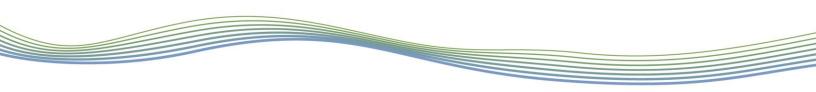
Kanata West Development Area Meander Belt Width Assessment and Erosion Analysis

Feedmill Creek

Draft Report



Prepared for: David Schaeffer Engineering Limited 120 Iber Road, Unit 103 Stittsville, ON K2S 1E5

July 20, 2016 PN16059

> GEO MORPHIX Geomorphology Earth Science

Observations

Report Prepared by:	GEO Morphix Ltd. 2800 High Point Drive Suite 100A Milton, ON L9T 6P4
Report Title:	Kanata West Development Area Meander Belt Assessment and Erosion Analysis, Feedmill Creek
Project Number:	PN16059
Status:	Draft
Version:	1.0
First Submission Date:	July 20, 2016
Prepared by:	Allison Day, Jason Krompart, Emily Rick
Approved by:	Paul Villard, Ph.D., P.Geo.

geomorphix.com | The science of earth + balance.

Table of Contents

1	Intro	duction	1
2	Backg	ground Review	1
	2.1	Watershed Characteristics	1
	2.2	Reach Delineation	2
	2.3	Historical Assessment	3
3	Field	Observations	3
	3.1	Rapid Geomorphological Assessments	3
	3.2	Detailed Geomorphological Assessments	
4	Mean	der Belt Width Assessment	8
	4.1	Methodology	8
	4.2	Results and Discussion	
5	Erosio	on Analysis	. 10
		Erosion Threshold Analysis	
6	Sumr	nary and Recommendations	. 12
7	Refer	ences	. 13

List of Tables

Table 3.1. Rapid Assessment results by reach	.4
Table 3.2. General channel characteristics by reach	.7
Table 3.3. Bankfull parameters of the sensitive reach	.8
Table 4.1. Meander belt width estimates for subject and reference reaches.	.9
Table 5.1. Erosion thresholds of bed and bank materials	11

Appendices

Appendix A Reach Map	A
Appendix B Photographic Record	В
Appendix C Field Observations	C
Appendix D Detailed Assessment Summary	. D

1 Introduction

GEO Morphix Ltd. was retained by 2325483 Ontario Inc. to delineate the meander belt width and to assess and mitigate erosion potential within Feedmill Creek in the Kanata West Development Area. We understand that the valley corridor along the western boundary of the property may eventually be realigned to accommodate development activities. As such, the findings of this assessment will also inform the corridor design requirements in the case where natural corridor design is required.

The primary goal of this assessment was to determine meander belt, which may be used as the limit of development.

This assessment included the following components:

- Review available background reports and mapping (geology, topography, etc.);
- Desktop reach delineation;
- Completion of a rapid geomorphological field assessment to document channel conditions and verify the desktop assessment; and
- Review historical and recent aerial photographs to determine the limits of the meander belt width and to calculate channel migration rates, or estimate the meander belt width using models if the channel is not visible in the aerial imagery or is to be realigned.

With regards to future erosion potential, an assessment of channel sensitivity along with determination of an erosion threshold for the receiving watercourse. The goal of this component of the assessment was to characterize erosion potential in Feedmill Creek in order to help mitigate future impacts and support development of a suitable SWM plan as part of the mitigation strategy.

This component of the assessment included the following tasks:

- A desktop analysis for determining the potential zone of impact;
- Apply rapid geomorphic assessments to determine the overall stability of the receiving watercourse and to identify areas of erosion concern or at risk drainage feature based on field observations;
- A detailed geomorphic assessment of a sensitive reach, the primary objective of which is to determine the critical flow or erosion threshold; and
- Support appropriate strategies to address erosion concerns.

2 Background Review

2.1 Watershed Characteristics

Feedmill Creek originates southwest of the study area, within the Carp Valley. The creek generally flows northeast through agricultural fields, bending to the northwest and flowing along the western boundary of the subject property. It continues across Highway 417 and then flows northeast through a mix of industrial, forested and agricultural areas to its outlet at Carp River in Kanata. The study area contains a mix of the aforementioned land use types. Portions of the channel have been historically or recently straightened and others retain more natural features. Reach delineation was refined through field observation.

Channel morphology and planform are largely governed by the flow regime and the availability and type of sediments (i.e., surficial geology) within the stream corridor. Physiography, riparian vegetation and land use also physically influence the channel. These factors are explored as they not only offer insight into existing conditions, but also potential changes that could be expected in the future as they relate to a proposed activity.

Physiographically, the majority of Feedmill Creek within the Kanata West Development Area project site overlies fine-textured glaciomarine deposits containing silt and clay with minor sand and gravel, associated with the former marine bed of the Champlain Sea. Upstream reaches of Feedmill Creek, including the northwest reach along the subject property overlies organic deposits containing peat, muck and marl. Underlying Paleozoic bedrock is exposed in localized areas and acts as a topographic control through the area (OGS, 2010).

Monthly precipitation averages at Ottawa MacDonald-Cartier Int'l A (Climate ID 6106000) range from a low of 54.3 mm in February to a high of 92.8 mm in July. During the winter months, most of the precipitation is in the form of snow. During spring, snowmelt and rain-on-snow events likely generate long-duration high flows in watercourses, which result in the most significant flows with respect to shaping the channel. Convective storms during the summer are also likely to have a role in shaping the channel, but are less significant due to the short duration of high flows.

2.2 Reach Delineation

Reaches are homogeneous segments of channel used in geomorphological investigations. They are studied semi-independently as each is expected to function in a manner that is at least slightly different from adjoining reaches. This allows for a meaningful characterization of a watercourse as the aggregate of reaches, or an understanding of a particular reach, for example, as it relates to a proposed activity.

Reaches are delineated based on changes in the following:

- Channel planform;
- Channel gradient;
- Physiography;
- Land cover (land use or vegetation);
- Flow, due to tributary inputs;
- Soil type and surficial geology; and
- Certain types of channel modifications by humans.

This follows scientifically defensible methodology proposed by Montgomery and Buffington (1997), Richards et al. (1997) and the Toronto and Region Conservation Authority (2004) as well as others.

Reaches were first delineated as a desktop exercise using available data and information, such as aerial photography, topographic maps, geology information, and physiography maps. These results were then verified in the field.

Five (5) reaches were delineated for Feedmill Creek including one reach (**Reach 5**) along the boundary of the subject property. Four additional reaches were defined within the length of stream downstream that was investigated as part of the assessment. These reaches were defined based on the location of road crossings as well as changes in land use, planform and gradient. Reaches were numbered from downstream to upstream to provide a geographic context. A reach map is provided in **Appendix A**.

2.3 Historical Assessment

3 Field Observations

Reach observations and channel measurements were collected on July 5th and 6th, 2016. Photographs are provided in **Appendix B** and field observations are provided in **Appendix C** for reference. Rapid geomorphological assessments for each reach were completed on July 5th, 2016. A detailed assessment for one reach was completed on July 6th, 2016.

3.1 Rapid Geomorphological Assessments

The rapid geomorphological assessments included the following reach observations:

- Characterization of stream form, process, and evolution using the Rapid Geomorphological Assessment (RGA) (MOE, 2003, VANR, 2007);
- Assessment of the ecological function of the watercourse using the Rapid Stream Assessment Technique (RSAT) (Galli, 1996);
- Stream classification following a modified Downs (1995) and a modified Brierley and Fryirs (2005) River Styles Classification approach;
- Reach-scale habitat sketch maps based on Newson and Newson (2000) outlining channel substrate, flow behaviour, geomorphological units, and riparian vegetation on the day;
- Instream estimates of bankfull channel dimensions;
- Bed and bank material composition and structure; and
- Georeferenced photographs to document the location of all observed erosion and infrastructure.

Five (5) reaches were defined within the study area. **Table 3.1** and **Table 3.2**, below, outline field observations for the observed reaches.

Channel instability was objectively quantified through the application of the Ontario Ministry of the Environment's (2003) Rapid Geomorphic Assessment (RGA). Observations were quantified using an index that identifies channel sensitivity based on evidence of aggradation, degradation, channel widening, and planimetric adjustment. The index produces values that indicate whether the channel is stable/in regime (score <0.20), stressed/transitional (score 0.21-0.40) or adjusting (score >0.41).

The Rapid Stream Assessment Technique (RSAT) was also employed to provide a broader view of the system and consider the ecological functioning of the watercourse (Galli, 1996). Observations were made of channel stability, channel scouring or sediment deposition, instream and riparian habitats, and water quality. The RSAT score ranks the channel as maintaining a poor (<13), fair (13-24), good (25-34) or excellent (35-42) degree of stream health.

The tributary was classified according to a modified Downs (1995) Channel Evolution Model, which describes successional stages of a channel as a result of a perturbation, namely hydromodification. Understanding the current stage of the system is beneficial as this allows one to predict how the channel will continue to evolve, or respond to an alteration to the system.

The River Styles Framework (Brierley and Fryirs, 2005) provides a geomorphic approach to examining river character, behaviour, condition and recovery potential through the identification of the Geomorphic Process Zone. Geomorphic attributes are assessed, larger scale interactions between zones are analyzed, and historical data are studies in order to understand the historical evolution and future trajectories of those reaches. This ultimately provides a physical template

for river management. A modified classification approach was applied to the study reaches. **Table 1** below summarizes the results of the rapid geomorphological assessments.

		RGA (MOE,	2003)	R	SAT (Galli,	1996)		
Reach	Score	Condition	Dominant Systematic Adjustment	Score	Condition	Limiting Features	Downs' Channel Evolution Model (1995)	River Styles Framework (Brierley and Fryirs, 2005)
1	0.25	In Transition/ Stress	Aggradation	27	Good	Riparian Habitat Conditions	d - Selective deposition resulting in reduced channel width	Meandering, relatively stable, suspended load dominated, low to moderate stream power
2	0.28	In Transition/ Stress	Aggradation	29	Good	Riparian Habitat Conditions	d - Selective deposition resulting in reduced channel width	Meandering, relatively stable, suspended load dominated, low to moderate stream power
3	0.30	In Transition/ Stress	Aggradation, Widening	34	Good	Scouring /Sediment Deposition	d - Selective deposition resulting in reduced channel width	Meandering, relatively stable, suspended load dominated, moderate stream power
4	0.19	In Regime	Widening	27	Good	Riparian Habitat Conditions	d - Selective deposition resulting in reduced channel width	Meandering, relatively stable, suspended load dominated, low stream power
5	0.19	In Regime	Aggradation	23	Good	Riparian Habitat Conditions	d - Selective deposition resulting in reduced channel width	Straight, relatively stable, suspended load dominated, low stream power

Table 3.1. Rapid Assessment results by reach

Reach 1 was classified according to the River Styles framework as a suspended load channel with a low to moderate gradient and stream power. The creek exists as a single channel and follows a meandering pattern, partially confined by valley sides both historically occurring and associated with recent development activities. A portion of the channel, mid-reach, has been recently straightened and realigned along the south valley wall; historically the entire reach has been meandering, with some meanders contacting the valley wall. A new crossing has been established along the straightened portion of the reach. Aggradation was noted throughout a substantial portion of the reach, including large sand deposits along bars, on the bed and sand deposits on top of banks. Erosion was less prominent (approximately 5-30%) and consisted mainly of undercutting, measured up to 0.33 m. Generally, bank angles ranged 30° to 90°. Riparian vegetation consisted mainly of dense grasses with shrubs along limited sections, both providing stability to channel bank material. Bank material was composed of clay to sand. Bed material ranged from clay to cobbles in riffles and from clay to silt in pools. Riffles comprised approximately 30% and pools / run features comprised approximately 70% of the length of the reach. Average

bankfull width and depth were 3.83 m and 0.89 m, respectfully. Woody debris was present in the channel and cutbank at a moderate density. The stream was clear and odourless.

According to the Downs' Model of Channel Evolution (1995), **Reach 1** was classified as "d – depositional" due to selective deposition resulting in reduced channel width. The Rapid Geomorphic Assessment produced a score of 0.25 or, "In Transition/Stress" with the dominant process being "Evidence of Aggradation" as shown by embedded riffle materials, siltation in pools, accretion of point bars and deposition in the overbank zone. The Rapid Stream Assessment Technique produced a score of 27, or "Good" with riparian habitat conditions as the limiting factor.

Reach 2 exists as a sinuous single channel. It follows an irregularly meandering pattern, partially confined by valley sides. The meanders are smaller and less-regular than in Reach 1. Similar to Reach 1, it was classified as a suspended load channel with low to moderate gradient and stream power. Aggradation, however notable, was somewhat less-dominant a feature in this reach. Further defining this reach was exposed till along the stream bed through a large portion at the downstream end. Bank erosion and bank conditions were similar to Reach 1 with erosion approximately 5-30%, bank angles generally ranging 60° to 90° and undercuts averaging 0.28 m. Bank composition was also similar, ranging from clay to sand. Bed material ranged from clay to cobbles in riffles and clay to silt in pools with exposed till in both types of geomorphic unit. Riffles were present through approximately 20% of the reach and pools or run features were present through approximately 80% of the reach. Average bankfull width and depth were 2.83 m and 1.05 m, respectfully. Riparian vegetation consisted of dense grasses and shrubs through a limited extent of the reach. Woody debris was less commonly present in the channel and cutbank than it was in Reach 1, as was woody vegetation. Upstream of Reach 2 lie two sections running through culverts beneath on and off-ramps of Highway 417. The stream was clear and odourless.

Rapid assessment techniques produced similar results in **Reach 2** as in **Reach 1**. According to the Downs' Model of Channel Evolution (1995), Reach 2 was classified as "d – depositional" due to selective deposition resulting in reduced channel width. The Rapid Geomorphic Assessment produced a score of 0.28 or, "In Transition/Stress" with slightly less dominance on "Evidence of Aggradation" and a greater amount of "Evidence of Degradation" than Reach 1. The Rapid Stream Assessment Technique produced a score of 29, or "Good" with riparian habitat conditions as the limiting factor.

Reach 3 was classified according to the River Styles Framework as a suspended load channel with a moderate gradient and moderate stream power. This reach flowed as a single, well-defined, meandering channel. The valley setting and meanders were generally wider than in other reaches observed however the channel still exhibited partial confinement. The channel flowed through a dense cedar forest. As such, bank material was comprised of a greater fraction of mineral soil and was stabilized by a greater proportion of tree roots as compared to other observed reaches. Also resulting from the forested surroundings was a greater amount of woody debris in the channel and on banks. Evidence of both erosion and deposition were noted throughout the reach. Bank erosion ranged approximately 30-60% with bank angles ranging 60° to 90° and undercuts ranging 0.2 to 0.5 m. Exposed roots and leaning trees were common. Bank composition ranged from clay to sand. Sand deposits were noted on outer bends, tops of banks and in pools. Bed material ranged from gravel to cobbles in riffles and from clay to sand in pools. Geomorphic units were well-developed, with riffles present along approximately 70% of the reach and pools approximately 30% of the reach. Average bankfull width and depth were 4.40 m and 0.80 m, respectfully. A length of the downstream portion flows over exposed Paleozoic bedrock. One informal farm crossing was noted. Reach 3 was the most sensitive reach observed in the study. The stream was clear and odourless.

According to the Downs' Model of Channel Evolution (1995), **Reach 3** was classified as "d – depositional" due to selective deposition resulting in reduced channel width. The Rapid Geomorphic Assessment produced a score of 0.30 or, "In Transition/Stress" with the dominant processes being "Evidence of Aggradation" and "Evidence of Widening". The Rapid Stream Assessment Technique produced a score of 34, on the high end of ranking "Good" with channel scouring / sediment deposition as the limiting factor.

Reach 4 was classified as a suspended load channel with a low to moderate gradient and stream power according to the River Styles Framework. The observed length of reach flows through an unconfined grassy floodplain with a history of beaver activity and localized ponding. Dead trees were noted throughout the flood plain on the bank or in the channel in several locations. This reach exists as a single, well-defined channel with moderate sinuosity and irregular meanders. Average bankfull width and depth were 2.23 m and 0.88 m, respectfully. Bed and bank material ranged from clay to sand with notable sand deposits in pools. Geomorphic units were less-well developed than in downstream reaches with riffles comprising just 10% of the stream length and pools/run features the remaining 90%. Deposition in pools was noted but generally less dominant than in downstream reaches. Bank erosion was similar in extent to reaches 1 and 2, at approximately 5-30%, with bank angles ranging 60° to 90° and undercuts up to 0.33 m. The stream was clear and odourless.

