

REVISED REPORT ON

Hydrogeological Study Proposed Development Part of Lot 26, Concession 4 **Geographic Township of Goulbourn** City of Ottawa (Richmond Village), Ontario

Submitted to:

Cardel Homes 301 Moodie Drive, Suite 100 Nepean, Ontario K2H 9C4

Report Number: 1418381-1000, Rev. 2

Distribution:

2 copies - Cardel Homes

1 e-copy - Cardel Homes

2 copies - City of Ottawa

1 copy - Rideau Valley Conservation Authority 1 e-copy - Rideau Valley Conservation Authority

1 e-copyDavid Schaeffer Engineering Ltd.1 copyGolder Associates Ltd.

Table of Contents

1.0	INTRO	DUCTION	1
	1.1	Technical Guidance Documents	1
2.0	SITE B	ACKGROUND	2
	2.1	Site Description	
	2.2	Regional Geology and Hydrogeology	
	2.3	Regional Groundwater Quality	
3.0		PROCEDURES	
0.0	3.1	Groundwater Supply Investigation	
	3.1.1	Test Well Construction	
	3.1.2	Hydraulic Testing	
	3.2	Groundwater Quality Investigation.	
	3.3	Neighbouring Well Survey	
4.0		R SUPPLY INVESTIGATION	
4.0			
	4.1	Groundwater Quantity	
	4.1.1	TW15-1	
	4.1.2	TW15-2	6
	4.1.3	TW15-3	6
	4.1.4	Hydraulic Testing Summary	7
	4.2	Groundwater Quality	7
	4.2.1	TW15-1	8
	4.2.2	TW15-2	8
	4.2.3	TW15-3	8
	4.3	Neighbouring Well Survey	5
	4.4	Summary of Water Supply Investigation	10
5.0	IMPAC	T ASSESSMENT	11
	5.1	Hydrogeological Sensitivity	11
	5.2	Mutual Well Interference	11
	5.3	Water Quality Impacts	12

6.0	CONC	LUSIONS AND RECOMMENDATIONS	12
	6.1	Conclusions	12
	6.2	Recommendations	13
7.0	LIMIT	ATIONS AND USE OF REPORT	15
8.0	CLOS	URE	16
9.0	REFE	RENCES	17

TABLES

- Table 1: Water Quality Data (Discharge Samples)
- Table 2: Water Quality Data (Field Parameters)
- Table 3: Manual Water Level Data
- Table 4: Water Quality Data (Residential Sample)

FIGURES

- Figure 1: Key Plan
- Figure 2: Site Plan
- Figure 3: Surficial Geology
- Figure 4: Bedrock Geology
- Figure 5: Stratigraphic Cross-Section A-A'
- Figure 6: Water Level Measurements at Test Wells Before, During and After the Pumping Tests

APPENDICES

APPENDIX A

Curricula Vitae

APPENDIX B

Summary of MOECC Water Well Records

APPENDIX C

Test Well MOECC Well Records On-Site Borehole Records

APPENDIX D

Laboratory Reports of Analysis and Langelier Saturations Index

APPENDIX E

Neighbouring Well Survey Forms

APPENDIX F

Hydraulic Testing Data and Analyses

APPENDIX G

Calculations: Well Interference

APPENDIX H

Well Setback Plan

1.0 INTRODUCTION

Golder Associates Ltd. (Golder Associates) carried out a hydrogeological investigation for a proposed residential subdivision located on part of Lot 26, Concession 4, geographic Township of Goulbourn, City of Ottawa (hereafter referred to as the "site") as shown on Figure 1.

The site consists of a parcel of land measuring 4.0 hectares in size which is to be subdivided into 51 residential lots, in two phases, with lot sizes of 0.04 to 0.07 hectares (see Figure 2). The site is to be serviced by individual wells. The lots will be connected to residential waste water services, and as such, an impact assessment for septic services has not been conducted.

This study does not address the construction of earth energy systems, which require a building permit and may require approval from the Ministry of the Environment and Climate Change (MOECC).

Curricula vitae for the report authors are included as Appendix A.

1.1 Technical Guidance Documents

This study was carried out according to the following MOECC guidance documents:

- Procedure D-5-5. Technical Guideline for Private Wells: Water Supply Assessment (August 1996)
- MOEE Hydrogeological Technical Information Requirements for Land Development Applications (TIR; April 1995)

Golder Associates also considered the relevant sections of the City of Ottawa Official Plan (2003, as amended). In particular, Policy 1 of Section 4.4.2 stipulates that:

- 1. "Anywhere development is proposed on the basis of private individual services and requires an application for an Official Plan or Zoning By-law amendment or involves a plan of subdivision, plan of condominium, severance or site plan approval, the City will require sufficient information with the application to assess the likelihood that:
 - a. Sufficient quantity of groundwater exists on site to service the development;
 - b. A water well can be constructed on the proposed lot(s) that will not be impacted by identified potential sources of groundwater contamination in the area;
 - c. The quality of the groundwater meets or exceeds the Ontario Drinking Water Standards, Objectives and Guidelines;
 - d. The operation of the on-site wastewater system on the new lot(s) will not adversely impact on a well to be constructed on the proposed lot(s) and on the wells of neighbouring properties;
 - e. The development is within the reserve capacity of the municipal sewage system for hauled sewage." [Amendment #76, August 04, 2010]

This hydrogeological study addresses parts a), b) and c) of Policy 1. Parts d) and e) are not applicable at this site because the lots will be connected to the municipal sewer system.

2.0 SITE BACKGROUND

2.1 Site Description

The site is located on Shea Road, and is bounded to the north by agricultural land and to the south by a rural commercial zone. Land to the east is a development reserve zone. On the west side of Shea Road is an existing village residential zone. The site is former agricultural land. Based on information from the site owner, the site was not used for agriculture in 2015.

The site surficial and subsurface drainage is interpreted to follow the topography, toward the Flowing Creek municipal drain located northeast of the site (see Figures 1 and 2).

Based on published geology maps, the surficial geology at the site consists of glaciomarine silt and clay deposits with minor sand and gravel (see Figure 3). The bedrock at the site, and for at least 3,000 metres beyond the site in all directions, is mapped as the Oxford Formation dolostone (see Figure 4).

2.2 Regional Geology and Hydrogeology

The site is located within the Ottawa Valley Clay Plains physiographic region, which is characterized by clay plains interrupted by ridges of rock or sand (Chapman and Putnam, 1984). Regional groundwater flow is generally from southwest to northeast (MVC and RVCA, 2011).

The MOECC Water Well Information System (WWIS) was reviewed for water well records in the vicinity of the site. Water well records within 500 metres of the site for which the UTM reliability code was 6 or less (i.e., 300 metres or less) are plotted on Figure 3. The WWIS search yielded records for 124 water supply wells. One well was completed in overburden, 105 wells were completed in bedrock and well completion information was unavailable for the remaining 18 wells. The total well depths range from 9 to 83 metres. The depth to bedrock, where encountered in the wells, was from 2 to 40 metres. At most wells, water was found at depths of 30 metres or less; at seven wells, the shallowest water-bearing zone was encountered at a depth of 43 to 74 metres. Water quality noted in the well records was consistently fresh. A summary of key information from the WWIS records within 500 metres of the site is provided in Appendix B. The static groundwater elevations derived from the WWIS for the wells completed in bedrock have been contoured and are shown on Figure 4. A regional gradient is not readily apparent using this data set, likely due to the quality of the data.

Figure 5 shows a northwest-to-southeast hydrogeological cross-section through the site based on water well records within 500 metres of the site and test wells and boreholes advanced for this study (Section 3.2). The cross-section location is indicated on Figure 3. The cross-section indicates that the surficial topsoil layer across the site is underlain by 7 to 12 metres of clay, a thin layer (0.2 to 0.7 metres) of glacial till (not noted by water well drillers), followed by limestone bedrock. Water well record 7209314 extended 12 metres deeper than the on-site wells and boreholes, and indicated that the limestone is underlain by sandstone.

2.3 Regional Groundwater Quality

In general, groundwater quality from private wells in the Oxford Formation within the Village of Richmond is considered to be potable. Elevated concentrations of iron, hardness (as is typical for carbonate aquifers), sodium, total dissolved solids (TDS) and hydrogen sulphide occur locally (Golder Associates, 2003). The elevated concentrations of TDS are typically within the range that can be treated by conventional water softening (assuming the elevated TDS is related to hardness).

3.0 STUDY PROCEDURES

The objectives of the hydrogeological investigation were to investigate the potential quantity and quality of groundwater that would be expected from water supply wells that are drilled on site.

3.1 Groundwater Supply Investigation

Procedures for the assessment of water supplies for developments with individual private wells are described in the MOECC Procedure D-5-5 (MOE, 1996a).

3.1.1 Test Well Construction

Three test wells (TW15-1, TW15-2 and TW15-3) were used to determine the quality and quantity of groundwater available for water supply within the development. The test wells were drilled by Capital Water Supply Ltd. in August 2015 using air rotary equipment. Annular space around the casing was sealed with grouted cement and bentonite. Well construction details from the well records are summarized in the following table, while test well locations are shown on Figure 2 and water well records for the test wells are provided in Appendix C.

Test Well	RADIOCK -		Casing Depth (mbgs)	Water Found Depth (mbgs)	Bedrock Type	Overburden Material
TW15-1	29.9	11.9	13.5	14.0, 29.3	Limestone	Clay
TW15-2	37.5	10.4	11.3	24.4, 33.5	Limestone	Clay and gravel
TW15-3	29.0	7.9	9.4	10.7, 29.0	Limestone	Clay

Notes: mbgs = metres below ground surface

The locations of test wells TW15-1, TW15-2 and TW15-3 were chosen to provide geographic coverage of the site. The ground surface elevation at each test well location was surveyed with a Trimble GPS unit. The elevations at TW15-1, TW15-2 and TW15-3 were 93.697, 93.660 and 93.674 metres above sea level (masl) respectively. The stick-up of each well casing was approximately 0.45 metres.

3.1.2 Hydraulic Testing

Pumping tests were carried out at test wells TW15-1, TW15-2 and TW15-3 on September 11, September 10 and September 9, 2015, respectively. Each pumping test consisted of a pumping phase (6 hours in duration) followed by a recovery period (up to 50 minutes in duration). The pumping tests were conducted using a submersible pump. The approximate pumping test discharge locations are shown on Figure 2.

The initial pumping rate for each well was based upon driller's estimate of well yield. During the pumping tests, the pumping rate was periodically verified by measuring the time taken to fill a container of known volume. Groundwater levels were recorded in the pumping well and the other test wells (which were used as observation wells) at selected time intervals. Groundwater levels were also measured in monitoring wells installed in overburden geotechnical boreholes at the site. The water levels were measured manually, using an electric water level tape, and electronically, using pressure transducer loggers which were set to take measurements every minute. A barometric pressure logger was left on-site for post-processing barometric compensation.

Aquifer transmissivity was estimated using the Cooper and Jacob drawdown (Cooper and Jacob, 1946) and Theis recovery (Theis, 1935) methods. The assumptions on which these methods are based are generally applicable to the tests undertaken (in terms of site conditions and pumping test design), therefore, analysis by these methods provides a reasonable estimate of aquifer transmissivity (T).

As water rushes into a pumping well, energy losses result in the head in the aquifer being higher than the water level in the pumping well. For this reason, aquifer storativity (S) cannot be reliably estimated from pumping well data alone. Because of the lack of response in observation wells at the site, storativity could not be estimated. Typical storativity values for confined aquifers range from 10⁻⁵ to 10⁻³ (Driscoll, 2003).

3.2 Groundwater Quality Investigation

During the pumping tests at test wells TW15-1, TW15-2 and TW15-3, samples of the pump discharge were collected after approximately 3 hours of pumping at a constant rate and at the end of the pumping period, just before pump shut-off (i.e. after approximately 6 hours of pumping at a constant rate). All samples were collected after testing indicated that no chlorine residual was present. All samples were recorded on a Chain of Custody form and placed in coolers with ice packs until they were delivered in person to the private analytical laboratory. Sample collection was in accordance with industry standard practice.

The samples were preserved as necessary and submitted to Exova for the chemical, physical and bacteriological analyses listed in the MOECC Procedure D-5-5 (MOE, 1996a). All samples were un-filtered. The results of these analyses are summarized in Table 1.

Field measurements of temperature, pH, conductivity, chlorine residual and turbidity were taken periodically during the pumping tests and at the time of sampling (Table 2). In accordance with industry standard practice, all field meters were calibrated daily, prior to use. All analyses were compared to the applicable maximum acceptable concentrations (IMAC), or aesthetic objectives (AO) found in the Technical Support Document for Ontario Drinking Water Quality Standards, Objectives and Guidelines (MOE, 2006). All laboratory method detection limits (MDLs) were less than, or equivalent to, the respective criteria. Laboratory Reports of Analysis are provided in Appendix D.

3.3 Neighbouring Well Survey

An attempt was made to identify the MOECC well records associated with the 14 closest existing residences located west of Shea Road. An attempt was also made to contact the owners of the 14 closest residences, in order to carry out a well survey and/or collect a sample of their water well. Packages including an introductory letter, a well survey and a stamped return envelope were hand-delivered on September 11, 2015 to each of the 14 residences closest to the proposed development, listed in the following table.

3290 Shea Road	3338 Shea Road
2 Hemphill Street	1 Moore Street
3310 Shea Road	3354 Shea Road
3316 Shea Road	3360 Shea Road
3318 Shea Road	3366 Shea Road
3326 Shea Road	3372 Shea Road
3330 Shea Road	3378 Shea Road

As of the date of preparation of this report, only the surveys delivered to 3310, 3316 and 3326 Shea Road and 2 Hemphill Street had been returned to Golder Associates. The residents of 3316 Shea Road, 3326 Shea Road and 2 Hemphill Street declined to allow Golder Associates to collect a groundwater sample. The residents of 3310 Shea Road allowed Golder Associates to collect a groundwater sample on October 23, 2015.

The well survey consisted of the completion of a questionnaire with the homeowner. The information documented/requested in the questionnaire included: the location of the well with respect to the dwelling; the well type (i.e., drilled, bored, dug, etc.) and depth; evidence of any water quantity issues (i.e., any dry well events, water shortages during laundry or car-washing, etc.); and supplementary sources of water (i.e., purchased water, etc.). The completed questionnaires are included in Appendix E.

4.0 WATER SUPPLY INVESTIGATION

4.1 Groundwater Quantity

Pumping tests were carried out at test wells TW15-1, TW15-2 and TW15-3 between September 9 and 11, 2015. The results of the pumping tests are presented in the following sections. During each pumping test, the end of the discharge pipe was positioned an adequate distance from the pumping well to avoid ponding of the pumped groundwater in the vicinity of the pumping well (as indicated on Figure 2). These discharge locations were suitable for this site, based on the presence of the thick silt and clay deposits that inhibit recharge to the underlying bedrock. The drawdown and recovery data and the associated analyses are presented in Appendix F. The manually-measured water level data are provided in Table 3.

Regional groundwater level data prior to the pumping tests was collected by installing dataloggers in test wells TW15-1, TW15-2 and TW15-3 on August 27, 2015. Following the completion of the pumping tests, the dataloggers were left in the test wells until retrieval on September 14, 2015. The groundwater level data recorded during this 19 day period is summarized in Figure 6, along with daily precipitation recorded by Environment Canada at the Ottawa Airport.

Figure 6 indicates a declining trend in groundwater levels between August 27 and September 7, 2015. An increasing trend was recorded from September 8 to 10, 2015. Groundwater levels were then generally steady until an increasing trend was recorded from September 12 to 14, 2015.

4.1.1 TW15-1

A pumping test was conducted at TW15-1 on September 11, 2015. The static water level before the start of the test was at 3.12 metres below the top of the casing. TW15-1 was pumped at a constant discharge rate of 31 L/min for 372 minutes (6.2 hours). A maximum drawdown of 0.05 metres was measured in the first minute of pumping; the water level subsequently increased by 0.08 metres before the end of pumping. The water level at the end of the test was higher than the static water level (see Figure F-1).

During the pumping test at TW15-1, water levels were measured in observation wells TW15-2 (manual and datalogger measurements) and TW15-3 (manual and datalogger measurements) (see Figure F-1). Water levels were also measured manually in monitoring wells installed in overburden geotechnical boreholes BH15-1 and BH15-2. At TW15-2 and TW15-3, the water levels increased by approximately 0.03 metres and 0.06 metres, respectively, during pumping at TW15-1. This is interpreted to represent a regional groundwater level increase unrelated to the pumping test. At BH15-1 and BH15-2, the water levels were unchanged during the test.

Due to the increasing water level at TW15-1 during the test, and the lack of response at the monitoring wells, aquifer transmissivity was not estimated using these data. Based on the results at TW15-2 and TW15-3 (refer to Sections 4.1.2 and 4.1.3), the transmissivity of TW15-1 is likely greater than 9x10⁻³ m²/s.

Based on the data obtained during the pumping test, it can be concluded that TW15-1 is capable of supplying at least 31 L/min. During the course of the six-hour pumping test period, less than one percent of the available drawdown was utilized while pumping at a rate of 31 L/min. As such, the yield of TW15-1 substantially exceeds the required minimum specified in MOECC Procedure D-5-5.

4.1.2 TW15-2

A pumping test was conducted at TW15-2 on September 10, 2015. The static water level before the start of the test was at 3.18 metres below the top of the casing. The pumping rate was maintained at a constant rate of 32 L/min for 374 minutes (6.2 hours). A drawdown of 5.0 metres was measured at the end of the test. Approximately 5 minutes after pump shut-off, 95 percent recovery of the imposed drawdown had been achieved (see Figure F-2).

During the pumping test at TW15-2, water levels were measured in observation wells TW15-1 (manual and datalogger measurements) and TW15-3 (manual and datalogger measurements) (see Figure F-2). Water levels were also measured manually in monitoring wells installed in overburden geotechnical boreholes BH15-1 and BH15-2. At TW15-1 and TW15-3, the water levels increased by approximately 0.01 metres and 0.02 metres, respectively, during pumping at TW15-2. This is interpreted to represent a regional groundwater level increase unrelated to the pumping test. At BH15-1 and BH15-2, the water levels decreased by less than 0.01 metres during the test.

Aquifer transmissivity was estimated using the Cooper and Jacob drawdown (Cooper and Jacob, 1946) and Theis recovery (Theis, 1935) methods to interpret drawdown and recovery data collected during the pumping test at TW15-2 using the pumping data only (see Appendix F). Due to the negligible response to pumping at observation wells TW15-1 and TW15-3, observation well data were not analyzed. Based on pumping well data, the aquifer transmissivity is approximately 2x10⁻³ to 3x10⁻³ m²/s.

Based on the data obtained during the pumping test, it can be concluded that TW15-2 is capable of supplying at least 32 L/min. During the course of the six-hour pumping test period, approximately 14 percent of the available drawdown was utilized while pumping at a rate of 32 L/min. As such, the yield of TW15-2 substantially exceeds the required minimum specified in MOECC Procedure D-5-5.

4.1.3 TW15-3

A pumping test was conducted at TW15-3 on September 9, 2015. The static water level before the start of the test was at 3.22 metres below the top of the casing. The pumping rate was maintained at a constant rate of 31 L/min for 366 minutes (6.1 hours). A drawdown of 0.5 metres was measured at the end of the test. Approximately 3 minutes after pump shut-off, 100 percent recovery of the imposed drawdown had been achieved (see Figure F-4).

During the pumping test at TW15-3, water levels were measured in observation wells TW15-1 (manual and datalogger measurements) and TW15-2 (manual and datalogger measurements) (see Figure F-4). Water levels were also measured manually in monitoring wells installed in overburden geotechnical boreholes BH15-1 and BH15-2. At TW15-1 and TW15-2, the water levels increased by approximately 0.03 metres and 0.04 metres, respectively, during pumping at TW15-3. (see Figure F-4). At BH15-1 and BH15-2, the water levels decreased by less than 0.01 metres during the test.

Aquifer transmissivity was estimated using the Cooper and Jacob drawdown (Cooper and Jacob, 1946) and Theis recovery (Theis, 1935) methods to interpret drawdown and recovery data collected during the pumping test at TW15-3 using the pumping data only (see Appendix F). Due to the negligible response to pumping at observation wells TW15-1 and TW15-2, observation well data were not analyzed. Based on pumping well data, the aquifer transmissivity is indicated to be approximately $4x10^{-3}$ to $9x10^{-3}$ m²/s.

Based on the data obtained during the pumping test, it can be concluded that TW15-3 is capable of supplying at least 31 L/min. During the course of the six-hour pumping test period, approximately 2 percent of the available drawdown was utilized while pumping at a rate of 31 L/min. As such, the yield of TW15-3 substantially exceeds the required minimum specified in MOECC Procedure D-5-5.

4.1.4 Hydraulic Testing Summary

The transmissivity values calculated using the drawdown and recovery data from the pumping wells are summarized in the following table:

Pumping	Pumping Rate	Maximum	Transmissivity (m²/s)			
Well	(L/min)	Drawdown (m)	Drawdown Data	Recovery Data		
TW15-1	TW15-1 31		Could not be calculated	Could not be calculated		
TW15-2	32	5.0	2x10 ⁻³	3x10 ⁻³		
TW15-3	31	0.5	9x10 ⁻³	4x10 ⁻³		

Based on these results, it is interpreted that a transmissivity ranging from 2x10⁻³ to 9x10⁻³ m²/s is representative of the bedrock aquifer in which the three wells were completed.

4.2 Groundwater Quality

The results of the laboratory microbiological, chemical and physical analyses and associated field measurements for the groundwater samples collected from the test wells in September 2015 are summarized in Table 2 following the text of this report. The certificates of laboratory analyses are included in Appendix D. Hourly field measurements of temperature, pH, conductivity, chlorine residual and turbidity collected periodically during the pumping tests are presented in Table 2.

All laboratory results were compared to the applicable maximum acceptable concentrations (MAC), interim maximum acceptable concentrations (IMAC), aesthetic objectives (AO) and operational guidelines (OG) found in the Technical Support Document for Ontario Drinking Water Quality Standards (MOE, 2006).

It should be noted that the OG of 80 to 100 mg/L for hardness has been established to aid in water source selection where a choice is available. Hardness concentrations in groundwater, particularly from bedrock aquifers, rarely if ever fall within this range. Groundwater samples collected from the test wells in this hydrogeological investigation had hardness concentrations in excess of the OG, but less than 500 mg/L, the value at which a water supply is considered unacceptable for domestic purposes (MOE, 2006). Hardness can be removed using common water softening equipment.

4.2.1 TW15-1

Analytical results of the groundwater samples collected from TW15-1 on September 11, 2015 exceeded the MAC for total coliforms (2 ct/100 mL), and exceeded the AO for TDS (545 mg/L).

As stated in Guideline D-5-5, "for the purposes of the assessment described by this Guideline, Total Coliform counts of less than 6 per 100 ml of sample (and 0 for E. coli and fecal coliforms) shall be considered as indicative of acceptable water quality." Under Guideline D-5-5, the total coliforms results at TW15-3 (2 ct/100mL) are acceptable. The bacteriological quality of the groundwater from TW15-1 is typical of recently drilled wells.

The TDS concentration of 545 mg/L measured in both samples was higher than the AO of 500 mg/L. The potential for corrosion or encrustation problems associated with elevated TDS was assessed by calculating the Langelier Saturation Indices (LSI) (American Water Works Association (AWWA) spreadsheet) for the 3-hour and 6-hour samples, which were -0.26 and -0.28, respectively. The LSI is an index devised to predict the incrusting or corrosive tendencies of a particular water, and is calculated from measured values of pH, temperature, alkalinity, Ca as CaCO3 and TDS. These LSI values are within the range generally considered stable (between -0.5 and +0.5) and indicate that corrosion or encrustation problems are unlikely (see Appendix D).

In addition, the hardness concentration at TW15-1 was 144 mg/L after 3 hours of pumping and 144 mg/L after 6 hours of pumping; these concentrations were higher than the OG.

All of the other results of chemical analysis for TW15-1 were below the respective MACs, AOs and OGs (see Table 1).

4.2.2 TW15-2

Analytical results of the groundwater samples collected from TW15-2 on September 10, 2015 exceeded the AO for TDS.

The TDS concentrations of 577 mg/L and 571 mg/L measured in the 3-hour and 6-hour samples, respectively, were higher than the AO of 500 mg/L. The potential for corrosion or encrustation problems associated with elevated TDS was assessed by calculating LSI (AWWA spreadsheet) for the 3-hour and 6-hour samples, which were -0.14 and -0.21, respectively. These LSI values are within the range generally considered stable (between -0.5 and +0.5) and indicate that corrosion or encrustation problems are unlikely (see Appendix D).

In addition, the hardness concentration at TW15-2 was 195 mg/L after 3 hours of pumping and 195 mg/L after 6 hours of pumping; these concentrations were higher than the OG.

All of the other results of chemical analysis for TW15-2 were below the respective MACs, AOs and OGs (see Table 1).

4.2.3 TW15-3

Analytical results of the groundwater samples collected from TW15-3 on September 11, 2105 exceeded the AOs for colour and TDS.

The colour concentration of 6 TCU after 6 hours of pumping was higher than the AO of 5 TCU but below the maximum concentration considered reasonably treatable (7 TCU). In the sample collected after 3 hours of pumping, the colour concentration was 4 TCU, below the AO. Although the field measured turbidity decreased from 2.79 NTU to 1.16 NTU between the 3 hour and 6 hour samples, the laboratory measured turbidity increased from 0.9 NTU to 1.7 NTU. There were no other significant changes in the water quality between the 3 hour and

6 hour samples; therefore, it is possible that the minor increase in colour was due to the minor increase in turbidity in the laboratory samples and not due to any change in groundwater quality.

