5993, 6115, 6141, 6159 Flewellyn Road & 6070 Fernbank Road (Stittsville South)

Transportation Impact Assessment

Step 1 Screening Report
Step 2 Scoping Report
Step 3 Strategy Report

Prepared for:

Caivan Stittsville West Ltd 3713 Borrisokane Road Ottawa, ON K2J 4J4

Prepared by:

November 2025

PN: 2021-128

Table of Contents

1	Screening	
2	_	
2.1	.1 Proposed Development	
2.2	.2 Existing Conditions	
	2.2.1 Area Road Network	
	2.2.2 Existing Intersections	
	2.2.3 Existing Driveways	
	2.2.4 Cycling and Pedestrian Facilities	
	2.2.5 Existing Transit	
	2.2.6 Existing Area Traffic Management	Measures10
	2.2.7 Existing Peak Hour Travel Demand	10
	2.2.8 Collision Analysis	
2.3	.3 Planned Conditions	
	2.3.1 Changes to the Area Transportation	n Network 14
	2.3.2 Other Study Area Developments	
3	Study Area and Time Periods	
3.1	.1 Study Area	
3.2	.2 Time Periods	
3.3	.3 Horizon Years	
4	Development-Generated Travel Deman	l
4.1	.1 Mode Shares	
4.2	•	
4.3	•	
4.4		
5	•	
6		
6.1	3	
6.2		
6.3	•	2!
7		
7.1		
7.2		20
7.3	_	
8	_	
8.1	•	
8.2	3	
8.3	•	
9		
9.1		Operations 28
9.2	-	Operations 30
9.3		
10	Transit	

10.1 Route Capacity	32
10.2 Transit Priority	33
11 Network Concept	34
12 Intersection Design	35
12.1 Intersection Control	35
12.2 Intersection Design	35
12.2.1 2030 Future Total Intersection Operations	35
12.2.2 2035 Future Total Intersection Operations	39
12.2.3 Intersection MMLOS	42
12.2.4 Recommended Design Elements	42
12.3 Eder Lands Sensitivity	42
12.3.1 Eder Lands Trip Generation and Assignment	42
12.3.2 Recommended Design Elements	46
13 W-4 Concept Plan	46
14 Summary of Improvements Indicated and Modification	ns Options46
15 Conclusion	51
List of Figures	
Figure 1: Area Context Plan	2
Figure 2: Concept Plan	3
Figure 3: Existing Driveways	5
Figure 4: Study Area Pedestrian Facilities	6
Figure 5: Study Area Cycling Facilities	7
Figure 6: Existing Pedestrian Volumes	7
Figure 7: Existing Cyclist Volumes	8
Figure 8: Study Area Transit Service (April 28, 2025)	9
Figure 9: Existing Study Area Transit Stops	9
Figure 10: Existing Traffic Counts	
Figure 11: Study Area Collision Records, 2018-2022	
Figure 12: Area Developments	
Figure 13: New Site Generation Auto Volumes	21
Figure 14: Conceptual Pedestrian Network	24
Figure 15: 2030 Future Background Volumes	29
Figure 16: 2035 Future Background Volumes	31
Figure 17 Conceptual Subdivision Transit Stop Locations	33
Figure 18: Local Screenline	34
Figure 19: 2030 Future Total Volumes	36
Figure 20: 2035 Future Total Volumes	40
Figure 21: New Eder Lands Generation Auto Volumes	43
Figure 22: 2035 Future Total Volumes – Sensitivity with Eder La	nds 44

Table of Tables

Table 1: Intersection Count Date	10
Table 2: Existing Intersection Operations	11
Table 3: Study Area Collision Summary, 2018-2022	12
Table 4: Summary of Collision Locations, 2018-2022	12
Table 5: Flewellyn Road at Shea Road Collision Summary, 2018-2022	13
Table 6: Fernbank Road at Shea Road Collision Summary, 2018-2022	14
Table 7: Area Development Details	16
Table 8: TRANS Trip Generation Person Trip Rates – Kanata/Stittsville	17
Table 9: TRANS Trip Generation Person Trip Rates – Rural Southwest	18
Table 10: Expected Development Mode Shares	18
Table 11: Trip Generation Person Trip Rates by Peak Period	18
Table 12: Total Residential Person Trip Generation by Peak Period	18
Table 13: Trip Generation by Mode	19
Table 14: OD Survey Distribution	20
Table 15: Exemption Review	21
Table 16: Boundary Street MMLOS Analysis	25
Table 17: TRANS Regional Model Projections – Study Area Growth Rates – AM Peak Hour	27
Table 18: Recommended Area Growth Rates	27
Table 19: 2030 Future Background Intersection Operations	30
Table 20: 2035 Future Background Intersection Operations	31
Table 21: Trip Generation by Transit Mode	32
Table 22: Forecasted Site-Generated Transit Ridership	33
Table 23: Local Area Screenline Road Capacity	34
Table 24: 2030 Future Total Intersection Operations	37
Table 25: 2030 Future Total - Mitigation Measures	38
Table 26: 2030 Future Total - EBL at Flewellyn Road at Street 12 & at Street 16	39
Table 27: 2035 Future Total Intersection Operations	40
Table 28: 2035 Future Total - EBL at Flewellyn Road at Street 12 & at Street 16	42
Table 29: Eder Lands Person Trip Generation by Peak Period	42
Table 30: Eder Lands Trip Generation by Mode	43
Table 31: 2035 Future Total Intersection Operations – Sensitivity with Eder Lands	45
Table 32: 2035 Future Total – Sensitivity with Eder Lands, EBL at Flewellyn Road at Street 12 & at Street 16.	46

List of Appendices

Appendix A – TIA Screening Form and Certification Form

Appendix B – Turning Movement Count Data

Appendix C - Synchro and Sidra Intersection Worksheets - Existing Conditions

Appendix D – All-Way Stop-Control Warrant Calculation

Appendix E - Signal Warrant Calculation

Appendix F – Left-Turn Warrant Calculation

Appendix G - Collision Data

Appendix H – Conceptual Traffic Calming Plan

Appendix I – MMLOS Analysis

Appendix J – TDM Checklist

Appendix K – TRANS Model

Appendix L – Background Development

Appendix M – Synchro and Sidra Intersection Worksheets – 2030 Future Background Conditions

Appendix N – Synchro and Sidra Intersection Worksheets – 2035 Future Background Conditions

Appendix O – Synchro and Sidra Intersection Worksheets – 2030 Future Total Conditions

Appendix P – Synchro and Sidra Intersection Worksheets – 2030 Future Total Conditions – Mitigation Measures

Appendix Q – Synchro and Sidra Intersection Worksheets – 2030 Future Total - EBL at Flewellyn Road at Street 12 & at Street 16

Appendix R – Synchro and Sidra Intersection Worksheets – 2035 Future Total Conditions

Appendix S – Synchro and Sidra Intersection Worksheets – 2035 Future Total - EBL at Flewellyn Road at Street 12 & at Street 16

Appendix T – Synchro and Sidra Intersection Worksheets – 2035 Future Total Conditions Sensitivity

Appendix U – Synchro and Sidra Intersection Worksheets – 2035 Future Total – Sensitivity with Eder Lands, EBL at Flewellyn Road at Street 12 & at Street 16

1 Screening

This study has been prepared according to the City of Ottawa's 2017 Transportation Impact Assessment (TIA) Guidelines, incorporating the 2023 Revision to Transportation Impact Assessment Guidelines. Accordingly, a Step 1 Screening Form has been prepared and is included as Appendix A, along with the Certification Form for the TIA Study PM. As shown in the Screening Form, a TIA is required, and this study has been prepared to support a plan of subdivision application.

The subdivision lands are located within the W-4 Urban Expansion Area Lands (W-4 Lands) outlined in the City's Official Plan Schedule C17. The W-4 Lands related applications have been submitted to lift the Future Neighbourhood Overlay. The transportation report prepared in support of that submission will be the parent transportation study in the process that informs the concept plan for the future neighbourhood. This TIA will assess the plan of subdivision under the typical development review process and assess the impact of any changes between the overall concept plan and any revisions to the plan of subdivision.

2 Existing and Planned Conditions

2.1 Proposed Development

The proposed development, situated in the W-4 Urban Expansion boundary, is located at the northwest corner of Shea Road at Flewellyn Road intersection and bounded by the Eder Lands, Flewellyn Road, a separated estate home conclave along Poplarwood Avenue, and the existing community south of Hickstead Way. The proposed development current zoning is Rural (RU). The anticipated build-out year is 2030.

The plan of subdivision proposes a total of 558 townhomes, 566 single-detached homes, 442 stacked townhomes, and park/open space within the proposed development. The subject lands encompass 5993, 6115, 6141, and 6159 Flewellyn Road, 6070 Fernbank Road, 59 Aridus Crescent, the hydro corridor, Faulkner Drain, and stormwater maintenance ponds. New collector roads are proposed to connect to Shea Road and Flewellyn Road, while new local roads are proposed to connect to Painted Sky Way and Parade Drive at the Hickstead Way intersection.

The Eder Lands, adjacent to the proposed development, were considered within the W-4 Lands study and reside outside the urban boundary. They are not part of the proposed subdivision within this study.

Figure 1 illustrates the study area and the Eder Lands context. Figure 2 illustrates the proposed concept plan.

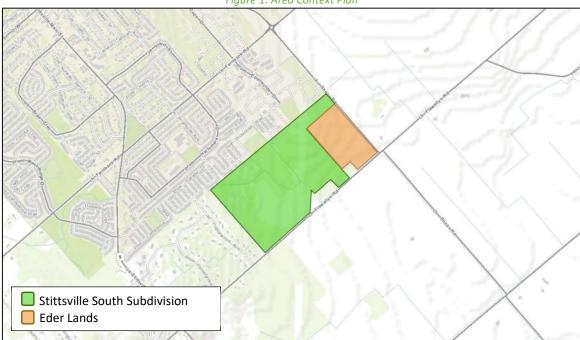
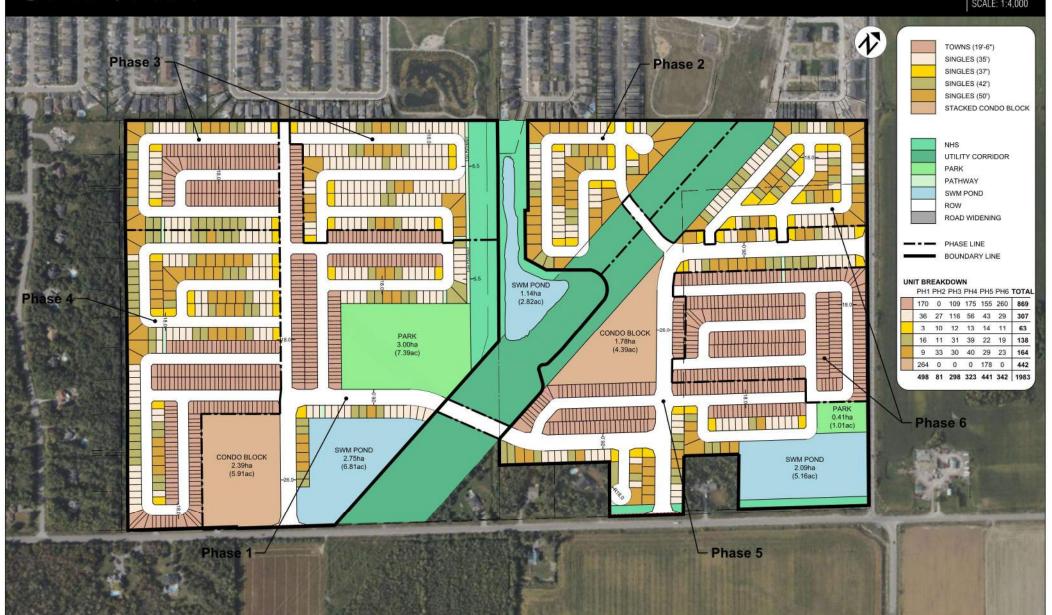



Figure 1: Area Context Plan

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: February 11, 2025

DRAWING: CP-16 DATE: 10/21/2025 AUTHOR: JG SCALE: 1:4,000

2.2 Existing Conditions

2.2.1 Area Road Network

Stittsville Main Street: Stittsville Main Street is a City of Ottawa arterial road with a two-lane rural cross-section including paved shoulders within the study area. The posted limit is 60 km/h within the study area, and the Cityprotected right of way is 42.5 metres. Stittsville Main Street is designated as a truck route.

Huntley Road: Huntley Road is a City of Ottawa arterial road with a two-lane rural cross-section including paved shoulders. Beyond 110 metres south of Flewellyn Road, the posted speed limit changes from 60 km/h to 70 km/h. Huntley Road is designated as a truck route. The existing right of way is 28.0 metres.

Fernbank Road: Fernbank Road is a City of Ottawa arterial road with a two-lane rural cross-section including paved shoulders. The posted speed limit is 60 km/h east of Cope Drive/Edenwylde Drive and 40 km/h between Cope Drive/Edenwylde Drive and West Ridge Drive. The City-protected right of way is 37.5 metres.

Flewellyn Road: Flewellyn Road is a City of Ottawa collector road with a two-lane rural cross-section including paved shoulders within the study area. The posted speed limit is 80 km/h, and the existing right of way is 26.0 metres.

Shea Road: Shea Road is a City of Ottawa collector road with a two-lane rural cross-section including gravel shoulders within the study area. Approximately 270.0 metres south of Fernbank Road, the posted speed limit transitions from 60 km/h to 80 km/h. The existing right of way is 20.0 metres.

Painted Sky Way: Painted Sky Way is a City of Ottawa local road with a two-lane urban cross-section. The speed limit is assumed to be 40 km/h, consistent with the remainder of the adjacent subdivision, and the existing right of way is 18.0 metres.

Parade Drive: Parade Drive is a City of Ottawa local road with a two-lane urban cross-section. Sidewalks are present on both sides of the road. The posted speed limit is 40 km/h, and the existing right of way is 20.0 metres east of Hickstead Way and 24.0 metres west of Hickstead Way.

Hickstead Way: Hickstead Way is a City of Ottawa local road with a two-lane urban cross-section. Sidewalks are present on both sides of the road east of Parade Drive and on the north side of the road west of Parade Drive ending at a pathway block at the 90-degree bend towards Parade Drive. The speed limit is assumed to be consistent with Parade Drive at a posted 40 km/h, and the existing right of way is 18.0 metres.

Cosanti Drive: Cosanti Drive is a City of Ottawa local road with a two-lane urban cross-section. Sidewalks are expected to be constructed along both sides of the roadway. The unposted speed limit is 40 km/h, and the Cityprotected right of way is 22.0 metres.

2.2.2 Existing Intersections

The key intersections within one kilometre of the site have been summarized below:

Shea Road at Fernbank Road The intersection of Shea Road at Fernbank Road is a four-legged roundabout intersection. Each leg consists of a shared all-movement lane. Pedestrian crossovers are provided on each leg and a MUP circulates the roundabout. No turn restrictions were noted.

Shea Road at Flewellyn Road The intersection of Shea Road and Flewellyn Road is a stop-controlled

intersection on the minor approaches of Shea Road, which are offset

by approximately 33.0 metres. Each leg consists of a shared all-movement lane. No turn restrictions are noted

Stittsville Main Street/ Huntley Road at Flewellyn Road

The intersection of Stittsville Main Street/ Huntley Road at Flewellyn Road is an all-way stop-controlled intersection. The northbound, eastbound, and westbound approaches each consist of a shared all-movement lane. The southbound approach consists of a shared left-turn/through and channelized right-turn lane. No turn restrictions are noted.

Shea Road at Cosanti Drive

The intersection of Shea Road at Cosanti Drive is a T-intersection with stop control on the minor approach of Cosanti Drive. The northbound approach consists of a left-turn/through lane, the southbound approach consists of a through/right-turn lane. The eastbound approach consists of a left-turn/right-turn lane. No turn restrictions were noted.

2.2.3 Existing Driveways

Within 200 metres of the subdivision accesses, driveways are present on both sides of Flewellyn Road to single detached dwellings. Figure 3 illustrates the existing driveways.

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: February 11, 2025

2.2.4 Cycling and Pedestrian Facilities

Figure 4 illustrates the pedestrian facilities in the study area and Figure 5 illustrates the cycling facilities in the study area. Considering the plans for other developments and the newly constructed pedestrian and cycling facilities, new community sidewalks and cycling pathways have been included in the figure where possible, despite not being formalized within the City's pedestrian network in geoOttawa. As the area is still developing, these should not be considered a fulsome record of all facilities.

Sidewalks are present on Stittsville Main Street north of West Ridge Drive, West Ridge Drive, Upcountry Drive, Baywood Drive, Arrowwood Drive, Brightside Avenue between Fernbank Road and Baywood Drive, Edenwylde Drive, Hartsmere Drive, Hickstead Way, and Parade Drive.

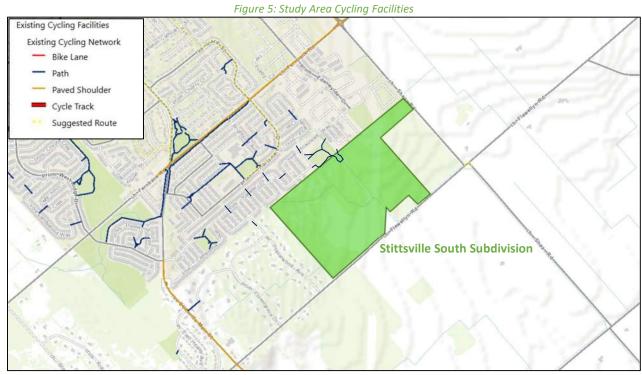

Paved shoulders are present on both sides along Stittsville Main Street south of Etta Street, Huntley Road, Fernbank Road, Shea Road north of Fernbank Road, Flewellyn Road and on the west side along Stittsville Main Street between Etta Street and Upcountry Drive. A suggested route is noted at the offset Flewellyn Road and Shea Road intersection in the geoOttawa existing cycling network. The 2025 TMP identifies the implementation of new active transportation facilities on both sides of Fernbank Road from West Ridge Drive to Shea Road, improving the existing pathway on the south side of Fernbank from Stittsville Main Street to Hartsmere Drive and implementing new sidewalks and cycletracks on both sides of Shea Road from Abbott Street to the Stittsville South W4 future community. Cycletracks are planned to be constructed on Cope Drive north of Fernbank Road as part of the 6041 Fernbank and 5957 and 5969 Fernbank subdivisions.

Figure 4: Study Area Pedestrian Facilities

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: February 11, 2025

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: February 11, 2025

Pedestrian and cyclist volumes included in study area intersection counts, presented in Section 2.2.7, have been compiled and are illustrated in Figure 6 and Figure 7, respectively. It is also noted that no pedestrian and cyclist volumes are available at the intersection of Shea Road at Cosanti Drive. At the intersection of Shea Road at Fernbank Road, the City of Ottawa notes that the collection data for active mode volumes may be lower than summer conditions, although this has not been confirmed.

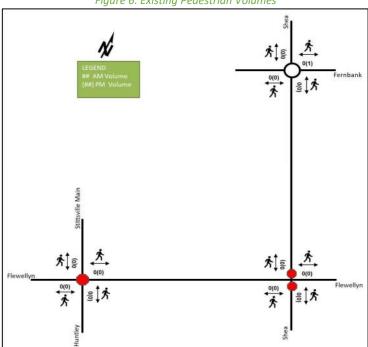


Figure 6: Existing Pedestrian Volumes

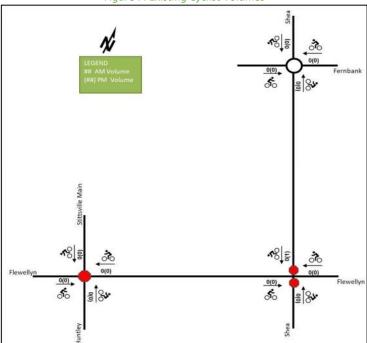


Figure 7: Existing Cyclist Volumes

2.2.5 Existing Transit

Figure 8 illustrates the existing transit system map in proximity to the proposed site and Figure 9 illustrates nearby transit stops. It is noted that no transit stops are present within 400 metres of the site. All transit information is from April 28, 2025, and is included for general information purposes and context to the surrounding area.

Route #61 currently travels along Shea Road, Fernbank Road, and Stittsville Main Street, Route #262 currently travels along Fernbank Road and West Ridge Drive, and Routes #263 and #301 currently travel along Stittsville Main Street. All these routes continue towards the northern Stittsville area.

The frequency of routes within proximity of the site based on April 28, 2025, service levels are:

- Route # 61 30-minute service all day
- Route # 262 Four morning buses and five evening buses per day
- Route # 263 Three morning buses and four afternoon buses per day in the peak direction
- Route # 301 One morning bus and one afternoon bus on Monday in the peak direction

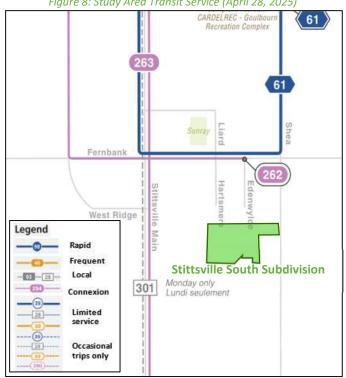


Figure 8: Study Area Transit Service (April 28, 2025)

Source: http://www.octranspo.com/ Accessed: April 28, 2025

Figure 9: Existing Study Area Transit Stops

Source: http://www.octranspo.com/ Accessed: February 11, 2025

Existing Area Traffic Management Measures

There are no existing area traffic management measures within the study area.

2.2.7 Existing Peak Hour Travel Demand

Existing turning movement counts were acquired from the City of Ottawa, and third-party counts were collected by The Traffic Specialist. Table 1 summarizes the intersection count dates and sources. The volumes at the intersection of Shea Road at Cosanti Drive were estimated based on the 5993 Flewellyn TIA (IBI Group, 2015), and the trip generation are noted to be updated to the TRANS 2020 methodology.

Table 1: Intersection Count Date					
Intersection	Count Date	Source			
Shea Road at Fernbank Road	Wednesday, March 02, 2022	City of Ottawa			
Shea Road at Flewellyn Road	Wednesday, April 26, 2023	City of Ottawa			
Stittsville Main Street/ Huntley Road at Flewellyn Road	Thursday, August 10, 2023	The Traffic Specialist			
Shea Road at Cosanti Drive	-	5993 Flewellyn TIA			

Figure 10 illustrates the existing traffic counts and Table 2 summarizes the existing intersection operations. Synchro 11 has been used to model the unsignalized intersections and Sidra 9 to model the study area roundabout. Level of service is based on HCM 2010 delay for stop-controlled intersection, and Sidra HCM 6 for roundabout intersections. Detailed turning movement count data is included in Appendix B and the synchro and sidra worksheets are provided in Appendix C.

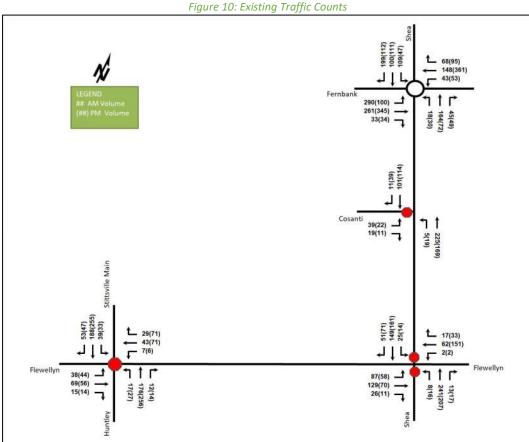


Table 2: Existing Intersection Operations

lutous stieu		AM Peak Hour				PM Peak Hour			
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
	EB	В	0.65	13.1	58.3	Α	0.50	9.3	23.7
Shea Road at	WB	Α	0.37	9.3	13.5	Α	0.53	9.7	26.0
Fernbank Road	NB	В	0.42	12.5	15.7	Α	0.22	7.2	6.8
Roundabout	SB	Α	0.43	8.2	18.8	Α	0.38	9.2	14.0
	Overall	В	0.65	11.0	58.3	Α	0.53	9.2	26.0
	EB	Α	0.07	7.6	1.5	Α	0.05	7.8	0.8
Shea Road at	WB	Α	0.00	7.6	0.0	Α	0.00	7.4	0.0
Flewellyn Road	NB	С	0.62	24.5	31.5	С	0.54	20.8	24.0
Unsignalized	SB	С	0.54	21.6	24.0	С	0.50	18.2	21.0
	Overall	В	-	14.8	-	В	-	12.3	-
Stittsville Main	EB	Α	0.21	9.8	6.0	В	0.22	10.9	6.0
Street / Huntley	WB	Α	0.13	9.1	3.0	В	0.27	10.9	8.3
Road at Flewellyn	NB	В	0.33	10.7	10.5	В	0.50	13.7	21.0
Road	SB	В	0.42	11.1	15.0	В	0.54	14.5	24.8
Unsignalized	Overall	В	-	10.5	-	В	-	13.2	-
Shoo Bood at	EBL/R	В	0.09	10.7	2.3	В	0.05	10.6	1.5
Shea Road at Cosanti Drive	NBL/R	Α	0.00	7.5	0.0	Α	0.02	7.6	0.0
	SBT/R	-	-	-	-	-	-	-	-
Unsignalized	Overall	Α	-	1.7	-	Α	-	1.3	-

Notes:

Saturation flow rate of 1800 veh/h/lane

Queue is measured in metres

Peak Hour Factor = 0.90

Delay = average vehicle delay in seconds

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

During both the AM and PM peak hours, the study area intersections operate well. No capacity issues are noted.

All-way stop control warrant analysis was performed for the intersections of Shea Road at Flewellyn Road and Shea Road at Cosanti Drive for the existing conditions. The Shea Road at Flewellyn Road intersection met the allway stop-control warrants for consideration. Although warrants are met, the City has stated an all-way stopcontrol cannot be implemented due to the offset condition. Moreover, the operation is acceptable to remain as a minor stop-control condition. All-way stop control warrant calculation sheets are provided in Appendix D.

Signal warrant analysis of Justifications 1 and 2 were performed for the intersections of Shea Road at Flewellyn Road and Stittsville Main Street / Huntley Road at Flewellyn Road for the existing conditions. The intersection of Shea Road at Flewellyn Road does not meet signal warrants. The Stittsville Main Street / Huntley Road at Flewellyn Road intersection met the Signal Justification 1 only and can remain as an all-way stop-control. Signal warrant calculation sheets are provided in Appendix E.

The left-turn warrant analysis was performed for the intersections of Shea Road at Flewellyn Road, Stittsville Main Street / Huntley Road at Flewellyn Road, and Shea Road at Cosanti Drive for existing conditions, none of the intersections met a left-turn warrant for any approach. The left-turn warrant calculation sheets are provided in Appendix F.

2.2.8 Collision Analysis

Collision data have been acquired from the City of Ottawa open data website (data.ottawa.ca) for five years prior to the commencement of this TIA for the surrounding study area road network (2018-2022). Table 3 summarizes the collision types and conditions in the study area, Figure 11 illustrates the intersections and segments analyzed, and Table 4 summarizes the total collisions for each of these locations. Collision data are included in Appendix G.

Table 3: Study Area Collision Summary, 2018-2022

		Number	%
Total (Collisions	60	100%
	Fatality	0	0%
Classification	Non-Fatal Injury	12	20%
	Non-Fatal Injury Property Damage Only Angle Sideswipe Turning Movement Turning Movement SMV Other Other Dry Wet	48	80%
	Angle	28	47%
	Sideswipe	1	2%
Initial Impact Tune	Turning Movement	1	2%
Initial Impact Type	Turning Movement	1	2%
	SMV Other	16	27%
	Other	2	3%
	Dry	35	58%
	Wet	11	18%
Road Surface Condition	Loose Snow	4	7%
Road Surface Condition	Slush	1	2%
	Packed Snow	2	3%
	Ice	7	12%
Pedestrian Involved		0	0%
Cyclists Involved		0	0%

Figure 11: Study Area Collision Records, 2018-2022

Table 4: Summary of Collision Locations, 2018-2022

	Number	%
Intersections / Segments	60	100%
Flewellyn Rd @ Shea Rd	23	38%
Fernbank Rd @ Shea Rd	15	25%
Flewellyn Rd btwn Poplarwood Ave & Shea Rd	7	12%
Stittsville Main St/Huntley Rd @ Flewellyn Rd	10	17%

	Number	%
Intersections / Segments	60	100%
Shea Rd btwn Fernbank Rd & Flewellyn Rd	3	5%
Flewellyn Rd btwn Forestgrove Dr & Stittsville Main St	1	2%
Flewellyn Rd btwn Forestgrove Dr & Poplarwood Ave	1	2%

Within the study area, the intersections of Flewellyn Road at Shea Road and Fernbank Road at Shea Road are noted to have experienced higher collisions than other locations listed in Table 4. Table 5 and Table 6 summarize the collision types and conditions for each location.

Table 5: Flewellyn Road at Shea Road Collision Summary, 2018-2022

		Number	%
Total (Collisions	23	100%
	Fatality	0	0%
Classification	Non-Fatal Injury	7	30%
	Property Damage Only	16	70%
	Angle	17	74%
Initial Impact Type	Rear end	3	13%
	SMV Other	23 0 7 16 17	13%
	Dry	16	70%
Road Surface Condition	Wet	4	17%
Road Surface Condition	Loose Snow	1	4%
	Ice	2	9%
Pedestrian Involved		0	0%
Cyclists Involved		0	0%

The Flewellyn Road at Shea Road intersection had a total of 23 collisions during the 2018-2022 time period, with sixteen involving property damage only and the remaining seven having non-fatal injuries. The collision types are most represented by angle with 17, followed by three collisions each for the rear end and SMV other. Weather conditions do not affect collisions at this location.

The latest detailed collision records for this intersection were received from the City for the data range of 2017-2021, which is a 5-year period shifted one year earlier than the open data. From this data, a total of 20 collisions were observed, including three single motor vehicles collisions, three rear end collisions, and 14 angled collisions.

Among the 14 angled collisions recorded between 2017 and 2021, most angle collisions were noted to have occurred in a clear condition during daylight (9 out of 14). Additionally, angled collisions predominantly involved southbound vehicles conflicting with westbound vehicles (10 out of 14), with six southbound movements turning left and four traversing the offset to travel south of Flewellyn Road. Two other collisions involve left-turning southbound vehicles conflicting with eastbound vehicles and two with northbound vehicles traversing the offset conflicting with eastbound vehicles. The offset configuration of this intersection is considered the primary cause of these angled collisions. The detailed collision data are included in Appendix G.

Due to the property ownership, no ability exists for the subdivision to re-align Shea Road. The City is currently investigating the implementation of pavement markings, flashers and signage to reduce collisions until the additional property is acquired. Any mitigation that may reduce the east-west speeds would be the primary goal, as it would allow extra ability for collision avoidance and reduce the severity should a collision occur.

Table 6: Fernbank Road at Shea Road Collision Summary, 2018-2022

		Number	%
Total C	Collisions	15	100%
	Fatality	0	0%
Classification	Non-Fatal Injury	1	7%
	Property Damage Only	14	93%
	Angle	7	47%
Initial Impact Type	Rear end	4	27%
Initial Impact Type	SMV Other	3	20%
	Non-Fatal Injury Property Damage Only Angle Rear end	1	7%
	Dry	9	60%
Road Surface Condition	Wet	1	7%
Road Surface Condition	Packed Snow	1	7%
	Ice	4	27%
Pedestrian Involved		0	0%
Cyclists Involved		0	0%

The Fernbank Road at Shea Road intersection had a total of 15 collisions during the 2018-2022 time period, with fourteen involving property damage only and the remaining one having non-fatal injuries. The collision types are most represented by angle with seven, followed by four rear end, three SMV other, and one other. It is noted that six out of 15 collisions are due to wet, packed snow, or ice surface conditions. Angle collisions mostly occurred during daylight under clear and dry conditions (5 out of 7), and all the angle collisions occurred during 2018-2019. All rear end collisions occurred under dark light conditions in the late afternoon/early evening, all occurred during fall or winter between October and March, and two of four collisions occurred during icy conditions. The surface conditions and dark conditions, despite available street lighting, appear to be contributing factors for collisions at this intersection. No further examination is required as part of this study.

2.3 Planned Conditions

2.3.1 Changes to the Area Transportation Network

2.3.1.1 Robert Grant Avenue - Between Palladium Drive and Fernbank Road

Robert Grant Avenue is a 2-lane arterial roadway between Abbott Street and Fernbank Road and is being extended to northwards from Abbott Street to Hazeldean Road. The ultimate configuration of Robert Grant Avenue will be a 4-lane roadway, supporting rapid transit, cycling facilities and pedestrian facilities between Palladium Drive and Fernbank Road. The nature of this corridor will evolve from the previously completed environmental assessment study, as City standards and guidelines have advanced during the intervening time. A transit station and park-and-ride facility are identified at the intersection of Robert Grant Avenue at Fernbank Road and Abbott Street at Hazeldean Road as part of the affordable network. The City's Affordable Network only identifies this corridor as a 2-lane roadway.

2.3.1.2 Isolated Transit Priority Measures

Transit priority measures in the Transportation Master Plan (2013) are identified in the affordable network as a loop along Fernbank Road from the future Fernbank transit station at Robert Grant Avenue to Stittsville Main Street, Hazeldean Road and back to Robert Grant Avenue. The affordable network only contains transit priority measures along Hazeldean Road and Robert Grant Avenue.

2.3.1.1 Transportation Master Plan (2025)

The Transportation Master Plan (2025) includes a Capital Infrastructure Plan identifying transportation investment to support the forecasted growth and strategic connectivity and livability targets for the City. It also identifies

committed projects, and a subset of priority projects that are expected to be implemented by 2046 based on current affordability assumptions. Area projects anticipated to impact travel in the study area that are included within the Capital Infrastructure Plan are:

- Transit Network
 - Priority
 - Fernbank Road transit priority corridor
 - Stittsville Main Road transit priority corridor
 - Hazeldean Road transit priority corridor
 - Needs-Based
 - Median bus rapid transit from Hazeldean Station to Abbott Street East (Robert Grant Transitway)
- Road Network
 - Committed
 - Robert Grant Avenue Extension from Abbott Street to Hazeldean Road
 - Priority
 - Robert Grant Avenue Extension, including a new two-lane road between Palladium Drive and Hazeldean Road
 - Implementing new active transportation facilities on both sides of Fernbank Road from West Ridge Drive to Shea Road and improving connectivity to the existing pathway on the south side of Fernbank from Stittsville Main Street to Hartsmere Drive
 - Implementing new sidewalks and cycletracks on both sides of Shea Road from Abbott
 Street to the Stittsville South W4 future community
- Cycling Network-Rural
 - Rural paved shoulder along Flewellyn Road (already implemented)

2.3.2 Other Study Area Developments

Figure 12 illustrates all the developments noted in the larger Stittsville context and Table 7 summarizes the details of each development.

Sign Abbott 8 1555 Shea 1550 Shea 15

Figure 12: Area Developments

Table 7: Area Development Details

#	Address	Application Type	Size	Build-Out Date	Estimated Completion	TIA Author
1	5957 & 5969 Fernbank	PoSZBA	98 single-family homes368 townhomes	2025	0%	Parsons, 2018 Addendum, 2020
2	6041 Fernbank	• PoS	234 single-family homes142 semi-detached homes262 townhomes	2023	0%	IBI Group, 2021
3	5993 Flewellyn (part of Area 6 lands)	• PoS	329 single-family homes230 semi-detached homes172 townhomes	2025	95%	IBI Group, 2015
4	1650 Shea (part of 5993 Flewellyn)	• SPA	13 low-rise buildings (a total of 116 units)	2024	0%	TIA is not required
5	5960 Fernbank (part of Area 6 lands)	ZBASPA	40,000 sq. ft. grocery store19,250 sq. ft. retail5,900 sq. ft. restaurant	2024	0%	Parsons, 2016
6	5500 Abbott & 1555 Shea	ZBAPoS	286 single-family homes324 townhomes	2025	0%	IBI Group, 2022
7	5725 Fernbank	ZBAPoS	206 single family homes391 townhomes	2025	0%	IBI Group, 2021

3 Study Area and Time Periods

3.1 Study Area

The study area will include the intersections of:

- Shea Road at:
 - o Fernbank Road
 - o Flewellyn Road
 - o Cosanti Drive
 - Street 21 (Future Conditions)
- Flewellyn Road at:
 - Street 16 (Future Conditions)
 - Street 12 (Future Conditions)
 - Stittsville Main Street/ Huntley Road

The boundary road will be Shea Road and Flewellyn Road, and Screenline 56 is present within proximity to the site.

3.2 Time Periods

As the proposed development is composed entirely of residential units the AM and PM peak hours will be examined.

3.3 Horizon Years

The anticipated build-out year is 2030. As a result, the full build-out plus five years horizon year is 2035.

4 Development-Generated Travel Demand

4.1 Mode Shares

Examining the mode shares recommended in the TRANS Trip Generation Manual (2020) for the Kanata/Stittsville and Rural Southwest districts, derived from the most recent National Capital Region Origin-Destination survey (OD Survey), the existing average district mode shares by land use have been summarized in Table 8.

Table 8: TRANS Trip Generation Person Trip Rates – Kanata/Stittsville

Travel Mode	Kanata/Stittsville						
	Single Detached		Multi-Unit (Low-Rise)		Multi-Unit (High-Rise)		
	AM	PM	AM	PM	AM	PM	
Auto Driver	52%	56%	52%	58%	43%	55%	
Auto Passenger	15%	19%	14%	17%	26%	19%	
Transit	20%	14%	22%	17%	28%	21%	
Cycling	1%	1%	0%	0%	0%	0%	
Walking	12%	9%	11%	8%	4%	5%	
Total	100%	100%	100%	100%	100%	100%	

Table 9: TRANS Trip Generation Person Trip Rates – Rural Southwest

	Rural Southwest									
Travel Mode	Single Detached		Multi-Unit	(Low-Rise)	Multi-Unit (High-Rise)					
	AM	PM	AM	PM	AM	PM				
Auto Driver	60%	67%	66%	62%	63%	64%				
Auto Passenger	14%	17%	13%	19%	15%	18%				
Transit	24%	14%	21%	16%	19%	16%				
Cycling	2%	2%	1%	3%	0%	0%				
Walking	0%	0%	0%	0%	3%	1%				
Total	100%	100%	100%	100%	100%	100%				

Examining the above mode shares for the adjacent districts, a combined modal share for the subject development has been developed as a baseline for the expected travel modes of the development. Table 10 summarizes the expected modes shares for the development area.

Table 10: Expected Development Mode Shares

Travel Mode	Single D	etached	Multi-Unit	(Low-Rise)	Multi-Unit (High-Rise)		
i ravei iviode	AM	PM	AM	PM	AM	PM	
Auto Driver	51%	59%	55%	58%	49%	57%	
Auto Passenger	15%	19%	15%	19%	27%	21%	
Transit	24%	14%	21%	16%	19%	16%	
Cycling	2%	2%	2%	2%	2%	2%	
Walking	8%	6%	7%	5%	3%	4%	
Total	100%	100%	100%	100%	100%	100%	

4.2 Trip Generation

This TIA has been prepared using the person trip rates for the residential dwellings using the TRANS Trip Generation Manual (2020). Table 11 summarizes the person trip rates for the proposed residential land uses for each peak period.

Table 11: Trip Generation Person Trip Rates by Peak Period

Land Use	Land Use Code	Peak Period	Person Trip Rates
Single-Detached	210	AM	2.05
Single-Detached	(TRANS)	PM	2.48
Multi-Unit (Low-Rise)	220	AM	1.35
widiti-offit (Low-Rise)	(TRANS)	PM	1.58
Multi Unit (High Bigg)	221 & 222	AM	0.80
Multi-Unit (High-Rise)	(TRANS)	PM	0.90

Using the above person trip rates, the total person trip generation has been estimated. Table 12 summarizes the total person trip generation.

Table 12: Total Residential Person Trip Generation by Peak Period

Land Use	11	А	M Peak Pe	riod	PM Peak Period		
	Units	In	Out	Total	In	Out	Total
Single-Detached	566	348	812	1160	870	534	1404
Multi-Unit (Low-Rise)	558	226	527	753	494	388	882
Multi-Unit (High-Rise)	442	110	244	354	231	167	398

Using the above mode share targets and the person trip rates, the person trips by mode have been projected. Trip generation by peak hour has been forecasted using the prescribed peak period conversion factors presented in

the TRANS Trip Generation Manual (2020) for the residential component. Table 13 summarizes the residential trip generation by mode and peak hour.

Table 13: Trip Generation by Mode

		700	AM Pea		on by iviod		PM Pea	k Hour	
7	ravel Mode	Mode Share	In	Out	Total	Mode Share	In	Out	Total
D	Auto Driver	51%	85	199	284	59%	226	138	364
ç	Auto Passenger	15%	25	59	84	19%	73	44	117
eta	Transit	24%	46	107	153	14%	58	35	93
Single-Detached	Cycling	2%	4	9	13	2%	8	5	13
)g(Walking	8%	16	38	54	6%	27	17	44
Sil	Total	100%	176	412	588	100%	392	239	631
	Auto Driver	55%	60	139	199	58%	126	99	225
e) ii	Auto Passenger	15%	16	38	54	19%	41	33	74
Multi-Unit (Low-Rise)	Transit	21%	26	61	87	16%	37	29	66
ulti ×	Cycling	2%	3	6	9	2%	5	4	9
Σž	Walking	7%	9	22	31	5%	13	10	23
	Total	100%	114	266	380	100%	222	175	397
	Auto Driver	49%	25	58	83	57%	56	44	100
ë)	Auto Passenger	27%	14	32	46	21%	21	16	37
호 호	Transit	19%	11	26	37	16%	17	13	30
Multi-Unit (High-Rise)	Cycling	2%	1	3	4	2%	2	2	4
ΣΞ	Walking	3%	2	4	6	4%	4	4	8
	Total	100%	53	123	176	100%	100	79	179
	Auto Driver	-	170	396	566	-	408	281	689
	Auto Passenger	-	55	129	184	-	135	93	228
Total	Transit	-	83	194	277	-	112	77	189
<u>.</u> 0	Cycling	-	8	18	26	-	15	11	26
	Walking	-	27	64	91	-	44	31	75
	Total	-	343	801	1144	-	714	493	1207

As shown above, a total of 566 AM and 689 PM new peak hour two-way vehicle trips are projected as a result of the proposed development.

4.3 Trip Distribution

To understand the travel for the subject development, the OD Survey has been reviewed to determine the travel patterns for the Kanata/Stittsville and Rural Southwest districts. Based on the screenline review in Section 11, Fernbank Road, east of Shea Road, during the PM peak hour in the westbound direction is expected to reach over the TRANS capacity in the future background conditions, therefore, no trip assignments are anticipated through Fernbank Road during the PM peak hour in the westbound direction. Table 14 summarizes the expected distribution of trips from the proposed subdivision lands. While not explicitly detailed, it is expected that an amount of cut-through travel between the existing subdivision area and the proposed subdivision will occur, and it is assumed that the interaction of those trips on the area road network will balance through the proposed subdivision.

Table 14: OD Survey Distribution

To/From	Residential % of Trips	Inbound Via	Outbound Via
North	80%	35% via Flewellyn to Stittsville Main north 10% via Shea north 35% via Flewellyn east	35% via Stittsville Main north 10% via Shea North (AM)/10% via Fernbank east (PM) 35% via Flewellyn east
South	3%	3% via Flewellyn to Huntley	3% via Huntley
East	12%	12% via Flewellyn	12% via Flewellyn
West	5%	5% via Flewellyn	5% via Flewellyn
Total	100%	100%	100%

4.4 Trip Assignment

Using the distribution outlined in Section 4.3, turning movement splits, and access to major transportation infrastructure, the trips generated by the site have been assigned to the study area road network. The assignment has also been based on the Section 11 Network Concept review and screenline capacities. Of note, Fernbank Road, east of Shea Road, during the PM peak hour in the westbound direction is to reach the TRANS capacity in the future background conditions, therefore, no trip assignments are anticipated through Fernbank Road during the PM peak hour in the westbound direction. Figure 13 illustrates the new site-generated volumes.

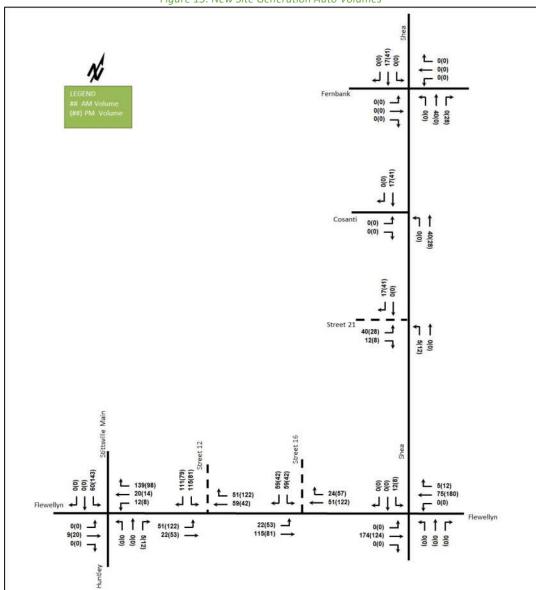


Figure 13: New Site Generation Auto Volumes

5 Exemption Review

Table 15 summarizes the exemptions for this TIA.

Table 15: Exemption Review

Module	Element	Explanation	Exempt/Required
Site Design and TDM			
4.1 Development	4.1.2 Circulation and Access	Only required for site plan and zoning by- law applications	Exempt
Design	4.1.3 New Street Networks	Only required for plans of subdivision	Required
4.2 Parking	4.2.1 Parking Supply	Only required for site plan and zoning by- law applications	Exempt

Module	Element	Explanation	Exempt/Required
4.3 Boundary Street Design		All applications	Required
4.5 Transportation Demand Management	All Elements	Only required when the development generates more than 60 person-trips	Required
Network Impact			
3.2 Background Network Travel Demand	All Elements	Only required when one or more other Network Impact Modules are triggered when the development generates more than 75 auto or transit trips	Required
3.3 Demand Rationalization		Only required when one or more other Network Impact Modules when the development generates more than 75 auto trips	Required
4.6 Neighbourhood Traffic Calming	4.6.1 Adjacent Neighbourhoods	If the development meets all of the following criteria along the route(s) site generated traffic is expected to utilize between an arterial road and the site's access: 1. Access to Collector or Local; 2. "Significant sensitive land use presence" exists, where there is at least two of the following adjacent to the subject street segment: • School (within 250m walking distance); • Park; • Retirement / Older Adult Facility (i.e. long-term care and retirement homes); • Licenced Child Care Centre; • Community Centre; or • 50%, or greater, of adjacent property along the route(s) is occupied by residential lands and a minimum of 10 occupied residential units are present on the route. 3. Application is for Zoning By-Law Amendment or Draft Plan of Subdivision; 4. At least 75 site-generated auto trips; 5. Site Trip Infiltration is expected. Site traffic will increase peak hour vehicle volumes along the route by 50% or more.	Exempt
4.7 Transit	4.7.1 Transit Route Capacity	Only required when the development generates more than 75 transit trips	Required

Module	Element	Explanation	Exempt/Required
	4.7.2 Transit Priority Requirements	Only required when the development generates more than 75 auto trips	Required
4.8 Network Concept		Only required when proposed development generates more than 200 person-trips during the peak hour in excess of equivalent volume permitted by established zoning	Required
4.9 Intersection	4.9.1 Intersection Control	Only required when the development generates more than 75 auto trips	Required
Design	4.9.2 Intersection Design	Only required when the development generates more than 75 auto trips	Required

6 Development Design

6.1 Design for Sustainable Modes

The proposed development is a residential subdivision featuring driveways for each dwelling, garages for typical townhomes, and surface parking for stacked townhomes. Bicycle parking is assumed to be within the individual units.

The existing Hydro corridor and existing stormwater management ponds are noted within the subdivision, and two new proposed stormwater management pond areas and two parks are proposed. Sidewalks are provided on the new collector roads and local roads within the subdivision, to the boundary streets of Shea Road and Flewellyn Road and the northern community. Pedestrian crossovers are proposed at major active mode crossing locations and to facilitate future the Hydro corridor multi-use pathway links. Figure 14 illustrates the conceptual pedestrian network.

Figure 14: Conceptual Pedestrian Network

6.2 New Street Networks

The new collector roads are proposed to connect Shea Road and Flewellyn Road and serve as potential transit routes. The new 26.0-metre-wide collector road are proposed with 2.0-metre-wide sidewalks and 1.5 metre cycletracks. On-street parking is proposed on one side of the road, and the proposed speed limit will be 40 km/h.

All the new local roadways are 18.0-metre-wide and on-street parking along one side of the road and include 2.0-metre-wide sidewalks on one side. The new local roads are proposed to connect Painted Sky Way and Parade Drive, and sidewalks will be provided from the proposed subdivision to Parade Drive. The proposed speed limit will be 30 km/h.

Street 21 is located approximately 410 meters north of the intersection of Shea Road and Flewellyn Road, and approximately 430 meters south of the intersection of Shea Road and Cosanti Drive. The intersection offsets exceed the TAC's minimum corner clearance requirement of 25 meters from major intersections.

Street 16 is approximately 320 meters west of the intersection of Shea Road and Flewellyn Road, while Street 12 is 575 meters further west of Street 16. Both Street 12 and Street 16 exceed the TAC's minimum corner clearance of 25 meters from major intersections.

To support the pedestrian and cycling connectivity within the subdivision, traffic calming elements have been illustrated on the conceptual traffic calming plan, adhering to the philosophies of the Traffic Calming Guidelines and preliminary input from the City. The plan has not been coordinated or reconciled with the civil design, utility requirements, grading requirements or streetscaping elements such as trees. The features include bulb-outs to narrow approaches to intersections (e.g. reduced crossing distance), speed humps, midblock narrowing to reduce

vehicle speeds and lateral roadway shifts. It is noted that the lateral shifts have potential impacts to transit service and maintenance operations, as well as the removal of 45 metres or more of on-street parking. The lateral shifts also are considered to have limited traffic calming benefits as they are designed for smooth and comfortable travel at the direction of City Staff. Traffic calming elements for connections to the existing roadways will be coordinated with the adjacent existing roadway during the detailed design phase. Potential bus stop locations have been drafted for review, following the high-level locations outlined in Section 10. The locations match previous consultant with Transit Services. The location of the southbound stop on Street 12 will need to be confirmed by Transit Services or determine if an alternative location on Street 12 westbound is preferred.

Conceptually, corner triangles have been illustrated based in preliminary City feedback for overlapping 5x15 metre corner triangles at the collector-to-collector road intersections, 3x9 metre corner triangles for local to collector intersections and 3x3 metre corner triangles for local-to-local intersections. These are not intended to be the corner triangles ultimately provided, they are illustrative only to address City commentary. Servicing and landscape designs for the subdivision will determine if these protections are required.

A conceptual traffic calming plan has been provided in Appendix H.

6.3 Boundary Street Design

Table 16 summarizes the MMLOS analysis for the boundary streets of Shea Road and Flewellyn Road, and the internal roads of new local and collector roads. Shea Road has been considered with interim pedestrian facilities and the TMP identified urbanization. As Shea Road and Flewellyn Road are within "General Rural Area", no MMLOS targets for the existing conditions. It is expected all roadways will be within the "General Urban Area" for future conditions". The MMLOS worksheets have been provided in Appendix I.

	Coomont	Condition	Pedes	strian LOS Bicycle LOS		le LOS	S Transit LOS	
	Segment	Condition	PLOS	Target	BLOS	Target	TLOS	Target
		Existing	F	No target	F	No target	-	N/A
D	Shea Road	Interim	E	С	F	D	D	D
Boundary		Ultimate	E	С	Α	D	D	D
Roadways	Flewellyn Road	Existing	F	No target	Е	No target	-	N/A
		Future	F	С	Е	D	D	D
Internal Roadways	New local road (with sidewalk)	Future	Α	С	В	D	-	-
	New local road (without sidewalk)	Future	С	С	В	D	-	-
	New collector road	Future	Α	С	Α	D	D	D

Table 16: Boundary Street MMLOS Analysis

Both Shea Road and Flewellyn Road have a level of service (LOS) F for pedestrian mode in the existing conditions. In the future conditions, Shea Road will improve slightly to an LOS E and remain below the targets once urbanized. To meet the theoretical pedestrian LOS target on Shea Road, the operating speed would need to be reduced to 30-50 km/h. To meet the theoretical pedestrian LOS target on Flewellyn Road, various combinations can be considered:

- a speed reduction to 30 km/h, or
- a speed reduction to 50-60 km/h and a 2.0 metre sidewalk adjacent to the road edge; or
- a 2.0 metre sidewalk with a 0.5-2.0 metre boulevard

Shea Road has a level of service (LOS) F for bicycle mode in the existing and interim conditions and will meet the bicycle LOS target once facilities are implemented in the ultimate condition.

Flewellyn Road has a LOS E for bicycle mode in the existing and future conditions. No improvements are noted along Flewellyn Road. To meet the theoretical bicycle LOS target on Flewellyn Road, the operating speed would need to be reduced to 50-70 km/h.

Both Shea Road and Flewellyn Road meet the transit level of service targets in the future conditions. The truck LOS is not applicable for the boundary roads, per the application of the MMLOS Guidelines.

The internal local roads will have an LOS of A for pedestrian and LOS B for bicycle, and the collector roads will have LOS of A for both pedestrian and bicycle, and LOS D for transit. Therefore, all of the internal roadways will meet the MMLOS targets. The truck LOS is not applicable for the internal roadways, per the application of the MMLOS Guidelines.

With respect to meeting the MMLOS targets along Shea Road and Flewellyn Road, the addition of facilities to the cross-section will represent significant reconstruction of the roadways and the extension of other municipal services to support that reconstruction. While an interim condition has been noted for Shea Road, it is unknown if this is possible prior to full urbanization, storm sewers and removal of the ditches to implement pedestrian and cycling facilities. Along Flewellyn Road, the Faulkner Municipal Drain prevents the inclusion of north side facilities being implemented for over 600 metres west of Shea Road. An alternative solution may be implemented in conjunction with the City's intersection improvement at Shea Road at Flewellyn Road to incorporate speed reductions west and north of the future intersection.

The connectivity of extending facilities on Flewellyn Road does not provide a solution to a missing link nor a demand for active mode travel. The connectivity is all focused to and from the north of the subdivision, integrating with the existing community, and these locations are in an isolated corner without desire line or destination to connect to. It is recommended that the existing pave shoulders remain and provide the rural connectivity on Flewellyn Road.

7 Transportation Demand Management

7.1 Context for TDM

The mode shares used within the TIA represent the unmodified district mode shares for a combined modal share of the Kanata/Stittsville and Rural Southwest districts. These mode shares include a maximum of 24% for transit, 2% for cycling, and 8% for walking. Considering the context of the proposed development, post-occupancy TDM measures will be recommended to support achieving the mode share targets for the proposed development.

7.2 Need and Opportunity

The subject site has been assumed to rely predominantly on auto travel, followed by transit, walking, and cycling, and those assumptions have been carried through the analysis. Although the intersections in the study area are anticipated to have residual capacity, Fernbank Road is expected to reach its capacity in the future background conditions reviewed in Section 11. It is anticipated that future pedestrian facilities and cycling facilities provided within the subdivision to connect to northern communities, along with transit service providing local service through the subject site, will be the primary methods of supporting the community. Supporting TDM measures are recommended to encourage shifts toward sustainable modes and mitigate the risks associated with failing to meet mode share targets.

7.3 TDM Program

The "suite of post occupancy TDM measures" has been summarized in the TDM checklists for the residential land uses. The checklist is provided in Appendix J. The key TDM measures recommended include:

- Provide a multimodal travel option information package to new residents
- Provide transit incentives for new residents
- Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels

8 Background Network Travel Demands

8.1 Transportation Network Plans

The transportation network plans were discussed in Section 2.3 and will be considered in the analysis.

8.2 Background Growth

A review of the background projections from the City's TRANS Regional Model for the 2011 and 2031 horizons was completed to determine the background growth for each of the study area roadways. The background TRANS model growth rates are summarized in Table 17 and the TRANS model plots are provided in Appendix K.

THANS Regional Model Projections Study Area Growth Nates Air 1							
Chunch	TRANS 2011 to 2031						
Street	Eastbound	Westbound					
Flewellyn Rd	-	-					
Fernbank Rd	-0.88%	1.47%					
	Northbound	Southbound					
Shea Rd	2.36%	4.84%					
Stittsville Main St	0.56%	0.54%					
Huntley Rd	0.56%	0.56%					

Table 17: TRANS Regional Model Projections – Study Area Growth Rates – AM Peak Hour

The volumes along Fernbank Road and Shea Road are noted to be underestimated when compared to traffic existing counts. The explicit developments identified within this report would form the primary local growth for the existing volumes and the background growth rates would be subject to regional travel through the area. This background growth would be related to rural development and planned development in Richmond Village. Given these factors, Table 18 summarizes the suggested growth rates applied for the background road network. It is noted that no TRANS Rates are provided for Flewellyn Road, and the growth rates are assumed to be the same as Fernbank Road.

AM Peak Hour PM Peak Hour Street Eastbound Westbound **Eastbound** Westbound Flewellyn Rd 0% 2% 2% 0% Fernbank Rd 0% 2% 2% 0% Northbound Southbound Northbound Southbound Shea Rd 2.5% 4.75% 4.75% 2.5% Stittsville Main St 0.5% 0.5% 0.5% 0.5% **Huntley Rd** 0.5% 0.5% 0.5% 0.5%

Table 18: Recommended Area Growth Rates

8.3 Other Developments

The background developments explicitly considered in the background conditions (Section 2.3.2) include:

- 5957 & 5969 Fernbank Road
- 6041 Fernbank Road
- 5993 Flewellyn Road
- 5960 Fernbank Road

- 5500 Abbott & 1555 Shea Road
- 5725 Fernbank Road

The total background development volumes and the development volumes for each development within the study area have been provided in Appendix L. The developments at 5957 and 5969 Fernbank Road, 6041 Fernbank Road, 5993 Flewellyn Road, and 5500 Abbott Street and 1555 Shea Road trip generation are noted to be updated to the TRANS 2020 methodology. It is noted that 95% of the development at 5993 Flewellyn Road have been completed in 2024.

9 Demand Rationalization

9.1 2030 Future Background Intersection Operations

Typical of City of Ottawa requirements, the area network volumes have been balanced along the road network, having the most recent intersections counts with the highest priority/reference to adjust adjacent intersections. Figure 15 illustrates the 2030 background volumes and Table 19 summarizes the 2030 background intersection operations. Volumes have been balanced along the study area roadways. Synchro 11 has been used to model the unsignalized intersections and Sidra 9 to model the study area roundabout intersection. Level of service is based on HCM 2010 delay for stop-controlled intersections, and Sidra HCM 6 for the roundabout intersection. The synchro and sidra worksheets for the 2030 future background horizon are provided in Appendix M.

222(144) 166(251) 131(60) 75(115) 265(551) 87(130) 116 ↑ 92(99) ↑ 195(217) ↑ 18(30) 305(133) 1 401(495) 3 33(34) 1 t 12(43) ← 248(328) Street 21 51(71) 193(255) 25(14) 29(71) 125(181) 7(6) 17(33) 92(166) 2(2) - 151(253) ↑ 12(14) ↑ 232(234) ↑ 17(27) 211(177) ---↑ 13(17) ↑ 184(213) ↑ 8(16) 38(44) 155(110) 15(14) 1 60(59) 125(107) 26(11)

Figure 15: 2030 Future Background Volumes

Table 19: 2030 Future Background Intersection Operations

lukawa aki au			AM Pe	ak Hour			PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
	EB	С	0.82	24.7	124.1	С	0.78	22.1	90.5
Shea Road at	WB	В	0.55	13.0	30.5	D	0.88	31.9	175.5
Fernbank Road	NB	С	0.58	18.8	24.8	В	0.54	14.5	24.5
Roundabout	SB	В	0.58	12.2	38.8	С	0.73	23.5	46.2
	Overall	С	0.82	18.0	124.1	С	0.88	24.7	175.5
	EB	Α	0.04	7.6	0.8	Α	0.04	7.8	0.8
Shea Road at	WB	Α	0.00	7.5	0.0	Α	0.00	7.5	0.0
Flewellyn Road	NB	С	0.39	16.0	13.5	С	0.53	20.9	22.5
Unsignalized	SB	С	0.49	17.7	20.3	С	0.65	23.4	34.5
	Overall	В	-	10.7	-	В	-	14.1	-
Stittsville Main	EB	В	0.35	12.2	11.3	В	0.30	12.1	9.0
Street / Huntley	WB	В	0.27	11.3	8.3	В	0.43	13.5	16.5
Road at Flewellyn	NB	В	0.43	13.3	15.8	В	0.46	14.0	18.0
Road	SB	В	0.54	14.7	24.0	С	0.56	15.7	25.5
Unsignalized	Overall	В	-	13.2	-	В	-	14.1	-
Chao Dood at	EBL/R	В	0.11	12.0	3.0	В	0.08	13.2	1.5
Shea Road at	NBL/R	Α	0.01	7.8	0.0	Α	0.02	8.1	0.8
Cosanti Drive Unsignalized	SBT/R	-	-	-	-	-	-	-	-
Olisiyilalizea	Overall	Α	-	1.4	-	Α	-	0.9	-

Notes: Saturation flow rate of 1800 veh/h/lane

Queue is measured in metres Peak Hour Factor = 1.000 Delay = average vehicle delay in seconds

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

During both the AM and PM peak hours, the study area intersections operate well. No capacity issues are noted.

