Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

Geotechnical Investigation

Proposed Residential Development Riverside South - Phase 17 Spratt Road Ottawa, Ontario

Prepared For

Riverside South Development Corporation

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

May 29, 2020

Report: PG5131-1

Table of Contents

	_	· · · · · · · · · · · · · · · · · · ·	AGE								
1.0	Intro	oduction	1								
2.0	Pro	posed Development	1								
3.0	Met	hod of Investigation									
	3.1	Field Investigation	2								
	3.2	Field Survey									
	3.3	Laboratory Testing									
	3.4	Analytical Testing									
4.0	Obs	servations									
	4.1	Surface Conditions	5								
	4.2	Subsurface Profile									
	4.3	Groundwater	7								
5.0	Discussion										
	5.1	Geotechnical Assessment	9								
	5.2	Site Grading and Preparation	10								
	5.3	Foundation Design	11								
	5.4	Design for Earthquakes	13								
	5.5	Basement Slab / Slab-on-Grade Construction	13								
	5.6	Pavement Structure	14								
6.0	Des	sign and Construction Precautions									
	6.1	Foundation Drainage and Backfill	16								
	6.2	Protection Against Frost Action	16								
	6.3	Excavation Side Slopes									
	6.4	Pipe Bedding and Backfill									
	6.5	Groundwater Control	-								
	6.6	Winter Construction									
	6.7	Corrosion Potential and Sulphate									
	6.8	Landscaping Considerations	21								
7.0	Rec	commendations	23								
8.0	Stat	tement of Limitations	24								

Appendices

Appendix 1Soil Profile and Test Data Sheets
Symbols and Terms
Atterberg Limits Results
Grain Size Distribution Analysis Results
Analytical Testing Results

Appendix 2Figure 1 - Key PlanDrawing PG5131-1 - Test Hole Location PlanDrawing PG5131-2 - Permissible Grade Raise PlanDrawing PG5131-3 - Tree Planting Setback Recommendations

1.0 Introduction

Paterson Group (Paterson) was commissioned by Riverside South Development Corporation to conduct a geotechnical investigation for Phase 17 of the Riverside South residential development to be located at Spratt Road and Earl Armstrong Road in the City of Ottawa (refer to Figure 1 - Key Plan presented in Appendix 2).

The objectives of the geotechnical investigation were to:

- □ determine the subsurface soil and groundwater conditions by means of boreholes.
- □ provide geotechnical recommendations for the design of the proposed development including construction considerations which may affect its design.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. The report contains the geotechnical findings and includes recommendations pertaining to the design and construction of the subject development as understood at the time of writing this report.

2.0 Proposed Development

It is understood that Phase 17 of the proposed development will consist of single and townhouse style residential dwellings with basement or slab-on-grade construction, attached garages, associated driveways, local roadways and landscaped areas. It is further anticipated that the site will be serviced by future municipal services.

3.0 Method of Investigation

3.1 Field Investigation

Field Program

The field program for the current geotechnical investigation was conducted between January 27 and February 4, 2020 and consisted of 28 boreholes advanced to a maximum depth of 5.9 m below the existing ground surface. Where refusal to augering was encountered less than 4.7 m below the existing ground surface, an additional borehole was put down within 1 m of the original to confirm refusal depth. These additional boreholes are denoted by A in the Soil Profile and Test Data Sheets.

The test hole locations were determined in the field by Paterson personnel and distributed in a manner to provide general coverage of the proposed residential development taking into consideration site features and underground utilities. The test hole locations are presented on Drawing PG5131-1 - Test Hole Location Plan included in Appendix 2.

The boreholes were advanced using a track-mounted auger drill rig operated by a twoperson crew. The drilling procedure consisted of augering to the required depths at the selected locations and sampling the overburden. All fieldwork was conducted under the full-time supervision of our personnel under the direction of a senior engineer from our geotechnical department.

Sampling and In Situ Testing

Soil samples from the boreholes were recovered from the auger flights or a 50 mm diameter split-spoon sampler. All soil samples were classified on site, placed in sealed plastic bags and transported to the laboratory for further review. The depths at which the auger and split spoon samples were recovered from the test holes are presented as AU and SS, respectively, on the Soil Profile and Test Data sheets presented in Appendix 1.

Standard Penetration Testing (SPT) was conducted and recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split-spoon sample 300 mm into the soil after a 150 mm initial penetration with a 63.5 kg hammer falling from a height of 760 mm.

Undrained shear strength testing was conducted at regular intervals in cohesive soils and completed using a MTO field vane apparatus.

The overburden thickness was evaluated by dynamic cone penetration tests (DCPTs) at boreholes BH 7, BH 12 and BH 21. The DCPT consists of driving a steel drill rod, equipped with a 50 mm diameter cone at the tip, using a 63.5 kg hammer falling from a height of 760 mm. The number of blows required to drive the cone into the soil is recorded for each 300 mm increment.

The subsurface conditions observed in the test holes were recorded in detail in the field. The soil profiles are presented on the Soil Profile and Test Data sheets in Appendix 1 of this report.

Groundwater

Flexible standpipes were installed in the boreholes during the field investigation to permit monitoring of the groundwater levels subsequent to the completion of the sampling program.

Sample Storage

All samples from the investigation will be stored in the laboratory for a period of one month after issuance of this report. The samples will then be discarded unless directed otherwise.

3.2 Field Survey

The test hole locations were selected by Paterson to provide general coverage of the current phase of the residential development taking into consideration existing site features and underground utilities. The test hole locations and ground surface elevation at each test hole location were surveyed by Paterson. The ground surface elevations at the borehole locations were referenced to a geodetic datum. The test hole locations are presented on Drawing PG5131-1 - Test Hole Location Plan in Appendix 2.

3.3 Laboratory Testing

The soil samples recovered from the subject site were visually examined in our laboratory to review the results of the field logging. Gradation and Atterberg Limits testing were also completed on select samples obtained from the geotechnical investigation. The results of this testing are provided in Section 4.2.

3.4 Analytical Testing

One (1) soil sample was submitted for analytical testing to assess the corrosion potential for exposed ferrous metals and the potential of sulphate attacks against subsurface concrete structures. The sample was submitted to determine the concentration of sulphate and chloride, the resistivity and the pH of the sample. The results are presented in Appendix 1 and are discussed further in Subsection 6.7.

4.0 Observations

4.1 Surface Conditions

The subject site consists mostly of agricultural lands and is presently undeveloped with treed areas located in the northeast corner of the site. The site is bordered by a residential development to the north, agricultural properties to the east and south, and Spratt Road to the west. Existing ground surface across the site slopes downward gradually from southeast to northwest, from approximate geodetic elevation 102 to 94 m.

Based on available aerial photos, an agricultural building was previously located in the northwest portion of the site as recently as 1991 and was no longer present in 1999.

4.2 Subsurface Profile

Overburden

Generally, the subsurface profile encountered at the test hole locations consists of an approximate 0.2 to 0.6 m topsoil layer underlain by a glacial till deposit. The glacial till was generally observed to consist of a compact to very dense silty sand or sandy silt with clay, gravel, cobbles and boulders. Running sand was observed at approximate depths of 5.8 m and 3.8 m in test holes BH 5A and BH 18, respectively.

A deposit of stiff brown silty clay was encountered either at surface or directly underlying the topsoil in the northern half of the subject site. A layer of brown clayey silt was observed below the topsoil and underlain by the silty clay deposit at BH 28. Where encountered, the clayey silt to silty clay layer had an approximate thickness of 0.6 to 2.1 m and was underlain by the glacial till deposit.

A loose to compact silty sand layer was observed either at surface or directly below the topsoil in the northern half of the subject site in boreholes BH 23, BH 24 and BH 26. Where encountered, the silty sand deposit had an approximate thickness of 0.8 to 0.9 m and was underlain by the glacial till deposit.

Practical refusal to the DCPTs was encountered at depths of 6.6 m, 6.8 m and 7.1 m in boreholes BH 7, BH 12 and BH 21, respectively.

Reference should be made to the Soil Profile and Test Data sheets in Appendix 1 for specific details of the soil profiles encountered at each test hole location.

Bedrock

Based on available geological mapping, the subject site is located in an area where the bedrock consists of interbedded sandstone and dolomite of the March formation with a drift thicknesses between 0 to 15 m.

Laboratory Testing

Atterberg limits testing, as well as associated moisture content testing, was completed on the recovered silty clay/clayey silt samples at selected locations throughout the subject site. The results of the Atterberg limits tests are presented in Table 1 and on the Atterberg Limits Results sheet in Appendix 1. The tested samples classify as inorganic clays of high plasticity (CH), inorganic clay of low plasticity (CL), inorganic silts of high plasticity (MH) and inorganic silts of low plasticity (ML) in accordance with the Unified Soil Classification System.

Sample	Depth (m)	LL (%)	PL (%)	PI (%)	w (%)	Classification		
BH 18	1.07	48	31	17	13.8	ML		
BH 19	1.07	45	28	18	14.6	ML		
BH 22	2.59	39	19	20	8.51	CL		
BH 27	1.07	59	33	26	22.8	МН		
BH 28	1.8	70	31	38	26.8	СН		
Notes: LL: Liquid Limit; PL: Plastic Limit; PI: Plasticity Index; w: water content; CH: Inorganic Clay of High Plasticity CL: Inorganic Clay of Low Plasticity MH: Inorganic Silt of High Plasticity ML: Inorganic Silt of Low Plasticity								

Grain size distribution analysis was also completed on one selected soil sample. The results of the grain size analysis are summarized in Table 2 and presented on the Grain Size Distribution Results sheets in Appendix 1.

Table 2 - Summary of Grain Size Distribution Analysis									
Test Hole Sample Gravel (%) Sand (%) Silt (%) Clay (%)									
BH 28	SS4A	0	5.1	52.9	42				

4.3 Groundwater

Groundwater level readings were measured at the piezometer locations on February 11, 2020. The observed groundwater levels are summarized in Table 3.

Table 3 - Su	Table 3 - Summary of Groundwater Level Readings									
Test Hole Number	Ground Surface Elevation (m)	Groundwater Depth (m)	Groundwater Elevation (m)	Date						
BH 1A	98.37	Piezometer Blocked	-	February 11, 2020						
BH 2	99.16	3.35	95.81	February 11, 2020						
BH 3	99.95	3.25	96.70	February 11, 2020						
BH 4A	99.55	3.58	96.37	February 11, 2020						
BH 5A	99.08	2.56	97.24	February 11, 2020						
BH 6	98.68	Piezometer Blocked	-	February 11, 2020						
BH7	102.53	4.34	98.19	February 11, 2020						
BH8A	96.97	0.98	95.99	February 11, 2020						
BH9A	97.97	1.13	96.84	February 11, 2020						
BH10	98.70	0.69	98.01	February 11, 2020						
BH11A	99.45	Piezometer Blocked	-	February 11, 2020						
BH12	100.35	Piezometer Blocked	-	February 11, 2020						
BH13	99.99	Piezometer Blocked	-	February 11, 2020						
BH14A	97.48	Piezometer Blocked	-	February 11, 2020						
BH15	98.55	Piezometer Blocked	-	February 11, 2020						
BH16A	97.28	1.77	95.51	February 11, 2020						
BH17	98.09	Piezometer Blocked	-	February 11, 2020						
BH18A	96.41	1.78	94.63	February 11, 2020						
BH19	95.95	1.49	94.46	February 11, 2020						
BH20	96.34	2.30	94.04	February 11, 2020						
BH21	96.93	3.93	93.00	February 11, 2020						
BH22	95.53	2.65	92.88	February 11, 2020						
BH23	98.15	1.44	96.71	February 11, 2020						
BH24A	96.53	1.97	94.56	February 11, 2020						
BH25	95.59	1.35	94.24	February 11, 2020						
BH26	96.82	3.07	93.75	February 11, 2020						
BH27	94.96	2.42	92.54	February 11, 2020						

Table 3 - Summary of Groundwater Level Readings								
Test Hole Number	Ground Surface Elevation (m)	Groundwater Depth (m)	Groundwater Elevation (m)	Date				
BH28	93.75	4.10	89.65	February 11, 2020				
Note: Ground surface elevations at test hole locations were surveyed by Paterson and are referenced to a geodetic datum.								

It should be noted that surface water can become perched within a backfilled borehole, which can lead to higher than normal groundwater level readings. The long-term groundwater level can also be estimated based on the recovered soil samples' moisture levels, colouring and consistency. Based on these observations, the long-term groundwater level is anticipated at a depth of approximately 3 to 4 m below ground surface. Groundwater levels are subject to seasonal fluctuations and could vary at the time of construction.

5.0 Discussion

5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is adequate for the proposed residential development. It is expected that the proposed residential dwellings will be founded on conventional spread footings placed on an undisturbed, silty sand, clayey silt, silty clay, glacial till, engineered fill and/or surface-sounded bedrock bearing surface.

Should existing grades be raised at the site for the proposed development, it is expected that several options, such as engineered fill or well graded blast rock, would act as suitable subgrade material for the proposed buildings provided the material is adequately placed and approved by the geotechnical consultant at the time of placement.

It is anticipated that some bedrock removal will be required for basement construction and site servicing activities. All contractors should be prepared for bedrock removal within the subject site.

Due to the presence of a silty clay deposit throughout the northern half of the subject site, a permissible grade raise restriction will be required for grading around the proposed buildings founded within the silty clay deposit.

Due to the groundwater level within the glacial till layer, a significantly high groundwater in-flux may be observed during the installation of site servicing, where trench excavation extends below the groundwater table. Excavations below the water level in non-cohesive soils, such as silty sand, have the potential for basal heave if groundwater is not controlled during the excavation work. A series of well points may be required to control groundwater in-flow for service trenches that extend below the water table. It is assumed that the excavations will be carried out within the confines of a fully braced trench box or other acceptable shoring systems design by a qualified engineer to resist the design lateral earth pressures and potential basal heave issues.

The above and other considerations are discussed in the following paragraphs.

5.2 Site Grading and Preparation

Stripping Depth

Topsoil, and any deleterious fill, such as those containing organic materials, should be stripped from under any buildings and other settlement sensitive structures.

Existing foundation walls and other construction debris should be entirely removed from within the proposed building footprints. Under paved areas, existing construction remnants, such as foundation walls should be excavated to a minimum depth of 1 m below final grade.