The TDS concentrations of 634 mg/L and 629 mg/L measured in the 3-hour and 6-hour samples, respectively, were higher than the AO of 500 mg/L. The potential for corrosion or encrustation problems associated with elevated TDS was assessed by calculating the LSI (AWWA spreadsheet) for the 3-hour and 6-hour samples, which were 0.29 and 0.23, respectively. These LSI values are within the range generally considered stable (between -0.5 and +0.5) and indicate that corrosion or encrustation problems are unlikely (see Appendix D).

In addition, the hardness concentration at TW15-3 was 316 mg/L after 3 hours of pumping and 317 mg/L after 6 hours of pumping; these concentrations were higher than the OG.

All of the other results of chemical analysis for TW15-3 were below the respective MACs, AOs and OGs (see Table 1).

4.3 Neighbouring Well Survey

Regarding the 14 closest residential water wells (see Section 3.3), well records could not be identified for the residences located at 3290 Shea Road or 3378 Shea Road. The following table summarizes the available well construction information for the remaining 12 residences.

Well ID	Likely Address	Date Completed	Elevation (m)	Depth to Bedrock (m)	Well Depth (m)	Static Water Elevation (m)	Available Drawdown (m)
1509773	2 Hemphill St.	24-Oct-68	94.1	14.0	18.0	86.5	10.4
1509747	3310 Shea Rd.	24-Sep-68	94.3	12.5	14.6	91.2	11.6
1509751	3316 Shea Rd.	25-Sep-68	94.3	12.8	15.8	89.7	11.3
1509770	3318 Shea Rd.	28-Oct-68	94.3	12.2	13.4	91.2	10.4
1509753	3326 Shea Rd.	24-Sep-68	94.3	12.2	15.2	89.7	10.7
1509772	3330 Shea Rd.	24-Oct-68	94.1	11.9	12.2	91.1	9.1
1509771	3338 Shea Rd.	26-Oct-68	94.1	10.4	11.9	91.0	8.8
1509774	1 Moore St.	24-Oct-68	94.5	9.1	10.1	89.9	5.5
1511152	3354 Shea Rd.	21-Apr-71	94.5	7.6	9.4	93.5	8.5
1511078	3360 Shea Rd.	29-Jan-71	94.4	6.7	9.4	92.6	7.6
1516791	3366 Shea Rd.	03-Oct-78	94.6	7.9	19.5	91.5	16.5
1509806	3372 Shea Rd.	26-Jul-68	94.3	8.2	9.8	93.1	8.5

Copies of the four well surveys received as of the date of preparation of this report are included in Appendix E. An attempt was made to identify the MOECC well records associated with these homes. As indicated in the table above, based on the site location and well depth, it is likely that the well at 2 Hemphill Street is associated with MOECC well ID 1509773, the well at 3316 Shea Road is associated with MOECC well ID 1509751, the well at 3326 Shea Road is associated with MOECC well ID 1509753 and the well at 3310 Shea Road is associated with MOECC well ID 1509747 (Appendix B). These wells are 47 years old and no details regarding the grouting of the wells are available.

The well surveys for 3310 Shea Road, 3316 Shea Road, 3326 Shea Road and 2 Hemphill Street indicated that groundwater is used for drinking water. Water softeners are in use at these homes, and the homeowners rated their water quality as good or excellent. The homeowners reported no problems with water quantity.

The field observations and the results of the laboratory chemical and physical analyses for the groundwater sample collected from 3310 Shea Road (the only location which consented to sampling) are summarized in Table 4. The certificates of laboratory analyses are included in Appendix D. All laboratory results were compared to the applicable MAC, IMAC and AO found in the Technical Support Document for Ontario Drinking Water Quality Standards (MOE, 2006).

In the sample collected at 3310 Shea Road, the iron and TDS concentrations were above their respective AOs. The iron concentration was below the maximum level considered reasonably treatable. The homeowner did not report problems with taste or corrosion/encrustation, Hardness was above the applicable OG. The water sample was of acceptable bacteriological quality (no exceedances of MACs).

The water quality at the well surveyed was similar to the water quality at test wells TW15-1, TW15-2 and TW15-3, with the exception of a slightly elevated concentration of iron. Overall, based on the neighbouring well surveys, the water quality and quantity in the water supply aquifer is indicated to be acceptable.

4.4 Summary of Water Supply Investigation

Based on the results of the pumping tests carried out by Golder Associates, the test wells are interpreted to be capable of yielding at least 18.8 L/min, as required by Procedure D-5-5.

Groundwater quality in the samples collected at the end of the pumping tests satisfied the ODWQS, with the exception of the total coliforms result at one well, the colour result at one well, and the TDS concentration at three wells. The colour result is below the level considered treatable, while the TDS concentration is not anticipated to cause corrosion or encrustation. The elevated concentrations of TDS are within the range that can be treated by conventional water softening. Under Guideline D-5-5, the total coliforms results at TW15-1 (2 ct/100mL) are acceptable.

The geological and hydrogeological conditions encountered at the three test wells used in the investigation were generally consistent. The bedrock type noted in the MOECC well records for the test wells was consistently limestone, overlain by 7 to 12 metres of clay and a thin layer of glacial till. Well depths range from 29 to 37 mbgs and water-bearing zones were noted at depths from 11 to 34 mbgs. The test wells are interpreted to represent the range of potential geological and hydrogeological conditions that may be encountered across the site.

Water quality and water quantity were determined to be consistently adequate across the site. It is Golder Associates' opinion that the three test wells adequately represent groundwater supply conditions at the site, that the number, areal distribution, depths and design of test wells are technically justifiable, and that the test wells were located and constructed in such a way to permit the prediction of the quantity and quality of groundwater which domestic wells will supply in the future, if constructed in a similar manner to the test wells.

It is Golder Associates' professional opinion that the well yields and groundwater quality demonstrated by the pumping tests at TW15-1, TW15-2 and TW15-3 are representative of the long term yields and groundwater quality that the future residents of the subdivision are likely to obtain from wells constructed in a similar manner to the test wells.

5.0 IMPACT ASSESSMENT

5.1 Hydrogeological Sensitivity

The site is not considered hydrogeologically sensitive, as none of the following have been identified: karstic areas, areas of fractured bedrock exposed at surface, areas of thin soil cover, or areas of highly permeable soils. As discussed in Section 2.2, at least 7 metres of overburden was encountered in all site test wells and boreholes. The overburden material consisted of a combination of clay and glacial till.

5.2 Mutual Well Interference

The effect of potential mutual well interference resulting from the simultaneous pumping of all wells in the subdivision was investigated by calculating the potential cumulative drawdown in a well drilled on Lot 9 which is centrally located within the subdivision. The cumulative drawdown was calculated using the Cooper and Jacob equation (Cooper and Jacob, 1946) with an aquifer transmissivity of $2x10^{-3}$ m²/s (the lowest value calculated from the pumping test data), an assumed storativity of $1x10^{-4}$ or $5x10^{-5}$ (a reasonable possible range of S) a pumping rate of 2,250 L/day/household and a time of 20 years. The 14 closest existing residences on the west side of Shea Road were also included in these calculations.

The cumulative drawdown was also calculated assuming simultaneous peak water usage at all 51 houses over a two hour period. The assumed peak water demand at each of the 51 lots was 2,250 litres over a continuous two hour period. This is equivalent to the peak demand rate in Section 4.3.2 of MOE Procedure D-5-5. As stated in Procedure D-5-5, this rate is based on the upper estimated range of household water requirements from the 1989 publication "Water Wells & Ground Water Supplies in Ontario". Technology improvements in household fixtures and appliances since 1989 mean that today's households typically use less than half of the peak demand rate in Procedure D-5-5 each day; therefore, using a rate of 2,250 litres over a continuous two hour period is extremely conservative. It should also be noted that the 2 hours of peak usage in the 1989 publication are divided into one morning hour and one evening hour; therefore, wells would typically have 8-12 hours to recover between the two peak usage periods and the overall cumulative effects would be reduced during the peak demand periods. Therefore, assessing cumulative drawdown effects using a rate of 2,250 litres over a continuous two hour period, simultaneously at all 51 lots, is also extremely conservative. The transmissivity used for the peak demand calculation of cumulative drawdown was 2x10⁻³ m²/s and the storativity was 5 x 10⁻⁵ – additional conservative assumptions.

All cumulative drawdown calculations are provided in Appendix G.

It is our professional opinion that the range of scenarios analysed provides an assessment of the potential cumulative drawdown using very conservative assumptions. For the 20 year scenarios, the calculated drawdown at the central lot was estimated to be approximately 1.0 metres, and did not vary significantly under the sensitivity analysis. For the peak water demand scenario, the calculated drawdown at the central lot was estimated to be approximately 2.7 metres. Actual peak pumping rates at each household are anticipated to be much lower than used for the peak demand scenario, given current fixture and appliance technologies and the anticipated number of occupants for each household. In addition, considering the conservative aquifer parameters used for the calculation and the improbability that all 51 wells would be pumping simultaneously for a two hour period, it is considered unlikely that 2.7 metres of cumulative drawdown will occur.

The available drawdown at the 12 water supply wells listed in Section 3.3 was calculated by subtracting the elevation of the bottom of each well from the reported static water elevation, ranged from 5.5 to 16.5 metres. The worst-case calculated drawdown at the central lot was estimated to be 2.7 metres under the peak pumping rate scenario and using the most conservative aquifer parameters. After 20 years the calculated drawdown at the central lot was estimated to be approximately 1.0 metres. Although the drawdown at the development boundary would be less than estimated for the central lot, a drawdown of 2.7 metres would reduce the available drawdown at these 12 wells by 17-50%, and a drawdown of 1.0 metres would reduce the available drawdown by 4-11%. However, these estimates are very conservative, and it is our opinion that the actual cumulative drawdown effects between wells within the proposed development and will be minimal, and, interference with existing nearby wells will not result in any significant reduction in the availability of groundwater.

5.3 Water Quality Impacts

Golder Associates prepared a Phase One Environmental Site Assessment for the site (Golder Associates, 2015). Based on the information obtained as part of this Phase One ESA, no areas of potential environmental concern were identified on the Site or within the Study Area. As such, potential interference on water quality in the development from nearby sources of groundwater contamination is not anticipated.

6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

Based on the hydrogeology investigation and impact assessment carried out by Golder Associates at the site, the following conclusions are provided:

- a) Pumping tests conducted at test wells TW15-1, TW15-2 and TW15-3 indicate that a sufficient quantity of water is available in the bedrock to satisfy the required daily water consumption of 2,250 L/day for four-bedroom single family homes. It is Golder Associates' professional opinion that the well yields demonstrated by the pumping tests at TW15-1, TW15-2 and TW15-3 are representative of the long term yields that the future residents of the subdivision are likely to obtain from their wells. The results of the pumping tests also indicate that rapid groundwater level recovery will follow each pumping cycle from future domestic supply wells, such that cumulative drawdown due to 24 hour pumping cycles will not occur.
- b) The groundwater quality analyses of samples from test wells TW15-1, TW15-2 and TW15-3 indicate that the water quality meets applicable maximum acceptable concentrations (MAC), interim maximum acceptable concentrations (IMAC) and aesthetic objectives (AO) for the analyzed parameters, with the exception of the total coliforms result at one well, the colour result at one well, and the TDS concentration at three wells. The colour result is below the level considered treatable, while the TDS concentration is not anticipated to cause corrosion or encrustation. The elevated concentrations of TDS are within the range that can be treated by conventional water softening. Under Guideline D-5-5, the total coliforms results at TW15-3 (2 ct/100mL) are acceptable. Common techniques for colour treatment include carbon filter treatment systems.
- c) Mutual well interference (water quantity) between wells within the proposed development is not indicated to be a concern. In addition, interference with existing nearby wells is not expected to result in any significant reduction in the availability of groundwater to on-site or off-site wells. It is our professional opinion that the range of scenarios analysed provides an assessment of the potential cumulative drawdown using very conservative assumptions. For the 20 year scenarios, the calculated drawdown at the central lot was estimated to be approximately 1.0 metres, and did not vary significantly under the sensitivity analysis. For the

peak water demand scenario, the calculated drawdown at the central lot was estimated to be approximately 2.7 metres. Actual peak pumping rates at each household are anticipated to be much lower than used for the peak demand scenario, given current fixture and appliance technologies and the anticipated number of occupants for each household. In addition, considering the conservative aquifer parameters used for the calculation (including the lack of aquifer recharge) and the improbability that all 51 wells would be pumping simultaneously for a two hour period, it is considered unlikely that 2.7 metres of cumulative drawdown will occur.

- d) Four surveyed neighbouring well owners rated their water quality as good or excellent. The homeowners reported no problems with water quantity. Based on this neighbouring well surveys, existing sources of adverse impacts to groundwater quality or quantity in the vicinity of the site have not been identified.
- e) It is Golder Associates' professional opinion that the proposed development satisfies Policy 1 of Section 4.4.2 of the City of Ottawa Official Plan with respect to water supply wells.
- f) Test well TW15-1 used in the hydrogeological investigation may be used as a domestic supply well and does not require decommissioning. The current version of the site plan (see Appendix H) indicates that test well TW15-2 will not be used as a domestic supply well or monitoring well and therefore should be decommissioned in accordance with O. Reg. 903. Test well TW15-3 is intended to be used as a monitoring well and therefore does not require decommissioning.

6.2 Recommendations

Golder Associates also offers the following recommendations regarding groundwater supply wells at the site:

- a) Water Quality Future homeowners should be notified that treatment of the groundwater supply for colour, iron and hardness may be desirable. They should also be notified of the following:
 - The sodium concentration in groundwater samples at the site exceeded 20 mg/L. Accordingly, the Local Medical Officer of Health should be informed and individuals on sodium-restricted diets should consult their physicians before using the well water as a potable water source.
 - Groundwater samples collected from the test wells had hardness concentrations in excess of the OG (typical for bedrock aquifers), but less than 500 mg/L, the value at which a water supply is considered unacceptable for domestic purposes (MOE, 2006). Hardness can be removed using common water softening equipment.
 - Water can be treated for hardness and iron using a conventional water softener. Treating water using a conventional sodium ion exchange water softener may increase the sodium content of the water.
 - The TDS concentrations were higher than the AO of 500 mg/L. Calculation of the Langelier Saturation Indices (LSI) found that LSI values are within the range generally considered stable (between -0.5 and +0.5) and indicate that corrosion or encrustation problems are unlikely
- b) Well Construction All residential water wells should be drilled through the overburden and completed in the limestone bedrock. All wells should be constructed by appropriately licensed contractors and well technicians as per O. Reg. 903.
 - Installed steel casings should be sealed into bedrock and grouted as per O. Reg. 903. The material used to seal the annular space could consist of either a cement grout or a commercially available bentonite grout

product. Cement grout mixtures should be allowed to set for a minimum two day period for normal cement or twelve hours for a high early strength cement prior to advancing the well further into bedrock. Non-shrink cement such as V-3 Grout, CDP Non-shrink Construction Grout (premixed), or similar non-shrink cement grouts are recommended. If a bentonite grout product is used, drilling need only be suspended for a few hours depending on the product used.

Once the casing has been sealed into bedrock, the well should be advanced uncased in the bedrock until a water supply of sufficient quantity and quality is encountered. Wells should be between approximately 30 and 40 metres deep.

The completed well should then be developed to maximize the yield and sampled to characterize groundwater quality. As per O. Reg. 903, the well casings should be completed at least 0.4 metres above finished ground surface and should be fitted with a pitless adapter to facilitate below ground plumbing and electrical connections. Surface grading should direct surface water away from the well.

- Artesian Wells There is a potential for water supply wells at the proposed development to be flowing wells. In accordance with O. Reg. 903, a flowing well should be instrumented with an appropriate device that controls the discharge of water from within the well casing, is capable of stopping the discharge of water from within the well casing, and is capable of withstanding the freezing of water in the well casing. The well should be constructed so as to prevent any uncontrolled flow of water from the well and prevent backflow of water into the well or well casing.
- d) Test Well Depths It should be noted that the water bearing zones in the limestone bedrock encountered in test wells TW15-1, TW15-2 and TW15-3 are between approximately 11 to 34 metres below ground surface at the site. Water quality below a depth of 34 metres has not been tested.
 - **Well Setbacks and Access** Under O. Reg. 903, the site of a new drilled well shall be at least 15 metres from a source of contaminants, including sewer lines and laterals. Under O. Reg. 903, well sites shall be chosen so that the well will be accessible for cleaning, treatment, repair, testing, inspection and visual examination. Proposed well locations are indicated on the attached "Well Setbacks Plan" prepared by DSEL (Appendix H). Additional details regarding well access will be included in purchase and sale agreements.
- e) **Supervision of Well Installation** It is recommended that the well casing installation be supervised by qualified professional engineer or professional geoscientist, or a person under the direction of a professional engineer or professional geoscientist, to ensure that wells are constructed in accordance with the requirements.
- f) Best Management Practices Homeowners should refer to the following website for information on Best Management Practices for water wells from the Ontario Ministry of Agriculture and Food: www.omafra.gov.on.ca/english/environment/bmp/well.htm. Homeowners should also refer to the MOECC document Water Supply Wells Requirements and Best Management Practices, Revised April 2015;
- g) **Well Decommissioning** Any test wells that will not be used as a supply well or monitoring well for the subdivision should be decommissioned.
- h) **Earth Energy Systems** This study does not address the construction of earth energy systems, which require a building permit and may require approval from the MOECC.

- i) **Groundwater Monitoring Wells** In order to satisfy in Section 4.4.2.1 Policy 4 of the Official Plan, TW15-3 will be retained as a monitoring well for Phase 1. Since TW15-1 will be unsuitable for use as a monitoring well following occupancy of lot 20, Cardel Homes will provide a dedicated monitoring well within a permanent easement or land dedication adjacent to Phase 2.
- j) Groundwater Level Monitoring Program The City has requested the following monitoring program:
 - Commence collection of background groundwater level information prior to any construction by installing
 a pressure transducer in TW15-3 and TW15-1 to record groundwater level measurements at an hourly
 frequency. Barometric data will also be recorded to allow for barometric data correction.
 - Download and review groundwater measurements from the pressure transducers at a quarterly frequency.
 - Data reports will be provided to the City on a quarterly basis. Documentation of any complaints regarding groundwater interference and how they were addressed will be included with the data reports.
 - Monitoring and reporting will continue until the final residence in Phase 2 is occupied.
- k) **Registration of Phase 2** As specified in Section 4.7 of Procedure D-5-5, a supplementary study and report should be completed prior to registration of Phase 2.

7.0 LIMITATIONS AND USE OF REPORT

This report was prepared for the exclusive use of Cardel Homes. Should additional parties require reliance on this report, written authorization from Golder Associates Ltd. (Golder Associates) will be required. The report, which specifically includes all tables, figures and appendices is based on data and information collected during the site investigation conducted by Golder Associates and is based solely on the conditions of the property at the time of the field investigation, supplemented by historical information and data obtained by Golder Associates and others as described in this report.

The services performed as described in this report were conducted in a manner consistent with that level of care and skill normally exercised by other members of the engineering and geoscience professions currently practising under similar conditions, subject to the time limits and financial and physical constraints applicable to the services.

Any use which a third party makes of this report, or any reliance on, or decisions to be made based on it, are the responsibilities of such third parties. Golder Associates accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

The findings and conclusions of this report are valid only as of the date of this report. If new information is discovered in future work, including excavations, borings, or other studies, Golder Associates should be requested to re-evaluate the findings of this report, and to provide amendments as required.

8.0 **CLOSURE**

We trust this report meets with your current requirements. If you have any questions regarding this report, please contact the undersigned.

GOLDER ASSOCIATES LTD.

Caitlin Cooke, M.Sc., P.Geo.

Hydrogeologist

Brian Byerley, M.Sc., P.Eng. Senior Hydrogeologist/Principal

CAMC/BTB/sg

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

CAITLIN A. MARTIN COOKE

PRACTISING MEMBER

9.0 REFERENCES

- American Water Works Association. http://www.awwa.org/portals/0/files/resources/water%20knowledge/watermath-corrosivity-estimator-limited.xlsx. Accessed May 19, 2016.
- Chapman, L.J. and D.F. Putnam. 1984. The Physiography of Southern Ontario. Ontario Ministry of Natural Resources, Toronto, Ontario.
- City of Ottawa. 2003. Official Plan (amended 2013).
- Cooper, H.H. and C.E. Jacob, 1946. A generalized graphical method for evaluating formation constants and summarizing well field history, Am. Geophys. Union Trans., vol. 27, pp. 526-534.
- Driscoll, F.G. 2003. Groundwater and Wells 2nd Edition. Johnson Screens, St. Paul, Minnesota. ISBN 0-9616456-0-1.
- Golder Associates Ltd. in association with Dillon Consulting Ltd., J.L. Richards & Associates Ltd. and Agricultural Watersheds Inc. 2003. Renfrew Country Mississippi Rideau Groundwater Study. February 2003.
- Golder Associates Ltd., 2015. Phase One Environmental Site Assessment, 5873 Perth Street, Ottawa (Village of Richmond), ON. Report No. 1418381, dated June 2015.
- Ministry of the Environment, 1996a. Procedure D-5-5, Technical Guideline for Private Wells: Water Supply Assessment, Revised August 1996. Ontario Ministry of the Environment.
- Ministry of the Environment, 2006. Ontario Drinking Water Quality Standards, Objectives and Guidelines, June 2003, Revised June 2006. Ontario Ministry of the Environment.
- Ministry of Environment and Energy. 1995. MOEE Hydrogeological Technical Information Requirements for Land Development Applications. April 1995.
- Mississippi Valley Conservation and Rideau Valley Conservation Authority (MVC and RVCA), 2011. Assessment Report, Rideau Valley Source Protection Area.
- Theis, C.V. 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using.

TABLE 1 WATER QUALITY DATA (DISCHARGE SAMPLES)

		(2) (1)	1		TW15-01	TW15-01	
		ODWQS(169/03)-	(4)(3) ODWOS	66 ODWOS		11-Sep-2015	
Parameter	Unit	Health	AO	OG	TW15-01-3	TW15-01-06	
Bacterial	Oinc	riculti	AG	- 00			
Escherichia coli	CFU/100ml	0 (7)			0	0	
Total Coliform	CFU/100ml				2	2	
General Chemistry							
Alkalinity (Total as CaCO3)	mg/l			500	229	226	
Ammonia Nitrogen	mg/l				0.23	0.23	
Chloride	mg/l		250		102	104	
Chlorine, Total Residual (Field)	mg/l				0	0	
Color	color unit		5		4	<2	
Conductivity	uS/cm				839	839	
Conductivity (Field)	uS/cm				747	769	
Dissolved Organic Carbon	mg/l		5		1.8	1.1	
Fluoride	mg/l	1.5			1.10	1.10	
Hardness, Calcium Carbonate	mg/l			100	144	144	
Hydrogen Sulphide, field measured (Field)	mg/l		0.05		0	0	
Nitrate as N	mg/l	10			<0.10	<0.10	
Nitrite as N	mg/l	1			<0.10	<0.10	
Nitrogen, Organic	mg/l			0.15	<0.08	<0.08	
Nitrogen, Total Kieldahl	mg/l				0.2	0.2	
pH	-			8.5	8.16	8.21	
pH (Field)	-			8.5	7.75	7.73	
Phosphorus, Total Orthophosphate, dissolved	mg/l				<0.2	<0.2	
Sulfate	mg/l		500 (8)		40	40	
Tannin & Lignin	mg/l				<0.1	<0.1	
Temperature (Field)	deg c		15		12.2	12.2	
Total Dissolved Solids	mg/l		500		<u>545</u>	<u>545</u>	
Turbidity	NTU		5 ⁽⁹⁾	(10)	2.2	0.8	
Turbidity (Field)	NTU		5 (9)	(10)	2.15	0.47	
Metals							
Aluminum, dissolved	mg/l			0.1	0.01	<0.01	
Antimony, dissolved	mg/l	0.006			<0.0005	<0.0005	
Arsenic, dissolved	mg/l	0.025			0.001	0.001	
Barium, dissolved	mg/l	1			0.06	0.06	
Beryllium, dissolved	mg/l				< 0.0005	< 0.0005	
Boron, dissolved	mg/l	5			0.37	0.36	
Cadmium, dissolved	mg/l	0.005			<0.0001	< 0.0001	
Calcium	mg/l				28	28	
Chromium, dissolved	mg/l	0.05			<0.001	<0.001	
Copper, dissolved	mg/l		1		<0.001	<0.001	
Iron, dissolved	mg/l		0.3		0.27	0.13	
Lead, dissolved	mg/l	0.01			<0.001	<0.001	
Magnesium	mg/l				18	18	
Manganese, dissolved	mg/l		0.05		<0.01	<0.01	
Mercury, dissolved	mg/l	0.001			<0.0001	< 0.0001	
Molybdenum, dissolved	mg/l				< 0.005	< 0.005	
Nickel, dissolved	mg/l				<0.005	<0.005	
Potassium	mg/l				7	7	
Selenium, dissolved	mg/l	0.01			<0.001	<0.001	
Silver, dissolved	mg/l				<0.0001	<0.0001	
Sodium	mg/l		200 (11)		121	123	
Strontium, dissolved	mg/l				3.98	3.97	
Thallium, dissolved	mg/l				<0.0001	<0.0001	
Uranium, dissolved	mg/l	0.02			<0.001	<0.001	
Zinc, dissolved	mg/l		5		<0.01	<0.01	
Phenois							
Phenolics, Total Recoverable	mg/l				<0.001	<0.001	
· · · · · · · · · · · · · · · · · · ·							

TABLE 1 WATER QUALITY DATA (DISCHARGE SAMPLES)

