

Summerside West Phase 4-6

TIA Strategy Report

Prepared for: 2447591 Ontario Inc.

Summerside West Phase 4 - 6

TIA Strategy Report

prepared for: Cavian Communities 2447591 Ontario Inc. 2934 Baseline Road, Suite 302 Ottawa, ON K1H 1B2

September 14, 2018

476237 - 01000

Table of Contents

	SCREENING FORM DESCRIPTION OF PROPOSED DEVELOPMENT	
2.1	PROPOSED DEVELOPMENT	1
3. E	EXISTING CONDITIONS	
3.1 3.2 3.3 3.4 3.5 3.6	AREA ROAD NETWORK PEDESTRIAN/CYCLING NETWORK TRANSIT NETWORK EXISTING STUDY AREA INTERSECTION EXISTING INTERSECTION VOLUMES	
4. F	PLANNED CONDITIONS	7
4.1 4.2		
2	 4.2.1. Mattamy – Summerside Phase 1-3	8 8
6. H 7. E	TIME PERIODS HORIZON YEARS EXEMPTIONS REVIEW DEVELOPMENT GENERATED TRAFFIC	
8.1		9
	8.1.1. Trip Generation Rates 8.1.2. Mode Shares	
8.2 8.3		
9. E	BACKGROUND NETWORK TRAVEL DEMANDS	13
9.1 9.2 9.3	2. BACKGROUND GROWTH RATES	
10.	DEMAND RATIONALIZATION	14
10.	.1. DESCRIPTION OF CAPACITY ISSUE(S)	14
1	 10.1.1. 2020 Background Horizon – Phase 4 10.1.2. 2024 Background Horizon – Phase 5 and 6 10.1.3. 2029 Background Horizon – Build-Out +5 years 	
11.	DEVELOPMENT DESIGN	
11.	.1. NEW STREETS NETWORK	
12.	BOUNDARY STREET DESIGN	

13.	ACCESS INTERSECTION DESIGN	
13. 13. 13.	.2. INTERSECTION CONTROL	
	TRANSIT INTERSECTION DESIGN	
15. 15. 15.	.2. TOTAL PROJECTED 2024 CONDITIONS	23
16.	CONCLUSIONS	

List of Figures

Figure 1: Local Context	2
Figure 2: Proposed Site Plan	3
Figure 3: Area Transit Network	5
Figure 4: Existing Peak Hour Traffic Volumes	
Figure 5: 'New' 2020 Site-Generated Traffic Volumes (Phase 4)	11
Figure 6: 'New' 2024 Site-Generated Traffic Volumes (Phase 5-6)	
Figure 7: Total 'New' 2024 Site-Generated Traffic Volumes	12
Figure 8: Mattamy Summerside Phase 1 to 3 and Minto Isgar Traffic Volumes	14
Figure 9: 2020 Background Peak Hour Traffic Volumes	15
Figure 10: 2024 Background Peak Hour Traffic Volumes	16
Figure 11: 2029 Background Peak Hour Traffic Volumes	17
Figure 12: Mer Bleue Expansion Demonstration Plan	
Figure 13: Mer Bleue Expansion Parks and Pathway Plan	
Figure 14: Total Projected 2020 Traffic Volumes	23
Figure 15: Total Projected 2024 Traffic Volumes	
Figure 16: Total Projected 2029 Traffic Volumes	25

List of Tables

Table 1: Exemptions Review Summary	9
Table 2: Vehicle Trip Generation Rates	9
Table 3: Projected Vehicle Trip Generation – TRANS Model	
Table 4: Study Area Mode Share Percentages – TRANS O-D	10
Table 5: Total Site Trip Generation – Phase 4 Table 6: Total Site Trip Generation – Phase 5	10
Table 7: Total Site Trip Generation – Phase 6	
Table 8: Tenth Line Historical Background Growth (2009 – 2013)	13
Table 9: 2020 Background Conditions Performance at Study Area Intersections	
Table 10: 2024 Background Conditions Performance at Study Area Intersections	16
Table 11: 2029 Background Conditions Performance at Study Area Intersections	
Table 12: MMLOS Targets for Boundary Streets	20
Table 13: Minimum Required Elements Suggested by MMLOS Analysis	20
Table 14: Total Projected 2020 Performance at Study Area Intersection	23
Table 15: Total Projected 2024 Performance at Study Area Intersection	
Table 16: Total Projected 2029 Performance at Study Area Intersection	26

List of Appendices

- APPENDIX A Screening Form and Correspondence
- APPENDIX B City of Ottawa Traffic Volumes
- APPENDIX C Collision Data and Analysis
- APPENDIX D Background Traffic Growth
- APPENDIX E SYNCHRO Background Traffic Analysis
- APPENDIX F Signal Warrant Analysis
- APPENDIX G SYNCHRO Future Traffic Analysis

TIA Strategy Report

1. SCREENING FORM

The screening form was submitted for the subject development on September 13th, 2017 to City of Ottawa staff for review and confirmation of the need for a Transportation Impact Assessment (TIA). The Trip Generation and Location triggers were met based on the unit count and proximity to the cycling spine route along Mer Bleue Road and Tenth Line Road. City staff provided confirmation to proceed with Step 2 – Scoping Report on October 3rd, 2017 and provide the exemptions review prior to producing Step 3 - Forecasting and Step 4 – Analysis.

The Screening and Scoping Report was submitted on October 25th, 2017 to City of Ottawa staff for review and confirmation of the study area scope, trip generation requirements, and exemptions review for the future steps of the TIA process. City staff provided confirmation on November 10th to proceed with Step 3 – Forecasting Report.

The Forecasting Report was submitted on December 1st, 2017 to City of Ottawa staff for review and confirmation of the trip generation and assignment assumptions. No response has been received from the TPM at the time of the submission of this report.

The Screening Form and Correspondence are provided in Appendix A.

2. DESCRIPTION OF PROPOSED DEVELOPMENT

2.1. PROPOSED DEVELOPMENT

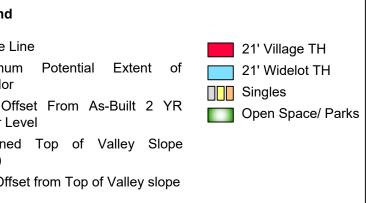
The proposed Summerside West Phases 4 to 6 (2564 Tenth Line) is a greenfield development located in south Orleans. The subdivision is in Ward 19 at Cumberland Concession 11 S Pt Lot 4. The site's local context is illustrated in Figure 1.

The development will include 738 units, consisting of 336 townhomes and 402 single family homes. Phase 4 consists of 145 townhomes and 100 single family homes; Phase 5 consists of 257 single family homes; Phase 6 consists of 236 townhomes. The subdivision will connect to the previous developed Summerside Phases to the north, accessing Tenth Line Road via Sweetvalley Drive and a new access on Tenth Line Road, and Mer Bleue via a new site access. The estimated date of occupancy is 2020 for Phase 4, 2024 for Phase 5, and 2024 for Phase 6.

Figure 2 illustrates the proposed site plan.

Figure 1: Local Context

Summerside West


Phases 4, 5 and 6 Coloured Plan

Lot Types PH4 PH5 PH6 % TOTAL 21' BTB 21' TH 30' Single 30' Single C 36' Single 43' Single TOTAL 100%

Legen
 Centre
 Maxim Corrido
 30m 0 Water
 Design (TOV)
 15m O

September 5th, 2018

3. EXISTING CONDITIONS

3.1. AREA ROAD NETWORK

Tenth Line Road is a north-south arterial roadway, which extends north from Smith Road to Jeanne D'Arc Boulevard. Within the study area the cross-section consists of two travel lanes in each direction. The posted speed is 60km/h and the road is designated as a truck route.

Mer Bleue Road is a north-south arterial roadway that extends north from Navan Road to Innes Road. Within the study area the road has a cross-section consisting of a single travel lane in both directions and a posted speed of 60km/h. Approximately 200m north of Renaud Road, Mer Bleue Road widens to a divided 4-lane roadway and is a partial truck route north of Brian Coburn Boulevard.

Brian Coburn Boulevard is an east-west arterial roadway that extends east from Trim Road to Navan Road. Within the study area the road has a cross-section consisting of a single travel lane in both directions and a posted speed of 60km/h. Brian Coburn Boulevard is a partial truck route.

Renaud Road is an east-west collector roadway that extends east from Anderson Road to Mer Bleue Road. Within the study area the road has a cross-section consisting of a single travel lane in both directions and a posted speed of 50km/h.

Harvest Valley Avenue is an east-west local roadway that extends east from Tenth Line Road to Espirit Drive. The road cross-section consists of a single travel lane in both directions and parking provided on a single side of the roadway. The road has an unposted speed of 40km/h.

Sweetvalley Drive is an east-west local roadway that extends west from Tenth Line Road and loops south into Summerside Phase 2. The road cross-section consists of a single travel lane in both directions and parking provided on a single side of the roadway. The road has an unposted speed of 40km/h.

Willow Aster Road is a local roadway within the Summerside Phase 2 development that has an interim access to Mer Bleue Road. Willow Aster Road will have a shared left-through-right lane in the westbound direction and Mer Bleue Road will have a southbound left turn-lane and through lane in the southbound direction. The northbound approach will remain as a single lane.

3.2. PEDESTRIAN/CYCLING NETWORK

The existing cycling network is comprised of paved shoulders exist on Tenth Line Road before transitioning into bike lanes between Decoeur Drive and Brian Coburn Boulevard, sections of paved shoulder along Mer Bleue Road, bike lanes on Mer Bleue Road north of McKinnons Creek, and bike lanes on Brian Coburn Boulevard between Mer Bleue Road and Gerry Lalonde Drive.

According to the City's Cycling Plan, identifies Mer Bleue Road and Tenth Line Road as ultimately spine routes, Brian Coburn Boulevard and Renaud Road as a suggested cycling routes and a major pathway along McKinnons Creek and connecting to the east, north of Sweetvalley Drive.

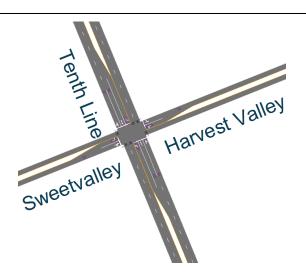
The existing pedestrian network consists of sidewalks provided on the adjacent subdivision's internal road network, with sidewalks located on parts of Tenth Line Road north of Harvest Valley Avenue and along the north side of Brian Coburn Boulevard. No future projects are noted within the Pedestrian Plan.

3.3. TRANSIT NETWORK

OC Transpo service is currently located along Lakeridge Drive, Harvest Valley Avenue, Tenth Line Road, and Brian Coburn Boulevard. The Routes in the area are # 30, #135, #136, and #235. Figure 3 illustrates the current system map and stop locations in the vicinity of the subject site. No stops are located within 400m of the centroid each Phase 4 – 6.

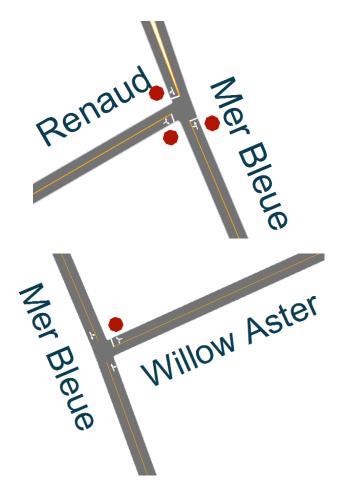
Of note, the Route #302 also operates along Mer Bleue Road, but only on Tuesdays as a free service for one trip during the AM peak.

Figure 3: Area Transit Network



Retrieved on Oct. 19, 2017, http://www.octranspo.com

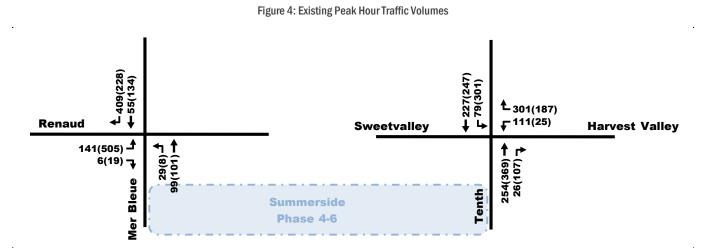
3.4. EXISTING STUDY AREA INTERSECTION


Tenth Line Road at Sweetvalley Drive/Harvest Valley Avenue

Tenth Line Road at Sweetvalley Drive/Harvest Valley Avenue is a signalized intersection. The cross-section of Tenth Line Road is composed of a left-turn lane, through lane and a through-right shared lane the north and south bound directions. Sweetvalley Drive and Harvest Valley Avenue both consist of a shared left-through lane and rightturn lane in the east and westbound direction.

Mer Bleue Road at Renaud Road

Mer Bleue Road at Renaud Road is a stop-controlled tintersection. The cross-section of each approach is a single shared lane.



Mer Bleue Road at Willow Aster Road

Mer Bleue Road at Willow Aster Road is a stop-controlled tintersection on the minor leg. The cross-section of each approach is a single shared lane. Currently, Willow Aster is used as a construction and emergency access.

3.5. EXISTING INTERSECTION VOLUMES

The existing peak hour traffic volumes (illustrated in Figure 4 below) were collected from City of Ottawa turning movement counts. The resulting peak hour and full traffic volume counts are included as Appendix B.

3.6. EXISTING ROAD SAFETY CONDITIONS

Collision history for study area roads (2011 to 2015, inclusive) was obtained from the City of Ottawa, and the majority (80%) of collisions involved property damage, and the remaining (20%) collisions involved non-fatal injuries indicating low impact speeds.

Over the five-year period, these types of collisions were observed at the following locations:

- Tenth Line Road at Harvest Valley Avenue The types of collisions cited by police included: rear end, angle, and single vehicle (other) (33%page 8
- each) type collisions
- Tenth Line Road, between Southfield Way and Harvest Valley Avenue The types of collisions cited by police included: single vehicle (other) (75%) and rear end (25%) type collisions
- Mer Bleue Road at Renaud Road The types of collisions cited by police included: rear end (67%) and single vehicle (other) (33%) type collisions
- Mer Bleue, between Innes Road and Renaud Road The types of collisions cited by police included a single rear end and angle type collisions

A standard unit of measure for assessing collisions at an intersection is based on the number collisions per million entering vehicles (MEV). The reported collision rate for each location are as follows:

- Tenth Line Road at Harvest Valley Avenue 0.15 collisions/MEV
- Tenth Line Road, between Southfield Way and Harvest Valley Avenue -0.27 collisions/MEV
- Mer Bleue Road at Renaud Road -0.17 collisions/MEV
- Mer Bleue, between Innes Road and Renaud Road 0.89 collisions/MEV

Based on the available data, there does not appear to be any prevailing safety issues at any of the study area intersections. The source collision data as provided by the City of Ottawa and related analysis is included as Appendix C.

4. PLANNED CONDITIONS

4.1. PLANNED STUDY AREA TRANSPORTATION NETWORK CHANGES

As outlined within the Ottawa Transportation Master Plan Affordable Network and the Ward 19 Planned Construction Projects map, the following projects are identified for south Orleans:

- Chapel Hill Park & Ride: A new park and ride facility is anticipated to be constructed during 2018 at Navan Road, on the north side of Brian Coburn Boulevard
- Brian Coburn Boulevard: Four-lane extension between Navan Road and Orleans Boulevard between 2018-2021, and an extension continuing to Innes Road is anticipated during Phase 2 (2020 and 2025)
- Tenth Line Road: Widening to 4-lanes will extend between Harvest Valley Road and the urban boundary (north of Wall Road) within Phase 2 (2020 and 2025)

4.2. OTHER AREA DEVELOPMENTS

4.2.1. MATTAMY – SUMMERSIDE PHASE 1-3

Mattamy Summerside West is located at 2405 Mer Bleue Road and 2496 Tenth Line Road, directly north of the subject Phases 4-6. Phase 4 will connect through Phase 1 to Tenth Line, and Phases 5-6 will connect through Phases 2-3 to Mer Bleue Road.

Currently, Phase 1 is predominantly completed along Tenth Line Road with residents occupying a significant portion of the development. Phase 2 is under construction adjacent to Mer Bleue Road and Phase 3 estimated to be completed by 2020. In total, Phases 1-3 will include 430 single family homes, 260 townhomes, and 120 low-rise apartment units.

4.2.2. MINTO - AVALON WEST PHASES 2-4

Located across 2333 Mer Bleue Road, 2336 Tenth Line Road, 3024-3100 Brian Coburn Boulevard, 600 – 639 Aubepines Drive, 215-375 Hepatica Way, and 800 Decoeur Drive, Minto Avalon West Phases 2-4 includes 590 residential units and 263,000 sq. ft. of commercial space in Phase 2, 620 residential units and institutional uses in Phase 3, and 320 residential units and 67,000 sq. ft. of commercial space in Phase 4. Currently, Phase 2 is predominantly complete and Phase 3 is under construction.

4.2.3. MINTO AVALON - ISGAR

East of Tenth Line Road (2605 Tenth Line Road), Minto Isgar is an extension of the Avalon community with a block proposed between the stormwater management pond and Tenth Line Road. Overall, the site is estimated to include 561 residential units in total. Approximately a third of these will be located along Tenth Line Road, with an access on Tenth Line Road and through the existing community along Lakeridge Drive.

4.2.4. MER BLEUE LAND LTD

A commercial retail and gas station development is proposed on the southeast quadrant (2075 Mer Bleue Road) of the Brian Coburn Boulevard and Mer Bleue Road. Two accesses are proposed along Mer Bleue Road and a single access along Brian Coburn Boulevard.

5. TIME PERIODS

The weekday morning and afternoon peak hours are considered the appropriate time periods for operational analysis for this residential development.

6. HORIZON YEARS

For the purposes of the operational analysis it is assumed that the subject development phases will be completed every 2 years. As such, and for simplicity of analysis, the following horizons are recommended for analysis if Steps 3 and 4 are required:

- Phase 4 2020
- Phase 5/6 2024
- +5 Year Horizon 2029

7. EXEMPTIONS REVIEW

Based on the foregoing analysis and review of the existing conditions in Step 2, the Scoping Report, it is recommended that, if required, any future work within the context of this TIA excludes the following modules and elements summarized in Table 1.

Table 1: Exemptions Review Summary

Module	Element	Exemption Consideration
4.1 Development Design	4.1.2 Circulation and Access	Not required for applications involving plans of subdivision
4.2 Parking	-	Not required for applications involving plans of subdivision
4.5 Transportation Demand Management	-	Residential development with less than 60 students/employees
4.6 Neighbourhood Traffic Management	-	Collector road access within existing/developing residential lands, not anticipated to exceed ATM thresholds of 2,500-5,000 vehicles/day or 300-600 vehicles/peak hour.

8. DEVELOPMENT GENERATED TRAFFIC

8.1. TRIP GENERATION

8.1.1. TRIP GENERATION RATES

The trip generation rates for the proposed development were obtained from the City's 2009 TRANS Trip Generation for the residential units. Table 2 summarizes the trip generation rates.

Land Use	Data Source	Trip F	Trip Rates			
Lanu USe	Data Source	AM Peak	PM Peak			
Single Family Homes	TRANS	T = 0.70(x)	T = 0.90(x)			
Townhomes	TRANS	T = 0.54(x)	T = 0.71(x)			
Notes: T = Average Vehicl X = Residential uni						

Table 2: Vehicle Trip Generation Rates

The TRANS vehicle trin	deperation rates we	o deperated and are	cummarized in Table 2
The TRAINS vehicle the	generation rates we	e generaleu anu are	summarized in Table 3.

Land Use	Source	Units	AM	Peak (veh	/h)	PM	/h)	
Land Use	Source	Units	In	Out	Total	In	Out	Total
Phase 4 Single Family Homes	TRANS	145 du	29	73	102	81	50	131
Phase 4 Townhomes	TRANS	100 du	19	35	54	37	34	71
Phase 5 Single Family Homes	TRANS	257 du	52	128	180	143	88	231
Phase 6 Townhomes	TRANS	236 du	46	81	127	89	79	168
Total Vehicle Trips				320	462	351	172	432

Table 3: Projected Vehicle Trip Generation – TRANS Model

8.1.2. MODE SHARES

The mode share percentages from the TRANS OD Survey for the 'Orleans' zone are summarized in Table 4 below.

Travel Mode	Mode Share			
	AM	PM		
Auto Passenger	55%	64%		
Auto Driver	8%	21%		
Transit	35%	12%		
Non-Motorized	2%	3%		

Table 4: Study Area Mode Share Percentages - TRANS O-D

Using the mode shares for the study area, the total person trips and person trips by mode were estimated and summarized for each phase in Table 5, Table 6 and Table 7.

Travel Mode	Mode	AM Peak (Person Trips/hr)			PM Peak (Person Trips/hr)		
Travel Wode	Share	In	Out	Total	In	Out	Total
Auto Driver	55/64%	48	108	156	118	84	202
Auto Passenger	8/21%	7	16	23	40	26	66
Transit	35/12%	31	68	99	22	16	38
Non-motorized	2/3%	1	5	6	5	4	9
Total Person Trips	100%	87	197	284	185	130	316
Total 'New' Auto Trips		48	108	156	118	84	202

Table 5: Total Site Trip Generation - Phase 4

Table 6: Total Site Trip Generation - Phase 5

Travel Mode	Mode	AM Peak (Person Trips/hr)			PM Pe	ak (Person Ti	rips/hr)
	Share	In	Out	Total	In	Out	Total
Auto Driver	55/64%	52	128	180	143	88	231
Auto Passenger	8/21%	8	18	26	46	29	75
Transit	35/12%	34	80	114	26	17	43
Non-motorized	2/3%	3	4	7	6	5	11
Total Person Trips	100%	96	230	325	220	139	359
Total 'New' Auto Trips		52	128	180	143	88	231

Table 7: Total Site Trip Generation - Phase 6

Travel Mode	Mode	AM Peak (Person Trips/hr)			PM Peak (Person Trips/hr)		
	Share	In	Out	Total	In	Out	Total
Auto Driver	55/64%	46	81	127	89	79	168
Auto Passenger	8/21%	6	12	18	30	25	55
Transit	35/12%	29	52	81	16	16	32
Non-motorized	2/3%	1	4	5	4	4	8
Total Person Trips	100%	82	149	231	139	124	263
Total 'New' Auto Trips		46	81	127	89	79	168

As shown above, the resulting number of potential 'new' two-way vehicle trips for the proposed development is approximately 463 and 433 veh/h during the weekday morning and afternoon, respectively, upon full build-out of the development.

8.2. TRIP DISTRIBUTION

Traffic distribution was based on the site's connectivity to the existing road network and our knowledge of the surrounding area. The resultant distribution is outlined as follows:

- 55% to/from the north
- 40% to/from the west; and
- <u>5%</u> to/from the east
- 100%

8.3. TRIP ASSIGNMENT

Based on these distributions, 'new' site-generated trips to/from the proposed development are assigned to study area intersections, and are illustrated as Figure 5 and Figure 6, and the total 'new' site generated trips upon full build-out are illustrated in Figure 7.

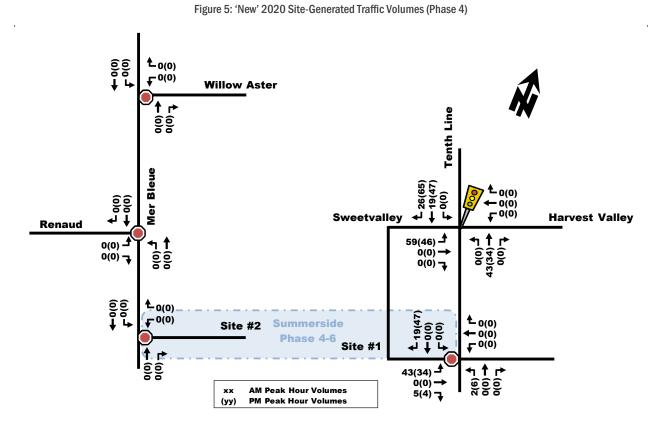
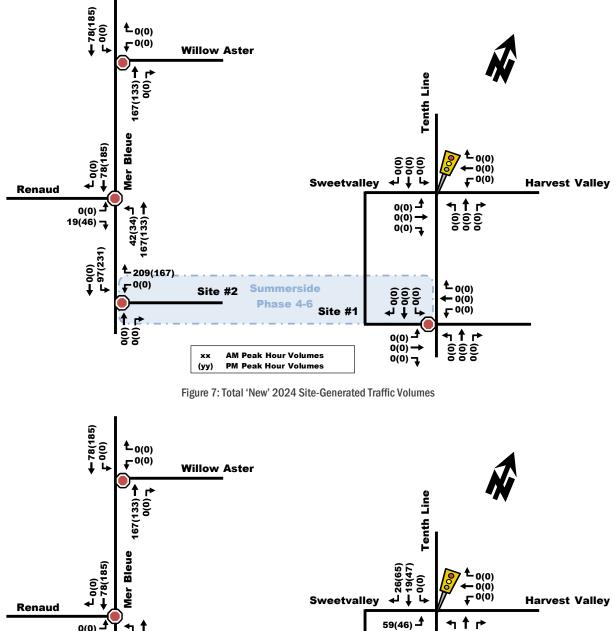
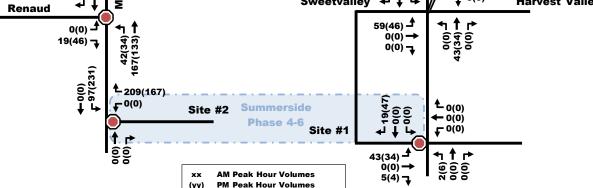




Figure 6: 'New' 2024 Site-Generated Traffic Volumes (Phase 5-6)

(уу)

9. BACKGROUND NETWORK TRAVEL DEMANDS

9.1. TRANSPORTATION NETWORK PLANS

As outlined within the Ottawa Transportation Master Plan Affordable Network and the Ward 19 Planned Construction Projects map, the following projects are identified for south Orleans:

- Chapel Hill Park & Ride: A new park and ride facility is anticipated to be constructed during 2018 at Navan Road, on the north side of Brian Coburn Boulevard;
- Brian Coburn Boulevard: Four-lane extension between Navan Road and Orleans Boulevard between 2018-2021, and an extension continuing to Innes Road is anticipated during Phase 2 (2020 and 2025); and
- Tenth Line Road: Widening to 4-lanes will extend between Harvest Valley Road and the urban boundary (north of Wall Road) within Phase 2 (2020 and 2025).
- Mer Bleue Road at Willow Aster Road: Mattamy has a southbound left turn lane approved through the RMA and functional design process for access into the current phases of Summerside West. It is assumed that this turn lane will be constructed by 2020.

9.2. BACKGROUND GROWTH RATES

The background traffic growth has been summarized in Table 8 for the study area based on historical traffic count data (2009 – 2013) at the Tenth Line/Brian Coburn intersection. Detailed background traffic growth analysis is included as Appendix D.

Time Period	Percent Annual Change
	South Leg
8 hrs	6.7%
AM Peak	9.4%
PM Peak	8.9%

 Table 8: Tenth Line Historical Background Growth (2009 - 2013)

As shown in Table 8, the Tenth Line has experienced approximately 6.7% to 9.4% annual growth within recent years (calculated as a weighted average). The growth identified relates to the development between the urban boundary and Brian Coburn, and given the subject site is located at the urban boundary, a 1% growth rate was assumed for the build-out horizons, which will total over a 10% overall growth along Mer Bleue and Tenth Line by the 2029 horizon.

The resulting future background traffic for the horizon years 2020, 2024 and 2029 are depicted as Figure 9, Figure 10, and Figure 11, respectively.

9.3. OTHER AREA DEVELOPMENTS

The City of Ottawa's Development Applications webtool has been used to determine if there are proposed developments within the area of influence of the proposed development. These developments have been discussed in greater detail in Section 4.2 and only the remaining phases of Summerside 1 to 3 and the Minto Isgar development will have an impact on the study area intersections. Figure 8 illustrates the traffic impact of the developments on the study area intersections. These have been included below in Figure 9 through Figure 11.

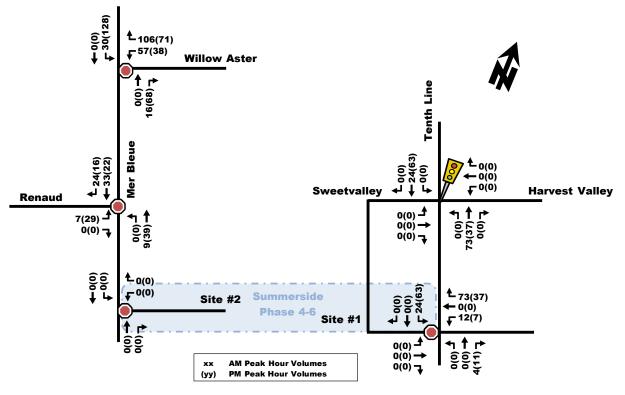


Figure 8: Mattamy Summerside Phase 1 to 3 and Minto Isgar Traffic Volumes

10. DEMAND RATIONALIZATION

10.1. DESCRIPTION OF CAPACITY ISSUE(S)

10.1.1. 2020 BACKGROUND HORIZON - PHASE 4

The 2020 background peak hour traffic volumes (illustrated in Figure 9 below) have been generated from the existing turning movement counts and the application of the growth rates discussed in Section 9.2. The background operations are summarized in Table 9 and the detailed synchro worksheets are provided in Appendix E.

Figure 9: 2020 Background Peak Hour Traffic Volumes

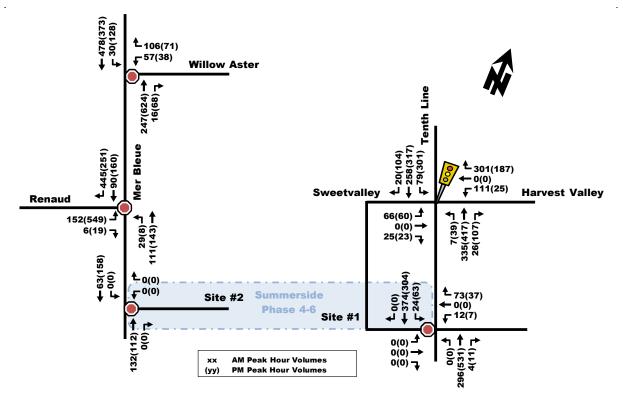


Table 9: 2020 Background Conditions Performance at Study Area Intersections

	Weekday AM Peak (PM Peak)						
Intersection	C	ritical Movemer	nt	Intersection 'as a whole'			
Intersection	LoS	max. v/c / delay (s)	Movement	Delay (s)	LoS	v/c	
Signalized	Signalized						
Tenth Line/Sweetvalley	E(C)	0.92(0.71)	EBL(EBL)	14.0(7.5)	A(A)	0.34(0.37)	
Stop-Controlled	Stop-Controlled						
Mer Bleue/Renaud	C(F)	16.1(75.8)	SBR(EBL)	14.0(48.4)	B(E)	-	
Mer Bleue/Willow Aster	C(E)	16.1(36.9)	WBR(WBR)	3.1(4.1)	A(A)	-	
Notes: Analysis of signalize	Notes: Analysis of signalized intersections assumes a PHF of 0.95 and a saturation flow rate of 1800 veh/h/lane.						

As shown in Table 9, the signalized study area intersection 'as a whole' is projected to continue to operate at an acceptable LoS 'A' during both peak hours, with respect to the City of Ottawa operating standards of LoS 'D' or better ($v/c \le 0.90$). The critical movement (eastbound left) is noted to have a LoS 'E' during the AM peak hour and a LoS 'C' during the PM peak hour.

At the stop-controlled intersections, the intersections operate 'as a whole' at an acceptable LOS with respect to the City of Ottawa operating standards of LoS 'D' or better, with the exception of Mer Bleue/Renaud that operates at a LoS 'E' during the PM peak. During the PM peak hours, the critical movement at Mer Bleue/Renaud is noted to have a delay of over 75 seconds (LoS 'F') in the eastbound left movement. Signals are not warranted at Mer Bleue/Renaud (see Appendix F).

