

Phase II – Environmental Site Assessment

Tunney's Pasture (Block 5) Ottawa, Ontario

Prepared for Arcadis IBI Group

Report: PE6036-2R January 24, 2025

TABLE OF CONTENTS

			PAGE
EXE	CUTIV	E SUMMARY	iii
1.0	INTR	ODUCTION	1
	1.1	Site Description	1
	1.2	Property Ownership	2
	1.3	Applicable Site Condition Standard	2
2.0	BACI	KGROUND INFORMATION	3
	2.1	Physical Setting	3
3.0	SCO	PE OF INVESTIGATION	
	3.1	Overview of Site Investigation	3
	3.2	Media Investigated	
	3.3	Phase I ESA Conceptual Site Model	4
	3.4	Deviations from the Sampling and Analysis Plan	6
	3.5	Physical Impediments	
4.0	INVE	STIGATION METHOD	7
	4.1	Subsurface Investigation	7
	4.2	Soil Sampling	7
	4.3	Field Screening Measurements	8
	4.4	Groundwater Monitoring Well Installation	8
	4.5	Field Measurement of Water Quality Parameters	9
	4.6	Groundwater Sampling	9
	4.7	Analytical Testing	10
	4.8	Residue Management	11
	4.9	Elevation Surveying	11
	4.10	Quality Assurance and Quality Control Measures	11
5.0	REVI	EW AND EVALUATION	12
	5.1	Geology	12
	5.2	Groundwater Elevations, Flow Direction, and Hydraulic Gradient	12
	5.3	Fine/Coarse Soil Texture	13
	5.4	Field Screening	13
	5.5	Soil Quality	13
	5.6	Groundwater Quality	20
	5.7	Quality Assurance and Quality Control Results	28
	5.8	Phase II Conceptual Site Model	32
6.0	CON	CLUSIONS	36
7.0	STAT	FEMENT OF LIMITATIONS	39

List of Figures

Figure 1 – Key Plan

Drawing PE6036-1 - Site Plan

Drawing PE6036-2 - Surrounding Land Use Plan

Drawing PE6036-3 – Test Hole Location Plan

Drawing PE6036-4 – Analytical Testing Plan – Soil

Drawing PE6036-4A - Cross Section A-A' - Soil

Drawing PE6035-4B - Cross Section B-B' - Soil

Drawing PE6036-5 - Analytical Testing Plan - Groundwater

Drawing PE6036-5A - Cross Section A-A' - Groundwater

Drawing PE6036-5B – Cross Section B-B' – Groundwater

List of Appendices

Appendix 1 Sampling and Analysis Plan

Soil Profile and Test Data Sheets

Symbols and Terms

Laboratory Certificates of Analysis

EXECUTIVE SUMMARY

Assessment

Paterson Group was retained by IBI Group to conduct a Phase II – Environmental Site Assessment (Phase II ESA) for Block 5 of the Tunney's Pasture government office complex, in the City of Ottawa, Ontario. The purpose of the Phase II ESA was to address potentially contaminating activities (PCAs) that were identified during the Phase I ESA and were considered to result in areas of potential environmental concern (APECs) on the subject site (Phase II Property).

The subsurface investigation for this assessment was conducted on November 14, 2023 and consisted of drilling three (3) boreholes (BH11-23 to BH13-23) across the Phase II Property. It should be noted that this field investigation was carried out as part of a larger investigation conducted for multiple sites at the Tunney's Pasture complex. The boreholes were advanced to depths ranging from approximately 5.99 m to 6.02 m below the existing ground surface and terminated within the bedrock unit. Upon completion, all three boreholes were instrumented with groundwater monitoring wells in order to access the groundwater table.

In general, the subsurface soil profile encountered at the borehole locations consists of either a thin pavement structure (asphaltic concrete over granular fill) or topsoil underlain by glacial till. Bedrock was encountered in all three boreholes during the field drilling program at depths ranging from approximately 1.47 m to 2.77 m below ground surface. During the field sampling program, the groundwater was measured at depths ranging from approximately 2.14 m to 3.70 m below the existing ground surface.

A total of 3 soil samples were submitted for laboratory analysis of BTEX, PHCs (F₁-F₄), VOCs, metals, PAHs, PCBs, EC, SAR, and/or pH parameters. Based on the analytical test results, all detected parameter concentrations in the soil samples analyzed are in compliance with the selected MECP Table 7 Coarse-Grained Residential Soil Standards and the CCME Coarse-Grained Commercial Soil Standards, with one minor exception.

It should be noted that the EC and SAR levels measured in soil sample BH12-23-SS2 exceed the selected MECP Table 7 Coarse-Grained Residential Soil Standards, though they comply with the CCME Coarse-Grained Commercial Soil Standards. These exceedances are suspected to be the result of the use of road salt on the Phase II Property during snow and ice conditions and thus, as per Section 49.1 of O. Reg. 153/04, does not represent a contaminant issue.

Three groundwater samples were submitted for laboratory analysis of PHC, VOC, Metals, PAH, and PCB parameters. Based on the analytical test results, all detected parameter concentrations comply with the selected MECP Table 7 Non-Potable Groundwater Standards, with the exception of chloroform detected in Sample BH11-23-GW1. This chloroform exceedance was suspected to be the result of municipal water used during the bedrock coring process, and not as a result of a contaminant issue. The chloroform is expected to dissipate over time via natural attenuation processes. The results also comply with the selected CCME Tier 1 Federal Interim Groundwater Water Quality Guidelines for Commercial Sites, with the exception of the concentrations of aluminum, boron, and selenium detected in Sample BH11-23-GW1, the concentration of cadmium in BH12-23-GW1, and the concentration of aluminum in Sample BH13-23-GW1. No exceedances in the soil samples were identified for these parameters, and therefore it is considered possible that these parameters are naturally elevated, or they are elevated due to the presence of sediment. The presence of these metals is not considered to pose an environmental risk to the current use of the property.

A second round of groundwater testing was carried out on December 11, 2024 to reassess the groundwater condition on the Phase II Property. Three additional samples were obtained from all monitoring wells installed on-site and submitted for analysis of VOC parameters. Based on the analytical test results, all detected parameter concentrations comply with he selected MECP Table 7 Non-Potable Groundwater Standards as well as the selected CCME Tier 1 Federal Interim Groundwater Water Quality Guidelines for Commercial Sites.

Recommendations

Soil

Excess soil must be handed in accordance with O. Reg. 406/19: On-Site and Excess Soil Management. Additional excess soil testing and reporting requirements may be required prior to future site excavation activities, in accordance with O. Reg. 406/19.

Monitoring Wells

It is recommended that the monitoring wells be resampled in the future, to confirm the groundwater quality beneath the subject site, particularly the dissipation of the chloroform in BH11-23.

The monitoring wells will be registered with the MECP under Ontario Regulation 903 (Ontario Water Resources Act). At such a time that the monitoring wells are no longer required, they must be decommissioned in accordance with O.Reg. 903.

1.0 INTRODUCTION

At the request of Arcadis IBI Group, Paterson Group (Paterson) conducted a Phase II – Environmental Site Assessment (Phase II ESA) for Block 5 of the Tunney's Pasture government office complex, in the City of Ottawa, Ontario (the Phase II Property).

The purpose of this Phase II ESA has been to address the areas of potential environmental concern (APECs) identified on the Phase II Property as a result the findings of the Phase I ESA.

1.1 Site Description

Address: 161 Goldenrod Driveway, (Tunney's Pasture – Block

5), Ottawa, Ontario.

Location: The Phase II Property is situated on the south side of

Eglantine Driveway, between Goldenrod Driveway, and Sir Frederick Banting Driveway, in the City of Ottawa, Ontario. Refer to Figure 1 – Key Plan, as well as Drawing PE6036-1 – Site Plan, appended to this

report.

Latitude and Longitude: 45° 24' 18" N, 75° 44' 24" W.

Site Description:

Configuration: Rectangular.

Area: 1.7 hectares (approximately).

Zoning: MC – Mixed-Use Centre Zone.

Current Use: The Phase II Property is currently occupied by a four-

storey office building.

Services: The Phase II Property is located within a municipally

serviced area.

1.2 Property Ownership

The Phase II Property is currently owned by the Government of Canada. Paterson was retained to complete this Phase II ESA by Ms. Catriona Moggach of Arcadis IBI Group, whose office is located at 333 Preston Street, Unit #500, Ottawa, Ontario, and can be contacted via telephone at 613-225-1311.

In 2021, Public Service and Procurement Canada (PSPC) partnered with Canada Lands Company (CLC) under a collaboration project to leverage the strengths of each organization to deliver the long-term vision of Tunney's Pasture that includes the site's transition from a federal employment centre into a mixed-use, sustainable, transit-oriented community. CLC is a self-financing federal Crown corporation specializing in real estate and development with a mandate to transform former Government of Canada properties and reintegrates them into local communities while ensuring their long-term goals. Since the launch of this collaboration project, CLC has been committed to working with the community to define amendments to the TPMP and proposed upgrades to the existing roadway and servicing infrastructure that support both federal priorities and future development.

1.3 Applicable Site Condition Standard

The site condition standards for the subject property were obtained from Table 7 of the document entitled, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", prepared by the Ministry of the Environment, Conservation and Parks (MECP), and dated April 15, 2011. The selected MECP standards are based on the following considerations:

J	Shallow soil conditions;
J	Coarse-grained soil conditions;
J	Non-potable groundwater conditions;
J	Residential land use.

Grain-size analysis was not conducted as part of this assessment, and as such, the coarse-grained soil standards were selected as a conservative approach.

It should be noted that in addition to the provincial MECP standards, the federal Canadian Council of Ministers of the Environment (CCME) commercial standards were also selected for additional consideration.

2.0 BACKGROUND INFORMATION

2.1 Physical Setting

The Phase II Property is currently occupied by a government office and records keeping centre, located centrally on the property and surrounded by landscaped areas as well as an asphalt parking lot and loading bay adjacent to the western side of the building. The site topography is relatively flat, while the regional topography appears to slope down towards the northwest, in the general direction the Ottawa River. The Phase II Property is generally considered to be at grade with respect to the surrounding properties. Water drainage on the Phase II Property occurs primarily via surface run-off towards catch basins present within the parking lot and on the adjacent streets, as well as via infiltration within the landscaped areas.

3.0 SCOPE OF INVESTIGATION

3.1 Overview of Site Investigation

The subsurface investigation for this assessment was conducted on November 14, 2023 and consisted of drilling three (3) boreholes (BH11-23 to BH13-23) across the Phase II Property. It should be noted that this field investigation was carried out as part of a larger investigation conducted for multiple sites at the Tunney's Pasture complex.

The boreholes were advanced to depths ranging from approximately 5.99 m to 6.02 m below the existing ground surface and terminated within the bedrock unit. Bedrock was encountered in all three boreholes during the field drilling program at depths ranging from approximately 1.47 m to 2.77 m below ground surface.

Upon completion, all three boreholes were instrumented with groundwater monitoring wells in order to access the groundwater table. During the field sampling program, the groundwater was measured at depths ranging from approximately 2.14 m to 3.70 m below the existing ground surface.

3.2 Media Investigated

During the course of this subsurface investigation, soil and groundwater samples were obtained from the Phase II Property and submitted for laboratory analysis. The rationale for sampling and analyzing these media is based on the contaminants of potential concern identified in the Phase I ESA.

The contaminants of potential concern for the soil and/or groundwater on the Phase II Property include the following:

Volatile Organic Compounds (VOCs);
Petroleum Hydrocarbons, fractions 1 – 4 (PHCs F ₁ -F ₄);
Benzene, Ethylbenzene, Toluene, and Xylenes (BTEX)
Polycyclic Aromatic Hydrocarbons (PAHs);
Polychlorinated Biphenyls (PCBs);
Metals (including Arsenic, Antimony, and Selenium);
Mercury (Hg ⁺);
Hexavalent Chromium (CrVI);
Electrical Conductivity (EC);
Sodium Adsorption Ratio (SAR).

These CPCs have the potential to be present in the soil matrix and/or the groundwater situated beneath the Phase II Property.

3.3 Phase I ESA Conceptual Site Model

Geological and Hydrogeological Setting

Based on the available mapping information, the bedrock beneath the Phase II Property generally consists of interbedded limestone and dolomite of the Gull River Formation. The surficial geology consists largely of Paleozoic bedrock, with an overburden ranging from approximately 0 m to 2 m in thickness.

Groundwater is anticipated to be encountered within the bedrock and flow in a northerly direction towards the Ottawa River.

Water Bodies and Areas of Natural and Scientific Interest

No water bodies or areas of natural and scientific interest are present on the Phase I Property or within the Phase I Study Area.

The nearest named water body with respect to the Phase II Property is the Ottawa River, located approximately 525 m to the northwest.

Drinking Water Wells

Based on the availability of municipal services, no potable drinking water wells are anticipated to remain in use within the Phase I Study Area.

Existing Buildings and Structures

The Phase II Property is currently occupied by a four-storey government office building and record keeping centre.

Current and Future Property Use

The Phase II Property is currently used for commercial purposes.

It is our understanding that the Phase II Property may be redeveloped for residential purposes in the future.

Due to a change in land use to a more sensitive type (commercial to residential), a record of site condition (RSC) will need to be filed with the MECP.

Neighbouring Land Use

The surrounding lands within the Phase I Study Area consist largely of commercial and residential properties. Current land use is depicted on Drawing PE6036-2 – Surrounding Land Use Plan, in the Figures section of this report.

Potentially Contaminating Activities and Areas of Potential Environmental Concern

As per Section 7.1 of the Phase I ESA report, four potentially contaminating activities (PCAs), resulting in areas of potential environmental concern (APECs), were identified on the Phase II Property. These APECs include:

•••	To recommed on the Prince of Property. These year Ede include.
	Former generation and storage of hazardous waste materials, located within the existing building in the central portion of the Phase II Property (APEC 1);
	The presence of fill material of unknown quality, located beneath the entirety of the Phase II Property (APEC 2);
	The use of road salt for de-icing purposes during snow and ice conditions located within the asphalt-covered parking lot occupying the northern and central portions of the Phase II Property (APEC 3).
	The presence of a basement hydro vault, located in the southeastern corner of the subject building (APEC 4).

Report: PE6036-2R Page 5

Other off-site PCAs were identified within the Phase I Study Area but were deemed not to be of any environmental concern to the Phase II Property based on their separation distances, their inferred down-gradient or cross-gradient orientation with respect to the known groundwater flow to the north, or the results of the previous subsurface investigation carried out for the property.

Contaminants of Potential Concern

The contaminants of potential concern (CPCs) associated with the aforementioned APECs are considered to be:

Volatile Organic Compounds (VOCs);
Petroleum Hydrocarbons, fractions 1 – 4 (PHCs F ₁ -F ₄);
Benzene, Ethylbenzene, Toluene, and Xylenes (BTEX);
Polycyclic Aromatic Hydrocarbons (PAHs);
Polychlorinated Biphenyls (PCBs);
Metals (including Arsenic, Antimony, and Selenium);
Mercury (Hg ⁺);
Hexavalent Chromium (CrVI);
Electrical Conductivity (EC);
Sodium Adsorption Ratio (SAR).

These CPCs have the potential to be present in the soil matrix and/or the groundwater situated beneath the Phase II Property.

Assessment of Uncertainty and/or Absence of Information

The information available for review as part of the preparation of this Phase I ESA is considered to be sufficient to conclude that there are PCAs and APECs associated with the Phase II Property.

The presence of any PCAs was confirmed by a variety of independent sources, and as such, the conclusions of this report are not affected by uncertainty which may be present with respect to the individual sources.

3.4 Deviations from the Sampling and Analysis Plan

No deviations from the Sampling and Analysis were made during the course of this Phase II ESA.

3.5 Physical Impediments

No physical impediments were encountered during the course of the field drilling program.

4.0 INVESTIGATION METHOD

4.1 Subsurface Investigation

The subsurface investigation for this assessment was conducted on November 14, 2023 and consisted of drilling three (3) boreholes (BH11-23 to BH13-23) across the Phase II Property. It should be noted that this field investigation was carried out as part of a larger investigation conducted for multiple sites at the Tunney's Pasture complex.

The boreholes were advanced to depths ranging from approximately 5.99 m to 6.02 m below the existing ground surface and terminated within the bedrock unit. Bedrock was encountered in all three boreholes during the field drilling program at depths ranging from approximately 1.47 m to 2.77 m below ground surface.

Upon completion, all three boreholes were instrumented with groundwater monitoring wells in order to access the groundwater table. During the field sampling program, the groundwater was measured at depths ranging from approximately 2.14 m to 3.70 m below the existing ground surface.

Under the full-time supervision of Paterson personnel, the boreholes were drilled using a truck-mounted drill rig provided by Marathon Underground Constructors Corporation of Greely, Ontario. The locations of the boreholes are illustrated on Drawing PE6036-3 – Test Hole Location Plan, appended to this report.

4.2 Soil Sampling

Soil sampling protocols were followed using the MECP document entitled, "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated May 1996.

The samples were recovered using a stainless-steel split spoon, while wearing protective gloves (changed after each sample), and immediately placed into plastic bags. If significant contamination was encountered, the samples were instead placed into glass jars. Sampling equipment was routinely washed in soapy water and rinsed with methylhydrate after each split spoon to prevent any cross contamination of the samples. The samples were also stored in coolers to reduce analyte volatilization during transportation.

A total of 9 soil samples were obtained from the boreholes by means of auger and split spoon sampling. The depths at which auger, split spoon, and rock core samples were obtained from the boreholes are shown as "AU", "SS", and "RC" respectively, on the Soil Profile and Test Data Sheets, appended to this report.

4.3 Field Screening Measurements

All soil samples collected were subjected to a preliminary screening procedure, which included visual screening for colour and evidence of metals, as well as soil vapour screening with a Photo Ionization Detector.

The recovered soil samples were placed immediately into airtight plastic bags with nominal headspace. All lumps of soil inside the bags were broken by hand, and the soil was allowed to come to room temperature prior to conducting the vapour survey, ensuring consistency of readings between samples. To measure the soil vapours, the analyser probe was inserted into the nominal headspace above the sample. The sample was then agitated and manipulated gently by hand as the measurement was taken. The peak reading registered within the first 15 seconds was recorded as the vapour measurement. The parts per million (ppm) scale was used to measure concentrations of organic vapours.

The results of the vapour survey are presented on the Soil Profile and Test Data Sheets, appended to this report.

4.4 Groundwater Monitoring Well Installation

Three groundwater monitoring wells were installed on the Phase II Property as part of this assessment. These monitoring wells were constructed using 32 mm diameter Schedule 40 threaded PVC risers and screens. A sand pack consisting of silica sand was placed around the screen with a bentonite seal placed above to minimize cross-contamination. A summary of the monitoring well construction details are listed below in Table 1 as well as on the Soil Profile and Test Data Sheets provided in Appendix 1.

Upon completion, the groundwater monitoring wells were developed using a dedicated inertial lift pump, with a minimum of three well volumes being removed from the wells at the time of installation. The wells were developed until the appearance of the water was noted to have stabilized. In addition, the ground surface elevations of each borehole were subsequently surveyed with respect to a known geodetic elevation.

The ground surface elevations of each borehole were subsequently surveyed with respect to a known geodetic elevation.

Table 1 Monitoring Well Construction Details											
Well ID Ground Surface Elevation (m ASL) Total Depth (m BGS) Screened Interval (m BGS) Sand Pack (m BGS) Elevation (m BGS) Casing Type											
BH11-23	63.19	5.99	2.99 - 5.99	2.13 - 5.99	0.00 - 2.13	Flushmount					
BH12-23	63.01	6.02	3.02 - 6.02	2.13 - 6.02	0.00 - 2.13	Flushmount					
BH13-23	62.78	6.02	3.02 - 6.02	2.13 - 6.02	0.00 - 2.13	Flushmount					

4.5 Field Measurement of Water Quality Parameters

Groundwater monitoring and sampling was conducted on-site on November 24, 2023. At this time, water quality parameters were measured in the field using a multi-parameter analyzer. Parameters measured in the field included temperature, pH, and electrical conductivity.

Field parameters were measured after each well volume purged. Wells were purged prior to sampling until at least three well volumes had been removed or the field parameters were relatively stable. Stabilized field parameter values are summarized in Table 2.

Table 2									
Measurement of Water Quality Parameters									
Well ID	Temperature (°C)	Conductivity (μS)	pH (Units)						
BH11-23	9.9	2,105	5.54						
BH12-23	15.8	>4,000	5.88						
BH13-23	15.9	>4,000	5.86						

4.6 Groundwater Sampling

Groundwater sampling protocols were followed using the MECP document entitled, "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated May 1996.

Standing water was purged from each monitoring well prior to the recovery of the groundwater samples using dedicated sampling equipment. The samples were then stored in coolers to reduce possible analyte volatilization during their transportation. Further details of our standard operating procedure for groundwater sampling are provided in the Sampling and Analysis Plan, appended to this report.

4.7 **Analytical Testing**

The following soil and groundwater samples were submitted for laboratory analysis:

Table 3											
Testing	Parameters	for S	Subn	nitte	d Sc	il Sa	ampl	es			
				Pa	rame	ters A	nalyz	ed			
Sample ID	Sample Depth & Stratigraphic Unit	VOCs	PHCs (F ₁ -F ₄)	втех	Metals¹	PAHs	PCBs	EC	SAR	Hd	Rationale
BH11-23- AU1	Fill Material 0.00 – 0.61 m		х	х	х	х		х	Х	х	To assess for potential impacts resulting from the presence of fill material of unknown quality and the use of road salt for de-icing purposes.
BH12-23- SS2	Glacial Till 0.76 – 1.37 m	x	x		x	x	x	x	x		To assess for potential impacts resulting from the former generation and storage of hazardous waste material, the presence of fill material of unknown quality and the use of road salt for de-icing purposes.
BH13-23- SS3	Glacial Till 1.52 m – 2.13 m	×	×				×				To assess for potential impacts resulting from the former generation and storage of hazardous waste material and an existing hydro vault.
DUP1 ²	Glacial Till 0.76 – 1.37 m				Х						For laboratory QA/QC purposes.
1 – Includes Mercury and Hexavalent Chromium											

^{2 –} Duplicate sample of BH12-23-SS2

Table 4											
Testing Parameters for Submitted Groundwater Samples											
		Parameters Analyzed									
Sample ID	Screened Interval & Stratigraphic Unit	VOCs	PHCs (F ₁ -F ₄)	Metals¹	PAHs	PCBs	Rationale				
BH11-23-GW1	2.99 m – 5.99 m		х	Х			To assess for potential impacts resulting from the presence of fill material of unknown quality.				
BH11-23-GW2							To reassess the groundwater quality.				
BH12-23-GW1	BH12-23-GW1 Bedrock 3.02 m – 6.02 m		х	x	x	х	To assess for potential impacts resulting from the former generation and storage of hazardous waste material and the presence of fill material of unknown quality.				
BH12-23-GW2		Х					To reassess the groundwater quality.				
BH13-23-GW1 Bedrock 3.02 m –6.02 m		х	х	х	х	х	To assess for potential impacts resulting from the former generation and storage of hazardous waste material and an existing hydro vault.				
BH13-23-GW2		Х					To reassess the groundwater quality.				
DUP1 ²	Bedrock 2.99 m – 5.99 m	Х					For laboratory QA/QC purposes.				
DUP2 ³	Bedrock 3.02 m –6.02 m X For laboratory QA/QC purposes.										
1 – Includes Me	rcury and Hexavalent C	Chromiu	ım								

^{2 -} Duplicate sample of BH11-23-GW1

Paracel Laboratories (Paracel), of Ottawa, Ontario, performed the laboratory analysis on the samples submitted for analytical testing. Paracel is a member of the Standards Council of Canada/Canadian Association for Laboratory Accreditation (SCC/CALA) and is accredited and certified by the SCC/CALA for specific tests registered with the association.

4.8 Residue Management

All soil cuttings were removed from the site following the field program, while all purge water and equipment cleaning fluids were retained on-site.

4.9 Elevation Surveying

The ground surface elevations at each borehole location were surveyed using a GPS device by Paterson personnel and referenced to a geodetic datum.

4.10 Quality Assurance and Quality Control Measures

A summary of the quality assurance and quality control (QA/QC) measures, undertaken as part of this assessment, is provided in the Sampling and Analysis Plan in Appendix 1.

^{3 -} Duplicate sample of BH13-23-GW1

5.0 REVIEW AND EVALUATION

5.1 Geology

In general, the subsurface soil profile encountered at the borehole locations consists of either a thin pavement structure (asphaltic concrete over granular fill) or topsoil, underlain by native glacial till. Bedrock was encountered in all three boreholes during the field drilling program at depths ranging from approximately 1.47 m to 2.77 m below ground surface. Site geology details are provided in the Soil Profile and Test Data Sheets in Appendix 1.

5.2 Groundwater Elevations, Flow Direction, and Hydraulic Gradient

Groundwater levels were measured using an electronic water level meter on November 24, 2023. The groundwater levels are summarized below in Table 5.

Table 5 Groundwater Level Measurements										
Borehole Ground Surface Water Level Depth Location Elevation (m) (m below grade) Water Level Elevation (m ASL)										
BH11-23	63.19	2.14	61.05							
BH12-23	63.01	3.70	59.31	November 24, 2023						
BH13-23	62.78	3.51	59.27							

The groundwater at the Phase II Property was encountered within the bedrock at depths ranging from approximately 2.14 m to 3.70 m below the existing ground surface. No unusual visual observations were identified within the recovered groundwater samples.

Using the groundwater elevations recorded during the sampling event, groundwater contour mapping was completed as part of this assessment. According to the mapped contour data, illustrated on Drawing PE6036-3 – Test Hole Location Plan in the appendix, the groundwater flow on the subject site was calculated to be in a southeastern direction. A horizontal hydraulic gradient of approximately 0.021 m/m was also calculated as part of this assessment. Based on data collected throughout the greater Tunney's Pasture complex, groundwater flow direction would be anticipated in a northern direction. The groundwater flow direction measured as part of this Phase II-ESA may have been influenced by buried services (located in the area of BH13-23), or by the presence of the on-site building. It should be noted that groundwater levels are expected to fluctuate throughout the year with seasonal variations.

Page 13

5.3 Fine/Coarse Soil Texture

Grain size analysis was not completed as part of this investigation. As a result, the coarse-grained soil standards were chosen as a conservative approach.

5.4 Field Screening

Field screening of the soil samples collected during the drilling program resulted in organic vapour readings ranging from 1.2 ppm to 4.0 ppm, indicating that there is a negligible potential for the presence of volatile substances. Field screening results of each individual soil sample are provided on the Soil Profile and Test Data Sheets appended to this report.

5.5 Soil Quality

A total of 3 soil samples were submitted for laboratory analysis of BTEX, PHCs (F₁-F₄), VOCs, metals, PAHs, PCBs, EC, SAR, and/or pH parameters. The results of the analytical testing are presented below in Tables 6 to 11, as well as on the laboratory Certificates of Analysis included in Appendix 1.

Table 6
Analytical Test Results - Soil
BTEX & PHCs

	l .	1	Cail Camandaa (
			Soil Samples (µg/g	MECP Table 7 CCME Coars			
	MDL		November 14, 2023	Coarse-Grained	Grained		
Parameter		BH11-23-AU1 BH12-23-		BH13-23-SS3	Residential	Commercial	
	(µg/g)	Sa	ample Depth (m bg	s)	Soil Standards	Standards	
		0.00 – 0.61 m	0.76 – 1.37 m	1.52 – 2.13 m	(µg/g)	(μg/g)	
Benzene	0.02	nd	nd	nd	0.21	0.03	
Ethylbenzene	0.05	nd	nd	nd	2	0.082	
Toluene	0.05	nd	nd	nd	2.3	0.37	
Xylenes	0.05	nd	nd	nd	3.1	11	
PHCs F₁	7	nd	nd	nd	55	240	
PHCs F ₂	4	10	nd	nd	98	260	
PHCs F ₃	8	90	37	nd	300	1,700	
PHCs F ₄	6	215	431	nd	2,800	3,300	
PHCs F ₄ (gravimetric)	6	682	937	nt	2,800	N/A	

Notes:

☐ MDL – Method Detection Limit

☐ nd – not detected above the MDL

☐ nt – not tested for this parameter

N/A – not applicable (no standard for this parameter)

<u>Underlined</u> – value exceeds selected CCME standards

☐ Bold and Underlined – value exceeds selected MECP standards

All detected BTEX and PHC parameter concentrations in the soil samples analyzed are in compliance with the selected MECP Table 7 Coarse-Grained Residential Soil Standards and the CCME Coarse-Grained Commercial Soil Standards.