As noted in the existing conditions, Shea Road at Flewellyn Road met the all-way stop control warrant for consideration during the existing conditions. The intersection is recommended to remain as minor stop-control until Shea Road can be realigned. All-way stop control warrant calculation sheets are provided in Appendix D.

Signal warrant analysis of Justifications 7 was performed for the intersections of Shea Road at Flewellyn Road and Stittsville Main Street / Huntley Road at Flewellyn Road for 2030 future background conditions. None of the intersection met the Justifications 7 signal warrants. Signal warrant calculation sheets are provided in Appendix E.

The left-turn warrant analysis was performed for the intersections of Shea Road at Flewellyn Road, Stittsville Main Street / Huntley Road at Flewellyn Road, and Shea Road at Cosanti Drive for 2030 future background conditions, none of the intersections met the left-turn warrant for any approach. The left-turn warrant calculation sheets are provided in Appendix F.

9.2 2035 Future Background Intersection Operations

Figure 16 illustrates the 2035 background volumes and Table 20 summarizes the 2035 background intersection operations. Volumes have been balanced along the study area roadways. Synchro 11 has been used to model the unsignalized intersections and Sidra 9 to model the study area roundabout intersection. Level of service is based on HCM 2010 delay for stop-controlled intersections, and Sidra HCM 6 for the roundabout intersection. The synchro and sidra worksheets for the 2035 future background horizon are provided in Appendix N.

222(144) 214(281) 131(60) 75(115) 285(551) 87(130) 1 18(30) 305(133) <u>1</u> 401(534) <u>33(34)</u> 12(43) 296(358) 14 29(71) 135(181) 7(6) 17(33) 102(166) 102(2) 161(253) 161(253) 38(44) 155(121) 15(14) 7 ↑ 12(14) ↑ 240(24) ↑ 17(27) 211(188) -211(188) ---60(59) 125(118) 26(11) 12(14)

Figure 16: 2035 Future Background Volumes

Table 20: 2035 Future Background Intersection Operations

Intersection	Lane	AM Peak Hour				PM Peak Hour			
		LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
Shea Road at Fernbank Road Roundabout	EB	D	0.87	31.2	143.2	D	0.86	30.2	124.0
	WB	В	0.59	14.4	35.2	Ε	0.93	42.7	210.6
	NB	С	0.62	20.7	28.3	С	0.63	18.5	33.0
	SB	В	0.65	14.5	52.1	D	0.77	27.1	55.2
	Overall	С	0.87	21.4	143.2	D	0.93	31.8	210.6
Shea Road at Flewellyn Road <i>Unsignalized</i>	EB	Α	0.04	7.6	0.8	Α	0.04	7.8	0.8
	WB	Α	0.00	7.5	0.0	Α	0.00	7.5	0.0
	NB	С	0.44	17.4	16.5	D	0.64	25.8	33.0
	SB	С	0.60	21.2	29.3	D	0.72	28.4	44.3
	Overall	В	-	12.7	-	В	-	17.6	-

Interception	Lana		AM Pe	ak Hour		PM Peak Hour				
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)	
Stittsville Main	EB	В	0.35	12.4	12.0	В	0.32	12.6	10.5	
Street / Huntley	WB	В	0.29	11.6	9.0	В	0.44	14.0	16.5	
Road at Flewellyn	NB	В	0.45	13.8	17.3	В	0.48	14.7	19.5	
Road	SB	С	0.56	15.4	25.5	С	0.59	17.1	29.3	
Unsignalized	Overall	В	-	13.7	-	В	-	15.0	-	
Chan Bood at	EBL/R	В	0.12	12.7	3.0	В	0.08	14.0	2.3	
Shea Road at Cosanti Drive Unsignalized	NBL/R	Α	0.01	7.9	0.0	Α	0.02	8.2	0.8	
	SBT/R	-	-	-	-	-	-	-	-	
	Overall	Α	-	1.3	-	Α	-	0.9	-	

Notes: Saturation flow rate of 1800 veh/h/lane

Queue is measured in metres Peak Hour Factor = 1.000 Delay = average vehicle delay in seconds

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

During both the AM and PM peak hours, the intersections in the study area operate well. No capacity issues are noted.

As noted in the existing conditions, the intersection of Shea Road at Flewellyn Road met the all-way stop control warrant in the existing condition. The intersection is recommended to remain as minor stop-control until Shea Road can be realigned. All-way stop control warrant calculation sheets are provided in Appendix D.

The Signal warrant analysis of justification 7 conclusions remains the same as noted in the 2030 future background conditions.

The left-turn warrant analysis was performed for the intersections of Shea Road at Flewellyn Road, Stittsville Main Street / Huntley Road at Flewellyn Road, and Shea Road at Cosanti Drive for 2035 future background conditions. The southbound left turn at Shea Road at Flewellyn Road intersection met the warrants by the 2035 future background conditions during the PM peak hour, although implementation of additional lanes is not recommended until the offset configuration has been addressed.

9.3 Network Rationalization

No capacity constraints are noted at the study area intersections in the background conditions. Section 11 documents the screenline review for Fernbank Road, east of Shea Road is noted to be over the TRANS capacity during the PM peak hour in the westbound direction in the future conditions, with residual capacity on the other area roadways to support future development.

The TMP outlines the widening of Fernbank Road from two to four lanes between Stittsville Main Street and Terry Fox Drive to address capacity constraints along the roadway. While the widening of Fernbank Road remains a network improvement for the Stitsville/Kanata area, it is not required to support the proposed subdivision.

10 Transit

10.1 Route Capacity

In Section 5.1 the trip generation by mode was estimated, including an estimate of the number of transit trips that will be generated by the proposed development. Table 21 summarizes the transit trip generation.

Table 21: Trip Generation by Transit Mode

Travel Mode	Mode Share	Δ	M Peak Hou	ır	PM Peak Hour			
	AM (PM)	In	Out	Total	In	Out	Total	
Transit	Varies	83	194	277	112	77	189	

The proposed development is anticipated to generate 277 AM and 189 PM peak hour two-way transit trips. From the trip distribution found in Section 4.3 and given existing bus routing to the north and east of the site, these values were split to the north and east relative to the site. Table 22 summarizes the forecasted site-generated transit ridership trips by direction relative to the site and provides equivalent bus loads based on this ridership. Future transit stops will be planned within the subdivision, which will be the primary bus stops for the residents within the subdivision.

Table 22: Forecasted Site-Generated Transit Ridership

General Destination	AM Pea	ak Hour	PM Peak Hour			Approximate Equivalent Peak
To/From (relative to the site)	In	Out	In	Out	Service Type	Hour/Peak Direction Bus Loads
North	73	171	99	68	Bus	Three standard buses
East	10	23	13	9	Bus	Two-fifths of a standard bus

In total, a 10-15-minute AM peak hour service level is estimated to be required for the proposed lands to meet the transit demand, and a 20-minute PM peak hour service level. The future transit stops are proposed within the subdivision, as illustrated in Figure 17, with previous confirmation from Transit Services that locations are generally acceptable for the subdivision. Ultimately these routes are expected to form local service extending from the BRT station at Fernbank and Robert Grant Avenue. In the near term, a combination of a new dedicated route combined with the extension of the peak hour services to 15–20-minute service in the area (e.g. routes #61, #262, #263) would provide the service required for the community.

Future Transit Stops
400 metres

October 17 State 1 St

Figure 17 Conceptual Subdivision Transit Stop Locations

10.2 Transit Priority

No transit priority is required along the boundary or within the subdivision. Within the regional network, the westbound road capacity along Fernbank Road may require localized widening to improve transit service from

Robert Grant Avenue to Shea Road to maintain service times along this segment of roadway. The single lane roundabout at Fernbank Road and Shea Road restricts the ability to provide priority measures for turning movements, therefore any widening for westbound travel would be for transit to queue jump the general travel lanes on Fernbank Road and access the roundabout quicker.

11 Network Concept

A high-level review of the key roadway lane capacities and utilizations was completed to assess the networks' ability to accommodate additional growth. The lane capacity estimates are assembled from a review of the TRANS Regional Model and Screenline 44, which is located between Stittsville and Kanata from Richardson Side to Flewellyn Road in a north-south direction. The screenline capacity has applied the City's peak period conversion factors, 0.84 and 0.92 for the morning and afternoon peak periods respectively, to calculate the peak period volumes and percent utilization.

To assess the capacity of the area network, a local screenline was created around the study area and has been illustrated in Figure 18. Table 23 summarizes the high-level capacity, existing and future volumes, and utilization of the roadway corridors in the immediate study area, and the existing volumes are included in Appendix B.

Figure 18: Local Screenline

Source: http://maps.ottawa.ca/geoOttawa/ Accessed: May 14, 2024

Table 23: Local Area Screenline Road Capacity

Horizon	Roadway	Classification	Estimated Lane Capacity	Volumes	Percent Utilization	
Fullable a	Stittsville Main Street	Arterial	1000 cars/hour	228-439	23-44%	
Existing	Shea Road	Collector	800 cars/hour	246-522	31-65%	

Horizon	Roadway	Classification	Estimated Lane Capacity	Volumes	Percent Utilization
	Fernbank Road	Arterial	800 cars/hour	218-509	27-64%
	Flewellyn Road	Collector	800 cars/hour	68-186	9-23%
	Stittsville Main Street	Arterial	1000 cars/hour	234-451	23-45%
2030 Future	Shea Road	Collector	800 cars/hour	419-575	52-72%
Background	Fernbank Road	Arterial	800 cars/hour	359-796	45-100%
	Flewellyn Road	Collector	800 cars/hour	93-201	12-25%
	Stittsville Main Street	Arterial	1000 cars/hour	239-460	24-46%
2035 Future	Shea Road	Collector	800 cars/hour	446-598	56-75%
Background	Fernbank Road	Arterial	800 cars/hour	375-796	47-100%
	Flewellyn Road	Collector	800 cars/hour	102-201	13-25%
	Stittsville Main Street	Arterial	1000 cars/hour	284-594	28-59%
2030 Future	Shea Road	Collector	800 cars/hour	428-615	54-77%
Total	Fernbank Road	Arterial	800 cars/hour	359-796	45-100%
	Flewellyn Road	Collector	800 cars/hour	160-393	20-49%
	Stittsville Main Street	Arterial	1000 cars/hour	289-603	29-60%
2035 Future	Shea Road	Collector	800 cars/hour	471-638	59-80%
Total	Fernbank Road	Arterial	800 cars/hour	375-796	47-100%
	Flewellyn Road	Collector	800 cars/hour	169-393	21-49%

Lane Capacity = single lane estimate

Notes:

Volumes = directional volume range during AM or PM peak hours applied the City's peak period conversion factors, 0.84 and 0.92 for the morning and afternoon peak periods respectively

Percent Utilization = utilization range based on Volume for lane

Based on the percent utilization, all roadways have residual capacity in both the future background and total conditions. Fernbank Road, east of Shea Road is expected to reach the TRANS capacity during the PM peak hour in the westbound direction in all of the future conditions. Based on the capacity review, no site-generated trips have been assigned to travel via Fernbank Road east of Shea Road in the westbound direction during the PM peak hour. Ultimately, the widening of Fernbank Road will improve the capacity on Fernbank Road.

12 Intersection Design

12.1 Intersection Control

The new roadway intersections are proposed as stop-controlled on the minor approach.

All-way stop control warrant analysis was performed for the new intersections along Shea Road and Flewellyn Road and none of the intersections met the all-way stop control warrants for consideration. All-way stop control warrant calculation sheets are provided in Appendix D.

12.2 Intersection Design

12.2.1 2030 Future Total Intersection Operations

The eastbound left turns at Flewellyn Road at Street12 during both peak hours and at Street 16 during the PM peak hour met the left-turn warrant for consideration in the 2030 future total conditions. Although the warrants were met, the operations are acceptable without the turn lane. The Municipal Drain also constrains the ability to provide a left-turn lane for Street 16. It is noted that no left turn warrants were met at Shea Road at Street 21. The left-turn warrant calculation sheets are provided in Appendix F.

Should a left-turn lane be required at Flewellyn Road at Street 12, the storage length is expected to be 30 metres.

The 2030 future total intersection volumes are illustrated in Figure 19 and the intersection operations are summarized below in Table 24. Synchro 11 has been used to model the unsignalized intersections and Sidra 9 to model the study area roundabout. HCM 2010 methodology was used for unsignalized intersection operations and Sidra HCM 6 was used for roundabout intersection operations. The synchro and sidra worksheets have been provided in Appendix O.

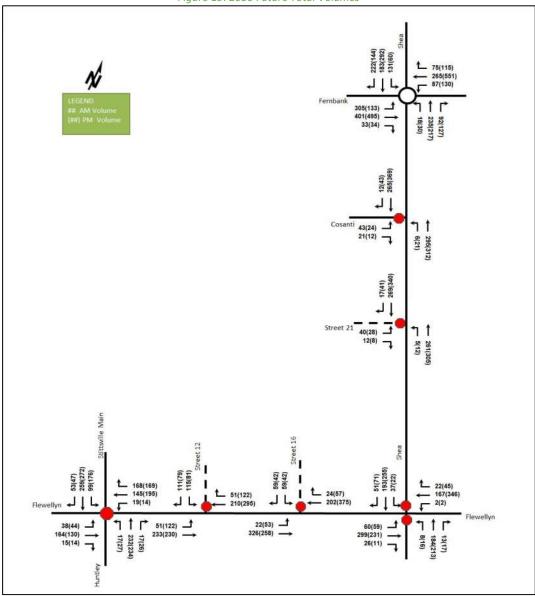


Figure 19: 2030 Future Total Volumes

Table 24: 2030 Future Total Intersection Operations

1	•		AM Pe	ak Hour			PM Pea	k Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
	EB	D	0.84	26.7	130.2	D	0.82	26.0	99.6
Shea Road at	WB	В	0.58	14.1	32.5	D	0.88	31.9	175.4
Fernbank Road	NB	С	0.65	22.3	31.3	С	0.58	15.9	28.5
Roundabout	SB	В	0.60	12.7	42.4	D	0.79	28.8	59.1
	Overall	С	0.84	19.7	130.2	D	0.88	27.0	175.4
	EB	Α	0.04	7.8	0.8	Α	0.05	8.3	1.5
Shea Road at	WB	Α	0.00	7.9	0.0	Α	0.00	7.7	0.0
Flewellyn Road	NB	D	0.55	26.2	24.0	F	0.89	69.2	59.3
Unsignalized	SB	E	0.76	39.1	450	F	1.06	104.5	96.0
	Overall	В	-	15.9	-	F	-	41.8	-
Stittsville Main	EB	С	0.43	15.6	16.5	С	0.42	16.9	15.8
Street / Huntley	WB	С	0.61	19.4	30.8	D	0.75	28.2	46.5
Road at Flewellyn	NB	С	0.53	18.0	22.5	С	0.60	21.4	29.3
Road	SB	D	0.75	26.8	48.8	F	0.95	54.6	90.0
Unsignalized	Overall	С	-	20.9	-	D	-	34.9	-
Chara Baradas	EBL/R	В	0.12	12.5	3.0	В	0.08	14.0	2.3
Shea Road at	NBL/R	Α	0.01	7.8	0.0	Α	0.02	8.2	0.8
Cosanti Drive Unsignalized	SBT/R	-	-	-	-	-	-	-	-
Unsignanzea	Overall	Α	-	1.3	-	Α	-	0.9	-
Chara Baradas	EBL/R	В	0.10	12.4	2.3	В	0.08	13.8	2.3
Shea Road at Street 21	NBL/T	Α	0.00	7.8	0.0	Α	0.01	8.1	0.0
Unsignalized	SBT/R	-	-	-	-	-	-	-	-
Unsignanzea	Overall	Α	-	1.1	-	Α	-	0.8	-
Flavorillum Danel at	EBL/T	Α	0.02	7.7	0.8	Α	0.05	8.3	0.8
Flewellyn Road at Street 16	WBT/R	-	-	-	-	-	-	-	-
Unsignalized	SBL/R	В	0.20	12.5	5.3	В	0.19	14.7	5.3
Unsignanzea	Overall	Α	-	2.4	-	Α	-	2.0	-
Flavollus Baad -+	EBL/T	Α	0.04	7.9	0.8	Α	0.11	8.5	3.0
Flewellyn Road at	WBT/R	-	-	-	-	-	-	-	-
Street 12 Unsignalized	SBL/R	С	0.39	15.1	13.5	С	0.39	19.0	13.5
	Overall	Α	-	4.9	-	Α	-	4.4	-

Notes:

Saturation flow rate of 1800 veh/h/lane

Queue is measured in metres Peak Hour Factor = 1.00 Delay = average vehicle delay in seconds

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

During both the AM and PM peak hours, the study area intersections are anticipated to operate well except for the northbound and southbound movement at Shea Road at Flewellyn Road intersection during the PM peak hour and the southbound movement at Stittsville Main Street / Huntley Road at Flewellyn Road during the PM peak hour.

As noted in the existing conditions, the intersection of Shea Road at Flewellyn Road met the all-way stop control warrant. The intersection was assumed to remain as minor stop-control conditions until Shea Road can be realigned. All-way stop control warrant calculation sheets are provided in Appendix D.

The Shea Road at Flewellyn Road intersection met Signal Justification 7 in the 2030 future total conditions. Signal warrant calculation sheets are provided in Appendix E. Given the existing geometric offset at the intersection and existing safety concern for this location, it is recommended that the City expedite the acquisition of land to facilitate intersection improvements and a higher order of intersection control. This control could be signalization

or a roundabout, depending on the property acquisition and funding allocation. It is noted that the City has indicated a preference for a roundabout at this location.

The southbound left turns met the warrant for consideration in the 2030 future total conditions during both peak hours at the intersection of Stittsville Main Street / Huntley Road at Flewellyn Road, and the implementation of an auxiliary southbound left turn would address the anticipated capacity constraints. It is noted that the existing property and intersection alignment prevent the implementation of the southbound left-turn at this time.

The eastbound left turn warrant was met for consideration at Shea Road at Flewellyn Road intersection, although implementation of additional lanes is not recommended until Shea Road can be realigned. The left-turn warrant calculation sheets are provided in Appendix F.

Right turn lanes have been reviewed for Shea Road at Street 21, Flewellyn Road at Street 12 and Flewellyn Road at Street 16. The need for right turn lanes is not based on warrants and should be implemented to address operations. No operational issues are noted along either Shea Road or Flewellyn Road at these locations to require auxiliary turn lanes and they are not recommended.

Based on the operational analysis and the warrants provided, geometric improvements and upgrading to a roundabout has been assessed at the intersection of Shea Road at Flewellyn Road, and a 45 metres auxiliary southbound left turn lane has been assessed at the intersection of Stittsville Main Street/Huntley Road at Flewellyn Road. Table 25 summarizes the 2030 future total operations of possible mitigation measures for the intersections of Shea Road at Flewellyn Road and Stittsville Main Street/Huntley Road at Flewellyn Road should these improvements be implemented. The Synchro and Sidra worksheets are provided in Appendix P.

Table 25: 2030 Future Total - Mitigation Measures

Intorcostion	Lana		AM Pe	ak Hour			PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
	EB	Α	0.36	7.1	14.4	Α	0.30	6.5	10.8
Shea Road at	WB	Α	0.18	5.1	6.0	Α	0.39	7.7	15.4
Flewellyn Road	NB	Α	0.23	6.5	7.6	Α	0.25	6.1	8.6
Roundabout	SB	Α	0.25	5.5	9.1	Α	0.37	8.0	14.0
	Overall	Α	0.36	6.2	14.4	Α	0.39	7.2	15.4
Callada a dilla Balada	EB	С	0.42	15.0	15.8	С	0.39	15.3	13.5
Stittsville Main	WB	С	0.59	18.3	28.5	С	0.70	23.5	40.5
Street / Huntley	NB	С	0.52	17.7	22.5	С	0.57	19.4	27.0
Road at Flewellyn Road Unsignalized	SBL	В	0.21	12.2	6.0	С	0.38	15.1	12.8
	SBT/R	С	0.60	19.5	29.3	С	0.63	21.1	32.3
	Overall	С	-	17.4	-	С	-	19.8	-

Notes:

Saturation flow rate of 1800 veh/h/lane

Queue is measured in metres

Peak Hour Factor = 1.00

Delay = average vehicle delay in seconds

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

While not recommended, the inclusion of 30.0-metre auxiliary eastbound left-turn lane at the intersection of Flewellyn Road and Street 12 and a 15.0-metre auxiliary eastbound left-turn lane at Street 16, have been summarized in Table 26 for informational purposes only. The addition of the lanes has negligible change to the overall operations. The ability to provide the turn lane at Street 16 is prevented by the Faulkner Municipal Drain, and similarly, the existing property and Stittsville Main Street and Huntley Road alignment prevent the implementation of the southbound left turn lane at Flewellyn Road. The Synchro worksheets are provided in Appendix Q.

Table 26: 2030 Future Total - EBL at Flewellyn Road at Street 12 & at Street 16

latana ati an	1		AM Pe	ak Hour			PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
	EBL	Α	0.02	7.7	0.8	Α	0.05	8.3	0.8
Flewellyn Road at	EBT	-	-	-	-	-	-	-	-
Street 16 Unsignalized	WB	-	-	-	-	-	-	-	-
	SB	В	0.20	12.5	5.3	В	0.18	14.6	5.3
	Overall	Α	-	2.4	-	Α	-	2.0	-
	EBL	Α	0.04	7.9	0.8	Α	0.11	8.5	3.0
Flewellyn Road at	EBT	-	-	-	-	-	-	-	-
Street 12	WB	-	-	-	-	-	-	-	-
Unsignalized	SB	С	0.39	15.0	13.5	С	0.38	18.8	13.5
	Overall	Α	-	4.9	-	Α	-	4.4	_

Notes: Saturation flow rate of 1800 veh/h/lane

Queue is measured in metres Peak Hour Factor = 1.00 Delay = average vehicle delay in seconds

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

12.2.2 2035 Future Total Intersection Operations

The 2035 future total intersection volumes are illustrated in Figure 20 and the intersection operations are summarized below in Table 27. As noted in the 2030 future total conditions, geometric improvements and upgrading to a roundabout/signal is recommended at the intersection of Shea Road at Flewellyn Road, and a 45 metres auxiliary southbound left turn lane would mitigate operation constraints at the intersection of Stittsville Main Street/Huntley Road at Flewellyn Road. The intersection of Shea Road at Flewellyn Road will be analyzed as a roundabout intersection and a 45 metres auxiliary southbound left turn lane at the intersection of Stittsville Main Street/Huntley Road at Flewellyn Road will be analyzed in the 2035 future total conditions. Similar to the 2030 future total conditions, no left turn warrants were met at Shea Road at Street 21.

Synchro 11 has been used to model the unsignalized intersections and Sidra 9 to model the study area roundabout intersections. HCM 2010 methodology was used for unsignalized intersection operations and Sidra HCM 6 was used for roundabout intersection operations. The synchro worksheets have been provided in Appendix R.

222(144) 231(322) 131(60) 75(115) 285(551) 87(130) 305(133) 1 401(534) 3 33(34) 1 ↑ 12(43) → 313(399) Cosanti 43(24) 1 21(12) 7 17(41) + 317(370) Street 21 40(28) 12(8) 51(71) 241(285) 37(22) 168(169) 155(195) 19(14) 22(45) 177(346) 2(2) **1** 24(57) ← 212(375) 51(122) 220(295) ↑ ↑ 51(122) → 17(27) → 17(27) → ↑ 13(17) ↑ 207(260) ↑ 8(16) 22(53) <u></u> 38(44) 1 164(141) 1 15(14) 1 60(59) 299(242) 26(11)

Figure 20: 2035 Future Total Volumes

Table 27: 2035 Future Total Intersection Operations

	1		AM Peak Hour				PM Peak Hour			
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)	
	EB	D	0.89	34.3	151.9	E	0.89	37.5	142.1	
Shea Road at	WB	С	0.62	15.8	37.5	E	0.93	42.7	210.4	
Fernbank Road	NB	С	0.70	24.8	36.0	С	0.68	20.8	38.7	
Roundabout	SB	С	0.67	15.2	56.9	D	0.84	34.3	72.5	
	Overall	С	0.89	23.6	151.9	E	0.93	35.6	210.4	

	1		AM Pe	ak Hour			PM Pea	k Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
	EB	Α	0.38	7.6	15.1	Α	0.32	7.0	11.6
Shea Road at	WB	Α	0.20	5.4	6.5	Α	0.41	8.3	16.1
Flewellyn Road	NB	Α	0.26	6.8	8.7	Α	0.30	6.8	10.8
Roundabout	SB	Α	0.30	6.0	11.2	Α	0.41	8.5	15.6
	Overall	Α	0.38	6.6	15.1	Α	0.41	7.7	16.1
Callan III - BA-i-	EB	С	0.43	15.5	15.8	С	0.42	16.3	15.8
Stittsville Main	WB	С	0.62	19.6	31.5	D	0.72	25.7	44.3
Street / Huntley Road at Flewellyn Road	NB	С	0.55	18.6	24.0	С	0.61	21.1	30.0
	SBL	В	0.21	12.4	6.0	С	0.39	15.6	13.5
	SBT/R	С	0.63	20.9	32.3	С	0.66	23.5	36.0
Unsignalized	Overall	С	-	18.4	-	С	-	21.5	-
Shea Road at	EBL/R	В	0.13	13.3	3.0	С	0.09	14.9	2.3
Cosanti Drive	NBL/R	Α	0.01	7.9	0.0	Α	0.02	8.3	0.8
Unsignalized	SBT/R	-	-	-	-	-	-	-	-
Onsignanzea	Overall	Α	-	1.2	-	Α	-	0.8	-
Shea Road at	EBL/R	В	0.11	13.2	3.0	В	0.09	14.8	2.3
Street 21	NBL/T	Α	0.00	8.0	0.0	Α	0.01	8.2	0.0
Unsignalized	SBT/R	-	-	-	-	-	-	-	-
Onsignanzea	Overall	Α	-	1.1	-	Α	-	0.8	-
Flowellus Bood of	EBL/T	Α	0.02	7.8	0.8	Α	0.05	8.3	0.8
Flewellyn Road at Street 16	WBT/R	-	-	-	-	-	-	-	-
	SBL/R	В	0.20	12.7	5.3	В	0.19	14.9	5.3
Unsignalized	Overall	Α	-	2.4	-	Α	-	2.0	-
Flowellus Bood -+	EBL/T	Α	0.04	7.9	0.8	Α	0.11	8.5	3.0
Flewellyn Road at	WBT/R	-	-	-	-	-	-	-	-
Street 12 Unsignalized	SBL/R	С	0.39	15.3	14.3	С	0.39	19.3	13.5
	Overall	Α	-	4.9	-	Α	-	4.4	-

Notes:

Saturation flow rate of 1800 veh/h/lane

Queue is measured in metres Peak Hour Factor = 1.00 Delay = average vehicle delay in seconds

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

During both the AM and PM peak hours, the study area intersections are anticipated to operate well.

The new intersections along Shea Road and Flewellyn Road are assumed to be a minor stop-control condition. Allway stop control warrant calculation sheets are provided in Appendix D.

No additional signal warrants were met in 2035 future total conditions. Signal warrant calculation sheets are provided in Appendix E.

Similar to the 2030 future total conditions, the turn lanes are not required operationally on the eastbound left turns at Flewellyn Road at Street 12 and at Street 16. The 2035 future total operations with a 30.0 metres auxiliary eastbound left turn lane at the intersections of Flewellyn Road at Street 12 and a 15.0 metres auxiliary eastbound left turn lane at Street 16 have been summarized in Table 28 for informational purposes only. The left-turn warrant calculation sheets are provided in Appendix F. The Synchro worksheets are provided in Appendix S.

Table 28: 2035 Future Total - EBL at Flewellyn Road at Street 12 & at Street 16

Interception	lana		AM Pe	ak Hour			PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
	EBL	Α	0.02	7.8	0.8	Α	0.05	8.3	0.8
Flewellyn Road at Street 16 <i>Unsignalized</i>	EBT	-	-	-	-	-	-	-	-
	WB	-	-	-	-	-	-	-	-
	SB	В	0.20	12.7	5.3	В	0.19	14.8	5.3
	Overall	Α	-	2.4	-	Α	-	2.0	-
	EBL	Α	0.04	7.9	0.8	Α	0.11	8.5	3.0
Flewellyn Road at	EBT	-	-	-	-	-	-	-	-
Street 12 Unsignalized	WB	-	-	-	-	-	-	-	-
	SB	С	0.39	15.2	14.3	С	0.39	19.0	13.5
	Overall	Α	-	4.9	-	Α	-	4.4	-

Notes: Saturation flow rate of 1800 veh/h/lane

Queue is measured in metres Peak Hour Factor = 1.00 Delay = average vehicle delay in seconds

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

12.2.3 Intersection MMLOS

All study area intersections are unsignalized intersections, therefore, no MMLOS is required.

12.2.4 Recommended Design Elements

Based on the operational analysis provided, the following network improvements are indicated for consideration by the 2030 future total horizon:

- Shea Road at Flewellyn Road:
 - o Geometric improvements and upgrading to a roundabout/signal (requires City land acquisition)
- Stittsville Main Street/Huntley Road at Flewellyn Road:
 - o A 45-metre auxiliary southbound left turn lane (requires City land acquisition)

12.3 Eder Lands Sensitivity

While the Eder Lands are not within the proposed subdivision limits, they are a gap in the urban boundary and were considered within the W-4 Lands review to ensure the area was planned wholistically. Given this, a sensitivity analysis of these extra lands will be provided to give a fulsome analysis of the expected transportation network impacts. The sensitivity analysis will be provided for the 2030 build-out year and consider the proposed subdivision and Eder Lands.

It is estimated that the Eder Lands to be comprised of approximately 311 townhomes and 106 single detached homes.

12.3.1 Eder Lands Trip Generation and Assignment

Using the same methodology outlined in Section 4, Table 29 summarizes the total person trip generation for the Eder Lands, Table 30 summarizes the trip generation by mode and peak hour and Figure 21 illustrates the new site-generated volumes for the Eder Lands.

Table 29: Eder Lands Person Trip Generation by Peak Period

Tuble 29. Euer Lunus Person Trip Generation by Peak Period											
Land Hea	Units	AN	1 Peak Per	iod	PM Peak Period						
Land Use	Ullits	In	Out	Total	In	Out	Total				
Single-Detached	106	65	152	217	163	100	263				
Multi-Unit (Low-Rise)	311	126	294	420	275	216	491				

Table 30: Eder Lands Trip Generation by Mode

	Travel Mode	Al	M Peak Ho	ur	PM Peak Hour					
Travel Mode		In Out		Total	ln	Out	Total			
	Auto Driver	49	115	164	112	81	193			
	Auto Passenger	14	32	46	37	26	63			
tal	Transit	23	54	77	32	22	54			
Total	Cycling	3	5	7	4	3	7			
	Walking	8	19	27	12	9	21			
	Total	97	225	321	197	141	338			

As shown above, a total of 164 AM and 193 PM new peak hour two-way vehicle trips are projected as a result of the Eder Lands.

Figure 21: New Eder Lands Generation Auto Volumes 0(0) 5(11) 0(0) 0(8) 0(0) 11 12(8) <u></u> ኅ ተ 1(3) 0(0) (0)0 0(0) 0(0) 7 1 1 21(48) <u></u> 111 0(0) 51(36) 0(0) 0(0) 000

With Eder Lands, the 2035 future total intersection volumes are illustrated in Figure 22 and the intersection operations are summarized below in Table 31. As noted in the 2035 future total conditions, the intersection of

Shea Road at Flewellyn Road will be analyzed as a roundabout intersection and an auxiliary southbound left turn lane at the intersection of Stittsville Main Street/Huntley Road at Flewellyn Road will be analyzed in 2035 future total conditions. Based on TAC calculations, it is estimated that a 55-metre storage length on southbound left turn would be required with Eder Lands.

Similar to the conditions without Eder Lands, although eastbound left turn warrants were met for consideration at the intersections of Flewellyn Road at Street 12 and at Street 16, the operations are acceptable without the turn lane. No left turn warrants were met at Shea Road at Street 21. The left-turn warrant calculation sheets are provided in Appendix F.

Synchro 11 has been used to model the unsignalized intersections and Sidra 9 to model the study area roundabout. HCM 2010 methodology was used for unsignalized intersection operations and Sidra HCM 6 was used for roundabout intersection operations. The synchro worksheets have been provided in Appendix T.

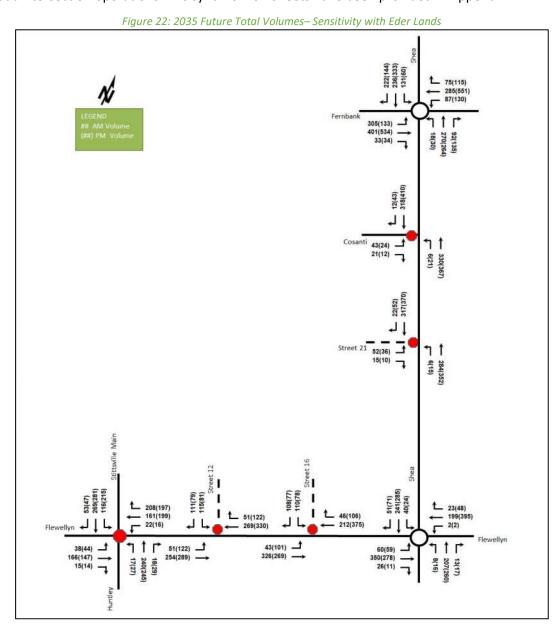


Table 31: 2035 Future Total Intersection Operations—Sensitivity with Eder Lands

			AM P	eak Hour		,	PM P	eak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
	EB	E	0.89	35.3	154.7	Е	0.90	40.0	148.2
Shea Road at	WB	С	0.63	16.3	38.2	Е	0.93	42.7	210.3
Fernbank Road	NB	D	0.72	26.4	38.8	С	0.69	21.6	40.5
Roundabout	SB	С	0.67	15.5	58.4	E	0.85	36.9	78.7
	Overall	С	0.89	24.4	154.7	E	0.93	37.0	210.3
	EB	Α	0.43	8.4	18.0	Α	0.36	7.5	13.5
Shea Road at	WB	Α	0.22	5.6	7.4	Α	0.46	9.2	20.6
Flewellyn Road	NB	Α	0.28	7.4	9.1	Α	0.32	7.2	11.2
Roundabout	SB	Α	0.31	6.3	11.6	Α	0.43	9.2	17.8
	Overall	Α	0.43	7.1	18.0	Α	0.46	8.4	20.6
Callan allia Basto	EB	С	0.46	16.8	17.3	С	0.46	17.7	17.3
Stittsville Main	WB	D	0.72	26.1	45.8	D	0.80	33.2	57.8
Street / Huntley Road at Flewellyn	NB	С	0.58	20.7	27.0	С	0.64	23.5	33.0
Road	SBL	В	0.26	13.5	7.5	С	0.49	18.6	19.5
Unsignalized	SBT/R	С	0.66	23.4	35.3	D	0.69	25.7	39.0
Onsignanzea	Overall	С	-	21.7	-	D	-	25.2	-
Shea Road at	EBL/R	В	0.13	13.5	3.0	С	0.09	15.2	2.3
Cosanti Drive	NBL/R	Α	0.01	7.9	0.0	Α	0.02	8.3	0.8
Unsignalized	SBT/R	-	-	-	-	-	-	-	-
Onsignanzea	Overall	Α	-	1.2	-	Α	-	0.8	-
Shea Road at	EBL/R	В	0.14	13.6	3.8	С	0.12	15.2	3.0
Street 21	NBL/T	Α	0.01	8.0	0.0	Α	0.01	8.2	0.0
Unsignalized	SBT/R	-	-	-	-	-	-	-	-
Onsignanzea	Overall	Α	-	1.4	-	Α	-	1.0	-
Flewellyn Road at	EBL/T	Α	0.03	7.8	0.8	Α	0.09	8.7	2.3
Street 16	WBT/R	-	-	-	-	-	-	-	-
Unsignalized	SBL/R	С	0.40	15.8	14.3	С	0.41	20.8	14.3
Onsignanzea	Overall	Α	-	4.5	-	Α	-	4.1	-
Flavollus Bood at	EBL/T	Α	0.04	8.0	0.8	Α	0.11	8.6	3.0
Flewellyn Road at Street 12	WBT/R	-	-	-	-	-	-	-	-
Unsignalized	SBL/R	С	0.43	16.8	15.8	С	0.43	21.9	15.8
Unsignalizea	Overall	Α	-	4.9	-	Α	-	4.5	-
Saturation flor	w rate of 1800 v	oh/h/lano			Delav = averag	to vohiclo de	lay in second		

Saturation flow rate of 1800 veh/h/lane

Notes: Queue is measured in metres

Peak Hour Factor = 1.00

Delay = average vehicle delay in seconds

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

With Eder Lands, the study area intersections are anticipated to operate well during both the AM and PM peak hours.

Similar to the conditions without Eder Lands, Table 28 summarized the 2035 future total operations with a 30.0 metres auxiliary eastbound left turn lane at the intersections of Flewellyn Road at Street 12 and a 25.0 metres auxiliary eastbound left turn lane at Street 16 for informational purposes only. The Synchro worksheets are provided in Appendix U.

Table 32: 2035 Future Total – Sensitivity with Eder Lands, EBL at Flewellyn Road at Street 12 & at Street 16

Interception	Long		AM Pe	ak Hour			PM Pe	ak Hour	
Intersection	Lane	LOS	V/C	Delay	Q (95 th)	LOS	V/C	Delay	Q (95 th)
	EBL	Α	0.03	7.8	0.8	Α	0.09	8.7	2.3
Flewellyn Road at	EBT	-	-	-	-	-	-	-	-
Street 16	WB	-	-	-	-	-	-	-	-
Unsignalized	SB	С	0.40	15.7	14.3	С	0.40	20.4	14.3
	Overall	Α	-	4.4	-	Α	-	4.0	-
	EBL	Α	0.04	8.0	0.8	Α	0.11	8.6	3.0
Flewellyn Road at	EBT	-	-	-	-	-	-	-	-
Street 12	WB	-	-	-	-	-	-	-	-
Unsignalized	SB	С	0.43	16.7	15.8	С	0.42	21.4	15.8
	Overall	Α	-	4.9	-	Α	-	4.4	-

Notes: Saturation flow rate of 1800 veh/h/lane

Queue is measured in metres

Peak Hour Factor = 1.00

Delay = average vehicle delay in seconds

m = metered queue

= volume for the 95th %ile cycle exceeds capacity

12.3.2 Recommended Design Elements

Similar to the scenario without Eder Lands, the intersection of Shea Road at Flewellyn Road should be realigned by the City to provide a higher order intersection control, and the City explore the land acquisition for the possible implementation of a southbound left-turn lane at the intersection of Stittsville Main Street / Huntley Road at Flewellyn Road.

13 W-4 Concept Plan

The plan of subdivision has undergone minor revisions from the concept proposed during the urban expansion process to remove the future neighbourhood overlay. The collector road network has remained consistent with the accesses similar to those originally proposed. The internal local road network has been refined for specific unit typologies, and the condo blocks have been reoriented from the Eder parcel into the subject subdivision and to the southwest corner. Pedestrian walkway blocks have been added to link the various west side local road loops, break up a number of larger block lengths and link to various parks or open space.

A forecasted trip reduction has resulted from the various changes to the subdivision area, from 1,459 units (416 single family homes, 707 townhomes, 336 stacked condo) to 1,692 residential units (566 single family homes, 558 townhomes, 442 stacked condo), predominantly through a reduction in the townhome units. The unit change did not have a notable impact on the transportation network operations and can be supported through the recommendations of the W-4 concept plan work.

Overall, the refinements for the plan of subdivision are consistent with the previous studies from a transportation perspective.

14 Summary of Improvements Indicated and Modifications Options

The following summarizes the analysis and results presented in this TIA report:

Proposed Site and Screening

- The plan of subdivision proposed a total of 558 townhomes, 566 single-detached homes, 442 stacked townhomes, and park/open space within the proposed development
- New collector roadways are proposed to connect to Shea Road and Flewellyn Road, and new local roads to connect to Painted Sky Way and to Parade Drive at Hickstead Way intersection

- The anticipated build-out is assumed to be 2030
- The trip generation and safety triggers were met for the TIA Screening
- The Eder Lands are not part of the proposed subdivision and reside outside the urban boundary

Existing Conditions

- Stittsville Main Street, Huntley Road, and Fernbank Road are arterial roads, Shea Road is a collector road in the study area, and Painted Sky Way, Parade Drive, Hickstead Way, and Cosanti Drive are local roads
- Sidewalks are present on Stittsville Main Street north of West Ridge Drive, West Ridge Drive, Upcountry
 Drive, Baywood Drive, Arrowwood Drive, Brightside Avenue between Fernbank Road and Baywood Drive,
 Edenwylde Drive, Hartsmere Drive, Hickstead Way, and Parade Drive
- Paved shoulders are present on both sides along Stittsville Main Street south of Etta Street, Huntley Road, Fernbank Road, Shea Road north of Fernbank Road, Flewellyn Road and on the west side along Stittsville Main Street between Etta Street and Upcountry Drive
- No transit stops are present within 400 metres of the proposed site
- During both the AM and PM peak hours, the study area intersections operate well
- Shea Road at Flewellyn Road met the all-way stop-control warrants for consideration, and the operation is acceptable to remain as a minor stop-control condition
- The Stittsville Main Street / Huntley Road at Flewellyn Road intersection met the Signal Justification 1 only and is recommended to remain as all-way stop-control
- Within the study area, the intersections of Flewellyn Road at Shea Road and Fernbank Road at Shea Road are noted to have experienced higher collisions than other locations
- The offset configuration of Flewellyn Road at Shea Road intersection is considered the primary cause of the angled collisions, and the surface conditions and dark conditions are likely to cause the collisions at Fernbank Road at Shea Road intersection

Planned Conditions

- Fernbank Road transit priority corridor, Stittsville Main Road transit priority corridor, and Hazeldean Road transit priority corridor are identified as transit priority projects, and Robert Grant Transitway median BRT from Hazeldean Station to Abbott Street East is identified as a needs-based project within the TMP Transit Network
- Robert Grant Avenue is being extended northwards from Abbott Street to Hazeldean Road, identified as a committed road project within the TMP Road Network
- Robert Grant Avenue Extension, including a new two-lane road between Palladium Drive and Hazeldean Road, implementing new active transportation facilities on both sides of Fernbank Road from West Ridge Drive to Shea Road and improving connection to the existing pathway on the south side of Fernbank from Stittsville Main Street to Hartsmere Drive, and implementing new sidewalks and cycletracks on both sides of Shea Road from Abbott Street to the northern edge of the Stittsville South W4 future community are identified as priority road projects within the TMP Road Network
- Rural paved shoulder along Flewellyn Road have been constructed as identified within the TMP cycling network

Development Generated Travel Demand

The proposed development is forecasted to produce 1144 two-way people trips during the AM peak hour
 and 1207 two-way people trips during the PM peak hour

- Of the forecasted people trips, 566 two-way trips will be vehicle trips during the AM peak hour and 689 two-way trips will be vehicle trips during the PM peak hour
- Of the forecasted people trips, 277 two-way trips will be transit trips during the AM peak hour and 189 two-way trips will be transit trips during the PM peak hour
- Of the forecasted trips, 80% are anticipated to travel north, 3% to the south, 12% to the east, and 5% to the west

Development Design

- The proposed development is a residential subdivision featuring driveways for each dwelling, garages for typical townhomes, and surface parking for stacked townhomes
- Bicycle parking is assumed to be within the individual units
- The collector roads will have a sidewalk and cycletrack on both sides of the roadway
- Local roads will have a sidewalk on one side
- Pedestrian crossovers are proposed within the Hydro corridor to allow a continuous multi-use pathway and at the internal collector road intersections
- The existing Hydro corridor and existing stormwater management ponds are noted within the subdivision, and two new proposed stormwater management pond areas and two parks are proposed

New Street Networks

- The new 26.0-metre-wide collector road are proposed with 2.0-metre-wide sidewalk and 1.5 metre cycletrack on both sides of the roadway
- All the new local roadways are 18.0-metre-wide and on-street parking along one side of the road, with a 2.0-metre-wide sidewalk on one side
- The proposed speed limit for new collector roads will be 40 km/h and for new local roads will be 30 km/h
- Street 12, 16, and 21 exceeds the TAC's minimum corner clearance of 25 meters from major intersections
- Conceptual traffic calming elements have been illustrated for the subdivision, adhering to the philosophies of the Traffic Calming Guidelines and preliminary input from the City
- The features include bulb-outs to narrow approaches to intersections (e.g. reduced crossing distance), speed humps, and midblock narrowing to reduce vehicle speeds and lateral roadway shifts
- It is noted that the lateral shifts have potential impacts to transit service and maintenance operations, as well as the removal of 45 metres or more of on-street parking
- Traffic calming elements for connections to the existing roadways will be coordinated with the adjacent existing roadway during the subdivision detailed design
- Conceptual corner triangles have been illustrated based in preliminary City feedback for overlapping 5x15 metre corner triangles at the collector-to-collector road intersections, 3x9 metre corner triangles for local to collector intersections and 3x3 metre corner triangles for local-to-local intersections
- These are not intended to be the corner triangles ultimately provided, they are illustrative only to address City commentary
- Subdivision detailed design will be required to confirm all corner triangles

Boundary Street Design

- Both boundary roads of Shea Road and Flewellyn Road will have a LOS of F for pedestrian LOS during the existing conditions
- Shea Road will improve slightly to LOS E once urbanized

- To meet the theoretical pedestrian LOS target on Shea Road, the operating speed would need to be reduced to 30-50 km/h
- Speed reduction to 30 km/h, or speed reduction to 50-60 km/h and 2.0 metre sidewalk with a 2.0 metre, or a 2.0 metre sidewalk with a 0.5-2.0 metre boulevard would be needed to meet the future theoretical PLOS target on Flewellyn Road
- Shea Road has a bicycle LOS of F in the existing and interim conditions, although the boundary street will meet the bicycle LOS target once urbanized
- Flewellyn Road has a bicycle LOS E, and the operating speed would need to be reduced to 50-70 km/h to meet the BLOS target on Flewellyn Road
- Transit LOS will be met on both Shea Road and Flewellyn Road and no truck LOS targets are applicable
- Both the internal local and collector roads are expected to meet the MMLOS targets
- Barriers to implementation of the sidewalk include the rural cross-sections of both roadways requiring significant reconstruction and extension of municipal services, and the Faulkner Municipal Drain along a significant portion of Flewellyn Road
- It is also noted no desire line of destination is located along Flewellyn Road to necessitate a sidewalk or pathway facility, and no missing link will be addressed

TDM

- Supportive TDM measures to be included within the proposed development should include:
 - o Provide a multimodal travel option information package to new residents
 - Provide transit incentives for new residents
 - Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels

Background Conditions

- The background developments were explicitly included in the background conditions, along with background growth applied on study area roadways along the mainline volumes
- During both the AM and PM peak hours, the intersections in the study area operate well in the future background conditions
- No capacity constraints are noted at the study area intersections in the background conditions
- No intersection will meet warrants for consideration of signalization or left turn lanes in the future background conditions
- The TMP outlines the widening of Fernbank Road from two to four lanes between Stittsville Main Street and Terry Fox Drive to address capacity constraints along the roadway. The widening of Fernbank Road remains a network improvement for the Stitsville/Kanata area. It is not required to support the proposed subdivision

Transit

- The proposed development is anticipated to generate an additional 277 AM and 189 PM peak hour twoway transit trips
- It is noted that future transit stops will be planned within the subdivision, which will be the primary bus stops for residents within the subdivision
- Potential bus stop locations have been consultant with Transit Services, and the location of the southbound stop on Street 12 will need to be confirmed

- In total, a 10-15-minute AM peak hour service level is estimated to be required for the proposed lands to meet the transit demand, and a 20-minute PM peak hour service level
- In the near term, a combination of a new dedicated route combined with the extension of the peak hour services to 15–20-minute service in the area (e.g. routes #61, #262, #263) would provide the service required for the community

Network Concept

- Area roadways have the residual capacity in both the background and total conditions; therefore, site traffic can be accommodated from a regional network perspective
- Fernbank Road, east of Shea Road is noted to reach the TRANS capacity during the PM peak hour in the
 westbound direction in the future conditions, with residual capacity on the other area roadways to
 support future development
- No site-generated trips have been assigned to travel via Fernbank Road east of Shea Road based on the capacity review

Intersection Design

- The new roadway intersections within the subdivision and from the subdivision to Flewellyn Road and Shea Road are proposed as stop-controlled on the minor approach
- Although eastbound left turns at Flewellyn Road at Street 12 during both peak hours and at Street 16 during the PM peak hour met the left-turn warrants for consideration in the 2030 future total conditions, no turn lane is recommended
- No left turn warrants were met at Shea Road at Street 21 at any horizon
- During both the AM and PM peak hours, the study area intersections are anticipated to operate well
 except for the northbound and southbound movement at Shea Road at Flewellyn Road intersection during
 the PM peak hour and the southbound movement at Stittsville Main Street / Huntley Road at Flewellyn
 Road during the PM peak hour in 2030 future total conditions
- The Shea Road at Flewellyn Road intersection met Signal Justification 7 in the 2030 future total conditions
- The southbound left turns met the warrants for consideration in 2030 future total conditions during both peak hours at the intersection of Stittsville Main Street / Huntley Road at Flewellyn Road, and will require the City acquire land to implement an auxiliary southbound left turn lane
- Geometric improvements and upgrading to a roundabout/signal by the City are supported by this study at the intersection of Shea Road at Flewellyn Road
- A 45 metres auxiliary southbound left turn lane would mitigate the operational constraints noted at the intersection of Stittsville Main Street/Huntley Road at Flewellyn Road by 2030 future total horizon
- Both of the above mitigation measures are in constrained existing property and cannot be investigated without land acquisition by the City
- The study area intersections are anticipated to operate well during both peak hours in 2035 future total conditions with mitigation measures

Eder Lands Sensitivity

- A total of 164 AM and 193 PM new peak hour two-way vehicle trips are projected as a result of the Eder Lands
- The Eder Lands sensitivity analysis does not require additional mitigation measures at the study area intersections

15 Conclusion

It is recommended that, from a transportation perspective, the proposed development applications proceed.

Prepared By:

Reihaneh Akhdar

Reihaneh Azhdar Transportation Engineering-Intern Reviewed By:

Andrew Harte, P.Eng. Senior Transportation Engineer

Appendix A

TIA Screening Form and PM Certification Form

City of Ottawa 2023 Revisions to 2017 TIA Guidelines Step 1 - Screening Form

Date: 24-Jul-24
Project Number: 2021-128
Project Reference: Flewellyn

1.1 Description of Proposed Development	
Municipal Address	5993,6115 Flewellyn & 6070 Fernbank
Description of Location	At the northwest corner of Shea Road at Flewellyn Road intersection
Land Use Classification	Rural (RU)
Development Size	707 townhomes, 416 single detached homes, 336 stacked condo units
Accesses	New roadways are proposed to connect to Shea Road, Flewellyn Road, Painted Sky Way, and the block that connects to Parade Drive at Hickstead Way intersection
Phase of Development	Multiple
Buildout Year	2030
TIA Requirement	Full TIA Required

1.2 Trip Generation Trigger	
Land Use Type	Multi-Family (Low-Rise)
Development Size	1459 Units
Trip Generation Trigger	Yes

1.3 Location Triggers	
Does the development propose a new driveway to a boundary street that is designated as part of the Transit Priority Network, Rapid Transit network or Cross-Town Bikeways?	No
Is the development in a Hub, a Protected Major Transit Station Area (PMTSA), or a Design Priority Area (DPA)?	No
Location Trigger	No

1.4. Safety Triggers		
Are posted speed limits on a boundary street 80 km/hr or greater?	Yes	
Are there any horizontal/vertical curvatures on a boundary street limits	No	
sight lines at a proposed driveway?	No	
Is the proposed driveway within the area of influence of an adjacent traffic		
signal or roundabout (i.e. within 300 m of intersection in rural conditions,	No	
or within 150 m of intersection in urban/ suburban conditions)?		
Is the proposed driveway within auxiliary lanes of an intersection?	No	
Does the proposed driveway make use of an existing median break that	No	
serves an existing site?	140	
Is there is a decumented history of traffic approximations or sofety concerns on		High angle collisions (17) at
Is there is a documented history of traffic operations or safety concerns on	Yes	Flewellyn Road and Shea Road
the boundary streets within 500 m of the development?		intersection
Does the development include a drive-thru facility?	No	·
Safety Trigger	Yes	

Certification Form for TIA Study PM

TIA Plan Reports

On April 14, 2022, the Province's Bill 109 received Royal Assent providing legislative direction to implement the More Homes for Everyone Act, 2022 aiming to increase the supply of a range of housing options to make housing more affordable. Revisions have been made to the TIA guidelines to comply with Bill 109 and streamline the process for applicants and staff.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associated documents) and signing this document, the individual acknowledges that they meet the four criteria listed below.

CERTIFICATION

I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines; (Update effective July 2023)

I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;

I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and

I am either a licensed or registered¹ professional in good standing, whose field of expertise

is either transportation engineering

or transportation planning.

¹ License of registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

City Of Ottawa Planning, Real Estate and Economic Development 110 Laurier Avenue West, 4th fl. Ottawa, ON K1P 1J1 Tel.: 613-580-2424

Tel.: 613-580-2424 Fax: 613-560-6006

Revision Date: June 2023

Dated at	this	day of	, 20
(City)			
Name :			
Professional title:			
Signature of individual certif	ier that s/he/they	meet the above criteria	
Office Contact Informatio	n (Please Print)		
Address:			
City / Postal Code:			
Telephone / Extension:			
Email Address:			
Stamp			

Revision Date: June 2023

A. J. HARTE 100149314

POVINCE OF ONTARIO

Appendix B

Turning Movement Counts

Turning Movement Count - Study Results

FERNBANK RD @ SHEA RD

 Survey Date:
 Wednesday, March 02, 2022
 WO No:
 40193

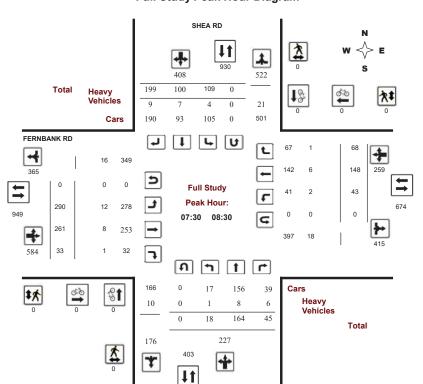
 Start Time:
 07:00
 Device:
 Miovision

Full Study Diagram

Transportation Services - Traffic Services

Turning Movement Count - Study Results

FERNBANK RD @ SHEA RD


 Survey Date:
 Wednesday, March 02, 2022
 WO No:

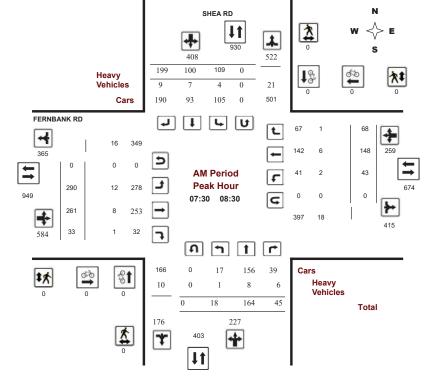
 Start Time:
 07:00
 Device:

Full Study Peak Hour Diagram

40193

Miovision

August 9, 2023 Page 1 of 8 August 9, 2023 Page 2 of 8



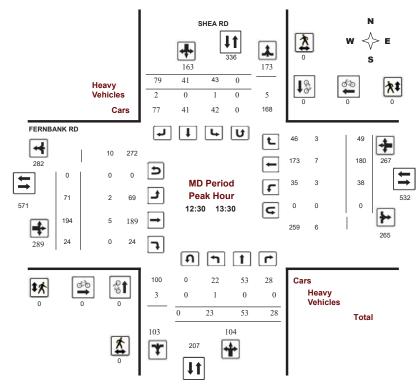
Turning Movement Count - Peak Hour Diagram

FERNBANK RD @ SHEA RD

 Survey Date:
 Wednesday, March 02, 2022
 Wo No:
 40193

 Start Time:
 07:00
 Device:
 Miovision

Comments


Transportation Services - Traffic Services

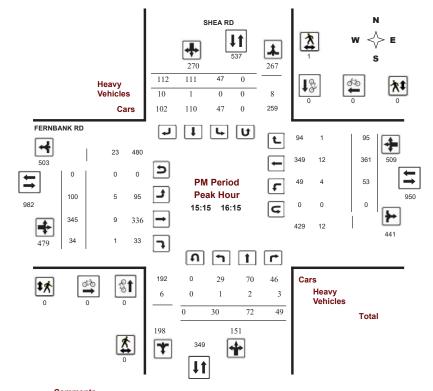
Turning Movement Count - Peak Hour Diagram

FERNBANK RD @ SHEA RD

 Survey Date:
 Wednesday, March 02, 2022
 WO No:
 40193

 Start Time:
 07:00
 Device:
 Miovision

Comments



Turning Movement Count - Peak Hour Diagram

FERNBANK RD @ SHEA RD

 Survey Date:
 Wednesday, March 02, 2022
 WO No:
 40193

 Start Time:
 07:00
 Device:
 Miovision

Comments

Transportation Services - Traffic Services

Turning Movement Count - Study Results

FERNBANK RD @ SHEA RD

 Survey Date:
 Wednesday, March 02, 2022
 WO No:
 40193

 Start Time:
 07:00
 Device:
 Miovision

Full Study Summary (8 HR Standard)

Survey Date: Wednesday, March 02, 2022

Total Observed U-Turns AADT Factor

1.00

Northbound: 1 Southbound: 1
Eastbound: 2 Westbound: 0

FERNBANK RD SHEA RD Northbound Southbound Eastbound Westbound SB STR STR Grand LT ST ST LT ST RT LT ST RT Period RT TOT TOT TOT TOT TOT Total 471 242 221 35 1171 07:00 08:00 80 102 261 41 101 60 700 08:00 09:00 143 277 1135 273 297 980 09:00 10:00 154 52 707 11:30 12:30 153 12:30 13:30 15:00 16:00 1296 16:00 17:00 83 1257 17:00 18:00 106 243 384 231 275 1157 575 839 1987 224 3050 289 1811 522 8585 Sub Total 766 1756 2913 5672 U Turns 2 Total 1158 2915 3052 5674 8589 696 275 415 575 766 1757 839 1987 224 289 1811 522 2622 EQ 12Hr 2442 4052 402 726 11939 799 1.39 Note: These values are calculated by multiplying the totals by the appropriate expansion factor 402 726 7887 Note: These volumes are calculated by multiplying the Equivalent 12 hr. totals by the AADT factor 1.00 5308 1527 3618 407 5557 527 3297 951 4775 10332 15640 Note: These volumes are calculated by multiplying the Average Daily 12 hr. totals by 12 to 24 expansion factor.

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

2023-Aug-09 Page 1 of 9
August 9, 2023 Page 3 of 8

Turning Movement Count - Study Results

FERNBANK RD @ SHEA RD

 Survey Date:
 Wednesday, March 02, 2022
 WO No:
 40193

 Start Time:
 07:00
 Device:
 Miovision

SHEA RD

Full Study 15 Minute Increments FERNBANK RD

Note: U-Turns are included in Totals.