10.1.2. 2024 BACKGROUND HORIZON - PHASE 5 AND 6

The 2024 background peak hour traffic volumes (illustrated in Figure 10 below) have been generated from the existing turning movement counts and the application of the growth rates discussed in Section 9.2. The background operations are summarized in Table 10 and the detailed synchro worksheets are provided in Appendix E.

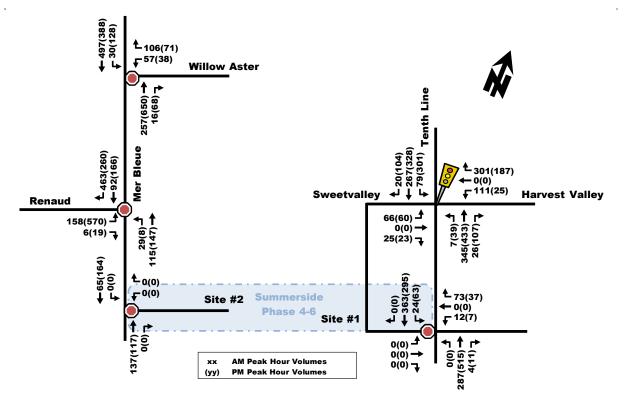


Figure 10: 2024 Background Peak Hour Traffic Volumes

Table 10: 2024 Background Conditions Performance at Study Area Intersections

	Weekday AM Peak (PM Peak)						
Intersection	Critical Movement			Intersection 'as a whole'			
Intersection	LoS	max. v/c or delay (s)	Movement	Delay (s)	LoS	v/c	
Signalized	Signalized						
Tenth Line/Sweetvalley	E(C)	0.94(0.71)	EBL(EBL)	14.0(7.5)	A(A)	0.34(0.37)	
Stop-Controlled	Stop-Controlled						
Mer Bleue/Renaud	C(F)	17.5(90.2)	SBR(EB)	15.0(56.3)	B(F)	-	
Mer Bleue/Willow Aster	C(E)	16.7(40.9)	WB(WB)	3.1(4.3)	A(A)	-	
Notes: Analysis of signalized intersections assumes a PHF of 0.95 and a saturation flow rate of 1800 veh/h/lane.							

The study area intersections operate similarly to the 2020 horizon, with a slight increase in delays and LoS due to the background growth assumptions. Based on the projected background traffic volumes, signals aren't warranted at the Mer Bleue/Renaud and Mer Bleue/Willow Aster intersections (Appendix F).

10.1.3. 2029 BACKGROUND HORIZON - BUILD-OUT +5 YEARS

The 2029 background peak hour traffic volumes (illustrated in Figure 11 below) have been generated from the existing turning movement counts and the application of the growth rates discussed in Section 9.2. The background operations are summarized in Table 10 and the detailed synchro worksheets are provided in Appendix E.

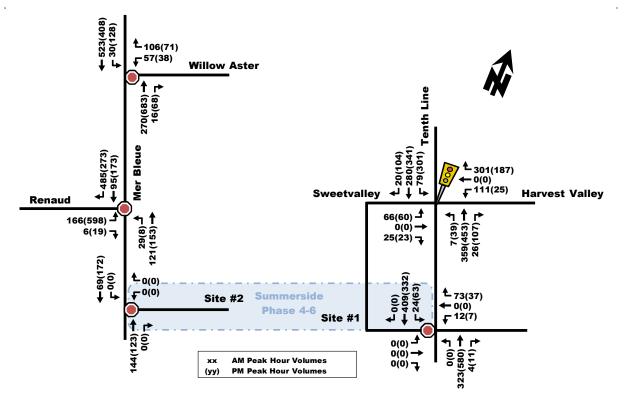


Figure 11: 2029 Background Peak Hour Traffic Volumes

Table 11: 2029 Background Conditions Performance at Study Area Intersections

	Weekday AM Peak (PM Peak)						
Intersection		Critical Moveme	ent	Intersection 'as a whole'			
intersection	LoS	max. v/c or delay (s)	Movement	Delay (s)	LoS	v/c	
Signalized							
Tenth Line/Sweetvalley	E(C)	0.95(0.76)	EBL(EBL)	17.8(12.2)	A(A)	0.43(0.45)	
Stop-Controlled							
Mer Bleue/Renaud	C(F)	19.9(115.1)	SBR(EBL)	16.7(70.2)	C(F)	-	
Mer Bleue/Willow Aster	C(E)	17.5(47.0)	WBR(WBR)	3.1(4.6)	A(A)	-	
Notes: Analysis of signalized	Notes: Analysis of signalized intersections assumes a PHF of 0.95 and a saturation flow rate of 1800 veh/h/lane.						

The study area intersections operate similarly to the 2020 and 2024 horizon, with a slight increase in delays and LoS due to the background growth assumptions. Based on the projected background traffic volumes, signals aren't warranted at the Mer Bleue/Renaud and Mer Bleue/Willow Aster intersections (Appendix F).

11. DEVELOPMENT DESIGN

11.1. NEW STREETS NETWORK

The planned network street design is consistent with the Building Better and Smarter Suburbs philosophy. The network design is consistent with road classification and anticipated usage within the community. Furthermore, pathways and cycling facilities have been integrated into the design to encourage travel by sustainable modes. Figure 12 and Figure 13 show the preferred demonstration plan and pathways in the Mer Bleue Expansion Area Community Design Plan (CDP), respectively.

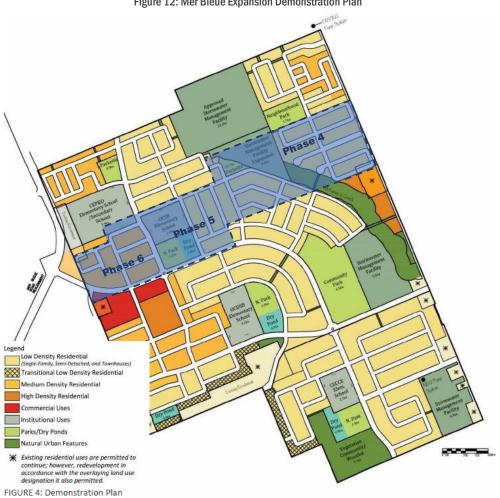


Figure 12: Mer Bleue Expansion Demonstration Plan

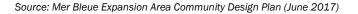


Figure 13: Mer Bleue Expansion Parks and Pathway Plan

Source: Mer Bleue Expansion Area Community Design Plan (June 2017)

Note that prior to full build-out out of the Mer Bleue Expansion Area, interim accesses have been proposed for Phases 4 on Tenth Line at Sweetvalley and for Phase 5 and 6 on Mer Bleue at Willow Aster. As the development of the site is anticipated to occur before the lands to the south are initiated and Mer Bleue is realigned, a secondary emergency access/egress will be required once the development reaches a total of 200 units.

12.BOUNDARY STREET DESIGN

The City has recently completed the street plan for Tenth Line Road from Brian Coburn to south of Harvest Valley. This construction accommodates future traffic demands, new housing developments and provide active mode facilities that will allow access and improve safety concerns. The plan included the following features:

- Widening Tenth Line Road from 2 to 4 lanes south of Brian Coburn to south of Harvest Valley;
- A multi-use pathway (MUP) on the west side of Tenth Line Road;
- A concrete sidewalk on the east side of Tenth Line Road; and
- New street lighting.

Mer Bleue is identified in the TMP as a part of the 2031 Affordable Network and 2031 Network Concept Plan. It is planned to be widened from 2 to 4 lanes between Brian Coburn and Renaud (Affordable) and realigned west of the existing Mer Bleue, between Renaud and Navan (Concept), continuing the 4-lane cross-section.

Currently, Mer Bleue does not meet the required MMLOS targets however, it is identified to be widened in the TMP. As such, the redesign of these roads should incorporate design elements to better cater to the needs of different modes of travel (e.g. transit, cycling, walking, etc.). The future Renaud realignment south of the development is anticipated to meet the MMLOS targets. The target MMLOS for the boundary streets are described in Table 12 below. Based on the MMLOS Guidelines, the elements suggested within the guidelines to achieve the targets are identified in Table 13. These elements

are not a recommendation of elements to be implemented but are only provided as a reference to the extent of modifications required to reach the targets.

OP Designation / Policy Area	Road Class	Pedestrian LOS	Bicycle LOS	Transit LOS	Truck LOS	Auto LOS		
	Tenth Line	С	D	No Target	D	D		
General Urban Area	Mer Bleue	С	С	No Target	E	D		
////04	Renaud	С	С	No Target	No Target	D		
Within 300m of	Mer Bleue*	A	С	No Target	E	E		
a school	Renaud*	A	В	No Target	No Target	E		
Note: The Mer Bleue	Note: The Mer Bleue/Renaud intersection is within 300m of a school and not mid block along each road							

Table 12: MMLOS Targets for Boundary Streets

Table 13: Minimum Required Elements Suggested by MMLOS Analysis

Mode	Elements			
Pedestrian	 PLOS "A" - intersection evaluation Smart channel right-turn Protected-permissive conflicting left-turns 0 - 2 lanes crossed Pedestrian delay less than 10s per intersection leg 			
	 PLOS "C" - segment evaluation Sidewalk width greater than 2 m Boulevard width greater than 2 m Operating speed between 50 - 60 km/h 			
Bicycle	 BLOS "B" - intersection evaluation For a pocket bike lane: Right-turn lane introduced to the right of the bike lane and ≤ 50 m long, turning speed ≤ 25 km/h (based on curb radii and angle of intersection) To make a left turn: Two-stage, left-turn bike box; ≤ 50 km/h, No lane crossed, ≤ 50 km/h; or 1 lane crossed, ≤ 40 km/h Note: A BLOS "A" is achieved if a physically separated bike lane is provided at an intersection 			
	 Bike lane not adjacent to parking: 2 travel lanes in each direction without a separating median; ≥1.2 m to <1.5 m wide bike lane (includes marked buffer and paved gutter width); and 60 km/h operating speed. Note: A BLOS "A" is achieved if a physically separated bike lane is provided at an intersection 			
Truck	 TkLOS "E" - intersection evaluation Effective corner radius 10 to 15 m with at least one receiving lane on departure from intersection 			

Mode	Elements				
	TkLOS "D" – segment evaluation				
	 With two-lane cross section: curb lane width ≤ 3.3 m More than two travel lanes: curb lane width ≤ 3.2 m 				
Auto	 LOS "D" - intersection evaluation v/c = 0.81 to 0.90 				

13.ACCESS INTERSECTION DESIGN

13.1. LOCATION AND DESIGN OF ACCESS

Tenth Line Road Access

The vehicle access for the Phase 4 development is proposed via Tenth Line Road at the Tenth Line/Sweetvalley intersection and at a new access at the south end of the site. The intersections are located approximately 350m and 905m south of the closest signalized intersection (Tenth Line/Southfield).

Mer Bleue Road Access

The primary vehicle access for the Phase 5 and 6 developments is proposed via Mer Bleue Road, with a new driveway connection recommended on Mer Bleue Road. The new intersection would be temporary based on the realignment of Mer Bleue Road and extension of Renaud Road. At that time, the new design will be able to be properly accommodated.

The Mer Bleue/Willow Aster intersection would be used as a secondary access. The proposed Mer Bleue/Site intersection is located directly west of the development, and the Mer Bleue/Willow Aster intersection is approximately 55m north of the Mer Bleue/Renaud intersection.

13.2. INTERSECTION CONTROL

Tenth Line/Sweetvalley Intersection The Tenth Line/Sweetvalley intersection is currently a full traffic control signal (TCS).

Tenth Line/Proposed Site Access #1

Based on the projected vehicle volumes, STOP control on the minor approach (site) only is recommended.

Mer Bleue/Willow Aster Intersection Based on the projected vehicle volumes, STOP control on the minor approach (site) only is recommended.

Mer Bleue/Proposed Site Access #2

Based on the projected vehicle volumes, STOP control on the minor approach (site) only is recommended.

13.3. INTERSECTION DESIGN

Tenth Line/Sweetvalley Intersection

The existing cross-section of Tenth Line Road is composed of a left-turn lane, through lane and a through-right shared lane the north and south bound directions. Sweetvalley Drive and Harvest Valley Avenue both currently consist of a shared leftthrough lane and right-turn lane in the east and westbound direction. No additional changes are required.

Tenth Line/Proposed Site Access #1

This intersection is proposed as a stop-controlled t-intersection on the minor leg (site). The existing cross-section of each approach is a single shared lane.

Mer Bleue/Willow Aster Intersection

Mer Bleue Road at Willow Aster Road is a stop-controlled t-intersection on the minor leg (Willow Aster). The existing crosssection of each approach is a single shared lane. Currently, Willow Aster is used as a construction and emergency access. A 75m southbound left-turn lane is currently proposed for this intersection to accommodate projected vehicle traffic. No additional changes are required.

Mer Bleue/Proposed Site Access #2

This intersection is proposed as a stop-controlled t-intersection on the minor leg (site). The existing cross-section of each approach is a single shared lane. A minimum 45m southbound left-turn lane is recommended for this intersection to accommodate projected vehicle traffic (approximately 200 veh/h in the afternoon peak hour). See Appendix F for the Left-Turn Lane Warrant and storage length calculations for this intersection.

14.TRANSIT

Total "new" two-way transit trips for Phase 4 are approximately 99 (31 in, 68 out) and 38 (22 in, 16 out) persons/h in the AM and PM peaks, respectively. During the AM peak, this represents approximately 56-123% of a single bus (55 passengers), approximately 28-91% of an articulated bus (75 passengers), and approximately 34-76% of a double decker bus (90 passengers).

Total "new" two-way transit trips for Phases 5 and 6 are approximately 195 (63 in, 132 out) and 75 (42 in, 33 out) persons/h in the AM and PM peaks, respectively. During the AM peak, this represents approximately 115-240% of a single bus (55 passengers), approximately 84-176% of an articulated bus (75 passengers), and approximately 70-147% of a double decker bus (90 passengers).

The implementation of Chapel Hill Park & Ride within close proximity to the proposed site will be able to accommodate the increase in transit ridership associated with this development. The proposed changes to the road network adjacent to the site will facilitate the movement of persons to/from this BRT station.

15.INTERSECTION DESIGN

15.1. TOTAL PROJECTED 2020 CONDITIONS

The total projected 2020 traffic volumes were derived by superimposing the 2020 site-generated traffic volumes on background 2020 traffic volumes (as per the Forecasting Report). The resulting total projected 2020 traffic volumes are illustrated in Figure 14. Table 14 provides a summary of the total projected 2020 operations at the study area intersections The SYNCHRO model output of total projected 2020 conditions is provided within Appendix G.

Figure 14: Total Projected 2020 Traffic Volumes



Table 14: Total Projected 2020 Performance at Study Area Intersection

	Weekday AM Peak (PM Peak)						
Intersection		Critical Moven	nent	Intersection 'as a whole'			
	LoS	max. v/c or avg. delay (s)	Movement	Delay (s)	LoS	v/c	
Signalized							
Tenth Line/Sweetvalley	E (C)	0.98 (0.71)	EBL (EBL)	16.9 (10.2)	A (A)	0.40 (0.43)	
Stop-Controlled	Stop-Controlled						
Tenth Line/Site Access #1	C (D)	23.9 (34.8)	EB (EB)	2.9 (2.8)	A (A)	-	
Mer Bleue/Renaud	C (F)	16.1 (75.8)	SBR (EBL)	14.0 (48.4)	B (E)	-	
Mer Bleue/Willow Aster	C (E)	16.1 (36.9)	WB (WB)	3.2 (4.1)	A (A)	-	
Note: Analysis of signalized intersections assumes a PHF of 0.95 and a saturation flow rate of 1800 veh/h/lane.							

As the development of phasing for 2020 is assumed to be Phase 4, adjacent to Tenth Line Road. Therefore, the stopcontrolled intersections along Mer Bleue will operate similarly to the forecasted background conditions in 2020.

As shown in Table 5, the Tenth Line/Sweetvalley intersection 'as a whole' is projected to operate at acceptable levels of service LoS 'A' during both peak hours. During the AM peak hour, the eastbound left turn will have a LoS 'E' similar to the forecasted background 2020 conditions. The new proposed Tenth Line Access intersection performs with an acceptable LoS 'D' or better with regards to critical movements and with an excellent LoS 'A' as a whole.

15.2. TOTAL PROJECTED 2024 CONDITIONS

The total projected 2024 traffic volumes were derived by superimposing the 2024 site-generated traffic volumes on background 2024 traffic volumes (as per the Forecasting Report). The resulting total projected 2024 traffic volumes are

illustrated in Figure 15. Table 15 provides a summary of the total projected 2024 operations at the study area intersections. The SYNCHRO model output of total projected 2024 conditions is provided within Appendix G.

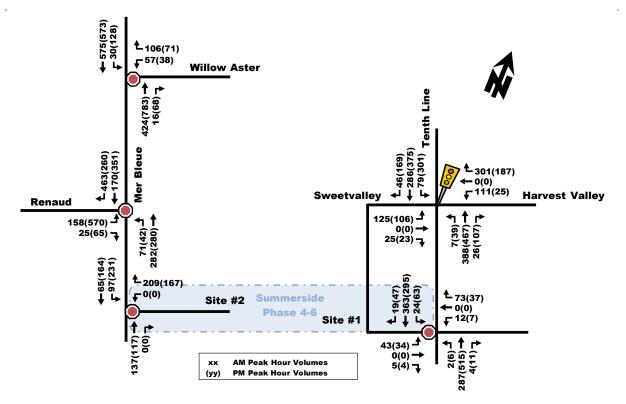


Figure 15: Total Projected 2024 Traffic Volumes

Table 15: Total Projected 2024 Performance at Study Area Intersection

	Weekday AM Peak (PM Peak)						
Intersection		Critical Moven	nent	Intersection 'as a whole'			
	LoS	max. v/c or avg. delay (s)	Movement	Delay (s)	LoS	v/c	
Signalized	Signalized						
Tenth Line/Sweetvalley	E (C)	0.98 (0.71)	EBL (EBL)	16.9 (10.4)	A (A)	0.40 (0.43)	
Stop Controlled							
Tenth Line/Site Access #1	C (D)	23.0 (33.0)	EB (EB)	2.9 (2.8)	A (A)	-	
Mer Bleue/Renaud	E (F)	41.2 (180.5)	SB (EB)	29.6 (128.3)	D (F)	-	
Mer Bleue/Willow Aster	D (F)	25.3 (100.9)	WB (WB)	3.6 (7.5)	A (A)	-	
Mer Bleue/Site Access #2	B (A)	10.4 (9.9)	WBR (WBR)	5.7 (5.1)	A (A)	-	
Note: Analysis of signalized intersections assumes a PHF of 0.95 and a saturation flow rate of 1800 veh/h/lane.							

The development phasing for 2024 is assumed to be Phase 5 and 6, adjacent to Mer Bleue. Therefore, the signalized intersection along Tenth Line and Tenth Line Access will operate similarly to the forecasted total conditions in 2020 with a slight increase in delays and LoS due to the background growth assumptions.

As shown in Table 5, the stop-controlled intersections, the intersections operate 'as a whole' at an acceptable LOS with respect to the City of Ottawa operating standards of LoS 'D' or better, with the exception of Mer Bleue/Renaud that operates at a LoS 'F' during the PM peak. During the PM peak hours, the critical movement at Mer Bleue/Renaud is noted to have a delay of over 175 seconds (LoS 'F') in the eastbound left movement, an approximate 100 second increase. A signal warrant was completed for the intersection and is it not warranted for the Mer Bleue/Renaud (see Appendix F).

With regard to the Mer Bleue/Willow Aster intersection, the critical movement is the westbound movement with a LOS 'F' and delays over 100 seconds. It would be beneficial to provide line painting on the westbound lanes to provide a sliparound for the right-turn movement as 80-90% of westbound traffic is turning right.

15.3. TOTAL PROJECTED 2029 CONDITIONS

The total projected 2029 traffic volumes were derived by superimposing the 2029 site-generated traffic volumes on background 2029 traffic volumes (as per the Forecasting Report). The resulting total projected 2029 traffic volumes are illustrated in Figure 16. Table 16 provides a summary of the total projected 2029 operations at the study area intersection. The SYNCHRO model output of total projected 2029 conditions is provided within Appendix G.

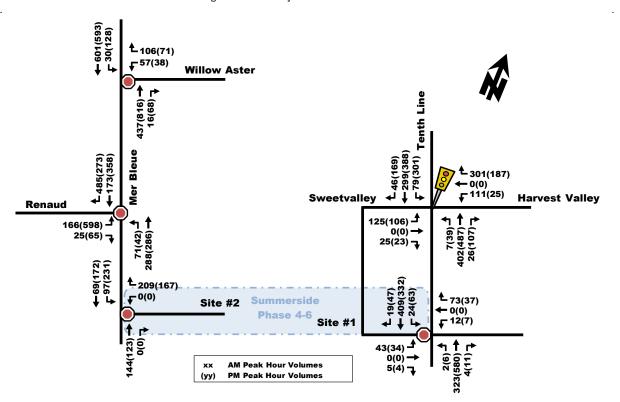


Figure 16: Total Projected 2029 Traffic Volumes

	Weekday AM Peak (PM Peak)						
Intersection		Critical Moven	nent	Intersed	Intersection 'as a whole'		
	LoS	max. v/c or avg. delay (s)	Movement	Delay (s)	LoS	v/c	
Signalized							
Tenth Line/Sweetvalley	E (C)	0.98 (0.71)	EBL (EBL)	16.8 (10.6)	A (A)	0.40 (0.44)	
Stop Controlled							
Tenth Line/Site Access #1	D (E)	26.7 (41.1)	EB (EB)	3.1 (3.0)	A (A)	-	
Mer Bleue/Renaud	F (F)	52.1 (206.5)	SBR (EB)	35.9 (145.6)	E (F)	-	
Mer Bleue/Willow Aster	D (F)	27.1 (123.3)	WB (WB)	3.8 (8.7)	A (A)	-	
Mer Bleue/Site Access #2	B (A)	10.5 (9.9)	WB (WB)	5.6 (5.0)	A (A)	-	
Note: Analysis of signalized inte	Note: Analysis of signalized intersections assumes a PHF of 0.95 and a saturation flow rate of 1800 veh/h/lane.						

Table 16: Total Projected 2029 Performance at Study Area Intersection

The development phasing for 2024 is assumed to be Phase 5 and 6, adjacent to Mer Bleue. Therefore, the signalized intersection along Tenth Line and Tenth Line Access will operate similarly to the forecasted total conditions in 2020 with a slight increase in delays and LoS due to the background growth assumptions.

As shown in Table 5, the stop-controlled intersections operate similarly to the 2024 horizon, with a slight increase in delays and LoS due to the background growth assumptions. Mer Bleue/Renaud critical movements continue to experience increased delays, with the AM peak hour southbound right movement becoming a LoS 'F' with over 50 seconds of delay. The overall intersection operates acceptably during the AM peak hour. The 2029 volumes do not warrant signalization (see Appendix F).

16.CONCLUSIONS

Based on the results summarized herein the following conclusions are offered:

Proposed Site

- The development will include 738 units, consisting of 336 townhomes and 402 single family homes. The subdivision will connect to the previous developed Summerside Phases to the north.
- The proposed development will consist of three (3) phases, continuing from the previous Summerside development, with Phase 4 completed by 2020 and Phases 5 and 6 completed by 2024.
- The proposed development is projected to generate 'new' two-way vehicle volumes of approximately 156 and 202 trips from Phase 4 to Tenth Line Road, and 307 and 399 trips to Mer Bleue from Phases 5 and 6, during the weekday morning and afternoon peak hours.
- The accesses to the development are proposed at a proposed new connection to Mer Bleue Road and at Tenth Line Road via Sweetvalley Drive and a proposed new connection.
- The new connection to Mer Bleue Road may be a temporary access road or the ultimate extension of the minor collector road from the East Urban Community Phase 2 lands.

Background Conditions

- Overall, the intersection of Tenth Line Road and Sweetvalley Drive will operate well during the projected background horizons, with the eastbound left-turn movement operating at a level of service 'E' during the AM peak from 2020 onward.
- The background conditions at Mer Bleue Road and Renaud Road are projected to experience long delays (>70 seconds) during the PM peak in the 2020 horizon. Similarly, this delay is noted to increase to over 90 seconds by the 2024 horizon and 115 seconds by 2029 horizon.

- The overall intersection of Mer Bleue Road and Renaud Road will operate at a level of service 'E' during the PM peak in the 2020 horizon, dropping to a level of service 'F' during the 2024 and 2029 horizons.
- While beyond the study horizon, the widening and re-alignment of Mer Bleue Road will ultimately signalize/roundabout this intersection and improve operations in the eastbound direction.

Projected Conditions

- The intersection of Tenth Line Road and Sweetvalley Drive, including the build-out of Phase 4 at the 2020 horizon, is projected to operate similarly to the background conditions. No improvements required to facilitate the Phase 4 at this intersection.
- The new proposed Tenth Line Access intersection is projected to operate as 'a whole' with a LoS 'A' throughout the horizon years 2020, 2024 and 2029.
- The addition of Phase 5 and 6 trips during the 2024 horizon will exacerbate the intersection operations of Mer Bleue Road and Renaud Road, specifically the eastbound left-turn during the PM peak. The delays may double over the background conditions for this movement.
- During the 2029 horizon, the Mer Bleue Road and Tenth Line Road will continue to experience high delays in the eastbound left-turn movement.
- Due to the future widening and re-alignment of Mer Bleue Road, no improvements are recommended during the interim as the ultimate design will likely signalize/roundabout this intersection and improve operations in the eastbound direction.
- The intersection of Willow Aster Circle and Mer Bleue Road is projected to experience increasing delays on the westbound approach as Phase 5 and 6 are developed, with a level of service 'F' during the 2024 and 2029 horizons. No improvements are recommended for this interim access location for Phase 1 to 3.

Site Plan

- Cycling facilities will be required along the collector roads within the development, and along the boundary roads of Mer Bleue Road, Tenth Line Road and Renaud Road. These facilities may be on-street facilities but will need separation from on-street parking.
- Pedestrian facilities will include a single sidewalk along local roads, and two sidewalks on collector roads.

Based on the foregoing conclusions, the proposed development is recommended to proceed form a transportation perspective.

Prepared By:

RaiNA

Rani Nahas, E.I.T. Transportation Analyst

Andrew Harte, P.Eng. Transportation Engineer/Project Manager

City of Ottawa 2017 TIA Guidelines	Date	1-
TIA Screening Form		t Summerside West Ph 4-6 r 476237
Results of Screening	Project Numbe Yes/No	470237
Development Satisfies the Trip Generation Trigger	Yes	
Development Satisfies the Location Trigger	Yes	
Development Satisfies the Safety Trigger	No	
Module 1.1 - Description of Proposed Development		
Municipal Address	2564 Tenth Line Rd	
Description of location	Ward 19 - CUMBERLAND CON 11 S PT LOT 4; PART 1 & 2	
Land Use	Residential	
Development Size	374 Townhomes, 404 Single Homes	
Number of Accesses and Locations	Connections through existing lands	
Development Phasing	Two Phases	
Buildout Year	2022	
Sketch Plan / Site Plan	See attached	
Module 1.2 - Trip Generation Trigger		
Land Use Type	Single-Family Homes	
Development Size	778	Units
Trip Generation Trigger Met?	Yes	
Module 1.3 - Location Triggers		
Development Proposes a new driveway to a boundary		
street that is designated as part of the City's Transit	Yes	Tenth Line & Mer Bleue -
Priority, Rapid Transit, or Spine Bicycle Networks (See		Spine Route
Sheet 3)		
Development is in a Design Priority Area (DPA) or Transit-	No	
oriented Development (TOD) zone. (See Sheet 3)		
Location Trigger Met?	Yes	
Module 1.4 - Safety Triggers		1
Posted Speed Limit on any boundary road	<60	km/h
Horizontal / Vertical Curvature on a boundary street limits	No	
sight lines at a proposed driveway		
A proposed driveway is within the area of influence of an		
adjacent traffic signal or roundabout (i.e. within 300 m of		
intersection in rural conditions, or within 150 m of	No	
intersection in urban/ suburban conditions) or within		
auxiliary lanes of an intersection;		
A proposed driveway makes use of an existing median	No	
break that serves an existing site		
There is a documented history of traffic operations or		
safety concerns on the boundary streets within 500 m of	No	
the development		
The development includes a drive-thru facility Safety Trigger Met?	No	
	No	

TIA Plan Reports

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below.

CERTIFICATION

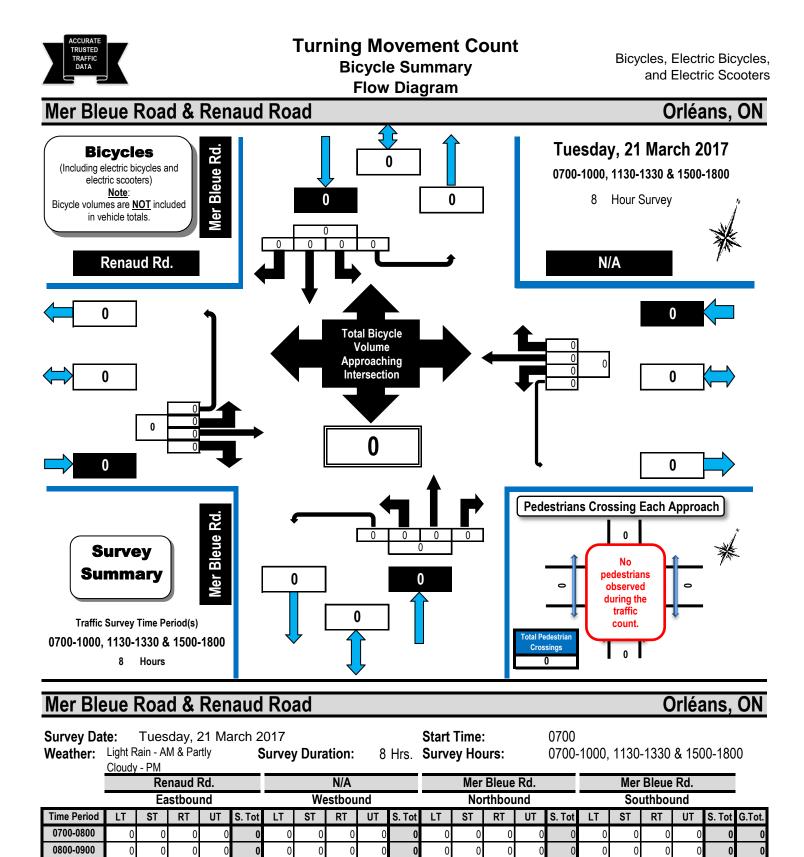
- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- 3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- I am either a licensed¹ or registered² professional in good standing, whose field of expertise [check √ appropriate field(s)] is either transportation engineering □ or transportation planning □.

^{1,2} License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

City Of Ottawa Infrastructure Services and Community Sustainability Planning and Growth Management 110 Laurier Avenue West, 4th fl. Ottawa, ON K1P 1J1 Tel. : 613-580-2424 Fax: 613-560-6006 Ville d'Ottawa Services d'infrastructure et Viabilité des collectivités Urbanisme et Gestion de la croissance 110, avenue Laurier Ouest Ottawa (Ontario) K1P 1J1 Tél. : 613-580-2424 Télécopieur: 613-560-6006

 Dated at Ottawa (City)
 this 14 day of September , 201 8 .

