

Site Plan Control Services for New Commercial Site Development

1850 Walkley Road Ottawa, Ontario

Prepared for:

Fadi I. Kachi. Marcello's Market & Deli Inc. 41-2450 Lancaster Rd. Ottawa, On K1B 5N3

LRL File No.: 170757

March 12, 2018

TABLE OF CONTENTS

1	INT	RODUCTION
2	SIT	E DESCRIPTION
3	SCO	OPE OF WORK
4	WA	TER SUPPLY AND FIRE PROTECTION 4
4	4.1	Existing Water Supply Services 4
	4.2	Water Supply Demand 5
4	4.3	Water supply servicing design5
	4.4	Boundary Conditions
5	SAN	NITARY DRAINAGE
ļ	5.1	Existing Sanitary Sewer Services
ļ	5.2	Sanitary Sewer Servicing Design 6
6	STC	ORMWATER MANAGEMENT 6
(6.1	Existing Stormwater Infrastructure 6
(6.2	Stormwater management Concept7
(6.3	Design Criteria7
	6.3.	1 Water Quality
	6.3.	2 Water Quantity7
(6.4	Method of Analysis 8
(6.5	Allowable Release Rate
(6.6	Stormwater Quantity Controls
(6.7	Stormwater Quality Management9
7	ERC	OSION AND SEDIMENT CONTROL 9
8	COI	NCLUSIONS
9	LIM	ITATIONS AND USE OF REPORT10

LIST OF FIGURES

Figure 1 Aerial view of the location of the proposed development (via Google Earth) 3

APPENDICES

- Appendix A Water Demand and Fire Flow Calculations
- Appendix B Stormwater Management Design Sheets
- Appendix C Sanitary Design Sheet
- Appendix D Supporting Documents and CDS Treatment System
- Appendix E Engineering Drawings

1 INTRODUCTION

LRL Associates Ltd. (LRL), consulting engineers have been retained by Moore Design Consultants to prepare a site plan control serviceability report for a proposed new commercial development at 1850 Walkley Road in the City of Ottawa, Ontario. This report discusses the existing conditions of the site and the future site usage with the proposed water, sanitary sewer and stormwater management services.

This report has been prepared in consideration of the existing condition and property boundaries at 1850 Walkley Road, provided by the City of Ottawa. Should there be any important discrepancies in the existing infrastructure that may relate to the site servicing considerations, LRL should be advised in order to review the report recommendations. This report should be read in conjunction with the grading and drainage, site servicing, and stormwater management plans prepared by LRL (see Appendix E – *Engineering Drawings*).

2 SITE DESCRIPTION

The subject property is located within the urban boundary of the City of Ottawa, Ontario. As illustrated in Figure 1, the development will be located South on Walkley Road. The total area of the property measures approximately 0.741 ha.

Figure 1 Aerial view of the location of the proposed development (via Google Earth)

The proposed development is located in a commercial area bounded by different businesses to the south and residential properties to the north. The site is currently a green field with a gravel access road. The land surface has a minimal grade change with elevations ranging between 86.96m and 85.57m.

The proposed development includes building a new 1-storey restaurant (total footprint area of $700m^2$) at the north end of the property and a 2 storeys commercial building (total footprint area of $1,100m^2$) at the rear of the property, on the south side.

3 SCOPE OF WORK

As per the applicable design guidelines, the scope of work includes the following:

Water services

- Calculate the expected domestic water demand at average and peaking conditions,
- Calculate the fire flow requirements as per the Fire Underwriters Survey (FUS) method for both proposed buildings,
- Describe the proposed water distribution network on site and the connection to the existing distribution system.

Sanitary services

- Describe the existing sanitary sewers available to receive wastewater from the building.
- Calculate peak flow rates from the development.
- Describe the proposed sanitary sewer system.
- Verify available capacity in the downstream sanitary sewer.
- · Verify the capacity of the existing lateral sanitary sewer

Stormwater management

- Calculate the allowable stormwater release rate.
- Calculate the anticipated post development stormwater release rates.
- Demonstrate how the target quality and quantity objectives will be achieved.
- Verify the capacity of the existing lateral storm sewer

4 WATER SUPPLY AND FIRE PROTECTION

4.1 Existing Water Supply Services

It is not known if the site has currently a water service connection. If this is the case, the service connection is too small for the proposed private fire hydrant and sprinklers at both buildings. This service will have to be removed and replaced with a new watermain. There is an existing

fire hydrant located at the northwest corner of the said property. Data obtained from the City of Ottawa indicates that the fire flow available in that sector is 133 L/s at the street level.

4.2 Water Supply Demand

As per the Ministry of Environment and Climate Change (MOECC) standards and the City of Ottawa design guidelines, the average water demand for such a commercial development was calculated using an average water demand of 28 m³/ha-day and a daily and hourly peaking factors of 1.5 and 1.8, respectively. Thus, the average daily domestic water demand for both proposed buildings is estimated at 0.24 L/s; the maximum daily demand is 0.36 L/s and the peak hourly demand is 0.65 L/s. Refer to Appendix A – *Water Demand and Fire Flow Calculations* for the domestic water demand and fire flow calculations details. The watermain is sized to provide sufficient water flow rate to the proposed private fire hydrant and sprinkler systems at both buildings.

The fire flow demand was estimated in accordance with the Fire Underwriters Survey (FUS). This method is based on the floor area of the building to be protected, type and combustibility of the structural frame and the separation distances with adjoining buildings. The fire flow demand was calculated separately for each building and was evaluated at **83.3** L/s for Building 1 (restaurant) and **100.0** L/s for Building 2 (office complex). Refer to Appendix A – *Water Demand and Fire Flow Calculations* for the calculations details.

4.3 Water supply servicing design

The proposed commercial site will be serviced by a new 150mmø watermain. The service will connect to the existing 400mmø watermain under Walkley Road and will enter the southwest corner of Building 1 (restaurant) and the northwest corner of Building 2 (office complex). Both buildings will be serviced from the new 150mmø watermain service to be installed on the property.