Transportation Services - Traffic Services

Turning Movement Count - Study Results

FERNBANK RD @ SHEA RD

 Survey Date:
 Wednesday, March 02, 2022
 WO No:
 40193

 Start Time:
 07:00
 Device:
 Miovision

Full Study Cyclist Volume

		SHEA RD	-	-			
Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	0	0	0	0	0	0	0
07:15 07:30	0	0	0	0	0	0	0
07:30 07:45	0	0	0	0	0	0	0
07:45 08:00	0	0	0	0	0	0	0
08:00 08:15	0	0	0	0	0	0	0
08:15 08:30	0	0	0	0	0	0	0
08:30 08:45	0	0 0 0		0	0	0	0
08:45 09:00	0 0 0		0	0	0	0	0
9:00 09:15	0	0	0	0	0	0	0
9:15 09:30	0	0	0	0	0	0	0
09:30 09:45	0	0	0	0	0	0	0
09:45 10:00	0	0	0	0	0	0	0
11:30 11:45	0	0	0	0	0	0	0
1:45 12:00	0	0	0	0	0	0	0
2:00 12:15	0	0	0	0	0	0	0
12:15 12:30	0	0	0	0	0	0	0
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	0	0	0	0	0	0	0
15:15 15:30	0	0	0	0	0	0	0
15:30 15:45	0	0	0	0	0	0	0
15:45 16:00	0	0	0	0	0	0	0
6:00 16:15	0	0	0	0	0	0	0
16:15 16:30	0	0	0	0	0	0	0
6:30 16:45	0	0	0	0	0	0	0
6:45 17:00	0	0	0	0	0	0	0
7:00 17:15	0	0	0	0	0	0	0
7:15 17:30	0	0	0	0	0	0	0
7:30 17:45	0	0	0	0 0 0			0
7:45 18:00	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0

August 9, 2023 Page 4 of 8 August 9, 2023 Page 5 of 8

17:15 17:30 17:30 17:45 17:45 18:00

Total ..

Transportation Services - Traffic Services

Turning Movement Count - Study Results

FERNBANK RD @ SHEA RD

Survey Date: Wednesday, March 02, 2022 40193 Start Time: 07:00 Device: Miovision

Full Study Pedestrian Volume SHEA RD FERNBANK RD

Time Period NB Approach (E or W Crossing) (E or W Crossing) EB Approach WB Approach (N or S Crossing) (N or S Crossing) Total Total **Grand Total** 07:00 07:15 0 0 07:45 08:00 08:00 08:15 08:15 08:30 08:30 08:45 0 0 08:45 09:00 0 0 09:15 09:30 09:30 09:45 09:45 10:00 11:30 11:45 0 11:45 12:00 0 12:15 12:30 12:30 12:45 13:00 13:15 0 0 13:15 13:30 0 0 0 15:00 15:15 15:45 16:00 16:00 16:15 16:15 16:30 0 0 16:30 16:45

0

0

0

Transportation Services - Traffic Services

Turning Movement Count - Study Results

FERNBANK RD @ SHEA RD

Survey Date: Wednesday, March 02, 2022 WO No: 40193 Start Time: 07:00 Device: Miovision

							F	ull S	tud	у Не	avy	Vel	nicle	es						
	SHEA RD										FERNBANK RD									
		No	orthbo	und		Sc	outhbou	ınd		Eastbound Westbound										
Time Per	riod	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07	7:15	0	1	4	8	1	0	0	4	12	1	1	3	6	0	1	1	8	14	13
07:15 07	7:30	0	1	0	4	0	2	3	6	10	0	1	0	7	1	3	0	5	12	11
07:30 07	7:45	0	1	0	4	0	2	2	12	16	7	4	1	15	0	1	0	5	20	18
07:45 08	8:00	0	6	4	12	2	2	2	13	25	1	2	0	6	0	1	0	9	15	20
08:00 08	8:15	0	0	1	2	2	0	2	8	10	3	2	0	9	1	2	1	9	18	14
08:15 08	8:30	1	1	1	7	0	3	3	8	15	1	0	0	7	1	2	0	4	11	13
08:30 08	8:45	0	1	0	2	0	1	4	10	12	1	0	0	5	0	0	1	1	6	9
08:45 09	9:00	0	1	1	3	0	0	1	4	7	1	4	0	9	1	3	1	10	19	13
09:00 09	9:15	2	0	0	6	0	2	1	8	14	4	0	2	17	0	6	1	7	24	19
09:15 09	9:30	0	0	0	1	1	1	1	4	5	1	3	0	7	0	2	0	6	13	9
09:30 09	9:45	0	1	0	3	0	2	0	4	7	1	2	0	6	0	3	0	5	11	9
09:45 10	0:00	0	0	1	2	0	0	1	1	3	0	0	0	1	1	0	0	2	3	3
11:30 11	1:45	0	0	0	2	0	0	0	1	3	1	3	1	6	1	1	0	5	11	7
11:45 12	2:00	3	1	0	6	0	0	2	3	9	0	1	2	9	0	1	0	2	11	10
12:00 12	2:15	1	0	0	4	0	0	0	1	5	1	0	2	8	1	4	0	5	13	9
12:15 12	2:30	1	0	1	2	0	0	1	2	4	0	2	0	4	0	0	1	4	8	6
12:30 12	2:45	0	0	0	1	0	0	0	2	3	1	0	0	1	1	0	1	2	3	3
12:45 13	3:00	0	0	0	1	0	0	1	1	2	0	1	0	5	1	3	0	5	10	6
13:00 13	3:15	1	0	0	2	0	0	0	3	5	1	2	0	6	1	2	2	7	13	9
13:15 13	3:30	0	0	0	0	1	0	1	2	2	0	2	0	5	0	2	0	5	10	6
15:00 15	5:15	0	0	1	2	1	1	0	4	6	2	4	0	8	0	2	0	8	16	11
15:15 15	5:30	0	0	0	0	0	0	1	1	1	0	2	0	4	0	1	0	3	7	4
15:30 15	5:45	0	1	0	1	0	0	7	11	12	3	0	0	13	0	3	0	3	16	14
15:45 16	6:00	0	1	2	6	0	0	2	4	10	0	1	0	9	3	6	1	13	22	16
16:00 16	6:15	1	0	1	5	0	1	0	3	8	2	6	1	12	1	2	0	10	22	15
16:15 16	6:30	0	0	0	4	0	1	1	6	10	3	4	2	10	1	0	1	6	16	13
16:30 16	6:45	0	2	0	4	0	1	1	5	9	1	0	0	3	1	1	0	2	5	7
16:45 17	7:00	0	1	0	3	1	0	1	5	8	2	1	0	4	2	0	0	4	8	8
17:00 17	7:15	0	0	0	1	0	0	0	1	2	1	0	1	2	0	0	0	0	2	2
17:15 17	7:30	0	0	0	2	0	2	0	4	6	2	0	0	3	0	1	0	1	4	5
17:30 17	7:45	0	0	0	2	2	0	1	5	7	1	0	0	2	0	0	1	3	5	6
17:45 18	8:00	0	0	0	0	0	0	0	2	2	2	3	0	8	0	1	0	4	12	7
Total: No	lone	10	19	17	102	11	21	39	148	250	44	51	15	217	18	54	12	163	380	315

August 9, 2023 August 9, 2023 Page 6 of 8 Page 7 of 8

Turning Movement Count - Study Results

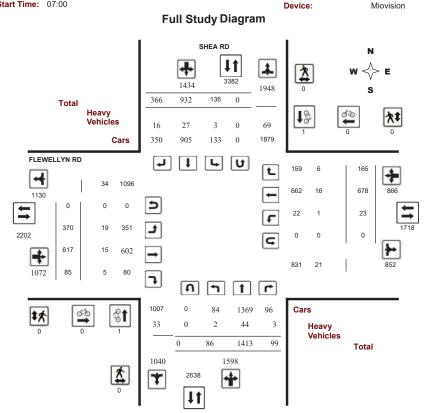
FERNBANK RD @ SHEA RD

 Survey Date:
 Wednesday, March 02, 2022
 WO No:
 40193

 Start Time:
 07:00
 Device:
 Miovision

Full Study 15 Minute U-Turn Total SHEA RD FERNBANK RD

Time	Period	Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total
07:00	07:15	0	0	0	0	0
07:15	07:30	0	0	0	0	0
07:30	07:45	0	0	0	0	0
07:45	08:00	0	0	0	0	0
08:00	08:15	0	0	0	0	0
08:15 08:30		0	0	0	0	0
08:30	08:45	0	1	0	0	1
08:45	09:00	0	0	0	0	0
09:00	09:15	0	0	1	0	1
09:15	09:30	0	0	0	0	0
09:30	09:45	0	0	0	0	0
09:45	10:00	0	0	0	0	0
11:30	11:45	0	0	0	0	0
11:45	12:00	0	0	0	0	0
12:00	12:15	0	0	0	0	0
12:15	12:30	0	0	0	0	0
12:30	12:45	0	0	0	0	0
12:45	13:00	0	0	0	0	0
13:00	13:15	0	0	0	0	0
13:15	13:30	0	0	0	0	0
15:00	15:15	0	0	0	0	0
15:15	15:30	0	0	0	0	0
15:30	15:45	0	0	0	0	0
15:45	16:00	0	0	0	0	0
16:00	16:15	0	0	0	0	0
16:15	16:30	0	0	0	0	0
16:30	16:45	0	0	0	0	0
16:45	17:00	0	0	0	0	0
17:00	17:15	0	0	0	0	0
17:15	17:30	0	0	0	0	0
17:30	17:45	1	0	0	0	1
17:45	18:00	0	0	1	0	1
To	otal	1	1	2	0	4


Transportation Services - Traffic Services

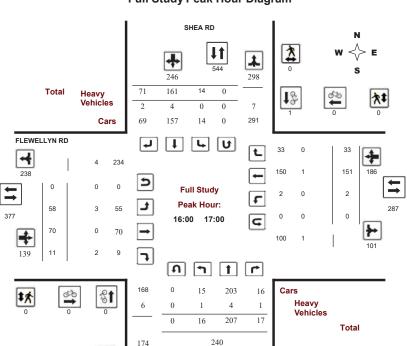
Turning Movement Count - Study Results

FLEWELLYN RD @ SHEA RD

 Survey Date:
 Wednesday, April 26, 2023
 Wo No:
 40938

 Start Time:
 07:00
 Device:
 Micovision

August 9, 2023 Page 8 of 8 August 9, 2023 Page 1 of 8


Turning Movement Count - Study Results

FLEWELLYN RD @ SHEA RD

 Survey Date:
 Wednesday, April 26, 2023
 WO No:
 40938

 Start Time:
 07:00
 Device:
 Miovision

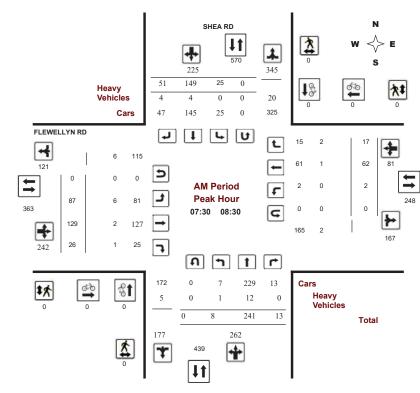
 Full Study Peak Hour Diagram

August 9, 2023 Page 2 of 8

+

11

★


Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

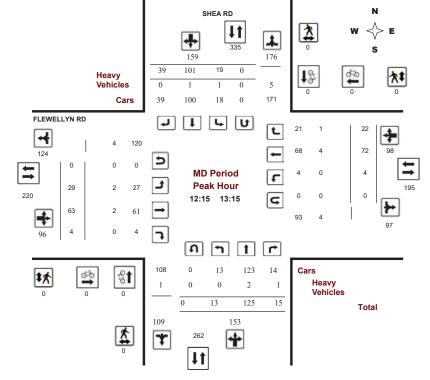
FLEWELLYN RD @ SHEA RD

 Survey Date:
 Wednesday, April 26, 2023
 WO No:
 40938

 Start Time:
 07:00
 Device:
 Miovision

Comments

2023-Aug-09 Page 3 of 9



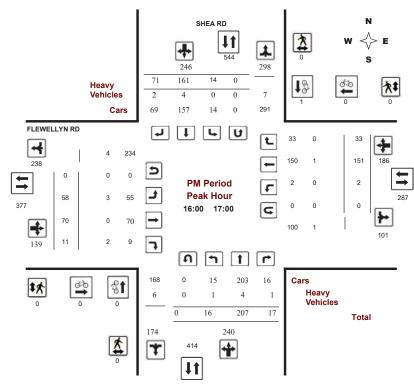
Turning Movement Count - Peak Hour Diagram

FLEWELLYN RD @ SHEA RD

 Survey Date:
 Wednesday, April 26, 2023
 Wo No:
 40938

 Start Time:
 07:00
 Device:
 Miovision

Comments


Transportation Services - Traffic Services

Turning Movement Count - Peak Hour Diagram

FLEWELLYN RD @ SHEA RD

 Survey Date:
 Wednesday, April 26, 2023
 WO No:
 40938

 Start Time:
 07:00
 Device:
 Miovision

Comments

Turning Movement Count - Study Results

FLEWELLYN RD @ SHEA RD

 Survey Date:
 Wednesday, April 26, 2023
 Wo No:
 40938

 Start Time:
 07:00
 Device:
 Miovision

Full Study Summary (8 HR Standard)

Survey Da	urvey Date: Wednesday, April 26, 2023							Total Observed U-Turns									AAD	Γ Facto	or
							N	Northbour	nd: 0		South	bound:	0				.90		
								Eastbour	nd: ()		West	bound:	0						
			S	HEA R	D							FLEV	NELLY	N RD					
	Northbound Southbo			uthbou	ınd			Е	astbou	nd		W	estbou	und					
Period	LT	ST	RT	NB TOT	LT	ST	RT	SB TOT	STR TOT	LT	ST	RT	EB TOT	LT	ST	RT	WB TOT	STR TOT	Grand Tota
07:00 08:00	9	214	12	235	21	116	42	179	414	76	118	26	220	3	59	17	79	299	713
08:00 09:00	7	206	15	228	26	140	47	213	441	58	100	14	172	1	60	16	77	249	690
09:00 10:00	6	179	14	199	14	73	30	117	316	38	89	6	133	0	49	17	66	199	515
11:30 12:30	11	123	16	150	16	66	25	107	257	26	54	3	83	7	56	16	79	162	419
12:30 13:30	12	121	12	145	16	94	39	149	294	31	52	5	88	1	78	22	101	189	483
15:00 16:00	11	185	7	203	16	129	60	205	408	46	64	14	124	4	110	12	126	250	658
16:00 17:00	16	207	17	240	14	161	71	246	486	58	70	11	139	2	151	33	186	325	811
17:00 18:00	14	178	6	198	13	153	52	218	416	37	70	6	113	5	115	32	152	265	681
Sub Total	86	1413	99	1598	136	932	366	1434	3032	370	617	85	1072	23	678	165	866	1938	4970
U Turns				0				0	0				0				0	0	0
Total	86	1413	99	1598	136	932	366	1434	3032	370	617	85	1072	23	678	165	866	1938	4970
EQ 12Hr	120	1964	138	2221	189	1295	509	1993	4214	514	858	118	1490	32	942	229	1204	2694	6908
Note: These v	/alues a	re calcul	lated by	y multiply	ing the	totals b	y the a	ppropriate	e expans	ion fact	or.			1.39					

Note: These volumes are calculated by multiplying the Average Daily 12 hr. totals by 12 to 24 expansion factor.

Note: U-Turns provided for approach totals. Refer to 'U-Turn' Report for specific breakdown.

 AVG 12Hr
 108
 1768
 124
 1999
 170
 1527
 600
 1794
 3793
 463
 777

 Note: These volumes are calculated by multiplying the Equivalent 12 hr. totals by the AADT factor

 AVG 24Hr
 141
 2316
 162
 2619
 223
 2000
 786
 2350
 4969
 607
 101

Transportation Services - Traffic Services

Turning Movement Count - Study Results

FLEWELLYN RD @ SHEA RD

 Survey Date:
 Wednesday, April 26, 2023
 WO No:
 40938

 Start Time:
 07:00
 Device:
 Miovision

Full Study 15 Minute Increments

SHEA RD FLEWELLYN RD

	N	orthbo	und		Sc	uthbou	ınd			Е	astbou	nd		W	estbour	nd			
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR	Grand Total
07:00 07:15	2	30	7	39	4	19	8	31	70	10	25	4	39	1	11	5	17	56	126
07:15 07:30	2	45	1	48	5	29	8	42	90	10	26	7	43	0	16	2	18	61	151
07:30 07:45	2	58	4	64	6	31	9	46	110	23	30	8	61	1	14	4	19	80	190
07:45 08:00	3	81	0	84	6	37	17	60	144	33	37	7	77	1	18	6	25	102	246
08:00 08:15	2	53	6	61	7	42	12	61	122	15	31	6	52	0	13	5	18	70	192
08:15 08:30	1	49	3	53	6	39	13	58	111	16	31	5	52	0	17	2	19	71	182
08:30 08:45	4	45	2	51	6	29	14	49	100	13	22	1	36	0	16	4	20	56	156
08:45 09:00	0	59	4	63	7	30	8	45	108	14	16	2	32	1	14	5	20	52	160
09:00 09:15	1	50	5	56	3	12	9	24	80	14	23	2	39	0	17	5	22	61	141
09:15 09:30	3	50	3	56	2	21	11	34	90	12	21	0	33	0	15	5	20	53	143
09:30 09:45	0	48	3	51	5	20	7	32	83	8	24	2	34	0	12	3	15	49	132
09:45 10:00	2	31	3	36	4	20	3	27	63	4	21	2	27	0	5	4	9	36	99
11:30 11:45	2	32	3	37	2	19	3	24	61	7	14	2	23	1	15	3	19	42	103
11:45 12:00	3	32	3	38	5	18	6	29	67	9	13	0	22	2	14	3	19	41	108
12:00 12:15	2	22	2	26	2	9	8	19	45	5	10	0	15	1	15	5	21	36	81
12:15 12:30	4	37	8	49	7	20	8	35	84	5	17	1	23	3	12	5	20	43	127
12:30 12:45	3	29	1	33	7	25	8	40	73	6	17	2	25	0	23	8	31	56	129
12:45 13:00	1	23	3	27	2	25	13	40	67	10	15	0	25	1	13	5	19	44	111
13:00 13:15	5	36	3	44	3	31	10	44	88	8	14	1	23	0	24	4	28	51	139
13:15 13:30	3	33	5	41	4	13	8	25	66	7	6	2	15	0	18	5	23	38	104
15:00 15:15	4	31	2	37	0	28	8	36	73	19	21	6	46	0	20	2	22	68	141
15:15 15:30	3	47	3	53	8	28	16	52	105	9	15	4	28	2	18	1	21	49	154
15:30 15:45	2	44	1	47	4	38	16	58	105	8	15	0	23	1	37	2	40	63	168
15:45 16:00	2	63	1	66	4	35	20	59	125	10	13	4	27	1	35	7	43	70	195
16:00 16:15	3	46	3	52	4	38	19	61	113	9	16	4	29	0	43	8	51	80	193
16:15 16:30	3	55	2	60	3	56	22	81	141	18	13	2	33	0	32	5	37	70	211
16:30 16:45	4	46	5	55	6	32	11	49	104	12	22	3	37	1	38	10	49	86	190
16:45 17:00	6	60	7	73	1	35	19	55	128	19	19	2	40	1	38	10	49	89	217
17:00 17:15	5	46	0	51	4	36	18	58	109	8	23	4	35	2	32	6	40	75	184
17:15 17:30	2	46	2	50	3	52	7	62	112	14	21	1	36	1	44	12	57	93	205
17:30 17:45	4	39	2	45	3	35	20	58	103	6	11	1	18	1	19	7	27	45	148
17:45 18:00	3	47	2	52	3	30	7	40	92	9	15	0	24	1	20	7	28	52	144
Total:	86	1413	99	1598	136	932	366	1434	3032	370	617	85	1072	23	678	165	866	1938	4,970

Note: U-Turns are included in Totals.

August 9, 2023 Page 3 of 8 August 9, 2023 Page 4 of 8

1111 270 **1420**

Turning Movement Count - Study Results

FLEWELLYN RD @ SHEA RD

 Survey Date:
 Wednesday, April 26, 2023
 WO No:
 40938

 Start Time:
 07:00
 Device:
 Miovision

Full Study Cyclist Volume

SHEA RD FLEWELLYN RD

Time Period	Northbound	Southbound	Street Total	Eastbound	Westbound	Street Total	Grand Total
07:00 07:15	0	0	0	0	0	0	0
07:15 07:30	0	0	0	0	0	0	0
07:30 07:45	0	0	0	0	0	0	0
07:45 08:00	0	0	0	0	0	0	0
08:00 08:15	0	0	0	0	0	0	0
08:15 08:30	0	0	0	0	0	0	0
08:30 08:45	0	0	0	0	0	0	0
08:45 09:00	0	0	0	0	0	0	0
09:00 09:15	0	0	0	0	0	0	0
09:15 09:30	0	0	0	0	0	0	0
09:30 09:45	0	0	0	0	0	0	0
09:45 10:00	0	0	0	0	0	0	0
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	0	0	0	0	0	0	0
12:00 12:15	0	0	0	0	0	0	0
12:15 12:30	0	0	0	0	0	0	0
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	0	0	0	0	0	0	0
15:15 15:30	0	0	0	0	0	0	0
15:30 15:45	1	0	1	0	0	0	1
15:45 16:00	0	0	0	0	0	0	0
16:00 16:15	0	0	0	0	0	0	0
16:15 16:30	0	0	0	0	0	0	0
16:30 16:45	0	1	1	0	0	0	1
16:45 17:00	0	0	0	0	0	0	0
17:00 17:15	0	0	0	0	0	0	0
17:15 17:30	0	0	0	0	0	0	0
17:30 17:45	0	0	0	0	0	0	0
17:45 18:00	0	0	0	0	0	0	0
Total	1	1	2	0	0	0	2

Transportation Services - Traffic Services

Turning Movement Count - Study Results

FLEWELLYN RD @ SHEA RD

 Survey Date:
 Wednesday, April 26, 2023
 Wo No:
 40938

 Start Time:
 07:00
 Device:
 Miovision

Full Study Pedestrian Volume

SHEA RD FLEWELLYN RD

Γime Period	NB Approach (E or W Crossing)	SB Approach (E or W Crossing)	Total	EB Approach (N or S Crossing)	WB Approach (N or S Crossing)	Total	Grand Total
7:00 07:15	0	0	0	0	0	0	0
07:15 07:30	0	0	0	0	0	0	0
07:30 07:45	0	0	0	0	0	0	0
07:45 08:00	0	0	0	0	0	0	0
08:00 08:15	0	0	0	0	0	0	0
08:15 08:30	0	0	0	0	0	0	0
08:30 08:45	0	0	0	0	0	0	0
08:45 09:00	0	0	0	0	0	0	0
09:00 09:15	0	0	0	0	0	0	0
09:15 09:30	0	0	0	0	0	0	0
09:30 09:45	0	0	0	0	0	0	0
09:45 10:00	0	0	0	0	0	0	0
11:30 11:45	0	0	0	0	0	0	0
11:45 12:00	0	0	0	0	0	0	0
12:00 12:15	0	0	0	0	0	0	0
12:15 12:30	0	0	0	0	0	0	0
12:30 12:45	0	0	0	0	0	0	0
12:45 13:00	0	0	0	0	0	0	0
13:00 13:15	0	0	0	0	0	0	0
13:15 13:30	0	0	0	0	0	0	0
15:00 15:15	0	0	0	0	0	0	0
15:15 15:30	0	0	0	0	0	0	0
15:30 15:45	0	0	0	0	0	0	0
15:45 16:00	0	0	0	0	0	0	0
16:00 16:15	0	0	0	0	0	0	0
16:15 16:30	0	0	0	0	0	0	0
16:30 16:45	0	0	0	0	0	0	0
16:45 17:00	0	0	0	0	0	0	0
17:00 17:15	0	0	0	0	0	0	0
17:15 17:30	0	0	0	0	0	0	0
17:30 17:45	0	0	0	0	0	0	0
17:45 18:00	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0

August 9, 2023 Page 5 of 8 August 9, 2023 Page 6 of 8

Northbound

Transportation Services - Traffic Services

Turning Movement Count - Study Results

FLEWELLYN RD @ SHEA RD

 Survey Date:
 Wednesday, April 26, 2023
 WO No:
 40938

 Start Time:
 07:00
 Device:
 Miovision

Full Study Heavy Vehicles

Eastbound

Westbound

SHEA RD		FLEWELLYN RD

Southbound

	IN	Ollibo	unu		30	ullibou	IIu				asiboui	IU		VVE	SUDUUI	iu			
Time Period	LT	ST	RT	N TOT	LT	ST	RT	S TOT	STR TOT	LT	ST	RT	E TOT	LT	ST	RT	W TOT	STR TOT	Grand Total
07:00 07:15	0	1	1	3	0	1	1	5	8	2	0	0	4	0	1	0	2	6	7
07:15 07:30	0	2	0	3	0	1	0	3	6	0	0	0	1	0	1	0	1	2	4
07:30 07:45	0	2	0	5	0	3	0	8	13	3	0	0	3	0	0	0	0	3	8
07:45 08:00	0	8	0	8	0	0	1	13	21	3	0	0	4	0	0	1	1	5	13
08:00 08:15	1	0	0	2	0	0	3	3	5	0	1	1	6	0	0	0	1	7	6
08:15 08:30	0	2	0	3	0	1	0	4	7	0	1	0	2	0	1	1	3	5	6
08:30 08:45	0	3	0	5	0	2	0	5	10	0	0	0	0	0	0	0	0	0	5
08:45 09:00	0	2	0	4	0	2	0	5	9	1	2	0	3	0	0	0	2	5	7
09:00 09:15	0	1	0	1	0	0	2	4	5	1	0	0	3	0	0	0	0	3	4
09:15 09:30	0	3	0	4	0	1	1	6	10	1	2	0	4	0	0	0	2	6	8
09:30 09:45	0	2	0	3	0	1	0	4	7	0	0	0	0	0	0	1	1	1	4
09:45 10:00	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	2	1
11:30 11:45	0	1	0	2	1	0	1	3	5	0	0	1	5	0	3	0	4	9	7
11:45 12:00	0	2	0	3	0	1	0	3	6	0	1	0	1	0	0	0	1	2	4
12:00 12:15	0	1	0	1	0	0	0	2	3	0	1	0	1	0	0	1	2	3	3
12:15 12:30	0	1	1	2	1	0	0	2	4	0	0	0	0	0	0	0	2	2	3
12:30 12:45	0	0	0	0	0	0	0	1	1	1	0	0	4	0	3	0	3	7	4
12:45 13:00	0	1	0	2	0	1	0	3	5	0	0	0	1	0	1	1	2	3	4
13:00 13:15	0	0	0	0	0	0	0	1	1	1	2	0	3	0	0	0	2	5	3
13:15 13:30	0	3	0	4	0	1	0	7	11	2	1	0	3	0	0	1	2	5	8
15:00 15:15	0	1	0	2	0	1	0	2	4	0	1	0	1	0	0	0	1	2	3
15:15 15:30	0	1	0	4	0	2	1	5	9	1	0	1	3	0	0	0	0	3	6
15:30 15:45	0	1	0	1	1	0	1	3	4	0	0	0	2	0	1	0	2	4	4
15:45 16:00	0	2	0	3	0	1	2	5	8	0	0	0	4	0	2	0	2	6	7
16:00 16:15	1	1	0	4	0	0	0	3	7	2	0	2	5	0	0	0	0	5	6
16:15 16:30	0	1	0	3	0	2	1	5	8	1	0	0	3	0	1	0	1	4	6
16:30 16:45	0	2	0	4	0	2	1	5	9	0	0	0	1	0	0	0	0	1	5
16:45 17:00	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	1	1	1
17:00 17:15	0	0	0	0	0	0	1	1	1	0	0	0	1	0	0	0	0	1	1
17:15 17:30	0	0	0	5	0	4	0	4	9	0	2	0	2	1	0	0	3	5	7
17:30 17:45	0	0	0	0	0	0	0	0	0	0	1	0	2	0	1	0	2	4	2
17:45 18:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total: None	2	44	3	82	3	27	16	115	197	19	15	5	73	1	16	6	44	117	157

Transportation Services - Traffic Services

Turning Movement Count - Study Results

FLEWELLYN RD @ SHEA RD

 Survey Date:
 Wednesday, April 26, 2023
 Wo No:
 40938

 Start Time:
 07:00
 Device:
 Miovision

Full Study 15 Minute U-Turn Total

SHEA RD FLEWELLYN RD

		SHEAR	LD.	FLE	FLEWELLINKU				
Time Period		Northbound U-Turn Total	Southbound U-Turn Total	Eastbound U-Turn Total	Westbound U-Turn Total	Total			
07:00	07:15	0	0	0	0	0			
07:15	07:30	0	0	0	0	0			
07:30	07:45	0	0	0	0	0			
07:45	08:00	0	0	0	0	0			
08:00	08:15	0	0	0	0	0			
08:15	08:30	0	0	0	0	0			
08:30	08:45	0	0	0	0	0			
08:45	09:00	0	0	0	0	0			
09:00	09:15	0	0	0	0	0			
09:15	09:30	0	0	0	0	0			
09:30	09:45	0	0	0	0	0			
09:45	10:00	0	0	0	0	0			
11:30	11:45	0	0	0	0	0			
11:45	12:00	0	0	0	0	0			
12:00	12:15	0	0	0	0	0			
12:15	12:30	0	0	0	0	0			
12:30	12:45	0	0	0	0	0			
12:45	13:00	0	0	0	0	0			
13:00	13:15	0	0	0	0	0			
13:15	13:30	0	0	0	0	0			
15:00	15:15	0	0	0	0	0			
15:15	15:30	0	0	0	0	0			
15:30	15:45	0	0	0	0	0			
15:45	16:00	0	0	0	0	0			
16:00	16:15	0	0	0	0	0			
16:15	16:30	0	0	0	0	0			
16:30	16:45	0	0	0	0	0			
16:45	17:00	0	0	0	0	0			
17:00	17:15	0	0	0	0	0			
17:15	17:30	0	0	0	0	0			
17:30	17:45	0	0	0	0	0			
17:45	18:00	0	0	0	0	0			
T	otal	0	0	0	0	0			
	•								

August 9, 2023 Page 7 of 8 August 9, 2023 Page 8 of 8

Turning Movement Count Summary Report Including Peak Hours, AADT and Expansion Factors All Vehicles Except Bicycles

Summary: All Vehicles

Flewellyn Road & Huntley Road/Stittsville Main Street Stittsville, ON Survey Date: Thursday, August 10, 2023 Start Time: 0700 AADT Factor: 0.9 Weather AM: Mostly Cloudy 18° C Survey Duration: 8 Hrs. Survey Hours: 0700-1000. 1130-1330 & 1500-1800 Weather PM: Light/Moderate Rain 18° C T. Carmody Surveyor(s): Flewellyn Rd. Flewellyn Rd. Huntley Rd. Stittsville Main St. Southbound Eastbound Westbound Northbound ST RT UT ST RT UT RTUT Period 557 0800-090 201 0900-1000 113 38 26 68 181 14 170 194 237 431 612 18 202 1130-1230 102 43 32 80 182 236 31 241 322 1230-1330 196 13 158 1500-1600 1600-1700 145 340 865 72 66 244 248 281 31 263 46 621 1700-1800 108 69 41 116 224 13 180 206 307 513 737 43 200 64 0 758 1643 126 1474 89 0 1689 289 1608 381

Equivalent 12 & 24-hour Vehicle Volumes including the Annual Average Daily Traffic (AADT) Factor Applicable to the Day and Month of the Turning Movement Count

Expansion factors are applied exclusively to standard <u>weekday</u> 8-hour turning movement counts

conducted during the hours of 0700h - 1000h, 1130h - 1330h and 1500h - 1800h

Equ. 12 Hr			ent 12- h 160				2284					or of 1.39 0 3166	5514	7798
AADT 12-hr	357	Aver 607	•				calculate					OT factor of: 0 2850		7018
AADT 24 Hr	24- 467		ADT. Th 188				verage o					actor of 1.31	6501	9194

AADT and expansion factors provided by the City of Ottawa

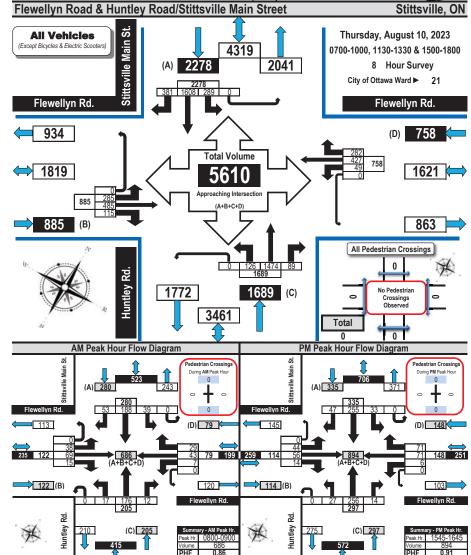
AM Peak Ho	ur Fa	ctor =	>	0.	86									Hig	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen (700h 8	1000h
AM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
0800-0900	38	69	15	0	122	7	43	29	0	79	201	17	176	12	0	205	39	188	53	0	280	485	686
OFF Peak H	our Fa	actor	→	0.	92									Hig	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen 1	130h 8	1330h
OFF Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot.
1145-1245	39	50	15	0	104	3	42	27	0	72	176	16	201	17	0	234	33	250	51	0	334	568	744
PM Peak Ho	ur Fac	ctor =	>	0.	91									Hig	hest	Hourl	y Vehi	cle Vo	lume	Betv	veen 1	500h 8	1800h
PM Peak Hr	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	LT	ST	RT	UT	Total	LT	ST	RT	UT	Total	Str. Tot.	Gr. Tot
1545-1645	44	56	14	Ω	114	6	71	71	Λ	148	262	27	256	14	Λ	297	33	255	47	Ω	335	632	894

Comments:

OC Transpo and Para Transpo buses, private buses and school buses comprise 4.37% of the heavy vehicle traffic. No pedestrian crossings were observed.

Notes:

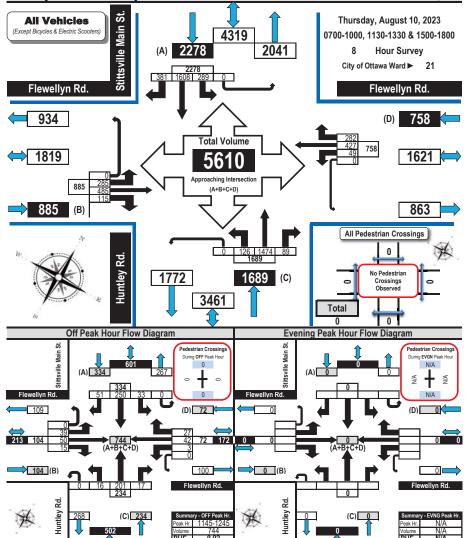
- 1. Includes all vehicle types except bicycles, electric bicycles, and electric scooters.
- 2. When expansion and AADT factors are applied, the results will differ slightly due to rounding.


Printed on: 8/22/2023 Prepared by: thetrafficspecialist@gmail.com

Turning Movement Count Summary, AM and PM Peak Hour Flow Diagrams

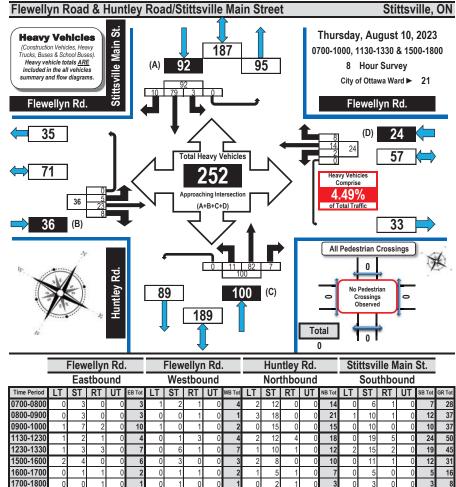
All Vehicles Except Bicycles

Printed on: 8/22/2023 Prepared by: thetrafficspecialist@gmail.com Flow Diagrams: AM PM Peak



Printed on: 8/22/2023

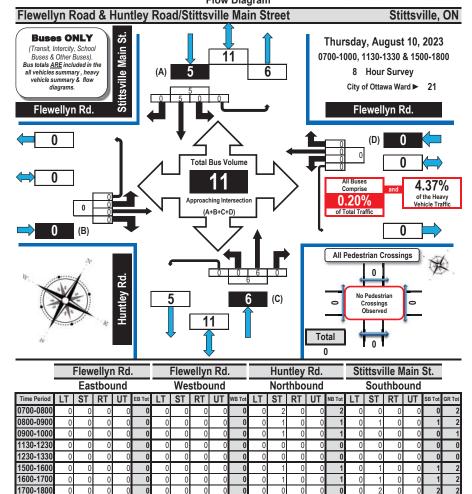
Turning Movement Count Summary, OFF and EVENING Peak Hour Flow Diagrams


All Vehicles Except Bicycles Flewellyn Road & Huntley Road/Stittsville Main Street Stittsville, ON

Prepared by: thetrafficspecialist@gmail.com

Turning Movement Count Heavy Vehicle Summary (FHWA Class 4-13) Flow Diagram

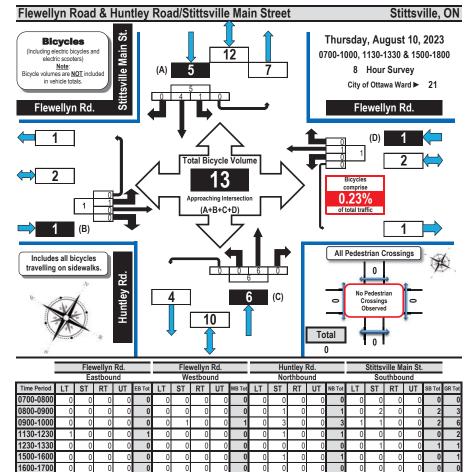
Totals


Flow Diagrams: OFF Peak

OC Transpo and Para Transpo buses, private buses and school buses comprise 4.37% of the heavy vehicle traffic. No pedestrian crossings were observed.

Turning Movement Count All Buses Summary (FHWA Class 4 ONLY) Flow Diagram

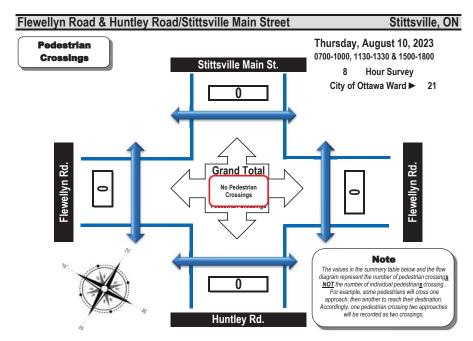
Totals
Comments:


OC Transpo and Para Transpo buses, private buses and school buses comprise 4.37% of the heavy vehicle traffic. No pedestrian crossings were observed.

Turning Movement Count Bicycle Summary Flow Diagram

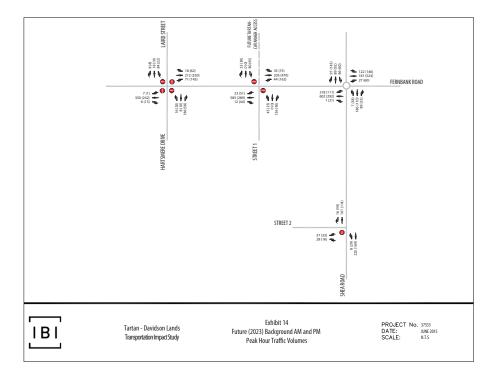
Summary: Bicycles

Totals Comments


1700-1800

OC Transpo and Para Transpo buses, private buses and school buses comprise 4.37% of the heavy vehicle traffic. No pedestrian crossings were observed.

Turning Movement Count Pedestrian Crossings Summary and Flow Diagram



Time Period	West Side Crossing	East Side Cross	ing St	eet S	outh Side Crossing	North Side Crossing	Street	Grand
Time Period	Flewellyn Rd.	Flewellyn Rd	. То	tal	Huntley Rd.	Stittsville Main St.	Total	Total
0700-0800	0	0)	0	0	0	0
0800-0900	0	0	-)	0	0	0	0
0900-1000	0	0			0	0	0	0
1130-1230	0	0	No Ped		0	0	0	0
1230-1330	0	0	Cros	sings	0	0	0	0
1500-1600	0	0)	0	0	0	0
1600-1700	0	0	-)	0	0	0	0
1700-1800	0	0	-)	0	0	0	0
Totals	0	0)	0	0	0	0

Comments:

OC Transpo and Para Transpo buses, private buses and school buses comprise 4.37% of the heavy vehicle traffic. No pedestrian crossings were observed.

Printed on: 8/22/2023 Prepared by: thetrafficspecialist@gmail.com Summary: Pedestrian Crossings

Appendix C

Synchro and Sidra Intersection Worksheets – Existing Conditions

MOVEMENT SUMMARY

♥ Site: 101 [Fernbank at Shea Existing AM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

New Site Site Category: (None) Roundabout

		ovement													
Mov ID	Turn	Mov Class		nand lows		rival lows	Deg. Satn	Aver. Delay	Level of Service		ack Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h		veh/h	%	v/c	sec		veh	m		rtate	Cycles	km/h
South	: Shea	1													
1	L2	All MCs	20	6.0	20	6.0	0.423	12.4	LOS B	2.1	15.7	0.73	0.73	0.94	45.8
2	T1	All MCs	182	5.0	182	5.0	0.423	12.2	LOS B	2.1	15.7	0.73	0.73	0.94	46.6
3	R2	All MCs	50	13.0	50	13.0	0.423	13.5	LOS B	2.1	15.7	0.73	0.73	0.94	46.1
Appro	oach		252	6.7	252	6.7	0.423	12.5	LOS B	2.1	15.7	0.73	0.73	0.94	46.4
East:	Fernb	ank													
4	L2	All MCs	48	5.0	48	5.0	0.373	9.4	LOSA	1.9	13.5	0.66	0.56	0.71	47.5
5	T1	All MCs	164	4.0	164	4.0	0.373	9.3	LOSA	1.9	13.5	0.66	0.56	0.71	48.3
6	R2	All MCs	76	2.0	76	2.0	0.373	9.1	LOSA	1.9	13.5	0.66	0.56	0.71	48.0
Appro	oach		288	3.6	288	3.6	0.373	9.3	LOSA	1.9	13.5	0.66	0.56	0.71	48.1
North	: Shea														
7	L2	All MCs	121	4.0	121	4.0	0.434	8.1	LOSA	2.6	18.8	0.53	0.33	0.53	47.8
8	T1	All MCs	111	7.0	111	7.0	0.434	8.3	LOSA	2.6	18.8	0.53	0.33	0.53	48.6
9	R2	All MCs	221	5.0	221	5.0	0.434	8.2	LOS A	2.6	18.8	0.53	0.33	0.53	48.3
Appro	oach		453	5.2	453	5.2	0.434	8.2	LOSA	2.6	18.8	0.53	0.33	0.53	48.2
West	Fernb	ank													
10	L2	All MCs	322	4.0	322	4.0	0.647	13.2	LOS B	8.1	58.3	0.75	0.65	1.09	44.5
11	T1	All MCs	290	3.0	290	3.0	0.647	13.1	LOS B	8.1	58.3	0.75	0.65	1.09	45.2
12	R2	All MCs	37	3.0	37	3.0	0.647	13.1	LOS B	8.1	58.3	0.75	0.65	1.09	44.9
Appro	oach		649	3.5	649	3.5	0.647	13.1	LOS B	8.1	58.3	0.75	0.65	1.09	44.8
All Ve	hicles		1642	4.5	1642	4.5	0.647	11.0	LOS B	8.1	58.3	0.67	0.56	0.84	46.5

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CGH TRANSPORTATION | Licence: NETWORK / FLOATING | Processed: Tuesday, December 17, 2024 11:14:16 AM Project: C:\Users\MichelleChen\CGH TRANSPORTATION\CGH Active Projects - Documents\2021\2021-128 Caivan Flewellyn\DATA\W-4 Report\Sidra - W-4 Report\2021-128 Shea Road at Fembank Road - 2024-12-13.sip9

HCM 2010 AWSC 4: Huntley/Stittsville Main & Flewellyn

Existing AM Peak Hour

late are effect												
Intersection	40.5											
Intersection Delay, s/veh	10.5											
Intersection LOS	В											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			43-			44	
Traffic Vol, veh/h	38	69	15	7	43	29	17	176	12	39	188	53
Future Vol, veh/h	38	69	15	7	43	29	17	176	12	39	188	53
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	4	2	2	2	3	18	10	2	3	5	2
Mvmt Flow	42	77	17	8	48	32	19	196	13	43	209	59
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	(
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	9.8			9.1			10.7			11.1		
HCM LOS	Α			Α			В			В		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		8%	31%	9%	14%							
Vol Thru, %		86%	57%	54%	67%							
Vol Right, %		6%	12%	37%	19%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		205	122	79	280							
LT Vol		17	38	7	39							
Through Vol		176	69	43	188							
RT Vol		12	15	29	53							
Lane Flow Rate		228	136	88	311							
Geometry Grp		1	1	1	1							
Degree of Util (X)		0.325	0.205	0.13	0.41							
Departure Headway (Hd)		5.142	5.438	5.335	4.74							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Сар		690	664	676	750							
Service Time		3.24	3.438	3.34	2.83							
HCM Lane V/C Ratio		0.33	0.205	0.13	0.415							
HCM Control Delay		10.7	9.8	9.1	11.1							
HCM Lane LOS		В	Α	Α	В							
HCM 95th-tile Q		1.4	0.8	0.4	2							

Scenario 1 5993 & 6115 Flewellyn Road & 6070 Fernbank Road 12:00 am 04/10/2024 Existing

Synchro 11 Report Page 1

Intersection												
Int Delay, s/veh	14.8											
	EDI	EDT		MIDI	MOT	WDD	NDI	NDT	NDD	ODI	ODT	000
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	87	129	26	2	62	17	8	241	13	25	149	51
Future Vol, veh/h	87	129	26	2	62	17	8	241	13	25	149	51
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	7	2	4	2	2	12	13	5	2	2	3	8
Mvmt Flow	97	143	29	2	69	19	9	268	14	28	166	57
Major/Minor I	Maior1			Major2			Minor1			Minor2		
Conflicting Flow All	88	0	0	172	0	0	546	444	158	576	449	79
Stage 1	-	-	-	- 172	-	-	352	352	-	83	83	-
Stage 2							194	92		493	366	
Critical Hdwy	4.17			4.12			7.23	6.55	6.22	7.12	6.53	6.28
Critical Hdwy Stg 1	7.17			7.12			6.23	5.55	0.22	6.12	5.53	0.20
Critical Hdwy Stg 2							6.23	5.55		6.12	5.53	
Follow-up Hdwy	2.263			2.218			3.617	4.045		3.518	4.027	3.372
Pot Cap-1 Maneuver	1477			1405	-		432	504	887	428	504	965
Stage 1	-			1400			643	626	-	925	824	-
Stage 2							783	813		558	621	
Platoon blocked, %	_			_			100	010	_	330	021	_
Mov Cap-1 Maneuver	1477			1405			279	467	887	218	467	965
Mov Cap-1 Maneuver	14//			1700			279	467	- 001	218	467	300
Stage 1							596	580		857	823	
Stage 2							588	812	-	274	576	
Olago Z							500	012		214	510	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	2.7			0.2			24.5			21.6		
HCM LOS							С			С		
Minor Lane/Major Mvm	ıt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		468	1477	-		1405	-	-	462			
HCM Lane V/C Ratio			0.065			0.002			0.541			
HCM Control Delay (s)		24.5	7.6	0	-	7.6	0	-	21.6			
HCM Lane LOS		C	Α.	A		Α.	A		C			
HCM 95th %tile Q(veh))	4.2	0.2	-		0	-	_	3.2			
		7.2	0.2			0			0.2			

4						
Internation						
Intersection Int Delay, s/veh	1.7					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ની	Þ	
Traffic Vol, veh/h	39	19	5	225	101	11
Future Vol, veh/h	39	19	5	225	101	11
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e,# 0	-	-	0	0	-
Grade. %	0			0	0	
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	5	3	2
Mymt Flow	43	21	6	250	112	12
	-10		0	200	112	12
	Minor2		Major1		Major2	
Conflicting Flow All	380	118	124	0	-	0
Stage 1	118	-	-	-	-	-
Stage 2	262	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	622	934	1463	-	-	-
Stage 1	907	-	-	-	-	-
Stage 2	782	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	619	934	1463	-	-	-
Mov Cap-2 Maneuver	619	-	-	-		-
Stage 1	902	-	-	-	-	-
Stage 2	782			-		-
olago 2	. 02					
Approach	EB		NB		SB	
HCM Control Delay, s			0.2		0	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBL	NRT	EBLn1	SBT	SBR
Capacity (veh/h)	iit.	1463	-	696	-	- ODIX
HCM Lane V/C Ratio		0.004		0.093		
	١	7.5	0	10.7		
HCM Control Delay (s HCM Lane LOS)	7.5 A	A	10.7 B	- 1	
	.\	A 0	Α -	0.3	_	-
HCM 95th %tile Q(veh	1)	0	-	0.3	-	-

MOVEMENT SUMMARY

♥ Site: 101 [Fernbank at Shea Existing PM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

New Site Site Category: (None) Roundabout

Mov	Turn	Mov	Dem	nand	Ar	rival	Dea.	Aver.	Level of	95%	Back Of	Prop.	Eff.	Aver.	Aver.
		Class		lows		lows	Satn	Delay	Service		ieue	Que	Stop		Speed
			[Total veh/h		[Total veh/h	HV]		sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	: Shea	1													
1	L2	All MCs	33	3.0	33	3.0	0.223	7.1	LOSA	0.9	6.8	0.60	0.50	0.60	48.7
2	T1	All MCs	80	3.0	80	3.0	0.223	7.1	LOS A	0.9	6.8	0.60	0.50	0.60	49.5
3	R2	All MCs	54	6.0	54	6.0	0.223	7.5	LOSA	0.9	6.8	0.60	0.50	0.60	49.1
Appro	ach		168	4.0	168	4.0	0.223	7.2	LOSA	0.9	6.8	0.60	0.50	0.60	49.2
East:	Fernb	ank													
4	L2	All MCs	59	8.0	59	8.0	0.530	10.0	LOSA	3.6	26.0	0.59	0.36	0.59	47.3
5	T1	All MCs	401	3.0	401	3.0	0.530	9.7	LOSA	3.6	26.0	0.59	0.36	0.59	48.2
6	R2	All MCs	106	2.0	106	2.0	0.530	9.6	LOSA	3.6	26.0	0.59	0.36	0.59	48.0
Appro	ach		566	3.3	566	3.3	0.530	9.7	LOSA	3.6	26.0	0.59	0.36	0.59	48.1
North	: Shea														
7	L2	All MCs	52	2.0	52	2.0	0.380	8.9	LOSA	1.9	14.0	0.65	0.54	0.69	47.6
8	T1	All MCs	123	2.0	123	2.0	0.380	8.9	LOSA	1.9	14.0	0.65	0.54	0.69	48.3
9	R2	All MCs	124	9.0	124	9.0	0.380	9.6	LOSA	1.9	14.0	0.65	0.54	0.69	47.9
Appro	ach		300	4.9	300	4.9	0.380	9.2	LOSA	1.9	14.0	0.65	0.54	0.69	48.0
West:	Fernb	ank													
10	L2	All MCs	111	5.0	111	5.0	0.504	9.4	LOSA	3.3	23.7	0.58	0.36	0.58	47.4
11	T1	All MCs	383	3.0	383	3.0	0.504	9.3	LOSA	3.3	23.7	0.58	0.36	0.58	48.2
12	R2	All MCs	38	3.0	38	3.0	0.504	9.3	LOSA	3.3	23.7	0.58	0.36	0.58	47.9
Appro	ach		532	3.4	532	3.4	0.504	9.3	LOSA	3.3	23.7	0.58	0.36	0.58	48.0
All Ve	hicles		1566	3.7	1566	3.7	0.530	9.2	LOSA	3.6	26.0	0.60	0.41	0.61	48.2

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CGH TRANSPORTATION | Licence: NETWORK / FLOATING | Processed: Tuesday, December 17, 2024 11:14:16 AM
Project: C:\Users\MichelleChen\CGH TRANSPORTATION\CGH Active Projects - Documents\2021\2021-128 Caivan Flewellyn\DATA\W-4
Report\Sidra - W-4 Report\2021-128 Shea Road at Fembank Road - 2024-12-13.sip9

HCM 2010 AWSC 4: Huntley/Stittsville Main & Flewellyn

Existing PM Peak Hour

Intersection												
Intersection Delay, s/veh	13.2											
Intersection LOS	В											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			44			€	
Traffic Vol, veh/h	44	56	14	6	71	71	27	256	14	33	255	47
Future Vol, veh/h	44	56	14	6	71	71	27	256	14	33	255	47
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	7	2	2	2	4	2	7	2	2	2
Mvmt Flow	49	62	16	7	79	79	30	284	16	37	283	52
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	10.9			10.9			13.7			14.5		
HCM LOS	В			В			В			В		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Lane Vol Left, %		NBLn1	EBLn1 39%	WBLn1	10%							
Vol Left, %		9%	39%	4%	10% 76% 14%							
Vol Left, % Vol Thru, % Vol Right, % Sign Control		9% 86% 5% Stop	39% 49%	4% 48% 48% Stop	10% 76% 14% Stop							
Vol Left, % Vol Thru, % Vol Right, %		9% 86% 5%	39% 49% 12%	4% 48% 48% Stop 148	10% 76% 14% Stop 335							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		9% 86% 5% Stop 297 27	39% 49% 12% Stop 114 44	4% 48% 48% Stop 148 6	10% 76% 14% Stop 335 33							
Vol Left, % Vol Thru, % Vol Right, % Signfo Control Traffic Vol by Lane LT Vol Through Vol		9% 86% 5% Stop 297 27 256	39% 49% 12% Stop 114 44 56	4% 48% 48% Stop 148 6 71	10% 76% 14% Stop 335 33 255							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol TrThrough Vol RT Vol		9% 86% 5% Stop 297 27 256 14	39% 49% 12% Stop 114 44 56 14	4% 48% 48% Stop 148 6 71 71	10% 76% 14% Stop 335 33 255 47							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		9% 86% 5% Stop 297 27 256 14 330	39% 49% 12% Stop 114 44 56 14	4% 48% 48% Stop 148 6 71 71 164	10% 76% 14% Stop 335 33 255 47							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RTHOUGH VOI LANGE COMMENTE COMME		9% 86% 5% Stop 297 27 256 14 330	39% 49% 12% Stop 114 44 56 14 127	4% 48% 48% Stop 148 6 71 71 164	10% 76% 14% Stop 335 33 255 47 372							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		9% 86% 5% Stop 297 27 256 14 330 1 0.495	39% 49% 12% Stop 114 44 56 14 127 1	4% 48% 48% Stop 148 6 71 71 164 1 0.263	10% 76% 14% Stop 335 33 255 47 372 1 0.544							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		9% 86% 5% Stop 297 27 256 14 330 1 0.495 5.401	39% 49% 12% Stop 114 44 56 14 127 1 0.215 6.124	4% 48% 8top 148 6 71 71 164 1 0.263 5.765	10% 76% 14% Stop 335 33 255 47 372 1 0.544 5.259							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		9% 86% 5% Stop 297 27 256 14 330 1 0.495 5.401 Yes	39% 49% 12% Stop 114 44 56 14 127 1 0.215 6.124 Yes	4% 48% Stop 148 6 71 71 164 1 0.263 5.765 Yes	10% 76% 14% Stop 335 33 255 47 372 1 0.544 5.259 Yes							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		9% 86% 5% Stop 297 27 256 14 330 1 0.495 5.401 Yes 667	39% 49% 12% Stop 114 44 56 14 127 1 0.215 6.124 Yes 583	4% 48% 48% Stop 148 6 71 71 164 1 0.263 5.765 Yes 620	10% 76% 14% Stop 335 33 255 47 372 1 0.544 5.259 Yes 685							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		9% 86% 5% Stop 297 27 256 14 330 1 0.495 5.401 Yes 667 3.453	39% 49% 12% Stop 114 44 56 14 127 1 0.215 6.124 Yes 583 4.195	4% 48% 48% Stop 148 6 71 71 164 1 0.263 5.765 Yes 620 3.832	10% 76% 14% Stop 335 33 255 47 372 1 0.544 5.259 Yes 685 3.309							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		9% 86% 5% Stop 297 27 256 14 330 1 0.495 5.401 Yes 667 3.453 0.495	39% 49% 12% Stop 114 44 56 14 127 1 0.215 6.124 Yes 583 4.195 0.218	4% 48% 48% Stop 148 6 71 71 164 1 0.263 5.765 Yes 620 3.832 0.265	10% 76% 14% Stop 335 47 372 1 0.544 5.259 Yes 685 3.309 0.543							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Lontol Delay		9% 86% 5% Stop 297 27 256 14 330 1 0.495 5.401 Yes 667 3.453 0.495 13.7	39% 49% 12% Stop 114 44 56 14 127 1 0.215 6.124 Yes 583 4.195 0.218	4% 48% 48% Stop 148 6 71 71 164 1 0.263 5.765 Yes 620 3.832 0.265 10.9	10% 76% 14% Stop 335 33 255 47 372 1 0.544 5.259 Yes 685 3.309 0.543 14.5							
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		9% 86% 5% Stop 297 27 256 14 330 1 0.495 5.401 Yes 667 3.453 0.495	39% 49% 12% Stop 114 44 56 14 127 1 0.215 6.124 Yes 583 4.195 0.218	4% 48% 48% Stop 148 6 71 71 164 1 0.263 5.765 Yes 620 3.832 0.265	10% 76% 14% Stop 335 47 372 1 0.544 5.259 Yes 685 3.309 0.543							

Scenario 1 5993 & 6115 Flewellyn Road & 6070 Fernbank Road 12:00 am 04/10/2024 Existing

Synchro 11 Report Page 1

HCM 95th %tile Q(veh)

Intersection												
Int Delay, s/veh	12.3											
Marrana	EDI	EDT	EDD	WDI	MOT	MDD	NIDI	NDT	NDD	ODI	ODT	ODD
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	44	0	454	22	40	4	47	4.4	404	74
Traffic Vol, veh/h	58	70	11	2	151	33	16	207	17	14	161	71
Future Vol, veh/h	58	70	11	2	151	33	16	207	17	14	161	71
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage		0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	5	2	18	2	2	2	6	2	6	2	2	3
Mvmt Flow	64	78	12	2	168	37	18	230	19	16	179	79
Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	205	0	0	90	0	0	532	421	84	528	409	187
Stage 1	200	-	-	30	-	-	212	212	-	191	191	107
Stage 2		_	- 1	-			320	209		337	218	- 1
Critical Hdwy	4.15			4.12			7.16	6.52	6.26	7.12	6.52	6.23
Critical Hdwy Stg 1	4.15		-	4.12			6.16	5.52	0.20	6.12	5.52	0.23
Critical Hdwy Stg 2							6.16	5.52		6.12	5.52	
Follow-up Hdwy	2.245			2.218			3.554	4.018	3.354	3,518		2 227
Pot Cap-1 Maneuver	1349		-	1505	-		452	524	964	461	532	852
	1349		-	1505			781	727	904	811	742	002
Stage 1	_		-		-		683				723	-
Stage 2	-	-	-	-	-	-	663	729	-	677	123	-
Platoon blocked, %	1010	-	-	4505	-	-	000	407	004	070	504	0.50
Mov Cap-1 Maneuver	1349	-	-	1505	-	-	286	497	964	278	504	852
Mov Cap-2 Maneuver	-	-	-	-	-	-	286	497	-	278	504	-
Stage 1	-	-	-	-	-	-	742	691	-	770	741	-
Stage 2	-	-	-	-	-	-	469	728	-	421	687	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	3.3			0.1			20.8			18.2		
HCM LOS	0.0			V. I			20.0 C			C		
Minor Lane/Major Mvm	it	NBLn1	EBL	EBT	EBR	WBL	WBT		SBLn1			
Capacity (veh/h)		490	1349	-	-	1505	-	-	543			
HCM Lane V/C Ratio		0.544	0.048	-	-	0.001	-	-	0.503			
HCM Control Delay (s)		20.8	7.8	0	-	7.4	0	-	18.2			
HCM Lane LOS		С	Α	Α	-	Α	Α	-	С			
HCM 95th %tile Q(veh))	3.2	0.1	-	-	0	-	-	2.8			

lata as a sta a						
Intersection	4.0					
Int Delay, s/veh	1.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			લી	1>	
Traffic Vol, veh/h	22	11	19	169	114	39
Future Vol. veh/h	22	11	19	169	114	39
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -	None	-	None	riee -	None
	0					
Storage Length		-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	3	2	2
Mvmt Flow	24	12	21	188	127	43
Major/Minor	Minor2		Major1	h	Major2	
		149	170			0
Conflicting Flow All	379		170	0	-	-
Stage 1	149	-	-	-	-	
Stage 2	230	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	623	898	1407	-	-	-
Stage 1	879	-	-	-	-	-
Stage 2	808	_	-	-	_	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	612	898	1407		_	-
Mov Cap-2 Maneuver	612	-	-	-		-
Stage 1	864					
	808	-			- 0	- :
Stage 2	000	-			_	
Approach	EB		NB		SB	
HCM Control Delay, s	10.6		0.8		0	
HCM LOS	В		0.0			
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1407	-	685	-	-
HCM Lane V/C Ratio		0.015	-	0.054	-	-
HCM Control Delay (s)		7.6	0	10.6	-	