Fill Placement

Fill used for grading beneath the building areas should consist, unless otherwise specified, of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II material. The fill should be placed in lifts no greater than 300 mm thick and compacted using suitable compaction equipment for the lift thickness. Fill placed beneath the buildings should be compacted to at least 98% of its standard Proctor maximum dry density (SPMDD).

Non-specified existing fill along with site-excavated soil can be placed as general landscaping fill where settlement of the ground surface is of minor concern. These materials should be spread in thin lifts compacted by the tracks of the spreading equipment to minimize voids. If the material is to be placed to increase the subgrade level for areas to be paved, the fill should be compacted in maximum 300 mm lifts and compacted to 95% of the material's SPMDD. Non-specified existing fill and site-excavated soils are not suitable for placement as backfill against foundation walls unless a composite drainage blanket connected to a perimeter drainage system is provided.

Where blast rock it to be used as fill to build up the bearing medium, it should be suitably fragmented to produce a well-graded material with a maximum particle size of 400 mm placed in maximum 600 mm loose lifts and compacted using a large smooth drum vibratory roller making several passes per lift and approved by the geotechnical consultant at the time of placement. Any blast rock greater than 400 mm in diameter should be segregated and hoe rammed into acceptable fragments. The blast rock fill should be capped with a minimum of 300 mm of Granular B Type II or Granular A crushed stone material and should be compacted to at least 98% of its SPMDD.

Bedrock Removal

In areas where shallow bedrock is encountered, and only a small quantity of bedrock is to be removed, bedrock removal may be possible by hoe-ramming. However, dependent on the quantity and condition of the bedrock, line-drilling in conjunction with hoe-ramming may be required to remove the bedrock. All contractors should be prepared ofr bedrock removal within the subject site.

Vibration Considerations

Construction operations could cause vibrations, and possibly, sources of nuisance to the community. Therefore, means to reduce the vibration levels as much as possible should be incorporated in the construction operations to maintain a cooperative environment with the residents.

Two parameters determine the recommended vibration limit: the maximum peak particle velocity and the frequency. For low frequency vibrations, the maximum allowable peak particle velocity is less than that for high frequency vibrations. As a guideline, the peak particle velocity should be less than 15 mm/s between frequencies of 4 to 12 Hz, and 50 mm/s above a frequency of 40 Hz (interpolate between 12 and 40 Hz). These guidelines are for current construction standards. These guidelines are above perceptible human level and, in some cases, could be very disturbing to some people. A pre-construction survey is recommended to minimize the risks of claims during or following the construction of the proposed buildings.

5.3 Foundation Design

Bearing Resistance Values

Strip footings, up to 2 m wide, and pad footings, up to 4 m wide, placed on an undisturbed, clayey silt or firm to stiff silty clay bearing surface can be designed using a bearing resistance value at serviceability limit states (SLS) of **100 kPa** and a factored bearing resistance value at ultimate limit states (ULS) of **150 kPa**.

Footings placed on an undisturbed, compact silty sand and/or glacial till bearing surface can be designed using a bearing resistance value at SLS of **150 kPa** and a factored bearing resistance value at ULS of **225 kPa**.

An undisturbed soil bearing surface consists of a surface from which all topsoil and deleterious materials, such as loose, frozen or disturbed soil, whether in situ or not, have been removed, in the dry, prior to the placement of concrete for footings.

Footings placed on clean, surface-sounded bedrock can be designed using a bearing resistance value at SLS of **500 kPa** and a factored bearing resistance value at ULS of **750 kPa**. A clean, weathered bedrock surface consists of one from which all topsoil, soils, deleterious materials and loose rock have been removed prior to concrete placement.

Footings placed over an approved engineered fill bearing surface can be designed using a bearing resistance value at SLS of **150 kPa** and a factored bearing resistance value at ULS of **225 kPa**.

Footings designed using the bearing resistance value at SLS given above will be subjected to potential post construction total and differential settlements of 25 and 20 mm, respectively. A geotechnical resistance factor of 0.5 was applied to the above noted bearing resistance value at ULS.

Lateral Support

The bearing medium under footing-supported structures is required to be provided with adequate lateral support. Adequate lateral support is provided to a silty sand, clayey silt, silty clay, glacial till or engineered fill bearing medium above the groundwater table when a plane extending down and out from the bottom edge of the footing, at a minimum of 1.5H:1V passes through in situ soil of the same or high bearing medium soil.

Adequate lateral support is provided to a sound bedrock bearing medium when a plane extending horizontally and vertically from the footing perimeter at a minimum of 1H:6V (or shallower) passing through sound bedrock or a material of the same or higher capacity as the bedrock, such as concrete.

Permissible Grade Raise Restrictions

Consideration must also be given to potential settlements which could occur due to the presence of the silty clay deposit encountered throughout the northern half of the subject site and the combined loads from the proposed footings, any groundwater lowering effects, and grade raise fill. The foundation loads to be considered for the settlement case are the continuously applied loads which consist of the unfactored dead loads and the portion of the unfactored live load that is considered to be continuously applied. For buildings, a minimum value of 50% of the live load is often recommended by Paterson. A post-development groundwater lowering of 0.5 m was assumed.

Our permissible grade raise recommendations for the proposed residential development are presented in Drawing PG5131-2 - Permissible Grade Raise Plan in Appendix 2.

If higher than permissible grade raises are required, preloading with or without a surcharge, lightweight fill, and/or other measures should be investigated to reduce the risks of unacceptable long-term post construction total and differential settlements.

5.4 Design for Earthquakes

The subject site can be taken as seismic site response **Class C** as defined in Table 4.1.8.4.A of the Ontario Building Code (OBC) 2012 for foundations considered at this site. A site specific shear wave velocity test may be completed to accurately determine the applicable seismic site classification for foundation design of the proposed residential development.

The soils underlying the site are not susceptible to liquefaction. Reference should be made to the latest revision of the Ontario Building Code for a full discussion of the earthquake design requirements.

5.5 Basement Slab / Slab-on-Grade Construction

With the removal of all topsoil and deleterious fill from within the footprint of the proposed buildings, the native soil surface or approved engineered fill surface will be considered to be an acceptable subgrade on which to commence backfilling for floor slab construction.

Any soft areas should be removed and backfilled with appropriate backfill material prior to placing any fill. OPSS Granular B Type II, with a maximum particle size of 50 mm, are recommended for backfilling below the floor slab.

For structures with basement slabs, it is recommended that the upper 200 mm of subfloor fill consists of 19 mm clear crushed stone.

For structures with slab-on-grade construction, the upper 200 mm of sub-slab fill is recommended to consist of OPSS Granular A crushed stone. All backfill material within the footprint of the proposed buildings should be placed in maximum 300 mm thick loose layers and compacted to a minimum of 98% of the SPMDD.

5.6 Pavement Structure

For design purposes, the following pavement structures, presented below, are recommended for the design of car parking areas, local and collector roadways.

Table 4 - Recommended Pavement Structure - Driveways							
Thickness (mm) Material Description							
50	Wear Course - HL 3 or Superpave 12.5 Asphaltic Concrete						
150	BASE - OPSS Granular A Crushed Stone						
300 SUBBASE - OPSS Granular B Type II							
SUBGRADE - Either fill, in situ soil or OPSS Granular B Type I or II material placed over in situ soil							

or fill

Note: Minimum Performance Graded (PG) 58-34 asphalt cement should be used for driveways.

Table 5 - Recommended Pavement Structure - Local Residential Roadways						
Thickness (mm)	Material Description					
40	Wear Course - Superpave 12.5 Asphaltic Concrete					
50	Binder Course - Superpave 19.0 Asphaltic Concrete					
150	BASE - OPSS Granular A Crushed Stone					
400	SUBBASE - OPSS Granular B Type II					
SUBGRADE - Either fill in situ soil or OPSS Granular B Type I or II material placed over in situ soil						

SUBGRADE - Either fill, in situ soil or OPSS Granular B Type I or II material placed over in situ soil or fill

 $\label{eq:Note:Minimum} \textbf{Note:} \ \textbf{Minimum} \ \textbf{Performance} \ \textbf{Graded} \ (\textbf{PG}) \ \textbf{58-34} \ \textbf{asphalt} \ \textbf{cement} \ \textbf{should} \ \textbf{be} \ \textbf{used} \ \textbf{for local roadways}.$

bus traffic.

Table 6 - Recommended Pavement Structure - Roadways with Bus Traffic							
Thickness (mm)	Material Description						
40	Wear Course - Superpave 12.5 Asphaltic Concrete						
50	Upper Binder Course - Superpave 19.0 Asphaltic Concrete						
50	Lower Binder Course - Superpave 19.0 Asphaltic Concrete						
150	BASE - OPSS Granular A Crushed Stone						
600	SUBBASE - OPSS Granular B Type II						
SUBGRADE - Either fill, in situ soil or OPSS Granular B Type I or II material placed over in situ soil or fill Note: Minimum Performance Graded (PG) 64-34 asphalt cement should be used for roadways with							

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with OPSS Granular B Type I or Type II material.

The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 99% of the material's SPMDD using suitable compaction equipment.

Pavement Structure Drainage

Satisfactory performance of the pavement structure is largely dependent on keeping the contact zone between the subgrade material and the base stone in a dry condition. Failure to provide adequate drainage under conditions of heavy wheel loading can result in the fine subgrade soil being pumped into the voids in the stone subbase, thereby reducing its load carrying capacity.

Where silty clay is anticipated at subgrade level, consideration should be given to installing subdrains during the pavement construction. The sub-drain inverts should be approximately 300 mm below subgrade level and run longitudinal along the curblines. The subgrade surface should be crowned to promote water flow to the drainage lines.

6.0 Design and Construction Precautions

6.1 Foundation Drainage and Backfill

It is recommended that a perimeter foundation drainage system be provided for the proposed structures. The system should consist of a 100 to 150 mm diameter perforated and corrugated plastic pipe surrounded on all sides by 150 mm of 10 mm clear crushed stone, placed at the footing level around the exterior perimeter of the structure. The pipe should have a positive outlet, such as a gravity connection to the storm sewer.

Backfill against the exterior sides of the foundation walls should consist of freedraining, non frost susceptible granular materials. The site materials will be frost susceptible and, as such, are not recommended for re-use as backfill unless a composite drainage system (such as Miradrain G100N) connected to a drainage system is provided.

6.2 **Protection Against Frost Action**

Perimeter footings of heated structures are required to be insulated against the deleterious effect of frost action. A minimum of 1.5 m thick soil cover (or equivalent) should be provided in this regard.

A minimum of 2.1 m thick soil cover (or equivalent) should be provided for other exterior unheated footings.

6.3 Excavation Side Slopes

The side slopes of excavations in the soil and fill overburden materials should either be cut back at acceptable slopes or should be retained by shoring systems from the start of the excavation until the structure is backfilled. It is assumed that sufficient room will be available for the greater part of the excavations to be undertaken by open-cut methods (i.e. unsupported excavations).

The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should be cut back at 1H:1V or flatter. The flatter slope is required for excavation below groundwater level. The subsoil at this site is considered to be mainly a Type 2 and 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

It is recommended that a dewatering program, such as a series of well points design and installed by a licensed contractor specializing in dewatering, be completed for service installations completed below the groundwater level for areas in non-cohesive soils.

Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should be kept away from the excavation sides.

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

It is recommended that a trench box be used at all times to protect personnel working in trenches with steep or vertical sides. It is expected that services will be installed by "cut and cover" methods and excavations will not be left open for extended periods of time.

Excavation Base Stability

The base of supported excavations can fail by three general modes:

- □ Shear failure within the ground caused by inadequate resistance to loads imposed by grade difference inside and outside of the excavation,
- Piping from water seepage through granular soils, and
- □ Heave of layered soils due to water pressures confined by intervening low permeability soils.

Shear failure of excavation bases is typically rare in granular soils if adequate lateral support is provided. Inadequate dewatering can cause instability in excavations made through granular or layered soils. The potential for base heave in cohesive soils should be determined for stability of flexible retaining systems.

The factor of safety with respect to base heave, FS_{b} , is:

$$FS_{b} = N_{b}s_{u}/\sigma_{z}$$

where:

- N_b stability factor dependent upon the geometry of the excavation and given in Figure 1 on the following page.
- s_u undrained shear strength of the soil below the base level
- σ_z total overburden and surcharge pressures at the bottom of the excavation

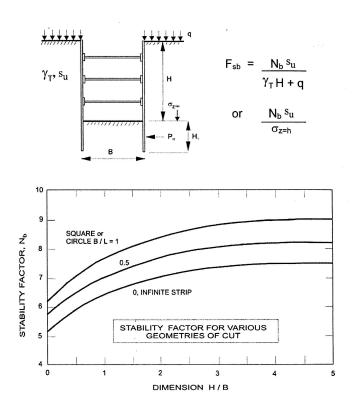


Figure 1 - Stability Factor for Various Geometries of Cut

In the case of soft to firm clays, a factor of safety of 2 is recommended for base stability.

6.4 Pipe Bedding and Backfill

Bedding and backfill materials should be in accordance with the most recent Materials Specifications & Standard Detail Drawings from the Department of Public Works and Services, Infrastructure Services Branch of the City of Ottawa.

It is expected that the invert level of the municipal services will be installed at or below the long term groundwater level within the glacial till deposit. As a result, it is recommended that a dewatering program should be implemented prior to construction to temporarily draw down the long term groundwater level during the construction phase. It is recommended that the dewatering program consisting of a series of well points be designed and installed by a licensed contractor specialized in dewatering. At least 150 mm of OPSS Granular A crushed stone should be used for pipe bedding for sewer and water pipes. However, the bedding thickness should be increased to 300 mm for areas over a bedrock subgrade. The bedding should extend to the spring line of the pipe. Cover material, from the spring line to at least 300 mm above the obvert of the pipe, should consist of OPSS Granular A or Granular B Type II with a maximum size of 25 mm. The bedding and cover materials should be placed in maximum 225 mm thick lifts compacted to 98% of the material's SPMDD.

Based on the soil profile encountered, the subgrade for the services will be placed in both bedrock and overburden soils. It is recommended that the subgrade medium be inspected in the field to determine how steeply the bedrock surface, where encountered, drops off. A transition should be provided where the bedrock slopes more than 3H:1V. At these locations, the bedrock should be excavated and replaced with additional bedding materials to provide a 3H:1V (or flatter) transition from the bedrock subgrade towards the soil subgrade. This treatment reduces the propensity for bending stress to occur in the services.

