Appendix 5 Fluvial Geomorphological Detailed Information

FORM /	GEOMORPHIC INDICATOR			PRESENT? (v)	
PROCESS	Num	Description	No	Yes	VALUE
	1	Lobate Bar	Х		
Evidence of	2	Coarse materials in riffles embedded	Х		
Aggradation	3	Siltation in pools	Х		
(AI)	4	Medial bars	Х		
	5	Accretion on point bars	Х		
	6	Poor longitudinal sorting of bed materials		Х	
	7	Deposition in the overbank zone	Х		
		Sum of Indicies:	6	1	0.14
	1	Exposed bridge footing(s)	NA		
Evidence of	2	Exposed sanitary / storm sewer / pipeline / etc.	Х		
Degradation	3	Elevated storm sewer outfall(s)		Х	
(DI)	4	Undermined gabion baskets / concrete aprons / etc.		Х	
	5	Scour pools d/s of culverts / storm sewer outlets		Х	
	6	Cut face on bar forms	Х		
	7	Head cutting due to knick point migration	Х		
	8	Terrace cut through older bar material	Х		
Γ	9	Suspended armour layer visible in bank	Х		
	10	Channel worn into undisturbed overburden / bedrock		Х	
		Sum of Indicies:	5	4	0.44
	1	Fallen / leaning trees / fence posts / etc.		Х	
Evidence of	2	Occurrence of large organic debris		Х	
Widening	3	Exposed tree roots		Х	
(WI)	4	Basal scour on inside meander bends	Х		
	5	Basal scour on both sides of channel through riffle	Х		
	6	Gabion baskets / concrete walls / etc. out flanked	Х		
	7	Length of basal scour >50% through subject reach	Х		
	8	Exposed length of previously buried pipe / cable / etc.	Х		
	9	Fracture lines along top of bank	Х		
	10	Exposed building foundation	NA		
		Sum of Indicies:	6	3	0.33
	1	Formation of chute(s)		Х	
Evidence of	2	Single thread channel to multiple channel	Х		
Planimetric	3	Evolution of pool-riffle form to low bed relief form		Х	
Form	4	Cut-off channel(s)	Х		
Adjustment	5	Formation of island(s)	Х		
(PI)	6	Thalweg alignment out of phase meander form	Х		
	7	Bar forms poorly formed / reworked / removed		Х	
		Sum of Indicies:	4	3	0.43
		59	TARII ITV		0.34

~ Factor Value = # YES / Total #

~ STABILITY INDEX (SI) = (AI+DI+WI+PI)/4

SI \leq 0.20 = In Regime

SI 0.21 - 0.40 = Transitional or Stressed

SI \geq 0.41 = In Adjustment

RAPID GEOMORPHIC ASSESSMENT (RGA)

Date: 03-Jun-08 Site: **Richmond**, Ottawa Location:

geomorphic

VG-R2

JS

Crew:

\approx PARISH R	APID ST	REAM	Assess	IENT ((RSAT)
Date: 03-Jun-08	Site:	VG-R2	Crew:	JS	
Location:	Richmond, ON				
Weather Description:	rain, c	louds	Recorder:		JS
	Excellent	Good	Fair	Poor	Points
Channel Stability	9 - 11	6 - 8	3 - 5	0 - 2	4
Scour / Deposition	7 - 8	5 - 6	3 - 4	0 - 2	2
Instream Habitat	7 - 8	5 - 6	3 - 4	0 - 2	3
Water Quality	7 - 8	5 - 6	3 - 4	0 - 2	2
Riparian Conditions	6 - 7	4 - 5	2 - 3	0 - 2	4
Biological Indicators	7 - 8	5 - 6	3 - 4	0 - 2	2
				Total:	17

Stability Rankings: <20 = LOW 20 - 35 = MODERATE >35 = HIGH

Channel Dimensions (Measured / Estimated)

Bankfull Width (m)	4, 6, 4.5, 9, 5, 10	Bankfull Depth (m)	0.6,1.2, 1, 1.5
Wetted Width (m)	3.5, 4, 5, 7	Wetted Depth (m)	0.2, 0.3, 0.5, 0.4, 1
Gradient	low-moderate	Entrenchment (m)	low
Substrate (Pool)	sand/clay	Substrate (Riffle)	sand/pebbles
Straight / Sinuous	low sinuosity	Bend Radius	NA
Bank Height (m)	1.5-2 m	Bank Angle (°)	30-50
Bank Material	clay/silt	Vegetation	grasses, herbs
Pool - Riffle Spacing (n	n) <u>5.0-7.0</u>	Woody Debris	minor
Channel Hardening		rip rap on banks	
Channel Disturbance	ro	ad culverts and farm crossing culverts	3
Distance Walked	all	Photos Taken	yes
Comments	Some areas had lots of instre	eam vegetation. A few trees on	the top of banks.

	PARISH eomorphic	RAPID G	EOMORI
Date:	03-Jun-08	Site:	VG-R2-1
Locatio	n:	Richmond, Ottav	va
Weathe	r Description	: rain	

FORM /	GEOMORPHIC INDICATOR			NT? (√)	FACTOR
PROCESS	Num	Description	No	Yes	VALUE
	1	Lobate Bar	Х		
Evidence of	2	Coarse materials in riffles embedded	Х		
Aggradation	3	Siltation in pools		Х	
(AI)	4	Medial bars	Х		
	5	Accretion on point bars	Х		
	6	Poor longitudinal sorting of bed materials		Х	
	7	Deposition in the overbank zone	Х		
	-	Sum of Indicies:	5	2	0.29
	-	T			
	1	Exposed bridge footing(s)	NA		
Evidence of	2	Exposed sanitary / storm sewer / pipeline / etc.	NA		
Degradation	3	Elevated storm sewer outfall(s)	NA		
(DI)	4	Undermined gabion baskets / concrete aprons / etc.	Х		
	5	Scour pools d/s of culverts / storm sewer outlets	NA		
	6	Cut face on bar forms	Х		
	7	Head cutting due to knick point migration	Х		
	8	Terrace cut through older bar material	Х		
	9	Suspended armour layer visible in bank	Х		
	10	Channel worn into undisturbed overburden / bedrock	Х		
		Sum of Indicies:	6	0	0
	1	Fallen / leaning trees / fence posts / etc.	Х		
_ · ·	-			1	

		s i			1
Evidence of	Evidence of 2 Occurrence of large organic debris		Х		
Widening	3	Exposed tree roots	Х		
(WI) 4 Basal scour on inside meander bends					
	5	Basal scour on both sides of channel through riffle	Х		
	6	Gabion baskets / concrete walls / etc. out flanked	Х		
	7	Length of basal scour >50% through subject reach	Х		
	8	Exposed length of previously buried pipe / cable / etc.	NA		
	9	Fracture lines along top of bank		Х	
	10	Exposed building foundation	NA		
		Sum of Indicies:	7	1	0.13

	1	Formation of chute(s)	Х		
Evidence of	2	Single thread channel to multiple channel	Х		
Planimetric	3	Evolution of pool-riffle form to low bed relief form	Х		
Form	4	Cut-off channel(s)	Х		
Adjustment	5	Formation of island(s)	Х		
(PI)	6	Thalweg alignment out of phase meander form	Х		
	7	Bar forms poorly formed / reworked / removed		X	
		Sum of Indicies:	6	1	0.14

0.14

Condition:

STABILITY INDEX:

In Regime

~ Factor Value = # YES / Total #

~ STABILITY INDEX (SI) = (AI+DI+WI+PI)/4

SI \leq 0.20 = In Regime

SI 0.21 - 0.40 = Transitional or Stressed

SI \geq 0.41 = In Adjustment

COMMENTS:

PHIC ASSESSMENT (RGA) Crew: JS

Recorder: JS

$\mathbf{z}_{\text{geomorphic}}^{\text{PARISH}}$	RAPID S	TREAM	Assess	IENT ((RSAT)
Date: 03-Jun-08 Location:	Site: Richmond. Ol	VG-R2-1 N	Crew:	JS	
Weather Description:	rain,	clouds	Recorder:		JS
	Excellent	Good	Fair	Poor	Points
Channel Stability	9 - 11	6 - 8	3 - 5	0 - 2	4
Scour / Deposition	7 - 8	5 - 6	3 - 4	0 - 2	2
Instream Habitat	7 - 8	5 - 6	3 - 4	0 - 2	2
Water Quality	7 - 8	5 - 6	3 - 4	0 - 2	2
Riparian Conditions	6 - 7	4 - 5	2 - 3	0 - 2	4
Biological Indicators	7 - 8	5 - 6	3 - 4	0 - 2	2
Stability Rankings:	<20 = LOW 20) - 35 = MODERATI	E >35 = HIGH	Total:	16

Channel Dimensions (Measured / Estimated)

Bankfull Width (m)	4-4.5	Bankfull Depth (m)	0.6, 0.8, 1
Wetted Width (m)	2, 2.5,4	Wetted Depth (m)	0.15, 0.3, 0.4
Gradient	low-moderate	Entrenchment (m)	low-moderate
Substrate (Pool)	NA	Substrate (Riffle)	silt/clay/sand
Straight / Sinuous	very low	Bend Radius	NA
Bank Height (m)	1.5-2 m	Bank Angle (°)	30-50
Bank Material	silt/clay	Vegetation	tall grasses, herbs
Pool - Riffle Spacing (m)	NA	Woody Debris	none
Channel Hardening		rip rap on banks	
Channel Disturbance		rip rap	
Distance Walked	300 m	Photos Taken	yes

Comments Lots of instream vegetation, moderate flow velocites. No fish observed in the channel.

PARISH geomorphic		RAPID	GEOMOR
e:	03-Jun-08	Site:	VG-R2-2

MORPHIC ASSESSMENT (RGA)

Crew:

Recorder: JS

Location: **Richmond**, Ottawa Weather Description: rain

Dat

FORM /

JS

FACTOR

GEOMORPHIC INDICATOR PRESENT? (か) PROCESS Description No Yes VALUE Num Х 1 Lobate Bar Evidence of 2 Х Coarse materials in riffles embedded Aggradation 3 Siltation in pools Х Х 4 (AI) Medial bars 5 Х Accretion on point bars 6 Х Poor longitudinal sorting of bed materials Х 7 Deposition in the overbank zone Sum of Indicies: 5 2 0.29 1 Exposed bridge footing(s) NA Evidence of Х 2 Exposed sanitary / storm sewer / pipeline / etc. Degradation Х 3 Elevated storm sewer outfall(s) (DI) 4 Undermined gabion baskets / concrete aprons / etc. Х 5 NA Scour pools d/s of culverts / storm sewer outlets 6 Cut face on bar forms Х Х 7 Head cutting due to knick point migration Х 8 Terrace cut through older bar material 9 Suspended armour layer visible in bank Х 10 Channel worn into undisturbed overburden / bedrock Х Sum of Indicies: 7 1 0.13 Х 1 Fallen / leaning trees / fence posts / etc. Evidence of 2 Х Occurrence of large organic debris Х Widening 3 Exposed tree roots (WI) 4 Basal scour on inside meander bends Х 5 Х Basal scour on both sides of channel through riffle Gabion baskets / concrete walls / etc. out flanked Х 6 7 Х Length of basal scour >50% through subject reach 8 Exposed length of previously buried pipe / cable / etc. NA 9 Fracture lines along top of bank Х 10 Exposed building foundation NA Sum of Indicies: 8 0 0 Х 1 Formation of chute(s) Evidence of 2 Single thread channel to multiple channel Х Planimetric 3 Evolution of pool-riffle form to low bed relief form Х Form 4 Cut-off channel(s) Х Adjustment 5 Х Formation of island(s) (PI) 6 Thalweg alignment out of phase meander form Х 7 Bar forms poorly formed / reworked / removed Х Sum of Indicies: 6 1 0.14

COMMENTS:

STABILITY INDEX:

0.14

Condition:

In Regime

~ Factor Value = # YES / Total #

~ STABILITY INDEX (SI) = (AI+DI+WI+PI)/4

SI \leq 0.20 = In Regime

SI 0.21 - 0.40 = Transitional or Stressed

SI \geq 0.41 = In Adjustment

₩ PARISH F	APID S	FREAM	Assess	IENT ((RSAT)
Date: 03-Jun-08 .ocation:	Site: Richmond. ON	VG-R2-2	Crew:	JS	
Weather Description:	rain,	clouds	Recorder:		JS
	Excellent	Good	Fair	Poor	Points
Channel Stability	9 - 11	6 - 8	3 - 5	0 - 2	5
Scour / Deposition	7 - 8	5 - 6	3 - 4	0 - 2	2
Instream Habitat	7 - 8	5 - 6	3 - 4	0 - 2	2
Water Quality	7 - 8	5 - 6	3 - 4	0 - 2	2
Riparian Conditions	6 - 7	4 - 5	2 - 3	0 - 2	4
Biological Indicators	7 - 8	5 - 6	3 - 4	0 - 2	2
				Total:	17
Stability Rankings:	<20 = LOW 20	- 35 = MODERATE	>35 = HIGH		

Channel Dimensions (Measured / Estimated)

Bankfull Width (m)	2-4	Bankfull Depth (m) 0.7-1.2
Wetted Width (m)	1.5-2.5	Wetted Depth (m	n) 0.5-0.6
Gradient	low	Entrenchment (r	n) low
Substrate (Pool)	NA	Substrate (Riffle) silt/clay
Straight / Sinuous	straight	Bend Radius	NA
Bank Height (m)	1.5-2 m	Bank Angle (°)	35-55
Bank Material	silt	Vegetation	tall grasses, herbs, shrubs on south side
Pool - Riffle Spacing (m)	NA	Woody Debris	minor
Channel Hardening		rip rap on banks	
Channel Disturbance		rip rap	
Distance Walked	300 m	Photos Taken	yes
Comments	Lots of instrea	am vegetation, very slow flo	w velocites.

FORM /		GEOMORPHIC INDICATOR	PRESE	NT? (\)	FACTOR
PROCESS	Num	Description	No	Yes	VALUE
	1	Lobate Bar		Х	
Evidence of	2	Coarse materials in riffles embedded	Х		
Aggradation	3	Siltation in pools	Х		
(AI)	4	Medial bars	Х		
	5	Accretion on point bars	Х		
	6	Poor longitudinal sorting of bed materials		Х	
	7	Deposition in the overbank zone	Х		
		Sum of Indicies:	5	2	0.29
	1	Exposed bridge footing(s)	Х		
Evidence of	2	Exposed sanitary / storm sewer / pipeline / etc.	Х		
Degradation	3	Elevated storm sewer outfall(s)		Х	
(DI)	4	Undermined gabion baskets / concrete aprons / etc.	Х		
	5	Scour pools d/s of culverts / storm sewer outlets		Х	
	6	Cut face on bar forms	Х		
	7	Head cutting due to knick point migration	Х		
	8	Terrace cut through older bar material	Х		
	9	Suspended armour layer visible in bank	Х		
	10	Channel worn into undisturbed overburden / bedrock	Х		
		Sum of Indicies:	8	2	0.2
	1	Fallen / leaning trees / fence posts / etc.		Х	
Evidence of	2	Occurrence of large organic debris		Х	
Widening	3	Exposed tree roots		Х	
(WI)	4	Basal scour on inside meander bends	Х		
	5	Basal scour on both sides of channel through riffle	Х		
	6	Gabion baskets / concrete walls / etc. out flanked	NA		
	7	Length of basal scour >50% through subject reach	Х		
	8	Exposed length of previously buried pipe / cable / etc.	NA		
	9	Fracture lines along top of bank	Х		
	10	Exposed building foundation	NA		
		Sum of Indicies:	4	3	0.43
	1	Formation of chute(s)	Х		
Evidence of	2	Single thread channel to multiple channel		Х	
Planimetric	3	Evolution of pool-riffle form to low bed relief form	Х		
Form	4	Cut-off channel(s)	X		
Adjustment	5	Formation of island(s)		Х	
(PI)	6	Thalweg alignment out of phase meander form	Х		
	7	Bar forms poorly formed / reworked / removed		Х	
		Sum of Indicies:	4	3	0.43

