25 Pickering Place

Transportation Impact Assessment

September 2020
CIMA+ file number: A001043
$\mathrm{ClM}_{\mathrm{N}^{+}}$

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that s / he meets the four criteria listed below.

CERTIFICATION

1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
4. I am either a licensed ${ }^{1}$ or registered ${ }^{2}$ professional in good standing, whose field of expertise [check $\sqrt{ }$ appropriate field(s)] is either transportation engineering \mathbb{d} or transportation planning \square.

1,2 License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.
Dated at $\frac{\text { Burlington }}{\text { (City })}$ this 1st day of \quad October 2020.

Name:
Stephen Keen
(Please Print)

Professional Title: Director Transportation

Signature of Individual certifier that s/he meets the above four criteria

Office Contact Information (Please Print)	
Address:	c/o 240 Catherine Street, Suite 110
City / Postal Code:	Ottawa, ON K2P 2G8
Telephone / Extension:	613-860-2462
E-Mail Address:	

Stamp

City of Ottawa 2017 TIA Guidelines Screening Form

1. Description of Proposed Development

Municipal Address	$\mathbf{2 5}$ Pickering
Description of Location	Existing industrial site adjacent to the VIA rail station
Land Use Classification	Mixed Use
Development Size (units)	9 story hotel (approx. 119 units), a 12 story senior residence (approx. 164 units), and four 20-30 story towers anticipated to be for residential or commercial type land uses (approx. 1,060 units, or approximately 1M ft **Final development subject to change prior to final SPA**
Development Size $\left(\mathrm{m}^{2}\right)$	Approximately 113,584 m^{2}

If available, please attach a sketch of the development or site plan to this form.

2. Trip Generation Trigger

Considering the Development's Land Use type and Size (as filled out in the previous section), please refer to the Trip Generation Trigger checks below.

LandUse Type	Minimum Development Size
Single-family homes	40 units
Townhomes or apartments	90 units
Office	$3,500 \mathrm{~m}^{2}$
Industrial	$5,000 \mathrm{~m}^{2}$
Fast-food restaurant or coffee shop	$100 \mathrm{~m}^{2}$
Destination retail	$1,000 \mathrm{~m}^{2}$
Gas station or convenience market	$75 \mathrm{~m}^{2}$

*If the development has a land use type other than what is presented in the table above, estimates of person-trip generation may be made based on average trip generation characteristics represented in the current edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual.

If the proposed development size is greater than the sizes identified above, the Trip Generation Trigger is satisfied.

3. Location Triggers

	Yes	No		
Does the developmentpropose a new driveway toaboundary street that is designated as part of the City's Transit Priority, Rapid Transit or Spine Bicycle				
Networks?				Is the development in a Design Priority Area (DPA) or Transit-oriented
:---				
Development (TOD) zone?*				

*DPA and TOD are identified inthe City of Ottawa Official Plan(DPA inSection 2.5. 1 andSchedules A and B; TOD inAnnex 6). See Chapter 4 for a list of City of Ottawa Planning and Engineering documents that support the completion of TIA).

If any of the above questions were answered with 'Yes,' the Location Trigger is satisfied.

4. Safety Triggers

	Yes	No
Are posted speed limits on a boundary street are $80 \mathrm{~km} / \mathrm{hr}$ or greater?		\checkmark
Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway?		V
Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/suburban conditions)?	\checkmark	
Is the proposed driveway within auxiliary lanes of an intersection?		\checkmark
Does the proposed driveway make use of an existing median break that serves an existing site?		V
Is there is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?		V
Does the development include a drive-thru facility?		\checkmark

If any of the above questions were answered with 'Yes,' the Safety Trigger is satisfied.

5.Summary

	Yes	No
Does the development satisfy the Trip Generation Trigger?		
Does the development satisfy the Location Trigger?		
Does the development satisfy the Safety Trigger?		

If none of the triggers are satisfied, the TIA Study is complete. If one or more of the triggers is satisfied, the TIA Study must continue into the next stage(Screening and Scoping).

25 Pickering Place Transportation Impact Assessment

CIM ${ }^{+}$

Table of Contents

1. Step 1 - Screening Form 1
2. Step 2 - Scoping 1
2.1 Existing and Planned Conditions 1
Description of Proposed Development. 1
Existing Conditions 4
Area Road Network 4
Study Area Intersections 4
Existing Driveways to Adjacent Developments. 6
Pedestrian/Cycling Network 6
Transit Network 8
Area Traffic Management Measures 10
Peak Hour Travel Demands. 10
Existing Road Safety Conditions 13
Planned Conditions 15
Study Area Transportation Network Changes 15
2.2 Study Area and Time Periods. 18
Study Area 18
Time Periods 18
Horizon Years 18
2.3 Exemptions Review 19
3. Step 3 - Forecasting 20
3.1 Development-Generated Travel Demand 20
Trip Generation. 20
Travel Mode Shares 21
Trip Distribution 24
Trip Assignment. 24
3.2 Background Network Travel Demands 26
Transportation Network Plans 26
Background Growth 26
Other Area Developments 26
3.3 Demand Rationalization 27
Existing and Background Conditions 27
Adjustments to Background Network Demands 29
Total Projected Conditions 30
Adjustments to Site-Generated Demand 33
4. Step 4 - Analysis 34
4.1 Development Design 34
Design for Sustainable Modes 34
Circulation and Access 35
New Street Networks. 35
4.2 Parking 36
Parking Supply 36
Vehicular parking 36
Bike Parking 36
Spillover parking 37
4.3 Boundary Street Design 37
Mobility 37
Segment MMLOS Summary 37
Overall MMLOS 39
Pedestrian LOS 39
Bike LOS 39
Transit LOS 39
Truck LOS 39
Road Safety 39
Neighbourhood Traffic Management (NTM) 40
4.4 Access Intersection Design 40
Location and Design of Access 41
Intersection Control 41
Intersection Design. 41
Intersection MMLOS Summary 41
Overall MMLOS 41
Pedestrian LOS 42
Bike LOS 42
Transit LOS 42
Truck LOS 42
Auto LOS. 42
4.5 Transportation Demand Management 42
4.6 Neighbourhood Traffic Management 42
4.7 Transit. 43
Route Capacity 43
Transit Priority 44
4.8 Review of Network Concept 45
4.9 Intersection Design 45
Intersection Control 45
Intersection Design. 45
5. Findings and Recommendations 46
List of Tables
Table 1: OC Transpo Stop Information 8
Table 2: OC Transpo Route Information 9
Table 3: Area Development 18
Table 4: Module Exemption Review 19
Table 5: ITE Trip Generation Rates 20
Table 6: Modified Person Site Trip Generation (Phase 1 \& Phase 2). 21
Table 7: Projected Site Trip Generation (Phase 1 \& Phase 2) 22
Table 8: Study Area Intersection Operations - Existing Conditions 28
Table 9: Study Area Intersection Operations - 2025 and Beyond Background Conditions 29
Table 10: Study Area Intersection Operations - 2025 Total Projected Conditions 31
Table 11: Study Area Intersection Operations - 2030,2035 Total Projected Conditions. 33
Table 12: Approximate Transit Facility Walking Distance in Metres (m) to/from Building Entrances 35
Table 13: Existing Transit Facilities 35
Table 14: Parking Supply 37
Table 15: Segment MMLOS - Projected Phase 1 LOS(Target LOS) 38
Table 16: Segment MMLOS - Projected Phase 2 LOS(Target LOS) 38
Table 17: Historical Collision Data Summary by Road Segment 39
Table 18: Historical Collision Data Summary by Intersection. 40
Table 19: Intersection MMLOS - Projected Phase 1 LOS (Target LOS) 41
Table 20: Intersection MMLOS - Projected Phase 2 LOS (Target LOS) 41
Table 21: Distribution of site-generated transit trips, AM peak hour 43
Table 22: Tremblay Station activity 2020 (pre-pandemic) and 2025 (forecasted growth plus 25 Pickering site- generated demand) 44
Table 23: Tremblay Station activity 2031 (forecasted growth plus 25 Pickering site-generated demand) 44

List of Figures

Figure 1: Local Context 2
Figure 2: Proposed Development Concept Plan 3
Figure 3: Example Land Use with Informal Driveway Connections - 294 Tremblay Road 6
Figure 4: Existing Pedestrian Network 7
Figure 5: Existing Cycling Network 7
Figure 6: Transit Routes Within Study Area (Source: OC Transpo System Map) 8
Figure 7: Existing Volumes AM(PM) 11
Figure 8: Existing Volumes AM(PM) - Non-motorists 12
Figure 9: Collision Frequency 14
Figure 10: Tremblay TOD Plan Area Excerpt - Planned Pedestrian Network. 16
Figure 11: Tremblay TOD Plan Area Excerpt - Planned Cycling Network 17
Figure 12: Major Pedestrian/Cycling Desire Lines 23
Figure 13: 'New' Projected Site-Generated Traffic - Phase 1 24
Figure 14: ‘Pass-by’ Projected Site-Generated Traffic - Phase 1 25
Figure 15: 'New' Projected Site-Generated Traffic - Phase 2 25
Figure 16: 'Pass-by’ Projected Site-Generated Traffic - Phase 2 26
Figure 17: Background Traffic Volumes (2025, 2030, 2035). 27
Figure 18: Total Project Traffic Volumes 2025 30
Figure 19: Total Projected Traffic Volumes 2030, 2035 30
Figure 20: Assumed Tremblay Road Widening 32
Figure 21: Road Classification 38

List of Appendices

Appendix A - Detailed Vehicular Trip Generation for Existing Land Uses
Appendix B - Existing Traffic Volume Data
Appendix C - Collision Data
Appendix D - Excerpts from 530 Tremblay and Adjacent to 530 Tremblay
Appendix E - Existing and Background Conditions Output Data
Appendix F - Total Projected Conditions Output Data
Appendix G - MTO Left-turn Lane Warrant and Signal Warrant Analysis
Appendix H - Transportation Demand Management (TDM) Strategies
Appendix I - Segment MMLOS Assessment
Appendix J - PXO Scenario at Tremblay/Avenue K
Appendix K - Collision Analysis
Appendix L - Intersection MMLOS Assessment
Appendix M - TDM Checklist
Appendix N - Transit Map
Appendix O - Transit Ridership Data

1. Step 1 - Screening Form

With respect to the City of Ottawa's 2017 Transportation Impact Assessment (TIA) Guidelines, the proposed development (described below in Section 2.1) triggered the trip generation, location and the safety criteria outlined in the City's TIA Step 1 - Screening form. Since all triggers were met, a formal TIA (i.e. completed Steps 1-5) must accompany the subject development application.

2. Step 2 - Scoping

2.1 Existing and Planned Conditions

Description of Proposed Development

The subject development lands are generally bound by Tremblay Road to the north, Avenue L to the east, and the VIA Rail Tremblay station/tracks to the west and south, respectively. Based on the available/provided information, the subject site is currently occupied by industrial type land uses, which is planned to be replaced by a 9 -storey hotel (approx. 119 units), a 12-storey senior residence (approx. 164 units) and four 20-30 storey residential towers with ground floor retail (approx. 1,060 residential units or approximately $1 \mathrm{M} \mathrm{ft}^{2} \mathrm{GFA}$). Given the size of the proposed development, market demand will ultimately dictate the rate and type of development; however, for analysis purposes, it is estimated that the site will be built-out in the following phases:

Phase 1: approximate build-out year 2025

+ 9-storey Hotel, approx. 119 units
+ 12-storey Senior Residence, approx. 164 units
+ 20-storey Tower D, approx. 211 units

Phase 2: approximate build-out year 2030

+ 25-storey Tower A, approx. 270 units
+ 30-storey Tower B, approx. 322 units
+ 25-storey Tower C, approx. 257 units

The latest Concept Plan depicts five access points, including; a right-in/right-out connection to the VIA Rail station pick-up/drop-off loop, and full-movement connections via Pickering Place, Avenue J, Avenue K and Avenue L. All new internal streets will be designed to be slow speed and almost all parking will be provided in underground lots with access/egress generally located near the rear of each building.

Pedestrians will be provided sidewalks along both sides of internal streets to support active mobility, which will provide connectivity between on-site facilities, and will be fully integrated with the well-developed surrounding pedestrian network. This active network also provides convenient access to the highest order of public transit via the existing LRT Tremblay station, as well as OC Transpo bus service provided along Tremblay Road and Belfast Road.

The local context of the subject site is provided in Figure 1, the proposed Concept Plan is provided in Figure 2.

Figure 2: Proposed Development Concept Plan

Existing Conditions

Area Road Network

Tremblay Road is a four-lane major collector roadway (i.e. two travel lanes per direction) between Riverside Drive and Pickering Place. East of Pickering Place, Tremblay Road is two-lane major collector roadway (i.e. a single travel lane per direction) that extends to Triole Street, just east of St. Laurent Boulevard. Within the vicinity of the subject site, the posted speed limit is $50 \mathrm{~km} / \mathrm{h}$, and on-street parking is not permitted along either side of the roadway.

Belfast Road is a two-lane collector roadway within the vicinity of the subject development. It extends between Coventry Road in the north and Michael Street in the south-east. Within the vicinity of the subject site, the posted speed limit is $50 \mathrm{~km} / \mathrm{h}$, and on-street parking is not permitted along either side of the roadway.

Pickering Place, Avenue J, Avenue K and Avenue L are two-lane local roadways, which all provide full-movement connections to Tremblay Road and access/egress for adjacent land uses. The speed limit is unposted; however, given the surrounding context, the operating speed likely to be no more than $40 \mathrm{~km} / \mathrm{h}$ (e.g. narrow and undefined lanes fosters a greater sense of awareness for drivers, and often results in slower speeds). On-street parking is also prohibited along both sides of these roadways.

Study Area Intersections

Belfast/Tremblay

The Belfast/Tremblay intersection is a signalized, fourlegged intersection. All approaches consist of a single shared through/right-turn lane and a single left-turn lane.

All movements are permitted at this location.

Tremblay/Via Rail

The Tremblay/Via Rail intersection is a signalized fourlegged intersection. The northbound approach consists of a single left-turn lane and a single right-turn lane. The southbound approach consists of a single lane that accommodates all movements. The westbound approach consists of two through lanes and a single left-turn lane. The eastbound approach consists of two through lanes, a single right-turn lane and a single unmarked left-turn lane, reserved for authorized vehicles only.

All movements are permitted at this location, with the exception of movements to/from the north leg, which are permitted for authorized vehicles only.

Tremblay/Pickering

The Tremblay/Pickering intersection is an unsignalized three-legged intersection with STOP control on the minor approach only. The northbound approach consists of a single lane that accommodates all movements. The westbound approach consists of two through lanes and a single left-turn lane. The eastbound approach consists of a single through lane and a single right-turn lane.

All movements are permitted at this location.

Tremblay/Avenue K

The Tremblay/Avenue K intersection is an unsignalized three-legged intersection with STOP control on the minor approach only. All approaches consist of a single lane that accommodates all possible movements.

All movements are permitted at this location.

Tremblay/Avenue L

The Tremblay/Avenue K intersection is an unsignalized three-legged intersection with STOP control on the minor approach only. All approaches consist of a single lane that accommodates all possible movements.

All movements are permitted at this location, with the exception of northbound left-turns are prohibited between 7:00-9:00AM and 3:30-5:30PM Mon-Fri.

It is noteworthy that this intersection is located approximately 40 m west of the Belfast/Tremblay intersection (i.e. it is in close proximity), and it is located within the auxiliary eastbound left-turn storage provided at the Belfast/Tremblay intersection.

Existing Driveways to Adjacent Developments

Within an approximate 200 m radius surrounding the site, there is a single full-movement driveway connection to Tremblay Road, located between Tremblay/Pickering and Tremblay/Avenue K. This driveway connection provides access/egress for an existing government land use (i.e. Professional Institute of the Public Service). It should be noted that this driveway is planned to be formalized as a local roadway (identified as "Avenue J" on the proposed Concept Plan). Additionally, there are a number of existing land uses along the east side of Avenue L with informal driveway connections that are not compliant with the City's Private Approach By-Law. The following Figure 3 depicts an example land use where the entire front and side yard property lines, that front onto City roadways, serve as vehicle access/egress.

Figure 3: Example Land Use with Informal Driveway Connections - 294 Tremblay Road
As described below, Tremblay Road and Avenue L are scheduled as infrastructure renewal projects. During the planning/design phases of these renewal projects, access/egress for properties like the one depicted in Figure 3, an Access Management Plan should be developed to consolidate driveways and to ensure driveway connections comply with By-Law requirements.

Pedestrian/Cycling Network

The network for active modes in the vicinity of the subject site is currently fairly well developed. Sidewalks on Tremblay Road are provided along the southside of the roadway, conveniently along the subject site's frontage, and a multi-use pathway is provided along the north side of the roadway. Along Belfast Road, sidewalks are provided along both sides of the roadway, on the Belfast Bridge over the LRT and HWY 417 only. North of the Belfast Bridge, a sidewalk is provided along the east side of the roadway only. South of Tremblay Road, a bidirectional multi-use pathway is provided along the west side of Belfast Road.

The existing pedestrian/cycling network within the vicinity of the subject site, and how it connects to the greater network for active modes is depicted as Figure 4 and Figure 5, as sourced from the City's GeoOttawa map.

Figure 4: Existing Pedestrian Network

Figure 5: Existing Cycling Network

Transit Network

OC Transpo currently provides the highest order transit service within the vicinity of the subject site. The Tremblay LRT Station is located just west of the VIA Rail station and is an approximate 450 m walking distance to/from the heart of the proposed development site (i.e. the subject development will benefit from convenient access to/from OC Transpo's Confederation LRT line).

In addition to LRT service, there are 5 OC Transpo bus stops that are located within walking distance to/from the subject development site. The following Table 1 summarizes existing bus stops, their associated routes and direction of travel.

Table 1: OC Transpo Stop Information

Stop \#	Location	Route Identifier	Direction
$\# 1371$	Immediately northwest of Tremblay/Via Rail	39	Westbound
$\# 1369$	Immediately southeast of Tremblay/Via Rail	39	Eastbound
$\# 1837$	Immediately west of Tremblay/Avenue K	39	Eastbound
$\# 1836$	Immediately east of Tremblay/Belfast	18,39	Westbound
$\# 1849$	Immediately west of Tremblay/Avenue P	18,39	Eastbound
\#3024	200 m southwest of Tremblay/Via Rail	Confederation Line	East/Westbound

The following Figure 6 depicts the OC Transpo routes within the vicinity of the development, and Table 2 provides additional information with respect OC Transpo service identified in Table 1.

Figure 6: Transit Routes Within Study Area (Source: OC Transpo System Map)

Table 2: OC Transpo Route Information

Route	Origin/Destination	Service Type	Peak Hour Headway
18	St. Laurent \leftrightarrow Parliament	Local	30 min
$39 \mathrm{x} \& 39 \mathrm{y}$	N Rideau \leftrightarrow Millennium	Night	30 min
Confederation Line	Tunney's Pasture \leftrightarrow Blair	LRT	4 min

Based on information provided by the City, it should be noted that the main transit service within the study area is provided by the OTrain Line 1 at Tremblay Station. The station is located across the VIA station loop roadway, approximately 250 m or 2-3 minute walk from the subject development site. The OTrain Line 1 service operates frequently all day with direct connections to Hurdman Station, uOttawa, Downtown, Bayview Station (a transfer point to connect with the OTrain Line 2), and Tunney's Pasture in the west, and to St-Laurent, Cyrville, and Blair Station in the east. Currently, Tremblay Station is one of the less busy stations along the Confederation Line; therefore, there is currently ample capacity available for growth.

Given the high level of service provided by the OTrain Line 1, bus stops in the immediate vicinity of the Tremblay Station are not served by regular bus routes. Stops 1369 and 1371 (Tremblay Road at VIA Station loop) are served by the bus Route \#N39, which is the nighttime extension of regular the bus Rapid Route \#39. This route is extended from its regular terminus at Blair Station to provide service between the OTrain Line 1 Stations overnight, when Line 1 is not operating. These stops are also served by the bus Route \#R1, which is the replacement bus service when Line 1 is temporarily out of service during regular service hours.

The closest regular bus service within the vicinity of the subject site are stops 1836 and 1849 on Tremblay Road, east of Belfast Road, between $400-600 \mathrm{~m}$ from the subject development site. Local Route \#18 serves these stops every 15 minutes in the peak direction and every 30 minutes all day. In the eastbound direction, Route \#18 continues along Tremblay Road and connects with the St-Laurent Transit Station. In the westbound direction, Route \#18 travels through the Overbrook and Vanier neighbourhoods, linking to Rideau Street and ending at the Parliament Transit Station downtown.

Finally, a note regarding stop 3024. Following the major network service change in Fall 2019 and the opening of OTrain Line 1, this stop is no longer served by a regular bus route. As discussed above, bus Route \#N39 and Route \#R1 serve the stops on Tremblay Road at the VIA Station loop intersection, but not the stop at the front entrance. As with most things there is an exception: a special shuttle (one trip only) has been operating on Sunday nights from this stop to the Hurdman Transit Station to accommodate passengers on the last VIA train, which arrives at approximately 11:15PM on Sundays. This shuttle fills the gap between the end of OTrain Line 1 operating hours (which ends at 11:00PM) and the first bus Route \#N39 trip, which would be a notable wait and walk out to Tremblay Road.

Area Traffic Management Measures

There are currently no traffic calming or area traffic management measures within the study area.

Peak Hour Travel Demands

For the purpose of this assessment and based on discussions with City Staff, the following study area intersections have been identified for intersection capacity analysis:

+ Tremblay/Via Rail + Tremblay/Avenue K
+ Tremblay/Pickering + Tremblay/Avenue L
+ Tremblay/Avenue J + Tremblay/Belfast

It should be noted that traffic count data is not available for the Tremblay/Pickering, Tremblay/Avenue K, Tremblay/Avenue L intersections, given unsignalized intersections are typically not included as part of the City's regular count program. Additionally, given the current state of affairs with respect to the COVID-19 pandemic, having historic impacts on Ottawa's transportation network (e.g. 70\% to 90\% reduction in transit ridership, 50\% reduction in traffic volumes, etc.), collecting traffic count information at this time will not be an accurate representation of what is considered typical traffic conditions. As such, an estimate of typical traffic conditions (where traffic count information is not available) was developed by estimating vehicular trips generated by the existing land uses that have access to the unsignalized Tremblay/Pickering, Tremblay/Avenue K, Tremblay/Avenue L intersections. The detailed vehicular trip generation for existing land uses and the assignment of these trips to the study area network is further described in Appendix A.

The following Figure 7 depicts observed weekday morning and afternoon peak hour vehicle volumes at the study area intersections and Figure 8 illustrates pedestrian and cyclist volumes over the same peak hour periods. The source traffic volume data is provided as Appendix B.

Existing Road Safety Conditions

The most recent collision history for the past five-years was obtained from the City (i.e. available collision data for the years 2014 - 2018, inclusive). The collision data includes all collisions occurring at intersections and roadway segments within the study area surrounding the subject development site (i.e. Belfast/Tremblay, and Belfast Road between Coventry and Tremblay, etc.).

Based on the most recent available historical collision data, the five-year total number of recorded collisions within the study area is 31 . Most collisions within the study area (a total of 25 collisions, or 81%) resulted in property damage only, and the remaining collisions resulted in personal injuries (a total of 6 collisions, or 19%). The most frequent types of collisions, as cited by police, were angle (35\%), turning movement (23%) and rear-end (19\%) type collisions. The following Figure 9 is a heat map that depicts the locations and total number of collisions within the study area.

It is also noteworthy that within the five-years of recorded collision data, there were no fatalities or collision involving pedestrians.

The source collision data is provided in Appendix C, and a more detail collision analysis is included in the subsequent Step 4 - Analysis section of this report.

Planned Conditions

Study Area Transportation Network Changes

Transit Projects

With the recent completion of Ottawa's new Confederation LRT line, there are no proposed or ongoing transit related projects identified in the City's Transportation Master Plan (TMP), within the vicinity of the site.

Road Projects

Referencing the City of Ottawa's Construction and Infrastructure Projects website, construction is anticipated to impact the following roadways within the study area. These construction projects may relate to road resurfacing, watermains, sewers, multi-use pathways, and bike facilities, which are all opportunities to change roadway characteristics/functionality:

+ This year (2020)
- Belfast Road, from Coventry to Trainyard
- Trainyards Drive, from Belfast to Industrial
- Avenue N
- Avenue O
- Avenue P
- Avenue Q
- Avenue R
- Avenue S
- Avenue T
- Avenue U

The Belfast Road project, from Coventry Road to Trainyards Drive, is to improve the multi-use pathway (MUP) on the west side of Belfast Road. It includes adding a section of MUP from Coventry Road to the Highway 417 bridge, improving the MUP from the VIA Rail bridge to Trainyards Drive, and improvements to the Belfast Road and Trainyards Drive intersection (adding a bidirectional cross ride to the south leg of the intersection).

The projects on Avenues N to U are combined road, sewer, and water projects that will include the addition of sidewalks on at least one side of all these local roads.

With respect to the City's 2014 Transit-Oriented Development (TOD) Plans, the study area is planned to receive a number of dedicated pedestrian and cycling facilities, including a new pedestrian tunnel linking the VIA Rail Station to Terminal Avenue. The following Figure 10 and Figure 11 are excerpts from the City's 2014 Transit-Oriented Development (TOD) Plans, depicting planned pedestrian and cycling network improvements, respectively.

CIM \mathbf{N}^{+}
Figure 10: Tremblay TOD Plan Area Excerpt - Planned Pedestrian Network

CIM \mathbf{N}^{+}
Figure 11: Tremblay TOD Plan Area Excerpt - Planned Cycling Network

Other Area Development

Planned developments within the vicinity of the subject site have been identified using the City's Development Application Search Tool. The following Table 3 below summarizes registered developments within the vicinity of the subject development lands.

Table 3: Area Development

Location	Description	Size	Type
530 Tremblay	Two Mid-rise apartment complex	122 unit apartment	Apartments
Adjacent to 530 Tremblay	Mixed used development proposed by Canada Lands Company, currently no TIA available	8,000 employee office 500 units apartment	Mixed-used development

It should be noted that the projected impact of the developments summarized in Table $\mathbf{3}$ have been included in the subsequent analysis.

2.2 Study Area and Time Periods

Study Area

As previously mentioned, City staff confirmed the following study area intersections for the purpose of this assessment:

```
+ Tremblay/Via Rail + Tremblay/Avenue K
+ Tremblay/Pickering + Tremblay/Avenue L
+ Tremblay/Avenue J + Tremblay/Belfast
```


Time Periods

Given the surrounding road network (e.g. Tremblay Road, Belfast Road) typically experience the heaviest traffic volumes during the weekday morning and afternoon peak hours, this assessment considered weekday morning and afternoon peak hours for analysis purposes only.