Table 7 Analytical Test Results - Soil **VOCs**

		Soil Samples (µg/g) November 14, 2023		MECP Table 7	CCME Coarse-
Parameter	MDL	BH11-23-AU1 BH12-23-SS2		Coarse-Grained Residential	Grained Commercial
Parameter	(μg/g) 			Soil Standards	Standards
			epth (m bgs)	(μg/g)	(µg/g)
	 	0.00 – 0.61 m	0.76 – 1.37 m		
Acetone	0.100	nd	nd	16	N/A
Benzene	0.002	nd	nd	0.21	0.03
Bromodichloromethane	0.005	nd	nd	13	N/A
Bromoform	0.005	nd	nd	0.27	N/A
Bromomethane	0.005	nd	nd	0.05	N/A
Carbon Tetrachloride	0.002	nd	nd	0.05	50
Chlorobenzene	0.002	nd	nd	2.4	10
Chloroethane	0.050	nd	nd	N/A	50
Chloroform	0.002	nd	nd	0.05	50
Chloromethane	0.050	nd	nd	N/A	50
Dibromochloromethane	0.002	nd	nd	9.4	N/A
Ethylene dibromide	0.005	nd	nd	0.05	N/A
1,2-Dichlorobenzene	0.002	nd	nd	3.4	10
1,3-Dichlorobenzene	0.002	nd	nd	4.8	10
1,4-Dichlorobenzene	0.002	nd	nd	0.083	10
1,1-Dichloroethane	0.002	nd	nd	3.5	50
1.2-Dichloroethane	0.002	nd	nd	0.05	50
1,1-Dichloroethylene	0.002	nd	nd	0.05	50
Dichlorodifluoromethane	0.002	nd	nd	16	N/A
cis-1,2-Dichloroethylene	0.002	nd	nd	3.4	50
trans-1,2-Dichloroethylene	0.002	nd	nd	0.084	50
1,2-Dichloroethylene, total	0.003	nd	nd	N/A	N/A
1,2-Dichloropropane	0.002	nd	nd	0.05	50
cis-1,3-Dichloropropylene	0.002	nd	nd	N/A	50
trans-1,3-Dichloropropylene	0.002	nd	nd	N/A	50
1,3-Dichloropropene, total	0.003	nd	nd	0.05	N/A
Ethylbenzene	0.002	nd	nd	2	0.082
Hexane	0.002	nd	nd	2.8	6.5
Methyl Ethyl Ketone	0.050	nd	nd	16	N/A
Methyl Butyl Ketone	0.010	nd	nd	N/A	N/A
Methyl Isobutyl Ketone	0.050	nd	nd	1.7	N/A
Methyl tert-butyl ether	0.010	nd	nd	0.75	N/A
Methylene Chloride	0.005	nd	nd	0.1	50
Styrene	0.005	nd	nd	0.7	50
1.1.1.2-Tetrachloroethane	0.002	nd	nd	0.058	50
1.1.2.2-Tetrachloroethane	0.002	nd	nd	0.05	50
Tetrachloroethylene	0.002	nd	nd	0.03	0.5
Toluene	0.002	nd	nd	2.3	0.37
1.2.4-Trichlorobenzene	0.002	nd	nd	0.36	10
1.1.1-Trichloroethane	0.002	nd	nd	0.38	50
Notes: MDL – Method Detect nd – not detected abo	ion Limit		110	5.00	30

- MDL Method Detection Limit
- nd not detected above the MDL
- nt not tested for this parameter
 - N/A not applicable (no standard for this parameter)
- Underlined value exceeds selected CCME standards

 Bold and Underlined value exceeds selected MECP standards

Table 7 Analytical Test Results – Soil (Continued) VOCs

		Soil Samp	oles (µg/g)	MECP Table 7	CCME Coarse-	
	MDL	Novembe	r 14, 2023	Coarse-Grained	Grained	
Parameter	(µg/g)	BH11-23-AU1 BH12-23-SS2		Residential	Commercial	
	(µg/g)	Sample De	pth (m bgs)	Soil Standards	Standards	
		0.00 – 0.61 m	0.76 – 1.37 m	(µg/g)	(µg/g)	
1,1,2-Trichloroethane	0.002	nd	nd	0.05	50	
Trichloroethylene	0.002	nd	nd	0.061	0.01	
Trichlorofluoromethane	0.005	nd	nd	4	N/A	
1,3,5-Trimethylbenzene	0.005	nd	nd	N/A	N/A	
Vinyl Chloride	0.005	nd	nd	0.02	N/A	
m/p-Xylene	0.005	nd	nd	N/A	N/A	
o-Xylene	0.002	nd	nd	N/A	N/A	
Xylenes, total	0.005	nd	nd	3.1	11	

Notes:

- ☐ MDL Method Detection Limit
- nd not detected above the MDL
- ☐ nt not tested for this parameter
- \square N/A not applicable (no standard for this parameter)
- ☐ <u>Underlined</u> value exceeds selected CCME standards
- Bold and Underlined value exceeds selected MECP standards

No VOC parameters were detected in the soil samples analyzed at any concentrations above the laboratory method detection limits. The results are in compliance with the selected MECP Table 7 Coarse-Grained Residential Soil Standards and the CCME Coarse-Grained Commercial Soil Standards.

Table 8 Analytical Test Results – Soil Metals

			oles (µg/g) r 14, 2023	MECP Table 7 Coarse-Grained	CCME Coarse- Grained
Parameter	MDL	BH11-23-AU1	BH12-23-SS2	Residential	Commercial
	(µg/g)	Sample De	pth (m bgs)	Soil Standards	Standards
		0.00 – 0.61 m	— (μg/g)	(µg/g)	
Antimony	1.0	nd	nd	7.5	40
Arsenic	1.0	2	3	18	12
Barium	1.0	49	38	390	2,000
Beryllium	0.5	nd	nd	4	8
Boron	5.0	7.5	18.0	120	N/A
Cadmium	0.5	nd	nd	1.2	22
Chromium	5.0	8	19	160	87
Chromium (VI)	0.2	nd	nd	8	1.4
Cobalt	1.0	3	7	22	300
Copper	5.0	nd	7	140	91
Lead	1.0	7	6	120	260
Mercury	0.1	nd	nd	0.27	24
Molybdenum	1.0	nd	nd	6.9	40
Nickel	5.0	7	14	100	89
Selenium	1.0	nd	nd	2.4	2.9
Silver	0.3	nd	nd	20	40
Thallium	1.0	nd	nd	1	1
Tin	5.0	nd	nd	300	300
Uranium	1.0	nd	nd	33	33
Vanadium	10.0	11	21	130	130
Zinc	20.0	nd	nd	410	410

Notes:

- MDL Method Detection Limit
- ☐ nd not detected above the MDL
- ☐ nt not tested for this parameter
- N/A not applicable (no standard for this parameter)
- Underlined value exceeds selected CCME standards
 - Bold and Underlined value exceeds selected MECP standards

All detected metal parameter concentrations in the soil samples analyzed are in compliance with the selected MECP Table 7 Coarse-Grained Residential Soil Standards and the CCME Coarse-Grained Commercial Soil Standards.

Table 9 Analytical Test Results – Soil PAHs

			oles (µg/g) er 14, 2023	MECP Table 7 Coarse-Grained	CCME Coarse- Grained
Parameter	MDL	BH11-23-AU1	BH12-23-SS2	Coarse-Grained Residential	Commercial
	(µg/g)	Sample De	pth (m bgs)	Soil Standards	Standards
		0.00 – 0.61 m	0.76 – 1.37 m	(µg/g)	(µg/g)
Acenaphthene	0.02	nd	nd	7.9	0.28
Acenaphthylene	0.02	nd	(nd >0.40)	0.15	320
Anthracene	0.02	nd	nd	0.67	32
Benzo[a]anthracene	0.02	nd	nd	0.5	10
Benzo[a]pyrene	0.02	nd	(nd >0.40)	0.3	72
Benzo[b]fluoranthene	0.02	nd	nd	0.78	10
Benzo[g,h,i]perylene	0.02	nd	nd	6.6	N/A
Benzo[k]fluoranthene	0.02	nd	nd	0.78	10
1,1-Biphenyl	0.02	nd	(nd >0.40)	0.31	N/A
Chrysene	0.02	nd	nd	7	N/A
Dibenzo[a,h]anthracene	0.02	nd	(nd >0.40)	0.1	10
Fluoranthene	0.02	nd	nd	0.69	180
Fluorene	0.02	nd	nd	62	0.25
Indeno [1,2,3-cd] pyrene	0.02	nd	(nd >0.40)	0.38	10
1-Methylnaphthalene	0.02	nd	nd	0.99	N/A
2-Methylnaphthalene	0.02	nd	nd	0.99	N/A
Methylnaphthalene (1&2)	0.04	nd	nd	0.99	N/A
Naphthalene	0.01	nd	nd	0.6	0.013
Phenanthrene	0.02	nd	nd	6.2	0.046
Pyrene	0.02	nd	nd	78	100
Quinoline	0.10	nd	nd	N/A	N/A

Notes:

- ☐ MDL Method Detection Limit
- nd not detected above the MDL
- □ nt not tested for this parameter
- N/A not applicable (no standard for this parameter)
- ☐ (Bracketed) Elevated MDLs exceed MECP standards
- Underlined value exceeds selected CCME standards
- Bold and Underlined value exceeds selected MECP standards

No PAH parameters were detected in the soil samples analyzed at concentrations above the laboratory method detection limit. The results are in compliance with the selected MECP Table 7 Coarse-Grained Residential Soil Standards and the CCME Coarse-Grained Commercial Soil Standards.

Table 10 Analytical Test Results – Soil PCBs								
		Soil Samp	oles (µg/g)	MECP Table 7	CCME Coarse-			
	MDL	Novembe	er 14, 2023	Coarse-Grained	Grained Commercial			
Parameter		BH12-23-SS2	BH13-23-SS3	Residential				
	(µg/g)	Sample Depth (m bgs)		Soil Standards	Standards			
		0.76 – 1.37 m	1.52 – 2.13 m	(µg/g)	(µg/g)			
PCBs	0.05	nd	nd	0.35	33			
Notes: MDL – Method Detection Limit nd – not detected above the MDL nt – not tested for this parameter N/A – not applicable (no standard for this parameter) Underlined – value exceeds selected CCME standards								

No PCB parameters were detected in the soil samples analyzed at concentrations above the laboratory method detection limit. The results are in compliance with the selected MECP Table 7 Coarse-Grained Residential Soil Standards and the CCME Coarse-Grained Commercial Soil Standards.

Bold and Underlined – value exceeds selected MECP standards

Table 11										
Analytical Test Results – Soil										
Inorganie	Inorganic Parameters									
		Soil Samp	iles (µg/g)	MECP Table	ССМЕ					
		Novembe	r 14, 2023	Coarse-	Coarse-					
 	MDL	BH11-23-AU1	BH11-23-AU1 BH12-23-SS2		Grained					
Parameter	(units)	Sample De _l	pth (m bgs)	Residential	Commercial					
	,	0.00 – 0.61 m	0.76 – 1.37 m	Soil Standards (units)	Standards (units)					
SAR	0.01 Units	1.08	<u>5.26</u>	5	12					
EC	5 μS/cm	291	<u>1,100</u>	700	4,000					
рН	0.05 Units	7.65	nt	5.00 – 11.00	5.00 - 11.00					
Notes: MDL – Method Detection Limit nd – not detected above the MDL nt – not tested for this parameter N/A – not applicable (no standard for this parameter) Underlined – value exceeds selected CCME standards Bold and Underlined – value exceeds selected MECP standards										

The EC and SAR levels measured in soil sample BH12-23-SS2 exceed the selected MECP Table 7 Coarse-Grained Residential Soil Standards, though they comply with the CCME Coarse-Grained Commercial Soil Standards. These exceedances are suspected to be the result of the use of road salt on the Phase II Property during snow and ice conditions and thus, as per Section 49.1 of O. Reg. 153/04, does not represent a contaminant issue.

Parameter	Maximum Concentration (μg/g)	Sample ID	Depth Interval (m BGS)	
PHCs F ₂	10	BH11-23-AU1	0.00 – 0.61 m	
PHCs F₃	90	BH11-23-AU1	0.00 – 0.61 m	
PHCs F ₄	431	BH12-23-SS2	0.76 – 1.37 m	
PHCs F ₄ (gravimetric)	937	BH12-23-SS2	0.76 – 1.37 m	
Arsenic	3	BH12-23-SS2	0.76 – 1.37 m	
Barium	49	BH11-23-AU1	0.00 – 0.61 m	
Boron	18.0	BH12-23-SS2	0.76 – 1.37 m	
Chromium	19	BH12-23-SS2	0.76 – 1.37 m	
Cobalt	7	BH12-23-SS2	0.76 – 1.37 m	
Copper	7	BH12-23-SS2	0.76 – 1.37 m	
Lead	7	BH11-23-AU1	0.00 – 0.61 m	
Nickel	14	BH12-23-SS2	0.76 – 1.37 m	
Vanadium	21	BH12-23-SS2	0.76 – 1.37 m	
SAR	5.26	BH12-23-SS2	0.76 – 1.37 m	
EC	1,100	BH12-23-SS2	0.76 – 1.37 m	
pH	7.65	BH11-23-AU1	0.00 – 0.61 m	

All other parameter concentrations analyzed were below the laboratory detection limits.

5.6 Groundwater Quality

Three groundwater samples were submitted for laboratory analysis of PHC, VOC, metals, PAH, and PCB parameters. The results of the analytical testing are presented below in Table 13 to Table 17, as well as on the laboratory Certificates of Analysis included in Appendix 1.

Table 13
Analytical Test Results – Groundwater
PHCs

	MDL		ndwater Samples (November 24, 2023	- MECP Table 7 Non-Potable	CCME Tier 1 FIGWQG		
Parameter		BH11-23-GW1	BH12-23-GW1	BH13-23-GW1	Groundwater	Commercial	
	(µg/L)	S	ample Depth (m bg	Soil Standards	Standards		
		2.99 – 5.99 m	3.02 – 6.02 m	3.02 – 6.02 m	(μg/L)	(µg/L)	
PHCs F₁	25	nd	nd	nd	420	810	
PHCs F ₂	100	nd	nd	nd	150	1,300	
PHCs F ₃	100	nd	nd	nd	500	N/A	
PHCs F ₄	100	nd	nd	nd	500	N/A	

Notes:

- MDL Method Detection Limit
- □ nd not detected above the MDL
- nt not tested for this parameter
- N/A not applicable (no standard for this parameter)
- Underlined value exceeds selected CCME standards
 - Bold and Underlined value exceeds selected MECP standards

No BTEX or PHC parameter concentrations were detected above the laboratory method detection limits in any of the samples analyzed. The results are in compliance with the MECP Table 7 Non-Potable Groundwater Standards as well as the CCME Tier 1 Federal Interim Groundwater Water Quality Guidelines for Commercial Sites.

Table 14 **Analytical Test Results – Groundwater** VOCs

		Groundwater Samples (μg/L) November 24, 2023					
		BH11-23-	BH12-23-	BH13-23-	l	MECP Table 7 Non-Potable	CCME Tier 1 FIGWQG
Parameter	MDL	GW1	GW1	GW1	DUP1	Groundwater	Commercial
	(µg/L)			pth (m bgs		Soil Standards	Standards
		2.99 – 5.99 m	3.02 – 6.02 m	3.02 – 6.02 m	2.99 – 5.99 m	· (μg/L)	(µg/L)
Acetone	5.0	293	nd	nd	253	100,000	13,000
Benzene	0.5	nd	nd	nd	nd	0.5	140
Bromodichloromethane	0.5	nd	nd	nd	nd	67,000	8,500
Bromoform	0.5	nd	nd	nd	nd	5	380
Bromomethane	0.5	nd	nd	nd	nd	0.89	56
Carbon Tetrachloride	0.2	nd	nd	nd	nd	0.2	0.56
Chlorobenzene	0.5	nd	nd	nd	nd	140	1.3
Chloroethane	1.0	nd	nd	nd	nd	N/A	N/A
Chloroform	0.5	<u>6.1</u>	nd	nd	<u>5.0</u>	2	1.8
Chloromethane	3.0	nd	nd	nd	nd	N/A	N/A
Dibromochloromethane	0.5	nd	nd	nd	nd	65,000	1,100
Dichlorodifluoromethane	1.0	nd	nd	nd	nd	3,500	N/A
Ethylene dibromide	0.2	nd	nd	nd	nd	0.2	0.25
1,2-Dichlorobenzene	0.5	nd	nd	nd	nd	150	0.7
1,3-Dichlorobenzene	0.5	nd	nd	nd	nd	7,600	42
1,4-Dichlorobenzene	0.5	nd	nd	nd	nd	0.5	26
1,1-Dichloroethane	0.5	nd	nd	nd	nd	11	320
1,2-Dichloroethane	0.5	nd	nd	nd	nd	0.5	10
1,1-Dichloroethylene	0.5	nd	nd	nd	nd	0.5	39
cis-1,2-Dichloroethylene	0.5	nd	nd	nd	nd	1.6	1.6
trans-1,2-Dichloroethylene	0.5	nd	nd	nd	nd	1.6	1.6
1,2-Dichloroethylene, total	0.5	nd	nd	nd	nd	N/A	N/A
1,2-Dichloropropane	0.5	nd	nd	nd	nd	0.58	16
cis-1,3-Dichloropropylene	0.5	nd	nd	nd	nd	N/A	N/A
trans-1,3-Dichloropropylene	0.5	nd	nd	nd	nd	N/A	N/A
1,3-Dichloropropene, total	0.5	nd	nd	nd	nd	0.5	5.2
Ethylbenzene	0.5	nd	nd	nd	nd	54	11,000
Hexane	1.0	nd	nd	nd	nd	5	N/A
Methyl Ethyl Ketone	5.0	nd	nd	nd	nd	21,000	150,000
Methyl Butyl Ketone	10.0	nd	nd	nd	nd	N/A	N/A
Methyl Isobutyl Ketone	5.0	nd	nd	nd	nd	5,200	58,000
Methyl tert-butyl ether	2.0	nd	nd	nd	nd	15	4,300
Methylene Chloride	5.0	nd	nd	nd	nd	26	50
Styrene	0.5	nd	nd	nd	nd	43	72
1,1,1,2-Tetrachloroethane	0.5	nd	nd	nd	nd	1.1	3.3
1,1,2,2-Tetrachloroethane	0.5	nd	nd	nd	nd	0.5	3.2

Notes:

- MDL Method Detection Limit
- nd not detected above the MDL
- nt not tested for this parameter
- N/A not applicable (no standard for this parameter)
- <u>Underlined</u> value exceeds selected CCME standards <u>Bold and Underlined</u> value exceeds selected MECP standards

Report: PE6036-2R January 24, 2025

Table 14 (Continued)
Analytical Test Results – Groundwater
VOCs

		Groundwater Samples (µg/L)					
		November 24, 2023				MECP Table 7	CCME Tier 1
Parameter	MDL	BH11-23- GW1	BH12-23- GW1	BH13-23- GW1	DUP1	Non-Potable Groundwater	FIGWQG Commercial
	(µg/L)		Sample De	pth (m bgs	5)	Soil Standards	Standards
		2.99 – 5.99 m	3.02 – 6.02 m	3.02 – 6.02 m	2.99 – 5.99 m	(µg/L)	(μg/L)
Tetrachloroethylene	0.5	nd	nd	nd	<u>1.0</u>	0.5	110
Toluene	0.5	nd	nd	nd	nd	320	83
1,1,1-Trichloroethane	0.5	nd	nd	nd	nd	23	640
1,1,2-Trichloroethane	0.5	nd	nd	nd	nd	0.5	4.7
Trichloroethylene	0.5	nd	nd	nd	nd	0.5	20
Trichlorofluoromethane	1.0	nd	nd	nd	nd	2,000	N/A
1,3,5-Trimethylbenzene	0.5	nd	nd	nd	nd	N/A	N/A
Vinyl Chloride	0.5	nd	nd	nd	nd	0.5	1.1
Xylenes, total	0.5	nd	nd	nd	nd	72	3,900
Trichlorofluoromethane 1,3,5-Trimethylbenzene Vinyl Chloride	1.0 0.5 0.5	nd nd nd	nd nd nd	nd nd nd	nd nd nd	2,000 N/A 0.5	N/A N/A 1.1

Notes:

- ☐ MDL Method Detection Limit
- □ nd not detected above the MDL
- □ nt not tested for this parameter
- □ N/A not applicable (no standard for this parameter)
- ☐ <u>Underlined</u> value exceeds selected CCME standards
- Bold and Underlined value exceeds selected MECP standards

All detected VOC parameter concentrations in the groundwater samples analyzed are in compliance with the selected MECP Table 7 Non-Potable Groundwater Standards, as well as the CCME Federal Interim Groundwater Water Quality Guidelines for Commercial Sites, with the exception of chloroform in Sample BH11-23-GW1. This chloroform exceedance is suspected to be the result of municipal water used during the bedrock coring process, and not as a result of a contaminant issue.

It should be noted that tetrachloroethylene was identified in the duplicate sample collected from BH11-23. Based on the absence of any VOC parameters in the soil, and the absence of any other VOC parameters in the groundwater (with the exception of chloroform), in particular between the parent and daughter sample, the detection of tetrachloroethylene in the duplicate is considered to be anomalous, and not representative of actual site conditions.

Table 15
Analytical Test Results - Groundwater
Metals

		Ground	dwater Samples	MECP Table 7	CCME Tier 1		
	MDL	N ₀	ovember 24, 20	23	Non-Potable	FIGWQG	
Parameter		BH11-23-GW1	BH12-23-GW1	BH13-23-GW1	Groundwater	Commercial	
	(µg/L)	Sar	nple Depth (m k	gs)	Soil Standards	Standards	
		2.99 – 5.99 m	3.02 – 6.02 m	3.02 – 6.02 m	(µg/L)	(µg/L)	
Aluminum	1	<u>22</u>	5	<u>8</u>	N/A	5	
Antimony	0.5	0.8	nd	nd	16,000	2,000	
Arsenic	1	nd	nd	nd	1,500	5	
Barium	1	293	138	192	23,000	500	
Beryllium	0.5	nd	nd	nd	53	5.3	
Boron	10	<u>769</u>	50	121	36,000	500	
Cadmium	0.01	0.01	0.03	nd	2.1	0.017	
Calcium	100	239,000	221,000	249,000	N/A	N/A	
Chromium	100	nd	nd	nd	N/A	8.9	
Chromium (VI)	1	nd	nd	nd	640	N/A	
Cobalt	1	nd	nd	nd	110	N/A	
Copper	0.5	2.0	2.7	2.3	52	50	
Iron	0.5	nd	nd	nd	69	300	
Lead	100	nd	nd	nd	N/A	1	
Magnesium	0.1	50,800	36,600	36,700	20	N/A	
Manganese	200	25	6	nd	N/A	200	
Mercury	0.01	nd	nd	nd	0.1	0.1	
Molybdenum	5	14.6	72.8	4.6	N/A	73	
Nickel	0.01	2	1	2	0.1	25	
Selenium	0.5	<u>7</u>	nd	nd	7300	1	
Silver	0.1	nd	nd	nd	1.2	0.1	
Thallium	1	nd	nd	nd	390	0.8	
Titanium	1	nd	nd	nd	50	100	
Uranium	0.1	1.0	1.6	2.6	1.2	10	
Vanadium	0.1	0.7	nd	nd	400	100	
Zinc	5	nd	6	nd	N/A	10	

Notes:

- ☐ MDL Method Detection Limit
- ☐ nd not detected above the MDL
- □ nt not tested for this parameter
- N/A not applicable (no standard for this parameter)
 - <u>Underlined</u> value exceeds selected CCME standards
- Bold and Underlined value exceeds selected MECP standards

All detected metal parameter concentrations in the groundwater samples analyzed are in compliance with the selected MECP Table 7 Non-Potable Groundwater Standards.

It should be noted that the concentration of aluminum, boron, and selenium detected in Sample BH11-23-GW1, the concentration of cadmium in BH12-23-GW1, and the concentration of aluminum in Sample BH13-23-GW1 are in excess of the CCME Federal Interim Groundwater Water Quality Guidelines for Commercial Sites.

Table 16 Analytical Test Results – Groundwater PAHs

		Ground	MECP Table 7	CCME Tier 1 FIGWQG		
Parameter	MDL	BH11-23-GW1	ovember 24, 20 BH12-23-GW1	BH13-23-GW1	Non-Potable Groundwater	Commercial
	(µg/L)	San	nple Depth (m k	ogs)	Soil Standards	Standards
		2.99 – 5.99 m	3.02 – 6.02 m	(μg/L)	(μg/L)	
Acenaphthene	0.05	nd	nd	nd	17	5.8
Acenaphthylene	0.05	nd	nd	nd	1	46
Acridine	0.10	nd	nd	nd	N/A	0.05
Anthracene	0.01	nd	nd	nd	1	0.012
Benzo[a]anthracene	0.01	nd	nd	nd	1.8	0.018
Benzo[a]pyrene	0.01	nd	nd	nd	0.81	0.015
Benzo[b]fluoranthene	0.05	nd	nd	nd	0.75	N/A
Benzo[g,h,i]perylene	0.05	nd	nd	nd	0.2	0.17
Benzo[k]fluoranthene	0.05	nd	nd	nd	0.4	0.48
1,1-Biphenyl	0.05	nd	nd	nd	1,000	N/A
Chrysene	0.05	nd	nd	nd	0.7	0.1
Dibenzo[a,h]anthracene	0.05	nd	nd	nd	0.4	0.26
Fluoranthene	0.01	nd	nd	nd	44	0.04
Fluorene	0.05	nd	nd	nd	290	3
Indeno [1,2,3-cd] pyrene	0.05	nd	nd	nd	0.2	0.21
1-Methylnaphthalene	0.05	nd	nd	nd	1,500	1,500
2-Methylnaphthalene	0.05	nd	nd	nd	1,500	1,500
Methylnaphthalene (1&2)	0.10	nd	nd	nd	1,500	180
Naphthalene	0.05	nd	nd	nd	7	1.1
Phenanthrene	0.05	nd	nd	nd	380	0.4
Pyrene	0.01	nd	nd	nd	5.7	0.025
Quinoline	0.10	nd	nd	nd	N/A	3.4
Notes:						•

Notes:

- ☐ MDL Method Detection Limit
- □ nd not detected above the MDL
- □ nt not tested for this parameter
- □ N/A not applicable (no standard for this parameter)
 - <u>Underlined</u> value exceeds selected CCME standards
- Bold and Underlined value exceeds selected MECP standards

No PAH parameter concentrations were detected above the laboratory method detection limits in any of the samples analyzed. The results are in compliance with the MECP Table 7 Non-Potable Groundwater Standards as well as the CCME Tier 1 Federal Interim Groundwater Water Quality Guidelines for Commercial Sites.

Table Analyt PCBs		Results	– Groundwate	r		
		-	Groundwater S Novembe		MECP Table 7	CCME Tier 1 FIGWQG
Pa	rameter	MDL - (μg/L) -	BH12-23-GW1 BH13-23-GW1		Non-Potable Groundwater	Commercial
İ			Sample De	pth (m bgs)	Soil Standards (µg/L)	Standards
			3.02 – 6.02 m	3.02 – 6.02 m		(μg/L)
PCBs, Tota	al	0.5	nd	nd	0.2	N/A
	<u>Underlined</u> – va	ed above the MI or this paramete able (no standa lue exceeds se	DL	tandards		

No PCB parameter concentrations were detected above the laboratory method detection limits in any of the samples analyzed. The results are in compliance with the MECP Table 7 Non-Potable Groundwater Standards as well as the CCME Tier 1 Federal Interim Groundwater Water Quality Guidelines for Commercial Sites.

Supplemental Groundwater Retesting Program

A second round of groundwater testing was conducted for the Phase II Property to reassess the groundwater quality in all three monitoring wells. The samples were obtained on December 11, 2024 and submitted for analysis of VOC parameters. The results are presented below in Table 18, as well as on the certificate of analysis, appended to this report.

