         | <0.02         |
| Ethylbenzene                       | 2              | 0.04\0.05 | ug/g  | <0.04      | <0.04                 | <0.12               | <0.04      | <0.04      | <0.04               | <0.06      | <0.04      | <0.06      | <0.04      | <0.04               | < 0.05                 | <0.05         | < 0.05        | < 0.05        |
| Toluene                            | 2.3            | 0.04\0.02 | ug/g  | <0.04      | <0.04                 | <0.12               | <0.04      | <0.04      | <0.04               | <0.06      | <0.04      | <0.06      | <0.04      | <0.04               | <0.2                   | <0.2          | <0.2          | <0.2          |
| p+m-Xylene                         | NV             | 0.04\0.05 | ug/g  | <0.04      | <0.04                 | <0.12               | 0.043      | <0.04      | <0.04               | <0.06      | <0.04      | <0.06      | 0.12       | <0.04               | <0.05                  | <0.05         | <0.05         | < 0.05        |
| o-Xylene                           | NV             | 0.04\0.05 | ug/g  | <0.04      | <0.04                 | <0.12               | <0.04      | <0.04      | <0.04               | <0.06      | <0.04      | <0.06      | 0.16       | <0.04               | <0.05                  | < 0.05        | <0.05         | < 0.05        |
| Xylene (Total)                     | 3.1            | 0.04\0.05 | ug/g  | <0.04      | <0.04                 | <0.12               | 0.043      | <0.04      | <0.04               | <0.06      | <0.04      | <0.06      | 0.28       | <0.04               | <0.05                  | < 0.05        | <0.05         | < 0.05        |
| F1 (C6-C10)                        | 55             | 20\10     | ug/g  | <10        | <10                   | <10                 | <10        | <20        | NA                  | <10        | <20        | NA         | <30        | <10                 | <10                    | <10           | <10           | <10           |
| F1 (C6-C10)-BTEX                   | 55             | 10        |       | -          | -                     | -                   | -          | -          | -                   | -          | -          | -          | -          | -                   | <10                    | -             | <10           | <10           |
| F2 (C10-C16)                       | 98             | 10        | ug/g  | <10        | <10                   | <10                 | <10        | <10        | <10                 | <10        | <10        | <10        | 46         | <10                 | <10                    | -             | <10           | <10           |
| F3 (C16-C34)                       | 300            | 10\20     | ug/g  | <10        | <10                   | <10                 | 140        | <10        | 12                  | <10        | <10        | <10        | 440        | <10                 | <20                    | -             | <20           | <20           |
| F4 (C34-C50)                       | 2800           | 10\20     | ug/g  | <10        | <10                   | <10                 | 410        | <10        | 33                  | <10        | <10        | <10        | 1400       | <10                 | <20                    | -             | <20           | <20           |
| Reached Baseline at C50            | NA             | NA        | NA    | Yes        | Yes                   | Yes                 | No         | Yes        | Yes                 | Yes        | Yes        | Yes        | No         | Yes                 | -                      | -             | -             | -             |
| F4 (Gavimetric heavy hydrocarbons) | 2800           | 100       | ug/g  | NA         | NA                    | NA                  | 1900       | NA         | NA                  | NA         | NA         | NA         | 5300       | NA                  | -                      | -             | -             | -             |

#### Notes:

MOE Table 3: Ontario Ministry of the Environment, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " April 2011. Generic Site Condition Standards for coarse-textured soils in a Non-Potable Ground Water Condition for Residential, Parkland, Institutional (RPI) land use.

**AVERAGE** indicates the calculated average of the sample and its duplicate for comparison to the standard.

100

# Table 7: Summary of Analytical Results for VOCs in Soil

770 Somerset Street West and 13 LeBreton Street North, Ottawa, ON

|                                   |               |           |       | MW 1 882 | MW 2 CC2    | M/M/ 2 CC2 | MW 2 663    | MM 4 CC2    | MIN E CC2   | MW 6 882    | MW-6 SS3    | MIN 7 CC2   | MIM 0 CC2   | MIM 0 CC2   | MW9B-2  | MW10-2     | M/A/44 2    | MW 9B-3     |
|-----------------------------------|---------------|-----------|-------|----------|-------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---------|------------|-------------|-------------|
| Sample ID                         |               |           |       |          | 10100-2 332 | WW-2 333   | 10100-3 333 | 10100-4 332 | 10100-5 555 | 14144-6 225 | IVIVV-6 333 | IVIVV-1 333 | IVIVV-0 332 | IVIVV-0 333 | WWY9D-2 | 10100 10-2 | MW11-2      | INIAA 20-2  |
| Depth (m)                         | MOE Table 3   | REPORTING |       | 2.7-3.5  | 1.2-2.7     | 2.7-3.5    | 2.7-3.5     | 1.2-2.7     | 2.7-3.5     | 1.2-2.7     | 2.7-3.5     | 2.7-3.5     | 1.2-2.7     | 2.7-3.5     | 2.3     | 2.3        | 1.8         | 2.7         |
| Laboratory work order             | RPI Land Use  | LIMIT     | Units | B2H6839  | B2H6839     | B2H6839    | B2H6839     | B2H6839     | B2H6839     | B2H6839     | B2H6839     | B2H6839     | B2H6839     | B2H6839     | 1323765 | 1323765    | 1323765     | 1323765     |
| Editional Work or do              | IN I Land OSC | Liivii i  |       |          | AVERAGE     | BEITOGG    | DZITOGGG    | BEITOGGS    | BEITOGGS    |             | AVERAGE     |             | DZIIOOOS    |             | AVERAGE |            | 1020700     | 1020700     |
| Sampling Date                     |               |           |       |          |             | 8-Nov-2012 | 8-Nov-2012  | 9-Nov-2012  | 9-Nov-2012  |             | 9-Nov-2012  |             | 8-Nov-2012  |             |         |            | 23-Oct-2013 | 23-Oct-2013 |
| Volatile Organic Compounds (VOCs) | •             |           |       |          |             |            |             |             |             |             |             |             |             |             |         |            |             |             |
| Acetone                           | 16            | 1\0.5     | ug/g  | <1       | <1          | <3         | <1          | <1          | NA          | <1.5        | <1          | NA          | <1          | <1          | <0.5    | <0.5       | <0.5        | <0.5        |
| Benzene                           | 0.21          | 0.04\0.02 | ug/g  | <0.04    | <0.04       | <0.12      | <0.04       | <0.04       | <0.04       | <0.06       | <0.04       | <0.06       | <0.04       | <0.04       | <0.02   | <0.02      | <0.02       | <0.02       |
| Bromodichloromethane              | 13            | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | <0.05   | <0.05      | <0.05       | <0.05       |
| Bromoform                         | 0.27          | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | <0.05   | <0.05      | <0.05       | <0.05       |
| Bromomethane                      | 0.05          | 0.1       | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | -       | -          | -           | -           |
| Carbon Tetrachloride              | 0.05          | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | <0.05   | <0.05      | < 0.05      | < 0.05      |
| Chlorobenzene                     | 2.4           | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | <0.05   | <0.05      | < 0.05      | < 0.05      |
| Chloroform                        | 0.05          | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | <0.05   | < 0.05     | < 0.05      | < 0.05      |
| Dibromochloromethane              | 9.4           | 0.1       | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | -       | -          | -           | -           |
| 1,2-Dichlorobenzene               | 3.4           | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | < 0.05  | <0.05      | <0.05       | <0.05       |
| 1,3-Dichlorobenzene               | 4.8           | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | <0.05   | <0.05      | <0.05       | <0.05       |
| 1,4-Dichlorobenzene               | 0.083         | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | <0.05   | <0.05      | <0.05       | <0.05       |
| 1,1-Dichloroethane                | 3.5           | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | <0.05   | <0.05      | <0.05       | < 0.05      |
| 1,2-Dichloroethane                | 0.05          | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | <0.05   | < 0.05     | < 0.05      | < 0.05      |
| 1,1-Dichloroethylene              | 0.05          | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | < 0.05  | < 0.05     | <0.05       | <0.05       |
| Cis-1,2-Dichloroethylene          | 3.4           | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | < 0.05  | <0.05      | <0.05       | <0.05       |
| Trans-1,2-Dichloroethylene        | 0.084         | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | < 0.05  | <0.05      | <0.05       | <0.05       |
| 1,2-Dichloropropane               | 0.05          | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | < 0.05  | < 0.05     | <0.05       | <0.05       |
| 1,3-Dichloropropylene             | 0.05          | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | < 0.05  | <0.05      | <0.05       | < 0.05      |
| Ethylbenzene                      | 2             | 0.04\0.05 | ug/g  | < 0.04   | < 0.04      | <0.12      | <0.04       | <0.04       | <0.04       | < 0.06      | < 0.04      | <0.06       | < 0.04      | < 0.04      | < 0.05  | < 0.05     | < 0.05      | <0.05       |
| Ethylene Dibromide                | 0.05          | 0.1\0.05  | ug/g  | <0.1     | <0.1        | < 0.3      | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | < 0.05  | < 0.05     | < 0.05      | < 0.05      |
| Methyl Ethyl Ketone               | 16            | 1\0.5     | ug/g  | <1       | <1          | <3         | <1          | <1          | NA          | <1.5        | <1          | NA          | <1          | <1          | <0.5    | <0.5       | <0.5        | <0.5        |
| Methylene Chloride                | 0.1           | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | <0.05   | <0.05      | <0.05       | < 0.05      |
| Methyl Isobutyl Ketone            | 1.7           | 1\0.5     | ug/g  | <1       | <1          | <3         | <1          | <1          | NA          | <1.5        | <1          | NA          | <1          | <1          | <0.5    | <0.5       | <0.5        | <0.5        |
| Methyl-t-Butyl Ether              | 0.75          | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | <0.05   | <0.05      | <0.05       | <0.05       |
| Styrene                           | 0.7           | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | <0.05   | <0.05      | <0.05       | <0.05       |
| 1,1,1,2-Tetrachloroethane         | 0.058         | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | <0.05   | <0.05      | <0.05       | <0.05       |
| 1,1,2,2-Tetrachloroethane         | 0.05          | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | <0.05   | <0.05      | <0.05       | <0.05       |
| Toluene                           | 2.3           | 0.04\0.02 | ug/g  | <0.04    | <0.04       | <0.12      | <0.04       | <0.04       | <0.04       | <0.06       | <0.04       | <0.06       | <0.04       | <0.04       | <0.2    | <0.2       | <0.2        | <0.2        |
| Tetrachloroethylene               | 0.28          | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | <0.05   | <0.05      | <0.05       | <0.05       |
| 1,1,1-Trichloroethane             | 0.38          | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | <0.05   | <0.05      | <0.05       | <0.05       |
| 1,1,2-Trichloroethane             | 0.05          | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | <0.05   | <0.05      | <0.05       | <0.05       |
| Trichloroethylene                 | 0.061         | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | <0.05   | <0.05      | <0.05       | <0.05       |
| Vinyl Chloride                    | 0.02          | 0.04\0.02 | ug/g  | <0.04    | <0.04       | <0.12      | <0.04       | <0.04       | NA          | <0.06       | <0.04       | NA          | <0.04       | <0.04       | <0.02   | <0.02      | <0.02       | <0.02       |
| Total Xylenes                     | 3.1           | 0.04\0.05 | ug/g  | <0.04    | <0.04       | <0.12      | 0.043       | <0.04       | <0.04       | <0.06       | <0.04       | <0.06       | 0.28        | <0.04       | <0.05   | <0.05      | <0.05       | <0.05       |
| Dichlorodifluoromethane           | 16            | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.1       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | <0.05   | <0.05      | <0.05       | <0.05       |
| Hexane(n)                         | 2.8           | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | <0.05   | <0.05      | <0.05       | <0.05       |
| Trichlorofluoromethane            | 4             | 0.1\0.05  | ug/g  | <0.1     | <0.1        | <0.3       | <0.1        | <0.1        | NA          | <0.15       | <0.1        | NA          | <0.1        | <0.1        | <0.05   | <0.05      | <0.05       | <0.05       |

#### Notes:

MOE Table 3: Ontario Ministry of the Environment, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " April 2011. Generic Site Condition Standards for coarse-textured soils in a Non-Potable Ground Water Condition for Residential, Parkland, Institutional (RPI) land use.

**AVERAGE** indicates the calculated average of the sample and its duplicate for comparison to the standard.

| 100 | Reporting limit exceeds MOE |
|-----|-----------------------------|
| 100 | Exceeds MOE Standard        |

# Table 8: Summary of Analytical Results for PCBs in Soil

#### 770 Somerset Street West and 13 LeBreton Street North, Ottawa, ON

| Sample ID  Depth (m)  Laboratory work order  Sampling Date | MOE Table 3<br>RPI Land Use | REPORTING<br>LIMIT | Units | MW-7 SS3<br>2.7-3.5<br>B2H6839<br>8-Nov-2012 | MW-8 SS3<br>2.7-3.5<br>B2H6839<br>AVERAGE<br>8-Nov-2012 |
|------------------------------------------------------------|-----------------------------|--------------------|-------|----------------------------------------------|---------------------------------------------------------|
| Polychlorinated Biphenyls (PCE                             | Bs)                         |                    |       |                                              |                                                         |
| Aroclor 1242                                               | -                           | 0.01               | ug/g  | <0.01                                        | <0.01                                                   |
| Aroclor 1248                                               | -                           | 0.01               | ug/g  | <0.01                                        | <0.01                                                   |
| Aroclor 1254                                               | -                           | 0.01               | ug/g  | <0.01                                        | <0.01                                                   |
| Aroclor 1260                                               | -                           | 0.01               | ug/g  | <0.01                                        | <0.01                                                   |
| Total PCB                                                  | 0.35                        | 0.01               | ug/g  | <0.01                                        | <0.01                                                   |

#### Notes:

MOE Table 3: Ontario Ministry of the Environment, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, "April 2011. Generic Site Condition Standards for coarse-textured soils in a Non-Potable Ground Water Condition for Residential, Parkland, Institutional (RPI) land

100 Exceeds MOE Standard

### Table 9: Summary of Analytical Results for Metals and Inorganics in Groundwater 770 Somerset Street West and 13 LeBreton Street North, Ottawa, ON

| Sample ID  Laboratory work order     | MOE Table 3<br>All Property<br>Types | City of Ottawa Sewer<br>Use By-Law No. 2003-<br>514 (Sanitary /<br>Combined Sewer Use) | Units | MW-1<br>B2I1463<br>AVERAGE | MW-1<br>B4E2663 | MW-2<br>B2I1463 | MW-2<br>B4E2663 | MW-4<br>B2I1463 | MW-4<br>B4E2663 | MW-5A<br>(Deep)<br>1324043 | MW-5A<br>(Deep)<br>B4E2663<br>AVERAGE | MW-5B<br>(renamed)<br>B2I1463 | MW-5B<br>(Shallow)<br>B4E2663 |
|--------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------|-------|----------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------------------|---------------------------------------|-------------------------------|-------------------------------|
| Sampling Date  Metals and Inorganics |                                      | ,                                                                                      |       | 16-NOV-2012                | 8-Aug-2014      | 17-NOV-2012     | 8-Aug-2014      | 17-NOV-2012     | 8-Aug-2014      | 29-Oct-2013                | 8-Aug-2014                            | 16-NOV-2012                   | 8-Aug-2014                    |
| Aluminum                             |                                      | 50,000                                                                                 | mg/L  | _                          | -               | -               | _               | -               | _               | <0.1                       | _                                     | -                             | _                             |
| Antimony                             | 20000                                | 5,000                                                                                  | ug/L  | <5                         | <5.0            | <2.5            | <5.0            | <2.5            | <5.0            | <10                        | <5.0                                  | <2.5                          | <5.0                          |
| Arsenic                              | 1900                                 | 1,000                                                                                  | ug/L  | <10                        | <10             | <5              | <10             | <10             | <20             | <20                        | <10                                   | <10                           | <10                           |
| Barium                               | 29000                                | -                                                                                      | ug/L  | 255                        | 260             | 88              | 350             | 320             | 270             | -                          | 270                                   | 380                           | 290                           |
| Beryllium                            | 67                                   | 5,000                                                                                  | ug/L  | <5                         | <5.0            | <2.5            | <5.0            | <2.5            | <5.0            | -                          | <5.0                                  | <2.5                          | <5.0                          |
| Bismuth                              | -                                    | 5,000                                                                                  | mg/L  | -                          | -               | -               | -               | -               | -               | <0.05                      | -                                     | -                             | -                             |
| Boron (Total)                        | 45000                                | 25,000                                                                                 | ug/L  | <100                       | 110             | 150             | 120             | 160             | 150             | 200                        | 175                                   | 180                           | 180                           |
| Cadmium                              | 2.7                                  | 20                                                                                     | ug/L  | <1                         | <1.0            | <0.5            | <1.0            | <0.5            | <1.0            | <0.8                       | <1.0                                  | <0.5                          | <1.0                          |
| Chloride                             | 2,300,000                            | -                                                                                      | ug/L  | 7,350,000                  | 5,700,000       | 2,600,000       | 9,300,000       | 4,900,000       | 10,000,000      | -                          | 6,350,000                             | 4,600,000                     | 5,900,000                     |
| Chromium                             | 810                                  | 5,000                                                                                  | ug/L  | <50                        | <50             | <25             | <50             | <25             | <50             | <5                         | <50                                   | <25                           | <50                           |
| Chromium VI                          | 140                                  | -                                                                                      | ug/L  | <5                         | <5.0            | <5              | <5.0            | -               | <5.0            | _                          | <5.0                                  | <5                            | <0.50                         |
| Cobalt                               | 66                                   | 5,000                                                                                  | ug/L  | 7                          | <5.0            | <2.5            | <5.0            | <2.5            | 5.5             | <10                        | <5.0                                  | 2.9                           | <5.0                          |
| Copper                               | 87                                   | 3,000                                                                                  | ug/L  | <10                        | <10             | <5              | <10             | <5              | <10             | <10                        | <10                                   | <5                            | <10                           |
| Lead                                 | 25                                   | 5,000                                                                                  | ug/L  | <5                         | <5.0            | <2.5            | <5.0            | <2.5            | <5.0            | <10                        | <5.0                                  | <2.5                          | <5.0                          |
| Manganese                            | -                                    | 5,000                                                                                  | mg/L  | -                          | -               | -               | -               | -               | -               | 0.07                       | -                                     | -                             | -                             |
| Mercury                              | 0.29                                 | 1                                                                                      | ug/L  | <0.1                       | <0.1            | -               | <0.1            | -               | <0.1            | <0.1                       | <0.1                                  | <0.1                          | <0.1                          |
| Molybdenum                           | 9200                                 | 5,000                                                                                  | ug/L  | <5                         | 5.2             | 5.6             | <5.0            | 6.9             | <5.0            | <10                        | <5.0                                  | <2.5                          | <5.0                          |
| Nickel                               | 490                                  | 30,000                                                                                 | ug/L  | 10.5                       | <10             | <5              | <10             | 5.9             | <10             | 30                         | <10                                   | 9.1                           | <10                           |
| Selenium                             | 63                                   | 5,000                                                                                  | ug/L  | <20                        | <20             | <10             | <20             | <10             | <20             | <20                        | <20                                   | <10                           | <20                           |
| Silver                               | 1.5                                  | 5,000                                                                                  | ug/L  | 1.55                       | 1.9             | <0.5            | 5               | <0.5            | 1.6             | <10                        | 2.35                                  | <0.5                          | <1.0                          |
| Sodium                               | 2,300,000                            | -                                                                                      | ug/L  | 4,300,000                  | 3,700,000       | 2,100,000       | 5,700,000       | 3,200,000       | 5,600,000       | -                          | 3850000                               | 3,200,000                     | 3,400,000                     |
| Tin                                  | -                                    | 5,000                                                                                  | mg/L  | -                          | -               | -               | -               | -               | -               | <0.1                       | ı                                     | -                             | -                             |
| Titanium                             | -                                    | 5,000                                                                                  | mg/L  | -                          | -               | -               | -               | -               | -               | <0.1                       | -                                     | -                             | -                             |
| Thallium                             | 510                                  | -                                                                                      | ug/L  | <0.5                       | <0.50           | <0.5            | <0.50           | <0.5            | <0.50           |                            | <0.50                                 | <0.25                         | <0.50                         |
| Uranium                              | 420                                  | -                                                                                      | ug/L  | 3.2                        | 3               | 6.4             | 2.6             | 5.2             | 5.1             | -                          | 3.7                                   | 2.6                           | 3.7                           |
| Vanadium                             | 250                                  | 5,000                                                                                  | ug/L  | 9.9                        | <5.0            | 5.7             | <10             | <5              | <10             | <50                        | <5.0                                  | 5.7                           | <5.0                          |
| Zinc                                 | 1100                                 | 3,000                                                                                  | ug/L  | <50                        | <50             | <25             | <50             | <25             | <50             | <40                        | <50                                   | <25                           | <50                           |
| Cyanide, Free                        | 66                                   | -                                                                                      | ug/L  | 9                          | 31              | 10              | 11              | 8               | 9               | -                          | 10.5                                  | <2                            | 5                             |

#### Notes:

**MOE Table 3:** Ontario Ministry of the Environment, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " April 2011. Generic Site Condition Standards for a Non-Potable Ground Water Condition for All Property Types.

City of Ottawa Sewer Use: By-Law No.2003 -514; A By-Law to regulate the control of discharge to sewers and sewage works. `(1)By-Law 2003-514 prohibits discharge of fuel in any amount, liquids with two or more phases, or combustable liquids, unless written authorization is obtained from the City of Ottawa.

MW-5 renamed in October 2013 to MW-5B

Laboratory Reporting Limits may vary between samples; if not shown, reference certificates of analysis.

100 Exceeds City of Ottawa Combined Sewer Use100 Exceeds MOE Standard.

### Table 9: Summary of Analytical Results for Metals and Inorganics in Groundwater 770 Somerset Street West and 13 LeBreton Street North, Ottawa, ON

| Sample ID  Laboratory work order  Sampling Date  Metals and Inorganics | MOE Table 3<br>All Property<br>Types | City of Ottawa Sewer<br>Use By-Law No. 2003-<br>514 (Sanitary /<br>Combined Sewer Use) | Units        | MW-5C<br>(Deepest)<br>B4I8861<br>AVERAGE<br>9-Oct-2014 | MW-5C<br>(Deepest)<br>B4M9028<br>AVERAGE<br>3-Dec-2014 | MW-9A<br>(Deep)<br>1324044<br>AVERAGE<br>29-Oct-2013 | MW-9A<br>(Deep)<br>B4E2663<br>8-Aug-2014 | MW-9B<br>(Shallow)<br>1324044<br>AVERAGE<br>28-Oct-2013 | MW-9B<br>(Shallow)<br>B4E2663<br>8-Aug-2014 | MW-10<br>1324044<br>28-Oct-2013 | MW-10<br>B4E2663<br>8-Aug-2014 | MW-11<br>1324044<br>28-Oct-2013 | MW-11<br>B4E2663<br>8-Aug-2014 |
|------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------|--------------|--------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|------------------------------------------|---------------------------------------------------------|---------------------------------------------|---------------------------------|--------------------------------|---------------------------------|--------------------------------|
| Aluminum                                                               |                                      | 50,000                                                                                 | mg/L         |                                                        | Ī                                                      | -                                                    | -                                        |                                                         | -                                           | -                               |                                | -                               |                                |
| Antimony                                                               | 20000                                | 5,000                                                                                  | ug/L         | -<br><5                                                | <5.0                                                   | <0.5                                                 | <0.50                                    | <0.5                                                    | <5.0                                        | 0.5                             | <2.5                           | <0.5                            | <2.5                           |
| Arsenic                                                                | 1900                                 | 1,000                                                                                  | ug/L         | 12                                                     | <10                                                    | <1                                                   | <2.0                                     | <10                                                     | <10                                         | <10                             | <5.0                           | <1                              | <5.0                           |
| Barium                                                                 | 29000                                | 1,000                                                                                  | ug/L         | 555                                                    | 313                                                    | 365                                                  | 500                                      | 180                                                     | 230                                         | 380                             | 260                            | 410                             | 390                            |
| Beryllium                                                              | 67                                   | 5,000                                                                                  |              | <5                                                     | <5.0                                                   | <0.5                                                 | <0.50                                    | <0.5                                                    | <5.0                                        | <0.5                            | <2.5                           | <0.5                            | <2.5                           |
| Bismuth                                                                | 07                                   | 5,000                                                                                  | ug/L<br>mg/L | <b>\</b> 5                                             | <b>\5.0</b>                                            | <b>~</b> 0.5                                         | <0.50                                    | <0.5                                                    | <b>~</b> 5.0                                | <b>~</b> 0.5                    | <b>\2.</b> 5                   | <0.5                            | ~2.5                           |
| Boron (Total)                                                          | 45000                                | 25,000                                                                                 | ug/L         | 495                                                    | 910                                                    | 395                                                  | 430                                      | 110                                                     | 170                                         | 220                             | 190                            | 80                              | 74                             |
| Cadmium                                                                | 2.7                                  | 20,000                                                                                 | ug/L         | <1                                                     | <1.0                                                   | <0.1                                                 | <0.10                                    | <0.1                                                    | <1.0                                        | <0.1                            | <0.50                          | <0.1                            | <0.50                          |
| Chloride                                                               | 2,300,000                            | -                                                                                      | ug/L         | 6800000                                                | 6,650,000                                              | 631,500                                              | 1,500,000                                | 5,465,000                                               | 5,800,000                                   | 3,720,000                       | 3,900,000                      | 2,544,000                       | 3,400,000                      |
| Chromium                                                               | 810                                  | 5,000                                                                                  | ug/L         | <50                                                    | <50                                                    | 1                                                    | <5.0                                     | 2.5                                                     | <50                                         | 3                               | <25                            | 3                               | <25                            |
| Chromium VI                                                            | 140                                  | -                                                                                      | ug/L         | -                                                      | -                                                      | <10                                                  | <0.50                                    | <10                                                     | <5.0                                        | <10                             | <0.50                          | <10                             | <5.0                           |
| Cobalt                                                                 | 66                                   | 5,000                                                                                  | ug/L         | 5.5                                                    | 7.2                                                    | 0.6                                                  | 1.2                                      | 3.65                                                    | <5.0                                        | 3.4                             | <2.5                           | 1.6                             | <2.5                           |
| Copper                                                                 | 87                                   | 3,000                                                                                  | ug/L         | <10                                                    | <10                                                    | <1                                                   | <1.0                                     | 5.5                                                     | <10                                         | 4                               | <5.0                           | 2                               | <5.0                           |
| Lead                                                                   | 25                                   | 5,000                                                                                  | ug/L         | <5                                                     | 15                                                     | <1                                                   | <0.50                                    | <1                                                      | <5.0                                        | <1                              | <2.5                           | <1                              | <2.5                           |
| Manganese                                                              | _                                    | 5,000                                                                                  | mg/L         | -                                                      | -                                                      | -                                                    | -                                        | -                                                       | _                                           | -                               | -                              | -                               | _                              |
| Mercury                                                                | 0.29                                 | 1                                                                                      | ug/L         | -                                                      | -                                                      | <0.1                                                 | <0.1                                     | <0.1                                                    | <0.1                                        | <0.1                            | <0.1                           | <0.1                            | <0.1                           |
| Molybdenum                                                             | 9200                                 | 5,000                                                                                  | ug/L         | <5                                                     | <5.0                                                   | <5                                                   | 13                                       | <5                                                      | <5.0                                        | 10                              | 3.6                            | 5                               | 3.1                            |
| Nickel                                                                 | 490                                  | 30,000                                                                                 | ug/L         | 23                                                     | 28                                                     | <5                                                   | <1.0                                     | 17                                                      | <10                                         | 21                              | <5.0                           | 11                              | <5.0                           |
| Selenium                                                               | 63                                   | 5,000                                                                                  | ug/L         | <20                                                    | <20                                                    | <1                                                   | <2.0                                     | <1                                                      | <20                                         | <1                              | <10                            | <1                              | <10                            |
| Silver                                                                 | 1.5                                  | 5,000                                                                                  | ug/L         | <1                                                     | <1.0                                                   | <0.1                                                 | <0.10                                    | 0.25                                                    | 1.3                                         | <0.1                            | <0.50                          | <0.1                            | <0.50                          |
| Sodium                                                                 | 2,300,000                            | -                                                                                      | ug/L         | 4000000                                                | 3700000                                                | 338,500                                              | 800,000                                  | 3,525,000                                               | 3,400,000                                   | 2,110,000                       | 2,300,000                      | 1,540,000                       | 2,100,000                      |
| Tin                                                                    | -                                    | 5,000                                                                                  | mg/L         | -                                                      | -                                                      | -                                                    | -                                        | -                                                       | -                                           | -                               | -                              | -                               | -                              |
| Titanium                                                               | -                                    | 5,000                                                                                  | mg/L         | -                                                      | -                                                      | -                                                    | -                                        | -                                                       | -                                           | -                               | -                              | -                               | -                              |
| Thallium                                                               | 510                                  | -                                                                                      | ug/L         | 0.65                                                   | 0.80                                                   | <0.1                                                 | 0.23                                     | <0.1                                                    | <0.50                                       | 0.2                             | <0.25                          | 0.2                             | <0.25                          |
| Uranium                                                                | 420                                  | -                                                                                      | ug/L         | 4                                                      | 6                                                      | 2                                                    | 0.54                                     | 2.5                                                     | 2.9                                         | 5                               | 5.5                            | 1                               | 1.5                            |
| Vanadium                                                               | 250                                  | 5,000                                                                                  | ug/L         | 15                                                     | 7.7                                                    | <1                                                   | <2.5                                     | <1                                                      | <5.0                                        | <1                              | <5.0                           | <1                              | <2.5                           |
| Zinc                                                                   | 1100                                 | 3,000                                                                                  | ug/L         | <50                                                    | <50                                                    | <10                                                  | <5.0                                     | <10                                                     | <50                                         | 40                              | <25                            | <10                             | <25                            |
| Cyanide, Free                                                          | 66                                   | -                                                                                      | ug/L         | -                                                      | -                                                      | <5                                                   | <2                                       | <5                                                      | 6                                           | <5                              | <2                             | <5                              | 6                              |

#### Notes:

**MOE Table 3:** Ontario Ministry of the Environment, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " April 2011. Generic Site Condition Standards for a Non-Potable Ground Water Condition for All Property Types.

City of Ottawa Sewer Use: By-Law No.2003 -514; A By-Law to regulate the control of discharge to sewers and sewage works. `(1)By-Law 2003-514 prohibits discharge of fuel in any amount, liquids with two or more phases, or combustable liquids, unless written authorization is obtained from the City of Ottawa.

MW-5 renamed in October 2013 to MW-5B

Laboratory Reporting Limits may vary between samples; if not shown, reference certificates of analysis.

| 100 | Exceeds City of Ottawa Combined Sewer Use |
|-----|-------------------------------------------|
| 100 | Exceeds MOE Standard.                     |

# Table 10: Summary of Analytical Results for PHCs in Groundwater 770 Somerset Street West and 13 LeBreton Street North, Ottawa, ON

| Sample ID Laboratory work order Sampling Date | MOE Table<br>3 All<br>Property<br>Types | Sewer Use By-Law No. 2003-514 (Sanitary / Combined Sewer | REPORTING<br>LIMIT | Units | MW-1<br>B2I1463<br>AVERAGE<br>16-Nov-2012 | MW-2<br>B2I1463<br>17-Nov-2012 | MW-4<br>B2I1463<br>17-Nov-2012 | MW-5A<br>1324043<br>29-Oct-2013 | MW-5B<br>(renamed)<br>B2I1463<br>16-Nov-2012 | MW-9A<br>1324044<br>29-Oct-2013 | MW-9B RESAMPLE 1326983 AVERAGE 10-Dec-2013 | MW-10<br>1324044<br>28-Oct-2013 | MW-10<br>RESAMPLE<br>1326983<br>AVERAGE<br>10-Dec-2013 | MW-11<br>1324044<br>28-Oct-2013 |
|-----------------------------------------------|-----------------------------------------|----------------------------------------------------------|--------------------|-------|-------------------------------------------|--------------------------------|--------------------------------|---------------------------------|----------------------------------------------|---------------------------------|--------------------------------------------|---------------------------------|--------------------------------------------------------|---------------------------------|
| Petroleum Hydrocarbo                          | n Compound:                             | s (PHCs)                                                 |                    |       |                                           |                                |                                |                                 |                                              |                                 |                                            |                                 |                                                        |                                 |
| Benzene                                       | 44                                      | 10000                                                    | 0.2\0.5            | ug/L  | <0.2                                      | <0.2                           | <0.2                           | <0.5                            | <0.2                                         | <0.5                            | -                                          | <0.5                            | -                                                      | <0.5                            |
| Ethylbenzene                                  | 2,300                                   | 57000                                                    | 0.2\0.5            | ug/L  | <0.2                                      | <0.2                           | <0.2                           | <0.5                            | 1.8                                          | <0.5                            | -                                          | <0.5                            | -                                                      | <0.5                            |
| Toluene                                       | 18,000                                  | 80000                                                    | 0.2\0.5            | ug/L  | <0.2                                      | <0.2                           | <0.2                           | <0.5                            | 0.23                                         | <0.5                            | -                                          | <0.5                            | -                                                      | <0.5                            |
| p+m-Xylene                                    | NV                                      | -                                                        | 0.2\0.5            | ug/L  | <0.2                                      | <0.2                           | <0.2                           | <0.5                            | 2.9                                          | <0.5                            | -                                          | <0.5                            | -                                                      | <0.5                            |
| o-Xylene                                      | NV                                      | -                                                        | 0.2\0.5            | ug/L  | <0.2                                      | <0.2                           | <0.2                           | <0.5                            | 3                                            | <0.5                            | -                                          | <0.5                            | -                                                      | <0.5                            |
| Xylene (Total)                                | 4,200                                   | 320000                                                   | 0.2\1              | ug/L  | <0.2                                      | <0.2                           | <0.2                           | <1                              | 5.9                                          | <1                              | -                                          | <1                              | -                                                      | <1                              |
| F1 (C6-C10)                                   | 750                                     | see note                                                 | 25\100             | ug/L  | <25                                       | <25                            | <25                            | <100                            | 35                                           | <100                            | <100                                       | <100                            | <100                                                   | <100                            |
| F1 (C6-C10)-BTEX                              | 750                                     | see note                                                 | 100                | ug/L  | ı                                         | -                              | -                              | <100                            | 29                                           | <100                            | -                                          | <100                            | -                                                      | <100                            |
| F2 (C10-C16)                                  | 150                                     | see note                                                 | 100                | ug/L  | <100                                      | <100                           | <100                           | <100                            | <100                                         | <100                            | <100                                       | <100                            | <100                                                   | <100                            |
| F3 (C16-C34)                                  | 500                                     | see note                                                 | 100\200            | ug/L  | <100                                      | <100                           | <100                           | <200                            | <100                                         | <200                            | <200                                       | 200                             | 400                                                    | <200                            |
| F4 (C34-C50)                                  | 500                                     | see note                                                 | 100\200            | ug/L  | <100                                      | <100                           | <100                           | <200                            | <100                                         | <200                            | <200                                       | <200                            | <200                                                   | <200                            |

#### Notes:

MW-5 renamed in

MOE Table 3: Ontario Ministry of the Environment, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, "April 2011. Generic Site Condition Standards for a Non-Potable Ground Water City of Ottawa Sewer Use: By-Law No.2003 -514; A By-Law to regulate the control of discharge to sewers and sewage works. `(1)By-Law 2003-514 prohibits discharge of fuel in any amount, liquids with two or more phases, or combustable

Resampling conducted at MW-9B and MW-10 based on unacceptable

AVERAGE indicates the calculated arithmetic average of the sample and its

100 Exceeds City of Ottawa Combined Sewer Use Standard.

71 Exceeds MOE Standard.

## Table 11: Summary of Analytical Results for VOCs in Groundwater

#### 770 Somerset Street West and 13 LeBreton Street North, Ottawa, ON

|                               |              |                      |                | MW-1        | MW-2        | MW-4        | MW-5A       | MW-5B       | MW-9A      | MW-9B       | MW-10       | MW-11       |
|-------------------------------|--------------|----------------------|----------------|-------------|-------------|-------------|-------------|-------------|------------|-------------|-------------|-------------|
| Sample ID                     | MOE Table 3  | City of Ottawa Sewer |                | IVIVV-I     | IVI VV -Z   | IVI V V -24 | IVIVV-DA    | (renamed)   | RESAMPLE   | INIAA-AD    | 10100-10    | 10100-11    |
| Laboratory work order         | All Property | Use By-Law No. 2003- | Units          | B2I1463     | B2I1463     | B2I1463     | 1324043     | B2I1463     | 1325264    | 1324044     | 1324044     | 1324044     |
| Laweratery work order         | Types        | 514 (Sanitary /      | <b>G</b> iiilo | AVERAGE     | 5211400     | 5211400     | 1024040     | 5211400     | AVERAGE    | AVERAGE     | 102-10-1-1  | 1024044     |
| Sampling Date                 | .,,,,,,      | Combined Sewer Use)  |                | 16-Nov-2012 | 17-Nov-2012 | 17-Nov-2012 | 29-Oct-2013 | 16-Nov-2012 |            | 28-Oct-2013 | 28-Oct-2013 | 28-Oct-2013 |
| Volatile Organic Compounds (V | OCs)         |                      |                |             |             |             |             |             |            |             |             |             |
| Acetone                       | 130000       | -                    | ug/L           | <10         | <10         | <10         | -           | <10         | <50        | <50         | <50         | <50         |
| Benzene                       | 44           | 10                   | ug/L           | <0.2        | <0.2        | <0.2        | <0.5        | <0.2        | <0.5       | <0.5        | <0.5        | <0.5        |
| Bromodichloromethane          | 85000        | 350                  | ug/L           | <0.5        | <0.5        | <0.5        | <0.3        | <0.5        | <0.3       | <0.3        | <0.3        | <0.3        |
| Bromoform                     | 380          | 630                  | ug/L           | <1          | <1          | <1          | <0.4        | <1          | <0.4       | <0.4        | <0.4        | <0.4        |
| Bromomethane                  | 5.6          | 110                  | ug/L           | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        | <0.5       | <0.5        | <0.5        | <0.5        |
| Carbon Tetrachloride          | 0.79         | 57                   | ug/L           | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2       | <0.2        | <0.2        | <0.2        |
| Chlorobenzene                 | 630          | 57                   | ug/L           | <0.2        | <0.2        | <0.2        | -           | <0.2        | <0.2       | <0.2        | <0.2        | <0.2        |
| Cholorethane                  | 630          | 270                  | ug/L           | -           | -           | 1           | <0.2        | 1           | -          | -           | -           | -           |
| Chloroform                    | 2.4          | 80                   | ug/L           | < 0.3       | < 0.3       | < 0.3       | <0.5        | < 0.3       | 2.4        | <0.5        | <0.5        | <0.5        |
| Chloromethane                 | -            | 190                  | ug/L           | -           | -           | -           | <0.2        | -           | -          | -           | -           | -           |
| 1,2-dibromoethane             | -            | 0.028                | ug/L           | -           | -           | -           | <0.2        | -           | -          | -           | -           | -           |
| Dibromochloromethane          | 82000        | 57                   | ug/L           | <0.5        | <0.5        | <0.5        | <0.3        | <0.5        | <0.3       | <0.3        | <0.3        | <0.3        |
| 1,2-Dichlorobenzene           | 4600         | -                    | ug/L           | <0.5        | <0.5        | <0.5        | <0.4        | <0.5        | <0.4       | <0.4        | <0.4        | <0.4        |
| 1,3-Dichlorobenzene           | 9600         | -                    | ug/L           | <0.5        | <0.5        | <0.5        | <0.4        | <0.5        | <0.4       | <0.4        | <0.4        | <0.4        |
| 1,4-Dichlorobenzene           | 8            | 17                   | ug/L           | <0.5        | <0.5        | <0.5        | <0.4        | <0.5        | <0.4       | <0.4        | <0.4        | <0.4        |
| 1,1-Dichloroethane            | 320          | 200                  | ug/L           | <0.2        | <0.2        | <0.2        | <0.4        | <0.2        | <0.4       | <0.4        | <0.4        | <0.4        |
| 1,2-Dichloroethane            | 1.6          | 210                  | ug/L           | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2       | <0.2        | <0.2        | <0.2        |
| 1,1-Dichloroethylene          | 1.6          | 40                   | ug/L           | <0.2        | <0.2        | <0.2        | <0.5        | <0.2        | <0.5       | <0.5        | <0.5        | <0.5        |
| Cis-1,2-Dichloroethylene      | 1.6          | 200                  | ug/L           | <0.5        | <0.5        | <0.5        | <0.4        | <0.5        | <0.4       | <0.4        | <0.4        | <0.4        |
| Trans-1,2-Dichloroethylene    | 1.6          | 200                  | ug/L           | <0.5        | <0.5        | <0.5        | <0.4        | <0.5        | <0.4       | <0.4        | <0.4        | <0.4        |
| Dichloromethane               | -            | -                    | ug/L           | -           | -           | -           | <4          | -           | -          | <4          | <4          | <4          |
| 1,2-Dichloropropane           | 16           | 850                  | ug/L           | <0.2        | <0.2        | <0.2        | <0.5        | <0.2        | <0.5       | <0.5        | <0.5        | <0.5        |
| 1,3-Dichloropropylene         | 5.2          | -                    | ug/L           | <0.5        | <0.5        | <0.5        | -           | <0.5        | -          | -           | -           | -           |
| cis-1,3-Dicloropropene        | -            | 0.007                | ug/L           | _           | -           | -           | <0.2        | -           | <0.2       | <0.2        | <0.2        | <0.2        |
| trans-1,3-Dichloropropene     | -            | 0.007                | ug/L           | -           | -           | -           | <0.2        | -           | <0.2       | <0.2        | <0.2        | <0.2        |
| Ethylbenzene                  | 2300         | 57                   | ug/L           | <0.2        | <0.2        | <0.2        | <0.5        | 1.8         | <0.5       | <0.5        | <0.5        | <0.5        |
| Ethylene Dibromide            | 0.25         | -                    | ug/L           | <0.2        | <0.2        | <0.2        | -           | <0.2        | <0.2       | <0.2        | <0.2        | <0.2        |
| Methyl Ethyl Ketone           | 470000       | -                    | ug/L           | <10         | <10         | <10         | -           | <10         | <10        | <10         | <10         | <10         |
| Methylene Chloride            | 610          | 0.211                | ug/L           | <2          | <2          | <2          | -           | <2          | <4         | -           | -           | -           |
| Methyl Isobutyl Ketone        | 140000       | -                    | ug/L           | <5          | <5          | <5          | -           | <5          | <10        | <10         | <10         | <10         |
| Methyl-t-Butyl Ether          | 190          | -                    | ug/L           | <0.5        | <0.5        | <0.5        | -           | <0.5        | <10        | <10         | <10         | <10         |
| m&p-Xylene                    | -            | -                    | ug/L           | -           | -           | -           | <0.5        | -           | <0.5       | <0.5        | <0.5        | <0.5        |
| o-Xylene                      | 1000         | -                    | ug/L           |             | -           | -           | <0.5        | -           | <0.5       | <0.5        | <0.5        | <0.5        |
| Styrene                       | 1300         | 40                   | ug/L           | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        | <0.5       | <0.5        | <0.5        | <0.5        |
| 1,1,1,2-Tetrachloroethane     | 3.4          | 50                   | ug/L           | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        | <0.5       | <0.5        | <0.5        | <0.5        |
| 1,1,2,2-Tetrachloroethane     | 3.2          | 40                   | ug/L           | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        | <0.5       | <0.5        | <0.5        | <0.5        |
| Toluene                       | 18000        | 80                   | ug/L           | <0.2        | <0.2        | <0.2        | <0.5        | 0.23        | <0.5       | <0.5        | <0.5        | <0.5        |
| Tetrachloroethylene           | 1.6          | 50                   | ug/L           | <0.2        | <0.2        | <0.2        | <0.3        | <0.2        | <0.3       | <0.3        | <0.3        | <0.3        |
| 1,1,1-Trichloroethane         | 640          | 54                   | ug/L           | 1.06        | <0.2        | 2.7         | <0.4        | 0.31        | <0.4       | <0.4        | 0.5         | <0.4        |
| 1,1,2-Trichloroethane         | 4.7          | 800                  | ug/L           | <0.5        | <0.5        | <0.5        | <0.4        | <0.5        | <0.4       | <0.4        | <0.4        | <0.4        |
| Trichloroethylene             | 1.6          | 54                   | ug/L           | <0.2        | <0.2        | <0.2        | <0.3        | <0.2        | <0.3       | <0.3        | <0.3        | <0.3        |
| 1,3,5-trimethylbenzene        | -<br>0.5     | 0.003                | ug/L           | -           | -           | -           | <0.3        | -           |            | -           | -           |             |
| Vinyl Chloride                | 0.5          | 400                  | ug/L           | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2       | <0.2        | <0.2        | <0.2        |
| Total Xylenes                 | 4200         | 320                  | ug/L           | <0.2        | <0.2        | <0.2        | <1          | 5.9         | <1         | <1          | <1          | <1          |
| Dichlorodifluoromethane       | 4400         | =                    | ug/L           | <1          | <1          | <1          | -           | <1          | <0.5       | <0.5        | <0.5        | <0.5        |
| Hexane(n)                     | 51           | - 20                 | ug/L           | <1          | <1          | <1          |             | <1          | <5<br><0.5 | <5<br><0.5  | <5<br><0.5  | <5          |
| Trichlorofluoromethane        | 2500         | 20                   | ug/L           | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        | <0.5       | <0.5        | <0.5        | <0.5        |

#### Notes:

MOE Table 3: Ontario Ministry of the Environment, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " April 2011. Generic Site Condition Standards for a Non-Potable Ground Water Condition for All Property Types.

City of Ottawa Sewer Use: By-Law No.2003 -514; A By-Law to regulate the control of discharge to sewers and sewage works. `(1)By-Law 2003-514 prohibits discharge of fuel in any amount, liquids with two or more phases, or combustable liquids, unless written authorization is obtained from the City of Ottawa.

MW-5 renamed in October 2013 to MW-5B

Laboratory Reporting Limits may vary between samples; if not shown, reference certificates of analysis.

100 Exceeds City of Ottawa Combined Sewer Use Standard.

# Table 12: Summary of Analytical Results for PCBs and PAHs in Groundwater 770 Somerset Street West and 13 LeBreton Street North, Ottawa, ON

| Sample ID  Depth (m)  Laboratory work order  Sampling Date | MOE Table 3<br>All Property<br>Types | City of Ottawa<br>Sewer Use By-Law<br>No. 2003-514<br>(Sanitary /<br>Combined Sewer<br>Use) | Units | MW-5B<br>(renamed)<br>B2I1463<br>16-Nov-2012 | MW-5A<br>1324043<br>29-Oct-2013 | MW-9A<br>1324044<br>29-Oct-2013 | MW-9B<br>1324044<br>28-Oct-2013 | Dup 1<br>1324044<br>28-Oct-2013 | MW-9B<br>1324044<br>AVERAGE<br>28-Oct-2013 | MW-10<br>1324044<br>28-Oct-2013 | MW-11<br>1324044<br>28-Oct-2013 |
|------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------|-------|----------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------------------|---------------------------------|---------------------------------|
| Polycyclic Aromatic Hy                                     | drocarbons                           |                                                                                             |       |                                              |                                 |                                 |                                 |                                 |                                            |                                 |                                 |
| 1-methylnaphthalene                                        | 1800                                 | 32                                                                                          | ug/L  |                                              | <0.05                           | <0.1                            | <0.1                            | <0.1                            | <0.1                                       | <0.1                            | <0.1                            |
| 2-methylnaphthalene                                        | 1000                                 | 22                                                                                          | ug/L  |                                              | 0.25                            | <0.1                            | <0.1                            | <0.1                            | <0.1                                       | <0.1                            | <0.1                            |
| Acenaphthene                                               | 600                                  | =                                                                                           | ug/L  |                                              | < 0.05                          | <0.1                            | <0.1                            | <0.1                            | <0.1                                       | <0.1                            | <0.1                            |
| Acenaphthylene                                             | 1.8                                  | -                                                                                           | ug/L  |                                              | <0.05                           | <0.1                            | <0.1                            | <0.1                            | <0.1                                       | <0.1                            | <0.1                            |
| Anthracene                                                 | 2.4                                  | -                                                                                           | ug/L  |                                              | <0.01                           | <0.1                            | <0.1                            | <0.1                            | <0.1                                       | <0.1                            | <0.1                            |
| Benzo(a)anthracene                                         | 2.4                                  | -                                                                                           | ug/L  |                                              | <0.01                           | <0.1                            | <0.1                            | <0.1                            | <0.1                                       | <0.1                            | <0.1                            |
| Benzo(a)pyrene                                             | 4.7                                  | -                                                                                           | ug/L  |                                              | <0.01                           | <0.01                           | 0.01                            | <0.01                           | 0.01                                       | <0.01                           | <0.01                           |
| Benzo(b)fluoranthene                                       | 0.75                                 | -                                                                                           | ug/L  |                                              | <0.05                           | < 0.05                          | <0.05                           | <0.05                           | < 0.05                                     | <0.05                           | < 0.05                          |
| Benzo(g,h,i)perylene                                       | 0.2                                  | -                                                                                           | ug/L  |                                              | <0.05                           | <0.1                            | <0.1                            | <0.1                            | <0.1                                       | <0.1                            | <0.1                            |
| Benzo(k)fluoranthene                                       | 0.4                                  | -                                                                                           | ug/L  |                                              | <0.05                           | < 0.05                          | < 0.05                          | < 0.05                          | < 0.05                                     | < 0.05                          | < 0.05                          |
| Chrysene                                                   | 1                                    | -                                                                                           | ug/L  |                                              | <0.05                           | <0.05                           | <0.05                           | <0.05                           | <0.05                                      | <0.05                           | <0.05                           |
| Dibenzo(a,h)anthracene                                     | 0.52                                 | -                                                                                           | ug/L  |                                              | <0.05                           | <0.1                            | <0.1                            | <0.1                            | <0.1                                       | <0.1                            | <0.1                            |
| Fluoranthene                                               | 130                                  | -                                                                                           | ug/L  | -                                            | <0.01                           | <0.1                            | <0.1                            | <0.1                            | <0.1                                       | <0.1                            | <0.1                            |
| Fluorene                                                   | 400                                  | 59                                                                                          | ug/L  | -                                            | <0.05                           | <0.1                            | <0.1                            | <0.1                            | <0.1                                       | <0.1                            | <0.1                            |
| Indeno(1,2,3-c,d)pyrene                                    | 0.2                                  | -                                                                                           | ug/L  | -                                            | <0.05                           | <0.1                            | <0.1                            | <0.1                            | <0.1                                       | <0.1                            | <0.1                            |
| Naphthalene                                                | 1,400                                | 59                                                                                          | ug/L  | -                                            | 0.4                             | <0.1                            | <0.1                            | <0.1                            | <0.1                                       | <0.1                            | <0.1                            |
| Phenanthrene                                               | 580                                  | -                                                                                           | ug/L  | -                                            | <0.05                           | <0.1                            | <0.1                            | <0.1                            | <0.1                                       | <0.1                            | <0.1                            |
| Pyrene                                                     | 68                                   | -                                                                                           | ug/L  | -                                            | <0.01                           | <0.1                            | <0.1                            | <0.1                            | <0.1                                       | <0.1                            | <0.1                            |
| Polychlorinated Biphen                                     | yls                                  |                                                                                             |       |                                              |                                 |                                 |                                 |                                 |                                            |                                 |                                 |
| Total PCB                                                  | 7.8                                  | See note                                                                                    | ug/L  | <0.05                                        | <0.1                            | -                               | -                               | -                               | -                                          | -                               | -                               |

#### Notes:

**MOE Table 3:** Ontario Ministry of the Environment, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, " April 2011. Generic Site Condition Standards for a Non-Potable Ground Water Condition for All Property Types.

**City of Ottawa Sewer Use: By-Law No.2003 -514**; A By-Law to regulate the control of discharge to sewers and sewage works. `(1)By-Law 2003-514 prohibits discharge of fuel in any amount, liquids with two or more phases, or combustable liquids, unless written authorization is obtained from the City of Ottawa.

MW-5 renamed in October 2013 to MW-5B

Laboratory Reporting Limits may vary between samples; if not shown, reference certificates of analysis.

| 100 | Exceeds City of Ottawa Combined Sewer Use |
|-----|-------------------------------------------|
| 100 | Exceeds MOE Standard.                     |

Table 14: Relative Percent Difference Calculations for Soil 770 Somerset Street West and 13 Lebreton Street North, Ottawa, ON

| Parameter                        | Sample(1) Duplicate Reportin Limit |           | Laboratory<br>Reporting<br>Limit | Relative<br>Percent<br>Difference<br>(RPD) | Sample(1)    | Duplicate DUP1 | Laboratory<br>Reporting<br>Limit | Relative<br>Percent<br>Difference<br>(RPD) | Laboratory<br>RPD<br>Acceptance<br>Value |
|----------------------------------|------------------------------------|-----------|----------------------------------|--------------------------------------------|--------------|----------------|----------------------------------|--------------------------------------------|------------------------------------------|
|                                  | MW-5 SS1                           | _         | estigation                       |                                            | WWY9D-Z      |                |                                  |                                            |                                          |
| Action                           | 4.0                                |           | estigation                       | 0.07                                       | -4           |                | estigation                       |                                            | 0.0                                      |
| Antimony                         | 1.3                                | 1.7       | 0.2                              | -0.27                                      | <1           | <1             | 1                                | -                                          | 0.3                                      |
| Arsenic                          | 6.2                                | 8.1       | 1                                | -0.27                                      | <1           | 2              | 1                                | - 0.50                                     | 0.3                                      |
| Barium                           | 160                                | 160       | 0.5                              | 0.00                                       | 31           | 53             | 1                                | -0.52                                      | 0.3                                      |
| Beryllium                        | 0.24                               | 0.29      | 0.2                              | - 0.40                                     | <1           | <1             | 0.5                              | -                                          | 0.3                                      |
| Boron (Hot Water Soluble)        | 0.34                               | 0.52      | 0.05<br>0.1                      | -0.42<br>-0.02                             | <0.5<br><0.5 | <0.5           | 0.5                              | -                                          | 0.4                                      |
| Cadmium                          | 0.49<br>13                         | 0.5<br>13 | 1                                |                                            | <0.5<br>10   | <0.5<br>22     | 0.5<br>1                         | -0.75                                      | 0.3                                      |
| Chromium                         | <0.2                               | <0.2      | 0.2                              | 0.00                                       | <0.5         | <0.5           | 0.5                              | -0.75                                      | 0.3<br>0.3                               |
| Chromium VI<br>Cobalt            |                                    | 4.5       |                                  | - 0.00                                     |              | 7              | 0.5                              | -                                          |                                          |
|                                  | 4.1<br>100                         | 4.5<br>74 | 0.1<br>0.5                       | -0.09                                      | 4<br>15      | 25             | 1                                | -0.55<br>-0.50                             | 0.3<br>0.3                               |
| Copper                           | 150                                | 190       | 0.5                              | 0.30<br>-0.24                              | 4            | 7              | 1                                | -0.55                                      | 0.3                                      |
| Lead<br>Mercury                  | 0.22                               | 0.38      | 0.05                             | -0.24                                      | <0.1         | <0.1           | 0.1                              | -0.55                                      | 0.3                                      |
| •                                | 0.82                               | 0.38      | 0.05                             | -0.55                                      | <1           | 1              | 0.1                              | -                                          | 0.3                                      |
| Molybdenum<br>Nickel             | 44                                 | 56        | 0.5                              | -0.11                                      | 9            | 19             | 1                                | -0.71                                      | 0.3                                      |
| Selenium                         | <0.5                               | <0.5      | 0.5                              | -0.24                                      | <u> </u>     | <1             | 1                                | -0.71                                      | 0.3                                      |
| Silver                           | <0.5                               | <0.5      | 0.5                              | <u>-</u>                                   | <0.2         | <0.2           | 0.2                              | -                                          | 0.3                                      |
| Thallium                         | 0.25                               | 0.15      | 0.3                              |                                            | <1           | <1             | 1                                |                                            | 0.3                                      |
| Vanadium                         | 14                                 | 16        | 5                                | -0.13                                      | 19           | 29             | 2                                | -0.42                                      | 0.3                                      |
| Zinc                             | 350                                | 360       | 5                                | -0.13                                      | 15           | 26             | 2                                | -0.42                                      | 0.3                                      |
| Electrical Conductivity (ms/cm)  | 0.32                               | 0.29      | 0.002                            | 0.10                                       | 0.85         | 1.08           | 0.05                             | -0.34                                      | 0.1                                      |
| Cyanide, Free                    | <0.01                              | <0.01     | 0.01                             | -                                          | <0.03        | <0.03          | 0.03                             | -0.24                                      | 0.35                                     |
| Sodium Adsorption Ratio (no unit | 6.8                                | 7.7       | 0.01                             | _                                          | 16           | 3.31           | 0.01                             | _                                          | -                                        |
| Boron (Total)                    | <5                                 | <5        | 5                                | _                                          | 10           | 20             | 10                               | -                                          | 0.3                                      |
| Uranium                          | 0.31                               | 0.37      | 0.05                             | -0.18                                      |              |                |                                  |                                            | 0.3                                      |

| Notes:                      |                                                                           |
|-----------------------------|---------------------------------------------------------------------------|
| (1)                         | All results reported in micrograms per gram (µg/g) unless otherwise noted |
| <                           | Parameter not detected above value specified                              |
| Relative Percent Difference | RPD = $ (X-Y)/Average(X,Y) $ where X is the sample and Y is the duplicate |
| -                           | RPD could not be calculated                                               |

## Table 15. Relative Percent Difference Calculations for Groundwater 770 Somerset Street West and 13 Lebreton Steet North, Ottawa

| Parameter      | Sample(1)     | Duplicate | Laborator  |                       | Sample(1) | Duplicate | Laborator                     |            | Sample(1)  | Duplicate | Laborator | Relative   | Sample(1) | Duplicate | Laborator  | Relative   | Sample(1) | Duplicate | Laboratory         | Relative              | Sample(1) | Duplicate | Laboratory         | Relative              |
|----------------|---------------|-----------|------------|-----------------------|-----------|-----------|-------------------------------|------------|------------|-----------|-----------|------------|-----------|-----------|------------|------------|-----------|-----------|--------------------|-----------------------|-----------|-----------|--------------------|-----------------------|
| Parameter      | MW-1          |           | У          | Percent<br>Difference | MW-5A     | DUD 1     | Reporting                     | Percent    | MW EC 1    | MWEC 2    | Reporting | Percent    | MW-5C     | DUP1      | Reporting  | Percent    | MW-9A     | Dup2      | Reporting<br>Limit | Percent<br>Difference | MW-9B     | Dup1      | Reporting<br>Limit | Percent<br>Difference |
|                | IVIVV-I       |           | r 16, 2012 | Difference            | IVIVV-5A  |           | <u>Reporting</u><br>t 8, 2014 | Difference | IVIVV-5C-1 |           | r 9, 2014 | Difference | IVIVV-5C  |           | er 3, 2014 | Difference | IVIVV-SA  |           | 29, 2013           | Difference            | INIAA-2D  |           | 28, 2013           | Difference            |
| Metals and Ino | rganics       | HOVEIIIDO | 10, 2012   |                       |           | Augus     | . 0, 2014                     |            |            | Octobe    | 1 0, 2014 |            |           | Decemb    | CI 0, 2014 |            |           | Cotober   | 20, 2010           |                       |           | October   | 20, 2010           |                       |
| Antimony       | <b>&lt;</b> 5 | <5        | 5          |                       | <5.0      | <5.0      | 5                             |            | <5         | <5        | 5         |            | <5.0      | <5.0      | 5          |            | <0.5      | <0.5      | 0.5                |                       | <0.5      | <0.5      | 0.5                |                       |
| Arsenic        | <10           | <10       | 10         | <del> </del>          | <10       | <10       | 10                            |            | 12         | 12        | 10        |            | <10       | <10       | 10         |            | <1        | <1        | 1                  |                       | <10       | <10       | 1                  |                       |
| Barium         | 230           | 280       | 20         | -0.20                 | 270       | 270       | 20                            | 0.00       | 560        | 550       | 20        | 0.02       | 310       | 310       | 20         | 0.00       | 360       | 370       | 10                 | -0.03                 | 180       | 180       | 10                 | 0.00                  |
| Bervllium      | <5            | <5        | 5          | <u></u>               | <5.0      | <5.0      | 5                             |            | <5         | <5        | 5         |            | <5.0      | <5.0      | 5          |            | <0.5      | <0.5      | 0.5                |                       | <0.5      | <0.5      | 0.5                |                       |
| Boron (Total)  | <100          | 120       | 100        | l                     | 170       | 180       | 100                           |            | 490        | 500       | 100       | -0.02      | 900       | 920       | 100        | -0.02      | 400       | 390       | 10                 | 0.03                  | 110       | 110       | 10                 | 0.00                  |
| Cadmium        | <1            | <1        | 1          |                       | <1.0      | <1.0      | 1                             |            | <1         | <1        | 1         |            | <1.0      | <1.0      | 1          |            | <0.1      | <0.1      | 0.1                |                       | <0.1      | <0.1      | 0.1                |                       |
| Chloride       | 7900000       | 6800000   | 50000      | 0.15                  | 6300000   | 6400000   | 50000                         | -0.02      | 6500000    | 7100000   | 80000     | -0.09      | 6700000   | 6600000   | 70000      | 0.02       | 703000    | 560000    | 1000               | 0.23                  | 5530000   | 5400000   | 1000               | 0.02                  |
| Chromium       | <50           | <50       | 50         |                       | <50       | <50       | 50                            |            | <50        | <50       | 50        |            | <50       | <50       | 50         |            | <1        | 1         | 1                  |                       | 3         | 2         | 1                  |                       |
| Chromium VI    | <5            | <5        | 5          |                       | <5.0      | <5.0      | 5                             |            | -          | -         | -         |            | -         | -         |            |            | <10       |           | 10                 |                       | <10       | <10       | 10                 |                       |
| Cobalt         | 7.4           | 6.6       | 5          |                       | <5.0      | <5.0      | 5                             |            | 5          | 6         | 5         |            | 7.3       | 6.8       | 5          |            | 0.6       | 0.6       | 0.2                | 0.00                  | 4         | 3.3       | 0.2                | 0.19                  |
| Copper         | <10           | <10       | 10         |                       | <10       | <10       | 10                            |            | <10        | <10       | 10        |            | <10       | <10       | 10         |            | <1        | <1        | 1                  |                       | 5         | 6         | 1                  | -0.18                 |
| Lead           | <5            | <5        | 5          |                       | <5.0      | <5.0      | 5                             |            | <5         | <5        | 5         |            | 15        | 14        | 5          | 0.07       | <1        | <1        | 1                  |                       | <1        | <1        | 1                  |                       |
| Mercury        | <0.1          | <0.1      | 0.1        |                       | <0.1      | <0.1      | 0.1                           |            | -          | -         |           |            | -         | -         |            |            | <0.1      | <0.1      | 0.1                |                       | <0.1      | <0.1      | 0.1                |                       |
| Molybdenum     | <5            | <5        | 5          |                       | <5.0      | <5.0      | 5                             |            | <5         | <5        | 5         |            | <5.0      | <5.0      | 5          |            | <5        | <5        | 5                  |                       | <5        | <5        | 5                  |                       |
| Nickel         | 10            | 11        | 10         |                       | <10       | <10       | 10                            |            | 23         | 23        | 10        |            | 29        | 28        | 10         | 0.04       | <5        | <5        | 5                  |                       | 17        | 17        | 5                  | 0.00                  |
| Selenium       | <20           | <20       | 20         |                       | <20       | <20       | 20                            |            | <20        | <20       | 20        |            | <20       | <20       | 20         |            | <1        | <1        | 11                 |                       | <1        | <1        | 1                  |                       |
| Silver         | 1.2           | 1.9       | 1          |                       | 2.3       | 2.4       | 1                             |            | <1         | <1        | 1         |            | <1.0      | <1.0      | 1          |            | <0.1      | <0.1      | 0.1                |                       | 0.4       | 0.1       | 0.1                |                       |
| Sodium         | 4000000       | 4600000   | 1000       | -0.14                 | 3800000   | 3900000   | 1000                          | -0.03      | 4000000    | 4000000   | 1000      | 0.00       | 3700000   | 3700000   | 1000       | 0.00       | 370000    | 307000    | 2000               | 0.19                  | 3590000   | 3460000   | 2000               | 0.04                  |
| Thallium       | <0.5          | <0.5      | 0.5        |                       | <0.50     | <0.50     | 0.5                           |            | 0.7        | 0.6       | 0.5       |            | 0.86      | 0.72      | 0.5        | 0.18       | <0.1      | <0.1      | 0.1                |                       | <0.1      | <0.1      | 0.1                |                       |
| Uranium        | 3.2           | 3.2       | 1          | 0.00                  | 3.8       | 3.6       | 1                             | 0.05       | 4          | 4         | 1         | 0.00       | 5.8       | 5.8       | 1          | 0.00       | 2         | 2         | 1                  |                       | 3         | 2         | 1                  |                       |
| Vanadium       | 8.8           | 11        | 5          |                       | <5.0      | <5.0      | 5                             |            | 9          | 21        | 5         |            | <5.0      | 12        | 5          |            | <1        | <1        | 1                  |                       | <1        | <1        | 1                  |                       |
| Zinc           | <50           | <50       | 50         |                       | <50       | <50       | 50                            |            | <50        | <50       | 50        |            | <50       | <50       | 50         |            | <10       | <10       | 10                 |                       | <10       | <10       | 10                 | <u> </u>              |
| Cyanide, Free  | 10            | 8         | 2          | 0.22                  | 11        | 10        | 2                             | 0.10       | -          | -         | 1         |            | -         | -         |            |            | <5        | <5        | 5                  |                       | <5        | <5        | 5                  |                       |

Notes:

(1) All results reported in micrograms per gram

< Parameter not detected above value specified

Relative RPD = |(X-Y)/Average(X,Y)| where X is the

Percent sample and Y is the duplicate

BPD could not be calculated

A-1
DOCUMENTATION AND
SAMPLING AND ANALYSIS PLAN

#### **Carolyn Adams**

From:

Kearney, Michel < Michel. Kearney@ottawa.ca>

Sent: To: April-25-14 4:08 PM Carolyn Adams

lo: Cc: Dunn, Jenn

Subject:

FW: Use of Non-Potable Groundwater

Attachments:

nonpotableLTR.pdf

Hi Carolyn,

This is to advise that the City of Ottawa does not object to the use of the non-potable groundwater site condition standards for the properties identified as 770 Somerset Street West and 13 Lebreton Street, in Ottawa, ON, as part of the preparation and filing of a Record of Site Condition for these sites.

Best Regards,

#### Michel F. Kearney, P.Geo.

Sr. Hydrogeologist Infrastructure Planning Unit Policy Development & Urban Design Branch City of Ottawa Mail Code: 01-14

Tel.: (613) 580-2424 ext.22872

Fax.: (613) 580-2578

From: Dunn, Jenn

Sent: April 24, 2014 1:24 PM

**To:** Kearney, Michel **Cc:** 'adamsc@mmm.ca'

Subject: FW: Use of Non-Potable Groundwater

Hi Michel

Could you please respond directly to Carolyn Adams as per the attached letter? Please cc me on your response for tracking purposes only.

Much appreciated.

#### Jenn Dunn

Executive Assistant/Adjointe exécutive
City Clerk and Solicitor's office/bureau Greffier de la Ville et chef du contentieux
City of Ottawa/ville d'Ottawa
Tel/Télé: 613-580-2424 x 21801
jenn.dunn@ottawa.ca

From: Carolyn Adams [mailto:AdamsC@mmm.ca]

Sent: Wednesday, April 23, 2014 4:37 PM

To: Dunn, Jenn

Subject: Use of Non-Potable Groundwater

Jenn

As discussed, can you please forward the attached letter to Mr. Rick O'Connor and respond to me with the City's acceptance of the use of non-potable groundwater conditions. If you have any questions, please let me know.

Carolyn Adams, M.A.Sc., P.Eng.

Manager, Environmental Management
Associate Partner
MMM Group Limited
100 Commerce Valley Drive West,
Thornhill, ON, Canada L3T 0A1
t: 905-882-4211 ext. 6535 | f: 905-882-1857 | c: 647-222-0173
AdamsC@mmm.ca | www.mmm.ca

The information contained within this e-mail transmission is privileged and/or confidential information that is intended solely for the use of the party to which it is addressed. Its dissemination, distribution or copying is strictly prohibited. If you have received this e-mail in error, or are not named as a recipient within such e-mail, please immediately notify the sender and also destroy any and all copies you have made of this e-mail transmission.

Please consider the environment before printing this e-mail and/or its attachments.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. If you are not the intended recipient, please notify me at the telephone number shown above or by return e-mail and delete this communication and any copy immediately. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Si vous avez reçu le message par erreur, veuillez m'en aviser par téléphone (au numéro précité) ou par courriel, puis supprimer sans délai la version originale de la communication ainsi que toutes ses copies. Je vous remercie de votre collaboration.

## Table 1: Phase Two ESA Sampling and Analysis Plan: 770 Somerset Street West, Ottawa, Ontario

## Primary Objectives

1) Characterize the nature and extent of potential contaminants, based on the findings of the Phase One ESA

2) Identify if gross soil contamination is present to support excess material management during redevelopment activities

3) Collect data to support the filing of a record of site condition.

|                                                   | T                       | <del>,                                      </del>                                          |                                                    | T                                                                                                                                                                                                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|---------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                                                   |                         |                                                                                             | SOIL 9                                             | -                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|                                                   |                         | Potential Contaminants of Concern in Soil and                                               | cBs CBs AHs letals & norganics OCs TEX/PHCs (F1-F4 |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Figure ID                                         | Media                   | Groundwater                                                                                 |                                                    | Purpose and Justification  A Phase One ESA was completed by MMM Group Limited as draft in September 2012. Based on the results of the                                                                                                                            | General Instructions  Review SOPs for borehole drilling, soil sampling, field screening, and monitor well installation, prior to commencement of field activities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|                                                   |                         |                                                                                             |                                                    |                                                                                                                                                                                                                                                                  | Unless otherwise specified, adhere to the following general instructions:  BOREHOLES  Advance soil borings to refusal on bedrock, which is anticipated at approximately 4 m to 5 m. Groundwater should be encountered within this depth.  Conduct continuous field screening of soils (headspace) using a PID and RKI Inspect soils visually for changes in lithology and/or evidence of contamination  MONITORING WELLS  Complete all eight boreholes as 50mm monitoring wells with flush-mount casings  Backfill bottom of borehole annulus with bentonite to depth required for the bottom of the well  Construct well with Sch40 PVC piping with 1.5 m to 3.0 m of screen followed by solid riser pipe to bring the well to grade. The length of the well screen should be adjusted to allow for the construction of the well with sufficient solid riser above.  Ensure screen is installed so it straddles the water table  Fill annulus of each well with sand to 0.3 m above the screen  Place bentonite around solid riser from above the sand pack to just below the ground surface  GENERAL  Document field conditions, observations, and notes in the field log book  Collect soils continuously during drilling for screening purposes. Jar soils (BTEX/F1, VOCs) for all intervals as they may be required for chemical analysis of VOCs. After completing the field program, contact the Project Manager to discuss which samples are to be submitted for lab analysis. In general, we will submit the soil sample from the horizon exhibiting the highest RKI/PID reading for BTEX/PHCs and VOC analysis along with a sample from deeper in the borehole if possible, and a "worst-case" sample (based on field observations and professional judgment) for metals/inorganics, PAH (2 boreholes only) and PCBs (2 boreholes only). In addition, four samples of native soil will be submitted for analysis of metals/inorganics. The analysis will be conducted by Maxxam Analytics.  All monitoring wells will be developed and groundwater sampled in accordance with the SOPs. The groundwater sampling pro |  |  |  |  |  |  |
| ADEC 4                                            |                         |                                                                                             |                                                    |                                                                                                                                                                                                                                                                  | On a sind heater of ings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| APEC-1                                            |                         |                                                                                             |                                                    |                                                                                                                                                                                                                                                                  | Special Instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| MW1                                               | Soil and<br>Groundwater | PHCs, VOCs, PAHs, metals and inorganics                                                     | 1 2 2 2                                            | MW1 and MW2 are proposed to investigate possible contaminants from USTs present prior to 1956. USTs and piping were reportedly removed and the investigation is assessing the potential fo residual contamination. MW2 also assesses the fomer pump island area. | See General Instructions:  • All monitoring wells are to be completed with flush mount casings at ground surface.  • Submit one "worst case" soil sample from each location and if impacts are identified based on field observations, also submit the next                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| MW2                                               |                         |                                                                                             | 1 1 2 2                                            |                                                                                                                                                                                                                                                                  | deepest sample for analysis, unless worst case is at bedrock.  • Use field judgment to determine if a soil sample is required for submission of PAH analysis (i.e., observation of of foreign material such as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| APEC-2                                            |                         |                                                                                             | Parameters to be sampled are included in           | MW2 is located closer to the former pump island.                                                                                                                                                                                                                 | coal, slag like material, ash, etc. which are usually associated with elevated PAH concentrations). The sample and analysis plan provides for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| MW2                                               | Soil and                | PHCs, PAHs, metals                                                                          | APEC -1                                            | invez is located closer to the former pump island.                                                                                                                                                                                                               | two PAH samples, but these need not be submitted if there is no evidence to suspect these contaminants in the fill.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| MW6                                               | Groundwater             | and inorganics                                                                              | 2 2 2                                              | MW6 is proposed to investigate quality of fill used as backfill for previous remediation as well as possible migration                                                                                                                                           | <ul> <li>If unsual odours or NAPL is encountered at any sample locations, contact the PM to discuss sampling requirements.</li> <li>Submit two samples for PCB analysis, one each from APEC-7 and APEC-8.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| APEC-3                                            |                         |                                                                                             |                                                    | of contamination from former pump island location.                                                                                                                                                                                                               | Select a sample representative of contaminated area for TCLP analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| MW3                                               | Soil and<br>Groundwater | PHCs, VOCs, metals and inorganics                                                           | 1 2 2 2                                            | MW3 is proposed to investigate possible residual contamination from second UST location (after 1956). USTs were reportedly removed during site decommissioning.                                                                                                  | GROUNDWATER SAMPLING AND ANALYSIS  • Approximately one week after drilling and well development, groundwater will be monitored and sampled. Samples will be collected according to groundwater sampling SOPs and recovered in laboratory prepared bottles. Samples will be submitted from each borehole analysis of metals and inorganics, VOCs and PHCs. Depending on the results of soil analysis and field monitoring, samples may also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| MW1 MW2 MW3 MW4 MW5 MW6 MW7 MW8                   | Soil and<br>Groundwater | Sodium, chloride,<br>electrical conductivity<br>and sodium adsorption<br>ratio (inorganics) |                                                    | Samples from various depths at each of the boreholes will be submitted for analysis of inorganic parameters to assess the potential for salt impacts across the entire site.                                                                                     | analysed for PAHs or PCBs. One duplicate sample will be submitted for each analytical method and a trip blank will be submitted for analysis of VOCs and the F1 fraction of PHCs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| APEC-5                                            |                         |                                                                                             |                                                    |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| MW4                                               | Soil and<br>Groundwater | PHCs, PAHs, metals and inorganics and                                                       |                                                    | MW4 is proposed to assess potential for migration of contamination from former fuel storage tank.  MW5 is proposed to investigate possible contamination from fuel oil UST. USTs were reportedly removed during site                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| MW5                                               |                         | VOCs at MW4                                                                                 | 1 1 - 2                                            | decommissioning.                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| APEC-6                                            | Oall and                | DALla matala a d                                                                            | Parameters to be compled are included.             | Monitoring wells are legated in cross of provious remadiation that will have been backfilled and Clark.                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| MW1, MW2, MW3, MW5, MW6, MW7, MW8 <b>APEC-7</b>   | Soil and<br>Groundwater | PAHs, metals and inorganics                                                                 |                                                    | Monitoring wells are located in areas of previous remediation that will have been backfilled using fill of unknown quality. Sampling for identified parameters will assess fill quality.                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| MW7                                               | Soil and                | PHCs, PCBs, metals                                                                          | - 1 2 2                                            | MW7 is proposed to investigate area of former underground hoist that was reportedly removed during site                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| APEC-8                                            | Groundwater             | and inorganics                                                                              |                                                    | decommissioning.                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| MW8                                               | Soil and<br>Groundwater | PHCs, PAHs, PCBs,<br>VOCs, metals and<br>inorganics                                         | - 1 - 1 2 2                                        | MW8 is proposed to investigate area of former waste oil UST that may have been used for solvents or oil containing PCBs. UST was reportedly removed during site decommissioning.                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| SUBTOTAL                                          |                         |                                                                                             | 2 2 2 12 12 16                                     |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Quality Assurance/Quality Cont<br>Field Duplicate | Soil for FD             |                                                                                             | - 1 1 2 2 2                                        |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| TCLP (VOCs/SVOCs/metals and                       | Drummed drill           |                                                                                             |                                                    | Submit one sample for TCLP analysis to support off-site soil disposal options.                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| inorganics/PCBs)                                  | cuttings                |                                                                                             | 2 2 44 44                                          |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| TOTAL LABORATORY SAMPLE                           | =3 (3UIL)               |                                                                                             | 2 3 3 14 14 18                                     |                                                                                                                                                                                                                                                                  | <u>I</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |

Table 1: PTTW Soil Sampling and Monitoring Well Installation, 770 Somerset Street West and 13 LeBreton Street, Ottawa, Ontario

Primary Objectives

- 1) Characterize the nature and extent of potential contaminants on 13 LeBreton, based on the findings of the Phase One ESA
- 2) Identify if gross soil contamination is present on 13 LeBreton to support excess material management during redevelopment activities
- 3) Collect data to support the application for a Permit to Take Water (PTTW) for the development and for a Record of Site Condition on 13 LeBreton Street.

| T                              |                         |                                                                    | Ι          |      |      | SOIL                |      |                   |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------|-------------------------|--------------------------------------------------------------------|------------|------|------|---------------------|------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure ID                      | Media                   | Potential<br>Contaminants of<br>Concern in Soil and<br>Groundwater | 3rain-Size | PCBs | PAHS | Metals & Inorganics | VOCs | BTEX/PHCs (F1-F4) | Purpose and Justification                                                                                                                                              | General Instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1194.015                       | ou.u                    | O.Od.idirato.                                                      |            |      |      |                     |      |                   | PhaseTwo ESA for 13 LeBreton Street, a residential Property. Update to a Phase Two ESA for 770 Somerset Street West, a former gas station. Updated information will be | Collect soil and groundwater samples as necessary to support RSC for 13 LeBreton Street, noting areas of concern on adjacent property at 770 Somerset Street West. Only bedrock groundwater data will be obtained for 770 Somerset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                |                         |                                                                    |            |      |      |                     |      |                   |                                                                                                                                                                        | Street West.  Review SOPs for borehole drilling, soil sampling, field screening, and monitor well installation, prior to commencemen of field activities. Unless otherwise specified, adhere to the following general instructions:  BOREHOLES  * Advance soil borings to refusal on bedrock, which is anticipated at approximately 4 m to 5 m. Groundwater should be encountered within this depth.  * Conduct continuous field screening of soils (headspace) using a PID and RKI, for boreholes on 13 LeBreton Street only, and collect soil samples near the bottom of the overburden.  **Continue drilling into bedrock, as follows: MW5A (7 m into rock, no coring), MW9A (7 m into rock, core retrieval), MW9B (3 m into rock, no coring), MW10 (3 m into rock, no coring).  **MONITORING WELLS**  **Complete all five boreholes as 50mm monitoring wells with flush-mount casings, open hole into the bedrock, as follows: MW5A and MW9A (open hole interval from 4 - 7 m below top of rock, MW9B, MW10, and MW11 (open hole from 0.5 to 3 m below top of rock).  **Backfill bottom of borehole annulus with bentonite to depth required for the bottom of the well  **Construct well with Sch40 PVC, including well screens and riser pipes, as recommended by Strata Soil Sampling Ltd The length of the well screen should be adjusted to allow for the construction of the well with sufficient solid riser above Fill annulus of each well with sand to 0.3 m above the screen  **Place bentonite around solid riser from above the sand pack to just below the ground surface GENERAL**  **Document field conditions, observations, and notes in the field log book** |
| 770 Somerset Street West       |                         |                                                                    |            |      |      |                     |      |                   |                                                                                                                                                                        | Special Instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW5A                           | Groundwater and         | Not applicable                                                     |            |      |      |                     |      |                   | Soil and groundwater impacts in the overburden will be remediated during building construction. Bedrock groundwater quality will be investigated to support a PTTW     | Collect soils continuously during drilling for screening purposes. Jar soils (BTEX/F1, VOCs) for lower overburden from boreholes on 13 LeBreton Street only (MW9B, MW10, and MW11). After completing the field program, contact the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MW9A                           | Groundwater only        | Not applicable                                                     |            |      |      |                     |      |                   | application. Bedrock groundwater quality will be investigated to support a PTTW                                                                                        | Project Manager to discuss which samples are to be submitted for lab analysis. In general, we will submit the soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13 LeBreton Street             |                         |                                                                    |            |      |      |                     |      |                   |                                                                                                                                                                        | sample from the horizon exhibiting the highest RKI/PID reading for BTEX/PHCs and VOC analysis along with a sample from deeper in the borehole if possible, and a "worst-case" sample (based on field observations and professional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MW9B                           | Soil and<br>Groundwater | PHCs, VOCs, PAHs,                                                  |            |      | 1    | 1                   | 1    | 1                 | Assess soil quality at the north boundary for the possibility for impacts from off-site use as a gas station.                                                          | judgment) for metals/inorganics (each borehole), and PAHs (2 boreholes only).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MW10, MW11                     | Soil and<br>Groundwater | metals and inorganics                                              |            |      | 1    | 2                   | 1    | 2                 | Assess soil quality for parameters that may have migrated from the off-site use ot the north as a gas station.                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SUBTOTAL                       |                         |                                                                    |            |      | 1    | 3                   | 2    | 3                 |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Quality Assurance/Quality Cont |                         |                                                                    |            |      |      |                     |      |                   |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Field Duplicate                | Soil for FD             |                                                                    |            |      | 1    | 1                   | 1    | 1                 | D. L. (                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TCLP                           | Soil                    |                                                                    |            |      |      |                     |      |                   | Rely on data from 770 Somerset Street West as representing worst case.                                                                                                 | $oldsymbol{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TOTAL LABORATORY SAMPLE        |                         |                                                                    | 0          | 0    | 2    |                     | 3    |                   |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Table 1: PTTW Soil Sampling and Monitoring Well Installation, 770 Somerset Street West and 13 LeBreton Street, Ottawa, Ontario

## Primary Objectives

- 1) Characterize the nature and extent of potential contaminants on 13 LeBreton, based on the findings of the Phase One ESA
- 2) Identify if gross soil contamination is present on 13 LeBreton to support excess material management during redevelopment activities
- 3) Collect data to support the application for a Permit to Take Water (PTTW) for the development and for a Record of Site Condition on 13 LeBreton Street.

|                        |                  |                                                                    |            |      | S    | OIL                    |      |                       |                                                                                                        |                                                                                                                                                                                                                                           |
|------------------------|------------------|--------------------------------------------------------------------|------------|------|------|------------------------|------|-----------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure ID              | Media            | Potential<br>Contaminants of<br>Concern in Soil and<br>Groundwater | Grain-Size | PCBs | PAHs | Metals &<br>Inorganics | VOCs | BTEX/PHCs (F1-F4)     | Purpose and Justification                                                                              | General Instructions                                                                                                                                                                                                                      |
| Borehole ID            | Media            | Potential Contaminants of Concern in Soil and Groundwater          | Grain-Size | PCBs | PAHs | Metals &<br>Inorganics | VOCs | BTEX/PHC<br>s (F1-F4) | Purpose and Justification                                                                              | Notes:                                                                                                                                                                                                                                    |
| MW5A                   | Groundwater      |                                                                    |            |      | 1    | 1                      | 1    | 1                     |                                                                                                        | All monitoring wells will be developed and groundwater sampled in accordance with the SOPs based on the results of                                                                                                                        |
| MW9A                   | Groundwater      | PHCs, PCBs, VOCs,<br>PAHs, metals and                              |            | 1    | 1    | 1                      | 1    | 1                     | amended and at MW9A, analysis will include the City of Ottawa Sewer Use By-Law                         | soil sampling.  GROUNDWATER SAMPLING AND ANALYSIS  At least 48 hours after drilling, wells will be developed. The following day, groundwater will be monitored and sampled.                                                               |
| MW9B                   | Groundwater      | inorganics.                                                        |            |      | 1    | 1                      | 1    | 1                     |                                                                                                        | Samples will be collected according to groundwater sampling SOPs and recovered in laboratory prepared bottles.                                                                                                                            |
| MW10                   | Groundwater      | 1                                                                  |            |      |      | 1                      |      | 1                     | Groundwater quality at 13 LeBreton Street needs to be confirmed for PHCs, VOCs, metals and inorganics. | Samples will be submitted from each borehole for analysis indicated. Depending on the results of soil analysis and field monitoring, additional sampling may be identified. One duplicate sample will be submitted for analytical methods |
| MW11                   | Groundwater      | 1                                                                  |            |      |      | 1                      |      | 1                     |                                                                                                        | identfied and a trip blank will be submitted for analysis of VOCs.                                                                                                                                                                        |
| Duplicates             | Groundwater      | As noted.                                                          |            |      | 1    | 1                      | 1    | 1                     | As noted.                                                                                              |                                                                                                                                                                                                                                           |
| Trip Blank             | Groundwater      | AS noted.                                                          |            |      |      |                        | 1    |                       | Trip blank as noted.                                                                                   |                                                                                                                                                                                                                                           |
| TOTAL LABORATORY SAMPL | ES (Groundwater) |                                                                    | 0          | 1    | 4    | 6                      | 5    | 6                     |                                                                                                        |                                                                                                                                                                                                                                           |