Horizon Years

For the purpose of this assessment, the following development timelines were assumed, which are consistent with the City's TIA Guidelines:

> + 2025: Phase 1 build-out
> + 2030: Phase 2 build-out
> + 2035: 5 -years beyond full build-out

2.3 Exemptions Review

Given the size and nature of the proposed development lands, the following analysis summarized in Table 4 (identified in the 2017 Transportation Impact Assessment Guidelines) can be exempt.

Table 4: Module Exemption Review

Module	Element	Exemption Criteria	Exemption Status
Design Review			
4.1 Development Design	4.1.2 Circulation and Access	Required for Site Plans	Not Exempt
	4.1.3 New Street Network	Required for Plans of Subdivision	Not Exempt
4.2 Parking	4.2.1 Parking Supply	Required for Site Plans	Not Exempt
	4.2.2 Spillover Parking	Required for Site Plans where parking supply will be 15% below unconstrained demand	Exempt
Network Impact			
4.5 Transportation Demand Management	All Elements	Not required for non-residential Site Plans expected to have fewer than 60 employees and/or students on location at any given time	Not Exempt
4.6 Neighbourhood Traffic Management	All Elements	Required when the development relies on local or collector streets for access and total volumes exceed ATM capacity thresholds	Not Exempt
4.8 Network Concept	All Elements	Required when development is projected to generate more than 200 person-trips during the peak hour, in excess of the equivalent volume permitted by the established zoning	Not Exempt

3. Step 3 - Forecasting

3.1 Development-Generated Travel Demand

Trip Generation

As previously described, the subject site is currently occupied by industrial type land uses, which is currently envisioned to be replaced by a 9-storey hotel (approx. 119 units), a 12-storey senior residence (approx. 164 units) and four 20-30 storey residential towers with ground floor retail (approx. 1,060 residential units or approximately 1 M ft^{2} GFA). The proposed development will be built in two phases, with an anticipated buildout year in 2025 and 2030, respectively. As previously noted, market demand will ultimately dictate the rate and type of development. If a development application is submitted for the construction of different land uses identified herein, a formal TIA or Addendum will be prepared for each subsequent application.

For the purpose of this assessment, projected site-generated traffic was estimated using appropriate trip generation rates from the 2017 10 th Edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual. Based on the location and type of the development envisioned, the following Table 5 summarizes appropriate ITE trip generation rates for estimating projected site-generated traffic. It should be noted that the first listed equation is an average vehicle trip generation rate and the second equation is a "line of best fit" equation that more accurately represents the trend of vehicle trip generation based on land use size. Typical industry practice is the use the "line of best fit" equation for site-generated traffic projections, if available.

It should also be noted that based on correspondence with City staff, residential trip generation rates and directional splits used to estimate projected site-generated traffic were obtained from the 2009 TRANS Trip Generation Residential Trip Rates study, which are also summarized in the following Table 5.

Table 5: ITE Trip Generation Rates

Land Use	TTE Land Use Code	AM Peak Hour	PM Peak Hour
Hotel	ITE 310 General Urban/Suburban	$\mathrm{T}=0.47(\mathrm{X}) ;$ or $\mathrm{T}=0.5(\mathrm{X})-5.34$	$\mathrm{~T}=0.60(\mathrm{X}) ;$ or
Assisted Living	ITE 254 General Urban/Suburban	$\mathrm{T}=0.19(\mathrm{X}) ;$	$\mathrm{T}=0.26(\mathrm{X}) ;$
Apartment (High-Rise)	TRANS Table 6.3 \& 3.13 Person Trip Rates	$\mathrm{T}=0.65(\mathrm{X}) ;$	$\mathrm{T}=0.70(\mathrm{X}) ;$
Ground Floor Retail	ITE 814 General Urban/Suburban	$\mathrm{T}=3.18(\mathrm{X}) ;$	$\mathrm{T}=6.84(\mathrm{X}) ;$
Notes:$T=$ Average Vehicle Trip Ends $X=1,000$ tt of Gross Floor Area			

With respect to ITE trip generation rates, the data used to develop these rates only include vehicle trips (i.e. walking, cycling or transit trips are not captured). To properly consider the multi-modal trips generated by the proposed development, projected site-generated traffic (estimated using ITE trip generation rates) is converted to projected site-generated person trips, which can then be subdivided into different modes based on area travel patterns and available facilities/network connections (e.g. the availability of transit, walking and cycling facilities).

To convert projected ITE vehicle trips to person trips, an auto occupancy factor and non-auto trip factor is applied to the ITE trip generation rates. With respect to the City's TIA Guidelines, and based on available American Census data, the typical modal share of non-auto person trips is approximately 10% and the typical auto occupancy is 1.15 . Therefore, when combined, a factor of 1.28 is used to convert vehicle trips to person trips.

Based on the foregoing, the projected weekday morning and afternoon peak hour person trip generation for the proposed development is summarized in Table 6.

Table 6: Modified Person Site Trip Generation (Phase 1 \& Phase 2)

Land Use	Units/Area (ft²)	AM Peak (Person Trips/h)			PM Peak (Person Trips/h)		
		In	Out	Total	In	Out	Total
Phase 1 (2025-2030)							
Hotel	119 units	40	29	69	41	40	81
Assisted Living	164 units	25	15	40	20	35	55
Multifamily Housing (High-Rise)	211 units	33	105	138	90	58	148
Ground Floor Retail	2,250 ft ${ }^{\text {2 }}$	5	4	9	10	10	20
Phase 1 Total		103	153	256	161	143	304
Phase 2 (2030+)							
Multifamily Housing (High-Rise)	849 units	132	419	551	362	232	594
Ground Floor Retail	6,750 ft ${ }^{2}$	16	12	28	31	28	59
Phase 2 Total		148	431	579	393	260	653
Total 'New' Person Trips		251	584	835	554	403	957

As summarized in Table 6, the proposed development is projected to generate an approximate two-way total of 835 and 957 person trips/h during weekday morning and afternoon peak hours, respectively. Directional distribution (i.e. inbound vs outbound trips) was obtained from the ITE trip generation manual and the TRANS Trip Generation Residential Trip Rates study.

Determining the number of person trips arriving/departing by travel mode, total projected person trips are subdivided by mode share values, derived from the 2011 TRANS National Capital Region (NCR) Origin-Destination (OD) survey data, the nature/context of the proposed development and our local area knowledge. Key factors that are taken into consideration, beyond NCR OD survey data, include; proximity and quality of transit, pedestrian and cycling facilities, purpose of trips, etc.

It should be noted that a percentage of projected site-generated trips can be attributed to 'pass-by' traffic (i.e. a quick diversion to/from the development on someone's normal daily commute). This does not impact overall network capacity, as 'pass-by' trips is traffic already using the adjacent transportation network; however, 'pass-by' trips do impact the performance of turning movements at intersections, typically where development site access/egress is provided.

Travel Mode Shares

Following discussions with City Staff regarding the subject site's proximity/connectivity to the highest order of transit (i.e. its proximity to LRT service) and with respect to the City's previously mentioned 2014 TOD Plans, the following summarizes the projected modal split of site-generated traffic for the subject development:

> | 15% Auto Driver; |
| :---: |
| 5% Auto Passenger; |
| 65% Transit; and |
| $+\quad 15 \%$ Walk and Cycling. |
| 100% |

Based on the foregoing, the vehicle trips generated by the proposed development was calculated, and summarized in Table 7 below.

Table 7: Projected Site Trip Generation (Phase 1 \& Phase 2)

Travel Mode	AM Peak (veh/h)					PM Peak (veh/h)		
	In	Out	Total	In	Out	Total		
Phase 1 (2025-2030)	Hotel	6	5	11	7	6	13	
Assisted Living	4	3	7	3	6	9		
Multifamily Housing (High-Rise)	6	17	23	15	10	25		
Ground Floor Retail	1	1	2	2	2	4		
Retail Pass-by (34\%)	0	0	0	-1	-1	-2		
Phase 1 Total	17	26	43	26	23	49		
Phase 2 (2030+)								
Multifamily Housing (High-Rise)	22	64	86	57	37	94		
Ground Floor Retail	3	2	5	5	4	9		
Retail Pass-by (34\%)	-1	-1	-2	-2	-2	-4		
Phase 2 Total	24	65	89	60	39	99		
Total 'New' Auto Trips	$\mathbf{4 1}$	$\mathbf{9 1}$	$\mathbf{1 3 2}$	$\mathbf{8 6}$	$\mathbf{6 2}$	$\mathbf{1 4 8}$		

As shown in Table 7, the proposed development is projected to generate approximate two-way vehicle volumes of $132 \mathrm{veh} / \mathrm{h}$ and $148 \mathrm{veh} / \mathrm{h}$ during weekday morning and afternoon peak hours, respectively.

With regard to active modes, the proposed development is projected to generate approximate two-way person trips in the order of 122 trips/h and 141 trips/h, during weekday morning and afternoon peak hours, respectively.

With regard to transit trips during weekday morning and afternoon peak hours, the proposed development is projected to generate approximately two-way person trips in the order of 539 trips/h and 620 trips $/ \mathrm{h}$. It should be noted that given most transit trips begin or end as an active mode, it can be expected that approximately 661 trips/h and 761 trips/h will be made to/from/within the subject development as an active mode during weekday morning and afternoon peak hours, respectively.

Given the number of projected trips to/from the site as an active mode, it is anticipated that there will be a major desire line between the Tremblay LRT station, the multi-use pathway network adjacent to the Tremblay LRT station, and the subject development. As such, special consideration should be given to a new connection between the subject site and the VIA Rail station. Internal roadways should also be designed to encourage slow vehicular speeds and pedestrian/cycling crossings should be clearly marked to enhance driver awareness of vulnerable road users. It will be critical to follow AODA guidance and consult with a variety of users (e.g. those with vision challenges and other vulnerable road users - such as children, elderly, etc.).

The following Figure 12 depicts anticipated major desire lines for active modes to/from the subject development site.

CIM/*
Figure 12: Major Pedestrian/Cycling Desire Lines

Trip Distribution

The projected distribution of site-generated traffic was derived based on existing travel patterns, the site's connections to/from the surrounding road network, and our local area knowledge. (e.g. the location and proximity of other area shopping, communities, recreational opportunities, etc.). For analysis purposes, the following approximate distribution of projected site-generated traffic was assumed:

> 70\% to/from the west via HWY 417 (via Tremblay);
> 10\% to/from the east via Tremblay Road;
> 10% to/from the north via Belfast Road; and
> $+10 \%$ to/from the south via Belfast Road.
> $\frac{100 \%}{}$

Trip Assignment

Based on the above assumed distribution, projected 'new' site-generated traffic was assigned to the study area network and is depicted in the following Figure 12 and Figure 14 for phase 1 and phase 2, respectively. Similarly, projected 'pass-by' site-generated traffic, which represents existing traffic temporarily diverted to/from the subject site, is depicted in the following Figure 13 and Figure 15 for phase 1 and phase 2, respectively.

It should be noted that Avenue J is a private driveway owned by PIPSC (Professional Institute of the Public Service Canada) and there are currently no plans for this to be a connection to/from the subject development.

Figure 13: ‘New’ Projected Site-Generated Traffic - Phase 1

Figure 14: 'Pass-by’ Projected Site-Generated Traffic - Phase 1

Figure 15: ‘New’ Projected Site-Generated Traffic - Phase 2

Figure 16: ‘Pass-by’ Projected Site-Generated Traffic - Phase 2

3.2 Background Network Travel Demands

Transportation Network Plans

At this time, and according to Ottawa's Transportation Master Plan (TMP), there will be two road reconstruction projects within the vicinity of the subject site, which include:

+ Tremblay Road - widened from two to four general purpose travel lanes between Pickering place and St. Laurent Boulevard; this project is included as a part of the City's Phase 3 (2026-2031) affordable road projects.
+ Belfast Road - widened from two to four general purpose travel lanes between Coventry Road and Tremblay Road; this project is included as a part of the City's ultimate network concept, which has no timeline for construction prior to the 2031 planning horizon year.

Background Growth

Reviewing available historic traffic count data, the Tremblay/Belfast intersection has experienced 0\% growth between 2016 and 2020. As such, and given other area development will be explicitly accounted for in the subsequent analysis, an annual percent growth rate was not assumed. It should also be noted that Tremblay Road and Belfast Road are not considered typical commuter or cut-through routes, given their connectivity to the surrounding arterial network (i.e. new development beyond the study area will have little to no impact on the study area network).

Other Area Developments

Using the City's online Development Application Tool, there are proposed developments at 530 Tremblay Road and 'Adjacent to 530 Tremblay' identified as having potential impacts on the study area network. As such, the projected site-generated traffic for the 530 Tremblay Road development and the development 'Adjacent to 530 Tremblay' will be included in the subsequent analysis. These developments are proposed to be fully developed between the year 2021 and 2026, and for the purpose of this assessment, both developments have been assumed to be fully built-out by the horizon year 2025. Excerpts from both the 530 Tremblay and 'Adjacent to 530 Tremblay' TIA reports, depicting projected site-generated traffic, are included as Appendix D.

Given a 0\% growth rate for general background traffic and given all area development is assumed to be fully builtout by the horizon year 2025, projected background traffic volumes for the horizon years 2030 and 2035 well be the same as the background traffic volumes for the 2025 horizon year. Therefore, the following Figure 17 depicts projected background traffic volumes for the 2025 horizon year and beyond.

Figure 17: Background Traffic Volumes (2025, 2030, 2035)

3.3 Demand Rationalization

The following section summarizes the vehicular intersection capacity analysis of existing, future background and future total volume scenarios.

Using the intersection capacity analysis software Synchro (v9), study area intersections were assessed in terms of vehicle delay, $95^{\text {th }}$ percentile queues, a volume-to-capacity ratio (v / c) and a corresponding Level of Service (LOS). It should be noted that the overall performance of a signalized intersection is calculated as a weighted v / c ratio and assigned a corresponding LOS, with critical movements assigned a LOS based on their respective v/c ratio. The overall performance of an unsignalized intersection is a LOS output from Synchro, which is based on an Intersection Capacity Utilization (ICU) method, and critical movements are assigned a LOS based on delay.

Existing and Background Conditions

The following Table 8, Table 9 summarize existing and projected background conditions at study area intersections, in the absence of the proposed development. The objective of this analysis is to determine if network improvements are, or will be required to support background traffic. Detailed Synchro output data for existing and background conditions is provided as Appendix E.

Table 8: Study Area Intersection Operations - Existing Conditions

Movement	Lanes	AM Peak Hour				PM Peak Hour			
		V/C	Delay (s)	LOS	Queue (m)	V/C	Delay (s)	LOS	Queue (m)
Via Rail/Tremblay Rd - Semi Act-Uncoord Signal									
EBT	2 T	0.11	3.7	A	10	0.11	5.9	A	11
EBR	1 R	0.11	1.2	A	5	0.18	1.9	A	7
WBL	1 L	0.05	4.1	A	4	0.09	6.5	A	8
WBT	2 T	0.05	3.7	A	5	0.14	5.9	A	13
NBL/R	$1>\mathrm{L}$	0.35	17.5	A	21	0.50	16.4	A	31
Overall		0.15	5.8	A	-	0.33	7.8	A	-
Pickering Pl/Tremblay Rd - Unsignalized									
EBT	1 T	0.18	0.0	A	0	0.18	0.0	A	0
EBR	1 R	0.02	0.0	A	0	0.00	0.0	A	0
WBL	1 L	0.03	8.1	A	1	0.01	7.9	A	0
WBT	2 T	0.05	0.0	A	0	0.09	0.0	A	0
NBL/R	$1>\mathrm{L}$	0.04	10.7	A	1	0.07	11.5	A	2
Overall		0.32	1.0	A	-	0.26	0.9	A	-
Avenue K/Tremblay Rd - Unsignalized									
EBT/R	$1 \mathrm{~T} / \mathrm{R}$	0.18	0.0	A	0	0.19	0.0	A	0
WBT/L	$1 \mathrm{~T} / \mathrm{L}$	0.06	2.7	A	2	0.02	0.8	A	1
NBL/R	$1>L$	0.07	11.5	A	2	0.20	13.2	A	6
Overall		0.45	1.9	A	-	0.46	2.4	A	-
Avenue L/Tremblay Rd - Unsignalized									
EBT/R	$1 \mathrm{~T} / \mathrm{R}$	0.17	0.0	A	0	0.22	0.0	A	0
WBT/L	$1 \mathrm{~T} / \mathrm{L}$	0.01	0.6	A	0	0.02	1.0	A	1
NBR	1 R	0.06	10.0	A	1	0.08	10.7	A	2
Overall		0.33	1.0	A	-	0.42	1.2	A	-
Belfast Rd/Tremblay Rd - Semi Act-Uncoord Signal									
EBL	1 L	0.28	18.1	A	33	0.38	26.6	A	48
EBT/R	$1 \mathrm{~T} / \mathrm{R}$	0.22	5.8	A	16	0.35	9.9	A	30
WBL	1 L	0.04	15.7	A	6	0.06	23.0	A	9
WBT/R	$1 \mathrm{~T} / \mathrm{R}$	0.18	13.9	A	26	0.16	17.3	A	23
NBL	1 L	0.51	39.3	A	38	0.60	45.4	A	53
NBT/R	$1 \mathrm{~T} / \mathrm{R}$	0.38	13.7	A	41	0.52	18.9	A	92
SBL	1 L	0.06	19.4	A	7	0.14	40.8	A	13
SBT/R	$1 \mathrm{~T} / \mathrm{R}$	0.66	28.9	B	67	0.78	34.9	C	105
Overall		0.47	19.9	A	-	0.60	25.8	A	-
Avenue J/Tremblay Rd - Unsignalized									
EBT	$1 \mathrm{~T} / \mathrm{R}$	0.19	0.0	A	0	0.19	0.0	A	0
WBT	$1 \mathrm{~T} / \mathrm{L}$	0.01	0.7	A	0	0.00	0.1	A	0
NBL/R	$1>L$	0.01	10.7	A	0	0.04	12.0	A	1
Overall		0.34	0.4	A	-	0.29	0.4	A	-

As shown in Table 8, study area intersections are currently operating with an overall LOS 'A' during weekday morning and afternoon peak hours. With the exception of the southbound through/right-turn movement at the Tremblay/Belfast intersection (operating with a LOS 'B' during the AM peak and ' C ' during the PM peak), critical movements at study are intersections are currently operating with a LOS ' A '.

Estimated $95^{\text {th }}$ percentile queues range between 1 to 15 vehicles (i.e. 7 m to 105 m in length) and are only considered problematic when they block Avenue L and the driveway connections to the properties municipally known as 294 and 300 Tremblay Road.

Table 9: Study Area Intersection Operations - 2025 and Beyond Background Conditions

		AM Peak Hour				PM Peak Hour			
Movement	Lanes	v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)
Via Rail/Tremblay Rd - Semi Act-Uncoord Signal									
EBT	2 T	0.17	3.9	A	15	0.14	5.9	A	12
EBR	1 R	0.11	1.2	A	5	0.18	1.9	A	7
WBL	1 L	0.05	4.2	A	4	0.10	6.6	A	8
WBT	2 T	0.07	3.7	A	7	0.21	6.3	A	19
NBL/R	$1>\mathrm{L}$	0.35	17.5	A	21	0.50	16.4	A	31
Overall		0.19	5.5	A	-	0.24	7.6	A	-
Pickering Pl/Tremblay Rd - Unsignalized									
EBT	1 T	0.26	0.0	A	0	0.20	0.0	A	0
EBR	1 R	0.02	0.0	A	0	0.00	0.0	A	0
WBL	1 L	0.04	8.5	A	1	0.01	8.0	A	0
WBT	2 T	0.06	0.0	A	0	0.13	0.0	A	0
NBL/R	$1>\mathrm{L}$	0.04	12.1	A	1	0.09	12.6	A	2
Overall		0.40	0.8	A	-	0.28	0.7	A	-
Avenue K/Tremblay Rd - Unsignalized									
EBT/R	$1 \mathrm{~T} / \mathrm{R}$	0.26	0.0	A	0	0.22	0.0	A	0
WBT/L	$1 \mathrm{~T} / \mathrm{L}$	0.07	2.6	A	2	0.02	0.6	A	1
NBL/R	$1>L$	0.08	13.2	A	2	0.25	15.4	A	8
Overall		0.55	1.7	A	-	0.53	2.2	A	-
Avenue L/Tremblay Rd - Unsignalized									
EBT/R	$1 \mathrm{~T} / \mathrm{R}$	0.25	0.0	A	0	0.24	0.0	A	0
WBT/L	$1 \mathrm{~T} / \mathrm{L}$	0.02	0.6	A	0	0.02	0.8	A	1
NBR	1 R	0.07	11.0	A	2	0.08	11.1	A	2
Overall		0.35	0.8	A	-	0.49	1.0	A	-
Belfast Rd/Tremblay Rd - Semi Act-Uncoord Signal									
EBL	1 L	0.30	18.7	A	33	0.57	35.2	A	60
EBT/R	$1 \mathrm{~T} / \mathrm{R}$	0.40	15.5	A	54	0.44	18.7	A	57
WBL	1 L	0.05	15.9	A	7	0.07	23.2	A	9
WBT/R	$1 \mathrm{~T} / \mathrm{R}$	0.25	15.1	A	36	0.45	24.8	A	71
NBL	1 L	0.51	39.3	A	38	0.60	45.4	A	53
NBT/R	$1 \mathrm{~T} / \mathrm{R}$	0.38	13.7	A	41	0.55	21.7	A	94
SBL	1 L	0.18	21.5	A	14	0.19	40.8	A	16
SBT/R	$1 \mathrm{~T} / \mathrm{R}$	0.66	28.9	B	67	0.78	34.9	C	105
Overall		0.52	20.7	A	-	0.63	28.7	B	-
Avenue J/Tremblay Rd - Unsignalized									
EBT	$1 \mathrm{~T} / \mathrm{R}$	0.27	0.0	A	0	0.21	0.0	A	0
WBT	$1 \mathrm{~T} / \mathrm{L}$	0.01	0.6	A	0	0.00	0.1	A	0
NBL/R	$1>L$	0.01	11.9	A	0	0.04	13.3	A	1
Overall		0.36	0.3	A	-	0.37	0.4	A	-

Assuming no signal timing plan or network modifications, Table 9 summarizes how an increase in background traffic volumes is projected to result in similar operations, when compared to existing conditions.

Adjustments to Background Network Demands

Given study area intersections are projected to continue operating with notable spare capacity with an increase in background traffic volumes, adjusting background network demands is difficult to justify. However, with the recent opening of OC Transpo's Confederation LRT line, it is anticipated that there will be an increased number of transit users, which has the potential to alleviate the vehicular demand on study area intersections.

Total Projected Conditions

The following section summarizes the intersection capacity analysis of total projected volume scenarios for the 2025 and 2030 horizon years. It should be noted that since background traffic growth has been assumed to be 0%, total projected volumes for the 2035 horizon year is the same as the 2030 horizon year.

The following total projected volumes depicted in Figure 18 and Figure 19 were derived by superimposing sitegenerated traffic volumes onto projected background traffic volumes (e.g. summing volumes together from Figure 12, Figure 13 and Figure 17, resulting in Figure 18).

Figure 18: Total Project Traffic Volumes 2025

Figure 19: Total Projected Traffic Volumes 2030, 2035
Similar to existing baseline and background conditions, total projected conditions were assessed using the intersection capacity analysis software Synchro (v9), and using the same metrics such as v / c and delay. The following Table 10 and Table 11 summarize the projected performance of study area intersections for the 2025 and 2030/2035 horizon years, respectively. The objective of this analysis is to determine if network improvements will be required to support background traffic growth and the projected traffic generated by the subject development. Detailed Synchro output data for total projected conditions is provided as Appendix F.

Table 10: Study Area Intersection Operations - 2025 Total Projected Conditions

Movement	Lanes	AM Peak Hour				PM Peak Hour			
		v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)
Via Rail/Tremblay Rd - Semi Act-Uncoord Signal									
EBT	2 T	0.17	3.9	A	15	0.15	6.0	A	13
EBR	1 R	0.11	1.2	A	5	0.18	1.9	A	7
WBL	1 L	0.05	4.2	A	4	0.10	6.6	A	8
WBT	2 T	0.08	3.7	A	7	0.22	6.3	A	19
NBL/R	$1>\mathrm{L}$	0.35	17.5	A	21	0.50	16.4	A	31
Overall		0.19	5.4	A	-	0.25	7.6	A	-
Pickering Pl/Tremblay Rd - Unsignalized									
EBT	1 T	0.25	0.0	A	0	0.21	0.0	A	0
EBR	1 R	0.01	0.0	A	0	0.00	0.0	A	0
WBL	1 L	0.03	8.4	A	1	0.01	8.0	A	0
WBT	2 T	0.06	0.0	A	0	0.13	0.0	A	0
NBL/R	$1>\mathrm{L}$	0.03	11.6	A	1	0.07	12.4	A	2
Overall		0.35	0.7	A	-	0.29	0.6	A	-
Avenue K/Tremblay Rd - Unsignalized									
EBT/R	$1 \mathrm{~T} / \mathrm{R}$	0.26	0.0	A	0	0.22	0.0	A	0
WBT/L	$1 \mathrm{~T} / \mathrm{L}$	0.07	2.6	A	2	0.02	0.8	A	1
NBL/R	$1>\mathrm{L}$	0.12	14.2	A	3	0.24	15.7	A	7
Overall		0.54	1.9	A	-	0.58	2.2	A	-
Avenue L/Tremblay Rd - Unsignalized									
EBT/R	$1 \mathrm{~T} / \mathrm{R}$	0.25	0.0	A	0	0.24	0.0	A	0
WBT/L	$1 \mathrm{~T} / \mathrm{L}$	0.02	0.6	A	0	0.02	0.8	A	1
NBR	1 R	0.08	11.1	A	2	0.09	11.1	A	2
Overall		0.35	0.9	A	-	0.49	1.1	A	-
Belfast Rd/Tremblay Rd - Semi Act-Uncoord Signal									
EBL	1 L	0.31	18.8	A	34	0.59	36.2	A	62
EBT/R	$1 \mathrm{~T} / \mathrm{R}$	0.41	15.8	A	56	0.45	19.0	A	59
WBL	1 L	0.05	16.1	A	7	0.07	23.3	A	9
WBT/R	1 T/R	0.25	15.2	A	36	0.46	25.0	A	71
NBL	1 L	0.51	39.6	A	39	0.61	45.8	B	54
NBT/R	$1 \mathrm{~T} / \mathrm{R}$	0.37	13.6	A	41	0.55	21.6	A	94
SBL	1 L	0.18	21.4	A	14	0.19	40.8	A	16
SBT/R	$1 \mathrm{~T} / \mathrm{R}$	0.66	28.6	B	67	0.78	35.0	C	106
Overall		0.52	20.7	A	-	0.64	28.9	B	-
Avenue J/Tremblay Rd - Unsignalized									
EBT	$1 \mathrm{~T} / \mathrm{R}$	0.26	0.0	A	0	0.22	0.0	A	0
WBT	$1 \mathrm{~T} / \mathrm{L}$	0.01	0.6	A	0	0.00	0.1	A	0
NBL/R	$1>\mathrm{L}$	0.01	11.8	A	0	0.04	13.6	A	1
Overall		0.36	0.3	A	-	0.37	0.4	A	-

As shown in Table 10, assuming no signal timing plan or network modifications for the 2025 horizon year, study area intersections are projected to continue operating similar to background conditions, only with relatively minor increases in volumes and delays. Most notable projected changes in LOS, which do not warrant network modifications, include:

+ Tremblay/Belfast - northbound left movement LOS A to LOS B

Based on total projected volumes depicted in Figure 19 and the previously described affordable network changes (i.e. widening of Tremblay Road from two to four lanes), the following Table 11 summarizes the projected performance of study area intersections for the 2030 horizon year, and beyond. It should be noted that the widening
of Tremblay Road was assumed to result in a 4-lane cross-section; however, would not result in additional through capacity for east and westbound general-purpose traffic at the Tremblay/Belfast intersection. For analysis purposes, the following Figure 20 depicts the assumed widening of Tremblay Road, within the vicinity of the subject development.