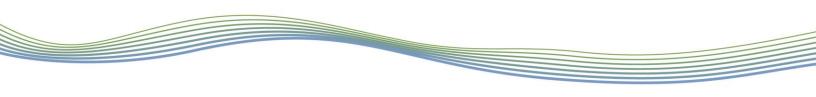
According to the Downs' Model of Channel Evolution (1995), **Reach 4** was classified as "d – depositional" due to selective deposition resulting in reduced channel width. The Rapid Geomorphic Assessment produced a score of 0.19 or, "In Regime" with the dominant processes being "Evidence of Widening". The Rapid Stream Assessment Technique produced a score of 27, or "Good" with riparian habitat conditions as the limiting factor.

Reach 5 exists as a straight single channel having been previously channelized and maintained as such. It flows along the western border of the subject property, though a predominantly grassy, unconfined, agricultural/wooded setting. According to the River Styles Framework, it was classified as a suspended load channel with low gradient and low stream power. Average bankfull width and depth were 2.30 m and 0.52 m, respectfully. Geomorphic units were nearly absent through this reach; a single riffle was noted downstream of an informal farm crossing in a short shrubby section of the channel. The remainder of the channel exists as a run feature. Bed material ranged from clay to gravel in runs and from clay to cobbles in riffles with a high degree of embeddedness. Rooted emergent vegetation and rootlets were present along a substantial extent of the reach. This reach exists within an area dominated by wetlands and organic soils. Bank erosion was under 5% in this reach with undercutting up to 0.12 m observed but generally quite low. Bank angles ranged from 60° to 90°. Deposition was noted in the channel and on top of banks.

According to the Downs' Model of Channel Evolution (1995), **Reach 5** was classified as "d – depositional" due to selective deposition resulting in reduced channel width. The Rapid Geomorphic Assessment produced a score of 0.19 or, "In Regime" with the dominant processes being "Evidence of Aggradation". The Rapid Stream Assessment Technique produced a score of 23, or "Good" with riparian habitat conditions as the limiting factor.

	Average	Average	Subs	trate			
Reach	Bankfull Width (m)	Bankfull Depth (m)	Riffle	Pool	Valley Type	Riparian Vegetation	Notes
1	3.83	0.89	Clay to sand, cobble	Clay to silt	Partially confined	Shrubs and grasses	Straightened section mid-reach with new crossing; over-bank and bar sand deposits common
2	2.83	1.05	Cobble, till	Clay to silt, till	Partially confined	Shrubs and grasses	Undercut along entire reach length; till exposed along bed
3	4.4	0.8	Sand to cobble, bedrock	Clay to sand, cobble	Partially confined	Continuous cedar forest	Well developed riffles and pools; reach in natural state; bedrock exposure along bed
4	2.23	0.88	Clay to silt	Clay to sand, cobble	Partially Mainly grasses, forested areas		Geomorphic units not as well defined as downstream reaches; previous flooding in area; upstream portion not observed
5	2.3	0.52	Clay to cobble, rootlets	Clay to fine gravel, rootlets	Unconfined	Mainly grasses	Previously straightened channel dominated by run feature

Table 3.2. General channel characteristics by reach


3.2 Detailed Geomorphological Assessments

Following the initial rapid assessments, **Reach 3** was identified for detailed assessment. This reach was selected because it is most sensitive reaches downstream of the reach that flows along the western boundary of the subject property that may eventually be realigned to accommodate development activities. **Reach 3** was identified as 'In Transition' as a result of aggradation and widening and as such was deemed suitable for determining an appropriate erosion threshold for the upstream subject reach.

The detailed assessment was completed on July 6th, 2016 and included the following:

- Long-profile, level survey of the channel centre line;
- 8 detailed cross-sectional surveys of the watercourse;
- Detailed instream measurements at each cross-section location including bankfull channel geometry, riparian conditions, bank material, bank height/angle, and bank root density;
- Bed material sampling at each cross-section following a modified Wolman's (1954) Pebble Count Technique or substrate sample; and
- Velocity, discharge and observations of active/inactive sediment transport at select representative cross-sections.

A summary of the detailed assessment results is provided in **Appendix D**.

Channel parameter	Results
Measured	
Average bankfull channel width (m)	3.79
Average bankfull channel depth (m)	0.41
Bankfull channel gradient (%)	0.33
D ₅₀ (mm)	< 2
D ₈₄ (mm)	50.8
Manning's n roughness coefficient	0.030
Computed	
Bankfull discharge (m ³ /s) *	0.45
Average bankfull velocity (m/s)	0.60
Unit stream power at bankfull discharge (W/m ²)	13.96
Tractive force at bankfull (N/m ²)	13.24
Critical shear stress (N/m ²) **	7.02
Flow competency for D ₅₀ (m/s) ***	N/A
Flow competency for D ₈₄ (m/s) ***	1.20
* Based on Manning's equation	

Table 3.3. Bankfull parameters of the sensitive reach

* Based on Manning's equation

** Based on Shields diagram from Miller et al. (1997)

*** Based on Komar (1987)

Bank pins were installed on the tops of banks and erosion pins were installed for bank erosion monitoring at two representative cross sections (one riffle and one pool). Detailed measurements were taken at these two cross sections in order to establish a baseline should future monitoring activities be required. Velocity was measured at select cross sections (typically monitoring cross-sections or riffles) to provide an estimate of stream flow at the time of observations.

4 Meander Belt Width Assessment

4.1 Methodology

Most watercourses in Ontario have a natural tendency to develop and maintain a meandering planform, provided there are no spatial constraints. A meander belt width assessment estimates the lateral extent that a meandering channel has historically occupied and will likely occupy in the future. This assessment is therefore useful for determining the potential hazard to proposed activities in the vicinity of a stream.

When defining the meander belt width for a creek system, unconfined and confined systems are treated differently. Unconfined systems are those with poorly defined valleys or slopes well-outside where the channel could realistically migrate. Confined systems are those where the watercourse in contained within a defined valley, where valley wall contact is possible.

In unconfined systems, the meander belt width can be graphically defined using orthorectified aerial imagery or through survey by determining the channel centreline and the channel's central tendency (i.e. meander belt axis).

When watercourses are fully confined within a valley, an erosion setback is employed along with delineation of a stable top of slope. Stability of the valley wall should be assessed by a qualified geotechnical engineer.

Meander belt widths were estimated for two channel reaches. **Reach 5** is the reach that flows along the western boundary of the subject property and which may eventually require realignment to accommodate development activities. This reach was unconfined and previously straightened. **Reach 3** represents a reference reach located downstream exhibiting natural meandering features, indicators of sensitivity and partial confinement within a wide valley system. Both reaches exhibited defined channel banks.

Reach 3 lies mainly within a forested area containing a high density of evergreen vegetation and as such, banks are not clearly visible in aerial photographs. **Reach 5**, as mentioned, was previously straightened. As such, empirical models were used to provide estimates of the meander belt width.

The empirical relations from Williams (1986) were modified to include channel area and width, and applied using the bankfull channel dimensions such that:

$$B_w = (18A^{0.65} + W_b) \times 1.2$$

[Eq. 1] [Eq. 2]

 $B_w = (4.3W_b^{1.12} + W_b) \times 1.2$

where Bw is meander belt width (m), A is bankfull cross-sectional area (m²), and Wb is bankfull channel width (m). An additional 20% buffer, or factor of safety, was applied to the computed belt width values. This addresses issues of under prediction and provides a factor of safety.

The results of these empirical models were compared with field-measured values of meander amplitude, for a reference meander within the immediate vicinity of the study area. In order to account for the active channel, the average bankfull width, as well as a 20% factor of safety was applied to this meander amplitude, similar to the empirical modelling approach.

Results of the meander belt width assessment, including the empirical modelling and desktopbased approaches are presented in **Table 4.1**.

	Meander Belt Width Method								
	*Williams – Area (1986) (m)	*Williams – Width (1986) (m)	Reference Meander Amplitude Approach (m)	Recommended Meander Belt Width (m)					
Reach 3	33	28	23	23					
Reach 5	27	16	N/A	27					

Table 4.1. Meander belt width estimates for subject and reference reaches.

4.2 Results and Discussion

Meander belt width calculations completed in the Carp River Watershed Study (CRWS) take a very conservative approach of 20 to 40 times the bankfull width. This is substantially higher than recommended by the MNRF under their Guidelines (MNRF, 2001). To provide a more site appropriate meander belt width, a detailed assessment of the reach adjacent to the development and a downstream reference reach was completed. The assessment suggests the meander belt

widths range from 16 to 33 m (based on the reference reach). We suggest 27 m provides an adequate meander belt width for **Reach 5** adjacent to the development. This is greater than the measured meander belt width from **Reach 3** (23 m). We note that the area approach from Williams (1984) is more conservative than the width method that we usually employ, due to the uncertainty regarding a potential channel realignment. If a realignment is proposed, this can have an impact on the meander belt width, and should be refined based on the design geometry of the restored bankfull channel.

5 Erosion Analysis

5.1 Erosion Threshold Analysis

An erosion threshold can be defined as the magnitude of flow required to potentially entrain and transport channel bed and/or bank materials. Threshold targets are therefore provided to guide the design of the proposed SWMFs to ensure that natural erosion rates in the receiving watercourse are not accelerated.

The erosion threshold analysis provides a depth, velocity, or discharge at which sediments of a particular size may potentially be entrained. The results of the detailed geomorphic assessments for **Reach 3** (**Table 3.3**Error! Reference source not found.) were used to inform the erosion threshold analysis. We note that, due to natural variability of channel morphology and sediment characteristics within the reach, the computed flow characteristics only provide first approximations of erosion thresholds.

Erosion thresholds are determined using different methods that are dependent on channel and sediment characteristics. An erosion threshold, in the form of a critical discharge, was calculated based on the bed and bank materials and local channel geometry, as determined in the detailed geomorphological assessments. Theoretically, above this discharge, entrainment and transport of sediment can occur. Erosion thresholds for non-cohesive sediments may be estimated using either a shear stress or a velocity approach.

One such velocity approach follows that of Komar (1987), which is based on a velocity approach, whereby:

$$Vcr = 57D^{0.46}$$

[Eq. 5]

where Vcr is the critical velocity (cm/s) required to entrain a grain size of D (cm).

The velocity in an average channel cross section, U, is calculated at various depths, until the average velocity in the cross section exceeds the critical velocity of the bed materials. The velocity in the typical cross section is determined using a Manning's approach, where the Manning's n value is visually estimated, or by using the Limerinos (1970) equation:

$$n = \frac{(0.1129) R^{1/6}}{1.16+2.0 \log\left(\frac{R}{D_{04}}\right)}$$
[Eq. 6]

where *R* is the hydraulic radius (m) and D_{84} is the grain size at which 84% of the material is finer (m). Mathematically, the velocity, *U*, is calculated as:

 $U = \frac{1}{n} d^{2/3} S^{1/2}$

[Eq. 7]

where n is the Manning's roughness coefficient, d is the depth (m), and S is the channel gradient. The critical discharge is then calculated using the flow area of the cross section at the depth where the average velocity in the cross section exceeds the critical velocity of the bed materials.

Determining the erosive resistance of cohesive and/or vegetated bank materials depends on a number of factors, including particle size, cohesion of bank materials, and vegetation effects due to rooting. A typical approach to determine thresholds for the banks is to use empirically derived values for various materials, such as those by Julien (1995). To estimate the erosion threshold of the channel banks, it is assumed that 75% of the bed shear stress and velocity act on the banks in a simplified cross section, following Chow (1959). In this case, as for the bed materials, flow depth is increased until the average velocity in the cross section acting on the banks exceeds the permissible velocity of the bank materials, as outlined by Julien (1995).

The results of the erosion threshold analyses are provided in **Table 5.1**.

Erosion Thresholds (Reach 3)						
Bankfull Conditions						
Bankfull width (m)	3.79					
Maximum bankfull depth (m)	0.59					
Average bankfull depth (m)	0.41					
Slope (%)	0.33					
Bankfull Manning's n	0.030					
Manning's n applied for erosion thresholds	0.033					
Bankfull discharge (m ³ /s)	1.64					
Bankfull velocity (m/s)	1.05					
Bankfull shear stress (N/m ²)	13.24					
D50 (m)†	0.01130					
Erosion Threshold - E	Bed Materials					
Critical discharge (m ³ /s)	0.45					
Critical velocity (m/s)*	0.60					
Apparent shear stress (N/m ²)	7.02					
Water depth at critical discharge (m)	0.24					
Erosion Threshold - B	ank Materials					
Critical discharge (m ³ /s)	0.71					
Critical velocity (m/s)**	0.53					
Apparent shear stress (N/m ²)	9.38					
Water depth at critical discharge (m)	0.32					

* Based on Komar (1987)

** Based on Julien (1995)

⁺ Average grain size excluding fine materials in pools to eliminate bias

The critical discharge needed to entrain the bed materials in **Reach 3** was determined to be 0.45 m^3/s , based on a critical velocity of 0.60 m/s determined using Komar's (1987) method. As the bank materials in this reach consisted of a sandy loam, a permissible velocity of 0.53 m/s was used (Julien, 1995). The critical discharge for the bank materials, based on this velocity, was determined to be 0.71 m³/s. The critical discharge for the bank materials, of 0.45 m³/s, was determined to be appropriate for the reach, as it provides a conservative estimate.

It should be noted that the modelling approach applied to determine the erosion thresholds has the potential to underestimate the erosion threshold. As such, field verification is recommended. While the erosion thresholds are based on surveyed cross sections, field verification beyond the water depths on the day of the surveys have not been completed.

6 Summary and Recommendations

The subject reach of Feedmill Creek within the subject lands, **Reach 5**, is not confined. As such the channel can naturally migrate within its valley setting. Given this, Williams (1986) meander belt width protocol was employed. The assessment was based on a measurement of the bankfull width, and was modified to accommodate cross-sectional area. This resulted in recommendations for the meander belt width for Reach 5 of 16 m based on existing conditions, and 30 m in the event that the channel is realigned.

Rapid field assessments identified a reach of potential erosion sensitivity downstream of the proposed development. The detailed assessments were completed in one reach that was identified as sensitive and indicative of natural channel conditions. An erosion threshold was defined for the bed and banks of **Reach 3**, and a critical discharge of 0.45 m³/s was defined. We note a DRC approach is recommended in the subwatershed study to address erosion concerns. The erosion threshold can be employed in several ways to assess erosion mitigation strategies.

We trust this report meets your requirements. Should you have any questions please contact the undersigned.

Respectfully submitted,

Paul Villard Ph.D., P.Geo., CAN-CISEC Director, Geomorphologist Emily Rick, B.Sc. Environmental Scientist

7 References

Brierley, G.J. and Fryiers, K.A. 2005. Geomorphology and River Management: Applications of the River Styles Framework. Blackwell Publishing, Oxford, UK, 398pp.

Chow, V.T. 1959. Open channel hydraulics. McGraw Hill, New York.

City of Ottawa. Carp River Watershed/Subwatershed Study Volume I – Main Report. Prepared by Robinson Consultants Inc. et al., 2004.

Downs, P.W. 1995. Estimating the probability of river channel adjustment. Earth Surface Processes and Landforms, 20: 687-705.

Environmental Canada. 2016. Canadian Climate Normals, 1981-2010 Climate Normals & Averages. http://climate.weather.gc.ca/climate_normals/index_e.html (accessed March 1, 2016).

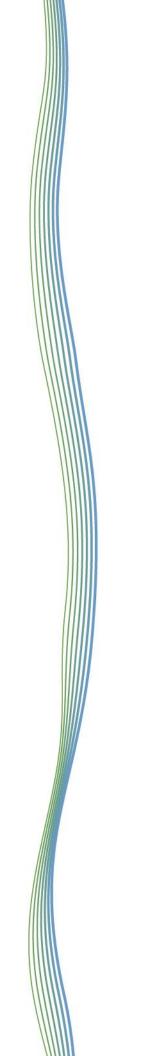
Galli, J. 1996. Rapid Stream Assessment Technique, Field Methods. Metropolitan Washington Council of Governments.

Julien, P.Y., and Klaassen, G.J. 1995. Sand-dune geometry of large rivers during floods. Journal of Hydrology, 53, 73-84.

Komar, P.D. 1987. Selective gravel entrainment and the empirical evaluation of flow competence. Sedimentology, 34: 1165-1176

Ministry of Natural Resources and Forestry. 2001. Understanding Natural Hazards. Queen's Printer for Ontario, Ontario, Canada.

Montgomery, D.R. and Buffington, J.M. 1997. Channel-reach morphology in mountain drainage basins. Geological Society of America Bulletin, (109) 5: 596-611.