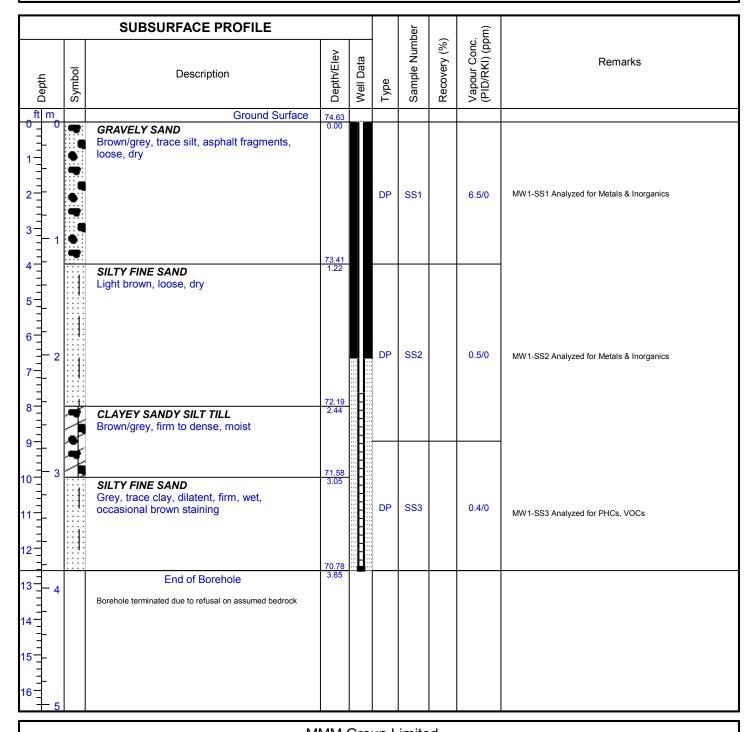
### Sampling and Analysis Plan, Groundwater Sampling at MW5C at 770 Somerset Street West, Ottawa, Ontario

#### **Primary Objectives**

1) Verify groundwater quality for metals and chloride at MW5C.

| Figure ID                            | Media          | Potential<br>Contaminants of<br>Concern in<br>Groundwater | Metals &<br>Inorganics | General Instructions                                                                                                                                                               |
|--------------------------------------|----------------|-----------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      |                |                                                           |                        | Monitor depth to groundwater at each accessible well and collect groundwater sample and duplicate from MW5C                                                                        |
|                                      |                |                                                           |                        | Purge well of stagnant groundwater over three separate visits and record physical properties (pH, conductivity, temperature) to demonstrate representative groundwater conditions. |
| 770 Somerset Street West             |                |                                                           |                        |                                                                                                                                                                                    |
| MW5C Groundwater                     |                | ICPMS metals and chloride                                 | 1                      | Soil and groundwater impacts in the overburden have been investigated. The distribution of sodium and chloride in the groundwater needs to be further documented.                  |
| SUBTOTAL                             |                |                                                           | 1                      |                                                                                                                                                                                    |
| <b>Quality Assurance/Quality Con</b> |                |                                                           |                        |                                                                                                                                                                                    |
| Field Duplicate Groundwater          |                |                                                           | 1                      | Name the duplicate MW5D                                                                                                                                                            |
| TOTAL LABORATORY GROUN               | IDWATER SAMPLE | S                                                         | 2                      |                                                                                                                                                                                    |

A-2 FINALIZED FIELD LOGS




**Project No:** 14-12815-001-PH2

**Project:** Environmental Investigation

Client: DCR Phoenix Homes MOE ID#:

Location: 770 Somerset Street West, Ottawa, Ontario



Drilled By: Strata Soil

**Drill Method: Air Rotary** 

Drill Date: November 8, 2012

MMM Group Limited 100 Commerce Valley Drive West Thornhill, Ontario L3T 0A1

Borehole Log is for Environmental Purposes Only

Logged By: PVD

Log of Borehole: MW-1

Northing: 5028741 Datum: NAD 83

Zone: 18 T

Easting: 444506

Checked By: CIA

Hole Size: 0.15 m

Sheet: 1 of 1



**Project No:** 14-12815-001-PH2

**Project:** Environmental Investigation

Client: DCR Phoenix Homes MOE ID#:

Location: 770 Somerset Street West, Ottawa, Ontario

|                                         |        | SUBSURFACE PROFILE                                                                      |               |           | ber  |               | m)           |                                 |                                                            |
|-----------------------------------------|--------|-----------------------------------------------------------------------------------------|---------------|-----------|------|---------------|--------------|---------------------------------|------------------------------------------------------------|
| Depth                                   | Symbol | Description                                                                             | Depth/Elev    | Well Data | Туре | Sample Number | Recovery (%) | Vapour Conc.<br>(PID/RKI) (ppm) | Remarks                                                    |
| ft m                                    |        | Ground Surface                                                                          | 75.33<br>0.00 |           |      |               |              |                                 |                                                            |
| 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | •      | ASPHALT Brown sand and gravel fill, loose  GRAVELY SAND Brown, trace silt, loose, moist | 75.03<br>0.30 |           | AR   | SS1           |              | 13/0?                           |                                                            |
| 3 - 1                                   |        |                                                                                         | 73.81<br>1.52 |           | K    | 001           |              | 15/0?                           |                                                            |
| 5 -                                     |        | Concrete                                                                                | 1.52          |           |      |               |              |                                 |                                                            |
|                                         |        |                                                                                         | 73.50<br>1.83 |           |      |               |              |                                 |                                                            |
| 6 -                                     |        | GRAVELY SILTY SAND                                                                      | 1.83          |           |      |               |              |                                 |                                                            |
| 7 - 2<br>7                              |        | Brown, firm, moist                                                                      | 72.59         |           | AR   | SS2           |              | 227/0?                          | MW2-SS2 Analyzed for Metals & Inorganics, PAHs, PHCs, VOCs |
| 9 - 3                                   | •      | GRAVELY SAND Brown/grey, trace silt, firm, moist to wet                                 | 72.59<br>2.74 |           |      |               |              |                                 |                                                            |
| 11 -                                    |        |                                                                                         | 71.78         |           | AR   | SS3           |              | 132/0?                          | MW2-SS3 Analyzed for PHCs, VOCs                            |
| 12                                      | 垂      | LIMESTONE BEDROCK                                                                       | 71.78<br>3.55 | l::L      |      |               |              |                                 |                                                            |
|                                         | 莊      |                                                                                         | 71 42         | ĿΒ        |      |               |              |                                 |                                                            |
| 13 4                                    |        | End of Borehole                                                                         | 71.43<br>3.90 |           |      |               |              |                                 |                                                            |
| 14                                      |        |                                                                                         |               |           |      |               |              |                                 |                                                            |
| 16 - 5                                  |        |                                                                                         |               |           |      |               |              |                                 |                                                            |

Drilled By: Strata Soil

Drill Method: Air Rotary

Drill Date: November 8, 2012

MMM Group Limited 100 Commerce Valley Drive West Thornhill, Ontario L3T 0A1

Borehole Log is for Environmental Purposes Only

Logged By: PVD

Log of Borehole: MW-2

Northing: 5028746 Datum: NAD 83

Zone: 18 T

**Easting: 444516** 

Checked By: CIA

Hole Size: 0.15 m

Sheet: 1 of 1



**Project No:** 14-12815-001-PH2

**Project:** Environmental Investigation

Client: DCR Phoenix Homes MOE ID#:

Location: 770 Somerset Street West, Ottawa, Ontario

|                                          |                                       | SUBSURFACE PROFILE                                                                                |               |           | ber  |               | ·<br>m)      |                                 |                                          |
|------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------|---------------|-----------|------|---------------|--------------|---------------------------------|------------------------------------------|
| Depth                                    | Symbol                                | Description                                                                                       | Depth/Elev    | Well Data | Туре | Sample Number | Recovery (%) | Vapour Conc.<br>(PID/RKI) (ppm) | Remarks                                  |
| ft m                                     | _                                     | Ground Surface                                                                                    | 74.96         |           |      |               |              |                                 |                                          |
| 1                                        | * * * * * * * * * * * * * * * * * * * | SAND AND GRAVEL Grey to grey-brown, asphalt mixed with sand and gravel, loose, dry  SAND          | 74.35<br>0.61 |           | DP   | SS1           |              | 11.8/0                          | MW3-SS1 Analyzed for Metals & Inorganics |
| 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -  | 1                                     | Light brown, medium grained, some gravel, loose, moist  - Concrete fragments present at 1.22 mbgs |               |           |      |               |              |                                 |                                          |
| 5                                        | 2                                     | - Concrete fragments present at 1.98 mbgs                                                         |               |           | DP   | SS2           |              | 5.0/0                           | MW3-SS2 Analyzed for Metals & Inorganics |
| 9   10   11   11   11   11   11   11   1 | 3                                     | - Thin gravel seam at 2.64 mbgs  - Gravely seam present at 3.25 mbgs  LIMESTONE BEDROCK           | 71.46<br>3.50 |           | DP   | SS3           |              | 6.1/0                           | MW3-SS3 Analyzed for PHCs, VOCs          |
| 12                                       | 華                                     | Grey  End of Borehole                                                                             | 71.15<br>3.81 |           |      |               |              |                                 |                                          |
| 13                                       | 5                                     | Litt of Borenole                                                                                  |               |           |      |               |              |                                 |                                          |

Drilled By: Strata Soil

Drill Method: Direct Push

Drill Date: November 8, 2012

MMM Group Limited 100 Commerce Valley Drive West Thornhill, Ontario L3T 0A1

Borehole Log is for Environmental Purposes Only Logged By: PVD

Log of Borehole: MW-3

Northing: 5028751 Datum: NAD 83

Zone: 18 T

**Easting: 444537** 

Checked By: CIA

Hole Size: 0.15 m

Sheet: 1 of 1



**Project:** Environmental Investigation

Client: DCR Phoenix Homes MOE ID#:

Location: 770 Somerset Street West, Ottawa, Ontario

|                      |        | SUBSURFACE PROFILE                                                                              |               |           |      | ber           |              | m)                              |                                                      |
|----------------------|--------|-------------------------------------------------------------------------------------------------|---------------|-----------|------|---------------|--------------|---------------------------------|------------------------------------------------------|
| Depth                | Symbol | Description                                                                                     | Depth/Elev    | Well Data | Type | Sample Number | Recovery (%) | Vapour Conc.<br>(PID/RKI) (ppm) | Remarks                                              |
| ft m                 |        | Ground Surface                                                                                  | 73.54         |           |      |               |              |                                 |                                                      |
| 2                    |        | ASPHALT AND GRAVEL Grey to grey-brown, loose  SAND Dark brown, trace to some silt, trace gravel | 72.93<br>0.61 |           | DP   | SS1           |              | 2.1/10                          |                                                      |
| 5 - 6 - 2            |        | - Becoming dense and moist at 1.52 mbgs                                                         |               |           | DP   | SS2           |              | 11.8/0                          | MW4-SS2 Analyzed for Metals & Inorganics, PHCs, VOCs |
| 7 8 9 9              |        | - Becoming wet and dilatent at 2.44 mbgs                                                        | 70.65<br>2.89 |           | DP   | SS3           |              | 10/0                            |                                                      |
| 10 3                 |        | End of Borehole  Borehole terminated due to refusal on limestone bedrock                        | 2.09          |           |      |               |              |                                 |                                                      |
| 11 - 4 1 15 - 16 - 5 |        | Borenole terminated due to refusal on limestone bedrock                                         |               |           |      |               |              |                                 |                                                      |

Drilled By: Strata Soil

Drill Method: Direct Push

Drill Date: November 9, 2012

MMM Group Limited 100 Commerce Valley Drive West Thornhill, Ontario L3T 0A1

Borehole Log is for Environmental Purposes Only Logged By: PVD

Log of Borehole: MW-4

Northing: 5028731 Datum: NAD 83

Zone: 18 T

**Easting: 444510** 

Checked By: CIA

Hole Size: 0.15 m



**Project:** Environmental Investigation

Client: DCR Phoenix Homes MOE ID#: N/A

Location: 770 Somerset Street West, Ottawa, Ontario

| ft m Ground Surface 74.60  PAVEMENT/SUB-PAVEMENT  Dark brown gravelly sand, asphalt fragments, loose, moist  The overburden and bedrock in this borehole were not cored, however the depth to bedrock was recorded. The overburden stratigraphy is interpreted to be the same as at adjacent monitoring well MW-5B (MW-5 as per MMM Grouz 2012). The bedrock is interpreted to be the same as nearbhole MW-9A, as suggested by bedrock cuttings observed at this location during drilling. |                 | SUBSURFACE PROFILE                                                                                                                                     |               |           |      | ber           |              | ΞÊ                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|------|---------------|--------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PAVEMENT/SUB-PAVEMENT Dark brown gravelly sand, asphalt fragments, loose, moist                                                                                                                                                                                                                                                                                                                                                                                                            | Depth<br>Symbol | Description                                                                                                                                            | Depth/Elev    | Well Data | Туре | Sample Number | Recovery (%) | Vapour Conc.<br>(PID/RKI) (ppm) | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| The overburden and bedrock in this borehole were not cored, however the depth to bedrock was recorded. The overburden stratigraphy is interpreted to be the same as a adjacent monitoring well MW-5B (MW-5 as per MMM Grou 2012). The bedrock is interpreted to be the same as nearbhole MW-9A, as suggested by bedrock cuttings observed a this location during drilling.                                                                                                                 |                 |                                                                                                                                                        | 74.60         |           |      |               |              |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Brown grey, trace gravel and silt, loose to firm, moist  5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-                                                                                                                                                                                                                                                                                                                                                                                            | 2 1 1 1 1 1 1 1 | PAVEMENT/SUB-PAVEMENT Dark brown gravelly sand, asphalt fragments, loose, moist  FILL Brown grey, trace gravel and silt, loose to firm, moist  BEDROCK | 73.99<br>0.61 |           |      |               |              |                                 | cored, however the depth to bedrock was recorded. The overburden stratigraphy is interpreted to be the same as at adjacent monitoring well MW-5B (MW-5B sper MMM Group 2012). The bedrock is interpreted to be the same as nearby hole MW-9A, as suggested by bedrock cuttings observed at this location during drilling.  -Static water level at 70.93 masl on October 28, 2013  -General nature of bedrock interpreted to be similar to that of MW-9A based on observations of bedrock drill cuttings  -Limestone not cored |

Drilled By: Strata Soil

Drill Method: Direct Push

Drill Date: October 25, 2013

MMM Group Limited 100 Commerce Valley Drive West Thornhill, Ontario L3T 0A1

Borehole Log is for Environmental Purposes Only

Logged By: PVD

Log of Borehole: MW-5A

Northing: 5028731 Datum: NAD 83

Zone: 18T

**Easting: 444514** 

Checked By: CIA

Hole Size: 0.15 m



**Project:** Environmental Investigation

Client: DCR Phoenix Homes MOE ID#: N/A

Location: 770 Somerset Street West, Ottawa, Ontario

| SUBSURFACE PROFILE                                          |        |             |            |           |      | oer           |              | m)                              |         |
|-------------------------------------------------------------|--------|-------------|------------|-----------|------|---------------|--------------|---------------------------------|---------|
| Depth                                                       | Symbol | Description | Depth/Elev | Well Data | Туре | Sample Number | Recovery (%) | Vapour Conc.<br>(PID/RKI) (ppm) | Remarks |
| 17 18 19 6 20 6 20 6 21 22 23 7 24 25 8 27 8 27 9 30 9 31 9 |        |             |            |           |      |               |              |                                 |         |

Drilled By: Strata Soil

Drill Method: Direct Push

Drill Date: October 25, 2013

MMM Group Limited 100 Commerce Valley Drive West Thornhill, Ontario L3T 0A1

Borehole Log is for Environmental Purposes Only Logged By: PVD

Log of Borehole: MW-5A

Northing: 5028731 Datum: NAD 83

Zone: 18T

**Easting: 444514** 

Checked By: CIA

Hole Size: 0.15 m



**Project:** Environmental Investigation

Client: DCR Phoenix Homes MOE ID#: N/A

Location: 770 Somerset Street West, Ottawa, Ontario

|                 | SUBSURFACE PROFILE |                |           |      | ber           |              | m)                              |         |
|-----------------|--------------------|----------------|-----------|------|---------------|--------------|---------------------------------|---------|
| Depth<br>Symbol | Description        | Depth/Elev     | Well Data | Туре | Sample Number | Recovery (%) | Vapour Conc.<br>(PID/RKI) (ppm) | Remarks |
| 33              | End of Borehole    | 62.56<br>12.04 |           |      |               |              |                                 |         |

Drilled By: Strata Soil

Drill Method: Direct Push

Drill Date: October 25, 2013

MMM Group Limited 100 Commerce Valley Drive West Thornhill, Ontario L3T 0A1

Borehole Log is for Environmental Purposes Only

Logged By: PVD

Log of Borehole: MW-5A

Northing: 5028731 Datum: NAD 83

Zone: 18T

**Easting: 444514** 

Checked By: CIA

Hole Size: 0.15 m



**Project:** Environmental Investigation

Client: DCR Phoenix Homes MOE ID#:

Location: 770 Somerset Street West, Ottawa, Ontario

|                                            |        | SUBSURFACE PROFILE                                                                                                     |               |           |      | ber           |              | m)                              |                                          |
|--------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------|---------------|-----------|------|---------------|--------------|---------------------------------|------------------------------------------|
| Depth                                      | Symbol | Description                                                                                                            | Depth/Elev    | Well Data | Type | Sample Number | Recovery (%) | Vapour Conc.<br>(PID/RKI) (ppm) | Remarks                                  |
| ft m                                       |        | Ground Surface                                                                                                         | 74.66<br>0.00 |           |      |               |              |                                 |                                          |
| 2 - 1                                      | •      | GRAVELY SAND Dark brown, asphalt fragments, loose, moist  SAND Brown/grey, trace gravel and silt, loose to firm, moist | 74.05<br>0.61 |           | DP   | SS1           |              | 8.0/10                          | MW5-SS1 Analyzed for Metals & Inorganics |
| 5 - 2                                      |        |                                                                                                                        |               |           | DP   | SS2           |              | 12.1/10                         | MW5-SS2 Analyzed for PAHs                |
| 8                                          |        | - Becoming wet at 3.66 mbgs                                                                                            |               |           | DP   | SS3           |              | 9.5/10                          | MW5-SS3 Analyzed for PHCs, VOCs          |
| 1 🛊                                        |        |                                                                                                                        | 70.70         |           |      |               |              |                                 |                                          |
| 13 4                                       | #      | LIMESTONE BEDROCK                                                                                                      | 3.96<br>70.55 | E         |      |               |              |                                 |                                          |
| 14   15   16   16   16   16   16   16   16 |        | End of Borehole                                                                                                        | 4.11          |           |      |               |              |                                 |                                          |

Drilled By: Strata Soil

Drill Method: Direct Push

Drill Date: November 9, 2012

MMM Group Limited 100 Commerce Valley Drive West Thornhill, Ontario L3T 0A1

Borehole Log is for Environmental Purposes Only Logged By: PVD

Log of Borehole: MW-5B

Northing: 5028730 Datum: NAD 83

Zone: 18 T

**Easting: 444514** 

Checked By: CIA

Hole Size: 0.15 m

| Project:<br>Project:<br>Location | :           | D                                    | 4-12815-001-PH2 ICR Phoenix Homes 70 Somerset Street West, Ottawa, Ontario | Co-ordina                  | <sub>ites:</sub> 444509E, 5028744N |           |                |                                                                       |             |                                       |          |                |
|----------------------------------|-------------|--------------------------------------|----------------------------------------------------------------------------|----------------------------|------------------------------------|-----------|----------------|-----------------------------------------------------------------------|-------------|---------------------------------------|----------|----------------|
| Date Dr                          |             |                                      | 8/10/2014                                                                  | Co-ordina<br>Datum:        | NAD 83                             |           |                | CDT                                                                   | /NI) \ /a   | dua                                   |          |                |
| Drill Typ                        |             | 0                                    | DDEX                                                                       | <ul><li>Logged E</li></ul> |                                    |           |                | <ul><li>SPT (N) Value</li><li>Total Organic Volatiles (ppm)</li></ul> |             |                                       |          |                |
|                                  |             | tor: S                               | trata Soil                                                                 | _ Checked                  | •                                  |           | -              |                                                                       |             |                                       |          |                |
|                                  |             | S<br>Y                               |                                                                            |                            | INSTALLATION                       | SAMPLE    | SOIL           |                                                                       |             | etration<br>40 6                      |          | N Valu<br>80   |
| DEPTI<br>(m bgs) (m              | H<br>n asi) | S<br>Y<br>M<br>B<br>O                | SOIL DESCRIPTION                                                           | WELL                       | DETAILS                            | ID ID     | SAMPLE<br>TEST | Tot                                                                   | al Orga     | anic Vol                              | atiles ( | (ppm)          |
| 100                              |             |                                      | ASPHALT                                                                    |                            | Concrete                           |           |                |                                                                       | 10          | 20 <u>3</u><br>:                      |          | 40             |
| .40                              | 99.6        |                                      |                                                                            |                            |                                    |           |                |                                                                       | :           | :                                     | :        | :              |
| U                                | 99.0        | $\otimes$                            | FILL                                                                       |                            |                                    |           |                |                                                                       | :           | <u>:</u>                              |          | <u>:</u>       |
|                                  | 8           | $\bowtie$                            | Brown, medium sand, some silt, some gravel, loose, moist.                  |                            | Bentonite seal                     | MW5C-1    |                |                                                                       |             |                                       |          |                |
|                                  |             | $\bowtie$                            |                                                                            |                            |                                    | IVIVV3C-1 |                |                                                                       | :           | :                                     | :        | :              |
|                                  |             | $\bowtie$                            |                                                                            |                            |                                    |           |                |                                                                       | :<br>:      | :                                     | <u>:</u> | - <u>:</u>     |
|                                  | K           | $\bowtie$                            |                                                                            |                            |                                    |           |                |                                                                       | :           | :                                     | :        | :              |
|                                  | <b>\</b>    | $\bowtie$                            |                                                                            |                            |                                    |           |                |                                                                       | :           |                                       | :        |                |
|                                  |             | $\bowtie$                            |                                                                            |                            |                                    |           |                |                                                                       | :           | :                                     | :        | :              |
|                                  | <u> </u>    | $\bowtie$                            |                                                                            |                            |                                    |           |                |                                                                       | :           |                                       | :        | :              |
|                                  | <b>\</b>    | $\bowtie$                            |                                                                            |                            |                                    | MW5C-2    |                |                                                                       | ······      | · · · · · · · · · · · · · · · · · · · |          | . <u>.</u>     |
|                                  | <b>\</b>    | $\bowtie$                            |                                                                            |                            |                                    | WWV5C-2   |                |                                                                       | :           | :                                     | :        | :              |
|                                  | K           | $\bowtie$                            |                                                                            |                            |                                    |           |                |                                                                       | :           |                                       | :        | :              |
|                                  |             | $\bowtie$                            |                                                                            |                            |                                    |           |                | *******                                                               |             | :                                     | :        |                |
|                                  | <b>\</b>    | $\bowtie$                            |                                                                            |                            |                                    |           |                |                                                                       | :           | :                                     | :        | :              |
|                                  | K           | $\bowtie$                            |                                                                            |                            |                                    |           |                |                                                                       | :<br>!      | ÷                                     | ;<br>}   |                |
|                                  | <b>\</b>    | $\bowtie$                            |                                                                            |                            |                                    |           |                |                                                                       | :           | :                                     | :        | :              |
|                                  |             | $\bowtie$                            |                                                                            |                            |                                    | MW5C-3    |                | <b>A</b>                                                              | :           |                                       | :        | :              |
|                                  | 8           | $\bowtie$                            |                                                                            |                            |                                    |           |                | ********                                                              | ······      | :                                     | :        | :              |
|                                  |             | $\bowtie$                            |                                                                            |                            |                                    |           |                |                                                                       | :           | :                                     |          | :              |
|                                  | 96.04       | $\overset{\sim}{\sim}$               | BEDROCK                                                                    |                            |                                    |           |                |                                                                       | :<br>       | ·                                     |          |                |
|                                  |             | $\gg$                                | Grey brown limestone, some shaly partings.                                 |                            |                                    |           |                |                                                                       | :           | :                                     | :        | :              |
|                                  |             |                                      |                                                                            |                            |                                    |           |                |                                                                       | :           |                                       |          | :              |
|                                  |             |                                      |                                                                            |                            |                                    |           |                |                                                                       | ·······     | :                                     | :        | :              |
|                                  |             | M                                    |                                                                            |                            |                                    |           |                |                                                                       | :           | :                                     | :        | :              |
|                                  | X           |                                      |                                                                            |                            |                                    |           |                |                                                                       | <u>.</u>    | <u>.</u>                              |          |                |
|                                  |             | X                                    |                                                                            |                            |                                    |           |                |                                                                       | :           | :                                     | :        | :              |
|                                  | K           |                                      |                                                                            |                            |                                    |           |                |                                                                       | :           |                                       | :        |                |
|                                  |             |                                      |                                                                            |                            |                                    |           |                | *******                                                               | :           | :                                     | ,        | :              |
|                                  |             | $\leq \!\! \langle$                  |                                                                            |                            |                                    |           |                |                                                                       | :           | :                                     | :        | :              |
|                                  |             |                                      |                                                                            |                            |                                    |           |                |                                                                       | :<br>:      | <u>:</u>                              |          | . <u>.</u>     |
|                                  |             | M                                    |                                                                            |                            |                                    |           |                |                                                                       | :           | :                                     | :        | :              |
|                                  |             |                                      |                                                                            |                            |                                    |           |                |                                                                       | :           |                                       | :        | :              |
|                                  |             | $\gg$                                |                                                                            |                            |                                    |           |                | *******                                                               | <del></del> | :                                     | :<br>:   |                |
|                                  |             | $\langle\!\langle\!\langle$          |                                                                            |                            |                                    |           |                |                                                                       |             | :                                     | :        | :              |
|                                  |             |                                      |                                                                            |                            |                                    |           |                |                                                                       | :           | :                                     | :        | . <u>:</u>     |
|                                  |             | M                                    |                                                                            |                            |                                    |           |                |                                                                       | :           | :                                     | :        | :              |
|                                  | K           |                                      |                                                                            |                            |                                    |           |                |                                                                       | :           | :                                     | :        | :              |
|                                  |             | X                                    |                                                                            |                            |                                    |           |                |                                                                       | <u>:</u>    | <u>:</u>                              | :        | - <del>:</del> |
|                                  | K           | $\langle\!\langle\!\rangle\!\rangle$ |                                                                            |                            |                                    |           |                |                                                                       | :           | :                                     | :        | :              |
|                                  |             | / X/                                 |                                                                            |                            |                                    | 1         |                | 1                                                                     |             |                                       |          |                |

|                                                          |                                                       |           |                        |           |                | Figure N      | ۱o                                    |                  |          |                |
|----------------------------------------------------------|-------------------------------------------------------|-----------|------------------------|-----------|----------------|---------------|---------------------------------------|------------------|----------|----------------|
| MMM GROU                                                 |                                                       |           |                        |           |                |               |                                       |                  |          |                |
|                                                          |                                                       | F BOF     | REHOLE <u>MW</u>       | <u>5C</u> |                |               |                                       |                  |          |                |
| Project No.                                              | 14-12815-001-PH2                                      |           |                        |           |                |               |                                       |                  |          |                |
| Project:                                                 | DCR Phoenix Homes                                     |           |                        |           |                |               |                                       |                  |          |                |
| Location:                                                | 770 Somerset Street West, Ottawa, Ontario             | Co-ordina | tes: 444509E, 5028744N |           |                | SPT (N) Value |                                       |                  |          |                |
| Date Drilled:                                            | 08/10/2014                                            | Datum:    | NAD 83                 |           | •              |               |                                       |                  |          |                |
| Drill Type:                                              | ODEX                                                  | Logged B  |                        |           |                |               |                                       |                  |          |                |
| Drilling Contracto                                       |                                                       | Checked   | By: CIA                |           |                | la            |                                       |                  |          |                |
| DEPTH (m bgs) (m asl)                                    | SOIL DESCRIPTION                                      | WELL      | INSTALLATION           | SAMPLE    | SOIL<br>SAMPLE |               |                                       | etration<br>40 6 |          | N value<br>80  |
| DEPTH (mbgs) (masl) P2                                   | SOIL DESCRIPTION                                      | WELL      | DETAILS                | ID        | TEST           |               | al Orga                               | anic Vol         |          | (ppm)<br>40    |
| - **                                                     | BEDROCK<br>Grey brown limestone, some shaly partings. |           |                        |           |                | 1             | :                                     | :                | :        | :              |
| ₽ K                                                      | (continued)                                           |           |                        |           |                |               | :                                     | :                | :        | :              |
| Ė ⊗                                                      |                                                       |           |                        |           |                | *******       | :<br>:                                | <del>:</del>     | :        | - <del>!</del> |
| E K≪                                                     |                                                       |           |                        |           |                |               | :                                     | :                | :        | :              |
| Ł 🕅                                                      |                                                       |           |                        |           |                |               | :                                     | <u>:</u>         | <u>:</u> | <u>:</u>       |
| Ł ≪                                                      |                                                       |           |                        |           |                |               | :                                     | :                | :        | :              |
| E 🛭                                                      |                                                       |           |                        |           |                |               | :                                     | :                | :        | :              |
| F 🖔                                                      |                                                       |           |                        |           |                |               | :<br>:                                | <u>:</u>         | :        | <u>.</u>       |
| F Ø                                                      |                                                       |           |                        |           |                |               | :                                     | :                | :        | :              |
| F ⊗                                                      | $\otimes$                                             |           |                        |           |                |               | :                                     | :                | :        | :              |
|                                                          |                                                       |           |                        |           |                | *******       | :<br>:                                | :                | :        | :              |
| Ė ⊗                                                      |                                                       |           |                        |           |                |               | :                                     | :                | :        | :              |
| E ≪                                                      |                                                       |           |                        |           |                |               | :<br>                                 | :<br>            | <u>:</u> |                |
| E 🔀                                                      |                                                       |           |                        |           |                |               | :                                     | :                | :        |                |
| E ⊗                                                      |                                                       |           |                        |           |                |               | :                                     | :                | :        | :              |
|                                                          |                                                       |           |                        |           |                | *******       | <u>.</u>                              | ÷                | ÷        |                |
| E ⊗                                                      |                                                       |           |                        |           |                |               | :                                     | :                | :        | :              |
| F 🖔                                                      |                                                       |           |                        |           |                |               | :                                     | :                | :        | ;              |
| F 🔊                                                      | $\otimes$                                             |           |                        |           |                | ********      | :                                     | :                | :        | :              |
| F K                                                      |                                                       |           |                        |           |                |               | :                                     | :                | :        | :              |
|                                                          |                                                       |           |                        |           |                |               | :<br>;                                | <u>;</u>         | :<br>;   |                |
| F ≪                                                      |                                                       |           |                        |           |                |               |                                       | :                | :        | :              |
| ř[                                                       |                                                       |           |                        |           |                |               | :                                     | :                | :        | :              |
| 25/3/15                                                  |                                                       |           |                        |           |                |               | ;<br>:                                | ÷                | ;<br>:   | - <b>;</b>     |
| 5 <b>L</b>                                               |                                                       |           |                        |           |                |               | :                                     | :                | :        | :              |
|                                                          |                                                       |           |                        |           |                |               |                                       |                  |          |                |
| ŽĽ K                                                     |                                                       |           |                        |           |                |               | :                                     | :                | :        | :              |
| \[ \]                                                    |                                                       |           |                        |           |                |               | :                                     | :                | :        | :              |
| ŞE K                                                     |                                                       |           |                        |           |                |               | :<br>:                                | .;<br>:          | ;<br>:   |                |
| EF 🔊                                                     |                                                       |           |                        |           |                |               | :                                     |                  | :        |                |
| EF S                                                     |                                                       |           |                        |           |                |               | :                                     | :                | :        | :              |
| žF 🛭                                                     |                                                       |           |                        |           |                | ********      | ·······                               | :                | :        | :              |
| MMM MW REPORT VER.3 2014 MW5C.GPJ GINT STD CANADA LAB.GI | $\otimes$                                             |           |                        |           |                |               |                                       | :                | :        | :              |
| žt 🎇                                                     |                                                       |           |                        |           |                |               | :                                     | <u>:</u>         | <u>:</u> | <u>.</u>       |
| 5 L                                                      |                                                       |           |                        |           |                |               | :                                     | :                | :        | :              |
| žĘ K                                                     |                                                       |           |                        |           |                |               | :                                     | :                | :        | :              |
| ∯F >>                                                    |                                                       |           |                        |           |                |               | :<br>:                                | <del>:</del>     | <u>:</u> | . <u>:</u>     |
| ĘF 📉                                                     |                                                       |           |                        |           |                |               | :                                     | :                | :        | :              |
| äF 🔊                                                     |                                                       |           |                        |           |                |               | :                                     | :                | :        | :              |
| ≱F                                                       |                                                       |           |                        |           |                |               | · · · · · · · · · · · · · · · · · · · | :                | :        | :              |
| ≥                                                        |                                                       |           |                        |           |                |               | :                                     | :                | :        | :              |
| <b>₽-</b>                                                |                                                       |           |                        |           |                |               | :                                     | :                | <u>:</u> | :              |

| MMM GROU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LOG O                                                                                                                                                                                                                                   | F BOI                  | REHOLE <u>MW</u>                                                                                            | <u>5C</u>    |                | Figure No.    |                                |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------|--------------|----------------|---------------|--------------------------------|--------------|
| Project No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14-12815-001-PH2 DCR Phoenix Homes                                                                                                                                                                                                      |                        |                                                                                                             |              |                |               |                                |              |
| Project:<br>Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 770 Somerset Street West, Ottawa, Ontario                                                                                                                                                                                               | Co ordin               | nates: 444509E, 5028744N                                                                                    |              |                |               |                                |              |
| Date Drilled:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 08/10/2014                                                                                                                                                                                                                              | _ Co-ordii<br>_ Datum: | NAD 83                                                                                                      |              | _              | ODT (N)       |                                |              |
| Drill Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ODEX                                                                                                                                                                                                                                    | _ Logged               |                                                                                                             |              | •              | SPT (N)       | ) Value                        |              |
| Drilling Contract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                         |                        | d By: CIA                                                                                                   |              |                |               |                                |              |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S                                                                                                                                                                                                                                       |                        |                                                                                                             |              | SOIL           |               |                                | Test N Value |
| DEPTH<br>(m bgs) (m asl)<br>84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SOIL DESCRIPTION                                                                                                                                                                                                                        | WELL                   | INSTALLATION<br>DETAILS                                                                                     | SAMPLE<br>ID | SAMPLE<br>TEST | 20<br>Total ( | 40 60<br>Organic Vola<br>20 30 | tiles (ppm)  |
| MMM MW REPORT VER.3 2014 MW5C.GPJ GINT STD CANADA LAB.GDT 25/3/15  187.15  187.15  188.17  18.16  18.16  18.17  19.17  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10.18  10 | End of borehole at 19.80 mbgs  Water level upon completion was 80.6 masl.  Note: The bedrock in this borehole was not cored, however the depth to bedrock was recorded. The bedrock is interpreted to be the same as nearby hole MW-9A. |                        | Water measured on October 9, 2014 83.74 masl 16.26 mbgs Well Diameter: 38 mm Well Material: Schedule 40 PVC |              |                |               |                                |              |



**Project:** Environmental Investigation

Client: DCR Phoenix Homes MOE ID#:

Location: 770 Somerset Street West, Ottawa, Ontario

|       | SUBSURFACE PROFILE |                                                             |                                |           |      | ber           |              | m)                              |                                 |
|-------|--------------------|-------------------------------------------------------------|--------------------------------|-----------|------|---------------|--------------|---------------------------------|---------------------------------|
| Depth | Symbol             | Description                                                 | Depth/Elev                     | Well Data | Type | Sample Number | Recovery (%) | Vapour Conc.<br>(PID/RKI) (ppm) | Remarks                         |
| ft m  |                    | Ground Surface                                              | 75.55<br>0.00                  |           |      |               |              |                                 |                                 |
| 2     |                    | SAND AND GRAVEL Dark brown, asphalt fragments, loose, moist | 0.00                           |           | DP   | SS1           |              | 7.2/10                          |                                 |
| 5     | 2                  | GRAVELY SAND Brown/grey, trace silt, firm, moist            | 73.11<br>2.44                  |           | DP   | SS2           |              | 18.7/10                         | MW6-SS2 Analyzed for PHCs, VOCs |
| 10    | 3                  | LIMESTONE BEDROCK End of Borehole                           | 71.64<br>3.91<br>71.44<br>4.11 |           | DP   | SS3           |              | 31/0                            | MW6-SS3 Analyzed for PHCs, VOCs |
| 15    | 5                  |                                                             |                                |           |      |               |              |                                 |                                 |

Drilled By: Strata Soil

Drill Method: Direct Push

Drill Date: November 9, 2012

MMM Group Limited 100 Commerce Valley Drive West Thornhill, Ontario L3T 0A1

Borehole Log is for Environmental Purposes Only Logged By: PVD

Log of Borehole: MW-6

Northing: 5028740 Datum: NAD 83

Zone: 18 T

**Easting: 444520** 

Checked By: CIA

Hole Size: 0.15 m



**Project:** Environmental Investigation

Client: DCR Phoenix Homes MOE ID#:

Location: 770 Somerset Street West, Ottawa, Ontario

|                               | SUBSURFACE PROFILE |                                                                                                                                                  |               |           |      | ber           |              | m)                              |                                          |
|-------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|------|---------------|--------------|---------------------------------|------------------------------------------|
| Depth                         | Symbol             | Description                                                                                                                                      | Depth/Elev    | Well Data | Туре | Sample Number | Recovery (%) | Vapour Conc.<br>(PID/RKI) (ppm) | Remarks                                  |
| ft m                          |                    | Ground Surface                                                                                                                                   | 75.97<br>0.00 |           |      |               |              |                                 |                                          |
| 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 |                    | SAND AND GRAVEL Grey, trace silt, asphalt fragments, loose  GRAVELY SAND                                                                         | 75.36<br>0.61 |           | DP   | SS1           |              | 1/10                            |                                          |
| 3 - 1                         |                    | Grey/Brown, trace to some silt, layers of fine to medium sand                                                                                    |               |           |      |               |              |                                 |                                          |
| 5 2<br>7 2<br>8 8             |                    |                                                                                                                                                  |               |           | DP   | SS2           |              | 0.6/10                          | MW7-SS2 Analyzed for Metals & Inorganics |
| 10 - 3                        |                    | - From 2.59 to 2.74 mbgs: Fine sand seam  - From 3.01 to 3.2 mbgs: Fine sand seam  - Becoming light grey-brown in colour, fine to medium grained | 72.47<br>3.50 |           | DP   | SS3           |              | 2.5/10                          | MW7-SS3 Analyzed for PCBs, PHCs, VOCs    |
| 12                            | 蓋                  | LIMESTONE BEDROCK                                                                                                                                | 72.01<br>3.96 |           |      |               |              |                                 |                                          |
| 13 - 4                        |                    | End of Borehole                                                                                                                                  | 3.80          |           |      |               |              |                                 |                                          |

Drilled By: Strata Soil

Drill Method: Direct Push

Drill Date: November 8, 2012

MMM Group Limited 100 Commerce Valley Drive West Thornhill, Ontario L3T 0A1

Borehole Log is for Environmental Purposes Only Logged By: PVD

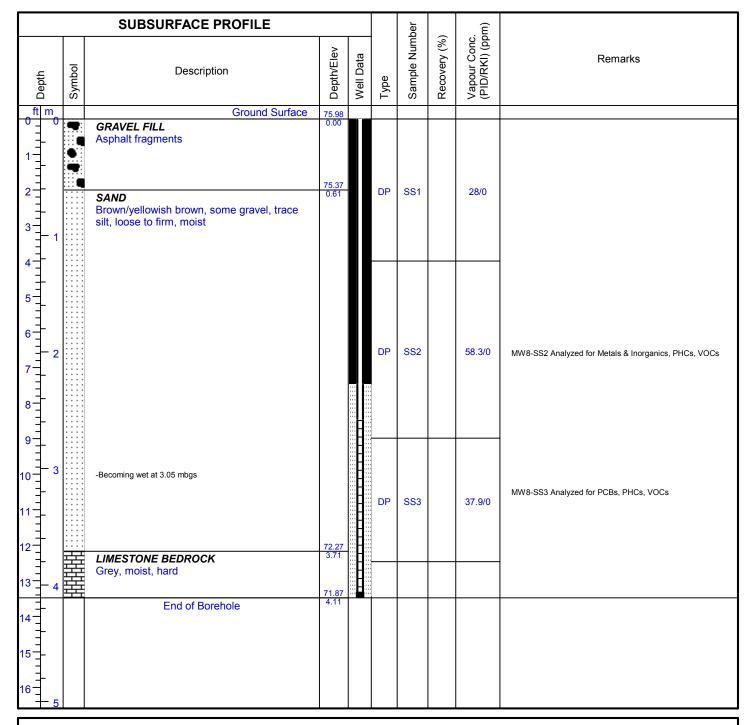
Log of Borehole: MW-7

Northing: 5028739 Datum: NAD 83

Zone: 18 T

**Easting: 444535** 

Checked By: CIA


Hole Size: 0.15 m



**Project:** Environmental Investigation

Client: DCR Phoenix Homes MOE ID#:

Location: 770 Somerset Street West, Ottawa, Ontario



Drilled By: Strata Soil

Drill Method: Direct Push

Drill Date: November 8, 2012

MMM Group Limited 100 Commerce Valley Drive West Thornhill, Ontario L3T 0A1

Borehole Log is for Environmental Purposes Only

Logged By: PVD

Log of Borehole: MW-8

Northing: 5028743 Datum: NAD 83

Zone: 18 T

Easting: 444539

Checked By: CIA

Hole Size: 0.15 m



**Project:** Environmental Investigation

Client: DCR Phoenix Homes MOE ID#: A149995

Location: 770 Somerset Street West, Ottawa, Ontario

|       |        | SUBSURFACE PROFILE                                                                                                                                                                                 |               |           |      | ber           | )            | mu)                             |                                                                                 |
|-------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|------|---------------|--------------|---------------------------------|---------------------------------------------------------------------------------|
| Depth | Symbol | Description                                                                                                                                                                                        | Depth/Elev    | Well Data | Туре | Sample Number | Recovery (%) | Vapour Conc.<br>(PID/RKI) (ppm) | Remarks                                                                         |
| ft m  |        | Ground Surface                                                                                                                                                                                     | 75.84<br>0.00 |           |      |               |              |                                 |                                                                                 |
| 0     |        | PAVEMENT/SUB-PAVEMENT Asphalt followed by dark grey sandy gravel, loose, dry (As interpreted from MW-5 and MW-7)  GRAVELLY SAND FILL Grey brown, trace to some silt, layers of fine to medium sand | 75.23<br>0.61 |           |      |               |              |                                 | -Overburden not cored. Generally observed sand at nearby MW-5B, MW-7, and MW-9B |

Drilled By: Strata Soil

Drill Method: Direct Push

Drill Date: October 24, 2013

MMM Group Limited 100 Commerce Valley Drive West Thornhill, Ontario L3T 0A1

Borehole Log is for Environmental Purposes Only Logged By: PVD

Log of Borehole: MW-9A

Northing: 5028733 Datum: NAD 83

Zone: 18T

**Easting: 444522** 

Checked By: CIA

Hole Size: 0.15 m



**Project:** Environmental Investigation

Client: DCR Phoenix Homes MOE ID#: A149995

Location: 770 Somerset Street West, Ottawa, Ontario

|                                            | SUBSURFACE PROFILE |                                                                                                                                                                                                                                        |                       |           |      |               |              | m)                              |                                                                                                |
|--------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|------|---------------|--------------|---------------------------------|------------------------------------------------------------------------------------------------|
| Depth                                      | Symbol             | Description                                                                                                                                                                                                                            | Depth/Elev            | Well Data | Туре | Sample Number | Recovery (%) | Vapour Conc.<br>(PID/RKI) (ppm) | Remarks                                                                                        |
| 17 - 1                                     |                    | WEATHERED LIMESTONE Bedrock: gravelly cuttings, very ilmited core recovery                                                                                                                                                             | 70.66<br>5.18         |           |      |               |              |                                 | -Static water level 70.71 masl on October 29, 2013<br>-Top of bedrock encountered at 5.18 mbgs |
| 20 - 6 H H H H H H H H H H H H H H H H H H |                    | BEDROCK (LIMESTONE) Grey to grey brown, fossiliferous, occasional thin shaly seams, hard, minor to moderate weathering, fractures primarily filled with precipitates, core broken at several intervals, fractures primarily horizontal | 70.05<br>5.79         |           | NQ   | SS1           | >90          |                                 |                                                                                                |
| 25 - 1                                     |                    |                                                                                                                                                                                                                                        |                       |           | NQ   | SS2           | >90          |                                 |                                                                                                |
| 27 9 HH H |                    | BEDROCK (LIMESTONE) Grey to grey brown, shaly limestone, fossiliferous, occasional thin shaly seams, hard, very little weathering                                                                                                      | 67.6 <u>1</u><br>8.23 |           | NQ   | SS3           | >90          |                                 |                                                                                                |
| 31 - 1                                     |                    |                                                                                                                                                                                                                                        |                       |           |      |               |              |                                 |                                                                                                |

Drilled By: Strata Soil

Drill Method: Direct Push

Drill Date: October 24, 2013

MMM Group Limited 100 Commerce Valley Drive West Thornhill, Ontario L3T 0A1

Borehole Log is for Environmental Purposes Only

Logged By: PVD

Log of Borehole: MW-9A

Northing: 5028733 Datum: NAD 83

Zone: 18T

**Easting: 444522** 

Checked By: CIA

Hole Size: 0.15 m



**Project:** Environmental Investigation

Client: DCR Phoenix Homes MOE ID#: A149995

Location: 770 Somerset Street West, Ottawa, Ontario

|                                                             |        | SUBSURFACE PROFILE                                                                                                                                                                                                                                   |                |           |      | oer           |              | m)                              |                                                                                            |
|-------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|------|---------------|--------------|---------------------------------|--------------------------------------------------------------------------------------------|
| Depth                                                       | Symbol | Description                                                                                                                                                                                                                                          | Depth/Elev     | Well Data | Type | Sample Number | Recovery (%) | Vapour Conc.<br>(PID/RKI) (ppm) | Remarks                                                                                    |
| 33                                                          |        | BEDROCK (LIMESTONE)                                                                                                                                                                                                                                  | 64.87<br>10.97 |           | NQ   | SS4           | >90          |                                 |                                                                                            |
| 38 1:                                                       |        | Grey to grey brown, shaly limestone, occasional shale seams, moderate to highly weathered, vertical fracture noted  **BEDROCK (LIMESTONE)*  Grey to grey brown, shaly limestone, occasional shale seams, fossiliferous, hard, very little weathering | 64.11          |           | NQ   | SS5           | 80           |                                 | -Vertical break covered in calcite crystallization  -Horizontal breaks every 0.08 m-0.15 m |
| 42 1:<br>42 1:<br>43 1:<br>44 45 1:<br>46 1:<br>47 48 49 49 |        | End of Borehole                                                                                                                                                                                                                                      | 63.34          |           |      |               |              |                                 |                                                                                            |

Drilled By: Strata Soil

Drill Method: Direct Push

Drill Date: October 24, 2013

MMM Group Limited 100 Commerce Valley Drive West Thornhill, Ontario L3T 0A1

Borehole Log is for Environmental Purposes Only Logged By: PVD

Log of Borehole: MW-9A

Northing: 5028733 Datum: NAD 83

Zone: 18T

**Easting: 444522** 

Checked By: CIA

Hole Size: 0.15 m



**Project:** Environmental Investigation

Client: DCR Phoenix Homes

Location: 13 LeBreton Street, Ottawa, Ontario

Log of Borehole: MW-9B

**Easting: 444524 Zone: 18T** 

Northing: 5028730 Datum: NAD 83

**MOE ID#**: A154233

|                                         |        | SUBSURFACE PROFILE                                                                           |                       |           |      | )<br>Ser      |              | Ē                               |                                                                                                                       |  |  |
|-----------------------------------------|--------|----------------------------------------------------------------------------------------------|-----------------------|-----------|------|---------------|--------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|
| Depth                                   | Symbol | Description                                                                                  | Depth/Elev            | Well Data | Туре | Sample Number | Recovery (%) | Vapour Conc.<br>(PID/RKI) (ppm) | Remarks                                                                                                               |  |  |
| ft m                                    |        | Ground Surface                                                                               | 73.67                 |           |      |               |              |                                 |                                                                                                                       |  |  |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |        | PAVEMENT/SUB-PAVEMENT Asphalt followed by dark grey sandy gravel, dry, loose                 | 0.00                  |           |      |               |              |                                 |                                                                                                                       |  |  |
| 3-1                                     |        | SILTY SAND FILL Tan to brown, little gravel, trace clay                                      | 73.06<br>0.61         |           |      |               |              |                                 |                                                                                                                       |  |  |
|                                         | :::    |                                                                                              | 72.45                 |           | DP   | SS1           |              | 2/160                           |                                                                                                                       |  |  |
| 5-1-6-1-2                               |        | GRAVELLY SAND FILL  Tan to brown, gravelly sand, little silt, trace clay, firm, dry to moist | 72.4 <u>5</u><br>1.22 |           |      |               |              |                                 |                                                                                                                       |  |  |
| 8                                       |        | SILTY SAND Grey to brown, silty sand, little gravel, little                                  | 71.39<br>2.28         |           | DP   | SS2           |              | 26.2/100                        | -MW9B-SS2 Analyzed for Metals & Inorganics, PHCs,<br>PAHs, VOCs<br>-DUP1 (field duplicate of MW9B-SS2)                |  |  |
| 9-                                      |        | clay, firm, wet                                                                              |                       |           |      |               |              |                                 | -Static water level 71.00 masl on October 28, 2013                                                                    |  |  |
| 10 - 3                                  |        |                                                                                              |                       |           | DP   | SS3           |              | 3.3/110                         | -MW9B-SS3 Analyzed for VOCs                                                                                           |  |  |
| 11 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  |        | BEDROCK Grey shaly limestone, consistently hard                                              | 70.47                 |           |      |               |              |                                 | -General nature of bedrock interpreted to be similar to that of MW-9A based on observations of bedrock drill cuttings |  |  |

Drilled By: Strata Soil

Drill Method: Direct Push

Drill Date: October 23, 2013

MMM Group Limited 100 Commerce Valley Drive West Thornhill, Ontario L3T 0A1

Borehole Log is for Environmental Purposes Only

Logged By: PVD

Checked By: CIA

Hole Size: 0.15 m



**Project:** Environmental Investigation

Client: DCR Phoenix Homes

Location: 13 LeBreton Street, Ottawa, Ontario

Log of Borehole: MW-9B

**Easting:** 444524 **Zone:** 18T

Northing: 5028730 Datum: NAD 83

**MOE ID#:** A154233

|                 | SUBSURFACE PROFILE |               |           |      | ber           |              |                                 |         |
|-----------------|--------------------|---------------|-----------|------|---------------|--------------|---------------------------------|---------|
| Depth<br>Symbol | Description        | Depth/Elev    | Well Data | Туре | Sample Number | Recovery (%) | Vapour Conc.<br>(PID/RKI) (ppm) | Remarks |
| 17 18 19 6 20 6 | End of Davahala    | 67.57<br>6.10 |           |      |               |              |                                 |         |
| 21              | End of Borehole    | 6.10          |           |      |               |              |                                 |         |

Drilled By: Strata Soil

Drill Method: Direct Push

Drill Date: October 23, 2013

MMM Group Limited 100 Commerce Valley Drive West Thornhill, Ontario L3T 0A1

Borehole Log is for Environmental Purposes Only Logged By: PVD

Checked By: CIA

Hole Size: 0.15 m



**Project:** Environmental Investigation

Client: DCR Phoenix Homes MOE ID#: A154187

Location: 770 Somerset Street West, Ottawa, Ontario

|                                          | SUBSURFACE PROFILE                                                    |               |           |      | ber           |              | ·<br>m)                         |                                                                                                                                                                           |  |  |  |
|------------------------------------------|-----------------------------------------------------------------------|---------------|-----------|------|---------------|--------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Depth<br>Symbol                          | Description                                                           | Depth/Elev    | Well Data | Туре | Sample Number | Recovery (%) | Vapour Conc.<br>(PID/RKI) (ppm) | Remarks                                                                                                                                                                   |  |  |  |
| ft m                                     | Ground Surface                                                        | 73.67         |           |      |               |              |                                 |                                                                                                                                                                           |  |  |  |
| 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | PAVEMENT/SUB-PAVEMENT Asphalt followed by grey, sandy gravel          | 0.00          |           |      |               |              |                                 |                                                                                                                                                                           |  |  |  |
| 3 - 1                                    | SAND FILL Dark brown, sand with trace gravel, little silt, dry, loose | 72.76<br>0.91 |           | DP   | SS1           |              | 0/0                             |                                                                                                                                                                           |  |  |  |
| 6 2                                      |                                                                       | 71.23         |           | DP   | SS2           |              | 0/0                             | -Clay seam at 2.13 mbgs<br>-MW10-SS2 Analyzed for Metals & Inorganics, PHCs,<br>VOCs, and PAHs                                                                            |  |  |  |
| 8                                        | BEDROCK Grey, limestone, some shaly partings, hard, dry               | 71.23         |           |      |               |              |                                 | -General nature of bedrock interpreted to be similar to that of MW-9A based on observations of bedrock drill cuttings  -Static water level 70.11 masl on October 28, 2013 |  |  |  |

Drilled By: Strata Soil

Drill Method: Direct Push

Drill Date: October 23, 2013

MMM Group Limited 100 Commerce Valley Drive West

Thornhill, Ontario L3T 0A1

Borehole Log is for Environmental Purposes Only

Logged By: PVD

Log of Borehole: MW-10

Northing: 5028714 Datum: NAD 83

Zone: 18T

Easting: 444511

Checked By: CIA

Hole Size: 0.15 m



**Project:** Environmental Investigation

Client: DCR Phoenix Homes MOE ID#: A154187

Location: 770 Somerset Street West, Ottawa, Ontario

| SUBSURFACE PROFILE    Beautiful and profit of the profit o |                                                         |        | SUBSURFACE PROFILE                                           |               |           |      | ber           |              | m)                           |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------|--------------------------------------------------------------|---------------|-----------|------|---------------|--------------|------------------------------|---------|
| BEDOCK Grey, limestone, some shaly partings, slightly softer, moist  End of Borehole  End of Borehole  End of Borehole  19 20 21 21 22 21 23 7 24 25 30 30 30 30 31 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Depth                                                   | Symbol | Description                                                  | Depth/Elev    | Well Data | Туре | Sample Number | Recovery (%) | Vapour Conc<br>(PID/RKI) (pp | Remarks |
| <b>,</b> , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17 18 19 19 20 21 23 24 25 26 28 29 29 9 30 31 31 31 31 |        | Grey, limestone, some shaly partings, slightly softer, moist | 68.18<br>5.49 |           |      |               |              |                              |         |

Drilled By: Strata Soil

Drill Method: Direct Push

Drill Date: October 23, 2013

MMM Group Limited 100 Commerce Valley Drive West Thornhill, Ontario L3T 0A1

Borehole Log is for Environmental Purposes Only

Logged By: PVD

Log of Borehole: MW-10

Northing: 5028714 Datum: NAD 83

Zone: 18T

Easting: 444511

Checked By: CIA

Hole Size: 0.15 m



**Project:** Environmental Investigation

Client: DCR Phoenix Homes MOE ID#: A154234

Location: 770 Somerset Street West, Ottawa, Ontario

|                                         |        | SUBSURFACE PROFILE                                                                                          |               |           |      | ber           |              | ·<br>m)                         |                                                                                                                       |
|-----------------------------------------|--------|-------------------------------------------------------------------------------------------------------------|---------------|-----------|------|---------------|--------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Depth                                   | Symbol | Description                                                                                                 | Depth/Elev    | Well Data | Туре | Sample Number | Recovery (%) | Vapour Conc.<br>(PID/RKI) (ppm) | Remarks                                                                                                               |
| ft m                                    |        | Ground Surface                                                                                              | 73.77         |           |      |               |              |                                 |                                                                                                                       |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |        | PAVEMENT/SUB-PAVEMENT Asphalt followed by dark grey to grey brown sandy gravel fill, some silt, little clay | 73.16<br>0.61 |           |      |               |              |                                 |                                                                                                                       |
| 3                                       | ::::   | SAND FILL Brown sand, some silt, little clay, little gravel, moist, loose, topsoil                          | 72.86<br>0.91 |           |      |               |              |                                 |                                                                                                                       |
| 4-1                                     |        | SAND FILL  Tan to grey to brown sand, some silt, little clay, little gravel, firm to loose, dry to moist    |               |           | DP   | SS1           |              | 0/140                           |                                                                                                                       |
| 5                                       |        |                                                                                                             | 71.94<br>1.83 |           | DP   | SS2           |              | 0.3/130                         | -MW11-SS2 Analyzed for Metals & Inorganics, PHCs, PAHs, VOCs                                                          |
| 6 - 2                                   |        | <b>BEDROCK</b> Grey brown limestone, some shaly partings, firm to hard                                      | 1.83          |           |      |               |              |                                 | -General nature of bedrock interpreted to be similar to that of MW-9A based on observations of bedrock drill cuttings |
| 9-1                                     |        |                                                                                                             |               |           |      |               |              |                                 | -Static water level 71.07 masl on October 28, 2013                                                                    |
| 10 - 3                                  |        |                                                                                                             |               |           |      |               |              |                                 |                                                                                                                       |
| 12 -                                    |        |                                                                                                             |               |           |      |               |              |                                 |                                                                                                                       |
| 13 - 4                                  |        |                                                                                                             |               |           |      |               |              |                                 |                                                                                                                       |
| 15<br>15<br>16<br>16<br>5               |        |                                                                                                             |               |           |      |               |              |                                 |                                                                                                                       |

Drilled By: Strata Soil

Drill Method: Direct Push

Drill Date: October 23, 2013

MMM Group Limited 100 Commerce Valley Drive West Thornhill, Ontario L3T 0A1

Borehole Log is for Environmental Purposes Only

Logged By: PVD

Log of Borehole: MW-11

Northing: 5028728 Datum: NAD 83

Zone: 18T

**Easting: 444544** 

Checked By: CIA

Hole Size: 0.15 m



**Project:** Environmental Investigation

Client: DCR Phoenix Homes MOE ID#: A154234

Location: 770 Somerset Street West, Ottawa, Ontario

|                      |        | SUBSURFACE PROFILE |               |           |      | ber           |              | m)                              |         |
|----------------------|--------|--------------------|---------------|-----------|------|---------------|--------------|---------------------------------|---------|
| Depth                | Symbol | Description        | Depth/Elev    | Well Data | Туре | Sample Number | Recovery (%) | Vapour Conc.<br>(PID/RKI) (ppm) | Remarks |
| 17<br>18<br>19<br>20 |        | End of December    | 67.67<br>6.10 |           |      |               |              |                                 |         |
| 21                   |        | End of Borehole    |               |           |      |               |              |                                 |         |

Drilled By: Strata Soil

Drill Method: Direct Push

Drill Date: October 23, 2013

MMM Group Limited 100 Commerce Valley Drive West Thornhill, Ontario L3T 0A1

Borehole Log is for Environmental Purposes Only

Logged By: PVD

Log of Borehole: MW-11

Northing: 5028728 Datum: NAD 83

Zone: 18T

**Easting: 444544** 

Checked By: CIA

Hole Size: 0.15 m

A-3
CERTIFICATES OF ANALYSIS



Your Project #: 1412815

Site#: Ottawa

Site Location: 770 SOMERSET ST. W

**Attention: Peter Van Driel** 

Ecoplans Limited 72 Victoria St S Suite 100 Kitchener, ON N2G 4Y9

Your C.O.C. #: 38081801, 380818-01-01, 380818-05-01, 380818-02-01

Report Date: 2012/11/20

#### **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B2H6839 Received: 2012/11/09, 17:30

Sample Matrix: Soil # Samples Received: 21

|                                             |          | Date       | Date                       | Method               |
|---------------------------------------------|----------|------------|----------------------------|----------------------|
| Analyses                                    | Quantity | Extracted  | Analyzed Laboratory Method | Reference            |
| Methylnaphthalene Sum (1)                   | 2        | N/A        | 2012/11/16 CAM SOP - 00301 | EPA 8270             |
| Hot Water Extractable Boron (1)             | 2        | 2012/11/15 | 2012/11/16 CAM SOP-00408   | R153 Ana. Prot. 2011 |
| Hot Water Extractable Boron (1)             | 1        | 2012/11/15 | 2012/11/17 CAM SOP-00408   | R153 Ana. Prot. 2011 |
| Hot Water Extractable Boron (1)             | 8        | 2012/11/16 | 2012/11/17 CAM SOP-00408   | R153 Ana. Prot. 2011 |
| 1,3-Dichloropropene Sum (1)                 | 8        | N/A        | 2012/11/16 CAM SOP-00226   | EPA 8260             |
| 1,3-Dichloropropene Sum (1)                 | 5        | N/A        | 2012/11/19 CAM SOP-00226   | EPA 8260             |
| Free (WAD) Cyanide (1)                      | 9        | N/A        | 2012/11/15 CAM SOP-00457   | Ontario MOE CN-E3015 |
| Free (WAD) Cyanide (1)                      | 1        | N/A        | 2012/11/16 CAM SOP-00457   | Ontario MOE CN-E3015 |
| Free (WAD) Cyanide (1)                      | 1        | N/A        | 2012/11/17 CAM SOP-00457   | Ontario MOE CN-E3015 |
| Cyanide (WAD) in Leachates (1)              | 1        | N/A        | 2012/11/15 CAM SOP-00457   | Ontario MOE CN-3015  |
| Conductivity (1)                            | 11       | N/A        | 2012/11/16 CAM SOP-00414   | APHA 2510            |
| Hexavalent Chromium in Soil by IC (1,2)     | 2        | 2012/11/14 | 2012/11/15 CAM SOP-00436   | EPA SW846-3060/7199  |
| Hexavalent Chromium in Soil by IC (1,2)     | 8        | 2012/11/14 | 2012/11/17 CAM SOP-00436   | EPA SW846-3060/7199  |
| Hexavalent Chromium in Soil by IC (1,2)     | 1        | 2012/11/15 | 2012/11/16 CAM SOP-00436   | EPA SW846-3060/7199  |
| Petroleum Hydro. CCME F1 & BTEX in Soil (1) | 2        | 2012/11/13 | 2012/11/15 CAM SOP-00315   | CCME CWS             |
| CCME F1 Hydrocarbons/BTEX in Leachate (1)   | 1        | 2012/11/14 | 2012/11/16 CAM SOP-00315   | CCME CWS             |
| Petroleum Hydro. CCME F1 & BTEX in Soil     | 9        | 2012/11/13 | 2012/11/14 OTT SOP-00002   | CCME CWS             |
| CCME F2-F4 Hydrocarbons in Leachate (1)     | 1        | 2012/11/15 | 2012/11/16 CAM SOP-00316   | CCME Hydrocarbons    |
| Petroleum Hydrocarbons F2-F4 in Soil (1)    | 2        | 2012/11/14 | 2012/11/15 CAM SOP-00316   | CCME CWS             |
| Petroleum Hydrocarbons F2-F4 in Soil        | 9        | 2012/11/13 | 2012/11/13 OTT SOP-00001   | CCME CWS             |
| Petroleum Hydrocarbons F2-F4 in Soil        | 2        | 2012/11/14 | 2012/11/16 OTT SOP-00001   | CCME CWS             |
| F4G (CCME Hydrocarbons Gravimetric) (1)     | 1        |            | 2012/11/19 CAM SOP-00316   | CCME CWS             |
| F4G (CCME Hydrocarbons Gravimetric)         | 1        |            | 2012/11/19 OTT SOP-00001   | CCME CWS             |
| Fluoride by ISE in Leachates (1)            | 1        |            | 2012/11/15 CAM SOP-00448   | SM 4500FC            |
| Mercury (TCLP Leachable) (mg/L) (1)         | 1        | N/A        | 2012/11/15 CAM SOP-00453   | EPA 7470             |
| Acid Extr. Metals (aqua regia) by ICPMS (1) | 11       |            | 2012/11/16 CAM SOP-00447   | EPA 6020             |
| Total Metals in TCLP Leachate by ICPMS (1)  | 1        |            | 2012/11/15 CAM SOP-00447   | EPA 6020             |
| MOISTURE                                    | 9        | N/A        | 2012/11/14 CAM SOP-00445   | McKeague 2nd ed 1978 |
| MOISTURE                                    | 2        | N/A        | 2012/11/16 CAM SOP-00445   | McKeague 2nd ed 1978 |
| Moisture (1)                                | 9        | N/A        | 2012/11/15 CAM SOP-00445   | R.Carter,1993        |
| Nitrate(NO3) + Nitrite(NO2) in Leachate (1) | 1        | N/A        | 2012/11/15 CAM SOP-00440   | SM 4500 NO3I/NO2B    |
| PAH Compounds in Soil by GC/MS (SIM) (1)    | 2        |            | 2012/11/15 CAM SOP - 00318 | EPA 8270             |
| Polychlorinated Biphenyl in Soil (1)        | 3        |            | 2012/11/16 CAM SOP-00309   | SW846 8082           |
| Polychlorinated Biphenyl in Leachate (1)    | 1        |            | 2012/11/16 CAM SOP-00309   | SW846 8082           |
| pH CaCl2 EXTRACT (1)                        | 10       | 2012/11/15 | 2012/11/15 CAM SOP-00413   | SM 4500H+ B          |
|                                             |          |            |                            | /2                   |



Your Project #: 1412815

Site#: Ottawa

Site Location: 770 SOMERSET ST. W

**Attention: Peter Van Driel** 

Ecoplans Limited 72 Victoria St S Suite 100 Kitchener, ON N2G 4Y9

Your C.O.C. #: 38081801, 380818-01-01, 380818-05-01, 380818-02-01

Report Date: 2012/11/20

### **CERTIFICATE OF ANALYSIS**

-2-

Sample Matrix: Soil # Samples Received: 21

|                                        |          | Date       | Date                       | Method            |
|----------------------------------------|----------|------------|----------------------------|-------------------|
| Analyses                               | Quantity | Extracted  | Analyzed Laboratory Method | Reference         |
| pH CaCl2 EXTRACT (1)                   | 1        | 2012/11/16 | 2012/11/16 CAM SOP-00413   | SM 4500H+ B       |
| Sodium Adsorption Ratio (SAR) (1)      | 1        | 2012/11/12 | 2012/11/16 CAM SOP-00102   | EPA 6010          |
| Sodium Adsorption Ratio (SAR) (1)      | 10       | 2012/11/12 | 2012/11/19 CAM SOP-00102   | EPA 6010          |
| TCLP - % Solids (1)                    | 1        | 2012/11/13 | 2012/11/14 CAM SOP-00401   | EPA 1311 modified |
| TCLP - Extraction Fluid (1)            | 1        | N/A        | 2012/11/14 CAM SOP-00401   | EPA 1311 modified |
| TCLP - Initial and final pH (1)        | 1        | N/A        | 2012/11/14 CAM SOP-00401   | EPA 1311 modified |
| TCLP Zero Headspace Extraction (1)     | 1        | 2012/11/13 | 2012/11/13 CAM SOP-00430   | EPA 1311 modified |
| Volatile Organic Compounds in Soil (1) | 7        | 2012/11/13 | 2012/11/15 CAM SOP-00226   | EPA 8260 modified |
| Volatile Organic Compounds in Soil (1) | 4        | 2012/11/13 | 2012/11/16 CAM SOP-00226   | EPA 8260 modified |
| Volatile Organic Compounds in Soil (1) | 2        | 2012/11/13 | 2012/11/17 CAM SOP-00226   | EPA 8260 modified |

<sup>\*</sup> RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

- (1) This test was performed by Maxxam Analytics Mississauga
- (2) Soils are reported on a dry weight basis unless otherwise specified.

#### **Encryption Key**

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Jolanta Goralczyk, Project Manager Email: JGoralczyk@maxxam.ca Phone# (613) 274-0573

\_\_\_\_\_\_

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 2



**Ecoplans Limited** Client Project #: 1412815

Site Location: 770 SOMERSET ST. W

Sampler Initials: PV

#### **RESULTS OF ANALYSES OF SOIL**

| Maxxam ID               |       | PO2410       |       |          | PO2411       |       |          | PO2412       |       |          |
|-------------------------|-------|--------------|-------|----------|--------------|-------|----------|--------------|-------|----------|
| Sampling Date           |       | 2012/11/09   |       |          | 2012/11/09   |       |          | 2012/11/09   |       |          |
| COC Number              |       | 380818-01-01 |       |          | 380818-01-01 |       |          | 380818-01-01 |       |          |
|                         | Units | BH5 SS1      | RDL   | QC Batch | DUP 2        | RDL   | QC Batch | BH5 SS2      | RDL   | QC Batch |
|                         |       |              |       |          |              |       |          |              |       |          |
| Calculated Parameters   |       |              |       |          |              |       |          |              |       |          |
| Sodium Adsorption Ratio | N/A   | 6.8          |       | 3033160  | 7.7          |       | 3033160  |              |       |          |
| Inorganics              |       |              |       |          |              |       |          |              |       |          |
| Chromium (VI)           | ug/g  | ND           | 0.2   | 3036788  | ND           | 0.2   | 3036788  |              | 0.2   |          |
| Conductivity            | mS/cm | 0.32         | 0.002 | 3038515  | 0.29         | 0.002 | 3038515  |              | 0.002 |          |
| Free Cyanide            | ug/g  | ND           | 0.01  | 3036853  | ND           | 0.01  | 3036853  |              | 0.01  |          |
| Moisture                | %     | 12           | 1.0   | 3037245  | 6.6          | 0.2   | 3034270  | 6.9          | 1.0   | 3037245  |
| Available (CaCl2) pH    | рН    | 7.27         |       | 3037246  | 7.29         |       | 3037246  |              |       |          |

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

| Maxxam ID               |       | PO2413       | PO2414       | PO2415       |       |          | PO2416       |       |          |
|-------------------------|-------|--------------|--------------|--------------|-------|----------|--------------|-------|----------|
| Sampling Date           |       | 2012/11/09   | 2012/11/09   | 2012/11/09   |       |          | 2012/11/08   |       |          |
| COC Number              |       | 380818-01-01 | 380818-01-01 | 380818-01-01 |       |          | 380818-01-01 |       |          |
|                         | Units | BH5 SS3      | BH6 SS2      | BH6 SS3      | RDL   | QC Batch | BH7 SS2      | RDL   | QC Batch |
| Calculated Parameters   |       |              |              |              |       |          |              |       |          |
| Calculated Faranteters  |       |              |              |              |       |          |              |       |          |
| Sodium Adsorption Ratio | N/A   |              |              |              |       |          | 2.4          |       | 3033160  |
| Inorganics              |       |              |              |              |       |          |              |       |          |
| Chromium (VI)           | ug/g  |              |              |              | 0.2   |          | ND           | 0.2   | 3036788  |
| Conductivity            | mS/cm |              |              |              | 0.002 |          | 0.64         | 0.002 | 3038515  |
| Free Cyanide            | ug/g  |              |              |              | 0.01  |          | ND           | 0.01  | 3036853  |
| Moisture                | %     | 7.6          | 8.1          | 6.8          | 0.2   | 3034270  | 5.4          | 1.0   | 3037245  |
| Available (CaCl2) pH    | рН    |              |              |              |       |          | 7.30         |       | 3037246  |

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch



Ecoplans Limited Client Project #: 1412815

Site Location: 770 SOMERSET ST. W

Sampler Initials: PV

#### **RESULTS OF ANALYSES OF SOIL**

| Maxxam ID               |       | PO2417       |       |          | PO2418       |       |          | PO2419       |       |          |
|-------------------------|-------|--------------|-------|----------|--------------|-------|----------|--------------|-------|----------|
| Sampling Date           |       | 2012/11/08   |       |          | 2012/11/08   |       |          | 2012/11/08   |       |          |
| COC Number              |       | 380818-01-01 |       |          | 380818-01-01 |       |          | 380818-01-01 |       |          |
|                         | Units | BH7 SS3      | RDL   | QC Batch | BH8 SS2      | RDL   | QC Batch | BH8 SS3      | RDL   | QC Batch |
|                         |       |              |       |          |              |       |          |              |       |          |
| Calculated Parameters   |       |              |       |          |              |       |          |              |       |          |
| Sodium Adsorption Ratio | N/A   |              |       |          | 1.9          |       | 3033160  |              |       |          |
| Inorganics              |       |              |       |          |              |       |          |              |       |          |
| Chromium (VI)           | ug/g  |              | 0.2   |          | ND           | 0.2   | 3036385  |              | 0.2   |          |
| Conductivity            | mS/cm |              | 0.002 |          | 0.86         | 0.002 | 3038515  |              | 0.002 |          |
| Free Cyanide            | ug/g  |              | 0.01  |          | ND           | 0.01  | 3036853  |              | 0.01  |          |
| Moisture                | %     | 2.7          | 0.2   | 3034270  | 5.8          | 1.0   | 3037667  | 7.7          | 0.2   | 3034270  |
| Available (CaCl2) pH    | рН    |              |       |          | 9.06         |       | 3037246  |              |       |          |
|                         |       |              |       |          |              |       |          |              |       |          |

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

| Maxxam ID               |       | PO2444       | PO2445       |       |          | PO2446       | PO2447       |       |          |
|-------------------------|-------|--------------|--------------|-------|----------|--------------|--------------|-------|----------|
| Sampling Date           |       | 2012/11/08   | 2012/11/08   |       |          | 2012/11/08   | 2012/11/08   |       |          |
| COC Number              |       | 380818-05-01 | 380818-05-01 |       |          | 380818-05-01 | 380818-05-01 |       |          |
|                         | Units | BH1 SS1      | BH1 SS2      | RDL   | QC Batch | BH1 SS3      | BH2 SS2      | RDL   | QC Batch |
|                         |       |              |              |       |          |              |              |       |          |
| Calculated Parameters   |       |              |              |       |          |              |              |       |          |
| Sodium Adsorption Ratio | N/A   | 11           | 9.8          |       | 3033160  |              | 4.1          |       | 3033160  |
| Inorganics              |       |              |              |       |          |              |              |       |          |
| Chromium (VI)           | ug/g  | ND           | ND           | 0.2   | 3036788  |              | ND           | 0.2   | 3036788  |
| Conductivity            | mS/cm | 0.77         | 0.78         | 0.002 | 3038515  |              | 0.47         | 0.002 | 3038515  |
| Free Cyanide            | ug/g  | ND           | ND           | 0.01  | 3036853  |              | ND           | 0.01  | 3036890  |
| Moisture                | %     | 9.3          | 10           | 1.0   | 3037245  | 14           | 7.6          | 0.2   | 3034270  |
| Available (CaCl2) pH    | pН    | 7.76         | 7.68         |       | 3037246  |              | 7.54         |       | 3037246  |

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch



**Ecoplans Limited** Client Project #: 1412815

Site Location: 770 SOMERSET ST. W

Sampler Initials: PV

#### **RESULTS OF ANALYSES OF SOIL**

| Maxxam ID     |       | PO2448       |     |          | PO2449       |          | PO2450       |     |          |
|---------------|-------|--------------|-----|----------|--------------|----------|--------------|-----|----------|
| Sampling Date |       | 2012/11/08   |     |          | 2012/11/08   |          | 2012/11/08   |     |          |
| COC Number    |       | 380818-05-01 |     |          | 380818-05-01 |          | 380818-05-01 |     |          |
|               | Units | BH2 SS3      | RDL | QC Batch | BH3 SS1      | QC Batch | BH3 SS2      | RDL | QC Batch |

| Calculated Parameters   |       |     |       |         |      |         |      |       |         |
|-------------------------|-------|-----|-------|---------|------|---------|------|-------|---------|
| Sodium Adsorption Ratio | N/A   |     |       | 3033160 | 4.1  | 3033160 | 5.1  |       | 3033160 |
| Inorganics              |       |     |       |         |      |         |      |       |         |
| Chromium (VI)           | ug/g  |     | 0.2   | 3036788 | ND   | 3036788 | ND   | 0.2   | 3038041 |
| Conductivity            | mS/cm |     | 0.002 | 3038515 | 0.57 | 3038515 | 0.44 | 0.002 | 3038695 |
| Free Cyanide            | ug/g  |     | 0.01  | 3036890 | ND   | 3036853 | ND   | 0.01  | 3037905 |
| Moisture                | %     | 5.7 | 0.2   | 3034270 | 3.5  | 3037245 | 5.8  | 1.0   | 3037809 |
| Available (CaCl2) pH    | рН    |     |       | 3037246 | 7.62 | 3037246 | 7.67 |       | 3038478 |

ND = Not detected RDL = Reportable Detection Limit QC Batch = Quality Control Batch



Ecoplans Limited Client Project #: 1412815

Site Location: 770 SOMERSET ST. W

Sampler Initials: PV

#### **RESULTS OF ANALYSES OF SOIL**

| Maxxam ID                         |       | PO2451       | PO2452       |       |          | PO2453       | PO2455       |       |          |
|-----------------------------------|-------|--------------|--------------|-------|----------|--------------|--------------|-------|----------|
| Sampling Date                     |       | 2012/11/08   | 2012/11/08   |       |          | 2012/11/09   | 2012/11/08   |       |          |
| COC Number                        |       | 380818-05-01 | 380818-05-01 |       | <br>     | 380818-05-01 | 380818-02-01 | ļ     | 0001:    |
|                                   | Units | BH3 SS3      | DUP 1        | RDL   | QC Batch | BH4 SS2      | TCLP         | RDL   | QC Batch |
| Calculated Parameters             |       |              |              |       |          |              |              |       |          |
| Sodium Adsorption Ratio           | N/A   |              | 5.0          |       | 3033160  | 12           |              |       | 3033160  |
| Charge/Prep Analysis              |       |              |              |       |          |              |              |       |          |
| Amount Extracted (Wet Weight) (g) | N/A   |              |              |       |          |              | 25           | N/A   | 3034810  |
| Inorganics                        |       |              |              |       |          |              |              |       |          |
| Chromium (VI)                     | ug/g  |              | ND           | 0.2   | 3036788  | ND           |              | 0.2   | 3036385  |
| Conductivity                      | mS/cm |              | 0.60         | 0.002 | 3038515  | 1.4          |              | 0.002 | 3038515  |
| Final pH                          | pН    |              |              |       |          |              | 6.26         |       | 3035605  |
| Leachable Fluoride (F-)           | mg/L  |              |              |       |          |              | 0.2          | 0.1   | 3037130  |
| Free Cyanide                      | ug/g  |              | ND           | 0.01  | 3036853  | ND           |              | 0.01  | 3036853  |
| Leachable Free Cyanide            | mg/L  |              |              |       |          |              | ND           | 0.002 | 3037136  |
| Initial pH                        | pН    |              |              |       |          |              | 9.52         |       | 3035605  |
| Moisture                          | %     | 6.2          | 8.1          | 0.2   | 3037335  | 12           |              | 1.0   | 3037667  |
| Available (CaCl2) pH              | pН    |              | 8.31         |       | 3037246  | 7.81         |              |       | 3037246  |
| TCLP - % Solids                   | %     |              |              |       |          |              | 100          | 0.2   | 3035599  |
| TCLP Extraction Fluid             | N/A   |              |              |       |          |              | FLUID 1      |       | 3035604  |
| Leachable Nitrite (N)             | mg/L  |              |              |       |          |              | ND           | 0.1   | 3037135  |
| Leachable Nitrate (N)             | mg/L  |              |              |       |          |              | ND           | 1     | 3037135  |
| Leachable Nitrate + Nitrite       | mg/L  |              |              |       |          |              | ND           | 1     | 3037135  |
| Metals                            |       |              |              |       |          |              |              |       |          |
| Leachable Mercury (Hg)            | mg/L  |              |              |       |          |              | ND           | 0.001 | 3036084  |

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch



**Ecoplans Limited** Client Project #: 1412815

Site Location: 770 SOMERSET ST. W

Sampler Initials: PV

## PETROLEUM HYDROCARBONS (CCME)

|               | Units | TCLP         | RDL | QC Batch |
|---------------|-------|--------------|-----|----------|
| COC Number    |       | 380818-02-01 |     |          |
| Sampling Date |       | 2012/11/08   |     |          |
| Maxxam ID     |       | PO2455       |     |          |

| BTEX & F1 Hydrocarbons                |      |     |      |         |
|---------------------------------------|------|-----|------|---------|
| Leachable (ZHE) Benzene               | ug/L | ND  | 0.8  | 3036405 |
| Leachable (ZHE) Toluene               | ug/L | ND  | 0.8  | 3036405 |
| Leachable (ZHE) Ethylbenzene          | ug/L | ND  | 0.8  | 3036405 |
| Leachable (ZHE) o-Xylene              | ug/L | ND  | 0.8  | 3036405 |
| Leachable (ZHE) p+m-Xylene            | ug/L | ND  | 2    | 3036405 |
| Leachable (ZHE) Total Xylenes         | ug/L | ND  | 2    | 3036405 |
| Leachable (ZHE) F1 (C6-C10)           | ug/L | ND  | 1000 | 3036405 |
| Leachable (ZHE) F1 (C6-C10) - BTEX    | ug/L | ND  | 1000 | 3036405 |
| Surrogate Recovery (%)                |      |     |      |         |
| Leachable (ZHE) 1,4-Difluorobenzene   | %    | 103 |      | 3036405 |
| Leachable (ZHE) 4-Bromofluorobenzene  | %    | 98  |      | 3036405 |
| Leachable (ZHE) D10-Ethylbenzene      | %    | 96  |      | 3036405 |
| Leachable (ZHE) D4-1,2-Dichloroethane | %    | 93  |      | 3036405 |
|                                       |      |     |      |         |

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch



**Ecoplans Limited** Client Project #: 1412815

Site Location: 770 SOMERSET ST. W

Sampler Initials: PV

## **ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)**

| Maxxam ID                        |       | PO2410       |          | PO2411       |          | PO2416       |       |          |
|----------------------------------|-------|--------------|----------|--------------|----------|--------------|-------|----------|
| Sampling Date                    |       | 2012/11/09   |          | 2012/11/09   |          | 2012/11/08   |       |          |
| COC Number                       | Units | 380818-01-01 | OC Botob | 380818-01-01 | QC Batch | 380818-01-01 | RDL   | OC Botob |
|                                  | Units | BH5 SS1      | QC Batch | DUP 2        | QC Batch | BH7 SS2      | KUL   | QC Batch |
| Metals                           |       |              |          |              |          |              |       |          |
| Hot Water Ext. Boron (B)         | ug/g  | 0.34         | 3038714  | 0.52         | 3038287  | 0.74         | 0.050 | 3038714  |
| Acid Extractable Antimony (Sb)   | ug/g  | 1.3          | 3038581  | 1.7          | 3038581  | 1.6          | 0.20  | 3038581  |
| Acid Extractable Arsenic (As)    | ug/g  | 6.2          | 3038581  | 8.1          | 3038581  | 4.0          | 1.0   | 3038581  |
| Acid Extractable Barium (Ba)     | ug/g  | 160          | 3038581  | 160          | 3038581  | 96           | 0.50  | 3038581  |
| Acid Extractable Beryllium (Be)  | ug/g  | 0.24         | 3038581  | 0.29         | 3038581  | ND           | 0.20  | 3038581  |
| Acid Extractable Boron (B)       | ug/g  | ND           | 3038581  | ND           | 3038581  | ND           | 5.0   | 3038581  |
| Acid Extractable Cadmium (Cd)    | ug/g  | 0.49         | 3038581  | 0.50         | 3038581  | 0.15         | 0.10  | 3038581  |
| Acid Extractable Chromium (Cr)   | ug/g  | 13           | 3038581  | 13           | 3038581  | 9.8          | 1.0   | 3038581  |
| Acid Extractable Cobalt (Co)     | ug/g  | 4.1          | 3038581  | 4.5          | 3038581  | 2.8          | 0.10  | 3038581  |
| Acid Extractable Copper (Cu)     | ug/g  | 100          | 3038581  | 74           | 3038581  | 20           | 0.50  | 3038581  |
| Acid Extractable Lead (Pb)       | ug/g  | 150          | 3038581  | 190          | 3038581  | 140          | 1.0   | 3038581  |
| Acid Extractable Molybdenum (Mo) | ug/g  | 0.82         | 3038581  | 0.92         | 3038581  | 0.60         | 0.50  | 3038581  |
| Acid Extractable Nickel (Ni)     | ug/g  | 44           | 3038581  | 56           | 3038581  | 7.5          | 0.50  | 3038581  |
| Acid Extractable Selenium (Se)   | ug/g  | ND           | 3038581  | ND           | 3038581  | ND           | 0.50  | 3038581  |
| Acid Extractable Silver (Ag)     | ug/g  | ND           | 3038581  | ND           | 3038581  | ND           | 0.20  | 3038581  |
| Acid Extractable Thallium (TI)   | ug/g  | 0.25         | 3038581  | 0.15         | 3038581  | 0.054        | 0.050 | 3038581  |
| Acid Extractable Uranium (U)     | ug/g  | 0.31         | 3038581  | 0.37         | 3038581  | 0.36         | 0.050 | 3038581  |
| Acid Extractable Vanadium (V)    | ug/g  | 14           | 3038581  | 16           | 3038581  | 13           | 5.0   | 3038581  |
| Acid Extractable Zinc (Zn)       | ug/g  | 350          | 3038581  | 360          | 3038581  | 71           | 5.0   | 3038581  |
| Acid Extractable Mercury (Hg)    | ug/g  | 0.22         | 3038581  | 0.38         | 3038581  | 0.36         | 0.050 | 3038581  |