0 - 0.2 - -

Appendix D

All-Way Stop-Control Warrant Calculation

Warrant for AWSC at Shea Road at Flewellyn Road (existing)

Volume Criteria		
Major Street	Minor Street	Minor Street Pedestrian
2-Way Hourly Volume	2-Way Hourly Volume	2-Way Hourly Volume
(per 8-hr period)	(per 8-hr period)	(per 8-hr period)
3032	1938	0
Control Required		
Total Vehicle Volume	YE	ES .
Minor Street Volume & Pedestrian Volume	YE	ES .
	3-Way Stop	4-Way Stop
Vehicle Split	YES	YES

Warrant for AWSC at Shea Road at Cosanti Drive (existing)

Volume Criteria						
Major Street	Minor Street Minor Street Pedestria					
2-Way Hourly Volume	2-Way Hourly Volume 2-Way Hourly Volume					
(per 8-hr period)	(per 8-hr period)	(per 8-hr period)				
2264	305 0					
Control Required						
Total Vehicle Volume	N	0				
Minor Street Volume & Pedestrian Volume	NO					
	3-Way Stop 4-Way Stop					
Vehicle Split	NO	NO				

Warrant for AWSC at Shea Road at Cosanti Drive (FB2030)

Volume Criteria				
Major Street	Minor Street	Minor Street Pedestrian		
2-Way Hourly Volume	2-Way Hourly Volume	2-Way Hourly Volume		
(per 8-hr period)	(per 8-hr period)	(per 8-hr period)		
3947	335	0		
Control Required				
Total Vehicle Volume	YES			
Minor Street Volume & Pedestrian Volume	NO			
	3-Way Stop 4-Way Stop			
Vehicle Split	NO	NO		

Warrant for AWSC at Shea Road at Cosanti Drive (FB2035)

Volume Criteria						
Major Street	Minor Street Minor Street Pedestrian					
2-Way Hourly Volume	2-Way Hourly Volume 2-Way Hourly Volume					
(per 8-hr period)	(per 8-hr period)	(per 8-hr period)				
4436	335	0				
Control Required						
Total Vehicle Volume	YES					
Minor Street Volume & Pedestrian Volume	NO					
	3-Way Stop 4-Way Stop					
Vehicle Split	NO	NO				

Warrant for AWSC at Shea Road at Cosanti Drive (FT2030)

Volume Criteria				
Major Street	Minor Street	Minor Street Pedestrian		
2-Way Hourly Volume	2-Way Hourly Volume	2-Way Hourly Volume		
(per 8-hr period)	(per 8-hr period)	(per 8-hr period)		
4376	335	0		
Control Required				
Total Vehicle Volume	YES			
Minor Street Volume & Pedestrian Volume	NO			
	3-Way Stop 4-Way Stop			
Vehicle Split	NO	NO		

Warrant for AWSC at Shea Road at Cosanti Drive (FT2035)

Volume Criteria					
Major Street	Minor Street Minor Street Pedest				
2-Way Hourly Volume	2-Way Hourly Volume	2-Way Hourly Volume			
(per 8-hr period)	(per 8-hr period)	(per 8-hr period)			
4866	335	0			
Control Required					
Total Vehicle Volume	YES				
Minor Street Volume & Pedestrian Volume	NO				
	3-Way Stop 4-Way Stop				
Vehicle Split	NO NO				

Warrant for AWSC at Shea Road at Street #21 (FT2030)

Volume Criteria				
Major Street	Minor Street	Minor Street Pedestrian		
2-Way Hourly Volume	2-Way Hourly Volume	2-Way Hourly Volume		
(per 8-hr period)	(per 8-hr period)	(per 8-hr period)		
4124	294	0		
Control Required	Control Required			
Total Vehicle Volume	YES			
Minor Street Volume & Pedestrian Volume	NO			
	3-Way Stop 4-Way Stop			
Vehicle Split	NO	NO		

Warrant for AWSC at Shea Road at Street #21 (FT2035)

Volume Criteria						
Major Street	Minor Street Minor Street Pedestria					
2-Way Hourly Volume	2-Way Hourly Volume 2-Way Hourly Volume					
(per 8-hr period)	(per 8-hr period)	(per 8-hr period)				
4614	294 0					
Control Required						
Total Vehicle Volume	YES					
Minor Street Volume & Pedestrian Volume	NO					
	3-Way Stop 4-Way Stop					
Vehicle Split	NO	NO				

Warrant for AWSC at Fewlellyn Road at Street #12 (FT2030)

Volume Criteria				
Major Street	Minor Street	Minor Street Pedestrian		
2-Way Hourly Volume	2-Way Hourly Volume	2-Way Hourly Volume		
(per 8-hr period)	(per 8-hr period)	(per 8-hr period)		
4092	1194	0		
Control Required	Control Required			
Total Vehicle Volume	YES			
Minor Street Volume & Pedestrian Volume	NO			
	3-Way Stop 4-Way Stop			
Vehicle Split	NO	NO		

Warrant for AWSC at Fewlellyn Road at Street #12 (FT2035)

Volume Criteria						
Major Street	Minor Street Minor Street Pedestria					
2-Way Hourly Volume	2-Way Hourly Volume 2-Way Hourly Volume					
(per 8-hr period)	(per 8-hr period)	(per 8-hr period)				
4157	1194 0					
Control Required						
Total Vehicle Volume	YES					
Minor Street Volume & Pedestrian Volume	NO					
	3-Way Stop 4-Way Stop					
Vehicle Split	NO	NO				

Warrant for AWSC at Fewlellyn Road at Street #16 (FT2030)

Volume Criteria				
Major Street	Minor Street	Minor Street Pedestrian		
2-Way Hourly Volume	2-Way Hourly Volume	2-Way Hourly Volume		
(per 8-hr period)	(per 8-hr period)	(per 8-hr period)		
4097	625	0		
Control Required	Control Required			
Total Vehicle Volume	YES			
Minor Street Volume & Pedestrian Volume	NO			
	3-Way Stop 4-Way Stop			
Vehicle Split	NO	NO		

Warrant for AWSC at Fewlellyn Road at Street #16 (FT2035)

Volume Criteria						
Major Street	Minor Street Minor Street Pedestria					
2-Way Hourly Volume	2-Way Hourly Volume 2-Way Hourly Volume					
(per 8-hr period)	(per 8-hr period)	(per 8-hr period)				
4163	625 0					
Control Required						
Total Vehicle Volume	YES					
Minor Street Volume & Pedestrian Volume	NO					
	3-Way Stop 4-Way Stop					
Vehicle Split	NO	NO				

Appendix E

Signal Warrant Calculation

Justification #7

Justification Description	Minimum Requirement		Minimum Requirement		Compliance				
	Description	1 Lane I	Highway	2 or Mo	re Lanes	Secti	onal	Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	LIILII 6 /6	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	440	92%	92%	No
	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	175	146%	92%	NO
2 Delay to Cross	A. Vehicle volumes, major street (average hour)	480	720	600	900	265	55%		
ιταπις	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	95	191%	55%	No

- Notes

 1. Refer to OTM Book 12, pg 92, Mar 2012
 2. Lowest section percentage governs justification
 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplification factors
 4. -Intersection factor corrected, applies only to 18
 5. Correction to 2B, as per MTO and City of Ottawa, for '2 or More Lanes' has been applied

Shea Road at Flewellyn Road FB 2035

		Minimum F	lequirement	Minimum R	equirement		Compliance		
Justification	Description	1 Lane	Highway	2 or Mo	re Lanes	Secti	onal	Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Entire %	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	482	100%	100%	No
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	180	150%	100%	110
2. Delay to Cross	A. Vehicle volumes, major street (average hour)	480	720	600	900	302	63%		
Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	98	196%	63%	No

- Notes

 1. Refer to OTM Book 12, pg 92, Mar 2012

 2. Lowest section percentage governs justification
 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplifcation factors

 4. -intersection factor corrected, applies only to 18

 5. Correction to 2B, as per MTO and City of Ottawa, for '2 or More Lanes' has been applied

Justification #7

		Minimum R	equirement	Minimum R	equirement		Compliance		
Justification	Description	1 Lane I	Highway	2 or Mo	re Lanes	Secti	onal	Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	LIILII 6 /6	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	588	122%	122%	Yes
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	318	265%	122%	res
2. Delay to Cross	A. Vehicle volumes, major street (average hour)	480	720	600	900	270	56%		
Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	163	327%	56%	No

- Notes

 1. Refer to OTM Book 12, pg 92, Mar 2012
 2. Lowest section percentage governs justification
 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplification factors
 4. -Intersection factor corrected, applies only to 18
 5. Correction to 2B, as per MTO and City of Ottawa, for '2 or More Lanes' has been applied

Stittsville Main Street/ Huntley Road at Flewellyn Road FB 2030

		Minimum F	lequirement	Minimum R	lequirement		Compliance		
Justification	Description	1 Lane	Highway	2 or Mo	re Lanes	Secti	onal	Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Entire %	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	509	71%	71%	No
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	199	117%	/1%	NO
2. Dalauta Cross	A. Vehicle volumes, major street (average hour)	480	720	600	900	310	43%		
2. Delay to Cross Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	100	134%	43%	No

- Notes

 1. Refer to OTM Book 12, pg 92, Mar 2012
 2. Lowest section percentage governs justification
 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplifcation factors
 4. -Intersection factor corrected, applies only to 18
 5. Correction to 2B, as per MTO and City of Ottawa, for '2 or More Lanes' has been applied

Justification #7

		Minimum F	equirement	Minimum R	equirement		Compliance		
Justification	Description	1 Lane	Highway	2 or Mo	re Lanes	Secti	onal	Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Entire %	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	523	73%	73%	No
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	204	120%	73%	140
2. Delay to Cross	A. Vehicle volumes, major street (average hour)	480	720	600	900	319	44%		
Traffic	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	103	137%	44%	No

- Notes

 1. Refer to OTM Book 12, pg 92, Mar 2012

 2. Lowest section percentage governs justification
 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplification factors
 4. -intersection factor corrected, applies only to 18
 5. Correction to 2B, as per MTO and City of Ottawa, for '2 or More Lanes' has been applied

Stittsville Main Street/ Huntley Road at Flewellyn Road FT 2030

		Minimum R	equirement	Minimum R	equirement		Compliance		
Justification	Description	1 Lane I	Highway	2 or Mo	re Lanes	Secti	onal	Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Entire %	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	644	89%	89%	No
Volume E	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	279	164%	0370	110
2. Dolay to Cross	A. Vehicle volumes, major street (average hour)	480	720	600	900	365	51%		
2. Delay to Cross Traffic	O Cross B. Combined vehicle and pedestrial		75	50	75	114	152%	51%	No

- Notes

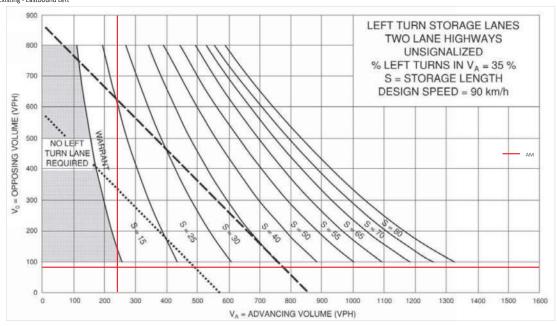
 1. Refer to OTM Book 12, pg 92, Mar 2012
 2. Lowest section percentage governs justification
 3. Average hourly volumes estimated from peak hour volumes, AHV = PM/2 or (AM + PM) / 4, including amplifcation factors
 4. -Intersection factor corrected, applies only to 18
 5. Correction to 2B, as per MTO and City of Ottawa, for '2 or More Lanes' has been applied

Stittsville Main Street/ Huntley Road at Flewellyn Road FT 2035

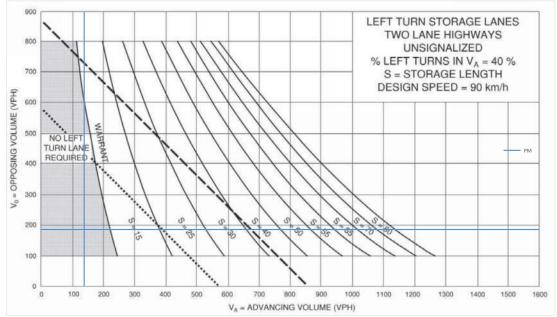
	_	Minimum R	lequirement	Minimum F	lequirement		Compliance		
Justification	Description	1 Lane I	Highway	2 or Mo	re Lanes	Secti	onal	Entire %	Signal
		Free Flow	Restr. Flow	Free Flow	Restr. Flow	Numerical	%	Little /0	
1. Minimum Vehicular	A. Vehicle volume, all approaches (average hour)	480	720	600	900	658	91%	91%	No
Volume	B. Vehicle volume, along minor streets (average hour)	120	170	120	170	284	167%	91%	NO
2. Delay to Cross B Traffic v	A. Vehicle volumes, major street (average hour)	480	720	600	900	374	52%		
	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	75	50	75	116	155%	52%	No
4. T-intersection factor corrected	verns justification lated from peak hour volumes, AHV = PM/2 or (AM +		g amplifcation fac	ctors					

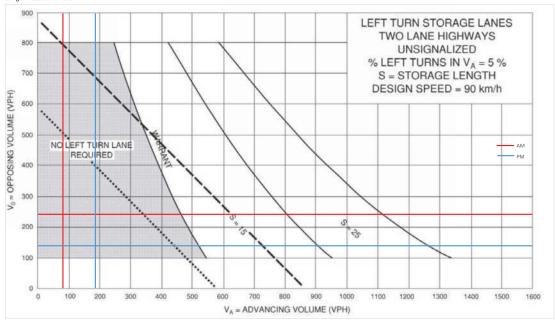
Appendix F

Left-Turn Warrant Calculation

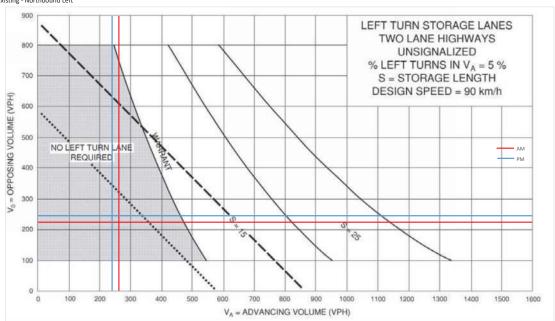

Shea Road at Flewellyn Road

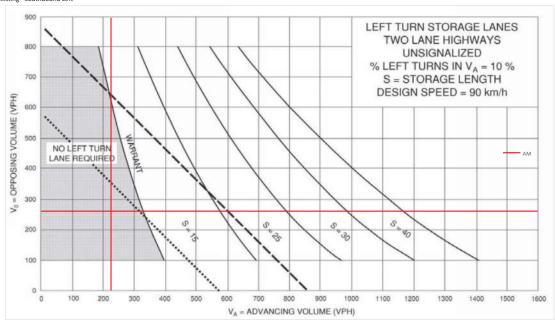
Existing																
Design Speed	Yes															
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%L	eft Turn	Volume Advancing	Volume Opposing
	AM	87	129	26	2	62	17	8	241	13	25	149	51	36.0%	24	2 81
	PM	58	70	11	2	151	33	16	207	17	14	161	71	41.7%	13	9 186
Future Background 2030																
Design Speed	Yes															
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%L	eft Turn	Volume Advancing	Volume Opposing
	AM	60	125	26	2	92	17	8	184	13	25	193	51	28.4%	21	1 111
	PM	59	107	11	2	166	33	16	213	17	14	255	71	33.3%	17	7 201
Future Background 2035																
Design Speed	Yes															
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%L	eft Turn	Volume Advancing	Volume Opposing
	AM	60	125	26	2	102	17	8	207	13	25	241	51	28.4%	21	1 121
	PM	59	118	11	2	166	33	16	260	17	14	285	71	31.4%	18	8 201
Future Total 2030																
Design Speed	Yes															
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%L	eft Turn	Volume Advancing	Volume Opposing
	AM	60	299	26	2	167	22	8	184	13	37	193	51	15.6%	38	5 191
	PM	59	231	11	2	346	45	16	213	17	22	255	71	19.6%	30	1 393
Future Total 2035																
Design Speed	Yes															
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%L	eft Turn	Volume Advancing	Volume Opposing
	AM	60	299	26	2	177	22	8	207	13	37	241	51	15.6%	38	
	PM	59	242	11	2	346	45	16	260	17	22	285	71	18.9%	31	

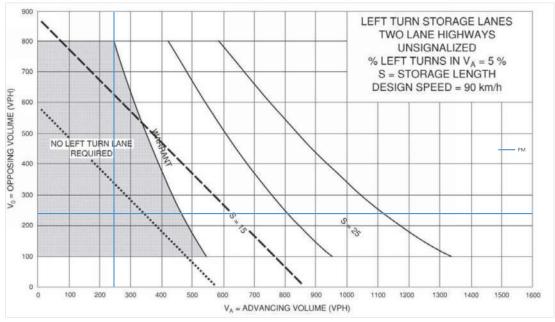

Existing				V												
Design Speed 90 km/h	EBL	EBT	EBR	Yes WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	9/1 of	t Turn Volume Advan	cing Volume Opp	nocina
50 KIII/II	AM	87	129	26	2	62	17	8	241	13	25	149	51	2.5%	81	242
	PM	58	70	11	2	151	33	16	207	17	14	161	71	1.1%	186	139
Future Background 2030																
Design Speed				Yes												
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Lef	t Turn Volume Advan		oosing
	AM	60	125	26	2	92	17	8	184	13	25	193	51	1.8%	111	211
	PM	59	107	11	2	166	33	16	213	17	14	255	71	1.0%	201	177
5 to 10 Post of 2025																
Future Background 2035 Design Speed				Yes												
90 km/h	EBL	EBT	EBR	yes WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%I of	t Turn Volume Advan	cing Volume Opp	nosina
50 KIII/II	AM	60	125	26	2	102	17	8	207	13	25	241	51	1.7%	121	211
	PM	59	118	11	2	166	33	16	260	17	14	285	71	1.0%	201	188
		33	110	**	-	100	55	10	200			203	, -	1.070	201	200
Future Total 2030																
Design Speed				Yes												
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Lef	t Turn Volume Advan	cing Volume Opp	osing
	AM	60	299	26	2	167	22	8	184	13	37	193	51	1.0%	191	385
	PM	59	231	11	2	346	45	16	213	17	22	255	71	0.5%	393	301
	_															
Future Total 2035 Design Speed				Yes												
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	9/1 of	t Turn Volume Advan	cing Volume Opp	nocina
50 KIII/II	AM	60	299	26	2	177	22	8	207	13	37	241	51	1.0%	201	385 385
	PM	59	242	11	2	346	45	16	260	17	22	285	71	0.5%	393	312
			- :-		-											

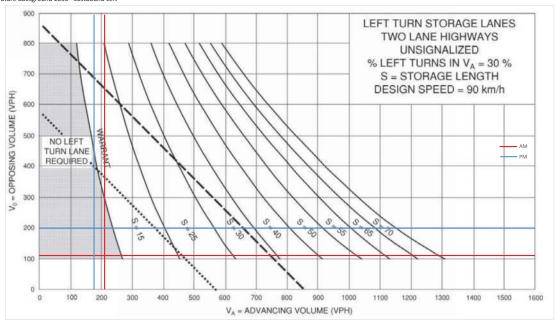

Existing																
Design Speed							Yes									
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Le	ft Turn Vol	lume Advancing	Volume Opposing
	AM	87	129	26	2	62	17	8	241	13	25	149	51	3.1%	262	225
	PM	58	70	11	2	151	33	16	207	17	14	161	71	6.7%	240	246
Future Background 2030																
Design Speed							Yes									
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Le	ft Turn Vol	lume Advancing	Volume Opposing
-	AM	60	125	26	2	92	17	8	184	13	25	193	51	3.9%	205	269
	PM	59	107	11	2	166	33	16	213	17	14	255	71	6.5%	246	340
Future Background 2035																
Design Speed							Yes									
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%l e	ft Turn Vol	lume Advancing	Volume Opposing
,	AM	60	125	26	2	102	17	8	207	13	25	241	51	3.5%	228	317
	PM	59	118	11	2	166	33	16	260	17	14	285	71	5.5%	293	370
	1 101	33	110	11	-	100	33	10	200	1,	14	203	, 1	3.370	233	370
Future Total 2030																
Design Speed							Yes									
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	9/10	ft Turn Vol	lume Advancing	Volume Opposing
KIII/II	AM	60	299	26	2	167	22	8	184	13	37	193	51	3.9%	205	volume Opposing 281
	PM	59	299	11		346	45	16	213	17	22	255	71	6.5%	205	348
	PIVI	29	231	11	2	340	45	10	215	1/	22	255	/1	0.5%	240	348
Future Total 2035																
Design Speed							Yes									
	FB1		EBR	14/01	14/07			NOT	NDD	cou	CDT	con	0/1	0		
90 km/h	EBL	EBT		WBL	WBT		NBL	NBT	NBR	SBL	SBT	SBR				Volume Opposing
	AM	60	299	26	2	177	22	8	207	13	37	241	51	3.5%	228	329
	PM	59	242	11	2	346	45	16	260	17	22	285	71	5.5%	293	378

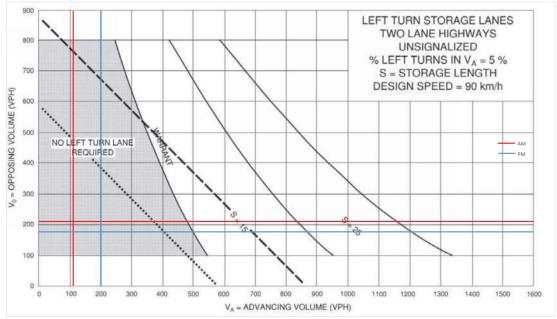
Existing																
Design Speed										Yes						
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%L	eft Turn \	Volume Advancing	Volume Opposing
	AM	87	129	26	2	62	17	8	241	13	25	149	51	11.1%	225	262
	PM	58	70	11	2	151	33	16	207	17	14	161	71	5.7%	246	240
Future Background 2030																
Design Speed										Yes						
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%L		Volume Advancing	Volume Opposing
	AM	60	125	26	2	92	17	8	184	13	25	193	51	9.3%	269	
	PM	59	107	11	2	166	33	16	213	17	14	255	71	4.1%	340	246
Future Background 2035																
Design Speed										Yes						
90 km/h	EBL	EBT	EBR	WBL	WBT		NBL	NBT	NBR	SBL	SBT	SBR				Volume Opposing
	AM	60	125	26	2	102	17	8	207	13	25	241	51	7.9%	317	
	PM	59	118	11	2	166	33	16	260	17	14	285	71	3.8%	370	293
Future Total 2030																
Design Speed										Yes						
90 km/h	EBL	EBT	EBR	WBL	WBT		NBL	NBT	NBR	SBL	SBT	SBR				Volume Opposing
	AM	60	299	26	2	167	22	8	184	13	37	193	51	13.2%	281	
	PM	59	231	11	2	346	45	16	213	17	22	255	71	6.3%	348	246
Future Total 2035																
Design Speed	FB1	FD.T	500	14/01	14/0-		NE	NOT	NDD	Yes	CDT	con	0/1	.0	and the second	W-1 0
90 km/h	EBL	EBT	EBR	WBL	WBT		NBL	NBT	NBR	SBL	SBT	SBR				Volume Opposing
	AM	60 59	299 242	26	2	177	22	8	207	13	37	241 285	51	11.2% 5.8%	329 378	228 293
	PM	23	242	11	2	346	45	16	260	17	22	200	71	5.8%	3/8	293

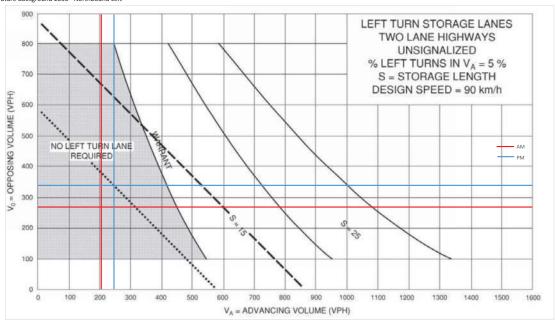


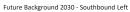


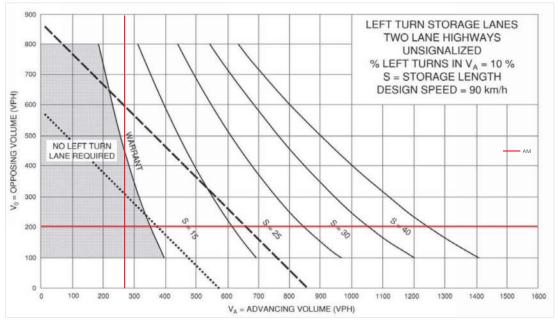


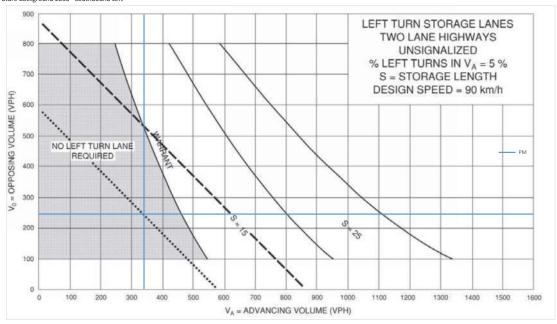


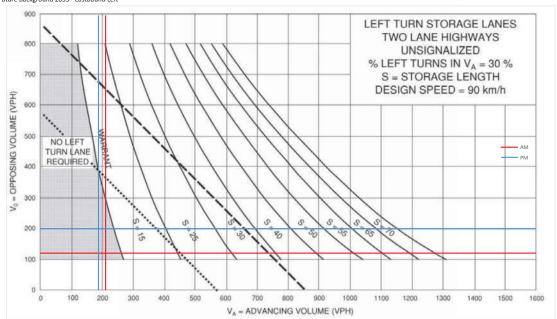


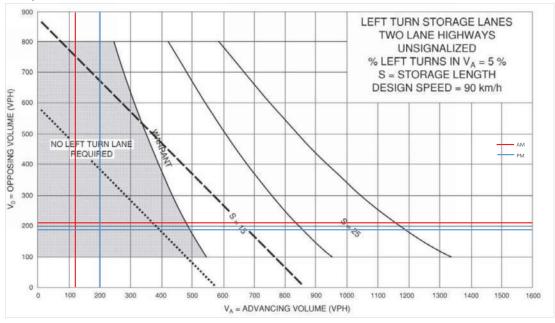

Future Background 2030 - Eastbound Left

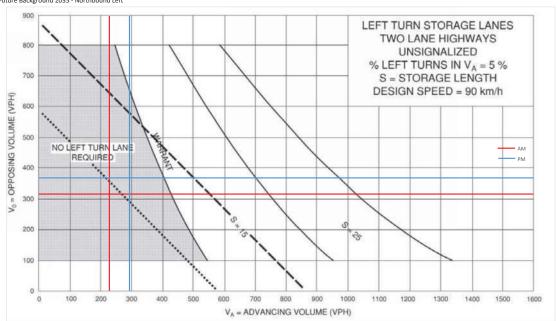


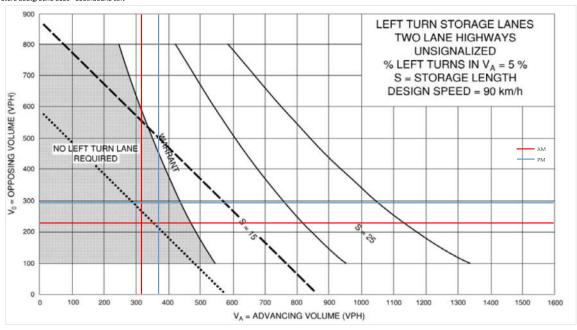



Future Background 2030 - Northbound Left

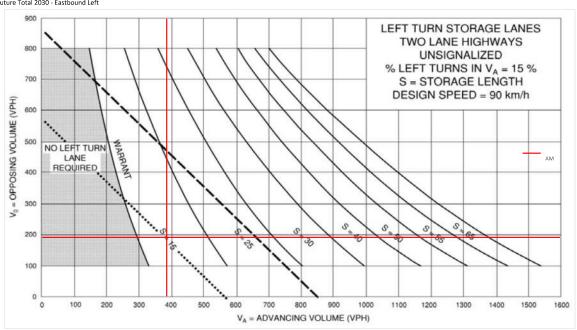


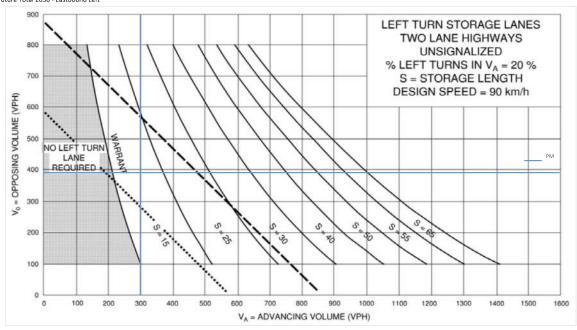

Future Background 2030 - Southbound Left

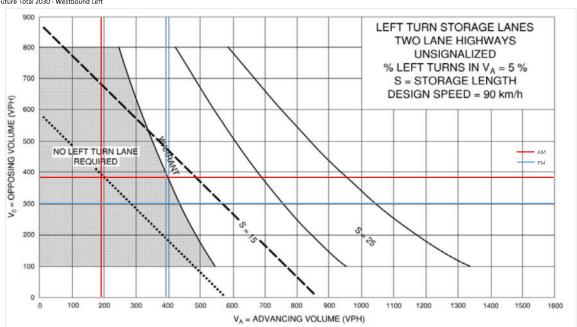


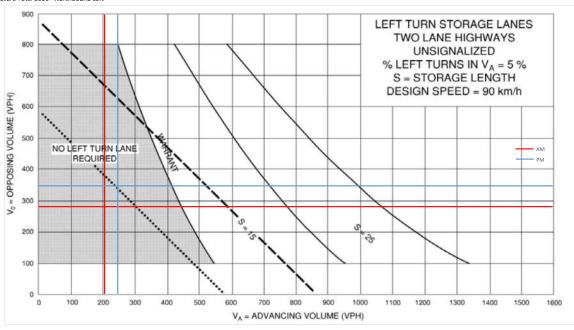


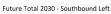
Future Background 2035 - Westbound Left

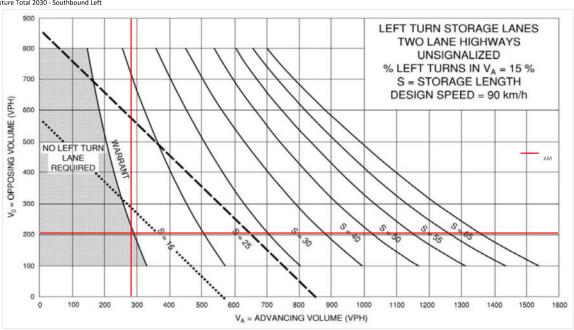


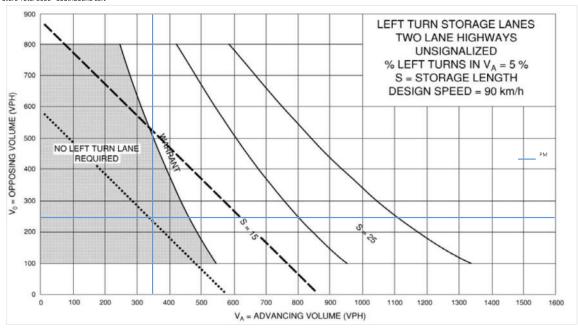


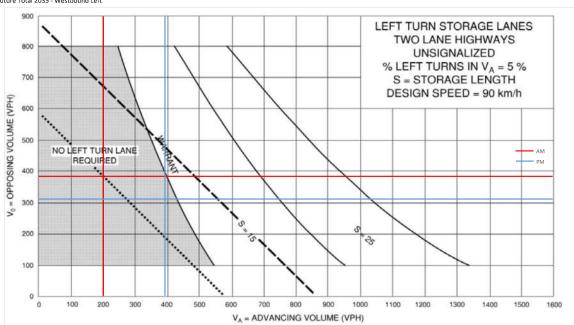


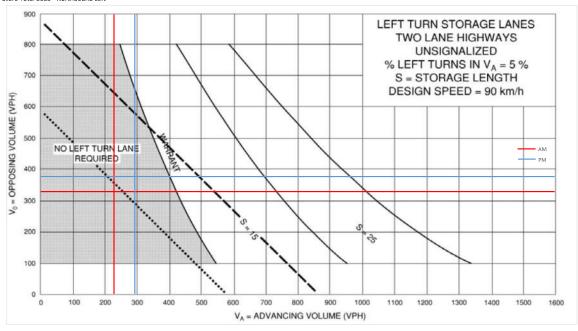


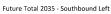


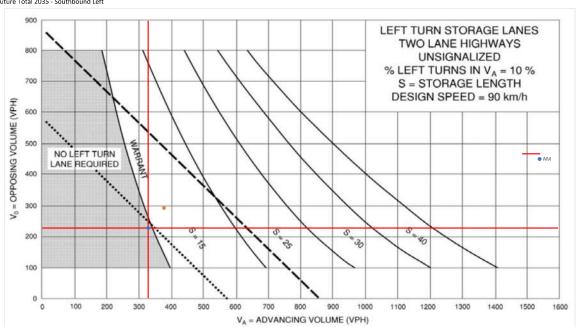


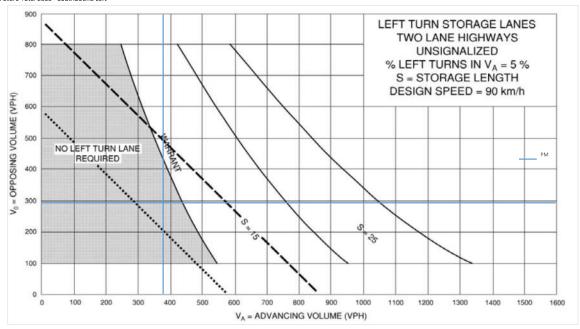




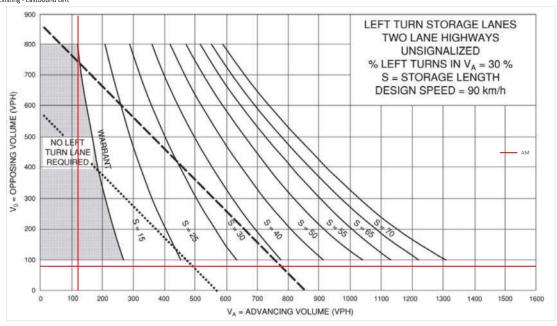




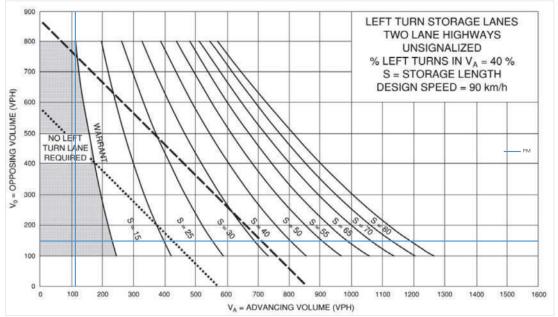


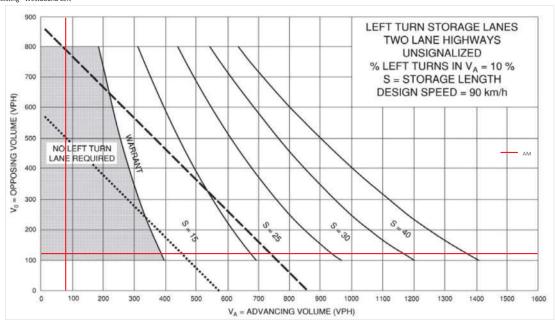


Future Total 2035 - Southbound Left

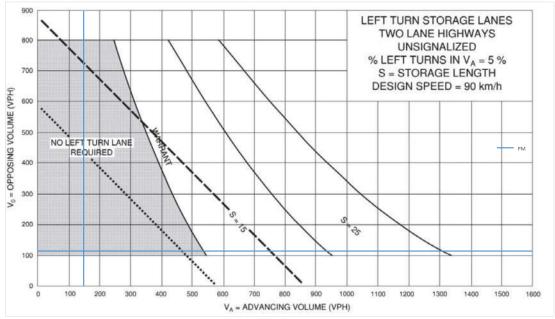

Stittsville Main Street Huntley Road at Flewellyn

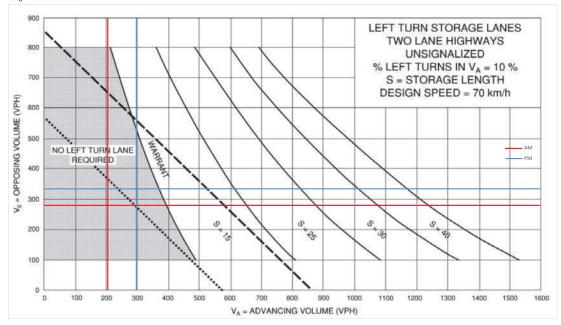
Existing Design Speed	Yes															
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%l e	ft Turn Volume Adv	ancing Volum	me Opposing
,	AM	38	69	15	7	43	29	17	176	12	39	188	53	31.1%	122	79
	PM	44	56	14	6	71	71	27	256	14	33	255	47	38.6%	114	148
Future Background 2030																
Design Speed																
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Le	ft Turn Volume Adv	ancing Volur	me Opposing
	AM	38	155	15	7	125	29	17	232	12	39	259	53	18.3%	208	161
	PM	44	110	14	6	181	71	27	234	14	33	272	47	26.2%	168	258
Future Background 2035																
Design Speed																
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Le	ft Turn Volume Adv	ancing Volur	me Opposing
	AM	38	155	15	7	135	29	17	240	12	39	269	53	18.3%	208	171
	PM	44	121	14	6	181	71	27	245	14	33	281	47	24.6%	179	258
Future Total 2030																
Design Speed																
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		ft Turn Volume Adv		me Opposing
	AM	38	164	15	19	145	168	17	232	17	99	259	53	17.5%	217	332
	PM	44	130	14	14	195	169	27	234	26	176	272	47	23.4%	188	378
Future Total 2035																
Design Speed																
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL 168	NBT	NBR	SBL	SBT	SBR		ft Turn Volume Adv		me Opposing
	AM	38	164	15	19	155		17 27	240	17	99	269 281	53	17.5%	217	342 378
	PM	44	141	14	14	195	169	21	245	26	176	281	47	22.1%	199	3/8

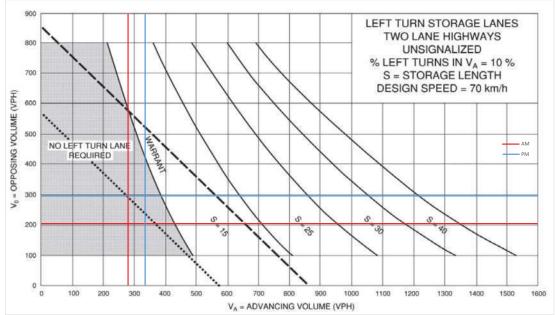

Existing																
Design Speed				Yes												
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Le	ft Turn Volume A	dvancing Volume	Opposing
	AM	38	69	15	7	43	29	17	176	12	39	188	53	8.9%	79	122
	PM	44	56	14	6	71	71	27	256	14	33	255	47	4.1%	148	114
Future Background 2030																
Design Speed				Yes												
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Le	ft Turn Volume A	dvancing Volume (Opposing
	AM	38	155	15	7	125	29	17	232	12	39	259	53	4.3%	161	208
	PM	44	110	14	6	181	71	27	234	14	33	272	47	2.3%	258	168
Future Background 2035																
Design Speed				Yes												
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Le	ft Turn Volume A	dvancing Volume	Opposing
	AM	38	155	15	7	135	29	17	240	12	39	269	53	4.1%	171	208
	PM	44	121	14	6	181	71	27	245	14	33	281	47	2.3%	258	179
Future Total 2030																
Future Total 2030 Design Speed				Yes												
	EBL	EBT	EBR	Yes WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Le	ft Turn Volume A	.dvancing Volume (Opposing
Design Speed	EBL	EBT 38	EBR 164		WBT	WBR 145	NBL 168	NBT	NBR 232	SBL 17	SBT 99	SBR 259	%Le	ft Turn Volume A 5.7%	dvancing Volume (Opposing 217
Design Speed				WBL												
Design Speed	AM	38	164	WBL 15	19	145	168	17	232	17	99	259	53	5.7%	332	217
Design Speed	AM	38	164	WBL 15	19	145	168	17	232	17	99	259	53	5.7%	332	217
Design Speed 90 km/h	AM	38	164	WBL 15	19	145	168	17	232	17	99	259	53	5.7%	332	217
Design Speed 90 km/h Future Total 2035	AM	38	164	WBL 15 14	19	145	168 169	17	232	17	99	259	53 47	5.7%	332 378	217 188
Design Speed 90 km/h Future Total 2035 Design Speed	AM PM	38 44	164 130	WBL 15 14	19 14	145 195	168 169	17 27	232 234	17 26	99 176	259 272	53 47	5.7% 3.7%	332 378	217 188
Design Speed 90 km/h Future Total 2035 Design Speed	AM PM	38 44 EBT	164 130 EBR	WBL 15 14 Yes WBL	19 14 WBT	145 195 WBR	168 169 NBL	17 27 NBT	232 234 NBR	17 26 SBL	99 176 SBT	259 272 SBR	53 47 %Le	5.7% 3.7% ft Turn Volume A	332 378 dvancing Volume (217 188 Opposing

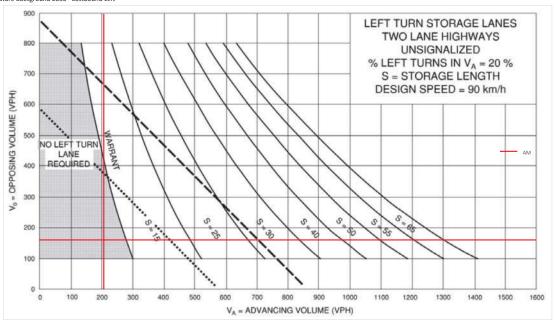

Existing																
Design Speed							Yes									
70 km/h	EBL	EBT	EBR	WBL	WBT 7	WBR		NBT	NBR	SBL	SBT	SBR			me Advancing Volume (
	AM	38	69	15		43	29	17	176	12	39	188	53	8.3%	205	280
	PM	44	56	14	6	71	71	27	256	14	33	255	47	9.1%	297	335
Future Background 2030																
Design Speed							Yes									
70 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%I of	t Turn Volur	me Advancing Volume (Opposing
70 811/11	AM	38	155	15	7	125	29	17	232	12	39	259	53	6.5%	261	351
	PM	44	110	14	6	181	71	27	234	14	33	272	47	9.8%	275	352
					Ü						55			3.070	273	332
Future Background 2035																
Design Speed							Yes									
70 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Let	t Turn Volur	me Advancing Volume (Opposing
	AM	38	155	15	7	135	29	17	240	12	39	269	53	6.3%	269	361
	PM	44	121	14	6	181	71	27	245	14	33	281	47	9.4%	286	361
Future Total 2030																
Design Speed							Yes									
70 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Let	t Turn Volur	me Advancing Volume (Opposing
	AM	38	164	15	19	145	168	17	232	17	99	259	53	6.4%	266	411
	PM	44	130	14	14	195	169	27	234	26	176	272	47	9.4%	287	495
Future Total 2035																
Design Speed							Yes									
70 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR			me Advancing Volume (
	AM	38	164	15	19	155	168	17	240	17	99	269	53	6.2%	274	421
	PM	44	141	14	14	195	169	27	245	26	176	281	47	9.1%	298	504

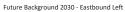
Existing																
Design Speed										Yes						
70 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%L	eft Turn	Volume Advancing	Volume Opposing
	AM	38	69	15	7	43	29	17	176	12	39	188	53	13.9%	280	205
	PM	44	56	14	6	71	71	27	256	14	33	255	47	9.9%	335	297
Future Background 2030																
Design Speed										Yes						
70 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%L	eft Turn	Volume Advancing	Volume Opposing
	AM	38	155	15	7	125	29	17	232	12	39	259	53	11.1%		
	PM	44	110	14	6	181	71	27	234	14	33	272	47	9.4%	352	2 275
Future Background 2035																
Design Speed										Yes						
70 km/h	EBL	EBT	EBR	WBL	WBT	WBR		NBT	NBR	SBL	SBT	SBR				Volume Opposing
	AM	38	155	15	7	135	29	17	240	12	39	269	53	10.8%		
	PM	44	121	14	6	181	71	27	245	14	33	281	47	9.1%	361	286
Future Total 2030																
Design Speed										Yes						
70 km/h	EBL	EBT	EBR	WBL	WBT	WBR		NBT	NBR	SBL	SBT	SBR				Volume Opposing
	AM	38	164	15	19	145	168	17	232	17	99	259	53	24.1%		
	PM	44	130	14	14	195	169	27	234	26	176	272	47	35.6%	495	287
Future Total 2035																
Design Speed										Yes						
			EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%L	eft Turn	Volume Advancing	Volume Opposing
70 km/h	EBL	EBT														
	AM PM	38 44	164 141	15 14	19 14	155 195	168 169	17 27	240 245	17 26	99 176	269 281	53 47	23.5% 34.9%		

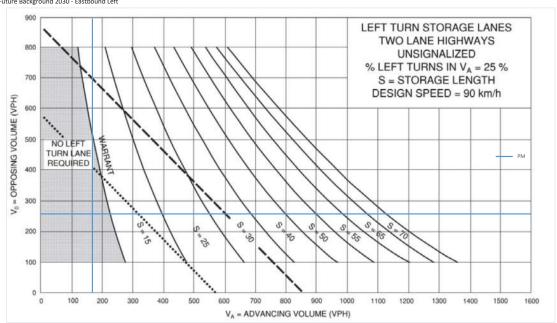


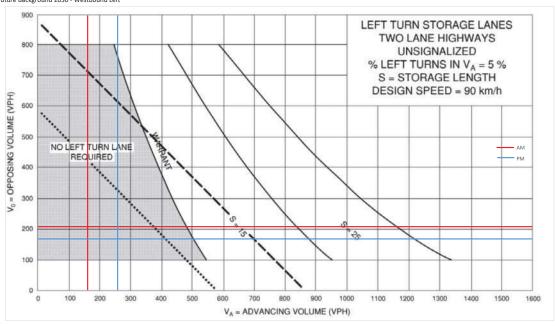


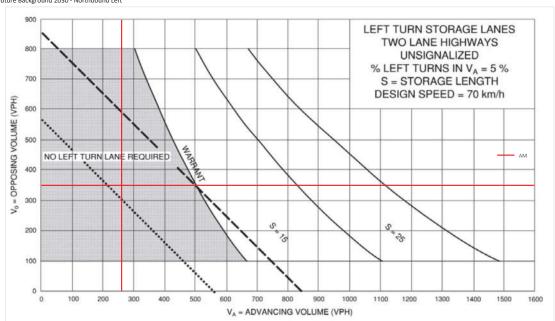


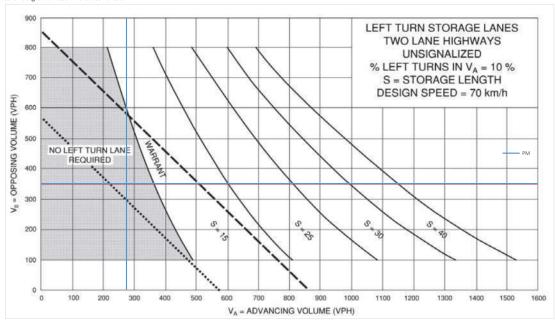


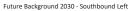


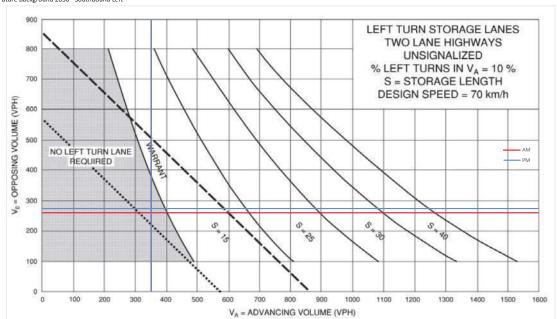


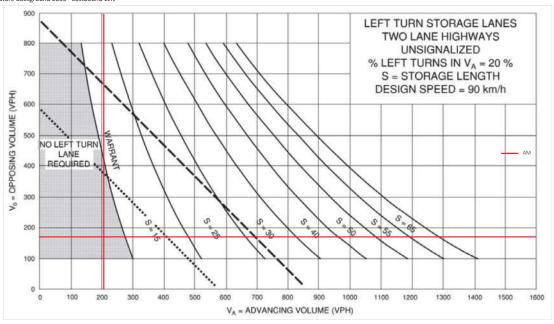

Future Background 2030 - Eastbound Left

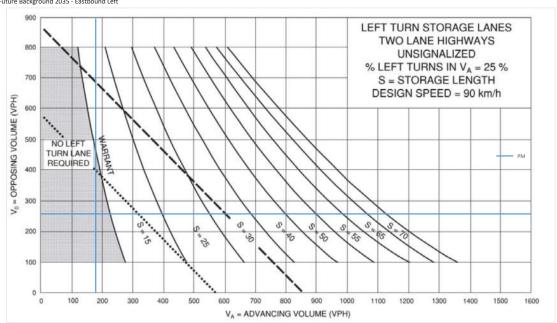


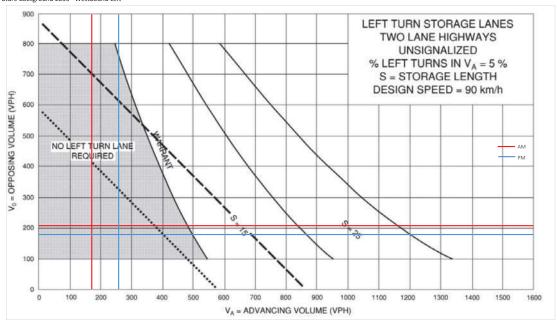


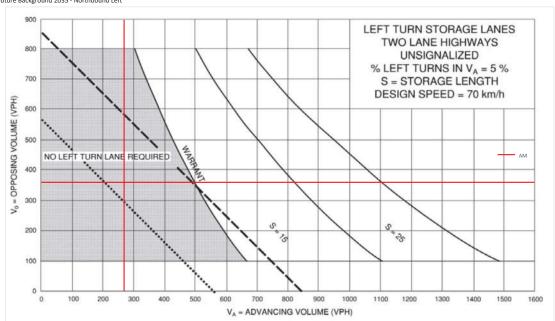

Future Background 2030 - Westbound Left

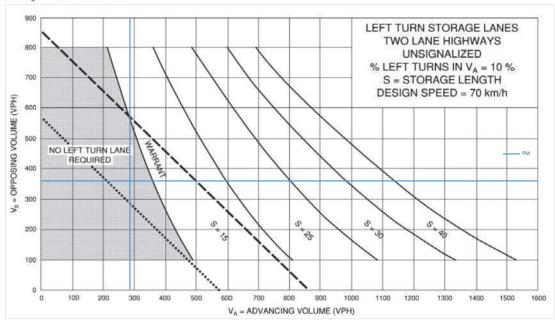


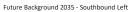


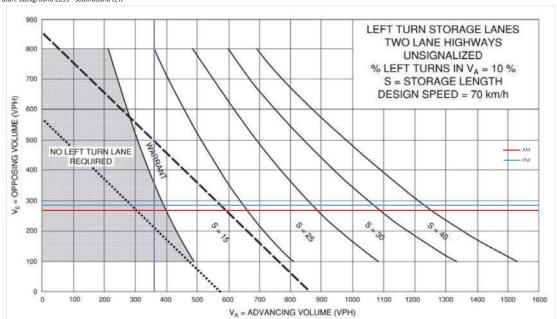


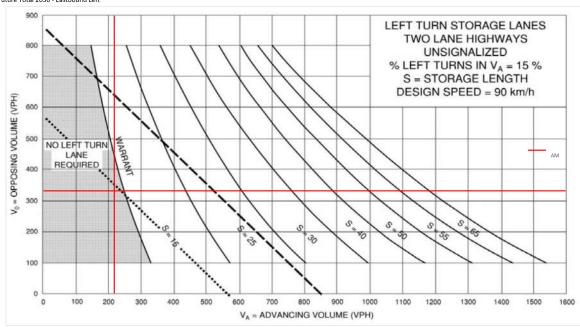

Future Background 2035 - Eastbound Left

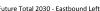


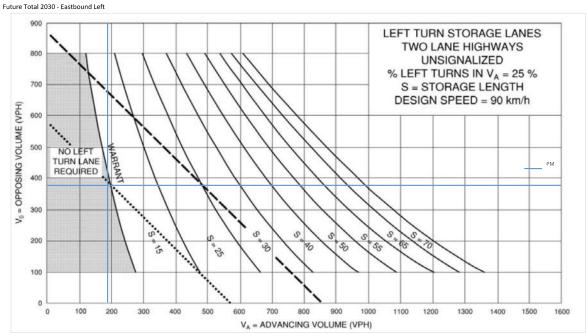


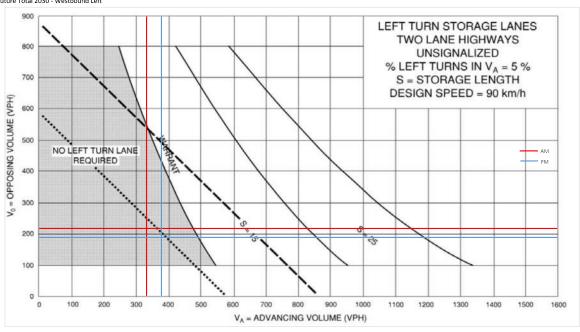

Future Background 2035 - Westbound Left

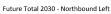


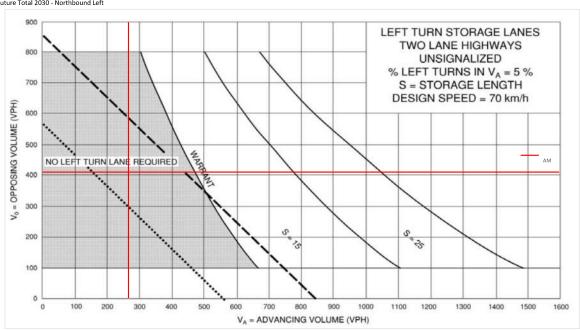


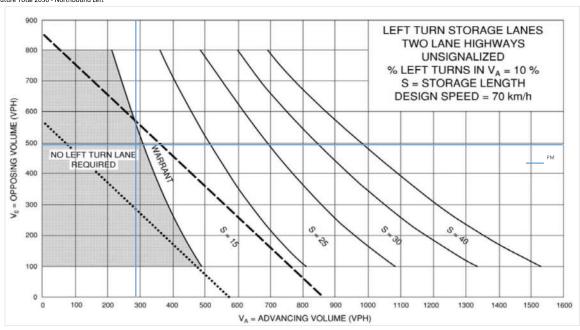


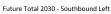


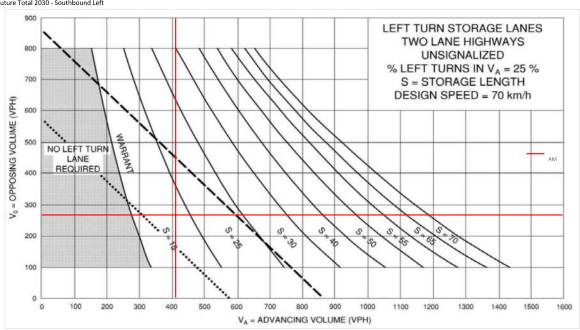


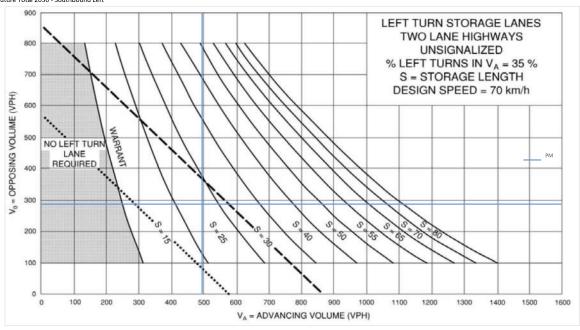


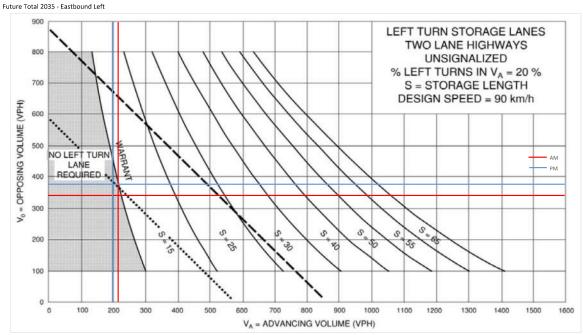


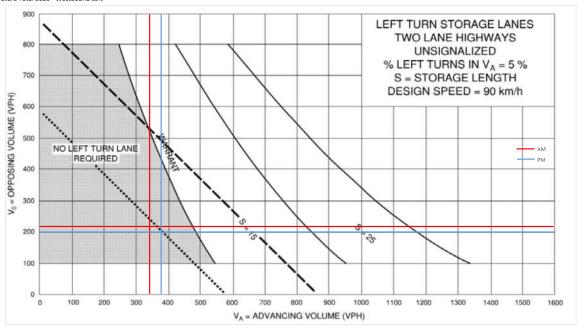


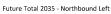


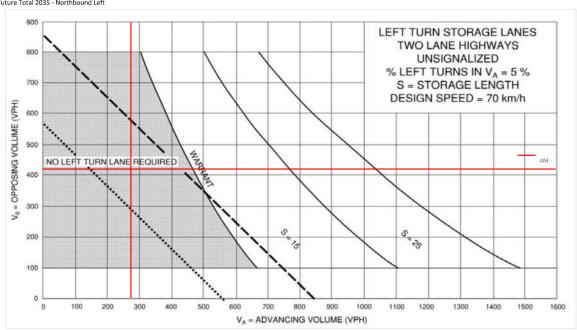


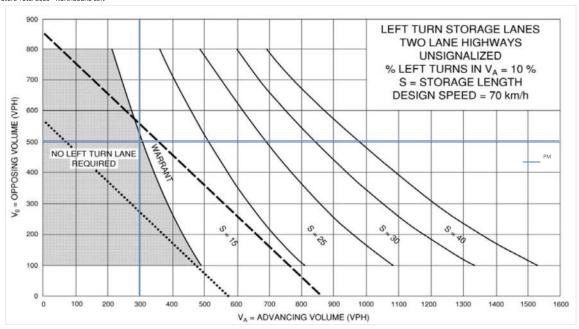


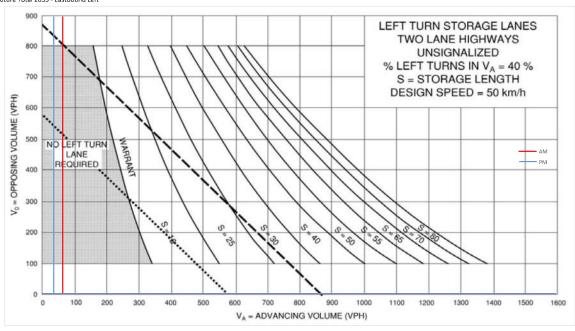


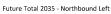






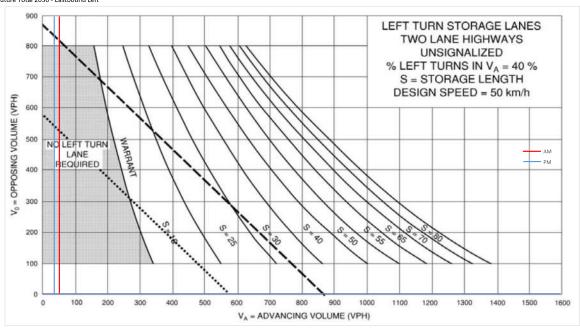


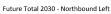


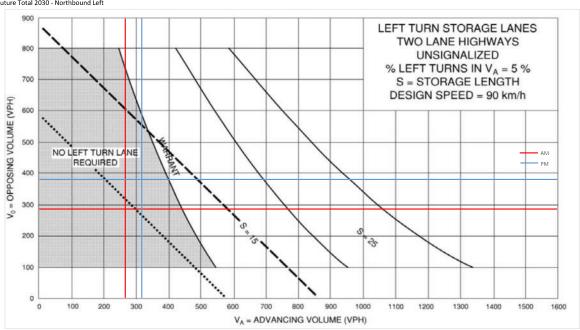

Future Total 2035 - Northbound Left

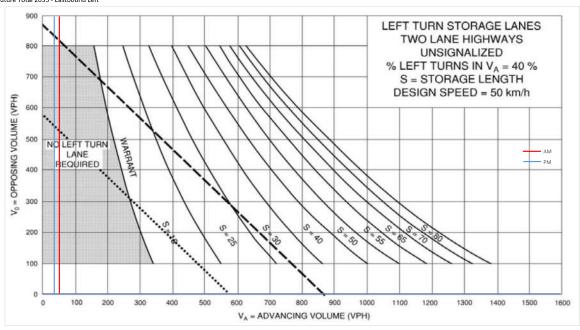
Existing																	
Design Speed	Yes																
50 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Le	eft Turn	Volume Advancing	Volume Opposing	
	AM	39	0	19	0	0	0	5	225	0	0	101	11	67.2%	5	8	0
	PM	22	0	11	0	0	0	19	169	0	0	114	39	66.7%	3	13	0
Future Background 2030																	
Design Speed	Yes																
50 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Le	eft Turn	Volume Advancing	Volume Opposing	
	AM	43	0	21	0	0	0	6	255	0	0	248	12	67.2%	6	4	0
	PM	24	0	12	0	0	0	21	284	0	0	328	43	66.7%	3	16	0
Future Background 2035																	
Design Speed	Yes																
50 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Le	eft Turn	Volume Advancing	Volume Opposing	
	AM	43	0	21	0	0	0	6	278	0	0	296	12	67.2%	6	64	0
	PM	24	0	12	0	0	0	21	331	0	0	358	43	66.7%	3	16	0
Future Total 2030																	
Design Speed	Yes																
50 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Le	eft Turn	Volume Advancing	Volume Opposing	
	AM	43	0	21	0	0	0	6	295	0	0	265	12	67.2%	6	i4	0
	PM	24	0	12	0	0	0	21	312	0	0	369	43	66.7%	3	16	0
Future Total 2035																	
Design Speed	Yes																
50 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Le	eft Turn	Volume Advancing	Volume Opposing	
	AM	43	0	21	0	0	0	6	318	0	0	313	12	67.2%	6	i4	0
	PM	24	0	12	0	0	0	21	359	0	0	399	43	66.7%	3	16	0