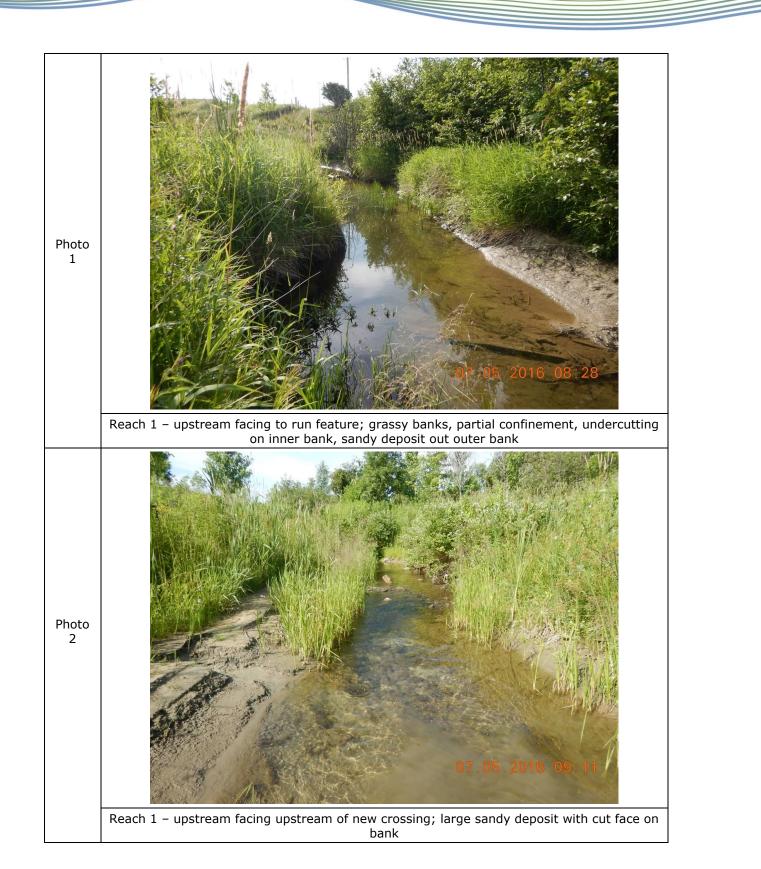

Ontario Geological Survey (OGS). 2010. Surficial Geology of Southern Ontario.

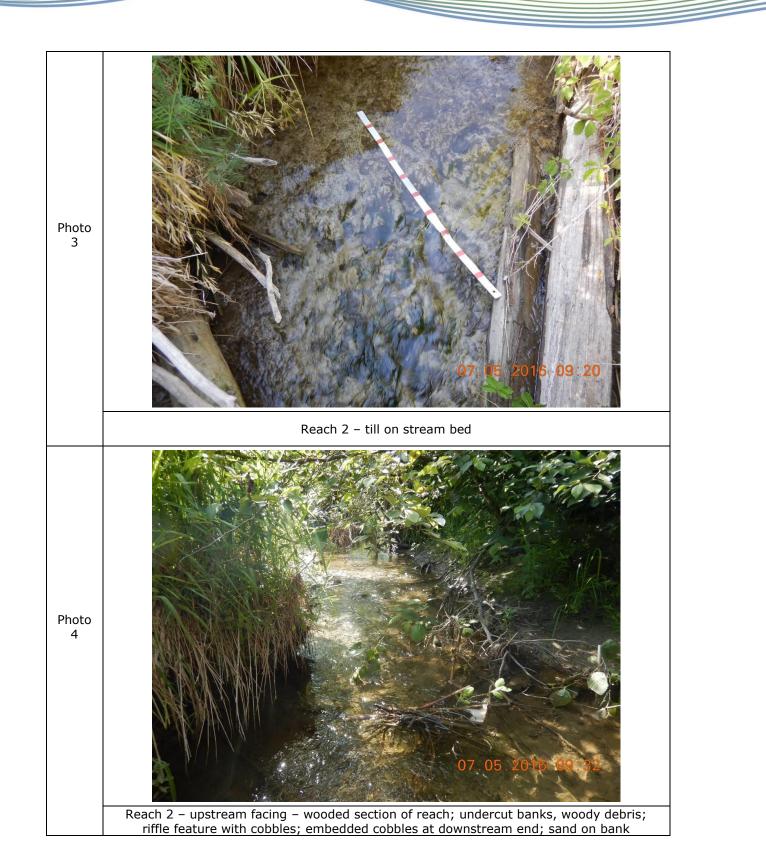
Richards, K.S., Brooks, S., Clifford, N.J., Harris, T. and Lane, S.N. 1997. Real geomorphology: theory, observation and testing. In Stoddard, D.R. (ed.), Process and Form in Geomorphology. London, Routledge, pp. 265-292.

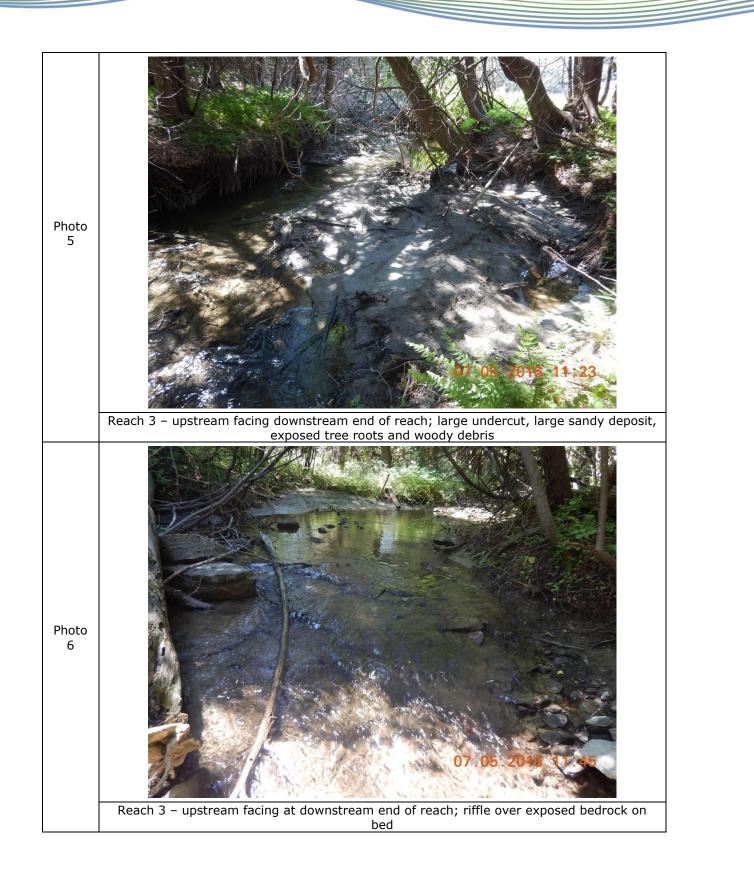
Toronto and Region Conservation Authority. 2004. Belt Width Delineation Procedures.

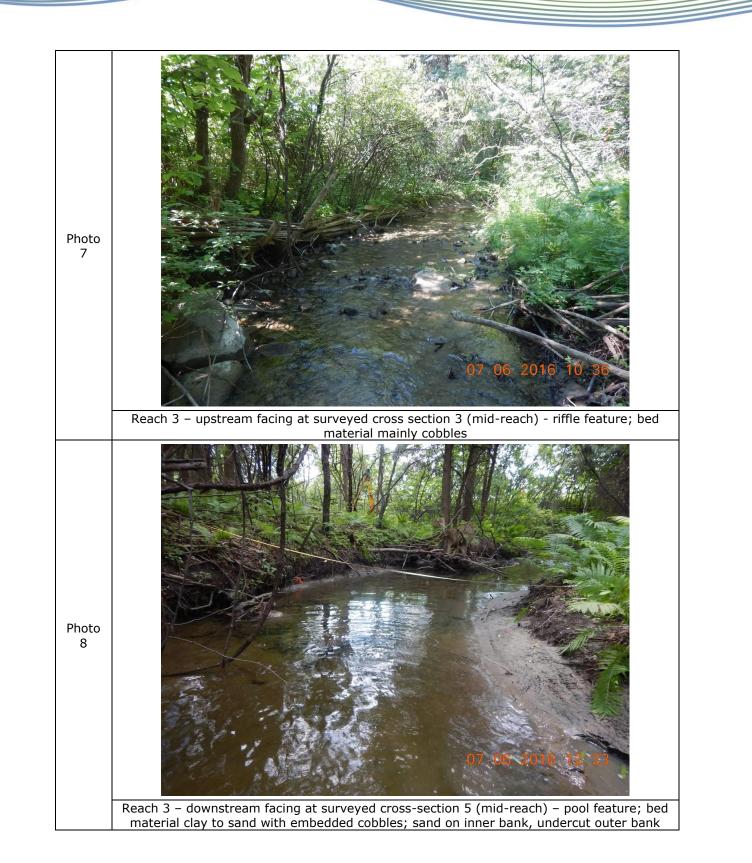
Vermont Agency of Natural Resources (VANR). 2007. Step 7: Rapid Geomorphic Assessment (RGA). Phase 2 Stream Geomorphic Assessment.

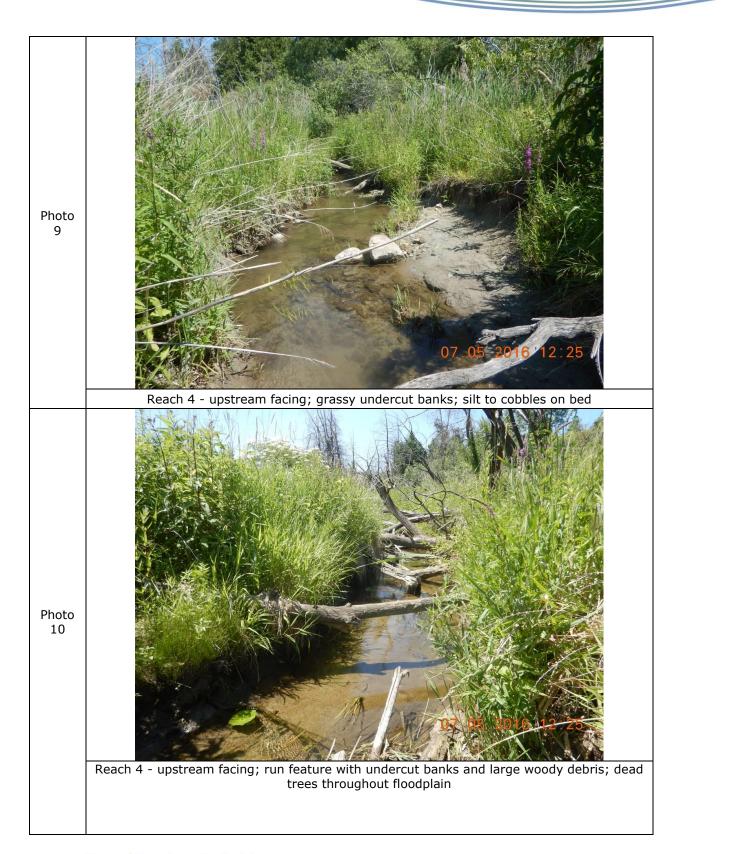
Williams, G.P. 1986. River meanders and channel size. Journal of Hydrology, 88 (1-2): 147-164.

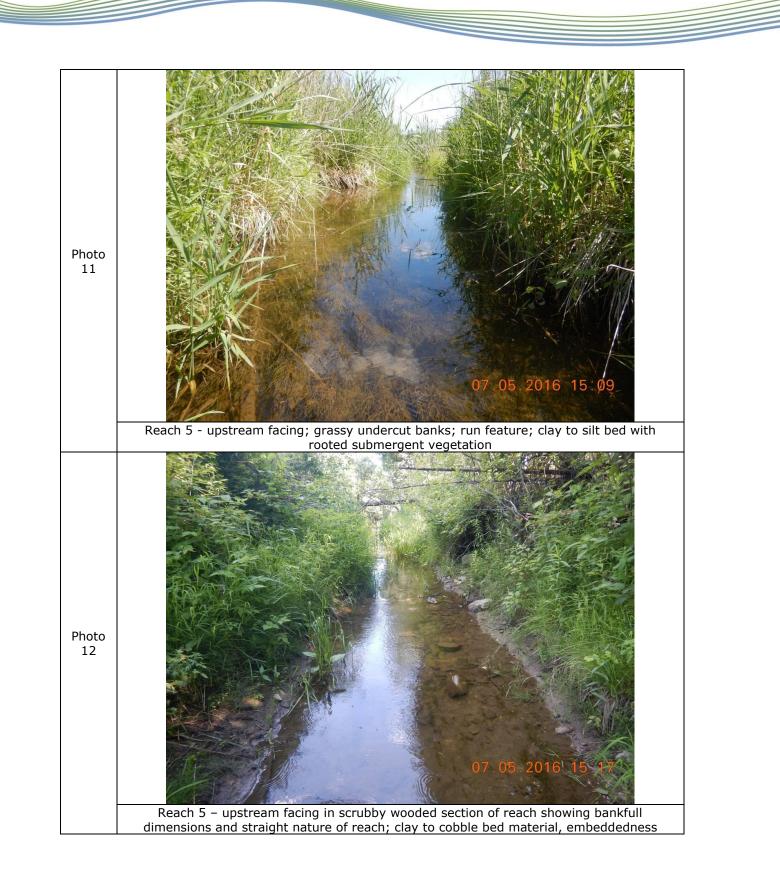

Appendix A Reach Map






Imagery: Google Earth Pro, 2016. Reach break: GEO Morphix Ltd., 2016. Watercourse: MNR (2010). 25 cm Contour: DSEL (2016).


Appendix B Photographic Record



Appendix C Field Observations

Date: JULY 5 2016	Stream/Reach: Reach
Weather: Sun /clouds 33	C Location: Feed mill Creek
Field Staff: AD/ER	Watershed/Subwatershed: Carp River
atures	Site Sketch:
Reach break	
Flow direction	13 59
✓► Riffle	- V, Y /
Pool	
Island/bar	Cut face open V (W2) V
###### Eroded bank	stind drousity 183 V 59/54
Undercut bank	Sind algosite V W 184 rippled + cut-face saind diposites in cut crit
XXXXX Rip rap/stabilization	savia deposit
Instream log/tree	.3 M Calvar
····× Fence	in culvert Tanger antur
Culvert	Traile a concerne
Swamp	tog a crossing parting
✓ ✓ Grasses	y y y
Tree	Parking parking parking
	ETERSA KEBER
bw Type	
H1 Standing water	TO SZ IV X V
H2 Scarcely perceptible flow	
H3 Smooth surface flow	HWU Zer SY - exposed till Hit 33
H4 Upwelling	F 3 / ///
H5 Rippled	a I T - orange construction fince
H6 Unbroken standing wave	NV/t
H7 Broken standing wave	
H8 Chute	
H9 Free fall	
bstrate	
S1 Silt	-X49X F
S2 Sand	V July sand deposit
S3 Gravel	
S4 Small cobble	cascade 159 \$1/53
S5 Large cobble	139 1 - 317-33
S6 Small boulder	exposed hill
S7 Large boulder	Acce
S8 Bimodal	V JE/V
S9 Bedrock/till	
her	-54/55
BM Benchmark TR Terrace	(Swm
FC Flood chute BOS Bottom of slope	w
FP Floodplain TOS Top of slope	
GC Grade control VWC Valley wall contact	Huntman]] DIS:
	Huntmar DIS: 1 (35) Confront (@Hundmar)
iditional notes: beaver cut wood in	creeke. Siltation in pools
	GEO MORPHIX
verbaulc sand deposite common	
ooted submergent and emer	Sent · Observations
	xtends us \$ d/Scompleted by: ER Checked by: AD
Chicad I Flore La Ad	

Reach Characteristics		Project Co	de/Phase:	philec	59		Geomorpholog Earth Science Observations	зу		
Date: July 5, 2016 Stream/Reach:			Reach 1							
Weather: 33°C Sunny	Location:		Feedmill Creek							
Field staff: ER(AD	Watershee	d/Subwatershed:		River			*			
UTM (Upstream) 426 642.13 mE, 501 6410.23 mN	UTM (Dow	wnstream)	1 4		£ , 50	016548.	96mN			
Land Use (Table 1) Valley Type (Table 2) Channel Type (Table 3) Channel I	Zone ble 4)	Flow Type (Table 5)	□G	oundwater	E	vidence:				
Riparian Vegetation	1	Aquatic/Instream Ve	getation			Water Qua	ality			
Dominant Type: Coverage: Channel widths Age Class (yrs) : Encroachmen (yrs) (Table 6) 2/3 Image: None Image: 1-4 Immature (<5) (Table Species: Species: Image: Fragmented 4-10 Image: Established (5-30) Image: Established (5-30) Image:	- 7) V	Woody Debris Density of WD: ☑ Present in Cutbank □ Low WDJ/50m: ☑ Present in Channel ☑ Moderate				Odour (Table 16) Very clear Turbidity (Table 17) * 1 COOl DUBSTVALE Founding				
Channel Characteristics										
Sinuosity (Type) Sinuosity (Degree) Gradient Nur	nber of Char	nnels	Clay/S	ilt Sand	Gravel	Cobble	Boulder	Parent	Rootlets	
(Table 9) 2 (Table 10) 2 (Table 11) 1/2 (Table	ble 12)	Riffle Subst	rate 🛛		Y	R				
Entrenchment Type of Bank Failure Downs's Classification		Pool Subst	rate 😡							
(Table 13) (Table 14) 2 (Table 15) d	<i>A</i> 1	Bank Materia								
Bankfull Width (m) 3.50 3.70 4.79 Wetted Width (m) Bankfull Depth (m) 1.39 0.70 0.14 Wetted Depth (m)	2.50 0.61 0 Meand	3.0 2.30 6.36 0.15 der Amplitude:		Bank Angle □ 0 - 30 ☑ 30 - 60 ☑ 60 - 90 ☑ Undercut	□ < 5 ⁴ □⁄ 5 □ 30 -	30%	Notes:			
Pool Depth (m) (BF) $\overline{1,6}$ $\overline{1,30}$ Riffle Length (m) $3-4$ Undercuts (m)	6.33	Comments:	bank t	our de	posits a	ammon				
Veloctity (m/s) Wiffle ball / ADV	V / Estimated	d								