ND = Not detected RDL = Reportable Detection Limit QC Batch = Quality Control Batch



**Ecoplans Limited** Client Project #: 1412815

Site Location: 770 SOMERSET ST. W

Sampler Initials: PV

## **ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)**

| Maxxam ID                        |       | PO2418       |          | PO2444       | PO2445     | PO2447       | PO2449       |          |          |
|----------------------------------|-------|--------------|----------|--------------|------------|--------------|--------------|----------|----------|
| Sampling Date                    |       | 2012/11/08   |          | 2012/11/08   | 2012/11/08 | 2012/11/08   | 2012/11/08   |          |          |
| COC Number                       |       | 380818-01-01 |          | 380818-05-01 |            | 380818-05-01 | 380818-05-01 | <b> </b> |          |
|                                  | Units | BH8 SS2      | QC Batch | BH1 SS1      | BH1 SS2    | BH2 SS2      | BH3 SS1      | RDL      | QC Batch |
| Metals                           |       |              |          |              |            |              |              |          |          |
| Hot Water Ext. Boron (B)         | ug/g  | 0.68         | 3038348  | 0.55         | 0.25       | 0.52         | 0.28         | 0.050    | 3038714  |
| Acid Extractable Antimony (Sb)   | ug/g  | 0.77         | 3038559  | 1.9          | ND         | ND           | 0.36         | 0.20     | 3038581  |
| Acid Extractable Arsenic (As)    | ug/g  | 4.2          | 3038559  | 4.4          | 1.6        | 1.4          | 2.0          | 1.0      | 3038581  |
| Acid Extractable Barium (Ba)     | ug/g  | 80           | 3038559  | 160          | 63         | 32           | 42           | 0.50     | 3038581  |
| Acid Extractable Beryllium (Be)  | ug/g  | 0.20         | 3038559  | 0.25         | 0.22       | ND           | ND           | 0.20     | 3038581  |
| Acid Extractable Boron (B)       | ug/g  | ND           | 3038559  | ND           | ND         | ND           | ND           | 5.0      | 3038581  |
| Acid Extractable Cadmium (Cd)    | ug/g  | 0.18         | 3038559  | 0.43         | ND         | 0.10         | 0.12         | 0.10     | 3038581  |
| Acid Extractable Chromium (Cr)   | ug/g  | 10           | 3038559  | 11           | 10         | 8.4          | 5.6          | 1.0      | 3038581  |
| Acid Extractable Cobalt (Co)     | ug/g  | 3.5          | 3038559  | 3.9          | 4.5        | 3.6          | 3.4          | 0.10     | 3038581  |
| Acid Extractable Copper (Cu)     | ug/g  | 20           | 3038559  | 63           | 17         | 10           | 15           | 0.50     | 3038581  |
| Acid Extractable Lead (Pb)       | ug/g  | 98           | 3038559  | 160          | 4.1        | 7.8          | 78           | 1.0      | 3038581  |
| Acid Extractable Molybdenum (Mo) | ug/g  | 1.0          | 3038559  | 0.78         | ND         | ND           | 0.59         | 0.50     | 3038581  |
| Acid Extractable Nickel (Ni)     | ug/g  | 8.9          | 3038559  | 12           | 8.6        | 8.0          | 8.0          | 0.50     | 3038581  |
| Acid Extractable Selenium (Se)   | ug/g  | ND           | 3038559  | ND           | ND         | ND           | ND           | 0.50     | 3038581  |
| Acid Extractable Silver (Ag)     | ug/g  | ND           | 3038559  | ND           | ND         | ND           | ND           | 0.20     | 3038581  |
| Acid Extractable Thallium (TI)   | ug/g  | 0.095        | 3038559  | 0.099        | 0.083      | 0.054        | 0.084        | 0.050    | 3038581  |
| Acid Extractable Uranium (U)     | ug/g  | 0.32         | 3038559  | 0.38         | 0.40       | 0.28         | 0.21         | 0.050    | 3038581  |
| Acid Extractable Vanadium (V)    | ug/g  | 14           | 3038559  | 17           | 18         | 11           | 9.4          | 5.0      | 3038581  |
| Acid Extractable Zinc (Zn)       | ug/g  | 65           | 3038559  | 110          | 16         | 19           | 76           | 5.0      | 3038581  |
| Acid Extractable Mercury (Hg)    | ug/g  | 0.22         | 3038559  | 0.13         | ND         | ND           | ND           | 0.050    | 3038581  |
|                                  | _     |              | _        | _            |            |              |              | _        |          |

ND = Not detected RDL = Reportable Detection Limit QC Batch = Quality Control Batch



Ecoplans Limited Client Project #: 1412815

Site Location: 770 SOMERSET ST. W

Sampler Initials: PV

# **ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)**

| Maxxam ID                        |       | PO2450                  |          | PO2452                       |           | PO2453                  | PO2455               |       |          |
|----------------------------------|-------|-------------------------|----------|------------------------------|-----------|-------------------------|----------------------|-------|----------|
| Sampling Date                    |       | 2012/11/08              |          | 2012/11/08                   |           | 2012/11/09              | 2012/11/08           |       |          |
| COC Number                       | Units | 380818-05-01<br>BH3 SS2 | QC Batch | 380818-05-01<br><b>DUP 1</b> | QC Batch  | 380818-05-01<br>BH4 SS2 | 380818-02-01<br>TCLP | RDL   | QC Batch |
|                                  | Units | D113 332                | QC Datch | DOLL                         | QC Datcii | D114 332                | TOLI                 | INDL  | QC Batch |
| Metals                           |       |                         |          |                              |           |                         |                      |       |          |
| Leachable Arsenic (As)           | mg/L  |                         |          |                              |           |                         | ND                   | 0.2   | 3036282  |
| Leachable Barium (Ba)            | mg/L  |                         |          |                              |           |                         | 0.5                  | 0.2   | 3036282  |
| Hot Water Ext. Boron (B)         | ug/g  | 0.27                    | 3038714  | 0.51                         | 3038714   | 0.11                    |                      | 0.050 | 3038348  |
| Leachable Boron (B)              | mg/L  |                         |          |                              |           |                         | 0.1                  | 0.1   | 3036282  |
| Leachable Cadmium (Cd)           | mg/L  |                         |          |                              |           |                         | ND                   | 0.05  | 3036282  |
| Leachable Chromium (Cr)          | mg/L  |                         |          |                              |           |                         | ND                   | 0.1   | 3036282  |
| Leachable Lead (Pb)              | mg/L  |                         |          |                              |           |                         | ND                   | 0.1   | 3036282  |
| Leachable Selenium (Se)          | mg/L  |                         |          |                              |           |                         | ND                   | 0.1   | 3036282  |
| Leachable Silver (Ag)            | mg/L  |                         |          |                              |           |                         | ND                   | 0.01  | 3036282  |
| Leachable Uranium (U)            | mg/L  |                         |          |                              |           |                         | ND                   | 0.01  | 3036282  |
| Acid Extractable Antimony (Sb)   | ug/g  | ND                      | 3038770  | 0.77                         | 3038581   | ND                      |                      | 0.20  | 3038559  |
| Acid Extractable Arsenic (As)    | ug/g  | 1.6                     | 3038770  | 3.6                          | 3038581   | 1.2                     |                      | 1.0   | 3038559  |
| Acid Extractable Barium (Ba)     | ug/g  | 29                      | 3038770  | 110                          | 3038581   | 51                      |                      | 0.50  | 3038559  |
| Acid Extractable Beryllium (Be)  | ug/g  | ND                      | 3038770  | 0.24                         | 3038581   | ND                      |                      | 0.20  | 3038559  |
| Acid Extractable Boron (B)       | ug/g  | ND                      | 3038770  | ND                           | 3038581   | ND                      |                      | 5.0   | 3038559  |
| Acid Extractable Cadmium (Cd)    | ug/g  | ND                      | 3038770  | 0.30                         | 3038581   | ND                      |                      | 0.10  | 3038559  |
| Acid Extractable Chromium (Cr)   | ug/g  | 6.8                     | 3038770  | 11                           | 3038581   | 8.1                     |                      | 1.0   | 3038559  |
| Acid Extractable Cobalt (Co)     | ug/g  | 3.6                     | 3038770  | 4.1                          | 3038581   | 3.4                     |                      | 0.10  | 3038559  |
| Acid Extractable Copper (Cu)     | ug/g  | 11                      | 3038770  | 29                           | 3038581   | 52                      |                      | 0.50  | 3038559  |
| Acid Extractable Lead (Pb)       | ug/g  | 34                      | 3038770  | 95                           | 3038581   | 2.8                     |                      | 1.0   | 3038559  |
| Acid Extractable Molybdenum (Mo) | ug/g  | ND                      | 3038770  | 0.60                         | 3038581   | ND                      |                      | 0.50  | 3038559  |
| Acid Extractable Nickel (Ni)     | ug/g  | 7.9                     | 3038770  | 12                           | 3038581   | 6.3                     |                      | 0.50  | 3038559  |
| Acid Extractable Selenium (Se)   | ug/g  | ND                      | 3038770  | ND                           | 3038581   | ND                      |                      | 0.50  | 3038559  |
| Acid Extractable Silver (Ag)     | ug/g  | ND                      | 3038770  | ND                           | 3038581   | ND                      |                      | 0.20  | 3038559  |
| Acid Extractable Thallium (TI)   | ug/g  | 0.064                   | 3038770  | 0.090                        | 3038581   | 0.059                   |                      | 0.050 | 3038559  |
| Acid Extractable Uranium (U)     | ug/g  | 0.32                    | 3038770  | 0.35                         | 3038581   | 0.40                    |                      | 0.050 | 3038559  |
| Acid Extractable Vanadium (V)    | ug/g  | 11                      | 3038770  | 15                           | 3038581   | 15                      |                      | 5.0   | 3038559  |
| Acid Extractable Zinc (Zn)       | ug/g  | 38                      | 3038770  | 110                          | 3038581   | 26                      |                      | 5.0   | 3038559  |
| Acid Extractable Mercury (Hg)    | ug/g  | ND                      | 3038770  | 0.12                         | 3038581   | ND                      |                      | 0.050 | 3038559  |

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch



**Ecoplans Limited** Client Project #: 1412815

Site Location: 770 SOMERSET ST. W

Sampler Initials: PV

## **SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)**

|            | 1000040 04 04 | 000040 05 04 |  |
|------------|---------------|--------------|--|
| COC Number | 380818-01-01  | 380818-05-01 |  |

| Calculated Parameters     |      |        |        |        |         |
|---------------------------|------|--------|--------|--------|---------|
| Methylnaphthalene, 2-(1-) | ug/g | ND     | ND     | 0.0071 | 3033158 |
| Polyaromatic Hydrocarbons |      |        |        |        |         |
| Acenaphthene              | ug/g | ND     | 0.0057 | 0.0050 | 3036794 |
| Acenaphthylene            | ug/g | ND     | 0.017  | 0.0050 | 3036794 |
| Anthracene                | ug/g | ND     | 0.016  | 0.0050 | 3036794 |
| Benzo(a)anthracene        | ug/g | 0.0054 | 0.063  | 0.0050 | 3036794 |
| Benzo(a)pyrene            | ug/g | 0.0067 | 0.064  | 0.0050 | 3036794 |
| Benzo(b/j)fluoranthene    | ug/g | 0.0083 | 0.081  | 0.0050 | 3036794 |
| Benzo(g,h,i)perylene      | ug/g | 0.0052 | 0.043  | 0.0050 | 3036794 |
| Benzo(k)fluoranthene      | ug/g | ND     | 0.034  | 0.0050 | 3036794 |
| Chrysene                  | ug/g | ND     | 0.055  | 0.0050 | 3036794 |
| Dibenz(a,h)anthracene     | ug/g | ND     | 0.012  | 0.0050 | 3036794 |
| Fluoranthene              | ug/g | 0.011  | 0.11   | 0.0050 | 3036794 |
| Fluorene                  | ug/g | ND     | ND     | 0.0050 | 3036794 |
| Indeno(1,2,3-cd)pyrene    | ug/g | ND     | 0.045  | 0.0050 | 3036794 |
| 1-Methylnaphthalene       | ug/g | ND     | ND     | 0.0050 | 3036794 |
| 2-Methylnaphthalene       | ug/g | ND     | ND     | 0.0050 | 3036794 |
| Naphthalene               | ug/g | ND     | ND     | 0.0050 | 3036794 |
| Phenanthrene              | ug/g | ND     | 0.049  | 0.0050 | 3036794 |
| Pyrene                    | ug/g | 0.011  | 0.092  | 0.0050 | 3036794 |
| Surrogate Recovery (%)    |      |        |        |        |         |
| D10-Anthracene            | %    | 94     | 89     |        | 3036794 |
| D14-Terphenyl (FS)        | %    | 97     | 90     |        | 3036794 |
| D8-Acenaphthylene         | %    | 91     | 85     |        | 3036794 |

ND = Not detected RDL = Reportable Detection Limit QC Batch = Quality Control Batch



Ecoplans Limited Client Project #: 1412815

Site Location: 770 SOMERSET ST. W

Sampler Initials: PV

# **VOLATILE ORGANICS BY GC/MS (SOIL)**

| Maxxam ID                           |       | PO2411                       | PO2413                  |       | PO2414                  |       | PO2415                  |       |          |
|-------------------------------------|-------|------------------------------|-------------------------|-------|-------------------------|-------|-------------------------|-------|----------|
| Sampling Date COC Number            |       | 2012/11/09                   | 2012/11/09              |       | 2012/11/09              |       | 2012/11/09              |       |          |
| COC Number                          | Units | 380818-01-01<br><b>DUP 2</b> | 380818-01-01<br>BH5 SS3 | RDL   | 380818-01-01<br>BH6 SS2 | RDL   | 380818-01-01<br>BH6 SS3 | RDL   | QC Batch |
|                                     |       |                              |                         |       |                         |       |                         |       |          |
| Calculated Parameters               |       |                              |                         |       |                         |       |                         |       |          |
| 1,3-Dichloropropene (cis+trans)     | ug/g  | ND                           | ND                      | 0.10  | ND                      | 0.15  | ND                      | 0.10  | 3033159  |
| Volatile Organics                   |       |                              |                         |       |                         |       |                         |       |          |
| Acetone (2-Propanone)               | ug/g  | ND                           |                         | 1.0   | ND                      | 1.5   | ND                      | 1.0   | 3034832  |
| Benzene                             | ug/g  | ND                           | ND                      | 0.040 | ND                      | 0.060 | ND                      | 0.040 | 3034832  |
| Bromodichloromethane                | ug/g  | ND                           |                         | 0.10  | ND                      | 0.15  | ND                      | 0.10  | 3034832  |
| Bromoform                           | ug/g  | ND                           |                         | 0.10  | ND                      | 0.15  | ND                      | 0.10  | 3034832  |
| Bromomethane                        | ug/g  | ND                           |                         | 0.10  | ND                      | 0.15  | ND                      | 0.10  | 3034832  |
| Carbon Tetrachloride                | ug/g  | ND                           |                         | 0.10  | ND                      | 0.15  | ND                      | 0.10  | 3034832  |
| Chlorobenzene                       | ug/g  | ND                           |                         | 0.10  | ND                      | 0.15  | ND                      | 0.10  | 3034832  |
| Chloroform                          | ug/g  | ND                           |                         | 0.10  | ND                      | 0.15  | ND                      | 0.10  | 3034832  |
| Dibromochloromethane                | ug/g  | ND                           |                         | 0.10  | ND                      | 0.15  | ND                      | 0.10  | 3034832  |
| 1,2-Dichlorobenzene                 | ug/g  | ND                           |                         | 0.10  | ND                      | 0.15  | ND                      | 0.10  | 3034832  |
| 1,3-Dichlorobenzene                 | ug/g  | ND                           |                         | 0.10  | ND                      | 0.15  | ND                      | 0.10  | 3034832  |
| 1,4-Dichlorobenzene                 | ug/g  | ND                           |                         | 0.10  | ND                      | 0.15  | ND                      | 0.10  | 3034832  |
| Dichlorodifluoromethane (FREON 12)  | ug/g  | ND                           |                         | 0.10  | ND                      | 0.15  | ND                      | 0.10  | 3034832  |
| 1,1-Dichloroethane                  | ug/g  | ND                           |                         | 0.10  | ND                      | 0.15  | ND                      | 0.10  | 3034832  |
| 1,2-Dichloroethane                  | ug/g  | ND                           |                         | 0.10  | ND                      | 0.15  | ND                      | 0.10  | 3034832  |
| 1,1-Dichloroethylene                | ug/g  | ND                           |                         | 0.10  | ND                      | 0.15  | ND                      | 0.10  | 3034832  |
| cis-1,2-Dichloroethylene            | ug/g  | ND                           |                         | 0.10  | ND                      | 0.15  | ND                      | 0.10  | 3034832  |
| trans-1,2-Dichloroethylene          | ug/g  | ND                           |                         | 0.10  | ND                      | 0.15  | ND                      | 0.10  | 3034832  |
| 1,2-Dichloropropane                 | ug/g  | ND                           |                         | 0.10  | ND                      | 0.15  | ND                      | 0.10  | 3034832  |
| cis-1,3-Dichloropropene             | ug/g  | ND                           |                         | 0.060 | ND                      | 0.090 | ND                      | 0.060 | 3034832  |
| trans-1,3-Dichloropropene           | ug/g  | ND                           |                         | 0.080 | ND                      | 0.12  | ND                      | 0.080 | 3034832  |
| Ethylbenzene                        | ug/g  | ND                           | ND                      | 0.040 | ND                      | 0.060 | ND                      | 0.040 | 3034832  |
| Ethylene Dibromide                  | ug/g  | ND                           |                         | 0.10  | ND                      | 0.15  | ND                      | 0.10  | 3034832  |
| Hexane                              | ug/g  | ND                           |                         | 0.10  | ND                      | 0.15  | ND                      | 0.10  | 3034832  |
| Methylene Chloride(Dichloromethane) | ug/g  | ND                           |                         | 0.10  | ND                      | 0.15  | ND                      | 0.10  | 3034832  |
| Methyl Isobutyl Ketone              | ug/g  | ND                           |                         | 1.0   | ND                      | 1.5   | ND                      | 1.0   | 3034832  |
| Methyl Ethyl Ketone (2-Butanone)    | ug/g  | ND                           |                         | 1.0   | ND                      | 1.5   | ND                      | 1.0   | 3034832  |
| Methyl t-butyl ether (MTBE)         | ug/g  | ND                           |                         | 0.10  | ND                      | 0.15  | ND                      | 0.10  | 3034832  |
| Styrene                             | ug/g  | ND                           |                         | 0.10  | ND                      | 0.15  | ND                      | 0.10  | 3034832  |
| 1,1,1,2-Tetrachloroethane           | ug/g  | ND                           |                         | 0.10  | ND                      | 0.15  | ND                      | 0.10  | 3034832  |

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch



Ecoplans Limited Client Project #: 1412815

Site Location: 770 SOMERSET ST. W

Sampler Initials: PV

## **VOLATILE ORGANICS BY GC/MS (SOIL)**

| Maxxam ID                         |       | PO2411     | PO2413       |       | PO2414       |       | PO2415       |       |          |
|-----------------------------------|-------|------------|--------------|-------|--------------|-------|--------------|-------|----------|
| Sampling Date                     |       | 2012/11/09 | 2012/11/09   |       | 2012/11/09   |       | 2012/11/09   |       |          |
| COC Number                        |       |            | 380818-01-01 |       | 380818-01-01 |       | 380818-01-01 |       |          |
|                                   | Units | DUP 2      | BH5 SS3      | RDL   | BH6 SS2      | RDL   | BH6 SS3      | RDL   | QC Batch |
|                                   |       |            |              |       |              |       |              |       |          |
| 1,1,2,2-Tetrachloroethane         | ug/g  | ND         |              | 0.10  | ND           | 0.15  | ND           | 0.10  | 3034832  |
| Tetrachloroethylene               | ug/g  | ND         |              | 0.10  | ND           | 0.15  | ND           | 0.10  | 3034832  |
| Toluene                           | ug/g  | ND         | ND           | 0.040 | ND           | 0.060 | ND           | 0.040 | 3034832  |
| 1,1,1-Trichloroethane             | ug/g  | ND         |              | 0.10  | ND           | 0.15  | ND           | 0.10  | 3034832  |
| 1,1,2-Trichloroethane             | ug/g  | ND         |              | 0.10  | ND           | 0.15  | ND           | 0.10  | 3034832  |
| Trichloroethylene                 | ug/g  | ND         |              | 0.10  | ND           | 0.15  | ND           | 0.10  | 3034832  |
| Vinyl Chloride                    | ug/g  | ND         |              | 0.040 | ND           | 0.060 | ND           | 0.040 | 3034832  |
| p+m-Xylene                        | ug/g  | ND         | ND           | 0.040 | ND           | 0.060 | ND           | 0.040 | 3034832  |
| o-Xylene                          | ug/g  | ND         | ND           | 0.040 | ND           | 0.060 | ND           | 0.040 | 3034832  |
| Xylene (Total)                    | ug/g  | ND         | ND           | 0.040 | ND           | 0.060 | ND           | 0.040 | 3034832  |
| Trichlorofluoromethane (FREON 11) | ug/g  | ND         |              | 0.10  | ND           | 0.15  | ND           | 0.10  | 3034832  |
| Surrogate Recovery (%)            |       |            |              |       |              |       |              |       |          |
| 4-Bromofluorobenzene              | %     | 97         | 96           |       | 95           |       | 97           |       | 3034832  |
| D10-o-Xylene                      | %     | 102        | 96           |       | 103          |       | 105          |       | 3034832  |
| D4-1,2-Dichloroethane             | %     | 108        | 104          |       | 106          |       | 107          |       | 3034832  |
| D8-Toluene                        | %     | 99         | 99           |       | 99           |       | 100          |       | 3034832  |

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch



Maxxam ID

Ecoplans Limited Client Project #: 1412815

Site Location: 770 SOMERSET ST. W

PO2446

PO2447

Sampler Initials: PV

# **VOLATILE ORGANICS BY GC/MS (SOIL)**

PO2417

PO2418 PO2419

| iviaxxam iD                         |       | PO2417                  |       | PO2418                  | PO2419                  | PO2446                  | PO2447                  |       |          |
|-------------------------------------|-------|-------------------------|-------|-------------------------|-------------------------|-------------------------|-------------------------|-------|----------|
| Sampling Date                       |       | 2012/11/08              |       | 2012/11/08              | 2012/11/08              | 2012/11/08              | 2012/11/08              |       |          |
| COC Number                          | Units | 380818-01-01<br>BH7 SS3 | RDL   | 380818-01-01<br>BH8 SS2 | 380818-01-01<br>BH8 SS3 | 380818-05-01<br>BH1 SS3 | 380818-05-01<br>BH2 SS2 | RDL   | QC Batch |
|                                     | Onito | <u> </u>                | INDL  |                         | <u> </u>                | <u> </u>                | Bill 002                | INDL  | AO Daton |
| Calculated Parameters               |       |                         |       |                         |                         |                         |                         |       |          |
| 1,3-Dichloropropene (cis+trans)     | ug/g  | ND                      | 0.15  | ND                      | ND                      | ND                      | ND                      | 0.10  | 3033159  |
| Volatile Organics                   |       |                         |       |                         |                         |                         |                         |       |          |
| Acetone (2-Propanone)               | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 1.0   | 3034832  |
| Benzene                             | ug/g  | ND                      | 0.060 | ND                      | ND                      | ND                      | ND                      | 0.040 | 3034832  |
| Bromodichloromethane                | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 0.10  | 3034832  |
| Bromoform                           | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 0.10  | 3034832  |
| Bromomethane                        | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 0.10  | 3034832  |
| Carbon Tetrachloride                | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 0.10  | 3034832  |
| Chlorobenzene                       | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 0.10  | 3034832  |
| Chloroform                          | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 0.10  | 3034832  |
| Dibromochloromethane                | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 0.10  | 3034832  |
| 1,2-Dichlorobenzene                 | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 0.10  | 3034832  |
| 1,3-Dichlorobenzene                 | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 0.10  | 3034832  |
| 1,4-Dichlorobenzene                 | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 0.10  | 3034832  |
| Dichlorodifluoromethane (FREON 12)  | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 0.10  | 3034832  |
| 1,1-Dichloroethane                  | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 0.10  | 3034832  |
| 1,2-Dichloroethane                  | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 0.10  | 3034832  |
| 1,1-Dichloroethylene                | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 0.10  | 3034832  |
| cis-1,2-Dichloroethylene            | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 0.10  | 3034832  |
| trans-1,2-Dichloroethylene          | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 0.10  | 3034832  |
| 1,2-Dichloropropane                 | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 0.10  | 3034832  |
| cis-1,3-Dichloropropene             | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 0.060 | 3034832  |
| trans-1,3-Dichloropropene           | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 0.080 | 3034832  |
| Ethylbenzene                        | ug/g  | ND                      | 0.060 | ND                      | ND                      | ND                      | ND                      | 0.040 | 3034832  |
| Ethylene Dibromide                  | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 0.10  | 3034832  |
| Hexane                              | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 0.10  | 3034832  |
| Methylene Chloride(Dichloromethane) | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 0.10  | 3034832  |
| Methyl Isobutyl Ketone              | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 1.0   | 3034832  |
| Methyl Ethyl Ketone (2-Butanone)    | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 1.0   | 3034832  |
| Methyl t-butyl ether (MTBE)         | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 0.10  | 3034832  |
| Styrene                             | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 0.10  | 3034832  |
| 1,1,1,2-Tetrachloroethane           | ug/g  |                         |       | ND                      | ND                      | ND                      | ND                      | 0.10  | 3034832  |

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch



Ecoplans Limited Client Project #: 1412815

Site Location: 770 SOMERSET ST. W

Sampler Initials: PV

## **VOLATILE ORGANICS BY GC/MS (SOIL)**

| Maxxam ID                         |       | PO2417       |       | PO2418       | PO2419       | PO2446       | PO2447       |       |          |
|-----------------------------------|-------|--------------|-------|--------------|--------------|--------------|--------------|-------|----------|
| Sampling Date                     |       | 2012/11/08   |       | 2012/11/08   | 2012/11/08   | 2012/11/08   | 2012/11/08   |       |          |
| COC Number                        |       | 380818-01-01 |       | 380818-01-01 | 380818-01-01 | 380818-05-01 | 380818-05-01 |       |          |
|                                   | Units | BH7 SS3      | RDL   | BH8 SS2      | BH8 SS3      | BH1 SS3      | BH2 SS2      | RDL   | QC Batch |
| 1.1.2.2-Tetrachloroethane         | ug/g  |              |       | ND           | ND           | ND           | ND           | 0.10  | 3034832  |
| Tetrachloroethylene               | ug/g  |              |       | ND           | ND           | ND           | ND           | 0.10  | 3034832  |
| Toluene                           | ug/g  | ND           | 0.060 | ND           | ND           | ND           | ND           | 0.040 | 3034832  |
| 1,1,1-Trichloroethane             | ug/g  |              |       | ND           | ND           | ND           | ND           | 0.10  | 3034832  |
| 1,1,2-Trichloroethane             | ug/g  |              |       | ND           | ND           | ND           | ND           | 0.10  | 3034832  |
| Trichloroethylene                 | ug/g  |              |       | ND           | ND           | ND           | ND           | 0.10  | 3034832  |
| Vinyl Chloride                    | ug/g  |              |       | ND           | ND           | ND           | ND           | 0.040 | 3034832  |
| p+m-Xylene                        | ug/g  | ND           | 0.060 | 0.12         | ND           | ND           | ND           | 0.040 | 3034832  |
| o-Xylene                          | ug/g  | ND           | 0.060 | 0.16         | ND           | ND           | ND           | 0.040 | 3034832  |
| Xylene (Total)                    | ug/g  | ND           | 0.060 | 0.28         | ND           | ND           | ND           | 0.040 | 3034832  |
| Trichlorofluoromethane (FREON 11) | ug/g  |              |       | ND           | ND           | ND           | ND           | 0.10  | 3034832  |
| Surrogate Recovery (%)            |       |              |       |              |              |              |              |       |          |
| 4-Bromofluorobenzene              | %     | 96           |       | 98           | 96           | 96           | 96           |       | 3034832  |
| D10-o-Xylene                      | %     | 110          |       | 94           | 103          | 107          | 107          |       | 3034832  |
| D4-1,2-Dichloroethane             | %     | 106          |       | 107          | 101          | 104          | 106          |       | 3034832  |
| D8-Toluene                        | %     | 99           |       | 99           | 101          | 100          | 100          |       | 3034832  |

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch



**Ecoplans Limited** Client Project #: 1412815

Site Location: 770 SOMERSET ST. W

Sampler Initials: PV

# **VOLATILE ORGANICS BY GC/MS (SOIL)**

| Maxxam ID                           |       | PO2448                  |      | PO2451                  | PO2452                       | PO2453                  |       |           |
|-------------------------------------|-------|-------------------------|------|-------------------------|------------------------------|-------------------------|-------|-----------|
| Sampling Date                       |       | 2012/11/08              |      | 2012/11/08              | 2012/11/08                   | 2012/11/09              |       |           |
| COC Number                          | Units | 380818-05-01<br>BH2 SS3 | RDL  | 380818-05-01<br>BH3 SS3 | 380818-05-01<br><b>DUP 1</b> | 380818-05-01<br>BH4 SS2 | RDL   | QC Batch  |
|                                     | Units | D112 333                | INDL | D113 333                | <u> Doi i</u>                | B114 332                | INDL  | QC Dateii |
| Calculated Parameters               |       |                         |      |                         |                              |                         |       |           |
| 1,3-Dichloropropene (cis+trans)     | ug/g  | ND                      | 0.30 | ND                      | ND                           | ND                      | 0.10  | 3033159   |
| Volatile Organics                   |       |                         |      |                         |                              |                         |       |           |
| Acetone (2-Propanone)               | ug/g  | ND                      | 3.0  | ND                      | ND                           | ND                      | 1.0   | 3034832   |
| Benzene                             | ug/g  | ND                      | 0.12 | ND                      | ND                           | ND                      | 0.040 | 3034832   |
| Bromodichloromethane                | ug/g  | ND                      | 0.30 | ND                      | ND                           | ND                      | 0.10  | 3034832   |
| Bromoform                           | ug/g  | ND                      | 0.30 | ND                      | ND                           | ND                      | 0.10  | 3034832   |
| Bromomethane                        | ug/g  | ND                      | 0.30 | ND                      | ND                           | ND                      | 0.10  | 3034832   |
| Carbon Tetrachloride                | ug/g  | ND                      | 0.30 | ND                      | ND                           | ND                      | 0.10  | 3034832   |
| Chlorobenzene                       | ug/g  | ND                      | 0.30 | ND                      | ND                           | ND                      | 0.10  | 3034832   |
| Chloroform                          | ug/g  | ND                      | 0.30 | ND                      | ND                           | ND                      | 0.10  | 3034832   |
| Dibromochloromethane                | ug/g  | ND                      | 0.30 | ND                      | ND                           | ND                      | 0.10  | 3034832   |
| 1,2-Dichlorobenzene                 | ug/g  | ND                      | 0.30 | ND                      | ND                           | ND                      | 0.10  | 3034832   |
| 1,3-Dichlorobenzene                 | ug/g  | ND                      | 0.30 | ND                      | ND                           | ND                      | 0.10  | 3034832   |
| 1,4-Dichlorobenzene                 | ug/g  | ND                      | 0.30 | ND                      | ND                           | ND                      | 0.10  | 3034832   |
| Dichlorodifluoromethane (FREON 12)  | ug/g  | ND                      | 0.30 | ND                      | ND                           | ND                      | 0.10  | 3034832   |
| 1,1-Dichloroethane                  | ug/g  | ND                      | 0.30 | ND                      | ND                           | ND                      | 0.10  | 3034832   |
| 1,2-Dichloroethane                  | ug/g  | ND                      | 0.30 | ND                      | ND                           | ND                      | 0.10  | 3034832   |
| 1,1-Dichloroethylene                | ug/g  | ND                      | 0.30 | ND                      | ND                           | ND                      | 0.10  | 3034832   |
| cis-1,2-Dichloroethylene            | ug/g  | ND                      | 0.30 | ND                      | ND                           | ND                      | 0.10  | 3034832   |
| trans-1,2-Dichloroethylene          | ug/g  | ND                      | 0.30 | ND                      | ND                           | ND                      | 0.10  | 3034832   |
| 1,2-Dichloropropane                 | ug/g  | ND                      | 0.30 | ND                      | ND                           | ND                      | 0.10  | 3034832   |
| cis-1,3-Dichloropropene             | ug/g  | ND                      | 0.18 | ND                      | ND                           | ND                      | 0.060 | 3034832   |
| trans-1,3-Dichloropropene           | ug/g  | ND                      | 0.24 | ND                      | ND                           | ND                      | 0.080 | 3034832   |
| Ethylbenzene                        | ug/g  | ND                      | 0.12 | ND                      | ND                           | ND                      | 0.040 | 3034832   |
| Ethylene Dibromide                  | ug/g  | ND                      | 0.30 | ND                      | ND                           | ND                      | 0.10  | 3034832   |
| Hexane                              | ug/g  | ND                      | 0.30 | ND                      | ND                           | ND                      | 0.10  | 3034832   |
| Methylene Chloride(Dichloromethane) | ug/g  | ND                      | 0.30 | ND                      | ND                           | ND                      | 0.10  | 3034832   |
| Methyl Isobutyl Ketone              | ug/g  | ND                      | 3.0  | ND                      | ND                           | ND                      | 1.0   | 3034832   |
| Methyl Ethyl Ketone (2-Butanone)    | ug/g  | ND                      | 3.0  | ND                      | ND                           | ND                      | 1.0   | 3034832   |
| Methyl t-butyl ether (MTBE)         | ug/g  | ND                      | 0.30 | ND                      | ND                           | ND                      | 0.10  | 3034832   |
| Styrene                             | ug/g  | ND                      | 0.30 | ND                      | ND                           | ND                      | 0.10  | 3034832   |
| 1,1,1,2-Tetrachloroethane           | ug/g  | ND                      | 0.30 | ND                      | ND                           | ND                      | 0.10  | 3034832   |

ND = Not detected RDL = Reportable Detection Limit QC Batch = Quality Control Batch



Ecoplans Limited Client Project #: 1412815

Site Location: 770 SOMERSET ST. W

Sampler Initials: PV

# **VOLATILE ORGANICS BY GC/MS (SOIL)**

| Maxxam ID                         |       | PO2448       |      | PO2451       | PO2452       | PO2453       |       |          |
|-----------------------------------|-------|--------------|------|--------------|--------------|--------------|-------|----------|
| Sampling Date                     |       | 2012/11/08   |      | 2012/11/08   | 2012/11/08   | 2012/11/09   |       |          |
| COC Number                        |       | 380818-05-01 |      | 380818-05-01 | 380818-05-01 | 380818-05-01 |       |          |
|                                   | Units | BH2 SS3      | RDL  | BH3 SS3      | DUP 1        | BH4 SS2      | RDL   | QC Batch |
|                                   |       |              | _    | 1            | 1            | ı            | 1     |          |
| 1,1,2,2-Tetrachloroethane         | ug/g  | ND           | 0.30 | ND           | ND           | ND           | 0.10  | 3034832  |
| Tetrachloroethylene               | ug/g  | ND           | 0.30 | ND           | ND           | ND           | 0.10  | 3034832  |
| Toluene                           | ug/g  | ND           | 0.12 | ND           | ND           | ND           | 0.040 | 3034832  |
| 1,1,1-Trichloroethane             | ug/g  | ND           | 0.30 | ND           | ND           | ND           | 0.10  | 3034832  |
| 1,1,2-Trichloroethane             | ug/g  | ND           | 0.30 | ND           | ND           | ND           | 0.10  | 3034832  |
| Trichloroethylene                 | ug/g  | ND           | 0.30 | ND           | ND           | ND           | 0.10  | 3034832  |
| Vinyl Chloride                    | ug/g  | ND           | 0.12 | ND           | ND           | ND           | 0.040 | 3034832  |
| p+m-Xylene                        | ug/g  | ND           | 0.12 | 0.043        | ND           | ND           | 0.040 | 3034832  |
| o-Xylene                          | ug/g  | ND           | 0.12 | ND           | ND           | ND           | 0.040 | 3034832  |
| Xylene (Total)                    | ug/g  | ND           | 0.12 | 0.043        | ND           | ND           | 0.040 | 3034832  |
| Trichlorofluoromethane (FREON 11) | ug/g  | ND           | 0.30 | ND           | ND           | ND           | 0.10  | 3034832  |
| Surrogate Recovery (%)            |       |              |      |              |              |              |       |          |
| 4-Bromofluorobenzene              | %     | 97           |      | 96           | 97           | 95           |       | 3034832  |
| D10-o-Xylene                      | %     | 111          |      | 90           | 100          | 114          |       | 3034832  |
| D4-1,2-Dichloroethane             | %     | 105          |      | 103          | 104          | 101          |       | 3034832  |
| D8-Toluene                        | %     | 99           |      | 100          | 101          | 101          |       | 3034832  |

ND = Not detected



Ecoplans Limited Client Project #: 1412815

Site Location: 770 SOMERSET ST. W

Sampler Initials: PV

### PETROLEUM HYDROCARBONS (CCME)

| Maxxam ID     |       | PO2411       | PO2413       | PO2414       | PO2415       | PO2417       |     |          |
|---------------|-------|--------------|--------------|--------------|--------------|--------------|-----|----------|
| Sampling Date |       | 2012/11/09   | 2012/11/09   | 2012/11/09   | 2012/11/09   | 2012/11/08   |     |          |
| COC Number    |       | 380818-01-01 | 380818-01-01 | 380818-01-01 | 380818-01-01 | 380818-01-01 |     |          |
|               | Units | DUP 2        | BH5 SS3      | BH6 SS2      | BH6 SS3      | BH7 SS3      | RDL | QC Batch |
|               |       |              |              |              |              |              |     |          |
|               |       |              |              |              |              |              |     |          |

| BTEX & F1 Hydrocarbons    |      |     |     |     |     |     |    |         |
|---------------------------|------|-----|-----|-----|-----|-----|----|---------|
| F1 (C6-C10)               | ug/g | ND  |     | ND  | ND  |     | 10 | 3035391 |
| F1 (C6-C10) - BTEX        | ug/g | ND  |     | ND  | ND  |     | 10 | 3035391 |
| F2-F4 Hydrocarbons        |      |     |     |     |     |     |    |         |
| F2 (C10-C16 Hydrocarbons) | ug/g | ND  | ND  | ND  | ND  | ND  | 10 | 3034122 |
| F3 (C16-C34 Hydrocarbons) | ug/g | ND  | 12  | ND  | ND  | ND  | 10 | 3034122 |
| F4 (C34-C50 Hydrocarbons) | ug/g | ND  | 33  | ND  | ND  | ND  | 10 | 3034122 |
| Reached Baseline at C50   | ug/g | Yes | Yes | Yes | Yes | Yes |    | 3034122 |
| Surrogate Recovery (%)    |      |     |     |     |     |     |    |         |
| 1,4-Difluorobenzene       | %    | 100 |     | 98  | 103 |     |    | 3035391 |
| 4-Bromofluorobenzene      | %    | 103 |     | 103 | 92  |     |    | 3035391 |
| D10-Ethylbenzene          | %    | 102 |     | 111 | 101 |     |    | 3035391 |
| D4-1,2-Dichloroethane     | %    | 103 |     | 98  | 102 |     |    | 3035391 |
| o-Terphenyl               | %    | 72  | 68  | 68  | 67  | 69  |    | 3034122 |

ND = Not detected

3035391

3035391

3034122



Maxxam Job #: B2H6839 Report Date: 2012/11/20 Ecoplans Limited Client Project #: 1412815

Site Location: 770 SOMERSET ST. W

Sampler Initials: PV

### PETROLEUM HYDROCARBONS (CCME)

| Maxxam ID                         |       | PO2418       |     |          | PO2419       | PO2446       | PO2447       | T   |          |
|-----------------------------------|-------|--------------|-----|----------|--------------|--------------|--------------|-----|----------|
| Sampling Date                     |       | 2012/11/08   |     |          | 2012/11/08   | 2012/11/08   | 2012/11/08   |     |          |
| COC Number                        |       | 380818-01-01 |     |          | 380818-01-01 | 380818-05-01 | 380818-05-01 |     |          |
|                                   | Units | BH8 SS2      | RDL | QC Batch | BH8 SS3      | BH1 SS3      | BH2 SS2      | RDL | QC Batch |
| BTEX & F1 Hydrocarbons            | T     |              |     |          |              |              |              |     |          |
| F1 (C6-C10)                       | ug/g  | ND           | 30  | 3036934  | ND           | ND           | ND           | 10  | 3035391  |
| F1 (C6-C10) - BTEX                | ug/g  | ND           | 30  | 3036934  | ND           | ND           | ND           | 10  | 3035391  |
| F2-F4 Hydrocarbons                |       |              |     |          |              |              |              |     |          |
| F4G-sg (Grav. Heavy Hydrocarbons) | ug/g  | 5300         | 100 | 3041344  |              |              |              |     |          |
| F2 (C10-C16 Hydrocarbons)         | ug/g  | 46           | 10  | 3036453  | ND           | ND           | ND           | 10  | 3034122  |
| F3 (C16-C34 Hydrocarbons)         | ug/g  | 440          | 10  | 3036453  | ND           | ND           | ND           | 10  | 3034122  |
| F4 (C34-C50 Hydrocarbons)         | ug/g  | 1400         | 10  | 3036453  | ND           | ND           | ND           | 10  | 3034122  |
| Reached Baseline at C50           | ug/g  | No           |     | 3036453  | Yes          | Yes          | Yes          |     | 3034122  |
| Surrogate Recovery (%)            |       |              |     |          |              |              |              |     |          |
| 1,4-Difluorobenzene               | %     | 99           |     | 3036934  |              |              |              |     |          |
| 4-Bromofluorobenzene              | %     | 102          |     | 3036934  |              |              |              |     |          |
| D10-Ethylbenzene                  | %     | 88           |     | 3036934  |              |              |              |     |          |
| D4-1,2-Dichloroethane             | %     | 103          |     | 3036934  |              |              |              |     |          |
| 1,4-Difluorobenzene               | %     |              |     |          | 103          | 101          | 99           |     | 3035391  |
| 4-Bromofluorobenzene              | %     |              |     |          | 99           | 105          | 106          |     | 3035391  |

3036453

111

102

69

96

99

67

109

102

69

ND = Not detected

o-Terphenyl

D10-Ethylbenzene

D4-1,2-Dichloroethane

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

%

%

%

108



**Ecoplans Limited** Client Project #: 1412815

Site Location: 770 SOMERSET ST. W

Sampler Initials: PV

# PETROLEUM HYDROCARBONS (CCME)

| COC Number    | Units | 380818-05-01<br>BH2 SS3 | QC Batch | 380818-05-01<br>BH3 SS3 | 380818-05-01<br><b>DUP 1</b> | RDL | QC Batch |
|---------------|-------|-------------------------|----------|-------------------------|------------------------------|-----|----------|
| Sampling Date |       | 2012/11/08              |          | 2012/11/08              | 2012/11/08                   |     |          |
| Maxxam ID     |       | PO2448                  |          | PO2451                  | PO2452                       |     |          |

| BTEX & F1 Hydrocarbons            |      |     |         |      |     |     |         |
|-----------------------------------|------|-----|---------|------|-----|-----|---------|
| F1 (C6-C10)                       | ug/g | ND  | 3035391 | ND   | ND  | 10  | 3035391 |
| F1 (C6-C10) - BTEX                | ug/g | ND  | 3035391 | ND   | ND  | 10  | 3035391 |
| F2-F4 Hydrocarbons                |      |     |         |      |     |     |         |
| F4G-sg (Grav. Heavy Hydrocarbons) | ug/g |     |         | 1900 |     | 100 | 3040430 |
| F2 (C10-C16 Hydrocarbons)         | ug/g | ND  | 3034122 | ND   | ND  | 10  | 3037099 |
| F3 (C16-C34 Hydrocarbons)         | ug/g | ND  | 3034122 | 140  | ND  | 10  | 3037099 |
| F4 (C34-C50 Hydrocarbons)         | ug/g | ND  | 3034122 | 410  | ND  | 10  | 3037099 |
| Reached Baseline at C50           | ug/g | Yes | 3034122 | No   | Yes |     | 3037099 |
| Surrogate Recovery (%)            |      |     |         |      |     |     |         |
| 1,4-Difluorobenzene               | %    | 102 | 3035391 | 97   | 103 |     | 3035391 |
| 4-Bromofluorobenzene              | %    | 101 | 3035391 | 97   | 81  |     | 3035391 |
| D10-Ethylbenzene                  | %    | 109 | 3035391 | 117  | 106 |     | 3035391 |
| D4-1,2-Dichloroethane             | %    | 100 | 3035391 | 98   | 107 |     | 3035391 |
| o-Terphenyl                       | %    | 66  | 3034122 | 64   | 63  |     | 3037099 |

ND = Not detected RDL = Reportable Detection Limit QC Batch = Quality Control Batch



Ecoplans Limited Client Project #: 1412815

Site Location: 770 SOMERSET ST. W

Sampler Initials: PV

# PETROLEUM HYDROCARBONS (CCME)

| Maxxam ID     |       | PO2453       | PO2455       |     |          |
|---------------|-------|--------------|--------------|-----|----------|
| Sampling Date |       | 2012/11/09   | 2012/11/08   |     |          |
| COC Number    |       | 380818-05-01 | 380818-02-01 |     |          |
|               | Units | BH4 SS2      | TCLP         | RDL | QC Batch |

| BTEX & F1 Hydrocarbons              |      |     |     |     |         |
|-------------------------------------|------|-----|-----|-----|---------|
| F1 (C6-C10)                         | ug/g | ND  |     | 20  | 3036934 |
| F1 (C6-C10) - BTEX                  | ug/g | ND  |     | 20  | 3036934 |
| F2-F4 Hydrocarbons                  |      |     |     |     |         |
| F2 (C10-C16 Hydrocarbons)           | ug/g | ND  |     | 10  | 3036453 |
| Leachable F2 (C10-C16 Hydrocarbons) | ug/L |     | ND  | 100 | 3037003 |
| F3 (C16-C34 Hydrocarbons)           | ug/g | ND  |     | 10  | 3036453 |
| Leachable F3 (C16-C34 Hydrocarbons) | ug/L |     | ND  | 100 | 3037003 |
| F4 (C34-C50 Hydrocarbons)           | ug/g | ND  |     | 10  | 3036453 |
| Leachable F4 (C34-C50 Hydrocarbons) | ug/L |     | ND  | 100 | 3037003 |
| Reached Baseline at C50             | ug/g | Yes |     |     | 3036453 |
| Leachable Reached Baseline at C50   | ug/L |     | Yes | N/A | 3037003 |
| Surrogate Recovery (%)              |      |     |     |     |         |
| 1,4-Difluorobenzene                 | %    | 98  |     |     | 3036934 |
| 4-Bromofluorobenzene                | %    | 99  |     |     | 3036934 |
| D10-Ethylbenzene                    | %    | 102 |     |     | 3036934 |
| D4-1,2-Dichloroethane               | %    | 101 |     |     | 3036934 |
| Leachable o-Terphenyl               | %    |     | 99  |     | 3037003 |
| o-Terphenyl                         | %    | 108 |     |     | 3036453 |

ND = Not detected



Ecoplans Limited Client Project #: 1412815

Site Location: 770 SOMERSET ST. W

Sampler Initials: PV

# POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

| Maxxam ID                    |       | PO2417       | PO2419       | PO2452       | PO2455       |       |          |
|------------------------------|-------|--------------|--------------|--------------|--------------|-------|----------|
| Sampling Date                |       | 2012/11/08   | 2012/11/08   | 2012/11/08   | 2012/11/08   |       |          |
| COC Number                   |       | 380818-01-01 | 380818-01-01 | 380818-05-01 | 380818-02-01 |       |          |
|                              | Units | BH7 SS3      | BH8 SS3      | DUP 1        | TCLP         | RDL   | QC Batch |
|                              |       |              |              |              |              |       |          |
| PCBs                         |       |              |              |              |              |       |          |
| Aroclor 1242                 | ug/g  | ND           | ND           | ND           |              | 0.010 | 3036975  |
| Aroclor 1248                 | ug/g  | ND           | ND           | ND           |              | 0.010 | 3036975  |
| Aroclor 1254                 | ug/g  | ND           | ND           | ND           |              | 0.010 | 3036975  |
| Aroclor 1260                 | ug/g  | ND           | ND           | ND           |              | 0.010 | 3036975  |
| Leachable Total PCB          | ug/L  |              |              |              | ND           | 3     | 3037202  |
| Total PCB                    | ug/g  | ND           | ND           | ND           |              | 0.010 | 3036975  |
| Surrogate Recovery (%)       |       |              |              |              |              |       |          |
| Decachlorobiphenyl           | %     | 96           | 98           | 101          |              |       | 3036975  |
| Leachable Decachlorobiphenyl | %     |              |              |              | 119          |       | 3037202  |
| ND - Not detected            | •     | •            | •            | •            | •            | •     | •        |

ND = Not detected

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch



Ecoplans Limited Client Project #: 1412815

Site Location: 770 SOMERSET ST. W

Sampler Initials: PV

#### **GENERAL COMMENTS**

Sample PO2411-01: VOC Analysis: Detection limits were raised due to low weight of soil provided.

Sample PO2413-01: F2-F4 Analysis:

Duplicate results exceeded RPD acceptance criteria for flagged analytes. This is likely due to sample heterogeneity.

VOC Analysis: Detection limits were raised due to low weight of soil provided.

Sample PO2414-01: VOC Analysis: Detection limits were raised due to low weight of soil provided.

Sample PO2415-01: VOC Analysis: Detection limits were raised due to low weight of soil provided.

Sample PO2417-01: VOC Analysis: Detection limits were raised due to low weight of soil provided.

Sample PO2418-01: VOC Analysis: Detection limits were raised due to low weight of soil provided.

F1-BTEX Analysis: Due to limited amount of sample available for analyses, a smaller than usual portion of the sample was used . Reporting limits were adjusted accordingly.

Sample PO2419-01: VOC Analysis: Detection limits were raised due to low weight of soil provided.

Sample PO2446-01: VOC Analysis: Detection limits were raised due to low weight of soil provided.

Sample PO2447-01: VOC Analysis: Detection limits were raised due to low weight of soil provided.

Sample PO2448-01: VOC Analysis: Detection limits were raised due to low weight of soil provided.

Sample PO2451-01: VOC Analysis: Detection limits were raised due to low weight of soil provided.

Sample PO2452-01: VOC Analysis: Detection limits were raised due to low weight of soil provided.

Sample PO2453-01: VOC Analysis: Detection limits were raised due to low weight of soil provided.

F1-BTEX Analysis: Due to limited amount of sample available for analyses, a smaller than usual portion of the sample was used. Reporting limits were adjusted accordingly.

Results relate only to the items tested.



P.O. #:

Site Location: 770 SOMERSET ST. W

#### Quality Assurance Report Maxxam Job Number: TB2H6839

| QA/QC       |                   |                                     | Date                     |       |          |        |                      |
|-------------|-------------------|-------------------------------------|--------------------------|-------|----------|--------|----------------------|
| Batch       |                   |                                     | Analyzed                 |       |          |        |                      |
| Num Init    | QC Type           | Parameter                           | yyyy/mm/dd               | Value | Recovery | Units  | QC Limits            |
| 3034122 LHR | Matrix Spike      |                                     |                          |       |          |        |                      |
|             | [PO2411-02]       | o-Terphenyl                         | 2012/11/13               |       | 62       | %      | 30 - 130             |
|             |                   | F2 (C10-C16 Hydrocarbons)           | 2012/11/13               |       | 75       | %      | 50 - 130             |
|             |                   | F3 (C16-C34 Hydrocarbons)           | 2012/11/13               |       | 75       | %      | 50 - 130             |
|             |                   | F4 (C34-C50 Hydrocarbons)           | 2012/11/13               |       | 75       | %      | 50 - 130             |
|             | Spiked Blank      | o-Terphenyl                         | 2012/11/13               |       | 68       | %      | 30 - 130             |
|             | •                 | F2 (C10-C16 Hydrocarbons)           | 2012/11/13               |       | 82       | %      | 80 - 120             |
|             |                   | F3 (C16-C34 Hydrocarbons)           | 2012/11/13               |       | 82       | %      | 80 - 120             |
|             |                   | F4 (C34-C50 Hydrocarbons)           | 2012/11/13               |       | 82       | %      | 80 - 120             |
|             | Method Blank      | o-Terphenyl                         | 2012/11/13               |       | 72       | %      | 30 - 130             |
|             |                   | F2 (C10-C16 Hydrocarbons)           | 2012/11/13               | ND. R | RDL=10   | ug/g   |                      |
|             |                   | F3 (C16-C34 Hydrocarbons)           | 2012/11/13               | ,     | RDL=10   | ug/g   |                      |
|             |                   | F4 (C34-C50 Hydrocarbons)           | 2012/11/13               |       | RDL=10   | ug/g   |                      |
|             | RPD [PO2413-01]   | F2 (C10-C16 Hydrocarbons)           | 2012/11/13               | NC NC | .DL-10   | %      | 50                   |
|             | 14 D [1 02+10 01] | F3 (C16-C34 Hydrocarbons)           | 2012/11/13               | NC    |          | %      | 50                   |
|             |                   | F4 (C34-C50 Hydrocarbons)           | 2012/11/13               | NC    |          | %<br>% | 50                   |
| 3034270 HES | RPD [PO2413-01]   | Moisture                            | 2012/11/13               | 12.3  |          | %      | 50                   |
|             |                   |                                     |                          | 12.3  | 00       |        |                      |
| 3034832 A_J | Matrix Spike      | 4-Bromofluorobenzene                | 2012/11/16<br>2012/11/16 |       | 98<br>90 | %<br>% | 60 - 140<br>60 - 130 |
|             |                   | D10-o-Xylene                        |                          |       |          |        |                      |
|             |                   | D4-1,2-Dichloroethane               | 2012/11/16               |       | 105      | %      | 60 - 140             |
|             |                   | D8-Toluene                          | 2012/11/16               |       | 99       | %      | 60 - 140             |
|             |                   | Acetone (2-Propanone)               | 2012/11/16               |       | 95       | %      | 60 - 140             |
|             |                   | Benzene                             | 2012/11/16               |       | 100      | %      | 60 - 140             |
|             |                   | Bromodichloromethane                | 2012/11/16               |       | 107      | %      | 60 - 140             |
|             |                   | Bromoform                           | 2012/11/16               |       | 84       | %      | 60 - 140             |
|             |                   | Bromomethane                        | 2012/11/16               |       | 95       | %      | 60 - 140             |
|             |                   | Carbon Tetrachloride                | 2012/11/16               |       | 109      | %      | 60 - 140             |
|             |                   | Chlorobenzene                       | 2012/11/16               |       | 93       | %      | 60 - 140             |
|             |                   | Chloroform                          | 2012/11/16               |       | 103      | %      | 60 - 140             |
|             |                   | Dibromochloromethane                | 2012/11/16               |       | 87       | %      | 60 - 140             |
|             |                   | 1,2-Dichlorobenzene                 | 2012/11/16               |       | 98       | %      | 60 - 140             |
|             |                   | 1,3-Dichlorobenzene                 | 2012/11/16               |       | 100      | %      | 60 - 140             |
|             |                   | 1,4-Dichlorobenzene                 | 2012/11/16               |       | 99       | %      | 60 - 140             |
|             |                   | Dichlorodifluoromethane (FREON 12)  | 2012/11/16               |       | 90       | %      | 60 - 140             |
|             |                   | 1,1-Dichloroethane                  | 2012/11/16               |       | 89       | %      | 60 - 140             |
|             |                   | 1,2-Dichloroethane                  | 2012/11/16               |       | 103      | %      | 60 - 140             |
|             |                   | 1,1-Dichloroethylene                | 2012/11/16               |       | 103      | %      | 60 - 140             |
|             |                   | cis-1,2-Dichloroethylene            | 2012/11/16               |       | 94       | %      | 60 - 140             |
|             |                   | trans-1,2-Dichloroethylene          | 2012/11/16               |       | 98       | %      | 60 - 140             |
|             |                   | 1,2-Dichloropropane                 | 2012/11/16               |       | 100      | %      | 60 - 140             |
|             |                   | cis-1,3-Dichloropropene             | 2012/11/16               |       | 99       | %      | 60 - 140             |
|             |                   | trans-1,3-Dichloropropene           | 2012/11/16               |       | 102      | %      | 60 - 140             |
|             |                   | Ethylbenzene                        | 2012/11/16               |       | 102      | %      | 60 - 140             |
|             |                   | Ethylene Dibromide                  | 2012/11/16               |       | 98       | %      | 60 - 140             |
|             |                   | Hexane                              | 2012/11/16               |       | 93       | %      | 60 - 140             |
|             |                   | Methylene Chloride(Dichloromethane) | 2012/11/16               |       | 90       | %      | 60 - 140             |
|             |                   | Methyl Isobutyl Ketone              | 2012/11/16               |       | 103      | %<br>% | 60 - 140             |
|             |                   | Methyl Ethyl Ketone (2-Butanone)    | 2012/11/16               |       | 98       | %<br>% | 60 - 140             |
|             |                   | Methyl t-butyl ether (MTBE)         | 2012/11/16               |       | 94       | %      | 60 - 140             |
|             |                   | Styrene                             |                          |       |          |        | 60 - 140<br>60 - 140 |
|             |                   | - · <b>y</b> - · ·                  | 2012/11/16               |       | 97       | %      |                      |
|             |                   | 1,1,1,2-Tetrachloroethane           | 2012/11/16               |       | 103      | %      | 60 - 140             |
|             |                   | 1,1,2,2-Tetrachloroethane           | 2012/11/16               |       | 94       | %      | 60 - 140             |
|             |                   | Tetrachloroethylene                 | 2012/11/16               |       | 96       | %      | 60 - 140             |
|             |                   | Toluene                             | 2012/11/16               |       | 100      | %      | 60 - 140             |
|             |                   | 1,1,1-Trichloroethane               | 2012/11/16               |       | 95       | %      | 60 - 140             |



P.O. #:

Site Location: 770 SOMERSET ST. W

### Quality Assurance Report (Continued)

| QA/QC       |               |                                     | Date       |                |       |          |
|-------------|---------------|-------------------------------------|------------|----------------|-------|----------|
| Batch       |               |                                     | Analyzed   |                |       |          |
| Num Init    | QC Type       | Parameter                           | yyyy/mm/dd | Value Recovery | Units | QC Limit |
| 3034832 A_J | Matrix Spike  | 1,1,2-Trichloroethane               | 2012/11/16 | 95             | %     | 60 - 14  |
|             | ,             | Trichloroethylene                   | 2012/11/16 | 94             | %     | 60 - 14  |
|             |               | Vinyl Chloride                      | 2012/11/16 | 100            | %     | 60 - 14  |
|             |               | p+m-Xylene                          | 2012/11/16 | 104            | %     | 60 - 14  |
|             |               | o-Xylene                            | 2012/11/16 | 104            | %     | 60 - 14  |
|             |               | Trichlorofluoromethane (FREON 11)   | 2012/11/16 | 101            | %     | 60 - 14  |
|             | Spiked Blank  | 4-Bromofluorobenzene                | 2012/11/15 | 100            | %     | 60 - 14  |
|             | ориса Банк    | D10-o-Xylene                        | 2012/11/15 | 101            | %     | 60 - 13  |
|             |               | D4-1,2-Dichloroethane               | 2012/11/15 | 108            | %     | 60 - 14  |
|             |               | D8-Toluene                          | 2012/11/15 | 99             | %     | 60 - 14  |
|             |               |                                     | 2012/11/15 | 101            | %     | 60 - 14  |
|             |               | Acetone (2-Propanone)               |            |                | %     |          |
|             |               | Benzene                             | 2012/11/15 | 100            |       | 60 - 13  |
|             |               | Bromodichloromethane                | 2012/11/15 | 110            | %     | 60 - 13  |
|             |               | Bromoform                           | 2012/11/15 | 88             | %     | 60 - 13  |
|             |               | Bromomethane                        | 2012/11/15 | 94             | %     | 60 - 14  |
|             |               | Carbon Tetrachloride                | 2012/11/15 | 105            | %     | 60 - 13  |
|             |               | Chlorobenzene                       | 2012/11/15 | 94             | %     | 60 - 13  |
|             |               | Chloroform                          | 2012/11/15 | 105            | %     | 60 - 13  |
|             |               | Dibromochloromethane                | 2012/11/15 | 91             | %     | 60 - 13  |
|             |               | 1,2-Dichlorobenzene                 | 2012/11/15 | 100            | %     | 60 - 13  |
|             |               | 1,3-Dichlorobenzene                 | 2012/11/15 | 101            | %     | 60 - 13  |
|             |               | 1,4-Dichlorobenzene                 | 2012/11/15 | 101            | %     | 60 - 13  |
|             |               | Dichlorodifluoromethane (FREON 12)  | 2012/11/15 | 91             | %     | 60 - 1   |
|             |               | 1,1-Dichloroethane                  | 2012/11/15 | 89             | %     | 60 - 1   |
|             |               | 1.2-Dichloroethane                  | 2012/11/15 | 107            | %     | 60 - 13  |
|             |               | 1,1-Dichloroethylene                | 2012/11/15 | 102            | %     | 60 - 1   |
|             |               | cis-1,2-Dichloroethylene            | 2012/11/15 | 94             | %     | 60 - 1   |
|             |               | trans-1,2-Dichloroethylene          | 2012/11/15 | 99             | %     | 60 - 1   |
|             |               | 1,2-Dichloropropane                 | 2012/11/15 | 101            | %     | 60 - 1   |
|             |               | cis-1,3-Dichloropropene             | 2012/11/15 | 106            | %     | 60 - 1   |
|             |               | trans-1,3-Dichloropropene           | 2012/11/15 | 109            | %     | 60 - 1   |
|             |               |                                     |            |                |       |          |
|             |               | Ethylbenzene                        | 2012/11/15 | 102            | %     | 60 - 1   |
|             |               | Ethylene Dibromide                  | 2012/11/15 | 102            | %     | 60 - 1   |
|             |               | Hexane                              | 2012/11/15 | 101            | %     | 60 - 1   |
|             |               | Methylene Chloride(Dichloromethane) | 2012/11/15 | 92             | %     | 60 - 1   |
|             |               | Methyl Isobutyl Ketone              | 2012/11/15 | 108            | %     | 60 - 1   |
|             |               | Methyl Ethyl Ketone (2-Butanone)    | 2012/11/15 | 105            | %     | 60 - 1   |
|             |               | Methyl t-butyl ether (MTBE)         | 2012/11/15 | 100            | %     | 60 - 1   |
|             |               | Styrene                             | 2012/11/15 | 100            | %     | 60 - 1   |
|             |               | 1,1,1,2-Tetrachloroethane           | 2012/11/15 | 104            | %     | 60 - 1   |
|             |               | 1,1,2,2-Tetrachloroethane           | 2012/11/15 | 100            | %     | 60 - 1   |
|             |               | Tetrachloroethylene                 | 2012/11/15 | 94             | %     | 60 - 1   |
|             |               | Toluene                             | 2012/11/15 | 99             | %     | 60 - 1   |
|             |               | 1,1,1-Trichloroethane               | 2012/11/15 | 96             | %     | 60 - 1   |
|             |               | 1,1,2-Trichloroethane               | 2012/11/15 | 99             | %     | 60 - 1   |
|             |               | Trichloroethylene                   | 2012/11/15 | 94             | %     | 60 - 1   |
|             |               | Vinyl Chloride                      | 2012/11/15 | 99             | %     | 60 - 1   |
|             |               | p+m-Xylene                          | 2012/11/15 | 105            | %     | 60 - 1   |
|             |               | o-Xylene                            | 2012/11/15 | 105            |       | 60 - 1   |
|             |               | •                                   |            |                | %     |          |
|             | Mothod Disale | Trichlorofluoromethane (FREON 11)   | 2012/11/15 | 99             | %     | 60 - 1   |
|             | Method Blank  | 4-Bromofluorobenzene                | 2012/11/15 | 96             | %     | 60 - 1   |
|             |               | D10-o-Xylene                        | 2012/11/15 | 92             | %     | 60 - 1   |
|             |               | D4-1,2-Dichloroethane               | 2012/11/15 | 103            | %     | 60 - 1   |
|             |               | D8-Toluene                          | 2012/11/15 | 100            | %     | 60 - 1   |
|             |               | Acetone (2-Propanone)               | 2012/11/15 | ND, RDL=0.50   | ug/g  |          |



P.O. #:

Site Location: 770 SOMERSET ST. W

### Quality Assurance Report (Continued)

| QA/QC       |              |                                     | Date       |                |              |           |
|-------------|--------------|-------------------------------------|------------|----------------|--------------|-----------|
| Batch       |              |                                     | Analyzed   |                |              |           |
| Num Init    | QC Type      | Parameter                           | yyyy/mm/dd | Value Recovery | Units        | QC Limits |
| 8034832 A_J | Method Blank | Benzene                             | 2012/11/15 | ND, RDL=0.020  | ug/g         |           |
|             |              | Bromodichloromethane                | 2012/11/15 | ND, RDL=0.050  | ug/g         |           |
|             |              | Bromoform                           | 2012/11/15 | ND, RDL=0.050  | ug/g         |           |
|             |              | Bromomethane                        | 2012/11/15 | ND, RDL=0.050  | ug/g         |           |
|             |              | Carbon Tetrachloride                | 2012/11/15 | ND, RDL=0.050  | ug/g         |           |
|             |              | Chlorobenzene                       | 2012/11/15 | ND, RDL=0.050  | ug/g         |           |
|             |              | Chloroform                          | 2012/11/15 | ND, RDL=0.050  | ug/g         |           |
|             |              | Dibromochloromethane                | 2012/11/15 | ND, RDL=0.050  | ug/g         |           |
|             |              | 1,2-Dichlorobenzene                 | 2012/11/15 | ND, RDL=0.050  | ug/g         |           |
|             |              | 1,3-Dichlorobenzene                 | 2012/11/15 | ND, RDL=0.050  | ug/g         |           |
|             |              | 1,4-Dichlorobenzene                 | 2012/11/15 | ND, RDL=0.050  | ug/g<br>ug/g |           |
|             |              | Dichlorodifluoromethane (FREON 12)  | 2012/11/15 | ND, RDL=0.050  | ug/g<br>ug/g |           |
|             |              | 1,1-Dichloroethane                  | 2012/11/15 | ND, RDL=0.050  |              |           |
|             |              | ,                                   |            |                | ug/g         |           |
|             |              | 1,2-Dichloroethane                  | 2012/11/15 | ND, RDL=0.050  | ug/g         |           |
|             |              | 1,1-Dichloroethylene                | 2012/11/15 | ND, RDL=0.050  | ug/g         |           |
|             |              | cis-1,2-Dichloroethylene            | 2012/11/15 | ND, RDL=0.050  | ug/g         |           |
|             |              | trans-1,2-Dichloroethylene          | 2012/11/15 | ND, RDL=0.050  | ug/g         |           |
|             |              | 1,2-Dichloropropane                 | 2012/11/15 | ND, RDL=0.050  | ug/g         |           |
|             |              | cis-1,3-Dichloropropene             | 2012/11/15 | ND, RDL=0.030  | ug/g         |           |
|             |              | trans-1,3-Dichloropropene           | 2012/11/15 | ND, RDL=0.040  | ug/g         |           |
|             |              | Ethylbenzene                        | 2012/11/15 | ND, RDL=0.020  | ug/g         |           |
|             |              | Ethylene Dibromide                  | 2012/11/15 | ND, RDL=0.050  | ug/g         |           |
|             |              | Hexane                              | 2012/11/15 | ND, RDL=0.050  | ug/g         |           |
|             |              | Methylene Chloride(Dichloromethane) | 2012/11/15 | ND, RDL=0.050  | ug/g         |           |
|             |              | Methyl Isobutyl Ketone              | 2012/11/15 | ND, RDL=0.50   | ug/g         |           |
|             |              | Methyl Ethyl Ketone (2-Butanone)    | 2012/11/15 | ND, RDL=0.50   | ug/g         |           |
|             |              | Methyl t-butyl ether (MTBE)         | 2012/11/15 | ND, RDL=0.050  | ug/g         |           |
|             |              | Styrene                             | 2012/11/15 | ND, RDL=0.050  | ug/g         |           |
|             |              | 1,1,1,2-Tetrachloroethane           | 2012/11/15 | ND, RDL=0.050  | ug/g         |           |
|             |              | 1,1,2,2-Tetrachloroethane           | 2012/11/15 | ND, RDL=0.050  | ug/g         |           |
|             |              | Tetrachloroethylene                 | 2012/11/15 | ND, RDL=0.050  | ug/g<br>ug/g |           |
|             |              | Toluene                             | 2012/11/15 | ND, RDL=0.030  |              |           |
|             |              |                                     |            |                | ug/g         |           |
|             |              | 1,1,1-Trichloroethane               | 2012/11/15 | ND, RDL=0.050  | ug/g         |           |
|             |              | 1,1,2-Trichloroethane               | 2012/11/15 | ND, RDL=0.050  | ug/g         |           |
|             |              | Trichloroethylene                   | 2012/11/15 | ND, RDL=0.050  | ug/g         |           |
|             |              | Vinyl Chloride                      | 2012/11/15 | ND, RDL=0.020  | ug/g         |           |
|             |              | p+m-Xylene                          | 2012/11/15 | ND, RDL=0.020  | ug/g         |           |
|             |              | o-Xylene                            | 2012/11/15 | ND, RDL=0.020  | ug/g         |           |
|             |              | Xylene (Total)                      | 2012/11/15 | ND, RDL=0.020  | ug/g         |           |
|             |              | Trichlorofluoromethane (FREON 11)   | 2012/11/15 | ND, RDL=0.050  | ug/g         |           |
|             | RPD          | Acetone (2-Propanone)               | 2012/11/15 | NC             | %            | 5         |
|             |              | Benzene                             | 2012/11/15 | NC             | %            | 5         |
|             |              | Bromodichloromethane                | 2012/11/15 | NC             | %            | 5         |
|             |              | Bromoform                           | 2012/11/15 | NC             | %            | 5         |
|             |              | Bromomethane                        | 2012/11/15 | NC             | %            | 5         |
|             |              | Carbon Tetrachloride                | 2012/11/15 | NC             | %            | 5         |
|             |              | Chlorobenzene                       | 2012/11/15 | NC             | %            | 5         |
|             |              | Chloroform                          | 2012/11/15 | NC             | %            | 5         |
|             |              | Dibromochloromethane                | 2012/11/15 | NC<br>NC       | %<br>%       | 5         |
|             |              | 1.2-Dichlorobenzene                 |            |                | %<br>%       |           |
|             |              | ,                                   | 2012/11/15 | NC<br>NC       |              | 5         |
|             |              | 1,3-Dichlorobenzene                 | 2012/11/15 | NC<br>NO       | %            | 5         |
|             |              | 1,4-Dichlorobenzene                 | 2012/11/15 | NC             | %            | 5         |
|             |              | Dichlorodifluoromethane (FREON 12)  | 2012/11/15 | NC             | %            | 5         |
|             |              | 1,1-Dichloroethane                  | 2012/11/15 | NC             | %            | 5         |
|             |              | 1,2-Dichloroethane                  | 2012/11/15 | NC             | %            | 5         |



P.O. #:

Site Location: 770 SOMERSET ST. W

### Quality Assurance Report (Continued)

| QA/QC        |                 |                                     | Date                     |                            |              |                      |
|--------------|-----------------|-------------------------------------|--------------------------|----------------------------|--------------|----------------------|
| Batch        |                 |                                     | Analyzed                 |                            |              |                      |
| Num Init     | QC Type         | Parameter                           | yyyy/mm/dd               | Value Recovery             | Units        | QC Limits            |
| 3034832 A_J  | RPD             | 1,1-Dichloroethylene                | 2012/11/15               | NC                         | %            | 50                   |
|              |                 | cis-1,2-Dichloroethylene            | 2012/11/15               | NC                         | %            | 50                   |
|              |                 | trans-1,2-Dichloroethylene          | 2012/11/15               | NC                         | %            | 50                   |
|              |                 | 1,2-Dichloropropane                 | 2012/11/15               | NC                         | %            | 50                   |
|              |                 | cis-1,3-Dichloropropene             | 2012/11/15               | NC                         | %            | 50                   |
|              |                 | trans-1,3-Dichloropropene           | 2012/11/15               | NC                         | %            | 50                   |
|              |                 | Ethylbenzene                        | 2012/11/15               | NC                         | %            | 50                   |
|              |                 | Ethylene Dibromide                  | 2012/11/15               | NC                         | %            | 50                   |
|              |                 | Hexane                              | 2012/11/15               | NC                         | %            | 50                   |
|              |                 | Methylene Chloride(Dichloromethane) | 2012/11/15               | NC                         | %            | 50                   |
|              |                 | Methyl Isobutyl Ketone              | 2012/11/15               | NC                         | %            | 50                   |
|              |                 | Methyl Ethyl Ketone (2-Butanone)    | 2012/11/15               | NC                         | %            | 50                   |
|              |                 | Methyl t-butyl ether (MTBE)         | 2012/11/15               | NC                         | %            | 50                   |
|              |                 | Styrene                             | 2012/11/15               | NC                         | %            | 50                   |
|              |                 | 1,1,1,2-Tetrachloroethane           | 2012/11/15               | NC                         | %            | 50                   |
|              |                 | 1,1,2,2-Tetrachloroethane           | 2012/11/15               | NC                         | %            | 50                   |
|              |                 | Tetrachloroethylene                 | 2012/11/15               | NC                         | %            | 50                   |
|              |                 | Toluene                             | 2012/11/15               | NC                         | %            | 50                   |
|              |                 | 1,1,1-Trichloroethane               | 2012/11/15               | NC                         | %            | 50                   |
|              |                 | 1,1,2-Trichloroethane               | 2012/11/15               | NC                         | %            | 50                   |
|              |                 | Trichloroethylene                   | 2012/11/15               | NC                         | %            | 50                   |
|              |                 | Vinyl Chloride                      | 2012/11/15               | NC                         | %            | 50                   |
|              |                 | p+m-Xylene                          | 2012/11/15               | NC                         | %            | 50                   |
|              |                 | o-Xylene                            | 2012/11/15               | NC                         | %            | 50                   |
|              |                 | Xylene (Total)                      | 2012/11/15               | NC                         | %            | 50                   |
|              |                 | Trichlorofluoromethane (FREON 11)   | 2012/11/15               | NC                         | %            | 50                   |
| 3035391 STE  | Spiked Blank    | 1,4-Difluorobenzene                 | 2012/11/14               | 99                         | %            | 60 - 140             |
|              |                 | 4-Bromofluorobenzene                | 2012/11/14               | 101                        | %            | 60 - 140             |
|              |                 | D10-Ethylbenzene                    | 2012/11/14               | 105                        | %            | 30 - 130             |
|              |                 | D4-1,2-Dichloroethane               | 2012/11/14               | 102                        | %            | 60 - 140             |
|              |                 | F1 (C6-C10)                         | 2012/11/14               | 84                         | %            | 80 - 120             |
|              | RPD             | F1 (C6-C10)                         | 2012/11/14               | 7.6                        | %            | 50                   |
|              | Method Blank    | 1,4-Difluorobenzene                 | 2012/11/14               | 102                        | %            | 60 - 140             |
|              | Wictioa Blank   | 4-Bromofluorobenzene                | 2012/11/14               | 101                        | %            | 60 - 140             |
|              |                 | D10-Ethylbenzene                    | 2012/11/14               | 95                         | %            | 30 - 130             |
|              |                 | D4-1,2-Dichloroethane               | 2012/11/14               | 106                        | %            | 60 - 140             |
|              |                 | F1 (C6-C10)                         | 2012/11/14               | ND, RDL=10                 | ug/g         | 00 110               |
|              |                 | F1 (C6-C10) - BTEX                  | 2012/11/14               | ND, RDL=10                 | ug/g         |                      |
| 3036084 MC   | Matrix Spike    | Leachable Mercury (Hg)              | 2012/11/15               | 104                        | %            | 80 - 120             |
| 00000011110  | Leachate Blank  | Leachable Mercury (Hg)              | 2012/11/15               | ND, RDL=0.001              | mg/L         | 00 120               |
|              | Spiked Blank    | Leachable Mercury (Hg)              | 2012/11/15               | 103                        | %            | 80 - 120             |
|              | Method Blank    | Leachable Mercury (Hg)              | 2012/11/15               | ND, RDL=0.001              | mg/L         | 00 120               |
|              | RPD             | Leachable Mercury (Hg)              | 2012/11/15               | NC                         | %            | 25                   |
| 3036282 PBA  | Matrix Spike    | Leachable Arsenic (As)              | 2012/11/15               | 110                        | %            | 75 - 125             |
| JJOOLOZ I DA | aux opino       | Leachable Barium (Ba)               | 2012/11/15               | 109                        | %            | 75 - 125<br>75 - 125 |
|              |                 | Leachable Boron (B)                 | 2012/11/15               | 111                        | %            | 75 - 125<br>75 - 125 |
|              |                 | Leachable Cadmium (Cd)              | 2012/11/15               | 110                        | %<br>%       | 75 - 125<br>75 - 125 |
|              |                 | Leachable Chromium (Cr)             | 2012/11/15               | 110                        | %            | 75 - 125<br>75 - 125 |
|              |                 | Leachable Lead (Pb)                 | 2012/11/15               | 110                        | %<br>%       | 75 - 125<br>75 - 125 |
|              |                 | Leachable Selenium (Se)             | 2012/11/15               | 116                        | %            | 75 - 125<br>75 - 125 |
|              |                 | Leachable Selenium (Se)             | 2012/11/15               | 104                        | %            | 75 - 125<br>75 - 125 |
|              |                 | Leachable Uranium (U)               | 2012/11/15               | 110                        |              | 75 - 125<br>75 - 125 |
|              | Leachate Blank  | Leachable Arsenic (As)              |                          | ND, RDL=0.2                | %<br>ma/l    | 10 - 120             |
|              | Leadinate DianK | Leachable Barium (Ba)               | 2012/11/15               | •                          | mg/L         |                      |
|              |                 | Leachable Boron (B)                 | 2012/11/15<br>2012/11/15 | ND, RDL=0.2<br>ND, RDL=0.1 | mg/L<br>mg/L |                      |
|              |                 |                                     | 7017/11/15               | 1011 1511 1511             |              |                      |



P.O. #:

Site Location: 770 SOMERSET ST. W

### Quality Assurance Report (Continued)

| QA/QC<br>Batch |                     |                                                                             | Date<br>Analyzed         |                                       |                      |
|----------------|---------------------|-----------------------------------------------------------------------------|--------------------------|---------------------------------------|----------------------|
| Num Init       | QC Type             | Parameter                                                                   | yyyy/mm/dd               | Value Recovery Units                  | QC Limits            |
| 3036282 PBA    | Leachate Blank      | Leachable Cadmium (Cd)                                                      | 2012/11/15               | ND, RDL=0.05 mg/L                     | QO EIIIIII           |
|                | Zodonato Zidini     | Leachable Chromium (Cr)                                                     | 2012/11/15               | ND, RDL=0.1 mg/L                      |                      |
|                |                     | Leachable Lead (Pb)                                                         | 2012/11/15               | ND, RDL=0.1 mg/L                      |                      |
|                |                     | Leachable Selenium (Se)                                                     | 2012/11/15               | ND, RDL=0.1 mg/L                      |                      |
|                |                     | Leachable Silver (Ag)                                                       | 2012/11/15               | ND, RDL=0.01 mg/L                     |                      |
|                |                     | Leachable Uranium (U)                                                       | 2012/11/15               | ND, RDL=0.01 mg/L                     |                      |
|                | Spiked Blank        | Leachable Arsenic (As)                                                      | 2012/11/15               | 105 %                                 | 75 - 125             |
|                | Opinou Biann        | Leachable Barium (Ba)                                                       | 2012/11/15               | 107 %                                 | 75 - 125             |
|                |                     | Leachable Boron (B)                                                         | 2012/11/15               | 110 %                                 | 75 - 125             |
|                |                     | Leachable Cadmium (Cd)                                                      | 2012/11/15               | 105 %                                 | 75 - 125             |
|                |                     | Leachable Chromium (Cr)                                                     | 2012/11/15               | 105 %                                 | 75 - 125             |
|                |                     | Leachable Lead (Pb)                                                         | 2012/11/15               | 107 %                                 | 75 - 125             |
|                |                     | Leachable Selenium (Se)                                                     | 2012/11/15               | 109 %                                 | 75 - 125             |
|                |                     | Leachable Silver (Ag)                                                       | 2012/11/15               | 102 %                                 | 75 - 125             |
|                |                     | Leachable Uranium (U)                                                       | 2012/11/15               | 103 %                                 | 75 - 125             |
|                | Method Blank        | Leachable Arsenic (As)                                                      | 2012/11/15               | ND, RDL=0.2 mg/L                      | 75 - 125             |
|                | ourod Diarik        | Leachable Barium (Ba)                                                       | 2012/11/15               | ND, RDL=0.2 mg/L                      |                      |
|                |                     | Leachable Boron (B)                                                         | 2012/11/15               | ND, RDL=0.2 mg/L<br>ND, RDL=0.1 mg/L  |                      |
|                |                     | Leachable Cadmium (Cd)                                                      | 2012/11/15               | ND, RDL=0.05 mg/L                     |                      |
|                |                     | Leachable Chromium (Cr)                                                     | 2012/11/15               | ND, RDL=0.03 mg/L                     |                      |
|                |                     | Leachable Lead (Pb)                                                         | 2012/11/15               | ND, RDL=0.1 mg/L                      |                      |
|                |                     | Leachable Selenium (Se)                                                     | 2012/11/15               | ND, RDL=0.1 mg/L                      |                      |
|                |                     | Leachable Silver (Ag)                                                       | 2012/11/15               | ND, RDL=0.1 mg/L<br>ND, RDL=0.01 mg/L |                      |
|                |                     | Leachable Uranium (U)                                                       | 2012/11/15               | ND, RDL=0.01 mg/L                     |                      |
|                | RPD                 | Leachable Arsenic (As)                                                      | 2012/11/15               | NC %                                  | 35                   |
|                | KFD                 | Leachable Barium (Ba)                                                       | 2012/11/15               | NC %                                  | 35                   |
|                |                     | Leachable Boron (B)                                                         |                          | NC %                                  | 35                   |
|                |                     | Leachable Cadmium (Cd)                                                      | 2012/11/15<br>2012/11/15 | NC %                                  | 35                   |
|                |                     | ` ,                                                                         |                          | NC %                                  | 35                   |
|                |                     | Leachable Chromium (Cr)                                                     | 2012/11/15               |                                       | 35                   |
|                |                     | Leachable Lead (Pb) Leachable Selenium (Se)                                 | 2012/11/15<br>2012/11/15 | NC %                                  |                      |
|                |                     | ` ,                                                                         |                          | NC %                                  | 35<br>35             |
|                |                     | Leachable Silver (Ag)                                                       | 2012/11/15               |                                       |                      |
| 026205 646     | Matrix Chiles       | Leachable Uranium (U)                                                       | 2012/11/15               | NC %                                  | 35<br>75 135         |
| 036385 SAC     | Matrix Spike        | Chromium (VI)                                                               | 2012/11/15               | 36 (1) %<br>108 %                     | 75 - 125<br>75 - 125 |
|                | QC Standard         | Chromium (VI)                                                               | 2012/11/15               |                                       |                      |
|                | Spiked Blank        | Chromium (VI)                                                               | 2012/11/15<br>2012/11/15 | 98 %                                  | 80 - 120             |
|                | Method Blank<br>RPD | Chromium (VI)                                                               |                          | ND, RDL=0.2 ug/g<br>NC %              | 25                   |
| 026405 11 \\   |                     | Chromium (VI)                                                               | 2012/11/15               | NC %                                  | 35                   |
| 036405 H_W     | Matrix Spike        | Leachable (ZLIE) 1.4 Diffuerabenzana                                        | 2042/44/46               | 102 0/                                | 60 - 140             |
|                | [PO2455-02]         | Leachable (ZHE) 1,4-Difluorobenzene<br>Leachable (ZHE) 4-Bromofluorobenzene | 2012/11/16               | 103 %                                 |                      |
|                |                     | ,                                                                           | 2012/11/16               | 104 %                                 | 60 - 140             |
|                |                     | Leachable (ZHE) D10-Ethylbenzene                                            | 2012/11/16               | 96 %                                  | 30 - 130             |
|                |                     | Leachable (ZHE) D4-1,2-Dichloroethane                                       | 2012/11/16               | 93 %                                  | 60 - 140             |
|                |                     | Leachable (ZHE) Benzene                                                     | 2012/11/16               | 102 %                                 | 70 - 130             |
|                |                     | Leachable (ZHE) Toluene                                                     | 2012/11/16               | 93 %                                  | 70 - 130             |
|                |                     | Leachable (ZHE) Ethylbenzene                                                | 2012/11/16               | 99 %                                  | 70 - 130             |
|                |                     | Leachable (ZHE) o-Xylene                                                    | 2012/11/16               | 94 %                                  | 70 - 130             |
|                |                     | Leachable (ZHE) p+m-Xylene                                                  | 2012/11/16               | 86 %                                  | 70 - 130             |
|                | Lanahata Diawi      | Leachable (ZHE) F1 (C6-C10)                                                 | 2012/11/16               | 99 %                                  | 70 - 130             |
|                | Leachate Blank      | Leachable (ZHE) 1,4-Difluorobenzene                                         | 2012/11/16               | 103 %                                 | 60 - 140             |
|                |                     | Leachable (ZHE) 4-Bromofluorobenzene                                        | 2012/11/16               | 99 %                                  | 60 - 140             |
|                |                     | Leachable (ZHE) D10-Ethylbenzene                                            | 2012/11/16               | 95 %                                  | 30 - 130             |
|                |                     | Leachable (ZHE) D4-1,2-Dichloroethane                                       | 2012/11/16               | 94 %                                  | 60 - 140             |
|                |                     | Leachable (ZHE) Benzene                                                     | 2012/11/16               | ND, RDL=0.8 ug/L                      |                      |
|                |                     | Leachable (ZHE) Toluene                                                     | 2012/11/16               | ND, RDL=0.8 ug/L                      |                      |