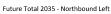
Existing																
Design Speed							Yes									
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%I	Left Turn Vo	lume Advancing	Volume Opposing
	AM	39	0	19	0	0	0	5	225	0	0	101	11	2.2%	230	112
	PM	22	0	11	0	0	0	19	169	0	0	114	39	10.1%	188	153
Future Background 2030																
Design Speed							Yes									
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%I	Left Turn Vo	lume Advancing	Volume Opposing
	AM	43	0	21	0	0	0	6	255	0	0	248	12	2.3%	261	260
	PM	24	0	12	0	0	0	21	284	0	0	328	43	6.9%	305	371
Future Background 2035																
Design Speed							Yes									
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	961	eft Turn Vo	lume Advancing	Volume Opposing
30 111/11	AM	43	0	21	0	0	0	6	278	0	0	296	12	2.1%	284	
	PM	24	0	12	0	0	0	21	331	0	0	358	43	6.0%	352	
Future Total 2030																
Design Speed							Yes									
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT		SBL	SBT	SBR				Volume Opposing
	AM	43	0	21	0	0	0	6	295	0	0	265	12	2.0%	301	
	PM	24	0	12	0	0	0	21	312	0	0	369	43	6.3%	333	412
Future Total 2035																
Design Speed							Yes									
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%I	Left Turn Vo	lume Advancing	Volume Opposing
	AM	43	0	21	0	0	0	6	318	0	0	313	12	1.9%	324	325
	PM	24	0	12	0	0	0	21	359	0	0	399	43	5.5%	380) 442

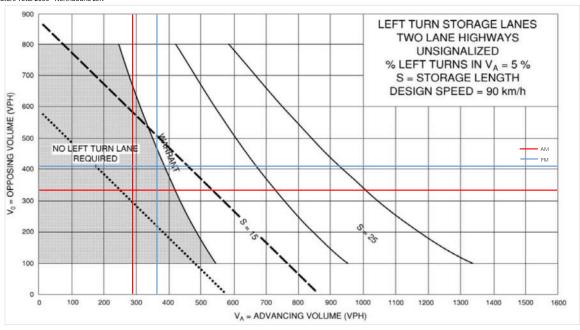


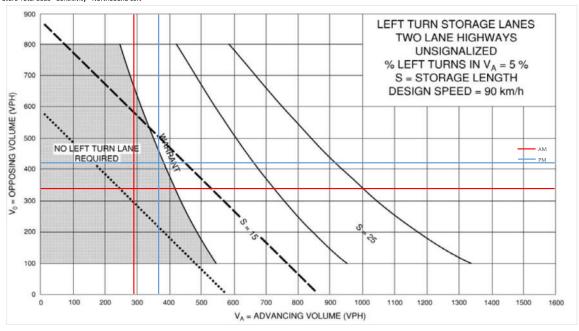


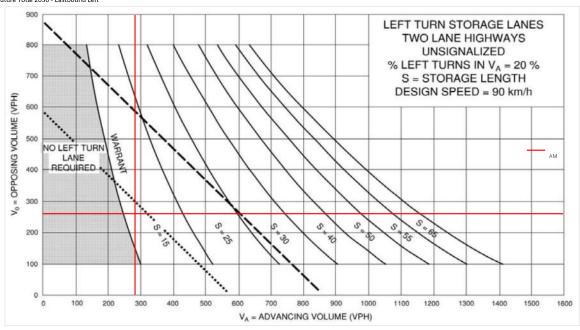

Shea Road at Street 21

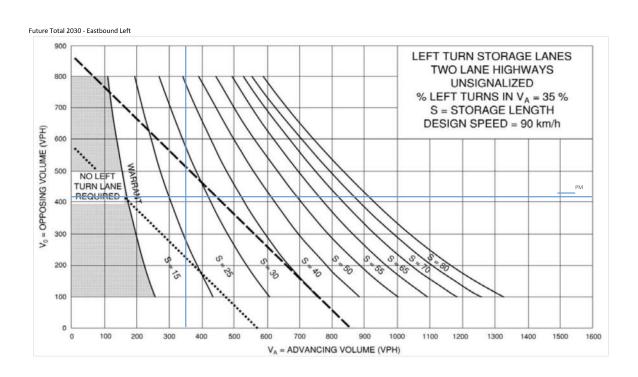

Future Total 2030																	
Design Speed	Yes																
50 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%L	eft Turn V	olume Advancing	Volume Opposing	
· 	AM	40	0	12				5	261	0	0	269	17	76.9%	52	0)
	PM	28	0	8				12	305	0	0	340	41	77.8%	36	0)
Future Total 2035 Design Speed	Yes																
50 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%L	eft Turn V	olume Advancing	Volume Opposing	
	AM	40	0	12				5	284	0	0	317	17	76.9%	52	0)
	PM	28	0	8				12	352	0	0	370	41	77.8%	36	0)
Future Total 2035 - Sensitivi Design Speed	ity																
50 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%L	eft Turn V	olume Advancing	Volume Opposing	
	AM	52	0	15	0	0	0	6	284	0	0	317	22	77.6%	67	0)
	PM	36	0	10	0	0	0	15	352	0	0	370	52	78.3%	46	0)

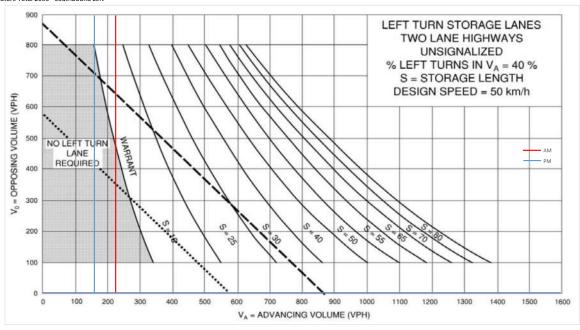

Future Total 2030																
Design Speed							Yes									
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Le	ft Turn Vo	olume Advancing	Volume Opposing
	AM	40	0	12				5	261	0	0	269	17	1.9%	266	286
	PM	28	0	8				12	305	0	0	340	41	3.8%	317	381
Future Total 2035																
Design Speed							Yes									
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Le	ft Turn Vo	olume Advancing	Volume Opposing
	AM	40	0	12				5	284	0	0	317	17	1.7%	289	334
	PM	28	0	8				12	352	0	0	370	41	3.3%	364	411
Future Total 2035 - Sensitivity																
Design Speed							Yes									
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Le	ft Turn Vo	olume Advancing	Volume Opposing
	AM	52	0	15	0	0	0	6	284	0	0	317	22	2.1%	290	339
	PM	36	0	10	0	0	0	15	352	0	0	370	52	4.1%	367	422

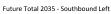


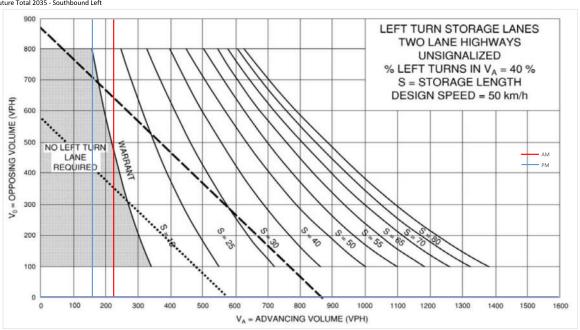


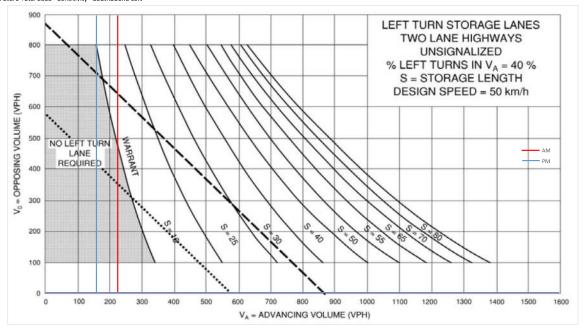

Future Total 2035 - Sensitivity - Northbound Left

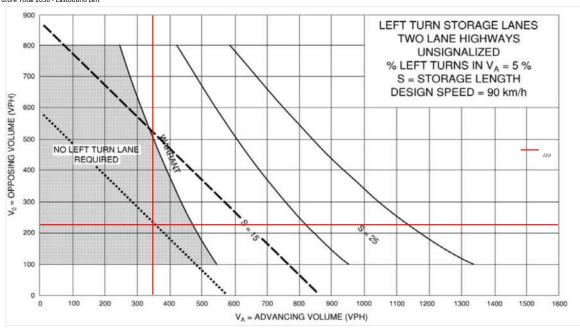


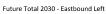

Flewellyn Road at Street 12

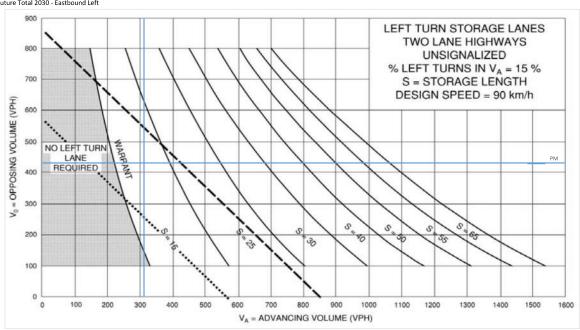

Future Total 2030																
Design Speed	Y	'es														
90 km/h	E	BL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Left Turn	Volume Advancing	Volume Opposing
	AM	51	233	0	0	210	51	0	0	0	115	0	11:	1 18.0%	284	261
	PM	122	230	0	0	295	122	0	0	0	81	0	79	34.7%	352	417
Future Total 2035																
Design Speed	Y	es														
90 km/h	E	BL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Left Turn	Volume Advancing	Volume Opposing
	AM	51	233	0	0	220	51	0	0	0	115	0	11:	1 18.0%	284	271
	PM	122	241	0	0	295	122	0	0	0	81	0	79	33.6%	363	417
Future Total 2035 - Sensitivity																
Design Speed	Υ	'es														
90 km/h	E	BL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Left Turn	Volume Advancing	Volume Opposing
	AM	5	1 2	54	0	0 2	59	51	0	0	0 1	15	0	111 16.79	6 30	5 320
	PM	12	2 2	89	0	0 3	30 1	22	0	0	0	81	0	79 29.79	6 41:	1 452

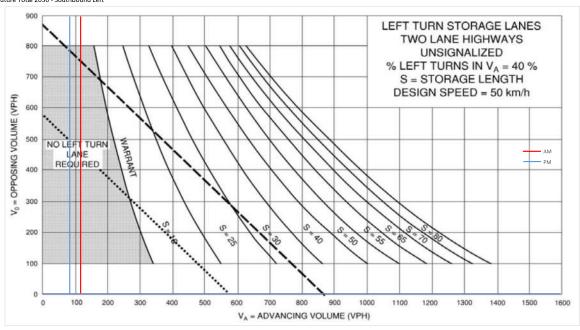

Future Total 2030																
Design Speed											Yes					
50 km/h	E	BL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Left Turn	Volume Advancing	Volume Opposing
	AM	51	233	0	0	210	51	0	0	0	115	0	111	50.9%	226	0
	PM	122	230	0	0	295	122	0	0	0	81	0	79	50.6%	160	0
Future Total 2035																
Design Speed											Yes					
50 km/h	E	BL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Left Turn	Volume Advancing	Volume Opposing
	AM	51	233	0	0	220	51	0	0	0	115	0	111	50.9%	226	0
	PM	122	241	0	0	295	122	0	0	0	81	0	79	50.6%	160	0
Future Total 2035 - Sensitivi	ity															
Design Speed											Yes					
50 km/h	E	BL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%Left Turn	Volume Advancing	Volume Opposing
	AM		51 2	54	0	0 2	69	51	0	0	0 1	.15	0 1	11 50.9%	. 22	.6
							30 :	122								60



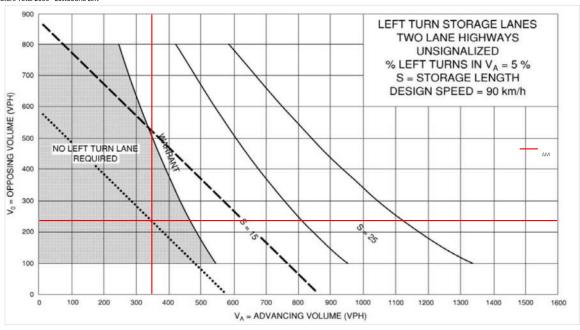

Future Total 2035 - Sensitivity - Southbound Left

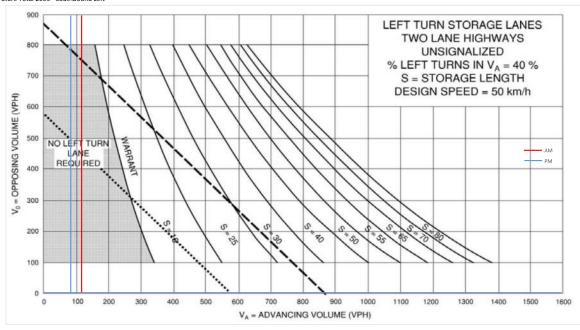


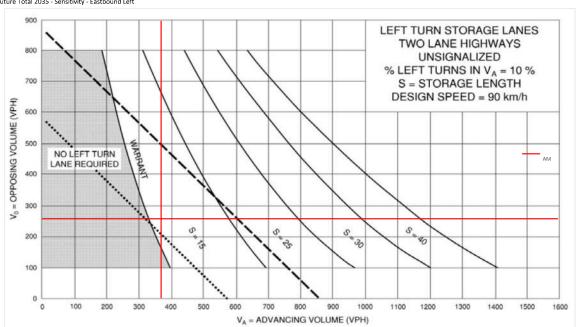

Flewellyn Road at Street 16

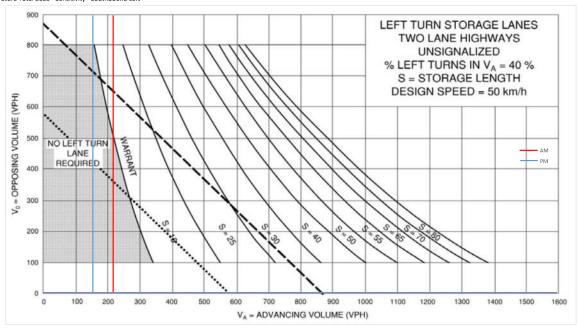

Future Total 2030																
Design Speed	Yes															
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%	Left Turn	Volume Advancing	Volume Opposing
	AM	22	326	0	0	202	24	0	0	0	59	0	59	6.3%	348	226
	PM	53	258	0	0	375	57	0	0	0	42	0	42	17.0%	311	432
Future Total 2035																
Design Speed	Yes															
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%	Left Turn	Volume Advancing	Volume Opposing
	AM	22	326	0	0	212	24	0	0	0	59	0	59	6.3%	348	236
	PM	53	269	0	0	375	57	0	0	0	42	0	42	16.5%	322	432
Future Total 2035 - Sensitiv	ity															
Design Speed	Yes															
90 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%	Left Turn	Volume Advancing	Volume Opposing
	AM	43	326	0	0	212	46	0	0	0	110	0	108	11.7%	369	258
	PM	101	269	0	0	375	106	0	0	0	78	0	77	27.3%	370	481

Future Total 2030																
Design Speed										Yes						
50 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%L	eft Turn	Volume Advancing V	olume Opposing
	AM	22	326	0	0	202	24	0	0	0	59	0	59	50.0%	118	0
	PM	53	258	0	0	375	57	0	0	0	42	0	42	50.0%	84	0
Future Total 2035																
Design Speed										Yes						
50 km/h	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	%L	eft Turn 1	Volume Advancing V	olume Opposing
	EBL AM	EBT 22	EBR 326	WBL 0	WBT 0	WBR 212	NBL 24	NBT 0	NBR 0	SBL 0	SBT 59	SBR 0	%L 59	eft Turn 1. 50.0%	Volume Advancing V 118	olume Opposing 0
	AM	22	326	0	0	212	24	0	0	0	59	0	59	50.0%	118	0
	AM	22	326	0	0	212	24	0	0	0	59	0	59	50.0%	118	0
Future Total 2035 - Sensitivity	AM	22	326	0	0	212	24	0	0	0	59	0	59 42	50.0% 50.0%	118 84	0
Future Total 2035 - Sensitivity Design Speed 50 km/h	AM PM	22 53	326 269	0	0	212 375	24 57	0	0	0 0 Yes	59 42	0	59 42	50.0% 50.0%	118 84	0









Future Total 2035 - Sensitivity - Southbound Left

Appendix G

Collision Data

Accident Date	Accident Year	Accident Time	Location	Environment Condition	Light	Traffic Control	Traffic Control Condition	Classification Of Accident	Initial Impact Type	Road Surface Condition	# Vehicles	# Motorcycles	# Bicycles	# Pedestrians
7/27/2018	2018	18:03	FERNBANK RD @ SHEA RD (0000399)	01 - Clear	01 - Daylight	11 - Roundabout	0	03 - P.D. only	02 - Angle	01 - Dry	0	Ó	0	0
8/10/2018	2018	11:00	FERNBANK RD @ SHEA RD (0000399)	01 - Clear	01 - Daylight	11 - Roundabout	0	03 - P.D. only	02 - Angle	01 - Dry	0	0	0	0
11/14/2018	2018	7:46	FERNBANK RD @ SHEA RD (0000399)	01 - Clear	01 - Daylight	11 - Roundabout	0	03 - P.D. only	02 - Angle	01 - Dry	0	0	0	0
2/26/2019	2019	8:58	FERNBANK RD @ SHEA RD (0000399)	01 - Clear	01 - Daylight	11 - Roundabout	0	03 - P.D. only	02 - Angle	01 - Dry	0	0	0	0
4/1/2019	2019	7:10	FERNBANK RD @ SHEA RD (0000399)	01 - Clear	01 - Daylight	11 - Roundabout	0	03 - P.D. only	02 - Angle	01 - Dry	0	0	0	0
11/6/2019	2019	7:15	FERNBANK RD @ SHEA RD (0000399)	01 - Clear	03 - Dawn	11 - Roundabout	0	03 - P.D. only	02 - Angle	01 - Dry	0	0	0	0
12/4/2019	2019	10:28	FERNBANK RD @ SHEA RD (0000399)	01 - Clear	01 - Daylight	11 - Roundabout	0	03 - P.D. only	02 - Angle	02 - Wet	0	0	0	0
4/22/2018	2018	11:30	FLEWELLYN RD @ SHEA RD (0000398)	01 - Clear	01 - Daylight	02 - Stop sign	0	03 - P.D. only	02 - Angle	01 - Dry	0	0	0	0
7/30/2018	2018	17:09	FLEWELLYN RD @ SHEA RD (0000398)	01 - Clear	01 - Daylight	02 - Stop sign	0	02 - Non-fatal injury	02 - Angle	01 - Dry	0	0	0	0
8/31/2018	2018	17:29	FLEWELLYN RD @ SHEA RD (0000398)	01 - Clear	01 - Daylight	02 - Stop sign	0	03 - P.D. only	02 - Angle	01 - Dry	0	0	0	0
11/28/2018	2018	18:43	FLEWELLYN RD @ SHEA RD (0000398)	01 - Clear	07 - Dark	02 - Stop sign	0	03 - P.D. only	02 - Angle	01 - Dry	0	0	0	0
1/31/2019	2019	16:50	FLEWELLYN RD @ SHEA RD (0000398)	01 - Clear	05 - Dusk	02 - Stop sign	0	02 - Non-fatal injury	02 - Angle	01 - Dry	0	0	0	0
3/29/2019	2019	17:26	FLEWELLYN RD @ SHEA RD (0000398)	01 - Clear	01 - Daylight	02 - Stop sign	0	03 - P.D. only	02 - Angle	01 - Dry	0	0	0	0
5/4/2019	2019	15:59	FLEWELLYN RD @ SHEA RD (0000398)	01 - Clear	01 - Daylight	02 - Stop sign	0	03 - P.D. only	02 - Angle	01 - Dry	0	0	0	0
11/7/2019	2019	7:51	FLEWELLYN RD @ SHEA RD (0000398)	03 - Snow	01 - Daylight	02 - Stop sign	0	03 - P.D. only	02 - Angle	06 - Ice	0	0	0	0
2/13/2020	2020	7:08	FLEWELLYN RD @ SHEA RD (0000398)	03 - Snow	03 - Dawn	02 - Stop sign	0	03 - P.D. only	02 - Angle	02 - Wet	0	0	0	0
6/16/2021	2021	15:15	FLEWELLYN RD @ SHEA RD (0000398)	01 - Clear	01 - Daylight	02 - Stop sign	0	03 - P.D. only	02 - Angle	01 - Dry	0	0	0	0
9/21/2021	2021	16:17	FLEWELLYN RD @ SHEA RD (0000398)	01 - Clear	01 - Daylight	02 - Stop sign	0	03 - P.D. only	02 - Angle	01 - Dry	0	0	0	0
10/23/2021	2021	14:48	FLEWELLYN RD @ SHEA RD (0000398)	01 - Clear	01 - Daylight	02 - Stop sign	0	02 - Non-fatal injury	02 - Angle	01 - Dry	0	0	0	0
1/14/2022	2022	16:26	FLEWELLYN RD @ SHEA RD (0000398)	01 - Clear	01 - Daylight	02 - Stop sign	0	03 - P.D. only	02 - Angle	01 - Dry	0	0	0	0
2/22/2022	2022	19:20	FLEWELLYN RD @ SHEA RD (0000398)	04 - Freezing Rain	07 - Dark	02 - Stop sign	0	03 - P.D. only	02 - Angle	06 - Ice	0	0	0	0
2/24/2022	2022	7:11	FLEWELLYN RD @ SHEA RD (0000398)	01 - Clear	03 - Dawn	02 - Stop sign	0	03 - P.D. only	02 - Angle	01 - Dry	0	0	0	0
7/10/2022	2022	11:13	FLEWELLYN RD @ SHEA RD (0000398)	01 - Clear	01 - Daylight	02 - Stop sign	0	02 - Non-fatal injury	02 - Angle	01 - Dry	0	0	0	0
8/23/2022	2022	16:46	FLEWELLYN RD @ SHEA RD (0000398)	01 - Clear	01 - Daylight	02 - Stop sign	0	02 - Non-fatal injury	02 - Angle	01 - Dry	0	0	0	0
4/4/2018	2018	20:24	FLEWELLYN RD btwn FORESTGROVE DR & POPLARWOOD AVE (3ZA1X5)	06 - Strong wind	07 - Dark	10 - No control	0	03 - P.D. only	07 - SMV other	01 - Dry	0	0	0	0
1/12/2019	2019	17:26	FLEWELLYN RD btwn FORESTGROVE DR & STITTSVILLE MAIN ST (3ZA1CW)	01 - Clear	05 - Dusk	10 - No control	0	03 - P.D. only	99 - Other	03 - Loose snow	0	0	0	0
11/16/2018	2018	18:23	FLEWELLYN RD btwn POPLARWOOD AVE & SHEA RD (3ZABGI)	03 - Snow	07 - Dark	10 - No control	0	03 - P.D. only	07 - SMV other	03 - Loose snow	0	0	0	0
1/10/2019	2019	9:15	FLEWELLYN RD btwn POPLARWOOD AVE & SHEA RD (3ZABGI)	03 - Snow	01 - Daylight	10 - No control	0	03 - P.D. only	03 - Rear end	05 - Packed snow	0	0	0	0
1/24/2019	2019	8:33	FLEWELLYN RD btwn POPLARWOOD AVE & SHEA RD (3ZABGI)	04 - Freezing Rain	01 - Daylight	10 - No control	0	03 - P.D. only	07 - SMV other	04 - Slush	0	0	0	0
9/27/2019	2019	20:05	FLEWELLYN RD btwn POPLARWOOD AVE & SHEA RD (3ZABGI)	01 - Clear	07 - Dark	10 - No control	0	03 - P.D. only	07 - SMV other	01 - Dry	0	0	0	0
9/27/2020	2020	23:15	FLEWELLYN RD btwn POPLARWOOD AVE & SHEA RD (3ZABGI)	01 - Clear	07 - Dark	10 - No control	0	03 - P.D. only	07 - SMV other	01 - Dry	0	0	0	0
11/9/2020	2020	6:36	FLEWELLYN RD btwn POPLARWOOD AVE & SHEA RD (3ZABGI)	01 - Clear	07 - Dark	10 - No control	0	03 - P.D. only	07 - SMV other	01 - Dry	0	0	0	0
12/2/2021	2021	19:47	FLEWELLYN RD btwn POPLARWOOD AVE & SHEA RD (3ZABGI)	02 - Rain	07 - Dark	10 - No control	0	03 - P.D. only	07 - SMV other	02 - Wet	0	0	0	0
8/27/2018	2018	6:10	SHEA RD btwn FERNBANK RD & FLEWELLYN RD (3ZABGL)	01 - Clear	03 - Dawn	10 - No control	0	03 - P.D. only	07 - SMV other	01 - Dry	0	0	0	0
11/9/2018	2018	23:17	SHEA RD btwn FERNBANK RD & FLEWELLYN RD (3ZABGL)	03 - Snow	07 - Dark	10 - No control	0	03 - P.D. only	07 - SMV other	03 - Loose snow	0	0	0	0
2/19/2022	2022	17:29	SHEA RD btwn FERNBANK RD & FLEWELLYN RD (3ZABGL)	03 - Snow	07 - Dark	10 - No control	0	03 - P.D. only	07 - SMV other	06 - Ice	0	0	0	0
5/3/2018	2018	9:59	STITTSVILLE MAIN ST/HUNTLEY RD @ FLEWELLYN RD (0004602)	01 - Clear	01 - Daylight	02 - Stop sign	0	03 - P.D. only	02 - Angle	02 - Wet	0	0	0	0
8/8/2018	2018	6:56	STITTSVILLE MAIN ST/HUNTLEY RD @ FLEWELLYN RD (0004602)	01 - Clear	01 - Daylight	02 - Stop sign	0	02 - Non-fatal injury	02 - Angle	01 - Dry	0	0	0	0
10/29/2018	2018	18:01	STITTSVILLE MAIN ST/HUNTLEY RD @ FLEWELLYN RD (0004602)	02 - Rain	07 - Dark	02 - Stop sign	0	03 - P.D. only	05 - Turning movement	02 - Wet	0	0	0	0
1/20/2020	2020	10:22	STITTSVILLE MAIN ST/HUNTLEY RD @ FLEWELLYN RD (0004602)	01 - Clear	01 - Daylight	02 - Stop sign	0	02 - Non-fatal injury	02 - Angle	02 - Wet	0	0	0	0
3/9/2022	2022	12:54	STITTSVILLE MAIN ST/HUNTLEY RD @ FLEWELLYN RD (0004602)	01 - Clear	01 - Daylight	02 - Stop sign	0	03 - P.D. only	02 - Angle	01 - Dry	0	0	0	0

Transportation Services - Traffic Services

Collision Details Report - Public Version

From: January 1, 2017 To: December 31, 2021

Location: FLEWELLYN RD @ SHEA RD

Traffic Control: Stop sign Total Collisions: 20

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	er Vehicle type	First Event	No. Ped
2017-Mar-30, Thu,17:03	Clear	Angle	Non-fatal injury	Dry	South	Turning left	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Pick-up truck	Other motor vehicle	

April 23, 2024 Page 4 of 6

Transportation Services - Traffic Services

Collision Details Report - Public Version

From: January 1, 2017 **To:** December 31, 2021

Location: FLEWELLYN RD @ SHEA RD

Traffic Control: Stop sign Total Collisions: 20

Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	er Vehicle type	First Event	No. Ped
2017-Aug-18, Fri,18:57	Clear	SMV other	P.D. only	Dry	West	Turning left	Automobile, station wagon	Steel guide rail	0
2017-Oct-24, Tue,18:26	Clear	SMV other	P.D. only	Dry	South	Turning right	Automobile, station wagon	Ran off road	0
2017-Nov-05, Sun,14:18	Rain	Angle	P.D. only	Wet	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Apr-22, Sun,11:30	Clear	Angle	P.D. only	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-May-15, Tue,13:45	Clear	Rear end	P.D. only	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Pick-up truck	Other motor vehicle	
2018-Jul-30, Mon,17:09	Clear	Angle	Non-fatal injury	Dry	South	Turning right	Pick-up truck	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Aug-31, Fri,17:29	Clear	Angle	P.D. only	Dry	North	Going ahead	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2018-Nov-16, Fri,09:35	Snow	Rear end	P.D. only	Loose snow	East	Going ahead	Automobile, station wagon	Other motor vehicle	0
					East	Turning left	Automobile, station wagon	Other motor vehicle	
2018-Nov-28, Wed,18:43	Clear	Angle	P.D. only	Dry	South	Turning left	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Jan-31, Thu,16:50	Clear	Angle	Non-fatal injury	Dry	South	Turning left	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Passenger van	Other motor vehicle	
2019-Mar-29, Fri,17:26	Clear	Angle	P.D. only	Dry	South	Turning left	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-May-04, Sat,15:59	Clear	Angle	P.D. only	Dry	South	Turning left	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2019-Jun-03, Mon,13:50	Rain	Rear end	P.D. only	Wet	South	Slowing or stoppin	g Automobile, station wagon	Other motor vehicle	0
					South	Stopped	Passenger van	Other motor vehicle	

April 23, 2024 Page 5 of 6

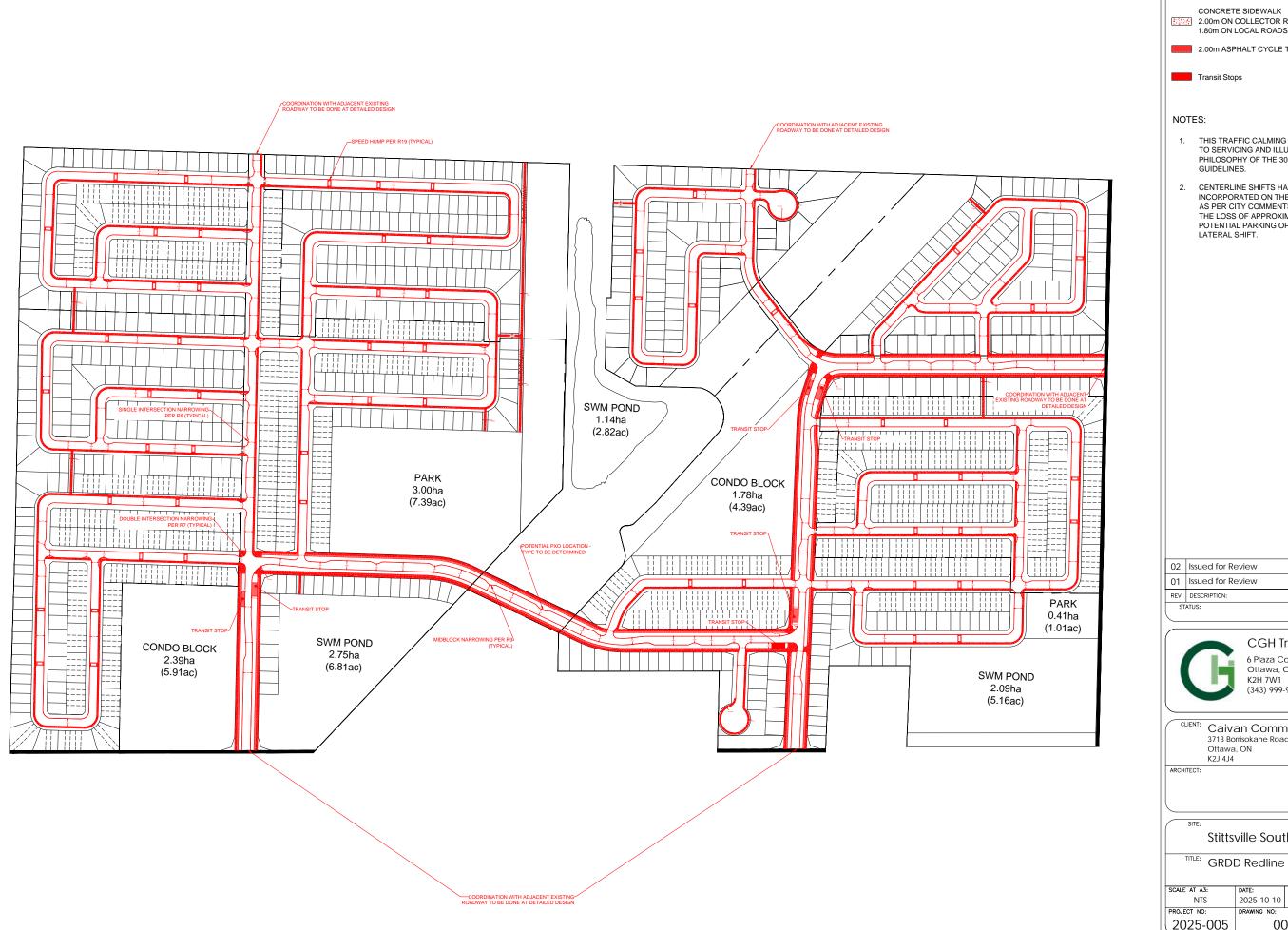
Transportation Services - Traffic Services

Collision Details Report - Public Version

From: January 1, 2017 To: December 31, 2021

Location: FLEWELLYN RD @ SHEA RD

Traffic Control: Stop sign Total Collisions: 20


Date/Day/Time	Environment	Impact Type	Classification	Surface Cond'n	Veh. Dir	Vehicle Manoeuve	er Vehicle type	First Event	No. Ped
2019-Nov-07, Thu,07:51	Snow	Angle	P.D. only	Ice	South	Turning left	Automobile, station wagon	Other motor vehicle	0
					East	Going ahead	Automobile, station wagon	Other motor vehicle	
2020-Feb-13, Thu,07:08	Snow	Angle	P.D. only	Wet	South	Slowing or stoppin	g Pick-up truck	Other motor vehicle	0
					West	Going ahead	Pick-up truck	Other motor vehicle	
2020-Nov-01, Sun,12:17	Rain	SMV other	P.D. only	Wet	South	Turning right	Pick-up truck	Skidding/sliding	0
2021-Jun-16, Wed,15:15	Clear	Angle	P.D. only	Dry	South	Turning left	Truck - dump	Other motor vehicle	0
					East	Going ahead	Automobile, station wagon	Other motor vehicle	
2021-Sep-21, Tue,16:17	Clear	Angle	P.D. only	Dry	South	Turning left	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	
2021-Oct-23, Sat,14:48	Clear	Angle	Non-fatal injury	Dry	South	Going ahead	Automobile, station wagon	Other motor vehicle	0
					West	Going ahead	Automobile, station wagon	Other motor vehicle	

April 23, 2024 Page 6 of 6

Appendix H

Conceptual Traffic Calming Plan

Notes:

LEGEND:

2.00m ON COLLECTOR ROADS 1.80m ON LOCAL ROADS

2.00m ASPHALT CYCLE TRACK

- THIS TRAFFIC CALMING CONCEPT IS SUBJECT TO SERVICING AND ILLUSTRATES THE PHILOSOPHY OF THE 30KM/H TRAFFIC CALMING GUIDELINES.
- 2. CENTERLINE SHIFTS HAVE BEEN INCORPORATED ON THE COLLECTOR ROADS AS PER CITY COMMENTS, THIS WILL RESULT IN THE LOSS OF APPROXIMATELY 45m OF POTENTIAL PARKING OPPORTUNITY PER LATERAL SHIFT.

)2	Issued for Review	EA	2025-10-10				
01	Issued for Review	BB	2025-03-03				
REV:	DESCRIPTION:	BY:	DATE:				
ST.	STATUS:						

CGH Transportation 6 Plaza Court

Ottawa, ON K2H 7W1 (343) 999-9117

Caivan Communities 3713 Borrisokane Road Ottawa, ON K2J 4J4

Stittsville South Subdivision

ı					
ı	SCALE AT A3:	DATE:	DRAWN:	CHECKED:	
l	NTS	2025-10-10	EA	AL	
l	PROJECT NO:	DRAWING NO:		REVISION:	
	2025-005	00)1	02	

Appendix I

MMLOS Analysis

Multi-Modal Level of Service - Segments Form

Consultant	CGH Transportation Inc.	Project	5993, 6115, 6141, 6159 Flewellyn & 6070 Fernbank
Scenario	Existing/Future	Date	2025-10-28
Comments			

SEGMENTS			Shea Road Ex	Shea Road Interim	Shea Road Ultimate	Flewellyn Road Ex	Flewellyn Road Fu	New Local Road Fu	New Collector Road Fu	Section 10
	Sidewalk Width Boulevard Width		no sidewalk n/a	≥ 2 m 0.5 - 2 m	≥ 2 m 0.5 - 2 m	no sidewalk n/a		≥ 2 m < 0.5	≥ 2 m 0.5 - 2 m	
	Avg Daily Curb Lane Traffic Volume		> 3000	> 3000	> 3000	≤ 3000		≤ 3000	≤ 3000	
Pedestrian	Operating Speed On-Street Parking		> 60 km/h no	> 60 km/h no	> 60 km/h no	> 60 km/h no		≤ 30 km/h yes	> 30 to 50 km/h yes	
est	Exposure to Traffic PLoS	F	F	E	Е	F	-	Α	Α	-
ed	Effective Sidewalk Width									
ш.	Pedestrian Volume Crowding PLoS		_	-	-	_	_	_	_	_
	Level of Service		-	-	-	-	-	-	-	-
	Type of Cycling Facility		Mixed Traffic		Physically Separated	Curbside Bike Lane		Mixed Traffic	Physically Separated	
	Number of Travel Lanes		2-3 lanes total			≤ 1 each direction		2-3 lanes total		
	Operating Speed		≥ 60 km/h			> 70 km/h		≤ 40 km/h		
	# of Lanes & Operating Speed LoS		F	-	-	E	-	В	-	-
Bicycle	Bike Lane (+ Parking Lane) Width									
<u>S</u>	Bike Lane Width LoS	F	-	-	-	-	-	-	-	-
m	Bike Lane Blockages Blockage LoS			-	-	_	_	-	_	
	Median Refuge Width (no median = < 1.8 m)			-	-	-	_	-	-	<u>-</u>
	No. of Lanes at Unsignalized Crossing									
	Sidestreet Operating Speed									
	Unsignalized Crossing - Lowest LoS		-	-	A	-	-	-	A	-
	Level of Service		F	-	Α	-	-	-	Α	-
nsit	Facility Type			Mixed Traffic	Mixed Traffic		Mixed Traffic		Mixed Traffic	
ans	Friction or Ratio Transit:Posted Speed	D		Vt/Vp ≥ 0.8	Vt/Vp ≥ 0.8		Vt/Vp ≥ 0.8		Vt/Vp ≥ 0.8	
Tra	Level of Service		-	D	D	-	D	-	D	-
*	Truck Lane Width									
Truck	Travel Lanes per Direction	-								
F	Level of Service		-	-	-	-	-	-	-	-
Auto	Level of Service				No	t Applicable				

Appendix J

TDM Checklist

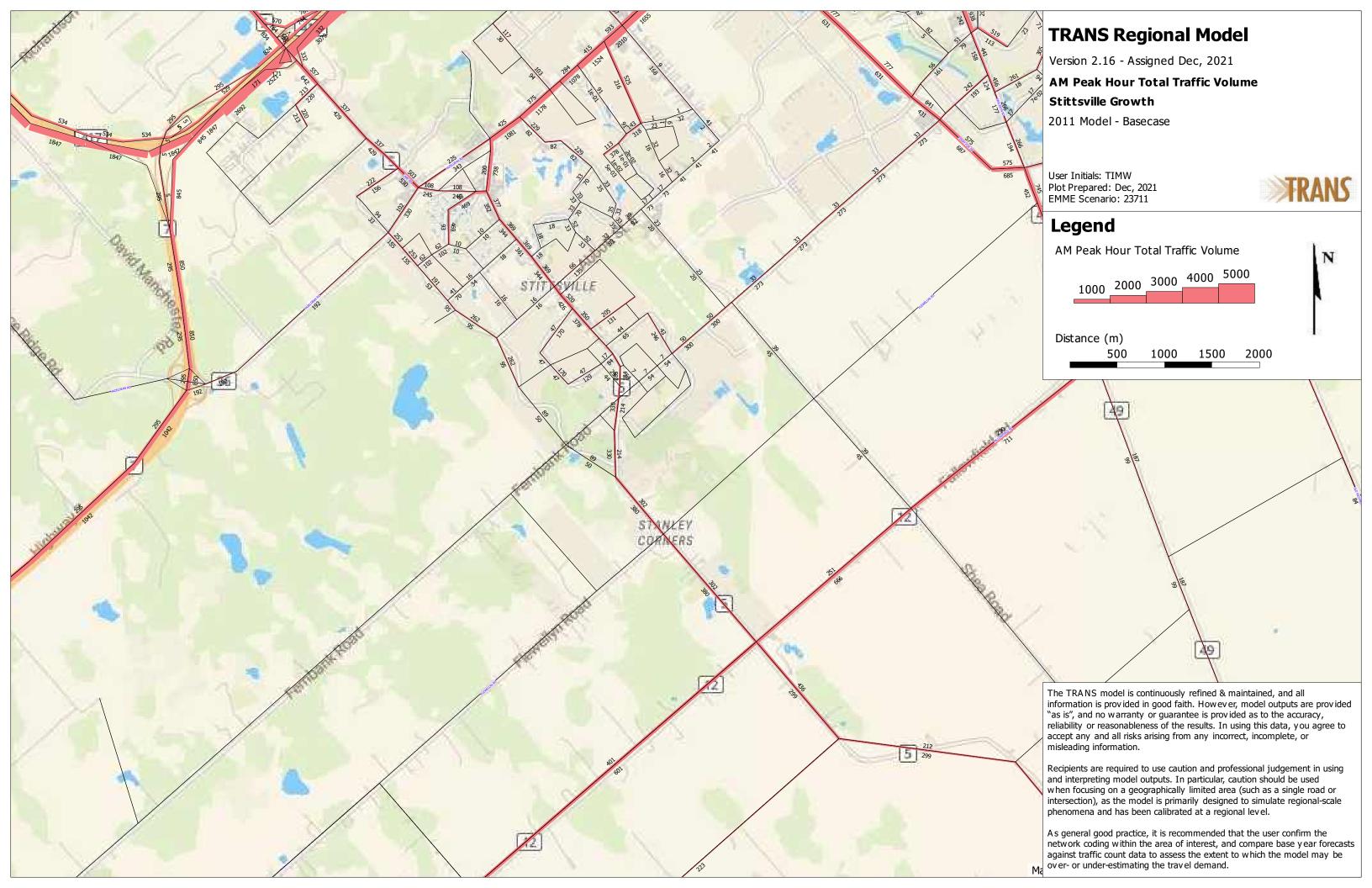
TDM Measures Checklist:

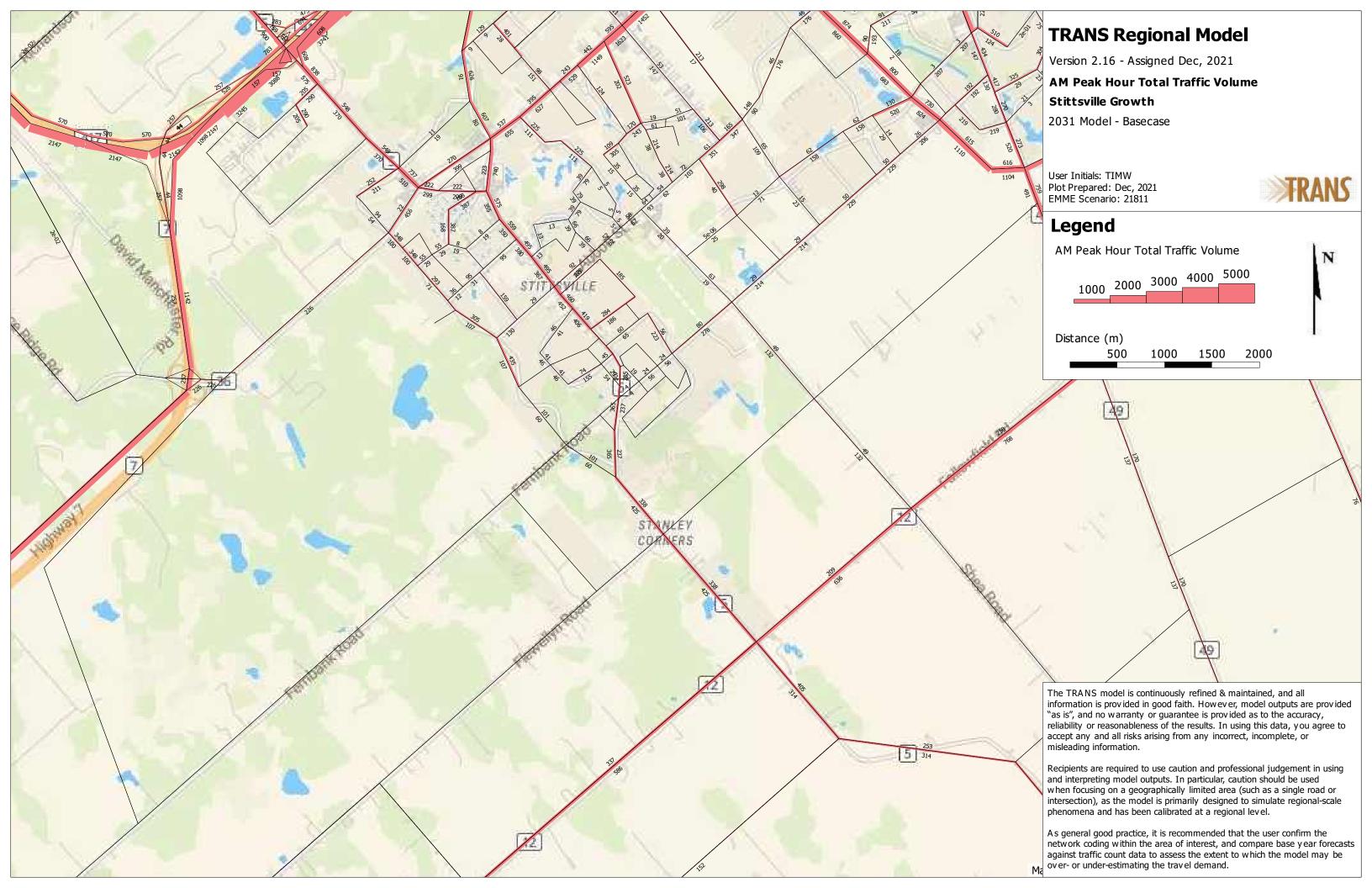
Residential Developments (multi-family, condominium or subdivision)

	Legend
BASIC	The measure is generally feasible and effective, and in most cases would benefit the development and its users
BETTER	The measure could maximize support for users of sustainable modes, and optimize development performance
*	The measure is one of the most dependably effective tools to encourage the use of sustainable modes

	TDM	measures: Residential developments	Check if proposed & add descriptions
	1.	TDM PROGRAM MANAGEMENT	
	1.1	Program coordinator	
BASIC *	1.1.1	Designate an internal coordinator, or contract with an external coordinator	
	1.2	Travel surveys	
BETTER	1.2.1	Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress	
	2.	WALKING AND CYCLING	
	2.1	Information on walking/cycling routes & des	tinations
BASIC	2.1.1	Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium)	
	2.2	Bicycle skills training	
BETTER	2.2.1	Offer on-site cycling courses for residents, or subsidize off-site courses	

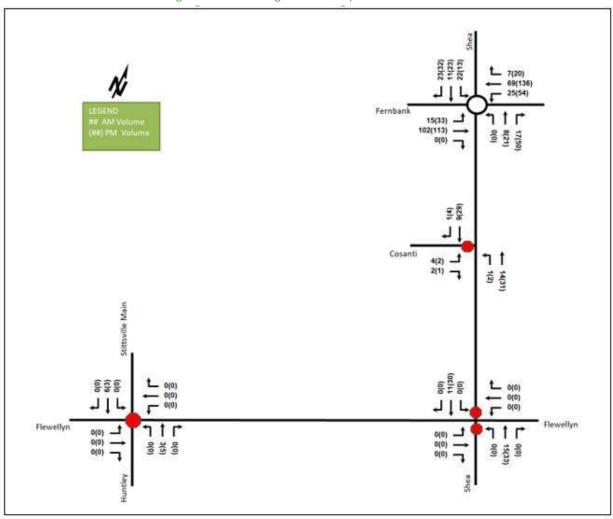
	TDM	measures: Residential developments	Check if proposed & add descriptions
	3.	TRANSIT	
	3.1	Transit information	
BASIC	3.1.1	Display relevant transit schedules and route maps at entrances (multi-family, condominium)	
BETTER	3.1.2	Provide real-time arrival information display at entrances (multi-family, condominium)	
	3.2	Transit fare incentives	
BASIC #	3.2.1	Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit	
BETTER	3.2.2	Offer at least one year of free monthly transit passes on residence purchase/move-in	
	3.3	Enhanced public transit service	
BETTER \$	3.3.1	Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels (subdivision)	
	3.4	Private transit service	
BETTER	3.4.1	Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)	
	4.	CARSHARING & BIKESHARING	
	4.1	Bikeshare stations & memberships	
BETTER	4.1.1	Contract with provider to install on-site bikeshare station (multi-family)	
BETTER	4.1.2	Provide residents with bikeshare memberships, either free or subsidized (multi-family)	
	4.2	Carshare vehicles & memberships	
BETTER	4.2.1	Contract with provider to install on-site carshare vehicles and promote their use by residents	
BETTER	4.2.2	Provide residents with carshare memberships, either free or subsidized	
	5.	PARKING	
	5.1	Priced parking	
BASIC	5.1.1	Unbundle parking cost from purchase price (condominium)	
BASIC	5.1.2	Unbundle parking cost from monthly rent (multi-family)	


12


TD	M measures: Residential developments	Check if proposed & add descriptions
6.	TDM MARKETING & COMMUNICATIONS	
6.1	Multimodal travel information	
BASIC ★ 6.1.	Provide a multimodal travel option information package to new residents	
6.2	Personalized trip planning	
BETTER ★ 6.2.	1 Offer personalized trip planning to new residents	

Appendix K

TRANS Model

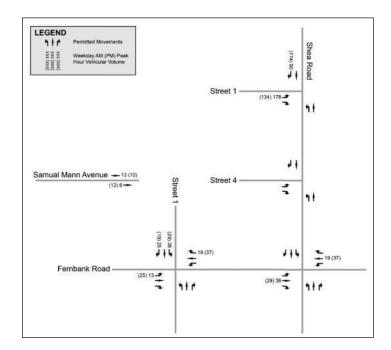


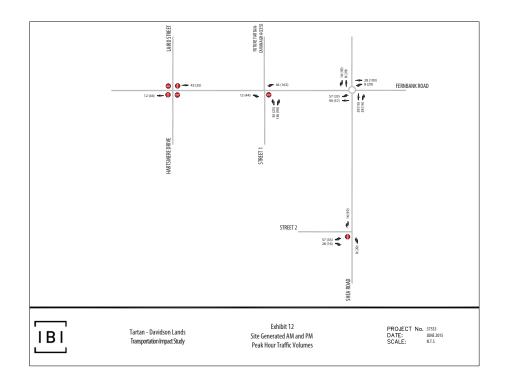
Appendix L

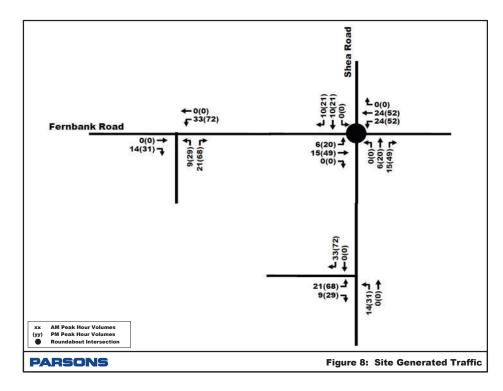
Background Development

Figure K1: Total Background Development Volumes

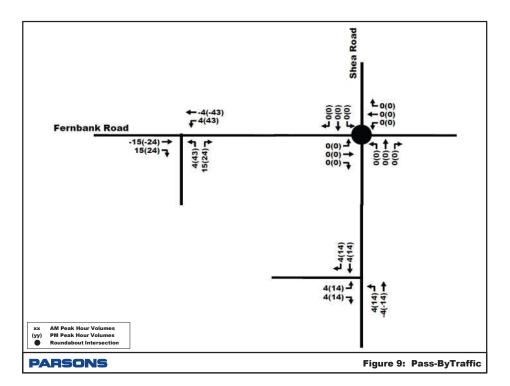
5957 & 5969 Fernbank Road

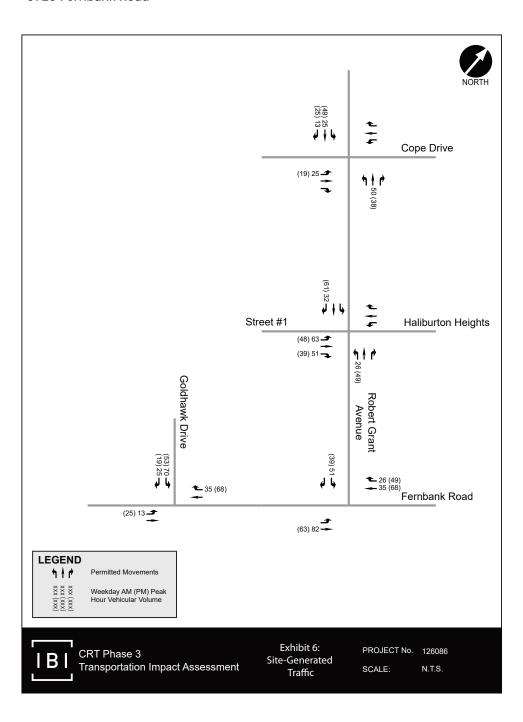

Figure 3: Total 'New' Auto Trips

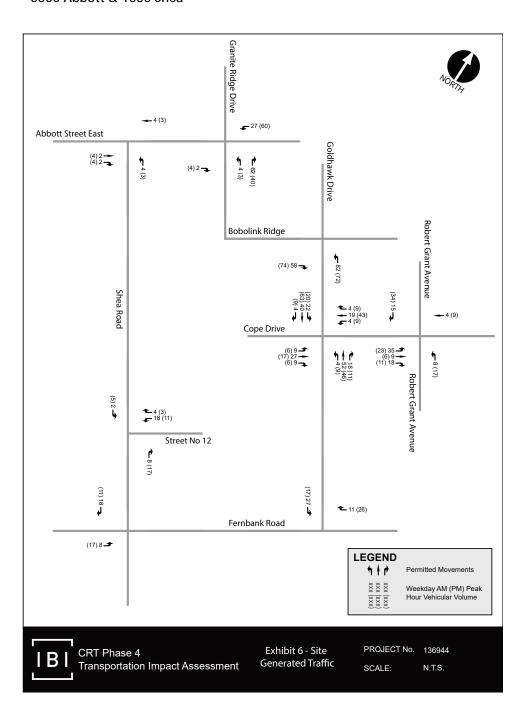



Page 3 of 7

6041 Fernbank Road


IBI GROUP




5960 Fernbank Road

5725 Fernbank Road

5500 Abbott & 1555 Shea

Appendix M

Synchro and Sidra Intersection Worksheets – 2030 Future Background Conditions

MOVEMENT SUMMARY

♥ Site: 101 [Fernbank at Shea FB2030 AM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