Completed by: $\underline{\exists R}$ Checked by: $\underline{\beta}$

						GEO	мс	DRPHIX
Rapid Geoi	mori	ohic Assessment	Proje	ct Code/Phas	se:	PNIK	2059	
Date:	J	Wy 5, 2016		Stream/Rea	ach:	Read	:61	,
Weather:	3	3°C sum I chonds		Locat	ion:	Feedu	nil C	reel
Field Staff:	AC		Wate	rshed/Subwatersh	ned:	Canpi		
	<i>m</i> .							Factor
Process	L	Geomorphi	c Indicator				sent? No	Value
	No.	Description				Yes	NO	
	1	Lobate bar				. /	V	
	2	Coarse materials in riffles embedded	1	and the second			+	
Evidence of	3	Siltation in pools				V	./	LD
Aggradation	4	Medial bars						- 7/7
(AI)	5	Accretion on point bars				V		
	6	Poor longitudinal sorting of bed mat	erials			1	$+ \mathcal{O}$	
	7	Deposition in the overbank zone		C		4	3	0.57
				Sum of indi	ces =	4	U	0.54
<u></u>	1	Exposed bridge footing(s)						-
	2	Exposed sanitary / storm sewer / pir	oeline / etc.				NI	4
	3	Elevated storm sewer outfall(s)						· · · · ·
	4	Undermined gabion baskets / concre	ete aprons / etc.				Nt	4
Evidence of	5	Scour pools downstream of culverts		utlets			V	
Degradation	6	Cut face on bar forms				V		18
(DI)	7	Head cutting due to knick point mig	ration				\checkmark	. 0
	8	Terrace cut through older bar mater	and the second sec					
	9	Suspended armour layer visible in ba						
	10	Channel worn into undisturbed over	rburden / bedroc	k				/
			-	Sum of indi	ces =		ŢŹ	0,125
	1	Fallen / leaning trees / fence posts /	etc.					
	2	Occurrence of large organic debris				V		
	3	Exposed tree roots					~	
Evidence of	4	Basal scour on inside meander bend	s				1	10
Widening	5	Basal scour on both sides of channe	l through riffle				14	-
(WI)	6	Outflanked gabion baskets / concret	te walls / etc.				NA	2/7
(001)	7	Length of basal scour >50% through	subject reach				V	
	8	Exposed length of previously buried	pipe / cable / et	с.			N.	4
	9	Fracture lines along top of bank					V	
	10	Exposed building foundation					Nt	
				Sum of indi	ces =	2	5	0.29
	1	Formation of chute(s)						/
Evidence of	2	Single thread channel to multiple ch	annel	-			V	-
Planimetric	3	Evolution of pool-riffle form to low l						
Form	4	Cut-off channel(s)					N	97
Adjustment	5	Formation of island(s)		a a a a a a a a a a a a a a a a a a a			1	1
(PI)	6	Thalweg alignment out of phase me	ander form				/	
	7	Bar forms poorly formed / reworked					V	
				Sum of indi	ces =	0	7	D
Additional notes	5:			Stability Index	(SI) =	(AI+DI+V	NI+PI)/4	= 0,25
			Conditio	n In Regime	In Tra	ansition/S	tress	In Adjustment
			SI score	= 🗆 0.00 - 0.20	Ø	0.21 - 0.	40	□ 0.41
					×	0.21 - 0.	4	0

Rapid Stream Assessment Technique

Project Number: PN 16059

Date:	July 5,2016		Stream/Reach:	ich 1	
Weather:	Suniclinds 33°C		Location: Fee	dmill Creek	
Field Staff:	AD ER	Water	rshed/Subwatershed: Car	p River	
Evaluation Category	Poor	Fair	Good	Excellent	
	 < 50% of bank network stable Recent bank sloughing, slumping or failure frequently observed 	 50-70% of bank network stable Recent signs of bank sloughing, slumping or failu fairly common 	 71-80% of bank network stable Infrequent signs of bank sloughing, slumping or failure 	 > 80% of bank network stable No evidence of bank sloughing, slumping or failure 	
	 Stream bend areas highly unstable Outer bank height 1.2 m above stream bank (2.1 m above stream bank for large mainstem areas) Bank overhang > 0.8-1.0 m 	 Stream bend areas unstable Outer bank height 0.9-1.2 r above stream bank (1.5-2.1 m above stream bank for large mainstem areas) Bank overhang 0.8-0.9 m 	and a second	 Stream bend areas very stable Height < 0.6 m above stream (< 1.2 m above stream bank for large mainstem areas) Bank overhang < 0.6 m 	
Channel Stability	 Young exposed tree roots abundant > 6 recent large tree falls per stream mile 	 Young exposed tree roots common 4-5 recent large tree falls p stream mile 	Exposed tree roots predominantly old and large, smaller young roots scarce 2-3 recent large tree falls per stream mile	Exposed tree roots old, large and woody Generally 0-1 recent large tre falls per stream mile	
	 Bottom 1/3 of bank is highly erodible material Plant/soil matrix severely compromised 	 Bottom 1/3 of bank is generally highly erodible material Plant/soil matrix compromised 	Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material	Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material	
	 Channel cross-section is generally trapezoidally- shaped 	 Channel cross-section is generally trapezoidally- shaped 	Channel cross-section is generally V- or U-shaped	Channel cross-section is generally V- or U-shaped	
Point range				□ 9 📈 10 □ 11	
	 > 75% embedded (> 85% 	50-75% embedded (60-85%	• 25-49% embedded (35-59%	Riffle embeddedness < 25%	

	 > 75% embedded (> 85% embedded for large mainstem areas) 	50-75% embedded (60-85%) embedded for large mainstem areas)	 25-49% embedded (35-59% embedded for large mainstem areas) 	 Riffle embeddedness < 25% sand-silt (< 35% embedded for large mainstem areas)
Channel	Few, if any, deep pools Pool substrate composition: > 81% sand-silt	 Low to moderate number of deep pools Pool substrate composition: 60-80% sand-silt 	 Moderate number of deep pools Pool substrate composition: 30-59% sand-silt 	 High number of deep pools (> 61 cm deep) (> 122 cm deep for large mainstem areas) Pool substrate composition: < 30% sand-silt
Channel Scouring/ Sediment Deposition	 Streambed streak marks and/or "banana"-shaped sediment deposits common 	Streambed streak marks and/or "banana"-shaped sediment deposits common	 Streambed streak marks and/or "banana"-shaped sediment deposits uncommon 	 Streambed streak marks and/or "banana"-shaped sediment deposits absent
Dependent	 Fresh, large sand deposits very common in channel Moderate to heavy sand deposition along major portion of overbank area 	 Fresh, large sand deposits common in channel Small localized areas of fresh sand deposits along top of low banks 	 Fresh, large sand deposits uncommon in channel Small localized areas of fresh sand deposits along top of low banks 	 Fresh, large sand deposits rare or absent from channel No evidence of fresh sediment deposition on overbank
	 Point bars present at most stream bends, moderate to large and unstable with high amount of fresh sand 	Point bars common, moderate to large and unstable with high amount of fresh sand	 Point bars small and stable, well-vegetated and/or armoured with little or no fresh sand 	 Point bars few, small and stable, well-vegetated and/or armoured with little or no fresh sand
Point range		□ 3 ⊠ 4	□ 5 □ 6	□ 7 □ 8

Evaluation Category	Poor	Fair	Good	Excellent	
5 - 10 - 10 2	 Wetted perimeter < 40% of bottom channel width (< 45% for large mainstem areas) 	 Wetted perimeter 40-60% of bottom channel width (45- 65% for large mainstem areas) 	• Wetted perimeter 61-85% of bottom channel width (66- 90% for large mainstem areas)	 Wetted perimeter > 85% of bottom channel width (> 90% for large mainstem areas) 	
Physical Instream	Dominated by one habitat type (usually runs) and by one velocity and depth condition (slow and shallow) (for large mainstem areas, few riffles present, runs and pools dominant, velocity and depth diversity low)	 Few pools present, riffles and runs dominant. velocity and depth generally slow and shallow (for large mainstem areas, runs and pools dominant, velocity and depth diversity intermediate) 	 Good mix between riffle, runs and pools Relatively diverse velocity and depth of flow 	 Riffles, runs and pool habitat present Diverse velocity and depth of flow present (i.e., slow, fast, shallow and deep water) 	
Habitat	 Riffle substrate composition: predominantly gravel with high percentage of sand < 5% cobble 	 Riffle substrate composition: predominantly small cobble, gravel and sand 5-24% cobble 	 Riffle substrate composition: good mix of gravel, cobble, and rubble material 25-49% cobble 	 Riffle substrate composition: cobble, gravel, rubble, boulder mix with little sand > 50% cobble 	
	Riffle depth < 10 cm for large mainstem areas	Riffle depth 10-15 cm for arge mainstem areas	Riffle depth 15-20 cm for large mainstem areas	 Riffle depth > 20 cm for large mainstem areas 	
	 Large pools generally < 30 cm deep (< 61 cm for large mainstem areas) and devoid of overhead cover/structure 	 Large pools generally 30-46 cm deep (61-91 cm for large mainstem areas) with little or no overhead cover/structure 	 Large pools generally 46-61 cm deep (91-122 cm for large mainstem areas) with some overhead cover/structure 	Large pools generally > 61 cm deep (> 122 cm for large mainstem areas) with good overhead cover/structure	
	Extensive channel alteration and/or point bar formation/enlargement	 Moderate amount of channel alteration and/or moderate increase in point bar formation/enlargement 	Slight-amount of channel alteration and/or slight increase in point bar formation/enlargement	 No channel alteration or significant point bar formation/enlargement 	
ŝ	• Riffle/Pool ratio 0.49:1 ≤ ; ≥ 1.51:1	 Riffle/Pool ratio 0.5-0.69:1; 1.31-1.5:1 	 Riffle/Pool ratio 0.7-0.89:1; 1.11-1.3:1 	Riffle/Pool ratio 0.9-1.1:1	
NA	 Summer afternoon water temperature > 27°C 	 Summer afternoon water temperature 24-27°C 	Summer afternoon water temperature 20-24°C	 Summer afternoon water temperature < 20°C 	
Point range		□ 3 \ 4		□ 7 □ 8	
	 Substrate fouling level: High (> 50%) 	 Substrate fouling level: Moderate (21-50%) 	 Substrate fouling level: Very light (11-20%) 	Substrate fouling level: Rock underside (0-10%)	

	 Substrate fouling level: High (> 50%) 	Substrate fouling level: Moderate (21-50%)	 Substrate fouling level: Very light (11-20%) 	Substrate fouling level: Rock underside (0-10%)
Water	 Brown colour TDS: > 150 mg/L 	Grey colourTDS: 101-150 mg/L	Slightly grey colourTDS: 50-100 mg/L	Clear flow TDS: < 50 prg/L
Quality	 Objects visible to depth < 0.15 m below surface 	 Objects visible to depth 0.15-0.5 m below surface 	 Objects visible to depth 0.5-1.0 m below surface 	• Objects visible to depth > 1.0 m below surface
	 Moderate to strong organic odour 	 Slight to moderate organic odour 	Slight organic odour	No odour
Point range		□ 3 □ 4		□ 7 ⊠ 8

Riparian (Narrow riparian area of mostly non-woody vegetation	/	area predo but with ma gaps		 Forested buffer gen > 31 m wide along r portion of both ban 	major forest	(> 60 m) mature ed buffer along both
Conditions Canopy coverage: < 50% shading (30% mainstem areas) 			coverage: shading (30- ainstem area		 Canopy coverage: 60-79% shading (45 large mainstem are 	5-59% for > 80%	by coverage: shading (> 60% for large tem areas)
Point range			2	3		5	□ 6 □ 7
Additional not	es:				Total	overall score (0	- 42) = 27
		Ranking	Poor	<13)	Fair (13-24)	Good (25-34)	Excellent (>35)
						27	

	Date: July 5,2016	1	Stream/Reach:	Reach 2
	Weather: Sun/clouds 33°C		Location:	
	ield Staff: AD ER		Watershed/Subwatershed:	Feedmill Cruck Carp River
eatures	Reach break	Site Sketch: 417 offra	NO TT	
	Cross-section	ing office		N
	Flow direction	417	(*)	
	Riffle		VX	A A
	Pool			
	Island/bar	an ten a the second s	SILE	2
	Eroded bank		VIC	Tanger
	Undercut bank		Calv	owflet
xxxxx	Rip rap/stabilization		V BI	paveing
	Instream log/tree		(V/V)	67
xxx	Fence		* Isla	m
	Culvert		XVIX	
\bigcirc	Swamp		$() \downarrow (q)$	3
VVV	Grasses		tv()	~ ~ ~
\bigcirc	Tree		× S <4 59	\sim
low Type	a la		1.50	()
H1	Standing water			
H2	Scarcely perceptible flow			
H3	Smooth surface flow		Y S (// v	
H4	Upwelling			
H5	Rippled	1+50	SI SI	
H6	Unbroken standing wave	(C)	VC	
H7	Broken standing wave			
H8	Chute	the second s		
Н9	Free fall	and the second	WV SH	
Substrate		52	care Sta	
	Silt	w	the str	and the second
	Sand		7 231	· · · · · · · · · · · · · · · · · · ·
	Gravel	pedestri	n 121	~
S 4	Small cobble	1 Crossi	g VIGIL	1.2
	Large cobble		All All	C A
	Small boulder		The	59
S7 S8	Large boulder Bimodal	1	5' 65	$\gamma \gamma''$
50 S9	Bedrock/till			
Other				
BM	Benchmark TR Terrace	· · · · · · · · · · · ·	4 V	
FC	Flood chute BOS Bottom of slope		A.	
FP	Floodplain TOS Top of slope		(k	-53,59 (till)
GC	Grade control VWC Valley wall contact			~>/~(CIIII)
KP	Knick point WDJ Woody debris jam)/	
		thre rea	1	
fill ex			send of reach	GEO MORPHI Georgepulay Earth Scance
				Casin science Observations

GEO

MORPHIX

Reach Characteristics

Project Code/Phase: phile059

Reach Chara	cteristics		Project Cod	le/Phase:	phille	59		Geomorpholog Earth Science Observations	iv.	
Date:	July 5,2016	Strean	n/Reach:	Leach	2					
Weather:	Sun/clouds 33.°C	Locatio	on:	Feedm		k				
Field staff:	AD, ER	Water	shed/Subwatershed:	Carp K						
UTM (Upstream)	426581.47 mE, 5016248.45 mN	UTM (Downstream)	426 647	43 m E	501	6410.2	BMN		
Land Use (Table 1)	Channel Type Channel Type (Table 2) (Table 3)	Zone ole 4)	ン Flow Type (Table 5)		undwater		vidence:			
Riparian Vegetation			Aquatic/Instream Veg	getation			Water Qua	ality		
(Table 6) 2/3 🗆 I Species: 🟹 I	Channel widthsAge Class (yrs) :EncroachmenNone1-4Immature (<5)(TableFragmented// 4-10// Established (5-30)2Continuous> 10Mature (>30)	7)	Type (Table8) 1/6 Woody Debris	Density	of WD: WDJ/			Odour (1		
Channel Characteristic	cs									
Sinuosity (Type)	Sinuosity (Degree) Gradient Nun	nber of C	Channels	Clay/Sil	t Sand	Gravel	Cobble	Boulder	Parent	Rootlets
(Table 9) Z	(Table 10) 7 (Table 11) 1/7 (Tab	ole 12)	Riffle Substra	ate 🗆			M			
Entrenchment	Type of Bank Failure Downs's Classification		Pool Substra	ate 🛛						
(Table 13)	(Table 14) Z (Table 15)		Bank Material							
Bankfull Width (m) Bankfull Depth (m) Riffle/Pool Spacing (m Pool Depth (m)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.20 2.70 6.48 ander Amplitude: 0 Comments:	G	nk Angle 0 – 30 30 – 60 60 – 90 Undercut	Bank E □ < 59 □ ∕5 □ 30 - □ 60 -	% 30% - 60%	Notes:		
Veloctity (m/s) Nof measure	Wiffle ball / ADV	/ Estim	ated							a l

