

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT

FOR

THEBERGE HOMES DEVELOPMENT 21 WITHROW AVENUE

CITY OF OTTAWA

PROJECT NO.: 17-931

JANUARY 2019 – REV. 4 © DSEL

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT FOR THEBERGE HOMES DEVELOPMENT

JANUARY 2019 - REV. 4 TABLE OF CONTENTS

21 WITHROW AVENUE

1.0	INTRODUCTION	1
1.1	Existing Conditions	2
1.2	Required Permits / Approvals	
2.0	GUIDELINES, PREVIOUS STUDIES, AND REPORTS	4
2.1	Existing Studies, Guidelines, and Reports	
3.0	WATER SUPPLY SERVICING	6
3.1	Existing Water Supply Services	6
3.2	Water Supply Servicing Design	
3.3	Watermain Modelling	
3.4	Water Supply Conclusion	
4.0	WASTEWATER SERVICING	9
4.1	Existing Wastewater Services	9
4.2	Wastewater Design	
4.3	Wastewater Servicing Conclusions	10
5.0	STORMWATER MANAGEMENT	11
5.1	Model Summary	11
5.2	Existing Stormwater Services	12
5.3	Post-development Stormwater Management Targets	15
5.4	Proposed Stormwater Management System	
	5.4.1 Stormwater Management Overview	
	5.4.2 On-Site Quantity Control Analysis	
	5.4.2 Hydraulic Grade Line Analysis	
	5.4.3 External Sewer Analysis	
	5.4.5 Summary of Results	
5.5	Interim Stormwater Servicing Strategy	
5.6	Stormwater Servicing Conclusions	
6.0	UTILITIES	24
7.0	EROSION AND SEDIMENT CONTROL	25
•		

8.0	CONCLUSION AND REC	COMMENDATIONS26
		<u>FIGURES</u>
	Figure 1	Site Location
	Figure 2	Existing Condition EPASWMM Node Diagram
	Figure 3	Proposed Condition EPASWMM Node Diagram\
	Figure 4	Flow from Subject Site, Runoff from Area EX12, 100-year
	Figure 5	Storm event 6 Hr Chicago distribution
	Figure 5	Interim Condition EPASWMM Node Diagram
		<u>TABLES</u>
	Table 1 Water Sup	ply Design Criteria
	Table 2 Proposed \	
		ulation Output Summary
	•	of Existing Wastewater Flows
	Table 5 Wastewate	•
		of Proposed Wastewater Flows
	Table / Existing Fig	ow from Subject Site, 100-year Storm Varying Storm Distribution
	Table 8 Existing Flo	ow from Subject Site, 6-Hr Chicago Distribution
	Table 9 Existing Flo	ow in Cleto Ave Sewer, 6-Hr Chicago Distribution
	Table 10 Storage T	ank Summary
	Table 11 Proposed	Flow from Subject Site, 100-year Storm Varying Storm
		Distribution
	Table 12 Proposed	Storage and Flow from Subject Site, 6-Hr Chicago
		Distribution
	Table 13 Water Ele	evation 100-Year and 100-Year + 20% Storms vs
	Table 44 Overdend	Surrounding House Grade
	Table 14 Overland	Flow Depths 100-Year and 100-Year + 20% vs
	Table 15 Dranged	Surrounding House Grade
	•	Flow in Cleto Ave. Sewer, 6-Hr Chicago Distribution
	Table to Flow duffi	ng Interim Condition, 6-Hr Chicago Distribution
		APPENDICES
	Appendix A	Servicing Check List / Pre-consultation
	Appendix B	Water Supply Calculations
	Appendix C	Wastewater Collection Calculations
	Appendix D	Stormwater Management Calculations
	Drawings / Figures	

FUNCTIONAL SERVICING AND STORMWATER MANAGEMENT REPORT FOR THEBERGE HOMES DEVELOPMENT 21 WITHROW AVENUE

CITY OF OTTAWA

JANUARY 2019 - REV. 4

PROJECT NO.: 17-931

1.0 INTRODUCTION

David Schaeffer Engineering Ltd. (DSEL) has been retained by Theberge Homes Development to prepare a Functional Servicing and Stormwater Management Report in support of the Plan of Subdivision, Zoning By-Law Amendment (ZBLA) for the proposed development at 21 Withrow Avenue. Additionally, this report and the accompanying drawing package also support the Consent for Severance application for the residential units fronting Withrow Avenue.

The subject property is located within the City of Ottawa urban boundary, in the College Ward. As illustrated in *Figure 1*, below, the subject property is bounded by existing residences and Tower Road to the north, St. Helen's Place to the east, Withrow Avenue to the south and existing residences and Rita Avenue to the west. The subject property measures approximately *0.82 ha* and is designated Residential First Density Zone (R1FF) under the current City of Ottawa zoning by-law.

Figure 1: Site Location

The proposed development involves the construction of 13 single family homes and a detached garage for the existing residence on the property. A copy of the proposed site plan is included in *Drawings/Figures*. The single parcel is proposed to be subdivided into 4 units fronting onto Withrow Avenue, with the remaining property subdivided in accordance with the *Draft Plan* provided in *Drawings/Figures*.

The objective of this report is to support the application for Plan of Subdivision and ZBLA by providing sufficient detail to demonstrate that the proposed development is supported by existing and proposed municipal servicing infrastructure and that the site design conforms to current City of Ottawa design standards. Please refer to the associated drawing package to support the Consent for Severance Application for the units fronting Withrow Avenue.

1.1 Existing Conditions

The subject site currently consists of one single family home and garage, which are surrounded by grassy areas and a few trees.

Sewer system and watermain distribution mapping collected from the City of Ottawa indicate that the following services exist across the property frontages within the adjacent municipal right-of-ways:

St. Helen's Place:

- 150 mm diameter watermain; and
- 200 mm diameter sanitary sewer.

Withrow Avenue:

- 150 mm diameter watermain; and
- 200 mm diameter sanitary sewer.

Cleto Avenue:

- 150 mm diameter watermain;
- 200 mm diameter sanitary sewer; and
- > 300 mm diameter storm sewer.

Rita Avenue:

- 150 mm diameter watermain; and
- 200 mm diameter sanitary sewer.

1.2 Required Permits / Approvals

Development of the site is subject to the City of Ottawa Planning and Development Approvals process. The City of Ottawa must approve detailed engineering design drawings and reports, prepared to support the proposed development plan.

The subject property contains existing trees. Development, which may require removal of existing trees, maybe subject to the City of Ottawa Urban Tree Conservation By-law No. 2009-200.

It is proposed that multiple property will be serviced by a single stormwater management system. As such, it is anticipated that an Environmental Compliance Approval (ECA) through a direct submission to the Ministry of the Environment, Conservation and Parks (MECP) will be required.

1.3 Pre-consultation

Pre-consultation correspondence and the servicing guidelines checklist are located in **Appendix A**.

The pre-consultation notes indicate the City requires separate stormwater requirements for the proposed 4 lots fronting Withrow Avenue with the remaining property being serviced by a private roadway. It is proposed to have drainage from the 4 units fronting Withrow Avenue to be directed to the subdivision to the north, therefore, the units have been reviewed in the interim and ultimate condition with the stormwater management plan for the subdivision.

Sanitary and water servicing described in the pre-consultation notes were based on an outdated concept plan. The current plan shows only a road connection to St. Helen's Place, therefore, water and sanitary servicing proposed is different than described in the pre-consultation notes.

City of Ottawa staff have indicated the importance of retaining the landscaping edge condition at the property line and on the adjacent property. The plan and reports have been prepared in consideration of retaining the edge condition and landscaping on the adjacent property.

2.0 GUIDELINES, PREVIOUS STUDIES, AND REPORTS

2.1 Existing Studies, Guidelines, and Reports

The following studies were utilized in the preparation of this report:

- Ottawa Sewer Design Guidelines, City of Ottawa, SDG002, October 2012. (City Standards)
 - Technical Bulletin ISDTB-2014-01
 City of Ottawa, February 5, 2014.
 (ITSB-2014-01)
 - Technical Bulletin PIEDTB-2016-01
 City of Ottawa, September 6, 2016.
 (PIEDTB-2016-01)
 - Technical Bulletin ISTB-2018-01
 City of Ottawa, March 21, 2018.
 (ISTB-2018-01)
- Ottawa Design Guidelines Water Distribution City of Ottawa, October 2012. (Water Supply Guidelines)
 - Technical Bulletin ISD-2010-2
 City of Ottawa, December 15, 2010.
 (ISD-2010-2)
 - Technical Bulletin ISDTB-2014-02
 City of Ottawa, May 27, 2014.
 (ISDTB-2014-02)
 - Technical Bulletin ISDTB-2018-02
 City of Ottawa, March 21, 2018.
 (ISDTB-2018-02)
- Stormwater Planning and Design Manual, Ministry of the Environment, March 2003. (SWMP Design Manual)
- Ontario Building Code Compendium Ministry of Municipal Affairs and Housing Building Development Branch, January 1, 2010 Update. (OBC)

Standard for the Inspection, Testing and Maintenance of Water-Based Fire **Protection Systems**

National Fire Protection Association, 2014 Edition. (NFPA 25)

Merivale Road Sewer Investigation and Hydraulic Assessment Study- Final Report

Delcan Corporation, January 2000. (Merivale Road Sewer Investigation)

Water Supply for Public Fire Protection \triangleright Fire Underwriters Survey, 1999.

(FUS)

Drainage Management Manual Ministry of Transportation of Ontario (MTO), 1997. (MTO Drainage Manual)

Low Impact Development Stormwater Management Planning and Design Guide Credit Valley Conservation & Toronto and Region Conservation, 2010. (LID Guide)

3.0 WATER SUPPLY SERVICING

3.1 Existing Water Supply Services

The subject property lies within the City of Ottawa 2W pressure zone, as shown by the Pressure Zone map in *Appendix B*. Based on further correspondence with the City of Ottawa, the site is serviced by the ME pressure zone and therefore is part of this pressure zone. Watermains exist within St. Helen's Place, Withrow Avenue, Cleto Avenue and Rita Avenue.

3.2 Water Supply Servicing Design

The subject property is proposed to be serviced through a connection to the existing 150 mm municipal watermain within St. Helen's Place. It is proposed to service the site with a 200 mm watermain up to the private hydrant, a 50 mm diameter water service will service the remaining development and individual units to be serviced with a 19 mm diameter service lateral. The proposed hydrant is located within 90m from the furthest unit, in accordance with the *OBC*. Refer to drawing *SSP-1* included in *Drawings/Figures* for the proposed water services.

Table 1, below, summarizes the **Water Supply Guidelines** employed in the preparation of the water demand estimate:

Table 1
Water Supply Design Criteria

water Supply Design Criteria				
Design Parameter	Value			
Residential Demand	350 L/p/d			
Residential Maximum Daily Demand	4.9 x Average Daily *			
Residential Maximum Hourly	7.4 x Average Daily *			
Minimum Watermain Size	150 mm diameter			
Minimum Depth of Cover	2.4 m from top of watermain to finished grade			
During normal operating conditions desired	350 kPa and 480 kPa			
operating pressure is within				
During normal operating conditions pressure must	275 kPa			
not drop below				
During normal operating conditions pressure shall	552 kPa			
not exceed				
During fire flow operating pressure must not drop	140 kPa			
below				
	DE Guidelines for Drinking-Water Systems Table 3-3 for 0 to 500			
persons. ** Table updated to reflect ISD-2018-2				
Table aparted to remote 105-2010-2				

Table 2, below, summarizes the anticipated water demand and boundary conditions for the proposed development, calculated using the **Water Supply Guidelines**:

Table 2
Proposed Water Demand

Design Parameter	Anticipated Demand ¹ (L/min)	Boundary Conditions ² (m H ₂ O / kPa)			
Average Daily Demand	11.7	66.0	647.5		
Max Day + Fire Flow	57.2 + 6,000	41.5	407.1		
Peak Hour	86.3	60.9	597.4		
1) Water demand calculation per Water Supply Guidelines, See Appendix B for detailed calculations					

- 1) Water demand calculation per *Water Supply Guidelines*. See *Appendix B* for detailed calculations.
- Boundary conditions supplied by the City of Ottawa for the demands indicated in the correspondence; assumed ground elevation 97.5m at the connection to the municipal watermain. See *Appendix B*.

The Required Fire Flow (RFF) was estimated in accordance with **ISTB-2018-02**. The maximum RFF required was found to be **6,000 L/min**, at house 2 and house 4. Refer to **Appendix B** for calculations.

The City provided both the anticipated minimum and maximum water pressures, as well as, the estimated water pressure during fire flow, as indicated by the correspondence in **Appendix A**.

3.3 Watermain Modelling

EPANet was utilized to determine the availability of pressures throughout the system during average day, max day plus fire flow, and peak hour demands. This static model determines pressures based on the available head obtained from the boundary conditions provided by the City of Ottawa.

The model utilizes the Hazen-Williams equation to determine pressure drop, while the pipe properties have been selected in accordance with *Water Supply Guidelines*. The model was prepared to assess the available pressure at the finished first floor of each building, as well as, the pressures the watermain provides to fire hydrants during fire flow conditions.

The critical zones of the development are considered to be at House 2 and House 4, as they resulted in the highest fire flow. As per **ISTB-2018-02**, a flow of 5,700 L/min was applied to the proposed hydrant within the site and a flow of 3,500 L/min was applied to the hydrant external to the site to service the development. Hydrants flows are determined based on *Table 1 of Appendix I* of the **ISTB-2018-02** and are within 75m and 150m, respectively. The resulting flow rate is sufficient to provide the **6,000 L/min** required fire flow, resulting pressures for all scenarios are summarized below.

Table 3
Model Simulation Output Summary

Location	Average Day (kPa)	Max Day + Fire Flow (kPa)	Peak Hour (kPa)
Node 2	669.3	405.5	619.3
Node 3 (Hydrant)	668.2	331.3	618.1
Node 4	667.6	403.8	617.5
Node 5	667.1	403.3	617.0
Node 6	667.6	403.8	617.5
Node 8 (External Hydrant)	646.9	350.6	596.8

As demonstrated in **Table 3**, above, the anticipated pressures during the average day and peak hour simulations are higher than allowable pressures in **Table 1**. Pressure reducing valves are recommended. The recommended pressures from the **Water Supply Guidelines** are respected during the max day + fire flow scenario. **Appendix B** contains output reports and model schematics for each scenario.

Water will flow in all areas of the system and no 'dead' zones were found. *Appendix B* contains output reports and model schematics for each scenario.

3.4 Water Supply Conclusion

It is proposed to service the private development from one connection to the existing 150 mm watermain within St. Helen's Place.

The anticipated water demand was submitted to the City of Ottawa for establishing boundary conditions.

Based on the EPANET model, pressures during max day + fire flow respect the requirements of the *Water Supply Guidelines*. Pressures during the average day and peak hour scenario are higher than allowable pressure in *Table 1*; thus, pressure reducing valves are recommended.

The design of the water distribution system conforms to all relevant City Guidelines and Policies.

4.0 WASTEWATER SERVICING

4.1 Existing Wastewater Services

The subject property lies within the Viewmount Drive Trunk sewer catchment area and on the border of the Lynwood Trunk Sewer, as shown by the *Trunk Sanitary Sewers and Collection Areas Map* included in *Appendix C*. There are existing sanitary sewers within St. Helen's Place, Withrow Avenue, Cleto Avenue and Rita Avenue. The existing site consists of a single residential unit and anticipated wastewater flow is summarized in *Table 4*, below:

Table 4
Summary of Existing Wastewater Flows

Design Parameter	Anticipated Sanitary Flow¹ (L/s)
Average Dry Weather Flow Rate	0.01
Peak Dry Weather Flow Rate	0.05
Peak Wet Weather Flow Rate	0.32
1) Based on criteria shown in <i>Table 5</i>	

Based on the *Merivale Road Sewer Investigation (MRSI)*, the most restrictive leg of sewer up to the 450 mm diameter trunk sewer within Merivale Road, is between Node 920 and 220 on St. Helen's Place with a residual capacity of *12.8 L/s*. Refer to *Appendix C* for sanitary drainage figure and sanitary design sheet extracted from the *MRSI*.

4.2 Wastewater Design

It is anticipated that the proposed development will be serviced via a connection to the existing 200 mm sanitary sewer within St. Helen's Place. Refer to the drawing **SSP-1** in **Drawings/Figures** for sanitary servicing layout.

Table 5, below, summarizes the **City Standards** employed in the calculation of wastewater flow rates for the proposed development.

Table 5
Wastewater Design Criteria

Tractoriator 2 congressiona				
Design Parameter	Value			
Residential Demand	280 L/p/d			
Peaking Factor	Harmon's Peaking Factor. Max 3.8, Min 2.0			
Infiltration and Inflow Allowance	0.33 L/s/ha			
Sanitary sewers are to be sized employing the Manning's Equation	$Q = \frac{1}{4} A R^{\frac{2}{3}} S^{\frac{1}{2}}$			
Manning's Equation	$\sim n$			
Minimum Sanitary Sewer Lateral	135 mm diameter			
Minimum Manning's 'n'	0.013			
Minimum Depth of Cover	2.5 m from crown of sewer to grade			
Minimum Full Flowing Velocity	0.6 m/s			
Maximum Full Flowing Velocity	3.0 m/s			
Extracted from Sections 4 and 6 of the City of Ottawa Sewer Design Guidelines, October 2012.				

Table 6, demonstrates the anticipated peak flow from the proposed development to the sanitary connection within St. Helen's Place. See **Appendix C** for associated calculations.

Table 6
Summary of Proposed Wastewater Flows

Design Parameter	Anticipated Sanitary Flow¹ (L/s)
Average Dry Weather Flow Rate	0.16
Peak Dry Weather Flow Rate	0.59
Peak Wet Weather Flow Rate	0.86
1) Based on criteria shown in <i>Table 5</i>	

The estimated sanitary flow based on the **Site Plan** provided in **Drawings/Figures**, anticipates a peak wet weather flow of **0.86L/s** to the St. Helen's Place sanitary connection. This results in an increase in flow of **0.54 L/s**, compared to existing conditions.

Based on the *MRSI*, the most restrictive leg of sewer up to the trunk sewer within Merivale Road has an available capacity of *12.8 L/s*, therefore, the increased flow can be accommodated in the downstream system.

4.3 Wastewater Servicing Conclusions

The site is tributary to the Viewmount Drive Trunk sewer and currently the site consists of a single residential unit. Sufficient capacity is available to accommodate the anticipated **0.54L/s** peak wet weather flow increase from the proposed development to the downstream system.

The proposed wastewater design conforms to all relevant *City Standards*.

5.0 STORMWATER MANAGEMENT

A stormwater management strategy has been developed to ensure there is no increased risk of flooding to the surrounding residential neighbourhood due to the development. Hydraulic and hydrological models have been generated to analyze the existing, interim and proposed conditions.

5.1 Model Summary

The hydrology and hydraulics of the proposed stormwater management system were analyzed in EPASWMM using the Dynamic Wave Routing Model.

The following assumptions were made in the preparation for the EPASWMM model: Hydrology

- Initial abstraction parameters per City of Ottawa standards;
- Horton's infiltration for soil loss, per City guidelines;
- Calculated % impervious area;
- > Estimated average catchment slope for each catchment; and
- Sub-catchment width measured as perpendicular area to catch basins for longest distance of travel.

Hydraulics

- All subdrain and concrete sewers have been assigned a Mannings n = 0.013, CSP has been assigned was assigned a Mannings n = 0.024, grassed swales have been assigned a Mannings n = 0.025.
- Overland spill is modeled as a representative cross section (irregular for road, triangular for swales) from high point to high point, assuming that during an overland flow event the ponding areas are filled. Where spill is directed to a ditch, overland flow modeled from spill point to invert of ditch.
- Catch Basin (CB) and Area Drain (AD) capture along a continuous run or where flow is proposed to potential back up through lid modeled using bottom draw rectangular orifice and a 0.125 m² and 0.026m² area for catch basins and area drains, respectively;
- Ditch Inlet Catch Basins (DICB) modeled assuming 50% blockage per Section 5.6.4 of the *City Standard*;
- The capture rate of the existing landscape drains on Cleto Ave was analyzed assuming a maximum ponding depth of 10 cm, using modification to Design Chart 4.19 of the *MTO Drainage Manual*, further detail included in **Section 5.2**;
- Orifices are all side mounted or bottom draw, circular and rectangular and have a 0.61 discharge coefficient;

- Exit losses determined from Appendix 6-B of the *City Standards*, Entrance losses equal to 0.50 per *Water Resources Engineering (rev 2)* prepared by David A. Chin (2006);
- An analysis of various storm distributions was completed to determine the critical storm event based on the proposed conditions. It was determined that during the 100-year storm event, the Chicago 6 Hour storm distribution resulted in the highest flow and storage requirements. This distribution is to be used in all future analysis of the system.

A summary of the hydrological parameters used for each sub catchment has been included in *Appendix D*.

5.2 Existing Stormwater Services

Stormwater runoff from the subject property is tributary to the City of Ottawa sewer system and is located within the Ottawa Central sub-watershed. As such, approvals for proposed developments within this area are under the approval authority of the City of Ottawa.

Flows that influence the watershed in which the subject property is located are further reviewed by the principal authority. The subject property is located within the Ottawa River watershed and is therefore subject to review by the Rideau Valley Conservation Authority (RVCA).

The existing runoff from the subject site is directed to 2 separate outlets; Tower Road and St. Helen's Place. The majority of flow is directed to St. Helen's Place where flow continues north to Tower Road. Both outlets are conveyed through a series of undefined ditch systems, which are generally draining north through the existing residential neighborhood.

DSEL identified five external areas tributary to the development and are identified as EX-1, EX-2, EX-3, EX-4 and EX-5 on drawing **SWM-1**. EX-1 is located west of the subject lands on Withrow Avenue and includes runoff from the residential properties fronting Withrow Avenue, as well as, the rear yards of homes fronting Rita Avenue. EX-2 and EX-3 includes drainage from 15 Withrow Avenue and 35 St. Helen's Place. EX-4 is limited to the surface runoff from the rear yard of 33 St. Helen's Place. EX-5 includes a portion of Withrow Avenue along the south edge of the subject site. Drainage from external areas is directed through the subject site via sheet flow outleting to St. Helen's Place and conveyed to Tower Road.

The external and internal drainage directed to Tower Road results in localized ponding approximately 100 m west of the intersection of St. Helen's Place and Tower Road. Based on visual inspection of the area, there are existing catch basins within the southern boulevard of Tower Road, at the low point of the road. Information received from the City of Ottawa on the existing sewers within Tower Road indicate no evidence of storm sewers along Tower Road to service the existing CB. The existing CB may pick up flow from smaller storm event, but it is anticipated that major overland flow would be conveyed

through the 23 Tower Road property to the north, as indicated on drawing **SWM-1** included in **Drawings/Figures**.

An analysis of varying storm events was conducted to determine the critical event in the existing condition, which are summarized in *Table 7*, below:

Table 7
Existing Flow <u>from Subject Site</u>, <u>100-year Storm Varying Storm</u> Distribution

Storm Distribution	Total Flow to Tower Road (Area A2, A1, EX1, EX2, EX3, EX4, EX5) (1.166 Ha) (L/s)	
3 Hr Chicago	123.9	
4 Hr Chicago	129.9	
6 Hr Chicago	138.0	
12 Hr SCS	131.0	

As shown in *Table 7,* above, the 6 Hr Chicago Distribution results in the highest flow from the site to Tower Road, and therefore, will be used in the existing conditions analysis.

Table 8, below, summarizes the flow from the subject property and adjacent external areas directed to Tower Road and St Helen's Place, refer to **Appendix D** for EPASWMM output summary.

Table 8
Existing Flow from Subject Site, 6-Hr Chicago Distribution

	Area EX1, EX	en's Place from X2, EX3, EX4, 0.972 Ha)	Flow to Tower Road Flow from Area A2 (0.194 Ha)		
Storm Event	Flow (L/s) Runoff Volume (cu.m)		Flow (L/s)	Runoff Volume (cu.m)	
2-Year	8.0	20	6.3	10	
5-Year	27.5	70	13.0	20	
100-Year	105.7 300		41.7	70	

An analysis of peak flow and spill was completed for the existing 300 mm CSP within Cleto Avenue. It is anticipated this sewer could be used as potential outlet from the proposed subdivision, therefore, the analysis of the pre-development condition will inform the design. The 300 mm CSP currently receives flow from the front yards of the residential units on the north side of Cleto Ave, approximately *0.198 Ha*, through a series of landscaped drains. Refer to Drawing *SWM-1* in *Drawings/Figures* for drainage area directed to the storm sewer within Cleto Avenue.

The capture rate of the existing landscape drains was analyzed assuming a maximum ponding depth of 10 cm, using modification to Design Chart 4.19 of the *MTO Drainage Manual*. The max flow rate per drain is equal to 12 L/s and with a total capture of 60 L/s for the 5 drains, refer to *Appendix D* for area drain capture calculation. The capture rate has been accounted for in the model with a depth versus flow rating curve, restricting flow to the storm sewer to maximum of 60 L/s.

Based on the size (300mm), slope (0.70%) and Manning's N (0.024 per **MTO Drainage Manual**) of the existing sewer on Cleto Ave., there is a free flowing capacity of **43.8** L/s.

A boundary condition equal to ground surface at the outlet of the receiving sewer was accounted for in the existing conditions analysis, a conservative approach, assuming that the downstream sewer within Merivale Road is surcharged and spilling to the surface.

The existing 300 mm CSP storm sewer was analyzed during the 2, 5 and 100-year events using a 6-hour Chicago distribution. *Table 9,* below, summarizes the flow and surcharge at each node analyzed up to Merivale Road.

Table 9
Existing Flow in Cleto Ave Sewer, 6-Hr Chicago Distribution

Storm Event	2-Yea	2-Year Storm 5-Year Storm		100-Year Storm		
Node ID	Flow (L/s)	Surcharge (L/s)	Flow (L/s)	Surcharge (L/s)	Flow (L/s)	Surcharge (L/s)
AD	31.8	0	49.9	0	60.0	0
STM12	114.3	56.2	114.3	94.9	138.2	138.2
STM13	201.8	187.3	201.8	187.3	259.7	187.3
STM15	201.8	0	201.8		201.8	0

The inlet capacity of the area drains, which convey flow from Area EX12 to the existing 300 mm CSP sewer, were analyzed. As illustrated in *Table 9*, above, surcharge occurs at nodes STM12 and STM13 during the 100-year storm event. Node flooding also occurs upstream of node AD due to the restriction of *60 L/s* from the area drain, noted as AD-D in the EPASWMM model schematic.

Please refer to existing model schematic below for more detail.

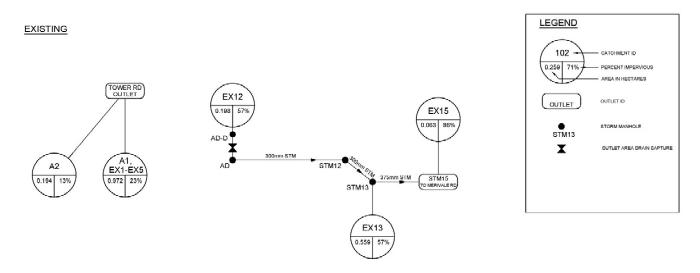


Figure 2: Existing Condition EPASWMM Node Diagram

5.3 Post-development Stormwater Management Targets

Stormwater management requirements for the proposed development were reviewed with the City of Ottawa, and are summarized below:

- Attenuate to a target release rate based on a calculated Rational Method Coefficient no more than 0.5, employing the City of Ottawa IDF parameters for a 2-year storm with a calculated time of concentration equal to or greater than 10 minutes:
- ➤ Time of concentration calculated using the Federal Aviation Administration method, slope and length based on the longest flow path to the lowest point within the subject site;
- Flow attenuation is required up to and including the 100-year storm event;
- > Ensure no negative impacts to downstream stormwater network from the proposed development;
- Areas to be retained as existing to ensure the edge condition and adjacent landscaping is maintained and will continue to drain as existing thus ensuring no increase in peak flow compared to the existing condition; and
- External areas directed to the site are to be accommodated in the stormwater conveyance system.

Based on the drainage area in the proposed condition of **0.701 ha, 0.29 RC** and a calculated time of concentration of **21.2 minutes**, the target release rate is **28.3 L/s**, refer to calculation in **Appendix D** for details. However note that, based on the analysis of the existing 300 mm CSP proposed to be used as the outlet from the site, the target release rate may require to be reduced further to ensure no negative impacts to the downstream storm sewer system.

5.4 Proposed Stormwater Management System

5.4.1 Stormwater Management Overview

The stormwater management system is proposed to collect runoff through a series of area drains and subdrains, which have been sized to convey up to the 100-year storm event. The majority of area drains, catch basins and ditch inlet catch basins along with the subdrain system is proposed to capture up to the 100-year storm event. Swales have been proposed in rear yards to direct flow to area drains or to act as emergency overland flow routes.

A storm sewer connection is proposed crossing St. Helen's Place, connecting to the existing Area Drain (AD) and existing 300 mm CSP storm sewer within Cleto Avenue. An inlet control device (ICD) is proposed at the outlet side of the DICB to control flow to the existing storm sewer. Attenuation is provided to ensure there is not an increase in peak

flow at the Merivale Road sewer compared to the existing condition, described in **Section 5.2**.

The inlet control device will act to attenuate runoff in the site through a combination of underground storage and pipe storage.

External area draining to the site in the existing condition will continue to drain to the site and be captured by the internal area drains and subdrain system. In most cases the 100-year storm event is captured by the minor system, excess flow is proposed to flow through rear yard and side yard ditches to the private road ROW. Major flow routes have been designed to ensure the surrounding house grade is 0.30m above the 100-year hydraulic gradeline (HGL).

It is proposed to service the foundation drainage from the units with sump pumps discharging to surface.

5.4.2 On-Site Quantity Control Analysis

A series of area drains, catch basins and ditch inlet catch basins convey flow through a subdrain system to the existing 300mm CSP storm sewer within Cleto Avenue.

A spill point exists at **97.32** *m* which allows for emergency flow and overflow equal to the external flow into the site to release in the 100-year event.

A **111 mm** circular inlet control device (ICD) is proposed to be installed at the outlet side of the DICB in order to control flow from the subject site to the release rate at a 100-year high-water level of **97.37m** or equal to **0.83 m** of head above the ICD with a total flow of **24.0 L/s**. The flow rate was determined based on the EPASWMM model, refer to output in **Appendix D**.

Underground storage is required to control flow to the allowable release rate. Underground storage is proposed to be provided by Brentwood Storm Tank model numbers ST-30 and ST-24 (or equivalent approved by the City of Ottawa Planning Staff). The tanks have been broken up into 3 separate areas summarized below:

Table 10
Storage Tank Summary

Tank Detail	Tank # 1	Tank # 2	Tank # 3
Length (m) x Width (m)	50 x 3	6.05 x 10	6 x 6
Model #	ST-24	ST-30	ST-30
Invert (m)	96.76	96.76	96.76
Obvert (m)	97.37	97.52	97.52
Minimum Cover (mm)	620	760	700
Provided Storage (m³)	117.74	56.13	34.20

The underground storage tanks are to be equipped with a woven geotextile with an underdrain within the bottom granular layer to ensure no infiltration or interaction of

groundwater with the water in the tanks. Further details on the storage capacity and cross sections for the underground storage tanks are included in *Appendix D*.

As discussed in **Section 1.3**, the City of Ottawa has stressed the importance of retaining the existing edge condition on the adjacent property. To ensure no impact to adjacent landscaping, it is proposed that the grading of the north-west edge of the site be retained as existing.

An analysis of varying storm events was conducted to determine the critical event in the existing condition, which are summarized in *Table 11*, below:

Table 11
Proposed Flow from Subject Site, 100-year Storm Varying Storm Distribution

Storm Distribution	Total Flow to Internal Storage (Area 1 – Area 22, EX1, EX2, EX3, EX4, EX5) (1.164 Ha) (L/s)	Total Storage Required (m³)
3 Hr Chicago	230.0	207
4 Hr Chicago	237.6	208
6 Hr Chicago	246.9	208
12 Hr SCS	183.3	207

As shown in the above, the 6 Hr Chicago Distribution results in the highest peak flow and storage requirement, and therefore, will be used in the proposed condition analysis.

The storage requirements and flow are summarized in *Table 12,* below, refer to *Appendix D* for EPASWMM output summary.

Table 12
Proposed Storage and Flow from Subject Site, 6-Hr Chicago Distribution

Storm Event	Flow from External Area (EX1, EX2, EX3, EX4 & EX5 0.348 Ha) (L/s)	Flow from ICD (EX1, EX2, EX3 EX4, EX5, Area 1 – Area 22, 1.164 Ha) (L/s)	Required Storage (cu.m)	Flow to Tower Road (Area U2, 0.067 Ha)	Flow to St. Helen's (L/s)
2-Year	33.2	16.9	70	0.4	0
5-Year	41.9	20.6	125	2.0	0
100-Year	123.6	24.0	208	14.7	120.9

During the 100-year storm event, **208** *m*³ of storage is required to control to a release rate of **24.0** *L*/s.

During storm events up to the 100-year event, the external drainage will be captured and controlled by the ICD. In the 100-year storm event and greater spill will occur to St. Helen's Place. Spill will occur at a rate of **120.9 L/s** to St. Helen's place at a maximum head of **4.5 cm**, the spill is less than the runoff in the 100-year event from EX1, EX2, EX3, EX4 and EX5 of **123.6 L/s**.

5.4.3 Hydraulic Grade Line Analysis

A detail EPASWMM model was prepared for the internal minor and major system to determine the conveyance of the minor system and review major system and emergency overland flow and their relation to the critical surrounding house grade (SHG).

Tables 13 & 14 below summarizes the high water level in the 100-year and the 100-year + 20% storm events within the site and the critical surrounding house elevation. The overland flow route was designed to provide 0.30m freeboard from the 100-year water elevation to the surrounding house grade and ensure that the 100-year + 20% does not reach the footprint of the house.

Table 13
Water Elevation 100-Year and 100-Year + 20% Storms vs Surrounding House
Grade

Grade							
Inlet ID	100-Year HGL (m)	Freeboard to Critical SHG (m)	100-Year + 20% HGL (m)	Freeboard to Critical SHG (m)	Critical SHG (m)	Location of Critical SHG	
AD101-INLET	97.37	0.4	97.38	0.39	97.77	House 3	
AD10-INLET	97.83	0.57	97.86	0.54	98.40	Ex. House	
AD11-INLET	97.56	0.43	97.63	0.36	97.99	Ex House 35 St. Helen's Place	
AD12-INLET	97.62	0.37	97.72	0.27	97.99	Ex House 35 St. Helen's Place	
AD13-INLET	97.89	0.43	98.05	0.27	98.32	House 9	
AD14-INLET	97.97	0.39	97.99	0.37	98.36	House 8	
AD15-INLET	98.03	0.41	98.03	0.41	98.44	House 7	
AD16-INLET	98.08	0.4	98.08	0.4	98.48	House 6	
AD17-INLET	98.18	0.37	98.21	0.34	98.55	House 5	
AD18-INLET	97.84	0.3	97.92	0.22	98.14	House 9	
AD19-INLET	98.2	0.3	98.28	0.22	98.5	House 9	
AD1-INLET	97.46	0.31	97.58	0.19	97.77	House 3	
AD20-INLET	98.36	0.3	98.53	0.13	98.66	House 7	
AD21-INLET	98.49	0.3	98.6	0.19	98.79	House 5	
AD22-INLET	98.46		98.47			None	
AD2-INLET	97.47	0.3	97.59	0.18	97.77	House 3	
AD3-INLET	97.91	0.3	97.92	0.29	98.21	House 3	
AD4-INLET	97.98	0.42	97.99	0.41	98.4	House 3	
AD5-INLET	98.14	0.36	98.18	0.32	98.50	House 2	
AD6-INLET	98.08	0.52	98.08	0.52	98.60	Ex. House	
AD7-INLET	97.77	0.63	97.89	0.51	98.40	Ex. House	
AD9-INLET	97.82	0.58	97.84	0.56	98.40	Ex. House	

Table 14
Overland Flow Depths 100-Year and 100-Year + 20% vs Surrounding House Grade

Description	100-Year Flow Depth (mm)	Freeboard to Critical SHG (mm)	100-Year + 20% Flow Depth (mm)	Freeboard to Critical SHG (mm)	Minimum Bottom of Ditch Elev to Critical SHG (mm)
Swale Between Part 4 & East Property Line	0	N/A	0	N/A	200
Swale Between House 9 & East Property Line	0	N/A	100	60	160
Swale Between House 8 & House 9	0	N/A	150	210	360
Swale South of House 3	15	305	80	250	330
Swale Between House 1, 2, 3 and East Property Line	75	300	220	155	375

The above tables show there is adequate freeboard in the 100-year and 100-year +20% storm events within the subject site.

To determine impacts of the proposed flow from the subject site being directed to the existing 300 mm CSP storm sewer within Cleto Avenue and storm sewer within Merivale Road, an analysis of peak flow and spill was completed for the existing sewer.

5.4.4 External Sewer Analysis

The existing stormwater system was analyzed, including the contribution from the subject property and is summarized in *Table 15*, below.

Table 15
Proposed Flow in Cleto Ave. Sewer, 6-Hr Chicago Distribution

	. 9					
Storm Event	2-Year Storm				100-Year Storm	
Node ID	Flow (L/s)	Surcharge (L/s)	Flow (L/s)	Surcharge (L/s)	Flow (L/s)	Surcharge (L/s)
AD	47.1	0	49.9	18.10	66.9	34.9
STM12	114.3	72.0	114.3	95.8	140.5	140.5
STM13	201.8	187.3	201.8	187.30	259.7	187.2
STM15	201.8	0	201.8	0	201.8	0

Comparing **Table 15** to **Table 9** there is a **2.3 L/s** increase in surcharge at STM 12 and a **35.0 L/s** increase in surcharge at Node AD. Based on the depth of the receiving storm sewer within Cleto Ave and limited possibility of foundation drainage directed to the storm sewer, the increase in surcharge is not anticipated to have a negative impact at the upstream end of the storm sewer. There is no change to the surcharge or flow at the downstream end of the analyzed section of storm sewer, therefore, there will be no negative impacts to the existing storm sewer within Merivale Road due to the development.