 Name:
 Andrew Harte (Please Print)


 Professional Title:
 Transportation Engineer ______

Andrew Heart

Signature of Individual certifier that s/he meets the above four criteria

Office Contact Information (Please Print)
Address:
1223 Michael Street North, Suite 100
City / Postal Code:
Ottawa, Ontario, K1J 7T2
Telephone / Extension:
613-738-4160
E-Mail Address:
Andrew.harte@parsons.com

Appendix B City of Ottawa Traffic Volumes

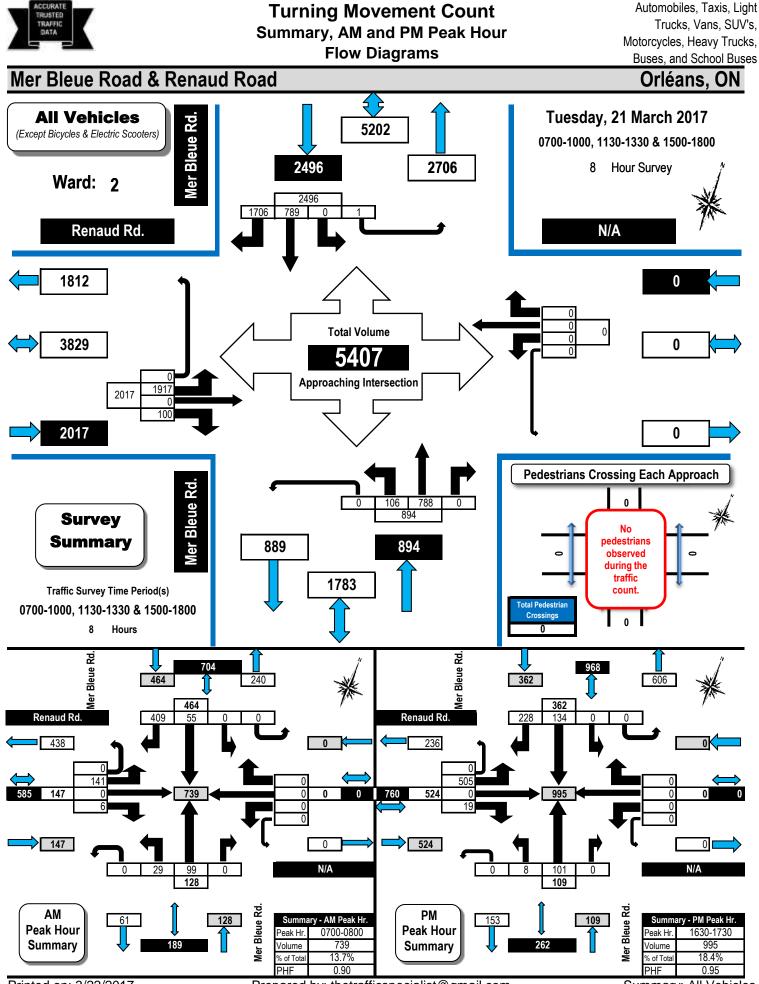
0900-1000

1130-1230

1230-1330

1500-1600

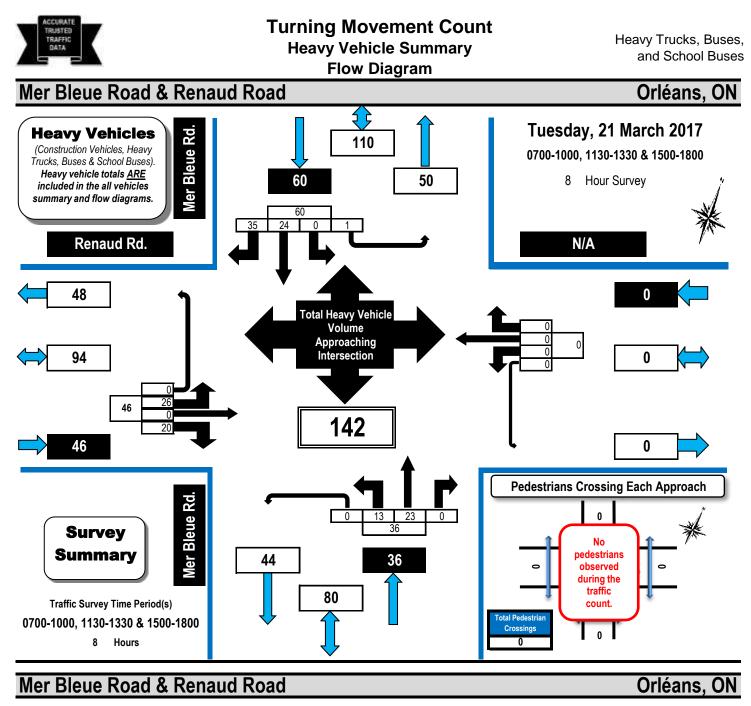
1600-1700


1700-1800

Totals

No bicycles observed during the traffic count.

(

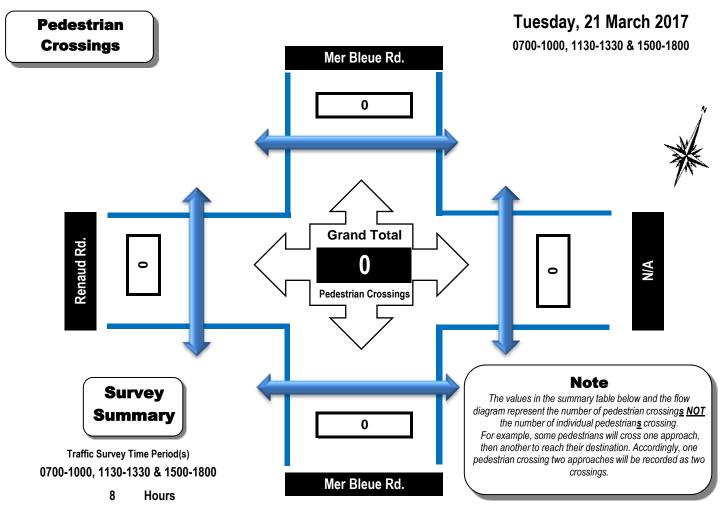

(

Printed on: 3/22/2017

Summary: All Vehicles

Prepared by: thetrafficspecialist@gmail.com

Start Time: Survey Date: Tuesday, 21 March 2017 Weather: Light Rain - AM & Partly Survey Duration: 8 Hrs. Survey Hours: 0700-1000, 1130-1330 & 1500-1800 Cloudy - PM Renaud Rd. Mer Bleue Rd. N/A Mer Bleue Rd. Eastbound Westbound Northbound Southbound Time Period ST RT S. Tot LT ST RT UT S. Tot LT UT S. Tot LT ST RT UT LT ST RT UT S. Tot G.Tot. 0700-0800 0800-0900 g 0900-1000 1130-1230 1230-1330 1500-1600 ę 1600-1700 1700-1800 З


Totals

Mer Bleue Road & Renaud Road

Orléans, ON

Mer Bleue Road & Renaud Road

Orléans, ON

Survey Date: Tuesday, 21 March	n 2017	Start Time:	0700
Weather: Light Rain - AM & Partly Cloudy - PM	Survey Duration:	8 Hrs. Survey Hours:	0700-1000, 1130-1330 & 1500-1800

Time Period	West Side Crossing Renaud Rd.	East Side Crossing N/A	Street Total	South Side Crossing Mer Bleue Rd.	North Side Crossing Mer Bleue Rd.	Street Total	Grand Total
0700-0800	0	0	0	0	0	0	0
0800-0900	0	0	0	0	0	0	0
0900-1000	0	<u>^</u>	<u>^</u>	^		0	0
1130-1230	0	edestrians obse	nvod	during the troff	ic count	0	0
1230-1330	0		Iveu	uting the tran		0	0
1500-1600	0	U	U	U		0	0
1600-1700	0	0	0	0	0	0	0
1700-1800	0	0	0	0	0	0	0
Totals	0	0	0	0	0	0	0

Turning Movement Count

Summary Report Including AM/PM Peak Hours,

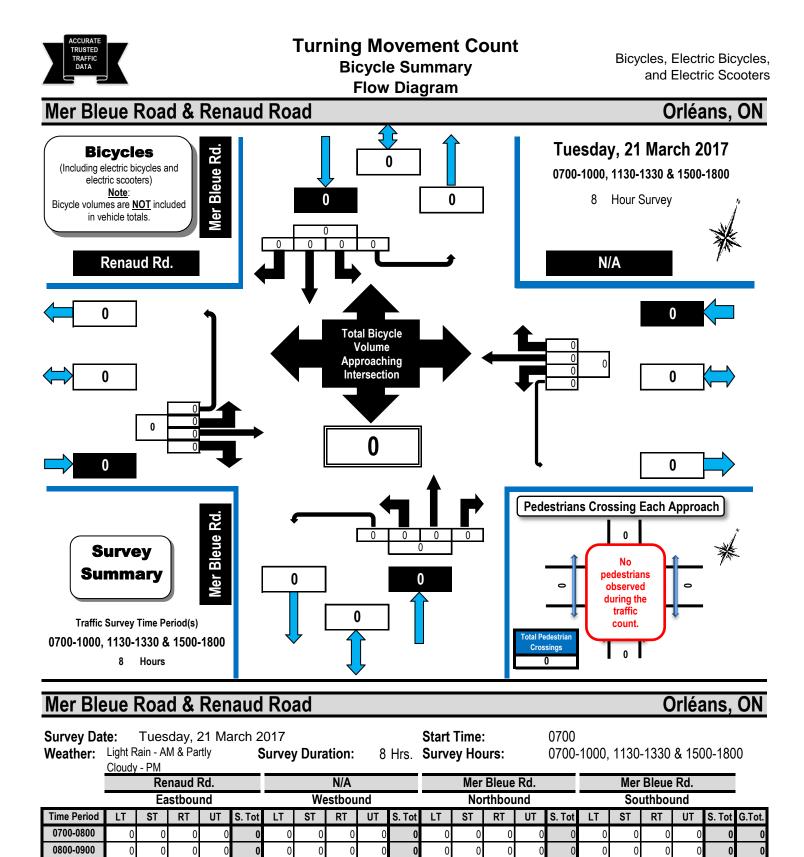
PHF, AADT and Expansion Factors

Automobiles, Taxis, Light Trucks, Vans, SUV's, Motorcycles, Heavy Trucks, Buses, and School Buses

Orléans, **ON**

Mer Bleue Road & Renaud Road

Survey Da Neather:		Tueso Light R Cloudy	Rain - A		rch 20 artly		irvey	Durat	tion:	8	Hrs.		Time ey Ho			0700 0700-	1000			0 T Fa 0 & 1			1.0
		Ren	aud	Rd.				N/A				N	ler E	Bleu	e Ro	J.	N	ler E	Bleu	e Ro	d.		
		Ea	stbou	Ind			We	stbou	Ind		•		Nor	thbou	und			Sou	thbo	und		1	
Time Period	LT	ST	RT	UT	E/B Tot	LT	ST	RT	UT	W/B Tot	Street Total	LT	ST	RT	UT	N/B Tot	LT	ST	RT	UT	S/B Tot	Street Total	Grand Total
0700-0800	141	0	6	0	147	0	0	0	0	0	147	29	99	0	0	128	0	55	409	0	464	592	73
0800-0900	134	0	6	0	140	0	0	0	0	0	140	21	130	0	0	151	0	76	270	0	346	497	63
0900-1000	145	0	9	0	154	0	0	0	0	0	154	12	90	0	0	102	0	60	147	0	207	309	46
1130-1230	139	0	11	0	150	0	0	0	0	0	150	11	86	0	0	97	0	87	119	0	206	303	45
1230-1330	134	0	5	-	139	0	0	0	0	0	139	7	80	0	0	87	0	102	142	1	245	332	47
1500-1600	323	0	15		338	0	0	0	0	0	338	10	109	0	0	119	0	138	175	0	313	432	77
1600-1700	487	0	26		513	0	-	0	0	0		9	106	0	0	115	0	141	208	0	349	464	97
		^	00	0	436	0	0	0	0	0	436	7	88	0	0	95	0	130	236	0	366	461	89
1700-1800	414	0	22	0		-	-	0	0														00
1700-1800 Totals	1917	0	100	0	2017 24-ho	0 our V	0 ehicle	0 Volu	0 Imes						•			•			2496 Or	3390	
Totals	1917 E Exp Exp	0 Equiva Dansi	100 alent on fa	12 &	2017 24-ho App s are	0 Jur Vo licab app	0 ehicle ble to f lied e	و Volu the D xclu	o imes ay ar <mark>sive</mark>	Inclu nd Mo ly to	2017 ding f	the A f the lard v	nnual Turnii <mark>week</mark> o	Aven ng M day S	rage oven <mark>8-ho</mark>	Daily nent C ur tur	Traff count ning	ic (AA mov	NDT) eme	Facto nt co	or ounts		
Totals	1917 E Exp Exp	0 Equiva Dansi	100 alent on fa nt 12-h	12 &	2017 24-ho App s are	0 Jur Vo licab app	0 ehicle ble to f lied e	و Volu the D xclu	o imes ay ar <mark>sive</mark>	Inclu nd Mo ly to	2017 onth o stand	the A f the lard N	nnual Turnii <mark>week</mark> o	Aven ng M day S	rage oven <mark>8-ho</mark>	Daily nent C ur tur	Traff count ning	ic (AA mov	ADT) eme	Facto nt co	or ounts		540
Totals	1917 E Exp 2665 A 2665	0 Equiva pansi quivale 0 verage 0 0	100 alent on fa nt 12-h 139 daily 12 139	0 12 & actor our vel 0 2-hour * 0	2017 24-ho App s are hicle vo 2804 vehicle 2804	0 licab app lumes. 0 volum	0 ehicle ble to lied e . These 0 es. The	volume o se volume 0 se volu	0 Imes ay ar sive es are 0 mes ar	Inclu nd Mo ly to calcular 0 re calcu	2017 onth o stand ted by n 2804 ulated by 2804	the A f the lard v nultiply 147 y multip 147	nnual Turnii week ing the 1095	Aven ng M day 8-hour 0 ne equ 0	rage oven 8-ho totals 0 ivalent	Daily nent C ur tur by the 8 1243 12-hou 1243	Traff count ning B ⇒12 0 r totals 0	ic (AA mov expans 1097 by the 1097	DT) eme 2371 AADT 2371	Factor ent co ctor of 1 factor 1	or 5000000000000000000000000000000000000	4 712 1.0	540 751
Totals	1917 Exp 2665 24-H	0 Equiva pansi quivaler 0 verage o 0 our AA	100 alent on fa 139 daily 12 139 DT. Th	12 & actor our vel 0 2-hour 0 esse vol	2017 24-ho App s are hicle vo 2804 vehicle 2804 umes a	0 licab app lumes 0 volum 0 re calc	0 ehicle ble to 1 lied e . These 0 es. The: 0	volume o volume 0 se volu 0	imes ay ar sive es are 0 mes a 0	Inclu nd Mo ly to calcular 0 re calcu 0 g the av	2017 onth o stand ted by n 2804 ulated by 2804	the A f the lard nultiply 147 y multip 147 aily 12-	nnual Turnii weekt ing the 1095 olying th 1095 hour ve	Aven ng M day a 8-hour 0 ne equ 0	rage oven 8-ho totals 0 ivalent 0	Daily nent C ur tur 1243 12-hou 1243 s by the	Traff count ning B ⇒ 12 0 r totals 0	ic (AA mov expans 1097 by the 1097 24 expa	ADT) eme ion fac 2371 AADT 2371 unsion	Factor ent co ctor of 1 factor 1 factor	Dr Dunts 1.39 3469 of: 3469 of 1.31	4712 1.0 4712	540 751 751
Totals	1917 Exp 2665 24-H	0 Equiva pansi quivale 0 verage 0 0	100 alent on fa 139 daily 12 139 DT. Th	0 12 & actor our vel 0 2-hour * 0	2017 24-ho App s are hicle vo 2804 vehicle 2804 umes a	0 licab app lumes. 0 volum	0 ehicle ble to lied e . These 0 es. The	volume o se volume 0 se volu	0 Imes ay ar sive es are 0 mes ar	Inclu nd Mo ly to calcular 0 re calcu 0 g the av	2017 onth o stand ted by n 2804 ulated by 2804	the A f the lard nultiply 147 y multip 147 aily 12-	nnual Turnii week ing the 1095	Aven ng M day 8-hour 0 ne equ 0	rage oven 8-ho totals 0 ivalent 0	Daily nent C ur tur by the 8 1243 12-hou 1243	Traff count ning B ⇒ 12 0 r totals 0	ic (AA mov expans 1097 by the 1097	ADT) eme ion fac 2371 AADT 2371 unsion	Factor ent co ctor of 1 factor 1 factor	or 5000000000000000000000000000000000000	4712 1.0 4712	540 751
Totals Equ. 12 Hr AADT 12-hr AADT 24 Hr	1917 Exp 2665 Av 2665 24-H 3491	0 Equiva pansi quivale 0 verage 0 0 verage 0 0 0 vour AA	100 alent on fa 139 daily 12 139 DT. Th 182	12 & actor our vel 0 2-hour 0 esse vol	2017 24-ho App s are hicle vo 2804 vehicle 2804 umes a	0 licab app lumes 0 volum 0 re calc	0 ehicle ble to 1 lied e . These 0 es. The: 0	volume o volume 0 se volu 0	imes ay ar sive es are 0 mes a 0	Inclu nd Mo ly to calcular 0 re calcu 0 g the av	2017 onth o stand ted by n 2804 ulated by 2804	the A f the lard nultiply 147 y multip 147 aily 12-	nnual Turnii weekt ing the 1095 olying th 1095 hour ve	Aven ng M day a 8-hour 0 ne equ 0	rage oven 8-ho totals 0 ivalent 0	Daily nent C ur tur 1243 12-hou 1243 s by the	Traff count ning B ⇒ 12 0 r totals 0	ic (AA mov expans 1097 by the 1097 24 expa	ADT) eme ion fac 2371 AADT 2371 unsion	Factor ent co ctor of 1 factor 1 factor	Dr Dunts 1.39 3469 of: 3469 of 1.31	4712 1.0 4712	54(751 751
Totals Equ. 12 Hr ADT 12-hr ADT 24 Hr M Peak He	1917 Exp 2665 Av 2665 24-H 3491	0 Equiva pansi quivale 0 verage 0 0 verage 0 0 0 vour AA	100 alent on fa 139 daily 12 139 DT. Th 182	0 12 & actor 0 2-hour vel 0 2-hour vel 0 0 0 0 0.90	2017 24-ho App s are hicle vo 2804 vehicle 2804 umes a	0 licab app lumes 0 volum 0 re calc	0 ehicle ble to lied e . These 0 es. These 0 culated l 0	volume o volume 0 se volu 0	imes ay ar sive es are 0 mes a 0	Incluind Mo ly to calculat 0 re calcu 0 g the av 0	2017 onth o stand ted by n 2804 ulated by 2804	the A f the lard nultiply 147 y multip 147 aily 12-	nnual Turnii weekt ing the 1095 olying th 1095 hour ve	Aven ng M day a 8-hour 0 ne equ 0	rage oven 8-ho totals 0 ivalent 0	Daily nent C ur tur 1243 12-hou 1243 s by the	Traff count ning B ⇒ 12 0 r totals 0	ic (AA mov expans 1097 by the 1097 24 expa	ADT) eme ion fac 2371 AADT 2371 unsion	Factor ent co ctor of 1 factor 1 factor	or 5000000000000000000000000000000000000	4712 1.0 4712	54(751 751 984
Totals Equ. 12 Hr ADT 12-hr ADT 24 Hr M Peak Hr 0700-0800	1917 E Exr 2665 2665 2665 24-H 3491 0ur Fa LT 141	0 Equiva pansi quivale 0 verage 0 0 verage 0 0 our AA 0 actor ST 0	100 alent on fa 139 daily 12 139 DT. Th 182 RT 6	0 12 & actor 0 2-hour vel 0 2-hour v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2017 24-ho App s are 2804 vehicle 2804 umes a 3673	0 ur V licab app lumes. 0 volum 0	0 ehicle ble to lied e . These 0 es. These 0 culated l 0 ST	0 Volum volum 0 se volu 0 volum	0 Imes ay ar Sive 0 mes ar 0 0	Incluind Mo ly to calculat 0 re calcu 0 g the av 0	2017 Inding to stand ted by n 2804 Jated by 2804 erage d 3673	the A f the lard 147 y multiply 147 y multip 147 aily 12- 193	nnual Turnii weeko ing the 1095 blying th 1095 hour ve 1435	Ave ng M day 8 8-hour 0 ne equ 0 hicle v 0	rage oven 8-ho totals 0 ivalent 0	Daily nent C ur tur by the 8 1243 12-hou 1243 s by the 1628	Trafficount count ning $B \Rightarrow 12$ 0 r totals 0 $2 12 \Rightarrow 0$	ic (AA mov expans 1097 5 by the 1097 24 expa 1437	ADT) eme ion fac 2371 AADT 2371 3106	Factor ent co ctor of 1 factor 1 factor 2	or 5000000000000000000000000000000000000	4712 1.0 4712 6173	54(751 751 984
Totals Equ. 12 Hr ADT 12-hr ADT 24 Hr M Peak Hr 0700-0800	1917 E Exr 2665 2665 2665 24-H 3491 0ur Fa LT 141	0 Equiva pansi quivale 0 verage 0 0 verage 0 0 our AA 0 actor ST 0	100 alent on fa 139 daily 12 139 DT. Th 182 RT 6	0 12 & actor 0 2-hour vel 0 2-hour v 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2017 24-ho App s are 2804 vehicle 2804 umes a 3673	0 ur V licab app lumes. 0 volum 0 re calc 0	0 ehicle ble to lied e . These 0 es. These 0 culated l 0 ST	0 Volum volum 0 se volu 0 by mult 0 RT	0 IIMES ay ar Sive 0 mes ar 0 0 iiplying 0 UT	Incluend Mo Iy to calcular 0 re calcu 0 g the av 0 TOT	2017 Inding for the orthological stand ted by n 2804 Jated by 2804 erage d 3673	the A f the lard nultiply 147 y multip 147 aily 12- 193 LT	nnual Turnii weeko ing the 1095 blying th 1095 hour ve 1435	Aveng M ng M day a 8-hour 0 ne equ 0 whicle v 0 RT	rage oven 8-ho totals 0 ivalent 0 volume 0	Daily nent C ur tur by the 8 1243 12-hou 1243 s by the 1628 TOT	Traff count ning $B \Rightarrow 12$ 0 r totals 0 $2 12 \Rightarrow 0$ 0 LT	ic (AA mov expans 1097 5 by the 1097 24 expa 1437 ST	NDT) eme ion fac 2371 AADT 2371 3106 RT	Factor ent co ctor of 1 factor 1 factor 2 UT	or 5000000000000000000000000000000000000	4712 1.0 4712 6173 S.TOT	54(75 75 984 G.TC
	1917 E Exr 2665 2665 2665 24-H 3491 0ur Fa LT 141	0 Equiva pansi quivale 0 verage 0 0 verage 0 0 our AA 0 actor ST 0	100 alent on fa 139 daily 12 139 DT. Th 182 RT 6	0 12 & actor our vel 0 2-hour 0 ese vol 0 0 0 0 0 0 0 0 0 0 0 0 0	2017 24-ho App s are 2804 vehicle 2804 umes a 3673	0 ur V licab app lumes. 0 volum 0 re calc 0	ehicle ble to lied e . These 0 es. These 0 culated l 0 ST 0 ST	0 Volum volum 0 se volu 0 by mult 0 RT	0 IIMES ay ar Sive 0 mes ar 0 0 iiplying 0 UT	Incluind Mo ly to calculat calculat re calcu 0 re calcu 0 tre av 0 tre av 0	2017 Inding for the orthological stand ted by n 2804 Jated by 2804 erage d 3673	the A f the lard nultiply 147 y multip 147 aily 12- 193 LT	nnual Turnii weeko ing the 1095 blying th 1095 hour ve 1435	Aveng M ng M day a 8-hour 0 ne equ 0 whicle v 0 RT	rage oven 8-ho totals 0 ivalent 0 volume 0	Daily nent C ur tur by the 8 1243 12-hou 1243 s by the 1628 TOT	Traff count ning $3 \Rightarrow 12$ 0 r totals 0 $2 12 \Rightarrow 0$ 0 LT	ic (AA mov expans 1097 5 by the 1097 24 expa 1437 ST	NDT) eme ion fac 2371 AADT 2371 3106 RT	Factor ent co ctor of 1 factor 1 factor 2 UT	or 5000000000000000000000000000000000000	4712 1.0 4712 6173 S.TOT	54 75 75 98 G.T(7


Comments

Notes:

- 1. Includes all vehicle types except bicycles and electric scooters.
- 2. Expansion factors are not applied to turning movement counts if they are less than 8-hours in duration.
- 3. When expansion and AADT factors are applied, the results will differ slightly due to rounding.

Disclaimer:

The information contained in this data summary is for information purposes only, and may not apply to your situation. Every effort is made to ensure the traffic count information is accurate for the survey date provided on the summary and flow diagram forms. The author, publisher, and distributor provide no warranty about the content or accuracy of either the data summary or flow diagrams. Information provided is subjective. The author, publisher, and distributor shall not be liable for any loss of profit or any other commercial damages resulting from use of this data.

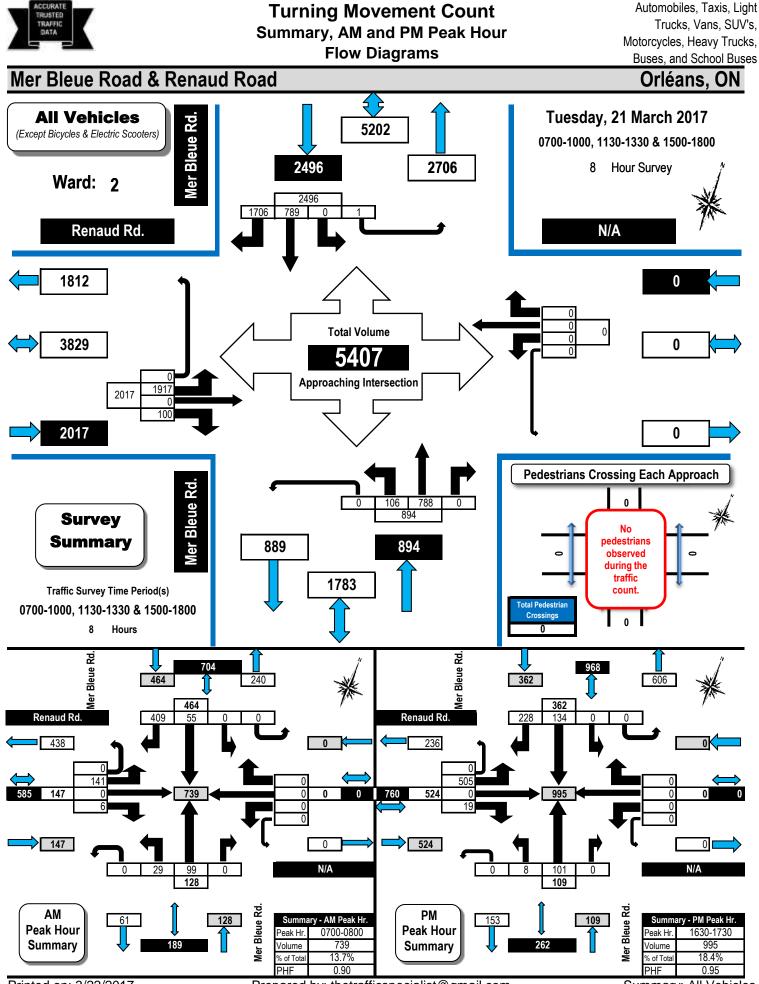
0900-1000

1130-1230

1230-1330

1500-1600

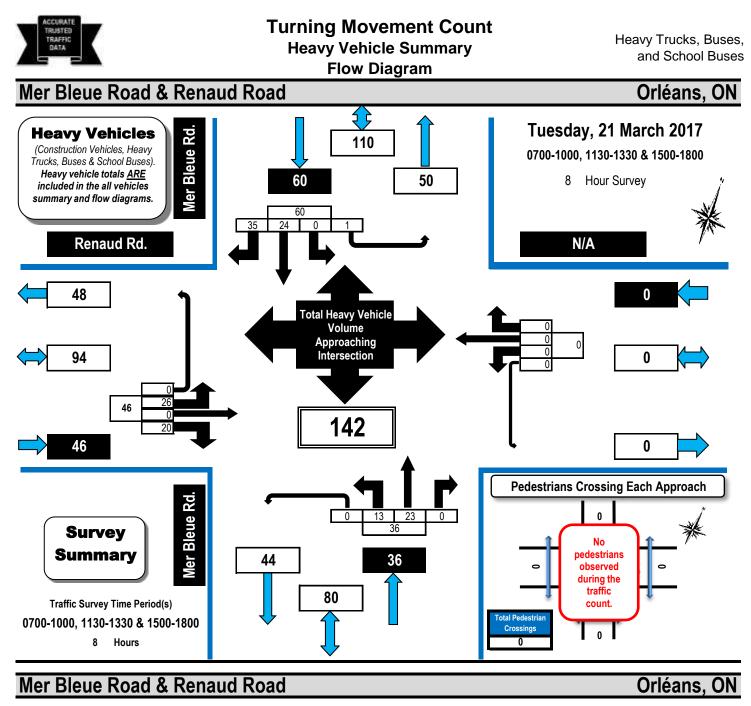
1600-1700


1700-1800

Totals

No bicycles observed during the traffic count.