Figure 20: Assumed Tremblay Road Widening

As shown in the following Table 11, study area intersections are projected to continue operating similar to background conditions for the 2030 horizon year and beyond, only with relatively minor increases in volumes and delays.

Based on an MTO left-turn lane warrant analysis, an auxiliary westbound left-turn lane may ultimately be warranted at the Tremblay/Avenue K intersection, and Avenue L may require turning restrictions to limit movements to right-in/right-out only. Given study area intersections are projected to operate with significant spare capacity, a road widening to accommodate an auxiliary westbound left-turn at Avenue K and/or a median to limit turning movements at Avenue L should only be considered if problematic operations can be observed. It should also be noted that there are a number of cost-effective traffic calming measures that can be explored prior to a road widening, if necessary. For example:

> + Signage to prohibit select turning movements, which can be limited to peak hours only;
> + Speed display devices;
> + Pavement marking to encourage slow speeds;
> + Vertical centerline treatments (e.g. flexible stake bollards), etc.

If necessary, any of the above measures can be implemented in a relatively short amount of time and their effectiveness can easily be measured, also in a relatively short amount of time. Multiple traffic calming measures can also be used in combination with one another, and may be necessary to achieve the desired effect. MTO leftturn lane warrant analysis and signal warrant analysis were attached in Appendix G.

Table 11: Study Area Intersection Operations - 2030,2035 Total Projected Conditions

Movement	Lanes	AM Peak Hour				PM Peak Hour			
		V/C	Delay (s)	LOS	Queue (m)	V/C	Delay (s)	LOS	Queue (m)
Via Rail/Tremblay Rd - Semi Act-Uncoord Signal									
EBT	2 T	0.18	3.9	A	16	0.17	6.1	A	15
EBR	1 R	0.11	1.2	A	5	0.18	1.9	A	7
WBL	1 L	0.05	4.2	A	4	0.10	6.6	A	8
WBT	2 T	0.10	3.7	A	9	0.23	6.4	A	21
NBL/R	$1>L$	0.35	17.5	A	21	0.50	16.4	A	31
Overall		0.20	5.3	A	-	0.25	7.6	A	-
Pickering PI/Tremblay Rd - Unsignalized									
EBT	1 T	0.26	0.0	A	0	0.23	0.0	A	0
EBR	1 R	0.02	0.0	A	0	0.01	0.0	A	0
WBL	1 L	0.03	8.4	A	1	0.01	8.2	A	0
WBT	2 T	0.07	0.0	A	0	0.14	0.0	A	0
NBL/R	$1>\mathrm{L}$	0.07	13.1	A	2	0.08	13.0	A	2
Overall		0.35	1.0	A	-	0.30	0.7	A	-
Avenue K/Tremblay Rd - Unsignalized									
EBT/R	1 T \& $1 \mathrm{~T} / \mathrm{R}$	0.15	0.0	A	0	0.14	0.0	A	0
WBT/L	$1 \mathrm{~T} \& 1 \mathrm{~T} / \mathrm{L}$	0.09	0.0	A	0	0.15	0.0	A	0
NBL/R	$1>\mathrm{L}$	0.21	14.8	A	6	0.27	14.8	A	9
Overall		0.38	2.6	A	-	0.42	2.5	A	-
Avenue L/Tremblay Rd - Unsignalized									
EBT/R	1 T \& $1 \mathrm{~T} / \mathrm{R}$	0.17	0.0	A	0	0.16	0.0	A	0
WBT/L	$1 \mathrm{~T} \& 1 \mathrm{~T} / \mathrm{L}$	0.13	0.0	A	0	0.17	0.0	A	0
NBR	1 R	0.06	9.9	A	2	0.07	9.9	A	2
Overall		0.26	0.8	A	-	0.31	0.9	A	-
Belfast Rd/Tremblay Rd - Semi Act-Uncoord Signal									
EBL	1 L	0.32	19.1	A	35	0.62	38.0	B	66
EBT/R	$1 \mathrm{~T} / \mathrm{R}$	0.43	16.1	A	58	0.47	19.8	A	62
WBL	1 L	0.05	16.1	A	7	0.08	23.5	A	9
WBT/R	$1 \mathrm{~T} / \mathrm{R}$	0.26	15.3	A	37	0.47	25.5	A	73
NBL	1 L	0.53	40.2	A	42	0.63	46.8	B	57
NBT/R	$1 \mathrm{~T} / \mathrm{R}$	0.37	13.6	A	41	0.55	21.5	A	94
SBL	1 L	0.18	21.4	A	14	0.20	41.1	A	16
SBT/R	$1 \mathrm{~T} / \mathrm{R}$	0.66	28.6	B	67	0.78	35.3	C	108
Overall		0.53	20.9	A	-	0.65	29.4	B	-
Avenue J/Tremblay Rd - Unsignalized									
EBT	1 T \& $1 \mathrm{~T} / \mathrm{R}$	0.17	0.0	A	0	0.16	0.0	A	0
WBT	$1 \mathrm{~T} \& 1 \mathrm{~T} / \mathrm{L}$	0.11	0.0	A	0	0.18	0.0	A	0
NBL/R	$1>\mathrm{L}$	0.01	10.9	A	0	0.04	12.2	A	1
Overall		0.29	0.3	A	-	0.26	0.3	A	-

Adjustments to Site-Generated Demand

With respect to projected site-generated traffic for the subject development lands and other area developments, adjusting modal splits away from projected auto trips further, is difficult to justify, as certain individuals will ultimately be required to drive for one reason or another (e.g. distance between origin/destination is too great, travel is a requirement for employment, physical disabilities limit travel options to personal vehicle, etc.). Additionally, adjusting the auto modal share for site-generated traffic much lower will have a negligible affect on the performance of study area network (note: study area intersections are projected to continue operating similar to background conditions, only with minor increases in volumes and delays).

4. Step 4 - Analysis

With respect to the City of Ottawa TIA Guidelines, this module reviews the proposed transportation network elements within the development study area to ensure that they provide effective access for all users while creating an environment that encourages walking, cycling and transit use and prioritizes safety.

4.1 Development Design

Design for Sustainable Modes

The proposed draft Concept Plan for 25 Pickering looks to revitalize an industrial area to make way for new land uses with a mixed used designation. The development site, which includes Pickering Place, Avenue K and Avenue L, currently has very limited pedestrian infrastructure and no existing cycling infrastructure. The development looks to utilize and connect existing local roadways and improve pedestrian and cycling connections.

25 Pickering is located in close proximity to the Via Rail station in Ottawa, which will soon have an underground pedestrian connection to the retail/commercial area to the south of the existing VIA rail line. Currently, the only way to walk from the site to the shops south of the Via Rail station is along Belfast Road, which is more than triple the distance of what the new underground connection would be (0.4 km versus 1.2 km). The development site is currently served by a nearby LRT station along Ottawa's new O-Train network (Tremblay Station), making the development site an ideal location for transit and regional rail commuting. Additionally, residents and visitors to/from the subject development will have nearby access to amenities in the region such as a small central park, the Ottawa River Pathway, Ottawa Trainyards, and the St. Laurent Shopping Center.

Pedestrian Facilities: Continuous sidewalks will be provided throughout the development site, connecting to the existing sidewalks along the Tremblay Road. Additionally, sidewalks and pavement markings (e.g. high-visibility pedestrian crosswalks) will be provided on Avenue K and Avenue L, providing interconnectivity between on-site the buildings and amenities. There is no planned pedestrian access to Belfast Road, other than through existing the existing connection from Tremblay Road and there are no additional sidewalks planned along Pickering Place.

Bicycle Facilities: Multi-use pathways (MUP) are currently provided along north side of Tremblay Road and along the west side of Belfast Road. Cyclists that want to enter or exit the site may use the MUP or share the road with vehicles on Tremblay Road. On-site, cyclists will be required to travel in a shared street condition; however, measures are planned to be implemented to ensure slow vehicle speeds.

Transit Facilities: The following Table 12 summarizes the approximate walking distances between main exterior access doors for the proposed development and the existing transit stops or stations, and the \% of the stops within 400 m of walking distance ($<5 \mathrm{~min}$). The following Table 13 summarizes available OC Transpo routes and their associated stop numbers and location, and the direction of each route.

Table 12: Approximate Transit Facility Walking Distance in Metres (m) to/from Building Entrances

Stop \#	Hotel	Tower A	Tower B	Tower C	Tower D	Senior Res.	$\%$ of Stops within 400 m
$\# 1371$	340	325	295	365	433	448	66.7%
$\# 1369$	325	280	255	325	390	380	100%
$\# 1837$	110	175	235	165	185	170	100%
$\# 1836$	275	340	400	330	265	250	83.3%
$\# 1849$	430	495	555	485	420	405	0%
$\# 3024$	435	390	360	430	500	515	33.3%

Table 13: Existing Transit Facilities

Stop \#	Location	Operating Route	Direction
\#1371	Immediately northwest of Tremblay/Via Rail	39	Inbound
\#1369	Immediately southeast of Tremblay/Via Rail	39	Outbound
$\# 1837$	Immediately west of Tremblay/Avenue K	39	Outbound
$\# 1836$	Immediately east of Tremblay/Belfast	18,39	Inbound
$\# 1849$	Immediately west of Tremblay/Avenue P	18,39	Outbound
$\# 3024$	200m southwest of Tremblay/Via Rail	Confederation Line	Inbound/Outbound

It should be noted that most transit stops listed in Table 12 and Table 13 are located within the OC Transpo's service design guideline of 400 m . A review of Transportation Demand Management (TDM) strategies, which includes strategies to promote transit use, is provided as Appendix \mathbf{H}.

Circulation and Access

The width of proposed site driveways is approximately 6.75 m for the "Station Road", and 7 m for the "Woonerf Road", which are sufficient for two-way vehicular traffic and is in accordance with Zoning By-Law requirements. Taxis, and other short-stay/delivery vehicles may be accommodated by laybys located along the frontage of each building located on Lot A, B and C. It should be noted that the driveway access to underground parking and facilities is proposed to be 6 m , which satisfies Aisle and Driveway By-Law Provisions.

Based on current/available information, loading zones will be located within a layby or provided as an underground facility. With respect to emergency vehicle access, a clear 6 m wide fire route will be provided, which satisfies Building Code requirements.

The planned development can be accessed through the existing Avenue K, Avenue L, and Pickering Place via Tremblay Road. There is no planned vehicular access to/from Belfast Road. The vehicular access located between Pickering Place and Via Rail, which is currently blocked, is planned to be re-opened as a right-in/right-out connection autos, pedestrians and cyclists; however, it may simply be a connection for active modes. Potential modifications for existing unsignalized study area intersections (e.g. Avenue L/Tremblay, Avenue K/Tremblay, etc.) were previously mentioned in the Step 3 - Forecasting section (i.e. signalization and/or additional turn lanes are not recommended).

New Street Networks

The proposed configuration of the new on-site street network was previously depicted in Figure 2.
For internal circulation, three roadway widths have been proposed:

+ 6.75m, including the "Station Road" connecting Avenue L extension and Pickering Place;
+ 7m, including the "Woonerf Road" and Avenue K extension; and
+ 8.5 m , including Avenue L extension.
As previously described, and shown in Figure 2, sidewalks are provided along both sides of the new internal street network, with the exception of Pickering Place. Cyclists are proposed to be traveling under shared street conditions on-site, with slow motor vehicles. As such, traffic management features, such as shared route signage, speed signs, textured pavement (e.g. woonerf) and/or curb bulb-outs at crosswalks are recommended for the internal street network to reduce travel speeds, and provide a safe environment for both pedestrians and cyclists.

A total of four (4) ramps to underground parking are proposed, currently proposed to serve residential towers with ground floor commercial/retail. The grade of these ramps should not exceed 6% without a subsurface melting device sufficient to keep the ramps free of ice.

Preliminary comments on the proposed Concept Plan from the City include:

+ All on-site crosswalks should be in-line sidewalks;
+ Corner sight-triangles of at least 3 m should be provided, in accordance with Annex 1 of the City's Official Plan (Section 2.0, Policy 5);
+ Special consideration should be given to crossings for active modes between with subject site and the adjacent VIA Rail Station (i.e. the Pickering/Station intersection); and
+ Justification for All-Way STOP control should be provided for any proposed on-site intersections.
These recommendations will be given special consideration and will be determined during subsequent development applications, when greater site specific detail will be known.

4.2 Parking

With respect to the City's TIA guidelines, this module reviews the development's planned parking supply to ensure a balance between operational needs, the encouragement of sustainable travel modes, and the desire to minimize neighbourhood impacts.

Parking Supply

Vehicular parking

The proposed development is located in Area Z (Near Major LRT Stations), identified in Schedule 1A of the City's Zoning By-law, which identifies areas near specific rapid-transit stations.

Area Z in the City's Zoning By-laws general states that there is no minimum parking requirement other than visitor parking. Details regarding the number of parking spaces and loading requirements will be determined during subsequent development applications, when greater site specific detail will be known. At this stage, the concept plan only provides high-level direction with respect to traffic, access management and the location of future parking.

Bike Parking

The following Table 14 summarizes the required minimum bike parking space rate, in accordance with the City's Zoning By-law, Section 101, Table 111A. At this stage, the concept plan only provides high-level direction of the bike parking requirement with respect to current Zoning By-Law. The number of bike parking spaces provided for
this development will be determined during the subsequent development applications, when greater site specific detail will be known.

Table 14: Parking Supply

Mode	Zoning Requirement	GFA	Minimum parking Requirement
Bike	0.25 per dwelling unit for Sen.Res	164 units of Sen.Res	41 for Sen.Res 0.5 per dwelling unit for Apartment 1 per $250 \mathrm{~m}^{2}$ GFA for Retail 1 per $1000 \mathrm{~m}^{2}$ GFA for Hotel
	$836 \mathrm{~m}^{2}$ GFA of Retail	$5984 \mathrm{~m}^{2}$ for Apartment	
		10 for Hotel	

Spillover parking

With respect to the City's TIA Guidelines, this module is exempt.

4.3 Boundary Street Design

With respect to the City's TIA guidelines, this module determines design elements of boundary streets required to accommodate the proposed development, consistent with the City's complete streets philosophy and its urban design objectives for the development area.

The identified boundary streets for the subject site is Tremblay Road, which is owned and maintained by the City of Ottawa. The subject site is designated as Mixed Used Center under the City of Ottawa Official Plan - Schedule B and is within the "Tremblay Area" identified in the City's 2014 TOD Plan.

Mobility

A Multi-Modal Level of Service (MMLOS) assessment was conducted for the subject site's boundary streets, which is a measure of risk, comfort and stress for active modes and a measure of impedance, delay and reliability for trucks/buses. With respect to the City of Ottawa's MMLOS guidelines, target MMLOS values were obtained from Exhibit 22 of the MMLOS guidelines and are identified in brackets in the following Table 15 and Table 16. The detailed assessment is included as Appendix I.

Segment MMLOS Summary

The following Figure 21 depicts the road classification from the City's Geo Ottawa website. It should be noted that Tremblay Road is a designated as a truck route.

Figure 21: Road Classification
The following Table 15 is a MMLOS summary for Phase 1 development for all modes (i.e. Pedestrian, Cycling, Transit and Truck) along the road segments described above. The following Table 16 summarizes the projected segment MMLOS with planned network changes (i.e. Phase 2 development). LOS results highlighted in red indicate that the target MMLOS was not met for that segment.

It should be noted that MMLOS segment analysis focuses on local transit provided along the boundary streets only, as there is no mechanism to explicitly consider near-by LRT service within the City's MMLOS analysis tools.

Table 15: Segment MMLOS - Projected Phase 1 LOS(Target LOS)

No.	Road Name	Segment Between	PLOS	BLOS	TLOS	TkLOS
1	Tremblay Rd	Via Rail \& Pickering PI	$B(A)$	$A(D)$	$D(D)$	$A(D)$
2	Tremblay Rd	Pickering PI \& Avenue J	$B(A)$	$A(D)$	$D(D)$	$B(D)$
3	Tremblay Rd	Avenue J \& Avenue K	$B(A)$	$A(D)$	$D(D)$	$B(D)$
4	Tremblay Rd	Avenue K \& Avenue L	$B(A)$	$A(D)$	$D(D)$	$B(D)$
5	Tremblay Rd	Avenue L \& Belfast Rd	$B(A)$	$A(D)$	$D(D)$	$B(D)$

Table 16: Segment MMLOS - Projected Phase 2 LOS(Target LOS)

No.	Road Name	Segment Between	PLoS	BLOS	TLOS	TkLOS
1	Tremblay Rd	Via Rail \& Pickering PI	$B(A)$	$A(D)$	$D(D)$	$A(D)$
2	Tremblay Rd	Pickering PI \& Avenue J	$B(A)$	$A(D)$	$D(D)$	$B(D)$
3	Tremblay Rd	Avenue J \& Avenue K	$B(A)$	$A(D)$	$D(D)$	$B(D)$
4	Tremblay Rd	Avenue K \& Avenue L	$B(A)$	$A(D)$	$D(D)$	$B(D)$
5	Tremblay Rd	Avenue L \& Belfast Rd	$B(A)$	$A(D)$	$D(D)$	$B(D)$

Based on the foregoing, the following should be noted/considered:

Overall MMLOS

+ Bike, Transit and Truck modes on the boundary street will meet or exceeding MMLOS targets; and

Pedestrian LOS

+ All segments along Tremblay Road are projected to not quite meet PLOS targets;
+ Segments along Belfast Road fail to meet PLOS targets; and
+ Measures to improve PLOS include: sidewalk widening and the inclusion of a buffer between the sidewalk and adjacent roadway are recommended along boundary streets, and a mid-block Type B pedestrian crossover on Tremblay Road (between Pickering Place and Avenue L), complete with button activated lights to promote a safe crossing between the subject development and the MUP along the north side of Tremblay Road. Related Synchro analysis and results were attached in Appendix J (Assuming the PXO is located at Tremblay/Avenue K).

Bike LOS

+ Boundary street segments will meet or exceed BLOS targets after the implementation of the TOD Plan cycling infrastructure improvements, as identified in Figure 11.

Transit LOS

+ Boundary street segments meet TLOS targets in both Phase 1 and Phase 2 conditions.

Truck LOS

+ Boundary street segments are expected to exceed TkLOS targets in Phase 1 and Phase 2 conditions.

Road Safety

For the purpose of an engineering review, collision records for boundary streets are examined to determine if locations exhibit any collision trends that might be mitigated by engineering intervention. If there is a collision trend that is outside the norm of what is expected, then the potential exists to reduce the collision experience by addressing the over-represented collision trend. Whenever changes are being made to the road environment, it is an opportunity to examine whether a safety intervention could result in meaningful safety benefits. Where there are identifiable safety trends, it is worthwhile to mitigate those, such that the added traffic from a new development does not increase the risk of new collisions.

Based on a review of the most recent five (5) years of historical collision data (collected from January $1^{\text {st }}, 2014$ to December $31^{\text {st }}, 2018$), the following Table 17 summarizes the number and rate (i.e. collisions per million vehicle kilometres) of collisions within the vicinity of the subject development lands, along road segments.

Table 17: Historical Collision Data Summary by Road Segment

Segment	Between	Total Collisions (5 Year Total)	$\begin{aligned} & \text { Rate } \\ & \text { (C/MVK) } \end{aligned}$	Classification		
				Property Damage	Non-fatal Injury	Fatal Injury
Tremblay	Riverside \& Via Rail	5	0.36	5	0	0
Tremblay	Via Rail \& Belfast	1	0.09	1	0	0
Avenue L	Tremblay \& Road End	2	*	2	0	0
	Total	8	-	8	0	0
Notes: (*) Denotes data was not available $C / M V K=$ Collisions per Million Vehicle Kilometers						

As shown in Table 17, based on the available data, the collision rates for all road segments adjacent to the subject development site are considered to be low, and the severity of collisions along all section are also low (e.g. mostly rear end and single motor vehicle type collisions were cited).
It should be noted that, due to the COVID-19 pandemic, there has been a significant reduction of traffic in Ottawa's transportation network (e.g. 70% to 90% reduction in transit ridership, 50% reduction in traffic volumes, etc.). Collecting traffic information at this time is not an accurate representation of what is considered typical traffic conditions. As such, average annual daily traffic (AADT) count data was not available for the unsignalized study area intersections, and therefore, the rate of collisions were not calculated (in both road segments and intersection analysis).

Based on the same most recent five (5) years of historical collision data (collected from January $1^{\text {st }}, 2014$ to December $31^{\text {st }}, 2018$), the following Table 18 summarizes the number and rate (i.e. collisions per million entering vehicles) of collisions within the vicinity of the subject development lands, at study area intersections.

Table 18: Historical Collision Data Summary by Intersection

Intersection	Total Collisions (5 Year Total)	Rate (C/MEK)	Classification		
			Property Damage	Non-fatal Injury	Fatal Injury
Tremblay @ Via Rail	5	0.29	4	1	0
Tremblay @ Pickering	4	*	4	0	0
Tremblay @ Avenue J	0	-	0	0	0
Tremblay @ Avenue K	3	*	2	1	0
Tremblay @ Avenue L	3	*	3	0	0
Tremblay @ Belfast	8	0.26	4	4	0
Total	23	-	17	6	0
(*) Denotes data was not available C/MEK = Collisions per Million Entering Vehicles					

As shown in Table 18, the two study area intersections with collision rates are the Tremblay/Via Rail and Tremblay/Belfast intersections, which both appear to have low collision rates.

A more detailed collision analysis for road segments and intersections within the study area are included in Appendix K. As previously mentioned, source collision data is included in Appendix C.

Neighbourhood Traffic Management (NTM)

The total projected traffic volumes along Tremblay Road are not expected to exceed the major collector classification thresholds (i.e. 600 veh/h during peak hours), even without considering the future road widening. Therefore, the potential for 'peak period spreading', the phenomenon where peak traffic volumes begin earlier than the peak hour and dissipate later, is low. As previously mentioned in the Step 3 - Forecasting section of this report, there are no projected operational concerns on the boundary streets for the full build-out horizon year. As such additional NTM measures are not recommended.

4.4 Access Intersection Design

With respect to the City's TIA guidelines, this module determines design elements of the points of access to the development, consistent with the City's complete streets philosophy, MMLOS guidelines, and its urban design objectives for the development area.

Location and Design of Access

The location of main access to/from 25 Pickering Place will be provided at the following existing unsignalized locations:

$$
\begin{array}{ll}
+ & \text { Tremblay/Pickering } \\
+ & \text { Tremblay/Avenue L } \\
+ & \text { Tremblay/Avenue K }
\end{array}
$$

In addition to these existing access locations, a new unsignalized access will be provided at Pickering Place and Station Road. On the south end of Pickering Place, there is an access road to Station Road, which used to give access to the Via Rail station, but it is currently blocked with concrete barriers. This access point may be modified as a new right-in/right-out connection. With respect to the City's Private Approach By-Law No. 2003-447, all new proposed driveway connections satisfy By-Law requirements in terms of number of driveways along the site's frontage, width and location.

Intersection Control

Main access points to/from 25 Pickering Place are proposed to be full movement and STOP controlled on the minor approaches only, and are projected to operate with significant spare capacity.

Intersection Design

the following is a MMLOS analysis for the planned signalized access intersections to/from the subject development. As previously mentioned, MMLOS is a measure of risk, comfort and stress for active modes and a measure of impedance, delay and reliability for trucks/buses. With respect to the City of Ottawa's MMLOS guidelines, target MMLOS values were obtained from Exhibit 22 of the MMLOS guidelines and are identified in brackets in the following Table 19 and Table 20.

Intersection MMLOS Summary

Similar to the MMLOS analysis conducted for the Boundary Street Design, the following Table 19 and Table 20 summarize existing and projected MMLOS analysis completed for all modes, at study area signalized intersections. The detailed intersection MMLOS analysis is provided in Appendix L.

Table 19: Intersection MMLOS - Projected Phase 1 LOS (Target LOS)

No.	Intersection	PLOS	BLOS	TLOS	TkLoS	AutoLoS
1	Tremblay/Via Rail	$\mathrm{E}(\mathrm{A})$	$\mathrm{E}(\mathrm{D})$	$\mathrm{C}(\mathrm{D})$	$\mathrm{C}(\mathrm{D})$	$\mathrm{A}(\mathrm{E})$
2	Tremblay/Belfast	$\mathrm{C}(\mathrm{A})$	$\mathrm{E}(\mathrm{D})$	$\mathrm{D}(\mathrm{D})$	$\mathrm{C}(\mathrm{D})$	$\mathrm{B}(\mathrm{E})$

Table 20: Intersection MMLOS - Projected Phase 2 LOS (Target LOS)

No.	Intersection	PLOS	BLOS	TLOS	TkLOS	AutoLOS
1	Tremblay/Via Rail	$\mathrm{E}(\mathrm{A})$	$\mathrm{E}(\mathrm{D})$	$\mathrm{C}(\mathrm{D})$	$\mathrm{C}(\mathrm{D})$	$\mathrm{A}(\mathrm{E})$
2	Tremblay/Belfast	$\mathrm{D}(\mathrm{A})$	$\mathrm{E})$	$\mathrm{D})$	$\mathrm{D}(\mathrm{D})$	$\mathrm{C}(\mathrm{D})$

As shown in Table 20, study area intersections are projected to not meet LOS targets for active modes. Based on the foregoing, the following should be noted/considered:

Overall MMLOS

+ Transit, Truck and Auto LOS at signalized study are intersections are expected to meet or exceed all targets.