Please refer to proposed model schematic below for more detail.

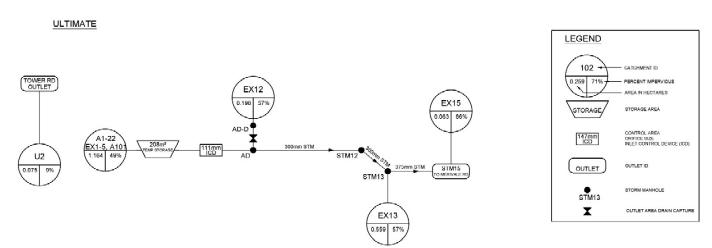


Figure 3: Proposed Condition EPASWMM Node Diagram

5.4.5 Quality Control Requirements

Quality controls will be provided by an external facility, per the RVCA correspondence in **Appendix A**.

5.4.6 Summary of Results

The stormwater management plan is proposed to re-direct flow away from Tower Road to Cleto Avenue. This results in a reduced peak flow and runoff volume to Tower Road and provides a benefit to residents on Tower Road that currently would have issues with surface ponding and overland flow through their private property.

It is proposed to direct flow from the subject site to the existing 300 mm CSP sewer within Cleto Avenue.

The flow to the existing Cleto Avenue storm sewer from the proposed development and runoff from EX12 is summarized graphically, below, for the 100-year storm event.

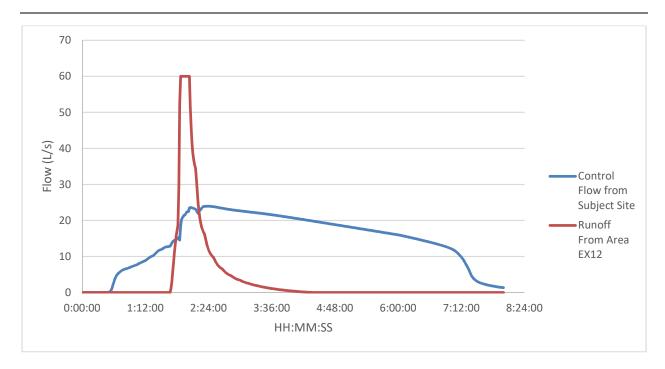


Figure 4: Flow from Subject Site, Runoff from Area EX12, 100-year Storm event 6 Hr Chicago distribution

The above figure shows the flow from EX12 to the existing 300 mm CSP. The flow to the sewer is constrained to **60** L/s, equal to the capture rate of the existing area drains. The controlled from the site shows decreases in flow during the peak of the external flow. This represents the backwater from the existing system impacting the proposed stormwater management system and underground storage chambers. The inflow from the existing system is accounted for in the dynamic model and in the required storage on-site and release rate from the ICD.

5.5 Interim Stormwater Servicing Strategy

It is proposed to develop the site in phases with the 4 units fronting Withrow Ave proceeding before the remainder of the site connected to the private road. It is proposed to provide an interim ditch with a total storage of **67** m^3 to provide quantity control for the increase in imperviousness proposed by the units fronting Withrow Avenue. A triangular outlet will detain flow before using existing drainage patterns to discharge to St. Helen's Place. Refer to **SWM-3** in **Drawings/Figures** for interim drainage areas and interim stormwater management plan and **Appendix D** for interim model output files.

The flows in the interim condition are summarized below:

Table 16
Flow during Interim Condition, 6-Hr Chicago Distribution

	Flow to St. Helen's Place from Area EX1, EX2, EX3, EX4, EX5, A1 (0.972 Ha)		
Storm Event	Flow (L/s) Interim Storage Volume (m		
2-Year	4.2	16	
5-Year	21.9	32	
100-Year	104.1	67	

As shown in **Table 16** above, the interim flow is restricted to less than the **105.7 L/s** directed to St. Helen's Place in the existing condition.

Please refer to interim model schematic below for more detail.

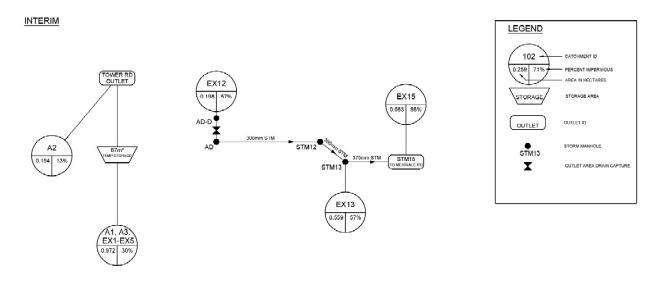


Figure 5: Interim Condition EPASWMM Node Diagram

5.6 Stormwater Servicing Conclusions

Existing conditions result in flow from the subject property to Tower Road and St. Helen's Place. A target release rate of **28.3 L/s** was established based on the quantity control criteria from City of Ottawa pre-consultation. Existing areas to be retained to ensure the edge condition and adjacent landscaping is maintained will continue to drain as existing. An external capacity analysis was completed for the adjacent Cleto Avenue storm sewer.

Proposed runoff to the Cleto Avenue storm sewer will be controlled through the use of a **111 mm** inlet control device to control flow to a release rate of **24.0 L/s**. The reduced release rate compared to the allowable is required to ensure no negative impacts to the downstream Merivale Road storm sewer due to the increase in flow from the subject site. Underground storage is proposed to meet the required **208 m³** of storage to attenuate flow.

An HGL analysis was completed for the internal site, a 0.30m freeboard is provided from the 100-year water level to the surrounding house grade. The water level in the 100-year + 20% storm is less than the surrounding house grade.

The flow from the site can discharge to the existing sewer within Cleto Ave, there is no increase in flow or surcharge at the downstream end of the analyzed storm sewer prior to discharge to the Merivale Road sewer.

The proposed stormwater design conforms to all relevant *City Standards* and Policies for approval.

6.0 UTILITIES

A preliminary CUP has been circulated to all utilities that includes a Hydro design. All utilities have provided correspondence that they are able to service the property based on the preliminary CUP.

7.0 EROSION AND SEDIMENT CONTROL

Soil erosion occurs naturally and is a function of soil type, climate and topography. The extent of erosion losses is exaggerated during construction where vegetation has been removed and the top layer of soil becomes agitated.

Prior to topsoil stripping, earthworks or underground construction, erosion and sediment controls will be implemented and will be maintained throughout construction.

Silt fence will be installed around the perimeter of the site and will be cleaned and maintained throughout construction. Silt fence will remain in place until the working areas have been stabilized and re-vegetated.

Catch basins will have SILTSACKs installed under the grate during construction to protect from silt entering the storm sewer system.

A mud mat will be installed at the construction access, in order to prevent mud tracking onto adjacent roads.

Erosion and sediment controls must be in place during construction. The following recommendations to the contractor will be included in contract documents:

- Limit extent of exposed soils at any given time;
- Re-vegetate exposed areas as soon as possible;
- Minimize the area to be cleared and grubbed;
- Protect exposed slopes with plastic or synthetic mulches;
- Install silt fence to prevent sediment from entering existing ditches;
- No refueling or cleaning of equipment near existing watercourses;
- Provide sediment traps and basins during dewatering;
- Install filter cloth between catch basins and frames;
- Plan construction at proper time to avoid flooding;
- Establish material stockpiles away from watercourses, so that barriers and filters may be installed.

The contractor will, at every rainfall, complete inspections and guarantee proper performance. The inspection is to include:

- Verification that water is not flowing under silt barriers; and
- Clean and change filter cloth at catch basins.

8.0 CONCLUSION AND RECOMMENDATIONS

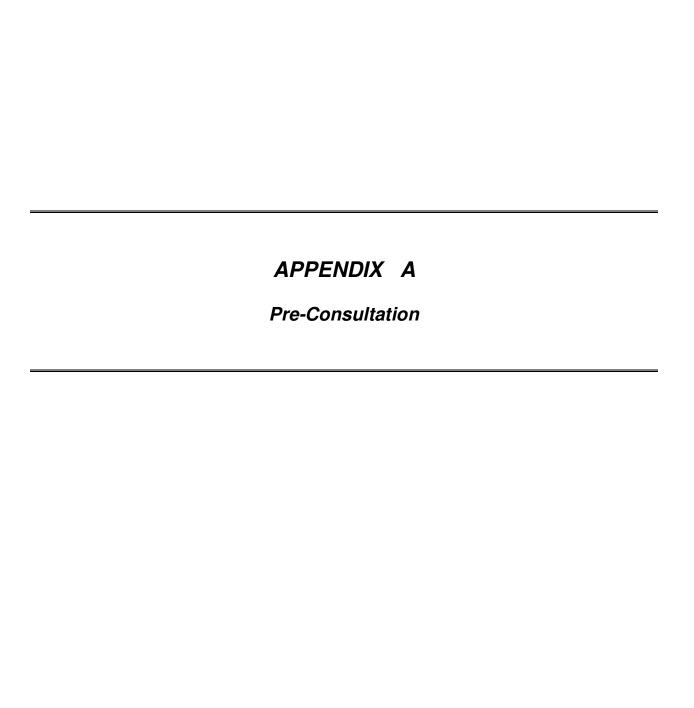
David Schaeffer Engineering Ltd. (DSEL) has been retained to prepare a Functional Servicing and Stormwater Management Report in support of the Zoning By-Law Amendment and Plan of Subdivision at 21 Withrow Avenue. The preceding report outlines the following:

- Based on boundary conditions provided by the City, the existing municipal water infrastructure is capable of providing the proposed development with water within the City's required pressure range;
- ➤ The EPANET water distribution model confirmed adequate pressure exists within fire hydrants during fire flow, and within the system for the Average Day, Max Day + Fire Flow and Peak Hour scenarios:
- The proposed development is anticipated to have a peak wet weather flow of 0.86 L/s directed to the St. Helen's Place sanitary sewer. Based on the sanitary analysis that was conducted, the existing municipal sewer infrastructure has sufficient capacity to support the development;
- ➤ The proposed development will attenuate flow to a release rate of **24.0 L/s** and will not have an impact on peak flows directed to the Merivale Road storm sewer:
- \triangleright It is proposed to attenuate flow through underground and pipe storage. It is estimated that **208** m^3 of onsite storage will be required to attenuate flow to the established release rate above;
- > Full quality controls will be provided by off-site infrastructure, per RVCA correspondence.

Prepared by,

David Schaeffer Engineering Ltd.

Reviewed by, **David Schaeffer Engineering Ltd.**



Per: Steven L. Merrick, P.Eng.

Per: Adam D. Fobert, P.Eng.

© DSEL

z:\projects\17-931_theberge_21-withrow\b_design\b3_reports\b3-2_servicing (dsel)\subm4\fsr-2019-01-03_931_ggg.docx

DEVELOPMENT SERVICING STUDY CHECKLIST

07/06/2018 17-931

		• •
4.1	General Content	
	Executive Summary (for larger reports only).	N/A
\boxtimes	Date and revision number of the report.	Report Cover Sheet
\boxtimes	Location map and plan showing municipal address, boundary, and layout of proposed development.	Drawings/Figures
\boxtimes	Plan showing the site and location of all existing services.	Figure 1
	Development statistics, land use, density, adherence to zoning and official plan,	
\boxtimes	and reference to applicable subwatershed and watershed plans that provide context to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.	Section 1.0
\boxtimes	Summary of Pre-consultation Meetings with City and other approval agencies.	Section 1.3
	Reference and confirm conformance to higher level studies and reports (Master	300000111.3
\boxtimes	Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.	Section 2.1
\boxtimes	Statement of objectives and servicing criteria.	Section 1.0
\boxtimes	Identification of existing and proposed infrastructure available in the immediate area.	Sections 3.1, 4.1, 5.1
	Identification of Environmentally Significant Areas, watercourses and Municipal	
	Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).	N/A
	Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.	N/A
	Identification of potential impacts of proposed piped services on private	
	services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.	N/A
	Proposed phasing of the development, if applicable.	N/A
	Reference to geotechnical studies and recommendations concerning servicing.	N/A
	All preliminary and formal site plan submissions should have the following information: -Metric scale -North arrow (including construction North) -Key plan -Name and contact information of applicant and property owner -Property limits including bearings and dimensions -Existing and proposed structures and parking areas -Easements, road widening and rights-of-way -Adjacent street names	N/A
4.2	Development Servicing Report: Water	
	Confirm consistency with Master Servicing Study, if available	N/A
\boxtimes	Availability of public infrastructure to service proposed development	Section 3.1
\boxtimes	Identification of system constraints	Section 3.1
∇	Identify houndary conditions	Section 2.1.2.2

Section 3.1, 3.2 Section 3.3

i

DSEL©

^{*}Extracted from the City of Ottawa-Servicing Study Guidelines for Development Applications

_		
N/I	Confirmation of adequate fire flow protection and confirmation that fire flow is	Continu 2.2
\boxtimes	calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.	Section 3.2
	Provide a check of high pressures. If pressure is found to be high, an assessment	
	is required to confirm the application of pressure reducing valves.	N/A
	Definition of phasing constraints. Hydraulic modeling is required to confirm	
	servicing for all defined phases of the project including the ultimate design	N/A
	Address reliability requirements such as appropriate location of shut-off valves	N/A
	Check on the necessity of a pressure zone boundary modification	N/A
	Reference to water supply analysis to show that major infrastructure is capable	
\boxtimes	of delivering sufficient water for the proposed land use. This includes data that	Section 2.2.2
	shows that the expected demands under average day, peak hour and fire flow	Section 3.2, 3.3
	conditions provide water within the required pressure range	
	Description of the proposed water distribution network, including locations of	
	proposed connections to the existing system, provisions for necessary looping,	N/A
_	and appurtenances (valves, pressure reducing valves, valve chambers, and fire	,,.
	hydrants) including special metering provisions.	
	Description of off-site required feedermains, booster pumping stations, and	
	other water infrastructure that will be ultimately required to service proposed	N/A
	development, including financing, interim facilities, and timing of	
	implementation. Confirmation that water demands are calculated based on the City of Ottawa	
\boxtimes	Design Guidelines.	Section 3.2
	Provision of a model schematic showing the boundary conditions locations,	
	streets, parcels, and building locations for reference.	N/A
	71 7 5	
4.3	Development Servicing Report: Wastewater	
	Summary of proposed design criteria (Note: Wet-weather flow criteria should	
\boxtimes	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow	Section 4.2
\boxtimes	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity	Section 4.2
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).	Section 4.2
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity	Section 4.2 N/A
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for	
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations.	
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that	N/A
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater	N/A N/A
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development.	N/A
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of	N/A N/A
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be	N/A N/A
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to	N/A N/A Section 4.1
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)	N/A N/A Section 4.1
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the	N/A N/A Section 4.1 Section 4.2
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)	N/A N/A Section 4.1
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format. Description of proposed sewer network including sewers, pumping stations, and	N/A N/A Section 4.1 Section 4.2
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format. Description of proposed sewer network including sewers, pumping stations, and forcemains.	N/A N/A Section 4.1 Section 4.2 Section 4.2, Appendix C
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format. Description of proposed sewer network including sewers, pumping stations, and forcemains. Discussion of previously identified environmental constraints and impact on	N/A N/A Section 4.1 Section 4.2 Section 4.2, Appendix C
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format. Description of proposed sewer network including sewers, pumping stations, and forcemains. Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the	N/A N/A Section 4.1 Section 4.2 Section 4.2, Appendix C
	not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure). Confirm consistency with Master Servicing Study and/or justifications for deviations. Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. Description of existing sanitary sewer available for discharge of wastewater from proposed development. Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable) Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format. Description of proposed sewer network including sewers, pumping stations, and forcemains. Discussion of previously identified environmental constraints and impact on	N/A N/A Section 4.1 Section 4.2 Section 4.2, Appendix C Section 4.2

ii DSEL©

	Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.	N/A
	Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.	N/A
	Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.	N/A
	Special considerations such as contamination, corrosive environment etc.	N/A
	<u> </u>	·
4.4	Development Servicing Report: Stormwater Checklist	
\boxtimes	Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property)	Section 5.1
\boxtimes	Analysis of available capacity in existing public infrastructure.	Section 5.1, Appendix D
	A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern.	N/A
\boxtimes	Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects.	Section 5.2
\boxtimes	Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.	Section 5.2
\boxtimes	Description of the stormwater management concept with facility locations and descriptions with references and supporting information	Section 5.3
	Set-back from private sewage disposal systems.	N/A
	Watercourse and hazard lands setbacks.	N/A
\boxtimes	Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.	Appendix A
	Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists.	N/A
\boxtimes	Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period).	Section 5.3
	Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals.	N/A
\boxtimes	Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.	Section 5.1, 5.3
	Any proposed diversion of drainage catchment areas from one outlet to another.	N/A
	Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities.	N/A
	If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100-year return period storm event.	N/A
	Identification of potential impacts to receiving watercourses	N/A
	Identification of municipal drains and related approval requirements.	N/A

DSEL© iii

\boxtimes	Descriptions of how the conveyance and storage capacity will be achieved for the development.	Section 5.3
	100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.	N/A
	Inclusion of hydraulic analysis including hydraulic grade line elevations.	N/A
\boxtimes	Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.	Section 7.0
	Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.	N/A
	Identification of fill constraints related to floodplain and geotechnical investigation.	N/A
4.5	Approval and Permit Requirements: Checklist	
\boxtimes	Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement ct. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act.	Section 1.2
	Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.	N/A
	Changes to Municipal Drains.	N/A
	Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.)	N/A
4.6	Conclusion Checklist	
\boxtimes	Clearly stated conclusions and recommendations	Section 8.0
	Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.	
	All draft and final reports shall be signed and stamped by a professional	

v DSEL©

Genavieve Melatti

From: Genavieve Melatti

Sent: Thursday, June 7, 2018 10:52 AM

To: Genavieve Melatti

Subject: FW: 21 WIthrow - Boundary condition request

Attachments: 21 Withrow May 2018.pdf

From: Schaeffer, Gabrielle [mailto:gabrielle.schaeffer@Ottawa.ca]

Sent: Thursday, May 31, 2018 9:21 AM To: Steve Merrick <SMerrick@dsel.ca>

Subject: RE: 21 WIthrow - Boundary condition request

Hi Steve.

The following are boundary conditions, HGL, for hydraulic analysis 21 Withrow (zone ME), assumed to be connected to the 152mm on St-Helens (see attached PDF for location).

Minimum HGL = 158.4m

Maximum HGL = 163.5m; the maximum pressure is estimated to be above 80 psi. A pressure check at completion of construction is recommended to determine if pressure control is required.

Max Day + Fire Flow (100 L/s) = 139.0m

These are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

Regards, Gabrielle

From: Schaeffer, Gabrielle

Sent: Wednesday, May 30, 2018 9:22 AM **To:** 'Steve Merrick' < <u>SMerrick@dsel.ca</u>>

Subject: RE: 21 WIthrow - Boundary condition request

No, that technical memo only applies to the sewer design guidelines. No memo has been issued regarding this topic for the water distribution guidelines.

I will send the boundary conditions request with this information below:

	L/min	L/s
Avg. Daily	11.7	0.20
Max Day	57.2	0.95
Peak Hour	86.3	1.44

RFF = 6000 L/min

Regards, Gabrielle

From: Steve Merrick < Sent: Wednesday, May 30, 2018 8:55 AM

To: Schaeffer, Gabrielle <<u>gabrielle.schaeffer@Ottawa.ca</u>> **Subject:** RE: 21 WIthrow - Boundary condition request

Good question, our unit counts have not changed, however, the revised technical memo to the sewer design guidelines indicates 280 L/p/day for residential demand. Should the same be applied to water demand? Could you confirm what the City would like to see going forward?

Thanks!

Steve Merrick, P.Eng.
Project Manager / Intermediate Designer

DSEL

david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: (613) 836-0856 ext. 561

cell: (613) 222-7816 email: smerrick@DSEL.ca

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

From: Schaeffer, Gabrielle [mailto:gabrielle.schaeffer@Ottawa.ca]

Sent: Wednesday, May 30, 2018 8:48 AM **To:** Steve Merrick < SMerrick@dsel.ca>

Subject: RE: 21 WIthrow - Boundary condition request

Hi Steve,

Attached is Cleto's P&P.

I needed the RFF before asking for revised boundary conditions. I assume the domestic demands remain the same in table below from your previous email?

	L/min	L/s
Avg. Daily	11.7	0.20
Max Day	57.2	0.95

Peak Hour

86.3

1 44

Regards, Gabrielle

From: Steve Merrick < Sent: Tuesday, May 29, 2018 5:20 PM

To: Schaeffer, Gabrielle <<u>gabrielle.schaeffer@Ottawa.ca</u>> **Subject:** RE: 21 WIthrow - Boundary condition request

Hi Gabrielle,

I wanted to follow up on my original request earlier this month, did you receive anything back from the water resources group?

Thank you for the copy of the revised guidelines. Based on the updated clarification that if the building exceeds 67% brick/masonary veneer that ordinary construction can be contemplated for the FUS. This clarification results in the new and existing buildings to be classified as ordinary construction and therefore the 3.0m separation would not apply. Based on this a revised FUS calculation, the highest fire flow resulted in 6,000 L/min maximum fire flow. We will ensure we follow the guide which outlines hydrant spacing for dead end connections and the max flow from each hydrant which you have indicated below.

As discussed in the meeting may you please forward on the as-built information for Cleto Ave and specifically the CSP as when we tried to request this information from the Information Centre we were told it was not available.

Thanks in advance,

Steve Merrick, P.Eng.
Project Manager / Intermediate Designer

DSEL

david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: (613) 836-0856 ext. 561

cell: (613) 222-7816 email: smerrick@DSEL.ca

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

From: Schaeffer, Gabrielle [mailto:gabrielle.schaeffer@Ottawa.ca]

Sent: Monday, May 7, 2018 10:41 AM

To: Steve Merrick < SMerrick@dsel.ca>

Subject: RE: 21 WIthrow - Boundary condition request

Hi Steve.

I've passed your request along to our water group. Please provide me with your FUS calcs.

Note, a more recent technical bulletin came out providing guidance on FUS calculations and other water related items. I've attached it for you read through and apply to this file. One item to note is that the maximum flow from one hydrant is about 95 L/s. Please review the FUS guidance before providing your FUS calcs.

Thanks, Gabrielle

From: Steve Merrick < Sent: Monday, May 07, 2018 9:25 AM

To: Schaeffer, Gabrielle <<u>gabrielle.schaeffer@Ottawa.ca</u>> **Subject:** FW: 21 WIthrow - Boundary condition request

Hi Gabrielle,

Thank you for meeting with us last week. See below our first boundary condition request sent to the City. A subsequent boundary condition request was made to determine pressure at 8,000L/min.

As shown below the pressure provided at minimum pressure was less than 10,000 L/min. Can you confirm that these boundary conditions are still valid for the area? I have summarized demand and fire flow below:

	L/min	L/s
Avg. Daily	11.7	0.20
Max Day	57.2	0.95
Peak Hour	86.3	1.44

Fire flow = 10.000 L/min

Steve Merrick, P.Eng.
Project Manager / Intermediate Designer

DSEL

david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: (613) 836-0856 ext. 561

cell: (613) 222-7816 email: smerrick@DSEL.ca

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

From: Balima, Nadege < Nadege.Balima@ottawa.ca>

Sent: September 11, 2017 9:17 AM **To:** Brandon Chow < <u>BChow@dsel.ca</u>>

Subject: RE: 21 WIthrow - Boundary condition request

Good morning Brandon,

As per our phone conversation last week, the watermain on Rita and St Helen are in two different watermain pressure zones and cannot be interconnected. Below/attached are therefore the results of your request for option 1 only. I'm also providing a snapshot of the pressure zones limits in that area for your information (the blue area is the 2W zone and the purple area is the Meadowlands Zone).

The following are boundary conditions, HGL, for hydraulic analysis 21 Withrow (zone ME), assumed to be connected to the 152mm on St-Helens (see attached PDF for location).

Minimum HGL = 158.4m

Maximum HGL = 163.5m; the maximum pressure is estimated to be above 80 psi. A pressure check at completion of construction is recommended to determine if pressure control is required.

Available Flow = 155 L/s assuming a residual of 20 psi and a ground elevation of 97.5m

These are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

Please let me know if you have questions. Regards,

Nadège Balima, P.Eng., M.P.M., LEED Green Assoc.

Project Manager, Infrastructure Approvals Development Review Services (West)

€613.580.2424 ext. 13477

From: Brandon Chow [mailto:BChow@dsel.ca]
Sent: Thursday, August 31, 2017 5:43 PM

To: Balima, Nadege < <u>Nadege.Balima@ottawa.ca</u>> **Subject:** 21 WIthrow - Boundary condition request

Hi Nadege,

We would like to request boundary conditions for 2 options for the proposed development at 21 Withrow Ave. The proposed development will consist of 14 single family homes. 10 units will be serviced from a proposed 150mm watermain within the site and 4 units will be serviced from the existing 150mm watermain within Withrow Ave. See attached figures of the 2 options for connection point(s).

We hope that you can provide the maximum flow from the 150mm watermain in St. Helene's Place and in Rita Avenue using a fire flow of 10,000 L/m.

The anticipated water demands are summarized below:

	L/min	L/s
Avg. Daily	11.7	0.20
Max Day	57.2	0.95
Peak Hour	86.3	1.44

Thank you,

Brandon Chow Project Coordinator / Junior Designer

DSEL

david schaeffer engineering Itd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: (613) 836-0856 ext.532

fax: (613) 836-7183 **email**: <u>bchow@DSEL.ca</u>

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Hannah Pepper

Subject:

FW: 21 Withrow - Infrastructure Follow up

From: Bill Holzman [mailto:b.holzman@holzmanconsultants.com]

Sent: Wednesday, June 28, 2017 9:21 AM **To:** joeytheberge@thebergehomes.com

Cc: Reid Shepherd <r.shepherd@holzmanconsultants.com>; Adam Fobert <AFobert@dsel.ca>

Subject: Fwd: 21 Withrow - Infrastructure Follow up

fyi, Bill

Begin forwarded message:

From: "Dickinson, Mary" < mary.dickinson@ottawa.ca > Subject: FW: 21 Withrow - Infrastructure Follow up

Date: June 28, 2017 at 8:32:55 AM EDT

To: Bill Holzman <b.holzman@holzmanconsultants.com>

Bill

Please see below the detailed civil notes that make up part of the pre-consultation follow up for 21 Withrow.

Please let Nadege and/or me know if you have any questions.

Thanks Mary

Mary Dickinson, MCIP, RPP

Planner

Development Review West

Urbaniste

Examen des demandes d'aménagement ouest

City of Ottawa | Ville d'Ottawa 613.580.2424 ext./poste 13923 ottawa.ca/planning / ottawa.ca/urbanisme

From: Balima, Nadege

Sent: Tuesday, June 27, 2017 4:47 PM

To: Dickinson, Mary

Subject: 21 Withrow - Infrastructure Follow up

Hi Mary,

As discussed, please find below my notes on the site at 21 Withrow.

- 1. The proponent may proceed with severance of lots along Withrow while ensuring that each lot:
 - a) Maintains a size and imperviousness similar to what was originally planned in the subdivision for this area;
 - b) Can be serviced independently for water and sanitary;
 - c) Is graded to provide positive drainage and can be drained while following existing grading and drainage with no adverse effects on neighboring lots.
- 2. A preliminary high level stormwater analysis should be performed prior to the severance to ensure that development of the site (subdivision) can occur as planned in the future without any adverse impacts on neighboring properties. The following should be considered for storm flows:
 - a) The pre-development runoff coefficient or a maximum equivalent 'C' of 0.5, whichever is less (§ 8.3.7.3 of the Ottawa Sewer Design Guidelines).
 - b) A calculated time of concentration (Cannot be less than 10 minutes)
 - c) Flows from the site can be accommodated by the roadside ditches without adverse impact on neighboring properties
 - d) Post-development flows should be controlled to pre-developed flows for both the 2 and 100 year events. (Note that although a storm water management pond is not expected for the site, best management practices to minimize the amount of flow from the site should be incorporated in the design;)
 - e) Both the interim (severance only) and the ultimate (severance and subdivision on private street) can function independently without adverse impacts on the neighboring properties and existing outlets/ditches;
- 3. A servicing plan, grading and drainage plan, erosion and sediment control plan as well as the high level stormwater analysis will need to be provided at the time of application for severance;
- 4. In addition to the information in point 3 for the subdivision, a geotechnical report, servicing and stormwater management brief will need to be submitted as part of the subdivision application;
- 5. If the rural type cross-section is maintained for the private street, this should also be discussed in the stormwater analysis to be submitted at the time of severance;
- 6. Note that water looping will likely be required due to low pressure in the area and district metering area chamber may be required on the private street;
- 7. The sanitary sewer connection for the future subdivision may come from Rita Avenue;
- 8. Keep in mind that for the private road, MOECC environmental compliance approval may be required if the lots are under different ownership (no condominium ownership).
- 9. With regards to the watermain analysis, you may request water boundary conditions for your watermain calculations. Requests must include the location of the service and the expected loads required by the proposed development. The following information is required:

equired

You may also wish to check the City's record drawings and utility plans in case there is additional plans or reports available. To purchase available documentation, please contact the City's Information Centre by email at InformationCentre@ottawa.ca or by phone at (613) 580-2424 x.44455.

Please let me know if you have any further questions. Regards,

Nadège Balima, P.Eng., M.P.M., LEED Green Assoc.

Project Manager, Infrastructure Approvals
Development Review Services (West)
Gestionnaire de Projet, Approbation des demandes en Infrastructures
Services d'examen des demandes d'aménagement (Ouest)
Planning, Infrastructure and Economic Development Department
Service de planification, d'Infrastructure et de Développement économique
City of Ottawa | Ville d'Ottawa

613.580.2424 ext. | poste 13477
ottawa.ca/planning | ottawa.ca/urbanisme

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

[&]quot;Nous n'héritons pas de la terre de nos ancêtres, nous l'empruntons à nos enfants". Saint-Exupéry "We do not inherit the land from our forefathers, we borrow it from our children". Saint-Exupéry

Hannah Pepper

Subject:

FW: Stormwater Quality Controls - 21 Withrow Avenue

From: Eric Lalande [mailto:eric.lalande@rvca.ca]

Sent: October 13, 2017 4:24 PM

To: Hannah Pepper < HPepper@dsel.ca>

Subject: RE: Stormwater Quality Controls - 21 Withrow Avenue

Hi Hanna,

The RVCA is looking for 80% TSS removal as part of quality control for the project. This can be accomplished either through on-site controls or off site systems prior to releasing in to a watercourse. Please outline if any quality controls are proposed to be implemented on-site. The intervening pond in Gibley Park outlets back into the municipal sewer system connecting to the Rideau River. While the travel distance should be sufficient to handle quality control for the proposal, best management practices are encouraged, where feasible.

Thanks,

Eric Lalande, MCIP, RPP

Planner, Rideau Valley Conservation Authority 613-692-3571 x1137

From: Jamie Batchelor

Sent: Wednesday, October 11, 2017 2:34 PM **To:** Eric Lalande <eric.lalande@rvca.ca>

Subject: FW: Stormwater Quality Controls - 21 Withrow Avenue

From: Hannah Pepper [mailto:HPepper@dsel.ca]
Sent: Wednesday, October 11, 2017 1:55 PM
To: Jamie Batchelor < jamie.batchelor@rvca.ca>

Subject: FW: Stormwater Quality Controls - 21 Withrow Avenue

Hi Jamie,

Just wanted to follow up on the below?

Thanks!

Hannah Pepper, EIT. Project Coordinator / Junior Designer

DSEL

david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9 phone: (613) 836-0856 ext. 569

fax: (613) 836-7183 email: <u>hpepper@DSEL.ca</u>

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

From: Hannah Pepper

Sent: October 4, 2017 11:24 AM

To: 'jamie.batchelor@rvca.ca' < <u>jamie.batchelor@rvca.ca</u>> **Subject:** Stormwater Quality Controls - 21 Withrow Avenue

Hi Jamie,

Could you please confirm if stormwater quality controls would be necessary for a contemplated development with the following details?

The property is located at 21 Withrow Avenue and would include the construction of 13 townhome units, with the retention of one existing single family townhome. This is outlined in the attached site plan.

Stormwater from the new buildings will discharge into proposed ditches and then to existing sewers within Cleto Avenue, which drains to storm sewers within Merivale Road and then to a pond in Gibley Park. Total flow path to the pond is about 900m; please see the attached figure.

Stormwater storage onsite would be through underground storage. There is no proposed underground parking and there will be surface parking from proposed driveways for each home.

Thanks!

Hannah Pepper, EIT. Project Coordinator / Junior Designer

DSEL

david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: (613) 836-0856 ext. 569

fax: (613) 836-7183 **email**: <u>hpepper@DSEL.ca</u>

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

Steve Merrick

From: Schaeffer, Gabrielle < gabrielle.schaeffer@Ottawa.ca>

Sent: Monday, February 12, 2018 2:13 PM

To: Steve Merrick
Cc: Dickinson, Mary

Subject: RE: 21 Withrow - Comments

Hi Steve,

I don't have the file in front of me today, but to answer your question now instead of wait, here is my review of my comments and the applicable changes. These changes are based on an internal discussion regarding the severance lots and their relation to the subdivision lots.

Since the Withrow lots are not part of the subdivision development:

- Comment #8 does not apply
- Change comment #58 to read "Add existing storm infrastructure within St. Helen's Place, Cleto and Tower ROWs (i.e. swale, culverts, etc) if not already done so."
- Delete the general section comment of comment #82
- Change comment #82a to read: "A discussion is required regarding how flows from the property (external tributary areas and subdivision lots) can be accommodated by the sewers and/or roadside ditches without adverse impact on neighbouring properties."
- Change comment #82b to read: "Part of neighbouring severance lots are to drain onto subdivision property, specifically roof and rear yard drainage. Discuss how interim conditions (i.e. developed severance lots while subdivision lots have not) will function without causing any adverse impacts to neighbouring properties and existing outlets/ditches. Also, discuss how the ultimate design (i.e. severance lots and subdivision lots both developed) will function without causing any adverse impacts to neighbouring properties and existing outlets/ditches.
- Change comment #82c to read: "A downstream analysis of the connecting STM sewer systems is to be provided." "The Withrow STM system is to be assessed for any impacts caused by the proposed severance lots" sentence can be deleted.

After our conversation last week and re-reading the comments, please make the additional changes to my comments:

- Change comment #53 to: Edit the text to 'or equivalent approved by City of Ottawa Planning Staff'.
- Change comment #66 to "Submit a revised request for Boundary Conditions once comments #64 and #65 have been addressed."
- Change comment #92 to read "External drainage entering the proposed storm system is to be
 accounted for in the design and calculations. Either a full by-pass system (i.e. dedicated swale
 and outlet) or a release of the external drainage from the proposed system to the existing
 drainage path is required. An additional option would be to outlet through the proposed
 connection to the Cleto storm sewer system ensuring to adverse impacts downstream."

Regards, Gabrielle From: Steve Merrick [mailto:SMerrick@dsel.ca]
Sent: Monday, February 12, 2018 9:00 AM

To: Schaeffer, Gabrielle <gabrielle.schaeffer@Ottawa.ca>

Subject: 21 Withrow - Comments

Hi Gabrielle,

Good to chat with you on Friday about some of the attached comments. I recall you discussing some of the comments may not be applicable after your meeting with Justin Armstrong. Can you indicate which of these comments are no longer applicable?

Let me know if you find out anything about recent flooding in this area so we can be prepared for the meeting on Thursday. See you then.

Thanks!

Steve Merrick, P.Eng.
Project Manager / Intermediate Designer

DSEL

david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: (613) 836-0856 ext. 561

cell: (613) 222-7816 email: smerrick@DSEL.ca

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient, or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

2

Amr Salem

From: Bazinet, Chelsea <chelsea.bazinet@bell.ca>

Sent: November 1, 2018 3:02 PM

To: Amr Salem

Subject: RE: 931- 21 Withrow CUP

Hi Amr,

Just to clarify, if this is a private road/site, usually the developer places all the conduit and Bell will then pull the services through the provided path.

Providing that conduits are required, Yes Bell is able to service this site.

Thank you, Chelsea

Chelsea Bazinet

Access Network Coordinator | Ottawa

340 Moodie Dr. Fl 2, OTTAWA, ON K2H 8G3

C: 613-295-5021

Proud member of the 2018/2019 Bell Ambassador team.

From: Amr Salem <ASalem@dsel.ca> Sent: November-01-18 2:55 PM

To: Bazinet, Chelsea <chelsea.bazinet@bell.ca>; Barry.Brown@rci.rogers.com; Margaret.Melling@enbridge.com;

geoffrey.paquet@canadapost.postescanada.ca

Cc: McKibbon, Tom <TomMcKibbon@hydroottawa.com>; Genavieve Melatti <GMelatti@dsel.ca>; Steve Merrick

<SMerrick@dsel.ca>

Subject: 931-21 Withrow CUP

Hello everyone,

Please find attached our latest CUP for 21 Withrow. The CUP shows where the JUT is proposed to go, however please note that the design is subject to change.

The City has requested that all utilities provide clearance stating that they are capable of servicing this site. To be clear; no design is required at this point, **just an e-mail stating that you would be able to service this site.** You may add disclaimers if you wish since the design attached is not final and is subject to change.

Please feel free to contact me with any questions.