(

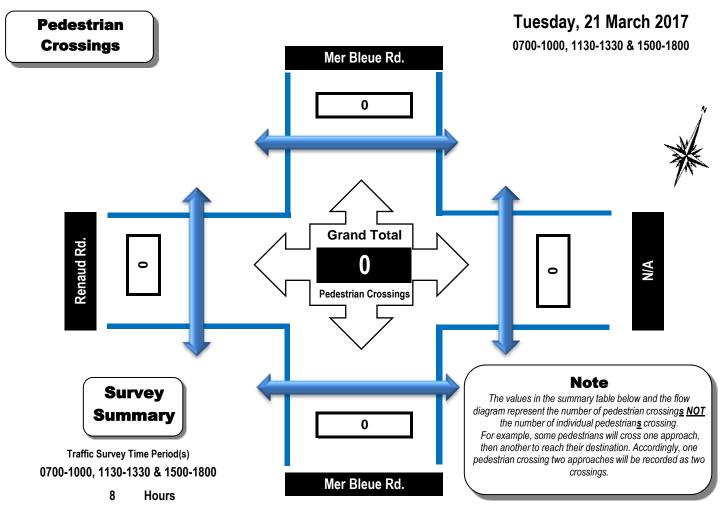

(

Printed on: 3/22/2017

Summary: All Vehicles

Prepared by: thetrafficspecialist@gmail.com

Start Time: Survey Date: Tuesday, 21 March 2017 Weather: Light Rain - AM & Partly Survey Duration: 8 Hrs. Survey Hours: 0700-1000, 1130-1330 & 1500-1800 Cloudy - PM Renaud Rd. Mer Bleue Rd. N/A Mer Bleue Rd. Eastbound Westbound Northbound Southbound Time Period ST RT S. Tot LT ST RT UT S. Tot LT UT S. Tot LT ST RT UT LT ST RT UT S. Tot G.Tot. 0700-0800 0800-0900 g 0900-1000 1130-1230 1230-1330 1500-1600 ę 1600-1700 1700-1800 З


Totals

Mer Bleue Road & Renaud Road

Orléans, ON

Mer Bleue Road & Renaud Road

Orléans, ON

Survey Date: Tuesday, 21 March	n 2017	Start Time:	0700
Weather: Light Rain - AM & Partly Cloudy - PM	Survey Duration:	8 Hrs. Survey Hours:	0700-1000, 1130-1330 & 1500-1800

Time Period	West Side Crossing Renaud Rd.	East Side Crossing N/A	Street Total	South Side Crossing Mer Bleue Rd.	North Side Crossing Mer Bleue Rd.	Street Total	Grand Total
0700-0800	0	0	0	0	0	0	0
0800-0900	0	0	0	0	0	0	0
0900-1000	0	<u>^</u>	<u>^</u>	^		0	0
1130-1230	0	edestrians obse	nvod	during the troff	ic count	0	0
1230-1330	0		Iveu	uting the tran		0	0
1500-1600	0	U	U	U		0	0
1600-1700	0	0	0	0	0	0	0
1700-1800	0	0	0	0	0	0	0
Totals	0	0	0	0	0	0	0

Turning Movement Count

Summary Report Including AM/PM Peak Hours,

PHF, AADT and Expansion Factors

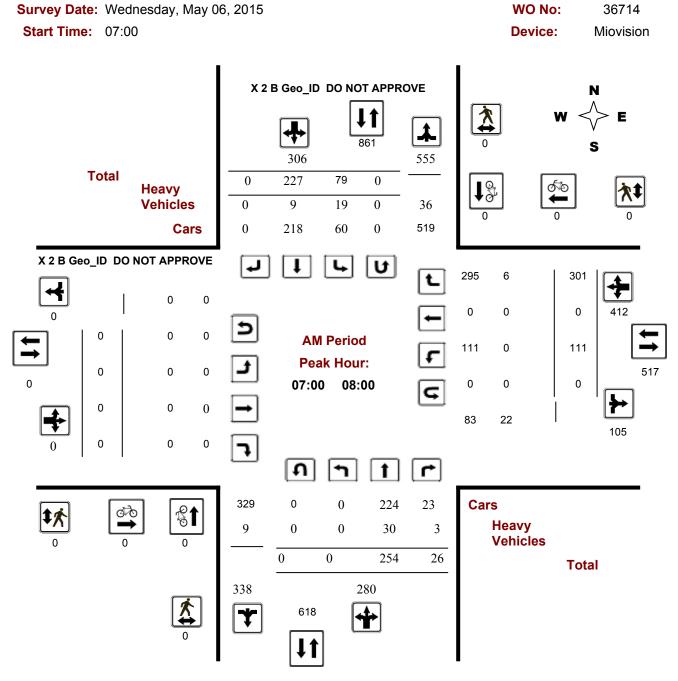
Automobiles, Taxis, Light Trucks, Vans, SUV's, Motorcycles, Heavy Trucks, Buses, and School Buses

Orléans, **ON**

Mer Bleue Road & Renaud Road

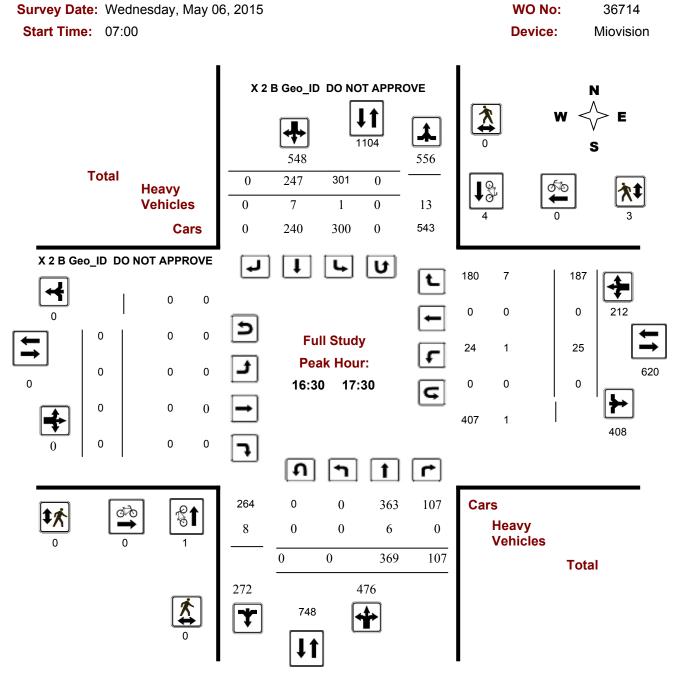
Survey Da Neather:		Tueso Light R Cloudy	Rain - A		rch 20 artly		irvey	Durat	tion:	8	Hrs.		Time ey Ho			0700 0700-	1000			0 T Fa 0 & 1			1.0
		Ren	aud	Rd.				N/A				N	ler E	Bleu	e Ro	J.	N	ler E	Bleu	e Ro	d.		
		Ea	stbou	Ind			We	stbou	Ind		•		Nor	thbou	und			Sou	thbo	und		1	
Time Period	LT	ST	RT	UT	E/B Tot	LT	ST	RT	UT	W/B Tot	Street Total	LT	ST	RT	UT	N/B Tot	LT	ST	RT	UT	S/B Tot	Street Total	Grand Total
0700-0800	141	0	6	0	147	0	0	0	0	0	147	29	99	0	0	128	0	55	409	0	464	592	73
0800-0900	134	0	6	0	140	0	0	0	0	0	140	21	130	0	0	151	0	76	270	0	346	497	63
0900-1000	145	0	9	0	154	0	0	0	0	0	154	12	90	0	0	102	0	60	147	0	207	309	46
1130-1230	139	0	11	0	150	0	0	0	0	0	150	11	86	0	0	97	0	87	119	0	206	303	45
1230-1330	134	0	5	-	139	0	0	0	0	0	139	7	80	0	0	87	0	102	142	1	245	332	47
1500-1600	323	0	15		338	0	0	0	0	0	338	10	109	0	0	119	0	138	175	0	313	432	77
1600-1700	487	0	26		513	0	-	0	0	0		9	106	0	0	115	0	141	208	0	349	464	97
		^	00	0	436	0	0	0	0	0	436	7	88	0	0	95	0	130	236	0	366	461	89
1700-1800	414	0	22	0		-	-	0	0														00
1700-1800 Totals	1917	0	100	0	2017 24-ho	0 our V	0 ehicle	0 Volu	0 Imes						•			•			2496 Or	3390	
Totals	1917 E Exp Exp	0 Equiva Dansi	100 alent on fa	12 &	2017 24-ho App s are	0 Iicab app	0 ehicle ble to f lied e	و Volu the D xclu	o imes ay ar <mark>sive</mark>	Inclu nd Mo ly to	2017 ding f	the A f the lard v	nnual Turnii <mark>week</mark> o	Aven ng M day S	rage oven <mark>8-ho</mark>	Daily nent C ur tur	Traff count ning	ic (AA mov	NDT) eme	Facto nt co	or ounts		
Totals	1917 E Exp Exp	0 Equiva Dansi	100 alent on fa nt 12-h	12 &	2017 24-ho App s are	0 Iicab app	0 ehicle ble to f lied e	و Volu the D xclu	o imes ay ar <mark>sive</mark>	Inclu nd Mo ly to	2017 onth o stand	the A f the lard N	nnual Turnii <mark>week</mark> o	Aven ng M day S	rage oven <mark>8-ho</mark>	Daily nent C ur tur	Traff count ning	ic (AA mov	ADT) eme	Facto nt co	or ounts		540
Totals	1917 E Exp 2665 A 2665	0 Equiva pansi quivale 0 verage 0 0	100 alent on fa nt 12-h 139 daily 12 139	0 12 & actor our vel 0 2-hour * 0	2017 24-ho App s are hicle vo 2804 vehicle 2804	0 licab app lumes. 0 volum	0 ehicle ble to lied e . These 0 es. The	volume o se volume 0 se volu	0 Imes ay ar sive es are 0 mes ar	Inclu nd Mo ly to calcular 0 re calcu	2017 onth o stand ted by n 2804 ulated by 2804	the A f the lard v nultiply 147 y multip 147	nnual Turnii week ing the 1095	Aven ng M day 8-hour 0 ne equ 0	rage oven 8-ho totals 0 ivalent	Daily nent C ur tur by the 8 1243 12-hou 1243	Traff count ning B ⇒12 0 r totals 0	ic (AA mov expans 1097 by the 1097	DT) eme 2371 AADT 2371	Factor ent co ctor of 1 factor 1	or Dunts 1.39 3469 of: 3469	4 712 1.0	540 751
Totals	1917 Exp 2665 24-H	0 Equiva pansi quivaler 0 verage o 0 our AA	100 alent on fa 139 daily 12 139 DT. Th	12 & actor our vel 0 2-hour 0 esse vol	2017 24-ho App s are hicle vo 2804 vehicle 2804 umes a	0 licab app lumes 0 volum 0 re calc	0 ehicle ble to 1 lied e . These 0 es. The: 0	volume o volume 0 se volu 0	imes ay ar sive es are 0 mes a 0	Inclu nd Mo ly to calcular 0 re calcu 0 g the av	2017 onth o stand ted by n 2804 ulated by 2804	the A f the lard nultiply 147 y multip 147 aily 12-	nnual Turnii weekt ing the 1095 olying th 1095 hour ve	Aven ng M day a 8-hour 0 ne equ 0	rage oven 8-ho totals 0 ivalent 0	Daily nent C ur tur 1243 12-hou 1243 s by the	Traff count ning B ⇒ 12 0 r totals 0	ic (AA mov expans 1097 by the 1097 24 expa	ADT) eme ion fac 2371 AADT 2371 unsion	Factor ent co ctor of 1 factor 1 factor	Dr Dunts 1.39 3469 of: 3469 of 1.31	4712 1.0 4712	540 751 751
Totals	1917 Exp 2665 24-H	0 Equiva pansi quivale 0 verage 0 0	100 alent on fa 139 daily 12 139 DT. Th	0 12 & actor our vel 0 2-hour * 0	2017 24-ho App s are hicle vo 2804 vehicle 2804 umes a	0 licab app lumes. 0 volum	0 ehicle ble to lied e . These 0 es. The	volume o se volume 0 se volu	0 Imes ay ar sive es are 0 mes ar	Inclu nd Mo ly to calcular 0 re calcu 0 g the av	2017 onth o stand ted by n 2804 ulated by 2804	the A f the lard nultiply 147 y multip 147 aily 12-	nnual Turnii week ing the 1095	Aven ng M day 8-hour 0 ne equ 0	rage oven 8-ho totals 0 ivalent 0	Daily nent C ur tur by the 8 1243 12-hou 1243	Traff count ning B ⇒ 12 0 r totals 0	ic (AA mov expans 1097 by the 1097	ADT) eme ion fac 2371 AADT 2371 unsion	Factor ent co ctor of 1 factor 1 factor	or Dunts 1.39 3469 of: 3469	4712 1.0 4712	540 751
Totals Equ. 12 Hr AADT 12-hr AADT 24 Hr	1917 Exp 2665 Av 2665 24-H 3491	0 Equiva pansi quivale 0 verage 0 0 verage 0 0 0 vour AA	100 alent on fa 139 daily 12 139 DT. Th 182	12 & actor our vel 0 2-hour 0 esse vol	2017 24-ho App s are hicle vo 2804 vehicle 2804 umes a	0 licab app lumes 0 volum 0 re calc	0 ehicle ble to 1 lied e . These 0 es. The: 0	volume o volume 0 se volu 0	imes ay ar sive es are 0 mes a 0	Inclu nd Mo ly to calcular 0 re calcu 0 g the av	2017 onth o stand ted by n 2804 ulated by 2804	the A f the lard nultiply 147 y multip 147 aily 12-	nnual Turnii weekt ing the 1095 olying th 1095 hour ve	Aven ng M day a 8-hour 0 ne equ 0	rage oven 8-ho totals 0 ivalent 0	Daily nent C ur tur 1243 12-hou 1243 s by the	Traff count ning B ⇒ 12 0 r totals 0	ic (AA mov expans 1097 by the 1097 24 expa	ADT) eme ion fac 2371 AADT 2371 unsion	Factor ent co ctor of 1 factor 1 factor	Dr Dunts 1.39 3469 of: 3469 of 1.31	4712 1.0 4712	54(751 751
Totals Equ. 12 Hr ADT 12-hr ADT 24 Hr M Peak He	1917 Exp 2665 Av 2665 24-H 3491	0 Equiva pansi quivale 0 verage 0 0 verage 0 0 0 vour AA	100 alent on fa 139 daily 12 139 DT. Th 182	0 12 & actor 0 2-hour vel 0 2-hour vel 0 0 0 0 0.90	2017 24-ho App s are hicle vo 2804 vehicle 2804 umes a	0 licab app lumes 0 volum 0 re calc	0 ehicle ble to lied e . These 0 es. These 0 culated l 0	volume o volume 0 se volu 0	imes ay ar sive es are 0 mes a 0	Incluind Mo ly to calculat 0 re calcu 0 g the av 0	2017 onth o stand ted by n 2804 ulated by 2804	the A f the lard nultiply 147 y multip 147 aily 12-	nnual Turnii weekt ing the 1095 olying th 1095 hour ve	Aven ng M day a 8-hour 0 ne equ 0	rage oven 8-ho totals 0 ivalent 0	Daily nent C ur tur 1243 12-hou 1243 s by the	Traff count ning B ⇒ 12 0 r totals 0	ic (AA mov expans 1097 by the 1097 24 expa	ADT) eme ion fac 2371 AADT 2371 unsion	Factor ent co ctor of 1 factor 1 factor	or 5000000000000000000000000000000000000	4712 1.0 4712	54(751 751 984
Totals Equ. 12 Hr ADT 12-hr ADT 24 Hr M Peak Hr 0700-0800	1917 E Exr 2665 2665 2665 24-H 3491 0ur Fa LT 141	0 Equiva pansi quivale 0 verage 0 0 verage 0 0 our AA 0 actor ST 0	100 alent on fa 139 daily 12 139 DT. Th 182 RT 6	0 12 & actor 0 2-hour vel 0 2-hour v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2017 24-ho App s are 2804 vehicle 2804 umes a 3673	0 ur V licab app lumes. 0 volum 0	0 ehicle ble to lied e . These 0 es. These 0 culated l 0 ST	0 Volum volum 0 se volu 0 volum	0 Imes ay ar Sive 0 mes ar 0 0	Incluind Mo ly to calculat 0 re calcu 0 g the av 0	2017 Inding for the orthological stand ted by m 2804 Jated by 2804 erage d 3673	the A f the lard 147 y multiply 147 y multip 147 aily 12- 193	nnual Turnii weeko ing the 1095 blying th 1095 hour ve 1435	Ave ng M day 8 8-hour 0 ne equ 0 hicle v 0	rage oven 8-ho totals 0 ivalent 0	Daily nent C ur tur by the 8 1243 12-hou 1243 s by the 1628	Trafficount count ning $B \Rightarrow 12$ 0 r totals 0 $2 12 \Rightarrow 0$	ic (AA mov expans 1097 5 by the 1097 24 expa 1437	ADT) eme ion fac 2371 AADT 2371 3106	Factor ent co ctor of 1 factor 1 factor 2	or 5000000000000000000000000000000000000	4712 1.0 4712 6173	54(751 751 984
Totals Equ. 12 Hr ADT 12-hr ADT 24 Hr M Peak Hr 0700-0800	1917 E Exr 2665 2665 2665 24-H 3491 0ur Fa LT 141	0 Equiva pansi quivale 0 verage 0 0 verage 0 0 our AA 0 actor ST 0	100 alent on fa 139 daily 12 139 DT. Th 182 RT 6	0 12 & actor 0 2-hour vel 0 2-hour v 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2017 24-ho App s are 2804 vehicle 2804 umes a 3673	0 ur V licab app lumes. 0 volum 0 re calc 0	0 ehicle ble to lied e . These 0 es. These 0 culated l 0 ST	0 Volum volum 0 se volu 0 by mult 0 RT	0 IIMES ay ar Sive 0 mes ar 0 0 iiplying 0 UT	Incluend Mo Iy to calcular 0 re calcu 0 g the av 0 TOT	2017 Inding for the orthological stand ted by n 2804 Jated by 2804 erage d 3673	the A f the lard nultiply 147 y multip 147 aily 12- 193 LT	nnual Turnii weeko ing the 1095 blying th 1095 hour ve 1435	Aveng M ng M day a 8-hour 0 ne equ 0 whicle v 0 RT	rage oven 8-ho totals 0 ivalent 0 volume 0 UT	Daily nent C ur tur by the 8 1243 12-hou 1243 s by the 1628 TOT	Traff count ning $B \Rightarrow 12$ 0 r totals 0 $2 12 \Rightarrow 0$ 0 LT	ic (AA mov expans 1097 5 by the 1097 24 expa 1437 ST	NDT) eme ion fac 2371 AADT 2371 3106 RT	Factor ent co ctor of 1 factor 1 factor 2 UT	or 5000000000000000000000000000000000000	4712 1.0 4712 6173 S.TOT	54(75 75 984 G.TC
	1917 E Exr 2665 2665 2665 24-H 3491 0ur Fa LT 141	0 Equiva pansi quivale 0 verage 0 0 verage 0 0 our AA 0 actor ST 0	100 alent on fa 139 daily 12 139 DT. Th 182 RT 6	0 12 & actor our vel 0 2-hour 0 ese vol 0 0 0 0 0 0 0 0 0 0 0 0 0	2017 24-ho App s are 2804 vehicle 2804 umes a 3673	0 ur V licab app lumes. 0 volum 0 re calc 0	ehicle ble to lied e . These 0 es. These 0 culated l 0 ST 0 ST	0 Volum volum 0 se volu 0 by mult 0 RT	0 IIMES ay ar Sive 0 mes ar 0 0 iiplying 0 UT	Inclund Mo ly to calculat calculat re calcu 0 re calcu 0 tre av 0 tre av 0	2017 Inding for the orthological stand ted by n 2804 Jated by 2804 erage d 3673	the A f the lard nultiply 147 y multip 147 aily 12- 193 LT	nnual Turnii weeko ing the 1095 blying th 1095 hour ve 1435	Aveng M ng M day a 8-hour 0 ne equ 0 whicle v 0 RT	rage oven 8-ho totals 0 ivalent 0 volume 0 UT	Daily nent C ur tur by the 8 1243 12-hou 1243 s by the 1628 TOT	Traff count ning $B \Rightarrow 12$ 0 r totals 0 $2 12 \Rightarrow 0$ 0 LT	ic (AA mov expans 1097 5 by the 1097 24 expa 1437 ST	NDT) eme ion fac 2371 AADT 2371 3106 RT	Factor ent co ctor of 1 factor 1 factor 2 UT	or 5000000000000000000000000000000000000	4712 1.0 4712 6173 S.TOT	54 75 75 98 G.T(7

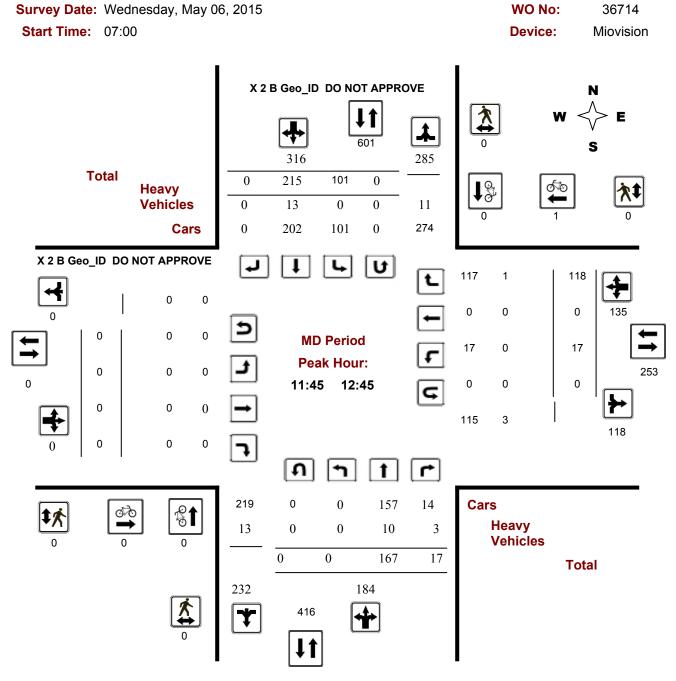
Comments

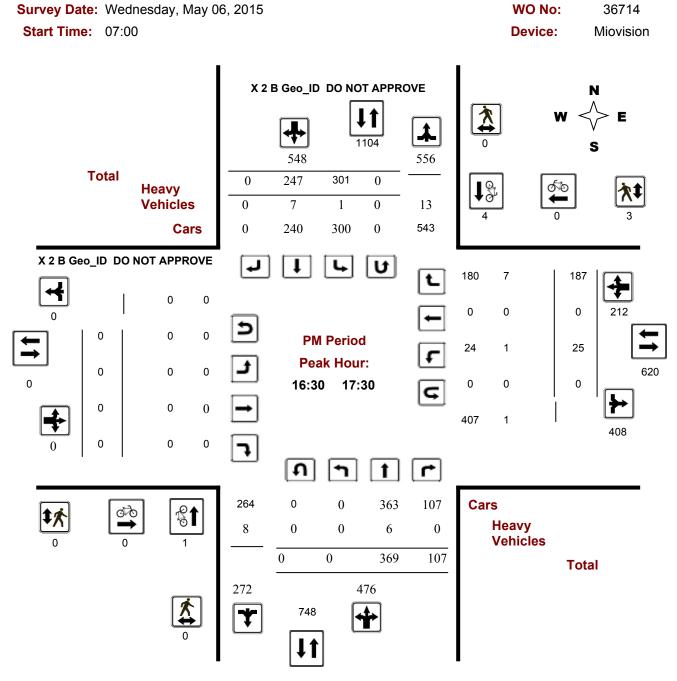

Notes:

- 1. Includes all vehicle types except bicycles and electric scooters.
- 2. Expansion factors are not applied to turning movement counts if they are less than 8-hours in duration.
- 3. When expansion and AADT factors are applied, the results will differ slightly due to rounding.

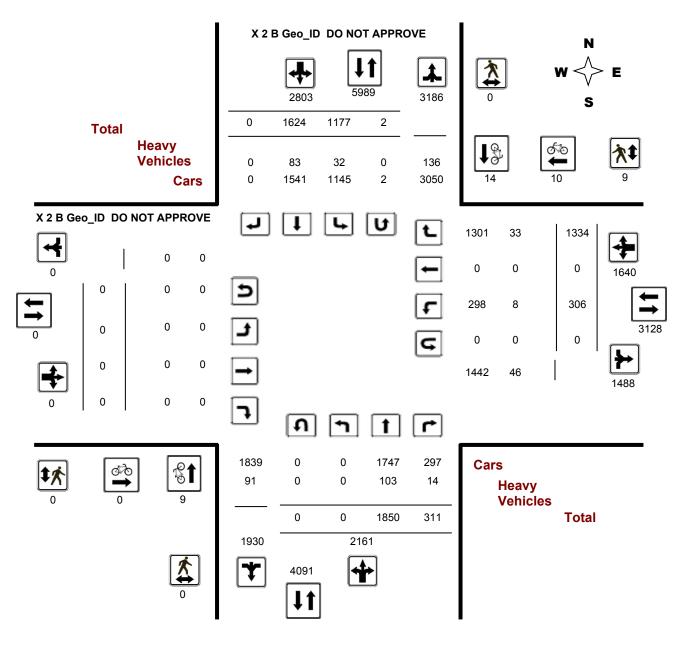
Disclaimer:


The information contained in this data summary is for information purposes only, and may not apply to your situation. Every effort is made to ensure the traffic count information is accurate for the survey date provided on the summary and flow diagram forms. The author, publisher, and distributor provide no warranty about the content or accuracy of either the data summary or flow diagrams. Information provided is subjective. The author, publisher, and distributor shall not be liable for any loss of profit or any other commercial damages resulting from use of this data.


Comments Intersection of Harvest Valley and Tenth Line Rd


Comments Intersection of Harvest Valley and Tenth Line Rd

Comments Intersection of Harvest Valley and Tenth Line Rd


Comments Intersection of Harvest Valley and Tenth Line Rd

X 2 B Geo_ID DO NOT APPROVE @ X 2 B Geo_ID DO NOT APPROVE

Comments Intersection of Harvest Valley and Tenth Line Rd

36714

Turning Movement Count - Full Study Summary Report

X 2 B Geo_ID DO NOT APPROVE @ X 2 B Geo_ID DO NOT APPROVE

Survey Da	te:	Wedne	esday,	May (06, 20	15			Total C	bser	ved U-	Turns					AAD	T Fact	or
							I	Northbou	nd: 0		South	bound:	2				.90		
								Eastbour	nd: 0		West	bound:	0						
								F	ull Stu	ıdy									
		Х2В(Geo_I	d do	NOT	APPRC	VE				X 2 B (Geo_II	о оо	NOT	APPR	OVE			
	1	Northbo	ound		S	Southbo	ound				Eastbo	ound		١	Westb	ound			
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Gran Tota
07:00 08:00	0	254	26	280	79	227	0	306	586	0	0	0	0	111	0	301	412	412	998
08:00 09:00	0	203	14	217	84	165	0	249	466	0	0	0	0	65	0	192	257	257	723
09:00 10:00	0	170	14	184	68	136	0	204	388	0	0	0	0	20	0	150	170	170	558
11:30 12:30	0	176	15	191	105	187	0	292	483	0	0	0	0	17	0	115	132	132	61
12:30 13:30	0	176	11	187	80	191	0	271	458	0	0	0	0	8	0	100	108	108	566
15:00 16:00	0	209	44	253	190	245	0	435	688	0	0	0	0	29	0	118	147	147	835
16:00 17:00	0	352	89	441	251	250	0	501	942	0	0	0	0	31	0	174	205	205	1147
17:00 18:00	0	310	98	408	320	223	0	543	951	0	0	0	0	25	0	184	209	209	1160
Sub Total	0	1850	311	2161	1177	1624	0	2801	4962	0	0	0	0	306	0	1334	1640	1640	6602
U Turns				0				2	2				0				0	0	2
Total	0	1850	311	2161	1177	1624	0	2803	4964	0	0	0	0	306	0	1334	1640	1640	6604
EQ 12Hr	0	2572	432	3004	1636	2257	0	3896	6900	0	0	0	0	425	0	1854	2280	2280	9180
Note: These v	alues a	re calcu	lated by	y multipl	ying the	totals by	y the ap	opropriate	e expansi	on fact	tor.		1	.39					
AVG 12Hr	0	2314	389	2703	1472	2032	0	3507	6210	0	0	0	0	383	0	1669	2052	2052	826
Note: These v	olumes	are calo	culated	by multi	plying t	ne Equiv	alent 1	2 hr. tota	s by the	AADT	factor.		-	90					
AVG 24Hr	0	3032	510	3541	1929	2661	0	4594	8135	0	0	0	0	501	0	2186	2688	2688	10823
Note: These v	olumes	are calo	culated	by multi	plying tl	ne Avera	ge Dail	ly 12 hr. t	otals by ^r	12 to 2	4 expans	ion fact	or. '	1.31					

Comments: Intersection of Harvest Valley and Tenth Line Rd

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

36714

Turning Movement Count - 15 Minute Summary Report

X 2 B Geo_ID DO NOT APPROVE @ X 2 B Geo_ID DO NOT APPROVE

Surv	ey D	ate:	١	Nedn	esday	, May	06, 20)15	N	• orthbou				U-Tur						
										astbour		-		/estbou	-					
		X 2	B Ge	o_ID	DO N	ΟΤ ΑΙ	PPRO	VE				-	_ID		OT AP		/E			
			orthbou	_			uthboun					stbound	_			stboun				
Time P	eriod	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00	07:15	0	49	7	56	19	58	0	77	133	0	0	0	0	39	0	67	106	106	239
07:15	07:30	0	73	5	78	19	74	0	93	171	0	0	0	0	29	0	92	121	121	292
07:30	07:45	0	63	7	70	20	48	0	68	138	0	0	0	0	22	0	55	77	77	215
07:45	08:00	0	69	7	76	21	47	0	68	144	0	0	0	0	21	0	87	108	108	252
08:00	08:15	0	42	8	50	20	63	0	83	133	0	0	0	0	17	0	55	72	72	205
08:15	08:30	0	52	3	55	28	39	0	67	122	0	0	0	0	18	0	52	70	70	192
08:30	08:45	0	55	3	58	22	28	0	50	108	0	0	0	0	21	0	54	75	75	183
08:45	09:00	0	54	0	54	14	35	0	49	103	0	0	0	0	9	0	31	40	40	143
09:00	09:15	0	46	5	51	19	42	0	61	112	0	0	0	0	3	0	31	34	34	146
09:15	09:30	0	37	1	38	19	24	0	43	81	0	0	0	0	5	0	50	55	55	136
09:30	09:45	0	38	5	43	11	40	0	51	94	0	0	0	0	7	0	40	47	47	141
09:45	10:00	0	49	3	52	19	30	0	49	101	0	0	0	0	5	0	29	34	34	135
11:30	11:45	0	51	2	53	21	25	0	46	99	0	0	0	0	4	0	21	25	25	124
11:45	12:00	0	39	4	43	25	64	0	89	132	0	0	0	0	5	0	30	35	35	167
12:00	12:15	0	39	5	44	39	42	0	81	125	0	0	0	0	4	0	37	41	41	166
12:15	12:30	0	47	4	51	20	56	0	76	127	0	0	0	0	4	0	27	31	31	158
12:30	12:45	0	42	4	46	17	53	0	70	116	0	0	0	0	4	0	24	28	28	144
12:45	13:00	0	52	2	54	20	45	0	65	119	0	0	0	0	1	0	27	28	28	147
13:00	13:15	0	37	3	40	27	49	0	77	117	0	0	0	0	1	0	19	20	20	137
13:15	13:30	0	45	2	47	16	44	0	61	108	0	0	0	0	2	0	30	32	32	140
15:00	15:15	0	41	11	52	44	60	0	104	156	0	0	0	0	5	0	31	36	36	192
15:15	15:30	0	49	7	56	44	66	0	110	166	0	0	0	0	8	0	27	35	35	201
15:30	15:45	0	56	14	70	50	62	0	112	182	0	0	0	0	7	0	26	33	33	215
15:45	16:00	0	63	12	75	52	57	0	109	184	0	0	0	0	9	0	34	43	43	227
16:00	16:15	0	69	23	92	56	59	0	115	207	0	0	0	0	9	0	42	51	51	258
16:15	16:30	0	84	18	102	59	58	0	117	219	0	0	0	0	9	0	31	40	40	259
16:30	16:45	0	96	25	121	70	67	0	137	258	0	0	0	0	5	0	46	51	51	309
16:45	17:00	0	103	23	126	66	66	0	132	258	0	0	0	0	8	0	55	63	63	321
17:00	17:15	0	90	34	124	78	58	0	136	260	0	0	0	0	6	0	48	54	54	314
17:15	17:30	0	80	25	105	87	56	0	143	248	0	0	0	0	6	0	38	44	44	292
17:30	17:45	0	79	24	103	85	55	0	140	243	0	0	0	0	4	0	51	55	55	298
17:45	18:00	0	61	15	76	70	54	0	124	200	0	0	0	0	9	0	47	56	56	256
TOTAL:	:	0	1850	311	2161	1177	1624	0	2803	4964	0	0	0	0	306	0	133	34 16 4	40 1640	660

Turning Movement Count - Cyclist Volume Report

Work Order

36714

X 2 B Geo_ID DO NOT APPROVE @ X 2 B Geo_ID DO NOT APPROVE

Count Date: Wednesday, May 06, 2015

Sttawa

Start Time: 07:00

	X 2 B Geo	DO NOT A	PPROVE	X 2 B Ge	o_ID DO NOT	APPROVE	
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 08:00	0	0	0	0	0	0	0
08:00 09:00	5	10	15	0	7	7	22
09:00 10:00	2	0	2	0	0	0	2
11:30 12:30	0	0	0	0	0	0	0
12:30 13:30	0	0	0	0	3	3	3
15:00 16:00	1	0	1	0	0	0	1
16:00 17:00	0	3	3	0	0	0	3
17:00 18:00	1	1	2	0	0	0	2
Total	9	14	23	0	10	10	33

Comment:

Intersection of Harvest Valley and Tenth Line Rd

Note: These volumes consists of bicycles only (no mopeds or motorcycles) and ARE NOT included in the Turning Movement Count Summary.