		(2) (1)	1		TW15-02	TW15-02	
		ODWQS(169/03)-	(4) (3) ODWOS.	(6)(5) ODWOS		10-Sep-2015	
Parameter	Unit	Health	AO	OG	TW15-02-3	TW15-02-6	
Bacterial	Onit	пеанн	AU	OG	17713-02-3	17713-02-0	
Escherichia coli	CFU/100m	0 (7)			0	0	
Total Coliform	CFU/100m				0	0	
General Chemistry	0. 0, 100				-	-	
Alkalinity (Total as CaCO3)	mg/l			500	244	251	
Ammonia Nitrogen	mg/l				0.251	0.203	
Chloride	mg/l		250		108	105	
Chlorine, Total Residual (Field)	mg/l				0	0	
Color	color unit		5		<2	<2	
Conductivity	uS/cm				887	879	
Conductivity (Field)	uS/cm				774	759	
Dissolved Organic Carbon	mg/l		5		0.7	<0.5	
Fluoride	mg/l	1.5			0.91	0.91	
Hardness, Calcium Carbonate	mg/l			100	195	195	
Hydrogen Sulphide, field measured (Field)	mg/l		0.05		0	0	
Nitrate as N	mg/l	10			<0.10	<0.10	
Nitrite as N	mg/l	1			<0.10	<0.10	
Nitrogen, Organic	mg/l			0.15	<0.08	<0.08	
Nitrogen, Total Kjeldahl	mg/l				0.29	0.25	
рН	- -			8.5	8.24	8.18	
pH (Field)	-			8.5	7.67	7.61	
Phosphate, dissolved	mg/l				<0.03	<0.03	
Sulfate	mg/l		500 (8)		45	45	
Tannin & Lignin	mg/l				6.4	0.1	
Temperature (Field)	deg c		15		13.0	12.0	
Total Dissolved Solids	mg/l		500		577	571	
Turbidity	NŤU		5 ⁽⁹⁾	(10)	1.1	1.2	
Turbidity (Field)	NTU		5 (9)	(10)	1.81	0.47	
Metals							
Aluminum, dissolved	mg/l			0.1	<0.01	<0.01	
Antimony, dissolved	mg/l	0.006			< 0.0005	< 0.0005	
Arsenic, dissolved	mg/l	0.025			<0.001	< 0.001	
Barium, dissolved	mg/l	1			0.07	0.07	
Beryllium, dissolved	mg/l				< 0.0005	< 0.0005	
Boron, dissolved	mg/l	5			0.38	0.39	
Cadmium, dissolved	mg/l	0.005			<0.0001	<0.0001	
Calcium	mg/l				40	40	
Chromium, dissolved	mg/l	0.05			<0.001	<0.001	
Copper, dissolved	mg/l		1		<0.001	<0.001	
Iron, dissolved	mg/l		0.3		0.19	0.16	
Lead, dissolved	mg/l	0.01			<0.001	<0.001	
Magnesium	mg/l				23	23	
Manganese, dissolved	mg/l		0.05		0.01	<0.01	
Mercury, dissolved	mg/l	0.001			<0.0001	<0.0001	
Molybdenum, dissolved	mg/l				< 0.005	< 0.005	
Nickel, dissolved	mg/l				< 0.005	< 0.005	
Potassium	mg/l				6	6	
Selenium, dissolved	mg/l	0.01			<0.001	<0.001	
Silver, dissolved	mg/l				<0.0001	<0.0001	
Sodium	mg/l		200 (11)		115	113	
Strontium, dissolved	mg/l				3.93	3.88	
Thallium, dissolved	mg/l				<0.0001	<0.0001	
Uranium, dissolved	mg/l	0.02			<0.001	<0.001	
Zinc, dissolved	mg/l		5		<0.01	<0.01	
Phenois							
Phenolics, Total Recoverable	mg/l				< 0.002	< 0.002	
						_	

TABLE 1 WATER QUALITY DATA (DISCHARGE SAMPLES)

<u> </u>	ı	(2) (1)	T			TW15-02	
			(A) (A) CDWCC	(6) (5) ODWOC	TW15-03	TW15-03	
		ODWQS(169/03)-				09-Sep-2015	
Parameter	Unit	Health	AO	OG	TW15-03-3	TW15-03-6	
Bacterial	OFILI400	0 (7)			0	0	
Escherichia coli Total Coliform	CFU/100ml				0	0	
	CFU/100mi	0			U	U	
General Chemistry				500	005	000	
Alkalinity (Total as CaCO3)	mg/l			500	265	268	
Ammonia Nitrogen	mg/l				0.235	0.207	
Chloride	mg/l		250		122	118	
Chlorine, Total Residual (Field) Color	mg/l		 5		0 4	0 <u>6</u>	
Conductivity	color unit uS/cm				975		
	uS/cm				854	967 839	
Conductivity (Field) Dissolved Organic Carbon			 5		1.1	1.0	
Fluoride	mg/l	 1 E			0.59		
	mg/l	1.5				0.59	
Hardness, Calcium Carbonate	mg/l		 0.05	100	316 0	317 0	
Hydrogen Sulphide, field measured (Field)	mg/l		0.05		· ·		
Nitrate as N	mg/l	10			<0.10	<0.10	
Nitrite as N	mg/l	1			<0.10 0.13	<0.10	
Nitrogen, Organic	mg/l			0.15	0.13	0.08 0.29	
Nitrogen, Total Kjeldahl	mg/l			 0.5			
pH	-			8.5	8.18	8.13	
pH (Field)	- "			8.5	7.82	7.76	
Phosphate, dissolved	mg/l				<0.03	<0.03	
Sulfate	mg/l		500 (8)		63	61	
Tannin & Lignin	mg/l				0.2	0.2	
Temperature (Field)	deg c		15		12.6	13.0	
Total Dissolved Solids	mg/l		500	 (10)	<u>634</u>	629	
Turbidity	NTU		5 ⁽⁹⁾	(10)	0.9 2.79	1.7 1.16	
Turbidity (Field)	NTU		3.67	(15)	2.19	1.10	
Metals				0.4	0.04	0.04	
Aluminum, dissolved	mg/l			0.1	<0.01	<0.01	
Antimony, dissolved	mg/l	0.006			<0.0005	<0.0005	
Arsenic, dissolved	mg/l	0.025			0.001	0.001	
Barium, dissolved	mg/l	1			0.07	0.07	
Beryllium, dissolved	mg/l	 5			<0.0005	<0.0005	
Boron, dissolved	mg/l				0.20 <0.0001	0.20 <0.0001	
Cadmium, dissolved Calcium	mg/l	0.005			<0.0001 72		
	mg/l				<0.001	71	
Chromium, dissolved Copper, dissolved	mg/l mg/l	0.05	1		<0.001	<0.001 <0.001	
Iron, dissolved			0.3		0.22	0.22	
Lead, dissolved	mg/l mg/l	0.01			<0.001	<0.001	
*		0.01			33	34	
Magnesium Manganese, dissolved	mg/l		0.05			_	
Mercury, dissolved	mg/l		0.05		<0.01	<0.01 <0.0001	
Molybdenum, dissolved	mg/l	0.001			<0.0001 <0.005	<0.0001	
Nickel, dissolved	mg/l				<0.005	<0.005	
Potassium	mg/l				<0.005	<0.005	
Selenium, dissolved	mg/l mg/l	0.01			<0.001	<0.001	
Silver, dissolved	mg/l				<0.001	<0.001	
Sodium	mg/l		200 (11)		90	88	
Strontium, dissolved	mg/l				2.25	2.17	
Thallium, dissolved	mg/l				<0.0001	<0.0001	
Uranium, dissolved	mg/l	0.02			0.001	0.001	
Zinc, dissolved		0.02	5		<0.01	<0.01	
	mg/l		, ,		₹0.01	\0.01	
Phenolis Total Pagayarahla	ma/l				<0.000	~0 000	
Phenolics, Total Recoverable	mg/l				<0.002	< 0.002	

Footnotes:

Tables should be read in conjunction with the accompanying document.

- < value = Indicates parameter not detected above laboratory method detection limit.
- > value = Indicates parameter detected above equipment analytical range.
- -- Chemical not analyzed or criteria not defined.

Grey background indicates exceedances.

All samples were collected un-filtered.

- (1) Ontario Drinking Water Quality Standards Health Based Standards (June 2003, revised June 2006).
- (2) Bold Font = Parameter concentration greater than ODWQS(169/03)-Health
- (3) Ontario Drinking Water Quality Standards Aesthetic Objectives. Aesthetic Objectives are established for parameters that may impair the taste, odour or colour of water or which may interfere with good water quality control practices. For certain parameters, both aesthetic objectives and health-related MACs have been derived (June 2003, revised June 2006).
- (4) Underlined Font = Parameter concentration greater than ODWQS-AO
- (5) Ontario Drinking Water Quality Standards Operational Guidelines. Operational Guidelines are established for parameters that, if not controlled, may negatively affect the efficient and effective treatment, disinfection and distribution of the water (June 2003, revised June 2006).
- (6) Italic Font = Parameter concentration greater than ODWQS-OG
- (7) Reporting units and Guideline units are not convertible into each other.
- (8) There may be a laxative effect in some individuals when sulphate levels exceed 500 mg/L.
- (9) Applicable for all waters at the point of consumption.
- (10) The Operational Guidelines for filtration processes are provided as performance criteria in the Procedure for Disinfection of Drinking Water in Ontario.
- (11) The aesthetic objective for sodium in drinking water is 200 mg/L. The local Medical Officer of Health should be notified when the sodium concentration exceeds 20 mg/L so that this information may be communicated to local physicians for their use with patients on sodium restricted diets.

TABLE 2 WATER QUALITY DATA (FIELD PARAMETERS)

Test Well	Date	Time (min)	рН	Temp (°C)	Cond (µs/cm)	Turb (ntu)	Hydrogen Sulphide (mg/L)	Free Chlorine (mg/L)	Sample
TW15-1	11-Sep-15	8:59	7.51	12.3	736	1.68	0	0	
TW15-1	11-Sep-15	9:44	7.70	12.6	746	2.06	0	0	
TW15-1	11-Sep-15	10:42	7.68	12.7	772	2.49	0	0	
TW15-1	11-Sep-15	11:12	7.75	12.2	747	2.16	0	0	TW15-01-3hr
TW15-1	11-Sep-15	12:04	7.71	11.9	742	1.97	0	0	
TW15-1	11-Sep-15	13:24	7.61	12.5	727	0.73	0	0	
TW15-1	11-Sep-15	14:08	7.73	12.2	769	0.50	0	0	TW15-01-6hr

Test Well	Date	Time (min)	рН	Temp (°C)	Cond (µs/cm)	Turb (ntu)	Hydrogen Sulphide (mg/L)	Free Chlorine (mg/L)	Sample
TW15-2	10-Sep-15	9:47	7.59	13.0	775	1.70	0	0	
TW15-2	10-Sep-15	10:10	7.68	12.5	775	1.77	0	0	
TW15-2	10-Sep-15	11:15	7.67	13.0	774	1.79	0	0	TW15-02-3hr
TW15-2	10-Sep-15	12:15	7.63	13.5	762	0.46	0	0	
TW15-2	10-Sep-15	13:20	7.69	12.6	767	0.45	0	0	
TW15-2	10-Sep-15	14:15	7.61	12.0	759	0.48	0	0	TW15-02-6hr

Test Well	Date	Time (min)	рН	Temp (°C)	Cond (µs/cm)	Turb (ntu)	Hydrogen Sulphide (mg/L)	Free Chlorine (mg/L)	Sample
TW15-3	09-Sep-15	9:25	8.21	12.9	860	2.63	not measured	not measured	
TW15-3	09-Sep-15	10:45	7.90	12.6	855	3.02	0	0	
TW15-3	09-Sep-15	11:20	7.82	12.6	854	2.64	0	0	TW15-03-3hr
TW15-3	09-Sep-15	12:17	7.76	13.3	851	1.40	0	0	
TW15-3	09-Sep-15	13:12	7.71	13.8	840	1.12	not measured	not measured	
TW15-3	09-Sep-15	14:20	7.76	13.0	839	1.16	0	0	TW15-03-6hr

Table 3a Manual Water Level Data Hydraulic Testing of TW15-3

	Water Level Measurement					
	(metres below top of casing)					
Data and Time	TW15-1	TW15-3				
Date and Time		TW15-2				
8/27/2015 17:00	2.792	2.925	2.94			
9/9/2015 6:57	3.06	3.18	3.22			
9/9/2015 8:20			4.17			
9/9/2015 8:20			4.37			
9/9/2015 8:20			4.54			
9/9/2015 8:22			3.91			
9/9/2015 8:24			3.71			
9/9/2015 8:26		3.195				
9/9/2015 8:27			3.715			
9/9/2015 8:34			3.72			
9/9/2015 8:39	3.085					
9/9/2015 8:50			3.745			
9/9/2015 9:33			3.755			
9/9/2015 9:35		3.19				
9/9/2015 9:39	3.08					
9/9/2015 9:51			3.77			
9/9/2015 10:26			3.765			
9/9/2015 10:27		3.185				
9/9/2015 10:31	3.065					
9/9/2015 11:12			3.75			
9/9/2015 11:51			3.75			
9/9/2015 11:53		3.17				
9/9/2015 11:57	3.055					
9/9/2015 12:39			3.74			
9/9/2015 12:40		3.16				
9/9/2015 12:48	3.05					
9/9/2015 13:33			3.73			
9/9/2015 13:35		3.155				
9/9/2015 13:41	3.035					
9/9/2015 13:43						
9/9/2015 13:45						
9/9/2015 13:58			3.74			
9/9/2015 13:59		3.15				
9/9/2015 14:03	3.035					
9/9/2015 14:25			3.74			
9/9/2015 14:26			3.33			
9/9/2015 14:26			3.27			
9/9/2015 14:26			3.255			
9/9/2015 14:27			3.24			
9/9/2015 14:27			3.235			
9/9/2015 14:27			3.23			
9/9/2015 14:28			3.225			
9/9/2015 14:36			3.22			
9/9/2015 14:38		3.14				
9/9/2015 14:45	3.03					
9/9/2015 15:05			3.19			
9/9/2015 15:08		3.135				

Manual Water Level Data Hydraulic Testing of TW15-2

,	\\\-41					
	Water Level Measurement					
D. () T	TW15-1	below top of casing) TW15-2 TW15-3				
Date and Time		_				
9/10/2015 8:10	3.055	3.18	3.215			
9/10/2015 8:12		4.02				
9/10/2015 8:12		4.73				
9/10/2015 8:12		4.99				
9/10/2015 8:13		5.26				
9/10/2015 8:13		5.51				
9/10/2015 8:14		5.68				
9/10/2015 8:14		5.855				
9/10/2015 8:15		6.235				
9/10/2015 8:16		6.53				
9/10/2015 8:17		6.805				
9/10/2015 8:18		7.1				
9/10/2015 8:19		7.23				
9/10/2015 8:24		7.71				
9/10/2015 8:35		7.97				
9/10/2015 8:37			3.23			
9/10/2015 8:43			3.23			
9/10/2015 8:45		8.005				
9/10/2015 8:49	3.08	2.300				
9/10/2015 8:58	3.00	8.02				
9/10/2015 9:00		0.02	3.24			
9/10/2015 9:18		8.015	0.27			
9/10/2015 9:22	3.08	0.010				
9/10/2015 10:23	3.00	8.03				
9/10/2015 10:25		0.03	2 225			
9/10/2015 10:25	3.075		3.225			
	3.075		2.22			
9/10/2015 11:06		0.045	3.22			
9/10/2015 11:08		8.045	0.045			
9/10/2015 11:54		0.055	3.215			
9/10/2015 11:56		8.055				
9/10/2015 12:00	3.07					
9/10/2015 13:36		8.04				
9/10/2015 13:42		8.045				
9/10/2015 13:44		8.045				
9/10/2015 13:45			3.21			
9/10/2015 13:53	3.05					
9/10/2015 14:03			3.2			
9/10/2015 14:05		8.05				
9/10/2015 14:25		8.14				
9/10/2015 14:26		7.25				
9/10/2015 14:26		6.85				
9/10/2015 14:27		6.55				
9/10/2015 14:27		6.18				
9/10/2015 14:27		6				
9/10/2015 14:27		5.75				
9/10/2015 14:27		5.6				
9/10/2015 14:28		5.43				
9/10/2015 14:28		5				
9/10/2015 14:28		4.75				
9/10/2015 14:29		4.75				
9/10/2015 14:29		4.25				
9/10/2015 14:29		4.25				
9/10/2015 14:30		3.75				
9/10/2015 14:30 9/10/2015 14:31		3.7				
		3.57				
9/10/2015 14:31		3.41				
9/10/2015 14:32		3.3				
9/10/2015 14:33		3.2				
9/10/2015 14:36		3.165				
9/10/2015 14:42		3.155				
9/10/2015 15:15	3.035					

Table 3c Manual Water Level Data Hydraulic Testing of TW15-1

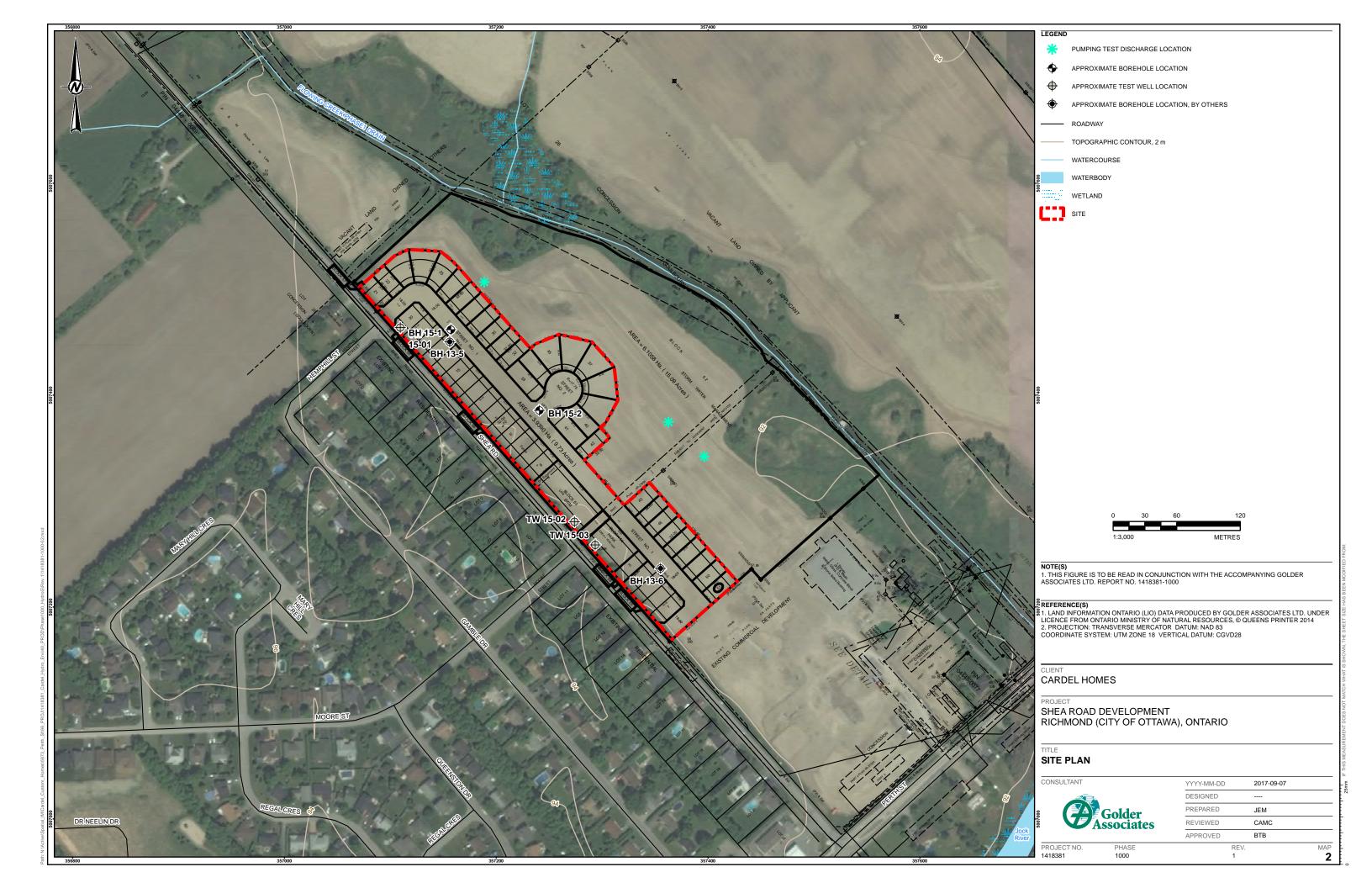
	Water I	evel Measi	ırement			
	Water Level Measurement (metres below top of casing)					
Date and Time	TW15-1	TW15-2 TW15-3				
9/11/2015 7:30	3.105	3.21	3.255			
9/11/2015 7:30	3.16	0.21	5.255			
9/11/2015 8:05	3.14					
9/11/2015 8:05	3.145					
9/11/2015 8:06	3.14					
9/11/2015 8:06	3.135					
9/11/2015 8:08	3.135					
9/11/2015 8:10	3.14					
9/11/2015 8:10	3.14					
9/11/2015 8:17	3.13					
9/11/2015 8:30	3.13					
9/11/2015 8:35	0.10	3.23				
9/11/2015 8:36		0.20	3.24			
9/11/2015 9:13	3.125		J.2 1			
9/11/2015 9:37	3.125					
9/11/2015 9:54	3.125					
9/11/2015 10:02	0.120	3.22				
9/11/2015 10:04		0.22	3.24			
9/11/2015 10:09			3.235			
9/11/2015 10:10		3.22	0.200			
9/11/2015 10:19	3.125	0.22				
9/11/2015 10:30	3.12					
9/11/2015 11:00	3.11					
9/11/2015 11:25	3.105					
9/11/2015 11:35	0.100	3.205				
9/11/2015 11:38		0.200	3.215			
9/11/2015 11:48	3.115		0.210			
9/11/2015 12:16	3.095					
9/11/2015 12:28	3.1					
9/11/2015 12:42	3.095					
9/11/2015 12:48	0.000	3.19				
9/11/2015 12:50		01.0	3.205			
9/11/2015 12:54			3.205			
9/11/2015 12:56		3.19				
9/11/2015 13:00	3.095	01.0				
9/11/2015 13:15	3.09					
9/11/2015 13:33	3.09					
9/11/2015 13:40	-	3.185				
9/11/2015 13:42			3.2			
9/11/2015 13:47			3.2			
9/11/2015 13:48		3.185	- '			
9/11/2015 13:52	3.085					
9/11/2015 14:15	3.08					
9/11/2015 14:17	3.08					
9/11/2015 14:17	3.08					
9/11/2015 14:17	3.08					
9/11/2015 14:18	3.08					
9/11/2015 14:39	3.055					
9/11/2015 14:48			3.19			
9/11/2015 14:50		3.165				
9/14/2015 8:23	2.705					
9/14/2015 8:50		2.805	2.755			

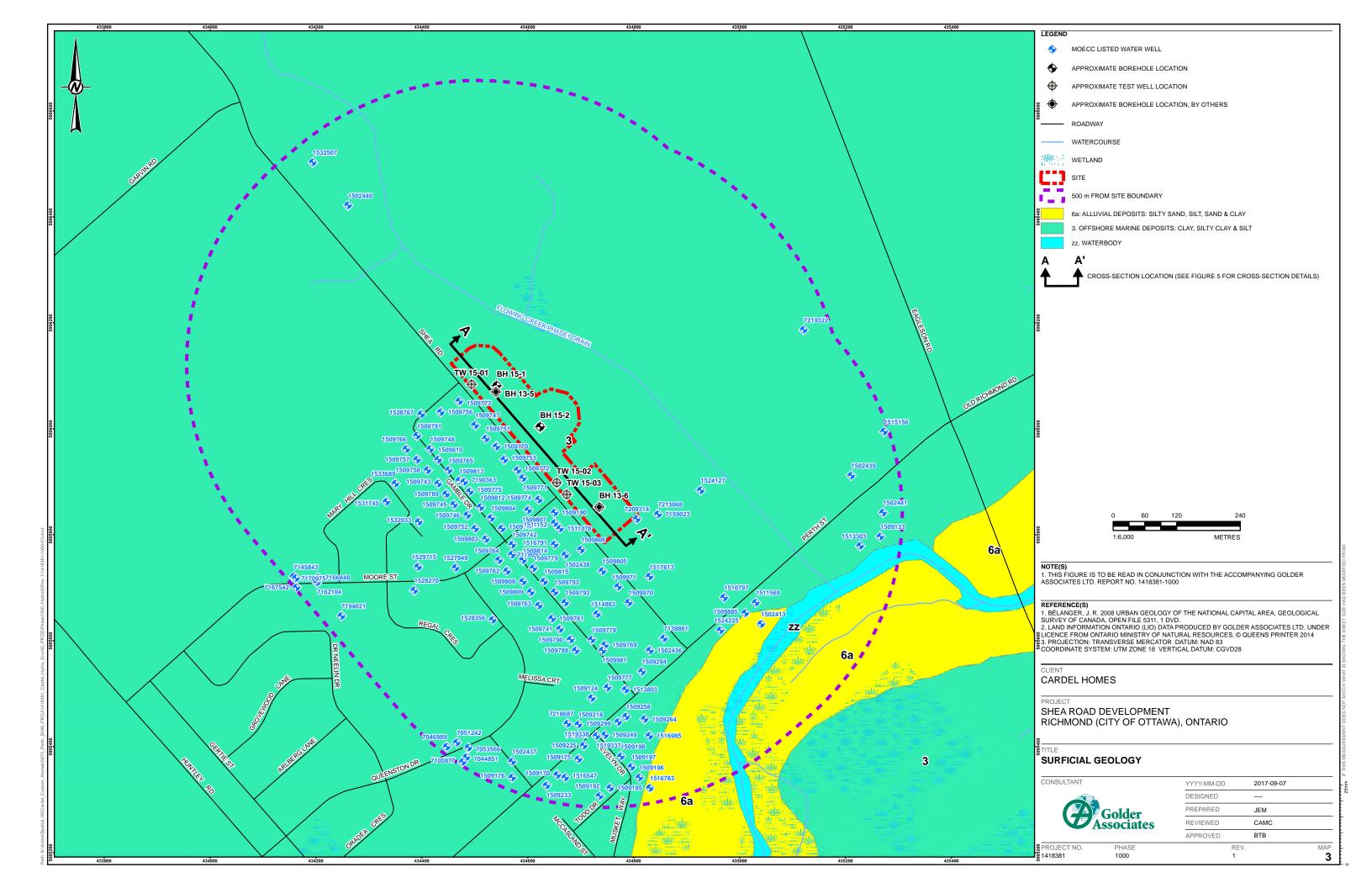
TABLE 4 **WATER QUALITY DATA (RESIDENTIAL SAMPLE)**