Thank you,

Amr Salem

Project Coordinator

DSEL

david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: (613) 836-0856 ext. 512

email: <u>asalem@DSEL.ca</u>

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

Amr Salem

From: FURANO, Joe <joe.furano@canadapost.postescanada.ca>

Sent: December 17, 2018 9:21 AM

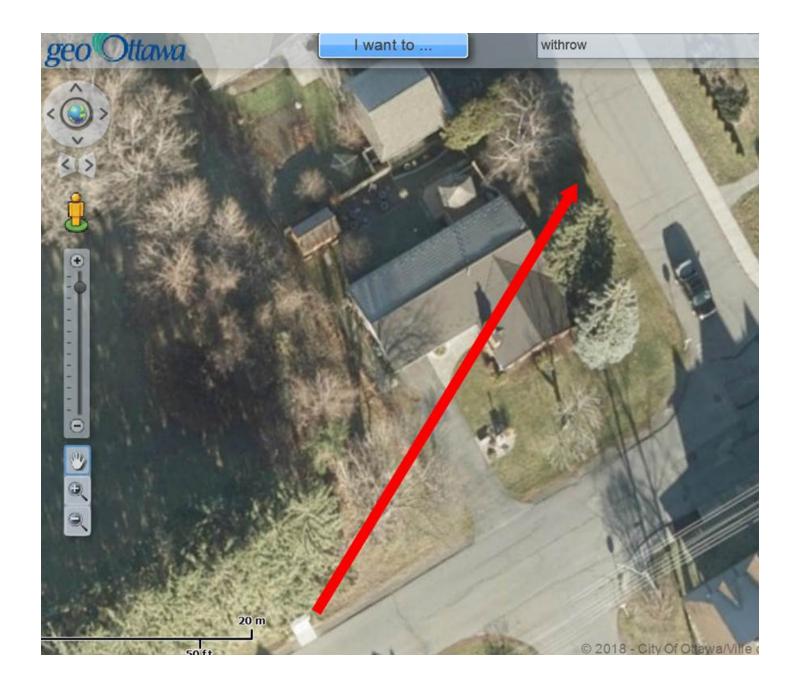
To: Amr Salem
Cc: McLeod, David S

Subject: RE: 931- 21 Withrow CUP-relocation of CMB Due to Development

Hello Amr,

I will **not** be needing to add a new CMB to this development. I currently have one on site, that will need to be relocated and at the same time add a third module.

The current CMB will be in front of one of the homes, that is planned.


Can you can show it on the plan and needing to be relocated, to side of 15 Withrow Ave.

I will also need the City Of Ottawa's approval for this relocate. I have CC'd Dave Mcleod from the City Of Ottawa for his review.

Thanks Dave,

Regards, Joe

JOE FURANO
CANADA POST – DELIVERY PLANNING
PO BOX 8037 OTTAWA T
OTTAWA ONTARIO
K1G 3H6
joe.furano@canadapost.ca

From: Amr Salem [mailto:ASalem@dsel.ca]

Sent: December-14-18 1:01 PM

To: FURANO, Joe <joe.furano@canadapost.postescanada.ca>

Subject: FW: 931-21 Withrow CUP

Hey Joe,

Just following up on this; can you please provide a statement by Monday?

Thanks,

Amr Salem

Project Coordinator

DSEL

david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: (613) 836-0856 ext. 512 **email**: asalem@DSEL.ca

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

From: FURANO, Joe < joe.furano@canadapost.postescanada.ca >

Sent: November 5, 2018 12:18 PM
To: Amr Salem < <u>ASalem@dsel.ca</u>>
Subject: RE: 931- 21 Withrow CUP

Hello Amr,

Please substitute my contact info for Geoff's. As this is my area.

Thanks, Joe

JOE FURANO CANADA POST – DELIVERY PLANNING PO BOX 8037 OTTAWA T OTTAWA ONTARIO K1G 3H6

joe.furano@canadapost.ca

From: PAQUET, Geoffrey

Geoff Paguer

Sent: November-05-18 12:05 PM

To: FURANO, Joe <joe.furano@canadapost.postescanada.ca>

Cc: Amr Salem < ASalem@dsel.ca > Subject: FW: 931- 21 Withrow CUP

Joe,

For you

Delivery Service Officer / Agent de Service de Livraison

P.O Box 8037 Ottawa T CSC Ottawa,Ontario K1G 3H6 613.316-8459

From: Amr Salem [mailto:ASalem@dsel.ca]

Sent: November-05-18 12:03 PM

To: Barry.Brown@rci.rogers.com; Margaret.Melling@enbridge.com; PAQUET, Geoffrey

<geoffrey.paquet@canadapost.postescanada.ca>

Cc: McKibbon, Tom <TomMcKibbon@hydroottawa.com>

Subject: FW: 931- 21 Withrow CUP

Hello everyone,

I just wanted to follow up on my e-mail below;

Can you please provide a statement at your earliest convenience.

Thank you,

Amr Salem

Project Coordinator

DSEL

david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: (613) 836-0856 ext. 512 **email**: asalem@DSEL.ca

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

From: Amr Salem

Sent: November 1, 2018 2:55 PM

To: 'chelsea.bazinet@bell.ca' < chelsea.bazinet@bell.ca; 'Barry.Brown@rci.rogers.com' < Barry.Brown@rci.rogers.com; 'Barry.Brown@rci.rogers.com' >

'Margaret.Melling@enbridge.com' < Margaret.Melling@enbridge.com >;

'geoffrey.paquet@canadapost.postescanada.ca' <geoffrey.paquet@canadapost.postescanada.ca>

Cc: 'McKibbon, Tom' < TomMcKibbon@hydroottawa.com; Genavieve Melatti < GMelatti@dsel.ca; Steve Merrick

<<u>SMerrick@dsel.ca</u>>

Subject: 931-21 Withrow CUP

Hello everyone,

Please find attached our latest CUP for 21 Withrow. The CUP shows where the JUT is proposed to go, however please note that the design is subject to change.

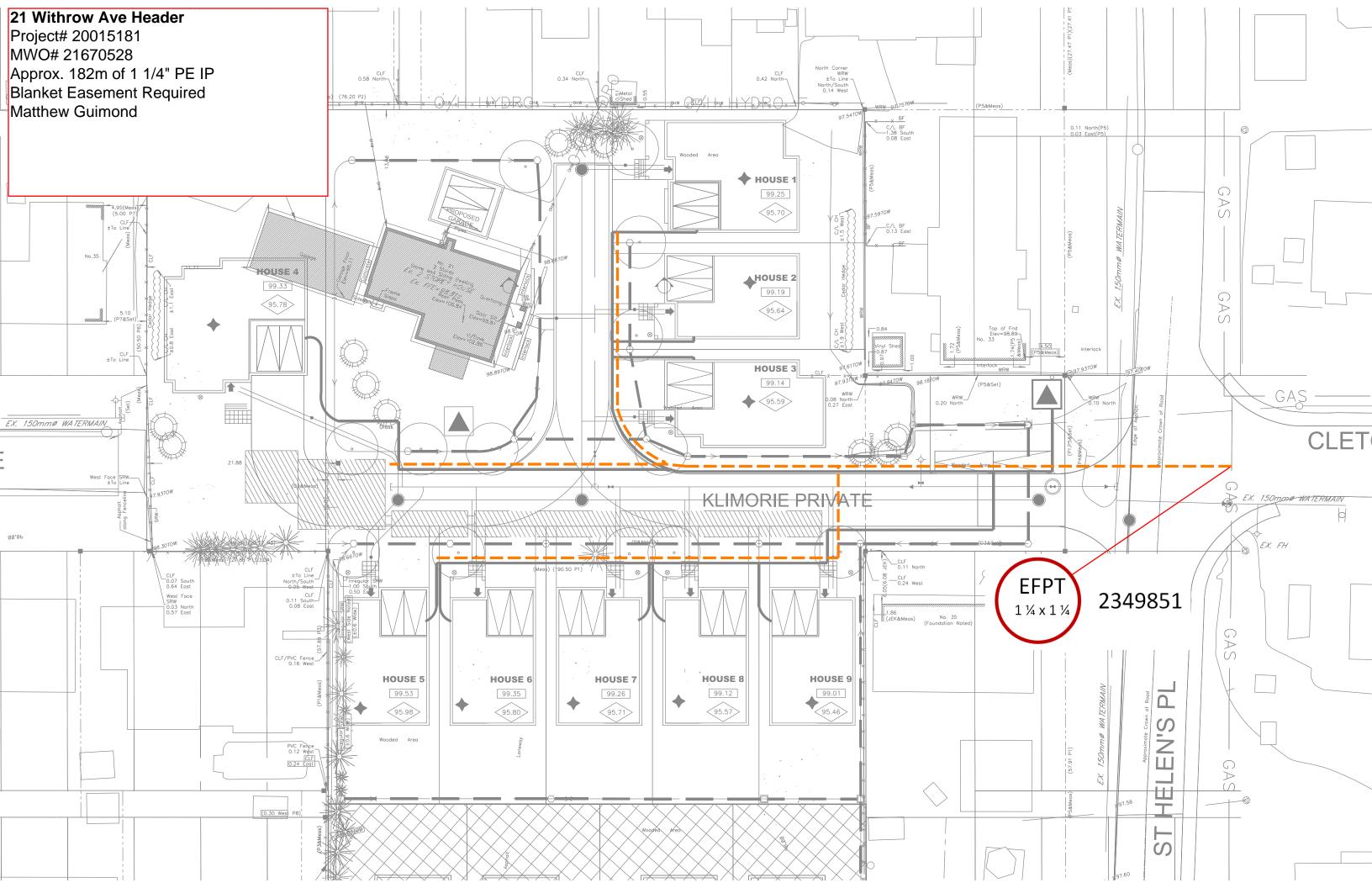
The City has requested that all utilities provide clearance stating that they are capable of servicing this site. To be clear; no design is required at this point, **just an e-mail stating that you would be able to service this site.** You may add disclaimers if you wish since the design attached is not final and is subject to change.

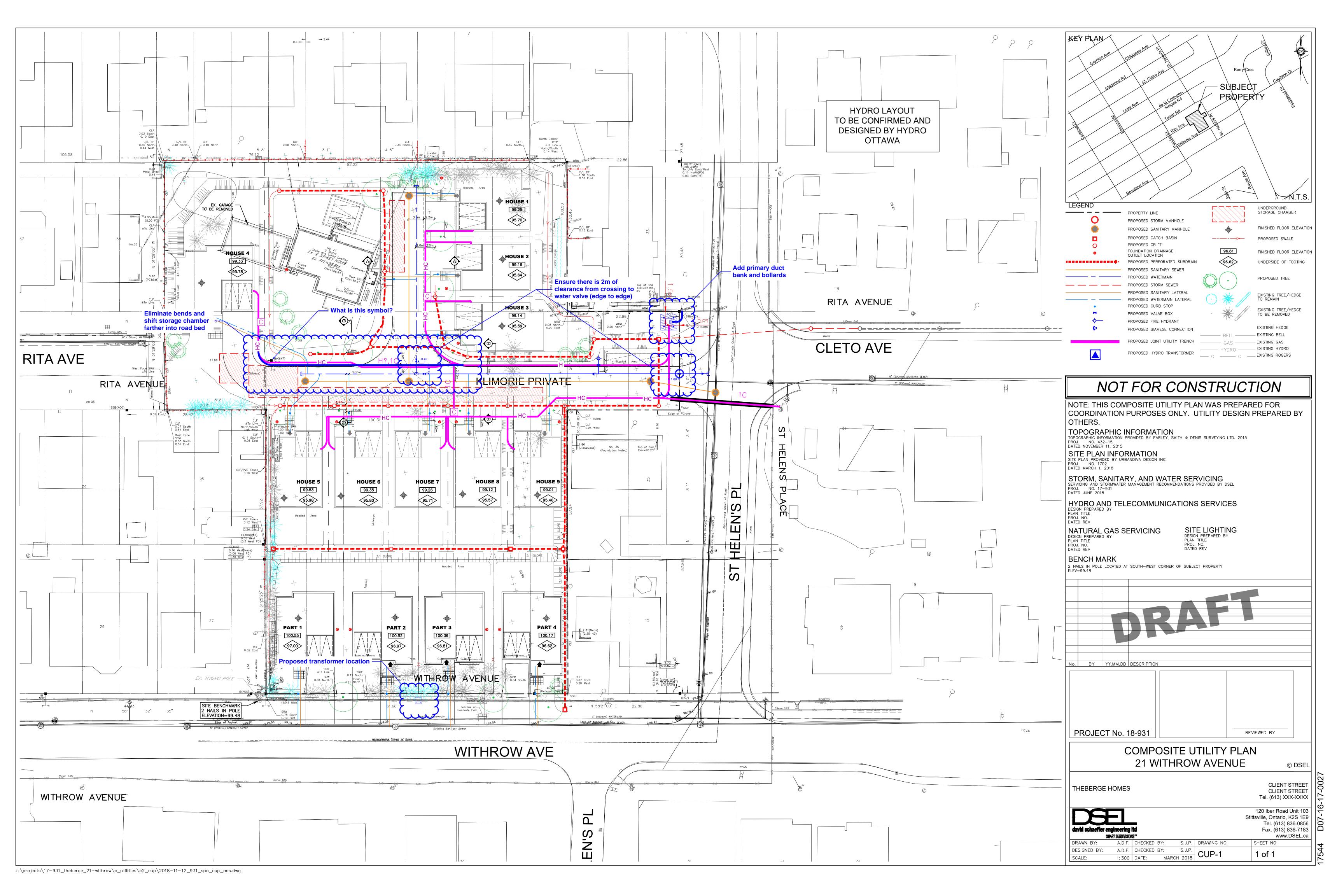
Please feel free to contact me with any questions.

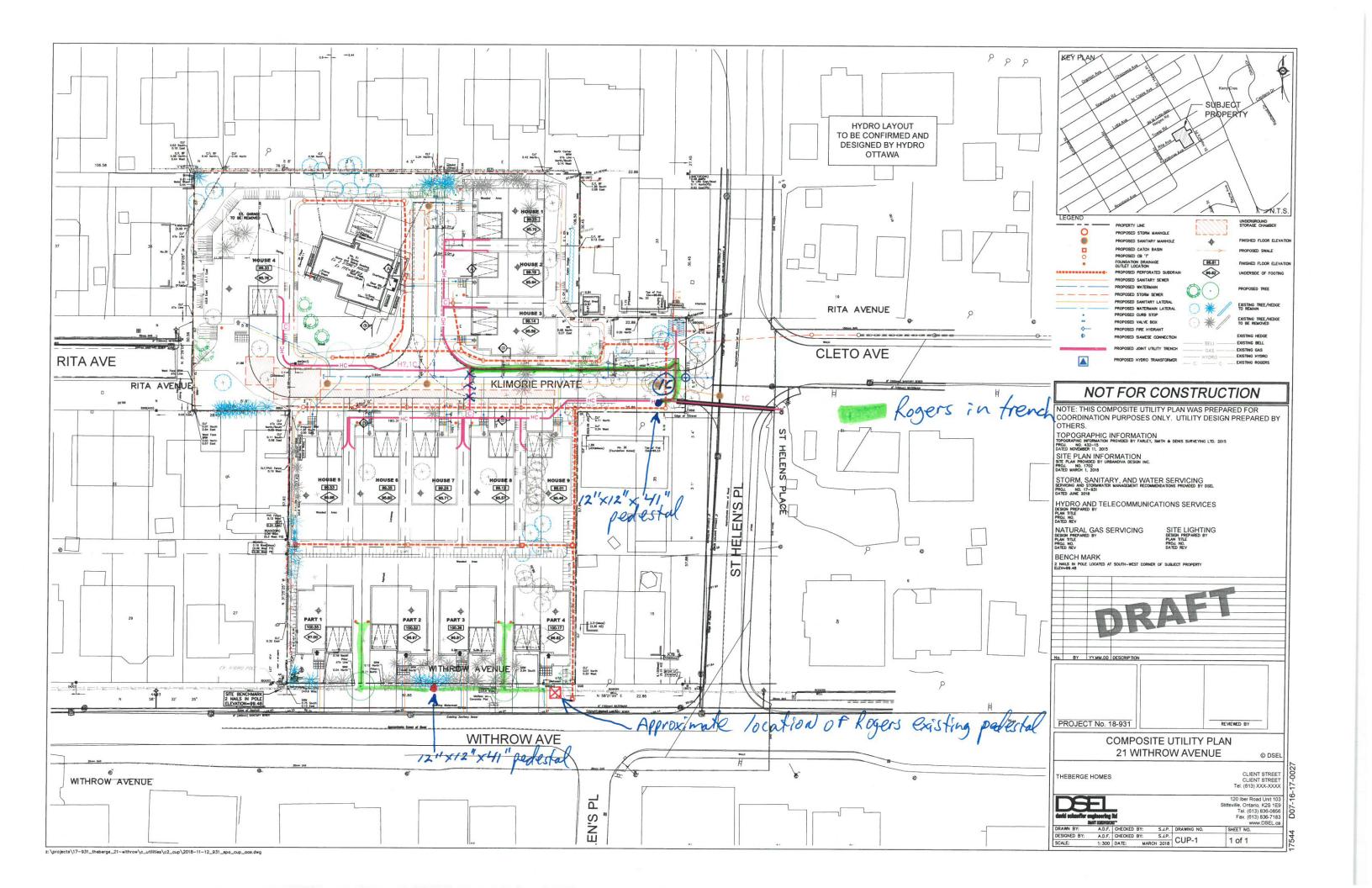
Thank you,

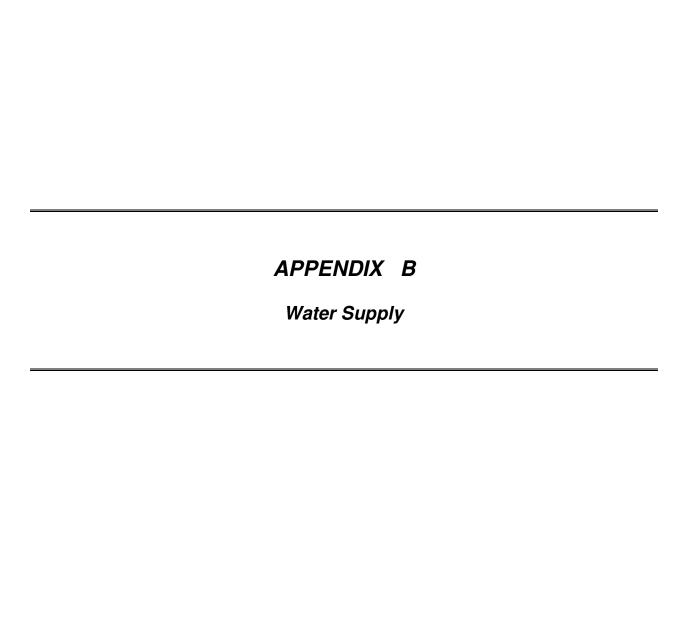
Amr Salem

Project Coordinator


DSEL


david schaeffer engineering ltd.


120 Iber Road, Unit 103 Stittsville, ON K2S 1E9


phone: (613) 836-0856 ext. 512 **email**: asalem@DSEL.ca

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

Theberge Homes 21 Withrow Avenue Existing Site Conditions

Water Demand Design Flows per Unit Count City of Ottawa - Water Distribution Guidelines, July 2010

Domestic Demand

Type of Housing	Per / Unit	Units	Pop
Single Family	3.4	1	4
Semi-detached	2.7		0
Townhouse	2.7		0
Apartment			0
Bachelor	1.4		0
1 Bedroom	1.4		0
2 Bedroom	2.1		0
3 Bedroom	3.1		0
Average	1.8		0

	Pop	Avg. Daily		Max Day		Peak Hour	
		m ³/d	L/min	m ³/d	L/min	m ³/d	L/min
Total Domestic Demand	4	1.4	1.0	13.3	9.2	20.0	13.9

Institutional / Commercial / Industrial Demand

			Avg. I	Daily	Max I	Day	Peak I	Hour
Property Type	Unit	Rate Units	m ³/d	L/min	m ³/d	L/min	m ³/d	L/min
Commercial floor space	2.5	L/m ² /d	0.00	0.0	0.0	0.0	0.0	0.0
Office	75	L/9.3m ² /d	0.00	0.0	0.0	0.0	0.0	0.0
Industrial - Light	35,000	L/gross ha/d	0.00	0.0	0.0	0.0	0.0	0.0
Industrial - Heavy	55,000	L/gross ha/d	0.00	0.0	0.0	0.0	0.0	0.0
		Total I/CI Demand	0.0	0.0	0.0	0.0	0.0	0.0
		Total Demand	1.4	1.0	13.3	9.2	20.0	13.9

Theberge Homes 21 Withrow Avenue Proposed Site Conditions

Water Demand Design Flows per Unit Count City of Ottawa - Water Distribution Guidelines, July 2010

Domestic Demand

Type of Housing	Per / Unit	Units	Pop
Single Family	3.4	14	48
Semi-detached	2.7		0
Townhouse	2.7		0
Apartment			0
Bachelor	1.4		0
1 Bedroom	1.4		0
2 Bedroom	2.1		0
3 Bedroom	3.1		0
Average	1.8		0

	Pop	Avg. Daily		Max Day		Peak Hour	
		m ³/d	L/min	m ³/d	L/min	m ³/d	L/min
Total Domestic Demand	48	16.8	11.7	82.3	57.2	124.3	86.3

Institutional / Commercial / Industrial Demand

			Avg. I	Daily	Max I	Day	Peak I	Hour
Property Type	Unit	Rate Units	m ³/d	L/min	m ³/d	L/min	m ³/d	L/min
Commercial floor space	2.5	L/m ² /d	0.00	0.0	0.0	0.0	0.0	0.0
Office	75	L/9.3m ² /d	0.00	0.0	0.0	0.0	0.0	0.0
Industrial - Light	35,000	L/gross ha/d	0.00	0.0	0.0	0.0	0.0	0.0
Industrial - Heavy	55,000	L/gross ha/d	0.00	0.0	0.0	0.0	0.0	0.0
		Total I/CI Demand	0.0	0.0	0.0	0.0	0.0	0.0
		Total Demand	16.8	11.7	82.3	57.2	124.3	86.3

Theberge Homes 21 Withrow Avenue FUS Calculations - Existing Home

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

 $F=220C\sqrt{A}$ L/min Where **F** is the fire flow, **C** is the Type of construction and **A** is the Total floor area

Type of Construction: Ordinary Construction

C 1 Type of Construction Coefficient per FUS Part II, Section 1

A 345.0 m² Total floor area based on FUS Part II section 1

Fire Flow 4086.3 L/min

4000.0 L/min rounded to the nearest 1,000 L/min

Adjustments

2. Reduction for Occupancy Type

Limited Combustible -15%

Fire Flow 3400.0 L/min

3. Reduction for Sprinkler Protection

Non-Sprinklered 0%

Reduction 0 L/min

4. Increase for Separation Distance

	Cons. of Exposed Wall	S.D	Lw Ha	LH	EC	
N	Ordinary - Unprotected Openings	3.1m-10m	18.36	2	37	16%
S	Ordinary - Unprotected Openings	10.1m-20m	18.93	2	38	11%
Ε	Ordinary - Unprotected Openings	10.1m-20m	10.79	2	22	10%
W	Ordinary - Unprotected Openings	30.1m-45m	8.3	2	17	5%
		% Increase				42% value not to exceed 75%

Increase 1428.0 L/min

Lw = Length of the Exposed Wall

Ha = number of storeys of the adjacent structure

LH = Length-height factor of exposed wall. Value rounded up.

EC = Exposure Charge

Total Fire Flow

Fire Flow	4828.0 L/min	fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section
	5000.0 L/min	rounded to the nearest 1,000 L/min

Notes

-Type of construction, Occupancy Type and Sprinkler Protection information provided by Theberge Homes.

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

 $F=220C\sqrt{A}$ L/min Where **F** is the fire flow, **C** is the Type of construction and **A** is the Total floor area

Type of Construction: Ordinary Construction

Type of Construction Coefficient per FUS Part II, Section 1

A 374.1 m² Total floor area based on FUS Part II section 1

Fire Flow 4255.1 L/min

4000.0 L/min rounded to the nearest 1,000 L/min

Adjustments

2. Reduction for Occupancy Type

Limited Combustible -15%

Fire Flow 3400.0 L/min

3. Reduction for Sprinkler Protection

Non-Sprinklered 0%

Reduction 0 L/min

4. Increase for Separation Distance

	Cons. of Exposed Wall	S.D	Lw Ha	LH	EC	
Ν	Ordinary - Unprotected Openings	3.1m-10m	13.88	2	28	15%
s	Ordinary - Unprotected Openings	0m-3m	15.03	2	31	22%
Ε	Ordinary - Unprotected Openings	10.1m-20m	14.42	2	29	10%
W	Ordinary - Unprotected Openings	10.1m-20m	14.24	2	29	10%

% Increase 57% value not to exceed 75%

Increase 1938.0 L/min

Lw = Length of the Exposed Wall

Ha = number of storeys of the adjacent structure

LH = Length-height factor of exposed wall. Value rounded up.

EC = Exposure Charge

Total Fire Flow

Fire Flow	5338.0 L/min	fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section
	5000.0 L/min	rounded to the nearest 1,000 L/min

Notes:

-Type of construction, Occupancy Type and Sprinkler Protection information provided by Theberge Homes.

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

 $F=220C\sqrt{A}$ L/min Where **F** is the fire flow, **C** is the Type of construction and **A** is the Total floor area

Type of Construction: Ordinary Construction

C 1 Type of Construction Coefficient per FUS Part II, Section 1

A 292.7 m² Total floor area based on FUS Part II section 1

Fire Flow 3764.0 L/min

4000.0 L/min rounded to the nearest 1,000 L/min

Adjustments

2. Reduction for Occupancy Type

Limited Combustible -15%

Fire Flow 3400.0 L/min

3. Reduction for Sprinkler Protection

Non-Sprinklered 0%

Reduction 0 L/min

4. Increase for Separation Distance

	Cons. of Exposed Wall	S.D	Lw Ha	LH	EC	
N	Ordinary - Unprotected Openings	0m-3m	15.34	2	31	22%
s	Ordinary - Unprotected Openings	0m-3m	14.24	2	29	21%
Ε	Ordinary - Unprotected Openings	10.1m-20m	9.8	2	20	10%
W	Ordinary - Unprotected Openings	10.1m-20m	10.97	2	22	10%
		% Increase				63% value not to exceed 75%

Increase 2142.0 L/min

Lw = Length of the Exposed Wall

Ha = number of storeys of the adjacent structure

LH = Length-height factor of exposed wall. Value rounded up.

EC = Exposure Charge

Total Fire Flow

Fire Flow	5542.0 L/min	fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section ·
	6000.0 L/min	rounded to the nearest 1,000 L/min

Notes

-Type of construction, Occupancy Type and Sprinkler Protection information provided by Theberge Homes.

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

 $F=220C\sqrt{A}$ L/min Where **F** is the fire flow, **C** is the Type of construction and **A** is the Total floor area

Type of Construction: Ordinary Construction

C 1 Type of Construction Coefficient per FUS Part II, Section 1

A 341.7 m² Total floor area based on FUS Part II section 1

Fire Flow 4066.6 L/min

4000.0 L/min rounded to the nearest 1,000 L/min

Adjustments

2. Reduction for Occupancy Type

Limited Combustible -15%

Fire Flow 3400.0 L/min

3. Reduction for Sprinkler Protection

Non-Sprinklered 0%

Reduction 0 L/min

4. Increase for Separation Distance

	Cons. of Exposed Wall	S.D	Lw Ha	LH	EC	
Ν	Ordinary - Unprotected Openings	0m-3m	20.34	2	41	22%
s	Ordinary - Unprotected Openings	10.1m-20m	18.64	2	38	11%
Ε	Ordinary - Unprotected Openings	3.1m-10m	8.25	2	17	15%
W	Ordinary - Unprotected Openings	10.1m-20m	9.93	2	20	10%
		% Increase			-	58% value not to exceed 75%

1972.0 L/min

Lw = Length of the Exposed Wall

Ha = number of storeys of the adjacent structure

LH = Length-height factor of exposed wall. Value rounded up.

EC = Exposure Charge

Increase

Total Fire Flow

Fire Flow	5372.0 L/min	fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section
	5000.0 L/min	rounded to the nearest 1,000 L/min

Notes

-Type of construction, Occupancy Type and Sprinkler Protection information provided by Theberge Homes.

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

 $F=220C\sqrt{A}$ L/min Where **F** is the fire flow, **C** is the Type of construction and **A** is the Total floor area

Type of Construction: Ordinary Construction

Type of Construction Coefficient per FUS Part II, Section 1

A 453.3 m² Total floor area based on FUS Part II section 1

Fire Flow 4683.8 L/min

5000.0 L/min rounded to the nearest 1,000 L/min

Adjustments

2. Reduction for Occupancy Type

Limited Combustible -15%

Fire Flow 4250.0 L/min

3. Reduction for Sprinkler Protection

Non-Sprinklered 0%

Reduction 0 L/min

4. Increase for Separation Distance

	Cons. of Exposed Wall	S.D	Lw Ha	LH	EC	
Ν	Ordinary - Unprotected Openings	20.1m-30m	18.49	2	37	7%
S	Ordinary - Unprotected Openings	20.1m-30m	19.38	2	39	7%
Ε	Ordinary - Unprotected Openings	3.1m-10m	13.43	2	27	15%
W	Ordinary - Unprotected Openings	3.1m-10m	12.12	2	25	15%
		% Increase				44% value not to exceed 75%

Increase 1870.0 L/min

Lw = Length of the Exposed Wall

Ha = number of storeys of the adjacent structure

LH = Length-height factor of exposed wall. Value rounded up.

EC = Exposure Charge

Total Fire Flow

Fire Flow	6120.0 L/min	fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section
	6000.0 L/min	rounded to the nearest 1,000 L/min

Notes:

-Type of construction, Occupancy Type and Sprinkler Protection information provided by Theberge Homes.

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

 $F=220C\sqrt{A}$ L/min Where **F** is the fire flow, **C** is the Type of construction and **A** is the Total floor area

Type of Construction: Ordinary Construction

C 1 Type of Construction Coefficient per FUS Part II, Section 1

A 300.3 m² Total floor area based on FUS Part II section 1

Fire Flow 3812.7 L/min

4000.0 L/min rounded to the nearest 1,000 L/min

Adjustments

2. Reduction for Occupancy Type

Limited Combustible -15%

Fire Flow 3400.0 L/min

3. Reduction for Sprinkler Protection

Non-Sprinklered 0%

Reduction 0 L/min

4. Increase for Separation Distance

	Cons. of Exposed Wall	S.D	Lw Ha	LH	EC	;
N	Ordinary - Unprotected Openings	20.1m-30m	10.99	2	22	6%
s	Ordinary - Unprotected Openings	10.1m-20m	9.73	2	20	10%
Ε	Ordinary - Unprotected Openings	0m-3m	15.82	2	32	22%
W	Ordinary - Unprotected Openings	0m-3m	14.76	2	30	21%
		% Increase				59% value not to exceed 75%

Increase 2006.0 L/min

Lw = Length of the Exposed Wall

Ha = number of storeys of the adjacent structure

LH = Length-height factor of exposed wall. Value rounded up.

EC = Exposure Charge

Total Fire Flow

Fire Flow	5406.0 L/min	fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section
	5000.0 L/min	rounded to the nearest 1,000 L/min

Notes

-Type of construction, Occupancy Type and Sprinkler Protection information provided by Theberge Homes.

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

 $F=220C\sqrt{A}$ L/min Where **F** is the fire flow, **C** is the Type of construction and **A** is the Total floor area

Type of Construction: Ordinary Construction

Type of Construction Coefficient per FUS Part II, Section 1

A 300.3 m² Total floor area based on FUS Part II section 1

Fire Flow 3812.7 L/min

4000.0 L/min rounded to the nearest 1,000 L/min

Adjustments

2. Reduction for Occupancy Type

Limited Combustible -15%

Fire Flow 3400.0 L/min

3. Reduction for Sprinkler Protection

Non-Sprinklered 0%

Reduction 0 L/min

4. Increase for Separation Distance

Cons. of Exposed Wall	S.D	Lw Ha	LH	EC	;
N Ordinary - Unprotected Openings	20.1m-30m	10.99	2	22	6%
S Ordinary - Unprotected Openings	10.1m-20m	9.73	2	20	10%
E Ordinary - Unprotected Openings	0m-3m	15.82	2	32	22%
W Ordinary - Unprotected Openings	0m-3m	14.76	2	30	21%
	% Increase				59% value not to exceed 75%

Increase 2006.0 L/min

Lw = Length of the Exposed Wall

Ha = number of storeys of the adjacent structure

LH = Length-height factor of exposed wall. Value rounded up.

EC = Exposure Charge

Total Fire Flow

Fire Flow	5406.0 L/min	fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section
	5000.0 L/min	rounded to the nearest 1,000 L/min

Notes

-Type of construction, Occupancy Type and Sprinkler Protection information provided by Theberge Homes.

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

 $F=220C\sqrt{A}$ L/min Where **F** is the fire flow, **C** is the Type of construction and **A** is the Total floor area

Type of Construction: Ordinary Construction

C 1 Type of Construction Coefficient per FUS Part II, Section 1

A 292.6 m² Total floor area based on FUS Part II section 1

Fire Flow 3763.5 L/min

4000.0 L/min rounded to the nearest 1,000 L/min

Adjustments

2. Reduction for Occupancy Type

Limited Combustible -15%

Fire Flow 3400.0 L/min

3. Reduction for Sprinkler Protection

Non-Sprinklered 0%

Reduction 0 L/min

4. Increase for Separation Distance

Cons. of Exposed Wall	S.D	Lw Ha	LH	EC	;
N Ordinary - Unprotected Openings	20.1m-30m	10.99	2	22	6%
S Ordinary - Unprotected Openings	10.1m-20m	9.73	2	20	10%
E Ordinary - Unprotected Openings	0m-3m	14.76	2	30	21%
W Ordinary - Unprotected Openings	0m-3m	15.82	2	32	22%
	% Increase				59% value not to exceed 75%

Increase 2006.0 L/min

Lw = Length of the Exposed Wall

Ha = number of storeys of the adjacent structure

LH = Length-height factor of exposed wall. Value rounded up.

EC = Exposure Charge

Total Fire Flow

Fire Flow	5406.0 L/min	fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section
	5000.0 L/min	rounded to the nearest 1,000 L/min

Notes

-Type of construction, Occupancy Type and Sprinkler Protection information provided by Theberge Homes.

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

 $F=220C\sqrt{A}$ L/min Where **F** is the fire flow, **C** is the Type of construction and **A** is the Total floor area

Type of Construction: Ordinary Construction

C 1 Type of Construction Coefficient per FUS Part II, Section 1

A 300.3 m² Total floor area based on FUS Part II section 1

Fire Flow 3812.7 L/min

4000.0 L/min rounded to the nearest 1,000 L/min

Adjustments

2. Reduction for Occupancy Type

Limited Combustible -15%

Fire Flow 3400.0 L/min

3. Reduction for Sprinkler Protection

Non-Sprinklered 0%

Reduction 0 L/min

4. Increase for Separation Distance

	Cons. of Exposed Wall	S.D	Lw Ha	LH	EC	
Ν	Ordinary - Unprotected Openings	20.1m-30m	10.99	2	22	6%
S	Ordinary - Unprotected Openings	10.1m-20m	9.73	2	20	10%
Ε	Ordinary - Unprotected Openings	0m-3m	15.82	2	32	22%
W	Ordinary - Unprotected Openings	0m-3m	14.76	2	30	21%
		% Increase				59% value not to exceed 75%

Increase 2006.0 L/min

Lw = Length of the Exposed Wall

Ha = number of storeys of the adjacent structure

LH = Length-height factor of exposed wall. Value rounded up.

EC = Exposure Charge

Total Fire Flow

Fire Flow	5406.0 L/min	fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section
	5000.0 L/min	rounded to the nearest 1,000 L/min

Notes

-Type of construction, Occupancy Type and Sprinkler Protection information provided by Theberge Homes.

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

 $F=220C\sqrt{A}$ L/min Where **F** is the fire flow, **C** is the Type of construction and **A** is the Total floor area

Type of Construction: Ordinary Construction

C 1 Type of Construction Coefficient per FUS Part II, Section 1

A 292.6 m² Total floor area based on FUS Part II section 1

Fire Flow 3763.5 L/min

4000.0 L/min rounded to the nearest 1,000 L/min

Adjustments

2. Reduction for Occupancy Type

Limited Combustible -15%

Fire Flow 3400.0 L/min

3. Reduction for Sprinkler Protection

Non-Sprinklered 0%

Reduction 0 L/min

4. Increase for Separation Distance

Cons. of Exposed Wall	S.D	Lw Ha	LH	EC	;	
N Ordinary - Unprotected Openings	20.1m-30m	10.99	2	22	6%	
S Ordinary - Unprotected Openings	10.1m-20m	9.73	2	20	10%	
E Ordinary - Unprotected Openings	0m-3m	14.76	2	30	21%	
W Ordinary - Unprotected Openings	0m-3m	15.82	2	32	22%	
	% Increase				59% value	not to exceed 75%

Increase 2006.0 L/min

Lw = Length of the Exposed Wall

Ha = number of storeys of the adjacent structure

LH = Length-height factor of exposed wall. Value rounded up.

EC = Exposure Charge

Total Fire Flow

Fire Flow	5406.0 L/min	fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section
	5000.0 L/min	rounded to the nearest 1,000 L/min

Notes

-Type of construction, Occupancy Type and Sprinkler Protection information provided by Theberge Homes.

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

 $F=220C\sqrt{A}$ L/min Where **F** is the fire flow, **C** is the Type of construction and **A** is the Total floor area

Type of Construction: Ordinary Construction

Type of Construction Coefficient per FUS Part II, Section 1

A 350.2 m² Total floor area based on FUS Part II section 1

Fire Flow 4117.2 L/min

4000.0 L/min rounded to the nearest 1,000 L/min

Adjustments

2. Reduction for Occupancy Type

Limited Combustible -15%

Fire Flow 3400.0 L/min

3. Reduction for Sprinkler Protection

Non-Sprinklered 0%

Reduction 0 L/min

4. Increase for Separation Distance

	Cons. of Exposed Wall	S.D	Lw Ha	LH	EC	
N	Ordinary - Unprotected Openings	10.1m-20m	13.21	2	27	10%
S	Ordinary - Unprotected Openings	30.1m-45m	14.56	2	30	5%
Е	Ordinary - Unprotected Openings	3.1m-10m	14.42	2	29	15%
V	Ordinary - Unprotected Openings	3.1m-10m	13.84	2	28	15%
		% Increase				45% value not to exceed 75%

Increase 1530.0 L/min

Lw = Length of the Exposed Wall

Ha = number of storeys of the adjacent structure

LH = Length-height factor of exposed wall. Value rounded up.