Report: PE6036-2R Page 25

Page 26

Table 18 **Analytical Test Results – Groundwater VOCs**

		Gro		Samples (µ	g/L)		CCME Tier 1 FIGWQG Commercial Standards
Parameter	MDL	BH11-23- GW2	BH12-23- GW2	r 11, 2024 BH13-23- GW2	DUP2	MECP Table 7 Non-Potable Groundwater	
	(µg/L)			pth (m bgs)	Soil Standards	
		2.99 -	3.02 -	3.02 -	2.99 –	(µg/L)	(µg/L)
		5.99 m	6.02 m	6.02 m	5.99 m		
Acetone	5.0	29.8	nd	nd	nd	100,000	13,000
Benzene	0.5	nd	nd	nd	nd	0.5	140
Bromodichloromethane	0.5	nd	nd	nd	nd	67,000	8,500
Bromoform	0.5	nd	nd	nd	nd	5	380
Bromomethane	0.5	nd	nd	nd	nd	0.89	56
Carbon Tetrachloride	0.2	nd	nd	nd	nd	0.2	0.56
Chlorobenzene	0.5	nd	nd	nd	nd	140	1.3
Chloroethane	1.0	nd	nd	nd	nd	N/A	N/A
Chloroform	0.5	nd	nd	nd	nd	2	1.8
Chloromethane	3.0	nd	nd	nd	nd	N/A	N/A
Dibromochloromethane	0.5	nd	nd	nd	nd	65,000	1,100
Dichlorodifluoromethane	1.0	nd	nd	nd	nd	3,500	N/A
Ethylene dibromide	0.2	nd	nd	nd	nd	0.2	0.25
1,2-Dichlorobenzene	0.5	nd	nd	nd	nd	150	0.7
1,3-Dichlorobenzene	0.5	nd	nd	nd	nd	7,600	42
1,4-Dichlorobenzene	0.5	nd	nd	nd	nd	0.5	26
1,1-Dichloroethane	0.5	nd	nd	nd	nd	11	320
1,2-Dichloroethane	0.5	nd	nd	nd	nd	0.5	10
1,1-Dichloroethylene	0.5	nd	nd	nd	nd	0.5	39
cis-1,2-Dichloroethylene	0.5	nd	nd	nd	nd	1.6	1.6
trans-1,2-Dichloroethylene	0.5	nd	nd	nd	nd	1.6	1.6
1,2-Dichloroethylene, total	0.5	nd	nd	nd	nd	N/A	N/A
1,2-Dichloropropane	0.5	nd	nd	nd	nd	0.58	16
cis-1,3-Dichloropropylene	0.5	nd	nd	nd	nd	N/A	N/A
trans-1,3-Dichloropropylene	0.5	nd	nd	nd	nd	N/A	N/A
1,3-Dichloropropene, total	0.5	nd	nd	nd	nd	0.5	5.2
Ethylbenzene	0.5	nd	nd	nd	nd	54	11,000
Hexane	1.0	nd	nd	nd	nd	5	N/A
Methyl Ethyl Ketone	5.0	nd	nd	nd	nd	21,000	150,000
Methyl Butyl Ketone	10.0	nd	nd	nd	nd	N/A	N/A
Methyl Isobutyl Ketone	5.0	nd	nd	nd	nd	5,200	58,000
Methyl tert-butyl ether	2.0	nd	nd	nd	nd	15	4,300
Methylene Chloride	5.0	nd	nd	nd	nd	26	50
Styrene	0.5	nd	nd	nd	nd	43	72
1,1,1,2-Tetrachloroethane	0.5	nd	nd	nd	nd	1.1	3.3
1,1,2,2-Tetrachloroethane	0.5	nd	nd	nd	nd	0.5	3.2

Notes:

- MDL Method Detection Limit
- nd not detected above the MDL
- nt not tested for this parameter
- N/A not applicable (no standard for this parameter)
- <u>Underlined</u> value exceeds selected CCME standards <u>Bold and Underlined</u> value exceeds selected MECP standards

Report: PE6036-2R

Table 18 (Continued) Analytical Test Results – Groundwater VOCs

	Gro	undwater S	Samples (µ	ıg/L)		
			Wil		MECP Table 7	CCME Tier 1
MDL	BH11-23- GW2	BH12-23- GW2	BH13-23- GW2	DUP2	Non-Potable Groundwater	FIGWQG Commercial
(µg/L)		Sample De	pth (m bgs	5)	Soil Standards	Standards
	2.99 – 5.99 m	3.02 – 6.02 m	3.02 – 6.02 m	2.99 – 5.99 m	(μg/L)	(μg/L)
0.5	nd	nd	nd	nd	0.5	110
0.5	nd	nd	nd	nd	320	83
0.5	nd	nd	nd	nd	23	640
0.5	nd	nd	nd	nd	0.5	4.7
0.5	nd	nd	nd	nd	0.5	20
1.0	nd	nd	nd	nd	2,000	N/A
0.5	nd	nd	nd	nd	N/A	N/A
0.5	nd	nd	nd	nd	0.5	1.1
0.5	nd	nd	nd	nd	72	3,900
	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	MDL (µg/L) BH11-23-GW2 2.99 - 5.99 m 0.5 nd MDL (μg/L) BH11-23- GW2 BH12-23- GW2 Sample De 2.99 - 5.99 m 0.5	MDL (μg/L) BH11-23- GW2 BH12-23- GW2 GW2 GW2	MDL (μg/L) BH11-23- GW2 BH12-23- GW2 BH13-23- GW2 DUP2 Sample Depth (m bgs) 2.99 - 5.99 m 3.02 - 6.02 m 5.99 m 5.99 m 0.5 nd nd nd nd 0.5 nd nd nd nd	MDL (μg/L) BH11-23- GW2 BH13-23- GW2 BH13-23- GW2 DUP2 Sample Depth (m bgs) S.99 m S.90 m S.	

Notes:

- ☐ MDL Method Detection Limit
- ☐ nd not detected above the MDL
- ☐ nt not tested for this parameter
- □ N/A not applicable (no standard for this parameter)
- <u>Underlined</u> value exceeds selected CCME standards
- Bold and Underlined value exceeds selected MECP standards

All detected VOC parameter concentrations in the groundwater samples analyzed are in compliance with the selected MECP Table 7 Non-Potable Groundwater Standards, as well as the CCME Federal Interim Groundwater Water Quality Guidelines for Commercial Sites.

Parameter	Maximum Concentration (μg/g)	Sample ID	Depth Interval (m BGS)
Chloroform	<u>6.1</u>	BH11-23-GW1	2.99 - 5.99 m
Aluminum	<u>22</u>	BH11-23-GW1	2.99 – 5.99 m
Antimony	0.8	BH11-23-GW1	2.99 - 5.99 m
Barium	293	BH11-23-GW1	2.99 – 5.99 m
Boron	<u>769</u>	BH11-23-GW1	2.99 - 5.99 m
Cadmium	0.03	BH12-23-GW1	3.02 – 6.02 m
Calcium	249,000	BH13-23-GW1	3.02 – 6.02 m
Copper	2.7	BH12-23-GW1	3.02 – 6.02 m
Magnesium	50,800	BH11-23-GW1	2.99 - 5.99 m
Manganese	25	BH11-23-GW1	2.99 – 5.99 m
Molybdenum	72.8	BH12-23-GW1	3.02 – 6.02 m
Nickel	2	BH11-23-GW1 / BH13-23-GW1	2.99 – 5.99 m / 3.02 – 6.02 m
Selenium	7	BH11-23-GW1	2.99 – 5.99 m
Uranium	2.6	BH13-23-GW1	3.02 – 6.02 m
Vanadium	0.7	BH11-23-GW1	2.99 – 5.99 m
Zinc	6	BH12-23-GW1	3.02 – 6.02 m

Report: PE6036-2R Page 27

All other parameter concentrations analyzed were below the laboratory detection limits.

5.7 Quality Assurance and Quality Control Results

All samples submitted as part of this Phase II ESA were handled in accordance with the analytical protocols with respect to holding time, preservation method, storage requirement, and container type.

As per Subsection 47(3) of O. Reg. 153/04, as amended by the Environmental Protection Act, the certificates of analysis have been received for each sample submitted for laboratory analysis and have been appended to this report.

It should be noted that, due to the sample matrix, Sample BH12-23-SS2 contained minor elevated detection limits for five PAH parameters which were above the MECP Table 7 Coarse-Grained Residential Soil Standards. Based on the non-detect status of PAH concentrations in all soil and groundwater samples analyzed, as well as the marginal difference between the elevated detection limits and the MECP standards for these parameters, these elevated detection limits are not considered to affect the data quality objectives outlined in the Sampling and Analysis Plan.

As per the Sampling and Analysis Plan, a duplicate soil sample was obtained from sample BH12-23-SS2 and submitted for laboratory analysis of metal parameters. The relative percent difference (RPD) calculations for the original and duplicate samples are provided below in Table 20.

Report: PE6036-2R Page 28

Parameter	ons – Soil MDL (µg/g)	BH12-23-SS2	DUP-1	RPD (%)	QA/QC Result (Target: <20% RPD)
Antimony	1.0	nd	nd	0	Meets Target
Arsenic	1.0	3	2	40	Does Not Meet Target
Barium	1.0	38	18	71.4	Does Not Meet Target
Beryllium	0.5	nd	nd	0	Meets Target
Boron	5.0	18.0	15.1	17.5	Meets Target
Cadmium	0.5	nd	nd	0	Meets Target
Chromium	5.0	19	12	45.2	Does Not Meet Target
Cobalt	1.0	7	6	15.4	Meets Target
Copper	5.0	7	5	33.3	Does Not Meet Target
Lead	1.0	6	4	40	Does Not Meet Target
Molybdenum	1.0	nd	nd	0	Meets Target
Nickel	5.0	14	10	33.3	Does Not Meet Target
Selenium	1.0	nd	nd	0	Meets Target
Silver	0.3	nd	nd	0	Meets Target
Thallium	1.0	nd	nd	0	Meets Target
Tin	5.0	nd	nd	0	Meets Target
Uranium	1.0	nd	nd	0	Meets Target
Vanadium	10.0	21	16	27	Meets Target
Zinc	20.0	nd	nd	0	Meets Target

The RPD calculated for the majority of the parameters fell within of the acceptable range of 20%, with some exceptions. These discrepancies are likely attributed to the variability between the low concentrations of certain parameters detected in the samples, particularly within the metals parameter group. Given that there is a similarity in the list of parameters detected in both the original and duplicate sample, and that both samples comply with the site standards, the data quality objectives outlined in the Sampling and Analysis Plan, appended to this report, are considered to have been met.

Similarly, a duplicate groundwater sample was obtained from sample BH11-23-GW1 and submitted for laboratory analysis of VOC parameters. The relative percent difference (RPD) calculations for the original and duplicate samples are provided below in Table 21.

Parameter	MDL (µg/g)	BH11-23-GW1	DUP-1	RPD (%)	QA/QC Result (Target: <20% RPD)
Acetone	5.0	293	nd	0	Meets Target
Benzene	0.5	nd	nd	0	Meets Target
Bromodichloromethane	0.5	nd	nd	0	Meets Target
Bromoform	0.5	nd	nd	0	Meets Target
Bromomethane	0.5	nd	nd	0	Meets Target
Carbon Tetrachloride	0.2	nd	nd	0	Meets Target
Chlorobenzene	0.5	nd	nd	0	Meets Target
Chloroethane	1.0	nd	nd	0	Meets Target
Chloroform	0.5	<u>6.1</u>	<u>5.0</u>	19.8	Meets Target
Chloromethane	3.0	nd	nd	0	Meets Target
Dibromochloromethane	0.5	nd	nd	0	Meets Target
Dichlorodifluoromethane	1.0	nd	nd	0	Meets Target
Ethylene dibromide	0.2	nd	nd	0	Meets Target
1,2-Dichlorobenzene	0.5	nd	nd	0	Meets Target
1,3-Dichlorobenzene	0.5	nd	nd	0	Meets Target
1,4-Dichlorobenzene	0.5	nd	nd	0	Meets Target
1,1-Dichloroethane	0.5	nd	nd	0	Meets Target
1,2-Dichloroethane	0.5	nd	nd	0	Meets Target
1,1-Dichloroethylene	0.5	nd	nd	0	Meets Target
cis-1,2-Dichloroethylene	0.5	nd	nd	0	Meets Target
trans-1,2-Dichloroethylene	0.5	nd	nd	0	Meets Target
1,2-Dichloroethylene, total	0.5	nd	nd	0	Meets Target
1,2-Dichloropropane	0.5	nd	nd	0	Meets Target
cis-1,3-Dichloropropylene	0.5	nd	nd	0	Meets Target
trans-1,3-Dichloropropylene	0.5	nd	nd	0	Meets Target
1,3-Dichloropropene, total	0.5	nd	nd	0	Meets Target
Ethylbenzene	0.5	nd	nd	0	Meets Target
Hexane	1.0	nd	nd	0	Meets Target
Methyl Ethyl Ketone	5.0	nd	nd	0	Meets Target
Methyl Butyl Ketone	10.0	nd	nd	0	Meets Target
Methyl Isobutyl Ketone	5.0	nd	nd	0	Meets Target
Methyl tert-butyl ether	2.0	nd	nd	0	Meets Target
Methylene Chloride	5.0	nd	nd	0	Meets Target
Styrene	0.5	nd	nd	0	Meets Target
1,1,1,2-Tetrachloroethane	0.5	nd	nd	0	Meets Target
1,1,2,2-Tetrachloroethane	0.5	nd	nd	0	Meets Target
Tetrachloroethylene	0.5	nd	<u>1.0</u>	N/A	Does Not Meet Targe
Toluene	0.5	nd	nd	0	Meets Target
1,1,1-Trichloroethane	0.5	nd	nd	0	Meets Target
1,1,2-Trichloroethane	0.5	nd	nd	0	Meets Target
Trichloroethylene	0.5	nd	nd	0	Meets Target
Trichlorofluoromethane	1.0	nd	nd	0	Meets Target
1,3,5-Trimethylbenzene	0.5	nd	nd	0	Meets Target
Vinyl Chloride	0.5	nd	nd	0	Meets Target
Xylenes, total Notes:	0.5	nd	nd	0	Meets Target

The RPD calculated for all but one of the parameters fell within of the acceptable range of 20%. The lone discrepancy pertains to a low concentration of tetrachloroethylene detected in the duplicate sample of Sample BH11-23-GW1. Given that there was no tetrachloroethylene detected in the original sample, as well as the absence of any source of the contaminant, this detection is considered to be anomalous and not indicative of the groundwater conditions at this location.

Another duplicate groundwater sample was obtained from sample BH13-23-GW2 and submitted for laboratory analysis of VOC parameters. The relative percent difference (RPD) calculations for the original and duplicate samples are provided below in Table 22.

Parameter	MDL (µg/g)	BH13-23-GW2	DUP-2	RPD (%)	QA/QC Result (Target: <20% RPD)
Acetone	5.0	nd	nd	0	Meets Target
Benzene	0.5	nd	nd	0	Meets Target
Bromodichloromethane	0.5	nd	nd	0	Meets Target
Bromoform	0.5	nd	nd	0	Meets Target
Bromomethane	0.5	nd	nd	0	Meets Target
Carbon Tetrachloride	0.2	nd	nd	0	Meets Target
Chlorobenzene	0.5	nd	nd	0	Meets Target
Chloroethane	1.0	nd	nd	0	Meets Target
Chloroform	0.5	nd	nd	0	Meets Target
Chloromethane	3.0	nd	nd	0	Meets Target
Dibromochloromethane	0.5	nd	nd	0	Meets Target
Dichlorodifluoromethane	1.0	nd	nd	0	Meets Target
Ethylene dibromide	0.2	nd	nd	0	Meets Target
1,2-Dichlorobenzene	0.5	nd	nd	0	Meets Target
1,3-Dichlorobenzene	0.5	nd	nd	0	Meets Target
1,4-Dichlorobenzene	0.5	nd	nd	0	Meets Target
1,1-Dichloroethane	0.5	nd	nd	0	Meets Target
1,2-Dichloroethane	0.5	nd	nd	0	Meets Target
1,1-Dichloroethylene	0.5	nd	nd	0	Meets Target
cis-1,2-Dichloroethylene	0.5	nd	nd	0	Meets Target
rans-1,2-Dichloroethylene	0.5	nd	nd	0	Meets Target
1,2-Dichloroethylene, total	0.5	nd	nd	0	Meets Target
1,2-Dichloropropane	0.5	nd	nd	0	Meets Target
cis-1,3-Dichloropropylene	0.5	nd	nd	0	Meets Target
trans-1,3-Dichloropropylene	0.5	nd	nd	0	Meets Target
1,3-Dichloropropene, total	0.5	nd	nd	0	Meets Target
Ethylbenzene	0.5	nd	nd	0	Meets Target
Hexane	1.0	nd	nd	0	Meets Target
Methyl Ethyl Ketone	5.0	nd	nd	0	Meets Target
Methyl Butyl Ketone	10.0	nd	nd	0	Meets Target
Methyl Isobutyl Ketone	5.0	nd	nd	0	Meets Target
Methyl tert-butyl ether	2.0	nd	nd	0	Meets Target
Methylene Chloride	5.0	nd	nd	0	Meets Target
Styrene	0.5	nd	nd	0	Meets Target
1.1.1.2-Tetrachloroethane	0.5	nd	nd	0	Meets Target
1,1,2,2-Tetrachloroethane	0.5	nd	nd	0	Meets Target Meets Target
Tetrachloroethylene	0.5	nd	nd	0	Meets Target Meets Target
Toluene	0.5	nd	nd	0	Meets Target
1,1,1-Trichloroethane	0.5	nd	nd	0	Meets Target
1,1,2-Trichloroethane	0.5	nd	nd	0	Meets Target
Trichloroethylene	0.5	nd	nd	0	Meets Target
Trichlorofluoromethane	1.0	nd	nd	0	Meets Target
1,3,5-Trimethylbenzene	0.5	nd	nd	0	Meets Target
Vinyl Chloride	0.5	nd	nd	0	Meets Target
Xylenes, total	0.5	nd	nd nd	0	Meets Target Meets Target

☐ MDL – Method Detection Limit

☐ nd – not detected above the MDL

The RPD calculated for all but one of the parameters fell within of the acceptable range of 20%. As such, the data quality objectives outlined in the Sampling and Analysis Plan, appended to this report, are considered to have been met.

Based on the results of the QA/QC analysis, the quality of the field data collected during this Phase II ESA is considered to be sufficient to meet the overall objectives of this assessment.

5.8 Phase II Conceptual Site Model

The following section has been prepared in accordance with the requirements of O. Reg. 153/04 amended by the Environmental Protection Act. For the purposes of the proposed uses of this Phase II Property, the Phase II Conceptual Site Model was prepared with consideration for O.Reg. 153/04 only. Conclusions and recommendations are discussed in a subsequent section.

Site Description

Potentially Contaminating Activity and Areas of Potential Environmental Concern

As described in Section 7.1 of the Phase I ESA report, as well as Section 2.2 of this report, the following PCAs, as defined by Table 2 of O. Reg. 153/04, are considered to result in APECs on the Phase II Property:

Table 23 Areas of Po	tential Env	ironmental Concer	n		
Area of Potential Environmental Concern	Location of APEC on Phase I Property	Potentially Contaminating Activity (Table 2 – O. Reg. 153/04)	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil, and/or Sediment)
APEC 1 Former Hazardous Waste Material Generation	Central Portion of Phase II Property	"Item 8: Chemical Manufacturing, Processing and Bulk Storage"	On-Site	VOCs PHCs (F ₁ -F ₄) Metals PAHs PCBs	Soil and/or Groundwater
APEC 2 Fill Material of Unknown Quality	Entirety of Phase II Property	"Item 30: Importation of Fill Material of Unknown Quality"	On-Site	PHCs (F ₁ -F ₄) BTEX Metals PAHs	Soil
APEC 3 Application of Road Salt	Northern and Central Portions of Phase II Property	"Item N/A: Application of Road Salt for De-Icing Purposes During Snow and Ice Conditions"	On-Site	EC SAR	Soil

Table 23 Areas of Po	tential Env	ironmental Concer	n		
Area of Potential Environmental Concern	Location of APEC on Phase I Property	Potentially Contaminating Activity (Table 2 – O. Reg. 153/04)	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil, and/or Sediment)
APEC 4 Existing Hydro Vault	Southeastern Portion of Phase II Property	"Item 55: Transformer Manufacturing Processing and Use"	On-Site	PHCs (F ₁ -F ₄) PCBs	Soil and/or Groundwater

Contaminants of Potential Concern (CPCs)

The contaminants of potential concern (CPCs) associated with the aforementioned APECs are considered to be:

_	Volatile Organic Compounds (VOCs);
_,	• • • • • • • • • • • • • • • • • • • •
	Petroleum Hydrocarbons, fractions $1 - 4$ (PHCs F_1 - F_4);
J	Benzene, Ethylbenzene, Toluene, and Xylenes (BTEX);
J	Polycyclic Aromatic Hydrocarbons (PAHs);
J	Polychlorinated Biphenyls (PCBs);
J	Metals (including Arsenic, Antimony, and Selenium);
]	Mercury (Hg ⁺);
]	Hexavalent Chromium (CrVI);
]	Electrical Conductivity (EC);
J	Sodium Adsorption Ratio (SAR).

These CPCs have the potential to be present in the soil matrix and/or the groundwater situated beneath the Phase II Property.

Subsurface Structures and Utilities

Underground service locates were completed prior to the subsurface investigation. Underground utilities identified beneath the Phase II Property include gas lines, sewer and water lines, telecommunication lines, as well as buried electrical conduits.

Report: PE6036-2R Page 33

Physical Setting

Site Stratigraphy

The stratigraphy of the Phase II Property generally consists of:

Pavement Structure (asphaltic concrete underlain by engineered fill) extending to a maximum depth of approximately 0.60 m below ground surface (BH11-23 and BH12-23 only);
Topsoil, extending to a maximum depth of approximately 0.20 m below ground surface (BH13-23 only);
Glacial Till; extending to a maximum depth of approximately 2.77 m below ground surface.
Limestone bedrock, extending to a depth of at least 6.17 m below ground surface (bottom of boreholes).

The site stratigraphy, from ground surface to the deepest aquifer or aquitard investigated, is provided in the Soil Profile and Test Data Sheets in Appendix 1.

Hydrogeological Characteristics

The groundwater at the Phase II Property was encountered within the bedrock at depths ranging from approximately 2.14 m to 3.70 m below the existing ground surface.

Based on the measured groundwater levels, the groundwater was calculated to flow in a southeastern direction. Based on data collected throughout the greater Tunney's Pasture complex, groundwater flow direction would be anticipated in a northern direction. The groundwater flow direction measured as part of this Phase II ESA may have been influenced by buried services (such as those located in the area of BH13-23), or by the presence of the on-site building.

Approximate Depth to Bedrock

Bedrock was encountered in all three boreholes during the field drilling program at depths ranging from approximately 1.47 m to 2.77 m below ground surface.

Approximate Depth to Water Table

The depth to the water table is approximately 2.14 m to 3.70 m below the existing ground surface.

Sections 41 and 43.1 of Ontario Regulation 153/04

Section 41 of the Regulation does not apply to the Phase II Property, as the Phase II Property is not within 30 m of an environmentally sensitive area and the pH of the surface soil is between 5 and 9.

Section 43.1 of the Regulation does apply to the Phase II Property in that the Phase II Property is a Shallow Soil Property and is not within 30 m of a water body.

Existing Buildings and Structures

The Phase II Property is currently occupied by a four-storey government office building and record keeping centre.

Environmental Condition

Areas Where Contaminants are Present

Based on the findings of this assessment, no contaminated areas were identified on the Phase II Property.

Report: PE6036-2R Page 35

6.0 CONCLUSIONS

Assessment

Paterson Group was retained by IBI Group to conduct a Phase II – Environmental Site Assessment (Phase II ESA) for Block 5 of the Tunney's Pasture government office complex, in the City of Ottawa, Ontario. The purpose of the Phase II ESA was to address potentially contaminating activities (PCAs) that were identified during the Phase I ESA and were considered to result in areas of potential environmental concern (APECs) on the subject site (Phase II Property).

The subsurface investigation for this assessment was conducted on November 14, 2023 and consisted of drilling three (3) boreholes (BH11-23 to BH13-23) across the Phase II Property. It should be noted that this field investigation was carried out as part of a larger investigation conducted for multiple sites at the Tunney's Pasture complex. The boreholes were advanced to depths ranging from approximately 5.99 m to 6.02 m below the existing ground surface and terminated within the bedrock unit. Upon completion, all three boreholes were instrumented with groundwater monitoring wells in order to access the groundwater table.

In general, the subsurface soil profile encountered at the borehole locations consists of either a thin pavement structure (asphaltic concrete over granular fill) or topsoil underlain by glacial till. Bedrock was encountered in all three boreholes during the field drilling program at depths ranging from approximately 1.47 m to 2.77 m below ground surface. During the field sampling program, the groundwater was measured at depths ranging from approximately 2.14 m to 3.70 m below the existing ground surface.

A total of 3 soil samples were submitted for laboratory analysis of BTEX, PHCs (F_1-F_4) , VOCs, metals, PAHs, PCBs, EC, SAR, and/or pH parameters. Based on the analytical test results, all detected parameter concentrations in the soil samples analyzed are in compliance with the selected MECP Table 7 Coarse-Grained Residential Soil Standards and the CCME Coarse-Grained Commercial Soil Standards, with one minor exception.

It should be noted that the EC and SAR levels measured in soil sample BH12-23-SS2 exceed the selected MECP Table 7 Coarse-Grained Residential Soil Standards, though they comply with the CCME Coarse-Grained Commercial Soil Standards. These exceedances are suspected to be the result of the use of road salt on the Phase II Property during snow and ice conditions and thus, as per Section 49.1 of O. Reg. 153/04, does not represent a contaminant issue.

Three groundwater samples were submitted for laboratory analysis of PHC, VOC, Metals, PAH, and PCB parameters. Based on the analytical test results, all detected parameter concentrations comply with the selected MECP Table 7 Non-Potable Groundwater Standards, with the exception of chloroform detected in Sample BH11-23-GW1. This chloroform exceedance was suspected to be the result of municipal water used during the bedrock coring process, and not as a result of a contaminant issue. The chloroform is expected to dissipate over time via natural attenuation processes. The results also comply with the selected CCME Tier 1 Federal Interim Groundwater Water Quality Guidelines for Commercial Sites, with the exception of the concentrations of aluminum, boron, and selenium detected in Sample BH11-23-GW1, the concentration of cadmium in BH12-23-GW1, and the concentration of aluminum in Sample BH13-23-GW1. No exceedances in the soil samples were identified for these parameters, and therefore it is considered possible that these parameters are naturally elevated, or they are elevated due to the presence of sediment. The presence of these metals is not considered to pose an environmental risk to the current use of the property.

A second round of groundwater testing was carried out on December 11, 2024 to reassess the groundwater condition on the Phase II Property. Three additional samples were obtained from all monitoring wells installed on-site and submitted for analysis of VOC parameters. Based on the analytical test results, all detected parameter concentrations comply with he selected MECP Table 7 Non-Potable Groundwater Standards as well as the selected CCME Tier 1 Federal Interim Groundwater Water Quality Guidelines for Commercial Sites.

Recommendations

Soil

Excess soil must be handed in accordance with O. Reg. 406/19: On-Site and Excess Soil Management. Additional excess soil testing and reporting requirements will be required prior to future site excavation activities, in accordance with O. Reg. 406/19.

Management of soil with EC/SAR exceedances related to the application of salt, are not considered to be exceedances on-site, however, for off-site management, these materials must be handled within the framework of O.Reg. 406/19 and the excess soil rules.

Monitoring Wells

It is recommended that the monitoring wells be resampled in the future, to confirm the groundwater quality beneath the subject site, particularly the dissipation of the chloroform in BH11-23.

The monitoring wells will be registered with the MECP under Ontario Regulation 903 (Ontario Water Resources Act). At such a time that the monitoring wells are no longer required, they must be decommissioned in accordance with O.Reg. 903.

Report: PE6036-2R Page 38

7.0 STATEMENT OF LIMITATIONS

This Phase II – Environmental Site Assessment report has been prepared in general accordance with O. Reg. 153/04, as amended, and CSA Z769-00. The conclusions presented herein are based on information gathered from a limited sampling and testing program. The test results represent conditions at specific test locations at the time of the field program.

The client should be aware that any information pertaining to soils and all test hole logs are furnished as a matter of general information only and test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes themselves.

Should any conditions be encountered at the Phase II Property and/or historical information that differ from our findings, we request that we be notified immediately in order to allow for a reassessment.

This report was prepared for the sole use of Arcadis IBI Group and the Government of Canada. Permission and notification from the above noted parties and Paterson Group will be required prior to the release of this report to any other party.

A. S. MENYHART 100172056

Paterson Group Inc.

N. Gullin

Nick Sullivan, B.Sc.

Adrian Menyhart, P.Eng., QP_{ESA}

Report Distribution:

- IBI Group
- Paterson Group Inc.