An existing fire hydrant is located on the south side of Walkley Road, near the entrance of the property. However, to meet the minimum requirement of a 90m radius distance between the fire hydrant and the building, as required by the City of Ottawa, a private fire hydrant on the said property is added to service Building 2 (office complex). Refer to LRL drawing C401 Rev.01 – *Servicing Plan* for the layout of the proposed water services and connections.

4.4 Boundary Conditions

The existing boundary conditions provided by the City of Ottawa for the site are as follow:

Minimum HGL = 124.4m

Maximum HGL = 131.6m;

Available fire flow = 133 L/s at a ground elevation of 126.2m

As the available fire flow provided by the City of Ottawa is above the minimum fire flow requirement for the proposed development, no supplementary fire protection and storage are required for the site.

5 SANITARY DRAINAGE

5.1 Existing Sanitary Sewer Services

Currently, the existing site has a sanitary stub connected to Walkley Road towards the 450mmø sanitary sewer located on the north side of the street via a 200mmø diameter service located on the west side of the proposed buildings. The existing municipal sanitary sewer drains eastwards under Walkley Road.

5.2 Sanitary Sewer Servicing Design

Proposed Building 1 (restaurant) and Building 2 (office complex) will be serviced with a new 200mmø sanitary service connecting to the existing municipal 450mmø sanitary sewer under Walkley Road. The new service will be located on the west side of the buildings. The proposed 200mmø PVC sanitary service sewer pipe will be installed at a 1.00% gradient. Refer to LRL drawing C401 – *Servicing Plan* for the proposed sanitary servicing layout and connections.

The design parameters used to calculate the expected site sanitary flow are: for commercial & institutional flow of 50,000L/ha/day, a commercial & institutional peaking factor of 1.5 and an infiltration rate of 0.28 L/s/ha. Based on these parameters and a site area of 0.741ha, the total expected sanitary flow was estimated at **0.64 L/s**. Refer to Appendix C – *Sanitary Design Sheet* for the sanitary sewer calculations details.

A new sanitary manhole SAN MH01 will be installed on the site at the southwest corner of the new Building 1 (restaurant). This manhole will capture the sanitary sewer flow coming from both buildings and act as a monitoring manhole before conveying the sanitary flow towards the municipal sanitary sewer network under Walkley Road.

6 STORMWATER MANAGEMENT

6.1 Existing Stormwater Infrastructure

Presently, the site has an existing storm service stub connection at the northwest portion of the property that connects into the existing 1,950mmø storm sewer under Walkley Road and flowing eastwards. The area being impacted by the proposed new development currently drains

southeast, towards the existing swale along the south property line. Refer to drawing C701 Rev.01 – *Pre-Development Watershed Plan*. Watershed EWS-01 currently drains uncontrolled towards the southeast corner of the property which appears to be draining most of the neighbouring properties and ultimately, outlets onto Don Reid Drive.

6.2 Stormwater management Concept

Existing catchment EWS-01 (0.741ha) currently drains towards the rear of the property before being conveyed towards Don Reid Drive. The post-development conditions will consist of adding two (2) new buildings and a paved parking area which will increase the runoff coefficient. In order to regulate and control the increase in the total runoff, stormwater quantity control will be implemented. The stormwater will be captured by a number of catchbasins before being conveyed to the precast concrete structure CBMH02 and the municipal storm sewer network. In order to throttle the 100-year storm flows, the stormwater will be controlled at structure CBMH02 with the use of an undersized 300mmø diameter pipe, acting as a flow restrictor. With the undersized pipe installed at structure CBMH02, along with the underground pipe storage chambers and the parking lot surface ponding, the stormwater runoff quantity flow rate will be maintained during a 100-year storm event.

Refer to LRL drawings C301 Rev.01 – *Grading and Drainage Plan* and C702 Rev. 01 – *Post-Development Watershed Plan* for the grading/drainage plan and stormwater management plan and Appendices B and D for stormwater management design calculation spreadsheets.

6.3 Design Criteria

Stormwater quantity and quality control measures are proposed for this site to reduce post development stormwater runoff to allowable levels.

6.3.1 Water Quality

On-site water quality will be implemented with a downstream treatment unit which is capable of filtration up to 80% TSS.

6.3.2 Water Quantity

All storm events up to and including the 100 year event will be controlled to the 5 year predevelopment level. The site major overland flow route has been designed to ensure that storm events beyond the 100 year design storm can be safely conveyed overland towards the Walkley Road right of way. The minor system (storm sewer) within the site is sized to convey the 5 year storm event flows from the site to the municipal storm sewer on Walkley Road.

6.4 Method of Analysis

The Rational Method was used to calculate the runoff from the development. The Intensity-Duration-Frequency (IDF) curve formulas of the MacDonald Cartier International Airport, City of Ottawa, were used to calculate the peak storm flows for the catchment WS-01, WS-02, WS-03 WS-04, WS-05, WS-06, WS-07, WS-08 and WS-09.

6.5 Allowable Release Rate

A maximum allowable release rate was calculated from the rational method for the 5-year predevelopment. Runoff from the post-development conditions must be controlled to the predevelopment runoff coefficient or a maximum runoff coefficient of **C=0.50**, for both the minor and major storms (5-year up to 100-year storms) using a time of concentration not less than 10 minutes.

EWS-01- Walkley Road

 $\begin{array}{l} C=0.25\\ I=104.2mm/hr \ calculated \ with \ Tc=10 \ min.\\ A_{EWS-01}=0.741Ha\\ Q_{peak}=2.78x0.25x104.2x0.741=\textbf{53.68 L/s} \end{array}$

6.6 Stormwater Quantity Controls

The proposed stormwater management quantity control for this development will be accomplished through the use of a slighty undersize pipe outlet, a pipe and structure underground water storage and some parking lot surface ponding storage. The proposed site storm sewer and stormwater management system can be seen on drawing C401 Rev.01 – *Servicing Plan* and the detailed calculations, including the design sheet are included in Appendices B and D.