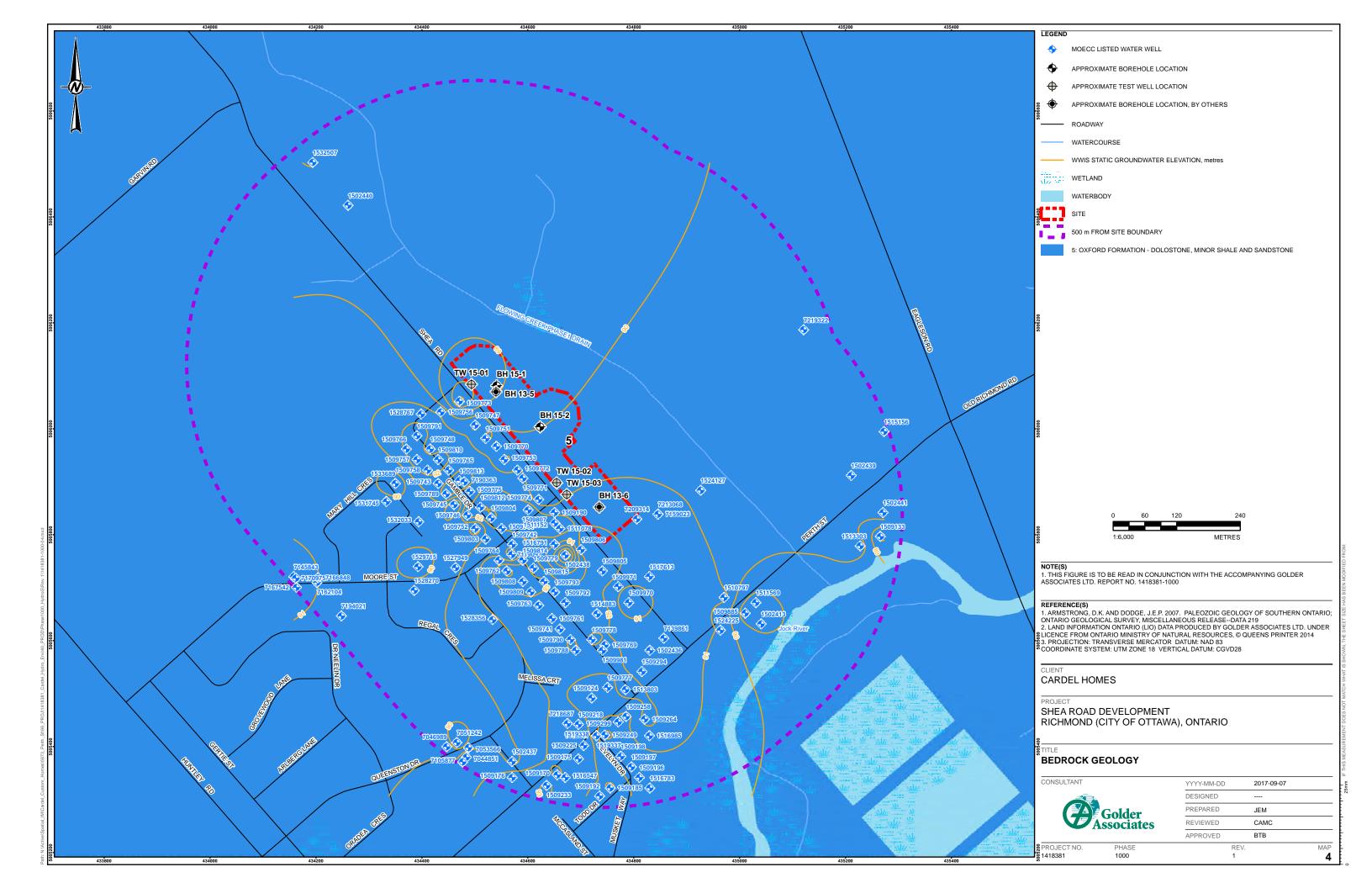
					3310 SHEA ROAD
		ODWQS(169/03)-	ODWQS-	ODWQS-	23-Oct-2015
Parameter	Unit	Health (1) (2)	AO (3) (4)	OG (5) (6)	3310 SHEA
Bacterial					
Escherichia coli	CFU/100mL	0 (7)			0
Total Coliform	CFU/100mL	0 (7)			0
General Chemistry					
Alkalinity (Total as CaCO3)	mg/l			500	238
Ammonia Nitrogen	mg/l				0.41
Chloride	mg/l		250		100
Color	color unit		5		3
Conductivity	uS/cm				825
Conductivity (Field)	uS/cm				785
Dissolved Organic Carbon	mg/l		5		1.3
Fluoride	mg/l	1.5			1.11
Hardness, Calcium Carbonate	mg/l			100	117
Nitrate as N	mg/l	10			<0.10
Nitrite as N	mg/l	1			<0.10
Nitrogen, Total Kjeldahl	mg/l				0.4
Nitrogen, Organic	mg/l			0.15	<0.08
pH				8.5	8.33
pH (Field)	<u> </u>			8.5	6.51
Phosphorus, Total Orthophosphate, dissolved	mg/l				<0.2
Sulphate	mg/l		500 (7)		38
Tannin & Lignin	mg/l				<0.1
Temperature (Field)	deg c		15		12.7
Total Dissolved Solids	mg/l		500		536
Turbidity (Field)	NTU		500 5 ⁽⁸⁾	(9)	0.69
Metals	NIO		3.7	` '	0.09
	m m /I			0.4	<0.01
Aution	mg/l			0.1	
Antimony	mg/l	0.006			<0.0005
Arsenic	mg/l	0.025			<0.001
Barium	mg/l	1			0.08
Beryllium	mg/l				<0.0005
Boron	mg/l	5			0.52
Cadmium	mg/l	0.005			<0.0001
Calcium	mg/l				19
Chromium	mg/l	0.05			<0.001
Copper	mg/l		1		0.001
Iron	mg/l		0.3		0.31
Lead	mg/l	0.01			<0.001
Magnesium	mg/l		<u></u>		17
Manganese	mg/l		0.05		<0.01
Mercury	mg/l	0.001			<0.0001
Molybdenum	mg/l				<0.005
Nickel	mg/l				<0.005
Potassium	mg/l				6
Selenium	mg/l	0.01			<0.001
Silver	mg/l				<0.0001
Sodium	mg/l		200 (10)		134
Strontium	mg/l				2.86
Thallium	mg/l				<0.0001
Uranium	mg/l	0.02			<0.001

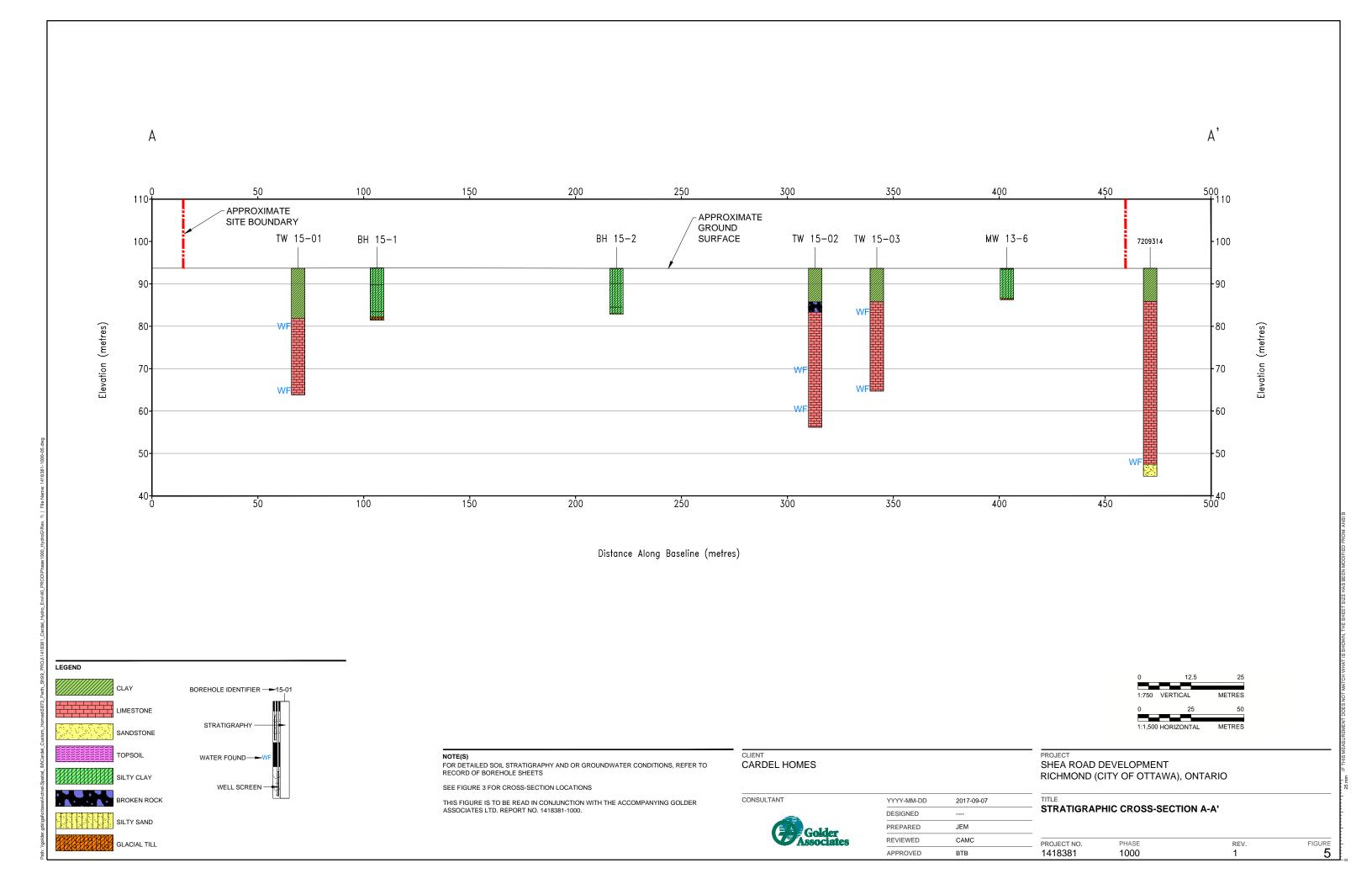
Footnotes:

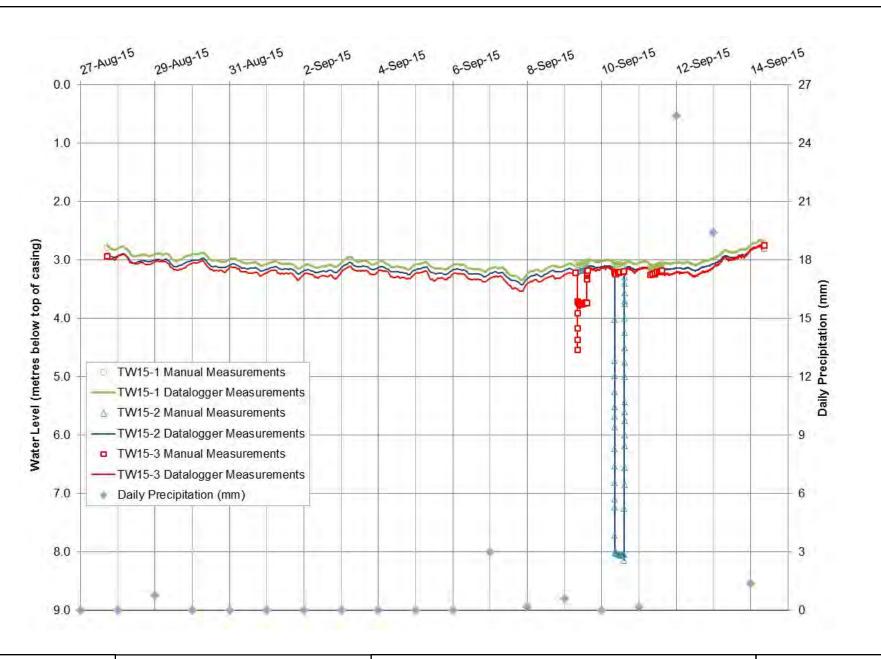

Tables should be read in conjunction with the accompanying document.


- < value = Indicates parameter not detected above laboratory method detection limit.
- > value = Indicates parameter detected above equipment analytical range.
- -- Chemical not analyzed or criteria not defined.


Grey background indicates exceedances.


All samples were collected un-filtered.


- (1) Ontario Drinking Water Quality Standards Health Based Standards (June 2003, revised June 2006).
- (2) Bold Font = Parameter concentration greater than ODWQS(169/03)-Health
- (3) Ontario Drinking Water Quality Standards Aesthetic Objectives. Aesthetic Objectives are established for parameters that may impair the taste, odour or colour of water or which may interfere with good water quality control practices. For certain parameters, both aesthetic objectives and health-related MACs have been derived (June 2003, revised June 2006).
- (4) Underlined Font = Parameter concentration greater than ODWQS-AO
- (5) Ontario Drinking Water Quality Standards Operational Guidelines. Operational Guidelines are established for parameters that, if not controlled, may negatively affect the efficient and effective treatment, disinfection and distribution of the water (June 2003, revised June 2006).
- (6) Italic Font = Parameter concentration greater than ODWQS-OG
- (7) There may be a laxative effect in some individuals when sulphate levels exceed 500 mg/L.
- (8) Applicable for all waters at the point of consumption.
- (9) The Operational Guidelines for filtration processes are provided as performance criteria in the Procedure for Disinfection of Drinking Water in Ontario.
- (10) The aesthetic objective for sodium in drinking water is 200 mg/L. The local Medical Officer of Health should be notified when the sodium concentration exceeds 20 mg/L so that this information may be communicated to local physicians for their use with patients on sodium restricted diets.



Date: September 2017 Drawn: CAMC

Project: 1418381-1000 Chkd: BTB

Water Level Measurements at Test Wells Before, During and After the Pumping Tests

FIGURE 6

Curricula Vitae

Education

M.Sc. Earth Sciences, University of Waterloo, Waterloo, Ontario, 2004

B.Sc. Earth Sciences, University of Waterloo, Waterloo, Ontario, 2002

Certifications

Registered Professional Geoscientist, Association of Professional Geoscientists, Ontario, 2007

Golder Associates Ltd. - Ottawa

Career Summary

Caitlin Cooke, P.Geo., is a hydrogeologist with Golder Associates in Ottawa. She holds B.Sc. and M.Sc. degrees, both from the department of Earth Science at the University of Waterloo. She manages hydrogeological and environmental investigations including monitoring of groundwater and surface water quality at landfills and quarries, borehole drilling and groundwater monitoring well installation, and groundwater modeling in support of construction dewatering projects and permit to take water applications.

Employment History

Golder Associates Ltd. - Ottawa, Ontario

Hydrogeologist/Environmental Scientist (2004 to Present)

Performs scheduling, technical analysis, data management and report generation for a variety of hydrogeological and environmental projects. Duties include: residential groundwater sampling; groundwater and surface water analysis at municipal waste disposal and quarry sites and assessment of their performance; hydrogeological and environmental investigations including borehole drilling and groundwater monitoring well installations; groundwater elevation monitoring at waste disposal sites, quarries and construction sites; and preparation of Permit To Take Water (PTTW) applications. Performs groundwater modeling for wellhead protection studies, construction-related groundwater control and quarry PTTW applications.

University of Waterloo - Waterloo, Ontario

Teaching Assistant (2002)

Instructed undergraduate students in geophysical field exercises, corrected assignments.

Gorrell Resource Investigations – Oxford Mills, Ontario

Intermediate Hydrogeologist (2001)

Produced hydrogeological reports and environmental assessment reports for clients; measured water levels and collected water samples at quarries and waste disposal sites.

Grace Bioremediation Technologies – Mississauga, Ontario Laboratory Assistant (1999 to 2000)

Established, maintained, and disposed of lab-scale soil research studies which proved innovative bioremediation methods for hydrocarbon-contaminated soils; operated liquid scintillation counter for analysis of CO2 samples from radio-labeled soil studies; extracted organic compounds from soil samples for gas chromatograph analysis.

Education

M.Sc. Earth Sciences-Hydrogeology Option, University of Waterloo, Waterloo, Ontario, 1995

B.Sc. Geological Engineering , Queen's University, Kingston, Ontario, 1989

Certifications

Registered Professional Engineer, Ontario, 1997

Golder Associates Ltd. - Ottawa

Career Summary

Brian Byerley has over 23 years of experience as a hydrogeologist, geophysicist and project manager. Brian has been involved in a wide range of environmental engineering and hydrogeology projects involving construction dewatering for sewers, watermains and other infrastructure; landfill investigations and monitoring; water supply assessments and investigations; source water protection; contaminant site investigations; and Class Environmental Assessments. He is skilled in the evaluation of contaminant and physical hydrogeological information and the development of hydrogeological conceptual models. He is experienced in the areas of pump test design and analysis, geochemical, groundwater and landfill modeling. He has significant experience with the Ontario Permit to Take Water program and has obtained Environmental Compliance Approvals for landfills and sewage works. He is an experienced public presenter, possessing the necessary combination of technical and public communication skills. Brian has provided peer review services for a number of municipalities and conservation authorities and has provided expert witness testimony as a hydrogeologist to the Ontario Municipal Board.

Employment History

Golder Associates Ltd. – Ottawa, Ontario

Hydrogeologist then Associate (2003) and Principal (2012) (1996 to Present)

Involved in groundwater resources studies; construction dewatering projects; wellhead protection studies; on-site sewage system investigations; landfill groundwater, surface water and gas investigations; contaminant site investigations; contaminated site monitoring; and, remediation programs as a hydrogeologist, project manager and as a technical reviewer.

Was the hydrogeologist for three Class EA projects involving water and sewage services in three Eastern Ontario villages. Two of the projects involved extensive water well sampling and assessment of on-site sewage systems. All three projects involved multiple public presentations and consultations.

Was the hydrogeologist and project manager for a project involving the characterizing of over 300 private water supply wells, located within a chlorinated solvent groundwater plume, and the design and installation of water treatment systems for these supply wells.

Involved in many construction dewatering projects: assessing rates of groundwater inflow, evaluating potential environmental impacts, preparing groundwater control specifications, and obtaining associated water taking permits and sewage works approvals.

Involved in numerous Phase II and Phase III Environmental Site Assessments and landfill monitoring programs. Conducted and analysed pumping tests and other hydraulic tests. Completed groundwater and landfill modeling. Participated in the design and permitting of on-site sewage systems.

Curriculum Vitae

Managed a pump-and-treat system to remediate a potable water supply aquifer, and developed design recommendations that were implemented and achieved site remediation and decommissioning of the system.

Waterloo Centre for Groundwater Research – Waterloo, Ontario Research Hydrogeologist (1995 to 1996)

Involved in the application and evaluation of soil and groundwater sampling and remediation technologies developed at WCGR. Responsible for the collection, compilation and interpretation of field data for a research project studying enhanced in-situ bioremediation of BTEX contaminated groundwater using passive release of oxygen from ORC (oxygen release compound) in wells. Was the lead hydrogeologist for a detailed DNAPL source zone soil and groundwater investigation at a US Superfund site.

University of Waterloo – Waterloo, Ontario

Research Assistant (1993 to 1994)

Designed, built and maintained an experimental on-site landfill leachate treatment system. Monitored the system over two years and applied geochemical and flow modeling to evaluate system treatment effectiveness. Assisted in the installation and monitoring of other experimental septic systems.

Geoterrex Ltd. – Ottawa, Ontario

Geophysicist and Project Manager (1989 to 1991)

Managed collection and processing of airborne electromagnetic and magnetic data.

APPENDIX B

Summary of MOECC Water Well Records

Well ID	Date Completed	Easting	Northing	UTMRC	Elevation (m)	CODEOB	Depth to Bedrock (m)	Well Depth (m)	Bottom of Well Elevation (m)	Static Water Elevation (m)	USE_1ST	USE_2ND
1502413	20-Nov-63	435041	5005632	5	91.7	r	9.8	15.2	76.4	88.6	Domestic	
1502436	30-Jun-50	434831	5005582	5	94.0	r	8.5	18.9	75.1	91.6	Domestic	
1502437	04-Oct-54	434571	5005372	5	94.2	r	9.1	15.2	78.9	90.5	Domestic	D + i -
1502438 1502439	28-Jun-66 12-May-56	434671 435211	5005762 5005912	5	94.6	r	18.3 9.1	25.3 19.8	69.3 73.2	90.0	Livestock Domestic	Domestic
1502440	27-Nov-57	434261	5006422	5	92.9	r	18.6	25.9	67.0	89.9	Livestock	Domestic
1502441	02-Dec-65	435271	5005842	5	92.7	r	11.6	20.7	72.0	90.9	Livestock	Domestic
1509124	11-Dec-53	434721	5005492	5	94.3	r	11.6	15.2	79.0	91.2	Domestic	2011163616
1509133	11-Oct-55	435266	5005797	5	91.2	r	5.8	13.4	77.8	87.6	Domestic	
1509170	14-May-58	434656	5005347	5	94.6	r	6.1	12.5	82.1	91.5	Domestic	
1509175	20-Jun-58	434696	5005377	5	94.5	r	7.3	12.2	82.3	92.7	Domestic	
1509176	24-Jun-58	434571	5005342	5	94.3	r	8.8	15.5	78.8	92.8	Domestic	
1509185	10-Jun-59	434756	5005322	5	94.1	r	7.3	15.2	78.8	92.2	Domestic	
1509190	30-Jul-59	434651	5005842	5	94.4	r	6.7	18.9	75.5	91.3	Domestic	
1509192	06-Aug-59	434736	5005307	5	93.8	r	6.4	24.4	69.4	91.4	Domestic	
1509196 1509197	22-Aug-59 26-Aug-59	434811 434796	5005342 5005362	5	93.2	r	7.9	15.2 14.0	78.0 79.7	90.5	Domestic Domestic	
1509197	29-Aug-59	434776	5005382	5	94.0	r	8.5	12.2	81.8	90.3	Domestic	
1509218	18-Nov-59	434696	5005382	5	94.5	r	10.4	18.6	75.9	92.6	Domestic	
1509225	24-May-60	434706	5005402	5	94.6	r	8.2	12.5	82.1	93.1	Domestic	
1509233	01-Aug-60	434636	5005327	5	94.4	r	6.4	19.8	74.6	93.2	Domestic	
1509249	03-Jul-61	434746	5005422	5	94.2	r	9.1	15.2	78.9	89.6	Domestic	
1509258	19-Apr-62	434786	5005457	5	93.4	r	8.2	18.3	75.2	90.7	Domestic	
1509264	01-Aug-62	434821	5005452	5	94.2	r	8.8	42.7	51.5	92.4	Commerical	
1509294	03-May-65	434816	5005542	5	94.1	r	8.8	24.1	70.0	91.6	Commerical	
1509299	18-Jun-66	434771	5005447	5	94.0	r	6.4	17.1	76.9	90.9	Domestic	
1509741	30-Sep-68	434661		4	94.4	r	8.2	8.5	85.9	92.6	Domestic	
1509742	28-Sep-68	434571	5005782	4	94.4	0		11.3	83.1	91.4	Domestic	
1509743	27-Sep-68	434431	5005897	4	94.4	r	12.8	16.5	77.9	91.3	Domestic	
1509744 1509745	27-Sep-68	434551 434461	5005812 5005857	4	94.5	r	11.3 11.9	12.5 19.5	82.0 74.9	92.1 88.3	Domestic	
1509745	26-Sep-68 25-Sep-68	434486	5005837	4	94.4	r	12.2	15.5	78.7	92.8	Domestic Domestic	
1509747	24-Sep-68	434501	5006007	4	94.3	r	12.5	14.6	79.6	91.2	Domestic	
1509748	24-Sep-68	434416	5005962	4	94.2	r	13.7	15.2	78.9	91.1	Domestic	
1509751	25-Sep-68	434521	5005982	4	94.3	r	12.8	15.8	78.4	89.7	Domestic	
1509752	25-Sep-68	434501	5005812	4	94.4	r	11.6	15.2	79.2	89.2	Domestic	
1509753	24-Sep-68	434556	5005942	4	94.3	r	12.2	15.2	79.1	89.7	Domestic	
1509756	14-Aug-68	434436	5006032	4	94.2	r	13.1	26.2	68.0	90.8	Domestic	
1509757	14-Aug-68	434391	5005942	4	94.5	r	13.7	14.3	80.1	92.9	Domestic	
1509758	16-Aug-68	434411	5005922	4	94.4	r	13.7	15.2	79.1	92.5	Domestic	
1509761	16-Aug-68	434646	5005642	4	94.4	r	8.8	9.1	85.2	92.8	Domestic	
1509762	30-Aug-68	434561	5005732	4	94.5	r	9.8	11.3	83.3	94.5	Domestic	
1509763 1509764	29-Aug-68 29-Aug-68	434621 434546	5005667 5005752	4	94.4	r	9.1	10.7 15.5	83.8 79.0	92.3 92.4	Domestic	
1509765	29-Aug-68 28-Aug-68	434451	5005732	4	94.3	r	13.7	16.8	79.0	91.3	Domestic Domestic	
1509766		434371		4	94.3	r	14.3	16.2	78.2	92.2	Domestic	
1509769	10-Oct-68		5005592	4	94.4	r	8.5	10.7	83.8	92.3	Domestic	
1509770	28-Oct-68	434541		4	94.3	r	12.2	13.4	80.8	91.2	Domestic	
1509771	26-Oct-68		5005907	4	94.1	r	10.4	11.9	82.2	91.0	Domestic	
1509772	24-Oct-68	434581	5005922	4	94.1	r	11.9	12.2	81.9	91.1	Domestic	
1509773	24-Oct-68	434471		4	94.1	r	14.0	18.0	76.1	86.5	Domestic	
1509774		434621		4	94.5	r	9.1	10.1	84.4	89.9	Domestic	
1509775	23-Oct-68		5005882	4	94.5	r	12.8	15.2	79.2	91.4	Domestic	
1509777	08-Oct-68	434751		4	93.8	r	7.0	8.8	85.0	91.7	Domestic	
1509778	09-Oct-68	434721		4	94.3	r	8.2	9.4	84.9	91.6	Domestic	
1509779 1509788	05-Oct-68 10-Jul-68	434611 434691		4	94.5 94.3	r	9.1	12.2 10.4	82.3 84.0	92.7 93.1	Domestic Domestic	
1509788	08-Jul-68	434446		4	94.5	r	13.4	15.2	79.2	93.1	Domestic	
1509789	09-Jul-68	434440		4	94.4	r	9.1	10.7	83.7	93.1	Domestic	
1509791	27-Jun-68	434391		4	94.2	r	13.7	15.2	78.9	92.9	Domestic	
1509792	06-Jun-68	434671		4	94.5	r	9.4	11.0	83.5	92.7	Domestic	
1509793	07-Jun-68	434651		4	94.5	r	8.8	9.8	84.7	92.6	Domestic	
1509803	31-Jul-68	434521		4	94.5	r	11.0	12.2	82.3	91.4	Domestic	
1509804	30-Jul-68	434531		4	94.4	r	11.0	13.1	81.3	93.2	Domestic	
1509805	29-Jul-68	434741		4	94.4	r	8.8	10.4	84.0	93.1	Domestic	
1509806	26-Jul-68	434701		4	94.3	r	8.2	9.8	84.6	93.1	Domestic	
1509807	25-Jul-68	434601		4	94.4	r	8.2	10.1	84.3	93.2	Domestic	
1509808	23-Jul-68	434591		4	94.5	r	9.8	13.7	80.7	93.2	Domestic	
1509809	22-Jul-68 02-Jul-68	434606 434431		4	94.5 94.3	r	9.8	11.0 15.5	83.5 78.7	93.3 93.1	Domestic Domestic	
1509810				4	<i>5</i> 4.5	1 1	13./	13.3	/0./	33.1	DOILIESTIC	