Completed by: <u>FR</u> Checked by: <u>AD</u>

Rapid Geomorphic Assessment Project Code/Phase: PN 16059 Reach Z Stream/Reach: Date: July 5,2016 Feedmill Creek Weather: Location: Sun clouds 33°C AD, ER Watershed/Subwatershed: Field Staff: Carp River Geomorphic Indicator Present? Factor Process Value Description Yes No No. 1 Lobate bar 1/ V 2 Coarse materials in riffles embedded Evidence of ~ Siltation in pools 3 Aggradation 4 Medial bars V (AI)Accretion on point bars \checkmark 5 \bigvee 6 Poor longitudinal sorting of bed materials 7 Deposition in the overbank zone 1 0,43 2 Sum of indices = N/A 1 Exposed bridge footing(s) 2 Exposed sanitary / storm sewer / pipeline / etc. NA 3 Elevated storm sewer outfall(s) NA Undermined gabion baskets / concrete aprons / etc. 4 NA Evidence of 2/5 NA Scour pools downstream of culverts / storm sewer outlets 5 Degradation 1 6 Cut face on bar forms (DI) 7 Head cutting due to knick point migration 1/ 8 Terrace cut through older bar material 9 Suspended armour layer visible in bank 10 Channel worn into undisturbed overburden / bedrock (+)2 3 0.40 Sum of indices = 1 Fallen / leaning trees / fence posts / etc. ~ 2 Occurrence of large organic debris 3 Exposed tree roots Basal scour on inside meander bends 4 Evidence of 5 Basal scour on both sides of channel through riffle 47 Widening Outflanked gabion baskets / concrete walls / etc. 6 (WI)7 Length of basal scour >50% through subject reach 8 Exposed length of previously buried pipe / cable / etc. NA 9 Fracture lines along top of bank V NA Exposed building foundation 10 Sum of indices = 7 0.29 5 Formation of chute(s) 1 Evidence of Single thread channel to multiple channel 2 Evolution of pool-riffle form to low bed relief form Planimetric 1 3 Form Cut-off channel(s) 4 0 Adjustment Formation of island(s) 5 (PI) Thalweg alignment out of phase meander form 6 Bar forms poorly formed / reworked / removed 7 6 Sum of indices = n Stability Index (SI) = (AI+DI+WI+PI)/4 = 0.128Additional notes: In Transition/Stress In Adjustment Condition In Regime 0.21 - 0.40 SI score = 0.00 - 0.20 0.41

Completed by: <u>AD</u>, <u>ER</u> Checked by: _____

Project Number: PN 110057 Rapid Stream Assessment Technique Stream/Reach: Reacha Date: ulu 5.2016 FredmillCreek Weather: Location: 1 dunds 332 Field Staff: Watershed/Subwatershed: ER Camerce Evaluation Poor Fair Good Excellent Category • < 50% of bank network stable</p> • 50-70% of bank network • 71-80% of bank network • > 80% of bank network stable · Recent bank sloughing, stable stable • No evidence of bank slumping or failure frequently Recent signs of bank Infrequent signs of bank sloughing, slumping or failure/ observed sloughing, slumping or failure sloughing, slumping or failure fairly common Stream bend areas highly Stream bend areas unstable Stream bend areas stable · Stream bend areas very stable unstable • Outer bank height 0.9-1.2 m Outer bank height 0.6-0.9 m Height < 0.6 m above stream • Outer bank height 1.2 m above stream bank above stream bank (< 1.2 m above stream bank above stream bank (1.5-2.1 m above stream (1.2-1.5 m above stream bank for large mainstem areas) (2.1 m above stream bank for bank for large mainstem for large mainstem areas) Bank overhang < 0.6 m large mainstem areas) areas) Bank overhang 0.6-0.8 m • Bank overhang > 0.8-1.0 m Bank overhang 0.8-0.9 m Channel Young exposed tree roots • Exposed tree roots old, large · Young exposed tree roots Exposed tree roots Stability abundant common predominantly old and large and woody > 6 recent large tree falls per 4-5 recent large tree falls per smaller young roots scarce Generally 0-1 recent large tree stream mile stream mile · 2-3 recent large tree falls per falls per stream mile stream mile • Bottom 1/3 of bank is highly • Bottom 1/3 of bank is Bottom 1/3 of bank is Bottom 1/3 of bank is erodible material generally highly erodible generally highly resistant generally highly resistant Plant/soil matrix severely material plant/soil matrix or material plant/soil matrix or materia compromised Plant/soil matrix compromised Channel cross-section is Channel cross-section is Channel cross-section is Channel cross-section is generally trapezoidallygenerally trapezoidallygenerally V- or U-shaped generally V- or U-shaped shaped shaped Point range □ 9 🖓 10 □ 11

	 > 75% embedded (> 85% embedded for large mainstem areas) 	 50-75% embedded (60-85% embedded for large mainstem areas) 	 25-49% embedded (35-59% embedded for large mainstem areas) 	Riffle embeddedness < 25%) sand-silt (< 35% embedded for large mainstem areas)
Channel	Few, if any, deep pools Pool substrate composition: > 81% sand-silt	 Low to moderate number of deep pools Pool substrate composition: 60-80% sand-silt 	 Moderate number of deep pools Pool substrate composition: 30-59% sand-silt 	 High number of deep pools (> 61 cm deep) (> 122 cm deep for large mainstem areas) Pool substrate composition: < 30% sand-silt
Channel Scouring/ Sediment Deposition	 Streambed streak marks and/or "banana"-shaped sediment deposits common 	 Streambed streak marks and/or "banana"-shaped sediment deposits common 	 Streamped streak marks and/or /banana"-shaped sediment deposits uncommon 	 Streambed streak marks and/or "banana"-shaped sediment deposits absent
	 Fresh, large sand deposits very common in channel Moderate to heavy sand deposition along major portion of overbank area 	 Fresh, large sand deposits common in channel Small localized areas of fresh sand deposits along top of low banks 	 Fresh, large sand deposits uncommon in channel Small localized areas of fresh sand deposits along top of low banks 	 Fresh, large sand deposits rare or absent from channel No evidence of fresh sediment deposition on overbank
	 Point bars present at most stream bends, moderate to large and unstable with high amount of fresh sand 	 Point bars common, moderate to large and unstable with high amount of fresh sand 	 Point bars small and stable, well-vegetated and/or armoured with little or no fresh sand 	 Point bars few, small and stable, well-vegetated and/or armoured with little or no fresh sand
Point range		3 4	2 5 🗆 6	□ 7 □ 8

Evaluation Category	Poor	Fair	Good	Excellent
	 Wetted perimeter < 40% of bottom channel width (< 45% for large mainstem areas) 	 Wetted perimeter 40-60% of bottom channel width (45- 65% for large mainstem areas) 	• Wetted perimeter 61-85% of bottom channel width (66- 90% for large mainstem areas)	 Wetted perimeter > 85% of bottom channel width (> 90% for large mainstem areas)
Physical Instream	 Dominated by one habitat type (usually runs) and by one velocity and depth condition (slow and shallow) (for large mainstem areas, few riffles present, runs and pools dominant, velocity and depth diversity low) 	 Few pools present, riffles and runs dominant. velocity and depth generally slow and shallow (for large mainstem areas, runs and pools dominant, velocity and depth diversity intermediate) 	 Good mix between riffles, runs and pools Relatively diverse velocity and depth of flow 	 Riffles, runs and pool habitat present Diverse velocity and depth of flow present (i.e., slow, fast, shallow and deep water)
Habitat	 Riffle substrate composition: predominantly gravel with high percentage of sand < 5% cobble 	 Riffle substrate composition: predominantly small cobble, gravel and sand 5-24% cobble 	Riffle substrate composition: good mix of gravel, cobble, and rubble material • 25-49% cobble	 Riffle substrate composition: cobble, gravel, rubble, boulder mix with little sand > 50% cobble
	 Riffle depth < 10 cm for large mainstem areas 	• Riffle depth 10-15 cm for large mainstem areas	 Riffle depth 15-20 cm for large mainstem areas 	 Riffle depth > 20 cm for large mainstem areas
	 Large pools generally < 30 cm deep (< 61 cm for large mainstem areas) and devoid of overhead cover/structure 	 Large pools generally 30-46 cm deep (61-91 cm for large mainstem areas) with little or no overhead cover/structure 	Large pools generally 46-61 cm deep (91-122 cm for large mainstem areas) with some overhead cover/structure	 Large pools generally > 61 cm deep (> 122 cm for large mainstem areas) with good overhead cover/structure
	 Extensive channel alteration and/or point bar formation/enlargement 	 Moderate amount of channel alteration and/or moderate increase in point bar formation/enlargement 	• Slight amount of channel alteration and/or slight increase in point bar formation/enlargement	 No channel alteration or significant point bar formation/enlargement
(• Riffle/Pool ratio 0.49:1 ≤) ≥ 1.51:1	 Riffle/Pool ratio 0.5-0.69:1; 1.31-1.5:1 	 Riffle/Pool ratio 0.7-0.89:1; 1.11-1.3:1 	Riffle/Pool ratio 0.9-1.1:1
NA	 Summer afternoon water temperature > 27°C 	 Summer afternoon water temperature 24-27°C 	 Summer afternoon water temperature 20-24°C 	 Summer afternoon water temperature < 20°C
Point range		□ 3 □ 4	X 5 🗆 6	□ 7 □ 8

Water	 Substrate fouling level: High (> 50%) 	 Substrate fouling level: Moderate (21-50%) 	 Substrate fouling level: Very light (11-20%) 	Substrate fouling level: Rock underside (0-10%)
	 Brown colour TDS: > 150 mg/L 	Grey colourTDS: 101-150 mg/L	Slightly grey colourTDS: 50-100 mg/L	Clear flow TDS: < 50 mg/L
Quality	 Objects visible to depth < 0.15 m below surface 	Objects visible to depth 0.15-0.5 m below surface	 Objects visible to depth 0.5-1.0 m below surface 	 Objects visible to depth 1.0 m below surface
	 Moderate to strong organic odour 	 Slight to moderate organic odour 	Slight organic odour	No odour
Point range		□ 3 □ 4		07 18

Riparian Habitat Conditions	Narrow riparian area of mostly non-woody vegetation		area predominantly out with major gaps	 Forested buffer generally > 31 m wide along major portion of both banks 		 Wide (> 60 m) mature forested buffer along both banks 	
	 Canopy coverage: < 50% shading (30% for large mainstem areas) 	 Canopy coverage: 50-60% shading (30-44% for large mainstem areas) 		 Canopy coverage: 60-79% shading (45-59% for large mainstem areas) 		 Canopy coverage: > 80% shading (> 60% for large mainstem areas) 	
Point range		□ 2 □ 3		□ 4 □ 5		□ 6 □ 7	
Additional notes:		Total overall score (0 - 42) = \mathcal{P}					
		Ranking	Poor (<13)	Fair (13-24)	Good	(25-34)	Excellent (>35)
					29		

Completed by: AD, EL_ Checked by: _____

Date: July 5,2016	Stream/Reach: Reach 3
Weather: Mainly Sunny 33°C	Location: Feedmill Creck
Field Staff: AD/ER	Watershed/Subwatershed: Carp River
eatures	Site Sketch: fulladium Dr. Contid# 1
Reach break	
Cross-section	DISTER A STOLEN
> Flow direction	VISIV
✓ Riffle	54.55 TS
- Pool	The second
Island/bar	SI, SST (cedarist S4, S9, J) (cedarist Cedarist Cedarist Cedarist Character)
HIHHHHH Eroded bank	Cectorest (bedrock)
Undercut bank	
XXXXXX Rip rap/stabilization	52 / 9
>>> Instream log/tree	SL SL SL SL SL M
xxx Fence	onist 15
Culvert	
Swamp	deposit,
₩₩₩ Grasses	Cuttace, Can Sidd farm
C) Tree	IND A CROSSING TALS2
Том Туре	at 4 1
H1 Standing water	1 (A 3272)
H2 Scarcely perceptible flow	V 51,52 24-55
H3 Smooth surface flow	
H4 Upwelling	V Auska
H5 Rippled	
H6 Unbroken standing wave	SI TOM
H7 Broken standing wave	V V clayb R
H8 Chute	ATK KING SM 11
H9 Free fall	
s1 Silt	\mathbf{X}
S2 Sand	K Strok SHISS T
S3 Gravel	X X X X X X Y Y
S4 Small cobble	1 / Catal
SS Large cobble	Coluit These
S6 Small boulder	K Holest In A
57 Large boulder	Star SH.
S8 Bimodal	
S9 Bedrock/till	
Ither	15 1 0000
BM Benchmark TR Terrace	SILVE FP. Froms
FC Flood chute BOS Bottom of slope	
FP Floodplain TOS Top of slope	
GC Grade control VWC Valley wall contact	
KP Knick point WDJ Woody debris jam	conf'd* { 54-55 PP }
dditional notes:	
	GEO MORPHI

Completed by: AD/ER___ Checked by: _____

Reach Chara	cteristics		Project Cod	de/Phase:	n(60)	59	GEO	MOF Geomorphology Earth Science Observations	8 P H I	х
Date:	July 5, 2016	Stream	n/Reach:	Reach	3					
Weather:	mainly sunny 33°C	Locati	on:	Feedu	nill Cr	cer				
Field staff:	AD/ER	Water	shed/Subwatershed:	Carp &						
UTM (Upstream)	426100.42mE, 5015886.35mN	UTM (Downstream)	42634	HME,	5016	093.89	nN		
Land Use //4 V (Table 1)	Channel Type Channel Type Channel (Table 2) (Table 3) (Table 3)	Zone ble 4)	2 Flow Type (Table 5)	`∕∕ □Grou	, ndwater	E۷	idence:			
Riparian Vegetation			Aquatic/Instream Ve	getation			Water Qua	lity		
(Table 6)	Verage: Channel widths Age Class (yrs) : Encroachme None 1-4 Immature (<5) (Table Fragmented 4-10 Established (5-30)		Type (Table8) 2 Woody Debris 3 Present in Cutban 3 Present in Channe 1 Not Present 1	Density of k Low	f WD: WDJ/5			Odour (T		
Channel Characteristi							Cobble	Boulder	Parent	Rootlets
Sinuosity (Type)			Channels	Clay/Silt	Sand	Gravel			$\overline{\mathbf{A}}$	
(Table 9) 2	E . E	ble 12)	Riffle Subst				ty .			
Entrenchment (Table 13)	Type of Bank Failure Downs's Classification (Table 14) (Table 15)		Pool Subst Bank Materia							
Bankfull Width (m)	p_{001} pick kun 5.4 3.3 $W.0$ Wetted Width (m)	2.00	25 2.13		nk Angle 0 – 30 30 – 60	Bank E □ < 5' □ 5		Notes:		
Bankfull Depth (m)			eander Amplitude:		60 – 90 Undercut	⊠ 30 : □ 60	– 60% – 100%			
Riffle/Pool Spacing (r Pool Depth (m) Veloctity (m/s)	m) 20-30 % Riffles: 70 % Pools: 2 Riffle Length (m) (61) Undercuts (m 0,50 Wiffle ball / AD	n) 61	V ^b Comments:							
L				Com	pleted b	y:_Éĥ		Checked	oy:	