The collected stormwater from areas WS-01, WS-02, WS-03 WS-04, WS-05, WS-06, WS-07, WS-08 and WS-09, 0.1024ha, 0.0912ha, 0.1047ha, 0.059ha, 0.1044ha, 0.0464ha, 0.0691ha, 0.0730ha, 0.0490ha and 0.1013ha respectively consist of the roof top areas, the parking area and some landscaped areas. These catchments areas will be captured through a number of catchbasins and controlled using the undersized 300mmø pipe. The undersized pipe in structure CBMH02 will release **53.6 L/s** with a maximum head of 2.39 m (HWL = 86.12m) during the 100-year storm event. In order to control the 100-year storm event, 226.2m³ of on-site storage is be required. This storage will be provided with the use of some pipe/structure storage and parking lot surface ponding up to the expected HWL, 86.12m MASL. The volume of 226.2m³ is provided as follows: $86.5m^3$ from on-site underground pipes/structures and 156.7m³ from the parking lot surface ponding. Refer to C401 Rev.01 – *Servicing Plan* and Appendix D -

Supporting Documents and CDS Treatment System for the stormwater design and calculation details. Therefore, the stormwater outlet onto Walkley Road is capable of achieving the required stormwater quantity control.

6.7 Stormwater Quality Management

Enhanced 80% TSS (Total Suspended Solids) removal will be provided with a stormwater treatment unit to be installed at the downstream end of the stormwater sewer before outletting into the municipal main. The sediment at the bottom of the stormwater treatment unit will need to be cleaned when and as required. Refer to Appendix D - *Supporting Documents and CDS Treatment System* for the Echelon Environmental analysis and design information.

7 EROSION AND SEDIMENT CONTROL

During the construction, erosion and sediment controls is to be provided primarily via a sediment control fence to be erected along the perimeter of the site where runoff has the potential of leaving the site and property. Inlet sediment control devices are also to be provided in any catchbasin and/or manhole in and around the site that could be impacted by the site construction activities. Construction and maintenance requirements for erosion and sediment controls are to comply with Ontario Provincial Standard Specification OPSS 577. Refer to LRL drawing C101 Rev.01 – *Erosion and Sediment Control Plan* for the details.

8 CONCLUSIONS

In accordance with the report objectives, the analyses of the proposed development can be summarized as follows:

Water Service

- The expected maximum domestic water demand for the site is 0.65 L/s.
- The required fire flow rate is calculated at 100.0 L/s using the FUS method.
- A private fire hydrant is required on the property.
- The watermain size and type on the property is 150mmø PVC DR-18 pipe.

Sanitary Service

- The anticipated sanitary flow from the proposed development is 0.64 L/s.
- New buildings will be serviced with a new 200mmø sanitary service connection to the existing 450mmø sanitary sewer under Walkley Road.

Stormwater Management

• The stormwater release flow rate from the proposed development will meet the predevelopment allowable release rate of 53.68 L/s to the municipal sewer.

- Stormwater quantity control objectives will be met with the on-site stormwater storage.
- Stormwater quality control objectives will be achieved through the use of a stormwater treatment unit (see details in Appendix D).

9 LIMITATIONS AND USE OF REPORT

The report conclusions are applicable only to the project described in this report. Any important changes require a review by LRL Associates Ltd. to insure the compatibility with the recommendations contained in this report. We trust the information and design presented meet your current requirements. Please do not hesitate to contact us should you have any questions or concerns.

Prepared by:

Guillaume Brunet, P.Eng Civil Engineer

GB/JCL Documents enclosed

APPENDIX A

Water Demand and Fire Flow Calculations

Water Service Calculations

LRL File No. :	170757
Project :	1850 Walkley Rd., Ottawa, ON
Date :	March 12, 2018
Designed by :	Guillaume Courtois

Water Demand

Total site a	rea:	0.741	ha	
Q _{average} = Q _{average} = Q _{average} = Q _{average} =	28 20.748 20748 0.24	m ³ / ha·dd m ³ / day L / day L / s	ay	(As per MOE guidelines)
Maximum Maximum	daily peak daily dema	factor: and =	1.5 31122	L / day
		=	0.36	L/s
Maximum	hour peak	factor:	1.8	
Maximum	hour dema	nd =	56020	L / day
		=	0.65	L/s

Water Service Pipe Sizing

Q = VA	Where: V = velocity
	A = area of watermain pipe
	Q = water supply flow rate

By deriving the above formula, we can obtain the diameter of the pipe:

Minimum pipe diameter:	d = (4	4Q/πV) ^{1/2}	2
	d =	0.021	m
	<i>d</i> =	21	mm
Proposed pipe diameter:	150 n	nm	(due to on-site hydrant)

Fire Flow Calculations - Building 1

LRL F	ile No.	170757
Proje	ct	1850 Walkley Rd., Ottawa, ON
Date		March 12, 2018
Metho	bd	Fire Underwriters Survey (FUS)
Desig	ned by	Guillaume Courtois

Step	Task	Term	Options	Multiplier	Choose:	Value	unit	Fire Flow						
			Structural Framing M	aterial										
			Wood Frame	1.5										
	Chasses from used for	Coefficient C	Ordinary Construction	1.0										
1	building	related to the type of	Non-combustible construction	0.8	Ordinary Construction									
	building	construction	Fire resistive construction <2 hrs	0.7										
			Fire resistive construction >2 hrs	0.6										
			Floor Space Are											
			Single family dwelling	0										
2	Choose type of housing	Type of housing	Townhouse - no. of units	0	Building - no. of units per floor	1	unit(s)							
			Building - no. of units per floor	1										
3	Enter area of a unit	Enter floor space area	of one unit (excluding basement)	1	700.0		sq.m.							
	Obtain fire flow before	Poquired fire flow			Aug a 0.5		L/min	6,000						
4	reductions	Required life now												
	Reductions or surcharge due to factors affecting burning													
			Non-combustible	-0.25										
	Choose combustibility	Occupancy bazard	Limited combustible	-0.15										
5		reduction or surcharge	Combustible	0	Combustible	0								
			Free burning	0.15			L/min	6,000						
			Rapid burning	0.25			L/s	100.0						
			Sprinklers (NFPA13)	-0.30	True	-0.3								
6	Choose reduction for sprinklers	Sprinkler reduction	Water supply is standard for both the system and fire department hose lines	-0.10	True	-0.1	L/min	3,600						
			Fully supervised system	-0.10	False	0	L/s	60.0						
			North side	Over 45m	0									
_	Channe concertion	Exposure distance	East side	20.1 to 30m	0.1									
'	Choose separation	between units	South side	Over 45m	0		L/min	5,000						
		West side 20.1 to 30m 0.1 0.2												
		·	Net required fire fl	ow										
	Obtain fire flaur			Minimum	required fire flow rate (rounded to ne	earest 1000)	L/min	5,000						
8	Uptain fire flow,	Minimum required fire flow rate												
					Required duratio	n of fire flow	hr	2						