Pedestrian LOS

+ Both study intersections fail to meet the PLOS targets.
+ Beneficial pedestrian safety features that are currently provided include protected only left-turn phasing, and streetlighting.
+ Failing PLOS is mainly attributed to the size of study area intersections (e.g. the more vehicle travel lanes pedestrians have to cross increases their/exposure to potential collisions).
+ Possible measures to improve PLOS:
- Implement pedestrian leading intervals (LPI);
- "Zebra" pavement markings on all crosswalks;
- Provide median pedestrian refuges; and
- Prohibit right-turn-on-red.

Bike LOS

+ Both intersections fail to meet the BLOS targets.
+ Beneficial cycling features are not provided which can include, 2 stage bicycle left-turns or bike boxes.
+ Failing BLOS is mainly attributed to the number of lanes that are required to cross to perform a left-turn (without a 2-stage left turn or bike box).
+ Possible measures to improve BLOS:
- Two stage left-turn bike boxes;

Transit LOS

+ Both intersections are expected to meet or exceed the TLOS targets.

Truck LOS

+ Both intersections are expected to meet or exceed TkLOS targets.

Auto LOS

+ Both intersections are expected to meet or exceed AutoLOS targets.
While the unsignalized access intersections do not require an MMLOS analysis; it is recommended that the pavement markings along the south E-W crosswalks of the unsignalized intersections are upgraded to "zebra" type pavement crosswalk markings to improve visibility of pedestrians crossing at these intersections.

4.5 Transportation Demand Management

With respect to the City's TIA Guidelines, an analysis of Transportation Demand Management (TDM) measures is required for this development. As such, a formal TDM Checklist (provided by the City) was completed to determine if TDM measures should be implemented, based on the available information.

However, due to the lack of detailed design for each land use, it is expected that a TDM strategy will be established at the SPA stage of the development process. The TDM checklist is attached as Appendix M.

4.6 Neighbourhood Traffic Management

With respect to the City's TIA guidelines, this module reviews significant access routes to/from the development and identifies any required neighbourhood traffic management (NTM) measures to mitigate impacts on collector and local roads.

As mentioned in the Step 3 - Forecasting section of this report, there are no expected operational concerns on the boundary streets for the full build-out horizon year. As such additional NTM measures are not recommended.

4.7 Transit

The transit stops that serve the development site were previously summarized in Table 12 and Table 13. These tables include stop information, routes, and the distance to/from the development site. The transit route information, including peak hour headway and service type, were previously summarized in Table 2 in the Step 2 - Scoping section of this report. Detailed transit maps are included in Appendix \mathbf{N}.
Based on the foregoing and ridership data provided by the City, it is anticipated that the existing and planned expansion to transit services will have enough capacity to accommodate the development-generated demand. No additional transit priority measures are required for this development.

Route Capacity

Current transit ridership data for the bus stops listed in Table 12 and Table 13 was provided by the City and is included as Appendix \mathbf{O}. Based on TOD plans, it is expected that 65 percent of the trips generated by the site will be accommodated by transit, and that the majority of transit usage for people accessing the development site will be completed by LRT.

Based upon the analysis provided in the Step 3 - Forecasting section, Table 21 depicted that there will be approximately 539 additional transit trips for AM peak hour generated by the subject development full build out.

Table 21: Distribution of site-generated transit trips, AM peak hour

Development Phase	Eastbound			Westbound		
	In	Out	Total	In	Out	Total
Phase 1 (2025)	20	29	49	46	69	115
Phase 2 (2030)	29	84	113	67	195	262
Total	$\mathbf{4 9}$	$\mathbf{1 1 3}$	$\mathbf{1 6 2}$	$\mathbf{1 1 3}$	$\mathbf{2 6 4}$	$\mathbf{3 7 7}$

Table 22 compares the existing and projected background transit trips between 2020 and 2025 (provided by OC Transpo), with the additional transit trips generated by the Phase 1 development. From the table, the Phase 1 development would be a major transit trip generator to Tremblay LRT station in 2025, contributing to the total alighting by approximately 25% and the boardings by about 50%. It should be noted that the 2020-2025 growth values in Table 22 are an estimated 50% of the total forecasted growth between 2020-2031, rounded up to the nearest whole person-trip.

Table 22: Tremblay Station activity 2020 (pre-pandemic) and 2025 (forecasted growth plus 25 Pickering site-generated demand)

	Eastbound		Westbound		Total	
	Alightings	Boardings	Alightings	Boardings	Alightings	Boardings
2020 AM Peak Hour	64	35	46	26	110	61
Phase 1 (2025) site-generated trips	20	29	46	69	66	98
Forecasted growth 2020-2025	104	9	59	23	163	32
Total 2025 AM Peak Hour	$\mathbf{1 8 8}$	$\mathbf{7 3}$	$\mathbf{1 5 1}$	$\mathbf{1 1 8}$	$\mathbf{3 3 9}$	$\mathbf{1 9 1}$

Table 23 compares the projected 2031 transit trips on Tremblay LRT station with both phases of the development. Similar to Table 22, 25 Pickering development will be comprising a significant part of the Tremblay station activity by the year 2031. 25 Pickering Place development will ultimately contribute 162 alightings and 377 boardings in AM peak hour, accounting for around 30% of the total alightings and 75% of the boardings.

Table 23: Tremblay Station activity 2031 (forecasted growth plus 25 Pickering site-generated demand)

	Eastbound		Westbound		Total	
	Alightings	Boardings	Alightings	Boardings	Alightings	Boardings
2031 AM Peak Hour	272	52	164	71	436	123
Phase 1 (2025) site-generated trips	20	29	46	69	66	98
Phase 2 (2030) site-generated trips	29	84	67	195	96	279
Total 2031 AM Peak Hour	$\mathbf{3 2 1}$	$\mathbf{1 6 5}$	$\mathbf{2 7 7}$	$\mathbf{3 3 5}$	$\mathbf{5 9 8}$	$\mathbf{5 0 0}$

Considering the City is expecting an increase in the current planned capacity of 21,400 passengers per hour to 36,000 by 2031 (which corresponds to Phase 1 of the development), and 48,000 passengers per hour at the ultimate build out ${ }^{1}$. These additional trips will be accommodated for by the planned increases in the capacity of the LRT system.

With respect to local transit, routes 18 and 39 are serviced by single 40ft buses (which have a person capacity of approximately 50 passengers) with 30 min headways. There are approximately 10 to 20 passengers per bus that arrive/depart at the bus stops within the vicinity of the subject development, during the AM and PM peak hours. The residual capacity for these buses is approximately 30 additional passengers per bus, which is approximately 60 passengers per route per peak hour.

Transit Priority

Given the highest order LRT transit near the subject development lands, transit travel times should be unimpeded and therefore, additional transit priority measures will not be required.

Additionally, study area intersections are projected to operate with significant spare capacity, local bus routes will be unimpeded, and therefore, will not requite transit priority measures.

[^0]
4.8 Review of Network Concept

The purpose of this section is to outline any required changes to the TMP concepts for auto/transit networks as a result of added traffic from the new development. It is important to recognize that the existing road network serving the site is currently operating with spare capacity during the peak periods. Since the development is in an existing TOD zone, the trip generation analysis proposes the site will rely heavily on transit to service the community's transportation needs.

4.9 Intersection Design

With respect to the City's TIA Guidelines, this module determines the design elements of study area intersections required to accommodate the proposed development, consistent with the City's complete streets philosophy and MMLOS practices.

Intersection Control

All study area site access intersections are currently stop controlled on the minor street and are fully built-out. Based on intersection capacity analysis on the Step 3-Forecasting section, and the consistent with City's policies, goals and objectives, additional signal control is not required at this time.

Intersection Design

Based on intersection capacity analysis on the Step 3 - Forecasting section, and the consistent with City's policies, goals and objectives, additional road widenings are not required at this time.

5. Findings and Recommendations

As is typical of infill developments, the introduction of mid- to high-density intensification will have impacts on the surrounding transportation network. CIMA+ has completed a high-level review of these impacts and summarized the findings within this transportation assessment, which follows the format of a Traffic Impact Assessment (TIA) Study, as requested by the City of Ottawa. Many of the details typically found within a TIA are not provided for this Concept planning stage, and are therefore, have not been included in this review. It is expected that these details will be included in any future development applications. Where relevant, CIMA+ has included guidance for future studies. At this stage, and with respect to the City's Transportation Impact Assessment Guidelines, the following findings and conclusions are offered:

+ Study area intersections are currently operating with significant spare capacity and there are no prevailing safety concerns, based on historical collision data.
+ Transit is assumed to be the primary mode of travel with a 65% mode share target for the proposed development, which is consistent with the City's 2014 TOD plan.
+ With additional traffic generated by area development and the subject development itself, both the local bus and nearby LRT routes, and study area intersections are projected to continue operating with spare capacity.
+ Given the development is located within a Transit Oriented Development zone, improving the active network between the site and the Tremblay LRT station will require special consideration, which can be assessed further during subsequent development applications, when greater site specific detail will be known. However at this time, there are a number of potential measures that can be implemented to improve the level of comfort for pedestrians and cyclists on boundary street segments and at study area intersections.

The proposed development fits well into the context of the surrounding area and it is projected to have a minimal impact on the surrounding transportation network. The design and location of the proposed development serves the City of Ottawa's polices, goals and objectives by providing facilities and connectivity to help promote active and transit modes.

Based on the foregoing, the proposed development located at 25 Pickering Place is recommended from a transportation perspective.

Appendix A
Detailed Vehicular Trip Generation for Existing Land Uses

MEMO

TO: File
CC:
FROM: Junshen Feng, B.Eng. CIMA+
REVIEWED BY Gordon Scobie, P.Eng. CIMA+
DATE: 27 May 2020

SUBJECT: Detailed Vehicular Trip Generation for Existing Land Uses

An estimate of typical traffic conditions (where traffic count information is not available) was developed by estimating vehicular trips generated by the existing land uses that have access to the following unsignalized intersections:

$$
\begin{array}{ll}
+ & \text { Tremblay/Pickering } \\
+ & \text { Tremblay/Avenue } \mathrm{J} \\
+ & \text { Tremblay/Avenue K } \\
+ & \text { Tremblay/Avenue } \mathrm{L}
\end{array}
$$

For the purpose of this exercise, existing area land use traffic was estimated using appropriate trip generation rates from the $10^{\text {th }}$ Edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual. The following Table 1 summarizes appropriate ITE trip generation rates for estimating projected site-generated traffic. It should be noted that the first listed equation is an average vehicle trip generation rate and the second equation is a "line of best fit" equation that more accurately represents the trend of vehicle trip generation based on land use size. Typical industry practice is the use the "line of best fit" equation for site-generated traffic projections, if available.

Table 1: ITE Trip Generation Rates

Land Use	$\begin{gathered} \text { ITE } \\ \text { Land Use Code } \end{gathered}$	AM Peak	PM Peak
General Office Building	ITE 710 General Urban/Suburban	$\begin{gathered} \mathrm{T}=1.16(\mathrm{X}) \text {; or } \\ \mathrm{T}=0.94(\mathrm{X})-26.49 \end{gathered}$	$\begin{gathered} T=1.15(X) ; \text { or } \\ \operatorname{Ln}(T)=0.95 \operatorname{Ln}(X)+0.36 \end{gathered}$
Automotive Parts and Service Center	TE 943 General Urban/Suburban	$\mathrm{T}=1.96$ (X)	$\mathrm{T}=2.26$ (X)
Warehousing	ITE 150 General Urban/Suburban	$\begin{gathered} \mathrm{T}=0.17(\mathrm{X}) \text {; or } \\ \mathrm{T}=0.12(\mathrm{X})-25.32 \end{gathered}$	$\begin{gathered} \mathrm{T}=0.19(\mathrm{X}) \text {; or } \\ \mathrm{T}=0.12(\mathrm{X})+27.82 \end{gathered}$
Fast Casual Restaurant	ITE 930 General Urban/Suburban	$\mathrm{T}=2.07$ (X)	$\mathrm{T}=14.13$ (X)
Notes: $T=$ Average Vehicle Trip Ends $X=1,000 \mathrm{ft}^{2}$ of Gross Floor Area			

With respect to ITE trip generation rates, the data used to develop these rates only include vehicle trips (i.e. walking, cycling or transit trips are not captured), and the data collection surveys are typically conducted in highly-suburban locations with limited access to transit and dedicated non-motorized facilities (e.g. sidewalks, bike lanes, etc. are generally limited). To properly consider the multi-modal trips generated by the proposed development, projected site-generated traffic (estimated using ITE trip generation rates) is converted to projected site-generated person trips, which can then be subdivided into different modes based on area travel patterns and available facilities/network connections (e.g. the availability of transit, walking and cycling facilities).

With respect to NCR OD survey data, the subject existing land uses are located in the Alta Vista district area Traffic Assessment Zone (TAZ). The average AM and PM modal split from/to/within this district indicates that trips person trips consist of 61% auto drivers, 16% auto passengers, 18% transit, 2% bicycle and walk, and 3% other. Considering NCR OD survey data and other key factors (e.g. proximity and quality of non-auto facilities, nature/context of the proposed development, etc.), the following summarizes the assumed modal split of estimated site-generated traffic.

60\% Auto Driver;
15% Auto Passenger;
20% Transit; and
$+\quad 5 \%$ Walk and Cycling.
100%

To convert projected ITE vehicle trips to person trips, an auto occupancy factor and non-auto trip factor is applied to the ITE trip generation rates. With respect to the City's TIA Guidelines, and based on available American Census data, the typical modal share of non-auto person trips is approximately 10% and the typical auto occupancy is 1.15 . Therefore, when combined, a factor of 1.28 is used to convert vehicle trips to person trips.

Based on the foregoing and assuming the approximate size of existing area land uses, summarized in the following Table 2 (developed using Google aerial and streetview photography), estimated vehicle trips generated by existing area land uses were calculated and summarized in Table 3.

As shown in Table 3, existing area land uses are estimated to generate approximate two-way vehicle volumes of approximately 190 veh/h during weekday morning and afternoon peak hours, respectively.

The distribution of this estimated site-generated traffic was derived based on existing travel patterns, the site's connections to/from the surrounding road network, and our local area knowledge. (e.g. the location and proximity of local residential communities, and the HWY 417). For analysis purposes, the following approximate distribution of projected site-generated traffic was assumed:

50\% to/from the east/west via HWY 417 (via Riverside Ramp and Tremblay Road);
20\% to/from the north/south via Riverside Drive/Vanier Parkway (via Tremblay Road);
10\% to/from the east via Tremblay Road;
10% to/from the north via HWY 417 Belfast Road;
$+10 \%$ to/from the south via Belfast Road.
100\%

The resulting assignment of the estimated vehicle trips generated by existing area land uses is depicted as Figure 7 in the 25 Pickering Place Transportation Impact Assessment.

Table 2: Existing Land Uses

Existing Facility	Satellite Image	Approximate Floor Area (ft^{2})
PISPC Office		122,709
Dustbane Warehouse		101,396
Dustbane Office		11,151
Casual Restaurant		1,421
Auto Facility		12,723

Table 3: Projected Site Trip Generation

Existing Facility	Travel Mode	AM Peak (Person Trips/h)			PM Peak (Person Trips/h)		
		In	Out	Total	In	Out	Total
PISPC Office	Auto	94	16	110	17	90	107
Dustbane Warehouse		22	8	30	8	23	31
Dustbane Office		24	5	29	2	10	12
Casual Restaurant		2	2	4	9	8	17
Auto Facility		14	6	20	9	14	23
Total 'New' Auto Trips		156	37	193	45	145	190

Appendix B
Existing Traffic Volume Data

Turning Movement Count - Study Results
BELFAST RD @ TREMBLAY RD
Survey Date: Wednesday, January 08, 2020
Start Time: 07:00
$\begin{array}{lc}\text { WO No: } & 39277 \\ \text { Device: } & \text { Miovision }\end{array}$
Full Study Diagram

[^1]Turning Movement Count - Study Results
BELFAST RD @ TREMBLAY RD

Survey Date: Wednesday, January 08, 2020
Start Time: 07:00

WO No:
Device:

39277
Miovision

Full Study Peak Hour Diagram

5469218 - WED JAN 08, 2020-8HRS - LORETTA

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

BELFAST RD @ TREMBLAY RD

Survey Date: Wednesday, January 08, 2020
Start Time: 07:00

WO No: 39277
Device: Miovision

Comments 5469218-WED JAN 08, 2020-8HRS - LORETTA

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

BELFAST RD @ TREMBLAY RD

Survey Date: Wednesday, January 08, 2020
Start Time: 07:00

WO No: 39277
Device: Miovision

Comments 5469218-WED JAN 08, 2020-8HRS - LORETTA

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

BELFAST RD @ TREMBLAY RD

Survey Date: Wednesday, January 08, 2020
Start Time: 07:00

WO No: 39277
Device: Miovision

Comments 5469218-WED JAN 08, 2020-8HRS - LORETTA

Survey Date: Wednesday, January 08, 2020
Start Time: 07:00
WO No:
39277
Device: Miovision

Full Study Summary (8 HR Standard)

Survey Date: Wednesday, January 08, 202

Northbound:	1	Southbound:	0
Eastbound:	0	Westbound:	0

AADT Factor
1.00

BELFAST RD

Note: These values are calculated by multiplying the totals by the appropriate expansion factor. 1.39

| AVG 12Hr | 1125 | 3233 | 165 | 4525 | 203 | 3088 | 529 | 3820 | 8854 | 1288 | 452 | 1552 | 3292 | 246 | 562 | 309 | 1117 | 4679 | 13533 |
| :--- |

Note: These volumes are calculated by multiplying the Equivalent 12 hr . totals by the AADT factor.
1

| AVG 24Hr | 1474 | 4235 | 216 | 5927 | 266 | 4045 | 693 | 5004 | 10931 | 1687 | 592 | 2034 | 4313 | 323 | 736 | 405 | 1464 | 5777 | 16708 |
| :--- |

Note: These volumes are calculated by multiplying the Average Daily 12 hr . totals by 12 to 24 expansion factor.
Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

(Ottawa
 Transportation Services - Traffic Services
 Turning Movement Count - Study Results
 BELFAST RD @ TREMBLAY RD

Survey Date: Wednesday, January 08, 2020
WO No:
39277
Start Time: 07:00
Device:
Miovision
Full Study 15 Minute Increments
BELFAST RD
TREMBLAY RD

Time Period		Northbound			Southbound					Eastbound					Westbound			$\begin{gathered} \text { W } \\ \text { TOT } \end{gathered}$	$\begin{aligned} & \text { STR } \\ & \text { TOT } \end{aligned}$	Grand Total
		LT	ST	RT	$\begin{gathered} \mathrm{N} \\ \text { TOT } \end{gathered}$	LT	ST	RT	$\begin{gathered} \mathrm{S} \\ \text { TOT } \end{gathered}$	$\begin{aligned} & \text { STR } \\ & \text { TOT } \end{aligned}$	LT	ST	RT	$\begin{gathered} \text { E } \\ \text { TOT } \end{gathered}$	LT	ST	RT			
07:00	07:15	25	41	3	69	7	51	10	68	19	28	4	36	68	5	12	8	25	19	230
07:15	07:30	25	49	2	76	2	42	4	48	9	16	9	25	50	5	15	5	25	9	199
07:30	07:45	20	57	1	78	3	49	14	66	8	28	12	26	66	5	21	7	33	8	243
07:45	08:00	22	53	0	75	4	51	17	72	3	50	6	39	95	6	23	10	39	3	281
08:00	08:15	33	72	5	110	5	60	21	86	2	27	8	31	66	2	23	6	31	2	293
08:15	08:30	36	79	4	119	4	70	12	86	4	33	9	29	71	6	34	9	49	4	325
08:30	08:45	28	65	0	93	4	63	18	85	14	29	7	30	66	4	19	11	34	14	278
08:45	09:00	22	59	2	83	4	70	14	88	7	25	8	27	60	7	15	10	32	7	263
09:00	09:15	19	54	5	78	2	53	15	70	14	40	10	31	81	8	16	10	34	14	263
09:15	09:30	21	50	3	74	4	51	10	65	11	28	6	34	68	4	10	7	21	11	228
09:30	09:45	19	43	2	64	5	62	10	77	14	28	7	37	72	1	9	2	12	14	225
09:45	10:00	19	33	2	54	3	61	4	68	7	39	10	31	80	6	9	7	22	7	224
11:30	11:45	25	83	6	114	5	73	12	90	10	22	12	44	78	7	1	3	11	10	293
11:45	12:00	24	66	3	93	3	87	8	98	2	33	15	50	98	8	10	10	28	2	317
12:00	12:15	25	104	4	133	5	99	12	116	7	25	11	45	81	10	11	7	28	7	358
12:15	12:30	26	80	9	115	8	82	9	99	5	29	11	45	85	14	15	11	40	5	339
12:30	12:45	35	103	4	142	2	98	8	108	7	22	9	37	68	5	10	3	18	7	336
12:45	13:00	19	86	6	111	4	74	16	94	6	27	8	48	83	8	11	5	24	6	312
13:00	13:15	38	76	4	118	4	88	7	99	8	22	7	32	61	8	14	11	33	8	311
13:15	13:30	23	81	4	108	3	74	12	89	5	17	6	39	62	6	13	3	22	5	281
15:00	15:15	38	94	4	136	7	80	19	106	13	23	11	36	70	2	6	6	14	13	326
15:15	15:30	34	115	8	157	3	104	14	121	8	42	14	28	84	4	13	7	24	8	386
15:30	15:45	39	95	6	140	7	82	18	107	3	38	15	52	105	9	19	4	32	3	384
15:45	16:00	41	106	4	151	7	84	14	105	4	34	14	35	83	5	14	9	28	4	367
16:00	16:15	40	81	2	123	6	88	26	120	6	47	11	54	112	2	16	14	32	6	387
16:15	16:30	26	112	4	142	5	81	19	105	6	39	20	48	107	5	10	3	18	6	372
16:30	16:45	28	109	5	142	8	94	17	119	9	35	21	46	102	10	14	6	30	9	393
16:45	17:00	29	96	5	130	5	69	14	88	4	36	24	36	96	9	11	9	29	4	343
17:00	17:15	26	100	7	134	6	101	13	120	5	37	15	45	97	5	11	13	29	5	380
17:15	17:30	17	93	5	115	7	70	9	86	3	26	13	40	79	4	11	9	24	3	304
17:30	17:45	22	66	4	92	10	66	7	83	2	30	10	31	71	4	5	5	14	2	260
17:45	18:00	15	67	3	85	3	80	1	84	2	28	2	18	48	4	8	6	18	2	235
Total:		859	2468	126	3454	155	2357	404	2916	227	983	345	1185	2513	188	429	236	853	227	9,736

Note: U-Turns are included in Totals.