P.O. #:

Site Location: 770 SOMERSET ST. W

### Quality Assurance Report (Continued)

| QA/QC       | <u> </u>        |                                       | Date       |                |       |          |
|-------------|-----------------|---------------------------------------|------------|----------------|-------|----------|
| Batch       |                 |                                       | Analyzed   |                |       |          |
| Num Init    | QC Type         | Parameter                             | yyyy/mm/dd | Value Recovery | Units | QC Limit |
| 3036405 H_W | Leachate Blank  | Leachable (ZHE) Ethylbenzene          | 2012/11/16 | ND, RDL=0.8    | ug/L  |          |
|             |                 | Leachable (ZHE) o-Xylene              | 2012/11/16 | ND, RDL=0.8    | ug/L  |          |
|             |                 | Leachable (ZHE) p+m-Xylene            | 2012/11/16 | ND, RDL=2      | ug/L  |          |
|             |                 | Leachable (ZHE) Total Xylenes         | 2012/11/16 | ND, RDL=2      | ug/L  |          |
|             |                 | Leachable (ZHE) F1 (C6-C10)           | 2012/11/16 | ND, RDL=1000   | ug/L  |          |
|             |                 | Leachable (ZHE) F1 (C6-C10) - BTEX    | 2012/11/16 | ND, RDL=300    | ug/L  |          |
|             | Spiked Blank    | Leachable (ZHE) 1,4-Difluorobenzene   | 2012/11/16 | 102            | %     | 60 - 14  |
|             |                 | Leachable (ZHE) 4-Bromofluorobenzene  | 2012/11/16 | 103            | %     | 60 - 14  |
|             |                 | Leachable (ZHE) D10-Ethylbenzene      | 2012/11/16 | 96             | %     | 30 - 13  |
|             |                 | Leachable (ZHE) D4-1,2-Dichloroethane | 2012/11/16 | 92             | %     | 60 - 14  |
|             |                 | Leachable (ZHE) Benzene               | 2012/11/16 | 102            | %     | 70 - 13  |
|             |                 | Leachable (ZHE) Toluene               | 2012/11/16 | 92             | %     | 70 - 13  |
|             |                 | Leachable (ZHE) Ethylbenzene          | 2012/11/16 | 98             | %     | 70 - 13  |
|             |                 | Leachable (ZHE) o-Xylene              | 2012/11/16 | 91             | %     | 70 - 13  |
|             |                 | Leachable (ZHE) p+m-Xylene            | 2012/11/16 | 85             | %     | 70 - 13  |
|             |                 | Leachable (ZHE) F1 (C6-C10)           | 2012/11/16 | 95             | %     | 70 - 13  |
|             | Method Blank    | Leachable (ZHE) 1,4-Difluorobenzene   | 2012/11/16 | 103            | %     | 60 - 14  |
|             |                 | Leachable (ZHE) 4-Bromofluorobenzene  | 2012/11/16 | 99             | %     | 60 - 14  |
|             |                 | Leachable (ZHE) D10-Ethylbenzene      | 2012/11/16 | 96             | %     | 30 - 13  |
|             |                 | Leachable (ZHE) D4-1,2-Dichloroethane | 2012/11/16 | 96             | %     | 60 - 14  |
|             |                 | Leachable (ZHE) Benzene               | 2012/11/16 | ND, RDL=0.8    | ug/L  |          |
|             |                 | Leachable (ZHE) Toluene               | 2012/11/16 | ND, RDL=0.8    | ug/L  |          |
|             |                 | Leachable (ZHE) Ethylbenzene          | 2012/11/16 | ND, RDL=0.8    | ug/L  |          |
|             |                 | Leachable (ZHE) o-Xylene              | 2012/11/16 | ND, RDL=0.8    | ug/L  |          |
|             |                 | Leachable (ZHE) p+m-Xylene            | 2012/11/16 | ND, RDL=2      | ug/L  |          |
|             |                 | Leachable (ZHE) Total Xylenes         | 2012/11/16 | ND, RDL=2      | ug/L  |          |
|             |                 | Leachable (ZHE) F1 (C6-C10)           | 2012/11/16 | ND, RDL=1000   | ug/L  |          |
|             |                 | Leachable (ZHE) F1 (C6-C10) - BTEX    | 2012/11/16 | ND, RDL=1000   | ug/L  |          |
|             | RPD [PO2455-02] | Leachable (ZHE) Benzene               | 2012/11/16 | NC             | %     | •        |
|             |                 | Leachable (ZHE) Toluene               | 2012/11/16 | NC             | %     | •        |
|             |                 | Leachable (ZHE) Ethylbenzene          | 2012/11/16 | NC             | %     | •        |
|             |                 | Leachable (ZHE) o-Xylene              | 2012/11/16 | NC             | %     | •        |
|             |                 | Leachable (ZHE) p+m-Xylene            | 2012/11/16 | NC             | %     |          |
|             |                 | Leachable (ZHE) Total Xylenes         | 2012/11/16 | NC             | %     |          |
|             |                 | Leachable (ZHE) F1 (C6-C10)           | 2012/11/16 | NC             | %     | •        |
|             |                 | Leachable (ZHE) F1 (C6-C10) - BTEX    | 2012/11/16 | NC             | %     |          |
| 3036453 DPO | Matrix Spike    | o-Terphenyl                           | 2012/11/15 | 108            | %     | 50 - 1   |
|             |                 | F2 (C10-C16 Hydrocarbons)             | 2012/11/15 | 98             | %     | 50 - 13  |
|             |                 | F3 (C16-C34 Hydrocarbons)             | 2012/11/15 | 90             | %     | 50 - 1   |
|             |                 | F4 (C34-C50 Hydrocarbons)             | 2012/11/15 | 108            | %     | 50 - 13  |
|             | Spiked Blank    | o-Terphenyl                           | 2012/11/15 | 103            | %     | 50 - 13  |
|             |                 | F2 (C10-C16 Hydrocarbons)             | 2012/11/15 | 90             | %     | 80 - 12  |
|             |                 | F3 (C16-C34 Hydrocarbons)             | 2012/11/15 | 101            | %     | 80 - 12  |
|             |                 | F4 (C34-C50 Hydrocarbons)             | 2012/11/15 | 93             | %     | 80 - 12  |
|             | Method Blank    | o-Terphenyl                           | 2012/11/15 | 110            | %     | 50 - 13  |
|             |                 | F2 (C10-C16 Hydrocarbons)             | 2012/11/15 | ND, RDL=10     | ug/g  |          |
|             |                 | F3 (C16-C34 Hydrocarbons)             | 2012/11/15 | ND, RDL=10     | ug/g  |          |
|             |                 | F4 (C34-C50 Hydrocarbons)             | 2012/11/15 | ND, RDL=10     | ug/g  |          |
|             | RPD             | F2 (C10-C16 Hydrocarbons)             | 2012/11/15 | NC             | %     | ;        |
|             |                 | F3 (C16-C34 Hydrocarbons)             | 2012/11/15 | 7.1            | %     | ;        |
|             |                 | F4 (C34-C50 Hydrocarbons)             | 2012/11/15 | NC             | %     |          |
| 3036788 SAC | Matrix Spike    |                                       |            |                |       |          |
|             | [PO2447-01]     | Chromium (VI)                         | 2012/11/17 | 80             | %     | 75 - 1   |
|             | QC Standard     | Chromium (VI)                         | 2012/11/17 | 87             | %     | 75 - 12  |
|             | Spiked Blank    | Chromium (VI)                         | 2012/11/17 | 98             | %     | 80 - 12  |



P.O. #:

Site Location: 770 SOMERSET ST. W

### Quality Assurance Report (Continued)

| QA/QC       |                 |                        | Date       |                 |              |                      |
|-------------|-----------------|------------------------|------------|-----------------|--------------|----------------------|
| Batch       |                 |                        | Analyzed   |                 |              |                      |
| Num Init    | QC Type         | Parameter              | yyyy/mm/dd |                 | Units        | QC Limits            |
| 3036788 SAC | Method Blank    | Chromium (VI)          | 2012/11/17 |                 | ug/g         |                      |
|             | RPD [PO2447-01] | Chromium (VI)          | 2012/11/17 | NC              | %            | 35                   |
| 3036794 DTI | Matrix Spike    | D10-Anthracene         | 2012/11/15 | 93              | %            | 50 - 130             |
|             |                 | D14-Terphenyl (FS)     | 2012/11/15 | 93              | %            | 50 - 130             |
|             |                 | D8-Acenaphthylene      | 2012/11/15 | 79              | %            | 50 - 130             |
|             |                 | Acenaphthene           | 2012/11/15 | 84              | %            | 50 - 130             |
|             |                 | Acenaphthylene         | 2012/11/15 | 80              | %            | 50 - 130             |
|             |                 | Anthracene             | 2012/11/15 | 87              | %            | 50 - 130             |
|             |                 | Benzo(a)anthracene     | 2012/11/15 | 112             | %            | 50 - 130             |
|             |                 | Benzo(a)pyrene         | 2012/11/15 | 113             | %            | 50 - 130             |
|             |                 | Benzo(b/j)fluoranthene | 2012/11/15 | 99              | %            | 50 - 130             |
|             |                 | Benzo(g,h,i)perylene   | 2012/11/15 | 107             | %            | 50 - 130             |
|             |                 | Benzo(k)fluoranthene   | 2012/11/15 | 93              | %            | 50 - 130             |
|             |                 | Chrysene               | 2012/11/15 | 106             | %            | 50 - 130<br>50 - 130 |
|             |                 | Dibenz(a,h)anthracene  | 2012/11/15 | 99              | %            | 50 - 130<br>50 - 130 |
|             |                 | Fluoranthene           | 2012/11/15 |                 | %            | 50 - 130<br>50 - 130 |
|             |                 |                        |            | NC (2)          |              |                      |
|             |                 | Fluorene               | 2012/11/15 | 89              | %            | 50 - 130             |
|             |                 | Indeno(1,2,3-cd)pyrene | 2012/11/15 | 109             | %            | 50 - 130             |
|             |                 | 1-Methylnaphthalene    | 2012/11/15 | 72              | %            | 50 - 130             |
|             |                 | 2-Methylnaphthalene    | 2012/11/15 | 72              | %            | 50 - 130             |
|             |                 | Naphthalene            | 2012/11/15 | 70              | %            | 50 - 130             |
|             |                 | Phenanthrene           | 2012/11/15 | 112             | %            | 50 - 130             |
|             |                 | Pyrene                 | 2012/11/15 | 125             | %            | 50 - 130             |
|             | Spiked Blank    | D10-Anthracene         | 2012/11/15 | 87              | %            | 50 - 130             |
|             |                 | D14-Terphenyl (FS)     | 2012/11/15 | 91              | %            | 50 - 130             |
|             |                 | D8-Acenaphthylene      | 2012/11/15 | 83              | %            | 50 - 130             |
|             |                 | Acenaphthene           | 2012/11/15 | 87              | %            | 50 - 130             |
|             |                 | Acenaphthylene         | 2012/11/15 | 84              | %            | 50 - 130             |
|             |                 | Anthracene             | 2012/11/15 | 82              | %            | 50 - 130             |
|             |                 | Benzo(a)anthracene     | 2012/11/15 | 97              | %            | 50 - 130             |
|             |                 | Benzo(a)pyrene         | 2012/11/15 | 99              | %            | 50 - 130             |
|             |                 | Benzo(b/j)fluoranthene | 2012/11/15 | 90              | %            | 50 - 130             |
|             |                 | Benzo(g,h,i)perylene   | 2012/11/15 | 99              | %            | 50 - 130             |
|             |                 | Benzo(k)fluoranthene   | 2012/11/15 | 101             | %            | 50 - 130             |
|             |                 | Chrysene               | 2012/11/15 | 93              | %            | 50 - 130<br>50 - 130 |
|             |                 | Dibenz(a,h)anthracene  | 2012/11/15 | 99              | %            | 50 - 130<br>50 - 130 |
|             |                 | Fluoranthene           | 2012/11/15 | 91              | %            | 50 - 130<br>50 - 130 |
|             |                 | Fluorene               |            |                 | %            |                      |
|             |                 |                        | 2012/11/15 | 88              |              | 50 - 130             |
|             |                 | Indeno(1,2,3-cd)pyrene | 2012/11/15 | 98              | %            | 50 - 130             |
|             |                 | 1-Methylnaphthalene    | 2012/11/15 | 83              | %            | 50 - 130             |
|             |                 | 2-Methylnaphthalene    | 2012/11/15 | 81              | %            | 50 - 130             |
|             |                 | Naphthalene            | 2012/11/15 | 82              | %            | 50 - 130             |
|             |                 | Phenanthrene           | 2012/11/15 | 87              | %            | 50 - 130             |
|             |                 | Pyrene                 | 2012/11/15 | 93              | %            | 50 - 130             |
|             | Method Blank    | D10-Anthracene         | 2012/11/15 | 83              | %            | 50 - 130             |
|             |                 | D14-Terphenyl (FS)     | 2012/11/15 | 85              | %            | 50 - 130             |
|             |                 | D8-Acenaphthylene      | 2012/11/15 | 78              | %            | 50 - 130             |
|             |                 | Acenaphthene           | 2012/11/15 | ND, RDL=0.0050  | ug/g         |                      |
|             |                 | Acenaphthylene         | 2012/11/15 | -               | ug/g         |                      |
|             |                 | Anthracene             | 2012/11/15 | ·               | ug/g         |                      |
|             |                 | Benzo(a)anthracene     | 2012/11/15 | -               | ug/g         |                      |
|             |                 | Benzo(a)pyrene         | 2012/11/15 |                 | ug/g         |                      |
|             |                 | Benzo(b/j)fluoranthene | 2012/11/15 |                 | ug/g<br>ug/g |                      |
|             |                 | Benzo(g,h,i)perylene   | 2012/11/15 |                 | ug/g<br>ug/g |                      |
|             |                 | Benzo(k)fluoranthene   | 2012/11/15 | -               | ug/g<br>ug/g |                      |
|             |                 | Don 20(N) naorana lene | 2012/11/13 | 14D, NDL-0.0000 | ug/g         |                      |



P.O. #:

Site Location: 770 SOMERSET ST. W

### Quality Assurance Report (Continued)

| QA/QC         |                 |                        | Date       |                |        |           |
|---------------|-----------------|------------------------|------------|----------------|--------|-----------|
| Batch         |                 |                        | Analyzed   |                |        |           |
| Num Init      | QC Type         | Parameter              | yyyy/mm/dd | Value Recovery | Units  | QC Limits |
| 3036794 DTI   | Method Blank    | Chrysene               | 2012/11/15 | ND, RDL=0.0050 | ug/g   |           |
|               |                 | Dibenz(a,h)anthracene  | 2012/11/15 | ND, RDL=0.0050 | ug/g   |           |
|               |                 | Fluoranthene           | 2012/11/15 | ND, RDL=0.0050 | ug/g   |           |
|               |                 | Fluorene               | 2012/11/15 | ND, RDL=0.0050 | ug/g   |           |
|               |                 | Indeno(1,2,3-cd)pyrene | 2012/11/15 | ND, RDL=0.0050 | ug/g   |           |
|               |                 | 1-Methylnaphthalene    | 2012/11/15 | ND, RDL=0.0050 | ug/g   |           |
|               |                 | 2-Methylnaphthalene    | 2012/11/15 | ND, RDL=0.0050 | ug/g   |           |
|               |                 | Naphthalene            | 2012/11/15 | ND, RDL=0.0050 | ug/g   |           |
|               |                 | Phenanthrene           | 2012/11/15 | ND, RDL=0.0050 | ug/g   |           |
|               |                 | Pyrene                 | 2012/11/15 | ND, RDL=0.0050 | ug/g   |           |
|               | RPD             | Acenaphthene           | 2012/11/15 | NC             | %      | 40        |
|               | I D             | Acenaphthylene         | 2012/11/15 | NC             | %      | 40        |
|               |                 | Anthracene             | 2012/11/15 | NC             | %      | 40        |
|               |                 | Benzo(a)anthracene     | 2012/11/15 | 16.9           | %<br>% | 40        |
|               |                 |                        |            |                |        |           |
|               |                 | Benzo(a)pyrene         | 2012/11/15 | 9.4            | %      | 40        |
|               |                 | Benzo(b/j)fluoranthene | 2012/11/15 | 9.7            | %      | 40        |
|               |                 | Benzo(g,h,i)perylene   | 2012/11/15 | 3.3            | %      | 40        |
|               |                 | Benzo(k)fluoranthene   | 2012/11/15 | NC             | %      | 40        |
|               |                 | Chrysene               | 2012/11/15 | 9.2            | %      | 40        |
|               |                 | Dibenz(a,h)anthracene  | 2012/11/15 | NC             | %      | 40        |
|               |                 | Fluoranthene           | 2012/11/15 | 11.8           | %      | 40        |
|               |                 | Fluorene               | 2012/11/15 | NC             | %      | 40        |
|               |                 | Indeno(1,2,3-cd)pyrene | 2012/11/15 | 4.1            | %      | 40        |
|               |                 | 1-Methylnaphthalene    | 2012/11/15 | NC             | %      | 40        |
|               |                 | 2-Methylnaphthalene    | 2012/11/15 | NC             | %      | 40        |
|               |                 | Naphthalene            | 2012/11/15 | NC             | %      | 40        |
|               |                 | Phenanthrene           | 2012/11/15 | 0.4            | %      | 40        |
|               |                 | Pyrene                 | 2012/11/15 | 11.2           | %      | 40        |
| 3036853 LHA   | Matrix Spike    | Free Cyanide           | 2012/11/15 | 100            | %      | 75 - 125  |
|               | Spiked Blank    | Free Cyanide           | 2012/11/15 | 104            | %      | 80 - 120  |
|               | Method Blank    | Free Cyanide           | 2012/11/15 | ND, RDL=0.01   | ug/g   | 00 .20    |
|               | RPD             | Free Cyanide           | 2012/11/15 | NC             | %      | 35        |
| 8036890 BMO   | Matrix Spike    | 1 rec Oyanide          | 2012/11/13 | 140            | 70     | 33        |
| DOSCOSO DIVIO | [PO2447-01]     | Free Cyanide           | 2012/11/17 | 110            | %      | 75 - 125  |
|               |                 | •                      |            | 97             |        |           |
|               | Spiked Blank    | Free Cyanide           | 2012/11/17 | _              | %      | 80 - 120  |
|               | Method Blank    | Free Cyanide           | 2012/11/17 | ND, RDL=0.01   | ug/g   | 0.5       |
|               | RPD [PO2447-01] | Free Cyanide           | 2012/11/17 | NC             | %      | 35        |
| 3036934 SHK   | Matrix Spike    | 1,4-Difluorobenzene    | 2012/11/15 | 100            | %      | 60 - 140  |
|               |                 | 4-Bromofluorobenzene   | 2012/11/15 | 102            | %      | 60 - 140  |
|               |                 | D10-Ethylbenzene       | 2012/11/15 | 92             | %      | 60 - 140  |
|               |                 | D4-1,2-Dichloroethane  | 2012/11/15 | 101            | %      | 60 - 140  |
|               |                 | F1 (C6-C10)            | 2012/11/15 | 77             | %      | 60 - 140  |
|               | Spiked Blank    | 1,4-Difluorobenzene    | 2012/11/15 | 98             | %      | 60 - 140  |
|               |                 | 4-Bromofluorobenzene   | 2012/11/15 | 102            | %      | 60 - 140  |
|               |                 | D10-Ethylbenzene       | 2012/11/15 | 82             | %      | 60 - 140  |
|               |                 | D4-1,2-Dichloroethane  | 2012/11/15 | 100            | %      | 60 - 140  |
|               |                 | F1 (C6-C10)            | 2012/11/15 | 91             | %      | 80 - 120  |
|               | Method Blank    | 1,4-Difluorobenzene    | 2012/11/15 | 100            | %      | 60 - 140  |
|               |                 | 4-Bromofluorobenzene   | 2012/11/15 | 100            | %      | 60 - 140  |
|               |                 | D10-Ethylbenzene       | 2012/11/15 | 85             | %      | 60 - 140  |
|               |                 | D4-1,2-Dichloroethane  | 2012/11/15 | 103            | %<br>% | 60 - 140  |
|               |                 | F1 (C6-C10)            |            | ND, RDL=10     |        | 00 - 140  |
|               |                 |                        | 2012/11/15 |                | ug/g   |           |
|               | DDD             | F1 (C6-C10) - BTEX     | 2012/11/15 | ND, RDL=10     | ug/g   | 50        |
|               | RPD             | F1 (C6-C10)            | 2012/11/15 | NC             | %      | 50        |
|               |                 | F1 (C6-C10) - BTEX     | 2012/11/15 | NC             | %      | 50        |



P.O. #:

Site Location: 770 SOMERSET ST. W

### Quality Assurance Report (Continued)

| QA/QC       |                     |                                     | Date       |                          |              |           |
|-------------|---------------------|-------------------------------------|------------|--------------------------|--------------|-----------|
| Batch       |                     |                                     | Analyzed   |                          |              |           |
| Num Init    | QC Type             | Parameter                           | yyyy/mm/dd | Value Recovery           | Units        | QC Limits |
| 3036975 JZ  | Matrix Spike        | Decachlorobiphenyl                  | 2012/11/16 | 93                       | %            | 60 - 130  |
|             |                     | Aroclor 1260                        | 2012/11/16 | 108                      | %            | 60 - 130  |
|             |                     | Total PCB                           | 2012/11/16 | 108                      | %            | 60 - 130  |
|             | Spiked Blank        | Decachlorobiphenyl                  | 2012/11/16 | 105                      | %            | 60 - 130  |
|             |                     | Aroclor 1260                        | 2012/11/16 | 123                      | %            | 60 - 130  |
|             |                     | Total PCB                           | 2012/11/16 | 123                      | %            | 60 - 130  |
|             | Method Blank        | Decachlorobiphenyl                  | 2012/11/16 | 104                      | %            | 60 - 130  |
|             |                     | Aroclor 1242                        | 2012/11/16 | ND, RDL=0.010            | ug/g         |           |
|             |                     | Aroclor 1248                        | 2012/11/16 | ND, RDL=0.010            | ug/g         |           |
|             |                     | Aroclor 1254                        | 2012/11/16 | ND, RDL=0.010            | ug/g         |           |
|             |                     | Aroclor 1260                        | 2012/11/16 | ND, RDL=0.010            | ug/g         |           |
|             |                     | Total PCB                           | 2012/11/16 | ND, RDL=0.010            | ug/g         |           |
|             | RPD                 | Aroclor 1242                        | 2012/11/16 | NC                       | %            | 50        |
|             |                     | Aroclor 1248                        | 2012/11/16 | NC                       | %            | 50        |
|             |                     | Aroclor 1254                        | 2012/11/16 | NC                       | %            | 50        |
|             |                     | Aroclor 1260                        | 2012/11/16 | NC                       | %            | 50        |
|             |                     | Total PCB                           | 2012/11/16 | NC                       | %            | 50        |
| 3037003 KLI | Matrix Spike        | . 5.0 52                            | 20:2/://   |                          | ,,           |           |
|             | [PO2455-01]         | Leachable o-Terphenyl               | 2012/11/16 | 101                      | %            | 60 - 130  |
|             | [                   | Leachable F2 (C10-C16 Hydrocarbons) | 2012/11/16 | 95                       | %            | 50 - 130  |
|             |                     | Leachable F3 (C16-C34 Hydrocarbons) | 2012/11/16 | 96                       | %            | 50 - 130  |
|             |                     | Leachable F4 (C34-C50 Hydrocarbons) | 2012/11/16 | 94                       | %            | 50 - 130  |
|             | Leachate Blank      | Leachable o-Terphenyl               | 2012/11/16 | 101                      | %            | 60 - 130  |
|             | Zodonato Zidint     | Leachable F2 (C10-C16 Hydrocarbons) | 2012/11/16 | ND, RDL=100              | ug/L         | 00 .00    |
|             |                     | Leachable F3 (C16-C34 Hydrocarbons) | 2012/11/16 | ND, RDL=100              | ug/L         |           |
|             |                     | Leachable F4 (C34-C50 Hydrocarbons) | 2012/11/16 | ND, RDL=100              | ug/L         |           |
|             |                     | Leachable Reached Baseline at C50   | 2012/11/16 | YES                      | ug/L         |           |
|             | Spiked Blank        | Leachable o-Terphenyl               | 2012/11/16 | 100                      | %            | 60 - 130  |
|             | ориса Ванк          | Leachable F2 (C10-C16 Hydrocarbons) | 2012/11/16 | 98                       | %            | 70 - 130  |
|             |                     | Leachable F3 (C16-C34 Hydrocarbons) | 2012/11/16 | 100                      | %            | 70 - 130  |
|             |                     | Leachable F4 (C34-C50 Hydrocarbons) | 2012/11/16 | 95                       | %            | 70 - 130  |
|             | Method Blank        | Leachable o-Terphenyl               | 2012/11/16 | 101                      | %            | 60 - 130  |
|             | Woulda Blank        | Leachable F2 (C10-C16 Hydrocarbons) | 2012/11/16 | ND, RDL=100              | ug/L         | 00 100    |
|             |                     | Leachable F3 (C16-C34 Hydrocarbons) | 2012/11/16 | ND, RDL=100              | ug/L         |           |
|             |                     | Leachable F4 (C34-C50 Hydrocarbons) | 2012/11/16 | ND, RDL=100              | ug/L         |           |
|             | RPD [PO2455-01]     | Leachable F2 (C10-C16 Hydrocarbons) | 2012/11/16 | NC                       | %            | 40        |
|             | 111 2 [1 02 100 01] | Leachable F3 (C16-C34 Hydrocarbons) | 2012/11/16 | NC                       | %            | 40        |
|             |                     | Leachable F4 (C34-C50 Hydrocarbons) | 2012/11/16 | NC                       | %            | 40        |
|             |                     | Leachable Reached Baseline at C50   | 2012/11/16 | NC                       | %            | 40        |
| 3037099 LHR | Matrix Spike        | Zodonabio readina Bacomio de Goo    | 2012/11/10 |                          | 70           | 10        |
|             | [PO2451-01]         | o-Terphenyl                         | 2012/11/16 | 62                       | %            | 30 - 130  |
|             | [. 02.0.0.]         | F2 (C10-C16 Hydrocarbons)           | 2012/11/16 | 86                       | %            | 50 - 130  |
|             |                     | F3 (C16-C34 Hydrocarbons)           | 2012/11/16 | 86                       | %            | 50 - 130  |
|             |                     | F4 (C34-C50 Hydrocarbons)           | 2012/11/16 | 86                       | %            | 50 - 130  |
|             | Spiked Blank        | o-Terphenyl                         | 2012/11/16 | 67                       | %            | 30 - 130  |
|             | Opinou Biann        | F2 (C10-C16 Hydrocarbons)           | 2012/11/16 | 101                      | %            | 80 - 120  |
|             |                     | F3 (C16-C34 Hydrocarbons)           | 2012/11/16 | 101                      | %            | 80 - 120  |
|             |                     | F4 (C34-C50 Hydrocarbons)           | 2012/11/16 | 101                      | %            | 80 - 120  |
|             | Method Blank        | o-Terphenyl                         | 2012/11/16 | 70                       | %            | 30 - 130  |
|             | ou blank            | F2 (C10-C16 Hydrocarbons)           | 2012/11/16 | ND, RDL=10               | ug/g         | 00 - 100  |
|             |                     | F3 (C16-C34 Hydrocarbons)           | 2012/11/16 | ND, RDL=10<br>ND, RDL=10 | ug/g<br>ug/g |           |
|             |                     | F4 (C34-C50 Hydrocarbons)           | 2012/11/16 | ND, RDL=10               | ug/g<br>ug/g |           |
|             | RPD [PO2452-03]     | F2 (C10-C16 Hydrocarbons)           | 2012/11/16 | NC NC                    | ug/g<br>%    | 50        |
|             | 11 D [1 O2402-00]   | F3 (C16-C34 Hydrocarbons)           | 2012/11/16 | NC<br>NC                 | %            | 50        |
|             |                     | F4 (C34-C50 Hydrocarbons)           | 2012/11/16 | NC<br>NC                 | %<br>%       | 50<br>50  |
|             |                     |                                     |            |                          |              |           |



P.O. #:

Site Location: 770 SOMERSET ST. W

### Quality Assurance Report (Continued)

| QA/QC          |                 |                                | Date       |                      |           |           |
|----------------|-----------------|--------------------------------|------------|----------------------|-----------|-----------|
| Batch          |                 |                                | Analyzed   |                      |           |           |
| Num Init       | QC Type         | Parameter                      | yyyy/mm/dd | Value Recovery       | Units     | QC Limi   |
| 3037130 SAU    | Matrix Spike    | Leachable Fluoride (F-)        | 2012/11/15 | 96                   | %         | 80 - 12   |
|                | Leachate Blank  | Leachable Fluoride (F-)        | 2012/11/15 | ND, RDL=0.1          | mg/L      |           |
|                | Spiked Blank    | Leachable Fluoride (F-)        | 2012/11/15 | 103                  | %         | 80 - 12   |
|                | Method Blank    | Leachable Fluoride (F-)        | 2012/11/15 | ND, RDL=0.1          | mg/L      |           |
|                | RPD             | Leachable Fluoride (F-)        | 2012/11/15 | NC                   | %         | 2         |
| 3037135 C_H    | Matrix Spike    | Leachable Nitrite (N)          | 2012/11/15 | 97                   | %         | 80 - 12   |
| _              | '               | Leachable Nitrate (N)          | 2012/11/15 | 90                   | %         | 80 - 12   |
|                |                 | Leachable Nitrate + Nitrite    | 2012/11/15 | 92                   | %         | 80 - 12   |
|                | Leachate Blank  | Leachable Nitrite (N)          | 2012/11/15 | ND, RDL=0.1          | mg/L      |           |
|                |                 | Leachable Nitrate (N)          | 2012/11/15 | ND, RDL=1            | mg/L      |           |
|                |                 | Leachable Nitrate + Nitrite    | 2012/11/15 | ND, RDL=1            | mg/L      |           |
|                | Spiked Blank    | Leachable Nitrite (N)          | 2012/11/15 | 101                  | %         | 85 - 1    |
|                | ориса Банк      | Leachable Nitrate (N)          | 2012/11/15 | 95                   | %         | 85 - 1°   |
|                |                 | Leachable Nitrate + Nitrite    | 2012/11/15 | 96                   | %         | 85 - 1°   |
|                | Method Blank    |                                |            | ND, RDL=0.1          |           | 00 - 1    |
|                | METHOR DIALIK   | Leachable Nitrite (N)          | 2012/11/15 | •                    | mg/L      |           |
|                |                 | Leachable Nitrate (N)          | 2012/11/15 | ND, RDL=1            | mg/L      |           |
|                |                 | Leachable Nitrate + Nitrite    | 2012/11/15 | ND, RDL=1            | mg/L      |           |
|                | RPD             | Leachable Nitrite (N)          | 2012/11/15 | NC                   | %         |           |
|                |                 | Leachable Nitrate (N)          | 2012/11/15 | NC                   | %         | :         |
|                |                 | Leachable Nitrate + Nitrite    | 2012/11/15 | NC                   | %         | :         |
| 3037136 LHA    | Matrix Spike    | Leachable Free Cyanide         | 2012/11/15 | 106                  | %         | 80 - 1    |
|                | Leachate Blank  | Leachable Free Cyanide         | 2012/11/15 | ND, RDL=0.002        | mg/L      |           |
|                | Spiked Blank    | Leachable Free Cyanide         | 2012/11/15 | 101                  | %         | 80 - 1    |
|                | Method Blank    | Leachable Free Cyanide         | 2012/11/15 | ND, RDL=0.002        | mg/L      |           |
|                | RPD             | Leachable Free Cyanide         | 2012/11/15 | NC                   | %         |           |
| 3037202 JZ     | Spiked Blank    | Leachable Decachlorobiphenyl   | 2012/11/16 | 113                  | %         | 60 - 1    |
|                | •               | Leachable Total PCB            | 2012/11/16 | 91                   | %         | 60 - 13   |
|                | Method Blank    | Leachable Decachlorobiphenyl   | 2012/11/16 | 110                  | %         | 60 - 13   |
|                |                 | Leachable Total PCB            | 2012/11/16 | ND, RDL=3            | ug/L      |           |
| 3037245 JL2    | RPD [PO2412-02] | Moisture                       | 2012/11/15 | 16.0                 | %         |           |
| 3037335 HES    | RPD [PO2452-03] | Moisture                       | 2012/11/16 | 1.2                  | %         |           |
| 3037667 VTH    | RPD             | Moisture                       | 2012/11/15 | 4.5                  | %         |           |
|                | RPD             |                                |            | 9.1                  | %<br>%    |           |
| 3037809 VTH    |                 | Moisture                       | 2012/11/15 | 9.1                  | %         | •         |
| 3037905 BMO    | Matrix Spike    | 5 0 11                         | 0040/44/40 | 07                   | 0.4       | 75 4      |
|                | [PO2450-01]     | Free Cyanide                   | 2012/11/16 | 97                   | %         | 75 - 1    |
|                | Spiked Blank    | Free Cyanide                   | 2012/11/16 | 99                   | %         | 80 - 1    |
|                | Method Blank    | Free Cyanide                   | 2012/11/16 | ND, RDL=0.01         | ug/g      |           |
|                | RPD [PO2450-01] | Free Cyanide                   | 2012/11/16 | NC                   | %         | ;         |
| 3038041 SAC    | Matrix Spike    |                                |            |                      |           |           |
|                | [PO2450-01]     | Chromium (VI)                  | 2012/11/16 | 88                   | %         | 75 - 12   |
|                | QC Standard     | Chromium (VI)                  | 2012/11/16 | 95                   | %         | 75 - 1    |
|                | Spiked Blank    | Chromium (VI)                  | 2012/11/16 | 92                   | %         | 80 - 1    |
|                | Method Blank    | Chromium (VI)                  | 2012/11/16 | ND, RDL=0.2          | ug/g      |           |
|                | RPD [PO2450-01] | Chromium (VI)                  | 2012/11/16 | NC                   | %         | :         |
| 3038287 AFZ    | Spiked Blank    | Hot Water Ext. Boron (B)       | 2012/11/17 | 98                   | %         | 75 - 1    |
|                | Method Blank    | Hot Water Ext. Boron (B)       | 2012/11/17 | ND, RDL=0.050        | ug/g      |           |
| 038348 AFZ     | Spiked Blank    | Hot Water Ext. Boron (B)       | 2012/11/16 | 99                   | %<br>%    | 75 - 1    |
| .0000 10 711 2 | Method Blank    | Hot Water Ext. Boron (B)       | 2012/11/16 | ND, RDL=0.050        | ug/g      |           |
|                | RPD             | Hot Water Ext. Boron (B)       | 2012/11/16 | NC                   | ug/g<br>% |           |
| 02951E NIVE    |                 | ` '                            |            |                      | %         |           |
| 038515 NYS     | QC Standard     | Conductivity                   | 2012/11/16 | 106<br>ND BDI -0.003 |           | 90 - 1    |
|                | Method Blank    | Conductivity                   | 2012/11/16 | ND, RDL=0.002        | mS/cm     |           |
|                | RPD [PO2444-01] | Conductivity                   | 2012/11/16 | 4.9                  | %         | <b></b> . |
| 038559 VIV     | Matrix Spike    | Acid Extractable Antimony (Sb) | 2012/11/16 | 92                   | %         | 75 - 1    |
|                |                 | Acid Extractable Arsenic (As)  | 2012/11/16 | 94                   | %         | 75 - 1    |
|                |                 | Acid Extractable Barium (Ba)   | 2012/11/16 | NC (3                | ) %       | 75 - 1    |



P.O. #:

Site Location: 770 SOMERSET ST. W

### Quality Assurance Report (Continued)

| QA/QC<br>Batch |              |                                                                 | Date<br>Analyzed         |                | <u> </u> |                  |
|----------------|--------------|-----------------------------------------------------------------|--------------------------|----------------|----------|------------------|
| Num Init       | QC Type      | Parameter                                                       | yyyy/mm/dd               | Value Recovery | Units    | QC Limi          |
| 038559 VIV     | Matrix Spike | Acid Extractable Beryllium (Be)                                 | 2012/11/16               | 98             | %        | 75 - 12          |
|                | mann opino   | Acid Extractable Boron (B)                                      | 2012/11/16               | 94             | %        | 75 - 12          |
|                |              | Acid Extractable Cadmium (Cd)                                   | 2012/11/16               | 95             | %        | 75 - 12          |
|                |              | Acid Extractable Chromium (Cr)                                  | 2012/11/16               | 94             | %        | 75 - 12          |
|                |              | Acid Extractable Cobalt (Co)                                    | 2012/11/16               | 90             | %        | 75 - 12          |
|                |              | Acid Extractable Copper (Cu)                                    | 2012/11/16               | NC (3)         | %        | 75 - 1<br>75 - 1 |
|                |              | Acid Extractable Copper (Ou) Acid Extractable Lead (Pb)         | 2012/11/16               | 90             | %        | 75 - 1<br>75 - 1 |
|                |              | Acid Extractable Lead (Fb) Acid Extractable Molybdenum (Mo)     | 2012/11/16               | 93             | %        | 75 - 1<br>75 - 1 |
|                |              | Acid Extractable Molybderidin (Mo) Acid Extractable Nickel (Ni) |                          | 93             | %        | 75 - 1<br>75 - 1 |
|                |              | Acid Extractable Nicker (NI) Acid Extractable Selenium (Se)     | 2012/11/16<br>2012/11/16 | 95<br>95       | %        | 75 - 1<br>75 - 1 |
|                |              | ` ,                                                             |                          |                |          |                  |
|                |              | Acid Extractable Silver (Ag)                                    | 2012/11/16               | 93             | %        | 75 - 1           |
|                |              | Acid Extractable Thallium (TI)                                  | 2012/11/16               | 86             | %        | 75 - 1           |
|                |              | Acid Extractable Uranium (U)                                    | 2012/11/16               | 94             | %        | 75 - 1           |
|                |              | Acid Extractable Vanadium (V)                                   | 2012/11/16               | 96             | %        | 75 - 1           |
|                |              | Acid Extractable Zinc (Zn)                                      | 2012/11/16               | NC (3)         | %        | 75 - 1           |
|                |              | Acid Extractable Mercury (Hg)                                   | 2012/11/16               | 81             | %        | 75 - 1           |
|                | Spiked Blank | Acid Extractable Antimony (Sb)                                  | 2012/11/16               | 95             | %        | 80 - 1           |
|                |              | Acid Extractable Arsenic (As)                                   | 2012/11/16               | 97             | %        | 80 - 1           |
|                |              | Acid Extractable Barium (Ba)                                    | 2012/11/16               | 103            | %        | 80 - 1           |
|                |              | Acid Extractable Beryllium (Be)                                 | 2012/11/16               | 101            | %        | 80 - 1           |
|                |              | Acid Extractable Boron (B)                                      | 2012/11/16               | 97             | %        | 80 - 1           |
|                |              | Acid Extractable Cadmium (Cd)                                   | 2012/11/16               | 97             | %        | 80 - 1           |
|                |              | Acid Extractable Chromium (Cr)                                  | 2012/11/16               | 96             | %        | 80 - 1           |
|                |              | Acid Extractable Cobalt (Co)                                    | 2012/11/16               | 95             | %        | 80 - 1           |
|                |              | Acid Extractable Copper (Cu)                                    | 2012/11/16               | 94             | %        | 80 - 1           |
|                |              | Acid Extractable Lead (Pb)                                      | 2012/11/16               | 96             | %        | 80 - 1           |
|                |              | Acid Extractable Molybdenum (Mo)                                | 2012/11/16               | 95             | %        | 80 - 1           |
|                |              | Acid Extractable Nickel (Ni)                                    | 2012/11/16               | 101            | %        | 80 - 1           |
|                |              | Acid Extractable Selenium (Se)                                  | 2012/11/16               | 100            | %        | 80 - 1           |
|                |              | Acid Extractable Silver (Ag)                                    | 2012/11/16               | 96             | %        | 80 - 1           |
|                |              | Acid Extractable Thallium (TI)                                  | 2012/11/16               | 91             | %        | 80 - 1           |
|                |              | Acid Extractable Uranium (U)                                    | 2012/11/16               | 103            | %        | 80 - 1           |
|                |              | Acid Extractable Vanadium (V)                                   | 2012/11/16               | 96             | %        | 80 - 1           |
|                |              | Acid Extractable Variation (V) Acid Extractable Zinc (Zn)       | 2012/11/16               | 101            | %        | 80 - 1           |
|                |              | ` ,                                                             |                          | 94             |          | 80 - 1           |
|                | Mathad Dlank | Acid Extractable Mercury (Hg)                                   | 2012/11/16               |                | %        | 6U - I           |
|                | Method Blank | Acid Extractable Antimony (Sb)                                  | 2012/11/16               | ND, RDL=0.20   | ug/g     |                  |
|                |              | Acid Extractable Arsenic (As)                                   | 2012/11/16               | ND, RDL=1.0    | ug/g     |                  |
|                |              | Acid Extractable Barium (Ba)                                    | 2012/11/16               | ND, RDL=0.50   | ug/g     |                  |
|                |              | Acid Extractable Beryllium (Be)                                 | 2012/11/16               | ND, RDL=0.20   | ug/g     |                  |
|                |              | Acid Extractable Boron (B)                                      | 2012/11/16               | ND, RDL=5.0    | ug/g     |                  |
|                |              | Acid Extractable Cadmium (Cd)                                   | 2012/11/16               | ND, RDL=0.10   | ug/g     |                  |
|                |              | Acid Extractable Chromium (Cr)                                  | 2012/11/16               | ND, RDL=1.0    | ug/g     |                  |
|                |              | Acid Extractable Cobalt (Co)                                    | 2012/11/16               | ND, RDL=0.10   | ug/g     |                  |
|                |              | Acid Extractable Copper (Cu)                                    | 2012/11/16               | ND, RDL=0.50   | ug/g     |                  |
|                |              | Acid Extractable Lead (Pb)                                      | 2012/11/16               | ND, RDL=1.0    | ug/g     |                  |
|                |              | Acid Extractable Molybdenum (Mo)                                | 2012/11/16               | ND, RDL=0.50   | ug/g     |                  |
|                |              | Acid Extractable Nickel (Ni)                                    | 2012/11/16               | ND, RDL=0.50   | ug/g     |                  |
|                |              | Acid Extractable Selenium (Se)                                  | 2012/11/16               | ND, RDL=0.50   | ug/g     |                  |
|                |              | Acid Extractable Silver (Ag)                                    | 2012/11/16               | ND, RDL=0.20   | ug/g     |                  |
|                |              | Acid Extractable Thallium (TI)                                  | 2012/11/16               | ND, RDL=0.050  | ug/g     |                  |
|                |              | Acid Extractable Uranium (U)                                    | 2012/11/16               | ND, RDL=0.050  | ug/g     |                  |
|                |              | Acid Extractable Vanadium (V)                                   | 2012/11/16               | ND, RDL=5.0    | ug/g     |                  |
|                |              | Acid Extractable Zinc (Zn)                                      | 2012/11/16               | ND, RDL=5.0    | ug/g     |                  |
|                |              | Acid Extractable Mercury (Hg)                                   | 2012/11/16               | ND, RDL=0.050  | ug/g     |                  |
|                |              | ACIU EXITACIADIE METCUTY ITTICI                                 |                          | ND. NDL=0.030  |          |                  |



Ecoplans Limited Attention: Peter Van Driel

Client Project #: 1412815

P.O. #:

Site Location: 770 SOMERSET ST. W

### Quality Assurance Report (Continued)

| QA/QC       |              |                                                              | Date       |       |          |       |                    |
|-------------|--------------|--------------------------------------------------------------|------------|-------|----------|-------|--------------------|
| Batch       |              |                                                              | Analyzed   |       |          |       |                    |
| Num Init    | QC Type      | Parameter                                                    | yyyy/mm/dd | Value | Recovery | Units | QC Limit           |
| 3038559 VIV | RPD          | Acid Extractable Arsenic (As)                                | 2012/11/16 | NC    |          | %     | 3                  |
|             |              | Acid Extractable Barium (Ba)                                 | 2012/11/16 | 6.7   |          | %     | 3                  |
|             |              | Acid Extractable Beryllium (Be)                              | 2012/11/16 | NC    |          | %     | 3                  |
|             |              | Acid Extractable Boron (B)                                   | 2012/11/16 | NC    |          | %     | 3                  |
|             |              | Acid Extractable Cadmium (Cd)                                | 2012/11/16 | NC    |          | %     | 3                  |
|             |              | Acid Extractable Chromium (Cr)                               | 2012/11/16 | 2.9   |          | %     | 3                  |
|             |              | Acid Extractable Cobalt (Co)                                 | 2012/11/16 | 7.9   |          | %     | 3                  |
|             |              | Acid Extractable Copper (Cu)                                 | 2012/11/16 | 8.0   |          | %     | 3                  |
|             |              | Acid Extractable Lead (Pb)                                   | 2012/11/16 | 3.3   |          | %     | 3                  |
|             |              | Acid Extractable Molybdenum (Mo)                             | 2012/11/16 | NC    |          | %     | 3                  |
|             |              | Acid Extractable Nickel (Ni)                                 | 2012/11/16 | 5.2   |          | %     | 3                  |
|             |              | Acid Extractable Selenium (Se)                               | 2012/11/16 | NC    |          | %     | 3                  |
|             |              | Acid Extractable Silver (Ag)                                 | 2012/11/16 | NC    |          | %     | 3                  |
|             |              | Acid Extractable Thallium (TI)                               | 2012/11/16 | NC    |          | %     | 3                  |
|             |              | Acid Extractable Uranium (U)                                 | 2012/11/16 | 0.9   |          | %     | 3                  |
|             |              | Acid Extractable Vanadium (V)                                | 2012/11/16 | NC    |          | %     | 3                  |
|             |              | Acid Extractable Zinc (Zn)                                   | 2012/11/16 | 5.7   |          | %     | 3                  |
| 038581 VIV  | Matrix Spike | Alla Extraolabio Elilo (Eli)                                 | 2012/11/10 | 0.1   |          | 70    |                    |
| 0000001 VIV | [PO2452-01]  | Acid Extractable Antimony (Sb)                               | 2012/11/16 |       | 92       | %     | 75 - 12            |
|             | [FO2452-01]  | Acid Extractable Artimony (3b) Acid Extractable Arsenic (As) | 2012/11/16 |       | 104      | %     | 75 - 12<br>75 - 12 |
|             |              | ` ,                                                          |            |       |          |       | 75 - 12<br>75 - 12 |
|             |              | Acid Extractable Barium (Ba)                                 | 2012/11/16 |       | NC       | %     | _                  |
|             |              | Acid Extractable Beryllium (Be)                              | 2012/11/16 |       | 102      | %     | 75 - 12            |
|             |              | Acid Extractable Boron (B)                                   | 2012/11/16 |       | 109      | %     | 75 - 12            |
|             |              | Acid Extractable Cadmium (Cd)                                | 2012/11/16 |       | 102      | %     | 75 - 12            |
|             |              | Acid Extractable Chromium (Cr)                               | 2012/11/16 |       | 106      | %     | 75 - 12            |
|             |              | Acid Extractable Cobalt (Co)                                 | 2012/11/16 |       | 100      | %     | 75 - 12            |
|             |              | Acid Extractable Copper (Cu)                                 | 2012/11/16 |       | NC       | %     | 75 - 12            |
|             |              | Acid Extractable Lead (Pb)                                   | 2012/11/16 |       | NC       | %     | 75 - 12            |
|             |              | Acid Extractable Molybdenum (Mo)                             | 2012/11/16 |       | 98       | %     | 75 - 12            |
|             |              | Acid Extractable Nickel (Ni)                                 | 2012/11/16 |       | 104      | %     | 75 - 12            |
|             |              | Acid Extractable Selenium (Se)                               | 2012/11/16 |       | 104      | %     | 75 - 12            |
|             |              | Acid Extractable Silver (Ag)                                 | 2012/11/16 |       | 102      | %     | 75 - 12            |
|             |              | Acid Extractable Thallium (TI)                               | 2012/11/16 |       | 93       | %     | 75 - 12            |
|             |              | Acid Extractable Uranium (U)                                 | 2012/11/16 |       | 108      | %     | 75 - 12            |
|             |              | Acid Extractable Vanadium (V)                                | 2012/11/16 |       | 104      | %     | 75 - 12            |
|             |              | Acid Extractable Zinc (Zn)                                   | 2012/11/16 |       | NC       | %     | 75 - 12            |
|             |              | Acid Extractable Mercury (Hg)                                | 2012/11/16 |       | 111      | %     | 75 - 12            |
|             | Spiked Blank | Acid Extractable Antimony (Sb)                               | 2012/11/16 |       | 97       | %     | 80 - 12            |
|             |              | Acid Extractable Arsenic (As)                                | 2012/11/16 |       | 101      | %     | 80 - 12            |
|             |              | Acid Extractable Barium (Ba)                                 | 2012/11/16 |       | 101      | %     | 80 - 12            |
|             |              | Acid Extractable Beryllium (Be)                              | 2012/11/16 |       | 99       | %     | 80 - 12            |
|             |              | Acid Extractable Boron (B)                                   | 2012/11/16 |       | 101      | %     | 80 - 12            |
|             |              | Acid Extractable Cadmium (Cd)                                | 2012/11/16 |       | 100      | %     | 80 - 12            |
|             |              | Acid Extractable Chromium (Cr)                               | 2012/11/16 |       | 98       | %     | 80 - 12            |
|             |              | ` '                                                          |            |       | 98       |       | 80 - 12            |
|             |              | Acid Extractable Cobalt (Co)                                 | 2012/11/16 |       |          | %     | 80 - 12            |
|             |              | Acid Extractable Copper (Cu)                                 | 2012/11/16 |       | 97       | %     |                    |
|             |              | Acid Extractable Lead (Pb)                                   | 2012/11/16 |       | 99       | %     | 80 - 12            |
|             |              | Acid Extractable Molybdenum (Mo)                             | 2012/11/16 |       | 95       | %     | 80 - 12            |
|             |              | Acid Extractable Nickel (Ni)                                 | 2012/11/16 |       | 100      | %     | 80 - 1             |
|             |              | Acid Extractable Selenium (Se)                               | 2012/11/16 |       | 99       | %     | 80 - 1             |
|             |              | Acid Extractable Silver (Ag)                                 | 2012/11/16 |       | 101      | %     | 80 - 1             |
|             |              | Acid Extractable Thallium (TI)                               | 2012/11/16 |       | 89       | %     | 80 - 1             |
|             |              | Acid Extractable Uranium (U)                                 | 2012/11/16 |       | 104      | %     | 80 - 12            |
|             |              | Acid Extractable Vanadium (V)                                | 2012/11/16 |       | 98       | %     | 80 - 12            |
|             |              | Acid Extractable Zinc (Zn)                                   | 2012/11/16 |       | 100      | %     | 80 - 12            |



P.O. #:

Site Location: 770 SOMERSET ST. W

### Quality Assurance Report (Continued)

| QA/QC         |                 |                                                               | Date                     |                              |              |                      |
|---------------|-----------------|---------------------------------------------------------------|--------------------------|------------------------------|--------------|----------------------|
| Batch         |                 |                                                               | Analyzed                 |                              |              |                      |
| Num Init      | QC Type         | Parameter                                                     | yyyy/mm/dd               | Value Recovery               | Units        | QC Limits            |
| 3038581 VIV   | Spiked Blank    | Acid Extractable Mercury (Hg)                                 | 2012/11/16               | 105                          | %            | 80 - 120             |
|               | Method Blank    | Acid Extractable Antimony (Sb)                                | 2012/11/16               | ND, RDL=0.20                 | ug/g         |                      |
|               |                 | Acid Extractable Arsenic (As)                                 | 2012/11/16               | ND, RDL=1.0                  | ug/g         |                      |
|               |                 | Acid Extractable Barium (Ba)                                  | 2012/11/16               | ND, RDL=0.50                 | ug/g         |                      |
|               |                 | Acid Extractable Beryllium (Be)                               | 2012/11/16               | ND, RDL=0.20                 | ug/g         |                      |
|               |                 | Acid Extractable Boron (B)                                    | 2012/11/16               | ND, RDL=5.0                  | ug/g         |                      |
|               |                 | Acid Extractable Cadmium (Cd)                                 | 2012/11/16               | ND. RDL=0.10                 | ug/g         |                      |
|               |                 | Acid Extractable Chromium (Cr)                                | 2012/11/16               | ND, RDL=1.0                  | ug/g         |                      |
|               |                 | Acid Extractable Cobalt (Co)                                  | 2012/11/16               | ND, RDL=0.10                 | ug/g         |                      |
|               |                 | Acid Extractable Copper (Cu)                                  | 2012/11/16               | ND, RDL=0.10                 | ug/g<br>ug/g |                      |
|               |                 | Acid Extractable Copper (Cd) Acid Extractable Lead (Pb)       | 2012/11/16               | ND, RDL=0.00                 |              |                      |
|               |                 | Acid Extractable Lead (Fb) Acid Extractable Molybdenum (Mo)   | 2012/11/16               | ND, RDL=1.0<br>ND, RDL=0.50  | ug/g         |                      |
|               |                 | Acid Extractable Nickel (Ni)                                  | 2012/11/16               | ND, RDL=0.50                 | ug/g         |                      |
|               |                 | ` '                                                           |                          | ND, RDL=0.50<br>ND, RDL=0.50 | ug/g         |                      |
|               |                 | Acid Extractable Selenium (Se)                                | 2012/11/16               |                              | ug/g         |                      |
|               |                 | Acid Extractable Silver (Ag)                                  | 2012/11/16               | ND, RDL=0.20                 | ug/g         |                      |
|               |                 | Acid Extractable Thallium (TI)                                | 2012/11/16               | ND, RDL=0.050                | ug/g         |                      |
|               |                 | Acid Extractable Uranium (U)                                  | 2012/11/16               | ND, RDL=0.050                | ug/g         |                      |
|               |                 | Acid Extractable Vanadium (V)                                 | 2012/11/16               | ND, RDL=5.0                  | ug/g         |                      |
|               |                 | Acid Extractable Zinc (Zn)                                    | 2012/11/16               | ND, RDL=5.0                  | ug/g         |                      |
|               |                 | Acid Extractable Mercury (Hg)                                 | 2012/11/16               | ND, RDL=0.050                | ug/g         |                      |
|               | RPD [PO2452-01] | Acid Extractable Antimony (Sb)                                | 2012/11/16               | NC                           | %            | 30                   |
|               |                 | Acid Extractable Arsenic (As)                                 | 2012/11/16               | NC                           | %            | 30                   |
|               |                 | Acid Extractable Barium (Ba)                                  | 2012/11/16               | 0.05                         | %            | 30                   |
|               |                 | Acid Extractable Beryllium (Be)                               | 2012/11/16               | NC                           | %            | 30                   |
|               |                 | Acid Extractable Boron (B)                                    | 2012/11/16               | NC                           | %            | 30                   |
|               |                 | Acid Extractable Cadmium (Cd)                                 | 2012/11/16               | NC                           | %            | 30                   |
|               |                 | Acid Extractable Chromium (Cr)                                | 2012/11/16               | 5.2                          | %            | 30                   |
|               |                 | Acid Extractable Cobalt (Co)                                  | 2012/11/16               | 4.4                          | %            | 30                   |
|               |                 | Acid Extractable Copper (Cu)                                  | 2012/11/16               | 4.2                          | %            | 30                   |
|               |                 | Acid Extractable Lead (Pb)                                    | 2012/11/16               | 5.1                          | %            | 30                   |
|               |                 | Acid Extractable Molybdenum (Mo)                              | 2012/11/16               | NC                           | %            | 30                   |
|               |                 | Acid Extractable Nickel (Ni)                                  | 2012/11/16               | 2.8                          | %            | 30                   |
|               |                 | Acid Extractable Selenium (Se)                                | 2012/11/16               | NC                           | %            | 30                   |
|               |                 | Acid Extractable Silver (Ag)                                  | 2012/11/16               | NC                           | %            | 30                   |
|               |                 | Acid Extractable Thallium (TI)                                | 2012/11/16               | NC                           | %            | 30                   |
|               |                 | Acid Extractable Uranium (U)                                  | 2012/11/16               | 10                           | %            | 30                   |
|               |                 | Acid Extractable Vanadium (V)                                 | 2012/11/16               | NC                           | %            | 30                   |
|               |                 | Acid Extractable Zinc (Zn)                                    | 2012/11/16               | 3.4                          | %            | 30                   |
|               |                 | Acid Extractable Mercury (Hg)                                 | 2012/11/16               | NC                           | %            | 30                   |
| 3038695 NYS   | QC Standard     | Conductivity                                                  | 2012/11/16               | 105                          | %            | 90 - 110             |
| 0000000 1110  | Method Blank    | Conductivity                                                  | 2012/11/16               | ND, RDL=0.002                | mS/cm        | 00 110               |
|               | RPD             | Conductivity                                                  | 2012/11/16               | 1.8                          | %            | 10                   |
| 3038714 AFZ   | Spiked Blank    | Hot Water Ext. Boron (B)                                      | 2012/11/16               | 92                           | %            | 75 - 125             |
| 30307 14 AI Z | Method Blank    | Hot Water Ext. Boron (B)                                      | 2012/11/16               | ND, RDL=0.050                | ug/g         | 75-125               |
| 3038770 VIV   | Matrix Spike    | Acid Extractable Antimony (Sb)                                | 2012/11/16               | ND, NDL=0.030                | ug/g<br>%    | 75 - 125             |
| 3030110 VIV   | Matrix Opine    | Acid Extractable Antimorry (Sb) Acid Extractable Arsenic (As) |                          | 95                           |              | 75 - 125<br>75 - 125 |
|               |                 | Acid Extractable Arsenic (As) Acid Extractable Barium (Ba)    | 2012/11/16<br>2012/11/16 | 95<br>NC                     | %<br>%       | 75 - 125<br>75 - 125 |
|               |                 | Acid Extractable Barium (Ba) Acid Extractable Beryllium (Be)  |                          |                              | %            |                      |
|               |                 | Acid Extractable Beryllium (Be) Acid Extractable Boron (B)    | 2012/11/16               | 98                           | %            | 75 - 125             |
|               |                 | ` ,                                                           | 2012/11/16               | 91                           | %            | 75 - 125             |
|               |                 | Acid Extractable Cadmium (Cd)                                 | 2012/11/16               | 100                          | %            | 75 - 125             |
|               |                 | Acid Extractable Chromium (Cr)                                | 2012/11/16               | NC                           | %            | 75 - 125             |
|               |                 | Acid Extractable Cobalt (Co)                                  | 2012/11/16               | 92                           | %            | 75 - 125             |
|               |                 | Acid Extractable Copper (Cu)                                  | 2012/11/16               | 91                           | %            | 75 - 125             |
|               |                 | Acid Extractable Lead (Pb)                                    | 2012/11/16               | 94                           | %            | 75 - 125             |
|               |                 | Acid Extractable Molybdenum (Mo)                              | 2012/11/16               | 94                           | %            | 75 - 125             |



P.O. #:

Site Location: 770 SOMERSET ST. W

### Quality Assurance Report (Continued)

| QA/QC       |              |                                  | Date       |                |       |           |
|-------------|--------------|----------------------------------|------------|----------------|-------|-----------|
| Batch       |              |                                  | Analyzed   |                |       |           |
| Num Init    | QC Type      | Parameter                        | yyyy/mm/dd | Value Recovery | Units | QC Limits |
| 3038770 VIV | Matrix Spike | Acid Extractable Nickel (Ni)     | 2012/11/16 | 96             | %     | 75 - 125  |
|             |              | Acid Extractable Selenium (Se)   | 2012/11/16 | 98             | %     | 75 - 125  |
|             |              | Acid Extractable Silver (Ag)     | 2012/11/16 | 97             | %     | 75 - 125  |
|             |              | Acid Extractable Thallium (TI)   | 2012/11/16 | 89             | %     | 75 - 125  |
|             |              | Acid Extractable Uranium (U)     | 2012/11/16 | 99             | %     | 75 - 125  |
|             |              | Acid Extractable Vanadium (V)    | 2012/11/16 | NC             | %     | 75 - 125  |
|             |              | Acid Extractable Zinc (Zn)       | 2012/11/16 | NC             | %     | 75 - 125  |
|             |              | Acid Extractable Mercury (Hg)    | 2012/11/16 | 94             | %     | 75 - 125  |
|             | Spiked Blank | Acid Extractable Antimony (Sb)   | 2012/11/16 | 93             | %     | 80 - 120  |
|             |              | Acid Extractable Arsenic (As)    | 2012/11/16 | 97             | %     | 80 - 120  |
|             |              | Acid Extractable Barium (Ba)     | 2012/11/16 | 103            | %     | 80 - 120  |
|             |              | Acid Extractable Beryllium (Be)  | 2012/11/16 | 100            | %     | 80 - 120  |
|             |              | Acid Extractable Boron (B)       | 2012/11/16 | 96             | %     | 80 - 120  |
|             |              | Acid Extractable Cadmium (Cd)    | 2012/11/16 | 99             | %     | 80 - 120  |
|             |              | Acid Extractable Chromium (Cr)   | 2012/11/16 | 96             | %     | 80 - 120  |
|             |              | Acid Extractable Cobalt (Co)     | 2012/11/16 | 95             | %     | 80 - 120  |
|             |              | Acid Extractable Copper (Cu)     | 2012/11/16 | 94             | %     | 80 - 120  |
|             |              | Acid Extractable Lead (Pb)       | 2012/11/16 | 97             | %     | 80 - 120  |
|             |              | Acid Extractable Molybdenum (Mo) | 2012/11/16 | 95             | %     | 80 - 120  |
|             |              | Acid Extractable Nickel (Ni)     | 2012/11/16 | 99             | %     | 80 - 120  |
|             |              | Acid Extractable Selenium (Se)   | 2012/11/16 | 99             | %     | 80 - 120  |
|             |              | Acid Extractable Silver (Ag)     | 2012/11/16 | 97             | %     | 80 - 120  |
|             |              | Acid Extractable Thallium (TI)   | 2012/11/16 | 88             | %     | 80 - 120  |
|             |              | Acid Extractable Uranium (U)     | 2012/11/16 | 102            | %     | 80 - 120  |
|             |              | Acid Extractable Vanadium (V)    | 2012/11/16 | 96             | %     | 80 - 120  |
|             |              | Acid Extractable Zinc (Zn)       | 2012/11/16 | 99             | %     | 80 - 120  |
|             |              | Acid Extractable Mercury (Hg)    | 2012/11/16 | 95             | %     | 80 - 120  |
|             | Method Blank | Acid Extractable Antimony (Sb)   | 2012/11/16 | ND, RDL=0.20   | ug/g  |           |
|             |              | Acid Extractable Arsenic (As)    | 2012/11/16 | ND, RDL=1.0    | ug/g  |           |
|             |              | Acid Extractable Barium (Ba)     | 2012/11/16 | ND, RDL=0.50   | ug/g  |           |
|             |              | Acid Extractable Beryllium (Be)  | 2012/11/16 | ND, RDL=0.20   | ug/g  |           |
|             |              | Acid Extractable Boron (B)       | 2012/11/16 | ND, RDL=5.0    | ug/g  |           |
|             |              | Acid Extractable Cadmium (Cd)    | 2012/11/16 | ND, RDL=0.10   | ug/g  |           |
|             |              | Acid Extractable Chromium (Cr)   | 2012/11/16 | ND, RDL=1.0    | ug/g  |           |
|             |              | Acid Extractable Cobalt (Co)     | 2012/11/16 | ND, RDL=0.10   | ug/g  |           |
|             |              | Acid Extractable Copper (Cu)     | 2012/11/16 | ND, RDL=0.50   | ug/g  |           |
|             |              | Acid Extractable Lead (Pb)       | 2012/11/16 | ND, RDL=1.0    | ug/g  |           |
|             |              | Acid Extractable Molybdenum (Mo) | 2012/11/16 | ND, RDL=0.50   | ug/g  |           |
|             |              | Acid Extractable Nickel (Ni)     | 2012/11/16 | ND, RDL=0.50   | ug/g  |           |
|             |              | Acid Extractable Selenium (Se)   | 2012/11/16 | ND, RDL=0.50   | ug/g  |           |
|             |              | Acid Extractable Silver (Ag)     | 2012/11/16 | ND, RDL=0.20   | ug/g  |           |
|             |              | Acid Extractable Thallium (TI)   | 2012/11/16 | ND, RDL=0.050  | ug/g  |           |
|             |              | Acid Extractable Uranium (U)     | 2012/11/16 | ND, RDL=0.050  | ug/g  |           |
|             |              | Acid Extractable Vanadium (V)    | 2012/11/16 | ND, RDL=5.0    | ug/g  |           |
|             |              | Acid Extractable Zinc (Zn)       | 2012/11/16 | ND, RDL=5.0    | ug/g  |           |
|             | DDD          | Acid Extractable Mercury (Hg)    | 2012/11/16 | ND, RDL=0.050  | ug/g  | 22        |
|             | RPD          | Acid Extractable Antimony (Sb)   | 2012/11/16 | NC<br>NC       | %     | 30        |
|             |              | Acid Extractable Arsenic (As)    | 2012/11/16 | NC             | %     | 30        |
|             |              | Acid Extractable Barium (Ba)     | 2012/11/16 | 7.5            | %     | 30        |
|             |              | Acid Extractable Beryllium (Be)  | 2012/11/16 | NC<br>NC       | %     | 30        |
|             |              | Acid Extractable Boron (B)       | 2012/11/16 | NC             | %     | 30        |
|             |              | Acid Extractable Cadmium (Cd)    | 2012/11/16 | NC             | %     | 30        |
|             |              | Acid Extractable Chromium (Cr)   | 2012/11/16 | 5.1            | %     | 30        |
|             |              | Acid Extractable Cobalt (Co)     | 2012/11/16 | 4.1            | %     | 30        |
|             |              | Acid Extractable Copper (Cu)     | 2012/11/16 | 6.0            | %     | 30        |



**Ecoplans Limited** 

Attention: Peter Van Driel Client Project #: 1412815

P.O. #:

Site Location: 770 SOMERSET ST. W

#### Quality Assurance Report (Continued)

Maxxam Job Number: TB2H6839

| QA/QC       |              |                                   | Date       |        |          |       |           |
|-------------|--------------|-----------------------------------|------------|--------|----------|-------|-----------|
| Batch       |              |                                   | Analyzed   |        |          |       |           |
| Num Init    | QC Type      | Parameter                         | yyyy/mm/dd | Value  | Recovery | Units | QC Limits |
| 3038770 VIV | RPD          | Acid Extractable Lead (Pb)        | 2012/11/16 | 4.0    |          | %     | 30        |
|             |              | Acid Extractable Molybdenum (Mo)  | 2012/11/16 | NC     |          | %     | 30        |
|             |              | Acid Extractable Nickel (Ni)      | 2012/11/16 | 6.0    |          | %     | 30        |
|             |              | Acid Extractable Selenium (Se)    | 2012/11/16 | NC     |          | %     | 30        |
|             |              | Acid Extractable Silver (Ag)      | 2012/11/16 | NC     |          | %     | 30        |
|             |              | Acid Extractable Thallium (TI)    | 2012/11/16 | NC     |          | %     | 30        |
|             |              | Acid Extractable Uranium (U)      | 2012/11/16 | 4.6    |          | %     | 30        |
|             |              | Acid Extractable Vanadium (V)     | 2012/11/16 | 4.3    |          | %     | 30        |
|             |              | Acid Extractable Zinc (Zn)        | 2012/11/16 | 5.1    |          | %     | 30        |
|             |              | Acid Extractable Mercury (Hg)     | 2012/11/16 | NC     |          | %     | 30        |
| 3040430 LHR | Spiked Blank | F4G-sg (Grav. Heavy Hydrocarbons) | 2012/11/19 |        | 104      | %     | 65 - 135  |
|             | RPD .        | F4G-sg (Grav. Heavy Hydrocarbons) | 2012/11/19 | 0.7    |          | %     | 50        |
|             | Method Blank | F4G-sg (Grav. Heavy Hydrocarbons) | 2012/11/19 | ND, RI | DL=100   | ug/g  |           |
| 3041344 RUS | Matrix Spike | F4G-sg (Grav. Heavy Hydrocarbons) | 2012/11/19 |        | 77       | %     | 65 - 135  |
|             | Spiked Blank | F4G-sg (Grav. Heavy Hydrocarbons) | 2012/11/19 |        | 103      | %     | 65 - 135  |
|             | Method Blank | F4G-sg (Grav. Heavy Hydrocarbons) | 2012/11/19 | ND, RI | DL=100   | ug/g  |           |
|             | RPD          | F4G-sg (Grav. Heavy Hydrocarbons) | 2012/11/19 | NC     |          | %     | 50        |

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Leachate Blank: A blank matrix containing all reagents used in the leaching procedure. Used to determine any process contamination.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method

accuracy.

Spirad Plant: A blank matrix complete which a known amount of the applicts upwelly from a cocond course, her been added. Used to evaluate method

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

- (1) The matrix spike recovery was below the lower control limit. This may be due in part to the reducing environment of the sample.
- (2) The recovery in the matrix spike was not calculated (NC). Because of the high concentration of this analyte in the parent sample, the relative difference between the spiked and unspiked concentrations is not sufficiently significant to permit a reliable recovery calculation.
- (3) The recovery in the matrix spike was not calculated (NC). Spiked concentration was less than 2x that native to the sample.



## Validation Signature Page

#### Maxxam Job #: B2H6839

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Cuong Duc Do, Senior Analyst, Semi-Volatiles

Paul Rubinato, Analyst, Maxxam Analytics

Suzana Popovic, Supervisor, Hydrocarbons

Charles Ancker, B.Sc., M.Sc., C.Chem, Senior Analyst



# Validation Signature Page

| Maxxam Job #: B2H6839                                                                                               |
|---------------------------------------------------------------------------------------------------------------------|
| The analytical data and all QC contained in this report were reviewed and validated by the following individual(s). |

Medhat Riskallah, Manager, Hydrocarbon Department

Cristina Carriere, Scientific Services

M. Risheld

Cristin Carriere

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

| Max                            | Xam                            | Maid<br>6740                            | xam Analytics International Corp<br>D Campobelle Road, Mississaug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 905) 817-5700 Toll-f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ne 800-                  | -563-6  | 206 Fax            | c(905) 817       | 5779 www             | maxam,    | 18                     |                                      | C                   | HAIN OF                        | CUSTO                                | DY RE                | CORD                                                                 |                                                                                                                                                                                                                                                                                                   | Page 1 of 2                                      |
|--------------------------------|--------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------|--------------------|------------------|----------------------|-----------|------------------------|--------------------------------------|---------------------|--------------------------------|--------------------------------------|----------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
|                                | INVO                           | CE INFORM                               | THE STATE OF THE S |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | REPORT INFORMAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |         |                    |                  |                      |           |                        | P                                    | ROJECTI             | NEORMATH                       | ON:                                  |                      |                                                                      | Laboratory Use                                                                                                                                                                                                                                                                                    |                                                  |
| Company Name.<br>Contact Name: | #47490 Ec<br>Peter Van D       | riel                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contact I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | Peter Van Dr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | el                       |         |                    |                  |                      | P.        | otation#<br>O.#.       |                                      | 79521<br>41281      | _                              |                                      |                      |                                                                      | MAXXAM JOB #;                                                                                                                                                                                                                                                                                     | BOTTLE ORDER #:                                  |
| Address                        | 72 Victoria S<br>Kitchener O   |                                         | HINCOLD THE PARTY OF THE PARTY  | Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |         |                    | •                |                      | 10.0      | oject #.<br>oject Nam  | 。力                                   | 0.500               | igned:                         | St.W                                 |                      |                                                                      | CHAIN OF CUSTODY #:                                                                                                                                                                                                                                                                               | PROJECT MANAGER:                                 |
| Phone                          | (519)741-88                    | 15 100000000000000000000000000000000000 | The state of the s | 84 Phone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | (519)741-885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 x22                    | 80      | Fai                | x                |                      | 100       | to #                   |                                      |                     | van P                          |                                      |                      | 111                                                                  | CM380818-01-01                                                                                                                                                                                                                                                                                    | Jolanta Goraliczyk                               |
| Email:                         | pvandriel@e                    | ecoplans.                               | om                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Email:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | pvandriel@ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oplan                    | 15.CO   | m                  |                  |                      | Si        | ampled By              |                                      | たも                  | van P                          | Old                                  |                      |                                                                      |                                                                                                                                                                                                                                                                                                   |                                                  |
| Regul                          | lation 153 (2011)              |                                         | Other Regulat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SPECIA        | LINSTRUCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                        | -       |                    |                  |                      | NALYSIS   | REQUEST                | ED (Please                           | be specif           | (c)                            |                                      |                      |                                                                      | TURNAROUND TIME (TAT)                                                                                                                                                                                                                                                                             | THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER. |
| Table 2                        | Ind/Comm Cos<br>Agri/Other For | RSC                                     | CCARE Sanitary Reg. 558 Storm Se MISA Municipality PWQQ Other Ite of Analysis (YN)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AND THE STREET, STREET |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Drinking Water 7 ( Y / N |         | 53 Metals &        | O.Reg 153 PAHs   | O.Reg 153 VOCs (RSC) | 153 PHCs  | O'Reg 153 PCBs         | O.Reg 558 TCLP Inorganics<br>Package | O.Reg 558 TCLP PCBs | eum                            | Water: O'Reg 153 Metals & Inorganics | g 153 PHCs           | Regular (5<br>(will be ap)<br>Standard -<br>Please ros<br>days - con | PLEASE PROVIDE ABVANCE NOTICE  Standard) TAT: piled if Rush TAT is not specified)  TAT = 5-7 Working days for most tests te: Standard TAT for contain tests such as stact your Project Manager for datable.  Iffic Rush TAT (if applies to entire subn  Iffic Rush TAT (if applies to entire subn | 600 and Dissins/Furans are                       |
| . Ne                           |                                | DOM: NAME                               | rater samples - please use the D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Drinking Water Chain t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V Custody Fi  | orm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ad Drir                  | Held FI | O'Reg 1            | Reg              | 0)                   | O'Reg 153 | Reg                    | 558 T                                | 558 T               | TCLP Petroleum<br>Hydrocarbons | O'Re                                 | Water O'Reg          | Date Requi                                                           |                                                                                                                                                                                                                                                                                                   | Required:                                        |
| SA                             | MPLES MUST BE KI               | EPT COOL (                              | < 10°C ) FROM TIME OF SAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LING UNTIL DELIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RY TO MAX     | KAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Regulated Dr             | stats F | Soil: O'<br>Inorgs | Soll: O.         | Soll: O.             | Soll: O'  | Solf: O'               | Reg                                  | Reg                 | droc/                          | Water; O'R<br>Inorganics             | aten                 | 10640/880                                                            | firmation Number: (call                                                                                                                                                                                                                                                                           | lab for #J                                       |
| Sample Br                      | vcode Label                    | Samp                                    | ole (Location) Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date Sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Time Sar      | Confederation of the Confedera | ě.                       | M       | 8 5                | Š                | ι,<br>Ω              | ι,        | ŭ                      | 0 4                                  | 0                   | μ£                             | 3 5                                  | 3                    | # of<br>Bottles                                                      | Comme                                                                                                                                                                                                                                                                                             | rits                                             |
| · M5 5                         | 551                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 Nov-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |         | V                  |                  |                      |           |                        |                                      |                     |                                |                                      |                      |                                                                      |                                                                                                                                                                                                                                                                                                   |                                                  |
| 2 Dug 2                        |                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 NOV-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |         | V                  |                  | V                    | 1         |                        |                                      |                     |                                |                                      |                      |                                                                      |                                                                                                                                                                                                                                                                                                   | 12 17:30                                         |
| 3 BHS                          | 552                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 Nov-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |         |                    | V                |                      | ,         |                        |                                      |                     |                                |                                      |                      |                                                                      | Jolanta Goralez                                                                                                                                                                                                                                                                                   |                                                  |
| 1 BHS                          | 55.3                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 Nov-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |         |                    |                  | (STEX                | 1         |                        |                                      |                     |                                |                                      |                      |                                                                      | B2H6839                                                                                                                                                                                                                                                                                           | OTT-002                                          |
| 5 BHG                          | 55-2                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9-Nov-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |         |                    |                  | V                    | V         |                        |                                      |                     |                                |                                      |                      |                                                                      |                                                                                                                                                                                                                                                                                                   |                                                  |
| · BH6                          | 55-3                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9-Nov-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |         |                    |                  | V                    | /         |                        |                                      |                     |                                |                                      |                      |                                                                      |                                                                                                                                                                                                                                                                                                   |                                                  |
| 7 BH7 .                        | 55-2                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8-14-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |         | /                  |                  |                      |           | ,                      |                                      |                     |                                |                                      |                      |                                                                      | REC'D IN O                                                                                                                                                                                                                                                                                        | TTAWA                                            |
| · 847 5                        | 55-3                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8-Nw-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |         |                    |                  | BEX                  | V         | V                      |                                      |                     |                                |                                      |                      |                                                                      |                                                                                                                                                                                                                                                                                                   |                                                  |
| . BH8 S                        | 55-2                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8-Nov-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |         | /                  |                  | V                    | /         |                        |                                      |                     |                                |                                      |                      |                                                                      |                                                                                                                                                                                                                                                                                                   |                                                  |
| 10 BH8 5                       | 15-3                           |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8-Nov-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | >       | A                  |                  | V                    | V         | V                      |                                      |                     |                                |                                      |                      |                                                                      |                                                                                                                                                                                                                                                                                                   |                                                  |
| Peter V                        | MOUISHED BY: 15                | ignature/Pri                            | nt) Date; ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 09 S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time:<br>3DEW | HULL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |         | Free               | errint)<br>Evron |                      |           | )ate: (YYII<br>Z/11/ ( |                                      |                     | ine:                           | 10002000                             | Used and<br>ibmitted | 100                                                                  | Laboratory Use O                                                                                                                                                                                                                                                                                  | Custody Bear Yes Present (                       |

8/8/9 8/7/7

|                       | INVOICE                | 6740 Campobello Read;<br>EINFORMATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The water the              |                      | REPORT INFORMAT   |                                                                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                      | 2                   | PR                                   | OJECTIN             | FORMATIC                       | NI:                                     |                      |                                                                                                            | Laboratory Use                     | Only:                                           |
|-----------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------|-------------------|----------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|---------------------|--------------------------------------|---------------------|--------------------------------|-----------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------|
| Company Name:         | #47490 Eco             | A CONTRACTOR OF THE PARTY OF TH |                            | Company Name:        |                   |                                                                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | a                    | uotation #          | A7                                   | 9521                |                                |                                         |                      |                                                                                                            | # BOL MAXXAM                       | BOTTLE ORDER #:                                 |
| Contact Name          | Peter Van Dri          | TYPE POLICE OF THE PARTY OF THE |                            | Contact Name         | Peter Van Dr      | el                                                                   |                                    | lam.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | P                    | o #:                |                                      |                     |                                |                                         |                      |                                                                                                            |                                    |                                                 |
| Vidress:              | 72 Victoria St         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | Address.             |                   |                                                                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                      | roject#:            |                                      | 12815               |                                |                                         |                      |                                                                                                            |                                    | 380818                                          |
|                       | Kitchener ON           | Control of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                      |                   |                                                                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | ph                   | roject Nume         | 70 50                                | DAMES.              | +51.1                          | N.                                      |                      |                                                                                                            | CHAIN OF CUSTODY #:                | PROJECT MANAGER:                                |
| hone                  | (519)741-885           | 0 x2280 Fax (51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9)741-8884                 | Phone:               | (519)741-885      | 0 x2280                                                              | Fa                                 | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | 5                    | tto #:              | Ot                                   | tawa                |                                |                                         |                      |                                                                                                            | C#360818-05-01                     | Joianna Goraiczyk                               |
| mail.                 | pvandriel@ec           | oplans.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | Email:               | pvandriel@e       | coplans                                                              | com                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | S                    | ampled By           | H                                    | eter i              | and                            | mel.                                    |                      |                                                                                                            | - Commenced                        |                                                 |
| Regul                 | ation 153 (2011)       | Ott                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | er Regulations             | SPE                  | CIAL INSTRUCTIONS | 12                                                                   |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A                    | NALYSIS              | REQUESTI            | ED (Please                           | ne specific         | c):                            |                                         |                      |                                                                                                            | TURNAROUND TIME (TAT)              |                                                 |
| Table 3 Table 3 Table | ale: For MOE regulated | Im/Fine Reg. 558 MISA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | se use the Danking W       | aler Chain of Custon |                   | Regulated Drinking Water ? (Y / N<br>Metals Freid Filtaned ? (Y / N) | Soli: O'Reg 153 Metals &<br>Lhorgs | O.Reg 153 PAHs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O.Reg 153 VOCs (RSC) | Soll: O'Reg 153 PHCs | Solt O'Reg 153 PCBs | O.Reg 558 TCLP Inorganics<br>Package | O.Reg 558 TCLP PCBs | TCLP Petroleum<br>Hydrocarbons | Water: O'Reg 153 Metals &<br>Inorganics | Water O'Reg 153 PHCs | Regular (St<br>(will be appl<br>Standard T/<br>Please ricke<br>days - conto<br>Job Specifi<br>Date Require | mution Number                      | BOD and Dioxins/Furans are > vission) Required: |
| SA                    | MPLES MUST BE KET      | TO DESCRIPTION OF THE PERSON OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Discourage House, Assessed |                      | A Killianson      | Regulate<br>Metals Fi                                                | Soil: (                            | Soult                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Soil                 | Soll                 | Hos H               | O.Reg 5<br>Package                   | O.Re                | TCLP                           | Nate                                    | Nate                 | # of<br>Bottles                                                                                            | (car)                              | Tab for #1                                      |
|                       | ercode Label           | Sample (Location) Identif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | to Sampled Time      | Sampled Matrix    | 0.2                                                                  | 7                                  | 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U)                   | · vi                 | 47                  | 0 1                                  |                     | F 4                            | -                                       |                      | Bones                                                                                                      | Some                               |                                                 |
| ' BH 1 4              | 55                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 1                        |                      |                   | 1                                                                    | 1                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | _                    |                     |                                      |                     | -                              |                                         |                      |                                                                                                            |                                    |                                                 |
| BH1 &                 | 552                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                      | S                 |                                                                      | V                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                    |                      |                     |                                      |                     |                                |                                         |                      |                                                                                                            |                                    |                                                 |
| 3 BH 1 S              | 53                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                      | 5                 |                                                                      |                                    | 立                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V                    | $\bigvee$            |                     |                                      |                     |                                |                                         |                      |                                                                                                            |                                    |                                                 |
| · Ru 2                | 552                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                      | 5                 |                                                                      | V                                  | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V                    | V                    |                     |                                      |                     |                                |                                         |                      |                                                                                                            |                                    |                                                 |
| 5 04 0                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                      | -                 |                                                                      | Ť                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                    | 1/                   |                     |                                      |                     |                                |                                         |                      |                                                                                                            |                                    |                                                 |
| 5 BH 2                | 355 .                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                      |                   |                                                                      | ,                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V                    | V                    |                     |                                      |                     | -                              |                                         |                      |                                                                                                            |                                    |                                                 |
| BH 3                  | 551                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                      | 3                 |                                                                      | V,                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                      |                     |                                      |                     |                                |                                         |                      |                                                                                                            |                                    |                                                 |
| 1 BH3                 | 552                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                      | 5                 |                                                                      | V                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                      |                     |                                      |                     |                                |                                         |                      |                                                                                                            | REC'D IN                           | OTTAWA                                          |
| B43                   | 553                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                      | 5                 |                                                                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                    | V                    |                     |                                      |                     |                                |                                         |                      |                                                                                                            |                                    |                                                 |
| 767                   | Ser e                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                          | Nov-12               | (                 |                                                                      | 1                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V                    | V                    | 1                   |                                      |                     |                                |                                         |                      |                                                                                                            |                                    | THE.                                            |
| Dup                   | 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | N.                   | 1                 |                                                                      | ٧,                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                    |                      |                     |                                      | -                   |                                |                                         | -                    |                                                                                                            |                                    | -                                               |
| 10 BH4                | ss 2                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                          | Nov-12               | , 5               |                                                                      | V                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V                    | V                    |                     |                                      |                     |                                |                                         |                      |                                                                                                            |                                    |                                                 |
| *RE                   | LINGUISHED BY: (54)    | mature/Print)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date: (YY/MM/DE            | ) Time:              | T RE              | -                                                                    | (Signatu                           | Marie Control of the |                      | 100                  | Date: (YY/N         | AUTO                                 |                     | Time:                          | 11,010,1910                             | Used and             |                                                                                                            | Laboratory Use O                   |                                                 |
|                       | Dirid                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/11/09                   | 5130P1               | A Client L        | 111                                                                  | ish 1                              | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | -                    | 12/11               | I was                                | 17                  | 30                             | Mark #                                  | ubmitted             | Time San                                                                                                   | sities Temperature (°C) on Roccipt | Custody Seel Yes 6                              |