36714

Turning Movement Count - Heavy Vehicle Report

X 2 B Geo_ID DO NOT APPROVE @ X 2 B Geo_ID DO NOT APPROVE

Survey Date: Wednesday, May 06, 2015

X 2 B Geo_ID DO NOT APPROVE

X	2 B G	ieo_IC	DO (NOT	APPF	ROVE			X	(2B)	Geo_l	D DC	NOT	APPF	ROVE				
I	Northb	ound		Ş	Southb	ound				Eastbo	ound		١	Nestbo	ound				
Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
08:00	0	30	3	33	19	9	0	28	61	0	0	0	0	0	0	6	6	6	67
09:00	0	16	1	17	7	9	0	16	33	0	0	0	0	0	0	1	1	1	34
10:00	0	8	5	13	1	12	0	13	26	0	0	0	0	1	0	0	1	1	27
12:30	0	11	3	14	0	15	0	15	29	0	0	0	0	2	0	1	3	3	32
13:30	0	17	1	18	1	12	0	13	31	0	0	0	0	0	0	0	0	0	31
16:00	0	10	0	10	2	14	0	16	26	0	0	0	0	3	0	8	11	11	37
17:00	0	8	0	8	1	7	0	8	16	0	0	0	0	2	0	10	12	12	28
18:00	0	3	1	4	1	5	0	6	10	0	0	0	0	0	0	7	7	7	17
Fotal	0	103	14	117	32	83	0	115	232	0	0	0	0	8	0	33	41	41	273
s (Heav	y Vel	nicles)		0				0	0				0				0	0	0
al	0	103	14	0	32	83	0	115	232	0	0	0	0	8	0	33	41	41	273
	Period 08:00 09:00 10:00 12:30 13:30 16:00 17:00 18:00 Fotal s (Heav	Northb Period LT 08:00 0 09:00 0 10:00 0 12:30 0 13:30 0 16:00 0 17:00 0 18:00 0 Fotal 0 s (Heavy Vet	Image: Period Image: Period ST 08:00 0 30 09:00 0 16 10:00 0 8 12:30 0 11 13:30 0 17 16:00 0 8 18:00 0 3 Fotal 0 103 s (Heavy Vehicles) 10	Northbound Period LT ST RT 08:00 0 30 3 09:00 0 16 1 10:00 0 8 5 12:30 0 11 3 13:30 0 17 1 16:00 0 8 0 17:00 0 8 0 18:00 0 3 1	Northbound ST RT N TOT 08:00 0 30 3 33 09:00 0 16 1 17 10:00 0 8 5 13 12:30 0 11 3 14 13:30 0 17 1 18 16:00 0 10 0 10 17:00 0 8 0 8 18:00 0 3 1 4 Total 0 103 14 117 s (Heavy Vehicles) 0 0 0	Northbound Southbound Period LT ST RT N TOT LT 08:00 0 30 3 33 19 09:00 0 16 1 17 7 10:00 0 8 5 13 1 12:30 0 11 3 14 0 13:30 0 17 1 18 1 16:00 0 10 0 2 1 17:00 0 8 0 8 1 18:00 0 3 1 4 1 Fotal 0 103 14 117 32 s (Heavy Vehicles) 0 0 1 1	Period LT ST RT Not Not St LT ST 08:00 0 30 3 33 19 9 09:00 0 16 1 17 7 9 10:00 0 8 5 13 1 12 12:30 0 11 3 14 0 15 13:30 0 17 1 18 1 12 16:00 0 10 0 10 2 14 17:00 0 8 0 8 1 5 Total 0 103 14 117 32 83 s (Heavy Vehicles) 0 13 14 17 32 83	Northbound Southbound Period LT ST RT N TOT LT ST RT 08:00 0 30 3 33 19 9 0 09:00 0 16 1 17 7 9 0 10:00 0 8 5 13 1 12 0 12:30 0 11 3 14 0 15 0 13:30 0 17 1 18 1 12 0 16:00 0 100 0 100 2 14 0 17:00 0 8 0 8 1 7 0 18:00 0 33 14 11 5 0	Northbound Southbound Period LT ST RT N TOT LT ST RT ST TOT 08:00 0 30 3 33 19 9 0 28 09:00 0 16 1 17 7 9 0 16 10:00 0 8 5 13 1 12 0 13 12:30 0 11 3 14 0 15 0 15 13:30 0 17 1 18 1 12 0 13 16:00 0 10 0 10 2 14 0 16 17:00 0 8 0 8 1 7 0 8 18:00 0 3 1 4 1 5 0 6 Total 0 103 14 117 32 83 0 1	Northbound Southbound Period LT ST RT N TOT LT ST RT ST TOT ST TO	Northbound Southbound Southbound Eastbound Period LT ST RT N TOT LT ST RT STR LT ST RT STR TOT LT ST RT STR TOT LT ST RT STR TOT LT STR TOT TOT LT TOT TOT </td <td>Northbound Southbound RT N T ST RT N T ST RT Southbound Eastbound Eastbound Period LT ST RT N T T ST RT ST T ST Eastbound 08:00 0 30 3 33 19 9 0 28 61 0 0 09:00 0 16 1 17 7 9 0 16 33 0 0 10:00 0 8 5 13 1 12 0 13 26 0 0 12:30 0 11 3 14 0 15 0 15 29 0 0 13:30 0 17 1 18 1 12 0 13 31 0 0 16:00 0 10 2 14 0 16<td>Northbound Southbound Southbound Eastbound Period LT ST RT N TOT ST RT ST ST ST</td><td>Northbound Southbound Southbound Eastbound Eastbound Eastbound Eastbound Eastbound N Deriod LT ST RT N TOT LT ST RT ST RT TOT LT ST RT TOT ST RT TOT TOT TOT LT ST RT TOT TOT LT ST RT TOT <td< td=""><td>Northbound Southbound Eastbound Eastbound Westbound Period LT ST RT N TOT LT ST RT ST TOT TOT LT ST RT TT ST TOT TT ST RT TT ST TOT LT ST RT TE TOT LT ST RT TE TOT LT ST RT TE TOT LT ST RT TT TT LT ST ST RT TT LT ST RT TT ST ST RT TT LT ST ST ST ST ST RT TT LT ST ST ST ST ST ST ST</td><td>Northbound Southbound Eastbound Eastbound Westbound Period LT ST RT No LT ST RT ST ST RT No LT ST RT ST ST LT ST RT ST ST RT ST ST RT ST ST RT ST ST RT To ST RT To ST RT To ST RT To ST RT ST ST RT To ST ST RT To ST ST RT To ST ST ST RT To ST ST To ST ST RT To ST ST ST RT To ST ST ST ST ST ST ST ST ST<</td><td>Northbound Southbound Eastbound Eastbound Westbound Period LT ST RT No LT ST RT ST ST<</td><td>Northbound Southbound Southbound Eastbound Westbound Period LT ST RT Nothbound ST RT ST RT ST ST RT ST ST RT ST RT ST ST ST ST RT ST ST</td><td>Northbound Southbound Southbound Eastbound Westbound Eastbound Eastbound Westbound ST RT Model ST RT Model ST RT ST RT ST RT ST ST <th< td=""></th<></td></td<></td></td>	Northbound Southbound RT N T ST RT N T ST RT Southbound Eastbound Eastbound Period LT ST RT N T T ST RT ST T ST Eastbound 08:00 0 30 3 33 19 9 0 28 61 0 0 09:00 0 16 1 17 7 9 0 16 33 0 0 10:00 0 8 5 13 1 12 0 13 26 0 0 12:30 0 11 3 14 0 15 0 15 29 0 0 13:30 0 17 1 18 1 12 0 13 31 0 0 16:00 0 10 2 14 0 16 <td>Northbound Southbound Southbound Eastbound Period LT ST RT N TOT ST RT ST ST ST</td> <td>Northbound Southbound Southbound Eastbound Eastbound Eastbound Eastbound Eastbound N Deriod LT ST RT N TOT LT ST RT ST RT TOT LT ST RT TOT ST RT TOT TOT TOT LT ST RT TOT TOT LT ST RT TOT <td< td=""><td>Northbound Southbound Eastbound Eastbound Westbound Period LT ST RT N TOT LT ST RT ST TOT TOT LT ST RT TT ST TOT TT ST RT TT ST TOT LT ST RT TE TOT LT ST RT TE TOT LT ST RT TE TOT LT ST RT TT TT LT ST ST RT TT LT ST RT TT ST ST RT TT LT ST ST ST ST ST RT TT LT ST ST ST ST ST ST ST</td><td>Northbound Southbound Eastbound Eastbound Westbound Period LT ST RT No LT ST RT ST ST RT No LT ST RT ST ST LT ST RT ST ST RT ST ST RT ST ST RT ST ST RT To ST RT To ST RT To ST RT To ST RT ST ST RT To ST ST RT To ST ST RT To ST ST ST RT To ST ST To ST ST RT To ST ST ST RT To ST ST ST ST ST ST ST ST ST<</td><td>Northbound Southbound Eastbound Eastbound Westbound Period LT ST RT No LT ST RT ST ST<</td><td>Northbound Southbound Southbound Eastbound Westbound Period LT ST RT Nothbound ST RT ST RT ST ST RT ST ST RT ST RT ST ST ST ST RT ST ST</td><td>Northbound Southbound Southbound Eastbound Westbound Eastbound Eastbound Westbound ST RT Model ST RT Model ST RT ST RT ST RT ST ST <th< td=""></th<></td></td<></td>	Northbound Southbound Southbound Eastbound Period LT ST RT N TOT ST RT ST ST ST	Northbound Southbound Southbound Eastbound Eastbound Eastbound Eastbound Eastbound N Deriod LT ST RT N TOT LT ST RT ST RT TOT LT ST RT TOT ST RT TOT TOT TOT LT ST RT TOT TOT LT ST RT TOT TOT <td< td=""><td>Northbound Southbound Eastbound Eastbound Westbound Period LT ST RT N TOT LT ST RT ST TOT TOT LT ST RT TT ST TOT TT ST RT TT ST TOT LT ST RT TE TOT LT ST RT TE TOT LT ST RT TE TOT LT ST RT TT TT LT ST ST RT TT LT ST RT TT ST ST RT TT LT ST ST ST ST ST RT TT LT ST ST ST ST ST ST ST</td><td>Northbound Southbound Eastbound Eastbound Westbound Period LT ST RT No LT ST RT ST ST RT No LT ST RT ST ST LT ST RT ST ST RT ST ST RT ST ST RT ST ST RT To ST RT To ST RT To ST RT To ST RT ST ST RT To ST ST RT To ST ST RT To ST ST ST RT To ST ST To ST ST RT To ST ST ST RT To ST ST ST ST ST ST ST ST ST<</td><td>Northbound Southbound Eastbound Eastbound Westbound Period LT ST RT No LT ST RT ST ST<</td><td>Northbound Southbound Southbound Eastbound Westbound Period LT ST RT Nothbound ST RT ST RT ST ST RT ST ST RT ST RT ST ST ST ST RT ST ST</td><td>Northbound Southbound Southbound Eastbound Westbound Eastbound Eastbound Westbound ST RT Model ST RT Model ST RT ST RT ST RT ST ST <th< td=""></th<></td></td<>	Northbound Southbound Eastbound Eastbound Westbound Period LT ST RT N TOT LT ST RT ST TOT TOT LT ST RT TT ST TOT TT ST RT TT ST TOT LT ST RT TE TOT LT ST RT TE TOT LT ST RT TE TOT LT ST RT TT TT LT ST ST RT TT LT ST RT TT ST ST RT TT LT ST ST ST ST ST RT TT LT ST ST ST ST ST ST ST	Northbound Southbound Eastbound Eastbound Westbound Period LT ST RT No LT ST RT ST ST RT No LT ST RT ST ST LT ST RT ST ST RT ST ST RT ST ST RT ST ST RT To ST RT To ST RT To ST RT To ST RT ST ST RT To ST ST RT To ST ST RT To ST ST ST RT To ST ST To ST ST RT To ST ST ST RT To ST ST ST ST ST ST ST ST ST<	Northbound Southbound Eastbound Eastbound Westbound Period LT ST RT No LT ST RT ST ST<	Northbound Southbound Southbound Eastbound Westbound Period LT ST RT Nothbound ST RT ST RT ST ST RT ST ST RT ST RT ST ST ST ST RT ST ST	Northbound Southbound Southbound Eastbound Westbound Eastbound Eastbound Westbound ST RT Model ST RT Model ST RT ST RT ST RT ST ST ST <th< td=""></th<>

Turning Movement Count - Pedestrian Volume Report

X 2 B Geo_ID DO NOT APPROVE @ X 2 B Geo_ID DO NOT APPROVE

Count Date:	Wednesday,	May 06, 2015				Start Time:	07:00
	NB Approach or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
07:00 07:15	0	0	0	0	0	0	0
07:15 07:30	0	0	0	0	0	0	0
07:30 07:45	0	0	0	0	0	0	0
07:45 08:00	0	0	0	0	0	0	0
07:00 08:00	0	0	0	0	0	0	0
08:00 08:15	0	0	0	0	0	0	0
08:15 08:30	0	0	0	0	0	0	0
08:30 08:45	0	0	0	0	0	0	0
08:45 09:00	0	0	0	0	0	0	0
08:00 09:00	0	0	0	0	0	0	0
09:00 09:15	0	0	0	0	0	0	0
09:15 09:30	0	0	0	0	0	0	0
09:30 09:45	0	0	0	0	0	0	0
09:45 10:00	0	0	0	0	0	0	0
09:00 10:00	0	0	0	0	0	0	0
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	0	0	0	0	0	0	0
12:00 12:15	0	0	0	0	0	0	0
12:15 12:30	0	0	0	0	0	0	0
11:30 12:30	0	0	0	0	0	0	0
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	0	0	0
12:30 13:30	0	0	0	0	0	0	0
15:00 15:15	0	0	0	0	1	1	1
15:15 15:30	0	0	0	0	2	2	2
15:30 15:45	0	0	0	0	1	1	1
15:45 16:00	0	0	0	0	1	1	1
15:00 16:00	0	0	0	0	5	5	5
16:00 16:15	0	0	0	0	0	0	0
16:15 16:30	0	0	0	0	1	1	1
16:30 16:45	0	0	0	0	1	1	1
16:45 17:00	0	0	0	0	0	0	0
16:00 17:00	0	0	0	0	2	2	2
17:00 17:15	0	0	0	0	2	2	2
17:15 17:30	0	0	0	0	0	0	0
17:30 17:45	0	0	0	0	0	0	0
17:45 18:00	0	0	0	0	0	0	0
17:00 18:00	0	0	0	0	2	2	2
Total	0	0	0	0	9	9	9

Comment: Intersection of Harvest Valley and Tenth Line Rd

Work Order 36714

Turning Movement Count - 15 Min U-Turn Total Report

X 2 B Geo_ID DO NOT APPROVE @ X 2 B Geo_ID DO NOT APPROVE

Survey Date	: We	ednesday, May 06	6, 2015	<u> </u>		
Time P	eriod	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	0	0
08:15	08:30	0	0	0	0	0
08:30	08:45	0	0	0	0	0
08:45	09:00	0	0	0	0	0
09:00	09:15	0	0	0	0	0
09:15	09:30	0	0	0	0	0
09:30	09:45	0	0	0	0	0
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	0	0	0
11:45	12:00	0	0	0	0	0
12:00	12:15	0	0	0	0	0
12:15	12:30	0	0	0	0	0
12:30	12:45	0	0	0	0	0
12:45	13:00	0	0	0	0	0
13:00	13:15	0	1	0	0	1
13:15	13:30	0	1	0	0	1
15:00	15:15	0	0	0	0	0
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	0	0	0
15:45	16:00	0	0	0	0	0
16:00	16:15	0	0	0	0	0
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	0	0
16:45	17:00	0	0	0	0	0
17:00	17:15	0	0	0	0	0
17:15	17:30	0	0	0	0	0
17:30	17:45	0	0	0	0	0
17:45	18:00	0	0	0	0	0
Tot	al	0	2	0	0	2

Total Area

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	Single Vehicle (other)	Single vehicle (Unattended vehicle)	Other	Total	
P.D. only	3	0	2	2	0	8	0	1	16	80%
Non-fatal injury	2	0	0	1	0	1	0	0	4	20%
Non reportable	0	0	0	0	0	0	0	0	0	0%
Total	5	0	2	3	0	9	0	1	20	100%
	#2 or 25%	#6 or 0%	#4 or 10%	#3 or 15%	#6 or 0%	#1 or 45%	#6 or 0%	#5 or 5%		-

MER BLEUE RD, INNES RD to RENAUD RD

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2011-2015	10	6,180	1825	0.89

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	Single Vehicle (other)	Single vehicle (Unattended vehicle)	Other	Total	
P.D. only	1	0	2	1	0	4	0	1	9	90%
Non-fatal injury	0	0	0	1	0	0	0	0	1	10%
Non reportable	0	0	0	0	0	0	0	0	0	0%
Total	1	0	2	2	0	4	0	1	10	100%
	10%	0%	20%	20%	0%	40%	0%	10%		-

MER BLEUE RD/RENAUD RD

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2011-2015	3	9,850	1825	0.17

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	Single Vehicle (other)	Single vehicle (Unattended vehicle)	Other	Total	
P.D. only	1	0	0	0	0	1	0	0	2	67%
Non-fatal injury	1	0	0	0	0	0	0	0	1	33%
Non reportable	0	0	0	0	0	0	0	0	0	0%
Total	2	0	0	0	0	1	0	0	3	100%
	67%	0%	0%	0%	0%	33%	0%	0%		-

TENTH LINE RD/HARVEST VALLEY AVE

Years	Total # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2011-2015	3	10,850	1825	0.15

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	Single Vehicle (other)	Single vehicle (Unattended vehicle)	Other	Total	
P.D. only	0	0	0	1	0	1	0	0	2	67%
Non-fatal injury	1	0	0	0	0	0	0	0	1	33%
Non reportable	0	0	0	0	0	0	0	0	0	0%
Total	1	0	0	1	0	1	0	0	3	100%
	33%	0%	0%	33%	0%	33%	0%	0%		_

TENTH LINE RD, SOUTHFIELD WAY to HARVEST VALLEY AVE

Years	lotal # Collisions	24 Hr AADT Veh Volume	Days	Collisions/MEV
2011-2015	4	8,135	1825	0.27

Classification of Accident	Rear End	Turning Movement	Sideswipe	Angle	Approaching	Single Vehicle (other)	Single vehicle (Unattended vehicle)	Other	Total	
P.D. only	1	0	0	0	0	2	0	0	3	75%
Non-fatal injury	0	0	0	0	0	1	0	0	1	25%
Non reportable	0	0	0	0	0	0	0	0	0	0%
Total	1	0	0	0	0	3	0	0	4	100%
	25%	0%	0%	0%	0%	75%	0%	0%		_

	Date	Time	ImpactType					DayOfTheWeek	Municipality	NumberOfVehicles			STREET1	STREET2	STREET3	Intersection/Road Segment	Uni
	2015-02-25	18:36		Clear	Dark	No control		Wednesday		2	0	0	MER BLEUE RD	INNES RD	RENAUD RD	MER BLEUE RD, INNES RD to RENAUD RD	MER BLEUE RD/RENAUD
118	2015-04-24	17:56	Single vehicle (other)		Daylight	No control		Friday		1	0	0	MER BLEUE RD	INNES RD	RENAUD RD	MER BLEUE RD, INNES RD to RENAUD RD	BRIAN COBURN BLVD/TE
	2015-10-19	14:43		Clear	Daylight	No control		Monday		2	0	0	MER BLEUE RD	INNES RD	RENAUD RD	MER BLEUE RD, INNES RD to RENAUD RD	TENTH LINE RD/SOUTHF
	2014-09-23	20:57	Single vehicle (other)		Dark	No control		Tuesday		1	0	0	MER BLEUE RD	INNES RD	RENAUD RD	MER BLEUE RD, INNES RD to RENAUD RD	TENTH LINE RD/HARVES
	2015-02-26	17:06		Clear	Dark	No control		Thursday		2	0	0	MER BLEUE RD	INNES RD	RENAUD RD	MER BLEUE RD, INNES RD to RENAUD RD	TENTH LINE RD, SOUTHF
947	2014-11-04	2:18	Single vehicle (other)		Dark	No control		Tuesday		1	0	0	MER BLEUE RD	INNES RD	RENAUD RD	MER BLEUE RD, INNES RD to RENAUD RD	
043	2015-02-08	10:53	Other	Snow	Daylight	No control	P.D. only	Sunday		2	0	0	MER BLEUE RD	INNES RD	RENAUD RD	MER BLEUE RD, INNES RD to RENAUD RD	
900	2011-12-23	3:33	Single vehicle (other)	Snow	Dark	No control	P.D. only	Friday		1	0	0	MER BLEUE RD	INNES RD	RENAUD RD	MER BLEUE RD, INNES RD to RENAUD RD	
928	2012-01-20	9:26	Angle	Clear	Daylight	No control	Non-fatal injury	Friday		2	1	0	MER BLEUE RD	INNES RD	RENAUD RD	MER BLEUE RD, INNES RD to RENAUD RD	
286	2013-01-12	17:00	Sideswipe	Clear	Dusk	No control	P.D. only	Saturday		2	0	0	MER BLEUE RD	INNES RD	RENAUD RD	MER BLEUE RD, INNES RD to RENAUD RD	
764	2011-08-09	18:00	Rear End	Clear	Daylight	Stop Sign	P.D. only	Tuesday		2	0	0	MER BLEUE RD	RENAUD RD		MER BLEUE RD/RENAUD RD	
947	2012-02-08	17:07	Rear End	Clear	Dark	Stop Sign	Non-fatal injury	Wednesday		2	- i	ó	MER BLEUE RD	RENAUD RD		MER BLEUE RD/RENAUD RD	
	2013-01-04	21:45	Single vehicle (other)	Clear	Dark	Stop Sign	P.D. only	Monday		1	0	ó	MER BLEUE RD	RENAUD RD		MER BLEUE RD/RENAUD RD	
099	2012-07-09	16:54	Single vehicle (other)	Clear	Davlight	Traffic signal	P.D. only	Monday		1	0	ò	TENTH LINE RD	IARVEST VALLEY AVE	=	TENTH LINE RD/HARVEST VALLEY AVE	
	2011-01-01	18:15	Single vehicle (other)	Rain	Dark	No control	P.D. only	Saturday			0	ő				VITENTH LINE RD. SOUTHFIELD WAY to HARVEST VALLEY AVE	
	2011-05-24	7:45		Clear	Davlight	No control		Tuesday		2	0	ő				VITENTH LINE RD. SOUTHFIELD WAY to HARVEST VALLEY AVE	
	2012-01-12	14:05	Single vehicle (other)		Davlight	No control		Thursday		1	1	ő				VITENTH LINE RD. SOUTHFIELD WAY to HARVEST VALLEY AVE	
	2015-02-28	9:46		Clear	Davlight	Stop Sign		Saturday		2		0		IARVEST VALLEY AVE		TENTH LINE RD/HARVEST VALLEY AVE	
	2015-12-16	6:50		Clear	Dark	Stop Sign		Wednesday		-		0		IARVEST VALLEY AVE		TENTH LINE RD/HARVEST VALLEY AVE	
	2014-07-12	13:46	Single vehicle (other)		Davlight	No control		Saturday			0	0				VITENTH LINE RD. SOUTHFIELD WAY to HARVEST VALLEY AVE	
0.04	2014-07-12	10.40	oingle venicle (other)	Cress	Dahadau	NO CONTROL	1.D. Only	Catorony			0	0	TENTITE NE NO	000mm incep man	PRICEDI VALLET /	/	
		-															
																1	
																1	
																1	
																/	
																1	
																1	
																/	
																/	
																/	
																/	
																1	
																1	
																1	
																1	
																1	
																1	
			_														
		-														1	
																1	
																1	
																/	
																/	
																/	
																/	
																/	
			-													1	
		-	-													1	
		1	-													1	
			-													,	

Unga Values for intersections/Road Segments MER REVERSITE AND R RO TEXTING REPORT OF THE ROWNY OF MAKING TVALLEY AVE

Innes/Mer Bleue <u>8 hrs</u>

Veer	Date	Nort	h Leg	Sout	th Leg	East	t Leg	Wes	st Leg	Total	
rear	Date	SB	NB	NB	SB	WB	EB	EB	WB	Total 40308 46911 53886 INT 16.4% 14.9%	
2006	Thursday 24 Aug	3247	2786	1197	1188	8826	8503	7385	7176	40308	
2007	Friday 15 June	3590	3258	1535	1449	10230	10789	8096	7964	46911	
2009	Friday 5 June	4012	3955	2877	2941	11837	11785	8212	8267	53886	
		Year		Co	unts		% Change				
	North Leg	real	NB	SB	NB+SB	INT	NB	SB	NB+SB	INT	
		2006	2786	3247	6033	40308					
		2007	3258	3590	6848	46911	16.9%	10.6%	13.5%	16.4%	
		2009	3955	4012	7967	53886	21.4%	11.8%	16.3%	14.9%	

Average Annual Change		12.08%	7.06%	9.44%
Regression Estimate	2009	3973	4031	8004
Regression Estimate	2006	2821	3285	6106

	Year		Cou	ints			% Ch	ange	
West Leg	Teal	EB	WB	EB+WB	INT	EB	WB	EB+WB	INT
	2006	7385	7176	14561	40308				
	2007	8096	7964	16060	46911	9.6%	11.0%	10.3%	16.4%
	2009	8212	8267	16479	53886	1.4%	3.8%	2.6%	14.9%

Regression Estimate	2006	7572	7358	14929	
Regression Estimate	2009	8305	8358	16663	
Average Annual Change		3.13%	4.34%	3.73%	

	Year		Cou	unts		% Change						
East Leg	rear	EB	WB	EB+WB	INT	EB	WB	EB+WB	INT			
	2006	8503	8826	17329	40308							
	2007	10789	10230	21019	46911	26.9%	15.9%	21.3%	16.4%			
	2009	11785	11837	23622	53886	9.2%	15.7%	12.4%	14.9%			

18011 23963 **9.98%**

Regression Estimate	2006	9014	8998
Regression Estimate	2009	12040	11923
Average Annual Change		10.13%	9.84%

]	Year		Cou	nts			% Cł	nange	
South Leg	real	NB	SB	NB+SB	INT	NB	SB	NB+SB	INT
	2006	1197	1188	2385	40308				
	2007	1535	1449	2984	46911	28.2%	22.0%	25.1%	16.4%
	2009	2877	2941	5818	53886	87.4%	103.0%	95.0%	14.9%
Regression Estimate	2006	1102	1049	2151					
Regression Estimate	2009	2829	2872	5701					
Average Annual Change		36.94%	39.87%	38.38%					

Innes/Mer Bleue AM Peak

ear	Date	Nort	h Leg	South	n Leg	Eas	t Leg	Wes	t Leg	Tota
ear	Date	SB	NB	NB	SB	WB	EB	EB	WB	Tota
006	Thursday 24 Aug	264	299	113	183	1289	566	458	1072	4244
007	Friday 15 June	198	454	126	190	1748	577	463	1312	5068
09	Friday 5 June	303	523	142	367	2058	670	529	1472	6064
	Г	Maran	T	Cou	nts			% CI	nange	
	North Leg	Year	NB	SB	NB+SB	INT	NB	SB	NB+SB	INT
	5	2006	299	264	563	4244				
		2007	454	198	652	5068	51.8%	-25.0%	15.8%	19.49
		2009	523	303	826	6064	15.2%	53.0%	26.7%	19.79
		2007	525	303	020	0004	13.270	33.070	20.770	17.7
	L Regression Estimate	2006	333	230	564			1	11	
	Regression Estimate	2000	540	286	826					
		2009	17.45%	7.52%	13.60%					
	Average Annual Change		17.45%	1.52%	13.60%					
	Г	Year		Cou	nts			% CI	nange	
	West Leg	Tear	EB	WB	EB+WB	INT	EB	WB	EB+WB	1N7
		2006	458	1072	1530	4244				
		2007	463	1312	1775	5068	1.1%	22.4%	16.0%	19.49
		2009	529	1472	2001	6064	14.3%	12.2%	12.7%	19.79
	Regression Estimate Regression Estimate	2006 2009	450 525	1118 1495	1568 2020			<u> </u>		
	Average Annual Change		5.27%	10.18%	8.81%					
		Year		Cou					nange	
	East Leg		EB	WB	EB+WB	INT	EB	WB	EB+WB	INT
		2006	566	1289	1855	4244				
		2007	577	1748	2325	5068	1.9%	35.6%	25.3%	19.49
		2009	670	2058	2728	6064	16.1%	17.7%	17.3%	19.79
	Regression Estimate	2006	556	1376	1932		1	1	1	
	Regression Estimate	2000	665	2101	2766					
	Average Annual Change	2007	6.15%	15.16%	12.72%					
	Average Annual change		0.1578	13.1078	12.7270					
	Γ	Year		Cou					nange	
	South Leg		NB	SB	NB+SB	INT	NB	SB	NB+SB	1N7
		2006	113	183	296	4244				
		2007	126	190	316	5068	11.5%	3.8%	6.8%	19.49
		2009	142	367	509	6064	12.7%	93.2%	61.1%	19.7
	Regression Estimate	2006	114	160	274					
	Regression Estimate	2009	143	355	498					

- Regression Estimate Average Annual Change 143 355 494 **7.64% 30.55% 22.02%** 2009
 - 498

Innes/Mer Bleue PM Peak

Year	Date	Nort	th Leg	South	n Leg	Eas	t Leg	Wes	t Leg	Total
rear	Date	SB	NB	NB	SB	WB	EB	EB	WB	Total
2006	Thursday 24 Aug	624	468	306	224	1192	2071	1568	927	7380
2007	Friday 15 June	679	523	354	213	1329	1704	1704	999	7505
2009	Friday 5 June	747	669	704	429	1443	2473	1613	936	9014
	<u> </u>			Cou	nto		I	۱ ۴ ۲		
	North Leg	Year	NB	SB	NB+SB	INT	NB	SB	nange NB+SB	INT
	North Leg	2006	468	624	1092	7380	IND	36	ND+3D	1/0/
		2000	523	679	1202	7505	11.8%	8.8%	10.1%	1.7%
		2007	669	747	1416	9014	27.9%	10.0%	17.8%	20.1%
		2009	007	/4/	1410	9014	21.770	10.078	17.076	20.176
	L	200/	1 1/2	(20	1093					
	Regression Estimate	2006 2009	463	630 750	1093					
	Regression Estimate Average Annual Change	2009	666 12.92%	5.98%	9.03%					
	Average Annual Change		12.92%							
		Year		Cou					nange	
	West Leg		EB	WB	EB+WB	INT	EB	WB	EB+WB	INT
		2006	1568	927	2495	7380				
		2007	1704	999	2703	7505	8.7%	7.8%	8.3%	1.7%
		2009	1613	936	2549	9014	-5.3%	-6.3%	-5.7%	20.1%
	Regression Estimate	2006	1620	957	2576					
	Regression Estimate	2009	1639	951	2590					
	Average Annual Change		0.39%	-0.20%	0.17%					
	Г			Cou	nts			% CI	nange	
	East Leg	Year	EB	WB	EB+WB	INT	EB	WB	EB+WB	INT
		2006	2071	1192	3263	7380				
		2007	1704	1329	3033	7505	-17.7%	11.5%	-7.0%	1.7%
		2009	2473	1443	3916	9014	45.1%	8.6%	29.1%	20.1%
	- Regression Estimate	2006	1856	1215	3071					
	Regression Estimate	2009	2366	1454	3820					
	Average Annual Change		8.42%	6.18%	7.55%					
	South Leg	Year	NB	Cou SB	nts NB+SB	INT	NB	% Cl SB	nange NB+SB	INT
	could Leg	2006	306	224	530	7380		30	10730	1101
		2000	354	213	567	7505	15.7%	-4.9%	7.0%	1.7%
		2007	704	429	1133	9014	98.9%	101.4%	99.8%	20.1%
		2007	,,,,	727	1100	2014	,0.,,0	101.170	//.0/3	20.170
	L Regression Estimate	2006	270	190	460		1	1	1	
	Regression Estimate	2000	686	412	1098					
	Acquession Estimate	2007	500		10/0					