Fire Flow Calculations - Building 2

LRL File No.	170757
Project	1850 Walkley Rd., Ottawa, ON
Date	March 12, 2018
Method	Fire Underwriters Survey (FUS)
Designed by	Guillaume Courtois

Step	Task	Term	Options	Multiplier	Choose:	Value	unit	Fire Flow						
			Structural Framing Ma	aterial	-	_								
			Wood Frame	1.5										
	Chasses from used for	Coefficient C	Ordinary Construction	1.0										
1	building	related to the type of	Non-combustible construction	0.8	Ordinary Construction	1								
		construction	Fire resistive construction <2 hrs	0.7										
			Fire resistive construction >2 hrs	0.6										
			Floor Space Are	Floor Space Area										
			Single family dwelling	0										
2	Choose type of housing	Type of housing	Townhouse - no. of units	0	Building - no. of units per floor	1	unit(s)							
			Building - no. of units per floor	1										
3	Enter area of a unit	Enter floor space area	of one unit (excluding basement)	1	1100.0		sq.m.							
	Obtain fire flow before	Deguired fire flow	Eta Eta	- 000 - 0	A		L/min	7,000						
4	reductions	Required life now												
Reductions or surcharge due to factors affecting burning														
			Non-combustible	-0.25										
	Choose combustibility	Occupancy bazard	Limited combustible	-0.15										
5		reduction or surcharge	Combustible	0	Combustible	0								
			Free burning	0.15			L/min	7,000						
			Rapid burning	0.25			L/s	116.7						
			Sprinklers (NFPA13)	-0.30	True	-0.3								
6	Choose reduction for sprinklers	Sprinkler reduction	Water supply is standard for both the system and fire department hose lines	-0.10	True	-0.1	L/min	4,200						
			Fully supervised system	-0.10	False	0	L/s	70.0						
			North side	Over 45m	0									
_	Channe ann antion	Exposure distance	East side	20.1 to 30m	0.1									
'	Choose separation	between units	South side	Over 45m	0		L/min	6,000						
		West side 20.1 to 30m 0.1 0.2												
			Net required fire fl	ow										
	Obtain fire flaur			Minimum	required fire flow rate (rounded to ne	earest 1000)	L/min	6,000						
8	duration and volume	Minimum required fire flow rate												
					Required duratio	n of fire flow	hr	2						

APPENDIX B

Stormwater Management Design Sheets

LRL Associates Ltd. Storm Design Sheet

	LRL File No.	170757		Storm Design Parameters			
	Project:	Commercial Site Development	Rational Method Q = 2.78CIA		Ottawa Macdonald-Cartier International Airport IDF curve		
	Location:	1850 Walkley Road, Ottawa, Ontario			equation (5 year event, intensity in mm/hr)		
	Date:	March 12, 2018	Q = Peak flow in litres per second (L/s)	Runoff Coefficient (C)	$I = 998.071 / (T_c + 6.053)^{0.814}$		
	Designed:	G. Brunet	A = Drainage area in hectares (ha)	Grass 0.2	Min. velocity = 0.80 m/s		
ENGINEERING) INGENIERIE	Checked:	J.C. Lalonde	C = Runoff coefficient	Gravel 0.80	Manning's "n" = 0.013		
	Drawing Reference:	C401 Rev.01	I = Rainfall intensity (mm/hr)	Asphalt / rooftop 0.90			
				•	•		