Maxxam Analytics International Corporation of Maxxam Analytics

81819 81717



Your Project #: 1412815

Site Location: 1770 SOMERSET ST. W., OTTAWA

Your C.O.C. #: 38081805, 380818-05-02

**Attention: Peter Van Driel** 

Ecoplans Limited 72 Victoria St S Suite 100 Kitchener, ON N2G 4Y9

Report Date: 2012/11/27

### **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B2I1463 Received: 2012/11/19, 08:00

Sample Matrix: Water # Samples Received: 6

|                                          |          | Date       | Date                       | Method               |
|------------------------------------------|----------|------------|----------------------------|----------------------|
| Analyses                                 | Quantity | Extracted  | Analyzed Laboratory Method | Reference            |
| 1,3-Dichloropropene Sum                  | 6        | N/A        | 2012/11/23 CAM SOP-00226   | EPA 8260             |
| Chloride by Automated Colourimetry       | 5        | N/A        | 2012/11/21 CAM SOP-00463   | EPA 325.2            |
| Chromium (VI) in Water                   | 3        | N/A        | 2012/11/21 CAM SOP-00436   | EPA 7199             |
| Chromium (VI) in Water                   | 1        | N/A        | 2012/11/26 CAM SOP-00436   | EPA 7199             |
| Free (WAD) Cyanide                       | 2        | N/A        | 2012/11/21 CAM SOP-00457   | Ontario MOE CN-E3015 |
| Free (WAD) Cyanide                       | 3        | N/A        | 2012/11/22 CAM SOP-00457   | Ontario MOE CN-E3015 |
| Petroleum Hydro. CCME F1 & BTEX in Water | 5        | N/A        | 2012/11/23 CAM SOP-00315   | CCME CWS             |
| Petroleum Hydrocarbons F2-F4 in Water    | 5        | 2012/11/22 | 2012/11/23 CAM SOP-00316   | CCME Hydrocarbons    |
| Mercury                                  | 3        | 2012/11/21 | 2012/11/21 CAM SOP-00453   | SW-846 7470A         |
| Lab Filtered Metals by ICPMS             | 1        | 2012/11/21 | 2012/11/21 CAM SOP-00447   | EPA 6020             |
| Dissolved Metals by ICPMS                | 4        | N/A        | 2012/11/26 CAM SOP-00447   | EPA 6020             |
| Polychlorinated Biphenyl in Water        | 1        | 2012/11/20 | 2012/11/21 CAM SOP-00309   | SW846 8082           |
| Volatile Organic Compounds in Water      | 6        | N/A        | 2012/11/23 CAM SOP 00226   | EPA 8260 modified    |

<sup>\*</sup> RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

#### **Encryption Key**

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Jolanta Goralczyk, Project Manager Email: JGoralczyk@maxxam.ca Phone# (905) 817-5700

\_\_\_\_\_\_

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 1



Ecoplans Limited Client Project #: 1412815

Site Location: 1770 SOMERSET ST. W., OTTAWA

#### **RESULTS OF ANALYSES OF WATER**

| Maxxam ID     |       | PQ7269       |     |          | PQ7270       |     |          | PQ7271       |     |          |
|---------------|-------|--------------|-----|----------|--------------|-----|----------|--------------|-----|----------|
| Sampling Date |       | 2012/11/16   |     |          | 2012/11/17   |     |          | 2012/11/17   |     |          |
|               |       | 15:00        |     |          | 10:00        |     |          | 10:00        |     |          |
| COC Number    |       | 380818-05-02 |     |          | 380818-05-02 |     |          | 380818-05-02 |     |          |
|               | Units | MW-1         | RDL | QC Batch | MW-2         | RDL | QC Batch | MW-4         | RDL | QC Batch |

| Inorganics              |      |      |     |         |      |    |         |      |    |         |
|-------------------------|------|------|-----|---------|------|----|---------|------|----|---------|
| Free Cyanide            | ug/L | 10   | 2   | 3043130 | 10   | 2  | 3044855 | 8    | 2  | 3043130 |
| Dissolved Chloride (CI) | mg/L | 7900 | 100 | 3043962 | 2600 | 30 | 3043962 | 4900 | 50 | 3043962 |

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

|               | Units | MW-5         | RDL | DUP          | RDL | QC Batch |
|---------------|-------|--------------|-----|--------------|-----|----------|
| COC Number    |       | 380818-05-02 |     | 380818-05-02 |     |          |
|               |       | 12:00        |     | 18:00        |     |          |
| Sampling Date |       | 2012/11/16   |     | 2012/11/16   |     |          |
| Maxxam ID     |       | PQ7272       |     | PQ7273       |     |          |

| Inorganics              |      |      |    |      |    |         |
|-------------------------|------|------|----|------|----|---------|
| Free Cyanide            | ug/L | ND   | 2  | 8    | 2  | 3044855 |
| Dissolved Chloride (CI) | mg/L | 4600 | 50 | 6800 | 80 | 3043962 |

ND = Not detected



Ecoplans Limited Client Project #: 1412815

Site Location: 1770 SOMERSET ST. W., OTTAWA

# **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| Maxxam ID                 |        | PQ7269       |      |          | PQ7270       |      |          | PQ7271       |      |          |
|---------------------------|--------|--------------|------|----------|--------------|------|----------|--------------|------|----------|
| Sampling Date             |        | 2012/11/16   |      |          | 2012/11/17   |      |          | 2012/11/17   |      |          |
|                           |        | 15:00        | -    |          | 10:00        |      |          | 10:00        |      |          |
| COC Number                | Linita | 380818-05-02 | RDL  | OC Botoh | 380818-05-02 | BDI  | OC Botob | 380818-05-02 | RDL  | OC Batab |
|                           | Units  | MW-1         | KDL  | QC Batch | MW-2         | KDL  | QC Batch | MW-4         | KDL  | QC Batch |
| Metals                    |        |              |      |          |              |      |          |              |      |          |
| Chromium (VI)             | ug/L   | ND           | 5.0  | 3043754  | ND           | 5.0  | 3043354  |              | 5.0  |          |
| Mercury (Hg)              | ug/L   | ND           | 0.1  | 3043358  |              | 0.1  |          |              | 0.1  |          |
| Dissolved Antimony (Sb)   | ug/L   | ND           | 5.0  | 3046868  | ND           | 2.5  | 3046868  | ND           | 2.5  | 3043712  |
| Dissolved Arsenic (As)    | ug/L   | ND           | 10   | 3046868  | ND           | 5.0  | 3046868  | ND           | 10   | 3043712  |
| Dissolved Barium (Ba)     | ug/L   | 230          | 20   | 3046868  | 88           | 10   | 3046868  | 320          | 10   | 3043712  |
| Dissolved Beryllium (Be)  | ug/L   | ND           | 5.0  | 3046868  | ND           | 2.5  | 3046868  | ND           | 2.5  | 3043712  |
| Dissolved Boron (B)       | ug/L   | ND           | 100  | 3046868  | 150          | 50   | 3046868  | 160          | 50   | 3043712  |
| Dissolved Cadmium (Cd)    | ug/L   | ND           | 1.0  | 3046868  | ND           | 0.50 | 3046868  | ND           | 0.50 | 3043712  |
| Dissolved Chromium (Cr)   | ug/L   | ND           | 50   | 3046868  | ND           | 25   | 3046868  | ND           | 25   | 3043712  |
| Dissolved Cobalt (Co)     | ug/L   | 7.4          | 5.0  | 3046868  | ND           | 2.5  | 3046868  | ND           | 2.5  | 3043712  |
| Dissolved Copper (Cu)     | ug/L   | ND           | 10   | 3046868  | ND           | 5.0  | 3046868  | ND           | 5.0  | 3043712  |
| Dissolved Lead (Pb)       | ug/L   | ND           | 5.0  | 3046868  | ND           | 2.5  | 3046868  | ND           | 2.5  | 3043712  |
| Dissolved Molybdenum (Mo) | ug/L   | ND           | 5.0  | 3046868  | 5.6          | 2.5  | 3046868  | 6.9          | 2.5  | 3043712  |
| Dissolved Nickel (Ni)     | ug/L   | 10           | 10   | 3046868  | ND           | 5.0  | 3046868  | 5.9          | 5.0  | 3043712  |
| Dissolved Selenium (Se)   | ug/L   | ND           | 20   | 3046868  | ND           | 10   | 3046868  | ND           | 10   | 3043712  |
| Dissolved Silver (Ag)     | ug/L   | 1.2          | 1.0  | 3046868  | ND           | 0.50 | 3046868  | ND           | 0.50 | 3043712  |
| Dissolved Sodium (Na)     | ug/L   | 4000000      | 1000 | 3046868  | 2100000      | 500  | 3046868  | 3200000      | 2500 | 3043712  |
| Dissolved Thallium (TI)   | ug/L   | ND           | 0.50 | 3046868  | ND           | 0.25 | 3046868  | ND           | 0.25 | 3043712  |
| Dissolved Uranium (U)     | ug/L   | 3.2          | 1.0  | 3046868  | 6.4          | 0.50 | 3046868  | 5.2          | 0.50 | 3043712  |
| Dissolved Vanadium (V)    | ug/L   | 8.8          | 5.0  | 3046868  | 5.7          | 2.5  | 3046868  | ND           | 5.0  | 3043712  |
| Dissolved Zinc (Zn)       | ug/L   | ND           | 50   | 3046868  | ND           | 25   | 3046868  | ND           | 25   | 3043712  |

ND = Not detected



Ecoplans Limited Client Project #: 1412815

Site Location: 1770 SOMERSET ST. W., OTTAWA

### **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| Maxxam ID     |       | PQ7272       |     | PQ7273       |     |          |
|---------------|-------|--------------|-----|--------------|-----|----------|
| Sampling Date |       | 2012/11/16   |     | 2012/11/16   |     |          |
|               |       | 12:00        |     | 18:00        |     |          |
| COC Number    |       | 380818-05-02 |     | 380818-05-02 |     |          |
|               | Units | MW-5         | RDL | DUP          | RDL | QC Batch |

| Metals                    |      |         |      |         |      |         |
|---------------------------|------|---------|------|---------|------|---------|
| Chromium (VI)             | ug/L | ND      | 5.0  | ND      | 5.0  | 3043754 |
| Mercury (Hg)              | ug/L | ND      | 0.1  | ND      | 0.1  | 3043358 |
| Dissolved Antimony (Sb)   | ug/L | ND      | 2.5  | ND      | 5.0  | 3046868 |
| Dissolved Arsenic (As)    | ug/L | ND      | 10   | ND      | 10   | 3046868 |
| Dissolved Barium (Ba)     | ug/L | 380     | 10   | 280     | 20   | 3046868 |
| Dissolved Beryllium (Be)  | ug/L | ND      | 2.5  | ND      | 5.0  | 3046868 |
| Dissolved Boron (B)       | ug/L | 180     | 50   | 120     | 100  | 3046868 |
| Dissolved Cadmium (Cd)    | ug/L | ND      | 0.50 | ND      | 1.0  | 3046868 |
| Dissolved Chromium (Cr)   | ug/L | ND      | 25   | ND      | 50   | 3046868 |
| Dissolved Cobalt (Co)     | ug/L | 2.9     | 2.5  | 6.6     | 5.0  | 3046868 |
| Dissolved Copper (Cu)     | ug/L | ND      | 5.0  | ND      | 10   | 3046868 |
| Dissolved Lead (Pb)       | ug/L | ND      | 2.5  | ND      | 5.0  | 3046868 |
| Dissolved Molybdenum (Mo) | ug/L | ND      | 2.5  | ND      | 5.0  | 3046868 |
| Dissolved Nickel (Ni)     | ug/L | 9.1     | 5.0  | 11      | 10   | 3046868 |
| Dissolved Selenium (Se)   | ug/L | ND      | 10   | ND      | 20   | 3046868 |
| Dissolved Silver (Ag)     | ug/L | ND      | 0.50 | 1.9     | 1.0  | 3046868 |
| Dissolved Sodium (Na)     | ug/L | 3200000 | 1000 | 4600000 | 1000 | 3046868 |
| Dissolved Thallium (TI)   | ug/L | ND      | 0.25 | ND      | 0.50 | 3046868 |
| Dissolved Uranium (U)     | ug/L | 2.6     | 0.50 | 3.2     | 1.0  | 3046868 |
| Dissolved Vanadium (V)    | ug/L | 5.7     | 5.0  | 11      | 10   | 3046868 |
| Dissolved Zinc (Zn)       | ug/L | ND      | 25   | ND      | 50   | 3046868 |

ND = Not detected

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch



Ecoplans Limited Client Project #: 1412815

Site Location: 1770 SOMERSET ST. W., OTTAWA

# **VOLATILE ORGANICS BY GC/MS (WATER)**

| Maxxam ID                          |       | PQ7269                      | PQ7270                      | PQ7271                      | PQ7272                      |      |          |
|------------------------------------|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------|----------|
| Sampling Date                      |       | 2012/11/16                  | 2012/11/17                  | 2012/11/17                  | 2012/11/16                  |      |          |
| OOO Needs are                      |       | 15:00                       | 10:00                       | 10:00                       | 12:00                       | -    |          |
| COC Number                         | Units | 380818-05-02<br><b>MW-1</b> | 380818-05-02<br><b>MW-2</b> | 380818-05-02<br><b>MW-4</b> | 380818-05-02<br><b>MW-5</b> | RDI  | QC Batch |
|                                    | Omis  | 10100-1                     | 10100-2                     | 10100-4                     | WW-5                        | INDL | QO Daten |
| Calculated Parameters              |       |                             |                             |                             |                             |      |          |
| 1,3-Dichloropropene (cis+trans)    | ug/L  | ND                          | ND                          | ND                          | ND                          | 0.50 | 3041955  |
| Volatile Organics                  |       |                             |                             |                             |                             |      |          |
| Acetone (2-Propanone)              | ug/L  | ND                          | ND                          | ND                          | ND                          | 10   | 3039445  |
| Benzene                            | ug/L  | ND                          | ND                          | ND                          | ND                          | 0.20 | 3039445  |
| Bromodichloromethane               | ug/L  | ND                          | ND                          | ND                          | ND                          | 0.50 | 3039445  |
| Bromoform                          | ug/L  | ND                          | ND                          | ND                          | ND                          | 1.0  | 3039445  |
| Bromomethane                       | ug/L  | ND                          | ND                          | ND                          | ND                          | 0.50 | 3039445  |
| Carbon Tetrachloride               | ug/L  | ND                          | ND                          | ND                          | ND                          | 0.20 | 3039445  |
| Chlorobenzene                      | ug/L  | ND                          | ND                          | ND                          | ND                          | 0.20 | 3039445  |
| Chloroform                         | ug/L  | ND                          | ND                          | ND                          | ND                          | 0.20 | 3039445  |
| Dibromochloromethane               | ug/L  | ND                          | ND                          | ND                          | ND                          | 0.50 | 3039445  |
| 1,2-Dichlorobenzene                | ug/L  | ND                          | ND                          | ND                          | ND                          | 0.50 | 3039445  |
| 1,3-Dichlorobenzene                | ug/L  | ND                          | ND                          | ND                          | ND                          | 0.50 | 3039445  |
| 1,4-Dichlorobenzene                | ug/L  | ND                          | ND                          | ND                          | ND                          | 0.50 | 3039445  |
| Dichlorodifluoromethane (FREON 12) | ug/L  | ND                          | ND                          | ND                          | ND                          | 1.0  | 3039445  |
| 1,1-Dichloroethane                 | ug/L  | ND                          | ND                          | ND                          | ND                          | 0.20 | 3039445  |
| 1,2-Dichloroethane                 | ug/L  | ND                          | ND                          | ND                          | ND                          | 0.50 | 3039445  |
| 1,1-Dichloroethylene               | ug/L  | ND                          | ND                          | ND                          | ND                          | 0.20 | 3039445  |
| cis-1,2-Dichloroethylene           | ug/L  | ND                          | ND                          | ND                          | ND                          | 0.50 | 3039445  |
| trans-1,2-Dichloroethylene         | ug/L  | ND                          | ND                          | ND                          | ND                          | 0.50 | 3039445  |
| 1,2-Dichloropropane                | ug/L  | ND                          | ND                          | ND                          | ND                          | 0.20 | 3039445  |
| cis-1,3-Dichloropropene            | ug/L  | ND                          | ND                          | ND                          | ND                          | 0.30 | 3039445  |
| trans-1,3-Dichloropropene          | ug/L  | ND                          | ND                          | ND                          | ND                          | 0.40 | 3039445  |
|                                    |       |                             |                             |                             |                             |      |          |

ND = Not detected

Ethylbenzene

Hexane

Styrene

Ethylene Dibromide

Methyl Isobutyl Ketone

Methyl t-butyl ether (MTBE)

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Methylene Chloride(Dichloromethane)

Methyl Ethyl Ketone (2-Butanone)

ND

0.20

0.20

1.0

2.0

5.0

10

0.50

0.50

1.8

ND

ND

ND

ND

ND

ND

ND

3039445

3039445

3039445

3039445

3039445

3039445

3039445

3039445

ND

ND

ND

ND

ND

ND

ND

ND

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L



Ecoplans Limited Client Project #: 1412815

Site Location: 1770 SOMERSET ST. W., OTTAWA

### **VOLATILE ORGANICS BY GC/MS (WATER)**

| Maxxam ID                         |       | PQ7269       | PQ7270       | PQ7271       | PQ7272       |      |          |
|-----------------------------------|-------|--------------|--------------|--------------|--------------|------|----------|
| Sampling Date                     |       | 2012/11/16   | 2012/11/17   | 2012/11/17   | 2012/11/16   |      |          |
|                                   |       | 15:00        | 10:00        | 10:00        | 12:00        |      |          |
| COC Number                        |       | 380818-05-02 | 380818-05-02 | 380818-05-02 | 380818-05-02 | 1    |          |
|                                   | Units | MW-1         | MW-2         | MW-4         | MW-5         | RDL  | QC Batch |
|                                   | _     |              | Τ            | T            | T            | _    |          |
| 1,1,1,2-Tetrachloroethane         | ug/L  | ND           | ND           | ND           | ND           | 0.50 | 3039445  |
| 1,1,2,2-Tetrachloroethane         | ug/L  | ND           | ND           | ND           | ND           | 0.50 | 3039445  |
| Tetrachloroethylene               | ug/L  | ND           | ND           | ND           | ND           | 0.20 | 3039445  |
| Toluene                           | ug/L  | ND           | ND           | ND           | 0.23         | 0.20 | 3039445  |
| 1,1,1-Trichloroethane             | ug/L  | 2.1          | ND           | 2.7          | 0.31         | 0.20 | 3039445  |
| 1,1,2-Trichloroethane             | ug/L  | ND           | ND           | ND           | ND           | 0.50 | 3039445  |
| Trichloroethylene                 | ug/L  | ND           | ND           | ND           | ND           | 0.20 | 3039445  |
| Vinyl Chloride                    | ug/L  | ND           | ND           | ND           | ND           | 0.20 | 3039445  |
| p+m-Xylene                        | ug/L  | ND           | ND           | ND           | 2.9          | 0.20 | 3039445  |
| o-Xylene                          | ug/L  | ND           | ND           | ND           | 3.0          | 0.20 | 3039445  |
| Xylene (Total)                    | ug/L  | ND           | ND           | ND           | 5.9          | 0.20 | 3039445  |
| Trichlorofluoromethane (FREON 11) | ug/L  | ND           | ND           | ND           | ND           | 0.50 | 3039445  |
| Surrogate Recovery (%)            |       |              |              |              |              |      |          |
| 4-Bromofluorobenzene              | %     | 101          | 99           | 101          | 100          |      | 3039445  |
| D4-1,2-Dichloroethane             | %     | 93           | 91           | 92           | 93           |      | 3039445  |
| D8-Toluene                        | %     | 102          | 102          | 103          | 102          |      | 3039445  |

ND = Not detected



Ecoplans Limited Client Project #: 1412815

Site Location: 1770 SOMERSET ST. W., OTTAWA

### **VOLATILE ORGANICS BY GC/MS (WATER)**

| Maxxam ID     |       | PQ7273       | PQ7484     |     |          |
|---------------|-------|--------------|------------|-----|----------|
| Sampling Date |       | 2012/11/16   | 2012/11/16 |     |          |
|               |       | 18:00        |            |     |          |
| COC Number    |       | 380818-05-02 | 38081805   |     |          |
|               | Units | DUP          | TRIP BLANK | RDL | QC Batch |

|                                     | Units | DOI | IINII DEANN | INDL | QC Datcii |
|-------------------------------------|-------|-----|-------------|------|-----------|
| Calculated Parameters               |       |     |             |      |           |
| 1,3-Dichloropropene (cis+trans)     | ug/L  | ND  | ND          | 0.50 | 3041955   |
| Volatile Organics                   |       |     |             |      |           |
| Acetone (2-Propanone)               | ug/L  | ND  | ND          | 10   | 3039445   |
| Benzene                             | ug/L  | ND  | ND          | 0.20 | 3039445   |
| Bromodichloromethane                | ug/L  | ND  | ND          | 0.50 | 3039445   |
| Bromoform                           | ug/L  | ND  | ND          | 1.0  | 3039445   |
| Bromomethane                        | ug/L  | ND  | ND          | 0.50 | 3039445   |
| Carbon Tetrachloride                | ug/L  | ND  | ND          | 0.20 | 3039445   |
| Chlorobenzene                       | ug/L  | ND  | ND          | 0.20 | 3039445   |
| Chloroform                          | ug/L  | ND  | ND          | 0.20 | 3039445   |
| Dibromochloromethane                | ug/L  | ND  | ND          | 0.50 | 3039445   |
| 1,2-Dichlorobenzene                 | ug/L  | ND  | ND          | 0.50 | 3039445   |
| 1,3-Dichlorobenzene                 | ug/L  | ND  | ND          | 0.50 | 3039445   |
| 1,4-Dichlorobenzene                 | ug/L  | ND  | ND          | 0.50 | 3039445   |
| Dichlorodifluoromethane (FREON 12)  | ug/L  | ND  | ND          | 1.0  | 3039445   |
| 1,1-Dichloroethane                  | ug/L  | ND  | ND          | 0.20 | 3039445   |
| 1,2-Dichloroethane                  | ug/L  | ND  | ND          | 0.50 | 3039445   |
| 1,1-Dichloroethylene                | ug/L  | ND  | ND          | 0.20 | 3039445   |
| cis-1,2-Dichloroethylene            | ug/L  | ND  | ND          | 0.50 | 3039445   |
| trans-1,2-Dichloroethylene          | ug/L  | ND  | ND          | 0.50 | 3039445   |
| 1,2-Dichloropropane                 | ug/L  | ND  | ND          | 0.20 | 3039445   |
| cis-1,3-Dichloropropene             | ug/L  | ND  | ND          | 0.30 | 3039445   |
| trans-1,3-Dichloropropene           | ug/L  | ND  | ND          | 0.40 | 3039445   |
| Ethylbenzene                        | ug/L  | ND  | ND          | 0.20 | 3039445   |
| Ethylene Dibromide                  | ug/L  | ND  | ND          | 0.20 | 3039445   |
| Hexane                              | ug/L  | ND  | ND          | 1.0  | 3039445   |
| Methylene Chloride(Dichloromethane) | ug/L  | ND  | ND          | 2.0  | 3039445   |
| Methyl Isobutyl Ketone              | ug/L  | ND  | ND          | 5.0  | 3039445   |
| Methyl Ethyl Ketone (2-Butanone)    | ug/L  | ND  | ND          | 10   | 3039445   |
| Methyl t-butyl ether (MTBE)         | ug/L  | ND  | ND          | 0.50 | 3039445   |
| Styrene                             | ug/L  | ND  | ND          | 0.50 | 3039445   |

ND = Not detected



Ecoplans Limited Client Project #: 1412815

Site Location: 1770 SOMERSET ST. W., OTTAWA

### **VOLATILE ORGANICS BY GC/MS (WATER)**

| Maxxam ID                         |       | PQ7273       | PQ7484     |      |          |
|-----------------------------------|-------|--------------|------------|------|----------|
| Sampling Date                     |       | 2012/11/16   | 2012/11/16 |      |          |
|                                   |       | 18:00        |            |      |          |
| COC Number                        |       | 380818-05-02 | 38081805   |      |          |
|                                   | Units | DUP          | TRIP BLANK | RDL  | QC Batch |
| 1,1,1,2-Tetrachloroethane         | ug/L  | ND           | ND         | 0.50 | 3039445  |
| 1,1,2,2-Tetrachloroethane         | ug/L  | ND           | ND         | 0.50 | 3039445  |
| Tetrachloroethylene               | ug/L  | ND           | ND         | 0.20 | 3039445  |
| Toluene                           | ug/L  | ND           | ND         | 0.20 | 3039445  |
| 1,1,1-Trichloroethane             | ug/L  | 1.9          | ND         | 0.20 | 3039445  |
| 1,1,2-Trichloroethane             | ug/L  | ND           | ND         | 0.50 | 3039445  |
| Trichloroethylene                 | ug/L  | ND           | ND         | 0.20 | 3039445  |
| Vinyl Chloride                    | ug/L  | ND           | ND         | 0.20 | 3039445  |
| p+m-Xylene                        | ug/L  | ND           | ND         | 0.20 | 3039445  |
| o-Xylene                          | ug/L  | ND           | ND         | 0.20 | 3039445  |
| Xylene (Total)                    | ug/L  | ND           | ND         | 0.20 | 3039445  |
| Trichlorofluoromethane (FREON 11) | ug/L  | ND           | ND         | 0.50 | 3039445  |
| Surrogate Recovery (%)            |       |              |            |      |          |
| 4-Bromofluorobenzene              | %     | 99           | 98         |      | 3039445  |
| D4-1,2-Dichloroethane             | %     | 95           | 89         |      | 3039445  |
| D8-Toluene                        | %     | 101          | 103        |      | 3039445  |

ND = Not detected



Ecoplans Limited Client Project #: 1412815

Site Location: 1770 SOMERSET ST. W., OTTAWA

### PETROLEUM HYDROCARBONS (CCME)

|               | Units | MW-1         | MW-2         | MW-4         | MW-5         | RDL | QC Batch |
|---------------|-------|--------------|--------------|--------------|--------------|-----|----------|
| COC Number    |       | 380818-05-02 | 380818-05-02 | 380818-05-02 | 380818-05-02 |     |          |
|               |       | 15:00        | 10:00        | 10:00        | 12:00        |     |          |
| Sampling Date |       | 2012/11/16   | 2012/11/17   | 2012/11/17   | 2012/11/16   |     |          |
| Maxxam ID     |       | PQ7269       | PQ7270       | PQ7271       | PQ7272       |     |          |

| BTEX & F1 Hydrocarbons    |      |     |     |     |     |     |         |
|---------------------------|------|-----|-----|-----|-----|-----|---------|
| F1 (C6-C10)               | ug/L | ND  | ND  | ND  | 35  | 25  | 3046919 |
| F1 (C6-C10) - BTEX        | ug/L | ND  | ND  | ND  | 29  | 25  | 3046919 |
| F2-F4 Hydrocarbons        |      |     |     |     |     |     |         |
| F2 (C10-C16 Hydrocarbons) | ug/L | ND  | ND  | ND  | ND  | 100 | 3046022 |
| F3 (C16-C34 Hydrocarbons) | ug/L | ND  | ND  | ND  | ND  | 100 | 3046022 |
| F4 (C34-C50 Hydrocarbons) | ug/L | ND  | ND  | ND  | ND  | 100 | 3046022 |
| Reached Baseline at C50   | ug/L | Yes | Yes | Yes | Yes |     | 3046022 |
| Surrogate Recovery (%)    |      |     |     |     |     |     |         |
| 1,4-Difluorobenzene       | %    | 98  | 100 | 99  | 97  |     | 3046919 |
| 4-Bromofluorobenzene      | %    | 100 | 102 | 103 | 100 |     | 3046919 |
| D10-Ethylbenzene          | %    | 92  | 98  | 93  | 92  |     | 3046919 |
| D4-1,2-Dichloroethane     | %    | 96  | 97  | 96  | 97  |     | 3046919 |
| o-Terphenyl               | %    | 109 | 109 | 106 | 108 |     | 3046022 |

ND = Not detected



Maxxam Job #: B2I1463 Report Date: 2012/11/27 **Ecoplans Limited** 

Client Project #: 1412815

Site Location: 1770 SOMERSET ST. W., OTTAWA

#### PETROLEUM HYDROCARBONS (CCME)

| o o manibor   | Units | DUP          | RDI | QC Batch |
|---------------|-------|--------------|-----|----------|
| COC Number    |       | 380818-05-02 |     |          |
|               |       | 18:00        |     |          |
| Sampling Date |       | 2012/11/16   |     |          |
| Maxxam ID     |       | PQ7273       |     |          |

| _                         |      |     |     |         |
|---------------------------|------|-----|-----|---------|
| BTEX & F1 Hydrocarbons    |      |     |     |         |
| F1 (C6-C10)               | ug/L | ND  | 25  | 3046919 |
| F1 (C6-C10) - BTEX        | ug/L | ND  | 25  | 3046919 |
| F2-F4 Hydrocarbons        |      |     |     |         |
| F2 (C10-C16 Hydrocarbons) | ug/L | ND  | 100 | 3046022 |
| F3 (C16-C34 Hydrocarbons) | ug/L | ND  | 100 | 3046022 |
| F4 (C34-C50 Hydrocarbons) | ug/L | ND  | 100 | 3046022 |
| Reached Baseline at C50   | ug/L | Yes |     | 3046022 |
| Surrogate Recovery (%)    |      |     |     |         |
| 1,4-Difluorobenzene       | %    | 100 |     | 3046919 |
| 4-Bromofluorobenzene      | %    | 102 |     | 3046919 |
| D10-Ethylbenzene          | %    | 96  |     | 3046919 |
| D4-1,2-Dichloroethane     | %    | 96  |     | 3046919 |
| o-Terphenyl               | %    | 107 |     | 3046022 |

ND = Not detected

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch



Maxxam Job #: B2I1463 Report Date: 2012/11/27 Ecoplans Limited Client Project #: 1412815

Site Location: 1770 SOMERSET ST. W., OTTAWA

#### POLYCHLORINATED BIPHENYLS BY GC-ECD (WATER)

|               | Units | MW-5         | 2 | QC Batch |
|---------------|-------|--------------|---|----------|
| COC Number    |       | 380818-05-02 |   |          |
|               |       | 12:00        |   |          |
| Sampling Date |       | 2012/11/16   |   |          |
| Maxxam ID     |       | PQ7272       |   |          |

| PCBs                   |      |    |      |         |
|------------------------|------|----|------|---------|
| Aroclor 1242           | ug/L | ND | 0.05 | 3042577 |
| Aroclor 1248           | ug/L | ND | 0.05 | 3042577 |
| Aroclor 1254           | ug/L | ND | 0.05 | 3042577 |
| Aroclor 1260           | ug/L | ND | 0.05 | 3042577 |
| Total PCB              | ug/L | ND | 0.05 | 3042577 |
| Surrogate Recovery (%) |      |    |      |         |
| Decachlorobiphenyl     | %    | 92 |      | 3042577 |

ND = Not detected

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch



Maxxam Job #: B2I1463 Report Date: 2012/11/27 Ecoplans Limited Client Project #: 1412815

Site Location: 1770 SOMERSET ST. W., OTTAWA

#### **GENERAL COMMENTS**

VOC Trip Blank was received in Maxxam Waterloo and added to this submission.

Sample PQ7269-01: Metal analysis:Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

Sample PQ7270-01: Metal analysis:Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

Sample PQ7271-01: Metal analysis:Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

Sample PQ7272-01: Metal analysis:Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

F1/BTEX Analysis:

The BTEX results used for the F1-BTEX calculation were obtained from Headspace-GC

analysis.

Sample PQ7273-01: Metal analysis:Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

Results relate only to the items tested.



Ecoplans Limited
Attention: Peter Va

Attention: Peter Van Driel Client Project #: 1412815

P.O. #:

Site Location: 1770 SOMERSET ST. W., OTTAWA

#### Quality Assurance Report Maxxam Job Number: MB2I1463

| QA/QC      |              |                                     | Date                     |       |           |        |           |
|------------|--------------|-------------------------------------|--------------------------|-------|-----------|--------|-----------|
| Batch      |              |                                     | Analyzed                 |       |           |        |           |
| Num Init   | QC Type      | Parameter                           | yyyy/mm/dd               | Value | Recovery  | Units  | QC Limits |
| 3039445 AZ | Matrix Spike | 4-Bromofluorobenzene                | 2012/11/22               |       | 100       | %      | 70 - 130  |
|            | •            | D4-1,2-Dichloroethane               | 2012/11/22               |       | 99        | %      | 70 - 130  |
|            |              | D8-Toluene                          | 2012/11/22               |       | 101       | %      | 70 - 130  |
|            |              | Acetone (2-Propanone)               | 2012/11/22               |       | 77        | %      | 60 - 140  |
|            |              | Benzene                             | 2012/11/22               |       | 105       | %      | 70 - 130  |
|            |              | Bromodichloromethane                | 2012/11/22               |       | 103       | %      | 70 - 130  |
|            |              | Bromoform                           | 2012/11/22               |       | 101       | %      | 70 - 130  |
|            |              | Bromomethane                        | 2012/11/22               |       | 97        | %      | 60 - 140  |
|            |              | Carbon Tetrachloride                | 2012/11/22               |       | 104       | %      | 70 - 130  |
|            |              | Chlorobenzene                       | 2012/11/22               |       | 97        | %      | 70 - 130  |
|            |              | Chloroform                          | 2012/11/22               |       | 108       | %      | 70 - 130  |
|            |              | Dibromochloromethane                | 2012/11/22               |       | 105       | %      | 70 - 130  |
|            |              | 1,2-Dichlorobenzene                 | 2012/11/22               |       | 100       | %      | 70 - 130  |
|            |              | 1,3-Dichlorobenzene                 | 2012/11/22               |       | 103       | %      | 70 - 130  |
|            |              | 1,4-Dichlorobenzene                 | 2012/11/22               |       | 102       | %      | 70 - 130  |
|            |              | Dichlorodifluoromethane (FREON 12)  | 2012/11/22               |       | 88        | %      | 60 - 140  |
|            |              | 1,1-Dichloroethane                  | 2012/11/22               |       | 88        | %      | 70 - 130  |
|            |              | 1.2-Dichloroethane                  | 2012/11/22               |       | 100       | %      | 70 - 130  |
|            |              | 1,1-Dichloroethylene                | 2012/11/22               |       | 97        | %      | 70 - 130  |
|            |              | cis-1,2-Dichloroethylene            | 2012/11/22               |       | 95        | %      | 70 - 130  |
|            |              | trans-1,2-Dichloroethylene          | 2012/11/22               |       | 100       | %      | 70 - 130  |
|            |              | 1,2-Dichloropropane                 | 2012/11/22               |       | 99        | %      | 70 - 130  |
|            |              | cis-1,3-Dichloropropene             | 2012/11/22               |       | 97        | %      | 70 - 130  |
|            |              | trans-1,3-Dichloropropene           | 2012/11/22               |       | 97        | %      | 70 - 130  |
|            |              | Ethylbenzene                        | 2012/11/22               |       | 98        | %      | 70 - 130  |
|            |              | Ethylene Dibromide                  | 2012/11/22               |       | 98        | %      | 70 - 130  |
|            |              | Hexane                              | 2012/11/22               |       | 92        | %      | 70 - 130  |
|            |              | Methylene Chloride(Dichloromethane) |                          |       | 91        | %      | 70 - 130  |
|            |              | Methyl Isobutyl Ketone              | 2012/11/22<br>2012/11/22 |       | 90        | %<br>% | 70 - 130  |
|            |              | Methyl Ethyl Ketone (2-Butanone)    | 2012/11/22               |       | 93        | %      | 60 - 140  |
|            |              | Methyl t-butyl ether (MTBE)         | 2012/11/22               |       | 95<br>95  | %      | 70 - 130  |
|            |              | Styrene                             | 2012/11/22               |       | 94        | %<br>% | 70 - 130  |
|            |              | 1,1,1,2-Tetrachloroethane           | 2012/11/22               |       | 101       | %      | 70 - 130  |
|            |              | 1,1,2,2-Tetrachloroethane           | 2012/11/22               |       | 93        | %      | 70 - 130  |
|            |              |                                     |                          |       |           | %      |           |
|            |              | Tetrachloroethylene                 | 2012/11/22               |       | 103<br>97 | %<br>% | 70 - 130  |
|            |              | Toluene                             | 2012/11/22               |       |           |        | 70 - 130  |
|            |              | 1,1,1-Trichloroethane               | 2012/11/22               |       | 96        | %      | 70 - 130  |
|            |              | 1,1,2-Trichloroethane               | 2012/11/22               |       | 99        | %      | 70 - 130  |
|            |              | Trichloroethylene                   | 2012/11/22               |       | 101       | %      | 70 - 130  |
|            |              | Vinyl Chloride                      | 2012/11/22               |       | 93        | %      | 70 - 130  |
|            |              | p+m-Xylene                          | 2012/11/22               |       | 98        | %      | 70 - 130  |
|            |              | o-Xylene                            | 2012/11/22               |       | 99        | %      | 70 - 130  |
|            | 0 11 1 151 1 | Trichlorofluoromethane (FREON 11)   | 2012/11/22               |       | 101       | %      | 70 - 130  |
|            | Spiked Blank | 4-Bromofluorobenzene                | 2012/11/22               |       | 99        | %      | 70 - 130  |
|            |              | D4-1,2-Dichloroethane               | 2012/11/22               |       | 90        | %      | 70 - 130  |
|            |              | D8-Toluene                          | 2012/11/22               |       | 103       | %      | 70 - 130  |
|            |              | Acetone (2-Propanone)               | 2012/11/22               |       | 67        | %      | 60 - 140  |
|            |              | Benzene                             | 2012/11/22               |       | 105       | %      | 70 - 130  |
|            |              | Bromodichloromethane                | 2012/11/22               |       | 97        | %      | 70 - 130  |
|            |              | Bromoform                           | 2012/11/22               |       | 91        | %      | 70 - 130  |
|            |              | Bromomethane                        | 2012/11/22               |       | 92        | %      | 60 - 140  |
|            |              | Carbon Tetrachloride                | 2012/11/22               |       | 103       | %      | 70 - 130  |
|            |              | Chlorobenzene                       | 2012/11/22               |       | 98        | %      | 70 - 130  |
|            |              | Chloroform                          | 2012/11/22               |       | 105       | %      | 70 - 130  |
|            |              | Dibromochloromethane                | 2012/11/22               |       | 98        | %      | 70 - 130  |



**Ecoplans Limited** 

Attention: Peter Van Driel Client Project #: 1412815

P.O. #:

Site Location: 1770 SOMERSET ST. W., OTTAWA

#### **Quality Assurance Report (Continued)**

| QA/QC<br>Batch |               |                                                            | Date<br>Analyzed |                              |              |          |
|----------------|---------------|------------------------------------------------------------|------------------|------------------------------|--------------|----------|
| Num Init       | QC Type       | Parameter                                                  | yyyy/mm/dd       | Value Recovery               | Units        | QC Limit |
| 3039445 AZ     | Spiked Blank  | 1,2-Dichlorobenzene                                        | 2012/11/22       | 100                          | %            | 70 - 13  |
| 7000-1-0 712   | Opinoa Biarin | 1,3-Dichlorobenzene                                        | 2012/11/22       | 107                          | %            | 70 - 13  |
|                |               | 1,4-Dichlorobenzene                                        | 2012/11/22       | 106                          | %            | 70 - 13  |
|                |               | Dichlorodifluoromethane (FREON 12)                         | 2012/11/22       | 85                           | %            | 60 - 14  |
|                |               | 1,1-Dichloroethane                                         | 2012/11/22       | 86                           | %            | 70 - 13  |
|                |               | 1,2-Dichloroethane                                         | 2012/11/22       | 92                           | %            | 70 - 13  |
|                |               | 1,1-Dichloroethylene                                       | 2012/11/22       | 99                           | %            | 70 - 13  |
|                |               | cis-1,2-Dichloroethylene                                   | 2012/11/22       | 93                           | %            | 70 - 13  |
|                |               | trans-1,2-Dichloroethylene                                 | 2012/11/22       | 100                          | %            | 70 - 13  |
|                |               | 1,2-Dichloropropane                                        | 2012/11/22       | 96                           | %            | 70 - 13  |
|                |               | cis-1,3-Dichloropropene                                    | 2012/11/22       | 87                           | %            | 70 - 13  |
|                |               | trans-1,3-Dichloropropene                                  | 2012/11/22       | 86                           | %            | 70 - 13  |
|                |               | Ethylbenzene                                               | 2012/11/22       | 105                          | %            | 70 - 13  |
|                |               | Ethylene Dibromide                                         | 2012/11/22       | 91                           | %            | 70 - 13  |
|                |               | Hexane                                                     | 2012/11/22       | 95                           | %            | 70 - 13  |
|                |               |                                                            | 2012/11/22       | 93<br>87                     | %<br>%       | 70 - 13  |
|                |               | Methylene Chloride(Dichloromethane)                        |                  |                              |              |          |
|                |               | Methyl Isobutyl Ketone Methyl Isobutyl Ketone (2 Butanene) | 2012/11/22       | 80                           | %<br>%       | 70 - 13  |
|                |               | Methyl Ethyl Ketone (2-Butanone)                           | 2012/11/22       | 80                           |              | 60 - 14  |
|                |               | Methyl t-butyl ether (MTBE)                                | 2012/11/22       | 95                           | %            | 70 - 13  |
|                |               | Styrene                                                    | 2012/11/22       | 97                           | %            | 70 - 13  |
|                |               | 1,1,1,2-Tetrachloroethane                                  | 2012/11/22       | 99                           | %            | 70 - 13  |
|                |               | 1,1,2,2-Tetrachloroethane                                  | 2012/11/22       | 84                           | %            | 70 - 13  |
|                |               | Tetrachloroethylene                                        | 2012/11/22       | 104                          | %            | 70 - 13  |
|                |               | Toluene                                                    | 2012/11/22       | 101                          | %            | 70 - 1   |
|                |               | 1,1,1-Trichloroethane                                      | 2012/11/22       | 95                           | %            | 70 - 1   |
|                |               | 1,1,2-Trichloroethane                                      | 2012/11/22       | 93                           | %            | 70 - 13  |
|                |               | Trichloroethylene                                          | 2012/11/22       | 102                          | %            | 70 - 13  |
|                |               | Vinyl Chloride                                             | 2012/11/22       | 94                           | %            | 70 - 13  |
|                |               | p+m-Xylene                                                 | 2012/11/22       | 107                          | %            | 70 - 13  |
|                |               | o-Xylene                                                   | 2012/11/22       | 106                          | %            | 70 - 13  |
|                |               | Trichlorofluoromethane (FREON 11)                          | 2012/11/22       | 100                          | %            | 70 - 13  |
|                | Method Blank  | 4-Bromofluorobenzene                                       | 2012/11/22       | 99                           | %            | 70 - 13  |
|                |               | D4-1,2-Dichloroethane                                      | 2012/11/22       | 90                           | %            | 70 - 13  |
|                |               | D8-Toluene                                                 | 2012/11/22       | 103                          | %            | 70 - 13  |
|                |               | Acetone (2-Propanone)                                      | 2012/11/22       | ND, RDL=10                   | ug/L         |          |
|                |               | Benzene                                                    | 2012/11/22       | ND, RDL=0.20                 | ug/L         |          |
|                |               | Bromodichloromethane                                       | 2012/11/22       | ND, RDL=0.50                 | ug/L         |          |
|                |               | Bromoform                                                  | 2012/11/22       | ND, RDL=1.0                  | ug/L         |          |
|                |               | Bromomethane                                               | 2012/11/22       | ND, RDL=0.50                 | ug/L         |          |
|                |               | Carbon Tetrachloride                                       | 2012/11/22       | ND, RDL=0.20                 | ug/L         |          |
|                |               | Chlorobenzene                                              | 2012/11/22       | ND, RDL=0.20                 | ug/L         |          |
|                |               | Chloroform                                                 | 2012/11/22       | ND, RDL=0.20                 | ug/L         |          |
|                |               | Dibromochloromethane                                       | 2012/11/22       | ND, RDL=0.50                 | ug/L         |          |
|                |               | 1,2-Dichlorobenzene                                        | 2012/11/22       | ND, RDL=0.50                 | ug/L         |          |
|                |               | 1,3-Dichlorobenzene                                        | 2012/11/22       | ND, RDL=0.50                 | ug/L         |          |
|                |               | 1,4-Dichlorobenzene                                        | 2012/11/22       | ND, RDL=0.50                 | ug/L         |          |
|                |               | Dichlorodifluoromethane (FREON 12)                         | 2012/11/22       | ND, RDL=0.30                 | ug/L<br>ug/L |          |
|                |               | 1,1-Dichloroethane                                         | 2012/11/22       | ND, RDL=0.20                 | ug/L<br>ug/L |          |
|                |               | 1,2-Dichloroethane                                         | 2012/11/22       | ND, RDL=0.20<br>ND, RDL=0.50 | ug/L<br>ug/L |          |
|                |               | 1,1-Dichloroethylene                                       | 2012/11/22       | ND, RDL=0.30<br>ND, RDL=0.20 | ug/L<br>ug/L |          |
|                |               | cis-1,2-Dichloroethylene                                   | 2012/11/22       | ND, RDL=0.20<br>ND, RDL=0.50 | ug/L<br>ug/L |          |
|                |               | trans-1,2-Dichloroethylene                                 |                  | ND, RDL=0.50<br>ND, RDL=0.50 | -            |          |
|                |               |                                                            | 2012/11/22       | •                            | ug/L         |          |
|                |               | 1,2-Dichloropropane                                        | 2012/11/22       | ND, RDL=0.20                 | ug/L         |          |
|                |               | cis-1,3-Dichloropropene                                    | 2012/11/22       | ND, RDL=0.30                 | ug/L         |          |
|                |               | trans-1,3-Dichloropropene                                  | 2012/11/22       | ND, RDL=0.40                 | ug/L         |          |



**Ecoplans Limited** 

Attention: Peter Van Driel Client Project #: 1412815

P.O. #:

Site Location: 1770 SOMERSET ST. W., OTTAWA

#### **Quality Assurance Report (Continued)**

| QA/QC      |              |                                     | Date       |                |              |           |
|------------|--------------|-------------------------------------|------------|----------------|--------------|-----------|
| Batch      |              |                                     | Analyzed   |                |              |           |
| Num Init   | QC Type      | Parameter                           | yyyy/mm/dd | Value Recovery | Units        | QC Limits |
| 3039445 AZ | Method Blank | Ethylbenzene                        | 2012/11/22 | ND, RDL=0.20   | ug/L         |           |
|            |              | Ethylene Dibromide                  | 2012/11/22 | ND, RDL=0.20   | ug/L         |           |
|            |              | Hexane                              | 2012/11/22 | ND, RDL=1.0    | ug/L         |           |
|            |              | Methylene Chloride(Dichloromethane) | 2012/11/22 | ND, RDL=2.0    | ug/L         |           |
|            |              | Methyl Isobutyl Ketone              | 2012/11/22 | ND, RDL=5.0    | ug/L         |           |
|            |              | Methyl Ethyl Ketone (2-Butanone)    | 2012/11/22 | ND, RDL=10     | ug/L         |           |
|            |              | Methyl t-butyl ether (MTBE)         | 2012/11/22 | ND, RDL=0.50   | ug/L         |           |
|            |              | Styrene                             | 2012/11/22 | ND, RDL=0.50   | ug/L         |           |
|            |              | 1,1,1,2-Tetrachloroethane           | 2012/11/22 | ND, RDL=0.50   | ug/L         |           |
|            |              | 1,1,2,2-Tetrachloroethane           | 2012/11/22 | ND, RDL=0.50   | ug/L<br>ug/L |           |
|            |              | Tetrachloroethylene                 | 2012/11/22 | ND, RDL=0.30   | ug/L<br>ug/L |           |
|            |              | Toluene                             | 2012/11/22 | ND, RDL=0.20   | -            |           |
|            |              |                                     |            | · ·            | ug/L         |           |
|            |              | 1,1,1-Trichloroethane               | 2012/11/22 | ND, RDL=0.20   | ug/L         |           |
|            |              | 1,1,2-Trichloroethane               | 2012/11/22 | ND, RDL=0.50   | ug/L         |           |
|            |              | Trichloroethylene                   | 2012/11/22 | ND, RDL=0.20   | ug/L         |           |
|            |              | Vinyl Chloride                      | 2012/11/22 | ND, RDL=0.20   | ug/L         |           |
|            |              | p+m-Xylene                          | 2012/11/22 | ND, RDL=0.20   | ug/L         |           |
|            |              | o-Xylene                            | 2012/11/22 | ND, RDL=0.20   | ug/L         |           |
|            |              | Xylene (Total)                      | 2012/11/22 | ND, RDL=0.20   | ug/L         |           |
|            |              | Trichlorofluoromethane (FREON 11)   | 2012/11/22 | ND, RDL=0.50   | ug/L         |           |
|            | RPD          | Acetone (2-Propanone)               | 2012/11/22 | NC             | %            | 30        |
|            |              | Benzene                             | 2012/11/22 | NC             | %            | 30        |
|            |              | Bromodichloromethane                | 2012/11/22 | NC             | %            | 30        |
|            |              | Bromoform                           | 2012/11/22 | NC             | %            | 30        |
|            |              | Bromomethane                        | 2012/11/22 | NC             | %            | 30        |
|            |              | Carbon Tetrachloride                | 2012/11/22 | NC             | %            | 30        |
|            |              | Chlorobenzene                       | 2012/11/22 | NC             | %            | 30        |
|            |              | Chloroform                          | 2012/11/22 | NC             | %            | 30        |
|            |              | Dibromochloromethane                | 2012/11/22 | NC             | %            | 30        |
|            |              |                                     | 2012/11/22 | NC             | %            | 30        |
|            |              | 1,2-Dichlorobenzene                 |            |                |              |           |
|            |              | 1,3-Dichlorobenzene                 | 2012/11/22 | NC             | %            | 30        |
|            |              | 1,4-Dichlorobenzene                 | 2012/11/22 | NC             | %            | 30        |
|            |              | Dichlorodifluoromethane (FREON 12)  | 2012/11/22 | NC             | %            | 30        |
|            |              | 1,1-Dichloroethane                  | 2012/11/22 | NC             | %            | 30        |
|            |              | 1,2-Dichloroethane                  | 2012/11/22 | NC             | %            | 30        |
|            |              | 1,1-Dichloroethylene                | 2012/11/22 | NC             | %            | 30        |
|            |              | cis-1,2-Dichloroethylene            | 2012/11/22 | NC             | %            | 30        |
|            |              | trans-1,2-Dichloroethylene          | 2012/11/22 | NC             | %            | 30        |
|            |              | 1,2-Dichloropropane                 | 2012/11/22 | NC             | %            | 30        |
|            |              | cis-1,3-Dichloropropene             | 2012/11/22 | NC             | %            | 30        |
|            |              | trans-1,3-Dichloropropene           | 2012/11/22 | NC             | %            | 30        |
|            |              | Ethylbenzene                        | 2012/11/22 | NC             | %            | 30        |
|            |              | Ethylene Dibromide                  | 2012/11/22 | NC             | %            | 30        |
|            |              | Hexane                              | 2012/11/22 | NC             | %            | 30        |
|            |              | Methylene Chloride(Dichloromethane) | 2012/11/22 | NC             | %            | 30        |
|            |              | Methyl Isobutyl Ketone              | 2012/11/22 | NC             | %            | 30        |
|            |              | Methyl Ethyl Ketone (2-Butanone)    | 2012/11/22 | NC             | %<br>%       | 30        |
|            |              | Methyl t-butyl ether (MTBE)         | 2012/11/22 | NC<br>NC       | %            | 30        |
|            |              | , ,                                 |            |                |              |           |
|            |              | Styrene                             | 2012/11/22 | NC<br>NC       | %            | 30        |
|            |              | 1,1,1,2-Tetrachloroethane           | 2012/11/22 | NC             | %            | 30        |
|            |              | 1,1,2,2-Tetrachloroethane           | 2012/11/22 | NC             | %            | 30        |
|            |              | Tetrachloroethylene                 | 2012/11/22 | NC             | %            | 30        |
|            |              | Toluene                             | 2012/11/22 | NC             | %            | 30        |
|            |              | 1,1,1-Trichloroethane               | 2012/11/22 | NC             | %            | 30        |
|            |              | 1,1,2-Trichloroethane               | 2012/11/22 | NC             | %            | 30        |



Ecoplans Limited Attention: Peter Van Driel Client Project #: 1412815

P.O. #:

Site Location: 1770 SOMERSET ST. W., OTTAWA

#### **Quality Assurance Report (Continued)**

| QA/QC        |               |                                                | Date       |                |           |           |
|--------------|---------------|------------------------------------------------|------------|----------------|-----------|-----------|
| Batch        |               |                                                | Analyzed   |                |           |           |
| Num Init     | QC Type       | Parameter                                      | yyyy/mm/dd | Value Recovery | Units     | QC Limits |
| 3039445 AZ   | RPD           | Trichloroethylene                              | 2012/11/22 | NC             | %         | 30        |
|              |               | Vinyl Chloride                                 | 2012/11/22 | NC             | %         | 30        |
|              |               | p+m-Xylene                                     | 2012/11/22 | NC (1)         | %         | 30        |
|              |               | o-Xylene                                       | 2012/11/22 | NC             | %         | 30        |
|              |               | Xylene (Total)                                 | 2012/11/22 | NC             | %         | 30        |
|              |               | Trichlorofluoromethane (FREON 11)              | 2012/11/22 | NC             | %         | 30        |
| 3042577 LPG  | Matrix Spike  | Decachlorobiphenyl                             | 2012/11/21 | 74             | %         | 60 - 130  |
|              | ·             | Aroclor 1260                                   | 2012/11/21 | 60             | %         | 60 - 130  |
|              |               | Total PCB                                      | 2012/11/21 | 60             | %         | 60 - 130  |
|              | Spiked Blank  | Decachlorobiphenyl                             | 2012/11/20 | 101            | %         | 60 - 130  |
|              | optou Diam.   | Aroclor 1260                                   | 2012/11/20 | 111            | %         | 60 - 130  |
|              |               | Total PCB                                      | 2012/11/20 | 111            | %         | 60 - 130  |
|              | Method Blank  | Decachlorobiphenyl                             | 2012/11/20 | 88             | %         | 60 - 130  |
|              | Wicthod Blank | Aroclor 1242                                   | 2012/11/20 | ND, RDL=0.05   | ug/L      | 00 - 100  |
|              |               | Aroclor 1242<br>Aroclor 1248                   | 2012/11/20 | ND, RDL=0.05   | -         |           |
|              |               |                                                |            | **             | ug/L      |           |
|              |               | Aroclor 1254                                   | 2012/11/20 | ND, RDL=0.05   | ug/L      |           |
|              |               | Aroclor 1260                                   | 2012/11/20 | ND, RDL=0.05   | ug/L      |           |
|              |               | Total PCB                                      | 2012/11/20 | ND, RDL=0.05   | ug/L      |           |
|              | RPD           | Aroclor 1242                                   | 2012/11/21 | NC             | %         | 30        |
|              |               | Aroclor 1248                                   | 2012/11/21 | NC             | %         | 30        |
|              |               | Aroclor 1254                                   | 2012/11/21 | NC             | %         | 30        |
|              |               | Aroclor 1260                                   | 2012/11/21 | NC             | %         | 30        |
|              |               | Total PCB                                      | 2012/11/21 | NC             | %         | 40        |
| 3043130 LHA  | Matrix Spike  | Free Cyanide                                   | 2012/11/21 | 101            | %         | 80 - 120  |
|              | Spiked Blank  | Free Cyanide                                   | 2012/11/21 | 106            | %         | 80 - 120  |
|              | Method Blank  | Free Cyanide                                   | 2012/11/21 | ND, RDL=2      | ug/L      |           |
|              | RPD           | Free Cyanide                                   | 2012/11/21 | NC             | %         | 20        |
| 3043354 SAC  | Matrix Spike  | Chromium (VI)                                  | 2012/11/26 | 96             | %         | 80 - 120  |
|              | Spiked Blank  | Chromium (VI)                                  | 2012/11/26 | 90             | %         | 80 - 120  |
|              | Method Blank  | Chromium (VI)                                  | 2012/11/26 | ND, RDL=5.0    | ug/L      |           |
|              | RPD           | Chromium (VI)                                  | 2012/11/26 | NC             | %         | 20        |
| 3043358 LCH  | Matrix Spike  | Mercury (Hg)                                   | 2012/11/21 | 113            | %         | 75 - 125  |
| 3043330 LOIT | Spiked Blank  | Mercury (Hg)                                   | 2012/11/21 | 107            | %         | 80 - 120  |
|              | Method Blank  | • • •                                          | 2012/11/21 | ND, RDL=0.1    |           | 00 - 120  |
|              | RPD           | Mercury (Hg)                                   |            | NC NC          | ug/L<br>% | 20        |
| 2042742 LIDE |               | Mercury (Hg)                                   | 2012/11/21 |                |           | 20        |
| 3043712 HRE  | Matrix Spike  | Dissolved Antimony (Sb)                        | 2012/11/21 | 108            | %         | 80 - 120  |
|              |               | Dissolved Arsenic (As)                         | 2012/11/21 | 112            | %         | 80 - 120  |
|              |               | Dissolved Barium (Ba)                          | 2012/11/21 | 103            | %         | 80 - 120  |
|              |               | Dissolved Beryllium (Be)                       | 2012/11/21 | 105            | %         | 80 - 120  |
|              |               | Dissolved Boron (B)                            | 2012/11/21 | 105            | %         | 80 - 120  |
|              |               | Dissolved Cadmium (Cd)                         | 2012/11/21 | 104            | %         | 80 - 120  |
|              |               | Dissolved Chromium (Cr)                        | 2012/11/21 | 100            | %         | 80 - 120  |
|              |               | Dissolved Cobalt (Co)                          | 2012/11/21 | 99             | %         | 80 - 120  |
|              |               | Dissolved Copper (Cu)                          | 2012/11/21 | 93             | %         | 80 - 120  |
|              |               | Dissolved Lead (Pb)                            | 2012/11/21 | 99             | %         | 80 - 120  |
|              |               | Dissolved Molybdenum (Mo)                      | 2012/11/21 | 109            | %         | 80 - 120  |
|              |               | Dissolved Nickel (Ni)                          | 2012/11/21 | 96             | %         | 80 - 120  |
|              |               | Dissolved Selenium (Se)                        | 2012/11/21 | 112            | %         | 80 - 120  |
|              |               | Dissolved Silver (Ag)                          | 2012/11/21 | 92             | %         | 80 - 120  |
|              |               | Dissolved Solium (Na)                          | 2012/11/21 | NC<br>NC       | %         | 80 - 120  |
|              |               | Dissolved Sodium (Na) Dissolved Thallium (TI)  | 2012/11/21 | 105            | %         | 80 - 120  |
|              |               | Dissolved Triallium (Tr) Dissolved Uranium (U) |            | 106            |           |           |
|              |               | ` ,                                            | 2012/11/21 |                | %         | 80 - 120  |
|              |               | Dissolved Vanadium (V)                         | 2012/11/21 | 101            | %         | 80 - 120  |
|              | 0-11-51       | Dissolved Zinc (Zn)                            | 2012/11/21 | 101            | %         | 80 - 120  |
|              | Spiked Blank  | Dissolved Antimony (Sb)                        | 2012/11/21 | 99             | %         | 80 - 120  |



**Ecoplans Limited** 

Attention: Peter Van Driel Client Project #: 1412815

P.O. #:

Site Location: 1770 SOMERSET ST. W., OTTAWA

#### **Quality Assurance Report (Continued)**

| QA/QC<br>Batch |                 |                                                 | Date<br>Analyzed |                      |        |           |
|----------------|-----------------|-------------------------------------------------|------------------|----------------------|--------|-----------|
| Num Init       | QC Type         | Parameter                                       | yyyy/mm/dd       | Value Recovery       | Units  | QC Limits |
| 3043712 HRE    | Spiked Blank    | Dissolved Arsenic (As)                          | 2012/11/21       | yaide Recovery<br>99 | %      | 80 - 120  |
| 30431 12 TINL  | Spiked blank    | , ,                                             |                  | 99                   | %      | 80 - 120  |
|                |                 | Dissolved Barium (Ba) Dissolved Beryllium (Be)  | 2012/11/21       | 99                   | %      | 80 - 12   |
|                |                 | • • • • • • • • • • • • • • • • • • • •         | 2012/11/21       |                      |        |           |
|                |                 | Dissolved Boron (B)                             | 2012/11/21       | 99                   | %      | 80 - 120  |
|                |                 | Dissolved Cadmium (Cd)                          | 2012/11/21       | 98                   | %      | 80 - 120  |
|                |                 | Dissolved Chromium (Cr)                         | 2012/11/21       | 99                   | %      | 80 - 120  |
|                |                 | Dissolved Cobalt (Co)                           | 2012/11/21       | 96                   | %      | 80 - 120  |
|                |                 | Dissolved Copper (Cu)                           | 2012/11/21       | 95                   | %      | 80 - 12   |
|                |                 | Dissolved Lead (Pb)                             | 2012/11/21       | 95                   | %      | 80 - 12   |
|                |                 | Dissolved Molybdenum (Mo)                       | 2012/11/21       | 99                   | %      | 80 - 12   |
|                |                 | Dissolved Nickel (Ni)                           | 2012/11/21       | 97                   | %      | 80 - 120  |
|                |                 | Dissolved Selenium (Se)                         | 2012/11/21       | 100                  | %      | 80 - 120  |
|                |                 | Dissolved Silver (Ag)                           | 2012/11/21       | 95                   | %      | 80 - 12   |
|                |                 | Dissolved Sodium (Na)                           | 2012/11/21       | 104                  | %      | 80 - 120  |
|                |                 | Dissolved Thallium (TI)                         | 2012/11/21       | 99                   | %      | 80 - 12   |
|                |                 | Dissolved Uranium (U)                           | 2012/11/21       | 101                  | %      | 80 - 12   |
|                |                 | Dissolved Vanadium (V)                          | 2012/11/21       | 98                   | %      | 80 - 120  |
|                |                 | Dissolved Zinc (Zn)                             | 2012/11/21       | 102                  | %      | 80 - 120  |
|                | Method Blank    | Dissolved Antimony (Sb)                         | 2012/11/21       | ND, RDL=0.50         | ug/L   | 00 - 12   |
|                | WELLIOU DIALIK  | Dissolved Aritimony (35) Dissolved Arsenic (As) |                  | ND, RDL=0.30         | -      |           |
|                |                 | ` ,                                             | 2012/11/21       |                      | ug/L   |           |
|                |                 | Dissolved Barium (Ba)                           | 2012/11/21       | ND, RDL=2.0          | ug/L   |           |
|                |                 | Dissolved Beryllium (Be)                        | 2012/11/21       | ND, RDL=0.50         | ug/L   |           |
|                |                 | Dissolved Boron (B)                             | 2012/11/21       | ND, RDL=10           | ug/L   |           |
|                |                 | Dissolved Cadmium (Cd)                          | 2012/11/21       | ND, RDL=0.10         | ug/L   |           |
|                |                 | Dissolved Chromium (Cr)                         | 2012/11/21       | ND, RDL=5.0          | ug/L   |           |
|                |                 | Dissolved Cobalt (Co)                           | 2012/11/21       | ND, RDL=0.50         | ug/L   |           |
|                |                 | Dissolved Copper (Cu)                           | 2012/11/21       | ND, RDL=1.0          | ug/L   |           |
|                |                 | Dissolved Lead (Pb)                             | 2012/11/21       | ND, RDL=0.50         | ug/L   |           |
|                |                 | Dissolved Molybdenum (Mo)                       | 2012/11/21       | ND, RDL=0.50         | ug/L   |           |
|                |                 | Dissolved Nickel (Ni)                           | 2012/11/21       | ND, RDL=1.0          | ug/L   |           |
|                |                 | Dissolved Selenium (Se)                         | 2012/11/21       | ND, RDL=2.0          | ug/L   |           |
|                |                 | Dissolved Silver (Ag)                           | 2012/11/21       | ND, RDL=0.10         | ug/L   |           |
|                |                 | Dissolved Sodium (Na)                           | 2012/11/21       | ND, RDL=100          | ug/L   |           |
|                |                 | Dissolved Thallium (TI)                         | 2012/11/21       | ND, RDL=0.050        | ug/L   |           |
|                |                 | Dissolved Uranium (U)                           | 2012/11/21       | ND, RDL=0.10         | ug/L   |           |
|                |                 | Dissolved Vanadium (V)                          | 2012/11/21       | ND, RDL=0.50         | ug/L   |           |
|                |                 | Dissolved Zinc (Zn)                             | 2012/11/21       | ND, RDL=5.0          | ug/L   |           |
| 3043754 SAC    | Matrix Spike    | Dissolved Ziric (Ziri)                          | 2012/11/21       | ND, NDE=5.0          | ug/L   |           |
| 5043754 SAC    | •               | Characteristic (VII)                            | 2042/44/04       | 100                  | 0/     | 00 40     |
|                | [PQ7273-05]     | Chromium (VI)                                   | 2012/11/21       | 106                  | %      | 80 - 12   |
|                | Spiked Blank    | Chromium (VI)                                   | 2012/11/21       | 97                   | %      | 80 - 12   |
|                | Method Blank    | Chromium (VI)                                   | 2012/11/21       | ND, RDL=5.0          | ug/L   |           |
|                | RPD [PQ7273-05] | Chromium (VI)                                   | 2012/11/21       | NC                   | %      | 2         |
| 3043962 ADB    | Matrix Spike    |                                                 |                  |                      |        |           |
|                | [PQ7271-02]     | Dissolved Chloride (CI)                         | 2012/11/21       | NC                   | %      | 80 - 12   |
|                | Spiked Blank    | Dissolved Chloride (CI)                         | 2012/11/21       | 104                  | %      | 80 - 12   |
|                | Method Blank    | Dissolved Chloride (CI)                         | 2012/11/21       | ND, RDL=1            | mg/L   |           |
|                | RPD [PQ7271-02] | Dissolved Chloride (Cl)                         | 2012/11/21       | 3.3                  | %      | 2         |
| 3044855 LHA    | Matrix Spike    | Free Cyanide                                    | 2012/11/22       | 95                   | %      | 80 - 12   |
|                | Spiked Blank    | Free Cyanide                                    | 2012/11/22       | 110                  | %      | 80 - 12   |
|                | Method Blank    | Free Cyanide                                    | 2012/11/22       | ND, RDL=2            | ug/L   | 30 12     |
|                | RPD             | Free Cyanide                                    | 2012/11/22       | NC NDL-2             | wg/L   | 2         |
| 3046022 B/V/V  |                 | o-Terphenyl                                     | 2012/11/22       | 111                  | %<br>% | 50 - 13   |
| 3046022 BWW    | wattix Spike    | ' '                                             |                  |                      |        |           |
|                |                 | F2 (C10-C16 Hydrocarbons)                       | 2012/11/22       | 101                  | %      | 50 - 13   |
|                |                 | F3 (C16-C34 Hydrocarbons)                       | 2012/11/22       | 110                  | %      | 50 - 130  |
|                |                 | F4 (C34-C50 Hydrocarbons)                       | 2012/11/22       | 100                  | %      | 50 - 13   |



Ecoplans Limited Attention: Peter Van Driel Client Project #: 1412815

P.O. #:

Site Location: 1770 SOMERSET ST. W., OTTAWA

#### **Quality Assurance Report (Continued)**

| QA/QC       |              |                           | Date       |                |       |           |
|-------------|--------------|---------------------------|------------|----------------|-------|-----------|
| Batch       |              |                           | Analyzed   |                |       |           |
| Num Init    | QC Type      | Parameter                 | yyyy/mm/dd | Value Recovery | Units | QC Limits |
| 3046022 BWW | Spiked Blank | o-Terphenyl               | 2012/11/22 | 110            | %     | 50 - 130  |
|             |              | F2 (C10-C16 Hydrocarbons) | 2012/11/22 | 94             | %     | 70 - 130  |
|             |              | F3 (C16-C34 Hydrocarbons) | 2012/11/22 | 113            | %     | 70 - 130  |
|             |              | F4 (C34-C50 Hydrocarbons) | 2012/11/22 | 98             | %     | 70 - 130  |
|             | Method Blank | o-Terphenyl               | 2012/11/22 | 107            | %     | 50 - 130  |
|             |              | F2 (C10-C16 Hydrocarbons) | 2012/11/22 | ND, RDL=100    | ug/L  |           |
|             |              | F3 (C16-C34 Hydrocarbons) | 2012/11/22 | ND, RDL=100    | ug/L  |           |
|             |              | F4 (C34-C50 Hydrocarbons) | 2012/11/22 | ND, RDL=100    | ug/L  |           |
|             | RPD          | F2 (C10-C16 Hydrocarbons) | 2012/11/23 | NC             | %     | 30        |
|             |              | F3 (C16-C34 Hydrocarbons) | 2012/11/23 | NC             | %     | 30        |
|             |              | F4 (C34-C50 Hydrocarbons) | 2012/11/23 | NC             | %     | 30        |
| 3046868 HRE | Matrix Spike | Dissolved Antimony (Sb)   | 2012/11/26 | 106            | %     | 80 - 120  |
|             |              | Dissolved Arsenic (As)    | 2012/11/26 | 100            | %     | 80 - 120  |
|             |              | Dissolved Barium (Ba)     | 2012/11/26 | NC             | %     | 80 - 120  |
|             |              | Dissolved Beryllium (Be)  | 2012/11/26 | 100            | %     | 80 - 120  |
|             |              | Dissolved Boron (B)       | 2012/11/26 | NC             | %     | 80 - 120  |
|             |              | Dissolved Cadmium (Cd)    | 2012/11/26 | 104            | %     | 80 - 120  |
|             |              | Dissolved Chromium (Cr)   | 2012/11/26 | 94             | %     | 80 - 120  |
|             |              | Dissolved Cobalt (Co)     | 2012/11/26 | 97             | %     | 80 - 120  |
|             |              | Dissolved Copper (Cu)     | 2012/11/26 | NC             | %     | 80 - 120  |
|             |              | Dissolved Lead (Pb)       | 2012/11/26 | 100            | %     | 80 - 120  |
|             |              | Dissolved Molybdenum (Mo) | 2012/11/26 | 105            | %     | 80 - 120  |
|             |              | Dissolved Nickel (Ni)     | 2012/11/26 | NC             | %     | 80 - 120  |
|             |              | Dissolved Selenium (Se)   | 2012/11/26 | 96             | %     | 80 - 120  |
|             |              | Dissolved Silver (Ag)     | 2012/11/26 | NC             | %     | 80 - 120  |
|             |              | Dissolved Sodium (Na)     | 2012/11/26 | 99             | %     | 80 - 120  |
|             |              | Dissolved Thallium (TI)   | 2012/11/26 | 100            | %     | 80 - 120  |
|             |              | Dissolved Uranium (U)     | 2012/11/26 | 104            | %     | 80 - 120  |
|             |              | Dissolved Vanadium (V)    | 2012/11/26 | NC             | %     | 80 - 120  |
|             |              | Dissolved Zinc (Zn)       | 2012/11/26 | NC             | %     | 80 - 120  |
|             | Spiked Blank | Dissolved Antimony (Sb)   | 2012/11/26 | 99             | %     | 80 - 120  |
|             |              | Dissolved Arsenic (As)    | 2012/11/26 | 95             | %     | 80 - 120  |
|             |              | Dissolved Barium (Ba)     | 2012/11/26 | 95             | %     | 80 - 120  |
|             |              | Dissolved Beryllium (Be)  | 2012/11/26 | 97             | %     | 80 - 120  |
|             |              | Dissolved Boron (B)       | 2012/11/26 | 98             | %     | 80 - 120  |
|             |              | Dissolved Cadmium (Cd)    | 2012/11/26 | 96             | %     | 80 - 120  |
|             |              | Dissolved Chromium (Cr)   | 2012/11/26 | 93             | %     | 80 - 120  |
|             |              | Dissolved Cobalt (Co)     | 2012/11/26 | 92             | %     | 80 - 120  |
|             |              | Dissolved Copper (Cu)     | 2012/11/26 | 92             | %     | 80 - 120  |
|             |              | Dissolved Lead (Pb)       | 2012/11/26 | 96             | %     | 80 - 120  |
|             |              | Dissolved Molybdenum (Mo) | 2012/11/26 | 99             | %     | 80 - 120  |
|             |              | Dissolved Nickel (Ni)     | 2012/11/26 | 92             | %     | 80 - 120  |
|             |              | Dissolved Selenium (Se)   | 2012/11/26 | 92             | %     | 80 - 120  |
|             |              | Dissolved Silver (Ag)     | 2012/11/26 | 94             | %     | 80 - 120  |
|             |              | Dissolved Sodium (Na)     | 2012/11/26 | 95             | %     | 80 - 120  |
|             |              | Dissolved Thallium (TI)   | 2012/11/26 | 96             | %     | 80 - 120  |
|             |              | Dissolved Uranium (U)     | 2012/11/26 | 99             | %     | 80 - 120  |
|             |              | Dissolved Vanadium (V)    | 2012/11/26 | 93             | %     | 80 - 120  |
|             |              | Dissolved Zinc (Zn)       | 2012/11/26 | 96             | %     | 80 - 120  |
|             | Method Blank | Dissolved Antimony (Sb)   | 2012/11/26 | ND, RDL=0.50   | ug/L  |           |
|             |              | Dissolved Arsenic (As)    | 2012/11/26 | ND, RDL=1.0    | ug/L  |           |
|             |              | Dissolved Barium (Ba)     | 2012/11/26 | ND, RDL=2.0    | ug/L  |           |
|             |              | Dissolved Beryllium (Be)  | 2012/11/26 | ND, RDL=0.50   | ug/L  |           |
|             |              | Dissolved Boron (B)       | 2012/11/26 | ND, RDL=10     | ug/L  |           |
|             |              | Dissolved Cadmium (Cd)    | 2012/11/26 | ND, RDL=0.10   | ug/L  |           |



**Ecoplans Limited** 

Attention: Peter Van Driel Client Project #: 1412815

P.O. #:

Site Location: 1770 SOMERSET ST. W., OTTAWA

#### Quality Assurance Report (Continued)

Maxxam Job Number: MB2I1463

| QA/QC       |               |                                               | Date       |                |        |                  |
|-------------|---------------|-----------------------------------------------|------------|----------------|--------|------------------|
| Batch       |               |                                               | Analyzed   |                |        |                  |
| Num Init    | QC Type       | Parameter                                     | yyyy/mm/dd | Value Recovery | Units  | QC Lim           |
| 046868 HRE  | Method Blank  | Dissolved Chromium (Cr)                       | 2012/11/26 | ND, RDL=5.0    | ug/L   |                  |
|             |               | Dissolved Cobalt (Co)                         | 2012/11/26 | ND, RDL=0.50   | ug/L   |                  |
|             |               | Dissolved Copper (Cu)                         | 2012/11/26 | ND, RDL=1.0    | ug/L   |                  |
|             |               | Dissolved Lead (Pb)                           | 2012/11/26 | ND, RDL=0.50   | ug/L   |                  |
|             |               | Dissolved Molybdenum (Mo)                     | 2012/11/26 | ND, RDL=0.50   | ug/L   |                  |
|             |               | Dissolved Nickel (Ni)                         | 2012/11/26 | ND, RDL=1.0    | ug/L   |                  |
|             |               | Dissolved Selenium (Se)                       | 2012/11/26 | ND, RDL=2.0    | ug/L   |                  |
|             |               | Dissolved Silver (Ag)                         | 2012/11/26 | ND, RDL=0.10   | ug/L   |                  |
|             |               | Dissolved Sodium (Na)                         | 2012/11/26 | ND, RDL=100    | ug/L   |                  |
|             |               | Dissolved Thallium (TI)                       | 2012/11/26 | ND, RDL=0.050  | ug/L   |                  |
|             |               | Dissolved Uranium (U)                         | 2012/11/26 | ND, RDL=0.10   | ug/L   |                  |
|             |               | Dissolved Vanadium (V)                        | 2012/11/26 | 0.65, RDL=0.50 | ug/L   |                  |
|             |               | Dissolved Zinc (Zn)                           | 2012/11/26 | ND, RDL=5.0    | ug/L   |                  |
|             | RPD           | Dissolved Antimony (Sb)                       | 2012/11/26 | 3.3            | %      |                  |
|             |               | Dissolved Arsenic (As)                        | 2012/11/26 | 6.1            | %      |                  |
|             |               | Dissolved Barium (Ba)                         | 2012/11/26 | 3.1            | %      |                  |
|             |               | Dissolved Beryllium (Be)                      | 2012/11/26 | 3.2            | %      |                  |
|             |               | Dissolved Boron (B)                           | 2012/11/26 | 6.0            | %      |                  |
|             |               | Dissolved Cadmium (Cd)                        | 2012/11/26 | 3.1            | %      |                  |
|             |               | Dissolved Chromium (Cr)                       | 2012/11/26 | 3.2            | %      |                  |
|             |               | Dissolved Copper (Cu)                         | 2012/11/26 | 4.0            | %      |                  |
|             |               | Dissolved Lead (Pb)                           | 2012/11/26 | 2.6            | %      |                  |
|             |               | Dissolved Molybdenum (Mo)                     | 2012/11/26 | 3.5            | %      |                  |
|             |               | Dissolved Nickel (Ni)                         | 2012/11/26 | 3.5            | %      |                  |
|             |               | Dissolved Selenium (Se)                       | 2012/11/26 | 4.9            | %      |                  |
|             |               | Dissolved Silver (Ag)                         | 2012/11/26 | 2.5            | %      |                  |
|             |               | Dissolved Sliver (Ag) Dissolved Thallium (TI) | 2012/11/26 | 2.1            | %      |                  |
|             |               | Dissolved Manadium (V)                        | 2012/11/26 | 3.8            | %      |                  |
|             |               | Dissolved Variation (V) Dissolved Zinc (Zn)   | 2012/11/26 | 1.7            | %<br>% |                  |
| 046919 LRA  | Matrix Spike  | 1.4-Difluorobenzene                           | 2012/11/24 | 1.7            | %<br>% | 70 - 1           |
| 1040919 LNA | Matrix Spike  | 4-Bromofluorobenzene                          | 2012/11/24 | 101            | %      | 70 - 1<br>70 - 1 |
|             |               | D10-Ethylbenzene                              | 2012/11/24 | 100            | %<br>% | 70 - 1<br>70 - 1 |
|             |               | D10-Ethylberizerie D4-1,2-Dichloroethane      | 2012/11/24 | 96             | %<br>% | 70 - 1<br>70 - 1 |
|             |               | · ·                                           | 2012/11/24 | 86             | %<br>% | 70 - 1<br>70 - 1 |
|             | Cailead Dlank | F1 (C6-C10)                                   |            |                | %<br>% | 70 - 1<br>70 - 1 |
|             | Spiked Blank  | 1,4-Difluorobenzene                           | 2012/11/23 | 103            |        | -                |
|             |               | 4-Bromofluorobenzene                          | 2012/11/23 | 105            | %      | 70 - 1           |
|             |               | D10-Ethylbenzene                              | 2012/11/23 | 95             | %      | 70 - 1           |
|             |               | D4-1,2-Dichloroethane                         | 2012/11/23 | 96             | %      | 70 - 1           |
|             |               | F1 (C6-C10)                                   | 2012/11/23 | 100            | %      | 70 - 1           |
|             | Method Blank  | 1,4-Difluorobenzene                           | 2012/11/23 | 102            | %      | 70 - 1           |
|             |               | 4-Bromofluorobenzene                          | 2012/11/23 | 102            | %      | 70 - 1           |
|             |               | D10-Ethylbenzene                              | 2012/11/23 | 101            | %      | 70 - 1           |
|             |               | D4-1,2-Dichloroethane                         | 2012/11/23 | 95             | %      | 70 - 1           |
|             |               | F1 (C6-C10)                                   | 2012/11/23 | ND, RDL=25     | ug/L   |                  |
|             |               | F1 (C6-C10) - BTEX                            | 2012/11/23 | ND, RDL=25     | ug/L   |                  |
|             | RPD           | F1 (C6-C10)                                   | 2012/11/24 | NC             | %      |                  |
|             |               | F1 (C6-C10) - BTEX                            | 2012/11/24 | NC             | %      |                  |

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.



Ecoplans Limited Attention: Peter Van Driel Client Project #: 1412815

P.O. #:

Site Location: 1770 SOMERSET ST. W., OTTAWA

# Quality Assurance Report (Continued) Maxxam Job Number: MB2l1463

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

(1) VOC Analysis: Detection limit was raised due to instrument background.