Generally, it should be possible to re-use the moist (not wet) brown silty clay above the cover material if the excavation and filling operations are carried out in dry weather conditions. Wet silty clay should be given a sufficient drying period to decrease its moisture content to an acceptable level to make compaction possible prior to being re-used. All cobbles greater than 200 mm in the longest direction should be removed prior to the site materials being reused.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should consist of the soils exposed at the trench walls to minimize differential frost heaving. The trench backfill should be placed in maximum 300 mm thick loose lifts and compacted to a minimum of 95% of the SPMDD.

To reduce long-term lowering of the groundwater level at the subject site, clay seals should be provided in the servicing trenches. The seals should be at least 1.5 m long and should extend from trench wall to trench wall. Generally, the seals should extend from the frost line and fully penetrate the bedding, subbedding and cover material. The barriers should consist of a relatively dry brown silty clay placed in maximum 225 mm thick loose layers and compacted to a minimum of 95% of the material's SPMDD. The clay seals should be placed at the site boundaries and at strategic locations at no more than 60 m intervals in the service trenches.

6.5 Groundwater Control

Due to the permeable glacial till deposit encountered within the groundwater table within the subject site, it is anticipated that conventional pumping with open sumps will be difficult to control the groundwater influx through the sides of the temporary excavation. As a result, it is recommended that a dewatering specialist be consulted to review the most effective dewatering methods.

Permit to Take Water

A temporary MOECC permit to take water (PTTW) is recommended for this project if more than 400,000 L/day of ground and/or surface water is to be pumped during the construction phase. At least 4 to 5 months should be allowed for completion of the application and issuance of the permit by the MOECC.

The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

6.6 Winter Construction

The subsurface soil conditions mostly consist of frost susceptible materials. In the presence of water and freezing conditions, ice could form within the soil mass. Heaving and settlement upon thawing could occur.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the installation of straw, propane heaters and tarpaulins or other suitable means. The base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

The trench excavations should be constructed to avoid the introduction of frozen materials, snow or ice into the trenches. As well, pavement construction is difficult during winter. The subgrade consists of frost susceptible soils which will experience total and differential frost heaving during construction. Also, the introduction of frost, snow or ice into the pavement materials, which is difficult to avoid, could adversely affect the performance of the pavement structure.

6.7 Corrosion Potential and Sulphate

The results of analytical testing show that the sulphate content is less than 0.1%. This result is indicative that Type 10 Portland cement (normal cement) would be appropriate for this site. The chloride content and the pH of the sample indicate that they are not significant factors in creating a corrosive environment for exposed ferrous metals at this site, whereas the resistivity is indicative of a non-aggressive to slightly aggressive corrosive environment.

6.8 Landscaping Considerations

Paterson completed a soils review of the site to determine applicable tree planting setbacks, in accordance with the City of Ottawa Tree Planting in Sensitive Marine Clay Soils (2017 Guidelines) for trees planted within a public right-of-way (ROW). Atterberg limits testing was completed for recovered silty clay samples where encountered. Sieve analysis testing was also completed on one soil sample. The above-noted test results were completed on samples taken at depths between the anticipated underside of footing elevation and a 3.5 m depth below finished grade. The results of our testing are presented in Tables 2 and 3 in Subsection 4.2 and in Appendix 1.

Based on the results of our review, the following tree planting setbacks are required within the northern half of the proposed development. The recommended tree planting setbacks should be reviewed by Paterson, once the proposed grading plan has been prepared.

Area 1 - Low to Medium Sensitivity Clay Area

A low to medium sensitivity clay soil was encountered between the anticipated design underside of footing elevations and 3.5 m below finished grade as per City Guidelines in the areas outlined in Drawing PG5131-3 - Tree Planting Setback Recommendations in Appendix 2. Based on our Atterberg limits test results, the modified plasticity index does not exceed 40% in these areas. The following tree planting setbacks are recommended for the low to medium sensitivity area. Large trees (mature height over 14 m) can be planted within these areas provided a tree to foundation setback equal to the full mature height of the tree can be provided (e.g. in a park or other green space). Tree planting setback limits may be reduced to **4.5 m** for small (mature height up to 7.5 m) and medium size trees (mature tree height 7.5 to 14 m), provided that the conditions noted below are met.

- □ The underside of footing (USF) is 2.1 m or greater below the lowest finished grade for footings within 10 m from the tree, as measured from the centre of the tree trunk and verified by means of the Grading Plan.
- A small tree must be provided with a minimum of 25 m³ of available soils volume while a medium tree must be provided with a minimum of 30 m³ of available soil volume, as determined by the Landscape Architect. The developer is to ensure that the soil is generally un-compacted when backfilling in street tree planting locations.
- □ The tree species must be small (mature tree height up to 7.5 m) to medium size (mature tree height 7.5 m to 14 m) as confirmed by the Landscape Architect.
- □ The foundation walls are to be reinforced at least nominally (minimum of two upper and two lower 15M bars in the foundation wall).
- Grading surrounding the tree must promote drainage to the tree root zone (in such a manner as not to be detrimental to the tree), as noted on the subdivision Grading Plan.

Aboveground Swimming Pools

The in-situ soils are considered to be acceptable for in-ground swimming pools. Above ground swimming pools must be placed at least 5 m away from the residence foundation and neighbouring foundations. Otherwise, pool construction is considered routine, and can be constructed in accordance with the manufacturer's recommendations.

Aboveground Hot Tubs

Additional grading around hot tubs should not exceed permissible grade raises. Otherwise, hot tub construction is considered routine, and can be constructed in accordance with the manufacturer's specifications.

Decks and Building Additions

Additional grading around proposed decks or additions should not exceed permissible grade raises. Otherwise, standard construction practices are considered acceptable.

7.0 Recommendations

The following is recommended to be completed once the site plan and development are determined:

- **Q** Review detailed grading plan(s) from a geotechnical perspective.
- Observation of all bearing surfaces prior to the placement of concrete.
- Sampling and testing of the concrete and fill materials used.
- Review and inspection of all foundation drainage systems.
- Observation of all subgrades prior to backfilling.
- Observation of clay seal placement at specified locations
- □ Field density tests to ensure that the specified level of compaction has been achieved.
- Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
- Sampling and testing of the bituminous concrete including mix design reviews.

A report confirming the construction has been completed in general accordance with Paterson's recommendations could be issued upon request, following the completion of a satisfactory material testing and observation program by the geotechnical consultant.

8.0 Statement of Limitations

The recommendations provided in this report are in accordance with our present understanding of the project. We request permission to review our recommendations when the drawings and specifications are completed.

A geotechnical investigation is a limited sampling of a site. Should any conditions at the site be encountered which differ from those at the test hole locations, we request immediate notification to permit reassessment of our recommendations.

The recommendations provided herein should only be used by the design professionals associated with this project. They are not intended for contractors bidding on or undertaking the work. The latter should evaluate the factual information provided in this report and determine its suitability and completeness for their intended construction schedule and methods. Additional testing may be required for their purposes.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Riverside South Development Corporation, or their agents, is not authorized without review by Paterson for the applicability of our recommendations to the alternative use of the report.

Paterson Group Inc.

Kevin A. Pickard, EIT

David J. Gilbert, P.Eng.

Report Distribution

- Riverside South Development Corporation
- Paterson Group

APPENDIX 1

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

ATTERBERG LIMITS RESULTS

GRAIN SIZE DISTRIBUTION ANALYSIS RESULTS

ANALYTICAL TESTING RESULTS

SOIL PROFILE AND TEST DATA

 \blacktriangle Undisturbed \triangle Remoulded

Geotechnical Investigation Riverside South Development - Phase 17 Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM	Geodetic

DATUM Geodetic						FILE NO. PG5131				
REMARKS BORINGS BY CME 55 Power Auger				r		January 2	27 2020		HOLE NO. BH 1	
SOIL DESCRIPTION	STRATA PLOT		SAN	/IPLE		DEPTH (m)	ELEV. (m)		esist. Blows/0.3m 0 mm Dia. Cone	tion
		ТҮРЕ	NUMBER	* RECOVERY	N VALUE or RQD				/ater Content %	Piezometer Construction
GROUND SURFACE TOPSOIL				ц		0-	-98.37	20	40 60 80	
<u>0.40</u>		SS	1	75	69	1-	-97.37			· · · · · · · · · · · · · · · · · · ·
GLACIAL TILL: Very dense, brown sand, trace silt, gravel and cobbles		ss	3	62	42	2-	-96.37			· · · · · · · · · · · · · · · · · · ·
3.20		ss × ss	4 5	71 100	27 50+	3-	-95.37			
Practical refusal to augering at 3.20m depth.								20 Shea	40 60 80 ar Strength (kPa)	

SOIL PROFILE AND TEST DATA

▲ Undisturbed

△ Remoulded

FILE NO.

PG5131

Geotechnical Investigation Riverside South Development - Phase 17 Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

REMARKS

DATUM

BORINGS BY	CME 55	Power	Auge

Geodetic

						lonuon. C	7 0000		HOLE NO. BH 1A			
BORINGS BY CME 55 Power Auger SOIL DESCRIPTION	PLOT		SAN	/IPLE		January 2 DEPTH	ELEV.			lows/0.3m ia. Cone		
	STRATA P	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)			ontent %	Piezometer Construction	
GROUND SURFACE	ũ	_	N	RE	zö	0-	-98.37	20	40	60 80	S Pie	
TOPSOIL)	-				0	90.07					
GLACIAL TILL: Very dense, brown						1-	-97.37					
GLACIAL TILL: Very dense, brown sand, trace silt, gravel and cobbles						2-	-96.37					
3.18 End of Borehole	3 (),),),), (),),),), (),),),), (),),),), (),),),), (),),),), (),),),), (),),),), (),),),), (),),),), (),),),), (),),),), (),),),), (),),),), (),),),),), (),),),),),),),),),),),),),),),),),),),	× SS	1	100	50+	3-	-95.37					
Practical refusal to augering at 3.18m depth.												
(Piezometer dry/blocked at 2.76m depth - Feb. 11, 2020)												
								20 Shea	40 ar Stren	60 80 1 gth (kPa)	∣00	

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Riverside South Development - Phase 17 Ottawa, Ontario

						,					
DATUM Geodetic									FILE NO.	PG5131	
REMARKS									HOLE NO). BH 2	
BORINGS BY CME 55 Power Auger	PLOT				ATE	January 2	27, 2020				1
SOIL DESCRIPTION			SAMPLE			DEPTH (m)	ELEV. (m)		ows/0.3m a. Cone	eter ction	
	STRAT	STRATA TYPE NUMBER NUMBER NUMBER NUMBER 0 COLERY OF RQD			0 N	ntent %	Piezometer Construction				
GROUND SURFACE	07	~	4	RE	z ^o	0-	-99.16	20	40 6	60 80	ŭ <u>ה</u>
TOPSOIL0.33		AU	1								
			I								
GLACIAL TILL: Brown silty clay, some sand, trace gravel		ss	2	50	14	1-	-98.16				
		ss	3	38	50+	2-	-97.16				
2. <u>29</u>		ss	4	79	41						
		ss	5	67	24	3-96	-96.16				- - - - -
GLACIAL TILL: Compact to very dense, brown sandy silt, trace clay, gravel and cobbles		ss	6	67	26	4-95.16					
		ss	7	100	50+	F	-94.16				
5.33 GLACIAL TILL: Brown silty clay with sand, trace gravel and cobbles		ss	8	67	46	5-	-94.10				
5.94 End of Borehole	<u>\^^^^/</u>										<u> </u>
(GWL @ 3.35m - Feb. 11, 2020)											
								20 Shea ▲ Undist	r Streng		00

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Riverside South Development - Phase 17 Ottawa, Ontario

DATUM Geodetic									FILE NO	PG5131	
REMARKS				-		loouory	0000 70		HOLE N	^{o.} BH 3	
BORINGS BY CME 55 Power Auger	PLOT		SAMPLE			January 2	ELEV.		lows/0.3m a. Cone	- no	
	STRATA	ЭЧХТ	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		/ater Co	Piezometer Construction	
GROUND SURFACE		8	-	<u></u>	4	0-	-99.95	20	40	60 80	
TOPSOIL 0.36		¥ AU	1 2	76	33	1-	-98.95				
GLACIAL TILL: Dense, brown sand, some gravel and cobbles		ss	3	67	41	2-	-97.95				
		ss	4	71	28 50+		-96.95				
4.17		≖ SS	6	0	50+	4-	-95.95				
End of Borehole Practical refusal to augering at 4.17m depth. (GWL @ 3.25m - Feb. 11, 2020)											
								20 Shea ▲ Undist	r Streng	60 80 10 10 10 10 10 10 10 10 10 10	00

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Riverside South Development - Phase 17 Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM	(

DATUM Geodetic									FILE NO.	PG5131	
				-		January 2	00 0000		HOLE NO.	BH 3A	
BORINGS BY CME 55 Power Auger			0.41								
SOIL DESCRIPTION	А РІОТ			IPLE 값	۲o	DEPTH (m)	ELEV. (m)		esist. Blo 0 mm Dia.		eter
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD				/ater Cont		Piezometer Construction
GROUND SURFACE				Ř	4	0-	99.95	20	40 60	80	L C
TOPSOIL <u>0.36</u>		_									
Inferred GLACIAL TILL: Dense,						1-	-98.95				
brown sand, some gravel and cobbles											
						2-	-97.95				
2.62	<u>`^^^^^</u>	-									
Practical refusal to augering at 2.62m depth.											
								20 Shea ▲ Undist	40 60 ar Strength urbed △ 1	80 10 n (kPa) Remoulded	00

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Riversia

Geotechnical Investigation Riverside South Development - Phase 17 Ottawa, Ontario