LOCATION				AREA (ha)	FLOW				STORM SEWER							MANHOLE					WATE	ERSHED	AVAILABLE STORAGE								
WATERSHED / STREET	From MH	To MH	C = 0.20	C = 0.80	C = 0.90	Indiv. 2.78AC	Accum. 2.78AC	Time of Conc. (min.)	Rainfall Intensity (mm/hr)	Peak Flow Q (I/s)	Pipe Diameter (mm)	Туре	Slope (%)	Length (m)	Capacity Full (L/s)	Velocity Full (m/s)	Time of Flow (min.)	Ratio (Q/Q _{FULL})	Up Invert (m)	Down Invert (m)	T/G Up Stream (m)	T/G Down Stream	Up Depth obv (m)	Down Depth obv (m)	Up Depth inv (m)	Total Area (ha)	Combined C	Pipe Storage (m ³)	Upstream CB/MH Size (m)	Water Depth (m)	CB/MH Storage (m ³)	Insulation
					-				-														-						-	-	-	
WS-01	CB11	CBMH10	0.048	0.000	0.055	0.16	0.16	10.00	104.19	17.06	300	PVC	0.34%	23.5	56.4	0.80	0.49	0.30	84.13	83.99	86.00	85.90	1.57	1.61	1.57	0.10	0.58	1.66	0.60	1.57	0.57	
WS-02	CBMH10	CBMH09	0.010	0.000	0.081	0.21	0.37	10.49	101.67	37.87	375	PVC	0.25%	19.4	87.7	0.79	0.41	0.43	83.92	83.87	85.90	85.82	1.61	1.57	1.61	0.09	0.82	2.14	1.20	1.61	1.82	
WS-03	CBMH09	CBMH08	0.016	0.000	0.089	0.23	0.60	10.90	99.68	60.10	450	PVC	0.20%	22.2	127.5	0.80	0.46	0.47	83.80	83.76	85.82	85.82	1.57	1.61	1.57	0.10	0.79	3.53	1.20	1.57	1.78	
WS-04	CBMH08	CBMH06	0.016	0.000	0.088	0.23	0.83	11.36	97.52	81.20	450	PVC	0.20%	25.7	127.5	0.80	0.53	0.64	83.73	83.78	85.82	86.00	1.64	1.77	1.64	0.10	0.79	4.09	1.20	1.64	1.85	
WS-05	CB07	CBMH06	0.014	0.000	0.032	0.09	0.09	10.00	104.19	9.22	300	PVC	0.34%	21.9	56.4	0.80	0.46	0.16	83.90	83.83	85.90	86.00	1.70	1.87	1.70	0.05	0.69	1.55	0.60	1.70	0.61	
					1																											
WS-06	CBMH06	CBMH05	0.000	0.000	0.069	0.17	1.09	11.89	95.15	104.09	525	PVC	0.16%	23.2	172.0	0.79	0.49	0.61	83.61	83.57	86.00	85.95	1.87	1.86	1.86	0.07	0.90	5.02	1.20	1.86	2.11	
WS-09	CBMH05	CBMH02	0.000	0.000	0.101	0.25	1.35	12.38	93.10	125.44	525	PVC	0.16%	30.1	172.0	0.79	0.63	0.73	83.54	83.49	85.95	86.25	1.89	2.24	1.88	0.10	0.90	6.52	1.80	1.88	4.80	
WS-07	CB04	CBMH03	0.012	0.000	0.061	0.16	0.16	10.00	104.19	16.54	375	PVC	0.25%	20.6	87.7	0.79	0.43	0.19	83.63	83.58	86.05	86.35	2.05	2.40	2.05	0.07	0.78	2.28	1.20	2.05	2.94	
WS-08	CBMH03	CBMH02	0.000	0.000	0.049	0.12	1.63	13.01	90.58	147.53	600	PVC	0.13%	23.5	223.1	0.79	0.50	0.66	83.55	83.52	86.35	86.25	2.20	2.13	2.20	0.05	0.90	6.65	1.20	2.20	2.49	
	CBMH02	CDS	0.000	0.000	0.000	0.00	1.63	13.51	88.71	144.48	300	PVC	0.31%	10.3	53.6	0.76	0.23	2.70	83.46	83.43	86.25	86.74	2.49	3.01	2.49	0.00	-	0.00	0.00	0.00	0.00	
	CDS	EXIST	0.000	0.000	0.000	0.00	1.63	13.73	87.88	143.13	375	PVC	0.25%	13.4	53.6	0.49	0.46	2.67	83.43	83.40	86.74	-	2.93		-	0.00	-	0.00	0.00	0.00	0.00	
																												33.44			18.96	

Note: The Peak flow controlled by the undersized pipe is shown in this design sheet.

HWL (100 Year) 86.12

 HWL (100 Year)
 86.12

 TOTAL STORAGE
 52.40

APPENDIX C

Sanitary Design Sheet

L FNGIME	LRL File No. 170757 Project: Commercial Site Development Location: 1850 Walkley Road, Ottawa, Ontario Date: March 12, 2018									Average E Commerci Light Indu Heavy Ind Maximum Commerci	Daily Flow ial & Institu strial Flow lustrial Flo Residentia ial & Institu	= 350 L/p/o utional Flov = 35000 L w = 55000 al Peak Fao utional Pea	day v = 50000 L /ha/day L/ha/day ctor = 4.0 k Factor = 1	/ha/day 1.5		Sanitary	r Design Parameters Industrial Peak Factor = as per Appendix 4-B = 7 Extraneous Flow = 0.28 L/s/gross ha							Pipe Design Parameters Minimum Velocity = 0.60 m/s Manning's n = 0.013				
LOCATION RESIDENTIAL AREA AND POPULATION										ERCIAL	I	NDUSTRI/	AL.	INSTITU	JTIONAL	C+I+I	IN	FILTRATI	ON	τοται				PIPE			MAN	HOLE
STREET	FROM MH	ТО МН	AREA (Ha)	POP.	CUMM AREA (Ha)	IULATIVE POP.	PEAK FACT.	PEAK FLOW (l/s)	AREA (Ha)	ACCU. AREA (Ha)	AREA (Ha)	ACCU. AREA (Ha)	PEAK FACT.	AREA (Ha)	ACCU. AREA (Ha)	PEAK FLOW (I/s)	TOTAL AREA (Ha)	ACCU. AREA (Ha)	INFILT. FLOW (I/s)	FLOW (I/s)	LENGTH (m)	DIA. (mm)	SLOPE (%)	MATERAIL	CAP. (FULL) (I/s)	VEL. (FULL) (m/s)	UP INVERT (m)	DOWN INVERT (m)
																										<u> </u>		
SITE	PROP. BLDG 02	MH01	0.000	0.0	0.00	0.0	4.0	0.00	0.194	0.194	0.00	0.00	7.0	0.0	0.0	0.17	0.19	0.19	0.05	0.22	90.0	200	1.00%	PVC	32.80	1.04	83.86	82.96
SITE	PROP. BLDG 01	MH01	0.000	0.0	0.00	0.0	4.0	0.00	0.548	0.548	0.00	0.00	7.0	0.0	0.0	0.48	0.55	0.55	0.15	0.63	2.5	150	1.00%	PVC	15.23	0.86	83.02	82.99
0175	14104	751.0.07								0.740													4.000/	DV O			00.00	00.04
SILE	MH01	TRUNK	0.000	0.0	0.00	0.0	4.0	0.00	0.000	0.742	0.00	0.00	7.0	0.0	0.0	0.64	0.00	0.00	0.00	0.64	62.0	200	1.00%	PVC	32.80	1.04	82.93	82.31
		1	1	1	1	NOTES	1	1	1	1	1	1	1	Designed	:	1		1	L	1	1	PR	JECT:	1	1	L	1	1
	Existing inverte	s and slopes a	re estimate	ed. They are	to be confi	rmed on-site									G.B.						Cor	mmercial S	Site Develo	pment				
														Checked:							1850 V	LOC Valkley R	ATION:	a Ontario				
	Dwe													Dwg. Ref	erence:		File Ref.: Date:						Sheet No.				et No.	
	L												Ű,	C.401		170575 12						2/03/2018 1 of 1				of 1		