GEO M	0	R	Ρ	н	1	х	
-------	---	---	---	---	---	---	--

Weather:		ly 5,2016				14	Star I	
	Guia	Clouds 33°C Location					ill Cree	D.
Field Staff:	4		Watershed					
Field Staff.	AD,	GR	Watersneu	Jubwaters	meu.	Carp	Fiver	
Process		Geom	orphic Indicator			$\frac{1}{2} Carp \text{Eiver}}{2}$ $\frac{1}{2} Ves No$ $\frac{1}{2} V$ $\frac{1}{$	Factor	
1100033	No.	Description				Yes	No	Value
	1	Lobate bar					\bigvee	
	2	Coarse materials in riffles emb	edded					
Evidence of	3	Siltation in pools				V	V	
Aggradation	4	Medial bars					\checkmark	3/7
(AI)	5	Accretion on point bars				/		114
	6	Poor longitudinal sorting of be	d materials				\bigvee	
	7	Deposition in the overbank zon	ne					
				Sum of ind	ices =	3	4	0,43
	1	Exposed bridge footing(s)				en l	A	1
	2	Exposed sanitary / storm sewe	r / pipeline / etc			WN	A	1
	3	Elevated storm sewer outfall(s					A	-
	4	Undermined gabion baskets /				1	A	-
Evidence of	5	Scour pools downstream of cu				-N-	1./	2/6
Degradation	6	Cut face on bar forms	verts / storm sewer outlets			./		
(DI)	7	Head cutting due to knick poin	t migration			V	./	1
	8	Terrace cut through older bar						-
	9	Suspended armour layer visibl				V	1	
	10	Channel worn into undisturbed					V	1
				Sum of ind	ices =	2	4	0:33
	1	Fallen / leaning trees / fence p	osts / etc			~/	1	
	2	Occurrence of large organic de						-
	3	Exposed tree roots						-
	4	Basal scour on inside meander	hends					-
Evidence of	5	Basal scour on both sides of ch	PERFORMANCE AND ADDRESS OF A DECEMPENDATION OF ADDRESS					1
Widening	6	Outflanked gabion baskets / co				01	IA	3/-
(WI)	7	Length of basal scour >50% th					1./	
	8	Exposed length of previously b					1A	1
	9	Fracture lines along top of ban				/5	//	1
	10	Exposed building foundation	n an			N	IĂ	1
				Sum of indi	ices =	1	4	0.43
	1	Formation of chute(s)						1
Evidence of	2		ole channel					-
Planimetric	3	Single thread channel to multiple channel Evolution of pool-riffle form to low bed relief form					×7	-
Form	4	Cut-off channel(s)						-
Adjustment	5	Formation of island(s)					~	0
(PI)	6	Thalweg alignment out of phas	e meander form				X	
	7	Bar forms poorly formed / rew					1	1
				Sum of indi	ices =	0	7	0
dditional notes:			Ct	tability Index	(SI) -	(AI+DI+\/	/I+PI)/A -	0 20
autional notes.				Regime			1	0.30
					In The	main	weeks ! ! !	A alterat

Completed by: ADER Checked by:

Parter Unity 5 2018			Stream/Reach: Red	ich 3
Weather:	Sun clands 33°C		Location: Fee	dmill Creck
Field Staff:	ADER	Watersh	ed/Subwatershed: Car	PRIVER
Evaluation Category	Poor	Fair	Good	Excellent
	 < 50% of bank network stable Recent bank sloughing, slumping or failure frequently observed 	 50-70% of bank network stable Recent signs of bank sloughing, slumping or failure fairly common 	 71-80% of bank network stable Infrequent signs of bank sloughing, slumping or failure 	 > 80% of bank network stable No evidence of bank sloughing, slumping or failure
	 Stream bend areas highly unstable Outer bank height 1.2 m above stream bank (2.1 m above stream bank for large mainstem areas) Bank overhang > 0.8-1.0 m 	 Stream bend areas unstable Outer bank height 0.9-1.2 m above stream bank (1.5-2.1 m above stream bank for large mainstem areas) Bank overhang 0.8-0.9 m 	 Stream bend areas stable Outer bank height 0.6-0.9 m above stream bank (1.2-1.5 m above stream bank for large mainstem areas) Bank overhang 0.6-0.8 m 	 Stream bend areas very stable Height < 0.6 m above stream (< 1.2 m above stream bank for large mainstem areas) Bank overhang < 0.6 m
Channel Stability	 Young exposed tree roots abundant > 6 recent large tree falls per stream mile 	 Young exposed tree roots common 4-5 recent large tree falls per stream mile 	 Exposed tree roots predominantly old and large, smaller young roots scarce 2-3 recent large tree falls per stream mile 	 Exposed tree roots old, large and woody Generally 0-1 recent large tre falls per stream mile
	 Bottom 1/3 of bank is highly erodible material Plant/soil matrix severely compromised 	 Bottom 1/3 of bank is generally highly erodible material Plant/soil matrix compromised 	 Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material 	Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material
	Channel cross-section is generally trapezoidally- shaped	 Channel cross-section is generally trapezoidally- shaped 	 Channel cross-section is generally V- or U-shaped 	Channel cross-section is generally V- or U-shaped

	 > 75% embedded (> 85% embedded for large mainstem areas) 	 50-75% embedded (60-85% embedded for large mainstem areas) 	 25-49% embedded (35-59% embedded for large mainstem areas) 	 Riffle embeddedness < 25% sand-silt (< 35% embedded for large mainstem areas)
Channel	 Few, if any, deep pools Pool substrate composition: > 81% sand-silt 	 Low to moderate number of deep-pools Pool substrate composition: 60-80% sand-silt 	 Moderate number of deep pools Pool substrate composition: 30-59% sand-silt 	 High number of deep pools (> 61 cm deep) (> 122 cm deep for large mainstem areas) Pool substrate composition: < 30% sand-silt
Channel Scouring/ Sediment Deposition	Streambed streak marks and/or "banana"-shaped sediment deposits common	Streambed streak marks and/or "banana"-shaped sediment deposits common	 Streambed streak marks and/or "banana"-shaped sediment deposits uncommon 	 Streambed streak marks and/or "banana"-shaped sediment deposits absent
	 Fresh, large sand deposits very common in channel Moderate to heavy sand deposition along major portion of overbank area 	 Fresh, large sand deposits common in channel Small localized areas of fresh sand deposits along top of low banks 	 Fresh, large sand deposits uncommon in channel Small localized areas of fresh sand deposits along top of low banks 	 Fresh, large sand deposits rare or absent from channel No evidence of fresh sediment deposition on overbank
	 Point bars present at most stream bends, moderate to large and unstable with high amount of fresh sand 	Point bars common, moderate to large and unstable with high amount of fresh sand	 Point bars small and stable, well-vegetated and/or armoured with little or no fresh sand 	 Point bars few, small and stable, well-vegetated and/or armoured with little or no fresh sand
Point range		□ 3 ◘ 4	□ 5 □ 6	0708

Evaluation	Poor	Fair	Good	Excellent
Category	 Wetted perimeter < 40% of bottom channel width (< 45% for large mainstem areas) 	 Wetted perimeter 40-60% of bottom channel width (45- 65% for large mainstem areas) 	 Wetted perimeter 61-85% of bottom channel width (66- 90% for large mainstem areas) 	Wetted perimeter > 85% of bottom channel width (> 90% for large mainstem areas)
Physical Instream	 Dominated by one habitat type (usually runs) and by one velocity and depth condition (slow and shallow) (for large mainstem areas, few riffles present, runs and pools dominant, velocity and depth diversity low) 	 Few pools present, riffles and runs dominant. velocity and depth generally slow and shallow (for large mainstem areas, runs and pools dominant, velocity and depth diversity intermediate) 	 Good mix between riffles runs and pools Relatively diverse velocity and depth of flow 	 Riffles, runs and pool habitat present Diverse velocity and depth of flow present (i.e., slow, fast, shallow and deep water)
Habitat	 Riffle substrate composition: predominantly gravel with high percentage of sand < 5% cobble 	 Riffle substrate composition: predominantly small cobble, gravel and sand 5-24% cobble 	 Riffle substrate composition: good mix of gravel, cobble and rubble material 25-49% cobble 	 Riffle substrate composition: cobble, gravel, rubble, boulde mix with little sand > 50% cobble
	 Riffle depth < 10 cm for large mainstem areas 	Riffle depth 10-15 cm for large mainstem areas	Riffle depth 15-20 cm for large mainstem areas	Riffle depth > 20 cm for large mainstem areas
	Large pools generally < 30 cm deep (< 61 cm for large mainstem areas) and devoid of overhead cover/structure	Large pools generally 30-46 cm deep (61-91 cm for large mainstem areas) with little or no overhead cover/structure	 Large pools generally 46-61 cm deep (91-122 cm for large mainstem areas) with some overhead cover/structure 	Large pools generally > 61 cm deep (> 122 cm for large mainstem areas) with good overhead cover/structure
	Extensive channel alteration and/or point bar formation/enlargement	Moderate amount of channel alteration and/or moderate increase in point bar formation/enlargement	 Slight amount of channel alteration and/or slight increase in point bar formation/enlargement 	 No channel alteration or significant point bar formation/enlargement
	 Riffle/Pool ratio 0.49:1 ≤ ; ≥ 1.51:1 	 Riffle/Pool ratio 0.5-0.69:1; 1.31-1.5:1 	• Riffle/Pool ratio 0.7-0.89:1; 1.11-1.3:1	Riffle/Pool ratio 0.9-1.1:1
N	Summer afternoon water temperature > 27°C	 Summer afternoon water temperature 24-27°C 	 Summer afternoon water temperature 20-24°C 	Summer afternoon water temperature < 20°C
Point range			□ 5 □ 6	

	 Substrate fouling level: High (> 50%) 	Substrate fouling level: Moderate (21-50%)	 Substrate fouling level: Very light (11-20%) 	Substrate fouling level: Rock underside (0-10%)
Water	 Brown colour TDS: > 150 mg/L 	Grey colourTDS: 101-150 mg/L	Slightly grey colourTDS: 50-100 mg/L	 Clear flow TDS: < 50 mg/L
Quality	• Objects visible to depth < 0.15 m below surface	Objects visible to depth 0.15-0.5 m below surface	Objects visible to depth 0.5-1.0 m below surface	 Objects visible to depth > 1.0 m below surface
	Moderate to strong organic odour	Slight to moderate organic odour	Slight organic odour	No odour
Point range		□ 3 □ 4		7 7 8

Riparian Habitat	Habitat		wooded but with major localized gaps		 Forested buffer get > 31 m wide along portion of both ba 	g major	Wide (> 60 m) mature forested buffer along both banks		
Conditions	 Canopy coverage: < 50% shading (30% mainstem areas) 	% for large 50-60% sh		Canopy coverage: 50-60% shading (30-44% for large mainstem areas) Canopy coverage: 60-79% shading (45-59% for large mainstem areas)				coverage: nading (> 60% for large m areas)	
Point range				2 🛛 3	□ 4 □ 5		Ŷ	6 🗆 7	
Additional not	tes:				Tota	l overall sc	ore (Q - 4	12) = 34	
			Ranking	Poor (<13)	Fair (13-24)	Good (25-34)	Excellent (>35)	
						3	4		

Completed by: AD / EL___ Checked by: _____

Date: July 5 2016	Stream/Reach: Reach 4
Weather: Sun Clouds 33°C	Location: Feedmill Creek
	Watershed/Subwatershed: Carp River
Field Staff: AD ER	Carp River
	ite Sketch:
Reach break	
Cross-section	
> Flow direction	
· Riffle	
Pool	
Island/bar	
######## Eroded bank	WS portion not walked
Undercut bank Image: Constraint of the second sec	NUT Warnes
Instream log/tree	
·····×····× Fence	1 5 5 11 h
Culvert	
Swamp	
VVV Grasses	
C) Tree	
ow Type	
H1 Standing water	
H2 Scarcely perceptible flow	
H3 Smooth surface flow	
H4 Upwelling	Fruth
H5 Rippled	- Freez
H6 Unbroken standing wave	1, 7,7,1
H7 Broken standing wave	V C V
H8 Chute	
H9 Free fall	Y ZUI
ubstrate	De De
S1 Silt	A A A A A A A A A A A A A A A A A A A
S2 Sand	
S3 Gravel	- A MAN
S4 Small cobble	5 The ist -1
S5 Large cobble	
S6 Small boulder	(and see
S7 Large boulder	Sal and Bar
S8 Bimodal	W W W Street
S9 Bedrock/till	
ther	Y P
BM Benchmark TR Terrace	
FC Flood chute BOS Bottom of slope	Reach break
FP Floodplain TOS Top of slope	T ANTA
GC Grade control VWC Valley wall contact	Ebrest (U)
KP Knick point WDJ Woody debris jam	JEDICSI JUN
dditional notes: Tributary almost dr	y (saurie (ut off))
IIIDWAL OF SCALOZE DO	
Floodplain Occupied by grasses,	tew shrubs and dead GEO MORPHIX
treps - Former Beaver dameds	end of reach litely cause, Entrance
trees - Former Beaver damedis edar firest dils of recion and a Userved.	ALLE SOLUCE ON A AND
idal threat on is ut mean and i	and the mis extend not
	Completed by: 🖺 💭 Checked by:

Reach Characteristics	Project Co	de/Phase: PN	16059		Earth Science Observations	4	
Date: June 5,2016	Stream/Reach:	Reach 4					
Weather: Sun clouds 33°C	Location:	Feedmill	Creck				
Field staff: AD tER	Watershed/Subwatershed:	Carp RI	nen				
UTM (Upstream) H25995, 12mE, 5015614.83	S MN UTM (Downstream)	426100.42		5886.3	SMN		
	Channel Zone Z Flow Type (Table 4) Z (Table 5)	Groundwa	ter l	Evidence:			
Riparian Vegetation	Aquatic/Instream V	egetation		Water Q	uality		
Dominant Type: Coverage: Channel widths Age Class (yrs) : Encrywidths (Table 6) 3 None 1-4 Immature (<5) Species: Fragmented 4-10 Established (5-30) Immature (>30) >10 Mature (>30)	roachment: Type (Table8) (Table 7) Woody Debris 2 Present in Cutbar Present in Channe Not Present		Summerson			Table 16) (Table 17)	
Channel Characteristics							
Sinuosity (Type) Sinuosity (Degree) Gradient	Number of Channels		nd Gravel	Cobble	Boulder	Parent	Rootlets
(Table 9) (Table 10) 2 (Table 11)	(Table 12) Riffle Subst	/	1				
Entrenchment Type of Bank Failure Downs's Classificati		1		□ ×			
(Table 13) (Table 14) 2 (Table 15) d	Bank Materia	n 🖓 c					
Bankfull Width (m) Dool Bankfull Depth (m) D35		Bank An □ 0 – 30 □ 30 – 1 □ 60 – 1	□ < 5' 60 □ 5 -	30%	Notes: Stream	Aavin	
Riffle/Pool Spacing (m) % Riffles: /6 % Pools:	: 90 Meander Amplitude:			- 80% - 100%)	
Pool Depth (m) Under	ercuts (m) $\overbrace{b}^{6,05}$ Comments: bl	wer chewled	wood	1011		<u></u>	
Veloctity (m/s) Wiffle b	- /	unik hot	as pirser	<u>t</u>			
	0	Complete	lby:_ER)	Checked b	y:	

Date:	Ju	1452010		Stream/Re	ach:	Rea	ch4				
Weather:	Q.	n/clouts 33%		Locat	ion:	- 1	mill	neele			
Field Staff:		ER	Watershed/	Subwaters	ned:		Rive				
			orphic Indicator				sent?	Factor			
Process	No.	Description				Yes	No	Value			
	1	Lobate bar					V				
	2	Coarse materials in riffles em	pedded				NA				
Evidence of	3	Siltation in pools				\checkmark					
Aggradation	4	Medial bars					V	2/6			
(AI)	5	Accretion on point bars				ł	V	16			
	6	Poor longitudinal sorting of be	ed materials			V	2				
	7	Deposition in the overbank zo	ne				\bigvee				
				Sum of indi	ces =	2	4	0.33			
	1	Exposed bridge footing(s)					4 /Å				
	2	Exposed sanitary / storm sew	er / nineline / etc	kata ana ang kanang manganang kata ang			NA NA	-			
	3	Elevated storm sewer outfall(A /A				
	4	Undermined gabion baskets /		Λ			- Vn				
Evidence of	5	Scour pools downstream of cu					A IA				
Degradation	6	Cut face on bar forms	werts / storm sewer outlets				IVA	-			
(DI)	7	Head cutting due to knick poin	at migration					\neg			
	8	Terrace cut through older bar	and the second design of the					-95			
	9	Suspended armour layer visib									
	10	Channel worn into undisturbe					1V				
			d overburden y bedrock	Sum of indi	ces =	0	5	0			
	1	Fallen / leaning trees / fence	oosts / etc.								
	2	Occurrence of large organic d				1/					
	3	Exposed tree roots				V					
- · · · · · · · · · · · · · · · · · · ·	4	Basal scour on inside meande	r bends				1/				
Evidence of	5	Basal scour on both sides of c	nannel through riffle				V	31			
Widening	6	Outflanked gabion baskets / c	oncrete walls / etc.				NA	1			
(WI)	7	Length of basal scour >50% th	rough subject reach				1				
	8	Exposed length of previously	ouried pipe / cable / etc.				NA				
	9	Fracture lines along top of bar	۱k	9.			in the second				
	10	Exposed building foundation					NA				
		5		Sum of indi	ces =	3	4	0.43			
	1	Formation of chute(s)									
Evidence of	2	Single thread channel to mult	ple channel								
Planimetric	3	Evolution of pool-riffle form to					1				
Form	5	Cut-off channel(s) Formation of island(s)					V	- 0/7			
	1 mar 1	and the second	an manual form				1/				
	6	Thalweg alignment out of pha	se meander form				1				
Adjustment		Thalweg alignment out of pha Bar forms poorly formed / rev					1				
Adjustment	6			Sum of indi	ces =	0	7	0			
Adjustment	6 7		vorked / removed	Sum of india		(AI+DI+V	VI+PI)/4 :				
Adjustment (PI)	6 7		vorked / removed	ability Index ((SI) =	(AI+DI+V					