Well ID	Date Completed	Easting	Northing	UTMRC	Elevation (m)	CODEOB	Depth to Bedrock (m)	Well Depth (m)	Bottom of Well Elevation (m)	Static Water Elevation (m)	USE_1ST	USE_2ND
1509813	16-May-68	434471	5005902	4	94.4	r	12.8	14.6	79.7	93.1	Domestic	
1509814	14-May-68	434591	5005752	4	94.5	r	9.1	12.2	82.3	93.0	Domestic	
1509815	13-May-68	434631	5005712	4	94.4	r	8.8	18.3	76.2	93.2	Domestic	
1509885	07-Oct-68	435011	5005652	4	92.8	r	11.0	17.1	75.7	88.2	Domestic	
1509970	23-Jan-69	434791	5005672	4	94.4	r	8.5	10.7	83.8	89.9	Domestic	
1509971	22-Jan-69	434771	5005702	4	94.3	r	7.6	12.2	82.1	91.3	Domestic	
1509981	09-Jan-69	434741	5005582	4	94.4	r	8.5	10.7	83.7	92.5	Domestic	
1510797	31-Aug-70	434971	5005682	4	93.1	r	9.4	17.4	75.8	91.3	Domestic	
1511078	29-Jan-71	434661	5005812	4	94.4	r	6.7	9.4	85.0	92.6	Domestic	
1511152	21-Apr-71	434651	5005822	4	94.5	r	7.6	9.4	85.0	93.5	Domestic	
1511569	06-Dec-71	435031	5005672	4	92.0	r	6.7	19.2	72.8	88.4	Domestic	
1513303	19-Jun-73	435228	5005779	4	91.8	r	11.3	16.8	75.0	90.5	Domestic	
1513803	10-Mar-73	434785	5005508	4	93.7	r	7.0	9.4	84.2	92.5	Domestic	
1514883	25-Jun-75	434731		4	94.6	r	10.1	12.5	82.1	93.1	Domestic	
1515156	18-Nov-75	435273	5005995	4	93.1	r	10.7	16.8	76.4	90.7	Domestic	
1516547	24-Apr-78	434671	5005333	4	94.5	r	8.8	19.5	75.0	93.0	Domestic	
1516783	21-Sep-78	434831		4	93.3	r	6.7	13.4	79.8	90.2	Domestic	
1516791	03-Oct-78	434651	5005782	4	94.6	r	7.9	19.5	75.1	91.5	Domestic	
1516985	09-May-79	434830	5005421	4	93.9	r	1.8	10.7	83.2	91.7	Domestic	
1517613	21-Jul-81	434830	5005721	4	93.9	r	14.0	14.6	79.2	91.4	Domestic	
1518017	01-Oct-82	434730	5005/21	4	94.4	r	9.8	22.9	71.6	92.9	Domestic	
1519337	26-Sep-84	434730	5005421	4	94.4	r	11.9	12.8	81.6	91.4	Domestic	
1519338	13-Sep-84	434730		4	94.4	r	12.8	27.4	67.0	88.9	Domestic	
1524127	26-Oct-89	434927	5005884	5	92.7	r	10.1	19.5	73.2	90.9	Domestic	
1524225	08-Aug-89	434964		5	93.4	r	9.8	22.9	70.5	90.9	Domestic	
1527949	25-May-94	434464		5	94.3	r	11.6	19.2	75.1	90.7	Domestic	
1528270	07-Oct-94	434386	5005695	5	94.5	r	10.4	19.2	75.3	90.5	Domestic	
1528356	30-Nov-94	434534		5	94.3	r	11.3	19.2	75.1	91.9	Domestic	
1528767	05-Sep-95	434399	5006028	5	94.1	r	14.0	14.3	79.7	91.6	Domestic	
1529715	24-Oct-97	434393	5005740	5	94.5	r	14.6	83.2	11.3	89.3	Domestic	
1531745	11-Jan-01	434333	5005863	3	94.2	r	15.8	74.7	19.6	90.6	Domestic	
1532033	20-Jun-01	434394	5005825	3	94.4	r	14.6	74.7	19.7	90.7	Domestic	
1532507	28-Nov-01	434194	5006503	3	93.5	r	18.6	30.5	63.0	88.9	Domestic	
1533689	06-Mar-03	434350	5005897	6	94.2	r	11.6	22.3	72.0	88.7	Domestic	
7044851	11-Apr-07	434484	5005380	3	94.1	r	40.0	75.6	18.5	91.8	Domestic	
7046989	14-Jun-07	434447	5005400	3	94.2		40.0	68.0	26.3	90.9	Domestic	
7051242	13-Aug-07	434466	5005408	3	94.2			68.0	26.2	88.6	Domestic	
7053566	23-Oct-07	434488	5005398	3	94.1			71.6	22.5	90.8	Domestic	
7105877	13-May-08	434477	5005371	3	94.1			53.3	40.8	91.2	Domestic	
7119097	02-Oct-08	434570	5005763	4	94.5			19.8	74.7	90.2	30636.6	
7139861	29-Oct-09	434857	5005605	4	93.8			45.1	48.7	91.6	Public	Domestic
7145843	25-Mar-10	434158	5005721	4	94.6			73.2	21.5	91.4	Domestic	
7159023	22-Dec-10	434846	5005721	3				61.9			Domestic	
7162104	14-Mar-11	434202	5005710	3				73.1			Domestic	
7166848	30-May-11	434204		3				70.1		 	Domestic	
7167542	13-Jul-11		5005713	3				73.2		 	Domestic	
7170975	05-Jul-11		5005701	4				73.1			Domestic	
7190363	05-Oct-12		5005710	4				. 512			Domestic	
7194021	05-Nov-12		5005647	5				73.2			Domestic	
7209314	15-Aug-13		5005830	4				49.1			Commerical	
7213068	21-Oct-13		5005839	4				.5.2				
7218687	13-Aug-13		5005444	4				70.1			Domestic	
. 223007	06-Aug-13		5006187	4				7 5.1			206366	

APPENDIX C

Test Well MOECC Well Records On-Site Borehole Records

Measurements recorded in:

Well Owner's Information

Ministry of the Environment

Metric | Imperial

We'll Tag No. (Place Sticker and/or Print Below

A165020

Tag #: A165020 =

020 —	Regulation	e constant	Pa			of
020				6-0	inia.	
E-mail Address						Constructed
Province	Postal Code		Telepho	ne N	A	area code)
Ontario	K2H 9C4					
	Lot	-	Conces	sion		
		Provi	100		Donto	l Code
		1	ario		Posta	Code
ımber		Other			l—I,—	
of this form)		-				-
	eral Description	i i			Dep	oth (m/ft)
Pac	cked				0	3.35
St	icky				3.35	5 11.88
Med	lium			1	1.88	
er test of well yield,	Results of We					u.
Clear and sand		Time	water L			lecovery Water Level
Other, specify _		(min) Static	(m/ft,)	(min)	(m/ft)
umping discontinue	ed, give reason:	Level	3,11			
mp intake set at (i	m/ft)	1	3.16		1	3.08
15.23		2	3.14	+	2	3.08
mping rate (Vmin /		3	3.14	+	3	3.08
45.5 ration of pumping		4	3.13	3	4	3.08
6 hrs + 10	min	5	3.14	4	5	3.08
al water level end o	The Charles of the Control of the Co	10	3.13	3	10	3.08
owing give rate (1/	the second second	15	3.13		15	3.08
		20	3.13	-	20	3.08
commended pum 12.19		25	122.0		25	
commended pump		30	3,13		30	3.05
in/GPM) 45.5			3,13		-9.0	
Il production (Vmir	1 / GPM)	40	3,13		40	
infected?		50	3.12		50	
Yes No		60	3.12	2	60	
ase provide a map	Map of Webelow following			ne ba	ack.	
	FLA	NK T	wn	24		
N	7 10111			Ť		
Lat .						
					104	
				3	Ma	DRE ST
			,	13		
				8		
				W		
;				W		
				3		
	B W15-01			50		BLE D

First Name	9		ast Name /			-		E-mail Add	dress			☐ Well	Constru
Mailing Ad	Idress (Stre	et Number/Nar	1470424 me)	• Ontar		Municipality		Province	Postal Code		Telephone	Salar School	Vell Own
		Dr. Suite	100			Nepean		Ontari					
Address of		tion (Street Nu	mber/Name)	- 3	Township			Lot	-	Concessi	on	
TW15-	01 Shea	a Road				Goulbou					001100001		
	strict/Munic a Carle					City/Town/V Richmon				Ont:		Posta	al Code
UTM Coord	dinates Zor	ne Easting		orthing			lan and Suble	ot Number		Other	al 10		
NAD	8 3 1	8 4 3 4 4	4 9 8 5	006	0 8 5				*				
General C			als/Abando non Materia			ord (see inst ther Material		back of this form	General Description			De	pth (m/fi
Brown	Joioui	Clay				ner waterial	5		Packed			From	1
Grey		Clay							Sticky			3 3	5 11
Grey			stone						Medium			11.88	
									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1110	
							1						
			Annular	Space	i n	1 - 1	S. Link		Results of W	ell Yiel	d Testing	9	
Depth S From	et at (m/ft) To		Type of Sea (Material ar		*		e Placed n³/ft³)	After test of we	l yield, water was: sand free	Dr Time	aw Down Water Lev		Recover
13.10	0	Grouted	Cement	& Ben	tonite	.42m	3	Other, spe	ecify	(min)	(m/ft)	(min)	
								If pumping disc	ontinued, give reason:	Static Level	3.11		
- (12)								Down lately	-1 -1 / /01	1	3.16	1	3.08
				-				Pump intake s	5.23	2	3.14	2	3.08
Meti	hod of Co	nstruction	/6 P4 S	CHUE!	Well U	se	my FALL	Pumping rate	The state of the s	3	3.14	3	3.0
Cable To	ool Conventiona	☐ Diamond i) ☐ Jetting	1	blic mestic	☐ Comme		Not used Dewatering	Duration of pu	5.5 mping	4	3.13	4	3.08
Rotary (I		☐ Driving		estock	X Test Ho	ole [Monitoring	_6_hrs+_	10_min l end of pumping (m/ft)	5	3.14	5	3.08
Air percu		Digging	☐ Ind	ustrial	☐ Cooling	& Air Conditi	ioning		3.08	10	3.13	10	3.08
Other, sp		noterration D		ner, specify	attion str	1 844		If flowing give r	rate (I/min / GPM)	15	3.13	15	3.08
Inside	Open Hol	e OR Material	Wall		h (<i>m/ft</i>)	▼ Water	Supply	Recommended	d pump depth (m/ft)	20	3.13	20	3.08
Diameter (cm/in)	(Galvanize Concrete,	ed, Fibreglass, Plastic, Steel)	Thickness (cm/in)	From	То	Replac	cement Well	1	2.19	25	3.13	25	3.05
27.13	Оре	n		0	13.10	Rechai	rge Well	Recommended (Vmin / GPM)	No. of the last of	30	3.13	30	
15.86	Ste	el	.48	+.45	13.10		ation and/or	Well production	5.5 n (Vmin / GPM)	40	3.13	40	
						☐ Alterati		Disinfected?		50	3.12	50	
						☐ Abando		X Yes 1	No	60	3.12	60	
0.111	С	onstruction Re	ecord - Scre			_ Abando	cient Supply oned, Poor	Parenting 2	Map of W				
Outside Diameter (cm/in)		aterial Ivanized, Steel)	Slot No.	Depti From	n (<i>m/ft</i>)	Water	Quality oned, other,	Please provide	a map below following		Transfer of the		
(1.7.1.7)		• ,				specify Other,		ar	- FRA.	NK 70	wn K	1	
Water foun	d at Depth	Water Deta Kind of Water		X Untested		Hole Diame th (m/ft)	Diameter				F	Me	ORE
		Other, spec			From	То	(cm/in)				7	700	
		Kind of Water		X Untested	0		15.86				,		
Water foun	d at Depth √ft) ☐ Gas	Kind of Water	: Fresh.[E 102-02-5	13.10		15.55				973	2000	
Business Na		ell Contractor	r and Well	Technicia		tion ell Contractor's	Licence No		Ð				
		r Supply			19	1 5	5 8		TW15-01			601	1348
Business Ad Box 49		et Number/Nar	ne)		100	unicipality Stittsv:	i11e	Comments:					
Province	P	ostal Code	14 100 0 000 100 000	E-mail Add	ress		7.3						
Ontari Bus.Telepho		2 S 1 A area code) Nar	ne of Well T	tfice@	capita	alwater	.ca	information	Date Package Delivere		Mini: Audit No.7	stry Use	e Only
6 1 3	8 3 6	1766	Mill	er, Ste	ephen			package delivered	2 0 1 5 0 9	1 1		18	84
Well Technici	11	No. Signature	of Technicia	n and/or Co		te Submitted	عالمالية	A Yes	2 0 1 5 0 8	1 0			
0506E (2007/1		n's Printer for Onta	0, 2007	4	4		ry's Copy		ופוחוה דוחופ	TIQI	Received		-

Ministry of the Environment

Well Tag No. (Place Sticker and/or Print Below)

A165021

	Well	Record
Regulation 903 C	Ontario Water I	Resources A

Measurem	nents recor	ded in:	Metric [Imperial	-	Гад #: A	165	021-			Pag	ge	_ of
	ner's Inf		1000	dra y	David of	(iii)	4/1/2	Access the second	477				
First Name	3		Last Name 1 147042		^{ion} rio Inc.			E-mail Address					Constructed
	The state of the s	et Number/Na	me)	7,100		Municipality	_	Province	Postal Code		Telephon	2.3.3.3	c. area code)
Well Loc		r. Suite	100			Nepean		Ontario	K 2 H 9	Q 4			
The second second		ion (Street Nu	mber/Name	9)	- 1	Township			Lot		Concess	ion	
	2 Shea					Goulbourn							
	strict/Munic a Carle	30 V 31				City/Town/Village Richmond				Ont	ario	Post	al Code
	dinates Zon			Northing	1	Municipal Plan and	Sublot N	lumber		Other		-1-1-	
NAD	8 3 1	8 4 3 4	6 5 7	5 0 0 5	8 9 6								
General C		Most Comr				ord (see instructions oner Materials	on the bad		eral Description	,		De	epth (m/ft)
Brown		Clay				20,000,000			ked			From	
Grey		Clay						100				0	3.0
Grey		Grav	0.1		Duales	D = =1-		13.40	cky	-		3.0	C SPORT
Grey			stone	-	Broken	KOCK		Wet		_		7.9	
Grey			stone	-				Sof	dra and the	ā		10.3	
Grey									ly Broke	n		24.3	
drey		LIME	stone					Med	ium			31.3	9 37.4
													+
							37						
			Annula	r Space					Results of We	ell Yie	d Testin	a	
Depth Se From	et at (m/ft)	7	Type of Se	ealant Used	i je	Volume Placed (m³/ft³)		fter test of well yield,	water was:	Dr	aw Down		Recovery
11.27	0	Chauta			44.466			X Clear and sand: ☐ Other, specify	ree	(min)	Water Le (m/ft)	vel Time (min)	
11,27	U	Grouted	1 Cemen	it & Be	ntonite	1.392m ³	If	pumping discontinue	ed, give reason:	Static Level			
· mar							-	4		1	5.26	1	6.55
							Pi	ump intake set at (2	5.68	2	5.43
							PI	21,33 umping rate (Vmin /		3	6.23	3	4.50
Meth		nstruction Diamond	. □Р	ublic	Well Us ☐ Comme		200	36.40	GrW)	4		4	
Rotary (0	Conventional)	K Do	omestic	☐ Municipa	al Dewate	ring Di	uration of pumping		5	6.53		4.00
☐ Rotary (F ☐ Boring	Reverse)	☐ Driving ☐ Digging		vestock rigation	Test Hol	le		6_hrs +_10_hal water level end o		-	6.80	5	3.57
Air percu				dustrial ther, specify				8.15	40.000	10	7.23	10	3.16
Other, sp		nstruction Re				Status of We	-	flowing give rate (I/I	min / GPM)	15	7.71	15	3.15
Inside **	Öpen Hol	OR Material	Wall	_	th (m/ft)	Water Supply ■ Market Supply	Re	ecommended pum	o depth (m/ft)	20	7.97	20	3.15
(cm/in)	Concrete,	ed, Fibreglass, Plastic, Steel)	Thickness (cm/in)	From	То	Replacement W	- 1	15.23		25		25	3.15
27.13	Оре	n		0	11.27	Recharge Well	(Vr	ecommended pum min / GPM) 36 • 40	o rate	30	8.00	30	3.15
15.86	Ste	e1	.48	+.45	11.27	☐ Dewatering Wel	or W	ell production (Vmir	(GPM)	40	8.02	40	3.15
					111.27	Monitoring Hole			, , or my	50		50	3.15
						(Construction) Abandoned,	100	sinfected? Yes No		60	8.15	60	3.15
	C	onstruction Re	ecord - Scr	een		Insufficient Sup	ply	3 100 🗀 110	Map of W				3,13
Outside Diameter	M	aterial	Slot No.	1	th (m/ft)	Abandoned, Po Water Quality	Ple	ease provide a map				e back.	
(cm/in)	(Plastic, Ga	vanized, Steel)	SIOU INO.	From	То	Abandoned, oth specify	er,	N					
		Ť.,				Other, specify		1	CHMOND	. 7.	8		
						Other, specify							
Matas face	d -1 D11	Water Det		C'Ou		ole Diameter			,				
		Kind of Water Other, spe		(_XUnteste	From	h (m/ft) Diame							
Water found	d at Depth	Kind of Water	: Fresh	XUnteste	0	11.27 15.	86					15	
		Other, spe		- Untonto	11.27	37.48 15.	55		TW 15-0	12		8	
	T. 620 T. A.	Other, spe		Ontester						0		8	
		Il Contracto	r and Well	Technici	an Informat	ion						5	
	ame of Well	Contractor r Supply	I+d		100	Contractor's Licence	8.87					1	
		et Number/Nar			Mui	5 5 5	8 Co	omments:					
Box 49		4101	Te :			tittsville							
rovince		ostal Code		s E-mail Ad		water.ca	[Wa	ell owner's Date P	ackage Delivere	d 11	B#:	ietm: 11-	o Orbi
Ontari				TITLE	capital	water,ca		ormation	ackage Delivere	u	Audit No:	istry Us	OACE
Bus.Telepho	ne No. (inc.	area code) Nai	me of Well	Technician	(Last Name, I	First Name)			n m h h h	10 11	Audit No.	110	
138	ne No. (inc.	7 6 6	Mille	er, Ste	phen	101010	pac del	ckage livered 2 0	1 5 0 9 1 Vork Completed	0 0	Addit NO.	418	8465
Bus.Telepho	ne No. (inc. 3 6 1 an's Licence	area code) Nai 7 6 6 No. Signature	Mille	er, Ste	phen ontractor Date	101010	pad del	ckage 2 V 0 / Yes Date V	1/ 5/ 0 9 1 Vork Completed 1/ 5 0 8 1		Received	418	8465

0506E (2007/12) © Queen's Printer

Miller, Stephen

K 2 S 1 A 6

Ontario

0 0 9

6 1 3 8 3 6 1 7 6 6

Well Technician's Licence No. Signature

7

office@capitalwater.ca Well owner's information Bus.Telephone No. (inc. area code) Name of Well Technician (Last Name, First Name) package delivered X Yes of Teghnician and/or Contractor Date Submitted ☐ No 2 0 1 5 0 9 1 5 Ministry's Copy

Ministry Use Only Audit No.Z 188460

Date Package Delivered

Date Work Completed

2 0 1 5 0 8 2

2 0 1 5 0 9 1 0

PROJECT: 1418381

RECORD OF BOREHOLE: 15-1

SHEET 1 OF 1

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

LOCATION: N 5006081.4 ;E 434541.2

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: August 13, 2015

DATUM: CGVD28

DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING DEPTH SCALE METRES PIEZOMETER STRATA PLOT NUMBER STANDPIPE INSTALLATION ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● rem V. ⊕ U - ○ WATER CONTENT PERCENT BLOWS/0. DESCRIPTION DEPTH -OW Wp F (m) GROUND SURFACE 93.72 TOPSOIL 0.05 (CI/CH) SILTY CLAY to CLAY, trace sand; grey brown, highly fissured, (Weathered Crust); cohesive, w>PL, SS 10 0 2 SS 6 ∇ 3 SS 5 Bentonite and Cuttings (CI/CH) SILTY CLAY to CLAY; grey with black mottling; cohesive, w>PL, soft to Ф SS (H) 0 5 SS WH 000 Bentonite Seal Silica Sand TP 0 Ф 51 mm Diam. PVC #10 Slot Screen TP РН 10 83.43 10.29 \oplus (CI and ML) SILTY CLAY and CLAYEY SILT; grey, laminated to thinly bedded; Bentonite and Sand cohesive, w>PL 11 ss WH >96 (SM) SILTY SAND, some gravel; grey, 11.58 (GLACIAL TILL); non-cohesive, wet 12 JEM 81.43 SS End of Borehole W.L. in Screen at Elev. 91.39 m on August 24, 2015 1418381.GPJ GAL-MIS.GDT 10/13/15 Sampler Refusal 13 15 MIS-BHS 001 DEPTH SCALE LOGGED: HEC Golder 1:75 CHECKED: SD

PROJECT: 1418381

RECORD OF BOREHOLE: 15-2

BORING DATE: August 13, 2015

SHEET 1 OF 1
DATUM: CGVD28

SAMPLER HAMMER, 64kg; DROP, 760mm

LOCATION: N 5005998.2 ;E 434616.1

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

	로	SOIL PROFILE	1.	,	SA	MPL		DYNAMIC PENETRA RESISTANCE, BLO	WS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	후	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.30m	20 40 I SHEAR STRENGTH Cu, kPa	rem V. ⊕ U - ○	Wp 	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
		GROUND SURFACE	S	93.57		H	М	20 40	60 80	20 40 60 80		
1 2		TOPSOIL (CI/CH) SILTY CLAY to CLAY, trace sand; grey brown, highly fissured, (Weathered Crust); cohesive, w>PL, very stiff		0.05	1 2	SS	13					∑ Bentonite and Cuttings
3		(CI/CH) SII TV CI AV: grov with black		89.84 3.73	3	SS	3					Cuttings
5	dollow Stem)	(CI/CH) SILTY CLAY; grey with black mottling; cohesive, w>PL, firm		5.70	6	TP	PH WH			⊢ ——•	FALL	Bentonite Seal Silica Sand
6 6	200 mm Diam. (Hollow Stem)				7	SS	WН	+++				51 mm Diam. PVC #10 Slot Screen
8					8	SS	WH	+++++				Bentonite and Sand
9		(CI and ML) SILTY CLAY and CLAYEY SILT; grey, laminated to thinly bedded; cohesive, w>PL, firm to stiff		9.14	9	SS	WR	+				W.L. in Screen at Elev. 91.73 m on
11		(SM) SILTY SAND, some gravel; grey, (GLACIAL TILL); non-cohesive, wet End of Borehole Sampler Refusal		82.90 10.67 10.87	10	SS	>50		+			August 24, 2015
12												
13												
14												