DATUM Geodetic									FILE NO.	PG5131	
REMARKS									HOLE NO		
BORINGS BY CME 55 Power Auger				D	ATE 、	January 2	27, 2020			DIT 4	
SOIL DESCRIPTION	PLOT		SAMPLE			DEPTH ELEV. (m) (m)		Pen. Resist. Blows/ • 50 mm Dia. Co			ter tion
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			• v	/ater Con	Piezometer Construction	
GROUND SURFACE		~	1	8	ZŸ	0-	-99.55	20	40 6	0 80	ΞŪ
TOPSOIL 0.33		AU	1								
GLACIAL TILL: Dense to very dense, brown silty sand with gravel, trace cobbles and boulders		ss	2	62	32	1-	-98.55				
		ss	3	54	20	2-	-97.55		· · · · · · · · · · · · · · · · · · ·		
2.49 End of Borehole		∦ss	4	100	50+						
Practical refusal to augering at 2.49m depth.											
								20 Shea ▲ Undist	40 6i ar Strengt urbed △	0 80 10 h (kPa) Remoulded	0

SOIL PROFILE AND TEST DATA

Geotechnical Investigation
 Riverside South Development - Phase 17
 Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5 DATUM Geodetic FILE NO. **PG5131** REMARKS HOLE NO. BH 4A BORINGS BY CME 55 Power Auger DATE January 27, 2020 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION • 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE o/0 \bigcirc Water Content % **GROUND SURFACE** 80 20 40 60 0+99.55TOPSOIL 0.33 1 + 98.55Inferred GLACIAL TILL: Dense to very dense, brown silty sand with gravel, trace cobbles and boulders 2 + 97.553.05 3+96.55 GLACIAL TILL: Brown clayey silt with sand, trace gravel SS 1 100 26 3.45 GLACIAL TILL: Brown silty clay, trace sand 3.81 4+95.55 SS 2 71 31 GLACIAL TILL: Dense to compact, SS 3 100 45 brown sand, trace silt, gravel and 5+94.55cobbles SS 4 54 23 5.94 End of Borehole (GWL @ 3.58m - Feb. 11, 2020) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Riverside South Development - Phase 17 Ottawa, Ontario

DATUM Geodetic									FILE N	o. PG5131	
REMARKS									HOLE		
BORINGS BY CME 55 Power Auger				D	ATE .	January 28	, 2020			БПЭ	
SOIL DESCRIPTION	PLOT			NPLE 건	M	DEPTH I (m)	ELEV. (m)			Blows/0.3m Dia. Cone	ter tion
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			• Water Content %			Piezometer Construction
GROUND SURFACE		~	4	R	zř	0-9	99.08	20	40	60 80	ΞÖ
TOPSOIL 0.20		× AU	1				55.00				
FILL: Brown silty sand, trace clay and gravel		ss	2	54	34	1-9	98.08		· · · · · · · · · · · · · · · · · · ·		
GLACIAL TILL: Brown silty sand, trace gravel		ss	3	50	38						
2.13		$\overline{\mathbf{A}}$	-			2-9	97.08				
GLACIAL TILL: Brown sandy silt, trace clay, gravel and cobbles		∬ SS ≍ SS	4 5	67 67	43	3-9	96.08				
3.76		∆ 33	5	07	50+						
End of Borehole		-									
Practical refusal to augering at 3.76m depth.											
								20 Shea ▲ Undist		60 80 10 ngth (kPa) △ Remoulded	00

SOIL PROFILE AND TEST DATA

ers Geotechnical Investigation Riverside South Development - Phase 17 Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5 DATUM Geodetic FILE NO. **PG5131** REMARKS HOLE NO. BH 5A BORINGS BY CME 55 Power Auger DATE January 28, 2020 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE o/0 \bigcirc Water Content % **GROUND SURFACE** 80 20 40 60 0+99.08TOPSOIL 0.20 Inferred FILL: Brown silty sand, trace clay and gravel 1 + 98.081.37 Inferred GLACIAL TILL: Brown silty sand, trace gravel 2+97.082.13 3+96.08GLACIAL TILL: Brown sandy silt, SS 1 100 50+ trace clay, gravel and cobbles 4+95.08 2 SS 29 30 4.57 SS 3 83 GLACIAL TILL: Brown clayey silt to 4 5+94.08silty clay, trace sand SS 4 79 9 <u>5.7</u>9 Running sand encountered at 5.79m depth, borehole terminated. (GWL @ 2.56m - Feb. 11, 2020) 20 40 60 80 100 Shear Strength (kPa) Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic									FILE NO.	PG5131	
REMARKS				_					HOLE NO	^{).} BH 6	
BORINGS BY CME 55 Power Auger			~ ~ ~ ~		DATE	January 2	28, 2020				
SOIL DESCRIPTION	PLOT			IPLE 건	M .	DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone			ter tion
	STRATA	ТҮРЕ	NUMBER	° ≈ © © © ©	N VALUE or RQD			• v	ater Cor	ntent %	Piezometer Construction
GROUND SURFACE	01	~	4	R	z º	- 0-	-98.68	20	40 6	60 80	ы С Д
TOPSOIL 0.30		AU	1								
		ss	2 6	83 91	29 52	1-	-97.68				
GLACIAL TILL: Compact to very dense, brown silty sand, some gravel, trace clay - trace cobbles and boulders by 1.5m depth		ss	3	62	85	2-	-96.68				
		ss	4	62	65						
		ss	5	71	50+	3-	-95.68				
						4-	-94.68				
4.88		∦ss ⊦	7	88	50+						
End of Borehole Practical refusal to augering at 4.88m depth											
(GWL @ 2.74m - Feb. 11, 2020)								20	40 6	0 80 1	00
									r Streng		

SOIL PROFILE AND TEST DATA

FILE NO.

PG5131

Geotechnical Investigation Riverside South Development - Phase 17 Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

REMARKS

DATUM

REMARKS BORINGS BY CME 55 Power Auger				D	DATE .	January 2	28. 2020	HOLE NO. BH 7
SOIL DESCRIPTION	PLOT		SAMPLE				ELEV.	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone
	STRATA P	ТҮРЕ	1 2 1 2 100 42	(m)	(m)	● 50 mm Dia. Cone ○ Water Content % 20 40 60 80 id		
GROUND SURFACE	N		Z	RE	z °	0-	-102.53	20 40 60 80 ^{[프}
TOPSOIL 0.28		AU	1			0	102.00	
		ss	2	100	42	1-	-101.53	
GLACIAL TILL: Dense to very dense, brown silty sand, some gravel, trace cobbles and boulders		ss	3	93	50+	2-	-100.53	
		ss	4	100	50+			
		ss	5	100	50+	3-	-99.53	
		ss	6	79	49	4-	-98.53	
		ss	7	67	36	5-	-97.53	
Dynamic Cone Penetration Test commenced at 5.94m depth.		ss	8	50	71	6-	-96.53	
Inferred GLACIAL TILL6.61 End of Borehole		-						
Practical DCPT refusal at 6.61m depth								
(Piezometer dry/blocked at 4.34m depth - Feb. 11, 2020)								
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic									FILE NC	D. PG5131	
REMARKS									HOLE N		
BORINGS BY CME 55 Power Auger					ATE	January 2	8, 2020				
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.			lows/0.3m ia. Cone	
		ы	R	ERY	Ba	(m)	(m)	• 5			neter
	STRATA	ТҮРЕ	NUMBER	° ≈ © © © ©	N VALUE or RQD			• N	ater Co	ntent %	Piezometer Construction
GROUND SURFACE	ω	~	Z	RE	z ^o	0-	96.97	20		60 80	ыё о
TOPSOIL0.41		× AU	1								
0.11											-
GLACIAL TILL: Very dense, brown		ss	2	56	50+		05 07				
GLACIAL TILL: Very dense, brown sandy silt, some gravel, trace cobbles and boulders		N 33	2	50	50+		95.97				
<u>1.83</u>		ss	3	67	50+						
End of Borehole											
Practical refusal to augering at 1.83m depth											
								20 Shea		60 80 10 gth (kPa)	00
								▲ Undist		∆ Remoulded	

TRATA PLOT

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Riverside South Development - Phase 17

REMARKS

BORINGS BY	CME 55 Power	Auger

SOIL DESCRIPTION

5		Ot	tawa, Or	ntario	velopmen								
						FILE	NO.	PG5131					
	D	ATE 、	January 2	28, 2020	1	HOLE	NO.	3H 8A					
SAN	IPLE		DEPTH	ELEV.	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone								
NUMBER	°. ∧ Secovery	N VALUE or RQD	(m)	(m)		Vater C			Piezometer Construction				
IN	REC	zö	0-	-96.97	20	40	60	80	D ie D ie				
			1-	-95.97									

	TA	ы	ER E	ER)	Ba	()							l de l
	STRATA	ТҮРЕ	NUMBER	* RECOVER	N VALUE or RQD						ntent 9		Piezomet Construct
GROUND SURFACE				R	4	0.	96.97	20	40) 6	0	80	
TOPSOIL		_				0	90.97						
Informed CLACIAL THE LAVOR dense													
Inferred GLACIAL TILL: Very dense, brown sandy silt, some gravel, trace cobbles and boulders						1	-95.97	 					
1 88													
End of Borehole	<u>^.^.</u>	-											
Practical refusal to augering at 1.88m depth													
(Piezometer dry/blocked at 0.98m depth - Feb. 11, 2020)													
								20 Shea	40 ar Si) é	bo th (kP		00
								Jndis	turbe	d ∆	Remo	ulded	

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Riverside

DATUM Geodetic									FILE NO.	PG5131	
BORINGS BY CME 55 Power Auger					ATE	January 2	20 2020		HOLE NO.	BH 9	
SOIL DESCRIPTION	PLOT		SAN			DEPTH	ELEV.		esist. Blow 0 mm Dia. (- u
	STRATA	ТҮРЕ	NUMBER	°. © © © © © © ©	N VALUE or RQD	(m)	(m)	• V	later Conte	ent %	Piezometer Construction
GROUND SURFACE	•	8	-	R	zv	- 0-	97.97	20	40 60	80	ēŎ
TOPSOIL0.30		AU	1								
GLACIAL TILL: Dense to very dense, brown sandy silt, some gravel		ss	2	58	38	1-	-96.97				
dense, brown sandy silt, some gravel				70							
		ss ss ss	3	78	69 50+	2-	-95.97				
2.51 End of Borehole			4	100	50+						
Practical refusal to augering at 2.51m depth											
								20 Shea ▲ Undist	40 60 ar Strength urbed △ R	80 10 (kPa) emoulded))0

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Riverside South

DATUM Geodetic									FILE NO.	PG5131	
REMARKS BORINGS BY CME 55 Power Auger				0	DATE	January 2	29, 2020		HOLE NO	BH 9A	
SOIL DESCRIPTION	РГОТ	SAMPLE				DEPTH (m)	ELEV. (m)		esist. Blo 0 mm Dia		on
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(11)	(11)	• v	/ater Con		Piezometer Construction
GROUND SURFACE				8	2 -	- 0-	-97.97	20	40 6	0 80	
TOPSOIL 0.30 Inferred GLACIAL TILL: Dense to very dense, brown sandy silt, some gravel 2.29 GLACIAL TILL: Very dense, brown 2.54 2.54 End of Borehole Practical refusal to augering at 2.54m Piezometer dry/blocked at 1.13m 0.30		∑ ss	1	100	50+	1-	-96.97 -95.97				
								20 Shea ▲ Undist	40 6 ar Strengt urbed △	0 80 1 h (kPa) Remoulded	00

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic									FILE NO.	PG5131	
REMARKS				-					HOLE NO.	BH10	
BORINGS BY CME 55 Power Auger	F		SAN	L APLE		January 2		Pen. R	esist. Blov		
SOIL DESCRIPTION	PLOT			1	M .	DEPTH (m)	ELEV. (m)		0 mm Dia.		ter tion
	STRATA	ТҮРЕ	NUMBER	* RECOVERY	N VALUE or RQD			• v	/ater Cont	ent %	Piezometer Construction
GROUND SURFACE	۲.S		NC	REC	N O	0-	-98.70	20	40 60	80	C Die C Die
TOPSOIL	<u>`</u> ^^^^^	AU	1								
		₩ L									
		ss	2	71	38	1-	-97.70				
		ss	3	82	50+						
GLACIAL TILL: Dense to very dense, brown silty sand, some gravel						2-	-96.70				
dense, brown sity sand, some graver		ss	4	67	65						
		1				3-	-95.70				
		ss	5	58	64		35.70				
		1									
- grey by 3.7m depth		ss	6	50	75	4-	-94.70				
4.60		1									
End of Borehole		≖ SS	7	100	50+						
(Piezometer dry/blocked at 0.69m depth - Feb. 11, 2020)											
								20	40 60		00
								Shea ▲ Undist	ar Strength urbed △ I	i (kPa) Remoulded	

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Riverside South Development - Phase 17 Ottawa, Ontario

DATUM Geodetic									FILE	E NO. PG5	131	
REMARKS BORINGS BY CME 55 Power Auger				C	DATE .	January 2	29. 2020		HOL	LE NO. BH1()A	
SOIL DESCRIPTION	PLOT				DEPTH (m)				. Blows/0.3r n Dia. Cone		lon	
	STRATA	ТҮРЕ	NUMBER	[∞] RECOVERY	N VALUE or RQD	(,		• v	/ater	Content %	ezomet	Construction
GROUND SURFACE	01		4	R	z	0-	-98.70	20	40	60 80	Ē	Ŭ
TOPSOIL 0.28		~				1- 2- 3-	-97.70 -96.70 -95.70 -94.70					
End of Borehole Practical refusal to augering at 4.57m depth.		-						20 Shea ▲ Undist		60 80 7ength (kPa) △ Remould		

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic					·				FILE NO.	PG5131	
REMARKS BORINGS BY CME 55 Power Auger				D	HOLE NO.	BH11					
SOIL DESCRIPTION	PLOT		SAN	IPLE		January 2	ELEV.		esist. Blow 0 mm Dia. (
	STRATA I	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		ater Conte		Piezometer
GROUND SURFACE	S	-	N	RE	zÖ		-99.45	20	40 60	80	i e c
TOPSOIL0.23			,				99.45				
GLACIAL TILL: Very dense, brown silty sand with gravel and cobbles		AU SS	1 2	29	50+	1-	-98.45				
GLACIAL TILL: Very dense, brown sand with gravel and cobbles		SS	3	67	83	2-	-97.45				
2.59 End of Borehole		SS	4	100	50+						
Practical refusal to augering at 2.59m depth								20 Shea ▲ Undist	40 60 Ir Strength	80 1((kPa) emoulded	00

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Riverside South Development - Phase 17 Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic DATUM

REMARKS

BORINGS BY	CME 55 Power Auger	
		Τ

FILE NO.	PG5131
HOLE NO.	BH11A

BORINGS BY CME 55 Power Auger	er Auger				ATE	January 2	29, 2020	_		BH11A	
SOIL DESCRIPTION	PLOT		SAN	IPLE	1	DEPTH	ELEV.		Resist. B 50 mm Di	lows/0.3m ia. Cone	- 5
	STRATA I	ТҮРЕ	NUMBER	% RECOVERY	VALUE r RQD	(m)	(m)		Water Co		Piezometer Construction
GROUND SURFACE	ι. Γ	L.	N N	REC	N VI OF			20	40	60 80	Co Ei
TOPSOIL 0.23						0-	-99.45				$\boxtimes \boxtimes$
		-									
Inferred GLACIAL TILL: Very dense, brown silty sand with gravel and cobbles						1-	-98.45				
1.50											. 🗱 🗱
1.52		-									
Inferred GLACIAL TILL: Very dense, brown sand with gravel and cobbles						2-	-97.45				
, C											
2.64									·····	·····	
End of Borehole											
Practical refusal to augering at 2.64m depth											
(Piezometer blocked at ground surface - Feb. 11, 2020)											
								20 She ▲ Undis	ar Streng	60 80 1 gth (kPa) △ Remoulded	⊣ I 00

SOIL PROFILE AND TEST DATA

Geotechnical Investigation **Riverside South Development - Phase 17** 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario

DATUM Geodetic

REMARKS

BORINGS BY	CME 55 Power Auger

HOLE NO. **BH12**

PG5131

FILE NO.