Transportation Services - Traffic Services

Turning Movement Count - Study Results
 BELFAST RD @ TREMBLAY RD

Survey Date: Wednesday, January 08, 2020
Start Time: 07:00

WO No:
Device:

39277
Miovision

Full Study Cyclist Volume
BELFAST RD
TREMBLAY RD

Time Period								Grand Total
		Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	
07:00	07:15	0	0	0	2	0	2	2
07:15	07:30	0	0	0	0	0	0	0
07:30	07:45	0	0	0	1	0	1	1
07:45	08:00	0	0	0	0	0	0	0
08:00	08:15	0	0	0	0	0	0	0
08:15	08:30	0	0	0	2	1	3	3
08:30	08:45	0	0	0	0	1	1	1
08:45	09:00	0	0	0	0	0	0	0
09:00	09:15	0	0	0	0	0	0	0
09:15	09:30	0	0	0	0	0	0	0
09:30	09:45	0	0	0	0	0	0	0
09:45	10:00	0	2	2	0	0	0	2
11:30	11:45	0	0	0	0	0	0	0
11:45	12:00	0	0	0	0	0	0	0
12:00	12:15	0	0	0	0	0	0	0
12:15	12:30	0	0	0	0	0	0	0
12:30	12:45	1	0	1	1	0	1	2
12:45	13:00	0	0	0	0	0	0	0
13:00	13:15	0	1	1	0	1	1	2
13:15	13:30	0	0	0	0	0	0	0
15:00	15:15	1	1	2	0	1	1	3
15:15	15:30	1	0	1	1	1	2	3
15:30	15:45	0	0	0	0	0	0	0
15:45	16:00	0	0	0	0	0	0	0
16:00	16:15	0	0	0	0	0	0	0
16:15	16:30	0	1	1	0	0	0	1
16:30	16:45	0	0	0	0	1	1	1
16:45	17:00	1	0	1	0	0	0	1
17:00	17:15	0	0	0	1	1	2	2
17:15	17:30	0	0	0	1	0	1	1
17:30	17:45	0	0	0	1	0	1	1
17:45	18:00	0	0	0	0	0	0	0
Total		4	5	9	10	7	17	26

() ttawa

 Transportation Services - Traffic Services

 Transportation Services - Traffic Services

 Turning Movement Count - Study Results

 Turning Movement Count - Study Results BELFAST RD @ TREMBLAY RD

 BELFAST RD @ TREMBLAY RD}

Survey Date: Wednesday, January 08, 2020
Start Time: 07:00

WO No:
Device:

39277
Miovision

Full Study Pedestrian Volume
 BELFAST RD

Time Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total

07:00 07:15	1	0	1	0	0	0	1
07:15 07:30	5	0	5	2	1	3	8
07:30 07:45	1	0	1	0	1	1	2
07:45 08:00	3	0	3	1	0	1	4
08:00 08:15	0	0	0	1	0	1	1
08:15 08:30	1	1	2	2	0	2	4
08:30 08:45	1	0	1	0	0	0	1
08:45 09:00	1	1	2	2	1	3	5
09:00 09:15	0	0	0	0	0	0	0
09:15 09:30	2	0	2	1	0	1	3
09:30 09:45	2	0	2	3	1	4	6
09:45 10:00	1	0	1	1	0	1	2
11:30 11:45	2	1	3	3	1	4	7
11:45 12:00	0	1	1	4	0	4	5
12:00 12:15	1	0	1	0	0	0	1
12:15 12:30	0	0	0	1	0	1	1
12:30 12:45	0	1	1	3	0	3	4
12:45 13:00	4	0	4	1	2	3	7
13:00 13:15	0	0	0	1	0	1	1
13:15 13:30	1	0	1	4	0	4	5
15:00 15:15	2	0	2	1	1	2	4
15:15 15:30	3	0	3	0	0	0	3
15:30 15:45	1	1	2	2	1	3	5
15:45 16:00	2	2	4	2	3	5	9
16:00 16:15	3	0	3	2	1	3	6
16:15 16:30	3	0	3	1	0	1	4
16:30 16:45	2	0	2	2	0	2	4
16:45 17:00	3	0	3	3	3	6	9
17:00 17:15	4	0	4	1	0	1	5
17:15 17:30	0	0	0	3	1	4	4
17:30 17:45	1	0	1	1	0	1	2
17:45 18:00	2	0	2	5	1	6	8
Total	52	8	60	53	18	71	131

5469218 - WED JAN 08, 2020 - 8HRS - LORETTA

((Ottawa
 Transportation Services - Traffic Services
 Turning Movement Count - Study Results
 BELFAST RD @ TREMBLAY RD

Survey Date: Wednesday, January 08, 2020 Start Time: 07:00
wo No:
39277
Device:
Miovision

Full Study Heavy Vehicles

BELFAST RD

Northbound
Southbound
TREMBLAY RD

Time Period		Northbound			Southbound					Eastbound					Westbound			$\begin{gathered} \text { w } \\ \text { TOT } \end{gathered}$	$\begin{aligned} & \text { STR } \\ & \text { TOT } \end{aligned}$	Grand Total
		LT	ST	RT	$\begin{gathered} \mathrm{N} \\ \mathrm{TOT} \end{gathered}$	LT	ST	RT	$\begin{gathered} \mathbf{S} \\ \text { TOT } \\ \hline \end{gathered}$	$\begin{aligned} & \text { STR } \\ & \text { TOT } \end{aligned}$	LT	ST	RT	$\begin{gathered} \text { E } \\ \text { TOT } \end{gathered}$	LT	ST	RT			
07:00	07:15	12	3	1	16	1	2	0	3	19	0	0	0	0	0	0	1	1	1	20
07:15	07:30	5	2	0	7	1	1	0	2	9	2	0	0	2	0	0	1	1	3	12
07:30	07:45	0	6	1	7	1	0	0	1	8	0	1	1	2	0	0	2	2	4	12
07:45	08:00	0	2	0	2	0	1	0	1	3	0	1	0	1	0	1	1	2	3	6
08:00	08:15	1	0	0	1	1	0	0	1	2	1	0	1	2	0	0	1	1	3	5
08:15	08:30	2	1	0	3	0	1	0	1	4	0	0	0	0	0	0	1	1	1	5
08:30	08:45	2	5	0	7	2	4	1	7	14	1	0	2	3	0	1	1	2	5	19
08:45	09:00	3	0	0	3	0	4	0	4	7	0	0	1	1	0	1	3	4	5	12
09:00	09:15	3	9	0	12	1	1	0	2	14	2	1	2	5	1	1	1	3	8	22
09:15	09:30	2	6	0	8	1	2	0	3	11	3	0	2	5	1	1	2	4	9	20
09:30	09:45	1	2	0	3	0	11	0	11	14	2	0	0	2	0	1	0	1	3	17
09:45	10:00	0	2	0	2	1	4	0	5	7	3	0	0	3	1	1	1	3	6	13
11:30	11:45	2	3	0	5	1	3	1	5	10	0	0	3	3	0	0	0	0	3	13
11:45	12:00	1	0	0	1	0	0	1	1	2	3	0	2	5	0	0	3	3	8	10
12:00	12:15	2	1	0	3	2	2	0	4	7	0	3	2	5	0	0	0	0	5	12
12:15	12:30	2	0	1	3	0	1	1	2	5	1	1	2	4	2	1	1	4	8	13
12:30	12:45	0	4	0	4	1	2	0	3	7	1	1	4	6	2	1	0	3	9	16
12:45	13:00	0	3	1	4	0	1	1	2	6	0	0	2	2	0	0	1	1	3	9
13:00	13:15	3	3	0	6	1	1	0	2	8	0	1	1	2	0	1	1	2	4	12
13:15	13:30	0	0	0	0	0	5	0	5	5	0	0	1	1	0	2	2	4	5	10
15:00	15:15	5	5	0	10	1	2	0	3	13	0	1	5	6	0	0	0	0	6	19
15:15	15:30	1	4	0	5	0	3	0	3	8	0	0	3	3	0	3	2	5	8	16
15:30	15:45	0	1	0	1	1	1	0	2	3	1	1	4	6	0	4	1	5	11	14
15:45	16:00	0	1	0	1	0	2	1	3	4	2	2	2	6	0	2	2	4	10	14
16:00	16:15	0	2	0	2	2	2	0	4	6	2	2	5	9	0	1	0	1	10	16
16:15	16:30	0	6	0	6	0	0	0	0	6	0	1	0	1	0	0	1	1	2	8
16:30	16:45	0	5	0	5	2	2	0	4	9	1	0	7	8	0	1	1	2	10	19
16:45	17:00	0	2	0	2	1	0	1	2	4	1	2	4	7	0	0	1	1	8	12
17:00	17:15	1	1	0	2	1	2	0	3	5	1	0	1	2	0	0	0	0	2	7
17:15	17:30	0	1	1	2	1	0	0	1	3	0	0	2	2	0	0	1	1	3	6
17:30	17:45	1	0	0	1	1	0	0	1	2	0	0	0	0	0	1	0	1	1	3
17:45	18:00	0	0	0	0	1	1	0	2	2	1	0	1	2	0	0	1	1	3	5
Total:	None	49	80	5	134	25	61	7	93	227	28	18	60	106	7	24	33	64	170	397

Transportation Services - Traffic Services

Turning Movement Count - Study Results BELFAST RD @ TREMBLAY RD

Survey Date: Wednesday, January 08, 2020
Start Time: 07:00

WO No:
39277
Device:
Miovision

Full Study 15 Minute U-Turn Total
BELFAST RD
TREMBLAY RD

Time Period		Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	0	0
08:15	08:30	0	0	0	0	0
08:30	08:45	0	0	0	0	0
08:45	09:00	0	0	0	0	0
09:00	09:15	0	0	0	0	0
09:15	09:30	0	0	0	0	0
09:30	09:45	0	0	0	0	0
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	0	0	0
11:45	12:00	0	0	0	0	0
12:00	12:15	0	0	0	0	0
12:15	12:30	0	0	0	0	0
12:30	12:45	0	0	0	0	0
12:45	13:00	0	0	0	0	0
13:00	13:15	0	0	0	0	0
13:15	13:30	0	0	0	0	0
15:00	15:15	0	0	0	0	0
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	0	0	0
15:45	16:00	0	0	0	0	0
16:00	16:15	0	0	0	0	0
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	0	0
16:45	17:00	0	0	0	0	0
17:00	17:15	1	0	0	0	1
17:15	17:30	0	0	0	0	0
17:30	17:45	0	0	0	0	0
17:45	18:00	0	0	0	0	0
Total		1	0	0	0	1

Turning Movement Count - Study Results
TREMBLAY RD @ TRAIN STATION

Survey Date: Wednesday, January 30, 2019
Start Time: 07:00
$\begin{array}{lc}\text { WO No: } & 38347 \\ \text { Device: } & \text { Miovision }\end{array}$

Full Study Diagram

$\begin{array}{lc}\text { WO No: } & 38347 \\ \text { Device: } & \text { Miovision }\end{array}$
Full Study Peak Hour Diagram

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

TREMBLAY RD @ TRAIN STATION

Survey Date: Wednesday, January 30, 2019
Start Time: 07:00

WO No: 38347
Device: Miovision

Comments

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

TREMBLAY RD @ TRAIN STATION

Survey Date: Wednesday, January 30, 2019
Start Time: 07:00

WO No: 38347
Device: Miovision

Comments

Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

TREMBLAY RD @ TRAIN STATION

Survey Date: Wednesday, January 30, 2019
Start Time: 07:00

WO No: 38347
Device: Miovision

Comments

Turning Movement Count - Study Results
TREMBLAY RD @ TRAIN STATION
Survey Date: Wednesday, January 30, 2019
Start Time: 07:00
WO No:
38347
Device: Miovision

Full Study Summary (8 HR Standard)

Survey Date: Wednesday, January 30, 201

Total Observed U-Turns

AADT Factor Northbound: 2 Southbound: 0 1.00

TRAIN STATION
Eastbound: 9 Westbound: 1
TREMBLAY RD

Note: These values are calculated by multiplying the totals by the appropriate expansion factor. 1.39

AVG 12Hr	981	5	444	1433	4	0	3	7	1528	1	2615	954	3582	440	1782	1	2224	6160	7688

Note: These volumes are calculated by multiplying the Equivalent 12 hr . totals by the AADT factor. $\mathbf{1}$

| AVG 24Hr | 1285 | 7 | 582 | 1877 | 5 | 0 | 3 | 9 | 1886 | 2 | 3425 | 1249 | 4692 | 577 | 2334 | 2 | 2914 | 7606 | 9492 |
| :--- |

Note: These volumes are calculated by multiplying the Average Daily 12 hr . totals by 12 to 24 expansion factor.
Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

(Ottawa
 Transportation Services - Traffic Services
 Turning Movement Count - Study Results TREMBLAY RD @ TRAIN STATION

Survey Date: Wednesday, January 30, 2019

 Start Time: 07:00WO No:
Device:

38347
Miovision

Full Study 15 Minute Increments

TRAIN STATION TREMBLAY RD

Time Period		Northbound			Southbound					Eastbound					Westbound			$\begin{gathered} \text { w } \\ \text { TOT } \end{gathered}$	$\begin{aligned} & \text { STR } \\ & \text { TOT } \end{aligned}$	Grand Total
		LT	ST	RT	$\begin{gathered} \mathrm{N} \\ \text { TOT } \\ \hline \end{gathered}$	LT	ST	RT	$\begin{gathered} \mathrm{S} \\ \text { TOT } \\ \hline \end{gathered}$	$\begin{aligned} & \text { STR } \\ & \text { TOT } \end{aligned}$	LT	ST	RT	$\begin{gathered} \text { E } \\ \text { TOT } \end{gathered}$	LT	ST	RT			
07:00	07:15	10	0	10	20	0	0	0	0	1	0	56	11	67	6	25	0	31	1	118
07:15	07:30	8	0	3	11	0	0	0	0	3	0	54	6	60	2	36	0	38	3	109
07:30	07:45	4	0	6	10	0	0	0	0	4	0	76	3	79	9	50	0	59	4	148
07:45	08:00	4	0	3	7	0	0	0	0	2	0	80	8	88	7	53	0	60	2	155
08:00	08:15	2	0	3	5	1	0	0	1	2	1	69	14	84	4	41	0	45	2	135
08:15	08:30	7	1	2	10	1	0	0	1	1	0	58	13	71	7	49	0	56	1	138
08:30	08:45	45	3	6	54	0	0	0	0	6	0	44	18	62	24	45	0	69	6	185
08:45	09:00	25	0	7	32	0	0	0	0	0	0	62	13	75	14	40	0	55	0	162
09:00	09:15	12	0	4	16	0	0	0	0	2	0	78	14	92	6	38	0	44	2	152
09:15	09:30	20	0	11	31	0	0	0	0	4	0	66	24	90	10	28	0	38	4	159
09:30	09:45	15	0	15	31	0	0	1	1	3	0	64	31	95	11	33	0	44	3	171
09:45	10:00	28	0	18	46	0	0	0	0	2	0	64	49	113	6	30	0	36	2	195
11:30	11:45	18	0	9	27	0	0	0	0	4	0	70	30	100	9	29	0	38	4	165
11:45	12:00	47	0	10	57	0	0	0	0	4	0	51	27	78	23	30	0	53	4	188
12:00	12:15	39	0	16	55	0	0	0	0	1	0	45	26	71	11	35	0	46	1	172
12:15	12:30	62	0	7	69	0	0	0	0	2	0	56	26	82	15	31	0	46	2	197
12:30	12:45	21	0	8	29	0	0	0	0	2	0	45	21	66	10	35	0	45	2	140
12:45	13:00	16	0	9	25	0	0	0	0	5	0	64	10	75	10	32	0	42	5	142
13:00	13:15	12	0	9	21	0	0	0	0	1	0	64	14	78	9	36	0	45	1	144
13:15	13:30	16	0	17	33	0	0	0	0	4	0	41	28	69	8	35	0	43	4	145
15:00	15:15	28	0	19	48	0	0	0	0	1	0	58	39	98	10	66	0	76	1	222
15:15	15:30	27	0	17	44	0	0	0	0	4	0	47	42	89	10	64	0	74	4	207
15:30	15:45	20	0	17	37	1	0	0	1	1	0	57	46	103	13	75	0	88	1	229
15:45	16:00	71	0	24	95	0	0	1	1	1	0	49	37	87	23	53	0	76	1	259
16:00	16:15	18	0	7	25	0	0	0	0	3	0	62	15	79	5	61	0	66	3	170
16:15	16:30	12	0	6	18	0	0	0	0	3	0	61	25	86	6	54	0	60	3	164
16:30	16:45	7	0	9	16	0	0	0	0	1	0	68	17	88	13	55	0	68	1	172
16:45	17:00	58	0	23	81	0	0	0	0	3	0	93	28	121	11	41	0	52	3	254
17:00	17:15	46	0	14	60	0	0	0	0	1	0	109	22	131	25	45	0	70	1	261
17:15	17:30	21	0	8	29	0	0	0	0	1	0	88	22	110	4	50	0	54	1	193
17:30	17:45	8	0	9	17	0	0	0	0	1	0	46	16	63	9	31	0	40	1	120
17:45	18:00	22	0	13	35	0	0	0	0	1	0	51	33	84	6	34	1	41	1	160
Total:		749	4	339	1094	3	0	2	5	74	1	1996	728	2734	336	1360	1	1698	74	5,531

Note: U-Turns are included in Totals.

Transportation Services - Traffic Services

Turning Movement Count - Study Results
TREMBLAY RD @ TRAIN STATION

Survey Date: Wednesday, January 30, 2019	WO No:	38347
Start Time: $07: 00$	Device:	Miovision

Full Study Cyclist Volume
TRAIN STATION
TREMBLAY RD

Time Period								Grand Total
		Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	
07:00	07:15	0	0	0	0	0	0	0
07:15	07:30	0	0	0	0	0	0	0
07:30	07:45	0	0	0	1	0	1	1
07:45	08:00	0	0	0	1	0	1	1
08:00	08:15	0	0	0	0	0	0	0
08:15	08:30	0	0	0	0	0	0	0
08:30	08:45	0	0	0	0	0	0	0
08:45	09:00	0	0	0	0	0	0	0
09:00	09:15	0	0	0	0	0	0	0
09:15	09:30	0	0	0	0	0	0	0
09:30	09:45	0	0	0	0	0	0	0
09:45	10:00	0	0	0	0	0	0	0
11:30	11:45	0	0	0	0	0	0	0
11:45	12:00	0	0	0	0	0	0	0
12:00	12:15	0	0	0	0	0	0	0
12:15	12:30	0	0	0	0	0	0	0
12:30	12:45	0	0	0	0	0	0	0
12:45	13:00	0	0	0	0	0	0	0
13:00	13:15	0	0	0	0	0	0	0
13:15	13:30	0	0	0	0	0	0	0
15:00	15:15	0	0	0	0	0	0	0
15:15	15:30	0	0	0	0	0	0	0
15:30	15:45	0	0	0	0	0	0	0
15:45	16:00	0	0	0	0	1	1	1
16:00	16:15	0	0	0	0	0	0	0
16:15	16:30	0	0	0	0	1	1	1
16:30	16:45	0	0	0	0	0	0	0
16:45	17:00	0	0	0	0	0	0	0
17:00	17:15	0	0	0	0	0	0	0
17:15	17:30	0	0	0	0	0	0	0
17:30	17:45	0	0	0	0	0	0	0
17:45	18:00	0	1	1	0	0	0	1
Total		0	1	1	2	2	4	5

Turning Movement Count - Study Results
TREMBLAY RD @ TRAIN STATION

Survey Date: Wednesday, January 30, 2019	WO No:	38347
Start Time: $07: 00$	Device:	Miovision

Full Study Pedestrian Volume
 TRAIN STATION
 TREMBLAY RD

Time Period						
	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total

07:00 07:15	0	0	0	1	0	1	1
07:15 07:30	1	0	1	0	0	0	1
07:30 07:45	0	0	0	1	0	1	1
07:45 08:00	0	0	0	0	0	0	0
08:00 08:15	0	0	0	0	0	0	0
08:15 08:30	1	0	1	0	0	0	1
08:30 08:45	2	0	2	0	0	0	2
08:45 09:00	0	0	0	0	0	0	0
09:00 09:15	0	0	0	0	0	0	0
09:15 09:30	0	0	0	0	0	0	0
09:30 09:45	0	0	0	0	0	0	0
09:45 10:00	1	0	1	0	0	0	1
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	0	0	0	0	0	0	0
12:00 12:15	0	0	0	1	0	1	1
12:15 12:30	0	0	0	0	0	0	0
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	1	0	1	0	0	0	1
15:15 15:30	0	0	0	2	0	2	2
15:30 15:45	1	0	1	0	0	0	1
15:45 16:00	0	0	0	0	0	0	0
16:00 16:15	1	1	2	1	0	1	3
16:15 16:30	0	0	0	0	0	0	0
16:30 16:45	1	0	1	1	0	1	2
16:45 17:00	0	0	0	1	0	1	1
17:00 17:15	1	0	1	1	1	2	3
17:15 17:30	0	2	2	1	0	1	3
17:30 17:45	1	1	2	1	0	1	3
17:45 18:00	0	2	2	1	0	1	3
Total	11	6	17	12	1	13	30

(O ttawa
 Transportation Services - Traffic Services
 Turning Movement Count - Study Results TREMBLAY RD @ TRAIN STATION

Survey Date: Wednesday, January 30, 2019 Start Time: 07:00

WO No:
Device:
38347

Full Study Heavy Vehicles

TRAIN STATION

TREMBLAY RD

Northbound
Southbound

ST	RT	$\begin{array}{c}\mathrm{N} \\ \text { TOT }\end{array}$

Time	Period	LT	ST	RT	$\begin{gathered} \mathrm{N} \\ \text { TOT } \end{gathered}$	LT	ST	RT	$\begin{gathered} \mathrm{S} \\ \text { TOT } \end{gathered}$	$\begin{aligned} & \text { STR } \\ & \text { TOT } \end{aligned}$	LT	ST	RT	$\begin{gathered} \text { E } \\ \text { TOT } \end{gathered}$	LT	ST	RT	$\begin{gathered} \text { w } \\ \text { TOT } \end{gathered}$	$\begin{aligned} & \text { STR } \\ & \text { TOT } \end{aligned}$	Grand Total
07:00	07:15	0	0	1	1	0	0	0	0	1	0	1	1	2	1	2	0	3	5	6
07:15	07:30	2	0	1	3	0	0	0	0	3	0	0	1	1	0	3	0	3	4	7
07:30	07:45	2	0	2	4	0	0	0	0	4	0	0	1	1	2	4	0	6	7	11
07:45	08:00	1	0	1	2	0	0	0	0	2	0	1	2	3	1	4	0	5	8	10
08:00	08:15	1	0	0	1	1	0	0	1	2	0	5	0	5	1	1	0	2	7	9
08:15	08:30	1	0	0	1	0	0	0	0	1	0	1	0	1	2	0	0	2	3	4
08:30	08:45	1	3	2	6	0	0	0	0	6	0	1	2	3	4	0	0	4	7	13
08:45	09:00	0	0	0	0	0	0	0	0	0	0	4	0	4	0	1	0	1	5	5
09:00	09:15	1	0	1	2	0	0	0	0	2	0	7	1	8	1	1	0	2	10	12
09:15	09:30	2	0	2	4	0	0	0	0	4	0	5	2	7	2	1	0	3	10	14
09:30	09:45	2	0	1	3	0	0	0	0	3	0	2	0	2	1	1	0	2	4	7
09:45	10:00	1	0	1	2	0	0	0	0	2	0	7	1	8	3	3	0	6	14	16
11:30	11:45	1	0	3	4	0	0	0	0	4	0	2	3	5	1	2	0	3	8	12
11:45	12:00	1	0	3	4	0	0	0	0	4	0	3	1	4	2	3	0	5	9	13
12:00	12:15	1	0	0	1	0	0	0	0	1	0	0	0	0	1	1	0	2	2	3
12:15	12:30	2	0	0	2	0	0	0	0	2	0	1	0	1	2	1	0	3	4	6
12:30	12:45	1	0	1	2	0	0	0	0	2	0	0	1	1	1	2	0	3	4	6
12:45	13:00	0	0	5	5	0	0	0	0	5	0	4	3	7	1	0	0	1	8	13
13:00	13:15	1	0	0	1	0	0	0	0	1	0	6	0	6	2	2	0	4	10	11
13:15	13:30	1	0	3	4	0	0	0	0	4	0	4	1	5	2	1	0	3	8	12
15:00	15:15	1	0	0	1	0	0	0	0	1	0	3	2	5	1	2	0	3	8	9
15:15	15:30	2	0	2	4	0	0	0	0	4	0	4	2	6	1	3	0	4	10	14
15:30	15:45	1	0	0	1	0	0	0	0	1	0	4	3	7	1	2	0	3	10	11
15:45	16:00	0	0	1	1	0	0	0	0	1	0	5	0	5	0	2	0	2	7	8
16:00	16:15	2	0	1	3	0	0	0	0	3	0	2	1	3	2	1	0	3	6	9
16:15	16:30	1	0	2	3	0	0	0	0	3	0	7	2	9	1	0	0	1	10	13
16:30	16:45	1	0	0	1	0	0	0	0	1	0	4	0	4	2	1	0	3	7	8
16:45	17:00	2	0	1	3	0	0	0	0	3	0	4	1	5	1	1	0	2	7	10
17:00	17:15	0	0	1	1	0	0	0	0	1	0	3	1	4	0	0	0	0	4	5
17:15	17:30	1	0	0	1	0	0	0	0	1	0	9	0	9	1	2	0	3	12	13
17:30	17:45	1	0	0	1	0	0	0	0	1	0	3	1	4	1	0	0	1	5	6
17:45	18:00	0	0	1	1	0	0	0	0	1	0	1	0	1	0	1	0	1	2	3
Total:	None	34	3	36	73	1	0	0	1	74	0	103	33	136	41	48	0	89	225	299

Transportation Services - Traffic Services

Turning Movement Count - Study Results
TREMBLAY RD @ TRAIN STATION

Survey Date: Wednesday, January 30, 2019
Start Time: 07:00

WO No:
38347
Device: Miovision

Full Study 15 Minute U-Turn Total TRAIN STATION TREMBLAY RD

Time Period		Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	0	0
08:15	08:30	0	0	0	0	0
08:30	08:45	0	0	0	0	0
08:45	09:00	0	0	0	1	1
09:00	09:15	0	0	0	0	0
09:15	09:30	0	0	0	0	0
09:30	09:45	1	0	0	0	1
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	0	0	0
11:45	12:00	0	0	0	0	0
12:00	12:15	0	0	0	0	0
12:15	12:30	0	0	0	0	0
12:30	12:45	0	0	0	0	0
12:45	13:00	0	0	1	0	1
13:00	13:15	0	0	0	0	0
13:15	13:30	0	0	0	0	0
15:00	15:15	1	0	1	0	2
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	0	0	0
15:45	16:00	0	0	1	0	1
16:00	16:15	0	0	2	0	2
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	3	0	3
16:45	17:00	0	0	0	0	0
17:00	17:15	0	0	0	0	0
17:15	17:30	0	0	0	0	0
17:30	17:45	0	0	1	0	1
17:45	18:00	0	0	0	0	0
Total		2	0	9	1	12

Appendix C
Collision Data

Total Area

Classification of Accident	01 - Approaching	02-Angle	03-Rear end	04-Sideswipe	05-Turning movement	$\begin{gathered} \hline 06-\text { SMV } \\ \text { unattended } \\ \text { vehicle } \\ \hline \end{gathered}$	07-SMV other	99-Other	Total
03 - P.D. only	0	9	5	3	4	2	2	0	25
02 - Non-fatal inj	0	2	1	0	3	0	0	0	6
01 - Fatal injury	0	0	0	0	0	0	0	0	0
Total	0	11	6	3	7	2	2	0	31

BELFAST RD @ TREMBLAY RD

Years	Total \# Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
$2014-2018$	8	n/a	1825	n/a

Classification of Accident	01 - Approaching	02-Angle	03-Rear end	04 - Sideswipe	05 - Turning movement	$\begin{gathered} \hline 06-\text { SMV } \\ \text { unattended } \\ \text { vehicle } \\ \hline \end{gathered}$	07-SMV other	99-Other	Total
03 - P.D. only	0	1	1	1	1	0	0	0	4
02 - Non-fatal inj	0	1	1	0	2	0	0	0	4
01-Fatal injury	0	0	0	0	0	0	0	0	0
Total	0	2	2	1	3	0	0	0	8
0\%		25\%	25\%	13\%	38\%	0\%	0\%	0\%	

TREMBLAY RD @ TRAIN STATION

Years	Total \# Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
$2014-2018$	5	n/a	1825	n/a

Classification of Accident	01 - Approaching	02-Angle	03-Rear end	04 - Sideswipe	05 - Turning movement	$\begin{gathered} \hline 06-\text { SMV } \\ \text { unattended } \\ \text { vehicle } \\ \hline \end{gathered}$	07-SMV other	99-Other	Total
03 - P.D. only	0	1	0	1	1	0	1	0	4
02 - Non-fatal inj	0	1	0	0	0	0	0	0	1
01 - Fatal injury	0	0	0	0	0	0	0	0	0
Total	0	2	0	1	1	0	1	0	5
0\%		40\%	0\%	20\%	20\%	0\%	20\%	0\%	

AVENUE L @ TREMBLAY RD

Years	Total \# Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
$2014-2018$	3	n/a	1825	n/a