EC = Exposure Charge

Total Fire Flow

Fire Flow	4930.0 L/min	fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section
	5000.0 L/min	rounded to the nearest 1,000 L/min

Notes

-Type of construction, Occupancy Type and Sprinkler Protection information provided by Theberge Homes.

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

 $F=220C\sqrt{A}$ L/min Where **F** is the fire flow, **C** is the Type of construction and **A** is the Total floor area

Type of Construction: Ordinary Construction

C 1 Type of Construction Coefficient per FUS Part II, Section 1

A 342.2 m² Total floor area based on FUS Part II section 1

Fire Flow 4069.9 L/min

4000.0 L/min rounded to the nearest 1,000 L/min

Adjustments

2. Reduction for Occupancy Type

Limited Combustible -15%

Fire Flow 3400.0 L/min

3. Reduction for Sprinkler Protection

Non-Sprinklered 0%

Reduction 0 L/min

4. Increase for Separation Distance

Cons. of Exposed Wall	S.D	Lw Ha	LH	EC	;		
N Ordinary - Unprotected Openings	10.1m-20m	13.19	2	27	10%		
S Ordinary - Unprotected Openings	30.1m-45m	13.21	2	27	5%		
E Ordinary - Unprotected Openings	0m-3m	13.89	2	28	21%		
W Ordinary - Unprotected Openings	3.1m-10m	13.82	2	28	15%		
	% Increase				51% valu	e not to exceed 75%	,

Increase 1734.0 L/min

Lw = Length of the Exposed Wall

Ha = number of storeys of the adjacent structure

LH = Length-height factor of exposed wall. Value rounded up.

EC = Exposure Charge

Total Fire Flow

Fire Flow	5134.0 L/min	fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section
	5000.0 L/min	rounded to the nearest 1,000 L/min

Notes

-Type of construction, Occupancy Type and Sprinkler Protection information provided by Theberge Homes.

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

 $F=220C\sqrt{A}$ L/min Where **F** is the fire flow, **C** is the Type of construction and **A** is the Total floor area

Type of Construction: Ordinary Construction

C 1 Type of Construction Coefficient per FUS Part II, Section 1

A 350.2 m² Total floor area based on FUS Part II section 1

Fire Flow 4117.2 L/min

4000.0 L/min rounded to the nearest 1,000 L/min

Adjustments

2. Reduction for Occupancy Type

Limited Combustible -15%

Fire Flow 3400.0 L/min

3. Reduction for Sprinkler Protection

Non-Sprinklered 0%

Reduction 0 L/min

4. Increase for Separation Distance

	Cons. of Exposed Wall	S.D	Lw Ha	LH	EC	
Ν	Ordinary - Unprotected Openings	10.1m-20m	13.21	2	27	10%
S	Ordinary - Unprotected Openings	30.1m-45m	14.56	2	30	5%
Ε	Ordinary - Unprotected Openings	0m-3m	14.42	2	29	21%
W	Ordinary - Unprotected Openings	3.1m-10m	13.84	2	28	15%
		% Increase				51% value not to exceed 75%

Increase 1734.0 L/min

Lw = Length of the Exposed Wall

Ha = number of storeys of the adjacent structure

LH = Length-height factor of exposed wall. Value rounded up.

EC = Exposure Charge

Total Fire Flow

Fire Flow	5134.0 L/min	fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section
	5000.0 L/min	rounded to the nearest 1,000 L/min

Notes

-Type of construction, Occupancy Type and Sprinkler Protection information provided by Theberge Homes.

Fire Flow Estimation per Fire Underwriters Survey

Water Supply For Public Fire Protection - 1999

Fire Flow Required

1. Base Requirement

 $F=220C\sqrt{A}$ L/min Where **F** is the fire flow, **C** is the Type of construction and **A** is the Total floor area

Type of Construction: Ordinary Construction

C 1 Type of Construction Coefficient per FUS Part II, Section 1

A 342.2 m² Total floor area based on FUS Part II section 1

Fire Flow 4069.9 L/min

4000.0 L/min rounded to the nearest 1,000 L/min

Adjustments

2. Reduction for Occupancy Type

Limited Combustible -15%

Fire Flow 3400.0 L/min

3. Reduction for Sprinkler Protection

Non-Sprinklered 0%

Reduction 0 L/min

4. Increase for Separation Distance

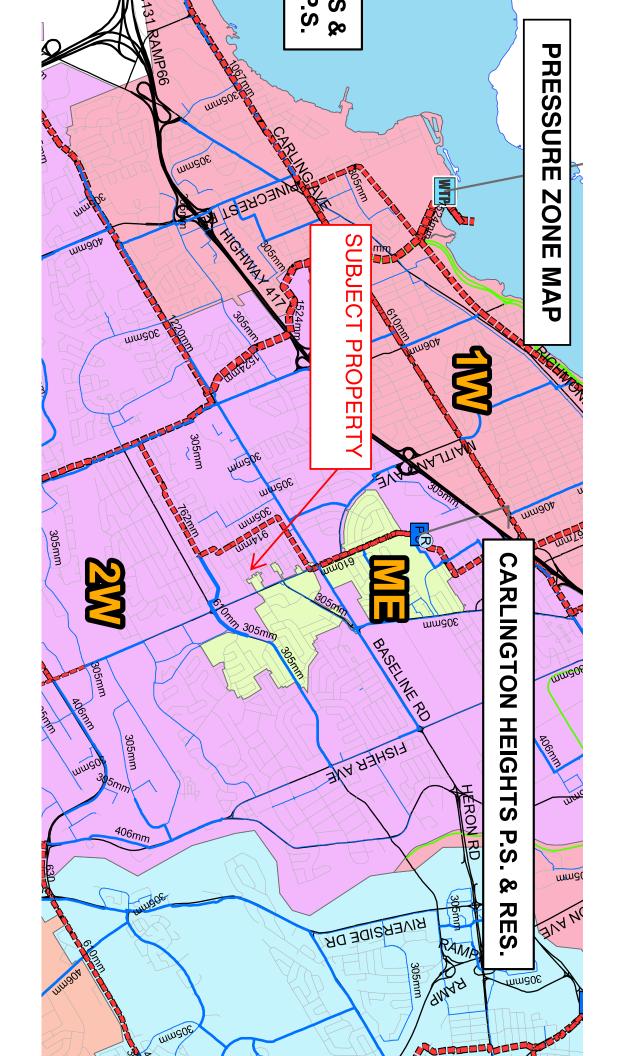
	Cons. of Exposed Wall	S.D	Lw Ha	LH	EC	;
Ν	Ordinary - Unprotected Openings	10.1m-20m	13.19	2	27	10%
s	Ordinary - Unprotected Openings	30.1m-45m	13.21	2	27	5%
Ε	Ordinary - Unprotected Openings	0m-3m	13.89	1	14	21%
W	Ordinary - Unprotected Openings	3.1m-10m	13.82	2	28	15%
		% Increase				51% value not to exceed 75%

Increase 1734.0 L/min

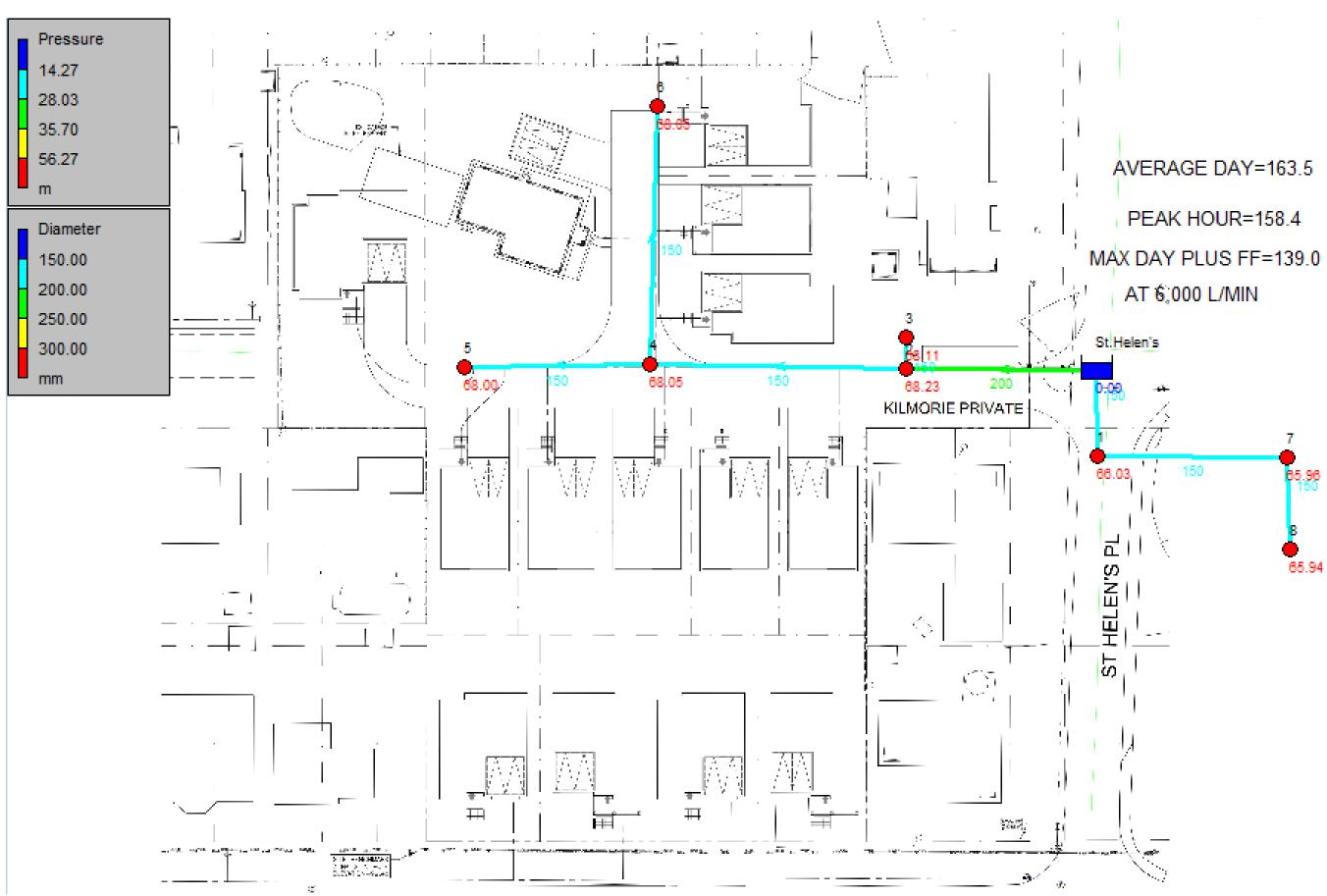
Lw = Length of the Exposed Wall

Ha = number of storeys of the adjacent structure

LH = Length-height factor of exposed wall. Value rounded up.


EC = Exposure Charge

Total Fire Flow


Fire Flow	5134.0 L/min	fire flow not to exceed 45,000 L/min nor be less than 2,000 L/min per FUS Section
	5000.0 L/min	rounded to the nearest 1,000 L/min

Notes

-Type of construction, Occupancy Type and Sprinkler Protection information provided by Theberge Homes.

AVERAGE DAY SCHEMATIC

2018-05-14_931_avg-day-report.rpt

Page 1	6/5/2018 9:5	54:48 A	١M
*****************	*********	*****	**
E P A N E T			*
Hydraulic and Water Quality			*
Analysis for Pipe Networks			*
Version 2.0			*
· * * * * * * * * * * * * * * * * * * *	*********	*****	* *

Input File: 2018-05-14_931_wtr_ggm.net

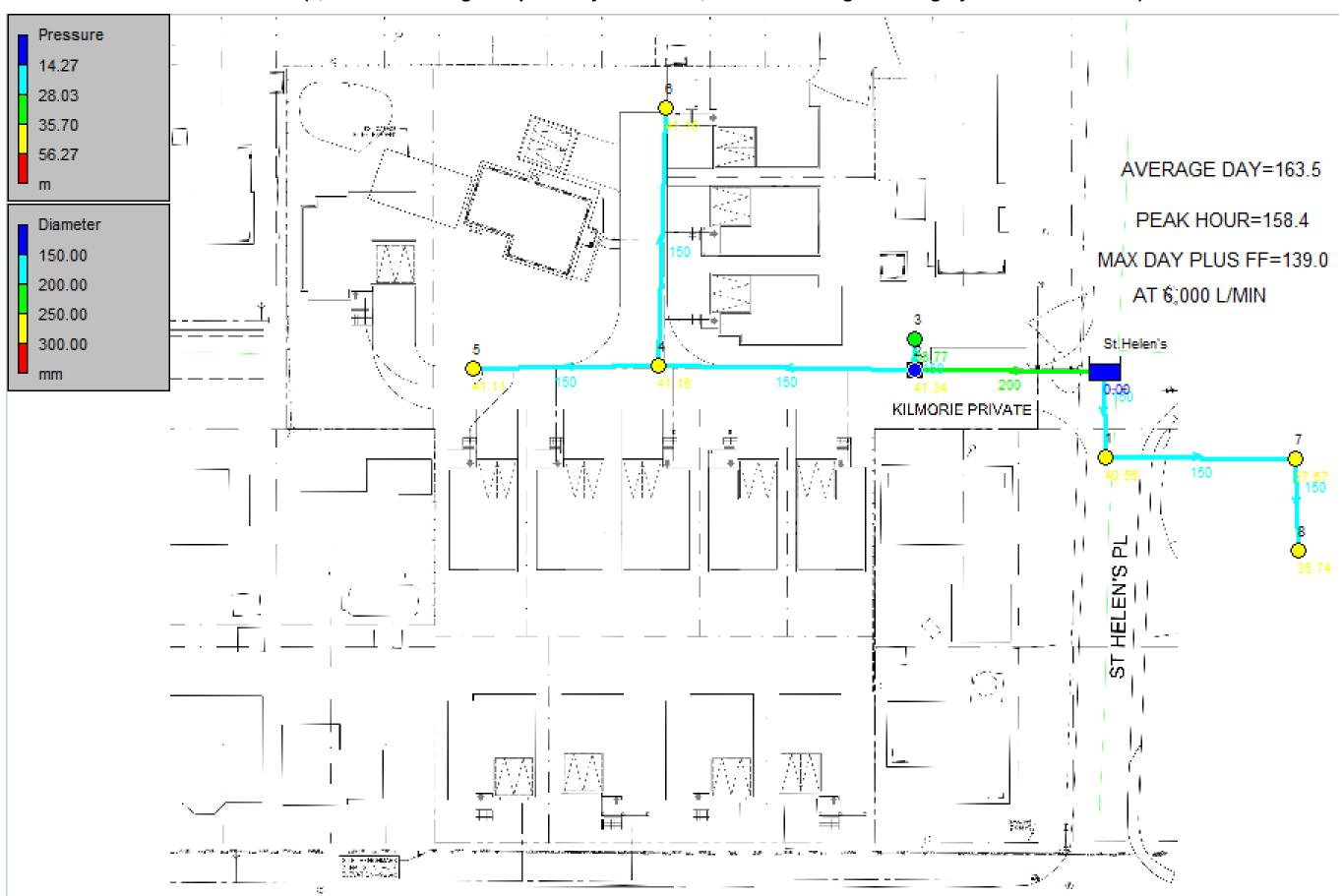
Link - Node Table:

Link ID	Start Node	End Node	Length m	Diameter mm	
1	6	4	38.3	150	
2	4	5	23.3	150	
3	4	2	40	150	
4	2	St.Helen's	23	200	
5	2	3	1.9	150	
6	St.Helen's	1	2.67	150	
7	1	7	16.21	150	
8	7	8	3.12	150	

Node Results:

Node ID	Demand LPM	Head m	Pressure m	Quality	
2	2.92	163.50	68.23	0.00	
3	0.00	163.50	68.11	0.00	
4	2.92	163.50	68.05	0.00	
5	2.92	163.50	68.00	0.00	
6	2.92	163.50	68.05	0.00	
1	0.00	163.50	66.03	0.00	
7	0.00	163.50	65.96	0.00	
8	0.00	163.50	65.94	0.00	
St.Helen's	-11.68	163.50	0.00	0.00	Reservoir

Link Results:


Link ID	Flow LPM	VelocityUnit m/s	Headloss m/km	Status	
1	-2.92	0.00	0.00	0pen	
2	2.92	0.00	0.00	Open	

Page 1

	2018-0	5-14_931_a	avg-day-rep	ort.rpt
3	-8.76	0.01	0.00	0pen
4	-11.68	0.01	0.00	0pen
5	0.00	0.00	0.00	0pen
6	0.00	0.00	0.00	0pen
7	0.00	0.00	0.00	0pen
8	0.00	0.00	0.00	0pen

↑ Page 2

MAX DAY + FIRE FLOW SCENARIO(5,700 L/min through Proposed Hydrant and 3,500 L/min through Existing Hydrant on Cleto Ave.)

2018-05-14_931_max-day+ff-report.rpt

Page 1	6/5/2	.018 11:23:54 AM
*******	**************	******
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
********	**************	******

Input File: 2018-06-05_931_wtr_ggm-ff.net

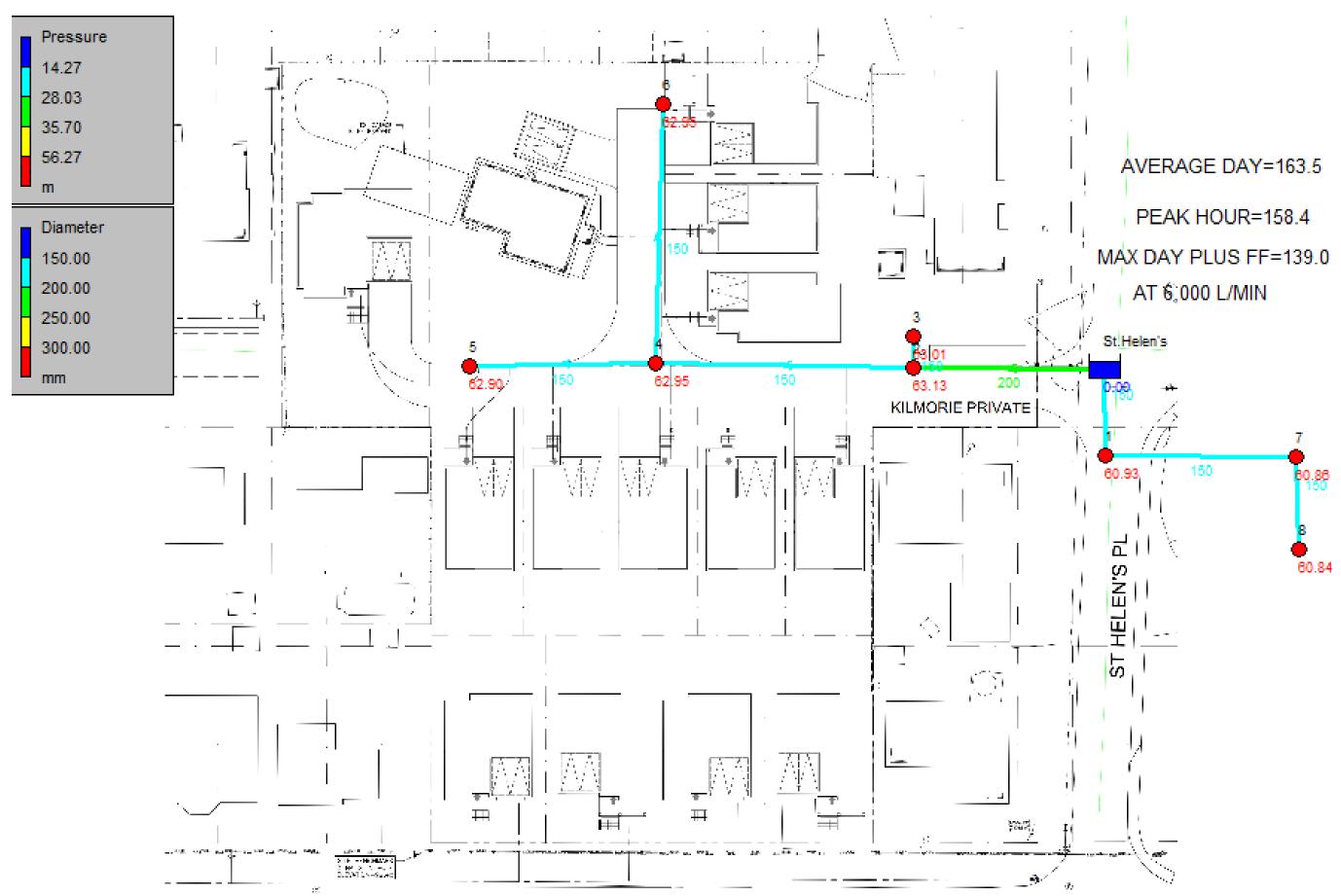
Link - Node Table:

Link ID	Start Node	End Node	Length m	Diameter mm	
1	6	4	38.3	150	
2	4	5	23.3	150	
3	4	2	40	150	
4	2	St.Helen's	23	200	
5	2	3	1.9	150	
6	St.Helen's	1	2.67	150	
7	1	7	16.21	150	
8	7	8	3.12	150	

Node Results:

Node ID	Demand LPM	Head m	Pressure m	Quality
2	14.29	136.61	41.34	0.00
3	5700.00	129.16	33.77	0.00
4	14.29	136.61	41.16	0.00
5	14.29	136.61	41.11	0.00
6	14.29	136.61	41.16	0.00
1	0.00	138.03	40.56	0.00
7	0.00	135.21	37.67	0.00
8	3500.00	133.30	35.74	0.00
St.Helen's	-9257.16	139.00	0.00	0.00 Reservoir

Link Results:


Link	Flow	VelocityUnit	Headloss	Status
ID	LPM	m/s	m/km	
1 2	-14.29	0.01	0.00	0pen
	14.29	0.01	0.00	0pen

Page 1

	2018-05-	14_931_n	nax-day+ff-r	eport.rpt
3	-42.87	0.04	0.04	Open
4	-5757.16	3.05	103.91	Open
5	5700.00	5.38	3919.67	0pen
6	3500.00	3.30	362.13	0pen
7	3500.00	3.30	174.30	Open
8	3500.00	3.30	610.79	0pen

↑ Page 2

PEAK HOUR SCHEMATIC

2018-05-14_931_peak-hour-report.rpt

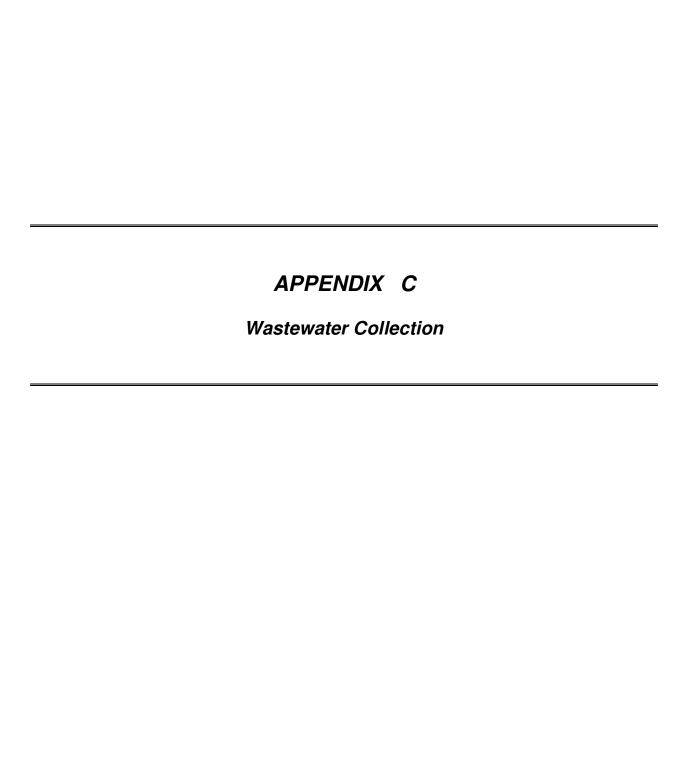
Page 1		6/5/2018 9:55:51 AM
******	*************	********
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
********	***********	*******

Input File: 2018-05-14_931_wtr_ggm.net

Link - Node Table:

Link ID	Start Node	End Node	Length m	Diameter mm
1	6	4	38.3	150
2	4	5	23.3	150
3	4	2	40	150
4	2	St.Helen's	23	200
5	2	3	1.9	150
6	St.Helen's	1	2.67	150
7	1	7	16.21	150
8	7	8	3.12	150

Node Results:


Node ID	Demand LPM	Head m	Pressure m	Quality	
2	21.58	158.40	63.13	0.00	
3	0.00	158.40	63.01	0.00	
4	21.58	158.40	62.95	0.00	
5	21.58	158.40	62.90	0.00	
6	21.58	158.40	62.95	0.00	
1	0.00	158.40	60.93	0.00	
7	0.00	158.40	60.86	0.00	
8	0.00	158.40	60.84	0.00	
St.Helen's	-86.32	158.40	0.00	0.00 Reservoi	r

Link Results:

Link	Flow	VelocityUnit	Headloss	Status
ID	LPM	m/s	m/km	
1 2	-21.58	0.02	0.01	Open
	21.58	0.02	0.01	Open

	2018-05	5-14_931_pe	eak-hour-re	eport.rpt
3	-64.74	0.06	0.08	0pen
4	-86.32	0.05	0.03	0pen
5	0.00	0.00	0.00	0pen
6	0.00	0.00	0.00	0pen
7	0.00	0.00	0.00	0pen
8	0.00	0.00	0.00	0pen

↑ Page 2

Theberge Homes 21 Withrow Avenue Existing Sanitary Flow

Wastewater Design Flows per Unit Count City of Ottawa Sewer Design Guidelines, 2004

Site Area 0.82 ha

Extraneous Flow Allowances

Infiltration / Inflow 0.27 L/s

Domestic Contributions

Unit Type	Unit Rate	Units		Pop
Single Family	3.4		1	4
Semi-detached and duplex	2.7			0
Townhouse	2.7			0
Stacked Townhouse (Duplex)	2.3			0
Apartment				
Bachelor	1.4			0
1 Bedroom	1.4			0
2 Bedroom	2.1			0
3 Bedroom	3.1			0
Average	1.8			0
Type of Housing	Per/Bed	Beds	Pop	
Boarding*	1			0

Total Pop

Average Domestic Flow 0.01 L/s

Peaking Factor

Peak Domestic Flow 0.05 L/s

3.80

Institutional / Commercial / Industrial Contributions

Property Type	Unit	Rate	No. of Units	Avg Wastewa (L/s)	ter
Water Closets **	150	L/hr		(0.00
Restaurant***	125	L/seat/d		(0.00
Commercial floor space*	5	L/m²/d		(0.00
Hospitals	900	L/bed/d		(0.00
School	70	L/student/d		(0.00
Industrial - Light**	35,000	L/gross ha/d		(0.00
Industrial - Heavy**	55,000	L/gross ha/d		(0.00

Average I/C/I Flow	0.00
Book hostitutional / Commencial Floor	0.00
Peak Institutional / Commercial Flow	0.00

 Peak Industrial Flow**
 0.00

 Peak I/C/I Flow
 0.00

^{**} peak industrial flow per City of Ottawa Sewer Design Guidelines Appendix 4B

Total Estimated Average Dry Weather Flow Rate	0.01 L/s
Total Estimated Peak Dry Weather Flow Rate	0.05 L/s
Total Estimated Peak Wet Weather Flow Rate	0.32 L/s

^{*} Based on a daily demand of 200L/day per person as identified by Appendix 4-A of the Sewer design guidelines

^{*} assuming a 12 hour commercial operation

^{**} Water closets demand of 150 L/hour from Appendix 4-A of the Sewer design guidelines, assuming a 12 hour operation

^{***}Assuming 1 seat is approximately equal to 9.3 m²

Boarding*

Theberge Homes 21 Withrow Avenue Proposed Sanitary Flow

Wastewater Design Flows per Unit Count City of Ottawa Sewer Design Guidelines, 2004

Site Area 0.82 ha

Extraneous Flow Allowances

Infiltration / Inflow 0.27 L/s

Domestic Contributions Unit Type Unit Rate Pop Units Single Family 3.4 14 48 Semi-detached and duplex 2.7 0 Townhouse 2.7 0 Stacked Townhouse (Duplex) 2.3 0 Apartment Bachelor 1.4 0 1 Bedroom 1.4 0 2.1 2 Bedroom 0 3 Bedroom 3.1 0 Average 1.8 0 Beds Type of Housing Per/Bed Pop

Total Pop 48

Average Domestic Flow 0.16 L/s

Peaking Factor 3.80

Peak Domestic Flow 0.59 L/s

Institutional / Commercial / Industrial Contributions

Property Type	Unit Rate	No. of Units	Avg Wastewater (L/s)
Water Closets	150 L/hr		0.00
Restaurant	125 L/seat/d		0.00
Commercial floor space*	5 L/m²/d		0.00
Laundry*	1,200 L/machine/d		0.00
Hospitals	900 L/bed/d		0.00
School	70 L/student/d		0.00

Average I/C/I Flow	0.00

0

 Peak Institutional / Commercial Flow
 0.00

 Peak Industrial Flow**
 0.00

 Peak I/C/I Flow
 0.00

^{*} assuming a 12 hour commercial operation

Total Estimated Average Dry Weather Flow Rate	0.16 L/s
Total Estimated Peak Dry Weather Flow Rate	0.59 L/s
Total Estimated Peak Wet Weather Flow Rate	0.86 L/s

^{*} Based on a daily demand of 200L/day per person as identified by Appendix 4-A of the Sewer design guidelines

SANITARY SEWER CALCULATION SHEET - EXISTING CONDITIONS

PROJECT: Theberge Homes
LOCATION: 21 Withrow Avenue

ge Homes DESIG

FILE REF: 17-931

DATE: 6-Jun-18

DESIGN PARAMETERS

Avg. Daily Flow Comm.

Avg. Daily Flow Instit.

Avg. Daily Flow Indust.

Avg. Daily Flow Res. 280 L/p/d

Peak Fact Res. Per Harmons: Min = 2.0, Max = 3.8
Peak Fact. Comm. If
(Q_I/Q_{TOTAL}>20%)
1.5 Peak Fact.
Comm.

Peak Fact. Instit. If

(Q_I/Q_{TOTAL}>20%)

Peak Fact. Indust. per MOE graph

1.5 Comm. Peak Fact. 1.5 Instit. Infiltration / Inflow 0.33 I

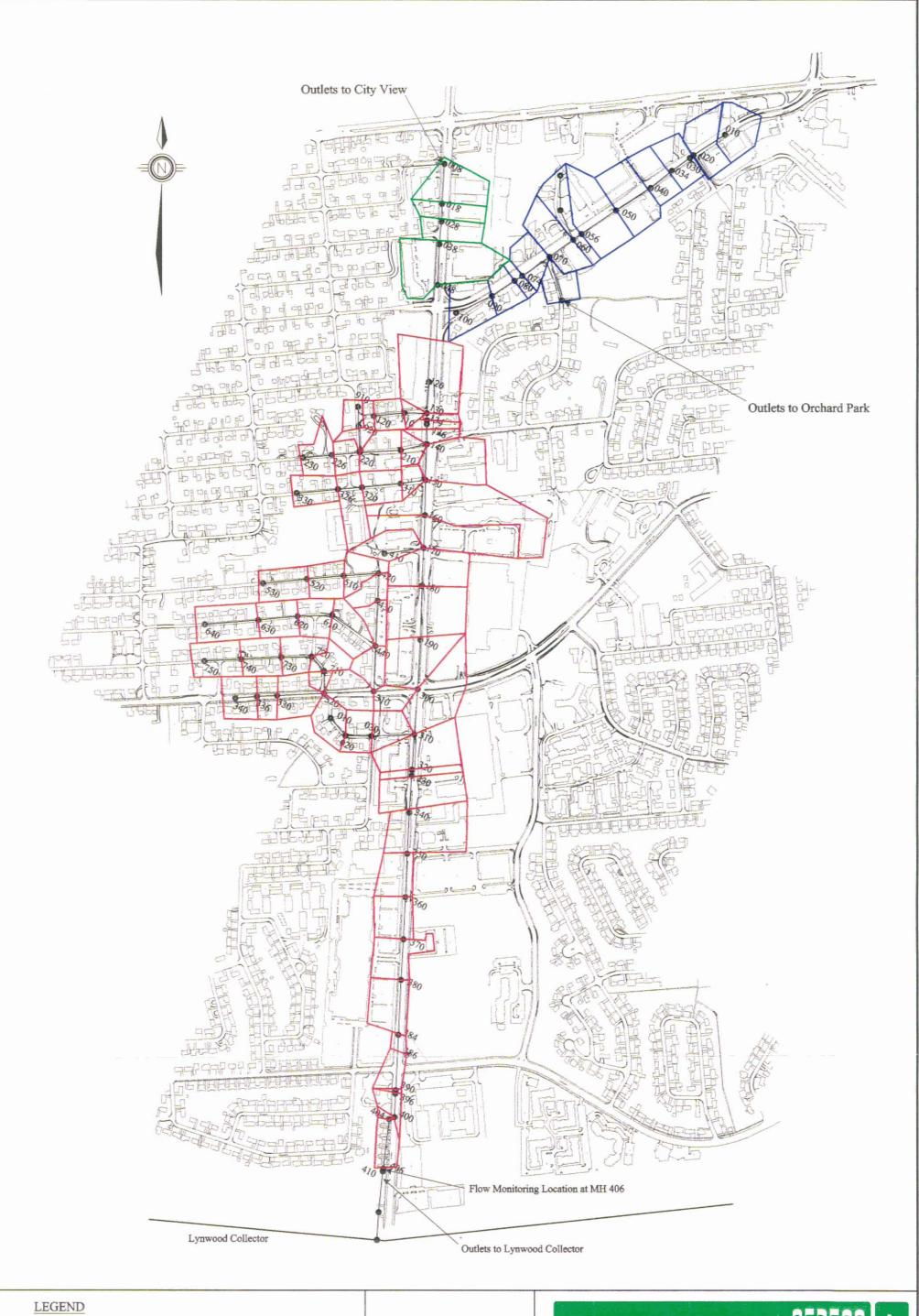
Min. Pipe Velocity 0.60 r

0.33 L/s/ha 0.60 m/s full flowing

3.00 m/s full flowing

Max. Pipe Velocity 3.00 m/s full Mannings N 0.013

																	Correction	Factor K	0.8	В											
	Location				Reside	ntial Area	and Pop	ulation				Con	mercial	Institu	ıtional	Ind	ustrial			Infiltratio	n					Pip	e Data				
Area ID	Up	Down	Area		Number of Units		Pop.	Cum	ılative	Peak.	Q _{res}	Area	Accu.	Area	Accu.	Area	Accu.	\mathbf{Q}_{C+l+l}	Total	Accu.	Infiltration	Total	DIA	Slope	Length	A hydraulic	R	Velocity	Q cap	Q / Q full	Qresidual
					by type			Area	Pop.	Fact.			Area		Area		Area		Area	Area	Flow	Flow							i		
			(ha)	Singles	Semi's Town's	Apt's		(ha)		(-)	(L/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(L/s)	(ha)	(ha)	(L/s)	(L/s)	(mm)	(%)	(m)	(m ²)	(m)	(m/s)	(L/s)	(-)	(L/s)
Α	Α	В	1.14	9			31.0	1.1	31.0	3.68	0.37	0.00	0.00	0.00	0.00	0.00	0.00	0.0	1.140	1.140	0.376	0.75	200	0.65	117.5	0.031	0.050	0.84	26.4	0.03	
P	D	0	0.48	-			17.0	1.62	48.0	3.65	0.57		0.00		0.00	1	0.00	0.0	0.480	1.620	0.535	1.10	200	0.2	74.7	0.031	0.050	0.59	18.6	0.06	17.5
В	В	C	0.46	5			17.0	1.02	40.0	3.03	0.57		0.00		0.00	1	0.00	0.0	0.460	1.020	0.555	1.10	200	0.3	74.7	0.031	0.050	0.59	10.0	0.06	17.5
С	С	F	0.49	1			3.0	2.110	51.0	3.65	0.60		0.00	0.17	0.17		0.00	0.1	0.660	2.280	0.752	1.44	200	0.3	77.6	0.031	0.050	0.59	18.6	0.08	17.1
			0.74				00.0	0.74	00.0		0.04	0.47	0.47		0.47		0.00		0.000	0.000		4.00									
F	D	G	2.71	б			20.0	2.71	20.0	3.70	0.24	0.17	0.17	-	0.17	-	0.00	0.2	2.880	2.880	0.950	1.36	250	0.7	68.0	0.049	0.063	0.99	48.7	0.03	47.3
G	Н	I	4.90	14			48.0	9.72	119.0	3.58	1.38	0.12	0.29	0.32	0.49		0.00	0.4	5.340	10.500	3.465	5.22	250	4.4	57.0	0.049	0.063	2.54	124.6	0.04	119.4
											·																				
i	i	TRUNK SAN	4.70				0.0	14.42	119.0	3.58	1.38	1.12	1.41		0.49		0.00	0.9	5.820	16.320	5.386	7.69	250	2.5	97.0	0.049	0.063	1.90	93.5	0.08	85.8
	1		ĺ	1		1		1	1			1	1	l									1	ĺ	I						1


28,000 L/ha/d

28,000 L/ha/d

35,000 L/ha/d

^{*}No sanitary asbuilts were available to obtain slopes as constructed, so minimum slopes were assumed