FIGURES

FIGURE 1 - KEY PLAN

DRAWING PE6036-1 - SITE PLAN

DRAWING PE6036-2 - SURROUNDING LAND USE PLAN

DRAWING PE6036-3 - TEST HOLE LOCATION PLAN

DRAWING PE6036-4 - ANALYTICAL TESTING PLAN - SOIL

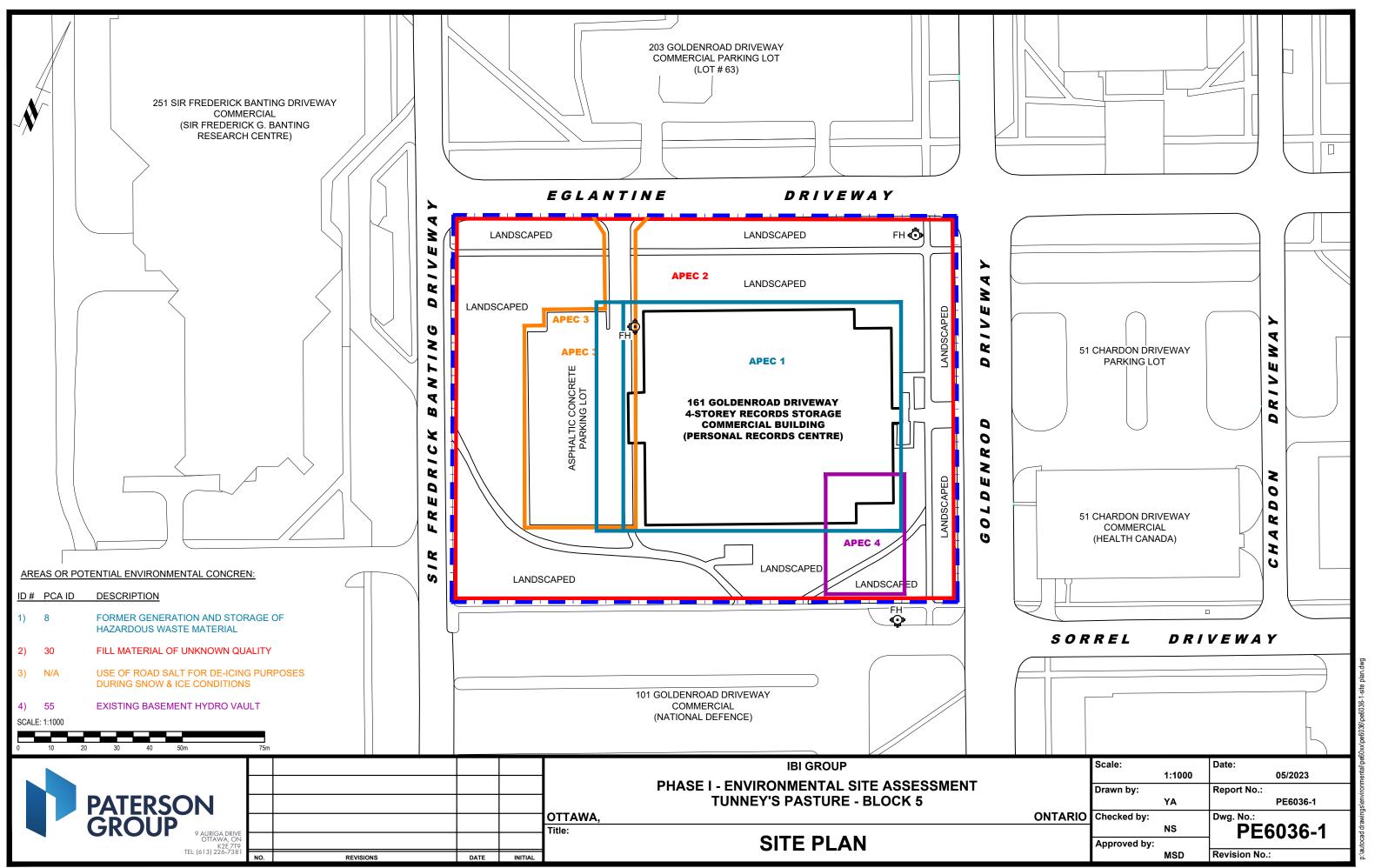
DRAWING PE6036-4A - CROSS SECTION A-A' - SOIL

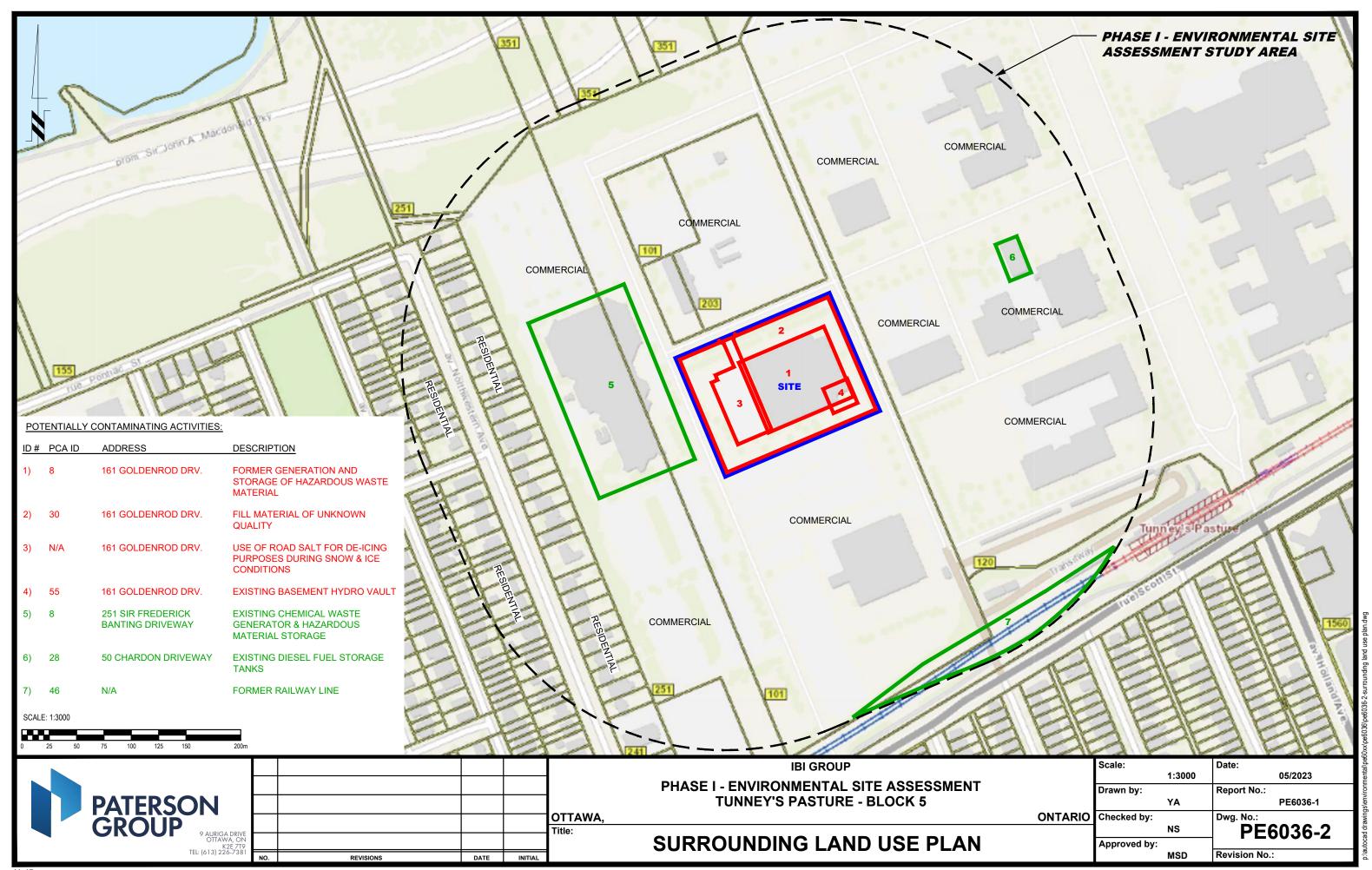
DRAWING PE6036-4B - CROSS SECTION B-B' - SOIL

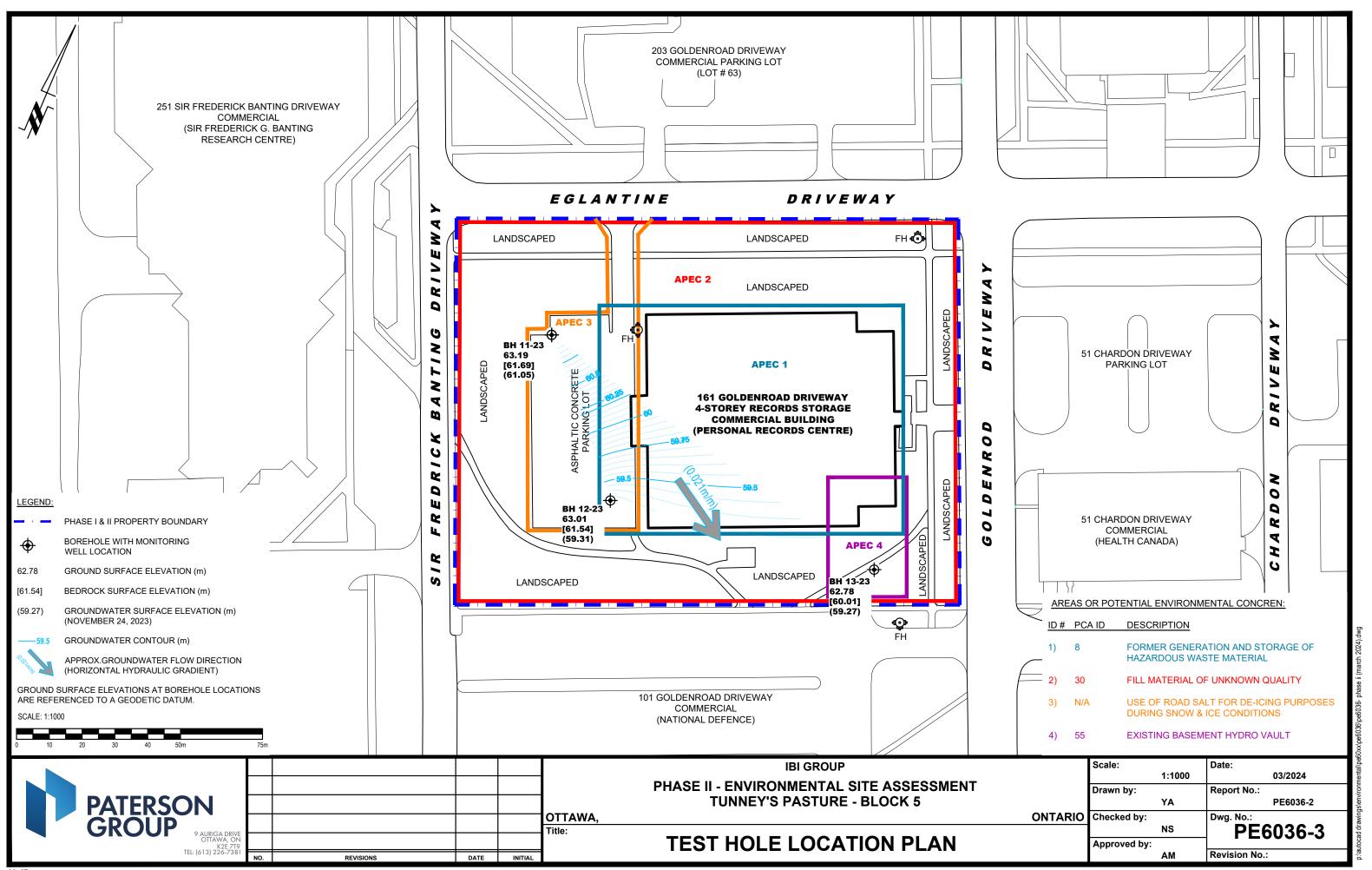
DRAWING PE6036-5 - ANALYTICAL TESTING PLAN - GROUNDWATER

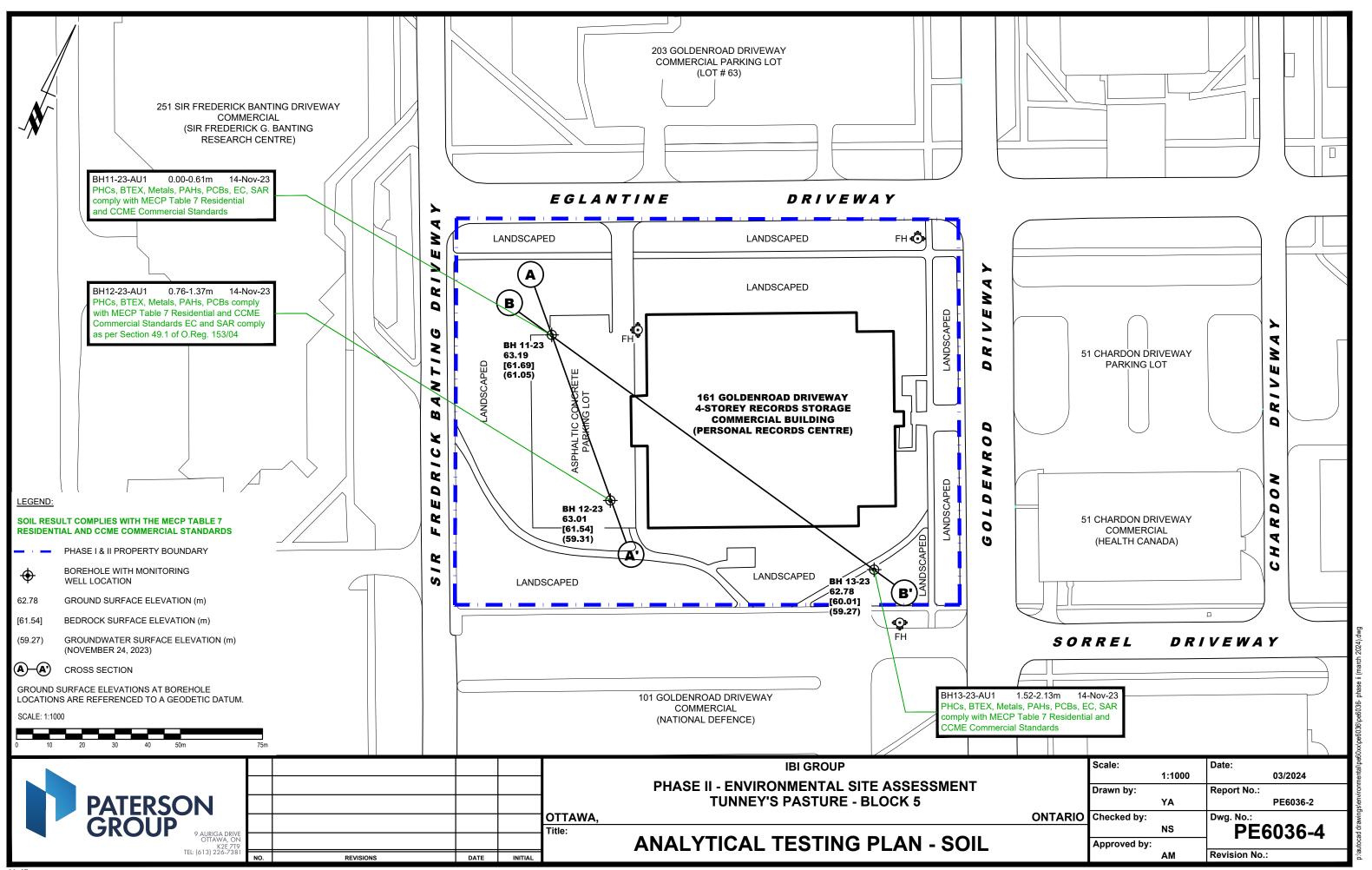
DRAWING PE6036-5A - CROSS SECTION A-A' - GROUNDWATER

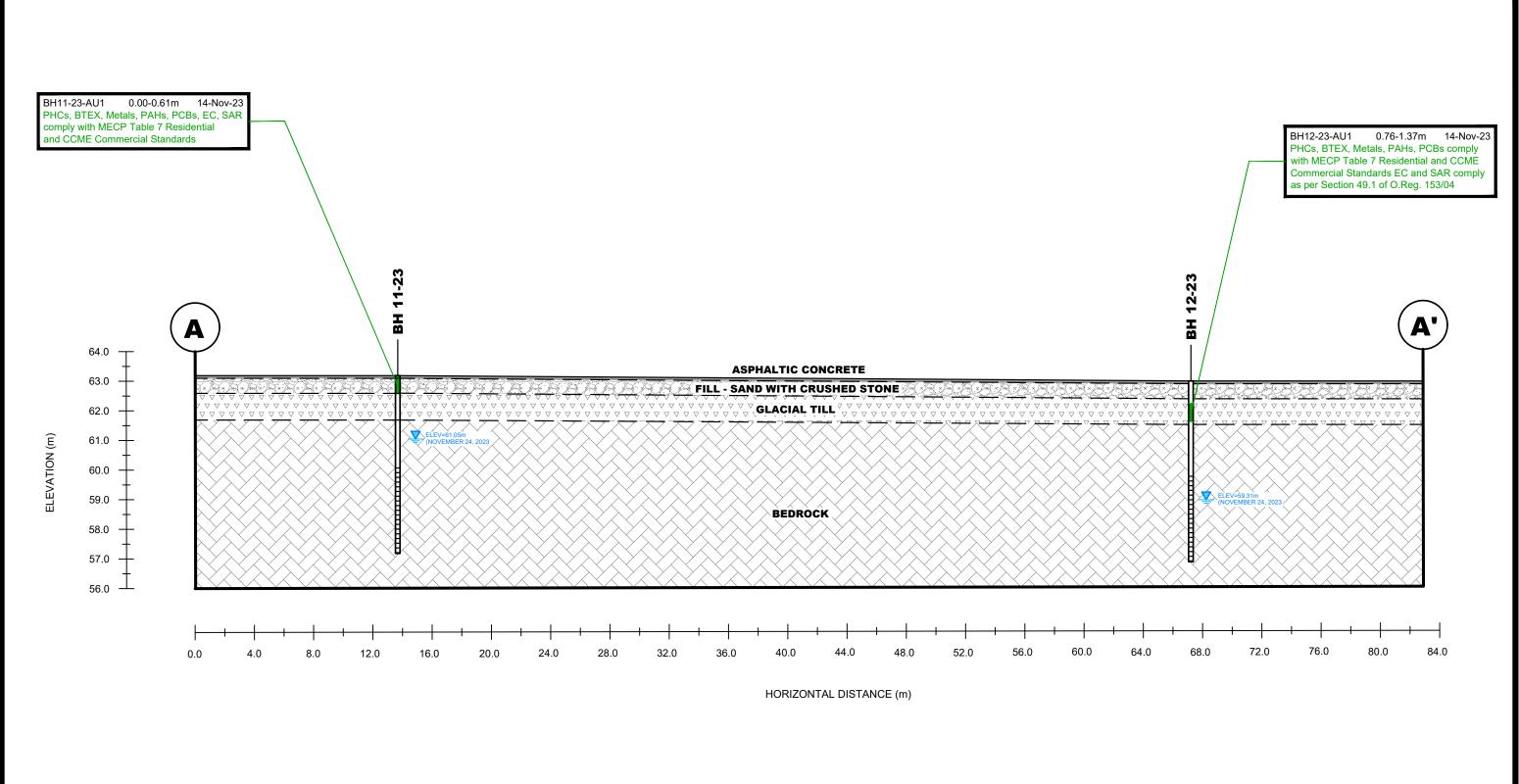
DRAWING PE6036-5B - CROSS SECTION B-B' - GROUNDWATER

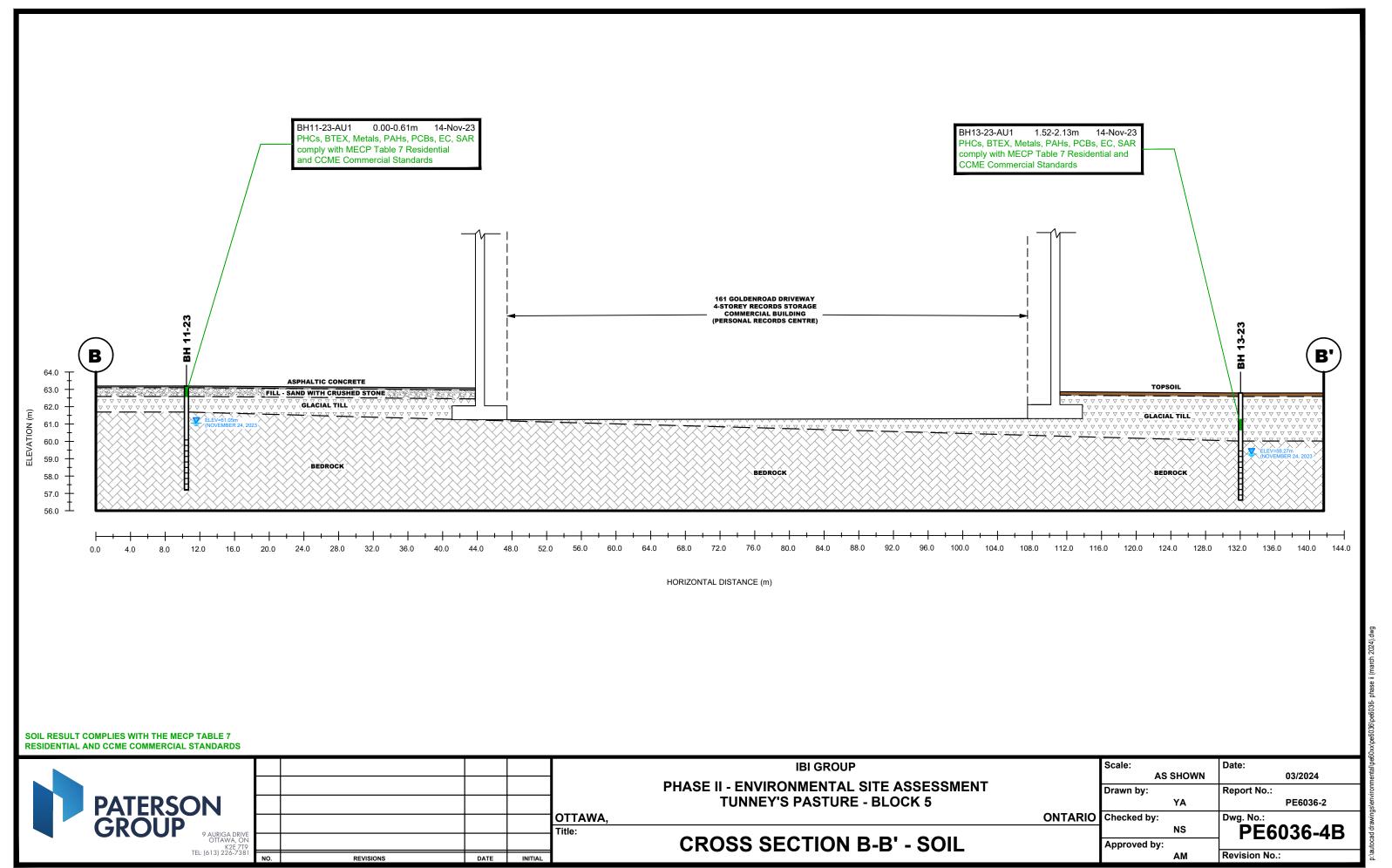

APPENDIX 1

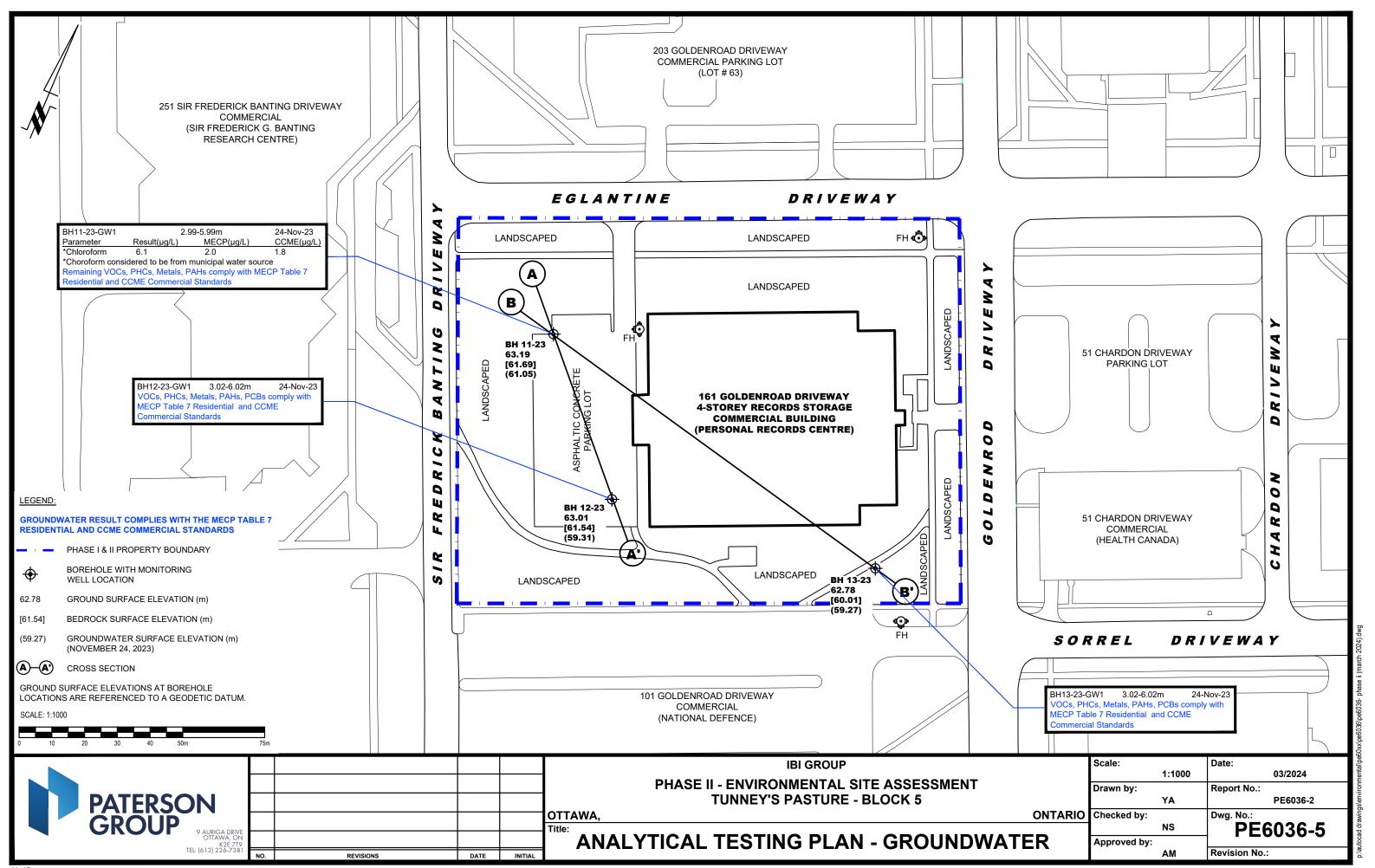

SAMPLING AND ANALYSIS PLAN

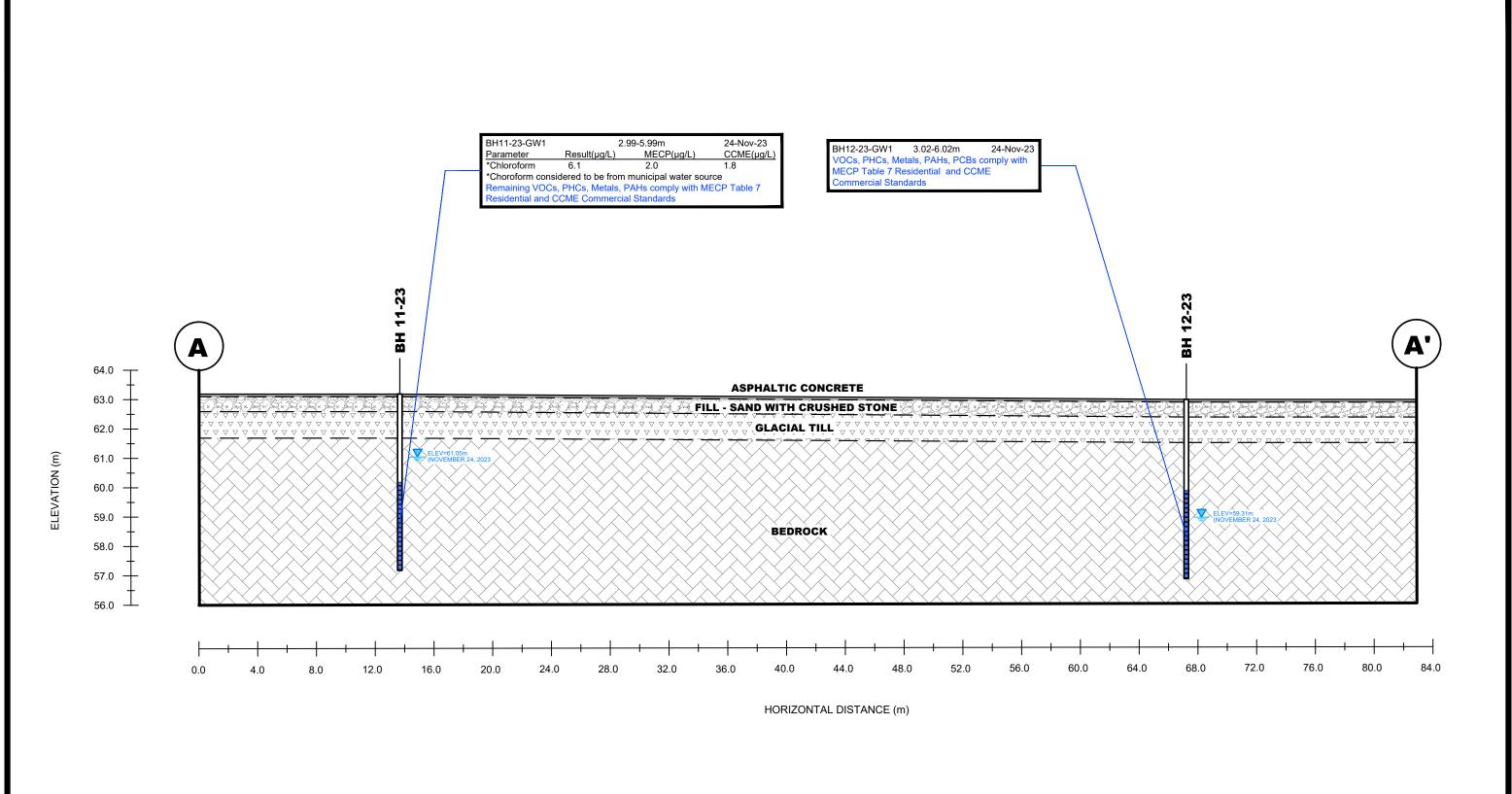

SOIL PROFILE AND TEST DATA SHEETS


SYMBOLS AND TERMS


LABORATORY CERTIFICATES OF ANALYSIS

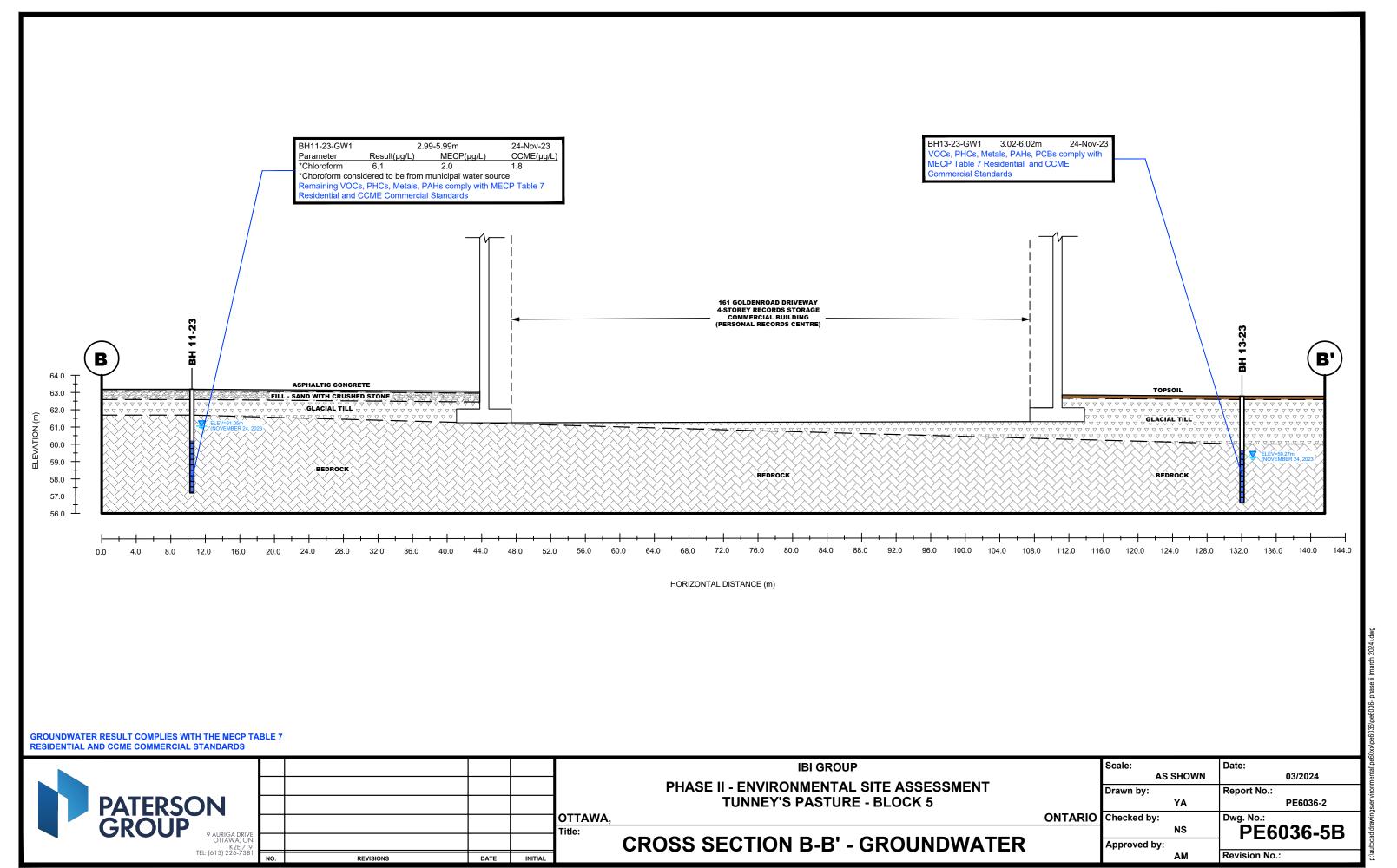






SOIL RESULT COMPLIES WITH THE MECP TABLE 7 RESIDENTIAL AND COME COMMERCIAL STANDARDS

					IBI GROUP	,	Scale:	AS SHOWN	Date:	03/2024
					PHASE II - ENVIRONMENTAL SITE ASSESSMENT		Drawn by		Report No.:	00/2024
PATERSON					TUNNEY'S PASTURE - BLOCK 5			YA	+	PE6036-2
GROUP					OTTAWA, Fitte:	ONTARIO	Checked	by: NS	Dwg. No.:)36-4A
9 AURIGA DRIVE OTTAWA, ON K2E.7T9					CROSS SECTION A-A' - SOIL		Approved	l by:		
TEL: (613) 226-7381	NO.	REVISIONS	DATE	INITIAL				АМ	Revision No.:	



GROUNDWATER RESULT COMPLIES WITH THE MECP TABLE 7 RESIDENTIAL AND CCME COMMERCIAL STANDARDS

						IBI GROUP		Scale:	AS SHOWN	Date:	03/2024
						PHASE II - ENVIRONMENTAL SITE ASSESSMENT		Drawn by:		Report No.:	03/2024
PATERSON						TUNNEY'S PASTURE - BLOCK 5			YA		PE6036-2
GROUP					OTTAWA,		ONTARIO	Checked b	y: NS	Dwg. No.:	026 54
9 AURIGA DRIVE OTTAWA, ON K2E 7T9					Title:	CROSS SECTION A-A' - GROUNDWATER		Approved		PEOL	036-5A
TEL: (613) 226-7381	NO.	REVISIONS	DATE	INITIAL					AM	Revision No.:	

APPENDIX 1

SAMPLING AND ANALYSIS PLAN

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

LABORATORY CERTIFICATES OF ANALYSIS

Sampling & Analysis Plan

Tunney's Pasture (Block 5) Ottawa, Ontario

Prepared for Arcadis IBI Group

Report: PE6036-SAP November 1, 2023

TABLE OF CONTENTS

		PAGE
1.0	SAMPLING PROGRAM	1
2.0	ANALYTICAL TESTING PROGRAM	2
3.0	STANDARD OPERATING PROCEDURES	6
4.0	QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)	8
5.0	DATA QUALITY OBJECTIVES	9
6.0	PHYSICAL IMPEDIMENTS	10

1.0 SAMPLING PROGRAM

Paterson Group Inc. (Paterson) was commissioned by IBI Group, to conduct a Phase II – Environmental Site Assessment (Phase II ESA) for Block 5 of the Tunney's Pasture government office complex, in the City of Ottawa, Ontario.