APPENDIX D

Supporting Documents and CDS Treatment System

LRL Associates Ltd. Storm Watershed Summary

	LRL File No.	170757
	Project:	Commercial Site Development
	Location:	1850 Walkley Road, Ottawa, Ontario
	Date:	March 12, 2018
	Designed:	G. Brunet
GINEERING I INGÉNIERIE	Checked:	J.C. Lalonde
	Drawing Reference:	C701, C702 Rev.01

Pre-Development Catchments

WATERSHED	C = 0.20	C = 0.85	C = 0.90	Total Area (ha)	Combined C
EWS-01	0.741	0.000	0.000	0.741	0.20
TOTAL	0.741	0.000	0.000	0.741	0.20

Post-Development Catchments

WATERSHED	C = 0.20	C = 0.80	C = 0.90	Total Area (ha)	Combined C
WS-01	0.048	0.000	0.055	0.1024	0.58
WS-02	0.010	0.000	0.081	0.0912	0.82
WS-03	0.016	0.000	0.089	0.1047	0.79
WS-04	0.016	0.000	0.088	0.1044	0.79
WS-05	0.014	0.000	0.032	0.0464	0.69
WS-06	0.000	0.000	0.069	0.0691	0.90
WS-07	0.012	0.000	0.061	0.0730	0.78
WS-08	0.000	0.000	0.049	0.0490	0.90
WS-09	0.000	0.000	0.101	0.1013	0.90
TOTAL	0.116	0.000	0.625	0.7415	0.79

LRL File No. Project: Location: Date: Designed: Checked:

170757 Commercial Site Development 1850 Walkley Road, Ottawa, Ontario March 12, 2018 G. Brunet J.C. Lalonde Drawing Ref.: C401 Rev.01

Design Sheet

b = 0.814

STORM - 100 YEAR

Runoff Equation

Q = 2.78CIA (L/s) C = Runoff coefficient

- I = Rainfall intensity (mm/hr) = A / (Td + C) ^B
- A = Area (ha)
- T_c = Time of concentration (min)

Pre-Devlopment Catchments within Development Area

	Total Area =	0.741	ha	∑R=	0.20
Un-Controlled	EWS-01	0.741	ha	R=	0.20
	Total Uncontrolled =	0.741	ha	ΣR=	0.20

Allowable Release Rate

5 Year Pre-Development Flow Rate

 $I_5 = 998.071 / (Td + 6.053)^{0.814}$

a = 998.071

C = 6.053

C =	0.25	max of 0.5 as per City of Ottawa
I =	104.2	mm/hr
Tc =	10	min
Total =	0.741	ha
Allowable Release Rate=	53.68	L/s

Post-development Stormwater Management

					ΣR ₅	ΣR ₁₀₀
	Total Site Area =	0.742	ha	∑R=	0.79	0.99
	WS-01	0.102	ha	R=	0.58	0.72
	WS-02	0.091	ha	R=	0.82	1.00
	WS-03	0.105	ha	R=	0.79	0.99
	WS-04	0.104	ha	R=	0.79	0.99
Controlled	WS-05	0.046	ha	R=	0.69	0.86
Controlled	WS-06	0.069	ha	R=	0.90	1.00
	WS-07	0.073	ha	R=	0.78	0.98
	WS-08	0.049	ha	R=	0.90	1.00
	WS-09	0.101	ha	R=	0.90	1.00
	Total Contolled =	0.742	ha	∑R=	0.79	0.95

Post-development Stormwater Management

l ₁₀₀ = 1735.688 / (Td + 6.014) ^{0.820}			a =	1735.688	b =	0.82	C =	6.014	
			Storage Required						
Time (min)	Intensity (mm/hr)	Controlled Runoff** (L/s)	Storage Volume (m ³)	Controlled Release Rate (L/s)	Uncontrolled Runoff (L/s)	Total Release Rate (L/s)			
10	178.6	348.60	176.95	53.68	0.00	53.68			
15	142.9	278.97	202.76	53.68	0.00	53.68			
20	120.0	234.18	216.60	53.68	0.00	53.68			
25	103.8	202.74	223.59	53.68	0.00	53.68			
30	91.9	179.35	226.21	53.68	0.00	53.68			
35	82.6	161.22	225.83	53.68	0.00	53.68			
40	75.1	146.71	223.26	53.68	0.00	53.68			
45	69.1	134.81	219.04	53.68	0.00	53.68			
50	64.0	124.86	213.53	53.68	0.00	53.68			
60	55.9	109.12	199.59	53.68	0.00	53.68			
70	49.8	97.20	182.80	53.68	0.00	53.68			
80	45.0	87.84	163.94	53.68	0.00	53.68			
90	41.1	80.26	143.53	53.68	0.00	53.68			
100	37.9	74.00	121.90	53.68	0.00	53.68			
110	35.2	68.73	99.30	53.68	0.00	53.68			
120	32.9	64.22	75.89	53.68	0.00	53.68			

Onsite Stormwater Retention

226.21 m ³	
33.44 m ³	refer to
18.96 m ³	refer to
34.00 m ³	refer to
156.68 m ³	refer to
243.08 m ³	
	226.21 m ³ 33.44 m ³ 18.96 m ³ 34.00 m ³ 156.68 m ³ 243.08 m ³

to Storm Sewer Design Sheet to Storm Sewer Design Sheet to LRL Plan C.301 to LRL Plan C.301

LRL File No. 170757 Project: Commercial Site Development Location: 1850 Walkley Road, Ottawa, Ontario Date: March 12, 2018 Designed: G. Brunet Checked: J.C. Lalonde Project: Location: Date: Designed: Checked: J.C. Lalonde Drawing Ref.: C401 Rev.01

STORM - 5 YEAR

Runoff Equation

- $\begin{array}{l} \textbf{Q} = \textbf{2.78CIA} (\textbf{L/s}) \\ \textbf{C} = \text{Runoff coefficient} \\ \textbf{I} = \text{Rainfall intensity} (mm/hr) = \textbf{A} / (Td + \textbf{C})^{\text{B}} \\ \textbf{A} = \text{Area} (ha) \\ \textbf{T}_c = \text{Time of concentration (min)} \end{array}$