COMMENTS:

Condition:

STABILITY INDEX:

Transitional

0.38

~ Factor Value = # YES / Total #

~ STABILITY INDEX (SI) = (AI+DI+WI+PI)/4

SI \leq 0.20 = In Regime

SI 0.21 - 0.40 = Transitional or Stressed

SI \geq 0.41 = In Adjustment

RAPID GEOMORPHIC ASSESSMENT (RGA) Date:

03-Jun-08 Site: VG-R3 **Richmond**, Ottawa

Location: Weather Description: rain

Recorder: JS

geomorphic

JS

Crew:

₩ PARISH R	APID S	TREAM	Assess	IENT ((RSAT)
Date: 03-Jun-08	Site: Richmond Ol	VG-R3	Crew:	JS	
Weather Description:	rain,	clouds	Recorder:		JS
	Excellent	Good	Fair	Poor	Points
Channel Stability	9 - 11	6 - 8	3 - 5	0 - 2	4
Scour / Deposition	7 - 8	5 - 6	3 - 4	0 - 2	3
Instream Habitat	7 - 8	5 - 6	3 - 4	0 - 2	3
Water Quality	7 - 8	5 - 6	3 - 4	0 - 2	2
Riparian Conditions	6 - 7	4 - 5	2 - 3	0 - 2	5
Biological Indicators	7 - 8	5 - 6	3 - 4	0 - 2	3
				Total:	20
Stability Rankings:	<20 = LOW 20) - 35 = MODERATE	>35 = HIGH		

Channel Dimensions (Measured / Estimated)

Bankfull Width (m)	4, 6, 4.5, 7	Bankfull Depth (m)	0.6, 0.8-1
Wetted Width (m)	2, 2.5, 3, 4	Wetted Depth (m)	0.15, 0.3, 0.6
Gradient	low	Entrenchment (m)	low, moderate
Substrate (Pool)	NA	Substrate (Riffle)	silt/pebbles/sand
Straight / Sinuous	low	Bend Radius	NA
Bank Height (m)	silt	Bank Angle (°)	20-60
Bank Material	silt	Vegetation	tall grasses, shrubs, trees
Pool - Riffle Spacing (m)	NA	Woody Debris	none
Channel Hardening			
Channel Disturbance		crushed fram culvert, black pvc pipe	9
Distance Walked	all	Photos Taken	yes
Comments	Lo	ts of instream vegetation.	

Weather Description: rain Recorder: JS						
FORM /		GEOMORPHIC INDICATOR	PRE	SENT? (১)	FACTOR	
PROCESS	Num	Description	No	Yes	VALUE	
	1	Lobate Bar	Х			
Evidence of	2	Coarse materials in riffles embedded	X			
Aggradation	3	Siltation in pools	Х			
(AI)	4	Medial bars	Х			
	5	Accretion on point bars	Х			
	6	Poor longitudinal sorting of bed materials		Х		
	7	Deposition in the overbank zone	Х			
		6	1	0.14		
	1	Exposed bridge footing(s)	NA	\		
Evidence of	2	Exposed sanitary / storm sewer / pipeline / etc.	NA	\		
Degradation	3	Elevated storm sewer outfall(s)	NA	\		
(DI)	4	Undermined gabion baskets / concrete aprons / etc.	NA	\		
	5	Scour pools d/s of culverts / storm sewer outlets	Х			
	6	Cut face on bar forms	Х			
	7	Head cutting due to knick point migration	Х			
	8	Terrace cut through older bar material	Х			
	9	Suspended armour layer visible in bank	Х			
	10	Channel worn into undisturbed overburden / bedrock	Х			
		Sum of Indicies:	6	0	0	
	1	Fallen / leaning trees / fence posts / etc.		Х		
Evidence of	2	Occurrence of large organic debris		Х		
Widening	3	Exposed tree roots		Х		
(WI)	4	Basal scour on inside meander bends	Х			
	5	Basal scour on both sides of channel through riffle	Х			
	6	Gabion baskets / concrete walls / etc. out flanked	NA	\		
	7	Length of basal scour >50% through subject reach	Х			
	8	Exposed length of previously buried pipe / cable / etc.	NA	\		
	9	Fracture lines along top of bank	Х			
	10	Exposed building foundation	NA			
		Sum of Indicies:	4	3	0.43	
	1	Formation of chute(s)	Х			
Evidence of	2	Single thread channel to multiple channel	Х			
Planimetric	3	Evolution of pool-riffle form to low bed relief form	Х			
Form	4	Cut-off channel(s)	Х			
Adjustment	5	Formation of island(s)	Х			
(PI)	6	Thalweg alignment out of phase meander form	Х			
	7	Bar forms poorly formed / reworked / removed		Х		
		Sum of Indicies:	6	1	0.14	
COMMENTS:		\$1	ABILI	TY INDEX:	0.18	
		Condi	tion:	In R	legime	

RAPID GEOMORPHIC ASSESSMENT (RGA)

Crew:

JS

VG-R3-1

PARISH geomorphic

Location:

03-Jun-08

Site:

Richmond, Ottawa

Date:

~ Factor Value = # YES / Total #

~ STABILITY INDEX (SI) = (AI+DI+WI+PI)/4

 $SI \leq 0.20 =$ In Regime

SI 0.21 - 0.40 = Transitional or Stressed

SI \geq 0.41 = In Adjustment

$\mathbf{z}_{\text{geomorphic}}^{\text{PARISH}}$	APID S	TREAM	Assess	IENT ((RSAT)
Date: 03-Jun-08	Site: Biohmond O	VG-R3-1	Crew:	JS	
Weather Description:	cle	oudy	Recorder:		JS
	Excellent	Good	Fair	Poor	Points
Channel Stability	9 - 11	6 - 8	3 - 5	0 - 2	4
Scour / Deposition	7 - 8	5 - 6	3 - 4	0 - 2	2
Instream Habitat	7 - 8	5 - 6	3 - 4	0 - 2	3
Water Quality	7 - 8	5 - 6	3 - 4	0 - 2	2
Riparian Conditions	6 - 7	4 - 5	2 - 3	0 - 2	4
Biological Indicators	7 - 8	5 - 6	3 - 4	0 - 2	3
	-			Total:	18
Stability Rankings:	<20 = LOW 20	- 35 = MODERATE	>35 = HIGH	-	

Channel Dimensions (Measured / Estimated)