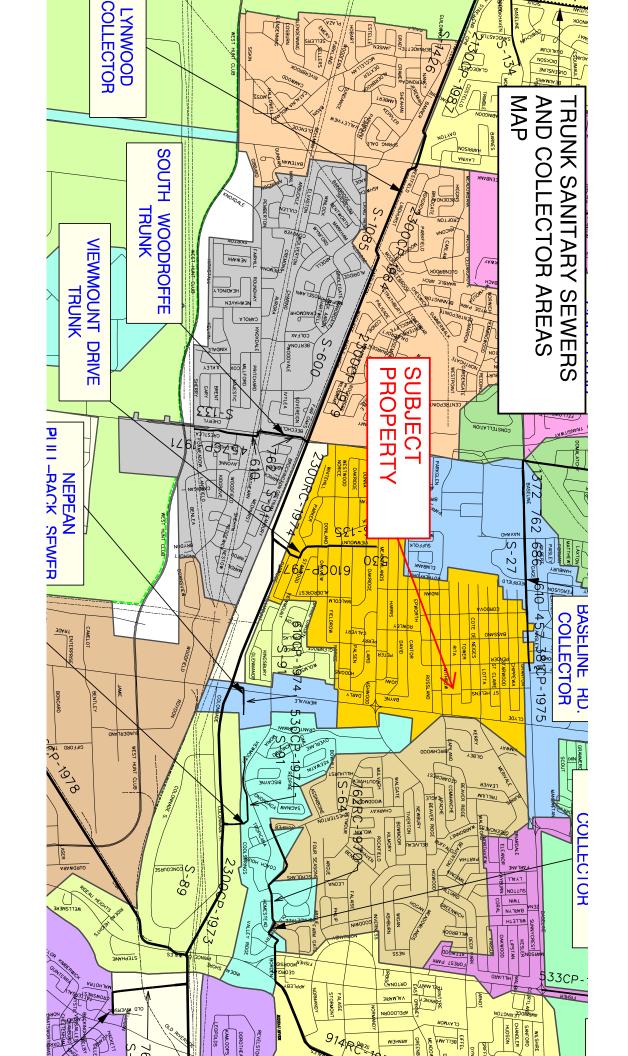
*

South Merivale Sanitary Basin Clyde Avenue Sanitary Basin North Merivale Sanitary Basin DELCAN

Sanitary Drainage Basins

CITY OF NEPEAN Merivate Road Sewer Investigation and Hydrautic Capacity Assessment

SOUTH MERIVALE SANITARY SEWER DESIGN SHEET: Theoretical Design Flows


commercial flow (_ L/1000 sqm/d) 5000 350 q = average daily per capits flow (_ L/cap,d) 3.31 persons per dwelling 0.28 1 = unit of peak extraneous flow (_L/ha,s) M = peaking factor

M = 1 + 14/(4+sqtP) where P is population in 1000's Q(p) = PqM/88.4 (L/s) Q (I) = IA (L/s) where A = area in hectures Q (d) = Q (p) + Q (l) (L/s)

Q (p) = peak population flow (L/s) Q (I) = peak extraneous flow (L/s)

(d) = peak design flow	,		Res	sidential Flow	Calculat	ons		mercial Flow	Calculatio	กร	Catchmer	nt Area I/I Flo	w Calculations	l					_		
			_		Peaking	Residential	Individual	Cumulative	Peaking	Commercial			Peak	Peak		É	dsting S	ewer (n	= 0.013)		Residu
Loc	ation		Individual	Cumulative	factor	Flow Q(p)	Building	Building	factor	Flow	Individual	Cumultaive		design flow	Length	Pipe Size	Type of	Grade	Capacity	Full flow	Capaci
Street	From MH	To MH	Population	Population	М	(L/s)	Area (1000 m²)	Area		-(L/s)	Area (ha)	Area (ha)	flow Q(I) (L/s)	Q (d) (L/s)	(m)	(mm)	pipe	%	(L/s)	velocity (m/s)	(L/s)
Merivale	120	130_	0.0	0	4.0	0.0	8.8	8.8	1.5	8.0	2.170	2.17	0.61	1.4	70.9	203	CP	0.33	19.41	0.6	18.0
Rita	120	110	19.9	20	4.0	0.3	0.0	0.0	1.5	0.0	0.452	0.45	0.13	0.4	62.3	203	AC	0.60	26.17	0,8	25.7
	110	130	0.0	20	4.0	0.3	0.0	0.0	1.5	0.0	0.180	0.63	0.18	0.5	66.5	203	AC	0.20	15.11	0.5	14.6
Merivale	130	134	0.0	20	4.0	0.3	0.0	8.8	1.5	0.8	0.137	2.94	0.82	1.9	15.5	254	AC	0.10	19.44	0,4	17.5
	134	136	0.0	20	4.0	0.3	0.6	9.4	1.5	0.8	0.198	3.14	0.88	2.0	9,3	254	AC	0.69	51.06	1.0	49.0
	136	140	0.0	20	4.0	0.3	0.4	9,8	1.5	0.9	0.293	3.43	0.96	2.1	43.9	254	AC	0.45	41.24	0.8	39,1
St Helen's	910	920	6.6	7	4.0	0.1	0.0	0.0	1.5	0.0	0.296	0,30	0.08	0.2	55.0	203	AC	0.24	16.55	0.5	16.4
	920	220	3.3	10	4.0	0,2	0.0	0.0	1,5	0.0	0.205	0,50	0,14	0.3	54.3	203	AC	0.15	13,09	0,4	12.8
Withrow	230	226	16.6	17	4.0	0.3	0.0	0.0	1.5	0.0	0.664	0.68	0,19	0.5	42.0	203	AC	1.50	41.38	1.3	40.9
	226	220	13.2	30	4.0	0.5	0.0	0,0	1.5	0.0	0.408	1,07	0.30	0.8	81,5	203	AC	2.13	49,31	1.5	48,5
	220	210	9.9	50	4,0	0.8	0.0	0.0	1.5	0.0	0.760	2.33	0.65	1.5	80.1	203	AC	0.36	20.27	0.8	18.8
	210	140	3.3	53	4.0	0.9	3.5	3.5	1.5	0.3	0.314	2.65	0.74	1.9	78.0	203	AC	0.40	21.37	0,7	19.5
Merivale	140	150	0.0	73	4,0	1.2	3.5	16.8	1.5	1.5	1.346	7.42	2,08	4.7	78.7	254	AC	0.84	49,18	1.0	44.5
Rossland	330	326	23.2	23	4.0	0.4	0.0	0.0	1.5	0.0	0.650	0.65	0.18	0.6	116,5	203	AC	1.12	35.76	1,1	35.2
Resolutio	326	320	6.6	30 -	4.0	0.5	0.0	0.0	1.5	0.0	0.882	1.53	0.43	0.9	88.0	203	AC	1.67	43.67	1.3	42.8
	320	310	3.3	33	4.0	0.5	0.0	0.0	1.5	0.0	0.852	2.18	0.61	1.1	52.5	203	AC	1.07	34.95	1.1	33.8
	310	150	0.0	33	4,0	0,5	0.0	0.0	1.5	0.0	0.277	2.46	0.69	1.2	60.5	203	AC	0.94	32.76	1.0	31.5
Merivala	150	160	0.0	106	4,0	1,7	19.8	36.6	1.5	3.2	2.867	12.75	3.57	8.5	78,4	254	AC	0.54	45,17	0.9	36.7
	160	170	0.0	106	4.0	1,7	0,4	36.9	1.5	3.2	1.917	14,67	4,11	9.0	73,7	254	AC	0.47	42.14	0.8	33.1
Easement	410	170	0.0	0	4.0	0.0	1.0	1.0	1.5	0.1	0.718	0.72_	0.20	0.3	95.5	203	AC	0.39	21.10	0.7	20.8
Merivale	170	180	0.0	106	4.0	1.7	0,2	38.2	1.5	3.3	1.351	18,74	4,69	9.7	74.5	457	AC	0.36	176.97	1,1	167.3
orridia	180	190	0.0	108	4.0	1.7	16.6	54.8	1.5	4.8	1.994	18.73	5.24	11.7	120.3	533	AC	0.18	188.70	0.8	177.0
	190	300	0.0	108	4.0	1.7	10.8	65.6	1.5	5.7	1.416	20.15	5,64	13.0	120.3	457	AC	0.29	158.83	1.0	145.8
Meadwiands	340	336	29.8	30	4.0	0.5	0,0	0.0	1.5	0.0	0.731	0.73	0.20	0.7	54,5	203	AC	2.00	47.79	1.5	47.1
	336	330	13.2	43	4.0	0.7	0.0	0.0	1.5	0.0	0.435	1.17	0.33	1.0	84.0	203	AC	1.13	35.92	1.1	34.9
	330	320	26.5	70	4.0	1.1	0.0	0.0	1.5	0.0	0.806	1.97	0.55	1.7	112.5	203	AC	0.39	21.10	0.7	19,4
	320	310	23.2	172	4.0	2.8	0.0	0.0	1.5	0.0	0.745	5.64	1.58	4.4	109.0	203	AÇ	0.61	26.39	8.0	22.0
	310	300	0.0	367	4.0	6.0	0.0	0.0	1.5	0.0	0.428	12,86	3.60	9.6	92.0	203	AC	0.40	21,37	0.7	11.8
Harris	750	740	18.8	17	4.0	0.3	0.0	0.0	1.5	0.0	0.867	0.87	0.24	0.5	69.5	203	AC	4.10	68.42	2.1	67.9
	740	730	33.1	50	4.0	0.8	0.0	0.0	1,5	0.0	0.757	1.62	0.45	1.3	69.0	203	AC	0.41	21.64	0.7	20.4
	730	720	16.6	68	4.0	1.1	0.0	0.0	1.5	0.0	0.688	2.31	0.65	1,7	69.0	203	AC	0.41	21.64	0.7	19.9
	720	710	6.6	73	4.0	1.2	0.0	0.0	1.5	0.0	0,423	2.74	0.77	1.9	45,5	203	AC	0.33	19.41	0,6	17.5
	710	320	6.6	79	4.0	1.3	0.0	0.0	1,5	0.0	0,188	2.92	0,82	2.1	47.5	203	ÄC	0.63	26.82	0.8	24.7

residual capacity is based on gravity flow

SANITARY SEWER CALCULATION SHEET - PROPOSED CONDITIONS

DESIGN PARAMETERS

Avg. Daily Flow Res. 350 L/p/d

 PROJECT:
 Theberge Homes

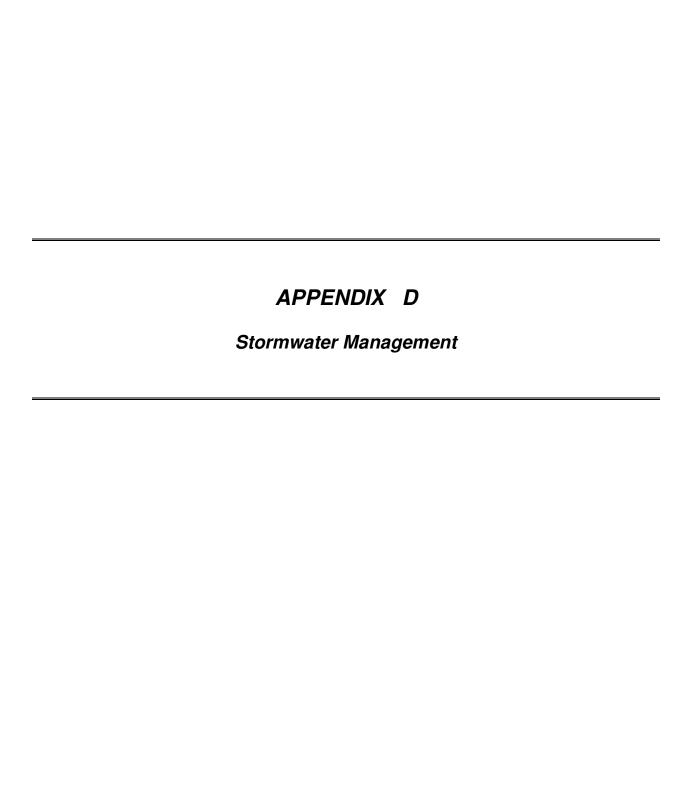
 LOCATION:
 21 Withrow Avenue

 FILE REF:
 17-931

 DATE:
 29-Mar-18

 Peak Fact Res. Per Harmons: Min = 2.0, Max = 4.0
 Infiltration / Inflow

 Peak Fact. Comm.
 1.5
 Mn. Pipe Velocity


 Peak Fact. Instit.
 1.5
 Max. Pipe Velocity

 Peak Fact. Indust. per MOE graph
 Mannings N

0.28 L/s/ha 0.60 m/s full flowing 3.00 m/s full flowing 0.013

	Locatio	n					Reside	ntial Area	and Pop	oulation				Com	mercial	Institu	tional	Indu	strial	Infiltration Pipe Data													
Street Name	Area ID	Up	Down	Area		Numbe	r of Units		Pop.	Cumu	lative	Peak.	Q _{res}	Area	Accu.	Area	Accu.	Area	Accu.	Q _{C+I+I*}	Total	Accu.	Infiltration	Total	DIA	Slope	Length	A _{hvdraulic}	R	Velocity	Q _{cap}	Q / Q full	Qresidua
		-				by	type			Area	Pop.	Fact.			Area		Area		Area		Area	Area	Flow	Flow									
				(ha)	Singles	Semi's	Town's	Apt's**		(ha)		(-)	(L/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(L/s)	(ha)	(ha)	(L/s)	(L/s)	(mm)	(%)	(m)	(m ²)	(m)	(m/s)	(L/s)	(-)	(L/s)
	ļ																															 '	├
Kilmorie Private	A2	SAN4	SAN2	0.170	4				14.0	0.170	14.0	4.00	0.23		0.00		0.00		0.00	0.0	0.170	0.170	0.048	0.27	200	0.35	36.6	0.031	0.050	0.62	19.4	0.01	19.1
																									200	0.35	20.0	0.031	0.050	0.62	19.4	0.02	19.1
Kilmorie Private	A3	SAN3	SAN3	0.322	4				14.0	0.322	14.0	4.00	0.23		0.00		0.00		0.00	0.0	0.322	0.322	0.090	0.32						0.00			
Kilmorie Private		SAN2	CANIA	0.218	0				7.0	0.540	35.0	4.00	0.57		0.00		0.00		000	0.0	0.249	0.710	0.199	0.77	200	0.35	61.4	0.031	0.050	0.62	19.4	0.04	18.6
ISIIIIONE FIIVALE	Al	OMNZ	SAIVI	0.210		1	1	 	7.0	0.340	33.0	4.00	0.57	-	0.00		0.00		0.00	0.0	0.218	0.710	0.199	0.77						1		 '	\vdash

STORM TANKModule Volume Calculator

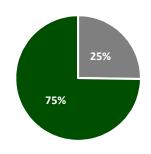
Project Name: 21 Withrow Avenue - Storage Tank #1 1/3/2019 Engineer: Date: Units: Shape: Square/Rectangle SI Liner: No Location: N/A Stacking: Single 609.6 Height: Stone Storage: ΑII Porosity: 40%

		Mod	dule	
	Length:		50	m
	Width:		3	m
	E	xcav	ation	
	Length:		50.6	m
	Width:		3.6	m
su		Sto	ne	
oisc	Leveling Bed:		0	m
Dimensions	Top Backfill:		0.3	m
Dir	Compacted Fi	II:	0.3	m

Results

Capacity:

Stone Storage Volume:29.70m^3Module Storage Volume:88.04m^3Total Storage Volume:117.74m^3


Quantities:

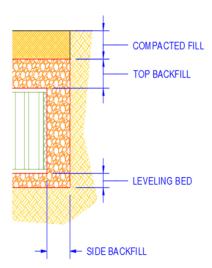
Required Excavation: 220.34 m^3 Required Stone Volume: 74.25 m^3

Estimated Geotextile: 919.49 m^2 Estimated Liner: 0.00 m^2

(Estimations include 10% for scrap and overlap)

Storage Capacity Ratio

■ Stone Storage Volume:


■ Module Storage Volume:

Basin Detail

Component Quantities:

	Bottom	Тор	Total
	Layer	Layer	Total
Height	609.6	N/A	609.6
# of Modules	359	N/A	359
# of Platens	718	N/A	718
# of Side Panels	232	N/A	232
# of Columns	2,870	N/A	2,870
# of Stacking Pins	0	N/A	0

Cross-Section:

STORM TANKModule Volume Calculator

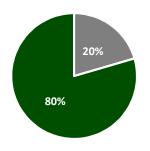
Project Name: 21 Withrow Avenue - Storage Tank #2 1/3/2019 Engineer: Date: Units: Shape: Square/Rectangle SI N/A Liner: No Location: Stacking: Single Height: 762 Stone Storage: ΑII Porosity: 40%

		Mod	dule	
	Length:		6.05	m
	Width:		10	m
	E	xcav	ation	
	Length:		6.65	m
	Width:		10.6	m
suc		Sto	ne	
sic	Leveling Bed:		0	m
Dimensions	Top Backfill:		0.3	m
<u>Di</u>	Compacted Fi	II:	0.3	m

Results

Capacity:

Stone Storage Volume:11.50m^3Module Storage Volume:44.63m^3Total Storage Volume:56.13m^3


Quantities:

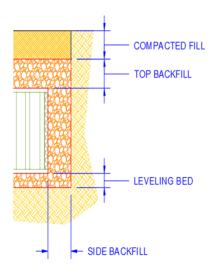
Required Excavation: 96.01 m^3 Required Stone Volume: 28.76 m^3

Estimated Geotextile: 358.98 m^2 Estimated Liner: 0.00 m^2

(Estimations include 10% for scrap and overlap)

Storage Capacity Ratio

■ Stone Storage Volume:


■ Module Storage Volume:

Basin Detail

Component Quantities:

	Bottom Layer	Top Layer	Total
Height	762.0	N/A	762.0
# of Modules	145	N/A	145
# of Platens	289	N/A	289
# of Side Panels	70	N/A	70
# of Columns	1,158	N/A	1,158
# of Stacking Pins	0	N/A	0

Cross-Section:

STORM TANKModule Volume Calculator

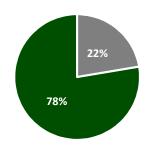
Project Name: 21 Withrow Avenue - Storage Tank #3 1/3/2019 Engineer: Date: Units: Shape: Square/Rectangle SI Liner: N/A No Location: Stacking: Single Height: 762 Stone Storage: ΑII Porosity: 40%

		Mod	dule	
	Length:		6	m
	Width:		6	m
	E	Excav	ation	
	Length:		6.62	m
	Width:		6.62	m
Su		ne		
sic	Leveling Bed: Top Backfill:		0	m
Dimensions			0.3	m
٥	Compacted Fill:		0.3	m

Results

Capacity:

Stone Storage Volume:7.64m^3Module Storage Volume:26.55m^3Total Storage Volume:34.20m^3


Quantities:

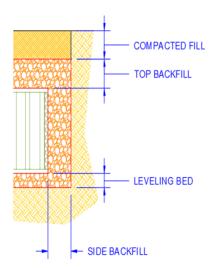
Required Excavation: 59.69 m^3
Required Stone Volume: 19.11 m^3

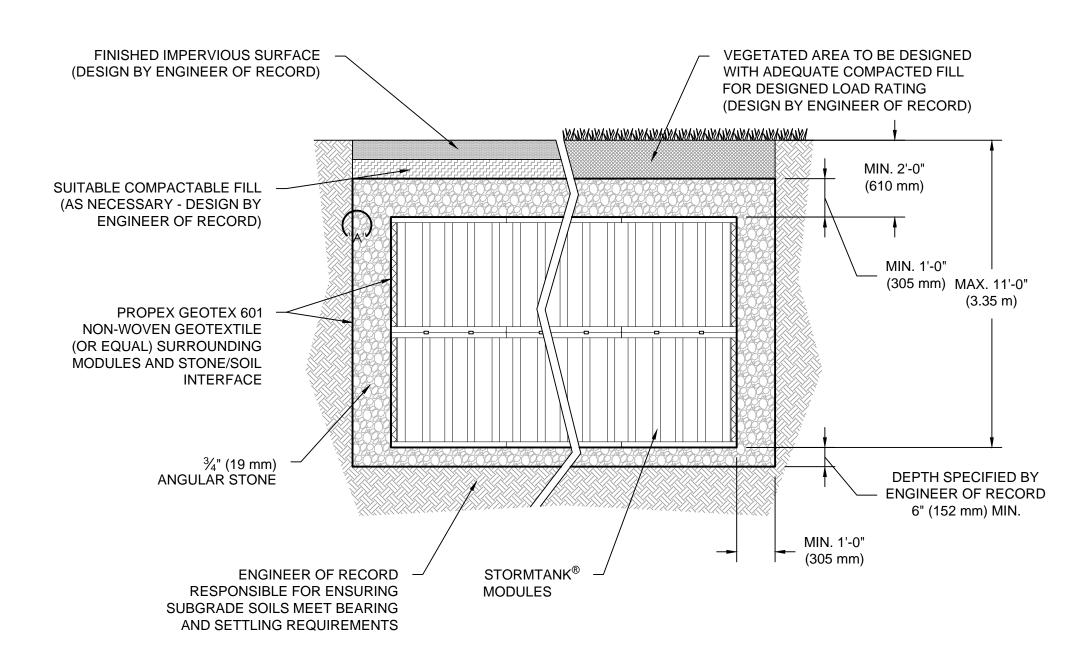
Estimated Geotextile: 228.95 m^2 Estimated Liner: 0.00 m^2

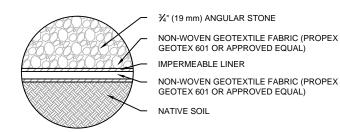
(Estimations include 10% for scrap and overlap)

Storage Capacity Ratio

■ Stone Storage Volume:


■ Module Storage Volume:


Basin Detail


Component Quantities:

	Bottom Top		Total	
	Layer	Layer	TOtal	
Height	762.0	N/A	762.0	
# of Modules	86	N/A	86	
# of Platens	172	N/A	172	
# of Side Panels	52	N/A	52	
# of Columns	689	N/A	689	
# of Stacking Pins	0	N/A	0	

Cross-Section:

DETAIL "A"

NOTES: a. REFERENCE CURRENT INSTALLATION INSTRUCTIONS FOR PROPER INSTALLATION PRACTICES.

b. IMPERMEABLE LINER IS REQUIRED TO BE INSTALLED AROUND BOTTOM AND SIDES OF EXCAVATION ONLY

REV.	DATE	RECORD OF CHANGES	BY	APPRV
Α	1/10/12	INITIAL RELEASE	BLL	FK
В	7/6/12	FORMATTING & DWG. NO. UPDATE	JKB	FK
С	9/9/13	NOTE REVISION, FORMATTING UPDATE & DWG. NO. UPDATE	JKB	JKB
D	11/10/14	GEOTEXTILE PRODUCT SPECIFIED	CGB	

610 Morgantown Road Reading, PA 19611 U.S.A. Phone: (610) 374-5109 Fax: (610) 376-6022 www.brentwoodindustries.com TYPICAL DOUBLE STK. DETENTION
BASIN CROSS-SECTION DETAIL

		Date
B.LINE		1/10/12
Drawing No.	Sheet	Scale
STM-001-03	1 of 1	NTS

DESIGN GUIDE

STORIT TANY® STORIT TANN®Module

Contents

1.	Λ	Int	rodi	action	
Ι.	u	1111	I(I)(I)	TC:TIC)[1	

- **2.0** Product Information
- 3.0 Manufacturing Standards
- **4.0** Structural Response
- **5.0** Foundation
- **6.0** System Materials
- 7.0 Connections
- 8.0 Pretreatment
- 9.0 Additional Considerations
- 10.0 Inspection & Maintenance
- 11.0 System Sizing
- **12.0** Detail Drawings
- 13.0 Specifications
- 14.0 Appendix Bearing Capacity Tables

General Notes

- 1. Brentwood recommends that the installing contractor contact either Brentwood or the local distributor prior to installation of the system to schedule a pre-construction meeting. This meeting will ensure that the installing contractor has a firm understanding of the installation instructions.
- 2. All systems must be designed and installed to meet or exceed Brentwood's minimum requirements. Although Brentwood offers support during the design, review, and construction phases of the Module system, it is the ultimate responsibility of the Engineer of Record to design the system in full compliance with all applicable engineering practices, laws, and regulations.
- 3. Brentwood requires a minimum cover of 24" (610 mm) and/or a maximum Module invert of 11' (3.35 m). Additionally, a minimum 6" (152 mm) leveling bed, 12" (305 mm) side backfill, and 12" (305 mm) top backfill are required on every system.
- 4. Brentwood recommends a minimum bearing capacity and subgrade compaction for all installations. If site conditions are found not to meet any design requirements during installation, the Engineer of Record must be contacted immediately.
- 5. All installations require a minimum two layers of geotextile fabric. One layer is to be installed around the Modules, and another layer is to be installed between the stone/soil interfaces.
- 6. Stone backfilling is to follow all requirements of the most current installation instructions.
- 7. The installing contractor must apply all protective measures to prevent sediment from entering the system during and after installation per local, state, and federal regulations.
- 8. The StormTank® Module carries a Limited Warranty, which can be accessed at www.brentwoodindustries.com.

1.0 Introduction

About Brentwood

Brentwood is a global manufacturer of custom and proprietary products and systems for the construction, consumer, medical, power, transportation, and water industries. A focus on plastics innovation, coupled with diverse production capabilities and engineering expertise, has allowed Brentwood to build a strong reputation for thermoplastic molding and solutions development.

Brentwood's product and service offerings continue to grow with an ever-increasing manufacturing presence. By emphasizing customer service and working closely with clients throughout the design, engineering, and manufacturing phases of each project, Brentwood develops forward-thinking strategies to create targeted, tailored solutions.

StormTank® Module

The StormTank Module is a strong, yet lightweight, alternative to other subsurface systems and offers the largest void space (up to 97%) of any subsurface stormwater storage unit on the market. The Modules are simple to assemble on site, limiting shipping costs, installation time, and labor. Their structural PVC columns pressure fit into the polypropylene top/bottom platens, with side panels inserted around the perimeter of the system. This open design and lack of internal walls make the Module system easy to clean compared to other subsurface box structures. When properly designed, applied, installed, and maintained, the Module system has been engineered to achieve a 50-year lifespan.

Technical Support

Brentwood's knowledgeable distributor network and in-house associates emphasize customer service and support by parterning with customers to extend the process beyond physical material supply. These trained specialists are available to assist in the review of proposed systems, conversions of alternatively designed systems, or to resolve any potential concerns before, during, and after the design process. To provide the best assistance, it is recommended that associates be provided with a site plan and cross-sections that include grading, drainage structures, dimensions, etc.

2.0 Product Information

Applications

The Module system can be utilized for detention, infiltration, capture and reuse, and specialty applications across a wide range of industries, including the commercial, residential, and recreational segments. The product's modular design allows the system to be configured in almost any shape (even around utilities) and to be located under almost any pervious or impervious surface.

Module Selection

Brentwood manufactures the Module in five different heights (Table 1) that can be stacked uniformly up to two Modules high. This allows for numerous height configurations up to 6' (1.83 m) tall. The Modules can be buried up to a maximum invert of 11' (3.35 m) and require a minimum cover of 24" (610 mm) for load rating. When selecting the proper Module, it is important to consider the minimum required cover, any groundwater or limiting zone restrictions, footprint requirements, and all local, state, and federal regulations.

Table 1: Nominal StormTank® Module Specificiations

	ST-18	ST-24	ST-30	ST-33	ST-36
Height	18"	24"	30"	33"	36"
	(457 mm)	(610 mm)	(762 mm)	(838 mm)	(914 mm)
Void Space	95.5%	96.0%	96.5%	96.9%	97.0%
Module Storage	6.54 ft³	8.64 ft³	10.86 ft ³	11.99 ft³	13.10 ft ³
Capacity	(0.18 m³)	(0.24 m³)	(0.31 m ³)	(0.34 m³)	(0.37 m ³)
Min. Installed	9.15 ft³	11.34 ft³	13.56 ft ³	14.69 ft ³	15.80 ft ³
Capacity*	(0.26 m³)	(0.32 m³)	(0.38 m ³)	(0.42 m³)	(0.45 m ³)
Weight	22.70 lbs	26.30 lbs	29.50 lbs	31.3 lbs	33.10 lbs
	(10.30 kg)	(11.93 kg)	(13.38 kg)	(14.20 kg)	(15.01 kg)

^{*}Min. Installed Capacity includes the leveling bed, Module, and top backfill storage capacity for one Module. Stone storage capacity is based on 40% void space. **Side backfill storage is not included.**

3.0 Manufacturing Standards

Brentwood selects material based on long-term performance needs. To ensure long-term performance and limit component deflection over time (creep), Brentwood selected polyvinyl chloride (PVC) for the Module's structural columns and a virgin polypropylene (PP) blend for the top/bottom and side panels. PVC provides the largest creep resistance of commonly available plastics, and therefore, provides the best performance under loading conditions. Materials like polyethylene (HDPE) and recycled PP have lower creep resistance and are not recommended for load-bearing products and applications.

Materials:

Brentwood's proprietary PVC and PP copolymer resins have been chosen specifically for utilization in the StormTank® Module. The PVC is blended in house by experts and is a 100% blend of post-manuacturing/pre-consumer recycled material. Both materials exhibit structural resilience and naturally resist the chemicals typically found in stormwater runoff.

Methods:

Injection Molding

The Module's top/bottom platens and side panels are injection molded, using proprietary molds and materials. This allows Brentwood to manufacture a product that meets structural requirements while maintaining dimensional control, molded-in traceability, and quality control.

Extrusion

Brentwood's expertise in PVC extrusion allows the structural columns to be manufactured in house. The column extrusion includes the internal structural ribs required for lateral support.

Quality Control

Brentwood maintains strict quality control in order to ensure that materials and the final product meet design requirments. This quality assurance program includes full material property testing in accordance with American Society for Testing and Materials (ASTM) standards, full-part testing, and process testing in order to quantify product performance during manufacturing. Additionally, Brentwood conducts secondary finshed-part testing to verify that design requirements continue to be met post-manufacturing.

All Module parts are marked with traceability information that allows for tracking of manufacturing. Brentwood maintains equipment at all manufacturing locations, as well as at its corporate testing lab, to ensure all materials and products meet all requirements.

4.0 Structural Response

Structural Design

The Module has been designed to resist loads calculated in accordance with the American Association of State Highway and Transportation Official's (AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design manual. This fully factored load includes a multiple presence factor, dynamic load allowance, and live load factor to account for real-world situations. This loading was considered when Brentwood developed both the product and installation requirements. The developed minimum cover ensures the system maintains an adequate resistance factor for the design truck (HS-20) and HS-25 loads.

Full-Scale Product Testing

Engineers at Brentwood's in-house testing facility have completed full-scale vertical and lateral tests on the Module to evaluate product response. To date, Brentwood continues in-house testing in order to evaluate long-term creep effects.

Fully Installed System Testing

Brentwood's dedication to providing a premier product extends to fully installed testing. Through a partnership with Queen's University's GeoEngineering Centre in Kingston, Ontario, Brentwood has conducted full-scale installation tests of single- and double-stacked Module systems to analyze short- and long-term performance. Testing includes short-term ultimate limit state testing under fully factored AASHTO loads and minimum installation cover, lateral load testing, long-term performance and lifecycle testing utilizing time-temperature superposition, and load resistance development. Side backfill material tests were also performed to compare the usage of sand, compacted stone, and uncompacted stone.

5.0 Foundation

The foundation (subgrade) of the subsurface storage structure may be the most important part of the Module system installation as this is the location where the system applies the load generated at the surface. If the subgrade lacks adequate support or encounters potential settlement, the entire system could be adversely affected. Therefore, when implementing an underground storage solution, it is imperative that a geotechnical investigation be performed to ensure a strong foundation.

Considerations & Requirements:

Bearing Capacity

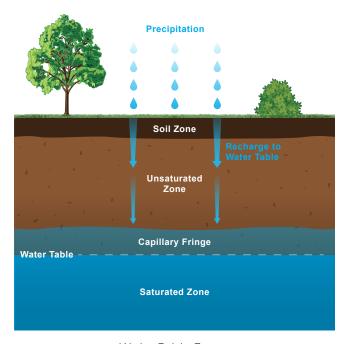
The bearing capacity is the ability of the soil to resist settlement. In other words, it is the amount of weight the soil can support. This is important versus the native condition because the system is replacing earth, and even though the system weighs less than the earth, the additional load displacement of the earth is not offset by the difference in weight.

Using the Loading and Resistance Factor Design (LRFD) calculation for bearing capacity, Brentwood has developed a conservative minimum bearing capacity table (see Appendix). The Engineer of Record shall reference this table to assess actual cover versus the soil bearing required for each unit system.

Limiting Zones

Limiting zones are conditions in the underlying soils that can affect the maximum available depth for installation and can reduce the strength and stability of the underlying subgrade. The three main forms of limiting zones are water tables, bedrock, and karst topography. It is recommended that a system be offset a minimum of 12" (305 mm) from any limiting zones.

Compaction


Soil compaction occurs as the soil particles are pressed together and pore space is eliminated. By compacting the soils to 95% (as recommended by Brentwood), the subgrade strength will increase, in turn limiting both the potential for the soil to move once installed and for differential settlement to occur throughout the system. If designing the specific compaction requirement, settlement should be limited to less than 1" (25 mm) through the entire subgrade and should not exceed a 1/2" (13 mm) of differential settlement between any two adjacent units within the system over time.

Mitigation

If a minimum subgrade bearing capacity cannot be achieved because of weak soil, a suitable design will need to be completed by a Geotechnical Engineer. This design may include the over-excavation of the subgrade and an engineered fill or slurry being placed. Additional material such as geogrid or other products may also be required. Please contact a Geotechnical Engineer prior to selecting products or designing the subgrade.

Soil Profile

Water Table Zones

6.0 System Materials

Geotextile Fabric

The 6-ounce geotextile fabric is recommended to be installed between the soil and stone interfaces around the Modules to prevent soil migration.

Leveling Bed

The leveling bed is constructed of 6"-thick (152 mm) angular stone (Table 2). The bed has not been designed as a structural element but is utilized to provide a level surface for the installation of the system and provide an even distribution of load to the subgrade.

Stone Backfill

The stone backfill is designed to limit the strain on the product through displacement of load and ensure the product's longevity. Therefore, a minimum of 12"-wide (305 mm) angular stone must be placed around all sides of the system. In addition, a minimum layer of 12" (305 mm) angular stone is required on top of the system. All material is to be placed evenly in 12" (305 mm) lifts around and on top of the system and aligned with a vibratory plate compactor.

Table 2: Approved Backfill Material

Material Location	Description	AASHTO M43 Designation	ASTM D2321 Class	Compaction/Density
Finished Surface	Topsoil, hardscape, stone, concrete, or asphalt per Engineer of Record	N/A	N/A	Prepare per engineered plans
Suitable Compactable Fill	Well-graded granular soil/aggregate, typically road base or earthen fill (maximum 4" particle size)	56, 57, 6, 67, 68	I & II III (Earth Only)	Place in maximum 12" lifts to a minimum 90% standard proctor density
Top Backfill	Crushed angular stone placed between Modules and road base or earthen fill	56, 57, 6, 67, 68	I & II	Plate vibrate to provide evenly distributed layers
Side Backfill	Crushed angular stone placed between earthen wall and Modules	56, 57, 6, 67, 68	I & II	Place and plate vibrate in uniform 12" lifts around the system
Leveling Bed	Crushed angular stone placed to provide level surface for installation of Modules	56, 57, 6, 67, 68	I & II	Plate vibrate to achieve level surface

Impermeable Liner

In designs that prevent runoff from infiltrating into the surrounding soil (detention or reuse applications) or groundwater from entering the system, an impermeable liner is required. When incorporating a liner as part of the system, Brentwood recommends using a manufactured product such as a PVC liner. This can be installed around the Modules themselves or installed around the excavation (to gain the benefit of the void space in the stone) and should include an underdrain system to ensure the basin fully drains. This liner is installed with a layer of geotextile fabric on both sides to prevent puncture, in accordance with manufacturer recommendations.

7.0 Connections

Stormwater runoff must be able to move readily in and out of the StormTank® Module system. Brentwood has developed numerous means of connecting to the system, including inlet/outlet ports and direct abutment to a catch basin or endwall. All methods of connection should be evaluated as each one may offer a different solution. Brentwood has developed drawings to assist with specific installation methods, and these are available at www.brentwoodindustries.com.

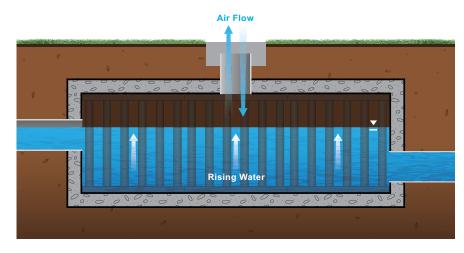
Inlet/Outlet and Pipe Connections

To facilitate easy connection to the system, Brentwood manufactures two inlet/outlet ports. They are 12" (305 mm) and 14" (356 mm), respectfully, and utilize a flexible coupling connection to the adjoining pipe.

Another common installation method is to directly connect the pipe to the system. In order to do this, an opening is cut into the side panels, the pipe is inserted, and then the system is wrapped in geotextile fabric. When utilizing this connection method, the pipe must be located a minimum of 3" (76 mm) from the bottom of the system. This provides adequate clearance for the bottom platen and the required strength in the remaining side panel. To maintain the required clearances or reduce pipe size, it may be necessary to connect utilizing a manifold system.

Direct Abutment

The system can also be connected by directly abutting Modules to a concrete catch basin or endwall. This allows for a seamless connection of structures in close proximity to the system and eliminates the need for numerous pipe connections. When directly abutting one of these structures, remove any side panels that fully abut the structure, and make sure it is flush with the system to prevent material migration into the structure.