Rapid Stream Assessment Technique **Project Number:** Date: Stream/Reach: July 5,2016 Feedmill creek Weather: Location: Sen/ clouds 33°C Field Staff: Watershed/Subwatershed: Carp River AD ER Evaluation Poor Fair Good Excellent Category • < 50% of bank network stable</p> • 50-70% of bank network • 71-80% of bank network • > 80% of bank network stable Recent bank sloughing, stable stable No evidence of bank slumping or failure frequently Recent signs of bank · Infrequent signs of bank sloughing, slumping or failure observed sloughing, slumping or failure sloughing, slumping or failure fairly common Stream bend areas highly Stream bend areas unstable Stream bend areas stable Stream bend areas very stable unstable • Outer bank height 0.9-1.2 m Outer bank height 0.6-0.9 m Height < 0.6 m above stream • Outer bank height 1.2 m above stream bank above stream bank (< 1.2 m above stream bank above stream bank (1.5-2.1 m above stream (1.2-1.5 m above stream bank for large mainstem areas) (2.1 m above stream bank for bank for large mainstem for large mainstem areas) Bank overhang < 0.6 m large mainstem areas) areas) Bank overhang 0.6-0.8 m Bank overhang > 0.8-1.0 m Bank overhang 0.8-0.9 m Channel Exposed tree roots Young exposed tree roots · Young exposed tree roots Exposed tree roots old, large Stability abundant common predominantly old and large, and woody > 6 recent large tree falls per · 4-5 recent large tree falls per Generally 0-1 recent large tree smaller young roots scarce stream mile stream mile 2-3 recent large tree falls per falls per stream mile stream mile • Bottom 1/3 of bank is highly • Bottom 1/3 of bank is • Bottom 1/3 of bank is Bottom 1/3 of bank is erodible material generally highly erodible generally highly resistant generally highly resistant Plant/soil matrix severely plant/soil matrix or material material plant/soil matrix or material compromised Plant/soil matrix compromised Channel cross-section is Channel cross-section is Channel cross-section is Channel cross-section is generally trapezoidallygenerally V- or U-shaped generally trapezoidallygenerally V- or U-shaped shaped shaped Point range □ 9 🛛 10 □ 11

NA	 > 75% embedded (> 85% embedded for large mainstem areas) 	 50-75% embedded (60-85% embedded for large mainstem areas) 	 25-49% embedded (35-59% embedded for large mainstem areas) 	 Riffle embeddedness < 25% sand-silt (< 35% embedded for large mainstem areas)
Channel	 Few, if any, deep pools Pool substrate composition: > 81% sand-silt 	 Low to moderate number of deep pools Pool substrate composition: 60-80% sand-silt 	 Moderate number of deep pools Pool substrate composition: 30-59% sand-silt 	 High number of deep pools (> 61 cm deep) (> 122 cm deep for large mainstem areas) Pool substrate composition: < 30% sand-silt
Channel Scouring/ Sediment Deposition	 Streambed streak marks and/or "banana"-shaped sediment deposits common 	Streambed streak marks and/or "banana"-shaped sediment deposits common	Streambed streak marks and/or "banana"-shaped sediment deposits uncommon	 Streambed streak marks and/or "banana"-shaped sediment deposits absent
	 Fresh, large sand deposits very common in channel Moderate to heavy sand deposition along major portion of overbank area 	 Fresh, large sand deposits common in channel Small localized areas of fresh sand deposits along top of low banks 	 Fresh, large sand deposits uncommon in channel Small localized areas of fresh sand deposits along top of low banks 	 Fresh, large sand deposits rare or absent from channel No evidence of fresh sediment deposition on overbank
	 Point bars present at most stream bends, moderate to large and unstable with high amount of fresh sand 	 Point bars common, moderate to large and unstable with high amount of fresh sand 	 Point bars small and stable, well-vegetated and/or armoured with little or no fresh sand 	 Point bars few, small and stable, well-vegetated and/or armoured with little or no fresh sand
Point range		3 4	2 5 □ 6	0708

Evaluation Category	Poor	Fair	Good	Excellent
	 Wetted perimeter < 40% of bottom channel width (< 45% for large mainstem areas) 	 Wetted perimeter 40-60% of bottom channel width (45- 65% for large mainstem areas) 	 Wetted perimeter 61-85% of bottom channel width (66- 90% for large mainstem areas) 	 Wetted perimeter > 85% of bottom channel width (> 90% for large mainstem areas)
Physical Instream	 Dominated by one habitat type (usually runs) and by one velocity and depth condition (slow and shallow) (for large mainstern areas, few riffles present runs and pools dominant, velocity and depth-diversity low) 	 Few pools present, riffles and runs dominant. velocity and depth generally slow and shallow (for large mainstem areas, runs and pools dominant, velocity and depth diversity intermediate) 	 Good mix between riffles, runs and pools Relatively diverse velocity and depth of flow 	 Riffles, runs and pool habitat present Diverse velocity and depth of flow present (i.e., slow, fast, shallow and deep water)
Habitat	 Riffle substrate composition: prédominantly gravel with high percentage of sand < 5% cobble 	 Riffle substrate composition: predominantly small cobble, gravel and sand 5-24% cobble 	 Riffle substrate composition: good mix of gravel, cobble, and rubble material 25-49% cobble 	 Riffle substrate composition: cobble, gravel, rubble, boulder mix with little sand > 50% cobble
	Riffle depth < 10 cm for large mainstem areas	Riffle depth 10-15 cm for large mainstem areas	Riffle depth 15-20 cm for large mainstem areas	 Riffle depth > 20 cm for large mainstem areas
	 Large pools generally < 30 cm deep (< 61 cm for large mainstem areas) and devoid of overhead cover/structure 	 Large pools generally 30-46 cm deep (61-91 cm for large mainstem areas) with little or no overhead cover/structure 	 Large pools generally 46-61 cm deep (91-122 cm for large mainstem areas) with some overhead cover/structure 	 Large pools generally > 61 cm deep (> 122 cm for large mainstem areas) with good overhead cover/structure
	 Extensive channel alteration and/or point bar formation/enlargement 	 Moderate amount of channel alteration and/or moderate increase in point bar formation/enlargement 	Slight amount of channel alteration and/or slight increase in point bar formation/enlargement	 No channel alteration or significant point bar formation/enlargement
	• Riffle/Pool ratio 0.49:1 ≤ ; ≥ 1.51:1	 Riffle/Pool ratio 0.5-0.69:1; 1.31-1.5:1 	• Riffle/Pool ratio 0.7-0.89:1; 1.11-1.3:1	Riffle/Pool ratio 0.9-1.1:1
NP	 Summer afternoon water temperature > 27°C 	 Summer afternoon water temperature 24-27°C 	 Summer afternoon water temperature 20-24°C 	 Summer afternoon water temperature < 20°C
Point range		≠ 3 □ 4	□ 5 □ 6	

	Substrate fouling level: High (> 50%)	 Substrate fouling level: Moderate (21-50%) 	Substrate fouling level: Very light (11-20%)	Substrate fouling level: Rock underside (0-10%)
Water	Brown colourTDS: > 150 mg/L	Grey colourTDS: 101-150 mg/L	Slightly grey colourTDS: 50-100 mg/L	Clear flow TDS: < 50 mg/L
Quality	 Objects visible to depth < 0.15 m below surface 	Objects visible to depth 0.15-0.5 m below surface	 Objects visible to depth 0.5-1.0 m below surface 	Objects visible to depth > 1.0 m below surface
	Moderate to strong organic odour	 Slight to moderate organic odour 	Slight organic odour	No odour
Point range		□ 3 □ 4	□ 5 □ 6	

Riparian Habitat	Narrow riparian area (mostly non-woody vegetation		area predominantly but with major gaps	 Forested buffer generally > 31 m wide along major portion of both banks 		 Wide (> 60 m) mature forested buffer along both banks 	
Conditions	 Canopy coverage: < 50% shading (30% for mainstem areas) 	0	coverage: shading (30-44% for instem areas)	 Canopy coverage: 60-79% shading (45-59% for large mainstem areas) 		 Canopy coverage: > 80% shading (> 60% for lar mainstem areas) 	
Point range			2 🗆 3		5		6 🛛 7
Additional not	tes:			Total	overall_sco	ore (0 - 42)= 27
		Ranking	Poor (<13)	Fair (13-24)	Good (2	25-34)	Excellent (>35)
					27		

Evaluation Category	Poor	Fair	Good	Excellent
	• Wetted perimeter < 40% of bottom channel width (< 45% for large mainstem areas)	 Wetted perimeter 40-60% of bottom channel width (45- 65% for large mainstem areas) 	 Wetted perimeter 61-85% of bottom channel width (66- 90% for large mainstem areas) 	 Wetted perimeter > 85% of bottom channel width (> 90% for large mainstem areas)
Physical Instream	 Dominated by one habitat type (usually runs) and by one velocity and depth condition (slow and shallow) (for large mainster) areas, few riffles present, runs and pools dominant, velocity and depth-diversity low) 	 Few pools present, riffles and runs dominant. velocity and depth generally slow and shallow (for large mainstem areas, runs and pools dominant, velocity and depth diversity intermediate) 	 Good mix between riffles, runs and pools Relatively diverse velocity and depth of flow 	 Riffles, runs and pool habitat present Diverse velocity and depth of flow present (i.e., slow, fast, shallow and deep water)
Habitat	Riffle substrate composition: predominantly gravel with high percentage of sand < 5% cobble	 Riffle substrate composition: predominantly small cobble, gravel and sand 5-24% cobble 	 Riffle substrate composition: good mix of gravel, cobble, and rubble material 25-49% cobble 	 Riffle substrate composition: cobble, gravel, rubble, boulder mix with little sand > 50% cobble
7	 Riffle depth < 10 cm for large mainstem areas 	Riffle depth 10-15 cm for large mainstem areas	 Riffle depth 15-20 cm for large mainstem areas 	 Riffle depth > 20 cm for large mainstem areas
	 Large pools generally < 30 cm deep (< 61 cm for large mainstem areas) and devoid of overhead cover/structure 	 Large pools generally 30-46 cm deep (61-91 cm for large mainstem areas) with little or no overhead cover/structure 	 Large pools generally 46-61 cm deep (91-122 cm for large mainstem areas) with some overhead cover/structure 	 Large pools generally > 61 cm deep (> 122 cm for large mainstem areas) with good overhead cover/structure
	Extensive channel alteration and/or point bar formation/enlargement	 Moderate amount of channel alteration and/or moderate increase in point bar formation/enlargement 	Slight amount of channel alteration and/or slight increase in point bar formation/enlargement	 No channel alteration or significant point bar formation/enlargement
	• Riffle/Pool ratio 0.49:1 ≤ ; ≥ 1.51:1	 Riffle/Pool ratio 0.5-0.69:1; 1.31-1.5:1 	 Riffle/Pool ratio 0.7-0.89:1; 1.11-1.3:1 	Riffle/Pool ratio 0.9-1.1:1
NA	 Summer afternoon water temperature > 27°C 	 Summer afternoon water temperature 24-27°C 	 Summer afternoon water temperature 20-24°C 	 Summer afternoon water temperature < 20°C
Point range	□ 0 □ 1 □ 2	≠ 3 □ 4	□ 5 □ 6	0708

	 Substrate fouling level: High (> 50%) 	 Substrate fouling level: Moderate (21-50%) 	 Substrate fouling level: Very light (11-20%) 	Substrate fouling level: Rock underside (0-10%)
Water	Brown colourTDS: > 150 mg/L	Grey colourTDS: 101-150 mg/L	Slightly grey colourTDS: 50-100 mg/L	Clear flow TDS: < 50 mg/L
Quality	 Objects visible to depth < 0.15 m below surface 	 Objects visible to depth 0.15-0.5 m below surface 	• Objects visible to depth 0.5-1.0 m below surface	Objects visible to depth > 1.0 m below surface
	Moderate to strong organic odour	Slight to moderate organic odour	Slight organic odour	No odour
Point range		□ 3 □ 4		

Riparian Habitat		area predominantly but with major gaps	 Forested buffer generally > 31 m wide along major portion of both banks 		1	60 m) mature I buffer along both
Conditions Canopy coverage S0% shading (3) mainstem areas) 	0% for large 50-60%			 Canopy coverage: 60-79% shading (45-59% for large mainstem areas) 		coverage: nading (> 60% for large m areas)
Point range		2 🗆 3	4] 5] 6 🗆 7
Additional notes:			Tota	l overall sc	o re (0 - 4	2) = 27
	Ranking	Poor (<13)	Fair (13-24) Good		(25-34)	Excellent (>35)
				27	2	

General Site Characteristics	Project Code/Phase: PN 16059
Date: They 5, 2016	Stream/Reach: Reach 5
Weather: Sunny 33°C	Location: Feedmint Cheek
Field Staff: AD ER	Watershed/Subwatershed: Carp River
	te Sketch:
Reach break	$\langle -q(7 -) \rangle$
×——× Cross-section	
> Flow direction	$1 \uparrow 1 \downarrow 5 $
∼ Riffle	
Pool	in with the fields
Island/bar	elds VV Fields
######## Eroded bank	531
Undercut bank	54
XXXXXX Rip rap/stabilization	
x····x····x Fence	
Culvert	
Swamp	A company of the second s
₩₩₩ Grasses	
C) Tree	
Flow Type	
H1 Standing water	a han a second a star a second and a second se
H2 Scarcely perceptible flow	
H3 Smooth surface flow	
H4 Upwelling	
H5 Rippled	Y . I .
H6 Unbroken standing wave	$\nabla \psi$
H7 Broken standing wave	$\sqrt{1}$ $\sqrt{1}$
H8 Chute	Tractil
H9 Free fall	V Traini
Substrate	
S1 Silt	Jul SI
S2 Sand	YU TW
S3 Gravel	S V
S5 Large cobble	3 C C C C C C C C C C C C C C C C C C C
	8 3
S7 Large boulder	B. A.
S8 Bimodal	La Carlore Car
S9 Bedrock/till	Cleve A A
Other	
BM Benchmark TR Terrace	
FC Flood chute BOS Bottom of slope	Y
FP Floodplain TOS Top of slope	
GC Grade control VWC Valley wall contact	
KP Knick point WDJ Woody debris jam	
Additional notes: straightened chauncel	
3	Is reaches GEO MORPHIX
more ener room must mar a	
	Centropitaday Eantro Science Observations

Completed by: <u>AD, tR</u> Checked by: _____

Reach Characteristics		Project Co	de/Phase: 👂	nillas	9		Geomorphology Earth Science Observations		
Date: July 5,2016	Stream	/Reach:	Reach	5					
Weather: Mainly Sunny 33°C	Locatio	n:	Feeduri	11 Creel	L				
Field staff: AD ER	Waters	hed/Subwatershed:	Carp River						
UTM (Upstream) 426383,46mE, 5015021.22mN	UTM (C	Downstream)	425598	r0.34 m	F, 50	1548415	58 m N		
Land Use Valley Type Channel Type Chan	(Table 4)	C Flow Type (Table 5)	Grour	ndwater	Evi	idence:			
Riparian Vegetation		Aquatic/Instream V	egetation			Water Qua	lity		
	able 7)	Type (Table8) 2 Woody Debris - Present in Cutbar - Present in Channe - Not Present -	Name a	WD: WDJ/50	m:		Odour (T		
Channel Characteristics									
Sinuosity (Type) Sinuosity (Degree) Gradient I	Number of C	hannels RUN	Clay/Silt	Sand	Gravel	Cobble	Boulder	Parent	Rootlets
(Table 9) (Table 10) (Table 11)	(Table 12)	Riffle Subst	rate 🛛		Ø				Y
Entrenchment Type of Bank Failure Downs's Classification		Poiel Subst	rate 🛱						
(Table 13) (Table 14) 2 (Table 15) d		Bank Materia	al 🗹						
Bankfull Width (m)	m) [.6	RUN RUN 1.80 1.65		ik Angle) — 30	Bank Er		Notes:		
Bankfull Depth (m) 0.54 0.42 Wetted Depth (n) Riffle/Pool Spacing (m) NA % Riffles: 5 % Pools: (Rwy)	95 Mea	ander Amplitude:	Ū	30 – 60 50 – 90 Undercut	□ 5 – 3 □ 30 – □ 60 –	60%	-Straight -flowing	nten-ec	4
Pool Depth (m) Wetled NG BF 328 Riffle Length (m) Undercuts	(m) 0.12	Comments: - al	iruns (one sw	all riff	(e)			
Veloctity (m/s) ND+ weaswred	ADV / Estima	- omber	Hed						
					< 0				