 Regression Estimate
 2009
 686
 412
 1098

 Average Annual Change
 36.49%
 29.43%
 33.67%

Appendix E SYNCHRO Background Traffic Analysis

Background 2020 AM 2: Sweetvalley/Harvest Valley & Tenth Line

	٦	→	4	+	•	Ť	- \	Ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	٢	¢Î	٢	4Î	۲	¢γ	۲	≜ †⊅	
Traffic Volume (vph)	66	0	111	0	7	262	79	234	
Future Volume (vph)	66	0	111	0	7	262	79	234	
Lane Group Flow (vph)	73	28	123	334	8	320	88	282	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases	T CITI	4	1 Cilli	8	T CITI	2	T CITI	6	
Permitted Phases	4	7	8	0	2	2	6	0	
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase	т	т	U	0	2	2	0	0	
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	30.7	30.7	30.7	30.7	24.4	24.4	24.4	24.4	
Total Split (s)	33.0	33.0	33.0	30.7	24.4	24.4	24.4	24.4	
Total Split (%)	55.0%	55.0%	55.0%	55.0%	45.0%	45.0%	45.0%	45.0%	
						45.0%		45.0%	
Yellow Time (s)	3.0 2.7	3.0 2.7	3.0 2.7	3.0 2.7	3.7 2.0	3.7	3.7 2.0	3.7	
All-Red Time (s)	-1.7								
Lost Time Adjust (s)		-1.7	-1.7	-1.7	-1.7	-1.7	-1.7	-1.7	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Lead/Lag									
Lead-Lag Optimize?	News	News	Merry	NL	C Maria	C Maria	C Maria	C Maria	
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)	14.5	14.5	14.5	14.5	37.5	37.5	37.5	37.5	
Actuated g/C Ratio	0.24	0.24	0.24	0.24	0.62	0.62	0.62	0.62	
v/c Ratio	0.54	0.04	0.39	0.49	0.01	0.15	0.14	0.13	
Control Delay	34.3	0.1	21.7	3.5	5.9	5.2	6.5	5.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	34.3	0.1	21.7	3.5	5.9	5.2	6.5	5.2	
LOS	С	A	С	A	А	A	А	A	
Approach Delay		24.8		8.4		5.2		5.5	
Approach LOS		С		А		А		А	
Queue Length 50th (m)	7.2	0.0	11.6	0.0	0.3	5.6	3.2	4.9	
Queue Length 95th (m)	16.7	0.0	20.8	7.7	2.0	13.5	10.8	12.1	
nternal Link Dist (m)		161.9		264.6		371.3		328.9	
Turn Bay Length (m)	15.0		15.0		40.0		40.0		
Base Capacity (vph)	270	968	637	945	645	2095	622	2099	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.27	0.03	0.19	0.35	0.01	0.15	0.14	0.13	
ntersection Summary									
Cycle Length: 60									
Actuated Cycle Length: 60									
Offset: 0 (0%), Referenced to phase	2:NBTL and	6:SBTL, St	art of Greer	1					
Natural Cycle: 60		,	2.20						
Control Type: Actuated-Coordinated									
Maximum v/c Ratio: 0.54									
ntersection Signal Delay: 8.0				In	tersection L	DS: A			
Intersection Capacity Utilization 58.2	%				U Level of S				
Analysis Period (min) 15				10	2 20.01010				
Splits and Phases: 2: Sweetvalley/	Harvest Val	ley & Tenth	Line						
Ø2 (R)					Ø4				
194 (1)									

Ø2 (R)	<u> </u>	
27 s	33 s	
₩Ø6 (R)	√ Ø8	
27 s	33 s	

Background 2020 AM 1: Renaud & Mer Bleue

T. INEHAUU & WIEL DIEUE							
	٦	\mathbf{F}	1	Ť	Ļ	∢	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			با	f,		
Sign Control	Stop			Stop	Stop		
Traffic Volume (vph)	152	6	29	111	90	445	
Future Volume (vph)	152	6	29	111	90	445	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	169	7	32	123	100	494	
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total (vph)	176	155	594				
Volume Left (vph)	169	32	0				
Volume Right (vph)	7	0	494				
Hadj (s)	0.20	0.08	-0.46				
Departure Headway (s)	5.8	5.2	4.2				
Degree Utilization, x	0.28	0.22	0.69				
Capacity (veh/h)	567	656	837				
Control Delay (s)	11.0	9.7	16.1				
Approach Delay (s)	11.0	9.7	16.1				
Approach LOS	В	А	С				
Intersection Summary							
Delay			14.0				
Level of Service			В				
Intersection Capacity Utilization			49.9%	ICI	U Level of Serv	rice	А
Analysis Period (min)			15				

Background 2020 AM 3: Mer Bleue & Willow Aster

3: Mer Bleue & Willow As	lei						_	
	4	•	Ť	-	\	T		
	•		-	•	•	•		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	Y		¢î			ŧ		
Traffic Volume (veh/h)	57	106	247	16	30	478		
Future Volume (Veh/h)	57	106	247	16	30	478		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90		
Hourly flow rate (vph)	63	118	274	18	33	531		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	880	283			292			
vC1, stage 1 conf vol	000	200			272			
vC2, stage 2 conf vol								
vCu, unblocked vol	880	283			292			
tC, single (s)	6.4	6.2			4.1			
tC, 2 stage (s)	0.4	0.2			т. і			
tF (s)	3.5	3.3			2.2			
p0 queue free %	80	84			97			
cM capacity (veh/h)	309	756			1270			
					1270			
Direction, Lane #	WB 1	NB 1	SB 1					
Volume Total	181	292	564					
Volume Left	63	0	33					
Volume Right	118	18	0					
cSH	503	1700	1270					
Volume to Capacity	0.36	0.17	0.03					
Queue Length 95th (m)	12.3	0.0	0.6					
Control Delay (s)	16.1	0.0	0.7					
Lane LOS	С		А					
Approach Delay (s)	16.1	0.0	0.7					
Approach LOS	С							
Intersection Summary								
Average Delay			3.2					
Intersection Capacity Utilization			5.2 63.3%	10	U Level of Sei	vico		
Analysis Period (min)			15	IC	U LEVEI UI SEI	NICE		
Analysis Penou (min)			10					

Background 2020 PM 2: Sweetvalley/Harvest Valley & Tenth Line

	۶	-	4	+	•	Ť	1	Ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	5	¢Î,	٢	4	۲	ŧ₽	5	≜ †⊅	
Traffic Volume (vph)	60	0	25	0	39	380	301	254	
Future Volume (vph)	60	0	25	0	39	380	301	254	
Lane Group Flow (vph)	67	26	28	208	43	541	334	398	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases	T CITI	4	T CHIII	8	T CITI	2	T GIIII	6	
Permitted Phases	4	•	8	0	2	2	6	U	
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase	•	•	Ŭ	Ū	-	-	0	Ū	
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	30.7	30.7	30.7	30.7	24.4	24.4	24.4	24.4	
Total Split (s)	31.0	31.0	31.0	31.0	44.0	44.0	44.0	44.0	
Total Split (%)	41.3%	41.3%	41.3%	41.3%	58.7%	58.7%	58.7%	58.7%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.7	3.7	3.7	3.7	
All-Red Time (s)	2.7	2.7	2.7	2.7	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	-1.7	-1.7	-1.7	-1.7	-1.7	-1.7	-1.7	-1.7	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Lead/Lag	U.F	0.7	0.1	ч. v	-1.U	ч. U	-T.U	0.7	
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)	12.5	12.5	12.5	12.5	54.5	54.5	54.5	54.5	
Actuated g/C Ratio	0.17	0.17	0.17	0.17	0.73	0.73	0.73	0.73	
v/c Ratio	0.54	0.04	0.13	0.36	0.06	0.23	0.57	0.17	
Control Delay	45.5	0.1	27.6	1.7	3.5	3.2	9.9	2.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	45.5	0.1	27.6	1.7	3.5	3.2	9.9	2.5	
LOS	D	A	C	A	A	A	A	A	
Approach Delay	5	32.8		4.8		3.2		5.9	
Approach LOS		C		A		A		A	
Queue Length 50th (m)	8.9	0.0	3.5	0.0	1.3	8.2	16.6	4.7	
Queue Length 95th (m)	20.4	0.0	9.6	0.0	4.2	15.2	44.3	9.7	
Internal Link Dist (m)		161.9		264.6		371.3		328.9	
Turn Bay Length (m)	15.0		15.0	20.10	40.0		40.0		
Base Capacity (vph)	268	900	475	797	670	2403	584	2388	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0 0	0	0	0	0	Ű	Ũ	0 0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.25	0.03	0.06	0.26	0.06	0.23	0.57	0.17	
Intersection Summary									
Cycle Length: 75									
Actuated Cycle Length: 75									
Offset: 0 (0%), Referenced to phase	2:NBTL and	6:SBTL_St	art of Green	1					
Natural Cycle: 75		5.501L, 51							
Control Type: Actuated-Coordinated									
Maximum v/c Ratio: 0.57									
Intersection Signal Delay: 6.3				In	tersection L	OS' A			
Intersection Capacity Utilization 66.2	%				U Level of S				
Analysis Period (min) 15	/0								
Splits and Phases: 2: Sweetvalley	Harvest Val	ley & Tenth	Line			- T - 4			
Ø2 (R)						2	∎ø4		
44 s						31 :	5		
1						_			

Background 2020 PM 1: Renaud & Mer Bleue

T. INERIAUU & IVIEL DIEUE							
	٦	\mathbf{r}	1	Ť	Ļ	∢	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	۲			٩	Þ		
Sign Control	Stop			Stop	Stop		
Traffic Volume (vph)	549	19	8	143	160	251	
Future Volume (vph)	549	19	8	143	160	251	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	610	21	9	159	178	279	
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total (vph)	631	168	457				
Volume Left (vph)	610	9	0				
Volume Right (vph)	21	0	279				
Hadj (s)	0.21	0.04	-0.33				
Departure Headway (s)	6.0	6.7	5.8				
Degree Utilization, x	1.05	0.31	0.74				
Capacity (veh/h)	596	521	611				
Control Delay (s)	75.8	12.8	23.6				
Approach Delay (s)	75.8	12.8	23.6				
Approach LOS	F	В	С				
Intersection Summary							
Delay			48.4				
Level of Service			E				
Intersection Capacity Utilization			65.1%	ICI	U Level of Serv	vice	С
Analysis Period (min)			15				

Background 2020 PM 3: Mer Bleue & Willow Aster

3: Mer Bieue & Willow As	lei						_	
	 Image: A set of the set of the	•	Ť	-	\	T		
	•		-	•	-	T		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	Y		et e			ŧ		
Traffic Volume (veh/h)	38	71	624	68	128	373		
Future Volume (Veh/h)	38	71	624	68	128	373		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90		
Hourly flow rate (vph)	42	79	693	76	142	414		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	1429	731			769			
vC1, stage 1 conf vol	1127	701			107			
vC2, stage 2 conf vol								
vCu, unblocked vol	1429	731			769			
tC, single (s)	6.4	6.2			4.1			
tC, 2 stage (s)	0.1	0.2						
tF (s)	3.5	3.3			2.2			
p0 queue free %	66	81			83			
cM capacity (veh/h)	124	422			845			
					010			
Direction, Lane #	WB 1	NB 1	SB 1					
Volume Total	121	769	556					
Volume Left	42	0	142					
Volume Right	79	76	0					
cSH	229	1700	845					
Volume to Capacity	0.53	0.45	0.17					
Queue Length 95th (m)	21.1	0.0	4.6					
Control Delay (s)	36.9	0.0	4.3					
Lane LOS	E		А					
Approach Delay (s)	36.9	0.0	4.3					
Approach LOS	E							
Intersection Summary								
Average Delay			4.7					
Intersection Capacity Utilization			4.7	ICI	U Level of Serv	lice		
Analysis Period (min)			15	101	o Level of Sel			
			15					

Background 2024 AM 1: Renaud & Mer Bleue

	٦	\mathbf{i}	•	1	Ļ	∢		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	Y			با	ĥ			
Sign Control	Stop			Stop	Stop			
Traffic Volume (vph)	158	6	29	115	92	463		
Future Volume (vph)	158	6	29	115	92	463		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90		
Hourly flow rate (vph)	176	7	32	128	102	514		
Direction, Lane #	EB 1	NB 1	SB 1					
Volume Total (vph)	183	160	616					
Volume Left (vph)	176	32	0					
Volume Right (vph)	7	0	514					
Hadj (s)	0.20	0.07	-0.47					
Departure Headway (s)	5.8	5.2	4.2					
Degree Utilization, x	0.30	0.23	0.72					
Capacity (veh/h)	560	647	831					
Control Delay (s)	11.3	9.8	17.5					
Approach Delay (s)	11.3	9.8	17.5					
Approach LOS	В	А	С					
Intersection Summary								
Delay			15.0					
Level of Service			С					
Intersection Capacity Utilization			51.5%	ICI	U Level of Serv	ice	А	
Analysis Period (min)			15					

Background 2024 AM 3: Mer Bleue & Willow Aster

3: Mer Bleue & Willow As	lei						_	
	<	•	Ť	-	\	Ţ		
	-		-	•	•	Ŧ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	Y		4			ا		
Traffic Volume (veh/h)	57	106	257	16	30	497		
Future Volume (Veh/h)	57	106	257	16	30	497		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90		
Hourly flow rate (vph)	63	118	286	18	33	552		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	913	295			304			
vC1, stage 1 conf vol	710	270			001			
vC2, stage 2 conf vol								
vCu, unblocked vol	913	295			304			
tC, single (s)	6.4	6.2			4.1			
tC, 2 stage (s)	0.1	0.2						
tF (s)	3.5	3.3			2.2			
p0 queue free %	79	84			97			
cM capacity (veh/h)	296	744			1257			
					1231			
Direction, Lane #	WB 1	NB 1	SB 1					
Volume Total	181	304	585					
Volume Left	63	0	33					
Volume Right	118	18	0					
cSH	487	1700	1257					
Volume to Capacity	0.37	0.18	0.03					
Queue Length 95th (m)	12.9	0.0	0.6					
Control Delay (s)	16.7	0.0	0.7					
Lane LOS	С		А					
Approach Delay (s)	16.7	0.0	0.7					
Approach LOS	С							
Intersection Summary								
Average Delay			3.2					
Intersection Capacity Utilization			5.2 64.9%	IC	U Level of Se	nvico		
Analysis Period (min)			04.9% 15	IC	O LEVELUI SE	IVICE		
Analysis Penou (min)			10					

Background 2024 PM 2: Sweetvalley/Harvest Valley

	٦	-	4	+	•	Ť	×	Ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	N	4	7	4	۲	ŧ₽	۲	≜ †Ъ	
Traffic Volume (vph)	60	0	25	0	39	396	301	265	
Future Volume (vph)	60	0	25	0	39	396	301	265	
Lane Group Flow (vph)	67	26	28	208	43	559	334	410	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	30.7	30.7	30.7	30.7	24.4	24.4	24.4	24.4	
Total Split (s)	31.0	31.0	31.0	31.0	44.0	44.0	44.0	44.0	
Total Split (%)	41.3%	41.3%	41.3%	41.3%	58.7%	58.7%	58.7%	58.7%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.7	3.7	3.7	3.7	
All-Red Time (s)	2.7	2.7	2.7	2.7	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	
Lead/Lag									
Lead-Lag Optimize?	••				0.11	0.11	0.11	0.11	
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)	10.8	10.8	10.8	10.8	52.8	52.8	52.8	52.8	
Actuated g/C Ratio	0.14	0.14	0.14	0.14	0.70	0.70	0.70	0.70	
v/c Ratio	0.56	0.04	0.15	0.40	0.07	0.24	0.60	0.18	
Control Delay	48.0	0.1	29.5	2.2	4.1	3.8	11.7	2.9	
Queue Delay Total Delay	0.0 48.0	0.0 0.1	0.0 29.5	0.0 2.2	0.0 4.1	0.0 3.8	0.0 11.7	0.0 2.9	
LOS	48.0 D	0.1 A	29.5 C	2.2 A	4.1 A	3.8 A	н. <i>1</i> В	2.9 A	
Approach Delay	U	A 34.6	C	A 5.5	А	A 3.8	В	6.9	
Approach LOS		54.0 C		5.5 A		3.0 A		0.9 A	
Queue Length 50th (m)	9.1	0.0	3.6	0.0	1.5	9.9	18.9	5.5	
Queue Length 95th (m)	20.6	0.0	3.0 9.9	0.0	4.7	9.9 17.5	50.1	5.5 11.1	
Internal Link Dist (m)	20.0	161.9	7.7	264.6	4.7	371.3	30.1	328.9	
Turn Bay Length (m)	15.0	101.7	15.0	204.0	40.0	571.5	40.0	520.7	
Base Capacity (vph)	283	856	445	748	642	2331	555	2321	
Starvation Cap Reductn	0	0.00	0	0	042	2331	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.24	0.03	0.06	0.28	0.07	0.24	0.60	0.18	
Intersection Summary									
Cycle Length: 75									
Actuated Cycle Length: 75									
Offset: 0 (0%), Referenced to pha	ise 2:NBTL and	6:SBTL, S	art of Greei	1					
Natural Cycle: 75									
Control Type: Actuated-Coordinate	ed								
Maximum v/c Ratio: 0.60									
Intersection Signal Delay: 7.1				In	tersection L	OS: A			
Intersection Capacity Utilization 72	2.3%				U Level of S				
Analysis Period (min) 15									
Splits and Phases: 2: Sweetvall	ley/Harvest Val	lev							
▲		·~ y							
Ø2 (R)							▶ø4		
44 s						31			
🖡 📲 🖉 🌾 🖉							Ø8		
44 5						21 (-		1

31 s

44 s

Background 2024 PM 1: Renaud & Mer Bleue

T. Reliauu & Wei Dieue									
	۶	\mathbf{i}	•	Ť	Ļ	∢			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	Y			با	f,				
Sign Control	Stop			Stop	Stop				
Traffic Volume (vph)	570	19	8	147	166	260			
Future Volume (vph)	570	19	8	147	166	260			
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90			
Hourly flow rate (vph)	633	21	9	163	184	289			
Direction, Lane #	EB 1	NB 1	SB 1						
Volume Total (vph)	654	172	473						
Volume Left (vph)	633	9	0						
Volume Right (vph)	21	0	289						
Hadj (s)	0.21	0.04	-0.33						
Departure Headway (s)	6.0	6.8	5.8						
Degree Utilization, x	1.10	0.32	0.77						
Capacity (veh/h)	582	519	610						
Control Delay (s)	90.2	12.9	25.4						
Approach Delay (s)	90.2	12.9	25.4						
Approach LOS	F	В	D						
Intersection Summary							 		
Delay			56.3						
Level of Service			F						
Intersection Capacity Utilization			67.3%	IC	U Level of Serv	ce	(2	
Analysis Period (min)			15						

Background 2024 PM 3: Mer Bleue & Willow Aster

3: Mer Bieue & Willow As	เษเ						_	
	 Image: A set of the set of the	•	Ť	1	N	Ţ		
	•		-	•		•		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	Y		¢î 👘			ب		
Traffic Volume (veh/h)	38	71	650	68	128	388		
Future Volume (Veh/h)	38	71	650	68	128	388		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90		
Hourly flow rate (vph)	42	79	722	76	142	431		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	1475	760			798			
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	1475	760			798			
tC, single (s)	6.4	6.2			4.1			
tC, 2 stage (s)								
tF (s)	3.5	3.3			2.2			
p0 queue free %	64	81			83			
cM capacity (veh/h)	115	406			824			
			00.4				_	
Direction, Lane #	WB 1	NB 1	SB 1					
Volume Total	121	798	573					
Volume Left	42	0	142					
Volume Right	79	76	0					
cSH	216	1700	824					
Volume to Capacity	0.56	0.47	0.17					
Queue Length 95th (m)	23.1	0.0	4.7					
Control Delay (s)	40.9	0.0	4.3					
Lane LOS	E		А					
Approach Delay (s)	40.9	0.0	4.3					
Approach LOS	E							
Intersection Summary								
Average Delay			5.0					
Intersection Capacity Utilization			86.3%		U Level of Sei	rvice		
Analysis Period (min)			15	10		100		
			15					

Background 2024 AM 2: Sweetvalley/Harvest Valley & Tenth Line

	٦	+	4	+	1	1	¥	Ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	٦	f,	5	4	۲	ŧ₽	ň	≜ †}⊧	
Traffic Volume (vph)	66	0	111	0	7	272	79	243	
Future Volume (vph)	66	0	111	0	7	272	79	243	
ane Group Flow (vph)	73	28	123	334	8	331	88	292	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases	1 onn	4	1 01111	8	1 01111	2	1 01111	6	
Permitted Phases	4	•	8	Ū	2	-	6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase			-	-	_	_		-	
Vinimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Vinimum Split (s)	30.7	30.7	30.7	30.7	24.4	24.4	24.4	24.4	
Fotal Split (s)	33.0	33.0	33.0	33.0	27.0	27.0	27.0	27.0	
Fotal Split (%)	55.0%	55.0%	55.0%	55.0%	45.0%	45.0%	45.0%	45.0%	
fellow Time (s)	3.0	3.0	3.0	3.0	3.7	3.7	3.7	3.7	
All-Red Time (s)	2.7	2.7	2.7	2.7	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	
Lead/Lag	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)	12.8	12.8	12.8	12.8	35.8	35.8	35.8	35.8	
Actuated g/C Ratio	0.21	0.21	0.21	0.21	0.60	0.60	0.60	0.60	
//c Ratio	0.21	0.21	0.21	0.21	0.00	0.00	0.00	0.00	
Control Delay	37.8	0.04	24.6	5.5	6.6	6.0	7.4	5.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	37.8	0.0	24.6	5.5	6.6	6.0	7.4	5.9	
LOS	57.0 D	A	24.0 C	3.5 A	A	A	7.4 A	Э.7 А	
Approach Delay	D	27.3	C	10.7	~	6.0	~	6.3	
Approach LOS		27.5 C		В		A		0.5 A	
Queue Length 50th (m)	7.4	0.0	12.1	0.0	0.3	6.6	3.5	5.7	
Queue Length 95th (m)	16.9	0.0	21.8	12.3	2.1	15.1	11.6	13.5	
nternal Link Dist (m)	10.7	161.9	21.0	264.6	2.1	371.3	11.0	328.9	
Turn Bay Length (m)	15.0	101.7	15.0	204.0	40.0	J/1.J	40.0	JZ0.7	
Base Capacity (vph)	275	913	600	888	609	2003	587	2005	
Starvation Cap Reductn	275	913	000	000	009	2003	0	2005	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.27	0.03	0.20	0.38	0.01	0.17	0.15	0.15	
	0.27	0.00	0.20	0.00	0.01	0.17	0.10	0.10	
ntersection Summary									
Cycle Length: 60									
Actuated Cycle Length: 60	0.007	(0.0.7)	1.60						
Offset: 0 (0%), Referenced to phase	e 2:NBTL and	6:SBIL, St	art of Greer	1					
Natural Cycle: 60									
Control Type: Actuated-Coordinated	d								
Maximum v/c Ratio: 0.57									
ntersection Signal Delay: 9.4					tersection L				
ntersection Capacity Utilization 64.	.2%			IC	U Level of S	service C			
Analysis Period (min) 15									
Splits and Phases: 2: Sweetvalle	y/Harvest Val	ley & Tenth	Line						
1 Ø2 (R)	<u></u>	. j i o.i.ui			Ø4				
					-				
27 s				33 s	, ,				

Ø2 (R)	_	_+ø4	
27 s	33	s s	
₩ Ø6 (R)	•	✓ Ø8	
27 s	33	s	

Background 2029 AM 2: Sweetvalley/Harvest Valley & Tenth Line

	۶	-	4	+	•	Ť	1	Ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
ane Configurations	7	4Î	۲	4Î	۲	¢î≽	٦	ŧ₽	
Traffic Volume (vph)	66	0	111	0	7	286	79	256	
Future Volume (vph)	66	0	111	0	7	286	79	256	
Lane Group Flow (vph)	73	28	123	334	8	347	88	306	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Vinimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	30.7	30.7	30.7	30.7	24.4	24.4	24.4	24.4	
Total Split (s)	33.0	33.0	33.0	33.0	27.0	27.0	27.0	27.0	
Total Split (%)	55.0%	55.0%	55.0%	55.0%	45.0%	45.0%	45.0%	45.0%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.7	3.7	3.7	3.7	
All-Red Time (s)	2.7	2.7	2.7	2.7	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	
Lead/Lag	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)	12.8	12.8	12.8	12.8	35.8	35.8	35.8	35.8	
Actuated g/C Ratio	0.21	0.21	0.21	0.21	0.60	0.60	0.60	0.60	
//c Ratio	0.21	0.04	0.21	0.21	0.00	0.00	0.00	0.00	
Control Delay	37.8	0.1	24.6	6.3	6.6	6.1	7.4	6.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	37.8	0.0	24.6	6.3	6.6	6.1	7.4	6.0	
LOS	57.0 D	A	C C	A	A	A	A	A	
Approach Delay	D	27.3	U	11.2	Л	6.1	Л	6.3	
Approach LOS		27.5 C		B		A		0.5 A	
Queue Length 50th (m)	7.4	0.0	12.1	0.0	0.3	7.0	3.5	6.1	
Queue Length 95th (m)	16.9	0.0	21.8	14.2	2.1	15.8	11.7	14.1	
Internal Link Dist (m)	10.7	161.9	21.0	264.6	2.1	371.3	11.7	328.9	
Furn Bay Length (m)	15.0	101.7	15.0	204.0	40.0	571.5	40.0	520.7	
Base Capacity (vph)	275	901	600	876	601	2002	578	2005	
Starvation Cap Reductn	0	0	000	0/0	0	0	0	2005	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.27	0.03	0.20	0.38	0.01	0.17	0.15	0.15	
	0.27	0.00	0.20	0.00	0.01	0.17	0.10	0.10	
ntersection Summary									
Cycle Length: 60									
Actuated Cycle Length: 60									
Offset: 0 (0%), Referenced to phase 2	2:NBTL and	6:SBTL, St	art of Greer	1					
Vatural Cycle: 60									
Control Type: Actuated-Coordinated									
Maximum v/c Ratio: 0.57									
ntersection Signal Delay: 9.6					tersection L				
ntersection Capacity Utilization 64.69	%			IC	U Level of S	Service C			
Analysis Period (min) 15									
Splits and Phases: 2: Sweetvalley/	Harvest Val	ley & Tenth	Line						
Ø2 (R)					Ø4				
					-				
27 s				33 s	5				

Ø2 (R)	ø₄	
27 s	33 s	
₩ Ø6 (R)	₩ Ø8	
27 s	33 s	

Background 2029 AM 1: Renaud & Mer Bleue

	٦	\mathbf{i}	•	Ť	Ļ	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	W			र्स	4		
Sign Control	Stop			Stop	Stop		
Traffic Volume (vph)	166	6	29	121	95	485	
Future Volume (vph)	166	6	29	121	95	485	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	184	7	32	134	106	539	
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total (vph)	191	166	645				 -
Volume Left (vph)	184	32	045				
Volume Right (vph)	7	0	539				
Hadj (s)	0.20	0.07	-0.47				
Departure Headway (s)	5.9	5.3	4.3				
Degree Utilization, x	0.31	0.25	0.77				
Capacity (veh/h)	559	637	824				
Control Delay (s)	11.6	10.1	19.9				
Approach Delay (s)	11.6	10.1	19.9				
Approach LOS	B	B	C				
Intersection Summary			447				
Delay			16.7				
Level of Service			C	101			
Intersection Capacity Utilization			53.6%	ICL	U Level of Serv	ice	
Analysis Period (min)			15				

Background 2029 AM 3: Mer Bleue & Willow Aster

3: Mer Bieue & Willow As	lei						_	
	<	•	Ť	-	\	Ţ		
	-		-	•	•	•		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	Y		¢î			ŧ		
Traffic Volume (veh/h)	57	106	270	16	30	523		
Future Volume (Veh/h)	57	106	270	16	30	523		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90		
Hourly flow rate (vph)	63	118	300	18	33	581		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	956	309			318			
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	956	309			318			
tC, single (s)	6.4	6.2			4.1			
tC, 2 stage (s)								
tF (s)	3.5	3.3			2.2			
p0 queue free %	77	84			97			
cM capacity (veh/h)	279	731			1242			
			CD 1					
Direction, Lane #	WB 1	NB 1	SB 1					
Volume Total	181	318	614					
Volume Left	63	0	33					
Volume Right	118	18	0					
cSH	467	1700	1242					
Volume to Capacity	0.39	0.19	0.03					
Queue Length 95th (m)	13.7	0.0	0.6					
Control Delay (s)	17.5	0.0	0.7					
Lane LOS	С		А					
Approach Delay (s)	17.5	0.0	0.7					
Approach LOS	С							
Intersection Summary								
Average Delay			3.3					
Intersection Capacity Utilization			67.0%	IC	U Level of Sei	rvice		
Analysis Period (min)			15		0 20101 01 00			
			10					

Background 2029 PM 2: Sweetvalley/Harvest Valley

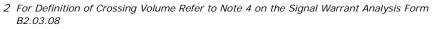
	٦	-	<	-	1	Ť	×	Ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	<u> </u>	ل ال	<u></u>	••••		101 101	<u></u>	1001 1001	
Traffic Volume (vph)	60	0	25	•	39	416	301	278	
Future Volume (vph)	60	0	25	0	39	416	301	278	
Lane Group Flow (vph)	67	26	28	208	43	581	334	425	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases	T GHH	4	T CITI	8	T CITI	2	T CITI	6	
Permitted Phases	4	Т	8	0	2	2	6	0	
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase	7	Т	0	0	2	2	0	0	
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	30.7	30.7	30.7	30.7	24.4	24.4	24.4	24.4	
Total Split (s)	30.7	30.7	30.7	30.7	49.3	49.3	49.3	49.3	
Total Split (%)	38.4%	38.4%	38.4%	38.4%	61.6%	61.6%	61.6%	61.6%	
Yellow Time (s)	3.0	3.0	3.0	3.0	3.7	3.7	3.7	3.7	
All-Red Time (s)	2.7	2.7	2.7	2.7	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	
Lead/Lag	J.7	0.7	J.7	0.7	Э. <i>Т</i>	J.7	J.7	J.7	
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)	10.9	10.9	10.9	10.9	57.7	57.7	57.7	57.7	
Actuated g/C Ratio	0.14	0.14	0.14	0.14	0.72	0.72	0.72	0.72	
v/c Ratio	0.14	0.14	0.14	0.14	0.72	0.72	0.72	0.72	
Control Delay	59.7	0.04	32.1	2.3	3.9	3.7	11.4	2.9	
Queue Delay	0.0	0.1	0.0	0.0	3.9 0.0	0.0	0.0	0.0	
Total Delay	59.7	0.0	32.1	2.3	3.9	3.7	11.4	2.9	
LOS	59.7 E	0.1 A	52.1 C	2.3 A	3.9 A	3.7 A	н.4 В	2.9 A	
Approach Delay	L	43.0	C	5.8	A	3.7	В	6.7	
Approach LOS		43.0 D		5.8 A		3.7 A		0.7 A	
Queue Length 50th (m)	9.9	0.0	3.9	0.0	1.5	10.5	19.2	6.1	
Queue Length 95th (m)	9.9 #24.4	0.0	3.9 10.5	0.0	4.7	10.5	50.9	11.7	
	#24.4		10.5	264.6	4.7	371.3	30.9	328.9	
Internal Link Dist (m)	15.0	161.9	15.0	204.0	40.0	3/1.3	40.0	JZØ.7	
Turn Bay Length (m) Base Capacity (vph)	243	836	412	724	40.0 648	2387	40.0	2375	
	243						557 0		
Starvation Cap Reductn	0	0 0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0 0	
Storage Cap Reductn Reduced v/c Ratio	0.28	0.03	0.07	0.29	0.07	0.24	0.60	0.18	
Reduced V/C RailU	0.28	0.03	0.07	0.29	0.07	0.24	0.00	U. IŎ	
Intersection Summary									
Cycle Length: 80									
Actuated Cycle Length: 80									
Offset: 0 (0%), Referenced to pha	ase 2:NBTL and	6:SBTL, St	art of Greer	ı					
Natural Cycle: 80									
Control Type: Actuated-Coordinat	ted								
Maximum v/c Ratio: 0.64									
Intersection Signal Delay: 7.5				In	tersection L	OS: A			
Intersection Capacity Utilization 7	2.9%			IC	U Level of S	Service C			
Analysis Period (min) 15									
# 95th percentile volume excee	ds capacity, que	ue may be	longer.						
Queue shown is maximum after		2	~						
Splits and Phases: 2: Sweetval	lley/Harvest Vall	ev							
A		- 1					Anne		
Ø2 (R)							+ø4 30.7 s		
49.3 s									
Ø6 (R)							₹ø8		
49.3 s							30.7 s		