Classification of Accident	$01 \text { - }$ Approaching	02-Angle	03-Rear end	04 - Sideswipe	05-Turning movement	$\begin{gathered} \hline 06-\text { SMV } \\ \text { unattended } \\ \text { vehicle } \\ \hline \end{gathered}$	07-SMV other	99-Other	Total
03 - P.D. only	0	1	0	0	2	0	0	0	3
02 - Non-fatal inj	0	0	0	0	0	0	0	0	0
01 - Fatal injury	0	0	0	0	0	0	0	0	0
Total	0	1	0	0	2	0	0	0	3
0\%		33\%	0\%	0\%	67\%	0\%	0\%	0\%	

TREMBLAY RD btwn RIVERSIDE DR \& TRAIN STATION

Years	Total \# Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
$2014-2018$	5	n/a	1825	n/a

Classification of Accident	01 - Approaching	02-Angle	03-Rear end	04-Sideswipe	05 - Turning movement	$\begin{gathered} 06-\text { SMV } \\ \text { unattended } \\ \text { vehicle } \end{gathered}$	07-SMV other	99-Other	Total
03 - P.D. only	0	2	1	1	0	0	1	0	5
02 - Non-fatal inj	0	0	0	0	0	0	0	0	0
01 - Fatal injury	0	0	0	0	0	0	0	0	0
Total	0	2	1	1	0	0	1	0	5
	0\%	40\%	20\%	20\%	0\%	0\%	20\%	0\%	

PICKERING PL @ TREMBLAY RD

Years	Total \# Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
$2014-2018$	4	n/a	1825	n/a

Classification of Accident	01 - Approaching	02-Angle	03-Rear end	04-Sideswipe	05 - Turning movement	$\begin{gathered} \hline 06-\text { SMV } \\ \text { unattended } \\ \text { vehicle } \\ \hline \end{gathered}$	07-SMV other	99 - Other	Total
03 - P.D. only	0	4	0	0	0	0	0	0	4
02 - Non-fatal inj4	0	0	0	0	0	0	0	0	0
01 - Fatal injury	0	0	0	0	0	0	0	0	0
Total	0	4	0	0	0	0	0	0	4
	0\%	100\%	0\%	0\%	0\%	0\%	0\%	0\%	

AVENUE L btwn TREMBLAY RD \& END

Years	Total \# Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
$2014-2018$	2	n/a	1825	n/a

Classification of Accident	01 Approaching	02-Angle	03-Rear end	04-Sideswipe	05-Turning movement	$\begin{gathered} 06-\text { SMV } \\ \text { unattended } \\ \text { vehicle } \end{gathered}$	07-SMV other	99-Other	Total
03 - P.D. only	0	0	0	0	0	2	0	0	2
02 - Non-fatal injy	0	0	0	0	0	0	0	0	0
01-Fatal injury	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	2	0	0	2
	0\%	0\%	0\%	0\%	0\%	100\%	0\%	0\%	

TREMBLAY RD btwn AVENUE K \& AVENUE L

Years	Total \# Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
$2014-2018$	1	n/a	1825	n/a

Classification of Accident	01 - Approaching	02-Angle	03-Rear end	04-Sideswipe	05 - Turning movement	$\begin{gathered} \hline 06-\text { SMV } \\ \text { unattended } \\ \text { vehicle } \\ \hline \end{gathered}$	07-SMV other	99-Other	Total
03 - P.D. only	0	0	1	0	0	0	0	0	1
02 - Non-fatal inju	0	0	0	0	0	0	0	0	0
01- Fatal injury	0	0	0	0	0	0	0	0	0
Total	0	0	1	0	0	0	0	0	1
0\%		0\%	100\%	0\%	0\%	0\%	0\%	0\%	

AVENUE K @ TREMBLAY RD

Years	Total \# Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
$2014-2018$	3	n/a	1825	n/a

Classification of Accident	$01 \text { - }$ Approaching	02-Angle	03-Rear end	04 - Sideswipe	05-Turning movement	$\begin{gathered} \hline 06-\text { SMV } \\ \text { unattended } \\ \text { vehicle } \\ \hline \end{gathered}$	07-SMV other	99-Other	Total
03 - P.D. only	0	0	2	0	0	0	0	0	2
02 - Non-fatal injy	0	0	0	0	1	0	0	0	1
01 - Fatal injury	0	0	0	0	0	0	0	0	0
Total	0	0	2	0	1	0	0	0	3

\times		Longitude	Latitude	Year	Date	Time Classficat	Impact_Typ
371558.744	5031320.507	-75.64699148	45.41863453	2018	6127120180:00	8:53:00 PM 02 - Non-fatal iniury	03 - Rear end
371168.4496	5031284.46	-75.65198276	45.41834732	2018	211212018 0:00	12:21:00 PM 02 - Non-fatal iniury	
371558.744	5031320.747	-75.64699145	45.41883669	2018	11/16/20180:00	3:14:00 PM 03 - P.D.	
371168.2123	5031283.985	-75.65198586	45.41833307	2018	1211120180:00	12:55:00 PM 03 - P.D. only	
		-75.647	45.4185	2018	11/22120180:00	5:34:00 PM 03 - P.D. only	
371499.375	5031313	-75.64780426	45.41857147	2017	4/3/2017 0:00	10:02 PM 03 -P.D. only	02 - Angle
371558.1875	5031320	-75.64699554	45.41862869	2017	7/21/20170:00	10:00 PM 03 - P.D. only	04 - Sidesw
371559.1875	5031320	-75.64698792	45.41862869	2017	8/24/20170:00	$10: 56$ PM 02 - Non-fatal injury	05 - Turning mov
${ }^{371557.625}$	5031321	-75.44700317	45.41863632	2017	10181220170:00	9:51 PM 03 -P.D. only	03 - Rear end
371558.25	5031321.5	-75.6469955	45.41884014	2017	12/31/20170:00	3:33 PM 03 - P.D. only	05 - Turning move
371168.4375	5031284.5	-75.65198517	45.41834641	2017	12125120170:00	12:17 PM 03 - P.D. only	07-SMV other
371099.3438	5031271	-75.65287018	45.41823196	2017	9/5/20170000	11:00 PM 03 - P.D. only	02-Angle
370892.0313	5031043	-75.6555481	45.41619873	2016	9/15/20160:00	9:00:00 PM 03 - P.D. only	03 - Rear end
371287.9375	5031298.5	-75.65045166	45.41846885	2016	1/21/20160:00	8:02:00 PM 03 - P.D. only	02 - An
370853.6563	5031017.5	-75.65604401	45.41597366	2016	8112120160:00	9:15:00 PM 03 - P.D. only	07 - SMv ott
371288.8438	50312995	-75.65044403	45.41847229	2016	7112120160:00	9:26:00 PM 03-P.D. only	02 - Angle
371286.5938	5031298	-75.65047455	${ }^{45.418468885}$	2016	7112120160000	10:11:00 PM 03 -P.D. only	02 - An
371558.5	5031319.5	-75.64699554	45.41862869	2016	7717201600:00	4:58:00 PM 02 - Non-fatal injury	05- Turning moveme
371513.9375	5031153	-75.44758301	45.41713333	2016	7/112120160:00	5:00:00 AM 03 - P.D. only	06 - SMV unatended vehic
371457.4688	5031309.5	-75.64828491	45.41854477	2016	4/14/20160:00	6:12:00 PM 03 - P.D. only	03 - Rear end
371551.3438	5031320.5	-75.6470871	45.41863632	2016	1124/20160:00	1:28:00 PM 02 - Non-fatal injury	02 - Angle
371496.8125	5031307.5	-75.64778137	45.4185257	2016	10141/20160:00	3:14:00 PM 03-P.P.D only	06 - SMV unatended vehicle
371287.9375	5031299	-75.65045166	45.41846466	2016	5/1/20160000	4:08:00 PM 03 - P.D. only	02 - Angle
370825.9063	5031016	-75.65639496	45.41596222	2015	1/9/2015 0:00	11:24 PM 03 - P.D. only	04 - Sideswipe
371169.9063	5031286.5	-75.65196228	45.41836166	2015	10/6/20150:00	11:21 AM 03 - P.D. only	02 - Angl
371426.43	5031307	-75.64888164	45.41852188	2014	1/3/2014 0:00	2:00 PM 03 - P.D. only	
377426.65	5031307	-75.64888164		2014	2127120140:00	11:50 AM 03 -P.D. only	
${ }_{3}^{371425.3125}$	5031305.5 50312835	-75.6488969	${ }_{\substack{4.44851425 \\ 454183387}}$	2014	${ }^{2 / 2120120140000}$	3.54 PM 02 - Non-fatal ijury 1.00 PM 03 - PD only	
371167.0313 3714961875	${ }_{5031314.5}^{5031283.5}$	-75.65200043	45.41833878 45.41858673	2014	3/21262014 0:00 $4 / 212014000$	(100 PM 03-P.D.D. only	
371127.75	5031278.5	-75.65250397	45.41829881	2014	7/24/2014 0:00	10:31 PM 03 - P.D. only	02 - Angle

[^2]

Appendix D
Excerpts from 530 Tremblay and Adjacent to 530 Tremblay

Figure 20: New Site Generation Auto Volumes Scenario 2

6 Background Network Travel Demands

6.1 Transportation Network Plans

The transportation network plans were discussed in Section 2.3.1. The opening of the St. Laurent LRT station and TOD policies have been accounted for within the modal share assumptions. As part of Phase 3 (2026-2031) of the 2031 Affordable Network, a segment of Tremblay Road between Belfast Road and St. Laurent Boulevard, will be widened and realigned.

A multi-use pathway along Belfast Road between Trainyards Drive and Coventry Road will be completed as part of Phase 2 (2020-2025) of the 2031 Affordable Network. The additional connectivity provided by this will improve the active mode network but is not anticipated to significantly impact the modal shares used in the future trip generation.

6.2 Background Growth and Other Developments

Adjacent area transportation studies have used a 1% traffic growth. This growth rate was justified through historic traffic counts. As such, an annual background growth rate of 1% will be used (excluding Avenue U as growth is not expected there) in order to remain consistent with these studies.

Figure 12: Site-Generated Traffic Volumes

Directly to the east of the proposed development is another property owned by CLV. The connection between the proposed development and the Canada Lands Company development will pass through this land parcel. The timing and use of this property is currently unknown.

Additionally, a few development applications were available for the adjacent properties as listed on the City's Development Application Search tool:

- 500/525/535 Coventry Road \& 1200 St. Laurent Boulevard - The City of Ottawa has received Zoning Bylaw Amendment applications to facilitate the potential expansion of the St. Laurent Shopping Centre. The plans for this area appear to be in the preliminary planning stages and as a result, the anticipated trip generation is currently unclear.
- 200/230/260 Steamline Street - seven apartment buildings totalling 1,845 units. 375 of these units are to be completed in 2019 as part of Phase 1, 865 units by 2025 as part of Phase 2 and 605 units in 2029 as part of phase 3. The Site Plan indicates 1,843 underground parking spaces and 189 surface parking spaces for tenants and visitors. The anticipated trip generation from this site can be seen in Figure 13, Figure 14, and Figure 15 for Phases 1, 2 and 3 respectively and are excerpts from OTY Residential Development 200, 230 \& 260 Steamline Street - Transportation Impact Assessment prepared by D.J. Halpenny \& Associates Ltd.

Appendix E
Existing and Background Conditions Output Data

Conditions
1: Via Rail \& Tremblay Rd

Conditions
1：Via Rail \＆Tremblay Rd

	\rightarrow	\％	\％		41	
Movement	EBT	EBR	WBL	WBT	NBL NBR	
Lane Configurations	中虫	F＇	\cdots	中虫	＊	
Traffic Volume（vph）	272	118	33	129	$75 \quad 48$	
Future Volume（vph）	272	118	33	129	$75 \quad 48$	
Ideal Flow（vphpl）	1800	1800	1800	1800	18001800	
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	
Lane Util．Factor	0.95	1.00	1.00	0.95	1.00	
Frt	1.00	0.85	1.00	1.00	0.95	
Flt Protected	1.00	1.00	0.95	1.00	0.97	
Satd．Flow（prot）	3353	1500	1676	3353	1622	
Flt Permitted	1.00	1.00	0.58	1.00	0.97	
Satd．Flow（perm）	3353	1500	1017	3353	1622	
Peak－hour factor，PHF	0.95	0.95	0.95	0.95	$0.95 \quad 0.95$	
Adj．Flow（vph）	286	124	35	136	$79 \quad 51$	
RTOR Reduction（vph）	0	35	0	0	$40 \quad 0$	
Lane Group Flow（vph）	286	89	35	136	$90 \quad 0$	
Turn Type	NA	Perm	Perm	NA	Prot	
Protected Phases	4			8	2	
Permitted Phases		4	8			
Actuated Green，G（s）	45.2	45.2	45.2	45.2	8.3	
Effective Green，g（s）	47.3	47.3	47.3	47.3	10.9	
Actuated g／C Ratio	0.71	0.71	0.71	0.71	0.16	
Clearance Time（s）	6.1	6.1	6.1	6.1	6.6	
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap（vph）	2395	1071	726	2395	267	
v／s Ratio Prot	c0．09			0.04	c0．06	
v／s Ratio Perm		0.06	0.03			
v／c Ratio	0.12	0.08	0.05	0.06	0.34	
Uniform Delay，d1	2.9	2.9	2.8	2.8	24.5	
Progression Factor	1.00	1.00	1.00	1.00	1.00	
Incremental Delay，d2	0.1	0.2	0.1	0.0	0.8	
Delay（s）	3.1	3.0	2.9	2.9	25.2	
Level of Service	A	A	A	A	C	
Approach Delay（s）	3.0			2.9	25.2	
Approach LOS	A			A	C	
Intersection Summary						
HCM 2000 Control Delay			7.1		HCM 2000 Level of Service	A
HCM 2000 Volume to Capacity ratio			0.16			
Actuated Cycle Length（s）			66.2		Sum of lost time（s）	8.0
Intersection Capacity Utilization			35．0\％		ICU Level of Service	A
Analysis Period（min）			15			

C Critical Lane Group

2: Pickering PI \& Tremblay Rd

3: Avenue K \& Tremblay Rd

Conditions
3: Avenue K \& Tremblay Rd

Conditions
4: Avenue L \& Tremblay Rd

Conditions
5: Belfast Rd \& Tremblay Rd

	4	\rightarrow	7		4			$\frac{1}{1}$
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations	\%	\uparrow	\%	\uparrow	\%	\uparrow	\%	\uparrow
Traffic Volume (vph)	139	30	18	99	119	269	17	244
Future Volume (vph)	139	30	18	99	119	269	17	244
Lane Group Flow (vph)	146	168	19	142	125	292	18	329
Turn Type	Perm	NA	Perm	NA	Prot	NA	Perm	NA
Protected Phases		4		8	5	2		6
Permitted Phases	4		8				6	
Detector Phase	4	4	8	8	5	2	-	6
Switch Phase								
Minimum Initial (s)	10.0	10.0	10.0	10.0	5.0	10.0	10.0	10.0
Minimum Split (s)	29.8	29.8	29.8	29.8	10.9	19.9	19.9	19.9
Total Split (s)	35.0	35.0	35.0	35.0	15.0	50.0	35.0	35.0
Total Split (\%)	41.2\%	41.2\%	41.2\%	41.2\%	17.6\%	58.8\%	41.2\%	41.2\%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	3.5	3.5	3.5	3.5	2.6	2.6	2.6	2.6
Lost Time Adjust (s)	-2.8	-2.8	-2.8	-2.8	-1.9	-1.9	-1.9	-1.9
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag					Lead		Lag	Lag
Lead-Lag Optimize?					Yes		Yes	Yes
Recall Mode	Max	Max	Max	Max	None	None	None	None
Act Effct Green (s)	31.9	31.9	31.9	31.9	10.6	31.4	20.2	20.2
Actuated g/C Ratio	0.45	0.45	0.45	0.45	0.15	0.44	0.28	0.28
v / C Ratio	0.28	0.22	0.04	0.18	0.51	0.38	0.06	0.66
Control Delay	18.1	5.8	15.7	13.9	39.3	13.7	19.4	28.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	18.1	5.8	15.7	13.9	39.3	13.7	19.4	28.9
LOS	B	A	B	B	D	B	B	C
Approach Delay		11.5		14.1		21.4		28.4
Approach LOS		B		B		C		C
Queue Length 50th (m)	13.9	2.7	1.6	10.6	17.3	25.4	2.0	40.7
Queue Length 95th (m)	32.5	16.0	6.4	26.1	37.5	41.4	6.6	66.6
Internal Link Dist (m)		37.8		75.7		74.6		56.3
Turn Bay Length (m)			50.0		65.0		25.0	
Base Capacity (vph)	523	767	509	768	265	1163	457	771
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.28	0.22	0.04	0.18	0.47	0.25	0.04	0.43
Intersection Summary								
Cycle Length: 85								
Actuated Cycle Length: 71.6								
Natural Cycle: 65								
Control Type: Semi Act-Uncoord								
Maximum v/c Ratio: 0.66								
Intersection Signal Delay: 19.9				Intersection LOS: B				
Intersection Capacity Utilization 56.6\%Analysis Period (min) 15				ICU Level of Service B				

Splits and Phases: 5: Belfast Rd \& Tremblay Rd

Conditions
5: Belfast Rd \& Tremblay Rd

c Critical Lane Group

6: Avenue J \& Tremblay Rd

Conditions
1: Via Rail \& Tremblay Rd

Analysis Period (min) 15

Splits and Phases: 1: Via Rail \& Tremblay Rd

Conditions
1: Via Rail \& Tremblay Rd

c Critical Lane Group

2: Pickering PI \& Tremblay Rd

Conditions
2: Pickering PI \& Tremblay Rd

3: Avenue K \& Tremblay Rd

Conditions
3: Avenue K \& Tremblay Rd

Conditions
4: Avenue L \& Tremblay Rd

Conditions
4: Avenue L \& Tremblay Rd

Conditions
5: Belfast Rd \& Tremblay Rd

	4	\rightarrow	7		4			1
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations	\%	\uparrow	\%	ち	\%	ち	\%	\uparrow
Traffic Volume (vph)	161	54	20	62	154	397	23	358
Future Volume (vph)	161	54	20	62	154	397	23	358
Lane Group Flow (vph)	169	235	21	101	162	439	24	453
Turn Type	Perm	NA	Perm	NA	Prot	NA	Prot	NA
Protected Phases		4		8	5	2	1	6
Permitted Phases	4		8					
Detector Phase	4	4	8	8	5	2	1	6
Switch Phase								
Minimum Initial (s)	10.0	10.0	10.0	10.0	5.0	10.0	5.0	10.0
Minimum Split (s)	29.8	29.8	29.8	29.8	10.9	19.9	10.9	19.9
Total Split (s)	35.0	35.0	35.0	35.0	20.0	45.0	20.0	45.0
Total Split (\%)	35.0\%	35.0\%	35.0\%	35.0\%	20.0\%	45.0\%	20.0\%	45.0\%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	3.5	3.5	3.5	3.5	2.6	2.6	2.6	2.6
Lost Time Adjust (s)	-2.8	-2.8	-2.8	-2.8	-1.9	-1.9	-1.9	-1.9
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag					Lead	Lag	Lead	Lag
Lead-Lag Optimize?					Yes	Yes	Yes	Yes
Recall Mode	Max	Max	Max	Max	None	None	None	None
Act Efft Green (s)	31.4	31.4	31.4	31.4	14.0	42.1	8.8	29.1
Actuated g/C Ratio	0.36	0.36	0.36	0.36	0.16	0.49	0.10	0.34
v / C Ratio	0.38	0.35	0.06	0.16	0.60	0.52	0.14	0.78
Control Delay	26.6	9.9	23.0	17.3	45.4	18.9	40.8	34.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	26.6	9.9	23.0	17.3	45.4	18.9	40.8	34.9
LOS	C	A	C	B	D	B	D	C
Approach Delay		16.8		18.3		26.0		35.2
Approach LOS		B		B		C		D
Queue Length 50th (m)	22.3	8.6	2.5	8.5	26.5	42.6	4.0	69.8
Queue Length 95th (m)	47.9	30.3	8.8	23.3	53.1	92.2	12.5	105.3
Internal Link Dist (m)		37.8		75.7		74.6		56.3
Turn Bay Length (m)			50.0		65.0		25.0	
Base Capacity (vph)	442	670	331	624	313	893	313	831
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.38	0.35	0.06	0.16	0.52	0.49	0.08	0.55
Intersection Summary								
Cycle Length: 100								
Actuated Cycle Length: 86.7								
Natural Cycle: 70								
Control Type: Semi Act-Uncoord								
Maximum v/c Ratio: 0.78								
Intersection Signal Delay: 25.8				Intersection LOS: C				
Intersection Capacity Utilization 61.1\%Analysis Period (min) 15				ICU Level of Service B				

Conditions
5: Belfast Rd \& Tremblay Rd

c Critical Lane Group

6: Avenue J \& Tremblay Rd

		-		,	
	Lane Group	EBT	WBT	NBL	
	Lane Configurations	\uparrow	\uparrow	M	
	Traffic Volume (vph)	299	288	10	
	Future Volume (vph)	299	288	10	
	Lane Group Flow (vph)	317	307	19	
	Sign Control	Free	Free	Stop	
	Intersection Summary				
	Control Type: Unsignalized				
	Intersection Capacity Util Analysis Period (min) 15				ICU Level of Service A

Conditions
1: Via Rail \& Tremblay Rd

Analysis Period (min) 15

Splits and Phases: 1: Via Rail \& Tremblay Rd

Conditions
1: Via Rail \& Tremblay Rd

c Critical Lane Group

2: Pickering PI \& Tremblay Rd

3: Avenue K \& Tremblay Rd

Conditions
3: Avenue K \& Tremblay Rd

Conditions
4: Avenue L \& Tremblay Rd

Conditions
4: Avenue L \& Tremblay Rd

Conditions
5: Belfast Rd \& Tremblay Rd

	4	\rightarrow	7					\downarrow
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT
Lane Configurations	\%	\uparrow	*	\uparrow	\%	\uparrow	\%	\uparrow
Trafic Volume (vph)	139	160	18	139	119	269	49	244
Future Volume (vph)	139	160	18	139	119	269	49	244
Lane Group Flow (vph)	146	304	19	193	125	292	52	329
Turn Type	Perm	NA	Perm	NA	Prot	NA	Perm	NA
Protected Phases		4		8	5	2		6
Permitted Phases	4		8				6	
Detector Phase	4	4	8	8	5	2	6	6
Switch Phase								
Minimum Initial (s)	10.0	10.0	10.0	10.0	5.0	10.0	10.0	10.0
Minimum Split (s)	29.8	29.8	29.8	29.8	10.9	19.9	19.9	19.9
Total Split (s)	35.0	35.0	35.0	35.0	15.0	50.0	35.0	35.0
Total Split (\%)	41.2\%	41.2\%	41.2\%	41.2\%	17.6\%	58.8\%	41.2\%	41.2\%
Yellow Time (s)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
All-Red Time (s)	3.5	3.5	3.5	3.5	2.6	2.6	2.6	2.6
Lost Time Adjust (s)	-2.8	-2.8	-2.8	-2.8	-1.9	-1.9	-1.9	-1.9
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag					Lead		Lag	Lag
Lead-Lag Optimize?					Yes		Yes	Yes
Recall Mode	Max	Max	Max	Max	None	None	None	None
Act Effct Green (s)	31.9	31.9	31.9	31.9	10.6	31.4	20.2	20.2
Actuated g/C Ratio	0.45	0.45	0.45	0.45	0.15	0.44	0.28	0.28
v / C Ratio	0.30	0.40	0.05	0.25	0.51	0.38	0.18	0.66
Control Delay	18.7	15.5	15.9	15.1	39.3	13.7	21.5	28.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	18.7	15.5	15.9	15.1	39.3	13.7	21.5	28.9
LOS	B	B	B	B	D	B	C	C
Approach Delay		16.5		15.2		21.4		27.9
Approach LOS		B		B		C		C
Queue Length 50th (m)	14.1	24.7	1.6	16.0	17.3	25.4	5.9	40.7
Queue Length 95th (m)	33.2	54.0	6.5	35.9	37.5	41.4	14.1	66.6
Internal Link Dist (m)		37.8		75.7		74.6		56.3
Turn Bay Length (m)			50.0		65.0		25.0	
Base Capacity (vph)	486	764	391	769	265	1163	457	771
Starvation Cap Reductn	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.30	0.40	0.05	0.25	0.47	0.25	0.11	0.43
Intersection Summary								
Cycle Length: 85								
Actuated Cycle Length: 71.6								
Natural Cycle: 65								
Control Type: Semi Act-Uncoord								
Maximum v/c Ratio: 0.66								
Intersection Signal Delay: 20.7				Intersection LOS: C				
Intersection Capacity Utilization 63.8\%Analysis Period (min) 15				ICU Level of Service B				

Splits and Phases: 5: Belfast Rd \& Tremblay Rd

Conditions
5: Belfast Rd \& Tremblay Rd
2025 Background AM.syn

C Critical Lane Group

6: Avenue J \& Tremblay Rd

		-		,	
	Lane Group	EBT	WBT	NBL	
	Lane Configurations	\uparrow	\uparrow	M	
	Traffic Volume (vph)	420	231	2	
	Future Volume (vph)	420	231	2	
	Lane Group Flow (vph)	453	259	7	
	Sign Control	Free	Free	Stop	
	Intersection Summary				
	Control Type: Unsignalized				
	Intersection Capacity Util Analysis Period (min) 15				ICU Level of Service A

Analysis Period (min) 15

Conditions
1: Via Rail \& Tremblay Rd

Analysis Period (min) 15

Splits and Phases: 1: Via Rail \& Tremblay Rd

Conditions
1: Via Rail \& Tremblay Rd

c Critical Lane Group

2: Pickering PI \& Tremblay Rd

3: Avenue K \& Tremblay Rd

Conditions
3: Avenue K \& Tremblay Rd

Conditions
4: Avenue L \& Tremblay Rd

Conditions
4: Avenue L \& Tremblay Rd

Conditions
5: Belfast Rd \& Tremblay Rd

Conditions
5: Belfast Rd \& Tremblay Rd

c Critical Lane Group

6: Avenue J \& Tremblay Rd

		\rightarrow		\checkmark	
	Lane Group	EBT	WBT	NBL	
	Lane Configurations	ち	\uparrow	*	
	Traffic Volume (vph)	344	426	10	
	Future Volume (vph)	344	426	10	
	Lane Group Flow (vph)	364	452	19	
	Sign Control	Free	Free	Stop	
	Intersection Summary				
	Control Type: Unsignalized				
	Intersection Capacity Utiliz Analysis Period (min) 15				ICU Level of Service A