2.5, 3, 4	Bankfull Depth (m)	0.2, 0.35, 0.3
1.5-3.5	Wetted Depth (m)	0.15, 0.05
low	Entrenchment (m)	low
NA	Substrate (Riffle)	silt/sand
straight	Bend Radius	NA
0.4-0.6	Bank Angle (°)	15-40
silt/clay/sound	Vegetation	Trees, shrubs
NA	Woody Debris	major
	none	
s	mall farm crossing culvert between fields	
all	Photos Taken	yes
high water level	s due to recent rain, trees in cha	nnel.
	2.5, 3, 4 1.5-3.5 low NA straight 0.4-0.6 silt/clay/sound NA sall high water level	2.5, 3, 4 Bankfull Depth (m) 1.5-3.5 Wetted Depth (m) low Entrenchment (m) NA Substrate (Riffle) NA Substrate (Riffle) straight Bend Radius 0.4-0.6 Bank Angle (°) silt/clay/sound Vegetation NA Woody Debris none small farm crossing culvert between fields all Photos Taken high water levels due to recent rain, trees in chart

Weather Description:rainRecorder:JS					
FORM /		GEOMORPHIC INDICATOR	PRES	ENT? (५)	FACTOR
PROCESS	Num	Description	No	Yes	VALUE
	1	Lobate Bar	Х		
Evidence of	2	Coarse materials in riffles embedded	Х		
Aggradation	3	Siltation in pools	Х		
(AI)	4	Medial bars	Х		
	5	Accretion on point bars	Х		
	6	Poor longitudinal sorting of bed materials		Х	
	7	Deposition in the overbank zone	Х		
		Sum of Indicies:	6	1	0.14
	1	Exposed bridge footing(s)	NA		
Evidence of	2	Exposed sanitary / storm sewer / pipeline / etc.	NA		
Degradation	3	Elevated storm sewer outfall(s)	NA		
(DI)	4	Undermined gabion baskets / concrete aprons / etc.	NA		
	5	Scour pools d/s of culverts / storm sewer outlets	Х		
	6	Cut face on bar forms	Х		
	7	Head cutting due to knick point migration	Х		
	8	Terrace cut through older bar material	Х		
	9	Suspended armour layer visible in bank	Х		
	10	Channel worn into undisturbed overburden / bedrock	Х		
		Sum of Indicies:	6	0	0
	1	Fallen / leaning trees / fence posts / etc.		Х	
Evidence of	2	Occurrence of large organic debris		Х	
Widening	3	Exposed tree roots		Х	
(WI)	4	Basal scour on inside meander bends	Х		
	5	Basal scour on both sides of channel through riffle	Х		
	6	Gabion baskets / concrete walls / etc. out flanked	NA		
	7	Length of basal scour >50% through subject reach	Х		
	8	Exposed length of previously buried pipe / cable / etc.	NA		
	9	Fracture lines along top of bank	Х		
	10	Exposed building foundation	NA		
		Sum of Indicies:	4	3	0.43
	1	Formation of chute(s)	Х		
Evidence of	2	Single thread channel to multiple channel	Х		
Planimetric	3	Evolution of pool-riffle form to low bed relief form	Х		
Form	4	Cut-off channel(s)	Х		
Adjustment	5	Formation of island(s)	Х		
(PI)	6	Thalweg alignment out of phase meander form	Х		
	7	Bar forms poorly formed / reworked / removed		X	
		Sum of Indicies:	6	1	0.14
COMMENTS:		ST	ABILIT	Y INDEX:	0.18
		Condi	tion:	In R	egime

RAPID GEOMORPHIC ASSESSMENT (RGA)

Date: 03-Jun-08 Site: **Richmond, Ottawa** Location: Weather Description: rain

geomorphic

VG-R3-2

Crew:

JS

~ Factor Value = # YES / Total #

~ STABILITY INDEX (SI) = (AI+DI+WI+PI)/4 SI \leq 0.20 = In Regime

SI 0.21 - 0.40 = Transitional or Stressed SI \geq 0.41 = In Adjustment

	RAPID S	TREAM	Assess	IENT	(RSAT)
<i>Date:</i> 03-Jun-08	Site:	VG-R3-2	Crew:	JS	
Location:	Richmond, C	N			
Weather Description:	clou	udy, rain	Recorder:		JS
	Excellent	Good	Fair	Poor	Points
Channel Stability	9 - 11	6 - 8	3 - 5	0 - 2	5
Scour / Deposition	7 - 8	5 - 6	3 - 4	0 - 2	4
Instream Habitat	7 - 8	5 - 6	3 - 4	0 - 2	2
Water Quality	7 - 8	5 - 6	3 - 4	0 - 2	2
Riparian Condition	s 6 - 7	4 - 5	2 - 3	0 - 2	3
Biological Indicator	r s 7 - 8	5 - 6	3 - 4	0 - 2	3
<u>-</u>	-			Total:	19
Stability Rankings:	<20 = LOW	20 - 35 = MODERATE	>35 = HIGH		

Channel Dimensions (Measured / Estimated)

Bankfull Width (m)	2.3-3.3	Bankfull Depth (m)	0.2, 0.25
Wetted Width (m)	0, 1, 1.5	Wetted Depth (m)	0, 0.05, 0.1
Gradient	very low	Entrenchment (m)	low
Substrate (Pool)	NA	Substrate (Riffle)	clay
Straight / Sinuous	straight	Bend Radius	NA
Bank Height (m)	0.70-0.8	Bank Angle (°)	5.0-35
Bank Material	clay/fine sand, very fine sand	Vegetation	Trees, shrubs
Pool - Riffle Spacing (m)NA	Woody Debris	major
Channel Hardening		none	
Channel Disturbance	small	farm crossing culvert between fields	3
Distance Walked	all	Photos Taken	yes
Comments	tree lined o	ditch between crop fields.	

FORM /		GEOMORPHIC INDICATOR	PRESE	NT? (১	FACTOR
PROCESS	Num	Description	No	Yes	VALUE
	1	Lobate Bar	Х		
Evidence of	2	Coarse materials in riffles embedded		Х	
Aggradation	3	Siltation in pools		Х	
(AI)	4	Medial bars	Х		
, í	5	Accretion on point bars	Х		
ſ	6	Poor longitudinal sorting of bed materials		Х	
	7	Deposition in the overbank zone	Х		
		Sum of Indicies:	4	3	0.43
	1	Exposed bridge footing(s)	NA		
Evidence of	2	Exposed sanitary / storm sewer / pipeline / etc.	NA		
Degradation	3	Elevated storm sewer outfall(s)	NA		
(DI)	4	Undermined gabion baskets / concrete aprons / etc.	NA		
	5	Scour pools d/s of culverts / storm sewer outlets	NA		
	6	Cut face on bar forms	Х		
	7	Head cutting due to knick point migration	Х		
	8	Terrace cut through older bar material	Х		
	9	Suspended armour layer visible in bank	Х		
	10	Channel worn into undisturbed overburden / bedrock	Х		
		Sum of Indicies:	5	0	0
	1	Fallen / leaning trees / fence posts / etc.	Х		
Evidence of	2	Occurrence of large organic debris	Х		
Widening	3	Exposed tree roots	Х		
(WI)	4	Basal scour on inside meander bends	Х		
	5	Basal scour on both sides of channel through riffle	Х		
	6	Gabion baskets / concrete walls / etc. out flanked	NA		
	7	Length of basal scour >50% through subject reach	Х		
	8	Exposed length of previously buried pipe / cable / etc.	NA		
	9	Fracture lines along top of bank	Х		
	10	Exposed building foundation	NA		
		Sum of Indicies:	7	0	0
	1	Formation of chute(s)	Х		
Evidence of	2	Single thread channel to multiple channel	Х		
Planimetric	3	Evolution of pool-riffle form to low bed relief form	Х		
Form	4	Cut-off channel(s)	Х		
Adjustment	5	Formation of island(s)		Х	
(PI)	6	Thalweg alignment out of phase meander form	Х		
	7	Bar forms poorly formed / reworked / removed		Х	
		Sum of Indicies:	6	1	0.29
OMMENTS:		ST	TABILITY	INDEX:	0.18