New Site Site Category: (None) Roundabout

Vobi	olo M	ovement	Dorfo	W100 @	200	_	_		_						
Mov ID		Mov Class	Den Fl	nand lows HV]	Ar	rival ows HV]	Deg. Satn v/c	Aver. Delay	Level of Service	95% B Que [Veh. veh	ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Shea	а													
1	L2	All MCs	18	6.0	18	6.0	0.579	18.5	LOS C	3.3	24.8	0.81	0.90	1.22	42.5
2	T1	All MCs	195	5.0	195	5.0	0.579	18.3	LOS C	3.3	24.8	0.81	0.90	1.22	43.2
3	R2	All MCs	92	13.0	92	13.0	0.579	19.9	LOS C	3.3	24.8	0.81	0.90	1.22	42.8
Appro	oach		305	7.5	305	7.5	0.579	18.8	LOS C	3.3	24.8	0.81	0.90	1.22	43.0
East:	Fernb	ank													
4	L2	All MCs	87	5.0	87	5.0	0.551	13.1	LOS B	4.2	30.5	0.75	0.75	1.10	45.3
5	T1	All MCs	265	4.0	265	4.0	0.551	13.0	LOS B	4.2	30.5	0.75	0.75	1.10	46.0
6	R2	All MCs	75	2.0	75	2.0	0.551	12.7	LOS B	4.2	30.5	0.75	0.75	1.10	45.8
Appro	oach		427	3.9	427	3.9	0.551	13.0	LOS B	4.2	30.5	0.75	0.75	1.10	45.8
North	: Shea	ì													
7	L2	All MCs	131	4.0	131	4.0	0.578	12.1	LOS B	5.3	38.8	0.73	0.66	1.03	45.5
8	T1	All MCs	166	7.0	166	7.0	0.578	12.4	LOS B	5.3	38.8	0.73	0.66	1.03	46.2
9	R2	All MCs	222	5.0	222	5.0	0.578	12.2	LOS B	5.3	38.8	0.73	0.66	1.03	45.9
Appro	oach		519	5.4	519	5.4	0.578	12.2	LOS B	5.3	38.8	0.73	0.66	1.03	45.9
West	: Ferni	oank													
10	L2	All MCs	305	4.0	305	4.0	0.824	24.7	LOS C	17.2	124.1	1.00	1.23	2.17	39.3
11	T1	All MCs	401	3.0	401	3.0	0.824	24.6	LOS C	17.2	124.1	1.00	1.23	2.17	39.9
12	R2	All MCs	33	3.0	33	3.0	0.824	24.6	LOS C	17.2	124.1	1.00	1.23	2.17	39.7
Appro	oach		739	3.4	739	3.4	0.824	24.7	LOS C	17.2	124.1	1.00	1.23	2.17	39.6
All Ve	hicles		1990	4.6	1990	4.6	0.824	18.0	LOS C	17.2	124.1	0.85	0.93	1.50	42.9

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CGH TRANSPORTATION | Licence: NETWORK / FLOATING | Processed: Tuesday, December 17, 2024 11:14:16 AM
Project: C:\Users\MichelleChen\CGH TRANSPORTATION\CGH Active Projects - Documents\2021\2021-128 Caivan Flewellyn\DATA\W-4
Report\Sidra - W-4 Report\2021-128 Shea Road at Fembank Road - 2024-12-13.sip9

HCM 2010 AWSC 4: Huntley/Stittsville Main & Flewellyn 2030 Future Background AM Peak Hour

Intersection												
Intersection Delay, s/veh	13.2											
Intersection LOS	В											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	LDIT	******	4	115.1	1100	4	11511	052	4	0511
Traffic Vol, veh/h	38	155	15	7	125	29	17	232	12	39	259	53
Future Vol. veh/h	38	155	15	7	125	29	17	232	12	39	259	53
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	4	2	2	2	3	18	10	2	3	5	2
Mymt Flow	38	155	15	7	125	29	17	232	12	39	259	53
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1		_	1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	12.2			11.3			13.3			14.7		
HCM LOS	В			В			В			В		
HCM LOS	В			В			В			В		
HCM LOS Lane		NBLn1	EBLn1	B WBLn1	SBLn1		В			В		
		NBLn1 7%	EBLn1 18%		SBLn1 11%		В			В		
Lane				WBLn1			В			В		
Lane Vol Left, %		7%	18%	WBLn1	11%		В			В		
Lane Vol Left, % Vol Thru, %		7% 89%	18% 75%	WBLn1 4% 78%	11% 74%		В			В		
Lane Vol Left, % Vol Thru, % Vol Right, %		7% 89% 5%	18% 75% 7%	WBLn1 4% 78% 18%	11% 74% 15%		В			В		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control		7% 89% 5% Stop 261 17	18% 75% 7% Stop 208 38	WBLn1 4% 78% 18% Stop 161 7	11% 74% 15% Stop 351 39		В			В		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		7% 89% 5% Stop 261 17 232	18% 75% 7% Stop 208 38 155	WBLn1 4% 78% 18% Stop 161	11% 74% 15% Stop 351 39 259		В			В		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		7% 89% 5% Stop 261 17	18% 75% 7% Stop 208 38	WBLn1 4% 78% 18% Stop 161 7	11% 74% 15% Stop 351 39		В			В		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		7% 89% 5% Stop 261 17 232	18% 75% 7% Stop 208 38 155	WBLn1 4% 78% 18% Stop 161 7 125	11% 74% 15% Stop 351 39 259		В			В		
Lane Vol Left, % Vol Tryn, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol TrT Vol RT Vol		7% 89% 5% Stop 261 17 232 12	18% 75% 7% Stop 208 38 155	WBLn1 4% 78% 18% Stop 161 7 125 29	11% 74% 15% Stop 351 39 259 53		В			В		
Lane Vol Left, % Vol Trinu, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		7% 89% 5% Stop 261 17 232 12 261	18% 75% 7% Stop 208 38 155 15	WBLn1 4% 78% 18% Stop 161 7 125 29 161 1 0.268	11% 74% 15% Stop 351 39 259 53 351 1 0.533		В			В		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RTHOUGH LANGE STORM STORM LANGE		7% 89% 5% Stop 261 17 232 12 261	18% 75% 7% Stop 208 38 155 15 208	WBLn1 4% 78% 18% Stop 161 7 125 29 161 1	11% 74% 15% Stop 351 39 259 53 351		В			В		
Lane Vol Left, % Vol Tript, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		7% 89% 5% Stop 261 17 232 12 261 1 0.427	18% 75% 7% Stop 208 38 155 15 208 1	WBLn1 4% 78% 18% Stop 161 7 125 29 161 1 0.268 5.982 Yes	11% 74% 15% Stop 351 39 259 53 351 1 0.533 5.462 Yes		В			В		
Lane Vol Left, % Vol Triyn, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		7% 89% 5% Stop 261 17 232 12 261 1 0.427 5.894	18% 75% 7% Stop 208 38 155 15 208 1 0.345 5.968	WBLn1 4% 78% 18% Stop 161 7 125 29 161 1 0.268 5.982	11% 74% 15% Stop 351 39 259 53 351 1 0.533 5.462		В			В		
Lane Vol Left, % Vol Tript, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		7% 89% 5% Stop 261 17 232 12 261 1 0.427 5.894 Yes 608 3.968	18% 75% 76% Stop 208 38 155 15 208 1 0.345 5.968 Yes 599 4.046	WBLn1 4% 78% 18% Stop 161 7 125 29 161 1 0.268 5.982 Yes 596 4.065	11% 74% 15% Stop 351 39 259 53 351 1 0.533 5.462 Yes 656 3.528		В			В		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Convergence, Y/N Cap		7% 89% 5% Stop 261 17 232 12 261 1 0.427 5.894 Yes 608	18% 75% 76 Stop 208 38 155 15 208 1 0.345 5.968 Yes 599	WBLn1 4% 78% 18% Stop 161 7 125 29 161 1 0.268 5.982 Yes 596	11% 74% 15% Stop 351 39 259 53 351 1 0.533 5.462 Yes 656		В			В		
Lane Vol Left, % Vol Trynu, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		7% 89% 5% Stop 261 17 232 12 261 1 0.427 5.894 Yes 608 3.968	18% 75% 76% Stop 208 38 155 15 208 1 0.345 5.968 Yes 599 4.046	WBLn1 4% 78% 18% Stop 161 7 125 29 161 1 0.268 5.982 Yes 596 4.065	11% 74% 15% Stop 351 39 259 53 351 1 0.533 5.462 Yes 656 3.528		В			В		
Lane Vol Left, % Vol Tryn, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		7% 89% 5% Stop 261 17 232 12 261 1 0.427 5.894 Yes 608 3.968 0.429	18% 75% 7% Stop 208 38 155 15 208 1 0.345 5.968 Yes 599 4.046 0.347	WBLn1 4% 78% 18% Stop 161 7 125 29 161 1 0.268 5.982 Yes 596 4.065 0.27	11% 74% 15% Stop 351 39 259 53 351 1 0.533 5.462 Yes 656 3.528 0.535		В			В		

Scenario 1 5993 & 6115 Flewellyn Road & 6070 Fernbank Road 12:00 am 04/10/2024 2030 Future Background

Synchro 11 Report Page 1

HCM 95th %tile Q(veh)

Intersection Int Delay, s/veh 10.7 Sept. EBR WBL WBT WBR NBL NBT NBR SBL SBR SBR Lane Configurations
Movement EBL EBR WBL WBT WBR NBL NBT NBR SBL SBR SBR Lane Configurations
Lane Configurations
Traffic Vol, veh/h
Future Vol, veh/h 60 125 26 2 92 17 8 184 13 25 193 51 Conflicting Peds, #/hr 0 <
Conflicting Peds, #/hr 0
Sign Control Free RTPee Te RTPEE Te RTPEE Te RTPEE Te RTPEE
RT Channelized - None - 0 - 0 0 - 0 0 - 0 0 - 0 0 0 - 0 0 0
Storage Length
Veh in Median Storage, # 0 - 0 0 100 <t< td=""></t<>
Grade, % - 0 - - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 0 - 0 0 - 0 0 100
Major/Minor Major! Minor! Mi
Heavy Vehicles, % 7 2 4 2 2 12 13 5 2 2 2 3 8 M/vmt Flow 60 125 26 2 92 17 8 184 13 25 193 51
Mymt Flow 60 125 26 2 92 17 8 184 13 25 193 51 Major/Minor Major1 Major2 Minor1 Minor2 Min
Major/Minor Major1 Major2 Minor1 Minor2 Conflicting Flow All Stage 1 109 0 0 151 0 0 485 371 138 462 376 101 Stage 1 - - - - 258 258 - 105 - Stage 2 - - - - - 227 113 - 357 271 - Critical Hdwy 4.17 - 4.12 - 7.23 6.55 6.22 7.12 6.53 6.28 Critical Hdwy Stg 1 - - - - 6.23 5.55 - 6.12 5.53 -
Conflicting Flow All 109 0 0 151 0 0 485 371 138 462 376 101 Stage 1 - - - - - 258 258 - 105 105 - Stage 2 - - - - - 227 113 - 357 271 - Critical Hdwy 4.17 - 4.12 - - 7.23 6.55 6.22 7.12 6.53 6.28 Critical Hdwy Stg 1 - - - - 6.23 5.55 - 6.12 5.53 -
Conflicting Flow All 109 0 0 151 0 0 485 371 138 462 376 101 Stage 1 - - - - - 258 258 - 105 105 - Stage 2 - - - - - 227 113 - 357 271 Critical Hdwy 4.17 - - 4.12 - - 7.23 6.55 6.22 7.12 6.53 6.28 Critical Hdwy Stg 1 - - - - 6.23 5.55 - 6.12 5.53 -
Conflicting Flow All 109 0 0 151 0 0 485 371 138 462 376 101 Stage 1 - - - - - 258 258 - 105 105 - Stage 2 - - - - - 227 113 - 357 271 - Critical Hdwy 4.17 - 4.12 - - 7.23 6.55 6.22 7.12 6.53 6.28 Critical Hdwy Stg 1 - - - - 6.23 5.55 - 6.12 5.53 -
Stage 1 - - - - 258 258 - 105 105 - Stage 2 - - - - 227 113 - 357 271 - Critical Hdwy 4.17 - 4.12 - 7.23 6.58 6.22 7.12 6.33 6.28 Critical Hdwy Stg 1 - - - 6.23 5.55 - 6.12 5.53 -
Stage 2 - - - - 227 113 - 357 271 - Critical Hdwy 4.17 - 4.12 - - 7.23 6.55 6.22 7.12 6.53 6.28 Critical Hdwy Stg 1 - - - - 6.23 5.55 - 6.12 5.53 -
Critical Hdwy 4.17 - - 4.12 - - 7.23 6.55 6.22 7.12 6.53 6.28 Critical Hdwy Stg 1 - - - - - 6.23 5.55 - 6.12 5.53 -
Critical Hdwy Stg 1 6.23 5.55 - 6.12 5.53 -
Follow-up Hdwy 2.263 2.218 3.617 4.045 3.318 3.518 4.027 3.372
Pot Cap-1 Maneuver 1451 1430 475 554 910 510 554 938
Stage 1 723 689 - 901 806 -
Stage 2 752 796 - 661 683 -
Platoon blocked, %
Mov Cap-1 Maneuver 1451 1430 311 529 910 355 529 938
Mov Cap-2 Maneuver 311 529 - 355 529 -
Stage 1 690 658 - 860 805 -
Stage 2 540 795 - 448 652 -
Approach EB WB NB SB
HCM Control Delay, s 2.2 0.1 16 17.7
HCM LOS C C
TIONI LOO
Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1
Capacity (veh/h) 529 1451 1430 549
HCM Lane V/C Ratio 0.388 0.041 0.001 0.49
HCM Control Delay (s) 16 7.6 0 - 7.5 0 - 17.7 HCM Lane LOS C A A - A A - C

Intersection						
Int Delay, s/veh	1.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W	LDIT	INDL	4	1	ODIT
Traffic Vol. veh/h	43	21	6	255	248	12
Future Vol. veh/h	43	21	6	255	248	12
Conflicting Peds, #/hr	0	0	0	200	240	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -		riee -	None	riee -	None
	0				- 1	
Storage Length		-	-	-		-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	5	3	2
Mvmt Flow	43	21	6	255	248	12
Major/Minor	Minor2		Major1	N	/lajor2	
Conflicting Flow All	521	254	260	0	-	0
Stage 1	254	-	-	-		-
Stage 2	267					
Critical Hdwy	6.42	6.22	4.12			
Critical Hdwy Stg 1	5.42	0.22	4.12			-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318		-	-	-
Pot Cap-1 Maneuver	516	785	1304	-	-	-
Stage 1	788	-	-	-	-	-
Stage 2	778	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	513	785	1304	-	-	-
Mov Cap-2 Maneuver	513	-	-	-	-	-
Stage 1	784	-	-	-	-	-
Stage 2	778					
Olugo 2	110					
Approach	EB		NB		SB	
HCM Control Delay, s	12		0.2		0	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBL	NRT	EBLn1	SBT	SBR
	iii.	1304	-	579	-	- ODIX
Capacity (veh/h) HCM Lane V/C Ratio						
		0.005		0.111	-	-
HCM Control Delay (s)	7.8	0	12	-	-
HCM Lane LOS		Α	Α	В	-	-
HCM 95th %tile Q(veh	1)	0	-	0.4	-	-

1.8 0.1 - - 0 - - 2.7

MOVEMENT SUMMARY

♥ Site: 101 [Fernbank at Shea FB2030 PM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

New Site Site Category: (None) Roundabout

		ovement													
Mov ID	Turn	Mov Class				rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of leue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver Speed km/h
South	: Shea	ì													
1	L2	All MCs	30	3.0	30	3.0	0.535	14.3	LOS B	3.4	24.5	0.77	0.81	1.11	44.8
2	T1	All MCs	217	3.0	217	3.0	0.535	14.3	LOS B	3.4	24.5	0.77	0.81	1.11	45.5
3	R2	All MCs	99	6.0	99	6.0	0.535	14.8	LOS B	3.4	24.5	0.77	0.81	1.11	45.1
Appro	ach		346	3.9	346	3.9	0.535	14.5	LOS B	3.4	24.5	0.77	0.81	1.11	45.3
East:	Fernb	ank													
4	L2	All MCs	130	8.0	130	8.0	0.883	32.4	LOS D	24.3	175.5	1.00	1.50	2.66	36.8
5	T1	All MCs	551	3.0	551	3.0	0.883	31.9	LOS D	24.3	175.5	1.00	1.50	2.66	37.4
6	R2	All MCs	115	2.0	115	2.0	0.883	31.8	LOS D	24.3	175.5	1.00	1.50	2.66	37.2
Appro	ach		796	3.7	796	3.7	0.883	31.9	LOS D	24.3	175.5	1.00	1.50	2.66	37.3
North	: Shea														
7	L2	All MCs	60	2.0	60	2.0	0.725	23.1	LOS C	6.4	46.2	0.89	1.04	1.60	40.3
8	T1	All MCs	251	2.0	251	2.0	0.725	23.1	LOS C	6.4	46.2	0.89	1.04	1.60	40.9
9	R2	All MCs	144	9.0	144	9.0	0.725	24.3	LOS C	6.4	46.2	0.89	1.04	1.60	40.5
Appro	ach		455	4.2	455	4.2	0.725	23.5	LOS C	6.4	46.2	0.89	1.04	1.60	40.7
West:	Fernb	ank													
10	L2	All MCs	133	5.0	133	5.0	0.782	22.2	LOS C	12.6	90.5	0.94	1.11	1.91	40.8
11	T1	All MCs	495	3.0	495	3.0	0.782	22.0	LOS C	12.6	90.5	0.94	1.11	1.91	41.4
12	R2	All MCs	34	3.0	34	3.0	0.782	22.0	LOS C	12.6	90.5	0.94	1.11	1.91	41.2
Appro	ach		662	3.4	662	3.4	0.782	22.1	LOS C	12.6	90.5	0.94	1.11	1.91	41.3
All Ve	hicles		2259	3.7	2259	3.7	0.883	24.7	LOSC	24.3	175.5	0.93	1.19	1.99	40.2

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CGH TRANSPORTATION | Licence: NETWORK / FLOATING | Processed: Tuesday, December 17, 2024 11:14:17 AM
Project: C:\Users\MichelleChen\CGH TRANSPORTATION\CGH Active Projects - Documents\2021\2021-128 Caivan Flewellyn\DATA\W-4
Report\Sidra - W-4 Report\2021-128 Shea Road at Fembank Road - 2024-12-13.sip9

HCM 2010 AWSC 4: Huntley/Stittsville Main & Flewellyn

2030 Future Background PM Peak Hour

Intersection	44.4											
Intersection Delay, s/veh	14.1											
Intersection LOS	В											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LUL	4	LDIX	WDL	4	WDIX	INDL	4	NUIX	ODL	4	ODI
Traffic Vol., veh/h	44	110	14	6	181	71	27	234	14	33	272	47
Future Vol, veh/h	44	110	14	6	181	71	27	234	14	33	272	47
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	7.00	2	2	2	4	2	7	2	2	1.00
Mymt Flow	44	110	14	6	181	71	27	234	14	33	272	47
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	C
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	12.1			13.5			14			15.7		
HCM LOS	В			В			В			С		
	В			В			В			С		
HCM LOS		NBLn1	EBLn1		SBLn1		В			С		
		NBLn1 10%	EBLn1	B WBLn1 2%	SBLn1		В			С		
Lane Vol Left, %				WBLn1			В			С		
HCM LOS Lane Vol Left, % Vol Thru, %		10%	26%	WBLn1	9%		В			С		
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, %		10% 85%	26% 65%	WBLn1 2% 70%	9% 77%		В			С		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control		10% 85% 5%	26% 65% 8%	WBLn1 2% 70% 28%	9% 77% 13%		В			С		
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, %		10% 85% 5% Stop	26% 65% 8% Stop	WBLn1 2% 70% 28% Stop	9% 77% 13% Stop		В			С		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		10% 85% 5% Stop 275	26% 65% 8% Stop 168	WBLn1 2% 70% 28% Stop 258	9% 77% 13% Stop 352		В			С		
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		10% 85% 5% Stop 275 27	26% 65% 8% Stop 168 44	WBLn1 2% 70% 28% Stop 258 6	9% 77% 13% Stop 352 33		В			C		
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		10% 85% 5% Stop 275 27 234	26% 65% 8% Stop 168 44 110	WBLn1 2% 70% 28% Stop 258 6 181	9% 77% 13% Stop 352 33 272		В			C		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		10% 85% 5% Stop 275 27 234 14	26% 65% 8% Stop 168 44 110	WBLn1 2% 70% 28% Stop 258 6 181 71	9% 77% 13% Stop 352 33 272 47		В			C		
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		10% 85% 5% Stop 275 27 234 14 275	26% 65% 8% Stop 168 44 110 14	WBLn1 2% 70% 28% Stop 258 6 181 71 258	9% 77% 13% Stop 352 33 272 47 352		В			C		
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		10% 85% 5% Stop 275 27 234 14 275	26% 65% 8% Stop 168 44 110 14 168	WBLn1 2% 70% 28% Stop 258 6 181 71 258	9% 77% 13% Stop 352 33 272 47 352		В			C		
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		10% 85% 5% Stop 275 27 234 14 275 1 0.457	26% 65% 8% Stop 168 44 110 14 168 1	WBLn1 2% 70% 28% Stop 258 6 181 71 258 1 0.431	9% 77% 13% Stop 352 33 272 47 352 1 0.554		В			C		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		10% 85% 5% Stop 275 27 234 14 275 1 0.457 5.985	26% 65% 8% Stop 168 44 110 14 168 1 0.297 6.37	WBLn1 2% 70% 28% Stop 258 6 181 71 258 1 0.431 6.013	9% 77% 13% Stop 352 33 272 47 352 1 0.554 5.792		В			C		
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RTOI OI Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		10% 85% 5% Stop 275 27 234 14 275 1 0.457 5.985 Yes	26% 65% 8% Stop 168 44 110 14 168 1 0.297 6.37 Yes	WBLn1 2% 70% 28% Stop 258 6 181 71 258 1 0.431 6.013 Yes	9% 77% 13% Stop 352 33 272 47 352 1 0.554 5.792 Yes		В			C		
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		10% 85% 5% Stop 275 27 234 14 275 1 0.457 5.985 Yes 605	26% 65% 8% Stop 168 44 110 14 168 1 0.297 6.37 Yes 564	WBLn1 2% 70% 28% Stop 258 6 181 71 258 1 0.431 6.013 Yes 601	9% 77% 13% Stop 352 33 272 47 352 1 0.554 5.792 Yes 627		В			C		
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Cap Service Time		10% 85% 5% Stop 275 27 234 14 275 1 0.457 5.985 Yes 605 4.002	26% 65% 8% Stop 168 44 110 14 168 1 0.297 6.37 Yes 564 4.398	WBLn1 2% 70% 28% Stop 258 6 181 71 258 1 0.431 6.013 Yes 601 4.028	9% 77% 13% Stop 352 33 272 47 352 1 0.554 5.792 Yes 627 3.792		В			C		
HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		10% 85% 5% Stop 275 27 234 14 275 1 0.457 5.985 Yes 605 4.002 0.455	26% 65% 8% Stop 168 44 110 14 168 1 0.297 6.37 Yes 564 4.398 0.298	WBLn1 2% 70% 28% Stop 258 6 181 71 258 1 0.431 6.013 Yes 601 4.028 0.429	9% 77% 13% Stop 352 33 272 47 352 1 0.554 5.792 Yes 627 3.792 0.561		В			C		

Scenario 1 5993 & 6115 Flewellyn Road & 6070 Fernbank Road 12:00 am 04/10/2024 2030 Future Background

Synchro 11 Report Page 1

Intersection												
Int Delay, s/veh	14.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	EBL		EBK	WBL		WBK	NBL		NBK	SBL		SBK
Lane Configurations		4	44	0	4	00	40	4	47	4.4	4	74
Traffic Vol, veh/h	59	107	11	2	166	33	16	213	17	14	255	71
Future Vol, veh/h	59	107	11	2	166	33	16	213	17	14	255	71
Conflicting Peds, #/hr	0	0	0	0	0	_ 0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	5	2	18	2	2	2	6	2	6	2	2	3
Mvmt Flow	59	107	11	2	166	33	16	213	17	14	255	71
Major/Minor I	Major1			Major2			Minor1			Minor2		
	199	0	0	118	0	0	581	434	113	533	423	183
Conflicting Flow All	199	-	U	118	-	-	231	231		187	187	183
Stage 1			-	-					-			
Stage 2	- 4.45	-	-	- 4.40	-	-	350	203	- 0.00	346	236	- 0.00
Critical Hdwy	4.15	-	-	4.12	-	-	7.16	6.52	6.26	7.12	6.52	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-	6.16	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.16	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.245	-	-	2.218	-	-	3.554	4.018	3.354	3.518	4.018	
Pot Cap-1 Maneuver	1356	-	-	1470	-	-	419	515	929	458	522	857
Stage 1	-	-	-	-	-	-	763	713	-	815	745	-
Stage 2	-	-	-	-	-	-	658	733	-	670	710	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1356	-	-	1470	-	-	221	490	929	287	496	857
Mov Cap-2 Maneuver	-	-	-	-	-	-	221	490	-	287	496	-
Stage 1	-	-	-	-	-	-	727	679	-	777	744	-
Stage 2	-	-	-	-	-	-	396	732	-	430	677	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	2.6			0.1			20.9			23.4		
HCM Control Delay, s	2.0			U. I			20.9 C			23.4 C		
HOW LOS							C			C		
Minor Lane/Major Mvm	ıt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		468	1356	-	-	1470	-	-	527			
HCM Lane V/C Ratio		0.526	0.044	-	-	0.001	-	-	0.645			
HCM Control Delay (s)		20.9	7.8	0	-	7.5	0	-	23.4			
HCM Lane LOS		С	A	A	-	A	Α	-	С			
HCM 95th %tile Q(veh))	3	0.1	-	-	0	_	_	4.6			
0001 /0010 3(1011)		-	0.1			0			0			

Intersection						
Int Delay, s/veh	0.9					
		===	N.D.	LIBE	0.00	0.05
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	N/F			ની	₽	
Traffic Vol, veh/h	24	12	21	284	328	43
Future Vol, veh/h	24	12	21	284	328	43
Conflicting Peds, #/hr	. 0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storag	je, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	3	2	2
Mymt Flow	24	12	21	284	328	43
WWITE I IOW	24	12	21	204	320	TU
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	676	350	371	0	-	0
Stage 1	350	-	-	-	-	-
Stage 2	326	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-		-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318	2.218	-	-	-
Pot Cap-1 Maneuver	419	693	1188	-	-	-
Stage 1	713	-	-		-	
Stage 2	731		-		-	-
Platoon blocked, %	101			-		-
Mov Cap-1 Maneuver	r 410	693	1188			
Mov Cap-1 Maneuver		033	-			
Stage 1	698					
Stage 2	731					
Stage 2	731	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	13.2		0.6		0	
HCM LOS	В					
Minor Lane/Major Mv	mt	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		1188	-	475	-	-
HCM Lane V/C Ratio		0.018		0.076	-	-
HCM Control Delay (s	s)	8.1	0	13.2	-	-
HCM Lane LOS		Α	Α	В	-	-
HCM 95th %tile Q(ve	h)	0.1	-	0.2	-	-
,						

Appendix N

Synchro and Sidra Intersection Worksheets – 2035 Future Background Conditions

MOVEMENT SUMMARY

♥ Site: 101 [Fernbank at Shea FB2035 AM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

New Site Site Category: (None) Roundabout

Mov	Turn	Mov	Den			rival	Deg.	Aver.	Level of		ack Of	Prop.	Eff.	Aver.	Aver.
		Class		lows		lows	Satn	Delay	Service	Qu		Que	Stop	No. of	Speed
			veh/h		[Total veh/h	HV J %		sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	: Shea	ì													
1	L2	All MCs	18	6.0	18	6.0	0.621	20.4	LOS C	3.8	28.3	0.83	0.94	1.31	41.7
2	T1	All MCs	218	5.0	218	5.0	0.621	20.2	LOS C	3.8	28.3	0.83	0.94	1.31	42.3
3	R2	All MCs	92	13.0	92	13.0	0.621	21.8	LOS C	3.8	28.3	0.83	0.94	1.31	41.9
Appro	ach		328	7.3	328	7.3	0.621	20.7	LOS C	3.8	28.3	0.83	0.94	1.31	42.2
East:	Fernb	ank													
4	L2	All MCs	87	5.0	87	5.0	0.592	14.5	LOS B	4.9	35.2	0.79	0.81	1.22	44.5
5	T1	All MCs	285	4.0	285	4.0	0.592	14.4	LOS B	4.9	35.2	0.79	0.81	1.22	45.2
6	R2	All MCs	75	2.0	75	2.0	0.592	14.2	LOS B	4.9	35.2	0.79	0.81	1.22	45.0
Appro	ach		447	3.9	447	3.9	0.592	14.4	LOS B	4.9	35.2	0.79	0.81	1.22	45.0
North:	Shea														
7	L2	All MCs	131	4.0	131	4.0	0.646	14.4	LOS B	7.1	52.1	0.79	0.78	1.26	44.3
8	T1	All MCs	214	7.0	214	7.0	0.646	14.6	LOS B	7.1	52.1	0.79	0.78	1.26	45.0
9	R2	All MCs	222	5.0	222	5.0	0.646	14.5	LOS B	7.1	52.1	0.79	0.78	1.26	44.7
Appro	ach		567	5.5	567	5.5	0.646	14.5	LOS B	7.1	52.1	0.79	0.78	1.26	44.7
West:	Fernb	ank													
10	L2	All MCs	305	4.0	305	4.0	0.868	31.3	LOS D	19.9	143.2	1.00	1.44	2.56	36.8
11	T1	All MCs	401	3.0	401	3.0	0.868	31.2	LOS D	19.9	143.2	1.00	1.44	2.56	37.3
12	R2	All MCs	33	3.0	33	3.0	0.868	31.2	LOS D	19.9	143.2	1.00	1.44	2.56	37.1
Appro	ach		739	3.4	739	3.4	0.868	31.2	LOS D	19.9	143.2	1.00	1.44	2.56	37.1

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CGH TRANSPORTATION | Licence: NETWORK / FLOATING | Processed: Tuesday, December 17, 2024 11:14:17 AM
Project: C:\Users\MichelleChen\CGH TRANSPORTATION\CGH Active Projects - Documents\2021\2021-128 Caivan Flewellyn\DATA\W-4
Report\Sidra - W-4 Report\2021-128 Shea Road at Fembank Road - 2024-12-13.sip9

HCM 2010 AWSC 4: Huntley/Stittsville Main & Flewellyn

2035 Future Background AM Peak Hour

Intersection	40.0											
Intersection Delay, s/veh	13.7											
Intersection LOS	В											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	LDIT	******	4	*****	1100	4	11011	052	4	0511
Traffic Vol, veh/h	38	155	15	7	135	29	17	240	12	39	269	53
Future Vol. veh/h	38	155	15	7	135	29	17	240	12	39	269	53
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	4	2	2	2	3	18	10	2	3	5	2
Mymt Flow	38	155	15	7	135	29	17	240	12	39	269	53
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1		_	1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	12.4			11.6			13.8			15.4		
HCM LOS							В			^		
HUM LUS	В			В			В			С		
HCM LOS	R			В			R			C		
Lane		NBLn1	EBLn1	WBLn1	SBLn1		В			C		
		NBLn1 6%	EBLn1 18%		11%		В			C		
Lane			18% 75%	WBLn1 4% 79%	11% 75%		В					
Lane Vol Left, %		6%	18%	WBLn1	11%		В			C		
Lane Vol Left, % Vol Thru, %		6% 89%	18% 75%	WBLn1 4% 79% 17% Stop	11% 75% 15% Stop		В			<u> </u>		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		6% 89% 4% Stop 269	18% 75% 7% Stop 208	WBLn1 4% 79% 17%	11% 75% 15% Stop 361		В					
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		6% 89% 4% Stop 269	18% 75% 7% Stop 208 38	WBLn1 4% 79% 17% Stop 171 7	11% 75% 15% Stop 361 39		В					
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		6% 89% 4% Stop 269	18% 75% 7% Stop 208 38 155	WBLn1 4% 79% 17% Stop 171 7 135	11% 75% 15% Stop 361 39 269		В			<u> </u>		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		6% 89% 4% Stop 269 17 240	18% 75% 7% Stop 208 38 155	WBLn1 4% 79% 17% Stop 171 7 135 29	11% 75% 15% Stop 361 39 269 53		В			C		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		6% 89% 4% Stop 269 17 240	18% 75% 7% Stop 208 38 155	WBLn1 4% 79% 17% Stop 171 7 135	11% 75% 15% Stop 361 39 269 53 361		В			C		
Lane Vol Left, % Vol Tryn, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol TrT Vol RT Vol		6% 89% 4% Stop 269 17 240 12 269	18% 75% 7% Stop 208 38 155 15 208	WBLn1 4% 79% 17% Stop 171 7 135 29 171 1	11% 75% 15% Stop 361 39 269 53 361		В			C		
Lane Vol Left, % Vol Trinu, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		6% 89% 4% Stop 269 17 240 12 269	18% 75% 7% Stop 208 38 155 15	WBLn1 4% 79% 17% Stop 171 7 135 29 171	11% 75% 15% Stop 361 39 269 53 361 1 0.555		В			C		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RTHOUGH LANGE STORM STORM LANGE		6% 89% 4% Stop 269 17 240 12 269 1 0.446 5.969	18% 75% 7% Stop 208 38 155 15 208	WBLn1 4% 79% 17% Stop 171 7 135 29 171 1 0.288 6.065	11% 75% 15% Stop 361 39 269 53 361 1 0.555 5.532		В			C		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		6% 89% 4% Stop 269 17 240 12 269 1	18% 75% 7% Stop 208 38 155 15 208 1	WBLn1 4% 79% 17% Stop 171 7 135 29 171 1 0.288	11% 75% 15% Stop 361 39 269 53 361 1 0.555		В			C		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Convergence, Y/N Cap		6% 89% 4% Stop 269 17 240 12 269 1 0.446 5.969 Yes 600	18% 75% 76 Stop 208 38 155 15 208 1 0.35 6.064 Yes 589	WBLn1 4% 79% 17% Stop 171 7 135 29 171 0.288 6.065 Yes 587	11% 75% 15% Stop 361 39 269 53 361 1 0.555 5.532 Yes 646		В			C		
Lane Vol Left, % Vol Tript, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		6% 89% 4% Stop 269 17 240 12 269 1 0.446 5.969 Yes 600 4.048	18% 75% 76% Stop 208 38 155 15 208 1 0.35 6.064 Yes 589 4.153	WBLn1 4% 79% 17% Stop 171 7 135 29 171 1 0.288 6.065 Yes 587 4.158	11% 75% 15% Stop 361 39 269 53 361 1 0.555 5.532 Yes 646 3.604		В			C		
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Convergence, Y/N Cap		6% 89% 4% Stop 269 17 240 12 269 1 0.446 5.969 Yes 600	18% 75% 76 Stop 208 38 155 15 208 1 0.35 6.064 Yes 589	WBLn1 4% 79% 17% Stop 171 7 135 29 171 0.288 6.065 Yes 587	11% 75% 15% Stop 361 39 269 53 361 1 0.555 5.532 Yes 646		В			C		
Lane Vol Left, % Vol Trynu, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		6% 89% 4% Stop 269 17 240 12 269 1 0.446 5.969 Yes 600 4.048	18% 75% 76% Stop 208 38 155 15 208 1 0.35 6.064 Yes 589 4.153	WBLn1 4% 79% 17% Stop 171 7 135 29 171 1 0.288 6.065 Yes 587 4.158	11% 75% 15% Stop 361 39 269 53 361 1 0.555 5.532 Yes 646 3.604		В			C		
Lane Vol Left, % Vol Tryn, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		6% 89% 4% Stop 269 17 240 12 269 1 0.446 5.969 Yes 600 4.048 0.448	18% 75% 7% Stop 208 38 155 15 208 1 0.35 6.064 Yes 589 4.153 0.353	WBLn1 4% 79% 17% Stop 171 7 135 29 171 1 0.288 6.065 Yes 587 4.158 0.291	11% 75% 15% Stop 361 39 269 53 361 1 0.555 5.532 Yes 646 3.604 0.559		В			C		

Scenario 1 5993 & 6115 Flewellyn Road & 6070 Fernbank Road 12:00 am 04/10/2024 2035 Future Background

Synchro 11 Report Page 1

HCM 95th %tile Q(veh)

Intersection												
Int Delay, s/veh	12.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			4			44			4	
Traffic Vol, veh/h	60	125	26	2	102	17	8	207	13	25	241	51
Future Vol, veh/h	60	125	26	2	102	17	8	207	13	25	241	51
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	7	2	4	2	2	12	13	5	2	2	3	8
Mvmt Flow	60	125	26	2	102	17	8	207	13	25	241	51
Major/Minor N	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	119	0	0	151	0	0	519	381	138	483	386	111
Stage 1	-	-	-	-	-	-	258	258	-	115	115	-
Stage 2			-				261	123		368	271	
Critical Hdwy	4.17	-	-	4.12	-	-	7.23	6.55	6.22	7.12	6.53	6.28
Critical Hdwy Stg 1	-	-	-	-	-	-	6.23	5.55	-	6.12	5.53	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.23	5.55	-	6.12	5.53	-
Follow-up Hdwy	2.263	-	-	2.218	-	-	3.617	4.045	3.318	3.518	4.027	3.372
Pot Cap-1 Maneuver	1438	-	-	1430	-	-	450	547	910	494	547	926
Stage 1	-	-	-	-	-	-	723	689	-	890	798	-
Stage 2	-	-	-	-	-	-	720	788	-	652	683	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1438	-	-	1430	-	-	262	521	910	325	521	926
Mov Cap-2 Maneuver	-	-	-	-	-	-	262	521	-	325	521	-
Stage 1	-	-	-	-	-	-	690	657	-	849	796	-
Stage 2	-	-	-	-	-	-	473	786	-	420	652	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	2.2			0.1			17.4			21.2		
HCM LOS							С			С		
Minor Lane/Major Mvm	t	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		516	1438	-	-	1430	-	-	533			
HCM Lane V/C Ratio		0.442	0.042						0.595			
HCM Control Delay (s)		17.4	7.6	0	-	7.5	0	-	21.2			
HCM Lane LOS		С	A	A		A	A		C			
HOM CEIL OUT OF 11		0.0	0.4	, ,		^ ^	/ (0.0			

Interception						
Intersection	1.3					
Int Delay, s/veh	1.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	N/			ર્ન	ĵ.	
Traffic Vol, veh/h	43	21	6	278	296	12
Future Vol, veh/h	43	21	6	278	296	12
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	
Storage Length	0	-		-		-
Veh in Median Storage	e.# 0	-	-	0	0	-
Grade, %	0			0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	5	3	2
Mymt Flow	43	21	6	278	296	12
IVIVIIICT IOW	70	21	U	210	200	12
Major/Minor	Minor2		Major1	N	Major2	
Conflicting Flow All	592	302	308	0	-	0
Stage 1	302	-	-	-	-	-
Stage 2	290	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	469	738	1253	-	-	-
Stage 1	750	-	-	-		-
Stage 2	759			_		_
Platoon blocked, %	700			-		-
Mov Cap-1 Maneuver	466	738	1253			-
Mov Cap-2 Maneuver	466	-	1200			
Stage 1	746					
Stage 2	759			-		
Staye 2	139					
Approach	EB		NB		SB	
HCM Control Delay, s	12.7		0.2		0	
HCM LOS	В					
M. 1 (M. 1 M.		NDI	NDT	EDI 4	ODT	000
Minor Lane/Major Mvn	nt	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		1253	-	530	-	-
HCM Lane V/C Ratio		0.005		0.121	-	-
HCM Control Delay (s)	7.9	0	12.7	-	-
HCM Lane LOS		Α	Α	В	-	-
HCM 95th %tile Q(veh	1)	0	-	0.4	-	-

2.2 0.1 - - 0 - - 3.9

MOVEMENT SUMMARY

₩ Site: 101 [Fernbank at Shea FB2035 PM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

New Site Site Category: (None) Roundabout

Mov	Turn	Μον	Dem	and	Δr	rival	Deg.	Aver.	Level of	95% B	ack Of	Prop.	Eff.	Aver.	Aver
ID		Class		OWS		lows	Satn	Delay	Service	Qu		Que	Stop	No. of	Speed
			[Total							[Veh.	Dist]		Rate	Cycles	
0 "	01		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South															
1	L2	All MCs	30	3.0	30	3.0	0.633	18.4	LOS C	4.6	33.0	0.83	0.92	1.33	42.7
2	T1	All MCs	264	3.0	264	3.0	0.633	18.4	LOS C	4.6	33.0	0.83	0.92	1.33	43.3
3	R2	All MCs	99	6.0	99	6.0	0.633	18.9	LOS C	4.6	33.0	0.83	0.92	1.33	43.0
Appro	ach		393	3.8	393	3.8	0.633	18.5	LOS C	4.6	33.0	0.83	0.92	1.33	43.2
East:	Fernb	ank													
4	L2	All MCs	130	8.0	130	8.0	0.928	43.2	LOS E	29.2	210.6	1.00	1.82	3.30	33.3
5	T1	All MCs	551	3.0	551	3.0	0.928	42.6	LOS E	29.2	210.6	1.00	1.82	3.30	33.8
6	R2	All MCs	115	2.0	115	2.0	0.928	42.5	LOS E	29.2	210.6	1.00	1.82	3.30	33.6
Appro	ach		796	3.7	796	3.7	0.928	42.7	LOS E	29.2	210.6	1.00	1.82	3.30	33.7
North:	Shea														
7	L2	All MCs	60	2.0	60	2.0	0.772	26.8	LOS D	7.6	55.2	0.92	1.13	1.80	38.8
8	T1	All MCs	281	2.0	281	2.0	0.772	26.8	LOS D	7.6	55.2	0.92	1.13	1.80	39.3
9	R2	All MCs	144	9.0	144	9.0	0.772	28.0	LOS D	7.6	55.2	0.92	1.13	1.80	39.0
Appro	ach		485	4.1	485	4.1	0.772	27.1	LOS D	7.6	55.2	0.92	1.13	1.80	39.1
West:	Fernb	ank													
10	L2	All MCs	133	5.0	133	5.0	0.855	30.3	LOS D	17.2	124.0	1.00	1.38	2.45	37.5
11	T1	All MCs	534	3.0	534	3.0	0.855	30.1	LOS D	17.2	124.0	1.00	1.38	2.45	38.0
12	R2	All MCs	34	3.0	34	3.0	0.855	30.1	LOS D	17.2	124.0	1.00	1.38	2.45	37.8
Appro	ach		701	3.4	701	3.4	0.855	30.2	LOS D	17.2	124.0	1.00	1.38	2.45	37.9
	hicles		2375				0.928	31.8	LOS D	29.2	210.6	0.95	1.40	2.42	37.3

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CGH TRANSPORTATION | Licence: NETWORK / FLOATING | Processed: Tuesday, December 17, 2024 11:14:18 AM
Project: C:\Users\MichelleChen\CGH TRANSPORTATION\CGH Active Projects - Documents\2021\2021-128 Caivan Flewellyn\DATA\W-4
Report\Sidra - W-4 Report\2021-128 Shea Road at Fembank Road - 2024-12-13.sip9

HCM 2010 AWSC 4: Huntley/Stittsville Main & Flewellyn

2035 Future Background PM Peak Hour

Intersection												
Intersection Delay, s/veh	15											
Intersection LOS	В											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			44			44	
Traffic Vol, veh/h	44	121	14	6	181	71	27	245	14	33	281	47
Future Vol, veh/h	44	121	14	6	181	71	27	245	14	33	281	47
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	7	2	2	2	4	2	7	2	2	2
Mvmt Flow	44	121	14	6	181	71	27	245	14	33	281	47
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
				1			1			1		
Conflicting Lanes Right	1											
	12.6			14			14.7			17.1		
Conflicting Lanes Right							14.7 B			17.1 C		
Conflicting Lanes Right HCM Control Delay	12.6			14								
Conflicting Lanes Right HCM Control Delay	12.6 B	IBLn1	EBLn1	14	SBLn1							
Conflicting Lanes Right HCM Control Delay HCM LOS	12.6 B	IBLn1 9%	EBLn1 25%	14 B	SBLn1							
Conflicting Lanes Right HCM Control Delay HCM LOS	12.6 B			14 B WBLn1								
Conflicting Lanes Right HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, %	12.6 B	9%	25%	14 B WBLn1 2%	9%							
Conflicting Lanes Right HCM Control Delay HCM LOS Lane Vol Left, %	12.6 B	9% 86%	25% 68%	14 B WBLn1 2% 70%	9% 78%							
Conflicting Lanes Right HCM Control Delay HCM LOS Lane Vol Left, % Vol Trnu, % Vol Right, % Sign Control	12.6 B	9% 86% 5%	25% 68% 8%	14 B WBLn1 2% 70% 28%	9% 78% 13%							
Conflicting Lanes Right HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, %	12.6 B	9% 86% 5% Stop	25% 68% 8% Stop	14 B WBLn1 2% 70% 28% Stop	9% 78% 13% Stop							
Conflicting Lanes Right HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol	12.6 B	9% 86% 5% Stop 286	25% 68% 8% Stop 179	14 B WBLn1 2% 70% 28% Stop 258	9% 78% 13% Stop 361							
Conflicting Lanes Right HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane	12.6 B	9% 86% 5% Stop 286 27	25% 68% 8% Stop 179 44	14 B WBLn1 2% 70% 28% Stop 258 6	9% 78% 13% Stop 361 33							
Conflicting Lanes Right HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol	12.6 B	9% 86% 5% Stop 286 27 245	25% 68% 8% Stop 179 44 121	14 B WBLn1 2% 70% 28% Stop 258 6 181	9% 78% 13% Stop 361 33 281							
Conflicting Lanes Right HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol	12.6 B	9% 86% 5% Stop 286 27 245 14	25% 68% 8% Stop 179 44 121 14	14 B WBLn1 2% 70% 28% Stop 258 6 181 71	9% 78% 13% Stop 361 33 281							
Conflicting Lanes Right HCM Control Delay HCM LOS Lane Vol Left, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate	12.6 B	9% 86% 5% Stop 286 27 245 14 286	25% 68% 8% Stop 179 44 121 14	14 B WBLn1 2% 70% 28% Stop 258 6 181 71 258	9% 78% 13% Stop 361 33 281 47 361							
Conflicting Lanes Right HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol Rane Flow Rate Geometry Grp	12.6 B	9% 86% 5% Stop 286 27 245 14 286	25% 68% 8% Stop 179 44 121 14 179	14 B WBLn1 2% 70% 28% Stop 258 6 181 71 258 1	9% 78% 13% Stop 361 33 281 47 361							
Conflicting Lanes Right HCM Control Delay HCM LOS Lane Vol Left, % Vol Tinru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)	12.6 B	9% 86% 5% Stop 286 27 245 14 286 1 0.483	25% 68% 8% Stop 179 44 121 14 179 1	14 B WBLn1 2% 70% 28% Stop 258 6 181 71 258 1	9% 78% 13% Stop 361 33 281 47 361 1 0.591							
Conflicting Lanes Right HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)	12.6 B	9% 86% 5% Stop 286 27 245 14 286 1 0.483 6.075	25% 68% 8% Stop 179 44 121 14 179 1 0.322 6.479	14 B WBLn1 2% 70% 28% Stop 258 6 181 71 258 1 0.44 6.133	9% 78% 13% Stop 361 33 281 47 361 1 0.591 5.898							
Conflicting Lanes Right HCM Control Delay HCM LOS Lane Vol Left, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N	12.6 B	9% 86% 5% Stop 286 27 245 14 286 1 0.483 6.075 Yes	25% 68% 8% Stop 179 44 121 14 179 1 0.322 6.479 Yes	14 B WBLn1 2% 70% 28% Stop 258 6 181 71 258 1 0.44 6.133 Yes	9% 78% 13% Stop 361 33 281 47 361 1 0.591 5.898 Yes							
Conflicting Lanes Right HCM Control Delay HCM LOS Lane Vol Left, % Vol Tight, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap	12.6 B	9% 86% 5% Stop 286 27 245 14 286 1 0.483 6.075 Yes 592	25% 68% 8% Stop 179 44 121 14 179 1 0.322 6.479 Yes 553	14 B WBLn1 2% 70% 28% Stop 258 6 181 71 258 1 0.44 6.133 Yes 586	9% 78% 13% Stop 361 33 281 47 361 1 0.591 5.898 Yes 617							
Conflicting Lanes Right HCM Control Delay HCM LOS Lane Vol Left, % Vol Trinu, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time	12.6 B	9% 86% 5% Stop 286 27 245 14 286 1 0.483 6.075 Yes 592 4.123	25% 68% 8% Stop 179 44 121 14 179 1 0.322 6.479 Yes 553 4.538	14 B WBLn1 2% 70% 28% Stop 258 6 181 71 258 1 0.44 6.133 Yes 586 4.186	9% 78% 13% Stop 361 33 281 47 361 1 0.591 5.898 Yes 617 3.898							
Conflicting Lanes Right HCM Control Delay HCM LOS Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio	12.6 B	9% 86% 5% Stop 286 27 245 14 286 1 0.483 6.075 Yes 592 4.123 0.483	25% 68% 8% Stop 179 44 121 14 179 1 0.322 6.479 Yes 553 4.538 0.324	14 B WBLn1 2% 70% 28% Stop 258 6 181 71 258 1 0.44 6.133 Yes 586 4.186 0.44	9% 78% 13% Stop 361 33 281 47 361 1 0.591 5.898 Yes 617 3.898 0.585							

Scenario 1 5993 & 6115 Flewellyn Road & 6070 Fernbank Road 12:00 am 04/10/2024 2035 Future Background

Synchro 11 Report Page 1

HCM 95th %tile Q(veh)

Intersection												
Int Delay, s/veh	17.6											
		EDT	EDE	WDI	MOT	WDD	ND:	NDT	NDD	OD:	007	000
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	59	118	11	2	166	33	16	260	17	14	285	71
Future Vol, veh/h	59	118	11	2	166	33	16	260	17	14	285	71 0
Conflicting Peds, #/hr	0	0	0	0 Free	0 Free	0	0	0	_	0	0	-
Sign Control RT Channelized	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
Storage Length	- 1	-	None		- 1	None	-	-	None			None
Veh in Median Storage		0			0		-	0	-		0	
Grade, %	,# -	0			0	- :		0			0	
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	5	2	18	2	2	2	6	2	6	2	2	3
Mymt Flow	59	118	11	2	166	33	16	260	17	14	285	71
WWW. I IOW	00	110	- 11		100	00	10	200	17	14	200	- 11
	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	199	0	0	129	0	0	607	445	124	567	434	183
Stage 1	-	-	-	-	-	-	242	242	-	187	187	-
Stage 2	-	-	-		-	-	365	203	-	380	247	-
Critical Hdwy	4.15	-	-	4.12	-	-	7.16	6.52	6.26	7.12	6.52	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-	6.16	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	- 0.045	-	-	- 0.046	-	-	6.16	5.52	-	6.12	5.52	- 0.00
Follow-up Hdwy	2.245	-	-	2.218	-	-	3.554	4.018	3.354	3.518	4.018	3.327
Pot Cap-1 Maneuver	1356	-	-	1457	-	-	403	508	916	434	515	857
Stage 1	-	-	-	-	-	-	753	705	-	815	745	-
Stage 2 Platoon blocked, %	-	-	-	-	-	-	646	733	-	642	702	-
Mov Cap-1 Maneuver	1356	-		1457	-	-	192	483	916	237	490	857
Mov Cap-1 Maneuver	1330	- 1	-	143/	- 1		192	483	910	237	490	00/
Stage 1	-	-	-	-	-	_	718	672	-	777	744	-
Stage 2							365	732		368	669	
Staye 2							505	102		500	003	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	2.4			0.1			25.8			28.4		
HCM LOS							D			D		
Minor Lane/Major Mvm	t N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		458	1356	-	-	1457	-	-	511			
HCM Lane V/C Ratio		0.64	0.044			0.001						
HCM Control Delay (s)		25.8	7.8	0	-	7.5	0	_	28.4			
HCM Lane LOS		D	A	A		A	A		D			
HOM SELL SUIT OF TH			0.4									

Intersection						
Int Delay, s/veh	0.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			લી	1>	
Traffic Vol, veh/h	24	12	21	331	358	43
Future Vol. veh/h	24	12	21	331	358	43
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -		riee -		riee -	
Storage Length	0	NOHE -		NONE -		NOTICE -
	-	-		0	0	-
Veh in Median Storage			-	_	_	
Grade, %	0	400	400	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	3	2	2
Mvmt Flow	24	12	21	331	358	43
Major/Minor	Minor2		Major1	ı	Major2	
Conflicting Flow All	753	380	401	0	-	0
Stage 1	380	300	401	-		-
	373					
Stage 2		- 0.00	- 440	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy				-	-	-
Pot Cap-1 Maneuver	377	667	1158	-	-	-
Stage 1	691	-	-	-	-	-
Stage 2	696	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	369	667	1158	-	-	-
Mov Cap-2 Maneuver	369	-	-	-	-	-
Stage 1	676	-	-	-	-	-
Stage 2	696					
Olage 2	030					
Approach	EB		NB		SB	
HCM Control Delay, s	14		0.5		0	
HCM LOS	В					
M. 1 (M. 1 M.		NDI	NDT	EDI 4	ODT	000
Minor Lane/Major Mvr	nt	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		1158	-	434	-	-
HCM Lane V/C Ratio		0.018		0.083	-	-
HCM Control Delay (s)	8.2	0	14	-	-
HCM Lane LOS		Α	Α	В	-	-
HCM 95th %tile Q(veh	1)	0.1	-	0.3	-	-
	,					

4.4 0.1 - - 0 - - 5.9

Appendix O

Synchro and Sidra Intersection Worksheets – 2030 Future Total Conditions

▼ Site: 101 [Fernbank at Shea FT2030 AM (Site Folder:

General)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New Site

Site Category: (None)

Roundabout

Vehic	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Shea	a													
1	L2	All MCs	18	6.0	18	6.0	0.653	22.0	LOS C	4.2	31.3	0.84	0.97	1.38	40.9
2	T1	All MCs	235	5.0	235	5.0	0.653	21.8	LOS C	4.2	31.3	0.84	0.97	1.38	41.6
3	R2	All MCs	92	13.0	92	13.0	0.653	23.5	LOS C	4.2	31.3	0.84	0.97	1.38	41.2
Appro	ach		345	7.2	345	7.2	0.653	22.3	LOS C	4.2	31.3	0.84	0.97	1.38	41.4
East:	Fernb	ank													
4	L2	All MCs	87	5.0	87	5.0	0.576	14.3	LOS B	4.5	32.5	0.78	0.80	1.19	44.6
5	T1	All MCs	265	4.0	265	4.0	0.576	14.1	LOS B	4.5	32.5	0.78	0.80	1.19	45.4
6	R2	All MCs	75	2.0	75	2.0	0.576	13.9	LOS B	4.5	32.5	0.78	0.80	1.19	45.1
Appro	ach		427	3.9	427	3.9	0.576	14.1	LOS B	4.5	32.5	0.78	0.80	1.19	45.2
North	: Shea														
7	L2	All MCs	131	4.0	131	4.0	0.597	12.6	LOS B	5.8	42.4	0.74	0.69	1.08	45.3
8	T1	All MCs	183	7.0	183	7.0	0.597	12.9	LOS B	5.8	42.4	0.74	0.69	1.08	45.9
9	R2	All MCs	222	5.0	222	5.0	0.597	12.7	LOS B	5.8	42.4	0.74	0.69	1.08	45.7
Appro	ach		536	5.4	536	5.4	0.597	12.7	LOS B	5.8	42.4	0.74	0.69	1.08	45.7
West	Fernb	ank													
10	L2	All MCs	305	4.0	305	4.0	0.840	26.7	LOS D	18.1	130.2	1.00	1.30	2.29	38.5
11	T1	All MCs	401	3.0	401	3.0	0.840	26.6	LOS D	18.1	130.2	1.00	1.30	2.29	39.0
12	R2	All MCs	33	3.0	33	3.0	0.840	26.6	LOS D	18.1	130.2	1.00	1.30	2.29	38.8
Appro	ach		739	3.4	739	3.4	0.840	26.7	LOS D	18.1	130.2	1.00	1.30	2.29	38.8
All Ve	hicles		2047	4.7	2047	4.7	0.840	19.7	LOS C	18.1	130.2	0.86	0.98	1.59	42.1

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Licence: NETWORK / FLOATING | Processed: October 27, 2025 2:27:38 PM
Project: C:\Users\ReihanehAzhdar\CGH TRANSPORTATION\CGH Active Projects - Documents\2025\2025-005 Cavian Stittsville South Subdivision\DATA\Sidra\2025-005 Stittsville South - 2025-02-21.sip9

С

HCM LOS

D

Intersection												
Intersection Delay, s/veh	20.9											
Intersection LOS	С											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	38	164	15	19	145	168	17	232	17	99	259	53
Future Vol, veh/h	38	164	15	19	145	168	17	232	17	99	259	53
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	4	2	2	2	3	18	10	2	3	5	2
Mvmt Flow	38	164	15	19	145	168	17	232	17	99	259	53
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	15.6			19.4			18			26.8		
	_			_			_			_		

С

С

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, %	6%	18%	6%	24%
Vol Thru, %	87%	76%	44%	63%
Vol Right, %	6%	7%	51%	13%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	266	217	332	411
LT Vol	17	38	19	99
Through Vol	232	164	145	259
RT Vol	17	15	168	53
Lane Flow Rate	266	217	332	411
Geometry Grp	1	1	1	1
Degree of Util (X)	0.528	0.432	0.609	0.75
Departure Headway (Hd)	7.142	7.173	6.605	6.57
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	503	501	548	551
Service Time	5.201	5.238	4.631	4.594
HCM Lane V/C Ratio	0.529	0.433	0.606	0.746
HCM Control Delay	18	15.6	19.4	26.8
HCM Lane LOS	С	С	С	D
HCM 95th-tile Q	3	2.2	4.1	6.5

Intersection												
Int Delay, s/veh	15.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	60	299	26	2	167	22	8	184	13	37	193	51
Future Vol, veh/h	60	299	26	2	167	22	8	184	13	37	193	51
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	7	2	4	2	2	12	13	5	2	2	3	8
Mvmt Flow	60	299	26	2	167	22	8	184	13	37	193	51
Major/Minor	Major1		ľ	Major2			Minor1		ľ	Minor2		
Conflicting Flow All	189	0	0	325	0	0	736	625	312	713	627	178
Stage 1	-	-	-	-	-	-	432	432	-	182	182	-
Stage 2	-	-	-	-	-	-	304	193	-	531	445	-
Critical Hdwy	4.17	-	-	4.12	-	-	7.23	6.55	6.22	7.12	6.53	6.28
Critical Hdwy Stg 1	-	-	-	-	-	-	6.23	5.55	-	6.12	5.53	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.23	5.55	-	6.12	5.53	-
Follow-up Hdwy	2.263	-	-	2.218	-	-	3.617	4.045	3.318	3.518	4.027	3.372
Pot Cap-1 Maneuver	1355	-	-	1235	-	-	321	397	728	347	399	850
Stage 1	-	-	-	-	-	-	581	577	-	820	747	-
Stage 2	-	-	-	-	-	-	683	735	-	532	573	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1355	-	-	1235	-	-	173	375	728	201	377	850
Mov Cap-2 Maneuver	-	-	-	-	-	-	173	375	-	201	377	-
Stage 1	-	-	-	-	-	-	550	546	-	776	746	-
Stage 2	-	-	-	-		-	475	734	-	328	542	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1.2			0.1			26.2			39.1		
HCM LOS							D			E		
Minor Lane/Major Mvm	nt N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR:	SBLn1			
Capacity (veh/h)		370	1355	-		1235	-	-				
HCM Lane V/C Ratio		0.554		_		0.002	_		0.755			
HCM Control Delay (s)		26.2	7.8	0	-	7.9	0	-				
HCM Lane LOS		D	A	A	_	A	A	-	E			
HCM 95th %tile Q(veh))	3.2	0.1	-	-	0	-	-	6			

Intersection						
Int Delay, s/veh	1.1					
		EDD	ND	NET	OPT	ODB
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥	40	_	4	4	4=
Traffic Vol, veh/h	40	12	5	261	269	17
Future Vol, veh/h	40	12	5	261	269	17
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	40	12	5	261	269	17
Major/Minor I	Minor2		Major1	N	/lajor2	
Conflicting Flow All	549	278	286	0	- -	0
Stage 1	278	-	200	-	_	-
Stage 2	271	_	_	_	_	_
Critical Hdwy	6.42	6.22	4.12		_	
Critical Hdwy Stg 1	5.42	0.22	4.12	_		_
	5.42		_	-		-
Critical Hdwy Stg 2		2 210	2 240	-	-	-
Follow-up Hdwy	3.518	3.318 761	2.218 1276	-	-	<u>-</u>
Pot Cap-1 Maneuver	497		12/0	-	-	-
Stage 1	769	-	-	-	-	-
Stage 2	775	-	-	-	-	-
Platoon blocked, %	105	704	4070	-	-	-
Mov Cap-1 Maneuver	495	761	1276	-	-	-
Mov Cap-2 Maneuver	495	-	-	-	-	-
Stage 1	765	-	-	-	-	-
Stage 2	775	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	12.4		0.1		0	
HCM LOS	12. 4		0.1		U	
TIOWI LOG	U					
Minor Lane/Major Mvm	ıt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1276	-	538	-	-
HCM Lane V/C Ratio		0.004	-	0.097	-	-
HCM Control Delay (s)		7.8	0	12.4	-	-
HCM Lane LOS		Α	Α	В	-	-
HCM 95th %tile Q(veh))	0	-	0.3	-	-