SOIL DESCRIPTION		PLOT		SAN	IPLE	1	DEPTH	ELEV.	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone
GROUND SURFACE		STRATA P	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	 50 mm Dia. Cone Water Content % 20 40 60 80
TOPSOIL	0.23		ğ				0-	-100.35	
	< > < > < < <		§ AU 8 7	1				00.05	
			ss	2	92	57	1-	-99.35	
	~ ~ ~ ~ ~ ~ ~ ~ ~		⊻ss	3	100	50+	2-	-98.35	
GLACIAL TILL: Very dense to dense, brown silty sand, some gravel, cobbles and boulders			ss	4	75	50+			
gravel, cobbles and boulders			ss	5	81	50+	3-	-97.35	
			ss	6	17	67	4-	-96.35	
	~ ~ ~ ~ ~ ~		ss	7	58	46	5-	-95.35	
Dynamic Cone Penetration Test commenced at 5.94m depth.	5.94		SS	8	42	40	6-	-94.35	
Inferred GLACIAL TILL	6.88		-						
Practical DCPT refusal at 6.88m depth.									
(Piezometer dry/blocked at 4.06m depth - Feb. 11, 2020)									
									20 40 60 80 10 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

								FILE NO.	PG5131	
			D		HOLE NO.	BH13				
PLOT		SAN			DEPTH	ELEV.	Pen. Resist. Blows/0.3n			r on
	ТҮРЕ	UMBER	% COVERY	VALUE r RQD	(m)	(m)	• N	ater Conter	nt %	Piezometer Construction
		N	RE	z ⁰	0-	- 99 99	20	40 60	80	u n n n n n n n n n n n n n n n n n n n
B	AU SS	1 2	80	50+						
	∑ss	3	100	50+	2-	-97.99				
	ss ≥ ss	4 5	87 0	73 50+	3-	-96.99				
(^^^^^/ (^^^^^) 3 (^^^^^)	- SS	6	0	50+						
		AU AU SS SS SS SS SS SS SS SS SS S	OT Edit NUMBER VILLES AU 1 SS 2 SS 3 SS 4 SS 5	LIOTA SAMPLE E. D.	LIOTA SAMPLE Edit Edit Right Image: Solution of the second	Image: Sample Depth (m) Image: Sample Image: Sample	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IN SAMPLE DEPTH (m) ELEV. (m) Pen. Re Max Max </td <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

SOIL PROFILE AND TEST DATA

FILE NO.

Geotechnical Investigation Riverside South Development - Phase 17 Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

ATUM	Geodetic

REMARKS										PG5131		
									HOLE	NO. BH13A		
BORINGS BY CME 55 Power Auger		DATE J				January 3	30, 2020		DIIIJA			
	E		SAN	IPLE		DEDTU		Pen. R	esist. I	Blows/0.3m		
SOIL DESCRIPTION	PLOT					DEPTH (m)	ELEV. (m)	• 5	0 mm C	Dia. Cone	n ⊐	
		ы	ER	ERY	Bo	(11)	(,				nete ucti	
	STRATA	STRATA TYPE NUMBER % RECOVERY			VALUE r RQD			0 V	Vater C	Piezometer Construction		
GROUND SURFACE	N.	L .	N N	REC	N OL (20	40	60 80	C Pie	
TOPSOIL 0.18						0-	-99.99		-			
		_										
Inferred GLACIAL TILL: Very dense,						1-	98.99				-	
brown silty sand, some gravel, trace clay, cobbles and boulders												
clay, cobbles and boulders												
						2-	97.99					
						_						
2.51												
End of Borehole												
Practical refusal to augering at 2.51m												
depth.												
								20		60 80 1	00	
									40 ar Stren	60 80 1 ngth (kPa)	00	
								▲ Undist	urbed	△ Remoulded		

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Riverside South Development - Phase 17 Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Goodatic DATIM

DATUM Geodetic					•				FILE N	o. PG5131	
REMARKS									HOLE		
BORINGS BY CME 55 Power Auger		DATE January 30, 2020									
SOIL DESCRIPTION	PLOT			MPLE 건	M	DEPTH (m)	ELEV. (m)	Pen. Re ● 5	esist. E 0 mm D	ter tion	
	STRATA	ТҮРЕ	NUMBER	° ≈ © ©	N VALUE or RQD					ontent %	Piezometer Construction
GROUND SURFACE		8	-	8	zř	0+	97.48	20	40	60 80	ΞŪ
TOPSOIL		AU	1								
GLACIAL TILL: Compact, brown silty sand, trave gravel		ss	2	67	16	1-	96.48				
1.40 End of Borehole	<u>`^^^^^</u>	\square									
End of Borehole Practical refusal to augering at 1.40m depth.								20	40		00
									r Stren	gth (kPa) △ Remoulded	

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic									FILE NO	PG5131	
REMARKS									HOLE NO	^{D.} BH14A	
BORINGS BY CME 55 Power Auger					ATE 、	January 3	30, 2020				
SOIL DESCRIPTION	A PLOT				빋ㅇ	DEPTH (m)	ELEV. (m)		esist. Bi 0 mm Dia	ows/0.3m a. Cone	eter ction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			• •	later Co	ntent %	Piezometer Construction
GROUND SURFACE	•1		-	RI	zř	0-	97.48	20	40 (50 80 	ы Т П П
TOPSOIL											
Inferred GLACIAL TILL: Compact, brown silty sand, trave gravel						1-	-96.48				
End of Borehole1.85		ss	1		50+						
Practical refusal to augering at 1.85m depth.											
(Piezometer dry/blocked at 1.17m depth - Feb. 11, 2020)								20 Shea ▲ Undist	ar Streng		00

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic						,			FILE NO.	DC5121	
REMARKS									HOLE NO	PG5131	
BORINGS BY CME 55 Power Auger				D	ATE .	January 3	0, 2020	1		BH15	
SOIL DESCRIPTION						DEPTH (m)	ELEV. (m)	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone			er ion
	STRATA	ТҮРЕ	NUMBER	» RECOVERY	VALUE r rod	(,	()	• v	later Con	tent %	Piezometer Construction
GROUND SURFACE	ν.	5.	N	REC	N O H O		00 55	20	40 6	0 80	C Ei
TOPSOIL		AU	1				-98.55				
		ss	2	75	39	1-	-97.55				
GLACIAL TILL: Dense to very dense, brown silty sand, trace gravel,		≖ SS	3	0	50+	2	-96.55				
cobbles and boulders		≖ SS	4	100	50+	2-	-90.00				
3.73						3-	-95.55				
End of Borehole	^ ^ ^	-									
Practical refusal to augering at 3.73m depth											
(Piezometer dry/blocked at 2.15m depth - Feb. 11, 2020)											
								20 Shea ▲ Undistr	40 6 ar Strengt urbed △	0 80 1 t h (kPa) Remoulded	↓ 00

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic									FILE NO	PG5131	
				_		lonuo - O	0.0000		HOLE N	^{o.} BH15A	
BORINGS BY CME 55 Power Auger					DATE	January 3	30, 2020				1
SOIL DESCRIPTION	A PLOT			IPLE 값	변이	DEPTH (m)	ELEV. (m)		esist. B 0 mm Di	lows/0.3m a. Cone	eter
GROUND SURFACE	STRATA	ЛУРЕ	NUMBER	°. © SECOVERY	N VALUE or RQD			0 V 20	Vater Co 40	ntent % 60 80	Piezometer
ropsoil						0-	-98.55				
<u>0.60</u>	`^^^^^	-									
nferred GLACIAL TILL: Dense to						1-	-97.55				-
rery dense, brown silty sand, trace gravel, cobbles and boulders											
1.93 End of Borehole		-									-
Practical refusal to augering at 1.93m epth											

SOIL PROFILE AND TEST DATA

▲ Undisturbed △ Remoulded

Geotechnical Investigation Riverside South Development - Phase 17 Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

R

DATUM Geodetic									FILE NO	PG5131	
REMARKS									HOLE N	^{o.} BH16	
BORINGS BY CME 55 Power Auger					DATE	January 3	30, 2020				
SOIL DESCRIPTION	LOT			/IPLE 것	Шо	DEPTH (m)	ELEV. (m)			lows/0.3m a. Cone	ter
	STRATA	TYPE	NUMBER	% RECOVERY	N VALUE or RQD					ntent %	Piezometer Construction
GROUND SURFACE TOPSOIL		×		<u></u>	-	0-	97.28	20	40	60 80	
0. <u>3</u> 3		AU	1								
GLACIAL TILL: Compact to very dense, brown sandy silt with clay, trace gravel and cobbles		ss	2	92	25	1-	-96.28				
		ss	3	46	65	2-	-95.28				-
2.74		ss	4	92	50+						
Practical refusal to augering at 2.74m depth.								20 Shea	40 rr Strenc	60 80 1 1th (kPa)	

SOIL PROFILE AND TEST DATA

Shear Strength (kPa)

△ Remoulded

▲ Undisturbed

Construction

Geotechnical Investigation Riverside South Development - Phase 17 Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic									FILE NO.	PG5131	
REMARKS				_					HOLE NO.	BH16A	
BORINGS BY CME 55 Power Auger					AIE	January 3	30, 2020	Dam D			
SOIL DESCRIPTION	РГОТ		SAM			DEPTH	ELEV.		esist. Blo) mm Dia.		2
		된	BER	JERY	SOD LUE	(m)	(m)				Piezometer
	STRATA	ЛҮРЕ	NUMBER	[%] RECOVERY	N VALUE or RQD				ater Cont		lezo
GROUND SURFACE TOPSOIL				н		0-	-97.28	20	40 60) 80	
0.33		-									
Inferred GLACIAL TILL: Compact to very dense, brown sandy silt with clay, trace gravel and cobbles						1-	-96.28				
						2-	-95.28				
2.59 End of Borehole		-									
Practical refusal to augering at 2.59m depth.											
(GWL @ 1.77m - Feb. 11, 2020)											
								20	40 60	80 1	00

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic					·				FILE NO	PG513 ⁻	1
				-		lonuonu	0 0000		HOLE N	^{o.} BH17	
BORINGS BY CME 55 Power Auger	.		SAN			January 3	0, 2020	Don B	oiot P		
SOIL DESCRIPTION	PLOT		SAIV			DEPTH (m)	ELEV. (m)			lows/0.3m a. Cone	م م
		ΡE	BER	% RECOVERY	N VALUE or RQD	(11)	(11)				Piezometer Construction
	STRATA	ТҮРЕ	NUMBER	™ ECOV	N VA or 1					ntent %	iezo Const
GROUND SURFACE				щ		- 0-	-98.09	20	40	60 80	
0.25	\^ <u>^</u> ^^^	ss	1								
		Δ									
		∇									
		ss	2	33	33	1-	-97.09				
		\square									
GLACIAL TILL: Dense to compact,		$\overline{\nabla}$									
brown silty sand, trace clay, gravel and cobbles		SS	3	71	40	2-	-96.09				
							00.00				
		∦ss	4	50	50+						
		_				3-	-95.09				
		ss	5	62	16						
		1 33	5	02							
4.20		ss	6	58	15	4-	-94.09				
4.20		Λ	Ū								
GLACIAL TILL: Compact to very		ss	7	17	42						
dense, brown silty sand with gravel		\land				5-	-93.09				
		∇									
5.69		∦ss	8	57	50+						
End of Borehole											
Practical refusal to augering at 5.69m depth.											
(Piezometer dry/blocked at 2.30m											
depth - Feb. 11, 2020)											
								20 Shea		60 80 gth (kPa)	100
								▲ Undist		A Remoulded	

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic					·			FILE NO. PG5131	
REMARKS									
BORINGS BY CME 55 Power Auger				D	ATE	January 31, 202	20	BH18	
SOIL DESCRIPTION	PLOT			IPLE		DEPTH ELE (m) (m)	V. _ 5	lesist. Blows/0.3m 50 mm Dia. Cone	ter tion
	STRATA	ТҮРЕ	NUMBER	» RECOVERY	N VALUE or RQD		0 V	Vater Content %	Piezometer Construction
GROUND SURFACE		~	-	R	ZŬ	0-96.4	20	40 60 80	ĒŬ
Brown SILTY CLAY, trace organics		AU	1						
<u>1.07</u>		ss	2	96	8	1-95.4	1		•
GLACIAL TILL: Brown clayey silt with sand and gravel 2.30		ss	3	33	13	2-94.4	1		-
GLACIAL TILL: Compact, brown silty sand, trace clay 3.00		ss	4	62	27				
GLACIAL TILL: Compact, brown sand, trace silt and gravel 3.81		ss	5	54	14	3+93.4	0		-
Running sand encountered at 3.81m depth, borehole terminated.		-					20 Shea ▲ Undis	ar Strength (kPa)	00

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Riverside South Development - Phase 17 Ottawa, Ontario

DATUM Geodetic

REMARKS

BORINGS BY	CME	55	Power	Auge

TILL NO.	PG5131
HOLE NO.	BH18A

FILE NO.