LOG OF BOREHOLE BH13-6

PROJECT: Geotechnical Investigation - 5831/5873 Perth St. & 2770 Eagleson Rd. **DRILLING DATA**

Method: Hollow Stem Augers

	IT: Cardel Homes									ollow S		ıgers								
	ECT LOCATION: 5831/ 5873 Perth St. a	and 2	2770	Eagles	son Rd	I., Otta	wa			203mm						RE	F. NC).: 1	776-7	'10
	M: Geodetic							Date	e: Aug	/06/201	3					EN	ICL N	0.:		
BH LC	OCATION: See Borehole Location Plan	N 50	$\overline{}$					IDV	AMICC	ONE DE	NETDA	TION								
	SOIL PROFILE		S	SAMPL	ES.	· ·		RES	ISTANC	ONE PE E PLOT	NETRA	TION		PLAST	c NAT	JRAL	LIQUID		Þ	REMARKS
(m)		Ы			(OI	GROUND WATER CONDITIONS	_		20	40 (30 E	30 1	00	LIMIT W _P	CON	TENT W	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	AND GRAIN SIZE
ELEV	DESCRIPTION	STRATA PLOT	E.		BLOWS 0.3 m	N OF	ELEVATION		EAR STUNCON	FINED	TH (kl	Pa) FIELD V & Sensit	ANE	"		···	—	CU)	R PR	DISTRIBUTION
DEPTH		RAT	NUMBER	TYPE		NO IN	EVA			FINED	_ ×	& Sensit LAB V	ivity ANE	WA	TER CO	NTEN	Γ (%)	la o	¥	(%)
93.7			ž	≱	ż	8 8			25	50	75 1	00 1	25	2	5 5	0 7	75			GR SA SI C
9 9.9 0.2	Topsoil 200 mm Silty Clay, brown, moist, firm to stiff,		1	SS	9		g X	\setminus)					
	(weathered crust)						9	3	+											
			2	SS	5		W. L.	92.6	m					+	0	Н			17.9	
			3	SS	3		₩. L.	7, 20 92.1	m						0					
				00	3		q	28, 20 	13 											
			4	SS	3		9								0					
90.7	Silty Clay grey, wet, firm																			
	3 3 3 3 3 3 7 3 7		5	TW												-d				
				VANE			9	\Box	+									1		
				VANE				$ \cdot $	+										16.9	
			6	SS	WH		8	9	-							0				
			Щ	VANE				$ \rangle$	+											
				VANE			8	8 (<u> </u>	+										
								\												
			7	SS	3		8	7							0					
86.6 86:3	Sand and Gravel trace silt, grey,		1	VANE					\ +											
7.4	wet, very dense END OF BOREHOLE		8/		50/			+						 •					\vdash	37 56 (8)
	Notes:				12mm															
	Upon completion, standing water level 3.6 m BSL																			
	2) DCPT refusal at 7.4 m3) Auger refusal at 7.4 m																			
	19mm dia. piezometer was installed in the borehole upon																			
	completion																			
	5) Depth of Water Date Depth																			
	28/08/2013 1.6 m																			
	17/01/2014 1.1 m																			
						1	1							1				l	1	

GROUNDWATER ELEVATIONS

Shallow/ Single Installation $\underline{\underline{V}}$ $\underline{\underline{V}}$ Deep/Dual Installation $\underline{\underline{V}}$ $\underline{\underline{V}}$

APPENDIX D

Laboratory Reports of Analysis and Langelier Saturations Index

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa) Page 1 of 8

Report Number: 1518119

Date Submitted: 2015-09-11

Date Reported: 2015-09-21

Project: 1418381

COC #: 506592

Dear Caitlin Cooke:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

Revised report - Rerun for DOC

APPROVAL:

Shyla Monette 2015.09.23 14:13:48 -04'00'

Shyla Monette

Team Leader, Inorganics

All analysis is completed in Ottawa, Ontario (unless otherwise indicated).

Exova Ottawa is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on our CALA scope of accreditation. It can be found at http://www.cala.ca/scopes/2602.pdf.

Exova (Ottawa) is certified and accredited for specific parameters by OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils). Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is accredited for specific parameters by SCC, Standards Council of Canada (to ISO 17025)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Exova recommends consulting the official provincial or federal guideline as required.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1518119
Date Submitted: 2015-09-11
Date Reported: 2015-09-21
Project: 1418381
COC #: 506592

Group	Analyte	MRL	Units	Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. Guideline	1201077 Groundwater 2015-09-11 TW15-01-3	1201078 Groundwater 2015-09-11 TW15-01-06
Calculations	Hardness as CaCO3	1	mg/L	OG-100	144*	144*
	TDS (COND - CALC)	1	mg/L	AO-500	545*	545*
General Chemistry	Alkalinity as CaCO3	5	mg/L	OG-500	229	226
	Cl	1	mg/L	AO-250	102	104
	Colour	2	TCU	AO-5	4	<2
	Conductivity	5	uS/cm		839	839
	F	0.10	mg/L	MAC-1.5	1.10	1.10
	N-NO2	0.10	mg/L	MAC-1.0	<0.10	<0.10
	N-NO3	0.10	mg/L	MAC-10.0	<0.10	<0.10
	рН	1.00	-	6.5-8.5	8.16	8.21
	SO4	1	mg/L	AO-500	40	40
	Turbidity	0.1	NTU	AO-5.0	2.2	0.8
Mercury	Hg	0.0001	mg/L	MAC-0.001	<0.0001	<0.0001
Metals	Ag	0.0001	mg/L		<0.0001	<0.0001
	Al	0.01	mg/L	OG-0.1	0.01	<0.01
	As	0.001	mg/L	IMAC-0.025	0.001	0.001
	В	0.01	mg/L	IMAC-5.0	0.37	0.36
	Ва	0.01	mg/L	MAC-1.0	0.06	0.06
	Be	0.0005	mg/L		<0.0005	<0.0005
	Ca	1	mg/L		28	28
	Cd	0.0001	mg/L	MAC-0.005	<0.0001	<0.0001
	Cr	0.001	mg/L	MAC-0.05	<0.001	<0.001
	Cu	0.001	mg/L	AO-1.0	<0.001	<0.001
	Fe	0.03	mg/L	AO-0.3	0.27	0.13
	K	1	mg/L		7	7
	Mg	1	mg/L		18	18

Guideline = ODWSOG

* = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1518119
Date Submitted: 2015-09-11
Date Reported: 2015-09-21
Project: 1418381
COC #: 506592

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1201077 Groundwater 2015-09-11 TW15-01-3	1201078 Groundwater 2015-09-11 TW15-01-06
Group	Analyte	MRL	Units	Guideline		
Metals	Mn	0.01	mg/L	AO-0.05	<0.01	<0.01
	Мо	0.005	mg/L		<0.005	<0.005
	Na	2	mg/L	AO-200	121	123
	Ni	0.005	mg/L		<0.005	<0.005
	Pb	0.001	mg/L	MAC-0.010	<0.001	<0.001
	Sb	0.0005	mg/L	IMAC-0.006	<0.0005	<0.0005
	Se	0.001	mg/L	MAC-0.01	<0.001	<0.001
	Sr	0.001	mg/L		3.98	3.97
	TI	0.0001	mg/L		<0.0001	<0.0001
	U	0.001	mg/L	MAC-0.02	<0.001	<0.001
	Zn	0.01	mg/L	AO-5.0	<0.01	<0.01
Nutrients	Organic Nitrogen	0.08	mg/L	OG-0.15	<0.08	<0.08
	PO4 as P	0.2	mg/L		<0.2	<0.2
	Tannin & Lignin	0.1	mg/L		<0.1	<0.1
	Total Kjeldahl Nitrogen	0.1	mg/L		0.2	0.2
Phenols	Phenols	0.001	mg/L		<0.001	<0.001
Subcontract	DOC	0.5	mg/L	AO-5	1.8	1.1
	N-NH3	0.01	mg/L		0.23	0.23

Guideline = ODWSOG

* = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1518119
Date Submitted: 2015-09-11
Date Reported: 2015-09-21
Project: 1418381
COC #: 506592

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Run No 294517 Analysis/Extraction Date 20	015-09-12 Analyst C	F	
Method C SM2130B			
Turbidity	<0.1 NTU	100	73-127
Run No 294568 Analysis/Extraction Date 20	15-09-14 Analyst S	KH	
Method M SM3120B-3500C			
Calcium	<1 mg/L	99	90-110
Potassium	<1 mg/L	100	87-113
Magnesium	<1 mg/L	94	76-124
Sodium	<2 mg/L	99	82-118
Run No 294615 Analysis/Extraction Date 20	15-09-14 Analyst A	ET	
Method C SM4500-H+B			
Alkalinity (CaCO3)	<5 mg/L	101	90-110
Conductivity	<5 uS/cm	101	90-110
F	<0.10 mg/L	99	90-110
рН	6.00	100	90-110
Run No 294678 Analysis/Extraction Date 20	15-09-15 Analyst K	Α	
Method EPA 200.8			
Silver	<0.0001 mg/L	95	94-106

Guideline = ODWSOG

* = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON

K2H 5B7
Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1518119
Date Submitted: 2015-09-11
Date Reported: 2015-09-21
Project: 1418381
COC #: 506592

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Aluminum	<0.01 mg/L	99	89-111
Arsenic	<0.001 mg/L	98	93-106
Boron (total)	<0.01 mg/L	100	88-112
Barium	<0.01 mg/L	97	91-109
Beryllium	<0.0005 mg/L	97	93-107
Cadmium	<0.0001 mg/L	98	93-107
Chromium Total	<0.001 mg/L	95	94-106
Copper	<0.001 mg/L	95	93-106
Iron	<0.03 mg/L	96	92-107
Manganese	<0.01 mg/L	96	94-106
Molybdenum	<0.005 mg/L	101	94-106
Nickel	<0.005 mg/L	97	94-106
Lead	<0.001 mg/L	101	70-130
Antimony	<0.0005 mg/L	95	80-120
Selenium	<0.001 mg/L	99	91-108
Strontium	<0.001 mg/L	99	89-110
Thallium	<0.0001 mg/L	99	95-105
Uranium	<0.001 mg/L	98	94-106

Guideline = ODWSOG

* = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1518119
Date Submitted: 2015-09-11
Date Reported: 2015-09-21
Project: 1418381
COC #: 506592

QC Summary

Analyte	Blank	QC % Rec	QC Limits			
Zinc	<0.01 mg/L	99	94-106			
Run No 294697 Analysis/Extraction Date 20	15-09-15 Analyst N	IP				
Method C SM4500-NO3-F						
N-NO2	<0.10 mg/L	117	80-120			
N-NO3	<0.10 mg/L	95	80-120			
Run No 294768 Analysis/Extraction Date 20	15-09-15 Analyst N	IP				
Method SM 4110						
SO4	<1 mg/L	103	90-110			
Run No 294782 Analysis/Extraction Date 20	15-09-16 Analyst A	ÆΤ				
Method C SM2120C						
Colour	<2 TCU	95	90-110			
Run No 294830 Analysis/Extraction Date 20	15-09-16 Analyst N	IP				
Method SM 4110C						
Chloride	<1 mg/L	101	90-112			
Run No 294930 Analysis/Extraction Date 20	15-09-17 Analyst J	DT				
Method M SM3112B-3500B						
Mercury	<0.0001 mg/L	89	76-123			
Run No 295020 Analysis/Extraction Date 2015-09-15 Analysi CON						
Method SUBCONTRACT P						

Guideline = ODWSOG

* = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1518119
Date Submitted: 2015-09-11
Date Reported: 2015-09-21
Project: 1418381
COC #: 506592

QC Summary

Ar	Analyte		ınk	QC % Rec	QC Limits
N-NH3		<0.01 m	ng/L		
Run No 295022	Analysis/Extraction Date 20	15-09-15 A	Analyst (CON	
Method SUBCONTRA	ACT P				
DOC		<0.5 m	ıg/L		
Run No 295023	Analysis/Extraction Date 20	15-09-17 A	Analyst (CON	
Method SUBCONTRA	ACT P				
Phenols		0.001 m	ng/L		
Run No 295024	Analysis/Extraction Date 20	15-09-16 A	Analyst (CON	
Method C SM5550B					
Tannin & Lignin		<0.1 m	ıg/L		80-120
Run No 295026	Analysis/Extraction Date 20	15-09-18 A	Analyst (CON	
Method SUBCONTRA	ACT P				
Total Kjeldahl Nitr	rogen	<0.1 m	ıg/L		
Run No 295035	Analysis/Extraction Date 20	15-09-15 A	Analyst F	R K	
Method C SM4500-PE					
PO4 as P		<0.2 m	ıg/L	102	
Run No 295053	Analysis/Extraction Date 20	15-09-21 A	Analyst S	SCM	
Method C SM2340B					
Hardness as CaC	O3				

Guideline = ODWSOG

* = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1518119
Date Submitted: 2015-09-11
Date Reported: 2015-09-21
Project: 1418381
COC #: 506592

QC Summary

Analyte		Blank	QC % Rec	QC Limits		
Run No 295054	Analysis/Extraction Date 20	15-09-21 Analyst	SCM			
Method C SM2540						
TDS (COND - CA	LC)					
Run No 295055	Analysis/Extraction Date 20	015-09-21 Analyst	SCM			
Method C SM2340B						
Hardness as CaC	O3					
Run No 295056	Analysis/Extraction Date 20	015-09-21 Analyst	SCM			
Method C SM2540						
TDS (COND - CA	LC)					
Run No 295057	Analysis/Extraction Date 20	015-09-21 Analyst	SCM			
Method C SM4500-Norg-C						
Organic Nitrogen						

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa) Page 1 of 2

Report Number: Date Submitted: Date Reported: 1518126 2015-09-11 2015-09-13

Project: COC #:

506592

Dear Caitlin Cooke:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

Dragana Dzeletovic 2015.09.13

12:27:26 -04'00'

APPROVAL:

Dragana Dzeletovic Team Leader, Microbiology

All analysis is completed in Ottawa, Ontario (unless otherwise indicated).

Exova Ottawa is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on our CALA scope of accreditation. It can be found at http://www.cala.ca/scopes/2602.pdf.

Exova (Ottawa) is certified and accredited for specific parameters by OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils). Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is accredited for specific parameters by SCC, Standards Council of Canada (to ISO 17025)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Exova recommends consulting the official provincial or federal guideline as required.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: Date Submitted:

1518126 2015-09-11 2015-09-13

Date Reported: Project:

COC #:

506592

Group	Analyte	MRL	Units	Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. Guideline	1201115 Water 2015-09-11 TW15-01-03	1201116 Water 2015-09-11 TW15-01-6
Microbiology	Escherichia Coli	0	ct/100mL	MAC-0	0	0
	Total Coliforms	0	ct/100mL	MAC-0	2*	2*

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa) Page 1 of 8

Report Number: 1518028
Date Submitted: 2015-09-10
Date Reported: 2015-09-18
Project: 1418381
COC #: 506591

Dear Caitlin Cooke:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

Shyla Monette 2015.09.18
APPROVAL: Shyla Monette 2015.09.18

Shyla Monette

Team Leader, Inorganics

All analysis is completed in Ottawa, Ontario (unless otherwise indicated).

Exova Ottawa is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on our CALA scope of accreditation. It can be found at http://www.cala.ca/scopes/2602.pdf.

Exova (Ottawa) is certified and accredited for specific parameters by OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils). Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is accredited for specific parameters by SCC, Standards Council of Canada (to ISO 17025)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Exova recommends consulting the official provincial or federal guideline as required.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1518028
Date Submitted: 2015-09-10
Date Reported: 2015-09-18
Project: 1418381
COC #: 506591

Group	Analyte	MRL	Units	Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. Guideline	1200759 Groundwater 2015-09-10 TW15-02-3	1200760 Groundwater 2015-09-10 TW15-02-6
Calculations	Hardness as CaCO3	1 1	mg/L	OG-100	195*	195*
	TDS (COND - CALC)	1	mg/L	AO-500	577*	571*
General Chemistry	Alkalinity as CaCO3	5	mg/L	OG-500	244	251
	Cl	1	mg/L	AO-250	108	105
	Colour	2	TCU	AO-5	<2	<2
	Conductivity	5	uS/cm		887	879
	DOC	0.5	mg/L	AO-5	0.7	<0.5
	F	0.10	mg/L	MAC-1.5	0.91	0.91
	N-NO2	0.10	mg/L	MAC-1.0	<0.10	<0.10
	N-NO3	0.10	mg/L	MAC-10.0	<0.10	<0.10
	рН	1.00	-	6.5-8.5	8.24	8.18
	SO4	1	mg/L	AO-500	45	45
	Tannin & Lignin	0.1	mg/L		6.4	0.1
	Turbidity	0.1	NTU	AO-5.0	1.1	1.2
Mercury	Hg	0.0001	mg/L	MAC-0.001	<0.0001	<0.0001
Metals	Ag	0.0001	mg/L		<0.0001	<0.0001
	Al	0.01	mg/L	OG-0.1	<0.01	<0.01
	As	0.001	mg/L	IMAC-0.025	<0.001	<0.001
	В	0.01	mg/L	IMAC-5.0	0.38	0.39
	Ва	0.01	mg/L	MAC-1.0	0.07	0.07
	Be	0.0005	mg/L		<0.0005	<0.0005
	Ca	1	mg/L		40	40
	Cd	0.0001	mg/L	MAC-0.005	<0.0001	<0.0001
	Cr	0.001	mg/L	MAC-0.05	<0.001	<0.001
	Cu	0.001	mg/L	AO-1.0	<0.001	<0.001
	Fe	0.03	mg/L	AO-0.3	0.19	0.16

Guideline = ODWSOG

* = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1518028
Date Submitted: 2015-09-10
Date Reported: 2015-09-18
Project: 1418381
COC #: 506591

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1200759 Groundwater 2015-09-10 TW15-02-3	1200760 Groundwater 2015-09-10 TW15-02-6
Group	Analyte	MRL	Units	Guideline		
Metals	K	1	mg/L		6	6
	Mg	1	mg/L		23	23
	Mn	0.01	mg/L	AO-0.05	0.01	<0.01
	Мо	0.005	mg/L		<0.005	<0.005
	Na	2	mg/L	AO-200	115	113
	Ni	0.005	mg/L		<0.005	<0.005
	Pb	0.001	mg/L	MAC-0.010	<0.001	<0.001
	Sb	0.0005	mg/L	IMAC-0.006	<0.0005	<0.0005
	Se	0.001	mg/L	MAC-0.01	<0.001	<0.001
	Sr	0.001	mg/L		3.93	3.88
	TI	0.0001	mg/L		<0.0001	<0.0001
	U	0.001	mg/L	MAC-0.02	<0.001	<0.001
	Zn	0.01	mg/L	AO-5.0	<0.01	<0.01
Nutrients	N-NH3	0.025	mg/L		0.251	0.203
	Organic Nitrogen	0.08	mg/L	OG-0.15	<0.08	<0.08
	Total Kjeldahl Nitrogen	0.07	mg/L		0.29	0.25
Phenols-4AAP	Phenols	0.002	mg/L		<0.002	<0.002
Subcontract	PO4	0.03	mg/L		<0.03	<0.03

Guideline = ODWSOG

* = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1518028
Date Submitted: 2015-09-10
Date Reported: 2015-09-18
Project: 1418381
COC #: 506591

QC Summary

Analyte	Blank	Blank QC % Rec	
Run No 294465 Analysis/Extraction Date 20	15-09-11 Analyst A	ET	
Method C SM2130B			
Turbidity	<0.1 NTU	100	73-127
Run No 294480 Analysis/Extraction Date 20	15-09-11 Analyst S	KH	
Method M SM3120B-3500C			
Calcium	<1 mg/L	100	90-110
Potassium	<1 mg/L	99	87-113
Magnesium	<1 mg/L	96	76-124
Sodium	<2 mg/L	95	82-118
Run No 294521 Analysis/Extraction Date 20	15-09-11 Analyst A	ET	
Method C SM2510B			
Conductivity	<5 uS/cm	100	95-105
Method C SM4500-FC			
F	<0.10 mg/L	99	90-110
Method C SM4500-H+B			
рН	6.15	100	90-110
Method SM 2320B			
Alkalinity (CaCO3)	<5 mg/L	100	95-105
Run No 294529 Analysis/Extraction Date 20	15-09-11 Analyst N	Р	

Guideline = ODWSOG

* = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1518028
Date Submitted: 2015-09-10
Date Reported: 2015-09-18
Project: 1418381
COC #: 506591

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Method C SM4500-NO3-F			
N-NO2	<0.10 mg/L	97	80-120
N-NO3	<0.10 mg/L	90	80-120
Run No 294678 Analysis/Extraction Date 20)15-09-15 Analyst K	Α	
Method EPA 200.8			
Silver	<0.0001 mg/L	95	94-106
Aluminum	<0.01 mg/L	99	89-111
Arsenic	<0.001 mg/L	98	93-106
Boron (total)	<0.01 mg/L	100	88-112
Barium	<0.01 mg/L	97	91-109
Beryllium	<0.0005 mg/L	97	93-107
Cadmium	<0.0001 mg/L	98	93-107
Chromium Total	<0.001 mg/L	95	94-106
Copper	<0.001 mg/L	95	93-106
Iron	<0.03 mg/L	96	92-107
Manganese	<0.01 mg/L	96	94-106
Molybdenum	<0.005 mg/L	101	94-106
Nickel	<0.005 mg/L	97	94-106

Guideline = ODWSOG

* = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1518028
Date Submitted: 2015-09-10
Date Reported: 2015-09-18
Project: 1418381
COC #: 506591

QC Summary

Analyte	Blank	QC % Rec	QC Limits			
Lead	<0.001 mg/L	101	70-130			
Antimony	<0.0005 mg/L	95	80-120			
Selenium	<0.001 mg/L	99	91-108			
Strontium	<0.001 mg/L	99	89-110			
Thallium	<0.0001 mg/L	99	95-105			
Uranium	<0.001 mg/L	98	94-106			
Zinc	<0.01 mg/L	99	94-106			
Run No 294752 Analysis/Extraction Date 20	15-09-15 Analyst N	Р				
Method SM 4110C						
SO4	<1 mg/L	106	90-110			
Run No 294782 Analysis/Extraction Date 20	15-09-16 Analyst A	ET				
Method C SM2120C						
Colour	<2 TCU	95	90-110			
Run No 294830 Analysis/Extraction Date 20	15-09-16 Analyst N	Р				
Method SM 4110C						
Chloride	<1 mg/L	101	90-112			
Run No 294930 Analysis/Extraction Date 20	15-09-17 Analyst JI	DT				
Method M SM3112B-3500B						
Mercury	<0.0001 mg/L	89	76-123			

Guideline = ODWSOG

* = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1518028
Date Submitted: 2015-09-10
Date Reported: 2015-09-18
Project: 1418381
COC #: 506591

QC Summary

	A	Analyte	Blank	QC % Rec	QC Limits		
Run No	294961	Analysis/Extraction Date 20	15-09-16 Analyst	CON			
Method	Exova Edmo	onton-SM4500-NH3-G					
N-N	IH3		<0.025 mg/L	100			
Run No	294964	Analysis/Extraction Date 20	15-09-15 Analyst	CON			
Method	Exova Edmo	onton-ISO/TR 11905-2					
Tota	al Kjeldahl N	itrogen	<0.07 mg/L	88			
Run No	294983	Analysis/Extraction Date 20	15-09-16 Analyst	CON			
Method	Exova Edmo	onton-SM5310B					
DO	С		<0.5 mg/L	101			
Run No	294985	Analysis/Extraction Date 20	15-09-15 Analyst	CON			
Method	Exova Surre	ey-SM5550B					
Tan	nnin & Lignin		<0.1 mg/L				
Run No	294987	Analysis/Extraction Date 20	15-09-14 Analyst	CON			
Method	Exova Edmo	onton-SM5530D					
Phe	enols		<0.002 mg/L	100			
Run No	295006	Analysis/Extraction Date 20	15-09-16 Analyst	SCM			
Method	Method SUBCONTRACT-E-INORG						
PO-	4		<0.03 mg/L	103			
Run No	295009	Analysis/Extraction Date 20	115-09-18 Analyst	SCM			

Guideline = ODWSOG

* = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1518028
Date Submitted: 2015-09-10
Date Reported: 2015-09-18
Project: 1418381
COC #: 506591

QC Summary

	Analyte		QC % Rec	QC Limits
Method C	SM2340B			
Hardne	ess as CaCO3			
Run No 29	5010 Analysis/Extraction Date 2	015-09-18 Analyst S	СМ	
Method C	SM2540			
TDS (0	COND - CALC)			
Run No 29	5011 Analysis/Extraction Date 2	015-09-18 Analyst S	СМ	
Method C	SM2340B			
Hardne	ess as CaCO3			
Method C	SM4500-Norg-C			
Organi	ic Nitrogen			
Run No 29	Analysis/Extraction Date 2	015-09-18 Analyst S	СМ	
Method C	SM2540			
TDS (0	COND - CALC)			
Run No 29	5013 Analysis/Extraction Date 2	015-09-18 Analyst S	СМ	
Method C	SM4500-Norg-C			
Organi	ic Nitrogen			

Guideline = ODWSOG

* = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa) Page 1 of 2

Report Number: 1518032
Date Submitted: 2015-09-10
Date Reported: 2015-09-13
Project: 1418381
COC #: 506591

Dear Caitlin Cooke:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

Dragana
Dzeletovic

Megawa Modelova 2015.09.13 12:26:58

-04'00'

APPROVAL:

Dragana Dzeletovic
Team Leader, Microbiology

All analysis is completed in Ottawa, Ontario (unless otherwise indicated).