Pre-Devlopment Catchments within Development Area

	Total Area =	0.741	ha	∑R=	0.20
Un Centrelled	EWS-01	0.741	ha	R=	0.20
On-Controlled	Total Uncontrolled =	0.741	ha	∑R=	0.20
Allowable Release	Rate	5 Year Pre-Devel	opment Flow R	ate	
$I_5 = 998.071 / (Td + 6.053)^{0.814}$		a =	998.071	b =	0.814

 $I_5 = 998.071 / (Td + 6.053)^{0.814}$

a = 998.071

max of 0.5 as per City of Ottawa mm/hr min ha L/s 0.25 104.2 10 0.741 C = I = Tc = Total =

Allowable Release Rate= 53.68

Post-development Stormwater Management

					<u>Σ</u> R ₅	ΣR ₁₀₀
	Total Site Area =	0.742	ha	∑R=	0.79	0.99
	WS-01	0.1024	ha	R=	0.58	0.72
	WS-02	0.0912	ha	R=	0.82	1.00
	WS-03	0.1047	ha	R=	0.79	0.99
	WS-04	0.1044	ha	R=	0.79	0.99
Controllad	WS-05	0.0464	ha	R=	0.69	0.86
Controlled	WS-06	0.0691	ha	R=	0.90	1.00
	WS-07	0.0730	ha	R=	0.78	0.98
	WS-08	0.0490	ha	R=	0.90	1.00
	WS-09	0.1013	ha	R=	0.90	1.00
	Total Contolled =	0.742	ha	ΣR=	0.79	0.95

Post-development Stormwater Management

$I_5 = 998.071 / (Td + 6.053)^{0.814}$ a = 998.071 b = 0.814 C = 6.053

			Storage Require	ed]	
				Controlled		
	Intensity	Controlled	Storage	Release Rate	Uncontrolled	Total Release
Time (min)	(mm/hr)	Runoff** (L/s)	Volume (m ³)	(L/s)	Runoff (L/s)	Rate (L/s)
10	104.2	203.41	89.84	53.68	0.00	53.68
15	83.6	163.13	98.50	53.68	0.00	53.68
20	70.3	137.15	100.16	53.68	0.00	53.68
25	60.9	118.89	97.81	53.68	0.00	53.68
30	53.9	105.28	92.88	53.68	0.00	53.68
35	48.5	94.72	86.18	53.68	0.00	53.68
40	44.2	86.26	78.19	53.68	0.00	53.68
45	40.6	79.32	69.22	53.68	0.00	53.68
50	37.7	73.51	59.49	53.68	0.00	53.68
60	32.9	64.32	38.28	53.68	0.00	53.68
70	29.4	57.34	15.38	53.68	0.00	53.68
80	26.6	51.86	0.00	53.68	0.00	53.68
90	24.3	47.42	0.00	53.68	0.00	53.68
100	22.4	43.75	0.00	53.68	0.00	53.68
110	20.8	40.65	0.00	53.68	0.00	53.68
120	19.5	38.01	0.00	53.68	0.00	53.68

Onsite Stormwater Retention

Total Storage Required =	100.16	m ³
Pipe Storage =	33.44	m^3
CB/MH Storage =	18.96	m^3
Stormtech Chambers =	34.00	m ³
Surface Ponding =	156.68	m ³
Total Available Storage =	243.08	m³

refer to Storm Sewer Design Sheet refer to Storm Sewer Design Sheet refer to LRL Plan C.301 refer to LRL Plan C.301

ENVIRONMENTAL 505 Hood Road Unit 26 Markham ON L3R 5V6 E-mail: info@echelonenvironmental.ca

March 07, 2018

LRL Associates Ltd. 5430 Canotek Road Ottawa, ON K1J 9G2

Attention: Mr. Guillaume Brunet P.Eng.

RE: CDS Unit for 1850 Walkley Road, Ottawa

Site Specific Data

The proposed CDS design is based on site-specific data provided by LRL Associates Ltd. The following table provides a summary of the hydrologic parameters specific to the application:

Total Drainage Area (ha):	0.7415
Site Imperviousness:	79%
Time of Concentration, t _c (min):	10
Particle Size Distribution:	FINE
Level of Protection Required:	Enhanced (MOE Level 1)
Estimated Peak Flowrate, Q ₁₀₀ :	53.68 L/s (100yr)

Selected CDS Model

The selected CDS model and its standard capacities are summarized in the table below:

CDS Model:	PMSU2020_5
Sump Capacity (L):	1.668
Total Holding Capacity (L):	3.149
Oil Capacity (L):	376