Intersection						
Int Delay, s/veh	2.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	ĵ.		¥	
Traffic Vol, veh/h	22	326	202	24	59	59
Future Vol, veh/h	22	326	202	24	59	59
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-		-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	.# -	0	0	-	0	_
Grade, %	-	0	0	_	0	_
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	22	326	202	24	59	59
	<u>==</u>	0_0		= :		
	Major1		Major2		Minor2	
Conflicting Flow All	226	0	-	0	584	214
Stage 1	-	-	-	-	214	-
Stage 2	-	-	-	-	370	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	1342	-	-	-	474	826
Stage 1	-	-	-	-	822	-
Stage 2	-	-	-	-	699	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1342	-	-	-	465	826
Mov Cap-2 Maneuver	-	-	-	-	465	-
Stage 1	-	-	-	-	806	-
Stage 2	_	-	-	_	699	-
, and the second						
			14/5		0.0	
Approach	EB		WB		SB	
HCM Control Delay, s	0.5		0		12.5	
HCM LOS					В	
Minor Lane/Major Mvm	ıt	EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)	`	1342				595
HCM Lane V/C Ratio		0.016	_	_	_	0.198
HCM Control Delay (s)		7.7	0	_	_	12.5
HCM Lane LOS		A	A	_	_	В
HCM 95th %tile Q(veh)	١	0.1	- '\	_	_	0.7
HOW JOHN JOHN Q(VOII)		U. 1				0.1

Intersection						
Int Delay, s/veh	4.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ન	1		¥	
Traffic Vol, veh/h	51	233	210	51	115	111
Future Vol, veh/h	51	233	210	51	115	111
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-		-	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage	e.# -	0	0	-	0	_
Grade, %	-,	0	0	_	0	_
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	51	233	210	51	115	111
IVIVIII(I IOW	31	200	210	Ji	110	111
Major/Minor	Major1	N	Major2	N	Minor2	
Conflicting Flow All	261	0	-	0	571	236
Stage 1	-	-	-	-	236	-
Stage 2	-	-	-	-	335	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	_	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1303	-	-	-	482	803
Stage 1	_	_	_	_	803	-
Stage 2	_	_	_	_	725	_
Platoon blocked, %		_	_	_	, 20	
Mov Cap-1 Maneuver	1303	_	_	_	460	803
Mov Cap 1 Maneuver	-	_	_	_	460	-
Stage 1			_	_	767	_
Stage 2		_	_	_	725	_
Staye 2	-	-	_	_	125	_
Approach	EB		WB		SB	
HCM Control Delay, s	1.4		0		15.1	
HCM LOS					С	
				14/5-	14/5-	001 /
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR:	
Capacity (veh/h)		1303	-	-	-	582
HCM Lane V/C Ratio		0.039	-	-	-	0.388
HCM Control Delay (s))	7.9	0	-	-	15.1
HCM Lane LOS		Α	Α	-	-	С
HCM 95th %tile Q(veh		0.1	-	-	-	1.8
<u> </u>						

Intersection						
Int Delay, s/veh	1.3					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	42	04		€	1	40
Traffic Vol, veh/h	43	21	6	295	265	12
Future Vol, veh/h	43	21	6	295	265	12
Conflicting Peds, #/hr	0	0	0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	5	3	2
Mvmt Flow	43	21	6	295	265	12
Major/Minor	Minor		Major1	A	/oier2	
	Minor2		Major1		/lajor2	
Conflicting Flow All	578	271	277	0	-	0
Stage 1	271	-	-	-	-	-
Stage 2	307	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-		-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	478	768	1286	-	-	-
Stage 1	775	-	-	-	-	-
Stage 2	746	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	475	768	1286	_	-	-
Mov Cap-2 Maneuver	475	-		_	_	_
Stage 1	770	_	_	_	_	_
Stage 2	746					
Olaye Z	140	_	-	_	-	<u>-</u>
Approach	EB		NB		SB	
HCM Control Delay, s	12.5		0.2		0	
HCM LOS	В					
Minor Long/Major M	.1	NDI	NDT	EDL-4	CDT	CDD
Minor Lane/Major Mvm	It	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		1286	-	0.0	-	-
HCM Lane V/C Ratio		0.005		0.118	-	-
HCM Control Delay (s)		7.8	0	12.5	-	-
HCM Lane LOS		Α	Α	В	-	-
HCM 95th %tile Q(veh)	0	-	0.4	-	-
,						

▼ Site: 101 [Fernbank at Shea FT2030 PM (Site Folder:

General)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New Site

Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov	Turn	Mov		nand		rival	Deg.	Aver.	Level of		Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class		lows	Fl Total	OWS	Satn	Delay	Service	Qı [Veh.	ueue Dist]	Que	Stop Rate	No. of	Speed
			veh/h		veh/h	пv ј %	v/c	sec		ven. veh	m m		Rate	Cycles	km/h
South	n: Shea	1													
1	L2	All MCs	30	3.0	30	3.0	0.579	15.7	LOS C	3.9	28.5	0.80	0.85	1.20	44.0
2	T1	All MCs	217	3.0	217	3.0	0.579	15.7	LOS C	3.9	28.5	0.80	0.85	1.20	44.7
3	R2	All MCs	127	6.0	127	6.0	0.579	16.2	LOS C	3.9	28.5	0.80	0.85	1.20	44.4
Appro	oach		374	4.0	374	4.0	0.579	15.9	LOS C	3.9	28.5	0.80	0.85	1.20	44.5
East:	Fernb	ank													
4	L2	All MCs	130	8.0	130	8.0	0.883	32.4	LOS D	24.3	175.4	1.00	1.50	2.65	36.8
5	T1	All MCs	551	3.0	551	3.0	0.883	31.9	LOS D	24.3	175.4	1.00	1.50	2.65	37.4
6	R2	All MCs	115	2.0	115	2.0	0.883	31.8	LOS D	24.3	175.4	1.00	1.50	2.65	37.2
Appro	oach		796	3.7	796	3.7	0.883	31.9	LOS D	24.3	175.4	1.00	1.50	2.65	37.3
North	: Shea	ı													
7	L2	All MCs	60	2.0	60	2.0	0.789	28.4	LOS D	8.2	59.1	0.93	1.16	1.89	38.2
8	T1	All MCs	292	2.0	292	2.0	0.789	28.4	LOS D	8.2	59.1	0.93	1.16	1.89	38.6
9	R2	All MCs	144	9.0	144	9.0	0.789	29.6	LOS D	8.2	59.1	0.93	1.16	1.89	38.4
Appro	oach		496	4.0	496	4.0	0.789	28.8	LOS D	8.2	59.1	0.93	1.16	1.89	38.5
West	: Fernb	ank													
10	L2	All MCs	133	5.0	133	5.0	0.817	26.2	LOS D	13.8	99.6	0.98	1.23	2.16	39.1
11	T1	All MCs	495	3.0	495	3.0	0.817	25.9	LOS D	13.8	99.6	0.98	1.23	2.16	39.7
12	R2	All MCs	34	3.0	34	3.0	0.817	25.9	LOS D	13.8	99.6	0.98	1.23	2.16	39.5
Appro	oach		662	3.4	662	3.4	0.817	26.0	LOS D	13.8	99.6	0.98	1.23	2.16	39.6
All Ve	hicles		2328	3.7	2328	3.7	0.883	27.0	LOS D	24.3	175.4	0.95	1.25	2.12	39.2

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Licence: NETWORK / FLOATING | Processed: October 27, 2025 2:32:58 PM
Project: C:\Users\ReihanehAzhdar\CGH TRANSPORTATION\CGH Active Projects - Documents\2025\2025-005 Cavian Stittsville South

Subdivision\DATA\Sidra\2025-005 Stittsville South - 2025-02-21.sip9

Intersection												
Intersection Delay, s/veh	34.9											
Intersection LOS	D											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	44	130	14	14	195	169	27	234	26	176	272	47
Future Vol, veh/h	44	130	14	14	195	169	27	234	26	176	272	47
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	7	2	2	2	4	2	7	2	2	2
Mvmt Flow	44	130	14	14	195	169	27	234	26	176	272	47
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	16.9			28.2			21.4			54.6		
HCM LOS	С			D			С			F		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		9%	23%	4%	36%							
Vol Thru, %		82%	69%	52%	55%							
Vol Right, %		9%	7%	45%	9%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		287	188	378	495							
LT Vol		27	44	14	176							
Through Vol		234	130	195	272							
RT Vol		26	14	169	47							
Lane Flow Rate		287	188	378	495							
Geometry Grp		1	1	1	1							
Degree of Util (X)		0.603	0.423	0.743	0.95							
Departure Headway (Hd)		7.562	8.095	7.185	7.008							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Сар		479	446	507	520							
Service Time		5.562	6.115	5.185	5.008							
HCM Lane V/C Ratio		0.599	0.422	0.746	0.952							
HCM Control Delay		21.4	16.9	28.2	54.6							
HCM Lane LOS		С	С	D	F							
HCM 95th-tile Q		3.9	2.1	6.2	12							

Intersection												
Int Delay, s/veh	41.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	59	231	11	2	346	45	16	213	17	22	255	71
Future Vol, veh/h	59	231	11	2	346	45	16	213	17	22	255	71
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	5	2	18	2	2	2	6	2	6	2	2	3
Mvmt Flow	59	231	11	2	346	45	16	213	17	22	255	71
Major/Minor N	//ajor1			Major2			Minor1			Minor2		
Conflicting Flow All	391	0	0	242	0	0	891	750	237	843	733	369
Stage 1	-	_	_		_	_	355	355		373	373	-
Stage 2	-	_	-	_	_	-	536	395	-	470	360	_
Critical Hdwy	4.15	_	-	4.12	_	-	7.16	6.52	6.26	7.12	6.52	6.23
Critical Hdwy Stg 1	-	-	-	-	-	-	6.16	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	_	6.16	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.245	-	-	2.218	-	-	3.554	4.018	3.354	3.518	4.018	3.327
Pot Cap-1 Maneuver	1151	-	-	1324	-	_	259	340	792	284	348	674
Stage 1	-	-	-	-	-	-	654	630	-	648	618	-
Stage 2	-	-	-	-	-	-	521	605	-	574	626	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1151	-	-	1324	-	-	80	319	792	123	327	674
Mov Cap-2 Maneuver	-	-	-	-	-	-	80	319	-	123	327	-
Stage 1	-	-	-	-	-	-	615	593	-	610	617	-
Stage 2	-	-	-	-	-	-	273	604	-	339	589	-
-												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	1.6			0			69.2			104.5		
HCM LOS							F			F		
Minor Lane/Major Mvm	t N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		277	1151	-	-	1324	-	-	327			
HCM Lane V/C Ratio		0.888		<u>-</u>		0.002	_		1.064			
HCM Control Delay (s)		69.2	8.3	0	_	7.7	0		104.5			
HCM Lane LOS		65.2 F	Α	A	_	Α	A	_	F			
HCM 95th %tile Q(veh)		7.9	0.2	-	_	0	-	_	12.8			
		7.0	7.2						.2.0			

Intersection						
Int Delay, s/veh	0.8					
		EDD	ND	NET	ODT	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			ની	- î∍	
Traffic Vol, veh/h	28	8	12	305	340	41
Future Vol, veh/h	28	8	12	305	340	41
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	28	8	12	305	340	41
			·=			•
		-		_		
	Minor2		Major1		//ajor2	
Conflicting Flow All	690	361	381	0	-	0
Stage 1	361	-	-	-	-	-
Stage 2	329	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	_	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	_	-
Pot Cap-1 Maneuver	411	684	1177	_	-	-
Stage 1	705	-	_	_	_	_
Stage 2	729	_	_	_	_	_
Platoon blocked, %	125			_	_	_
Mov Cap-1 Maneuver	406	684	1177	_		-
			11//		-	-
Mov Cap-2 Maneuver	406	-	-	-	-	-
Stage 1	697	-	-	-	-	-
Stage 2	729	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	13.8		0.3		0	
HCM LOS	В		0.0		U	
TIOWI LOG	U					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1177	-		-	
HCM Lane V/C Ratio		0.01	_	0.081	-	-
HCM Control Delay (s)	8.1	0	13.8	_	-
HCM Lane LOS		A	A	В	_	_
HCM 95th %tile Q(veh	1)	0	-	0.3	_	_
HOW BOUT WILL CALVEL	1)	U	-	0.5	_	-

Intersection						
Int Delay, s/veh	2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LUL	4	₩ <u>₽</u>	11DI\	₩.	ODIN
Traffic Vol, veh/h	53	258	375	57	42	42
Future Vol, veh/h	53	258	375	57	42	42
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		- Olop	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage		0	0		0	_
Grade, %	·, // -	0	0	_	0	-
Peak Hour Factor	100	100	100	100	100	100
	2	2	2	2	2	2
Heavy Vehicles, %				57	42	42
Mvmt Flow	53	258	375	5/	42	42
Major/Minor I	Major1	N	Major2		Minor2	
Conflicting Flow All	432	0	-	0	768	404
Stage 1	-	-	-	-	404	-
Stage 2	-	-	_	-	364	-
Critical Hdwy	4.12	_	_	_	6.42	6.22
Critical Hdwy Stg 1	-	-	_	-	5.42	-
Critical Hdwy Stg 2	-	_	-	-	5.42	-
Follow-up Hdwy	2.218	-	_	-	3.518	3.318
Pot Cap-1 Maneuver	1128	_	_	_	370	647
Stage 1	_	_	-	-	674	_
Stage 2	-	_	-	_	703	-
Platoon blocked, %		_	_	_		
Mov Cap-1 Maneuver	1128	_	_	_	350	647
Mov Cap-2 Maneuver	-	_	_	_	350	-
Stage 1	_	_	_	_	637	_
Stage 2	_	_	_	_	703	_
Olage 2					700	
Approach	EB		WB		SB	
HCM Control Delay, s	1.4		0		14.7	
HCM LOS					В	
		ED!	EBT	WBT	WBR :	CDI n1
Minor Lane/Major Mym	ıt.	L R I		VVIDI	MADIX	
Minor Lane/Major Mvm	ıt	EBL	EDI			151
Capacity (veh/h)	it	1128	-	-	-	454
Capacity (veh/h) HCM Lane V/C Ratio		1128 0.047	-	-	-	0.185
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		1128 0.047 8.3	- - 0	- - -	-	0.185 14.7
Capacity (veh/h) HCM Lane V/C Ratio		1128 0.047	-	-	-	0.185

Intersection						
Int Delay, s/veh	4.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	₽		W	
Traffic Vol, veh/h	122	230	295	122	81	79
Future Vol, veh/h	122	230	295	122	81	79
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-	None	-	None
Storage Length	_	-	-	-	0	-
Veh in Median Storage,	# -	0	0	_	0	_
Grade, %	_	0	0	_	0	_
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	122	230	295	122	81	79
minici ion		200	200		•	
		_		_		
	/lajor1		Major2		Minor2	
Conflicting Flow All	417	0	-	0	830	356
Stage 1	-	-	-	-	356	-
Stage 2	-	-	-	-	474	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1142	-	-	-	340	688
Stage 1	-	-	-	-	709	-
Stage 2	-	-	-	-	626	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1142	-	-	-	299	688
Mov Cap-2 Maneuver	-	-	-	-	299	-
Stage 1	-	-	-	-	623	-
Stage 2	-	-	-	-	626	-
J						
			NA/ED		0.0	
Approach	EB		WB		SB	
HCM Control Delay, s	3		0		19	
HCM LOS					С	
Minor Lane/Major Mvmt		EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		1142		_		415
HCM Lane V/C Ratio		0.107	_	_	_	0.386
HCM Control Delay (s)		8.5	0	_	_	19
HCM Lane LOS		A	A	_	_	C
HCM 95th %tile Q(veh)		0.4		_	_	1.8
		J. 1				1.0

Intersection						
Int Delay, s/veh	0.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W		1102	4	\$	<u> </u>
Traffic Vol, veh/h	24	12	21	312	369	43
Future Vol, veh/h	24	12	21	312	369	43
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	-	_	-	_	-
Veh in Median Storage		_	_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	3	2	2
Mymt Flow	24	12	21	312	369	43
WWITTIOW	LΤ	12	Z I	012	000	70
Major/Minor	Minor2		Major1	N	//ajor2	
Conflicting Flow All	745	391	412	0	-	0
Stage 1	391	-	-	-	-	-
Stage 2	354	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	382	658	1147	-	-	-
Stage 1	683	-	-	-	-	-
Stage 2	710	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	374	658	1147	-	-	_
Mov Cap-2 Maneuver	374	-	-	-	-	-
Stage 1	668	-	-	-	-	-
Stage 2	710	_	_	_	-	_
o in go _						
	==				0.5	
Approach	EB		NB		SB	
HCM Control Delay, s	14		0.5		0	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBL	NRT	EBLn1	SBT	SBR
Capacity (veh/h)		1147	-		-	- OBIT
HCM Lane V/C Ratio		0.018		0.082	_	<u>-</u>
HCM Control Delay (s)		8.2	0	14		
HCM Lane LOS		0.2 A	A	B	_	-
HCM 95th %tile Q(veh	\	0.1	-	0.3	_	<u>-</u>
HOW SOUL WILLE CALLED)	0.1	-	0.5	-	-

Appendix P

Synchro and Sidra Intersection Worksheets – 2030 Future Total Conditions – Mitigation Measures

▼ Site: 101 [Shea at Flewellyn FT2030 AM (Site Folder:

General)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New Site

Site Category: (None)

Roundabout

		ovement													
Mov ID	Turn	Mov Class	Dem	and ows		rival ows	Deg. Satn	Aver. Delay	Level of Service		lack Of eue	Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
		Olass		HV]	[Total veh/h		v/c	sec	OCIVICO	[Veh. veh	Dist] m	Que	Rate	Cycles	km/h
South	: Shea	a													
1	L2	All MCs	8	13.0	8	13.0	0.234	7.1	LOSA	1.0	7.6	0.54	0.40	0.54	55.9
2	T1	All MCs	184	5.0	184	5.0	0.234	6.5	LOSA	1.0	7.6	0.54	0.40	0.54	59.2
3	R2	All MCs	13	2.0	13	2.0	0.234	6.3	LOSA	1.0	7.6	0.54	0.40	0.54	59.4
Appro	oach		205	5.1	205	5.1	0.234	6.5	LOSA	1.0	7.6	0.54	0.40	0.54	59.1
East:	Flewe	llyn													
4	L2	All MCs	2	12.0	2	12.0	0.183	5.7	LOSA	0.8	6.0	0.43	0.27	0.43	57.4
5	T1	All MCs	167	2.0	167	2.0	0.183	5.1	LOSA	0.8	6.0	0.43	0.27	0.43	61.4
6	R2	All MCs	22	2.0	22	2.0	0.183	5.1	LOSA	0.8	6.0	0.43	0.27	0.43	60.9
Appro	oach		191	2.1	191	2.1	0.183	5.1	LOSA	8.0	6.0	0.43	0.27	0.43	61.3
North	: Shea														
7	L2	All MCs	37	8.0	37	8.0	0.250	5.7	LOSA	1.3	9.1	0.38	0.21	0.38	57.6
8	T1	All MCs	193	3.0	193	3.0	0.250	5.5	LOSA	1.3	9.1	0.38	0.21	0.38	60.3
9	R2	All MCs	51	2.0	51	2.0	0.250	5.4	LOSA	1.3	9.1	0.38	0.21	0.38	60.0
Appro	oach		281	3.5	281	3.5	0.250	5.5	LOSA	1.3	9.1	0.38	0.21	0.38	59.9
West	Flewe	ellyn													
10	L2	All MCs	60	7.0	60	7.0	0.363	7.3	LOSA	2.0	14.4	0.49	0.30	0.49	56.4
11	T1	All MCs	299	2.0	299	2.0	0.363	7.0	LOSA	2.0	14.4	0.49	0.30	0.49	58.9
12	R2	All MCs	26	4.0	26	4.0	0.363	7.1	LOSA	2.0	14.4	0.49	0.30	0.49	57.9
Appro	oach		385	2.9	385	2.9	0.363	7.1	LOSA	2.0	14.4	0.49	0.30	0.49	58.4
All Ve	hicles		1062	3.3	1062	3.3	0.363	6.2	LOSA	2.0	14.4	0.46	0.29	0.46	59.4

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Licence: NETWORK / FLOATING | Processed: October 27, 2025 3:48:12 PM
Project: C:\Users\ReihanehAzhdar\CGH TRANSPORTATION\CGH Active Projects - Documents\2025\2025-005 Cavian Stittsville South

Subdivision\DATA\Sidra\2025-005 Stittsville South - 2025-02-21.sip9

Intersection												
Intersection Delay, s/veh	17.4											
Intersection LOS	С											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4		1	13	
Traffic Vol, veh/h	38	164	15	19	145	168	17	232	17	99	259	53
Future Vol, veh/h	38	164	15	19	145	168	17	232	17	99	259	53
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	4	2	2	2	3	18	10	2	3	5	2
Mvmt Flow	38	164	15	19	145	168	17	232	17	99	259	53
Number of Lanes	0	1	0	0	1	0	0	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			2			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			2			1			1		
HCM Control Delay	15			18.3			17.7			17.7		
HCM LOS	В			С			С			С		
Lane		NBLn1	EBLn1	WBLn1	SBLn1	SBLn2						
Lane Vol Left, %		NBLn1	EBLn1 18%	WBLn1	SBLn1 100%	SBLn2						
Vol Left, %		6%	18%	6%	100%	0%						
Vol Left, % Vol Thru, %		6% 87%	18% 76%	6% 44%	100% 0%	0% 83%						
Vol Left, % Vol Thru, % Vol Right, %		6% 87% 6%	18% 76% 7%	6% 44% 51%	100% 0% 0%	0% 83% 17%						
Vol Left, % Vol Thru, % Vol Right, % Sign Control		6% 87% 6% Stop	18% 76% 7% Stop	6% 44% 51% Stop	100% 0% 0% Stop	0% 83% 17% Stop						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		6% 87% 6% Stop 266	18% 76% 7% Stop 217	6% 44% 51% Stop 332	100% 0% 0% Stop 99	0% 83% 17% Stop 312						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		6% 87% 6% Stop 266 17	18% 76% 7% Stop 217 38	6% 44% 51% Stop 332 19	100% 0% 0% Stop 99	0% 83% 17% Stop 312 0						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		6% 87% 6% Stop 266 17 232	18% 76% 7% Stop 217 38 164	6% 44% 51% Stop 332 19	100% 0% 0% Stop 99 99	0% 83% 17% Stop 312 0 259						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		6% 87% 6% Stop 266 17 232	18% 76% 7% Stop 217 38 164 15	6% 44% 51% Stop 332 19 145 168	100% 0% 0% Stop 99 99	0% 83% 17% Stop 312 0 259 53						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		6% 87% 6% Stop 266 17 232 17 266	18% 76% 7% Stop 217 38 164 15 217	6% 44% 51% Stop 332 19 145 168 332	100% 0% 0% Stop 99 0 0	0% 83% 17% Stop 312 0 259 53						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		6% 87% 6% Stop 266 17 232 17 266	18% 76% 7% Stop 217 38 164 15 217	6% 44% 51% Stop 332 19 145 168 332	100% 0% 0% Stop 99 0 0	0% 83% 17% Stop 312 0 259 53 312						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		6% 87% 6% Stop 266 17 232 17 266 4a 0.522	18% 76% 7% Stop 217 38 164 15 217 2 0.419	6% 44% 51% Stop 332 19 145 168 332 2 0.589	100% 0% 0% Stop 99 0 0 99 5	0% 83% 17% Stop 312 0 259 53 312 5 0.598						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		6% 87% 6% Stop 266 17 232 17 266 4a 0.522 7.06	18% 76% 7% Stop 217 38 164 15 217 2 0.419 6.958	6% 44% 51% Stop 332 19 145 168 332 2 0.589 6.385	100% 0% 0% Stop 99 0 0 0 99 5 0.206 7.499	0% 83% 17% Stop 312 0 259 53 312 5 0.598 6.9						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		6% 87% 6% Stop 266 17 232 17 266 4a 0.522 7.06 Yes	18% 76% 7% Stop 217 38 164 15 217 2 0.419 6.958 Yes 514 5.037	6% 44% 51% Stop 332 19 145 168 332 2 0.589 6.385 Yes	100% 0% 0% Stop 99 0 0 0 99 5 0.206 7.499 Yes	0% 83% 17% Stop 312 0 259 53 312 5 0.598 6.9 Yes						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		6% 87% 6% Stop 266 17 232 17 266 4a 0.522 7.06 Yes 508	18% 76% 7% Stop 217 38 164 15 217 2 0.419 6.958 Yes 514	6% 44% 51% Stop 332 19 145 168 332 2 0.589 6.385 Yes 564	100% 0% 0% Stop 99 0 0 99 5 0.206 7.499 Yes 477	0% 83% 17% Stop 312 0 259 53 312 5 0.598 6.9 Yes 521						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		6% 87% 6% Stop 266 17 232 17 266 4a 0.522 7.06 Yes 508 5.137	18% 76% 7% Stop 217 38 164 15 217 2 0.419 6.958 Yes 514 5.037	6% 44% 51% Stop 332 19 145 168 332 2 0.589 6.385 Yes 564 4.452	100% 0% 0% Stop 99 0 0 0 99 5 0.206 7.499 Yes 477 5.269	0% 83% 17% Stop 312 0 259 53 312 5 0.598 6.9 Yes 521 4.67 0.599 19.5						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		6% 87% 6% Stop 266 17 232 17 266 4a 0.522 7.06 Yes 508 5.137 0.524	18% 76% 7% Stop 217 38 164 15 217 2 0.419 6.958 Yes 514 5.037 0.422	6% 44% 51% Stop 332 19 145 168 332 2 0.589 6.385 Yes 564 4.452 0.589	100% 0% 0% Stop 99 0 0 0 99 5 0.206 7.499 Yes 477 5.269 0.208	0% 83% 17% Stop 312 0 259 53 312 5 0.598 6.9 Yes 521 4.67 0.599						

▼ Site: 101 [Shea at Flewellyn FT2030 PM (Site Folder:

General)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New Site

Site Category: (None)

Roundabout

		ovement								2-21					
Mov ID	Turn	Mov Class	Dem	land lows		rival ows	Deg. Satn	Aver. Delav	Level of Service		Back Of leue	Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
טו		Ciass			[Total		Salli	Delay	Service	[Veh.	Dist]	Que	Rate	Cycles	Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	ı: Shea	1													
1	L2	All MCs	16	6.0	16	6.0	0.251	6.4	LOS A	1.2	8.6	0.49	0.34	0.49	57.8
2	T1	All MCs	213	2.0	213	2.0	0.251	6.1	LOS A	1.2	8.6	0.49	0.34	0.49	60.1
3	R2	All MCs	17	6.0	17	6.0	0.251	6.4	LOSA	1.2	8.6	0.49	0.34	0.49	58.6
Appro	oach		246	2.5	246	2.5	0.251	6.1	LOSA	1.2	8.6	0.49	0.34	0.49	59.9
East:	Flewe	llyn													
4	L2	All MCs	2	2.0	2	2.0	0.390	7.7	LOSA	2.2	15.4	0.55	0.36	0.55	57.6
5	T1	All MCs	346	2.0	346	2.0	0.390	7.7	LOSA	2.2	15.4	0.55	0.36	0.55	58.9
6	R2	All MCs	45	2.0	45	2.0	0.390	7.7	LOS A	2.2	15.4	0.55	0.36	0.55	58.4
Appro	oach		393	2.0	393	2.0	0.390	7.7	LOSA	2.2	15.4	0.55	0.36	0.55	58.8
North	: Shea														
7	L2	All MCs	22	3.0	22	3.0	0.373	8.1	LOSA	2.0	14.0	0.59	0.42	0.59	56.9
8	T1	All MCs	255	2.0	255	2.0	0.373	8.0	LOSA	2.0	14.0	0.59	0.42	0.59	58.4
9	R2	All MCs	71	2.0	71	2.0	0.373	8.0	LOSA	2.0	14.0	0.59	0.42	0.59	57.9
Appro	oach		348	2.1	348	2.1	0.373	8.0	LOS A	2.0	14.0	0.59	0.42	0.59	58.2
West	Flewe	ellyn													
10	L2	All MCs	59	5.0	59	5.0	0.298	6.6	LOSA	1.5	10.8	0.49	0.32	0.49	57.2
11	T1	All MCs	231	2.0	231	2.0	0.298	6.5	LOSA	1.5	10.8	0.49	0.32	0.49	59.2
12	R2	All MCs	11	18.0	11	18.0	0.298	7.5	LOSA	1.5	10.8	0.49	0.32	0.49	55.1
Appro	oach		301	3.2	301	3.2	0.298	6.5	LOSA	1.5	10.8	0.49	0.32	0.49	58.6
All Ve	hicles		1288	2.4	1288	2.4	0.390	7.2	LOSA	2.2	15.4	0.53	0.36	0.53	58.8

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Licence: NETWORK / FLOATING | Processed: October 27, 2025 3:47:55 PM
Project: C:\Users\ReihanehAzhdar\CGH TRANSPORTATION\CGH Active Projects - Documents\2025\2025-005 Cavian Stittsville South Subdivision\DATA\Sidra\2025-005 Stittsville South - 2025-02-21.sip9

Intersection												
Intersection Delay, s/veh	19.8											,
Intersection LOS	С											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4		1	1	
Traffic Vol, veh/h	44	130	14	14	195	169	27	234	26	176	272	47
Future Vol, veh/h	44	130	14	14	195	169	27	234	26	176	272	47
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	7	2	2	2	4	2	7	2	2	2
Mvmt Flow	44	130	14	14	195	169	27	234	26	176	272	47
Number of Lanes	0	1	0	0	1	0	0	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			2			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			2			1			1		
HCM Control Delay	15.3			23.5			19.4			19		
HCM LOS	С			С			С			С		
Lane		NBLn1	EBLn1	WBLn1	SBLn1	SBLn2						
Lane Vol Left, %		NBLn1	EBLn1 23%	WBLn1 4%	SBLn1 100%	SBLn2 0%						
Vol Left, %		9%	23%	4%	100%	0%						
Vol Left, % Vol Thru, %		9% 82%	23% 69%	4% 52%	100% 0%	0% 85%						
Vol Left, % Vol Thru, % Vol Right, %		9% 82% 9%	23% 69% 7%	4% 52% 45%	100% 0% 0%	0% 85% 15%						
Vol Left, % Vol Thru, % Vol Right, % Sign Control		9% 82% 9% Stop	23% 69% 7% Stop	4% 52% 45% Stop	100% 0% 0% Stop	0% 85% 15% Stop						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		9% 82% 9% Stop 287	23% 69% 7% Stop 188	4% 52% 45% Stop 378	100% 0% 0% Stop 176	0% 85% 15% Stop 319						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol		9% 82% 9% Stop 287 27 234 26	23% 69% 7% Stop 188 44 130	4% 52% 45% Stop 378 14 195 169	100% 0% 0% Stop 176 176 0	0% 85% 15% Stop 319 0 272 47						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol		9% 82% 9% Stop 287 27 234	23% 69% 7% Stop 188 44 130	4% 52% 45% Stop 378 14 195	100% 0% 0% Stop 176 176	0% 85% 15% Stop 319 0						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		9% 82% 9% Stop 287 27 234 26 287 4a	23% 69% 7% Stop 188 44 130 14 188	4% 52% 45% Stop 378 14 195 169	100% 0% 0% Stop 176 176 0 0	0% 85% 15% Stop 319 0 272 47 319 5						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		9% 82% 9% Stop 287 27 234 26 287	23% 69% 7% Stop 188 44 130 14	4% 52% 45% Stop 378 14 195 169 378	100% 0% 0% Stop 176 176 0 0	0% 85% 15% Stop 319 0 272 47 319						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		9% 82% 9% Stop 287 27 234 26 287 4a	23% 69% 7% Stop 188 44 130 14 188	4% 52% 45% Stop 378 14 195 169 378	100% 0% 0% Stop 176 176 0 0	0% 85% 15% Stop 319 0 272 47 319 5						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		9% 82% 9% Stop 287 27 234 26 287 4a 0.573	23% 69% 7% Stop 188 44 130 14 188 2	4% 52% 45% Stop 378 14 195 169 378 2 0.693	100% 0% 0% Stop 176 176 0 0 176 5	0% 85% 15% Stop 319 0 272 47 319 5						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		9% 82% 9% Stop 287 27 234 26 287 4a 0.573 7.192 Yes 505	23% 69% 7% Stop 188 44 130 14 188 2 0.392 7.514 Yes 481	4% 52% 45% Stop 378 14 195 169 378 2 0.693 6.704	100% 0% 0% Stop 176 176 0 0 176 5 0.376 7.79	0% 85% 15% Stop 319 0 272 47 319 5 0.626 7.171						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		9% 82% 9% Stop 287 27 234 26 287 4a 0.573 7.192 Yes 505 5.192	23% 69% 7% Stop 188 44 130 14 188 2 0.392 7.514 Yes 481 5.532	4% 52% 45% Stop 378 14 195 169 378 2 0.693 6.704 Yes 544 4.704	100% 0% 0% Stop 176 176 0 0 176 5 0.376 7.79 Yes 465 5.49	0% 85% 15% Stop 319 0 272 47 319 5 0.626 7.171 Yes 507 4.871						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		9% 82% 9% Stop 287 27 234 26 287 4a 0.573 7.192 Yes 505 5.192 0.568	23% 69% 7% Stop 188 44 130 14 188 2 0.392 7.514 Yes 481 5.532 0.391	4% 52% 45% Stop 378 14 195 169 378 2 0.693 6.704 Yes 544 4.704 0.695	100% 0% 0% Stop 176 176 0 0 176 5 0.376 7.79 Yes 465 5.49 0.378	0% 85% 15% Stop 319 0 272 47 319 5 0.626 7.171 Yes 507 4.871 0.629						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		9% 82% 9% Stop 287 27 234 26 287 4a 0.573 7.192 Yes 505 5.192 0.568 19.4	23% 69% 7% Stop 188 44 130 14 188 2 0.392 7.514 Yes 481 5.532 0.391 15.3	4% 52% 45% Stop 378 14 195 169 378 2 0.693 6.704 Yes 544 4.704 0.695 23.5	100% 0% 0% Stop 176 176 0 0 176 5 0.376 7.79 Yes 465 5.49 0.378 15.1	0% 85% 15% Stop 319 0 272 47 319 5 0.626 7.171 Yes 507 4.871 0.629 21.1						
Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		9% 82% 9% Stop 287 27 234 26 287 4a 0.573 7.192 Yes 505 5.192 0.568	23% 69% 7% Stop 188 44 130 14 188 2 0.392 7.514 Yes 481 5.532 0.391	4% 52% 45% Stop 378 14 195 169 378 2 0.693 6.704 Yes 544 4.704 0.695	100% 0% 0% Stop 176 176 0 0 176 5 0.376 7.79 Yes 465 5.49 0.378	0% 85% 15% Stop 319 0 272 47 319 5 0.626 7.171 Yes 507 4.871 0.629						

Appendix Q

Synchro and Sidra Intersection Worksheets – 2030 Future Total - EBL at Flewellyn Road at Street 12 & at Street 16

Intersection						
Int Delay, s/veh	2.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
				WDK		אמט
Lane Configurations	\	200	}	0.4	Y	ΕO
Traffic Vol, veh/h	22	326	202	24	59	59
Future Vol, veh/h	22	326	202	24	59	59
Conflicting Peds, #/hr	_ 0	_ 0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	15	-	-	-	0	-
Veh in Median Storage	∋,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	22	326	202	24	59	59
Major/Minor	Major1	N	Major2		Minor2	
	226	0	viaj012 -	0	584	214
Conflicting Flow All Stage 1	220	-	-	-	214	Z 14 -
•					370	
Stage 2	4.40	-	-	-		-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-		3.518	
Pot Cap-1 Maneuver	1342	-	-	-	474	826
Stage 1	-	-	-	-	822	-
Stage 2	-	-	-	-	699	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1342	-	-	-	466	826
Mov Cap-2 Maneuver	-	-	-	-	466	-
Stage 1	-	-	-	-	809	-
Stage 2	-	-	-	-	699	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.5		0		12.5	
HCM LOS	0.5		U		12.3 B	
TICIVI LOS					Ь	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		1342	-	-	-	596
HCM Lane V/C Ratio		0.016	-	-	-	0.198
HCM Control Delay (s))	7.7	-	-	-	12.5
HCM Lane LOS		Α	-	-	-	В
HCM 95th %tile Q(veh)	0.1	-	-	-	0.7
	,					

Intersection						
Int Delay, s/veh	4.9					
		EBT	WDT	WDD	CDI	SBR
Movement	EBL		WBT	WBR	SBL	SBK
Lane Configurations	<u> </u>	†	^	- 4	Y	444
Traffic Vol, veh/h	51	233	210	51	115	111
Future Vol, veh/h	51	233	210	51	115	111
Conflicting Peds, #/hr	_ 0	_ 0	0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	30	-	-	-	0	-
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	51	233	210	51	115	111
Major/Minor N	Major1	N	Major2		Minor2	
						236
Conflicting Flow All	261	0	-	0	571	
Stage 1	-	-	-	-	236	-
Stage 2	- 4.40	-	-	-	335	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-		3.318
Pot Cap-1 Maneuver	1303	-	-	-	482	803
Stage 1	-	-	-	-	803	-
Stage 2	-	-	-	-	725	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1303	-	-	-	463	803
Mov Cap-2 Maneuver	-	-	-	-	463	-
Stage 1	-	-	-	-	772	-
Stage 2	-	-	-	-	725	-
Ŭ						
			14/0		0.0	
Approach	EB		WB		SB	
HCM Control Delay, s	1.4		0		15	
HCM LOS					С	
Minor Lane/Major Mvm	t	EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		1303				
HCM Lane V/C Ratio		0.039	_	_		0.386
		7.9	_	_	_	15
HCM Control Delay (s)		1.5				
HCM Control Delay (s)		Δ	_	_	_	\sim
HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh)		A 0.1	- -	-	-	C 1.8

Intersection						
Int Delay, s/veh	2					
		EDT	\\/DT	WPD	CDI	SBR
Movement Configurations	EBL	EBT	WBT	WBR	SBL	SBK
Lane Configurations	\	750	♣	<i>E7</i>	42	40
Traffic Vol, veh/h	53	258	375	57	42	42
Future Vol, veh/h	53	258	375	57	42	42
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	- 4 F	None	-	None	-	None
Storage Length	15	-	-	-	0	-
Veh in Median Storage		0	0	-	0	-
Grade, %	400	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	53	258	375	57	42	42
Major/Minor I	Major1	N	Major2		Minor2	
Conflicting Flow All	432	0	-	0	768	404
Stage 1	-	-	_	-	404	-
Stage 2	_	_	_	_	364	_
Critical Hdwy	4.12		_	_	6.42	6.22
Critical Hdwy Stg 1	1.12	_	_	_	5.42	- 0.22
Critical Hdwy Stg 2	_		_	_	5.42	_
Follow-up Hdwy	2.218	_	_	_	3.518	
Pot Cap-1 Maneuver	1128			_	370	647
Stage 1	1120		_	_	674	-
Stage 2	_		_	_	703	_
Platoon blocked, %		_		_	100	
Mov Cap-1 Maneuver	1128	_		_	353	647
Mov Cap-1 Maneuver	1120	_	_	-	353	- 047
		-	-		642	
Stage 1	-	-	-	-		-
Stage 2	-	-	-	-	703	-
Approach	EB		WB		SB	
	EB 1.4		WB 0		SB 14.6	
HCM Control Delay, s					14.6	
HCM Control Delay, s HCM LOS	1.4	- FDI	0	MDT	14.6 B	ODL 4
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm	1.4	EBL	0 EBT	WBT	14.6 B WBR	
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h)	1.4	1128	0 EBT	-	14.6 B WBR	457
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	1.4 nt	1128 0.047	0 EBT -	-	14.6 B WBR :	457 0.184
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	1.4 nt	1128 0.047 8.3	0 EBT	- - -	14.6 B WBR :	457 0.184 14.6
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	1.4 nt	1128 0.047	0 EBT -	-	14.6 B WBR :	457 0.184

Intersection						
Int Delay, s/veh	4.4					
		EDT	MOT	WDD	OD	000
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ነ	<u></u>	\$,	Y	
Traffic Vol, veh/h	122	230	295	122	81	79
Future Vol, veh/h	122	230	295	122	81	79
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	30	-	-	-	0	-
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	122	230	295	122	81	79
	Major1		Major2		Minor2	
Conflicting Flow All	417	0	-	0	830	356
Stage 1	-	-	-	-	356	-
Stage 2	-		-	-	474	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1142	-	-	-	340	688
Stage 1	-	-	-	-	709	-
Stage 2	_	-	_	_	626	_
Platoon blocked, %		_	_	_	0_0	
Mov Cap-1 Maneuver	1142		_		304	688
Mov Cap-1 Maneuver	1142	_	_	_	304	- 000
	-	-			633	
Stage 1	-	-	-	-		-
Stage 2	-	-	-	-	626	-
Approach	EB		WB		SB	
HCM Control Delay, s	3		0		18.8	
HCM LOS	- 5		- 0		C	
1 TOWN LOO					J	
Minor Lane/Major Mvm	t	EBL	EBT	WBT	WBR :	
Capacity (veh/h)		1142	-	-	-	420
HCM Lane V/C Ratio		0.107	-	-	-	0.381
HCM Control Delay (s)		8.5	-	-	-	18.8
HCM Lane LOS		Α	-	-	-	С
HCM 95th %tile Q(veh)		0.4	-	-	-	1.8
2.1. (1.0.1)						

Appendix R

Synchro and Sidra Intersection Worksheets – 2035 Future Total Conditions

▼ Site: 101 [Fernbank at Shea FT2035 AM (Site Folder:

General)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New Site

Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class	[Total	lows HV]	Fl [Total]		Deg. Satn	Aver. Delay	Level of Service	Que [Veh.	ack Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
Cauth	n: Shea		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
			40	0.0	40	0.0	0.005	04.0	1000	4.0	00.0	0.00	4.00	4.50	00.0
1		All MCs		6.0	18	6.0	0.695	24.6	LOS C	4.8	36.0	0.86	1.03	1.50	39.8
2	T1	All MCs	258	5.0	258		0.695	24.4	LOS C	4.8	36.0	0.86	1.03	1.50	40.4
3	R2	All MCs		13.0		13.0	0.695	26.1	LOS D	4.8	36.0	0.86	1.03	1.50	40.1
Appro	oach		368	7.0	368	7.0	0.695	24.8	LOS C	4.8	36.0	0.86	1.03	1.50	40.3
East:	Fernb	ank													
4	L2	All MCs	87	5.0	87	5.0	0.618	16.0	LOS C	5.2	37.5	0.81	0.87	1.31	43.8
5	T1	All MCs	285	4.0	285	4.0	0.618	15.8	LOS C	5.2	37.5	0.81	0.87	1.31	44.5
6	R2	All MCs	75	2.0	75	2.0	0.618	15.6	LOS C	5.2	37.5	0.81	0.87	1.31	44.2
Appro	oach		447	3.9	447	3.9	0.618	15.8	LOS C	5.2	37.5	0.81	0.87	1.31	44.3
North	: Shea	l													
7	L2	All MCs	131	4.0	131	4.0	0.665	15.1	LOS C	7.8	56.9	0.81	0.82	1.33	44.0
8	T1	All MCs	231	7.0	231	7.0	0.665	15.4	LOS C	7.8	56.9	0.81	0.82	1.33	44.6
9	R2	All MCs	222	5.0	222	5.0	0.665	15.2	LOS C	7.8	56.9	0.81	0.82	1.33	44.4
Appro	oach		584	5.6	584	5.6	0.665	15.2	LOS C	7.8	56.9	0.81	0.82	1.33	44.4
West	: Fernb	ank													
10	L2	All MCs	305	4.0	305	4.0	0.885	34.4	LOS D	21.1	151.9	1.00	1.52	2.73	35.7
11	T1	All MCs	401	3.0	401	3.0	0.885	34.2	LOS D	21.1	151.9	1.00	1.52	2.73	36.2
12	R2	All MCs	33	3.0	33	3.0	0.885	34.2	LOS D	21.1	151.9	1.00	1.52	2.73	36.0
Appro	oach		739	3.4	739	3.4	0.885	34.3	LOS D	21.1	151.9	1.00	1.52	2.73	36.0
All Ve	hicles		2138	4.7	2138	4.7	0.885	23.6	LOS C	21.1	151.9	0.89	1.11	1.84	40.4

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6). Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Licence: NETWORK / FLOATING | Processed: October 27, 2025 4:47:49 PM
Project: C:\Users\ReihanehAzhdar\CGH TRANSPORTATION\CGH Active Projects - Documents\2025\2025-005 Cavian Stittsville South Subdivision\DATA\Sidra\2025-005 Stittsville South - 2025-02-21.sip9

▼ Site: 101 [Shea at Flewellyn FT2030 AM (Site Folder:

General)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New Site

Site Category: (None)

Roundabout

		ovement													
Mov ID	Turn	Mov Class	Dem	and ows		rival lows	Deg. Satn	Aver. Delay	Level of Service		lack Of eue	Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
		Olass		HV]	[Total veh/h		v/c	sec	OCIVICO	[Veh. veh	Dist] m	Que	Rate	Cycles	km/h
South	: Shea	a													
1	L2	All MCs	8	13.0	8	13.0	0.234	7.1	LOSA	1.0	7.6	0.54	0.40	0.54	55.9
2	T1	All MCs	184	5.0	184	5.0	0.234	6.5	LOSA	1.0	7.6	0.54	0.40	0.54	59.2
3	R2	All MCs	13	2.0	13	2.0	0.234	6.3	LOSA	1.0	7.6	0.54	0.40	0.54	59.4
Appro	oach		205	5.1	205	5.1	0.234	6.5	LOSA	1.0	7.6	0.54	0.40	0.54	59.1
East:	Flewe	llyn													
4	L2	All MCs	2	12.0	2	12.0	0.183	5.7	LOSA	0.8	6.0	0.43	0.27	0.43	57.4
5	T1	All MCs	167	2.0	167	2.0	0.183	5.1	LOSA	0.8	6.0	0.43	0.27	0.43	61.4
6	R2	All MCs	22	2.0	22	2.0	0.183	5.1	LOSA	0.8	6.0	0.43	0.27	0.43	60.9
Appro	oach		191	2.1	191	2.1	0.183	5.1	LOSA	8.0	6.0	0.43	0.27	0.43	61.3
North	: Shea														
7	L2	All MCs	37	8.0	37	8.0	0.250	5.7	LOSA	1.3	9.1	0.38	0.21	0.38	57.6
8	T1	All MCs	193	3.0	193	3.0	0.250	5.5	LOSA	1.3	9.1	0.38	0.21	0.38	60.3
9	R2	All MCs	51	2.0	51	2.0	0.250	5.4	LOSA	1.3	9.1	0.38	0.21	0.38	60.0
Appro	oach		281	3.5	281	3.5	0.250	5.5	LOSA	1.3	9.1	0.38	0.21	0.38	59.9
West	Flewe	ellyn													
10	L2	All MCs	60	7.0	60	7.0	0.363	7.3	LOSA	2.0	14.4	0.49	0.30	0.49	56.4
11	T1	All MCs	299	2.0	299	2.0	0.363	7.0	LOSA	2.0	14.4	0.49	0.30	0.49	58.9
12	R2	All MCs	26	4.0	26	4.0	0.363	7.1	LOSA	2.0	14.4	0.49	0.30	0.49	57.9
Appro	oach		385	2.9	385	2.9	0.363	7.1	LOSA	2.0	14.4	0.49	0.30	0.49	58.4
All Ve	hicles		1062	3.3	1062	3.3	0.363	6.2	LOSA	2.0	14.4	0.46	0.29	0.46	59.4

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Licence: NETWORK / FLOATING | Processed: October 27, 2025 3:48:12 PM
Project: C:\Users\ReihanehAzhdar\CGH TRANSPORTATION\CGH Active Projects - Documents\2025\2025-005 Cavian Stittsville South

Subdivision\DATA\Sidra\2025-005 Stittsville South - 2025-02-21.sip9

Intersection												
Intersection Delay, s/veh	18.4											
Intersection LOS	С											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4		7	ĵ.	
Traffic Vol, veh/h	38	164	15	19	155	168	17	240	17	99	269	53
Future Vol, veh/h	38	164	15	19	155	168	17	240	17	99	269	53
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	4	2	2	2	3	18	10	2	3	5	2
Mvmt Flow	38	164	15	19	155	168	17	240	17	99	269	53
Number of Lanes	0	1	0	0	1	0	0	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB	_	_	EB		_	SB	_	_	NB		
Opposing Lanes	1			1			2			1		

Approach	EB	WB	NB	SB
Opposing Approach	WB	EB	SB	NB
Opposing Lanes	1	1	2	1
Conflicting Approach Left	SB	NB	EB	WB
Conflicting Lanes Left	2	1	1	1
Conflicting Approach Right	NB	SB	WB	EB
Conflicting Lanes Right	1	2	1	1
HCM Control Delay	15.5	19.6	18.6	18.9
HCM LOS	С	С	С	С

Lane	NBLn1	EBLn1	WBLn1	SBLn1	SBLn2
Vol Left, %	6%	18%	6%	100%	0%
Vol Thru, %	88%	76%	45%	0%	84%
Vol Right, %	6%	7%	49%	0%	16%
Sign Control	Stop	Stop	Stop	Stop	Stop
Traffic Vol by Lane	274	217	342	99	322
LT Vol	17	38	19	99	0
Through Vol	240	164	155	0	269
RT Vol	17	15	168	0	53
Lane Flow Rate	274	217	342	99	322
Geometry Grp	4a	2	2	5	5
Degree of Util (X)	0.546	0.428	0.617	0.209	0.626
Departure Headway (Hd)	7.168	7.096	6.491	7.597	7.001
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes
Cap	501	503	554	470	512
Service Time	5.258	5.188	4.57	5.379	4.783
HCM Lane V/C Ratio	0.547	0.431	0.617	0.211	0.629
HCM Control Delay	18.6	15.5	19.6	12.4	20.9
HCM Lane LOS	С	С	С	В	С
HCM 95th-tile Q	3.2	2.1	4.2	0.8	4.3

Intersection						
Int Delay, s/veh	1.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			4	1	
Traffic Vol, veh/h	40	12	5	284	317	17
Future Vol, veh/h	40	12	5	284	317	17
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	-	_	-	_	-
Veh in Median Storage		_	_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	40	12	5	284	317	17
		14		207	011	- 11
	Minor2		Major1		Major2	
Conflicting Flow All	620	326	334	0	-	0
Stage 1	326	-	-	-	-	-
Stage 2	294	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318		-	-	-
Pot Cap-1 Maneuver	452	715	1225	-	-	-
Stage 1	731	-	-	-	-	-
Stage 2	756	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	450	715	1225	-	-	-
Mov Cap-2 Maneuver	450	-	-	-	-	-
Stage 1	727	-	-	-	-	-
Stage 2	756	-	-	-	-	_
- 13.g 						
Approach	EB		NB		SB	
HCM Control Delay, s	13.2		0.1		0	
HCM LOS	В					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1225	-	492	-	-
HCM Lane V/C Ratio		0.004		0.106	<u>-</u>	<u>-</u>
HCM Control Delay (s)		8	0	13.2	_	_
HCM Lane LOS		A	A	13.2 B	_	_
HCM 95th %tile Q(veh)	\	0		0.4	_	_
HOW JOHN JOHNE W(VEH)	1	U		0.4		_

Intersection						
Int Delay, s/veh	2.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
	CDL			WDIX		SDK
Lane Configurations	22	4	7.	0.4	Y	ΕO
Traffic Vol, veh/h	22	326	212	24	59	59
Future Vol, veh/h	22	326	212	24	59	59
Conflicting Peds, #/hr	_ 0	_ 0	0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	110110	-		-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	22	326	212	24	59	59
N.A ' /N.A'	M. C. A		4 ' 0		1 ' · · · O	
	Major1		Major2		/linor2	
Conflicting Flow All	236	0	-	0	594	224
Stage 1	-	-	-	-	224	-
Stage 2	-	-	-	-	370	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1331	-	-	-	468	815
Stage 1	-	-	-	-	813	-
Stage 2	-	-	_	-	699	-
Platoon blocked, %		_	_	_		
Mov Cap-1 Maneuver	1331	_	_	_	459	815
Mov Cap 1 Maneuver	-	_	_	_	459	-
Stage 1	_			_	797	
Stage 2			_		699	_
Slayt 2	_	-	-	-	บฮฮ	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.5		0		12.7	
HCM LOS	0.0				В	
1.5W E00					U	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR:	SBLn1
Capacity (veh/h)		1331	-	-	-	587
HCM Lane V/C Ratio		0.017	-	-	-	0.201
HCM Control Delay (s))	7.8	0	-		12.7
HCM Lane LOS		A	A	_	_	В
HCM 95th %tile Q(veh)	0.1	-	_	_	0.7
	,					

Intersection						
Int Delay, s/veh	4.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	ĵ.		Y	
Traffic Vol, veh/h	51	233	220	51	115	111
Future Vol, veh/h	51	233	220	51	115	111
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-		-	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage	e.# -	0	0	-	0	-
Grade, %	-,	0	0	_	0	_
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	51	233	220	51	115	111
IVIVIII(I IOW	31	200	220	Ji	110	111
Major/Minor	Major1	1	Major2	N	Minor2	
Conflicting Flow All	271	0	-	0	581	246
Stage 1	-	-	-	-	246	-
Stage 2	-	-	-	-	335	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	_	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1292	-	_	-	476	793
Stage 1	-	-	-	_	795	-
Stage 2	_	_	_	_	725	_
Platoon blocked, %		_	_	_	, _0	
Mov Cap-1 Maneuver	1292	_	_	_	455	793
Mov Cap 1 Maneuver	-	_	_	_	455	-
Stage 1			_	_	759	_
•	_	_		_	725	_
Stage 2	-	-	-	-	123	-
Approach	EB		WB		SB	
HCM Control Delay, s	1.4		0		15.3	
HCM LOS					С	
				14/5-	14/5-	0DL (
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR:	
Capacity (veh/h)		1292	-	-	-	575
HCM Lane V/C Ratio		0.039	-	-	-	0.393
HCM Control Delay (s)		7.9	0	-	-	15.3
HCM Lane LOS		Α	Α	-	-	С
HCM 95th %tile Q(veh)	0.1	-	-	-	1.9

Intersection						
Int Delay, s/veh	1.2					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	-04	^	4	7	40
Traffic Vol, veh/h	43	21	6	318	313	12
Future Vol, veh/h	43	21	6	318	313	12
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	5	3	2
Mvmt Flow	43	21	6	318	313	12
Major/Minor	Minor2		Major1	N	//ajor2	
	649	319	325		//ajuiz	0
Conflicting Flow All	319			0		
Stage 1		-	-	-	-	-
Stage 2	330	-	4.40	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	0.040	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	434	722	1235	-	-	-
Stage 1	737	-	-	-	-	-
Stage 2	728	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	431	722	1235	-	-	-
Mov Cap-2 Maneuver	431	-	-	-	-	-
Stage 1	733	-	-	-	-	-
Stage 2	728	-	-	-	-	-
Annragah	ED		ND		CD	
Approach	EB		NB		SB	
HCM Control Delay, s	13.3		0.1		0	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBL	NBT I	EBLn1	SBT	SBR
Capacity (veh/h)	•	1235	-			-
HCM Lane V/C Ratio		0.005		0.129	_	-
HCM Control Delay (s)		7.9	0	13.3	-	
HCM Lane LOS			A	13.3 B		
HCM 95th %tile Q(veh	١	A 0	A -	0.4	-	-
HOW SOM WINE Q(Ven)	U	-	0.4	-	-

▼ Site: 101 [Fernbank at Shea FT2035 PM (Site Folder:

General)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New Site

Site Category: (None)

Roundabout

		ovement													
Mov ID	Turn	Mov Class	Dem	lows		rival ows	Deg. Satn	Aver. Delay	Level of Service		lack Of eue	Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
טו		Class			Total		Salli	Delay	Service	[Veh.	eue Dist]	Que	Rate	Cycles	Speed
			veh/h		veh/h	%	v/c	sec		veh	m ¹				km/h
South	: Shea	a													
1	L2	All MCs	30	3.0	30	3.0	0.679	20.7	LOS C	5.3	38.7	0.86	0.98	1.45	41.6
2	T1	All MCs	264	3.0	264	3.0	0.679	20.7	LOS C	5.3	38.7	0.86	0.98	1.45	42.2
3	R2	All MCs	127	6.0	127	6.0	0.679	21.2	LOS C	5.3	38.7	0.86	0.98	1.45	41.9
Appro	oach		421	3.9	421	3.9	0.679	20.8	LOS C	5.3	38.7	0.86	0.98	1.45	42.1
East:	Fernb	ank													
4	L2	All MCs	130	8.0	130	8.0	0.928	43.2	LOS E	29.1	210.4	1.00	1.82	3.30	33.3
5	T1	All MCs	551	3.0	551	3.0	0.928	42.6	LOS E	29.1	210.4	1.00	1.82	3.30	33.7
6	R2	All MCs	115	2.0	115	2.0	0.928	42.5	LOS E	29.1	210.4	1.00	1.82	3.30	33.6
Appro	oach		796	3.7	796	3.7	0.928	42.7	LOS E	29.1	210.4	1.00	1.82	3.30	33.7
North	: Shea														
7	L2	All MCs	60	2.0	60	2.0	0.836	34.0	LOS D	10.0	72.5	0.96	1.28	2.19	36.1
8	T1	All MCs	322	2.0	322	2.0	0.836	34.0	LOS D	10.0	72.5	0.96	1.28	2.19	36.6
9	R2	All MCs	144	9.0	144	9.0	0.836	35.2	LOS E	10.0	72.5	0.96	1.28	2.19	36.3
Appro	oach		526	3.9	526	3.9	0.836	34.3	LOS D	10.0	72.5	0.96	1.28	2.19	36.4
West	Fernb	ank													
10	L2	All MCs	133	5.0	133	5.0	0.893	37.7	LOS E	19.7	142.1	1.00	1.57	2.85	34.9
11	T1	All MCs	534	3.0	534	3.0	0.893	37.5	LOS E	19.7	142.1	1.00	1.57	2.85	35.4
12	R2	All MCs	34	3.0	34	3.0	0.893	37.5	LOS E	19.7	142.1	1.00	1.57	2.85	35.2
Appro	oach		701	3.4	701	3.4	0.893	37.5	LOS E	19.7	142.1	1.00	1.57	2.85	35.3
All Ve	hicles		2444	3.7	2444	3.7	0.928	35.6	LOS E	29.1	210.4	0.97	1.49	2.61	36.0

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Licence: NETWORK / FLOATING | Processed: October 27, 2025 4:49:08 PM
Project: C:\Users\ReihanehAzhdar\CGH TRANSPORTATION\CGH Active Projects - Documents\2025\2025-005 Cavian Stittsville South Subdivision\DATA\Sidra\2025-005 Stittsville South - 2025-02-21.sip9

▼ Site: 101 [Shea at Flewellyn FT2035 PM (Site Folder:

General)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New Site

Site Category: (None)