DATE January 31, 2020 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION • 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE o/0 \bigcirc Water Content % **GROUND SURFACE** 80 20 40 60 0+96.41Brown SILTY CLAY, trace organics 1.07 1+95.41 Inferred GLACIAL TILL: Brown clayey silt with sand and gravel 2 + 94.412.30 Inferred GLACIAL TILL: Compact, brown silty sand, trace clay 3.00 3+93.41 GLACIAL TILL: Compact to dense, brown sand, trace silt and gravel 4+92.41 SS 1 33 32 4.47 End of Borehole Practical refusal to augering at 4.47m depth. (GWL @ 1.78m - Feb. 11, 2020) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic					·				FILE NO. PG5131	
REMARKS									HOLE NO. BH19	
BORINGS BY CME 55 Power Auger				D	ATE	January 3	<u>31, 2020</u>		БПІЭ	
SOIL DESCRIPTION	РГОТ		SAN			DEPTH (m)	ELEV. (m)		esist. Blows/0.3m 0 mm Dia. Cone	ion i
	STRATA	ТҮРЕ	NUMBER	° ≈ © © ©	VALUE r RQD		(,	• v	/ater Content %	Construction
GROUND SURFACE	LS.	н	NN	REC	N OF			20	40 60 80 0	S
TOPSOIL 0.60		AU	1			0-	-95.95			
Brown SILTY CLAY		ss	2	100	6	1-	-94.95	0		
GLACIAL TILL: Brown silty clay, trace sand and gravel	<u>, , , , , , , , , , , , , , , , , , , </u>	ss	3	46	13	2-	-93.95	0		
2.30 GLACIAL TILL: Dense, brown silty sand, trace gravel and cobbles 2.95		ss	4	54	32					
End of Borehole	<u>`^^^^</u>	-								<u> 1999</u>
Practical refusal to augering at 2.95m depth.										
(GWL @ 1.49m - Feb. 11, 2020)								20	40 60 80 100	
									ar Strength (kPa)	

SOIL PROFILE AND TEST DATA

Geotechnical Investigation Riverside South Development - Phase 17 Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic									FILE NO	D. PG5131	
REMARKS									HOLE		
BORINGS BY CME 55 Power Auger					ATE .	January (31, 2020				
SOIL DESCRIPTION	PLOT		SAN	MPLE		DEPTH (m)	ELEV. (m)			llows/0.3m ia. Cone	er
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			• v	/ater Co	ontent %	Piezometer
GROUND SURFACE	03		Ч	RE	z ^o	0-	-95.95	20	40	60 80	ĒČ
TOPSOIL	XX	-									
Inferred brown SILTY CLAY						1.	-94.95				-
Inferred GLACIAL TILL: Brown silty clay, trace sand and gravel 2.30	<pre></pre>					2-	-93.95				
GLACIAL TILL: Very dense, brown silty sand, trace gravel and cobbles 3.07		= SS	1	0	50+	3-	-92.95				
End of Borehole					00+						
Practical refusal to augering at 3.07m depth.											
								20 Shea ▲ Undist		60 80 1 gth (kPa) △ Remoulded	⊣ 00

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic									FILE NO.	5131	
REMARKS									HOLE NO.	20	
BORINGS BY CME 55 Power Auger	1			D	ATE .	January 3	31, 2020				
SOIL DESCRIPTION	PLOT					DEPTH (m)	ELEV. (m)				tion
	TRATA	LYPE	UMBER	COVER	VALUE r ROD			• v	later Content %	zomet	nstruc
GROUND SURFACE	N.		N N	RE	z ö			20	40 60 8	Die 0.	20
TOPSOIL		XX				0-	-96.34				
	N NULE January 31, 2020 N SAMPLE DEPTH ELEV. (m) Pen. Resist. Blows/0.3m Pen. Resist. Blows/0.3m 0.25 AU 1										
GLACIAL TILL: Dense, brown sandy silt, trace clay and gravel		ss	2	92	30	1-	HOLE NO. BH20 PTH ELEV. (m) 0-96.34 1-95.34 2-94.34 3-93.34 4-92.34 5-91.34 20 40 60 80 10 20 40 60 80 10 10 10 10 10 10 10 10 10 1				
		ss	3	0	50+	2-	-94.34		HOLE NO. BH20		
2.30 GLACIAL TILL: Brown clayey silt, some sand, trace gravel and cobbles		ss	4	83	36					▼	
GLACIAL TILL: Dense, brown sandy silt, trace clay, gravel and cobbles		ss	5	8	17	3-	-93.34				
<u>3.80</u>		ss	6	62	28	4-	-92.34		PG5131 HOLE NO. BH20 sist. Blows/0.3m mm Dia. Cone ater Content % 40 60 80 40 60 80 40 60 80 100 Strength (kPa)		
GLACIAL TILL: Compact to very dense, grey silty sand to sandy silt, trace gravel and cobbles		ss	7	50	36	_	04.04				
5 74		ss	8	50	50+	5-	-91.34				
End of Borehole											
Practical refusal to augering at 5.74m depth											
(GWL @ 2.30m - Feb. 11, 2020)											
								Shea	r Strength (kPa	ı)	

SOIL PROFILE AND TEST DATA

eers Geotechnical Investigation Riverside South Development - Phase 17 Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario DATUM Geodetic FILE NO. **PG5131** REMARKS HOLE NO. **BH21** BORINGS BY CME 55 Power Auger DATE January 31, 2020 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION 50 mm Dia. Cone • (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE o/0 \bigcirc Water Content % **GROUND SURFACE** 80 20 40 60 0+96.93AU 1 Brown SILTY CLAY, some sand 1+95.93 2 SS 62 11 1.52 SS 3 62 20 2 + 94.93SS 4 92 20 3+93.93 GLACIAL TILL: Brown silty clay, SS 5 38 10 some sand, trace gravel and cobbles 4+92.93 SS 6 71 9 SS 7 67 9 5+91.93s SS 8 100 50 +5.94 6+90.93 **Dynamic Cone Penetration Test** commenced at 5.94m depth. Inferred GLACIAL TILL 7.09 7+89.93 End of Borehole Practical DCPT refusal at 7.09m depth (GWL @ 3.93m - Feb. 11, 2020) 20 40 60 80 100 Shear Strength (kPa) Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

FILL: Brown sand with gravel 0.41 AU 1 FILL: Brown silty clay, trace sand and gravel SS 2 67 23 Brown SILTY CLAY, trace sand SS 3 96 8 2-93.53	DATUM Geodetic					-				FILE NO. PG5131	
SOIL DESCRIPTION SAMPLE DEPTH ELEV. (m) Pen. Resist. Blows/0.3m • 50 mm Dia. Cone GROUND SURFACE IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII					C	ATE	Februarv	3. 2020		HOLE NO. BH22	
GROUND SURFACE H		PLOT		SAN	IPLE		DEPTH	ELEV.			on
FILL: Brown sand with gravel 0.41 AU 1 FILL: Brown silty clay, trace sand and gravel SS 2 67 23 FILL: Brown silty clay, trace sand and gravel SS 2 67 23 SS 3 96 8 2-93.53 Brown SILTY CLAY, trace sand SS 3 90 19 GLACIAL TILL: Brown sand with 2.80 SS 3 90 19 Practical refusal to augering at 2.80m depth Practical refusal to augering at 2.80m SS 3 90 19			ТҮРЕ	UMBER	% COVERY	VALUE r RQD	(11)	(11)	• v	Vater Content %	Piezometer Construction
PILL: Brown sand with gravel 0.41 AU 1 FILL: Brown silty clay, trace sand and gravel SS 2 67 23 1-94.53 Pill: Brown silty clay, trace sand and gravel SS 2 67 23 1-94.53 Pill: Brown silty clay, trace sand and gravel SS 3 96 8 2-93.53 Brown SILTY CLAY, trace sand 2.62 SS 3 90 19 0 GLACIAL TILL: Brown sand with 2.80 2.80 AAA SS 3 90 19 Practical refusal to augering at 2.80m depth Image: source sand set to augering at 2.80m depth Image: source sand set to augering at 2.80m depth Image: source sand set to set t	GROUND SURFACE	0		z	RE	z o	0	05 50	20	40 60 80	je o
Brown SILTY CLAY, trace sand 2.62 SS 3 90 19 GLACIAL TILL: Brown sand with 2.80 AAAA SIL, gravel, some clay End of Borehole Practical refusal to augering at 2.80m depth	FILL: Brown silty clay, trace sand	DATE February 3, 2020 HOLE No BH22 CRIPTION SAMPLE DEPTH ELEV. (m) PER. Resist. Blows/0.3m CE B B B B B Colspan="2">O 2E 0.41 AU 1 0 95.53 0 95.53 0 95.53 0 95.53 0 96.8 2 93.53 0 96.8 2 93.53 0 9									
2.62 SS 3 90 19 GLACIAL TILL: Brown sand with 2.80 2.80 19 0 19 Silt, gravel, some clay 10 10 10 10 Find of Borehole 10 10 10 10 Practical refusal to augering at 2.80m 10 10 10 10			ss	3	96	8	2-	-93.53	0		
	GLACIAL TILL: Brown sand with 2.62 Silt, gravel, some clay 2.80 End of Borehole 2.80 Practical refusal to augering at 2.80m 2.80			3	90	19			20		

SOIL PROFILE AND TEST DATA

 \blacktriangle Undisturbed \triangle Remoulded

154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Riversia

ATUM Geodetic									FILE NO. PG513	31
REMARKS									HOLE NO. BH22A	
CME 55 Power Auger				D	ATE	February	3, 2020		DIIZZA	
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)		esist. Blows/0.3m 0 mm Dia. Cone	۲.
	STRATA	띮	BER	∾ RECOVERY	N VALUE or RQD	(11)	(11)			Piezometer
	STR	ТҮРЕ	NUMBER	ECOV %	N VA OF I				later Content %	iezo
GROUND SURFACE ILL: Brown sand with gravel				<u></u> м	4	0-	-95.53	20	40 60 80	
	ı									
nferred FILL: Brown silty clay, trace and and gravel]-	-94.53			
1.85	5									
nferrred brown SILTY CLAY, trace						2-	-93.53			
and										
nferred GLACIAL TILL: Brown sang.82		+								
vith silt, gravel, some clay		-							· · · · · · · · · · · · · · · · · · ·	
nd of Borehole										
Practical refusal to augering at 2.84m lepth										
- F										
		1	1	1	i.	1	1	1		

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic					·				FILE NO. PG5131
REMARKS					ATE	Fobruory	2 2020		HOLE NO. BH23
BORINGS BY CME 55 Power Auger SOIL DESCRIPTION	РГОТ		SAN	IPLE		DEPTH	ELEV.		esist. Blows/0.3m
	STRATA F	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		0 mm Dia. Cone Jater Content % Vater Construction 20 80
GROUND SURFACE	ß		N	RE	z ⁰	0-	-98.15	20	40 60 80 [™] O
TOPSOIL		AU	1				50.15		
Very loose, brown SILTY SAND with clay <u>1.24</u>		ss	2	58	3	1-	-97.15		
		ss	3	59	50+	2-	-96.15		
GLACIAL TILL: Very dense, brown sand, some silt and gravel, trace cobbles and boulders		ss	4	92	54	3-	-95.15		
		ss	5	54	75				
4.57		≍ SS	6	0	50+	4-	-94.15		
GLACIAL TILL: Grey clayey silt with gravel and sand, trace cobbles and boulders End of Borehole		ss	7	100	50+				
Practical refusal to augering at 4.80m depth									
(GWL @ 1.44m - Feb. 11, 2020)								20 Shea ▲ Undist	40 60 80 100 ar Strength (kPa) urbed △ Remoulded

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

								FILE NO	PG5131	
			_	• - -		0.0000		HOLE N	0	
		0.41		ATE	February	3, 2020	Dam D			
PLOT		SAN			DEPTH (m)	ELEV. (m)				Le lo
	ЪЕ	BER	VERY	ALUE RQD	(11)	(11)		latar Ca	ntont 9/	omete
STF	TY	NUN	RECO	N OL			20			Piezometer
					0-	-96.53			· · · · · · · · · · · · · · · · · · ·	
		1								
	1									
	∬ss	2	54	8	1-	-95.53			· · · · · · · · · · · · · · · · · · ·	
	∬ss	3	12	50+		04 50				
		1	0	50.	2-	-94.53				
<u> ^^^^^</u>	\$ 33	4	0	50+						
							20	40	60 80 1	00
							Shea	urbed 2	jth (KPa) \Remoulded	
		CALCEL STRATA	AU 1 NUMBER NUMBER 3	LIOTA EXAMPLE SAMPLE	LIOTA ELESAMPLE LIOTA ELESAN ELESANCE X ELESANCE X	LOTA EXAMPLE DEPTH (m) EAL REAL REAL Endou O AU 1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	VI SAMPLE DEPTH ELEV. (m) Pen. Rd 0 0 N N N N N 0 96.53 1 0 N N SS 2 54 8 1 95.53 1	DATE February 3, 2020 HOLE NO NAMPLE DEPTH (m) PLE N. (m) Max Max <t< td=""><td>PG5131 HOLE NO. BH24 DATE February 3, 2020 Pen. Resist. Blows/0.3m max <thmax< th=""> max max <thma< td=""></thma<></thmax<></td></t<>	PG5131 HOLE NO. BH24 DATE February 3, 2020 Pen. Resist. Blows/0.3m max max <thmax< th=""> max max <thma< td=""></thma<></thmax<>