Based on the findings of the Phase I ESA, the following subsurface investigation program was developed.

Borehole	Location & Rationale	Proposed Depth & Rationale
BH11-23	Northwestern portion of the Phase I Property; to assess for potential impacts resulting from the presence of fill material of unknown quality, the use of road salt for de-icing purposes, and for excess soil qualification purposes.	5-7 m; to intercept the groundwater table for the purpose of installing a monitoring well.
BH12-23	Central portion of the Phase I Property; to assess for potential impacts resulting from the former generation and storage of hazardous waste material, the presence of fill material of unknown quality, the use of road salt for de-icing purposes, and for excess soil qualification purposes.	5-7 m; to intercept the groundwater table for the purpose of installing a monitoring well.
BH13-23	Southeastern portion of the Phase I Property; to assess for potential impacts resulting from the former generation and storage of hazardous waste material, an existing hydro vault, and for excess soil qualification purposes.	5-7 m; to intercept the groundwater table for the purpose of installing a monitoring well.

Borehole locations are shown on Drawing PE6036-3 – Test Hole Location Plan, appended to the main report.

At each borehole, split-spoon samples of the overburden soils will be obtained at 0.76 m (2'6") intervals. All soil samples will be retained, and samples will be selected for submission following a preliminary screening analysis.

Following the borehole drilling, groundwater monitoring wells will be installed in all three boreholes to allow for the collection of groundwater samples.

2.0 ANALYTICAL TESTING PROGRAM

The analytical testing program for soil at the Phase I Property is based on the following general considerations: At least one sample from each borehole should be submitted, in order to delineate the horizontal extent of contamination across the site. ☐ At least one sample from each stratigraphic unit should be submitted, in order to delineate the vertical extent of contamination at the site. ☐ In boreholes where there is visual or olfactory evidence of contamination, or where organic vapour meter or photoionization detector readings indicate the presence of contamination, the 'worst-case' sample from each borehole should be submitted for comparison with MECP site condition standards. ☐ In boreholes with evidence of contamination as described above, a sample should be submitted from the stratigraphic unit below the 'worst-case' sample to determine whether the contaminant(s) have migrated downward. ☐ Parameters analyzed should be consistent with the Contaminants of Potential Concern identified in the Phase I ESA. The analytical testing program for soil at the Phase I Property is based on the following general considerations: Groundwater monitoring wells should be installed in all boreholes with visual or olfactory evidence of soil contamination, in stratigraphic units where soil contamination was encountered, where those stratigraphic units are at or below the water table (i.e. a water sample can be obtained). Groundwater monitoring well screens should straddle the water table at sites where the contaminants of concern are suspected to be LNAPLs. ☐ At least one groundwater monitoring well should be installed in a stratigraphic unit below the suspected contamination, where said stratigraphic unit is water-bearing. Parameters analyzed should be consistent with the Contaminants of Concern identified in the Phase I ESA and with the contaminants identified in the soil samples.

Report: PE6036-SAP November 1, 2023

3.0 STANDARD OPERATING PROCEDURES

3.1 Environmental Drilling Procedure

Purpose

The purpose of environmental boreholes is to identify and/or delineate contamination within the soil and/or to install groundwater monitoring wells in order to identify contamination within the groundwater.

Equipment

The following is a list of equipment that is in addition to regular drilling equipment stated in the geotechnical drilling SOP:

Glass soil sample jars	
two buckets	
cleaning brush (toilet brush works well)	
dish detergent	
methyl hydrate	
water (if not available on site - water jugs available in trailer)	
latex or nitrile gloves (depending on suspected contaminant)	
RKI Eagle organic vapour meter or MiniRae photoionization	detector
(depending on contamination suspected)	

Determining Borehole Locations

If conditions on site are not as suspected, and planned borehole locations cannot be drilled, **call the office to discuss**. Alternative borehole locations will be determined in conversation with the field technician and supervising engineer.

After drilling is completed a plan with the borehole locations must be provided. Distances and orientations of boreholes with respect to site features (buildings, roadways, etc.) must be provided. Distances should be measured using a measuring tape or wheel rather than paced off. Ground surface elevations at each borehole should be surveyed relative to a geodetic benchmark, if one is available, or a temporary site benchmark which can be tied in at a later date if necessary.

Drilling Procedure

The actual drilling procedure for environmental boreholes is the same as geotechnical boreholes (see SOP for drilling and sampling) with a few exceptions as follows:

	Continuous split spoon samples (every 0.6 m or 2') or semi-continuous (every 0.76 m or 2'6") are required.
	Make sure samples are well sealed in plastic bags with no holes prior to screening and are kept cool but unfrozen.
	If sampling for VOCs, BTEX, or PHCs F ₁ , a soil core from each soil sample, which may be analyzed, must be taken and placed in the laboratory-provided methanol vial.
	Note all and any odours or discolouration of samples.
	Split spoon samplers must be washed between samples.
	If obvious contamination is encountered, continue sampling until vertical extent of contamination is delineated.
	As a general rule, environmental boreholes should be deep enough to intercept the groundwater table (unless this is impossible/impractical - call project manager to discuss).
	If at all possible, soil samples should be submitted to a preliminary screening procedure on site, either using a RKI Eagle, PID, etc. depending on type of suspected contamination.
Sp	oon Washing Procedure
	sampling equipment (spilt spoons, etc.) must be washed between samples in der to prevent cross contamination of soil samples.
	Obtain two buckets of water (preferably hot if available) Add a small amount of dish soap to one bucket Scrub spoons with brush in soapy water, inside and out, including tip Rinse in clean water
	Apply a small amount of methyl hydrate to the inside of the spoon. (A spray bottle or water bottle with a small hole in the cap works well)
	Allow to dry (takes seconds)
	Rinse with distilled water, a spray bottle works well.

The methyl hydrate eliminates any soap residue that may be on the spoon and is especially important when dealing with suspected VOCs.

Screening Procedure

The RKI Eagle is used to screen most soil samples, particularly where petroleum hydrocarbon contamination is suspected. The MiniRae is used when VOCs are suspected, however it also can be useful for detecting petroleum. These tools are for screening purposes only and cannot be used in place of laboratory testing. Vapour results obtained from the RKI Eagle and the PID are relative and must be interpreted.

Screening equipment should be calibrated on an approximately monthly basis, more frequently if heavily used.

J	Samples should be brought to room temperature; this is specifically important
	in colder weather. Soil must not be frozen.
J	Turn instrument on and allow to come to zero - calibrate if necessary
J	If using RKI Eagle, ensure instrument is in methane elimination mode unless otherwise directed.
J	Ensure measurement units are ppm (parts per million) initially. RKI Eagle will automatically switch to %LEL (lower explosive limit) if higher concentrations
	are encountered.
	Break up large lumps of soil in the sample bag, taking care not to puncture bag.
	Insert probe into soil bag, creating a seal with your hand around the opening.
J	Gently manipulate soil in bag while observing instrument readings.
J	Record the highest value obtained in the first 15 to 25 seconds
J	Make sure to indicate scale (ppm or LEL); also note which instrument was used
	(RKI Eagle 1 or 2, or MiniRae).
J	Jar samples and refrigerate as per Sampling and Analysis Plan.

Report: PE6036-SAP November 1, 2023

3.2 Monitoring Well Installation Procedure

Equipment □ 5' x 2" threaded sections of Schedule 40 PVC slotted well screen (5' x 1 ¼" if installing in cored hole in bedrock) ☐ 5' x 2" threaded sections of Schedule 40 PVC riser pipe (5' x 1 ½" if installing in cored hole in bedrock) ☐ Threaded end-cap ☐ Slip-cap or J-plug Asphalt cold patch or concrete Silica Sand ☐ Bentonite chips (Holeplug) Steel flushmount casing **Procedure** ☐ Drill borehole to required depth, using drilling and sampling procedures described above. If borehole is deeper than required monitoring well, backfill with bentonite chips to required depth. This should only be done on wells where contamination is not suspected, in order to prevent downward migration of contamination. Only one monitoring well should be installed per borehole. ☐ Monitoring wells should not be screened across more than one stratigraphic unit to prevent potential migration of contaminants between units. ☐ Where LNAPLs are the suspected contaminants of concern, monitoring wells should be screened straddling the water table in order to capture any free product floating on top of the water table. Thread the end cap onto a section of screen. Thread second section of screen if required. Thread risers onto screen. Lower into borehole to required depth. Ensure slip-cap or J-plug is inserted to prevent backfill materials entering well. ☐ As drillers remove augers, backfill borehole annulus with silica sand until the level of sand is approximately 0.3 m above the top of the screen. ☐ Backfill with holeplug until at least 0.3 m of holeplug is present above the top of the silica sand. ☐ Backfill remainder of borehole with holeplug or with auger cuttings (if contamination is not suspected). □ Install flushmount casing. Seal space between flushmount and borehole

annulus with concrete, cold patch, or holeplug to match surrounding ground

Report: PE6036-SAP November 1, 2023

surface.

3.3 Monitoring Well Sampling Procedure

Εq	uipment
	Water level metre or interface probe on hydrocarbon/LNAPL sites Spray bottles containing water and methanol to clean water level tape or interface probe Peristaltic pump Polyethylene tubing for peristaltic pump Flexible tubing for peristaltic pump Latex or nitrile gloves (depending on suspected contaminant) Allen keys and/or 9/16" socket wrench to remove well caps Graduated bucket with volume measurements pH/Temperature/Conductivity combo pen Laboratory-supplied sample bottles
Sa	mpling Procedure
	Locate well and use socket wrench or Allan key to open metal flush mount protector cap. Remove plastic well cap.
	Measure water level, with respect to existing ground surface, using water level meter or interface probe. If using interface probe on suspected NAPL site, measure the thickness of free product.
	Measure total depth of well. Clean water level tape or interface probe using methanol and water. Change
	gloves between wells. Calculate volume of standing water within well and record. Insert polyethylene tubing into well and attach to peristaltic pump. Turn on peristaltic pump and purge into graduated bucket. Purge at least three well volumes of water from the well. Measure and record field chemistry. Continue to purge, measuring field chemistry after every well volume purged, until appearance or field chemistry stabilizes.
	Note appearance of purge water, including colour, opacity (clear, cloudy, silty), sheen, presence of LNAPL, and odour. Note any other unusual features (particulate matter, effervescence (bubbling) of dissolved gas, etc.).
	Fill required sample bottles. If sampling for metals, attach 75-micron filter to discharge tube and filter metals sample. If sampling for VOCs, use low flow rate to ensure continuous stream of non-turbulent flow into sample bottles. Ensure no headspace is present in VOC vials.
	Replace well cap and flushmount casing cap.

4.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

The QA/QC program for this Phase II ESA is as follows:

All non-dedicated sampling equipment (split spoons) will be decontaminated according to the SOPs listed above.
 All groundwater sampling equipment is dedicated (polyethylene and flexible peristaltic tubing is replaced for each well).
 Where groundwater samples are to be analyzed for VOCs, one laboratory-provided trip blank will be submitted for analysis with every laboratory submission.
 Approximately one (1) field duplicate will be submitted for every ten (10) samples submitted for laboratory analysis. A minimum of one (1) field duplicate per project will be submitted. Field duplicates will be submitted for soil and groundwater samples
 Where combo pens are used to measure field chemistry, they will be calibrated

on an approximately monthly basis, according to frequency of use.

November 1, 2023

5.0 DATA QUALITY OBJECTIVES

The purpose of setting data quality objectives (DQOs) is to ensure that the level of uncertainty in data collected during the Phase II ESA is low enough that decision-making is not affected, and that the overall objectives of the investigation are met.

The quality of data is assessed by comparing field duplicates with original samples. If the relative percent difference (RPD) between the duplicate and the sample is within 20%, the data are considered to be of sufficient quality so as not to affect decision-making. The RPD is calculated as follows:

$$RPD = \left| \frac{x_1 - x_2}{(x_1 + x_2)/2} \right| \times 100\%$$

Where x_1 is the concentration of a given parameter in an original sample and x_2 is the concentration of that same parameter in the field duplicate sample.

For the purpose of calculating the RPD, it is desirable to select field duplicates from samples for which parameters are present in concentrations above laboratory detection limits, i.e. samples which are expected to be contaminated. If parameters are below laboratory detection limits for selected samples or duplicates, the RPD may be calculated using a concentration equal to one half the laboratory detection limit.

It is also important to consider data quality in the overall context of the project. For example, if the DQOs are not met for a given sample, yet the concentrations of contaminants in both the sample and the duplicate exceed the MOE site remediation standards by a large margin, the decision-making usefulness of the sample may not be considered to be impaired. The proximity of other samples which meet the DQOs must also be considered in developing the Phase II Conceptual Site Model; often there are enough data available to produce a reliable Phase II Conceptual Site Model even if DQOs are not met for certain individual samples.

These considerations are discussed in the body of the report.

6.0 PHYSICAL IMPEDIMENTS

body of the Phase II ESA report.

Ph	ysical impediments to the Sampling and Analysis plan may include:
	The location of underground utilities
	Poor recovery of split-spoon soil samples
	Insufficient groundwater volume for groundwater samples
	Breakage of sampling containers following sampling or while in transit to the
	laboratory
	Elevated detection limits due to matrix interference (generally related to soil
	colour or presence of organic material)
	Elevated detection limits due to high concentrations of certain parameters,
	necessitating dilution of samples in laboratory
	Drill rig breakdowns
	Winter conditions
	Other site-specific impediments
Sit	e-specific impediments to the Sampling and Analysis plan are discussed in the

Report: PE6036-SAP Page 10

son-group / admin / December 05, 2023 10:32 AM

RSLog / Environmental Borehole

SOIL PROFILE AND TEST DATA

PHASE II - ENVIRONMENTAL SITE ASSESSMENT

Tunney's Pasture - Block 5, Ottawa, Ontario

EASTING: 364241.462 **DATUM:** Geodetic NORTHING: 5029721.983 **ELEVATION: 63.19 PROJECT:** Phase II - Environmental Site Assessment FILE NO. **PE6036 BORINGS BY:** Truck-Mount Power Auger HOLE NO. BH11-23 **REMARKS:** DATE: November 14, 2023 ANALYTICAL TESTS RQD Monitoring Well Construction STRATA PLOT SAMPLE % RECOVERY Sample No. DEPTH (m) ō PID (ppm) Gas Tech (ppm) **SAMPLE DESCRIPTION** N VALUE 150 200 16.67 33.33 50 0 50 100 Ground Surface EL 63.19 m Asphaltic concrete 1.9 AU1 FILL: Brown silty sand with gravel and crushed stone 50+ SS2 50 GLACIAL TILL: Very dense, brown silty sand with gravel, cobbles and boulders, some clay 2.0 40 50+ .2 RC1 100 77 BEDROCK: Good to excellent quality, grey limestone RC2 98 98 -5 RC3 100 100 End of Borehole (GWL @ 2.14m - Nov. 24, 2023) DISCLAIMER: THE DATA PRESENTED IN THIS LOG IS THE PROPERTY OF PATERSON GROUP AND THE CLIENT FOR WHO IT WAS

PRODUCED. THIS LOG SHOULD BE READ IN CONJUNCTION WITH ITS CORRESPONDING REPORT. PATERSON GROUP IS NOT RESPONSIBLE FOR THE UNAUTHORIZED USE OF THIS DATA.

SOIL PROFILE AND TEST DATA

PHASE II - ENVIRONMENTAL SITE ASSESSMENT

Tunney's Pasture - Block 5, Ottawa, Ontario

DATUM: Geodetic **EASTING:** 364276.274 NORTHING: 5029682.098 **ELEVATION: 63.01 PROJECT:** Phase II - Environmental Site Assessment FILE NO. **PE6036 BORINGS BY:** Truck-Mount Power Auger HOLE NO. BH12-23 **REMARKS:** DATE: November 14, 2023 ANALYTICAL TESTS RQD Monitoring Well Construction STRATA PLOT SAMPLE % RECOVERY Sample No. DEPTH (m) ō PID (ppm) Gas Tech (ppm) **SAMPLE DESCRIPTION** N VALUE 150 200 16.67 33.33 50 0 50 100 Ground Surface EL 63.01 m Asphaltic concrete 1.5 AU1 FILL: Brown silty sand with gravel and crushed stone GLACIAL TILL: Compact to dense, brown silty SS2 75 28 sand with gravel, cobbles and boulders, some clay -2 RC1 100 92 BEDROCK: Excellent quality, grey limestone rson-group / admin / December 05, 2023 10:32 AM RC2 98 98 -5 RC3 100 95 End of Borehole RSLog / Environmental Borehole - Geodetic / (GWL @ 3.70m - Nov. 24, 2023) DISCLAIMER: THE DATA PRESENTED IN THIS LOG IS THE PROPERTY OF PATERSON GROUP AND THE CLIENT FOR WHO IT WAS

PRODUCED. THIS LOG SHOULD BE READ IN CONJUNCTION WITH ITS CORRESPONDING REPORT. PATERSON GROUP IS NOT RESPONSIBLE FOR THE UNAUTHORIZED USE OF THIS DATA.

paterson-group / admin / December 05, 2023 10:32

RSLog / Environmental Borehole

SOIL PROFILE AND TEST DATA

PHASE II - ENVIRONMENTAL SITE ASSESSMENT

Tunney's Pasture - Block 5, Ottawa, Ontario

DATUM: Geodetic **EASTING:** 364357.988 NORTHING: 5029691.315 **ELEVATION: 62.78 PROJECT:** Phase II - Environmental Site Assessment FILE NO. **PE6036 BORINGS BY:** Truck-Mount Power Auger HOLE NO. BH13-23 **REMARKS:** DATE: November 14, 2023 ANALYTICAL TESTS RQD Monitoring Well Construction STRATA PLOT SAMPLE % RECOVERY Sample No. DEPTH (m) ō PID (ppm) Gas Tech (ppm) **SAMPLE DESCRIPTION** N VALUE 150 200 16.67 33.33 50 0 50 100 Ground Surface EL 62.78 m 0 TOPSOIL AU1 ● 4.0 SS2 24 50+ GLACIAL TILL: Very dense to compact, brown silty sand with gravel, cobbles and boulders, some clay 1.9 SS3 57 12 -2 RC1 100 100 2.77 m EL 60.01 m BEDROCK: Excellent quality, grey limestone RC2 98 92 -5 RC3 100 100 End of Borehole (GWL @ 3.51m - Nov. 24, 2023) DISCLAIMER: THE DATA PRESENTED IN THIS LOG IS THE PROPERTY OF PATERSON GROUP AND THE CLIENT FOR WHO IT WAS

PRODUCED. THIS LOG SHOULD BE READ IN CONJUNCTION WITH ITS CORRESPONDING REPORT. PATERSON GROUP IS NOT RESPONSIBLE FOR THE UNAUTHORIZED USE OF THIS DATA.

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the relative strength of cohesionless soils is the compactness condition, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm. An SPT N value of "P" denotes that the split-spoon sampler was pushed 300 mm into the soil without the use of a falling hammer.

Compactness Condition	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory shear vane tests, unconfined compression tests, or occasionally by the Standard Penetration Test (SPT). Note that the typical correlations of undrained shear strength to SPT N value (tabulated below) tend to underestimate the consistency for sensitive silty clays, so Paterson reviews the applicable split spoon samples in the laboratory to provide a more representative consistency value based on tactile examination.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity, S_t , is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil. The classes of sensitivity may be defined as follows:

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NQ or larger size core. However, it can be used on smaller core sizes, such as BQ, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD %	ROCK QUALITY
90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard Penetration Test (SPT))
TW	-	Thin wall tube or Shelby tube, generally recovered using a piston sampler
G	-	"Grab" sample from test pit or surface materials
AU	-	Auger sample or bulk sample
WS	-	Wash sample
RC	-	Rock core sample (Core bit size BQ, NQ, HQ, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

PLASTICITY LIMITS AND GRAIN SIZE DISTRIBUTION

WC% - Natural water content or water content of sample, %

Liquid Limit, % (water content above which soil behaves as a liquid)
 PL - Plastic Limit, % (water content above which soil behaves plastically)

PI - Plasticity Index, % (difference between LL and PL)

Dxx - Grain size at which xx% of the soil, by weight, is of finer grain sizes

These grain size descriptions are not used below 0.075 mm grain size

D10 - Grain size at which 10% of the soil is finer (effective grain size)

D60 - Grain size at which 60% of the soil is finer

Cc - Concavity coefficient = $(D30)^2 / (D10 \times D60)$

Cu - Uniformity coefficient = D60 / D10

Cc and Cu are used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4 Well-graded sands have: 1 < Cc < 3 and Cu > 6

Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded.

Cc and Cu are not applicable for the description of soils with more than 10% silt and clay

(more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'₀ - Present effective overburden pressure at sample depth

p'c - Preconsolidation pressure of (maximum past pressure on) sample

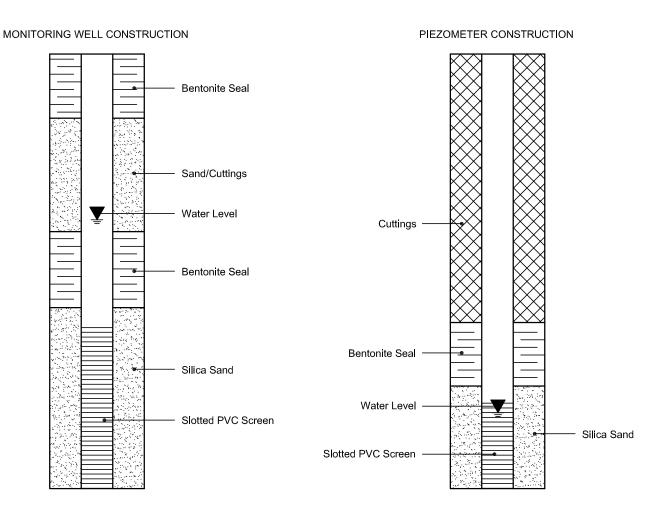
Ccr - Recompression index (in effect at pressures below p'c)
 Cc - Compression index (in effect at pressures above p'c)

OC Ratio Overconsolidaton ratio = p'c / p'o

Void Ratio Initial sample void ratio = volume of voids / volume of solids


Wo - Initial water content (at start of consolidation test)

PERMEABILITY TEST


Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued)

STRATA PLOT

MONITORING WELL AND PIEZOMETER CONSTRUCTION

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers (Ottawa)

9 Auriga Drive

Ottawa, ON K2E 7T9

Attn: Nick Sullivan

Client PO: 58851

Project: PE6036

Custody:

Report Date: 21-Nov-2023

Order Date: 15-Nov-2023

Order #: 2346301

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2346301-01	BH11-23-AU1
2346301-02	BH12-23-SS2
2346301-03	BH13-23-SS3
2346301-04	Dup-1

Approved By:

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58851

Report Date: 21-Nov-2023

Order Date: 15-Nov-2023

Project Description: PE6036

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	17-Nov-23	19-Nov-23
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	17-Nov-23	20-Nov-23
Conductivity	MOE E3138 - probe @25 °C, water ext	17-Nov-23	17-Nov-23
Mercury by CVAA	EPA 7471B - CVAA, digestion	17-Nov-23	17-Nov-23
Metals, ICP-MS	EPA 6020 - Digestion - ICP-MS	17-Nov-23	17-Nov-23
PAHs by GC-MS	EPA 8270 - GC-MS, extraction	15-Nov-23	19-Nov-23
PCBs, total	SW846 8082A - GC-ECD	16-Nov-23	17-Nov-23
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	16-Nov-23	16-Nov-23
PHC F1	CWS Tier 1 - P&T GC-FID	17-Nov-23	18-Nov-23
PHC F4G (gravimetric)	CWS Tier 1 - Extraction Gravimetric	21-Nov-23	21-Nov-23
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	16-Nov-23	18-Nov-23
SAR	Calculated	17-Nov-23	17-Nov-23
Solids, %	CWS Tier 1 - Gravimetric	16-Nov-23	17-Nov-23
VOCs by P&T GC-MS, Soil Direct Purge	EPA 8260 - P&T GC-MS	17-Nov-23	19-Nov-23

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58851

	Client ID: Sample Date: Sample ID: Matrix:	BH11-23-AU1 14-Nov-23 09:00 2346301-01 Soil	BH12-23-SS2 14-Nov-23 09:00 2346301-02 Soil	BH13-23-SS3 14-Nov-23 09:00 2346301-03 Soil	Dup-1 14-Nov-23 09:00 2346301-04 Soil	-	-
	MDL/Units						
Physical Characteristics	ļ ļ						ļ
% Solids	0.1 % by Wt.	98.2	98.2	83.0	93.5	-	-
General Inorganics							
SAR	0.01 N/A	1.08	5.26	-	-	-	-
Conductivity	5 uS/cm	291	1100	-	-	-	-
рН	0.05 pH Units	7.65	-	-	-	-	-
Metals		•					•
Antimony	1 ug/g	<1	<1	-	<1	-	-
Arsenic	1 ug/g	2	3	-	2	-	-
Barium	1 ug/g	49	38	-	18	-	-
Beryllium	0.5 ug/g	<0.5	<0.5	-	<0.5	-	-
Boron	5.0 ug/g	7.5	18.0	-	15.1	-	-
Cadmium	0.5 ug/g	<0.5	<0.5	-	<0.5	-	-
Chromium	5 ug/g	8	19	-	12	-	-
Chromium (VI)	0.2 ug/g	<0.2	<0.2	-	-	-	-
Cobalt	1 ug/g	3	7	-	6	-	-
Copper	5 ug/g	<5	7	-	5	-	-
Lead	1 ug/g	7	6	-	4	-	-
Mercury	0.1 ug/g	<0.1	<0.1	-	-	-	-
Molybdenum	1 ug/g	<1	<1	-	<1	-	-
Nickel	5 ug/g	7	14	-	10	-	-
Selenium	1 ug/g	<1	<1	-	<1	-	-
Silver	0.3 ug/g	<0.3	<0.3	-	<0.3	-	-
Thallium	1 ug/g	<1	<1	-	<1	-	-
Tin	5 ug/g	<5	<5	-	<5	-	-
Uranium	1 ug/g	<1	<1	-	<1	-	-