Exova Ottawa is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on our CALA scope of accreditation. It can be found at http://www.cala.ca/scopes/2602.pdf.

Exova (Ottawa) is certified and accredited for specific parameters by OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils). Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is accredited for specific parameters by SCC, Standards Council of Canada (to ISO 17025)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Exova recommends consulting the official provincial or federal guideline as required.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON

K2H 5B7
Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1518032
Date Submitted: 2015-09-10
Date Reported: 2015-09-13
Project: 1418381
COC #: 506591

Group	Analyte	MRL	Units	Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. Guideline	1200764 Water 2015-09-10 TW-15-02-3	1200765 Water 2015-09-10 TW15-02-06
Microbiology	Escherichia Coli	0	ct/100mL	MAC-0	0	0
	Total Coliforms	0	ct/100mL	MAC-0	0	0

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa) Page 1 of 8

Report Number: 1517883
Date Submitted: 2015-09-09
Date Reported: 2015-09-16
Project: 1418381
COC #: 179289

Dear Caitlin Cooke:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

Shyla Monette 2015.09.16 APPROVAL: Shyla Monette 2015.09.09

Shyla Monette

Team Leader, Inorganics

All analysis is completed in Ottawa, Ontario (unless otherwise indicated).

Exova Ottawa is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on our CALA scope of accreditation. It can be found at http://www.cala.ca/scopes/2602.pdf.

Exova (Ottawa) is certified and accredited for specific parameters by OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils). Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is accredited for specific parameters by SCC, Standards Council of Canada (to ISO 17025)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Exova recommends consulting the official provincial or federal guideline as required.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1517883
Date Submitted: 2015-09-09
Date Reported: 2015-09-16
Project: 1418381
COC #: 179289

Group	Analyte	MRL	Units	Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. Guideline	1200445 Groundwater 2015-09-09 TW15-03-3	1200446 Groundwater 2015-09-09 TW15-03-6
Calculations	Hardness as CaCO3	1 1	mg/L	OG-100	316*	317*
Galodiations	TDS (COND - CALC)	1	mg/L	AO-500	634*	629*
General Chemistry	Alkalinity as CaCO3	5	mg/L	OG-500	265	268
	CI	1	mg/L	AO-250	122	118
	Colour	2	TCU	AO-5	4	6*
	Conductivity	5	uS/cm		975	967
	DOC	0.5	mg/L	AO-5	1.1	1.0
	F	0.10	mg/L	MAC-1.5	0.59	0.59
	N-NO2	0.10	mg/L	MAC-1.0	<0.10	<0.10
	N-NO3	0.10	mg/L	MAC-10.0	<0.10	<0.10
	pН	1.00		6.5-8.5	8.18	8.13
	SO4	1	mg/L	AO-500	63	61
	Tannin & Lignin	0.1	mg/L			0.2
	Turbidity	0.1	NTU	AO-5.0	0.9	1.7
Mercury	Hg	0.0001	mg/L	MAC-0.001	<0.0001	<0.0001
Metals	Ag	0.0001	mg/L		<0.0001	<0.0001
	Al	0.01	mg/L	OG-0.1	<0.01	<0.01
	As	0.001	mg/L	IMAC-0.025	0.001	0.001
	В	0.01	mg/L	IMAC-5.0	0.20	0.20
	Ва	0.01	mg/L	MAC-1.0	0.07	0.07
	Ве	0.0005	mg/L		<0.0005	<0.0005
	Ca	1	mg/L		72	71
	Cd	0.0001	mg/L	MAC-0.005	<0.0001	<0.0001
	Cr	0.001	mg/L	MAC-0.05	<0.001	<0.001
	Cu	0.001	mg/L	AO-1.0	<0.001	<0.001
	Fe	0.03	mg/L	AO-0.3	0.22	0.22

Guideline = ODWSOG

* = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1517883
Date Submitted: 2015-09-09
Date Reported: 2015-09-16
Project: 1418381
COC #: 179289

Group	Analyte	MRL	Units	Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. Guideline	1200445 Groundwater 2015-09-09 TW15-03-3	1200446 Groundwater 2015-09-09 TW15-03-6
Metals	К	1	mg/L		6	6
	Mg	1	mg/L		33	34
	Mn	0.01	mg/L	AO-0.05	<0.01	<0.01
	Mo	0.005	mg/L		<0.005	<0.005
	Na	2	mg/L	AO-200	90	88
	Ni	0.005	mg/L		<0.005	<0.005
	Pb	0.001	mg/L	MAC-0.010	<0.001	<0.001
	Sb	0.0005	mg/L	IMAC-0.006	<0.0005	<0.0005
	Se	0.001	mg/L	MAC-0.01	<0.001	<0.001
	Sr	0.001	mg/L		2.25	2.17
	TI	0.0001	mg/L		<0.0001	<0.0001
	U	0.001	mg/L	MAC-0.02	0.001	0.001
	Zn	0.01	mg/L	AO-5.0	<0.01	<0.01
Nutrients	N-NH3	0.025	mg/L		0.235	0.207
	Organic Nitrogen	0.08	mg/L	OG-0.15	0.13	0.08
	Total Kjeldahl Nitrogen	0.07	mg/L		0.36	0.29
Phenols-4AAP	Phenols	0.002	mg/L		<0.002	<0.002
Subcontract	PO4	0.03	mg/L		<0.03	<0.03
	Tannin & Lignin	0.1	mg/L		0.2	

Guideline = ODWSOG

* = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1517883

Date Submitted: 2015-09-09

Date Reported: 2015-09-16

Project: 1418381

COC #: 179289

QC Summary

Analyte	Blank	QC % Rec	QC Limits			
Run No 294357 Analysis/Extraction Date 2015-09-10 Analyst AET						
Method C SM2130B						
Turbidity	<0.1 NTU	100	73-127			
Run No 294426 Analysis/Extraction Date 20	015-09-10 Analyst N	P				
Method C SM4500-NO3-F						
N-NO2	<0.10 mg/L	97	80-120			
N-NO3	<0.10 mg/L	92	80-120			
Run No 294467 Analysis/Extraction Date 20	015-09-11 Analyst A	ET				
Method C SM2120C						
Colour	<2 TCU	100	90-110			
Run No 294480 Analysis/Extraction Date 20	015-09-11 Analyst S	KH				
Method M SM3120B-3500C						
Calcium	<1 mg/L	100	90-110			
Potassium	<1 mg/L	99	87-113			
Magnesium	<1 mg/L	96	76-124			
Sodium	<2 mg/L	95	82-118			
Run No 294521 Analysis/Extraction Date 2015-09-11 Analyst AET						
Method C SM2510B						

Guideline = ODWSOG

* = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1517883

Date Submitted: 2015-09-09

Date Reported: 2015-09-16

Project: 1418381

COC #: 179289

QC Summary

Analyte	Blank	QC % Rec	QC Limits			
Conductivity	<5 uS/cm	100	95-105			
Method C SM4500-FC						
F	<0.10 mg/L	99	90-110			
Method C SM4500-H+B						
рН	6.15	100	90-110			
Method SM 2320B						
Alkalinity (CaCO3)	<5 mg/L	100	95-105			
Run No 294551 Analysis/Extraction Date 20	Run No 294551 Analysis/Extraction Date 2015-09-11 Analyst NP					
Method SM 4110						
SO4	<1 mg/L	106	90-110			
Run No 294563 Analysis/Extraction Date 20	15-09-14 Analyst K	Α				
Method EPA 200.8						
Silver	<0.0001 mg/L	98	94-106			
Aluminum	<0.01 mg/L	98	89-111			
Arsenic	<0.001 mg/L	97	93-106			
Boron (total)	<0.01 mg/L	103	88-112			
Barium	<0.01 mg/L	100	91-109			
Beryllium	<0.0005 mg/L	97	93-107			
Cadmium	<0.0001 mg/L	97	93-107			

Guideline = ODWSOG

* = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1517883

Date Submitted: 2015-09-09

Date Reported: 2015-09-16

Project: 1418381

COC #: 179289

QC Summary

Analyte	Blank	QC % Rec	QC Limits		
Chromium Total	<0.001 mg/L	97	94-106		
Copper	<0.001 mg/L	97	93-106		
Iron	<0.03 mg/L	98	92-107		
Manganese	<0.01 mg/L	99	94-106		
Molybdenum	<0.005 mg/L	100	94-106		
Nickel	<0.005 mg/L	99	94-106		
Lead	<0.001 mg/L	100	70-130		
Antimony	<0.0005 mg/L	94	80-120		
Selenium	<0.001 mg/L	100	91-108		
Strontium	<0.001 mg/L	100	89-110		
Thallium	<0.0001 mg/L	96	95-105		
Uranium	<0.001 mg/L	98	94-106		
Zinc	<0.01 mg/L	98	94-106		
Run No 294596 Analysis/Extraction Date 2015-09-14 Analyst JDT					
Method M SM3112B-3500B					
Mercury	<0.0001 mg/L	91	76-123		
Run No 294752 Analysis/Extraction Date 2015-09-15 Analyst NP					
Method SM 4110C					

Guideline = ODWSOG

* = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1517883

Date Submitted: 2015-09-09

Date Reported: 2015-09-16

Project: 1418381

COC #: 179289

QC Summary

	Analyte	Blank	QC % Rec	QC Limits
Chloride		<1 mg/L	101	90-112
Run No 294757	Analysis/Extraction Date 20	015-09-14 Analyst	CON	
Method Exova Ed	lmonton-SM5530D			
Phenols		<0.002 mg/L	100	
Run No 294758	Analysis/Extraction Date 20	015-09-11 Analyst	CON	
Method Exova Ed	lmonton-SM4500-NH3-G			
N-NH3		<0.025 mg/L	100	
Run No 294764	Analysis/Extraction Date 20	015-09-14 Analyst	CON	
Method Exova Ed	lmonton-ISO/TR 11905-2			
Total Kjeldahl	Nitrogen	<0.07 mg/L	95	
Run No 294787	Analysis/Extraction Date 20	15-09-14 Analyst	CON	
Method Exova Ed	lmonton-SM5310B			
DOC		<0.5 mg/L	109	
Run No 294800	Analysis/Extraction Date 20	015-09-14 Analyst	CON	
Method Exova Su	ırrey-SM5550B			
Tannin & Lign	nin			
_	ITRACT-SU-INORG			
Tannin & Lign	nin	<0.1 mg/L		
Run No 294807	Analysis/Extraction Date 20	15-09-14 Analyst	SCM	

Guideline = ODWSOG

* = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1517883

Date Submitted: 2015-09-09

Date Reported: 2015-09-16

Project: 1418381

COC #: 179289

QC Summary

Ai	nalyte	Blank	QC % Rec	QC Limits	
Method SUBCONTR	ACT-E-INORG				
PO4		<0.03 mg/L	103		
Run No 294812	Analysis/Extraction Date 20	015-09-16 Analyst S	SCM		
Method C SM2340B					
Hardness as CaC	03				
Run No 294813	Analysis/Extraction Date 20	015-09-16 Analyst S	SCM		
Method C SM2540					
TDS (COND - CA	ALC)				
Run No 294814	Analysis/Extraction Date 20	015-09-16 Analyst 5	SCM		
Method C SM2340B					
Hardness as CaC	03				
Method C SM4500-N	org-C				
Organic Nitrogen					
Run No 294816	Analysis/Extraction Date 20	015-09-16 Analyst S	SCM		
Method C SM2540					
TDS (COND - CA	ALC)				
Run No 294817	Analysis/Extraction Date 20)15-09-16 Analyst §	SCM		
Method C SM4500-Norg-C					
Organic Nitrogen					

Guideline = ODWSOG

* = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa) Page 1 of 2

Report Number: 1517882
Date Submitted: 2015-09-09
Date Reported: 2015-09-10
Project: 1418381
COC #: 179289

Dear Caitlin Cooke:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

Krista Quantrill 2015.09.10

15:39:05 -04'00'

Krista Quantrill

APPROVAL:

Laboratory Supervisor, Microbiology

All analysis is completed in Ottawa, Ontario (unless otherwise indicated).

Exova Ottawa is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on our CALA scope of accreditation. It can be found at http://www.cala.ca/scopes/2602.pdf.

Exova (Ottawa) is certified and accredited for specific parameters by OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils). Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is accredited for specific parameters by SCC, Standards Council of Canada (to ISO 17025)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Exova recommends consulting the official provincial or federal guideline as required.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON

K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1517882
Date Submitted: 2015-09-09
Date Reported: 2015-09-10
Project: 1418381
COC #: 179289

Group	Analyte	MRL	Units	Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. Guideline	1200443 Groundwater - 2015-09-09 TW15-03-3	1200444 Groundwater - 2015-09-09 TW15-03-6
Microbiology	Escherichia Coli	0	ct/100mL	MAC-0	0	0
	Total Coliforms	0	ct/100mL	MAC-0	0	0

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa) Page 1 of 2

Report Number: 1521146
Date Submitted: 2015-10-23
Date Reported: 2015-10-25
Project: 1418381
COC #: 180449

Dear Caitlin Cooke:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

Dragana

Dzeletovic

Magain Moletone 2015.10.25

13:47:27

-04'00'

APPROVAL:

Dragana Dzeletovic

Team Leader, Microbiology

All analysis is completed in Ottawa, Ontario (unless otherwise indicated).

Exova Ottawa is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on our CALA scope of accreditation. It can be found at http://www.cala.ca/scopes/2602.pdf.

Exova (Ottawa) is certified and accredited for specific parameters by OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils). Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is accredited for specific parameters by SCC, Standards Council of Canada (to ISO 17025)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Exova recommends consulting the official provincial or federal guideline as required.

Certificate of Analysis

Client: Golder Associates Ltd. (Ottawa)

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1521146
Date Submitted: 2015-10-23
Date Reported: 2015-10-25
Project: 1418381
COC #: 180449

Group	Analyte	MRL	Units	Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. Guideline	1209515 Water - 2015-10-23 3310 Shea
Microbiology	Escherichia Coli	0	ct/100mL	MAC-0	0
	Total Coliforms	0	ct/100mL	MAC-0	0

Certificate of Analysis

Client: Golder Associates Ltd.

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa) Page 1 of 7

Report Number: 1521181
Date Submitted: 2015-10-23
Date Reported: 2015-11-02
Project: 1418381
COC #: 180449

Dear Caitlin Cooke:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

Shyla Monette 2015.11.02 13:42:24 -05'00'

APPROVAL:

Shyla Monette

Team Leader, Inorganics

All analysis is completed in Ottawa, Ontario (unless otherwise indicated).

Exova Ottawa is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on our CALA scope of accreditation. It can be found at http://www.cala.ca/scopes/2602.pdf.

Exova (Ottawa) is certified and accredited for specific parameters by OMAFRA, Ontario Ministry of Agriculture, Food and Rural Affairs (for farm soils). Licensed by Ontario MOE for specific tests in drinking water.

Exova (Mississauga) is accredited for specific parameters by SCC, Standards Council of Canada (to ISO 17025)

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Exova recommends consulting the official provincial or federal guideline as required.

Certificate of Analysis

Client: Golder Associates Ltd.

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1521181
Date Submitted: 2015-10-23
Date Reported: 2015-11-02
Project: 1418381
COC #: 180449

Group	Analyte	MRL	Units	Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. Guideline	1209571 Water 2015-10-23 3310 Shea
Calculations	Hardness as CaCO3	1	mg/L	OG-100	117*
	TDS (COND - CALC)	1	mg/L	AO-500	536*
General Chemistry	Alkalinity as CaCO3	5	mg/L	OG-500	238
	Cl	1	mg/L	AO-250	100
	Colour	2	TCU	AO-5	3
	Conductivity	5	uS/cm		825
	F	0.10	mg/L	MAC-1.5	1.11
	N-NO2	0.10	mg/L	MAC-1.0	<0.10
	N-NO3	0.10	mg/L	MAC-10.0	<0.10
	рН	1.00		6.5-8.5	8.33
	SO4	1	mg/L	AO-500	38
Mercury	Hg	0.0001	mg/L	MAC-0.001	<0.0001
Metals	Ag	0.0001	mg/L		<0.0001
	Al	0.01	mg/L	OG-0.1	<0.01
	As	0.001	mg/L	IMAC-0.025	<0.001
	В	0.01	mg/L	IMAC-5.0	0.52
	Ва	0.01	mg/L	MAC-1.0	0.08
	Ве	0.0005	mg/L		<0.0005
	Ca	1	mg/L		19
	Cd	0.0001	mg/L	MAC-0.005	<0.0001
	Cr	0.001	mg/L	MAC-0.05	<0.001
	Cu	0.001	mg/L	AO-1.0	0.001
	Fe	0.03	mg/L	AO-0.3	0.31*
	К	1	mg/L		6
	Mg	1	mg/L		17
	Mn	0.01	mg/L	AO-0.05	<0.01

Guideline = ODWSOG

* = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Golder Associates Ltd.

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1521181
Date Submitted: 2015-10-23
Date Reported: 2015-11-02
Project: 1418381
COC #: 180449

Group	Analyta	MRL	Units	Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. Guideline	1209571 Water 2015-10-23 3310 Shea
•	Analyte			Guidelille	10.005
Metals	Мо	0.005	mg/L		<0.005
	Na	2	mg/L	AO-200	134
	Ni	0.005	mg/L		<0.005
	Pb	0.001	mg/L	MAC-0.010	<0.001
	Sb	0.0005	mg/L	IMAC-0.006	<0.0005
	Se	0.001	mg/L	MAC-0.01	<0.001
	Sr	0.001	mg/L		2.86
	TI	0.0001	mg/L		<0.0001
	U	0.001	mg/L	MAC-0.02	<0.001
	Zn	0.01	mg/L	AO-5.0	<0.01
Nutrients	Organic Nitrogen	0.08	mg/L	OG-0.15	<0.08
	Total Kjeldahl Nitrogen	0.1	mg/L		0.4
Phenols	Phenols	0.001	mg/L		<0.001
Subcontract	DOC	0.5	mg/L	AO-5	1.3
	N-NH3	0.01	mg/L		0.41
	PO4 as P	0.2	mg/L		<0.2
	Tannin & Lignin	0.1	mg/L		<0.1

Certificate of Analysis

Client: Golder Associates Ltd.

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1521181
Date Submitted: 2015-10-23
Date Reported: 2015-11-02
Project: 1418381
COC #: 180449

QC Summary

Analyte	Blank	QC % Rec	QC Limits			
Run No 297423 Analysis/Extraction Date 2015-10-27 Analyst SKH						
Method M SM3120B-3500C						
Calcium	<1 mg/L	103	90-110			
Potassium	<1 mg/L	99	87-113			
Magnesium	<1 mg/L	102	76-124			
Sodium	<2 mg/L	99	82-118			
Run No 297446 Analysis/Extraction Date 2015-10-27 Analyst AET						
Method C SM4500-H+B						
Alkalinity (CaCO3)	<5 mg/L	101	90-110			
Conductivity	<5 uS/cm	101	90-110			
F	<0.10 mg/L	98	90-110			
рН	5.64	100	90-110			
Run No 297487 Analysis/Extraction Date 20	15-10-28 Analyst N	P				
Method SM 4110C						
Chloride	<1 mg/L	102	90-112			
SO4	<1 mg/L	104	90-110			
Run No 297496 Analysis/Extraction Date 2015-10-28 Analyst K A						
Method EPA 200.8						

Guideline = ODWSOG

* = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Golder Associates Ltd.

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1521181
Date Submitted: 2015-10-23
Date Reported: 2015-11-02
Project: 1418381
COC #: 180449

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Silver	<0.0001 mg/L	98	94-106
Aluminum	<0.01 mg/L	98	89-111
Arsenic	<0.001 mg/L	97	93-106
Boron (total)	<0.01 mg/L	101	88-112
Barium	<0.01 mg/L	103	91-109
Beryllium	<0.0005 mg/L	96	93-107
Cadmium	<0.0001 mg/L	96	93-107
Chromium Total	<0.001 mg/L	97	94-106
Copper	<0.001 mg/L	97	93-106
Iron	<0.03 mg/L	97	92-107
Manganese	<0.01 mg/L	99	94-106
Molybdenum	<0.005 mg/L	100	94-106
Nickel	<0.005 mg/L	97	94-106
Lead	<0.001 mg/L	100	70-130
Antimony	<0.0005 mg/L	108	80-120
Selenium	<0.001 mg/L	102	91-108
Strontium	<0.001 mg/L	103	89-110
Thallium	<0.0001 mg/L	97	95-105

Guideline = ODWSOG

* = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Golder Associates Ltd.

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1521181
Date Submitted: 2015-10-23
Date Reported: 2015-11-02
Project: 1418381
COC #: 180449

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Uranium	<0.001 mg/L	99	94-106
Zinc	<0.01 mg/L	101	94-106
Run No 297545 Analysis/Extraction Date 20	015-10-29 Analyst A	ET	
Method C SM2120C			
Colour	<2 TCU	104	90-110
Run No 297568 Analysis/Extraction Date 20	015-10-28 Analyst J	DT	
Method M SM3112B-3500B			
Mercury	<0.0001 mg/L	95	76-123
Run No 297648 Analysis/Extraction Date 20	015-10-29 Analyst N	P	
Method C SM4500-NO3-F			
N-NO2	<0.10 mg/L	107	80-120
N-NO3	<0.10 mg/L	95	80-120
Run No 297749 Analysis/Extraction Date 20)15-10-28 Analyst S	DC	
Method SUBCONTRACT P			
DOC	<0.5 mg/L	109	
N-NH3	<0.01 mg/L	96	
Phenols	<0.001 mg/L	112	
PO4 as P	<0.2 mg/L	118	
Tannin & Lignin	<0.1 mg/L	90	

Guideline = ODWSOG

* = Guideline Exceedence

All analysis completed in Ottawa, Ontario (unless otherwise indicated by ** which indicates analysis was completed in Mississauga, Ontario).

Results relate only to the parameters tested on the samples submitted.

Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Client: Golder Associates Ltd.

1931 Robertson Road

Ottawa, ON K2H 5B7

Attention: Ms. Caitlin Cooke

PO#:

Invoice to: Golder Associates Ltd. (Ottawa)

Report Number: 1521181
Date Submitted: 2015-10-23
Date Reported: 2015-11-02
Project: 1418381
COC #: 180449

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Total Kjeldahl Nitrogen	<0.1 mg/L	98	
Run No 297785 Analysis/Extraction Date 20	15-11-02 Analyst S	СМ	
Method C SM2340B			
Hardness as CaCO3			
Method C SM2540			
TDS (COND - CALC)			
Run No 297787 Analysis/Extraction Date 20	15-11-02 Analyst S	СМ	
Method C SM4500-Norg-C			
Organic Nitrogen			

Sample	рН	TDS (mg/L)	Temp (deg C)	Ca (mg/L)	Ca as CaCO3 (mg/L)	Alkalinity as CaCO3 (mg/L)	Α	В	С	D	pHs	Langelier Saturation Index (pH-pHs)	Comment
TW15-1 - 3 hours	7.75	545	12.2	28	70	229	0.17364	2.338438	1.445098	2.359835	8.007144	-0.26	Acceptable Range
TW15-1 - 6 hours	7.73	545	12.2	28	70	226	0.17364	2.338438	1.445098	2.354108	8.012871	-0.28	Acceptable Range
TW15-2 - 3 hours	7.67	577	13.0	40	100	244	0.176118	2.322478	1.6	2.38739	7.811205	-0.14	Acceptable Range
TW15-2 - 6 hours	7.61	571	12.0	40	100	251	0.175664	2.342435	1.6	2.399674	7.818425	-0.21	Acceptable Range
TW15-3 - 3 hours	7.82	634	12.6	72	180	265	0.180209	2.330452	1.855273	2.423246	7.532143	0.29	Acceptable Range
TW15-3 - 6 hours	7.76	629	13.0	71	177.5	268	0.179865	2.322478	1.849198	2.428135	7.52501	0.23	Acceptable Range

An acceptable range is -0.5 to +0.5

Notes:

 $LSI = pH - pH_s$

 $pH_s = (9.3 + A + B) - (C + D)$

 $A = (Log_{10} [TDS] - 1) / 10$

 $B = -13.12 \times Log_{10} (^{\circ}C + 273) + 34.55$

 $C = Log_{10} [Ca^{2+} as CaCO_3] - 0.4$

 $D = Log_{10}$ [alkalinity as $CaCO_3$]

APPENDIX E

Neighbouring Well Survey Forms

WATER WELL SYSTEM SURVEY QUESTIONNAIRE

TYPE OF DWELLING: Residential Con	mmercial 🗆 Institutional 🗆 Other
I. OWNER/OCCUPANT INFORMATION AND GEI	NERAL QUESTIONS:
Name: Address: 2 Hemphill Street Number of Bedrooms 3	Telephone No. (business) Telephone No. (home) Number of Occupants
GENERAL QUESTIONS How long have you owned/occupied this dwelling?	43 years
Is well water used for drinking water supply? If no, why not?	Yes ⊠ No □
If no, how long has it been since well water was us	ed for drinking?
If no, what is the origin of drinking water? II. WATER WELL	
A. WELL CONSTRUCTION DETAILS:	
Date or year constructed	ameter (inches) 8 inch (?) Front yard depth PSame as present By digging

B. WATER QUANTITY
Does your well supply enough water for your use? Yes ☒ No □
If no, is this is the case: all the time \square some of the time \square seasonally \square other
Use: Domestic: No ☐ Yes ☐ No. of persons using water from well
Lawn Watering: No ☐ Yes ☐ Other Uses
Have you ever experienced any problems with your well?
What was the cause of the problem? ☐ Drought ☐ Pump Failure ☐ Plugging
□ Increased Usage □ Interference ☑ Other (Please Specify) 90° elbow of well head broke (rust)
Did you ever have your well deepened or cleaned, or a new well constructed?
C. WATER QUALITY
Water Treatment equipment in use (if any)Soft ner
Has your well recently been chlorinated and, if so, when? No
How would you describe quality of your water? □Poor □Good ☑Excellent
Has your water quality previously been tested? No □ Yes ⊠
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
D. WATER SAMPLING INFORMATION
Would you be interested in having a water sample collected? □No □Yes

Please return this questionnaire in the included pre- addressed, stamped envelope.