Att: A) CDS TSS Calculations

- B) CDS General Cut Sheet Drawings
- C) MOE NETE Approval Certificate

Appendix A CDS TSS Calculations

CDS Ave	erage A	nnual E	fficiency	For TSS	Removal	& Total A	nnual V	olume	Treate	d
Area =	0.74	na	Upstream Sto	rage:	3	Engineer:		lates Ltd.		
Impervious:	79	%	Storage	226	m°	Contact:	Guillaume E	Srunet, P.En	g	
CDS Model:	PMSU2020	_5				Date:	7-Mar-18			
Flowrate:	31	I/S				Due is et.	4050 M/-	Deed		
IDF Data:	Ottawa					Project:		ey Road		
P3D:	FINE					OGS ID:	CDS			
Return	Period	Poak	227	Treated	Total	Annual	System	CDS	By-Pass	Volume
Return	i enou	Flow	Percentage	Flow	Flow	Exceedance	Flow	Flow	Flow	Percentage
		TIOW	Captured	Volume	Volume	Probability	1100	11000	1100	Treated
month / yr	Yr	l/s	%	litres	litres	%	l/s	l/s	l/s	%
1-M	0.08	4.94	95.71	4910	4910	100.00	4.94	4.94	0.00	100.00
2-M	0.17	11.02	91.99	11087	11087	99.75	11.02	11.02	0.00	100.00
3-M	0.25	15.93	88.97	16246	16246	98.17	15.93	15.93	0.00	100.00
4-M	0.33	20.37	86.25	20978	20978	95.04	20.37	20.37	0.00	100.00
5-M	0.42	23.81	84.13	24686	24686	90.91	23.81	23.81	0.00	100.00
6-M	0.50	27.24	82.02	28394	28394	86.47	27.24	27.24	0.00	100.00
7-M	0.58	29.80	80.18	30991	31225	82.01	29.80	29.80	0.00	99.37
8-M	0.67	32.36	78.34	33588	34056	77.67	32.36	31.15	1.21	98.73
9-M	0.75	34.93	76.49	36184	36886	73.64	34.93	31.15	3.78	98.10
10-M	0.83	36.94	74.60	37614	39154	69.90	36.94	31.15	5.79	96.28
11-M	0.92	38.94	72.71	39044	41422	66.40	38.94	31.15	7.79	94.46
1-Yr	1	40.95	70.82	40473	43689	63.21	40.95	31.15	9.80	92.64
2-Yr	2	57.53	57.12	48117	62692	39.35	57.53	31.15	26.38	76.75
5-Yr	5	88.36	40.87	56157	100892	18.13	88.36	31.15	57.21	55.66
10-Yr	10	110.35	33.85	60477	130669	9.52	110.35	31.15	79.20	46.28
25-Yr	25	134.34	28.42	64779	166272	3.92	134.34	31.15	103.19	38.96
50-Yr	50	158.47	24.37	68918	205751	1.98	158.47	31.15	127.32	33.50
100-Yr	100	176.66	21.91	72065	238965	1.00	176.66	31.15	145.51	30.16
Average Annual TSS Removal Efficiency [%]: 80.1 Ave. Ann. T. Volume [%]: 96.3										

Notes:

CDS Efficiency based on testing conducted at the University of Central Florida
 CDS design flowrate and scaling based on standard manufacturer model & product specificiations

CDS Stormwater Treatment Unit Performance

Particle Size	% of Particle			
(µm)	Mass			
< 20	20			
20 – 40	10			
40 - 60	10			
60 – 130	20			
130 – 400	20			
400 – 2000	20			

Table 1. Fine Particle Size Distribution (PSD)

Removal Efficiencies – CDS Unit Testing Under Various Flow Rates

The following performance curves are based on controlled tests using a full scale CDS Model PMSU20_20 (2400 micron screen), 1.1-cfs (494-gpm) capacity treatment unit.

Figure 1. CDS Unit Performance for Fine PSD

CDS Unit Performance Testing Protocol

Tests were conducted using two types of sand – U.S. Silica OK-110 and UF sediment (a mixture of U.S. Silica sands). Particle size gradations for the two types of sand are illustrated in Figure 2.

Figure 2. Test material particle size gradations - CDS Model PMSU20_20 test (Analytical results provided by MACTEC Engineering and Consulting Inc. FL ASTM D-422 with Hydrometer method)

The influent concentration (mg/L) for the test was set at 200-mg/L and verified from slurry feeding. Effluent samples were taken at fixed time intervals during each test run at various flow rates. The composite effluent samples were sent to Test American Analytical Testing Lab, OR for TSS analysis (ASTM D3977-97).

TSS removal rates for the specified PSD (d_{50} of 90 μ m) under various flow rates were calculated from Figure 2 shows the removal efficiency as a function of operating flow rate. This removal efficiency curve as a function of percent flow rate can be applied to all CDS unit models.

Appendix B CDS General Cut Sheet Drawings

Appendix C MOE NETE Approval Certificate ECHNOLOGY ASSESSMENT • TECHNOLOGY ASSESSMEN

OF TECHNOLOGY ASSESSMENT

CDSTM Technologies

The Ontario Ministry of the Environment has reviewed the solid/liquid separation system developed by **CDSTM Technologies**. Based on the review of the documentation submitted by the company (see the Notable Aspects section and Appendix), and data from pilot-scale testing and full-scale operations conducted by various agencies, the Ministry concludes that the continuous deflection separation (CDSTM) system can provide useful removal of solids and floatables as part of a stormwater management system.

The CDS[™] Technologies may be able to provide "basic to enhanced" level of protection when used alone, maintained for effective operation, and when appropriately designed for the development area to be serviced. CDS[™] units may also be used for pretreatment in combination with other non-proprietary technologies such as man-made wetlands, treatment ponds and infiltration basins.

Romays John Mayes, (A) Director

Standards Development Branch Ministry of the Environment (September 2006)

Ontario

New Environmental Technology Evaluation Program

Promoting the development and application of new environmental technologies

	A Ser (Membership vice of Ontario Sood Roads	Monday, April 27, 2015	
Home Newsroom Products & Services Standards	Pre-Qualified Products	Product Classification	About Us	
Echolon Environmental		Contacts	Register 🔒 Login	
Supplier of stormwater treatment systems Category: Distributor	Rob Rainford, P.Eng. General Manager Echelon Environmental			
Products * For product details select the down arrow. Info 濧 CDS Technologies Precast Manhole Stormwater Unit (PMSU) ▲ Info 濧 ChamberMaxx	505 Hood Road, Unit #26 Markham, ON L3R 5V6 Phone: 905-948-0000 x225 Fax: 905-948-00577 Cellular: 416-899-0553 Email: rob@echelonenvironmental.ca			
Products Distributed Contech Construction Products Inc. CDS [®] Using patented continuous deflective separation technology, the CDS [®] separates and traps debris, sediment, and oil from stormwater runoff. T the system allows for 100% removal of floatables and neutrally buoyan available in offline, inline, and grate inlet configurations. The unique link receive stormwater in a single treatment unit. Its unique forebay design multiple pipes on a 170° arc. If needed, the system can perform as a ci flow from the rest of the drainage collection system? eliminating the ne baffle skirt surrounding the non-blocking screening process traps oil an captured oil and grease from high bypass flows, preventing re-entrainn in precast or cast-in-place. Offline units can treat flows from 1 to 300 cf treat up to 7.5 cfs (170 L/s), and internally bypass larger flows in exces removal capability of the CDS system has been proven in the lab and f		www.eeneronenvironinentai.ca		

APPPENDIX E

Engineering Drawings