Background 2029 PM 1: Renaud & Mer Bleue

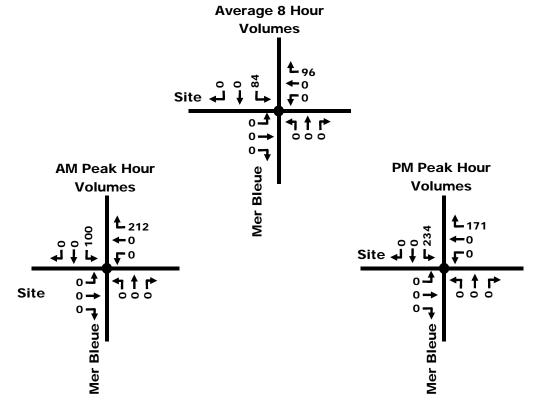
T. INELIAUU & IVIEL DIEUE							
	٦	\mathbf{F}	1	Ť	Ļ	∢	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			با	f,		
Sign Control	Stop			Stop	Stop		
Traffic Volume (vph)	598	19	8	153	173	273	
Future Volume (vph)	598	19	8	153	173	273	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	664	21	9	170	192	303	
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total (vph)	685	179	495				
Volume Left (vph)	664	9	0				
Volume Right (vph)	21	0	303				
Hadj (s)	0.21	0.04	-0.33				
Departure Headway (s)	6.1	6.8	5.9				
Degree Utilization, x	1.17	0.34	0.80				
Capacity (veh/h)	589	516	609				
Control Delay (s)	115.1	13.2	28.6				
Approach Delay (s)	115.1	13.2	28.6				
Approach LOS	F	В	D				
Intersection Summary							
Delay			70.2				
Level of Service			F				
Intersection Capacity Utilization			70.1%	ICI	U Level of Serv	ice	С
Analysis Period (min)			15				

Background 2029 PM 3: Mer Bleue & Willow Aster

3: Mer Bieue & Willow As	lei						_	
	1	•	Ť	-	\	T		
	-		-	•	-	Ŧ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	Y		f			ŧ		
Traffic Volume (veh/h)	38	71	683	68	128	408		
Future Volume (Veh/h)	38	71	683	68	128	408		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90		
Hourly flow rate (vph)	42	79	759	76	142	453		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	1534	797			835			
vC1, stage 1 conf vol	1001				000			
vC2, stage 2 conf vol								
vCu, unblocked vol	1534	797			835			
tC, single (s)	6.4	6.2			4.1			
tC, 2 stage (s)	0.4	0.2			т. і			
tF (s)	3.5	3.3			2.2			
p0 queue free %	60	80			82			
cM capacity (veh/h)	105	387			798			
					/ 70			
Direction, Lane #	WB 1	NB 1	SB 1					
Volume Total	121	835	595					
Volume Left	42	0	142					
Volume Right	79	76	0					
cSH	201	1700	798					
Volume to Capacity	0.60	0.49	0.18					
Queue Length 95th (m)	25.8	0.0	4.9					
Control Delay (s)	47.0	0.0	4.4					
Lane LOS	E		А					
Approach Delay (s)	47.0	0.0	4.4					
Approach LOS	E							
Intersection Summary								
Average Delay			5.4					
Intersection Capacity Utilization			89.3%	ICI	U Level of Serv	lice		
Analysis Period (min)			15	101	o Level of Sel			
			15					

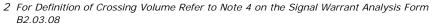

Mer Bleue/Site - (peak hour signal warrant), Total Projected Site Traffic 2029
--

	Signal Warrant			Minimum Requirement for Two Lane Roadways	Compliance		
			Description	Restricted Flow - Operating Speed Less Than 70 km/h	Sectional %	Entire %	Warrant
	1. Minimum	(1) A	Vehicle Volume, All Approaches for Each of the Heaviest 8 Hours of on Average Day, and	720	25%	25%	
ection	Vehicular Volume	(4) B	Vehicle Volume, Along Minor Streets for Each of the Same 8 Hours	255	38%	2376	25%
Intersection	2. Delay to Cross Traffic	(1) A	Vehicle Volume, Along Major Street for Each of the Heaviest 8 Hours of an Average Day, and	720	12%	0%	No
		(2) B	Combined Vehicle and Pedestrian Volume <u>Crossing</u> the Major Street for Each of the Same 8 Hours	75	0%	0.76	

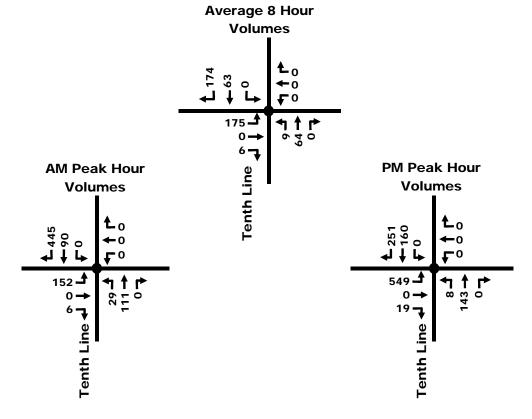

1 Vehicle Volume Warrants (1A), (2A) and (5B) for Roadways Having Two or More Moving Lanes in one Direction Should Be 25% Higher Than Values Given Above

No

Yes

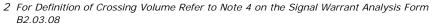

3 The Lowest Sectional Percentage Governs the Entire Warrant

	Signal Warrant			Minimum Requirement for Two Lane Roadways	Compliance		
			Description	Restricted Flow - Operating Speed Less Than 70 km/h	Sectional %	Entire %	Warrant
	1. Minimum	(1) A	Vehicle Volume, All Approaches for Each of the Heaviest 8 Hours of on Average Day, and	720	68%	68%	
Intersection	Vehicular Volume	(4) B	Vehicle Volume, Along Minor Streets for Each of the Same 8 Hours	255	71%	0070	68%
Inters	2. Delay to Cross	(1) A	Vehicle Volume, Along Major Street for Each of the Heaviest 8 Hours of an Average Day, and	720	43%	43%	No
	Traffic	(2) B	Combined Vehicle and Pedestrian Volume <u>Crossing</u> the Major Street for Each of the Same 8 Hours	75	233%	43 70	

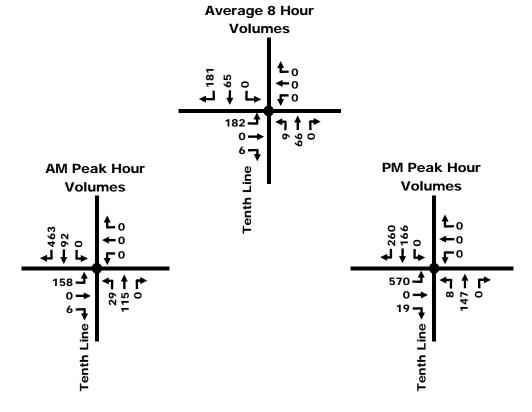

1 Vehicle Volume Warrants (1A), (2A) and (5B) for Roadways Having Two or More Moving Lanes in one Direction Should Be 25% Higher Than Values Given Above

No

3 The Lowest Sectional Percentage Governs the Entire Warrant

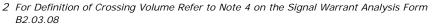


Signal			- (peak nour signal warrant), i	Minimum Requirement for Two Lane Roadways	Compliance		
	Signai Warrant		Description	Restricted Flow - Operating Speed Less Than 70 km/h	Sectional %	Entire %	Warrant
	1. Minimum	(1) A	Vehicle Volume, All Approaches for Each of the Heaviest 8 Hours of on Average Day, and	720	71%	71%	
Intersection	Vehicular Volume	(4) B	Vehicle Volume, Along Minor Streets for Each of the Same 8 Hours	255	74%	7170	71%
Inters	2. Delay to	(1) A	Vehicle Volume, Along Major Street for Each of the Heaviest 8 Hours of an Average Day, and	720	45%	45%	No
	Cross Traffic	(2) B	Combined Vehicle and Pedestrian Volume <u>Crossing</u> the Major Street for Each of the Same 8 Hours	75	243%	4370	

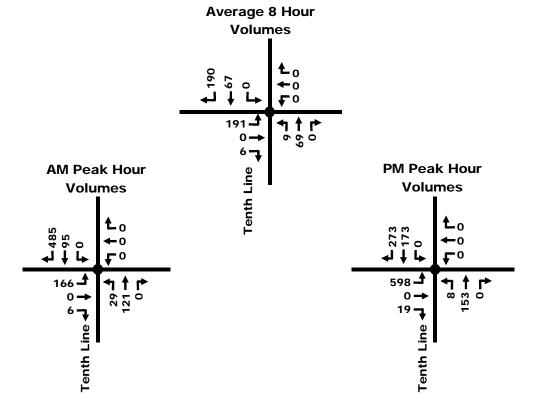

1 Vehicle Volume Warrants (1A), (2A) and (5B) for Roadways Having Two or More Moving Lanes in one Direction Should Be 25% Higher Than Values Given Above

No

3 The Lowest Sectional Percentage Governs the Entire Warrant

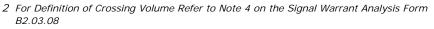


	Signal Warrant			Minimum Requirement for Two Lane Roadways	Compliance		
			Description	Restricted Flow - Operating Speed Less Than 70 km/h	Sectional %	Entire %	Warrant
	1. Minimum	(1) A	Vehicle Volume, All Approaches for Each of the Heaviest 8 Hours of on Average Day, and	720	74%	74%	
Intersection	Vehicular Volume	(4) B	Vehicle Volume, Along Minor Streets for Each of the Same 8 Hours	255	77%	/ 4 70	74%
Inters	2. Delay to Cross	(1) A	Vehicle Volume, Along Major Street for Each of the Heaviest 8 Hours of an Average Day, and	720	47%	47%	No
	Traffic	(2) B	Combined Vehicle and Pedestrian Volume <u>Crossing</u> the Major Street for Each of the Same 8 Hours	75	255%	4770	

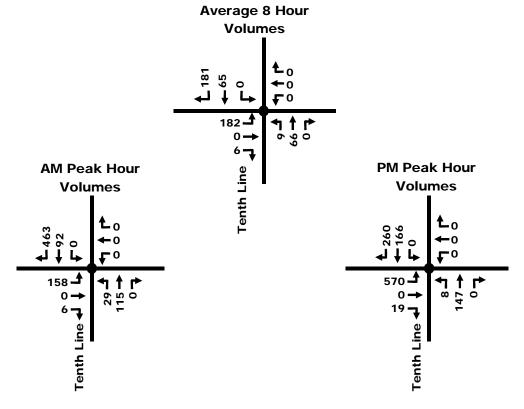

1 Vehicle Volume Warrants (1A), (2A) and (5B) for Roadways Having Two or More Moving Lanes in one Direction Should Be 25% Higher Than Values Given Above

No

3 The Lowest Sectional Percentage Governs the Entire Warrant



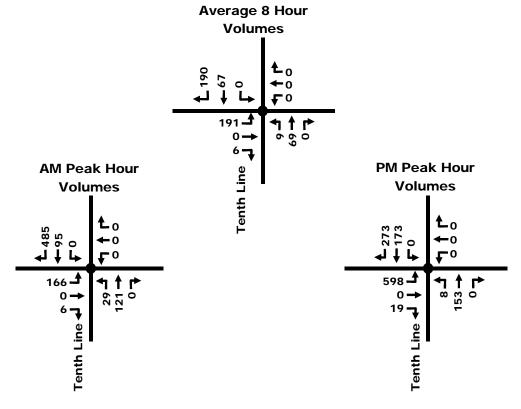
	Signal Warrant			Minimum Requirement for Two Lane Roadways	Compliance		
			Description	Restricted Flow - Operating Speed Less Than 70 km/h	Sectional %	Entire %	Warrant
	1. Minimum	(1) A	Vehicle Volume, All Approaches for Each of the Heaviest 8 Hours of on Average Day, and	720	96%	80%	
	Vehicular Volume	(4) B	Vehicle Volume, Along Minor Streets for Each of the Same 8 Hours	255	80%	80 %	80%
Intersection	2. Delay to	(1) A	Vehicle Volume, Along Major Street for Each of the Heaviest 8 Hours of an Average Day, and	720	67%	67%	No
	Cross Traffic	(2) B	Combined Vehicle and Pedestrian Volume <u>Crossing</u> the Major Street for Each of the Same 8 Hours	75	243%	0770	


1 Vehicle Volume Warrants (1A), (2A) and (5B) for Roadways Having Two or More Moving Lanes in one Direction Should Be 25% Higher Than Values Given Above

No

3 The Lowest Sectional Percentage Governs the Entire Warrant

	Ciana			Minimum Requirement for Two Lane Roadways	C	Compliance	
	Signal Warrant		Description	Restricted Flow - Operating Speed Less Than 70 km/h	Sectional %	Entire %	Warrant
	1. Minimum	(1) A	Vehicle Volume, All Approaches for Each of the Heaviest 8 Hours of on Average Day, and	720	99%	84%	
Intersection	Vehicular Volume	(4) B	Vehicle Volume, Along Minor Streets for Each of the Same 8 Hours	255	84%	04 70	84%
Inters	2. Delay to Cross	(1) A	Vehicle Volume, Along Major Street for Each of the Heaviest 8 Hours of an Average Day, and	720	69%	69%	Νο
	Traffic	(2) B	Combined Vehicle and Pedestrian Volume <u>Crossing</u> the Major Street for Each of the Same 8 Hours	75	255%	0770	


1 Vehicle Volume Warrants (1A), (2A) and (5B) for Roadways Having Two or More Moving Lanes in one Direction Should Be 25% Higher Than Values Given Above

No

2 For Definition of Crossing Volume Refer to Note 4 on the Signal Warrant Analysis Form B2.03.08

3 The Lowest Sectional Percentage Governs the Entire Warrant

Appendix G SYNCHRO Future Traffic Analysis

Projected 2020 AM 2: Tenth Line & Sweetvalley/Harvest Valley

2: Tenth Line & Sweetvall	٠	→	4	+	•	t	1	Ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	<u> </u>	<u>لوام</u>	<u> </u>	1	102	≜ î∳	<u> </u>	†	
Traffic Volume (vph)	125	0	111	0	7	378	79	277	
Future Volume (vph)	125	0	111	0	7	378	79	277	
ane Group Flow (vph)	139	28	123	334	8	449	88	359	
Furn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases	1 01111	4	1 01111	8	1 0.111	2	1 01111	6	
Permitted Phases	4	•	8	Ŭ	2	-	6	Ū	
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase	•	•	Ū	Ŭ	-	-		Ŭ	
Vinimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Vinimum Split (s)	34.5	34.5	34.5	34.5	29.2	29.2	29.2	29.2	
Total Split (s)	35.0	35.0	35.0	35.0	55.0	55.0	55.0	55.0	
Total Split (%)	38.9%	38.9%	38.9%	38.9%	61.1%	61.1%	61.1%	61.1%	
ellow Time (s)	3.3	3.3	3.3	3.3	3.7	3.7	3.7	3.7	
All-Red Time (s)	3.2	3.2	3.2	3.2	2.5	2.5	2.5	2.5	
.ost Time Adjust (s)	-1.7	-1.7	-1.7	-1.7	-1.7	-1.7	-1.7	-1.7	
Fotal Lost Time (s)	4.8	4.8	4.8	4.8	4.5	4.5	4.5	4.5	
.ead/Lag	4.0	4.0	4.0	4.0	4.J	4.5	4.J	4.5	
.ead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)	23.3	23.3	23.3	23.3	57.4	57.4	57.4	57.4	
Actuated g/C Ratio	0.26	0.26	0.26	0.26	0.64	0.64	0.64	0.64	
/c Ratio	0.20	0.20	0.20	0.20	0.04	0.04	0.04	0.04	
Control Delay	102.7	0.04	28.4	3.2	8.4	7.9	9.3	7.2	
Queue Delay	0.0	0.1	0.0	0.0	0.4	0.0	9.3	0.0	
Total Delay	102.7	0.0	28.4	3.2	8.4	7.9	9.3	7.2	
.OS	102.7 F	A	20.4 C	3.2 A	0.4 A	7.9 A	9.3 A	7.2 A	
	Г	85.5	C	10.0	А	7.9	А	7.6	
Approach Delay		85.5 F				7.9 A		7.0 A	
Approach LOS	<u></u>		17.0	A	0.5	15.5	5.8	A 11.1	
Queue Length 50th (m)	23.3	0.0	17.0	0.0	0.5				
Queue Length 95th (m)	#52.0	0.0	29.0	6.8	2.4	26.6	14.6	20.1	
nternal Link Dist (m)	15.0	161.9	15.0	264.6	40.0	214.2	40.0	328.9	
Furn Bay Length (m)	15.0	0/7	15.0 442	704	40.0 611	2144	40.0	2120	
Base Capacity (vph)		867		784		2146	557	2130	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.75	0.03	0.28	0.43	0.01	0.21	0.16	0.17	
ntersection Summary									
Cycle Length: 90									
Actuated Cycle Length: 90									
Offset: 0 (0%), Referenced to phase	e 2:NBTL and	6:SBTL, Sta	art of Green	1					
Vatural Cycle: 65									
Control Type: Actuated-Coordinate	d								
Maximum v/c Ratio: 0.98									
ntersection Signal Delay: 16.9				Int	tersection L	OS: B			
ntersection Capacity Utilization 63.	.7%				U Level of S				
Analysis Period (min) 15									
95th percentile volume exceeds	s capacity, que	eue mav be l	onger.						
Queue shown is maximum after		. ,	J -						
Splits and Phases: 2: Tenth Line	& Sweetvalle	y/Harvest Va	alley			-			
1 Ø2 (R)						Τ	<u>↓</u> ø4		
55 s							35 s		
1									
Ø6 (R)							₹ø8		

Projected 2020 AM 1: Renaud & Mer Bleue

T. INCELLAUG & INTEL DIEGE							
	٦	\mathbf{r}	1	1	Ļ	∢	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	¥			با	ĥ		
Sign Control	Stop			Stop	Stop		
Traffic Volume (vph)	152	6	29	111	90	445	
Future Volume (vph)	152	6	29	111	90	445	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	169	7	32	123	100	494	
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total (vph)	176	155	594				
Volume Left (vph)	169	32	0				
Volume Right (vph)	7	0	494				
Hadj (s)	0.20	0.08	-0.46				
Departure Headway (s)	5.8	5.2	4.2				
Degree Utilization, x	0.28	0.22	0.69				
Capacity (veh/h)	567	656	837				
Control Delay (s)	11.0	9.7	16.1				
Approach Delay (s)	11.0	9.7	16.1				
Approach LOS	В	А	С				
Intersection Summary							
Delay			14.0				
Level of Service			В				
Intersection Capacity Utilization			49.9%	ICI	U Level of Serv	rice	А
Analysis Period (min)			15				

Projected 2020 AM 3: Mer Bleue & Willow Aster

3: Mer Bieue & Willow Ast	.ei						_
	1	•	Ť	1	× .	Ļ	
Movement	•		-	•	CDI	CDT	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		4î			ŧ	
Traffic Volume (veh/h)	57	106	247	16	30	478	
Future Volume (Veh/h)	57	106	247	16	30	478	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph) Pedestrians	63	118	274	18	33	531	
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)			Mana			Neme	
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked	000	202			202		
vC, conflicting volume	880	283			292		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	880	283			292		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	80	84			97		
cM capacity (veh/h)	309	756			1270		
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total	181	292	564				
Volume Left	63	0	33				
Volume Right	118	18	0				
cSH	503	1700	1270				
Volume to Capacity	0.36	0.17	0.03				
Queue Length 95th (m)	12.3	0.0	0.6				
Control Delay (s)	16.1	0.0	0.7				
Lane LOS	С		А				
Approach Delay (s)	16.1	0.0	0.7				
Approach LOS	С						
Intersection Summary							
Average Delay			3.2				
Intersection Capacity Utilization			63.3%	ICI	U Level of Sei	vice	
Analysis Period (min)			15	100		100	
			15				

Projected 2020 AM 5: Tenth Line & Site Access #1

	٦	-	\mathbf{r}	∢	-	×.	1	Ť	1	×	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			र्स			f,	
Traffic Volume (veh/h)	43	0	5	12	0	73	2	296	4	24	374	19
Future Volume (Veh/h)	43	0	5	12	0	73	2	296	4	24	374	19
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	48	0	6	13	0	81	2	329	4	27	416	21
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	896	818	426	822	826	331	437			333		
vC1, stage 1 conf vol	070	010	120	022	020	001	107			000		
vC2, stage 2 conf vol												
vCu, unblocked vol	896	818	426	822	826	331	437			333		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)	7.1	0.5	0.2	7.1	0.5	0.2	7.1			7.1		
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	79	100	99	95	100	89	100			98		
cM capacity (veh/h)	227	303	628	285	300	711	1123			1226		
					500	711	1125			1220		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	54	94	335	464								
Volume Left	48	13	2	27								
Volume Right	6	81	4	21								
cSH	244	589	1123	1226								
Volume to Capacity	0.22	0.16	0.00	0.02								
Queue Length 95th (m)	6.3	4.3	0.0	0.5								
Control Delay (s)	23.9	12.3	0.1	0.7								
Lane LOS	С	В	А	А								
Approach Delay (s)	23.9	12.3	0.1	0.7								
Approach LOS	С	В										
Intersection Summary												
Average Delay			2.9									
Intersection Capacity Utilization			55.7%	ICI	J Level of S	ervice			В			
Analysis Period (min)			15									

Projected 2020 PM 2: Tenth Line & Sweetvalley/Harvest Valley

2: Tenth Line & Sweetval	٠,	-	4	+	•	t	1	Ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	<u> </u>	101 1		•••••		1001 1001	<u></u>	100 100	
Traffic Volume (vph)	106	0	25	•	39	451	301	364	
Future Volume (vph)	106	0	25	0	39	451	301	364	
Lane Group Flow (vph)	118	26	28	208	43	620	334	592	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases	1 CIIII	4	I CIIII	8	I CIIII	2	I CIIII	6	
Permitted Phases	4	7	8	0	2	2	6	0	
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase	4	т	0	0	2	2	0	0	
Vinimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Ainimum Split (s)	31.5	31.5	31.5	31.5	24.4	24.4	24.4	24.4	
	31.5	35.0	31.5	35.0	24.4 55.0	24.4 55.0		24.4 55.0	
Fotal Split (s)							55.0		
Fotal Split (%)	38.9%	38.9%	38.9%	38.9%	61.1%	61.1%	61.1%	61.1%	
fellow Time (s)	3.3	3.3	3.3	3.3	3.7	3.7	3.7	3.7	
NI-Red Time (s)	3.2	3.2	3.2	3.2	2.5	2.5	2.5	2.5	
ost Time Adjust (s)	-1.7	-1.7	-1.7	-1.7	-1.7	-1.7	-1.7	-1.7	
Total Lost Time (s)	4.8	4.8	4.8	4.8	4.5	4.5	4.5	4.5	
_ead/Lag									
ead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)	18.0	18.0	18.0	18.0	62.7	62.7	62.7	62.7	
Actuated g/C Ratio	0.20	0.20	0.20	0.20	0.70	0.70	0.70	0.70	
r/c Ratio	0.71	0.04	0.11	0.36	0.08	0.27	0.66	0.26	
Control Delay	55.6	0.1	27.6	1.7	6.3	5.6	17.8	4.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
otal Delay	55.6	0.1	27.6	1.7	6.3	5.6	17.8	4.6	
.0S	E	А	С	А	А	А	В	А	
Approach Delay		45.5		4.8		5.6		9.4	
Approach LOS		D		А		А		А	
Queue Length 50th (m)	19.3	0.0	4.0	0.0	2.0	16.0	27.4	12.2	
Queue Length 95th (m)	34.4	0.0	9.9	0.0	7.0	30.4	#90.3	24.7	
nternal Link Dist (m)		161.9		264.6		210.2		328.9	
Turn Bay Length (m)	15.0		15.0	20110	40.0	21012	40.0	02017	
Base Capacity (vph)	279	795	442	736	522	2310	506	2291	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.42	0.03	0.06	0.28	0.08	0.27	0.66	0.26	
Reduced V/C Railo	0.42	0.05	0.00	0.20	0.00	0.27	0.00	0.20	
ntersection Summary									
Cycle Length: 90									
Actuated Cycle Length: 90									
Offset: 0 (0%), Referenced to phase	se 2:NBTL and	6:SBTL, Sta	art of Greer	1					
Vatural Cycle: 80									
Control Type: Actuated-Coordinate	ed								
Aaximum v/c Ratio: 0.71									
ntersection Signal Delay: 10.2				In	tersection L	OS: B			
ntersection Capacity Utilization 70).4%				U Level of S				
Analysis Period (min) 15									
95th percentile volume exceed	ls capacity, que	eue mav be	longer.						
Queue shown is maximum after									
Splits and Phases: 2: Tenth Line	e & Sweetvalle	y/Harvest Va	alley						
1 Ø2 (R)							<u>∕</u> ø₄		
1 (// (K)									
55 s							35 s		
							35 s ₹Ø8		

Projected 2020 PM 1: Renaud & Mer Bleue

T. INERIAUU & IVIEL DIEUE							
	٦	\mathbf{r}	1	Ť	Ļ	∢	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	¥			با	ĥ		
Sign Control	Stop			Stop	Stop		
Traffic Volume (vph)	549	19	8	143	160	251	
Future Volume (vph)	549	19	8	143	160	251	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	610	21	9	159	178	279	
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total (vph)	631	168	457				
Volume Left (vph)	610	9	0				
Volume Right (vph)	21	0	279				
Hadj (s)	0.21	0.04	-0.33				
Departure Headway (s)	6.0	6.7	5.8				
Degree Utilization, x	1.05	0.31	0.74				
Capacity (veh/h)	596	521	611				
Control Delay (s)	75.8	12.8	23.6				
Approach Delay (s)	75.8	12.8	23.6				
Approach LOS	F	В	С				
Intersection Summary							
Delay			48.4				
Level of Service			E				
Intersection Capacity Utilization			65.1%	ICI	U Level of Serv	/ice	С
Analysis Period (min)			15				

Projected 2020 PM 3: Mer Bleue & Willow Aster

3: Mer Bieue & Willow Asi							_	
	4	•	t	1	\	T		
	•		-	•	-	•		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	Y		¢,		ľ	1		
Traffic Volume (veh/h)	38	71	624	68	128	373		
Future Volume (Veh/h)	38	71	624	68	128	373		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90		
Hourly flow rate (vph)	42	79	693	76	142	414		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	1429	731			769			
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	1429	731			769			
tC, single (s)	6.4	6.2			4.1			
tC, 2 stage (s)								
tF (s)	3.5	3.3			2.2			
p0 queue free %	66	81			83			
cM capacity (veh/h)	124	422			845			
				CD 1				
Direction, Lane #	WB 1	NB 1	SB 1	SB 2				
Volume Total	121	769	142	414				
Volume Left	42	0	142	0				
Volume Right	79	76	0	0				
cSH	229	1700	845	1700				
Volume to Capacity	0.53	0.45	0.17	0.24				
Queue Length 95th (m)	21.1	0.0	4.6	0.0				
Control Delay (s)	36.9	0.0	10.1	0.0				
Lane LOS	E		В					
Approach Delay (s)	36.9	0.0	2.6					
Approach LOS	E							
Intersection Summary								
Average Delay			4.1					
Intersection Capacity Utilization			63.3%	ICI	J Level of Serv	rice		
Analysis Period (min)			15	100				
			15					

Projected 2020 PM 5: Tenth Line & Site Access #1

	≯	-	*	4	+	•	•	Ť	1	1	Ŧ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\$			۴ ۲			۹ ا	
Traffic Volume (veh/h)	34	0	4	7	0	37	6	531	11	63	304	47
Future Volume (Veh/h)	34	0	4	7	0	37	6	531	11	63	304	47
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	38	0	4	8	0	41	7	590	12	70	338	52
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	1155	1120	364	1118	1140	596	390			602		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1155	1120	364	1118	1140	596	390			602		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	75	100	99	95	100	92	99			93		
cM capacity (veh/h)	150	191	681	172	185	504	1169			975		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	42	49	609	460								
Volume Left	38	8	7	70								
Volume Right	4	41	12	52								
cSH	162	383	1169	975								
Volume to Capacity	0.26	0.13	0.01	0.07								
Queue Length 95th (m)	7.5	3.3	0.1	1.8								
Control Delay (s)	34.8	15.8	0.2	2.1								
Lane LOS	D	С	А	А								
Approach Delay (s)	34.8	15.8	0.2	2.1								
Approach LOS	D	С										
Intersection Summary												
Average Delay			2.8									
Intersection Capacity Utilization			73.0%	ICI	J Level of S	ervice			D			
Analysis Period (min)			15									

Projected 2024 AM 2: Tenth Line & Sweetvalley/Harvest Valley

	٦	-	4	-	•	Ť	1	Ļ	
ane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
ane Configurations	۲.	4	5	4	۲	ŧ₽	7	≜ †}⊧	
Traffic Volume (vph)	125	0	111	0	7	388	79	286	
Future Volume (vph)	125	0	111	0	7	388	79	286	
ane Group Flow (vph)	139	28	123	334	8	460	88	369	
urn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Ainimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
/inimum Split (s)	34.5	34.5	34.5	34.5	29.2	29.2	29.2	29.2	
otal Split (s)	35.0	35.0	35.0	35.0	55.0	55.0	55.0	55.0	
otal Split (%)	38.9%	38.9%	38.9%	38.9%	61.1%	61.1%	61.1%	61.1%	
ellow Time (s)	3.3	3.3	3.3	3.3	3.7	3.7	3.7	3.7	
II-Red Time (s)	3.2	3.2	3.2	3.2	2.5	2.5	2.5	2.5	
ost Time Adjust (s)	-1.7	-1.7	-1.7	-1.7	-1.7	-1.7	-1.7	-1.7	
otal Lost Time (s)	4.8	4.8	4.8	4.8	4.5	4.5	4.5	4.5	
ead/Lag	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
ead-Lag Optimize?									
Recall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)	23.3	23.3	23.3	23.3	57.4	57.4	57.4	57.4	
ctuated g/C Ratio	0.26	0.26	0.26	0.26	0.64	0.64	0.64	0.64	
/c Ratio	0.20	0.04	0.36	0.48	0.01	0.21	0.16	0.17	
Control Delay	102.7	0.04	28.4	3.4	8.4	7.9	9.3	7.2	
Queue Delay	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.0	
otal Delay	102.7	0.0	28.4	3.4	8.4	7.9	9.3	7.2	
OS	F	A	C	A	A	Α	7.5 A	A	
pproach Delay	1	85.5	C	10.1	~	8.0	~	7.6	
pproach LOS		65.5 F		B		A		7.0 A	
Queue Length 50th (m)	23.3	0.0	17.0	0.0	0.5	16.0	5.8	11.5	
Queue Length 95th (m)	#52.0	0.0	29.0	8.0	2.4	27.4	14.7	20.8	
nternal Link Dist (m)	#JZ.0	161.9	27.0	264.6	2.4	218.2	14.7	328.9	
urn Bay Length (m)	15.0	101.7	15.0	204.0	40.0	210.2	40.0	JZ0.7	
Base Capacity (vph)	185	859	442	778	605	2148	548	2130	
Starvation Cap Reductn	0	0.039	442	0	000	0	0+0	0	
pillback Cap Reductn	0	0	0	0	0	0	0	0	
torage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.75	0.03	0.28	0.43	0.01	0.21	0.16	0.17	
	0.75	0.03	0.20	0.43	0.01	0.21	0.10	0.17	
tersection Summary									
ycle Length: 90									
ctuated Cycle Length: 90									
Offset: 0 (0%), Referenced to phase	e 2:NBTL and	6:SBTL, St	art of Greer	n					
latural Cycle: 65									
ontrol Type: Actuated-Coordinated	b								
laximum v/c Ratio: 0.98									
tersection Signal Delay: 16.9				In	tersection L	OS: B			
tersection Capacity Utilization 64.	0%			IC	U Level of S	Service C			
nalysis Period (min) 15									
95th percentile volume exceeds	capacity, que	eue may be	longer.						
Queue shown is maximum after		,	ÿ						
plits and Phases: 2: Tenth Line	& Sweetvalle	y/Harvest V	alley			-			
1 ø2 (R)							<u>↓</u> ø4		
-									
5 S							35 s		
N							🗸 🖉		
♦ Ø6 (R)							- W8		