Report Date: 21-Nov-2023

Order Date: 15-Nov-2023

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58851

Report Date: 21-Nov-2023 Order Date: 15-Nov-2023

Project Description: PE6036

	Client ID:	BH11-23-AU1	BH12-23-SS2	BH13-23-SS3	Dup-1		
	Sample Date:	14-Nov-23 09:00	14-Nov-23 09:00	14-Nov-23 09:00	14-Nov-23 09:00	_	-
	Sample ID:	2346301-01	2346301-02	2346301-03	2346301-04		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Metals			<u>. </u>	ļ.	ļ.		
Vanadium	10 ug/g	11	21	-	16	-	-
Zinc	20 ug/g	<20	<20	-	<20	-	-
Volatiles	•						
Benzene	0.002 ug/g	<0.002	-	-	-	-	-
Ethylbenzene	0.002 ug/g	<0.002	-	-	-	-	-
Toluene	0.002 ug/g	<0.002	-	-	-	-	-
m,p-Xylenes	0.002 ug/g	<0.002	-	-	-	-	-
o-Xylene	0.002 ug/g	<0.002	-	-	-	-	-
Xylenes, total	0.002 ug/g	<0.002	-	-	-	-	-
Toluene-d8	Surrogate	105%	-	-	-	-	-
Acetone	0.100 ug/g	-	<0.100	<0.100	-	-	-
Benzene	0.002 ug/g	-	<0.002	<0.002	-	-	-
Bromodichloromethane	0.005 ug/g	-	<0.005	<0.005	-	-	-
Bromoform	0.005 ug/g	-	<0.005	<0.005	-	-	-
Bromomethane	0.005 ug/g	-	<0.005	<0.005	-	-	-
Carbon Tetrachloride	0.002 ug/g	-	<0.002	<0.002	-	-	-
Chlorobenzene	0.002 ug/g	-	<0.002	<0.002	-	-	-
Chloroethane	0.050 ug/g	-	<0.050	<0.050	-	-	-
Chloroform	0.002 ug/g	-	<0.002	<0.002	-	-	-
Chloromethane	0.050 ug/g	-	<0.050	<0.050	-	-	-
Dibromochloromethane	0.002 ug/g	-	<0.002	<0.002	-	-	-
Ethylene dibromide (dibromoethane,	0.005 ug/g	-	<0.005	<0.005	-	-	-
1,2-Dichlorobenzene	0.002 ug/g	-	<0.002	<0.002	-	-	-
1,3-Dichlorobenzene	0.002 ug/g	-	<0.002	<0.002	-	-	-
1,4-Dichlorobenzene	0.002 ug/g	-	<0.002	<0.002	-	-	-

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58851

	Client ID:	BH11-23-AU1	BH12-23-SS2	BH13-23-SS3	Dup-1		
	Sample Date:	14-Nov-23 09:00	14-Nov-23 09:00	14-Nov-23 09:00	14-Nov-23 09:00	-	-
	Sample ID:	2346301-01	2346301-02	2346301-03	2346301-04		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Volatiles	•			•	•		•
1,1-Dichloroethane	0.002 ug/g	-	<0.002	<0.002	-	-	-
1,2-Dichloroethane	0.002 ug/g	-	<0.002	<0.002	-	-	-
1,1-Dichloroethylene	0.002 ug/g	-	<0.002	<0.002	-	-	-
Dichlorodifluoromethane	0.002 ug/g	-	<0.002	<0.002	-	-	-
cis-1,2-Dichloroethylene	0.002 ug/g	-	<0.002	<0.002	-	-	-
trans-1,2-Dichloroethylene	0.002 ug/g	-	<0.002	<0.002	-	-	-
1,2-Dichloroethylene, total	0.003 ug/g	-	<0.003	<0.003	-	-	-
1,2-Dichloropropane	0.002 ug/g	-	<0.002	<0.002	-	-	-
cis-1,3-Dichloropropylene	0.002 ug/g	-	<0.002	<0.002	-	-	-
trans-1,3-Dichloropropylene	0.002 ug/g	-	<0.002	<0.002	-	-	-
1,3-Dichloropropene, total	0.003 ug/g	-	<0.003	<0.003	-	-	-
Ethylbenzene	0.002 ug/g	-	<0.002	<0.002	-	-	-
Hexane	0.002 ug/g	-	<0.050	<0.050	-	-	-
Methyl Ethyl Ketone (2-Butanone)	0.050 ug/g	-	<0.050	<0.050	-	-	-
Methyl Butyl Ketone (2-Hexanone)	0.010 ug/g	-	<0.010	<0.010	-	-	-
Methyl Isobutyl Ketone	0.050 ug/g	-	<0.050	<0.050	-	-	-
Methyl tert-butyl ether	0.010 ug/g	-	<0.010	<0.010	-	-	-
Methylene Chloride	0.005 ug/g	-	<0.005	<0.005	-	-	-
Styrene	0.005 ug/g	-	<0.005	<0.005	-	-	-
1,1,1,2-Tetrachloroethane	0.002 ug/g	-	<0.002	<0.002	-	-	-
1,1,2,2-Tetrachloroethane	0.002 ug/g	-	<0.002	<0.002	-	-	-
Tetrachloroethylene	0.002 ug/g	-	<0.002	<0.002	-	-	
Toluene	0.002 ug/g	-	<0.002	<0.002	-	-	-
1,2,4-Trichlorobenzene	0.002 ug/g	-	<0.002	<0.002	-	-	-
1,1,1-Trichloroethane	0.002 ug/g	-	<0.002	<0.002	-	-	-

Report Date: 21-Nov-2023

Order Date: 15-Nov-2023

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58851

	а Г	D1144 00 A114	D1140 00 000	DI 140 00 000	D 4		
	Client ID:	BH11-23-AU1	BH12-23-SS2	BH13-23-SS3	Dup-1		
	Sample Date:	14-Nov-23 09:00	14-Nov-23 09:00	14-Nov-23 09:00	14-Nov-23 09:00	-	-
	Sample ID:	2346301-01	2346301-02	2346301-03	2346301-04		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Volatiles					_		
1,1,2-Trichloroethane	0.002 ug/g	-	<0.002	<0.002	-	-	-
Trichloroethylene	0.002 ug/g	-	<0.002	<0.002	-	-	-
Trichlorofluoromethane	0.005 ug/g	-	<0.005	<0.005	-	-	-
1,3,5-Trimethylbenzene	0.005 ug/g	-	<0.005	<0.005	-	-	-
Vinyl chloride	0.005 ug/g	-	<0.005	<0.005	-	-	-
m,p-Xylenes	0.005 ug/g	-	<0.005	<0.005	-	-	-
o-Xylene	0.002 ug/g	-	<0.002	<0.002	-	-	-
Xylenes, total	0.005 ug/g	-	<0.005	<0.005	-	-	-
Dibromofluoromethane	Surrogate	-	100%	98.5%	-	-	-
Toluene-d8	Surrogate	-	103%	105%	-	-	-
4-Bromofluorobenzene	Surrogate	-	123%	124%	-	-	-
Hydrocarbons			_	-			
F1 PHCs (C6-C10)	7 mg/kg	<7	<7	<7	-	-	-
F2 PHCs (C10-C16)	4 mg/kg	10	<4	<4	-	-	-
F3 PHCs (C16-C34)	8 mg/kg	90	37	<8	-	-	-
F4 PHCs (C34-C50)	6 mg/kg	215 [2]	431 [2]	<6	-	-	-
F4G PHCs (gravimetric)	50 ug/g	682	937	-	-	-	-
Semi-Volatiles			•	•	•	•	
1-Methylnaphthalene	0.02 mg/kg	<0.02	<0.40 [1]	-	-	-	-
2-Methylnaphthalene	0.02 mg/kg	<0.02	<0.40 [1]	-	-	-	-
Methylnaphthalene (1&2)	0.04 mg/kg	<0.04	<0.80 [1]	-	-	-	-
Acenaphthene	0.02 mg/kg	<0.02	<0.40 [1]	-	-	-	-
Acenaphthylene	0.02 mg/kg	<0.02	<0.40 [1]	-	-	-	-
Anthracene	0.02 mg/kg	<0.02	<0.40 [1]	-	-	-	-
Benzo [a] anthracene	0.02 mg/kg	<0.02	<0.40 [1]	_	_	-	_

Report Date: 21-Nov-2023

Order Date: 15-Nov-2023

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58851

Report Date: 21-Nov-2023 Order Date: 15-Nov-2023

Project Description: PE6036

	Client ID:	BH11-23-AU1	BH12-23-SS2	BH13-23-SS3	Dup-1		
	Sample Date:	14-Nov-23 09:00	14-Nov-23 09:00	14-Nov-23 09:00	14-Nov-23 09:00	-	-
	Sample ID:	2346301-01	2346301-02	2346301-03	2346301-04		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Semi-Volatiles	<u> </u>		•				
Benzo [a] pyrene	0.02 mg/kg	<0.02	<0.40 [1]	-	-	-	-
Benzo [b] fluoranthene	0.02 mg/kg	<0.02	<0.40 [1]	-	-	-	-
Benzo [g,h,i] perylene	0.02 mg/kg	<0.02	<0.40 [1]	-	-	-	-
Benzo [k] fluoranthene	0.02 mg/kg	<0.02	<0.40 [1]	-	-	-	-
Biphenyl	0.02 mg/kg	<0.02	<0.40 [1]	-	-	-	-
Chrysene	0.02 mg/kg	<0.02	<0.40 [1]	-	-	-	-
Dibenzo [a,h] anthracene	0.02 mg/kg	<0.02	<0.40 [1]	-	-	-	-
Fluoranthene	0.02 mg/kg	<0.02	<0.40 [1]	-	-	-	-
Fluorene	0.02 mg/kg	<0.02	<0.40 [1]	-	-	-	-
Indeno [1,2,3-cd] pyrene	0.02 mg/kg	<0.02	<0.40 [1]	-	-	-	-
Naphthalene	0.01 mg/kg	<0.01	<0.20 [1]	-	-	-	-
Phenanthrene	0.02 mg/kg	<0.02	<0.40 [1]	-	-	-	-
Pyrene	0.02 mg/kg	<0.02	<0.40 [1]	-	-	-	-
Quinoline	0.10 mg/kg	<0.10	<2.00 [1]	-	-	-	-
2-Fluorobiphenyl	Surrogate	68.5%	88.9%	-	-	-	-
Terphenyl-d14	Surrogate	56.8%	69.6%	-	-	-	-
PCBs							
PCBs, total	0.05 ug/g	-	<0.05	<0.05	-	-	-
Decachlorobiphenyl	Surrogate	-	116%	135%	-	-	-

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58851

Report Date: 21-Nov-2023

Order Date: 15-Nov-2023

Project Description: PE6036

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics								
Conductivity	ND	5	uS/cm					
Hydrocarbons								
F1 PHCs (C6-C10)	ND	7	mg/kg					
F4G PHCs (gravimetric)	ND	50	ug/g					
Metals								
Antimony	ND	1	ug/g					
Arsenic	ND	1	ug/g					
Barium	ND	1	ug/g					
Beryllium	ND	0.5	ug/g					
Boron	ND	5.0	ug/g					
Cadmium	ND	0.5	ug/g					
Chromium (VI)	ND	0.2	ug/g					
Chromium	ND	5	ug/g					
Cobalt	ND	1	ug/g					
Copper	ND	5	ug/g					
Lead	ND	1	ug/g					
Mercury	ND	0.1	ug/g					
Molybdenum	ND	1	ug/g					
Nickel	ND	5	ug/g					
Selenium	ND	1	ug/g					
Silver	ND	0.3	ug/g					
Thallium	ND	1	ug/g					
Tin	ND	5	ug/g					
Uranium	ND	1	ug/g					
Vanadium	ND	10	ug/g					
Zinc	ND	20	ug/g					
PCBs	N.S		-9.9					
PCBs, total	ND	0.05	ug/g					
Surrogate: Decachlorobiphenyl	0.116		%	116	60-140			
Semi-Volatiles			. •					
1-Methylnaphthalene	ND	0.02	mg/kg					
2-Methylnaphthalene	ND	0.02	mg/kg					

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58851

Report Date: 21-Nov-2023

Order Date: 15-Nov-2023

Project Description: PE6036

ND				Limit		Limit	Notes
	0.04	mg/kg					
ND	0.02	mg/kg					
ND	0.02	mg/kg					
ND	0.02	mg/kg					
ND	0.02	mg/kg					
ND	0.02	mg/kg					
ND	0.02	mg/kg					
ND	0.02	mg/kg					
ND	0.02	mg/kg					
ND	0.02	mg/kg					
ND	0.02	mg/kg					
ND	0.02	mg/kg					
ND	0.02	mg/kg					
ND	0.02	mg/kg					
ND	0.02	mg/kg					
ND	0.01	mg/kg					
ND	0.02	mg/kg					
ND	0.02	mg/kg					
ND	0.10	mg/kg					
0.878		%	65.9	50-140			
0.727		%	54.5	50-140			
ND	0.002	ug/g					
ND	0.002	ug/g					
ND	0.002	ug/g					
ND	0.002	ug/g					
ND	0.002	ug/g					
ND	0.002	ug/g					
0.415		%	104	60-140			
ND	0.100	ug/g					
	0.002						
ND	0.005	ug/g					
	ND N	ND 0.02 ND 0.01 ND 0.02 ND 0.02 ND 0.01 ND 0.02 ND 0.02 ND 0.002	ND 0.02 mg/kg ND 0.002 ug/g ND 0.100 ug/g <t< td=""><td>ND 0.02 mg/kg ND 0.01 mg/kg ND 0.02 mg/kg ND 0.00 mg/g ND 0.00 mg/g ND 0.00 mg/g ND 0.00 mg/g</td><td>ND 0.02 mg/kg ND 0.01 mg/kg ND 0.02 mg/kg ND 0.01 mg/kg ND 0.02 mg/kg ND 0.002 mg/kg ND 0.002 ug/g ND 0.002 ug/g ND 0.002 ug/g ND 0.002 ug/g ND 0.002 ug/g <</td><td>ND 0.02 mg/kg ND 0.01 mg/kg ND 0.02 mg/kg ND 0.02 mg/kg ND 0.01 mg/kg ND 0.02 mg/kg ND 0.02 mg/kg ND 0.02 mg/kg ND 0.02 mg/kg ND 0.002 mg/g ND 0.002 ug/g /td><td>ND 0.02 mg/kg ND 0.01 mg/kg ND 0.02 mg/kg ND 0.02 mg/kg ND 0.02 mg/kg ND 0.10 mg/kg ND 0.10 mg/kg ND 0.10 mg/kg ND 0.02 mg/kg ND 0.02 mg/kg ND 0.002 ug/g ND 0.002 ug/g ND 0.002 ug/g ND 0.002 ug/g ND 0.100 ug/g <t< td=""></t<></td></t<>	ND 0.02 mg/kg ND 0.01 mg/kg ND 0.02 mg/kg ND 0.00 mg/g ND 0.00 mg/g ND 0.00 mg/g ND 0.00 mg/g	ND 0.02 mg/kg ND 0.01 mg/kg ND 0.02 mg/kg ND 0.01 mg/kg ND 0.02 mg/kg ND 0.002 mg/kg ND 0.002 ug/g ND 0.002 ug/g ND 0.002 ug/g ND 0.002 ug/g ND 0.002 ug/g <	ND 0.02 mg/kg ND 0.01 mg/kg ND 0.02 mg/kg ND 0.02 mg/kg ND 0.01 mg/kg ND 0.02 mg/kg ND 0.02 mg/kg ND 0.02 mg/kg ND 0.02 mg/kg ND 0.002 mg/g ND 0.002 ug/g	ND 0.02 mg/kg ND 0.01 mg/kg ND 0.02 mg/kg ND 0.02 mg/kg ND 0.02 mg/kg ND 0.10 mg/kg ND 0.10 mg/kg ND 0.10 mg/kg ND 0.02 mg/kg ND 0.02 mg/kg ND 0.002 ug/g ND 0.002 ug/g ND 0.002 ug/g ND 0.002 ug/g ND 0.100 ug/g <t< td=""></t<>

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58851

Report Date: 21-Nov-2023

Order Date: 15-Nov-2023

Project Description: PE6036

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Bromoform	ND	0.005	ug/g					
Bromomethane	ND	0.005	ug/g					
Carbon Tetrachloride	ND	0.002	ug/g					
Chlorobenzene	ND	0.002	ug/g					
Chloroethane	ND	0.050	ug/g					
Chloroform	ND	0.002	ug/g					
Chloromethane	ND	0.050	ug/g					
Dibromochloromethane	ND	0.002	ug/g					
Ethylene dibromide (dibromoethane, 1,2-)	ND	0.005	ug/g					
1,2-Dichlorobenzene	ND	0.002	ug/g					
1,3-Dichlorobenzene	ND	0.002	ug/g					
1,4-Dichlorobenzene	ND	0.002	ug/g					
1,1-Dichloroethane	ND	0.002	ug/g					
1,2-Dichloroethane	ND	0.002	ug/g					
1,1-Dichloroethylene	ND	0.002	ug/g					
Dichlorodifluoromethane	ND	0.002	ug/g					
cis-1,2-Dichloroethylene	ND	0.002	ug/g					
trans-1,2-Dichloroethylene	ND	0.002	ug/g					
1,2-Dichloroethylene, total	ND	0.003	ug/g					
1,2-Dichloropropane	ND	0.002	ug/g					
cis-1,3-Dichloropropylene	ND	0.002	ug/g					
trans-1,3-Dichloropropylene	ND	0.002	ug/g					
1,3-Dichloropropene, total	ND	0.003	ug/g					
Ethylbenzene	ND	0.002	ug/g					
Hexane	ND	0.050	ug/g					
Methyl Ethyl Ketone (2-Butanone)	ND	0.050	ug/g					
Methyl Butyl Ketone (2-Hexanone)	ND	0.010	ug/g					
Methyl Isobutyl Ketone	ND	0.050	ug/g					
Methyl tert-butyl ether	ND	0.010	ug/g					
Methylene Chloride	ND	0.005	ug/g					
Styrene	ND	0.005	ug/g					
1,1,1,2-Tetrachloroethane	ND	0.002	ug/g					
1,1,2,2-Tetrachloroethane	ND	0.002	ug/g					

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58851

Report Date: 21-Nov-2023

Order Date: 15-Nov-2023

Project Description: PE6036

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Tetrachloroethylene	ND	0.002	ug/g					
Toluene	ND	0.002	ug/g					
1,2,4-Trichlorobenzene	ND	0.002	ug/g					
1,1,1-Trichloroethane	ND	0.002	ug/g					
1,1,2-Trichloroethane	ND	0.002	ug/g					
Trichloroethylene	ND	0.002	ug/g					
Trichlorofluoromethane	ND	0.005	ug/g					
1,3,5-Trimethylbenzene	ND	0.005	ug/g					
Vinyl chloride	ND	0.005	ug/g					
m,p-Xylenes	ND	0.005	ug/g					
o-Xylene	ND	0.002	ug/g					
Xylenes, total	ND	0.005	ug/g					
Surrogate: 4-Bromofluorobenzene	0.474		%	118	60-140			
Surrogate: Dibromofluoromethane	0.410		%	103	60-140			
Surrogate: Toluene-d8	0.415		%	104	60-140			

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58851

Report Date: 21-Nov-2023

Order Date: 15-Nov-2023

Project Description: PE6036

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
SAR	1.96	0.01	N/A	1.92			2.1	30	
Conductivity	900	5	uS/cm	877			2.6	5	
pH	7.37	0.05	pH Units	7.31			8.0	2.3	
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	mg/kg	ND			NC	40	
F2 PHCs (C10-C16)	ND	4	mg/kg	ND			NC	30	
F3 PHCs (C16-C34)	53	8	mg/kg	37			34.6	30	QR-04
F4 PHCs (C34-C50)	500	6	mg/kg	431			14.9	30	
Metals									
Antimony	ND	1	ug/g	ND			NC	30	
Arsenic	4.8	1	ug/g	4.9			3.6	30	
Barium	174	1	ug/g	206			16.6	30	
Beryllium	ND	0.5	ug/g	ND			NC	30	
Boron	9.0	5.0	ug/g	8.7			2.5	30	
Cadmium	ND	0.5	ug/g	ND			NC	30	
Chromium (VI)	ND	0.2	ug/g	ND			NC	35	
Chromium	21.0	5	ug/g	25.3			18.4	30	
Cobalt	4.6	1	ug/g	5.2			13.6	30	
Copper	22.2	5	ug/g	24.4			9.7	30	
Lead	44.2	1	ug/g	49.4			11.2	30	
Mercury	ND	0.1	ug/g	ND			NC	30	
Molybdenum	2.2	1	ug/g	2.4			12.4	30	
Nickel	14.6	5	ug/g	16.9			14.1	30	
Selenium	ND	1	ug/g	ND			NC	30	
Silver	ND	0.3	ug/g	ND			NC	30	
Thallium	ND	1	ug/g	ND			NC	30	
Tin	ND	5	ug/g	ND			NC	30	
Uranium	ND	1	ug/g	ND			NC	30	
Vanadium	24.5	10	ug/g	26.7			8.7	30	
Zinc	101	20	ug/g	105			3.8	30	

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58851

Report Date: 21-Nov-2023

Order Date: 15-Nov-2023

Project Description: PE6036

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
PCBs			_						
PCBs, total	ND	0.05	ug/g	ND			NC	40	
Surrogate: Decachlorobiphenyl	0.123		%		121	60-140			
Physical Characteristics % Solids	94.1	0.1	% by Wt.	94.4			0.3	25	
Semi-Volatiles								40	
1-Methylnaphthalene	ND	0.02	mg/kg	ND			NC	40	
2-Methylnaphthalene	ND	0.02	mg/kg	ND			NC	40	
Acenaphthene	ND	0.02	mg/kg	ND			NC	40	
Acenaphthylene	ND	0.02	mg/kg	ND			NC	40	
Anthracene	ND	0.02	mg/kg	ND			NC	40	
Benzo [a] anthracene	ND	0.02	mg/kg	ND			NC	40	
Benzo [a] pyrene	ND	0.02	mg/kg	ND			NC	40	
Benzo [b] fluoranthene	ND	0.02	mg/kg	ND			NC	40	
Benzo [g,h,i] perylene	ND	0.02	mg/kg	ND			NC	40	
Benzo [k] fluoranthene	ND	0.02	mg/kg	ND			NC	40	
Biphenyl	ND	0.02	mg/kg	ND			NC	40	
Chrysene	ND	0.02	mg/kg	ND			NC	40	
Dibenzo [a,h] anthracene	ND	0.02	mg/kg	ND			NC	40	
Fluoranthene	ND	0.02	mg/kg	ND			NC	40	
Fluorene	ND	0.02	mg/kg	ND			NC	40	
Indeno [1,2,3-cd] pyrene	ND	0.02	mg/kg	ND			NC	40	
Naphthalene	ND	0.01	mg/kg	ND			NC	40	
Phenanthrene	ND	0.02	mg/kg	ND			NC	40	
Pyrene	ND	0.02	mg/kg	ND			NC	40	
Quinoline	ND	0.10	mg/kg	ND			NC	40	
Surrogate: 2-Fluorobiphenyl	0.967		%		67.2	50-140			
Surrogate: Terphenyl-d14	0.811		%		56.4	50-140			

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58851

Report Date: 21-Nov-2023

Order Date: 15-Nov-2023

Project Description: PE6036

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	197	7	mg/kg	ND	98.5	85-115			
F2 PHCs (C10-C16)	89	4	mg/kg	ND	110	60-140			
F3 PHCs (C16-C34)	294	8	mg/kg	37	129	60-140			
F4 PHCs (C34-C50)	682	6	mg/kg	431	199	60-140			QM-06
F4G PHCs (gravimetric)	960	50	ug/g	ND	96.0	80-120			
Metals									
Antimony	37.8	1	ug/g	ND	74.9	70-130			
Arsenic	55.3	1	ug/g	2.0	107	70-130			
Barium	126	1	ug/g	82.4	87.6	70-130			
Beryllium	50.6	0.5	ug/g	ND	101	70-130			
Boron	49.6	5.0	ug/g	ND	92.1	70-130			
Cadmium	49.3	0.5	ug/g	ND	98.3	70-130			
Chromium (VI)	0.2	0.2	ug/g	ND	86.0	70-130			
Chromium	64.4	5	ug/g	10.1	109	70-130			
Cobalt	54.1	1	ug/g	2.1	104	70-130			
Copper	58.6	5	ug/g	9.8	97.6	70-130			
Lead	66.8	1	ug/g	19.8	94.1	70-130			
Mercury	1.33	0.1	ug/g	ND	88.5	70-130			
Molybdenum	51.6	1	ug/g	1.0	101	70-130			
Nickel	57.7	5	ug/g	6.7	102	70-130			
Selenium	47.2	1	ug/g	ND	94.1	70-130			
Silver	50.5	0.3	ug/g	ND	101	70-130			
Thallium	48.2	1	ug/g	ND	96.3	70-130			
Tin	50.4	5	ug/g	ND	99.7	70-130			
Uranium	53.3	1	ug/g	ND	106	70-130			
Vanadium	66.9	10	ug/g	10.7	112	70-130			
Zinc	87.7	20	ug/g	42.1	91.3	70-130			
PCBs									
PCBs, total	0.449	0.05	ug/g	ND	110	60-140			
Surrogate: Decachlorobiphenyl	0.124		%		122	60-140			

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58851

Report Date: 21-Nov-2023

Order Date: 15-Nov-2023

Project Description: PE6036

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Semi-Volatiles									
1-Methylnaphthalene	0.119	0.02	mg/kg	ND	66.3	50-140			
2-Methylnaphthalene	0.137	0.02	mg/kg	ND	76.0	50-140			
Acenaphthene	0.139	0.02	mg/kg	ND	77.4	50-140			
Acenaphthylene	0.157	0.02	mg/kg	ND	87.1	50-140			
Anthracene	0.193	0.02	mg/kg	ND	107	50-140			
Benzo [a] anthracene	0.151	0.02	mg/kg	ND	83.8	50-140			
Benzo [a] pyrene	0.118	0.02	mg/kg	ND	65.4	50-140			
Benzo [b] fluoranthene	0.126	0.02	mg/kg	ND	70.1	50-140			
Benzo [g,h,i] perylene	0.121	0.02	mg/kg	ND	67.2	50-140			
Benzo [k] fluoranthene	0.156	0.02	mg/kg	ND	86.7	50-140			
Biphenyl	0.144	0.02	mg/kg	ND	80.2	50-140			
Chrysene	0.141	0.02	mg/kg	ND	78.2	50-140			
Dibenzo [a,h] anthracene	0.119	0.02	mg/kg	ND	66.4	50-140			
Fluoranthene	0.185	0.02	mg/kg	ND	103	50-140			
Fluorene	0.132	0.02	mg/kg	ND	73.4	50-140			
Indeno [1,2,3-cd] pyrene	0.121	0.02	mg/kg	ND	67.3	50-140			
Naphthalene	0.152	0.01	mg/kg	ND	84.4	50-140			
Phenanthrene	0.141	0.02	mg/kg	ND	78.3	50-140			
Pyrene	0.182	0.02	mg/kg	ND	101	50-140			
Quinoline	0.178	0.10	mg/kg	ND	98.9	50-140			
Surrogate: 2-Fluorobiphenyl	0.988		%		68.6	50-140			
Surrogate: Terphenyl-d14	0.751		%		52.1	50-140			
Volatiles									
Benzene	0.168	0.002	ug/g	ND	83.8	60-140			
Ethylbenzene	0.151	0.002	ug/g	ND	75.6	60-140			
Toluene	0.159	0.002	ug/g	ND	79.3	60-140			
m,p-Xylenes	0.339	0.002	ug/g	ND	84.8	60-140			
o-Xylene	0.182	0.002	ug/g	ND	90.9	60-140			
Surrogate: Toluene-d8	0.371		%		92.7	60-140			
Acetone	0.479	0.100	ug/g	ND	95.8	60-140			

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58851

Report Date: 21-Nov-2023

Order Date: 15-Nov-2023

Project Description: PE6036

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Benzene	0.168	0.002	ug/g	ND	83.8	60-140			
Bromodichloromethane	0.219	0.005	ug/g	ND	109	60-140			
Bromoform	0.198	0.005	ug/g	ND	98.8	60-140			
Carbon Tetrachloride	0.132	0.002	ug/g	ND	66.1	60-140			
Chlorobenzene	0.183	0.002	ug/g	ND	91.4	60-140			
Chloroform	0.186	0.002	ug/g	ND	93.0	60-140			
Chloromethane	0.276	0.050	ug/g	ND	138	60-140			
Dibromochloromethane	0.148	0.002	ug/g	ND	74.0	60-140			
Ethylene dibromide (dibromoethane, 1,2-)	0.214	0.005	ug/g	ND	107	60-130			
1,2-Dichlorobenzene	0.193	0.002	ug/g	ND	96.7	60-140			
1,3-Dichlorobenzene	0.169	0.002	ug/g	ND	84.6	60-140			
1,4-Dichlorobenzene	0.169	0.002	ug/g	ND	84.6	60-140			
1,1-Dichloroethane	0.173	0.002	ug/g	ND	86.5	60-140			
1,2-Dichloroethane	0.222	0.002	ug/g	ND	111	60-140			
1,1-Dichloroethylene	0.134	0.002	ug/g	ND	66.8	60-140			
cis-1,2-Dichloroethylene	0.161	0.002	ug/g	ND	80.6	60-140			
trans-1,2-Dichloroethylene	0.140	0.002	ug/g	ND	69.9	60-140			
1,2-Dichloropropane	0.184	0.002	ug/g	ND	92.1	60-140			
cis-1,3-Dichloropropylene	0.156	0.002	ug/g	ND	78.1	60-140			
trans-1,3-Dichloropropylene	0.266	0.002	ug/g	ND	133	60-140			
Ethylbenzene	0.151	0.002	ug/g	ND	75.6	60-140			
Methyl Ethyl Ketone (2-Butanone)	0.488	0.050	ug/g	ND	97.6	60-140			
Methyl Butyl Ketone (2-Hexanone)	0.382	0.010	ug/g	ND	76.3	60-140			
Methyl Isobutyl Ketone	0.361	0.050	ug/g	ND	72.1	60-140			
Methyl tert-butyl ether	0.488	0.010	ug/g	ND	97.6	60-140			
Methylene Chloride	0.154	0.005	ug/g	ND	77.1	60-140			
Styrene	0.126	0.005	ug/g	ND	62.9	60-140			
1,1,1,2-Tetrachloroethane	0.124	0.002	ug/g	ND	61.9	60-140			
1,1,2,2-Tetrachloroethane	0.215	0.002	ug/g	ND	108	60-140			
Tetrachloroethylene	0.155	0.002	ug/g	ND	77.6	60-140			
Toluene	0.159	0.002	ug/g	ND	79.3	60-140			

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58851

Report Date: 21-Nov-2023

Order Date: 15-Nov-2023

Project Description: PE6036

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,2,4-Trichlorobenzene	0.208	0.002	ug/g	ND	104	60-140			
1,1,1-Trichloroethane	0.228	0.002	ug/g	ND	114	60-140			
1,1,2-Trichloroethane	0.186	0.002	ug/g	ND	92.9	60-140			
Trichloroethylene	0.158	0.002	ug/g	ND	79.0	60-140			
Trichlorofluoromethane	0.141	0.005	ug/g	ND	70.6	60-140			
1,3,5-Trimethylbenzene	0.176	0.005	ug/g	ND	88.0	60-140			
Vinyl chloride	0.129	0.005	ug/g	ND	64.4	60-140			
m,p-Xylenes	0.339	0.005	ug/g	ND	84.8	60-140			
o-Xylene	0.182	0.002	ug/g	ND	90.9	60-140			
Surrogate: 4-Bromofluorobenzene	0.477		%		119	60-140			
Surrogate: Dibromofluoromethane	0.443		%		111	60-140			
Surrogate: Toluene-d8	0.371		%		92.7	60-140			

Certificate of Analysis

Report Date: 21-Nov-2023 Order Date: 15-Nov-2023

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58851

Project Description: PE6036

Qualifier Notes:

Sample Qualifiers:

1: Elevated reporting limits due to the nature of the sample matrix.