# Validation Signature Page

#### Maxxam Job #: B2I1463

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s). Charles Ancker, B.Sc., M.Sc., C.Chem, Senior Analyst Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist n. Risheld Medhat Riskallah, Manager, Hydrocarbon Department Mamdouh Salib, Analyst, Hydrocarbons

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

| Contact Name: Peter Van Driel  Contact Name: Peter Van Driel  Address: 72 Victoria St S Suite 100  Kitchener ON N2G 4Y9  Phone: (519)741-8850 x2280 Fax: (519)741-8884 Phone: (519)741-8850 x2280 Fax: (519)741-8850 x2280 Fa | PROJECT INFORMATION:  Joint A79521  B2I1463  M P ENV-576  PROJECT MANAR  PROJECT MANAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Company Name: #47490 Ecoplans Limited Company Name: Peter Van Driel Peter Van Driel Peter Van Driel Peter Van Driel Project Name: Project Name: Phone: (519)741-8850 x2280 Fax (519)741-8884 Phone: (519)741-8850 x2280 Fax Site # Samp Phone: Project Name: Project Name: Phone: Project Name: Phone: (519)741-8850 x2280 Fax Site # Samp Phone: Project Name: Project Name: Phone: Phone: Phone: Project Name: Phone: Phon | DOBASION #: A75021  B2I1463  M P ENV-576  DITAL SOLUTION OF THE STATE |
| Peter Van Driel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O.#. 1412815 M.P. E.V576 380818  PROJECT MANA!  PROJECT MANA!  Dolanta Goralcz  C#380818-05-02  TURNAROUND TIME (TAT) REQUIRED:  PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS  Regular (Standard) TAT:  (will be applied if Rush TAT is not specified):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Address:   72 Victoria St S Suite 100   Address:   72 Victoria St S Suite 100   Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oject #: 1910-815 M. P. E.NV-876 380818  PROJECT MANA  Ottawa 1770 50 werset Sh. W. C#380818-05-02 Jolanta Goralez  REQUESTED (Please be specific): TURNAROUND TIME (TAT) REQUIRED:  PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS  Regular (Standard) TAT:  (will be applied if Rush TAT is not specified):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Kitchener ON N2G 4Y9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | project Name:  le #:  Ottawa 1770 Somersed Sh.W.  C#380818-05-02  TURNAROUND TIME (TAT) REQUIRED:  PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS  Regular (Standard) TAT:  (will be applied if Rush TAT is not specified):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Phone:   (519)741-8850 x2280   Fax: (519)741-8884   Phone:   (519)741-8850 x2280   Fax:   Site #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tele #: Ottawa 1770 Somersel Shiw C#380818-05-02  REQUESTED (Please be specific):  TURNAROUND TIME (TAT) REQUIRED:  PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS  Regular (Standard) TAT:  (will be applied if Rush TAT is not specified):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Pvandriel@ecoplans.com  Regulation 153 (2011)  Other Regulations  SPECIAL INSTRUCTIONS  ANALYSIS RECULATIONS  Table 1  Res/Park Medicin/Fine CCME Sanitary Sewer Bylaw  Sewer Bylaw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | REQUESTED (Please be specific):  TURNAROUND TIME (TAT) REQUIRED:  PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS  Regular (Standard) TAT:  (will be applied if Rush TAT is not specified):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Regulation 153 (2011)  Other Regulations  SPECIAL INSTRUCTIONS  Z  ANALYSIS REC  Table 1 Res/Park   Medicin/Fine   CCME   Sanitary Sewer Bylaw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | REQUESTED (Please be specific):  TURNAROUND TIME (TAT) REQUIRED:  PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS  Regular (Standard) TAT:  (will be applied if Rush TAT is not specified):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Regulation 155 (2011)  Other regulations  Table 1 Res/Park MedicinyFine CCME Sanitary Sewer Bylaw  Table 1 Res/Park MedicinyFine CCME Sanitary Sewer Bylaw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS  Regular (Standard) TAT:  (will be applied if Rush TAT is not specified):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Table 2   Ind/Conn   Coarse   MISA   Municipality   Municipality   Table 3   Agri/Other   For RSC   PWQO   Other   Mote: For MOE regulated drinking water samples - please use the Drinking Water Chain of Custody Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Please note: Standard TAT for certain tests such as BOD and Dioxins/Furans days - contact your Project Manager for details.  Job Specific Rush TAT (if applies to entire submission)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| , , , , =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Note: For MOE regulated drinking water samples - please use the Drinking Water Chain of Custody Form  SAMPLES MUST BE KEPT COOL (< 10°C) FROM TIME OF SAMPLING UNTIL DELIVERY TO MAXXAM  Sample Berrorie Lakel Sample (Location) Identification Date Sampled Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rush Confirmation Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SAMPLES MUST BE KEPT COOL (< 10°C) FROM TIME OF SAMPLING UNTIL DELIVERY TO MAXXAM  Sample Barcote Label Sample (Location) Identification  Date Sampled Time Sampled Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (call lab for #)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sample Barcode Label Sample (Location) Identification Date Sampled Time Sampled Matrix & S S C S S C S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 16-NW-12-3:00 PM 6W VV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14 All sample bottles filled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MW-2 17- Nov12 10:00 AM GW V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14 Contain get enough water for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| M-4 THOUSE 10-10AM GW VVV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14 Couldn't get enough water for chromium VI or Mercury 14 Couldn't get enough water for all 14 PHCs or metals buttles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MW = 16-Nw12 12:00PM GW VVV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16 All sample bottles filed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14 All sample bottles filed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Dup 16 Nov-12 6:00PM GW VVV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Tre Blank - Water VVV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | In anclosed Trip Blank pack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PAGE IN OUR SEC BY (Signature/Print) Date: (YYMMIDD) Time: RECEIVED BY: (Signature/Print) Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | late: (YY/MM/DD) Time: # Jars Used and Laboratory Use Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RELINQUISHED BY: (Signature/Print) Date. (11/mm/DD) Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Not Submitted Time Sensitive Temperature (°C) on Receipt Custody Seal Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Max                       | Хат                                                | Maxxam Analytics International Corpo<br>6740 Campobello Road, Mississauga |                                |                      | ree:800-56                          | 3-6266 Fax      | c(905) 817- | 5779 www.max | kam.ca                | С               | HAIN OF   | CUSTODY RE      | CORD                                                               |                                                                                                                                                                                                                                 | Page of                        |
|---------------------------|----------------------------------------------------|---------------------------------------------------------------------------|--------------------------------|----------------------|-------------------------------------|-----------------|-------------|--------------|-----------------------|-----------------|-----------|-----------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                           | INVOICE I                                          | NFORMATION:                                                               |                                | REPORT INFORMAT      | ION (if dif                         | fers from in    | voice):     |              |                       | PROJECT         | NFORMATIC | ON:             |                                                                    | Laboratory Use                                                                                                                                                                                                                  | Only:                          |
| Company Name              | #47490 Ecopla                                      | ans Limited                                                               | Company Name                   | r:                   | ш                                   |                 |             |              | Quotation #.          | A79521          |           |                 |                                                                    | MAXXAM JOB #:                                                                                                                                                                                                                   | BOTTLE ORDER #:                |
| Contact Name:<br>Address: | Peter Van Driel<br>72 Victoria St S                |                                                                           | Contact Name:                  | Peter Van Dr         | iel                                 |                 |             |              | P.O. #.<br>Project #. |                 |           |                 |                                                                    |                                                                                                                                                                                                                                 | 380818                         |
|                           | Kitchener ON N                                     | A CANADA TO MARKATA                                                       |                                |                      |                                     |                 |             |              | Project Name:         |                 |           |                 |                                                                    | CHAIN OF CUSTODY #:                                                                                                                                                                                                             | PROJECT MANAGER:               |
| Phone:                    | (519)741-8850                                      | x2280 Fax (519)741-888                                                    | 4 Phone:                       | (519)741-885         | 0 x2280                             | ) Fa            | x.          |              | Site #:               | Ottawa          |           |                 | 100                                                                |                                                                                                                                                                                                                                 | Jolanta Goralczyk              |
| Email:                    | pvandriel@eco                                      | plans.com                                                                 | Email:                         | pvandriel@e          | coplans.                            | com             |             |              | Sampled By:           |                 |           |                 |                                                                    | C#380818-01-02                                                                                                                                                                                                                  |                                |
| Regul                     | lation 153 (2011)                                  | Other Regulation                                                          | ons SF                         | PECIAL INSTRUCTIONS  | 0                                   |                 | 2           | ANALY        | SIS REQUESTED         | Please be speci | ic):      |                 |                                                                    | TURNAROUND TIME (TAT)                                                                                                                                                                                                           | REQUIRED:                      |
| Table 2                   | Res/Park Medium Ind/Comm Coarse Agri/Other For RSO | MISA Municipality PWQO Other                                              |                                |                      | Regulated Drinking Water ? ( Y (N ) | 9               | Ka IN M     | (8-th)       |                       |                 |           |                 | Regular (S<br>(will be ap)<br>Standard<br>Please not<br>days - con | PLEASE PROVIDE ADVANCE NOTICE FO<br>Standard) TAT:<br>polled if Rush TAT is not specified):<br>FAT = 5-7 Working days for most tests.<br>te: Standard TAT for certain tests such as E<br>tact your Project Manager for details. | 30D and Dioxins/Furans are > 5 |
|                           |                                                    | Certificate of Analysis (Y/N)?                                            | interest Matter Chair at Court | 4.5-                 | Drin                                | Reg             | \$          | 972          | 1                     |                 |           |                 | Date Requ                                                          | fic Rush TAT (if applies to entire submis<br>red: Time Ro                                                                                                                                                                       |                                |
|                           |                                                    | rinking water samples - please use the Dr                                 |                                | **                   | Regulated D                         | 0               | 1           | ALA          |                       |                 |           |                 |                                                                    |                                                                                                                                                                                                                                 | equired:                       |
| SA                        | MPLES MUST BE KEPT                                 | COOL ( < 10°C ) FROM TIME OF SAMPL                                        | ING UNTIL DELIVERY TO          | MAXXAM               | agula<br>stais                      | Water:<br>(RSC) | Was         | 13           | - K                   | B2I146          | 3         |                 | Conf                                                               | rmation Number: (call la                                                                                                                                                                                                        | ib for #)                      |
| Sample Ba                 | arcode Label                                       | Sample (Location) Identification                                          | Date Sampled Tin               | ne Sampled Matrix    | Z Z                                 | 3 8             | .5          | 133          |                       | D21140          |           | 10010           | les                                                                | Comment                                                                                                                                                                                                                         | 5                              |
| TOPE                      | bank                                               |                                                                           | 19-Na-12                       | M900:                |                                     | /               | J           | W            |                       | PQ<br>TRIP      | 7484-0    | 1 E             |                                                                    |                                                                                                                                                                                                                                 |                                |
| 2                         |                                                    |                                                                           |                                | The se               |                                     |                 |             |              |                       | TRIP I          | BLANK     | 3 of 3          |                                                                    |                                                                                                                                                                                                                                 |                                |
| 3                         |                                                    | - Low                                                                     |                                |                      |                                     |                 |             |              |                       |                 |           |                 |                                                                    |                                                                                                                                                                                                                                 |                                |
| 4                         |                                                    |                                                                           |                                |                      |                                     |                 |             |              |                       |                 |           |                 |                                                                    |                                                                                                                                                                                                                                 |                                |
| 5                         |                                                    |                                                                           |                                |                      |                                     |                 |             |              |                       |                 |           |                 |                                                                    |                                                                                                                                                                                                                                 |                                |
| 6                         |                                                    |                                                                           |                                |                      |                                     |                 |             |              |                       |                 |           |                 |                                                                    |                                                                                                                                                                                                                                 | EVAL 1                         |
| 7                         |                                                    |                                                                           |                                |                      |                                     |                 |             |              |                       |                 |           |                 |                                                                    | -                                                                                                                                                                                                                               |                                |
| 8                         |                                                    | 9.50                                                                      |                                |                      |                                     |                 |             |              |                       |                 |           |                 |                                                                    |                                                                                                                                                                                                                                 |                                |
| 9                         |                                                    |                                                                           |                                |                      |                                     |                 |             |              |                       |                 |           |                 |                                                                    | REC'D IN WAT                                                                                                                                                                                                                    | EHLUU                          |
| 10                        |                                                    |                                                                           |                                |                      |                                     |                 |             |              |                       |                 |           |                 |                                                                    | - Luke                                                                                                                                                                                                                          |                                |
| *REI                      | .INQUISHED BY: (Signa                              | ture/Print) Date: (YY                                                     | /MM/QQ) Time:                  | REC                  | EIVED BY                            | : (Signature    | e/Print)    |              | Date: (YY/MM/D        | (D)             | Time:     | # Jars Used and |                                                                    | Laboratory Use Only                                                                                                                                                                                                             | у                              |
| Pok                       | van Dru                                            | ture/Print) Date: (YY                                                     | all L                          | Sala                 | ما                                  |                 | The         | 20           | 12-11-1               |                 | 118       | Not Submitted   |                                                                    |                                                                                                                                                                                                                                 | Custody Seal Yes No Present    |
| + IT IS THE DESDO         | NEIBILITY OF THE BEL                               | INCUISHER TO ENSURE THE ACCURA                                            | CY OF THE CHAIN OF CIT         | ISTORY RECORD AN INC | OMPLET                              | E CHAIN OF      | CUSTODY     | MAY RESULT   | IN ANALYTICAL T       | AT DELAYS       |           |                 |                                                                    |                                                                                                                                                                                                                                 | White: Maxxam Yellow: Client   |

#### **Certificate of Analysis**



Client: Ecoplans

72 Victoria Street, Suite 100

Kitchener, ON N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: Ecoplans Page 1 of 16

Report Number: 1323765

Date Submitted: 2013-10-24

Date Reported: 2013-10-31

Project: 1412815

COC #: 175640

# Dear Peter van Driel: Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692). Report Comments:

| APPROVAL: | APPROV | OVAL: |
|-----------|--------|-------|
|           |        |       |

Lorna Wilson Charlie (Long) Qu

Laboratory Supervisor, Inorganics

Laboratory Supervisor, Organics

Exova (Ottawa) is certified and accredited for specific parameters by:

CALA, Canadian Association for Laboratory Accreditation (to ISO 17025), OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils), Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is certified and accredited for specific parameters by: SCC, Standards Council of Canada (to ISO 17025)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only.

### **Certificate of Analysis**



Client: Ecoplans

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: Ecoplans

Report Number: 1323765

Date Submitted: 2013-10-24

Date Reported: 2013-10-31

Project: 1412815

COC #: 175640

|             |                           |      |       | Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. | 1068269<br>Soil<br>2013-10-23<br>MW 10-2 | 1068270<br>Soil<br>2013-10-23<br>MW 11-2 | 1068271<br>Soil<br>2013-10-23<br>MW 11A-2 | 1068272<br>Soil<br>2013-10-23<br>MW 9B-2 |
|-------------|---------------------------|------|-------|--------------------------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|
| Group       | Analyte                   | MRL  | Units | Guideline                                                    |                                          |                                          |                                           |                                          |
| Inorganics  | Antimony                  | 1    | ug/g  | STD-7.5                                                      | <1                                       | <1                                       |                                           | <1                                       |
|             | Arsenic                   | 1    | ug/g  | STD-11                                                       | <1                                       | 1                                        |                                           | <1                                       |
|             | Barium                    | 1    | ug/g  | STD-390                                                      | 20                                       | 57                                       |                                           | 31                                       |
|             | Beryllium                 | 1    | ug/g  | STD-4                                                        | <1                                       | <1                                       |                                           | <1                                       |
|             | Boron (Hot Water Soluble) | 0.5  | ug/g  | STD-1.5                                                      | <0.5                                     | <0.5                                     |                                           | <0.5                                     |
|             | Boron (total)             | 10   | ug/g  | STD-120                                                      | <10                                      | 10                                       |                                           | 10                                       |
|             | Cadmium                   | 0.5  | ug/g  | STD-1                                                        | <0.5                                     | <0.5                                     |                                           | <0.5                                     |
|             | Chromium Total            | 1    | ug/g  | STD-160                                                      | 10                                       | 25                                       |                                           | 10                                       |
|             | Chromium VI               | 0.50 | ug/g  | STD-8                                                        | <0.50                                    | <0.50                                    |                                           | <0.50                                    |
|             | Cobalt                    | 1    | ug/g  | STD-22                                                       | 3                                        | 6                                        |                                           | 4                                        |
|             | Copper                    | 1    | ug/g  | STD-140                                                      | 8                                        | 20                                       |                                           | 15                                       |
|             | Cyanide (CN-)             | 0.03 | ug/g  | STD-0.051                                                    | <0.03                                    | <0.03                                    |                                           | <0.03                                    |
|             | Lead                      | 1    | ug/g  | STD-45                                                       | 3                                        | 23                                       |                                           | 4                                        |
|             | Mercury                   | 0.1  | ug/g  | STD-0.25                                                     | <0.1                                     | <0.1                                     |                                           | <0.1                                     |
|             | Molybdenum                | 1    | ug/g  | STD-6.9                                                      | <1                                       | <1                                       |                                           | <1                                       |
|             | Nickel                    | 1    | ug/g  | STD-100                                                      | 7                                        | 16                                       |                                           | 9                                        |
|             | Selenium                  | 1    | ug/g  | STD-2.4                                                      | <1                                       | <1                                       |                                           | <1                                       |
|             | Silver                    | 0.2  | ug/g  | STD-20                                                       | <0.2                                     | <0.2                                     |                                           | <0.2                                     |
|             | Thallium                  | 1    | ug/g  | STD-1                                                        | <1                                       | <1                                       |                                           | <1                                       |
|             | Uranium                   | 0.5  | ug/g  | STD-23                                                       | <0.5                                     | <0.5                                     |                                           | <0.5                                     |
|             | Vanadium                  | 2    | ug/g  | STD-86                                                       | 13                                       | 30                                       |                                           | 19                                       |
|             | Zinc                      | 2    | ug/g  | STD-340                                                      | 15                                       | 38                                       |                                           | 15                                       |
| Misc/Others | Electrical Conductivity   | 0.05 | mS/cm | STD-0.7                                                      | 0.17                                     | 0.31                                     |                                           | 0.85*                                    |
|             | pH - CaCl2                | 2.0  |       |                                                              | 7.2                                      | 7.3                                      |                                           | 7.8                                      |
|             | Sodium Adsorption Ratio   | 0.01 |       | STD-5                                                        | 2.71                                     | 1.54                                     |                                           | 16.0*                                    |
| Moisture    | Moisture                  | 0.1  | %     |                                                              | 0.8                                      | 3.6                                      |                                           | 7.6                                      |

#### Guideline = O.Reg 153-T2-Soil-Agri-Coarse

\* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

<sup>\*\*-</sup>Analysis completed in Mississauga

#### **Certificate of Analysis**



Client: Ecoplans

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: Ecoplans

Report Number: 1323765
Date Submitted: 2013-10-24
Date Reported: 2013-10-31
Project: 1412815
COC #: 175640

|                |                                |      |       | Lab I.D.<br>Sample Matrix<br>Sample Type<br>Sampling Date<br>Sample I.D. | 1068269<br>Soil<br>2013-10-23<br>MW 10-2 | 1068270<br>Soil<br>2013-10-23<br>MW 11-2 | 1068271<br>Soil<br>2013-10-23<br>MW 11A-2 | 1068272<br>Soil<br>2013-10-23<br>MW 9B-2 |
|----------------|--------------------------------|------|-------|--------------------------------------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|
| Group          | Analyte                        | MRL  | Units | Guideline                                                                |                                          |                                          |                                           |                                          |
| Petroleum      | Petroleum Hydrocarbons F1      | 10   | ug/g  | STD-55                                                                   | <10                                      | <10                                      |                                           | <10                                      |
| Hydrocarbons   | Petroleum Hydrocarbons F1-BTEX | 10   | ug/g  |                                                                          | <10                                      | <10                                      |                                           | <10                                      |
|                | Petroleum Hydrocarbons F2      | 10   | ug/g  | STD-98                                                                   | <10                                      | <10                                      |                                           | <10                                      |
|                | Petroleum Hydrocarbons F3      | 20   | ug/g  | STD-300                                                                  | <20                                      | <20                                      |                                           | <20                                      |
|                | Petroleum Hydrocarbons F4      | 20   | ug/g  | STD-2800                                                                 | <20                                      | <20                                      |                                           | <20                                      |
| Semi-Volatiles | Acenaphthene                   | 0.05 | ug/g  | STD-7.9                                                                  | <0.05                                    |                                          | <0.05                                     | <0.05                                    |
|                | Acenaphthylene                 | 0.05 | ug/g  | STD-0.15                                                                 | <0.05                                    |                                          | <0.05                                     | <0.05                                    |
|                | Anthracene                     | 0.05 | ug/g  | STD-0.67                                                                 | <0.05                                    |                                          | <0.05                                     | <0.05                                    |
|                | Benz[a]anthracene              | 0.05 | ug/g  | STD-0.5                                                                  | <0.05                                    |                                          | <0.05                                     | <0.05                                    |
|                | Benzo[a]pyrene                 | 0.05 | ug/g  | STD-0.078                                                                | <0.05                                    |                                          | <0.05                                     | <0.05                                    |
|                | Benzo[b]fluoranthene           | 0.05 | ug/g  | STD-0.78                                                                 | <0.05                                    |                                          | <0.05                                     | <0.05                                    |
|                | Benzo[ghi]perylene             | 0.05 | ug/g  | STD-6.6                                                                  | <0.05                                    |                                          | <0.05                                     | <0.05                                    |
|                | Benzo[k]fluoranthene           | 0.05 | ug/g  | STD-0.78                                                                 | <0.05                                    |                                          | <0.05                                     | <0.05                                    |
|                | Chrysene                       | 0.05 | ug/g  | STD-7                                                                    | <0.05                                    |                                          | <0.05                                     | <0.05                                    |
|                | Dibenz[a h]anthracene          | 0.05 | ug/g  | STD-0.1                                                                  | <0.05                                    |                                          | <0.05                                     | <0.05                                    |
|                | Fluoranthene                   | 0.05 | ug/g  | STD-0.69                                                                 | <0.05                                    |                                          | <0.05                                     | <0.05                                    |
|                | Fluorene                       | 0.05 | ug/g  | STD-62                                                                   | <0.05                                    |                                          | <0.05                                     | <0.05                                    |
|                | Indeno[1 2 3-cd]pyrene         | 0.05 | ug/g  | STD-0.38                                                                 | <0.05                                    |                                          | <0.05                                     | <0.05                                    |
|                | Methlynaphthalene, 1-          | 0.05 | ug/g  | STD-0.99                                                                 | <0.05                                    |                                          | <0.05                                     | <0.05                                    |
|                | Methlynaphthalene, 2-          | 0.05 | ug/g  | STD-0.99                                                                 | <0.05                                    |                                          | <0.05                                     | <0.05                                    |
|                | Naphthalene                    | 0.05 | ug/g  | STD-0.6                                                                  | <0.05                                    |                                          | <0.05                                     | <0.05                                    |
|                | Phenanthrene                   | 0.05 | ug/g  | STD-6.2                                                                  | <0.05                                    |                                          | <0.05                                     | <0.05                                    |
|                | Pyrene                         | 0.05 | ug/g  | STD-78                                                                   | <0.05                                    |                                          | <0.05                                     | <0.05                                    |
| VOCs           | Acetone                        | 0.50 | ug/g  | STD-16                                                                   | <0.50                                    | <0.50                                    |                                           | <0.50                                    |
|                | Benzene                        | 0.02 | ug/g  | STD-0.21                                                                 | <0.02                                    | <0.02                                    |                                           | <0.02                                    |
|                | Bromodichloromethane           | 0.05 | ug/g  | STD-1.5                                                                  | <0.05                                    | <0.05                                    |                                           | < 0.05                                   |

#### Guideline = O.Reg 153-T2-Soil-Agri-Coarse

\* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

<sup>\*\*-</sup>Analysis completed in Mississauga

#### **Certificate of Analysis**



Client: Ecoplans

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: Ecoplans

Report Number: 1323765

Date Submitted: 2013-10-24

Date Reported: 2013-10-31

Project: 1412815

COC #: 175640

|       |                                |      |       | Lab I.D.<br>Sample Matrix<br>Sample Type<br>Sampling Date<br>Sample I.D. | 1068269<br>Soil<br>2013-10-23<br>MW 10-2 | 1068270<br>Soil<br>2013-10-23<br>MW 11-2 | 1068271<br>Soil<br>2013-10-23<br>MW 11A-2 | 1068272<br>Soil<br>2013-10-23<br>MW 9B-2 |
|-------|--------------------------------|------|-------|--------------------------------------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|
| Group | Analyte                        | MRL  | Units | Guideline                                                                |                                          |                                          |                                           |                                          |
| VOCs  | Bromoform                      | 0.05 | ug/g  | STD-0.27                                                                 | <0.05                                    | <0.05                                    |                                           | <0.05                                    |
|       | c-1,3-Dichloropropylene        | 0.05 | ug/g  |                                                                          | <0.05                                    | <0.05                                    |                                           | <0.05                                    |
|       | Carbon Tetrachloride           | 0.05 | ug/g  | STD-0.05                                                                 | <0.05                                    | <0.05                                    |                                           | <0.05                                    |
|       | Chlorobenzene                  | 0.05 | ug/g  | STD-2.4                                                                  | <0.05                                    | <0.05                                    |                                           | <0.05                                    |
|       | Chloroform                     | 0.05 | ug/g  | STD-0.05                                                                 | <0.05                                    | <0.05                                    |                                           | <0.05                                    |
|       | Dichlorobenzene, 1,2-          | 0.05 | ug/g  | STD-1.2                                                                  | <0.05                                    | <0.05                                    |                                           | <0.05                                    |
|       | Dichlorobenzene, 1,3-          | 0.05 | ug/g  | STD-4.8                                                                  | <0.05                                    | <0.05                                    |                                           | <0.05                                    |
|       | Dichlorobenzene, 1,4-          | 0.05 | ug/g  | STD-0.083                                                                | <0.05                                    | <0.05                                    |                                           | <0.05                                    |
|       | Dichlorodifluoromethane        | 0.05 | ug/g  | STD-16                                                                   | <0.05                                    | <0.05                                    |                                           | <0.05                                    |
|       | Dichloroethane, 1,1-           | 0.05 | ug/g  | STD-0.47                                                                 | <0.05                                    | <0.05                                    |                                           | <0.05                                    |
|       | Dichloroethane, 1,2-           | 0.05 | ug/g  | STD-0.05                                                                 | <0.05                                    | <0.05                                    |                                           | <0.05                                    |
|       | Dichloroethylene, 1,1-         | 0.05 | ug/g  | STD-0.05                                                                 | <0.05                                    | <0.05                                    |                                           | <0.05                                    |
|       | Dichloroethylene, 1,2-cis-     | 0.05 | ug/g  | STD-1.9                                                                  | <0.05                                    | <0.05                                    |                                           | <0.05                                    |
|       | Dichloroethylene, 1,2-trans-   | 0.05 | ug/g  | STD-0.084                                                                | <0.05                                    | <0.05                                    |                                           | <0.05                                    |
|       | Dichloropropane, 1,2-          | 0.05 | ug/g  | STD-0.05                                                                 | <0.05                                    | <0.05                                    |                                           | <0.05                                    |
|       | Dichloropropene,1,3-           | 0.05 | ug/g  | STD-0.05                                                                 | <0.05                                    | <0.05                                    |                                           | <0.05                                    |
|       | Ethylbenzene                   | 0.05 | ug/g  | STD-1.1                                                                  | <0.05                                    | <0.05                                    |                                           | <0.05                                    |
|       | Ethylene dibromide             | 0.05 | ug/g  | STD-0.05                                                                 | <0.05                                    | <0.05                                    |                                           | <0.05                                    |
|       | Hexane (n)                     | 0.05 | ug/g  | STD-2.8                                                                  | <0.05                                    | <0.05                                    |                                           | <0.05                                    |
|       | m/p-xylene                     | 0.05 | ug/g  |                                                                          | <0.05                                    | <0.05                                    |                                           | <0.05                                    |
|       | Methyl Ethyl Ketone            | 0.50 | ug/g  | STD-16                                                                   | <0.50                                    | <0.50                                    |                                           | <0.50                                    |
|       | Methyl Isobutyl Ketone         | 0.50 | ug/g  | STD-1.7                                                                  | <0.50                                    | <0.50                                    |                                           | <0.50                                    |
|       | Methyl tert-Butyl Ether (MTBE) | 0.05 | ug/g  | STD-0.75                                                                 | <0.05                                    | <0.05                                    |                                           | <0.05                                    |
|       | Methylene Chloride             | 0.05 | ug/g  | STD-0.1                                                                  | <0.05                                    | <0.05                                    |                                           | <0.05                                    |
|       | o-xylene                       | 0.05 | ug/g  |                                                                          | <0.05                                    | <0.05                                    |                                           | <0.05                                    |
|       | Styrene                        | 0.05 | ug/g  | STD-0.7                                                                  | <0.05                                    | <0.05                                    |                                           | <0.05                                    |

#### Guideline = O.Reg 153-T2-Soil-Agri-Coarse

\* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

<sup>\*\*-</sup>Analysis completed in Mississauga

# **Certificate of Analysis**



Client: Ecoplans

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: Ecoplans

Report Number: 1323765

Date Submitted: 2013-10-24

Date Reported: 2013-10-31

Project: 1412815

COC #: 175640

|                |                             |      |       | Lab I.D.<br>Sample Matrix<br>Sample Type<br>Sampling Date<br>Sample I.D. | 1068269<br>Soil<br>2013-10-23<br>MW 10-2 | 1068270<br>Soil<br>2013-10-23<br>MW 11-2 | 1068271<br>Soil<br>2013-10-23<br>MW 11A-2 | 1068272<br>Soil<br>2013-10-23<br>MW 9B-2 |
|----------------|-----------------------------|------|-------|--------------------------------------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|
| Group          | Analyte                     | MRL  | Units | Guideline                                                                |                                          |                                          |                                           |                                          |
| VOCs           | t-1,3-Dichloropropylene     | 0.05 | ug/g  |                                                                          | < 0.05                                   | <0.05                                    |                                           | <0.05                                    |
|                | Tetrachloroethane, 1,1,1,2- | 0.05 | ug/g  | STD-0.058                                                                | <0.05                                    | <0.05                                    |                                           | <0.05                                    |
|                | Tetrachloroethane, 1,1,2,2- | 0.05 | ug/g  | STD-0.05                                                                 | <0.05                                    | <0.05                                    |                                           | <0.05                                    |
|                | Tetrachloroethylene         | 0.05 | ug/g  | STD-0.28                                                                 | < 0.05                                   | <0.05                                    |                                           | <0.05                                    |
|                | Toluene                     | 0.20 | ug/g  | STD-2.3                                                                  | <0.20                                    | <0.20                                    |                                           | <0.20                                    |
|                | Trichloroethane, 1,1,1-     | 0.05 | ug/g  | STD-0.38                                                                 | < 0.05                                   | <0.05                                    |                                           | <0.05                                    |
|                | Trichloroethane, 1,1,2-     | 0.05 | ug/g  | STD-0.05                                                                 | < 0.05                                   | <0.05                                    |                                           | <0.05                                    |
|                | Trichloroethylene           | 0.05 | ug/g  | STD-0.061                                                                | < 0.05                                   | <0.05                                    |                                           | <0.05                                    |
|                | Trichlorofluoromethane      | 0.05 | ug/g  | STD-4                                                                    | < 0.05                                   | <0.05                                    |                                           | <0.05                                    |
|                | Vinyl Chloride              | 0.02 | ug/g  | STD-0.02                                                                 | <0.02                                    | <0.02                                    |                                           | <0.02                                    |
|                | Xylene Mixture              | 0.05 | ug/g  | STD-3.1                                                                  | <0.05                                    | <0.05                                    |                                           | <0.05                                    |
| OCs Surrogates | 1,2-dichloroethane-d4       | 0    | %     |                                                                          | 113                                      | 109                                      |                                           | 111                                      |
| (%REC)         | 4-bromofluorobenzene        | 0    | %     |                                                                          | 116                                      | 116                                      |                                           | 118                                      |
|                | Toluene-d8                  | 0    | %     |                                                                          | 101                                      | 103                                      |                                           | 105                                      |

Guideline = O.Reg 153-T2-Soil-Agri-Coarse

\* = Guideline Exceedence

\*\*-Analysis completed in Mississauga

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

# **Certificate of Analysis**



Client: Ecoplans

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: Ecoplans

Report Number: 1323765

Date Submitted: 2013-10-24

Date Reported: 2013-10-31

Project: 1412815

COC #: 175640

|             |                           |      |       | Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. | 1068273<br>Soil<br>2013-10-23<br>Dup - 1 | 1068274<br>Soil<br>2013-10-23<br>MW 9B - 3 |
|-------------|---------------------------|------|-------|--------------------------------------------------------------|------------------------------------------|--------------------------------------------|
| Group       | Analyte                   | MRL  | Units | Guideline                                                    |                                          |                                            |
| Inorganics  | Antimony                  | 1    | ug/g  | STD-7.5                                                      | <1                                       |                                            |
|             | Arsenic                   | 1    | ug/g  | STD-11                                                       | 2                                        |                                            |
|             | Barium                    | 1    | ug/g  | STD-390                                                      | 53                                       |                                            |
|             | Beryllium                 | 1    | ug/g  | STD-4                                                        | <1                                       |                                            |
|             | Boron (Hot Water Soluble) | 0.5  | ug/g  | STD-1.5                                                      | <0.5                                     |                                            |
|             | Boron (total)             | 10   | ug/g  | STD-120                                                      | 20                                       |                                            |
|             | Cadmium                   | 0.5  | ug/g  | STD-1                                                        | <0.5                                     |                                            |
|             | Chromium Total            | 1    | ug/g  | STD-160                                                      | 22                                       |                                            |
|             | Chromium VI               | 0.50 | ug/g  | STD-8                                                        | <0.50                                    |                                            |
|             | Cobalt                    | 1    | ug/g  | STD-22                                                       | 7                                        |                                            |
|             | Copper                    | 1    | ug/g  | STD-140                                                      | 25                                       |                                            |
|             | Cyanide (CN-)             | 0.03 | ug/g  | STD-0.051                                                    | < 0.03                                   |                                            |
|             | Lead                      | 1    | ug/g  | STD-45                                                       | 7                                        |                                            |
|             | Mercury                   | 0.1  | ug/g  | STD-0.25                                                     | <0.1                                     |                                            |
|             | Molybdenum                | 1    | ug/g  | STD-6.9                                                      | 1                                        |                                            |
|             | Nickel                    | 1    | ug/g  | STD-100                                                      | 19                                       |                                            |
|             | Selenium                  | 1    | ug/g  | STD-2.4                                                      | <1                                       |                                            |
|             | Silver                    | 0.2  | ug/g  | STD-20                                                       | <0.2                                     |                                            |
|             | Thallium                  | 1    | ug/g  | STD-1                                                        | <1                                       |                                            |
|             | Uranium                   | 0.5  | ug/g  | STD-23                                                       | 0.5                                      |                                            |
|             | Vanadium                  | 2    | ug/g  | STD-86                                                       | 29                                       |                                            |
|             | Zinc                      | 2    | ug/g  | STD-340                                                      | 26                                       |                                            |
| Misc/Others | Electrical Conductivity   | 0.05 | mS/cm | STD-0.7                                                      | 1.08*                                    |                                            |
|             | pH - CaCl2                | 2.0  |       |                                                              | 7.7                                      |                                            |
|             | Sodium Adsorption Ratio   | 0.01 |       | STD-5                                                        | 3.31                                     |                                            |
| Moisture    | Moisture                  | 0.1  | %     |                                                              | 6.4                                      |                                            |

#### Guideline = O.Reg 153-T2-Soil-Agri-Coarse

\* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

<sup>\*\*-</sup>Analysis completed in Mississauga

# **Certificate of Analysis**



Client: **Ecoplans** 

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: Ecoplans Report Number: 1323765 Date Submitted: 2013-10-24 Date Reported: 2013-10-31 Project: 1412815 COC #: 175640

|                |                                |      |       | Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. | 1068273<br>Soil<br>2013-10-23<br>Dup - 1 | 1068274<br>Soil<br>2013-10-23<br>MW 9B - 3 |
|----------------|--------------------------------|------|-------|--------------------------------------------------------------|------------------------------------------|--------------------------------------------|
| Group          | Analyte                        | MRL  | Units | Guideline                                                    |                                          |                                            |
| Petroleum      | Petroleum Hydrocarbons F1      | 10   | ug/g  | STD-55                                                       | <10                                      | <10                                        |
| Hydrocarbons   | Petroleum Hydrocarbons F1-BTEX | 10   | ug/g  |                                                              | <10                                      |                                            |
|                | Petroleum Hydrocarbons F2      | 10   | ug/g  | STD-98                                                       | <10                                      |                                            |
|                | Petroleum Hydrocarbons F3      | 20   | ug/g  | STD-300                                                      | <20                                      |                                            |
|                | Petroleum Hydrocarbons F4      | 20   | ug/g  | STD-2800                                                     | <20                                      |                                            |
| Semi-Volatiles | Acenaphthene                   | 0.05 | ug/g  | STD-7.9                                                      | < 0.05                                   |                                            |
|                | Acenaphthylene                 | 0.05 | ug/g  | STD-0.15                                                     | < 0.05                                   |                                            |
|                | Anthracene                     | 0.05 | ug/g  | STD-0.67                                                     | < 0.05                                   |                                            |
|                | Benz[a]anthracene              | 0.05 | ug/g  | STD-0.5                                                      | < 0.05                                   |                                            |
|                | Benzo[a]pyrene                 | 0.05 | ug/g  | STD-0.078                                                    | < 0.05                                   |                                            |
|                | Benzo[b]fluoranthene           | 0.05 | ug/g  | STD-0.78                                                     | < 0.05                                   |                                            |
|                | Benzo[ghi]perylene             | 0.05 | ug/g  | STD-6.6                                                      | < 0.05                                   |                                            |
|                | Benzo[k]fluoranthene           | 0.05 | ug/g  | STD-0.78                                                     | < 0.05                                   |                                            |
|                | Chrysene                       | 0.05 | ug/g  | STD-7                                                        | < 0.05                                   |                                            |
|                | Dibenz[a h]anthracene          | 0.05 | ug/g  | STD-0.1                                                      | < 0.05                                   |                                            |
|                | Fluoranthene                   | 0.05 | ug/g  | STD-0.69                                                     | < 0.05                                   |                                            |
|                | Fluorene                       | 0.05 | ug/g  | STD-62                                                       | < 0.05                                   |                                            |
|                | Indeno[1 2 3-cd]pyrene         | 0.05 | ug/g  | STD-0.38                                                     | < 0.05                                   |                                            |
|                | Methlynaphthalene, 1-          | 0.05 | ug/g  | STD-0.99                                                     | < 0.05                                   |                                            |
|                | Methlynaphthalene, 2-          | 0.05 | ug/g  | STD-0.99                                                     | <0.05                                    |                                            |
|                | Naphthalene                    | 0.05 | ug/g  | STD-0.6                                                      | <0.05                                    |                                            |
|                | Phenanthrene                   | 0.05 | ug/g  | STD-6.2                                                      | <0.05                                    |                                            |
|                | Pyrene                         | 0.05 | ug/g  | STD-78                                                       | <0.05                                    |                                            |
| VOCs           | Acetone                        | 0.50 | ug/g  | STD-16                                                       | <0.50                                    | <0.50                                      |
|                | Benzene                        | 0.02 | ug/g  | STD-0.21                                                     | <0.02                                    | <0.02                                      |
|                | Bromodichloromethane           | 0.05 | ug/g  | STD-1.5                                                      | < 0.05                                   | < 0.05                                     |

Guideline = O.Reg 153-T2-Soil-Agri-Coarse

\* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

<sup>\*\*-</sup>Analysis completed in Mississauga

# **Certificate of Analysis**



Client: Ecoplans

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: Ecoplans

Report Number: 1323765
Date Submitted: 2013-10-24
Date Reported: 2013-10-31
Project: 1412815
COC #: 175640

|       |                                |      |       | Lab I.D.<br>Sample Matrix<br>Sample Type<br>Sampling Date | 1068273<br>Soil<br>2013-10-23 | 1068274<br>Soil<br>2013-10-23 |
|-------|--------------------------------|------|-------|-----------------------------------------------------------|-------------------------------|-------------------------------|
|       |                                |      |       | Sample I.D.                                               | Dup - 1                       | MW 9B - 3                     |
| Group | Analyte                        | MRL  | Units | Guideline                                                 |                               |                               |
| VOCs  | Bromoform                      | 0.05 | ug/g  | STD-0.27                                                  | <0.05                         | <0.05                         |
|       | c-1,3-Dichloropropylene        | 0.05 | ug/g  |                                                           | < 0.05                        | <0.05                         |
|       | Carbon Tetrachloride           | 0.05 | ug/g  | STD-0.05                                                  | < 0.05                        | <0.05                         |
|       | Chlorobenzene                  | 0.05 | ug/g  | STD-2.4                                                   | < 0.05                        | <0.05                         |
|       | Chloroform                     | 0.05 | ug/g  | STD-0.05                                                  | < 0.05                        | <0.05                         |
|       | Dichlorobenzene, 1,2-          | 0.05 | ug/g  | STD-1.2                                                   | < 0.05                        | <0.05                         |
|       | Dichlorobenzene, 1,3-          | 0.05 | ug/g  | STD-4.8                                                   | <0.05                         | <0.05                         |
|       | Dichlorobenzene, 1,4-          | 0.05 | ug/g  | STD-0.083                                                 | < 0.05                        | <0.05                         |
|       | Dichlorodifluoromethane        | 0.05 | ug/g  | STD-16                                                    | <0.05                         | <0.05                         |
|       | Dichloroethane, 1,1-           | 0.05 | ug/g  | STD-0.47                                                  | <0.05                         | <0.05                         |
|       | Dichloroethane, 1,2-           | 0.05 | ug/g  | STD-0.05                                                  | <0.05                         | <0.05                         |
|       | Dichloroethylene, 1,1-         | 0.05 | ug/g  | STD-0.05                                                  | <0.05                         | <0.05                         |
|       | Dichloroethylene, 1,2-cis-     | 0.05 | ug/g  | STD-1.9                                                   | <0.05                         | <0.05                         |
|       | Dichloroethylene, 1,2-trans-   | 0.05 | ug/g  | STD-0.084                                                 | <0.05                         | <0.05                         |
|       | Dichloropropane, 1,2-          | 0.05 | ug/g  | STD-0.05                                                  | < 0.05                        | <0.05                         |
|       | Dichloropropene,1,3-           | 0.05 | ug/g  | STD-0.05                                                  | < 0.05                        | <0.05                         |
|       | Ethylbenzene                   | 0.05 | ug/g  | STD-1.1                                                   | <0.05                         | <0.05                         |
|       | Ethylene dibromide             | 0.05 | ug/g  | STD-0.05                                                  | <0.05                         | <0.05                         |
|       | Hexane (n)                     | 0.05 | ug/g  | STD-2.8                                                   | <0.05                         | <0.05                         |
|       | m/p-xylene                     | 0.05 | ug/g  |                                                           | <0.05                         | <0.05                         |
|       | Methyl Ethyl Ketone            | 0.50 | ug/g  | STD-16                                                    | <0.50                         | <0.50                         |
|       | Methyl Isobutyl Ketone         | 0.50 | ug/g  | STD-1.7                                                   | <0.50                         | <0.50                         |
|       | Methyl tert-Butyl Ether (MTBE) | 0.05 | ug/g  | STD-0.75                                                  | <0.05                         | <0.05                         |
|       | Methylene Chloride             | 0.05 | ug/g  | STD-0.1                                                   | <0.05                         | <0.05                         |
|       | o-xylene                       | 0.05 | ug/g  |                                                           | <0.05                         | <0.05                         |
|       | Styrene                        | 0.05 | ug/g  | STD-0.7                                                   | < 0.05                        | <0.05                         |

#### Guideline = O.Reg 153-T2-Soil-Agri-Coarse

\* = Guideline Exceedence

\*\*-Analysis completed in Mississauga

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

#### **Certificate of Analysis**



Client: Ecoplans

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: Ecoplans

Report Number: 1323765

Date Submitted: 2013-10-24

Date Reported: 2013-10-31

Project: 1412815

COC #: 175640

|                 |                             |      |       | Lab I.D.<br>Sample Matrix<br>Sample Type<br>Sampling Date<br>Sample I.D. | 1068273<br>Soil<br>2013-10-23<br>Dup - 1 | 1068274<br>Soil<br>2013-10-23<br>MW 9B - 3 |
|-----------------|-----------------------------|------|-------|--------------------------------------------------------------------------|------------------------------------------|--------------------------------------------|
| Group           | Analyte                     | MRL  | Units | Guideline                                                                |                                          |                                            |
| VOCs            | t-1,3-Dichloropropylene     | 0.05 | ug/g  |                                                                          | <0.05                                    | <0.05                                      |
|                 | Tetrachloroethane, 1,1,1,2- | 0.05 | ug/g  | STD-0.058                                                                | <0.05                                    | <0.05                                      |
|                 | Tetrachloroethane, 1,1,2,2- | 0.05 | ug/g  | STD-0.05                                                                 | <0.05                                    | <0.05                                      |
|                 | Tetrachloroethylene         | 0.05 | ug/g  | STD-0.28                                                                 | <0.05                                    | <0.05                                      |
|                 | Toluene                     | 0.20 | ug/g  | STD-2.3                                                                  | <0.20                                    | <0.20                                      |
|                 | Trichloroethane, 1,1,1-     | 0.05 | ug/g  | STD-0.38                                                                 | <0.05                                    | <0.05                                      |
|                 | Trichloroethane, 1,1,2-     | 0.05 | ug/g  | STD-0.05                                                                 | <0.05                                    | <0.05                                      |
|                 | Trichloroethylene           | 0.05 | ug/g  | STD-0.061                                                                | <0.05                                    | <0.05                                      |
|                 | Trichlorofluoromethane      | 0.05 | ug/g  | STD-4                                                                    | <0.05                                    | <0.05                                      |
|                 | Vinyl Chloride              | 0.02 | ug/g  | STD-0.02                                                                 | <0.02                                    | <0.02                                      |
|                 | Xylene Mixture              | 0.05 | ug/g  | STD-3.1                                                                  | <0.05                                    | <0.05                                      |
| VOCs Surrogates | 1,2-dichloroethane-d4       | 0    | %     |                                                                          | 109                                      | 111                                        |
| (%REC)          | 4-bromofluorobenzene        | 0    | %     |                                                                          | 111                                      | 116                                        |
|                 | Toluene-d8                  | 0    | %     |                                                                          | 101                                      | 103                                        |

\* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

#### **Certificate of Analysis**



Client: Ecoplans

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: Ecoplans

Report Number: 1323765
Date Submitted: 2013-10-24
Date Reported: 2013-10-31
Project: 1412815
COC #: 175640

#### **QC Summary**

| Analyte                          | Blank                   | QC<br>% Rec | QC<br>Limits |
|----------------------------------|-------------------------|-------------|--------------|
| Run No 260006 Analysis Date 2013 | -10-28 <b>Method</b> EF | PA 200.8    |              |
| Silver                           | <0.2 ug/g               | 91          | 70-130       |
| Arsenic                          | <1 ug/g                 | 96          | 70-130       |
| Barium                           | <1 ug/g                 | 95          | 70-130       |
| Beryllium                        | <1 ug/g                 | 98          | 70-130       |
| Cadmium                          | <0.5 ug/g               | 94          | 70-130       |
| Cobalt                           | <1 ug/g                 | 103         | 70-130       |
| Chromium Total                   | <1 ug/g                 | 101         | 70-130       |
| Copper                           | <1 ug/g                 | 100         | 70-130       |
| Molybdenum                       | <1 ug/g                 | 99          | 70-130       |
| Nickel                           | <1 ug/g                 | 103         | 70-130       |
| Lead                             | <1 ug/g                 | 103         | 70-130       |
| Antimony                         | <1 ug/g                 | 84          | 70-130       |
| Selenium                         | <1 ug/g                 | 99          | 70-130       |
| Thallium                         | <1 ug/g                 | 100         | 70-130       |

Guideline = O.Reg 153-T2-Soil-Agri-Coarse

\* = Guideline Exceedence

\*\*-Analysis completed in Mississauga
Results relate only to the parameters tested on the samples submitted.
Methods references and/or additional QA/QC information available on request.

#### **Certificate of Analysis**



Client: **Ecoplans** 

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: **Ecoplans**  Report Number: 1323765 Date Submitted: 2013-10-24 Date Reported: 2013-10-31 Project: 1412815 COC #: 175640

#### **QC Summary**

| Analyte                           | Blank                   | QC<br>% Rec | QC<br>Limits |
|-----------------------------------|-------------------------|-------------|--------------|
| Uranium                           | <0.5 ug/g               | 93          | 70-130       |
| Vanadium                          | <2 ug/g                 | 106         | 70-130       |
| Zinc                              | <2 ug/g                 | 104         | 70-130       |
| Run No 260045 Analysis Date 2013- | 10-29 <b>Method</b> Ag  | Soil        | _            |
| Sodium Adsorption Ratio           | < 0.01                  |             |              |
| Run No 260048 Analysis Date 2013- | 10-28 <b>Method</b> P 8 | 3270        |              |
| Methlynaphthalene, 1-             | <0.05 ug/g              | 60          | 20-150       |
| Methlynaphthalene, 2-             | <0.05 ug/g              | 69          | 20-150       |
| Acenaphthene                      | <0.05 ug/g              | 64          | 20-150       |
| Acenaphthylene                    | <0.05 ug/g              | 61          | 20-150       |
| Anthracene                        | <0.05 ug/g              | 69          | 20-150       |
| Benz[a]anthracene                 | <0.05 ug/g              | 69          | 20-150       |
| Benzo[a]pyrene                    | <0.05 ug/g              | 75          | 20-150       |
| Benzo[b]fluoranthene              | <0.05 ug/g              | 60          | 20-150       |
| Benzo[ghi]perylene                | <0.05 ug/g              | 78          | 20-150       |
| Benzo[k]fluoranthene              | <0.05 ug/g              | 119         | 20-150       |
| Chrysene                          | <0.05 ug/g              | 71          | 20-150       |

Guideline = O.Reg 153-T2-Soil-Agri-Coarse

\* = Guideline Exceedence

\*\*-Analysis completed in Mississauga

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

#### **Certificate of Analysis**



Client: Ecoplans

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: Ecoplans

Report Number: 1323765
Date Submitted: 2013-10-24
Date Reported: 2013-10-31
Project: 1412815
COC #: 175640

#### **QC Summary**

| Analyte                 | Analyte           |                    |         | QC<br>% Rec   | QC<br>Limits |
|-------------------------|-------------------|--------------------|---------|---------------|--------------|
| Dibenz[a h]anthracene   |                   | < 0.05             | ug/g    | 78            | 20-150       |
| Fluoranthene            |                   | < 0.05             | ug/g    | 72            | 20-150       |
| Fluorene                |                   | < 0.05             | ug/g    | 65            | 20-150       |
| Indeno[1 2 3-cd]pyrene  |                   | < 0.05             | ug/g    | 75            | 20-150       |
| Naphthalene             |                   | < 0.05             | ug/g    | 59            | 20-150       |
| Phenanthrene            |                   | < 0.05             | ug/g    | 71            | 20-150       |
| Pyrene                  |                   | < 0.05             | ug/g    | 70            | 20-150       |
| Run No 260088           | Analysis Date 201 | 3-10-29 <b>M</b> e | ethod M | SM3120B-3050B |              |
| Boron (total)           |                   | <10 ι              | ug/g    | 82            |              |
| <b>Run No</b> 260093    | Analysis Date 201 | 3-10-29 <b>M</b> € | ethod M | SM3112B-3500B |              |
| Mercury                 |                   | < 0.1              | ug/g    | 87            | 70-130       |
| <b>Run No</b> 260103    | Analysis Date 201 | 3-10-28 <b>M</b> e | ethod A | g Soil        |              |
| Electrical Conductivity |                   |                    |         |               | 80-120       |
| pH - CaCl2              |                   |                    |         |               | 90-110       |
| <b>Run No</b> 260104    | Analysis Date 201 | 3-10-28 <b>M</b> € | ethod M | US EPA        |              |
| Chromium VI             |                   | < 0.50             | ug/g    |               | 65-135       |
| <b>Run No</b> 260108    | Analysis Date 201 | 3-10-29 <b>M</b> e | ethod B | oron HWE      |              |

Guideline = O.Reg 153-T2-Soil-Agri-Coarse

\* = Guideline Exceedence

\*\*-Analysis completed in Mississauga
Results relate only to the parameters tested on the samples submitted.
Methods references and/or additional QA/QC information available on request.

#### **Certificate of Analysis**



Client: Ecoplans

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: Ecoplans

Report Number: 1323765
Date Submitted: 2013-10-24
Date Reported: 2013-10-31
Project: 1412815
COC #: 175640

#### **QC Summary**

| Analyte                           | Blank                 | QC<br>% Rec | QC<br>Limits |
|-----------------------------------|-----------------------|-------------|--------------|
| Boron (Hot Water Soluble)         | <0.5 ug/g             | 96          | 70-130       |
| Run No 260136 Analysis Date 2013- | 10-29 <b>Method</b> V | 3260B       |              |
| Tetrachloroethane, 1,1,1,2-       | <0.05 ug/g            | 110         | 80-120       |
| Trichloroethane, 1,1,1-           | <0.05 ug/g            | 115         | 80-120       |
| Tetrachloroethane, 1,1,2,2-       | <0.05 ug/g            | 89          | 80-120       |
| Trichloroethane, 1,1,2-           | <0.05 ug/g            | 86          | 80-120       |
| Dichloroethane, 1,1-              | <0.05 ug/g            | 118         | 80-120       |
| Dichloroethylene, 1,1-            | <0.05 ug/g            | 117         | 80-120       |
| Dichlorobenzene, 1,2-             | <0.05 ug/g            | 114         | 80-120       |
| Dichloroethane, 1,2-              | <0.05 ug/g            | 116         | 80-120       |
| 1,2-dichloroethane-d4             | 100 %                 | 106         |              |
| Dichloropropane, 1,2-             | <0.05 ug/g            | 114         | 80-120       |
| Dichlorobenzene, 1,3-             | <0.05 ug/g            | 99          | 80-120       |
| Dichlorobenzene, 1,4-             | <0.05 ug/g            | 96          | 80-120       |
| Benzene                           | <0.02 ug/g            | 117         | 80-120       |
| Bromodichloromethane              | <0.05 ug/g            | 115         | 80-120       |
| Bromoform                         | <0.05 ug/g            | 81          | 80-100       |

Guideline = O.Reg 153-T2-Soil-Agri-Coarse

\* = Guideline Exceedence

\*\*-Analysis completed in Mississauga Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

#### **Certificate of Analysis**



Client: Ecoplans

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: Ecoplans

Report Number: 1323765
Date Submitted: 2013-10-24
Date Reported: 2013-10-31
Project: 1412815
COC #: 175640

#### **QC Summary**

| Analyte                      | Blank      | QC<br>% Rec | QC<br>Limits |
|------------------------------|------------|-------------|--------------|
| Dichloroethylene, 1,2-cis-   | <0.05 ug/g | 118         | 80-120       |
| Dichloropropene,1,3-cis-     | <0.05 ug/g | 84          | 80-120       |
| Carbon Tetrachloride         | <0.05 ug/g | 116         | 80-120       |
| Chloroform                   | <0.05 ug/g | 112         | 80-120       |
| Dichlorodifluoromethane      | <0.05 ug/g | 98          | 70-130       |
| Methylene Chloride           | <0.05 ug/g | 83          | 70-130       |
| Ethylbenzene                 | <0.05 ug/g | 116         | 80-120       |
| Ethylene dibromide           | <0.05 ug/g | 85          | 80-120       |
| Hexane (n)                   | <0.05 ug/g | 114         | 70-130       |
| m/p-xylene                   | <0.05 ug/g | 119         | 80-120       |
| Chlorobenzene                | <0.05 ug/g | 88          | 80-120       |
| o-xylene                     | <0.05 ug/g | 117         | 80-120       |
| Styrene                      | <0.05 ug/g | 115         | 80-120       |
| Dichloroethylene, 1,2-trans- | <0.05 ug/g | 108         | 80-120       |
| Dichloropropene,1,3-trans-   | <0.05 ug/g | 107         | 80-120       |
| Tetrachloroethylene          | <0.05 ug/g | 93          | 80-120       |
| Toluene                      | <0.20 ug/g | 117         | 80-120       |

Guideline = O.Reg 153-T2-Soil-Agri-Coarse

\* = Guideline Exceedence

\*\*-Analysis completed in Mississauga Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

#### **Certificate of Analysis**



Client: Ecoplans

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: Ecoplans

Report Number: 1323765
Date Submitted: 2013-10-24
Date Reported: 2013-10-31
Project: 1412815
COC #: 175640

#### **QC Summary**

| Analyte                           | Blank                 | QC<br>% Rec | QC<br>Limits |
|-----------------------------------|-----------------------|-------------|--------------|
| Toluene-d8                        | 103 %                 | 103         |              |
| Trichloroethylene                 | <0.05 ug/g            | 117         | 80-120       |
| Trichlorofluoromethane            | <0.05 ug/g            | 116         | 70-130       |
| Vinyl Chloride                    | <0.02 ug/g            | 105         | 80-120       |
| Run No 260147 Analysis Date 2013- | 10-30 <b>Method</b> V | 8260B       |              |
| Dichloropropene,1,3-              |                       |             |              |
| Acetone                           | <0.50 ug/g            | 118         | 70-130       |
| Methyl Ethyl Ketone               | <0.50 ug/g            | 112         | 70-130       |
| Methyl Isobutyl Ketone            | <0.50 ug/g            | 97          | 70-130       |
| Methyl tert-Butyl Ether (MTBE)    | <0.05 ug/g            | 106         | 70-130       |
| Xylene Mixture                    |                       |             |              |
| Run No 260152 Analysis Date 2013- | 10-30 <b>Method</b> C | СМЕ         |              |
| Petroleum Hydrocarbons F2         | <10 ug/g              | 80          | 50-120       |
| Petroleum Hydrocarbons F3         | <20 ug/g              | 80          | 50-120       |
| Petroleum Hydrocarbons F4         | <20 ug/g              | 80          | 50-120       |
| Moisture                          | <0.1 %                | 100         | 80-120       |
| Run No 260153 Analysis Date 2013- | 10-30 <b>Method</b> C | СМЕ         |              |

#### Guideline = O.Reg 153-T2-Soil-Agri-Coarse

\* = Guideline Exceedence

\*\*-Analysis completed in Mississauga

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

#### **Certificate of Analysis**



Client: Ecoplans

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: Ecoplans

Report Number: 1323765
Date Submitted: 2013-10-24
Date Reported: 2013-10-31
Project: 1412815
COC #: 175640

#### **QC Summary**

| Analyte                           | Blank                 | QC<br>% Rec | QC<br>Limits |
|-----------------------------------|-----------------------|-------------|--------------|
| Petroleum Hydrocarbons F1         | <10 ug/g              | 98          | 80-120       |
| Petroleum Hydrocarbons F1-BTEX    |                       |             |              |
| Run No 260174 Analysis Date 2013- | 10-30 <b>Method</b> C | SM4500-CNC  |              |
| Cyanide (CN-)                     | <0.03 ug/g            | 87          | 75-125       |

\* = Guideline Exceedence



# CHAIN OF CUSTODY

175640

146 Colonnade Rd., Unit 8, Ottawa, ON K2E 7Y1 Ph; (613) 727-5692 Fax: (613) 727-5222 608 Norris Court, Kingston, ON K7P 2R9 Ph. (613) 634-9307 Fax: (613) 634-9308 LABORATORY USE ONLY 380 Vansickle Rd., Unit 630, St. Catharines, ON L2R 6P7, Ph; (905) 680-8887, Fax; (905) 680-4256 2395 Speakman Drive, Mississauga, ON, L5K 1B3 Phone: (905) 822-4111 Fax: (905) 823-1446 Report Information\* Criteria Required\*: Additional Email/Fax: MMN DOther, Specify: 1. Email: adams ( ammm ca Client: **ODWSOG** Contact: PWOO ress: 72 Victorasts Surk 100 Kitchener on N25-449 3. Email: Address: Ont. Reg. 558 519 +741-8864 CCME Fax: Email: prandict@ecoplans co. Phone: 514741-8850 Sanitary Sewer, City: Report Format: PDF Excel Other, Specify: Project Storm Sewer, City: 1412815 Ont. Reg 153/04\_ Turnaround Time (rush surcharges may apply)\*: Invoice Information\*: 5 Business Days (Standard) Table # 2 Coarse/Fine, Surface/Subsurface Invoice to the same as above? (Yes ) No, or: Type: Com-Ind / Res-Park / Agri / GW / Other 3 Business Days (Rush) Client: 2 Business Days (Rush) The sample results from this submission Contact: 1 Business Day (Rush) will form part of a formal Record of Site Address: Condition (RSC) under O.Reg. 153/04 \*: Other (specifiv date): Email: Phone: Pricing and Analysisas per Quote 130599 Is this a drinking water sample? YES I/NO \* Purchase Order # If yes, complete the drinking water COC Exova Quote # \*: \* Indicates a required field **Parameters** Please note that incomplete information may result in turnaround time delays. Samples should be kept cool (4-10°C) from sampling time through drop-off at the laboratory. Lab Use Sample Sample Only Date/Time Sampled\* Matrix\* # Bottles Sample ID\* Location MWID-2 50,1 23-0ct-13 10 AV 3 MW11-2 22-0cf-13 4PM 73-04-13 430PM MWIIA-2 MW9B-2 22 Ock 13 12:00PM Samples Relinquished By: Samples Received By: Date/Time: Temperature: Condition: Date/Time: Och 24/15 5:00 PM Peter un Drie Samples Relinquished By: Samples Received By: Date/Time: of

#### **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Group Limited Page 1 of 17

Report Number: 1324044

Date Submitted: 2013-10-30

Date Reported: 2013-11-07

Project: 1412815

COC #: 175641

# Dear Peter van Driel: Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692). Report Comments:

| APPROVAL: | APPROVAL: |  |
|-----------|-----------|--|
|           |           |  |

Lorna Wilson Charlie (Long) Qu

Laboratory Supervisor, Inorganics

Laboratory Supervisor, Organics

Exova (Ottawa) is certified and accredited for specific parameters by:

CALA, Canadian Association for Laboratory Accreditation (to ISO 17025), OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils), Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is certified and accredited for specific parameters by: SCC, Standards Council of Canada (to ISO 17025)

ooo, otariaarao ooarion or oariaaa (to 100 17020)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only.

# **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Group Limited

 Report Number:
 1324044

 Date Submitted:
 2013-10-30

 Date Reported:
 2013-11-07

 Project:
 1412815

 COC #:
 175641

|             |                |      |       | Lab I.D.<br>Sample Matrix<br>Sample Type<br>Sampling Date<br>Sample I.D. | 1069237<br>Groundwater<br>2013-10-29<br>MW9A | 1069238<br>Groundwater<br>2013-10-28<br>MW9B | 1069239<br>Groundwater<br>2013-10-28<br>MW10 | 1069240<br>Groundwater<br>2013-10-28<br>MW11 |
|-------------|----------------|------|-------|--------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| Group       | Analyte        | MRL  | Units | Guideline                                                                |                                              |                                              |                                              |                                              |
| Inorganics  | Antimony       | 0.5  | ug/L  | STD-6                                                                    | <0.5                                         | <0.5                                         | 0.5                                          | <0.5                                         |
|             | Arsenic        | 1    | ug/L  | STD-25                                                                   | <1                                           |                                              |                                              | <1                                           |
|             |                | 10   | ug/L  | STD-25                                                                   |                                              | <10                                          | <10                                          |                                              |
|             | Barium         | 10   | ug/L  | STD-1000                                                                 | 360                                          | 180                                          | 380                                          | 410                                          |
|             | Beryllium      | 0.5  | ug/L  | STD-4                                                                    | <0.5                                         | <0.5                                         | <0.5                                         | <0.5                                         |
|             | Boron (total)  | 10   | ug/L  | STD-5000                                                                 | 400                                          | 110                                          | 220                                          | 80                                           |
|             | Cadmium        | 0.1  | ug/L  | STD-2.7                                                                  | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         |
|             | Chromium Total | 1    | ug/L  | STD-50                                                                   | <1                                           | 3                                            | 3                                            | 3                                            |
|             | Cobalt         | 0.2  | ug/L  | STD-3.8                                                                  | 0.6                                          | 4.0*                                         | 3.4                                          | 1.6                                          |
|             | Copper         | 1    | ug/L  | STD-87                                                                   | <1                                           | 5                                            | 4                                            | 2                                            |
|             | Cyanide (CN-)  | 5    | ug/L  | STD-66                                                                   | <5                                           | <5                                           | <5                                           | <5                                           |
|             | Lead           | 1    | ug/L  | STD-10                                                                   | <1                                           | <1                                           | <1                                           | <1                                           |
|             | Mercury        | 0.1  | ug/L  | STD-0.29                                                                 | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         |
|             | Molybdenum     | 5    | ug/L  | STD-70                                                                   | <5                                           | <5                                           | 10                                           | 5                                            |
|             | Nickel         | 5    | ug/L  | STD-100                                                                  | <5                                           | 17                                           | 21                                           | 11                                           |
|             | Selenium       | 1    | ug/L  | STD-10                                                                   | <1                                           | <1                                           | <1                                           | <1                                           |
|             | Silver         | 0.1  | ug/L  | STD-1.5                                                                  | <0.1                                         | 0.4                                          | <0.1                                         | <0.1                                         |
|             | Sodium         | 2000 | ug/L  | STD-490000                                                               | 370000                                       | 3590000*                                     | 2110000*                                     | 1540000*                                     |
|             | Thallium       | 0.1  | ug/L  | STD-2                                                                    | <0.1                                         | <0.1                                         | 0.2                                          | 0.2                                          |
|             | Uranium        | 1    | ug/L  | STD-20                                                                   | 2                                            | 3                                            | 5                                            | 1                                            |
|             | Vanadium       | 1    | ug/L  | STD-6.2                                                                  | <1                                           | <1                                           | <1                                           | <1                                           |
|             | Zinc           | 10   | ug/L  | STD-1100                                                                 | <10                                          | <10                                          | 40                                           | <10                                          |
| Misc/Others | Chloride       | 1    | ug/L  | STD-790000                                                               | 703000                                       |                                              |                                              |                                              |
|             |                | 1000 | ug/L  | STD-790000                                                               |                                              | 5530000*                                     | 3720000*                                     | 2544000*                                     |
|             | Conductivity   | 5    | uS/cm |                                                                          | 2570                                         | 17200                                        | 12300                                        | 8740                                         |
|             | рН             | 1.00 |       |                                                                          | 7.69                                         | 7.50                                         | 7.38                                         | 7.57                                         |

#### Guideline = O.Reg 153-T2-Groundwater

\* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

<sup>\*\*-</sup>Analysis completed in Mississauga Results relate only to the parameters to

# **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Group Limited

Report Number: 1324044

Date Submitted: 2013-10-30

Date Reported: 2013-11-07

Project: 1412815

COC #: 175641

|                |                                |      |       | Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. | 1069237<br>Groundwater<br>2013-10-29<br>MW9A | 1069238<br>Groundwater<br>2013-10-28<br>MW9B | 1069239<br>Groundwater<br>2013-10-28<br>MW10 | 1069240<br>Groundwater<br>2013-10-28<br>MW11 |
|----------------|--------------------------------|------|-------|--------------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| Group          | Analyte                        | MRL  | Units | Guideline                                                    |                                              |                                              |                                              |                                              |
| Petroleum      | Petroleum Hydrocarbons F1      | 100  | ug/L  | STD-750                                                      | <100                                         | <100                                         | <100                                         | <100                                         |
| Hydrocarbons   | Petroleum Hydrocarbons F1-BTEX | 100  | ug/L  |                                                              | <100                                         | <100                                         | <100                                         | <100                                         |
|                | Petroleum Hydrocarbons F2      | 100  | ug/L  | STD-150                                                      | <100                                         | <100                                         | <100                                         | <100                                         |
|                | Petroleum Hydrocarbons F3      | 200  | ug/L  | STD-500                                                      | <200                                         | 600*                                         | 200                                          | <200                                         |
|                | Petroleum Hydrocarbons F4      | 200  | ug/L  | STD-500                                                      | <200                                         | <200                                         | <200                                         | <200                                         |
| Semi-Volatiles | Acenaphthene                   | 0.1  | ug/L  | STD-4.1                                                      | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         |
|                | Acenaphthylene                 | 0.1  | ug/L  | STD-1                                                        | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         |
|                | Anthracene                     | 0.1  | ug/L  | STD-2.4                                                      | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         |
|                | Benz[a]anthracene              | 0.1  | ug/L  | STD-1                                                        | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         |
|                | Benzo[a]pyrene                 | 0.01 | ug/L  | STD-0.01                                                     | <0.01                                        | 0.01                                         | <0.01                                        | <0.01                                        |
|                | Benzo[b]fluoranthene           | 0.05 | ug/L  | STD-0.1                                                      | <0.05                                        | <0.05                                        | <0.05                                        | <0.05                                        |
|                | Benzo[ghi]perylene             | 0.1  | ug/L  | STD-0.2                                                      | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         |
|                | Benzo[k]fluoranthene           | 0.05 | ug/L  | STD-0.1                                                      | <0.05                                        | <0.05                                        | <0.05                                        | <0.05                                        |
|                | Chrysene                       | 0.05 | ug/L  | STD-0.1                                                      | <0.05                                        | <0.05                                        | <0.05                                        | <0.05                                        |
|                | Dibenz[a h]anthracene          | 0.1  | ug/L  | STD-0.2                                                      | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         |
|                | Fluoranthene                   | 0.1  | ug/L  | STD-0.41                                                     | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         |
|                | Fluorene                       | 0.1  | ug/L  | STD-120                                                      | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         |
|                | Indeno[1 2 3-cd]pyrene         | 0.1  | ug/L  | STD-0.2                                                      | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         |
|                | Methlynaphthalene, 1-          | 0.1  | ug/L  | STD-3.2                                                      | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         |
|                | Methlynaphthalene, 2-          | 0.1  | ug/L  | STD-3.2                                                      | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         |
|                | Naphthalene                    | 0.1  | ug/L  | STD-11                                                       | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         |
|                | Phenanthrene                   | 0.1  | ug/L  | STD-1                                                        | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         |
|                | Pyrene                         | 0.1  | ug/L  | STD-4.1                                                      | <0.1                                         | <0.1                                         | <0.1                                         | <0.1                                         |
| Subcontracted  | Chromium VI                    | 10   | ug/L  | STD-25                                                       | <10                                          | <10                                          | <10                                          | <10                                          |
| VOCs           | Acetone                        | 50   | ug/L  | STD-2700                                                     | <50                                          | <50                                          | <50                                          | <50                                          |
|                | Benzene                        | 0.5  | ug/L  | STD-5                                                        | <0.5                                         | <0.5                                         | <0.5                                         | <0.5                                         |
|                |                                |      |       |                                                              |                                              |                                              |                                              |                                              |

#### Guideline = O.Reg 153-T2-Groundwater

\* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

<sup>\*\*-</sup>Analysis completed in Mississauga

# **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Group Limited

Report Number: 1324044
Date Submitted: 2013-10-30
Date Reported: 2013-11-07
Project: 1412815
COC #: 175641

|       |                                |     |       | Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. | 1069237<br>Groundwater<br>2013-10-29<br>MW9A | 1069238<br>Groundwater<br>2013-10-28<br>MW9B | 1069239<br>Groundwater<br>2013-10-28<br>MW10 | 1069240<br>Groundwater<br>2013-10-28<br>MW11 |
|-------|--------------------------------|-----|-------|--------------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| Group | Analyte                        | MRL | Units | Guideline                                                    |                                              |                                              |                                              |                                              |
| VOCs  | Bromodichloromethane           | 0.3 | ug/L  | STD-16                                                       | 1.0                                          | <0.3                                         | <0.3                                         | <0.3                                         |
|       | Bromoform                      | 0.4 | ug/L  | STD-25                                                       | <0.4                                         | <0.4                                         | <0.4                                         | <0.4                                         |
|       | Bromomethane                   | 0.5 | ug/L  | STD-0.89                                                     | <0.5                                         | <0.5                                         | <0.5                                         | <0.5                                         |
|       | c-1,3-Dichloropropylene        | 0.2 | ug/L  |                                                              | <0.2                                         | <0.2                                         | <0.2                                         | <0.2                                         |
|       | Carbon Tetrachloride           | 0.2 | ug/L  | STD-0.79                                                     | <0.2                                         | <0.2                                         | <0.2                                         | <0.2                                         |
|       | Chlorobenzene                  | 0.2 | ug/L  | STD-30                                                       | <0.2                                         | <0.2                                         | <0.2                                         | <0.2                                         |
|       | Chloroform                     | 0.5 | ug/L  | STD-2.4                                                      | 7.5*                                         | <0.5                                         | <0.5                                         | <0.5                                         |
|       | Dibromochloromethane           | 0.3 | ug/L  | STD-25                                                       | <0.3                                         | <0.3                                         | <0.3                                         | <0.3                                         |
|       | Dichlorobenzene, 1,2-          | 0.4 | ug/L  | STD-3                                                        | <0.4                                         | <0.4                                         | <0.4                                         | <0.4                                         |
|       | Dichlorobenzene, 1,3-          | 0.4 | ug/L  | STD-59                                                       | <0.4                                         | <0.4                                         | <0.4                                         | <0.4                                         |
|       | Dichlorobenzene, 1,4-          | 0.4 | ug/L  | STD-1                                                        | <0.4                                         | <0.4                                         | <0.4                                         | <0.4                                         |
|       | Dichlorodifluoromethane        | 0.5 | ug/L  | STD-590                                                      | <0.5                                         | <0.5                                         | <0.5                                         | <0.5                                         |
|       | Dichloroethane, 1,1-           | 0.4 | ug/L  | STD-5                                                        | <0.4                                         | <0.4                                         | <0.4                                         | <0.4                                         |
|       | Dichloroethane, 1,2-           | 0.2 | ug/L  | STD-1.6                                                      | <0.2                                         | <0.2                                         | <0.2                                         | <0.2                                         |
|       | Dichloroethylene, 1,1-         | 0.5 | ug/L  | STD-1.6                                                      | <0.5                                         | <0.5                                         | <0.5                                         | <0.5                                         |
|       | Dichloroethylene, 1,2-cis-     | 0.4 | ug/L  | STD-1.6                                                      | <0.4                                         | <0.4                                         | <0.4                                         | <0.4                                         |
|       | Dichloroethylene, 1,2-trans-   | 0.4 | ug/L  | STD-1.6                                                      | <0.4                                         | <0.4                                         | <0.4                                         | <0.4                                         |
|       | Dichloropropane, 1,2-          | 0.5 | ug/L  | STD-5                                                        | <0.5                                         | <0.5                                         | <0.5                                         | <0.5                                         |
|       | Ethylbenzene                   | 0.5 | ug/L  | STD-2.4                                                      | <0.5                                         | <0.5                                         | <0.5                                         | <0.5                                         |
|       | Ethylene dibromide             | 0.2 | ug/L  | STD-0.2                                                      | <0.2                                         | <0.2                                         | <0.2                                         | <0.2                                         |
|       | Hexane (n)                     | 5   | ug/L  | STD-51                                                       | <5                                           | <5                                           | <5                                           | <5                                           |
|       | m/p-xylene                     | 0.5 | ug/L  |                                                              | <0.5                                         | <0.5                                         | <0.5                                         | <0.5                                         |
|       | Methyl Ethyl Ketone            | 10  | ug/L  | STD-1800                                                     | <10                                          | <10                                          | <10                                          | <10                                          |
|       | Methyl Isobutyl Ketone         | 10  | ug/L  | STD-640                                                      | <10                                          | <10                                          | <10                                          | <10                                          |
|       | Methyl tert-Butyl Ether (MTBE) | 10  | ug/L  | STD-15                                                       | <10                                          | <10                                          | <10                                          | <10                                          |
|       | Methylene Chloride             | 4.0 | ug/L  | STD-50                                                       | <4.0                                         | <4.0                                         | <4.0                                         | <4.0                                         |
|       | <u> </u>                       |     |       | 1                                                            | 1                                            |                                              | 1                                            |                                              |

#### Guideline = O.Reg 153-T2-Groundwater

\* = Guideline Exceedence

<sup>\*\*-</sup>Analysis completed in Mississauga
Results relate only to the parameters tested on the samples submitted.
Methods references and/or additional QA/QC information available on request.

# **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Group Limited

Report Number: 1324044

Date Submitted: 2013-10-30

Date Reported: 2013-11-07

Project: 1412815

COC #: 175641

| <b>O</b> 112.112 | Analyse                     | MDI            | Unite | Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. | 1069237<br>Groundwater<br>2013-10-29<br>MW9A | 1069238<br>Groundwater<br>2013-10-28<br>MW9B | 1069239<br>Groundwater<br>2013-10-28<br>MW10 | 1069240<br>Groundwater<br>2013-10-28<br>MW11 |
|------------------|-----------------------------|----------------|-------|--------------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| Group<br>VOCs    | Analyte<br>o-xylene         | <b>MRL</b> 0.5 | Units | Guideline                                                    | <0.5                                         | <0.5                                         | <0.5                                         | <0.5                                         |
| VOCS             | Styrene                     | 0.5            | ug/L  | STD-5.4                                                      | <0.5                                         | <0.5                                         | <0.5                                         | <0.5                                         |
|                  | <u> </u>                    |                | ug/L  | 310-3.4                                                      | <0.2                                         | <0.2                                         | <0.2                                         | <0.2                                         |
|                  | t-1,3-Dichloropropylene     | 0.2            | ug/L  | CTD 4.4                                                      |                                              | <0.2                                         | <0.2                                         |                                              |
|                  | Tetrachloroethane, 1,1,1,2- | 0.5            | ug/L  | STD-1.1                                                      | <0.5                                         |                                              |                                              | <0.5                                         |
|                  | Tetrachloroethane, 1,1,2,2- | 0.5            | ug/L  | STD-1                                                        | <0.5                                         | <0.5                                         | <0.5                                         | <0.5                                         |
|                  | Tetrachloroethylene         | 0.3            | ug/L  | STD-1.6                                                      | <0.3                                         | <0.3                                         | <0.3                                         | <0.3                                         |
|                  | Toluene                     | 0.5            | ug/L  | STD-24                                                       | <0.5                                         | <0.5                                         | <0.5                                         | <0.5                                         |
|                  | Trichloroethane, 1,1,1-     | 0.4            | ug/L  | STD-200                                                      | <0.4                                         | <0.4                                         | 0.5                                          | <0.4                                         |
|                  | Trichloroethane, 1,1,2-     | 0.4            | ug/L  | STD-4.7                                                      | <0.4                                         | <0.4                                         | <0.4                                         | <0.4                                         |
|                  | Trichloroethylene           | 0.3            | ug/L  | STD-1.6                                                      | <0.3                                         | <0.3                                         | <0.3                                         | <0.3                                         |
|                  | Trichlorofluoromethane      | 0.5            | ug/L  | STD-150                                                      | <0.5                                         | <0.5                                         | <0.5                                         | <0.5                                         |
|                  | Vinyl Chloride              | 0.2            | ug/L  | STD-0.5                                                      | <0.2                                         | <0.2                                         | <0.2                                         | <0.2                                         |
|                  | Xylene Mixture              | 1.0            | ug/L  | STD-300                                                      | <1.0                                         | <1.0                                         | <1.0                                         | <1.0                                         |
| VOCs Surrogates  | 1,2-dichloroethane-d4       | 0              | %     |                                                              | 100                                          | 102                                          | 96                                           | 99                                           |
| (%REC)           | 4-bromofluorobenzene        | 0              | %     |                                                              | 98                                           | 97                                           | 93                                           | 96                                           |
|                  | Toluene-d8                  | 0              | %     |                                                              | 99                                           | 98                                           | 96                                           | 98                                           |

Guideline = O.Reg 153-T2-Groundwater

\* = Guideline Exceedence

\*\*-Analysis completed in Mississauga
Results relate only to the parameters tested on the samples submitted.
Methods references and/or additional QA/QC information available on request.