RAPID GEOMORPHIC ASSESSMENT (RGA)

Date: 03-Jun-08 Site: Location: Richmond, Ot

PARISH

geomorphic

JED1

Crew:

JS

~ STABILITY INDEX (SI) = (AI+DI+WI+PI)/4

SI \leq 0.20 = In Regime

SI 0.21 - 0.40 = Transitional or Stressed

\approx PARISH R	APID ST	REAM	Assess	MENT	(RSAT)
Date: 03-Jun-08	Site: Bichmond ON	JED1	Crew:	JS	
Weather Description:	cloud	y, rain	Recorder:		JS
	Fycellent	Good	Fair	Poor	Points
Channel Stability	9 - 11	6 - 8	3 - 5	0 - 2	5
Scour / Deposition	7 - 8	5 - 6	3 - 4	0 - 2	2
Instream Habitat	7 - 8	5 - 6	3 - 4	0 - 2	2
Water Quality	7 - 8	5 - 6	3 - 4	0 - 2	2
Riparian Conditions	6 - 7	4 - 5	2 - 3	0 - 2	3
Biological Indicators	7 - 8	5 - 6	3 - 4	0 - 2	3
				Total:	17

Stability Rankings: <20 = LOW 20 - 35 = MODERATE >35 = HIGH

Channel Dimensions (Measured / Estimated)

Bankfull Width (m)	2-3	Bankfull Depth (m)	0.4-0.7
Wetted Width (m)	1-1.5	Wetted Depth (m)	0.1-0.3
Gradient	low	Entrenchment (m)	low
Substrate (Pool)	NA	Substrate (Riffle)	silt/clay/fine sands
Straight / Sinuous	straight	Bend Radius	NA
Bank Height (m)	1m	Bank Angle (°)	15-40
Bank Material	silt/clay	Vegetation	tall grass, herbs
Pool - Riffle Spacing (m)	NA	Woody Debris	none
Channel Hardening		none	
Channel Disturbance		ATV crossing/old wooden crossing	
Distance Walked	200 m	Photos Taken	yes
CommentsVe	ery straight swale - unifor	rm channel. Lots of instream veg	etation in clumps.

Location: Weather Descr	Rie iption:	rain Recorde	r: JS		
FORM /		GEOMORPHIC INDICATOR	PRESE	NT? (১	FACTOR
PROCESS	Num	Description	No	Yes	VALUE
	1	Lobate Bar	Х		
Evidence of	2	Coarse materials in riffles embedded		Х	
Aggradation	3	Siltation in pools		Х	
(AI)	4	Medial bars	Х		
. ,	5	Accretion on point bars	Х		
Ī	6	Poor longitudinal sorting of bed materials	Х		
	7	Deposition in the overbank zone	Х		
		Sum of Indicies:	5	2	0.29
	1	Exposed bridge footing(s)	NA		
Evidence of	2	Exposed sanitary / storm sewer / pipeline / etc.	NA		
Degradation	3	Elevated storm sewer outfall(s)	NA		
- (DI)	4	Undermined gabion baskets / concrete aprons / etc.	NA		
	5	Scour pools d/s of culverts / storm sewer outlets	NA		
1	6	Cut face on bar forms	Х		
-	7	Head cutting due to knick point migration	Х		
ľ	8	Terrace cut through older bar material	Х		
-	9	Suspended armour layer visible in bank	Х		
-	10	Channel worn into undisturbed overburden / bedrock	Х		
		Sum of Indicies:	5	0	0
	1	Fallen / leaning trees / fence posts / etc.	Х		
Evidence of	2	Occurrence of large organic debris	Х		
Widening	3	Exposed tree roots	Х		
(WI)	4	Basal scour on inside meander bends	Х		
	5	Basal scour on both sides of channel through riffle	Х		
	6	Gabion baskets / concrete walls / etc. out flanked	NA		
	7	Length of basal scour >50% through subject reach	Х		
[8	Exposed length of previously buried pipe / cable / etc.	NA		
	9	Fracture lines along top of bank	Х		
	10	Exposed building foundation	NA		
		Sum of Indicies:	7	0	0
	1	Formation of chute(s)	Х		
Evidence of	2	Single thread channel to multiple channel	Х		
Planimetric	3	Evolution of pool-riffle form to low bed relief form	Х		
Form	4	Cut-off channel(s)	Х		
Adjustment	5	Formation of island(s)	Х		
(PI)	6	Thalweg alignment out of phase meander form	Х		
	7	Bar forms poorly formed / reworked / removed		Х	
		Sum of Indicies:	6	1	0.14
COMMENTS:		ST	TABILITY	INDEX:	0.11
		Condi	tion:	In Re	eaime
			L		0

RAPID GEOMORPHIC ASSESSMENT (RGA)

03-Jun-08 Site: Date:

PARISH

geomorphic

Crew:

JS

~ Factor Value = # YES / Total #

~ STABILITY INDEX (SI) = (AI+DI+WI+PI)/4

SI \leq 0.20 = In Regime

SI 0.21 - 0.40 = Transitional or Stressed

JED3

\approx PARISH R	APID ST	REAM	Assess	MENT	(RSAT)
Date: 03-Jun-08	Site:	JED3	Crew:	JS	
Weather Description:	cloud	ly, rain	Recorder:		JS
	Excellent	Good	Fair	Poor	Points
Channel Stability	9 - 11	6 - 8	3 - 5	0 - 2	4
Scour / Deposition	7 - 8	5 - 6	3 - 4	0 - 2	2
Instream Habitat	7 - 8	5 - 6	3 - 4	0 - 2	2
Water Quality	7 - 8	5 - 6	3 - 4	0 - 2	2
Riparian Conditions	6 - 7	4 - 5	2 - 3	0 - 2	3
Biological Indicators	7 - 8	5 - 6	3 - 4	0 - 2	2
				Total:	15

Stability Rankings: <20 = LOW 20 - 35 = MODERATE >35 = HIGH

Channel Dimensions (Measured / Estimated)

Bankfull Width (m)	2-3	Bankfull Depth (m)	0.3-0.5
Wetted Width (m)	1.0-2.0	Wetted Depth (m)	0.1-0.3
Gradient	low	Entrenchment (m)	low
Substrate (Pool)		Substrate (Riffle)	silts/fine sands/organics
Straight / Sinuous	straight	Bend Radius	NA
Bank Height (m)	0.4-0.8	Bank Angle (°)	15-40
Bank Material	silt	Vegetation	tall grass, herbs
Pool - Riffle Spacing (m)	NA	Woody Debris	minor
Channel Hardening		none	
Channel Disturbance		none	
Distance Walked	all	Photos Taken	yes
Comments	swale cha	nnel - lots of instream vegetatio	on.