Analysis Period (min) 15

Appendix F
Total Projected Conditions Output Data

Conditions
1: Via Rail \& Tremblay Rd

Conditions
1: Via Rail \& Tremblay Rd

C Critical Lane Group

2: Pickering PI \& Tremblay Rd

3: Avenue K \& Tremblay Rd

Conditions
3: Avenue K \& Tremblay Rd

Conditions
4: Avenue L \& Tremblay Rd

Conditions
4: Avenue L \& Tremblay Rd

Conditions
5: Belfast Rd \& Tremblay Rd

Conditions
5: Belfast Rd \& Tremblay Rd

c Critical Lane Group

6: Avenue J \& Tremblay Rd

		\rightarrow		,	
	Lane Group	EBT	WBT	NBL	
	Lane Configurations	¢	\uparrow	M	
	Traffic Volume (vph)	414	234	2	
	Future Volume (vph)	414	234	2	
	Lane Group Flow (vph)	447	262	7	
	Sign Control	Free	Free	Stop	
	Intersection Summary				
	Control Type: Unsignalized				
	Intersection Capacity Utiliz Analysis Period (min) 15				ICU Level of Service A

Conditions
1: Via Rail \& Tremblay Rd

Analysis Period (min) 15

Splits and Phases: 1: Via Rail \& Tremblay Rd

Conditions
1: Via Rail \& Tremblay Rd

c Critical Lane Group

2: Pickering PI \& Tremblay Rd

Conditions
2: Pickering PI \& Tremblay Rd

3: Avenue K \& Tremblay Rd

Conditions
3: Avenue K \& Tremblay Rd

Conditions
4: Avenue L \& Tremblay Rd

Lane Group				
Lane Configurations	EBT	WBT	NBR	
Traffic Volume (vph)	372	403	54	
Future Volume (vph)	372	403	54	
Lane Group Flow (vph)	405	452	57	
Sign Control	Free	Free		
Intersection Summary				
Control Type: Unsignalized				
Intersection Capacity Utilization 49.1%				

Conditions
4: Avenue L \& Tremblay Rd

Conditions
5: Belfast Rd \& Tremblay Rd

Conditions
5: Belfast Rd \& Tremblay Rd

c Critical Lane Group

6: Avenue J \& Tremblay Rd

		-		,	
	Lane Group	EBT	WBT	NBL	
	Lane Configurations	\uparrow	\uparrow	M	
	Traffic Volume (vph)	353	423	10	
	Future Volume (vph)	353	423	10	
	Lane Group Flow (vph)	374	449	19	
	Sign Control	Free	Free	Stop	
	Intersection Summary				
	Control Type: Unsignalized				
	Intersection Capacity Util Analysis Period (min) 15				ICU Level of Service A

Conditions
1: Via Rail \& Tremblay Rd

Conditions
1：Via Rail \＆Tremblay Rd

	\rightarrow	\geqslant	\％		4	
Movement	EBT	EBR	WBL	WBT	NBL NBR	
Lane Configurations	中4	「	\％	中虫	＊	
Traffic Volume（vph）	428	118	33	231	7548	
Future Volume（vph）	428	118	33	231	$75 \quad 48$	
Ideal Flow（vphpl）	1800	1800	1800	1800	18001800	
Total Lost time（s）	4.0	4.0	4.0	4.0	4.0	
Lane Util．Factor	0.95	1.00	1.00	0.95	1.00	
Frt	1.00	0.85	1.00	1.00	0.95	
Flt Protected	1.00	1.00	0.95	1.00	0.97	
Satd．Flow（prot）	3353	1500	1676	3353	1622	
Flt Permitted	1.00	1.00	0.49	1.00	0.97	
Satd．Flow（perm）	3353	1500	867	3353	1622	
Peak－hour factor，PHF	0.95	0.95	0.95	0.95	$0.95 \quad 0.95$	
Adj．Flow（vph）	451	124	35	243	$79 \quad 51$	
RTOR Reduction（vph）	0	35	0	0	$40 \quad 0$	
Lane Group Flow（vph）	451	89	35	243	$90 \quad 0$	
Turn Type	NA	Perm	Perm	NA	Prot	
Protected Phases	4			8	2	
Permitted Phases		4	8			
Actuated Green，G（s）	45.2	45.2	45.2	45.2	8.3	
Effective Green，g（s）	47.3	47.3	47.3	47.3	10.9	
Actuated g／C Ratio	0.71	0.71	0.71	0.71	0.16	
Clearance Time（s）	6.1	6.1	6.1	6.1	6.6	
Vehicle Extension（s）	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap（vph）	2395	1071	619	2395	267	
v／s Ratio Prot	c0．13			0.07	c0．06	
v／s Ratio Perm		0.06	0.04			
v／c Ratio	0.19	0.08	0.06	0.10	0.34	
Uniform Delay，d1	3.1	2.9	2.8	2.9	24.5	
Progression Factor	1.00	1.00	1.00	1.00	1.00	
Incremental Delay，d2	0.2	0.2	0.2	0.1	0.8	
Delay（s）	3.3	3.0	3.0	3.0	25.2	
Level of Service	A	A	A	A	C	
Approach Delay（s）	3.2			3.0	25.2	
Approach LOS	A			A	C	
Intersection Summary						
HCM 2000 Control Delay			6.1		HCM 2000 Level of Service	A
HCM 2000 Volume to Capacity ratio			0.22			
Actuated Cycle Length（s）			66.2		Sum of lost time（s）	8.0
Intersection Capacity Utilization			39．2\％		ICU Level of Service	A
Analysis Period（min）			15			

C Critical Lane Group

2: Pickering PI \& Tremblay Rd

3: Avenue K \& Tremblay Rd

Conditions
3: Avenue K \& Tremblay Rd

Conditions
4: Avenue L \& Tremblay Rd

Conditions
4: Avenue L \& Tremblay Rd

Conditions
5: Belfast Rd \& Tremblay Rd

Conditions
5: Belfast Rd \& Tremblay Rd

C Critical Lane Group

6: Avenue J \& Tremblay Rd

Conditions
1: Via Rail \& Tremblay Rd

Analysis Period (min) 15

Splits and Phases: 1: Via Rail \& Tremblay Rd

Conditions
1: Via Rail \& Tremblay Rd

C Critical Lane Group

2: Pickering PI \& Tremblay Rd

	\rightarrow		7		,
Lane Group	EBT	EBR	WBL	WBT	NBL
Lane Configurations	4	「	\%	44	*
Traffic Volume (vph)	364	21	8	440	29
Future Volume (vph)	364	21	8	440	29
Lane Group Flow (vph)	383	22	8	463	46
Sign Control	Free			Free	Stop
Intersection Summary					
Control Type: Unsignalized					
Intersection Capacity Utilization 30.2\%Analysis Period (min) 15					vel of

3: Avenue K \& Tremblay Rd

Conditions
3: Avenue K \& Tremblay Rd

Conditions
4: Avenue L \& Tremblay Rd

Conditions
4: Avenue L \& Tremblay Rd

Conditions
5: Belfast Rd \& Tremblay Rd

Conditions
5: Belfast Rd \& Tremblay Rd

6: Avenue J \& Tremblay Rd

	\rightarrow		4	
Lane Group	EBT	WBT	NBL	
Lane Configurations	4 ${ }^{\text {a }}$	*4	M	
Traffic Volume (vph)	376	438	10	
Future Volume (vph)	376	438	10	
Lane Group Flow (vph)	398	465	19	
Sign Control	Free	Free	Stop	
Intersection Summary				
Control Type: Unsignalized				
Intersection Capacity Utilization 25.7\% Analysis Period (min) 15				ICU Level of Service A

Appendix G - MTO Left-turn Lane Warrant and Signal Warrant Analysis

Traffic signals may be warranted in rural
TRAFFIC SIGNALS MAY OE WARRANTEO IN RURAL
AREAS OR URBAN AREAS WITH RESTRICTEO FLOW
............... TRAFFIC signals may be warranteo in
"free flow" urban areas

Avenue K/Tremblay Rd - (peak hour signal warrant) -P1 Projected

Signal Warrant		Description		Minimum Requirement for Two Lane Roadways	Compliance								
		Restricted Flow Operating Speed Less Than 70 km/h	Sectional \%	Entire \%	Warrant								
	1. Minimum Vehicular Volume			(1) A	Vehicle Volume, All Approaches for Each of the Heaviest 8 Hours of on Average Day, and	720	56\%	14\%	$\begin{gathered} \text { 23\% } \\ \text { No } \end{gathered}$				
		(4) B	Vehicle Volume, Along Minor Streets for Each of the Same 8 Hours	255	14\%								
	2. Delay to Cross Traffic	(1)	Vehicle Volume, Along Major Street for Each of the Heaviest 8 Hours of an Average Day, and	720	51\%	23\%							
		(2)	Combined Vehicle and Pedestrian Volume Crossing the Major Street for Each of the Same 8 Hours	75	23\%								
Notes													
1 Vehicle Volume Warrants (1A), (2A) and (5B) for Roadways Having Two or More Moving Lanes in one Direction Should Be 25\% Higher Than Values Given Above 2 For Definition of Crossing Volume Refer to Note 4 on the Signal Warrant Analysis Form B2.03.08													
3 The Lowest Sectional Percentage Governs the Entire Warrant													
4 For "T" Intersections the Warrant Values for Minor Street Should be Increased by 50\% (Warrant 1B only)						Yes				(Warrant 1B only)			

Signal Warrant		Description		Minimum Requirement for Two Lane Roadways	Compliance				
		Restricted Flow Operating Speed Less Than 70 km/h	Sectional \%	Entire \%	Warrant				
	1. Minimum Vehicular Volume			(1) A	Vehicle Volume, All Approaches for Each of the Heaviest 8 Hours of on Average Day, and	720	59\%	20\%	$\begin{gathered} 33 \% \\ \text { No } \end{gathered}$
		(4) B	Vehicle Volume, Along Minor Streets for Each of the Same 8 Hours	255	20\%				
	2. Delay to Cross Traffic	(1) A	Vehicle Volume, Along Major Street for Each of the Heaviest 8 Hours of an Average Day, and	720	53\%	33\%			
		(2) B	Combined Vehicle and Pedestrian Volume Crossing the Major Street for Each of the Same 8 Hours	75	33\%				

Notes
1 Vehicle Volume Warrants (1A), (2A) and (5B) for Roadways Having Two or More Moving Lanes in one Direction Should Be 25\% Higher Than Values Given Above
No
2 For Definition of Crossing Volume Refer to Note 4 on the Signal Warrant Analysis Form B2.03.08
3 The Lowest Sectional Percentage Governs the Entire Warrant
4 For "T" Intersections the Warrant Values for Minor Street Should be Increased by 50\% (Warrant 1B only)
Yes

PM Peak Hour Volumes

Appendix H - Transportation Demand Management (TDM) Strategies

TDM-Supportive Development Design and Infrastructure Checklist:
 Non-Residential Developments (office, institutional, retail or industrial)

\left.| REQUIRED | Legend |
| :---: | :--- |
| The Official Plan or Zoning By-law provides related guidance | |
| that must be followed | |$\right]$

TDM-supportive design \& infrastructure measures: Non-residential developments

1. WALKING \& CYCLING: ROUTES

1.1 Building location \& access points

BASIC 1.1.1 Locate building close to the street, and do not locate parking areas between the street and building entrances
BASIC 1.1.2 Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations
1.1.3 Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort

1.2 Facilities for walking \& cycling

1.2.1 Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3)

REQUIRED
1.2.2 Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official Plan policy 4.3.12)

	TDM-supportive design \& infrastructure measures: Non-residential developments		Check if completed \& add descriptions, explanations or plan/drawing references
REQUIRED	$1.2 .3$	Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10)	\checkmark
REQUIRED	1.2.4	Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10)	\checkmark
REQUIRED	1.2.5	Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and onroad cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11)	\square
BASIC	1.2.6	Provide safe, direct and attractive walking routes from building entrances to nearby transit stops	\checkmark
BASIC	1.2.7	Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible	\checkmark
BASIC	1.2.8	Design roads used for access or circulation by cyclists using a target operating speed of no more than $30 \mathrm{~km} / \mathrm{h}$, or provide a separated cycling facility	\checkmark
	1.3	Amenities for walking \& cycling	
BASIC	1.3.1	Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails	\checkmark
BASIC	1.3.2	Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious)	\square

TDM-supportive design \& infrastructure measures: Non-residential developments			Check if completed \& add descriptions, explanations or plan/drawing references
	2.	WALKING \& CYCLING: END-OF-TRIP FACILITIES	
	2.1	Bicycle parking	
REQUIRED	2.1.1	Provide bicycle parking in highly visible and lighted areas, sheltered from the weather wherever possible (see Official Plan policy 4.3.6)	\square
REQUIRED	2.1.2	Provide the number of bicycle parking spaces specified for various land uses in different parts of Ottawa; provide convenient access to main entrances or wellused areas (see Zoning By-law Section 111)	\square
REQUIRED	2.1.3	Ensure that bicycle parking spaces and access aisles meet minimum dimensions; that no more than 50% of spaces are vertical spaces; and that parking racks are securely anchored (see Zoning By-law Section 111)	\square
BASIC	2.1.4	Provide bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met), plus the expected peak number of customer/visitor cyclists	\square
BETTER	2.1.5	Provide bicycle parking spaces equivalent to the expected number of commuter and customer/visitor cyclists, plus an additional buffer (e.g. 25 percent extra) to encourage other cyclists and ensure adequate capacity in peak cycling season	\square
	2.2	Secure bicycle parking	
REQUIRED	2.2.1	Where more than 50 bicycle parking spaces are provided for a single office building, locate at least 25\% of spaces within a building/structure, a secure area (e.g. supervised parking lot or enclosure) or bicycle lockers (see Zoning By-law Section 111)	\square
better	2.2.2	Provide secure bicycle parking spaces equivalent to the expected number of commuter cyclists (assuming the cycling mode share target is met)	\square
	2.3	Shower \& change facilities	
BASIC	2.3.1	Provide shower and change facilities for the use of active commuters	\square
better	2.3.2	In addition to shower and change facilities, provide dedicated lockers, grooming stations, drying racks and laundry facilities for the use of active commuters	\square
	2.4	Bicycle repair station	
better	2.4.1	Provide a permanent bike repair station, with commonly used tools and an air pump, adjacent to the main bicycle parking area (or secure bicycle parking area, if provided)	\square

| | TDM-supportive design \& infrastructure measures: | $\begin{array}{l}\text { Check if completed \& } \\ \text { Nos }\end{array}$ |
| :--- | :--- | :--- | :--- |
| | 3. | TRANSIT |
| add descriptions, explanations | | |
| or plan/drawing references | | |$\}$

	TDM-supportive design \& infrastructure measures: Non-residential developments		Check if completed \& add descriptions, explanations or plan/drawing references
		PARKING	
	6.1	Number of parking spaces	
REQUIRED	6.1.1	Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for	\checkmark
BASIC	6.1.2	Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking	\square
BASIC	6.1.3	Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104)	\square
BETTER	6.1.4	Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking (see Zoning By-law Section 111)	\square
	6.2	Separate long-term \& short-term parking areas	
BETtER	6.2.1	Separate short-term and long-term parking areas using signage or physical barriers, to permit access controls and simplify enforcement (i.e. to discourage employees from parking in visitor spaces, and vice versa)	\square
	7.	OTHER	
	7.1	On-site amenities to minimize off-site trips	
BETTER	7.1.1	Provide on-site amenities to minimize mid-day or mid-commute errands	\square

Appendix I - Segment MMLOS Assessment

Phase 1

SEGMENTS		LOS	via Rail	Pickering	Avenue J	Avenue K	Avenue L
			Pickering	Avenue J	Avenue K	Avenue L	Belfast
	Sidewalk Width Boulevard Width	B	$\begin{gathered} 1.8 \mathrm{~m} \\ <0.5 \mathrm{~m} \end{gathered}$				
	Avg Daily Curb Lane Traffic Volume		≤ 3000				
	Operating Speed On-Street Parking		$\begin{gathered} >30 \text { to } 50 \mathrm{~km} / \mathrm{h} \\ \text { no } \end{gathered}$		$\begin{gathered} >30 \text { to } 50 \mathrm{~km} / \mathrm{h} \\ \text { no } \end{gathered}$	$\begin{gathered} >30 \text { to } 50 \mathrm{~km} / \mathrm{h} \\ \text { no } \end{gathered}$	$\begin{gathered} >30 \text { to } 50 \mathrm{~km} / \mathrm{h} \\ \text { no } \end{gathered}$
	Exposure to Traffic PLoS		B	B	B	B	B
	Effective Sidewalk Width		1.5 m				
	Pedestrian Volume		$250 \mathrm{ped} / \mathrm{hr}$	$500 \mathrm{ped} / \mathrm{hr}$			
	Crowding PLoS		B	B	B	B	B
	Level of Service		B	B	B	B	B
$$	Type of Cycling Facility	A	Physically Separated				
	Number of Travel Lanes		4.5 lanes total	23 lanes total	23 lanes totat	23 lanes totat	23 tanes totat
	Operating Speed		$\rightarrow 40$ to $<50 \mathrm{~km} / \mathrm{h}$	>40 to $<50 \mathrm{~km} / \mathrm{h}$			
	\# of Lanes \& Operating Speed LoS		A	A	A	A	A
	Bike Lane (+ Parking Lane) Width						
	Bike Lane Width LoS		-	-	-	-	-
	Bike Lane Blockages						
	Blockage LoS		-	-	-	-	-
	Median Refuge Width (no median $=<1.8 \mathrm{~m}$)		< 1.8 m refuge	< 1.8 m refuge	< 1.8 m refuge	$<1.8 \mathrm{~m}$ refuge	< 1.8 m refuge
	No. of Lanes at Unsignalized Crossing		≤ 3 lanes				
	Sidestreet Operating Speed		$\leq 40 \mathrm{~km} / \mathrm{h}$				
	Unsignalized Crossing - Lowest LoS		A	A	A	A	A
	Level of Service		A	A	A	A	A
	Facility Type	D	Mixed Traffic				
	Friction or Ratio Transit:Posted Speed		Vt/Vp ≥ 0.8	Vt/Vp ≥ 0.8	Vt/Vp ≥ 0.8	Vt $/ \mathrm{V}$ p ≥ 0.8	Vt/Vp ≥ 0.8
	Level of Service		D	D	D	D	D
$\begin{aligned} & \text { 들 } \\ & \text { 른 } \end{aligned}$	Truck Lane Width	B	$>3.7 \mathrm{~m}$	> 3.7 m	> 3.7 m	> 3.7 m	> 3.7 m
	Travel Lanes per Direction		> 1	1	1	1	1
	Level of Service		A	B	B	B	B

Phase 2

SEGMENTS		LOS	via Rail	Pickering	Avenue J	Avenue K	Avenue L
			Pickering	Avenue J	Avenue K	Avenue L	Belfast
	Sidewalk Width Boulevard Width	B	$\begin{gathered} 1.8 \mathrm{~m} \\ <0.5 \mathrm{~m} \end{gathered}$				
	Avg Daily Curb Lane Traffic Volume		≤ 3000				
	Operating Speed On-Street Parking		$\begin{gathered} >30 \text { to } 50 \mathrm{~km} / \mathrm{h} \\ \text { no } \end{gathered}$	$\begin{gathered} >30 \text { to } 50 \mathrm{~km} / \mathrm{h} \\ \text { no } \end{gathered}$	$\begin{gathered} >30 \text { to } 50 \mathrm{~km} / \mathrm{h} \\ \text { no } \end{gathered}$	$\begin{gathered} >30 \text { to } 50 \mathrm{~km} / \mathrm{h} \\ \text { no } \end{gathered}$	$\begin{gathered} >30 \text { to } 50 \mathrm{~km} / \mathrm{h} \\ \text { no } \end{gathered}$
	Exposure to Traffic PLoS		B	B	B	B	B
	Effective Sidewalk Width		2.5 m	1.5 m	1.5 m	1.5 m	1.5 m
	Pedestrian Volume		$250 \mathrm{ped} / \mathrm{hr}$	$500 \mathrm{ped} / \mathrm{hr}$			
	Crowding PLoS		B	B	B	B	B
	Level of Service		B	B	B	B	B
	Type of Cycling Facility	A	Physically Separated				
	Number of Travel Lanes		4.5 lanes total	4.5 lanes total	45 lanes total	4.5 lanes totat	45 lanes total
	Operating Speed		>40 to $<50 \mathrm{~km} / \mathrm{h}$				
	\# of Lanes \& Operating Speed LoS		A	A	A	A	A
	Bike Lane (+ Parking Lane) Width						
	Bike Lane Width LoS		-	-	-	-	\bullet
	Bike Lane Blockages						
	Blockage LoS		-	-	-	-	-
	Median Refuge Width (no median = < 1.8 m)		< 1.8 m refuge	$<1.8 \mathrm{~m}$ refuge			
	No. of Lanes at Unsignalized Crossing		≤ 3 lanes				
	Sidestreet Operating Speed		$\leq 40 \mathrm{~km} / \mathrm{h}$				
	Unsignalized Crossing - Lowest LoS		A	A	A	A	A
	Level of Service		A	A	A	A	A
	Facility Type	D	Mixed Traffic				
	Friction or Ratio Transit:Posted Speed		Vt/Vp ≥ 0.8	$\mathrm{Vt} / \mathrm{V} \mathrm{p} \geq 0.8$	$\mathrm{Vt} / \mathrm{V} \mathrm{p} \geq 0.8$	Vt $/ \mathrm{V}$ ¢ ≥ 0.8	Vt/Vp ≥ 0.8
	Level of Service		D	D	D	D	D
$\begin{aligned} & \text { ㅡㅡㄹ } \\ & \text { 른 } \end{aligned}$	Truck Lane Width	B	$>3.7 \mathrm{~m}$	$>3.7 \mathrm{~m}$	>3.7 m	$>3.7 \mathrm{~m}$	$>3.7 \mathrm{~m}$
	Travel Lanes per Direction		>1	1	1	1	1
	Level of Service		A	B	B	B	B

Appendix J - PXO Scenario at Tremblay/Avenue K

MEMO

TO: City of Ottawa
CC:
FROM: Junshen Feng, B.Eng. CIMA+
REVIEWED BY: Derek Napoli, Dipl.T. CIMA+
DATE: 29 September 2020

SUBJECT: Pedestrian Crossover Scenario at Tremblay/Avenue K

A Pedestrian Crossover (PXO) is proposed on the east side of Tremblay/Avenue K intersection to enhance pedestrian/cyclist experience. The PXO will improve access to the Tremblay LRT station for the inbound (westbound) cyclist, and offer greater connectivity for pedestrians and local residences.

Tremblay road is a medium volume, major collector roadway with $50 \mathrm{~km} / \mathrm{h}$ posted speed that will be expanded to 4 lanes (2 way) cross-section by the year 2030. A Level 2 Type B PXO treatment was selected based on the Pedestrian Crossover Selection Matrix in Ontario Traffic Manual Book 15 (OTM 2016). ${ }^{1}$

The Synchro analysis was performed based on the 2030 and 2035 Total Projected scenario to identify the impact of the PXO on vehicle traffic delay. Synchro results are depicted below in Table 1, and the Synchro output is attached to the end of this memo. The number of pedestrian calls per hour of the PXO was assumed to be 5 .

Table 1: Study Area Intersection Operations - 2030,2035 Total Projected Conditions (PXO)

Movement	Lanes	AM Peak Hour				PM Peak Hour			
		v/c	Delay (s)	LOS	Queue (m)	v/c	Delay (s)	LOS	Queue (m)
Tremblay Rd/Avenue K (PXO) - Semi Act-Uncoord Signal									
EBT	2 T	0.14	3.2	A	26	0.14	3.2	A	25
WBT	2 T	0.11	3.2	A	19	0.15	3.2	A	26
NBL/R	1 L	0.21	14.8	A	6	0.27	14.8	A	9
Overall		0.13	3.2	A	-	0.15	3.2	A	-

Note: The northbound movement shown above is stop controlled, not controlled by the PXO signal. Performance of other intersections within the study area can be found in Table 11 in the main report.

As shown in Table 1, the PXO is expected to introduce 3.2 seconds of delay, and to introduce a maximum 95 -percentile queue of 26 meters to the roadway.

At the Tremblay/Belfast intersection, the highest projected 95 -percentile queue (66 m in the eastbound leftturn lane) is less than the available 100 metre storage. The eastbound left-turn queue at Tremblay/Belfast is not expected to spillback to the PXO.

[^3]Based on the above, the proposed PXO located at Tremblay/Avenue K is recommended from a transportation perspective.