<u>Underdrain</u>

Underdrains are typically utilized in detention applications to ensure the system fully drains since infiltration is limited or prohibited. The incorporation of an underdrain in a detention application will require an impermeable liner between the stone-soil interface.

Cleanout Ports

Brentwood understands the necessity to inspect and clean a subsurface system and has designed the Module without any walls to allow full access. Brentwood offers three different cleanout/ observation ports for utilization with the system. The ports are made from PVC, provide an easy means of connection, and are available in 6" (152 mm), 8" (203 mm) and 10" (254 mm) diameters. The 10" (254 mm) port is sized to allow access to the system by a vacuum truck suction hose for easy debris removal.

It is recommended that ports be located a maximum of 30' (9.14 m) on center to provide adequate access, ensure proper airflow, and allow the system to completely fill.

Ventilation and Air Flow

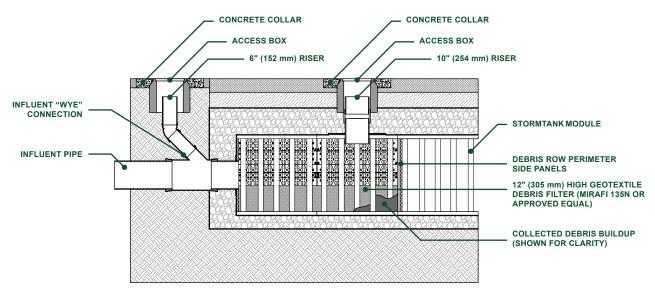
8.0 Pretreatment

Removing pollutants from stormwater runoff is an important component of any stormwater management plan. Pretreatment works to prevent water quality deterioration and also plays an integral part in allowing the system to maintain performance over time and increase longevity. Treatment products vary in complexity, design, and effectiveness, and therefore, should be selected based on specific project requirements.

Typical Stormwater System

StormTank® Shield

Brentwood's StormTank Shield provides a low-cost solution for stormwater pretreatment. Designed to improve sumped inlet treatment, the Shield reduces pollutant discharge through gross sediment removal and oil/water separation. For more information, please visit www.brentwoodindustries.com.


Debris Row (Easy Cleanout)

An essential step of designing, installing, and maintaining a subsurface system is preventing debris from entering the storage. This can be done by incorporating debris rows (or bays) at the inlets of the system to prevent debris from entering the rest of the system.

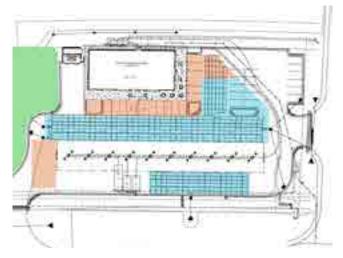
The debris row is built into the system utilizing side panels with a 12" (305 mm) segment of geotextile fabric. This allows for the full basin capacity to be utilized while storing any debris in an easy-to-remove location. To calculate the number of side panels required to prevent backing up, the opening area of the side panels on the area above the geotextile fabric has been calculated and compared to the inflow pipe diameter.

Debris row cleanout is made easy by including 10" (254 mm) suction ports, based on the length of the row, and a 6" (152 mm) saddle connection to the inflow pipe. If the system is directly abutting a catch basin, the saddle connection is not required, and the flush hose can be inserted through the catch basin. Debris is then flushed from the inlet toward the suction ports and removed.

Brentwood has developed drawings and specifications that are available at <u>www.brentwoodindustries.com</u> to illustrate the debris row configuration and layouts.

Debris Row Section Detail

9.0 Additional Considerations


Many variable factors, such as the examples below, must be taken into consideration when designing a StormTank® Module system. As these considerations require complex calculations and proper planning, please contact Brentwood or your local distributor to discuss project-specific requirements.

Adaptability

The Modules can be arranged in custom configurations to meet tight site constraints and to provide different horizontal and edge configurations. Modules can also be stacked, to a maximum 2 units tall, to meet capacity needs and can be buried to a maximum invert of 11′ (3.35 m) to allow for a stacked system or deeper burial.

Adjacent Structures

The location of adjacent structures, especially the location of footings and foundations, must be taken into consideration as part of system design. The foundation of a building or retaining wall produces a load

Site Plan Module Layout Adaptability (StormTank Modules shown in blue)

that is transmitted to a footing and then applied to the surface below. The footing is intended to distribute the line load of the wall over a larger area without increasing the larger wall's thickness. The reason this is important is because the load the footing is applying to the earth is distributed through the earth and could potentially affect a subsurface system as either a vertical load to the top of the Module or a lateral load to the side of the Module.

Based on this increased loading, it is recommended that the subsurface system either maintain a distance away from the foundation, footing equal to the height between the Module invert and structure invert of the system, or the foundation or footing extend at a minimum to the invert of the subsurface system. By locating the foundation away from the system or equal to the invert, the loading generated by the structure does not get transferred onto the system. It is recommended that all adjacent structures be completed prior to the installation of the Modules to prevent construction loads from being imparted on the system.

Adjacent Excavation

The subsurface system must be protected before, during, and after the installation. Once a system is installed, it is important to remember that excavation adjacent to the system could potentially cause the system to become unstable. The uniform backfilling will evenly distribute the lateral loads to the system and prohibit the system from becoming unstable and racking from unequal loads. However, it is recommended that any excavation adjacent to a system remain a minimum distance away from the system equal to the invert. This will provide a soil load that is equal to the load applied by the opposite side of the installation. If the excavation is to exceed the invert of the system, additional analysis may be necessary.

Sloped Finished Grade

Much like adjacent excavation, a finished grade with a differential cover could potentially cause a subsurface system to become disproportionately loaded. For example, if one side of the system has 10' (3.05 m) of cover and the adjacent side has 24" (610 mm) of cover, the taller side will generate a higher lateral load, and the opposite side may not have an equal amount of resistance to prevent a racking of the system. Additional evaluation may be required when working on sites where the final grade around a system exceeds 5%.

10.0 Inspection & Maintenance

Description

Proper inspection and maintenance of a subsurface stormwater storage system are vital to ensuring proper product functioning and system longevity. It is recommended that during construction the contractor takes the necessary steps to prevent sediment from entering the subsurface system. This may include the installation of a bypass pipe around the system until the site is stabilized. The contractor should install and maintain all site erosion and sediment per Best Management Practices (BMP) and local, state, and federal regulations.

Once the site is stabilized, the contractor should remove and properly dispose of erosion and sediment per BMP and all local, state, and federal regulations. Care should be taken during removal to prevent collected sediment or debris from entering the stormwater system. Once the controls are removed, the system should be flushed to remove any sediment or construction debris by following the maintenance procedure outlined below.

During the first service year, a visual inspection should be completed during and after each major rainfall event, in addition to semiannual inspections, to establish a pattern of sediment and debris buildup. Each stormwater system is unique, and multiple criteria can affect maintenance frequency. For example, whether or not a system design includes inlet protection or a pretreatment device has a substantial effect on the system's need for maintenance. Other factors include where the runoff is coming from (hardscape, gravel, soil, etc.) and seasonal changes like autumn leaves and winter salt.

During and after the second year of service, an established annual inspection frequency, based on the information collected during the first year, should be followed. At a minimum, an inspection should be performed semi-annually. Additional inspections may be required at the change of seasons for regions that experience adverse conditions (leaves, cinders, salt, sand, etc).

Maintenance Procedures

Inspection:

- 1. Inspect all observation ports, inflow and outflow connections, and the discharge area.
- 2. Identify and log any sediment and debris accumulation, system backup, or discharge rate changes.
- 3. If there is a sufficient need for cleanout, contact a local cleaning company for assistance.

Cleaning:

- 1. If a pretreatment device is installed, follow manufacturer recommendations.
- 2. Using a vacuum pump truck, evacuate debris from the inflow and outflow points.
- 3. Flush the system with clean water, forcing debris from the system.
- 4. Repeat steps 2 and 3 until no debris is evident.

11.0 System Sizing

System Sizing Calculation

This section provides a brief description of the process required to size the StormTank® Module system. If you need additional assistance in determining the required number of Modules or assistance with the proposed configuration, it is recommended that you contact Brentwood or your local distributor. Additionally, Brentwood's volume calculator can help you to estimate the available storage volumes with and without stone storage. This tool is available at www.brentwoodindustries.com.

1. Determine the required storage volume (Vs):

It is the sole responsibility of the Engineer of Record to calculate the storage volume in accordance with all local, state, and federal regulations.

2. Determine the required number of Modules (N):

If the storage volume does not include stone storage, take the total volume divided by the selected Module storage volume. If the stone storage is to be included, additional calculations will be required to determine the available stone storage for each configuration.

3. Determine the required volume of stone (Vstone):

The system requires a minimum 6" (152 mm) leveling bed, 12" (305 mm) backfill around the system, and 12" (305 mm) top backfill utilizing 3/4" (19 mm) angular clean stone. Therefore, take the area of the system times the leveling bed and the top backfill. Once that value is determined, add the volume based on the side backfill width times the height from the invert of the Modules to the top of the Modules.

4. Determine the required excavation volume (Vexcv):

Utilizing the area of the system, including the side backfill, multiply by the depth of the system including the leveling bed. It is noted that this calculation should also include any necessary side pitch or benching that is required for local, state, or federal safety standards.

5. Determine the required amount of geotextile (G):

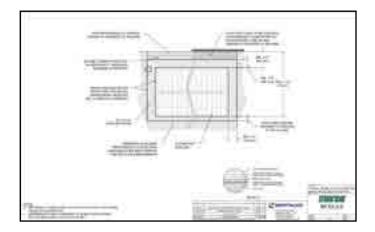
The system utilizes a multiple layer system of geotextile fabric. Therefore, two calculations are required to determine the necessary amount of geotextile. The first layer surrounds the entire system (including all backfill), and the second layer surrounds the Module system only. It is recommended that an additional 20% be included for waste and overlap.

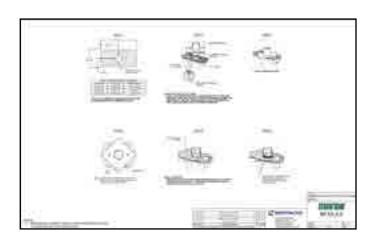
11.1 Storage Volume

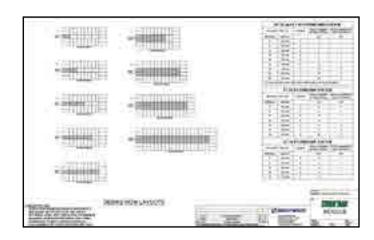
Module Height

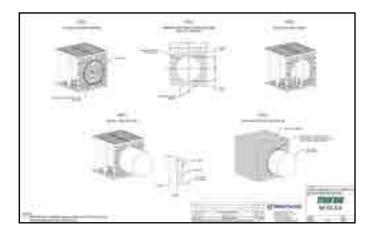
11.2 Material Quantity Worksheet

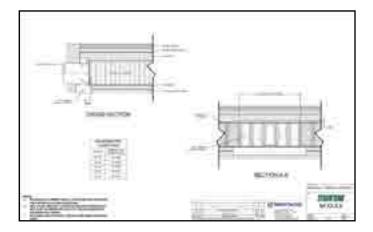
Project Name:					E	3y:
Location:					[Date:
System Requirements						
Required Storage	ft³ (m³)					
Number of Modules	Each					
Module Storage	ft³ (m³)					
Stone Storage	ft³ (m³)					
Module Footprint	ft² (m²) Nui	mber c	of Modules x 4.5	ft² (0.42 m²)		
System Footprint w/ Stone	ft² (m²) Mo	dule F	ootprint + 1 ft (0.3048 m) to each e	dge	
Stone	Tons (kg) L	evelin	g Bed + Side Ba	ckfill + Top Backfill		
Volume of Excavation	yd³ (m³) Sy	stem F	ootprint w/ Sto	ne x Total Height		
Area of Geotextile	yd² (m²) Wr	ap aro	und Modules +	Wrap around Stone	e/Soil I	nterface
System Cost						
Quantity			Unit Price			Total
Modules	ft³ (m³)	X	\$	ft³ (m³)	=	\$
Stone	Tons (kg)	X	\$	Tons (kg)	=	\$
Excavation	yd³ (m³)	X	\$	yd³ (m³)	=	\$
Geotextile	yd² (m²)	X	\$	yd² (m²)	=	\$
				Subtot	al =	\$
				Tor	ns =	\$


Material costs may not include freight.


Please contact Brentwood or your local distributor for this information.


12.0 Detail Drawings


Brentwood has developed numerous drawings for utilization when specifying a StormTank® Module system. Below are some examples of drawings available at www.brentwoodindustries.com.



13.0 Specifications

1) General

- a) This specification shall govern the implementation, performance, material, and fabrication pertaining to the subsurface stormwater storage system. The subsurface stormwater storage system shall be manufactured by Brentwood Industries, Inc., 500 Spring Ridge Drive, Reading, PA 19610 (610.374.5109), and shall adhere to the following specification at the required storage capacities.
- b) All work is to be completed per the design requirements of the Engineer of Record and to meet or exceed the manufacturer's design and installation requirements.
- 2) Subsurface Stormwater Storage System Modules
 - a) The subsurface stormwater storage system shall be constructed from virgin polypropylene and 100% recycled PVC to meet the following requirements:
 - i) High-Impact Polypropylene Copolymer Material
 - (1) Injection molded, polypropylene, top/bottom platens and side panels formed to a dimension of 36" (914 mm) long by 18" (457 mm) wide [nominal].
 - ii) 100% Recycled PVC Material
 - (1) PVC conforming to ASTM D-1784 Cell Classification 12344 b-12454 B.
 - (2) Extruded, rigid, and 100% recycled PVC columns sized for applicable loads as defined by Section 3 of the AASHTO LRFD Bridge Design Specifications and manufactured to the required length per engineer-approved drawings.
 - iii) Platens and columns are assembled on site to create Modules, which can be uniformly stacked up to two Modules high, in vertical structures of variable height (custom for each project).
 - iv) Modular stormwater storage units must have a minimum 95% void space and be continuously open in both length and width, with no internal walls or partitions.

3) Submittals

- a) Only systems that are approved by the engineer will be allowed.
- b) At least 10 days prior to bid, submit the following to the engineer to be considered for pre-qualification to bid:
 - i) A list of materials to be provided for work under this article, including the name and address of the materials producer and the location from which the materials are to be obtained.
 - ii) Three hard copies of the following:
 - (1) Shop drawings.
 - (2) Specification sheets.
 - (3) Installation instructions.
 - (4) Maintenance guidelines.
- c) Subsurface Stormwater Storage System Component Samples for review:
 - i) Subsurface stormwater storage system Modules provide a single 36" (914 mm) long by 18" (457 mm) wide, height as specified, unit of the product for review.
 - ii) Sample to be retained by owner.
- d) Manufacturers named as acceptable herein are not required to submit samples.

4) Structural Design

- a) The structural design, backfill, and installation requirements shall ensure the loads and load factors specified in the AASHTO LRFD Bridge Design Specifications, Section 3 are met.
- b) Product shall be tested under minimum installation criteria for short-duration live loads that are calculated to include a 20% increase over the AASHTO Design Truck standard with consideration for impact, multiple vehicle presences, and live load factor.
- c) Product shall be tested under maximum burial criteria for long-term dead loads.
- d) The engineer may require submission of third-party test data and results in accordance with items 4b and 4c to ensure adequate structural design and performance.

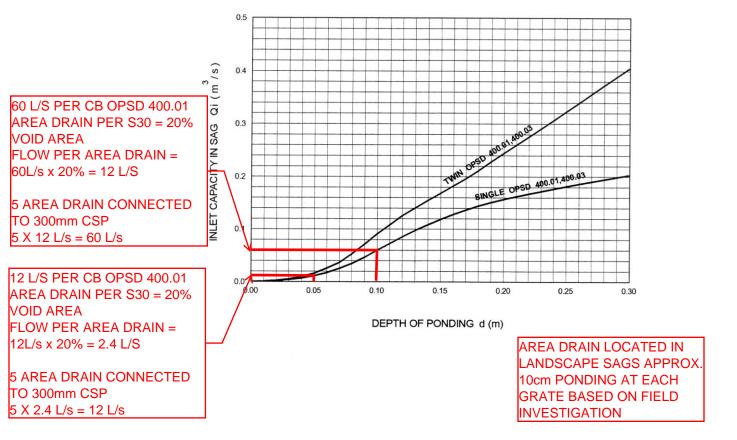
14.0 Appendix - Bearing Capacity Tables

Cover		HS-25 (Ur	nfactored)	HS-25 (Factored)		
English	Metric	English	Metric	English	Metric	
(in)	(mm)	(ksf)	(kPa)	(ksf)	(kPa)	
24	610	1.89	90.45	4.75	227.43	
25	635	1.82	86.96	4.53	216.90	
26	660	1.75	83.78	4.34	207.80	
27	686	1.69	80.88	4.16	199.18	
28	711	1.63	78.24	3.99	191.04	
29	737	1.58	75.82	3.84	183.86	
30	762	1.54	73.62	3.70	177.16	
31	787	1.50	71.60	3.57	170.93	
32	813	1.46	69.75	3.45	165.19	
33	838	1.42	68.06	3.34	159.92	
34	864	1.39	66.51	3.24	155.13	
35	889	1.36	65.10	3.14	150.34	
36	914	1.33	63.80	3.05	146.03	
37	940	1.31	62.62	2.97	142.20	
38	965	1.29	61.54	2.90	138.85	
39	991	1.26	60.55	2.83	135.50	
40	1,016	1.25	59.65	2.76	132.15	
41	1,041	1.23	58.54	2.70	129.28	
42	1,067	1.21	58.09	2.67	127.84	
43	1,092	1.20	57.42	2.60	124.49	
44	1,118	1.19	56.81	2.55	122.09	
45	1,143	1.18	56.26	2.50	119.70	
46	1,168	1.16	55.77	2.46	117.79	
47	1,194	1.16	55.33	2.42	115.87	
48	1,219	1.15	54.94	2.39	114.43	
49	1,245	1.14	54.59	2.36	113.00	
50	1,270	1.13	54.29	2.33	111.56	
51	1,295	1.13	54.03	2.30	110.12	
52	1,321	1.12	53.80	2.27	108.69	
53	1,346	1.12	53.62	2.25	107.73	
54	1,372	1.12	53.46	2.23	106.77	
55	1,397	1.11	53.34	2.21	105.82	
56	1,422	1.11	53.24	2.19	104.86	
57	1,448	1.11	53.18	2.17	103.90	
58	1,473	1.11	53.14	2.16	103.42	
59	1,499	1.11	53.12	2.14	102.46	
60	1,524	1.11	53.13	2.13	101.98	
61	1,549	1.11	53.16	2.12	101.51	
62	1,575	1.11	53.21	2.11	101.03	
63	1,600	1.11	53.28	2.10	100.55	
64	1,626	1.11	53.37	2.09	100.07	
65	1,651	1.12	53.48	2.08	99.59	
66	1,676	1.12	53.61	2.08	99.59	
67	1,702	1.12	53.75	2.07	99.11	
68	1,727	1.13	53.91	2.07	99.11	
69	1,753	1.13	54.08	2.06	98.63	

Co	ver	HS-25 (Ur	nfactored)	HS-25 (F	actored)
English	Metric	English	Metric	English	Metric
(in)	(mm)	(ksf)	(kPa)	(ksf)	(kPa)
70	1,778	1.13	54.26	2.06	98.63
71	1,803	1.14	54.46	2.06	98.63
72	1,829	1.14	54.67	2.06	98.63
73	1,854	1.15	54.90	2.06	98.63
74	1,880	1.15	55.13	2.06	98.63
75	1,905	1.16	55.38	2.06	98.63
76	1,930	1.16	55.64	2.06	98.63
77	1,956	1.17	55.90	2.06	98.63
78	1,981	1.17	56.18	2.06	98.63
79	2,007	1.18	56.46	2.07	99.11
80	2,032	1.19	56.76	2.07	99.11
81	2,057	1.19	57.06	2.07	99.11
82	2,083	1.20	57.37	2.08	99.59
83	2,108	1.20	57.69	2.08	99.59
84	2,134	1.21	58.02	2.09	100.07
85	2,159	1.22	58.35	2.09	100.07
86	2,184	1.23	58.69	2.10	100.55
87	2,210	1.23	59.04	2.11	101.03
88	2,235	1.24	59.39	2.11	101.03
89	2,261	1.25	59.75	2.12	101.51
90	2,286	1.26	60.11	2.13	101.98
91	2,311	1.26	60.48	2.13	101.98
92	2,337	1.27	60.86	2.14	102.46
93	2,362	1.28	61.24	2.15	102.94
94	2,388	1.29	61.62	2.16	103.42
95	2,413	1.30	62.01	2.17	103.90
96	2,438	1.30	62.41	2.18	104.38
97	2,464	1.31	62.81	2.19	104.86
98	2,489	1.32	63.21	2.20	105.34
99	2,515	1.33	63.62	2.21	105.82
100	2,540	1.34	64.03	2.22	106.29
101	2,565	1.35	64.45	2.23	106.77
102	2,591	1.35	64.87	2.24	107.25
103	2,616	1.36	65.29	2.25	107.73
104	2,642	1.37	65.72	2.27	108.69
105	2,667	1.38	66.15	2.28	109.17
106	2,692	1.39	66.58	2.29	109.65
107	2,718	1.40	67.02	2.30	110.12
108	2,743	1.41	67.45	2.31	110.60
109	2,769	1.42	67.90	2.33	111.56
110	2,794	1.43	68.34	2.34	112.04
111	2,819	1.44	68.79	2.35	112.52
112	2,845	1.45	69.24	2.36	113.00
113	2,870	1.46	69.69	2.38	113.96
114	2,896	1.47	70.15	2.39	114.43

BRENTWOOD INDUSTRIES, INC.

brentwoodindustries.com stormtank@brentw.com +1.610.374.5109



APPENDIX 7-A INLET CURVES

Surface Inlet Capacity At Road Sags⁸

Design Charts

Design Chart 4.19: Inlet Capacity at Road Sag

103

City of Ottawa

⁸ From the MTO Drainage Management Manual

Summary of Hydrologic Parameters Existing, Interim Proposed

Existing Condition											
Drainage Area ID	Total Area (ha)	% Impervious	Width (m)	Slope (%)	Manning's N – Pervious	Manning's N – Impervious	Initial Abstraction - Pervious	Initial Abstraction – Impervious			
EX12	0.198	57	99	2	0.013	0.25	1.57	4.67			
EX13	0.559	57	223.6	2	0.013	0.25	1.57	4.67			
EX15	0.063	86	3	2	0.013	0.25	1.57	4.67			
EX1, EX2, EX3, EX4, EX5 -A1	0.972	23	60	2	0.013	0.25	1.57	4.67			
A2	0.194	13	40	2	0.013	0.25	1.57	4.67			
				Pro	posed Condition						
J2	0.067	9	100	2	0.013	0.25	1.57	4.67			
422	0.107	57	7	3.5	0.013	0.25	1.57	4.67			
EX1	0.158	39	30	2	0.013	0.25	1.57	4.67			
A21	0.017	50	8	3.5	0.013	0.25	1.57	4.67			
A20	0.081	36	27	3	0.013	0.25	1.57	4.67			
A19	0.116	36	28	3	0.013	0.25	1.57	4.67			
EX3	0.048	21	24	2	0.013	0.25	1.57	4.67			
A18	0.009	29	4	5	0.013	0.25	1.57	4.67			
A17	0.041	71	15	2	0.013	0.25	1.57	4.67			
\16	0.025	71	15	4.5	0.013	0.25	1.57	4.67			
A15	0.017	71	10	5	0.013	0.25	1.57	4.67			
A14	0.033	71	19	4.5	0.013	0.25	1.57	4.67			
A13	0.026	71	15	4	0.013	0.25	1.57	4.67			
A12	0.019	64	9	4	0.013	0.25	1.57	4.67			
EX2	0.034	47	14	2	0.013	0.25	1.57	4.67			
A11	0.008	64	8	2	0.013	0.25	1.57	4.67			
A10	0.037	43	23	4	0.013	0.25	1.57	4.67			
49	0.007	43	6	5	0.013	0.25	1.57	4.67			
4 7	0.04	64	24	3.5	0.013	0.25	1.57	4.67			
48	0.047	29	19	3.5	0.013	0.25	1.57	4.67			
46	0.016	86	13	3	0.013	0.25	1.57	4.67			
A 5	0.042	74	19	5	0.013	0.25	1.57	4.67			
EX4	0.041	39	29	2	0.013	0.25	1.57	4.67			
\1	0.055	29	14	3	0.013	0.25	1.57	4.67			
\ 4	0.024	74	24	5	0.013	0.25	1.57	4.67			
43	0.007	74	14	2	0.013	0.25	1.57	4.67			
A2	0.021	74	8	2	0.013	0.25	1.57	4.67			
EX5	0.067	57	10	1.5	0.013	0.25	1.57	4.67			
A101	0.021	50	30	2	0.013	0.25	1.57	4.67			
				Int	erim Condition		- ·				
EX1, EX2, EX3, EX4, EX5, A1, A3	0.972	30	60	2	0.013	0.25	1.57	4.67			
A2	0.194	13	40	2	0.013	0.25	1.57	4.67			

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options

Flow Units LPS
Process Models:
Rainfall/Runoff . YES
Snowmelt . . . NO
Groundwater . . NO
Flow Routing . YES
Ponding Allowed . YES
Water Quality . . . NO
Infiltration Method . HORTON
Flow Routing Method . DYNWAVE

Antecedent Dry Days 0.0

Report Time Step 00:01:00

Wet Time Step 00:01:00

Dry Time Step 00:01:00

Routing Time Step ... 1.00 sec

WARNING 03: negative offset ignored for Link 1

WARNING 03: negative offset ignored for Link 4

WARNING 02: maximum depth increased for Node STM12

Volume

Depth

Runoff Quantity Continuity	hectare-m	mm
Total Precipitation	0.163	82.291
Evaporation Loss	0.000	0.000
Infiltration Loss	0.083	41.855
Surface Runoff	0.079	39.914
Final Surface Storage	0.001	0.581
Continuity Error (%)	-0.070	
	_	_
********	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.079	0.793
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.001	0.011
External Outflow	0.063	0.631
Internal Outflow	0.016	0.157
Storage Losses	0.000	0.000
Initial Stored Volume	0.000	0.001
Final Stored Volume	0.001	0.007
Continuity Error (%)	1.267	

None

All links are stable.

Minimum Time Step : 1.00 sec
Average Time Step : 1.00 sec
Maximum Time Step : 1.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 2.04

| Total | Runoff |

Node Inflow Summary

Maximum Maximum Lateral Lateral Total Time of Max Inflow
Inflow Inflow Occurrence Volume Inflow Volume Node Type LPS LPS days hr:min 10^6 ltr 10^6 ltr Node
 JUNCTION
 0.00
 138.17
 0 01:59
 0.000

 JUNCTION
 259.69
 259.69
 0 01:58
 0.278
 STM12 0.165 STM13 0.307
 JUNCTION
 0.00
 60.00
 0 01:52

 OUTFALL
 27.80
 201.79
 0 00:00

 OUTFALL
 137.98
 137.98
 0 01:59

 STORAGE
 93.21
 93.21
 0 01:58
 0.000 AD 0.086 STM15 0.046 0.272 0.369 0.369 AD-D 0.099 0.099

Surcharging occurs when water rises above the top of the highest conduit.

Max. Height Min. Depth Hours Above Crown Below Rim

100-Year Existing

100-year-pre.txt

Node	Туре	Surcharged	Meters	Meters
STM12	JUNCTION	0.74	0.000	0.000
STM13	JUNCTION	23.98	0.785	0.000
AD	JUNCTION	0.18	0.073	0.027
AD-D	STORAGE	23.98	0.101	0.000

Flooding refers to all water that overflows a node, whether it ponds or not.

Node	Hours Flooded	Maximum Rate LPS	Time of Max Occurrence days hr:min	Total Flood Volume 10^6 ltr	Maximum Ponded Depth Meters
STM12	0.73	138.17	0 01:59	0.142	0.83
STM13	0.04	187.30	0 00:00	0.001	1.17
AD-D	0.17	34.82	0 01:58	0.013	0.10

Storage Unit	Average Volume 1000 m3	Pcnt	E&I Pcnt Loss	Maximum Volume 1000 m3	Max Pcnt Full	Time of Max Occurrence days hr:min	Maximum Outflow LPS
AD-D	0.000	3	0	0.000	100	0 01:52	60.00

Outfall Node	Flow	Avg.	Max.	Total
	Freq.	Flow	Flow	Volume
	Pcnt.	LPS	LPS	10^6 ltr
STM15 5 System	29.95 23.25 26.60	10.50 18.39 28.89	201.79 137.98 321.04	0.272 0.369 0.641

Link	Туре	Maximum Flow LPS	0cci	of Max urrence hr:min	Maximum Veloc m/sec	Max/ Full Flow	Max/ Full Depth
1 2 3 4	CONDUIT CONDUIT CONDUIT DUMMY	45.88 114.28 201.79 60.00	0 0 0 0	01:52 00:00 00:00 01:52	0.66 1.76 1.88	1.04 1.39 1.53	1.00 1.00 1.00

Conduit	Adjusted /Actual Length	Up	Down	Sub	Sup	Up	Avg. Froude Number	Avg. Flow Change
1 2	1.00 1.00			0.51 1.00			0.01 0.00	0.0000 0.0001

100-Year Existing

******* Conduit Surcharge Summary

Hours ------- Hours Full ------ Above Full Capacity
Conduit Both Ends Upstream Dnstream Normal Flow Limited
 0.18
 0.18
 0.18
 0.20
 0.18

 23.98
 23.98
 23.98
 0.10
 0.01

 23.98
 23.98
 23.98
 0.11
 0.13
 2 3

Analysis begun on: Fri Jan 04 15:42:12 2019 Analysis ended on: Fri Jan 04 15:42:13 2019 Total elapsed time: 00:00:01

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022)

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options

Antecedent Dry Days 0.0
Report Time Step 00:01:00
Wet Time Step 00:01:00
Dry Time Step 00:01:00
Routing Time Step 1.00 sec

WARNING 03: negative offset ignored for Link 1

WARNING 03: negative offset ignored for Link 15 $\,$

WARNING 03: negative offset ignored for Link 15

WARNING 03: negative offset ignored for Link 17

WARNING 03: negative offset ignored for Link 17

WARNING 03: negative offset ignored for Link 18

WARNING 03: negative offset ignored for Link 18

WARNING 03: negative offset ignored for Link 19 $\,$

WARNING 03: negative offset ignored for Link 19

WARNING 03: negative offset ignored for Link 20 $\,$

WARNING 03: negative offset ignored for Link 20

WARNING 03: negative offset ignored for Link 21

WARNING 03: negative offset ignored for Link 21

WARNING 03: negative offset ignored for Link 22 WARNING 03: negative offset ignored for Link 22

WARNING 03: negative offset ignored for Link 23

WARNING 03: negative offset ignored for Link 23

WARNING 03: negative offset ignored for Link 24

WARNING 03: negative offset ignored for Link 24 $\,$

WARNING 03: negative offset ignored for Link 25

WARNING 03: negative offset ignored for Link 25

WARNING 03: negative offset ignored for Link 26

100-yr-post.txt

					_			-
		negative						
		negative		_				
		negative						
WARNING	03:	negative	offset	ignored	for	Link	29	
WARNING	03:	negative	offset	ignored	for	Link	29	
WARNING	03:	negative	offset	ignored	for	Link	31	
WARNING	03:	negative	offset	ignored	for	Link	31	
WARNING	03:	negative	offset	ignored	for	Link	32	
WARNING	03:	negative	offset	ignored	for	Link	32	
WARNING	03:	negative	offset	ignored	for	Link	33	
WARNING	03:	negative	offset	ignored	for	Link	33	
WARNING	03:	negative	offset	ignored	for	Link	34	
WARNING	03:	negative	offset	ignored	for	Link	34	
WARNING	03:	negative	offset	ignored	for	Link	35	
WARNING	03:	negative	offset	ignored	for	Link	35	
WARNING	03:	negative	offset	ignored	for	Link	36	
WARNING	03:	negative	offset	ignored	for	Link	36	
WARNING	03:	negative	offset	ignored	for	Link	37	
WARNING	03:	negative	offset	ignored	for	Link	37	
WARNING	03:	negative	offset	ignored	for	Link	44	
WARNING	03:	negative	offset	ignored	for	Link	44	
WARNING	03:	negative	offset	ignored	for	Link	45	
WARNING	03:	negative	offset	ignored	for	Link	45	
WARNING	03:	negative	offset	ignored	for	Link	50	
WARNING	03:	negative	offset	ignored	for	Link	50	
WARNING	04:	minimum e	elevatio	on drop u	used	for (Conduit	54
WARNING	03:	negative	offset	ignored	for	Link	56	
WARNING	03:	negative	offset	ignored	for	Link	57	
WARNING	03:	negative	offset	ignored	for	Link	57	
WARNING	03:	negative	offset	ignored	for	Link	58	
WARNING	03:	negative	offset	ignored	for	Link	58	
		negative						
		negative		Ü				
		negative						
		negative						
		negative		_				
		negative						
		negative		_				
		_		_				
WAKNING	Ø3:	negative	orrset	ignored	TOP	LINK	03	

WARNING	03:	negative	offset	ignored	for	Link	63	
WARNING	03:	negative	offset	ignored	for	Link	64	
WARNING	03:	negative	offset	ignored	for	Link	64	
WARNING	04:	minimum e	elevatio	on drop (used	for (Conduit	70
WARNING	03:	negative	offset	ignored	for	Link	71	
WARNING	03:	negative	offset	ignored	for	Link	77	
WARNING	03:	negative	offset	ignored	for	Link	77	
WARNING	03:	negative	offset	ignored	for	Link	78	
WARNING	03:	negative	offset	ignored	for	Link	78	
WARNING	04:	minimum e	elevatio	on drop (used	for (Conduit	78
WARNING	03:	negative	offset	ignored	for	Link	13	
WARNING	03:	negative	offset	ignored	for	Link	6	
WARNING	03:	negative	offset	ignored	for	Link	7	
WARNING	03:	negative	offset	ignored	for	Link	8	
WARNING	03:	negative	offset	ignored	for	Link	9	
WARNING	03:	negative	offset	ignored	for	Link	10	
WARNING	03:	negative	offset	ignored	for	Link	11	
WARNING	03:	negative	offset	ignored	for	Link	12	
WARNING	03:	negative	offset	ignored	for	Link	16	
WARNING	03:	negative	offset	ignored	for	Link	27	
WARNING	03:	negative	offset	ignored	for	Link	38	
WARNING	03:	negative	offset	ignored	for	Link	39	
WARNING	03:	negative	offset	ignored	for	Link	40	
WARNING	03:	negative	offset	ignored	for	Link	41	
WARNING	03:	negative	offset	ignored	for	Link	42	
WARNING	03:	negative	offset	ignored	for	Link	43	
WARNING	03:	negative	offset	ignored	for	Link	46	
WARNING	03:	negative	offset	ignored	for	Link	47	
WARNING	03:	negative	offset	ignored	for	Link	48	
WARNING	03:	negative	offset	ignored	for	Link	49	
WARNING	03:	negative	offset	ignored	for	Link	51	
WARNING	03:	negative	offset	ignored	for	Link	52	
WARNING	03:	negative	offset	ignored	for	Link	53	
WARNING	03:	negative	offset	ignored	for	Link	5	
WARNING	03:	negative	offset	ignored	for	Link	4	
WARNING	02:	maximum d	depth in	ncreased	for	Node	STM12	
		******			olume		De	pth
		tity Cont:		hecta				mm
Total Pr	recip	oitation	• • • • • •	(3.1 63	3	82.	291
								100-\

100-yr-post.txt

0.000

Evaporación Loss	0.000	0.000
Infiltration Loss	0.058	29.239
Surface Runoff	0.104	52.325
Final Surface Storage	0.002	0.814
Continuity Error (%)	-0.105	
*******	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.104	1.038
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.001	0.010
External Outflow	0.076	0.763
Internal Outflow	0.028	0.276
Storage Losses	0.000	0.000
Initial Stored Volume	0.000	0.001
Final Stored Volume	0.001	0.008
Continuity Error (%)	0.215	

0.000

Evaporation Loss

None

All links are stable.