## **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Group Limited

Report Number: 1324044

Date Submitted: 2013-10-30

Date Reported: 2013-11-07

Project: 1412815

COC #: 175641

|                    |                           |      |       | Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. | 1069241<br>Groundwater<br>2013-10-28<br>DUP 1 | 1069242<br>Groundwater<br>2013-10-29<br>Dup 2 | 1069243<br>Groundwater<br>2013-10-29<br>Field Blank |
|--------------------|---------------------------|------|-------|--------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------------|
| Group              | Analyte                   | MRL  | Units | Guideline                                                    |                                               |                                               |                                                     |
| Inorganics         | Antimony                  | 0.5  | ug/L  | STD-6                                                        | <0.5                                          | <0.5                                          |                                                     |
|                    | Arsenic                   | 1    | ug/L  | STD-25                                                       |                                               | <1                                            |                                                     |
|                    |                           | 10   | ug/L  | STD-25                                                       | <10                                           |                                               |                                                     |
|                    | Barium                    | 10   | ug/L  | STD-1000                                                     | 180                                           | 370                                           |                                                     |
|                    | Beryllium                 | 0.5  | ug/L  | STD-4                                                        | <0.5                                          | <0.5                                          |                                                     |
|                    | Boron (total)             | 10   | ug/L  | STD-5000                                                     | 110                                           | 390                                           |                                                     |
|                    | Cadmium                   | 0.1  | ug/L  | STD-2.7                                                      | <0.1                                          | <0.1                                          |                                                     |
|                    | Chromium Total            | 1    | ug/L  | STD-50                                                       | 2                                             | 1                                             |                                                     |
|                    | Cobalt                    | 0.2  | ug/L  | STD-3.8                                                      | 3.3                                           | 0.6                                           |                                                     |
|                    | Copper                    | 1    | ug/L  | STD-87                                                       | 6                                             | <1                                            |                                                     |
|                    | Cyanide (CN-)             | 5    | ug/L  | STD-66                                                       |                                               | <5                                            |                                                     |
|                    | Lead                      | 1    | ug/L  | STD-10                                                       | <1                                            | <1                                            |                                                     |
|                    | Mercury                   | 0.1  | ug/L  | STD-0.29                                                     | <0.1                                          | <0.1                                          |                                                     |
|                    | Molybdenum                | 5    | ug/L  | STD-70                                                       | <5                                            | <5                                            |                                                     |
|                    | Nickel                    | 5    | ug/L  | STD-100                                                      | 17                                            | <5                                            |                                                     |
|                    | Selenium                  | 1    | ug/L  | STD-10                                                       | <1                                            | <1                                            |                                                     |
|                    | Silver                    | 0.1  | ug/L  | STD-1.5                                                      | 0.1                                           | <0.1                                          |                                                     |
|                    | Sodium                    | 2000 | ug/L  | STD-490000                                                   | 3460000*                                      | 307000                                        |                                                     |
|                    | Thallium                  | 0.1  | ug/L  | STD-2                                                        | <0.1                                          | <0.1                                          |                                                     |
|                    | Uranium                   | 1    | ug/L  | STD-20                                                       | 2                                             | 2                                             |                                                     |
|                    | Vanadium                  | 1    | ug/L  | STD-6.2                                                      | <1                                            | <1                                            |                                                     |
|                    | Zinc                      | 10   | ug/L  | STD-1100                                                     | <10                                           | <10                                           |                                                     |
| Misc/Others        | Chloride                  | 1000 | ug/L  | STD-790000                                                   | 5400000*                                      | 560000                                        |                                                     |
|                    | Conductivity              | 5    | uS/cm |                                                              | 17400                                         | 2080                                          |                                                     |
|                    | рН                        | 1.00 |       |                                                              | 7.55                                          | 7.86                                          |                                                     |
| troleum Hydrocarbo | Petroleum Hydrocarbons F1 | 100  | ug/L  | STD-750                                                      | <100                                          |                                               |                                                     |

#### Guideline = O.Reg 153-T2-Groundwater

\* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

<sup>\*\*-</sup>Analysis completed in Mississauga

## **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Group Limited

 Report Number:
 1324044

 Date Submitted:
 2013-10-30

 Date Reported:
 2013-11-07

 Project:
 1412815

 COC #:
 175641

|                |                                |      |       | Lab I.D.<br>Sample Matrix<br>Sample Type<br>Sampling Date<br>Sample I.D. | 1069241<br>Groundwater<br>2013-10-28<br>DUP 1 | 1069242<br>Groundwater<br>2013-10-29<br>Dup 2 | 1069243<br>Groundwater<br>2013-10-29<br>Field Blank |
|----------------|--------------------------------|------|-------|--------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------------|
| Group          | Analyte                        | MRL  | Units | Guideline                                                                |                                               |                                               |                                                     |
| Petroleum      | Petroleum Hydrocarbons F1-BTEX | 100  | ug/L  |                                                                          | <100                                          |                                               |                                                     |
| Hydrocarbons   | Petroleum Hydrocarbons F2      | 100  | ug/L  | STD-150                                                                  | <100                                          |                                               |                                                     |
|                | Petroleum Hydrocarbons F3      | 200  | ug/L  | STD-500                                                                  | 310                                           |                                               |                                                     |
|                | Petroleum Hydrocarbons F4      | 200  | ug/L  | STD-500                                                                  | <200                                          |                                               |                                                     |
| Semi-Volatiles | Acenaphthene                   | 0.1  | ug/L  | STD-4.1                                                                  | <0.1                                          |                                               |                                                     |
|                | Acenaphthylene                 | 0.1  | ug/L  | STD-1                                                                    | <0.1                                          |                                               |                                                     |
|                | Anthracene                     | 0.1  | ug/L  | STD-2.4                                                                  | <0.1                                          |                                               |                                                     |
|                | Benz[a]anthracene              | 0.1  | ug/L  | STD-1                                                                    | <0.1                                          |                                               |                                                     |
|                | Benzo[a]pyrene                 | 0.01 | ug/L  | STD-0.01                                                                 | <0.01                                         |                                               |                                                     |
|                | Benzo[b]fluoranthene           | 0.05 | ug/L  | STD-0.1                                                                  | <0.05                                         |                                               |                                                     |
|                | Benzo[ghi]perylene             | 0.1  | ug/L  | STD-0.2                                                                  | <0.1                                          |                                               |                                                     |
|                | Benzo[k]fluoranthene           | 0.05 | ug/L  | STD-0.1                                                                  | <0.05                                         |                                               |                                                     |
|                | Chrysene                       | 0.05 | ug/L  | STD-0.1                                                                  | <0.05                                         |                                               |                                                     |
|                | Dibenz[a h]anthracene          | 0.1  | ug/L  | STD-0.2                                                                  | <0.1                                          |                                               |                                                     |
|                | Fluoranthene                   | 0.1  | ug/L  | STD-0.41                                                                 | <0.1                                          |                                               |                                                     |
|                | Fluorene                       | 0.1  | ug/L  | STD-120                                                                  | <0.1                                          |                                               |                                                     |
|                | Indeno[1 2 3-cd]pyrene         | 0.1  | ug/L  | STD-0.2                                                                  | <0.1                                          |                                               |                                                     |
|                | Methlynaphthalene, 1-          | 0.1  | ug/L  | STD-3.2                                                                  | <0.1                                          |                                               |                                                     |
|                | Methlynaphthalene, 2-          | 0.1  | ug/L  | STD-3.2                                                                  | <0.1                                          |                                               |                                                     |
|                | Naphthalene                    | 0.1  | ug/L  | STD-11                                                                   | <0.1                                          |                                               |                                                     |
|                | Phenanthrene                   | 0.1  | ug/L  | STD-1                                                                    | <0.1                                          |                                               |                                                     |
|                | Pyrene                         | 0.1  | ug/L  | STD-4.1                                                                  | <0.1                                          |                                               |                                                     |
| Subcontracted  | Chromium VI                    | 10   | ug/L  | STD-25                                                                   | <10                                           |                                               |                                                     |
| VOCs           | Acetone                        | 50   | ug/L  | STD-2700                                                                 | <50                                           |                                               | <50                                                 |
| <u> </u>       | Benzene                        | 0.5  | ug/L  | STD-5                                                                    | <0.5                                          |                                               | <0.5                                                |
|                | Bromodichloromethane           | 0.3  | ug/L  | STD-16                                                                   | <0.3                                          |                                               | <0.3                                                |

#### Guideline = O.Reg 153-T2-Groundwater

\* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

<sup>\*\*-</sup>Analysis completed in Mississauga Results relate only to the parameters to

## **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Group Limited Report Number: 1324044 Date Submitted: 2013-10-30 Date Reported: 2013-11-07 Project: 1412815 COC #: 175641

|       |                                |     |       | Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. | 1069241<br>Groundwater<br>2013-10-28<br>DUP 1 | 1069242<br>Groundwater<br>2013-10-29<br>Dup 2 | 1069243<br>Groundwate<br>2013-10-29<br>Field Blank |
|-------|--------------------------------|-----|-------|--------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------------|
| Group | Analyte                        | MRL | Units | Guideline                                                    |                                               |                                               |                                                    |
| VOCs  | Bromoform                      | 0.4 | ug/L  | STD-25                                                       | <0.4                                          |                                               | <0.4                                               |
|       | Bromomethane                   | 0.5 | ug/L  | STD-0.89                                                     | <0.5                                          |                                               | <0.5                                               |
|       | c-1,3-Dichloropropylene        | 0.2 | ug/L  |                                                              | <0.2                                          |                                               | <0.2                                               |
|       | Carbon Tetrachloride           | 0.2 | ug/L  | STD-0.79                                                     | <0.2                                          |                                               | <0.2                                               |
|       | Chlorobenzene                  | 0.2 | ug/L  | STD-30                                                       | <0.2                                          |                                               | <0.2                                               |
|       | Chloroform                     | 0.5 | ug/L  | STD-2.4                                                      | <0.5                                          |                                               | <0.5                                               |
|       | Dibromochloromethane           | 0.3 | ug/L  | STD-25                                                       | <0.3                                          |                                               | <0.3                                               |
|       | Dichlorobenzene, 1,2-          | 0.4 | ug/L  | STD-3                                                        | <0.4                                          |                                               | <0.4                                               |
|       | Dichlorobenzene, 1,3-          | 0.4 | ug/L  | STD-59                                                       | <0.4                                          |                                               | <0.4                                               |
|       | Dichlorobenzene, 1,4-          | 0.4 | ug/L  | STD-1                                                        | <0.4                                          |                                               | <0.4                                               |
|       | Dichlorodifluoromethane        | 0.5 | ug/L  | STD-590                                                      | <0.5                                          |                                               | <0.5                                               |
|       | Dichloroethane, 1,1-           | 0.4 | ug/L  | STD-5                                                        | <0.4                                          |                                               | <0.4                                               |
|       | Dichloroethane, 1,2-           | 0.2 | ug/L  | STD-1.6                                                      | <0.2                                          |                                               | <0.2                                               |
|       | Dichloroethylene, 1,1-         | 0.5 | ug/L  | STD-1.6                                                      | <0.5                                          |                                               | <0.5                                               |
|       | Dichloroethylene, 1,2-cis-     | 0.4 | ug/L  | STD-1.6                                                      | <0.4                                          |                                               | <0.4                                               |
|       | Dichloroethylene, 1,2-trans-   | 0.4 | ug/L  | STD-1.6                                                      | <0.4                                          |                                               | <0.4                                               |
|       | Dichloropropane, 1,2-          | 0.5 | ug/L  | STD-5                                                        | <0.5                                          |                                               | <0.5                                               |
|       | Ethylbenzene                   | 0.5 | ug/L  | STD-2.4                                                      | <0.5                                          |                                               | <0.5                                               |
|       | Ethylene dibromide             | 0.2 | ug/L  | STD-0.2                                                      | <0.2                                          |                                               | <0.2                                               |
|       | Hexane (n)                     | 5   | ug/L  | STD-51                                                       | <5                                            |                                               | <5                                                 |
|       | m/p-xylene                     | 0.5 | ug/L  |                                                              | <0.5                                          |                                               | <0.5                                               |
|       | Methyl Ethyl Ketone            | 10  | ug/L  | STD-1800                                                     | <10                                           |                                               | <10                                                |
|       | Methyl Isobutyl Ketone         | 10  | ug/L  | STD-640                                                      | <10                                           |                                               | <10                                                |
|       | Methyl tert-Butyl Ether (MTBE) | 10  | ug/L  | STD-15                                                       | <10                                           |                                               | <10                                                |
|       | Methylene Chloride             | 4.0 | ug/L  | STD-50                                                       | <4.0                                          |                                               | <4.0                                               |
|       | o-xylene                       | 0.5 | ug/L  |                                                              | <0.5                                          |                                               | <0.5                                               |

#### Guideline = O.Reg 153-T2-Groundwater

\* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

<sup>\*\*-</sup>Analysis completed in Mississauga

## **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Group Limited Report Number: 1324044 Date Submitted: 2013-10-30 Date Reported: 2013-11-07 Project: 1412815 COC #: 175641

|                 |                             |     |       | Lab I.D.<br>Sample Matrix<br>Sample Type<br>Sampling Date<br>Sample I.D. | 1069241<br>Groundwater<br>2013-10-28<br>DUP 1 | 1069242<br>Groundwater<br>2013-10-29<br>Dup 2 | 1069243<br>Groundwater<br>2013-10-29<br>Field Blank |
|-----------------|-----------------------------|-----|-------|--------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------------|
| Group           | Analyte                     | MRL | Units | Guideline                                                                |                                               |                                               |                                                     |
| VOCs            | Styrene                     | 0.5 | ug/L  | STD-5.4                                                                  | <0.5                                          |                                               | <0.5                                                |
|                 | t-1,3-Dichloropropylene     | 0.2 | ug/L  |                                                                          | <0.2                                          |                                               | <0.2                                                |
|                 | Tetrachloroethane, 1,1,1,2- | 0.5 | ug/L  | STD-1.1                                                                  | <0.5                                          |                                               | <0.5                                                |
|                 | Tetrachloroethane, 1,1,2,2- | 0.5 | ug/L  | STD-1                                                                    | <0.5                                          |                                               | <0.5                                                |
|                 | Tetrachloroethylene         | 0.3 | ug/L  | STD-1.6                                                                  | <0.3                                          |                                               | <0.3                                                |
|                 | Toluene                     | 0.5 | ug/L  | STD-24                                                                   | <0.5                                          |                                               | <0.5                                                |
|                 | Trichloroethane, 1,1,1-     | 0.4 | ug/L  | STD-200                                                                  | <0.4                                          |                                               | <0.4                                                |
|                 | Trichloroethane, 1,1,2-     | 0.4 | ug/L  | STD-4.7                                                                  | <0.4                                          |                                               | <0.4                                                |
|                 | Trichloroethylene           | 0.3 | ug/L  | STD-1.6                                                                  | <0.3                                          |                                               | <0.3                                                |
|                 | Trichlorofluoromethane      | 0.5 | ug/L  | STD-150                                                                  | <0.5                                          |                                               | <0.5                                                |
|                 | Vinyl Chloride              | 0.2 | ug/L  | STD-0.5                                                                  | <0.2                                          |                                               | <0.2                                                |
|                 | Xylene Mixture              | 1.0 | ug/L  | STD-300                                                                  | <1.0                                          |                                               | <1.0                                                |
| VOCs Surrogates | 1,2-dichloroethane-d4       | 0   | %     |                                                                          | 96                                            |                                               | 100                                                 |
| (%REC)          | 4-bromofluorobenzene        | 0   | %     |                                                                          | 97                                            |                                               | 97                                                  |
|                 | Toluene-d8                  | 0   | %     |                                                                          | 98                                            |                                               | 97                                                  |
|                 |                             |     |       |                                                                          |                                               |                                               |                                                     |

\* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

#### **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Group Limited

Report Number: 1324044
Date Submitted: 2013-10-30
Date Reported: 2013-11-07
Project: 1412815
COC #: 175641

#### **QC Summary**

| Analyte                |                    | Blank                | QC<br>% Rec    | QC<br>Limits |
|------------------------|--------------------|----------------------|----------------|--------------|
| Run No 0               | Analysis Date 2013 | -11-01 <b>Method</b> | V 8260B        |              |
| Xylene Mixture         |                    |                      |                |              |
| Run No 260217          | Analysis Date 2013 | -11-05 <b>Method</b> | SM 4110C       |              |
| Chloride               |                    | <1 ug/L              | 95             | 90-110       |
| <b>Run No</b> 260259   | Analysis Date 2013 | -10-31 <b>Method</b> | O CCME Reg 153 |              |
| Petroleum Hydrocarbons | s F1               | <100 ug/L            | 90             | 80-120       |
| Petroleum Hydrocarbons | s F1-BTEX          |                      |                |              |
| <b>Run No</b> 260297   | Analysis Date 2013 | -10-31 <b>Method</b> | P 8270         |              |
| Methlynaphthalene, 1-  |                    | <0.1 ug/L            | 60             | 20-140       |
| Methlynaphthalene, 2-  |                    | <0.1 ug/L            | 70             | 20-140       |
| Acenaphthene           |                    | <0.1 ug/L            | 64             | 20-140       |
| Acenaphthylene         |                    | <0.1 ug/L            | 62             | 20-140       |
| Anthracene             |                    | <0.1 ug/L            | 70             | 20-140       |
| Benz[a]anthracene      |                    | <0.1 ug/L            | 68             | 20-140       |
| Benzo[a]pyrene         |                    | <0.01 ug/L           | 75             | 20-140       |

Guideline = O.Reg 153-T2-Groundwater

\* = Guideline Exceedence

\*\*-Analysis completed in Mississauga Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

#### **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Group Limited

Report Number: 1324044
Date Submitted: 2013-10-30
Date Reported: 2013-11-07
Project: 1412815
COC #: 175641

#### **QC Summary**

| Analyte                           | Blank                 | QC<br>% Rec | QC<br>Limits |
|-----------------------------------|-----------------------|-------------|--------------|
| Benzo[b]fluoranthene              | <0.05 ug/L            | 60          | 20-140       |
| Benzo[ghi]perylene                | <0.1 ug/L             | 78          | 20-140       |
| Benzo[k]fluoranthene              | <0.05 ug/L            | 119         | 20-140       |
| Chrysene                          | <0.05 ug/L            | 71          | 20-140       |
| Dibenz[a h]anthracene             | <0.1 ug/L             | 78          | 20-140       |
| Fluoranthene                      | <0.1 ug/L             | 72          | 20-140       |
| Fluorene                          | <0.1 ug/L             | 64          | 20-140       |
| Indeno[1 2 3-cd]pyrene            | <0.1 ug/L             | 76          | 20-140       |
| Naphthalene                       | <0.1 ug/L             | 58          | 20-140       |
| Phenanthrene                      | <0.1 ug/L             | 72          | 20-140       |
| Pyrene                            | <0.1 ug/L             | 70          | 20-140       |
| Run No 260359 Analysis Date 2013- | 10-31 <b>Method</b> V | 8260B       |              |
| Tetrachloroethane, 1,1,1,2-       | <0.5 ug/L             | 105         | 80-120       |
| Trichloroethane, 1,1,1-           | <0.4 ug/L             | 90          | 80-120       |
| Tetrachloroethane, 1,1,2,2-       | <0.5 ug/L             | 96          | 80-120       |
| Trichloroethane, 1,1,2-           | <0.4 ug/L             | 102         | 80-120       |
| Dichloroethane, 1,1-              | <0.4 ug/L             | 92          | 80-120       |

Guideline = O.Reg 153-T2-Groundwater

\* = Guideline Exceedence

\*\*-Analysis completed in Mississauga Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

## **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Group Limited

Report Number: 1324044
Date Submitted: 2013-10-30
Date Reported: 2013-11-07
Project: 1412815
COC #: 175641

#### **QC Summary**

| Analyte                    | Blank     | QC<br>% Rec | QC<br>Limits |
|----------------------------|-----------|-------------|--------------|
| Dichloroethylene, 1,1-     | <0.5 ug/L | 108         | 80-120       |
| Dichlorobenzene, 1,2-      | <0.4 ug/L | 100         | 80-120       |
| Dichloroethane, 1,2-       | <0.2 ug/L | 108         | 80-120       |
| 1,2-dichloroethane-d4      | 102 %     | 84          | 80-120       |
| Dichloropropane, 1,2-      | <0.5 ug/L | 110         | 80-120       |
| Dichlorobenzene, 1,3-      | <0.4 ug/L | 103         | 80-120       |
| Dichlorobenzene, 1,4-      | <0.4 ug/L | 107         | 80-120       |
| Benzene                    | <0.5 ug/L | 111         | 80-120       |
| Bromodichloromethane       | <0.3 ug/L | 95          | 80-120       |
| Bromoform                  | <0.4 ug/L | 87          | 80-120       |
| Bromomethane               | <0.5 ug/L | 107         | 70-130       |
| Dichloroethylene, 1,2-cis- | <0.4 ug/L | 106         | 80-120       |
| Dichloropropene,1,3-cis-   | <0.2 ug/L | 91          | 80-120       |
| Carbon Tetrachloride       | <0.2 ug/L | 91          | 80-120       |
| Chloroform                 | <0.5 ug/L | 103         | 80-120       |
| Dibromochloromethane       | <0.3 ug/L | 91          | 80-120       |
| Dichlorodifluoromethane    | <0.5 ug/L | 110         | 70-130       |

Guideline = O.Reg 153-T2-Groundwater

\* = Guideline Exceedence

\*\*-Analysis completed in Mississauga Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

#### **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9
Attention: Peter van Driel

PO#:

Invoice to: MMM Group Limited

Report Number: 1324044
Date Submitted: 2013-10-30
Date Reported: 2013-11-07
Project: 1412815
COC #: 175641

#### **QC Summary**

| Analyte                           | Blank                 | QC<br>% Rec | QC<br>Limits |
|-----------------------------------|-----------------------|-------------|--------------|
| Methylene Chloride                | <4.0 ug/L             | 110         | 60-200       |
| Ethylbenzene                      | <0.5 ug/L             | 107         | 80-120       |
| Ethylene dibromide                | <0.2 ug/L             | 97          | 80-120       |
| Hexane (n)                        | <5 ug/L               | 110         | 70-130       |
| m/p-xylene                        | <0.5 ug/L             | 113         | 80-120       |
| Chlorobenzene                     | <0.2 ug/L             | 101         | 80-120       |
| o-xylene                          | <0.5 ug/L             | 111         | 80-120       |
| Styrene                           | <0.5 ug/L             | 102         | 80-120       |
| Dichloroethylene, 1,2-trans-      | <0.4 ug/L             | 111         | 80-120       |
| Dichloropropene,1,3-trans-        | <0.2 ug/L             | 93          | 80-120       |
| Tetrachloroethylene               | <0.3 ug/L             | 109         | 80-120       |
| Toluene                           | <0.5 ug/L             | 109         | 80-120       |
| Toluene-d8                        | 101 %                 | 98          | 80-120       |
| Trichloroethylene                 | <0.3 ug/L             | 89          | 80-120       |
| Trichlorofluoromethane            | <0.5 ug/L             | 111         | 80-120       |
| Vinyl Chloride                    | <0.2 ug/L             | 116         | 70-130       |
| Run No 260380 Analysis Date 2013- | 11-01 <b>Method</b> C | SM4500-CNC  |              |

Guideline = O.Reg 153-T2-Groundwater

\* = Guideline Exceedence

\*\*-Analysis completed in Mississauga
Results relate only to the parameters tested on the samples submitted.
Methods references and/or additional QA/QC information available on request.

#### **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9 Peter van Driel

Attention: PO#:

Invoice to: MMM Group Limited

Report Number: 1324044
Date Submitted: 2013-10-30
Date Reported: 2013-11-07
Project: 1412815
COC #: 175641

#### **QC Summary**

|           | Analyte        |               |       |       | Blank      |    | QC<br>% Rec   | QC<br>Limits |
|-----------|----------------|---------------|-------|-------|------------|----|---------------|--------------|
| Cyanide   | (CN-)          |               |       |       | <5 ug/L    |    | 91            | 75-125       |
| Run No    | 260405         | Analysis Date | 2013- | 11-01 | Method     | М  | SM3112B-3500B |              |
| Mercury   |                |               |       |       | <0.1 ug/L  |    | 97            | 70-130       |
| Run No    | 260420         | Analysis Date | 2013- | 11-04 | Method     | 0  | CCME Reg 153  |              |
| Petroleu  | m Hydrocarbons | F2            |       |       | <100 ug/L  |    | 61            | 50-120       |
| Petroleu  | m Hydrocarbons | F3            |       |       | <200 ug/L  |    | 61            | 50-120       |
| Petroleu  | m Hydrocarbons | F4            |       |       | <200 ug/L  |    | 61            | 50-120       |
| Run No    | 260447         | Analysis Date | 2013- | 11-04 | Method     | М  | SM3120B-3500C |              |
| Sodium    |                |               |       | <     | <2000 ug/L |    | 100           | 80-120       |
| Run No    | 260461         | Analysis Date | 2013- | 11-04 | Method     | SN | 1 4110C       |              |
| Chloride  |                |               |       | <     | <1000 ug/L |    | 100           | 90-112       |
| Run No    | 260467         | Analysis Date | 2013- | 11-05 | Method     | EF | A 200.8       |              |
| Silver    |                |               |       |       | <0.1 ug/L  |    | 98            | 89-111       |
| Arsenic   |                |               |       |       | <1 ug/L    |    | 103           | 81-119       |
| Boron (to | otal)          |               |       |       | <10 ug/L   |    | 105           | 81-119       |
| Barium    |                |               |       |       | <10 ug/L   |    | 99            | 91-109       |
| Berylliun | n              |               |       |       | <0.5 ug/L  |    | 102           | 82-118       |

Guideline = O.Reg 153-T2-Groundwater

\* = Guideline Exceedence

\*\*-Analysis completed in Mississauga
Results relate only to the parameters tested on the samples submitted.
Methods references and/or additional QA/QC information available on request.

#### **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Group Limited

Report Number: 1324044
Date Submitted: 2013-10-30
Date Reported: 2013-11-07
Project: 1412815
COC #: 175641

#### **QC Summary**

| Analyte                           | Blank                   | QC<br>% Rec | QC<br>Limits |
|-----------------------------------|-------------------------|-------------|--------------|
| Cadmium                           | <0.1 ug/L               | 99          | 86-114       |
| Cobalt                            | <0.2 ug/L               | 101         | 88-112       |
| Chromium Total                    | <1 ug/L                 | 101         | 89-111       |
| Copper                            | <1 ug/L                 | 101         | 86-114       |
| Molybdenum                        | <5 ug/L                 | 103         | 84-116       |
| Nickel                            | <5 ug/L                 | 104         | 92-108       |
| Lead                              | <1 ug/L                 | 99          | 89-111       |
| Antimony                          | <0.5 ug/L               | 103         | 77-123       |
| Selenium                          | <1 ug/L                 | 103         | 77-123       |
| Thallium                          | <0.1 ug/L               | 101         | 88-112       |
| Uranium                           | <1 ug/L                 | 97          | 87-113       |
| Vanadium                          | <1 ug/L                 | 104         | 88-112       |
| Zinc                              | <10 ug/L                | 99          | 89-111       |
| Run No 260476 Analysis Date 2013- | -11-04 <b>Method</b> C  | SM2510B     |              |
| Conductivity                      | <5 uS/cm                | 101         | 95-105       |
| рН                                | 6.40                    | 100         | 90-110       |
| Run No 260533 Analysis Date 2013  | -11-05 <b>Method</b> EF | PA 200.8    |              |

Guideline = O.Reg 153-T2-Groundwater

\* = Guideline Exceedence

\*\*-Analysis completed in Mississauga
Results relate only to the parameters tested on the samples submitted.
Methods references and/or additional QA/QC information available on request.

#### **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Group Limited

Report Number: 1324044
Date Submitted: 2013-10-30
Date Reported: 2013-11-07
Project: 1412815
COC #: 175641

#### **QC Summary**

| Analyte                           | Blank                  | QC<br>% Rec      | QC<br>Limits |
|-----------------------------------|------------------------|------------------|--------------|
| Silver                            | <0.1 ug/L              | 100              | 89-111       |
| Arsenic                           | <1 ug/L                | 107              | 81-119       |
| Boron (total)                     | <10 ug/L               | 99               | 81-119       |
| Thallium                          | <0.1 ug/L              | 105              | 88-112       |
| Run No 260540 Analysis Date 2013- | 11-06 <b>Method</b> O  | CCME Reg 153     |              |
| Petroleum Hydrocarbons F2         | <100 ug/L              | 88               | 50-120       |
| Petroleum Hydrocarbons F3         | <200 ug/L              | 88               | 50-120       |
| Petroleum Hydrocarbons F4         | <200 ug/L              | 88               | 50-120       |
| Run No 260564 Analysis Date 2013- | 11-06 <b>Method</b> V  | 8260B            |              |
| Acetone                           | <50 ug/L               | 119              | 80-120       |
| Methyl Ethyl Ketone               | <10 ug/L               | 93               | 80-120       |
| Methyl Isobutyl Ketone            | <10 ug/L               | 118              | 80-120       |
| Methyl tert-Butyl Ether (MTBE)    | <10 ug/L               | 116              | 80-120       |
| Run No 260610 Analysis Date 2013- | 11-06 <b>Method</b> St | JBCONTRACT P-INO | RG           |
| Chromium VI                       | <10 ug/L               |                  |              |

Guideline = O.Reg 153-T2-Groundwater

\* = Guideline Exceedence

\*\*-Analysis completed in Mississauga Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

#### **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Group Limited

Report Number: 1324044
Date Submitted: 2013-10-30
Date Reported: 2013-11-07
Project: 1412815
COC #: 175641

#### Sample Comment Summary

| Sample ID: 1069237 MW9A  | Sample was subcontracted for Chromium (VI) analysis.                                                                      |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Sample ID: 1069238 MW9B  | Arsenic MRL elevated due to matrix interference (dilution was done). Sample was subcontracted for Chromium (VI) analysis. |
| Sample ID: 1069239 MW10  | Arsenic MRL elevated due to matrix interference (dilution was done). Sample was subcontracted for Chromium (VI) analysis. |
| Sample ID: 1069240 MW11  | Sample was subcontracted for Chromium (VI) analysis.                                                                      |
| Sample ID: 1069241 DUP 1 | Arsenic MRL elevated due to matrix interference (dilution was done). Sample was subcontracted for Chromium (VI) analysis. |



# CHAIN OF CUSTODY

146 Colonnade Rd., Unit 8, Ottawa, ON K2E 7Y1 Ph. (613) 727-5692 Fax. (613) 727-5222

175641

LABORATORY USE ONLY 608 Norris Court, Kingston, ON K7P 2R9 Ph. (613) 634-9307 Fax: (613) 634-9308 380 Vansickle Rd., Unit 630, St. Catharines, ON L2R 6P7 Ph; (905) 680-8887 Fax: (905) 680-4256. 2395 Speakman Drive, Mississauga, ON, L5K 1B3, Phone: (905) 822-4111, Fax: (905) 823-1446 Report Information\*: Criteria Required\*: Additional Email/Fax: MM M Group - Ecoplan 1. Email: Prantriel@ecoplans con 2. Email: adams common ca, **ODWSOG** Client: Other, Specify: PWQQ Contact: Address: 72 V. Horia St. S. Swote 100 Vitchener on N 26-449 Email: prandid @ ecoplans amphone: 519 741-8850 phayeo@ usplans com Ont. Reg. 558 Sanitary Sewer, City: Offgua - Sample MW5A of y Report Format: PDF Excel D Other, Specify: Project: YOnt. Reg 153/04 → All other samples
Table #\_\_\_\_, Coarse/Fine, Surface/Subsurface Invoice Information\*: Turnaround Time (rush surcharges may apply)\*: Invoice to the same as above Yes No. or: 5 Business Days (Standard) Type: Com-Ind / Res-Park / Agri / GW / Other 3 Business Days (Rush) Client 2 Business Days (Rush) Contact The sample results from this submission will form part of a formal Record of Site 1 Business Day (Rush) Address: Other (specifiy date): Condition (RSC) under O.Reg. 153/04 \*: Email: Phone: NO Notes: Is this a drinking water sample? YES (NO 1) Purchase Order #3 If yes, complete the drinking water COC-Exova Quote # \*: Parameters \* Indicates a required field Please note that incomplete information may result in turnaround time delays. Samples should be kept cool (4-10°C) from sampling time through drop-off at the laboratory. Lab Use Sample Sample Only Sample ID\* Date/Time Sampled\* Matrix\* # Bottles Location MW5A 29-0d-1317.30FM GW MW9A 1/mkert Split) 29-04-13 130PM \$ 6W 1D 28-04-13 6100 PM \$6W 11 MW9B HE GW 28-01-13 6:20pm MWID MWII 46W 28-021-134:00PM Dupl Out 2 Field Blank Sec Quote 130999 for 28-oct-13 6.10 pm GW 46W 29-04-13 12:35PM Parameter Analyses Date/Time: 0.4 24/13 3:45/M Samples Received By: Samples Relinquished By: Date/Time: Temperature: Condition: Pote von Onel Samples Relinquished By: Samples Received By: Date/Time: of

#### **Certificate of Analysis**



Client: MMM Group Limited

1145 Hunt Club Rd

Ottawa, ON K1V 0Y3

Attention: Mark Hudson

PO#:

Invoice to: MMM Groups Limited Page 1 of 11

 Report Number:
 1325264

 Date Submitted:
 2013-11-14

 Date Reported:
 2013-11-21

 Project:
 770 Somerset

 COC #:
 168344

## Dear Mark Hudson:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

| APPROVAL: |  |  |
|-----------|--|--|

Charlie (Long) Qu Laboratory Supervisor, Organics

Exova (Ottawa) is certified and accredited for specific parameters by:

CALA, Canadian Association for Laboratory Accreditation (to ISO 17025), OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils), Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is certified and accredited for specific parameters by: SCC, Standards Council of Canada (to ISO 17025)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only.

## **Certificate of Analysis**



Client: MMM Group Limited

1145 Hunt Club Rd Ottawa, ON

K1V 0Y3

Attention: Mark Hudson

PO#:

Invoice to: MMM Groups Limited Report Number: 1325264 Date Submitted: 2013-11-14 Date Reported: 2013-11-21 Project: 770 Somerset

COC #: 168344

|              |                              |     |       | Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. | 1073000<br>Groundwater<br>2013-11-13<br>MW9B | 1073001<br>Groundwater<br>2013-11-13<br>Dup 3 | 1073002<br>Groundwater<br>2013-11-13<br>MW9A | 1073003<br>Groundwater<br>2013-11-13<br>Dup 4 |
|--------------|------------------------------|-----|-------|--------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|----------------------------------------------|-----------------------------------------------|
| Group        | Analyte                      | MRL | Units | Guideline                                                    |                                              |                                               |                                              |                                               |
| Petroleum    | Petroleum Hydrocarbons F1    | 100 | ug/L  | STD-750                                                      | <100                                         | <100                                          |                                              |                                               |
| Hydrocarbons | Petroleum Hydrocarbons F2    | 100 | ug/L  | STD-150                                                      | <100                                         | <100                                          |                                              |                                               |
|              | Petroleum Hydrocarbons F3    | 200 | ug/L  | STD-500                                                      | <200                                         | 1000*                                         |                                              |                                               |
|              | Petroleum Hydrocarbons F4    | 200 | ug/L  | STD-500                                                      | <200                                         | <200                                          |                                              |                                               |
| VOCs         | Acetone                      | 50  | ug/L  | STD-130000                                                   |                                              |                                               | <50                                          | <50                                           |
|              | Benzene                      | 0.5 | ug/L  | STD-430                                                      |                                              |                                               | <0.5                                         | <0.5                                          |
|              | Bromodichloromethane         | 0.3 | ug/L  | STD-85000                                                    |                                              |                                               | <0.3                                         | <0.3                                          |
|              | Bromoform                    | 0.4 | ug/L  | STD-770                                                      |                                              |                                               | <0.4                                         | <0.4                                          |
|              | Bromomethane                 | 0.5 | ug/L  | STD-56                                                       |                                              |                                               | <0.5                                         | <0.5                                          |
|              | c-1,3-Dichloropropylene      | 0.2 | ug/L  |                                                              |                                              |                                               | <0.2                                         | <0.2                                          |
|              | Carbon Tetrachloride         | 0.2 | ug/L  | STD-8.4                                                      |                                              |                                               | <0.2                                         | <0.2                                          |
|              | Chlorobenzene                | 0.2 | ug/L  | STD-630                                                      |                                              |                                               | <0.2                                         | <0.2                                          |
|              | Chloroform                   | 0.5 | ug/L  | STD-22                                                       |                                              |                                               | 2.4                                          | 2.4                                           |
|              | Dibromochloromethane         | 0.3 | ug/L  | STD-82000                                                    |                                              |                                               | <0.3                                         | <0.3                                          |
|              | Dichlorobenzene, 1,2-        | 0.4 | ug/L  | STD-9600                                                     |                                              |                                               | <0.4                                         | <0.4                                          |
|              | Dichlorobenzene, 1,3-        | 0.4 | ug/L  | STD-9600                                                     |                                              |                                               | <0.4                                         | <0.4                                          |
|              | Dichlorobenzene, 1,4-        | 0.4 | ug/L  | STD-67                                                       |                                              |                                               | <0.4                                         | <0.4                                          |
|              | Dichlorodifluoromethane      | 0.5 | ug/L  | STD-4400                                                     |                                              |                                               | <0.5                                         | <0.5                                          |
|              | Dichloroethane, 1,1-         | 0.4 | ug/L  | STD-3100                                                     |                                              |                                               | <0.4                                         | <0.4                                          |
|              | Dichloroethane, 1,2-         | 0.2 | ug/L  | STD-12                                                       |                                              |                                               | <0.2                                         | <0.2                                          |
|              | Dichloroethylene, 1,1-       | 0.5 | ug/L  | STD-17                                                       |                                              |                                               | <0.5                                         | <0.5                                          |
|              | Dichloroethylene, 1,2-cis-   | 0.4 | ug/L  | STD-17                                                       |                                              |                                               | <0.4                                         | <0.4                                          |
|              | Dichloroethylene, 1,2-trans- | 0.4 | ug/L  | STD-17                                                       |                                              |                                               | <0.4                                         | <0.4                                          |
|              | Dichloropropane, 1,2-        | 0.5 | ug/L  | STD-140                                                      |                                              |                                               | <0.5                                         | <0.5                                          |
|              | Ethylbenzene                 | 0.5 | ug/L  | STD-2300                                                     |                                              |                                               | <0.5                                         | <0.5                                          |
|              | Ethylene dibromide           | 0.2 | ug/L  | STD-0.83                                                     |                                              |                                               | <0.2                                         | <0.2                                          |

#### Guideline = O.Reg 153-T3-Non-Potable GW

\* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

<sup>\*\*-</sup>Analysis completed in Mississauga

#### **Certificate of Analysis**



Client: MMM Group Limited

1145 Hunt Club Rd Ottawa, ON

K1V 0Y3

Attention: Mark Hudson

PO#:

Invoice to: MMM Groups Limited

 Report Number:
 1325264

 Date Submitted:
 2013-11-14

 Date Reported:
 2013-11-21

 Project:
 770 Somerset

 COC #:
 168344

|                |                                |     |       | Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. | 1073000<br>Groundwater<br>2013-11-13<br>MW9B | 1073001<br>Groundwater<br>2013-11-13<br>Dup 3 | 1073002<br>Groundwater<br>2013-11-13<br>MW9A | 1073003<br>Groundwater<br>2013-11-13<br>Dup 4 |
|----------------|--------------------------------|-----|-------|--------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|----------------------------------------------|-----------------------------------------------|
| Group          | Analyte                        | MRL | Units | Guideline                                                    |                                              |                                               |                                              |                                               |
| VOCs           | Hexane (n)                     | 5   | ug/L  | STD-520                                                      |                                              |                                               | <5                                           | <5                                            |
|                | m/p-xylene                     | 0.5 | ug/L  |                                                              |                                              |                                               | <0.5                                         | <0.5                                          |
|                | Methyl Ethyl Ketone            | 10  | ug/L  | STD-1500000                                                  |                                              |                                               | <10                                          | <10                                           |
|                | Methyl Isobutyl Ketone         | 10  | ug/L  | STD-580000                                                   |                                              |                                               | <10                                          | <10                                           |
|                | Methyl tert-Butyl Ether (MTBE) | 10  | ug/L  | STD-1400                                                     |                                              |                                               | <10                                          | <10                                           |
|                | Methylene Chloride             | 4.0 | ug/L  | STD-5500                                                     |                                              |                                               | <4.0                                         | <4.0                                          |
|                | o-xylene                       | 0.5 | ug/L  |                                                              |                                              |                                               | <0.5                                         | <0.5                                          |
|                | Styrene                        | 0.5 | ug/L  | STD-9100                                                     |                                              |                                               | <0.5                                         | <0.5                                          |
|                | t-1,3-Dichloropropylene        | 0.2 | ug/L  |                                                              |                                              |                                               | <0.2                                         | <0.2                                          |
|                | Tetrachloroethane, 1,1,1,2-    | 0.5 | ug/L  | STD-28                                                       |                                              |                                               | <0.5                                         | <0.5                                          |
|                | Tetrachloroethane, 1,1,2,2-    | 0.5 | ug/L  | STD-15                                                       |                                              |                                               | <0.5                                         | <0.5                                          |
|                | Tetrachloroethylene            | 0.3 | ug/L  | STD-17                                                       |                                              |                                               | <0.3                                         | <0.3                                          |
|                | Toluene                        | 0.5 | ug/L  | STD-18000                                                    |                                              |                                               | <0.5                                         | <0.5                                          |
|                | Trichloroethane, 1,1,1-        | 0.4 | ug/L  | STD-6700                                                     |                                              |                                               | <0.4                                         | <0.4                                          |
|                | Trichloroethane, 1,1,2-        | 0.4 | ug/L  | STD-30                                                       |                                              |                                               | <0.4                                         | <0.4                                          |
|                | Trichloroethylene              | 0.3 | ug/L  | STD-17                                                       |                                              |                                               | <0.3                                         | <0.3                                          |
|                | Trichlorofluoromethane         | 0.5 | ug/L  | STD-2500                                                     |                                              |                                               | <0.5                                         | <0.5                                          |
|                | Vinyl Chloride                 | 0.2 | ug/L  | STD-1.7                                                      |                                              |                                               | <0.2                                         | <0.2                                          |
|                | Xylene Mixture                 | 1.0 | ug/L  | STD-4200                                                     |                                              |                                               | <1.0                                         | <1.0                                          |
| OCs Surrogates | 1,2-dichloroethane-d4          | 0   | %     |                                                              |                                              |                                               | 109                                          | 106                                           |
| (%REC)         | 4-bromofluorobenzene           | 0   | %     |                                                              |                                              |                                               | 97                                           | 100                                           |
|                | Toluene-d8                     | 0   | %     |                                                              |                                              |                                               | 99                                           | 100                                           |

Guideline = O.Reg 153-T3-Non-Potable GW

\* = Guideline Exceedence

\*\*-Analysis completed in Mississauga

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

#### **Certificate of Analysis**



Client: MMM Group Limited

1145 Hunt Club Rd Ottawa, ON

K1V 0Y3

Attention: Mark Hudson

PO#:

Invoice to: MMM Groups Limited Report Number: 1325264 Date Submitted: 2013-11-14 Date Reported: 2013-11-21 Project: 770 Somerset COC #:

168344

|       |                              |     |       | Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. | 1073004<br>Groundwater<br>2013-11-13<br>Trip Blank |
|-------|------------------------------|-----|-------|--------------------------------------------------------------|----------------------------------------------------|
| Group | Analyte                      | MRL | Units | Guideline                                                    |                                                    |
| VOCs  | Acetone                      | 50  | ug/L  | STD-130000                                                   | <50                                                |
|       | Benzene                      | 0.5 | ug/L  | STD-430                                                      | <0.5                                               |
|       | Bromodichloromethane         | 0.3 | ug/L  | STD-85000                                                    | <0.3                                               |
|       | Bromoform                    | 0.4 | ug/L  | STD-770                                                      | <0.4                                               |
|       | Bromomethane                 | 0.5 | ug/L  | STD-56                                                       | <0.5                                               |
|       | c-1,3-Dichloropropylene      | 0.2 | ug/L  |                                                              | <0.2                                               |
|       | Carbon Tetrachloride         | 0.2 | ug/L  | STD-8.4                                                      | <0.2                                               |
|       | Chlorobenzene                | 0.2 | ug/L  | STD-630                                                      | <0.2                                               |
|       | Chloroform                   | 0.5 | ug/L  | STD-22                                                       | <0.5                                               |
|       | Dibromochloromethane         | 0.3 | ug/L  | STD-82000                                                    | <0.3                                               |
|       | Dichlorobenzene, 1,2-        | 0.4 | ug/L  | STD-9600                                                     | <0.4                                               |
|       | Dichlorobenzene, 1,3-        | 0.4 | ug/L  | STD-9600                                                     | <0.4                                               |
|       | Dichlorobenzene, 1,4-        | 0.4 | ug/L  | STD-67                                                       | <0.4                                               |
|       | Dichlorodifluoromethane      | 0.5 | ug/L  | STD-4400                                                     | <0.5                                               |
|       | Dichloroethane, 1,1-         | 0.4 | ug/L  | STD-3100                                                     | <0.4                                               |
|       | Dichloroethane, 1,2-         | 0.2 | ug/L  | STD-12                                                       | <0.2                                               |
|       | Dichloroethylene, 1,1-       | 0.5 | ug/L  | STD-17                                                       | <0.5                                               |
|       | Dichloroethylene, 1,2-cis-   | 0.4 | ug/L  | STD-17                                                       | <0.4                                               |
|       | Dichloroethylene, 1,2-trans- | 0.4 | ug/L  | STD-17                                                       | <0.4                                               |
|       | Dichloropropane, 1,2-        | 0.5 | ug/L  | STD-140                                                      | <0.5                                               |
|       | Ethylbenzene                 | 0.5 | ug/L  | STD-2300                                                     | <0.5                                               |
|       | Ethylene dibromide           | 0.2 | ug/L  | STD-0.83                                                     | <0.2                                               |
|       | Hexane (n)                   | 5   | ug/L  | STD-520                                                      | <5                                                 |
|       | m/p-xylene                   | 0.5 | ug/L  |                                                              | <0.5                                               |
|       | Methyl Ethyl Ketone          | 10  | ug/L  | STD-1500000                                                  | <10                                                |
|       | Methyl Isobutyl Ketone       | 10  | ug/L  | STD-580000                                                   | <10                                                |

Guideline = O.Reg 153-T3-Non-Potable GW

\* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

<sup>\*\*-</sup>Analysis completed in Mississauga

#### **Certificate of Analysis**



Client: MMM Group Limited

1145 Hunt Club Rd

Ottawa, ON K1V 0Y3

Attention: Mark Hudson

PO#:

Invoice to: MMM Groups Limited

 Report Number:
 1325264

 Date Submitted:
 2013-11-14

 Date Reported:
 2013-11-21

 Project:
 770 Somerset

 COC #:
 168344

| Group           | Analyte                        | MRL | Units | Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.  Guideline | 1073004<br>Groundwater<br>2013-11-13<br>Trip Blank |
|-----------------|--------------------------------|-----|-------|-------------------------------------------------------------------------|----------------------------------------------------|
| VOCs            | Methyl tert-Butyl Ether (MTBE) | 10  | ug/L  | STD-1400                                                                | <10                                                |
|                 | Methylene Chloride             | 4.0 | ug/L  | STD-5500                                                                | <4.0                                               |
|                 | o-xylene                       | 0.5 | ug/L  |                                                                         | <0.5                                               |
|                 | Styrene                        | 0.5 | ug/L  | STD-9100                                                                | <0.5                                               |
|                 | t-1,3-Dichloropropylene        | 0.2 | ug/L  |                                                                         | <0.2                                               |
|                 | Tetrachloroethane, 1,1,1,2-    | 0.5 | ug/L  | STD-28                                                                  | <0.5                                               |
|                 | Tetrachloroethane, 1,1,2,2-    | 0.5 | ug/L  | STD-15                                                                  | <0.5                                               |
|                 | Tetrachloroethylene            | 0.3 | ug/L  | STD-17                                                                  | <0.3                                               |
|                 | Toluene                        | 0.5 | ug/L  | STD-18000                                                               | <0.5                                               |
|                 | Trichloroethane, 1,1,1-        | 0.4 | ug/L  | STD-6700                                                                | <0.4                                               |
|                 | Trichloroethane, 1,1,2-        | 0.4 | ug/L  | STD-30                                                                  | <0.4                                               |
|                 | Trichloroethylene              | 0.3 | ug/L  | STD-17                                                                  | <0.3                                               |
|                 | Trichlorofluoromethane         | 0.5 | ug/L  | STD-2500                                                                | <0.5                                               |
|                 | Vinyl Chloride                 | 0.2 | ug/L  | STD-1.7                                                                 | <0.2                                               |
|                 | Xylene Mixture                 | 1.0 | ug/L  | STD-4200                                                                | <1.0                                               |
| VOCs Surrogates | 1,2-dichloroethane-d4          | 0   | %     |                                                                         | 108                                                |
| (%REC)          | 4-bromofluorobenzene           | 0   | %     |                                                                         | 101                                                |
|                 | Toluene-d8                     | 0   | %     |                                                                         | 104                                                |

Guideline = O.Reg 153-T3-Non-Potable GW

\* = Guideline Exceedence

\*\*-Analysis completed in Mississauga

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

#### **Certificate of Analysis**



Client: MMM Group Limited

1145 Hunt Club Rd Ottawa, ON

K1V 0Y3

Attention: Mark Hudson

PO#:

Invoice to: MMM Groups Limited

Report Number: Date Submitted: Date Reported: Project:

COC #:

1325264 2013-11-14 2013-11-21 770 Somerset 168344

#### **QC Summary**

| Analyte                           | Blank                   | QC<br>% Rec | QC<br>Limits |
|-----------------------------------|-------------------------|-------------|--------------|
| Run No 0 Analysis Date 2013-      | 11-20 <b>Method</b> V 8 | 3260B       |              |
| Xylene Mixture                    |                         |             |              |
| Run No 261290 Analysis Date 2013- | 11-18 <b>Method</b> V 8 | 3260B       |              |
| Tetrachloroethane, 1,1,1,2-       | <0.5 ug/L               | 108         | 80-120       |
| Trichloroethane, 1,1,1-           | <0.4 ug/L               | 102         | 80-120       |
| Tetrachloroethane, 1,1,2,2-       | <0.5 ug/L               | 84          | 80-120       |
| Trichloroethane, 1,1,2-           | <0.4 ug/L               | 94          | 80-120       |
| Dichloroethane, 1,1-              | <0.4 ug/L               | 102         | 80-120       |
| Dichloroethylene, 1,1-            | <0.5 ug/L               | 97          | 80-120       |
| Dichlorobenzene, 1,2-             | <0.4 ug/L               | 103         | 80-120       |
| Dichloroethane, 1,2-              | <0.2 ug/L               | 100         | 80-120       |
| 1,2-dichloroethane-d4             | 114 %                   | 91          | 80-120       |
| Dichloropropane, 1,2-             | <0.5 ug/L               | 105         | 80-120       |
| Dichlorobenzene, 1,3-             | <0.4 ug/L               | 102         | 80-120       |
| Dichlorobenzene, 1,4-             | <0.4 ug/L               | 98          | 80-120       |

Guideline = O.Reg 153-T3-Non-Potable GW

\* = Guideline Exceedence

\*\*-Analysis completed in Mississauga Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

#### **Certificate of Analysis**



Client: MMM Group Limited

1145 Hunt Club Rd Ottawa, ON

K1V 0Y3

Attention: Mark Hudson

PO#:

Invoice to: MMM Groups Limited

Report Number: Date Submitted: Date Reported: Project:

COC #:

2013-11-14 2013-11-21 770 Somerset 168344

1325264

#### **QC Summary**

| Analyte                    | Blank     | QC<br>% Rec | QC<br>Limits |
|----------------------------|-----------|-------------|--------------|
| Benzene                    | <0.5 ug/L | 98          | 80-120       |
| Bromodichloromethane       | <0.3 ug/L | 95          | 80-120       |
| Bromoform                  | <0.4 ug/L | 94          | 80-120       |
| Bromomethane               | <0.5 ug/L | 86          | 70-130       |
| Dichloroethylene, 1,2-cis- | <0.4 ug/L | 96          | 80-120       |
| Dichloropropene,1,3-cis-   | <0.2 ug/L | 92          | 80-120       |
| Carbon Tetrachloride       | <0.2 ug/L | 101         | 80-120       |
| Chloroform                 | <0.5 ug/L | 98          | 80-120       |
| Dibromochloromethane       | <0.3 ug/L | 95          | 80-120       |
| Dichlorodifluoromethane    | <0.5 ug/L | 98          | 70-130       |
| Methylene Chloride         | <4.0 ug/L | 109         | 60-200       |
| Ethylbenzene               | <0.5 ug/L | 101         | 80-120       |
| Ethylene dibromide         | <0.2 ug/L | 102         | 80-120       |
| Hexane (n)                 | <5 ug/L   | 100         | 70-130       |
| m/p-xylene                 | <0.5 ug/L | 109         | 80-120       |
| Chlorobenzene              | <0.2 ug/L | 95          | 80-120       |
| o-xylene                   | <0.5 ug/L | 106         | 80-120       |

Guideline = O.Reg 153-T3-Non-Potable GW

\* = Guideline Exceedence

\*\*-Analysis completed in Mississauga
Results relate only to the parameters tested on the samples submitted.
Methods references and/or additional QA/QC information available on request.

#### **Certificate of Analysis**



Client: MMM Group Limited

1145 Hunt Club Rd Ottawa, ON

K1V 0Y3

Attention: Mark Hudson

PO#:

Invoice to: MMM Groups Limited Report Number: Date Submitted: Date Reported: Project:

COC #:

1325264 2013-11-14 2013-11-21 770 Somerset

168344

#### **QC Summary**

| Analyte                           | Blank                 | QC<br>% Rec  | QC<br>Limits |
|-----------------------------------|-----------------------|--------------|--------------|
| Styrene                           | <0.5 ug/L             | 97           | 80-120       |
| Dichloroethylene, 1,2-trans-      | <0.4 ug/L             | 96           | 80-120       |
| Dichloropropene,1,3-trans-        | <0.2 ug/L             | 90           | 80-120       |
| Tetrachloroethylene               | <0.3 ug/L             | 96           | 80-120       |
| Toluene                           | <0.5 ug/L             | 99           | 80-120       |
| Toluene-d8                        | 101 %                 | 99           | 80-120       |
| Trichloroethylene                 | <0.3 ug/L             | 106          | 80-120       |
| Trichlorofluoromethane            | <0.5 ug/L             | 105          | 80-120       |
| Vinyl Chloride                    | <0.2 ug/L             | 97           | 70-130       |
| Run No 261300 Analysis Date 2013- | 11-18 <b>Method</b> C | CCME Reg 153 |              |
| Petroleum Hydrocarbons F1         | <100 ug/L             | 94           | 80-120       |
| Run No 261383 Analysis Date 2013- | 11-19 <b>Method</b> V | 8260B        |              |
| Acetone                           | <50 ug/L              | 90           | 80-120       |
| Methyl Ethyl Ketone               | <10 ug/L              | 88           | 80-120       |
| Methyl Isobutyl Ketone            | <10 ug/L              | 81           | 80-120       |
| Methyl tert-Butyl Ether (MTBE)    | <10 ug/L              | 90           | 80-120       |
| Run No 261435 Analysis Date 2013- | 11-19 <b>Method</b> V | 8260B        |              |

#### Guideline = O.Reg 153-T3-Non-Potable GW

\* = Guideline Exceedence

\*\*-Analysis completed in Mississauga Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

#### **Certificate of Analysis**



Client: MMM Group Limited

1145 Hunt Club Rd Ottawa, ON

K1V 0Y3

Attention: Mark Hudson

PO#:

Invoice to: MMM Groups Limited

Report Number: Date Submitted: Date Reported: Project:

COC #:

1325264 2013-11-14 2013-11-21 770 Somerset 168344

#### **QC Summary**

| Analyte                     | Blank     | QC<br>% Rec | QC<br>Limits |
|-----------------------------|-----------|-------------|--------------|
| Tetrachloroethane, 1,1,1,2- | <0.5 ug/L | 116         | 80-120       |
| Trichloroethane, 1,1,1-     | <0.4 ug/L | 108         | 80-120       |
| Tetrachloroethane, 1,1,2,2- | <0.5 ug/L | 113         | 80-120       |
| Trichloroethane, 1,1,2-     | <0.4 ug/L | 105         | 80-120       |
| Dichloroethane, 1,1-        | <0.4 ug/L | 113         | 80-120       |
| Dichloroethylene, 1,1-      | <0.5 ug/L | 111         | 80-120       |
| Dichlorobenzene, 1,2-       | <0.4 ug/L | 107         | 80-120       |
| Dichloroethane, 1,2-        | <0.2 ug/L | 112         | 80-120       |
| 1,2-dichloroethane-d4       | 90 %      | 98          | 80-120       |
| Dichloropropane, 1,2-       | <0.5 ug/L | 110         | 80-120       |
| Dichlorobenzene, 1,3-       | <0.4 ug/L | 112         | 80-120       |
| Dichlorobenzene, 1,4-       | <0.4 ug/L | 111         | 80-120       |
| Benzene                     | <0.5 ug/L | 105         | 80-120       |
| Bromodichloromethane        | <0.3 ug/L | 108         | 80-120       |
| Bromoform                   | <0.4 ug/L | 108         | 80-120       |
| Bromomethane                | <0.5 ug/L | 99          | 70-130       |
| Dichloroethylene, 1,2-cis-  | <0.4 ug/L | 107         | 80-120       |

Guideline = O.Reg 153-T3-Non-Potable GW

\* = Guideline Exceedence

\*\*-Analysis completed in Mississauga Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

#### **Certificate of Analysis**



Client: MMM Group Limited

1145 Hunt Club Rd Ottawa, ON

K1V 0Y3

Attention: Mark Hudson

PO#:

Invoice to: MMM Groups Limited

Report Number: Date Submitted: Date Reported: Project:

COC #:

1325264 2013-11-14 2013-11-21 770 Somerset 168344

#### **QC Summary**

| Analyte                      | Blank     | QC<br>% Rec | QC<br>Limits |
|------------------------------|-----------|-------------|--------------|
| Dichloropropene,1,3-cis-     | <0.2 ug/L | 102         | 80-120       |
| Carbon Tetrachloride         | <0.2 ug/L | 108         | 80-120       |
| Chloroform                   | <0.5 ug/L | 106         | 80-120       |
| Dibromochloromethane         | <0.3 ug/L | 107         | 80-120       |
| Dichlorodifluoromethane      | <0.5 ug/L | 89          | 70-130       |
| Methylene Chloride           | <4.0 ug/L | 110         | 60-200       |
| Ethylbenzene                 | <0.5 ug/L | 108         | 80-120       |
| Ethylene dibromide           | <0.2 ug/L | 118         | 80-120       |
| Hexane (n)                   | <5 ug/L   | 90          | 70-130       |
| m/p-xylene                   | <0.5 ug/L | 114         | 80-120       |
| Chlorobenzene                | <0.2 ug/L | 104         | 80-120       |
| o-xylene                     | <0.5 ug/L | 114         | 80-120       |
| Styrene                      | <0.5 ug/L | 106         | 80-120       |
| Dichloroethylene, 1,2-trans- | <0.4 ug/L | 100         | 80-120       |
| Dichloropropene,1,3-trans-   | <0.2 ug/L | 104         | 80-120       |
| Tetrachloroethylene          | <0.3 ug/L | 102         | 80-120       |
| Toluene                      | <0.5 ug/L | 107         | 80-120       |

Guideline = O.Reg 153-T3-Non-Potable GW

\* = Guideline Exceedence

\*\*-Analysis completed in Mississauga
Results relate only to the parameters tested on the samples submitted.
Methods references and/or additional QA/QC information available on request.

#### **Certificate of Analysis**



Client: MMM Group Limited

1145 Hunt Club Rd Ottawa, ON

K1V 0Y3

Attention: Mark Hudson

PO#:

Invoice to: MMM Groups Limited

Report Number: Date Submitted: Date Reported: Project:

COC #:

1325264 2013-11-14 2013-11-21 770 Somerset

168344

#### **QC Summary**

| Analyte                           | Blank                 | QC<br>% Rec  | QC<br>Limits |
|-----------------------------------|-----------------------|--------------|--------------|
| Toluene-d8                        | 101 %                 | 99           | 80-120       |
| Trichloroethylene                 | <0.3 ug/L             | 107          | 80-120       |
| Trichlorofluoromethane            | <0.5 ug/L             | 104          | 80-120       |
| Vinyl Chloride                    | <0.2 ug/L             | 90           | 70-130       |
| Run No 261439 Analysis Date 2013- | 11-19 <b>Method</b> V | 8260B        |              |
| Acetone                           | <50 ug/L              | 97           | 80-120       |
| Methyl Ethyl Ketone               | <10 ug/L              | 88           | 80-120       |
| Methyl Isobutyl Ketone            | <10 ug/L              | 81           | 80-120       |
| Methyl tert-Butyl Ether (MTBE)    | <10 ug/L              | 90           | 80-120       |
| Run No 261466 Analysis Date 2013- | 11-20 <b>Method</b> O | CCME Reg 153 |              |
| Petroleum Hydrocarbons F2         | <100 ug/L             | 100          | 50-120       |
| Petroleum Hydrocarbons F3         | <200 ug/L             | 100          | 50-120       |
| Petroleum Hydrocarbons F4         | <200 ug/L             | 100          | 50-120       |

\* = Guideline Exceedence

\*\*-Analysis completed in Mississauga Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.



Report Information\*:

# CHAIN OF CUSTODY

168344

146 Colonnade Rd., Unit 8, Ottawa, ON K2E 7Y1 Ph: (613) 727-5692 Fax: (613) 727-5222 608 Norris Court, Kingston, ON K7P 2R9 Ph: (613) 634-9307 Fax: (613) 634-9308 380 Vansickle Rd., Unit 630, St. Catharines, ON L2R 6P7 Ph: (905) 680-8887 Fax: (905) 680-4256 2395 Speakman Drive, Mississauga, ON, L5K 1B3 Phone: (905) 822-4111 Fax: (905) 823-1446

Criteria Required\*:

Report # 132526

Additional Email/Fax:

| Client: Contact: Address:  It is Hant Claim Email: Project: Project: Invoice Information*: Invoice to the same as above? Client: Contact: Address: | Mark Hadson  Ab Rd  Phone: 613 4002446  S)/ No, or: | □ Storm Se  ★ Ont. Reg  Table # ②  Type: Cor  The sample  will form pa | Sewer, City:  ewer, City:  153/04  n-Ind / Reserver results from | Other, Specification of the Control of Site of | bsurfi<br>7 Oth |           | 2<br>3<br><u>R</u> | 1. Email: Vands: Qmnm.ca 2. Email: 3. Email: Fax:  Report Format: |              |         | apply)*:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|--------------------|-------------------------------------------------------------------|--------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Email: Purchase Order #: Exova Quote # *:                                                                                                          | Phone:                                              |                                                                        |                                                                  | sample? YES / I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |           | No                 | tes:                                                              | Haran Co     |         | 10 SO |         |
| * Indicates a required field Please note that incomplete inform Samples should be kept cool (4-10                                                  | °C) from sampling time                              | through dro                                                            | op-off at the                                                    | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FI              | F2<br>Fit | Hydrocerbens       | 7                                                                 | S Parameters | 000     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lab Use |
| Sample ID*                                                                                                                                         | Date/Time Sampled*                                  | Matrix*                                                                | # Bottles                                                        | Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |           | 2                  | > (                                                               |              |         | 1811 181 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Only    |
| A-D-9B                                                                                                                                             | 13 Nov, 2013                                        | KW                                                                     | 4                                                                | 770 Sowset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V               | V         |                    |                                                                   |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10730   |
| 1-4-9A                                                                                                                                             | ( )                                                 | 1                                                                      | 2                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | r         | -                  | V                                                                 |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0       |
| Trip Blanks                                                                                                                                        | ma 11                                               |                                                                        | 7                                                                | ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |           |                    | V                                                                 | V            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 03      |
|                                                                                                                                                    |                                                     |                                                                        |                                                                  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |           |                    |                                                                   |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 4     |
| 6                                                                                                                                                  | Date/Time: 1:45pm                                   | Samples F                                                              | Received By                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date            | ZĮ im     | 8                  |                                                                   | Temperature  | 9:<br>2 | Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | on:     |
| Samples Relinquished By:                                                                                                                           | Date/Time:                                          |                                                                        | eceived By                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date            | e/Tim     | e: 1               | -1                                                                | Ly Page #    | REE     | of_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 48 国民共民 |

#### **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Group Limited Page 1 of 7

Report Number: 1324043
Date Submitted: 2013-10-30
Date Reported: 2013-11-11
Project: 1412815
COC #: 175641

# Dear Peter van Driel: Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692). Report Comments:

| APPROVAL: | APPROVAL: |  |
|-----------|-----------|--|
|           |           |  |

Lorna Wilson Justin Deagle

Laboratory Supervisor, Inorganics Acting Team Leader, Organics

Exova (Ottawa) is certified and accredited for specific parameters by:

CALA, Canadian Association for Laboratory Accreditation (to ISO 17025), OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils), Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is accredited for specific parameters by: SCC, Standards Council of Canada (to ISO 17025)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only.

## **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Group Limited

Report Number: 1324043
Date Submitted: 2013-10-30
Date Reported: 2013-11-11
Project: 1412815
COC #: 175641

|                   |                        |        |       | Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. | 1069236<br>Groundwater<br>2013-10-29<br>MW 5A |
|-------------------|------------------------|--------|-------|--------------------------------------------------------------|-----------------------------------------------|
| Group             | Analyte                | MRL    | Units | Guideline                                                    |                                               |
| Cyanide           | Cyanide (total)        | 0.005  | mg/L  | MAC-2                                                        | 0.032                                         |
| General Chemistry | F                      | 0.10   | mg/L  | MAC-10                                                       | 0.13                                          |
|                   | рН                     | 1.00   |       | 5.5-11.0                                                     | 7.29                                          |
|                   | S2-                    | 0.10   | mg/L  | MAC-2                                                        | <0.10                                         |
|                   | SO4                    | 3      | mg/L  | MAC-1500                                                     | 298                                           |
|                   | Total Suspended Solids | 2      | mg/L  | MAC-350                                                      | 29                                            |
| Hydrocarbons      | F1 (C6-C10)            | 100    | ug/L  |                                                              | <100                                          |
|                   | F1-BTEX (C6-C10)       | 100    | ug/L  |                                                              | <100                                          |
|                   | F2 (C10-C16)           | 100    | ug/L  |                                                              | <100                                          |
|                   | F3 (C16-C34)           | 200    | ug/L  |                                                              | <200                                          |
|                   | F4 (C34-C50)           | 200    | ug/L  |                                                              | <200                                          |
| Mercury           | Hg                     | 0.0001 | mg/L  | MAC-0.001                                                    | <0.0001                                       |
| Metals            | Ag                     | 0.01   | mg/L  | MAC-5                                                        | <0.01                                         |
|                   | Al                     | 0.1    | mg/L  | MAC-50                                                       | <0.1                                          |
|                   | Aqua-Regia Digest      |        | mg/L  |                                                              | У                                             |
|                   | As                     | 0.02   | mg/L  | MAC-1                                                        | <0.02                                         |
|                   | В                      | 0.1    | mg/L  | MAC-25                                                       | 0.2                                           |
|                   | Bi                     | 0.05   | mg/L  | MAC-5                                                        | <0.05                                         |
|                   | Cd                     | 0.008  | mg/L  | MAC-0.02                                                     | <0.008                                        |
|                   | Co                     | 0.01   | mg/L  | MAC-5                                                        | <0.01                                         |
|                   | Cr                     | 0.05   | mg/L  | MAC-5                                                        | <0.05                                         |
|                   | Cu                     | 0.01   | mg/L  | MAC-3                                                        | <0.01                                         |
|                   | Mn                     | 0.01   | mg/L  | MAC-5                                                        | 0.07                                          |
|                   | Mo                     | 0.01   | mg/L  | MAC-5                                                        | <0.01                                         |
|                   | Ni                     | 0.01   | mg/L  | MAC-3                                                        | 0.03                                          |
|                   | Pb                     | 0.01   | mg/L  | MAC-5                                                        | <0.01                                         |

#### Guideline = Sanitary Sewer - Ottawa

\* = Guideline Exceedence

\*\* = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

#### **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Group Limited

 Report Number:
 1324043

 Date Submitted:
 2013-10-30

 Date Reported:
 2013-11-11

 Project:
 1412815

 COC #:
 175641

|              |                                  |       |       | Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. | 1069236<br>Groundwater<br>2013-10-29<br>MW 5A |
|--------------|----------------------------------|-------|-------|--------------------------------------------------------------|-----------------------------------------------|
| Group        | Analyte                          | MRL   | Units | Guideline                                                    |                                               |
| Metals       | Sb                               | 0.01  | mg/L  | MAC-5                                                        | <0.01                                         |
|              | Se                               | 0.02  | mg/L  | MAC-5                                                        | <0.02                                         |
|              | Sn                               | 0.1   | mg/L  | MAC-5                                                        | <0.1                                          |
|              | Ti                               | 0.1   | mg/L  | MAC-5                                                        | <0.1                                          |
|              | V                                | 0.05  | mg/L  | MAC-5                                                        | <0.05                                         |
|              | Zn                               | 0.04  | mg/L  | MAC-3                                                        | <0.04                                         |
| Nutrients    | BOD5                             | 1     | mg/L  | MAC-300                                                      | 1                                             |
|              | Phenols                          | 0.001 | mg/L  | MAC-1.0                                                      | <0.001                                        |
|              | Total Kjeldahl Nitrogen          | 0.10  | mg/L  | MAC-100                                                      | 0.81                                          |
|              | Total P                          | 0.01  | mg/L  | MAC-10                                                       | 0.03                                          |
| Oil & Grease | Oil & Grease - Mineral           | 1     | mg/L  | MAC-15                                                       | <1                                            |
|              | Oil & Grease - Non-mineral       | 1     | mg/L  | MAC-150                                                      | <1                                            |
|              | Oil & Grease - Total             | 1     | mg/L  |                                                              | <1                                            |
| PCBs         | Polychlorinated Biphenyls (PCBs) | 0.1   | ug/L  | MAC-1.0                                                      | <0.1                                          |
| Subcontract  | 1-methylnaphthalene              | 0.05  | ug/L  | MAC-32                                                       | <0.05                                         |
|              | 2,4-dichlorophenol               | 1.0   | ug/L  | MAC-44                                                       | <1.0                                          |
|              | 2-methylnaphthalene              | 0.05  | ug/L  | MAC-22                                                       | 0.25                                          |
|              | 7H-Dibenzo(c,g)carbazole         | 0.5   | ug/L  |                                                              | <0.5                                          |
|              | Acenaphthene                     | 0.05  | ug/L  |                                                              | <0.05                                         |
|              | Acenaphthylene                   | 0.05  | ug/L  |                                                              | <0.05                                         |
|              | Anthracene                       | 0.01  | ug/L  |                                                              | <0.01                                         |
|              | Benzo(a)anthracene               | 0.01  | ug/L  |                                                              | <0.01                                         |
|              | Benzo(a)pyrene                   | 0.01  | ug/L  |                                                              | <0.01                                         |
|              | Benzo(b+j+k)fluoranthene         | 0.5   | ug/L  |                                                              | <0.5                                          |
|              | Benzo(e)pyrene                   | 0.5   | ug/L  |                                                              | <0.5                                          |
|              | Benzo(g,h,i)perylene             | 0.05  | ug/L  |                                                              | <0.05                                         |

#### Guideline = Sanitary Sewer - Ottawa

\* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

<sup>\*\* =</sup> Analysis completed at Mississauga, Ontario. Results relate only to the parameters tested on the

## **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Group Limited

Report Number: 1324043
Date Submitted: 2013-10-30
Date Reported: 2013-11-11
Project: 1412815
COC #: 175641

|             |                            |      |       | Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. | 1069236<br>Groundwater<br>2013-10-29<br>MW 5A |
|-------------|----------------------------|------|-------|--------------------------------------------------------------|-----------------------------------------------|
| Group       | Analyte                    | MRL  | Units | Guideline                                                    |                                               |
| Subcontract | Benzylbutylphthalate       | 1.0  | ug/L  | MAC-17                                                       | <1.0                                          |
|             | Bis(2-chloroethoxy)methane | 1.0  | ug/L  | MAC-36                                                       | <1.0                                          |
|             | Bis(2-ethylhexyl)phthalate | 1.0  | ug/L  | MAC-280                                                      | <1.0                                          |
|             | Chrysene                   | 0.05 | ug/L  |                                                              | <0.05                                         |
|             | Dibenz(a,j)acridine        | 0.5  | ug/L  |                                                              | <0.5                                          |
|             | Dibenzo(a,h)anthracene     | 0.05 | ug/L  |                                                              | <0.05                                         |
|             | Dibenzo(a,i)pyrene         | 0.5  | ug/L  |                                                              | <0.5                                          |
|             | Diethyl Phthalate          | 1.0  | ug/L  | MAC-200                                                      | <1.0                                          |
|             | Di-n-butylphthalate        | 1.0  | ug/L  | MAC-57                                                       | <1.0                                          |
|             | Di-n-octylphthalate        | 1.0  | ug/L  | MAC-30                                                       | <1.0                                          |
|             | Fluoranthene               | 0.01 | ug/L  |                                                              | <0.01                                         |
|             | Fluorene                   | 0.05 | ug/L  | MAC-59                                                       | <0.05                                         |
|             | Hexachlorobenzene          | 1.0  | ug/L  | MAC-0.1                                                      | <1.0                                          |
|             | Indeno(1,2,3-c,d)pyrene    | 0.05 | ug/L  |                                                              | <0.05                                         |
|             | Indole                     | 1.0  | ug/L  | MAC-50                                                       | <1.0                                          |
|             | Naphthalene                | 0.05 | ug/L  | MAC-59                                                       | 0.40                                          |
|             | PAH (Total)                | 3.4  | ug/L  | MAC-15                                                       | <3.4                                          |
|             | Perylene                   | 0.5  | ug/L  |                                                              | <0.5                                          |
|             | Phenanthrene               | 0.05 | ug/L  |                                                              | <0.05                                         |
|             | Pyrene                     | 0.01 | ug/L  |                                                              | <0.01                                         |
| VOCs        | 1,1,1,2-tetrachloroethane  | 0.5  | ug/L  |                                                              | <0.5                                          |
|             | 1,1,1-trichloroethane      | 0.4  | ug/L  | MAC-54                                                       | <0.4                                          |
|             | 1,1,2,2-tetrachloroethane  | 0.5  | ug/L  | MAC-40                                                       | <0.5                                          |
|             | 1,1,2-trichloroethane      | 0.4  | ug/L  | MAC-800                                                      | <0.4                                          |
|             | 1,1-dichloroethane         | 0.4  | ug/L  | MAC-200                                                      | <0.4                                          |
|             | 1,1-dichloroethylene       | 0.5  | ug/L  | MAC-40                                                       | <0.5                                          |

#### Guideline = Sanitary Sewer - Ottawa

\* = Guideline Exceedence

\*\* = Analysis completed at Mississauga, Ontario. Results relate only to the parameters tested on the

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

## **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Group Limited

 Report Number:
 1324043

 Date Submitted:
 2013-10-30

 Date Reported:
 2013-11-11

 Project:
 1412815

 COC #:
 175641

|       |                         |     |       | Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. | 1069236<br>Groundwater<br>2013-10-29<br>MW 5A |
|-------|-------------------------|-----|-------|--------------------------------------------------------------|-----------------------------------------------|
| Group | Analyte                 | MRL | Units | Guideline                                                    |                                               |
| VOCs  | 1,2-dibromoethane       | 0.2 | ug/L  | MAC-28                                                       | <0.2                                          |
|       | 1,2-dichlorobenzene     | 0.4 | ug/L  | MAC-88                                                       | <0.4                                          |
|       | 1,2-dichloroethane      | 0.2 | ug/L  | MAC-210                                                      | <0.2                                          |
|       | 1,2-dichloroethane-d4   | 0   | %     |                                                              | 99                                            |
|       | 1,2-dichloropropane     | 0.5 | ug/L  | MAC-850                                                      | <0.5                                          |
|       | 1,3,5-trimethylbenzene  | 0.3 | ug/L  | MAC-3.0                                                      | <0.3                                          |
|       | 1,3-dichlorobenzene     | 0.4 | ug/L  | MAC-36                                                       | <0.4                                          |
|       | 1,4-dichlorobenzene     | 0.4 | ug/L  | MAC-17                                                       | <0.4                                          |
|       | 4-bromofluorobenzene    | 0   | %     |                                                              | 94                                            |
|       | Benzene                 | 0.5 | ug/L  | MAC-10                                                       | <0.5                                          |
|       | Bromodichloromethane    | 0.3 | ug/L  | MAC-350                                                      | <0.3                                          |
|       | Bromoform               | 0.4 | ug/L  | MAC-630                                                      | <0.4                                          |
|       | Bromomethane            | 0.5 | ug/L  | MAC-110                                                      | <0.5                                          |
|       | c-1,2-Dichloroethylene  | 0.4 | ug/L  | MAC-200                                                      | <0.4                                          |
|       | c-1,3-Dichloropropylene | 0.2 | ug/L  | MAC-70                                                       | <0.2                                          |
|       | Carbon Tetrachloride    | 0.2 | ug/L  | MAC-57                                                       | <0.2                                          |
|       | Chloroethane            | 0.2 | ug/L  | MAC-270                                                      | <0.2                                          |
|       | Chloroform              | 0.5 | ug/L  | MAC-80                                                       | <0.5                                          |
|       | Chloromethane           | 0.2 | ug/L  | MAC-190                                                      | <0.2                                          |
|       | Dibromochloromethane    | 0.3 | ug/L  | MAC-57                                                       | <0.3                                          |
|       | Dichloromethane         | 4.0 | ug/L  | MAC-210                                                      | <4.0                                          |
|       | Ethylbenzene            | 0.5 | ug/L  | MAC-57                                                       | <0.5                                          |
|       | m/p-xylene              | 0.5 | ug/L  |                                                              | <0.5                                          |
|       | Monochlorobenzene       | 0.2 | ug/L  | MAC-57                                                       | <0.2                                          |
|       | o-xylene                | 0.5 | ug/L  |                                                              | <0.5                                          |
|       | Styrene                 | 0.5 | ug/L  | MAC-40                                                       | <0.5                                          |

#### Guideline = Sanitary Sewer - Ottawa

\* = Guideline Exceedence

\*\* = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on th

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

## **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Group Limited

Report Number: 1324043
Date Submitted: 2013-10-30
Date Reported: 2013-11-11
Project: 1412815
COC #: 175641

|       |                         |     |       | Lab I.D.<br>Sample Matrix<br>Sample Type<br>Sampling Date<br>Sample I.D. | 1069236<br>Groundwater<br>2013-10-29<br>MW 5A |
|-------|-------------------------|-----|-------|--------------------------------------------------------------------------|-----------------------------------------------|
| Group | Analyte                 | MRL | Units | Guideline                                                                |                                               |
| VOCs  | t-1,2-Dichloroethylene  | 0.4 | ug/L  | MAC-200                                                                  | <0.4                                          |
|       | t-1,3-Dichloropropylene | 0.2 | ug/L  | MAC-70                                                                   | <0.2                                          |
|       | Tetrachloroethylene     | 0.3 | ug/L  | MAC-50                                                                   | <0.3                                          |
|       | Toluene                 | 0.5 | ug/L  | MAC-80                                                                   | <0.5                                          |
|       | Toluene-d8              | 0   | %     |                                                                          | 98                                            |
|       | Trichloroethylene       | 0.3 | ug/L  | MAC-54                                                                   | <0.3                                          |
|       | Trichlorofluoromethane  | 0.5 | ug/L  | MAC-20                                                                   | <0.5                                          |
|       | Vinyl Chloride          | 0.2 | ug/L  | MAC-400                                                                  | <0.2                                          |
|       | Xylene; total           | 1.0 | ug/L  | MAC-320                                                                  | <1.0                                          |

Guideline = Sanitary Sewer - Ottawa

\* = Guideline Exceedence

\*\* = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

#### **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Group Limited Report Number: 1324043 Date Submitted: 2013-10-30 Date Reported: 2013-11-11 Project: 1412815 COC #: 175641

#### Sample Comment Summary

Sample ID: 1069236 MW 5A Metals analysis performed on aqua-regia digest of sample material.S2 MRL elevated due to sample turbidity.

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

#### **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Groups Limited Page 1 of 8

Report Number: 1326983
Date Submitted: 2013-12-10
Date Reported: 2013-12-11
Project: 1412815
COC #: 173052

# Dear Peter van Driel:

| Please find attached the analytical results for y | our samples. If you have ar | y guestions regarding this repor | t, please do not hesitate to ca | all (613-727-5692). |
|---------------------------------------------------|-----------------------------|----------------------------------|---------------------------------|---------------------|
|                                                   |                             |                                  |                                 |                     |

| Report | Comm | ents: |
|--------|------|-------|
|--------|------|-------|

| APPROVAL: | APPROVAL: |  |
|-----------|-----------|--|
| AFFROVAL. | AFFROVAL. |  |

Lorna Wilson Charlie (Long) Qu

Laboratory Supervisor, Inorganics

Laboratory Supervisor, Organics

Exova (Ottawa) is certified and accredited for specific parameters by:

CALA, Canadian Association for Laboratory Accreditation (to ISO 17025), OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils), Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is accredited for specific parameters by: SCC, Standards Council of Canada (to ISO 17025)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only.

## **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Groups Limited

Report Number: 1326983

Date Submitted: 2013-12-10

Date Reported: 2013-12-11

Project: 1412815

COC #: 173052

|                   |                        |     |       | Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. | 1078024<br>Groundwater<br>2013-12-09<br>MW9B | 1078025<br>Groundwater<br>2013-12-09<br>MW10 | 1078026<br>Groundwater<br>2013-12-10<br>Dup 1 | 1078027<br>Groundwater<br>2013-12-10<br>Dup 2 |
|-------------------|------------------------|-----|-------|--------------------------------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| Group             | Analyte                | MRL | Units | Guideline                                                    |                                              |                                              |                                               |                                               |
| General Chemistry | Total Suspended Solids | 2   | mg/L  |                                                              | 612                                          | 120                                          |                                               |                                               |
| Hydrocarbons      | F1 (C6-C10)            | 100 | ug/L  | STD-750                                                      | <100                                         | <100                                         | <100                                          | <100                                          |
|                   | F2 (C10-C16)           | 100 | ug/L  | STD-150                                                      | <100                                         | <100                                         | <100                                          | <100                                          |
|                   | F3 (C16-C34)           | 200 | ug/L  | STD-500                                                      | <200                                         | 400                                          | 400                                           | <200                                          |
|                   | F4 (C34-C50)           | 200 | ug/L  | STD-500                                                      | <200                                         | <200                                         | <200                                          | <200                                          |

|       |                           |     |       | Lab I.D.<br>Sample Matrix<br>Sample Type<br>Sampling Date<br>Sample I.D. | 1078028<br>Water<br>2013-12-10<br>Trip Blank |
|-------|---------------------------|-----|-------|--------------------------------------------------------------------------|----------------------------------------------|
| Group | Analyte                   | MRL | Units | Guideline                                                                |                                              |
| VOCs  | 1,1,1,2-tetrachloroethane | 0.5 | ug/L  |                                                                          | <0.5                                         |
|       | 1,1,1-trichloroethane     | 0.4 | ug/L  |                                                                          | <0.4                                         |
|       | 1,1,2,2-tetrachloroethane | 0.5 | ug/L  |                                                                          | <0.5                                         |
|       | 1,1,2-trichloroethane     | 0.4 | ug/L  |                                                                          | <0.4                                         |
|       | 1,1-dichloroethane        | 0.4 | ug/L  |                                                                          | <0.4                                         |
|       | 1,1-dichloroethylene      | 0.5 | ug/L  |                                                                          | <0.5                                         |
|       | 1,2-dibromoethane         | 0.2 | ug/L  |                                                                          | <0.2                                         |
|       | 1,2-dichlorobenzene       | 0.4 | ug/L  |                                                                          | <0.4                                         |
|       | 1,2-dichloroethane        | 0.2 | ug/L  |                                                                          | <0.2                                         |
|       | 1,2-dichloroethane-d4     | 0   | %     |                                                                          | 117                                          |
|       | 1,2-dichloropropane       | 0.5 | ug/L  |                                                                          | <0.5                                         |
|       | 1,3,5-trimethylbenzene    | 0.3 | ug/L  |                                                                          | <0.3                                         |
|       | 1,3-dichlorobenzene       | 0.4 | ug/L  |                                                                          | <0.4                                         |

Guideline =

\* = Guideline Exceedence

\*\* = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

## **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Groups Limited

Report Number: 1326983
Date Submitted: 2013-12-10
Date Reported: 2013-12-11
Project: 1412815
COC #: 173052

|       |                         |     |       | Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. | 1078028<br>Water<br>2013-12-10<br>Trip Blank |
|-------|-------------------------|-----|-------|--------------------------------------------------------------|----------------------------------------------|
| Group | Analyte                 | MRL | Units | Guideline                                                    |                                              |
| VOCs  | 1,4-dichlorobenzene     | 0.4 | ug/L  |                                                              | <0.4                                         |
|       | 4-bromofluorobenzene    | 0   | %     |                                                              | 118                                          |
|       | Benzene                 | 0.5 | ug/L  |                                                              | <0.5                                         |
|       | Bromodichloromethane    | 0.3 | ug/L  |                                                              | <0.3                                         |
|       | Bromoform               | 0.4 | ug/L  |                                                              | <0.4                                         |
|       | Bromomethane            | 0.5 | ug/L  |                                                              | <0.5                                         |
|       | c-1,2-Dichloroethylene  | 0.4 | ug/L  |                                                              | <0.4                                         |
|       | c-1,3-Dichloropropylene | 0.2 | ug/L  |                                                              | <0.2                                         |
|       | Carbon Tetrachloride    | 0.2 | ug/L  |                                                              | <0.2                                         |
|       | Chloroethane            | 0.2 | ug/L  |                                                              | <0.2                                         |
|       | Chloroform              | 0.5 | ug/L  |                                                              | <0.5                                         |
|       | Chloromethane           | 0.2 | ug/L  |                                                              | <0.2                                         |
|       | Dibromochloromethane    | 0.3 | ug/L  |                                                              | <0.3                                         |
|       | Dichlorodifluoromethane | 0.5 | ug/L  |                                                              | <0.5                                         |
|       | Dichloromethane         | 4.0 | ug/L  |                                                              | <4.0                                         |
|       | Ethylbenzene            | 0.5 | ug/L  |                                                              | <0.5                                         |
|       | m/p-xylene              | 0.5 | ug/L  |                                                              | <0.5                                         |
|       | Monochlorobenzene       | 0.2 | ug/L  |                                                              | <0.2                                         |
|       | o-xylene                | 0.5 | ug/L  |                                                              | <0.5                                         |
|       | Styrene                 | 0.5 | ug/L  |                                                              | <0.5                                         |
|       | t-1,2-Dichloroethylene  | 0.4 | ug/L  |                                                              | <0.4                                         |
|       | t-1,3-Dichloropropylene | 0.2 | ug/L  |                                                              | <0.2                                         |
|       | Tetrachloroethylene     | 0.3 | ug/L  |                                                              | <0.3                                         |
|       | Toluene                 | 0.5 | ug/L  |                                                              | <0.5                                         |
|       | Toluene-d8              | 0   | %     |                                                              | 102                                          |
|       | Trichloroethylene       | 0.3 | ug/L  |                                                              | <0.3                                         |

#### Guideline =

#### \* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

<sup>\*\* =</sup> Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

## **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Groups Limited

Report Number: 1326983

Date Submitted: 2013-12-10

Date Reported: 2013-12-11

Project: 1412815

COC #: 173052

| Graup | Anglisto               | MRL | Units | Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.  Guideline | 1078028<br>Water<br>2013-12-10<br>Trip Blank |
|-------|------------------------|-----|-------|-------------------------------------------------------------------------|----------------------------------------------|
| Group | Analyte                | WKL | Units | Guideline                                                               |                                              |
| VOCs  | Trichlorofluoromethane | 0.5 | ug/L  |                                                                         | <0.5                                         |
|       | Vinyl Chloride         | 0.2 | ug/L  |                                                                         | <0.2                                         |
|       | Xylene; total          | 1.0 | ug/L  |                                                                         | <1.0                                         |

Guideline = \* = Guideline Exceedence

\*\* = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

# **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9
Attention: Peter van Driel

PO#:

Invoice to: MMM Groups Limited

Report Number: 1326983

Date Submitted: 2013-12-10

Date Reported: 2013-12-11

Project: 1412815

COC #: 173052

# **QC Summary**

| Analyte                          | Blank                  | QC<br>% Rec | QC<br>Limits |
|----------------------------------|------------------------|-------------|--------------|
| Run No 262675 Analysis Date 2013 | -12-10 <b>Method</b> V | 3260B       |              |
| 1,1,1,2-tetrachloroethane        | <0.5 ug/L              | 117         | 80-120       |
| 1,1,1-trichloroethane            | <0.4 ug/L              | 119         | 80-120       |
| 1,1,2,2-tetrachloroethane        | <0.5 ug/L              | 92          | 80-120       |
| 1,1,2-trichloroethane            | <0.4 ug/L              | 93          | 80-120       |
| 1,1-dichloroethane               | <0.4 ug/L              | 116         | 80-120       |
| 1,1-dichloroethylene             | <0.5 ug/L              | 109         | 80-120       |
| 1,2-dibromoethane                | <0.2 ug/L              | 91          | 80-120       |
| 1,2-dichlorobenzene              | <0.4 ug/L              | 118         | 80-120       |
| 1,2-dichloroethane               | <0.2 ug/L              | 94          | 80-120       |
| 1,2-dichloroethane-d4            | 87 %                   | 102         | 80-120       |
| 1,2-dichloropropane              | <0.5 ug/L              | 119         | 80-120       |
| 1,3,5-trimethylbenzene           | <0.3 ug/L              | 109         | 80-120       |
| 1,3-dichlorobenzene              | <0.4 ug/L              | 112         | 80-120       |
| 1,4-dichlorobenzene              | <0.4 ug/L              | 112         | 80-120       |

#### Guideline = \* = Guideline Exceedence

\*\* = Analysis completed at Mississauga, Ontario.
Results relate only to the parameters tested on the samples submitted.
Methods references and/or additional QA/QC information available on request.

# **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Groups Limited

Report Number: 1326983
Date Submitted: 2013-12-10
Date Reported: 2013-12-11
Project: 1412815
COC #: 173052

# **QC Summary**

| Analyte                 | Blank     | QC<br>% Rec | QC<br>Limits |
|-------------------------|-----------|-------------|--------------|
| Benzene                 | <0.5 ug/L | 120         | 80-120       |
| Bromodichloromethane    | <0.3 ug/L | 106         | 80-120       |
| Bromoform               | <0.4 ug/L | 90          | 80-120       |
| Bromomethane            | <0.5 ug/L | 76          | 70-130       |
| c-1,2-Dichloroethylene  | <0.4 ug/L | 114         | 80-120       |
| c-1,3-Dichloropropylene | <0.2 ug/L | 89          | 80-120       |
| Carbon Tetrachloride    | <0.2 ug/L | 113         | 80-120       |
| Chloroethane            | <0.2 ug/L | 119         | 70-130       |
| Chloroform              | <0.5 ug/L | 109         | 80-120       |
| Chloromethane           | <0.2 ug/L | 116         | 70-130       |
| Dibromochloromethane    | <0.3 ug/L | 92          | 80-120       |
| Dichlorodifluoromethane | <0.5 ug/L | 114         | 70-130       |
| Dichloromethane         | <4.0 ug/L | 74          | 60-200       |
| Ethylbenzene            | <0.5 ug/L | 119         | 80-120       |
| m/p-xylene              | <0.5 ug/L | 119         | 80-120       |
| Monochlorobenzene       | <0.2 ug/L | 107         | 80-120       |
| o-xylene                | <0.5 ug/L | 119         | 80-120       |

#### Guideline = \* = Guideline Exceedence

<sup>\*\* =</sup> Analysis completed at Mississauga, Ontario.
Results relate only to the parameters tested on the samples submitted.
Methods references and/or additional QA/QC information available on request.

# **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Groups Limited

Report Number: 1326983

Date Submitted: 2013-12-10

Date Reported: 2013-12-11

Project: 1412815

COC #: 173052

# **QC Summary**

| Analyte                          | Blank                  | QC<br>% Rec  | QC<br>Limits |
|----------------------------------|------------------------|--------------|--------------|
| Styrene                          | <0.5 ug/L              | 117          | 80-120       |
| t-1,2-Dichloroethylene           | <0.4 ug/L              | 113          | 80-120       |
| t-1,3-Dichloropropylene          | <0.2 ug/L              | 98           | 80-120       |
| Tetrachloroethylene              | <0.3 ug/L              | 106          | 80-120       |
| Toluene                          | <0.5 ug/L              | 117          | 80-120       |
| Toluene-d8                       | 98 %                   | 110          | 80-120       |
| Trichloroethylene                | <0.3 ug/L              | 119          | 80-120       |
| Trichlorofluoromethane           | <0.5 ug/L              | 116          | 80-120       |
| Vinyl Chloride                   | <0.2 ug/L              | 110          | 70-130       |
| Run No 262677 Analysis Date 2013 | -12-11 <b>Method</b> C | CCME Reg 153 |              |
| F1 (C6-C10)                      | <100 ug/L              | 101          | 80-120       |
| Run No 262679 Analysis Date 2013 | -12-11 <b>Method</b> V | 8260B        |              |
| Xylene; total                    |                        |              |              |
| Run No 262698 Analysis Date 2013 | -12-11 <b>Method</b> C | CCME Reg 153 |              |
| F2 (C10-C16)                     | <100 ug/L              | 80           | 50-120       |
| F3 (C16-C34)                     | <200 ug/L              | 80           | 50-120       |
| F4 (C34-C50)                     | <200 ug/L              | 80           | 50-120       |

#### Guideline = \* = Guideline Exceedence

\*\* = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

# **Certificate of Analysis**



Client: MMM Group Limited

72 Victoria Street, Suite 100

Kitchener, ON

N2G 4Y9

Attention: Peter van Driel

PO#:

Invoice to: MMM Groups Limited

Report Number: 1326983
Date Submitted: 2013-12-10
Date Reported: 2013-12-11
Project: 1412815
COC #: 173052

# **QC Summary**

| Analyte                     | е       |       |         |    | QC<br>% Rec | QC<br>Limits |  |  |
|-----------------------------|---------|-------|---------|----|-------------|--------------|--|--|
| Run No 262707 Analysis Date | e 2013- | 12-11 | Method  | C: | SM2540      |              |  |  |
| Total Suspended Solids      |         |       | <2 mg/L |    | 99          | 90-110       |  |  |

\*\* = Analysis completed at Mississauga, Ontario.