Richmond VG-R2

 Site Location:
 South West of Mira Crescent, started approx 30-40m US from Perth St

 Length surveyed:
 172.84
 m

 Number of cross-sections:
 5

 Date of Survey:
 10-Jun-08

Modifying Factors

 Surrounding Land Use:
 Corn fields on either side of reach

 General Riparian Vegetation:
 Tall Grasses & Herbs for approx 5m on both sides of channel

 Existing Channel Disturbances:
 None within the survey

Woody Debris:

minor

Cross-Sectional Characteristics

Range	Average
4.50 - 5.49	4.99
0.38 - 0.43	0.39
11.75 - 13.73	12.70
2.71 - 3.04	2.86
0.09 - 0.15	0.12
18.46 - 31.27	24.24
9.80 - 13.50	11.86
2.04 - 3.00	2.40
	Range 4.50 - 5.49 0.38 - 0.43 11.75 - 13.73 2.71 - 3.04 0.09 - 0.15 18.46 - 31.27 9.80 - 13.50 2.04 - 3.00

Bank Characteristics

	Range	Average
Bank Height (m)	1.5 - 1.5	1.5
Bank Angle (degrees)	17 - 38	25.7
Root Depth (cm)	12.0 - 15	13.2
Root Density (1=Low - 5=High)	2 - 2	2.0
Protected by vegetation (%)	65 - 75	69.5
Amount of undercut (cm)	0.0 - 0	0.00000
Banks with undercuts (%)		0%

Bank Materials	Torvane values (kg/cm2)
CI *	0.42
CI/Vfs	0.42
CI/Fs/Vfs	0.43
CI/Fs	0.41

* - Dominant Material

Richmond VG-R2

Bankfull Gradient:	0.15	%
Long Profile (avg)		
Planform Characteristics		

Substrate Characteristics

Particle Shape (cm)			Range	Average
	х		5 - 5	5.0
	Y		4 - 4	4.0
	Z		3 - 3	3.0
Hydraulic Roughness (cm)				
	Maximum		0 - 0	#DIV/0!
	Median		0 - 0	#DIV/0!
	Minimum		0 - 0	#DIV/0!
Embeddedness (%)			0 - 0	0.0
Sub-pavement				
cl	100	Р	0	
si	0	1cm	0	
vfs	0	1.5cm	0	
fs	0	2cm	0	
ms	0	3cm	0	
CS	0	4cm	0	
vcs	0	5cm	0	
		Bdr.	0	
Particle Sizes (cm)				

	Pebble Counts					
	D10	0.0002	mm			
	D50	0.002	mm			
	D90	0.150	mm			
D ₉₅ (mm):			0.020	0.255	0.300	0.255
D ₉₀ (mm):			0.010	0.165	0.255	0.165
D ₈₄ (mm):			0.005	0.023	0.201	0.095
D ₆₅ (mm):			0.001	0.002	0.084	0.010
D ₅₀ (mm):			0.001	0.001	0.006	0.001
D ₁₆ (mm):			0.000	0.000	0.000	0.000
D ₁₀ (mm):			0.000	0.000	0.000	0.000

Field Observations

XS-1 - Outfall along RB 6-8m US of cross section high amount of minnows in channel odd well system along LB 6-8m US (see photo) Agricultural Fields beyond both banks (corn) XS-2 - Well along LB 4m DS of Cross section Little or no particles in substrate (all clay) veg in channel along LB GPS Coordinates - 0433364, 5004418 Erosion Pins - RB 4m US, 22.5cm. LB @ XS, 20cm Well vegetated banks on both banks

Richmond VG-R2

small amount of veg in channel along LB XS-3 - Site remains constant with DS section, (bank heights, wetted widths, etc) meander bend 10m US of XS XS-4 - Aquatic veg growing in channel XS-5 - Aquatic veg growing in channel Site features very consistent throughout reach, not many comments

Richmond - VG-R3

Site Location:	Town of Richmond, East of Fortune St, First field break east of road
Length surveyed:	128.86 m
Number of cross-sections:	5
Date of Survey:	June 13/2008

Modifying Factors

Woody Debris:

Surrounding Land Use:	Natural along RB, Agri (corn) along LB
General Riparian Vegetation:	Channel is overgrown with natural grasses & herbs, both banks well vegetated with tall grasses & herbs, along Right bank Hawthorne is very prevalent along with other small shrubs
Existing Channel Disturbances:	None, Channel has likely been ditched previously

minor

Cross-Sectional Characteristics

	Range	Average
Bankfull Width (m)	4.00 - 4.65	4.28
Bankfull Depth (m)	0.23 - 0.35	0.29
Width / Depth	11.41 - 18.38	15.35
Wetted Width (m)	1.31 - 2.52	1.89
Water Depth (m)	0.07 - 0.09	0.09
Width / Depth	14.00 - 36.20	23.38
Entrenchment (m)	9.15 - 104.20	42.12
Entrenchment Ratio	1.97 - 24.81	10.01

Bank Characteristics

	Range	Average
Bank Height (m)	1.5 - 2.5	1.895
Bank Angle (degrees)	22 - 51	34.7
Root Depth (cm)	9.0 - 21	15.0
Root Density (1=Low - 5=High)	1 - 3	2.0
Protected by vegetation (%)	17 - 75	58.2
Amount of undercut (cm)	0.0 - 0	0.00000
Banks with undercuts (%)		0%

Bank Materials	Torvane values (kg/cm2)
CI *	0.42
CI/Fs/Vfs	0.21
CI/Vfs	0.48
CI/Fs	0.36
Si/Fs	0.30

* - Dominant Material

Richmond - VG-R3

Planform Characteristics						
Long Profile (avg)						
Bankfull Gradient:		0.83	%			
Substrate Characteristics						
Particle Shape (cm)				Range		Average
		х		0 - 0		0.0
		Y		0 - 0		0.0
		z		0 - 0		0.0
Hydraulic Roughness (cm)						
		Maximum		0 - 0		0.0
		Median		0-0		0.0
Embeddedness (%)		wimmum		0-0		0.0
Sub-pavement				0 - 0		0.0
	cl	100	Р	0		
	si	0	1cm	0		
	vfs	0	1.5cm	0		
	fs	0	2cm	0		
	ms	0	3cm	0		
	VCS	0	4cm	0		
		· ·	Bdr.	0		
Particle Sizes (cm)						
		Pebble Cou	unts		Grain Size	Analysis
	D10	3.1500	mm			
	D50	0.0110	mm		Not Sampl	ed
	D90	XS1	XS2	XS3	XS4	XS5
D ₉₀ (mm):		0.04760	0.04760	12.5	0.0476	
D ₈₄ (mm):		0.02278	0.02278	9.286	0.02278	
D ₆₅ (mm):		0.00190	0.00190	0.05966667	0.0043	
D ₅₀ (mm):		0.00080	0.00080	0	0.0025	
D ₁₆ (mm):		0.00026	0.00026	0.00032	0.000427	
D ₁₀ (mm):		0.00016	0.00016	0.0002	0.000267	
Substrate Size	Distr	ibution - F	Richmond	VG R3		

Field Observations

XS1 - Soft unconsolidated substrate Lots of tall emergent grasses/reeds growing in channel Very little flow, water is mirky No rocks in subs, all fine materials XS2 - Heavy vegetation along both banks & in channel Erosion Pins - LB @ XS - 16.5cm, LB 5m DS - 21cm XS3 - Same conditions as XS 1&2, heavy veg, low flow XS4 - Heavy veg, low flow, wetted edge approx 5-7m from edge of field XS5 - XS is in forested area, much different than previous 4m, much less ground veg, more exposed soil

Richmond - VG-R3-2

Site Location:	Town of Richmond, East of Fortune St, Field Break Running E-W
Length surveyed:	67.17 m
Number of cross-sections:	5
Date of Survey:	June 13/2008

Modifying Factors

Surrounding L	and Use:
---------------	----------

General Riparian Vegetation:

Existing Channel Disturbances:

Agricultural Fields on either side of channel, channel is heavily vegetated with mature trees growing right in channel & along banks, some herbs and shrubs are prevalent as well Mature trees and some small shrubs None