Minimum Time Step : 0.50 sec
Average Time Step : 1.00 sec
Maximum Time Step : 1.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 2.05

	Total	Total	Total	Total	Total	Total	Peak	Runoff
	Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	Coeff
Subcatchment	mm	mm	mm	mm	mm	10^6 ltr	LPS	
EX12	82.29	0.00	0.00	31.62	49.89	0.10	93.22	0.606
EX13	82.29	0.00	0.00	31.69	49.82	0.28	259.72	0.605
EX15	82.29	0.00	0.00	7.63	73.33	0.05	27.80	0.891
U2	82.29	0.00	0.00	53.57	28.61	0.02	9.58	0.348
A22	82.29	0.00	0.00	22.83	58.64	0.02	17.07	0.713
EX1	82.29	0.00	0.00	33.39	48.34	0.08	50.67	0.587
A21	82.29	0.00	0.00	26.31	55.29	0.01	7.51	0.672
A20	82.29	0.00	0.00	34.14	47.66	0.04	30.54	0.579
A19	82.29	0.00	0.00	34.48	47.31	0.05	40.35	0.575
EX3	82.29	0.00	0.00	42.15	39.87	0.02	16.72	0.484
A18	82.29	0.00	0.00	37.51	44.40	0.00	3.62	0.540
A17	82.29	0.00	0.00	15.26	66.01	0.03	19.06	0.802
A16	82.29	0.00	0.00	15.12	66.17	0.02	11.93	0.804
A15	82.29	0.00	0.00	15.12	66.18	0.01	8.12	0.804
A14	82.29	0.00	0.00	15.13	66.17	0.02	15.74	0.804
A13	82.29	0.00	0.00	15.13	66.16	0.02	12.40	0.804
A12	82.29	0.00	0.00	18.85	62.54	0.01	8.87	0.760
EX2	82.29	0.00	0.00	28.13	53.50	0.02	13.98	0.650
A11	82.29	0.00	0.00	18.79	62.61	0.01	3.78	0.761
A10	82.29	0.00	0.00	29.91	51.80	0.02	16.40	0.629
A9	82.29	0.00	0.00	29.78	51.93	0.00	3.19	0.631
A7	82.29	0.00	0.00	18.82	62.58	0.03	18.78	0.760
A8	82.29	0.00	0.00	37.72	44.19	0.02	17.84	0.537

100-Year Post Development

				100-yr-post	.txt			
A6	82.29	0.00	0.00	7.27	73.80	0.01	7.81	0.897
A5	82.29	0.00	0.00	8.85	72.26	0.03	20.40	0.878
EX4	82.29	0.00	0.00	32.14	49.63	0.02	17.45	0.603
A1	82.29	0.00	0.00	38.32	43.58	0.02	17.95	0.530
A4	82.29	0.00	0.00	13.52	67.74	0.02	11.54	0.823
A3	82.29	0.00	0.00	13.51	67.75	0.00	3.37	0.823
A2	82.29	0.00	0.00	13.65	67.57	0.01	9.89	0.821
A101	82.29	0.00	0.00	26.09	55.52	0.01	9.72	0.675
EX5	82.29	0.00	0.00	23.57	57.87	0.04	24.81	0.703

		Average	Maximum	Maximum	Time of Max
		Depth	Depth	HGL	Occurrence
Node	Туре	Meters	Meters	Meters	days hr:min
AD	JUNCTION	0.05	0.40	96.80	0 01:51
STM12	JUNCTION	0.82	0.83	96.03	0 00:01
STM13	JUNCTION	0.94	1.17	96.25	0 00:00
DICB101	JUNCTION	0.15	0.96	97.50	0 02:09
AD1	JUNCTION	0.12	0.89	97.50	0 02:09
AD12	JUNCTION	0.11	0.91	97.60	0 01:59
AD17	JUNCTION	0.04	0.66	97.64	0 01:59
AD18	JUNCTION	0.07	0.93	97.79	0 01:59
AD22	JUNCTION	0.04	0.95	97.97	0 01:59
AD20	JUNCTION	0.04	1.23	98.27	0 01:59
AD21	JUNCTION	0.03	1.26	98.42	0 01:59
AD4	JUNCTION	0.08	0.80	97.58	0 02:09
AD7	JUNCTION	0.06	0.85	97.71	0 01:59
AD8	JUNCTION	0.05	0.75	97.71	0 01:59
AD9	JUNCTION	0.04	0.74	97.76	0 01:59
AD10	JUNCTION	0.02	0.64	97.77	0 01:59
AD2	JUNCTION	0.12	0.88	97.51	0 02:09
AD3	JUNCTION	0.09	0.81	97.57	0 02:09
AD11	JUNCTION	0.13	0.95 1.22	97.54 98.13	0 01:59
AD19 AD5	JUNCTION JUNCTION	0.06 0.07	0.74	97.57	0 01:59 0 02:09
AD13	JUNCTION	0.09	0.74	97.58	0 02:09
AD13 AD14	JUNCTION	0.07	0.78	97.59	0 02:09
AD14 AD15	JUNCTION	0.06	0.73	97.60	0 02:09
AD16	JUNCTION	0.05	0.70	97.63	0 01:59
AD22-INLET	JUNCTION	0.00	0.06	98.46	0 01:59
AD21-INLET	JUNCTION	0.00	0.19	98.49	0 01:59
AD20-INLET	JUNCTION	0.00	0.22	98.36	0 01:59
AD19-INLET	JUNCTION	0.00	0.27	98.20	0 01:59
AD18-INLET	JUNCTION	0.00	0.15	97.84	0 01:59
AD17-INLET	JUNCTION	0.00	0.08	98.18	0 01:59
AD16-INLET	JUNCTION	0.00	0.05	98.08	0 01:59
AD15-INLET	JUNCTION	0.00	0.04	98.03	0 01:59
AD14-INLET	JUNCTION	0.00	0.06	97.97	0 01:59
AD13-INLET	JUNCTION	0.00	0.07	97.89	0 01:59
AD12-INLET	JUNCTION	0.00	0.16	97.62	0 01:59
AD11-INLET	JUNCTION	0.00	0.11	97.56	0 01:59
AD10-INLET	JUNCTION	0.00	0.16	97.83	0 01:59
AD9-INLET	JUNCTION	0.00	0.02	97.82	0 01:59
AD7-INLET	JUNCTION	0.00	0.10	97.77	0 01:59
AD6	JUNCTION	0.05	0.79	97.73	0 01:59
A8-INLET	JUNCTION	0.00	0.06	97.79	0 01:59
AD6-INLET	JUNCTION	0.00	0.04	98.08	0 01:59
AD5-INLET	JUNCTION	0.00	0.09	98.14	0 01:59
A1-SWALE AD1-INLET	JUNCTION JUNCTION	0.02 0.01	0.15 0.21	97.60 97.46	0 01:59 0 01:59
AD4-INLET	JUNCTION	0.00	0.04	97.46	0 01:59
AD3-INLET	JUNCTION	0.00	0.02	97.91	0 01:59
AD2-INLET	JUNCTION	0.00	0.07	97.47	0 02:09
AD101-INLET	JUNCTION	0.02	0.27	97.37	0 02:09
A8-SWALE	JUNCTION	0.02	0.00	98.10	0 00:00
STM15	OUTFALL	1.06	1.06	96.02	0 00:00
1	OUTFALL	0.00	0.04	97.04	0 01:59
2	OUTFALL	0.00	0.00	97.00	0 00:00
3	OUTFALL	0.00	0.00	97.00	0 00:00
AD-D	STORAGE	0.00	0.10	96.85	0 01:52
4	STORAGE	0.09	0.81	97.57	0 02:09

100-Year Post Development

		Maximum	Maximum			Lateral	Total
		Lateral	Total	Time	of Max	Inflow	Inflow
		Inflow	Inflow		rrence	Volume	Volume
Node	Туре	LPS	LPS	days	hr:min	10^6 ltr	10^6 ltr
AD	JUNCTION	0.00	81.52	0	01:59	0.000	0.487
STM12	JUNCTION	0.00	140.54	0	01:59	0.000	0.547
STM13	JUNCTION	259.69	259.69	0	01:59	0.278	0.593
DICB101	JUNCTION	0.00	105.58	0	01:59	0.000	0.532
AD1	JUNCTION	0.00	54.76	0	01:54	0.000	0.223
AD12	JUNCTION	0.00	171.89	0	01:57	0.000	0.422
AD17	JUNCTION	0.00	19.02	0	01:59	0.000	0.027
AD18	JUNCTION	0.00	166.41	0	01:59	0.000	0.264
AD22	JUNCTION	0.00	41.85	0	01:59	0.000	0.062
AD20	JUNCTION	0.00	71.80	0	01:56	0.000	0.122
AD21	JUNCTION	0.00	48.86	0	01:55	0.000	0.085
AD4	JUNCTION	0.00	87.90	0	01:58	0.000	0.126
AD7	JUNCTION	0.00	57.62	0	01:57	0.000	0.080
AD8	JUNCTION	0.00	15.28	0	01:59	0.000	0.019
AD9	JUNCTION	0.00	20.72	0	02:00	0.000	0.023
AD10	JUNCTION	0.00	20.47	0	01:53	0.000	0.019
AD2	JUNCTION	0.00	62.84	0 0	01:54	0.000	0.223
AD3	JUNCTION	0.00	145.43	0	01:54	0.000	0.281
AD11 AD19	JUNCTION JUNCTION	0.00 0.00	105.54 111.96	0	01:59 02:00	0.000 0.000	0.362 0.179
AD19 AD5	JUNCTION	0.00	20.40	0	01:59	0.000	0.030
AD13	JUNCTION	0.00	155.41	0	01:54	0.000	0.251
AD13 AD14	JUNCTION	0.00	54.75	0	01:53	0.000	0.077
AD14 AD15	JUNCTION	0.00	39.28	0	01:53	0.000	0.055
AD16	JUNCTION	0.00	30.88	0	01:59	0.000	0.044
AD22-INLET	JUNCTION	41.88	41.88	0	01:59	0.062	0.062
AD21-INLET	JUNCTION	58.15	58.15	0	01:59	0.086	0.086
AD20-INLET	JUNCTION	30.53	41.18	0	01:59	0.039	0.040
AD19-INLET	JUNCTION	40.34	53.09	0	01:59	0.055	0.057
AD18-INLET	JUNCTION	20.33	20.33	0	01:59	0.023	0.023
AD17-INLET	JUNCTION	19.06	19.06	0	01:59	0.027	0.027
AD16-INLET	JUNCTION	11.93	11.93	0	01:59	0.017	0.017
AD15-INLET	JUNCTION	8.12	8.12	0	01:59	0.011	0.011
AD14-INLET	JUNCTION	15.74	15.74	0	01:59	0.022	0.022
AD13-INLET	JUNCTION	12.40	17.93	0	01:59	0.017	0.018
AD12-INLET	JUNCTION	22.85	22.85	0	01:59	0.030	0.030
AD11-INLET	JUNCTION	3.78	9.57	0	01:59	0.005	0.006
AD10-INLET	JUNCTION	16.40	16.40	0 0	01:59	0.019	0.019
AD9-INLET AD7-INLET	JUNCTION JUNCTION	3.19 18.78	3.19 21.17	0	01:59 01:59	0.004	0.004 0.026
AD7-INLET	JUNCTION	0.00		0	01:59	0.025	
A8-INLET	JUNCTION	17.84	27.76 17.84	0	01:59	0.000 0.021	0.035 0.021
AD6-INLET	JUNCTION	7.81	7.81	0	01:59	0.012	0.012
AD5-INLET	JUNCTION	20.40	20.40	0	01:59	0.030	0.030
A1-SWALE	JUNCTION	35.39	35.39	0	01:59	0.044	0.044
AD1-INLET	JUNCTION	0.00	49.20	0	01:59	0.000	0.091
AD4-INLET	JUNCTION	11.54	11.54	0	01:59	0.016	0.016
AD3-INLET	JUNCTION	3.37	4.88	0	01:59	0.005	0.006
AD2-INLET	JUNCTION	9.89	17.04	0	02:09	0.014	0.021
AD101-INLET	JUNCTION	9.72	121.11	0	02:09	0.012	0.197
A8-SWALE	JUNCTION	0.00	0.00	0	00:00	0.000	0.000
STM15	OUTFALL	27.80	201.79	0	00:00	0.046	0.560
1	OUTFALL	9.58	14.98	0	01:59	0.019	0.020
2	OUTFALL	0.00	0.00	0	00:00	0.000	0.000
3	OUTFALL	0.00	120.94	0	02:09	0.000	0.192
AD-D	STORAGE	93.21	93.21	0	01:59	0.099	0.099
4	STORAGE	0.00	300.33	0	01:54	0.000	0.213

Surcharging occurs when water rises above the top of the highest conduit.

			1	00-yr-post.txt
			Max. Height	
		Hours	Above Crown	Below Rim
Node	Type	Surcharged	Meters	Meters
AD	JUNCTION	0.34	0.100	0.000
STM12	JUNCTION	3.61	0.000	0.000
STM13	JUNCTION	23.98	0.785	0.000
DICB101	JUNCTION	3.69	0.507	0.143
AD1	JUNCTION	3.11	0.437	0.143
AD12	JUNCTION	2.51	0.462	0.188
AD17	JUNCTION	1.87	0.413	0.707
AD18	JUNCTION	1.30	0.485	0.195
AD22	JUNCTION	0.84	0.594	0.683
AD20	JUNCTION	1.08	0.927	0.123
AD21	JUNCTION	0.45	0.907	0.130
AD4	JUNCTION	2.39	0.421	0.514
AD7	JUNCTION	2.74	0.598	0.132
AD8	JUNCTION	2.01	0.504	0.096
AD9	JUNCTION	1.59	0.486	0.314
AD10	JUNCTION	0.78	0.394	0.226
AD2	JUNCTION	3.56	0.509	0.146
AD3	JUNCTION	2.54	0.433	0.472
AD11	JUNCTION	3.28	0.498	0.152
AD19	JUNCTION	1.67	0.867	0.340
AD5	JUNCTION	2.96	0.490	0.730
AD13	JUNCTION	3.19	0.527	0.543
AD14	JUNCTION	2.73	0.478	0.572
AD15	JUNCTION	2.29	0.428	0.642
AD16	JUNCTION	2.22	0.449	0.651
AD6	JUNCTION	2.15	0.542	0.758
AD-D	STORAGE	23.98	0.101	0.000
4	STORAGE	3.08	0.513	0.467

Flooding refers to all water that overflows a node, whether it ponds or not. $\ensuremath{\mathsf{E}}$

Node	Hours Flooded	Maximum Rate LPS	Time of Max Occurrence days hr:min	Total Flood Volume 10^6 ltr	Maximum Ponded Depth Meters
AD	0.31	34.94	0 01:59	0.025	0.40
STM12	3.60	140.54	0 01:59	0.237	0.83
STM13	0.04	187.30	0 00:00	0.001	1.17
AD-D	0.15	33.20	0 01:59	0.012	0.10

Storage Unit	Average	Avg	E&I	Maximum	Max	Time of Max	Maximum
	Volume	Pcnt	Pcnt	Volume	Pcnt	Occurrence	Outflow
	1000 m3	Full	Loss	1000 m3	Full	days hr:min	LPS
AD-D	0.000	3	0	0.000	100	0 01:52	60.00
4	0.024	12	0	0.208	100	0 02:08	

Outfall Node	Flow Freq. Pcnt.	Avg. Flow LPS	Max. Flow LPS	Total Volume 10^6 ltr
Outrail Node	PCIIC.	LPS	LPS	10.0 10.
STM15	77.98	8.47	201.79	0.560
1	7.55	3.05	14.98	0.020
2	0.00	0.00	0.00	0.000
3	5.23	42.57	120.94	0.192

100-Year Post Development

100-yr-post.txt System 22.69 54.09 304.26 0.772

******* Link Flow Summary **********

		Maximum		of Max	Maximum	Max/	Max/
Link	Type	Flow LPS		rrence hr:min	Veloc m/sec	Full Flow	Full Depth
 1	CONDUTT	46.50		01.54	0.66	1.06	
1 2	CONDUIT CONDUIT	46.58 114.28	0 0	01:54 00:00	0.66 1.76	1.06 1.39	1.00 1.00
3	CONDUIT	201.79	0	00:00	1.88	1.53	1.00
14	CONDUIT	120.94	0	02:09	0.62	0.18	0.32
15	CONDUIT	101.34	0	01:59	0.64	0.48	1.00
17	CONDUIT	41.60	0	01:59	0.85	0.99	1.00
18	CONDUIT	48.05	0	01:56	0.98	1.13	1.00
19 20	CONDUIT	71.72	0 0	01:56 02:00	1.01	1.00	1.00
20 21	CONDUIT CONDUIT	111.19 165.63	0	01:59	1.57 1.04	1.63 0.75	1.00
22	CONDUIT	50.70	0	01:54	0.32	0.24	1.00
23	CONDUIT	54.14	0	01:54	0.49	0.38	1.00
24	CONDUIT	62.53	0	01:54	0.57	0.48	1.00
25	CONDUIT	87.74	0	01:58	0.79	0.73	1.00
26	CONDUIT	20.36	0	01:59	0.41	0.48	1.00
28	CONDUIT	57.56	0	01:58	1.17	1.29	1.00
29 31	CONDUIT	15.29 19.13	0 0	01:59 02:00	0.34 0.65	0.28 0.44	1.00
32	CONDUIT CONDUIT	93.75	0	01:53	1.33	1.29	1.00
33	CONDUIT	55.47	0	01:53	0.78	0.79	1.00
34	CONDUIT	40.35	0	01:53	0.62	0.57	1.00
35	CONDUIT	31.81	0	01:53	0.74	0.70	1.00
36	CONDUIT	18.97	0	01:53	0.55	0.46	1.00
37	CONDUIT	105.58	0	01:59	0.66	0.59	1.00
44	CONDUIT	20.73	0	02:00	0.50	0.50	1.00
45 50	CONDUIT	27.80	0 0	01:54	0.57	0.66	1.00
54	CONDUIT CONDUIT	34.45 0.00	0	01:59 00:00	0.88 0.00	0.13 0.00	0.55 0.00
55	CONDUIT	0.00	0	00:00	0.00	0.00	0.00
56	CONDUIT	0.00	0	00:00	0.00	0.00	0.34
57	CONDUIT	2.40	0	01:59	0.22	0.07	0.53
58	CONDUIT	0.00	0	00:00	0.00	0.00	0.18
59	CONDUIT	0.00	0	00:00	0.00	0.00	0.50
60	CHANNEL	0.00	0 0	00:00	0.00	0.00	0.21
61 62	CONDUIT CONDUIT	1.51 0.50	0	01:59 01:59	0.47 0.29	0.03 0.01	0.22 0.30
63	CONDUIT	14.24	0	02:09	0.39	0.14	0.74
64	CONDUIT	40.75	0	02:00	0.60	0.80	1.00
65	CHANNEL	0.00	0	00:00	0.00	0.00	0.00
66	CHANNEL	0.00	0	00:00	0.00	0.00	0.00
67	CHANNEL	0.00	0	00:00	0.00	0.00	0.00
68	CHANNEL	0.00	0	00:00	0.00	0.00	0.00
69 70	CHANNEL CONDUIT	0.00 6.93	0 0	00:00 01:59	0.00 0.27	0.00 1.21	0.50 0.44
70 71	CONDUIT	5.42	0	01:59	0.27	0.04	0.29
72	CONDUIT	0.00	0	00:00	0.00	0.00	0.12
73	CONDUIT	10.97	0	01:59	0.36	0.26	0.68
74	CONDUIT	15.29	0	01:59	0.48	0.42	0.69
75	CONDUIT	0.01	0	01:59	0.00	0.00	0.35
76 	CONDUIT	7.77	0	01:59	0.38	0.02	0.22
77	CONDUIT	155.28	0	01:54	2.28	3.21	1.00
78 30	CONDUIT CONDUIT	145.29 0.00	0 0	01:54 00:00	2.06 0.00	21.60 0.00	1.00 0.00
13	ORIFICE	23.93	0	02:18	3.00	0.00	1.00
6	ORIFICE	41.85	ø	01:59			
7	ORIFICE	48.86	0	01:55			
8	ORIFICE	28.17	0	02:00			
9	ORIFICE	46.46	0	02:00			
10	ORIFICE	21.58	0	01:59			
11 12	ORIFICE	19.02	0	01:59			
12 16	ORIFICE ORIFICE	11.93 8.12	0 0	01:59 01:59			
27	ORIFICE	15.74	0	01:59			
38	ORIFICE	17.79	0	01:59			

100-	yr-	post	.txt
------	-----	------	------

39	ORIFICE	28.29	0	02:01
40	ORIFICE	6.26	0	02:01
41	ORIFICE	19.20	0	02:00
42	ORIFICE	3.18	0	01:59
43	ORIFICE	20.30	0	01:57
46	ORIFICE	15.28	0	01:59
47	ORIFICE	7.81	0	01:59
48	ORIFICE	20.40	0	01:59
49	ORIFICE	19.30	0	01:53
51	ORIFICE	10.02	0	01:59
52	ORIFICE	4.38	0	01:59
53	ORIFICE	14.10	0	02:09
5	ORIFICE	83.36	0	02:09
4	DUMMY	60.00	0	01:52

Conduit	/Actual Length 1.00	Dry 0.00 0.00 0.09 0.95 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Down Dry	Sub Crit 0.98 1.00 0.00 0.98 0.98 0.98 0.98 0.61 0.98 0.98		Up Crit 0.00 0.00 0.00 0.00 0.00 0.00 0.	Down Crit 0.00 0.00 0.00 0.05 0.00 0.00 0.	0.06 0.00 0.00 0.04 0.43 0.13 0.17 0.13 0.10 0.05	Flow Change
1 2 3 14 15 17 18 19 20 21 22 23 24 25 26 28 29 31 32 33 34 35 36 37 44 45 50 54 55 56 57	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.95 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.98 1.00 1.00 0.00 0.98 0.98 0.98 0.98 0.98 0.98	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00	0.06 0.00 0.00 0.04 0.43 0.13 0.17 0.13 0.12 0.05 0.20	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 3 14 15 17 18 19 20 21 22 23 24 25 26 28 29 31 32 33 34 35 36 37 44 45 50 55 56 57	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.95 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.37 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1.00 1.00 0.00 0.98 0.98 0.98 0.98 0.61 0.98	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.04 0.43 0.13 0.17 0.13 0.12 0.05	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 14 15 17 18 19 20 21 22 23 24 25 26 28 29 31 32 33 34 35 36 37 44 45 50 54 55 56	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.95 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.37 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1.00 0.00 0.98 0.98 0.98 0.98 0.61 0.98 0.98	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.05 0.00 0.00 0.00 0.00 0.00	0.00 0.04 0.43 0.13 0.17 0.13 0.12 0.05 0.20	0.000 0.000 0.000 0.000 0.000 0.000 0.000
14 15 17 18 19 20 21 22 23 24 25 26 28 29 31 32 33 34 35 36 37 44 45 50 54 55 56	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.95 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	0.00 0.00 0.00 0.00 0.00 0.37 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.98 0.98 0.98 0.98 0.61 0.98 0.98	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.05 0.00 0.00 0.00 0.00 0.00	0.04 0.43 0.13 0.17 0.13 0.12 0.05 0.20	0.000 0.000 0.000 0.000 0.000 0.000 0.000
15 17 18 19 20 21 22 23 24 25 26 28 29 31 31 32 33 34 35 36 37 44 45 50 54 55 56	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.00 0.00 0.00 0.00 0.37 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.98 0.98 0.98 0.98 0.98 0.61 0.98	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.43 0.13 0.17 0.13 0.12 0.05 0.20	0.000 0.000 0.000 0.000 0.000 0.000
17 18 19 20 21 22 23 24 25 26 28 29 31 32 33 34 35 36 37 44 45 50 54 55 56	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.00 0.00 0.00 0.00 0.37 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.98 0.98 0.98 0.98 0.61 0.98	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.13 0.17 0.13 0.12 0.05 0.20	0.000 0.000 0.000 0.000 0.000
18 19 20 21 22 23 24 25 26 28 29 31 32 33 34 35 36 37 44 45 50 54 55 55	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.00 0.00 0.00 0.37 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.98 0.98 0.98 0.61 0.98 0.98	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.17 0.13 0.12 0.05 0.20	0.000 0.000 0.000 0.000
19 20 21 22 23 24 25 26 28 29 31 32 33 34 35 36 37 44 45 50 54 55 56	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.00 0.00 0.37 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.98 0.98 0.61 0.98 0.98	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.13 0.12 0.05 0.20	0.000 0.000 0.000 0.000
20 21 22 23 24 25 26 28 29 31 32 33 34 45 55 56 57	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.02 0.02 0.02 0.02 0.02 0.02	0.00 0.37 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.98 0.61 0.98 0.98	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.12 0.05 0.20	0.000 0.000 0.000
21 22 23 24 25 26 28 29 31 31 32 33 34 35 36 37 44 45 50 54	1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.02 0.02 0.02 0.02 0.02 0.02	0.37 0.00 0.00 0.00 0.56	0.00 0.00 0.00	0.61 0.98 0.98	0.00 0.00	0.00 0.00	0.00 0.00	0.05 0.20	0.000
22 23 24 25 26 28 29 31 32 33 34 35 36 37 44 45 50 54 55	1.00 1.00 1.00 1.00 1.00 1.00	0.02 0.02 0.02 0.02 0.02	0.00 0.00 0.00 0.56	0.00 0.00	0.98 0.98	0.00	0.00	0.00	0.20	0.000
23 24 25 26 28 29 31 32 33 34 35 36 37 44 45 50 54 55 56	1.00 1.00 1.00 1.00 1.00	0.02 0.02 0.02 0.02	0.00 0.00 0.56	0.00	0.98					
24 25 26 28 29 31 32 33 34 35 36 37 44 45 50 54 55 55	1.00 1.00 1.00 1.00 1.00	0.02 0.02 0.02	0.00 0.56				0.00		0.45	0 000
25 26 28 29 31 32 33 34 35 36 37 44 45 50 54 55 56 57	1.00 1.00 1.00 1.00	0.02 0.02	0.56	0.00		0.00	0.00	0.00	0.45 0.43	0.000
26 28 29 31 32 33 34 35 36 37 44 45 50 54 55 56	1.00 1.00 1.00	0.02		0.00	0.40	0.02	0.00	0.00	0.43	0.000
28 29 31 32 33 34 35 36 37 44 45 50 54 55 56	1.00 1.00		0.00	0.00	0.40	0.00	0.00	0.00	0.04	0.000
29 31 32 33 34 35 36 37 44 45 50 54 55 55 56	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.04	0.000
31 32 33 34 35 36 37 44 45 50 54 55 56		0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.03	0.000
32 33 34 35 36 37 44 45 50 54 55 56	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.09	0.000
33 34 35 36 37 44 45 50 54 55 56	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.57	0.000
34 35 36 37 44 45 50 54 55 55	1.00	0.02	0.39	0.00	0.59	0.00	0.00	0.00	0.05	0.000
35 36 37 44 45 50 54 55 55 56	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.08	0.000
36 37 44 45 50 54 55 56	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.10	0.000
37 44 45 50 54 55 56 57	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.10	0.000
44 45 50 54 55 56	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.38	0.000
50 54 55 56 57	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.06	0.000
50 54 55 56 57	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.05	0.000
55 56 57	1.00	0.02	0.00	0.00	0.96	0.02	0.00	0.00	0.17	0.000
56 57	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000
57	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000
	1.00	0.64	0.36	0.00	0.00	0.00	0.00	0.00	0.00	0.000
58	1.00	0.63	0.07	0.00	0.31	0.00	0.00	0.00	0.05	0.000
	1.00	0.69	0.31	0.00	0.00	0.00	0.00	0.00	0.00	0.000
59	1.00	0.69	0.31	0.00	0.00	0.00	0.00	0.00	0.00	0.000
60	1.00	0.69	0.31	0.00	0.00	0.00	0.00	0.00	0.00	0.000
61	1.00	0.68	0.01	0.00	0.30	0.02	0.00	0.00	0.11	0.000
62	1.00	0.64	0.09	0.00	0.27	0.00	0.00	0.00	0.05	0.000
63	1.00	0.57	0.07	0.00	0.36	0.00	0.00	0.00	0.07	0.000
64	1.00	0.59	0.00	0.00	0.41	0.00	0.00	0.00	0.05	0.000
65	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000
66	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000
67	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000
68	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000
69	1.00	0.99	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.000
70	1.00	0.99	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.000
71	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.000
72	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000
73	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000
74	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000
75 76	1.00	0.99	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.000
76 77	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000
77 78	1.00 1.00	0.02 0.02	0.00 0.00	0.00 0.00	0.96 0.93	0.01 0.05	0.00 0.00	0.00 0.00	0.42 0.27	0.000

100-Year Post Development

******** Conduit Surcharge Summary ************

				Hours	Hours
		Hours Full		Above Full	Capacity
Conduit	Both Ends	Upstream	Dnstream	Normal Flow	Limited
1				0.37	
2	23.98	23.98	23.98	0.10	0.01
				0.11	
15				0.01	
17	1.61	1.61	1.61	0.01	0.03
18	0.71	0.71	0.71	0.11	0.12
19	1.08	1.08	1.08	0.01	0.11
20	2.03	2.03	2.03	0.16	0.30
21				0.01	
22		3.11	3.11	0.01	0.01
23				0.01	
24	2.54	2.54	2.54	0.01	0.01
25				0.01	
26				0.01	
28				0.10	0.11
29	2.01			0.01	0.01
31				0.01	
32				0.09	
33				0.01	
34		2.29		0.01	
35				0.01	
36	1.87		1.87		
37		3.28		0.01	
44		1.59		0.01	
45		2.15		0.01	
64				0.01	
70				0.02	
77				0.23	
78	3.08	3.08	3.08	1.19	0.17

Analysis begun on: Mon Jan 07 07:44:13 2019 Analysis ended on: Mon Jan 07 07:44:17 2019 Total elapsed time: 00:00:04

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022)

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Flow Units ... LPS
Process Models:
Rainfall/Runoff YES
Snowmelt ... NO
Groundwater ... NO
Flow Routing YES
Ponding Allowed YES
Water Quality NO
Infiltration Method ... HORTON

Flow Routing Method DYNWAVE
Starting Date JAN-01-2000 00:01:00
Ending Date JAN-02-2000 00:00:00

Antecedent Dry Days ... 0.0

Report Time Step ... 00:01:00

Wet Time Step ... 00:01:00

Dry Time Step ... 00:01:00

Routing Time Step ... 1.00 sec

WARNING 03: negative offset ignored for Link 1

WARNING 03: negative offset ignored for Link 15

WARNING 03: negative offset ignored for Link 15

WARNING 03: negative offset ignored for Link 17

WARNING 03: negative offset ignored for Link 17

WARNING 03: negative offset ignored for Link 18

WARNING 03: negative offset ignored for Link 18

WARNING 03: negative offset ignored for Link 19

WARNING 03: negative offset ignored for Link 19 $\,$

WARNING 03: negative offset ignored for Link 20 $\,$

WARNING 03: negative offset ignored for Link 20

WARNING 03: negative offset ignored for Link 21

WARNING 03: negative offset ignored for Link 21

WARNING 03: negative offset ignored for Link 22 WARNING 03: negative offset ignored for Link 22

WARNING 03: negative offset ignored for Link 23

WARNING 03: negative offset ignored for Link 23

WARNING 03: negative offset ignored for Link 24

WARNING 03: negative offset ignored for Link 24

WARNING 03: negative offset ignored for Link 25

WARNING 03: negative offset ignored for Link 25

WARNING 03: negative offset ignored for Link 26

WARNING 03:	negative offset	ignored for	Link 26
WARNING 03:	negative offset	ignored for	Link 28
WARNING 03:	negative offset	ignored for	Link 28
WARNING 03:	negative offset	ignored for	Link 29
WARNING 03:	negative offset	ignored for	Link 29
WARNING 03:	negative offset	ignored for	Link 31
WARNING 03:	negative offset	ignored for	Link 31
WARNING 03:	negative offset	ignored for	Link 32
WARNING 03:	negative offset	ignored for	Link 32
WARNING 03:	negative offset	ignored for	Link 33
WARNING 03:	negative offset	ignored for	Link 33
WARNING 03:	negative offset	ignored for	Link 34
WARNING 03:	negative offset	ignored for	Link 34
WARNING 03:	negative offset	ignored for	Link 35
WARNING 03:	negative offset	ignored for	Link 35
WARNING 03:	negative offset	ignored for	Link 36
WARNING 03:	negative offset	ignored for	Link 36
WARNING 03:	negative offset	ignored for	Link 37
WARNING 03:	negative offset	ignored for	Link 37
WARNING 03:	negative offset	ignored for	Link 44
WARNING 03:	negative offset	ignored for	Link 44
WARNING 03:	negative offset	ignored for	Link 45
WARNING 03:	negative offset	ignored for	Link 45
WARNING 03:	negative offset	ignored for	Link 50
WARNING 03:	negative offset	ignored for	Link 50
WARNING 04:	minimum elevatio	n drop used	for Conduit 54
WARNING 03:	negative offset	ignored for	Link 56
WARNING 03:	negative offset	ignored for	Link 57
WARNING 03:	negative offset	ignored for	Link 57
WARNING 03:	negative offset	ignored for	Link 58
WARNING 03:	negative offset	ignored for	Link 58
WARNING 03:	negative offset	ignored for	Link 59
WARNING 03:	negative offset	ignored for	Link 59
WARNING 03:	negative offset	ignored for	Link 60
WARNING 03:	negative offset	ignored for	Link 61
WARNING 03:	negative offset	ignored for	Link 61
WARNING 03:	negative offset	ignored for	Link 62
WARNING 03:	negative offset	ignored for	Link 62

WARNING 03:	negative offset	ignored for	Link 63
WARNING 03:	negative offset	ignored for	Link 64
WARNING 03:	negative offset	ignored for	Link 64
WARNING 04:	minimum elevation	on drop used	for Conduit 70
WARNING 03:	negative offset	ignored for	Link 71
WARNING 03:	negative offset	ignored for	Link 77
WARNING 03:	negative offset	ignored for	Link 77
WARNING 03:	negative offset	ignored for	Link 78
WARNING 03:	negative offset	ignored for	Link 78
WARNING 04:	minimum elevation	on drop used	for Conduit 78
WARNING 03:	negative offset	ignored for	Link 13
WARNING 03:	negative offset	ignored for	Link 6
WARNING 03:	negative offset	ignored for	Link 7
WARNING 03:	negative offset	ignored for	Link 8
WARNING 03:	negative offset	ignored for	Link 9
WARNING 03:	negative offset	ignored for	Link 10
WARNING 03:	negative offset	ignored for	Link 11
WARNING 03:	negative offset	ignored for	Link 12
WARNING 03:	negative offset	ignored for	Link 16
WARNING 03:	negative offset	ignored for	Link 27
WARNING 03:	negative offset	ignored for	Link 38
WARNING 03:	negative offset	ignored for	Link 39
WARNING 03:	negative offset	ignored for	Link 40
WARNING 03:	negative offset	ignored for	Link 41
WARNING 03:	negative offset	ignored for	Link 42
WARNING 03:	negative offset	ignored for	Link 43
WARNING 03:	negative offset	ignored for	Link 46
WARNING 03:	negative offset	ignored for	Link 47
WARNING 03:	negative offset	ignored for	Link 48
WARNING 03:	negative offset	ignored for	Link 49
WARNING 03:	negative offset	ignored for	Link 51
WARNING 03:	negative offset	ignored for	Link 52
WARNING 03:	negative offset	ignored for	Link 53
WARNING 03:	negative offset	ignored for	Link 5
WARNING 03:	negative offset	ignored for	Link 4
WARNING 02:	maximum depth in	ncreased for	Node STM12
	******	Volume	
*******	tity Continuity *******	hectare-m	
iotal Preci	pitation	0.196	98.754 100-Va

100-yr_+20.txt

0.000

Evaporación Loss	0.000	0.000
Infiltration Loss	0.062	31.328
Surface Runoff	0.132	66.718
Final Surface Storage	0.002	0.814
Continuity Error (%)	-0.108	
*******	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.132	1.324
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.001	0.009
External Outflow	0.097	0.970
Internal Outflow	0.036	0.357
Storage Losses	0.000	0.000
Initial Stored Volume	0.000	0.001
Final Stored Volume	0.001	0.008
Continuity Error (%)	-0.024	
	3.02.	

0.000

******** Time-Step Critical Elements

Evaporation Loss

None

Highest Flow Instability Indexes **********

All links are stable.