Roundabout

Vehic	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows		rival lows HV 1	Deg. Satn	Aver. Delay	Level of Service		Back Of eue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h		veh/h	%	v/c	sec		veh	m m		rtate	O y CiC3	km/h
South	n: Shea	a													
1	L2	All MCs	16	6.0	16	6.0	0.302	7.0	LOSA	1.5	10.8	0.53	0.36	0.53	57.3
2	T1	All MCs	260	2.0	260	2.0	0.302	6.8	LOSA	1.5	10.8	0.53	0.36	0.53	59.5
3	R2	All MCs	17	6.0	17	6.0	0.302	7.0	LOSA	1.5	10.8	0.53	0.36	0.53	58.1
Appro	oach		293	2.5	293	2.5	0.302	6.8	LOSA	1.5	10.8	0.53	0.36	0.53	59.3
East:	Flewe	llyn													
4	L2	All MCs	2	2.0	2	2.0	0.409	8.3	LOSA	2.3	16.1	0.59	0.41	0.59	57.1
5	T1	All MCs	346	2.0	346	2.0	0.409	8.3	LOSA	2.3	16.1	0.59	0.41	0.59	58.3
6	R2	All MCs	45	2.0	45	2.0	0.409	8.3	LOSA	2.3	16.1	0.59	0.41	0.59	57.8
Appro	oach		393	2.0	393	2.0	0.409	8.3	LOSA	2.3	16.1	0.59	0.41	0.59	58.3
North	: Shea														
7	L2	All MCs	22	3.0	22	3.0	0.406	8.5	LOSA	2.2	15.6	0.60	0.43	0.60	56.5
8	T1	All MCs	285	2.0	285	2.0	0.406	8.5	LOSA	2.2	15.6	0.60	0.43	0.60	58.0
9	R2	All MCs	71	2.0	71	2.0	0.406	8.5	LOSA	2.2	15.6	0.60	0.43	0.60	57.5
Appro	oach		378	2.1	378	2.1	0.406	8.5	LOSA	2.2	15.6	0.60	0.43	0.60	57.8
West	: Flewe	ellyn													
10	L2	All MCs	59	5.0	59	5.0	0.318	7.1	LOSA	1.6	11.6	0.52	0.35	0.52	56.8
11	T1	All MCs	242	2.0	242	2.0	0.318	6.9	LOSA	1.6	11.6	0.52	0.35	0.52	58.8
12	R2	All MCs	11	18.0	11	18.0	0.318	8.0	LOSA	1.6	11.6	0.52	0.35	0.52	54.8
Appro	oach		312	3.1	312	3.1	0.318	7.0	LOSA	1.6	11.6	0.52	0.35	0.52	58.3
All Ve	hicles		1376	2.4	1376	2.4	0.409	7.7	LOSA	2.3	16.1	0.56	0.39	0.56	58.4

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6. Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Licence: NETWORK / FLOATING | Processed: October 27, 2025 4:51:13 PM
Project: C:\Users\ReihanehAzhdar\CGH TRANSPORTATION\CGH Active Projects - Documents\2025\2025-005 Cavian Stittsville South Subdivision\DATA\Sidra\2025-005 Stittsville South - 2025-02-21.sip9

Intersection												
Intersection Delay, s/veh	21.5											
Intersection LOS	С											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4		1	1	
Traffic Vol, veh/h	44	141	14	14	195	169	27	245	26	176	281	47
Future Vol, veh/h	44	141	14	14	195	169	27	245	26	176	281	47
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	7	2	2	2	4	2	7	2	2	2
Mvmt Flow	44	141	14	14	195	169	27	245	26	176	281	47
Number of Lanes	0	1	0	0	1	0	0	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			2			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			2			1			1		
HCM Control Delay	16.3			25.7			21.1			20.7		
HCM LOS	С			D			С			С		
Lane		NBLn1	EBLn1	WBLn1	SBLn1	SBLn2						
Vol Left, %		9%	22%	4%	100%	0%						
Vol Thru, %		82%	71%	52%	0%	86%						
Vol Right, %		9%	7%	45%	0%	14%						
Sign Control		Stop	Stop	Stop	Stop	Stop						
Traffic Vol by Lane		298	199	378	176	328						
LT Vol		27	44	14	176	0						
Through Vol		245	141	195	0	281						
RT Vol		26	14	169	0	47						
Lane Flow Rate		298	199	378	176	328						
Geometry Grp		4a	2	2	5	5						
Degree of Util (X)		0.606	0.423	0.721	0.388	0.666						
Departure Headway (Hd)		7.319	7.66	6.865	7.931	7.314						
Convergence, Y/N		Yes	Yes	Yes	Yes	Yes						
Сар		492	470	529	454	495						
Service Time		5.378	5.726	4.882	5.659	5.042						
HCM Lane V/C Ratio		0.606	0.423	0.715	0.388	0.663						
HCM Control Delay		21.1	16.3	25.7	15.6	23.5						
HCM Lane LOS		С	С	D	С	С						
HCM 95th-tile Q		4	2.1	5.9	1.8	4.8						

Intersection						
Int Delay, s/veh	0.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			4	1	-0311
Traffic Vol, veh/h	28	8	12	352	370	41
Future Vol, veh/h	28	8	12	352	370	41
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	-	_	-	_	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	_	_	0	0	_
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	28	8	12	352	370	41
WWW.	20		12	002	010	-T 1
			_			
Major/Minor I	Minor2		Major1	N	/lajor2	
Conflicting Flow All	767	391	411	0	-	0
Stage 1	391	-	-	-	-	-
Stage 2	376	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	370	658	1148	-	-	-
Stage 1	683	-	-	-	-	-
Stage 2	694	-	_	-	-	-
Platoon blocked, %				_	_	_
Mov Cap-1 Maneuver	365	658	1148	-	-	_
Mov Cap-2 Maneuver	365	-	-	_	_	_
Stage 1	674	_	-	_	_	-
Stage 2	694	_	_	_	_	_
Olugo Z	004					
Approach	EB		NB		SB	
HCM Control Delay, s	EB 14.8		NB 0.3		SB 0	
HCM Control Delay, s	14.8					
HCM Control Delay, s HCM LOS	14.8 B	NDI	0.3	EDI n1	0	CDD
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm	14.8 B	NBL 1148	0.3	EBLn1	0 SBT	SBR
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h)	14.8 B	1148	0.3 NBT	405	0 SBT	-
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	14.8 B	1148 0.01	0.3 NBT -	405 0.089	SBT -	-
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	14.8 B	1148 0.01 8.2	0.3 NBT - - 0	405 0.089 14.8	0 SBT - -	- - -
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	14.8 B	1148 0.01	0.3 NBT -	405 0.089	SBT -	-

Intersection						
Int Delay, s/veh	2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	4	₩ 1	WDI	₩.	אופט
Traffic Vol, veh/h	53	269	375	57	42	42
Future Vol, veh/h	53	269	375	57	42	42
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-		Stop -	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage	- # -	0	0	_	0	_
Grade, %	5, π - -	0	0	_	0	_
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	53	269	375	57	42	42
MAINIT LIOM	55	209	313	31	42	42
Major/Minor I	Major1	N	Major2	ا	Minor2	
Conflicting Flow All	432	0	-	0	779	404
Stage 1	-	-	-	-	404	-
Stage 2	-	-	-	-	375	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1128	-	-	-	364	647
Stage 1	-	_	_	_	674	_
						-
Stage 2	-	-	-	-		-
Stage 2 Platoon blocked, %	-	- -	-		695	
Platoon blocked, %		-	-	-	695	-
Platoon blocked, % Mov Cap-1 Maneuver	1128	-	-	- - -	695 344	
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver	1128 -	- -	- - -	- - -	344 344	- 647 -
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1	1128 - -	- -	- - -	- - - -	344 344 637	647 -
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver	1128 -	- - - -	-	- - -	344 344	- 647 -
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2	1128 - - -	- - - -	- - -	- - - -	344 344 637 695	647 -
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach	1128 - - - EB	- - - -	- - -	- - - -	695 344 344 637 695 SB	647 -
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s	1128 - - -	- - - -	- - -	- - - -	344 344 637 695	647 -
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach	1128 - - - EB	- - - -	- - - WB	- - - -	695 344 344 637 695 SB	647 -
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s	1128 - - - EB	- - - -	- - - WB	- - - -	695 344 344 637 695 SB 14.9	647 -
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS	1128 - - - EB 1.4	-	- - - - WB	-	695 344 344 637 695 SB 14.9 B	647
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm	1128 - - - EB 1.4	- - - - -	- - - - WB 0	- - - -	695 344 344 637 695 SB 14.9 B	647 - - - SBLn1
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h)	1128 - - - EB 1.4	- - - - - - 1	- - - - WB 0	- - - - - - WBT	695 344 344 637 695 SB 14.9 B	647 - - - SBLn1 449
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	1128 - - - EB 1.4	EBL 1128 0.047	- - - - 0	- - - - - WBT	695 344 344 637 695 SB 14.9 B	647 - - - - SBLn1 449 0.187
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	1128 - - - EB 1.4	EBL 1128 0.047 8.3	- - - - 0		695 344 344 637 695 SB 14.9 B	SBLn1 449 0.187 14.9
Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	1128 - - - - EB 1.4	- - - - - - 1128 0.047	- - - - 0	- - - - - WBT	695 344 344 637 695 SB 14.9 B	647 - - - - SBLn1 449 0.187

Intersection						
Int Delay, s/veh	4.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
	LDL			NOL		אמט
Lane Configurations	400	4	1	400	Y	70
Traffic Vol, veh/h	122	241	295	122	81	79
Future Vol, veh/h	122	241	295	122	81	79
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	_	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	122	241	295	122	81	79
IVIVIII(I IOW	122	271	200	122	01	13
Major/Minor	Major1	N	Major2	N	/linor2	
Conflicting Flow All	417	0	-	0	841	356
Stage 1	-	-	_	-	356	-
Stage 2	_	-	-	-	485	-
Critical Hdwy	4.12	_	_	_	6.42	6.22
Critical Hdwy Stg 1	-	_	_	_	5.42	-
Critical Hdwy Stg 2	_		_		5.42	_
Follow-up Hdwy	2.218	_	_	_	3.518	3.318
	1142	-			335	688
Pot Cap-1 Maneuver	1142	-	-	-		
Stage 1	-	-	-	-	709	-
Stage 2	-	-	-	-	619	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1142	-	-	-	294	688
Mov Cap-2 Maneuver	-	-	-	-	294	-
Stage 1	-	-	-	-	622	-
Stage 2	-	-	-	-	619	-
Ŭ						
			14/5		0.5	
Approach	EB		WB		SB	
HCM Control Delay, s	2.9		0		19.3	
HCM LOS					С	
Minor Lanc/Major Muss	n+	EBL	EBT	WPT	WBR :	CDI n1
Minor Lane/Major Mvm	IL			WBT		
Capacity (veh/h)		1142	-	-	-	410
HCM Lane V/C Ratio		0.107	-	-	-	0.39
HCM Control Delay (s)		8.5	0	-	-	19.3
HCM Lane LOS		Α	Α	-	-	С
HCM 95th %tile Q(veh)	0.4	-	-	-	1.8

Intersection						
Int Delay, s/veh	0.8					
					0==	055
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			4	ĵ.	
Traffic Vol, veh/h	24	12	21	359	399	43
Future Vol, veh/h	24	12	21	359	399	43
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	_	_	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	3	2	2
Mymt Flow	24	12	21	359	399	43
IVIVIIIL I IOVV	27	12	Z 1	555	333	70
Major/Minor	Minor2	I	Major1	N	Major2	
Conflicting Flow All	822	421	442	0	-	0
Stage 1	421	-	-	-	-	-
Stage 2	401	_	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	_	_	_
Critical Hdwy Stg 1	5.42	-	- 1.12	_	_	_
Critical Hdwy Stg 2	5.42	_			_	
	3.518		2.218	_	_	_
Follow-up Hdwy					-	
Pot Cap-1 Maneuver	344	632	1118	-	-	-
Stage 1	662	-	_		-	
Stage 2	676	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	336	632	1118	-	-	-
Mov Cap-2 Maneuver	336	-	-	-	-	-
Stage 1	647	-	-	-	-	-
Stage 2	676	-	-	-	-	-
Ŭ						
	ED		ND		0.0	
Approach	EB		NB		SB	
HCM Control Delay, s	14.9		0.5		0	
HCM LOS	В					
Minor Lanc/Major Mun	ot	NBL	NDT	EBLn1	SBT	SBR
Minor Lane/Major Mvn	π					SBK
Capacity (veh/h)		1118	-	000	-	-
HCM Lane V/C Ratio		0.019	-	0.09	-	-
HCM Control Delay (s))	8.3	0	14.9	-	-
			Α.			
HCM Lane LOS HCM 95th %tile Q(veh		0.1	Α	B 0.3	-	-

Appendix S

Synchro and Sidra Intersection Worksheets – 2035 Future Total - EBL at Flewellyn Road at Street 12 & at Street 16

Intersection						
Int Delay, s/veh	2.4					
		FDT	WDT	WDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ነ	700	}	0.4	Y	
Traffic Vol, veh/h	22	326	212	24	59	59
Future Vol, veh/h	22	326	212	24	59	59
Conflicting Peds, #/hr	0	0	0	_ 0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	15	-	-	-	0	-
Veh in Median Storage	•	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	22	326	212	24	59	59
Major/Minor	Major1	N	Major2		Minor2	
Conflicting Flow All	236	0	- -	0	594	224
Stage 1	-	-	_	-	224	-
Stage 2	_	_	_	_	370	_
Critical Hdwy	4.12	_	_	_	6.42	6.22
Critical Hdwy Stg 1	7.12	_	_	<u>-</u>	5.42	-
Critical Hdwy Stg 1	_		_	_	5.42	_
Follow-up Hdwy	2.218	_	_	_		3.318
Pot Cap-1 Maneuver	1331			_	468	815
Stage 1	1331	_	_	_	813	-
Stage 2	_		-	-	699	
Platoon blocked, %	-	-		-	099	-
Mov Cap-1 Maneuver	1331	-	-		460	815
		-	-	-	460	
Mov Cap-2 Maneuver		-	-	-	460	-
Stage 1	-	-	-	-	799	-
Stage 2		-	-	-	699	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.5		0		12.7	
HCM LOS					В	
					_	
				MOT	\4/DD.	0DL 4
Minor Lane/Major Mvm	<u>nt</u>	EBL	EBT	WBT	WBR :	
Capacity (veh/h)		1331	-	-	-	
HCM Lane V/C Ratio		0.017	-	-		0.201
HCM Control Delay (s)		7.8	-	-	-	12.7
HCM Lane LOS		Α	-	-	-	В
HCM 95th %tile Q(veh)	0.1	-	-	-	0.7

Intersection						
Int Delay, s/veh	4.9					
	EBL	EDT	WBT	WBR	SBL	SBR
Movement		EBT		WBK		SBK
Lane Configurations	7	↑	\$	F.4	Y	444
Traffic Vol, veh/h	51	233	220	51	115	111
Future Vol, veh/h	51	233	220	51	115	111
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	30	-	-	-	0	-
Veh in Median Storage	,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	51	233	220	51	115	111
Major/Minor N	Major1		Majara		Minor	
	Major1		Major2		Minor2	0.10
Conflicting Flow All	271	0	-	0	581	246
Stage 1	-	-	-	-	246	-
Stage 2	-	-	-	-	335	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1292	-	-	-	476	793
Stage 1	-	-	-	-	795	-
Stage 2	-	-	-	-	725	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1292	_	-	-	457	793
Mov Cap-2 Maneuver	-	-	-	-	457	-
Stage 1	-	_	_	-	764	-
Stage 2	_	_	-	-	725	_
5.1.95 =						
			14/5		0.5	
Approach	EB		WB		SB	
HCM Control Delay, s	1.4		0		15.2	
HCM LOS					С	
Minor Lane/Major Mvm	t	EBL	EBT	WBT	WBR S	SBLn1
Capacity (veh/h)		1292		_	_	577
capacity (voii/ii)		0.039	_	_	_	0.392
HCM Lane V/C Ratio		0.000				
HCM Lane V/C Ratio		7.9	_	_	_	15.7
HCM Control Delay (s)		7.9 A	-	-	-	15.2 C
		7.9 A 0.1	- -	-	-	15.2 C 1.9

Intersection						
Int Delay, s/veh	2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ሻ	↑	Þ		¥	
Traffic Vol, veh/h	53	269	375	57	42	42
Future Vol, veh/h	53	269	375	57	42	42
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	15	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	53	269	375	57	42	42
N. A						
	Major1		Major2		Minor2	
Conflicting Flow All	432	0	-	0	779	404
Stage 1	-	-	-	-	404	-
Stage 2	-	-	-	-	375	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	_	-	_	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1128	-	_	_	364	647
Stage 1	-	-	-	-	674	-
Stage 2	_		_	_	695	_
Platoon blocked, %		_		_	000	
Mov Cap-1 Maneuver	1128	_		_	347	647
Mov Cap-1 Maneuver		_	-	-	347	- 047
	-	-	-			
Stage 1	-	-	-	-	642	-
Stage 2	-	-	-	-	695	-
Approach	EB		WB		SB	
HCM Control Delay, s	1.4		0		14.8	
HCM LOS	1.7		- 0		В	
TIOWI LOG					ט	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR	SBL _{n1}
Capacity (veh/h)		1128	-	_	-	452
HCM Lane V/C Ratio		0.047	-	-	-	0.186
HCM Control Delay (s)		8.3	-	_	-	14.8
HCM Lane LOS		A	-	-	_	В
HCM 95th %tile Q(veh)	0.1	_	_	_	0.7
TION COULT TOUR Q VOIL	1	J. 1				J.1

Intersection						
Int Delay, s/veh	4.4					
	EDI	EDT	\\/DT	WPD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	1 00	↑	\$	400	Y	70
Traffic Vol, veh/h	122	241	295	122	81	79
Future Vol, veh/h	122	241	295	122	81	79
Conflicting Peds, #/hr	_ 0	_ 0	_ 0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	30	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	122	241	295	122	81	79
Major/Minor	Major1	N	Major2		Minor2	
						256
Conflicting Flow All	417	0	-	0	841	356
Stage 1		-	-	-	356	
Stage 2	- 4.40	-	-	-	485	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-		3.518	
Pot Cap-1 Maneuver	1142	-	-	-	335	688
Stage 1	-	-	-	-	709	-
Stage 2	-	-	-	-	619	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1142	-	-	-	299	688
Mov Cap-2 Maneuver	-	-	-	-	299	-
Stage 1	-	-	-	-	633	-
Stage 2	-	-	-	-	619	-
Approach	EB		WB		SB	
HCM Control Delay, s	2.9		0		19	
HCM LOS	2.9		U		C	
HCIVI LOS					U	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		1142	-	-	-	415
HCM Lane V/C Ratio		0.107	-	-	-	0.386
HCM Control Delay (s))	8.5	-	-	-	19
HCM Lane LOS		Α	-	-	-	С
HCM 95th %tile Q(veh	1)	0.4	-	_	_	1.8

Appendix T

Synchro and Sidra Intersection Worksheets – 2035 Future Total Conditions Sensitivity

Site: 101 [Fernbank at Shea FT2035 AM - Sensitivity (Site

Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New Site

Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem	and ows		rival ows	Deg. Satn	Aver. Delay	Level of Service		ack Of eue	Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
טו		Ciass		HV]	Total l		v/c	sec	Service	[Veh. veh	Dist] m	Que	Rate	Cycles	km/h
South	: Shea	3													
1	L2	All MCs	18	6.0	18	6.0	0.717	26.2	LOS D	5.2	38.8	0.87	1.06	1.57	39.2
2	T1	All MCs	270	5.0	270	5.0	0.717	26.0	LOS D	5.2	38.8	0.87	1.06	1.57	39.7
3	R2	All MCs	92	13.0	92	13.0	0.717	27.7	LOS D	5.2	38.8	0.87	1.06	1.57	39.4
Appro	oach		380	7.0	380	7.0	0.717	26.4	LOS D	5.2	38.8	0.87	1.06	1.57	39.6
East:	Fernb	ank													
4	L2	All MCs	87	5.0	87	5.0	0.626	16.4	LOS C	5.3	38.2	0.82	0.88	1.34	43.5
5	T1	All MCs	285	4.0	285	4.0	0.626	16.3	LOS C	5.3	38.2	0.82	0.88	1.34	44.2
6	R2	All MCs	75	2.0	75	2.0	0.626	16.0	LOS C	5.3	38.2	0.82	0.88	1.34	44.0
Appro	oach		447	3.9	447	3.9	0.626	16.3	LOS C	5.3	38.2	0.82	0.88	1.34	44.0
North	: Shea														
7	L2	All MCs	131	4.0	131	4.0	0.671	15.3	LOS C	8.0	58.4	0.82	0.83	1.35	43.9
8	T1	All MCs	236	7.0	236	7.0	0.671	15.6	LOS C	8.0	58.4	0.82	0.83	1.35	44.5
9	R2	All MCs	222	5.0	222	5.0	0.671	15.4	LOS C	8.0	58.4	0.82	0.83	1.35	44.3
Appro	oach		589	5.6	589	5.6	0.671	15.5	LOS C	8.0	58.4	0.82	0.83	1.35	44.3
West	Fernb	ank													
10	L2	All MCs	305	4.0	305	4.0	0.890	35.4	LOS E	21.5	154.7	1.00	1.55	2.79	35.4
11	T1	All MCs	401	3.0	401	3.0	0.890	35.3	LOS E	21.5	154.7	1.00	1.55	2.79	35.8
12	R2	All MCs	33	3.0	33	3.0	0.890	35.3	LOS E	21.5	154.7	1.00	1.55	2.79	35.7
Appro	oach		739	3.4	739	3.4	0.890	35.3	LOS E	21.5	154.7	1.00	1.55	2.79	35.6
All Ve	hicles		2155	4.7	2155	4.7	0.890	24.4	LOS C	21.5	154.7	0.89	1.13	1.88	40.1

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6. Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Licence: NETWORK / FLOATING | Processed: October 27, 2025 6:09:22 PM
Project: C:\Users\ReihanehAzhdar\CGH TRANSPORTATION\CGH Active Projects - Documents\2025\2025-005 Cavian Stittsville South

Subdivision\DATA\Sidra\2025-005 Stittsville South - 2025-02-21.sip9

Site: 101 [Shea at Flewellyn FT2035 AM - Sensitivity (Site

Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New Site

Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rmai	nce										
Mov ID	Turn	Mov Class		ows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Shea	a													
1	L2	All MCs	8	13.0	8	13.0	0.276	8.1	LOSA	1.2	9.1	0.58	0.45	0.58	55.2
2	T1	All MCs	207	5.0	207	5.0	0.276	7.4	LOSA	1.2	9.1	0.58	0.45	0.58	58.4
3	R2	All MCs	13	2.0	13	2.0	0.276	7.1	LOSA	1.2	9.1	0.58	0.45	0.58	58.6
Appro	oach		228	5.1	228	5.1	0.276	7.4	LOSA	1.2	9.1	0.58	0.45	0.58	58.3
East:	Flewe	llyn													
4	L2	All MCs	2	12.0	2	12.0	0.220	6.2	LOSA	1.0	7.4	0.46	0.30	0.46	57.0
5	T1	All MCs	199	2.0	199	2.0	0.220	5.6	LOSA	1.0	7.4	0.46	0.30	0.46	60.9
6	R2	All MCs	23	2.0	23	2.0	0.220	5.6	LOSA	1.0	7.4	0.46	0.30	0.46	60.4
Appro	oach		224	2.1	224	2.1	0.220	5.6	LOSA	1.0	7.4	0.46	0.30	0.46	60.8
North	: Shea														
7	L2	All MCs	40	8.0	40	8.0	0.306	6.5	LOSA	1.6	11.6	0.44	0.26	0.44	57.0
8	T1	All MCs	241	3.0	241	3.0	0.306	6.2	LOSA	1.6	11.6	0.44	0.26	0.44	59.6
9	R2	All MCs	51	2.0	51	2.0	0.306	6.2	LOSA	1.6	11.6	0.44	0.26	0.44	59.3
Appro	oach		332	3.4	332	3.4	0.306	6.3	LOSA	1.6	11.6	0.44	0.26	0.44	59.2
West	: Flewe	ellyn													
10	L2	All MCs	60	7.0	60	7.0	0.433	8.7	LOSA	2.5	18.0	0.57	0.38	0.57	55.3
11	T1	All MCs	350	2.0	350	2.0	0.433	8.4	LOSA	2.5	18.0	0.57	0.38	0.57	57.7
12	R2	All MCs	26	4.0	26	4.0	0.433	8.5	LOSA	2.5	18.0	0.57	0.38	0.57	56.8
Appro	oach		436	2.8	436	2.8	0.433	8.4	LOSA	2.5	18.0	0.57	0.38	0.57	57.3
All Ve	hicles		1220	3.3	1220	3.3	0.433	7.1	LOSA	2.5	18.0	0.52	0.34	0.52	58.6

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Licence: NETWORK / FLOATING | Processed: October 27, 2025 6:11:14 PM
Project: C:\Users\ReihanehAzhdar\CGH TRANSPORTATION\CGH Active Projects - Documents\2025\2025-005 Cavian Stittsville South Subdivision\DATA\Sidra\2025-005 Stittsville South - 2025-02-21.sip9

HCM Control Delay

HCM Lane LOS

HCM 95th-tile Q

Intersection												
Intersection Delay, s/veh	21.7											
Intersection LOS	С											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4		7	1	
Traffic Vol, veh/h	38	166	15	22	161	208	17	240	18	116	269	53
Future Vol, veh/h	38	166	15	22	161	208	17	240	18	116	269	53
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	4	2	2	2	3	18	10	2	3	5	2
Mvmt Flow	38	166	15	22	161	208	17	240	18	116	269	53
Number of Lanes	0	1	0	0	1	0	0	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			2			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			2			1			1		
HCM Control Delay	16.8			26.1			20.7			20.8		
HCM LOS	С			D			С			С		
Lane		NBLn1	EBLn1	WBLn1	SBLn1	SBLn2						
Vol Left, %		6%	17%	6%	100%	0%						
Vol Thru, %		87%	76%	41%	0%	84%						
Vol Right, %		7%	7%	53%	0%	16%						
Sign Control		Stop	Stop	Stop	Stop	Stop						
Traffic Vol by Lane		275	219	391	116	322						
LT Vol		17	38	22	116	0						
Through Vol		240	166	161	0	269						
RT Vol		18	15	208	0	53						
Lane Flow Rate		275	219	391	116	322						
Geometry Grp		4a	2	2	5	5						
Degree of Util (X)		0.58	0.456	0.733	0.257	0.66						
Departure Headway (Hd)		7.592	7.501	6.749	7.971	7.374						
Convergence, Y/N		Yes	Yes	Yes	Yes	Yes						
Сар		473	480	540	450	489						
Service Time		5.658	5.57	4.749	5.73	5.132						
HCM Lane V/C Ratio		0.581	0.456	0.724	0.258	0.658						
HOM Osistas I Dalas		00.7	400	00.4	40 5	00.4						

20.7

С

3.6

16.8

С

2.3

26.1

D

6.1

13.5

В

1

23.4

С

4.7

Intersection						
Int Delay, s/veh	1.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			4	4	
Traffic Vol, veh/h	52	15	6	284	317	22
Future Vol, veh/h	52	15	6	284	317	22
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	_	-	_	-
Veh in Median Storage		-	_	0	0	_
Grade, %	0, 11 0	_	_	0	0	_
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	52	15	6	284	317	22
IVIVIIIL I IUW	52	13	U	204	317	ZZ
Major/Minor	Minor2		Major1	<u> </u>	/lajor2	
Conflicting Flow All	624	328	339	0	-	0
Stage 1	328	-	-	-	-	-
Stage 2	296	-	-	_	-	-
Critical Hdwy	6.42	6.22	4.12	_	-	-
Critical Hdwy Stg 1	5.42	-		-	_	-
Critical Hdwy Stg 2	5.42	_	_	-	_	_
Follow-up Hdwy	3.518	3.318	2.218	_	_	_
Pot Cap-1 Maneuver	449	713	1220	_	_	_
Stage 1	730			_	_	_
Stage 2	755	_				
Platoon blocked, %	100			_	_	_
Mov Cap-1 Maneuver	446	713	1220	_	-	<u>-</u>
		113	1220		-	_
Mov Cap-2 Maneuver	726	-	-	-	-	-
Stage 1		-	-	-	-	-
Stage 2	755	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s			0.2		0	
HCM LOS	В		J.L		- 0	
1 JOINI LOO	U					
Minor Lane/Major Mvr	nt	NBL	NBT I	EBLn1	SBT	SBR
Capacity (veh/h)		1220	-	487	-	-
HCM Lane V/C Ratio		0.005	-	0.138	-	-
HCM Control Delay (s	i)	8	0	13.6	-	-
HCM Lane LOS		A	A	В	-	-
HCM 95th %tile Q(veh	1)	0	-	0.5	-	-
	,					

Intersection						
Int Delay, s/veh	4.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1		Y	
Traffic Vol, veh/h	43	326	212	46	110	108
Future Vol, veh/h	43	326	212	46	110	108
Conflicting Peds, #/hr	0	0_0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-		-	None
Storage Length	_	-	-	-	0	-
Veh in Median Storage	.# -	0	0	_	0	-
Grade, %	-, <i>''</i>	0	0	_	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	43	326	212	46	110	108
WWIIICHIOW	70	320	212	70	110	100
Major/Minor I	Major1	N	Major2	N	/linor2	
Conflicting Flow All	258	0	-	0	647	235
Stage 1	-	-	-	-	235	-
Stage 2	-	-	-	-	412	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	_	5.42	_
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1307	-	-	-	436	804
Stage 1	-	-	_	-	804	-
Stage 2	-	_	_	_	669	_
Platoon blocked, %		-	-	_		
Mov Cap-1 Maneuver	1307	_	-	_	419	804
Mov Cap-2 Maneuver	-	_	_	_	419	-
Stage 1	_	_	_	_	772	_
Stage 2	_	_	_	_	669	_
Olago Z					000	
Approach	EB		WB		SB	
HCM Control Delay, s	0.9		0		15.8	
HCM LOS					С	
Minor Long/Major Mary	.+	EDI	EDT	WDT	WDD	CDI ~1
Minor Lane/Major Mvm	IL	EBL	EBT	WBT	WBR:	
Capacity (veh/h)		1307	-	-	-	549
HCM Cartest Dates (a)		0.033	-	-		0.397
HCM Long LOS		7.8	0	-	-	15.8
HCM Lane LOS HCM 95th %tile Q(veh)		0.1	Α	-	-	1.9
HI IVI UNTO VATILA (IVVAN)		U T	_	_	_	1 9

Intersection						
Int Delay, s/veh	4.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1		Y	
Traffic Vol, veh/h	51	254	269	51	115	111
Future Vol, veh/h	51	254	269	51	115	111
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		None	-	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage		0	0	_	0	-
Grade, %	-, "	0	0	_	0	_
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	51	254	269	51	115	111
IVIVIIIL I IOW	JI	204	203	JI	113	111
Major/Minor I	Major1	ı	Major2	ı	Minor2	
Conflicting Flow All	320	0	-	0	651	295
Stage 1	-	-	-	-	295	-
Stage 2	-	-	-	-	356	-
Critical Hdwy	4.12	-	-	_	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	_	-	_	5.42	_
Follow-up Hdwy	2.218	_	_	_	3.518	3.318
Pot Cap-1 Maneuver	1240	_	_	_	433	744
Stage 1	-	_	_	_	755	
Stage 2	_	_	_	_	709	_
Platoon blocked, %		_	_	<u>-</u>	700	
Mov Cap-1 Maneuver	1240		_	_	412	744
Mov Cap-1 Maneuver		_	_	_	412	744
Stage 1	-	-	-		719	-
	-	-	-	-	719	-
Stage 2	-	-	-	_	709	-
Approach	EB		WB		SB	
HCM Control Delay, s	1.3		0		16.8	
HCM LOS			•		С	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR:	
Capacity (veh/h)		1240	-	-	-	
HCM Lane V/C Ratio		0.041	-	-	-	0.428
HCM Control Delay (s)		8	0	-	-	16.8
HCM Lane LOS		Α	Α	-	-	С
HCM 95th %tile Q(veh))	0.1	-	-	-	2.1

1.2					
FRI	FRR	NRI	NRT	SRT	SBR
	LUIN	NDL			ODIN
	21	6			12
					12
					0
					Free
					None
					None -
		<u>-</u>			-
					100
					2
43	21	6	330	318	12
Minor2	<u> </u>	Major1	N	Major2	
				-	0
	-	-	-	_	-
	_	_	_	_	_
	6.22	4.12	_	_	_
	-	-	_	_	_
	_	_	_	_	_
	3 318	2 218	_	_	_
			_	_	_
	_	-	_	_	_
	_	_	_	_	_
713			_	_	_
422	717	1229	_		_
	- 111	1223	_		_
	_			-	
	-	-	-	_	-
119	_	_	-	-	-
EB		NB		SB	
13.5		0.1		0	
	ND	ND=	EDI (0.00	005
nt				SBT	SBR
				-	-
				-	-
)	7.9	0	13.5	-	-
1					
1)	A 0	A	B 0.4	-	-
	EBL 43 43 0 Stop 0 100 2 43 Minor2 666 324 342 6.42 5.42 5.42 5.42 5.42 719 422 729 719 EB	EBL EBR 43 21 43 21 0 0 0 Stop Stop - None 0 - e, # 0 - 100 100 2 2 43 21 Minor2 I 666 324 324 - 342 - 6.42 6.22 5.42 - 5.42 - 5.42 - 5.42 - 3.518 3.318 425 717 733 - 719 - 422 717 422 - 729 - 719 - EB 13.5 B	EBL EBR NBL 43 21 6 0 0 0 0 Stop Stop Free - None 0 e, # 0 100 100 100 2 2 2 43 21 6 Minor2 Major1 666 324 330 324 342 5.42 5.42 3.518 3.318 2.218 425 717 1229 733 719 422 717 1229 422 729 719 EB NB 13.5 0.1 B	EBL EBR NBL NBT 43 21 6 330 0 0 0 0 0 Stop Stop Free Free - None - None 0 0 100 100 100 100 2 2 2 2 5 43 21 6 330 Minor2 Major1 N 666 324 330 0 324 342 5.42 5.42 5.42 5.42 5.42 5.42 7.49 422 717 1229 - 422 717 1229 - 733 719 EB NB 13.5 0.1 B mt NBL NBT EBLn1 B mt NBL NBT EBLn1 1229 - 488	EBL EBR NBL NBT SBT 43 21 6 330 318 0 0 0 0 0 0 Stop Stop Free Free Free - None - None - 0 0 0 0 0 0 0 100 100 100 100 100 2 2 2 2 5 3 43 21 6 330 318 Minor2 Major1 Major2 666 324 330 0 - 324 342 543 544 54

Site: 101 [Fernbank at Shea FT2035 PM - Sensitivity (Site

Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New Site

Site Category: (None)

Roundabout

Vehi	cle Mo	ovemen	Perfo	rma	nce										
Mov	Turn	Mov	Dem			rival	Deg.	Aver.	Level of		ack Of	Prop.	Eff.	Aver.	Aver.
ID		Class		lows	FI Total	OWS	Satn	Delay	Service	Qu [Veh.	eue Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h		veh/h	%	v/c	sec		veh	m m		rtate	Cycles	km/h
South	n: Shea	1													
1	L2	All MCs	30	3.0	30	3.0	0.692	21.4	LOS C	5.6	40.5	0.86	1.00	1.49	41.3
2	T1	All MCs	264	3.0	264	3.0	0.692	21.4	LOS C	5.6	40.5	0.86	1.00	1.49	41.9
3	R2	All MCs	135	6.0	135	6.0	0.692	21.9	LOS C	5.6	40.5	0.86	1.00	1.49	41.6
Appro	oach		429	3.9	429	3.9	0.692	21.6	LOS C	5.6	40.5	0.86	1.00	1.49	41.7
East:	Fernb	ank													
4	L2	All MCs	130	8.0	130	8.0	0.928	43.2	LOS E	29.1	210.3	1.00	1.82	3.30	33.3
5	T1	All MCs	551	3.0	551	3.0	0.928	42.6	LOS E	29.1	210.3	1.00	1.82	3.30	33.7
6	R2	All MCs	115	2.0	115	2.0	0.928	42.5	LOS E	29.1	210.3	1.00	1.82	3.30	33.6
Appro	oach		796	3.7	796	3.7	0.928	42.7	LOS E	29.1	210.3	1.00	1.82	3.30	33.7
North	: Shea														
7	L2	All MCs	60	2.0	60	2.0	0.853	36.5	LOS E	10.9	78.7	0.98	1.34	2.32	35.3
8	T1	All MCs	333	2.0	333	2.0	0.853	36.5	LOS E	10.9	78.7	0.98	1.34	2.32	35.7
9	R2	All MCs	144	9.0	144	9.0	0.853	37.8	LOS E	10.9	78.7	0.98	1.34	2.32	35.4
Appro	oach		537	3.9	537	3.9	0.853	36.9	LOS E	10.9	78.7	0.98	1.34	2.32	35.6
West	: Fernb	ank													
10	L2	All MCs	133	5.0	133	5.0	0.903	40.2	LOS E	20.6	148.2	1.00	1.62	2.98	34.2
11	T1	All MCs	534	3.0	534	3.0	0.903	39.9	LOS E	20.6	148.2	1.00	1.62	2.98	34.6
12	R2	All MCs	34	3.0	34	3.0	0.903	39.9	LOS E	20.6	148.2	1.00	1.62	2.98	34.4
Appro	oach		701	3.4	701	3.4	0.903	40.0	LOS E	20.6	148.2	1.00	1.62	2.98	34.5
All Ve	hicles		2463	3.7	2463	3.7	0.928	37.0	LOS E	29.1	210.3	0.97	1.51	2.68	35.5

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Licence: NETWORK / FLOATING | Processed: October 27, 2025 6:10:34 PM
Project: C:\Users\ReihanehAzhdar\CGH TRANSPORTATION\CGH Active Projects - Documents\2025\2025-005 Cavian Stittsville South

Subdivision\DATA\Sidra\2025-005 Stittsville South - 2025-02-21.sip9

Site: 101 [Shea at Flewellyn FT2035 PM - Sensitivity (Site

Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.6.228

New Site

Site Category: (None)

Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem			rival	Deg.	Aver.	Level of		ack Of	Prop.	Eff.	Aver.	Aver.
ID		Class		lows HV 1	اء ا Total]	ows HV 1	Satn	Delay	Service	Qu [Veh.	eue Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h		veh/h	%	v/c	sec		veh	m			-,	km/h
South	: Shea	a													
1	L2	All MCs	16	6.0	16	6.0	0.315	7.4	LOSA	1.6	11.2	0.55	0.40	0.55	56.9
2	T1	All MCs	260	2.0	260	2.0	0.315	7.1	LOSA	1.6	11.2	0.55	0.40	0.55	59.2
3	R2	All MCs	17	6.0	17	6.0	0.315	7.4	LOSA	1.6	11.2	0.55	0.40	0.55	57.7
Appro	oach		293	2.5	293	2.5	0.315	7.2	LOSA	1.6	11.2	0.55	0.40	0.55	59.0
East:	Flewe	llyn													
4	L2	All MCs	2	2.0	2	2.0	0.463	9.2	LOSA	2.9	20.6	0.62	0.45	0.66	56.3
5	T1	All MCs	395	2.0	395	2.0	0.463	9.2	LOSA	2.9	20.6	0.62	0.45	0.66	57.5
6	R2	All MCs	48	2.0	48	2.0	0.463	9.2	LOSA	2.9	20.6	0.62	0.45	0.66	57.0
Appro	oach		445	2.0	445	2.0	0.463	9.2	LOSA	2.9	20.6	0.62	0.45	0.66	57.5
North	: Shea														
7	L2	All MCs	24	3.0	24	3.0	0.429	9.3	LOSA	2.5	17.8	0.64	0.50	0.70	55.9
8	T1	All MCs	285	2.0	285	2.0	0.429	9.2	LOSA	2.5	17.8	0.64	0.50	0.70	57.3
9	R2	All MCs	71	2.0	71	2.0	0.429	9.2	LOSA	2.5	17.8	0.64	0.50	0.70	56.8
Appro	oach		380	2.1	380	2.1	0.429	9.2	LOSA	2.5	17.8	0.64	0.50	0.70	57.1
West	Flewe	ellyn													
10	L2	All MCs	59	5.0	59	5.0	0.356	7.6	LOSA	1.9	13.5	0.54	0.37	0.54	56.5
11	T1	All MCs	278	2.0	278	2.0	0.356	7.4	LOSA	1.9	13.5	0.54	0.37	0.54	58.4
12	R2	All MCs	11	18.0	11	18.0	0.356	8.5	LOSA	1.9	13.5	0.54	0.37	0.54	54.5
Appro	oach		348	3.0	348	3.0	0.356	7.5	LOSA	1.9	13.5	0.54	0.37	0.54	58.0
All Ve	hicles		1466	2.3	1466	2.3	0.463	8.4	LOSA	2.9	20.6	0.60	0.43	0.62	57.8

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Stopline Delay: Geometric Delay is not included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: Siegloch M1 implied by US HCM 6 Roundabout Capacity Model.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2024 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CGH TRANSPORTATION | Licence: NETWORK / FLOATING | Processed: October 27, 2025 6:12:06 PM
Project: C:\Users\ReihanehAzhdar\CGH TRANSPORTATION\CGH Active Projects - Documents\2025\2025-005 Cavian Stittsville South

Subdivision\DATA\Sidra\2025-005 Stittsville South - 2025-02-21.sip9

HCM 95th-tile Q

Intersection												
Intersection Delay, s/veh	25.2											
Intersection LOS	D											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4		-	T ₃	
Traffic Vol, veh/h	44	147	14	16	199	197	27	245	29	215	281	47
Future Vol, veh/h	44	147	14	16	199	197	27	245	29	215	281	47
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Heavy Vehicles, %	2	2	7	2	2	2	4	2	7	2	2	2
Mvmt Flow	44	147	14	16	199	197	27	245	29	215	281	47
Number of Lanes	0	1	0	0	1	0	0	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			2			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			2			1			1		
HCM Control Delay	17.7			33.2			23.5			22.9		
HCM LOS	С			D			С			С		
Lane		NBLn1	EBLn1	WBLn1	SBLn1	SBLn2						
Vol Left, %		9%	21%	4%	100%	0%						
Vol Thru, %		040/										
Vol Right, %		81%	72%	48%	0%	86%						
		10%	72% 7%	48%	0% 0%							
Sign Control		10% Stop	7% Stop	48% Stop	0% Stop	86% 14% Stop						
Traffic Vol by Lane		10% Stop 301	7% Stop 205	48% Stop 412	0% Stop 215	86% 14% Stop 328						
•		10% Stop 301 27	7% Stop 205 44	48% Stop 412 16	0% Stop	86% 14% Stop 328						
Traffic Vol by Lane LT Vol Through Vol		10% Stop 301 27 245	7% Stop 205 44 147	48% Stop 412 16 199	0% Stop 215 215 0	86% 14% Stop 328 0 281						
Traffic Vol by Lane LT Vol Through Vol RT Vol		10% Stop 301 27 245 29	7% Stop 205 44 147	48% Stop 412 16 199 197	0% Stop 215 215 0	86% 14% Stop 328 0 281 47						
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		10% Stop 301 27 245 29 301	7% Stop 205 44 147 14 205	48% Stop 412 16 199 197 412	0% Stop 215 215 0 0 215	86% 14% Stop 328 0 281 47 328						
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		10% Stop 301 27 245 29 301 4a	7% Stop 205 44 147 14 205	48% Stop 412 16 199 197 412 2	0% Stop 215 215 0	86% 14% Stop 328 0 281 47 328 5						
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		10% Stop 301 27 245 29 301 4a 0.641	7% Stop 205 44 147 14 205 2 0.456	48% Stop 412 16 199 197 412 2 0.805	0% Stop 215 215 0 0 215 5 0.49	86% 14% Stop 328 0 281 47 328 5 0.691						
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd)		10% Stop 301 27 245 29 301 4a	7% Stop 205 44 147 14 205 2 0.456 8.012	48% Stop 412 16 199 197 412 2	0% Stop 215 215 0 0 215 5	86% 14% Stop 328 0 281 47 328 5 0.691 7.583						
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N		10% Stop 301 27 245 29 301 4a 0.641 7.669 Yes	7% Stop 205 44 147 14 205 2 0.456 8.012 Yes	48% Stop 412 16 199 197 412 2 0.805 7.035 Yes	0% Stop 215 215 0 0 215 5 0.49 8.201 Yes	86% 14% Stop 328 0 281 47 328 5 0.691 7.583 Yes						
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		10% Stop 301 27 245 29 301 4a 0.641 7.669 Yes 470	7% Stop 205 44 147 14 205 2 0.456 8.012 Yes 449	48% Stop 412 16 199 197 412 2 0.805 7.035 Yes 515	0% Stop 215 215 0 0 215 5 0.49 8.201 Yes 439	86% 14% Stop 328 0 281 47 328 5 0.691 7.583 Yes 476						
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		10% Stop 301 27 245 29 301 4a 0.641 7.669 Yes 470 5.731	7% Stop 205 44 147 14 205 2 0.456 8.012 Yes 449 6.082	48% Stop 412 16 199 197 412 2 0.805 7.035 Yes 515 5.089	0% Stop 215 215 0 0 215 5 0.49 8.201 Yes 439 5.96	86% 14% Stop 328 0 281 47 328 5 0.691 7.583 Yes 476 5.341						
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		10% Stop 301 27 245 29 301 4a 0.641 7.669 Yes 470 5.731 0.64	7% Stop 205 44 147 14 205 2 0.456 8.012 Yes 449 6.082 0.457	48% Stop 412 16 199 197 412 2 0.805 7.035 Yes 515 5.089 0.8	0% Stop 215 215 0 0 215 5 0.49 8.201 Yes 439 5.96 0.49	86% 14% Stop 328 0 281 47 328 5 0.691 7.583 Yes 476 5.341 0.689						
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio HCM Control Delay		10% Stop 301 27 245 29 301 4a 0.641 7.669 Yes 470 5.731 0.64 23.5	7% Stop 205 44 147 14 205 2 0.456 8.012 Yes 449 6.082 0.457 17.7	48% Stop 412 16 199 197 412 2 0.805 7.035 Yes 515 5.089 0.8 33.2	0% Stop 215 215 0 0 215 5 0.49 8.201 Yes 439 5.96 0.49 18.6	86% 14% Stop 328 0 281 47 328 5 0.691 7.583 Yes 476 5.341 0.689 25.7						
Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		10% Stop 301 27 245 29 301 4a 0.641 7.669 Yes 470 5.731 0.64	7% Stop 205 44 147 14 205 2 0.456 8.012 Yes 449 6.082 0.457	48% Stop 412 16 199 197 412 2 0.805 7.035 Yes 515 5.089 0.8	0% Stop 215 215 0 0 215 5 0.49 8.201 Yes 439 5.96 0.49	86% 14% Stop 328 0 281 47 328 5 0.691 7.583 Yes 476 5.341 0.689						

2.3

7.7

2.6

5.2

4.4

Intersection						
Int Delay, s/veh	1					
	EDI	EDD	NDI	NDT	CDT	CDD
Movement Configurations	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	74	.10	15	€	270	E0
Traffic Vol, veh/h	36	10	15	352	370	52
Future Vol, veh/h	36	10	15	352	370	52
Conflicting Peds, #/hr	0	0	0	_ 0	_ 0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	36	10	15	352	370	52
Major/Minor	Minor2		Major1	N	Major2	
Conflicting Flow All	778	396	422	0	-	0
Stage 1	396	-	-	-	_	-
Stage 2	382	_	_	<u>-</u>	_	_
Critical Hdwy	6.42	6.22	4.12	-	_	
Critical Hdwy Stg 1	5.42	0.22	7.12	_		
Critical Hdwy Stg 1	5.42	_				
Follow-up Hdwy	3.518	3.318	2.218	_		
Pot Cap-1 Maneuver	365	653	1137	_	_	
Stage 1	680	- 000	1101			_
Stage 2	690	-	_	-	-	
Platoon blocked, %	090	-	-	-	-	-
Mov Cap-1 Maneuver	359	653	1137		-	-
	359	000	1137	-		-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	669	-	-	-	-	-
Stage 2	690	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	15.2		0.3		0	
HCM LOS	С					
		NE	Note	EDL 4	0.5.	055
Minor Lane/Major Mvm	<u>it</u>	NBL	NBT I	EBLn1	SBT	SBR
Capacity (veh/h)		1137	-		-	-
HCM Lane V/C Ratio		0.013		0.116	-	-
HCM Control Delay (s)		8.2	0	15.2	-	-
HCM Lane LOS		Α	Α	С	-	-
HCM 95th %tile Q(veh)		0	-	0.4	-	-

Intersection						
Int Delay, s/veh	4.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	4	1	TIDIT	7	ODIN
Traffic Vol, veh/h	101	269	375	106	78	77
Future Vol, veh/h	101	269	375	106	78	77
Conflicting Peds, #/hr	0	0	0/0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-		- Olop	None
Storage Length	_	-	_	-	0	-
Veh in Median Storage,	# -	0	0	_	0	_
Grade, %	π -	0	0	_	0	_
Peak Hour Factor	100	100	100	100	100	100
	2	2	2	2	2	2
Heavy Vehicles, %				106		77
Mvmt Flow	101	269	375	106	78	11
Major/Minor M	/lajor1	N	Major2		Minor2	
Conflicting Flow All	481	0		0	899	428
Stage 1	-	_	_	-	428	-
Stage 2	_	_	_	_	471	_
Critical Hdwy	4.12	_	_	_	6.42	6.22
Critical Hdwy Stg 1		_	_	_	5.42	-
Critical Hdwy Stg 2	_			_	5.42	_
	2.218	_	_		3.518	
Pot Cap-1 Maneuver	1082	-	-		309	627
•		-	-	-	657	
Stage 1	-	-	-	-		-
Stage 2	-	-	-	-	628	-
Platoon blocked, %	1000	-	-	-	075	007
Mov Cap-1 Maneuver	1082	-	-	-	275	627
Mov Cap-2 Maneuver	-	-	-	-	275	-
Stage 1	-	-	-	-	585	-
Stage 2	-	-	-	-	628	-
Approach	EB		WB		SB	
	2.4		0		20.8	
HCM Control Delay, s	2.4		U			
HCM LOS					С	
Minor Lane/Major Mvmt	t	EBL	EBT	WBT	WBR S	SBLn1
Capacity (veh/h)		1082	_	_	_	381
HCM Lane V/C Ratio		0.093	_	_	_	0.407
HCM Control Delay (s)		8.7	0	-	_	20.8
HCM Lane LOS		A	A	_	_	C
HCM 95th %tile Q(veh)		0.3	- / \	_	-	1.9
/vaio a(/oii)		3.0				1.0

Intersection						
Int Delay, s/veh	4.5					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LDL	4	WB1	אטוע	SBL ₩	ושט
Traffic Vol, veh/h	122	289	330	122	1 7	79
Future Vol, veh/h	122	289	330	122	81	79 79
Conflicting Peds, #/hr	0	289	330	0	0	79
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	Free -	None	Free -		Stop -	None
	-	ivone -	-	None -	0	None
Storage Length Veh in Median Storage		0	0	-	0	-
		0	0		0	
Grade, %	100			100		100
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	122	289	330	122	81	79
Major/Minor	Major1	N	Major2	N	Minor2	
Conflicting Flow All	452	0	_	0	924	391
Stage 1	-	-	_	-	391	-
Stage 2	_	<u>-</u>	<u>-</u>	<u>-</u>	533	<u>-</u>
Critical Hdwy	4.12	_	_	_	6.42	6.22
Critical Hdwy Stg 1	7.12		_	_	5.42	V.ZZ
Critical Hdwy Stg 2		-	-	-	5.42	_
Follow-up Hdwy	2.218		-		3.518	
Pot Cap-1 Maneuver	1109	-	-	-	299	658
•	1109	-	-	-	683	000
Stage 1	-	-	-	-		-
Stage 2	-	-	-	-	588	-
Platoon blocked, %	4400	-	-	-	000	050
Mov Cap-1 Maneuver		-	-	-	260	658
Mov Cap-2 Maneuver		-	-	-	260	_
Stage 1	-	-	-	-	594	-
Stage 2	-	-	-	_	588	_
Approach	EB		WB		SB	
					21.9	
HCM Control Delay, s	2.6		0			
HCM LOS					С	
Minor Lane/Major Mvr	nt	EBL	EBT	WBT	WBR S	SBLn1
Capacity (veh/h)		1109	_	_	-	
HCM Lane V/C Ratio		0.11	_	-		0.431
HCM Control Delay (s)	8.6	0	_	_	
HCM Lane LOS	1	Α	A	_	_	C C
HCM 95th %tile Q(veh)	0.4	-	_	_	2.1
Julio (VOI	,	V. T				1

Intersection						
Int Delay, s/veh	0.8					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	רטו	HDL	ND I		ODIC
Traffic Vol, veh/h	24	12	21	367	1	43
		12				
Future Vol, veh/h	24		21	367	410	43
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	3	2	2
Mvmt Flow	24	12	21	367	410	43
Major/Minor	Minaro		Maia-4		Acia-0	
	Minor2		Major1		Major2	^
Conflicting Flow All	841	432	453	0	-	0
Stage 1	432	-	-	-	-	-
Stage 2	409	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	335	624	1108	-	-	-
Stage 1	655	-	-	-	-	-
Stage 2	671	_	_	-	-	-
Platoon blocked, %				_	-	_
Mov Cap-1 Maneuver	327	624	1108	_	_	_
Mov Cap-1 Maneuver	327	ULT	1100	_	_	
Stage 1	639	-	_	-	-	
		-	-	-	-	-
Stage 2	671	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	15.2		0.4		0	
HCM LOS	C		5.1		9	
	J					
Minor Lane/Major Mvm	it	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1108	-		-	-
HCM Lane V/C Ratio		0.019	-	0.093	-	-
HCM Control Delay (s)		8.3	0	15.2	-	-
HCM Lane LOS		A	A	С	-	-
HCM 95th %tile Q(veh)		0.1	-	0.3	-	-

Appendix U

Synchro and Sidra Intersection Worksheets – 2035 Future Total – Sensitivity with Eder Lands, EBL at Flewellyn Road at Street 12 & at Street 16

Intersection						
Int Delay, s/veh	4.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	7	↑	1		W	
Traffic Vol, veh/h	43	326	212	46	110	108
Future Vol, veh/h	43	326	212	46	110	108
Conflicting Peds, #/hr	0	0_0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		None	- Clop	None
Storage Length	25	-		-	0	-
Veh in Median Storage		0	0	_	0	_
		0	0		0	
Grade, %	100			100		100
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	43	326	212	46	110	108
Major/Minor I	Major1	N	Major2	ı	Minor2	
Conflicting Flow All	258	0		0	647	235
Stage 1		_	_	_	235	-
Stage 2	_	_	_	_	412	_
Critical Hdwy	4.12	_	_	-	6.42	6.22
Critical Hdwy Stg 1		_	_	_	5.42	0.22
Critical Hdwy Stg 2	_		-	_	5.42	_
, ,	2.218	-	-		3.518	
Follow-up Hdwy	1307	-	-		436	804
Pot Cap-1 Maneuver	1307	-	-	-	804	004
Stage 1	-	-	-	-		-
Stage 2	-	-	-	-	669	-
Platoon blocked, %	4007	-	-	-	400	004
Mov Cap-1 Maneuver	1307	-	-	-	422	804
Mov Cap-2 Maneuver	-	-	-	-	422	-
Stage 1	-	-	-	-	777	-
Stage 2	-	-	-	-	669	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.9		0		15.7	
HCM LOS	0.9		U		C	
TION LOS					U	
Minor Lane/Major Mvm	ıt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		1307	-	-	-	552
HCM Lane V/C Ratio		0.033	-	-	-	0.395
HCM Control Delay (s)		7.8	-	-	-	15.7
HCM Lane LOS		Α	-	-	-	С
HCM 95th %tile Q(veh)		0.1	-	-	-	1.9
,						

Intersection						
Int Delay, s/veh	4.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	↑	1		Y	
Traffic Vol, veh/h	51	254	269	51	115	111
Future Vol, veh/h	51	254	269	51	115	111
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	30	-	_	-	0	-
Veh in Median Storage		0	0	_	0	_
Grade, %		0	0	_	0	_
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	51	254	269	51	115	111
Major/Minor I	Major1	N	Major2		Minor2	
Conflicting Flow All	320	0	-	0	651	295
Stage 1	-	-	_	-	295	233
Stage 2	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	356	<u>-</u>
Critical Hdwy	4.12		-		6.42	6.22
			-	-		
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	1240	-	-	-	433	744
Stage 1	-	-	-	-	755	-
Stage 2	-	-	-	-	709	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1240	-	-	-	415	744
Mov Cap-2 Maneuver	-	-	-	-	415	-
Stage 1	_	-	-	-	724	-
Stage 2	_	_	_	_	709	_
olago 2						
Approach	EB		WB		SB	
HCM Control Delay, s	1.3		0		16.7	
HCM LOS					С	
Minor Long (Marie et A		EDI	EDT	WDT	MDD	ODL 4
Minor Lane/Major Mvm	11	EBL	EBT	WBT	WBR:	
Capacity (veh/h)		1240	-	-	-	530
HCM Lane V/C Ratio		0.041	-	-	-	0.426
HCM Control Delay (s)		8	-	-	-	16.7
HCM Lane LOS		Α	-	-	-	С
HCM 95th %tile Q(veh)		0.1	-	-	-	2.1

Intersection						
Int Delay, s/veh	4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	7	↑	1		Y	
Traffic Vol, veh/h	101	269	375	106	78	77
Future Vol, veh/h	101	269	375	106	78	77
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	25	-	_	-	0	-
Veh in Median Storage		0	0	_	0	_
Grade, %	-, 11	0	0	_	0	_
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	101	269	375	106	78	77
WWIT FIOW	101	209	3/3	100	10	11
Major/Minor N	Major1	N	Major2		Minor2	
Conflicting Flow All	481	0		0	899	428
Stage 1	-	-	_	-	428	-
Stage 2	_	_	_	_	471	_
Critical Hdwy	4.12	_	_	_	6.42	6.22
Critical Hdwy Stg 1		_	_	<u>-</u>	5.42	- 0.22
Critical Hdwy Stg 2	_			_	5.42	_
	2.218	-	-		3.518	
Follow-up Hdwy		-	-			
Pot Cap-1 Maneuver	1082	-	-	-	309	627
Stage 1	-	-	-	-	657	-
Stage 2	-	-	-	-	628	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1082	-	-	-	280	627
Mov Cap-2 Maneuver	-	-	-	-	280	-
Stage 1	-	-	-	-	596	-
Stage 2	-	-	-	-	628	-
J						
A	ED		\A/D		OD	
Approach	EB		WB		SB	
HCM Control Delay, s	2.4		0		20.4	
HCM LOS					С	
Minor Lane/Major Mvm	ıt	EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		1082	-	,,,,,	-	386
HCM Lane V/C Ratio		0.093	<u> </u>	_		0.402
I IOIVI LAITE V/O NAIIU		8.7	-	-	_	20.4
HCM Control Dolay (a)						/114
HCM Long LOS						
HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh)		A 0.3	-	<u>-</u>	<u>-</u>	C 1.9

Intersection						
Int Delay, s/veh	4.4					
		EDT	WDT	WDD	CDI	CDD
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	100	†	}	400	Y	70
Traffic Vol, veh/h	122	289	330	122	81	79
Future Vol, veh/h	122	289	330	122	81	79
Conflicting Peds, #/hr	0	_ 0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	30	-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	122	289	330	122	81	79
Majay/Minay	N/a:a=1		4-1-10		Air and	
-	Major1		Major2		Minor2	004
Conflicting Flow All	452	0	-	0	924	391
Stage 1	-	-	-	-	391	-
Stage 2	-	-	-	-	533	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	1109	-	-	-	299	658
Stage 1	-	-	-	-	683	-
Stage 2	-	-	-	-	588	-
Platoon blocked, %		-	_	-		
Mov Cap-1 Maneuver	1109	_	_	_	266	658
Mov Cap-2 Maneuver	-	_	_	_	266	-
Stage 1	_	_	_	_	608	_
Stage 2	<u>_</u>	_	_	_	588	_
Olage 2			_		300	-
Approach	EB		WB		SB	
HCM Control Delay, s	2.6		0		21.4	
HCM LOS					С	
Minor Long /Maior M		EDI	EDT	WDT	MDD	ODL 4
Minor Lane/Major Mvm	π	EBL	EBT	WBT	WBR :	
Capacity (veh/h)		1109	-	-	-	• • • •
HCM Lane V/C Ratio		0.11	-	-		0.424
HCM Control Delay (s)		8.6	-	-	-	
HCM Lane LOS		Α	-	-	-	С
HCM 95th %tile Q(veh))	0.4	-	-	-	2.1