Woody Debris:

Minor throughout in channel & along banks, debris jams approx every 20m

Cross-Sectional Characteristics

	Range	Average
Bankfull Width (m)	2.30 - 3.28	2.80
Bankfull Depth (m)	0.21 - 0.26	0.24
Width / Depth	9.26 - 13.03	11.57
Wetted Width (m)	0.80 - 1.40	1.10
Water Depth (m)	0.03 - 0.04	0.04
Width / Depth	23.70 - 31.93	27.82
Entrenchment (m)	102.30 - 103.28	102.80
Entrenchment Ratio	31.49 - 44.48	37.37
Manning's n		0.33

Bank Characteristics

	Range	Average
Bank Height (m)	0.75 - 0.8	0.755
Bank Angle (degrees)	5 - 35	23.5
Root Depth (cm)	9.0 - 21	15.3
Root Density (1=Low - 5=High)	2 - 2	2.0
Protected by vegetation (%)	40 - 60	51.0
Amount of undercut (cm)	0.0 - 0	
Banks with undercuts (%)		

Bank Materials Torvane values (kg/cm2) CI * 0.40 CI/Fs/Vfs 0.23

* - Dominant Material

Richmond - VG-R3-2

Plant	form Characteristics						
Long	Profile (avg)						
Bank	full Gradient:		0.46	%			
Subs	trate Characteristics						
Partic	le Shape (cm)				Range		Average
			х		0 - 0		0.0
			Y		0 - 0		0.0
			Z		0 - 0		0.0
Hydra	ulic Roughness (cm)						
-			Maximum		0 - 0		0.0
			Median		0 - 0		0.0
			Minimum		0 - 0		0.0
Embe Sub-r	adeaness (%)				0 - 0		0.0
ous p		cl	100	Р	(J	
		si	0	1cm	()	
		vfs	0	1.5cm	()	
		fs	0	2cm	()	
		ms	0	3cm 4cm	())	
		VCS	0	5cm	()	
				Bdr.	()	
Partic	le Sizes (cm)						
		D40	Pebble Co	unts		Grain Size	e Analysis
		D10	0.0002	mm			
		D90	0.0500	mm			
			XS1	XS2	XS3	XS4	XS5
	D90 (mm):		0.047600	0.047600	0.047600	0.047600	
	D84 (mm):		0.022780	0.022780	0.022780	0.022780	
	D65 (mm).		0.003700	0.003700	0.003700	0.003700	
	D16 (mm):		0.000320	0.000320	0.000320	0.000320	
	D10 (mm):		0.000200	0.000200	0.000200	0.000200	
	Substra	te Siz	e Distribu	ution -			1
	Ric	hmor	nd VG R3-	2			
Total Percent		+ 0 + 0 + 0	9	Total9	41.79 (1.79)	Cumulative Percent 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00	

50.00 40.00 30.00 20.00 10.00 0.00 50.00 40.00 30.00 20.00 10.00 0.00 Total Perce Total % ---- Cumulative % <u>H</u>L. 1.2-1.59 < .0002 .02-.049 .2-.49 60-.79 2.4-3.19 4.8-6.39 9.6-12.79 > 409.6 .001-.0049 19.2-25.59 38.4-51.19 102.4-204.79 Particle Size (cm)

Field Observations

XS1 - Located in one of the few areas with water in channel Wood debris in channel both US & DS of XS Mature trees in channel (growing0 XS2 - Difficult to pin banks due to lack of water in channel Major debris in channel, mature trees growing in channel TOB XS GPS - 0433943 Erosion Pins - RB @ XS - 25.5cm, LB 4m DS - 30cm XS3 - No water Mature trees in channel and along banks

XS4 - Reach is dry, heavily wooded, very thick

XS5 - SEE XS 1-4

Richmond JED-1

Site Location:	Richmond Ontario, South of Ottawa St, Middle of Large Idle field,
Length surveyed:	98.39 m
Number of cross-sections:	5
Date of Survey:	13-Jun-08

Modifying Factors

 Surrounding Land Use:
 Idle Fields on either side

 General Riparian Vegetation:
 No mature trees or shrubs, lots of tall and short herbs and grasses on banks as well as in channel

 Existing Channel Disturbances:
 Likely ditched

Woody Debris:

None

Cross-Sectional Characteristics

	Range	Average
Bankfull Width (m)	2.24 - 2.85	2.45
Bankfull Depth (m)	0.21 - 0.24	0.23
Width / Depth	0.00 - 13.64	8.67
Wetted Width (m)	0.63 - 1.09	0.87
Water Depth (m)	0.05 - 0.08	0.06
Width / Depth	0.00 - 14.62	10.12
Entrenchment (m)	5.74 - 102.40	30.20
Entrenchment Ratio	2.40 - 42.67	10.03
Manning's n		0.04

Bank Characteristics

	Range	Average
Bank Height (m)	0.75 - 0.75	0.75
Bank Angle (degrees)	12 - 27	21.4
Root Depth (cm)	10.0 - 14	12.4
Root Density (1=Low - 5=High)	2 - 2	2.0
Protected by vegetation (%)	50 - 60	53.5
Amount of undercut (cm)	0.0 - 0	0.00000
Banks with undercuts (%)	0	0%

Torvane values (kg/cm2)
0.31
0.33
0.28
0.31

* - Dominant Material

Richmond JED-1

Planform Characteristics		
Long Profile (avg)		
Bankfull Gradient:	0.13	%

Substrate Characteristics

Particle Shape (cm)				Range	Average
		Х		0 - 0	0.0
		Y		0.0 0.0	
		z			
Hydraulic Roughness (cm)					
	Ма	ximum		0 - 0	0.0
		Median		0 - 0	0.0
	Mi	nimum		0 - 0	0.0
Embeddedness (%)				0 - 0	0.0
Sub-pavement					
	cl	100	Р	0	
	si	0	1cm	0	
v	fs	0	1.5cm	0	
	fs	0	2cm	0	
n	ns	0	3cm	0	
	cs	0	4cm	0	
V	cs	0	5cm	0	
			Bdr.	0	

Particle Sizes (mm)

	Р	ebble Cou	Grain Size Analysis			
	D10	0.0003	mm			
	D50	0.00	mm			
	D90	1.56	mm			
	х	S1	XS2	XS3	XS4	XS5
D90 (mm):		0.0476	7.662857	0.0103	0.0476	0.0476
D84 (mm):		0.0228	0.09466	0.00508	0.02278	0.02278
D65 (mm):		0.0046	0.0043	0.0028	0.0043	0.0043
D50 (mm):		0.0032	0.0025	0	0.0025	0.0025
D16 (mm):		0.0006	0.000427	0.00032	0.000427	0.0004267
D10 (mm):		0.0004	0.000267	0.0002	0.000267	0.0002667

Field Observations

XS1 - TOB - GPS Coordinates - 0434161, 5002959 Erosion Pins - RB 5m US - 30cm, RB @ XS - 30cm XS4 - Low flow, lots of veg on banks, Veg growing in channel XS5 - Reach is basically a drainage channel between two Agri fields (idle) Channel is heavily vegetated with tall grasses on both banks Little or no particles in substrate (all clay)