2: GC-FID signal did not return to baseline by C50

QC Qualifiers:

QM-06 Due to noted non-homogeneity of the QC sample matrix, the spike recoveries were out side the accepted range. Batch data accepted based on

other QC.

QR-04 Duplicate results exceeds RPD limits due to non-homogeneous matrix.

Sample Data Revisions:

None

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Order Date: 21-Nov-2023

Client PO: 58851

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Soil results are reported on a dry weight basis unlesss otherwise noted.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Paracel ID: 2346301

Paracel Order Number (Lab Use Only)

Chain Of Custody (Lab Use Only)

Clie	LABORATORIES	LTD.						bs.com m	2	34	63	01									
Cile	nt Name: Paterson (Group			Projec	ct Ref: 1	PE6036									Pa	ge	of J			
	NICK SULLY	an			Quote	#:	- 1	40/									_		_		
Add	ress: 9 Auriga Dr	. Ottaw	ia		PO #:	5	8851							┨.	Turnaround Time						
		, 0			E-mail	i n	Sullivan@	Datarias	0.000	10				1			□ 3 d				
Tele	rphone: 613 226-7.	381			1		20-11-101100	pareisor	3,00	4.0	a				2 day			1	ØKReį	gular	
K	REG 153/04 REG 406/19		Regulation	Г	_									Date	Requ	ired:	_				
	Table 1 Res/Park Med/Fine		□ PWQ0	1	Aatrix 1 SW (Su	Type: !	S (Soil/Sed.) GW (G Vater) SS (Storm/Sa	Ground Water)					Re	quire	d Anal	ysis					
	Table 2	K CCWE	☐ MISA		(50	P (P	aint) A (Air) O (Ot	ther)	×	_	000										
	Table 3 Agri/Other	□ su - sani	□ SU - Storm			90			H (H)												
	Table	Mun:			e e	ainer	Sample	e Taken	F4+E			- G				K					
	For RSC: Yes No	Other:		×	Air Volume	of Containers	Jampa	e ruken	PHCs F1-F4+BTEX						(S)	EC/SAR		BS			
	Sample ID/Location	n Name		Matrix	Air V	10 tt	Date	Time	니 ś	VOCs	PAHs	Metals by	Ę.	S.	B (HWS)	[2]	PH	8			
1	BH11-23-AUI			5		3	Nov 14/23		X	>	X	2			ω	_	X	7	-	\dashv	
2	BH12-23-558	2		1		1	1004 1 1790	'		-		$\frac{\wedge}{\times}$	X	Χ		X	^		_	_	
3	BH13-23-55			T,		1	1		X	X	X	_	X	X		^		X	_	_	
4	DuP-1			Ť		ì			+	X								X			
5				_		1	· ·		+-			Х						\perp			
6									+-	_											
7									+									_			
8									+									_		_	
9									+-								_	_	_		
10									+-					_		_	_	_	\perp		
omm	nents:								1						No. of Second						
													Metho	0)						
elinq	uished By (Sign): Tudy B	Sin	Received By Dri	ver/De	pot:	68354		Received at Lab:		1000	10.72	2000	Verifie	Taracel Courses							
eling	Hishard By (Drint), e		Date/Time:		THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.					HP .						4. 1					
ate/1	Time: No. 10	Blair			Date/Time:				Date/Time: NOV 15, 83 16:30 Date/						Time: Nov 15, 23 17:18						
ate/Time: Nov 15 2023 Temperature:					°C	Temperature: 3,9°C pH Verified: □ By:						900									

Revsion 4.0

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers (Ottawa)

9 Auriga Drive

Ottawa, ON K2E 7T9

Attn: Nick Sullivan

Client PO: 58963 Project: PE6036

Custody:

Report Date: 6-Dec-2023
Order Date: 29-Nov-2023

Order #: 2348312

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2348312-01	BH11-23-GW1
2348312-02	BH12-23-GW1
2348312-03	BH13-23-GW1
2348312-04	Dup-1

Approved By:

Mark Froto

Mark Foto, M.Sc.

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58963

Report Date: 06-Dec-2023

Order Date: 29-Nov-2023

Project Description: PE6036

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Hardness	Hardness as CaCO3	30-Nov-23	30-Nov-23
Chromium, hexavalent, water, low level	MOE E3056 - colourimetric	4-Dec-23	4-Dec-23
Metals, ICP-MS	EPA 200.8 - ICP-MS	30-Nov-23	30-Nov-23
PAHs by GC-MS	EPA 625 - GC-MS, extraction	5-Dec-23	6-Dec-23
PCBs, total	EPA 608 - GC-ECD	4-Dec-23	5-Dec-23
PHC F1	CWS Tier 1 - P&T GC-FID	30-Nov-23	1-Dec-23
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	30-Nov-23	1-Dec-23
VOCs by P&T GC-MS	EPA 624 - P&T GC-MS	1-Dec-23	1-Dec-23

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58963

	Client ID:	BH11-23-GW1	BH12-23-GW1	BH13-23-GW1	Dup-1		1
	Sample Date:	24-Nov-23 09:00	24-Nov-23 09:00	24-Nov-23 09:00	24-Nov-23 09:00	-	-
	Sample ID:	2348312-01	2348312-02	2348312-03	2348312-04		
	Matrix:	Ground Water	Ground Water	Ground Water	Ground Water		
	MDL/Units						
General Inorganics	-						
Hardness	mg/L	805	703	773	-	-	-
Metals							
Aluminum	1 ug/L	22	5	8	-	-	-
Antimony	0.5 ug/L	0.8	<0.5	<0.5	-	-	-
Arsenic	1 ug/L	<1	<1	<1	-	-	-
Barium	1 ug/L	293	138	192	-	-	-
Beryllium	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Boron	10 ug/L	769	50	121	-	-	-
Cadmium	0.01 ug/L	0.01	0.03	<0.01	-	-	-
Calcium	100 ug/L	239000	221000	249000	-	-	-
Chromium (VI)	1 ug/L	<1	<1	<1	-	-	-
Chromium	1 ug/L	<1	<1	<1	-	-	-
Cobalt	0.5 ug/L	<0.5	<0.5	<0.5	-	-	-
Copper	0.5 ug/L	2.0	2.7	2.3	-	-	-
Iron	100 ug/L	<100	<100	<100	-	-	-
Lead	0.1 ug/L	<0.1	<0.1	<0.1	-	-	-
Magnesium	200 ug/L	50800	36600	36700	-	-	-
Manganese	5 ug/L	25	6	<5	-	-	-
Molybdenum	0.5 ug/L	14.6	72.8	4.6	-	-	-
Nickel	1 ug/L	2	1	2	-	-	-
Selenium	1 ug/L	7	<1	<1	-	-	-
Silver	0.1 ug/L	<0.1	<0.1	<0.1	-	-	-
Thallium	0.1 ug/L	<0.1	<0.1	<0.1	-	-	-
Titanium	5 ug/L	<5	<5	<5	-	-	-
Uranium	0.1 ug/L	1.0	1.6	2.6	-	-	-

Report Date: 06-Dec-2023

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58963

	Client ID:	BH11-23-GW1	BH12-23-GW1	BH13-23-GW1	Dup-1		
	Sample Date:	24-Nov-23 09:00	24-Nov-23 09:00	24-Nov-23 09:00	24-Nov-23 09:00	_	-
	Sample ID:	2348312-01	2348312-02	2348312-03	2348312-04		
	Matrix:	Ground Water	Ground Water	Ground Water	Ground Water		
	MDL/Units						
Metals			•	•	•		
Vanadium	0.5 ug/L	0.7	<0.5	<0.5	-	-	-
Zinc	5 ug/L	<5	6	<5	-	-	-
Volatiles			•		•		•
Acetone	5.0 ug/L	293	<5.0	<5.0	253	-	-
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	<0.2	-	-
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Chloroethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0	-	-
Chloroform	0.5 ug/L	6.1	<0.5	<0.5	5.0	-	-
Chloromethane	3.0 ug/L	<3.0	<3.0	<3.0	<3.0	-	-
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0	-	-
1,2-Dibromoethane	0.2 ug/L	<0.2	<0.2	<0.2	<0.2	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
1,2-Dichloroethylene, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-

Report Date: 06-Dec-2023

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58963 Project Description: PE6036

	Client ID:	BH11-23-GW1	BH12-23-GW1	BH13-23-GW1	Dup-1		
	Sample Date:	24-Nov-23 09:00	24-Nov-23 09:00	24-Nov-23 09:00	24-Nov-23 09:00	_	_
	Sample ID:	2348312-01	2348312-02	2348312-03	2348312-04		
	Matrix:	Ground Water	Ground Water	Ground Water	Ground Water		
	MDL/Units						
Volatiles	-						
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	<5.0	-	-
Methyl Butyl Ketone (2-Hexanone)	10.0 ug/L	<10.0	<10.0	<10.0	<10.0	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	<2.0	-	-
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	<5.0	-	-
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	1.0	-	-
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0	-	-
1,3,5-Trimethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5	-	-

Report Date: 06-Dec-2023

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58963 Project Description: PE6036

	Client ID:	BH11-23-GW1	BH12-23-GW1	BH13-23-GW1	Dup-1		
	Sample Date:	24-Nov-23 09:00	24-Nov-23 09:00	24-Nov-23 09:00	24-Nov-23 09:00	_	-
	Sample ID:	2348312-01	2348312-02	2348312-03	2348312-04		
	Matrix:	Ground Water	Ground Water	Ground Water	Ground Water		
	MDL/Units						
Volatiles			•	•	•		•
Toluene-d8	Surrogate	112%	124%	114%	118%	-	-
Dibromofluoromethane	Surrogate	112%	117%	112%	110%	-	-
4-Bromofluorobenzene	Surrogate	96.2%	85.6%	81.8%	80.2%	-	-
Hydrocarbons							
F1 PHCs (C6-C10)	0.025 mg/L	<0.025	<0.025	<0.025	-	-	-
F2 PHCs (C10-C16)	0.1 mg/L	<0.1	<0.1	<0.1	-	-	-
F3 PHCs (C16-C34)	0.1 mg/L	<0.1	<0.1	<0.1	-	-	-
F4 PHCs (C34-C50)	0.1 mg/L	<0.1	<0.1	<0.1	-	-	-
Semi-Volatiles				•			
Acenaphthene	0.05 ug/L	-	<0.05	<0.05	-	-	-
Acridine	0.10 ug/L	-	<0.10	<0.10	-	-	-
Acenaphthylene	0.05 ug/L	-	<0.05	<0.05	-	-	-
Anthracene	0.01 ug/L	-	<0.01	<0.01	-	-	-
Benzo [a] anthracene	0.01 ug/L	-	<0.01	<0.01	-	-	-
Benzo [a] pyrene	0.01 ug/L	-	<0.01	<0.01	-	-	-
Benzo [b] fluoranthene	0.05 ug/L	-	<0.05	<0.05	-	-	-
Benzo [g,h,i] perylene	0.05 ug/L	-	<0.05	<0.05	-	-	-
Benzo [k] fluoranthene	0.05 ug/L	-	<0.05	<0.05	-	-	-
Biphenyl	0.05 ug/L	-	<0.05	<0.05	-	-	-
Chrysene	0.05 ug/L	-	<0.05	<0.05	-	-	-
Dibenzo [a,h] anthracene	0.05 ug/L	-	<0.05	<0.05	-	-	-
Fluoranthene	0.01 ug/L	-	<0.01	<0.01	-	-	-
Fluorene	0.05 ug/L	-	<0.05	<0.05	-	-	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	-	<0.05	<0.05	-	-	-
1-Methylnaphthalene	0.05 ug/L	-	<0.05	<0.05	-	-	-

Report Date: 06-Dec-2023

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58963 Project Description: PE6036

	Client ID:	BH11-23-GW1	BH12-23-GW1	BH13-23-GW1	Dup-1		
	Sample Date:	24-Nov-23 09:00	24-Nov-23 09:00	24-Nov-23 09:00	24-Nov-23 09:00	-	-
	Sample ID:	2348312-01	2348312-02	2348312-03	2348312-04		
	Matrix:	Ground Water	Ground Water	Ground Water	Ground Water		
	MDL/Units						
Semi-Volatiles	-				•		
2-Methylnaphthalene	0.05 ug/L	-	<0.05	<0.05	-	-	-
Methylnaphthalene (1&2)	0.10 ug/L	-	<0.10	<0.10	-	-	-
Naphthalene	0.05 ug/L	-	<0.05	<0.05	-	-	-
Phenanthrene	0.05 ug/L		<0.05	<0.05	-	-	-
Pyrene	0.01 ug/L	-	<0.01	<0.01	-	-	-
Quinoline	0.10 ug/L	-	<0.10	<0.10	-	-	-
2-Fluorobiphenyl	Surrogate	-	58.1%	68.5%	•	-	-
Terphenyl-d14	Surrogate	-	67.1%	60.9%	•	-	-
PCBs	•						
PCBs, total	0.05 ug/L	-	<0.05	<0.05	-	-	-
Decachlorobiphenyl	Surrogate	-	120%	118%	-	-	-

Report Date: 06-Dec-2023

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58963

Project Description: PE6036

Report Date: 06-Dec-2023

Order Date: 29-Nov-2023

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons								
F1 PHCs (C6-C10)	ND	0.025	mg/L					
F2 PHCs (C10-C16)	ND	0.1	mg/L					
F3 PHCs (C16-C34)	ND	0.1	mg/L					
F4 PHCs (C34-C50)	ND	0.1	mg/L					
Metals								
Aluminum	ND	1	ug/L					
Antimony	ND	0.5	ug/L					
Arsenic	ND	1	ug/L					
Barium	ND	1	ug/L					
Beryllium	ND	0.5	ug/L					
Boron	ND	10	ug/L					
Cadmium	ND	0.01	ug/L					
Calcium	ND	100	ug/L					
Chromium (VI)	ND	1	ug/L					
Chromium	ND	1	ug/L					
Cobalt	ND	0.5	ug/L					
Copper	ND	0.5	ug/L					
Iron	ND	100	ug/L					
Lead	ND	0.1	ug/L					
Magnesium	ND	200	ug/L					
Manganese	ND	5	ug/L					
Molybdenum	ND	0.5	ug/L					
Nickel	ND	1	ug/L					
Selenium	ND	1	ug/L					
Silver	ND	0.1	ug/L					
Thallium	ND	0.1	ug/L					
Titanium	ND	5	ug/L					
Uranium	ND	0.1	ug/L					
Vanadium	ND	0.5	ug/L					
Zinc	ND	5	ug/L					
PCBs			J					
PCBs, total	ND	0.05	ug/L					

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58963

Report Date: 06-Dec-2023

Order Date: 29-Nov-2023

Project Description: PE6036

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Surrogate: Decachlorobiphenyl	0.650		%	130	60-140			
Semi-Volatiles								
Acenaphthene	ND	0.05	ug/L					
Acenaphthylene	ND	0.05	ug/L					
Acridine	ND	0.10	ug/L					
Anthracene	ND	0.01	ug/L					
Benzo [a] anthracene	ND	0.01	ug/L					
Benzo [a] pyrene	ND	0.01	ug/L					
Benzo [b] fluoranthene	ND	0.05	ug/L					
Benzo [g,h,i] perylene	ND	0.05	ug/L					
Benzo [k] fluoranthene	ND	0.05	ug/L					
Biphenyl	ND	0.05	ug/L					
Chrysene	ND	0.05	ug/L					
Dibenzo [a,h] anthracene	ND	0.05	ug/L					
Fluoranthene	ND	0.01	ug/L					
Fluorene	ND	0.05	ug/L					
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L					
1-Methylnaphthalene	ND	0.05	ug/L					
2-Methylnaphthalene	ND	0.05	ug/L					
Methylnaphthalene (1&2)	ND	0.10	ug/L					
Naphthalene	ND	0.05	ug/L					
Phenanthrene	ND	0.05	ug/L					
Pyrene	ND	0.01	ug/L					
Quinoline	ND	0.10	ug/L					
Surrogate: 2-Fluorobiphenyl	13.2		%	65.9	50-140			
Surrogate: Terphenyl-d14	12.0		%	60.0	50-140			
Volatiles								
Acetone	ND	5.0	ug/L					
Benzene	ND	0.5	ug/L					
Bromodichloromethane	ND	0.5	ug/L					
Bromoform	ND	0.5	ug/L					
Bromomethane	ND	0.5	ug/L					

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58963

Report Date: 06-Dec-2023

Order Date: 29-Nov-2023

Project Description: PE6036

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Carbon Tetrachloride	ND	0.2	ug/L					
Chlorobenzene	ND	0.5	ug/L					
Chloroethane	ND	1.0	ug/L					
Chloroform	ND	0.5	ug/L					
Chloromethane	ND	3.0	ug/L					
Dibromochloromethane	ND	0.5	ug/L					
Dichlorodifluoromethane	ND	1.0	ug/L					
1,2-Dibromoethane	ND	0.2	ug/L					
1,2-Dichlorobenzene	ND	0.5	ug/L					
1,3-Dichlorobenzene	ND	0.5	ug/L					
1,4-Dichlorobenzene	ND	0.5	ug/L					
1,1-Dichloroethane	ND	0.5	ug/L					
1,2-Dichloroethane	ND	0.5	ug/L					
1,1-Dichloroethylene	ND	0.5	ug/L					
cis-1,2-Dichloroethylene	ND	0.5	ug/L					
trans-1,2-Dichloroethylene	ND	0.5	ug/L					
1,2-Dichloroethylene, total	ND	0.5	ug/L					
1,2-Dichloropropane	ND	0.5	ug/L					
cis-1,3-Dichloropropylene	ND	0.5	ug/L					
trans-1,3-Dichloropropylene	ND	0.5	ug/L					
1,3-Dichloropropene, total	ND	0.5	ug/L					
Ethylbenzene	ND	0.5	ug/L					
Hexane	ND	1.0	ug/L					
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L					
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L					
Methyl Isobutyl Ketone	ND	5.0	ug/L					
Methyl tert-butyl ether	ND	2.0	ug/L					
Methylene Chloride	ND	5.0	ug/L					
Styrene	ND	0.5	ug/L					
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L					
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L					
Tetrachloroethylene	ND	0.5	ug/L					
Toluene	ND	0.5	ug/L					

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58963

Report Date: 06-Dec-2023

Order Date: 29-Nov-2023

Project Description: PE6036

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
1,1,1-Trichloroethane	ND	0.5	ug/L					
1,1,2-Trichloroethane	ND	0.5	ug/L					
Trichloroethylene	ND	0.5	ug/L					
Trichlorofluoromethane	ND	1.0	ug/L					
1,3,5-Trimethylbenzene	ND	0.5	ug/L					
Vinyl chloride	ND	0.5	ug/L					
m,p-Xylenes	ND	0.5	ug/L					
o-Xylene	ND	0.5	ug/L					
Xylenes, total	ND	0.5	ug/L					
Surrogate: 4-Bromofluorobenzene	69.1		%	86.3	50-140			
Surrogate: Dibromofluoromethane	104		%	129	50-140			
Surrogate: Toluene-d8	84.4		%	106	50-140			

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58963

Report Date: 06-Dec-2023

Order Date: 29-Nov-2023

Project Description: PE6036

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons F1 PHCs (C6-C10)	ND	0.025	mg/L	ND			NC	30	
Metals									
Aluminum	ND	1	ug/L	ND			NC	20	
Antimony	ND	0.5	ug/L	ND			NC	20	
Arsenic	ND	1	ug/L	ND			NC	20	
Barium	ND	1	ug/L	ND			NC	20	
Beryllium	ND	0.5	ug/L	ND			NC	20	
Boron	ND	10	ug/L	ND			NC	20	
Cadmium	ND	0.01	ug/L	0.01			NC	30	
Calcium	583	100	ug/L	ND			NC	20	
Chromium (VI)	ND	1	ug/L	ND			NC	20	
Chromium	ND	1	ug/L	ND			NC	20	
Cobalt	ND	0.5	ug/L	ND			NC	20	
Copper	ND	0.5	ug/L	ND			NC	20	
Iron	ND	100	ug/L	ND			NC	20	
Lead	ND	0.1	ug/L	ND			NC	20	
Magnesium	ND	200	ug/L	ND			NC	20	
Manganese	ND	5	ug/L	ND			NC	20	
Molybdenum	ND	0.5	ug/L	ND			NC	20	
Nickel	ND	1	ug/L	ND			NC	20	
Selenium	ND	1	ug/L	ND			NC	20	
Silver	ND	0.1	ug/L	ND			NC	20	
Thallium	ND	0.1	ug/L	ND			NC	20	
Titanium	ND	5	ug/L	ND			NC	20	
Uranium	ND	0.1	ug/L	ND			NC	20	
Vanadium	ND	0.5	ug/L	ND			NC	20	
Zinc	ND	5	ug/L	ND			NC	20	
Volatiles			-						
Acetone	ND	5.0	ug/L	ND			NC	30	
Benzene	ND	0.5	ug/L	ND			NC	30	

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58963

Report Date: 06-Dec-2023

Order Date: 29-Nov-2023

Project Description: PE6036

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Bromodichloromethane	ND	0.5	ug/L	ND			NC	30	
Bromoform	ND	0.5	ug/L	ND			NC	30	
Bromomethane	ND	0.5	ug/L	ND			NC	30	
Carbon Tetrachloride	ND	0.2	ug/L	ND			NC	30	
Chlorobenzene	ND	0.5	ug/L	ND			NC	30	
Chloroethane	ND	1.0	ug/L	ND			NC	30	
Chloroform	ND	0.5	ug/L	ND			NC	30	
Chloromethane	ND	3.0	ug/L	ND			NC	30	
Dibromochloromethane	ND	0.5	ug/L	ND			NC	30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND			NC	30	
1,2-Dibromoethane	ND	0.2	ug/L	ND			NC	30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloropropane	ND	0.5	ug/L	ND			NC	30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Hexane	ND	1.0	ug/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND			NC	30	
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L	ND			NC	30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND			NC	30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND			NC	30	
Methylene Chloride	ND	5.0	ug/L	ND			NC	30	
Styrene	ND	0.5	ug/L	ND			NC	30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	

Report Date: 06-Dec-2023

Order Date: 29-Nov-2023 **Project Description: PE6036**

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58963

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
Tetrachloroethylene	ND	0.5	ug/L	ND			NC	30	
Toluene	1.26	0.5	ug/L	1.16			8.3	30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
Trichloroethylene	ND	0.5	ug/L	ND			NC	30	
Trichlorofluoromethane	ND	1.0	ug/L	ND			NC	30	
1,3,5-Trimethylbenzene	2.79	0.5	ug/L	3.39			19.4	30	
Vinyl chloride	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	3.63	0.5	ug/L	3.64			0.3	30	
o-Xylene	18.6	0.5	ug/L	18.6			0.0	30	
Surrogate: 4-Bromofluorobenzene	62.2		%		77.7	50-140			
Surrogate: Dibromofluoromethane	85.1		%		106	50-140			
Surrogate: Toluene-d8	91.3		%		114	50-140			

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58963

Report Date: 06-Dec-2023

Order Date: 29-Nov-2023

Project Description: PE6036

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1.89	0.025	mg/L	ND	94.6	85-115			
F2 PHCs (C10-C16)	1.3	0.1	mg/L	ND	80.7	60-140			
F3 PHCs (C16-C34)	3.8	0.1	mg/L	ND	97.4	60-140			
F4 PHCs (C34-C50)	2.7	0.1	mg/L	ND	110	60-140			
Metals									
Aluminum	47.3	1	ug/L	ND	93.8	80-120			
Arsenic	48.2	1	ug/L	ND	96.3	80-120			
Barium	44.1	1	ug/L	ND	88.2	80-120			
Beryllium	47.8	0.5	ug/L	ND	95.4	80-120			
Boron	44	10	ug/L	ND	87.7	80-120			
Cadmium	4.17	0.01	ug/L	0.01	83.2	80-120			
Calcium	8330	100	ug/L	ND	83.1	80-120			
Chromium (VI)	143	1	ug/L	ND	71.5	70-130			
Chromium	45.6	1	ug/L	ND	91.1	80-120			
Cobalt	45.3	0.5	ug/L	ND	90.6	80-120			
Copper	46.5	0.5	ug/L	ND	92.7	80-120			
Iron	2160	100	ug/L	ND	86.2	80-120			
Lead	43.9	0.1	ug/L	ND	87.7	80-120			
Magnesium	8660	200	ug/L	ND	86.5	80-120			
Manganese	45.1	5	ug/L	ND	90.2	80-120			
Molybdenum	38.9	0.5	ug/L	ND	77.5	80-120			QM-07
Nickel	46.6	1	ug/L	ND	93.1	80-120			
Selenium	45.9	1	ug/L	ND	91.5	80-120			
Silver	48.9	0.1	ug/L	ND	97.7	80-120			
Thallium	45.4	0.1	ug/L	ND	90.7	80-120			
Titanium	51.3	5	ug/L	ND	103	80-120			
Uranium	48.0	0.1	ug/L	ND	96.0	80-120			
Vanadium	45.4	0.5	ug/L	ND	90.6	80-120			
Zinc	45	5	ug/L	ND	90.6	80-120			
PCBs			-						

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58963

Report Date: 06-Dec-2023

Order Date: 29-Nov-2023

Project Description: PE6036

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
PCBs, total	1.15	0.05	ug/L	ND	115	65-135			
Surrogate: Decachlorobiphenyl	0.380		%		76.0	60-140			
Semi-Volatiles									
Acenaphthene	3.55	0.05	ug/L	ND	71.0	50-140			
Acenaphthylene	3.92	0.05	ug/L	ND	78.3	50-140			
Acridine	5.86	0.10	ug/L	ND	117	50-140			
Anthracene	4.50	0.01	ug/L	ND	90.0	50-140			
Benzo [a] anthracene	4.79	0.01	ug/L	ND	95.7	50-140			
Benzo [a] pyrene	3.67	0.01	ug/L	ND	73.4	50-140			
Benzo [b] fluoranthene	4.68	0.05	ug/L	ND	93.7	50-140			
Benzo [g,h,i] perylene	3.95	0.05	ug/L	ND	79.1	50-140			
Benzo [k] fluoranthene	5.15	0.05	ug/L	ND	103	50-140			
Biphenyl	3.76	0.05	ug/L	ND	75.3	50-140			
Chrysene	4.41	0.05	ug/L	ND	88.2	50-140			
Dibenzo [a,h] anthracene	4.20	0.05	ug/L	ND	84.0	50-140			
Fluoranthene	4.87	0.01	ug/L	ND	97.4	50-140			
Fluorene	3.43	0.05	ug/L	ND	68.6	50-140			
Indeno [1,2,3-cd] pyrene	4.38	0.05	ug/L	ND	87.5	50-140			
1-Methylnaphthalene	4.00	0.05	ug/L	ND	79.9	50-140			
2-Methylnaphthalene	4.16	0.05	ug/L	ND	83.3	50-140			
Naphthalene	4.06	0.05	ug/L	ND	81.1	50-140			
Phenanthrene	3.86	0.05	ug/L	ND	77.3	50-140			
Pyrene	4.98	0.01	ug/L	ND	99.6	50-140			
Quinoline	5.09	0.10	ug/L	ND	102	50-140			
Surrogate: 2-Fluorobiphenyl	17.1		%		85.7	50-140			
Surrogate: Terphenyl-d14	13.0		%		65.0	50-140			
Volatiles									
Acetone	111	5.0	ug/L	ND	111	50-140			
Benzene	39.5	0.5	ug/L	ND	98.7	60-130			
Bromodichloromethane	46.6	0.5	ug/L	ND	117	60-130			
Bromoform	48.5	0.5	ug/L	ND	121	60-130			