Projected 2024 AM 1: Mer Bleue & Renaud

	٦	\mathbf{r}	1	Ť	Ļ	∢	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	¥			ا	4		
Sign Control	Stop			Stop	Stop		
Traffic Volume (vph)	158	25	70	279	169	463	
Future Volume (vph)	158	25	70	279	169	463	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	176	28	78	310	188	514	
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total (vph)	204	388	702				
Volume Left (vph)	176	78	0				
Volume Right (vph)	28	0	514				
Hadj (s)	0.12	0.07	-0.41				
Departure Headway (s)	6.6	5.6	4.8				
Degree Utilization, x	0.38	0.61	0.94				
Capacity (veh/h)	524	627	733				
Control Delay (s)	13.5	16.9	41.2				
Approach Delay (s)	13.5	16.9	41.2				
Approach LOS	В	С	E				
Intersection Summary							
Delay			29.6				
Level of Service			D				
Intersection Capacity Utilization			79.9%	ICL	J Level of Serv	ice	D
Analysis Period (min)			15				

Projected 2024 AM 3: Mer Bleue & Willow Aster

3: Mer Bieue & Willow Ast	lei						_	
	<	•	t	-	\	T		
			-	•	•	T		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	Y		ę.		ľ	•		
Traffic Volume (veh/h)	57	106	421	16	30	574		
Future Volume (Veh/h)	57	106	421	16	30	574		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90		
Hourly flow rate (vph)	63	118	468	18	33	638		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type			None			None		
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	1181	477			486			
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	1181	477			486			
tC, single (s)	6.4	6.2			4.1			
tC, 2 stage (s)								
tF (s)	3.5	3.3			2.2			
p0 queue free %	69	80			97			
cM capacity (veh/h)	204	588			1077			
			00.4	00.0			_	
Direction, Lane #	WB 1	NB 1	SB 1	SB 2				
Volume Total	181	486	33	638				
Volume Left	63	0	33	0				
Volume Right	118	18	0	0				
cSH	355	1700	1077	1700				
Volume to Capacity	0.51	0.29	0.03	0.38				
Queue Length 95th (m)	21.1	0.0	0.7	0.0				
Control Delay (s)	25.3	0.0	8.4	0.0				
Lane LOS	D		А					
Approach Delay (s)	25.3	0.0	0.4					
Approach LOS	D							
Intersection Summary								
Average Delay			3.6					
Intersection Capacity Utilization			48.8%	ICI	J Level of Ser	vice		
Analysis Period (min)			40.078	100		100		
			15					

Projected 2024 AM 4: Site Access #2 & Mer Bleue

4. Sile Access #2 & Mer B		×	t	~	6	I
	<		I	ľ	*	*
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		4		ň	•
Traffic Volume (veh/h)	0	205	137	0	96	65
Future Volume (Veh/h)	0	205	137	0	96	65
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	0	228	152	0	107	72
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	438	152			152	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	438	152			152	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	75			93	
cM capacity (veh/h)	533	894			1429	
				CD 0		
Direction, Lane #	WB 1	NB 1	SB 1	SB 2		
Volume Total	228	152	107	72		
Volume Left	0	0	107	0		
Volume Right	228	0	0	0		
cSH	894	1700	1429	1700		
Volume to Capacity	0.25	0.09	0.07	0.04		
Queue Length 95th (m)	7.7	0.0	1.8	0.0		
Control Delay (s)	10.4	0.0	7.7	0.0		
Lane LOS	В		А			
Approach Delay (s)	10.4	0.0	4.6			
Approach LOS	В					
Intersection Summary						
Average Delay			5.7			
Intersection Capacity Utilization			36.6%	ICI	J Level of Serv	vice
Analysis Period (min)			15	100		
			15			

Projected 2024 AM 5: Tenth Line & Site Access #1

	۶	-	*	4	+	•	1	1	1	>	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1				\$			÷			۹ ا	
Traffic Volume (veh/h)	43	0	5	12	0	73	2	287	4	24	363	19
Future Volume (Veh/h)	43	0	5	12	0	73	2	287	4	24	363	19
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	48	0	6	13	0	81	2	319	4	27	403	21
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	874	794	414	798	803	321	424			323		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	874	794	414	798	803	321	424			323		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	80	100	99	96	100	89	100			98		
cM capacity (veh/h)	236	313	639	296	309	720	1135			1237		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	54	94	325	451								
Volume Left	48	13	2	27								
Volume Right	6	81	4	21								
cSH	253	601	1135	1237								
Volume to Capacity	0.21	0.16	0.00	0.02								
Queue Length 95th (m)	6.0	4.2	0.0	0.5								
Control Delay (s)	23.0	12.1	0.1	0.7								
Lane LOS	С	В	А	А								
Approach Delay (s)	23.0	12.1	0.1	0.7								
Approach LOS	С	В										
Intersection Summary												
Average Delay			2.9									
Intersection Capacity Utilization			Err%	ICL	J Level of S	ervice			Н			
Analysis Period (min)			15									

Projected 2024 PM 2: Tenth Line & Sweetvalley/Harvest Valley

	۶	-+	4	+	•	Ť	1	ţ	
ane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
ane Configurations	5	4	5	4	ň	ŧ₽	٦	≜ †⊅	
Traffic Volume (vph)	106	0	25	0	39	467	301	375	
Tuture Volume (vph)	106	0	25	0	39	467	301	375	
ane Group Flow (vph)	118	26	28	208	43	638	334	605	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
/inimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
/inimum Split (s)	31.5	31.5	31.5	31.5	24.4	24.4	24.4	24.4	
otal Split (s)	35.0	35.0	35.0	35.0	55.0	55.0	55.0	55.0	
otal Split (%)	38.9%	38.9%	38.9%	38.9%	61.1%	61.1%	61.1%	61.1%	
'ellow Time (s)	3.3	3.3	3.3	3.3	3.7	3.7	3.7	3.7	
III-Red Time (s)	3.2	3.2	3.2	3.2	2.5	2.5	2.5	2.5	
ost Time Adjust (s)	-1.7	-1.7	-1.7	-1.7	-1.7	-1.7	-1.7	-1.7	
otal Lost Time (s)	4.8	4.8	4.8	4.8	4.5	4.5	4.5	4.5	
ead/Lag	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
ead-Lag Optimize?									
tecall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
ct Effct Green (s)	18.0	18.0	18.0	18.0	62.7	62.7	62.7	62.7	
ctuated g/C Ratio	0.20	0.20	0.20	0.20	0.70	0.70	0.70	0.70	
/c Ratio	0.20	0.04	0.11	0.20	0.08	0.28	0.67	0.26	
Control Delay	55.6	0.04	27.6	1.8	6.3	5.6	18.7	4.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
otal Delay	55.6	0.0	27.6	1.8	6.3	5.6	18.7	4.7	
OS	E	A	27.0 C	A	0.5 A	A	B	A	
pproach Delay	L	45.5	C	4.9	~	5.7	D	9.7	
pproach LOS		4J.J D		4.9 A		J.7 A		4.7 A	
Queue Length 50th (m)	19.3	0.0	4.0	0.0	2.0	16.6	27.8	12.8	
Queue Length 95th (m)	34.4	0.0	9.9	0.0	7.0	31.6	#92.1	25.7	
nternal Link Dist (m)	J4.4	161.9	7.7	264.6	7.0	227.2	<i>π</i> 7∠. I	328.9	
Turn Bay Length (m)	15.0	101.7	15.0	204.0	40.0	221.2	40.0	JZ0.7	
Base Capacity (vph)	279	786	442	727	515	2312	40.0	2292	
itarvation Cap Reductn	0	0	442	0	0	0	495	0	
pillback Cap Reductn	0	0	0	0	0	0	0	0	
torage Cap Reductn	0	0	0	0	0	0	0	0	
educed v/c Ratio	0.42	0.03	0.06	0.29	0.08	0.28	0.67	0.26	
	0.42	0.03	0.00	0.29	0.00	0.20	0.07	0.20	
tersection Summary									
ycle Length: 90									
ctuated Cycle Length: 90									
Offset: 74 (82%), Referenced to phase	e 2:NBTL a	nd 6:SBTL,	Start of Gre	een					
atural Cycle: 90									
control Type: Actuated-Coordinated									
laximum v/c Ratio: 0.71									
ntersection Signal Delay: 10.4				In	tersection L	OS: B			
ntersection Capacity Utilization 70.9%	6			IC	U Level of S	Service C			
nalysis Period (min) 15									
95th percentile volume exceeds ca	apacity, que	eue may be	longer.						
Queue shown is maximum after tw		,	ž						
plits and Phases: 2: Tenth Line &	Sweetvalle	y/Harvest Va	alley			-			
1 Ø2 (R)							<u>↓</u> ø4		
55 S							35 s		
k.							V Ø8		
♦ Ø6 (R)							· · · · · · · · · · · · · · · · · · ·		

Projected 2024 PM 1: Mer Bleue & Renaud

	٦	\mathbf{i}	•	t	Ļ	1
Maxiamant	FDI		NDI		CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			र्स	4î	
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	570	65	41	279	347	260
Future Volume (vph)	570	65	41	279	347	260
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	633	72	46	310	386	289
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total (vph)	705	356	675			
Volume Left (vph)	633	46	0			
Volume Right (vph)	72	0	289			
Hadj (s)	0.15	0.06	-0.22			
Departure Headway (s)	6.8	7.0	6.4			
Degree Utilization, x	1.33	0.70	1.20			
Capacity (veh/h)	542	501	569			
Control Delay (s)	180.5	24.7	128.5			
Approach Delay (s)	180.5	24.7	128.5			
Approach LOS	F	С	F			
Intersection Summary						
Delay			128.3			
Level of Service			F			
Intersection Capacity Utilization			96.2%	ICI	J Level of Serv	ice
Analysis Period (min)			15			

Projected 2024 PM 3: Mer Bleue & Willow Aster

3: Mer Bleue & Willow As	lei						_
	4	•	1	/	\	Ţ	
	•		-	•	CDI		_
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		f)		<u> </u>	1	
Traffic Volume (veh/h)	38	71	782	68	128	569	
Future Volume (Veh/h)	38	71	782	68	128	569	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	42	79	869	76	142	632	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	1823	907			945		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1823	907			945		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	39	76			80		
cM capacity (veh/h)	68	334			726		
			00.4				
Direction, Lane #	WB 1	NB 1	SB 1	SB 2			
Volume Total	121	945	142	632			
Volume Left	42	0	142	0			
Volume Right	79	76	0	0			
cSH	142	1700	726	1700			
Volume to Capacity	0.85	0.56	0.20	0.37			
Queue Length 95th (m)	42.1	0.0	5.5	0.0			
Control Delay (s)	100.9	0.0	11.2	0.0			
Lane LOS	F		В				
Approach Delay (s)	100.9	0.0	2.0				
Approach LOS	F						
Intersection Summary							
Average Delay			7.5				
Intersection Capacity Utilization			72.1%	ICI	J Level of Ser	vice	
Analysis Period (min)			15	100		100	
			10				

Projected 2024 PM 4: Site Access #2 & Mer Bleue

4. Sile Access #2 & Mer E		×	t	•	\	1	-	
	<		I	1	*	ŧ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	Y		4		۲	•		
Traffic Volume (veh/h)	0	165	117	0	227	164		
Future Volume (Veh/h)	0	165	117	0	227	164		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90		
Hourly flow rate (vph)	0.70	183	130	0.70	252	182		
Pedestrians	Ū	105	150	0	202	102		
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)			None			None		
Median type			None			none		
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked		105			100			
vC, conflicting volume	816	130			130			
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	816	130			130			
tC, single (s)	6.4	6.2			4.1			
tC, 2 stage (s)								
tF (s)	3.5	3.3			2.2			
p0 queue free %	100	80			83			
cM capacity (veh/h)	287	920			1455			
Direction, Lane #	WB 1	NB 1	SB 1	SB 2				
Volume Total	183	130	252	182				
	183	130	252	182				
Volume Left								
Volume Right	183	0	0	0				
cSH	920	1700	1455	1700				
Volume to Capacity	0.20	0.08	0.17	0.11				
Queue Length 95th (m)	5.6	0.0	4.8	0.0				
Control Delay (s)	9.9	0.0	8.0	0.0				
Lane LOS	А		А					
Approach Delay (s)	9.9	0.0	4.6					
Approach LOS	А							
Intersection Summary								
Average Delay			5.1					
Intersection Capacity Utilization			37.4%	ICI	J Level of Serv	lico		
Analysis Period (min)			37.4% 15	ICL	LEVELOI 260	NCE		
Analysis Penou (MIN)			15					

Projected 2024 PM 5: Tenth Line & Site Access #1

	٨	-	*	4	+	×	•	1	1	*	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1				\$			۴ ۲			۹ ا	
Traffic Volume (veh/h)	34	0	4	7	0	37	6	515	11	63	295	47
Future Volume (Veh/h)	34	0	4	7	0	37	6	515	11	63	295	47
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	38	0	4	8	0	41	7	572	12	70	328	52
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	1127	1092	354	1090	1112	578	380			584		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1127	1092	354	1090	1112	578	380			584		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	76	100	99	96	100	92	99			93		
cM capacity (veh/h)	158	198	690	180	193	516	1178			991		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	42	49	591	450								
Volume Left	38	8	7	70								
Volume Right	4	41	12	52								
cSH	170	396	1178	991								
Volume to Capacity	0.25	0.12	0.01	0.07								
Queue Length 95th (m)	7.1	3.2	0.1	1.7								
Control Delay (s)	33.0	15.4	0.2	2.1								
Lane LOS	D	С	А	А								
Approach Delay (s)	33.0	15.4	0.2	2.1								
Approach LOS	D	С										
Intersection Summary												
Average Delay			2.8									
Intersection Capacity Utilization			Err%	ICL	J Level of S	ervice			Н			
Analysis Period (min)			15									

Projected 2029 AM 2: Tenth Line & Sweetvalley/Harvest Valley

	٦	-+	1	+	•	Ť	1	Ļ	
ane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
ane Configurations	ň	4	5	4	۲	ŧ₽	٦	≜ †⊅	
Fraffic Volume (vph)	125	0	111	0	7	402	79	299	
Future Volume (vph)	125	0	111	0	7	402	79	299	
ane Group Flow (vph)	139	28	123	334	8	476	88	383	
urn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
/inimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
/inimum Split (s)	34.5	34.5	34.5	34.5	29.2	29.2	29.2	29.2	
otal Split (s)	35.0	35.0	35.0	35.0	55.0	55.0	55.0	55.0	
otal Split (%)	38.9%	38.9%	38.9%	38.9%	61.1%	61.1%	61.1%	61.1%	
ellow Time (s)	3.3	3.3	3.3	3.3	3.7	3.7	3.7	3.7	
II-Red Time (s)	3.2	3.2	3.2	3.2	2.5	2.5	2.5	2.5	
ost Time Adjust (s)	-1.7	-1.7	-1.7	-1.7	-1.7	-1.7	-1.7	-1.7	
otal Lost Time (s)	4.8	4.8	4.8	4.8	4.5	4.5	4.5	4.5	
ead/Lag	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
ead-Lag Optimize?									
tecall Mode	None	None	None	None	C-Max	C-Max	C-Max	C-Max	
ct Effct Green (s)	23.3	23.3	23.3	23.3	57.4	57.4	57.4	57.4	
ctuated g/C Ratio	0.26	0.26	0.26	0.26	0.64	0.64	0.64	0.64	
/c Ratio	0.20	0.04	0.36	0.20	0.01	0.22	0.16	0.18	
Control Delay	102.7	0.1	28.4	3.8	8.4	8.0	9.4	7.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
otal Delay	102.7	0.0	28.4	3.8	8.4	8.0	9.4	7.3	
OS	F	A	C	A	A	A	A	A	
pproach Delay		85.5	U	10.4	Л	8.0	Л	7.7	
Approach LOS		60.5 F		B		A		A	
Queue Length 50th (m)	23.3	0.0	17.0	0.0	0.5	16.6	5.8	12.2	
Queue Length 95th (m)	#52.0	0.0	29.0	9.8	2.4	28.3	14.7	21.7	
nternal Link Dist (m)	#JZ.0	161.9	27.0	264.6	2.4	20.3	14.7	328.9	
furn Bay Length (m)	15.0	101.7	15.0	204.0	40.0	221.0	40.0	J20.7	
Base Capacity (vph)	185	847	442	768	598	2148	538	2131	
Starvation Cap Reductn	0	047	442	00700	0 0	0	0	0	
pillback Cap Reductn	0	0	0	0	0	0	0	0	
torage Cap Reductn	0	0	0	0	0	0	0	0	
educed v/c Ratio	0.75	0.03	0.28	0.43	0.01	0.22	0.16	0.18	
educed wit Ralio	0.75	0.03	0.20	0.43	0.01	0.22	0.10	0.10	
tersection Summary									
ycle Length: 90									
ctuated Cycle Length: 90									
offset: 0 (0%), Referenced to phase	e 2:NBTL and	6:SBTL, St	art of Greer	1					
atural Cycle: 65									
control Type: Actuated-Coordinate	ed								
laximum v/c Ratio: 0.98									
tersection Signal Delay: 16.8				In	tersection L	OS: B			
ntersection Capacity Utilization 64	.4%			IC	U Level of S	Service C			
nalysis Period (min) 15									
95th percentile volume exceed	s capacity, que	eue may be	longer.						
Queue shown is maximum after		,	ÿ						
plits and Phases: 2: Tenth Line	e & Sweetvalle	y/Harvest V	alley			-			
1 Ø2 (R)							<u>↓</u> ø4		
55 s							35 s		
N							V Ø8		
♦ Ø6 (R)									

Projected 2029 AM 1: Mer Bleue & Renaud

	٦	\sim	•	+	T	1
		•	`		•	•
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			ŧ	f,	
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	166	25	70	285	172	485
Future Volume (vph)	166	25	70	285	172	485
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	184	28	78	317	191	539
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total (vph)	212	395	730			
Volume Left (vph)	184	78	0			
Volume Right (vph)	28	0	539			
Hadj (s)	0.13	0.07	-0.41			
Departure Headway (s)	6.7	5.7	4.9			
Degree Utilization, x	0.40	0.63	0.99			
Capacity (veh/h)	523	625	729			
Control Delay (s)	14.1	17.9	52.1			
Approach Delay (s)	14.1	17.9	52.1			
Approach LOS	В	С	F			
Intersection Summary						
Delay			35.9			
Level of Service			E			
Intersection Capacity Utilization			82.3%	ICL	J Level of Serv	rice
Analysis Period (min)			15			
, ,						

Projected 2029 AM 3: Mer Bleue & Willow Aster

3: Mer Bieue & Willow Ast	.ei						_
	1	•	1	1	\	Ţ	
	•		-	•	-	Ŧ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		4Î		ľ	↑	
Traffic Volume (veh/h)	57	106	434	16	30	600	
Future Volume (Veh/h)	57	106	434	16	30	600	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	63	118	482	18	33	667	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	1224	491			500		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1224	491			500		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	67	80			97		
cM capacity (veh/h)	192	578			1064		
			00.4				
Direction, Lane #	WB 1	NB 1	SB 1	SB 2			
Volume Total	181	500	33	667			
Volume Left	63	0	33	0			
Volume Right	118	18	0	0			
cSH	340	1700	1064	1700			
Volume to Capacity	0.53	0.29	0.03	0.39			
Queue Length 95th (m)	22.6	0.0	0.7	0.0			
Control Delay (s)	27.1	0.0	8.5	0.0			
Lane LOS	D		А				
Approach Delay (s)	27.1	0.0	0.4				
Approach LOS	D						
Intersection Summary							
Average Delay			3.8				
Intersection Capacity Utilization			50.2%	ICI	J Level of Serv	lice	
Analysis Period (min)			15	ict			
Analysis Fellou (IIIII)			10				

Projected 2029 AM 4: Site Access #2 & Mer Bleue

4. Sile Access #2 & Mer Die	<u></u>	×.	t	1	\	
			-			*
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		ĥ		ሻ	↑
Traffic Volume (veh/h)	0	205	144	0	96	69
Future Volume (Veh/h)	0	205	144	0	96	69
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	0	228	160	0	107	77
Pedestrians		220	100	Ū	107	
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)			NULLE			NOLIC
Upstream signal (m)						
pX, platoon unblocked						
	451	160			160	
vC, conflicting volume	451	100			100	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol	451	1/0			1/0	
vCu, unblocked vol	451	160			160	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)	<i>.</i> -					
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	74			92	
cM capacity (veh/h)	523	885			1419	
Direction, Lane #	WB 1	NB 1	SB 1	SB 2		
Volume Total	228	160	107	77		
Volume Left	0	0	107	0		
Volume Right	228	0	0	0		
cSH	885	1700	1419	1700		
Volume to Capacity	0.26	0.09	0.08	0.05		
Queue Length 95th (m)	7.8	0.0	1.9	0.0		
Control Delay (s)	10.5	0.0	7.7	0.0		
Lane LOS	10.5 B	0.0	Α	0.0		
Approach Delay (s)	10.5	0.0	4.5			
Approach LOS	10.5 B	0.0	4.J			
	D					
Intersection Summary						
Average Delay			5.6			
			5.6 37.0% 15	ICL	J Level of Ser	vice

Projected 2029 AM 5: Tenth Line & Site Access #1

	۶	-	•	4	+	×.	1	†	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1				\$			۴ ۲			۹ ا	
Traffic Volume (veh/h)	43	0	5	12	0	73	2	323	4	24	409	19
Future Volume (Veh/h)	43	0	5	12	0	73	2	323	4	24	409	19
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	48	0	6	13	0	81	2	359	4	27	454	21
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	964	886	464	890	894	361	475			363		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	964	886	464	890	894	361	475			363		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	76	100	99	95	100	88	100			98		
cM capacity (veh/h)	203	277	598	256	274	684	1087			1196		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	54	94	365	502								
Volume Left	48	13	2	27								
Volume Right	6	81	4	21								
cSH	219	555	1087	1196								
Volume to Capacity	0.25	0.17	0.00	0.02								
Queue Length 95th (m)	7.1	4.6	0.0	0.5								
Control Delay (s)	26.7	12.8	0.1	0.7								
Lane LOS	D	В	А	А								
Approach Delay (s)	26.7	12.8	0.1	0.7								
Approach LOS	D	В										
Intersection Summary												
Average Delay			3.0									
Intersection Capacity Utilization			Err%	ICL	J Level of S	ervice			Н			
Analysis Period (min)			15									

Projected 2029 PM 2: Tenth Line & Sweetvalley/Harvest Valley

	٦	+	4	Ļ	•	†	*	ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations	<u> </u>	4	<u> </u>	1	<u> </u>	≜ †⊅	<u> </u>	† ‡	
Traffic Volume (vph)	106	0	25	0	39	487	301	388	
Future Volume (vph)	106	0	25	0	39	487	301	388	
Lane Group Flow (vph)	118	26	28	208	43	660	334	619	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases	T CHII	4	T CHII	8	T CHI	2	T CHII	6	
Permitted Phases	4	т	8	0	2	2	6	0	
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase	т	т	0	0	2	2	0	0	
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
Minimum Split (s)	31.5	31.5	31.5	31.5	24.4	24.4	24.4	24.4	
Total Split (s)	35.0	35.0	35.0	35.0	55.0	55.0	55.0	55.0	
Total Split (%)	38.9%	38.9%	38.9%	38.9%	61.1%	61.1%	61.1%	61.1%	
Yellow Time (s)	3.3	30.970	30.970	30.970	3.7	3.7	3.7	3.7	
All-Red Time (s)	3.3 3.2	3.3 3.2	3.3 3.2	3.3 3.2	3.7 2.5	3.7 2.5	3.7 2.5	3.7 2.5	
· · /	3.2 -1.7	3.2 -1.7	3.2 -1.7	3.2 -1.7	2.5 -1.7	2.5 -1.7	2.5 -1.7	2.5 -1.7	
Lost Time Adjust (s) Total Lost Time (s)	-1.7 4.8	-1.7 4.8	-1.7 4.8	-1.7	-1.7	-1.7	-1.7	-1.7	
	4.0	4.0	4.0	4.0	4.0	4.0	4.3	4.3	
Lead/Lag									
Lead-Lag Optimize?	Nono	Mono	None	None	C May	C May	C May	C May	
Recall Mode	None	None	None		C-Max	C-Max	C-Max	C-Max	
Act Effct Green (s)	18.0	18.0	18.0	18.0	62.7	62.7	62.7	62.7	
Actuated g/C Ratio	0.20	0.20	0.20	0.20	0.70	0.70	0.70	0.70	
//c Ratio	0.71	0.04	0.11	0.38	0.08	0.29	0.69	0.27	
Control Delay	55.6	0.1	27.6	2.3	6.3	5.7	20.0	4.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	55.6	0.1	27.6	2.3	6.3	5.7	20.0	4.9	
_OS	E	A	С	A	А	A	В	A	
Approach Delay		45.5		5.3		5.8		10.2	
Approach LOS	10.0	D	1.0	A	2.0	A	00 F	B	
Queue Length 50th (m)	19.3	0.0	4.0	0.0	2.0	17.5	28.5	13.5	
Queue Length 95th (m)	34.4	0.0	9.9	1.3	7.0	33.0	#94.1	26.9	
nternal Link Dist (m)	15.0	161.9	45.0	264.6	10.0	218.0	10.0	328.9	
Furn Bay Length (m)	15.0	770	15.0	74 /	40.0	0011	40.0	0000	
Base Capacity (vph)	279	778	442	716	506	2314	482	2292	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.42	0.03	0.06	0.29	0.08	0.29	0.69	0.27	
Intersection Summary									
Cycle Length: 90									
Actuated Cycle Length: 90									
Offset: 0 (0%), Referenced to	phase 2	:NBTL an	d 6:SBTL	., Start of	Green				
Vatural Cycle: 90									
Control Type: Actuated-Coor	dinated								
Maximum v/c Ratio: 0.71									
ntersection Signal Delay: 10					ntersectio				
ntersection Capacity Utilizati	on 71.5%)		10	CU Level	of Service	еC		
Analysis Period (min) 15									
95th percentile volume ex	kceeds ca	pacity, qu	leue may	be longe	er.				
05/21/2012 Deceline									

05/31/2013 Baseline

Queue shown is maximum after two cycles.

Splits and Phases:	2: Tenth Line & Sweetvalley/Harvest Valley

∫ ¶ Ø2 (R)	<u>⊸</u> _ø4	
55 s	35 s	
● Ø6 (R)	₩ Ø8	
55 s	35 s	

Projected 2029 PM 1: Mer Bleue & Renaud

09/20/2018	3
------------	---

	٦	\mathbf{r}	1	Ť	Ļ	1
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Υ			4	4	
Sign Control	Stop			Stop	Stop	
Traffic Volume (vph)	598	65	41	285	354	273
Future Volume (vph)	598	65	41	285	354	273
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	664	72	46	317	393	303
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total (vph)	736	363	696			
Volume Left (vph)	664	46	0			
Volume Right (vph)	72	0	303			
Hadj (s)	0.16	0.06	-0.23			
Departure Headway (s)	6.8	7.0	6.4			
Degree Utilization, x	1.39	0.71	1.24			
Capacity (veh/h)	543	502	574			
Control Delay (s)	206.5	25.5	143.9			
Approach Delay (s)	206.5	25.5	143.9			
Approach LOS	F	D	F			
Intersection Summary						
Delay			145.6			
Level of Service			F			
Intersection Capacity Utiliz	zation		98.1%	IC	U Level o	of Service
Analysis Period (min)			15			

Projected 2029 PM 3: Mer Bleue & Willow Aster

	4	×.	Ť	*	1	Ļ	_
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	۲		4		٦	1	
Traffic Volume (veh/h)	38	71	815	68	128	589	
Future Volume (Veh/h)	38	71	815	68	128	589	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	42	79	906	76	142	654	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	1882	944			982		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1882	944			982		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	33	75			80		
cM capacity (veh/h)	62	318			703		
Direction, Lane #	WB 1	NB 1	SB 1	SB 2			
Volume Total	121	982	142	654			
Volume Left	42	0	142	0			
Volume Right	79	76	0	0			
cSH	131	1700	703	1700			
Volume to Capacity	0.92	0.58	0.20	0.38			
Queue Length 95th (m)	46.6	0.0	5.7	0.0			
Control Delay (s)	123.3	0.0	11.4	0.0			
Lane LOS	F		В				
Approach Delay (s)	123.3	0.0	2.0				
Approach LOS	F						
Intersection Summary							
Average Delay			8.7				
Intersection Capacity Utilization			73.9%	IC	U Level o	of Service	;
Analysis Period (min)		15					

Projected 2029 PM 4: Site Access #2 & Mer Bleue

09/20/2018

	4	•	Ť	1	1	Ŧ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		f.		٦	1	_
Traffic Volume (veh/h)	0	165	123	0	227	172	
Future Volume (Veh/h)	0	165	123	0	227	172	
Sign Control	Stop		Free	Ū		Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	0.70	183	137	0.70	252	191	
Pedestrians	Ū	100	107	Ū	202	171	
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)			NULLE			NULLE	
Upstream signal (m) pX, platoon unblocked							
vC, conflicting volume	832	137			137		
	83Z	137			137		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol	000	107			107		
vCu, unblocked vol	832	137			137		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)	0.5	0.0			0.0		
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	80			83		
cM capacity (veh/h)	280	911			1447		
Direction, Lane #	WB 1	NB 1	SB 1	SB 2			
Volume Total	183	137	252	191			
Volume Left	0	0	252	0			
Volume Right	183	0	0	0			
cSH	911	1700	1447	1700			
Volume to Capacity	0.20	0.08	0.17	0.11			
Queue Length 95th (m)	5.7	0.0	4.8	0.0			
Control Delay (s)	9.9	0.0	8.0	0.0			
Lane LOS	А		А				
Approach Delay (s)	9.9	0.0	4.6				
Approach LOS	А						
Intersection Summary							
Average Delay			5.0				
Intersection Capacity Utiliza	tion		40.9%	IC	U Level o	of Service	;
Analysis Period (min)			15				

Projected 2029 PM 5: Tenth Line & Site Access #1

	٦	-	\mathbf{r}	4	-	•	1	Ť	1	5	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦				\$			4			4Î	
Traffic Volume (veh/h)	34	0	4	7	0	37	6	580	11	63	332	47
Future Volume (Veh/h)	34	0	4	7	0	37	6	580	11	63	332	47
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	38	0	4	8	0	41	7	644	12	70	369	52
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	1240	1205	395	1203	1225	650	421			656		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1240	1205	395	1203	1225	650	421			656		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	71	100	99	95	100	91	99			92		
cM capacity (veh/h)	130	169	654	150	164	469	1138			931		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	42	49	663	491								
Volume Left	38	8	7	70								
Volume Right	4	41	12	52								
cSH	141	348	1138	931								
Volume to Capacity	0.30	0.14	0.01	0.08								
Queue Length 95th (m)	8.9	3.7	0.1	1.8								
Control Delay (s)	41.1	17.0	0.2	2.1								
Lane LOS	E	С	А	А								
Approach Delay (s)	41.1	17.0	0.2	2.1								
Approach LOS	E	С										
Intersection Summary												
Average Delay			3.0									
Intersection Capacity Utilization		Err%	IC	CU Level	of Service			Н				
Analysis Period (min)		15										