Summary of Reach Data

Reach	Sub-	Gradient	Run	Pool	Riffle	Flats	Culvert	Depth (m)			Width (m)				Substrate		Length (m)	
	Reach							Bankfull	Late Spring	Summer	Fall	Bankfull	Late Spring	Summer	Fall	Pools	Riffles	
VG-R1	all	Low																601
VG-R2	all	Low	85	5	10			0.6-1.5	0.2-1			4.0-10	3.5-7			sand	sand, gravel	1407
	а		100								0.5				3.2	silt, sand, clay		126
	b		100							0.4	0.3-0.4			2.7	1.8	silt, sand, clay		289
	С		90	10						0.4	0.2-0.3			3.4	2.9	silt, sand, clay		229
	d		100							0.2-0.4	0.2-0.3				1.8	silt, sand, clay		118
	е		100							0.3	0.25			4.2	2.9	silt, sand on clay	,	170
	f		80		20					0.2	0.15-0.2			4.4	3.1	sand, silt on clay	boulder, cobble	109
	g		90	5	5					0.2-0.4	0.15-0.2				2.6	silt, sand, clay	gravel, cobble	230
	h		90		10					0.2-0.3	0.1-0.15			2.4-4.6	4	clay, silt	boulder, cobble	135
VG-R2-1	all	Low- Moderate	100					0.6-1.0	0.15-0.4			4-4.5	2.0-4			sand, silt, clay		884
	а																	677
	b		100							0.1-0.3	0.05		2.0-3	1.0-2	1.4	muck, clay		207
VG-R2-2	all	Low	95	4	1			0.7-1.2	0.5-0.6	0.3-1.0	1.14	2.0-4.0	1.5-2	1.5-3	2.3	clay, silt		494
VG-R3	all	Low	100					0.6-1.0	0.15-0.6	0.05-0.10	0.05-0.10	4.0-7	2.0-4	0.25-0.50	0.25-0.50	silt, sand, clay, gravel		352
	а		99				1			0.05 - 0.10	0.05 - 0.10				0.4	clay, sand		111
	b		100							0.02-0.05	0.02-0.05				1.4	clay, sand		241
VG-R3-1	all	Low	100					0.2-0.35	0.05-0.15	Dry	Dry	2.5-4	1.5-3.5	Dry	Dry	clay, sand, silt		247
VG-R3-2	all	Very Low	100					0.2-0.25	0-0.1			2.3-3.3	0-1.5			clay, detritus		1228
	а		99				1			0-0.05	Dry			0-1.5	Dry	clay, detritus		593
	b		100							0.05-0.10	Dry			1-1.5	Dry	clay, detritus		635
JED-1	all	Low	100					0.4-0.7	1.0-2	0.25-0.50	Dry	2-3.5	0.1-0.3	0.5-1.0	Dry	clay, sand, silt		343
JED-2	all	Low	100					0.5-0.6	1.5-3	0.05-0.10	Dry	2-3.5	0.2-0.3	0-0.4	Dry	clay, sand, silt		370

To: Bruce Kilgour, Kilgour & Associates Ltd.

Date: 29 January, 2010

From: Benjamin C. Wilkins, M.Sc. and John Parish, P.Geo.

Project: 03.08.02

Subject: Refined meander belt width for Richmond Lands, Reach VG-R3-1 and VG-R3-2

INTRODUCTION

As part of the existing conditions report for the Mattamy Richmond Lands prepared by Kilgour & Associates Ltd. in 2008, PARISH Geomorphic Ltd. was retained to perform a broad geomorphic assessment of the site. These initial assessments of meander belt width were determined using aerial photograph analysis. It has since been requested that PARISH perform an additional in-depth survey of reaches VG-R3-1 and VG-R3-2 (**Figure 1**), in order to make possible the refinement of meander belt width calculations particular to these sites. To this end, PARISH has undertaken a field investigation of the reaches in question, collected the necessary data, and completed further, more refined, calculations of meander belt width.

Figure 1. Watercourse reach delineation on Mattamy Richmond Lands.

INITIAL MEANDER BELT WIDTH ASSESSMENT

The initial assessment of meander belt widths determined for Mattamy Richmond Lands was performed using aerial photograph analysis. The results of this study are presented in Kilgour & Associates Ltd., 2008. Historic aerial photographs of the reaches, dating back to 1946 were used where possible. Many of the reaches had been straightened prior to 1946, including VG-R3-1 and VG-R3-2. As such, direct analysis of aerial photographs was not possible and surrogate reaches were used where feasible. No adequate surrogates were found for the 1st and 2nd order watercourses within the Mattamy Richmond Lands study area, which includes reach VG-R3-1 (1st order) and VG R3-2 (2nd order). However, surrogate reaches were identified for the 1st and 2nd order reaches within the Jock River Reach 2 Subwatershed in a similar geologic setting to the reaches on Mattamy Richmond Lands. Using this information, all 1st order reaches were assigned a meander belt width of 25 m, while 2nd order reaches were assigned a meander belt width of 30 m.

REFINED MEANDER BELT WIDTH ASSESSMENT

In order to refine the meander belt widths for reaches VG-R3-1 and VG-R3-2, a field survey was conducted at these reaches on December 8th, 2009 (cross sections for the six sites are shown in Appendix I). From this survey, the bankfull width of reach VG-R3-1 was determined to be 3.2 m, and bankfull depth 0.28 m. Bankfull width of VG-R3-2 was determined to average 3.0 m and bankfull depth 0.25 m. Bankfull discharge is approximately 0.5 m³/s in both reaches. Using the field data and meander geometry equations detailed in FISRWG, 2001, we calculated a meander belt width of 19 m for reach VG-R3-1, and 18 m for VG-R3-2 (**Table 1**). The calculated widths include a 20% factor of safety to account for future land-use change leading to hydrologic flow-regime alteration, and natural increases in channel migration. This factor of safety is a standard protocol as detailed in PARISH, 2004, and is applied to all calculations of this nature

	Reach VG-R3-1	Reach VG-R3-2
Bankfull width (m)	3.2	3.0
Bankfull depth (m)	0.28	0.25
Meander Belt Width (m)	19	18

Table 1. Summary of pertinent field data and meander belt widths.

The meander belt width values listed in **Table 1** are based on the current form and function of the channel. These values should only be applied to the reaches in their present conditions. Should post-development conditions change the flow regime currently in place, possibly by routing storm-water runoff more quickly to the channel, or increasing the flow regime in any other way, it will be necessary to reassess the reaches in question. It is our understanding that the North-South section of reach VG-R3-2 is to be designed to convey a 100 year flow of 1.5 m³/s, while the East-West section will be constructed to convey 4.8 m³/s for the same 100 year event. This discrepancy in planned flow is indicative that flow regime will be altered, specifically for the E-W section of the reach. If this is the case, and a natural channel design is

to be put in place, the meander belt width will need to be recalculated in keeping with the planned increase in flow through the channel.

Because these calculations are based on additional data, the meander belt widths can be taken in confidence as refined values of the previously determined meander belt widths for reaches VG-R3-1 and VG-R3-2. The refined values were determined by a reach specific study and are not applicable to other reaches in the Mattamy Richmond Lands study area.

Sincerely,

B.C. Will

Benjamin C. Wilkins <digitally signed>

GI Ø

John Parish <digitally signed>

REFERENCES

FISRWG, 2001. Stream Corridor Restoration: Principles, Processes, and Practices. By the Federal Interagency Stream Restoration Working Group (FISRWG)(15 Federal agencies of the US gov't). GPO Item No. 0120-A; SuDocs No. A 57.6/2:EN 3/PT.653. ISBN-0-934213-59-3.

Kilgour & Associates, 2008. Natural Environment Existing Conditions, Mattamy Richmond Lands.

PARISH Geomorphic Ltd., 2004. Belt Width Delineation Procedures. Submitted to Toronto and Region Conservation Authority.

- APPENDIX I -

FIELD SURVEY CROSS SECTIONS

Reach VG-R3-2 (North-South section)

Reach VG-R3-2 (East-West section)