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.



# CHAIN OF CUSTODY

1326983

□ 146 Colonnade Rd., Unit 8, Ottawa, ON K2E 7Y1 Ph: (613) 727-5692 Fax: (613) 727-5222
 □ 608 Norris Court, Kingston, ON K7P 2R9 Ph: (613) 634-9307 Fax: (613) 634-9308
 □ 380 Vansickle Rd., Unit 630, St. Catharines, ON L2R 6P7 Ph: (905) 680-8887 Fax: (905) 680-4256
 □ 2395 Speakman Drive, Mississauga, ON, L5K 1B3 Phone: (905) 822-4111 Fax: (905) 823-1446

LABORATORY USE ONLY
Report #:

| Report Information":           |                      | Criteria Re       | demographic and the second sec |                                 |           | Additional Email/Fax.                         |  |  |  |  |
|--------------------------------|----------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------|-----------------------------------------------|--|--|--|--|
| Client: MMM                    |                      | ODWSO             | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>Other, Spec</li> </ul> | cify:     | 1. Email: adaMSC@MMM. Ca                      |  |  |  |  |
| Contact: Peter van D           | nel                  | PWQO              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           | 2. Email:                                     |  |  |  |  |
| Address: 72 Victoriast         | .S. Suite 100        | Ont. Reg          | 1. 558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |           | 3. Email:                                     |  |  |  |  |
| Kitchener ON N2                | 6-479                | □ CCME            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           | Fax:                                          |  |  |  |  |
| Email: Prandoela,              | Phone: (519)635-5769 |                   | Sewer, City:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |           | Report Format:                                |  |  |  |  |
| Project: 1412815 Van           | dielpo manica        | □ Storm Se        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           | PDF Excel Dother, Specify:                    |  |  |  |  |
| Invoice Information*:          |                      | Ont. Reg          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           | Turnaround Time (rush surcharges may apply)*: |  |  |  |  |
| Invoice to the same as above   | Yes / No, or:        | Table #           | Coarse/F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ine, Surface/S                  | ubsurface | □ 5 Business Days (Standard)                  |  |  |  |  |
| Client:                        |                      | Type: Cor         | m-Ind Res-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Park / Agri / GV                | Other     | □ 3 Business Days (Rush)                      |  |  |  |  |
| Contact:                       |                      | The sample        | e results fron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m this submissi                 | ion       | □ 2 Business Days (Rush)                      |  |  |  |  |
| Address:                       |                      | will form pa      | art of a forma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | al Record of Sit                | te        | 1 Business Day (Rush)                         |  |  |  |  |
|                                |                      | Condition (       | RSC) under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | O.Reg. 153/04                   | 1 *:      | □ Other (specifiy date):                      |  |  |  |  |
| Email:                         | Phone:               |                   | YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | / NO                            |           | Notes:                                        |  |  |  |  |
| Purchase Order #:              |                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sample? YES                     | / NO *    |                                               |  |  |  |  |
| Exova Quote # *:               |                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rinking water                   |           | 열 [시] 교리 내려 있어 있다. [다] 그리는 이번 되고 [하] 이 때      |  |  |  |  |
| * Indicates a required field   |                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           | Parameters                                    |  |  |  |  |
| Carrala ID*                    | Date/Time Sampled*   | Sample<br>Matrix* | # Bottles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample<br>Location              | 138 Z     | Lab Us<br>Only                                |  |  |  |  |
| Sample ID*                     |                      | 1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Location                        | 71        | 7 - 2                                         |  |  |  |  |
| MW9B                           | 9-Dec-13             | 6 W               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | 11/       | 10)8                                          |  |  |  |  |
| MW10                           | 10-Dec-13            | GW                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | 1/        | 802                                           |  |  |  |  |
| 0,,0                           | 10-Dec-13            | GW                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | 1         | 809                                           |  |  |  |  |
| 0. 2                           | 9-Dec-13             | GW                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | V         | 809                                           |  |  |  |  |
| Dup                            | 1-12-17              |                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |           | 002                                           |  |  |  |  |
|                                |                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           |                                               |  |  |  |  |
| 23 5 3 1 1 1 1 1 1 1 5 1 1 1 1 |                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           |                                               |  |  |  |  |
| <b>可是主义</b> 自己。                |                      | 1 10 18           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           |                                               |  |  |  |  |
|                                |                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           |                                               |  |  |  |  |
| 医有度高温度 医假性病的毒素                 |                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           |                                               |  |  |  |  |
|                                |                      | 151 1215          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |           |                                               |  |  |  |  |
| Samples Relinquished By:       | Date/Time:           | Samples F         | Received By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • =   =   =   =                 | Date/Tim  | Temperature: Condition:                       |  |  |  |  |
| Peter van Dried                | Dec 10/13 1:15 PM    |                   | toodivod by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 | 13        | O O                                           |  |  |  |  |
| Samples Relinquished By:       | Date/Time:           | Kamples I         | Received By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 | Date/Tim  | 7                                             |  |  |  |  |
| Camples Reiniquisited by.      | Date/Tille.          | No all los        | TOO TOO DY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | i-normala a                     | Date/Tim  | 1-10                                          |  |  |  |  |



Your Project #: 14-12815-001-PH2
Site Location: 770 SOMERSET ST.
Your C.O.C. #: 48044601, 480446-01-01

#### **Attention:Carolyn Adams**

MMM Group Limited 100 Commerce Valley Dr West Thornhill, ON CANADA L3T 0A1

Report Date: 2014/08/18

Report #: R3125220

Version: 2

# **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B4E2663 Received: 2014/08/08, 14:45

Sample Matrix: Water # Samples Received: 10

|                                    |          | Date       | Date       |                          |              |
|------------------------------------|----------|------------|------------|--------------------------|--------------|
| Analyses                           | Quantity | Extracted  | Analyzed   | <b>Laboratory Method</b> | Reference    |
| Chloride by Automated Colourimetry | 10       | N/A        | 2014/08/12 | CAM SOP-00463            | EPA 325.2 m  |
| Chromium (VI) in Water             | 10       | N/A        | 2014/08/14 | CAM SOP-00436            | EPA 7199 m   |
| Free (WAD) Cyanide                 | 10       | N/A        | 2014/08/13 | CAM SOP-00457            | OMOE E3015 m |
| Mercury                            | 4        | 2014/08/12 | 2014/08/13 | CAM SOP-00453            | EPA 7470A m  |
| Mercury                            | 1        | 2014/08/12 | 2014/08/14 | CAM SOP-00453            | EPA 7470A m  |
| Mercury                            | 5        | 2014/08/13 | 2014/08/14 | CAM SOP-00453            | EPA 7470A m  |
| Dissolved Metals by ICPMS          | 9        | N/A        | 2014/08/15 | CAM SOP-00447            | EPA 6020 m   |
| Dissolved Metals by ICPMS          | 1        | N/A        | 2014/08/18 | CAM SOP-00447            | EPA 6020 m   |

#### Remarks:

Maxxam Analytics has performed all analytical testing herein in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Reporting results to two significant figures at the RDL is to permit statistical evaluation and is not intended to be an indication of analytical precision.

The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following the 'Alberta Environment Draft Addenda to the CWS-PHC, Appendix 6, Validation of Alternate Methods'. Documentation is available upon request. Maxxam has made the following improvements to the CWS-PHC reference benchmark method: (i) Headspace for F1; and, (ii) Mechanical extraction for F2-F4. Note: F4G cannot be added to the C6 to C50 hydrocarbons. The extraction date for samples field preserved with methanol for F1 and Volatile Organic Compounds is considered to be the date sampled.

Maxxam Analytics is accredited for all specific parameters as required by Ontario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other warranty expressed or implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as per contract.

<sup>\*</sup> RPDs calculated using raw data. The rounding of final results may result in the apparent difference.



Your Project #: 14-12815-001-PH2 Site Location: 770 SOMERSET ST. Your C.O.C. #: 48044601, 480446-01-01

#### **Attention:Carolyn Adams**

MMM Group Limited 100 Commerce Valley Dr West Thornhill, ON CANADA L3T 0A1

Report Date: 2014/08/18

Report #: R3125220

Version: 2

# **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B4E2663 Received: 2014/08/08, 14:45

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Jolanta Goralczyk, Project Manager Email: JGoralczyk@maxxam.ca Phone# (905)817-5751

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



MMM Group Limited

Client Project #: 14-12815-001-PH2 Site Location: 770 SOMERSET ST.

# **RESULTS OF ANALYSES OF WATER**

|                                  | _     | t .          | -   | 1            |              |     |              | 1            |     |          |  |
|----------------------------------|-------|--------------|-----|--------------|--------------|-----|--------------|--------------|-----|----------|--|
| Maxxam ID                        |       | XA9547       |     | XA9548       | XA9549       |     | XA9550       | XA9551       |     |          |  |
| Campling Data                    |       | 2014/08/08   |     | 2014/08/08   | 2014/08/08   |     | 2014/08/07   | 2014/08/08   |     |          |  |
| Sampling Date                    |       | 11:30        |     | 07:45        | 12:00        |     | 16:30        | 06:30        |     |          |  |
| COC Number                       |       | 480446-01-01 |     | 480446-01-01 | 480446-01-01 |     | 480446-01-01 | 480446-01-01 |     |          |  |
|                                  | Units | MW1          | RDL | MW2          | MW4          | RDL | MW5A         | MW5B         | RDL | QC Batch |  |
| Inorganics                       |       |              |     |              |              |     |              |              |     |          |  |
| Free Cyanide                     | ug/L  | 31           | 2   | 11           | 9            | 2   | 11           | 5            | 2   | 3706729  |  |
| Dissolved Chloride (Cl)          | mg/L  | 5700         | 50  | 9300         | 10000        | 70  | 6300         | 5900         | 50  | 3706788  |  |
| RDL = Reportable Detection Limit |       |              |     |              |              |     |              |              |     |          |  |
| QC Batch = Quality Control       | Batch |              |     |              |              |     |              |              |     |          |  |

| Maxxam ID               |               | XA9552              |          | XA9553              |          | XA9554              |          | XA9555              |          | XA9556       |          |                         |
|-------------------------|---------------|---------------------|----------|---------------------|----------|---------------------|----------|---------------------|----------|--------------|----------|-------------------------|
| Sampling Date           |               | 2014/08/07<br>11:00 |          | 2014/08/08<br>10:30 |          | 2014/08/08<br>09:30 |          | 2014/08/08<br>13:00 |          | 2014/08/07   |          |                         |
| COC Number              |               | 480446-01-01        |          | 480446-01-01        |          | 480446-01-01        |          | 480446-01-01        |          | 480446-01-01 |          |                         |
|                         |               |                     |          |                     |          |                     |          |                     |          |              |          |                         |
|                         | Units         | MW9A                | RDL      | MW9B                | RDL      | MW10                | RDL      | MW11                | RDL      | DUP-1        | RDL      | QC Batch                |
| Inorganics              | Units         | MW9A                | RDL      | MW9B                | RDL      | MW10                | RDL      | MW11                | RDL      | DUP-1        | RDL      | QC Batch                |
| Inorganics Free Cyanide | Units<br>ug/L | <b>MW9A</b> <2      | RDL<br>2 | <b>MW9B</b> 6       | RDL<br>2 | <b>MW10</b> <2      | RDL<br>2 | <b>MW11</b>         | RDL<br>2 | <b>DUP-1</b> | RDL<br>2 | <b>QC Batch</b> 3706729 |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch



MMM Group Limited

Client Project #: 14-12815-001-PH2 Site Location: 770 SOMERSET ST.

# **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| Maxxam ID                      |       | XA9547       |      | XA9548       |      |          | XA9549       |      | XA9550       |      |          |
|--------------------------------|-------|--------------|------|--------------|------|----------|--------------|------|--------------|------|----------|
| Sampling Date                  |       | 2014/08/08   |      | 2014/08/08   |      |          | 2014/08/08   |      | 2014/08/07   |      |          |
| Sampling Date                  |       | 11:30        |      | 07:45        |      |          | 12:00        |      | 16:30        |      |          |
| COC Number                     |       | 480446-01-01 |      | 480446-01-01 |      |          | 480446-01-01 |      | 480446-01-01 |      |          |
|                                | Units | MW1          | RDL  | MW2          | RDL  | QC Batch | MW4          | RDL  | MW5A         | RDL  | QC Batch |
| Metals                         |       |              |      |              |      |          |              |      |              |      |          |
| Chromium (VI)                  | ug/L  | <5.0         | 5.0  | <5.0         | 5.0  | 3706674  | <5.0         | 5.0  | <5.0         | 5.0  | 3706674  |
| Mercury (Hg)                   | ug/L  | <0.1         | 0.1  | <0.1         | 0.1  | 3709077  | <0.1         | 0.1  | <0.1         | 0.1  | 3707416  |
| Dissolved Antimony (Sb)        | ug/L  | <5.0         | 5.0  | <5.0         | 5.0  | 3709601  | <5.0         | 5.0  | <5.0         | 5.0  | 3709601  |
| Dissolved Arsenic (As)         | ug/L  | <10          | 10   | <10          | 10   | 3709601  | <20          | 20   | <10          | 10   | 3709601  |
| Dissolved Barium (Ba)          | ug/L  | 260          | 20   | 350          | 20   | 3709601  | 270          | 20   | 270          | 20   | 3709601  |
| Dissolved Beryllium (Be)       | ug/L  | <5.0         | 5.0  | <5.0         | 5.0  | 3709601  | <5.0         | 5.0  | <5.0         | 5.0  | 3709601  |
| Dissolved Boron (B)            | ug/L  | 110          | 100  | 120          | 100  | 3709601  | 150          | 100  | 170          | 100  | 3709601  |
| Dissolved Cadmium (Cd)         | ug/L  | <1.0         | 1.0  | <1.0         | 1.0  | 3709601  | <1.0         | 1.0  | <1.0         | 1.0  | 3709601  |
| Dissolved Chromium (Cr)        | ug/L  | <50          | 50   | <50          | 50   | 3709601  | <50          | 50   | <50          | 50   | 3709601  |
| Dissolved Cobalt (Co)          | ug/L  | <5.0         | 5.0  | <5.0         | 5.0  | 3709601  | 5.5          | 5.0  | <5.0         | 5.0  | 3709601  |
| Dissolved Copper (Cu)          | ug/L  | <10          | 10   | <10          | 10   | 3709601  | <10          | 10   | <10          | 10   | 3709601  |
| Dissolved Lead (Pb)            | ug/L  | <5.0         | 5.0  | <5.0         | 5.0  | 3709601  | <5.0         | 5.0  | <5.0         | 5.0  | 3709601  |
| Dissolved Molybdenum (Mo)      | ug/L  | 5.2          | 5.0  | <5.0         | 5.0  | 3709601  | <5.0         | 5.0  | <5.0         | 5.0  | 3709601  |
| Dissolved Nickel (Ni)          | ug/L  | <10          | 10   | <10          | 10   | 3709601  | <10          | 10   | <10          | 10   | 3709601  |
| Dissolved Selenium (Se)        | ug/L  | <20          | 20   | <20          | 20   | 3709601  | <20          | 20   | <20          | 20   | 3709601  |
| Dissolved Silver (Ag)          | ug/L  | 1.9          | 1.0  | 5.0          | 1.0  | 3709601  | 1.6          | 1.0  | 2.3          | 1.0  | 3709601  |
| Dissolved Sodium (Na)          | ug/L  | 3700000      | 1000 | 5700000      | 1000 | 3709601  | 5600000      | 1000 | 3800000      | 1000 | 3709601  |
| Dissolved Thallium (TI)        | ug/L  | <0.50        | 0.50 | <0.50        | 0.50 | 3709601  | <0.50        | 0.50 | <0.50        | 0.50 | 3709601  |
| Dissolved Uranium (U)          | ug/L  | 3.0          | 1.0  | 2.6          | 1.0  | 3709601  | 5.1          | 1.0  | 3.8          | 1.0  | 3709601  |
| Dissolved Vanadium (V)         | ug/L  | <5.0         | 5.0  | <10          | 10   | 3709601  | <10          | 10   | <5.0         | 5.0  | 3709601  |
| Dissolved Zinc (Zn)            | ug/L  | <50          | 50   | <50          | 50   | 3709601  | <50          | 50   | <50          | 50   | 3709601  |
| DDI - Departable Detection Liv | i+    |              |      | ·            |      |          | ·            |      | ·            |      |          |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch



MMM Group Limited

Client Project #: 14-12815-001-PH2 Site Location: 770 SOMERSET ST.

# **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

|       | XA9551                                  |                                                 |                                                         | XA9552                                                                                                                           |                                                                                           | XA9553                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|-------|-----------------------------------------|-------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|       |                                         |                                                 |                                                         | XA9552                                                                                                                           |                                                                                           | VY2222                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|       | 2014/08/08                              |                                                 |                                                         | 2014/08/07                                                                                                                       |                                                                                           | 2014/08/08                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|       | 06:30                                   |                                                 |                                                         | 11:00                                                                                                                            |                                                                                           | 10:30                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
|       | 480446-01-01                            |                                                 |                                                         | 480446-01-01                                                                                                                     | 480446-01-01                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| Units | MW5B                                    | RDL                                             | QC Batch                                                | MW9A                                                                                                                             | RDL                                                                                       | MW9B                                                                                                  | RDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | QC Batch |
|       |                                         |                                                 |                                                         |                                                                                                                                  |                                                                                           |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| ug/L  | <0.50                                   | 0.50                                            | 3706674                                                 | <0.50                                                                                                                            | 0.50                                                                                      | <5.0                                                                                                  | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3706674  |
| ug/L  | <0.1                                    | 0.1                                             | 3709077                                                 | <0.1                                                                                                                             | 0.1                                                                                       | <0.1                                                                                                  | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3707416  |
| ug/L  | <5.0                                    | 5.0                                             | 3709601                                                 | <0.50                                                                                                                            | 0.50                                                                                      | <5.0                                                                                                  | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3709601  |
| ug/L  | <10                                     | 10                                              | 3709601                                                 | <2.0 (1)                                                                                                                         | 2.0                                                                                       | <10                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3709601  |
| ug/L  | 290                                     | 20                                              | 3709601                                                 | 500                                                                                                                              | 2.0                                                                                       | 230                                                                                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3709601  |
| ug/L  | <5.0                                    | 5.0                                             | 3709601                                                 | <0.50                                                                                                                            | 0.50                                                                                      | <5.0                                                                                                  | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3709601  |
| ug/L  | 180                                     | 100                                             | 3709601                                                 | 430                                                                                                                              | 10                                                                                        | 170                                                                                                   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3709601  |
| ug/L  | <1.0                                    | 1.0                                             | 3709601                                                 | <0.10                                                                                                                            | 0.10                                                                                      | <1.0                                                                                                  | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3709601  |
| ug/L  | <50                                     | 50                                              | 3709601                                                 | <5.0                                                                                                                             | 5.0                                                                                       | <50                                                                                                   | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3709601  |
| ug/L  | <5.0                                    | 5.0                                             | 3709601                                                 | 1.2                                                                                                                              | 0.50                                                                                      | <5.0                                                                                                  | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3709601  |
| ug/L  | <10                                     | 10                                              | 3709601                                                 | <1.0                                                                                                                             | 1.0                                                                                       | <10                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3709601  |
| ug/L  | <5.0                                    | 5.0                                             | 3709601                                                 | <0.50                                                                                                                            | 0.50                                                                                      | <5.0                                                                                                  | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3709601  |
| ug/L  | <5.0                                    | 5.0                                             | 3709601                                                 | 13                                                                                                                               | 0.50                                                                                      | <5.0                                                                                                  | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3709601  |
| ug/L  | <10                                     | 10                                              | 3709601                                                 | <1.0                                                                                                                             | 1.0                                                                                       | <10                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3709601  |
| ug/L  | <20                                     | 20                                              | 3709601                                                 | <2.0                                                                                                                             | 2.0                                                                                       | <20                                                                                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3709601  |
| ug/L  | <1.0                                    | 1.0                                             | 3709601                                                 | <0.10                                                                                                                            | 0.10                                                                                      | 1.3                                                                                                   | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3709601  |
| ug/L  | 3400000                                 | 1000                                            | 3709601                                                 | 79832158                                                                                                                         | 500                                                                                       | 3400000                                                                                               | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3709601  |
| ug/L  | <0.50                                   | 0.50                                            | 3709601                                                 | 0.23                                                                                                                             | 0.050                                                                                     | <0.50                                                                                                 | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3709601  |
| ug/L  | 3.7                                     | 1.0                                             | 3709601                                                 | 0.54                                                                                                                             | 0.10                                                                                      | 2.9                                                                                                   | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3709601  |
| ug/L  | <5.0                                    | 5.0                                             | 3709601                                                 | <2.5 (1)                                                                                                                         | 2.5                                                                                       | <5.0                                                                                                  | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3709601  |
| ug/L  | <50                                     | 50                                              | 3709601                                                 | <5.0                                                                                                                             | 5.0                                                                                       | <50                                                                                                   | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3709601  |
|       | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L | 06:30       Units     MW5B       ug/L     <0.50 | 06:30       Units     MW5B     RDL       ug/L     <0.50 | 06:30       Units       MW5B       RDL       QC Batch         Units       MW5B       RDL       QC Batch         Ug/L       <0.50 | Units         MW5B         RDL         QC Batch         MW9A           ug/L         <0.50 | Units         MW5B         RDL         QC Batch         MW9A         RDL           ug/L         <0.50 | 06:30         Image: color of the col | 06:30    |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) Metal Analysis: Detection Limit was raised due to matrix interferences.



MMM Group Limited

Client Project #: 14-12815-001-PH2 Site Location: 770 SOMERSET ST.

# **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| Maxxam ID                     |       | XA9554              |      | XA9555              |      | XA9556       |      |          |
|-------------------------------|-------|---------------------|------|---------------------|------|--------------|------|----------|
| Sampling Date                 |       | 2014/08/08<br>09:30 |      | 2014/08/08<br>13:00 |      | 2014/08/07   |      |          |
| COC Number                    |       | 480446-01-01        |      | 480446-01-01        |      | 480446-01-01 |      |          |
|                               | Units | MW10                | RDL  | MW11                | RDL  | DUP-1        | RDL  | QC Batch |
| Metals                        |       |                     |      |                     |      |              |      |          |
| Chromium (VI)                 | ug/L  | <0.50               | 0.50 | <5.0                | 5.0  | <5.0         | 5.0  | 3706674  |
| Mercury (Hg)                  | ug/L  | <0.1                | 0.1  | <0.1                | 0.1  | <0.1         | 0.1  | 3709077  |
| Dissolved Antimony (Sb)       | ug/L  | <2.5                | 2.5  | <2.5                | 2.5  | <5.0         | 5.0  | 3709601  |
| Dissolved Arsenic (As)        | ug/L  | <5.0                | 5.0  | <5.0                | 5.0  | <10          | 10   | 3709601  |
| Dissolved Barium (Ba)         | ug/L  | 260                 | 10   | 390                 | 10   | 270          | 20   | 3709601  |
| Dissolved Beryllium (Be)      | ug/L  | <2.5                | 2.5  | <2.5                | 2.5  | <5.0         | 5.0  | 3709601  |
| Dissolved Boron (B)           | ug/L  | 190                 | 50   | 74                  | 50   | 180          | 100  | 3709601  |
| Dissolved Cadmium (Cd)        | ug/L  | <0.50               | 0.50 | <0.50               | 0.50 | <1.0         | 1.0  | 3709601  |
| Dissolved Chromium (Cr)       | ug/L  | <25                 | 25   | <25                 | 25   | <50          | 50   | 3709601  |
| Dissolved Cobalt (Co)         | ug/L  | <2.5                | 2.5  | <2.5                | 2.5  | <5.0         | 5.0  | 3709601  |
| Dissolved Copper (Cu)         | ug/L  | <5.0                | 5.0  | <5.0                | 5.0  | <10          | 10   | 3709601  |
| Dissolved Lead (Pb)           | ug/L  | <2.5                | 2.5  | <2.5                | 2.5  | <5.0         | 5.0  | 3709601  |
| Dissolved Molybdenum (Mo)     | ug/L  | 3.6                 | 2.5  | 3.1                 | 2.5  | <5.0         | 5.0  | 3709601  |
| Dissolved Nickel (Ni)         | ug/L  | <5.0                | 5.0  | <5.0                | 5.0  | <10          | 10   | 3709601  |
| Dissolved Selenium (Se)       | ug/L  | <10                 | 10   | <10                 | 10   | <20          | 20   | 3709601  |
| Dissolved Silver (Ag)         | ug/L  | <0.50               | 0.50 | <0.50               | 0.50 | 2.4          | 1.0  | 3709601  |
| Dissolved Sodium (Na)         | ug/L  | 2300000             | 500  | 2100000             | 500  | 3900000      | 1000 | 3709601  |
| Dissolved Thallium (TI)       | ug/L  | <0.25               | 0.25 | <0.25               | 0.25 | <0.50        | 0.50 | 3709601  |
| Dissolved Uranium (U)         | ug/L  | 5.5                 | 0.50 | 1.5                 | 0.50 | 3.6          | 1.0  | 3709601  |
| Dissolved Vanadium (V)        | ug/L  | <5.0                | 5.0  | <2.5                | 2.5  | <5.0         | 5.0  | 3709601  |
| Dissolved Zinc (Zn)           | ug/L  | <25                 | 25   | <25                 | 25   | <50          | 50   | 3709601  |
| RDL = Reportable Detection Li | mit   |                     |      |                     | •    |              | •    |          |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch



MMM Group Limited

Client Project #: 14-12815-001-PH2 Site Location: 770 SOMERSET ST.

## **TEST SUMMARY**

Maxxam ID: XA9547 Sample ID:

Collected:

2014/08/08

MW1 Matrix: Water

Shipped: Received: 2014/08/08

| Test Description                   | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst        |
|------------------------------------|-----------------|---------|------------|---------------|----------------|
| Chloride by Automated Colourimetry | AC              | 3706788 | N/A        | 2014/08/12    | Alina Dobreanu |
| Chromium (VI) in Water             | IC              | 3706674 | N/A        | 2014/08/14    | Sally Coughlin |
| Free (WAD) Cyanide                 | TECH/CN         | 3706729 | N/A        | 2014/08/13    | Louise Harding |
| Mercury                            | CVAA            | 3709077 | 2014/08/13 | 2014/08/14    | Ron Morrison   |
| Dissolved Metals by ICPMS          | ICP/MS          | 3709601 | N/A        | 2014/08/15    | Prempal Bhatti |

Maxxam ID: XA9548 Sample ID: MW2 Matrix: Water

Collected: 2014/08/08

Shipped:

2014/08/08 Received:

| Test Description                   | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst        |
|------------------------------------|-----------------|---------|------------|---------------|----------------|
| Chloride by Automated Colourimetry | AC              | 3706788 | N/A        | 2014/08/12    | Alina Dobreanu |
| Chromium (VI) in Water             | IC              | 3706674 | N/A        | 2014/08/14    | Sally Coughlin |
| Free (WAD) Cyanide                 | TECH/CN         | 3706729 | N/A        | 2014/08/13    | Louise Harding |
| Mercury                            | CVAA            | 3709077 | 2014/08/13 | 2014/08/14    | Ron Morrison   |
| Dissolved Metals by ICPMS          | ICP/MS          | 3709601 | N/A        | 2014/08/15    | Prempal Bhatti |

Maxxam ID: XA9549 Sample ID: MW4

Matrix: Water

Collected: 2014/08/08

Shipped:

**Received:** 2014/08/08

| Test Description                   | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst        |
|------------------------------------|-----------------|---------|------------|---------------|----------------|
| Chloride by Automated Colourimetry | AC              | 3706788 | N/A        | 2014/08/12    | Alina Dobreanu |
| Chromium (VI) in Water             | IC              | 3706674 | N/A        | 2014/08/14    | Sally Coughlin |
| Free (WAD) Cyanide                 | TECH/CN         | 3706729 | N/A        | 2014/08/13    | Louise Harding |
| Mercury                            | CVAA            | 3707416 | 2014/08/12 | 2014/08/13    | Ron Morrison   |
| Dissolved Metals by ICPMS          | ICP/MS          | 3709601 | N/A        | 2014/08/15    | Prempal Bhatti |

Maxxam ID: XA9550 Sample ID: MW5A

Water

. Matrix:

Collected: 2014/08/07

Shipped: Received:

2014/08/08

| Test Description                   | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst        |
|------------------------------------|-----------------|---------|------------|---------------|----------------|
| Chloride by Automated Colourimetry | AC              | 3706788 | N/A        | 2014/08/12    | Alina Dobreanu |
| Chromium (VI) in Water             | IC              | 3706674 | N/A        | 2014/08/14    | Sally Coughlin |
| Free (WAD) Cyanide                 | TECH/CN         | 3706729 | N/A        | 2014/08/13    | Louise Harding |
| Mercury                            | CVAA            | 3707416 | 2014/08/12 | 2014/08/13    | Ron Morrison   |
| Dissolved Metals by ICPMS          | ICP/MS          | 3709601 | N/A        | 2014/08/15    | Prempal Bhatti |

Maxxam ID: XA9551 Sample ID: MW5B Matrix: Water

Collected: 2014/08/08 Shipped:

Received: 2014/08/08

| Test Description                   | Instrumentation | Batch   | Extracted | Date Analyzed | Analyst        |
|------------------------------------|-----------------|---------|-----------|---------------|----------------|
| Chloride by Automated Colourimetry | AC              | 3706788 | N/A       | 2014/08/12    | Alina Dobreanu |
| Chromium (VI) in Water             | IC              | 3706674 | N/A       | 2014/08/14    | Sally Coughlin |



MMM Group Limited

Client Project #: 14-12815-001-PH2 Site Location: 770 SOMERSET ST.

#### **TEST SUMMARY**

Maxxam ID: XA9551 Sample ID: MW5B Collected:

2014/08/08

Matrix: Water

Shipped: Received: 2014/08/08

| Test Description          | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst        |
|---------------------------|-----------------|---------|------------|---------------|----------------|
| Free (WAD) Cyanide        | TECH/CN         | 3706729 | N/A        | 2014/08/13    | Louise Harding |
| Mercury                   | CVAA            | 3709077 | 2014/08/13 | 2014/08/14    | Ron Morrison   |
| Dissolved Metals by ICPMS | ICP/MS          | 3709601 | N/A        | 2014/08/15    | Prempal Bhatti |

Maxxam ID: XA9552

Collected:

2014/08/07

Sample ID: MW9A Matrix: Water Shipped: Received:

red: 2014/08/08

| Test Description                   | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst        |
|------------------------------------|-----------------|---------|------------|---------------|----------------|
| Chloride by Automated Colourimetry | AC              | 3706788 | N/A        | 2014/08/12    | Alina Dobreanu |
| Chromium (VI) in Water             | IC              | 3706674 | N/A        | 2014/08/14    | Sally Coughlin |
| Free (WAD) Cyanide                 | TECH/CN         | 3706729 | N/A        | 2014/08/13    | Louise Harding |
| Mercury                            | CVAA            | 3707416 | 2014/08/12 | 2014/08/13    | Ron Morrison   |
| Dissolved Metals by ICPMS          | ICP/MS          | 3709601 | N/A        | 2014/08/18    | Prempal Bhatti |

Maxxam ID: XA9553 Sample ID: MW9B

Water

Matrix:

**Collected:** 2014/08/08

Shipped:

Received: 2014/08/08

| Test Description                   | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst        |
|------------------------------------|-----------------|---------|------------|---------------|----------------|
| Chloride by Automated Colourimetry | AC              | 3706788 | N/A        | 2014/08/12    | Alina Dobreanu |
| Chromium (VI) in Water             | IC              | 3706674 | N/A        | 2014/08/14    | Sally Coughlin |
| Free (WAD) Cyanide                 | TECH/CN         | 3706729 | N/A        | 2014/08/13    | Louise Harding |
| Mercury                            | CVAA            | 3707416 | 2014/08/12 | 2014/08/13    | Ron Morrison   |
| Dissolved Metals by ICPMS          | ICP/MS          | 3709601 | N/A        | 2014/08/15    | Premnal Bhatti |

Maxxam ID: XA9553 Dup Sample ID: MW9B Matrix: Water Collected: 2014/08/08 Shipped:

Received: 2014/08/08

Test DescriptionInstrumentationBatchExtractedDate AnalyzedAnalystMercuryCVAA37074162014/08/122014/08/13Ron Morrison

Maxxam ID: XA9554 Sample ID: MW10

Water

Matrix:

**Collected:** 2014/08/08

Shipped:

**Received:** 2014/08/08

**Test Description Date Analyzed** Instrumentation **Batch Extracted** Analyst Chloride by Automated Colourimetry N/A 2014/08/12 AC 3706788 Alina Dobreanu Chromium (VI) in Water IC 3706674 N/A 2014/08/14 Sally Coughlin Free (WAD) Cyanide TECH/CN N/A 2014/08/13 3706729 Louise Harding CVAA 3709077 2014/08/13 Mercury 2014/08/14 Ron Morrison Dissolved Metals by ICPMS ICP/MS 3709601 N/A 2014/08/15 Prempal Bhatti



MMM Group Limited

Client Project #: 14-12815-001-PH2 Site Location: 770 SOMERSET ST.

## **TEST SUMMARY**

Maxxam ID: XA9555 Sample ID: MW11

Collected: Shipped:

2014/08/08

Matrix: Water

Received: 2014/08/08

| Test Description                   | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst        |
|------------------------------------|-----------------|---------|------------|---------------|----------------|
| Chloride by Automated Colourimetry | AC              | 3706788 | N/A        | 2014/08/12    | Alina Dobreanu |
| Chromium (VI) in Water             | IC              | 3706674 | N/A        | 2014/08/14    | Sally Coughlin |
| Free (WAD) Cyanide                 | TECH/CN         | 3706729 | N/A        | 2014/08/13    | Louise Harding |
| Mercury                            | CVAA            | 3709077 | 2014/08/13 | 2014/08/14    | Ron Morrison   |
| Dissolved Metals by ICPMS          | ICP/MS          | 3709601 | N/A        | 2014/08/15    | Prempal Bhatti |

Maxxam ID: XA9555 Dup MW11 Sample ID:

Water

Matrix:

Collected: 2014/08/08

Shipped:

Received: 2014/08/08

| Test Description | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst      |
|------------------|-----------------|---------|------------|---------------|--------------|
| Mercury          | CVAA            | 3709077 | 2014/08/13 | 2014/08/14    | Ron Morrison |

Maxxam ID: XA9556 Collected: 2014/08/07 Sample ID: DUP-1

Shipped:

Matrix: Water Received: 2014/08/08

| Test Description                   | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst        |
|------------------------------------|-----------------|---------|------------|---------------|----------------|
| Chloride by Automated Colourimetry | AC              | 3706788 | N/A        | 2014/08/12    | Alina Dobreanu |
| Chromium (VI) in Water             | IC              | 3706674 | N/A        | 2014/08/14    | Sally Coughlin |
| Free (WAD) Cyanide                 | TECH/CN         | 3706729 | N/A        | 2014/08/13    | Louise Harding |
| Mercury                            | CVAA            | 3709077 | 2014/08/12 | 2014/08/14    | Ron Morrison   |
| Dissolved Metals by ICPMS          | ICP/MS          | 3709601 | N/A        | 2014/08/15    | Prempal Bhatti |



MMM Group Limited

Client Project #: 14-12815-001-PH2 Site Location: 770 SOMERSET ST.

#### **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

| Package 1 | 16.0°C |
|-----------|--------|
| Package 2 | 11.0°C |

Hexavalent Chromium: Some Detection Limits were raised due to matrix interferences.

Sample XA9547-01: Metals Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Sample XA9548-01: Metals Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Sample XA9549-01: Metals Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Sample XA9550-01: Metals Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Sample XA9551-01: Metals Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Sample XA9553-01: Metals Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Sample XA9554-01: Metals Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Sample XA9555-01: Metals Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Sample XA9556-01: Metals Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Results relate only to the items tested.



MMM Group Limited

Client Project #: 14-12815-001-PH2 Site Location: 770 SOMERSET ST.

# **QUALITY ASSURANCE REPORT**

| QA/QC   |      |                          |                           | Date       |        |           |        |           |
|---------|------|--------------------------|---------------------------|------------|--------|-----------|--------|-----------|
| Batch   | Init | QC Type                  | Parameter                 | Analyzed   | Value  | Recovery  | Units  | QC Limits |
| 3706674 | SAC  | Matrix Spike             | Chromium (VI)             | 2014/08/14 |        | 100       | %      | 80 - 120  |
| 3706674 | SAC  | Spiked Blank             | Chromium (VI)             | 2014/08/14 |        | 102       | %      | 80 - 120  |
| 3706674 | SAC  | Method Blank             | Chromium (VI)             | 2014/08/14 | < 0.50 |           | ug/L   |           |
| 3706729 | LHA  | Matrix Spike             | Free Cyanide              | 2014/08/13 |        | 89        | %      | 80 - 120  |
| 3706729 | LHA  | Spiked Blank             | Free Cyanide              | 2014/08/13 |        | 104       | %      | 80 - 120  |
| 3706729 | LHA  | Method Blank             | Free Cyanide              | 2014/08/13 | <2     |           | ug/L   |           |
| 3706788 | ADB  | Matrix Spike             | Dissolved Chloride (CI)   | 2014/08/12 |        | NC        | %      | 80 - 120  |
| 3706788 | ADB  | Spiked Blank             | Dissolved Chloride (CI)   | 2014/08/12 |        | 105       | %      | 80 - 120  |
| 3706788 | ADB  | Method Blank             | Dissolved Chloride (CI)   | 2014/08/12 | <1     |           | mg/L   |           |
| 3707416 | RON  | Matrix Spike [XA9553-05] | Mercury (Hg)              | 2014/08/13 |        | 111       | %      | 75 - 125  |
| 3707416 | RON  | Spiked Blank             | Mercury (Hg)              | 2014/08/13 |        | 112       | %      | 80 - 120  |
| 3707416 | RON  | Method Blank             | Mercury (Hg)              | 2014/08/13 | <0.1   |           | ug/L   |           |
| 3707416 | RON  | RPD [XA9553-05]          | Mercury (Hg)              | 2014/08/13 | NC     |           | %      | 20        |
| 3709077 | RON  | Matrix Spike [XA9555-05] | Mercury (Hg)              | 2014/08/14 |        | 102       | %      | 75 - 125  |
| 3709077 | RON  | Spiked Blank             | Mercury (Hg)              | 2014/08/14 |        | 95        | %      | 80 - 120  |
| 3709077 | RON  | Method Blank             | Mercury (Hg)              | 2014/08/14 | <0.1   |           | ug/L   |           |
| 3709077 | RON  | RPD [XA9555-05]          | Mercury (Hg)              | 2014/08/14 | NC     |           | %      | 20        |
| 3709601 | PBA  | Matrix Spike             | Dissolved Antimony (Sb)   | 2014/08/18 |        | 109       | %      | 80 - 120  |
|         |      |                          | Dissolved Arsenic (As)    | 2014/08/18 |        | 102       | %      | 80 - 120  |
|         |      |                          | Dissolved Barium (Ba)     | 2014/08/18 |        | 100       | %      | 80 - 120  |
|         |      |                          | Dissolved Beryllium (Be)  | 2014/08/18 |        | 102       | %      | 80 - 120  |
|         |      |                          | Dissolved Boron (B)       | 2014/08/18 |        | NC        | %      | 80 - 120  |
|         |      |                          | Dissolved Cadmium (Cd)    | 2014/08/18 |        | 102       | %      | 80 - 120  |
|         |      |                          | Dissolved Chromium (Cr)   | 2014/08/18 |        | 103       | %      | 80 - 120  |
|         |      |                          | Dissolved Cobalt (Co)     | 2014/08/18 |        | 102       | %      | 80 - 120  |
|         |      |                          | Dissolved Copper (Cu)     | 2014/08/18 |        | 96        | %      | 80 - 120  |
|         |      |                          | Dissolved Lead (Pb)       | 2014/08/18 |        | 97        | %      | 80 - 120  |
|         |      |                          | Dissolved Molybdenum (Mo) | 2014/08/18 |        | 108       | %      | 80 - 120  |
|         |      |                          | Dissolved Nickel (Ni)     | 2014/08/18 |        | 99        | %      | 80 - 120  |
|         |      |                          | Dissolved Selenium (Se)   | 2014/08/18 |        | 80        | %      | 80 - 120  |
|         |      |                          | Dissolved Silver (Ag)     | 2014/08/18 |        | 76 (1)    | %      | 80 - 120  |
|         |      |                          | Dissolved Sodium (Na)     | 2014/08/18 |        | NC        | %      | 80 - 120  |
|         |      |                          | Dissolved Thallium (TI)   | 2014/08/18 |        | 96        | %      | 80 - 120  |
|         |      |                          | Dissolved Uranium (U)     | 2014/08/18 |        | 100       | %      | 80 - 120  |
|         |      |                          | Dissolved Vanadium (V)    | 2014/08/18 |        | 105       | %      | 80 - 120  |
|         |      |                          | Dissolved Zinc (Zn)       | 2014/08/18 |        | 98        | %      | 80 - 120  |
| 3709601 | PBA  | Spiked Blank             | Dissolved Antimony (Sb)   | 2014/08/15 |        | 107       | %      | 80 - 120  |
|         |      |                          | Dissolved Arsenic (As)    | 2014/08/15 |        | 101       | %      | 80 - 120  |
|         |      |                          | Dissolved Barium (Ba)     | 2014/08/15 |        | 102       | %      | 80 - 120  |
|         |      |                          | Dissolved Beryllium (Be)  | 2014/08/15 |        | 103       | %      | 80 - 120  |
|         |      |                          | Dissolved Boron (B)       | 2014/08/15 |        | 103       | %      | 80 - 120  |
|         |      |                          | Dissolved Cadmium (Cd)    | 2014/08/15 |        | 103       | %      | 80 - 120  |
|         |      |                          | Dissolved Chromium (Cr)   | 2014/08/15 |        | 103       | %      | 80 - 120  |
|         |      |                          | Dissolved Cobalt (Co)     | 2014/08/15 |        | 103       | %      | 80 - 120  |
|         |      |                          | Dissolved Copper (Cu)     | 2014/08/15 |        | 99        | %      | 80 - 120  |
|         |      |                          | Dissolved Lead (Pb)       | 2014/08/15 |        | 99        | %      | 80 - 120  |
|         |      |                          | Dissolved Molybdenum (Mo) | 2014/08/15 |        | 103       | %      | 80 - 120  |
|         |      |                          | Dissolved Nickel (Ni)     | 2014/08/15 |        | 99<br>100 | %<br>~ | 80 - 120  |
|         |      |                          | Dissolved Selenium (Se)   | 2014/08/15 |        | 100       | %      | 80 - 120  |
|         |      |                          | Dissolved Silver (Ag)     | 2014/08/15 |        | 97<br>107 | %      | 80 - 120  |
|         |      |                          | Dissolved Sodium (Na)     | 2014/08/15 |        | 107       | %      | 80 - 120  |
|         |      |                          | Dissolved Thallium (TI)   | 2014/08/15 |        | 100       | %      | 80 - 120  |
|         |      |                          | Dissolved Uranium (U)     | 2014/08/15 |        | 99        | %      | 80 - 120  |



MMM Group Limited

Client Project #: 14-12815-001-PH2 Site Location: 770 SOMERSET ST.

## QUALITY ASSURANCE REPORT(CONT'D)

| QA/QC   |      |              |                           | Date       |         |          |       |           |
|---------|------|--------------|---------------------------|------------|---------|----------|-------|-----------|
| Batch   | Init | QC Type      | Parameter                 | Analyzed   | Value   | Recovery | Units | QC Limits |
|         |      |              | Dissolved Vanadium (V)    | 2014/08/15 |         | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Zinc (Zn)       | 2014/08/15 |         | 102      | %     | 80 - 120  |
| 3709601 | PBA  | Method Blank | Dissolved Antimony (Sb)   | 2014/08/15 | < 0.50  |          | ug/L  |           |
|         |      |              | Dissolved Arsenic (As)    | 2014/08/15 | <1.0    |          | ug/L  |           |
|         |      |              | Dissolved Barium (Ba)     | 2014/08/15 | <2.0    |          | ug/L  |           |
|         |      |              | Dissolved Beryllium (Be)  | 2014/08/15 | < 0.50  |          | ug/L  |           |
|         |      |              | Dissolved Boron (B)       | 2014/08/15 | <10     |          | ug/L  |           |
|         |      |              | Dissolved Cadmium (Cd)    | 2014/08/15 | < 0.10  |          | ug/L  |           |
|         |      |              | Dissolved Chromium (Cr)   | 2014/08/15 | <5.0    |          | ug/L  |           |
|         |      |              | Dissolved Cobalt (Co)     | 2014/08/15 | < 0.50  |          | ug/L  |           |
|         |      |              | Dissolved Copper (Cu)     | 2014/08/15 | <1.0    |          | ug/L  |           |
|         |      |              | Dissolved Lead (Pb)       | 2014/08/15 | < 0.50  |          | ug/L  |           |
|         |      |              | Dissolved Molybdenum (Mo) | 2014/08/15 | < 0.50  |          | ug/L  |           |
|         |      |              | Dissolved Nickel (Ni)     | 2014/08/15 | <1.0    |          | ug/L  |           |
|         |      |              | Dissolved Selenium (Se)   | 2014/08/15 | <2.0    |          | ug/L  |           |
|         |      |              | Dissolved Silver (Ag)     | 2014/08/15 | < 0.10  |          | ug/L  |           |
|         |      |              | Dissolved Sodium (Na)     | 2014/08/15 | 800,    |          | ug/L  |           |
|         |      |              |                           |            | RDL=100 |          |       |           |
|         |      |              | Dissolved Thallium (TI)   | 2014/08/15 | < 0.050 |          | ug/L  |           |
|         |      |              | Dissolved Uranium (U)     | 2014/08/15 | < 0.10  |          | ug/L  |           |
|         |      |              | Dissolved Vanadium (V)    | 2014/08/15 | <0.50   |          | ug/L  |           |
|         |      |              | Dissolved Zinc (Zn)       | 2014/08/15 | <5.0    |          | ug/L  |           |

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.



MMM Group Limited

Client Project #: 14-12815-001-PH2 Site Location: 770 SOMERSET ST.

# **VALIDATION SIGNATURE PAGE**

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Cristina Carriere, Scientific Services

Cristina Carriere, Scientific Services

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



Your Project #: 14-12815-001-PH2
Site Location: 770 SAMERSET ST.
Your C.O.C. #: 480446-02-01

#### **Attention:Carolyn Adams**

MMM Group Limited 100 Commerce Valley Dr West Thornhill, ON CANADA L3T 0A1

Report Date: 2014/10/17

Report #: R3191958 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B4I8861 Received: 2014/10/09, 13:50

Sample Matrix: Water # Samples Received: 2

|                                        |          | Date      | Date       |                          |             |
|----------------------------------------|----------|-----------|------------|--------------------------|-------------|
| Analyses                               | Quantity | Extracted | Analyzed   | <b>Laboratory Method</b> | Reference   |
| Chloride by Automated Colourimetry (1) | 2        | N/A       | 2014/10/15 | CAM SOP-00463            | EPA 325.2 m |
| Dissolved Metals by ICPMS              | 2        | N/A       | 2014/10/14 | OTT SOP-00003            | EPA 6020    |

#### Remarks:

Maxxam Analytics has performed all analytical testing herein in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act.

The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following the 'Alberta Environment Draft Addenda to the CWS-PHC, Appendix 6, Validation of Alternate Methods'. Documentation is available upon request. Maxxam has made the following improvements to the CWS-PHC reference benchmark method: (i) Headspace for F1; and, (ii) Mechanical extraction for F2-F4. Note: F4G cannot be added to the C6 to C50 hydrocarbons. The extraction date for samples field preserved with methanol for F1 and Volatile Organic Compounds is considered to be the date sampled.

Maxxam Analytics is accredited for all specific parameters as required by Ontario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other warranty expressed or implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as per contract.

- \* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Analytics Mississauga

#### **Encryption Key**

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Jolanta Goralczyk, Project Manager Email: JGoralczyk@maxxam.ca Phone# (905)817-5751

\_\_\_\_\_

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



MMM Group Limited

Client Project #: 14-12815-001-PH2 Site Location: 770 SAMERSET ST.

Sampler Initials: AR

# **RESULTS OF ANALYSES OF WATER**

| Maxxam ID                          |          | XY1200       | XY1201       |     |          |  |  |  |  |  |
|------------------------------------|----------|--------------|--------------|-----|----------|--|--|--|--|--|
| Sampling Date                      |          | 2014/10/09   | 2014/10/09   |     |          |  |  |  |  |  |
| COC Number                         |          | 480446-02-01 | 480446-02-01 |     |          |  |  |  |  |  |
|                                    | Units    | MW5C         | DUP-1        | RDL | QC Batch |  |  |  |  |  |
| Inorganics                         |          |              |              |     |          |  |  |  |  |  |
| Inorganics                         |          |              |              |     |          |  |  |  |  |  |
| Inorganics Dissolved Chloride (CI) | mg/L     | 6500         | 7100         | 80  | 3782831  |  |  |  |  |  |
|                                    | <u> </u> | 6500         | 7100         | 80  | 3782831  |  |  |  |  |  |



MMM Group Limited

Client Project #: 14-12815-001-PH2 Site Location: 770 SAMERSET ST.

Sampler Initials: AR

# **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| Maxxam ID                     |       | XY1200       | XY1201       |      |          |
|-------------------------------|-------|--------------|--------------|------|----------|
| Sampling Date                 |       | 2014/10/09   | 2014/10/09   |      |          |
| COC Number                    |       | 480446-02-01 | 480446-02-01 |      |          |
|                               | Units | MW5C         | DUP-1        | RDL  | QC Batch |
| Metals                        |       |              |              |      |          |
| Dissolved Antimony (Sb)       | ug/L  | <5           | <5           | 5    | 3783257  |
| Dissolved Arsenic (As)        | ug/L  | 12           | 12           | 10   | 3783257  |
| Dissolved Barium (Ba)         | ug/L  | 560          | 550          | 20   | 3783257  |
| Dissolved Beryllium (Be)      | ug/L  | <5           | <5           | 5    | 3783257  |
| Dissolved Boron (B)           | ug/L  | 490          | 500          | 100  | 3783257  |
| Dissolved Cadmium (Cd)        | ug/L  | <1           | <1           | 1    | 3783257  |
| Dissolved Chromium (Cr)       | ug/L  | <50          | <50          | 50   | 3783257  |
| Dissolved Cobalt (Co)         | ug/L  | 5            | 6            | 5    | 3783257  |
| Dissolved Copper (Cu)         | ug/L  | <10          | <10          | 10   | 3783257  |
| Dissolved Lead (Pb)           | ug/L  | <5           | <5           | 5    | 3783257  |
| Dissolved Molybdenum (Mo)     | ug/L  | <5           | <5           | 5    | 3783257  |
| Dissolved Nickel (Ni)         | ug/L  | 23           | 23           | 10   | 3783257  |
| Dissolved Selenium (Se)       | ug/L  | <20          | <20          | 20   | 3783257  |
| Dissolved Silver (Ag)         | ug/L  | <1           | <1           | 1    | 3783257  |
| Dissolved Sodium (Na)         | ug/L  | 4000000      | 4000000      | 1000 | 3783257  |
| Dissolved Thallium (TI)       | ug/L  | 0.7          | 0.6          | 0.5  | 3783257  |
| Dissolved Uranium (U)         | ug/L  | 4            | 4            | 1    | 3783257  |
| Dissolved Vanadium (V)        | ug/L  | 9            | 21           | 5    | 3783257  |
| Dissolved Zinc (Zn)           | ug/L  | <50          | <50          | 50   | 3783257  |
| RDL = Reportable Detection Li | ٠.    |              |              |      |          |

QC Batch = Quality Control Batch



MMM Group Limited

Client Project #: 14-12815-001-PH2 Site Location: 770 SAMERSET ST.

Sampler Initials: AR

## **TEST SUMMARY**

Maxxam ID: XY1200 Sample ID: MW5C

Water

Matrix:

**Collected:** 2014/10/09

Shipped:

**Received:** 2014/10/09

**Test Description** Instrumentation Batch **Extracted Date Analyzed** Analyst Chloride by Automated Colourimetry AC 3782831 N/A 2014/10/15 Deonarine Ramnarine Dissolved Metals by ICPMS ICP/MS 3783257 N/A 2014/10/14 Raigamage Perera

Maxxam ID: XY1201 Sample ID: DUP-1 Matrix: Water **Collected:** 2014/10/09

Shipped:

**Received:** 2014/10/09

| Test Description                   |  | Instrumentation | Batch   | Extracted | Date Analyzed | Analyst             |
|------------------------------------|--|-----------------|---------|-----------|---------------|---------------------|
| Chloride by Automated Colourimetry |  | AC              | 3782831 | N/A       | 2014/10/15    | Deonarine Ramnarine |
| Dissolved Metals by ICPMS          |  | ICP/MS          | 3783257 | N/A       | 2014/10/14    | Raigamage Perera    |



MMM Group Limited

Client Project #: 14-12815-001-PH2 Site Location: 770 SAMERSET ST.

Sampler Initials: AR

#### **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 6.3°C

Sample XY1200-01: Metal Analysis:

Sample was diluted due to high concentrations of metals. RDLs were adjusted accordingly.

Sample XY1201-01: Metal Analysis:

Sample was diluted due to high concentrations of metals. RDLs were adjusted accordingly.

Results relate only to the items tested.



MMM Group Limited

Client Project #: 14-12815-001-PH2 Site Location: 770 SAMERSET ST.

Sampler Initials: AR

# **QUALITY ASSURANCE REPORT**

| QA/QC   |      |              |                           | Date       |       |          |       |           |
|---------|------|--------------|---------------------------|------------|-------|----------|-------|-----------|
| Batch   | Init | QC Type      | Parameter                 | Analyzed   | Value | Recovery | Units | QC Limits |
| 3782831 | DRM  | Matrix Spike | Dissolved Chloride (CI)   | 2014/10/15 |       | NC       | %     | 80 - 120  |
| 3782831 | DRM  | Spiked Blank | Dissolved Chloride (CI)   | 2014/10/15 |       | 105      | %     | 80 - 120  |
| 3782831 | DRM  | Method Blank | Dissolved Chloride (CI)   | 2014/10/15 | <1    |          | mg/L  |           |
| 3782831 | DRM  | RPD          | Dissolved Chloride (CI)   | 2014/10/15 | 0.54  |          | %     | 20        |
| 3783257 | RAI  | Matrix Spike | Dissolved Antimony (Sb)   | 2014/10/14 |       | 106      | %     | 80 - 120  |
|         |      |              | Dissolved Arsenic (As)    | 2014/10/14 |       | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Barium (Ba)     | 2014/10/14 |       | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Beryllium (Be)  | 2014/10/14 |       | 105      | %     | 80 - 120  |
|         |      |              | Dissolved Boron (B)       | 2014/10/14 |       | 108      | %     | 80 - 120  |
|         |      |              | Dissolved Cadmium (Cd)    | 2014/10/14 |       | 108      | %     | 80 - 120  |
|         |      |              | Dissolved Chromium (Cr)   | 2014/10/14 |       | 105      | %     | 80 - 120  |
|         |      |              | Dissolved Cobalt (Co)     | 2014/10/14 |       | 103      | %     | 80 - 120  |
|         |      |              | Dissolved Copper (Cu)     | 2014/10/14 |       | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Lead (Pb)       | 2014/10/14 |       | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Molybdenum (Mo) | 2014/10/14 |       | 107      | %     | 80 - 120  |
|         |      |              | Dissolved Nickel (Ni)     | 2014/10/14 |       | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Selenium (Se)   | 2014/10/14 |       | 107      | %     | 80 - 120  |
|         |      |              | Dissolved Silver (Ag)     | 2014/10/14 |       | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Sodium (Na)     | 2014/10/14 |       | NC       | %     | 80 - 120  |
|         |      |              | Dissolved Thallium (TI)   | 2014/10/14 |       | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Uranium (U)     | 2014/10/14 |       | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Vanadium (V)    | 2014/10/14 |       | 104      | %     | 80 - 120  |
|         |      |              | Dissolved Zinc (Zn)       | 2014/10/14 |       | 110      | %     | 80 - 120  |
| 3783257 | RAI  | Spiked Blank | Dissolved Antimony (Sb)   | 2014/10/14 |       | 103      | %     | 80 - 120  |
|         |      |              | Dissolved Arsenic (As)    | 2014/10/14 |       | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Barium (Ba)     | 2014/10/14 |       | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Beryllium (Be)  | 2014/10/14 |       | 104      | %     | 80 - 120  |
|         |      |              | Dissolved Boron (B)       | 2014/10/14 |       | 104      | %     | 80 - 120  |
|         |      |              | Dissolved Cadmium (Cd)    | 2014/10/14 |       | 105      | %     | 80 - 120  |
|         |      |              | Dissolved Chromium (Cr)   | 2014/10/14 |       | 103      | %     | 80 - 120  |
|         |      |              | Dissolved Cobalt (Co)     | 2014/10/14 |       | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Copper (Cu)     | 2014/10/14 |       | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Lead (Pb)       | 2014/10/14 |       | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Molybdenum (Mo) | 2014/10/14 |       | 103      | %     | 80 - 120  |
|         |      |              | Dissolved Nickel (Ni)     | 2014/10/14 |       | 102      | %     | 80 - 120  |
|         |      |              | Dissolved Selenium (Se)   | 2014/10/14 |       | 103      | %     | 80 - 120  |
|         |      |              | Dissolved Silver (Ag)     | 2014/10/14 |       | 99       | %     | 80 - 120  |
|         |      |              | Dissolved Sodium (Na)     | 2014/10/14 |       | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Thallium (TI)   | 2014/10/14 |       | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Uranium (U)     | 2014/10/14 |       | 100      | %     | 80 - 120  |
|         |      |              | Dissolved Vanadium (V)    | 2014/10/14 |       | 101      | %     | 80 - 120  |
|         |      |              | Dissolved Zinc (Zn)       | 2014/10/14 |       | 102      | %     | 80 - 120  |
| 3783257 | RAI  | Method Blank | Dissolved Antimony (Sb)   | 2014/10/14 | <0.5  |          | ug/L  |           |
|         |      |              | Dissolved Arsenic (As)    | 2014/10/14 | <1    |          | ug/L  |           |
|         |      |              | Dissolved Barium (Ba)     | 2014/10/14 | <2    |          | ug/L  |           |
|         |      |              | Dissolved Beryllium (Be)  | 2014/10/14 | <0.5  |          | ug/L  |           |
|         |      |              | Dissolved Boron (B)       | 2014/10/14 | <10   |          | ug/L  |           |
|         |      |              | Dissolved Cadmium (Cd)    | 2014/10/14 | <0.1  |          | ug/L  |           |
|         |      |              | Dissolved Chromium (Cr)   | 2014/10/14 | <5    |          | ug/L  |           |
|         |      |              | Dissolved Cobalt (Co)     | 2014/10/14 | <0.5  |          | ug/L  |           |
|         |      |              | Dissolved Copper (Cu)     | 2014/10/14 | <1    |          | ug/L  |           |
|         |      |              | Dissolved Lead (Pb)       | 2014/10/14 | <0.5  |          | ug/L  |           |



MMM Group Limited

Client Project #: 14-12815-001-PH2 Site Location: 770 SAMERSET ST.

Sampler Initials: AR

## QUALITY ASSURANCE REPORT(CONT'D)

| QA/QC   |      |         |                           | Date       |         |          |       |           |
|---------|------|---------|---------------------------|------------|---------|----------|-------|-----------|
| Batch   | Init | QC Type | Parameter                 | Analyzed   | Value   | Recovery | Units | QC Limits |
|         |      |         | Dissolved Molybdenum (Mo) | 2014/10/14 | <0.5    |          | ug/L  |           |
|         |      |         | Dissolved Nickel (Ni)     | 2014/10/14 | <1      |          | ug/L  |           |
|         |      |         | Dissolved Selenium (Se)   | 2014/10/14 | <2      |          | ug/L  |           |
|         |      |         | Dissolved Silver (Ag)     | 2014/10/14 | <0.1    |          | ug/L  |           |
|         |      |         | Dissolved Sodium (Na)     | 2014/10/14 | <100    |          | ug/L  |           |
|         |      |         | Dissolved Thallium (TI)   | 2014/10/14 | < 0.05  |          | ug/L  |           |
|         |      |         | Dissolved Uranium (U)     | 2014/10/14 | <0.1    |          | ug/L  |           |
|         |      |         | Dissolved Vanadium (V)    | 2014/10/14 | 0.7,    |          | ug/L  |           |
|         |      |         |                           |            | RDL=0.5 |          |       |           |
|         |      |         | Dissolved Zinc (Zn)       | 2014/10/14 | <5      |          | ug/L  |           |
| 3783257 | RAI  | RPD     | Dissolved Arsenic (As)    | 2014/10/14 | NC      |          | %     | 25        |
|         |      |         | Dissolved Barium (Ba)     | 2014/10/14 | 1.0     |          | %     | 25        |
|         |      |         | Dissolved Boron (B)       | 2014/10/14 | 1.3     |          | %     | 25        |
|         |      |         | Dissolved Cadmium (Cd)    | 2014/10/14 | NC      |          | %     | 25        |
|         |      |         | Dissolved Chromium (Cr)   | 2014/10/14 | NC      |          | %     | 25        |
|         |      |         | Dissolved Copper (Cu)     | 2014/10/14 | NC      |          | %     | 25        |
|         |      |         | Dissolved Lead (Pb)       | 2014/10/14 | NC      |          | %     | 25        |
|         |      |         | Dissolved Nickel (Ni)     | 2014/10/14 | NC      |          | %     | 25        |
|         |      |         | Dissolved Selenium (Se)   | 2014/10/14 | NC      |          | %     | 25        |
|         |      |         | Dissolved Silver (Ag)     | 2014/10/14 | NC      |          | %     | 25        |
|         |      |         | Dissolved Sodium (Na)     | 2014/10/14 | 0.36    |          | %     | 25        |
|         |      |         | Dissolved Vanadium (V)    | 2014/10/14 | NC      |          | %     | 25        |
|         |      |         | Dissolved Zinc (Zn)       | 2014/10/14 | NC      |          | %     | 25        |

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).



MMM Group Limited

Client Project #: 14-12815-001-PH2 Site Location: 770 SAMERSET ST.

Sampler Initials: AR

# **VALIDATION SIGNATURE PAGE**

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).



Steve Roberts, Lab Supervisor, Ottawa

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



Your Project #: 1412815-001-PH2

Site#: 770 Somerset St

Site Location: 770 Somerset St Your C.O.C. #: 493400-01-01

Attention: Allison Read
MMM Group Limited
100 Commerce Valley Dr West
Thornhill, ON
CANADA L3T 0A1

Report Date: 2014/12/10 Report #: R3252642

Version: 1

# **CERTIFICATE OF ANALYSIS**

MAXXAM JOB #: B4M9028 Received: 2014/12/03, 14:10

Sample Matrix: Water # Samples Received: 4

|                                    |          | Date       | Date       |                   | Method      |
|------------------------------------|----------|------------|------------|-------------------|-------------|
| Analyses                           | Quantity | Extracted  | Analyzed   | Laboratory Method | Reference   |
| Chloride by Automated Colourimetry | 2        | N/A        | 2014/12/05 | CAM SOP-00463     | EPA 325.2 m |
| Lab Filtered Metals by ICPMS (1)   | 2        | 2014/12/08 | 2014/12/08 | OTT SOP-00003     | EPA 6020    |

#### Remarks:

Maxxam Analytics has performed all analytical testing herein in accordance with ISO 17025 and the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. All methodologies comply with this document and are validated for use in the laboratory. The methods and techniques employed in this analysis conform to the performance criteria (detection limits, accuracy and precision) as outlined in the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act.

The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following the 'Alberta Environment Draft Addenda to the CWS-PHC, Appendix 6, Validation of Alternate Methods'. Documentation is available upon request. Maxxam has made the following improvements to the CWS-PHC reference benchmark method: (i) Headspace for F1; and, (ii) Mechanical extraction for F2-F4. Note: F4G cannot be added to the C6 to C50 hydrocarbons. The extraction date for samples field preserved with methanol for F1 and Volatile Organic Compounds is considered to be the date sampled.

Maxxam Analytics is accredited for all specific parameters as required by Ontario Regulation 153/04. Maxxam Analytics is limited in liability to the actual cost of analysis unless otherwise agreed in writing. There is no other warranty expressed or implied. Samples will be retained at Maxxam Analytics for three weeks from receipt of data or as per contract.

- \* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Maxxam Ottawa



Your Project #: 1412815-001-PH2

Site#: 770 Somerset St

Site Location: 770 Somerset St Your C.O.C. #: 493400-01-01

**Attention: Allison Read** MMM Group Limited 100 Commerce Valley Dr West Thornhill, ON CANADA L3T 0A1

> Report Date: 2014/12/10 Report #: R3252642

Version: 1

# CERTIFICATE OF ANALYSIS -2-

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Jolanta Goralczyk, Project Manager Email: JGoralczyk@maxxam.ca Phone# (905) 817-5751

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 2



MMM Group Limited

Client Project #: 1412815-001-PH2 Site Location: 770 Somerset St

Sampler Initials: MH

# **RESULTS OF ANALYSES OF WATER**

|               | Units | MW5C 1A      | MW5C 2A      | RDL | QC Batch |
|---------------|-------|--------------|--------------|-----|----------|
| COC Number    |       | 493400-01-01 | 493400-01-01 |     |          |
|               |       | 09:00        | 10:00        |     |          |
| Sampling Date |       | 2014/12/03   | 2014/12/03   |     |          |
| Maxxam ID     |       | YS3403       | YS3405       |     |          |

| Inorganics              |      |      |      |    |         |
|-------------------------|------|------|------|----|---------|
| Dissolved Chloride (CI) | mg/L | 6700 | 6600 | 70 | 3849098 |

RDL = Reportable Detection Limit QC Batch = Quality Control Batch



MMM Group Limited

Client Project #: 1412815-001-PH2 Site Location: 770 Somerset St

Sampler Initials: MH

# **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| Maxxam ID                 |       | YS3404       | YS3404       | YS3406       |      |          |
|---------------------------|-------|--------------|--------------|--------------|------|----------|
| Sampling Date             |       | 2014/12/03   | 2014/12/03   | 2014/12/03   |      |          |
|                           |       | 09:00        | 09:00        | 09:00        |      |          |
| COC Number                |       | 493400-01-01 | 493400-01-01 | 493400-01-01 |      |          |
|                           | Units | MW5C 1B      | MW5C         | MW5C 2B      | RDL  | QC Batch |
|                           |       |              | 1B Lab-Dup   |              |      | <u> </u> |
| Metals                    |       |              |              |              |      |          |
| Dissolved Antimony (Sb)   | ug/L  | <5.0         | <5.0         | <5.0         | 5.0  | 3851615  |
| Dissolved Arsenic (As)    | ug/L  | <10          | <10          | <10          | 10   | 3851615  |
| Dissolved Barium (Ba)     | ug/L  | 310          | 320          | 310          | 20   | 3851615  |
| Dissolved Beryllium (Be)  | ug/L  | <5.0         | <5.0         | <5.0         | 5.0  | 3851615  |
| Dissolved Boron (B)       | ug/L  | 900          | 910          | 920          | 100  | 3851615  |
| Dissolved Cadmium (Cd)    | ug/L  | <1.0         | <1.0         | <1.0         | 1.0  | 3851615  |
| Dissolved Chromium (Cr)   | ug/L  | <50          | <50          | <50          | 50   | 3851615  |
| Dissolved Cobalt (Co)     | ug/L  | 7.3          | 7.5          | 6.8          | 5.0  | 3851615  |
| Dissolved Copper (Cu)     | ug/L  | <10          | <10          | <10          | 10   | 3851615  |
| Dissolved Lead (Pb)       | ug/L  | 15           | 15           | 14           | 5.0  | 3851615  |
| Dissolved Molybdenum (Mo) | ug/L  | <5.0         | <5.0         | <5.0         | 5.0  | 3851615  |
| Dissolved Nickel (Ni)     | ug/L  | 29           | 28           | 28           | 10   | 3851615  |
| Dissolved Selenium (Se)   | ug/L  | <20          | <20          | <20          | 20   | 3851615  |
| Dissolved Silver (Ag)     | ug/L  | <1.0         | <1.0         | <1.0         | 1.0  | 3851615  |
| Dissolved Sodium (Na)     | ug/L  | 3700000      | 3700000      | 3700000      | 1000 | 3851615  |
| Dissolved Thallium (TI)   | ug/L  | 0.86         | 0.81         | 0.72         | 0.50 | 3851615  |
| Dissolved Uranium (U)     | ug/L  | 5.8          | 6.0          | 5.8          | 1.0  | 3851615  |

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

ug/L

ug/L

<5.0

<50

6.2

<50

12

<50

5.0

50

3851615

3851615

Dissolved Vanadium (V)

Dissolved Zinc (Zn)



MMM Group Limited

Client Project #: 1412815-001-PH2 Site Location: 770 Somerset St

Sampler Initials: MH

# **Test Summary**

Maxxam ID YS3403 Collected 2014/12/03

Sample ID MW5C 1A **Shipped** 

Matrix Water Received 2014/12/03

**Test Description** Instrumentation Batch **Extracted** Analyzed Analyst Chloride by Automated Colourimetry 3849098 N/A 2014/12/05 Deonarine Ramnarine AC

Maxxam ID YS3404 Collected 2014/12/03

Sample ID MW5C 1B Shipped

Matrix Water Received 2014/12/03

**Test Description** Instrumentation **Batch Extracted** Analyzed Analyst Lab Filtered Metals by ICPMS 3851615 2014/12/08 2014/12/08 ICP/MS Raigamage Perera

Maxxam ID YS3404 Dup Collected 2014/12/03

Sample ID MW5C 1B **Shipped** 

Matrix Water Received 2014/12/03

**Test Description** Instrumentation **Batch Extracted** Analyzed Analyst Lab Filtered Metals by ICPMS ICP/MS 2014/12/08 2014/12/08 3851615 Raigamage Perera

Maxxam ID YS3405 Collected 2014/12/03

Sample ID MW5C 2A **Shipped** 

Matrix Water Received 2014/12/03

**Test Description Extracted** Analyzed Instrumentation Batch Analyst Chloride by Automated Colourimetry Deonarine Ramnarine AC 3849098 N/A 2014/12/05

Maxxam ID YS3406 Collected 2014/12/03 Sample ID MW5C 2B

**Shipped** 

Matrix Water Received 2014/12/03

**Test Description** Instrumentation Batch Extracted Analyzed Analyst Lab Filtered Metals by ICPMS ICP/MS 3851615 2014/12/08 2014/12/08 Raigamage Perera



MMM Group Limited

Client Project #: 1412815-001-PH2 Site Location: 770 Somerset St

Sampler Initials: MH

Package 1 10.0°C

Each temperature is the average of up to three cooler temperatures taken at receipt

#### **GENERAL COMMENTS**

Sample YS3404-01: Metal Analysis:

Sample was diluted due to high concentrations of elements effecting the Internal Standard. RDLs were adjusted accordingly.

Sample was lab filtered. Please view results for discretion.

Sample YS3406-01: Metal Analysis:

Sample was diluted due to high concentrations of elements effecting the Internal Standard. RDLs were adjusted accordingly.

Sample was lab filtered. Please view results for discretion.

Results relate only to the items tested.



MMM Group Limited Attention: Allison Read

Client Project #: 1412815-001-PH2

P.O. #:

Site Location: 770 Somerset St

# Quality Assurance Report Maxxam Job Number: TB4M9028

| QA/QC<br>Batch |              |                                                | Date<br>Analyzed         |        |           |             |                      |
|----------------|--------------|------------------------------------------------|--------------------------|--------|-----------|-------------|----------------------|
| Num Init       | QC Type      | Parameter                                      | yyyy/mm/dd               | Value  | Recovery  | Units       | QC Limits            |
| 3849098 DRM    | Matrix Spike | Dissolved Chloride (CI)                        | 2014/12/05               | value  | NC        | %           | 80 - 120             |
| 3049090 DKW    | Spiked Blank | Dissolved Chloride (Cl)                        | 2014/12/05               |        | 101       | %<br>%      | 80 - 120<br>80 - 120 |
|                | Method Blank | Dissolved Chloride (Cl)                        | 2014/12/05               | <1     | 101       | mg/L        | 00 - 120             |
|                | RPD          | Dissolved Chloride (Cl)                        | 2014/12/05               | 2.4    |           | 111g/L<br>% | 20                   |
| 3851615 RAI    |              | Dissolved Chiloride (Ci)                       | 2014/12/03               | 2.4    |           | 70          | 20                   |
| 3031013 KAI    | Matrix Spike | Discoluded Antimony (Ch)                       | 2014/12/09               |        | 110       | 0/          | 00 100               |
|                | [YS3404-01]  | Dissolved Antimony (Sb) Dissolved Arsenic (As) | 2014/12/08<br>2014/12/08 |        | 110<br>98 | %<br>%      | 80 - 120<br>80 - 120 |
|                |              | Dissolved Arsenic (As) Dissolved Barium (Ba)   |                          |        |           | %<br>%      |                      |
|                |              |                                                | 2014/12/08<br>2014/12/08 |        | NC        |             | 80 - 120<br>80 - 120 |
|                |              | Dissolved Beryllium (Be)                       |                          |        | 103       | %           |                      |
|                |              | Dissolved Boron (B)                            | 2014/12/08               |        | NC        | %           | 80 - 120             |
|                |              | Dissolved Cadmium (Cd)                         | 2014/12/08               |        | 106       | %           | 80 - 120             |
|                |              | Dissolved Chromium (Cr)                        | 2014/12/08               |        | 99        | %           | 80 - 120             |
|                |              | Dissolved Cobalt (Co)                          | 2014/12/08               |        | 101       | %           | 80 - 120             |
|                |              | Dissolved Copper (Cu)                          | 2014/12/08               |        | 100       | %           | 80 - 120             |
|                |              | Dissolved Lead (Pb)                            | 2014/12/08               |        | 99        | %           | 80 - 120             |
|                |              | Dissolved Molybdenum (Mo)                      | 2014/12/08               |        | 105       | %           | 80 - 120             |
|                |              | Dissolved Nickel (Ni)                          | 2014/12/08               |        | 101       | %           | 80 - 120             |
|                |              | Dissolved Selenium (Se)                        | 2014/12/08               |        | 109       | %           | 80 - 120             |
|                |              | Dissolved Silver (Ag)                          | 2014/12/08               |        | 98        | %           | 80 - 120             |
|                |              | Dissolved Sodium (Na)                          | 2014/12/08               |        | NC        | %           | 80 - 120             |
|                |              | Dissolved Thallium (TI)                        | 2014/12/08               |        | 99        | %           | 80 - 120             |
|                |              | Dissolved Uranium (U)                          | 2014/12/08               |        | 101       | %           | 80 - 120             |
|                |              | Dissolved Vanadium (V)                         | 2014/12/08               |        | 99        | %           | 80 - 120             |
|                |              | Dissolved Zinc (Zn)                            | 2014/12/08               |        | 105       | %           | 80 - 120             |
|                | Spiked Blank | Dissolved Antimony (Sb)                        | 2014/12/08               |        | 104       | %           | 80 - 120             |
|                |              | Dissolved Arsenic (As)                         | 2014/12/08               |        | 97        | %           | 80 - 120             |
|                |              | Dissolved Barium (Ba)                          | 2014/12/08               |        | 95        | %           | 80 - 120             |
|                |              | Dissolved Beryllium (Be)                       | 2014/12/08               |        | 101       | %           | 80 - 120             |
|                |              | Dissolved Boron (B)                            | 2014/12/08               |        | 101       | %           | 80 - 120             |
|                |              | Dissolved Cadmium (Cd)                         | 2014/12/08               |        | 104       | %           | 80 - 120             |
|                |              | Dissolved Chromium (Cr)                        | 2014/12/08               |        | 99        | %           | 80 - 120             |
|                |              | Dissolved Cobalt (Co)                          | 2014/12/08               |        | 101       | %           | 80 - 120             |
|                |              | Dissolved Copper (Cu)                          | 2014/12/08               |        | 100       | %           | 80 - 120             |
|                |              | Dissolved Lead (Pb)                            | 2014/12/08               |        | 100       | %           | 80 - 120             |
|                |              | Dissolved Molybdenum (Mo)                      | 2014/12/08               |        | 100       | %           | 80 - 120             |
|                |              | Dissolved Nickel (Ni)                          | 2014/12/08               |        | 99        | %           | 80 - 120             |
|                |              | Dissolved Selenium (Se)                        | 2014/12/08               |        | 106       | %           | 80 - 120             |
|                |              | Dissolved Scientiff (Sc)                       | 2014/12/08               |        | 98        | %           | 80 - 120             |
|                |              | Dissolved Soliver (Ag)  Dissolved Sodium (Na)  | 2014/12/08               |        | 101       | %           | 80 - 120             |
|                |              | Dissolved Sodium (Na) Dissolved Thallium (TI)  | 2014/12/08               |        | 99        | %           | 80 - 120             |
|                |              | Dissolved Triallium (Tr) Dissolved Uranium (U) | 2014/12/08               |        | 99        | %<br>%      | 80 - 120             |
|                |              | ` ,                                            |                          |        |           |             |                      |
|                |              | Dissolved Vanadium (V)                         | 2014/12/08               |        | 99        | %           | 80 - 120             |
|                | Mathad Dlade | Dissolved Zinc (Zn)                            | 2014/12/08               | 0.40   | 105       | %<br>/I     | 80 - 120             |
|                | Method Blank | Dissolved Antimony (Sb)                        | 2014/12/08               | <0.10  |           | ug/L        |                      |
|                |              | Dissolved Arsenic (As)                         | 2014/12/08               | <0.10  |           | ug/L        |                      |
|                |              | Dissolved Barium (Ba)                          | 2014/12/08               | <0.10  |           | ug/L        |                      |
|                |              | Dissolved Beryllium (Be)                       | 2014/12/08               | <0.10  |           | ug/L        |                      |
|                |              | Dissolved Boron (B)                            | 2014/12/08               | <0.60  |           | ug/L        |                      |
|                |              | Dissolved Cadmium (Cd)                         | 2014/12/08               | <0.10  |           | ug/L        |                      |
|                |              | Dissolved Chromium (Cr)                        | 2014/12/08               | <0.20  |           | ug/L        |                      |
|                |              | Dissolved Cobalt (Co)                          | 2014/12/08               | <0.10  |           | ug/L        |                      |
|                |              | Dissolved Copper (Cu)                          | 2014/12/08               | < 0.30 |           | ug/L        |                      |
|                |              | Dissolved Lead (Pb)                            | 2014/12/08               | < 0.50 |           | ug/L        |                      |
|                |              | Dissolved Molybdenum (Mo)                      | 2014/12/08               | <0.10  |           | ug/L        |                      |
|                |              | Dissolved Nickel (Ni)                          | 2014/12/08               | < 0.10 |           | ug/L        |                      |



MMM Group Limited Attention: Allison Read

Client Project #: 1412815-001-PH2

P.O. #:

Site Location: 770 Somerset St

#### Quality Assurance Report (Continued)

Maxxam Job Number: TB4M9028

| QA/QC       |                 |                           | Date       |         |          |       |           |
|-------------|-----------------|---------------------------|------------|---------|----------|-------|-----------|
| Batch       |                 |                           | Analyzed   |         |          |       |           |
| Num Init    | QC Type         | Parameter                 | yyyy/mm/dd | Value   | Recovery | Units | QC Limits |
| 3851615 RAI | Method Blank    | Dissolved Selenium (Se)   | 2014/12/08 | < 0.20  |          | ug/L  |           |
|             |                 | Dissolved Silver (Ag)     | 2014/12/08 | < 0.10  |          | ug/L  |           |
|             |                 | Dissolved Sodium (Na)     | 2014/12/08 | <30     |          | ug/L  |           |
|             |                 | Dissolved Thallium (TI)   | 2014/12/08 | < 0.050 |          | ug/L  |           |
|             |                 | Dissolved Uranium (U)     | 2014/12/08 | < 0.10  |          | ug/L  |           |
|             |                 | Dissolved Vanadium (V)    | 2014/12/08 | 0.11, F | RDL=0.10 | ug/L  |           |
|             |                 | Dissolved Zinc (Zn)       | 2014/12/08 | < 0.50  |          | ug/L  |           |
|             | RPD [YS3404-01] | Dissolved Antimony (Sb)   | 2014/12/08 | NC      |          | %     | 25        |
|             |                 | Dissolved Arsenic (As)    | 2014/12/08 | NC      |          | %     | 25        |
|             |                 | Dissolved Barium (Ba)     | 2014/12/08 | 2.2     |          | %     | 25        |
|             |                 | Dissolved Beryllium (Be)  | 2014/12/08 | NC      |          | %     | 25        |
|             |                 | Dissolved Boron (B)       | 2014/12/08 | 1.1     |          | %     | 25        |
|             |                 | Dissolved Cadmium (Cd)    | 2014/12/08 | NC      |          | %     | 25        |
|             |                 | Dissolved Chromium (Cr)   | 2014/12/08 | NC      |          | %     | 25        |
|             |                 | Dissolved Cobalt (Co)     | 2014/12/08 | NC      |          | %     | 25        |
|             |                 | Dissolved Copper (Cu)     | 2014/12/08 | NC      |          | %     | 25        |
|             |                 | Dissolved Lead (Pb)       | 2014/12/08 | NC      |          | %     | 25        |
|             |                 | Dissolved Molybdenum (Mo) | 2014/12/08 | NC      |          | %     | 25        |
|             |                 | Dissolved Nickel (Ni)     | 2014/12/08 | NC      |          | %     | 25        |
|             |                 | Dissolved Selenium (Se)   | 2014/12/08 | NC      |          | %     | 25        |
|             |                 | Dissolved Silver (Ag)     | 2014/12/08 | NC      |          | %     | 25        |
|             |                 | Dissolved Sodium (Na)     | 2014/12/08 | 1       |          | %     | 25        |
|             |                 | Dissolved Thallium (TI)   | 2014/12/08 | NC      |          | %     | 25        |
|             |                 | Dissolved Uranium (U)     | 2014/12/08 | 4.0     |          | %     | 25        |
|             |                 | Dissolved Vanadium (V)    | 2014/12/08 | NC      |          | %     | 25        |
|             |                 | Dissolved Zinc (Zn)       | 2014/12/08 | NC      |          | %     | 25        |

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).



# Validation Signature Page

# Maxxam Job #: B4M9028 The analytical data and all QC contained in this report were reviewed and validated by the following individual(s). Brad Newman, Scientific Specialist

Paul Rubinato, Analyst, Maxxam Analytics

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

A-4 SURVEY OF PHASE TWO PROPERTY

# STANDARD LIMITATIONS PHASE II ENVIRONMENTAL SITE ASSESSMENT (PHASE II ESA)

These Standard Limitations form part of the Report to which they are appended and any use of the Report is subject to them.

#### 1. EXCLUSIVE USE BY CLIENT

This Report was prepared for the exclusive use of the client identified as the intended recipient. Any use of the report by any other party without the written consent of MMM Group Limited is the sole responsibility of such party. MMM Group Limited accepts no responsibility for damages that may be suffered by any third party as a result of decisions made or actions taken based on this Report.

# 2. SCOPE, TERMS AND CONDITIONS OF CONTRACT

The observations investigations and (hereinafter referred to as the "Work") upon which this Report is based were carried out in accordance with the scope, terms and conditions of the contract or the proposal which Work pursuant to the commissioned. The conclusions presented in the Report are based solely upon the scope of services described in the contract or the proposal and governed by the time and budgetary constraints imposed by them.

#### 3. STANDARD OF CARE

The Phase II ESA was carried out in accordance with generally accepted environmental study and/or professional practices, industry standards and applicable environmental regulations. No other warranties are either expressed or implied with respect to the professional services provided under the terms of the contract or proposal and represented in this Report.

#### 4. SCOPE OF THE PHASE II ESA

A Phase II ESA is conducted to obtain information about environmental conditions in the land or water on, in or under the subject property. This Report has been prepared based on information obtained at discrete borehole, test pit, monitoring well, or other (e.g., surface water) sampling locations. The conditions reported herein were those encountered at the subject property at the time the Work was performed and as present at the discrete sampling locations. Conditions

between sampling locations may be different than those encountered at the sampling locations and MMM Group Limited is not responsible for such differences.

#### 5. REASONABLE CONCLUSIONS

The conclusions of the Phase II ESA regarding the environmental conditions at the subject property are based on the investigations conducted during the Work and information from other sources as may be indicated in the Report. The accuracy of information from other sources was not verified unless specifically noted in the Report, nor was it determined if the reviewed information constituted all information that exists and pertains to the subject property.

The conclusions made are based on reasonable and professional interpretation of the information considered. If additional information concerning environmental conditions of relevance to this Report is obtained during future work at the subject property, MMM Group Limited should be notified in order that we may determine if modifications to the conclusions presented in this Report are necessary.

#### 6. REPORT AS A COMPLETE DOCUMENT

This Report must be read as a whole and sections taken out of context may be misleading. If discrepancies exist between the preliminary (draft) and final versions of the Report, the final version of the Report shall take precedence.

#### 7. LIMITATION OF LIABILITY

MMM Group Limited's liability with respect to the Phase II ESA is limited to re-performing, without cost, any part of the Work that is unacceptable solely as a result of failure to comply with industry standards. MMM Group Limited's maximum liability is limited in accordance with terms in the original contract, provided that notice of claim is made within regulated timelines as of the date of delivery of the Report.