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic									FILE	NO. PG513 ⁻	1
REMARKS BORINGS BY CME 55 Power Auger				C	ΔTF	February	3 2020		HOLE	BH24A	
	Ę		SAN	MPLE				Pen. R	esist.	Blows/0.3m	
SOIL DESCRIPTION	A PLOT		œ	RY	얻으	DEPTH (m)	ELEV. (m)	• 5	0 mm	Dia. Cone	Piezometer Construction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			• V	Vater C	Content %	ezome
GROUND SURFACE	<u>v</u>		Z	RE	z ^o	0-	-96.53	20	40	60 80	ы С Ж Ж
Loose, brown SAND , some silt and clay, trace gravel and organics											
0.84	F	-				1-	-95.53				
Inferred GLACIAL TILL: Very dense, brown silty sand with clay, trace gravel, cobbles and boulders											
2.44	[^^^^^^^^ ^^^^^^ ^^^^^^^					2-	-94.53				
End of Borehole											
Practical refusal to augering at 2.44m depth											
(GWL @ 1.97m - Feb. 11, 2020)											
								20 Shea ▲ Undis		60 80 ngth (kPa) △ Remoulded	100

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Riverside

DATUM Geodetic									FILE NO. PG5131	
				_			0,0000		HOLE NO. BH25	
BORINGS BY CME 55 Power Auger	н		SAN	IPLE	ATE	February	3, 2020	Pen R	esist. Blows/0.3m	
SOIL DESCRIPTION	PLOT					DEPTH (m)	ELEV. (m)			tion
	STRATA	ТҮРЕ	NUMBER	° ≈ © © ©	VALUE r RQD			• v	Vater Content %	Piezometer Construction
GROUND SURFACE	ST	H	ŊŊ	REC	N OL		05 50	20	40 60 80	Piez
Brown SILTY CLAY		AU	1				-95.59			
		ss	2	50	16	1-	-94.59			
GLACIAL TILL: Loose to compact, brown sandy silt to silty sand, trace clay and gravel		ss	3	88	26	2.	-93.59			
0.77		ss	4	75	25	2	-93.39			
GLACIAL TILL: Compact to very		∯ ∬ ss	5	50	00	3-	-92.59			
dense, brown sand, trace clay, silt and gravel - grey by 3.2m depth		55	5	58	20					
		ss	6	50	24	4-	-91.59			
4.70 End of Borehole		⊠ SS	7	100	50+					<u>></u> 83
Practical refusal to augering at 4.70m depth.										
(GWL @ 1.35m - Feb. 11, 2020)										
								20 Shea ▲ Undist	40 60 80 100 ar Strength (kPa) urbed △ Remoulded	0

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM Geodetic									FILE NO.	PG5131	
				_			0,0000		HOLE NO.	H26	
BORINGS BY CME 55 Power Auger			SVI	IPLE	AIE	February	3, 2020	Don B	esist. Blows		
SOIL DESCRIPTION	PLOT					DEPTH (m)	ELEV. (m)		0 mm Dia. Co		er ion
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			- • •	Vater Conten	t %	Piezometer Construction
GROUND SURFACE	STI	L.	NUN	RECO	N N OF Q			20	40 60	80	Piez Con:
TOPSOIL 0.28						0-	-96.82				
[AU	1								
Compact, brown SILTY SAND, some clay											
<u>1.12</u>		ss	2	67	24	1-	95.82				
		Δ									
GLACIAL TILL: Compact to very dense, brown sand, some silt and gravel, trace cobbles and boulders		$\sqrt{1}$									
gravel, trace cobbles and boulders		∬ss	3	71	55	2-	-94.82				
2.29											
GLACIAL TILL: Dense to very		ss	4	62	34						
dense, grey silty sand, some gravel and cobbles						3.	-93.82				
		ss	5	60	50+	5	55.02				
End of Borehole		1							<u> </u>	<u></u>	
Practical refusal to augering at 3.43m depth.											
(GWL @ 3.07m - Feb. 11, 2020)											
								20 Shea ▲ Undist	40 60 ar Strength (I urbed △ Rer	80 10 (Pa) noulded	00

SOIL PROFILE AND TEST DATA

FILE NO.

PG5131

Geotechnical Investigation Riverside South Development - Phase 17 Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

DATUM REMARKS

									HOLE I	NO. BH26A	
BORINGS BY CME 55 Power Auger				D	ATE	-ebruary	3, 2020			DIIZVA	
SOIL DESCRIPTION	A PLOT			IPLE 것	Äо	DEPTH (m)	ELEV. (m)			Blows/0.3m Dia. Cone	ater ction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD					ontent %	Piezometer Construction
GROUND SURFACE				8	Z V	0-	-96.82	20	40	60 80	ĒΟ
TOPSOIL 0.28							50.02				
Inferred compact, brown SILTY SAND, some clay 1.12		-				1-	-95.82				
Inferred GLACIAL TILL: Compact to very dense, brown sand, some silt and gravel, trace cobbles and boulders		-									
2.29		-				2-	-94.82				
Inferred GLACIAL TILL: Dense to very dense, grey silty sand, some gravel and cobbles 3.48						3-	-93.82				
End of Borehole		-									
Practical refusal to augering at 3.48m depth.								20	40	60 80	100
									r Stren	gth (kPa) △ Remoulded	

SOIL PROFILE AND TEST DATA

FILE NO.

PG5131

Geotechnical Investigation
 Riverside South Development - Phase 17
 Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geodetic

REMARKS

DATUM

SORINGS BY CME 55 Power Auger	PLOT		SAN	IPLE	<u> </u>	DEPTH	4, 2020 ELEV.				ows/0.		
SOIL DESCRIPTION	STRATA PI	ТҮРЕ	NUMBER	[%] RECOVERY	VALUE r RQD	(m)	(m)				a. Cone	; , o	Piezometer
GROUND SURFACE	Ω.	•.	IN	REC	N OF	0	04.06	20	4	0	60 B	30	Pie Bie
OPSOIL 0.25	5	AU	1			0-	-94.96						
rown SILTY CLAY, trace sand		ss	2	96	6	1-	-93.96	0					
2.39						2-	-92.96		0 4				
ACIAL TILL: Brown sandy silt to ilty sand with clay, some gravel, ace cobbles and boulders		ss	4	62	4	3-	-91.96	O					
3.53 nd of Borehole	<u>3 ^ ^ ^ ^ ^ </u>	ss	5	26	50+			O					
ractical refusal to augering at 3.53m epth.													
GWL @ 2.42m - Feb. 11, 2020)													
								20	40 ear S	0 Streno	50 8 hth (kPa	 30 10(a)	0

patersongroup

SOIL PROFILE AND TEST DATA

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

Geotechnical Investigation Riverside South Development - Phase 17 Ottawa, Ontario

DATUM Geodetic									FILE N	o. PG5131	
REMARKS				_			4 0000		HOLE		
BORINGS BY CME 55 Power Auger	PLOT		CAN		AIE	February	4, 2020	Don D	ociet F	Blows/0.3m	
SOIL DESCRIPTION					Цо	DEPTH (m)	ELEV. (m)			biows/0.3m Dia. Cone	ter
	STRATA TYPE NUMBER		° ≈ © © ©	N VALUE or RQD			• Water Content %		ontent %	Piezometer	
	•7			R	zv	- 0-	-94.96	20	40	60 80	<u>ia</u> č
TOPSOIL0.25		-									
Inferred brown SILTY CLAY , trace sand						1-	-93.96		· · · · · · · · · · · · · · · · · · ·		
2.39		-				2-	-92.96				
Inferrred GLACIAL TILL: Brown sandy silt to silty sand with clay, some gravel, trace cobbles and boulders 3.56						3-	-91.96		· · · · · · · · · · · · · · · · · · ·		
End of Borehole Practical refusal to augering at 3.56m depth.											
								20 Shea ▲ Undist	40 ar Stren urbed	60 80 1 gth (kPa) △ Remoulded	⊣ 00

patersongroup

SOIL PROFILE AND TEST DATA

FILE NO.

PG5131

154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Geotechnical Investigation Riverside South Development - Phase 17 Ottawa, Ontario

DATUM Geodetic

REMARKS

BORINGS BY CME 55 Power Auger		0	ATE	February	HOLE NO. BH28						
SOIL DESCRIPTION		SAMPLE			1	DEPTH	ELEV.	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone			
	STRATA PLOT	ТҮРЕ	NUMBER	° ≈ © ©	VALUE F ROD	(m)	(m)	● 50 mm Dia. Cone ○ Water Content % 20 40 60 80			
GROUND SURFACE	Ŋ	~	Z	RE	N OL	0-	-93.75	20 40 60 80			
TOPSOIL	XX	AU	1				00.70				
Brown CLAYEY SILT with sand		ss	2	79	5	1-	-92.75	O			
1.70		ss	3	79	2	2-	-91.75	O			
Stiff, brown SILTY CLAY		ss	4	100	2	3-	-90.75	Φ			
						4-	-89.75				
GLACIAL TILL: Grey clayey silt with 5.36 sand and gravel End of Borehole		- ≍ SS	5	100	50+	5-	-88.75				
Practical refusal to augering at 5.36m depth. (GWL @ 4.10m - Feb. 11, 2020)											
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded			

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard
		Penetration Test (SPT))

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

MC% LL PL PI	- - -	Natural moisture content or water content of sample, % Liquid Limit, % (water content above which soil behaves as a liquid) Plastic limit, % (water content above which soil behaves plastically) Plasticity index, % (difference between LL and PL)		
Dxx	-	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size		
D10	-	Grain size at which 10% of the soil is finer (effective grain size)		
D60	-	Grain size at which 60% of the soil is finer		
Сс	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$		
Cu	-	Uniformity coefficient = D60 / D10		
Cc and Cu are used to assess the grading of sands and gravels:				

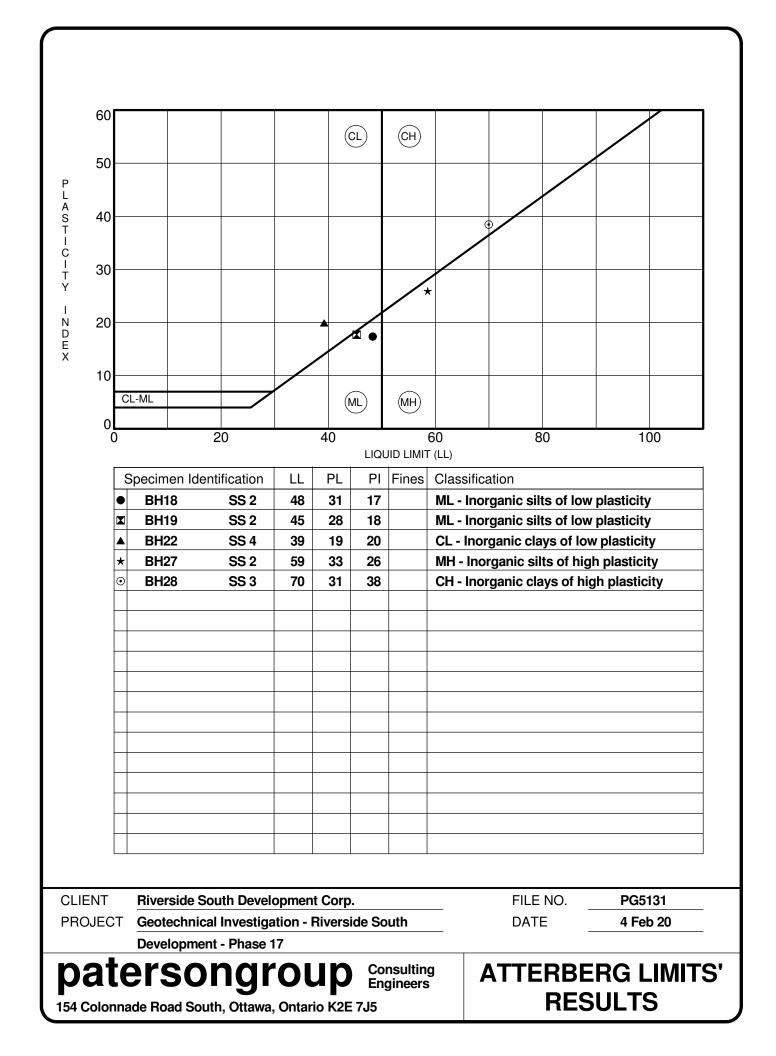
Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

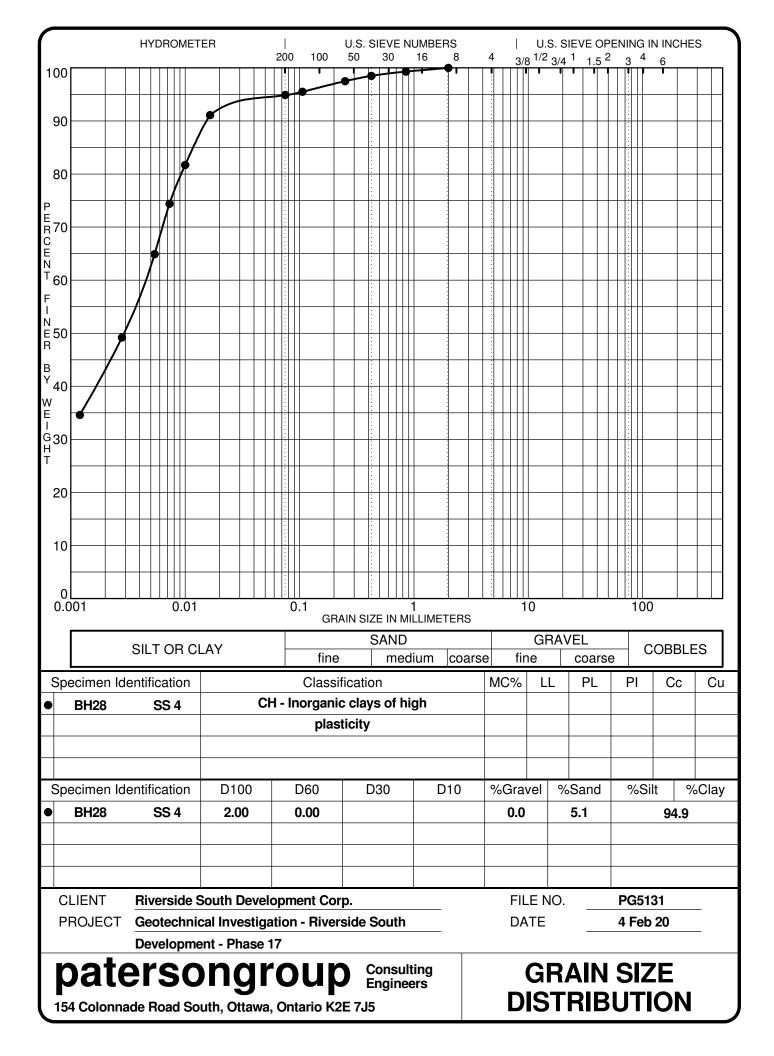
CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Сс	-	Compression index (in effect at pressures above p'c)
OC Ratio)	Overconsolidaton ratio = p'_c / p'_o
Void Rat	io	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.


SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill Δ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock


MONITORING WELL AND PIEZOMETER CONSTRUCTION

Certificate of Analysis Client: Paterson Group Consulting Engineers

Order #: 2006209

Report Date: 10-Feb-2020

Order Date: 4-Feb-2020

Project Description: PG5131

_

Client PO: 29441 Client ID: BH25- SS3 --Sample Date: 03-Feb-20 11:00 --2006209-01 Sample ID: -Soil MDL/Units _ _ _ **Physical Characteristics** 0.1 % by Wt. % Solids 91.9 _ _ _ General Inorganics 0.05 pH Units pН 7.94 ---0.10 Ohm.m Resistivity 89.1 _ _ -Anions 5 ug/g dry Chloride 6 _ -_ Sulphate 5 ug/g dry

-

-

10

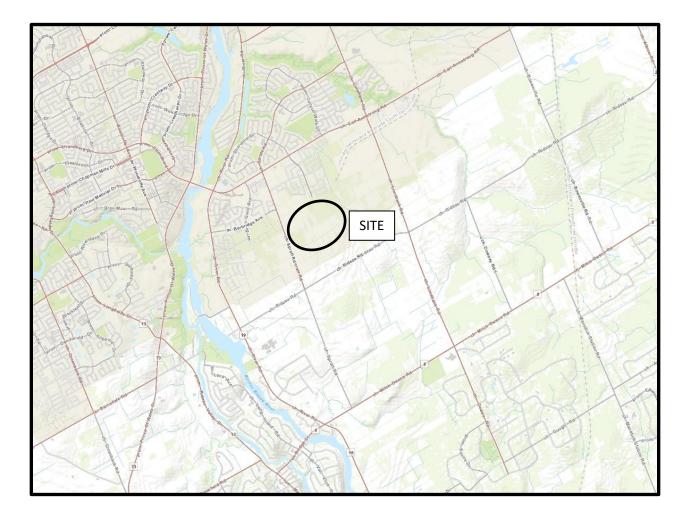
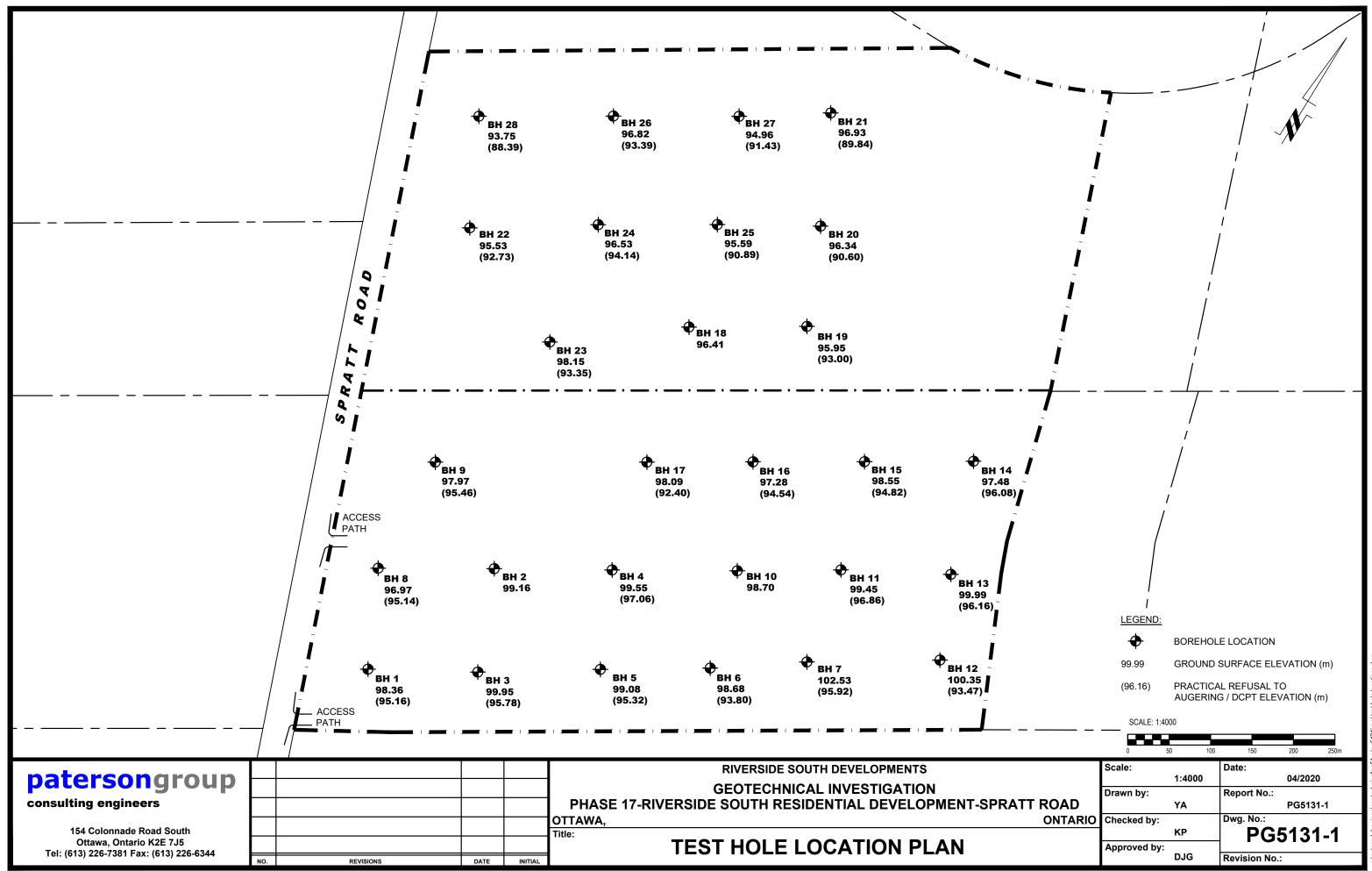

APPENDIX 2

FIGURE 1 - KEY PLAN

DRAWING PG5131-1 - TEST HOLE LOCATION PLAN

DRAWING PG5131-2 - PERMISSIBLE GRADE RAISE PLAN


DRAWING PG5131-3 - TREE SETBACK RECOMMENDATIONS

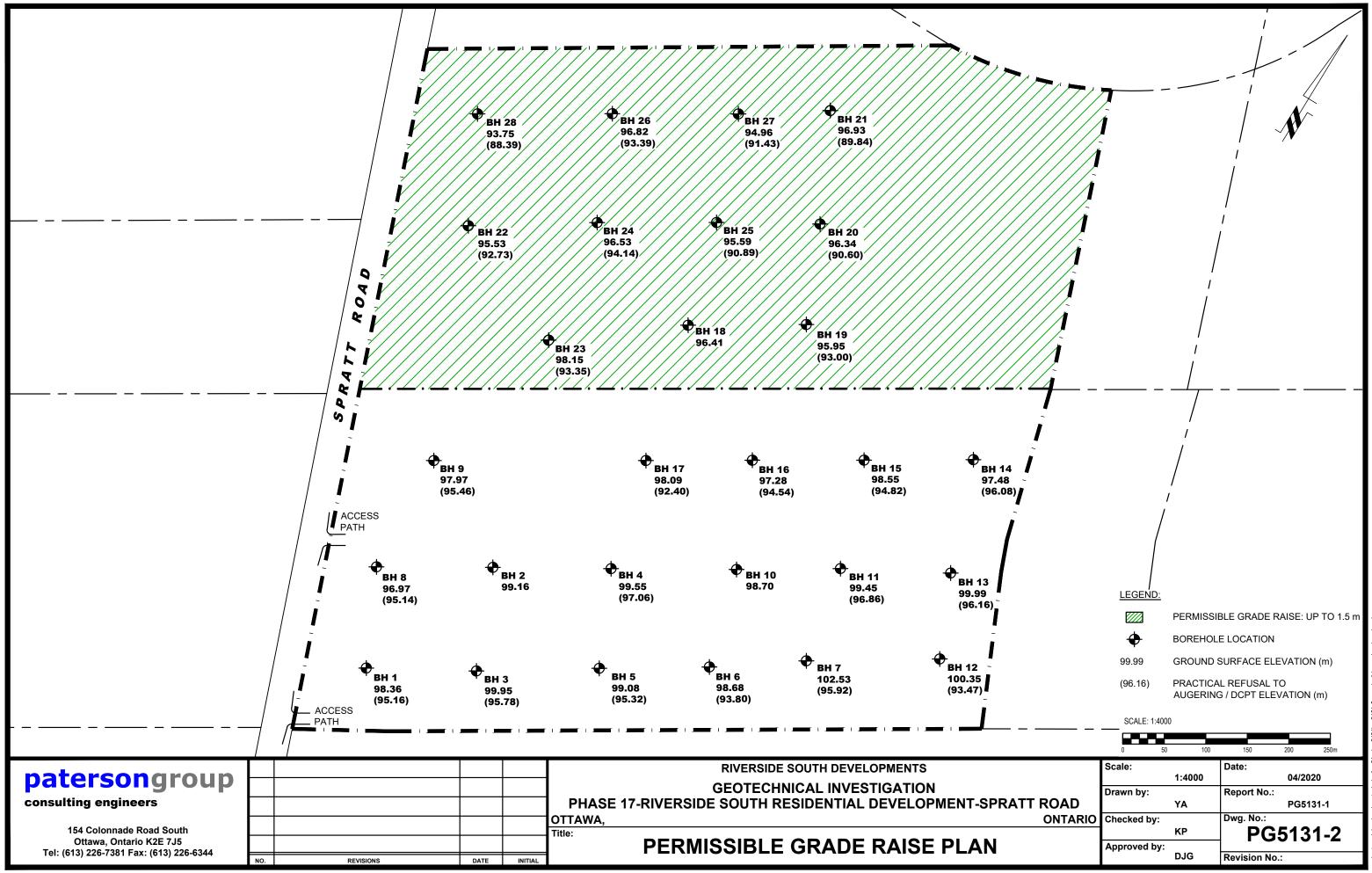
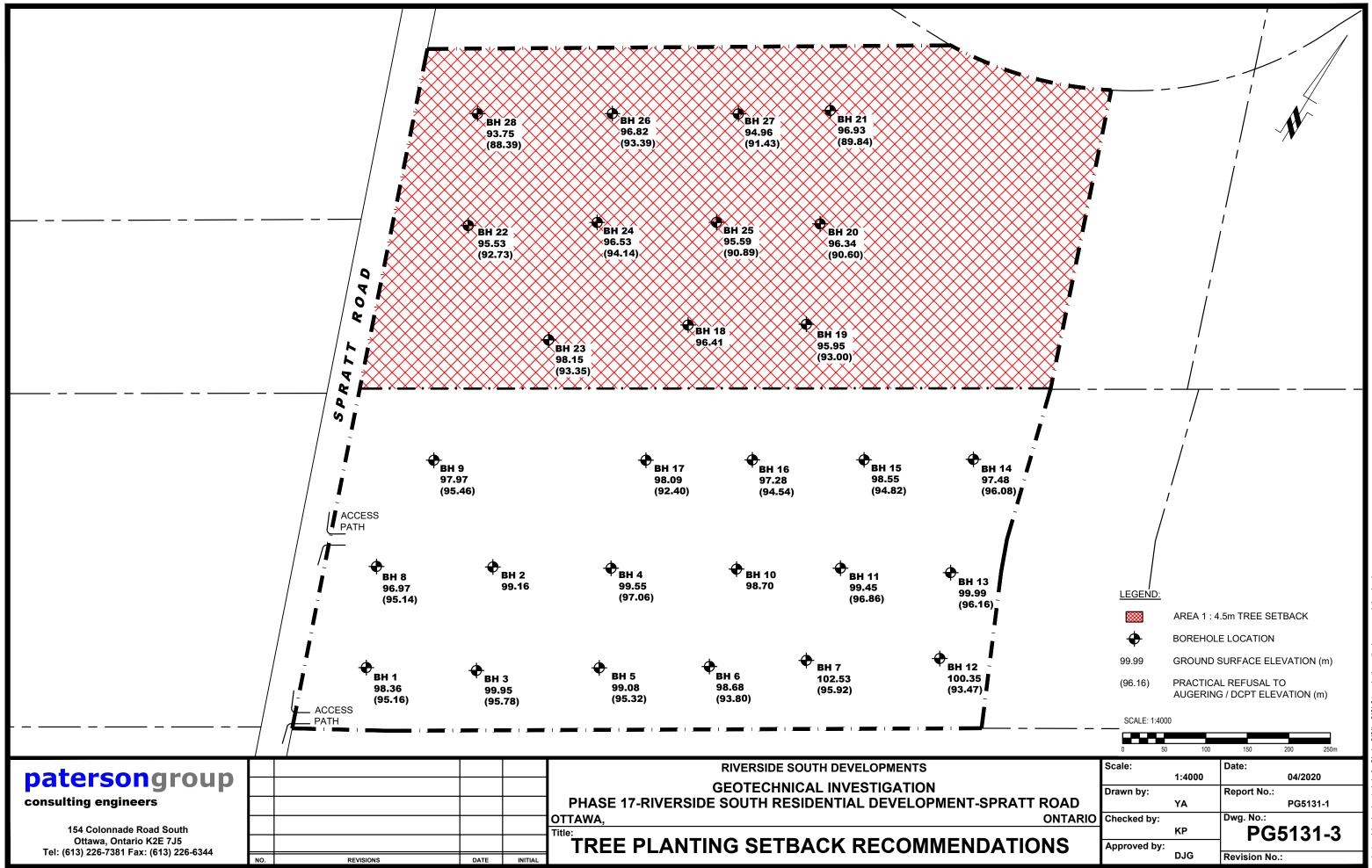


FIGURE 1


KEY PLAN

patersongroup

autocad drawings\geotechnical\pg51xx\pg5131\pg5131\pg5131-2-permissible grade raise plan.dwg

\autocad drawings\geotechnical\pg51xx\pg5131\pg5131-3-tree planting setback recommendation plan.dwg