Minimum Time Step 0.50 sec 1.00 sec Average Time Step Maximum Time Step 1.00 sec Percent in Steady State : 0.00 Average Iterations per Step : 2.04

******** Subcatchment Runoff Summary

	Total	Total	Total	Total	Total	Total	Peak	Runoff
	Precip	Runon	Evap	Infil	Runoff			Coeff
Subcatchment	mm	mm	mm	mm	mm	10^6 ltr	LPS	
EX12	98.75	0.00	0.00	33.87	64.13	0.13	113.44	0.649
EX13	98.75	0.00	0.00	33.92	64.06	0.36	317.46	0.649
EX15	98.75	0.00	0.00	8.16	89.27	0.06	34.23	0.904
U2	98.75	0.00	0.00	57.15	41.50	0.03	14.73	0.420
A22	98.75	0.00	0.00	24.51	73.45	0.03	21.49	0.744
EX1	98.75	0.00	0.00	35.70	62.51	0.10	66.97	0.633
A21	98.75	0.00	0.00	28.29	69.79	0.01	9.37	0.707
A20	98.75	0.00	0.00	36.62	61.65	0.05	39.89	0.624
A19	98.75	0.00	0.00	36.93	61.33	0.07	53.33	0.621
EX3	98.75	0.00	0.00	45.21	53.28	0.03	22.44	0.540
A18	98.75	0.00	0.00	40.30	58.09	0.01	4.67	0.588
A17	98.75	0.00	0.00	16.41	81.34	0.03	23.38	0.824
A16	98.75	0.00	0.00	16.29	81.50	0.02	14.47	0.825
A15	98.75	0.00	0.00	16.28	81.50	0.01	9.84	0.825
A14	98.75	0.00	0.00	16.29	81.49	0.03	19.10	0.825
A13	98.75	0.00	0.00	16.29	81.49	0.02	15.04	0.825
A12	98.75	0.00	0.00	20.29	77.59	0.01	10.85	0.786
EX2	98.75	0.00	0.00	30.21	67.91	0.02	17.83	0.688
A11	98.75	0.00	0.00	20.23	77.66	0.01	4.60	0.786
A10	98.75	0.00	0.00	32.17	66.02	0.02	20.45	0.669
Α9	98.75	0.00	0.00	32.06	66.14	0.00	3.92	0.670
A7	98.75	0.00	0.00	20.26	77.63	0.03	22.92	0.786
A8	98.75	0.00	0.00	40.49	57.90	0.03	23.38	0.586

100-Year+20% Post Development

				100-yr_+20	.txt			
A6	98.75	0.00	0.00	7.84	89.72	0.01	9.41	0.909
A5	98.75	0.00	0.00	9.53	88.06	0.04	24.61	0.892
EX4	98.75	0.00	0.00	34.55	63.70	0.03	22.08	0.645
A1	98.75	0.00	0.00	41.04	57.33	0.03	24.13	0.581
A4	98.75	0.00	0.00	14.56	83.18	0.02	13.95	0.842
A3	98.75	0.00	0.00	14.55	83.19	0.01	4.07	0.842
A2	98.75	0.00	0.00	14.68	83.02	0.02	12.08	0.841
A101	98.75	0.00	0.00	28.09	70.00	0.01	11.89	0.709
EX5	98.75	0.00	0.00	25.20	72.72	0.05	31.61	0.736

		Average	Maximum	Maximum	Time	of Max
		Depth	Depth	HGL	0ccu	rrence
Node	Type	Meters	Meters	Meters	days	hr:min
AD	JUNCTION	0.05	0.40	96.80	0	01:51
STM12	JUNCTION	0.82	0.83	96.03	0	00:01
STM13	JUNCTION	0.94	1.17	96.25	0	00:00
DICB101	JUNCTION	0.16	1.08	97.62	0	02:03
AD1	JUNCTION	0.13	1.01	97.62	0	02:03
AD12	JUNCTION	0.12	1.09	97.78	0	02:01
AD17	JUNCTION	0.05	1.08	98.06	0	02:01
AD18	JUNCTION	0.08	1.03	97.89	0	01:59
AD22	JUNCTION	0.05	1.22	98.24	0	01:51
AD20	JUNCTION	0.05	1.33	98.37	0	01:59
AD21	JUNCTION	0.04	1.36	98.52	0	01:59
AD4	JUNCTION	0.09	1.06	97.84	0	02:01
AD7	JUNCTION	0.07	0.95	97.81	0	02:01
AD8	JUNCTION	0.05	0.85	97.81	0	01:59
AD9	JUNCTION	0.04	0.84	97.86	0	01:52
AD10	JUNCTION	0.03	0.69	97.82	0	01:59
AD2	JUNCTION	0.13	1.01	97.64	0	02:03
AD3	JUNCTION	0.10	1.09	97.85	0	02:01
AD11	JUNCTION	0.14	1.09	97.68	0	02:01
AD19	JUNCTION	0.07	1.30	98.21	0	01:59
AD5	JUNCTION	0.08	1.02	97.85	0	02:01
AD13	JUNCTION	0.10	1.15	97.90	0	02:01
AD14	JUNCTION	0.08	1.13	97.94	0	02:01
AD15	JUNCTION	0.07	1.11	97.98	0	02:01
AD16	JUNCTION	0.06	1.10	98.03 98.47	0 0	02:01
AD21 TNLET	JUNCTION	0.00	0.07		0	01:59
AD21-INLET AD20-INLET	JUNCTION JUNCTION	0.00 0.00	0.30 0.39	98.60 98.53	0	01:59 01:59
AD19-INLET	JUNCTION	0.00	0.35	98.28	0	01:59
AD19-INLET	JUNCTION	0.00	0.23	97.92	0	01:59
AD17-INLET	JUNCTION	0.00	0.11	98.21	0	01:59
AD16-INLET	JUNCTION	0.00	0.05	98.08	0	01:59
AD15-INLET	JUNCTION	0.00	0.04	98.03	0	01:59
AD14-INLET	JUNCTION	0.00	0.08	97.99	0	01:59
AD13-INLET	JUNCTION	0.00	0.23	98.05	0	01:59
AD12-INLET	JUNCTION	0.00	0.26	97.72	0	01:59
AD11-INLET	JUNCTION	0.00	0.18	97.63	0	01:59
AD10-INLET	JUNCTION	0.00	0.19	97.86	0	01:59
AD9-INLET	JUNCTION	0.00	0.04	97.84	0	01:59
AD7-INLET	JUNCTION	0.00	0.22	97.89	0	01:59
AD6	JUNCTION	0.06	0.87	97.81	0	01:59
A8-INLET	JUNCTION	0.00	0.16	97.89	0	01:59
AD6-INLET	JUNCTION	0.00	0.04	98.08	0	01:59
AD5-INLET	JUNCTION	0.00	0.13	98.18	0	01:59
A1-SWALE	JUNCTION	0.02	0.17	97.62	0	01:59
AD1-INLET	JUNCTION	0.01	0.33	97.58	0	02:03
AD4-INLET	JUNCTION	0.00	0.05	97.99	0	01:59
AD3-INLET	JUNCTION	0.00	0.03	97.92	0	01:59
AD2-INLET	JUNCTION	0.00	0.19	97.59	0	02:03
AD101-INLET	JUNCTION	0.02	0.28	97.38	0	02:03
A8-SWALE	JUNCTION	0.00	0.00	98.10	0	00:00
STM15	OUTFALL	1.06	1.06	96.02	0	00:00
1	OUTFALL	0.00	0.11	97.11	0	01:59
2	OUTFALL	0.00	0.00	97.00	0	00:00
3 AD-D	OUTFALL STORAGE	0.00	0.00	97.00	0 0	00:00
4	STORAGE	0.00 0.10	0.10 1.18	96.85 97.94	0	01:51 02:01
4	JIUNAGE	0.10	1.10	5/.54	Ø	02.01

		Maximum	Maximum		Lateral	Total
		Lateral	Total	Time of Max	x Inflow	Inflow
		Inflow	Inflow	Occurrence		Volume
Node	Type	LPS	LPS	days hr:min	n 10^6 ltr	10^6 ltr
AD	JUNCTION	0.00	83.52	0 02:02	2 0.000	0.530
STM12	JUNCTION	0.00	140.54	0 01:5	0.000	0.601
STM13	JUNCTION	317.44	317.44	0 01:59	9 0.358	0.681
DICB101	JUNCTION	0.00	140.99	0 02:03	0.000	0.623
AD1	JUNCTION	0.00	59.91	0 01:52		0.250
AD12	JUNCTION	0.00	181.34	0 01:53		0.482
AD17	JUNCTION	0.00	23.34	0 01:59		0.033
AD18	JUNCTION	0.00	174.44	0 01:56		0.324
AD22 AD20	JUNCTION JUNCTION	0.00 0.00	53.06 73.49	0 01:59 0 01:52		0.078 0.148
AD20 AD21	JUNCTION	0.00	51.31	0 01:52		0.102
AD4	JUNCTION	0.00	99.33	0 01:55		0.155
AD7	JUNCTION	0.00	63.16	0 01:5		0.099
AD8	JUNCTION	0.00	20.15	0 01:59		0.025
AD9	JUNCTION	0.00	27.53	0 01:52		0.027
AD10	JUNCTION	0.00	27.20	0 01:52	0.000	0.022
AD2	JUNCTION	0.00	94.60	0 02:03	0.000	0.259
AD3	JUNCTION	0.00	157.51	0 01:53	0.000	0.324
AD11	JUNCTION	0.00	129.81	0 02:03		0.427
AD19	JUNCTION	0.00	109.28	0 01:56		0.219
AD5	JUNCTION	0.00	24.61	0 01:59		0.037
AD13	JUNCTION	0.00	175.30	0 01:52		0.268
AD14 AD15	JUNCTION JUNCTION	0.00 0.00	66.37 47.43	0 01:59 0 01:59		0.095 0.068
AD16	JUNCTION	0.00	37.76	0 01:59 0 01:59		0.054
AD22-INLET	JUNCTION	53.09	53.09	0 01:59		0.078
AD21-INLET	JUNCTION	76.32	76.32	0 01:59		0.111
AD20-INLET	JUNCTION	39.88	64.92	0 01:59		0.059
AD19-INLET	JUNCTION	53.32	89.79	0 01:59		0.084
AD18-INLET	JUNCTION	27.10	27.10	0 01:59	0.031	0.031
AD17-INLET	JUNCTION	23.38	23.38	0 01:59	9 0.033	0.033
AD16-INLET	JUNCTION	14.47	14.47	0 01:59	0.020	0.020
AD15-INLET	JUNCTION	9.84	9.84	0 01:59		0.014
AD14-INLET	JUNCTION	19.10	19.10	0 01:59		0.027
AD13-INLET	JUNCTION	15.04	66.68	0 01:59		0.035
AD12-INLET	JUNCTION	28.68	75.71	0 01:59		0.053
AD11-INLET AD10-INLET	JUNCTION JUNCTION	4.60 20.44	59.68 21.59	0 01:59 0 01:52		0.036 0.024
AD10-INLET	JUNCTION	3.92	3.93	0 01:59		0.005
AD7-INLET	JUNCTION	22.92	24.23	0 01:54		0.003
AD6	JUNCTION	0.00	28.81	0 01:5		0.041
A8-INLET	JUNCTION	23.37	25.42	0 01:57		0.027
AD6-INLET	JUNCTION	9.41	9.41	0 01:59		0.014
AD5-INLET	JUNCTION	24.61	24.61	0 01:59	9 0.037	0.037
A1-SWALE	JUNCTION	46.20	46.20	0 01:59	9 0.058	0.058
AD1-INLET	JUNCTION	0.00	98.38	0 02:03	0.000	0.120
AD4-INLET	JUNCTION	13.95	13.95	0 01:59		0.020
AD3-INLET	JUNCTION	4.07	6.16	0 01:59		0.007
AD2-INLET	JUNCTION	12.08	49.58	0 02:01		0.034
AD101-INLET	JUNCTION	11.89	171.91	0 02:03		0.300
A8-SWALE STM15	JUNCTION OUTFALL	0.00	0.00	0 00:00 0 00:00		0.000
51M15 1	OUTFALL	34.23 14.72	201.79 73.20	0 00:00 0 01:59		0.623 0.059
2	OUTFALL	0.00	13.90	0 01:59		0.003
3	OUTFALL	0.00	171.91	0 02:03		0.295
AD-D	STORAGE	113.43	113.43	0 01:59		0.127
4	STORAGE	0.00	330.55	0 01:53		0.230

Surcharging occurs when water rises above the top of the highest conduit.

Node	Type	Hours Surcharged	Max. Height Above Crown Meters	100-yr_+20.txt Min. Depth Below Rim Meters
AD	JUNCTION	0.39	0.100	0.000
STM12	JUNCTION	3.92	0.000	0.000
STM13	JUNCTION	23.98	0.785	0.000
DICB101	JUNCTION	3.98	0.626	0.024
AD1	JUNCTION	3.39	0.560	0.020
AD12	JUNCTION	2.76	0.642	0.008
AD17	JUNCTION	2.10	0.830	0.290
AD18	JUNCTION	1.48	0.578	0.102
AD22	JUNCTION	0.97	0.872	0.405
AD20	JUNCTION	1.23	1.027	0.023
AD21	JUNCTION	0.55	1.003	0.034
AD4	JUNCTION	2.64	0.690	0.245
AD7	JUNCTION	2.99	0.695	0.035
AD8	JUNCTION	2.24	0.600	0.000
AD9	JUNCTION	1.79	0.593	0.207
AD10	JUNCTION	0.91	0.439	0.181
AD2	JUNCTION	3.85	0.637	0.018
AD3	JUNCTION	2.79	0.711	0.194
AD11	JUNCTION	3.56	0.638	0.012
AD19	JUNCTION	1.87	0.947	0.260
AD5	JUNCTION	3.23	0.773	0.447
AD13	JUNCTION	3.48	0.849	0.221
AD14	JUNCTION	2.99	0.828	0.222
AD15	JUNCTION	2.53	0.811	0.259
AD16	JUNCTION	2.46	0.851	0.249
AD20-INLET	JUNCTION	0.06	0.144	0.006
AD7-INLET	JUNCTION	0.06	0.058	0.432
AD6	JUNCTION	2.39	0.620	0.680
AD-D	STORAGE	23.98	0.101	0.000
4	STORAGE	3.36	0.879	0.101

Flooding refers to all water that overflows a node, whether it ponds or not.

Node	Hours Flooded	Maximum Rate LPS	Time of Max Occurrence days hr:min	Total Flood Volume 10^6 ltr	Maximum Ponded Depth Meters
AD	0.35	36.94	0 02:02	0.032	0.40
STM12	3.91	140.54	0 01:55	0.282	0.83
STM13	0.12	187.30	0 00:00	0.020	1.17
AD-D	0.18	53.43	0 01:59	0.023	0.10

Storage Unit	Average	Avg	E&I	Maximum	Max	Time of Max	Maximum
	Volume	Pcnt	Pcnt	Volume	Pcnt	Occurrence	Outflow
	1000 m3	Full	Loss	1000 m3	Full	days hr:min	LPS
AD-D	0.000 0.026	3 13	0	0.000 0.208	100 100	0 01:51 0 02:01	60.00

	 Flow		Max.	Total
	Freq.	Avg. Flow	Max. Flow	Volume
Outfall Node	Pcnt.	LPS	LPS	10^6 ltr
STM15	 78.73	9.31	201.79	0.623
1	8.45	8.10	73.20	0.059

100-Year+20% Post Development

100-yr_+20.txt 0.003

2	0.36	8.37	13.90	0.003
3	6.00	56.96	171.91	0.295
System	23.38	82.75	427.12	0.979

		 Maximum	Time	of Max	Maximum	Max/	Max/
		Flow		rrence	Veloc	Full	Full
Link	Type	LPS	days	hr:min	m/sec	Flow	Depth
1	CONDUIT	46.58	0	01:53	0.66	1.06	1.00
2	CONDUIT	114.28	0	00:00	1.76	1.39	1.00
3	CONDUIT	201.79	0	00:00	1.88	1.53	1.00
14	CONDUIT	171.91	0	02:03	0.71	0.26	0.40
15	CONDUIT	129.81	0	02:01	0.82	0.62	1.00
17	CONDUIT	52.81	0	01:59	1.08	1.26	1.00
18	CONDUIT	51.12	0	01:52	1.04	1.20	1.00
19	CONDUIT	73.61	0	01:52	1.04	1.02	1.00
20 21	CONDUIT	107.65 173.04	0 0	01:56 01:56	1.52 1.09	1.57 0.79	1.00 1.00
22	CONDUIT	59.91	0	01:52	0.38	0.79	1.00
23	CONDUIT	58.69	0	01:52	0.53	0.41	1.00
24	CONDUIT	94.60	0	02:01	0.86	0.73	1.00
25	CONDUIT	99.74	0	01:55	0.90	0.83	1.00
26	CONDUIT	24.71	0	01:56	0.50	0.58	1.00
28	CONDUIT	62.97	0	01:55	1.28	1.42	1.00
29	CONDUIT	20.15	0	01:59	0.41	0.37	1.00
31	CONDUIT	16.23	0	01:53	0.68	0.37	1.00
32	CONDUIT	104.39	0	01:52	1.48	1.44	1.00
33	CONDUIT	66.91	0	01:52	0.95	0.95	1.00
34	CONDUIT	49.09	0	01:52	0.69	0.70	1.00
35	CONDUIT	37.65	0	01:52	0.77	0.83	1.00
36 37	CONDUIT	23.30 119.88	0 0	01:59 02:01	0.55 0.75	0.56 0.68	1.00 1.00
44	CONDUIT	19.49	0	01:53	0.49	0.47	1.00
45	CONDUIT	28.84	0	01:53	0.59	0.68	1.00
50	CONDUIT	45.25	0	01:59	0.90	0.17	0.71
54	CONDUIT	0.00	0	01:59	0.02	0.00	0.04
55	CONDUIT	0.00	0	00:00	0.00	0.00	0.00
56	CONDUIT	0.00	0	00:00	0.00	0.00	0.50
57	CONDUIT	9.60	0	02:00	0.17	0.28	1.00
58	CONDUIT	0.00	0	00:00	0.00	0.00	0.50
59	CONDUIT	0.00	0	00:00	0.00	0.00	0.50
60	CHANNEL	0.00	0	00:00	0.00	0.00	0.23
61	CONDUIT	2.09	0	01:59	0.50	0.04	0.25
62	CONDUIT	0.73	0	01:59	0.32	0.01	0.54
63 64	CONDUIT	36.79 50.79	0 0	02:01 02:01	0.55 0.75	0.35 1.00	1.00 1.00
65	CHANNEL	0.00	0	00:00	0.00	0.00	0.00
66	CHANNEL	0.00	0	00:00	0.00	0.00	0.00
67	CHANNEL	0.00	0	00:00	0.00	0.00	0.00
68	CHANNEL	0.00	0	00:00	0.00	0.00	0.15
69	CHANNEL	33.05	0	01:59	0.22	0.04	0.65
70	CONDUIT	56.73	0	01:59	0.57	9.89	0.86
71	CONDUIT	58.64	0	01:59	1.75	0.39	0.70
72	CONDUIT	0.00	0	00:00	0.00	0.00	0.41
73	CONDUIT	33.01	0	01:59	0.50	0.80	1.00
74	CONDUIT	36.48	0	01:56	0.54	1.00	1.00
75 76	CONDUIT	15.42	0	01:59	0.35	0.27	0.81
76 77	CONDUIT	52.69	0	01:59	0.65	0.14	0.43 1.00
77 78	CONDUIT CONDUIT	176.18 157.12	0 0	01:52	2.70 2.25	3.64 23.36	1.00
30	CONDUIT	13.90	0	01:53 01:59	1.44	0.00	0.14
13	ORIFICE	23.95	0	02:23	1.44	0.00	1.00
6	ORIFICE	53.06	0	01:59			
7	ORIFICE	51.31	0	01:52			
8	ORIFICE	28.39	0	01:59			
9	ORIFICE	44.90	0	01:56			
10	ORIFICE	19.49	0	01:55			
11	ORIFICE	23.34	0	01:59			
12	ORIFICE	14.47	0	01:59			
16	ORIFICE	9.84	0	01:59			

100-1	'n	±20	+v+
TOO-	/ I ·	T20	. L X L

27	ORIFICE	19.09	0	01:59	
38	ORIFICE	33.22	0	01:59	
39	ORIFICE	46.49	0	02:01	
40	ORIFICE	10.27	0	02:01	
41	ORIFICE	16.16	0	01:52	
42	ORIFICE	4.29	0	01:59	
43	ORIFICE	22.36	0	01:54	
46	ORIFICE	20.15	0	01:59	
47	ORIFICE	9.41	0	01:59	
48	ORIFICE	24.61	0	01:59	
49	ORIFICE	34.59	0	02:01	
51	ORIFICE	11.86	0	01:59	
52	ORIFICE	5.42	0	01:59	
53	ORIFICE	44.54	0	02:01	
5	ORIFICE	117.37	0	02:03	
4	DUMMY	60.00	0	01:51	

	Adjusted						Class		Avg.	Avg.
Conduit	/Actual Length	Dry	Up Dry	Down Dry	Sub Crit	Sup Crit	Up Crit	Down Crit	Froude Number	Flow Chan
 1	1.00	0.00	0.02	0.00	0.98	0.00	0.00	0.00	0.06	0.000
2	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.000
3	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.000
14	1.00	0.94	0.00	0.00	0.00	0.00	0.00	0.06	0.05	0.000
15	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.43	0.000
 17	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.12	0.000
18	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.16	0.000
19	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.12	0.000
20	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.12	0.000
21	1.00	0.02	0.37	0.00	0.62	0.00	0.00	0.00	0.05	0.000
22	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.19	0.000
23	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.45	0.000
24	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.42	0.000
25	1.00	0.02	0.56	0.00	0.41	0.01	0.00	0.00	0.06	0.000
26	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.04	0.000
28	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.06	0.000
29	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.03	0.000
31	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.08	0.00
32	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.56	0.00
33	1.00	0.02	0.39	0.00	0.59	0.00	0.00	0.00	0.05	0.00
34	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.07	0.00
35	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.10	0.00
36	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.09	0.00
37	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.38	0.00
44	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.06	0.00
45	1.00	0.02	0.00	0.00	0.98	0.00	0.00	0.00	0.05	0.00
50	1.00	0.02	0.00	0.00	0.96	0.02	0.00	0.00	0.03	0.00
54	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
55	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
56	1.00	0.64	0.36	0.00	0.00	0.00	0.00	0.00	0.00	0.00
57	1.00	0.62	0.07	0.00	0.31	0.00	0.00	0.00	0.05	0.00
58	1.00	0.69	0.31	0.00	0.00	0.00	0.00	0.00	0.00	0.00
59	1.00	0.69	0.31	0.00	0.00	0.00	0.00	0.00	0.00	
59 50	1.00	0.68	0.31	0.00	0.00	0.00	0.00		0.00	0.00
50 51	1.00	0.68	0.01	0.00	0.30	0.02	0.00	0.00 0.00	0.13	0.00
62	1.00	0.64	0.09	0.00	0.28	0.02	0.00		0.06	0.00
63	1.00	0.57	0.08	0.00	0.26	0.00	0.00	0.00	0.08	
64	1.00	0.59	0.00	0.00	0.41	0.00	0.00	0.00		0.00
65	1.00		0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.07 0.00	0.00
		1.00								0.00
66 67	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
67 68	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
68	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
69 70	1.00	0.98	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
70	1.00	0.98	0.00	0.00	0.00	0.00	0.00	0.02	0.01	0.00
71	1.00	0.99	0.00	0.00	0.00	0.01	0.00	0.00	0.03	0.00
72	1.00	0.99	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
73	1.00	0.99	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00
74 75	1.00	0.99	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00
	1.00	0.98	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00

100-Year+20% Post Development

						100	-yr_+2	ð.txt		
77	1.00	0.02	0.00	0.00	0.97	0.01	0.00	0.00	0.42	0.0001
78	1.00	0.02	0.00	0.00	0.93	0.05	0.00	0.00	0.27	0.0009
30	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.0000

				Hours	Hours
		Hours Full		Above Full	Capacity
Conduit	Both Ends	Upstream	Dnstream	Normal Flow	Limited
4				0.42	
1 2				0.42 0.15	0.39 0.01
				0.15	
15				0.01	
17				0.11	
18		0.82			0.20
19	1.23				0.12
20	2.25				0.37
21	1.48		1.48		0.14
22	3.39		3.39	0.01	0.01
23	3.85	3.85	3.85	0.01	0.12
24	2.79	2.79	2.79	0.01	0.01
25	2.64	2.64	2.64	0.01	0.15
26	3.23	3.23	3.23	0.01	0.01
28	2.99	2.99	2.99	0.14	0.14
29	2.24	2.24	2.24	0.01	0.01
31	0.91	0.91	0.91	0.01	0.01
32	3.48	3.48	3.48	0.07	0.01
33	2.99	2.99	2.99	0.01	0.12
34	2.53	2.53	2.53	0.01	0.01
35	2.46	2.46	2.46	0.01	0.01
36	2.10	2.10	2.10	0.01	0.01
37	3.56	3.56	3.56	0.01	0.16
44	1.79				0.01
45	2.39	2.39	2.39	0.01	0.01
57	0.01			0.01	0.01
63	0.14				0.01
64	0.51			0.15	0.01
70	0.01			0.26	
73	0.03			0.01	
74	0.06				
77		3.36		0.18	
78	3.36	3.36	3.36	1.36	0.14

Analysis begun on: Mon Jan 07 08:46:53 2019 Analysis ended on: Mon Jan 07 08:46:57 2019 Total elapsed time: 00:00:04

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

********* Analysis Options

Flow Units LPS Process Models: Rainfall/Runoff YES Snowmelt NO Groundwater NO Flow Routing YES

Ponding Allowed YES Water Quality NO Infiltration Method HORTON Flow Routing Method DYNWAVE

Antecedent Dry Days 0.0 Report Time Step 00:01:00 Wet Time Step 00:01:00 Dry Time Step 00:01:00 Routing Time Step 2.00 sec

WARNING 03: negative offset ignored for Link 1

WARNING 03: negative offset ignored for Link 4

WARNING 02: maximum depth increased for Node STM12

*******	Volume	Depth
Runoff Quantity Continuity	hectare-m	mm

Total Precipitation	0.163	82.291
Evaporation Loss	0.000	0.000
Infiltration Loss	0.080	40.143
Surface Runoff	0.083	41.574
Final Surface Storage	0.001	0.635
Continuity Error (%)	-0.072	
********	Volume	Volume
Flow Routing Continuity	hectare-m	10^6 ltr

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.083	0.826
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.080	0.799
Internal Outflow	0.002	0.021
Storage Losses	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.001	0.005
Continuity Error (%)	0.018	
	0.010	

******** Time-Step Critical Elements ************

Link 13 (27.69%)

********* Highest Flow Instability Indexes All links are stable.

inerim.txt

Minimum Time Step : 0.50 sec
Average Time Step : 1.58 sec
Maximum Time Step : 2.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 2.00

	Total	Total	Total	Total	Total	Total	Peak	Runoff
	Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	Coeff
Subcatchment	mm	mm	mm	mm	mm	10^6 ltr	LPS	
EX12	82.29	0.00	0.00	31.62	49.89	0.10	93.22	0.606
EX13	82.29	0.00	0.00	31.69	49.82	0.28	259.72	0.605
EX15	82.29	0.00	0.00	7.63	73.33	0.05	27.80	0.891
EX1-EX2-EX3-A1	82.29	0.00	0.00	47.22	34.63	0.34	122.46	0.421
A2	82.29	0.00	0.00	48.28	33.84	0.07	41.65	0.411

Average Maximum Maximum Time of Max Depth Depth HGL Occurrence Type Meters Meters Meters days hr:min Node -----JUNCTION 0.02 0.40 96.80 0 01:56 JUNCTION 0.03 0.83 96.03 JUNCTION 0.05 0.94 96.02 STM12 0 01:54 0 01:54 0 01:59 STM13 OUTFALL 0.03
OUTFALL 0.07 0.35 0.29 95.31 0 01:59 0.29 0 02:14 0.39 0 02:14 96.75 0 00:00 STM15 5 0.16 0.00 STORAGE 0.39 0.00 96.75 AD-D STORAGE 0 00:00

-----Lateral Lateral Time of Max Inflow Inflow Occupances Maximum Maximum Total Inflow Inflow Inflow Occurrence Volume LPS LPS days hr:min 10^6 ltr Volume Node Type 10^6 ltr JUNCTION 93.22 93.22 JUNCTION 0.00 83.17 0 01:59 0.099 0 01:59 0.000 AD 0.099 STM12 0.097 STM13 JUNCTION 259.72 275.66 0 01:59 0.279 0.356 STM15 OUTFALL 27.80 303.46 0 01:59 0.046 0.402 41.65 122.44 122.46 122.46 5 OUTFALL 0 02:13 0.066 0.397 0 02:04 STORAGE 0.337 0.337 1 122.46 AD-D STORAGE 0.00 0.00 0.000 0 00:00 0.000

Surcharging occurs when water rises above the top of the highest conduit.

Node	Туре		Max. Height Above Crown Meters	Min. Depth Below Rim Meters	
AD	JUNCTION	0.07	0.100	0.000	
STM12	JUNCTION	0.11	0.000	0.000	
STM13	JUNCTION	0.22	0.560	0.225	

100-Year Interim

inerim.txt 0.101

AD-D STORAGE 23.98 0.000

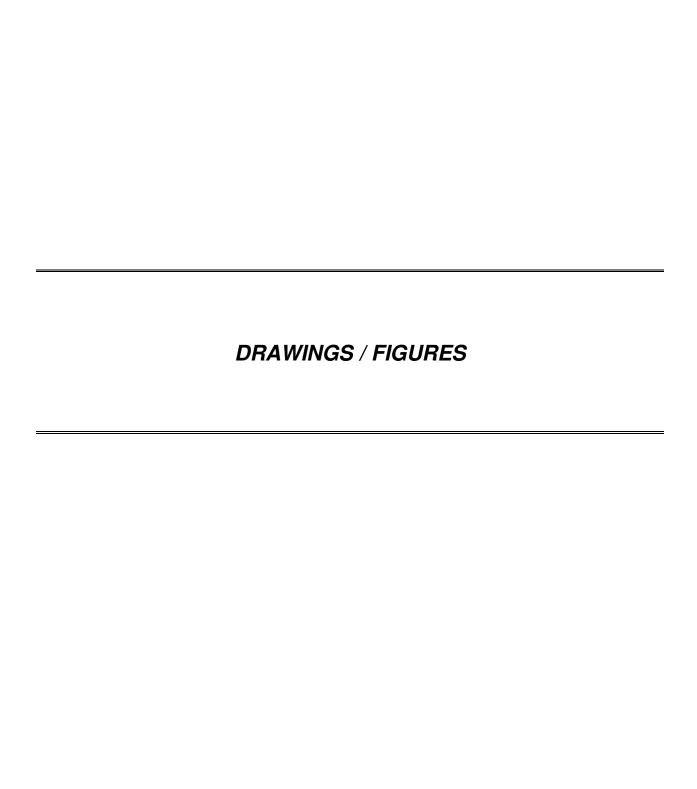
Flooding refers to all water that overflows a node, whether it ponds or not.

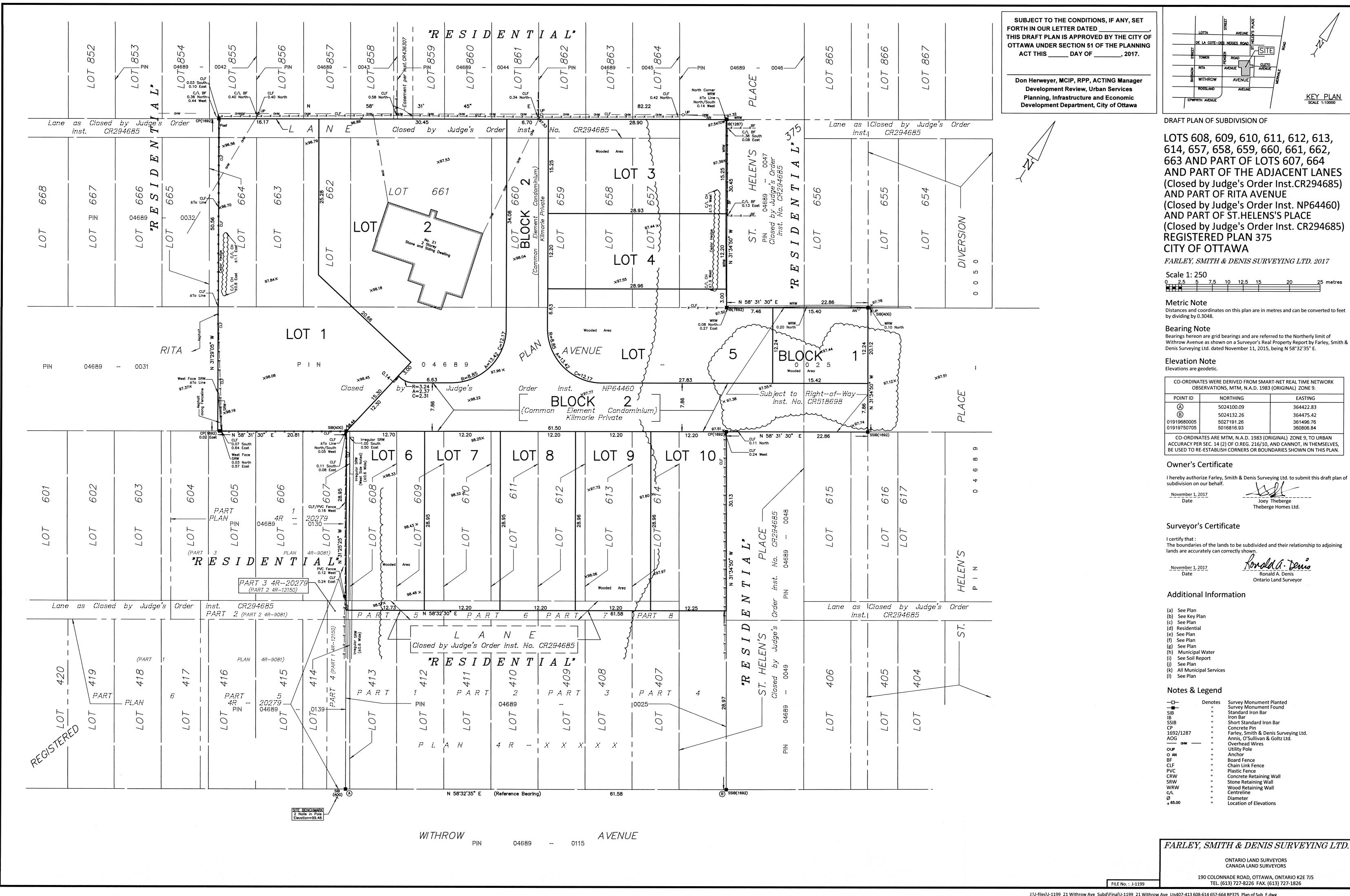
				Total	Maximum
		Maximum	Time of Max	Flood	Ponded
	Hours	Rate	Occurrence	Volume	Depth
Node	Flooded	LPS	days hr:min	10^6 ltr	Meters
AD	0.06	10.04	0 01:59	0.002	0.40
STM12	0.11	67.22	0 01:59	0.020	0.83

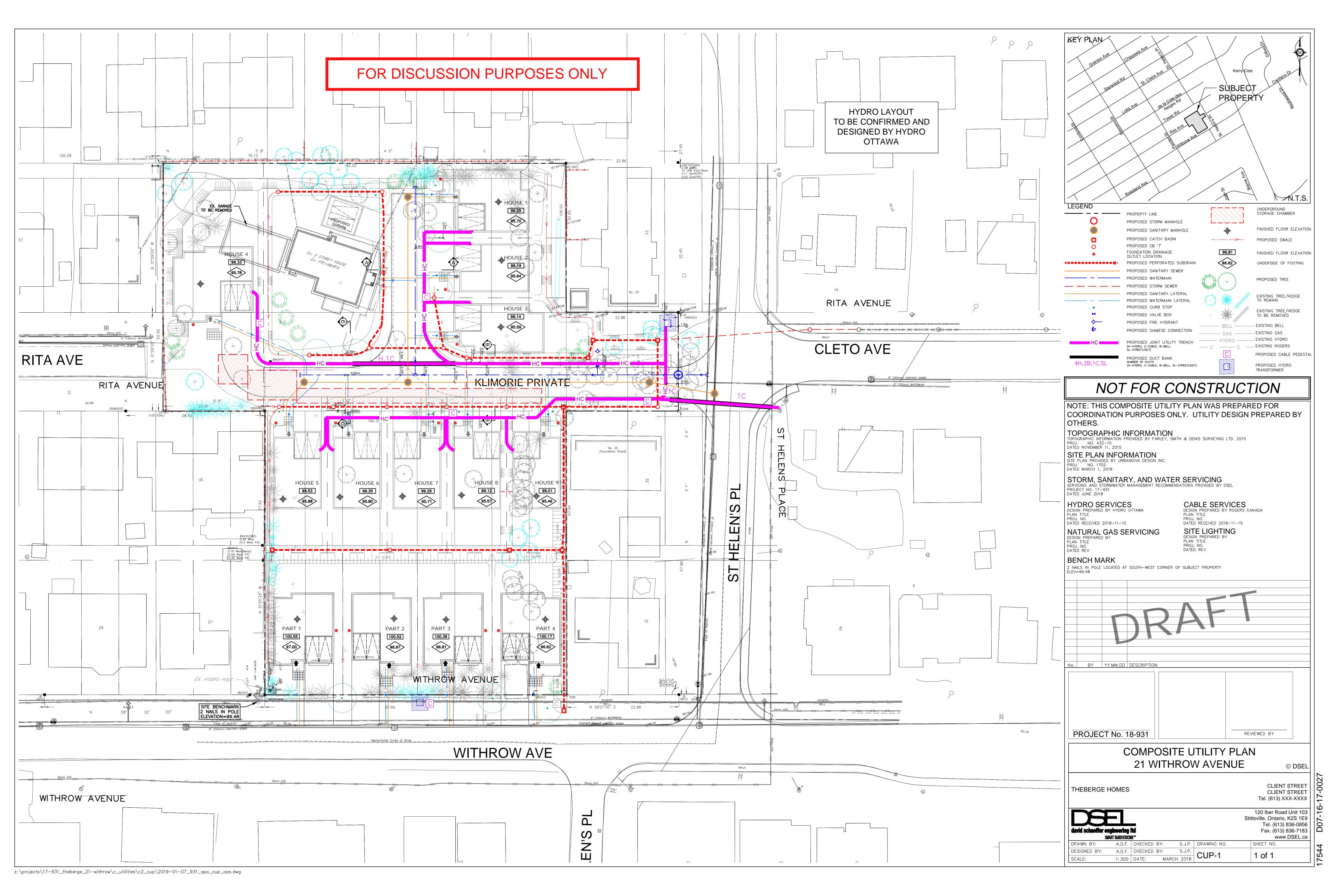
Maximum Average Avg E&I Max Time of Max Maximum Pcnt Volume Pcnt Volume Pcnt Occurrence Outflow Storage Unit 1000 m3 Full 1000 m3 Full Loss LPS days hr:min _____ 0.067 96 0.015 21 0 0.000 0 0 0 02:14 104.09 AD-D 0.000 a 0 00:00 0.00

Flow Avg. Max. Total Flow LPS Flow Volume Frea. Outfall Node LPS 10^6 ltr Pcnt. -----STM15 42.71 26.59 303.46 0.402 60.45 22.78 122.44 0.397 _____ 51.58 49.37 359.03 0.799 System

Maximum Time of Max Maximum Max/ Max/ |Flow| Occurrence |Veloc| Full Full Link Type LPS days hr:min m/sec Flow Depth _____ CONDUIT 83.17 0 01:59 1.21 1.00 CONDUIT 82.31 0 02:02 1.16 1.00 1.00 275.66 0 01:59 104.09 0 02:14 3 CONDUIT 2.52 2.09 0.97 13 CONDUIT 3.32 0.93 0.97 0 00:00 DUMMY 0.00




Adjusted --- Fraction of Time in Flow Class ---- Avg. Avg. Down Sub Sup Up Down Dry Crit Crit Crit Crit Up Froude /Actual Flow Conduit Length Dry Dry Number Change 0.32 0.0000 1 1.00 0.06 0.00 0.00 0.01 0.00 0.00 0.93 0.0001 1.00 0.06 0.00 0.00 0.94 0.00 0.00 0.00 2 0.14 3 1.00 0.06 0.00 0.00 0.86 0.08 0.00 0.00 0.31 0.0001 13 1.00 0.06 0.00 0.00 0.00 0.94 0.00 0.00 1.82 0.0000



Hours Hours

Analysis begun on: Mon Jan 07 09:00:48 2019 Analysis ended on: Mon Jan 07 09:00:48 2019 Total elapsed time: < 1 sec