Completed by: <u>EK</u> Checked by: _____

Rapid Geor	morr	ohic Assessment	Proiec	t Code/Phas	se:	GEO PN IV	1	D R P H I X			
Date:	-7	-		Stream/Rea		0					
	2	uly 5,2016				Real	<u>~ ~ ~</u>	Crich			
Weather:	Ma	inly sunny 33°C		Locat							
Field Staff:	A), ER	Waters	shed/Subwatersh	ned:	Carp	Rive	<u> </u>			
2		Geom	orphic Indicator			Pres	ent?	Factor			
Process	No.	Description				Yes	No	Value			
	1	Lobate bar					V				
	2	Coarse materials in riffles eml	pedded			\checkmark					
Evidence of	3	Siltation in pools				\checkmark					
Aggradation	4	Medial bars					V	- 4/2			
(AI)	5	Accretion on point bars					V	14			
	6	Poor longitudinal sorting of be	ed materials			\checkmark					
	7	Deposition in the overbank zo	one			\checkmark	1				
				Sum of indic	es =	4	3	0.57			
	1	Exposed bridge footing(s)			1		NA				
	2	Exposed sanitary / storm sew	er / pipeline / etc.								
	3	Elevated storm sewer outfall(V				
	4	Undermined gabion baskets /					N/A				
Evidence of	5	Scour pools downstream of c		lets							
Degradation	6	Cut face on bar forms					V Ola				
(DI)	7	Head cutting due to knick poi	nt migration					V 98			
	8	Terrace cut through older bar					V				
	9	Suspended armour layer visib					V				
	10	Channel worn into undisturbe	ed overburden / bedrock				V				
				Sum of indi	ces =	0	8	0			
	1	Fallen / leaning trees / fence	posts / etc.				\checkmark				
	2	Occurrence of large organic d				V					
	3	Exposed tree roots				, v					
North Inc. 1	4	Basal scour on inside meande	er bends	2 2 2			V				
Evidence of	5	Basal scour on both sides of c					V	1/1			
Widening	6	Outflanked gabion baskets / o	· · · · · · · · · · · · · · · · · · ·				N/A	10			
(WI)	7	Length of basal scour >50% th					V				
	8	Exposed length of previously	buried pipe / cable / etc.				NA				
а 1	9	Fracture lines along top of ba	nk				V				
	10	Exposed building foundation					NA				
		1		Sum of indi	ces =		6	0.17			
	1	Formation of chute(s)					V				
Evidence of	2	Single thread channel to mult	tiple channel			A	V				
Planimetric	3	Evolution of pool-riffle form t					V				
Form	4	Cut-off channel(s)					V	01-1			
Adjustment	5	Formation of island(s)					V	14			
(PI)	6	Thalweg alignment out of pha	ase meander form				V				
	7	Bar forms poorly formed / re									
				Sum of indi	ces =	0	7	6			
Additional notes	:			Stability Index	(SI) =	(AI+DI+V	VI+PI)/4	= 0.19			
			Condition	In Regime	In Tra	ansition/S	tress	In Adjustment			
			SI score =	0.00 - 0.20		0.21 - 0.		0.41			
					/						
			C	Completed by: A	DIE	K Che	ecked b	y:			

Project Number: Rapid Stream Assessment Technique 4N16059 Stream/Reach: Date: 5201b Feedmill Check Location: Weather: 33°C Sunna Watershed/Subwatershed: Carp River Field Staff: Evaluation Excellent Fair Good Poor Category • 50-70% of bank network • 71-80% of bank network >80% of bank network stable • < 50% of bank network stable No evidence of bank · Recent bank sloughing, stable stable sloughing, slumping or failure Infrequent signs of bank slumping or failure frequently · Recent signs of bank sloughing, slumping or failure sloughing, slumping or failure observed fairly common Stream bend areas stable · Stream bend areas very stable Stream bend areas unstable · Stream bend areas highly • Height < 0.6 m above stream • Outer bank height 0.6-0.9 m unstable Outer bank height 0.9-1.2 m above stream bank (<1.2 m above stream bank above stream bank • Outer bank height 1.2 m for large mainstem areas) (1.2-1.5 m above stream bank above stream bank (1.5-2.1 m above stream Bank overhang < 0.6 m (2.1 m above stream bank for bank for large mainstem for large mainstem areas) Bank overhang 0.6-0.8 m large mainstem areas) areas) • Bank overhang 0.8-0.9 m Bank overhang > 0.8-1.0 m Channel Exposed tree roots · Exposed tree roots old, large · Young exposed tree roots Young exposed tree roots Stability abundant common predominantly old and large, and woody • Generally 0-1 recent large tree • 4-5 recent large tree falls per smaller young roots scarce > 6 recent large tree falls per stream mile 2-3 recent large tree falls per falls per stream mile stream mile stream mile • Bottom 1/3 of bank is • Bottom 1/3 of bank is highly • Bottom 1/3 of bank is • Bottom 1/3 of bank is generally highly resistant generally highly resistant generally highly erodible erodible material plant/soil matrix or material plant/soil matrix or material Plant/soil matrix severely material compromised Plant/soil matrix compromised Channel cross-section is Channel cross-section is Channel cross-section is Channel cross-section is generally V- or U-shaped generally trapezoidallygenerally V- or U-shaped generally trapezoidallyshaped shaped 10 🗌 11 **□** 9 Ø Point range

	 > 75% embedded (> 85% embedded for large mainstem areas) 	 50-75% embedded (60-85% embedded for large mainstem areas) 	• 25-49% embedded (35-59% embedded for large mainstem areas	 Riffle embeddedness < 25% sand-silt (< 35% embedded for large mainstem areas)
	Few, if any, deep pools Pool substrate composition: > 81% sand-silt	 Low to moderate number of deep pools Pool substrate composition: 60-80% sand-silt 	 Moderate number of deep pools Pool substrate composition: 30-59% sand-silt 	 High number of deep pools (> 61 cm deep) (> 122 cm deep for large mainstem areas) Pool substrate composition: < 30% sand-silt
Channel Scouring/ Sediment Deposition	Streambed streak marks and/or "banana"-shaped sediment deposits common	 Streambed streak marks and/or "banana"-shaped sediment deposits common 	Streambed streak marks and/or "banana"-shaped sediment deposits uncommon	 Streambed streak marks and/or "banana"-shaped sediment deposits absent
Deposition	 Fresh, large sand deposits very common in channel Moderate to heavy sand deposition along major portion of overbank area 	 Fresh, large sand deposits common in channel Small localized areas of fresh sand deposits along top of low banks 	 Fresh, large sand deposits uncommon in channel Small localized areas of fresh sand deposits along top of low banks 	 Fresh, large sand deposits rare or absent from channel No evidence of fresh sediment deposition on overbank
	 Point bars present at most stream bends, moderate to large and unstable with high amount of fresh sand 	 Point bars common, moderate to large and unstable with high amount of fresh sand 	 Point bars small and stable, well-vegetated and/or armoured with little or no fresh sand 	 Point bars few, small and stable, well-vegetated and/or armoured with little or no fresh sand
Point range		□ 3 🛱 4		

Evaluation Category	Poor	Fair	Good	Excellent
	 Wetted perimeter < 40% of bottom channel width (< 45% for large mainstem areas) 	 Wetted perimeter 40-60% of bottom channel width (45- 65% for large mainstem areas) 	 Wetted perimeter 61-85% of bottom channel width (66- 90% for large mainstem areas) 	Wetted perimeter > 85% of bottom channel width (> 90% for large mainstem areas)
Physical Instream	 Dominated by one habitat type (usually runs) and by one velocity and depth condition (slow and shallow (for large mainstem areas, few riffles present, runs and pools dominant, velocity and depth diversity low) 	• Few pools present, riffles and runs dominant. velocity and depth generally slow and shallow (for large mainstem areas, runs and pools dominant, velocity and depth diversity intermediate)	 Good mix between riffles, runs and pools Relatively diverse velocity and depth of flow 	 Riffles, runs and pool habitat present Diverse velocity and depth of flow present (i.e., slow, fast, shallow and deep water)
Habitat	 Riffle substrate composition: predominantly gravel with high percentage of sand < 5% cobble 	 Riffle Substrate composition: predominantly small cobble, gravel and sand S-24% cobble 	 Riffle substrate composition: good mix of gravel, cobble, and rubble material 25-49% cobble 	 Riffle substrate composition: cobble, gravel, rubble, boulder mix with little sand > 50% cobble
	 Riffle depth < 10 cm for large mainstem areas 	Riffle depth 10-15 cm for large mainstem areas	 Riffle depth 15-20 cm for large mainstem areas 	 Riffle depth > 20 cm for large mainstem areas
	Large pools generally < 30 cm deep (< 61 cm for large mainstem areas) and devdid of overhead cover/structure	 Large pools generally 30-46 cm deep (61-91 cm for large mainstem areas) with little or no overhead cover/structure 	 Large pools generally 46-61 cm deep (91-122 cm for large mainstem areas) with some overhead cover/structure 	 Large pools generally > 61 cm deep (> 122 cm for large mainstem areas) with good overhead cover/structure
	Extensive channel alteration and/or point bar formation/enlargement	 Moderate amount of channel alteration and/or moderate increase in point bar formation/enlargement 	 Slight amount of channel alteration and/or slight increase in point bar formation/enlargement 	No channel alteration or significant point bar formation/enlargement
	 Riffle/Pool ratio 0.49.1 ≤ ; ≥ 1.51:1 	 Riffle/Pool ratio 0.5-0.69:1; 1.31-1.5:1 	 Riffle/Pool ratio 0.7-0.89:1; 1.11-1.3:1 	Riffle/Pool ratio 0.9-1.1:1
NA	 Summer afternoon water temperature > 27°C 	 Summer afternoon water temperature 24-27°C 	 Summer afternoon water temperature 20-24°C 	Summer afternoon water temperature < 20°C
Point range	□ 0 □ 1 Ø 2	□ 3 □ 4	□ 5 □ 6	□ 7 □ 8

Water Quality	Substrate fouling level: High (> 50%)	Substrate fouling level: Moderate (21-50%) Substrate fouling level: Very light (11-20%)		Substrate fouling level: Rock underside (0-10%)	
	 Brown colour TDS: > 150 mg/L 	Grey colour TDS: 101-150 mg/L	Slightly grey colourTDS: 50-100 mg/L	 Clear flow TDS: < 50 mg/L 	
	• Objects visible to depth < 0.15 m below surface	Objects visible to depth 0.15-0.5 m below surface	 Objects visible to depth 0.5-1.0 m below surface 	 Objects visible to depth 1.0 m below surface 	
	Moderate to strong organic odour	Slight to moderate organic odour	Slight organic odour	No odour	
Point range		3 4	口 5 粒 6		

Riparian Habitat	Narrow riparian area mostly non-woody vegetation	woode	 Riparian area predominantly wooded but with major localized gaps 		 Forested buffer generally > 31 m wide along major portion of both banks 		 Wide (> 60 m) mature forested buffer along both banks 			
Conditions	Canopy coverage: < 50% shading (30% mainstem areas)	for large 50-60%	/ coverage: 6 shading (30 nainstem are		Canopy cover 60-79% share large mains	ding (45-		1	•	60% for large
Point range		1 [2 🗆	3		₽ □	5] 6 [] 7
Additional not				3	Total o	verall s	core (0 - 4	2) = _	23	
		Ranking	Poor	(<13)	Fair (13-	24)	Good	(25-34)	Excel	lent (>35)
							23			

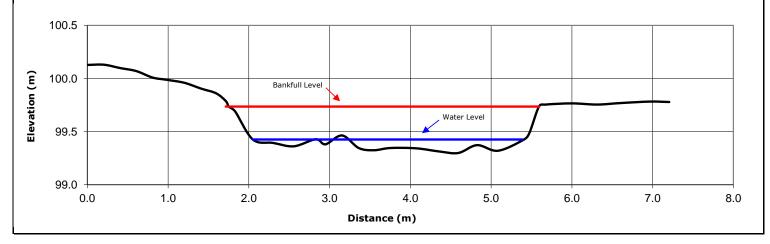
Appendix D Detailed Assessment Summary

Detailed Geomorphological Assessment Summary

Project Number:	PN16059	Date:	July 6, 2016
Client:	DSEL	Length Surveyed (m):	104.1
Location:	Feedmill Creek	# of Cross-Sections:	8

Drainage Area:	inage Area: Not measured		Dominant Riparian Vegetation Type:	Cedar forest	
Geology/Soils: Glaciolacus		custrine	ustrine Extent of Riparian Cover:		
Surrounding Land Use:	Industri	al/forest	Width of Riparian Cover:	> 10 channel widths	
Valley Type:	Partially	confined	Age Class of Riparian Vegetation:	Mature (>30 years)	
Dominant Instream Vegetatio	on Type:	Rooted submergent	Extent of Encroachment into Channel:	No encroachment	
Portion of Reach with Vegetation:		10%	Density of Woody Debris:	Moderate	
Hydrology					
Measured Discharge (m ³ /s):		#DIV/0!	Calculated Bankfull Discharge (m ³ /s):	1.64	
Modelled 2-year Discharge (m ³ /s):		Not modelled	Calculated Bankfull Velocity (m/s):	1.05	
Modelled 2-year Velocity (m/s):		Not modelled			
Profile Characteristics			Planform Characteristics		
		0.33	Sinuosity:	1.83	
Bankfull Gradient (%):					
Bankfull Gradient (%): Channel Bed Gradient (%)):	0.17	Meander Belt Width (m):	Not measured	
• • •):	0.17 2.63	Meander Belt Width (m): Radius of Curvature (m):	Not measured Not measured	
Channel Bed Gradient (%)):				

Bank Characteristics Minimum Maximum Average Minimum Maximum Average Bank Height (m): 0.25 0.65 0.38 Bank Angle (deg): 30 90 Not measured 65 Torvane Value (kg/cm²): Root Depth (m): 0.05 0.30 0.18 Not measured Penetrometer Value (kg/cm³): Root Density (%): 4 35 17 Bank Material (range): Clay to sand 0.28 Bank Undercut (m): 0.00 0.04


Cross-Sectional Characteristics

	Minimum	Maximum	Average	
Bankfull Width (m):	3.33	4.69	3.79	
Average Bankfull Depth (m):	0.32	0.54	0.41	
Bankfull Width/Depth (m/m):	6	13	10	
Wetted Width (m):	2.05	3.34	2.59	
Average Water Depth (m):	0.06	0.32	0.15	
Wetted Width/Depth (m/m):	6	52	24	
Entrenchment (m):	Not measured			
Entrenchment Ratio (m/m):	Not measured			
Maximum Water Depth (m):	0.08	0.40	0.22	
Manning's <i>n</i> :		0.030		

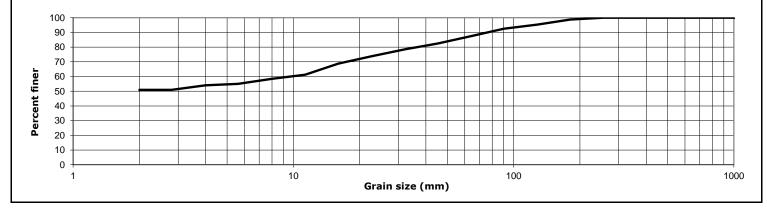
Photograph at cross section 4 (looking downstream)

Representative Cross-Section # 4

Substrate Characteristics

Particle Size (mm)	
D ₁₀ :	
D ₅₀ :	
D ₈₄ :	

<2


<2

50.8

Subpavement: Particle shape: Embeddedness (%): Particle range (riffle): Particle Range (pool):

Gravel, cobble Subangular 10 - 100% Sand to cobble Clay to cobble

Cumulative Particle Size Distribution

Channel Thresholds						
Flow Competency (m/s):		Tractive Force at Bankfull (N/m ²):	13.24			
for D ₅₀ :	N/A	Tractive Force at 2-year flow (N/m ²):	Not modelled			
for D ₈₄ :	1.20	Critical Shear Stress (D ₅₀) (N/m ²):	N/A			
Unit Stream Power at Bankfull (W/m ²):	13.96					

General Field Observations

Channel Description

Reach 3 follows a meandering path within a continuous cedar forest. The reach is partially confined, has a moderate gradient and a meander amplitude of approximately 15 m. Riffles and pools are well-developed. Some riffles within the reach but outside of the surveyed extent were much longer than those surveyed. Bed substrate ranged from clay to large cobbles. Sand deposits were noted on meander bends. Bank angles ranged from 60 to 90° with undercuts up to 0.5 m but typically in the range of 0.20 m. Bank erosion was 30-60%. Most banks were well supported by both fine and large woody root matrix. Woody debris was frequently encountered in the channel.