Conditions
1: Via Rail \& Tremblay Rd

Conditions
1: Via Rail \& Tremblay Rd

	\rightarrow	\%	\%		41	
Movement	EBT	EBR	WBL	WBT	NBL NBR	
Lane Configurations	44	F'	\cdots	中虫	*	
Traffic Volume (vph)	428	118	33	231	$75 \quad 48$	
Future Volume (vph)	428	118	33	231	$75 \quad 48$	
Ideal Flow (vphpl)	1800	1800	1800	1800	18001800	
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	
Frt	1.00	0.85	1.00	1.00	0.95	
Flt Protected	1.00	1.00	0.95	1.00	0.97	
Satd. Flow (prot)	3353	1500	1676	3353	1622	
Flt Permitted	1.00	1.00	0.49	1.00	0.97	
Satd. Flow (perm)	3353	1500	867	3353	1622	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	$0.95 \quad 0.95$	
Adj. Flow (vph)	451	124	35	243	$79 \quad 51$	
RTOR Reduction (vph)	0	35	0	0	$40 \quad 0$	
Lane Group Flow (vph)	451	89	35	243	$90 \quad 0$	
Turn Type	NA	Perm	Perm	NA	Prot	
Protected Phases	4			8	2	
Permitted Phases		4	8			
Actuated Green, G (s)	45.2	45.2	45.2	45.2	8.3	
Effective Green, g (s)	47.3	47.3	47.3	47.3	10.9	
Actuated g/C Ratio	0.71	0.71	0.71	0.71	0.16	
Clearance Time (s)	6.1	6.1	6.1	6.1	6.6	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	2395	1071	619	2395	267	
v/s Ratio Prot	c0.13			0.07	c0.06	
v/s Ratio Perm		0.06	0.04			
v/c Ratio	0.19	0.08	0.06	0.10	0.34	
Uniform Delay, d1	3.1	2.9	2.8	2.9	24.5	
Progression Factor	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.2	0.2	0.2	0.1	0.8	
Delay (s)	3.3	3.0	3.0	3.0	25.2	
Level of Service	A	A	A	A	C	
Approach Delay (s)	3.2			3.0	25.2	
Approach LOS	A			A	C	
Intersection Summary						
HCM 2000 Control Delay			6.1		HCM 2000 Level of Service	A
HCM 2000 Volume to Capacity ratio			0.22			
Actuated Cycle Length (s)			66.2		Sum of lost time (s)	8.0
Intersection Capacity Utilization			39.2\%		ICU Level of Service	A
Analysis Period (min)			15			

C Critical Lane Group

2: Pickering PI \& Tremblay Rd

3: Avenue K \& Tremblay Rd

Conditions
3: Avenue K \& Tremblay Rd

Conditions
4: Avenue L \& Tremblay Rd

Conditions
4: Avenue L \& Tremblay Rd

Conditions
5: Belfast Rd \& Tremblay Rd

Conditions
5: Belfast Rd \& Tremblay Rd

C Critical Lane Group

6: Avenue J \& Tremblay Rd

Conditions
7: Tremblay Rd \& PXO

Analysis Period (min) 15

Splits and Phases: 7: Tremblay Rd \& PXO

Conditions
7: Tremblay Rd \& PXO

	4	\rightarrow		\downarrow			4	4			\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			44							
Traffic Volume (vph)	0	415	0	0	306	0	0	0	0	0	0	0
Future Volume (vph)	0	415	0	0	306	0	0	0	0	0	0	0
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)		6.0			6.0							
Lane Util. Factor		0.95			0.95							
Frt		1.00			1.00							
Flt Protected		1.00			1.00							
Satd. Flow (prot)		3353			3353							
Flt Permitted		1.00			1.00							
Satd. Flow (perm)		3353			3353							
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	0	437	0	0	322	0	0	0	0	0	0	0
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	437	0	0	322	0	0	0	0	0	0	0
Turn Type		NA			NA							
Protected Phases		4			8							
Permitted Phases												
Actuated Green, G (s)		40.7			40.7							
Effective Green, g (s)		40.7			40.7							
Actuated g/C Ratio		0.78			0.78							
Clearance Time (s)		6.0			6.0							
Vehicle Extension (s)		3.0			3.0							
Lane Grp Cap (vph)		2599			2599							
v/s Ratio Prot		c0.13			0.10							
v/s Ratio Perm												
v / C Ratio		0.17			0.12							
Uniform Delay, d1		1.5			1.5							
Progression Factor		1.00			1.00							
Incremental Delay, d2		0.1			0.1							
Delay (s)		1.7			1.6							
Level of Service		A			A							
Approach Delay (s)		1.7			1.6			0.0			0.0	
Approach LOS		A			A			A			A	
Intersection Summary												
HCM 2000 Control Delay			1.6		HCM 2000 L	of Ser			A			
HCM 2000 Volume to Capacity ratio			0.15									
Actuated Cycle Length (s)			52.5		Sum of lost ti				8.0			
Intersection Capacity Utilization			17.1\%		ICU Level of				A			
Analysis Period (min)			15									

c Critical Lane Group

Conditions
1: Via Rail \& Tremblay Rd

Analysis Period (min) 15

Splits and Phases: 1: Via Rail \& Tremblay Rd

Conditions
1: Via Rail \& Tremblay Rd

2: Pickering PI \& Tremblay Rd

Conditions
2: Pickering PI \& Tremblay Rd

3: Avenue K \& Tremblay Rd

Conditions
3: Avenue K \& Tremblay Rd

Conditions
4: Avenue L \& Tremblay Rd

Conditions
5: Belfast Rd \& Tremblay Rd

Conditions
5: Belfast Rd \& Tremblay Rd

C Critical Lane Group

6: Avenue J \& Tremblay Rd

Conditions
7: Tremblay Rd \& PXO

Analysis Period (min) 15
Splits and Phases: 7: Tremblay Rd \& PXO

Conditions
7: Tremblay Rd \& PXO

c Critical Lane Group

Appendix K - Collision Analysis

81%
19%
0%
100%

BELFAST RD @ TREMBLAY RD

Years	$\begin{array}{c}\text { Total } \# \text { \# } \\ \text { Collisions }\end{array}$	$\begin{array}{c}24 \text { Hr AADT } \\ \text { Veh Volume }\end{array}$	Days	Collisions/MEV
$2014-2018$	8	16,708	1825	$\mathbf{0 . 2 6}$

Classification of Accident	01 Approaching	02 - Angle	03 - Rear end	04-Sideswipe	05 - Turning movement	$\begin{gathered} 06-S M V \\ \text { unattended } \end{gathered}$ vehicle	O7-SMV other	99 - Other	Total	
03 - P.D. only	0	1	1	1	1	0	0	0	4	50\%
02 - Non-fatal inj	0	1	1	0	2	0	0	0	4	50\%
01 - Fatal injury	0	0	0	0	0	0	0	0	0	0\%
Total	0	2	2	1	3	0	0	0	8	100\%
	0\%	25\%	25\%	13\%	38\%	0\%	0\%	0\%		

TREMBLAY RD @ TRAIN STATION

Years	$\begin{array}{c}\text { Total I } \\ \text { Collisions }\end{array}$	$\begin{array}{c}24 \text { Hr AADT } \\ \text { Veh Volume }\end{array}$	Days	Collisions/MEV
$2014-2018$	5	9,492	1825	$\mathbf{0 . 2 9}$

Classification of Accident	01 - Approaching	02 - Angle	03 - Rear end	04-Sideswipe	05 - Turning movement	$06-$ SMV unattended vehicle	07 - SMV other	99 - Other	Total
03 - P.D. only	0	1	0	1	1	1	0	0	4
02 - Non-fatal inj	0	1	0	0	0	0	0	0	1
01 - Fatal injury	0	0	0	0	0	0	0	0	0
Total	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$

20%
0%
100%

AVENUE L @ TREMBLAY RD

Years	$\begin{array}{c}\text { Total } \\ \text { Collisions }\end{array}$	$\begin{array}{c}24 \text { Hr AADT } \\ \text { Veh Volume }\end{array}$	Days	Collisions/MEV
$2014-2018$	3	n/a	1825	n/a

Classification of Accident	01 Approaching	02 - Angle	03-Rear end	04-Sideswipe	05 - Turning movement	06 - SMV unattended vehicle	07-SMV other	99 - Other	Total
03 - P. D. only	0	1	0	0	2	0	0	0	3
02 - Non-fatal inj	0	0	0	0	0	0	0	0	0
01 - Fatal injury	0	0	0	0	0	0	0	0	0
Total	0	1	0	0	2	0	0	0	3
0\%		33\%	0\%	0\%	67\%	0\%	0\%	0\%	

TREMBLAY RD btwn RIVERSIDE DR \& TRAIN STATION

PICKERING PL @ TREMBLAY RD

Years	$\begin{array}{c}\text { Total } \\ \text { Collisions }\end{array}$	$\begin{array}{c}24 \text { Hr AADT } \\ \text { Veh Volume }\end{array}$	Days	Collisions/MEV
$2014-2018$	4	n/a	1825	n/a

\section*{| Years | $\begin{array}{c}\text { Total } \begin{array}{c}\text { I } \\ \text { Collisions }\end{array}\end{array} \begin{array}{c}24 \text { Hr AADT } \\ \text { Veh Volume }\end{array}$ | Days | Collisions/MEV | |
| :---: | :---: | :---: | :---: | :---: |
| $2014-2018$ | 2 | n/a | 1825 | n/a |}

Classification of Accident	01 Approaching	02 - Angle	03-Rear end	04 - Sideswipe	05 - Turning movement	06 - SMV unattended vehicle	07-SMV other	99 - Other	Total
03 - P.D. only	0	0	0	0	0		0	0	2
02 - Non-fatal inj	0	0	0	0	0	0	0	0	0
01 - Fatal injury	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	2	0	0	2
0\%		0\%	0\%	0\%	0\%	100\%	0\%	0\%	

TREMBLAY RD btwn AVENUE K \& AVENUE L

Years	Total \# Collisions	24 Hr AADT veh Volume	Days	Collisions/MEV						
2014-2018	1	5,777	1825	0.09						
$\begin{gathered} \text { Classification of } \\ \text { Accident } \end{gathered}$	01 Approaching	02 - Angle	03 - Rear end	04 - Sideswipe	05 - Turning movement	$\begin{aligned} & 06-S M V \\ & \text { unattended } \\ & \text { vehicle } \end{aligned}$	07-SMV other	99-Other	Total	100\%
03 - P.D. only	0	0	1	0	0	0	0	0	1	
02 - Non-fatal inj	0	0	0	0	0	0	0	0	0	0\%
01 - Fatal injury	0	0	0	0	0	0	0	0	0	0\%
Total	0	0	1	0	0	0	0	0	1	100\%
	0\%	0\%	100\%	0\%	0\%	0\%	0\%	0\%		

AVENUE K @ TREMBLAY RD

Years	$\begin{aligned} & \text { Total \# } \\ & \text { Collisions } \\ & \hline \end{aligned}$	24 Hr AADT Veh Volume	Days	Collisions/MEV					
2014-2018	3	n/a	1825	n/a					
Classification of Accident	01 Approaching	02 - Angle	03 - Rear end	04-Sideswipe	05 - Turning movement	06-SMV unattended vehicle	07-SMV other	99 - Other	Total
03 - P.D. only	0	0	2	0	0	0	0	0	2
02 - Non-fatal inj	0	0	0	0	1	0	0	0	1
01 - Fatal injury	0	0	0	0	0	0	0	0	0
Total	0	0	2	0	1	0	0	0	3
	0\%	0\%	67\%	0\%	33\%	0\%	0\%	0\%	

Appendix L - Intersection MMLOS Assessment

INTERSECTIONS		Via Rail / Tremblay Road				Tremblay Road / Belfast			
	Crossing Side	NORTH	south	EAST	WEST	NORTH	South	EAST	WEST
	Lanes	0-2	0-2	5	5	3	3	3	3
	Median	No Median - 2.4 m							
	Conficting Left Turns	Protected	Protected	Permissive	Permissive	Protected	Permissive	Permissive	Permissive
	Conficting Right Turns	Permissive or yield control							
	Right Turns on Red (RToR) ?	RTOR allowed							
	Ped Signal Leading Interval?	No							
	Right Turn Channel	No Channel							
	Corner Radius	10-15m	10-15m	10-15m	10-15m	15-25m	15-25m	15-25m	15-25m
	Crosswalk Type	Std transverse markings							
	PETSI Score	93	93	37	37	76	68	68	68
	Ped. Exposure to Traffic LoS	A	A	E	E	B	c	c	c
	Cycle Length	37	37	44	44	32	32	46	85
	Effective Walk Time	7	7	7	7	8	8	28	67
	Average Pedestrian Delay	12	12	16	16	9	9	4	2
	Pedestrian Delay LoS	B	B	B	B	A	A	A	A
	Level of Service	B	B	E	E	B	C	C	C
		E				C			
	Approach From	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST
$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{0} \\ & \hline 0 \end{aligned}$	Bicycle Lane Arrangement on Approach	Curb Bike Lane, Cycletrack or MUP							
	Right Turn Lane Configuration	Not Applicable							
	Right Turning Speed	Not Applicable							
	Cyclist relative to RT motorists	Not Applicable							
	Separated or Mixed Traffic	Separated							
	Left Turn Approach	≥ 2 lanes crossed	≥ 2 lanes crossed	1 lane crossed	1 lane crossed	≥ 2 lanes crossed			
	Operating Speed	>40 to $\leq 50 \mathrm{~km} / \mathrm{h}$							
	Left Turning Cyclist	E	E	c	c	E	E	E	E
	Level of Service	E	E	C	C	E	E	E	E
		E				E			
	Average Signal Delay	≤ 20 sec	≤ 10 sec	≤ 10 sec	≤ 10 sec	$\leq 30 \mathrm{sec}$	$\leq 30 \mathrm{sec}$	$\leq 20 \mathrm{sec}$	$\leq 20 \mathrm{sec}$
	Level of Service	C	B	B	B	D	D	C	C
		C				D			
$\begin{aligned} & \text { 들 } \\ & \text { 2n } \end{aligned}$	Effective Corner Radius	10-15 m	10-15 m	> 15 m	> 15 m	> 15 m	> 15 m	>15 m	> 15 m
	Number of Receiving Lanes on Departure from Intersection			1	1	1	1	1	
	Level of Service	B	B	C	C	C	C	C	C
		C				C			
$\frac{9}{3}$	Volume to Capacity Ratio	0.0-0.60				0.61 - 0.70			
	Level of Service	A				B			

INTERSECTIONS		Via Rail / Tremblay Road				Tremblay Road / Belfast			
	Crossing Side	NORTH	south	EAST	WEST	NORTH	South	EAST	WEST
	Lanes	0-2	0-2	5	5	3	3	4	4
	Median	No Median - 2.4 m							
	Conficting Left Turns	Protected	Protected	Permissive	Permissive	Protected	Permissive	Permissive	Permissive
	Conficting Right Turns	Permissive or yield control							
	Right Turns on Red (RToR) ?	RTOR allowed							
	Ped Signal Leading Interval?	No							
	Right Turn Channel	No Channel							
	Corner Radius	10-15m	10-15m	10-15m	10-15m	15-25m	15-25m	15-25m	15-25m
	Crosswalk Type	Std transverse markings							
	PETSI Score	93	93	37	37	76	68	51	51
	Ped. Exposure to Traffic LoS	A	A	E	E	B	c	D	D
	Cycle Length	37	37	44	44	32	32	46	85
	Effective Walk Time	7	7	7	7	8	8	28	67
	Average Pedestrian Delay	12	12	16	16	9	9	4	2
	Pedestrian Delay LoS	B	B	B	B	A	A	A	A
	Level of Service	B	B	E	E	B	C	D	D
		E				D			
	Approach From	NORTH	SOUTH	EAST	WEST	NORTH	SOUTH	EAST	WEST
$\begin{aligned} & \text { O} \\ & \frac{0}{0} \\ & \frac{0}{0} \end{aligned}$	Bicycle Lane Arrangement on Approach	Curb Bike Lane, Cycletrack or MUP							
	Right Turn Lane Configuration	Not Applicable							
	Right Turning Speed	Not Applicable							
	Cyclist relative to RT motorists	Not Applicable							
	Separated or Mixed Traffic	Separated							
	Left Turn Approach	≥ 2 lanes crossed							
	Operating Speed	>40 to $\leq 50 \mathrm{~km} / \mathrm{h}$							
	Left Turning Cyclist	E	E	E	E	E	E	E	E
	Level of Service	E	E	E	E	E	E	E	E
		E				E			
	Average Signal Delay	≤ 20 sec	≤ 10 sec	≤ 10 sec	≤ 10 sec	≤ 30 sec	$\leq 30 \mathrm{sec}$	≤ 20 sec	≤ 20 sec
	Level of Service	C	B	B	B	D	D	C	C
		C				D			
$\begin{aligned} & \text { 들 } \\ & \text { 2른 } \end{aligned}$	Effective Corner Radius	10-15 m	10-15 m	> 15 m	> 15 m	> 15 m	> 15 m	>15 m	> 15 m
	Number of Receiving Lanes on Departure from Intersection			1	1	1	1	1	
	Level of Service	B	B	C	C	C	C	C	C
		C				C			
$\frac{9}{3}$	Volume to Capacity Ratio	0.0-0.60				0.61 - 0.70			
	Level of Service	A				B			

Appendix M - TDM Checklist

Legend

BASIC The measure is generally feasible and effective, and in most cases would benefit the development and its users
BETTER The measure could maximize support for users of sustainable modes, and optimize development performance
The measure is one of the most dependably effective tools to encourage the use of sustainable modes

TDM measures: Non-residential developments			Check if proposed \& add descriptions
1. TDM PROGRAM MANAGEMENT			
1.1 Program coordinator			
BASIC	* 1.1.1	Designate an internal coordinator, or contract with an external coordinator	\square
1.2 Travel surveys			
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	\square
2. WALKING AND CYCLING			
2.1 Information on walking/cycling routes \& destinations			
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances	\checkmark
2.2 Bicycle skills training			
Commuter travel			
BETTER	$\star 2.2 .1$	Offer on-site cycling courses for commuters, or subsidize off-site courses	\square
2.3 Valet bike parking			
Visitor travel			
BETTER	2.3.1	Offer secure valet bike parking during public events when demand exceeds fixed supply (e.g. for festivals, concerts, games)	\square

TDM measures: Non-residential developments			Check if proposed \& add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances	\square
BASIC	3.1.2	Provide online links to OC Transpo and STO information	\checkmark
BETTER	3.1.3	Provide real-time arrival information display at entrances	\square
	3.2	Transit fare incentives	
		Commuter travel	
better	3.2.1	Offer preloaded PRESTO cards to encourage commuters to use transit	\checkmark
BETTER	* 3.2.2	Subsidize or reimburse monthly transit pass purchases by employees	\square
		Visitor travel	
BETtER	3.2.3	Arrange inclusion of same-day transit fare in price of tickets (e.g. for festivals, concerts, games)	\square
	3.3	Enhanced public transit service	
		Commuter travel	
BETTER	3.3.1	Contract with OC Transpo to provide enhanced transit services (e.g. for shift changes, weekends)	\square
		Visitor travel	
BETTER	3.3.2	Contract with OC Transpo to provide enhanced transit services (e.g. for festivals, concerts, games)	\square
	3.4	Private transit service	
		Commuter travel	
better	3.4.1	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for shift changes, weekends)	\square
		Visitor travel	
BETTER	3.4.2	Provide shuttle service when OC Transpo cannot offer sufficient quality or capacity to serve demand (e.g. for festivals, concerts, games)	\square

TDM measures: Non-residential developments			Check if proposed \& add descriptions	
	4.	RIDESHARING		
	4.1	Ridematching service		
		Commuter travel		
BASIC	* 4.1.1	Provide a dedicated ridematching portal at OttawaRideMatch.com	\square	
	4.2	Carpool parking price incentives		
		Commuter travel		
BEtTER	4.2.1	Provide discounts on parking costs for registered carpools	\square	
	4.3	Vanpool service		
		Commuter travel		
BETTER	4.3.1	Provide a vanpooling service for long-distance commuters	\square	
	5.	CARSHARING \& BIKESHARING		
	5.1	Bikeshare stations \& memberships		
BETTER	5.1.1	Contract with provider to install on-site bikeshare station for use by commuters and visitors	\square	
		Commuter travel		
better	5.1.2	Provide employees with bikeshare memberships for local business travel	\square	
	5.2	Carshare vehicles \& memberships		
		Commuter travel		
better	5.2.1	Contract with provider to install on-site carshare vehicles and promote their use by tenants	\square	
BETTER	5.2.2	Provide employees with carshare memberships for local business travel	\square	
	6.	PARKING		
	6.1	Priced parking		
		Commuter travel		
BASIC	* 6.1.1	Charge for long-term parking (daily, weekly, monthly)	\square	
BASIC	6.1.2	Unbundle parking cost from lease rates at multi-tenant sites	\checkmark	
		Visitor travel		
better	6.1.3	Charge for short-term parking (hourly)	\square	

TDM measures: Non-residential developments			Check if proposed \& add descriptions
	7.	TDM MARKETING \& COMMUNICATIONS	
		Multimodal travel information	
Commuter travel			
BASIC	* 7.1.1	Provide a multimodal travel option information package to new/relocating employees and students	\square
Visitor travel			
BETTER	* 7.1.2	Include multimodal travel option information in invitations or advertising that attract visitors or customers (e.g. for festivals, concerts, games)	\square
7.2		Personalized trip planning	
Commuter travel			
BETTER	* 7.2.1	Offer personalized trip planning to new/relocating employees	\square
7.3		Promotions	
Commuter travel			
better	7.3.1	Deliver promotions and incentives to maintain awareness, build understanding, and encourage trial of sustainable modes	\square
8. OTHER INCENTIVES \& AMENITIES			
8.1		Emergency ride home	
Commuter travel			
better	* 8.1.1	Provide emergency ride home service to non-driving commuters	\square
8.2		Alternative work arrangements	
Commuter travel			
BASIC	* 8.2.1	Encourage flexible work hours	\checkmark
better	8.2.2	Encourage compressed workweeks	\checkmark
better	+ 8.2.3	Encourage telework	\checkmark
		Local business travel options	
Commuter travel			
BASIC	* 8.3.1	Provide local business travel options that minimize the need for employees to bring a personal car to work	\square
8.4		Commuter incentives	
Commuter travel			
BETTER	8.4.1	Offer employees a taxable, mode-neutral commuting allowance	\square
	8.5	On-site amenities	
		Commuter travel	
better	8.5.1	Provide on-site amenities/services to minimize mid-day or mid-commute errands	\checkmark

TDM Measures Checklist:

Residential Developments (multi-family, condominium or subdivision)

Legend

BAsIC The measure is generally feasible and effective, and in most cases would benefit the development and its users
better
The measure could maximize support for users of sustainable modes, and optimize development performance
The measure is one of the most dependably effective tools to encourage the use of sustainable modes

TDM measures: Residential developments			Check if proposed $\&$ add descriptions
1. TDM PROGRAM MANAGEMENT			
1.1 Program coordinator			
BASIC	- 1.1.1	Designate an internal coordinator, or contract with an external coordinator	\square
1.2 Travel surveys			
better	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	\square
2. WALKING AND CYCLING			
2.1 Information on walking/cycling routes \& destinations			
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium)	\checkmark
	2.2	Bicycle skills training	
better	2.2.1	Offer on-site cycling courses for residents, or subsidize off-site courses	\square

TDM measures: Residential developments				Check if proposed \& add descriptions	
		3.	TRANSIT		
		3.1	Transit information		
BASIC		3.1.1	Display relevant transit schedules and route maps at entrances (multi-family, condominium)	\square	
better		3.1.2	Provide real-time arrival information display at entrances (multi-family, condominium)	\square	
		3.2	Transit fare incentives		
BASIC	*	3.2.1	Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit	\checkmark	
BETTER		3.2.2	Offer at least one year of free monthly transit passes on residence purchase/move-in	\square	
		3.3	Enhanced public transit service		
BETTER	*	3.3.1	Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels (subdivision)	\square	
		3.4	Private transit service		
better		3.4.1	Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)	\square	
		4.	CARSHARING \& BIKESHARING		
		4.1	Bikeshare stations \& memberships		
BETTER		4.1.1	Contract with provider to install on-site bikeshare station (multi-family)	\square	
better		4.1.2	Provide residents with bikeshare memberships, either free or subsidized (multi-family)	\square	
		4.2	Carshare vehicles \& memberships		
better		4.2.1	Contract with provider to install on-site carshare vehicles and promote their use by residents	\square	
better		4.2.2	Provide residents with carshare memberships, either free or subsidized	\square	
		5.	PARKING		
		5.1	Priced parking		
BASIC	\star	5.1.1	Unbundle parking cost from purchase price (condominium)	\checkmark	
BASIC	*	5.1.2	Unbundle parking cost from monthly rent (multi-family)	\square	

TDM measures: Residential developments			Check if proposed \& add descriptions
6. TDM MARKETING \& COMMUNICATIONS			
	6.1	Multimodal travel information	
BASIC	* 6.1.1	Provide a multimodal travel option information package to new residents	\checkmark
6.2 Personalized trip planning			
BETTER	+6.2.1	Offer personalized trip planning to new residents	\square

Appendix N -Transit Map

Local
7 days a week / 7 jours par semaine
All day service
Service toute la journée

O Station

Temporary routing due to Rideau St. closure / Trajet temporaire lors de la fermeture de la rue Rideau

- Timepoint / Heures de passage

Customer Service
Service à la clientèle 613-741-4390
Lost and Found / Objets perdus...... 613-563-4011
Security / Sécurité
613-741-2478
Effective April 26, 2020
En vigueur 26 avril 2020
INFO 613-741-4390 octranspo.com

MILLENNIUM
BLAIR LA CITÉ

Rapide

7 days a week / 7 jours par semaine

All day service and limited overnight
Service toute la journée et limité la nuit

元

MILLENNIUM

[^4]Station
Peak periods / Périodes de pointe
Park \& Ride / Parc-o-bus

Future route after 0-Train Line 1 is open
Trajet du circuit après l'ouverture de la Ligne 1 de l'0-Train

Lost and Found / Objets perdus...... 613-563-4011
Security / Sécurité 613-741-2478

Appendix O - Transit Ridership Data

Winter 2020 (5 Jan 2020-7 Mar 2020)

Stop No.	Location	Route	Direction	AM			PM			24-HR		
				Boardings	Alightings	Avg Load at Departure	Boardings	Alightings	Avg Load at Departure	Boardings	Alightings	Avg Load at Departure
1371	TREMBLAYNIA RAIL(B)	39	WB	-	-	-	-	-	-	0	3	2
1369	TREMBLAYNIA RAIL (A)	39	EB	-	-	-	-	-	-	0	0	2
1836	TREMBLAY / BELFAST	$\begin{aligned} & 18 \\ & 39 \end{aligned}$	$\begin{aligned} & \text { WB } \\ & \text { WB } \end{aligned}$	3	3	6	2	2	16	$\begin{gathered} 10 \\ 0 \end{gathered}$	$\begin{gathered} 13 \\ 0 \end{gathered}$	$\begin{aligned} & 8 \\ & 0 \end{aligned}$
1837	TREMBLAY / AVENUE K	39	EB	-	-	-	-	-	-	0	0	2
1849	TREMBLAY / AVENUE P	$\begin{aligned} & 18 \\ & 39 \end{aligned}$	$\begin{aligned} & \text { EB } \\ & \text { EB } \end{aligned}$	0	0	7	1	5	7 -	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	7 0	6 1

[^0]: ${ }^{1}$ https://www.octranspo.com/en/ready-for-rail/o train confederation line system fags

[^1]: 5469218 - WED JAN 08, 2020-8HRS - LORETTA

[^2]:

 Traffic_1
 01 - Functioning Functioning

 - Functioning
 FUnkioning
 Unkown

 01 - Functioning
 01 - Functioning
 01 - Functionn
 01 - Functionin
 01 - Functio
 01 - Functio

[^3]: ${ }^{1}$ Table 7: Pedestrian Crossover Selection Matrix, page 34, Ontario Traffic Manual Book 15, June 2016
 240 Catherine Street, Suite 110
 Ottawa, Ontario, Canada K2P 2G8
 T 613 860-2462 F 613860-1870
 cima.ca

[^4]: Millennium
 S. GISĖLE LALONDE