WATER WELL SYSTEM SURVEY QUESTIONNAIRE

TYPE OF DWELLING: Residential Co	emmercial Institutional Other
I. OWNER/OCCUPANT INFORMATION AND GE	NERAL QUESTIONS:
OWNER/OCCUPANT: Name: Address:3312 Shea Rd Number of Bedrooms3	Telephone No. (business) Telephone No. (home) Number of Occupants
GENERAL QUESTIONS	
How long have you owned/occupied this dwelling?	32 years:
Is well water used for drinking water supply?	
If no, why not?	
If no, how long has it been since well water was use	ed for drinking?
If no, what is the origin of drinking water?	
II. WATER WELL	
A. WELL CONSTRUCTION DETAILS:	
Date or year constructed	
Type of well: Drilled □ Dug □ Well dia	meter (inches)
Location of well (e.g. front yard, back yard, etc.)	
Present well depth45	epthSame as present
Is the well accessible? Yes ☐ No ☐	
Is well vented and how? 4.5 !!! Alas	he pipe

B. WATER QUANTITY
Does your well supply enough water for your use? Yes ☑ No □
f no, is this is the case: all the time \square some of the time \square seasonally \square other
Use: Domestic: No ☐ Yes ☑ No. of persons using water from well
Lawn Watering: No ☐ Yes ☑ Other Uses
Have you ever experienced any problems with your well? $\mathcal{N}_{\mathcal{O}}$
What was the cause of the problem? ☐ Drought ☐ Pump Failure ☐ Plugging
☐ Increased Usage ☐ Interference ☐ Other (Please Specify)
Did you ever have your well deepened or cleaned, or a new well constructed?ん/c
C. WATER QUALITY
Water Treatment equipment in use (if any)ว็อโปนอง
Has your well recently been chlorinated and, if so, when?
How would you describe quality of your water? □Poor □Good □Excellent
Has your water quality previously been tested? No □ Yes ⊡
If yes, for what and how often? (bacteriological, chemical analyses, etc.)
D. WATER SAMPLING INFORMATION
Would you be interested in having a water sample collected? ☐No ☐Yes

Please return this questionnaire in the included pre- addressed, stamped envelope.

WATER WELL SYSTEM SURVEY QUESTIONNAIRE

TYPE OF DWELLING: Residential	Commercial Institutional Other
I. OWNER/OCCUPANT INFORMATION AND G	ENERAL QUESTIONS:
OWNER/OCCUPANT: Name:	ephone No. (business)
Address: 3316 SHEAA	Telephone No. (home)
Number of Bedrooms3	Number of Occupants2
GENERAL QUESTIONS	
How long have you owned/occupied this dwelling	? 44 years
Is well water used for drinking water supply?	Yes⊠ No □
If no, why not?	
If no, how long has it been since well water was u	
If no, what is the origin of drinking water?	
which are engineer annumy water :	
II. WATER WELL	
A. WELL CONSTRUCTION DETAILS:	
Date or year constructed Improved 190	7-68 Contractor NA
Well record number (if known) unhua.	
Type of well: Drilled ☑ Dug ☐ Well d	
ocation of well (e.g. front yard, back yard, etc.)	FRONT YARD
Present well depth Approx 40 Toriginal well	depth 🖾 Same as present
s the well accessible? Yes □ No ☑	
s well vented and how? Vanted thru	barement wall

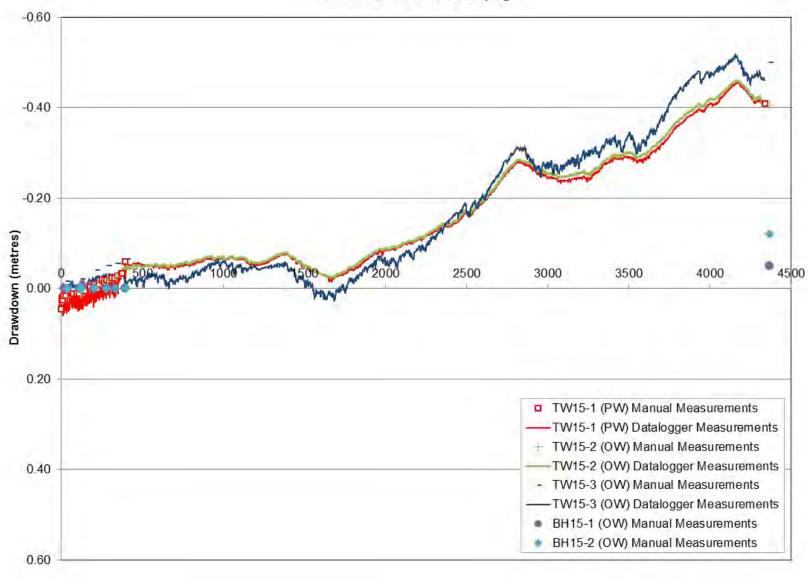
B. WATER QUANTITY	
Does your well supply enough water for your use? Yes ☒ No I	
If no, is this is the case: all the time \square some of the time \square seasonally \square oth	er
Use: Domestic: No ☐ Yes ☒ No. of persons using water from	well3
Lawn Watering: No ☐ Yes ☒ Other Uses	
Have you ever experienced any problems with your well?	
What was the cause of the problem? ☐ Drought ☐ Pump Failure ☐	☐ Plugging
☐ Increased Usage ☐ Interference ☐ Other (Please Specify)	
Did you ever have your well deepened or cleaned, or a new well constructed? If so, why? Toot where and replaced	
C WATER OHALITY	
C. WATER QUALITY	
Water Treatment equipment in use (if any). LU ATER SOFTEWER	
Water Treatment equipment in use (if any). LU ATTR SOFTENER Has your well recently been chlorinated and, if so, when? No	□Excellent
Water Treatment equipment in use (if any). WATER SOFTEWER Has your well recently been chlorinated and, if so, when? No How would you describe quality of your water? □Poor ☑Good	□Excellent
Water Treatment equipment in use (if any)	□Excellent
Water Treatment equipment in use (if any). WATER SOFFENER Has your well recently been chlorinated and, if so, when? How would you describe quality of your water? Poor Good Has your water quality previously been tested? No Yes If yes, for what and how often? (bacteriological, chemical analyses, etc.) Bacteriology al	□Excellent

Please return this questionnaire in the included pre- addressed, stamped envelope.

WATER WELL SYSTEM SURVEY QUESTIONNAIRE

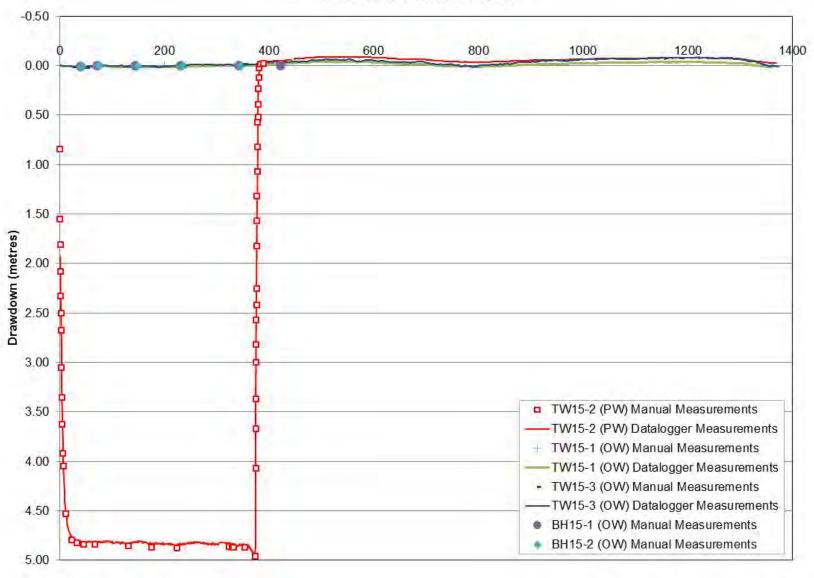
TYPE OF DWELLING: ☐ Residential ☐ Co	mmercial Institutional Other
I. OWNER/OCCUPANT INFORMATION AND GE	NERAL QUESTIONS:
OWNER/OCCUPANT:	
Name:	Telephone No. (business)
Address: 3324 Shea Rd	Telephone No. (home)
Number of Bedrooms3	Number of Occupants3
GENERAL QUESTIONS	
How long have you owned/occupied this dwelling?	1 1/2 years
Is well water used for drinking water supply?	Yes □ No □
If no, why not? It is drinkable, but u	ve havea filter system
If no, how long has it been since well water was use	ed for drinking?
If no, what is the origin of drinking water?	
II. WATER WELL	
A. WELL CONSTRUCTION DETAILS:	
Date or year constructed	Contractor
Well record number (if known)	
Type of well: Drilled □ Dug □ Well dia	meter (inches)
Location of well (e.g. front yard, back yard, etc.)	front yard
Present well depth Original well d	epth 🗹 Same as present
Is the well accessible? Yes \square No \square	
Is well vented and how?\(\mathcal{D}_{\omega}\)	

B. WATER QUANTITY
Does your well supply enough water for your use? Yes ☑ No □
If no, is this is the case: all the time \square some of the time \square seasonally \square other
Use: Domestic: No □ Yes ♥ No. of persons using water from well 3
Lawn Watering: No ☒ Yes □ Other Uses
Have you ever experienced any problems with your well? n.o.
What was the cause of the problem? ☐ Drought ☐ Pump Failure ☐ Plugging
☐ Increased Usage ☐ Interference ☐ Other (Please Specify)
Did you ever have your well deepened or cleaned, or a new well constructed?
C. WATER QUALITY
Water Treatment equipment in use (if any). Water Softener
Has your well recently been chlorinated and, if so, when?
Has your water quality previously been tested? No □ Yes ☑
If yes, for what and how often? (bacteriological, chemical analyses, etc.) . When we bought the house, test came back good.
D. WATER SAMPLING INFORMATION
Would you be interested in having a water sample collected?


Please return this questionnaire in the included pre- addressed, stamped envelope.

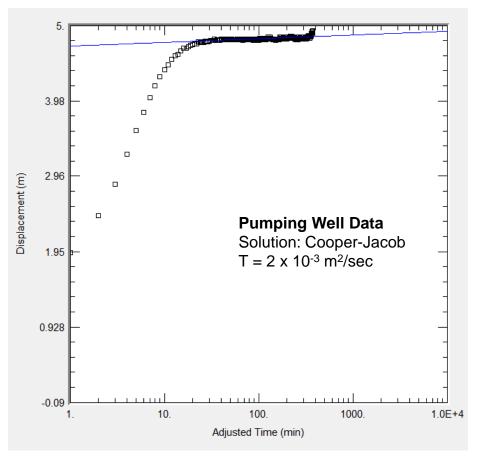
APPENDIX F

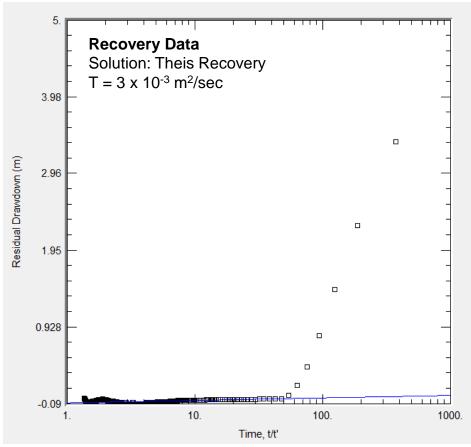
Hydraulic Testing Data and Analyses


Minutes Since Start of Pumping

Date: September 2017 Drawn: CAMC Project: 1418381-1000 Chkd: BTB

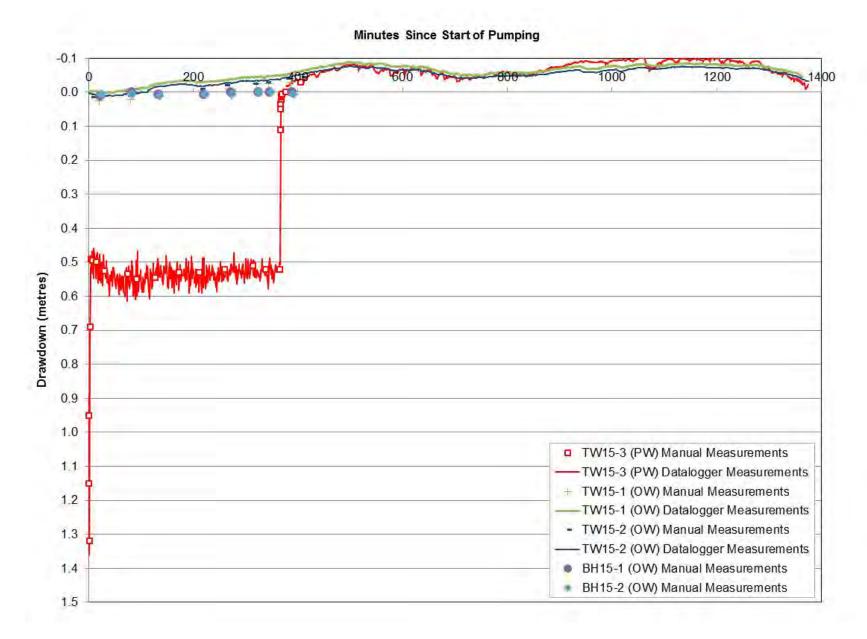
Minutes Since Start of Pumping

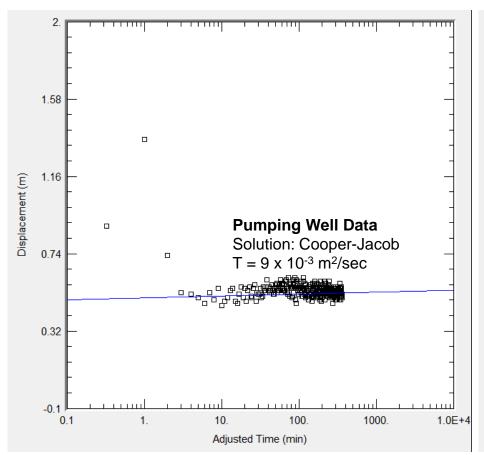


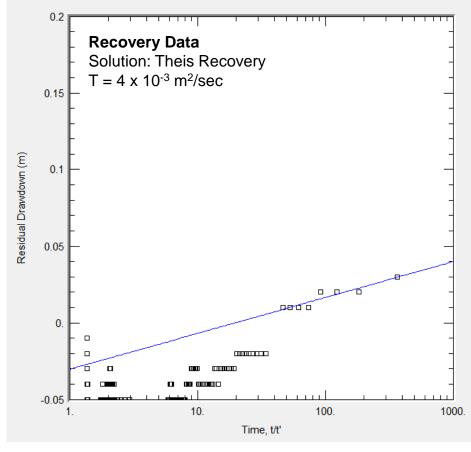


Date: September 2017
Project: 1418381-1000

Drawn: CAMC Chkd: BTB


Water Level Response during Pumping at TW15-2




Date: September 2017 Drawn: CAMC Project: 1418381-1000 Chkd: BTB

Date: September 2017 Drawn: CAMC Project: 1418381-1000 Chkd: BTB

Date: September 2017 Drawn: CAMC Project: 1418381-1000 Chkd: BTB

Analysis of Hydraulic Response during Pumping at TW15-3

APPENDIX G

Calculations: Well Interference

September 2017 1418381-1000

ASSESSMENT OF MUTUAL WELL INTERFERENCE

Low Transmissivity and Low Storativity

Assumptions:
Centre point: Lot 9
S (-) -Lot 9 1.0E-04 Centre point: Lot 9 $S(\cdot) = 1.0E-04$ $T(m^2/s) = 2.0E-03$ Q(L/d) = 2250 $Q(m^3/s) = 2.604E-05$ Duration (yrs) = 20 Duration (s) = 630720000

From Lot	Distance (m)	20 Year
	1 1	Drawdown (m)
2	219 206	0.01 0.01
3	193	0.01
4	180	0.01
5	167	0.01
6	39	0.02
7	26	0.02
8	13	0.02
9	0	0.03
10 11	13	0.02
12	26 39	0.02 0.02
13	52	0.02
14	66	0.02
15	79	0.02
16	92	0.02
17	105	0.02
18	118	0.02
19	131	0.01
20	144	0.01
21 22	201 201	0.01 0.01
23	201	0.01
24	197	0.01
25	181	0.01
26	160	0.01
27	148	0.01
28	136	0.01
29	123	0.01
30	110	0.02
31 32	101	0.02 0.02
33	91 67	0.02
34	84	0.02
35	102	0.02
36	117	0.02
37	122	0.01
38	117	0.02
39	101	0.02
40	76	0.02
41	61	0.02 0.02
42 43	94 150	0.02
44	160	0.01
45	172	0.01
46	184	0.01
47	198	0.01
48	212	0.01
49	224	0.01
50	239	0.01
51	251	0.01
3290 Shea Road	192 153	0.01 0.01
4 Hemphill Street 3310 Shea Road	90	0.01
3316 Shea Road	69	0.02
3318 Shea Road	45	0.02
3326 Shea Road	32	0.02
3330 Shea Road	39	0.02
3338 Shea Road	55	0.02
1 Moore Street	115	0.02
3354 Shea Road	148	0.01
3360 Shea Road	171	0.01
3366 Shea Road 3372 Shea Road	203	0.01
3372 Shea Road 3378 Shea Road	228 260	0.01 0.01
	ifer drawdown at	
lot 9 (central lot) =		

Note: Drawdowns calculated using methods of Theis (1935)

September 2017 1418381-1000

ASSESSMENT OF MUTUAL WELL INTERFERENCE

Low Transmissivity and Low Storativity

Assumptions:
Centre point: Lot 9
S (-) -Lot 9 5.0E-05 Centre point: Lot 9 $S(\cdot) = 5.0E-05$ $T(m^2/s) = 2.0E-03$ Q(L/d) = 2250 $Q(m^3/s) = 2.604E-05$ Duration (yrs) = 20 Duration (s) = 630720000

From Lot	Distance (m)	20 Year	
	1 1	Drawdown (m)	
1	219	0.01	
3	206 193	0.01 0.01	
4	180	0.01	
5	167	0.02	
6	39	0.02	
7	26	0.02	
8	13	0.02	
9 10	0 13	0.03 0.02	
11	26	0.02	
12	39	0.02	
13	52	0.02	
14	66	0.02	
15	79 92	0.02	
16 17	105	0.02 0.02	
18	118	0.02	
19	131	0.02	
20	144	0.02	
21	201	0.01	
22	201	0.01	
23 24	204 197	0.01 0.01	
25	181	0.01	
26	160	0.02	
27	148	0.02	
28	136	0.02	
29	123	0.02	
30	110	0.02	
31	101	0.02	
32 33	91 67	0.02 0.02	
34	84	0.02	
35	102	0.02	
36	117	0.02	
37	122	0.02	
38	117	0.02	
39	101	0.02	
40 41	76 61	0.02 0.02	
42	94	0.02	
43	150	0.02	
44	160	0.02	
45	172	0.01	
46	184	0.01	
47 48	198 212	0.01 0.01	
49	224	0.01	
50	239	0.01	
51	251	0.01	
3290 Shea Road	192	0.01	
2 Hemphill Street	153	0.02	
3310 Shea Road	90	0.02	
3316 Shea Road 3318 Shea Road	69 45	0.02 0.02	
3326 Shea Road	32	0.02	
3330 Shea Road	39	0.02	
3338 Shea Road	55	0.02	
1 Moore Street	115	0.02	
3354 Shea Road	148	0.02	
3360 Shea Road	171	0.01	
3366 Shea Road 3372 Shea Road	203 228	0.01 0.01	
3378 Shea Road	260	0.01	
Cumulative aquifer drawdown at			
lo	lot 9 (central lot) =		

Note: Drawdowns calculated using methods of Theis (1935)

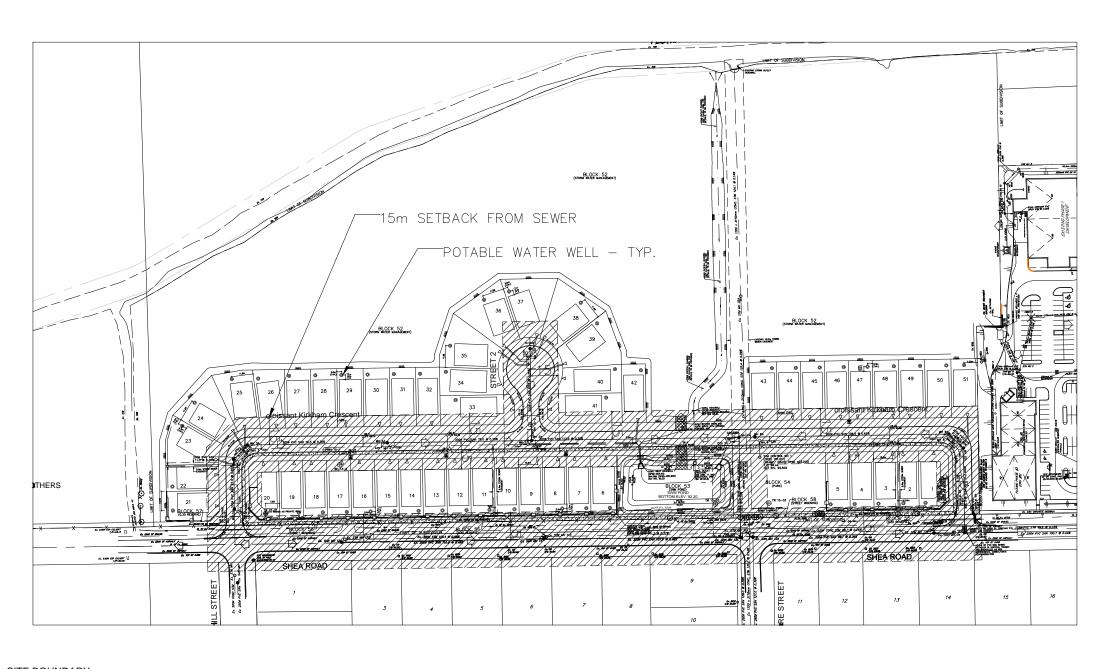
September 2017 1418381-1000

ASSESSMENT OF MUTUAL WELL INTERFERENCE Peak Water Demand

Central Lot

Assumptions:

 $\begin{tabular}{lll} Centre point: & Lot 9 \\ & S (-) = & 5.0E-05 \\ & T (m^2/s) = & 2.0E-03 \\ & Q (L/2h \ peak \ period) = & 2250 \\ & Q \ (m^3/s) = & 3.125E-04 \\ & Duration \ (yrs) = & 0.000228311 \\ & Duration \ (s) = & 7200 \\ \end{tabular}$


From Lot	Distance (m)	Peak Drawdown (m)
1	219	0.03
2	206	0.03
3	193	0.04
4	180	0.04
5	167	0.04
6	39	0.07
7	26	0.09
8	13	0.10
9	0	0.23
10	13	0.10
11	26	0.09
12	39	0.07
13	52	0.07
14	66	0.06
15	79	0.06
16	92	0.05
17	105	0.05
18	118	0.05
19	131	0.05
20	144	0.04
21	201	0.03
22	201	0.03
23	204	0.03
24	197	0.03
25	181	0.04
26	160	0.04
27	148	0.04
28	136	0.04
29	123	0.05
30	110	0.05
31	101	0.05
32	91	0.05
33	67	0.06
34	84	0.06
35	102	0.05
36	117	0.05
37	122	0.05
38	117	0.05
39	101	0.05
40	76	0.06
41	61	0.06
42	94	0.05
43	150	0.04
44	160	0.04
45	172	0.04
46	184	0.04
47	198	0.03
48	212	0.03
49	224	0.03
50	239	0.03
51	251	0.03
	aquifer drawdown at lot 9	
	(central lot)	2.72

Note: Drawdowns calculated using methods of Theis (1935)

APPENDIX H

Well Setback Plan

LEGEND:

SITE BOUNDARY

15.0m ZONE OF INFLUENCE FROM UNDERGROUND INFRASTRUCTURE

 \bigcirc

PROPOSED WELL LOCATION

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9 TEL: (613) 836-0856 FAX: (613) 836-7183 www.DSEL.ca

CREEKSIDE SUBDIVISION
WELL SETBACK FROM CONTAMINATION SOURCES

PROJECT No.:	14-718
SCALE:	1:2000
DATE:	JULY 2017
FIGURE:	4

As a global, employee-owned organisation with over 50 years of experience, Golder Associates is driven by our purpose to engineer earth's development while preserving earth's integrity. We deliver solutions that help our clients achieve their sustainable development goals by providing a wide range of independent consulting, design and construction services in our specialist areas of earth, environment and energy.

For more information, visit golder.com

Africa + 27 11 254 4800
Asia + 86 21 6258 5522
Australasia + 61 3 8862 3500
Europe + 44 1628 851851
North America + 1 800 275 3281
South America + 56 2 2616 2000

solutions@golder.com www.golder.com

Golder Associates Ltd. 1931 Robertson Road Ottawa, Ontario, K2H 5B7 Canada T: +1 (613) 592 9600