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58963

Report Date: 06-Dec-2023

Order Date: 29-Nov-2023

Project Description: PE6036

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Bromomethane	51.0	0.5	ug/L	ND	127	50-140			
Carbon Tetrachloride	45.9	0.2	ug/L	ND	115	60-130			
Chlorobenzene	44.4	0.5	ug/L	ND	111	60-130			
Chloroethane	49.0	1.0	ug/L	ND	122	50-140			
Chloroform	44.5	0.5	ug/L	ND	111	60-130			
Chloromethane	36.0	3.0	ug/L	ND	90.1	50-140			
Dibromochloromethane	49.1	0.5	ug/L	ND	123	60-130			
Dichlorodifluoromethane	37.5	1.0	ug/L	ND	93.6	50-140			
1,2-Dibromoethane	50.9	0.2	ug/L	ND	127	60-130			
1,2-Dichlorobenzene	50.7	0.5	ug/L	ND	127	60-130			
1,3-Dichlorobenzene	46.4	0.5	ug/L	ND	116	60-130			
1,4-Dichlorobenzene	47.4	0.5	ug/L	ND	119	60-130			
1,1-Dichloroethane	39.2	0.5	ug/L	ND	97.9	60-130			
1,2-Dichloroethane	40.9	0.5	ug/L	ND	102	60-130			
1,1-Dichloroethylene	40.3	0.5	ug/L	ND	101	60-130			
cis-1,2-Dichloroethylene	38.5	0.5	ug/L	ND	96.3	60-130			
trans-1,2-Dichloroethylene	40.4	0.5	ug/L	ND	101	60-130			
1,2-Dichloropropane	43.3	0.5	ug/L	ND	108	60-130			
cis-1,3-Dichloropropylene	38.9	0.5	ug/L	ND	97.2	60-130			
trans-1,3-Dichloropropylene	40.4	0.5	ug/L	ND	101	60-130			
Ethylbenzene	47.9	0.5	ug/L	ND	120	60-130			
Hexane	29.4	1.0	ug/L	ND	73.6	60-130			
Methyl Ethyl Ketone (2-Butanone)	98.0	5.0	ug/L	ND	98.0	50-140			
Methyl Butyl Ketone (2-Hexanone)	107	10.0	ug/L	ND	107	50-140			
Methyl Isobutyl Ketone	119	5.0	ug/L	ND	119	50-140			
Methyl tert-butyl ether	90.0	2.0	ug/L	ND	90.0	50-140			
Methylene Chloride	46.2	5.0	ug/L	ND	116	60-130			
Styrene	45.4	0.5	ug/L	ND	114	60-130			
1,1,1,2-Tetrachloroethane	43.4	0.5	ug/L	ND	108	60-130			
1,1,2,2-Tetrachloroethane	39.7	0.5	ug/L	ND	99.3	60-130			
Tetrachloroethylene	48.3	0.5	ug/L	ND	121	60-130			

Certificate of Analysis

Client: Paterson Group Consulting Engineers (Ottawa)

Client PO: 58963

Report Date: 06-Dec-2023

Order Date: 29-Nov-2023

Project Description: PE6036

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Toluene	46.4	0.5	ug/L	ND	116	60-130			
1,1,1-Trichloroethane	42.0	0.5	ug/L	ND	105	60-130			
1,1,2-Trichloroethane	48.6	0.5	ug/L	ND	122	60-130			
Trichloroethylene	39.3	0.5	ug/L	ND	98.2	60-130			
Trichlorofluoromethane	45.4	1.0	ug/L	ND	113	60-130			
1,3,5-Trimethylbenzene	44.3	0.5	ug/L	ND	111	60-130			
Vinyl chloride	49.9	0.5	ug/L	ND	125	50-140			
m,p-Xylenes	74.8	0.5	ug/L	ND	93.5	60-130			
o-Xylene	45.9	0.5	ug/L	ND	115	60-130			
Surrogate: 4-Bromofluorobenzene	48.8		%		61.1	50-140			
Surrogate: Dibromofluoromethane	79.8		%		99.8	50-140			
Surrogate: Toluene-d8	69.0		%		86.3	50-140			

Client: Paterson Group Consulting Engineers (Ottawa)

Order #: 2348312

Report Date: 06-Dec-2023

Order Date: 29-Nov-2023

Project Description: PE6036

Certificate of Analysis

Client PO: 58963

Qualifier Notes: QC Qualifiers:

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Paracel Order Number Chain Of Custody (Lab Use Only) (Lab Use Only)

	LABORATORIES LTD.						iom i		. , ,								,,	
Clie							- 7	23	34	831	2							
Can	ent Name: Paterson Group			Proje	ect Ref:	PE6036							2000	922				
	Nick Sulliva			Quot	te#:	1:0000										ge <u>i</u>		
Add	tress: 9 Aurisa Drive			PO #	: 50	963							-			round	Time	2
	Ottawa, ON KZE 77	79		E-ma	il:	162							1 -	1 day				☐ 3 day
Tele	ephone: 613-226-7381	. /		+	NS	ull: van@pa	sterencer							2 day			è	Regular
_	700000000		_					٥, ٥	· CC				Date	Requ	ired:			,
_	Table 1 Res/Park Med/Fine REG 558	r Regulation		Matrix	Type:	S (Soil/Sed.) GW (G	Fround Water)						38.3	製設	8 V 18		88.77	
		□ PWQ0		SW (St	urface V	Vater) SS (Storm/Sa	anitary Sewer)					Re	quire	d Anal	ysis			
		☐ MISA		_	P (P	aint) A (Air) O (Oti	her)	微								T	T	
	Table 7	☐ SU-Storm			e 73			PHCs F1-F4*(SIR)			۵							
Α.				ag.	Containers	Sample	Taken	1-54			2				Bs			
_			Matrix	Air Volume	of Cor			L SS	l so	<u>00</u>	d sle			(HWS)	(77)			
1	Sample ID/Location Name		-	Air	#	Date	Time	그 품	VOCs	PAHs	Metals by ICP	Нg	CrVI	B (H)	5			
2	BH11-23-GW1		GW		张5	NOV. 24. 2023		X	V		V	J	V			\dashv	+	+
_	DH16-62- (7W)		1		8			1.			$^{\circ}$	^	$\hat{}$	_	1	\dashv	+	+
3	BH13-23-GWI				8			X	Х	X	X	X	\times		Χ	+	+	- 1
4	DUP-4		V		2	1		X	X	X	\times	X	×		X	\perp	\perp	\perp
5			-			ΥΥ		+-	X									
6								-										
7																T	\top	
8			_													\top	\top	\top
9															\neg	\top	\top	+
10												\neg			\dashv	+	+	+
	ents:				4 1		7.55	-	-	-						+	+	+
											-	Method	l of Dali	luan.	54.2	E127-1095.		
elingu	uished By (Sign);	-									ľ	etii00	-		1	0		
-	11. 3/1/2/m	Received By Dri	ver/De	pot:	-		Received at Lab:				1	/erified	By:			Con	uic	Λ
linqu	uished By (Print): Nick Sullyan	Date/Time:	HALLE Y				Date/Time: \^	HP			53			Hi	50,1			
ite/T	Ime: //	Temperature:				114 146 LEV. (D.)	Date/Time: V	OV 2	9,8	23/10	5:00	ate/Ti	me: N	lov	29	,23	116	5:30
in of	Custody (Blank).xlsx					CULTURE CAROLES	Temperature:	7.9	°C		1	H Veri	fied: [Ву:	HP		
						Revsion 4.0					_			_				

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Order Date:

Report Date:

29-Nov-23

6-Dec-23

Subcontracted Analysis

Paterson Group Consulting Engineers (Ottawa)

9 Auriga Drive Ottawa, ON K2E 7T9 Attn: Nick Sullivan

Paracel Report No. 2348312

PE6036 Client Project(s): 58963

Client PO:

Reference: **Standing Offer**

CoC Number:

Sample(s) from this project were subcontracted for the listed parameters. A copy of the subcontractor's report is attached

Paracel ID	Client ID	Analysis
2348312-01	BH11-23-GW1	Mercury - trace level
2348312-02	BH12-23-GW1	Mercury - trace level
2348312-03	BH13-23-GW1	Mercury - trace level

CERTIFICATE OF ANALYSIS

Client: Dale Robertson Work Order Number: 520738

Company: Paracel Laboratories Ltd. - Ottawa PO #:

Address: 300-2319 St. Laurent Blvd. Regulation: CCME Short Term Freshwater Quality

Guidelines

Ottawa, ON, K1G 4J8 Project #: 2348312

 Phone/Fax:
 (613) 731-9577 / (613) 731-9064
 DWS #:

 Email:
 drobertson@paracellabs.com
 Sampled By:

Date Order Received: 12/4/2023 Analysis Started: 12/6/2023
Arrival Temperature: 8 C Analysis Completed: 12/6/2023

WORK ORDER SUMMARY

Date of Issue: 12/06/2023 16:49

ANALYSES WERE PERFORMED ON THE FOLLOWING SAMPLES. THE RESULTS RELATE ONLY TO THE ITEMS TESTED.

Sample Description	Lab ID	Matrix	Туре	Comments	Date Collected	Time Collected
BH11-23-GW1	1957719	Ground Water	Grab		11/24/2023	9:00 AM
BH12-23-GW1	1957720	Ground Water	Grab		11/24/2023	9:00 AM
BH13-23-GW1	1957721	Ground Water	Grab		11/24/2023	9:00 AM

METHODS AND INSTRUMENTATION

THE FOLLOWING METHODS WERE USED FOR YOUR SAMPLE(S):

Method	Lab	Description	Reference
Mercury Dis. Water CV FF (S8)	Timmins	Determination of Dissolved Inorganic Mercury by Cold Vapour AA -> Field- Filtered	Modified from EPA 245.7

CERTIFICATE OF ANALYSIS

Paracel Laboratories Ltd. - Ottawa Work Order Number: 520738

This report has been approved by:

Adam Tam, M.Sc. Laboratory Director

WORK ORDER RESULTS

Sample Description	BH11 - 2	23 - GW1	BH12 - 2	23 - GW1	BH13 - 2	23 - GW1		
Sample Date	11/24/202	23 9:00 AM	11/24/202	23 9:00 AM	11/24/202	23 9:00 AM		
Lab ID	195	7719	195	7720	195	7721		
Mercury by CV (Dissolved)	Result	MDL	Result	MDL	Result	MDL	Units	Criteria: CCME Short Term Freshwater Quality Guidelines
Dissolved Mercury	<0.01 [<0.01]	0.01	<0.01	0.01	<0.01	0.01	ug/L	~

LEGEND

Dates: Dates are formatted as mm/dd/year throughout this report.

MDL: Method detection limit or minimum reporting limit.

Date of Issue: 12/06/2023 16:49

[]: Results for laboratory replicates are shown in square brackets immediately below the associated sample result for ease of comparison.

Organic Soil Analysis: Data reported for organic analysis in soils samples are corrected for moisture content.

Quality Control: All associated Quality Control data is available on request.

Field Data: Reports containing Field Parameters represent data that has been collected and provided by the client. Testmark is not responsible for the validity of this data which may be used in subsequent calculations.

Sample Condition Deviations: A noted sample condition deviation may affect the validity of the result. Results apply to the sample(s) as received.

Reproduction of Report: Report shall not be reproduced, except in full, without the approval of Testmark Laboratories Ltd.

ICPMS Dustfall Insoluble: The ICPMS Dustfall Insoluble Portion method analyzes only the particulate matter from the Dustfall Sampler which is retained on the analysis filter during the Dustfall method.

Regulation Comparisons: Disclaimer: Please note that regulation criteria are provided for comparative purposes, however the onus on ensuring the validity of this comparison rests with the client.

^{~:} In a criteria column indicates the criteria is not applicable for the parameter row.

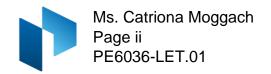
Date of Issue: 12/06/2023 16:49

CERTIFICATE OF ANALYSIS

Paracel Laboratories Ltd. - Ottawa Work Order Number: 520738

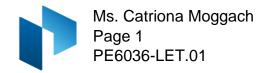
Paracel Order Number Chain Of Custody (Lab Use Only) (Lab Use Only) 2348310

Client Name: O	Proje				_ ′	2348312										
Client Name: Paterson Group		Proje	ect Ref:	P£6036									Pa	ge /	of I	
Nick Sullivan		Quot	e#:							_	+	_		round		
9 Aurisa Drive		PO#:	58	963							┨ _			rouna		
Ottawa, ON KZE ITA		E-ma	11:								-	1 day				3 day
Telephone: 613 - 226 - 7381		1	ns	ull: van@po	tersonsre	00 .c	c~				1	2 day			À	Regular
REG 153/04 REG 406/19 Other Regulation											Date	Requ	ired:			
☐ Table 1 ☐ Res/Park ☐ Med/Fine ☐ REG 558 ☐ PWQO	- 1	/latrix	Type:	S (Soil/Sed.) GW (G	round Water)					Po	ouds o					
□ Table 2 □ Ind/Comm □ Coarse □ CCME □ MISA		SW (Su	rface \	Vater) SS (Storm/Sar Paint) A (Air) O (Oth	nitary Sewer)	106				Re	quire	d Anal	ysis			
	_	_	1.0	A(All) O(Oth	ierj	黨								T	T	T
Table 7 Agri/Other SU-Sani SU-Storm			hers			#			Q.							
For RSC: Yes No Other:		nue	ntair	Sample	Taken	F1-F4*(\$1)			5				BS			
Sample ID/Location Name	Matrix	Air Volume	of Containers			S	్ర	φ	Metals by ICP		_	B (HWS)	Ü			
	_	Ą	#	Date	Time	PHCs	VOCs	PAHs	Met	£β	CrVI	B (F	07			
1 RHII-23-GWI	GW	_	%5	NOV. 24.2023		X	Χ		X	X	X					+
DHIC-62- (7W)	4		8			X	Χ	X	X				Χ	\neg	\neg	-
DH13- 23- GWI			8			X					Š			\dashv	+	+
4 DUP-4	Y		2	V			Ť	X	×	X	×		X	+	+	+
5							Α			-	-		-	+		-
6			1			+				-		_	_	\perp		
7						+	_		_			_	_			
8						\sqcup	_									
9															T	
10			-										\Box			\Box
omments:			1		P 555			-								
										Method	of Deli	ivery:		10.525		0000
elinquished By (Sign):	1 6-												.1	Con	uier	
11. 3/1/2 As	iver/De	pot:			Received at Lab:	110			1	/erified	By:	11		Col	4101	
elinquished By (Print): Nick Sull'Yan Date/Time:					Date/Time: _/	HP	0 -			ate/T	mai	Hi	50,1			
Alexander 29 7073 Temperature:				THE PROPERTY OF	emperature:	N E	3,8	3110	5:00	rate/III	ue: V	lov	29	,23	16:	30
nin of Custody (Blank),xlsx			10.70	Revsion 4.0	and a contract	7.9	C		1	H Veri	fied: L	-	Ву:	HP		



Soil & Groundwater Management Plan

Proposed Residential Development


Tunney's Pasture (Block 5) Ottawa, Ontario

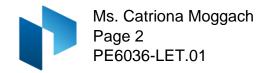
Prepared for Arcadis IBI Group

TABLE OF CONTENTS

1.0	Introduction	. 1
2.0	Soil Reuse	. 1
3.0	Groundwater Re-use	. 2
4.0	Soil Requiring Off-Site Disposal	. 2
5.0	Groundwater Requiring Off-Site Disposal	. 2
5.	1 Construction Dewatering	. 3
5.	2 Groundwater Monitoring Decommissioning	. 3
6.0	Permits and Agreements	. 3
7.0	Soil Stockpiles and Handling	. 4
8.0	Federal and Provincial Confirmatory Soil and Groundwater Sampling Protocols.	. 4
8.	1 Soil and Groundwater Standards	. 4
8.	2 Stockpile Sampling	. 5
9.0	Applicable Municipal Laws, Standards, Codes and Guidelines	. 6
9.	1 Soil and Groundwater Standards	. 6
10.0	Imported Material	. 6
11.0	Quality Assurance and Quality Control	. 7
12.0	Unexpected Environmental Impacts	. 7
13.0	Estimated Soil and Groundwater Management Budget	7

1.0 Introduction

This Soil and Groundwater Management Plan (SGMP) was developed to minimize the soil and groundwater onsite that will require off-site disposal and when off-site disposal is required, ensuring that proper handling and disposal methods are undertaken. A high level fee estimate for the required items for soil and groundwater management during construction have been included at the end of this letter.


2.0 Soil Reuse

Based on analytical test results, all soil is considered suitable for reuse on the subject site provided that the soil is not considered heavily impacted (no visible free product or significant petroleum hydrocarbon (PHC) odours) and is not used as final cover for landscaping purposes (with the exception of segregated topsoil and granular materials).

The excavated soil may be suitable for reuse on-site as backfill from a geotechnical perspective provided that it is maintained in a relatively dry condition, can be properly compacted, and is approved by the geotechnical engineer at the time of construction. Additionally, based on the conditions observed, cobbles and boulders are likely to be encountered in certain areas of the excavation. Thus, prior to reusing this soil, it will be necessary to cull out all material in excess of 300 mm in its largest dimension. Alternatively, cobbles and boulders could be processed and blended with the fill to a gradation suitable for reuse as engineered fill.

Site excavated soil can also be used as general landscaping fill where settlement of the ground surface is of minor concern. These materials should be spread in thin lifts and compacted to minimize voids. If these materials are to be used to build up the subgrade level for areas to be paved, they should be compacted in thin lifts to a minimum density of 95% of their respective standard Proctor maximum dry density (SPMDD). Site excavated soil is not suitable for use as backfill against foundation walls due to the frost heave potential of the site excavated soils below settlement sensitive areas, such as concrete sidewalks and exterior concrete entrance areas.

It is recommended that stockpiles of excavated material intended for reuse be protected against increases in moisture content by securely covering the stockpiles prior to and during precipitation events. Therefore, the placement and compaction of the on-site soil should be completed during relatively dry and non-freezing conditions. If, due to any of the above conditions, the existing fill becomes unsuitable for reuse as engineered fill based on the geotechnical engineer, it should be transported and properly disposed offsite, and an imported fill material should be used. Protection of materials from increased moisture content is considered to be the responsibility of the Contractor.

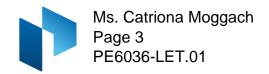
3.0 Groundwater Re-use

Groundwater is considered to be suitable to manage on-site during situations where free product is not observed and no risk to the workers or the natural environment is considered to be present relating to its re-use. The groundwater must be able to be managed without entering any surface water bodies without appropriate treatment and permits.

4.0 Soil Requiring Off-Site Disposal

Soil is considered to require off-site disposal from an environmental perspective when the soil is heavily impacted. Heavily impacted soil is considered impacts that can recontaminate areas due to leaching and consists of free product visible in the soil and/or significant PHC odours.

Based on the findings of the Phase II ESA investigation, no contaminated soil was identified on the subject property.


Excavated soil is not considered to be suitable for reuse on site during conditions where, in the opinion of the geotechnical engineer, the soil is saturated and/or does not have a suitable gradation for placement and compaction that will not achieve the required compaction specifications. Soil generated on the property which cannot be reused will become excess soil, and must be handled in accordance with Ontario Regulation 406/19. Supplemental testing and reporting will be required in order to comply with this regulation. It is recommended that testing and reporting be completed ahead of contraction works, to allow for sufficient time to plan for excess soil reuse.

Soil to be disposed off-site must be evaluated by environmental personnel prior to their disposal. Heavily impacted soil must be disposed at an approved waste disposal facility. Soil observed to be clean or marginally impacted can be disposed of at a variety of waste disposal facilities, including, but not limited to, clean fill sites (clean soil only) and interim transfer stations. Based on the quality of the soil, as determined by the environmental personnel, the soil must be sent to the appropriate disposal facility.

At this time, soil disposal locations have not been selected. These locations will be selected by the construction contractor prior to mobilization.

5.0 Groundwater Requiring Off-Site Disposal

Groundwater must be disposed of off-site in situations where free product is observed. The groundwater must be disposed of following all applicable laws and regulations. Licensed pumping contractors are required to dispose of any impacted groundwater. If

impacted groundwater is observed, all reasonable efforts must be made to limit the quantity of impacted groundwater pumped and disposed. Similarly, if a spill occurs all reasonable efforts should be made to protect the surface and groundwater resources. At no time is groundwater to be disposed of directly to surface water resources.

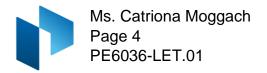
Based on the findings of the Phase II ESA investigation, no contaminated groundwater was identified on the subject property.

Any offsite groundwater must be disposed of through an approved method. Grossly impacted groundwater where a sheen and/or odour is identified must be treated prior to removal from site or be removed from site with the intention of offsite treatment. Excess groundwater may also be able to be disposed within the City of Ottawa Sanitary and/or Storm sewer system. Prior to disposal to the sewer system, a sewer discharge agreement must be completed with the City of Ottawa.

5.1 Construction Dewatering

The site-specific construction dewatering protocols will be provided in project- specific geotechnical and/or hydrogeological reports.

Generally, it is recommended that additional analytical testing prior to construction mobilization should be carried out to determine the appropriate disposal method. Any environmentally impacted groundwater should be pumped into a storage tanker for testing and potentially treatment before discharging to the sanitary sewer.


5.2 Groundwater Monitoring Decommissioning

All groundwater monitoring wells must be decommissioned in accordance with Ontario Regulation 903/90. It is recommended that the groundwater monitoring wells remain in place and in viable condition for as long as possible, to allow for any potential resampling.

6.0 Permits and Agreements

It is anticipated that the following permits and agreements will be required to conduct the Construction Contractor Obligations (with respect to the Soil and Groundwater Management Plan);

Permit to Take Water (or water taking EASR)
City of Ottawa Storm and/or Sanitary Sewer Discharge agreement
Landfill agreement for soil disposal

☐ Clean Fill agreement for soil disposal

7.0 Soil Stockpiles and Handling

Any soil and construction debris that is temporarily stockpiled must be done so within the confines of the perimeter protection/construction fencing. All stockpiles will be covered, by the trade contractor, with plastic tarps (10 mil plastic minimum), or an impermeable geotextile and secured from wind. The stockpiles will be covered with plastic in a reasonable time frame as weather conditions dictate. If the stockpile is continuously being accessed then the stockpile will be covered prior to the end of the work day, as weather conditions dictate. Storm water runoff from the plastic covering is to be diverted away from all surface water resources and from open construction excavations.

Stockpiles should be clearly identified to eliminate cross contamination and improper usage. Soil identified as grossly impacted should be immediately loaded into truck and disposed of at the licensed waste facility. The volume of excess soil disposed of at the landfill should be minimized using segregation during excavation and subsequent stockpile sampling programs.

8.0 Federal and Provincial Confirmatory Soil and Groundwater Sampling Protocols

The soil and groundwater sampling protocols followed during the field sampling programs in Ontario should be in general accordance with the MECP document entitled "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated May 1996.

8.1 Soil and Groundwater Standards

The soil and groundwater standards for the Ontario portion of the site were taken from the document entitled "Soil, Groundwater and Sediment Standards for Use under Part XV.I of the Environmental Protection Act" prepared by the Ontario Ministry of the Environment (now Ministry of the Environment, Conservation and Parks), dated April 15, 2011. Several of the Tables found in the document may be applicable to the subject site. The following Table may be applicable.

The	Table	7 Standards	are base	d on	the	following	considera	tions:
	Coarse	-Grained Sc	oil Conditio	ons				

■ Non-Potable Groundwater Conditions

Residential Land Use

■ Shallow Soil Conditions

The applicable federal soil and groundwater standards are considered to be the Canadian Council of Ministers of the Environment (CCME). The standards are taken from the document entitled "Canadian Environmental Quality Guidelines", however, due to the proposed use of the block(s) as privately owned operations, only Provincial standards are deemed to apply for future uses.

Note that due to the proposed change in land use to a more sensitive use (e.g. commercial to residential), a Record of Site Condition will be required prior to redevelopment.

8.2 Stockpile Sampling

Stockpiled soils are subject to minimum sampling requirements under O.Reg. 153/04. The sampling requirements are shown below;

MINIMUM STOCKPILE SAMPLING FREQUENCY					
Stockpile Volume (m³)	Minimum Number of Analysed Samples				
≤ 130	3				
> 130 to 220	4				
> 220 to 320	5				
> 320 to 430	6				
> 430 to 550	7				
> 550 to 670	8				
> 670 to 800	9				
> 800 to 950	10				
> 950 to 1100	11				
> 1100 to 1250	12				
> 1250 to 1400	13				
> 1400 to 1550	14				
> 1550 to 1700	15				
> 1700 to 1850	16				
> 1850 to 2050	17				
> 2050 to 2200	18				
> 2200 to 2350	19				
> 2350 to 2500	20				
> 2500 to 2700	21				
> 2700 to 2900	22				
> 2900 to 3100	23				
> 3100 to 3300	24				
> 3300 to 3500	25				

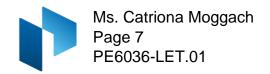
MINIMUM STOCKPILE SAMPLING FREQUENCY				
Stockpile Volume (m³)	Minimum Number of Analysed Samples			
> 3501 to 3700	26			
> 3700 to 3900	27			
> 3900 to 4100	28			
> 4100 to 4300	29			
> 4300 to 4500	30			
> 4500 to 4700	31			
> 4700 to 5000	32			
> 5000	32+(Volume-5000)÷300			

The soil samples collected from the stockpiles are required to be tested for the following (as a minimum) Petroleum Hydrocarbons F1-F4, Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX), Metals, hydride forming Metals, sodium adsorption ratio (SAR), electrical conductivity (EC), and any other contaminants of concern, as identified by the environmental consultant (Qualified Person). Analysis for EC and SAR is only required in areas where a substance (namely road salt) has been applied for the purposes of keeping the area safe under conditions of snow or ice.

9.0 Applicable Municipal Laws, Standards, Codes and Guidelines

9.1 Soil and Groundwater Standards

No municipal soil standards and guidelines are considered to apply.


Groundwater discharged into the sewer systems of the City of Ottawa and City of Gatineau must follow the applicable bylaws.

City of Ottawa

The City of Ottawa requires that all discharges fall within the limits of Sewer Use By-law No. 2003-514. A sewer use agreement is expected to be required to manage excess groundwater at selected sites.

10.0 Imported Material

All imported material may originate from a licensed pit, quarry or other aggregate site licensed under the Aggregate Resources Act, or, from a source site where all applicable excess soil regulations have been met. Imported material will be required to meet the specific standard for its final use. If clean fill is imported onto site from a property not

licensed under the Aggregate Resources Act, in-situ, or stockpile sampling as outlined in Section 8.3, will be required prior to final placement.

All imported soil must be placed in accordance with Ontario Regulation 406/19.

11.0 Quality Assurance and Quality Control

A minimum of 10% of samples will be submitted as duplicates for the purposes of QA/QC. Only one parameter grouping per QA/QC sample is required.

Additional QA/QC procedures are outlined in the Environmental Quality Management Plan, available under a separate cover.

12.0 Unexpected Environmental Impacts

If unexpected environmental impacts are encountered during the course of construction or redevelopment of the block(s), the environmental consultant or their representative should be notified immediately and work should avoid the area until an inspection is completed.

Following an inspection by the environmental consultant or their representative recommendations will be made regarding appropriate material handling procedures at the location. Additional investigative work may be required to delineate the impacted areas (if required).

13.0 Estimated Soil and Groundwater Management Budget

The following table presents the approximate costs related to items discussed in this soil and groundwater management plan.

Table 1: Estimated Costs for Soil and Groundwater Management				
Item	Fees			
On-Site and Excess Soil Management (O.Reg. 406/19),	\$70,000			
including:				
Reporting				
 Supplemental testing 				
 Meetings and Consultation with stakeholders and 				
contractors				
Note that the On-site and Excess Soil testing will provide				
valuable information for soil delineation purposes.				
Soil remediation – tipping fees (\$60/mt)	N/A			
Soil remediation. Includes:	N/A			
Site supervision				
 Confirmatory soil sampling 				
Reporting				
Record of Site Condition (O.Reg. 153/04) – initial submission	\$20,000			
(note that additional revisions and submissions may be required	\$10,000 (revisions)			
based on Ministry comments)				
Permit to take water or	\$20,000			
Water taking EASR (whichever is applicable)	\$8,000			
City of Ottawa sewer discharge testing and permits	\$5,000			
TOTAL	\$125,000			